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École doctorale de Physique et Astrophysique de l’Université de Lyon
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”Physics doesn’t care if your question is weird. It just gives
you the answer, without judging. For example, according to
the comprehensive 456-page handbook Cheese Rheology and
Textures...”
Randall Munroe, ”How To, absurd scientific advice for com-
mon real-world problems” ed. John Murray
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jury. Je les remercie pour leur bienveillance et les discussions scientifiques autour de ma thèse
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du thé et en mangeant des cookies (mais pas au dessus des BD). C’était chouette de faire tout
ça, et en plus ça m’a beaucoup appris sur la façon de travailler en équipe. Vive l’associatif !
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semaine. Merci à Raphaël, mon grand mâıtre du trombone, Benjamin, mon senpai de la percu,
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coiffures rigolotes, les corrections de code Python et tout le reste.
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Chapter 1

Introduction

The quest for an unlimited energy source, a perpetual motion machine, can seem absurd and
vowed to fail nowadays. A perpetual motion machine is a device that once set in motion, would
keep providing energy by itself, without ever stopping. This quest is so foolish that many great
minds tried to tackle it throughout history. Leonardo Da Vinci, for example, proposed many
designs of wheels which would keep on spinning indefinitely (see figure 1.1), but he concluded
[1, 2]:

Seekers after perpetual motion, how many vain chimeras have you pursued? Go
and take your place with the alchemists.

Figure 1.1: Design of perpetual motion wheel by Leonardo Da Vinci. Taken from [1]. The
idea behind these design is that a part of the wheel is mobile, so that one side of the wheel
is always heavier than the other, increasing the torque from gravitational forces. However, Da
Vinci understood that doing so also increases the moment of inertia of the wheel and reduces
the effect of torque, the two effects cancelling each other.

This search for a device that once in motion would keep providing energy by itself, without
ever stopping has been compared to the search for the philosopher stone [3]. While it is
commonly accepted that such a device is impossible, the reasons behind are not so easy to
understand, and required many years of scientific work in the field of thermodynamics.

1.1 Macroscopic thermodynamics

Thermodynamics is the science describing the laws behind energy exchange and transformation.
It was developed during the industrial revolution, to answer questions about the operation of
steam engines. The main questions were about the limit to the efficiency of these engines. How
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10 CHAPTER 1. INTRODUCTION

much mechanical work can be extracted? What is the maximal power that can be achieved?
What is the required energy input? Thermodynamics answers all these questions with only two
fundamental Laws.

The first Law of thermodynamic was explicitly stated by Clausius in 1850, in [4].

In a thermodynamic process involving a closed system, the increment in the internal
energy is equal to the difference between the heat accumulated by the system and
the work done by it.

This is a very strong constraint on the operation of engines or any kind of physical transforma-
tion. This law states that a system can store energy in a form here called ”internal energy”,
so that energy is conserved during any process. A distinction is made between work, energy
exchanged by mechanical means, and heat, exchanged by thermal means.

While the First Law of thermodynamic is a very powerful result, it lacks predictive power.
Indeed, it puts a strong constraint on the types of transformation that are allowed, but it
doesn’t rule out heat flowing from cold objects to hot objects. Another example is that one
could imagine a boat whose motion is powered by energy taken from the ocean, that is cooled
by the operation.

To complement the First Law, Clausius introduces in 1865 the concept of entropy, a quantity
linked to the heat fluxes with a thermostat during a transformation. He concludes:

The entropy of the universe tends to a maximum.

While this statement is quite loose, it is indeed valid for any isolated system and can be used
to predict its evolution. This has strong implications again on the operation of all kind of
machines, one of the stronger result being a derivation of Carnot’s maximum efficiency for heat
engines in 1824 [5].

These two principles are very powerful tools and allow us to understand the limit of engines
or any kind of cyclic machines (refrigerators, heat pumps, etc...). However, they rely on two
quantities, internal energy and entropy, for which no interpretation is given.

1.2 Microscopic origins

The microscopic explanation of the nature of internal energy and entropy comes from works by
Maxwell and Boltzmann on the kinetic theory of gases. Their approach is based on two main
ideas. First, the assumption that a gas is made of very small particles in motion, colliding
with each other. Second, the idea that the number of particles is so large that a statistical
approach is enough to recover the overall behaviour of the gas. Maxwell derived the probability
distribution of speed in the gas at equilibrium and linked it to the macroscopic pressure [6]. It
also gives an understanding of internal energy in term of the sum of the kinetic energy of all
the particles in the gas.

In 1872, Boltzmann generalised Maxwell’s distribution to explain the role of collisions in the
relaxation toward equilibrium [7]. In his work, Boltzmann notices the existence of a function,
H, that can only decrease during the evolution of the gas, very similarly to the entropy used
by Clausius. This H-theorem by Boltzmann was one of the first statistical understanding of
the second law of thermodynamics.

This successful microscopic and statistical approach introduces the notion of probability
distribution and thus thermal fluctuations. Years before, Robert Brown, a botanist, reported on
the motion of particles from grains of pollen in a fluid. He also observed the same kind of motion
in inorganic particles, thus ruling out any kind of biological activity [8]. This phenomenon, now
called Brownian motion, was left unexplained until 1905, when Einstein [9] proposed a model
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based on an atomistic model for the fluid, and a random motion in the fluid due to the thermal
distribution of speeds. This model was tested experimentally by Jean Perrin in 1913 [10]. His
verification of Einstein’s predictions was a confirmation of the atomistic theory of matter.

This new understanding, physical and mathematical, of the microscopic nature of matter
raises many questions about the fluctuations and how they impact the laws of thermodynamics.

1.3 The role of fluctuations

One of the main questions about fluctuations is the possibility of extracting energy from the
fluctuations. If a particle in a fluid moves spontaneously, maybe this motion can be used to
produce work. In 1912, Marian Smoluchovksi proposed a thought experiment in which a ratchet
is used to rectify fluctuations [11]. In this thought experiment a paddle wheel immersed in a
gas rotates under thermal fluctuations. A ratchet is used to allow the wheel to rotate only
in one direction, blocking it in the other direction. By selecting only fluctuations pushing the
wheel in one direction, the system could be used to elevate a mass, thus extracting work from
a monothermal source, in contradiction with the second law of thermodynamics.

This thought experiment is similar to another thought experiment proposed by Maxwell
in 1871. Maxwell considers the case of a box full of gas, with an observer, able to measure
accurately the position and speed of the molecules. By controlling a trapdoor, this observer
can sort the particle of the gas. If this observer lets the slow particles go to one side of the
box and the faster ones go to the other side, they can construct a temperature difference from
a system initially homogeneous, thus reducing its entropy at no cost. Such an observer, now
called Maxwell Demon, would break the second law of thermodynamics. Many examples of
such thought experiments have been proposed, notably by Szilard [12].

A first solution to the paradox of the Brownian ratchet was proposed in 1962 by Feynman
in his lectures [13], by considering the temperature of the ratchet itself. Since the ratchet has
a temperature, it must fluctuates and induces errors in the process. In order for the Brownian
ratchet to work, the ratchet needs to be cooled at a lower temperature than the gas.

A second explanation came from Landauer. He introduced in 1961 a now famous principle
linking information and thermodynamics [14]. He showed that the erasure of one bit of infor-
mation is linked to a heat cost of at least kBT log(2), where kB is Boltzmann constant and T the
temperature. This fundamental limit in the operation of information bits has been extensively
verified experimentally [15–24] and links thermodynamics to the field of information theory, a
field transverse to physics, economy, computer science, and many other domains [25, 26]. Since
to operate in a cycle, a Maxwell Demon has to erase its memory, it introduces an energy cost,
making the demon compatible with the second Law of thermodynamics.

1.4 Modern thermodynamics

The main idea from Landauer is that information is physical. Since information can be used to
extract energy from fluctuations, we need a way to include it in the laws of thermodynamics.
Many questions are opened, similar to ones from the early stages of thermodynamics. What
kind of engine can we build using information? What is the maximum amount of energy we
can extract from such an engine? How can we measure information? How does it affects the
way we store and operate information? [27]

A powerful framework for the study of thermodynamics at the scale of fluctuations, stochas-
tic thermodynamics, will be presented in the next chapter. The rest of this manuscript presents
a versatile experimental device and its applications to the study of different kinds of informa-
tion engines. The last two chapters are independent and present instrumental development for
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small forces measurements.



Chapter 2

Introduction: Stochastic
Thermodynamics

Stochastic thermodynamics applies generally to microscopic systems, where the thermal fluc-
tuations are a main component of the physics observed [28]. It is used to described the motion
of small particles in a fluid, be it passive colloids, bioparticles, or small bacteria. One of the
main feature of stochastic thermodynamics is its large domain of validity, across many classes
of systems and far from equilibrium [3].

2.1 Equation of motion and energy balance at the meso-

scopic scale

The description of motion of small objects under thermal noise is difficult due to the random
nature of the forces from the surrounding fluid. The fluid is composed of many particles,
typically 1023, on the scale of Avogadro’s number. An exact solution of the equations of motion
would require knowledge and mathematical treatment of all the positions and velocities of the
fluid particles.

2.1.1 Langevin equation

To circumvent this problem, a probabilistic approach can be used. It was first proposed by
Paul Langevin to describe Brownian motion in 1908 [29]. He models the force from the fluid as
a random force η, whose amplitude follows a Gaussian distribution. The collision time between
fluid particles is considered negligible for the dynamic of the mesoscopic object. This leads to
zero correlation in the random force.

The 1D Langevin equation for the position x of a mesoscopic particle of mass m immersed
in a fluid of viscosity γ is :

mẍ+ γẋ = η(t) + F (x, t) (2.1)

where F is an external force applied on the particle. The term η(t) follows a Gaussian distri-
bution with:

⟨η⟩ = 0 ⟨η(t)η(t′)⟩ = 2γkBTδ(t− t′) (2.2)

For particles immersed in a fluid such as water, the inertial time m/γ is often smaller than
the time scale at which the phenomenon is studied. For example, for a SiO2 silica microsphere
with a diameter of 4 µm, the inertial time is on the order of the tenth of a microsecond. In this
regime, often called overdamped, the inertial term can be neglected in eq.2.1. Conversely, the
more generic regime is called underdamped, or inertial.

13
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The Langevin equation cannot be solved analytically but provides a description of meso-
scopic systems on which we can compute averaged quantities or probability distributions.

2.1.2 Stochastic energetics

Each realisation of the thermal noise η(t), corresponds to a unique trajectory x(t), determined
by the Langevin equation. This equation can be used to construct quantities to study individual
trajectories. Sekimoto proposed in 1997 a way to reconstruct the 1st Law of thermodynamics
at the scale of each trajectory [30].

We consider the case of a conservative force associated to potential U(x;λ) with a control

parameter λ: F (x, t) = −∂U(x;λ)
∂x

. λ is an external parameter that can be tuned by the operator.

mẍ+ γẋ = η(t) − ∂U(x;λ)

∂x
(2.3)

We consider a displacement of the system dx over a time dt. By multiplying 2.3 by dx, we
obtain an energy balance:

mẍdx+ γẋdx = η(t)dx− ∂U(x;λ)

∂x
dx (2.4)

d

(
1

2
mẋ2

)
+
∂U(x;λ)

∂x
dx = (−γẋ+ η(t))dx (2.5)

(2.6)

The right-hand side is the energy given to the system by the forces from the bath. We can
define the infinitesimal heat exchanged toward the system dq:

dq = (−γẋ+ η(t))dx (2.7)

The left-hand side is almost the variation of energy of the system. Indeed the term ∂U(x;λ)
∂x

dx
is not the total derivative of U(x;λ), a term ∂U

∂λ
dλ must be added.

d

(
1

2
mẋ2

)
+ dU =

∂U(x;λ)

∂λ
dλ+ dq (2.8)

The left-hand side is then the infinitesimal variation of mechanical energy. The term dK =
d
(
1
2
mẋ2

)
is the variation of kinetic energy. On the right hand side, we have the term dq and

the added term ∂U(x;λ)
∂λ

dλ which must correspond to the work dw performed by the operator on
the system when tuning the potential:

dw =
∂U(x;λ)

∂λ
dλ (2.9)

We then recover an expression of the energy balance equivalent to the first Law of thermody-
namics with a definition of work and heat at the scale of the individual trajectory:

dK + dU = dw + dq (2.10)

This definition of dq can hardly be used to compute experimentally a heat flux. Indeed, it
requires knowledge of the exact realisation of the thermal noise η(t) to compute dq. Most of
the time the only observables accessible are the position x and the control parameter λ.

dq = dK + dU − dw (2.11)

= dK +
∂U

∂x
dx+

∂U

∂λ
dλ− dw (2.12)

= d(
1

2
mẋ2) +

∂U

∂x
dx (2.13)
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where the definition of dw is used to cancel the term ∂U
∂λ
dλ. This expression for dq is much

more useful experimentally as it relies only on measurements of x and λ.
The Langevin equation is a useful mathematical framework to described degrees of freedom

submitted to random noise and has many applications in physics and beyond, as it allows us to
construct thermodynamics quantities from experimental observables. This framework provides
already an extension of the First Law of thermodynamics in the form of eq. 2.10.

2.2 Fluctuation theorems

At the mesoscopic scale, since phenomena are driven by random forces, quantities are better
described by their probability distributions. By properly taking into account the whole distri-
bution, equalities can be deduced as an extension of the macroscopic inequalities on averaged
quantities [31]. Stochastic thermodynamics have provided many results on these distributions.
While these fluctuation theorems are very general and apply to many systems even far from
equilibrium, they contain interesting relations between out-of-equilibrium fluctuations and equi-
librium properties of the systems [32].

2.2.1 Jarzynski equality

In 1997, Jarzynski derived an expression linking the fluctuations of work during a transformation
to the free energy difference ∆F between the initial and final states [33]. This result is valid as
long as the initial and final states are equilibrium states. However, the transformation between
the states can be out-of-equilibrium.

The Jarzynski equality (JE) states that:

⟨e−βw⟩ = e−β∆F (2.14)

where w is the work performed on the system during the transformation, ⟨·⟩ notes ensemble
averages, and β = 1/kBT .

This results is often cited as an extension to the Second Law of thermodynamics [34]. Indeed,
by using the convexity of exponential functions, we recover the 2nd Law of Thermodynamics:

⟨w⟩ ≥ ∆F (2.15)

The JE is one of the major results of stochastic thermodynamics and has a lot of experi-
mental applications since it links ∆F , an equilibrium property, to the whole distribution of w
along a potentially out-of-equilibrium transformation. One of the first experimental test of the
Jarzynski equality was made in 2002 by measuring the free energy change needed for folding
and unfolding a RNA strain [35]. This relation was also generalised for various cases, such as
non equilibrium steady states [36–38], or the quantum case [39–41].

2.2.2 Crooks’ relation

In 1999 Crooks derived another constraint on the distribution of work [42]. Consider the
transformation of the system from state i at time t = 0 to state f at t = tf , by driving
an external parameter λ(t). Crooks’ relation links the probability distribution of work, P F (w)
during this transformation to the distribution of work, PR(w), measured during the time-reverse
process obtained by driving the system from f to i with a driving λ†(t) = λ(tf − t):

P F (+w)

PR(−w)
= eβ(w−∆F ) (2.16)
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This result generalises the Jarzynski equality. Indeed, by averaging over w, we recover eq.2.14.
Crooks’ relation is a very famous example of Fluctuation Theorems and has been verified

experimentally at many occasions [43, 44].
The Jarzynski equality and Crooks’ relation are two strong constraints on the fluctuations

in a system. Their many applications and generalisations in the literature show how useful they
are for extracting equilibrium properties from out-of-equilibrium processes. This universality
makes them great tests of experimental setups, as verifying the Jarzynski equality or Crooks’
relation indicates good accounting of the thermal fluctuations in an experiment.

2.3 Including information

The previous results apply to a lot of systems driven out of equilibrium. However, as they
reproduce the Second Law of thermodynamics, we expect them to fail in the case of a measure-
ment with feedback such as the Maxwell Demon or Szilard’s engine. In this case, λ(t) applied
on the system is made dependent on the result of a measurement performed on the system.
We first give an example of such protocol before presenting the extension proposed to take into
account the role of information.

2.3.1 Szilard’s engine

The role of backaction on a system has been known for a long time. Szilard’s gave a famous
example through a thought experiment in 1929 [12]. In this experiment, illustrated in figure 2.1,
a single gas molecule is placed in a box of volume 2V . An observer measures the position of the
particle in the box and a wall is placed in the middle of the box, splitting it into two domains
of volume V . Note that the introduction of a wall in the middle of the box is an operation that
can be done while spending as little work as wanted and is thus considered to be done without
any energy exchange with the system. Based on the outcome of the measurement, the wall is
moved in order to perform an expansion of the gas. If we consider this single molecule to be an
ideal gas at pressure P , we can use the law of ideal gas to compute the average work applied
to the system by the expansion:

⟨w⟩ = −
∫ 2v

v

Pdv = −
∫ 2v

v

kBT

v
dv = −kBT log(2) (2.17)

After the extraction, the system is back to the initial state at temperature T in a volume 2V .
This transformation can be operated in a cycle and the free energy change of the system is

∆F = 0. Since w < 0, this violates the Jarzynski equality (eq.2.14) and the 2nd Law (eq.2.15).
The experimental realisation of a Szilard’s engine and other feedback protocols has been

recently an active field of research [45, 46], both theoretically, with many models of engine
proposed [47, 48], and experimentally [17, 49]. These experimental realisations make it possible
to test the validity of proposed extensions of the theorems in the case of backaction.

2.3.2 Extension of the Jarzynski equality

One of the most promising extension of the Jarzynski equality was published by Sagawa and
Ueda [50]. They worked on extending the validity of the Jarzynski equality for protocols with
measurement and feedback. For a measurement with outcome y, performed on a system at a
point Γ of the phase space, they define an information I[y,Γ] = log(P (y|Γ)/P (y)). This is the
mutual information between the measurement outcome and the state of the system. Using this
definition, they proove that:

⟨e−βw−I⟩ = e−∆F (2.18)
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Figure 2.1: The Szilard engine. Reproduction from [45]. a) The particle is initially in equilib-
rium at temperature T . b) A wall is inserted in the middle of the box. c) Depending on the
position of the particle, a mass is attached to the wall. d) Due to random collisions, the wall
is pushed to the side and the mass is lifted. On average, a heat flux q from the thermal bath
compensates the work w taken from the particle.
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where the ensemble average ⟨·⟩ is taken over y and Γ.
From this equality, we can derive a bound on the work extracted, using once again the

convexity of exponential functions:

⟨w⟩ > ∆F − ⟨I⟩ (2.19)

Compared to the 2nd Law from eq. 2.15, the information extracted from the system lowers
the bound on the work applied to the system. In the case of a cyclic operation such as Szilard’s
engine where ∆F = 0, if I > 0 this bound is compatible with ⟨w⟩ < 0 which allows work
extraction from the system. Taking into account the information used in the cycle by the
feedback, the fundamental laws of thermodynamics can be redefined and extended. This both
new and important result was verified experimentally in a system analogous to a Szilard engine,
using a single electron box [51].

Another approach proposed by Sagawa and Ueda in [50] is to write a Jarzynski equality
with an error term γ ̸= 1:

⟨e−β(w−∆F )⟩ = γ (2.20)

γ measures the deviation from the Jarzynski equality induced by the feedback control. It can
be expressed by considering the backward process. With feedback control the process is driven
by a parameter λ(t, y) which depends on the outcome of the measurement y for t > tm, where
tm is the time at which the measurement is performed. The reversed process is then driven by
λ†(t, y) = λ(tf − t, y).

Since in the reversed process the protocol depends on y from t = 0 to t = tf − tm, and
the measurement is performed at t = tf − tm, it is impossible to perform a feedback due to
causality. The protocol λ†(t, y) has to be chosen before hand. It is then possible to measure
PR[y′|λ†(t, y)], the probability of measuring the outcome y′ in the backward process while
imposing the protocol associated with the outcome y in the forward process. Since no feedback
is performed in the reverse process, it is perfectly possible to obtain y′ ̸= y. Then PR[y|λ†(t, y)]
can be different from 1.

Sagawa and Ueda linked γ to the probabilities P [y′|λ†(t, y)] as:

γ =

∫
dyPR[y|λ†(t, y)] (2.21)

The result from eq. 2.18 generalises the Jarzynski equality in a simple way, but the definition
of I can be hard to work with experimentally. Indeed, it relies on the knowledge of the joint
distribution for y, the outcome of the measurement, and Γ the exact configuration of the system
in the phase space which is not accessible experimentally. Furthermore, in the case of a noiseless
measurement, the mutual information diverges and eq. 2.18 reverts to the standard Jarzynski
equality from eq. 2.14.

The second result from eq. 2.20 relies only on the outcome of measurements in the reversed
process and is accessible experimentally if the backward process can be done. This bypasses
the need to know the exact distribution P (Γ) in the phase space.

This second relation was tested experimentally by Toyabe et al. [52]. Using a dimer particle
and a rotating electric field, they were able to realise an experiment in which they achieve work
extraction by using a feedback protocol. They measure γ and check the validity of eq. 2.20.

2.3.3 Unavailable Information

While eq. 2.18 extends the Jarzynski equality by taking into account the information mea-
sured from the system, it doesn’t take into account the properties of the feedback using this
information. Ashida et al. proposed another extension of the Jarzynski equality. They define
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an unavailable information Iu that is the information measured that isn’t used by the feedback
and is therefore lost. Their generalisation of the Jarzynski equality is the following:

⟨e−βw−I+Iu⟩ = e−∆F (2.22)

where I is the information and Iu the unavailable information.
The definition of I used here is different from the one used in 2.18. Here, the information is

taken as Shannon information, defined for each measurement outcome y as I(y) = − log(P (y)).
Iu is the unavailable information, defined for each measurement outcome y using the reverse
protocol. If y′ is the measurement outcome obtained when performing a protocol λ†(t, y), the
unavailable information is defined as:

Iu(y) = − log
(
PR(y′ = y)

)
(2.23)

= − log
(
PR(y|λ†(t, y))

)
(2.24)

This definition is very similar to the one proposed by Sagawa and Ueda for γ in eq.2.20.
The unavailable information measures the probability of obtaining a trajectory in the reverse
protocol for which the measurement outcome matches the applied protocol.

⟨w⟩ > ∆F − ⟨I − Iu⟩ (2.25)

This result, as well as the one from eq.2.20, relies only on the knowledge of the measurement
outcome and can be tested experimentally. This is what we do in the following.

2.4 Conclusions

In this introductory chapter we presented all the main physical and mathematical results we use
to analyse our experiments. The Langevin equation is a fundamental model that we will apply
to different scenarios to extract useful thermodynamic quantities such as heat and work. The
fluctuation theorems provide powerful tools to test the validity of our experimental setup and
data analysis. We introduced the notion of information that allows us to generalise stochastic
thermodynamics results to the case of feedback protocols. All these tools will be useful in the
following chapters to analyse and interpret experimental data.
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Chapter 3

Experimental Setup for Stochastic
Thermodynamics

In this chapter, we present how micro-cantilevers and fast operating electronics are used to
build an easy to tune and operate system for experimental stochastic thermodynamics. We use
a micro-cantilever which behaves as an oscillator to model the dynamics of a 1D underdamped
brownian particle. Arbitrary potentials and forces can be applied to the cantilever, thanks to
a feedback loop with a short delay compared to the period of the oscillator.

To study experimentally stochastic thermodynamics, we need a system:

• With few degrees of freedom

• subject to thermal noise

• whose degrees of freedom can be measured with high accuracy

• on which we can apply a controlled external forcing

A good candidate, fulfilling these criterion are micro-cantilevers. The interesting degree
of freedom is the deflection, subject to thermal noise. The scale of the fluctuations is small,
typically less than a nanometer. However, micro-cantilevers are often used as probes for atomic
force microscopy, and techniques have been developed to measure the deflection with high
accuracy, as well as apply external forces on the cantilever.

3.1 Micro-cantilever: A 1D brownian particle

Our experimental system is a micro-cantilever from Micromotive (Octosensis 1000S). The can-
tilevers are typically 1 mm long, 90 µm wide and 1 µm thick and are made of silicon. A SEM
picture from the manufacturer is shown in figure 3.1a. The interesting degree of freedom for our
experiments is the vertical displacement of a point along the cantilever, the deflection x. Under
thermal fluctuations, the deflection has a standard deviation σx ≃ 0.8 nm. This deflection is
measured through interferometry, using an phase quadrature interferometric setup developed
earlier in the group [53, 54]. A laser beam is split in two coherent measurement beams. One
focused on the base of the cantilever acts as a reference, while the second one, focused on a
point near the tip of the cantilever, acquires a phase shift ϕ = 4π x

λ
, where λ = 632.8 nm is

the wavelength of the He-Ne laser used. The two beams are recombined and analysed using
two pairs of photodiodes from which signals the deflection x can be computed. The interest of
the specific interferometric setup used is its accuracy up to the pm combined to a bandwidth
up to 1 MHz. These high resolutions both in time and space allow us to measure precisely the
thermal fluctuations of the cantilever.

21
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(a) SEM image of the can-
tilevers used, from the manu-
facturer. One chip holds 8 can-
tilevers, but only one at a time
is used to perform the experi-
ment.

(b) Sketch of the cantilever, with typical dimensions. Two laser
beams (in red) are used to perform an interferometric measurement
of x.

Figure 3.1: A model for a 1D Brownian particle: a micro-cantilever.

Micro-cantilevers are resonant objects. The ones used here have a fundamental resonant
frequency ω0

2π
= f0 ≃ 1100 Hz and a quality factor Q ≃ 8 in air. Figure 3.2 shows the measured

deflection x in time. Due to the resonant nature of the cantilevers, the signal has a strong
oscillating component with fluctuations from thermal noise. However, if we look at the power
spectrum of this signal in figure 3.3, several peaks at higher frequencies are present. These
correspond to higher order flexural or torsional modes. In order to have a simple system to
study, the first mode needs to be isolated.

The different modes have nodes at different locations along the cantilever [55]. By posi-
tioning the measuring laser beam on the node of the second mode, its amplitude is lowered
and it can be neglected. The third mode and higher have a lower amplitude and don’t alter
significantly the measurements. If needed, we can filter them out by applying a low-pass filter.
The spectrum after cancelling the second mode is shown on figure 3.3.

The dynamics of the deflection under thermal noise can be modelled by a Langevin equation
for a simple harmonic oscillator (SHO):

mẍ+ γẋ+ kx =
√

2kBTγξ(t), (3.1)

where m is an effective mass, γ an effective viscosity, k the stiffness of the cantilever, kB is the
Boltzmann constant, T the temperature and ξ a gaussian white noise satisfying ⟨ξ⟩ = 0 and
⟨ξ(t)ξ(t+ τ)⟩ = δ(τ). This equation can be written as:

ẍ+
ω0

Q
ẋ+ ω2x =

√
2kBTω0

Qm
ξ(t). (3.2)

The deflection behaves as the position of a 1D brownian particle in a harmonic poten-
tial, under thermal noise. Since the cantilever has a quality factor Q ≃ 8, the oscillator is
underdamped.

The different parameters for the model can be extracted from the power spectrum of the
deflection using the fluctuation-dissipation theorem [55]. This theorem states that the spectrum
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Figure 3.2: Deflection of the free cantilever in time. The signal is dominated by oscillations
at a frequency around 1100 Hz, characteristic of the resonant nature of the cantilever. These
oscillations are driven randomly by the thermal noise, which creates the noisy aspect of the
signal.
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Figure 3.3: Blue: Power Spectrum Density of the deflection of the cantilever. Each peak
corresponds to a different mode. Orange: PSD of the deflection with second mode cancellation:
the peak of the second mode around 7500 Hz has a negligible amplitude. Both spectrum are
measured on unfiltered deflection signal, acquired at 500 kHz. Green: Fit of the SHO model
using a fit window centered on the first mode (red shaded area).
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of the deflection under thermal noise is

Sx(ω) =
2kBT

πω
Im

(
1

H(ω)

)
, (3.3)

with H(ω) = −mω2 + iγω + k the mechanical response function of the cantilever. This gives:

Sx(ω) =
4kBT

ω0k

1/Q

((1 − ( ω
ω0

)2)2 + ( ω
Qω0

)2
(3.4)

By fitting the power spectrum from figure 3.3, we can extract the values of the parameters
k, ω0, Q, of the SHO model of equation 3.2. We typically find k = 7 × 10−3 N m−1, Q = 8 and
ω0 = 1100

2π
rad s−1.

We apply the formalism of the Langevin equation to describe our system. It gives us access
to the mechanical parameters of our oscillator, needed to build a feedback loop.

3.2 Controlled force

The feedback control is done by tuning an electrostatic force between the cantilever and a
counter-electrode. We introduce a bias voltage to linearise the force and achieve a simpler
feedback.

The cantilever is conductive (gold coated) and faces a metallic plate (figure 3.4). This forms
a capacitor, with capacity C that depends on the distance z between the cantilever and the
plane. z can be decomposed as z = h + x with h the distance between the plane and the
cantilever at rest. If a voltage V is applied between the cantilever and the plane, there is an
energy Ec = 1

2
CV 2 stored in the capacitor, resulting in a force F = −∂xEc = 1

2
∂xC|zV 2. This

force is proportional to V 2 with a prefactor α(z) = 1
2
∂xC|z. Considering h≫ x we can assume

α(z) ≃ α(h) to be constant in our experiments.

Figure 3.4: The capacitor formed by the cantilever and the metallic plane. A force F ∝
(VFB + VDC)2 pulls on the cantilever, shifting the harmonic potential created by the natural
stiffness of the cantilever.

This force is always attractive and has a dependency on the square of the applied voltage.
It is more interesting to have a feedback linear in the applied voltage, with a force that can be
both attractive and repulsive. To achieve this, a strong DC bias VDC is applied to the system
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on top of a smaller control voltage VFB. Doing so the total force is:

Ftot = α(VFB + VDC)2 (3.5)

= α(V 2
DC + 2VFBVDC + V 2

FB) (3.6)

(3.7)

Typically VDC = 90 V, VFB ≃ 1 V and VFB ≪ VDC . The leading term in V 2
DC is constant

throughout the experiment and correspond to a shift of the equilibrium position of the cantilever
that can be absorbed in the definition of x = 0. Since 2VFBVDC ≫ V 2

FB, the last term can be
neglected. This leads to a force linear in VFB:

F = 2α(h) × VDCVFB (3.8)

Changing the applied bias VDC or the distance between the cantilever and the surface h gives
two ways to set the sensitivity of the system in the desired range. The proportionality constant
is measured through a calibration step. The voltage VFB is swept from −1 V to 1 V, by step
of typically 0.33 V. An example of calibration data is shown on figure 3.5. The sweep in VFB

is done first from −1 V to 1 V and then in reverse in order to cancel effects from drifts in time.
For each step the deflection of the cantilever is measured for 0.5 s and the average deflection
⟨x⟩ is computed. Since on average ⟨x⟩ = F

k
= a× VFB, a linear fit of ⟨x⟩ as a function of VFB

gives the slope a ≃ 8.3 nm V−1.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
VFB

5

10

15

20

25

〈x
〉(n

m
)

data

fit

Figure 3.5: The mean deflection ⟨x⟩ as a function of the applied voltage VFB. Blue: Experimen-
tal points, taken over 0.5 s each. Orange: Linear fit of the data, giving a slope a = 8.3 nm V−1.

To conclude, we have a way to apply a controlled and calibrated force on the cantilever.
This force is proportional to the control voltage VFB and easy to pilot.

3.3 Feedback device

To generate the feedback voltage VFB as a function of the deflection x in real-time, we need a
device able to perform computations at high frequency. We use a National Instrument Field
Programmable Gate Array (FPGA) card, clocked at 100 MHz. This card can be programmed
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to compute the deflection, apply filters, and output the feedback voltage VFB(x). The card
is operated from a computer, used to program the feedback, record data, and start or stop
experiments. The function VFB(x) is coded by the user and can be complex enough to create
arbitrary feedbacks on the system, without any change in the experimental setup.

The deflection x is computed from the signals of the interferometer. To eliminate high
frequency noises and the contribution of higher order modes, the deflection needs to be filtered.
To be able to operate the feedback, the filtering needs to be done in real-time. Standard Fourier
filtering cannot be used here: Fourier filtering can only be done on whole time series and is not
causal. We instead use Infinite Impulse Response filters (IIR). These filters work by using the
previous outputs as well as previous inputs to filter the signal. The n-th output of the filter
xout[n] can be computed as:

xout[n] =
+∞∑

k=0

akxin[n− k] +
+∞∑

k=1

bkxout[n− k] (3.9)

where xin[n] is the n-th input of the filter and ak, bk are series of coefficients that determines
the nature of the filter. In practice, we use a 3rd order low-pass Butterworth filter at 50 kHz.

The whole process of digitalising the photodiodes signals (ADC), computing the deflection,
filtering it, computing the output voltage VFB, and converting it to an analog voltage output
(DAC), takes time and induces a latency in the feedback of τFB ≃ 1 µs. This results in a
feedback VFB(xFB), computed on a position xFB(t) = x(t − τFB) delayed with respect to the
ideal one x(t). To compensate for this latency and increase the accuracy of the feedback, we
add a correction proportional to the speed of the particle to anticipate its future position. In
practice, we modify the low-pass filter. We call BW (ω) the transfer function of the Butterworth
filter in the Fourier space. We apply a filtering (1 + iωτcorr)BW (ω) with an anticipation time
τcorr that has to be optimised to be as close as possible from τFB (fig 3.6).

xFB = x(t− τFB) + ẋ(t− τFB) × τcorr (3.10)

≃ x(t) + ẋ(t) × (τFB − τcorr) (3.11)

Figure 3.6: The filtering process used on the FPGA card.

If τcorr is set to a value close from τFB, the feedback voltage is VFB(x) and the latency of the
feedback loop is compensated. The value of τcorr has been optimised previously in the group
[56] and is set to 1.26 µs.

Since the function VFB(x) driving the feedback force can be easily changed in the software,
the setup is highly versatile and allows us to perform different kinds of experiments without
any change on the experimental conditions. This brings a good stability of the experiment and
reproducibility.

The complete feedback loop results in a system that can be described by a Langevin equation
with an external force FFB(x, t) arbitrarily defined by the operator:

ẍ+
ω0

Q
ẋ+ ω2x =

√
2kBTω0

Qm
ξ(t) +

ω2
0

k
FFB(x, t) (3.12)
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Figure 3.7: The complete feedback loop.

The adaptability of the feedback allows for a lot of different experiments without any change
to the hardware used. By changing the program on the FPGA card, we can control arbitrarily
the force FFB.

3.4 Thermodynamics quantities

In stochastic thermodynamics, we want to study the energy exchange between the particle, the
heat bath, and the operator. We need to be able to reconstruct the thermodynamic quantities
U , w and q, introduced in chapter 2, from x and VFB that we measure experimentally.

The energy of a 1D system E can be expressed as a E = K + U where K = 1
2
mẋ2 is a

kinetic term and U(x, λ) is a potential energy depending on the position of the particle x, and
an external control parameter λ. In our experiments, U is of the form U(x) = 1

2
k(x− x0)

2. By
applying a constant voltage VFB, we can shift the harmonic well center x0. In chapter 4, we
show that we can also tune k using our feedback loop. In practice, λ can be x0 or the effective
stiffness k felt by the cantilever.

Using the definition from 2.1.2, we have:

q̇ =
∂(K + U)

∂x
ẋ+

∂(K + U)

∂ẋ
ẍ (3.13)

= k(x− x0)ẋ+mẋẍ (3.14)

(3.15)

For ẇ, the exact expression depends on the actual parameter represented by lambda. We
can generally write:

ẇ = ∂kUk̇ + ∂x0Uẋ0 (3.16)

=
1

2
(x− x0)

2k̇ − k(x− x0)ẋ0 (3.17)
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Using these expressions we can compute the instantaneous heat, q̇ = dq
dt

, and work, ẇ = dw
dt

,
from the experimental measurement of x.

Figure 3.8 shows an example of an experiment where the control parameter x0 is switched
from −L to +L at t = 0. We see on the top figure that when x0 is shifted the value around
which the deflection x oscillates follows. The bottom figure shows the instantaneous fluxes q̇
and ẇ. Whereas the heat flux fluctuates due to thermal fluctuations throughout the whole
experiment, the work is non zero only when the control parameter x0 is switched at t = 0.
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Figure 3.8: Top: Deflection of the cantilever x and control parameter x0 (position of the
center of the trapping potential) during an experiment where x0 is shifted from −L to +L at
t = 0. Bottom: ẇ, q̇, the instantaneous work and heat flux during the experiment. q̇ fluctuates
throughout the whole experiment, whereas ẇ ̸= 0 only when the potential is shifted.

This is a powerful tool that allows us to measure both heat and work during any kind of
experiment.

Using the formalism introduced in 2.1.2, we are able to obtain expressions for w and q
that can be used to reconstruct these quantities from our experimental measurements of x and
VFB. From the measure of the deflection of the cantilever, we are able to reconstruct the whole
thermodynamics of the process.

3.5 Conclusions

In this chapter, we presented a very flexible feedback loop to be used for stochastic thermo-
dynamic experiments. This setup is built on an interferometric setup providing the resolution
needed to measure thermal fluctuations and reconstruct the thermodynamic quantities of in-
terest. It can be controlled using an electrostatic force with or without feedback. We have
an easy way of changing the feedback to perform different kinds of experiments. We seize the
flexibility of the setup in the following by changing artificially the stiffness of the cantilever,
building information engines, or a Maxwell Demon.



Chapter 4

Tuning of the harmonic potential

A landmark tool in stochastic thermodynamics is the ability to tune the stiffness of the trapping
potential. This allows to perform the equivalent of a macroscopic compression on the system.
In this chapter, we present how the feedback loop can be used to create an artificial stiffness
on the cantilever.

Modifying the stiffness can be easily achieved in optical tweezers by tuning the power of the
trapping laser. For a micro-cantilever, since the stiffness is determined by the Young modulus
of silicon and the dimensions of the cantilever, there is not such an easy way to tune the stiffness
k.

Our idea is to apply a feedback engineered to mimic an additional stiffness acting on the
particle. These results were obtained during Emile Cochin’s internship that I supervised during
two months in summer 2022.

4.1 Experimental tuning of the stiffness

To change the stiffness of the cantilever, we set the feedback so the output voltage VFB ∝ x.
This results in a force F = −k1x. The resulting Langevin equation is then :

mẍ+ γẋ+ kx = −k1x+
√

2kBTγξ(t) (4.1)

mẍ+ γẋ+ (k + k1)x =
√

2kBTγξ(t) (4.2)

k1 acts as an additional stiffness that can be tuned by the user. We define λ, a dimensionless
control parameter for the stiffness as λ = k+k1

k
. A target value for λ is chosen in the software and

we want to check if the particle behaves accordingly by measuring the effective stiffness λeff . At
equilibrium in a potential U(x), the position of the particle follows a Boltzmann distribution:

P (x) =
1

Z
e−βU(x) (4.3)

with Z the partition function and β = 1
kBT

the inverse temperature. We can recover the effective
potential felt by the particle from the measurement of P (x) as:

βU(x) = − log(P (x)) + C (4.4)

where C = log(Z) is a constant absorbed in the definition of the zero of the potential. Figure
4.1 shows the potential measured experimentally in the case without feedback (λ = 1). Since
in this case U(x) = 1

2
kx2, we can extract the value of k from a parabolic fit of the potential

(red curve on figure 4.1). P (x) is measured from an acquisition of 0.5 s, very long compared to
the relaxation time of the particle. The obtained value is k = 5.67 × 10−3 N m−1.

29
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Figure 4.1: Potential measured as U(x) = − log(P (x)), in the case λ = 1 (no feedback).
In blue, experimental data. In red, a parabolic fit. The parabolic fit gives a stiffness k =
5.67 × 10−3 N m−1

We can now check the obtained potential in the case with feedback. Figure 4.2 shows the
different potentials reconstructed from experiments with different values of the target λ. As λ
increases, the potential gets narrower, which corresponds to an increase in the effective stiffness
and a compression of the system. To compute λ, we use the equipartition theorem for the
distribution of speeds, as well as the distribution of positions. The equipartition theorem states
that at equilibrium:

1

2
kBT =

1

2
λeffk⟨x2⟩ =

1

2
m⟨v2⟩ (4.5)

hence, using the last equality:

λeff =
⟨v2⟩
ω2
0⟨x2⟩

(4.6)

with ω0 =
√

k
m

the natural angular resonance frequency of the oscillator.

The resulting λeff as a function of λ can be seen on figure 4.2. We see that λeff = λ, meaning
that the feedback acts correctly and that we can tune the stiffness of the system. Note that
we can access values of λ lesser than 1. This means that the feedback allows us to reduce the
stiffness of the system as well as increase it.

However, changing the potential U(x) should not change the distribution of speeds. If
we measure the variance of the speed σ2

v = ⟨v2⟩ as a function of λ, we can access a kinetic

temperature TK = m ⟨v2⟩
kB

which is different than the temperature T of the thermal bath. Figure
4.3 shows the kinetic temperature as a function of λ. We normalise the kinetic temperature as
TK/T by taking the value to be 1 in absence of feedback (λ = 1). We see on the blue curve
that the feedback lowers the effective temperature of the system. This can be explained by a
delay in the feedback loop. If there is a latency τFB, then the force applied on the system is
F = −k1x(t− τFB). The Langevin equation describing the system is now:
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Figure 4.2: Left: Potential measured with feedback for different values of the target λ. As
λ increases, the potential gets narrower, corresponding to an increase in the effective stiffness
λeff . Dashed red lines are the best parabolic fits of the potentials. Right: λeff as a function of
λ, measured using equipartition of energy. The points align perfectly on a line with slope 1,
which means that the feedback operates as wished.
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Figure 4.3: TK/T as a function of λ. Blue: Experimental data without optimisation of τcorr.
We notice a huge variation of TK/T , with a discrepancy up to 20%. Orange: Experimental
data with optimisation of τcorr. The discrepancy between TK and T is at most 3%.
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mẍ+ γẋ+ kx = −k1x(t− τFB) +
√

2kBTγξ(t) (4.7)

mẍ+ γẋ+ kx = −k1x(t) + k1ẋ(t)τFB +
√

2kBTγξ(t) (4.8)

mẍ+ (γ − k(λ− 1)τFB)ẋ+ λkx(t) =
√

2kBTγξ(t) (4.9)

mẍ+ γeff ẋ+ λkx(t) =
√

2kBTKγeffξ(t) (4.10)

(4.11)

where γeff = γ − k(λ − 1)τFB and TK = γ
γeff
T are effective viscosity and temperature. The

latency in the feedback acts as an additional viscosity that changes the distribution of speeds
and ⟨v2⟩. This additional viscosity breaks the fluctuation-dissipation relation and results in a
kinetic temperature TK different from the bath temperature T .

The previous optimisation of the compensation of the latency, τcorr (presented in section
3.3), was done on a different kind of experiment. Since the set of operations run by the FPGA
card for this feedback is different, the latency τFB is different and τcorr has to be optimised for
this scenario. A set of experiments with different values of τcorr were performed for different
values of λ to find the optimal τcorr minimizing the difference between TK and T . The results
of this optimisation is shown in figure 4.4. The striking result is that values of τcorr are negative
and much greater in absolute value than the previous optimum of τcorr = 1.26 µs. We still don’t
have a convincing explanation for this.
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Figure 4.4: Optimal values of τcorr as a function of λ. These values were obtained by trying
many different values of τcorr for each value of λ and choosing the one such that TK/T = 1.
Negative values of τcorr means that the delay of the feedback loop has to be increased in order
to match the bath temperature.

Despite the surprising result that τcorr < 0, by interpolating between these values, we can
obtain an approximation for the optimal τcorr for any value of λ, meaning that the stiffness
can be tuned to any value within this range without affecting the kinetic temperature TK . The
orange curve on figure 4.3 shows the variation of TK/T using this interpolation procedure. The
discrepancy between TK and T is much lower than previously, with an error of less than 3%.
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This is a validation of our technique in the case of constant stiffness. We are able to tune the
harmonic potential and recover the expected equilibrium properties, both for the distribution
of position and speed.

4.2 Compression experiments

Now, we are interested in experiments where the stiffness is changed continuously. The stiffness
is then described by λ(t), with a time dependence, and the potential is U(x, t) = 1

2
λ(t)kx2. For

simplicity we only studied compression protocols with linear change in stiffness i.e. constant
λ̇, going from λi to λf . The protocols are performed at constant temperature, by adapting the
value of τcorr accordingly to the change in λ. We present two sets of experiments: a quasistatic
one performed over 50ms with λi = 1 and λf = 1.5, and an out of equilibrium one performed
over 5ms with λi = 1 and λf = 3. We focus on the fast one in this section.

We record 5000 realisations of the out of equilibrium protocol. Each realisation is 5 ms
long, a timescale comparable to the relaxation time of the system, τrelax. From these data we
compute the joint probability P (x, ẋ, t). The probability distribution is plotted in figure 4.5
for t = 0 (start of the protocol), t = 2.5 ms (middle of the protocol) and t = 5 ms (end of
the protocol). The probability distribution is a bivariate Gaussian that gets narrower in the
x direction, as expected from a compression. The distribution in v seems to be unchanged by
the protocol and independent of x, we will therefore only consider the distribution of deflection
P (x, t) in the following.

Figure 4.5: Probability distributions P (x, ẋ, t) for the compression protocol. Measured at t = 0
(a.), t = 2.5 ms (b.), t = 5 ms (c.). The distributions are gaussian. Due to the compression, the
distribution gets narrower in the x direction.

Since the distributions P (x, t) are gaussian, we can characterise them by their variance σ2
x,

or by their inverse variance σ−2
x . The inverse variance is interesting because at equilibrium,

σ−2
x ∝ λ (eq.4.5) and we can compare its variation to the imposed variation of stiffness. Figure

4.6 shows the evolution of σ−2
x as a function of time during the compression experiment. At

equilibrium σ−2
x kBT/k = λ. The protocol starts at t = 0 and ends at t = 5 ms. We can see that

before the protocol (t < 0), we recover the natural stiffness of the cantilever, and that the final
value for t > 5 ms is three times the initial value, which is coherent with λi = 1 and λf = 3.

We are able to change continuously the stiffness using our feedback. We recovered expected
values for σ−2

x , in agreement with the prescribed variation in λ and with the theoretical predic-
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Figure 4.6: Evolution of σ−2
x during the compression protocol. Blue: Experimental average

over 5000 experiments. Red: theoretical prediction [57]. Red shade: statistical uncertainty.
The protocol starts at t = 0 and ends at t = 5 ms. The protocol goes from λ = 1 to λ = 3, in
good agreement with the initial and final values of σ−2

x kBT/k.

tions from [57]. Another interesting aspect is the study of energy transfers in the form of heat
and work during the process.

4.3 Work exchange during compressions

We can measure the amount of work exchanged with the system during the ramp of stiffness
and compare it to standard theorems of stochastic thermodynamics like Crooks’ relation.

In our protocol the rate of change in stiffness λ̇ is constant. Using definitions from 3.4, the
instantaneous work performed on the particle is:

ẇ =
∂U

∂λ
λ̇ (4.12)

=
∂

∂λ

(
1

2
λkx2

)
λ̇ (4.13)

=
1

2
λ̇kx2 (4.14)

We can integrate ẇ over a realisation to obtain the total work, w, exchanged during a
protocol:

w =

∫
ẇ(t)dt =

∫
1

2
λ̇kx(t)2dt =

1

2
λ̇k

∫
x(t)2dt (4.15)

The value of w is accessible experimentally by integrating x(t)2 over a ramp of stiffness, λ̇
and k being known. We apply this result to two different compression experiments, one in the
quasistatic regime, and an other out of equilibrium.
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4.3.1 Quasistatic transformations

We first study the case of quasistatic transformations, with λi = 1 and λf = 1.5 over a duration
50 ms, very long compared to the period of the oscillator. In this regime we can compute
analytically the mean heat and work given to the particle. For quasistatic transformations,
the heat fluctuations are equilibrium fluctuations with zero mean. Hence the average heat
exchanged during the process is ⟨q⟩ = 0. For ⟨w⟩, we can use the fact that for a quasistatic
transformation, the equipartition of energy is satisfied at all times, hence 1

2
λ(t)k⟨x(t)2⟩ = 1

2
kBT

for all t. Starting from eq.4.15:

⟨w⟩ =

∫
λ̇

λ(t)

1

2
kλ(t)⟨x(t)2⟩dt (4.16)

=
1

2
kBT

∫
λ̇

λ(t)
dt (4.17)

=
1

2
kBT log

(
λf
λi

)
(4.18)

For a protocol with λi = 1 and λf = 1.5, this gives ⟨w⟩ ≃ 0.2kBT .
For any transformation, the Second Law of thermodynamics (or the Jarzynsky equality)

give a bound:

⟨w⟩ ≥ ∆F (4.19)

where ∆F is the free energy change of the particle between the initial and final equilibrium
states. For a quasistatic protocol this bound is an equality and ⟨w⟩ = ∆F . As ∆F is a state
function, its value depends only on the initial and final state, and not on the protocol used to
perform the transformation. This gives us the value of ∆F for any protocol of this kind, even
for non quasistatic transformations:

∆F =
1

2
kBT log

(
λf
λi

)
. (4.20)

The probability distribution function for the work performed on the particle P (w) is com-
puted over 5000 realisations of the quasistatic protocol. The result is shown as the blue curve
on figure 4.7. P (w) cannot be derived analytically, but it can be computed numerically using
the parameters of the cantilever from calibration, and a model from ref. [57]. The theoretical
prediction for P (w) is shown as the red curve on figure 4.7. The experimental data are in
good agreement with the theoretical predictions. We also measure the experimental mean work
⟨w⟩ = (0.22 ± 0.02)kBT and compare it with the predicted average from eq.4.18. The two
values are close with only a 5% difference.

4.3.2 Out of equilibrium transformations

We also study faster protocols, with λi = 1 and λf = 3 performed in 5 ms, out of the quasistatic
limit. In this regime, the mean heat exchanged is non-zero and ⟨w⟩ > ∆F . A way to study
these protocols is to compare with the reversed protocol, starting from λi = 3 and ending
in λf = 1, that we perform similarly. We can measure a distribution of work P F (w) for the
forward process going from λi = 1 to λf = 3, and PR(−w) for the reverse process going
from λi = 3 to λf = 1. The distribution for the forward (backward) process, as well as the
theoretical predictions, are plotted in blue (orange) in figure 4.8. For a quasistatic process,
we should have ⟨w⟩F = −⟨w⟩R = ∆F . Since the protocol is performed in a shorter time, the
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Figure 4.7: Probability distribution functions P (w) for a quasistatic compression protocol with
λi = 1, λf = 1.5, performed in 50 ms. Blue: experimental distribution obtained with 5000
realisations of the protocol. Red: theoretical prediction using [57]. The mean value of work
⟨w⟩ = (0.22± 0.02)kBT measured experimentally is plotted as a blue vertical line and is found
close to the theoretical prediction (red dashed vertical line).

bound from eq.4.19 is a strict inequality for both the forward and the reverse process and we
have ⟨w⟩F > ∆F > −⟨w⟩R. This is verified experimentally as shown on figure 4.8.

From the full distribution of probability P F (w), we can apply the Jarzynski equality to
deduce the value of ∆F . The Jarzynski equality [33] states that:

⟨e−βw⟩ = e−β∆F (4.21)

Thus we can compute ∆FJE = −kBT log
(
⟨e−βw⟩

)
, both for the forward and the reverse

process. We find ∆F F
JE = (0.57±0.02)kBT for the forward process and ∆FR

JE = (0.54±0.02)kBT
for the reverse process. Both values are in close agreement with the value from eq.4.20: ∆F =
0.55kBT .

The forward and reverse protocol are also linked by Crooks relation[42] presented in 2.2.2:

P F (w)

PR(−w)
= eβ(w−∆F ) (4.22)

This is a constraint on the probability distributions linking the forward probability of work
w with the reverse probability of the opposite work −w. In particular when w = ∆F , the right
term becomes 1 and we have P F (w) = PR(−w). This allows for another measurement of ∆F
as the point where the two distributions cross. On figure 4.8, the two distributions P F (w) and
PR(w) cross near the predicted value for ∆F .

We have 3 different ways of measuring ∆F : Using Jarzynski equality in the forward process,
in the reverse process and using the crossing point of P F (w) and PR(w) according to Crooks
relation. These 3 methods all give value for ∆F close to the prediction using the exact result
for quasistatic transformations (eq.4.20).
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Figure 4.8: Probability distribution functions P (w) for a fast compression protocol with λi = 1,
λf = 3, performed in 5 ms. Blue: experimental distribution obtained with 5000 realisations of
the protocol, and theoretical prediction (dashed). Orange: Experimental distribution obtained
by performing the protocol in reverse, with λi = 3 and λf = 1 and theoretical prediction
(dashed). According to Crooks’s relation, the two distributions P F (w) and PR(w) cross at
w = ∆F . The two distributions indeed cross close to the value for ∆F computed using eq.4.20.

4.4 Conclusions

Our feedback can be programmed to act as a tunable artificial stiffness, that allows us to perform
thermodynamic protocols at the scale of the cantilever, in which we recover the fundamental
theorems of stochastic thermodynamics (Crooks relation, Jarzynski equality). Work is still
needed to understand the mechanisms affecting the kinetic temperature TK . An application
could be to be able to tune the temperature using the same feedback, by adjusting τcorr. This
would allows us to experiment with a two parameters phase space (T, k) in which we can
perform thermodynamic cycles, such as Carnot cycles [58–60], or Stirling cycle [61]. While
these cycles are well-known at the macroscopic scale, their behaviour under fluctuations or out
of equilibrium have been widely studied theoretically [62–64].
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Chapter 5

Discrete sampling information engine

In this chapter, we present a realisation of a protocol inspired by [50], in which a measurement is
performed on a particle in an harmonic trap. Depending on the outcome of the measurement,
the potential is shifted or not thus selecting only events corresponding to work extraction.
This constitutes an information engine: a cycle involving only one thermal bath during which
a measurement is exploited to achieve work extraction. We study this protocol in different
regimes, first by letting the particle relax after each cycle, then by reducing the time between
cycles. Finally we study the role of information in the operation of the engine, and how it
provides a bound on the amount of work that can be extracted.

5.1 Feedback protocol

Here, we introduce the protocol used to perform these experiments and achieve work extraction
from thermal fluctuations. We study a protocol, illustrated in figure 5.1, where the position of
the particle is read by a feedback with a sampling rate τ .

• We start with a potential centered in −L, U(x,−L) = 1
2
k(x+ L)2.

• Every time τ , the position of the particle, x, is read.

• There are two possible outcomes. If x < h, nothing is done. If x > h, the potential
is instantaneously switched to U(x,+L) = 1

2
k(x − L)2. Assuming h > 0, during this

process, the potential energy of the particle is lowered, the internal energy of the particle
decreases and work is extracted.

• The particle is let to relax for a time τ in the current potential well before the next
reading, independently of the measurement outcome.

When the potential is switched, the operation is performed almost instantaneously. There-
fore the heat exchanged from the bath to the particle is q = 0 and ∆U = −w. Note that w is
the work extracted from the particle, hence the minus sign. Working in units of σx = kBT/k
for L and x, and in units of kBT for energies, the change in internal energy of the particle is:

∆U =
1

2
(x− L)2 − 1

2
(x+ L)2 = −2Lx (5.1)

If x > 0, ∆U < 0 and w > 0 which means that the feedback is extracting work from the
particle. The particle is left in the potential centered in L for a time τ . For simplicity, we
present the case starting in the well centered in −L, with a threshold h. The cycle operates
symmetrically if the potential was switched to U(x,+L), using a threshold in −h.

39
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This protocol is similar to the protocol proposed by Sagawa and coauthors [50]. The dif-
ference between the two protocols is that in our protocol the particle switches back and forth
between two potential wells, centered in ±L, whereas the protocol from Sagawa and coauthors
uses successive potential wells centered in −L, L, 3L, etc.

Figure 5.1: The discrete sampling protocol. Starting with a potential U(x,−L) = 1
2
k(x + L)2

centered in −L, every time step τ the position x of the particle is measured. If x > h the
potential center is switched from −L to L. In both cases we wait a time τ before performing
the next measure.

5.2 Experimental implementation

To reproduce experimentally the aforementioned protocol, we need a Brownian particle in a
harmonic trap and to be able to shift the center of the potential well, x0, between two positions
−L and +L. Our setup presented in chapter 3 is particularly adapted to this kind of protocols,
as the trapping is naturally produced by the stiffness, and the feedback loop is built to move
the potential as a function of measurements.

For clarity, we will consider in the following that the protocol starts in the well centered
in −L. Experimentally, the position of the particle is measured continuously with a sampling
frequency fs = 100MHz, with a harmonic potential which center is shifted to x0 = −L by
applying a voltage V −

FB = −L/a. The feedback compares the measured position x to the
threshold xth = h and switch the voltage to V +

FB = L/a if x > xth, then the comparison
between x and xth and the update of the feedback voltage are frozen for a time τ . Once the
voltage has been switched to V +

FB, the feedback acts symmetrically with a threshold xth = −h.
Experimental signals are presented in figure 5.2. The deflection (blue curves) oscillates due
to the resonant nature of the cantilever and is driven by the thermal noise. The oscillations
are centered around the potential well center x0. When x0 is switched from −L to +L, the
deflection follows as the harmonic trap is moved. Red crosses mark moments when the feedback
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is applied and a reading of the deflection is performed. Since the measurements are performed
at discrete instants in time, the particle can cross the threshold xth (green curve) many times
without causing any change in the applied potential as the feedback is not acting.
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Figure 5.2: Experimental signals in time. The blue signal is the measured deflection of the
cantilever, x. The orange curve is the position of the center of the potential well, x0, and takes
values ±L. The green curve is the threshold the particle has to cross for the potential to be
switched, xth, that takes values ∓h . Red crosses mark moments where the feedback reads the
position of the particle. Since the feedback loop updates only every time τ , the particle can
cross the threshold without feedback on the potential if it happens between the readings.

From the measured trajectory and applied potential, we can compute the work of the particle
on the electric field along the trajectory using results from 3.4. We can then obtain the statistics
of the work extracted from the particle at each reading.

5.3 Long times limit

We first study the limit τ → ∞. This situation corresponds to the case where the particle is back
to equilibrium between each reading of the feedback loop. Experimentally, we take τ = 16 t0.
Our oscillator has a quality factor Q ≃ 8 so the relaxation time is trelax = Qt0

π
= 2.54 t0. Since

τ ≫ trelax the system goes back to equilibrium between each measurement. We first present
the probability distribution of work obtained when performing the cycle for a fixed set of the
parameters L and h, and compare it to theoretical predictions. We then present an optimisation
of the values of L and h to achieve maximum work extraction.

5.3.1 Work distribution

The goal of this cycle is to extract work from the particle. We show that our experiment
successfully extracts work, and present the probability distribution of the work w extracted per
cycle.

At each reading of x by the feedback loop, we compute the work w extracted by the protocol.
The probability distribution function of w is shown in figure 5.3 for the case L = 0.6 and h = 0
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(blue curve). A strong peak is present at w = 0 and corresponds to events where the feedback
reads a position x < h and does not switch the potential, leading to zero work. As expected,
most events correspond to w > 0 and work is extracted by the feedback. This cycle allows us
to extract work from a particle in contact with a single thermal bath, which is forbidden by
the Second Law of thermodynamic. Here, using a protocol that adapts to the outcome of the
measurement breaks this limit. We realise a so-called information engine, where the processing
of information taken from the system is used to extract work.

We can compute analytically the probability distribution P (w) of the extracted work to
compare with experimental results. Since the system is at equilibrium at each reading, the
position x is sampled from equilibrium in a harmonic well centered in −L with a probability
distribution:

Peq(x;−L) =
1√
2π
e

(x+L)2

2 (5.2)

Using equation 5.1, we can compute the probability distribution of the work extracted from
the particle at each reading w:

P(w) =





δ(w) ×
∫ L+h

−∞ Peq(x;−L)dx = δ(w)
2

(
1 + erf

(
L+h√

2

))
if w = 0

1
2L
Peq(

w
2L

;−L) = 1
2L

√
2π
e

1
2
( w
2L

+L)2 if w > w0

0 if w0 > w > 0 or 0 > w

(5.3)

with w0 = 2Lh, the minimum amount of work extracted. This value is reached when the
particle is right at the threshold: x = h. The theoretical probability distribution, derived from
this calculation is plotted for the case L = 0.6 and h = 0 in green on figure 5.3, using the same
binning as for the experimental data. We recover the peak at w = w0 = 0 corresponding to
all the cases where x < h, and the Gaussian wing for w > w0. The good agreement between
theoretical predictions and experimental results means that this experiment is a reliable system
to test this protocol and that we can take it to more complex regimes.

5.3.2 Optimisation of the engine parameters

We can look for the optimal regime for work extraction by exploring the space of parameters
(L, h, τ) to maximize the work extracted per cycle. We start by tuning the pair (L, h) in this
regime of τ → ∞.

The mean work extracted can be computed from eq.5.3:

⟨w⟩ =

∫
wP(w)dw =

1

2L
√

2π

∫ +∞

w0

e
1
2
( w
2L

+L)2dw (5.4)

= L2

(
erf

(
L+ h√

2

)
− 1

)
+ L

√
2

π
e

1
2
(L+h)2 (5.5)

The parameters L and h can be chosen to optimize the amount of work and the mean power
P = ⟨w⟩/τ extracted by the feedback. According to eq. 5.1, increasing L increases the work
extracted. However, increasing L also puts the threshold further away from the center of the
potential and makes it harder for the particle to cross it. Finding the optimal value for L is a
competition between the number of work extraction events and the amplitude of these events.

A series of experiments is performed with τ = 16 t0 and h = 0 fixed, and varying L from 0.2
to 1.4 by steps of 0.2. For each value of L, 450 files with a duration of 1 s are acquired. This
corresponds to a total of about 30000 readings for each value of L.

For each experiment, the number of switching and the work extracted are computed. The
results are shown on figure 5.4, showing the rate of switching events (orange) and the average



5.3. LONG TIMES LIMIT 43

0 1 2 3 4
w(kBT )

10−3

10−2

10−1

100

101

P
(w

)
(1
/k

B
T

)

h = 0

h = 0.6

Theory h = 0

Figure 5.3: Probability distribution functions of the work performed by the particle at each
reading of the feedback loop for L = 0.6 with h = 0 (blue) and h = 0.6 (orange) with τ = 16 t0.
The measured pdf is obtained over 104 readings of the position. All events are for w > 0, which
corresponds to work extraction. A strong peak in w = 0 corresponds to all the readings where
x < h and the potential is unchanged, hence w = 0. For h = 0.6, the minimal amount of work
extracted at switch is w0 = 2Lh. Therefore P(w) = 0 for 0 < w < w0. Compared to the case
h = 0, all the events 0 < w < w0 now contributes to the peak in w = 0. Comparison with the
theoretical expectation (green) computed from eq. 5.3
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amplitude of work extracted at the switching (blue). As predicted, the number of events
decreases as L increases, whereas their amplitude raises. These two effects are in competition
and an optimum can be found.
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Figure 5.4: Average work extracted per switching of the potential and frequency of these events
as a function of L, for h = 0. The amplitude of events (blue) increases as L increases, but the
number of events (orange) decreases.

Since the system has the time to relax to equilibrium between each reading by the feedback,
there is no memory of the previous reading and the previous switch in the potential. Therefore
it is equivalent to operate back and forth between two potential wells or to operate with
successive wells. In this regime our protocol is equivalent to the protocol from Sagawa [50],
for which analytical results have been derived by Parks et al. Furthermore, in the limit of
τ → ∞ the overdamped case from [50, 65] and our experiments in the underdamped regime
are equivalent because the system has time to relax to equilibrium between each reading. In
both situations the probability distribution for x is Peq(x;−L) defined in eq.5.2.

We compute the mean power over a cycle of the engine from our experimental data, for
each value of L. Figure 5.5 shows the extracted power per cycle of the engine as a function of
L at h = 0. We find an optimal work extraction for L∗ ≃ 0.6, close to the predicted value by
Park et al. at L∗ ≃ 0.612.

The position of the threshold, h, can also be tuned. Simple arguments allow us to find that
the optimal value is h = 0. Indeed, if h < 0 (figure 5.6a), then we are allowing the system to
switch when the particle is in x with h < x < 0 leading to w < 0, according to equation 5.1. In
this case, the feedback is providing work to the system to put it in a higher energy state when
the potential is switched. If h > 0 (figure 5.6c), we are imposing a minimal amount of work
to be extracted each time w > 2Lh, which means that each time the particle is measured in x
with 0 < x < h, no work will be extracted and w = 0 whereas if the potential was switched the
work extracted would have been positive. The feedback is loosing occasions to extract work.

This has been verified experimentally by measuring the extracted power at different values
of h for a fixed value of L = 0.6. An example of the resulting pdfs is shown in orange on figure
5.3 for h = 0.6. The two curves for h = 0 and h = 0.6 are similar for w > w0 = 2Lh, however
for 0 < w < w0 the pdf falls to 0 and the peak at w = 0 is increased.
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Figure 5.5: Extracted power as a function of L with h = 0 in the limit τ → ∞. An optimum
appears for L ≃ 0.6.

The extracted power as a function of h is shown on figure 5.7. As expected the power
decreases as soon as h ̸= 0.

(a) h < 0 (b) h = 0 (c) h > 0

Figure 5.6: Different situations depending on the value of h. a) h < 0: The potential is
switched for positions x < 0, resulting in negative work extracted. b) h = 0: The potential is
switched if and only if x > 0, which is equivalent to w > 0 and is thus the optimum. c) h > 0:
There are some values 0 < x < h where the potential is left unchanged and w = 0 while work
could have been extracted.

Park et al. compute analytically the average work extracted per event for different values
of L and h, in the case where τ → ∞. What they found is that the largest work is extracted
for L = 0.6 and h = 0, which corresponds to the results we obtained experimentally. Note that
Park et al. optimize the work per event whereas in our experiment we optimize the extracted
power. However, in the case where τ ≫ τrelax, the frequency of events is limited mostly by the
time τ during which the particle equilibrates, and both optimizations give the same result.

The regime τ → ∞ is a simple regime to study theoretically. The work distributions and
optimal parameters obtained experimentally are totally compatible with the theory. We can
also explore the intermediate time limit where the system doesn’t return fully to equilibrium
between cycles.
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Figure 5.7: Extracted power for a fixed value of L = 0.6, as a function of the position of the
threshold h in the limit τ → ∞. As predicted, the optimal value is found at h = 0.

5.4 Intermediate time regime

A way to increase the power output of the engine is to reduce the time between cycles τ ,
preventing the system to totally relax between cycles. We measure the extracted work while
keeping L = 0.6 and h = 0 fixed but varying the sampling time from τ = 0.1 t0 to τ = 3 t0.
For comparison, simulations of an overdamped 1D brownian particle under the same feedback
protocol are performed.

5.4.1 Numerical simulations

For overdamped particles, the mass term in the Langevin equation can be neglected. An
overdamped particle in a harmonic potential centered in x0 can be described by the following
equation:

γẋ+ k(x− x0) =
√

2γkBTξ(t) (5.6)

The timescale for the diffusion is µ = k/γ. The typical spatial scale is given by σx =
√
kBT/k.

By rescaling time in unit of µ as t̃ = t/µ, and positions in units of σx as x̃ = x/σx and
x̃0 = x0/σx, the equation becomes:

dx̃

dt̃
+ (x̃− x̃0) =

√
2ξ(t̃) (5.7)

Working in these units for the system, there are no parameters to be set for the system and
a single set of simulations can describe all overdamped systems.

To perform simulations, we need to turn eq.5.7 into an evolution equation for discrete time
processes. Using a discrete time step dt, the position is described by a series Xn = x̃(n × dt)
with an evolution:

Xn+1 = Xn +
√

2dtΞn − dt(Xn − x̃0) (5.8)

where {Ξn} is a set of independent gaussian random variables with zero mean and unitary
variance. Using this equation we can simulate the evolution of an overdamped particle in a
potential well centered in x0.



5.4. INTERMEDIATE TIME REGIME 47

To simulate our feedback protocol, we initialise the simulation with a position X0 sampled
from an equilibrium distribution with x0 = −L. As in the experimental setup, the position
Xn is compared to a threshold xth = h. If Xn > h, the simulation continues with x0 = +L
and xth = −h, else it continues with x0 = −L and xth = h. After this check, a number of
simulation steps τ/dt are performed, during which no check is performed. This accounts for
the discrete sampling time in our experiment while ensuring that we can use simulation steps
dt small enough for the simulation to be stable.

We perform simulations with L = 0.6 and h = 0, with values of τ ranging from 0.10µ to 3µ
and a time step dt = 0.01µ. An example of simulated trajectory is shown in figure 5.8. The
blue curve is the simulated overdamped dynamic and the orange curve indicates the location
of the center of the potential well. Since h = 0, the threshold for comparison is always xth = 0,
and is represented by a green dashed line. Crosses indicates the moments where readings are
performed. For each reading, the extracted work is computed. The distribution of work for
the same simulation is shown in figure 5.9. This distribution of work has a very similar shape
as the one obtained experimentally in the underdamped regime. Since the feedback extracts
work only if the threshold is reached, w is always positive. A peak near w = 0 comes from all
the readings without switching, while the positive wing of the distribution comes from events
where the potential is switched.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (1/µ)

−4

−2

0

2

4

x

x

x0

readings

Figure 5.8: An example of simulated overdamped dynamic for L = 0.6, h = 0, and τ = 1.2µ.
Blue: simulated positions Xn. Orange: Center of the potential well x̃0. Green: Threshold used
by the feedback at h = 0. Crosses note moments where a reading is performed and the position
is compared to the threshold.

While the shape of the distribution P (w) is similar to the ones obtained experimentally for
the underdamped regime, we compare in the next section the power extracted as a function of
τ for both regimes and show that the two regimes have very different behaviours.

5.4.2 Comparison between overdamped and underdamped

To compare the overdamped simulation and underdamped experiments, we used the relaxation
time of the systems, trelax as a unit of time. Since the two systems are in different regimes,
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Figure 5.9: Probability distribution of w extracted in the overdamped simulation for L = 0.6,
h = 0 and τ = 1.2µ.

they have different definitions for trelax:

trelax =

{
Qt0
π

for underdamped

γ/k = µ for overdamped
(5.9)

Figure 5.10 shows the comparison of the power extracted for the two regimes as a function
of τ/trelax. Using trelax as a unit for times, the curve of overdamped regime appears as an
enveloppe for the curve of underdamped regime.

To confirm this scaling with trelax we perform the same experiment under low pressure
to raise the quality factor. The pressure in the chamber is reduced to 10 mbar, lowering the
effective viscosity term γ in eq.3.2, which increases the quality factor. In these conditions we
measure Q ≃ 20 from a fit of Sx(ω) using the SHO model presented in 3.1. The green curve
on figure 5.10 shows the results from this experiment. The overdamped result still behaves
as an envelope. This is a confirmation that the relaxation time is the good time scale to
study this system. The extracted power in the underdamped regime is always higher than for
the overdamped. This can be understood as the underdamped regime couples two degrees of
freedom (position and velocity) with a typical energy kBT , whereas in the overdamped regime,
only the position degree of freedom is relevant, with typical energy 1

2
kBT .

5.4.3 Specific underdamped effect

We now discuss the anomalies that appear on the curve for the underdamped regime at specific
values of τ , where the extracted power drops. To understand these anomalies, we look at
the time between switching events by looking at the mean number of readings performed on
the particle before the threshold is crossed: ⟨n⟩. This number corresponds to the number of
consecutive events with w = 0 before an event with w > 0. ⟨n⟩ is represented in figure 5.11 as a
function of τ , for Q = 8. For most values of τ , ⟨n⟩ ≃ 3.5. However for values of τ corresponding
to the anomalies on figure 5.10, ⟨n⟩ raises up to 7. This means that for these specific values
of τ , the number of events with w = 0 increases. This can also be seen on figure 5.12 where
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Figure 5.10: Extracted power as a function of τ/trelax. In blue, experimental data with L = 0.6,
h = 0 and Q = 8 in the underdamped regime. In green, experimental data with L = 0.6, h = 0
and Q = 20. In orange, data from simulations of an overdamped brownian particle. The top
horizontal axis shows the sampling time τ in unit of the period of t0 for Q = 8. We can notice
that the minima of extracted power for Q = 8 falls on half-integer values of t0.
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two distributions of work are presented, one in red corresponding to τ = 0.4 trelax = 1 t0, an
anomalous case, and one in purple corresponding to τ = 0.28 trelax = 0.7 t0, a case close to the
envelope.
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Figure 5.11: Mean number of readings between potential switches as a function of τ , with
Q = 8. For most values of τ , about 4 readings are needed between switching of the potential.
However for specific values, corresponding to the anomalies on fig. 5.10, this number increases.
The top horizontal axis shows the sampling time τ in unit of the period of t0. The increases of
this number fall on half-integer values of t0.

We also plot on figure 5.12 the pdf of the extracted work in the case Q = 8 for different
values of τ : 0.4 trelax and 0.28 trelax corresponding respectively to the red and purple crosses on
figure 5.10 and 5.11. Two effects can be noticed. First the peak in w = 0 is stronger for the
anomalous case due to the increase in ⟨n⟩. The second effect is that in the anomalous case, the
spread of the non-zero part of the pdf is smaller. Since w = 2Lx, this means that the particle is
found closer to the threshold when the measurement is performed. Both effects contribute to a
reduction of the extracted power and can be understood as a synchronisation effect between our
measurements and the natural oscillation of the underdamped particle. Indeed, the anomalies
of figure 5.10 fall exactly on integer and half-integer values of t0.

We compare a standard overdamped simulation to an underdamped experiment in a new
regime. We show that the relaxation time is the universal time to compare these systems. This
comparison highlights the specificity of the underdamped dynamics, where synchronisation
effects arise.

5.5 Short times limit

In figure 5.10, we can see that the extracted power falls to 0 as τ → 0. To understand this
phenomenon, we perform experiments in the regime where τ ≪ trelax, taking τ = 0.01t0.

In the regime when τ → 0, the position of the system is sampled continuously, and it can
be studied as a first-passage problem. Since the feedback reads the position of the system
continuously, the excursion of the particle above the threshold is limited and the potential is
switched as soon as the particle reaches the threshold. A particle in a potential U(x,−L), will
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Figure 5.12: Probability distribution function of extracted work after readings for L = 0.6,
h = 0, Q = 8, with τ = 0.28 trelax and τ = 0.4 trelax.

start in −h as a result of the previous potential switch with target in h, as illustrated in figure
5.13.

Figure 5.13: Evolution of the potential and threshold during the switching. Left: Just before
the switching, the potential is centered in +L. Since τ → 0, the particle has just reached the
target in −h. U(x; +L). Right: Just after the switching, the potential is centered in −L. The
particle is located in −h and the target for the next switch is now in +h.

We measure experimentally the pdf of work extracted in this regime with h = 0. The results
are shown in blue on figure 5.14. The distribution is sharply peaked in w = 0. Experimentally,
since τ ≪ t0 but τ ̸= 0, x can be slightly above the threshold. According to eq. 5.1, since the
switching happens close to x = h, the work extracted is w = 2Lh. Therefore, if h = 0 we have
w = 0 and no work can be extracted.

In order to have w > 0 and extract work, we need to use h > 0. An example of work
distribution obtained with h = 0.6 is shown in orange on figure 5.14. A peak in w = 0 remains
from all the readings where x hasn’t reached the threshold but the rest of the distribution has
been shifted to positive values of w.

However, as h is raised, the position of the target is moved away from the initial position,
and the time needed for the particle to reach the target is increased. As a consequence there is
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an optimal value of h that has to be found to maximize the extracted power.

Working with τ → 0 allows for very fast experiments. Which allows for extensive exploration
of the parameter space. We measure the mean power extracted as a function of both L and h to
find the optimum. The results are presented as a heatmap on figure 5.15a. The optimal value
for power extraction is found at L∗ = 0.6, h∗ = 0.75 and gives a power P ∗ = 1.48kBT/trelax.
This value is higher than all the values measured in section 5.4 for the same value of Q = 8,
but different values of L and h.
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Figure 5.14: Histograms of work computed at each switching in the potential for τ = 0.01 t0,
L = 0.6 and h = 0 (blue curve) and h = 0.6 (orange curve). Since τ ≪ t0, the potential is
switched soon after the particle reaches the threshold, which leads to much narrower distribu-
tions compared to the case τ → ∞ from figure 5.3. The effect of moving the threshold h is that
the position of the histogram is switched from around 0 to a non-zero value.

To compare, we simulated the trajectories of overdamped particles in a harmonic potential
and computed the power extracted for different values of L and h. We use the same simulation
scheme as presented in 5.4.1. This time, since τ → 0, a check between the position Xn and
the current threshold is done at each time step dt of the simulation. Since in this regime the
potential is always switched with the particle exactly in +h, the work extracted will always be
w0 = 2Lh. What limits the extracted power is the first passage time, tfp.

To simulate our protocol in the short times, we impose a starting condition
X0 = −h̃ = h/σx, and we simulate the trajectory corresponding to the evolution in this simple
potential well. For each trajectory, we look for the first passage time tfp where the condition
Xn > h is satisfied for the first time. Figure 5.16 shows examples of simulated trajectories for
L = 1 and h = 1. All the trajectories starts in X0 = −h = −1 and evolves in a single potential
well centered in −L = −1. The first passage time is measured when a trajectory first reaches
the threshold in h = 1, marked by the black line. Crosses indicate the first passage of each
trajectory.

For each set of values for L and h, 10000 trajectories are simulated, giving a set of 10000
values of first passage times. The probability distribution of first passage times for L = 1 and
h = 1 is shown in figure 5.17. From this distribution, we compute for each pair (L, h) the
mean first passage time, from which we deduce the average extracted power w0 × ⟨tfp⟩. From
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(a) Experimental heatmap of the extracted
power as a function of L and h for τ = 0.01 t0
in the underdamped regime. The optimal value
is at L∗ = 0.6 and h∗ = 0.75
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(b) Computed heatmap of the extracted power
as a function of L and h for τ = 0.01 t0 in the
overdamped regime. The optimal value is at
L∗ = 0.75 and h∗ = 0.5.

Figure 5.15
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Figure 5.16: Simulated trajectories in the limit τ → 0 with L = 1 and h = 1 (black line). All
the trajectories start in −h = −1 (black marker). Since the problem can be linked to a first
passage time problem, the trajectories are ended after reaching the threshold.
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the simulations, we construct a heatmap of the extracted power, shown figure 5.15b. In the
overdamped case, the simulation predicts a maximum power 0.25kBT/trelax for L = 0.75 and
h = 0.4.
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Figure 5.17: Distribution of the first passage times for L = 1 and h = 1 in the limit τ → 0,
taken over 10000 simulated trajectories.

The main noticeable difference between the underdamped and the overdamped case is that
for the former the optimum is L∗ < h∗ whereas the optimum is L∗ > h∗ for the latter. For the
overdamped case, L∗ > h∗ means that the target and the initial position of the trajectories are
close. Since the dynamic is driven by diffusion, a low value of h∗ means that it will be easy
for the particle to diffuse from −h∗ to +h∗ and this optimum corresponds to a case with more
switching events and lesser work extraction per events. For the underdamped case L∗ < h∗

means that the particle will be far away from the threshold after a switch of the potential.
However due to the oscillations, the particle will easily come back close to the threshold. This
allows for a large work extraction per event while reducing the drawbacks of starting far from
the threshold.

5.6 Information

We have built an engine able to extract work using information. A way to measure the efficiency
of the engine is to weight the information used against the work extracted. For the simpler
case of τ → ∞, we can check the bound proposed by Ashida [66], presented in section 2.3.3.

During one cycle of the engine with τ → ∞, a particle starts from equilibrium in potential
U(x;−L) and has a trajectory Γ up to time t = 0 where a reading is performed. The outcome
of the measurement is m = x(t = 0). The position of the center of the potential well in time is
described by λ(t) with:

λ(t < 0) = −L (5.10)

λ(t > 0) =

{
−L if m < 0

+L if m ≥ 0
(5.11)
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This leads to two different protocols, presented in figure 5.18, λ0 and λ1 with:

λ0(t) = −L (5.12)

λ1(t) = −L+ 2Lθ(t) (5.13)

with θ(t) the Heaviside step function.

Figure 5.18: The two possible protocols if τ → ∞. The potential is initially centered in −L.
At t = 0, the measurement is performed with outcome m = x(t = 0). If m > 0, the potential
is switch to +L, resulting in protocol λ1. If m < 0 the potential is unchanged.

Our feedback measures the exact position of the particle x at each reading and the protocol
is changed depending on this measurement. The result of the measurement is x itself. This
leads to an extracted information I(x) = − log(Peq(x;−L)), where Peq(x;−L) is the probability
of finding the particle at position x when measured. Since at each reading the system is at
equilibrium in a harmonic potential centered in −L, Peq(x;−L) = 1√

2π
e−(x+L)2/2. This gives an

information:

I(x) =
(x+ L)2

2
+ log

(√
2π
)

(5.14)

For a given measurement, different feedbacks can be applied, resulting in more or less work
extraction depending on the smartness of the chosen protocol. In [66], Ashida and coworkers
propose a way to quantify this amount of information Iu that is unused by the protocol. While
they call it ”unavailable information”, our understanding of this concept leads us to call it
”unused information”. This unused information can be computed using the backward protocol.
For a protocol λ(t), its reverse protocol is λ†(t) = λ(−t). The two possible reverse protocols
are illustrated in figure 5.19. The unused information associated with a measurement x is

Iu(x) = − log
(
P
(
Γ†(t = 0) = x|λ† = λi

))
(5.15)

where † notes the time reversal of a trajectory.
In the forward protocol, the measurement m imposes the protocol λ. The unused informa-

tion Iu measures the reciprocity of this link and is measured by first imposing a protocol and
then performing a measurement in the reverse process. If the outcome of the measurement
is the same in both the forward and reverse processes, then it means that the link imposed
between the measurement and the protocol is trivial and doesn’t need a lot of information.

In the reverse protocol, since the protocols can differ before the measurement, causality
prevents us from performing a feedback. A protocol is thus arbitrarily imposed. In the direct
protocol, there are only two scenarios (center, non circled in figure 5.20.) :

• The particle is measured at x < h and the applied protocol is λ0.
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Figure 5.19: The two reversed protocols λ†0 (red) and λ†1 (blue). The potential is initially
centered in ±L depending on the chosen protocol. The center of the potential is switched to
−L at t = 0 independently of any measurement outcome.

Figure 5.20: The different possible trajectories for the direct (red arrows) and reverse (blue
arrows) protocols. Two types of trajectories, circled in orange, where the measurement does
not correspond to the applied protocol, are only possible in the reverse protocol, without
feedback, and are called singular trajectories.
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• The particle is measured at x > h and the applied protocol is λ1.

In the backward protocol, the same trajectories, reversed can be obtained. Due to the
absence of feedback new trajectories, called ”singular trajectories” can appear (circled in figure
5.20). In our case, there are two kinds of singular trajectories :

• The applied protocol is λ0 but the particle is measured in x > h. The potential is left
unchanged while work extraction was possible.

• The applied protocol is λ1 but the particle is measured in x < h. The potential is changed
but this leads to negative work extraction (the feedback gives energy to the thermal bath).

The definition of Iu in equation 5.15 corresponds to measuring the probability of obtaining
non singular trajectories, resulting in the same measurement, when performing the backward
protocol.

For trajectories with protocol λ0, P
(
Γ†(t = 0) = x|λ† = λi

)
= Peq(x,−L) and Iu(x) =

(x+L)2

2
+ log

(√
2π
)
. In this case, I = Iu and w = 0. Therefore w = I − Iu.

For trajectories with protocol λ1, P
(
Γ†(t = 0) = x|λ† = λi

)
= Peq(x,+L) and Iu(x) =

(x−L)2

2
. In this case, Iu = (x+L)2

2
− 2Lx+ log

(√
2π
)
. Using eq.5.1 and 5.14, we have Iu = I −w

and w = I − Iu.
With this discrete sampling protocol, for every trajectory, we have w = I−Iu. Therefore the

generalised Jarzynski equality from [66], ⟨ew−I+Iu⟩ = 1, is satisfied. Furthermore, the bound
⟨w⟩ ≤ ⟨I − Iu⟩ is an equality.

To compare with experimental results, we compute ⟨I⟩ and ⟨Iu⟩:

⟨I⟩ =

∫ +∞

−∞
I(x)Peq(x;−L) (5.16)

=

∫ +∞

−∞

(x+ L)2

2
e−

(x+L)2

2 + log
(√

2π
)

(5.17)

=

√
π

2
+ log

(√
2π
)

(5.18)

Since I(x) depends only on the reading performed on the equilibrium distribution, the position
of the potential well has no impact and ⟨I⟩ is independent of L.

⟨Iu⟩ =

∫ +∞

−∞
Iu(x)Peq(x;−L) (5.19)

=

∫ 0

−∞

(x+ L)2

2
e−

(x+L)2

2 +

∫ +∞

0

(x− L)2

2
e−

(x+L)2

2 + log
(√

2π
)

(5.20)

=

∫ +∞

−∞

(x+ L)2

2
e−

(x+L)2

2 +

∫ +∞

0

2Lxe−
(x+L)2

2 + log
(√

2π
)

(5.21)

=

√
π

2
− L2 erfc

(
L√
2

)
+ L

√
2

π
e−

L2

2 + log
(√

2π
)

(5.22)

Figure 5.21 shows the experimentally measured ⟨w⟩ as a function of L and the theoretical
bound ∆I ≡ I − Iu resulting from earlier calculations. The information I is a bound for
extracted work ⟨w⟩, measured experimentally, but this bound is very loose. The introduction
of Iu, allows for a much tighter bound, taking into account the specificity of our feedback. The
high discrepancy between I and ∆I means that our protocols don’t use fully the information
measured. However, the fact that the bound given by ∆I is saturated means that almost no
work is lost when operating the system and that our description of the system is correct. Such
an engine, where all the possible work is extracted, has been called a lossless information engine
in previous literature and was already achieved in the case of overdamped systems [67].
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Figure 5.21: ⟨w⟩, ⟨I⟩, ⟨Iu⟩ as a function of L. The difference ∆I = I − Iu acts as a bound for
w. In this protocol and considering the measurement result to be x itself, we get a saturation
of the bound. ie: ⟨w⟩ = ⟨∆I⟩.

5.7 Efficiency

We can try to define an efficiency for these information engines. However, many definitions,
corresponding to different efficiencies seem interesting. We can first consider the efficiency of
our experimental realisation : ρexp = ⟨w⟩

⟨∆I⟩ . This ratio measures the saturation of the bound

⟨w⟩ ≤ ⟨∆I⟩. ρexp < 1 indicates that some of the work is loss in the operation in the engine,

due to dissipation. Another ratio can be consider: ρprot = ⟨∆I⟩
⟨I⟩ = ⟨I−Iu⟩

⟨I⟩ . This measures how
efficiently the chosen protocol uses the information from the measurement. Taking into account
both efficiencies corresponds to the ratio ρ = ⟨w⟩

⟨I⟩ . This ratio might be the more general one, and

the closest to a usual efficiency in thermodynamics, as ⟨w⟩ is the useful quantity in a engine,
and ⟨I⟩ is the amount of information that needs to be processed, thus resulting in a heat cost
in the feedback due to Landauer’s principle.

For our engine, ρexp = 1, as discussed in the previous section. We saturate the bound,
⟨w⟩ = ⟨∆I⟩ and achieve a lossless information engine. From fig. 5.21, we get ρprot ≃ 0.14,
which corresponds to the fact that our protocol used only a binary information from a very
accurate measurement of the position. Since our engine is lossless, ρ = ρprot, and the efficiency
of our engine is limited by the choice of protocols.

5.8 Conclusions

We have a precise measurement of x from which we control a rough protocol based on a binary
choice. While a lot of information is extracted from the system, most of it is not used due
to the simplicity of our protocol. The large discrepancy between I and ∆I in our experiment
makes us think that a better protocol with lower unused information could be found and opens
the question of the possibility of a protocol with Iu = 0 where all the information would be
transformed into work. In the case of shorter τ , since the system doesn’t fully relax, we cannot
use the equilibrium distributions to compute I and Iu. Building an information in the regimes



5.8. CONCLUSIONS 59

from 5.4 and 5.5, taking into account the correlation between successive measurements is still
an open question.
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Chapter 6

Continuous sampling information
engine

In the previous chapter, we are not able to define an information or unavailable information
for shorter waiting times τ due to the measurements being performed on out-of-equilibrium
systems. Here, we study a protocol where multiple measurements are implied, but the system
starts from an equilibrium position. This makes it possible for us to define an information as
well as an unavailable information, derive an extension of the Jarzynski equality from Crooks
relation, and check our predictions experimentally.

In the protocol studied in the previous chapter, when a reading is performed, we wait a
time τ independently of the outcome of the measurement. Here, instead of waiting a time τ
if the threshold is not reached, we propose to sample continuously the position of the particle
to catch it as soon as the threshold is reached. While the particle will always switch at the
threshold, the time needed will be smaller.

Figure 6.1 shows an example of the effect of both protocols on a fictive trajectory. The
trajectory starts at t0 with a reading. In the case of the discrete feedback from chapter 5, a
reading is performed again at t = τ . If the particle crosses the threshold at t1 < τ , nothing will
be done and the system will wait. Using a continuous sampling, the potential will be switched
at t = t1 and the time before the switching will always be smaller.

The protocol we propose here can also be seen as an intermediate to study information
in the case of multiple measurements, while keeping the comfort of working with equilibrium
distributions.

6.1 Feedback protocol

This protocol is a variation of the protocol presented in 5.1. As presented in figure 6.2, start-
ing from equilibrium, the position of the particle x is sampled continuously until it reaches
the threshold in h. At that point, the potential is instantaneously switched from U(x;−L)
to U(x;L) and the feedback is locked for a time τ ≫ trelax, letting the system go back to
equilibrium, before performing a new cycle.

In this protocol, the measurements are done in quick succession. In this case, there are
strong correlations between the different readings and information depends on the whole set of
measurements rather than each individual reading.

A theoretical framework have been developed in collaboration with Christopher Jarzynski
and Alberto Imparato and an article is in preparation.

We focus on full trajectories, starting at equilibrium in potential U(x;−L). The particle
evolves in a harmonic potential Uλ(x), with λ = A,B. UA(x) = U(x;−L) and UB(x) = U(x;L).
The position of the particle x0, x1...xM is measured at discrete times tn = n×δt. The position of

61
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Figure 6.1: Example of a trajectory in the potential well. A reading is performed at t0. Using
the discrete sampling feedback, the position of the particle is read at t = τ , and the potential
will be switched. However, the particle first crossed the threshold at t = t1. Using a continuous
sampling, the switching happens at t1 < τ .

Figure 6.2: Continuous sampling protocol.
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the particle is compared at each time step with a threshold h. At the first measurement where
xn > h, the control parameter λ is switched from A to B and is then kept at B independently of
the following measurements. The final measurement is made at time tM , long enough compared
to all the other time scales of the system so the probability for the particle to reach the threshold
during the measurements is 1.

This process has two outputs, a trajectory X and a protocol Λ.

X = (x0, x1, ..., xM) (6.1)

Λ = (λ0, λ1, ...λM) (6.2)

(6.3)

A protocol Λ is of the form:

Λ = (A,A... A︸︷︷︸
kthstep

, B, ...B) = Λk (6.4)

with a sequence of k A’s followed by (M − k + 1) B’s, determined by the first time k where
xk > h. We can group the trajectories in sets Ωk containing all the trajectories crossing the
threshold h for the first time at time tk.

Ωk = {X|min{i|xi > h} = k} (6.5)

The good parameter to describe the trajectories is k, the number of reading performed
before the switching. This is the parameter that controls the protocols. Using this parameter
we propose in the next section an information and an unavailable information, imposing a
constraint on the extracted work.

6.2 Information

To build an information, we first study the joint probability between the trajectories X and
the protocols Λk.

Let PFB(X,Λk) denote the joint probability to obtain trajectory X and protocol Λk when
performing this process. We have that

PFB(X,Λk) = 0 if X /∈ Ωk (6.6)

We introduce Pk, probability of obtaining the protocol Λk:

Pk = P (Λ = Λk) (6.7)

=
∑

X

PFB(X,Λk) =
∑

X∈Ωk

PFB(X,Λk) (6.8)

Such that:
PFB(X,Λk) = PFB(X|Λk)Pk (6.9)

We consider a different scenario where we choose beforehand a protocol Λk and apply it
without feedback from the measured trajectory X and note Pno(X|Λk) the probability of getting
a trajectory X under protocol Λk without feedback.

A first result is that:
PFB(X,Λk) = Pno(X|Λk) ifX ∈ Ωk (6.10)

indeed, we can decompose Pno(X|Λk) as:

Pno(X|Λk) = πA(x0) · pA(x1|x0) · · · pA(xk|xk−1) · pB(xk+1|xk) · · · pB(xM |xM−1) (6.11)
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where πλ denotes equilibrium distribution in potential Uλ and pλ(xi|xi−1) denotes the probabil-
ity for the particle to be in xi at time ti after a measurement in xi−1 at time ti−1, in potential
Uλ. If X ∈ Ωk, the same decomposition can be done for PFB(X,Λk).

PFB(X,Λk) = πA(x0) · pA(x1|x0) · · · pA(xk|xk−1) · pB(xk+1|xk) · · · pB(xM |xM−1) (6.12)

In the case without feedback we introduce q(l, k) the probability of obtaining a trajectory
in Ωl when imposing a protocol Λk:

q(l, k) =
∑

X∈Ωl

Pno(X|Λk) (6.13)

Defining Qk = q(k, k), we have by summing eq.6.10 over all X ∈ Ωk

Pk = Qk (6.14)

While {Pk} is defined as a probability distribution, it is not trivial that {Qk} is a probability
distribution without the result from eq. 6.14.

Given a protocol Λk = (λ0, λ1...λM), let Λ†
k = (λM ...λ1, λ0) denote the reverse protocol,

and PR
no(X

†|Λ†
k) the probability of getting a trajectory X† when applying the reverse protocol

without feedback. We define QR
k :

Qk =
∑

X∈Ωk

Pno(X|Λk) (6.15)

QR
k =

∑

X∈Ωk

PR
no(X

†|Λ†
k) (6.16)

Qk is the probability of getting a trajectory in Ωk under protocol Λk without feedback. QR
k

is the probability of getting the time reversal of a trajectory in Ωk under protocol Λ†
k without

feedback. From Crooks’ theorem [42] we have:

Pno(X|Λk)

PR
no(X

†|Λ†
k)

= e−w(X,Λk)−∆F (6.17)

where w(X,Λ) is the work performed by the system along a trajectory X under protocol Λ and
∆F is the free energy difference between potentials UA and UB. In our case, since UA and UB

are the same up to a translation, ∆F = 0.
For protocol Λk, we propose an information Ik:

Ik = − log(Pk) (6.18)

This information can be seen as the Shannon entropy of a unique measure on the duration
of the protocol k. Since Pk = Qk, we can also write Ik = − log(Qk). To complement this
information, we define an unavailable information Iu,k:

Iu,k = − log
(
QR

k

)
(6.19)

This definition of unavailable information is similar to the one used by Ashida [66] as it relies on
the measurement in the reverse protocol of the probability of obtaining a measurement outcome
corresponding to the protocol chosen beforehand. We define ∆Ik = Ik − Iu,k, which can be
written as:

∆Ik = − log

(
Qk

QR
k

)
(6.20)
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And we compute ⟨ew+∆F−∆I⟩FB:

⟨ew+∆F−∆I⟩FB =
∑

X,Λk

PFB(X,Λk)ew
Qk

QR
k

(6.21)

=
∑

Λk

Qk

QR
k

∑

X∈Ωk

Pno(X|Λk)ew (6.22)

=
∑

Λk

Qk

QR
k

∑

X∈Ωk

PR
no(X

†|Λ†
k) (6.23)

=
∑

Λk

Qk =
∑

Λk

Pk = 1 (6.24)

where we used results from eq.6.10, 6.14 and 6.17. This result is an extension of the Jarzynski
equality [33] in the case of feedback protocols. We test experimentaly this result in the next
section.

We can also notice that for all protocol Λk:

⟨ew⟩k =
∑

X

PFB(X|Λk)ew =
∑

X∈Ωk

PFB(X|Λk)ew (6.25)

=
1

Pk

∑

X∈Ωk

PFB(X,Λk)ew =
1

Pk

Pno(X|Λk)ew (6.26)

=
1

Pk

∑

X∈Ωk

PR
no(X

†|Λ†
k) =

QR
k

Pk

=
QR

k

Qk

= e∆Ik (6.27)

Averaging eq.6.25 over all values of k, we also get:

⟨ew⟩ =
∑

k

Pk⟨ew⟩k (6.28)

=
∑

k

Pke
∆Ik (6.29)

= ⟨e∆I⟩ (6.30)

which is a different result from eq.6.21.
In this protocol we can distinguish two cases: k = 1 and k > 1. For all trajectories with

k > 1, the potential will be switched when the particle is right at threshold h and the work
extracted is therefore w0 = 2Lh. This leads to ⟨ew⟩k = e2Lh for all values of k. Therefore, by
eq. 6.25, Ik is independent of the length of the trajectory and ∆Ik = 2Lh for all k > 1.

In the following we test experimentally the two main results we derived here, by separating
between the cases k = 1 and k > 1.

6.3 Experimental test

We perform experiments with a sampling frequency of 100 MHz, giving δt = 10 ns, with τ = 16t0
so each trajectory starts at equilibrium, and varying L and h.

For each trajectory, we measure the work w extracted from the system. The probability
distribution of w over a trajectory is shown in figure 6.3, for L = 0.6 and h = 0.25. We notice
a pdf similar to the ones from chapter 5, with a strong peak and a tail w > 0. In chapter 5
the peaks correspond to individual readings below the threshold leading to no work extraction
because the potential is unchanged. Here, the peak corresponds to trajectories starting from
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x1 < h. These trajectories are sampled continuously, similarly to section 5.5, and the potential
is switched from UA to UB as soon as the threshold h is reached with an extracted work
w0 = 2Lh.
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Figure 6.3: Probability distribution functions of work over trajectories P (w), for L = 0.6
and h = 0.25. The green dashed line indicates w0. The peak in the pdf is located around the
predicted value for w0. A tolerance window is allowed around w0 in our analysis and corresponds
to the shaded area.

We sort trajectories based on the value of w: If w ≃ w0, this corresponds to a trajectory
with k > 1. For these trajectories, since ∆Ik = 2Lh, w = ∆Ik and ew−∆Ik = 1. Experimentally,
we need to check that w = w0. This can be seen on the pdf shown on figure 6.3. We notice
that there is indeed a peak in the pdf located close to the predicted value for w0 (green vertical
line). Since the data are experimental, we need to take a tolerance ϵ around w0 to count an
event as an event where w = w0. This tolerance is shown by the shaded area on figure 6.3.
This tolerance is adjusted to include the peak of the pdf to a value of ϵ = 0.05kBT .

If w ̸= w0, this corresponds to a trajectory with k = 1. In this case, ew+∆I1 ̸= 1 for
most trajectories. In this case we can compute ∆I1 and check experimentally that ⟨ew⟩|k=1 =
e∆I1 , where w is measured and ∆I1 computed from our predictions. We can compute ∆I1 =

− log
(

Q1

QR
1

)
by first computing Q1 and QR

1 .

Q1 = P1 = P (x1 > h) =

∫ +∞

h

πA(x)dx (6.31)

=

∫ +∞

h

1√
2π
e

(x+L)2

2 dx =

√
π

2
erfc

(
h+ L√

2

)
(6.32)

QR
1 = P (X† ∈ Ω1|Λ†

1) =

∫ +∞

h

πB(x)dx (6.33)

=

∫ +∞

h

1√
2π
e

(x−L)2

2 dx =

√
π

2
erfc

(
h− L√

2

)
(6.34)
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∆I1 = − log

(
Q1

QR
1

)
= − log

(
erfc(h+L√

2
)

erfc(h−L√
2

)

)
(6.35)

We then need to check that ⟨ew⟩k=1 = e∆I1 . Figure 6.4 shows the experimentally measured
⟨ew⟩, averaged over all the values of w where ̸= w0, as a function of L, for h = 0.25. We also
plot e∆I1 predicted from eq. 6.35. We can see that the two curves are close, which confirms
that ⟨ew⟩|k=1 = e∆I1 . From that and the fact that w = w0 for k > 1, we can conclude that
⟨ew⟩|k = e∆Ik for all k. This implies that both results from eq. 6.21 and 6.28 are valid for our
experiment. To illustrate this result, we measure in figure 6.5 ⟨ew−∆I⟩ for different values of L
and h. The four curves are close to 1, as predicted from eq.6.21.
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Figure 6.4: ⟨ew⟩ for k = 1 measured experimentally (blue), compared with the prediction for
e∆I1 in the case h = 0.25. The two curves are close, which implies that ⟨ew⟩|k=1 = e∆I1 .

The choice of the tolerance ϵ is crucial in the analysis. Indeed, it is the parameter used
to sort between events where k > 1 and k = 1. Figure 6.6 shows a distribution of work with
the windows corresponding to ϵ = 0.5kBT , ϵ = 0.05kBT , and ϵ = 0.005kBT . We perform the
same analysis as before to compute ⟨ew−∆I⟩ as a function of L, for h = 0.25, using the different
values of ϵ presented in figure 6.6, and report the result in figure 6.7. For values of ϵ too small,
⟨ew−I⟩ is underestimated, whereas for higher values ⟨ew−∆I⟩ is overestimated.
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Figure 6.5: ⟨ew−∆I⟩ as a function of L for different values of h. As predicted by eq.6.21, the
curves are close to 1 for all values of L and h.
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Figure 6.6: The probability distribution of work P (w) for L = 0.6 and h = 0.25. Different
tolerance windows around w0 are indicated. Blue shade: ϵ = 0.5kBT , green shade: ϵ = 0.05kBT ,
red shade: ϵ = 0.005kBT .
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Figure 6.7: ⟨ew−∆I⟩ for L = 0.6 and h = 0.25 using different values for ϵ in the analysis.

6.4 Conclusions

We study a protocol where multiple measurements are involved, with correlations between
them. By identifying a quantity that gather all the information about the protocol and the
measurements, k, we are able to define an information and an unavailable information, in a
way coherent with the literature. Using this observable, containing all the information about
the protocols, we are able to derive a generalisation of the Jarzynski equality (proposed in eq.
6.21), as well as a corollary result (proposed in eq. 6.28). Using the setup from 3 and adapting
the feedback used in 5, we confirm experimentally our predictions. Building an efficiency in
this case can be theoretically done in the same fashion as in 5.7. However, experimentally
measuring the whole distribution P (k) is a challenge, as we work with high sampling frequency,
thus too many possible values for k. Reducing the sampling frequency could allow us to access
the distribution of times P (k), at the cost of reducing our accuracy when measuring the work
exchanged.



70 CHAPTER 6. CONTINUOUS SAMPLING IE



Chapter 7

Velocity controlled Feedback: The
Maxwell Demon

In this chapter, we present preliminary results on a configuration of our setup where we use the
feedback loop to create a Maxwell Demon, similar to the one originally described by Maxwell
[68]. In his book, Maxwell studies the case of an observer that can measure the position and
speed of individual particles of a gas in a box. By operating a trapdoor in the middle of
the box, this observer can sort the particles between the ”hot” ones, with high velocities, on
one side and the ”cold” ones, with low velocities, on the other. Such an observer is able to
create a temperature difference from an isolated system with homogeneous properties, without
performing work. The Maxwell Demon has been a fascinating concept in physics for the last
century [45, 46, 69]. Many experiments aimed to reproduce in the lab a Maxwell Demon, a
device able to extract work from a monothermal source. A lot of different systems have been
used, such as quantum systems [70], photonics [71–73], electronics [74–78], active systems [79],
dimers [52], complex molecules [80], DNA hairpins [81] or using macroscopic systems [82].

The term ”Maxwell Demon” is now used in a broad sense for any device where work is
extracted by rectifying the thermal fluctuations. In previous chapters, we preferred the term
information engine, to highlight the role of the measurement and to distinguish from Maxwell
thought experiment, where the entropy of a system is lowered while it has no work or heat
exchange with its environment. Using our setup presented in chapter 3, we can now reproduce
experimentally what was first presented as a thought experiment by Maxwell.

7.1 Proposed protocol

To reproduce a Maxwell Demon in our experiment, we change the logic of the feedback loop.
We need an equivalent of the trapdoor to separate space in two subdomains and a measurement
of speed to control the trapdoor. Our experiment only allows us to work with a single particle.
We propose a protocol that creates a Maxwell Demon on the statistic of this single particle in
time, instead of using ensemble statistics on many particles.

In this protocol, presented in figure 7.1, the particle is trapped in an harmonic potential
U(x;x0) = 1

2
k(x− x0)

2 where x0 can only take two values: ±L. The position of the particle x
is sampled continuously. The protocol is the following:

• Each time the particle is at x = 0, the velocity of the particle v is measured.

• The position of the potential is adjusted depending on v and a set threshold v0:

– If |v| < v0, the center of the potential is set to x0 = −L.

– If |v| > v0, the center of the potential is set to x0 = +L.
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Figure 7.1: The protocol used to reproduce a Maxwell Demon. The position of the particle
is sampled continuously. When the particle reaches x = 0, its speed v is compared to a set
threshold v0. If v < v0, the position of the potential well is then set to x0 = −L, else the
potential is set to x0 = +L.

• The sampling of the position of the particle continues.

In Maxwell’s original thought experiment, the particle is trapped in a box, which can be
model as an infinitely steep potential. Here we use a softer harmonic potential. While the par-
ticle is not as strongly confined to a region of space, this version is adapted to our experimental
setup, where the particle is harmonically trapped by the stiffness of the cantilever.

This protocol correlates the position of the particle x and its velocity v by creating a region
of space where on average the velocity of the particle is higher. We expect the velocity to be
lower in the left potential well, which will be a cold well, and to be higher in the right well,
which will be a hot well.

An important point in Maxwell’s proposition is that the demon should not produce any
work on the system. In our protocol, when the potential is switched, the variation of potential
energy in the system is ∆U = 2Lx. For an instantaneous change in the potential, no heat is
exchanged with the thermal bath and q = 0 and the work performed is w = ∆U = 2Lx. Since
the feedback operates only when x = 0, we expect no work to be performed by the feedback
on the particle.
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7.2 Experimental Implementation

We use the setup presented in chapter 3, by setting the feedback loop to perform the afore-
mentioned protocol. Experimentally, the position of the particle x is sampled at 100 MHz. The
position is filtered using an IIR low-pass filter, presented in 3.3, set at 50 kHz. This limits the
contribution of high order modes of the cantilever and high frequency noise. The velocity is
computed by taking the discrete derivative of the position. The n-th sample of velocity vn is
then computed by the feedback as:

vn = fs(xn − xn−1) (7.1)

where fs is the sampling frequency and subscript n denotes the n-th sample, taken at time
n/fs. Since the contribution of higher frequencies is amplified by the derivation, the filtering
used for the velocity is more restrictive. An IIR low-pass filter at 8 kHz is used on the position
signal before computing the velocity.

The harmonic trapping is created by the stiffness of the cantilever and the center of the
trap x0 can be set to ±L by applying a constant feedback voltage ±VFB. Since we are not
performing a continuous sampling but are limited by our acquisition frequency, we will never
measure exactly x = 0. We therefore detect crossing by looking for change of sign in the
deflection x.

When analysing the data from the experiment, the first 100 ms are discarded. This corre-
sponds to 10 periods of the oscillator and ensures that we are working in the steady state of the
demon. An example of experimental signals obtained is shown in figure 7.2. The upper figure
represents the position of the particle x and the position of the center of the trapping potential
x0 during the experiment. Each time the particle crosses x = 0, denoted by the green crosses,
the velocity of the particle is read by the feedback. The velocity during the experiment is shown
on the bottom figure. Green crosses indicate the velocity at each event x = 0. At these points,
the value of the potential center is adjusted. If |v| < v0, the potential is set to x0 = −L, else
the potential is set to x0 = +L. Since the feedback only updates the potential when x = 0, we
can have x0 = −L (the particle is in the ”cold” well), while |v| > v0 or conversely.

We measure the position of the particle for a total of 10 s in the steady state of the demon.
For this experiment, we use L = 1σx, with σx the standard deviation of the position at
equilibrium without the demon, as measured in chapter 3. The threshold in velocity is set
to v0 = 1 σv, with σv = σx2πf0 the standard deviation of velocity at equilibrium without the
demon, computed from σx and f0, the frequency of the oscillator extracted from the SHO fit
presented in chapter 3. By sorting the positions and velocities in two sets based on the value
of x0 to distinguish between the two potential wells, we can obtain the distribution of positions
and speeds in each well. These distributions are shown in figure 7.3 and 7.4.

We can see on figure 7.3 the distribution of positions in the two potential wells. The
distribution in the well centered in x0 = +L is wider than for x0 = −L. This is coherent with our
expectation of a hot well in +L and a cold well in −L. Since the demon is operating, the system
is in an non-equilibrium steady state (NESS) and a temperature cannot be properly defined.
We can however access an effective temperature and compute the ratio of these temperatures
in the wells.

At equilibrium, the temperature can be measured as T = kσ2
x

kB
using equipartion theorem.

For a NESS, we can define an effective temperature Tx as

Tx =
k var(x)

kB
(7.2)

In our experiment, this gives TC
x = (196± 6) K for the cold well and TH

x = (425± 12) K for the
hot well. We can also access the temperature ratio as the ratio of the variance of the position
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Figure 7.2: Example of trajectory obtained in the steady state of the demon. Top figure: Blue:
position of the particle x. Orange: Position of the center of the potential x0. Green crosses
indicate the moments when x crosses 0. Bottom figure: Blue: Velocity of the particle. Red:
Threshold v0. Green crosses indicates the velocities measured when x = 0.
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in each well. This measurement is independent of any equilibrium calibration. We obtain a
temperature ratio of 2.1 ± 0.1.
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Figure 7.3: Probability distribution of x for both potential wells. The blue curve corresponds
to the well centered in x0 = −L. The orange curve corresponds to the well centered in x0 = +L.
The distribution in the right well is wider, corresponding to a hot well.

We can perform the same analysis on the distribution of speeds, presented in figure 7.4. We
can see that the distribution is wider in the well centered in x0 = +L, as for the position. This
reinforce the interpretation of x0 = +L as a hot well, while x0 = −L is a cold well.

At equilibrium, the temperature is linked to the distribution of speeds by T = mσ2
v

kB
, using

again the equipartition theorem. We can adapt this definition to NESS to get an effective
kinetic temperature as

Tv =
m var(v)

kB
(7.3)

We obtain TC
v = (204 ± 6) K for the cold well and TH

v = (443 ± 13) K for the hot well. We can
again compute a temperature ratio, independent of the equilibirum calibration. This ratio for
kinetic temperature is 2.2 ± 0.1.

The kinetic temperature measured is within the uncertainty margins of the position temper-
ature. Using the temperature ratios, independent from any calibration, gives a closer agreement
between kinetic and position temperature. However, as the system is out of equilibrium there
is no reason for the temperature of all degrees of freedom to be the same.

We can therefore operate a Maxwell Demon, separating high and low velocities in space,
creating a hot domain and a cold domain. While the system is out of equilibrium, we can
define an effective temperature from the distributions of speeds or positions. In both case, the
experimental results confirm that we have indeed two regions of space, one hot and one cold,
with a temperature ratio of about 2. To confirm that the demon is indeed working properly,
we need to look at the statistics of work and heat in the steady state.
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Figure 7.4: Probability distribution of v for both potential wells. The blue curve corresponds
to the well centered in x0 = −L. The orange curve corresponds to the well centered in x0 = +L.
The distribution in the right well is wider, corresponding to a hotter well.

7.3 Distribution of heat and work

A Maxwell Demon is supposed to act without performing work on the system. To confirm that
we have achieved a Maxwell Demon, we need to study the exchange of heat and work with the
system during the operation of our Demon.

From the time trace of speed and position in the steady state, we can reconstruct the
instantaneous heat given by the bath to the system q̇ and work ẇ performed by the demon on
the system during operation of the demon, using the method presented in 3.4 and already used
in chapters 5 and 6.

The probability distributions of work when x0 = −L or when x0 = +L are shown in figure
7.5. The power, ẇ, is represented in units of kBT/trelax, with trelax the relaxation time of the
oscillator. This allows us to use the natural timescales and energy scales of the system. In
both cases, the distribution has a peak in w = 0, because most of the time x0 is constant, the
potential is fixed, and no work is performed on the system. When the potential is changed
from ±L to ∓L, the work done on the system is w = ±2Lx. The spread of the probability
distribution is then due to the latency of the feedback when measuring the crossing at x = 0.
The wider distribution in the hot well can be explained by the larger speed, thus latency, when
switching to this well. From these distributions we can also compute the mean work performed
by the demon on the system. We found a mean power ⟨ẇ⟩C = (0.7 ± 0.02)kBT/trelax for the
cold well and ⟨ẇ⟩H = (−0.04 ± 0.02)kBT/trelax for the hot well. In the case of the cold well, 0
is not in the uncertainty interval. This can come from a systematic error, for example in the
calibration of the position of the center of the potential at rest, x = 0. However, both values
of work are small compared to the typical energy scale of the system, which means that our
demon performs negligible work on the system.

We can also look at the distributions of heat for both potential wells. This heat is exchanged
from the thermal bath to the system at room temperature (295 K). The spread of both distribu-
tions is more than a hundred time larger than for work. We can compute the average heat flux in
the cold and the hot wells. For the cold well we get a mean heat flux ⟨q̇⟩C = (4.6±0.1)kBT/trelax.



7.4. OVERALL DISTRIBUTIONS AND ROLE OF THE DEMON 77

−40 −20 0 20 40
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Figure 7.5: Probability distributions of instantaneous work ẇ in the steady state of the exper-
iment for both well. A peak in ẇ = 0 comes from all the moment where x0 in unchanged. The
rest of the pdf has a spread due to the latency of the feedback, resulting in a distribution of
positions around 0 when the potential is switched.

While for the hot well we get a mean heat flux ⟨q̇⟩H = (−6.4 ± 0.1)kBT/trelax. On average,
the thermal bath heats the particle in the cold well and cools the particle in the hot well.
We can notice that the two fluxes don’t cancel each other. There is no reason that the par-
ticle spends as much time in the cold well as in the hot well. Experimentally, we measure
the particle to be 55% of time in the cold well. To take into account this asymmetry in the
occupation times, we can compute the mean heat flux on the whole data set and we obtain
⟨q̇⟩ = (−0.3 ± 0.1)kBT/trelax. This heat flux is very small compared to the typical fluctuations
in the distribution. We can similarly compute the mean work performed on the system and
obtain ⟨ẇ⟩ = (0.4 ± 0.1)kBT/trelax. Since we are studying a steady state, the heat flux is
compensating the work given to the system by the feedback.

7.4 Overall distributions and role of the demon

To understand exactly the effect of the demon on the system, we can look at the overall
distributions for positions and velocities, obtained without conditioning on the value of x0.
These distributions can be compared to equilibrium distributions to see how the demon affects
the system.

We first look at the distribution of position in the current potential well, P (x(t)−x0(t)). The
distribution is shown on the blue curve in figure 7.7. The distribution looks gaussian, centered
in 0. The variance of the position can be computed and is found to be var(x) = 1.02σ2

x, very
close to the equilibrium value. To check that the gaussian distribution is a good description of

P (x− x0), we superimpose in figure 7.7 a curve e−
(x−x0)

2

2var(x) . The overall distribution of positions
around the center of the potential can be described by a distribution similar to the equilibrium
one, with a variance very close to σx measured at equilibrium.

Similarly, we can check the effect of the demon on the distribution of speeds, P (v) taken
over all the data. The resulting distribution is shown in blue in figure 7.8. Once again, the
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Figure 7.6: Probability distributions of instantaneous heat q̇ in the steady state of the experi-
ment for both wells. The distributions are exponential, which is similar to heat fluctuations in
an equilibrium system.
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Figure 7.7: The overall distribution P (x − x0) taken over all the data without condition on
the value of x0. This distribution can be described accurately using a gaussian approximation,
shown with an orange dashed line.
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distribution looks like a gaussian centered in 0 and with variance v = 1.05σ2
v . The gaussian

approximation is represented by the orange dashed line in figure 7.8 and describes accurately
the experimental distribution. Here also, the distribution is very similar to the equilibrium one
with a variance close to the one measured at equilibrium.
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Figure 7.8: The overall distribution P (v) taken over all the data without condition on the value
of x0. This distribution can be described accurately using a gaussian approximation, shown
with a orange dashed line.

Both distributions of positions and velocities are very similar to the equilibrium one and
would not allow an external observer to detect the operation of the demon. We can also look at
the joint probability P (x, v) of positions and velocities. The joint probability, obtained while
the demon is operating, is shown in the top left of figure 7.9. The probability distribution is
not circular, with a preferred axis in a direction that correlates x and v. Figure 7.9 shows
in bottom left the joint probability P (x, v) along the two diagonals of the upper figure. The
distribution is wider along the blue diagonal, which indicates a correlation between speed and
position.

For comparison, the same distribution but computed on data in equilibrium, without the
demon, is shown in the top right of figure 7.9. The same observation, of a probability with a
preferred axis in a direction that correlates position and speed, can be made. The distribution
along the two diagonals of the distribution is shown in the bottom right of figure 7.9. The
correlation between speed and position is confirmed by the fact that the distribution is wider
along the blue diagonal.

The fact that both distributions, with and without demon present the same properties show
that without knowledge on x0, it is impossible to characterize the operation of the demon.
However, the fact that a correlation between position and speed exists, even at equilibrium is
striking.

This effect can be explained by a difference in the computation of x and v. Indeed, both
signals are filtered, but the filter used is not the same. For the position, a low-pass Butterworth
filter at 50 kHz is used, while for the velocity, a low-pass Butterworth filter at 8 kHz is used.
This difference introduces a phase shift between the two signals, that creates a correlation
between them.
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Figure 7.9: Top left: Joint probability P (x, v) while the demon is active. Bottom left: Slice of
the joint probability with demon along the two color diagonal from top figure. Top right: Joint
probability P (x, v) at equilibrium. Bottom right: Slice of the joint probability at equilibrium
along the two color diagonal from top figure.
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To confirm this explanation, we plot the same distributions as earlier, but using this time
a filter at 8 kHz for both position and velocity. The resulting distributions with demon and
without demon are shown in figure 7.10. Using the same filter, the distributions are circular,
which indicates no correlation between position and velocity. This absence of correlation is
confirmed when looking at slices along the diagonal of the joint probability. The distribution
along the two diagonals are the same, which confirms the absence of correlation.
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Figure 7.10: Top left: Joint probability P (x, v) while the demon is active, using the same filter
for x and v. Bottom left: Slice of the joint probability with demon along the two color diagonal
from top figure (to compare with bottom left of fig.7.9). Top right: Joint probability P (x, v)
at equilibrium, using the same filter for x and v. Bottom right: Slice of the joint probability
at equilibrium along the two color diagonal from top figure (to compare with bottom right of
fig.7.9).

7.5 Conclusions

These preliminary results show that our setup can be used to study experimentally what was
first presented as a thought experiment by Maxwell. From a particle in contact with a single
thermal bath, we are able to create two subsystems at different temperature. We can access
the distributions of position and speed, conditioned or not to a well, as well as the distributions
of energy exchange with the demon and the thermal bath. The main questions to be studied
are the dynamics of the system when the demon starts and stops acting, or how work can
be extracted from this difference in temperature created by the demon. We have shown that
without knowledge of x0, it is impossible to detect the presence of the demon. This is a strong



82 CHAPTER 7. THE MAXWELL DEMON

clue that this quantity could be used to access the amount of information taken by the demon
to maintain the temperature difference between the wells.

Now that we have a Maxwell Demon, the next step could be to include it in a thermodynamic
cycle, for example using the compression developped in chapter 4, to exploit the temperature
difference created to extract work, and finding the optimal parameters of the demon for work
extraction.



Conclusion on stochastic
thermodynamics

We presented an experimental setup, built around a micro-cantilever used as a model for a
1D system under thermal fluctuations. Using a Langevin equation, we are able to describe
its dynamics, model its mechanical response and reconstruct thermodynamic quantities for
individual trajectories at the scale of the thermal fluctuations. We used this setup to perform
different kinds of feedback protocol to study the link between information and thermodynamics.

In chapter 5, we studied a feedback protocol based on discrete sampling of the position of
the particle. We optimised the power output of the engine for different regimes of the sampling
time. By comparing it to numerical simulation of an overdamped system, we highlighted the
specific resonant effects of our inertial system. We applied the framework from [66] to measure
the efficiency of our engine in terms of information. While the amount of information extracted
is large, the actual amount of information used by our feedback, is low, resulting in a much
lower but tighter bound on the extracted work.

In chapter 6, we studied a protocol based on continuous sampling of the position of the
particle. While being similar to the protocol from chapter 5 in the regime of short sampling
times, the initial equilibrium state makes theoretical studies possible. We develop a description
of the system that summarises the set of measurements into one measurement and we propose
an extension of the Jarzynski equality close to the one proposed by Ashida et al. We checked
experimentally this prediction and found a very good agreement.

Finally, in chapter 7 we use our setup to reproduce Maxwell’s original thought experiment.
By using a feedback on the velocity of the particle, we are able to separate spatially two
subsystems with different effective temperatures. We measured these effective temperatures
using position distributions and velocity distributions and indeed found a higher temperature
in one of the two subsystems. To confirm that we have a proper demon, we measured the
work performed by the demon and found it to be negligible compared to the energy scale of
the system. We showed that in order to study the role of the demon, the knowledge of the
feedback signal is needed. This signal is a good candidate to build an estimation of the amount
of information used by the demon.

A major obstacle to the definition of information we encounter is the correlation between
successive measurements when the system doesn’t relax to equilibrium. Our setup is a very
promising system to test propositions of information in these scenario. We raise the question
of minimising the unavailable information of a protocol, to maximise the amount of work
possibly extracted from a given measurement. We don’t know if it is possible to minimise this
information loss while optimizing the power output of the engine. We propose a definition of
efficiency as ⟨w⟩/⟨I⟩. However, we are not able to apply it in the case of a continuous sampling
as it requires the knowledge of the full distribution of durations, P (k), among many values of k.
In the case of the Maxwell Demon, the definition of an efficiency to characterise a ”good demon”
is unclear as the demon doesn’t produce any work. This definition might become clearer if the
demon is included in a thermodynamic cycle. We have the basic elements to build such a cycle,
using the demon from chapter 7 and the compression process from chapter 4. Furthermore, we
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only explored the steady-state of the demon. It could be interesting to study the energy fluxes
during the transient regimes, when starting and stopping the feedback.



Chapter 8

Effects of the colloidal probe position
on micro-cantilever modes

As this chapter is mostly an inclusion of a preprint, the notations used are independent from
these of previous chapters.

In this chapter we work on a description of flexural modes of cantilevers loaded with a
colloidal probe. We mentioned in chapter 3 that higher order flexural modes exist, and that
we want to separate them from the first mode. Loading the cantilever modifies the frequencies
of the modes and can be a way to isolate the first mode. This work has also applications
outside of our experiments. Colloidal probes are often used in force microscopy when the
geometry of the tip-sample interaction should be well controlled. Their calibration requires
the understanding of their mechanical response, which is very sensitive to the details of the
force sensor consisting of a cantilever and the attached colloid. We present analytical models
to describe the dynamics of the cantilever and its load positioned anywhere along its length.
The thermal noise calibration of such probes is then studied from a practical point of view,
leading to correction coefficients that can be applied in standard force microscope calibration
routines. Experimental measurements of resonance frequencies and thermal noise profiles of
raw and loaded cantilevers demonstrate the validity of the approach.

8.1 Introduction

Atomic Force Microscopy (AFM) is nowadays a routine technology in many laboratories, from
material science to biophysics [83–86]. This scanning microscopy is based on the interaction
between a local probe and a sample. The force is recorded by monitoring the deflection of
a cantilever supporting the local probe, designated as the tip. In many applications, the
control of the tip shape is beneficial to an enhanced reproducibility and to reach quantitative
measurements [87–98]. Colloidal probes trade the tip sharpness and associated spatial resolution
for a better knowledge of the probe geometry and a better interpretation of the force signal.
They are manufactured by attaching to the cantilever a bead with a diameter ranging from a
few to over a hundred micrometers. To fully exploit the better knowledge of the interaction
geometry and reach quantitative measurements, the probe itself and its mechanical response
should be well characterized and calibrated.

One key question is the calibration of the force sensitivity [84, 99]: how do we translate
the measured deflection of the cantilever into a force of interaction? To answer this question,
we need to understand how a force applied locally at the tip deflects the cantilever, and how
this deflection is measured. We therefore need a description of the cantilever shape, and of a
calibration technique to apply a known force and read the corresponding deflection. The latter
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part is often performed using a thermal noise calibration[100]: in equilibrium at room temper-
ature T , the environnement exerts a random force whose statistical properties are described by
the fluctuation-dissipation theorem. An harmonic oscillator of stiffness k for example presents
a mean square displacement ⟨Z2⟩ = kBT/k, where kB is the Boltzmann constant. Measuring
⟨Z2⟩ therefore leads to the value of k. The complexity of the problem increases for a cantilever,
which is a spatially extended object, whose deflection is generally measured locally with some
optical technique. For small tips, an Euler-Bernoulli description of the cantilever by a clamped-
free mechanical beam is well suited, and leads to the established thermal noise calibration of
the probe sensitivity[100]. The introduction of a relatively heavy and large load close to its free
end modifies significantly the dynamical behavior to the force probe, and should be addressed.
Some approaches rely for example on finite element analysis for the determination of calibra-
tion parameters [101]. In Refs. [90, 102–104], extensions of the analytical approach of the Euler
Bernoulli model [105] to beads glued at the free end of the cantilever are worked out.

In this chapter, we further refine these last approaches to take into account more precisely
the geometry of the probe. Indeed, previous approaches are restricted to a colloidal bead
attached precisely at the extremity of the cantilever, which is an idealization of the experimental
situation. To be more faithful to real world probes, we add here the possibility of a setback
with respect to this free end (section 8.2), or of a possible rigidification of the cantilever free end
due to the gluing process (section 8.3). The questions are then to understand what is the shape
of the cantilever’s deflection, and how should one handle the thermal noise calibration (section
8.4). Once the theoretical stage set, we demonstrate the validity of the models introduced with
experiments on three different cantilevers (section 8.5). The added loads are characterized by
studying how the resonance frequencies of the lever are modified by the functionalisation, and
the resonance mode shape are compared to the prediction of the two models.

8.2 Analytical solution, single point contact
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Figure 8.1: Sketch of an AFM cantilever of length L loaded with a collöıdal particle of radius R
at an offset ∆L from the free end. The bead is supposed here to have a single point of contact
with the cantilever, where it can exert a force and a torque. Z(x, t) describes the deflection
along the cantilever.

We consider a cantilever of length L, width W , thickness H, functionalized with a colloidal
particle of radius R, as sketch in Fig. 8.1. This sphere is supposed to be glued on the symmetry
axis of the cantilever, at a distance ∆L from the cantilever free end. We neglect in a first
approximation the effect of rigidification due to the gluing process: the contact between the
bead and the cantilever is supposed to be punctual, and the bead infinitely rigid. It will
influence the cantilever motion by adding a local force (due to its inertia in translation) and
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torque (inertia in rotation). The Euler Bernoulli equation for the deflection Z(x, t) along the
cantilever length writes:

EI

L4
∂4xZ(x, t) + ρA∂2tZ(x, t) = 0, (8.1)

where I = WH3/12 is the second moment of inertia of the beam, A = WH its cross section
area, E the material Young’s modulus, ρ its density, t the time and x the position along the
cantilever normalised by L. In absence of external forces, four boundary conditions (BC) shall
be applied:

Z(0, t) = ∂xZ(0, t) = 0, (8.2a)

∂2xZ(1, t) = ∂3xZ(1, t) = 0. (8.2b)

The first two BC express the clamping at x = 0, the last two hold for the absence of torque
and force at the free end x = 1. The colloidal particle adds a pair of extra conditions, as by
inertia it adds a force −mB∂

2
tZ(xB, t) and a torque IB/L∂

2
t ∂xZ(xB, t) at xB = 1 − ∆L/L, with

mB and IB the bead’s mass and moment of inertia (at the contact point with the cantilever).
It translates in the following jump conditions:

EI

L2

q
∂2xZ

y
(xB, t) =

IB
L
∂2t ∂xZ(xB, t), (8.3a)

EI

L3

q
∂3xZ

y
(xB, t) = −mB∂

2
tZ(xB, t), (8.3b)

where
q
.
y
(xB) stand for the jump of the quantity when crossing xB:

q
Z
y
(xB) = limϵ→0[Z(xB +

ϵ) − Z(xB − ϵ)]. Note that the cantilever and its slope are continuous at xB, so that

q
Z
y
(xB, t) =

q
∂xZ

y
(xB, t) = 0. (8.4)

Let us solve this problem by separating space and time: with Z(x, t) = z(x)eiωt, Eq. 8.1
can be rewritten as

z(4)(x) = α4z(x), (8.5)

where superscript (n) stands for the nth derivative, and α is given by the dispersion relation:

α4 =
ρAL4

EI
ω2. (8.6)

For the boundary conditions, Eqs. (8.2) and (8.4) apply directly replacing Z by z, and the jump
condition can be rewritten as:

q
z′′
y
(xB) = −m̃r̃2α4z′(xB), (8.7a)

q
z(3)

y
(xB) = m̃α4z(xB), (8.7b)

where m̃ = mB/mc is the bead’s mass normalised by the cantilever’s one mc = ρAL, and
r̃ =

√
IB/(mBL2) is the normalised giration radius of the bead.

Between 0 and xB and between xB and 1, we thus need to solve two boundary value problems
of order 4, implying 8 coefficients, we thus need to use 8 boundary conditions to solve it:
Eqs. (8.2), (8.4) and (8.7). Fortunately, using an analytical shooting method, the solution can
be found with less complexity. We introduce the function ψc(x) and ψs(x) defined by

ψc(x) = H(x)
coshαx− cosαx

2α2
, (8.8a)

ψs(x) = H(x)
sinhαx− sinαx

2α3
, (8.8b)
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with H(x) the Heaviside function (0 if x < 0, 1 otherwise). Both are solutions of Eq. (8.5),
and verify the BC of Eqs. (8.2a) at x = 0. Moreover, they are designed such that ψ′′

c (0) = 1,

ψ
(3)
c (0) = 0, ψ′′

s (0) = 0, ψ
(3)
s (0) = 1. Both functions ψc(x) and ψs(x), solution of the equation

between 0 and xB, must be completed above xB to meet the jump conditions (8.7) and continuity
ones (8.4). This is conveniently done by adding two terms in ψc(x− xB) and ψs(x− xB) above
xB, with coefficients corresponding to the jump of the second derivative for ψc (Eq. 8.7a) and
of the third derivative for ψs (Eq. 8.7b):

ϕc(x) = ψc(x) + m̃α4
[
ψc(xB)ψs(x− xB)

− r̃2ψ′
c(xB)ψc(x− xB)

]
,

(8.9a)

ϕs(x) = ψs(x) + m̃α4
[
ψs(xB)ψs(x− xB)

− r̃2ψ′
s(xB)ψc(x− xB)

]
.

(8.9b)

Those two functions ϕc and ϕs now fulfil the BC at x = 0 and the jump conditions at x = xB.
We are only left to take a combination of both and write the BC at x = 1:

z(x) = aϕc(x) + bϕs(x), (8.10a)

z′′(1) = aϕ′′
c (1) + bϕ′′

s(1) = 0, (8.10b)

z(3)(1) = aϕ(3)
c (1) + bϕ(3)

s (1) = 0. (8.10c)

Since (a, b) ̸= (0, 0), the following condition must be fulfilled:

ϕ′′
c (1)ϕ(3)

s (1) = ϕ′′
s(1)ϕ(3)

c (1). (8.11)

This implicit equation on α prescribes the countable set of spatial eigenvalues αn(m̃, r̃, xB) of
the resonant modes of the clamped cantilever functionalized by the colloidal particle. Each αn

corresponds to a resonance angular frequency ωn given by Eq. (8.6).
Using Eqs. (8.10), the eigenmodes ψn are for example given by:

ψn(x) = ϕc(x) −Rnϕs(x), (8.12)

where Rn = ϕ′′
c (1)/ϕ′′

s(1) is an implicit function of αn. To define an orthonormal base of
eigenmodes, we need to introduce the scalar product. For 2 eigenmodes ψn and ψp associated
with eigenvalues αn and αp, let us compute

α4
n

∫ 1

0

ψn(x)ψp(x)dx =

∫ 1

0

ψ(4)
n (x)ψp(x)dx =

lim
ϵ→0

∫ xB−ϵ

0

ψ(4)
n (x)ψp(x)dx+

∫ 1

xB+ϵ

ψ(4)
n (x)ψp(x)dx.

(8.13)

By carefully including the jump conditions in x = xB, after four integrations by parts we get:

(α4
n − α4

p)

(∫ 1

0

ψn(x)ψp(x)dx+ m̃ψn(xB)ψp(xB)

+m̃r̃2ψ′
n(xB)ψ′

p(xB)

)
= 0.

(8.14)

When αn ̸= αp, the right parenthesis must be zero and is chosen to define the scalar product
⟨ψn.ψp⟩. We can eventually define the orthonormal base ϕn of normal modes by

ϕn(x) =
1√
⟨ψ2

n⟩
ψn(x), (8.15)
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where the normalisation factor is the norm of ψn, i.e.

⟨ψ2
n⟩ =

∫ 1

0

ψ2
n(x)dx+ m̃ψ2

n(xB) + m̃r̃2
[
ψ′
n(xB)

]2
. (8.16)

This last equation can be understood as the repartition of kinetic energy of the normal mode
between the elastic beam (first term), the translation of the bead (second term), and its rotation
(last term) [104]. From Eqs. (8.8), (8.9), (8.12) and (8.15), the explicit form of ϕn(x) can be
written, but its long and complex expression is of little interest.

8.3 Analytical solution, rigid end load
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Figure 8.2: Sketch of the cantilever in the approximation of a rigid end load: due to the
gluing process, the portion of the cantilever beyond xB (gray) is supposed to be infinitely rigid.
This rigid end load (colloidal particle, glue, cantilever end) will influence the dynamics of the
cantilever because of its inertia in translation and rotation. The center of mass (CoM) of the
load is not the bead center anymore, we note dB is its horizontal offset from xB.

To take into account the rigidification of the cantilever by the gluing process, it is reasonable
to model the portion of the cantilever in contact with the cemented bead as infinitely rigid.
The portions of the beam before and after the load can be treated with the Euler-Bernoulli
equations, with adequate BC at each end: clamped at x = 0, free at x = L, and criteria
matching the inertia in translation and rotation at the load connection. However, one can
simplify this complex problem by noting that the portion of the cantilever after the bead is
in practical always much shorter than the full cantilever length: ∆L ≪ L. This portion will
thus be much stiffer, with natural resonance frequencies much higher than those of interest for
operation of AFM colloidal probes (see appendix 8.7.4). We can therefore forget about the
elasticity of this portion of the cantilever, and consider it as part of a rigid end load. In such
case, the center of mass of the load is deported along the cantilever axis as well as perpendicular
to it, as sketched in Fig. 8.2.

The Euler Bernoulli equation (8.5) still describes the beam, and clamping conditions (8.2a)
in x = 0 hold. The BC at the last flexible point of the cantilever in x = xB are now:

z′′(xB) = m̃α4
[
r̃2z′(xB) + dBz(xB)

]
, (8.17a)

z(3)(xB) = −m̃α4
[
z(xB) + dBz

′(xB)
]
, (8.17b)
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where dB is the horizontal offset from xB of the center of mass of the rigid load normalised to L,
and r̃ its normalised giration radius. Adapting the previous derivation or following Ref. [105],
we find again eigenmodes shaped as

ψ̄n(x) = ψc(x) − R̄nψs(x) for x ≤ xB, (8.18)

with R̄n given below, implicitly function of the eigenvalues values ᾱn(m̃, r̃, xB, dB), solutions of:

R̄n =
m̃α4(r̃2ψ′

c(xB) + dBψc(xB)) − ψ′′
c (xB)

m̃α4(r̃2ψ′
s(xB) + dBψs(xB)) − ψ′′

s (xB)

=
m̃α4(ψc(xB) + dBψ

′
c(xB)) + ψ

(3)
c (xB)

m̃α4(ψs(xB) + dBψ′
s(xB)) + ψ

(3)
s (xB)

.

(8.19)

Finally, the normalisation of the eigenmodes ϕ̄n(x) = ψ̄n(x)/
√
⟨ψ̄2

n⟩ is assured with

⟨ψ̄2
n⟩ =

∫ xB

0

ψ̄2
n(x)dx+ m̃ψ̄2

n(xB) + m̃r̃2
[
ψ̄′
n(xB)

]2

+2m̃dBψ̄n(xB)ψ̄′
n(xB).

(8.20)

Note that above xB, the normal mode is simply a linear function:

ϕ̄n(x) = ϕ̄n(xB) + (x− xB)ϕ̄′
n(xB) for x > xB. (8.21)

8.4 Application to thermal noise calibration of AFM

cantilevers

We now explore the application of the computed mode shape to the calibration of AFM can-
tilevers with thermal noise. Indeed, the stiffness of interest in AFM is usually ks, the one
corresponding to a static deformation, while the thermal noise measurement will usually lead
to k1m, the measured dynamic stiffness of the first resonant mode. A correction factor β is
therefore defined to link the two:

ks = βk1m (8.22)

In the absence of colloidal probe, β ≃ 1, which justifies that the distinction between ks and k1m
wasn’t necessary for the previous chapters. In this chapter, we consider that ks is the static
stiffness of the cantilever submitted to a punctual force perpendicular to the cantilever and
located at its free end, in x = 1. Obviously, when a tip or colloidal probe is present, possibly
shifted with respect to x = 1, and the cantilever is pushed with some angle on the sample
surface, some geometric correction factor needs to be applied to the static stiffness. Those
have been computed in Ref. [106] for example, and can be used to translate the cantilever
intrinsic stiffness into the one useful for AFM measurement. Our point here is to compute the
preliminary step of translating the dynamics stiffness into the intrinsic static one.

The static deflection zs(x) of the end loaded cantilever is described by the static mode shape
ϕs(x) = x2(3 − x): zs(x) = Zϕs(x)/ϕs(1), with Z the deflection in x = 1. In most AFM, the
deflection measurement relies on a 4-quadrants photodetector and the Optical Beam Deflection
(OBD) technique, which actually senses the slope θs of the cantilever at the measurement point
xm, i.e.

θs =
1

L
z′s(xm) =

ϕ′
s(xm)

Lϕs(1)
Z. (8.23)

Similarly in the dynamic measurement of mode 1, the sensed slope is θ1e
iωt, with

θ1 =
1

L
z′1(xm) =

ϕ′
1(xm)

Lϕ1(1)
ζ1, (8.24)
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where ζ1 is the amplitude of the deflection in x = 1. The output Z of the measurement,
interpreted with the static sensitivity by the instrument, is thus

Z =
ϕ′
1(xm)ϕs(1)

ϕ′
s(xm)ϕ1(1)

ζ1 (8.25)

The stiffness is estimated from the equipartition theorem, which states that

1

2
kBT =

1

2
k1⟨ζ21 ⟩, (8.26)

with kB the Boltzmann constant, T the temperature, and k1 the mode 1 stiffness. Since
this equation is usually applied directly to the measured deflection Z, it actually defines the
measured stiffness of mode 1:

k1m =
kBT

⟨Z2⟩ =

(
ϕ′
s(xm)ϕ1(1)

ϕ′
1(xm)ϕs(1)

)2

k1 (8.27)

The last step is to link the static stiffness ks to the dynamic one k1: as shown in Ref. [104], we
have:

ks =
3ϕ2

1(1)

α4
1

k1 = βk1m, (8.28)

thus we end up with:

β = 3

(
ϕ′
1(xm)

ϕ′
s(xm)

ϕs(1)

α2
1

)2

. (8.29)

Since the mode shape ϕ1(x) and the eigenvalue α1 depend on the loading parameters of
the cantilever (m̃, r̃, xB and dB in the rigid load model) on top of the measurement point
xm, β depends on up to 5 five parameters which change from one probe to another. Our
models anyway take fully into accounts those 5 parameters and let one compute β in each
particular situation. We provide an example in tables 8.1 and 8.2 of such an evaluation for a
generic situation. We consider a typical silicon cantilever for contact mode, L = 500µm long,
W = 30µm wide, H = 3µm thick, with a silica bead of radius R = 0 to 100µm, glued at a
distance ∆L = 0 to 0.3L from the free end. The amount of glue is supposed to be negligible,
but for the rigid end load model we assume the last part of the cantilever (from L− ∆L to L)
to be rigid. Finally, we suppose that the measurement point xm is tuned at the bead position
xB.

The first step to apply the model is to compute the parameters for the two models. We
therefore compute the cantilever mass mc = ρLWH, with ρ = 2330 kg/m3 the density of silicon,
and that of the bead mB = 4ρBπR

3/3, with ρB = 2650 kg/m3 for silica. For the punctual contact
model, we compute as in Ref. [104]:

m̃ =
mB

mc

m̃r̃2 =
mB

mc

7

5

R2

L2
.

(8.30)

For the rigid load model, the last part of the cantilever has to be added to the rigid load,
leading to:

m̃ =
mB

mc

+
∆L

L

m̃r̃2 =
mB

mc

7

5

R2

L2
+

∆L3

L3

m̃dB =
1

2

∆L2

L2

(8.31)
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Once those parameters evaluated, we can compute numerically the eigenvalue α1 and the asso-
ciated mode shape ϕ1, and finally the correction factor β. Note that the resonance frequency
distribution of all modes, or their shift with respect to an unloaded cantilever, are also available
with this approach.

Table 8.1: Generic situation, punctual contact model

α1
R (µm)

0 10 20 30 60 100

xB

1.0 1.875 1.715 1.289 0.990 0.594 0.398
0.9 1.875 1.751 1.366 1.063 0.640 0.427
0.8 1.875 1.783 1.450 1.147 0.696 0.462
0.7 1.875 1.811 1.539 1.246 0.763 0.504

β
R (µm)

0 10 20 30 60 100

xB

1.0 0.817 0.877 0.966 0.995 1.027 1.073
0.9 0.832 0.854 0.898 0.918 0.949 0.999
0.8 0.867 0.868 0.871 0.877 0.906 0.961
0.7 0.917 0.909 0.883 0.871 0.894 0.956

Table 8.2: Generic situation, rigid load model

α1
R (µm)

0 10 20 30 60 100

xB

1.0 1.875 1.715 1.289 0.990 0.594 0.398
0.9 1.873 1.749 1.365 1.062 0.640 0.427
0.8 1.857 1.769 1.445 1.146 0.696 0.462
0.7 1.820 1.765 1.518 1.239 0.763 0.504

β
R (µm)

0 10 20 30 60 100

xB

1.0 0.817 0.877 0.966 0.995 1.027 1.073
0.9 0.831 0.854 0.898 0.918 0.949 0.999
0.8 0.857 0.859 0.867 0.875 0.905 0.961
0.7 0.859 0.860 0.861 0.862 0.892 0.956

In tables 8.1 and 8.2, we report a set of computed values for the generic situation defined
above, for the 2 models. It is interesting to note that in this generic situation, the rigid load
model is an approximation of the punctual contact model, and thus monitors to what extent
this rigid end approximation is valid. We see that for a small offset ∆L or a large load, values
of α1 and β differ very little: in the examples reported here, the difference is lower than 1%
as soon as xB > 0.8 or R > 20µm. In these cases indeed, the rigid end approximation is
reasonable, as it concerns only a small fraction of the cantilever (small offset), or because this
end part has a very little impact on the dynamics compared to the heavy load. Note that the
difference on β would be more noticeable by measuring in xm = 1 instead of xm = xB. Of
course, when considering higher order modes, the rigid approximation would fail as well.
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The values of α1 or β displayed in tables 8.1 and 8.2 are specific for the geometry and
material of the generic example, and should in general not be used for a specific experiment.

8.5 Experiments

To test our models, we measure along loaded cantilevers the amplitude of the thermal noise
driven deflection of the first four flexural modes. The raw samples are uncoated silicon All-
In-One type A tipless cantilevers from BudgetSensors, with nominal dimensions L = 500µm,
H = 2.7µm, and W = 30µm. They are loaded with polystyrene beads of diameter 2R =
150µm, placed near the tip of the cantilevers using an epoxy glue. Three different samples
(respectively A, B and C) have been prepared with different positions of the bead giving values
close to respectively xB = 1, 0.9 and 0.8. The geometry of all cantilevers is characterized using
Scanning Electron Microscopy (SEM) (Fig. 8.3), except for the thickness which is too small to
be precisely measured. It can however be deduced from the measurement of the first resonance
frequency of the unloaded cantilever, since Eq. 8.6 leads to:

H =

√
12ρ

E

L2

α2
1

ω1, (8.32)

where all quantities are tabulated (E = 169 GPa, ρ = 2340 kg/m3, α1 = 1.875) or measured
(L, ω1). The measured values of the geometrical parameters and deduced values of the dimen-
sionless parameters r̃ and m̃ are presented in appendix, table 8.3.

The power spectrum density (PSD) Sd(f) of the deflection is measured on a large frequency
bandwidth for the 3 cantilevers using a quadrature phase differential interferometer [54] featur-
ing a high spectral resolution reaching 10−14 m/

√
Hz. This interferometric setup gives access to

the calibrated vertical deflection z(x, t) along cantilevers, where 4-quadrant photodiode setups
measure the slope of this deflection. Fig. 8.4 shows an example of a measured PSD. Different
peaks can be seen, corresponding to the different flexural or torsional modes of the cantilever,
driven by thermal noise only. The resonance frequency of the first 4 flexural modes, both for the
raw (f r

n) and loaded (f l
n) samples, are extracted from those spectra, and reported in appendix,

table 8.4. The relative uncertainty on those measurements is very small, typically below 10−3,
making them an excellent marker to track the effect of the loading.

The resonance frequencies fn are linked to the spatial eigenvalues αn by Eq. 8.6, with a
multiplicative factor that is unchanged when loading the cantilever. We therefore expect the
ratio of loaded (superscript l) to unloaded (superscript r) values of the resonance frequency to
be

f l
n

f r
n

=

(
αl
n(m̃, r̃, xB, dB)

αr
n

)2

(8.33)

where the dependency of αl
n in dB only stands if we consider the end load model. Since we

can compute this ratio for four modes in our experiment, we have a set of 4 equations with
3 unknowns (m̃, r̃, xB) for the single point contact model, and a fourth one (dB) for the rigid
end load model. We can therefore extract the values of those 3 or 4 parameters with a good
precision using the frequency shifts from raw to loaded. For the single point contact model,
we can even extract those parameters from the loaded frequencies alone: studying the ratio
f l
n/f

l
1 with n = 2 to 4 leads to 3 equations with 3 unknowns. This approach relying on the

measurement of resonance frequencies of the loaded cantilever alone could be expanded to the
rigid end load model by considering more modes (5 at least). The values extracted for the 3
samples and the different models and approaches are reported in the appendix tables 8.5 to
8.7, they are in reasonable agreement to what is expected from the geometry. As those values
are extracted from measurements, they can be more accurate as they include the effect of the
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Figure 8.3: SEM images of the 3 cantilevers with, from top to bottom, xB = 1, xB = 0.9 and
xB = 0.8. The trail on the third picture is an artifact from the SEM measurement (insulating
silica bead charging under the electron beam).
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Figure 8.4: Power spectrum density of the thermal noise driven deflection of a cantilever loaded
with a polystyrene bead. The different peaks correspond to the different flexural (labelled with
n) and torsional (unlabelled) modes of the cantilever. This spectrum is measured on cantilever
B with xB ∼ 0.9, at x = 0.26.

glue, defects on the cantilever or bead, contamination, deviations from the tabulated densities,
etc. Note that when extracting the model parameter values, some precautions need to be taken
with respect to the mode order, as detailed in appendix 8.7.4.

The PSD of thermal noise can be measured at different positions x along the cantilever,
revealing the modes’ shape [104, 107]: by integrating the spectrum on a small frequency window
around the different peaks, we construct the spatial profile for each mode, as illustrated in
Fig. 8.5. We can superpose on those profiles the expectations from the two models: the only
parameters left to determine are the length L and origin x0 of the position measurement,
and the stiffness ks of the cantilever that drives the amplitude of the thermal noise. We
perform a simultaneous fit of the four modes profiles to extract those parameters and plot the
expectation from the models in Fig. 8.5 for cantilever B, and in appendix for the two other
samples (Fig. 8.6). The two models provide a very good description of the mode shape and
thermal noise amplitude, except for the single contact point model for mode 2. This small
deviation between the model and the measurement could either come from an excess extrinsic
noise superposing to the thermal fluctuations in this frequency range, or from the model itself
which is oversimplifying the actual physical system. The stiffnesses deduced from the fits are
anyway very consistent with the ones measured on the raw samples, as one would expect.

8.6 Conclusions

In this chapter, we present two analytical approaches to deal with functionalized cantilevers with
a load not attached exactly at their free end. The simple point contact model takes into account
the inertia (in translation and rotation) added by the load in a single point of the cantilever,
which is allowed to deform all along its length. This model is expected to be pertinent for
geometrically small loads or for small contact areas between the load and the cantilever. The
rigid end load model simply builds upon the hypothesis that the cantilever is very rigid beyond
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Figure 8.5: Thermal noise amplitude for the different modes measured along the cantilever
(blue stars) for cantilever B (xB ∼ 0.9, materialized on the graph with the vertical black
dashed line). The error bars correspond to the statistical uncertainty and floor noise of the
measurement process. The result of a simultaneous fit on the four modes using the point contact
model (dashed red) and the rigid end load model (plain line, orange) is superposed. Since the

amplitude of the mode is measured as
√
Z2

n =
√∫

S2(ω)dω, the absolute value of each mode

is plotted for the fitted model.

the contact with the load, and should be valid for large loads close to the extremity, or large
amounts of glue that rigidify the end part of the lever. We solve the Euler-Bernoulli equations
corresponding to these cases and study the corresponding mode shapes. This leads to calibration
coefficients that can be used to interpret thermal noise measurement in standard AFMs, and
deduce the probe static stiffness. Finally, we performed some measurements on 3 different
samples to illustrate the approach. From thermal noise spectra, we measure the resonance
frequencies of the first modes of the cantilever, from which we deduce the properties of the
load: mass, gyration radius, position. A comparison between the mode shapes, analytically
computed, and extracted from the thermal noise measurements, demonstrates the relevance
of the approach. For the large loads we probe here (beads of diameter 150µm for cantilevers
500µm long), both models work, though the rigid end load model leads to slightly better results.

A key learning from this study is that the knowledge of several resonance frequencies of
the cantilever, ideally before and after loading, but potentially of the loaded cantilever alone,
can be enough to extract the load parameters (mass, giration radius, position). Indeed, the
ratio of these frequencies delivers this information regardless of the cantilever geometry, and
is eventually enough to conclude on the calibration coefficients. Once the static stiffness ex-
tracted, the geometrical parameter can finally be used with the conclusions of Ref. [106] to
make quantitative force measurements with any AFM.

Using these models, we can predict the frequency repartition of modes on a cantilever with
a colloidal probe. This can be use to determine the position and characteristics needed for a
probe in order to obtain certain properties for our cantilever. This knowledge can be applied
to engineer specific probes for stochastic thermodynamics experiments, or have a better control
over their parameters. The next chapter presents microfabrication techniques that we use to
craft specific samples.
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8.7 Appendix

8.7.1 Cantilevers’ geometrical characteristics

Table 8.3 reports the geometrical dimensions of the cantilever (widths W and length L) and
of the glued bead (radius R and position xB), measured on SEM images. The cantilever
thickness H is deduced from the first resonance frequency and the Euler-Bernoulli description
of the cantilever. The dimensionless mass m̃ and gyration radius r̃ are computed from those
measurements, using ρ = 2340 kg/m3 for the density of silicon and 1050 kg/m3 for polystyrene.
The stiffness computed from the geometry (using E = 169 Gpa for the Young modulus of silicon
in the 110 orientation corresponding to the cantilever long axis) is a good agreement with the
stiffness measured from the thermal noise of the unloaded sample.

Table 8.3: Geometrical parameters of the samples measured from SEM imaging. The cross
section of the cantilevers is actually trapezoidal, and characterized by its large width Wtop and
small one Wbottom. The thickness of the cantilever is deduced from the first resonance frequency
of the raw cantilever. The stiffness deduced from the geometry kGeo

s matches the one deduced
from the thermal noise amplitude [100] at the end of the raw cantilever krs .

Sample A B C
L (µm) 499 ± 12 523 ± 12 518 ± 12
Wtop (µm) 27.7 ± 1.4 35.3 ± 0.2 35.4 ± 0.2
Wbottom (µm) 14.1 ± 1.4 24.1 ± 0.2 23.9 ± 0.2
H (µm) 2.93 ± 0.14 2.42 ± 0.11 2.52 ± 0.12
R (µm) 75 ± 2.5 75 ± 2.5 75 ± 2.5
m̃ 26.1 ± 3.4 21.2 ± 2.6 20.6 ± 2.5
r̃ 0.18 ± 0.01 0.17 ± 0.01 0.17 ± 0.01
xB 1 ± 0.05 0.9 ± 0.05 0.81 ± 0.05
kGeo
s (N/m) 0.176 ± 0.015 0.125 ± 0.008 0.145 ± 0.010
krs (N/m) 0.177 ± 0.004 0.141 ± 0.002 0.137 ± 0.017

8.7.2 Raw and loaded cantilevers’ resonance frequencies

Table 8.4 reports the resonance frequencies measured on the raw and loaded samples through
the thermal noise PSD.

Table 8.4: Resonance frequency fn of the first four modes (n = 1 to 4) for the raw (superscript r)
and loaded (superscript l) cantilevers.

Sample A B C

n = 1
f r
1 (Hz) 15668.0 ± 0.9 11888.0 ± 0.9 12629.4 ± 0.8
f l
1 (Hz) 1420.1 ± 0.5 1370.3 ± 0.6 1716.7 ± 0.2

n = 2
f r
2 (Hz) 98692.0 ± 1.5 75381.9 ± 1.3 79132.8 ± 2.7
f l
2 (Hz) 11006.8 ± 0.9 10305.4 ± 0.9 10378.5 ± 0.5

n = 3
f r
3 (Hz) 276225 ± 34 212284 ± 5 220685 ± 22
f l
3 (Hz) 106084 ± 34 106551 ± 5 132287 ± 22

n = 4
f r
4 (Hz) 540627 ± 14 417686 ± 11 429696 ± 13
f l
4 (Hz) 293643 ± 13 292674 ± 10 363590 ± 12
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Figure 8.6: Same as Fig. 8.5 for cantilever A (xB ∼ 1, left) and C (xB ∼ 0.8, right).

8.7.3 Thermal noise profiles and mode shape fits

Fig. 8.6 report the thermal noise profile measured on cantilevers A and C, with the result of
the two models superposed. Both describe accurately the experimental data, except for mode 2
of cantilever A for which the end load model is closer to the measurement (though not perfect
either). The best fit parameters are reported in Tables 8.5 to 8.7.

Table 8.5: Best fit parameters, single point contact model, with m̃, r̃ and xB extracted from the
resonance frequency shift between raw and loaded samples, while ks is fitted from the thermal
profiles of Figs. 8.5 and 8.6.

Sample A B C
m̃ 30.4 27.2 24.9
r̃ 0.153 0.141 0.164
xB 0.970 0.854 0.777
ks (N/m) 0.178 ± 0.625 0.135 ± 0.002 0.144 ± 0.001
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Table 8.6: Best fit parameters, single point contact model, with m̃, r̃ and xB extracted from
the resonance frequency ratio of the loaded samples, while ks is fitted from the thermal profiles
of Figs. 8.5 and 8.6. Those best fit parameters are very close to the ones of Tab. 8.5, showing
the equivalence of both approaches. *Note that for sample B, the fit is not converging unless
we fix the value of xB.

Sample A B C
m̃ 30.7 28.5 24.9
r̃ 0.153 0.139 0.164
xB 0.975 0.854* 0.777
ks (N/m) 0.178 ± 0.625 0.135 ± 0.002 0.144 ± 0.001

Table 8.7: Best fit parameters, rigid end load model, with m̃, r̃, xB and dB extracted from the
resonance frequency shift between raw and loaded samples, while ks is fitted from the thermal
profiles of Figs. 8.5 and 8.6.

Sample A B C
m̃ 27.2 21.2 25.2
r̃ 0.173 0.193 0.163
xB 0.970 0.854 0.777
dB 0.033 0.069 0.000
ks (N/m) 0.189 ± 0.163 0.133 ± 0.001 0.144 ± 0.001

8.7.4 Single point contact model: families of modes

In Fig. 8.7, we plot the 6 lowest values of αn(m̃, r̃, xB) computed for the single point contact
model with m̃ = 30, r̃ = 0.17 as a function of the load position xB. We notice very different
behaviors: one family is increasing with xB, while another is decreasing. If we look at the
corresponding mode shape ϕn(x), we see that the “decreasing” modes (labelled with n) are
similar to the unloaded ones, with the load acting as a fixed position for n > 1, due its large
inertia. The other family (labelled with n′) on the contrary corresponds to normal modes of
the part of the cantilever beyond the load, and present increasing resonance frequencies when
its effective length L(1 − xB) shortens. When fitting the model parameters xB explores a
small range where modes can change their order between families, so one should be careful to
always track the right family. Here, we restrict the fit to family mode n, as the family n′ is
not experimentally observed: we have few clean measurements beyond xB, since the glue often

Figure 8.7: (Left) 6 lowest values of αn(m̃, r̃, xB) computed for the single point contact model
with m̃ = 30, r̃ = 0.17, and xB from 0.25 to 1. (Right) Mode shapes corresponding to xB = 0.8,
using the same color code as the top figure to identify the modes.
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degrades the reflectivity of the cantilever in this area. It implies than when xB can get close to
0.8 (the case of samples B and C), we need to make sure not to mistake the mode n = 4 and
n′ = 1, since they swap their order in the eigenvalue list. A simple criterion of the position of
the maximum of ϕn(x) with respect to xB works very well in this case.



Chapter 9

Experimental development for small
forces measurements

9.1 Introduction

A previous project was the measurement of critical Casimir forces. These forces arise near
the critical points, for example in binary mixtures, a mix of a solvent and polymers. At room
temperature, these mixtures exists in a uniform, mixed, phase. When cooled, a demixing tran-
sition occurs and the system separates into two phases with different polymer concentrations.
For precise values of concentration in polymers and temperature, a critical point appears. As
the solution gets closer to the critical point, fluctuations in polymer density increase, with a
diverging correlation length. When this correlation length becomes similar to the size of the
system, the walls constrain the fluctuations and the difference between the allowed fluctuations
inside and outside of the cavity creates a force on the confining surfaces [108].

Measuring these forces experimentally is a challenge [109–111]. It requires an accurate force
measurement setup, good mastery of the chemistry of the mixture used, and precise control
over the temperature in the experiment. Our goal here is to present a force measurement setup.

To test the setup without constraints on chemistry or temperature control, we first try to
measure the quantum Casimir force predicted by Hendrik Casimir in 1948 [112, 113]. This
force arises similarly by confining fluctuations, here of the electromagnetic (EM) field. Its
measurement has led to the development of many high accuracy experiments [88, 114–116].

Consider two perfect mirrors (metallic conductive planes) facing each other. The two mirrors
form an optical cavity that selects modes of the electromagnetic field. Quantum mechanics
predicts that even in their lowest energy state, these modes have non-zero fluctuations, resulting
in radiation pressure. More EM modes are allowed outside of the cavity, which results in an
higher pressure and an attractive force between the two mirrors.

Experimentally, we work in a sphere-plane geometry, which has many advantages. First, no
angle is involved as a rotation of the sphere or the plane keeps the geometry invariant. Second,
if the dimensions of the plane are larger than the sphere-plane distance, d, boundary effects are
negligible and the plane can be effectively considered infinite. In this geometry, the Casimir
force has an expression [117]:

Fcas = −ℏcπ3R

360d3
(9.1)

with c the speed of light in vacuum, ℏ the reduced Planck constant and R the radius of the
sphere. As the force is proportional to R, it is interesting experimentally to work with large
spheres.

101
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9.2 Measurement technique

The setup used for force measurement is based on a micro-cantilever and is very similar to
the one presented in chapter 3. We use the electrostatic interaction as a way to measure the
sphere-plane distance as well as the contact potential Vc without interfering with the force
measurement. We presented this technique in ref. [118].

If a force F is applied on the cantilever, this force will result in an average deflection
⟨x⟩ = F/k, with k the stiffness of the cantilever. If k is known from a calibration, like the SHO
fit presented in 3.1, the measurement of the deflection x results in a measurement of the force
F . By varying the separation between the cantilever and the interacting plane, we can measure
the force as a function of the separation.

The deflection x of the cantilever is read by a quadrature phase differential interferometer,
featuring an intrinsic floor noise of about 10−14m/

√
Hz [54, 116]. We use commercial silicon

AFM cantilevers (Nanoandmore PPP-ContAu) at the tip of which a polystyrene bead is glued.
A gold layer is then coated on the sphere/cantilever set to ensure electrical continuity. The
cantilever is typically 450 µm long, 50 µm wide and 2 µm thick. The bead radius is R =
(76.0 ± 0.5) µm, measured in a scanning electron microscope (SEM) before the experiments.

Vd

x

d

Figure 9.1: Experimental set-up. A polystyrene bead is glued at the tip of the cantilever using
UV cured glue. The bead, the cantilever and the surface are coated with gold, so that a voltage
Vd can be used to apply a force. The deflection x is read with a differential interferometer,
sketched here by the two laser beams [54].

The cantilever is placed in a cell filled with nitrogen. The bead is facing a gold coated silicon
wafer. We use a sphere plane interaction to have a well define geometry. A schematic diagram
of the set-up is presented in fig. 9.1. A piezoelectric actuator with an integrated displacement
sensor allows the control, with an accuracy of 0.2 nm, of the distance d between the sphere and
the plane. The gold coating on both surfaces allows us to apply a voltage difference V between
them. This voltage creates an electrostatic attractive force on the bead, which for d≪ R takes
the form:

Felec =
πϵ0R

d
V 2 (9.2)
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where ϵ0 is the vacuum permittivity [119, 120]. Felec can be used as a test force and as a way
to measure d by comparing the response of the cantilever to the applied voltage. However
one has to take into account that independently from the applied voltage, a contact potential
Vc exists between the gold coatings of the bead and the surface. Vc induces an offset in the
total voltage which is unknown because it depends on the surface quality [116, 121]. Thus, in
eq. 9.2, V = Vc + Vd where Vd is the externally applied voltage and Vc must be experimentally
determined.

Figure 9.2: The power spectrum density Sx of the deflection when the cantilever is subjected to
an electrostatic driving at ωd = 2π.40 rad/s. The quadratic dependency in voltage is evidence
by the narrow peaks at ωd (term V0Vc in eq. 9.3) and 2ωd (term in V 2

0 ). The rest of the spectrum
is only thermal noise driven. The SHO fit is performed on a 1 kHz window around the first
resonance of the cantilever. The second resonance peak corresponds to the first torsion mode.
The 1/f noise at low frequency is due to the viscoelasticity of the gold coating and is not taken
into account in the SHO model [122].

9.2.1 Sphere-plane distance measurement

To measure the distance d between the sphere and the plane, we can use a technique derived
from Kelvin Probe Force Microscopy, applying a voltage Vd = V0 cos(ωdt) to the cantilever.
The force in the Fourier Space is:

F̃ (ω) =
πϵ0R

d

[
(V 2

c +
V 2
0

2
)δ(ω) + 2V0Vcδ(ω − ωd) +

V 2
0

2
δ(ω − 2ωd)

]
(9.3)

The psd of x in presence of the electrostatic forcing is plotted in 9.2, showing two peaks at ωd and
2ωd. The response at 2ωd is only caused by the applied voltage and allows for a measurement
of the distance, whereas the term at ωd couples the applied voltage to the contact potential
and allows us to measure Vc [116, 121].
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Using eq. 9.3 at ω = 2ωd, we have:

x̃(2ωd) = G(2ωd)
πϵ0R

d

V 2
0

2
(9.4)

d = G(2ωd)πϵ0R
Ṽ 2(2ωd)

x̃(2ωd)
(9.5)

with G = x̃
F̃

the mechanical transfer function of the cantilever, obtained from the SHO fit

presented in 3.1. The term Ṽ 2(2ωd)/x̃(2ωd) is numerically computed as the transfer function
between V 2(t) and x(t). This allows us to measure the distance d without using a reference,
such as a contact between the sphere and the plane that would damage the surfaces. When the
plane is brought closer to the sphere, F̃ (2ωd) ∝ d−1 increases. To keep a moderate mechanical
response of the cantilever VAC is controlled by a feedback loop that targets a fixed value of
|x̃(2ωd)|2.

9.2.2 Contact potential

This technique can also be used to measure the contact potential Vc. Using eq. 9.3 at ω = ωd,
we have:

x̃(ωd) = G(ωd)
πϵ0R

d
2V0Vc (9.6)

Vc =
1

G(ωd)

d

2πϵ0R

x̃(ωd)

Ṽ (ωd)
(9.7)

Vc =
1

2

G(2ωd)

G(ωd)

Ṽ 2(2ωd)

x̃(2ωd)

x̃(ωd)

Ṽ (ωd)
(9.8)

The two terms, x̃(ωd)/Ṽ (ωd) and Ṽ 2(2ωd) x̃(2ωd) are measured experimentally as transfer
functions between the measured deflection x(t) and the applied voltage V (t), or between the
squared voltage V 2 and the deflection x(t). This allows for measurement and cancellation of
the contact potential. A feedback is applied such that VDC = −Vc to cancel the constant force
due to the contact potential.

This provides us a system to perform force measurements by measuring the average value of
the deflection x, with a precise measurement of the distance h between the interacting objects
through the electrostatic force, and a control of the distance using a piezo electric actuator.

9.3 Microfabrication process

To measure the Casimir force and apply our distance measurement, the sphere and the plane
must not be in contact. The minimal distance to which the sphere and the plane can be brought
to is determined by the surface properties of the two. If their roughness is high, or impurities
such as dusts are present, the closest possible distance without contact will be larger and limit
our force measurement. High quality golden surfaces can be easily found commercially. We
chose silicon wafers doped for electrical conductivity, with a 5 nm chromium adhesion layer and
200 nm gold layer. However, cantilevers with large beads are not available commercially, as such
probes are not common for AFM measurements. In order to have the best surfaces, we develop
a protocol for the microfabrication of our probes: a cantilever functionalised with a sphere, and
gold coated. This work was done in collaboration with Agnès Piednoir from Institut Lumière
Matière, whose knowledge of microfabrication and sputtering deposition was very useful.
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9.3.1 Cantilever functionalisation

Since the interaction between the sphere and the plane is proportional to the radius of the
sphere (eq. 9.2 and 9.1), we aim to functionalise the cantilever with a large sphere. We chose
polystyrene spheres with a radius R = 75 µm. Such large probes are unusual and we need to
handcraft our probes from cantilevers with a thin tip, and polystyrene spheres.

The polystyrene beads are taken from a monodisperse suspension from Sigma Aldrich. The
beads are dried on a microscope glass slide. To glue the bead onto the cantilever, we use Noa81
UV cured glue. This glue is fluid, which facilitates the manipulation, while requiring only a
short exposure to UV (one minute) to fully cure.

To glue the bead, we use micro-manipulators to control the position of tweezers holding the
cantilever, and tweezers the tip of which was dipped in the glue. The microscope slide with the
beads is placed on the holder of a microscope used to follow the process. The whole setup can
be seen on figure 9.3.

Figure 9.3: The setup used for microfabrication of our probes. Two micro-manipulator are
used to move tweezers holding the cantilever (1) and glue (2). Polystyrene beads are deposited
on a microscope slide (3).

The protocol is the following:

• First, the tip of the cantilever is slowly put in contact with glue to deposit a droplet.
(Figure 9.4a)

• The cantilever is placed in the same plane as the bead and is approached until contact
between the cantilever and the bead. (Figure 9.4b)

• The glue is cured by insolating it with UV for one minute.

• The cantilever is moved away from the surface. (Figure 9.4c)

It is crucial during this process to not pollute the sample with impurities. To prevent
deposition of dust, we operate in a laminar flow hood. The whole installation is shown in
figure 9.5. The laminar flow induces many mechanical vibrations that make the operation
of micromanipulator trickier. This drawback is largely compensated by the reduction of the
number of impurities on the beads.
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(a) Glue deposition on the tip of the cantilever. The cantilever is 450 µm long. The large shadow at
the bottom is the glue drop on the tweezers.

(b) Approach of the cantilever to the sphere.

(c) End result after curing the UV glue. Left: Side view of the cantilever. Right: Top view.

Figure 9.4: Gluing process.

9.3.2 Gold coating

In order to polarise electrically the sphere, and to observe Casimir forces, we need a conductive
layer around the sphere and along the cantilever. The conductive layer needs to be thick enough
to constitute a bulk material and ensure good electrical conductivity. We aim for a 100 nm thick
coating.

To obtain a homogeneous coating, we use a sputtering process. The sample is placed in a
chamber, pumped to vacuum and filled with argon at low pressure. High voltages are applied to
a gold target to extract atoms and create a plasma that will be deposited on the sample. This
technique is directive, as the side of the sample facing away from the gold target will receive
almost no material. The näıve approach is to coat one side of the sample, and then coat the
other side. This technique is appropriate for thin film deposition but creates strong stress at the
surface of the cantilever. Depositing first a thick layer on one side of the cantilever would bend
the cantilever, making it unusable for force measurements with our differential interferometer.

The solution proposed was to build a rotating cantilever holder, shown in figure 9.6. 6
cantilevers can be held and a vacuum compatible motor slowly rotates the samples at one
turn per minute. The assembly is installed in a sputtering machine able to deposit metal with
a rate of about 0.2 Å s−1. A quartz oscillator in the chamber, next to our samples is used
to measure the amount of metal deposited. Since the quartz is fixed while the samples are
rotating, the measured thickness of the deposited layer must be divided by π to obtain the
thickness deposited on the sample. In order for gold to stick to surface, we first deposit a thin
layer of 5 nm of chromium at an effective rate of 0.1 Å s−1. A layer of 125 nm of gold is then
deposited at an effective rate of 0.3 Å s−1.
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Figure 9.5: The setup used to functionalise cantilevers. A microscope is placed inside a laminar
flow hood. Two micro-manipulators are used to move the cantilevers and the tweezers with the
glue. A camera is mounted on the microscope and can be used to take reference pictures of the
crafted sample.

Figure 9.6: Left: The cantilever holder. The left part is a hexagonal head and can hold 6
cantilevers. The right part is vacuum proof piezo inertial motor that can rotate the head.
Right: Close-up on the head. 6 cantilevers chips are held so that the cantilevers themselves
can be coated without shadow.
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Figure 9.7: Picture of the samples inside the sputtering machine. The purple background is
the gold plasma.

9.3.3 Control of the samples

To control the quality of the samples after microfabrication we use SEM and AFM imaging.
SEM is useful to obtain a global image of each sample and measure the geometrical dimensions
such as the sphere radius. It is a good check of the surface cleanliness. However, it doesn’t give
any information about the thickness of the layer or the detail of the surface structure. Figures
9.8 and 9.9 compare SEM images of a bead using the previous protocol used (left picture) and
using the protocol presented here (right). The number of dust particles on the sphere has been
hugely reduced by operating under laminar flow.

Figure 9.8: Left: SEM image of a typical sample using previous protocol in the team. Many
particles can be seen. Right: SEM image of a sample obtained with the protocol presented
here. The surface is much cleaner.

AFM imaging can bring more information about the local properties of the surface, espe-
cially the roughness of surfaces. We take a standard AFM image of the surface of a sphere,
over a region of 250 × 500nm (figure 9.10). Since the sphere is supported itself by a cantilever,
we need to carefully chose the cantilever used for imaging the sphere. As a force is applied
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Figure 9.9: Left: Close-up on the sphere from left figure 9.8. Right: Close-up on the sphere
from right figure 9.8. The close-up is taken on the area that will be the closest from the plane
in the force measurement.

during the contact between the imaging tip and the sphere, both cantilevers will deflect, with a
deflection inversely proportional to the contact force. We need to use a cantilever soft enough
so that the sample cantilever doesn’t deflect too much. The imaging cantilever used is a Bud-
getSensor All-in-one B, with a stiffness 7 N m−1, while our cantilevers have a stiffness about
0.5 N m−1. The scan is performed in contact mode with a 7 nN setpoint. The rms roughness of
the surface is measured at 2.5 nm from the AFM map.

Figure 9.10: 250 × 500nm AFM map of the surface of a sphere after gold deposition. The
structure of the gold layer can be seen. The measured roughness is

√
⟨z2⟩ = 2.5 nm rms.

We develop a microfabrication process for our force measurement probes. By taking great
care of cleanliness of the samples and the detail of the metal deposition techniques, we obtain
samples with clean surfaces and low roughness.

9.4 Casimir force measurements

Now we use the crafted probes with the commercial golden silicon wafer to measure the Casimir
force. The surface is brought at a distance of 2 µm from the probe, and the system is let to
stabilise for 2 hours. The distance between the probe and the surface is monitored using the
electrostatic measurement from 9.2.1 and adjusted to the target value by using the piezoelectric
actuator.

The surface is approached slowly at a speed of 10 nm s−1 up to d = 400 nm. The approach
is slowed to a speed of 2 nm s−1 between 400 nm and 100 nm, then to 1 nm s−1 between 100 nm
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and 50 nm. Slowing the approach allows us to have a better statistic and resolution on the force
curve. Once the distance reaches 50 nm, the displacement is reversed, back to 1 µm. This cycle
is performed 50 times. For each second of acquisition, the electrostatic distance is computed,
and the constant force is measured as F = k⟨x⟩, where ⟨·⟩ is a statistical average taken over one
second. This results in a force curve F (d), shown in figure 9.11, averaged over the 50 cycles,
by imposing that F (d = 1 µm) = 0. We can compare these new measurements with data from
a previous experiment in the group (orange curve in fig. 9.11), obtained using the contact
between the sphere and the plane as a reference for distance measurement. Our data match the
previous measurement and extends the range of measurement by a factor of two (from 100 nm
to 50 nm).
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Figure 9.11: Blue: Measured force curve of the sphere-plane Casimir interaction. The force
curve is averaged over 50 cycles. Orange: Previous data without electric measurement of d.

9.5 Conclusions

We develop a protocol for careful microfabrication of force measurement probes. By combining
these probes with a low-noise interferometric setup and an electric measurement of the sphere-
plane distance, we are able to measure the Casimir force for a separation as close as 50 nm. In
this work we developed microfabrication techniques that can be used to craft custom cantilevers
and can be used in the future to engineer the mechanical properties of cantilevers for other
experiments. In chapter 3, we mentioned the necessity to isolate the first flexural mode of
the cantilevers for stochastic thermodynamic protocols. Using the techniques presented in this
chapter and the models from chapter 8, we can load cantilevers to separate their different modes
or change their mechanical response.



Conclusions on cantilever
functionalisation

In chapter 8 we presented two models for the description of cantilever loaded with colloidal
probe. We describe the different flexural modes, their shape, and their mechanical response
(frequency, stiffness). We also propose a method based on frequency ratios to extract the
relevant geometrical parameters from measurements of the fluctuations spectrum. This can be
seen as an extension of the Simple Harmonic Oscillator calibration technique we presented in
chapter 3.

In chapter 9 we describe a force measurement setup dedicated to small forces, on the scale
of the nanonewton, with a direct distance measurement technique based on the response to
an electrostatic force. To obtain high quality surfaces for our samples, we developed a mi-
crofabrication process for functionalisation of micro-cantilever with wich we obtained clean,
low-roughness surfaces. These samples were used to measure the Casimir interaction in a
sphere-plane geometry, in good agreement with previous measurements.

The theoretical models from chapter 8, coupled to our microfabrication technique from
chapter 9 give us everything we need to design and craft samples for specific applications. For
example, we can design loaded cantilevers with a given repartition of the modes frequencies that
can be used to isolate the first flexural mode for stochastic thermodynamic experiments. We
can also imagine functionalising the cantilever with specific probes to apply forces other than
electrostatic, while still controlling the mechanical response of the cantilever. This mastery of
cantilever functionalisation coupled to the tunable feedback loop makes our experimental setup
even more versatile, opening many possibilities of future experiments.
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Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien 66, 275–370 (1872).

8R. Brown, “A brief account of microscopical observations made in the months of june, july,
and august 1827, on the particles contained in the pollen of plants; and on the general exis-
tence of active molecules in organic and inorganic bodies”, The Edinburgh New Philosophical
Journal (1828).
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publiés... par MM. les secrétaires perpétuels”, comptes rendus de l’académie des sciences
146, 530–532 (1908).

30K. Sekimoto, “Langevin equation and thermodynamics”, Progress of Theoretical Physics
Supplement 130, 17–27 (1998).

31C. Jarzynski, “Equalities and inequalities: irreversibility and the second law of thermody-
namics at the nanoscale”, Annual Review of Condensed Matter Physics 2, 329–351 (2011).

32U. Seifert, “Stochastic thermodynamics, fluctuation theorems and molecular machines”, Re-
ports on Progress in Physics 75, 126001 (2012).

33C. Jarzynski, “Nonequilibrium equality for free energy differences”, Physical Review Letters
78, 2690–2693 (1997).

34C. P. Broedersz and P. Ronceray, “Twenty-five years of nanoscale thermodynamics”, Na-
ture 604, Bandiera abtest: a Cg type: News And Views Number: 7904 Publisher: Nature
Publishing Group Subject term: Biophysics, Physics, 46–47 (2022).

35J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco, and C. Bustamante, “Equilibrium infor-
mation from nonequilibrium measurements in an experimental test of jarzynski’s equality”,
Science 296, 1832–1835 (2002).

https://doi.org/10.1063/PT.3.2912
https://doi.org/10.1063/PT.3.2912
https://doi.org/10.1098/rspa.2017.0117
https://doi.org/10.1098/rspa.2017.0117
https://doi.org/10.1016/j.nanoen.2015.10.028
https://doi.org/10.1016/j.nanoen.2015.10.028
https://doi.org/10.1143/JJAP.51.06FE10
https://doi.org/10.1143/JJAP.51.06FE10
https://doi.org/10.1126/sciadv.1501492
https://doi.org/10.1103/PhysRevLett.120.210601
https://doi.org/10.1103/PhysRevLett.113.190601
https://doi.org/10.1038/s41567-018-0070-7
https://doi.org/10.3390/e21080720
https://doi.org/10.3390/e21080720
https://doi.org/10.1038/nphys1834
https://doi.org/10.1140/epjb/e2008-00001-9
https://doi.org/10.1140/epjb/e2008-00001-9
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1038/d41586-022-00869-y
https://doi.org/10.1038/d41586-022-00869-y
https://doi.org/10.1038/d41586-022-00869-y
https://doi.org/10.1126/science.1071152


BIBLIOGRAPHY 115

36T. Hatano, “Jarzynski equality for the transitions between nonequilibrium steady states”,
Physical Review E 60, R5017–R5020 (1999).

37T. Hatano and S.-i. Sasa, “Steady-state thermodynamics of langevin systems”, Physical
Review Letters 86, 3463–3466 (2001).

38E. H. Trepagnier, C. Jarzynski, F. Ritort, G. E. Crooks, C. J. Bustamante, and J. Liphardt,
“Experimental test of hatano and sasa’s nonequilibrium steady-state equality”, Proceedings
of the National Academy of Sciences 101, 15038–15041 (2004).

39J. Kurchan, A quantum fluctuation theorem, Aug. 16, 2001.

40H. Tasaki, Jarzynski relations for quantum systems and some applications, Sept. 25, 2000.

41S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H. T. Quan, and K. Kim,
“Experimental test of the quantum jarzynski equality with a trapped-ion system”, Nature
Physics 11, 193–199 (2015).

42G. E. Crooks, “Entropy production fluctuation theorem and the nonequilibrium work relation
for free energy differences”, Physical Review E 60, 2721–2726 (1999).

43F. Douarche, S. Ciliberto, A. Petrosyan, and I. Rabbiosi, “An experimental test of the jarzyn-
ski equality in a mechanical experiment”, Europhysics Letters (EPL) 70, 593–599 (2005).

44D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco, and C. Bustamante, “Verification
of the crooks fluctuation theorem and recovery of RNA folding free energies”, Nature 437,
231–234 (2005).

45H. S. Leff and A. F. Rex, eds., Maxwell’s demon 2: entropy, classical and quantum infor-
mation, computing, OCLC: ocm51569169 (Institute of Physics, Bristol ; Philadelphia, 2003),
485 pp.

46H. S. Leff and A. F. Rex, eds., Maxwell’s demon: entropy, information, computing (Adam
Hilger, Bristol, 1990), 349 pp.

47A. C. Barato and U. Seifert, “Thermodynamic cost of external control”, New Journal of
Physics 19, 073021 (2017).

48D. Mandal and C. Jarzynski, “Work and information processing in a solvable model of
maxwell’s demon”, Proceedings of the National Academy of Sciences 109, 11641–11645
(2012).
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démons de Maxwell et machines thermiques aléatoires”, PhD thesis (École Normale Supérieure
de Lyon, 2023).

50T. Sagawa and M. Ueda, “Generalized jarzynski equality under nonequilibrium feedback
control”, Physical Review Letters 104, 090602 (2010).

51J. V. Koski, V. F. Maisi, T. Sagawa, and J. P. Pekola, “Experimental observation of the
role of mutual information in the nonequilibrium dynamics of a maxwell demon”, Physical
Review Letters 113, 030601 (2014).

52S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano, “Experimental demonstration
of information-to-energy conversion and validation of the generalized jarzynski equality”,
Nature Physics 6, 988–992 (2010).

53L. Bellon, S. Ciliberto, H. Boubaker, and L. Guyon, “Differential interferometry with a
complex contrast”, Optics Communications 207, 49–56 (2002).

54P. Paolino, F. A. Aguilar Sandoval, and L. Bellon, “Quadrature phase interferometer for high
resolution force spectroscopy”, Review of Scientific Instruments 84, 095001 (2013).

https://doi.org/10.1103/PhysRevE.60.R5017
https://doi.org/10.1103/PhysRevLett.86.3463
https://doi.org/10.1103/PhysRevLett.86.3463
https://doi.org/10.1073/pnas.0406405101
https://doi.org/10.1073/pnas.0406405101
https://doi.org/10.1038/nphys3197
https://doi.org/10.1038/nphys3197
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1209/epl/i2005-10024-4
https://doi.org/10.1038/nature04061
https://doi.org/10.1038/nature04061
https://doi.org/10.1088/1367-2630/aa77d0
https://doi.org/10.1088/1367-2630/aa77d0
https://doi.org/10.1073/pnas.1204263109
https://doi.org/10.1073/pnas.1204263109
https://doi.org/10.1103/PhysRevLett.104.090602
https://doi.org/10.1103/PhysRevLett.113.030601
https://doi.org/10.1103/PhysRevLett.113.030601
https://doi.org/10.1038/nphys1821
https://doi.org/10.1016/S0030-4018(02)01475-X
https://doi.org/10.1063/1.4819743


116 BIBLIOGRAPHY

55L. Bellon, Exploring nano-mechanics through thermal fluctuations (HDR, École Normale
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