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Abstract

Working memory or, maintaining a mental representation of past immediate information

to drive coherent actions, is critical feature in the realisation of complex cognitive

functions such as planning, decision making, learning, thinking, etc. Experimental

evidence point that neural correlates of working memory involves persistent selective

activity in the Prefrontal Cortex (PFC). Main accepted mechanisms of persistent activity

rely on strong recurrent excitation in PFC whereas selectivity or spatial tuning arises

from columnar PFC architecture together with lateral inhibition. However, the

mechanisms underlying network bistability remain elusive. On the other hand, mental

illnesses such Schizophrenia present PFC disfunction and particularly Working Memory

(WM) deficits. Although main theories of the Schizophrenia etiology underline the role

of PFC dysconnectivity with subcortical areas, the mechanisms underlying WM deficits

in Schizophrenia remain elusive. In this thesis we argue the idea that understanding the

neurobiology of the PFC and WM will provide an important knowledge in order to

unravel the etiology of mental illnesses with salient cognitive symptoms such

Schizophrenia. With the aim to shed some light into these questions, in this thesis, we

present original mechanisms for network bistability based on the nonlinearities in the

neuronal input-output transfer functions. With this model, we study different

mechanisms of state transitions. Additionally, we study how alterations of the biological

parameters seen in schizophrenia can shape the spatiotemporal dynamics. Finally, we

evaluate a promising treatment for schizophrenia based on cerebellar stimulation.

Keywords: Visuospatial working memory; persistent activity; direction selectivity;

neural nonlinerities; neuronal transfer functions; prefrontal cortex; cerebellum; cerebellar

stimulation; schizophrenia.
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Résumé

La mémoire de travail (MT), ou le maintien d’une représentation mentale des informations

du passé immédiat pour conduire des actions cohérentes est une caractéristique critique

dans la réalisation de fonctions cognitives complexes telles que la planification, la prise

de décision, l’apprentissage, la pensé, etc. L’évidence expérimentale indique que le

corrélat neuronal de la MT comprend une activité persistant et sélective dans le cortex

préfrontal (CPF). Les mécanismes les plus acceptés par rapport à l’activité persistante

s’appuient sur une forte excitation récurrent dans le CPF tandis que l’activité sélective ou

hétérogène en l’espace neuronal découle de l’architecture en colonne du CPF associée à

une forte inhibition latérale. Néanmoins, les mécanismes sous-jacents à la multistabilité du

réseau restent incertains. D’autre part, les maladies mentales telles que la schizophrénie

présentent une marquée dysfonction du CPF et particulièrement déficits en la MT. Bien

que les principales théories concernant l’étiologie de la schizophrénie soulignent le rôle

de la disconnectivité entre le CPF et areas subcorticales, les mécanismes concernant les

déficits de MT liées à la squizophrénie demeurent vagues. Dans cette thèse nous soutenons

l’idée que la compréhension de la neurobiologie du CPF et les mécanismes de la MT

révêléront des connaissances importantes afin d’éclaircir l’étiologie des maladies mentales

avec des symptômes cognitifs saillants tels que la schizophrénie. Dans le but d’apporter

certains éclaircissements sur ces questions, dans cette thèse, nous présentons des modèles

qui nous permettent d’étudier et de proposer des mécanismes originaux de mutistabilité

de réseau fondés sur les non linéarités de la fonction de transfert neuronale. En utilisant

ces modèles, nous étudions comment des altérations des paramètres biologiques, comme

c’est le cas dans la schizophrénie, pourraient transformer la dynamique spatio-temporelle

du réseau de neurones. Finalement, nous évaluons un traitement prometteur pour la

schizophrénie basée sur la stimulation électrique du cervelet.

Mots clefs: Mémoire de travail visuo-spatiale; activité persistante; sélectivité de direction;

non linéarités neuronales; fonction de transfert neuronale; cortex préfrontal; cervelet;

stimulation cérébellaire schizophrénie.
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Resumen

La memoria de trabajo (MT), es decir, el mantenimiento de una representación mental de

la información del pasado inmediato para llevar a cabo acciones coherentes, es una

característica crítica en la realización de funciones cognitivas complejas como la

planificación, la toma de decisiones, el aprendizaje, el pensamiento, etc. Las evidencias

experimentales apuntan a que los correlatos neuronales de la memoria de trabajo

implican una actividad selectiva persistente en el cortex prefrontal (CPF). Los principales

mecanismos mayormente aceptados sobre la actividad persistente se basan en una fuerte

excitación recurrente en el CPF, mientras que la selectividad o la sintonización espacial

surge de la arquitectura columnar del CPF junto a una fuerte inhibición lateral. Sin

embargo, los mecanismos que subyacen a la biestabilidad de la red siguen siendo un

tanto esquivos. Por otra parte, las enfermedades mentales tales como la esquizofrenia,

presentan una marcada disfunción del CPF y, en particular, déficits de la MT. Aunque las

principales teorías sobre la etiología de la esquizofrenia subrayan el papel de la

desconexión del CPF con las áreas subcorticales, los mecanismos subyacentes a los

déficits de la MT en la esquizofrenia no son del todo claros. En esta tesis defendemos la

idea de que la comprensión de la neurobiología del CPF así como de la MT nos

proporcionará un conocimiento de vital importancia para desentrañar la etiología de los

síntomas cognitivos en enfermedades mentales como la esquizofrenia. Con el objetivo de

arrojar algo de luz sobre estas cuestiones, en esta tesis presentamos diversos mecanismos

originales sobre la multiesabilidad de red basados en las no linealidades de las funciones

de transferencia neuronales. Con este modelo, estudiamos diferentes mecanismos de

transiciones entre los estados de actividad espontanea y estados de memoria. Además,

investigamos cómo las alteraciones en los parámetros biológicos observadas en la

esquizofrenia pueden dar forma a la dinámica espacio-temporal de la red neuronal.

Finalmente, y basándonos en la hipótesis de que los síntomas cognitivos en la

esquizofrenia podrían originarse debido a una desconectividad entre el CPF y areas

subcorticales tales como el cerebelo, evaluamos un tratamiento prometedor para la

esquizofrenia basado en la estimulación cerebelar.
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Resum

La memòria de treball (MT), és a dir, el manteniment d’una representació mental de la

informació del passat immediat per a dur a terme accions coherents, és una característica

crítica en la realització de funcions cognitives complexes com la planificació, la presa de

decisions, l’aprenentatge, el pensament, etc. Les evidències experimentals apunten al

fet que els correlats neuronals de la memòria de treball impliquen una activitat selectiva

persistent en el cortex prefrontal (CPF). Els principals mecanismes majorment acceptats

sobre l’activitat persistent es basen en una forta excitació recurrent en el CPF, mentre

que la selectivitat o la sintonització espacial sorgeix de l’arquitectura columnar del CPF

juntament amb una forta inhibició lateral. No obstant això, els mecanismes que subjeuen

a la biestabilitat de la xarxa continuen sent esquius. D’altra banda, les malalties mentals

com ara l’esquizofrènia, presenten una marcada disfunció del CPF i, en particular, dèficits

de la MT. Encara que les principals teories sobre l’etiologia de l’esquizofrènia subratllen el

paper de la desconnexió del CPF amb les àrees subcorticals, els mecanismes subjacents als

dèficits de la MT en l’esquizofrènia no són del tot clars. En aquesta tesi defensem la idea

que la comprensió de la neurobiologia del CPF així com de la MT ens proporcionarà un

coneixement de vital importància per a desentranyar l’etiologia dels símptomes cognitius

en malalties mentals com l’esquizofrènia. Amb l’objectiu de esclarir aquestes qüestions,

en aquesta tesi presentem diversos mecanismes originals sobre la multiesabilitat de xarxa

basats en les no linealitats de les funcions de transferència neuronals. Amb aquest model,

estudiem diferents mecanismes de transicions entre els estats d’activitat espontanea i

estats de memòria. A més, investiguem com les alteracions en els paràmetres biològics

observades en l’esquizofrènia poden donar forma a la dinàmica espai-temporal de la

xarxa neuronal. Finalment, i basant-nos en la hipòtesi que els símptomes cognitius en

l’esquizofrènia podrien originar-se a causa d’una desconectivitat entre el CPF i areas

subcorticals com ara el cerebel, avaluem un tractament prometedor per a l’esquizofrènia

basat en l’estimulació cerebelar.
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Résumé Substantiel

Dans cette thèse nous explorons la dynamique neuronal du cortex préfrontal (CPF)

impliqué dans la mémoire de travail (MT) et ainsi les mécanismes sous-jacents a niveau

neuronal et de réseau. D’autre coté, nous étudions comment une activité aberrante dans

le CPF peut générer des états pathologiques similaires à ceux qui sont présentes dans la

schizophrénie. Nous formulons ensuite l’hypothèse que cette activité aberrante pourrait

être liée à une diminution des afférences et nous justifions cette hypothèse en montrant

un cas clinique de stimulation cérébelleuse qui semble améliorer la mémoire de travail

chez le patient avec schizophrénie parmi autres symptômes cognitives.

La thèse est organisée en trois parties : un prologue consistant en une introduction

générale et un aperçu du travail (chapter 1) suivi d’une revue de la littérature concernant

le rôle du CPF dans la MT et son implication dans la schizophrénie ainsi que dans le

cervelet (chapter 2) ; une partie concernant la recherche originale qui est subdivisée en

chapter 3, chapter 4 et chapter 5. , chapter 4 et chapter 5, où nous présentons les résultats

de trois projets séparément, chacun avec une introduction, des résultats, une discussion

et une conclusion spécifiques ; et finalement, un épilogue consistant en une discussion

générale et des conclusions dans chapter 6.

Nous passons maintenant à présenter plus en détail les trois parties concernant la

recherche originale :

Dans le chapter 3, nous présentons un cadre théorique pour étudier les mécanismes de

réseau de l’activité sélective persistante comme celle observée dans les CPF pendant les

tâches MT. Nous étudions spécifiquement comment l’interaction entre les non-linéarités

dans la fonction de transfert (FT) des neurones individuels et la dynamique du réseau

récurrent donne lieu à une multi-stabilité entre l’activité continue et un continuum

d’états dans lesquels l’activité est localisée. Nous montrons que le mécanisme qui sous-

tend l’initiation et la fin de l’activité sélective persistante dépend des non-linéarités
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des neurones individuels. Dans la première section, nous présentons un modèle de

réseau de neurones connectés tous à tous avec une connectivité structurée en forme

de "chapeau mexicain" par laquelle les neurones ayant des directions préférentielles

(DP) similaires sont plus fortement connectés. Les non-linéarités de la FT neuronale

permettent d’avoir une persistance et une sélectivité au sein d’un même réseau. Les

deux non-linéarités étudiées sont l’accélération près du seuil de décharge et la concavité

près de la partie saturante. Ces non-linéarités se retrouvent dans les FT de neurones

typiquement mesurés dans des expériences in vitro (Arsiero et al., 2007; Lafon et al.,

2017; Schiff and Reyes, 2012). Afin de simplifier les calculs analytiques, nous avons

choisi que les FT soient des fonctions définies par segments linéaires. Dans l’accélération

ou la non-linéarité expansive, la pente des FT augmente alors que dans la concavité

ou la non-linéarité compressive, la pente diminue. Nous montrons que la nature de

la non-linéarité détermine la configuration des états stables. Dans les deux cas, pour

un paramètre de connectivité donné, nous trouvons une région d’état homogène de

multistabilité et un état de bosse ("bump state"). Nous explorons ensuite les mécanismes

permettant de mettre fin à l’état de bosse. En raison de la configuration des états stables,

dans le modèle avec une non-linéarité expansive, la transition de l’état de bosse à l’état

homogène peut être médiée par un input inhibitoire globale. D’autre part, dans le modèle

avec une non-linéarité compressive, la transition de l’état d’activité persistante à l’état

d’activité continue peut être induite par un input excitateur globale. Ce mécanisme

est intéressant car la plupart des enregistrements électrophysiologiques des neurones

CPF pendant la tâche MT montrent une augmentation globale du taux de décharge

neuronal autour de la période de réponse. Le seul inconvénient de ce mécanisme est que

les neurones au centre de l’état de bosse ont un taux de tir proche de la saturation, ce

qui n’est pas cohérent avec les données expérimentales montrant que les neurones qui

déchargent à leurs DP sont très éloignés des taux de décharge typiques de la saturation.

Pour résoudre ce problème, nous proposons un mécanisme dans lequel l’interaction entre

les populations excitatrices et inhibitrices avec des FT d’accélération différents donne

lieu à une saturation effective. L’idée principale de ce mécanisme est qu’à un input donné,
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la pente du FT inhibiteur est plus grande que la pente du FT excitateur, ce qui donne

lieu à un scénario qualitativement similaire à celui de la non-linéarité compressive. Nous

montrons différentes configurations des FTs excitateurs et inhibiteurs qui conduisent à

une saturation effective et nous prouvons que les mêmes mécanismes concernant la fin

de l’état de bosse par excitation globale sont toujours valables. Afin d’étudier comment

les populations excitatrices et inhibitrices interagissent dans le mécanisme de saturation

effective et d’étudier en détail la dynamique qui a lieu dans les transitions entre les états

stables et la formation de modèles spatio-temporels d’activité, nous implémentons le

mécanisme de saturation effective dans un modèle de réseau de neurones qui présentent

décharges (spiking network model). Le modèle consiste en une population excitatrice

et inhibitrice de neurones "leaky integrate-and-fire" dont la connectivité est identique à

celle de nos modèles de taux de décharge ("firing rate neurons"). Les non-linéarités des

FTs de chaque neurone sont implémentées en ajustant les propriétés intrinsèques de la

membrane neuronal ainsi que le bruit de fond. Nous démontrons que le mécanisme de

saturation effective ainsi que la terminaison de l’état de bosse par une excitation globale

s’appliquent toujours. Nous étudions en détail la dynamique pendant les transitions entre

les états d’activité persistante et spontanée. Nous constatons que pour des durées d’input

de l’ordre des constantes de temps synaptiques et membranaires, un motif spatio-temporel

oscillatoire apparaît. Il est intéressant de noter qu’en raison de ces oscillations, seules

certaines valeurs d’intensité d’input permettent de mettre fin à l’état persistant. Dans

l’ensemble, ce travail fournit un mécanisme dans lequel les FTs excitateurs et inhibiteurs

interagissent, donnant lieu à une multistabilité dans laquelle la terminaison de l’état

sélectif persistant peut être médiée par une excitation globale.

Ensuite, dans le chapter 4, nous exploitons le précédent modèle de réseau de neurones

qui présentent décharges décrivant la dynamique du CPF au cours d’une tâche MT pour

étudier comment les dysfonctionnements du réseau pourraient conduire à une

dynamique aberrante qui pourrait être à l’origine des déficiences cognitives typiquement

rencontrées dans les maladies mentales. Le CPF semble être l’une des régions les plus

touchées dans les maladies mentales telles que la schizophrénie, entre autres. Les
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troubles de la pensée, y compris les hallucinations, et les symptômes cognitifs tels que

l’altération de l’MT et de l’apprentissage décrits chez les sujets atteints de schizophrénie

sont fortement associés à un dysfonctionnement de le CPF. Le CPF, en synchronisation

avec les aires sensorimotrices et les aires sous-corticales, est chargée d’orchestrer le cycle

perception-action en reliant les informations sensorielles passées et le comportement

prospectif. Ainsi, des altérations de la fonction CPF pourraient potentiellement conduire

à une perception anormale de la réalité conduisant à des hallucinations, ainsi qu’à des

altérations de l’MT. L’une des principales théories sur l’étiologie de la schizophrénie

tourne autour d’une hypofonction des récepteurs NMDA (NMDAR)(Gao and Snyder,

2013). Les principales preuves à l’appui de cette théorie proviennent d’études dans

lesquelles des antagonistes des NMDAR (comme la kétamine) pouvaient reproduire les

symptômes des patients atteints de schizophrénie chez des patients sains (Krystal et al.,

1999). En outre, les médicaments améliorant la fonction NMDAR atténuent les

symptômes négatifs et cognitifs. Par ailleurs, le blocage persistant de la fonction des

NMDAR chez l’animal développe des caractéristiques pathologiques de la schizophrénie

telles qu’une altération des tâches MT (Aura and Riekkinen Jr, 1999; Driesen et al., 2013;

Coyle, 2012). De plus, des études de neuro-imagerie et d’anatomie de cerveaux

schizophrènes ont décrit une diminution du volume du CPF ainsi que des corps

cellulaires plus petits et une perte d’épines dendritiques dans les neurones pyramidaux

de la couche III du DLPFC (Hoftman et al., 2017). On pense que la couche III du DLPFC

est l’endroit où résident les microcircuits du CPF. Ces circuits sont composés de réseaux

de cellules pyramidales excitatrices fortement connectées de manière récurrent et

s’excitant mutuellement via des récepteurs AMPA et NMDA sur les épines dendritiques.

Ce circuit entraîne une activité persistante qui est façonnée par l’inhibition latérale des

cellules GABAergiques, créant ainsi les propriétés de sélectivité spatial observées dans

les expériences de mémoire de travail (Arnsten, 2011). L’hypothèse de

l’hypofonctionnement des NMDAR suggère que le neurotransmetteur glutamate n’active

plus les récepteurs de NMDA qui sont responsables des courants excitateurs

postsynaptiques (CEPS) lents. Au lieu de cela, les récepteurs AMPA qui ont une
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constante de temps de décroissance plus courte (environ 2 à 5 ms), seraient la principale

contribution aux CEPS (Rubio et al., 2012). Afin d’explorer comment les différentes

contributions des récepteurs NMDA pourraient modifier la dynamique du CPF, nous

avons réalisé une étude exploratoire analysant le rôle des constantes de temps

synaptiques sur la dynamique spatio-temporelle et sur la stabilité des états stables. Nous

avons constaté que, pour des valeurs physiologiques de la constante de temps de

décroissance synaptique inhibitrice (environ 5-10 ms pour le récepteur 𝐺𝐴𝐵𝐴𝐴), la

constante de temps de décroissance synaptique excitatrice doit être plus lente afin

d’éviter la synchronie et les motifs d’activité oscillatoire. Comme déjà remarqué par

Wang (1999), ces résultats suggèrent que la dynamique lente du NMDA joue un rôle

important dans la stabilisation de la décharge neuronal irrégulier présent à la fois dans

l’état homogène et dans l’état de bosse. Consécutivement, dans une deuxième partie,

nous explorons comment la taille du réseau du modèle affecte la stabilité des états stables

du système. Nous avons constaté qu’une réduction du nombre de neurones pouvait

conduire à des transitions spontanées donnant lieu à l’apparition de bosses d’activité en

l’absence de stimulations externes. Ces résultats pourraient suggérer un mécanisme pour

l’origine des hallucinations dans les circuits CPF.

Finalement, dans le chapter 5 nous présentons un article publié en 2020 dans la revue

Frontiers in psychiatry où nous décrivons le cas d’un patient de 50 ans atteint de

schizophrénie qui a subi un protocole de stimulation cérébelleuse non invasive. Des

données issues d’évaluations cliniques et psychométriques incluant la mémoire de

travail, la mémoire verbale à long terme, les fonctions exécutives et d’attention ont été

recueillies avant et après la stimulation, ainsi que des données issues d’un protocole de

conditionnement du clignement des yeux dépendant du cervelet.

Bien que nous n’ayons pas rapporté de changements dans les symptômes positifs ou

négatifs de la schizophrénie avant et après la stimulation, nous avons constaté une

amélioration globale des mesures psychométriques après la stimulation. Nous avons

également constaté une amélioration des performances en matière d’attention
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sélectionnée, de mémoire à court et long terme, de mémoire de travail et d’inhibition de

la réponse, domaines cognitifs connus pour être altérés chez les patients atteints de

schizophrénie. On a constaté une nette amélioration du test de conditionnement de

clignement d’œil (eye-blink conditionning ou EBC) après la stimulation. En l’absence de

données sur des sujets sains dans nos conditions, nous ne pouvons exclure un éventuel

effet de retest ("saving") dans cette amélioration (Hoffland et al., 2012). Ceci est

cependant peu probable étant donné que dans nos données : 1) aucune eyeblink

conditioning (EBC) nette n’a pu être observée à la fin de la session de pré-stimulation, et

2) le conditionnement est apparu progressivement au cours de la session EBC de

post-stimulation, en partant d’une absence de réponse prédictive (et ne montrant donc

aucune sauvegarde). En outre, et contrairement aux sujets témoins, il a été démontré que

les patients atteints de schizophrénie n’améliorent pas leurs performances au cours de

sessions EBC consécutives (Bolbecker et al., 2009). Ces éléments de preuve soutiennent

donc l’idée que l’amélioration de l’EBC après la stimulation était due à la stimulation

elle-même et non à une quelconque rétention de la première session d’EBC. Sur la base

de l’abondante littérature, tant chez l’homme que chez l’animal (Thompson and

Steinmetz, 2009; Mauk et al., 2014; Timmann et al., 2010; Freeman and Steinmetz, 2011),

nos données indiquent que la fonction cérébelleuse du patient était altérée de manière

basale, comme cela a été décrit précédemment dans la schizophrénie (Kent et al., 2015).

Notre évaluation est cohérente avec plusieurs études qui ont rapporté un effet de la

stimulation cérébelleuse non invasive sur l’apprentissage associatif mesuré par EBC.

(Zuchowski et al., 2014; Monaco et al., 2014). Plus important encore, elle met en évidence

la stimulation du cervelet comme un outil puissant pour améliorer significativement la

fonction cérébelleuse dans la schizophrénie. L’EBC s’est révélé être une méthode

pertinente pour étudier le dysfonctionnement cérébelleux dans les troubles

neuropsychiatriques. Démêler les aspects motivationnels des déficits cognitifs peut

s’avérer difficile chez les patients atteints de schizophrénie. Cet aspect est pourtant

important car les déficits de motivation communément présents chez les patients

schizophrènes peuvent biaiser les tests neuropsychologiques classiques. EBC ne
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nécessite pas la participation active du sujet. Dans notre paradigme, le patient regardait

un film muet pendant l’expérience ; chez les nouveau-nés, l’EBC peut même être réalisée

pendant le sommeil (Fifer et al., 2010; Tarullo et al., 2016). Ainsi, il est peu probable que

les résultats des EBC soient liés à des déficits motivationnels chez les patients atteints de

schizophrénie.

(Brady Jr et al., 2019) a rapporté dans une population de patients atteints de schizophrénie,

une amélioration des symptômes négatifs après une stimulation magnétique transcraneal

liée à la connectivité dorso-latérale du CPF au cervelet. Cependant, les auteurs n’ont pas

étudié l’effet de la stimulation cérébelleuse sur les symptômes cognitifs.

Chez les sujets sains, il existe des preuves que la stimulation cérébelleuse non invasive

peut moduler la mémoire de travail, le contrôle moteur, l’apprentissage et le traitement

des émotions (Ferrucci et al., 2015). Ces résultats sont en accord avec nos résultats où la

stimulation cérébelleuse non invasive a eu un effet sur la mémoire verbale, la fonction

exécutive et la fonction d’attention.

Nos résultats soutiennent plusieurs points forts. À notre connaissance, ce cas est le

premier à rapporter l’effet de la stimulation électrique du cervelet sur la cognition (y

compris l’apprentissage associatif mesuré avec le EBC) dans la schizophrénie.

En conclusion, nos résultats suggèrent que la stimulation du cervelet peut avoir un impact

sur les troubles cognitifs chez les patients atteints de schizophrénie. Nous suggérons

que le EBC, connu comme une méthode pertinente pour étudier le dysfonctionnement

cérébelleux dans les troubles neuropsychiatriques, pourrait être utilisé pour évaluer

l’impact de la stimulation sur le cervelet chez les patients atteints de schizophrénie.
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Science is what you know. Philosophy is what you don’t know

— Bertrand Russell
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Part I

PROLOGUE





1 Introduction

Ifwe wanted to simplify at maximum the function of the brain we could picture
it as a black box that receives some inputs, does some transformations of
the inputs and gives an output. In order to fully understand this black box

we should consider all the inputs and know all the transformation steps from
inputs to outputs. This becomes a very complex task if the number of inputs is
very large and even more if the transformations depend on the internal state of
the black box which in addition can change because of the external inputs. The
first problem can be relatively overcome by reducing the number of inputs in a
controlled experiment. Following this idea, brain research has made important
advances in understanding sensory processing and movement execution, but less
is known as we go deeper in the input processing chain towards action and try to
understand high order cognitive functions such as reasoning, memory, decision-
making, emotions, etc. Paradoxically, these functions are the reason why we start
to ask complex questions and have a need to find the answers. The ambition
to comprehend reality and existence is probably one of the most characteristic
features of the human being. Besides many other features that are common
to other species, humans have developed an intricate infrastructure to address
these ontological questions. Language, writing, mathematics and other tools have
served as a framework to share knowledge, ideas and reasonings transcending
the spatiotemporal distance among other humans allowing a sort of collective
processing and the creation of novel knowledge with the final purpose of satisfying
our need of understanding. Not by chance, the genesis of this framework is a
direct consequence of brain evolution. The development of neocortical areas has
led to complex behavior consisting in the realization of a considerable number of
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planned actions in order to reach a certain goal. A central role of the temporal
coordination of these actions is attributed to the PFC. Metaphorically, we humans
have developed a framework to understand complex things that plays a similar role
as the PFC does by processing novel information and integrating it by contrasting
with past experience to come up with a new behavior (or thought) that is intended
to achieve a certain goal.

In fact, the evolution of the brain reveals a so-called hierarchy between subcortical
and cortical structures. While simple movements and innate actions are mostly
controlled by subcortical structures, conscious and complex behavior is attributed
to cortical areas which developed later in the evolutionary timeline, being the
premotor and prefrontal cortices the latest evolved areas, thus, at the top of this
hierarchy. A simple example to understand the difference between simple and
complex behavior and the brain structures that are involved could be this: it’s
a stormy day and you have hypersensibility to loud noises such as thunder, the
storm is quite close so whenever you see a bolt you cover your ears to alleviate
the rumble, in this case in which the bolt and the thunder occur close in time your
cerebellum allow you to associate both events and cover your ears at the right
time. But now, the storm is moving away so there is a larger time gap between
the bolt and the thunder, in this case the cerebellum alone is not sufficient to
pair both events because of the temporal delay, here is where the coordination
with higher cortical areas comes into place by processing and coordinating in
time a coherent response (Weiss and Disterhoft, 1996). In order to orchestrate
an action that is separated in time a few seconds from the initial stimulus we
have to retain in our brain the stimulus, this capacity is known as WM and this
process is largely attributed to the PFC. Many mechanisms of WM have been
proposed but the neural mechanisms underlying the formation, the maintenance
and extinction of this memory are still a matter of debate. Besides, it is well
known that in mental illnesses such Schizophrenia, cognitive function including
WM is impaired, however it is poorly understood how the PFC in coordination
with subcortical areas is implicated in cognitive dysfunction and what are the
network mechanisms underlying the main symptoms in Schizophrenia.

With the aim to shed some light on the network mechanisms that support WM we
devise a biophysical theoretical framework that allows us to study the role of the
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neural nonlinearities in the formation and extinction of memories. In particular,
we present novel network mechanisms for memory extinction based on biological
evidences. Thereafter, in a separated work, we study how changes in the PFC
network leads to aberrant working memory dynamics that could explain some
symptoms in mental illness such as schizophrenia. Finally, in the last work, we
present a novel treatment for schizophrenia based on cerebellar stimulation.

The thesis is organised in three parts: a prologue consisting in an overview
(chapter 1) and a literature review regarding the role pf the PFC in WM and
its implication in Schizophrenia together with the cerebellum (chapter 2); an
original research which is subdivided in chapter 3 , chapter 4 and chapter 5,
where we present the results of three projects separately, each one with a specific
introduction, results, discussion and conclusion; and a epilogue consisting in the
general discussion and conclusions in chapter 6.
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2 Literature Review

2.1 Anatomy and connections of the Prefrontal

Cortex

Figure 2.1. The prefrontal cortex in six different

mammalian species (shaded in gray). From Fuster

(2015)

The prefrontal cortex
is located in the anterior region of the
mammalian neocortex (Figure 2.1). In
mammals, it is anatomically defined
as the part of the cerebral cortex
that receives projections from the
mediodorsal nucleus of the thalamus
(MD) (Fuster, 2015). The size of
the PFC increases along the evolution
of the species and its relative size is
directly proportional to the cognition
complexity of the animal. In humans
the relative size reaches a maximum
configuring almost one third
of the entire neocortex (Fuster, 2015).
In newborns the prefrontal area is
not fully developed and it experiences
a proliferation of dendrites and
formation of new synapses during the
firsts years of life (Koenderink et al.,
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1994; Bourgeois et al., 1994). Furthermore it is the last area to undergo
myelination reaching its maximum in adulthood (Conel, 1939; Brody et al., 1987).

The homologues of the PFC are not clear in small mammals regarding its
cytoarchitecture. In dogs and cats granular areas (with large body density in
layer IV) resemble agranular areas in primates, and rodents have agranular areas
in the frontal region (Passingham and Wise, 2012). These discrepancies among
species in the cytoarchitecture (cellular composition) and in the number of
connections with other brain areas, makes it difficult to define a PFC homologue
among small mammals(Markowitsch and Pritzel, 1977; Preuss, 1995; Passingham
and Wise, 2012). Even so, experiments support that lesions in frontal areas of
these small mammals results in similar functional and behavioral impairments as
seen in monkeys (Larsen and Divac, 1978). In addition, later studies comparing
structural and functional data have found homologues of certain areas of the
primate PFC in dogs (Markow-Rajkowska and Kosmal, 1987) as well as rats (see
review in Uylings et al. (2003)) and even in mice (Laubach et al., 2018). These
evidences point out that the cytoarchitecture alone is not sufficient for
determining the prefrontal function being the anatomical relationship with the
MD to be a more universal feature among mammals (Fuster, 2015). In this line of
thinking, maybe the one most relevant characteristic that determines largely the
function of the PFC is the high degree of reciprocal connections with other brain
areas. The principal subcortical afferents (inputs) come from the MD reaching all
the areas conforming the PFC. Inputs from subcortical areas such as cerebellum,
globus pallidus and hippocampus are relayed through the thalamus to the lateral
prefrontal areas (Middleton and Strick, 1994). But not all subcortical inputs are
mediated by the thalamus; the hippocampus, the pons, the hypothalamus, the
amygdala and the cerebellum reach the PFC by direct afferent connections
Figure 2.2. Although the nature of these inputs is not fully understood, some
inferences can be drawn from the function of the structures that project to the
PFC. Inputs from the hippocampus could be relevant for motor learning and
memory; inputs from hypothalamus and amygdala are related to the internal
state and the drives of the organism; and inputs from cerebellum are thought to
be involved in the temporal organization of motor actions (Fuster, 2015). Besides
the subcortical afferents, the PFC also receives important cortical inputs from
both sensory areas indicating its role integrating different sensory modalities
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(Figure 2.2).

Figure 2.2. Diagram of the efferents (left) and afferents (right) of the prefrontal cortex relevant

in the perception-action cycle. From Fuster (2015)

Primary sensory areas for the three main modalities (vision, audition and
somatosensory) projects to an adjacent associative area and to a specific region
of PFC that also send reciprocal connection. The next area in the processing line
again sends projections to the next one and to the prefrontal Figure 2.3. Other
corticocortical connections are the reciprocal connections between the prefrontal
and the premotor cortices and this with the primary motor cortex. This frontal
motor hierarchy in which information flows from prefrontal to primary motor
cortex is symmetrical to the perceptual one in which information flows from
primary to associative areas. The reciprocity of connections of PFC and its
afferents is a late-motive feature with the exception of the basal ganglia and
pontine nuclei which receive inputs from PFC but do not reciprocate.

2.2 Working Memory in the Prefrontal cortex

The first reported historical evidence of the anatomical substrates of WM came
from Eduard Hitzig (1874) and later David Ferrier (1886). Their studies revealed
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Figure 2.3. Stepwise projection of connections originating in the somatic, visual, and auditory

areas of the monkey’s cortex. Each step is shown by a dotted pattern, and the succeeding regions

of termination by a pattern of horizontal lines. Note that most areas project to others nearby and

to the prefrontal cortex. Abbreviations: A, auditory cortex; CG, cingulate gyrus; S, somatosensory

cortex; SM, supplementary motor cortex; STP, superior temporal plane; STS, superior temporal

sulcus; TG, temporal polar cortex. From Fuster (2015), adapted by Amaral (1987) from Jones and

Powell (1970)

that the prefrontal region of the cortex is indispensable to conduct tasks in which
WM is required. In its work "The functions of the Brain" published in 1886, Ferrier
described how dogs after the ablation of the prefrontal brain region were not able
to remember the location of food they have just seen. Later on, Caryle Jacobsen
(1935; 1936) explored the implications of the PFC in a more systematized way by
training monkeys to perform a delayed task in which the animal observes how a
piece of food is located in one of the two cups and few seconds later the animal
have to choose between the two cups. If the answer is correct the animal will be
rewarded with the piece of food. This task was conducted with several delays and
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at different stages: preoperatory (control), unilateral and bilateral lesions. While
the unilateral lesion did not differ from control condition, the bilateral extirpation
of the PFC dramatically impairs the delayed task involving WM. Furthermore, the
lesions on other cortical areas (parietal association area, premotor and temporal
lobe) did not impair the ability to perform the task. Subsequent works in monkeys
have confirmed and confined the specific PFC areas relevant to WM tasks in
which the spatial location of an item has to be remembered. The region is known
as dorsolateral prefrontal cortex (dlPFC) which corresponds to anatomical areas
46, 9/46 and 9 (surroundings of principal sulcus in primates) (Figure 2.4) (Blum,
1952; Pandya et al., 2015; Levy and Goldman-Rakic, 1999) .

A. B.

Figure 2.4. A. Architectonic map of the macaque monkey cortex by Petrides and Pandya (2007)

B. Regional nomenclature used in Passingham and Wise (2012) for macaque monkeys. The dlPFC

location is shaded in yellow, right above the Principal Sulcus. Adapted from Passingham and Wise

(2012)

First electrophysiological recordings of activity in single neurons in dlPFC during
WM tasks in monkeys were conducted by Kubota and Niki 1971 and Fuster and
Alexander 1971. Kubota and Niki used a delayed alternation (DA) task in which
the monkey has to alternately press two levers after a delay. Fuster and Alexander
used a delayed response (DR) task in which the animal has to recall the location
(right or left food wells) of the previously presented food after a time delay of a
few seconds (Figure 2.5A). Those studies described a rich neural activity in which
some neurons increased their firing when information was presented, others
responded strongly to the motor onset and, the most relevant finding, others
were active all along the delay period between the sensory cue and the response
action (Figure 2.5B). This sustained activity triggered by the sensory cue can cover
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A.

B.

Figure 2.5. A. Schematic depictions the spatial delayed-response task. It is a test of spatial

working memory and requires the monkey to remember the baited location of a food well over

a delay. Adapted from Curtis and D’esposito (2004) B. Activity of a prefrontal unit during five

delayed-response trials. In each trial, a horizontal bar marks the cue period and an arrow the end

of the delay (i.e., the presentation of the choice stimuli). Note the activation of the cell during the

delay: over 30s in the upper three trials, 60s in the lower two trials. Adapted from Fuster and

Alexander (1971)

delays up to 1 min or longer and it recovers its previous spontaneous activity
right after the response is completed. Kubota and Niki relate this activity to a
delayed motor execution while Fuster and Alexander relate this sustained firing
to neural correlates of short-term memory. Later on, Fuster showed that this
persistent activity was only present in correct trials, but not in the error trials
(Fuster, 1973). This led to the idea that the tonic persistent activity during the
delay is linked to the maintenance of the spatial information that is critical to
perform the task.

Few years later, Hiroaki Niki (1974a,b) trained monkeys to perform a delayed
response (DR) task similar to that used by Fuster and Alexander 1971. With this
experiment showed that some neurons respond differently depending on the
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spatial location of the response, i.e., the neurons display directional selectivity.
These findings were further confirmed later on by the seminal work of Shintaro
Funahashi et al. (1989). In this case the monkey is trained to perform an oculomotor
delayed response (ODR) task consisting in a screen which displays a visual cue that
can appear in one of 8 possible spatial locations distributed evenly and separated
45°one form each other in a circumference. The animal has to retain the spatial
location of the cue during a delay and when the fixation point in the center of the
screen disappears it has to make a saccade towards the location where the cue
was presented (Figure 2.6B). In these experiments they found that some neurons
display a marked spatial location selectivity, in which the firing rate during the
delay increases significantly for certain cue locations in the space (Figure 2.6C).
This selectivity, similar to that found in the receptive fields of the visual system,
but maintained in the absence of external stimulus was described as mnemonic
receptive fields (Funahashi et al., 1989; Rainer et al., 1998a,b). Each selective
neuron seems to always respond to the same visual location so the response
curve versus cue location draws a bell-shaped tuning curve in which the angle
of the maximum response is named the preferred direction (PD) (Figure 2.6D).
Notice that this feature selectivity is also present in neurons in the visual cortex
(Hubel and Wiesel, 1962, 1968). As a direct consequence, theoretical models of
visuospatial working memory have inherited the orientation tuning theories from
the visual system as we will see in the next section.
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B.A.

C.

D.

Figure 2.6. A. Recording area. Schematic diagram of the monkey brain with caudal area of the

Principal Sulcus (PS) highlighted. AS, Arcuate sulcus. B. Sequence of events in the oculomotor

delayed response (ODR) task. C. Directional delay period activity of a Principal Sulcus neuron

during the ODR task. This neuron has strongly directional delay period activity, responding

only when the cue had been presented at the bottom (270°) location. D. Directional tuning of

delay period activity for neuron in C. Plot shows discharge rate during the delay period for 8

different cue locations, with a Gaussian fit to the data. Adapted from Constantinidis et al. (2018)

and Funahashi et al. (1989)
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2.3 Network mechanisms of Working Memory

Until now we have described the neural dynamics during a spatial working
memory task and so far we can distinguish two main features: persistent activity
and selectivity. The persistent activity is seen as a combination of the active
internal representation of a sensory stimulus that is maintained when the
stimulus is not present anymore and a representation of the future action
(Takeda and Funahashi, 2002). On the other hand, the stimulus selectivity is the
specific activation of a subgroup of neurons when the stimulus is presented in a
specific location. Despite other features of this delay activity such as high
spiking variability (inter and intratrial), heterogeneity of the neural activity,
resistance to distractors, etc. we would like to address the main mechanisms that
underlie persistence and selectivity.

2.3.1 Persistent Activity Mechanisms

The vast majority of spatial working memory models rely on mechanisms of
persistent activity supported by the previous exposed literature about the increase
of firing activity of some neurons during the delay period. (See however, Mongillo
et al. (2008); Barak et al. (2010); Barak and Tsodyks (2014); Lundqvist et al. (2018)
but also see Li et al. (2021)).

Although persistent activity is broadly accepted as a neural correlate of the
working memory, the mechanisms underlying the generation and the extinction of
this persistent activity remain poorly understood. In essence, models of persistent
activity are based in dynamical systems with multiple stable states. The system
displays at least two stable steady states or fixed points and transient changes
due to an external input can cause a transition from a low activity state to a high
activity state. Since this high activity state is a stable fixed point, the system will
remain in this point unless an external input restores the system to the initial state.
Although this is a very recurrent approach to model persistent activity several
mechanisms that generates this multistability have been proposed. The main
streams regarding the origin of this multistability are; (1) the intrinsic properties
of the neurons (Camperi and Wang, 1998; Loewenstein and Sompolinsky, 2003), (2)
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the network interactions (Amari, 1977; Hopfield, 1982) and (3) a combination of the
previous two (Compte et al., 2000; Hansel and Mato, 2013). The main question that
is common to all these approaches is what physiological mechanism gives rise to
this multistability. Although, up to now, there is no evidence of intrinsic neuronal
bistability in PFC neurons, bistability in form of plateau potential have been found
in neurons from the entorhinal cortex (Egorov et al., 2002) and motoneurons
(Kiehn, 1991). Despite this, the hypothesis of cellular bistability in PFC has been
used in a model of WM presented by Camperi and Wang 1998 that we will describe
later. On the other hand, most research has been conducted based on the network
mechanism relying on strong recurrent excitation (Hebb, 1949). This mechanism
is well supported by empirical data from describing high horizontal connection in
the monkey’s PFC in in vitro studies (González-Burgos et al., 2000) as well as in
in vivo studies (Funahashi and Inoue, 2000). The basic idea of this mechanism is
represented in the Hopfield model (Hopfield, 1982) for storing discrete memories
in the synaptic connectivity matrix creating a discrete attractor network. In
this model of associative memory, which neglects some of the basic biological
properties, a finite number of activity patterns can be stored as memories by
creating strong connectivity patterns within a cluster of neurons (also describing
a mechanism for selectivity). These connectivity patterns could be previously
established by Hebbian learning in which neurons that activate by a specific
input are strongly connected. Once the connectivity is established the working
memory mechanism can be described as follows: an external input reaches the
network and activates a group of neurons, if a great majority of these neurons
belong to a pre-established cluster i.e. are strongly connected, they will recover
the memorised pattern maintaining the activity through time due to the strong
recurrent connection.

The main problem residing in the persistence mechanism based in strong
excitatory feedback is the blow up of the neural activity that exceeds the
physiological firing rates ranging from 10-50 spikes/s. Solutions to control the
firing rate were proposed by Xiao-Jing Wang (1999) by including slow and
saturating synapses that stabilise persistent states at low firing rate. These types
of synapses were attributed to N-methyl-d-aspartate receptor (NMDAR)
channels. Although saturation of the NMDAR is debatable (see McAllister and
Stevens (2000)), the blockade of NMDAR results in the abolition of the persistent
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firing during the delay (Wang et al., 2013; van Vugt et al., 2020). However it is
not clear whether this is a consequence of the suppression of slow synaptic
currents or a reduction in the overall excitation. In fact, in van Vugt et al. (2020)
the selective blockade of AMPA receptor (AMPAR), which have fast dynamics,
was sufficient to cause a suppression of the delay activity. Inhibitory feedback
was also a proposed solution to control the firing rate (Amit and Treves, 1989;
Rubin and Sompolinsky, 1989) which also contributes to stabilise the
spontaneous state with non-zero firing rate (Amit and Brunel, 1997). The
principal problem of the introduction of inhibition is the appearance of
oscillations due to the excitatory-inhibitory loop if the recurrent excitation is not
slow enough (Van Vreeswijk et al., 1994; Hansel et al., 1995; Wang and Buzsáki,
1996). A possible solution to this problem will be to use a slower excitation (as in
Wang (1999)) but, the asynchronous activity can also be restored provided that
inhibitory to inhibitory interactions are strong enough (Hansel and Mato, 2001).
A recurrent mechanism that appears in many works is the use of a non-linear
synaptic or neuronal input-output transfer function in order to obtain bistability
(Amit and Tsodyks, 1991; Amit and Brunel, 1995; Durstewitz et al., 1999; Wang,
1999; Hansel and Mato, 2001). In these works they describe the dynamics of
networks of integrate and fire neurons with homogeneous connectivity and then,
using mean-field analysis, they obtain the self-consistent equation governing the
population mean firing rate (FR), 𝜈. The steady states equation is of the form
𝜈 = 𝜑(𝜈), where 𝜑(𝑥) is the TF. Using a saturating TF such a sigmoid the system
could have up to three possible solutions for a given value of external input 𝐼
applied (𝜈 = 𝜑(𝜈 + 𝐼)), two of them stable and one unstable. From the two stable
states, one displays a low firing rate (down state) and the other high firing rate
(up state). In this configuration, a transient input can induce a transition between
these two bistable states (Figure 2.7).

2.3.2 Selectivity Mechanisms

As previously seen in the Hopfield model, the connectivity is prestablished by
Hebbian learning in which neurons that coactivate are strongly connected. These
connectivity patterns, in which neurons are organised in clusters, originate a finite
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Figure 2.7. Bistability in a network of rate neurons A. Graphical solutions of the equation

𝜈 = 𝜑(𝜈 + 𝐼) for different input values with 𝜑 as a sigmoid. Solid black dots represents stable

fixed points and empty black dots unstable fixed points. B. Example of switching between down

and up stable states by a transient input. Top: average population firing rate. Bottom: External

input to the network.

number of discrete attractor states (Figure 2.8 A). This selectivity mechanism has
been widely exploited in associative memory models of spiking neurons in which
the item to store is a discrete variable (Mongillo et al., 2003; Amit and Mongillo,
2003; Brunel, 2003). A possible drawback of this elegant mechanism is that the
need of a pre-existing connectivity is not consistent with the capacity to maintain
in the memory novel information. Furthermore, the number of memories is finite
and don’t allow to store continuous variables such as space (Funahashi et al., 1989),
stimulus frequency (Romo et al., 1999) or visual motion (Zaksas and Pasternak,
2006). These limitations can be overcome by using continuous attractor models
in which the network connectivity leads to a line of attractor states (Figure 2.8 B).
The foundation of the attractor theory was developed by Wilson and Cowan (1973)
and Shun-Ichi Amari (1977) in recurrent networks of firing rate neurons. The
main idea behind continuous attractor models is the symmetry of the connectivity
among neurons and the implementation of a connectivity function that decays
as the spatial distance between two neurons increases (but also see Darshan and
Rivkind (2021)).

In the specific case of the visuospatial WM the most relevant selectivity
mechanism is inherited from the theory of orientation selectivity in the primary
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A. B.

Figure 2.8. Network models of persistent representations. A. Discrete attractor models.

A population of neurons is described by their firing rates (axes of the diagram). The network

dynamics cause movement within this space: At each point, the small arrows indicate the direction

in which the population activities move. Here, all direction arrows point toward either point 𝛼 or

point 𝛽, and so the network activity patterns will evolve toward one of these two activity patterns.

Which of these patterns gets generated depends on whether the inputs push the network to the

left of the marked boundary or the right. This boundary is known as a separatrix. B. Continuous

attractor models are similar to the model in panel A, but now the direction arrows all point toward

a continuous line. The network dynamics cause the activity patterns to evolve to points (patterns)

on the marked line.

visual cortex (V1) from Rani Ben-Yishai et al. (1995). In this model, selectivity
arises from the spatial connectivity in which neurons with similar preferred
orientations are strongly connected. Neurons are spatially distributed on a ring
and each neuron is labeled with a preferred orientation (PO, 𝜃) which represents
the orientation of the stimulus at which the response is maximal. In the limit of
large network, the mean activity, 𝑚(𝜃, 𝑡), is described by the following dynamics:

𝜏
𝑑𝑚(𝜃, 𝑡)

𝑑𝑡
= −𝑚(𝜃, 𝑡) + 𝑔[ℎ(𝜃, 𝑡)] (2.1)

where 𝑔(𝑥) is the TF that can be taken as a threshold linear function and ℎ(𝜃, 𝑡)

is the total recurrent input from the network described as follows:

ℎ(𝜃, 𝑡) =
1

𝜋

∫︁ +𝜋/2

−𝜋/2

𝐽(𝜃 − 𝜉)𝑚(𝜉, 𝑡)𝑑𝜉 (2.2)
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the interaction between the postsynaptic neuron 𝜃 and the presynaptic
neuron 𝜉 is described by a “Mexican hat” connectivity described as
𝐽(𝜃 − 𝜉) = 𝐽0 + 𝐽1 cos[2(𝜃 − 𝜉)] representing local excitation and distal
inhibition (Figure 2.9A).

A. B.AAAAAAAAAAAAAAAAAAAAA.....A.

Figure 2.9. A. Ring network with Mexican-hat connectivity, i.e, strong local excitation (red) and

broader inhibitory coupling (blue). B. Network activity for neurons arranged according to their

position in the ring (A). Due to strong recurrent connectivity, a bump of activity (black dotted

line) emerges in this network at a position determined by the external input (blue dotted line

centered at 𝜃0). If new tuned input centered at -90°(𝜃𝑠𝑡𝑖𝑚1 ) is applied, the bump of activity drifts

towards a new position. Adapted from Esnaola-Acebes et al. (2021)

Under a homogeneous excitatory input 𝐼 , the fixed points (FPs) of the network
are represented by the solutions of the following equation:

𝑚(𝜃) = 𝑔

(︃
𝐼 +

1

𝜋

∫︁ +𝜋/2

−𝜋/2

[𝐽0 + 𝐽1 cos(2(𝜃 − 𝜉))]𝑚(𝜉)𝑑𝜉

)︃
(2.3)

It represents the profile of activity of the network relative to the stimulus
orientation. It also represents the tuning curve of a neuron centered at its
PO. There is always a homogeneous solution 𝑚(𝜃) = 𝑚0 which is consistent
with the fact that if the input is homogeneous the orientation tuning disappears.
An inhomogeneous solution exists depending on the angular modulation of
the connectivity 𝐽1. This solution will be stable as far as the slope of 𝑔(𝑥)

is larger than 2/𝐽1. This inhomogeneous solution representing spontaneous

20



Literature Review

generation of orientation tuning will display a profile of activity with the shape
of a “bump” centered at a certain PO (Figure 2.9 B). Due to the spatial symmetry,
also exist shifted solutions of the form 𝑚(𝜃 − 𝜑) describing a line of attractor
states parametrised by the angle 𝜑 which indicates the peak of the bump activity
profile. In fact, in a more realistic case, the location of the bump is not arbitrary
but is determined by the orientation of the external input. Taking the external
input 𝐼 to be slightly tuned around 𝜑 (heterogeneous), neurons with PO close to
𝜑 will amplify the tuned input creating a bump of activity centered at 𝜑. This
behavior leads to the representation of the stimulus location by the network
activity (Figure 2.9B). However in this network, when the stimulus is withdrawn
the selective activity encoding for the stimulus is replaced by the homogeneous
state, that means there is no persistence.

2.3.3 Bump attractor Models of Visuospatial Working

Memory

In order to have persistence together with selectivity, the inhomogeneous solution
(line of attractors) must coexist with an homogeneous solution in which all the
neurons display similar firing rates. This was presented in the previously cited
work of Amari (1977) studying the dynamics of pattern formation for networks
dominated by lateral inhibition. The neural field dynamics of the single population
model is described by the following equation:

𝜏
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= −𝑢(𝑥, 𝑡) +

∫︁
𝑤(𝑥− 𝑦)𝑓 [𝑢(𝑦, 𝑡)]𝑑𝑦 + 𝐼 (2.4)

where 𝑢 is considered as the total input to a neuron, 𝑓 [𝑥] is the TF and 𝑤(𝑥)

is the weighting function describing the connectivity between neurons. Notice
the similarities of the dynamics equation with the one presented in Ben-Yishai
et al. (1995). In this model, 𝑤(𝑥) also has a “Mexican hat” shape describing local
excitation and lateral inhibition. The main difference relies on the TF which is
taken to be the Heaviside function, this allows the network to have bistability
between a bump state and a homogeneous state.

In a model presented by Camperi and Wang (1998), the network bistability is
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achieved by using bistable neurons. This persistent mechanism relies on intrinsic
neuronal bistability in which a single neuron displays a higher activity state that
coexists with a lower activity state. These bistable neurons were embedded in
a network with a “Mexican hat” connectivity in order to have selectivity in the
form of a bump of activity. The rate dynamics of the network is described as
follows:

𝜏
𝑑𝑟(𝜃, 𝑡)

𝑑𝑡
= −𝑓 [𝑟(𝜃, 𝑡)] + 𝑔[𝐼(𝜃, 𝑡)] (2.5)

as seen in Ben-Yishai et al. model the TF 𝑔[𝑥] is taken to be threshold linear
but the main difference is that the firing rate of each neuron is transformed
by a cubic non-linear function 𝑓 [𝑥]. As stated at the beginning of this section,
the main drawback of this model is that there is no evidence of intrinsic neural
bistability in PFC neurons. However, in the same study they address a mechanism
without neuronal bistability which relies on the shape of the TF. In this case,
they approximate the TF to a sigmoidal shape using a piecewise linear function
representing. The network displays bistability between a homogeneous state and
a bump profile of activity which crucially depends on this specific shape of the
TF. Unfortunately the mechanisms for bistability regarding the shape of the TF
were not well characterised. Moreover, it is worth to point that in the previous
presented models (Amari, 1977; Camperi and Wang, 1998) the mechanisms for
bistability relies on the saturation shape of the TF, thus the neurons around the
peak of the bump activity profile are firing at its saturation rates. The typical
saturation firing rates of a pyramidal neuron in monkey’s PFC is around 40-60
Hz (Arsiero et al., 2007; Zaitsev et al., 2012) and this is not consistent with the
average firing rates around 15-20 Hz during the delay period of a pyramidal
neuron responding to a stimulus at its preferred orientation (Funahashi et al.,
1989; Takeda and Funahashi, 2002).

A couple of years later Albert Compte et al. (2000) presented a visuospatial WM
model of spiking neurons with a very detailed synaptic interaction. With this
model they reinforce the hypothesis that slow synaptic transmission mediated
by NMDAR is crucial for the stability of the persistent activity following the
previous work presented in Wang (1999) (without spatial selectivity). The model
consists of two populations of excitatory and inhibitory neurons modelled as
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integrate and fire neurons. They used an excitatory-to-excitatory (E-E) structured
connectivity in which neurons with similar PO are strongly connected and the rest
of interactions (E-I, I-E and I-I) are unstructured so the strength of connection is the
same (Figure 2.10B). Due to the strong local excitatory connection and the strong
global inhibition the network displays a bistability between a homogeneous state
with low firing rate and a bump state (Amit and Brunel, 1997; Wang, 1999). The
transition between the two states can be mediated by transient inputs: explicitly
the visual cue, represented by a tuned input centered at a certain orientation,
cause a transition from the homogeneous state to the bump state and a subsequent
homogeneous excitatory input restores the homogeneous state (Figure 2.10A).
Altogether the model reproduces very well the ODR task presented in Funahashi
et al. (1989).

One year later Boris Gutkin et al. (2001) propose a two population network
model of conductance-based single compartment neurons (Hudking-Huxley)
(Figure 2.11). In this case all the interactions are structured and described by
a Gaussian function. Importantly, the E-E and E-I interactions are described
by sharper Gaussian (smaller variance) while the I-E and I-I are wider (larger
variance). In this model as well as in the previous one, the persistence mechanism
is based on strong recurrent excitation together with a more global inhibition
which is balanced with the excitation. Interestingly, and conversely to the Compte
et al. (2000) model, the persistent state is maintained by fast AMPA-type recurrent
synapses thus, not requiring slow synaptic dynamics from NMDAR. They claim
that this is due to the use of a biophysical model with ionic channels that present
a time delay from the moment at which the firing threshold is crossed to the
time that takes to develop the full action potential. This delay allows recurrently
connected neurons that have fast synapses to display low firing rates. It is worth
pointing out that in this model the spontaneous activity is silent, maybe due
to the fact that the inhibitory feedback is not strong enough (Amit and Brunel,
1997). The results of this model highlight the role of fast AMPA synapses in
WM mechanisms, this is consistent with the experimental results in van Vugt
et al. (2020) in which the selective blockade of AMPAR leads to a decrease of the
persistent firing related to the WM task.
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B.A.

C D R

Figure 2.10. Workingmemorymaintained by a spatially tuned network activity pattern

(“bump attractor”) in an oculomotor delayed-response task A. Top: Pyramidal neurons

rastergram. The x axis represents time, while the y axis represents neuron label according to its

preferred cue. A dot in the rastergram indicates a spike of a neuron whose preferred location

is at y, at time x. Note the enhanced and localized neural activity that is triggered by the cue

stimulus and persists during the delay period. The population firing profile, averaged over the

delay period, is shown on the right. Bottom: Color-coded spatiotemporal activity pattern. C,

cue period (250 ms, peak stimulus 200 pA); D, delay period (8.75 s); R, response period (250 ms,

external current increase 500 pA). B. Top: Basic architecture of the model. Pyramidal cells (E)

of similar preferred cue (spatial location, between -180°and 180°) are interconnected by local

excitatory connections and send inhibitory feedback upon themselves through interneurons (I).

Bottom: Structured connectivity of the model. The synaptic connection strength decreases with

the difference in the preferred cues of two neurons, with strong interactions between neighboring

neurons and weak interactions between more distant neurons. Adapted from Compte et al. (2000)

and Wang et al. (2006)

2.3.4 Mechanisms for “Switching OFF” the Memories

Hitherto, we have reviewed some of the most relevant mechanisms for the
generation of persistent activity and one can conclude that the strong recurrent
excitation is the most accepted mechanism. However, the mechanisms
underlying the extinction of this persistent state remain a poorly studied topic.
In Camperi and Wang (1998) as well as in Wang (1999) and Hansel and Mato
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(2001), they propose a switching off mechanism by a transient inhibitory input
which brings the activity back to the homogeneous steady state. However this
approach might be lacking of biologically relevance since some neurons,
regardless of their preferred direction, experiment a global increase of the
activity at the vicinity of the response period suggesting a global excitatory input
(Funahashi et al., 1989, 1990, 1991). The switch off by excitation is well supported
by physiological evidences that long range connectivity to the PFC is mostly
excitatory (González-Burgos et al., 2000), in addition, anatomical studies have
found excitatory projections from MD to supragranular layers on PFC that form
excitatory synapses mostly with pyramidal neurons (Melchitzky et al., 1998).
Hypotheses of the origin of the excitatory input revolve around the “go” signal
that indicates the animal to respond, the motor command input from premotor
areas, and the preparation for the imminent reward related to dopaminergic
inputs from subcortical areas (Funahashi et al., 1991; Gutkin et al., 2001; Ott and
Nieder, 2019). In the work of Gutkin et al. (2001), they directly address the
question of switching off the bump state by a brief strong excitatory input. This
mechanism relies on the synchronisation of the excitatory population. The
simultaneous firing of all excitatory neurons sets them in a refractory period in
which they do not respond to synaptic inputs. The condition for this to take
place is to have fast synaptic dynamics leading to a decay of the synaptic activity
in a period shorter than the refractory period of the neurons. In this scenario, the
synchronisation will lead to an extinction of the spatially tuned synaptic inputs
and thus the switch off to the homogeneous state. In addition, the duration of the
input to mediate the extinction has to be of the order of a few milliseconds, this
short duration seems physiologically unrealistic. In contrast, in Compte et al.
(2000) model, the switch off was performed by a long global excitatory input.
The mechanism, discussed in the article, suggests that the global excitation leads
to an increase of the firing rate of the inhibitory neurons sufficiently large to
suppress the excitatory firing and thus restoring the homogeneous state. A
similar mechanism is addressed in Hansel and Mato (2013). Alternatively, the
mechanism could be due to the saturating nature of the NMDAR present in the
excitatory synapses. Unfortunately, the degree of complexity of the model makes
it challenging to discern the true mechanism underlying the switch off.
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Figure 2.11. Space-time rastergrams of the excitatory and inhibitory populations. The

initial stimulus is a transient focus of afferent excitation to the excitatory neurons only. The

recurrent excitation supports the persistent activity, while the inhibition constrains it spatially.

A transient excitatory current terminates the focus. Two bottom plots: average activity of the

excitatory (upper) and inhibitory (lower) populations. From Gutkin et al. (2001).

2.4 The Role Of The Cerebellar-Prefrontal Loop

In Schizophrenia

Schizophrenia is a chronic and complex mental disease with a strong hereditary
component that causes a significant impact on the quality of life of around 20
million people worldwide (Spencer et al., 2018). The clinic manifestation
comprises a set of symptoms, that may or may not coexist, which can be
categorised in three different groups: positive symptoms such as hallucinations,
delusions and abnormal motor behavior; negative symptoms such as depression,
lack of motivation, social withdrawal and alogia; and cognitive symptoms such
as impairment of attention, working memory, learning and executive function
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(Goldman-Rakic et al., 1994; Hoff et al., 2005; Albus et al., 2006). The origin of
Schizophrenia is attributed to multiple genes with small effects interacting with
exogenous and environmental factors (Frankle et al., 2003). However, the large
heterogeneity of symptoms attributed to Schizophrenia has led to a challenging
dilemma regarding the etiology and pathophysiology of the disease (Patel et al.,
2014). Thus, a better understanding of the brain network substrates involved in
Schizophrenia symptoms will help to develop useful treatments.

2.4.1 Prefrontal Cortex and Schizophrenia

More than a century ago Emil Kraepelin (1919) noticed that the behavioral
abnormalities in patients with Schizophrenia (named “dementia praecox” at that
time) were similar to those in patients with lesions in the frontal lobe. This
causal relationship between Schizophrenia and PFC has gained prominence due
to a better understanding of the role of the PFC in cognitive processes together
with a vast amount of evidence pointing out prefrontal abnormalities in patients
with Schizophrenia. Studies on cerebral blood flow as well as measurements of
local cerebral metabolism showed that patients with Schizophrenia have lower
blood flow in the prefrontal regions indicating a decreased level of activity
(Ingvar and Franzén, 1974; Weinberger et al., 1986; Buchsbaum and Hazlett,
1997). Although this prefrontal hypofunction is not clear in the resting state, it is
reliably found during cognitive tasks engaging the PFC. For example, in a
functional magnetic resonance imaging (fMRI) study in which subjects with
Schizophrenia performed a sequential “n-back” working memory task, they
found a strong correlation between dlPFC dysfunction and poor task
performance as the memory load increases (Perlstein et al., 2001). This is
consistent with the works of Sohee Park and colleagues showing that patients
with Schizophrenia present an impairment in spatial working memory tasks
similar to the ODR task used in monkeys (Park et al., 1992, 1995, 1999).
Additionally, neuroimaging data indicate a significant volume reduction and
gray matter loss in the PFC (Goldstein et al., 1999; Gur et al., 2000; Antonova
et al., 2004; Cannon, 2015). Moreover, morphological studies found smaller cell
bodies and dendritic spine loss in pyramidal neurons from layer III of the dlPFC
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in Schizophrenia (Glantz and Lewis, 2000; Hoftman et al., 2017). This could
potentially affect cognitive function, specifically WM, by a reduction in the
recurrent excitation, that is critical for persistent activity as seen above in section
2.3.1. These findings could explain the reduction in the excitatory activity seen as
a PFC hypofunction in the functional imaging experiments. As a consequence of
the deficit in the pyramidal cell activity, several studies suggest that there is a
homeostatic reduction of the feedback inhibition mediated by GABAergic
interneurons (for a review see Lewis et al. (2012). Several studies found
decreased levels of synaptophysin, a presynaptic terminal protein, in PFC of
patients with Schizophrenia (Glantz and Lewis, 1997). The reason is not known
but few evidences suggests that is due to a reduction of the afferent projections
from the MD (Lewis and Lieberman, 2000). Furthermore, there are three main
neurotransmitter systems causally related to Schizophrenic symptoms:
glutamate, dopamine (DA) and 𝛾-aminobutyric acid (GABA). The three of them
seem to be altered in the PFC of Schizophrenic patients. On one hand,
NMDA/Glutamate antagonists such as ketamine and phenylciclidine (PCP)
induce psychotic symptoms and cognitive dysfunction in healthy patients
(Krystal et al., 1999) and exacerbate negative and cognitive symptoms in
Schizophrenic patients (Lahti et al., 1995). On the other hand, the chronic
administration of these agonists produced a NMDA hypofunction that results in
an increase of mesolimbic DA release which is related to positive symptoms
(Kegeles et al., 2000), and a decrease in DA release in the PFC which is related
with negative symptoms (Jentsch and Roth, 1999; Patel et al., 2014) (Figure 2.12).
A reduction in DA in PFC could explain the cognitive symptoms since the DA is
implicated in cognitive control, for instance gating the sensory input,
maintaining and manipulating WM contents and relying motor commands (Ott
and Nieder, 2019).

Although many evidences converge in the idea that most of the Schizophrenic
symptoms arise from abnormalities in the PFC, one should reject the idea that
Schizophrenia is merely a disease of the PFC. Is important to have in mind that
the PFC did not perform any physiological process entirely by itself, but instead
it is an association cortex which is characterised by a large number of reciprocal
connections with sensor and motor areas as well as thalamus and other subcortical
regions. Moreover, the complexity and the polymorphism of the disease suggest
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Figure 2.12. Pathophysiology of Schizophrenia. From Patel et al. (2014) adapted from Kandel

et al. (2000) and Stahl (2000)

an interaction between multiple brain areas as we will see in the next subsection.

2.4.2 Cerebellar-Prefrontal Loop in Schizophrenia

For many years the scientific community considered Schizophrenia as a disease
affecting the cognition areas in the cortex, for instance the PFC. However, an
increasing number of evidences have unveil that the cerebellum largely influences
the PFC playing an important role in higher cognitive functions and therefore
in Schizophrenia. The work from Nancy Andreasen and colleagues has set the
foundations of the "cognitive dysmetria” theory explaining the Schizophrenic
symptoms (Andreasen et al., 1996, 1998, 1999). This theory postulates that a
dysfunction or disruption of the prefrontal-thalamic-cerebellar circuit will lead
to a desynchronisation between those areas resulting in deficits in the processing
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and coordination of the information. Both anatomical and functional evidences
strongly supports this theory. Abnormalities or lesions in the cerebellum result
in cognitive impairment in associative learning, planning and working memory,
indicating that the cerebellum is part of the brain circuits involved in these
functions (Rogers et al., 2011). Similar to the PFC, in Schizophrenia the cerebellum
shows a reduction in volume, abnormalities in the blood flow and, importantly, a
reduction of the Purkinje cells (Antonova et al., 2004; Martin and Albers, 1995;
Andreasen and Pierson, 2008; Mittleman et al., 2008). Worth mentioning that
Purkinje cells provide input to the dentate nuclei (DN) in the deep nuclei of
the cerebellum and have the important role of deciding which information is
returned to the cortex by inhibiting the DN through GABA neurotransmitter.
Regarding anatomical evidences of the role of the cerebellum in Schizophrenia, the
studies from Strick and colleagues using retrograde and anterograde tracers found
cerebellar input from DN to parietal and frontal cortex, notably in areas 9 and
46, via the MD (Middleton and Strick, 2001; Kelly and Strick, 2003) (Figure 2.13B).
This circuit is closed by the input from the PFC to cerebellum passing through
the pontine nuclei (PN). In another circuit the cerebellum sends inputs to the
ventral tegmental area (VTA) (via the reticulo-tegmental nucleus (RTN) and the
pedunculo-pontine nuclei (PPT)) that project directly to the PFC (Schwarz and
Schmitz, 1997) (Figure 2.13A). The VTA is composed of dopaminergic neurons that
are excited by glutamatergic inputs coming from the cerebellum release DA into
the PFC (Carta et al., 2019). This circuit corresponds to a part of the mesocortical
dopaminergic pathway. These neuroanatomical evidences of the connectivity
between PFC and cerebellum have been also corroborated in electrophysiology
studies describing how stimulation in the cerebellum modify the dynamics of
the PFC (Watson et al., 2009, 2014; Mittleman et al., 2008) and widely proven its
implication in WM (Sobczak-Edmans et al., 2019; Manoach, 2003; Ilg et al., 2013).

On the other hand, fMRI studies have found abnormalities in the functional
connectivity between PFC and cerebellum in schizophrenic patients
(Meyer-Lindenberg and Bullmore, 2010). More recently, also a fMRI study from
Brady and colleagues (Brady Jr et al., 2019) revealed that a lower connectivity
between the dlPFC and the MD strongly correlates with higher negative
Schizophrenic symptoms. Moreover, in the same study, to prove the hypothesis
that disconnection between cerebellum and PFC is the causal mechanism of the
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A. B.

Figure 2.13. Prefrontal-Cerebellar neural circuits A. Neural circuitry involved in cerebellar

modulation of medial PFC dopamine. With the exception of inhibitory cerebellar to dentate

nucleus projections, red arrows indicate glutamatergic pathways. The green arrow indicates the

mesocortical dopaminergic pathway. Dotted black arrow Indicates feedback loop. From Rogers

et al. (2013). B. Fronto-ponto-cerebellar tractography reconstructed on a 3D T1-weighted image.

From Kamali et al. (2010).

negative symptoms they performed repetitive transcranial magnetic stimulation
(rTMS) targeting the cerebellum which produced and enhancement of the
functional connectivity between the two areas and relevantly the increase was
correlated with the reduction of the negative symptoms. The mechanisms
underlying this amelioration due to cerebellar stimulation are not entirely
known but the evidences suggest that glutamatergic and dopaminergic synaptic
transmission could play an important role.
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Part II

ORIGINAL RESEARCH





3 The Role of Neuronal

Nonlinearities in Working

Memory

In this chapter we present a theoretical framework to study network mechanisms
of persistent selective activity like the one observed in PFC during WM tasks.,
We specifically investigate how the interplay between the nonlinearities in the
input-output transfer function (TF) of individual neurons and the recurrent
network dynamics gives rise to multi stability between ongoing activity and a
continuum of states in which the activity is localized. We show on the
mechanism underlying the initiation and termination of the persistent selective
activity depends the single neuron nonlinearities. In the first section, we present
a model network of rate neurons connected all-to-all with a “Mexican’s hat”
structured connectivity by which neurons with similar PDs are strongly
connected. The nonlinearities in the neuron TF allows to have persistence and
selectivity within a single network. The two studied nonlinearities are the
acceleration close to the firing threshold and concavity near the saturating part.
These nonlinearities can be found in typical input-output neuron TF measured in
in vitro experiments (Arsiero et al., 2007; Lafon et al., 2017; Schiff and Reyes,
2012). In order to simplify the analytical calculations we chose the TF to be
piecewise linear functions. In the acceleration or expansive nonlinearity, the
slope of the TF increases while in the concavity or compressive nonlinearity, the
slope decreases. We show that the nature of the nonlinearity shapes the
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configuration of the steady states. In the both cases, for a given connectivity
parameters, we found a region of multistability homogeneous state and a bump
state. Then we explore the mechanisms for terminating the bump state. Due to
the configuration of the steady states, in the model with expansive nonlinearity
the transition from the bump state to the homogeneous can be mediated by a
global inhibitory input. On the other hand, in the compressive nonlinearity, the
transition from persistent to ongoing activity states can be induced by a global
excitatory input. This mechanism is appealing since most electrophysiological
recordings of PFC neurons during WM task show a global increase in the firing
rate around of the response period. The only drawback of this mechanisms is
that the neuron in the center of the bump state are firing close to their saturation
rates which is not consistent with the experimental data showing that the
neurons firing at their PDs are far away from the typical saturating firing rates.
To overcome this issue, we propose a mechanism in which the interaction
between excitatory and inhibitory populations with different accelerating TFs
give rise to an effective saturation. The main idea behind this mechanism is that
at a given input the slope of the inhibitory TF is larger than the slope of the
excitatory TF resulting in a qualitatively similar scenario as in the compressive
nonlinearity. We show different configurations of the excitatory and inhibitory
TFs that leads to an effective saturation and we prove that the same mechanisms
regarding the termination of the bump state through global excitation still holds.
In order to study how the excitatory and inhibitory populations interact in the
effective saturation mechanism and to investigate in detail the dynamics taking
place in the transitions between steady states and the formation of
spatiotemporal patterns of activity we implement the effective saturation
mechanism into a spiking network model. The model consists in an excitatory
and inhibitory populations of leaky integrate-and-fire neurons whose
connectivity is as in our rate models. The nonlinearities of the single neuron TFs
are implemented by adjusting the intrinsic membrane properties together with
background noise. We demonstrate that the effective saturation mechanism as
well as the bump termination by a global excitation still applies. We study in
detail the dynamics during the transitions between the persistent and ongoing
activity states We find that for input durations of the order of the synaptic and
membrane time constants an oscillatory spatiotemporal pattern appears.
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Interestingly, due to these oscillations, only certain values of input intensity will
successfully terminate the persistent state. Taken together, this work provides a
mechanism in which excitatory and inhibitory TFs interact giving rise to
multistability in which termination of the persistent selective state can be
mediated by a global excitation.

3.1 INTRODUCTION

Working memory (WM), the ability to temporarily hold, integrate, and process
information to produce goal-directed behavior, is crucial to higher cognitive
functions such as planning, reasoning, decision-making, and language
comprehension Baddeley (1986); Fuster (2015). The persistent activity recorded
in neocortex during WM tasks is thought to be the main neuronal correlate of
WM Fuster and Alexander (1971); Miyashita and Chang (1988); Goldman-Rakic
(1995). For example, in an oculomotor-delayed response (ODR) task in which a
monkey has to remember the location of a stimulus for several seconds to make a
saccade in its direction, a significant fraction of the neurons in the prefrontal
cortex (PFC) modify their activity persistently and selectively to the cue direction
during the delay period Funahashi et al. (1989, 1990, 1991); Constantinidis et al.
(2001); Takeda and Funahashi (2007). The classical view is that this reflects a
multistability in the dynamics of the PFC circuit because sensory inputs are the
same in the precue and in the delay periods but neuronal activity is different
Hebb (1949); Hopfield (1984); Amit and Brunel (1995, 1997); Wang (2001).

In monkeys performing an ODR task, neurons in the dlPFC show elevated activity
during the delay period which depends on the direction of the presented cue
(e.g. Constantinidis et al. (2001); Constantinidis and Wang (2004); Funahashi
et al. (1989, 1990, 1991)). As the direction of the cue is varied the activity of the
neuron changes. The response of neuron in the dlPFC is therefore characterized
by its tuning curve. Neurons are characterized by its preferred direction i.e. the
direction for which the response is maximum. In the classical view, the “line of
attractors” hypothesis posits that this direction tuning is an emergent property
of the recurrent dynamics in the dlPFC. According to this hypothesis the location
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of the cue is encoded in persistent states, each state characterized by an activity
profile in the feature space which is “bumpy”. Since this space has the geometry of
a ring, the location of the bump can be parametrized by an angle which match the
direction of the cue. Thus, the set of attractors is continuous which is invariant
by rotation. Recent experiment results support this “line of persistent attractors”
hypothesis (see Knierim and Zhang (2012); Hulse and Jayaraman (2020) for a
review). The results reported in Wimmer et al. (2014) show that the behavioral
error patterns in ODR tasks correlate with shifts in the tuning curves of individual
dlPFC neurons on these error trials, implying a drift of an activity bump during
the delay period. Persistent activity bumps encoding for a direction were observed
in drosophila flies using calcium imaging Seelig and Jayaraman (2015); Kim et al.
(2017); Green et al. (2017).

Non selective persistent activity emerges naturally in unstructured recurrent
networks provided the recurrent excitation is strong enough Wang (1999); Hansel
and Mato (2001). To prevent the activity to blow up in the persistent state a non-
linearity is required. Sigmoidal input-output neuronal transfer function provides
the network with an appropriate stabilizing mechanism Brunel (2000). However,
in that case, neurons in the persistent state will fire near saturation. Alternatively,
the stabilizing non-linearity can result from the recurrent inhibition. This requires
the response of the inhibitory neurons to be more sensitive to inputs than the
excitatory neurons Latham et al. (2000); Brunel and Wang (2001).

On another hand, non-persistent activity selective to a stimulus characterized
by a continuous angular variable can emerge from recurrent interactions. This
was first investigated in Ben-Yishai et al. (1995). The “ring model” introduced
in this seminal paper and its generalizations provide a classical framework to
investigate the role of excitation and inhibition in orientation selectivity (see
Hansel and Sompolinsky (1998); Priebe (2016) for a review). Selectivity in the ring
model stems from feature specific strong excitatory connectivity stabilized by
inhibition. Combined with the non-linearity of the input-output transfer function
of the neurons, the network undergoes a Turing instability, as the external input
increases, leading to a line of bump attractors Goldberg et al. (2004). In this
mechanism, the bump attractors are not persistent: if the external input which
represent the stimulus is withdrawn the bump is abolished.
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Compte et al. Compte et al. (2000) showed that persistence and selectivity to
direction can emerge in a network with structured connectivity. With this model
they studied the involvement of slow excitation via N-methyl-D-aspartate receptor
(NMDAR) channels, and showed that a decrease in the percentage of NMDAR
channels out of the excitatory synapses can destabilize the representation in the
network.

In this paper we investigate how the interplay between excitation, inhibition
and the nonlinearities of input-output neuronal transfer function gives rise to
direction selective and persistent delay activity. To this end we consider networks
of excitatory and inhibitory neurons with feature specific connectivity. Neurons
are modeled as rate units or integrate-and-fire elements. We combine analytical
calculation with numerical simulations to characterize the network stable states
as a function of the external input, the interactions strength and the spatial
modulation. We show that the transient network dynamics during the switch-on
and the switch off of the persistent selective state depends on the nature of the
non-linearities in the input-output transfer function of the neurons.

3.2 RESULTS

3.2.1 Nonlinearities in the neuron transfer function shape

the steady states configuration

The frequency-current neuron transfer function (TF), describes the relationship
between the input current to a neuron and its output firing rate. It can be
estimated experimentally through the recording of actions potentials elicited by
a neuron subjected to a protocol of current injection (Cardin et al., 2008;
Carvalho and Buonomano, 2009). With the aim to study the effect of this
nonlinearities on the steady states configuration and the transient behavior
between them, we implement a firing rate model of visuospatial working
memory with structured ring connectivity consistent with the columnar
architecture of the PFC (Goldman-Rakic, 1995; Rao et al., 1999) (model described
in Appendix A.1 and Figure C.1. This specific connectivity, in which neurons
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with similar tuning properties are more connected, is supported by
electrophysiological data showing the horizontal connections of the superficial
layers II-III of the dlPFC (Levitt et al., 1993; Kritzer and Goldman-Rakic, 1995;
González-Burgos et al., 2000). The ring network connectivity used in several PFC
models (Camperi and Wang, 1998; Compte et al., 2000; Gutkin et al., 2001; Hansel
and Mato, 2013; Wimmer et al., 2014), provides a mathematical framework
accounting for orientation selectivity (Ben-Yishai et al., 1995). At the time an
external tuned input reaches the network, it will specifically activate some
neurons whose preferred orientations are aligned to that of the input, giving rise
to a bump of activity. The nonlinearities in the TF together with the structured
connectivity will give rise to a bump attractor dynamics accounting for selective
persistent activity (Camperi and Wang, 1998). In this section we use a reduced
version of the general model consisting of one effective population where all the
rate units share a common TF and time constant (see Appendix A.3). Hence, the
synaptic activity dynamics is described as follows:

𝜏
𝑑𝑚(𝜃, 𝑡)

𝑑𝑡
= −𝑚(𝜃, 𝑡) + 𝑔(𝐶 + 𝐼𝑟𝑒𝑐(𝜃, 𝑡) + 𝐼𝑠𝑡𝑖𝑚(𝜃, 𝑡)) (3.1)

where 𝜏 is the synaptic time constant, 𝜃 is the neuron PD which is distributed
evenly between −𝜋 and +𝜋 and is defined as the direction of maximal response of
a neuron that receives a tuned 𝐼𝑠𝑡𝑖𝑚 centered at 𝜃. 𝑚(𝜃, 𝑡) is the activity of the rate
unit with PD 𝜃, 𝑔(𝑥) stands for the TF linking instantaneously total synaptic input
with the firing rate, 𝐶 is the external background input, 𝐼𝑠𝑡𝑖𝑚(𝜃, 𝑡) is the external
stimulation and 𝐼𝑟𝑒𝑐(𝜃, 𝑡) is the recurrent input arriving to the postsynaptic rate
unit with PD 𝜃 which, in the limit of large network, is defined as:

𝐼𝑟𝑒𝑐(𝜃, 𝑡) =
1

2𝜋

∫︁
2𝜋

𝐽(𝜃 − 𝜉)𝑚(𝜉, 𝑡)𝑑𝜉 (3.2)

where 𝐽(𝜃 − 𝜉) is the connectivity function between postsynaptic neuron with
PD 𝜃 and the presynaptic neuron with PD 𝜉, finally 𝑚(𝜉, 𝑡) refers to the activity
of the presynaptic neuron with PD 𝜉. We choose the connectivity function to be
𝐽(𝜃 − 𝜉) = 𝐽0 + 𝐽1 cos(𝜃 − 𝜉) where 𝐽0 and 𝐽1 are connectivity parameters
controlling the strength of the homogeneous connectivity and the angular
modulation, respectively.
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To simplify the analysis and calculations we choose piecewise linear TF to describe
the nonlinearities. The chosen TF is defined as follows: for inputs between zero
and a threshold 𝑇 , the slope is 𝛼; for inputs larger than 𝑇 , the slope is 𝛽; and
zero for negative inputs (Appendix A.3). Thus, the relationship between 𝛼 and
𝛽 will determine the nature of the nonlinearity. That is to say, 𝛽 > 𝛼 describes
an expansive nonlinearity whereas 𝛽 < 𝛼 describes a compressive nonlinearity
(inset Figure 3.1 A and D). For the sake of simplicity we take 𝛼 = 1. In order to get
an insight about the configuration of the steady states in both cases (expansive and
compressive nonlinearity in the TF) we analyse the FPs of the system considering
𝐼𝑠𝑡𝑖𝑚(𝜃) = 0. Due to the symmetry of the network we can consider, without loss
of generality, the steady states profiles which are symmetric around 𝜃 = 0. Thus,
the steady states equation derived from eqs. (3.1) and (3.2) is:

𝑚(𝜃, 𝑡) = 𝑔(𝐶 + 𝐽0𝑚0 + 𝐽1𝑚1 cos(𝜃)) (3.3)

where 𝑚0 and 𝑚1 correspond to the zeroth and first Fourier components of the
activity, describing the mean and the angular modulation of network activity,
respectively. This parameters are defined as follows:

𝑚𝑘 =
1

2𝜋

∫︁
2𝜋

𝑚(𝜃) cos(𝑘𝜃) 𝑑𝜃, with 𝑘 ∈ {0, 1} (3.4)

In absence of external input, it exists an homogeneous solution, where all the
population presents the same activity, 𝑚(𝜃) = 𝑚0 (since 𝑚1 = 0). The dynamics
associated to this homogeneous steady state corresponds to the spontaneous
activity in the PFC in the pre-cue and post-response periods. The homogeneous
activity can be determined by solving the following equation:

𝑚0 = 𝑔(𝐶 + 𝐽0𝑚0) (3.5)

The stability conditions of the FPs solutions are given by 𝐽0𝑔
′(𝐼) < 1 and

𝐽1𝑔
′(𝐼) < 2 where 𝑔′(𝐼) stands for the derivative of the TF at input I (i.e. 0, 𝛼 or,

𝛽 depending on the total input 𝐼(𝜃) = 𝐶 + 𝐽0𝑚0 + 𝐽1𝑚1 cos(𝜃)) (Appendix A.3).
The stability of the homogeneous FP is ensured if both conditions are fulfilled.
The first stability condition points out that an increase of the homogeneous
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connectivity 𝐽0 will destabilize the homogeneous FPs. On the other hand, the
second stability condition, points that an increase of the angular modulation of
the connectivity 𝐽1, will destabilize the homogeneous FP (Figure 3.1 B and E and
Figure C.3). Even more relevant is the fact that in both stability conditions, if the
slope of the TF increases, the homogeneous FP becomes unstable.

The bifurcation diagrams show the stable states mean activity (𝑚0) and its angular
modulation (𝑚1, color coded) under variations of the background input 𝐶 for the
expansive and compressive nonlinearity (Figure 3.1 A and D, respectively). In
the expansive nonlinearity scenario (𝛽 > 1), for small 𝐶 , the homogeneous is the
only stable state. Increasing 𝐶 , the slope of the TF increases to a value 𝛽, leading
to a destabilisation of the homogeneous state and the apparition of a bump state.
In this case, for large values of 𝐶 the bump is the only stable state. Note that
there is a small region of bistability where homogeneous and bump states coexist,
being the bump state the one displaying larger activity (Figure 3.1 A). Notice
that the dynamics associated with the bump steady states corresponds to the
characteristic persistent selective activity in the PFC during the delay period.
On the other hand, in the compressive nonlinearity scenario (𝛽 < 1), for small
values of 𝐶 , the bump is the only stable state. By increasing 𝐶 , the slope of the
TF decreases to a value 𝛽, leading to a stabilisation of the homogeneous state and
thus to the generation of a bistable region (Figure 3.1D and Figure C.3A). In this
particular case, the bump state exists only in a specific range since it destabilises
at large values of 𝐶 . As in the expansive nonlinearity, a region of bistability also
exists but here the bump state is the one displaying smaller values of activity.
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Figure 3.1. Steady state analysis and simulations of the firing rate model for expansive

and compressive nonlineatities in the TF. A. Mean activity (𝑚0)-background input (𝐶)

bifurcation diagram describing the fixed points for different values of 𝐶 for an expansive

nonlinearity in the TF. The angular modulation of the activity 𝑚1 is color-coded. The chosen

parameters are 𝛼 = 1, 𝛽 = 10, 𝐽0 = −1.5 and 𝐽1 = 1.2. Inset: 𝑔(𝐼) function or TF describing an

expansive nonlinearity. B. 𝐽1 − 𝐶 phase diagram describing all the stable steady state dynamics

that can be found at different values of the angular modulation of the connectivity 𝐽1 and 𝐶 . B.

Upper panel; Activity time-series for each rate unit in the network subjected to a modelled ODR

trial consisting in a tuned input with duration 300𝑚𝑠 centered at 𝜃 = 0 presented at time 𝑡 = 0 𝑠

representing the visual cue and an homogeneous input at 𝑡 = 3 𝑠 with same duration representing

the response period activity. With fixed background input 𝐶 = 2. The activity amplitude for each

unit (𝑚(𝜃) ≡FR) is color-coded. Lower panel; Population activity time series showing the time

evolution of the mean activity 𝑚0 (black) and angular modulation 𝑚1 (gray). External stimulation

periods are enclosed in the shaded areas.D,E and F: same for the compressive nonlinearity. The

chosen parameters are 𝛼 = 1, 𝛽 = 0.4 and 𝐽0 = 0.1. In D 𝐽1 = 4 and in F 𝐶 = 1.5.
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3.2.2 Two different mechanisms for terminating

persistent activity with global excitation: long VS

short stimulus.

We performed simulations of the single network emulating one single trial under
the ODR task protocol. We set the network to operate in a bistable regime by
choosing a proper value of the background input (𝐶). At time 𝑡 = 0 𝑠 we apply
a transient tuned input of 300𝑚𝑠 duration centered at 𝜃 = 0 which represents
a visual input from sensory afferents to the PFC upon presentation of a visual
cue. The first input elicits a bump state which persists over time since it is a
FP. At time 𝑡 = 3 𝑠 a homogeneous input is applied in order to "switch off" the
bump state by transitioning to the homogeneous state. As a direct consequence
of the difference in the steady states configuration between the expansive and
compressive nonlinearity, the mechanisms relying on steady states allowing to
transition from the bump to the homogeneous state (hereinafter referred as B-H
transition) will also differ. Here, we refer to slow mechanisms when transient
external inputs have a duration much longer than that of the synaptic time
constant (𝜏 ). In the expansive nonlinearity case, the B-H transition can only be
performed by a global inhibitory input (Figure 3.1 C). Whereas in the compressive
nonlinearity the B-H transition can be performed by means of a global excitatory
input (Figure 3.1 F). In the case that the external input duration is shorter than
the synaptic time constant (𝜏 ), transitions between stable states that coexists for
a certain value of 𝐶 , can also be performed. In contrast to previous mechanisms
relying on steady states, this mechanism is based on the dynamics. Since the
input duration is shorter than the system time constant, the stable states will not
be perturbed. In both expansive and compressive nonlinearities, owing to the
bistable regime, the B-H transition can be performed by a strong short excitatory
input (Figure 3.2 A and C). This phenomenon can be better understood by studying
the dynamics depicted by the activity components 𝑚0 and 𝑚1 (Equation (3.4) )
in the 𝑚0 −𝑚1 phase plane. Using a tuned input centered at 𝜃 = 0 to elicit the
activation of a bump of activity symmetric around 𝜃 = 0, enables to describe the
activity trajectory in the 𝑚0 −𝑚1 space since the second Fourier component
𝑚2 = 1

2𝜋

∫︀
2𝜋
𝑚(𝜃) sin(𝜃) 𝑑𝜃 will be zero due to the sinus term in the integral. For

44



The Role of Neuronal Nonlinearities in Working Memory

a certain value of 𝐶 ensuring bistability, 𝑚0 and 𝑚1 nullclines are plotted in the
space (thin grey and black lines, respectively; Figure 3.2 B and E). FPs are described
by the crossings between 𝑚0 and 𝑚1 nullclines. Filled and empty dots describe
stable and unstable FPs, respectively. The FP on the 𝑚0 axis corresponds to the
homogeneous state (𝑚0 = 0) and the upper (lower) FP correspond to the bump
centered at 𝜃 = 0. The thick black line depicts the stable manifold of the unstable
FP which separates the basin of attraction (BOA) of the stable homogeneous and
bump state. The activity trajectory plotted on the 𝑚0 −𝑚1 space describes the
fast dynamics caused by the external inputs. The trajectory of the activity under a
tuned input centered at 𝜃 = 0 applied to the network at time 𝑡 = 0 𝑠, is described
by the green line. Note that the trajectory begins at the homogeneous FP and
after the stimulus removal it relaxes towards the bump FP. Next, a global strong
short excitatory input is applied at time 𝑡 = 3 𝑠. The input drives the trajectory
away from the bump FP due to an increase of the 𝑚0 component, crossing the
separatrix and penetrating into the homogeneous BOA (blue* line in Figure 3.2 B
and D). Thus, when the input is withdrawn the trajectory evolves towards the
homogeneous FP.

How strong and short has to be this stimulus to effectively switch from one
stable state to the other? To get some insight we calculated, for a given stimulus
duration, the minimal input current (Figure 3.3 B and D) required to perform
either H-B or B-H transition (Figure 3.3, green and red curve, respectively). We
also show the minimal input charge expressed as the minimal input current
multiplied by the duration of the stimulus (Figure 3.3 A and C). Any input equal to
or greater than the curve enables the state transition. We chose the input owed to
perform the H-B transition to be tuned and centered at 𝜃 = 0 and the input owed
to perform the B-H transition to be homogeneous. In order to interpret these
phase diagrams we have to underscore that the input duration at the vicinity of the
synaptic time constant (𝜏 = 10𝑚𝑠) delimits two different regimes where different
transition mechanisms take place. For short input durations (𝜏 ≫ ∆𝑡𝑠𝑡𝑖𝑚) the
state transitions rely on the dynamics and to understand the behavior of the
transitions we have to study the trajectories in the activity space (Figure 3.2 B
and D). Conversely, for long input durations (𝜏 ≪ ∆𝑡𝑠𝑡𝑖𝑚) the state transitions
rely on the attractors and to explain the transitions we have to study the steady
states under the external input as a bifurcation parameter (Figure 3.1 A and D).
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Figure 3.2. Short intense excitatory input terminates persistent activity. A. Dynamics of

the network in response to a 3𝑚𝑠 tuned excitatory pulse at 𝑡 = 0 𝑠 centered at 𝜃 = 0, and a

0.5𝑚𝑠 homogeneous excitatory pulse at 𝑡 = 3 𝑠. Parameters are as in Figure 3.1 C. B. Dynamics

of 𝑚0 and 𝑚1 from A plotted on the 𝑚0 −𝑚1 phase plane (see text). Green: trajectory during

switch-on (0 < 𝑡 < 3 ms). Blue: trajectory during switch off (3 < 𝑡 < 3.0005 s). Thin black and

grey lines are the 𝑚0 and 𝑚1 nullclines, respectively. Thick black line depicts the separatrix.

Stable and unstable FPs are represented by a solid and empty black dot, respectively. Red dots

represent the extinction of the external stimulation. C and D. The same for the compressive

nonlinearity case. Parameters as in Figure 3.1 F. In all the simulations we used 𝑑𝑡 = 0.01𝑚𝑠;

𝜏 = 10𝑚𝑠.
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This being set, for the expansive nonlinearity, the B-H transition curve shows a
constant value of charge for short input duration indicating that the input current
needed to cross the separatrix scales with the duration of the input (Figure 3.3A,
red). As the stimulus duration approaches to 𝜏 , the curve for both input charge and
current depict asymptotic behavior (Figure 3.3 A and B). This was expected since
in the expansive nonlinearity the B-H transition cannot be performed by a long
positive input as seen in bifurcation diagram (Figure 3.1 A). The H-B transition
curve, in green, shows a constant value of charge for small input duration below ,
while for large input duration, the input current is the one that reaches a constant
value. This result shows that for input duration shorter than 𝜏 , the charge needed
to cross the separatrix tends to a constant value. In other words, the minimal
input current scales with the duration, again indicating that the mechanism relies
on the dynamics. On the other hand, for large input duration, the input current
needed to perform the transition tends to a constant value, i.e. the transition
rely on the steady states. For the compressive nonlinearity, the main differences
are in the B-H transition (Figure 3.3 C and D, in red). For short input durations,
the minimal input charge tends to a constant value but two orders of magnitude
larger than the charge needed to perform the B-H transition in the expansive
nonlinearity case. This difference is mainly caused by the fact that the separatrix
in the activity space for the compressive nonlinearity is almost parallel to the
𝑚0 axis (Figure 3.2 D). Thus, for the activity to penetrate into the homogeneous
BOA a large input charge is needed. Conversely, for large input durations, the
B-H transition reaches a constant value of input current (Figure 3.3 D, red). In
this case, the difference arises from the steady states configuration (Figure 3.1
D) in which the B-H transition can be performed by a global excitatory input.
Thus, the constant value of the minimal input to perform the B-H transition can
be computed from the bifurcation diagram as the difference between the initial
background input and the largest value of input at which the bump state exists.
This value is around 0.15 for 𝐶 = 2 (see Figure 3.1 D and top inset Figure 3.3 D).

Putting all together we have shown two different regimes defined by the
synaptic time constant with distinct mechanisms for transition between states by
means of a global excitation. The dynamical regime (𝜏 ≫ ∆𝑡𝑠𝑡𝑖𝑚) allows the B-H
transition to be performed by a strong excitatory input for both expansive and
compressive nonlinearity while the steady state regime (𝜏 ≪ ∆𝑡𝑠𝑡𝑖𝑚) only allows
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the B-H transition to be performed by a global excitatory input in the
compressive nonlinearity. Taken together, the compressive nonlinearity seems
to be a suitable substrate underlying termination of persistent selective activity
by a global excitatory input.

Figure 3.3. Synaptic time constant delimits two different regimes with distinct

transition mechanisms. A. Minimal input charge (𝐼𝑐𝑟𝑖𝑡 ·Δ𝑡𝑠𝑡𝑖𝑚) needed to perform a state

transition plotted against the duration of that input, Δ𝑡. Homogeneous to bump state transition

(H-B) in green and bump to homogeneous state transition (B-H) in red. Inset: zoom for durations

below 1𝑚𝑠. B. Same as in panel A but the 𝑦-axis is representing the minimal input charge

𝐼𝑐𝑟𝑖𝑡. Inset: zoom for durations above 10𝑚𝑠. C and D. Same as in A and B, respectively, for the

compressive nonlinearity case.
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3.2.3 The interplay between excitatory and inhibitory

populations elicits an effective saturation.

With the aim of studying the mechanisms for termination of persistent selective
activity emerging from the compressive nonlinearity in a more biologically
plausible model, we consider a network of two different populations one
accounting for excitatory and the other inhibitory neurons. We implement the
previous model relaxing the assumption that both populations have the same TF.
In this case, the synaptic dynamics of the excitatory and inhibitory populations
will be different and thus, described by separated equations of the form of
eq. (3.1). The total input arriving to a rate unit in the absence of external
stimulus is described as follows:

𝐼(𝜃) = 𝐶 + (𝐽𝐸 *𝑚𝐸)(𝜃) − (𝐽𝐼 *𝑚𝐼)(𝜃) (3.6)

where 𝐽𝑋 is the connectivity function, 𝑚𝑋 is the activity of the population
𝑋 ∈ {𝐸, 𝐼} and the operator * is described as (𝑓 *𝑔)(𝜃) = 1

2𝜋

∫︀
2𝜋
𝑓(𝜃− 𝜉)𝑔(𝜃)𝑑𝜉.

The two last terms in eq. (3.6) represent the excitatory and inhibitory recurrent
interaction, respectively. In the steady state the activity for each population is
described by 𝑚𝑋(𝜃) = 𝑔𝑋(𝐼(𝜃)) with𝑋 ∈ {𝐸, 𝐼}. Substituting this expression
in eq. (3.6) yields the total input in the steady state:

𝐼*(𝜃) = 𝐶 +
1

2𝜋

∫︁
2𝜋

𝐹0(𝐼
*(𝜉))𝑑𝜉 +

1

2𝜋

∫︁
2𝜋

𝐹1(𝐼
*(𝜉)) cos(𝜃 − 𝜉)𝑑𝜉 (3.7)

where 𝐹𝑖(𝐼)
def
= 𝐽𝐸

𝑖 𝑔𝐸(𝐼) − 𝐽 𝐼
𝑖 𝑔𝐼(𝐼) with 𝑖 = 0, 1. Notice here that for

𝑔𝐸(𝐼) = 𝑔𝐼(𝐼), these equations match the ones from the previous section. In
addition, the Fourier components of the activity defined in eq. (3.4) also applies.
In this general model, it also exists an homogeneous state where 𝑚𝑋

1 (𝐼) = 0 and
the activity of a neuron in population 𝑋 is described by:

𝑚𝑋(𝜃) = 𝑔𝑋(𝐶 + 𝐼0) (3.8)

where 𝐼𝑘
def
= 𝐽𝐸

𝑘 𝑚
𝐸
𝑘 − 𝐽 𝐼

𝑘𝑚
𝐼
𝑘. With the definition of 𝐼0 and eq. (3.8) we can write
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another equation for 𝐼0:

𝐼0 = 𝐹0(𝐶 + 𝐼0) (3.9)
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Figure 3.4. Two population mechanisms to terminate the bump activity through global

excitation. A. Excitatory (red) and inhibitory (blue) neurons’ TFs in the acceleration difference

model. The slope of the inhibitory TF is 1 for 0 < 𝐼 < 1 and 𝛽 for 𝐼 > 1. B. Example of 𝐹0(𝐼) (left)

and 𝐹1(𝐼) (right) in the acceleration difference model. The slope of the first segment (0 < 𝐼 < 1)

is 𝐽𝐸
𝑖 − 𝐽𝐼

𝑖 and of the second segment (𝐼 > 1) is 𝐽𝐸
𝑖 − 𝛽𝐽𝐼

𝑖 (𝑖 = 0, 1).

The activity in the steady state can be calculated by solving eq. (3.9) and
substituting 𝐼0 into eq. (3.8). The stability conditions for the homogeneous state
are 𝐹 ′

0(𝐼) < 1, describing the rate stability and 𝐹 ′
1(𝐼) < 2, describing the spatial

stability (Appendix A.4). Since 𝐹 ′
𝑖 (𝐼) = 𝐽𝐸

𝑖 𝑔
′
𝐸(𝐼) − 𝐽 𝐼

𝑖 𝑔
′
𝐼(𝐼), in order to obtain a

similar scenario as in the compressive nonlinearity in Figure 3.1 D, the slope of
the excitatory TF has to be larger than the slope of the inhibitory TF for small
inputs, but given a input threshold, the inhibitory slope has to be larger than the
excitatory to obtain a effective saturation. This can be accomplished by two
different mechanisms: creating a difference in the TF acceleration and/or
creating a difference in the TF threshold between the excitatory and inhibitory
neurons (Figure C.4). One simple example of the acceleration difference is to use
a threshold linear TF for the excitatory neurons with slope equal to 1 and a
piecewise linear TF with an increase in the slope at a given threshold 𝑇

(Figure 3.4 A). To show the effective saturation we plot 𝐹0 and 𝐹1 as a function
of the input which represents the components of the network effective TF
(Figure 3.4 B). For inputs between 0 and 1 the slope of 𝐹0(𝐼) and 𝐹1(𝐼) will be
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𝐽𝐸
0 − 𝐽 𝐼

0 and 𝐽𝐸
1 − 𝐽 𝐼

1 , respectively. While for inputs above 1, the slope of 𝐹0(𝐼)

and 𝐹1(𝐼) will be 𝐽𝐸
0 − 𝛽𝐽 𝐼

0 and 𝐽𝐸
1 − 𝛽𝐽 𝐼

1 , respectively. Depending on the
connectivity parameters 𝐽𝑋

𝑖 and the slope parameter 𝛽, we can obtain different
scenarios of effective saturation, for instance, the slope of the segment for 𝐼 > 1,
can be smaller than the slope of the segment 0 < 𝐼 < 1 or even negative. Notice
that in the reduced model 𝐹0 and 𝐹1 are proportional to the TF, thus the
compressive mechanism exploits the nonlinearity close to the saturation and the
neurons display an activity level close to the saturation rate both in the
homogeneous state and close to the center of the bump. Interestingly, unlike in
the reduced model, 𝐹0 and 𝐹1 depend on the interplay between the excitatory
and inhibitory TF and the connectivity, thus the same mechanism elicited by the
compressive nonlinearity can be obtained without involving the saturating part
of the neuronal TF.

For the acceleration difference mechanism described in Figure 3.4 and for a
given connectivity parameters, we obtain the bifurcation diagram of the mean
excitatory activity (𝑚𝐸

0 ) and the spatial modulation of the activity (𝑚𝐸
1 , color

coded) under variations of the background input 𝐶 . Similar to the bifurcation
in the compressive nonlinearity (Figure 3.1 D), there is a bounded region of 𝐶
where a bump state exists and for larger values of 𝐶 it destabilises and the only
stable state is the homogeneous. In a relatively large region of 𝐶 the bump
state coexists with the upper homogeneous state. There is also a small region of
bistability between the zero stable state and the bump and a small region where
the bump is the only stable state. By studying the steady states as a function
of the spatial connectivity parameter of the inhibitory population (𝐽 𝐼

1 ) we can
say that the spatial stability of the homogeneous state is guaranteed provided
that 𝐽𝐸

1 − 𝐽 𝐼
1 < 2 and 𝐽𝐸

1 − 𝛽𝐽 𝐼
1 < 2 (i.e. 1 > 𝐽𝐸

1 − 2𝐽 𝐼
1 < 𝛽). This two stability

conditions are represented by the horizontal lines separating the homogeneous
from the bump state in the 𝐽 𝐼

1 − 𝐶 phase diagram (Figure C.4). We performed
simulations of the two populations network under the same stimulation protocol
used in Figure 3.1 C and F. As expected from the bifurcation diagram of the
acceleration difference mechanism, the termination of the persistent selective
activity can be performed by a global excitatory input of duration larger than
the synaptic time constant . Interestingly, for the same mechanism exposed in
the previous section, the B-H transition can also be mediated by an input of
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duration shorter than the synaptic time constant (Figure 3.5 B and C). Diagrams
showing the minimum input charge and intensity to perform the B-H steady
state transition show a qualitatively similar scenario for long stimulus as in the
diagrams for compressive nonlinearity (Figure 3.5 D). In both cases the stimulus
intensity saturates to a constant value as stimulus duration increases above well
above ∆𝑡𝑠𝑡𝑖𝑚 > 1𝑚𝑠 (Figure 3.5 D, inset). Regarding the minimal input charge, as
the duration of the stimulus is reduced to a value of the same order of magnitude
than the synaptic time constants (𝜏𝐸 = 5 ms and 𝜏𝐼 = 1 ms) the minimal charge
needed to do the switch off increases to a maximum around 2 ms. This behavior
represents the effect of having two population with different time constants. Since
excitatory time constant (𝜏𝐸 = 5 ms) is larger than the inhibitory (𝜏𝐼 =1 ms),
for stimulus duration of the order of 𝜏𝐸 the inhibitory firing rate increases faster
than the excitatory since the external input is integrated faster for the inhibitory
population and thus larger current is needed to increase the excitatory firing
rate (and thus 𝑚𝐸

0 ) in order to cross the separatrix. This effect is maximum for
stimulus duration larger than the 𝜏𝐼 and smaller than the 𝜏𝐸 . Once the stimulus
duration becomes much smaller than 𝜏𝐼 this effect is attenuated and the minimal
charge decreases to a saturation value around 0.1 ms. Conversely to the behavior
in the compressive diagrams where the charge saturates at a very large values for
very small stimulus (𝜏 ≫ ∆𝑡𝑠𝑡𝑖𝑚), in the effective saturation scenario, the charge
decreases towards small values. This difference may be a reflex of the steeper
separatrix in the 𝑚𝐸

0 −𝑚𝐸
1 space related to the almost horizontal separatrix in

the compressive nonlinearity case. The same analysis for the threshold difference
as well as for the combination of both effective saturation mechanisms can be
found in Figure C.4 and Figure C.5.
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Figure 3.5. Two population mechanisms to terminate the bump activity through global

excitation. A. Bifurcation diagram of 𝑚𝐸
0 -𝐶 in the two population network in the acceleration

difference case. Color code: first Fourier component of the activity, 𝑚𝐸
1 . Inset: the TFs of the

excitatory (red) and the inhibitory (blue) neurons. B. Dynamics of 𝑚𝐸(𝜃) (top, color code) and

the time course of 𝑚𝐸
0 and 𝑚𝐸

1 (bottom) in response to a 0.3 𝑠 tuned input at 𝑡 = 0 𝑠 centered at

𝜃 = 0 and a 0.3𝑚𝑠 homogeneous pulse a 𝑡 = 3 𝑠. C Dynamics of 𝑚𝐸
0 and 𝑚𝐸

1 from B plotted on

the 𝑚𝐸
0 -𝑚𝐸

1 phase plane. Green: response to the switch-on input. Blue: response to switch off

input. For further details see caption in Figure 3.2. D. Minimal input charge (𝐼𝑐𝑟𝑖𝑡 ·Δ𝑡) needed

to perform the switch off transition plotted against the duration of that input, Δ𝑡. In yellow,

the area where the switch off cannot be performed. In blue, the region where the switch off

can be performed. To be compared with Figure 3.3 C red curve. Inset: Minimal input 𝐼𝑐𝑟𝑖𝑡, as a

function of its duration Δ𝑡𝑠𝑡𝑖𝑚. To be compared with Figure 3.3 D red curve. Parameters used in

this figure: 𝐽0
𝐸 = 5, 𝐽0

𝐼 = 4.5, 𝐽1
𝐸 = 5, 𝐽1

𝐼 = 1.1 and 𝛽𝐼 = 10. 𝜏𝐸 = 5 ms and 𝜏𝐼 = 1 ms and

𝐶 = 1.5 (in B,C,D) 53
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3.2.4 Effective saturation within a network of spiking

neurons.

Towards a more realistic model providing time courses of synaptic interactions,
subthreshold dynamics and spatiotemporal spiking patterns, we developed a two
population spiking network model of current based leaky integrate and fire
neurons with structured connectivity (Figure 3.6 A and B). The model consists in
two populations of leaky integrate-and-fire neurons (𝑁𝐸 = 𝑁𝐼 = 12000)
connected all-to-all through a "Mexican’s hat" connectivity profile (Figure 3.6 B).
We take the excitatory to excitatory synaptic weight profile (𝐽𝐸𝐸(𝜃)) to be the
same as the excitatory to inhibitory (𝐽𝐸𝐼(𝜃)). And the same applies for the
inhibitory population (i.e. 𝐽𝐼𝐼(𝜃) = 𝐽𝐼𝐸(𝜃)). As in the rate model, each neuron is
labeled by its PD, and the evolution of the membrane potential 𝑉𝑋(𝜃, 𝑡) in the
subthreshold regime for a neuron in the postsynaptic population 𝑋 ∈ {𝐸, 𝐼} is
described by:

𝐶𝑋 �̇�𝑋(𝜃, 𝑡) = 𝑔𝑋𝑙 (𝑉𝑋(𝜃, 𝑡)− 𝑣𝑋𝑙 ) + 𝐼𝐸𝑋
𝑟𝑒𝑐 (𝜃, 𝑡)− 𝐼𝐼𝑋𝑟𝑒𝑐 (𝜃, 𝑡) + 𝐼𝑏𝑔(𝜃, 𝑡) + 𝐼𝑠𝑡𝑖𝑚(𝜃, 𝑡)

(3.10)

where 𝐶𝑋 is the membrane capacitance, 𝑔𝑋𝑙 and 𝑣𝑋𝑙 are the leak conductance and
the membrane reversal potential, respectively. 𝐼𝑌 𝑋

𝑟𝑒𝑐 is the recurrent input from
presynaptic neurons in population 𝑌 to a postsynaptic neuron in population 𝑋

where 𝑋, 𝑌 ∈ {𝐸, 𝐼}. 𝐼𝑏𝑔 is a background input representing synaptic noise and
𝐼𝑠𝑡𝑖𝑚 is a stimulus dependent input. Whenever the voltage membrane 𝑉𝑋 reaches
the firing threshold 𝑣𝑋𝑡 a spike is emitted and the membrane potential is reset to
𝑣𝑋𝑟 , without a refractory period. For more details about the parameters, recurrent
and background input Appendix B.

In this model, the effective saturation can also be implemented by the same
mechanisms as in the rate model: acceleration difference, threshold difference or
the combination of both (Figure C.6). Since in the spiking model we cannot choose
explicitly the TF, we shape the neuronal TF by choosing specific parameters
of background noise and membrane time constant. In general, the external
noise shapes the expansive nonlinearity close to the firing threshold of the TF
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(Hansel and van Vreeswijk, 2002) while the membrane time constant shapes the
acceleration or slope of the TF. Likewise, the membrane time constant is controlled
by the intrinsic properties of the neuron such as the membrane capacitance and
the leak conductance (𝜏𝑋𝑚 = 𝐶𝑋/𝑔

𝑋
𝑙 ). We find the parameters of external noise

and membrane capacitance which provide a threshold linear TF for the excitatory
neurons and an accelerating TF for the inhibitory neurons, both with the same
activation threshold (Figure 3.6 C, inset). By injecting an external input, increased
and decreased adiabatically, we explore all the stable states recreating the rate
bifurcation diagram for the excitatory activity in Figure 3.5 (Figure 3.6 C). As
in the rate model with acceleration difference, we found a bounded region of
the external input (𝐼𝑒𝑥𝑡) for which the bump state exists. In addition, there
is also a region of coexistence between the bump state and a homogeneous
state which arises at larger values of external input. The main difference with
the bifurcation diagram of the rate model is that the spiking network displays
smoother transitions between the steady states due to the smoothness of the TFs
nonlinearities. By simulating the bifurcation diagram at different values of the
inhibitory spatial modulation parameter of the connectivity (𝐽 𝐼

1 ), we obtain the
𝐽 𝐼
1 − 𝐼𝑒𝑥𝑡 phase diagram (Figure 3.6 D). We found qualitatively the same states

configuration as in the rate model in the acceleration difference case (??), although
in the rate model the boundary lines separating the bump and homogeneous states
and the bistable regime from the bump alone are straight lines. The differences
emerging in the spiking network could have its origin in the noise and the use
of a continuous TF in contrast to the rate model with no noise and piecewise
linear TFs. Same analysis for threshold difference and the combination of both
mechanisms can be found in ??.

3.2.5 Oscillatory dynamics govern the steady state

transitions

Setting the network to operate into the bistable regime, the homogeneous state
can be destabilised by applying a tuned input eliciting a transition towards the
bump state. On the other hand, the bump state can be terminated by applying a
long global excitatory input as expected from the bifurcation diagram in Figure 3.6
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Figure 3.6. Two population network of leaky integrate and fire neurons operating in

the acceleration difference model. A. Schematic diagram of the two populaition spiking

network model. Inhibitory neurons (𝑁𝐼 = 12000) in blue and excitatory neurons in red

(𝑁𝐸 = 12000). Inhibitory and excitatory recurrent inputs depicted by a blue flat arrow and

a red arrow, respectively. B. Connectivity profile of neuron with PD 𝜃 = 0. Inhibitory and

excitatory connectivity is depicted in dotted blue and red, respectively. For simplicity we consider

𝐽𝐸𝐸 = 𝐽𝐸𝐼 and 𝐽𝐼𝐼 = 𝐽𝐼𝐸 . C Bifurcation diagram of 𝑚𝐸
0 -𝐶 in the two population spiking

network in the acceleration difference case. Color code: first Fourier component of the activity,

𝑚𝐸
1 . Inset: the TFs of the excitatory (red) and the inhibitory (blue) neurons. D. 𝐽𝐼

1 − 𝐶 phase

diagram describing all the stable steady states that can be found at different values of the angular

modulation of the connectivity 𝐽𝐼
1 and 𝐶 .

C (Figure 3.7 A). Likewise, and as seen in the two populations rate model, the
B-H transition can also be mediated by a short strong homogeneous input which
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restores the homogeneous state by synchronising the network and inducing a
subsequent silent period (Figure 3.7 B). The simulations of the spiking network
show that during the homogeneous state the mean firing rate of the excitatory
population is around 12 Hz, and 30 Hz for the inhibitory population (Figure 3.7
A top and bottom panels, respectively) while the rate of the excitatory neurons
in the center of the bump increases up to 25 Hz, and 60 Hz for the inhibitory
neurons. Notice that , in all cases, during the bump state, the population mean
firing rate (𝑚𝑋

0 ) decreases respect to its value in the homogeneous state but the
individual firing rate of neurons in the bump increases by 2-fold approximately.

A. B.

Figure 3.7. Dynamics of the network of leaky integrate and fire neurons. A. Dynamics of

the network subjected to an ODR stimulation protocol: tuned input with duration 0.3 𝑠 centered at

𝜃 = 0 at 𝑡 = 0 𝑠 and a homogeneous input with duration 0.3 𝑠 at 𝑡 = 3 𝑠. Top pannel: mean firing

rate for each excitatory neuron computed in windows of 75𝑚𝑠 and below the time evolution of

the activity components 𝑚𝐸
0 and 𝑚𝐼

1. Bottom: same for the inhibitory population. B. Same as in

A but with an homogeneous input of duration 10𝑚𝑠 at 𝑡 = 3 𝑠.

One striking difference of the spiking model regarding the rate model is that the
trajectories of the activity components 𝑚𝑋

0 and 𝑚𝑋
1 of the spiking network
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describe oscillatory patterns in the vicinity of the steady state transitions, most
notably in the B-H transition. The origin of these oscillatory patterns is
attributable to the interaction amid several dynamical processes with different
time constants. Explicitly, in this model, together with the structured
connectivity, the voltage membrane and the interaction between excitatory and
inhibitory recurrent synaptic inputs operating at different time scales account for
the oscillatory spatiotemporal patterns. In order to unravel how the voltage
membrane and the recurrent synaptic input dynamics interact giving rise to
oscillatory patterns we studied the spike traces of the excitatory population close
to the B-H transition (Figure 3.8). When a global external input is applied during
a long period (e.g. 300 ms), the mean firing rate of the population (𝑚𝑋

0 ) increases
rapidly and fluctuates around a constant value. On the other hand, the spatial
selectivity (𝑚𝑋

1 ) decays to zero also depicting a fluctuation (Figure 3.8 A top).
Notice that these two parameters describe a low-pass filtered trace of the
population spiking activity. Taking advantage of working with a spiking model,
we can display the spike raster plot of the excitatory population during the
transition period (Figure 3.8 A bottom). From the raster, one can see a sequential
activation (SA) of all the population which is initiated by certain neurons at the
center of the bump and is extinguished after the activation of neurons with PD
opposite to the bump. Before the first SA is finished, a group of neurons from the
center of the bump starts the next SA cycle. In the time between two SA onsets
certain neurons belonging to the bump reactivate. To identify which neurons are
implicated either in the SA or bump reactivation, we track neurons which spike
at certain times referred to the stimulus onset. Units which spike 5 ms before the
stimulus onset are implicated in the initiation of the subsequent SA (Figure 3.8 A
bottom). Since these units spiked right before the stimulus onset, their voltage
membrane is close to the reset potential and needs around 50 ms to reach the
spiking threshold, matching the period of the SA. Tracking the units which have
spike 1, 10 and 20 after the stimulus onset we can see that they maintain the
same order of activation in the following SA but eventually this sequence fades
over time due to the recurrent interaction and the background noise. Tracking
back the first neurons to activate after the stimulus onset (at 1 ms after) we
found that they are neurons from the bump which spiked around 50 ms before.
Our hypothesis to explain this pattern is that neurons belonging to the bump
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which have not spiked lately, have been receiving stronger excitatory inputs
from nearby neurons which have spiked thus, when the stimulus is applied,
these neurons with the voltage membrane close to the firing threshold are the
first to spike. These neurons will be followed by other neurons more distal from
the center of the bump which, due to the structured connectivity, have been
receiving smaller recurrent excitatory input and will need slightly more time to
integrate the stimulus and fire. Thus, the recurrent synaptic input which is
dependent on the structured connectivity would be the origin of this SA pattern.
Moreover, the role of the voltage membrane dynamics, together with the broad
inhibition, is to create an effective refractory period which depends on the
intensity of the stimulus. Neurons which have spiked a few milliseconds
(< 50𝑚𝑠) before the stimulus onset and hence belonging to the bump, won’t be
able to spike at the very beginning of the stimulation despite they have been
receiving strong inputs from nearby neurons. Because they have spiked recently,
their voltage membrane will be close to the reset potential at the stimulus onset.
As previously stated, these groups of neurons will reactivate the bump activity
during the progression of the SA (Figure 3.8 A bottom, e.g. pink dots). We
validate this hypothesis by analyzing the effect of shuffling the voltage
membrane values of all the neurons at the onset of the stimulus and by setting to
zero the recurrent inputs during the first half of the duration of the stimulus
(Figure 3.8 C top and bottom, respectively). The shuffling of 𝑉𝑚 removes the
reactivation of the bump during SA and then, neurons from the bump are the
firsts to spike when the stimulus is applied since the shuffling removes
temporarily the effective refractory period created by the membrane voltage
dynamics. Another consequence is that the SA becomes prolonged in time
although the period of the onset is still the same as in the control situation.This
causes a desynchronisation of the activity created by the recurrent inputs from
the inhibitory population. By setting to zero the recurrent inputs the spiking
pattern results in an alternation between a SA, which is barely a synchronous
activation, and the bump reactivation. Neurons have lost their synaptic memory,
hence the effect of the structured connectivity is somehow lost. The dynamics is
entirely driven by the membrane voltage dynamics. This results in an almost
synchronous activation where neurons far from the bump fire just a few
milliseconds after, because their 𝑉𝑚 is lower than that of some neurons in the
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bump. The absence of inhibition results in a regular and more frequent spiking
pattern where the SA period has almost doubled. After 150 ms from the stimulus
onset, the recurrent inputs are restored and inhibition increases the SA period
but the information from the previous bump completely fades out. In addition,
the broad inhibition introduces variability in the synaptic inputs of excitatory
neurons resulting in a less synchronised SA.

The scenario for short stimulus although seems different at a glance, they share
similar features. The mean firing rate (𝑚𝑋

0 ) increases rapidly in steps and reaches
a maximum value at the end of the stimulation. Since the duration of the stimulus
is shorter than the time constant of the low-pass filter used to compute the firing
rate, the values cannot reach a constant value. On the other hand, the spatial
selectivity (𝑚𝑋

1 ) displays a frequency modulated oscillation which frequency
diminishes and cease to oscillate when the stimulus is withdrawn (Figure 3.8 B
top). The raster plot shows a spiking synchronization right after the stimulus
onset followed by a reactivation of the bump. First neurons to activate following
the arrival of the stimulus (Figure 3.8 B, bottom; 0.2 ms from onset) are those
which have fired about 40 ms ago together with the neurons more distal to the
center of the bump (almost silent). The ones that participate in the reactivation
of the bump are those neurons which have spiked 1-3 ms before the stimulus
onset (Figure 3.8 B bottom, green and yellow). In contrast with the long stimulus
case in which the stimulus intensity was set to 1 nA, to elicit the B-H transition
through a short stimulus, the intensity has to be larger (50 nA in Figure 3.8
B and D). In this case, the external stimulus prevails over the recurrent input
obtaining a similar scenario as setting to zero the recurrent interaction. The
periodic alternation between homogeneous activation and bump states is, as in
the previous example, due to the heterogeneities of the voltage membrane. When
shuffling 𝑉𝑚 the bump reactivation is completely lost and a SA pattern arises
at the end of the stimulation due to the small effect of the recurrent synaptic
activity which has slow dynamics compared to the stimulus duration (Figure 3.8
D top). The withdrawn of the recurrent inputs intensifies the effect of the external
stimulus and, since inhibition is shut down, the frequency of the spiking pattern
is doubled and the homogeneous activation becomes even more synchronous
(Figure 3.8 D bottom).
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Figure 3.8. Oscillatory patterns in the steady states transition arise from the interplay

between the membrane and the synaptic current dynamics. A. Detail of the B-H transition

in Figure 3.7 A top (excitatory population). Top: time course of the activity components 𝑚𝐸
0 and

𝑚𝐸
1 . (black and grey, respectively). Bottom: temporal raster plot. Neurons spiking at -5, 1, 10

and 10 ms after the stimulus onset are tracked by colored spikes. B. Same as in Afor the short

stimulus in Figure 3.7 B top. In this case, the neurons spiking at -1, 0.2, 0.5 and 1 ms are tracked.

C Temporal raster plots of the B-H transition. Top: Shuffling of the membrane voltage at the

stimulus onset disrupts the bump reactivation. Bottom: Setting to zero the recurrent inputs to

the excitatory population during the first half of the stimulus (red line) attenuates the sequential

activation pattern. D. Same as in C for the short duration stimulus.
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Now that we understand the origin of the oscillations arising in the B-H transition
by a global excitatory stimulus, one might ask if the final state of the oscillation
at the end of the stimulus affects the transition. In other words, will the transition
depend whether the network is in a bump reactivation or in a SA at the end of
the stimulus? In order to answer this question we explore the stimulus charge
needed to elicit the B-H transition through a global excitatory input at different
stimulus duration as in Figure 3.5 D (Figure 3.9 A). Surprisingly, we found that, for
a certain stimulus duration between 10 and 100 ms, the intensities of the stimulus
that allows the B-H transition are quantified in regions (Figure 3.9 A, blue areas).
These regions are separated by the yellow areas representing the regions of charge
at which the B-H transition cannot be performed (Figure 3.9 A, yellow areas).
We simulate the network transitions subjected to a certain stimulus duration
and intensity and studied the oscillatory pattern in the 𝑚𝐸

0 −𝑚𝐸
1 activity space

as well as the spiking pattern. For stimulus duration in the range of 10 to 100
ms, if the stimulus is withdrawn when the network is in a homogeneous state
(𝑚𝑋

1 ≃ 0𝐻𝑧) the transition to the homogeneous state takes place. Conversely, if
the network was in a reactivation of the bump state at the end of the stimulus (i.e
large 𝑚𝑋

1 ) the transition cannot be performed. As in the rate model, two different
mechanisms account for the B-H transitions: transitions mediated by stimulus
duration shorter than the time constant of the system rely on the dynamics
whereas transitions mediated by longer stimulus duration rely on the steady state
configuration. To explain the quantification of the transitions for these relative
short stimulus durations, we can use the analysis of the 𝑚𝐸

0 −𝑚𝐸
1 activity space

in the rate model (Figure 3.5 C). From it, we can infer that in the spiking model
there should also exist a separatrix between the bump and homogeneous BOA, and
the crossing of this separatrix will determine the materialization of an effective
steady state transition. Since in the spiking model the trajectory of the activity
under the action of external stimulus depicts an oscillatory behavior respect to
the spatial modulation 𝑚𝑋

1 , its value at the end of the stimulus will determine
the success of the transition. For very large stimulus intensity, above the top
yellow area, the transition is always taking place regardless on 𝑚𝑋

1 . This can
also be explained by the shape of the separatrix in the 𝑚𝐸

0 −𝑚𝐸
1 activity space

in the rate model that grows linearly as the population firing rate 𝑚𝑋
0 increases

(Figure 3.5 C). Under a very strong stimulation, 𝑚𝑋
0 will increase and since the

62



The Role of Neuronal Nonlinearities in Working Memory

oscillation in 𝑚𝑋
1 is restricted to a span between 0 and a certain maximum value,

eventually the trajectory will cross the separatrix (Figure 3.9 B, right). In the
case that the stimulus duration is larger than the time constants of the system,
the transition is always achieved provided that the network receives a stimulus
with intensity above a certain constant value determined by the steady states.
In Figure 3.9 A the intensity is normalized by the duration, thus representing
the total charge transferred into the network which grows linearly with the
increase of the duration implying that the critical intensity is a constant value.
This is expected since, as well as in the rate model, starting in a certain 𝐼𝑒𝑥𝑡 in
the bifurcation diagram in Figure 3.6 C, to perform the transition from bump to
homogeneous state the current needed is fixed. Moreover, for stimulus duration
shorter than 10 ms, in general, the oscillatory pattern is not able to cross the
separatrix multiple times thus there only exists a value of input intensity above
which the B-H transition occurs. Notice that considering only the lower yellow
region in Figure 3.9 A the result is qualitatively the same as in the rate model
(Figure 3.5 D).

Worth mention that these oscillatory pattern is attenuated as the synaptic decay
time constants (𝜏𝑋𝑑 ) are increased well above the value of the membrane time
constant (𝜏𝐸𝑚 = 40𝑚𝑠 and 𝜏 𝐼𝑚 = 10𝑚𝑠). We expect that in the limit where the
synaptic time constants are much larger than the membrane time constant the
spiking network will behave as the rate model since in the rate model we
assumed that the membrane dynamics is much faster than the synaptic dynamics
(Figure C.7).
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B.

C.

B.

C.
C.

B.

A.

Figure 3.9. Oscillatory dynamics determines the termination of persistent activity. A.

Input charge for the bump to homogeneous transition as a function of stimulus duration (Δ𝑡𝑠𝑡𝑖𝑚).

As in Figure 3.5 D, yellow areas depicts the values at witch the transition cannot be performed

while in blue the values at which the B-H transition is performed. B. Analysis of the dynamics

for stimulus duration of 35 ms. Left: Time course of 𝑚𝐸
0 and 𝑚𝐸

1 and the temporal raster plot

of the excitatory population. Center: As in Figure 3.7 top, detail of the activity dynamics and

spikes in the peri-stimulus period (stimulation period shaded in gray). Right: Projection of the

activity trajectory on the 𝑚𝐸
0 −𝑚𝐸

1 phase plane. In green the trajectory for the switch-on and

in red the trajectory of the switch off (B-H transition). Estimated separatrix by plotting the end

of the trajectory at the time in which the stimulus is terminated for the values of charge at the

boundaries of the yellow areas. C Same as in B for a 0.3 s stimulus duration.
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3.2.6 Oscillatory dynamics in more realistic spiking model.

At this point we wonder whether this oscillatory dynamics will appear in a more
realistic model in which the membrane and synaptic parameters are constrained
by biological data. To address this question, we used membrane parameters from
McCormick et al. (1985) and Tripathy and Gerkin (2012). On the other hand,
excitatory synaptic recurrent inputs are a combination of the contribution of
NMDA and AMPA currents and the ratio of the contribution of NMDA and AMPA
to the postsynaptic current is different in the E-I and in the E-E synapses (see
Appendix B.3.3 for more details). In this new model, we obtained an acceleration
difference between the excitatory and inhibitory TF by changing the background
noise (𝐼𝑏𝑔) and the reset voltage after the spike (𝑣𝑋𝑟 ). For a given set of connectivity
parameters we found a bistable region between an homogeneous and a bump state
(Figure 3.10 A). We simulated the network dynamics subjected to a short switch
off stimulus and we analyzed the trajectory in the 𝑚𝐸

0 −𝑚𝐸
1 space (Figure 3.10

B, C). We found qualitatively similar oscillatory trajectory in the 𝑚𝐸
0 −𝑚𝐸

1 as
in the model of the previous section. We also compute the diagram of the input
charge as a function of the stimulus duration and found regions in which the
bump to homogeneous transition does not take place (Figure 3.10 D, yellow).
As in the previous model, an increase of the synaptic decay time constant will
attenuate the oscillatory pattern and thus the yellow areas in the charge VS
stimulus duration will fade out since the trajectory will tend to cross less times
the separatrix (Figure C.8)
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Figure 3.10. Oscillatory dynamics in a biological realistic spiking network model. A.

Bifurcation diagram of 𝑚𝐸
0 (y-axis) and 𝑚𝐸

1 (color code) with 𝐼𝑒𝑥𝑡 as bifurcation parameter.

Obtained by simulated annealing. Inset: TFs of the excitatory (blue) and inhibitory (red) neurons.

B. Dynamics of the excitatory population of the LIF network subjected to a 300 ms tuned input at

t=0 s and a 40 ms homogeneous input at t=3 s. Parameters as in figure ??. Top: average firing

rate of the neurons calculated in 75 ms time bins. Bottom: Dynamics of the zero- and first order

Fourier components of the average firing rate (𝑚𝐸
0 and 𝑚𝐸

1 , respectively). Inset: Detail of the

response to the 40 ms homogeneous input at t=3 ms. C Trajectory of 𝑚𝐸
0 and 𝑚𝐸

1 from A plotted

on the 𝑚𝐸
0 −𝑚𝐸

1 phase plane. Green: trajectory during switch on (0 < 𝑡 < 0.3 s). Time course of

the trajectory during 40 ms switch off color coded (3 < 𝑡 < 3.04 s). Light Blue: trajectory during

relaxation after the 40 ms stimulus. D. Stimulus input charge plotted against the duration of that

input. Regions in blue represent where switch off is performed and regions in yellow where the

switch off is not performed. Model parameters are specified in Appendix B.6.1, Tables B.3 and B.4.
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3.3 DISCUSSION AND CONCLUSION

Experimental data from different animals performing working memory tasks
shows that the extinction of a memory encoded as a persistent selective activity
is coupled by a broad increase of the spiking activity (Funahashi et al., 1989, 1990,
1991; Inagaki et al., 2018, 2019). This pattern can be considered as a hallmark of
the transition between two network states.

In this work we showed that selective persistent activity can emerge in a single
recurrent network with specific connectivity. With sufficiently strong and
spatially modulated recurrent excitation the network dynamics possess a
continuous set (ring) of attractors. In these attractors the activity is ‘‘bumpy’’
and encodes for the cue direction. In order to account for the selective persistent
activity observed experimentally, one must find the conditions under which a
ring attractor can coexist with a homogeneous activity state. Such multistability
requires appropriate nonlinearities. Using a simple modeling framework we
investigated in a systematic manner, several mechanisms based on different f-I
curve nonlinearities. We show that they differ by their bifurcation structures, the
roles played by excitation and inhibition, as well as on the dynamics of the
memory erasing after the delay period. We have shown how compressive
nonlinearities in the neuronal transfer function as well as an effective saturation
mechanism, that arise from the interaction between two populations, allows the
extinction of the bump state through global excitation. Furthermore, we have
implemented the effective saturation mechanism in a network of spiking
neurons and found that, due to the intrinsic oscillatory dynamics not provided by
the rate model, the transitions between the bump and homogeneous steady
states are quantified for a certain region of the stimulus duration.

A simple and intuitive mechanism which can underlie the reset of the persistent
activity at the end of the delay period, is a global inhibition of the excitatory
neurons triggered by direct inhibition of the excitatory cells or by feedforward
inhibition (e.g. Hansel and Mato (2001); Wang (1999); Roudi and Latham (2007)).
Physiologically, it is plausible that in DR tasks, either the response, the go cue
or the reward trigger an increase in inhibition. In experiments, however, many
neurons display a transient increase of their firing rate at the end of the delay

67



The Role of Neuronal Nonlinearities in Working Memory

period, even when the direction of the cue is away from the center of their
tuning curve Funahashi et al. (1989); Constantinidis et al. (2001). This suggests a
global excitation of a large fraction of these neurons. Indeed, these could be due to
inhibitory neurons receiving excitation from outside the network, but nonetheless
it is valuable to explore other possible switch off mechanisms. The origin of the
activity increase in the PFC associated with the extinction of persistent activity is
still a matter of discussion. One hypothesis links this global increase of spiking
activity to feedback-loop activity from subcortical areas related to the saccadic
responses (Alexander et al., 1986). Neurons from substantia nigra show activity
suppression during saccades, leading to a disinhibition of the superior colliculus
which triggers the saccadic response (Hikosaka and Wurtz, 1983). Suppression of
nigral neurons also leads to an disinhibition in the thalamic activity that could
excite PFC neurons (Buee et al., 1986; Guo et al., 2017). Apparently, this signature
is restricted to rewarded saccadic responses related to the task since spontaneous
saccades in the inter-trial intervals did not show a marked increase of the spiking
activity (Funahashi et al., 1991). In Funahashi et al. (1989) it is shown how the delay
period activity from both excitatory and inhibitory populations is terminated
immediately after the saccadic response. All these evidence uphold the role of the
post saccadic activation of neurons in PFC in the termination of the persistent
selective activity.

In this work we describe two different mechanisms for switching-off the persistent
state by global excitation. For stimulus duration much larger than the synaptic
timescale, the switch off relies on the bifurcation structure. Conversely, for
stimulus duration shorter than the synaptic timescale, the switch off rely on the
dynamics and specifically on the activity trajectory crossing of the separatrix.

The mechanism mainly discussed involves switch off by a global excitatory pulse.
This can only be implemented when the network response to input is saturating.
In the case where the excitatory and inhibitory TFs have a similar shape, this
requires the mechanism to make use of the saturating part of the TF. This means
that during the excitatory pulse all the neurons are driven to the saturating part
of the TF; there, the efficacy of recurrent excitation close to the center of the
bump is no longer sufficient to fend off the inhibition arriving from the rest of
the network, even though the activity around the center is higher than in the
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edges, and the bump is obliterated. When the excitatory and inhibitory TF differ
from each other, the decrease in the relative efficacy of the excitation can arise
not because neurons arrive at the saturating part of the TF, but from a rise in the
efficacy of the inhibition. In the model of Compte et al. Compte et al. (2000) the
bump was also terminated by a homogeneous excitatory pulse, and saturating
NMDA synapses in this model could potentially be the source of the increase in
inhibition efficacy which causes the bump extinction. A similar mechanism for
memory erasure through global excitation is thoroughly described in a network
dominated by inhibition in Brunel and Wang (2001).

The other discussed mechanism uses a short and strong stimulus of excitation
delivered to the whole network in order to extinguish the bump state. This
stimulus causes a transient increase in the network average activity, which is
followed by a transition back to the homogeneous state. In terms of dynamics,
the mechanism underlying this transition relies on the activity trajectory crossing
the separatrix in the phase space. Notice that this mechanism allows the switch
off regardless of the nature of the nonlinearity in the TF and thus the bifurcation
structure. In the spiking network model studied in Gutkin et al. (2001); Laing and
Chow (2001), a brief global excitation resets the activity back to its baseline level.
This is because the brief pulse causes simultaneous firing in all the neurons. All
the neurons enter then into a refractory period where they are unable to respond
to inputs. Since the duration of this refractory period is larger than the time
constant of the synapses (they use fast AMPA-like synapses), when the neurons
are recovered from the refractory period, the synaptic memory trace has faded.
However, this is not the case in the model studied here, since the spike dynamics
are not captured in the rate model and in the spiking model described in our work,
the timescale of the recurrent excitation is larger than the effective refractory
period.

Another way to switch off the selective persistent state by a short stimulus is to
use an anti-tuned stimulus (Figure C.2). In this case the input will create a bump
of activity in the opposite direction making the activity trajectory to approach the
lower half-plane in the phase space. If this input is withdrawn when the trajectory
is somewhere inside the homogeneous BOA, the switch off will succeed.

The effective saturation mechanism proposed here is based on the fact that as the
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background input increases the efficacy of the inhibition increases with regard to
the excitation. That is, the gain of the inhibitory TF becomes larger than that of
the excitatory. Thus, the interplay between the inhibitory and excitatory
neuronal TFs leads to a saturation of two effective functions of the input
resulting in a similar scenario as in the compressive nonlinearity in the single
population model. A striking difference is that the effective saturation
mechanism does not exploit the saturation part of the TF since the origin of the
bistability emerges from the difference of the gain between excitatory and
inhibitory TFs. This effective saturation mechanism is well supported by
experimental data showing the differences between excitatory and inhibitory
neuronal TFs. In fact, the architecture of the cortex and its dynamics rely on the
interaction between excitatory and inhibitory neurons. This segregation of
excitatory and inhibitory neurons is mainly based on differences in their spiking
patterns which, in turn, depends on their intrinsic membrane properties.
Neurons with a regular spiking pattern with adaptation are typically considered
as putative excitatory neurons while neurons with a fast spiking pattern without
adaptation are considered as putative inhibitory neurons (Connors and Gutnick,
1990). These differences in the firing pattern have a direct impact in the spike
frequency response to an injected current i.e. the TF. Several experimental
studies agree that excitatory neuron TF presents a smaller slope than that of the
inhibitory (Nowak et al., 2003; Arsiero et al., 2007; Schiff and Reyes, 2012). Other
less pronounced characteristics are that excitatory neurons have lower spiking
threshold and the slope is mainly linear in contrast to the inhibitory neurons
which present a larger spiking threshold and an accelerating slope (Schiff and
Reyes, 2012). These evidences about the differences between the excitatory and
inhibitory neurons give biological significance to the effective saturation
mechanism which is a suitable substrate allowing the termination of persistent
selective activity by global excitation. We have shown that either creating a
difference in the acceleration or a difference in the threshold between excitatory
and inhibitory TFs is sufficient to elicit effective saturation. In a more realistic
scenario mimicking the experimental TFs, we also have shown that by creating
both a difference in acceleration and in the threshold the effective saturation can
be achieved. Alternative substrates disregarding intrinsic cell properties, can also
induce an effective saturation giving rise to bistability. Short term synaptic

70



The Role of Neuronal Nonlinearities in Working Memory

plasticity is an immediate candidate providing nonlinearities which are a source
of bistability (Del Giudice et al., 2003; Romani et al., 2006; Mongillo et al., 2008;
Hansel and Mato, 2013). In fact, the model in Compte et al. (2000) introduces
saturating NMDA synapses which could be the origin of the bistability and it
would explain the fact that the persistent selective activity can be extinguished
by a global excitatory input. A possible explanation generated from our work is
that the external homogeneous input induces the saturation of the NMDA
synapses leading to an increase of the inhibition efficacy which will cause the
extinction of the bump.

Our analytical investigations were performed in the rate-model framework (e.g.
Ben-Yishai et al. (1995); Ermentrout (1998); Roudi and Latham (2007); Roxin et al.
(2005); Wilson and Cowan (1972)). This framework can be derived from first
principles from the dynamics of a spiking network model if one assumes that the
single neuron spiking dynamics is much faster than the synaptic dynamics. In
that case the firing rate of a neuron can be well approximated as an
instantaneous function of its total input, namely, its f-I curve (see equation A.1).
If one also assumes that the synaptic current induced by a presynaptic spike
decay exponentially, the network follow the classical dynamics of a rate model in
which the “rate” variables correspond to the synaptic inputs.

A consequence of this interpretation is that the behaviors of the rate model and
the spiking model, which tend to be in good correspondence when the synaptic
time constants in the spiking model are large, show some discrepancies when the
synapses are not slow enough. In the model presented here, although the general
properties of spiking network behavior matched those in the rate-model network,
one such inconsistency occurred: in the spiking model, for an inhibitory synaptic
decay time constant of 5 ms, the stability of the bump broke down unless the
excitation time constant was 4-5 times as large, whereas in the rate model, equal
excitation and inhibition time constants were sufficient for bump stability. It
should be noted though, that this discrepancy was made much smaller when both
inhibition and excitation time constants were enlarged regarding the membrane
time constants in the spiking network, i.e. approaching to the assumption taken
in the rate model. This destabilization of the bump has also been reported in
the spiking models considered by Compte et al. Compte et al. (2000). In fact, in
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Wang (1999); Compte et al. (2000) they show how slow and saturating NMDAR
channels can stabilize a state of asynchronous persistent activity. Although this
mechanism is supported by recent studies showing that persistent activity can
be eliminated by blocking NMDAR channels Wang et al. (2013); van Vugt et al.
(2020), it is not clear whether this is a result of the reduction of the synaptic time
scales or in the overall level of excitation. In fact, in a study by Hansel and Mato
Hansel and Mato (2001) is shown that slow excitation is not compulsory provided
the inhibitory-to-inhibitory interactions are strong enough.

On the other side, the spiking network model is not restricted to this assumption
and captures the interaction between the synaptic and membrane dynamics. As a
direct result of this interaction, in the presence of an external input the network
displays an oscillatory spatiotemporal pattern consisting in an alternation
between synchronous activation and bump reactivation. Surprisingly, for input
durations in the range of the time constants governing the network dynamics,
the steady state transitions are quantified in specific regions of intensity of the
input. For stimulus duration below the shorter than the smallest time constant,
which in our model corresponds to the synaptic current decay of the inhibitory
population (5 ms), the interaction between the membrane time constants (40 ms
and 10 ms for the excitatory and inhibitory neurons, respectively) and decay
synaptic time constant (40 ms and 5 ms for excitatory and inhibitory synapses,
respectively) becomes less pronounced since the dynamics will be mainly
determined by the fast synaptic timescales, therefore the amplitude of the 𝑚𝑋

1

oscillation is not large enough to cross the separatrix multiple times. In the
opposite situation, when the stimulus duration is long (>100 ms) the dynamics is
strongly dominated by the steady states and the oscillations in 𝑚𝑋

1 are
attenuated by the slow dynamics thus, becoming irrelevant in the states
transition. One possible hypothesis to explain this phenomenon is that the
subcritical Hopf bifurcation that gives rise to bistability described in the
bifurcation analysis gives birth to a limit cycle when an external input is applied
and relaxes to a stable state when the input is removed. For specific duration of
the external stimulation the frequency and amplitude of the limit cycle allows
the multiple state transitions depending on the intensity of the stimulus. For very
short inputs the amplitude of the limit cycle is reduced, while for long stimulus
the frequency of the limit cycle diminishes. This hypothesis is supported by the
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activity trajectories in the 𝑚𝐸
0 −𝑚𝐸

1 space, which amplitude in 𝑚𝐸
1 is smaller for

short stimulus and the frequency of the limit cycle oscillation is smaller for long
stimulus. In addition, the relaxation to the homogeneous state once the stimulus
is withdrawn depicts a typical trajectory of an unstable limit cycle that collapses
to a stable fixed point. Similar oscillatory patterns are shown in citeLaing2017
and in Schmidt and Avitabile (2020) arisen from the different timescales
orchestrating the dynamics of a network of excitatory and inhibitory
populations. Several works have underlie the role of oscillatory brain activity in
WM (Koene and Hasselmo, 2007; Jokisch and Jensen, 2007). While fast
oscillations on the gamma band represents maintenance of memories, slower
oscillations in the alpha band are related to memory clearance (Jokisch and
Jensen, 2007). Previous findings in theoretical works support that oscillations in
the 𝛼− 𝛽 frequency range are related to memory extinction (Dipoppa and
Gutkin, 2013; Schmidt et al., 2018). In fact in Schmidt et al. (2018), they describe a
mechanism where these oscillations create transient periods of spike synchrony
which destabilise the persistent activity. In our work we found qualitatively
similar results where low frequency oscillatory dynamics showing a competition
between synchronous activation and bump reactivation mediate the memory
extinction. Further experimental research involving electrophysiological
recordings from large populations of neurons in behaving animals together with
optogenetic manipulation may be required in order to reveal the nature behind
the formation and fading of transient memories. In summary, we propose novel
mechanisms for termination of persistent selective activity through global
excitation. Besides, we successfully implemented these mechanisms in a more
realistic network of spiking neurons capturing the oscillatory dynamics
neglected in the rate model. Interestingly, the model predicts that, for relatively
short stimulus, these oscillations determine the extinction of the persistent
activity. Taken together, this results shed light on the neural network
mechanisms controlling the gating between brain dynamics in WM.
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4 Models of Aberrant Prefrontal

Cortex Dynamics

4.1 INTRODUCTION

In this Chapter we exploit the previous spiking network model describing the
dynamics of the PFC during a WM task to study how dysfunctions in the
network could lead to aberrant dynamics that could be the origin of cognitive
impairments typically encountered in mental disorders. As we reviewed in
section 2.4 the PFC seems to be one of the most affected regions in mental illness
such as Schizophrenia among others. Thought disorder including hallucinations,
and cognitive symptoms such as impaired WM and learning described in subjects
with Schizophrenia are strongly associated with malfunction of the PFC. The
PFC, in synchrony with sensorimotor areas and subcortical areas, is in charge to
orchestrate the perception-action cycle by linking past sensory information and
prospective behavior. Thus, alterations of the PFC function could potentially lead
to an abnormal perception of the reality leading to hallucinations, as well as
impairments in WM. One of the strong theories on the etiology of the
Schizophrenia revolves around the a hypofunction of the NMDA receptors
(NMDAR) (Gao and Snyder, 2013). The main evidences supporting this theory
came from studies in which NMDAR antagonists (such as ketamine) could
replicate the symptoms of patients with Schizophrenia in health patients (Krystal
et al., 1999). Moreover, drugs enhancing the NMDAR function mitigate negative
and cognitive symptoms. Besides, persistent blockade of NMDAR in animals
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develop pathologic features of Schizophrenia such an impairment on the WM
tasks (Aura and Riekkinen Jr, 1999; Driesen et al., 2013; Coyle, 2012).
Additionally, neuroimaging and anatomical studies of Schizophrenic brains have
described a decrease in the PFC volume as well as smaller cell bodies and
dendritic spine loss in pyramidal neurons from layer III of the dlPFC (Hoftman
et al., 2017). Layer III of the dlPFC is thought to be where the PFC microcircuits
reside. This circuits are composed by networks of recurrent excitatory pyramidal
cells strongly connected and exciting each other via AMPA and NMDA receptors
on the dendritic spines. This circuit leads to persistent activity that is shaped by
lateral inhibition from GABAergic cells creating the tuning properties seen in
working memory experiments (Arnsten, 2011). The hypothesis of NMDAR
hypofunction suggest that glutamate neurotransmitter no longer activates
NMDAR receptors originating slow/long excitatory postsynaptic currents
(EPSCs). Instead AMPAR, which have shorter decay time constant (≈2-5ms),
would be the main contribution to the EPSCs (Rubio et al., 2012). In order to
explore how different contributions of NMDA receptors could alter the PFC
dynamics we perform an exploratory study analyzing the role the synaptic time
constants on the spatiotemporal dynamics and on the stability of the steady
states. We found that, for physiological values of the inhibitory synaptic decay
time constant (≈5-10 ms in the 𝐺𝐴𝐵𝐴𝐴 receptor), the excitatory synaptic decay
time constant has to be slower in order to avoid synchrony and oscillatory
patterns of activity. As already noticed by Wang (1999), this results suggest that
slow dynamics of NMDA plays an important role stabilizing the irregular firing
present in both the homogeneous and bump state. In the second part we explore
how the network size of the model affect to the stability of the steady states of
the system. We found that a reduction in the number of neurons could lead to
spontaneous transitions giving rise to the appearance of bumps of activity in
absence of external stimulations. This results could suggest a mechanism for the
origin of the hallucinations in the PFC circuits.

76



Models of Aberrant Prefrontal Cortex Dynamics

4.2 RESULTS

4.2.1 NMDAR hypofunction leads to aberrant

spatiotemporal patterns.

We use the spiking model presented in section 3.2.4 where the time course of the
postsynaptic currents (PSCs) are described with a double exponential function:

𝑠𝑋(𝑡− 𝑡𝑠𝑝) =
1

𝜏𝑋𝑑 − 𝜏𝑋𝑟

[︁
𝑒−(𝑡−𝑡𝑠𝑝)/𝜏𝑋𝑑 − 𝑒−(𝑡−𝑡𝑠𝑝)/𝜏𝑋𝑟

]︁
(4.1)

where 𝑡𝑠𝑝 is the time of the spike and 𝜏𝑋𝑟 and 𝜏𝑋𝑑 are the rise and decay synaptic
time constants of the population𝑋 , respectively. The normalization factor ensures
that the total area of the PSC of an individual spike is equal to 1. In this model
we consider a single pair of rise and decay time constant for the EPSCs that
could be interpreted as an effective time constant accounting for a weighted
contribution of NMDA and AMPA PSCs. While the 𝜏𝐸𝑟 will be fixed to 1 ms, 𝜏𝐸𝑑
will be modified from 2 ms to 128 ms. A total blockade of NMDA currents will be
represented by a total contribution of the AMPA currents i.e 𝜏𝐸𝑑 =2-5 ms (Hestrin
et al., 1990; Spruston et al., 1995; Angulo et al., 1999). On the other hand, a total
blockade of AMPA will be represented by a total contribution of NMDA currents
i.e 𝜏𝐸𝑑 =50-150 ms (Hestrin et al., 1990; Sah et al., 1990; Bear et al., 2020). For the
inhibitory postsynaptic currents (IPSCs) we consider that the total current is due
to 𝐺𝐴𝐵𝐴𝐴 receptor with physiological values of 𝜏 𝐼𝑑 around 5-10 ms (Salin and
Prince, 1996; Xiang et al., 1998; Gupta et al., 2000). Nevertheless, we are going to
modify the 𝜏 𝐼𝑑 values ranging from 2 to 128 ms in order to explore how a variation
in the inhibitory synaptic currents could affect the dynamics.

In this section we use the network model with leaky integrate and fire neurons
presented in the previous chapter. The model describes bistability due to the
effective saturation mechanism (Figure 4.1). In this case, in contrast to acceleration
difference showed in section 3.2.4 we used a threshold difference in which both
TFs have the same gain but the excitatory TF have lower spiking threshold than
the inhibitory (Figure 4.1 inset). At lower input the inhibitory population will
activate and at a certain input value the inhibitory population will activate creating
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an effective reduction of the excitation resulting in an effective saturation.

Figure 4.1. Bifurcation diagram of the threshold difference LIF model. Bifurcation

diagram of 𝑚𝐸
0 -𝐶 in the two population network in the threshold difference case. Color code: first

Fourier component of the activity, 𝑚𝐸
1 . Inset: the TFs of the excitatory (red) and the inhibitory

(blue) neurons. Parameters as described in Appendix B.6.2.

We explore how different ratios of excitatory and inhibitory decay time constants
affect the spatiotemporal patterns and the stability of the homogeneous and the
bump state. To do so, we start to simulate the dynamics setting the network to
work in the homogeneous or bump state and as the time progresses we change
the decay time constants. In order to characterize the spatiotemporal dynamics
we quantify the neuronal synchrony as described in Hansel and Sompolinsky
(1992):

𝜒(𝑁) =

√︃
𝜎2
𝑉

1
𝑁

∑︀𝑁
𝑖=1 𝜎

2
𝑉𝑖

(4.2)

where 𝜎2
𝑉 is the variance of the time fluctuations of the subthreshold membrane

potential. This value is normalised by the population average of the variance
of time fluctuations of single cell membrane potentials 𝜎2

𝑉𝑖
. The 𝜒 is thus a
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normalised synchrony measure being 1 the fully synchronised state and small
values of order 𝑂(𝑁−1/2) correspond to the asynchronous state.

In order to distinguish between traveling waves and standing bumps, which both
show similar value of synchrony, we quantify the variation in time of the center
of the bump:

𝜎2
𝜃 =

⟨
| arctan

(︂
𝑚2(𝑡)

𝑚1(𝑡)

)︂
|2
⟩
𝑡
−
[︁⟨︀
| arctan

(︂
𝑚2(𝑡)

𝑚1(𝑡)

)︂
|
⟩︀
𝑡

]︁2
(4.3)

where ⟨...⟩𝑡 denotes a time average over a large time period and 𝑚1(𝑡) and 𝑚2(𝑡)

are the first and second Fourier components described in sections 3.2.1 and 3.2.2,
respectively. Small values of the variance of the bump argument indicates that
the center of the bump is not changing in time pointing either to a oscillatory
bump or a uniform bump while a large value will indicate that there is no bump
(asynchronous uniform, travelling wave, standing wave, oscillatory uniform).

Another useful measure to characterize the spatiotemporal patterns is the mean
spatial modulation of the activity that is computed as:

𝑚𝑠 =
⟨︀√︁

𝑚2
1(𝑡) −𝑚2

2(𝑡)
⟩︀
𝑡

(4.4)

A large value will indicate that the activity is strongly modulated (bump state)
while a small value will indicate that the activity is mostly uniform
(homogeneous state). We set the network at the top homogeneous branch in a
region of coexistence depicted in Figure 4.1 (𝐼𝑒𝑥𝑡 = 1.7𝑛𝐴). The homogenous
state displays an asynchronous uniform spiking pattern in the top right region
above the white transition area represented by small values of the synchrony
measure 𝜒 (Figure 4.2 A). Inhibitory synaptic decay time constant below 8ms
show small values of 𝜎𝜃 (in red) indicating that the homogeneous state
destabilizes towards a bump state (Figure 4.2 C). For ratio 𝜏𝐸𝑑 /𝜏 𝐼𝑑 =1 there is a
strong synchrony corresponding to an oscillatory uniform (OU) state for
inhibitory time constant below 64 ms (Figure 4.2 A and Table 4.1). For 𝜏 𝐼𝑑 =2 ms
we found a very rich variety of patterns: for ratio equal to 1 we found a standing
wave (SW) pattern while for ratio equal to 2 a travelling wave (TW) pattern
arises (Table 4.1). Notice that in the boundary there is coexistence between
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different spiking patterns.

Next, we set the network at the bump state in the region of coexistence (Figure 4.1
at 𝐼𝑒𝑥𝑡 = 1.7𝑛𝐴). The bump state shows an uniform bump (UB) activity pattern
at the top right area of the phase diagrams (Figure 4.2 B and D). In the boundary
region we found patterns of oscillatory bump (OB)) and in the bottom left corner
both SW as well as TW as described in the homogeneous case. This result indicates
that for small time constants the bistability no longer exists.

A.

C.

B.

D.

Homogeneous Bump

Figure 4.2. Phase diagrams of the synaptic decay time constants. A.and B Phase diagrams

of the ratio 𝜏𝐸𝑑 /𝜏 𝐼𝑑 as a function of 𝜏 𝐼𝑑 and color coded the value of (𝜒) for each condition. A for

the homogeneous state and B for the bump state. C and D Phase diagrams of the ratio 𝜏𝐸𝑑 /𝜏 𝐼𝑑 as a

function of 𝜏 𝐼𝑑 and color coded the value of the standard deviation of the bump’s argument (angle

pointing the center of the bump) (𝜎𝜃). C for the homogeneous state and D for the bump state.
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Table 4.1 – Distinct spatiotemporal patterns classified by the synchrony (𝜒) and

temporal standard deviation of the bump’s argument (𝜎𝜃). UB: uniform bump; OB:

oscillatory bump; AU: asynchronous uniform; TW: traveling wave; SW: standing wave; OU:

oscillatory uniform.
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4.2.2 Network finite size effects and spontaneous

transitions.

As we previously seen in section 3.2.4 a possible way to obtain bistability in the
spiking network model is to use a difference in the acceleration of the TFs. That
is, at a certain threshold the inhibitory TF display a larger gain thus resulting in
an effective saturation (Figure 4.3)

Figure 4.3. Bifurcation diagram of the LIF network in the acceleration differencemodel.

A. Bifurcation diagram of 𝑚𝐸
0 -𝐶 in the two population network in the acceleration difference

case. Color code: first Fourier component of the activity, 𝑚𝐸
1 . Inset: the TFs of the excitatory

(red) and the inhibitory (blue) neurons. Parameters as described in Appendix B.6.1, Tables B.3

and B.4 but with 𝐽𝐸𝑋
0 = 25, 𝐽𝐼𝑋

0 = 18, 𝐽𝐸𝑋
1 = 50 and 𝐽𝐼𝑋

1 = 12.5.

The models used in this section is the similar as used in section 3.2.6 in which we
consider excitatory synaptic currents as a combinations of currents shaped by
NMDAR and AMPAR dynamics. Moreover, we choose physiological values of the
synaptic time constants as described in the previous section 4.2.1. Furthermore,
we choose a larger contribution of the NMDA current in E-E synapses (Thomson,
1997) based on the NMDA/AMPA ratio of the EPSCs area (Gonzalez-Burgos et al.
(2008), NMDA/AMPA=2.7) and larger AMPA contribution in the E-I synapses
Wang and Gao (2009), NMDA/AMPA=0.5)(For further details see Appendix B.3.3).
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In this model, we found that a decrease in the mean excitatory connectivity
(reduction of the 𝐽𝐸

0 parameter) and/or a reduction in the number of neurons in
the network lead to spontaneous transitions from the upper homogeneous state
to bump state (H-B transition). On the other hand, a decrease in the inhibitory
spatial connectivity (𝐽 𝐼

1 ) tends to increase the region of bistability making it
more robust against spontaneous transitions (as predicted from the 𝐽 𝐼

1 − 𝐶 phase
diagram in section 3.2.4 Figure 3.6 D). Here we are going to study the mechanisms
underlying the spontaneous H-B transition upon variations in the number of
neurons.

We hypothesize that the transition takes place due to the fluctuations of the
mean synaptic inputs and the proximity of the unstable state and the stable state.
At some point the fluctuations of the mean inputs are large enough to cross
the unstable state (or separatrix in the 𝑚𝑋

0 −𝑚𝑋
1 activity plane, Figure 4.4). In

order to estimate the time needed to this transition to take place we consider the
abstract idea that the probability of one neuron to cross the separatrix is 𝑝, thus
the probability of the activity of all the 𝑁 neurons in the network to cross the
separatrix (i.e. global increase of 𝑚𝑋

1 ) at the same time is the joint probability i.e.
𝑝𝑁 , considering the events are independent from each other. Thus, the expected
value of realizations to see at least once that 𝑂(𝑁) neurons crossed the separatrix
will be 𝑝−𝑁 . Hence, we hypothesize that the time expected to see a transition will
scale exponentially with the number of neurons in the network 𝑁 .

To test this hypothesis we set the network in the homogeneous state in the bistable
region (Figure 4.4 A and B 𝐼𝑒𝑥𝑡 = 0.27𝑛𝐴). Then, we run several simulations of
the network with different number of neurons and store the time needed to see a
spontaneous transition. We named this variable time to transition (t2t). Then we
plot thet2t obtained for different network size. We found that the t2t can be well
fitted by an exponential function of the form 𝑎𝑝−𝑁 (Figure 4.5, 𝑅2 = 0.99 with
𝑝 = 8 · 10−7). This confirms our hypothesized mechanism for the spontaneous
transition based on the crossing of the separatrix due to the proximity between
the homogeneous fixed point and the unstable fixed point (on the separatrix).

Another type of spontaneous transition can happen if you set the network at the
upper homogeneous state close to the transition towards the bump (Figure 4.3
and Figure 4.4 A and B, 𝐼𝑒𝑥𝑡 = 0.25𝑛𝐴). Due to the fluctuations of the mean
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A.

C.

B.

Figure 4.4. Spontaneous transition mechanism. A. Top: Bifurcation diagram of 𝑚𝑋
0 -𝐶 in

the two population network in the acceleration difference case. Excitatory population in red and

inhibitory population in blue. Bottom: detail of the bistable region in A. Expected unstable state

inferred from the rate bifurcation diagram depicted as a black dashed line. For two different values

of 𝐼𝑒𝑥𝑡(black and gray) solid dot indicates stable fixed point and empty dot indicates unstable

fixed point. B. Same for the 𝑚𝑋
1 -𝐶 bifurcation diagram. C. Schematic representation of the

separatrix and fixed points in the 𝑚𝐸
0 −𝑚𝐸

1 space. Notice that a decrease in the 𝐼𝑒𝑥𝑡 (form grey

to black situation) produces a shift in the separatrix and fixed points making the homogeneous

fixed point to be closer to the separatrix. Inset: abstract representation of the potential energy

well of the homogeneous fixed point in the two different situations. The expected amplitude of

the fluctuations of the activity at the fixed point is depicted by a double ended arrow.

input, the network could receive global inputs below 𝐼𝑒𝑥𝑡 = 0.25𝑛𝐴. In this
region the homogeneous state is spatially unstable, hence a transition towards
the bump state will occur. In this case, the probability for this to take place will
be directly proportional to the size of the fluctuations. From the central limit
theorem the amplitude of these fluctuations will scale as 1/

√
𝑁 . Thus we expect

that the time to transition will scale as
√
𝑁 . To test this, we set the network in

the homogeneous state very close to the edge of the upper homogeneous state
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Figure 4.5. Time to spontaneous transition due to the crossing of the separatrix at

different network sizes. Violin plot of the distribution of the natural logarithm of t2t for different

network sizes. Median: white dot; Mean: red dot; Interquartile range: black bar in the center of

the violin plot. Dashed line: least squares regression to a linear model ln(𝑡2𝑡) = ln(𝑎)−𝑁 ln(𝑝)

with 𝑅2 = 0.99 and 𝑝 = 8 · 10−7. Minuscule n above each violin plot represents the number of

simulations in the distribution for each network size.

(𝐼𝑒𝑥𝑡 = 0.25𝑛𝐴) and we simulate the network with different sizes and record the
time needed to spontaneously transition to the bump state (t2t). In this case, the
t2t can be well fitted with a power law function of the form 𝑁𝑎 with 𝑎 = 1/2

(Figure 4.6, 𝑅2 = 0.99 with 𝑝 = 5 · 10−7). Notice that in this case we can explore
larger network sizes since the rate of increase of t2t with N is smaller. In this case,
the t2t for the same network size are smaller than for the previous case. This is
because in the previous case the fluctuations in the mean synaptic recurrent inputs
were not large enough to make the population activity crossing the separatrix
since for 𝐼𝑒𝑥𝑡 = 0.27𝑛𝐴 the separatrix is relatively far from the homogeneous
fixed point (Figure 4.4 C, in gray). For 𝐼𝑒𝑥𝑡 = 0.25𝑛𝐴 the proximity between the
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separatrix and the homogeneous fixed point is small enough to be crossed due to
the fluctuations in the mean synaptic recurrent inputs (Figure 4.4 C, in black).

Figure 4.6. Time to spontaneous transition due to fluctuations in the mean synaptic

inputs for different network sizes. Violin plot of the distribution of t2t for different network

sizes. Median: white dot; Mean: red dot; Interquartile range: black bar in the center of the violin

plot. Minuscule n above each violin plot represents the number of simulations in the distribution

for each network size. Inset: least squares regression to a linear model ln(𝑡2𝑡) = ln(𝑏) + 𝑎 ln(𝑁)

with 𝑅2 = 0.99 and 𝑝 = 5 · 10−7.

4.3 DISCUSSION and CONCLUSION

In this work we first explore how the synaptic decay time constants leads to a
rich variety of spatiotemporal patterns of activity. We found that asynchronous
or uniform activity requires slower excitation than inhibition and a decrease of
the synaptic excitatory time constant will result in synchronization of the activity
and a disruption of the bistability. In the second part of this work we study the
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mechanisms underlying the spontaneous transitions between the homogeneous
state and the bump state. The results suggest that, under a certain circumstances,
a reduction in the number of neurons will increase exponentially the probability
for this spontaneous transitions to take place. Spatiotemporal patterns arising in a
bump attractor model have been well characterized in a previous work from Roxin
et al. (2005). In this work they studied the role of delays in a firing rate model
and they presented a detailed phase diagram of the distinct patterns arising upon
variation of the connectivity parameters. They also provide a spiking network
model which reproduces most of the patterns described in the rate model. The
only pattern that could not be reproduced was the traveling wave. However in
our model with two populations, for inhibitory time constant equal to 2 ms and
excitatory time constant 4 ms we found robustly the travelling wave pattern.
Our results show that variations in the synaptic time constants are qualitatively
similar to have delays in the activity. We found that at physiological values of
the inhibitory time constant attributed to 𝐺𝐴𝐵𝐴𝐴 receptor (5-10ms), a reduction
in the NMDA contribution by decreasing the synaptic time constant (decrease
of ratio 𝜏𝐸𝑑 /𝜏 𝐼𝑑 ) leads to oscillatory patterns (OU and OB). This transition is
depicted in the phase diagrams in Figure 4.2 A and B, by a light blue region that
separates uniform activity in the top right from other patterns in the bottom
left corner. Similar results where described in Compte et al. (2000) in which a
decrease of the NMDAR contribution elicited oscillatory activity in the memory
state (bump) with a frequency peak at 40 Hz (𝛾 range). This synchronization in
the spiking activity is due to the E-I loop in the case of fast synaptic transmission.
The mechanism for this oscillation is well described in Hansel and Mato (2003);
Ledoux and Brunel (2011): a fast increase in excitatory activity will produce an
increase of the inhibition that will result in a decrease on the excitation and a
consequent decrease of the inhibition leading to an increase of the excitation
thus repeating the loop. Thus an increase of excitatory synaptic time constants
(increase of NMDA contribution) will attenuate the oscillations by reducing the
fast increase of excitation as shown by Wang (1999). In another attractor model
of spiking neurons presented by Laing and Chow (2001) also describe how a
progressive reduction of the synaptic time constant could lead to a destabilization
of the bump state towards a travelling wave. Overall these results suggest that
NMDA hypofunction could potentially result in oscillatory activity and other
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complex spatiotemporal patterns that could explain the cognitive disfunction in
Schizophrenic patients as well as the development of positive symptoms such as
hallucinations. Indeed the blockade of NMDAR is one of the possible mechanisms
of hallucinations since dissociative drugs acting as a NMDAR blockers are known
to produce hallucinations (Rolland et al., 2014).

On the second part we describe a mechanism for spontaneous transition that
could explain spontaneous generation of internal representations in absence of
external stimulus. The mechanisms rely on the proximity of the unstable state
or separatrix and/or with the fluctuations on the mean recurrent input of each
neuron. Under a given set of connectivity parameters ensuring bistability, we
show that a reduction on the number of neurons of the network will result in
an exponential increase of the probability of a spontaneous transition to occur.
This situation occurs when the region of bistability is relatively small, making the
homogeneous state to be closer to the unstable state. This can be accomplished
by an increase of the inhibitory spatial connectivity parameter 𝐽 𝐼

1 or a reduction
of 𝐽𝐸

1 . This could happen because of a disruption of the connectivity in the PFC
microcircuits.

The results presented in this section suggest that a reduction on the number of
neurons or just a reduction on the inputs received due to the loss of spines, as
described in layer III of the PFC in Schizophrenic brains (Hoftman et al. 2017),
could lead to spontaneous generation of internal representations of information
that is not triggered by external stimulus. It is important to underline that in our
model the connectivity is normalized by the network size thus, a reduction in
the number of inputs by decreasing the number of neurons leads to an increase
in the connectivity between the neurons. This makes that the total synaptic
input to a postsynaptic neuron remains unaltered when changing the network
size. Although this assumption is speculative, a facilitation mechanism based in
synaptic plasticity could explain an increase of the connectivity when the total
number of synaptic connections is reduced. Overall, the proposed mechanism
could explain the origin of hallucinations. This hypothesis is reinforced by the
fact that there is a significant decrease in the functional connectivity in PFC
suggesting a reduction of the number of neurons activated in the PFC recurrent
networks involved in WM (Perlstein et al., 2001; Chari et al., 2019). On the other
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hand, around 20% of patients with Alzheimer’s disease show visual hallucinations
(Sinclair et al., 2019). It is well known that in Alzheimer, there is a considerable
connectivity loss (Rose et al., 2000). This could result in a reduction of the number
of synaptic inputs neurons in PFC, leading to spontaneous transitions.

In the second mechanism described, a decrease of the external input arriving to
the network leads to a situation in which the homogeneous state is very close
to be spatially unstable. Moreover, in this case, the unstable state is very close
to the homogeneous state. Thus, fluctuations in the mean synaptic inputs of
a neuron can elicit an spontaneous transition towards the bump state. From
these results we can hypothesize that a reduction of the external input to the
PFC circuits probably coming from subcortical areas through the thalamus could
set the network to operate in a regime very similar to the one described by our
model leading to spontaneous internal representations. Indeed, the cognitive
dysmetria theory postulated by Andreasen et al. (1996) point out that a disruption
of PFC-thalamus-cerebellum loop could be the origin of most of Schizophrenic
symptoms including hallucinations. The disruption of this loop could result in
a reduction of excitatory inputs from thalamus to dlPFC as described in section
2.4.2 (Figure 2.13 A). A fMRI study found that Schizophrenic patients showed a
decrease of functional connectivity between cerebellum and PFC and cerebellar
stimulation can restore normal levels of cerebellar-PFC functional connectivity
leading to a reduction of Schizophrenic symptoms (Brady Jr et al., 2019). In fact,
in Glantz and Lewis (2000) they show evidence that patients with Schizophrenia
show a reduction in excitatory inputs in pyramidal neurons of layer III in the
dlPFC suggesting that this could explain cognitive disorders related to the disease.

Altogether these results present different mechanisms for the generation of
spontaneous internal representations in PFC circuits that could be understood as
network mechanisms of hallucinations. Small changes in the connectivity and/or
decrease of external inputs to the PFC can result in spontaneous transitions that
will be more frequent upon a reduction of the number of neurons in the circuit.
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5 Cognitive impact of cerebellar

non-invasive stimulation in a

patient with schizophrenia
1

Cerebellum plays a role in the regulation of cognitive processes. Cerebellar
alterations could explain cognitive impairments in schizophrenia. We describe
the case of a 50 years old patient with schizophrenia whom underwent cerebellar
transcranial direct current stimulation (tDCS). In order to study the effect of
cerebellar stimulation on cognitive functions, the patient underwent a
neuropsychological assessment and an EBC protocol. Although the effect of
brain stimulation cannot be only assessed in a single-case study, our results
suggest that cerebellar stimulation may have an effect on a broad range of
cognitive functions typically impaired in patients with schizophrenia, including
verbal episodic, short term and working memory. In addition to
neuropsychological tests, we evaluated the cerebellar function by performing
EBC before and after tDCS. Our data suggest that tDCS can improve EBC.
Further clinical trials are required for better understanding of how cerebellar
stimulation can modulate cognitive processes in patients with schizophrenia and
healthy controls.

1Charles Laidi, Carole Levenes, Alex Suarez-Perez, Caroline Février, Florence Durand,

Noomane Bouaziz and Dominique Januel. Published in Frontiers in psychiatry, 2020.
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5.1 INTRODUCTION

The cerebellum is involved in a broad range of cognitive functions, including
working memory, emotion processing and social cognition (Li et al., 2013). In
humans, the cerebellum represents 10 % of the brain volume but contains more
than 50 % of its neurons (Li et al., 2013). The posterior lobe of the cerebellum is
involved in cognition and connected to associative regions such as the prefrontal
cortex, whereas the anterior cerebellum is known to modulate sensory-motor
cortical activity (Stoodley et al., 2012). As alterations of the sensory-motor parts
of the cerebellum lead to motor dysmetria, abnormalities in the posterior
cerebellum may have implications for cognitive dysmetria. Andreasen et al.
(1998) have proposed that abnormalities in the posterior cerebellum may explain
some symptoms of schizophrenia. Schizophrenia is a severe mental disorder
characterized by the association of positive, negative and cognitive symptoms.
Cognitive symptoms, that often precedes the illness, have an impact on the
quality of life and on the functioning of the patients (Green and Harvey, 2014).
Deficits in working memory, attention, processing speed, visual and verbal
procedural learning have been documented in schizophrenia (Gupta et al., 2018).
However, pharmacological interventions only have a very limited impact on
cognitive deficits in schizophrenia. Although non-pharmacological interventions,
such as cognitive remediation can improve cognitive deficits in patients, there is
a clear need for new interventions to target cognitive symptoms in
schizophrenia. Neuropsychological tests are commonly used to assess cognitive
functions in patients with schizophrenia. These tests require full cooperation of
participants, which can be difficult in a population of patients with
schizophrenia suffering from motivational deficits (Waltz and Gold, 2015).

Eyeblink conditioning (EBC) does not rely on motivation of the subject. It is
based on a simple reflex pathway and mesures associative learning
(Takehara-Nishiuchi, 2016). EBC is a form of classical conditioning that consists
of pairing a stimulus (conditioned stimulus (CS), auditory in our study) with an
unconditioned stimulus (US) (airpuff in our study) that induces an eyeblink
reflex. In delay-type EBC, a tone CS precedes and co-terminates with a corneal
airpuff US that elicits an unconditioned response (UR). Over repeated pairings,
the CS induces a conditioned response (CR) that precedes and reduces the US.
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McCormick et al. first showed that electrolytic lesions of the ipsilateral
cerebellum completely prevented the acquisition and retrieval of the delay EBC
(McCormick et al., 1982; Lincoln et al., 1982). The abundant literature based on
lesion, reversible inactivation, genetic manipulation, electrical stimulation,
optogenetics, electrophysiology, and brain-imaging studies show that the
cerebellum is necessary and sufficient for acquisition, expression, and extinction
of EBC provided that the interval between CS and US stay in the range of one
second (see review in Freeman and Steinmetz (2011) and Li et al. (2019)). In
accordance with animal research, EBC is a relevant method to investigate
cerebellar dysfunction in schizophrenia disorders (Parker et al., 2017).
Non-invasive brain stimulation techniques are commonly used in healthy adults
and patients with neuropsychiatric disorders to investigate brain mechanisms or
to enhance cognitive, behavioral, social and emotion processes (Finisguerra et al.,
2019). Transcranial direct current stimulation (tDCS) is a form of
neuromodulation delivering a low direct constant current over two electrodes
placed on the scalp. Applied to the cerebellum, tDCS can deliver an electric field
reaching the cerebellum at a strength within the range of values for modulating
activity in the cerebellar neurons (Ferrucci et al., 2015). In healthy subjects, two
studies (Zuchowski et al., 2014; van der Vliet et al., 2018) reported an effect of
cerebellar tDCS on EBC. Interestingly, van der Vliet et al. (2018) reported an
interaction between the effect of cerebellar tDCS on EBC and the BDNF
Val66Met polymorphism, previously involved in cognitive deficits in
schizophrenia (Notaras et al., 2015). We describe the case of a 50 years old
patient with schizophrenia whom underwent posterior cerebellar tDCS. We
report neuropsychological testing and monitoring of cerebellar function with
EBC before and after 1 week of stimulation in the posterior cerebellum.

5.2 RESULTS

The patient was a 50 years old man suffering from schizophrenia. During the
stimulation period, the patient was stabilized under a treatment of intramuscular
haloperidol (150 mg every four weeks) and Zopiclone (7.5 mg/day). There was no
change in the patient medication during the assessment and stimulation protocol.
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The patient was married with two children and was discontinuously working in
the construction sector. He was mostly complaining from auditory hallucinations:
the patient reported that he was hearing at least once a day a male voice that was
giving him orders. Written consent was obtained from the participant prior to the
study. The patient underwent 5 days of tDCS stimulation. The post-tDCS EBC
session was performed 5 days after tDCS; 7 days separated the two EBC sessions.
The cerebellum was stimulated using a NeuroConn DC Stimulator (NeuroConn
GmbH) with two 5x7 cm conductive-rubber electrodes placed over the cerebellum,
1 cm below the inion (anode) and on the right arm (cathode). Stimulation was
administered during two sessions of 25 minutes (separated by one hour), including
5 seconds of ramp-up and 5 seconds of ramp-down, with an intensity of 2 mA (for a
total of 10 stimulation sessions). The patient was stimulated during 5 consecutive
days for a total of 10 sessions. We chose this stimulation protocol based on a
previous modelling study Parazzini et al. (2014) and on the work of Ferrucci
et al. (2015). Clinical assessment included the Positive And Negative Symptom
Scale (PANSS) (Leucht et al., 2005) and the Auditory Hallucination Rating Scale
(AHRS), before and after stimulation. Neuropsychological assessment explored
key cognitive functions typically impaired in patients with schizophrenia: episodic
memory, executive and attentional functions. We selected neuropsychological
tests with no test/retest effect in order to compare neuropsychological outcomes
before and after stimulation (Lee et al., 2018; Stoykova et al., 2013). The patient
underwent a long term episodic memory test (French version of Free and cued
recall - 16 items, Grober-Buschke, measuring anterograde episodic verbal memory
using two different verbal material) (Stoykova et al., 2013), two subtests of the
Wechsler Adult Intelligence Scale (WAIS-IV) (digit span and spatial memory),
the stroop test (Golden version) (Golden, 1975) and the D2 Test of attention
(Brickenkamp) (Lee et al., 2018). Neuropsychological assessment was repeated
2 days before and 2 days after the stimulation protocol (Figure 5.1) by a trained
neuropsychologist that was not involved in the conception of the study nor in
the brain stimulation.

The conditioning of the eyeblink reflex was performed with a portable human
eyeblink conditioning system (San Diego Instruments). The system included an
infrared (IR) reflective sensor glued together with small 1.5 mm air-delivering
tubing positioned just beneath the superior eyelid of the subject. The EBC device,
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Figure 5.1. tDCS Stimulation protocol and clinical assessment time-line.

comprising a portable airpuff and headset sound-delivering unit, controlled the
timing and intensity of both the airpuff and the sound (pure tone). It also converted
the analog IR-reflection signal to numeric and sent it to a personal computer. The
IR-reflection signal was collected online with the San Diego Instruments Labview
software and then analyzed offline with a custom-made routine under Python
(Python Software Foundation). During the overall experiment a continuous
background white noise was delivered to the subject through the headset in order
to provide constant ambient noise. The conditioning stimulus (CS) consisted of a
400 ms - 1.2 kHz pure tone. We set the intensity of the CS such as it did not trigger
any startle reflex nor any detectable reaction from the subject, thereby reducing
the occurrence of alpha responses. The unconditioning stimulus (US) consisted of
a 50 ms airpuff whose intensity (air pressure at the tip of the tube) was set to trigger
painless eyeblink in 100% of the trials. Initially, the participant was exposed to
five CS alone and to five US alone stimuli to establish appropriate responses to
the tone and the airpuff as well as to measure the UR prior to conditioning. We
also ensured that the US did not induce any startle reaction from the participant.
A conditioning trial lasted one second and consisted of (successively): an initial
200 ms baseline period, a 400 ms CS that co-terminated with a 50 ms US, and
a final 400 ms period during which the eyeblink was recorded. An EBC block
consisted of 9 successive paired presentations of CS-US and a last trial with the CS
alone. An EBC session consisted of 5 successive blocks separated by an inter-trial
interval randomly ranging from 2 to 12 s. The participant was passively watching
a silent movie during the task.

EBC sessions: The patient underwent two EBC sessions on the same days as the
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clinical and neuropsychological assessments (Figure 5.1). The first one (pre-tDCS)
was made two days before the first tDCS session, and the second one (post-tDCS)
was made 2 days after the last tDCS session. Thus, 7 days separated the pre- and
the post-tDCS EBC sessions.

The EBC signal was low-pass filtered using a 4th order Butterworth filter with a
10 Hz cutoff frequency and was offset-subtracted by deducing to the trace the
averaged baseline. To estimate the percentage of CRs, we discarded trials for
which a spontaneous blink occurred during the baseline. CRs were detected in a
time window between 330 and 400 ms after the CS onset with a threshold of 5
times the standard deviation above the baseline. We visualized each trace
separately afterwards to verify that the detection of CRs was correct. Clinical
and neuropsychological characteristics before and after cerebellar stimulation
are reported in Table 5.1. The patient did not report any side effects, except from
a slight itching in the beginning of the first session of the second day of
stimulation. A careful inspection of the scalp did not evidence any cutaneous
lesion. The patient did not report any headache after brain stimulation. Clinical
symptoms remained stable during the stimulation protocol. Notably there was
no changes in the PANSS score and the Auditory Hallucination Verbal Scale.
There was a global improvement in a large part of neuropsychological
measurements (episodic memory, executive and attentional functions) before and
after stimulation (Table 5.1).

We found an improvement in the long-term episodic memory, assessed with the
free/cued recall 16 items (Table 5.1) test. There was an increase of performance
in the delayed free recall: after the stimulation, the score of the participant was
in the normal range (19 to 20 percentile) vs < 1 percentile before stimulation.
Likewise, there was a strong improvement in the first attempt of the free recall
after stimulation: the score of the participant was in the normal range (11 to 12
percentile) after stimulation vs 1 to 2 percentile before stimulation. Two different
lists of words were proposed to the participant before and after stimulation in
order to avoid a test-retest effect (Stoykova et al., 2013).
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Table 5.1 – Clinical and neuropsychological characteristics before and after cerebellar

stimulation.
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In two tests measuring short term and working memory (digit span and spatial
memory), there was an improvement in the performance of the participant in
both the direct and indirect order, suggesting an effect of stimulation in both the
short term and working memory.

We found an increase in the Stroop test performance. In particular, the reading
performance improved from 4-5 percentile (pathological range) before stimulation
to 8-12 percentile (normal range) after stimulation. In addition there was an
improvement in the interference condition after stimulation (12 percentile) as
compared to before stimulation (5 to 8 percentile).

Last, we measured the selective attention with the D2 test of attention
(Brickenkamp). Again, there was an increase in both the quantitative
performance index (GZ) and the concentration performance index (KL). In the KL
index, the subject scored in the normal range after cerebellar stimulation vs in
the pathological range (<0.5 percentile) before stimulation.

Results from the EBC assessment before and after stimulation are reported in
Figures 5.2 and 5.3. Before tDCS, the averaged block response amplitudes of
the URs remained unchanged over the pre-tDCS session (Figure 5.2 A), very
few CRs were detected and peak latencies of averaged block signals remained
constant during the overall session (Figure 5.3). Thus, 45 CS-US pairings were
insufficient to induce EBC, at the end of this session only 43 % of the trials
displayed CRs (Figure 5.3 A). This result is in agreement with previous EBC
evaluation in patients with schizophrenia (Golden, 1975). After tDCS, the patient
was rapidly conditioned and reached a final value of 83 % of CRs (Figure 5.3 A), as
expected for a normal EBC session. Accodingly after tDCS, the averaged amplitude
of the URs decreased from block to block (Figure 5.2 D) while it was stable before
tDCS, This progression of EBC can also be observed by monitoring the first peak
latency of the responses from block to block. Before tDCS it remained stable
but rapidly decreased over the blocks after tDCS (Figure 5.3 B). Those features
indicate the shift of the eyeblink timing towards the CS, which corresponds to a
progressive change from reflexive towards predictive behavior. Thus, before tDCS
the patient could not be conditioned over the EBC session while after cerebellar
tDCS he displayed progressive conditioning from block to block.
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200 ms
200 ms

BEFORE tDCS AFTER tDCSA. B.

C. D.

Figure 5.2. EBC sessions before (A and C) and after (B and D) tDCS in the schizophrenic

patient.A and B: Each block represents the average signal over the 9 CS-US trials, for EBC

experiments respectively before (A) and after (B) tDCS. The EBC protocol is depicted at the top

of panels A and B. C and D: Plots of the IR-reflected signal for each block before (C) and after (D)

tDCS. Red rectangles delimit the area where CRs were detected in Figure 5.3 A. Notice that the

unconditioned response (UR) peak amplitude and latency decreases block after block after tDCS

(D), while before the tDCS the UR peak amplitude remains constant among all the blocks, and the

latency shows no trend (C). The color code corresponds to the normalized response amplitude of

the IR-reflected signal.
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A. B.

Figure 5.3. Percentage of CRs and latency of the first peak progression from block to

block before (red) and after (green) tDCS. A. Percentage of CRs from each block measured in

the red rectangle indicated on Figure 5.2 C and D. B. First peak latency calculated from the data

averaged in blocks in Figure 5.2 A and C. Time zero for latency calculation corresponds to the

onset of the US.

5.3 DISCUSSION and CONCLUSION

We describe the case of a 50 years old patient with schizophrenia whom
underwent a non-invasive cerebellar stimulation protocol. Data from clinical and
psychometric evaluations including long term verbal memory, executive and
attention functions were collected before and after the stimulation, as well as
data from a cerebellar-dependent eyeblink conditioning protocol.

Although we did not report changes in the positive or negative symptoms of
schizophrenia before and after stimulation, there was a global improvement in
psychometric measurements after stimulation. We also found an improvement in
the performance in selected attention, long/short term memory, working memory
and response inhibition; cognitive domains known to be altered in patients with
schizophrenia. There was a clear improvement of EBC after stimulation. In
the absence of data on healthy subjects in our conditions, we can not exclude
any retest effect (“saving”) in this improvement (Hoffland et al., 2012). This is
however unlikely given that in our data: 1) no clear cut EBC could be observed at
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the end of the pre-tDCS session, and 2) conditioning gradually appeared during
the post-tDCS EBC session, starting from an absence of predictive response
(and thus showing no saving, Figure 5.3). In addition, and contrary to control
subjects, patients with schizophrenia have been shown not to improve their
performance during consecutive EBC sessions (Bolbecker et al., 2009). Those
lines of evidence therefore support the view that the improvement of EBC after
tDCS was due to the stimulation itself and not to any retention of the first
EBC session. Based on the abundant literature in both humans and animals
(Thompson and Steinmetz, 2009; Mauk et al., 2014; Timmann et al., 2010; Freeman
and Steinmetz, 2011), our data indicates that the cerebellar function of the patient
was basally impaired as previously described in schizophrenia (Kent et al., 2015).
Our EBC assessment is consistent with several studies that reported an effect of
non-invasive cerebellar stimulation on associative learning measured with EBC
(Zuchowski et al., 2014; Monaco et al., 2014). More importantly, it points out
cerebellar tDCS as a powerful tool to significantly improve cerebellar function in
schizophrenia. EBC has proven to be a relevant method to investigate cerebellar
dysfunction in neuropsychiatric disorders. Disentangling motivational aspects
of cognitive deficits can be challenging in patients with schizophrenia. This is
however important since the deficits in motivation commonly present in patients
with schizophrenia can bias classic neuropsychological tests. EBC does not require
active participation of the subject. In our paradigm, the patient was watching a
silent movie during the experiment; in newborns, EBC can even be performed
during sleep (Fifer et al., 2010; Tarullo et al., 2016). Thus, the outcome of EBC are
unlikely to be related to motivational deficits in patients with schizophrenia.

Gupta et al. (2018) found in a double-blind crossover study an effect of cerebellar
tDCS on procedural learning in a population of non clinical psychosis (NCP)
population. The authors reported greater rate of motor learning in NCP population
after active stimulation. We used a different stimulation protocol with the cathode
electrode (return electrode) placed on the right arm, whereas Gupta et al. (2018)
placed the electrode on the midline of the scalp. Although there is no consensus on
the placement of the return electrode (Ferrucci et al., 2015), we chose this location
based on a modelisation study (Parazzini et al., 2014) to target the posterior region
of the cerebellum.
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Brady Jr et al. (2019) reported in a population of patients with schizophrenia, an
improvement of negative symptoms after transcranial magnetic stimulation (TMS)
related to dorso-lateral prefrontal cortex-to-cerebellum connectivity. However
the authors did not investigate the effect of cerebellar stimulation on cognitive
symptoms.

In healthy subjects, there is evidence that non-invasive cerebellar stimulation can
modulate working memory, motor control, learning and emotional processing
(Ferrucci et al., 2015). These results are in line with our results where non-invasive
cerebellar stimulation had an effect on verbal memory, executive and attention
function. The participant did not report any significant side effects after 2 sessions
of stimulation during 5 days, which is in line with previous studies showing the
feasibility and good tolerance profile of cerebellar tDCS (Ferrucci et al., 2015).

Our results supports several strengths. To the best of our knowledge, this case is
the first to report the effect of tDCS on cognition (including associative learning
measured with EBC) in schizophrenia. We carefully selected psychological
measurements with no test/retest effects, which suggests that the cognitive
improvement is related to the stimulation. In addition, there was no significant
change in the positive and negative symptoms, suggesting again that the change
in cognition are not related to a change in the symptoms of schizophrenia. Our
work suggests that eyeblink conditioning can be used to assess the effect of
cerebellar stimulation.

Several limitations should be considered before interpreting our results. Because
we only investigated the effect of stimulation in a single patient, our study
remains purely qualitative. The posterior part of the cerebellum is connected to
multiple regions in the associative cortex and it is difficult to target a specific
domain of cognition with cerebellar brain stimulation. We were not able to
measure other cognitive domains, such as social cognition that could also be
modulated by cerebellar stimulation (Stoodley et al., 2017). However, our goal
was to propose an original cognitive evaluation by combining a classic
neuropsychological assessment and EBC.

In conclusion, our results suggests that cerebellar tDCS stimulation can have an
impact on cognitive impairments in patients with schizophrenia. We suggest
that eyeblink conditioning, known as a relevant method to investigate cerebellar

102



Cerebellar stimulation in Schizophrenia

dysfunction in neuropsychiatric disorders, could be used to assess the impact of
stimulation on the cerebellum in patients with schizophrenia. Further clinical
trials are required to address the potential therapeutic potential of tDCS in
schizophrenia.
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Part III

EPILOGUE





6 Discussion

Working memory or, maintaining a mental representation of past immediate
information to drive coherent actions, is critical feature in the realisation of
complex cognitive functions such as planning, decision making, learning,
thinking etc. Experimental evidence point that neural correlates of working
memory involves persistent selective activity in the PFC. Main accepted
mechanisms of persistent activity rely on strong recurrent excitation in PFC
whereas selectivity or spatial tuning arises from columnar PFC architecture
together with lateral inhibition (Rao et al., 1999; Goldman-Rakic, 1995;
González-Burgos et al., 2000). However, the mechanisms underlying network
bistability remain elusive. On the other hand, mental illnesses such
Schizophrenia present PFC disfunction and particularly WM deficits (Lee and
Park, 2005). Although main theories of the Schizophrenia etiology underline the
role of PFC dysconnectivity with subcortical areas as well as imbalance in the
glutamate, dopamine and GABA systems, the mechanisms underlying WM
deficits in Schizophrenia remain unknown (Andreasen et al., 1996; McCutcheon
et al., 2020). In this thesis we argue the idea that understanding the neurobiology
of the dlPFC and WM provides important knowledge in order to unravel the
etiology of mental illnesses such Schizophrenia. With the aim to shed some light
into these questions, in this thesis, we present novel mechanisms for network
bistability based on the nonlinearities in the neuronal input-output transfer
functions. With this model, we study how changes of biological parameters seen
in Schizophrenia can shape the spatiotemporal dynamics. Finally we presented a
Schizophrenia treatment based on cerebellar stimulation.

We asked ourselves in the prologue what network mechanisms underlie WM in
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PFC. We saw that experimental evidence supports the theory that visuospatial
location of an object is transiently maintained through persistent selective activity
in specific regions in the PFC. We also reviewed several works that propose
different mechanisms for persistence and selectivity within a single network
of neurons based on continuous bump attractors (Camperi and Wang, 1998;
Compte et al., 2000; Gutkin et al., 2001). In Camperi and Wang (1998) they used
bistable neurons in order to have network bistability, however in the last part
of the results they propose that a nonlinearity in the input-output neuron TF
could be a suitable substrate underlying network bistability. In our work we
propose a bump attractor network model of rate neurons to exhaustively study
how the typical nonlinearities found in the experimental neuron TF can shape
the network bistability. The firing rate model presented describes the temporal
dynamics of the activities of the synapses of the neuron with 𝑃𝐷 = 𝜃. We found
that the saturation of the TF can generate a bistability that allows to switch off
the bump state by means of a global excitatory input. This is relevant since in
electrophysiological experiments there is a global increase of activity at the end
of the delay period. This suggest that an external excitatory input from other
cortical or subcortical could drive the network from the memory state (bump
state) to spontaneous activity (homogeneous state). The main problem is that
neurons during WM do not operate in its saturation firing rates indicating that
the saturation of the TF is not a biological realistic substrate for the bistability.
To overcome this problem we showed that in a model comprising excitatory
and inhibitory populations, a similar bistability can be obtained by an effective
saturation of the network TF. This mechanism in which inhibition overcome
excitation at a certain point subserves a mechanism to switch off the bump state
through global excitation without requirement of the saturation part of the single
neuron TF. We implemented the effective saturation mechanism in a network of
spiking neurons and verify a qualitatively similar scenario in which switch off of
the bump state through global excitation. The spike time dynamics allowed to
study in detail the state transitions. We found that for a given range of switch off
stimulus duration an oscillatory pattern determines the state transition.

Bistability arising from neuron TF nonlinearities cannot be applied to balanced
networks since the main feature of this networks is that the mean firing rate
have a linear dependence with the input independent of the nonlinearities in the
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neuron TF (van Vreeswijk and Sompolinsky, 1996). In this case, the effect of the
nonlinearities in single neuron TF is not represented in the network level. A
possible bistability mechanisms in balanced systems rely on synaptic
nonlinearities. In the literature some examples of synaptic nonlinearities in
balanced networks rely on short term synaptic plasticity (Mongillo et al., 2012).
In another work, Hansel and Mato (2013) present a balanced network of
integrate-and-fire neurons with synaptic plasticity displaying persistent selective
activity reproducing the irregular firing found in WM experiments. However, in
these works the switch off by global excitation is not directly addressed but the
results in Hansel and Mato (2013) suggest that synaptic plasticity could provide a
compressive nonlinearity enabling the bump termination by a global excitatory
input.

Future experimental studies will be necessary in order to demonstrate the impact
of neural nonlinearities in the genesis of bistability in the PFC circuits. A possible
experiment setup could rely on optogenetic modification of membrane properties
in order to modify the neuronal TF and study its impact in the PFC dynamics
during WM tasks.

In Chapter 4 we wanted to explore how changes in changes in the spiking
network model such as variations in the synaptic current dynamics or variations
in the network size could affect to the bistability and the dynamics of the system.
We saw in the literature review (Section 2.4) that in Schizophrenia, the PFC is
strongly affected and WM is impaired. One of the main hypothesis of the origin
of Schizophrenia involves a hypofunction of the NMDAR. We thus proposed to
study how variations in the contribution of NMDA currents can alter the
dynamics in the PFC circuits. By exploring different excitatory synaptic time
constants representing relative contribution between AMPA and NMDA
postsynaptic currents we found a vast number of spatiotemporal patterns
previously described in a network model with delays (Roxin et al., 2005). In
general, for synaptic time constants smaller than the membrane time constants,
the bistability is disrupted. We also found that for physiological values of
inhibitory synaptic time constants, a decrease in the contribution of NMDA
currents leads to a synchronisation of the activity showing oscillatory patterns as
described previously in (Compte et al., 2000). Besides, we described in the
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literature review (Section 2.4) that pyramidal neurons in layer III in PFC show a
dendritic spine loss in Schizophrenia (Glantz and Lewis, 2000). We hypothesize
that this will lead to decrease in the number of synaptic inputs and this is
qualitatively comparable with a reduction in the number of neurons in the
network. We find that a decrease in the network size results in a major
probability of spontaneous transitions to occur. Specifically, we found that a
reduction in the number of neurons increases exponentially the probability of
having spontaneous generation of bumps of activity in absence of external
stimulation. We propose this as a possible mechanisms of hallucinations
typically encountered in mental illnesses such as Parkinson and Schizophrenia
which are characterized by synaptic dysconnectivity or degeneration (Burghaus
et al., 2012).

In Chapter 5 we present a case report study in which we argue in favor of the
hypothesis that Schizophrenic symptoms could be due to a functional
dysconnectivity between cerebellum and PFC. Since first postulation by
Andreasen et al. (1996), this hypothesis have been gaining strength due to
increasing evidences of anatomical and functional dysconnectivity (Zhou et al.,
2015; Brady Jr et al., 2019). In a paper from Parker et al. (2014) from Andreasen
lab, they present the hypothesis that cerebellar stimulation could be a plausible
treatment for Schizophrenia based in the idea of restoration of synchrony
between subcortical structures and PFC. A recent study from Brady Jr et al.
(2019) have shown that stimulation of the cerebellum by rTMS produces an
increase in the functional connectivity between PFC and cerebellum that
correlates with an improvement of Schizophrenic symptoms. In our work, we
show that cerebellar stimulation with tDCS enhances cerebellar function
measured with an EBC protocol that provides a characterization of the cerebellar
function. Although PFC function was not be measured, there was an
improvement in WM task as well as in other cognitive symptoms suggesting a
restoration of PFC function directly associated with an improvement of
cerebellar function. Despite the study was perform in one Schizophrenic patient,
in conjunction with the work presented by Brady Jr et al. (2019), the results
suggest its as a potential treatment for Schizophrenia.

A natural continuation of the work presented will be to incorporate the cerebellum

110



Discussion

and thalamus in to the PFC model of WM in order to study how the inputs from
subcortical areas can shape the PFC dynamics. In our model, the input from
subcortical areas can be understood as the external input. As we saw in the model,
the bistability region is bounded by certain values of external input, thus strong
variations of this input could lead to a cessation of the bistability. We also showed
that small changes in the external input could set the network to operate close to
the transition thus increasing the probability of having spontaneous transitions.
On the other hand, in the spiking model, modifications of the background noise
which represents the synaptic bombardment, will directly impact the the firing
threshold of the neuronal TF (Persi et al., 2011). Thus, changes in the background
input due to a reduction of the synaptic inputs could potentially alter the neuronal
TF and thus alter the network bistability.

There is increasing evidence of the role of subcortical areas in complex cognitive
functions attributed to PFC such as WM. In a series of articles from Svoboda Lab
they study the role of subcortical structures in the preparatory activity present in
the anterolateral motor cortex (ALM) in mice during delayed response tasks (Li
et al., 2015; Guo et al., 2017; Gao et al., 2018). The ALM could be considered as a
counterpart of the PFC in mice and it displays persistent selective activity during
the delay period of WM taks. In their works they use optogenetics to activate or
inactivate specific areas and study its implication in the WM circuit dynamics. In
Guo et al. (2017) they show that the thalamus display similar persistent selective
activity as the ALM and inactivation of the thalamus results in impairments of
WM suggesting that the circuit loop between ALM and thalamus is critical for
maintaining the persistent activity. In Gao et al. (2018) they show that cerebellum
is as well critical for the preparation of future movements in a WM task suggesting
that the cerebellum through the thalamus, could play a role of timing the onsets
for persistent selectivity generation and extinction. Moreover, another series
of works from Deverett et al. have showed that Purkinje cells in cerebellum
encodes task-relevant information and thus cerebellar disruption produces WM
impairments (Deverett et al., 2018, 2019). However, further experiments studying
the role of subcortical areas in WM are crucial to understand the PFC dynamic
and more importantly, its implication in mental illnesses such Schizophrenia in
which a disruption of these circuits seems to be a central cause of the symptoms.
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A Mathematical Framework

Appendix A includes the mathematical description of the rate model for
visuospatial working memory as well as the derivation of the equations
describing the steady state dynamics and its stability.

A.1 General rate model

In the general model we define a population of 𝑁𝐸 excitatory neurons and a
population of 𝑁𝐼 inhibitory neurons. In each population, each neuron is assigned
with a preferred direction (PD) angle which is evenly distributed between −𝜋 and
𝜋. In this case the PD angle of a neuron is defined as the angular direction of the
external stimulus at which the response of the neuron is maximal. Each neuron
receives three types of inputs: external stimulation 𝐼𝑠𝑡𝑖𝑚 relative to the visual
cues, a background input 𝐶 considered as a global input from adjacent cortical
columns or other areas and a recurrent input 𝐼𝑋𝑟𝑒𝑐 that describes the synaptic
interaction between the neurons in the network (where 𝑋 is the postsynaptic
population, 𝑋 ∈ {𝐸, 𝐼}). The output of a neuron from population 𝑋 with PD
𝜃 is its firing rate 𝑟𝑋(𝜃, 𝑡), which, under the assumption of very slow synaptic
time constants, can be computed instantaneously from the neuron’s input-output
transfer function (TF), 𝑔𝑋(𝐼) :

𝑟𝑋(𝜃, 𝑡) = 𝑔𝑋
(︀
𝐶 + 𝐼𝑋𝑟𝑒𝑐(𝜃, 𝑡) + 𝐼𝑠𝑡𝑖𝑚(𝜃, 𝑡)

)︀
(A.1)

In order to simplify the analytical calculations in the study of the effect of neuronal
nonlinearities on the network, we chose to describe the TF as a piecewise linear
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function. We define the general form of 𝑔𝑋(𝐼) as follows:

𝑔𝑋(𝐼) =

⎧⎪⎨⎪⎩
0,

𝛼𝑋𝐼,

𝛽𝑋(𝐼 − 𝑇𝑋) + 𝛼𝑋𝑇𝑋 ,

𝐼 < 0

0 ≤ 𝐼 < 𝑇𝑋

𝑇𝑋 ≤ 𝐼

(A.2)

The activity of the outgoing synapses of neuron with PD 𝜃 in population 𝑋

is represented by the variable 𝑚𝑋(𝜃, 𝑡) which has linear dynamics, with the
neuron’s firing rate as input:

𝜏𝑋�̇�𝑋(𝜃, 𝑡) = −𝑚𝑋(𝜃, 𝑡) + 𝑟𝑋(𝜃, 𝑡) (A.3)

The recurrent input 𝐼𝑋𝑟𝑒𝑐(𝜃, 𝑡) is described as follows:

𝐼𝑋𝑟𝑒𝑐(𝜃, 𝑡) = 1
2𝜋

∫︀
2𝜋
𝐽𝑋𝐸(𝜃 − 𝜉)𝑚𝐸(𝜉, 𝑡)d𝜉 − 1

2𝜋

∫︀
2𝜋
𝐽𝑋𝐼(𝜃 − 𝜉)𝑚𝐼(𝜉, 𝑡)d𝜉 (A.4)

where 𝐽𝑋𝑌 (𝜃 − 𝜉) is the weight of the interaction between presynaptic neuron
with PD 𝜉 in population 𝑌 and the postsynaptic neuron with PD 𝜃 in population𝑋 .
From now on we consider that the connectivity is independent of the postsynaptic
population i.e. the nature of the interaction is determined by the presynaptic
population, 𝐽𝐸𝑌 = 𝐽𝐼𝑌 , 𝐽𝑌 .

Neurons with similar PDs are strongly connected, this feature is represented by
the connectivity functions chosen as in Ben-Yishai et al. (1995):

𝐽𝑌 (𝜃 − 𝜉) = 𝐽𝑌
0 + 𝐽𝑌

1 cos(𝜃 − 𝜉) (A.5)

where 𝐽𝑌
0 represents the mean connectivity and 𝐽𝑌

1 the spatial modulation. Since
the connectivity is independent on 𝑋 , by using the trigonometrical identity
cos(𝜃 − 𝜉) = cos(𝜃) cos(𝜉) + sin(𝜃) sin(𝜉), Equation (A.4) can be rewritten as:

𝐼𝑟𝑒𝑐(𝜃, 𝑡) = 𝐽𝐸
0 𝑚

𝐸
0 (𝑡) − 𝐽 𝐼

0𝑚
𝐼
0(𝑡) +

(︀
𝐽𝐸
1 𝑚

𝐸
1 (𝑡) − 𝐽 𝐼

1𝑚
𝐼
1(𝑡)
)︀

cos(𝜃)

+
(︀
𝐽𝐸
1 𝑚

𝐸
2 (𝑡) − 𝐽 𝐼

1𝑚
𝐼
2(𝑡)
)︀

sin(𝜃)
(A.6)

where 𝑚𝑌
𝑖 (𝑡) are the Fourier components of the activity:

𝑚𝑌
0 (𝑡) =

1

2𝜋

∫︁
2𝜋

𝑚𝑌 (𝜃, 𝑡)d𝜃 (A.7)
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𝑚𝑌
1 (𝑡) =

1

2𝜋

∫︁
2𝜋

𝑚𝑌 (𝜃, 𝑡) cos(𝜃)d𝜃 (A.8)

and
𝑚𝑌

2 (𝑡) =
1

2𝜋

∫︁
2𝜋

𝑚𝑌 (𝜃, 𝑡) sin(𝜃)d𝜃 (A.9)

A.2 Steady state of the general model

In the absence of 𝐼𝑠𝑡𝑖𝑚, the network presents two different types of steady states
or fixed points (FPs). These equilibrium points are a homogeneous PF in which all
the neurons display the same firing rate, and a “bump" FP in which a specific group
of neurons with similar PD fire at higher rates than the rest of the neurons. Due
to the rotational symmetry of the network, we can describe bump steady states
profiles symmetric around 𝜃 = 0 without loss of generality. The general equation
for steady states can be found by combining Equations (A.1), (A.3) and (A.6) and
setting to zero the left-hand side (LHS) in Equation (A.3):

𝑚𝑋(𝜃) = 𝑔𝑋 (𝐶 + 𝐼0 + 𝐼1 cos(𝜃)) (A.10)

where 𝑋 ∈ {𝐸, 𝐼} and 𝐼𝑘 , 𝐽𝐸
𝑘 𝑚

𝐸
𝑘 − 𝐽 𝐼

𝑘𝑚
𝐼
𝑘 with 𝑘 ∈ {0, 1}. Notice that, since

we are describing the bump state profiles centered at𝜃 = 0, the integral of the
sine for the calculation of 𝑚𝑌

2 in Equation (A.9) is equal to zero. Thus, the total
input to a neuron in the steady state is defined by:

𝐼*(𝜃) , 𝐶 + 𝐼0 + 𝐼1 cos(𝜃) (A.11)

In the homogeneous steady state, since all neurons have the same firing rate, the
integrals of the cosine for the calculation of 𝑚𝑌

1 in Equation (A.8) is equal to zero
leading to 𝐼1 = 0 and thus Equation (A.11) for the homogeneous steady state
becomes:

𝑚𝑋(𝜃) = 𝑔𝑋 (𝐶 + 𝐼0) (A.12)

Using the definition of 𝐼0 together with Equation (A.12) we obtain:

𝐼0 = 𝐹0(𝐶 + 𝐼0) (A.13)
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where 𝐹0(𝑥) , 𝐽𝐸
0 𝑔𝐸(𝑥) − 𝐽 𝐼

0𝑔𝐼(𝑥). Thus, the homogeneous steady state firing
rate can be obtained by solving Equation (A.13) and then substituting 𝐼0 into
equation A.12.

The solution of the bump steady state can be characterized by three parameters:
𝜃0, as the maximal value of 𝜃 at which the input to neuron with PD 𝜃 (i.e
𝐼*(𝜃)), is above zero; 𝜃𝐸1 and 𝜃𝐼1 below which 𝐼*(𝜃) is larger than 𝑇𝐸 and
𝑇𝐼 , respectively. Substituting Equation (A.10) in the definition of the Fourier
components (Equations (A.7) to (A.9)) and taking into account the definition of
the TF in Equation (A.2) it yields:

𝑚𝑋
𝑖 (𝑡) = (𝛽𝑋 − 𝛼𝑋)

1

𝜋

∫︁ 𝜃𝑋1

0

[𝐼*(𝜃) − 𝑇𝑋 ] cos(𝑖 · 𝜃)d𝜃

+ 𝛼𝑋
1

𝜋

∫︁ 𝜃0

0

𝐼*(𝜃) cos(𝑖 · 𝜃)d𝜃

(A.14)

where 𝑖 ∈ {0, 1}. Since we consider profiles symmetric around 𝜃 = 0 the 𝑚𝑌
2

component will be zero. This also allows to define the integration limits from
zero to 𝜃𝑋𝑖 . In the bump steady state, there is a the case in which 𝜃0, 𝜃𝐸1 and 𝜃𝐼1
are all smaller than 𝜋, meaning that certain group of neurons is receiving a total
input smaller than zero, other group receives an input between zero and 𝑇𝑋 and
other group receives an input above 𝑇𝑋 , the equations defining these parameters
are:

𝐶 + 𝐼0 + 𝐼1 cos(𝜃0) = 0 (A.15)

and
𝐶 + 𝐼0 + 𝐼1 cos(𝜃𝑋1 ) = 𝑇𝑋 (A.16)

Combining Equation (A.16) for the excitatory and inhibitory populations and
substituting 𝐼1 from Equation (A.15) we obtain the following relation:

(𝑇𝐸 − 𝑇𝐼) cos(𝜃0) = 𝑇𝐸 cos(𝜃𝐼1) − 𝑇𝐼 cos(𝜃𝐸1 ) (A.17)

Now, using Equations (A.11), (A.15) and (A.16) we can rewrite Equation (A.14) as:

𝑚𝑋
𝑖 = 𝐼1

(︀
(𝛽𝑋 − 𝛼𝑋)𝑓𝑖(𝜃

𝑋
1 ) + 𝛼𝑋𝑓𝑖(𝜃0)

)︀
(A.18)
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where
𝑓𝑖(𝜃) =

1

𝜋

∫︁ 𝜃

0

(cos(𝜉) − cos(𝜃)) cos(𝑖 · 𝜉)d𝜉 (A.19)

with 𝜃 ∈ {𝜃0, 𝜃𝑋1 } and 𝑖 ∈ {0, 1}.

Substituting Equation (A.18) into the definition of 𝐼1 we derive a second equation
for 𝜃0, 𝜃𝐸1 and 𝜃𝐼1 :

𝐽𝐸
1 (𝛽𝐸 − 𝛼𝐸)𝑓1(𝜃

𝐸
1 ) − 𝐽 𝐼

1 (𝛽𝐼 − 𝛼𝐼)𝑓1(𝜃
𝐼
1) + (𝐽𝐸

1 𝛼𝐸 − 𝐽 𝐼
1𝛼𝐼)𝑓1(𝜃0) = 1 (A.20)

Then, taking Equation (A.18) together with the definition of 𝐼0 we can obtain:

𝐼0 = 𝐼1
[︀
𝐽𝐸
0 (𝛽𝐸 − 𝛼𝐸)𝑓0(𝜃

𝐸
1 ) − 𝐽 𝐼

0 (𝛽𝐼 − 𝛼𝐼)𝑓0(𝜃
𝐼
1) + (𝐽𝐸

0 𝛼𝐸 − 𝐽 𝐼
0𝛼𝐼)𝑓0(𝜃0)

]︀
(A.21)

Now, substituting Equation (A.21) in Equations (A.15) and (A.16)) we can write a
third equation for 𝜃0, 𝜃𝐸1 and 𝜃𝐼1 :

𝐽𝐸
0 (𝛽𝐸 − 𝛼𝐸)𝑓0(𝜃

𝐸
1 ) − 𝐽 𝐼

0 (𝛽𝐼 − 𝛼𝐼)𝑓0(𝜃
𝐼
1) + (𝐽𝐸

0 𝛼𝐸 − 𝐽 𝐼
0𝛼𝐼)𝑓0(𝜃0) =

− 𝐶

𝑇𝐸

[︀
cos(𝜃𝐸1 ) − cos(𝜃0

]︀
− cos(𝜃0)

(A.22)

At this point, from Equations (A.17), (A.20) and (A.22) we can solve the system
numerically in order to find 𝜃0, 𝜃𝐸1 and 𝜃𝐼1 for the case in which these angles are
smaller than 𝜋. Once we find the solution of these angles we can substitute them
in Equations (A.15) and (A.16) to find the values of 𝐼𝑘, and finally calculate the
steady state rates from Equation (A.10).

In the case in which the input is above zero for all the neurons, i.e
𝐼*(𝜃) > 0; ∀ 𝜃 ∈ {−𝜋, 𝜋}, Equation (A.15) is no longer valid. Instead, we
substitute 𝜋 for 𝜃0 in Equation (A.14) to obtain:

𝑚𝑋
0 = 𝐼1(𝛽𝑋 − 𝛼𝑋)𝑓0(𝜃

𝑋
1 ) + 𝛼𝑋 (𝐶 + 𝐼0) (A.23)

and
𝑚𝑋

1 = 𝐼1

[︁
(𝛽𝑋 − 𝛼𝑋)𝑓1(𝜃

𝑋
1 ) +

𝛼𝑋

2

]︁
(A.24)

Substituting Equation (A.24) into the definition of 𝐼1 we can write and equation
for 𝜃𝐸1 and 𝜃𝐼1 :

𝐽𝐸
1 (𝛽𝐸 − 𝛼𝐸)𝑓1(𝜃

𝐸
1 ) − 𝐽 𝐼

1 (𝛽𝐼 − 𝛼𝐼)𝑓1(𝜃
𝐼
1) +

1

2
(𝐽𝐸

1 𝛼𝐸 − 𝐽 𝐼
1𝛼𝐼) = 1 (A.25)
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By substituting Equation (A.23) into the definition of 𝐼0 and using Equation (A.16)
we can get a second equation for 𝜃𝐸1 and 𝜃𝐼1 :

𝐽𝐸
0 (𝛽𝐸 − 𝛼𝐸)𝑓0(𝜃

𝐸
1 ) − 𝐽 𝐼

0 (𝛽𝐼 − 𝛼𝐼)𝑓0(𝜃
𝐼
1) +

𝐶[cos(𝜃𝐸1 )−cos(𝜃𝐼1)]
𝑇𝐸−𝑇𝐼

1 − (𝐽𝐸
0 𝛼𝐸 − 𝐽 𝐼

0𝛼𝐼)
=

𝑇𝐼 cos(𝜃𝐼1) − 𝑇𝐸 cos(𝜃𝐸1 )

𝑇𝐸 − 𝑇𝐼

(A.26)

By solving numerically Equations (A.26) and (A.31) we will found the solution
for 𝜃𝐸1 and 𝜃𝐼1 in the steady states. Then, with Equation (A.16) we can compute 𝐼0

and 𝐼1 and finally evaluate the steady state rate with Equations (A.23) and (A.24).

There is a third case in which the input to all the neurons is above zero and
𝑇𝐸 (𝐼*(𝜃) > 𝑇𝐸 ; ∀ 𝜃 ∈ {−𝜋, 𝜋}). In this case, in which we consider 𝑇𝐸 ≤ 𝑇𝐼 , a
group of neurons receive inputs between 𝑇𝐸 and 𝑇𝐼 (neurons with PD between
𝜃𝐸1 and 𝜃𝐼1), and another group receive inputs larger than 𝑇𝐼 (neurons with PD
larger than 𝜃𝐼1). In this case we substitute 𝜋 for 𝜃0 and 𝜃𝐸1 in Equation (A.14) to
obtain the steady state rate equations:

𝑚𝐸
0 = 𝛽𝐸(𝐶 + 𝐼0 − 𝑇𝐸) + 𝛼𝐸𝑇𝐸 (A.27)

𝑚𝐸
1 = 𝛽𝐸𝐼1/2 (A.28)

𝑚𝐼
0 = 𝐼1(𝛽𝐼 − 𝛼𝐼)𝑓0(𝜃

𝐼
1) + 𝛼𝐼 (𝐶 + 𝐼0) (A.29)

and

𝑚𝐼
1 = 𝐼1

[︁
(𝛽𝐼 − 𝛼𝐼)𝑓1(𝜃

𝐼
1) +

𝛼𝐼

2

]︁
(A.30)

Substituting Equations (A.28) and (A.30) into the definition of 𝐼1 we obtain a
equation for 𝜃𝐼1 :

𝐽𝐸
1 𝛽𝐸/2 − 𝐽 𝐼

1

[︀
(𝛽𝐼 − 𝛼𝐼)𝑓1(𝜃

𝐼
1) + 𝛼𝐼/2

]︀
= 1 (A.31)

From this equation we can find numerically 𝜃𝐼1 , calculate 𝐼0 and 𝐼1 using
Equations (A.16), (A.27) and (A.29) and the definition of 𝐼0, and finally calculate
the steady state rate using equations ??--??
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A.3 Reduction to one population

In order to study explicitly the effect of nonlinearities in the neurons TF, we
can reduce the model to one effective population by considering that the TFs
(Equation (A.2)) and the time constants for excitatory and inhibitory neurons are
identical. Thus, the rate dynamics (Equation (A.3)) of both populations is exactly
the same and it can be described by a single variable 𝑚(𝜃, 𝑡) with dynamics

𝜏�̇�(𝜃, 𝑡) = −𝑚(𝜃, 𝑡) + 𝑔 (𝐶 + 𝐽0𝑚0(𝑡) + 𝐽1𝑚1(𝑡) cos(𝜃) + 𝐽1𝑚2(𝑡) sin(𝜃)

+𝐼𝑠𝑡𝑖𝑚(𝜃, 𝑡)) . (A.32)

where 𝐽𝑖 = 𝐽𝐸
𝑖 − 𝐽 𝐼

𝑖 and 𝑚𝑖(𝑡) = 𝑚𝐸
𝑖 (𝑡) = 𝑚𝐼

𝑖 (𝑡). The same network was
previously described in Ben-Yishai et al. (1995) with a threshold-linear TF. In our
work, in order to investigate the effects of the neural nonlinearities, we choose
the TF to be a piecewise-linear function as described in Equation (A.2) taking
𝑇𝐸 = 𝑇𝐼 = 1, 𝛼𝐸 = 𝛼𝐼 = 1 and 𝛽𝐸 = 𝛽𝐼 = 𝛽:

𝑔(𝐼) =

⎧⎪⎨⎪⎩
0,

𝐼,

𝛽(𝐼 − 1) + 1,

𝐼 < 0

0 ≤ 𝐼 < 1

1 ≤ 𝐼

(A.33)

As in the previous section we only address the steady state profiles that are
symmetric around 𝜃 = 0. In this case the general equation for the steady states is:

𝑚(𝜃) = 𝑔 [𝐶 + 𝐽0𝑚0 + 𝐽1𝑚1 cos(𝜃)] (A.34)

In the homogeneous state all neurons share the same rate, thus 𝑚1 = 0, and it
can be determined by solving the following equation:

𝐼* − 𝐶 = 𝐽0𝑔(𝐼*) (A.35)

where 𝐼* = 𝐶 + 𝐽0𝑚0. The stability analysis given by the linearisation of
Equation (A.35) about the FP yields the stability condition 𝐽0𝑔

′(𝐼*) < 1. And
using Equation (A.34) into ?? and linearising around 𝐼* yields a second stability
condition for the homogeneous FP 𝐽1𝑔

′(𝐼*) < 2 (where 𝑔′(𝐼*) is the derivative of

147



Mathematical Framework

𝑔(𝐼) at the point 𝐼*). These two stability conditions are the same as described in
Ben-Yishai et al. (1995). The two different cases 𝛽 > 1 and 𝛽 < 1 are shown in C
FigureXX.
Since 𝑇𝐸 = 𝑇𝐼 , the bump solution in the reduced model is characterised by
only two angles: 𝜃0 and 𝜃1 (𝜃𝐸1 = 𝜃𝐼1 , 𝜃1). From Equation (A.14) we can define
the integrals of the form 𝐺𝑖(𝜃0, 𝜃1) = 1

𝜋

(︁∫︀ 𝜃0
0

cos𝑖(𝜃)d𝜃 + (𝛽 − 1)
∫︀ 𝜃1
0

cos𝑖(𝜃)d𝜃
)︁

,
and a matrix

A (𝜃0, 𝜃1) =

[︃
𝐺0 (𝜃0, 𝜃1) 𝐽0 − 1 𝐺1 (𝜃0, 𝜃1) 𝐽1

𝐺1 (𝜃0, 𝜃1) 𝐽0 𝐺2 (𝜃0, 𝜃1) 𝐽1 − 1

]︃
(A.36)

then the steady state equations of the order parameters 𝑚0 and 𝑚1 for the bump
state can be defined in matrix form in which 𝑚0 and 𝑚1 obey the linear relation:

A (𝜃0, 𝜃1) ·

[︃
𝑚0

𝑚1

]︃
=

(𝛽 − 1)

𝜋

[︃
𝜃1

sin(𝜃1)

]︃
− 𝐶 ·

[︃
𝐺0 (𝜃0, 𝜃1)

𝐺1 (𝜃0, 𝜃1)

]︃
(A.37)

For the case in which 𝜃0 and 𝜃1 are smaller than 𝜋, we can find their values by
numerically solving the following two equations:

𝐽0 (𝑓0(𝜃0) + (𝛽 − 1)𝑓0(𝜃1)) = 𝐶 · (cos(𝜃0) − cos(𝜃1)) − cos(𝜃0) (A.38)

and
𝐽1 (𝑓1(𝜃0) + (𝛽 − 1)𝑓1(𝜃1)) = 1 (A.39)

where 𝑓𝑖(𝜃) are as defined in Equation (A.19). These equations are obtained from
the definition of 𝑚0 and 𝑚1 in Equation (A.37) together with Equations (A.15)
and (A.16). In the case where all the neurons receive an input larger than zero,
the value of 𝜃1 can be found from Equation (A.39) by substituting 𝜃0 by 𝜋 and
solving numerically. The existence of solution of the bump state is restricted to
certain values of the background input 𝐶 . In order to find the critical values of 𝐶
we use Equation (A.38) to have an expression of 𝐶 as a function of the two angles
(𝜃0 and 𝜃1), and then search for the extreme of this function under the constraint
given by Equation (A.39) by using Lagrange multipliers method. We find that the
values of 𝜃𝑖 at the extrema can be found by numerically solving Equation (A.39)
with the equation:

Ψ0 + (𝛽 − 1) Ψ1 = 0 (A.40)
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where

Ψ0 =

[︂
𝐽0

(︂
𝑓0(𝜃0) + (𝛽 − 1)

sin(𝜃1) − 𝜃1 cos(𝜃0)

𝜋

)︂
+ cos(𝜃0)

]︂
· sin(𝜃0) (A.41)

and

Ψ1 =

[︂
𝐽0

(︂
sin(𝜃0) − 𝜃0 cos(𝜃1)

𝜋
+ (𝛽 − 1)𝑓0(𝜃1)

)︂
+ cos(𝜃1)

]︂
· sin(𝜃1) (A.42)

Once we find 𝜃𝑖, we substitute the values in Equation (A.38) to find the critical
value of 𝐶 .

There is another situation in which the bump state does not exist and 𝑚𝑖 → ∞.
In order to find the critical value of 𝐶 in this case we take the limit 𝜃1 → 𝜃0. By
substituting 𝜃0 = 𝜃1 , 𝜃𝑐 in Equation (A.38) we obtain the following equation:

I
𝛽𝐽0

1

𝜋
(𝜃𝑐 − tan(𝜃𝑐)) = 1 (A.43)

From Equation (A.43) we can numerically find the value of 𝜃𝑐 and then
substituting 𝜃0 and 𝜃1 by 𝜃𝑐 in Equation (A.39) we can find the maximal value
of for which the bump state exists. Above this critical value of the system
diverges (note that this value is independent on 𝐶 and only depends on the
connectivity parameter 𝐽0). In order to analyze the stability of the bump
steady states we consider the response of the network to a small perturbation
away from the FP described as 𝑚(𝜃, 𝑡) = 𝑚*(𝜃) + 𝛿𝑚(𝜃, 𝑡), where 𝑚*(𝜃) is
a FP that satisfies Equation (A.34) and 𝛿𝑚(𝜃, 𝑡) is the perturbation. To see
wether the perturbation grows or decays, we derive a differential equation
for the perturbation 𝛿�̇�(𝜃, 𝑡) = 𝑑

𝑑𝑡
(𝑚(𝜃, 𝑡) −𝑚*(𝜃)) = �̇�(𝜃, 𝑡) (since 𝑚*(𝜃) is

constant). Thus, 𝛿�̇�(𝜃, 𝑡) = �̇�(𝜃, 𝑡) = 𝑓(𝑚(𝜃, 𝑡)) = 𝑓(𝑚*(𝜃) + 𝛿𝑚(𝜃, 𝑡)), where
𝑓(𝑥) corresponds to the RHS in Equation (A.32). By linearizing this function
around the FP using Taylor’s expansion we obtain that the dynamics of the
perturbation is governed by:

𝜏 ˙𝛿𝑚(𝜃, 𝑡) = −𝛿𝑚(𝜃, 𝑡) + 𝑔′ (𝐼*(𝜃)) · [𝐽0𝛿𝑚0(𝑡) + 𝐽1𝛿𝑚1(𝑡) cos(𝜃)

+𝐽1𝛿𝑚2(𝑡) sin(𝜃)] (A.44)

where
𝛿𝑚0(𝑡) =

1

2𝜋

∫︁
2𝜋

𝛿𝑚(𝜃, 𝑡)d𝜃 (A.45)
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𝛿𝑚1(𝑡) =
1

2𝜋

∫︁
2𝜋

𝛿𝑚(𝜃, 𝑡) cos(𝜃)d𝜃 (A.46)

𝛿𝑚2(𝑡) =
1

2𝜋

∫︁
2𝜋

𝛿𝑚(𝜃, 𝑡) sin(𝜃)d𝜃 (A.47)

𝐼* is the total input to neuron with PD 𝜃 at the FP (see Equation (A.35)) and 𝑔′(𝐼)

is the derivative of the TF 𝑔(𝐼):

𝑔′(𝐼) =

⎧⎪⎨⎪⎩
0,

1,

𝛽,

𝐼 < 0

0 ≤ 𝐼 ≤ 1

1 < 𝐼

(A.48)

By differentiating Equations (A.45) and (A.46) with respect to time and using
Equation (A.44) we obtain the equations for the dynamics of 𝛿𝑚0 and 𝛿𝑚1:

𝜏
d

d𝑡

[︃
𝛿𝑚0

𝛿𝑚1

]︃
= A (𝜃0, 𝜃1) ·

[︃
𝛿𝑚0

𝛿𝑚1

]︃
(A.49)

where A is the matrix defined in Equation (A.36). Due to the symmetry of the
network, the phase of the bumps state at the steady state is arbitrary and thus
𝛿�̇�2 = 0. The stability requirement is that the eigenvalues of the matrix A at the
steady state 𝑚(𝜃) must be negative. The two stability conditions are:

𝐺0 (𝜃0, 𝜃1) · (𝐽0 + 𝐽1) < 3 (A.50)

and

(𝐽0𝐺0 (𝜃0, 𝜃1) − 1) · (𝐽1𝐺2 (𝜃0, 𝜃1) − 1) − 𝐽0𝐽1𝐺1 (𝜃0, 𝜃1)
2 > 0 (A.51)

To obtain the flow diagrams in the activity space in Figure 3.2 B and D, we write
the dynamics of 𝑚𝑘 in the absence of an external stimulus by Fourier transforming
Equation (A.32):

𝜏�̇�0 =

−𝑚0 +
1

2𝜋

∫︁
2𝜋

𝑔 (𝐶 + 𝐽0𝑚0 + 𝐽1𝑚1 cos(𝜃) + 𝐽1𝑚2 sin(𝜃)) d𝜃
(A.52)

𝜏�̇�0 =

−𝑚0 +
1

2𝜋

∫︁
2𝜋

𝑔 (𝐶 + 𝐽0𝑚0 + 𝐽1𝑚1 cos(𝜃) + 𝐽1𝑚2 sin(𝜃)) cos(𝜃)d𝜃
(A.53)
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𝜏�̇�0 =

−𝑚0 +
1

2𝜋

∫︁
2𝜋

𝑔 (𝐶 + 𝐽0𝑚0 + 𝐽1𝑚1 cos(𝜃) + 𝐽1𝑚2 sin(𝜃)) sin(𝜃)d𝜃
(A.54)

The flow on the 𝑚0 − 𝑚1 plane reflects the case where the activity profile is
completely symmetric around 𝜃 = 0, thus 𝑚2 = 0. Given the symmetry of the
system we can tell that the flow is symmetric about the 𝑚0 axis and therefore the
lower half plane is a mirror image of the upper half plane (+𝑚1). In the upper
half plane the flow is given by:

𝜏 d
d𝑡

[︃
𝑚0

𝑚1

]︃
= A (𝜃0, 𝜃1) ·

[︃
𝑚0

𝑚1

]︃
− (𝛽−1)

𝜋

[︃
𝜃1

sin(𝜃1)

]︃
+ 𝐶 ·

[︃
𝐺0 (𝜃0, 𝜃1)

𝐺1 (𝜃0, 𝜃1)

]︃
(A.55)

where the angles 𝜃𝑘 can be computed by defining 𝑢𝑘 = 𝑘−𝐶−𝐽0𝑚0

𝐽1𝑚1
from

Equations (A.15) and (A.16) for one population and then:

𝜃𝑘 =

⎧⎪⎨⎪⎩
𝜋,

cos−1(𝑢𝑘),

0,

𝑢𝑘 < −1

−1 ≤ 𝑢𝑘 ≤ 1

1 < 𝑢𝑘

(A.56)

In order to find the stable branch of the unstable FP defining the separatrix,
we first calculate the normalized eigenvectors of A at this FP. Then, by using
Equation (A.55), we calculate the trajectory in time starting near the FP in the
stable eigendirection (direction of the eigenvector with negative eigenvalue)
backwards in time.

A.4 Homogeneous state stability in the general

model

As done in the reduced model, we study the dynamics of the network of the general
model following a small perturbation from the homogeneous FP expressed as
𝑚𝑋(𝜃, 𝑡) = 𝑚*

𝑋 + 𝛿𝑚𝑋(𝜃, 𝑡) where 𝑚*
𝑋 is the activity at the homogeneous FP of

population𝑋 , 𝑋 ∈ {𝐸, 𝐼}. The dynamics of the perturbation is described as:

𝜏𝑋 ˙𝛿𝑚𝑋(𝜃, 𝑡) = −𝛿𝑚𝑋(𝜃, 𝑡) + 𝑔′𝑋 (𝐼*) · 𝛿𝐼(𝜃, 𝑡) (A.57)
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where

𝛿𝐼(𝜃, 𝑡) = 𝐽𝐸
0 𝛿𝑚

𝐸
0 (𝑡) − 𝐽 𝐼

0 𝛿𝑚
𝐼
0(𝑡) +

(︀
𝐽𝐸
1 𝛿𝑚

𝐸
1 (𝑡) − 𝐽 𝐼

1 𝛿𝑚
𝐼
1(𝑡)
)︀

cos(𝜃)

+
(︀
𝐽𝐸
1 𝛿𝑚

𝐸
2 (𝑡) − 𝐽 𝐼

1 𝛿𝑚
𝐼
2(𝑡)
)︀

sin(𝜃)
(A.58)

the derivative of the TF 𝑔𝑋(𝐼) is

𝑔′𝑋(𝐼) =

⎧⎪⎨⎪⎩
0,

𝛼𝑋 ,

𝛽𝑋 ,

𝐼 < 0

0 ≤ 𝐼 < 𝑇𝑋

𝑇𝑋 ≤ 𝐼

(A.59)

and the order parameters 𝛿𝑚𝑋
𝑖 are

𝛿𝑚𝑋
0 (𝑡) =

1

2𝜋

∫︁
2𝜋

𝛿𝑚𝑋(𝜃, 𝑡)d𝜃 (A.60)

𝛿𝑚𝑋
1 (𝑡) =

1

2𝜋

∫︁
2𝜋

𝛿𝑚𝑋(𝜃, 𝑡) cos(𝜃)d𝜃 (A.61)

𝛿𝑚𝑋
2 (𝑡) =

1

2𝜋

∫︁
2𝜋

𝛿𝑚𝑋(𝜃, 𝑡) sin(𝜃)d𝜃 (A.62)

By substituting the definition of 𝛿𝑚𝑋(𝜃, 𝑡) from Equation (A.57) into the order
parameters equations, we obtain:[︃

𝛿𝑚𝐸
𝑖

𝛿𝑚𝐼
𝑖

]︃
=

⎡⎣ (︁ ̃︀𝐽𝐸𝐸
𝑖 − 1

)︁
/𝜏𝐸 − ̃︀𝐽𝐸𝐼

𝑖 /𝜏𝐸̃︀𝐽 𝐼𝐸
𝑖 /𝜏𝐼 −

(︁ ̃︀𝐽 𝐼𝐼
𝑖 + 1

)︁
/𝜏𝐼

⎤⎦ ·

[︃
𝛿𝑚𝐸

𝑖

𝛿𝑚𝐼
𝑖

]︃
(A.63)

where ̃︀𝐽𝑋𝑌
𝑖 is defined as 𝑔′𝑋(𝐼*)𝐽𝑌

0 if 𝑖 = 0 and 𝑔′𝑋(𝐼*)𝐽𝑌
1 /2 otherwise.

The stability condition is that the eigenvalues of the matrix must be negative, in
order to accomplish this, the determinant has to be positive and the trace negative.
The conditions for the determinant to be positive are:

𝑔′𝐸(𝐼*)𝐽𝐸
0 − 𝑔′𝐼(𝐼

*)𝐽 𝐼
0 < 1 (A.64)

and
𝑔′𝐸(𝐼*)𝐽𝐸

1 − 𝑔′𝐼(𝐼
*)𝐽 𝐼

1 < 2 (A.65)

Notice that this two conditions are independent on the time constants 𝜏𝐸 and 𝜏𝐼 .
Then, the two conditions for the negative trace are:

𝜏𝐸/𝜏𝐼 >
𝑔′𝐸(𝐼*)𝐽𝐸

0 − 1

𝑔′𝐼(𝐼
*)𝐽 𝐼

0 + 1
(A.66)
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and

𝜏𝐸/𝜏𝐼 >
𝑔′𝐸(𝐼*)𝐽𝐸

1 /2 − 1

𝑔′𝐼(𝐼
*)𝐽 𝐼

1/2 + 1
(A.67)

In the case 𝜏𝐸 = 𝜏𝐼 , the conditions for the trace will be automatically fulfilled
provided that the conditions for the determinant are also satisfied.

A.5 Bump state stability in the general model

From the Equation (A.57) but in this case taking 𝐼* = 𝐶 + 𝐼0 + 𝐼1 cos(𝜃) (as given
in Equation (A.11)), we define the steady state profile values:

𝐾𝑋
𝑖 =

1

𝜋

(︃
𝛼𝑋

∫︁ 𝜃0

0

cos𝑖(𝜃)d𝜃 + (𝛽𝑋 − 𝛼𝑋)

∫︁ 𝜃𝑋1

0

cos𝑖(𝜃)d𝜃

)︃
(A.68)

Then, using Equation (A.57) and the definitions of 𝛿𝑚𝑋
0 and 𝛿𝑚𝑋

1 we can derive
the linearized dynamics of the perturbation:

𝜏𝐸
𝑑

𝑑𝑡

⎡⎢⎢⎢⎣
𝛿𝑚𝐸

0

𝛿𝑚𝐼
0

𝛿𝑚𝐸
1

𝛿𝑚𝐼
1

⎤⎥⎥⎥⎦ = K ·

⎡⎢⎢⎢⎣
𝛿𝑚𝐸

0

𝛿𝑚𝐼
0

𝛿𝑚𝐸
1

𝛿𝑚𝐼
1

⎤⎥⎥⎥⎦ (A.69)

where

K ,

⎡⎢⎢⎢⎢⎣
𝐽𝐸
0 𝐾

𝐸
0 − 1 −𝐽 𝐼

0𝐾
𝐸
0 𝐽𝐸

1 𝐾
𝐸
1 −𝐽 𝐼

1𝐾
𝐸
1

𝜏𝐸
𝜏𝐼
𝐽𝐸
0 𝐾

𝐼
0 − 𝜏𝐸

𝜏𝐼
(𝐽 𝐼

0𝐾
𝐼
0 + 1) 𝜏𝐸

𝜏𝐼
𝐽𝐸
1 𝐾

𝐼
1 − 𝜏𝐸

𝜏𝐼
𝐽 𝐼
1𝐾

𝐼
1

𝐽𝐸
0 𝐾

𝐸
1 −𝐽 𝐼

0𝐾
𝐸
1 𝐽𝐸

1 𝐾
𝐸
2 − 1 −𝐽 𝐼

1𝐾
𝐸
2

𝜏𝐸
𝜏𝐼
𝐽𝐸
0 𝐾

𝐼
1 − 𝜏𝐸

𝜏𝐼
𝐽 𝐼
0𝐾

𝐼
1

𝜏𝐸
𝜏𝐼
𝐽𝐸
1 𝐾

𝐼
2 − 𝜏𝐸

𝜏𝐼
(𝐽 𝐼

1𝐾
𝐼
2 + 1)

⎤⎥⎥⎥⎥⎦ (A.70)

The bump state is only stable if all the eigenvalues of K have negative real parts.
These eigenvalues can be found numerically. The definition of 𝛿𝑚𝑋

2 together
with Equation (A.57) yields linearized dynamics for 𝛿𝑚𝑋

2 :

𝜏𝐸
𝑑

𝑑𝑡

[︃
𝛿𝑚𝐸

2

𝛿𝑚𝐼
2

]︃
= B ·

[︃
𝛿𝑚𝐸

2

𝛿𝑚𝐼
2

]︃
(A.71)
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where

B ,

[︃
𝐽𝐸
1

[︀
(𝛽𝐸 − 𝛼𝐸)𝑓1(𝜃

𝐸
1 ) + 𝛼𝐸𝑓1(𝜃0)

]︀
− 1 −𝐽 𝐼

1

[︀
(𝛽𝐸 − 𝛼𝐸)𝑓1(𝜃

𝐸
1 ) + 𝛼𝐸𝑓1(𝜃0)

]︀
𝜏𝐸
𝜏𝐼
𝐽𝐸
1

[︀
(𝛽𝐼 − 𝛼𝐼)𝑓1(𝜃

𝐼
1) + 𝛼𝐼𝑓1(𝜃0)

]︀
− 𝜏𝐸

𝜏𝐼

(︀
𝐽 𝐼
1

[︀
(𝛽𝐼 − 𝛼𝐼)𝑓1(𝜃

𝐼
1) + 𝛼𝐼𝑓1(𝜃0)

]︀
− 1
)︀ ]︃ (A.72)

In order for the eigenvalues of B to be negative, the determinant of B must be
non-negative and the trace must be negative. In this case, because of the steady
state Equation (A.20) we find that the determinant is always zero. The demand
for the negative trace leads to the condition

𝜏𝐸/𝜏𝐼 >
𝐽𝐸
1

[︀
(𝛽𝐸 − 𝛼𝐸)𝑓1(𝜃

𝐸
1 ) + 𝛼𝐸𝑓1(𝜃0)

]︀
− 1

𝐽 𝐼
1 [(𝛽𝐼 − 𝛼𝐼)𝑓1(𝜃𝐼1) + 𝛼𝐼𝑓1(𝜃0)] + 1

(A.73)
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B.1 Two Population Network of Leaky integrate-

and-fire neurons

The network is composed of 𝑁𝐸 excitatory and 𝑁𝐼 inhibitory leaky integrate-and-
fire neurons connected all-to-all. As in the rate model, the neurons are labeled
with their PDs. In this case, the model describes the dynamics of the voltage
membrane of neuron with PD 𝜃 in the postsynaptic population 𝑋 ∈ {𝐸, 𝐼}. The
voltage membrane 𝑉𝑋(𝜃, 𝑡) in the subthreshold regime evolves in time as follows:

𝐶𝑋 �̇�𝑋(𝜃, 𝑡) = 𝑔𝑋𝑙 (𝑉𝑋(𝜃, 𝑡)− 𝑣𝑋𝑙 ) + 𝐼𝐸𝑋
𝑟𝑒𝑐 (𝜃, 𝑡)− 𝐼𝐼𝑋𝑟𝑒𝑐 (𝜃, 𝑡) + 𝐼𝑏𝑔(𝜃, 𝑡) + 𝐼𝑠𝑡𝑖𝑚(𝜃, 𝑡)

(B.1)
where 𝐶𝑋 is the membrane capacitance, 𝑔𝑋𝑙 and 𝑣𝑋𝑙 are the leak conductance and
the membrane reversal potential, respectively. 𝐼𝑌 𝑋

𝑟𝑒𝑐 is the recurrent input from
presynaptic neurons in population 𝑌 to a postsynaptic neuron in population 𝑋

where 𝑋, 𝑌 ∈ {𝐸, 𝐼}. 𝐼𝑏𝑔 is a background input representing synaptic noise and
𝐼𝑠𝑡𝑖𝑚 is a stimulus dependent input. Whenever the voltage membrane 𝑉𝑋 reaches
the firing threshold 𝑣𝑋𝑡 a spike is emitted and the membrane potential is reset
to 𝑣𝑋𝑟 , without a refractory period. The parameters in the model are modified
depending on the TF model chosen, all these parameters are described in section
B.6.
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B.2 Intrinsic Neuron Properties

For the model in Section 3.2.4 we choose the neurons properties to obtain
the desired TF form and thus, without any biological criteria. For model
in Section 3.2.6 and Section 4.2.2 membrane parameters are similar as in
McCormick et al. (1985), additionally we make sure all the values we use
lie on the biological range by checking electrophysiology databases such as
NeuroElectro.org (Tripathy and Gerkin, 2012). Reset potential after the spike for
the excitatory is often taken to be more negative (≈ −90 mV) than the inhibitory
(≈ −60 mV). Since the excitatory membrane time constant (𝜏𝐸 = 20 ms) is
typically twice the inhibitory membrane time constant (𝜏𝐼 = 10 ms), the more
negative reset potential will introduce an effective refractory period accounting
for the fact that excitatory neurons usually display spike-frequency adaptation.

B.3 Recurrent Synaptic Inputs

B.3.1 Recurrent Synaptic Input Equations

When a spike occurs at time 𝑡𝑠𝑝 in a presynaptic neuron with PD 𝜉 in population
𝑌 , the current evoked in the postsynaptic neuron with PD 𝜃 in population 𝑋 ,
also known as postsynaptic current (PSC) is:

𝐼𝑌𝑠𝑝(𝜃 − 𝜉, 𝑡− 𝑡𝑠𝑝) = 𝐽𝑌 (𝜃 − 𝜉) 𝑠𝑌 (𝑡− 𝑡𝑠𝑝) (B.2)

where 𝐽𝑌 (𝜃 − 𝜉) is the total charge transferred in the synapse due to a single
presynaptic spike, and it represents the synaptic strength (units of charge). This
strength is scaled inversely with the size of the presynaptic population. As
in the rate model, the connectivity is taken to have a cosine shape and to be
independent on the nature of the postsynaptic population𝑋 (i.e. 𝐽𝐸𝐸 = 𝐽𝐸𝐼 = 𝐽𝐸

and 𝐽𝐼𝐼 = 𝐽𝐼𝐸 = 𝐽𝐼 ):

𝐽𝑌 (𝜃 − 𝜉) =
1

𝑁𝑌

(𝐽𝑌
0 + 𝐽𝑌

1 cos(𝜃 − 𝜉)) (B.3)
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On the other hand, the quantity 𝑠𝑌 (𝑡−𝑡𝑠𝑝) describes the time course of the PSC in
the postsynaptic neuron elicited by a spike at time 𝑡𝑠𝑝 from a presynaptic neuron
in population 𝑌 . It has units of [1/𝑠] and it is described by a dual exponential
waveform describing the fast dynamics at the opening and the slow dynamics at
the closing of the synaptic receptors (Sterratt et al., 2011):

𝑠𝑌 (𝑡− 𝑡𝑠𝑝) =
1

𝜏𝑌𝑑 − 𝜏𝑌𝑟

[︂
exp

(︂
−(𝑡− 𝑡𝑠𝑝)

𝜏𝑌𝑑

)︂
− exp

(︂
−(𝑡− 𝑡𝑠𝑝)

𝜏𝑌𝑟

)︂]︂
(B.4)

Where 𝜏𝑌𝑟 and 𝜏𝑌𝑑 are the synaptic rise and decay time constants, respectively.
The normalising prefactor ensures that the total area under the PSC curve 𝑠𝑌

generated by a single spike is equal to 1. The recurrent input from the presynaptic
population 𝑌 to the neuron with PD 𝜃 in the postsynaptic population 𝑋 is defined
as the sum over all the currents evoked by all the presynaptic neurons:

𝐼𝑌 𝑋
𝑟𝑒𝑐 (𝜃, 𝑡) =

∑︁
𝑖

∑︁
𝑗

𝐼𝑌𝑠𝑝(𝜃 − 𝜉𝑖, 𝑡− 𝑡𝑗(𝜉𝑖)) (B.5)

where 𝑡𝑗(𝜉𝑖) is the time of the j-th spike fired by the presynaptic neuron with PD
𝜉𝑖.

B.3.2 Fast Synaptic Input Computation

As we can see, to calculate the synaptic current with Equation (B.4) we need
to store all previous spike times and then recalculate the exponentials in the
summation in Equation (B.5) each time step. This drawback can be overcome
by using the method proposed in Srinivasan and Chiel (1993). This method for
computing synaptic conductances separates Equation (B.4) in two components:
one that is function of the current time of the simulation and one that accumulates
the contributions of previous spike events to the synaptic conductance or current
(in our case). This methods allows to only store two running sums and the time
constants for each synapse.

Hereunder we detail the implementation in our specific case. Taken Equation (B.2)
we can rewrite Equation (B.5) as follows:
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𝐼𝑌 𝑋
𝑟𝑒𝑐 (𝜃, 𝑡) =

𝑁𝑌∑︁
𝑖

[︃
𝐽𝑌 (𝜃 − 𝜉𝑖)

∑︁
𝑗

𝑠𝑌 (𝑡− 𝑡𝑗(𝜉𝑖))

]︃
(B.6)

On one hand the connectivity 𝐽𝑌 can be rewritten as:

𝐽𝑌 (𝜃 − 𝜉) =
1

𝑁𝑌

[︀
𝐽𝑌
0 + 𝐽𝑌

1 (cos(𝜃) cos(𝜉) + sin(𝜃) sin(𝜉))
]︀

(B.7)

And on the other hand, from Equation (B.6) we can define a new variable 𝑆𝑌,𝑖(𝑡)

defined as:

𝑆𝑌,𝑖(𝑡) =
𝑘∑︁
𝑗

𝑠𝑌 (𝑡− 𝑡𝑗(𝜉𝑖)) (B.8)

Where 𝑘 is the total number of spikes emitted by presynaptic neuron 𝑖 until time 𝑡.
For language economy, since now on 𝑡𝑗(𝜉𝑖) ≡ 𝑡𝑗 since the variable 𝑆𝑌,𝑖(𝑡) already
keeps track of the 𝑖 label related to the neurons in the presynaptic population 𝑌 .
Using Equation (B.4) we rewrite Equation (B.8) as:

𝑆𝑌,𝑖(𝑡) =
1

𝜏𝑌𝑑 − 𝜏𝑌𝑟

[︃
𝑘∑︁
𝑗

𝑒−(𝑡−𝑡𝑗)/𝜏
𝑌
𝑑 −

𝑘∑︁
𝑗

𝑒−(𝑡−𝑡𝑗)/𝜏
𝑌
𝑟

]︃
(B.9)

The two terms inside the brackets can be treated equally, here we take a general
form to rewrite them as:

𝑒−𝑡/𝜏

𝑘∑︁
𝑗

𝑒𝑡𝑗/𝜏 = 𝑒−(𝑡−𝑡𝑘)/𝜏

𝑘∑︁
𝑗

𝑒−(𝑡𝑘−𝑡𝑗)/𝜏 (B.10)

We refer to the terms within the summation as Sum(𝑡𝑘). When the spike 𝑘 + 1

occurs at time 𝑡𝑘+1 Equation (B.10) is updated as follows:

𝑒−(𝑡−𝑡𝑘+1)/𝜏

𝑘+1∑︁
𝑗

𝑒−(𝑡𝑘+1−𝑡𝑗)/𝜏 = 𝑒−(𝑡−𝑡𝑘+1)/𝜏

[︃
𝑒−(𝑡𝑘+1−𝑡𝑘)/𝜏

𝑘∑︁
𝑗

𝑒−(𝑡𝑘−𝑡𝑗)/𝜏 + 1

]︃
(B.11)
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Notice that we force to appear the Sum(𝑡𝑘) by multiplying the terms within the
summation by 𝑒(𝑡𝑘−𝑡𝑘)/𝜏 (= 1). Thus, by combining Equations (B.10) and (B.11)
we can write an updating rule for the spike 𝑘 + 1 without the need of storing
previous spikes:

Sum (𝑡𝑘+1) = 𝑒−(𝑡𝑘+1−𝑡𝑘)/𝜏 · Sum (𝑡𝑘) + 1 (B.12)

At time 𝑡 > 𝑡𝑘+1 the Equation (B.9) can be expressed as:

𝑆𝑌,𝑖(𝑡 > 𝑡𝑘+1) =
1

𝜏𝑌𝑑 − 𝜏𝑌𝑟

[︁
𝑒−(𝑡−𝑡𝑘+1)/𝜏

𝑌
𝑑 Sum𝑑(𝑡𝑘+1) − 𝑒−(𝑡−𝑡𝑘+1)/𝜏

𝑌
𝑟 Sum𝑟(𝑡𝑘+1)

]︁
(B.13)

where Sum𝑑(𝑡𝑘+1) and Sum𝑟(𝑡𝑘+1) are the sums at time 𝑡𝑘+1 for the decay and
raise components, respectively. The quantity 𝑆𝑌,𝑖(𝑡) needs to be computed each
time step of the simulation (i.e. from time 𝑡 to time 𝑡 + ∆𝑡). Thus, 𝑆𝑌,𝑖(𝑡 + ∆𝑡)

can be obtained by multiplying the terms 𝑒−(𝑡−𝑡𝑘+1)/𝜏 , in Equation (B.13) at time 𝑡,
by 𝑒−Δ𝑡/𝜏 . This yields the terms 𝑒−[(𝑡+Δ𝑡)−𝑡𝑘+1]/𝜏 at time 𝑡 + ∆𝑡 and thus we can
update the sums as follows:

Sum (𝑡 + ∆𝑡) = 𝑒−Δ𝑡/𝜏 · Sum (𝑡) + spk(𝜉𝑖, 𝑡) (B.14)

where spk=1 if a spike is emitted by presynaptic neuron 𝑖 at time 𝑡 and spk=0
otherwise. The quantity 𝑆𝑌,𝑖 for each presynaptic neuron 𝑖 can be calculated at
time 𝑡 + ∆𝑡 as follows:

𝑆𝑌,𝑖(𝑡 + ∆𝑡) =
1

𝜏𝑌𝑑 − 𝜏𝑌𝑟
[Sum𝑑(𝑡 + ∆𝑡) − Sum𝑟(𝑡 + ∆𝑡)] (B.15)

At this point we can rewrite Equation (B.6) at time 𝑡 + ∆𝑡 using Equations (B.7)
and (B.15):

𝐼𝑌 𝑋
𝑟𝑒𝑐 (𝜃, 𝑡+∆𝑡) = 𝐽𝑌

0 𝑆0
𝑌 (𝑡+∆𝑡)+(𝐽𝑌

1 𝑆1
𝑌 (𝑡+∆𝑡)) cos(𝜃)+(𝐽𝑌

1 𝑆2
𝑌 (𝑡+∆𝑡)) sin(𝜃))

(B.16)

where 𝑆𝑙
𝑌 are the Fourier components or order parameters of the synaptic

recurrent input:
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𝑆0
𝑌 (𝑡 + ∆𝑡) =

1

𝑁𝑌

𝑁𝑌∑︁
𝑖

𝑆𝑌,𝑖(𝑡 + ∆𝑡) (B.17)

𝑆1
𝑌 (𝑡 + ∆𝑡) =

1

𝑁𝑌

𝑁𝑌∑︁
𝑖

𝑆𝑌,𝑖(𝑡 + ∆𝑡) cos(𝜉𝑖) (B.18)

𝑆2
𝑌 (𝑡 + ∆𝑡) =

1

𝑁𝑌

𝑁𝑌∑︁
𝑖

𝑆𝑌,𝑖(𝑡 + ∆𝑡) sin(𝜉𝑖) (B.19)

Now, substituting Equation (B.15) in the order parameters and taking into account
Equation (B.14) we obtain:

𝑆0
𝑌 (𝑡 + ∆𝑡) =

1

𝑁𝑌

· 1

𝜏𝑌𝑑 − 𝜏𝑌𝑟

[︃(︃
𝑒−Δ𝑡/𝜏𝑌𝑑 Sum𝑑(𝑡) +

𝑁𝑌∑︁
𝑖

spk(𝜉𝑖, 𝑡)

)︃

−

(︃
𝑒−Δ𝑡/𝜏𝑌𝑟 Sum𝑟(𝑡) +

𝑁𝑌∑︁
𝑖

spk(𝜉𝑖, 𝑡))

)︃]︃
(B.20)

𝑆1
𝑌 (𝑡 + ∆𝑡) =

1

𝑁𝑌

· 1

𝜏𝑌𝑑 − 𝜏𝑌𝑟

[︃(︃
𝑒−Δ𝑡/𝜏𝑌𝑑 Sum𝑑(𝑡) +

𝑁𝑌∑︁
𝑖

spk(𝜉𝑖, 𝑡) cos(𝜉𝑖)

)︃

−

(︃
𝑒−Δ𝑡/𝜏𝑌𝑟 Sum𝑟(𝑡) +

𝑁𝑌∑︁
𝑖

spk(𝜉𝑖, 𝑡) cos(𝜉𝑖)

)︃]︃
(B.21)

𝑆2
𝑌 (𝑡 + ∆𝑡) =

1

𝑁𝑌

· 1

𝜏𝑌𝑑 − 𝜏𝑌𝑟

[︃(︃
𝑒−Δ𝑡/𝜏𝑌𝑑 Sum𝑑(𝑡) +

𝑁𝑌∑︁
𝑖

spk(𝜉𝑖, 𝑡) sin(𝜉𝑖)

)︃

−

(︃
𝑒−Δ𝑡/𝜏𝑌𝑟 Sum𝑟(𝑡) +

𝑁𝑌∑︁
𝑖

spk(𝜉𝑖, 𝑡) sin(𝜉𝑖)

)︃]︃
(B.22)

With Equation (B.16) and Equations (B.20) to (B.22) we can compute the recurrent
synaptic input to a given postsynaptic neuron with PD 𝜃 at time 𝑡 + ∆𝑡 by only
storing the label of the neurons which have spiked at the current time 𝑡 and the
value of the expression inside the parenthesis in Equations (B.20) to (B.22) at time
𝑡.
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B.3.3 NMDA and AMPA currents

In a more biologically realistic implementation of the synaptic currents we
consider that excitatory synaptic inputs are a combination of fast AMPA and slow
NMDA currents (Section 3.2.6 and Section 4.2.2). By using biological parameters
for the rise and decay time constants in Equation (B.4) we describe the time
course of the AMPA and NMDA EPSC separately. These dynamics represents
the ion flow occurring in the synapse during the opening and closing of AMPAR
and NMDAR. For the AMPA EPSC we chose a rise time constant (𝜏𝑟) of 0.5 ms
and a decay time constant (𝜏𝑑) of 5 ms (Kleppe and Robinson, 1999; Gonzalez-
Burgos et al., 2008). For the NMDA EPSC we chose 𝜏𝑟 = 1 ms and 𝜏𝑑 = 50 ms
(Jonas et al., 1993; Gonzalez-Burgos et al., 2008). We found in the literature that
in the excitatory to excitatory synapse (𝐸 − 𝐸) the mean NMDA/AMPA ratio
calculated using the area under the EPSC in dlPFC neurons in monkey is 2.7
(Gonzalez-Burgos et al., 2008). On the other hand, the NMDA/AMPA ratio in
the excitatory to inhibitory synapse (𝐸 − 𝐼) is 0.5 (Wang and Gao, 2009). This
value is computed by taking the NMDA and AMPA charge (EPSC area) of the fast
spiking interneurons and taking into account that, in the adult rat, only the 26 %

of this interneurons have NMDA currents. To calculate the resultant synaptic
current we proceed as follows:

𝐼𝐸𝑋
𝑟𝑒𝑐 (𝜃, 𝑡) =

𝑟𝐸𝑋

𝑟𝐸𝑋 + 1
· 𝐼𝑁𝑀𝐷𝐴

𝑟𝑒𝑐 (𝜃, 𝑡) +
1

𝑟𝐸𝑋 + 1
· 𝐼𝐴𝑀𝑃𝐴

𝑟𝑒𝑐 (𝜃, 𝑡) (B.23)

where 𝑟𝐸𝑋 is the NMDA/AMPA ratio for the 𝐸 −𝑋 synapses.

B.4 Background Noise Input

Each neuron receives a noisy background input of the form:

𝐼𝑋𝑏𝑔 (𝜃, 𝑡) = 𝜇𝑋
𝑏𝑔 + 𝜎𝑋

𝑏𝑔 · 𝜉(𝑡) (B.24)

where 𝜉(𝑡) is a Gaussian white noise (GWM) with zero correlation in time and
between neurons. This input is mean to describe the continuous bombardment
of synaptic activity. The addition of noise in the model originates an expansive
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nonlinearity in the neuron TF at the firing threshold as described in Hansel and
van Vreeswijk (2002); Miller and Troyer (2002). To implement the difference in
threshold mechanism in the spiking model, we chose the mean background input
of the excitatory to be slightly larger than the inhibitory so the rheobase current
will be lower for the excitatory population creating a difference in the spiking
threshold of the excitatory respect to inhibitory neurons.

B.5 External Stimulus

The tuned external external stimulus is described by a cosine function which
maximum is centered at the direction of the cue 𝜃𝑐𝑢𝑒:

𝐼𝑠𝑡𝑖𝑚(𝜃, 𝑡) = 𝑐[1 − 𝜖 + 𝜖 cos(𝜃 − 𝜃𝑐𝑢𝑒)] (B.25)

Where 𝑐 is the contrast of the stimulus and 𝜖 controls the angular anisotropy of
the input (as in Ben-Yishai et al. (1995)). Notice that when 𝜃 = 𝜃𝑐𝑢𝑒 the input to
neuron with PD 𝜃 is maximum.

B.6 Spiking Model Parameters

In this section we detail the parameters used in the different spiking network
models of leaky integrate-and-fire neurons that have appear throughout the thesis
in Chapters 3 and 4.
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B.6.1 Acceleration Difference Model

For the spiking model presented in Section 3.2.4 we used the parameters detailed
in Tables B.1 and B.2.

Parameters Excitatory Inhibitory Units

𝑁𝑋 12000 12000 -

𝑣𝑋𝑙 -70 -70 mV

𝑔𝑋𝑙 50 50 nS

𝐶𝑋 2.0 0.5 nF

𝑣𝑋𝑡 -30 -30 mV

𝑣𝑋𝑟 -60 -55 mV

𝜇𝑋
𝑏𝑔 250 0 pA

𝜎𝑋
𝑏𝑔 20 20 pA

Table B.1 – Acceleration Difference Integrate-and-Fire model: neuron parameters

Parameters E Presynaptic I Presynaptic Units

𝜏𝐸𝑟 1 - ms

𝜏𝐸𝑑 40 - ms

𝑔𝜏 𝐼𝑟 - 1 ms

𝜏 𝐼𝑑 - 5 ms

𝐽𝑌 𝑋
0 40 36 nC

𝐽𝑌 𝑋
1 120 20 nC

Table B.2 – Acceleration Difference Integrate-and-Fire model: synaptic parameters
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For the model presented in Section 3.2.6 the parameters are detailed in Tables B.3
and B.4:

Parameters Excitatory Inhibitory Units

𝑁𝑋 12000 12000 -

𝑣𝑋𝑙 -70 -70 mV

𝑔𝑋𝑙 30 20 nS

𝐶𝑋 0.6 0.2 nF

𝑣𝑋𝑡 -50 -50 mV

𝑣𝑋𝑟 -90 -60 mV

𝜇𝑋
𝑏𝑔 320 50 pA

𝜎𝑋
𝑏𝑔 9 9 pA

Table B.3 – Acceleration Difference Integrate-and-Fire model: biological neuron

parameters.

Parameters E Presynaptic I Presynaptic Units

𝜏𝐴𝑀𝑃𝐴
𝑟 0.5 - ms

𝜏𝐴𝑀𝑃𝐴
𝑑 5 - ms

𝑔𝜏𝑁𝑀𝐷𝐴
𝑟 1 - ms

𝜏𝑁𝑀𝐷𝐴
𝑑 50 - ms

𝜏𝐺𝐴𝐵𝐴𝐴
𝑟 - 1 ms

𝜏𝐺𝐴𝐵𝐴𝐴
𝑑 - 5 ms

𝐽𝑌 𝑋
0 20 18 nC

𝐽𝑌 𝑋
1 60 12.5 nC

Table B.4 – Acceleration Difference Integrate-and-Fire model: biological synaptic

parameters.
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B.6.2 Threshold Difference Model

In Section 4.2.1 we used a threshold difference model with parameters defined in
the following tables:

Parameters Excitatory Inhibitory Units

𝑁𝑋 12000 12000 -

𝑣𝑋𝑙 -70 -70 mV

𝑔𝑋𝑙 30 20 nS

𝐶𝑋 1.6 1.5 nF

𝑣𝑋𝑡 -30 -30 mV

𝑣𝑋𝑟 -60 -55 mV

𝜇𝑋
𝑏𝑔 200 0 pA

𝜎𝑋
𝑏𝑔 15 15 pA

Table B.5 – Threshold Difference Integrate-and-Fire model: neuron parameters.]

Parameters E Presynaptic I Presynaptic Units

𝜏𝐸𝑟 1 - ms

𝜏𝐸𝑑 40 - ms

𝑔𝜏 𝐼𝑟 - 1 ms

𝜏 𝐼𝑑 - 5 ms

𝐽𝑌 𝑋
0 40 36 nC

𝐽𝑌 𝑋
1 100 25 nC

Table B.6 – Threshold Difference Integrate-and-Fire model: synaptic parameters.
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C Supplementary Figures

In this appendix we show supplementary figures related to the works presented
in Chapters 3 to 5.

C.1 Supplementary Figures from Chapter 3
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Figure C.1. Rate model diagram A. A diagram of the rate model. B. Transfer functions that

are considered in this work. For 0 < 𝐼 < 𝑇𝑋 the slope of 𝑔𝑋(𝐼) is 𝛼𝑋 , and for 𝑇𝑋 < 𝐼 the slope

is 𝛽𝑋 . The 𝛼𝑋 < 𝛽𝑋 case is termed expansive nonlinearity (top) and the 𝛼𝑋 > 𝛽𝑋 is termed

compressive nonlinearity (bottom).
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Figure C.2. Expansive nonlinearity, switch of with anti-phase excitation. A and B. Same

as in figure 3.2A and B, except that the switch off input is a 12 ms tuned excitatory pulse, centered

at 𝜃 = 𝜋.
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Figure C.3. Compressive nonlinearity model (𝛽 < 1) for 𝐽0 > 1. A-C: 𝛽 = 0.4. A. graphics

are as in figure 3.1 with and 𝐽0 = 1.5, 𝐽1 = 4.5. In the case 𝐽0 < 1 (figure 3.1 D) the unstable

homogeneous state is only spatially unstable while in the case 𝐽0 > 1 the unstable homogeneous

state is both spatially- and rate-unstable. B. Phase diagram in the 𝐽1−𝐶 plane for 𝐽0 = 1.5. Note

the existence of a regime where two stable homogeneous states exist. In the low homogeneous

state 𝑚0 is zero. C. Dynamics of the network and of the order parameters in response to a 0.3

s tuned input at 𝑡 = 0 s centered at 𝜃 = 0, and a 0.3 s homogeneous excitatory pulse at 𝑡 = 3 s.

𝐶 = 0.1. Here, the switch-off is possible with a prolonged homogeneous pulse.
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Figure C.4. Two-population mechanisms. A. Phase diagram in the 𝐽1 − 𝐶 plane for the

acceleration difference model. B and C. Bifurcation diagrams of 𝑚𝐸
0 −𝐶 (top) and phase diagrams

in the 𝐽1 − 𝐶 plane (bottom) in the 2-population network for the threshold difference and a

combination of acceleration and threshold difference model, respectively. Color code: 𝑚𝐸
1 . Insets:

the TFs of the excitatory (red) and the inhibitory (blue) neurons. Parameters in B: 𝐽0
𝐸 = 3,

𝐽0
𝐼 = 2.9, 𝐽1

𝐸 = 3, 𝐽1
𝐼 = 1.07 . Parameters in C: 𝐽0

𝐸 = 5.1, 𝐽0
𝐼 = 8.5, 𝐽1

𝐸 = 4.85, 𝐽1
𝐼 = 1.5,

𝛼𝐸 = 0.1, 𝛽𝐸 = 1, 𝛼𝐼 = 0.6, 𝛽𝐼 = 6, 𝑇𝐸 = 1, 𝑇𝐼 = 5/3.
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Figure C.5. Switch-off critial input in the two-population. A. Minimal input current ( top)

and minimal input charge (𝐼𝑐𝑟𝑖𝑡 ·Δ𝑡𝑠𝑡𝑖𝑚, bottom) needed to perform a state transition plotted

against the duration of that input, Δ𝑡 for the threshold difference model. Homogeneous to bump

state transition (H-B) in green and bump to homogeneous state transition (B-H) in red. Inset:

zoom for durations above 0.1 𝑠. B. Same for the acceleration and threshold difference model.
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Figure C.6. Two-population mechanisms in the LIF model. Bifurcation diagram of 𝑚𝐸
0 -𝐶

(top) and 𝐽𝐼
1 − 𝐶 phase diagrams (bottom) in the two population spiking network in the threshold

difference (A) and acceleration and threshold difference case (B), respectively. Color code: first

Fourier component of the activity, 𝑚𝐸
1 . Inset: the TFs of the excitatory (red) and the inhibitory

(blue) neurons.
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Figure C.7. Minimal input charge for the switch-off transition in the LIF model at

different synaptic time constants. Input charge for the bump to homogeneous transition

as a function of stimulus duration (Δ𝑡𝑠𝑡𝑖𝑚). Colored regions depicts the values at which the

transition cannot be performed. In A 𝜏𝐸𝑑 = 40𝑚𝑠, 𝜏 𝐼𝑑 = 5𝑚𝑠; B 𝜏𝐸𝑑 = 80𝑚𝑠, 𝜏 𝐼𝑑 = 10𝑚𝑠; C

𝜏𝐸𝑑 = 120𝑚𝑠, 𝜏 𝐼𝑑 = 15𝑚𝑠; D 𝜏𝐸𝑑 = 160𝑚𝑠, 𝜏 𝐼𝑑 = 20𝑚𝑠.
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Figure C.8. Minimal input charge for the switch-off transition in the LIF model with

biological parameters at different synaptic time constants. Input charge for the bump to

homogeneous transition as a function of stimulus duration (Δ𝑡𝑠𝑡𝑖𝑚). Color coded the value of 𝑚𝐸
1

at the end of the switch-off transition. In A 𝜏𝑁𝑀𝐷𝐴
𝑑 = 50𝑚𝑠, 𝜏𝐺𝐴𝐵𝐴

𝑑 = 5𝑚𝑠; B 𝜏𝑁𝑀𝐷𝐴
𝑑 =

100𝑚𝑠, 𝜏𝐺𝐴𝐵𝐴
𝑑 = 10𝑚𝑠; C 𝜏𝑁𝑀𝐷𝐴

𝑑 = 200𝑚𝑠, 𝜏𝐺𝐴𝐵𝐴
𝑑 = 20𝑚𝑠; D 𝜏𝑁𝑀𝐷𝐴

𝑑 = 300𝑚𝑠,

𝜏𝐺𝐴𝐵𝐴
𝑑 = 30𝑚𝑠.
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