
HAL Id: tel-04500272
https://theses.hal.science/tel-04500272

Submitted on 19 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Novel fault-tolerant, self-configurable, scalable, secure,
decentralized, and high-performance distributed

database replication architecture using innovative
sharding to enable the use of BFT consensus

mechanisms in very large-scale networks
Siamak Solat

To cite this version:
Siamak Solat. Novel fault-tolerant, self-configurable, scalable, secure, decentralized, and high-
performance distributed database replication architecture using innovative sharding to enable the
use of BFT consensus mechanisms in very large-scale networks. Performance [cs.PF]. Université Paris
Cité, 2023. English. �NNT : 2023UNIP7025�. �tel-04500272�

https://theses.hal.science/tel-04500272
https://hal.archives-ouvertes.fr

Université Paris Cité
(anciennement Université de Paris)

Novel Fault-Tolerant, Self-Configurable, Scalable, Secure,
Decentralized, and High-Performance Distributed

Database Replication Architecture Using Innovative
Sharding to Enable the Use of BFT Consensus

Mechanisms in Very Large-Scale Networks

Une thèse de doctorat présentée par :
Siamak SOLAT

Laboratoire d’informatique de Paris Descartes (LIPADE)
École Doctorale de Sciences Mathématiques de Paris Centre (ED 386)

Une thèse pour obtenir le grade de
Doctorat en Informatique

Date de Soutenance : le 14 decembre 2023

Rapporteurs de Thèse :
Professeur Claudio Tessone, Université de Zurich (UZH), Suisse

Professeur Fabien Coelho, Université Paris Sciences et Lettres (PSL), France

Présidente du Jury :

Professeure Samia Bouzefrane, Le Cnam de Paris, France

Directeur de Thèse : Professeur Farid Naït-Abdesselam, Université Paris Cité

1

Composition du Jury (en français)

Professeur Claudio Tessone [Rapporteur de Thèse]

Université de Zurich (UZH)

Professeur Fabien Coelho [Rapporteur de Thèse]

Université Paris Sciences et Lettres (PSL)

Professeure Samia Bouzefrane [Présidente du Jury et Examinatrice]

Le Cnam de Paris (Conservatoire National des Arts et Métiers)

Dr. Fériel Bouakkaz [Examinatrice]

École d’Ingénieur Généraliste en Informatique et Technologies du Numérique (EFREI)

Dr. Philippe Calvez [Examinateur]

Ancien responsable du laboratoire d’informatique et d’intelligence artificielle (CSAI) chez ENGIE

Professeur Farid Nait-Abdesselam
[Directeur de Thèse]

M. Fabrice Boudaud [Invité]

Responsable du laboratoire d’informatique et d’intelligence artificielle (CSAI) chez ENGIE

M. Rémi Pecqueur [Invité]

Chef de projet senior du laboratoire d’informatique et d’intelligence artificielle (CSAI) chez ENGIE

2

Jury Members (in English)

Professor Claudio Tessone [Thesis Rapporteur]

The University of Zurich (UZH)

Professor Fabien Coelho [Thesis Rapporteur]

Université Paris Sciences et Lettres (PSL)

Professor Samia Bouzefrane [President of Jury and Examiner]

Le Cnam de Paris (Conservatoire National des Arts et Métiers)

Dr. Fériel Bouakkaz [Examiner]

École d’Ingénieur Généraliste en Informatique et Technologies du Numérique (EFREI)

Dr. Philippe Calvez [Examiner]

Former Head of Computer Science & Artificial Intelligence Lab (CSAI) at ENGIE

Professeur Farid Nait-Abdesselam
[Thesis Adviser]

M. Fabrice Boudaud [Invited]

Head of Computer Science & Artificial Intelligence Lab (CSAI) at ENGIE

M. Rémi Pecqueur [Invited]

Senior Project Leader of Software Development at CSAI Lab of ENGIE

3

Copyright © 2023 , Siamak Solat. All Rights Reserved.

Acknowledgements

I extend my deepest gratitude to the following three individuals who, through their
insightful comments and thought-provoking questions, played effective roles in
guiding me towards revisions of my proposed idea and architecture for distributed
databases and data replication systems. Fabien Coelho, Professor of Computer
Science at Université Paris Sciences et Lettres (PSL), served as a diligent reviewer
of this dissertation. Special appreciation also goes to Pierre Sutra, Associate Pro-
fessor of Computer Science at Institut Polytechnique de Paris - Télécom SudParis,
and Marc Shapiro, Distinguished Research Scholar at Sorbonne University and
Inria.

I express my sincere thanks to Philippe Calvez for providing me with the research
opportunity during his tenure as the head of the Computer Science and Artificial
Intelligence Lab (CSAI) at Engie.

I am also deeply thankful to all my committee members for graciously agreeing
to be part of my jury and for generously contributing their valuable time and
insightful comments.

“ The devil is in the details ... ” 1

1The details of a matter are its most problematic aspect. (Google’s English dictionary pro-
vided by Oxford Languages. Oxford University Press.) [184].

7

Abstract

Distributed systems, at their core, involve the simultaneous opera-
tion of multiple interconnected computers that collaborate to achieve
a common goal. These systems are designed to enhance reliability,
scalability, and fault tolerance by distributing tasks across a network.
Within distributed systems, distributed databases extend this concept
to data management, where large volumes of information are stored
across multiple nodes. This approach ensures improved performance
and resilience compared to centralized databases. Data replication,
a key component of distributed databases, involves duplicating and
maintaining copies of data across different nodes or locations. This re-
dundancy serves various purposes, including fault tolerance, load bal-
ancing, and enhanced read performance, ensuring that the distributed
system can continue functioning effectively even in the face of individ-
ual node failures or high demand scenarios.

This PhD thesis consists of 6 Chapters. In the first Chapter, as an
introduction, we provide an overview of the general goals and motives
of decentralized and permissionless networks, as well as the obstacles
they face.

In Chapter 2, we make clear and intelligible the systems that the pro-
posed idea and architecture, “Parallel Committees”, are based on such
networks. We detail the indispensable features and essential challenges
in replication systems.

Then in Chapter 3, we discuss in detail the low performance and scala-
bility limitations of data replication systems that use consensus mech-
anisms to process transactions, and how these issues can be improved

using the sharding technique. We describe the most important chal-
lenges in the sharding of distributed systems and data replication, an
approach that has already been implemented in several distributed
databases and replicated data systems and although it has shown re-
markable potential to improve performance and scalability, yet current
sharding techniques have several significant scalability and security is-
sues. We explain why most current sharding protocols use a random
assignment approach for allocating and distributing nodes between
shards due to security reasons. We also detail how a transaction is
processed in a sharded replication system, based on current sharding
protocols. We describe how a shared-ledger across shards imposes ad-
ditional scalability limitations and security issues on the network and
explain why cross-shard or inter-shard transactions are undesirable and
more costly, due to the problems they cause, including atomicity fail-
ure and state transition challenges, along with a review of proposed
solutions. We also review some of the most considerable recent works
that utilize sharding techniques for distributed databases and repli-
cated data systems. A part of this chapter has been published as a
peer-reviewed book chapter entitled Sharding Distributed Replication
Systems to Improve Scalability and Throughput (Springer Publishing,
2024) [13].

In Chapter 4, we propose a novel fault-tolerant, self-configurable, scal-
able, secure, decentralized, and high-performance distributed database
replication architecture, named “Parallel Committees”. We utilize an
innovative sharding technique to enable the use of Byzantine Fault
Tolerance (BFT) consensus mechanisms in very large-scale networks.
With this innovative full sharding approach supporting both process-
ing sharding and storage sharding, as more processors and replicas
join the network, the system computing power and storage capacity
increase unlimitedly, while a classic BFT consensus is utilized. Our
approach also allows an unlimited number of clients to join the sys-
tem simultaneously without reducing system performance and transac-

9

tional throughput. We introduce several innovative techniques: for dis-
tributing nodes between shards, processing transactions across shards,
improving security and scalability of the system, proactively circulat-
ing committee members, and forming new committees automatically.
We introduce an innovative and novel approach to distributing nodes
between shards, using a public key generation process, called “Key-
Challenge”, that simultaneously mitigates Sybil attacks and serves as
a proof-of-work. The “KeyChallenge” idea is published in the peer-
reviewed conference proceedings of ACM ICCTA 2024, Vienna, Aus-
tria. In this regard, we prove that it is not straightforward for an
attacker to generate a public key so that all characters of the key
match the ranges set by the system. We explain how to automatically
form new committees based on the rate of candidate processor nodes.
The purpose of this technique is to optimally use all network capacity
so that inactive surplus processors in the queue of a committee that
were not active are employed in the new committee and play an effec-
tive role in increasing the throughput and the efficiency of the system.
This technique leads to the maximum utilization of processor nodes
and the capacity of computation and storage of the network to increase
both processing sharding and storage sharding as much as possible. In
the proposed architecture, members of each committee are proactively
and alternately replaced with backup processors. This technique of
proactively circulating committee members has three main results: (a)
preventing a committee from being occupied by a group of proces-
sor nodes for a long time period, in particular, Byzantine and faulty
processors, (b) preventing committees from growing too much, which
could lead to scalability issues and latency in processing the clients’
requests, (c) due to the proactive circulation of committee members,
over a given time-frame, there exists a probability that several faulty
nodes are excluded from the committee and placed in the committee
queue. Consequently, during this time-frame, the faulty nodes in the
committee queue do not impact the consensus process. This procedure

10

can improve and enhance the fault tolerance threshold of the consen-
sus mechanism. We also elucidated strategies to thwart the malicious
action of “Key-Withholding”, where previously generated public keys
are prevented from future shard access. The approach involves peri-
odically altering the acceptable ranges for each character of the public
key. The proposed architecture effectively reduces the number of un-
desirable cross-shard transactions that are more complex and costly to
process than intra-shard transactions. We compare the proposed idea
with other sharding-based data replication systems and mention the
main differences, which are detailed in Section 4.7. The proposed ar-
chitecture not only opens the door to a new world for further research
in this field but also represents a significant step forward in enhanc-
ing distributed databases and data replication systems. The proposed
idea has been published in the peer-reviewed conference proceedings
of IEEE BCCA 2023 [12].

Additionally, we provide an explanation for the decision not to employ
a blockchain structure in the proposed architecture, an issue that is
discussed in great detail in Chapter 5. This clarification has been
published in the Journal of Software (JSW), Volume 16, Number 3,
May 2021 [11].

It is worth noting that when in the dissertation it is said that in some
cases it is not necessary to use a blockchain-based approach, it means
that in some scenarios and conditions, it can be sufficient to implement
and build a Distributed Ledger using a classic consensus mechanism
producing a sequence of totally-ordered client requests. The purpose
is to emphasize that the blockchain approach is a specific type of Dis-
tributed Ledger and that while every blockchain system is a DLT, a
Distributed Ledger may or may not be a blockchain system, but in
either case, concepts such as smart contracts and distribution transac-
tions can be used.

In the final Chapter of this thesis, Chapter 6, we summarize the im-
portant points and conclusions of this research.

11

Keywords: Sharding, Data Replication, Distributed Consensus Mecha-
nisms, Distributed Databases, Distributed Computing, Byzantine-Fault-
Tolerance, Cryptography

12

Résumé court en français

Les systèmes distribués, par essence, impliquent le fonctionnement si-
multané de plusieurs ordinateurs inter-connectés qui collaborent pour
atteindre un objectif commun. Ces systèmes sont conçus pour améliorer
la fiabilité, la scalabilité et la tolérance aux pannes en répartissant les
tâches à travers un réseau. Au sein des systèmes distribués, les bases
de données distribuées étendent ce concept à la gestion des données,
où de larges volumes d’informations sont stockés à travers plusieurs
nœuds. Cette approche garantit des performances et une résilience
améliorées par rapport aux bases de données centralisées. La répli-
cation de données, composante essentielle des bases de données dis-
tribuées, consiste à dupliquer et à maintenir des copies de données
à travers différents nœuds ou emplacements. Cette redondance sert
diverses finalités, notamment la tolérance aux pannes, l’équilibrage de
charge et l’amélioration des performances en lecture, assurant ainsi que
le système distribué peut continuer à fonctionner efficacement même
en cas de défaillance de nœud individuel ou de scénarios de demande
intense.

Cette thèse de doctorat se compose de 6 chapitres. Dans le premier
chapitre, en tant qu’introduction, nous fournissons une vue d’ensem-
ble des objectifs généraux et des motifs des réseaux décentralisés et
“permissionless”, ainsi que des obstacles auxquels ils font face.

Dans le chapitre 2, nous rendons clairs et intelligibles les systèmes
sur lesquels l’idée et l’architecture proposées, “Parallel Committees”,
sont basées sur de tels réseaux. Nous détaillons les caractéristiques
indispensables et les défis essentiels des systèmes de réplication.

Ensuite, dans le chapitre 3, nous discutons en détail des limites de
performance et de scalabilité des systèmes de réplication de données
qui utilisent des mécanismes de consensus pour traiter les transac-
tions, et comment ces problèmes peuvent être améliorés en utilisant
la technique de sharding. Nous décrivons les défis les plus importants
dans le sharding des systèmes distribués et des réplications de don-
nées, une approche qui a déjà été mise en œuvre dans plusieurs bases
de données distribuées et systèmes de réplication de données, et bien
qu’elle ait montré un potentiel remarquable pour améliorer les perfor-
mances et la scalabilité, les techniques de sharding actuelles présentent
cependant plusieurs problèmes de scalabilité et de sécurité significat-
ifs. Nous expliquons pourquoi la plupart des protocoles de sharding
actuels utilisent une approche d’assignation aléatoire pour allouer et
distribuer les nœuds entre les shards pour des raisons de sécurité. Nous
détaillons également comment une transaction est traitée dans un sys-
tème de réplication partitionné (sharded), basé sur les protocoles de
sharding actuels. Nous décrivons comment un grand livre partagé à
travers les shards impose des limitations supplémentaires en termes
de scalabilité et de problèmes de sécurité sur le réseau, et expliquons
pourquoi les transactions entre shards ou inter-shards sont indésirables
et plus coûteuses, en raison des problèmes qu’elles causent, notamment
“atomicity failure” et les défis de transition d’état, avec une revue des
solutions proposées. Nous passons également en revue certaines des
œuvres récentes les plus importantes qui utilisent des techniques de
sharding pour les bases de données distribuées et les systèmes de répli-
cation de données. Une partie de ce chapitre a été publiée sous forme
de chapitre de livre évalué par des pairs intitulé "Sharding Distributed
Replication Systems to Improve Scalability and Throughput" (Springer
Publishing, 2024) [13].

Dans le chapitre 4, nous proposons une architecture novatrice de ré-
plication de base de données distribuée, tolérante aux pannes, auto-
configurable, scalable, sécurisée, décentralisée et à haute performance,

14

appelée “Parallel Committees”. Nous utilisons une technique de shard-
ing innovante pour permettre l’utilisation de mécanismes de consen-
sus de tolérance aux fautes byzantines (BFT) dans des réseaux à très
grande échelle.

De plus, nous fournissons une explication de la décision de ne pas
utiliser une structure de blockchain dans l’architecture proposée, une
question qui est discutée en détail dans le chapitre 5. Cette clarification
a été publiée dans le Journal of Software (JSW), Volume 16, Number
3, May 2021 [11].

Dans le dernier chapitre de cette thèse, le chapitre 6, nous résumons
les points importants et les conclusions de cette recherche.

Mots-clés en français :

Sharding, Fragmentation, Réplication de données, Mécanismes de con-
sensus distribués, Bases de données distribuées, Calcul distribué, Tolérance
aux pannes byzantine, Cryptographie

15

Résumé substantiel en français

Les systèmes distribués sont des configurations d’ordinateurs inter-
connectés qui collaborent pour atteindre un objectif commun, offrant
des avantages tels qu’une fiabilité améliorée et une scalabilité. Les
bases de données distribuées, une sous-catégorie des systèmes dis-
tribués, répartissent les données sur plusieurs nœuds pour améliorer les
performances et la tolérance aux pannes par rapport aux bases de don-
nées centralisées. La réplication des données est un aspect essentiel des
bases de données distribuées, impliquant la création et la maintenance
de copies des données sur divers nœuds ou emplacements. Cette re-
dondance renforce non seulement la tolérance aux pannes, mais facilite
également l’équilibrage de la charge et améliore les performances de
lecture. En dupliquant stratégiquement les données, les systèmes dis-
tribués peuvent naviguer sans heurts lors de défaillances individuelles
de nœuds ou de scénarios de forte demande, assurant la robustesse et la
fonctionnalité continue. Si les données ne changent pas, la réplication
est simple car il suffit de copier les données une fois par nœud. Ainsi, le
principal défi de la réplication réside dans la gestion des changements
de données, où les données sont appelées “dynamiques” ou “transac-
tionnelles”, c’est-à-dire que les données sont fréquemment modifiées
après avoir été stockées dans la base de données [49].

Les transactions sont des séquences d’opérations (lectures et écritures)
qui sont exécutées atomiquement, c’est-à-dire qu’elles se terminent en-
tièrement ou laissent le système dans un état cohérent. Le rendement
transactionnel dans les réseaux et bases de données distribués fait
référence au taux auquel les transactions peuvent être traitées dans

le système. Il quantifie combien de transactions peuvent être exé-
cutées par unité de temps, reflétant la capacité du système à traiter
des demandes concurrentes et à maintenir la cohérence des données
sur plusieurs nœuds dans un environnement distribué. Un rendement
transactionnel plus élevé indique souvent de meilleures performances
et une scalabilité dans le traitement d’un grand volume de transactions
simultanées.

Cependant, avoir de multiples répliques peut rendre la fiabilité du sys-
tème encore plus critique, en supposant que les fautes ne soient pas
corrélées, car plus il y a de répliques, plus il est probable qu’une ré-
plique devienne défectueuse à un moment donné. Lorsqu’un système ne
fonctionne pas dans son ensemble, une “failure” s’est produite, tandis
que si seuls certains de ses composants ne fonctionnent pas, une “fault”
s’est produite, et ces composants sont appelés nœuds “faulty”. Dans
les systèmes et bases de données distribués, les causes courantes de
fautes et de défaillances comprennent les problèmes de réseau, les dé-
faillances matérielles, les bogues logiciels, les retards de communication
et les problèmes de partitionnement (scénarios “split-brain”). Ces fac-
teurs peuvent entraîner une inconsistance des données, une indisponi-
bilité et une instabilité du système, soulignant l’importance de mettre
en œuvre des mécanismes tolérants aux fautes pour relever ces défis.
Cependant, si le système peut continuer à fonctionner malgré le fait que
certaines répliques peuvent être défectueuses, la fiabilité s’améliorera,
car la probabilité que toutes les répliques soient défectueuses en même
temps est beaucoup moins élevée que la probabilité qu’une seule ré-
plique soit défectueuse. En conséquence, les détails de la mise en œuvre
d’un système de réplication ont un impact significatif sur la fiabilité
du système.

Au cours des dernières années et après la popularité du modèle du
réseau Bitcoin, les applications potentielles des systèmes de réplication
utilisant un mécanisme de consensus tolérant aux fautes byzantines

17

pour traiter les demandes des clients ont été développées et étendues.
De tels systèmes de réplication sont communément connus sous le nom
de DLT, où un nombre significatif de répliques sont présentes sur le
réseau pour traiter les transactions et les demandes. En raison de
la caractéristique “permissionless” principalement héritée du modèle
du réseau Bitcoin, il n’est pas évident de prédire et de déterminer le
nombre de nœuds dans le réseau, qui est généralement rejoint par un
grand nombre de nœuds. Par conséquent, en raison de la complexité
élevée des messages des algorithmes de consensus byzantins classiques,
décrite dans la Section 2.9, l’utilisation de ces mécanismes de consen-
sus pour traiter les demandes représente un défi sérieux. Par exemple,
comme le montre le Tableau 4.1, le consensus PBFT avec seulement 30
répliques et 3 clients ne peut traiter que 49 transactions par seconde,
et avec seulement 40 répliques et 3 clients, il n’a pas pu se terminer en
raison de retards énormes dus au grand nombre de messages échangés
entre les nœuds, alors que les réseaux DLT peuvent compter plusieurs
milliers de nœuds [171]. Même si le nombre de nœuds processeurs est
limité par une approche centralisée et l’utilisation d’une entité priv-
ilégiée dans un réseau “permissioned”, en augmentant le taux de de-
mandes des clients, les performances matérielles des nœuds processeurs
restent limitées, entraînant une latence significative dans la réponse
aux clients [5]. Par conséquent, les systèmes de réplication de données
utilisant le consensus pour traiter les transactions et les demandes des
clients rencontrent des problèmes tels que la scalabilité et l’efficacité
du système. Une scalabilité limitée et un faible débit peuvent être
significativement améliorés en utilisant l’approche de sharding comme
technique de partitionnement d’un état en plusieurs fragments, dont
chacun est géré par un sous-ensemble du réseau en parallèle.

L’objectif est de concevoir un système qui, même lorsque le réseau est
“permissionless”, permet d’utiliser des mécanismes de consensus clas-
siques, qui, comme expliqué dans le chapitre 3, ont des limitations

18

importantes en termes de scalabilité. Parfois, afin de concevoir un
système décentralisé et éliminer des entités de confiance, il est néces-
saire d’utiliser un réseau “permissionless”, comme l’ont voulu le ou
les concepteurs du réseau Bitcoin. La caractéristique la plus évidente
de ces types de systèmes est l’absence d’une entité de confiance priv-
ilégiée. Une autorité de confiance, également connue sous le nom de
TTP, est une entité dans un système donné qui est considérée par
toutes les entités comme étant digne de confiance pour effectuer un
service particulier de manière satisfaisante [175]. Dans de tels réseaux
“permissionless”, l’utilisation des mécanismes de consensus distribués
décrits dans la Section 2.9 est un défi. Cela est dû au fait que, dans
un réseau “permissionless”, prédire le nombre de nœuds serveurs et
clients qui se joindront devient impossible. À mesure que le nombre de
nœuds augmente, l’efficacité et le débit de l’algorithme de consensus
sont considérablement réduits, entraînant une baisse drastique. Par
conséquent, le système devient incapable de répondre aux demandes
des clients en raison du délai élevé causé par le grand nombre de mes-
sages échangés entre les nœuds. S’il existe une entité centrale priv-
ilégiée dans le réseau afin de limiter le nombre de nœuds, le réseau
n’est plus “permissionless” mais “permissioned”, et cette entité priv-
ilégiée est considérée comme une autorité de confiance. Pour les défini-
tions des réseaux “permissionless” et “permissioned”, reportez-vous à
la Section 5.2. Les concepteurs de l’architecture du réseau Bitcoin ont
reconnu l’impraticabilité de l’utilisation des mécanismes de consensus
distribués pour sa conception. La nature “permissionless” du réseau,
combinée au grand nombre de nœuds, pose un défi pour parvenir à un
consensus dans le temps prévu et répondre aux demandes des clients
avec un débit acceptable. En conséquence, le ou les concepteurs de
l’architecture du réseau Bitcoin ont opté pour une combinaison du mé-
canisme PoW et du processus de chaînage, détaillée dans le chapitre
5, au lieu des mécanismes de consensus classiques. Ce choix visait
à éliminer la dépendance du temps moyen nécessaire pour le consen-
sus en fonction du nombre de nœuds. Ainsi, dans le réseau Bitcoin,

19

le temps nécessaire pour parvenir à un accord sur chaque transaction
dépend du niveau de difficulté du mécanisme PoW. Ce niveau de dif-
ficulté dépend, à son tour, de la puissance de calcul de l’ensemble du
réseau. Par conséquent, à mesure que la puissance de calcul de l’en-
semble du réseau augmente, le niveau de difficulté du mécanisme PoW
augmente également. À ses débuts, lorsque la puissance de calcul de
l’ensemble du réseau Bitcoin était modeste, composée principalement
d’ordinateurs aux capacités de traitement ordinaires, le réseau fonc-
tionnait avec une efficacité relativement acceptable. Cependant, avec
le temps, à mesure qu’un nombre substantiel de puissantes machines in-
formatiques ont rejoint le réseau, la consommation d’énergie du réseau
Bitcoin a explosé. Par conséquent, il s’est transformé en un système
intensif en énergie avec une empreinte carbone significative [176–178],
estimée rivaliser avec la consommation annuelle d’énergie de certains
pays de taille moyenne [179]. Au moment de la rédaction de cette
thèse, la consommation annuelle d’électricité du Bitcoin est de 136,34
TWh selon le CBECI [180], et en consommant cette quantité d’énergie,
il ne peut traiter qu’environ 7 à 10 transactions par seconde [4].

La solution présentée dans cette thèse consiste à concevoir plusieurs
techniques novatrices basées sur l’approche de sharding dans les bases
de données distribuées afin de permettre l’utilisation de mécanismes de
consensus classiques dans des réseaux de très grande échelle. Dans un
scénario typique, un système de base de données unique est bien équipé
en termes de capacités de stockage et de performances pour répondre
aux besoins de traitement des transactions d’une entreprise. Cepen-
dant, des défis se posent lorsqu’il s’agit d’applications destinées à des
millions, voire des milliards d’utilisateurs, telles que les plateformes de
médias sociaux ou les applications centrées sur l’utilisateur à grande
échelle dans des institutions majeures comme les banques [202]. Imag-
inez une organisation qui a développé une application reposant sur
une base de données centralisée. À mesure que la base d’utilisateurs

20

augmente, les limitations de la base de données centralisée deviennent
évidentes, luttant pour répondre aux exigences croissantes de stockage
et de vitesse de traitement. Pour y remédier, une stratégie couram-
ment adoptée est la pratique connue sous le nom de “sharding”. Cela
implique la segmentation des données à travers plusieurs bases de don-
nées, chaque base de données traitant un sous-ensemble d’utilisateurs.
Le sharding, fondamentalement la distribution des données à travers
plusieurs bases de données ou machines, s’avère essentiel pour atteindre
la scalabilité et une amélioration des performances [202]. À mesure que
le nombre de bases de données augmente, le risque de défaillances po-
tentielles augmente, augmentant la probabilité de perdre l’accès à des
données critiques. Pour se prémunir contre de tels scénarios, la répli-
cation devient essentielle, assurant une accessibilité continue même en
cas de défaillances. Cependant, la gestion de ces répliques introduit des
complexités supplémentaires, exigeant une attention particulière pour
garantir leur cohérence et leur efficacité [202]. Le sharding à travers
plusieurs bases de données implique la partition des enregistrements
entre différents systèmes. En d’autres termes, les enregistrements sont
répartis entre les systèmes. Contrairement aux approches de sharding
conventionnelles où chaque shard représente une base de données tra-
ditionnelle centralisée qui peut manquer d’informations sur d’autres
bases de données [202], dans l’architecture présentée dans cette thèse,
chaque shard fonctionne comme un système de données répliquées com-
prenant plusieurs processeurs. Ainsi, ils traitent collaborativement les
demandes des clients et les transactions en suivant un mécanisme de
consensus classique. Ces shards, fonctionnant comme des systèmes de
données répliquées, peuvent interagir avec d’autres shards et traiter
conjointement des transactions entre eux.

21

- Principale Contribution et Réalisation Majeure de la Thèse :

La principale contribution de cette thèse est la conception d’une nou-
velle architecture de réplication de bases de données distribuées. Dans
cette thèse de doctorat, j’ai conçu et proposé une architecture no-
vatrice de réplication de bases de données distribuées, tolérante aux
fautes, auto-configurable, scalable, sécurisée, décentralisée et perfor-
mante, appelée “Parallel Committees”. J’ai utilisé une technique de
sharding innovante pour permettre l’utilisation de mécanismes de con-
sensus BFT dans des réseaux de très grande échelle. Avec cette ap-
proche novatrice de sharding complet prenant en charge à la fois le
sharding de traitement et le sharding de stockage, à mesure que da-
vantage de processeurs et de répliques rejoignent le réseau, la puis-
sance de calcul du système et la capacité de stockage augmentent de
manière illimitée, tout en utilisant un consensus BFT classique. Mon
approche permet également à un nombre illimité de clients de rejoin-
dre le système simultanément sans réduire les performances du système
et le débit transactionnel. J’ai introduit plusieurs techniques novatri-
ces : pour la distribution des nœuds entre les shards, le traitement
des transactions entre les shards, l’amélioration de la sécurité et de la
scalabilité du système, la circulation proactive des membres du comité
et la formation automatique de nouveaux comités. J’ai introduit une
approche novatrice et nouvelle de la distribution des nœuds entre les
shards, utilisant un processus de génération de clés publiques, appelée
“KeyChallenge”, qui atténue simultanément l’attaque Sybil et sert de
preuve de travail. L’idée de la “KeyChallenge” a été publiée dans les
actes de conférence évalués par des pairs de l’ACM ICCTA 2024, Vi-
enne, Autriche. À cet égard, j’ai démontré qu’il n’est pas simple pour
un attaquant de générer une clé publique de telle sorte que tous les
caractères de la clé correspondent aux plages définies par le système.
J’ai détaillé comment former automatiquement de nouveaux comités
en fonction du taux de nœuds processeurs candidats. Le but de cette

22

technique est d’utiliser de manière optimale toute la capacité du réseau,
de sorte que les processeurs excédentaires inactifs dans la file d’attente
d’un comité qui n’étaient pas actifs soient employés dans le nouveau
comité et jouent un rôle efficace dans l’augmentation du débit et de
l’efficacité du système. Cette technique conduit à une utilisation max-
imale des nœuds processeurs et de la capacité de calcul et de stockage
du réseau pour augmenter à la fois le sharding de traitement et le shard-
ing de stockage autant que possible. Dans l’architecture proposée, les
membres de chaque comité sont remplacés de manière proactive et al-
ternée par des processeurs de secours. Dans l’architecture “Parallel
Committees”, la capacité du comité se réfère au nombre maximum de
membres (processeurs) autorisés dans chaque comité à tout moment.
Le nombre prédéterminé de “seats” pour chaque comité est défini lors
de la configuration du système, avec la flexibilité d’ajuster dynamique-
ment les paramètres au besoin. Cette adaptabilité prend en compte les
exigences changeantes, en tenant compte de facteurs tels que les varia-
tions des taux de transactions par unité de temps et le débit global du
système. Chaque “seat” est occupé par un nœud processeur, de sorte
que lorsqu’une capacité de comité est complétée, aucun des nœuds pro-
cesseurs de secours dans la file d’attente du comité ne peut rejoindre
le comité tant qu’un “seat” n’est pas libéré. Dès qu’un “seat” dans un
comité est libéré en raison de l’épuisement du ttl (Time-To-Live) d’un
processeur, l’un des nœuds de secours en attente dans la file d’attente
du comité occupe le “seat” libre. J’ai défini “Omega” comme le délai
attendu pour compléter un tour de consensus, initialisé en fonction
du délai moyen dans des mécanismes de consensus spécifiques tels que
PBFT, Paxos, Raft, etc. Si un tour de consensus dépasse la période
de “Omega”, indiquant une éventuelle violation de la tolérance aux
fautes, la “réduction du ttl due à un cas de force majeure” réduit le
ttl du processeur de plus haut identifiant d’une unité. Cela déclenche
le retrait automatique des nœuds défectueux du comité, remplacés par
des nœuds de secours. Cette technique de circulation proactive des
membres du comité a trois résultats principaux :

23

• empêcher qu’un comité soit occupé par un groupe de nœuds
processeurs pendant une longue période, en particulier les pro-
cesseurs byzantins et défectueux,

• empêcher les comités de devenir trop importants, ce qui pour-
rait entraîner des problèmes de scalabilité et de latence dans le
traitement des demandes des clients,

• en raison de la circulation proactive des membres du comité, sur
une période donnée, il existe une probabilité que plusieurs nœuds
défectueux soient exclus du comité et placés dans la file d’attente
du comité. Par conséquent, pendant cette période, les nœuds
défectueux dans la file d’attente du comité n’impactent pas le
processus de consensus.

Cette procédure peut améliorer et renforcer le seuil de tolérance aux
fautes du mécanisme de consensus. J’ai également expliqué des straté-
gies pour contrecarrer l’action malveillante de “Key-Withholding”, où
les clés publiques précédemment générées sont empêchées d’un accès
futur au shard. L’approche implique de modifier périodiquement les
plages acceptables pour chaque caractère de la clé publique. L’archi-
tecture proposée réduit efficacement le nombre de transactions indésir-
ables entre shards, qui sont plus complexes et coûteuses à traiter que les
transactions intra-shard. De plus, j’ai fourni une explication de la dé-
cision de ne pas utiliser une structure de blockchain dans l’architecture
proposée. Pour effectuer les tests nécessaires de l’architecture “Parallel
Committees”, en plus de l’analyse théorique présentée, nous avons im-
plémenté le protocole sous forme d’un logiciel simulateur. À l’aide de ce
simulateur, nous avons illustré que dans une base de données distribuée
utilisant le mécanisme de consensus PBFT pour traiter les demandes
des clients, l’architecture proposée améliore significativement le nom-
bre de demandes traitées par seconde à mesure que le réseau évolue
en termes de nombre de nœuds. En revanche, sans l’architecture pro-
posée, le débit du même algorithme PBFT subit une diminution sub-
stantielle avec l’augmentation du nombre de nœuds. J’ai effectué une

24

comparaison entre l’architecture proposée et diverses bases de données
distribuées et systèmes de réplication de données, y compris Apache
Cassandra, Amazon DynamoDB, Google Bigtable, Google Spanner, et
ScyllaDB, pour améliorer la clarté et la compréhension. Ces distinc-
tions sont détaillées dans la Section 4.7. L’idée proposée a été publiée
dans les actes de conférence évalués par des pairs de l’IEEE BCCA
2023 [12].

L’architecture proposée ouvre la porte à un nouveau monde pour des
recherches ultérieures dans ce domaine et constitue une avancée signi-
ficative pour améliorer les bases de données distribuées et les systèmes
de réplication de données.

- Autres Contributions de la Thèse :

Les autres contributions de la thèse sont les suivantes :

• J’ai présenté une introduction détaillée à la philosophie architec-
turale sous-tendant Bitcoin et les réseaux “permissionless”.

• J’ai réalisé une exploration approfondie des défis auxquels font
face les systèmes de réplication de données.

• J’ai effectué un examen approfondi des défis associés aux bases
de données distribuées sharding et à la réplication de données.

• J’ai réalisé une étude bibliographique approfondie sur les prob-
lèmes des solutions actuelles basées sur la blockchain, en partic-
ulier pour le marché de l’énergie.

• J’ai détaillé dans quelles conditions une solution basée sur la
blockchain peut être efficace.

25

Contents

1 Introduction 1
1.1 Philosophy of Permissionless Networks 1
1.2 Introduction to Distributed Databases and Data Replication 6

1.2.1 Distributed Systems . 6
1.2.1.1 Critical Challenges in Distributed Systems 6

1.2.2 Distributed Databases . 7
1.2.2.1 Crucial Concepts in Distributed Databases 7

1.3 Contributions . 8
1.4 Publications . 11

2 Distributed Data Replication Challenges 12
2.1 Replication Definition . 12
2.2 Synchrony & Timing Assumptions 13
2.3 Single-Leader Replications . 13
2.4 Multi-Leader Replications . 14
2.5 Leaderless Replications . 15
2.6 Faults & Failures . 16
2.7 Fault-Tolerance & Quorum . 19
2.8 SMR & Total-Order Broadcast . 24

2.8.1 Implementing Replication Using Broadcast Algorithms . . . 36
2.9 Distributed Consensus Mechanisms 42
2.10 Summary of Chapter 2 . 45

i

3 Sharding Distributed Data Replications 47
3.1 Fault-Tolerant Consensus Scalability Limit 47
3.2 Sharding at a Glance . 49

3.2.1 Sharding Challenges . 52
3.2.1.1 Distributing Nodes Between Shards 52
3.2.1.2 Transactions Processing in Sharded DLTs 53
3.2.1.3 Challenges With Shared Ledger Among Shards . . 54
3.2.1.4 Challenges With Cross-Shard Transactions 55

3.3 Overview of Sharding in Distributed Systems 61
3.3.1 Ethereum 2.0: Homogeneous Multi-Chain 62

3.3.1.1 Beacon Chain: A Shared Ledger Among Shards . . 62
3.3.1.2 PoS and Block Generation 63
3.3.1.3 Roles and Terminology in Ethereum 2.0 64
3.3.1.4 Consensus in Ethereum 2.0 64

3.3.2 Polkadot: Heterogeneous Multi-Chain 66
3.3.3 Other Sharded Blockchains 69
3.3.4 Sharding in Classic Distributed Databases 71

3.3.4.1 MongoDB . 71
3.3.4.2 Apache HBase . 73
3.3.4.3 Riak . 75
3.3.4.4 Couchbase . 75

3.4 Summary of Chapter 3 . 77

4 A Novel Distributed Database Architecture 78
4.1 The Parallel Committees Architecture 78

4.1.1 Network Model . 79
4.1.2 Node Public Key . 80

4.1.2.1 Assigning Public Keys to Shards 81
4.1.2.2 Validation of the Key by Committee 81
4.1.2.3 How to Set the Range for Each Public Key Character 83
4.1.2.4 Key-Withholding Prevention 86

4.1.3 Graph View of the Network 89
4.1.4 Proof-of-Work: Mitigating Sybil & DoS Attacks 89

ii

4.1.4.1 Creating Processor Identifier 92
4.1.4.2 Sending Clients’ Requests to Committees 94

4.1.5 Node’s Crypto-Tokens . 96
4.1.6 Proactively Circulating Committee Members 97
4.1.7 Processor’s TTL . 98
4.1.8 Committee Queue & Backup Processors 99
4.1.9 Force Majeure TTL Reduction Mechanism 101
4.1.10 Forming New Committees Automatically 101
4.1.11 Transactions Across Shards 104

4.1.11.1 Cross-Shard Processing 104
4.1.11.2 Associated Clients 108

4.1.12 Node Identifier General Format 111
4.2 Implementation & Experimental Results 112
4.3 Consensus in Parallel Committees 116
4.4 Why NOT Using Blockchain? . 117
4.5 System Bootstrapping . 117
4.6 Discussion . 121
4.7 Related Works and Comparison With Other Distributed Databases 126

4.7.1 Apache Cassandra . 126
4.7.1.1 Parallel Committees Architecture vs. Cassandra . . 127

4.7.2 Amazon DynamoDB . 129
4.7.2.1 Parallel Committees Architecture vs. DynamoDB . 129

4.7.3 Google Bigtable . 132
4.7.3.1 Parallel Committees Architecture vs. Bigtable . . . 132

4.7.4 Google Spanner . 134
4.7.4.1 Parallel Committees Architecture vs. Spanner . . . 134

4.7.5 ScyllaDB . 136
4.7.5.1 Parallel Committees Architecture vs. ScyllaDB . . 136

4.7.6 Additional Comparative Insights with Existing Models . . . 139
4.8 Potential Applications & Use Cases 141
4.9 Summary of Chapter 4 . 152

iii

5 Fallacies of Blockchain 156
5.1 Blockchain: A Hyped Term . 156
5.2 Permissionless vs. Permissioned Networks 158
5.3 PoW: Indispensable Component in Blockchain 159

5.3.1 Block and Hash Function . 161
5.3.2 Chaining Transactions . 162
5.3.3 Nonce, PoW and Mining . 163
5.3.4 Decentralization . 163

5.4 Misconceptions on Blockchain . 167
5.4.1 Reducing Costs . 171
5.4.2 dApps Are Not Necessarily Open Source 172
5.4.3 TTP & Trustless . 172
5.4.4 Smart Contracts Do Not Run Automatically 173
5.4.5 Blockchain Never Can Be Closed-Source 174
5.4.6 Immutability, Tamper-Proof, & Security of Blockchain . . . 174

5.5 Summary of Chapter 5 . 175

6 Conclusions 176
6.1 Conclusions and Achievements . 176

6.1.1 Main Contribution and Achievement of the Thesis 181
6.1.2 Other Contributions of the Thesis 184

6.2 Future Work . 185
6.2.1 Developing and Implementing a Prototype and an MVP . . 185

iv

Acronyms

ACID Atomicity Consistency Isolation and Durability

ASIC Application Specific Integrated Circuit

BFT Byzantine Fault Tolerance

Casper-FFG Casper the Friendly Finality Gadget

CBECI Cambridge Bitcoin Electricity Consumption Index

CFT Crash Fault Tolerance

CPU Central Processing Unit

DAG Directed Acyclic Graph

dApp Decentralized Application

DDoS Distributed Denial of Service

DLT Distributed Ledger Technology

DoS Denial of Service

DOT Polkadot crypto-currency

ECB European Central Bank

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

ETH Ethereum crypto-currency

v

EWF Energy Web Foundation

Fintech Financial Technology

GHOST Greedy Heaviest Observed Sub-Tree

GPU Graphics Processing Unit

LMD Latest Message-Driven

LTE Long-Term Evolution

NFT Non-Fungible Tokens

NoSQL Not Only SQL

NPoS Nominated Proof-of-Stake

NTP Network Time Protocol

P2P Peer-to-Peer

PBFT Practical Byzantine Fault Tolerance

PoS Proof-of-Stake

PoW Proof-of-Work

Raft Reliable Replicated Redundant And Fault-Tolerant

RandDAO Random Decentralised Autonomous Organisation

REC Renewable Energy Certificate

RES Renewable Energy Sources

RSA Rivest-Shamir-Adleman encryption

SHA-256 Secure Hash Algorithm 256-bit

SMR State Machine Replication

TTP Trusted Third Party

vi

List of Figures

1.1 This figure depicts the conclusion section of the article describing the Bitcoin

network under the pseudonym Satoshi Nakamoto. With the last sentence, the

designer(s) of the Bitcoin network convey the message that the “proof-of-work

chain”, as a single entity consisting of two parts: (1) the proof-of-work mecha-

nism, plus (2) the chaining process, can perhaps be considered as a consensus

mechanism. 4

2.1 Initially, both replicas initialize the key k with value v0 and timestamp t0. A

client then attempts to update the key value to v1 that is associated with the

timestamp t1. Replica R2 succeeds in updating, but replica R1 fails to update,

since replica R1 is temporarily unavailable. Subsequently, the client attempts

to read back the value it previously wrote. The read operation succeeds on

replica R1 but fails on replica R2. As a result, the newer value, v1, previously

written by the same client is not returned, but the initial value, v0, is returned. 20
2.2 Each write or read request is sent to all three replicas, and if at least two

responses are received from the replicas, the request is considered successful. . 22
2.3 During a read operation, the client reads the most recent value v1 updated at

time t1 from replica R2, while receiving the older value v0 updated at time t0

from replica R1, and gets no response from replica R3. 25
2.4 node1 sends message m1 as a query or request to two other nodes, node2 and

node3. After receiving m1, node2 sends message m2 as a response to m1 to two

nodes, node1 and node3. Even if we assume the network links to be reliable,

there is still the possibility of reordering, meaning it is possible that node3

receives m2 before m1 because m1 may arrive late. 26

vii

2.5 Reliability in the best-effort approach can be improved by the eager reliable

broadcast in such a way that after receiving each particular message by a nod,

that node re-broadcasts the message to every other node. 31
2.6 If node3 receives m2 before m1, according to causal broadcast, in order to ensure

that messages are delivered in causal-order, the algorithm must hold back m2,

by buffer or delay in queue, until m1 to be delivered. 33
2.7 In broadcast algorithms, the difference between “receiving” and “delivering”

should be considered. 33
2.8 Message m2 and m3 are broadcast concurrently, and while node1 and node3

deliver the messages in the order: (m1, m3, m2), node2 delivers them in the

order m1, m2, m3. According to causal broadcast, both orders are allowed,

because both of them are compatible with causality relation. 34
2.9 Message m2 must be delivered before m3, and hence, node1 to deliver message

m3 to itself must wait until receiving message m2 from node2. 35
2.10 node2 needs to wait for message m3 in order to deliver m2 to itself. 35
2.11 The primary or leader replica may execute multiple transactions concurrently,

but commits them in a total-order. When a transaction commits, the primary

replica broadcasts the changes applied to the data to all follower replicas, and

the followers apply the changes locally in commit order. As shown in the Figure,

concurrent transactions are delivered by followers in the same order as they

commit by the primary replica. 40

3.1 The Practical Byzantine Fault Tolerance (PBFT) consensus message complexity

where a primary node fails and a change-view with additional message exchange

is required, so that for f leader failures the message complexity increases to

O(f.n3). 48
3.2 Throughput of a network that uses Paxos or Practical Byzantine Fault Tolerance

(PBFT) consensus decreases drastically, as the number of nodes increases [32]. . 49
3.3 Most current sharding protocols use a random assignment approach for allocat-

ing and distributing nodes between shards due to security reasons. 53

viii

3.4 A shared ledger among shards for various bookkeeping computations. These

computations include coordinating and orchestrating shards, distributing nodes

between shards, capturing snapshots of the latest state of shards, and managing

cross-shard transactions. The workload on this shared ledger is proportional to

the number of shards in the network [5]. 55
3.5 (A): txi is a cross-shard transaction between shard1 and shard2, where a fork

has occurred. If forka in shard2 as a part of transaction txi is in canonical/main

chain, then txi gets finalized, otherwise an atomicity failure has occurred. (B):

txj is a cross-shard transaction between forkc in shard3 and forkf in shard4. If

both forkc and forkf are in canonical/main chain, then txj gets finalized. If both

forks become abandoned, then txj becomes fully abandoned that is no conflict

and the situation is fine. But if one of these forks becomes canonical/main chain,

while another one is abandoned as a part of forked chain, then an atomicity

failure has occurred. 58
3.6 State transition challenge in sharding. 59
3.7 A graph-based solution can resolve the state transaction problem in some cases. 60
3.8 The graph-based solution is not always able to resolve the state transaction

problem. 61
3.9 An example of how to select a subtree using the LMD-GHOST fork choice rule

in a view by a validator. 67
3.10 A high-level view of the Polkadot architecture. 69

4.1 Setting the range for each public key character. 84
4.2 A graph view of a network with two shards, such that light-grey and

dark-grey represent the processors of shards 1 and 2, respectively;
and light-blue and dark-blue represent the clients of shards 1 and 2
,respectively. 90

4.3 Improving fault tolerance of the consensus mechanism with the help of the

proactive circulation of committee members. 102
4.4 Proactively Circulating Committee Members. 103

ix

4.5 Forming new committees automatically based on the rate of candidate processor

nodes. It is possible to control the rate of creating new committees by adjusting

the queue size of the current committees. This way, a portion or the entirety

of the surplus processors will be converted into backup processors. 105
4.6 A classical Two-Phase Commit algorithm according to [50] where a transaction

is performed between two distributed databases, which we modified to fit our

protocol as illustrated in Figure 4.7. 107
4.7 A cross-shard or inter-shard transaction processing. 109
4.8 Avoiding a cross-shard transaction by creating an associated client node by the

user receiving the token in the shard to which the token-sending client is assigned.110
4.9 (a) Throughput of a network that uses Practical Byzantine Fault Tolerance

(PBFT) consensus decreases drastically, as the number of nodes increases. (b)

Throughput of a network that uses the same Practical Byzantine Fault Toler-

ance (PBFT) algorithm used in part (a) increases outstandingly, as the number

of nodes increases, thanks to the Parallel Committees architecture. 115

5.1 The term “proof-of-work chain” itself indicates the indispensable role of proof-

of-work to produce the chain of blocks in the Bitcoin network architecture. . . 160
5.2 The proof-of-work was solved after 0.0099151 seconds, where the target had

been initialized to 1077 run by a computer with a processor of i7-8650U (Pro-

cessor Base Frequency: 1.90 GHz, Configurable TDP-up Frequency: 2.10 GHz)

using a Java code, based on Algorithm 11. 164
5.3 A high level view of the permissioned blockchain architecture which shows that

the transactions between parties are validated by a centralized Trusted Third

Party (TTP). 168

x

Chapter 1

Introduction

1.1 Philosophy of Permissionless Networks
In a large distributed system, data replication is useful and effective for rapid ac-
cess to data and for fault-tolerance [112]. Data replication is one of the essential
concepts in distributed systems. There might be various motives to replicate data,
such as keeping data geographically close to the users to decrease latency, or scaling
out the number of nodes processing queries and requests to enhance throughput,
or allowing the network to continue working even if some of the components have
failed to provide better availability of a service. We detail this topic in Chapter 2.

The State Machine Replication (SMR) or simply the state replication, can be
achieved and implemented using various algorithms, depending on the failures the
system must be able to tolerate [173]. According to Roger Wattenhofer [173], a
set of nodes achieves state replication, if all of them execute a (potentially infi-
nite) sequence of requests in the same order. For example, Paxos algorithm [18]
can achieve state replication even though a minority of nodes in the system may
crash [173], or Practical Byzantine Fault Tolerance (PBFT) [19] can make state
replication where a minority of nodes in the system may be Byzantine, albeit, the
complexity and efficiency of PBFT is higher and lower than Paxos, respectively1.

1We discuss this in detail in Chapter 3.

1

In recent years and after the popularity of the Bitcoin network model [6], the po-
tential applications of replication systems that use a Byzantine fault-tolerant con-
sensus mechanism to process clients’ requests have been developed and expanded.
Such replication systems are commonly known as Distributed Ledger Technology
(DLT), where there are a significant number of replicas on the network to process
transactions and requests.

Blockchain is a relatively new form of state replication that developed and ex-
panded after the popularity of the Bitcoin network. In the design of Bitcoin archi-
tecture, an attempt has been made to ensure that no centralized and pre-selected
entity decides the fate of transactions that are waiting for approval in the network.
This is the newest type of state replication, which is more applicable to and more
compatible with Financial Technology (Fintech) use cases [173].

Sometimes, in order to design a decentralized system and remove trusted entities,
it is necessary to use a permissionless network, like what the designer(s) of the Bit-
coin network intended. The most obvious feature of these types of systems is the
absence of a trusted privileged entity. A trusted authority, also known as a Trusted
Third Party (TTP), is an entity in a given system that is trusted by all entities
to satisfactorily perform a particular service [175]. As a result, the designer(s) of
the Bitcoin network architecture used a combination of the Proof-of-Work (PoW)
mechanism and the chaining process instead of distributed consensus mechanisms
(as detailed in Chapter 5) in order to eliminate the dependence of the average time
required for consensus on the number of nodes.

Based on the research conducted in this thesis, the method of using the PoW
mechanism in the Bitcoin network does not seem to be an efficient approach. In
other words, the PoW mechanism is not suitable and adapted for achieving con-
sensus, as it was not originally designed for this purpose, but rather a mechanism
to prevent Sybil [39] and Denial of Service (DoS) [88] attacks.

In a PoW scheme the prover by spending some resources (Central Processing Unit
(CPU), Graphics Processing Unit (GPU), electricity etc.) creates a token in a

2

costly way proving to the verifiers that a certain amount of required computation
whose difficulty level is adjusted based on the total mean computational power of
the network has been performed, while on the other hand, it is not costly for the
verifier to check if the prover has done the computations properly and completely.
The concept used in PoW procedure was first introduced in 1992 in [33] as an ap-
proach to defeat DoS attacks as well as a technique to prevent spam on a network.
It also makes the Sybil attack more costly [40]. Then, the term “proof-of-work”
was put to use in 1999 [34]. Hashcash [10] in 2002 introduced a CPU cost-function
PoW computing token to be used as a DoS counter measure. The PoW then be-
came popularized when it was employed in 2009 in the Bitcoin network in order
to achieve an agreement between the miners which propose the next block.

Nonetheless, if PoW is utilized as a computing hash competition, so that the
participant who can find the answer to the PoW puzzle earlier than others will
become a temporary leader to decide on the requests and transactions of clients,
then the participants add devices with high computing power to the network, such
as Application Specific Integrated Circuit (ASIC) miners, which are designed and
customized for the sole purpose of hash generation in order to solve the PoW puz-
zle2, for the sake of being the main decision maker in the system. Then, even by
connecting these high computing power and high energy consumption devices to
each other, mining farms are formed, whereby numerous miner devices are sat to-
gether working in a mining pool, in order to possess as much computing power as
possible in the network [181]. The result will be that with the expansion of these
mining farms, in addition to the system becoming extremely energy consuming,
even the decentralization feature of the network will drop significantly3.

But the main question is why the designer(s) of the Bitcoin network did not use
2For example, an ASIC miner such as AntMiner S9, which is specifically designed and cus-

tomized for Secure Hash Algorithm 256-bit (SHA-256), is capable of calculating approximately
14× 1012 hashes per second [82].

3Refer to Chapter 6 for information on the energy consumption statistics of the Bitcoin
network.

3

Figure 1.1: This figure depicts the conclusion section of the article describing the Bitcoin
network under the pseudonym Satoshi Nakamoto. With the last sentence, the designer(s) of the
Bitcoin network convey the message that the “proof-of-work chain”, as a single entity consisting
of two parts: (1) the proof-of-work mechanism, plus (2) the chaining process, can perhaps be
considered as a consensus mechanism.

common distributed consensus mechanisms such as PBFT, Paxos, Raft4 [16] and
the like. The answer is clear: these algorithms do not have optimal message com-
plexity and are designed for a few tens of nodes at most, while the Bitcoin network
has more than 16,000 nodes at the time of writing this thesis [172]. As a result,
the designer(s) of the Bitcoin network architecture decided to introduce an alter-
native to consensus algorithms by combining PoW with a chaining process. The
undesirable results of this approach were mentioned above. With this approach,
even the decentralization of the system is greatly weakened over time.

The article proposing the Bitcoin network ends with the sentences depicted in
Figure 1.1, where the designer(s) of the Bitcoin network convey the message that
the “proof-of-work chain”, as a single entity consisting of two parts: (1) the proof-
of-work mechanism, plus (2) the chaining process, can perhaps be considered as a
consensus mechanism.
Apart from whether this combined mechanism proposed by the Bitcoin network
can be considered as a consensus mechanism or not, and there is a serious differ-
ence of opinion in this field [35–38] (because the Bitcoin network mechanism does
not fulfill all the conditions of a consensus mechanism listed in Section 2.9.), it

4Reliable Replicated Redundant And Fault-Tolerant (Raft). See [17] for more detail about
the “Raft” name.

4

is highly important to note that the designer(s) of the Bitcoin network proposed
the “proof-of-work chain” as a consensus, i.e. the combination of proof-of-work
with the chaining process, both together, and proof-of-work alone has not been
proposed as a consensus mechanism. Therefore, it seems that the early title, proof-
of-work chain, is a more accurate title than the later title, blockchain, because we
are dealing with a combination: the proof-of-work mechanism plus the chaining
process, and consequently, separating the two affects everything in the network,
including whether or not the chaining process (blockchain) can still be effective
even without proof-of-work.

A not so logical idea that has been proposed in recent years to improve the Bit-
coin network architecture approach, and is utilized in platforms such as Hyper-
ledger [54], is to continue making use of a blockchain-based approach, but instead
of PoW, distributed consensus algorithms such as PBFT, Paxos, Raft and the like,
which are described in Section 2.9, are employed. If the aforementioned consen-
sus algorithms are to be used, there is no need to employ the chaining process.
We have detailed this matter in 5. In addition, as mentioned above, due to the
message complexity of these consensus algorithms, the network can no longer be
permissionless, because when the network is permissionless, it is impossible to pre-
dict how many server and client nodes will join the network, and by increasing
the number of nodes, the efficiency and throughput of the consensus algorithm
is greatly reduced and drops drastically, so that the system is no longer able to
respond to clients’ requests due to the high delay caused by the huge number of
exchanged messages between nodes5. And, if the network is to be permissioned,
the aforementioned consensus algorithms can be used in the same way as they
were used before the appearance of the Bitcoin network, and there is no need to
employ the chaining process, because in this case, as detailed in Chapter 5, the
blockchain-based approach can no longer be effective and add something to the
security of the system like when it is used in the Bitcoin network along with PoW6.
As a result, the idea of separating the blockchain structure from the PoW does not
seem to be an efficient and logical approach. The alternative solution proposed in

5In this case, refer to Table 4.1.
6For the definitions of permissionless and permissioned networks, refer to Section 5.2.

5

this thesis is based on the sharding technique, which is explained and elucidated
in detail in Chapter 4.

1.2 Introduction to Distributed Databases and
Data Replication

Below we provide a comprehensive introduction to distributed systems, distributed
databases and data replication focusing on critical challenges and crucial concepts.
These key concepts are the underlying concepts of this thesis.

1.2.1 Distributed Systems

Distributed systems are computing systems composed of multiple independent en-
tities that communicate and coordinate to achieve a common goal. These entities,
known as nodes, are interconnected and work together to provide enhanced per-
formance, fault tolerance, and scalability. Examples of distributed systems include
cloud computing platforms, peer-to-peer networks, and grid computing infrastruc-
tures.

1.2.1.1 Critical Challenges in Distributed Systems

• Consistency: Ensuring that all nodes in the system have a consistent view
of the data despite concurrent updates is a fundamental challenge.

• Fault Tolerance: Distributed systems must be resilient to failures, including
node crashes, network partitions, and communication errors.

• Concurrency Control: Managing concurrent access to shared resources to
prevent conflicts and ensure data integrity.

• Scalability: The system should efficiently scale as the number of nodes or
the amount of data increases.

• Security: Protecting data and communication from unauthorized access and
ensuring the confidentiality and integrity of information.

6

1.2.2 Distributed Databases

Distributed databases extend the concept of distributed systems to handle the stor-
age and retrieval of data across multiple nodes. They offer benefits like improved
performance, fault tolerance, and geographical distribution.

1.2.2.1 Crucial Concepts in Distributed Databases

• Partitioning and Sharding: In the context of distributed databases, parti-
tioning and sharding are related concepts that refer to dividing a dataset into
smaller, more manageable pieces. Partitioning involves dividing a database
into smaller subsets, called partitions, based on a predetermined criterion,
such as a range of values or hash function. Sharding is a specific form of
partitioning where data is divided into shards, and each shard is an indepen-
dent database instance. Each shard operates as a separate database system
with its own schema and may even be located on a different server or data
center. While they share some similarities, there are key differences between
partitioning and sharding:

– Control and Management: Partitioning is usually managed by a cen-
tralized entity, such as the DBMS, which is aware of the partitioning
scheme. Sharding, on the other hand, often involves a more decentral-
ized approach, where each shard operates independently.

– Flexibility: Partitioning provides flexibility in choosing different criteria
for dividing data, while sharding may offer more flexibility in terms of
independent schemas and technologies for each shard.

– Scaling: Sharding is closely associated with horizontal scaling, making
it a powerful technique for handling large-scale distributed databases.
While partitioning can contribute to scalability, it may not inherently
offer the same level of flexibility and independence as sharding.

• Data Replication: Data replication involves copying and maintaining data
in multiple locations. It is a key strategy in distributed systems to improve

7

fault tolerance, availability, and performance.

Critical Challenges in Data Replication:

– Consistency vs. Performance Trade-off: Achieving a balance between
maintaining data consistency across replicas and providing low-latency
access for read operations.

– Conflict Resolution: Dealing with conflicts that may arise when updates
occur independently on different replicas.

– Synchronization Overhead: Minimizing the overhead of keeping replicas
synchronized, including data transfer and coordination.

– Failure Handling:
Addressing challenges related to replica failures, network partitions, and
ensuring that the system remains operational under adverse conditions.

• Transaction Management: Coordinating multiple operations to ensure data
consistency and integrity across distributed nodes.

• Consistency Models: Defining rules for how data consistency is maintained,
such as eventual consistency or strong consistency.

• Distributed Query Processing: Optimizing queries that span multiple nodes
to minimize latency and maximize efficiency.

1.3 Contributions
In this PhD thesis, we first, in Chapter 2, make clear and intelligible the systems
that the proposed idea, Parallel Committees, is based on such networks. We
detailed the fundamental and essential properties and challenges of replication
systems. In this regard, we addressed the following issues:

• The main motives to replicate data.

• The synchrony and timing assumptions and the behavior of the replication’s
processes and its communication links with respect to the passage of time.

8

• Various types of leadership in repetition.

• Types of faults and failures and how to deal with them through a fault-
tolerance mechanism.

• How to implement replication through broadcast algorithms and the quorum
concept.

• The connection between total-order broadcast and consensus mechanisms
and their highly essential role in SMR implementation.

Then in Chapter 3, we describe the most important challenges in the sharding
of distributed systems and data replication, an approach that has already been
implemented in several distributed databases and replicated data systems and al-
though it has shown remarkable potential to improve performance and scalability,
yet current sharding techniques have several significant scalability and security
issues. We explain why most current sharding protocols use a random assignment
approach for allocating and distributing nodes between shards due to security rea-
sons. We also detail how a transaction is processed in a sharded replication system,
based on current sharding protocols. We describe how a shared-ledger imposes ad-
ditional scalability limitations and security issues on the network and explain why
cross-shard or inter-shard transactions are undesirable and more costly, due to the
problems they cause, including atomicity failure and state transition challenges,
along with a review of proposed solutions. We review some of the most consid-
erable recent works that utilize sharding techniques for replication systems. We
firstly selected two notable sharding protocols to describe more deeply as two gen-
eral kinds of ecosystems in sharding techniques: Ethereum 2.0 as one of the most
used blockchain-based platforms that is a homogeneous multi-chain sharding sys-
tem, and Polkadot, as a heterogeneous multi-chain sharding protocol. We then
reviewed some other considerable sharding protocols that each of them tried to
improve a part of sharding challenges. This part of the work has been published
as a peer-reviewed book chapter entitled “Sharding Distributed Replication Sys-
tems to Improve Scalability and Throughput” (Springer Publishing).

9

In Chapter 4, we propose a novel sharding technique, Parallel Committees, sup-
porting both processing and storage/state sharding, to improve the scalability and
performance of distributed replication systems that use a consensus to process
clients’ requests. We introduced an innovative and novel approach of distributing
nodes between shards, using a public key generation process that simultaneously
mitigates Sybil attack and serves as a proof-of-work mechanism. Our approach ef-
fectively reduces undesirable cross-shard transactions that are more complex and
costly to process than intra-shard transactions. The proposed idea has been pub-
lished as peer-reviewed conference proceedings in the IEEE BCCA 2023. We then
explain why we do not make use of a blockchain-based approach in the proposed
architecture, an issue that is discussed in great detail in Chapter 5. This clarifica-
tion has been published in the Journal of Software [11].

It is worth noting that when in the dissertation it is said that in some cases it is
not necessary to use a blockchain-based approach, it means that in some scenarios
and conditions, it can be sufficient to implement and build a Distributed Ledger
using a classical consensus mechanism producing a sequence of totally-ordered
client requests. The purpose is to emphasize that the blockchain approach is a
specific type of Distributed Ledger and that while every blockchain system is a
DLT, a Distributed Ledger may or may not be a blockchain system, but in either
case, concepts such as smart contracts and distribution transactions can be used.
In Chapter 5, after reviewing about 143 published articles [208–344] and almost
33 startups [345–377] on the use of blockchain for renewable energy, we realized
that there are many misunderstandings and misconceptions about blockchain as a
distributed replication system, the most important of which we describe in Section
5.4.

And at the end of this thesis, in Chapter 6, we summarize the important points
and conclusions of this research.

10

1.4 Publications
(1) “Parallel Committees: High-Performance, Scalable, and Secure Distributed
Replication System Using a Novel Sharding Technique”.
- Published as peer-reviewed conference proceedings of “IEEE BCCA”, “The Fifth
International Conference on Blockchain Computing and Applications”. 2023 [12].
- Authors: Siamak Solat, Farid Naït-Abdesselam.
- Role: Main Author, Creator of Ideas, Originator, Innovator.

(2) “Permissioned vs. Permissionless Blockchain: How and Why There is Only
One Right Choice”.
- Published as peer-reviewed journal article in the “Journal of Software (JSW)”.
Volume 16, Number 3, May 2021 [11].
- Authors: Siamak Solat, Philippe Calvez, Farid Naït-Abdesselam.
- Role: Main Author, Creator of Ideas, Originator.

(3) “Sharding Distributed Replication Systems to Improve Scalability and Through-
put”.
- Published as peer-reviewed book chapter in “Building Cybersecurity Applica-
tions with Blockchain Technology and Smart Contracts”. Springer. 2024 [13].
- Authors: Siamak Solat, Farid Naït-Abdesselam.
- Role: Main Author.

(4) “KeyChallenge: A Novel Sybil Attack Mitigation Technique Based on Crypto-
graphic Key Generation”.
- Published as peer-reviewed conference proceedings of “ACM ICCTA”, “The 10th
ACM International Conference on Computer Technology Applications”. 2024. Vi-
enna, Austria.
- Author: Siamak Solat.
- Role: Sole Author.

11

Chapter 2

Distributed Data Replication
Challenges

2.1 Replication Definition
Distributed systems are defined in various ways by different scientists and re-
searchers working on this topic, for example, Leslie B. Lamport [166], as one of
the most well-known figures in this field, defines distributed systems as follows: “A
distributed system is one in which the failure of a computer you didn’t even know
existed can render your own computer unusable” [167]. A distributed system con-
sists of independent entities that work together to solve a problem that cannot be
solved individually [112]. A type of distributed systems are replications, meaning
that maintaining a copy of the same data on multiple machines, each of which is
called a replica, all of which are connected through a network [50]. Replication
is an essential characteristic of various distributed storage systems and one of the
key mechanisms for achieving fault-tolerance: if a copy of the data gets faulty, the
other copies are still available on other replicas. There might be various motives
to replicate data [50]:

• Keeping data geographically close to the users to decrease latency.

• Allowing the network to continue working even if some of the components
have failed to provide better availability of a service.

• Scaling out the number of nodes processing queries and requests to enhance
throughput.

12

If the data does not change, replication is simple because it only needs to copy
the data once per node; hence, the main challenge in replication is managing data
changes, where the data is called dynamic or transactional, that is, the data is
frequently modified after being stored in the database [49].

2.2 Synchrony & Timing Assumptions
An important feature in describing a distributed system is the behavior of its pro-
cesses1 and its communication links with respect to the passage of time. That is,
determining whether assumptions can be made about time bounds on communica-
tion delays as well as process speed is of great significance for a distributed system
model. Hence, one of the most important parts of a distributed system model
is the synchrony assumption, which is related to timing, and according to [107],
there are three choices: synchronous, asynchronous, and partially synchronous.
While in an asynchronous distributed system, messages can be delayed and nodes
can pause execution arbitrarily and there is no time guarantee, in a synchronous
distributed system there is no message latency greater than a known upper bound
and nodes execute algorithm at a known speed. In addition to these two mod-
els, a partially synchronous model often behaves similar to a synchronous system
nevertheless sometimes exceeds the bounds of network delay, process pauses, and
clock drift [107].

2.3 Single-Leader Replications
Each node that stores a copy of the database is called a replica, so it must be
ensured that all replicas have identical data. Each write to the replication system
must be processed by each replica, otherwise the replicas will no longer contain
identical data. The most common method for this purpose is called leader-based
replication, which is also known by other names, such as active/passive or master-
slave replication, and it works as follows: one of the replicas is designated as the
leader, also known as the master or primary, and when clients intend to write to the

1A process is simply an abstraction that may represent a physical or virtual computer, or a
processor in a computer, or a particular thread of execution in a concurrent system [105].

13

replicated database, they have to first submit their request to the leader replica,
which first writes the new data to its local storage. The other replicas are known as
variant names, such as followers, read-replicas, or slaves. When the leader writes
new data to its local storage, it also submits this data change to all its followers as
part of the replication system log, or change stream. Each follower then receives
the log from the leader and updates its local storage based on it in the same order
as it was processed in the leader’s storage. This approach of replication is a built-
in characteristic of several relational databases, such as MySQL, or Oracle Data
Guard [100]. This model is also used in some non-relational databases like Mon-
goDB, RethinkDB [168], and Espresso [101]. Moreover, leader-based replication
is not limited to databases; distributed message brokers such as Kafka [102] and
highly available queues in RabbitMQ [103] also employ this approach, as well as,
network filesystems and distributed replicated block device such as DRBD [104].

2.4 Multi-Leader Replications
Single-leader replications have one major drawback: since there is only one leader
and all writes must go through it, if the leader is interrupted for any reason, the
database can no longer be written to. A common extension of the single-leader
replication model is to allow more than one node to accept writes while replication
is still performed in the same way, i.e. each node that processes a write must
forward that data-change to all the other nodes. This type of configuration is called
multi-leader, or master-master, or active/active replication. In this configuration,
each leader simultaneously acts as a follower of other leaders. It seldom makes sense
to use a multi-leader configuration in a data center, as the benefits rarely outweigh
the complexity added to the system. Nevertheless, there are circumstances in
which this type of setup makes sense. For example, assume a database with
replicas in several different data centers, either in order to tolerate the failure of
the whole data center, or perhaps in order to be closer to users. In the case of a
database replicated in different data centers, with a single-leader replication model,
the leader must reside in one of the data centers and all writes must go through
that data center, in such a way that, by use of a single-leader model, every write
operation must go over the Internet to the data center with the leader, which can

14

add significant latency to the database write operation and may conflict with the
motivation of having multiple data centers. Whereas, in a multi-leader model,
each write operation can be processed at the local data center and replicated
asynchronously to other data centers, such that, network latency between data
centers can be hidden from users. In a single-leader model, if the data center
where the leader is located fails, although a follower in another data center can
be designated as the leader with a failover2 operation, in a multi-leader model,
each data center can continue to operate independently of the other data centers,
and replication catches up as soon as the failed data center is recovered. On the
other hand, traffic between data centers is often carried over the Internet, which
is much less reliable than the local network in a data center. Therefore, a single-
leader model is highly vulnerable to potential problems on the links between data
centers, as write operations are performed synchronously on these links; whereas,
a multi-leader model with asynchronous replication may often tolerate network
problems better, as a temporary network outage does not prevent write operations
being processed.

2.5 Leaderless Replications
Some data storage systems adopt the approach of removing the leader concept,
whereby each replica is allowed to directly accept write operations from clients.
Some of the first replication systems were leaderless, such as [108,109], however the
idea was largely abandoned during the dominance of relational databases until it
became a fashionable database architecture once again after Amazon implemented
it for the Dynamo system [110]. Dynamo should not be confused with DynamoDB
[111], a hosted database product that has a completely different architecture and
is based on single-leader replication. Dynamo is leaderless and not available to
users outside of Amazon [50]. While in some leaderless implementations the client
sends write requests directly to multiple replicas, in others a coordinator performs
this task on behalf of the client; nevertheless, unlike leader-based replications, the
coordinator does not enforce a particular ordering of writes [50].

2A process by which, in case of detecting a fault or failure, a system automatically transfers
control to a duplicate system.

15

2.6 Faults & Failures
One of the main reasons for implementing distributed replications is to achieve
higher reliability than when a single computer manages data. From a business
perspective, what is usually most important is the constant availability of a ser-
vice, such as an online store website that needs to offer products at any moment
of time, and hence any website outage means lost opportunity to earn money.
The criterion for measuring the availability of a service is basically its ability to
respond correctly to requests in a certain period of time. When a system does not
work as a whole, a failure has occurred, whereas, if only some of its components
do not work, a fault has happened, and those components are called faulty nodes.
Faults and failures are one of the main reasons for service unavailability. In order
to enhance availability, the number of faults can be reduced usually through the
provision of higher-quality hardware or redundancy. However, this approach can
never reduce the probability of faults and failures to zero. An alternative approach
is to design systems that continue to work despite some of its components being
faulty. This approach is called fault-tolerance and is an approach adopted by many
distributed systems.

These faults are usually divided into the following three types:

• Crash-recovery: that is, nodes are able to restart and resume processing after
a fault occurs. In this model, it is assumed that any data that is persistently
stored on disk is preserved. The model does not make any assumptions
about the duration it might take for recovering a crashed node. The model
also assumes that it is probable that a crashed node never recovers.

• Crash-stop faulty model: it is assumed that a node cannot be recovered
after a crash and if the node recovers, it joins the system as a new node.
An irreparable hardware fault can be an example of such a faulty model.
This model is generally not considered to be a software fault, as the node is
usually able to be restarted and recovered after a while. Tolerance against
this type of faults is called Crash Fault Tolerance (CFT).

16

• Byzantine faults: In contrast to crash faults, which are also called benign
faults [19], there are other types of faults that are more difficult to deal with.
In some distributed systems, another assumption is also added, in the form
that there are nodes in the network called Byzantine that are controlled by a
malicious agent, and the system is designed to be resistant to perturbations
caused by such nodes. The design of such replications, which aim to provide
guarantees that the network will continue to function properly even if some
participants actively try to cheat or undermine the system, has become more
common in recent years with the advent of blockchain systems and crypto-
currencies. In the Byzantine fault model, a faulty node may not only be
crashed, but also deviate from the algorithm in arbitrary ways and may
also exhibit malicious behavior. An error in the implementation of a node’s
algorithm can also be classified as a Byzantine fault, however, the term
Byzantine fault is usually applied to intentional deviations from the protocol
and algorithm, and not to errors in the implementation of the algorithm.
Tolerance against this type of faults is called BFT.

In order to tolerate faults, failure detectors are necessary. Failure detectors are
a group of algorithms that diagnose a potentially failed process as a suspected
faulty node, such as not getting a response from a particular node in the expected
time. [112]. Chandra et al. [113] classified failure detectors based on two proper-
ties: “completeness” and “accuracy”, and then categorised failure detectors into
more detailed based on these two properties, which are detailed below.
In completeness property, there is a time after which any crashed process is per-
manently recognized by a correct process as a faulty node. Completeness property
is divided into the following two types:

• Strong completeness property, whereby eventually any process that crashes
is permanently recognized as a faulty node by every correct process.

• Weak completeness property, whereby eventually any process that crashes is
permanently recognized as a faulty node by some correct process.

Accuracy property is also divided into the following two types:

17

• Strong accuracy property, whereby correct processes are never suspected as
faulty nodes by any correct process.

• Weak accuracy property, whereby some correct process is never suspected as
faulty nodes by any correct process.

If in failure detection it is not required that the accuracy property to be met
by each process at all times, but also it is enough the accuracy property to be
eventually met, then the term “eventual accuracy” is applied instead of the term
“accuracy” property.

Eventual accuracy property is likewise divided into the following two types:

• Eventual strong accuracy, whereby there is a certain time after which the
correct processes are not recognised as faulty nodes by any correct process.

• Eventual weak accuracy, whereby there is a certain time after which some
correct process is not recognised as a faulty node by any correct process.

Chandra et al. [113] further classify failure detectors into the following categories
based on the properties of accuracy and completeness:

• Perfect failure detectors, which meet the properties of strong completeness
and strong accuracy.

• Eventually perfect failure detectors, which meet the properties of strong
completeness and eventual strong accuracy.

• Strong failure detectors, which meet the properties of strong completeness
and weak accuracy.

• Eventually strong failure detectors, which meet the properties of strong com-
pleteness and eventual weak accuracy.

• Weak failure detectors, which meet the properties of weak completeness and
weak accuracy.

• Eventually weak failure detectors, which meet the properties of weak com-
pleteness and eventual weak accuracy.

18

• Another class consists of the failure detectors that meet the properties of
weak completeness and strong accuracy.

• The last class consists of the failure detectors that meet the properties of
weak completeness and eventually strong accuracy.

2.7 Fault-Tolerance & Quorum
One of the common approaches to design fault-tolerant algorithms for a set of
processes is using the quorum concept. In general, a quorum is the minimum re-
quirement of a group of nodes that must successfully respond to a set of clients
requests. The term quorum comes from the politics world, somewhere like a par-
liament where the quorum is the minimum number of votes necessary to make
a valid decision [50]. Voting and quorum in distributed systems means creat-
ing redundancy either in active components, such as processes, as well as passive
components, that is, hardware resources, and then performing a voting-based pro-
cedure on quorum criteria to provide a fault-tolerant mechanism. Designing such
algorithms to be efficient and with high efficiency is one of the main challenges in
distributed systems [112]. As mentioned earlier, replication allows us to improve
the reliability of a system, meaning that when one replica becomes unavailable,
the remaining replicas can continue to process requests. The unavailability of a
replica can be for a variety of reasons, such as a node experiencing a crash or
hardware failure, or a network partition may be unable to access a node. Other
reasons, such as scheduled maintenance or restarting a node to install software
updates, can also cause a replica to be unavailable. However, it is very important
to note that the exact details of how a replication system is implemented have a
significant impact on the reliability of the system, because without fault-tolerance,
having multiple replicas can even make reliability of the system more critical, as-
suming that faults are not correlated, because the more replicas there are, the
more likely it is that any of the replicas will become faulty at any given moment
of time. In other words, even if each individual node (including computers, net-
work switches, etc.) in a distributed system fails only once every few years, with
millions of nodes, failure can be expected every minute [173]. Nonetheless, if the

19

Figure 2.1: Initially, both replicas initialize the key k with value v0 and timestamp t0. A
client then attempts to update the key value to v1 that is associated with the timestamp t1.
Replica R2 succeeds in updating, but replica R1 fails to update, since replica R1 is temporarily
unavailable. Subsequently, the client attempts to read back the value it previously wrote. The
read operation succeeds on replica R1 but fails on replica R2. As a result, the newer value, v1,
previously written by the same client is not returned, but the initial value, v0, is returned.

system can continue to work despite the fact that some replicas can be faulty, then
the reliability will improve, as the probability that all replicas are faulty at the
same time is much less than the probability that only one replica will be faulty.
To clarify the issue, we investigate in more detail how to achieve a fault-tolerant
replication. Consider Figure 2.1, where there are two replicas R1 and R2. Initially,
both replicas initialize the key k with value v0 and timestamp t0. A client then
attempts to update the key value to v1 that is associated with the timestamp t1.
Replica R2 succeeds in updating, but replica R1 fails to update, since replica R1 is
temporarily unavailable. Subsequently, the client attempts to read back the value
it previously wrote. The read operation succeeds on replica R1 but fails on replica
R2. As a result, the newer value, v1, previously written by the same client is not
returned, but the initial value, v0, is returned.

20

Such a situation would be problematic, because from the client’s point of view it
would appear that the most recently written value, v1, had been lost. For example,
consider that in a social network, you have liked a post (as an update and a write
operation on the value of a key, similar to Figure 2.1), but when you refresh the
page, you do not see the update you made. This property is called “read-after-
write consistency”, and it is a critical feature in many distributed systems, as its
absence would confuse the system’s users. Hence, it is necessary to ensure that
after a client has performed a write operation, it will be able to correctly read back
the value it just wrote.
The situation illustrated in Figure 2.1 is not fault-tolerant, as a write or read oper-
ation that requires the response of both replicas will not be successfully completed
if one of the replicas is not available, and will lack the read-after-write consistency.
The situation depicted in Figure 2.1, with the addition of a replica, can satisfy
the read-after-write consistency even in the presence of fault, and as a result, the
system becomes fault-tolerant. Figure 2.2 shows such a situation, so that while
adding a replica to the network, each write or read request is sent to all three
replicas, and if at least two responses are received from the replicas, the request is
considered successful.
In the example of Figure 2.2, while in replicas R2 and R3 the write request was
successfully completed, in replicas R1 and R2 the read request was successful.
Applying the “2 out of 3” policy ensures that at least one of the responses to a
read request is from the replica that saw the most recent write. In Figure 2.2,
R2 is such a replica. As seen in Figure 2.2, different replicas may return different
values in response to a read operation, in which case timestamps are effective in
identifying the most recent value.
In Figure 2.2, the replica pair R2, R3 that responded to the write operation are
considered the write quorum, while the replica pair R1, R2 that responded to the
read operation are considered the read quorum. In order to ensure that the system
holds the read-after-write consistency, both the write and read quorums need to
have a non-empty intersection, meaning that the read quorum must contain at
least one replica that has acknowledged the write operation.
In distributed systems, the “majority quorum” is usually assumed as a dominant
approach, so if the number of replicas is odd, each subset of replicas with size

21

Figure 2.2: Each write or read request is sent to all three replicas, and if at least two responses
are received from the replicas, the request is considered successful.

22

(n + 1)/2, and if the number of replicas is even, each subset of replicas with size
(n + 2)/2, or in other words, d(n + 1)/2e is considered a quorum, where n is
number of replicas. Majority quorums possess a common property, that is, each
two quorum sets have at least one member in common.
In addition to the majority quorum, other types of quorums may be observed in
distributed systems. Although distributed systems and especially industry practi-
tioners often choose majority quorum due to its simplicity to implement and high
fault-tolerance, this type of quorum has low efficiency and poor scalability, and
hence, alternative quorum approaches to achieve a more optimal system have been
introduced, such as [114–120]. Most of these alternative quorum systems, although
introduced as “optimal” in theory, in practice ignore issues such as complexities
for heterogeneous machines or workload skew. Therefore, Whittaker et al. [121]
have designed a tool [122] called “Quoracle” to identify quorum systems with high
throughput, low latency, and low network load. For example, regarding to the re-
search and experiments of Whittaker et al. [121], the “paths quorum system” [119],
although appears optimal in theory, compared to the “grid quorum system” [115],
which has a simpler implementation, shows lower capacity and more latency in
practice. In this regard, Whittaker et al. [121] define the following terminology:

• Quorum Latency: The time required to reach a quorum of responses after
the replicas have contacted each other.

• Network Load of Quorum: In a read or write quorum, messages are ex-
changed between nodes, so that the larger the quorum, the number of mes-
sages increases.

• Quorum Capacity: It is the inverse of the quorum network load and is di-
rectly proportional to the maximum efficiency that can be achieved by a
quorum system.

At the end of the quorum topic, we discuss the concept of “read repair”: the
process by which clients are used to help disseminate updates. Figure 2.3 depicts
such a situation, where, during a read operation, the client reads the most recent
value v1 updated at time t1 from replica R2, while receiving the older value v0

23

updated at time t0 from replica R1, and gets no response from replica R3. Since
the client now is aware that replica R1 needs to be updated, it can update the
value v0 in replica R1 to the value v1 using timestamp t1. It can also send v1 to
replica R3, although it is not aware whether replica R3 possesses the value v1 or
not, if R3 has it, a few of the bandwidth will be wasted. This process is called
“read repair”, which is done with the help of the client. Since this approach was
popularized by the Dynamo database of Amazon in 2007 [110], replication systems
that use this method are often known as Dynamo style, even though the method
was introduced before the Dynamo database in 1995 [123].

2.8 SMR & Total-Order Broadcast
One of the most substantial abstractions in replication systems is broadcast or
multicast algorithms, meaning the delivery of a message to multiple recipients.
The main difference in broadcast algorithms is the order in which messages are
delivered. In broadcast algorithms, the order of messages is a substantial issue, and
how the ordering of messages strongly depends on the clock and time. Below we
show how physical timestamps are inconsistent with correct ordering of messages
and causality relations. In order to clarify the issue, consider Figure 2.4, where
node1 sends message m1 as a query or request to two other nodes, node2 and
node3. After receiving m1, node2 sends message m2, as a response to m1, to two
nodes, node1 and node3. Even assuming the network links are reliable, there is
still possible that node3 receives m2 before m1 because m1 may arrive late. In
such a situation, node3 gets confused as it first sees the reply and then sees the
message it is replying to, which is illogical and therefore confusing, and hence its
occurrence in a computer program is also not intuitively expected.
As an example, assume m1 and m2 are two instructions, such that m1 creates an
object in a database, and m2 updates the same object created by m1. Therefore,
if a node receives and processes m2 before m1, it will first try to update an object
that does not exist, and then create that object, which will result in the object not
being updated. To solve such a problem the monotonic clock cannot be a good
solution, because its timestamps in different nodes will not be comparable with
each other. A monotonic clock is one that always moves forward from an arbitrary

24

Figure 2.3: During a read operation, the client reads the most recent value v1 updated at time
t1 from replica R2, while receiving the older value v0 updated at time t0 from replica R1, and
gets no response from replica R3.

25

Figure 2.4: node1 sends message m1 as a query or request to two other nodes, node2 and
node3. After receiving m1, node2 sends message m2 as a response to m1 to two nodes, node1
and node3. Even if we assume the network links to be reliable, there is still the possibility of
reordering, meaning it is possible that node3 receives m2 before m1 because m1 may arrive late.

point at a nearly constant rate, and is therefore suitable for measuring duration or
time interval. In a synchronous system, inserting a timestamp of the time-of-day
clock when sending a message may be able to solve the problem. A time-of-day
clock is a time from a fixed date and thus its timestamps can be compared across
nodes in a concurrent system. In this case, m2 is expected to have a greater
timestamp than m1, as m2 is the response to m1 and logically occurred after m1.
Nevertheless, the time-of-day clock does not work well in partially synchronous
systems, because time-of-day clocks are usually synchronized with Network Time
Protocol (NTP) [124], which will always have some uncertainty about the difference
between the two clocks. The Network Time Protocols can maintain accurate time
to a few tens of milliseconds on the Internet and hence are not satisfactory enough
for the causality relation in distributed systems [112]. Assume the clock of node1
is slightly ahead of the clock of node2, in this case, we will again face the previous
problem for correctly ordering the messages, that is, the timestamp of m2 will be
less than that of m1, while m2 is the response to m1 and logically occurred after
m1. The concept of “happens-before” relation expresses the meaning of correct

26

ordering more accurately, which is defined as follows: event e1, such as sending or
receiving of a message, or a local execution of a step that occurs in a node, has
occurred before event e2 if and only if:

• events e1 and e2 have occurred in the same node so that e1 is done before
e2, or,

• event e1 is sending a message and event e2 is receiving the same message, or,

• there is another event like e3 such that e1 occurred before e3, and e3 occurred
before e2.

In this situation, event e1 has “happened-before” event e2, and this relation is
shown as follows: e1 → e2. The happens-before relation is a partial-order, which
means it is possible that neither e1 nor e2 occurred before the other. In this case, it
is said that events e1 and e2 are concurrent, and their relation is shown as follows:
e1||e2.
The difference between partial-order and total-order is that while in total-order, the
times of events are always comparable, so that we can say which event happened
before another, in partial-order, sometimes we cannot say which event happened
before another, such as concurrent events, where the events are independent of
each other, and so two events are ordered only if they are causally related, that
is, one of the them has caused the other one. More precisely, if e1 → e2 then e1

might have caused e2, but if e1||e2 then e1 cannot have caused e2. The concept of
“causality” between events is a fundamental concept and vital tool in the design
and analysis of distributed systems [112]. The causal relation between events helps
to solve a variety of problems in distributed systems, such as,

• ensuring liveness in mutual exclusion algorithms, meaning that making cer-
tain that if a process is performing a write operation on an object in the
database, no other process is allowed to access the same object until the
write operation is complete.

• maintaining and ensuring consistency in replicated databases and detection
of file inconsistencies.

27

• measuring the progress of processes in distributed computing.

• measuring the amount of concurrency in a computation and being able to
execute concurrently all events that are not causally related.

The notion of ordering in distributed systems has a strong connection with the con-
cept of clock and time, so that clocks aid us keep track of ordering. As mentioned
before, if physical clocks, such as NTP, are not synchronized, there will always
be ambiguity and uncertainty about the difference between the two clocks and
thus inconsistent with causality, and hence the causality relation between events
may not be precisely determined. [112] In distributed computing, the causality
relation between events can be correctly determined by logical clocks as an al-
ternative to physical clocks, because logical clocks are designed to capture causal
dependencies [112]. Using logical clocks gives the following result: If the event e1
occurred before e2, then the logical timestamp of e1 is definitely lower than the
logical timestamp of e2. The same cannot be said for the physical timestamp. In
other words,

e1 → e2 ⇒ logical time(e1) < logical time(e2)

e1 → e2 ; physical time(e1) < physical time(e2)

While in physical clocks the number of seconds elapsed is counted, in logical clocks
the number of events occurred is considered. As seen in Figure 2.4, physical
timestamps and NTP are not compatible with causality. That is, although the
sending m1 (as event e1) happened before the sending m2 (as event e2), however,
the physical timestamp of e1 (which is determined according to the sender node’s
clock) may be greater than the physical timestamp of e2 (which is determined
according to the receiver node’s clock). In contrast, logical clocks are designed
to precisely determine the order of events and capture causal dependencies. Two
important logical clocks in distributed systems are the Lamport clock [125] and the
vector clock. The vector clock proposal was developed several times, apparently
independently, by different authors [126–128].
In Lamport clock, each node has a counter as the clock and increases its value by
one unit for each local event. Each node attaches the most recent value of the

28

counter to the messages it sends to the network. The receiving node changes its
clock to the timestamp of the received message, if the received message’s timestamp
is greater than the receiver node’s clock. The Lamport clock properties are as
follows:

• If event e1 happened before event e2, we can conclude that the timestamp of
event e1 is definitely smaller than that of event e2. In other words, if e1 → e2

then Lamport time(e1) < Lamport time(e2).

• Nevertheless, if the timestamp of event e1 is smaller than the timestamp of
event e2, it cannot necessarily be said that event e1 happened before event
e2. In other words, Lamport time(e1) < Lamport time(e2) does not imply
e1 → e2.

• For any two different events e1 and e2, it is possible that their Lamport
timestamps are equal. In other words, ∀ e ∈ events : e1 6= e2, then
Lamport time(e1)

?
= Lamport time(e2).

The weakness of the Lamport clock, as a scalar timestamp, is that it is not clear if
two events e1 and e2 are concurrent or if one happened before the other. In other
words, if Lamport time(e1) < Lamport time(e2), maybe e1 → e2 or maybe e1||e2.
The solution to this issue is the vector clock. While Lamport timestamps are a
natural number, vector timestamps are a list of natural numbers, and all nodes are
also represented as a vector. So if there are n nodes = 〈node1, node2, ..., noden〉 in
a distributed system, the vector timestamp of event e is V T (e) = 〈vt1, vt2, ..., vtn〉
and V T [i] = vti is the number of events observed by node nodei. Each node
has a current vector timestamp, and if an event is observed in node nodei the
vector element V T [i] = vti increases by one unit. Each current vector timestamp
is attached to each sent message, and the recipient merges the message’s vector
timestamp with its local vector timestamp by taking the element-wise maximum
of the two vectors and then increases its own entry by one unit. The advantage
of the vector timestamp over the Lamport timestamp is that the vector clock,
unlike the Lamport clock, is able to determine whether two events e1 and e2 are
concurrent or one happened before the other.

29

Logical timestamps play a key role in ordering and broadcast algorithms, and total-
order broadcast is closely connected to consensus mechanisms and consistency in
distributed systems.
The implementation of broadcast algorithms consists of two essential properties:

• Reliability: to ensure that each message is received by each node,

• Ordering: to deliver the messages in a correct and right order.

One of the algorithms for a broadcast communication primitive with a weak form of
reliability is called best-effort broadcast, in which the burden of ensuring reliability
lies solely with the sender of the message, and there is no guarantee of delivery
if the sender fails. This approach guarantees the delivery of messages only as
long as the sender does not fail, and if the sender fails, some nodes may deliver
the message and others may not. This means that there is no agreement on the
delivery of messages between nodes, however, ensuring agreement even when the
sender fails is an extremely important feature in many distributed applications
that rely on broadcast algorithms [105]. In the best-effort approach, when a node
intends to broadcast a message, it sends it over reliable links to every node and
re-transmits a message if it is dropped. Therefore, it is possible for a message to be
dropped and the sender to fail before re-transmitting it, resulting in a node never
receiving the message. Reliability in the best-effort approach can be improved
by the eager reliable broadcast in such a way that after receiving each particular
message by a nod, that node re-broadcasts the message to every other node. This
approach is depicted in Figure 2.5.
The eager reliable broadcast ensures that if some nodes fail, all correct nodes re-
ceive all messages, nevertheless, this approach is not efficient enough, because for n
nodes, even in the absence of faults, each message is sent n2 times, that is the mes-
sage complexity of O(n2), which means that it occupies a large amount of network
traffic in a redundant manner. This attitude has been developed and improved in
variant ways, one of which are gossip protocols, in which a node sends a message
to a limited number of randomly selected nodes, and after receiving the message,
a node forwards the message again to a fixed number of randomly selected nodes.
Since in these random selections, some nodes may never be selected, hence there

30

Figure 2.5: Reliability in the best-effort approach can be improved by the eager reliable broad-
cast in such a way that after receiving each particular message by a nod, that node re-broadcasts
the message to every other node.

31

is possibility that some nodes will never receive the message, but with elaborately
designed algorithms and precisely setting the parameters, this probability will be
very low. These kinds of broadcast protocols are also resistant to message loss and
node failure, and thus are considered sufficiently efficient in variant distributed
applications. Based on how the messages are ordered, there are three main forms
of broadcast that are also reliable, meaning that every message will eventually be
delivered to every non-faulty node, albeit with no timing guarantee. These three
broadcasting forms include: FIFO broadcast, causal-order broadcast, and total-
order broadcast. They differ in terms of the order of delivery of messages to each
node [105].
In FIFO broadcast, messages sent by a node must be delivered in the same order
as they were sent. On the other hand, messages sent by different nodes can be
delivered in any arbitrary order. For example, in Figure 2.6, since messages m1 and
m3 are both sent by node1, and m1 is sent before m3, based on FIFO broadcast,
m1 must be delivered before m3. On the other hand, message m2 sent by another
node, i.e. node2, can be delivered before, between, or after messages m1 and m3,
according to FIFO broadcast. Therefore, in Figure 2.6, the valid orders according
to FIFO broadcast are as the follows: (m2, m1, m3) or (m1, m2, m3) or (m1, m3,
m2). FIFO broadcast does not conform to the causality, because as can be seen
in Figure 2.6, while node2 broadcasts m1 before m2, node3 delivers m1 after m2.
Causal broadcast, as the name suggests, better matches the causality and if a
message is broadcast before another one, all nodes must deliver those two messages
in the same order as they were broadcast. And if two messages are broadcast
concurrently, a node can deliver those messages in any arbitrary order. In Figure
2.6, if node3 receives m2 before m1, according to causal broadcast, in order to
ensure that messages are delivered in causal-order, the algorithm must hold back
m2, by buffer or delay in queue, until m1 to be delivered. In broadcast algorithms,
the difference between “receiving” and “delivering” should be considered. See
Figure 2.7 for more details.
In Figure 2.8, messages m2 and m3 are broadcast concurrently, and while node1
and node3 deliver the messages in the order: (m1, m3, m2), node2 delivers them in
the order (m1, m2, m3). According to causal broadcast, both orders are allowed,
because both of them are compatible with causality relation.

32

Figure 2.6: If node3 receives m2 before m1, according to causal broadcast, in order to ensure
that messages are delivered in causal-order, the algorithm must hold back m2, by buffer or delay
in queue, until m1 to be delivered.

Figure 2.7: In broadcast algorithms, the difference between “receiving” and “delivering” should
be considered.

33

Figure 2.8: Message m2 and m3 are broadcast concurrently, and while node1 and node3 deliver
the messages in the order: (m1, m3, m2), node2 delivers them in the order m1, m2, m3. According
to causal broadcast, both orders are allowed, because both of them are compatible with causality
relation.

While in FIFO and causal broadcast, messages are allowed to be delivered in
different orders, in total-order broadcast, that is also called “atomic” broadcast, it
is guaranteed that all nodes deliver all messages in only one order, and in this way,
applies consistency across nodes. Hence, in total-order broadcast, all nodes deliver
the same messages in the same order. Many replication systems are designed and
implemented based on total-order broadcast. I total-order broadcast, messages
can be delivered in any order, provided that the order of messages is the same
in all nodes, meaning that any order of messages is valid as long as all of the
nodes deliver the messages in the same order. For example, Figures 2.9 and 2.10
depict two different orders of messages, and both orders are acceptable based on
total-order broadcast, because the order of messages is the same in all three nodes.
In total-order broadcast, as in FIFO and causal broadcasts, nodes may have to
hold messages in a buffer or queue for a while before delivery, so that a message
that needs to be delivered sooner arrives. In broadcast algorithms, a node may also
deliver a message to itself. This helps ensuring the total-ordering at the sending
node as well, because each replica needs to know when a message should be deliv-
ered so that the order of the messages would be correct and consistent with other

34

Figure 2.9: Message m2 must be delivered before m3, and hence, node1 to deliver message m3

to itself must wait until receiving message m2 from node2.

Figure 2.10: node2 needs to wait for message m3 in order to deliver m2 to itself.

35

nodes. While in FIFO and causal broadcasts this may not always be necessary,
since the sender of the message already knows what message was sent and does not
need to receive it again, however, this is required in total-order broadcast because
the order of messages must be the same in all nodes and this cannot be achieved
without all nodes delivering messages to themselves as well. In such a case, in
FIFO and causal broadcasts, the node can deliver the message to itself without
coordinating with other nodes. Nonetheless, this is not the case with total-order
broadcast; for example, in Figure 2.9, message m2 must be delivered before m3,
and hence, node1 to deliver message m3 to itself must wait until receiving message
m2 from node2. In the same way, in Figure 2.10, node2 needs to wait for message
m3 in order to deliver m2 to itself.

By combination of FIFO and total-order broadcasts, the FIFO total-order broad-
cast is obtained, such that in addition to having the total-order broadcast proper-
ties, it also has the FIFO broadcast feature, that is, all the messages sent by a node
are delivered in the same order as they were sent. Figures 2.9 and 2.10 also have
FIFO total-order broadcast feature, as m1 is delivered before m3. FIFO total-order
broadcast is considered the strongest form of reliability in broadcast algorithms.
In contrast, best-effort broadcast provides the weakest form of reliability [105].

2.8.1 Implementing Replication Using Broadcast Algorithms

The quorum procedure described in Section 2.7 basically uses the best-effort ap-
proach to implement replication systems, in that a client broadcasts each write
or read request to all replicas, nevertheless, since requests may be lost, such a
technique is not very reliable and there is also no guarantee that the messages will
be in the right order.
A widely used method for replication is broadcast algorithms. Many replication
systems are designed and implemented based on total-order broadcast.

The basis for implementing a replication system based on FIFO total-order broad-
cast is that each update request is broadcast to all replicas and the replicas update
their state according to each message that is delivered. Such a system is called a

36

SMR. In a State Machine Replication, the update should be deterministic even in
case of failure, which means that if two replicas have the same state and the input
message delivered to them is also the same, the next state of those two replicas
should also be the same, otherwise, in the terminology of replication systems, it
is said that the system suffers inconsistency. An accurate broadcast algorithm
should ensure the reliability and correct ordering of messages even in the presence
of faulty nodes or network failure.
In total-order broadcast, as a protocol for exchanging messages between nodes,
the following two properties should be safely observed [50]:

• No message is lost and if a message is delivered to one node, it must be
delivered to other nodes as well.

• All messages are delivered to all nodes in the same order.

The above two conditions must be met, even in case of faults of nodes or failure
of network.

Remark. A very important point to evaluate or measure the fault-
tolerance in a replication is that, in general, how fault-tolerant a SMR
can be depends on what broadcast or consensus mechanism it uses in the
underlying layers.

Total-order broadcast is exactly what a database replication might need, as each
replica processes the same write messages in the same order, resulting in all repli-
cas being consistent with each other, although ignoring the replication lag [143].
The delay between writing on the leader replica and its reflection on the follower
replica is called the replication lag, which may take only a fraction of a second
and so may not be that significant in practice, but if the system is operating near
capacity or in case of a network issue, it may take several seconds or even a few
minutes. In short, based on the State Machine Replication model, each process
hosts a replica of the object, and the use of total-order broadcast ensures that the

37

object is highly available [105].

The principles and characteristics of the State Machine Replication are also the un-
derlying support and foundation of blockchains and distributed ledgers. A chain of
blocks is nothing but a sequence of messages delivered by a total broadcast mech-
anism, so that each replica deterministically executes the transactions contained
in the blocks to determine the state of the blocks, for example, determining who
owns a crypto-currency or token. A smart contract is also nothing more than a de-
terministic program that a replica executes when a particular message is delivered.

The meaning of processing determinism is that, considering the same client oper-
ation on the same state, the same update must be produced by all replicas [130].
One of the challenges in replication of statements is determinism, which means
that one needs to ensure that the execution of the statement has the same out-
put in all replicas. Accordingly, in statements such as setting the current time,
generating a random number, etc., which lead to different outputs in the replicas,
determinism is no longer served [131].

There are a variety of techniques for implementing replications, however two ap-
proaches are better known and more widely used: active replication, also known as
State Machine Replication, and passive replication, also known as primary-backup
or primary-standby replications [132]:

• Active replication: Using this approach, all server nodes execute the same
service requests in parallel, and usually all of them produce the same output.
In such systems, communication media are generally the only common re-
source, and the rest of resources are completely distributed. In this method,
each replica individually executes client operations, and keeping replicas con-
sistent requires the processing determinism [130]. Examples of this approach
are [133–138].

• Passive replication: In passive replication, there is only one active server,
called the primary server, which is responsible for generating outputs. The
rest of the servers are in standby mode and do not produce output [144].

38

Nevertheless, they have to perform housekeeping measures to synchronize
with the primary server. The primary server executes the operation and
sends the resulting state to the individual standby servers, which passively
apply the state updates in the order they are delivered. In passive replica-
tions, operations do not need to be deterministic; in most cases, the primary
server resolves non determinism and makes state updates that are determin-
istic [130].

One way to implement total-order broadcast is to designate one replica as the
leader or primary and route broadcast messages through it to enforce delivery
order. Many database systems use this approach, so that any transaction that
intends to change data in the database must be executed on the leader or primary
replica. Figure 2.11 illustrates such a case, where the primary or leader replica
may execute multiple transactions concurrently, but commits them in a total-order.
When a transaction commits, the primary replica broadcasts the changes applied
to the data to all follower replicas, and the followers apply the changes locally in
commit order. As shown in Figure 2.11, concurrent transactions are delivered by
followers in the same order as they commit by the primary replica.
Each of these approaches has its advantages and downsides and can be employed
according to the use case and circumstances. While active replication cannot deal
well with non deterministic processing, it can tolerate failures without degrading
performance. Active replication requires the execution to be deterministic, which
is difficult to achieve in multi-threaded database systems. If the operations are
computationally intensive, active replication may waste computational resources,
on the other hand, if state updates have relatively great size, passive replication
may waste network bandwidth. Also, in case of crash of the primary server, pas-
sive replication may experience a delay in error detection and system recovery.
Various solutions have been proposed based on the combination of both approaches,
which are not considered merely active replication, nor necessarily passive repli-
cation, and try to achieve a trade-off between both approaches. One notable
alternative technique is “multi-primary passive” replication, also called “deferred
update”, in the context of databases. This method is similar to passive replica-
tion in that each operation is performed by only one replica, which then sends a

39

Figure 2.11: The primary or leader replica may execute multiple transactions concurrently, but
commits them in a total-order. When a transaction commits, the primary replica broadcasts the
changes applied to the data to all follower replicas, and the followers apply the changes locally
in commit order. As shown in the Figure, concurrent transactions are delivered by followers in
the same order as they commit by the primary replica.

40

message containing the obtained updates to the other replicas. Upon delivering
such a message, each replica will determine if the update is acceptable, where
checking for updates is done deterministically and unilaterally, and if so, then
apply the update locally. The check is required to account for the concurrency
between multi-primaries, which can result in mutually inconsistent updates. In
the case where an update is not accepted, the corresponding operation needs to be
executed again. On the other hand, the multi-primary passive replication differs
from passive replication in that multiple processes act as primary servers. Such
an approach provides the possibility of increasing transaction throughput. The
multi-primary passive replication differs also from active replication in that only
one replica performs the operation.

The “transactional” replication is proposed based on deferred update or multi-
primary replication [139]. In transactional replication, each client request is pro-
cessed as a single atomic transaction that atomically writes or reads a set of objects
in the system. An update transaction txi, as a request, will conflict with a con-
current transaction txj that is about to commit, if transaction txi reads an object
that has been modified by transaction txj. Transactions txi and txj are called
conflicting and committing transactions, respectively. In such a case, transaction
txj will be rolled back and should be executed again. The transactional replication
preserves one-copy serializability of distributed objects. Transaction atomicity and
serializability ensures that concurrent changes to copies of an object are consis-
tently propagated to all servers [139].

• Serializable: Transaction serializability ensures that if multiple transactions
are executed concurrently, the results will be the same as if they were exe-
cuted one after the other and serially [50].

• Linearizable: In addition to serializability, another substantial feature of
distributed databases is linearizability [140], also known as “atomic consis-
tency” [141] or “strong consistency” [142]. The main idea behind linearizabil-
ity is to make a distributed replication system behave as if there is actually
only one copy of the data that is updated by atomic operations. A dis-
tributed database may have both serializability and linearizability features,

41

in which case the system is said to have “strict serializability” or “strong
one-copy serializability”. In linearizability, every read operation must return
the most recent written value [105].

Among the distributed systems that implement the total-order broadcast, we can
mention Zookeeper [145] and etcd3 [146]. While Zookeeper uses the Zab [148] al-
gorithm as broadcast protocol to propagate state updates, etcd employs the Raft
consensus [16] algorithm. Although Zab shares with consensus mechanisms some
key aspects, such as, proposing a value to the followers by a leader, or waiting lead-
ers for acknowledgements from a quorum of followers before assuming a proposal
as committed, or proposals being contained epoch numbers something similar to
ballot numbers in Paxos consensus [18]; the main conceptual difference between
Zab and consensus mechanisms is that Zab is mainly designed for primary-backup
systems, such as Zookeeper, than for State Machine Replication.

The use of total-order broadcast also has its limitations, as mentioned, a node
cannot deliver the message to itself immediately without communication and co-
ordination with other nodes. Hence, in a State Machine Replication, when a
replica intends to update its state, it is not able to do so immediately, but must
coordinate and communicate with other nodes through a broadcast algorithm to
maintain consistency in the system. Such a process has a negative effect on the
performance of the system.

2.9 Distributed Consensus Mechanisms
One of the fundamental concepts in distributed systems is reaching agreement in
the presence of faults, which is called consensus [165], in the sense that all nodes
agree on something [50]. There is a close connection between the consistency of
the replication system and the consensus process. Although total-order broad-
cast, where one replica is elected as the leader, can be effective to implement the
State Machine Replication, and all replicas are able to deliver the same sequence

3The name “etcd” comes from a naming convention in the Linux directory structure, as in
UNIX, all system configuration files are placed in a folder named “etc”, and “d” stands for
“distributed” [147].

42

of messages in the same order, a big issue in this approach is that the leader can
be a single point of failure, and if the leader replica goes out of reach and becomes
unavailable, the entire system stops working. A handy action would be for one op-
erator to reconfigure the system and designate another replica as the leader. Such
a measure is called “failover” and is used in many distributed databases. This
approach works in certain situations, for example, when the leader is unavailable
during a predetermined schedule, such as installing software updates. Neverthe-
less, if the leader becomes unavailable suddenly and unexpectedly, such as a leader
failure or a problem in the network, this method cannot be efficient enough, be-
cause the reconfiguration of the nodes and the settings required by the operator
will take at least several minutes, during which the system will not be available at
all. The solution to this issue is automatic leader selection, which can be realized
by consensus mechanism.

In a consensus mechanism, each correct (or non-faulty) process proposes a value
and all processes must reach a unanimous and irreversible decision on the pro-
posed value [149]. For this purpose, all the following properties must be met in a
consensus mechanism [112]:

• Termination: that is, every correct process eventually decides some value.

• Uniform integrity: that is, each process makes a decision at most once.

• Agreement: that is, no two correct processes lead to two different decisions.

• Uniform validity: that is, if a process’s decision is d, then some process
proposed d.

In [113], it is formally shown that consensus and total-order broadcast can be
considered equivalent to each other, meaning that a total-order broadcast algo-
rithm can be turned into an algorithm for consensus, and vice versa. In order to
turn total-order broadcast into consensus, a node that intends to propose a value,
broadcasts it, and the first message delivered by total-order broadcast is consid-
ered as the value decided in consensus. On the other hand, to turn consensus to

43

total-order broadcast, separate instances of the consensus mechanism are consid-
ered in order to decide on the sequence of messages to be delivered. And a node
that intends to broadcast a message, proposes to one of these consensus instances.
And finally, the consensus mechanism ensures that all nodes agree on the order of
delivered messages.

According to the well-known theorem called “FLP result” [149], in an asynchronous
system, even if there is a broken node, the consensus problem cannot be solved.
This is primarily due to the fact that in an asynchronous system, it is not possi-
ble to distinguish between a faulty node and a late-responding node for reasons
such as network slowness [112]. In fact, a consensus mechanism requires a failure
detector that somehow requires a local clock to trigger timeouts [113].

One of the main parts of a consensus algorithm is the mechanism determining a
new leader when the current leader is no longer available for any reason. In this re-
gard, usually, one of the nodes becomes a leadership candidate and requests other
nodes to vote on accepting the candidate as the new leader, and if a quorum votes
in favour, the candidate will become the new leader. The main challenge in this
regard is the possibility of several leaders at any one time, which can lead to the
inconsistency and violation of total-order broadcast properties; such a situation
is called “split brain”. The Raft consensus algorithm uses a concept called term,
which is actually an integer that is incremented by one unit after each new leader
starts, so that it is guaranteed that there is only one leader in each term, while
different terms may have different leaders.

In the State Machine Replication approach, replicas, in addition to being func-
tionally independent, also need to reach a consensus on the content and ordering
of client requests [129]. For this purpose, the following two properties are re-
quired: liveness and safety that were first described in [164], and then formally
and mathematically defined in [164]. While the liveness property stipulates that
an agreement between replicas is always achieved, the safety property prohibits
correct replicas from agreeing on different values per request. In the case of a

44

SMR, reaching different orderings between correct replicas is also forbidden.

Some of the well-known consensus algorithms are Raft [16], Paxos [18], View-
stamped [29], and Zab [148]. Raft and Paxos are designed on assumptions such as
fair-loss links, crash fault-tolerance (and not Byzantine fault-tolerance), and par-
tial synchrony. In fair-loss links, messages may be lost, duplicated, or reordered,
but if re-transmitting attempts continue, the messages will eventually be deliv-
ered properly. If needed, and especially when the network is permissionless4, the
assumptions regarding the crash fault-tolerance can be changed to the Byzantine
fault-tolerance, such as PBFT consensus algorithm [19], however, this causes the
complexity and efficiency of the consensus algorithm to significantly increase and
decrease, respectively. For example, while in a normal operation, that is, when the
leader does not face a fault, the message complexity of Paxos and Raft, as crash
fault-tolerant consensus algorithms, is O(n), that of PBFT, as Byzantine fault-
tolerant consensus, is O(n2) [46]. Nevertheless, when highly-availability is crucial
and highly important in a use case, Byzantine fault-tolerant consensus algorithms
are preferred over the crash-only fault-tolerant type [19]. Such an approach has
become more common in recent years with the advent of blockchain systems and
crypto-currencies.

2.10 Summary of Chapter 2
In this chapter, we made clear and intelligible the systems that the proposed idea,
Parallel Committees, which is described in detail in Chapter 4, is based on such
networks. We detailed the fundamental and essential properties and challenges of
replication systems. In this regard, we addressed the following issues:

• The main motives to replicate data.

• The synchrony and timing assumptions and the behavior of the replication’s
processes and its communication links with respect to the passage of time.

• Various types of leadership in repetition.
4See definitions 5.2.1 and 5.2.2 in Chapter 5.

45

• Types of faults and failures and how to deal with them through a fault-
tolerance mechanism.

• How to implement replication through broadcast algorithms and the quorum
concept.

• The connection between total-order broadcast and consensus mechanisms
and their highly essential role in SMR implementation.

In the next chapter, we will discuss in detail the low performance and scalabil-
ity limitations of replication systems that use consensus mechanisms to process
transactions, and how these issues can be improved using the sharding technique.

46

Chapter 3

Sharding Distributed Data
Replications

3.1 Fault-Tolerant Consensus Scalability Limit
Most existing Byzantine fault-tolerant algorithms are very slow and are not de-
signed for large sets of participants trying to reach a consensus. Hence, distributed
replication systems that use consensus mechanisms to process clients’ requests have
major limitations and problems in scalability, throughput, and performance. The
scalability problem means that system performance and throughput slows down as
the number of network nodes increases. Such problems are mainly due to the mes-
sage complexity of the consensus algorithms. For example, the message complexity
of PBFT [19] is O(n2) and that of Paxos [18] and Raft [16] is O(n). While PBFT
is both crash and Byzantine fault-tolerant, Paxos and Raft are only crash fault-
tolerant. These message complexities can even be exacerbated with the presence
of faulty nodes, when the faulty leader/primary node must be replaced through
a view-change process1. For example, in the case of PBFT and Paxos, when the
leader/primary node fails, the message complexity is exacerbated to O(n4) and
O(n2), respectively [46]. Figure 3.1 depicts the number of required message ex-
changes between nodes in the PBFT consensus algorithm. In any case, as the
number of nodes in the network increases, the average processing time of clients’

1In a consensus mechanism, a view-change means switching to a new leader node. The
view-change as an algorithm for choosing a new leader to collect information and propose it to
processor nodes is the epicenter of a replication system [46].

47

Figure 3.1: The PBFT consensus message complexity where a primary node fails and a change-
view with additional message exchange is required, so that for f leader failures the message
complexity increases to O(f.n3).

requests also increases, which ultimately leads to a great limitation for scaling up
the network. Figure 3.2 depicts how the mean time to process clients’ requests
increases as the number of nodes in the network increases when using the Paxos
or PBFT consensus mechanisms.
Even by replacing classic consensus mechanisms with PoW on networks similar to
Bitcoin [6] there are still limits to the scalability, performance, and throughput,
as the throughput of the Bitcoin network is only about ≈ 7-10 transactions per
second [4]. Albeit, in general, there is a controversy and a difference of opinion in
recognizing PoW as a consensus because there is a belief that it does not have the
required properties of a consensus mechanism [35–38].
The problem of scalability becomes very important and crucial when the network
is open or so-called permissionless, because no permission from any privileged en-
tity is required to create processor nodes and participate in processing requests or
to create client nodes and sending requests2. This is why platforms such as Hyper-
ledger [54] use permissioned networks to control the number of nodes by mandating
the need for permission from some privileged entity to create processor nodes or
send requests in order to limit the size of the network, otherwise by increasing
the number of nodes the throughput of the network decreases dramatically due to
time complexity of the consensus mechanism used for processing clients’ requests.

2See definitions 5.2.1 and 5.2.2 in Chapter 5

48

Figure 3.2: Throughput of a network that uses Paxos or PBFT consensus decreases drastically,
as the number of nodes increases [32].

3.2 Sharding at a Glance
In a typical scenario, a single database system is well-equipped with storage and
performance capabilities to handle the transaction processing needs of an enter-
prise. However, challenges arise when dealing with applications catering to millions
or even billions of users, such as social media platforms or large-scale user-centric
applications in major institutions like banks [202]. Imagine an organization that
has developed an application relying on a centralized database. As the user base
grows, the limitations of the centralized database become evident, struggling to
meet the increasing storage and processing speed requirements. To address this,
a commonly adopted strategy is the practice known as “sharding”. This involves
the segmentation of data across multiple databases, with each database handling
a subset of users. Sharding, fundamentally the distribution of data across multi-
ple databases or machines, proves essential in achieving scalability and improved
performance [202]. As the number of databases increases, the risk of potential
failures also rises, resulting in a heightened probability of losing access to critical
data. To mitigate this risk, replication becomes imperative to guarantee contin-
ued accessibility even in the face of failures. However, the management of these

49

replicas introduces additional complexities, demanding careful attention to ensure
their consistency and effectiveness [202].

Sharding is also used already in several blockchain-based systems in order to in-
crease the scalability of the network. In a traditional blockchain system, all nodes
on the network must process every transaction that occurs on the network. This
means that as more transactions occur, the network can become congested and
slow. Sharding solves this problem by breaking the network into smaller segments
called shards. Each shard processes a subset of transactions rather than all trans-
actions on the network. By distributing the workload across multiple shards, the
network can handle more transactions per second and hence become more scalable.
In a sharded replication system, each node is responsible for processing transac-
tions only in its assigned shard. This reduces the computational requirements for
each node and makes it easier for new nodes to join the network. Sharding is still
an area of active research and development in distributed replication networks,
but it has the potential to significantly improve the performance and scalability of
distributed networks. Considering the limitations and obstacles in consensus algo-
rithms for scaling, one of the main reasons for such low throughput in replication
systems that use consensus mechanisms is the serial processing approach, where
each client request is processed by all processor nodes that leads to a significant
decrease in system performance and throughput in a redundancy approach. In
contrast to serial processing, sharding as a parallelization approach has already
been implemented in several replication systems and has shown a notable capa-
bility and potential to improve performance and scalability, yet, current sharding
techniques have several remarkable problems detailed in Section 3.2.1.
Replication systems such as Bitcoin, Ethereum, and Hyperledger that use consen-
sus mechanisms—both classic and so-called “proof-of-x” techniques3—to process
requests and transactions have low throughput, performance, and scalability. The
only reason why non-sharded Ethereum nodes can store the entire state (or the
whole replication) is that Ethereum only processes around 15 transactions per
second [63]. Once a system processes thousands of transactions per second, the

3Various methods of using blockchain systems to prove something in a way that is crypto-
graphically verifiable [51].

50

state will explode, since transactions do leave a trace on the state [55]. A common
way of dealing with clients’ requests in such systems is serial processing approach,
where all the requests are processed by all the processor nodes in the network and
hence, by joining new nodes to the network the total request processing capacity
of the system gradually will decrease. Networks that use classic consensus—either
with linear or quadratic message complexity—to process clients’ requests lead to
increased processing coordination costs [5]. On the other hand, networks that use
PoW as an alternative to classic consensus algorithms face the same problem by
increasing the computing power of the entire network. Even if the number of pro-
cessor nodes gets limited by a centralized approach and using a privileged entity in
a permissioned network, by increasing the rate of clients’ requests, the processor
nodes hardware performance is still limited, causing significant latency in response
to the clients [5]. One of the proposed solutions to this problem is using shard-
ing technique by dividing the network into multiple smaller groups, each of which
handles a part of clients’ requests. Several protocols have been already proposed
based on sharding technique. We describe briefly some of them in Section 3.3.

The sharding technique can be divided into two general types [26]:

• Processing Sharding

• Storage/State Sharding

For example, Zilliqa [4] is not a state sharding protocol, as each node holds the
entire stored replicated data state to be able to process transactions or clients’ re-
quests, while other solutions like Omniledger [2] and RapidChain [3] feature state
sharding, where each shard holds a subset of the stored replicated data state. In
most of the cases, storage/state sharding typically brings us processing sharding as
well. To the best of our knowledge, actually there is no protocol that uses storage
sharding without processing sharding.

The rest of this chapter is organized as follows: In Section 3.2.1, we describe
the most important challenges in the sharding of distributed replication systems,
which are divided into the following four subsections: in subsection 3.2.1.1 we

51

explain why most current sharding protocols use a random assignment approach
for allocating and distributing nodes between shards due to security reasons. In
subsection 3.2.1.2 we detail how a transaction is processed in sharded DLTs, based
on current sharding protocols. In subsection 3.2.1.3 we describe how a shared
ledger among shards imposes additional scalability limitations and security issues
on the network. In subsection 3.2.1.4 we explain why cross-shard or inter-shard
transactions are undesirable and more costly, due to the problems they cause,
including atomicity failure and state transition challenges, along with a review of
proposed solutions. In Section 3.3, we review some replication systems, including
both classic distributed databases and DLTs, that utilize the sharding technique.

3.2.1 Sharding Challenges

Sharding, as a parallelization approach, has already been implemented in several
distributed replication systems and has shown remarkable potential to improve
performance and scalability; nevertheless, current sharding techniques face several
challenges. We describe the most important of them below.

3.2.1.1 Distributing Nodes Between Shards

Most current sharding protocols use a random assignment approach for allocating
and distributing nodes between shards due to security reasons. We explain why
this approach is employed in most sharding protocols using the following example:
assume in a non-sharded replication system, there are in total 10 replicas, two of
which are Byzantine and also know each other as the members of a cyber-attacker
group, that is, they are colluded replicas, as depicted in Figure 3.3. If the consensus
is PBFT, the network can remain safe if the number of nodes, n, is greater than
or equal to 3f + 1, where f is the number of Byzantine or faulty nodes. We then
divide the network into two shards, in such a way that the replicas are permitted
to choose which shard to assign. Obviously, two Byzantine replicas prefer to be
the member of the same shard in order to be able to dominate that shard. Hence,
in most sharding protocols, the assignment of replicas between shards is done in
a random manner. This is to defeat the security problem because, in the case of
using a random assignment approach, the probability that all the members of an

52

Figure 3.3: Most current sharding protocols use a random assignment approach for allocating
and distributing nodes between shards due to security reasons.

attacker group or colluded replicas are assigned to the same shard is considerably
reduced.

3.2.1.2 Transactions Processing in Sharded DLTs

In this section, we detail how a transaction is processed in a sharded replication
system, based on current sharding protocols. In state/storage sharding, processed
transactions are stored in separate shards. With state sharding, each node has
a shard it is assigned to in such a way that at any given moment of time, the
state of the stored replicated data is split between shards in a way known to all
nodes. In other words, all the nodes—and everything else that is stored in state—
is split between the shards in some way known to all nodes. Each committee is
assigned to a particular shard, which is responsible for every particular subset of
the state. A transaction is affecting some nodes in the network, meaning that,
if a client node ncα makes a transaction and sends some token to another client
node ncβ, both nodes are affected by this transaction, so that the token balance4

of ncα decreases, while that of ncβ increases. Each node is assigned to exactly
4The number of crypto-tokens that a node holds.

53

one shard, and the transaction is processed by the committee, and only by the
committee, that is responsible for the subset of the state that the transaction
is affecting. If the nodes affected by the transaction are assigned to the same
shard, the transaction is an intra-shard transaction. However, if each of the nodes
is assigned to different shards, a cross-shard or inter-shard transaction occurs,
and each participating shard has access to only part of the transaction data for
processing. Consequently, processing an inter-shard transaction is more complex
that an intra-shard transaction.

3.2.1.3 Challenges With Shared Ledger Among Shards

Some sharding-based protocols, such as PolkaDot [52], Cosmos-Hub [53], and
Ethereum 2.05 [185], utilize a shared ledger among shards for various bookkeep-
ing computations. These computations include coordinating and orchestrating
shards, distributing nodes between shards, capturing snapshots of the latest state
of shards, and managing cross-shard transactions. The workload on this shared
ledger is proportional to the number of shards in the network [5]. This shared
ledger among shards goes by different names; for instance, it is called the “Bea-
con” chain in sharded Ethereum, the “Relay” chain in PolkaDot, or “Cosmos-Hub”
in the Cosmos protocol. However, in this thesis, we refer to this ledger simply as
the shared ledger among shards. Such a shared ledger imposes scalability lim-
itations and additional security challenges on the system, which we describe in
detail.

Scalability issues due to shared ledger among shards: The sharding is
often advertised as a solution enabling linear scalability, meaning that as the num-
ber of nodes in the network increases, the throughput of the system increases at
an almost linear rate [25]. While it is in theory possible to design such a shard-
ing protocol, any solution that uses the concept of a shared ledger among shards
cannot achieve such scalability. Since a shared ledger among shards is itself a
ledger with computation bounded by the computational capabilities of the nodes
operating it, the number of shards is naturally limited [5]. Figure 3.4 depicts

5Recently, Ethereum 2.0 underwent a change in the architecture of its sharding approach [186].

54

Figure 3.4: A shared ledger among shards for various bookkeeping computations. These
computations include coordinating and orchestrating shards, distributing nodes between shards,
capturing snapshots of the latest state of shards, and managing cross-shard transactions. The
workload on this shared ledger is proportional to the number of shards in the network [5].

this situation, in which a shared ledger holds snapshots of data from all shards
and ultimately imposes significant constraints on network scalability. Although
participating nodes in the shared ledger keep only the necessary data, growing
the network and increasing the number of shards introduces scalability problems,
resulting in limitations for the entire system.

Security issues due to shared ledger among shards: In addition to the
scalability challenge, if the nodes managing the shared ledger among shards turn
Byzantine, the entire system becomes vulnerable. This is particularly problematic
as critical tasks, such as node assignment between shards, are handled by this
privileged shard. In essence, a compromised shared ledger, occupied by Byzantine
nodes, has the potential to infect a significant portion of the system, putting it at
risk of collapse. Given that a shared ledger is mission-critical, any flaw within it
could compromise the integrity of the entire network [75].

3.2.1.4 Challenges With Cross-Shard Transactions

In a cross-shard transaction, each participating shard only has access to a portion
of the transaction data for processing. Consequently, cross-shard transactions re-

55

quire costly inter-shard coordination to ensure state consistency, significantly lim-
iting the system’s performance. These circumstances make cross-shard transaction
processing more complicated, complex, and therefore more expensive than intra-
shard transactions. Before delving into the challenges associated with cross-shard
transactions, it is essential to understand two general approaches for processing
them.

• Synchronous approach: In blockchain-based protocols, new states are
equivalent to new blocks. In synchronous cross-shard transaction processing,
new states (or blocks) containing state transitions related to a transaction
are generated simultaneously. A cross-shard transaction visibly impacts a
set of shards, as explained in Section 3.2.1.2, and synchronous cross-shard
transactions must be included at the same block height in all affected shards.
To ensure a canonical order of execution, transactions within a block must
be arranged based on their hash order. However, this approach necessitates
a high level of coordination between shards, resulting in increased message
complexity and prolonged time for creating new states (or blocks). This
simultaneous block production, where all state transitions of a transaction
occur at the same block height, means that blocks are generated as fast as the
slowest shard. Consequently, this synchronous approach sacrifices the speed
of intra-shard transactions for the communication overhead of cross-shard
transactions.

• Asynchronous approach: In asynchronous cross-shard transaction pro-
cessing, each shard independently generates new states (or blocks). However,
to ensure atomicity, a shard may need to lock a state transition, ensuring that
the state is committed on another shard. This leads to higher transaction
latency. In the asynchronous approach, blocks are generated more frequently
than in the synchronous strategy. On the other hand, the processing time
of a cross-shard transaction might be exacerbated.

To the best of our knowledge, while there are considerable discussions on the syn-
chronous approach, as found in [150, 151], there is still no notable sharded DLT

56

protocol that employs a synchronous strategy for cross-shard transaction process-
ing. Therefore, we place more emphasis on addressing the challenges associated
with the asynchronous approach.

Atomicity failure: In this section, we elaborate on the possibility of an atomic-
ity failure occurring when using a sharded blockchain-based network during a cross-
shard transaction. A financial transaction consists of two parts: credit (token-
receiving) and debit (token-sending). Let’s assume that each part is executed in
a different shard as an inter-shard transaction. For a cross-shard transaction to
maintain atomicity, it must either be committed in both shards or aborted uni-
formly across both. Failure to achieve this results in an atomicity failure. In
simpler terms, the transaction must either be successfully committed, making all
changes permanent and durable, or aborted, with all changes rolled back, undone,
or discarded. This characteristic is known as atomicity, one of the ACID6 transac-
tion properties. In the asynchronous processing of a cross-shard transaction, if a
fork occurs in one or both shards, and the chain of either the credit or debit parts
becomes aborted as part of the forked chain while the other part remains in the
canonical (main) chain, an atomicity failure occurs. This is because one part of
the transaction is validated in a shard, while another part is abandoned in another
shard. Figure 3.5 depicts such a situation.

State transition challenge: Another challenge with cross-shard transactions is
the potential for abusing this type of transaction to turn an invalid data transition
into a valid one. Consider Figure 3.6, in which sharda is corrupted. A group of
colluding Byzantine processing nodes creates an invalid block a2, resulting in un-
expected token minting on an account, denoted as ψ. Subsequently, the Byzantine
nodes generate a valid block a3 on top of the invalid block a2. While the transac-
tions in block a3 are applied correctly, those in block a2 are not executed properly.
The Byzantine nodes then initiate a cross-shard transaction towards shardb, where
all blocks are valid and in a correct state. They transfer the tokens from account ψ
to another account, ξ. From this moment onward, the improperly created tokens

6Atomicity Consistency Isolation and Durability (ACID)

57

Figure 3.5: (A): txi is a cross-shard transaction between shard1 and shard2, where a fork has
occurred. If forka in shard2 as a part of transaction txi is in canonical/main chain, then txi

gets finalized, otherwise an atomicity failure has occurred. (B): txj is a cross-shard transaction
between forkc in shard3 and forkf in shard4. If both forkc and forkf are in canonical/main chain,
then txj gets finalized. If both forks become abandoned, then txj becomes fully abandoned that
is no conflict and the situation is fine. But if one of these forks becomes canonical/main chain,
while another one is abandoned as a part of forked chain, then an atomicity failure has occurred.

reside on a fully valid ledger in shardb.

- Existing solutions to state transition challenge: We first introduce existing
solutions for this issue and then analyze their challenges.

• Processing preceding blocks: One of the simplest strategies to defeat the
invalid state transition challenge illustrated in Figure 3.6 is that processing
nodes of shardb also process the block from which the cross-shard transaction
is initiated. This approach would not even work in the example depicted in
Figure 3.6, because block a3 appears to be completely valid. As an alter-
native approach, processing nodes of shardb should also process some large
number of blocks preceding the block from which the cross-shard transaction
is initiated. Even this alternative can not be efficient, as for any number of
blocks that are validated by shardb, the Byzantine nodes in sharda can gen-
erate one more valid block on top of the invalid block that they created.

• Graph-based solution: Another approach to solve the state transition is-
sue in cross-shard transactions is to arrange the shards in an undirected

58

Figure 3.6: State transition challenge in sharding.

graph so that each shard is connected to several other shards and only cross-
shard transactions between neighboring shards are permitted. This idea is
used in [152,153]. Cross-shard transactions between non-neighboring shards
is routed through multiple shards. In this approach, each processing node
within a shard is responsible for processing transactions within its own shard
as well as transactions from neighboring shards. Figure 3.7 depicts such a
strategy so that shardb not only processes its own transactions, but also
the transactions of all its neighbors, including sharda. Hence, the group of
colluding Byzantine processing nodes is not able to finalize the cross-shard
transaction depicted in Figure 3.6, because shardb processes the entire his-
tory of sharda as well—as its neighbor—leading to the identification of invalid
block a2.
With the graph-based approach, while corrupting one shard no longer leads
to an effective attack, corrupting multiple shards can still be problematic.
In Figure 3.8, a colluding Byzantine processing node that has managed to
corrupt both sharda and shardb can successfully execute a cross-shard trans-
action to shardc with funds originating from invalid block a2. Shardc pro-
cesses the entire ledger of shardb, but not that of sharda, and thus it is not

59

Figure 3.7: A graph-based solution can resolve the state transaction problem in some cases.

able to detect invalid block a2.

• Fisherman: The idea behind the Fisherman approach is that whenever a
cross-shard transaction occurs, if an honest processing node is present in the
shard where the invalid block has been created, within a certain period of
time called the challenge period, it can prove that the block is invalid. In fact,
a Fisherman node is a member of a shard controlled by a group of colluding
Byzantine nodes, and if an invalid block is created by the Byzantine group,
it is reported by the Fisherman to the token receiving shard with which a
cross-shard transaction is made. As an advantage, this approach works as
long as there is at least one honest processing node in the part where the in-
valid block exists. In order to optimize the communication overhead for the
receiving nodes, various constructions are used that enable succinct proof of
the invalidity of malicious blocks.
While this idea represents the prevailing approach in today’s proposed pro-
tocols, it possesses two notable weaknesses. Firstly, the challenge period
must be sufficiently lengthy to allow the honest processor to prepare and
thoroughly validate whether a block is invalid. Secondly, considering such a
period can substantially decrease the speed of cross-shard transaction pro-
cessing. Moreover, this approach and the challenge periods required to pro-

60

Figure 3.8: The graph-based solution is not always able to resolve the state transaction problem.

cess invalid blocks create the potential for a new type of attack wherein
colluding Byzantine nodes spam the network with invalid challenges. A so-
lution for this type of attack is to block some tokens from challenge senders
as a deposit or collateral and only return them if the challenge is correct.
This solution, however, may not be efficient enough because it may still be
profitable for attackers to spam the system and burn its deposits with invalid
challenges; for example, when tokens that have been minted out of thin air in
the invalid block a2 are more than burned collateral tokens. Or, in another
scenario, in the case of a griefing attack: an attack that does not necessarily
benefit the attacker, but the main motive is to make it harder for the victim
to use the system, i.e. to cause him grief, as the name implies.

3.3 Overview of Sharding in Distributed Systems
In this section, we review various replication systems, encompassing both classic
distributed databases and Distributed Ledger Technologies (DLTs), that employ
the sharding technique. Initially, we explore DLT protocols grounded in the shard-
ing concept. Two notable sharding protocols are selected for in-depth analysis,

61

representing two general types of ecosystems in sharding techniques: Ethereum
2.07 [185], one of the most widely used blockchain-based platforms, featuring a ho-
mogeneous multi-chain sharding system, and Polkadot [52], a heterogeneous multi-
chain sharding protocol. Unlike two homogeneous blockchains, two heterogeneous
blockchains lack identical architectures and exhibit distinct characteristics. After
examining these two sharded DLTs, we proceed to review additional DLT sharding
protocols in Section 3.3.3, where each aims to address specific challenges in shard-
ing. Subsequently, in Section 3.3.4, we delve into classic distributed databases.
Many prominent distributed databases leverage a combination of sharding and
data replication to achieve high availability, fault tolerance, and scalability. We in-
troduce several widely utilized distributed databases that incorporate both shard-
ing and data replication. Further discussions on additional distributed databases
can be found in Section 4.7.

3.3.1 Ethereum 2.0: Homogeneous Multi-Chain

Sharded Ethereum (also known as Ethereum 2.0) [185] is an upgraded version
of Ethereum that aims at transforming Ethereum into a sharded network. Al-
though there are efficient Ethereum clients like Parity [42] that can process around
3,000 transactions per second, provided the underlying hardware infrastructure is
efficient enough, nevertheless, non-sharded Ethereum network is not enabled to
process more than about ≈ 30 transactions per second [4]. Hence, Ethereum
Foundation decided to upgrade the protocol to a sharding-based system including
a multi-phase upgrade to improve Ethereum scalability and capacity. In the first
phase of the implementation, they set up 64 shards to test the Beacon chain’s
finality [154, 185]. In the following, we describe the main components as well as
major challenges of Ethereum 2.0.

3.3.1.1 Beacon Chain: A Shared Ledger Among Shards

The Beacon chain is the main component of the Ethereum 2.0 network [185]. Shard
chains, on the other hand, are ledgers where transactions are executed [185]. Each

7Recently, Ethereum 2.0 underwent a change in the architecture of its sharding approach [186].

62

shard chain has an independent state, so it is only responsible for processing trans-
actions related to that state. The Beacon chain performs important tasks such as
tracking information about validators8, their stakes, attestations, and votes. Ad-
ditionally, it has the authority to slash validators if they are found to be dishonest,
imposing a penalty where dishonest validators lose a portion of their stakes. The
Beacon chain, as well as its underlying protocol, is responsible for administering
consensus between validators on the state of the system. Due to the coordina-
tion role and the amount of assets managed by the Beacon chain, this ledger is a
mission-critical component of the Ethereum 2.0 ecosystem [75] and as explained in
Section 3.2.1.3, any bug in this shared ledger could compromise the whole network.

3.3.1.2 PoS and Block Generation

In Ethereum 2.0, PoW is replaced by Proof-of-Stake (PoS)9. Ethereum 2.0 finalizes
batches of blocks based on time periods called epochs [155]. An epoch is defined
as some constant number of slots. In Ethereum 2.0, time is measured in slots
and it is defined as some constant number of seconds. In a tentative version, an
epoch is considered 64 slots and each slot 12 seconds [156]. It is planned to finalize
32 blocks in each batch during one epoch. With an estimated block time of 12
seconds, finality is expected to take between 6 to 12 minutes [155]. To generate
blocks, Ethereum 2.0 uses the Random Decentralised Autonomous Organisation
(RandDAO), which is a slot-based protocol that randomly selects validators for
a slot and enforces a fork choice rule for unfinalized blocks [157]. Each validator
instance requires 32 ETH10 as stake. Sets of validators are randomly selected
and form groups called committees that validate shards on the network. A large
number of validators are needed to ensure the validity [158]. A minimum of 111
validators per shard is required to run the network, and 256 validators per shard
are required to finalize all shards within one epoch. Hence, with 64 shards planned
for the first phase, 16,384 validators are needed [154].

8Another term for the nodes in the network which process transactions.
9An alternative to PoW aimed at reducing computational costs. Proof-of-Stake was first

introduced in the Peercoin protocol. [15].
10Ethereum crypto-currency (ETH)

63

3.3.1.3 Roles and Terminology in Ethereum 2.0

In Ethereum 2.0, validators participate in the consensus mechanism and are called
virtual miners. A proposer is selected pseudo-randomly to propose and build a
block for each slot. On the other hand, attesters vote on the proposed blocks of
both the Beacon chain and the shard chains. The vote of the validators is called
attestation. In most cases, validators are attesters who vote on blocks and their
attestations are recorded on the Beacon chain. Proposers receive a reward if their
proposed block gets confirmation of a quorum of attesters. Each attestation has a
weight, which is actually the amount of the stake of the validator who writes the
attestation [156]. This approach is used for the fork choice rule mechanism that
we describe in Section 3.3.1.4. Validators monitor each other and are rewarded
for reporting validators who generate conflicting attestations or propose multiple
blocks. Each block is proposed by a random block proposer to be added to the
Beacon chain in each slot. If, for a given slot, a validator does not see a generated
block, or does not receive the block in time, or if the block was generated on a
chain that the validator does not recognize as the current chain, it should generate
an attestation that the slot is empty by attesting to the block it believes is the
head of the chain. That is, a validator should attest to exactly one block per
slot, either attesting to the actual block generated by a proposer or making an
attestation showing that the slot is empty.

3.3.1.4 Consensus in Ethereum 2.0

Gasper, which is a combination of the Casper-FFG11 and LMD12-GHOST13, is
designed for a full proof-of-stake based blockchain system, where a validators vot-
ing power is proportional to their stake (or crypto-currency) in the system, such
that instead of using computational power to propose blocks, proposing blocks is
essentially free [156]. Unlike Gasper, Casper-FFG is a hybrid PoW/PoS system.
It is also based on the consensus theory of Byzantine fault-tolerance [159]. In fact,
Casper-FFG implements a PoS mechanism as an overlay on top of a PoW ledger
to achieve more energy-efficient finality by creating a hybrid consensus model.

11Casper the Friendly Finality Gadget (Casper-FFG)
12Latest Message-Driven (LMD)
13Greedy Heaviest Observed Sub-Tree (GHOST)

64

Casper-FFG is designed to be compatible with a wide range of blockchain pro-
tocols with tree-like structure and is a “finality gadget”, meaning that is not a
fully-specified protocol and is designed to be a “gadget” that works on top of a
provided blockchain protocol, agnostic to whether the provided chain is proof-of-
work or proof-of-stake [156]. Casper-FFG is an algorithm that marks certain blocks
in a blockchain as finalized so that participants with partial information can still
be fully confident that the blocks are part of the canonical chain of blocks [156].
Both Gasper and Casper-FFG define the concepts of “justification” and “finaliza-
tion” which are analogous to phase-based concepts in the PBFT literature such
as “prepare” and “commit” [156]. Although in Gasper the “pairs”14 are justified
and finalized rather than the “checkpoint blocks” in Casper-FFG. In order for a
block to be “justified”, two-thirds of all staked ETH must have voted in favor of
including that block in the canonical chain. If another block is “justified” above
a “justified” block, that block is upgraded to “finalized” [160]. Also, in Ethereum
2.0, validators are considered as the same replicas in PBFT [156].

Fork Choice Rule in Ethereum 2.0: As transactions throughput acceler-
ates, the probability of the blockchain being forked also increases. This may in-
clude short-term forks and the possibility of various kinds of censorship. The fork
choice rule in Ethereum 2.0 is called LMD-GHOST, which stands for Latest Mes-
sage Driven Greediest Heaviest Observed Subtree. In Bitcoin’s proof-of-work, the
longest chain rule serves as a fork-choice rule that designates the leaf block farthest
from the genesis block as the “heaviest chain” or the “most difficult chain”. How-
ever, in Ethereum’s proof-of-stake, each attestation carries a weight corresponding
to the stake of the validator issuing the attestation. This weight serves as a vote,
and the fork with the heaviest weight is assumed to be the head of the canonical
chain. GHOST is a greedy algorithm that grows the blockchain in sub-branches
with the “most activity” [156]. LMD-GHOST, a fork-choice rule in Ethereum 2.0,
involves validators (participants) attesting to blocks to signal support, similar to
voting [156]. In LMD-GHOST, the process always converges to a leaf block, defin-
ing the canonical chain [156]. To define LMD-GHOST, it is necessary to first define
a concept called weight. Buterin et al. [156] define weight as follows. If assume

14A pair consists of a block and an epoch.

65

S to be the set of latest attestations, such that one per validator, the weight of
block b is defined as the sum of the stake of validators whose last attestation is
either to β or β’s descendants. The idea of LMD-GHOST is that at any fork, the
subtree of a fork with the heaviest weight is assumed to be the right one, so that it
always ends up at a leaf block that defines a canonical chain. Figure 3.9 illustrates
an example of the fork choice rule based on LMD-GHOST. Each fork choice in
Ethereum 2.0 by a validator v is made in a view at a given time t, denoted by
view(v, t), as the set of all accepted messages that v has seen so far. In a nutshell,
based on the LMD-GHOST fork choice rule, anywhere there is a fork, the heaviest
subtree is chosen. In this way, in Figure 3.9, the subtree starting with block β2

is selected because its weight is 9 and greater than the weight of block β3, which
has a weight of 3. Then, similarly, among the three children of block β2, the block
with the highest weight, i.e. block β4, is selected. Thus, using the view illustrated
in Figure 3.9, a validator will recognize the blue chain as a canonical chain. This
figure is modeled after the original figure in the article “Combining GHOST and
Casper” [156] where the LMD-GHOST protocol has been detailed. The main idea
of GHOST is to choose a side with more overall support for validators in each
fork instead of choosing a subtree that is longer, so that in addition to the num-
ber of attestations, the weight of each attestation, which is based on the stake of
its validator, is also considered. This idea is heavily inspired by Sompolinsky et
al [161] in the original GHOST paper, but LMD-GHOST adapts the design from
its original PoW context to new PoS context [163].

3.3.2 Polkadot: Heterogeneous Multi-Chain

Polkadot was first introduced by Gavin Wood in 2016 as a heterogeneous multi-
chain protocol aiming to provide a scalable and interoperable framework for mul-
tiple chains with pooled security that is achieved by the collection of compo-
nents [52]. Polkadot has its own native crypto-token called DOT. Polkadot uses
a central chain called the Relay chain that communicates with several heteroge-
neous and independent chains called parachains. The Relay chain is responsible
for providing shared security to all parachains as well as enabling trustless cross-
chain transactions between parachains. The issues Polkadot intends to address are

66

Figure 3.9: An example of how to select a subtree using the LMD-GHOST fork choice rule in
a view by a validator.

interoperability, scalability, and weaker security resulting from splitting the secu-
rity power [162]. The Polkadot Relay chain consists of nodes and roles. Nodes are
network-level entities that physically run Polkadot software, and roles are protocol-
level entities that administer specific purposes. At the network level, Relay chain
nodes can participate as either light clients or full nodes. Unlike light clients, which
retrieve certain user-relevant data from the network and are not required to be al-
ways available because they do not perform a service for others, full nodes retrieve
all types of data. They store this data for a long time, disseminating it to others,
and therefore should be highly available [162]. In addition to data distribution,
Relay chain nodes perform specific roles at the protocol level as follows:

• Validators: as the Relay chain full nodes, do the bulk of the security work.

• Nominators: are shareholders who elect the validator candidates. This can
be done through a light client without need of any awareness of parachains.

67

On the other side, parachains can determine their internal network structure but
are expected to interact with Polkadot through the following roles:

• Collectors: collect parachain data and send it to the Relay chain. Collectors
are selected as defined by parachain and must be its full nodes. Validators
interact with parachain collators, but do not need to participate in parachain
as a full node.

• Fishermen: as we explained in Section 3.2.1.4 how a Fisherman can help
for data validity challenges, they, as a full node of parachain, administer
additional security checks on the correct functioning of the parachain on
behalf of the Relay chain that provides a reward to incentivize the Fishermen.

In addition to the components listed above, the bridges are intended for compat-
ibility and interaction of the Polkadot ecosystem with other external blockchain
systems such as Bitcoin, Ethereum or Tezos [154].

After describing the nodes and roles, we explain more details of how the Polkadot
Relay chain protocol works as follows. Collaborators watch the progress of the
block-producing and consensus protocols. They sign the data building on top of
the latest chain block and send it to the validators assigned to their parachain in
order to include it in the Relay chain. The parachain validators decide which of
the parachain block to support in order to present its relevant data as a parachain
next candidate for being added to the next Relay chain block. A block-producing
validator makes a set of candidates from all parachains and puts it into a Relay
chain block. Validators send their votes on a block and finalize it. All votes are
included in the Relay chain blocks. Figure 3.10 depicts a high-level view of the
Polkadot architecture in an example that includes 8 parachains, 24 validators, 4
collators per parachain, along with a bridge connecting the entire system to another
external blockchain network so that two blockchain networks can be heterogeneous.
This figure is modeled after the figure in [162], where the Polkadot protocol is
thoroughly reviewed.
As a consensus mechanism, Polkadot uses Nominated PoS that is a modified ver-
sion of proof-of-stake. Since Nominated Proof-of-Stake (NPoS) has a deterministic

68

Figure 3.10: A high-level view of the Polkadot architecture.

finality, a set of registered validators of bounded size is required. DOT15 holders
can participate in the NPoS consensus as nominators. To register as a nominator,
at least 100 DOT is required. The validators’ candidacies are visible to all nomi-
nators. Each nominator publishes a list of up to 16 candidates it supports. The
network then automatically distributes the stake among the validators based on
the nominations. And finally, a certain number of validators that have the most
DOT (as stake) are selected and activated. In NPoS, the stake of nominators and
validators may be slashed, as a security measure [154].

3.3.3 Other Sharded Blockchains

In this section, we review some other notable sharding protocols, each of which
attempts to ameliorate some of the sharding challenges.
Zilliqa [4] was proposed as a sharding-based model for permissionless blockchain
networks in order to improve the scalability issues. A major weakness of Zilliqa is
that it shards processing but not storage [5], that is, each node holds the entire

15Polkadot crypto-currency (DOT)

69

stored replicated data state to be able to process transactions [5]. It is worth
noting that the decision not to shard by state, while simplifies the system design,
imposes a huge limit on the scalability of the system [55]. In fact, only supporting
processing sharding prevents machines with limited resources from participating in
the network, thus curtailing decentralization [26]. Zilliqa uses PoW as an identity
registration process as a Sybil attack [39] mitigation mechanism. Zilliqa’s consen-
sus core relies on PBFT, improving its efficiency using EC-Schnorr multi-signature
as developed in [56] and [57].
Elastico [1] is proposed as a sharding-based protocol for permissionless blockchain
networks and uniformly partitions network into smaller committees, each of which
processes a disjoint set of transactions. According to the results of their experi-
ments to measure the scalability of the network based on PBFT consensus, when
network size increases from 40 to 80 nodes (2 times), the latency to reach consen-
sus for each transaction is 6 times longer (e.g. from 3 seconds to 18 seconds), and
their experiment did not terminate even after running for 1 hour with a network
size of 320 nodes.
Omniledger [2] is another sharding-based solution, whose construction is close to
Elastico, but it brings up some challenges in Elastico and then targets to solve
them. In Omniledger, the validators16 are selected by use of proof-of-work. In
this way, they use a sliding window of latest block miners as the validator set.
They also utilize proof-of-stake as an alternative Sybil attack resistant approach
for choosing a set of validators, aiming to achieve a more power-efficient consensus.
They implemented a prototype in Go language on commodity servers (12-core VMs
on Deterlab) and their experimental results show that OmniLedger throughput is
6,000 transactions per second with a 10 second consensus latency for 1,800 nodes.
SharPer [67] is a permissioned blockchain system in which nodes are clustered and
each data shard is replicated on the nodes of a cluster so that each cluster main-
tains only a view of the ledger. In SharPer, the blockchain ledger is formed as a
Directed Acyclic Graph (DAG).
Ren et al. [68] introduce a permissioned blockchain and call it “spontaneous shard-
ing” so that the network consists of three parts: (a) individual chains generated by

16Another term for the nodes in the network which process transactions.

70

each node to record their own transactions in a first-in-first-out fashion, (b) a main
chain for a global shared state that uses PBFT as its consensus algorithm and the
blocks consist of abstracts signed by the corresponding nodes. They assume that
the abstracts of all genesis blocks are on the main chain. Honest nodes will send
abstracts of their newest blocks to the main chain when they observe that their
previous abstracts are on-chain, and (c) a validation scheme for validation of the
transactions. The transactions on individual chains are arbitrary in the sense that
they are neither tamper-proof nor signed. The transactions will be tamper-proof
and signed if an abstract of a block that comes after it is contained in the main
chain, which they call “confirmed” transactions.
Dang et al. [69] propose a sharding-based system for permissioned blockchains
relying on a trusted execution environment, namely Intel SGX to eliminate equiv-
ocation in the Byzantine failure model. As the authors claim, without equivo-
cation, existing BFT protocols can achieve higher fault tolerance with the same
number of nodes, that is, a committee of n nodes can tolerate up to (n−1)/2 non-
equivocating Byzantine failures, as opposed to (n − 1)/3 failures in the original
threat model [71–73]. They have run their experiments on a local cluster with 100
nodes consisting of over 1,400 Google Cloud Platform (GPC) nodes distributed
across 8 regions. On GPC setup, they achieved a throughput of over 3,000 trans-
actions per second.

3.3.4 Sharding in Classic Distributed Databases

Several prominent distributed databases leverage a combination of sharding and
data replication to attain high availability, fault tolerance, and scalability. Below,
we introduce several widely utilized distributed databases that incorporate both
sharding and data replication. Additional distributed databases are discussed in
Section 4.7.

3.3.4.1 MongoDB

MongoDB [203] is a Not Only SQL (NoSQL) database management system that
provides a scalable and flexible platform for handling large volumes of unstruc-

71

tured or semi-structured data. It falls under the category of document-oriented
databases, where data is stored in a flexible, JSON-like format called BSON (Bi-
nary JSON). Sharding is a crucial concept in MongoDB that enables horizontal
scaling of the database to handle large amounts of data and high read and write
throughput. In MongoDB, sharding involves distributing data across multiple ma-
chines, called shards, to improve performance and manageability.

Outlined is a detailed explanation of the sharding concept in MongoDB:

• Shard: A shard is a separate MongoDB instance or server that stores a
subset of the data. Each shard holds a portion of the entire dataset. Shards
can be physical servers or virtual machines.

• Shard Key: The shard key is a field or set of fields chosen to distribute data
across shards. MongoDB uses the values of the shard key to determine the
target shard for each document. The choice of a good shard key is crucial
for efficient sharding. Choosing an appropriate shard key is critical for the
efficiency of sharding. Ideally, the shard key should distribute data evenly
across shards, avoiding hotspots and ensuring a balanced workload.

• Shard Cluster: The entire distributed database system, consisting of multiple
shards, is referred to as a shard cluster. A shard cluster includes a query
router (‘mongos’), which acts as an interface between the application and
the individual shards.

• Query Router (‘mongos’): The query router, or ‘mongos’, is a routing ser-
vice that directs queries to the appropriate shard based on the shard key.
Applications connect to the query router rather than directly to individual
shards, allowing for a unified view of the entire dataset.

• Config Servers: MongoDB uses config servers to store metadata about the
distribution of data across shards. The config servers maintain information
about the ranges of shard key values associated with each shard.

72

• Chunks: The data in a sharded MongoDB database is divided into chunks,
which are contiguous ranges of shard key values. Each chunk is stored on a
specific shard. As the data size grows or decreases, MongoDB automatically
migrates chunks between shards to maintain an even distribution of data.

• Balancing: MongoDB’s balancer is responsible for redistributing chunks
across shards to ensure an even distribution of data. The balancer runs
in the background and uses the config servers to determine when and where
to move chunks.

• Adding and Removing Shards: MongoDB supports dynamic scaling by al-
lowing the addition or removal of shards without downtime. When adding
a new shard, the balancer redistributes chunks to balance the data load.
Removing a shard involves redistributing its data to the remaining shards.

3.3.4.2 Apache HBase

HBase [204] is a distributed, scalable, and consistent NoSQL database that is de-
signed to handle large amounts of sparse data. It is part of the Apache Hadoop
project. HBase is suitable for storing and managing vast amounts of data across
clusters of commodity hardware. It provides real-time read and write access to
your data and is particularly well-suited for applications where quick and random
access to large amounts of data is essential. HBase uses a column-family-based
data model, similar to Google Bigtable [195], where data is organized into tables
with rows identified by a unique key. Each table can have multiple column families,
and each column family can have multiple columns. This schema flexibility allows
for efficient storage and retrieval of data. A column-family-based data model is a
type of NoSQL data model used by certain distributed databases, including HBase.
This model is inspired by Google’s Bigtable and is designed to provide flexibility in
handling large amounts of data with a dynamic schema. In a column-family-based
model, data is organized into tables. Unlike traditional relational databases with
fixed columns, this model groups columns into families, each capable of accommo-
dating multiple columns. Within a family, columns are stored together on disk,
promoting cohesive access. This approach allows for the systematic organization
of related data and establishes a specific structural framework within a table. In

73

HBase, sharding is the process of partitioning and distributing the data across the
cluster to achieve scalability and parallelization. The primary goal of sharding is
to ensure that the workload is evenly distributed among the region servers in the
HBase cluster, preventing hotspots and optimizing performance.

Presented are key concepts related to the sharding concept in HBase:

• Regions: A region is a contiguous range of rows in an HBase table. Each
region is assigned to a specific region server in the cluster. As the table grows,
HBase automatically splits regions to maintain a balanced distribution of
data.

• Row Key and Region Assignment: The row key plays a crucial role in shard-
ing. It is used to determine the placement of data within regions. HBase
uses hashing on the row key to distribute rows across regions. The hash
value of the row key determines the region to which the data belongs.

• Automatic Region Splitting: As data in a region grows beyond a certain
threshold (configured by the HBase administrator), HBase automatically
triggers a process called region splitting. Region splitting divides a large
region into two smaller, roughly equal-sized regions. Each of these new
regions is then assigned to different region servers.

• Zookeeper Coordination: Apache ZooKeeper17 is used by HBase for coordi-
nation and management of distributed processes. ZooKeeper plays a role in
maintaining metadata about the state of regions and region servers in the
HBase cluster. It helps in coordinating tasks such as region assignments and
tracking the health of region servers.

• HBase Master: The HBase master node is responsible for overall coordi-
nation and management of the HBase cluster. It assigns regions to region
servers, monitors their status, and takes corrective actions, such as initiating
region splits or migrations, to maintain cluster health.

17ZooKeeper [145] is a distributed coordination service that provides primitives for building
consensus mechanisms in distributed systems. The consensus protocol used by ZooKeeper is
known as the ZAB (ZooKeeper Atomic Broadcast) protocol [148].

74

3.3.4.3 Riak

Riak [205] is a distributed NoSQL database designed to provide high availability,
fault tolerance, and scalability for handling large amounts of data across multiple
nodes. It was developed by Basho Technologies and is based on the principles of
Amazon’s Dynamo [110], a highly available key-value storage system. In Riak, the
sharding concept is implemented through the use of consistent hashing. Here’s a
breakdown of how the sharding process works in Riak:

• Key Space Partitioning: Riak uses a consistent hashing algorithm to map
keys to partitions (shards). This algorithm ensures that keys are evenly
distributed across the available partitions, preventing hotspots and balancing
the load.

• Virtual Nodes: To enhance flexibility and manageability, each physical node
in the Riak cluster is divided into multiple virtual nodes. Each virtual node
is responsible for a subset of the overall key space. This division allows for
more granular control over data distribution and enables dynamic scaling.

• Repartitioning: When the cluster size changes (nodes are added or removed),
Riak can dynamically repartition the key space to ensure an even distribution
of data. This automatic repartitioning helps maintain load balance and
optimal performance.

• Quorum-based Operations: Riak employs a quorum-based system for read
and write operations. Quorums define the number of nodes that must par-
ticipate in an operation for it to be considered successful. This approach
enhances fault tolerance and consistency in the presence of network parti-
tions or node failures.

3.3.4.4 Couchbase

Couchbase [206,207] is a NoSQL database that is designed to handle large amounts
of unstructured or semi-structured data across multiple nodes in a distributed
architecture. Couchbase operates in a cluster, which is a group of nodes that work
together to store and manage data. Each server in the Couchbase cluster is called a

75

node. Nodes can be added or removed dynamically to scale the cluster. Couchbase
is primarily a key-value store, where data is stored in the form of key-value pairs.
The keys are unique identifiers for the data, and values can be JSON documents,
binary data, or other formats. Data is organized into buckets, which are logical
containers for documents. Each bucket can have its own configuration and can be
considered as a separate namespace for documents. Couchbase uses N1QL, a SQL-
like query language, to query JSON documents. N1QL supports both ad-hoc and
prepared queries. Couchbase implements sharding through its consistent hashing
mechanism and a feature known as vBuckets (virtual buckets). Here’s a detailed
explanation of how sharding is designed and implemented in Couchbase:

• Key-Based Sharding: Couchbase uses a key-based sharding approach, where
data is distributed across nodes based on the document key. This ensures
that related data is stored on the same node, reducing the need for cross-node
communication during query operations.

• Consistent Hashing: Couchbase employs consistent hashing to distribute
keys across nodes in a deterministic manner. Consistent hashing ensures that
when the number of nodes in the cluster changes, only a minimal amount of
data needs to be relocated, minimizing the impact on the system.

• vBuckets (Virtual Buckets): Couchbase divides the data into smaller units
called vBuckets. Each vBucket is assigned to a specific node in the cluster.
This provides a finer level of granularity for data distribution and ensures
that the load is evenly balanced among nodes.

• Replication: To enhance data availability and fault tolerance, Couchbase
uses replication. Each vBucket has one or more replicas, and these replicas
are stored on different nodes. If a node fails, the system can continue to
serve data from the replicas on other nodes.

• Automatic Rebalancing: Couchbase supports automatic rebalancing, allow-
ing the addition or removal of nodes from the cluster without manual inter-
vention. During rebalancing, the system redistributes vBuckets to maintain
a balanced load across nodes.

76

3.4 Summary of Chapter 3
In this chapter, we described the most important challenges in the sharding of
distributed replication systems. We explained why most current sharded DLT
protocols use a random assignment approach for allocating and distributing nodes
between shards due to security reasons. We detailed how a transaction is processed
in sharded DLTs based on current sharding protocols. We also described how a
shared ledger among shards imposes additional scalability limitations and security
issues on the network. Additionally, we explained why cross-shard or inter-shard
transactions are undesirable and more costly, due to the problems they cause, in-
cluding atomicity failure and state transition challenges, along with a review of
proposed solutions. Furthermore, we reviewed some replication systems, including
both classic distributed databases and DLTs, that utilize the sharding technique.

In the next chapter, we propose a novel fault-tolerant, self-configurable, scalable,
secure, decentralized, and high-performance distributed database replication archi-
tecture using an innovative sharding technique to enable the use of BFT consensus
mechanisms in very large-scale networks.

77

Chapter 4

A Novel Distributed Database
Architecture

4.1 The Parallel Committees Architecture
Sharding across multiple databases involves the partitioning of records among dif-
ferent systems. In other words, records are distributed across systems. In contrast
to conventional sharding approaches where each shard represents a centralized
traditional database that may lack information about other databases [202], in
the architecture presented in this thesis, each shard functions as a replicated data
system comprising multiple processors. So that, they collaboratively handle client
requests and transactions following a classic consensus mechanism. These shards,
operating as replicated data systems, can interact with other shards and jointly
process transactions between them. In this chapter, we introduce our novel archi-
tecture, which leverages parallelization and a pioneering sharding technique in a
distributed database replication system. Our objective is to achieve superior scal-
ability and performance by incorporating a classic consensus mechanism such as
Practical Byzantine Fault Tolerance (PBFT) to handle clients’ requests. PBFT,
initially proposed by Miguel Castro in his PhD thesis at MIT in 2001, stands out
for its remarkable capabilities in operating within asynchronous systems like the
Internet. Unlike many other consensus algorithms, PBFT does not depend on
any synchrony assumption to ensure safety. This point is underscored by Castro
throughout his dissertation. For instance, on page 12, he asserts, “PBFT is the

78

first Byzantine-fault-tolerant, state-machine replication algorithm that works cor-
rectly in asynchronous systems like the Internet: it does not rely on any synchrony
assumption to provide safety1” [19].

4.1.1 Network Model

Consider a distributed network functioning as a replication system, featuring two
distinct node types:

• Clients: These nodes initiate requests directed towards a committee com-
prising a set of processors.

• Processors: Nodes enlisted as members of a committee, responsible for
processing requests originating from clients.

The task2 in this model is defined as processing requests by processor nodes after
executing a distributed consensus, and then storing it in the related shard. A
request is depicted by Rυ ∈ input = {R1, R2, . . .} as the input set of the network,
sent from the set of clients denoted by Cl = {nc1, nc2, . . . , ncκ}, where each client
is denoted by nc. The set of processors is denoted by Pr = {np1, np2, ... , npψ} and
each processor is denoted by np. Each processor is a member of a subset group in
the network N , called a committee that is depicted by γ. The set of committees are
denoted by Γ = {γ1, γ2, ... , γS}, where each committee itself is a set of processors.
Each committee processes a subset of requests to share the processing operations,
aiming for improved scalability, throughput, and system performance. Each shard

is denoted by si, and the set of shards forms the entire system N =
S⋃
i=1

si, where
S represents the total number of shards in the system. After joining a committee,
each processor node sends a request to the current members to receive the latest

1For a more in-depth exploration of PBFT, refer to Miguel Castro’s dissertation, particularly
pages 11, 12, 13, 16, 28, 71, 137, which can be accessed online at: https://pmg.csail.mit.
edu/~castro/thesis.pdf.

2The fundamental unit of distributed system is the notion of a task, formalized in multiple
papers (e.g, [23, 24]). A task is made up of n processors or computing entities, in such a way
that each processor has its own input and must compute its own output [22].

79

https://pmg.csail.mit.edu/~castro/thesis.pdf
https://pmg.csail.mit.edu/~castro/thesis.pdf

state of the replicated data of the shard.

The Parallel Committees architecture is designed to accommodate both permis-
sionless and permissioned networks3.

4.1.2 Node Public Key

In order to create a node identifier a user generates an Elliptic Curve key pair,
a sequence of 64 alphanumeric characters in 256-bits in length. To generate a
key pair, the Elliptic Curve Digital Signature Algorithm (ECDSA) scheme [43] is
used, as it can offer the same level of RSA4 security, but with a much shorter key
length and therefore better performance and scalability [48]. The private key is
utilized for signing a request in the case of a client node or for signing a decision
on a request in a consensus for a processor node. Meanwhile, the public key is an
integral part of the node identifier, whether for a processor or a client. There are
two possibilities to generate a key pair:

1. Fortuitous Key Generation:
This mode is utilized when the system determines the shard for a node. It
is mandatory for processors and optional for clients.

2. Customized Key Generation:
This mode is exclusively for client nodes, allowing users to determine the
shard they wish to join.

In both modes, key generation is achieved through an innovative PoW mecha-
nism known as KeyChallenge. This serves as an effective Sybil attack reduction
measure, outlined in detail in Algorithm 3. Processors are assigned to shards by
the system. Clients have the flexibility to either choose their desired shard or let
the system assign one. Consequently, the fortuitous key generation mode is ap-
plicable to both processors and clients, while the customized key generation mode
is exclusive to clients. The customized mode is implemented to minimize unde-
sired cross-shard transactions, utilizing the ‘associated clients’ concept explained
in Section 4.1.11.2.

3See definitions 5.2.1 and 5.2.2 in Chapter 5.
4Rivest-Shamir-Adleman encryption (RSA)

80

4.1.2.1 Assigning Public Keys to Shards

The assignment of each public key to a shard involves defining a range for each
of the 64 alphanumeric characters in the public key. That is, a node’s shard is
determined based on the range of each of 64 alphanumeric characters of the node’s
public key. If the public key’s characters fall within the designated ranges, the
node belongs to that shard. Each range is defined in the interval of ‘0’ to ‘f’
in hexadecimal. If it is intended that a public key character, say chth character of
the key, not to affect determining the shard of nodes, the range for that character
is defined from ‘0’ to ‘f’ as follows: key.charch ∈ [0, f]. The pseudo-code
for determining the ranges for each character of the public key in each shard is
detailed in Algorithm 2, called DefineRanges. In KeyChallenge algorithm that
works as a Sybil attack reduction mechanism, if a public key characters do not
meet the ranges defined by the system, then the user should try generating another
key until the public key characters match the range selected for a shard.

4.1.2.2 Validation of the Key by Committee

In the following, we demonstrate the complexity for an attacker attempting to
generate a public key with all characters aligning precisely with the system-defined
ranges. This is thanks to the randomness of Elliptic Curve Cryptography (ECC)
key generation that depends on the cryptographic entropy of ECC. As the first
step of key validation, the committee members check the public key format. We
use a common format for Elliptic Curve public keys which is also used in Bitcoin,
that is, the raw compressed public key format for the implicitly specified curve
secp256k1 [58]. Based on Standards for Efficient Cryptography, SEC 1: Elliptic
Curve Cryptography [59] a validity check of the public key format down to:

• Check that the public key is exactly 33 bytes.

• Check that the public key’s first byte is 0216 or 0316. This byte codes the
parity of the y coordinate, and needs no further check.

• Check that x < pm, where pm is the prime 2256 − 232 − 977.

• Compute s← (x3 + 7) mod pm.

81

• Check that s(pm−1)/2 mod pm = 1. This is based on the Euler’s criterion to
verify that there exists integer solutions y to the curve’s equation y2 ≡ x3+7

(mod pm). On curves with cofactor5 h = 1, including secp256k1, this proves
there exists a matching private key.

Note: Sometime we need the Cartesian coordinates of the curve point defined by
the public key. Since pm ≡ 3 (mod 4) for secp256k1, that can be done efficiently
together with a slightly modified version of the above last step:

• Compute y ← s(pm+1)/4 mod pm.

• Check that y2 mod pm = s, which completes the check.

• If the low order bit of y does not match the low order bit of the first byte of
the public key, then change y to pm−y. Now (x, y) are the desired Cartesian
coordinates, with both x and y in [1, pm).

If the public key format is based on the standard of Elliptic Curve Cryptography,
then it has been generated following the Elliptic Curve key generation algorithm
where the public key is derived from the private key and a randomness is followed
to generate the public key. In other words, if the public key format is correct,
it means that the randomness of ECC key generation is correctly followed, then
how the key is randomly generated depends on the cryptographic entropy of ECC.
Consequently, for the attacker it is impossible to generate a public key whose all
characters match the specific ranges determined by the system while it has been
also derived from a private key and simultaneously the Elliptic Curve key genera-
tion algorithm has been followed step by step. That is, the public key generation
process necessarily involves a random process that depends on the cryptographic
entropy of ECC.

To explain it differently, in ECC, public keys are generated following a specific
algorithm that involves private keys and a randomization process. The random-
ness is crucial for security and depends on the cryptographic entropy of ECC. For

5In cryptography, an elliptic curve is a mathematical group with a specified size denoted as
n. Typically, cryptographic operations are performed within a subgroup of prime order r, where
r is a divisor of n. The cofactor is represented by h = n/r [59].

82

an attacker to generate a public key with characters matching specific ranges de-
termined by the system, they would need to replicate the randomization process
precisely. However, the ECC key generation is inherently random and relies on
cryptographic entropy, making it practically impossible for an attacker to achieve
this. In simpler terms, the security of the public key generation process relies on
the unpredictability introduced by the ECC algorithm’s randomization, ensuring
a high level of protection against malicious attempts to manipulate key characters.

In the second step, the committee verifies the user’s ownership of the public key by
requesting a signature on a unique text. This text is meticulously crafted to ensure
uniqueness for every user, preventing registration of pre-existing public keys from
other individuals. The unique text creation involves each committee processor
proposing a random number within the range of [0,ξ]. To prevent the occur-
rence of repeated random numbers, it is advisable to set ξ to a sufficiently large
value. Subsequently, the proposed random numbers from all committee members
are amalgamated to generate the desired text. By signing this randomly generated
text, the user demonstrates possession of the corresponding private key. Following
a round of consensus, the submitted signature undergoes verification by the com-
mittee’s processors and is recorded in the committee’s distributed ledger.

In scenarios where the committee has no members during bootstrapping, the first
cc processors in the committee queue assume the role and collaborate to construct
the unique text as described, where cc is the committee capacity. For instance, if
a committee capacity, cc, is set to 10 processors, the unique text is generated by
the first 10 processors in the committee queue.

4.1.2.3 How to Set the Range for Each Public Key Character

This kind of key generation is a PoW challenge, so that the length of ranges for
the key characters affect the difficulty level of the challenge: for each shard, the
larger range for each key character, the easier the key generation is for that shard,
as the number of acceptable keys gets more and consequently the probability of
generating an acceptable key in each attempt increases. The sample space, Sp,
as the total number of possible cases for a key with the size of ks consisting of

83

Figure 4.1: Setting the range for each public key character.

alphanumeric characters in hexadecimal, from ’0’ to ’f’, is Sp =
∏ks

i=1 opi = 16ks.
That is, the arrangements of ks objects with 16 options, opi, available where order
is relevant and repetition is allowed. In the easiest case of challenge to generate
a key for a specific shard only one character of the key is customized, where
only one case is not acceptable, hence, the total number of acceptable cases is
α = 15 ×

∏ks−1
i=1 opi = 15 × 1663 , and therefore, the probability that a generated

key in each attempt is acceptable for that shard is p = (15× 1663)/1664 = 0.9. On
the other side, in the most difficult challenge to generate a key for a specific shard
all the characters are customized, each of which with least range, hence, the total
number of acceptable cases is α = 1 and the probability that a generated key in
each attempt is acceptable for that shard is p = 1/1664 = 8.63616856×10−78. (See
Figure 4.1).
This allows the difficulty of the KeyChallenge in each shard to be dynamically
adjusted based on the rate of processor and client generation. In other words,
the simplicity level of KeyChallenge in a shard is inversely proportional to the
rate of node creation within that shard. To make this adjustment and setting, an
equation based on the binomial distribution is solved as follows:

P (Bn,p = k) =

(
n

k

)
pk(1− p)n−k , k ∈ {0, .., n}

where, P is the probability of generating exactly one acceptable key during d days,
n is the total number of keys that an assumed machine6 with specific computa-

6An assumed machine is a computer that most computers that generate keys are estimated

84

tional power is capable to generate during d days, p is the probability of generating
an acceptable key by the assumed machine in each attempt, and k is the exact
number of times that the assumed machine should be successful in generation of
an acceptable key.

If in Algorithm 1, FindProb, p finally gets 0, then a new smaller d should be
considered, because the expectation from the assumed machine to produce an
acceptable key during d days has been more than the assumed machine’s compu-
tational power. For more clarification, we give the following example: assume an
ordinary computer (as the assumed machine) is capable of generating 106 keys per
second and it is expected that this assumed machine to generate an acceptable
key after one week non stop attempts. Based on this assumptions, P = 1, d =
7 days, n = 106 × 604, 800 (7 days = 604,800 seconds), and k = 1. Then, the
following equation should be solved to obtain p as the probability of generating an
acceptable key by the assumed machine in each attempt:

P (B6048×108 , p = 1) =

(
6, 048× 108

1

)
× p× (1− p)106−1 = 1

p× (1− p)106−1 = 1/(6, 048× 108)

This equation is called probe in Algorithm 1. The pseudo-code for obtaining p is
detailed in Algorithm 1. Since p is probability, obviously p ∈ [0, 1]. This helps to
solve the polynomial equation probe in an easier way compared to the Newton-
Raphson method [70] so that the value of p starts from 0 and if it meets the
equation probe, then the value of p is considered as the correct answer, otherwise
p increases by ε and retrying to check if the new value of p meets the equation
probe. By this approach, if ε is set to 0.1 or 0.01, p can be obtained in at most 10
and 100 trials, respectively. How the variable ε is set depends on how accurately
the probability p is expected to be obtained. The smaller the value of ε, the more

to be of that type in the sense of computational power. Hence, to adjust the difficulty level of
the key generation challenge, the assumption should be realistic, otherwise the probability of
generating an acceptable key by the assumed machine in each attempt returned in Algorithm 1
becomes zero so that a new smaller d should be considered, because the expectation from the
assumed machine to produce an acceptable key during d days has been more than the assumed
machine’s computational power.

85

accurate p is obtained. After obtaining p, the total number of acceptable cases, α,
is calculated by the following equation:

p = α/Sp⇒ α = p/16ks

(Sp: sample space. ks: key size. If the key size is 64, Sp , is 1664)

Then, calculating the 64th root of α to obtain δ as the length of each range for
each character of the key: δ = 64√

α

4.1.2.4 Key-Withholding Prevention

Definition 4.1.1 (Key-Withholding). If someone spends a significant amount of
time generating a large number of public keys in order to use them in the future
to join shards, this behaviour is called “Key-Withholding”.

The malicious action of “Key-Withholding” is easily preventable by changing the
acceptable ranges for each character of the public key periodically. In this way, for
example, assume in the first week, the acceptable range for the chth character of
the public key for the si is [9,f], but in the second week, this range will change
to [1,6]. And thus, the public keys that were generated in the first week and
were acceptable during that time period but not used by the user, are no longer
acceptable in the second week. And as a result, the user who saved public keys
has to generate new public keys again and send them to shards. Obviously, if the
keys that are acceptable in the first week are sent to shards in the same period
and registered in the distributed ledger as acceptable public keys, they will remain
acceptable in the second week as well.

86

Algorithm 1: FindProb
Input: probe
Output: p

1 ε /* p increases by ε and retrying to check if p meets the probe. */

2 p ← 0
3 Function FindProb():
4 while p < 1 do
5 put p in probe
6 if probe is true then
7 break
8 else
9 p+ = ε

10 end
11 end
12 return p

Algorithm 2: DefineRanges
Input: S, ps /* S: number of shards. ps: The value of p for shard s. */

Output: Ranges for each character of the public key in each shard
1 Function DefineRanges():
2 for s← 1 to S do
3 α← ps/16

ks
/* ks: key size. */

4 δ ← 64√
α

5 for ch← 1 to ks do
6 [xch,s, ych,s] ← select a random range of length δ ∈ [0,f]
7 end
8 end

87

Algorithm 3: KeyChallenge: The first Sybil attack reduction mecha-
nism. The second one is IDpChallenge detailed in algorithm 4.

Input: node.type
Output: key

1 Function KeyChallenge():
2 key ← null
3 if node.type = processor then
4 mode← fortuitous
5 node.s← null /* node.s: The ID of the node’s shard. */

6 else
7 Ask the client to choose either mode fortuitous or customized.
8 mode← client choice: fortuitous or customized
9 if mode = fortuitous then

10 node.s← null
11 else
12 Ask the client to choose shard.
13 node.s← client choice: ID of the node’s shard.
14 end
15 end
16 while node.s = null do
17 key ← EllipticCurveKeyGenerator()
18 for s← 1 to S do
19 ch← 1
20 while ch ≤ ks do
21 if key.charch ∈ [xch,s, ych,s] & ch < ks then
22 ch++
23 else if key.charch ∈ [xch,s, ych,s] & ch = ks then
24 node.s← s
25 return key

26 else
27 break
28 end
29 end
30 end
31 end
32 while node.s 6= null & mode = customized do
33 key ← EllipticCurveKeyGenerator()
34 s← shard
35 ch← 1
36 while ch ≤ ks do
37 if key.charch ∈ [xch,s, ych,s] & ch < ks then
38 ch++
39 else if key.charch ∈ [xch,s, ych,s] & ch = ks then
40 node.s← s
41 return key

42 else
43 break
44 end
45 end
46 end

4.1.3 Graph View of the Network

The graph depicted in Figure 4.2 shows a high-level view of a network with two
shards, including processors and clients. Each vertex represents a node that con-
tains a label as the node identifier. The nodes are connected by edges or links.
The colors of the nodes represent the following meanings:
- light-grey: processors belonging to shard s1.
- dark-grey: processors belonging to shard s2.
- light-blue: clients belonging to shard s1.
- dark-blue: clients belonging to shard s2.

The constituent elements of each shard are described as follows:

Shard s1: including 7 processors, 5 of which are in committee γ1 and 2 of which
are backup processors waiting in the committee queue ϕ1:

γ1 = {np1, np3, np5, np6, np7}
ϕ1 = {np2, np4}

Shard s2: including 8 processors, 5 of which are in committee γ2 and 3 of which
are backup processors waiting in the committee queue ϕ2:

γ2 = {np9, np11, np12, np14, np15}
ϕ2 = {np8, np10, np13}

4.1.4 Proof-of-Work: Mitigating Sybil & DoS Attacks

In a proof-of-work scheme, the prover generates a token by expending resources
such as CPU, GPU, and electricity. This process serves as evidence to verifiers
that a specified amount of computation, with its difficulty level adjusted according
to the total mean computational power of the network, has been completed. On
the contrary, the verification process is not resource-intensive for the verifier, who
can easily check if the prover has conducted the computations accurately and
thoroughly. The concept used in proof-of-work procedure was first introduced in
1992 in [33] as an approach to defeat denial-of-service attacks as well as a technique

89

c2

p1

p11
p6

p8

c6

p3

p10 p13

p15

c7

c3

c4

p14p7
p9

p2
c5

p12

c1

p4

p5

Figure 4.2: A graph view of a network with two shards, such that light-grey and
dark-grey represent the processors of shards 1 and 2, respectively; and light-blue
and dark-blue represent the clients of shards 1 and 2 ,respectively.

to prevent spam on a network. It also makes the Sybil attack more costly [40].
Then, the term “proof-of-work” was put to use in 1999 [34]. Hashcash [10] in 2002
introduced a CPU cost-function proof-of-work computing token to be used as a
denial-of-service counter measure. The proof-of-work then became popularized
when it was employed in 2009 in the Bitcoin network [6] in order to achieve an
agreement between the miners which propose the next block. It is worth noting
that although the PoW is used as a so-called “consensus” mechanism in the Bitcoin
network, there is a controversy and a difference of opinion in recognizing PoW as a
consensus because there is a belief that it does not have the required properties of
a consensus mechanism [35–38]. The goal of a consensus mechanism is to ensure
that all correct processes reach a unanimous (agree on the same) and irreversible
(final and consistent) decision on a proposed value. In a consensus mechanism,
each correct (or non-faulty) process proposes a value and all processes must reach a
unanimous and irreversible decision on the proposed value [149]. For this purpose,
all the following properties must be met in a consensus mechanism [112]:

• Termination: Every correct process eventually decides some value. This
ensures that the consensus process concludes within a finite time.

90

• Uniform integrity: Each process makes a decision at most once. This prop-
erty prevents processes from changing their decisions after reaching consen-
sus and ensures the singularity of decisions.

• Agreement: No two correct processes lead to two different decisions. This
ensures that all correct processes agree on the same value.

• Uniform validity: If a process’s decision is ‘d’, then some process proposed
‘d’. This ensures that the decided value is a valid input proposed by some
process.

These properties collectively define a robust consensus mechanism. It’s important
to note that different consensus algorithms might have additional requirements or
variations of these properties, depending on their specific design and goals. How-
ever, the core concepts of termination, uniform integrity, agreement, and uniform
validity are fundamental to the functionality and reliability of a consensus mech-
anism.

Bitcoin’s PoW mechanism does not fully satisfy the condition of “agreement” in the
above list. In Bitcoin’s PoW, there can be moments when the network experiences
temporary forks, especially during the creation of new blocks. Miners may find
valid solutions to the cryptographic puzzle simultaneously, resulting in competing
valid blocks. This can lead to a scenario where different parts of the network
initially support different blocks. While the network eventually converges to a
single chain, and the longest-chain rule determines the canonical blockchain, there
are brief periods where the consensus is not unanimous, and different nodes might
temporarily support different blocks. This aspect of temporary forks is inherent in
the probabilistic nature of Bitcoin’s PoW mechanism. Hence, we do not use PoW
for consensus, but for the original goal it was designed for, that is, making Sybil
and DoS attacks more expensive. As for achieving consensus, we employ a classic
mechanism such as PBFT.

91

4.1.4.1 Creating Processor Identifier

A Sybil attack happens when a single malicious entity can generate multiple iden-
tifiers, allowing it to exert influence over a significant portion of the network [39].
Hence, in order to make the Sybil attack more costly, each new processor is created
after performing a proof-of-work that is called IDpChallenge and is detailed in
Algorithm 4. The IDpChallenge as a PoW mechanism is intended for processors
in addition to KeyChallenge in order for the processors to rejoin the committee
with a new identifier after leaving the committee so that they cannot use the pre-
vious identifiers. Since the public key of the processors along with their previous
identifiers are registered in the ledger of the committee, the reuse of the previous
identifiers can be detected by the committee members. Alternatively, since the
input parameter tr of the PoW IDpChallenge increases by one unit every time
a processor exits the committee, the resulting identifier for the processor differs
from its previous identifiers. This is because tr contributes to the formation of a
processor’s identifier. A crucial note is that the new identifier of the processor may
be smaller than the smallest identifier in the committee, or it may be higher than
the highest identifier, or neither may occur. (For more details on this, see Sections
4.1.6 and 4.1.12.) This Sybil attack mitigation mechanism is only intended for pro-
cessor nodes because client nodes do not pose any security risk to the system until
they send a request. The security risk that client nodes can pose to the network
is a DoS attack by sending too many requests to the system, which is made costly
by Algorithm 6, RequestChallenge, as a DoS attack mitigation mechanism. The
IDpChallenge is also used when renewing a processor node’s ttl (see Section 4.1.7
for more detail about the processors’ ttl that stands for ‘Time To Live’). After
each time a processor leaves the committee, it has to perform an IDpChallenge to
rejoin the committee, where its identifier is updated with increasing the parameter
tr (stands for ‘ttl renew’) by one unit, as well as a new IDpChallenge’s answer
that is attached to the node’s identifier.

In algorithm 4, the simplicity level of the puzzle depends on the rate of processor
creation in each shard, that is, the more processors created per time unit in a
shard, the more difficult the IDpChallenge is for that shard. The simplicity level

92

Algorithm 4: IDpChallenge: as the second Sybil attack reduction mech-
anism.

Input: key, s, tr /* key: Public key of the node. */
/* s: The shard to which the node belongs. */

/* tr: The number of times the ttl has been renewed. */

Output: %idc /* It will hold answer of IDpChallenge algorithm. */

1 Function IDpChallenge():
2 %idc ← 0

3 h← 0 /* The digest or hash value created by SHA-256 hash function. */

4 simidc ← simplicity /* Greater value for simidc ⇒ Easier challenge. */

5 concat← null /* concat holds concatenation of key + %idc + s + tr. */

6 while true do
7 %idc ++ /* %idc increases by one unit after each round. */

8 concat ← key + %idc + s + tr /* ’+’ : concatenation sign. */

9 h ← H(concat) /* H: SHA-256 hash function. */

10 if h < s.simidc then
11 break /* %idc is correct answer of puzzle; break infinite loop. */

12 end
13 end
14 return %idc /* Returning %idc as output of the algorithm. */

is set by the parameter simidc, so that the smaller value, the more difficult the
IDpChallenge is.

In each shard, the simplicity level of IDpChallenge, simidc, inversely correlates
with the rate of processor node creation, τp, as shown in Equation 4.1.

si.simidc ∝
1

si.τp
, (1 6 i 6 S) (4.1)

A processor after performing Algorithm 4 will send the PoW answer, %idc, to the
committee so that if the processor node has properly performed the IDpChallenge,
the committee will add the processor identifier to the committee queue as a backup
processor. The PoW answer, %idc, verification process is done through the Algo-
rithm 5, IDpChallengeCheck.

93

Algorithm 5: IDpChallengeCheck: to check whether a processor has
properly solved IDpChallenge.

Input: np /* np : processor node identifier. */

Output: boolean
1 Function IDpChallengeCheck():
2 concat ← np.key + np.%idc + np.s + np.tr
3 h ← H(concat)
4 if h < s.simidc then
5 return true /* IDpChallenge has been solved in a correct way. */

6 else
7 return false /* IDpChallenge has not been solved in a correct way. */

8 end

4.1.4.2 Sending Clients’ Requests to Committees

A DoS condition is accomplished by flooding the targeted network with traffic
until the target cannot respond or simply crashes, preventing access for legitimate
users [88]. In case of Distributed Denial of Service (DDoS), flooding the targeted
network is done by sending data simultaneously from many individual computers.
Hence, in order for a client to send a request to a committee, there is another PoW
challenge, named RequestChallenge, that should be solved by the client before
sending a request.

The RequestChallenge is considered to make DoS attacks more costly, that is, to
prevent a client from sending too many requests to a committee simultaneously or
sequentially.

The simplicity level is set by the parameter simrc, so that the smaller value, the
more difficult the RequestChallenge is. The simplicity level of RequestChallenge
depends on the rate of incoming requests, so that, more requests arriving to a com-
mittee per time unit, the more difficult the RequestChallenge is for that shard,
that is, simrc is inversely proportional to the rate of incoming requests, τr, as
depicted in equation 4.2.

si.simrc ∝
1

si.τr
, (1 6 i 6 S) (4.2)

94

The pseudo-code for RequestChallenge is detailed in Algorithm 6.

Algorithm 6: RequestChallenge: as a DoS attack reduction.
Input: key, s, Rσ /* key: Public key of the node. */

/* s: The shard to which the node belongs. */
/* Rσ: Request signed by client. */

Output: %rc /* It will hold answer of RequestChallenge algorithm. */

1 Function RequestChallenge():
2 %rc ← 0

3 h← 0 /* The digest or hash value created by SHA-256 hash function. */

4 simrc ← simplicity /* Adjusted based on the equation 4.2. */

5 concat′ ← null /* concat′ holds concatenation of k, %rc, c and requestMD. */

6 while true do
7 %rc ++ /* %rc increases by one unit after each round. */

8 concat′ ← key + %rc + s + Rσ

9 h← H(concat) /* H: SHA-256 hash function. */

10 if h < simrc then
11 break /* %rc is correct answer of puzzle; break infinite loop. */

12 end
13 end
14 return %rc /* Returning %rc as output of the algorithm. */

After performing the RequestChallenge by the clients, they can send the request
to the committee based on Algorithm 7.

Algorithm 7: SendRequestByClient: to send a request to a committee.
Input: Rσ, nc.id, γ.id, key

1 Function SendRequestByClient():
2 %rc ← RequestChallenge(key, s, Rσ) /* Client runs RequestChallenge algorithm to

find the correct answer. */

3 SendRequest(Rσ, nc.id, γ.id, %rc)
4 /* Sending signed request to the committee by client. The committee is able to check if the

client has solved the required RequestChallenge puzzle properly. */

The committee processors utilize a verification function, RequestChallengeCheck,
to ascertain whether the client has successfully and adequately solved the 6 algo-
rithm with the prescribed difficulty level, taking into account the rate of incoming

95

requests to the committee, as outlined in equation 4.2. The pseudo-code is detailed
in Algorithm 8.

Algorithm 8: RequestChallengeCheck: to check whether a client has
properly solved RequestChallenge.

Input: nc, Rσ

Output: boolean
1 Function RequestChallengeCheck():
2 concat = nc.key + nc.%rc + nc.s + Rσ

3 h← H(concat)
4 if h < simrc then
5 return true /* RequestChallenge puzzle has been solved in a correct way. */

6 else
7 return false /* RequestChallenge puzzle has not been solved properly or satisfactorily.

*/

8 end

4.1.5 Node’s Crypto-Tokens

The European Central Bank (ECB) has chosen to define crypto-assets as a new
type of asset recorded in digital form and enabled by the use of cryptography [27].
A node token balance represents the total number of tokens or crypto-assets that
the node holds. These tokens are used to increase system security particularly
when the network is permissionless7, in such a way that each node needs a certain
number of tokens in order to send a request to a committee. The number of
required tokens for a request is calculated based on the size of the data inside the
client request: the larger the data size, the more tokens are required. The reason
is that a request with larger data occupies more space in the replication system
for storage. This approach has similarities with the direct proportion between the
size of a smart contract and the fee in Ethereum, where Ethereum charges for the
storage of the contracts. According to the Ethereum whitepaper [7], Ethereum
charges 20,000 gas8 per 256 bits, that is, for 1 kilobyte of data, the price would be

7See definitions 5.2.1 and 5.2.2 in Chapter 5.
8In Ethereum terminology, gas is the cost unit, gas price is a single gas unit’s price and fee

= gas × gas price. The reason for using gas instead of wei in Ethereum is the need for a fixed
value or unit for expressing the operations cost, so that this initial cost is translated in wei/ether
which may vary according to the market.

96

640,000 gas. This means that the more the size of a smart contract, the more will be
the gas price. Using such tokens in permissionless networks increases the security
of the system to prevent spam requests more efficiently, as each client possesses a
limited number of tokens. This method can help Algorithm 6, RequestChallenge,
in order to make DoS attacks more costly. On the other hand, if the node is a
processor, it makes the processor more motivated to follow the algorithm, in such
a way that a processor receives a certain number of tokens for participating in
each consensus, and for a certain number of tokens, one unit is added to the
processor’s ttl (see Section 4.1.7 for more detail about the ttl). Also, in order
for a processor to be a member of a committee, it has to lock a certain number
of tokens. This serves as collateral, such that in the event of a consensus among
committee members regarding a processor’s malicious behavior, the locked tokens
of the processor are distributed among the other committee members.

4.1.6 Proactively Circulating Committee Members

A committee capacity means that the maximum number of members (processors)
per committee is limited at any given moment of time, that is, each committee has
a limited number of “seats”, each of which will be dedicated to a processor. Each
committee is allocated a predefined number of ‘seats’, which is determined during
the system’s configuration. The parameters initialized in the configuration can be
adjusted as needed, considering factors like the rate of incoming transactions per
time unit and the system’s throughput. This flexibility allows for adaptation to
changing requirements and circumstances. The value of the committee capacity is
adjustable and depends mainly on the message complexity of the consensus mech-
anism used in each committee because if the number of a committee processors
exceeds a certain number, it may slow down the consensus process on each client
request (see Figure 3.2 and 4.9a). Each seat is occupied by a processor node, so
that once a committee capacity is completed, none of the backup processor nodes
in the committee queue can join the committee until a seat gets vacated. As soon
as a seat in a committee gets vacated due to exhausting the ttl of a processor,
one of the backup nodes waiting in the committee queue occupies the free seat.
Proactively circulating committee members brings several benefits:

97

• Prevents prolonged occupation of a committee by a group of processor nodes,
particularly Byzantine and faulty processors.

• Mitigates excessive committee growth, addressing scalability concerns and
reducing latency in processing client requests.

• Due to the proactive circulation of committee members, over a given time-
frame, there exists a probability that several faulty nodes are excluded from
the committee and placed in the committee queue. Consequently, during
this time-frame, the faulty nodes in the committee queue do not impact the
consensus process.

A very important point to note is that the capacity of committees does not limit the
scalability of the network at all, because any unlimited number of nodes can be can-
didates to join a committee. The committee’s capacity means that the maximum
number of members (processor nodes) per committee at any given moment of time
is limited, and the rest of candidates must wait in the committee queue as backup
processors till a seat in the committee gets vacated after a processor’s ttl is
exhausted. There is a capacity for each committee because the consensus mech-
anisms (PBFT, Raft, Paxos etc.) used in the committees cause high latency and
low throughput by increasing the number of processor nodes. (see Figure 3.2.)

4.1.7 Processor’s TTL

Another novel technique in our proposed architecture is called processor’s ttl, by
which each processor is permitted to process a limited number of clients’ requests.
Regardless of what consensus mechanism is used to process clients’ requests, af-
ter each request processing, the committee selects the processor with the highest
identifier value to decrement its ttl by one unit. When a processor’s ttl is over,
it has to leave the committee, meaning that it will be removed from the list of all
committee’s processors. In order for a processor node to re-join the committee, it
should generate a new identifier by solving a PoW through the 4 algorithm and
renew the ttl as detailed in Algorithm 9. Since the node’s previous identifier
is already recorded in the list of all committee’s processors and the distributed
ledger, if a processing node reuses the old identifier to rejoin the committee, it

98

will be detected by the committee. If the selected processor is the current leader
of the committee and reducing its ttl causes the leader to exit the committee, a
new leader will be chosen through the consensus mechanism’s view-change process.

Algorithm 9: RenewTTL algorithm: to renew processor’s ttl.
Input: key, s, tr, node.type

1 Function RenewTTL():
2 tr ++
3 if node.type = client then
4 error message /* “ttl is not considered for client nodes.” */

5 else
6 %idc ← IDpChallenge(key, s, tr)
7 node.id← key + %idc + s + tr /* Generating new node identifier. */

8 node.id.ttl← The value set for ’ttl’ by the system.
9 /* The value set by the system for the Time To Live parameter for each shard. */

10 SendUpdates(idnew, idold, γ.processors)
11 /* The node’s new identifier with updated tr is sent to other committee members. */

12 end

4.1.8 Committee Queue & Backup Processors

A committee queue consists of the backup processor nodes waiting to join the
committee, where they are selected by the committee. The approach of selecting
a backup node from the queue to join the committee is similar to the process of
selecting a processor to reduce ttl, that is, the backup processor with the high-
est identifier value is selected to join the committee. The strategy of choosing
backup nodes from the queue serves as an effective deterrent against the collu-
sion of Byzantine processor nodes. This method disrupts attempts to strategically
place colluding nodes sequentially in the queue with the intention of dominating
a specific committee. The innovative concept of assigning a ttl value to each
processor node introduces a nuanced approach. A higher identifier value grants a
processor node an advantage in being selected from the queue to join the commit-
tee. However, this advantage is counterbalanced by the fact that a high identifier

99

value can be viewed as a disadvantage, as it increases the likelihood of being se-
lected for ttl deduction after each consensus round. This approach demonstrates
a skilful utilization of both rewards and penalties.

To enhance clarity, we detail the proactive circulation process of committee mem-
bers using the example depicted in Figure 4.4. As illustrated in part (1) of the
Figure, the processors’ ttl is initialized to 2 in this example. Subsequently, in
part (2), transaction txα undergoes processing after a round of consensus. Moving
to part (3), processor p83, having the highest identifier, is chosen to reduce its
ttl. Following this, in part (4), another transaction, txβ, undergoes processing
after a round of consensus. In part (5) of the Figure, once again, processor p83 is
selected to reduce its ttl due to having the highest identifier in the committee.
Consequently, in part (6), the ttl of processor p83 reaches zero, necessitating its
departure from the committee. Proceeding to part (7) of the Figure, the processor
with the highest identifier in the committee queue, namely processor p97, is chosen
to join the committee. In part (8), for processor p83 to rejoin the committee queue,
it must generate a new identifier by resolving an IDpChallenge PoW and renew its
ttl. And that’s why we considered the IDpChallenge as a complementary PoW,
in addition to the KeyChallenge PoW for processor nodes. A crucial note is that
the new identifier of processor p83 may be smaller than the smallest identifier in
the committee, or it may be higher than the highest identifier, or neither may
occur. For this example, we assume that after executing a new IDpChallenge,
the new identifier of processor p83 is p1. Moving forward to part (9), the ttl of
processor p1, the successor of processor p83, is initialized to 2. Finally, in part (10),
processor p1 can join the committee queue to rejoin the committee.

Due to the proactive circulation of committee members, over a given time-frame,
there exists a probability that several faulty nodes are excluded from the committee
and placed in the committee queue. Consequently, during this time-frame, the
faulty nodes in the committee queue do not impact the consensus process. This
procedure can improve and enhance the fault tolerance threshold of the consensus
mechanism. See Figure 4.3 for more details, where the consensus mechanism used

100

in the committee γ1 is PBFT9. Taking into account the fault tolerance threshold
of the PBFT consensus mechanism, that is, 3f + 1 ≤ n (where, f is the number
of Byzantine or faulty nodes, and n is the number of participating nodes in the
consensus process), and considering that in time-frame 1, two Byzantine nodes are
in the committee, PBFT cannot tolerate faulty nodes. Whereas in time-frame 2,
node83, as a Byzantine node, leaves the committee due to its ttl value reaching
zero, and consequently, the PBFT consensus with 5 participating processors can
tolerate a single Byzantine node. This improvement in fault tolerance is achieved
thanks to the proactive circulation of committee members.

4.1.9 Force Majeure TTL Reduction Mechanism

We define a parameter named Omega (Ω) as the expected delay for completing a
consensus round. The Ω value is initialized case by case according to the average
delay in each particular consensus mechanism, such as PBFT, Paxos, Raft, etc., in
a normal operation. If a consensus round does not successfully terminate within the
Ω period of time, it is likely that the number of faulty nodes has exceeded the fault
tolerance threshold of the consensus mechanism. In such circumstances, the “force
majeure ttl reduction” takes place, decrementing the ttl of the processor with
the highest identifier by one unit. This action triggers the automatic purging of the
committee from faulty processors and their replacement with backup processors.

4.1.10 Forming New Committees Automatically

In the following, we explain how to automatically form new committees based on
the rate of candidate processor nodes. Figure 4.5 shows the active processors, the
queued backup processors, as well as the inactive surplus processors in committee
γ1, which form the new committee γ2 to play an effective role in the network and
become active processors. When the rate of processor candidates to a commit-
tee exceeds the committee’s queue size, these candidate nodes are called inactive
surplus. If the number of inactive surplus candidates is at least equal to the com-
mittee’s capacity, a new committee will be formed, so that the inactive surplus

9Practical Byzantine Fault Tolerance [19]

101

Figure 4.3: Improving fault tolerance of the consensus mechanism with the help of the proactive
circulation of committee members.

102

Figure 4.4: Proactively Circulating Committee Members.

103

candidates will join the new committee. The purpose of this technique is to opti-
mally use all network capacity, so that inactive surplus processors in the queue of
a committee that were not active are employed in the new committee and play an
effective role in increasing the throughput and the efficiency of the system. This
technique leads to maximum utilization of processor nodes and the capacity of
computation and storage of the network to increase both processing sharding and
storage sharding as much as possible.

In Figure 4.5, it is possible to control the rate of creating new shards by adjusting
the queue size of the current committees. Reducing a committee’s queue size can
convert a portion or the entirety of the backup processors into surplus proces-
sors, and vice versa. Conversely, increasing a committee’s queue size can result
in converting a portion or the entirety of the surplus processors into backup pro-
cessors. The choice of an appropriate adjustment should be based on the specific
circumstances of each use case and application.

4.1.11 Transactions Across Shards

When a token transfer transaction occurs between two clients while each of them
is assigned to a different shard, there are two general approaches to deal with such
a situation, which are described below:

4.1.11.1 Cross-Shard Processing

The first approach is to make a cross-shard or inter-shard processing. Processing a
cross-shard transaction is similar to what is called the two-phase commit approach,
but with some major differences; for example, the coordinator is the same as the
committee to which the token-sending client node is assigned. The 2PC approach
provides atomicity while a transaction is distributed between multiple nodes. The
result of a transaction is either a successful commit, so that all changes are made
permanent and durable, or an abort, that is, all changes are rolled back, undone,
or discarded. This feature is called atomicity, which prevents failed transactions
from littering the database with half-finished results and half-updated state [50].
Two-phase commit, on which our approach to process cross-shard transactions

104

Figure 4.5: Forming new committees automatically based on the rate of candidate processor
nodes. It is possible to control the rate of creating new committees by adjusting the queue size
of the current committees. This way, a portion or the entirety of the surplus processors will be
converted into backup processors.

105

is based, is a classic algorithm in distributed databases [60, 62, 108] to achieve
atomic transaction commit across multiple nodes to ensure that either all nodes
commit or all nodes stop. Two-phase commit employs a new component that is
not typically present in single-node transactions: a coordinator that is also known
as a transaction manager.
In order to match the two-phase commit mechanism with the circumstances, com-
ponents and architecture of our protocol and network, we changed the two-phase
commit mechanism such that the committee to which the token-sending client node
is assigned, in addition to being a participating part of the transaction, also plays
the role of coordinator. We did so because if we wanted to consider a component
as coordinator other than the shards participating in the transaction, we would
have to use a component like the Beacon ledger (as a shared-ledger), whereas for
the reasons explained earlier in Section 3.2.1.3, we do not want to have a shared-
ledger in our designed architecture. The schema of a classical 2PC algorithm is
shown in Figure 4.6 according to [50] where a transaction is performed between
two distributed databases, which we modified to fit our protocol as illustrated in
Figure 4.7.
As another significant difference between classical 2PC and our modified version,
while in the original 2PC algorithm, the coordinator and participating databases
are each only one node, in our architecture, the coordinator and the participant
are a committee consisting of several nodes, which makes it more resistant to
the failure of the coordinator. That is, the probability that the coordinator—
as a committee—fails is much lower than a classic two-phase commit, where the
coordinator is a single node. Our two-phase commit approach is detailed as follows
based on the steps illustrated in Figure 4.7, where each step is depicted by a number
to make it easier to describe. (1) The token-sending client prepares a transaction
request including the signature, receiver identifier and the number of tokens and
then sends it to the token-receiving client. (2) The token-receiving client signs
a response as an acceptance of the transaction and sends it to the token-sending
client. (3) The token-sending client submits the transaction to the committee
assigned to it. (4) The committee of the token-sending client runs a consensus
to process the sender (or debit) part of the transaction. (5) and if the debit (or
sender) part of the transaction is valid it sends a request to the token-receiving

106

Figure 4.6: A classical Two-Phase Commit algorithm according to [50] where a transaction is
performed between two distributed databases, which we modified to fit our protocol as illustrated
in Figure 4.7.

107

client’s committee. (6) Otherwise it sends an abort message to the token-sending
client. (7) The committee of the token-receiving client runs a consensus to process
the credit (or receiver) part of the transaction. (8) If the credit (or receiver) part
of the transaction is valid, it sends a positive response to prepare a request for
the token-sending client’s committee. Otherwise, it sends a negative response.
(9) If the response of the committee of the token-receiving client is positive, the
token-sending client’s committee holds a commit point in the log showing the
transaction has already been accepted by the committee of the token-receiver and
sends a commit request to the token-receiving client’s committee. (10) Otherwise
it sends an abort message to the token-sending client. (11) The committee of the
token-receiving client commits the transaction after receiving the commit request
from the committee of the token-sending client (12) and also it sends a commit
receipt to the token-receiving client, (13) as well as a commit receipt to the token-
sending client’s committee. (14) The committee of the token-sender then sends a
commit receipt to the token-sending client.

4.1.11.2 Associated Clients

As we can see, in a cross-shard processing approach, since each participating shard
has access to only part of the transaction data for processing, so to process a
cross-shard transaction—as opposed to an intra-shard transaction performed in
a single shard—consensus must be executed twice with more message exchanged
between the two shards. All these circumstances make cross-shard processing more
complicated, more complex, and therefore more expensive than an intra-shard
transaction. As a result, the fee tokens required to make a cross-shard transaction
are more than intra-shard transactions made in a single shard. Therefore, in
order to reduce the number of cross-shard transactions, we also considered another
approach to process the token transfer transactions while the token-sending client
is assigned to another shard to which the token-receiving client is assigned. In the
second approach, it is the token-receiving client that decides how such a transaction
is processed: either a cross-shard transaction processing approach with higher fee
as described in Section 4.1.11.1, or by creating an associated client account on
the shard to which the token-sending client is assigned. Figure 4.8 depicts such a
situation. To do this, the token-sending client that is assigned to shard s1 sends a

108

Figure 4.7: A cross-shard or inter-shard transaction processing.

109

Figure 4.8: Avoiding a cross-shard transaction by creating an associated client node by the
user receiving the token in the shard to which the token-sending client is assigned.

request transaction message to the token-receiving client that is assigned to shard
s2. If the token-receiving user prefers to avoid a cross-shard transaction that has
a higher fee, it must instead create an associated client node in shard s1 where the
token-sending client is assigned after running the algorithm 3, KeyChallenge, as
a Sybil attack reduction mechanism using the customized key generation mode as
described in Section 4.1.2, and then sends an acknowledge message to the token-
sending client containing the public key of its associated client. The token-sending
client then submits a transaction request message to the associated client created
by the token-receiving user. And the associated client signs a response as an
acceptance of the transaction and sends it to the token-sending client. The token-
sending client then submits the transaction to the committee assigned to it, that
is, committee γ1, which executes a consensus to process the transaction and sends
a commit receipt to the token-sending client as well as the associated client of the
token-receiving user, if the transaction is valid. Otherwise, it sends them an abort
message.

110

4.1.12 Node Identifier General Format

A node identifier is a sequence of alphanumeric characters that is formed after
concatenating multiple necessary parameters. If a node is of processor type, the
following four parameters are concatenated as the node identifier:

1. The answer of IDpChallenge, %idc.

2. The number of times the ttl has been renewed, which is represented by tr,
stands for ‘ttl renew’.

3. The shard the processor belongs to.

4. The node public key.

Therefore:

I A processor node identi�er is formed as follows:
%idc + tr + si + key
- -
I An example of a processor node identi�er assigned to shard s1:
[256][0][1][0x3804a19f2437f7bba4fcfbc194379e43e514aa98073db3528ccdbdb642e240]

If a node is of client type, the following two parameters are concatenated as the
node identifier:

1. The shard the client belongs to.

2. The node public key.

Hence:

I A client node identi�er is formed as follows:
si + key
- -
I An example of a client node identi�er assigned to shard s1:
[1][0x3804a19f2437f7bba4fcfbc194379e43e514aa98073db3528ccdbdb642e240]

The pseudo-code for generating a node identifier is detailed in Algorithm 10. If the
node type is processor performing an IDpChallenge is required, whose difficulty
level depends on the processors creation rate per time unit in the shard, as depicted
in equation 4.1.

111

Algorithm 10: NodeIDCreation: to form a node identifier.
Input: key, s, tr, node.type
Output: node.id

1 Function NodeIDCreation():
2 if type = processor then
3 %idc ← IDpChallenge() /* Running IDpChallenge algorithm. */

4 node.id← key + %idc + s + tr /* Generating processor identifier. */

5 node.id.ttl← The value set for ’ttl’ by the system.
6 /* The value set by the system for the Time To Live parameter for each shard. */

7 else
8 if type = client then
9 node.id← s + key /* Generating client identifier. */

10 end
11 end
12 return node.id

13

4.2 Implementation & Experimental Results
In order to perform the necessary tests to prove that the proposed idea, Paral-
lel Committees, in addition to theoretical arguments, is efficient in practice, we
implemented the protocol as a simulator software with Java. While Figure 4.9a il-
lustrates the significant decrease in transactional throughput of a PBFT algorithm
as the number of nodes increases, Figure 4.9b demonstrates that the transactional
throughput of the same PBFT algorithm remarkably increases with the growing
number of nodes, thanks to the Parallel Committees architecture. And this is
the main target of the proposed architecture: with our approach, a distributed
replication network that uses a classic consensus to process clients’ requests can
grow exceedingly in terms of the number of nodes and still remain permissionless.
In Figure 4.9a, where a PBFT runs without using the Parallel Committees archi-
tecture, while the number of processing nodes or replicas increases from 4 to 30,
and the number of clients as well as the total number of processed requests are 3
and 1,000, respectively, the number of requests processed per second or transac-
tional throughput decreases drastically from 1,199 to 49. Whereas, in Figure 4.9b,
where the same PBFT algorithm is used in the Parallel Committees architecture,

112

while the number of processing nodes or replicas increases from 170 to 22,000 and
also the number of clients as well as the total number of processed requests in-
crease from 30 to 3,000 and from 10,000 to 1000,000, respectively, the number of
requests processed per second or transactional throughput also increases conspic-
uously from 5,552 to 325,032. The results of our experiments are shown in more
detail in Tables 4.1 and 4.2.

It is worth noting that the consensus within our architecture is adaptable as a
module. Depending on the use case and whether the network is permissionless or
permissioned, a suitable consensus is selected. This, of course, leads to variations
in throughput and system performance, as each consensus mechanism may ex-
hibit different message/time complexity and fault-tolerance thresholds. In simpler
terms, employing different consensus mechanisms in our architecture to process
clients’ requests results in varying transactional throughput for the network. For
example, while the 4-node PBFT consensus algorithm can process only about
1,200 [45] to 1,750 [20] requests per second, the 3-node Paxos and Raft consensus
algorithms are able to process approximately 177,310 and 165,190 operations per
second, respectively [44]. To conduct our experiment using the implemented sim-
ulator, we opted for PBFT consensus. We made this choice under the assumption
that the network is permissionless. Consequently, PBFT proves to be more suit-
able than Paxos or Raft, as it offers both crash and Byzantine fault tolerance. In
contrast, Paxos and Raft are limited to crash fault tolerance. Depending on the
use case and circumstances, the network can be either permissionless or permis-
sioned. In permissionless networks, Byzantine fault-tolerant consensus algorithms
like PBFT are more suitable due to the absence of permission requirements for
any privileged or central entity to join the network. Consequently, nodes are less
trusted. In Byzantine fault-tolerant consensus mechanisms, such as PBFT [19],
the presence of 3f + 1 nodes is required to ensure deterministic safety in the face
of f malicious nodes [66]. For permissioned networks, crash fault-tolerant consen-
sus algorithms such as Paxos [18] or Raft [16] can be sufficient, given the higher
reliability of nodes in such networks. These crash fault-tolerant protocols guaran-
tee deterministic safety by employing 2f + 1 crash-only nodes to withstand the

113

Table 4.1: Throughput of a network that uses PBFT consensus decreases drastically, as the
number of nodes increases.

Processors
(Replicas)

Number of
Clients

Processed
Requests

Network Throughput
(Transactions Per Second (tps))

4 3 103 1,199
8 3 103 451
12 3 103 246
16 3 103 149
20 3 103 104
30 3 103 49

40 3 103
Not terminated

due to huge delay.

simultaneous crash failure of any f nodes [67].

As mentioned earlier in Chapter 2, it is crucial to emphasize that evaluating or
measuring fault-tolerance in data replication hinges on the chosen broadcast algo-
rithm or consensus mechanism in the underlying layers. In general, the degree of
fault-tolerance achievable in a State Machine Replication is contingent upon the
specifics of the employed consensus mechanism.

It’s important to note that in the Parallel Committees architecture, each shard
conducts an independent consensus to process clients’ requests. Therefore, the
fault-tolerance threshold of the consensus mechanisms should be considered sepa-
rately for each shard.

Given that our experimental results are derived from a simulator where the nodes
are virtual, we have not compared the numerical results with other sharding pro-
tocols implemented and tested on physical machines. As part of our future work,
we intend to develop a prototype and an MVP10 version of the designed database
architecture for real-world scenarios.

10Minimal Viable Product

114

(a) (b)

Figure 4.9: (a) Throughput of a network that uses PBFT consensus decreases drastically, as
the number of nodes increases. (b) Throughput of a network that uses the same PBFT algorithm
used in part (a) increases outstandingly, as the number of nodes increases, thanks to the Parallel
Committees architecture.

Table 4.2: Throughput of a network that uses the same PBFT algorithm used in Table 4.1
increases outstandingly, as the number of nodes increases, thanks to the Parallel Committees
architecture.

Processors
(Replicas)

Number of
Clients

Processed
Requests

Number of
Shards

Committee
Capacity

Committee
Queue Size

Network
Throughput (tps)

34 6 2,000 2 7 10 1,110
170 30 104 10 7 10 5,552
900 150 5× 104 50 8 10 22,598

1,900 300 105 100 9 10 38,634
4, 000 600 2× 105 200 10 10 65,006
104 1,500 5× 105 500 10 10 162,516

22× 103 3,000 106 103 10 12 325,032

115

4.3 Consensus in Parallel Committees
One of the most important distinguishing aspects of the Parallel Committees ar-
chitecture compared to other sharding-based protocols is its support for pluggable
consensus mechanisms, enabling the platform to be more effectively customized
for specific use cases. In this respect, the Parallel Committees architecture can be
compared to the Hyperledger architecture, as Hyperledger also enables the feature
of pluggable consensus mechanisms [174], albeit the Hyperledger platform only
supports permissioned networks where participants are known to each other [174]
and the number of nodes is limited, unlike the Parallel Committees architecture
which also covers permissionless mode. See definitions 5.2.1 and 5.2.2 in Section
5.2 for more details on permissioned and permissionless networks.

As the topic of distributed consensus is a distinct and extensive matter, our focus
diverges from designing a new and more efficient consensus or modifying existing
mechanisms to reduce message complexity. Instead, we have designed the Parallel
Committees architecture in a manner that allows the transactional throughput
of a distributed replication system, utilizing any consensus mechanism (PBFT,
Paxos, Raft, or any other consensus algorithm), to scale with the increasing num-
ber of nodes. As a result, the Parallel Committees architecture remains inde-
pendent of the consensus employed within the committees, allowing for seamless
replacement of one consensus with another without necessitating alterations to the
architecture’s design. The flexibility extends to treating consensus as a modular
component that can be easily interchanged. In fact, each committee within the
architecture has the flexibility to use a different consensus mechanism, operating
independently of others. This adaptability is particularly useful in accommodating
varying needs and circumstances, such as differences in the number of clients and
the volume of requests each committee handles per second. The choice of consen-
sus for the network may also be influenced by whether the network is permissioned
or permissionless. In permissionless networks, a Byzantine fault-tolerant consen-
sus is deemed more suitable due to the absence of permissions for any privileged
or central entity to join the network, leading to less trust in nodes. Conversely, for

116

permissioned networks, a crash fault-tolerant consensus may be sufficient, given
the higher reliability of nodes.

4.4 Why NOT Using Blockchain?
While the blockchain structure can efficiently verify and ensure data integrity, pre-
venting tampering with historical transactions by invalidating subsequent blocks
if one is altered, our work in [11] demonstrates that its usefulness is conditional.
We have established that, under certain circumstances, the use of blockchain may
be justifiable; otherwise, it loses its utility. In [11], we argue and demonstrate that
the connected blocks can be entirely replaced by an altered chain. This holds true
either in the absence of a Sybil or DoS attack prevention mechanism—such as PoW
with sufficient difficulty in proportion to the total hashing power of the network—
or in a permissioned network. While the blockchain structure could be seamlessly
integrated into the Parallel Committees architecture, our design choice does not
involve using PoW to process clients’ requests, as seen in networks like Bitcoin.
Consequently, the blockchain does not contribute to enhancing the system’s secu-
rity level and becomes a redundant and unhelpful structure. This is because the
blockchain is not effective for classic consensus algorithms, as elaborated in detail
in [11]. We will discuss this issue in detail in Chapter 5.

4.5 System Bootstrapping
We explore three methods for system setup and bootstrapping:

1. Predetermined Number of Shards:
In this approach, the system’s parameters, including the number of shards,
committee capacity, committee queue size, and processors’ ttl, can be pre-
determined or predicted. Initialization is based on specific use case condi-
tions, taking into account factors like average transactional throughput and
the fault tolerance threshold of the employed consensus mechanism in each
committee.

117

Subsequently, new shards can be created post-initial setup, as described
in Section 4.1.10, and relevant parameters can be reconfigured if needed.
Effective control over the establishment of new committees can be achieved
by strategically adjusting the queue size of existing committees, as illustrated
in Figure 4.5.

Diminishing the queue size of a committee facilitates converting a portion
or the entirety of backup processors into surplus processors. Conversely,
enlarging a committee’s queue size enables the transformation of a portion
or the entirety of surplus processors into backup processors. This way, it
allows preventing the creation of new shards when necessary.

This configuration approach is applicable when aiming for a specific number
of shards in a particular use case. It is also useful for comprehensive per-
formance testing, as performed in our simulator using a JSON file for initial
system settings.

2. Dynamic and Self-Configured11 Number of Shards:
In this approach, all parameters, except the initial number of shards set to
1, are configured during system initialization based on specific use cases and
applications. The number of shards is self-configured based on the prevailing
circumstances.

As the number of candidate processor nodes grows, the system automati-
cally and dynamically increases the number of shards, as described in Sec-
tion 4.1.10. The rate of creating new shards can be adjusted based on the
committee queue size, as illustrated in Figure 4.5.

A smaller queue size decreases the average number of backup processors
while increasing surplus processors, thereby enhancing the likelihood of cre-
ating new committees. The selection of a suitable adjustment should be
informed by the particular circumstances associated with each use case and
application.

11The self-configuration process is defined in the Long-Term Evolution (LTE) standard as “the
process where newly deployed nodes are configured by automatic installation procedures to get
the necessary basic configuration for system operation” [187].

118

3. Self-Optimizing using Machine Learning (Future Work):
The third approach involves self-optimization and the application of Machine
Learning techniques like Bayesian optimization. This approach of configura-
tion is part of our ongoing and future research endeavors. In this approach,
optimization is conducted by evaluating two key concepts:

• Transactional throughput (txt): transactional throughput in distributed
networks and databases refers to the rate at which transactions can be
processed within the system. It quantifies how many transactions can
be executed per unit of time, reflecting the system’s capacity to han-
dle concurrent requests and maintain data consistency across multiple
nodes in a distributed environment. Higher transactional throughput
often indicates better performance and scalability in handling a large
volume of transactions concurrently.

• Number of failures (nf): when a system does not work as a whole, a
“failure” has occurred, whereas, if only some of its components do not
work, a “fault” has happened, and those components are called “faulty”
nodes. In distributed systems and databases, common causes of faults
and failures include network issues, hardware failures, software bugs,
communication delays, and partitioning problems (split-brain scenar-
ios). These factors can lead to data inconsistency, unavailability, and
system instability, highlighting the importance of implementing fault-
tolerant mechanisms to address these challenges.

The following input parameters play a crucial role in the evaluation of the
system’s output, specifically in terms of two metrics: “transactional through-
put” (txt) and “number of failures” (nf).

• Number of shards (ns): the increase in the number of shards in the
network contributes to enhanced parallel processing and improved sys-
tem transactional throughput. However, this increase can also lead to
a rise in the number of inter-shard transactions and system complex-
ity. Additionally, it may result in a reduction in system fault tolerance,
ultimately increasing the likelihood of failures across the entire system.

119

• Capacity of each committee (cc): opting for a greater capacity for
each committee has the potential to enhance the fault tolerance of the
corresponding shard, leading to a decrease in the number of failures.
However, it may lead to an increase in the average transaction process-
ing delay with the growing number of participating processors in the
consensus process.

• Queue size of each committee (cqs): choosing a larger size for the queue
of each committee improves the fault tolerance of the shard. This is
achieved by increasing the number of backup processors. However, this
may lead to a reduction in the number of surplus processors. Conse-
quently, there is a decrease in the number of shards. Ultimately, this
results in reduced overall system transactional throughput.

• Processors’ Time-To-Live in each committee (ttl): opting for larger
values for processors’ ttl in each shard has the potential to decrease
the frequency of leader replacements conducted by the view-change pro-
cess12 in the committee. This results in a decrease in the time complex-
ity of the consensus algorithm13, ultimately leading to an improvement
in system transactional throughput. Nevertheless, this decision may
extend the duration a Byzantine node remains in a committee. This
situation can increase the likelihood of network failure.

To optimize two metrics, txt and nf, by adjusting the aforementioned parameters,
Bayesian optimization emerges as a suitable methodology. Considering that the
Parallel Committee software’s output is influenced by a myriad of interdependent
factors, the capacity of Bayesian optimization to navigate a multi-dimensional pa-
rameter space becomes particularly valuable. Importantly, this approach can ad-
dress the optimization process without necessitating historical data. This method

12In a consensus mechanism, a view-change means switching to a new leader node. The
view-change as an algorithm for choosing a new leader to collect information and propose it to
processor nodes is the epicenter of a replication system [46].

13For example, in standard scenarios, PBFT [19] exhibits a message complexity of O(n2),
while Paxos [18] maintains O(n). However, in the event of a leader or primary node failure, their
respective message complexities escalate to O(n4) for PBFT and O(n2) for Paxos [46].

120

intelligently explores and exploits the intricate relationship between input param-
eters and output metrics, effectively guiding the search toward optimal parameter
configurations. Our ongoing and future research endeavors encompass this config-
uration approach.

Remark. In July-August 2020, Vitalik Buterin stated that the plan for
Ethereum 2.0 is to have 64 shards at the start [185]. He explained the rea-
son as follows: Having fewer shards would lead to insufficient scalability
and more shards would lead to two undesirable consequences: overhead of
processing Beacon chain blocks may be too high, and also, the system may
be compromised by making cross-shard transactions take longer. In this
case, can we say that the Ethereum network, as a well-known TTP-free
network, is configured by a TTP and the system administrator?

4.6 Discussion
A classic question about sharding-based distributed systems is what happens if a
shard is entirely faulty or unavailable. In the following, we dissect this issue.
The effect of the unavailability of one shard on other shards is a classic question
in sharding-based systems, which is described in detail in Section 3.2.1. However,
it is crucial to pay attention to the following points:

• First, one advantage of sharding storage is that if one shard becomes un-
available, others remain accessible, even though some may be affected by
the faulty shard. Considering this perspective, sharding can be likened to
the philosophy of data replication, where if one node is unavailable, other
nodes continue to work. In the sharding approach, each shard can be in-
terpreted as a node. The likelihood of a shard entirely becoming faulty is
lower than that of a single node because a shard comprises multiple nodes.
If one node in a shard becomes faulty, the remaining nodes within the shard
continue to function. Thus, the probability of a shard being unavailable is
lower than that of a single node. Similarly, the likelihood of a sharding-based

121

distributed system being entirely unavailable is less than the probability of a
classical, non-sharded distributed system becoming completely unavailable.

• The next point emphasizes that one of the goals of the architecture intro-
duced in this thesis is to reduce the dependency between shards. The aim is
to ensure that if one shard is entirely unavailable or faulty, fewer shards in
the network are affected. Through the introduction of the ‘customized key
generation’ and ‘associated clients’ concepts (detailed in Sections 4.1.2 and
4.1.11.2), the number of cross-shard or inter-shard transactions is minimized.
This results in decreased interdependence among shards, and therefore, if a
shard becomes unavailable, fewer shards in the entire network are affected.

• If one or several nodes fail simultaneously in a committee, as long as the
number of faulty nodes is less than the tolerance threshold of the consensus
mechanism, the empty seats of the faulty processor nodes are filled by the
backup processors waiting in the committee queue. (The process of selecting
a backup processing node from the committee queue to join the committee
is described in Section 4.1.8.) This processing node’s circulation mechanism
in a committee greatly reduces the possibility that the number of faulty pro-
cessors exceeds the tolerance threshold of the consensus mechanism at any
given moment because, until the number of faulty nodes does not exceed
the tolerance threshold of the consensus mechanism, the faulty processors
are detected by the failure detection of the consensus mechanism and then
replaced by the procedure of selecting backup processors waiting in the com-
mittee queue. If f processors in a committee fail simultaneously so that f
exceeds the tolerance threshold of the consensus mechanism, the following
points should be taken into account:

– While the consensus mechanism, such as PBFT, cannot tolerate faulty
nodes due to the number of faulty nodes exceeding the consensus fault
tolerance threshold, expecting the proposed architecture to be fault-
tolerant in any trouble scenario does not seem a realistic point of view.
Nothing is perfect, but the goal is to improve existing problems. In

122

PBFT or Practical Byzantine Fault Tolerant, as one of the most well-
known consensus mechanisms, if a node goes offline, it is considered a
faulty node. If this does not happen intentionally, the node is assumed
as a crashed faulty node, and if a node intentionally goes offline, it
can be considered as Byzantine or malicious behavior. This is while
PBFT fault tolerance threshold is 3f + 1 ≤ n. This means that if the
total number of nodes is n, the maximum number of nodes that can go
offline is (n− 1)/3, and consequently, if all the nodes go offline, PBFT
can no longer tolerate failure or faulty nodes. As a result, we cannot
expect a committee to tolerate the failures more than the fault tolerance
threshold of the consensus. Nevertheless, in the proposed architecture,
in case of complete failure of a committee, there is still the possibility
of recovering the committee thanks to the backup processors waiting in
the committee queue to occupy the vacant seats of the faulty nodes in
the committee.

– It should also be noted that, as mentioned above, if one shard becomes
unavailable, other shards are still available, although some of them
are affected by the faulty shard. Consider the case where a consensus
mechanism like PBFT is traditionally and without sharding used; in
that case, if the network becomes unavailable due to the number of
faulty nodes exceeding the tolerance threshold of the consensus mecha-
nism, the entire system will be unavailable. However, with the proposed
architecture, at least part of the shards will still continue to work, and
the network will be partially available. This process and goal can be
better reached and improved by reducing the dependence of shards on
each other. How to increase the independence of shards was described
above.

Another point showing that the proposed architecture is elaborately designed is
that if a candidate processor is assumed to deviate from the algorithms and the
protocol as a Byzantine node, such that it targets a particular shard to join, in
this case, by manipulating the source code, the attacker has somehow converted

123

the ‘fortuitous’ key generation into the ‘customized’ key generation14 that is not
allowed for processors, but only for clients. The important point is that the sub-
tleties in the design of the proposed architecture make this type of attack auto-
matically well mitigated by the system, as this malicious behavior will increase
the rate of requests to join the targeted shard, and hence, the difficulty level of
the KeyChallenge algorithm will be increased by reducing the acceptable ranges
for each character of the public key for this particular shard. And as a result,
it becomes harder to join the attacked shard, resulting in greatly mitigating this
type of DoS attack.

Some highlights about cross-transaction processing:

• The Two-Phase Commit (2PC) approach, as a classical type of atomic com-
mitment protocol, provides atomicity while a transaction is distributed be-
tween multiple nodes [60, 62, 108], and a distributed commit is often estab-
lished by means of a coordinator, such that the result of a transaction is either
a successful commit, so that all changes are made permanent and durable,
or an abort, that is, all changes are rolled back, undone, or discarded [50].
This feature is called atomicity, which prevents failed transactions from lit-
tering the database with half-finished results and half-updated state [50].
The following two points are noteworthy in the new technique of process-
ing cross-shard transactions in the proposed architecture, which is designed
based on the classical 2PC approach: In the proposed architecture, the coor-
dinator is the same as the committee to which the token-sending client node
is assigned. As another significant difference between classical 2PC and our
modified version, while in the original 2PC algorithm, the coordinator and
participating databases are each only one node, in our architecture, the co-
ordinator and the participant are a committee consisting of several nodes,
which makes it more resistant to the failure of the coordinator.

• In the case of transaction processing between two shards using the cross-
shard processing approach, described in Section 4.1.11.1, the system user who

14See Section 4.1.2 for key generation types.

124

receives the tokens has to pay more fees because the cross-shard processing
approach is more expensive for the system. Hence, the token-receiving user
has another option, i.e., creating another client node, after performing a
KeyChallenge as a PoW mechanism, in the shard the token-sending client
belongs to. Since transaction processing using the second approach, which
is called “associated client”, is less expensive for the system, in this case, the
user who receives the token pays a lower transaction fee, however, the system
user must use their own hardware to perform a KeyChallenge PoW to create
another client on the shard to which the client sending the token belongs.
Therefore, the choice of approach and type of cost depends on the user
receiving the token: Higher transaction fees using a cross-shard processing
approach? Or, lower transaction fees, but doing an extra KeyChallenge
PoW and consuming hardware resources and energy? The latter approach is
called the “associated client” because both client nodes, i.e., the client node
that belongs to a different shard than the shard of the token-sending client,
and the client node that is created after performing an extra KeyChallenge
PoW in the same shard of the token-sending client, belong to the user who
receives the tokens.

Some notes about processors’ ttl: For the following two reasons, it is improbable
that the ttl of all or several processors will be exhausted simultaneously in a
shard:

• Due to the processors’ identifier format, which consists of a 16-character
public key randomly generated during the KeyChallenge PoW algorithm,
and the correct answer of the IDpChallenge PoW mechanism, it is highly
unlikely that two processors will share the same identifier (see Section 4.1.10
for more details on the processor identifier format).

• On the other hand, after processing each transaction, only the processor with
the highest identifier value is selected to decrement its ttl by one.

Note: Since the public keys of the processors, along with their previous
identifiers, are registered in the ledger of the committee, the reuse of previous
identifiers can be detected by the committee members.

125

4.7 Related Works and Comparison With Other
Distributed Databases

In this section, we compare the proposed architecture with various distributed
databases and data replication systems for clarity and better understanding.

4.7.1 Apache Cassandra

Apache Cassandra is a distributed NoSQL database designed for handling large
amounts of data across multiple commodity servers without a single point of fail-
ure. Cassandra operates on a peer-to-peer architecture where all nodes in the
cluster are treated equally. Each node in the cluster is responsible for a portion
of the data, and there is no central coordinator. In Apache Cassandra, data dis-
tribution across the cluster is achieved using a consistent hashing algorithm. This
algorithm is non-cryptographic in nature and is designed to evenly distribute data
across the nodes in the cluster. Consistent hashing helps in ensuring a balanced
distribution of data while allowing for easy addition or removal of nodes in the
cluster without significant reorganization of data. Each node is assigned a range
of the hash function, and this helps in evenly distributing data across the nodes.
Cassandra ensures fault tolerance through data replication. Each piece of data
is replicated across multiple nodes (data centers) to ensure high availability and
fault tolerance. Write operations involve writing data to the node responsible for
the partition determined by the hash of the partition key. Read operations can be
served by any node in the cluster, as data is replicated. Cassandra allows users to
configure the consistency level for read and write operations. Consistency levels
determine how many nodes in the cluster need to acknowledge a read or write for
it to be considered successful. Cassandra provides tunable consistency, allowing
users to balance between consistency and availability based on the application’s
requirements.

While Apache Cassandra is a powerful and scalable NoSQL database, it does have
some weaknesses that should be considered:

126

• Setting up and configuring Cassandra can be complex, especially for those
new to distributed databases.

• Fine-tuning parameters and understanding the impact of configuration changes
may require expertise.

• Cassandra uses its own query language, CQL (Cassandra Query Language),
which lacks some advanced querying features compared to SQL.

• Complex queries involving multiple tables or joins are not as straightforward
as in relational databases.

• Cassandra prioritizes high availability and scalability over strong consistency,
leading to limited support for ACID transactions.

• It follows the eventual consistency model, which may not be suitable for use
cases requiring strict transactional guarantees.

Additional information about Apache Cassandra can be explored in various sources,
including [188–191].

4.7.1.1 Parallel Committees Architecture vs. Cassandra

We compare the Parallel Committees distributed database architecture with Apache
Cassandra, highlighting both their shared goals and distinctive features.

• The Parallel Committees architecture scales distributed databases, striving
to enhance system computing power and provide limitless storage capacity.
Likewise, Apache Cassandra is celebrated for its scalability and proficiency
in handling substantial volumes of data and transactions.

• The Parallel Committees architecture incorporates an innovative sharding
technique to concurrently manage transactions, offering a potential solution
for write-intensive workloads. In a similar vein, Apache Cassandra is strate-
gically designed for optimal handling of write-intensive workloads, leveraging
its distributed and decentralized architecture.

127

• While both the Parallel Committees architecture and Apache Cassandra em-
phasize fault tolerance and high reliability, the Parallel Committees archi-
tecture further enhances availability and fault tolerance in consensus mech-
anisms through proactive committee processor replacement strategies.

• While Apache Cassandra relies on a decentralized and tunable consistency
model without a classic distributed consensus mechanism, the Parallel Com-
mittees architecture employs classic fault-tolerant consensus mechanisms,
such as PBFT, to provide strong consistency.

• Both Apache Cassandra and the Parallel Committees architecture utilize
sharding to distribute data across nodes. However, the Parallel Committees
architecture introduces an innovative sharding technique, which includes a
public key generation process called KeyChallenge for distributing nodes
between shards. Cassandra employs consistent hashing to distribute data
across nodes.

• Apache Cassandra supports dynamic scaling, enabling the addition or re-
moval of nodes from the cluster without downtime. The Parallel Committees
architecture introduces an automatic committee formation technique based
on the rate of candidate processor nodes, optimizing the use of network ca-
pacity. This feature bears resemblance to Cassandra’s ability to dynamically
adapt to changes in the cluster.

• Both architectures address fault tolerance, but the Parallel Committees ar-
chitecture introduces proactive circulation of committee members and strate-
gies to thwart malicious actions like “Key-Withholding”. This proactive com-
mittee member circulation aims to prevent long-term occupation by faulty
processors and enhance fault tolerance thresholds.

• Apache Cassandra provides a tunable consistency model, allowing users to
choose the level of consistency for read and write operations. The Paral-
lel Committees architecture leverages BFT consensus mechanisms, ensuring
strong consistency even in large-scale networks.

128

• The introduction of techniques like KeyChallenge and automatic committee
formation based on candidate processor nodes sets the Parallel Committees
architecture apart in terms of mitigating Sybil attacks, providing proof-of-
work, and optimizing network capacity.

4.7.2 Amazon DynamoDB

Amazon DynamoDB is a fully managed NoSQL database service designed for
high-performance and scalable applications. Sharding in DynamoDB refers to the
process of partitioning a table’s data across multiple physical storage partitions
called shards. Each shard is an independent data store that can handle a specific
amount of read and write capacity. DynamoDB uses a table’s partition key to
distribute data across shards. Items with the same partition key are stored to-
gether in the same shard. DynamoDB replicates data across multiple Availability
Zones (AZs) to ensure durability and high availability. It also offers backup and
restore capabilities for data protection. Availability Zones are distinct data center
locations within a region that are designed to be isolated from each other. Amazon
Web Services (AWS) has built its infrastructure to include multiple Availability
Zones in each AWS region to provide customers with increased fault tolerance and
high availability. Sharding in DynamoDB refers to the process of partitioning a
table’s data across multiple physical partitions, known as shards. Each shard is
an independent storage unit with its own provisioned throughput capacity. Dy-
namoDB partitions data across multiple servers to handle large datasets and high
read/write throughput. Each partition is known as a partition key range and is
associated with a specific hash value. The partition key is a crucial concept in
DynamoDB sharding. It determines the partition (or shard) in which the item
is stored. Well-chosen partition keys are essential for even distribution of data
and optimal query performance. Further insights into DynamoDB are available in
diverse references, such as [110,111,192–194].

4.7.2.1 Parallel Committees Architecture vs. DynamoDB

We contrast the Parallel Committees distributed database architecture with Ama-
zon DynamoDB, elucidating their common objectives and unique characteristics.

129

• Consensus Mechanism Customization:

– The Parallel Committees architecture offers a pluggable and replaceable
classic consensus mechanism, allowing users to customize the consensus
protocol.

– DynamoDB provides different consistency models but does not allow
direct replacement or customization of its underlying consensus mech-
anism.

• Consistency Models:

– While classic consensus mechanisms such as PBFT, Paxos, and Raft
always provide ‘strict / strong consistency’, DynamoDB primarily ad-
heres to a form of consistency known as ‘eventual consistency’ by de-
fault. In the context of DynamoDB, eventual consistency means that,
after a write operation, it may take some time for all replicas of a piece
of data to be updated. During this period, different replicas might re-
turn different results for read operations. Whereas the strict / strong
consistency means a high level of consistency in distributed systems
where all nodes see the same view of the data at any given time.

• Dynamic Committee Formation:

– The Parallel Committees architecture introduces dynamic committee
formation, allowing the system to adapt to changes in the number of
processors and nodes.

– DynamoDB does not explicitly use a concept of dynamic committees
but relies on automatic scaling within defined AWS limits.

• Permissionless and Permissioned Modes:

– The Parallel Committees architecture supports both permissionless and
permissioned network modes, providing flexibility in deployment op-
tions.

– DynamoDB is typically used in a permissioned mode within the AWS
environment.

130

• Novel Public Key Generation Process:

– The Parallel Committees architecture uses a novel public key generation
process for distributing nodes between shards and as an innovative Sybil
attack mitigation technique.

– DynamoDB does not employ a public key generation process, and its
security relies on AWS mechanisms.

• Scalability Options:

– The Parallel Committees architecture allows the adjustment of the
number of processors and shards, offering both limited and unlimited
scalability options.

– DynamoDB provides automatic scalability within AWS-defined limits,
adjusting throughput and storage based on demand.

• Processors’ Time-To-Live, Committee Capacity, Committee Queue Size:

– The Parallel Committees architecture introduces concepts such as pro-
cessors’ ttl, committee capacity, and committee queue size for efficient
resource management.

– DynamoDB offers automatic scaling based on demand but doesn’t ex-
plicitly use similar concepts.

• Processor Types:

– The Parallel Committees architecture classifies processors into active,
backup, and surplus types for nuanced resource management within
shards and committees.

– DynamoDB does not have a similar classification of processors.

131

4.7.3 Google Bigtable

Google Bigtable is a highly scalable and fully managed NoSQL database service
designed for large-scale, real-time applications. Developed by Google, it provides
a distributed storage system that can handle massive amounts of data across mul-
tiple servers. Bigtable is particularly well-suited for applications requiring high
throughput and low-latency access to vast amounts of structured data, such as an-
alytics, IoT, and financial services. It employs a sparse, distributed, and persistent
multi-dimensional sorted map data structure, making it efficient for dynamic and
evolving datasets. Bigtable’s automatic sharding and replication capabilities en-
sure high availability, fault tolerance, and seamless scalability, making it a robust
choice for organizations with demanding performance and scalability requirements.
More details regarding Google Bigtable can be investigated through a variety of
sources, including [195,196].

4.7.3.1 Parallel Committees Architecture vs. Bigtable

A comparison between the Parallel Committees distributed database architecture
and Google Bigtable reveals shared goals and distinctive features.

• The Parallel Committees architecture and Google Bigtable both focus on
enhancing system capabilities. The Parallel Committees architecture aims
to boost system computing power and storage capacity through innovative
sharding techniques. Google Bigtable is designed for scalability, efficiently
handling vast amounts of structured data across multiple servers.

• The Parallel Committees architecture and Google Bigtable are designed to
handle write-intensive workloads. The Parallel Committees architecture uti-
lizes a novel sharding technique for concurrent transaction management, par-
ticularly beneficial for write-intensive workloads. Google Bigtable is known
for its low-latency access to large datasets, making it suitable for write-
intensive applications.

• The Parallel Committees architecture and Google Bigtable employ different
approaches to fault tolerance. The Parallel Committees architecture imple-
ments classic fault-tolerant consensus mechanisms like PBFT for enhanced

132

fault tolerance and availability. Google Bigtable, on the other hand, employs
a distributed architecture but does not rely on classic consensus mechanisms
like PBFT.

• Both the Parallel Committees architecture and Google Bigtable support dy-
namic scaling. The Parallel Committees architecture introduces automatic
committee formation based on the rate of candidate processor nodes, opti-
mizing network capacity. Google Bigtable supports dynamic scaling, allow-
ing nodes to be added or removed from the cluster without downtime.

• The Parallel Committees architecture implements proactive circulation of
committee members and strategies against malicious actions, enhancing fault
tolerance thresholds. In contrast, Google Bigtable focuses on fault tolerance
but does not employ proactive committee member circulation for security.

• In terms of the consistency model, the Parallel Committees architecture
leverages BFT consensus mechanisms, ensuring strong consistency even in
large-scale networks. On the other hand, Google Bigtable offers eventual
consistency but may not adhere to a classic BFT model for consistency.

• In addressing Sybil attacks, the Parallel Committees architecture employs
mitigation strategies such as KeyChallenge and dynamic committee forma-
tion. In contrast, Google Bigtable, while lacking specific techniques like
KeyChallenge, relies on its architecture for security measures.

• The Parallel Committees architecture offers support for both permissionless
and permissioned network modes, providing flexibility in deployment scenar-
ios. In contrast, Google Bigtable is predominantly utilized in a permissioned
mode within the Google Cloud environment.

• In terms of resource management, the Parallel Committees architecture in-
troduces concepts such as processors’ ttl, committee capacity, and commit-
tee queue size, aiming for efficient utilization. On the other hand, Google
Bigtable may incorporate resource management features but does not ex-
plicitly adopt analogous concepts.

133

4.7.4 Google Spanner

Google Spanner is a globally distributed, strongly consistent, and horizontally
scalable database service developed by Google. It combines the benefits of tra-
ditional relational databases with the flexibility of NoSQL databases. Spanner
is designed to provide seamless global transactions across multiple data centers,
ensuring high availability and low-latency access to data. It uses a unique combi-
nation of synchronized clocks and a two-phase commit protocol to achieve external
consistency, making it suitable for applications requiring strong data consistency
in a distributed environment. Spanner’s architecture allows it to automatically
shard data and scale horizontally, enabling it to handle large workloads across the
globe while maintaining ACID properties. Diverse references, including [197–199],
offer further insights into Google Spanner.

4.7.4.1 Parallel Committees Architecture vs. Spanner

The Parallel Committees distributed database architecture is compared to Google
Spanner, shedding light on their shared goals and unique features.

• In managing write-intensive workloads, the Parallel Committees architecture
employs a novel sharding technique for concurrent transaction management.
Similarly, Google Spanner is well-suited for both read and write-intensive
workloads, offering global transaction consistency. This enables applications
to execute transactions involving data stored in diverse regions without com-
promising the integrity and reliability of the data.

• In terms of consensus mechanisms, the Parallel Committees architecture
implements classic fault-tolerant consensus mechanisms such as PBFT to
enhance fault tolerance and availability. On the other hand, Google Span-
ner employs a TrueTime API and a combination of synchronized clocks and
two-phase commit to achieve global consistency. The TrueTime API ensures
synchronized and accurate clocks across globally distributed nodes, mitigat-
ing clock skew issues and ensuring a consistent view of time.

• Both the Parallel Committees architecture and Google Spanner prioritize dy-
namic scaling to optimize their respective network capacities. The Parallel

134

Committees architecture introduces automatic committee formation based
on the rate of candidate processor nodes, ensuring efficient use of network
capacity. Similarly, Google Spanner supports automatic and dynamic scal-
ing, allowing it to adapt seamlessly to changes in workload and resource
requirements.

• Both the Parallel Committees architecture and Google Spanner prioritize
fault tolerance, albeit through different approaches. The Parallel Commit-
tees architecture achieves fault tolerance by implementing proactive circu-
lation of committee members and employing strategies against malicious
actions, enhancing fault tolerance thresholds. In contrast, Google Spanner
focuses on fault tolerance by utilizing synchronized clocks and redundant
data distribution to ensure high availability in its distributed system.

• Both the Parallel Committees architecture and Google Spanner prioritize
strong consistency within their respective models. The Parallel Commit-
tees architecture achieves this by leveraging BFT consensus mechanisms,
ensuring strong consistency even in large-scale networks. Similarly, Google
Spanner provides global strong consistency, ensuring that all nodes across
its distributed system see the same view of the data at any given time.

• The Parallel Committees architecture and Google Spanner adopt distinct ap-
proaches to security considerations. The Parallel Committees architecture
proactively tackles challenges such as Sybil and DDoS/DoS attacks through
innovative techniques, concurrently enhancing the fault tolerance threshold
of classic consensus mechanisms. In contrast, Google Spanner, while incor-
porating security measures, doesn’t specifically employ the aforementioned
techniques to counteract attacks like Sybil.

• The Parallel Committees architecture offers flexibility in deployment by sup-
porting both permissionless and permissioned network modes. In permis-
sionless mode, the system operates without the need for explicit approval,
allowing for a more open and decentralized approach. On the other hand, in
permissioned mode, the system follows a controlled access model, and users
must have explicit approval to participate. Google Spanner is commonly

135

utilized in a permissioned mode, particularly within the Google Cloud envi-
ronment, where access is regulated and controlled for security and governance
purposes.

• The Parallel Committees architecture introduces key concepts such as pro-
cessors’ ttl, committee capacity, and committee queue size to facilitate ef-
ficient resource management. These elements contribute to optimizing the
allocation and utilization of resources within the system. Google Spanner
employs synchronized clocks and dynamic scaling techniques to ensure effec-
tive resource management and load balancing. By synchronizing clocks and
dynamically adjusting resource allocation, Google Spanner aims to enhance
overall system efficiency and performance.

4.7.5 ScyllaDB

ScyllaDB is a highly performant and scalable NoSQL database designed for maxi-
mum efficiency in handling large volumes of data and high-throughput workloads.
ScyllaDB leverages a shared-nothing architecture and is implemented in C++ for
enhanced performance. A shared-nothing architecture is an architectural design
where individual nodes in a distributed system operate independently and do not
share any physical components, such as memory or storage, with each other. It ex-
cels in real-time big data applications, providing low-latency, fault-tolerance, and
linear scalability across distributed environments. Its design prioritizes simplicity,
robustness, and ease of integration, making it a compelling choice for organiza-
tions requiring a reliable and high-performance solution for their data storage and
retrieval needs. ScyllaDB is designed to be compatible with Apache Cassandra at
the application level. In other words, if an application is already using Apache
Cassandra as its database, it is possible to replace it with ScyllaDB without mak-
ing significant changes to the application code. There is a wealth of information
about ScyllaDB in various sources, including [200,201].

4.7.5.1 Parallel Committees Architecture vs. ScyllaDB

In this analysis, we examine the Parallel Committees distributed database ar-
chitecture alongside ScyllaDB, emphasizing both common goals and distinctive

136

attributes.

• The Parallel Committees architecture is designed to boost system comput-
ing power and storage capacity by implementing innovative sharding tech-
niques. Sharding enhances scalability by distributing data across multiple
nodes, allowing for parallel processing and improved performance. In a sim-
ilar vein, ScyllaDB is specifically crafted for horizontal scalability, providing
high-throughput storage and efficient management of large datasets. Both
the Parallel Committees architecture and ScyllaDB share a common goal of
achieving scalability through advanced approaches, whether through shard-
ing techniques or horizontal scaling, to meet the demands of growing com-
puting and storage requirements.

• The Parallel Committees architecture employs an innovative sharding tech-
nique that facilitates concurrent transaction management, offering particu-
lar advantages for write-intensive workloads. This approach optimizes the
handling of multiple transactions simultaneously. Similarly, ScyllaDB is tai-
lored for write-intensive workloads, utilizing a shared-nothing architecture
and ensuring high write throughput. By distributing data across nodes and
minimizing shared resources, ScyllaDB is able to efficiently manage and pro-
cess a large volume of write-intensive tasks, aligning with the demands of
applications with substantial write workloads. Both the Parallel Committees
architecture and ScyllaDB address the challenges of write-intensive scenarios
through distinct yet complementary strategies.

• The Parallel Committees architecture utilizes well-established fault-tolerant
consensus mechanisms, such as PBFT. In contrast, ScyllaDB employs the
distributed data storage and consistency model introduced by Amazon Dy-
namoDB.

• Dynamic scaling is a key feature in both the Parallel Committees archi-
tecture and ScyllaDB. In the Parallel Committees architecture, automatic
committee formation is introduced, adapting to the rate of candidate pro-
cessor nodes and optimizing network capacity. On the other hand, ScyllaDB

137

offers support for both automatic and manual scaling, enabling the addition
or removal of nodes to efficiently accommodate changing workloads.

• Fault tolerance and security are prioritized in both the Parallel Committees
architecture and ScyllaDB. The Parallel Committees architecture achieves
this through the implementation of proactive circulation of committee mem-
bers and strategies to counteract malicious actions, thereby enhancing fault
tolerance thresholds. Meanwhile, ScyllaDB underscores fault tolerance by
employing strategies like automatic partition healing and providing support
for multi-datacenter deployments.

• Consistency in both the Parallel Committees architecture and ScyllaDB is
addressed through distinct approaches. The Parallel Committees architec-
ture leverages BFT consensus mechanisms, ensuring robust strong consis-
tency even in large-scale networks. On the other hand, ScyllaDB adopts a
flexible approach, offering tunable consistency levels that empower users to
make trade-offs between consistency and availability according to the specific
requirements of their applications.

• The mitigation of Sybil attacks stands out as a distinctive feature within
the Parallel Committees architecture, employing effective techniques such as
KeyChallenge. In contrast, ScyllaDB may not integrate specific measures
to address Sybil attacks.

• The Parallel Committees architecture provides deployment flexibility by sup-
porting both permissionless and permissioned network modes, accommodat-
ing various use cases and deployment scenarios. In contrast, ScyllaDB is
specifically utilized in a permissioned mode, incorporating access controls
within the database to ensure controlled interactions.

• Efficient resource management is a priority for both the Parallel Commit-
tees architecture and ScyllaDB. In the Parallel Committees architecture,
concepts like processors’ ttl, committee capacity, and committee queue size
are introduced to enhance resource efficiency. On the other hand, ScyllaDB

138

achieves optimization in resource management through its shared-nothing
architecture and the efficient distribution of data across nodes.

4.7.6 Additional Comparative Insights with Existing Mod-
els

Some of the main differences between the Parallel Committees architecture and
other sharded DLTs are as follows:

• In order to reduce the number of undesirable inter-shard transactions—which
are more complex, more complicated and more costly to process than intra-
shard transactions, as detailed in Section 4.1.11—we have included an option
whereby clients can avoid such transactions and transform an inter-shard
transaction to an intra-shard transaction using the concept of associated
client and the customize key generation mode. This means that it is the
token-receiving client that decides how such a transaction is processed: either
as a cross-shard transaction as described in section 4.1.11.1, or by creating an
associated client on the shard to which the token-sending client is assigned
as detailed in Section 4.1.11.2. To the best of our knowledge, there is no
such technique and concept to reduce cross-shard transactions and transform
them to intra-shard transactions.

• Also, in the proposed database architecture there is no such thing as a shared-
ledger, which imposes additional scalability limitations and security issues
on the network. This shared-ledger is called by different names, for ex-
ample, in sharded Ethereum [185] it is called “Beacon” chain, or “Relay
chain” in PolkaDot [52], or the “Cosmos-Hub” in Cosmos protocol [53], or
“shared-state” in Spontaneous sharding protocol [68]. Using such shared-
ledgers causes a limitation on the number of shards as according to expla-
nations provided by the authors in the “Nightshade: Near protocol” [5] such
a shared-ledger is itself a single ledger with computation bounded by the
computational capacities of processing nodes operating it and therefore the
number of shards becomes accordingly limited. Beside the scalability prob-
lem, if the nodes operating the shared-ledger become Byzantine, then this

139

shard is able to infect the whole system, as crucial tasks such as assigning
the nodes between the shards is done by this privileged shard. This issue is
detailed in Section 3.2.1.3.

• Unlike SharPer [67], Spontaneous sharding [68] and the protocol proposed by
Dang et al. [69], which are permissioned blockchains, our network supports
both permissionless and permissioned modes, although our emphasis is on
the permissionless mode. In the case of permissionless networks, there is
no special permission for submitting transactions beyond the possession of
some way to pay transaction fees. Everyone also is permitted to participate
in the transaction processing process to be selected as a validator. Yet in our
proposed architecture, it is still possible to convert the permissionless mode
into a permissioned network by adding additional restrictions regarding the
permission to join the network or the permission to participate in transaction
processing. In permissioned networks, sending a transaction needs some
permission beyond mere possession of some way to pay transaction fees or
participants cannot fairly expect the network to resist censorship, meaning
that not all participants have practical guarantee that their transactions
would not be discriminated against in a way that considerably has an effect
on their potency to leverage the network and get its profits.

• Unlike Zilliqa protocol [4], our proposed idea, Parallel Committees, supports
both storage/state sharding and processing sharding. In protocols, which
only support processing sharding, each node holds the entire stored repli-
cated data state to be able to process transactions or clients’ requests, and
so, not sharding by state, while simplifies the system design, imposes a huge
limit on the scalability of the system [55].

• We modified the approach of how nodes are allocated between shards through
the public key generation process. The distribution of nodes between shards
is done through an innovative and novel approach based on the generation
of nodes’ keys, where this technique simultaneously serves as a Sybil attack
mitigation method and a PoW mechanism. By adjusting the difficulty level
of this key generation challenge, the nodes are well distributed among the

140

shards in such a way that to join the shards that have more requests to join, a
more difficult proof-of-work challenge for key generation must be performed.
How to set the difficulty level of the challenge is explained in Section 4.1.4.1
and equation 4.1.

• Thanks to the novel idea of setting a ttl on each processor node, a high
identifier value gives a processor node an advantage to be selected from the
queue to join the committee but at the same time a high identifier value
can be considered as a disadvantage due to being selected for ttl deduction
after each round of consensus. This approach can be considered as a skillful
way of taking advantage of both rewards and penalties.

• We also do not use the blockchain structure in the proposed architecture,
unlike most sharded DLTs, and the reason is detailed in Section 4.4.

• Since our experimental results are obtained using simulator software, where
the nodes are virtual, we have not compared the numerically obtained re-
sults with other sharding protocols that are implemented and tested on real
devices, not virtual ones. The primary objective of our experiments with
the implemented simulator is to demonstrate how the throughput of a dis-
tributed consensus algorithm, such as PBFT, significantly and remarkably
increases as the number of nodes grows, thanks to the Parallel Committees
architecture.

4.8 Potential Applications & Use Cases
The distributed database architecture of Parallel Committees, with its emphasis
on scalability, fault tolerance, and innovative sharding techniques, can be suitable
for various applications and use cases. Some potential applications include:

• Financial Services: The distributed and fault-tolerant nature of Parallel
Committees, coupled with its focus on strong consistency and innovative
sharding techniques, align well with the stringent requirements of the fi-
nancial services sector. These features contribute to the reliability, security,

141

and efficiency needed for managing financial transactions and ensuring the
integrity of financial data.

– Strong Consistency and Fault Tolerance: Financial transactions de-
mand high levels of accuracy and consistency. The Parallel Commit-
tees architecture’s emphasis on strong consistency and fault tolerance
ensures reliable and accurate processing of financial transactions even
in the face of network issues or node failures.

– Dynamic Workload Handling: Financial services often experience dy-
namic and fluctuating workloads, especially during market fluctuations
or peak transaction times. The ability of Parallel Committees to dy-
namically adjust the number of processors and efficiently distribute
tasks across nodes supports effective workload management.

– Mitigation of Malicious Actions: Parallel Committees employs proac-
tive strategies to thwart malicious actions, such as "Key-Withholding."
In the financial sector, where security is paramount, preventing unau-
thorized access and ensuring the integrity of financial data are critical
considerations.

– Innovative Sharding Techniques: Parallel Committees introduces inno-
vative sharding techniques, including "KeyChallenge." These techniques
can be advantageous for financial applications that require efficient data
distribution and access patterns, helping optimize the performance of
queries related to financial transactions and account management.

– Time-Sensitive Operations: Financial transactions often involve time-
sensitive operations, especially in trading scenarios. Parallel Commit-
tees’ ability to handle concurrent transactions efficiently, coupled with
its fault tolerance mechanisms, makes it suitable for applications where
timely access to accurate data is crucial.

– Consistency and Security in Transactions: The use of BFT consensus
mechanisms in Parallel Committees ensures strong consistency even
in large-scale networks. In financial services, maintaining a consistent

142

and accurate view of transaction history is crucial for auditability and
compliance.

– Resource Management and Efficiency: Concepts introduced in the Par-
allel Committees architecture, such as processors’ ttl, committee ca-
pacity, and committee queue size, contribute to efficient resource man-
agement. In financial services, where optimizing the use of resources
is essential for processing high volumes of transactions, these concepts
are valuable.

– Permissioned and Permissionless Modes: The support for both per-
missioned and permissionless network modes in Parallel Committees
provides flexibility in deployment options. In financial services, where
access controls and permission levels are strictly regulated, this flexi-
bility can be beneficial for deploying secure and compliant systems.

• E-commerce Platforms: The distributed and adaptive characteristics of
Parallel Committees, coupled with features like scalability, fault tolerance,
and innovative sharding techniques, render it highly apt for navigating the
intricacies of e-commerce environments. These attributes play a pivotal role
in facilitating the seamless processing and management of transactions, in-
ventory, and customer data within the realm of online retail scenarios.

– Scalability for Managing High Transaction Volumes: E-commerce plat-
forms frequently encounter varying workloads and heightened trans-
action volumes, especially during peak periods like sales events. The
adaptability of Parallel Committees enables it to cope with increased
demand by dynamically adjusting processor numbers and efficiently
distributing tasks.

– Handling Workloads Dominated by Write-Intensive Operations: E-commerce
transactions involve frequent interactions, such as order placements,
payments, and inventory updates, resulting in a predominantly write-
intensive workload. Parallel Committees, with its innovative sharding
techniques and support for efficient data distribution, can optimize the
handling of such write-intensive operations.

143

– Adapting to Dynamic Workloads: E-commerce operations exhibit dy-
namism, with varying workloads influenced by factors like promotions,
product launches, or seasonal trends. Parallel Committees’ capacity to
dynamically adapt to changes in processor numbers and nodes facili-
tates the efficient management of fluctuating workloads.

– Ensuring Fault Tolerance and Reliability: Reliability is paramount in
e-commerce to ensure uninterrupted operations and prevent revenue
loss. Parallel Committees places a strong emphasis on fault tolerance,
employs proactive strategies to mitigate malicious actions, and facili-
tates dynamic circulation of committee members, contributing to the
overall reliability of the system.

– Handling Time-Sensitive Operations: Time-sensitive e-commerce trans-
actions, such as order processing and inventory updates, demand prompt
execution. Parallel Committees’ ability to handle concurrent transac-
tions efficiently, coupled with its fault tolerance mechanisms, proves
advantageous for scenarios requiring rapid access to accurate data.

– Ensuring Consistency and Security in Transactions: The implementa-
tion of BFT consensus mechanisms in Parallel Committees guarantees
robust consistency even in large-scale networks. This is crucial for e-
commerce applications where maintaining a consistent and accurate
view of inventory, pricing, and order status is paramount for customer
satisfaction.

– Utilizing Innovative Sharding Techniques: Parallel Committees’ inven-
tive sharding techniques, including "KeyChallenge," can significantly
enhance the efficiency of data distribution in e-commerce setups. This
innovation proves valuable for optimizing the performance of queries
related to product catalog management and order processing.

– Efficient Resource Management: Concepts introduced in the Parallel
Committees architecture, such as processors’ ttl, committee capacity,
and committee queue size, contribute to efficient resource management
in e-commerce environments. Effectively optimizing network capacity

144

and processing power is crucial for handling the diverse and dynamic
data streams prevalent in online retail.

– Supporting Permissioned and Permissionless Modes: Parallel Commit-
tees’ flexibility in supporting both permissioned and permissionless net-
work modes provides e-commerce applications with deployment options
aligned with specific security and access control requirements, ensuring
the safeguarding of sensitive customer and transaction data.

• IoT (Internet of Things): The well-suited solution for tackling the com-
plexities found in large-scale and dynamic IoT environments lies in the
distributed and adaptive nature of Parallel Committees. This, combined
with features like scalability, fault tolerance, and cutting-edge sharding tech-
niques, positions it effectively. These features work together to enable the
efficient processing and management of IoT data streams, ensuring the reli-
ability and security of IoT applications.

– Scalability for Large-Scale Deployments: The scalability of Parallel
Committees enables it to effectively manage expansive IoT deployments
characterized by a myriad of devices generating and transmitting data.
The capacity to dynamically adjust the number of processors and dis-
tribute tasks across nodes efficiently supports the escalating number of
IoT devices.

– Handling Write-Intensive Workloads: Given the frequent influx of data
from devices, IoT applications often involve write-intensive workloads.
Parallel Committees addresses this challenge through innovative shard-
ing techniques and robust support for efficient data distribution, opti-
mizing the handling of such write-intensive workloads.

– Dynamic Workload Adaptation: IoT environments frequently undergo
dynamic variations in workload, particularly during peak usage or spe-
cific events. The adaptability of Parallel Committees to dynamically
respond to changes in the number of processors and nodes facilitates
the efficient handling of fluctuating workloads in IoT scenarios.

145

– Emphasizing Fault Tolerance and Reliability: In its commitment to
fault tolerance, Parallel Committees adopts proactive strategies to coun-
teract malicious actions, aligning seamlessly with the reliability stan-
dards essential for IoT applications. In distributed IoT deployments,
maintaining the pivotal aspects of data integrity and availability is a
primary focus.

– Operations with Time Sensitivity: Real-time or time-sensitive opera-
tions play a significant role in IoT applications, particularly in moni-
toring and control systems. The capability of Parallel Committees to
adeptly manage concurrent transactions, combined with its fault toler-
ance mechanisms, proves advantageous in IoT situations where timely
access to precise data is crucial.

– Transaction Consistency and Security: Parallel Committees ensures
the robustness of transactions through the implementation of Byzan-
tine Fault Tolerance (BFT) consensus mechanisms, providing strict and
strong consistency even in expansive IoT networks. This is particu-
larly crucial for preserving a uniform and accurate perspective of IoT
data, especially in applications where maintaining data integrity is of
paramount importance.

– Enhancing Resource Management and Efficiency: The integration of
concepts within the Parallel Committees architecture plays a pivotal
role in fostering efficient resource management within IoT environ-
ments. This is particularly critical for optimizing network capacity
and maximizing the utilization of processing power in extensive IoT
deployments.

• Real-time Analytics: the distributed and adaptive nature of Parallel Com-
mittees, combined with its features like scalability, fault tolerance, and inno-
vative sharding techniques, positions it well to meet the real-time processing
demands of analytics applications. These features collectively contribute to
the effective and reliable analysis of streaming data, facilitating the deriva-
tion of actionable insights.

146

– High Data Throughput Scalability: The scalability of Parallel Com-
mittees empowers it to manage substantial volumes of real-time data.
Its capacity to dynamically adjust processor numbers and proficiently
distribute tasks across nodes facilitates the processing demands of real-
time analytics applications.

– Effective Handling of Write-Intensive Workloads: Real-time analytics
frequently involve continuous ingestion of streaming data, resulting in a
workload dominated by write operations. Parallel Committees employs
innovative sharding techniques and supports efficient data distribution
to optimize the management of such write-intensive workloads.

– Adaptation to Dynamic Workloads: Parallel Committees prioritizes
fault tolerance and employs proactive strategies to mitigate malicious
actions, aligning with the reliability requirements of real-time analytics.
In distributed environments, ensuring data integrity and availability is
crucial for accurate and timely analytics.

– Timely Execution of Time-Sensitive Operations: Real-time analytics
necessitate prompt processing of data for actionable insights. Parallel
Committees’ capability to handle concurrent transactions efficiently,
coupled with its fault tolerance mechanisms, proves beneficial for real-
time scenarios requiring swift access to accurate data.

– Consistency and Security in Transactions: Transaction Consistency and
Security: By employing BFT consensus mechanisms, Parallel Commit-
tees guarantees robust consistency, even in expansive networks. This
is essential for upholding a dependable and precise view of data, par-
ticularly in real-time analytics applications where maintaining data in-
tegrity is of utmost importance.

– Enhanced Resource Management and Efficiency: The concepts inte-
grated into Parallel Committees play a key role in fostering efficient
resource management within real-time analytics environments. This
optimization is crucial for effectively handling the swift influx of data
in real-time processing scenarios.

147

• Healthcare Systems: Despite the specific regulatory requirements and
considerations in the healthcare industry, the features of the Parallel Com-
mittees architecture align with the necessity for reliability, security, and ef-
ficiency in healthcare data and transaction management. The distributed
and fault-tolerant nature of Parallel Committees enhances the robustness
of healthcare applications, ensuring the integrity and availability of critical
patient information.

– Robust Consistency and Resilience to Failures: Healthcare applications
often handle sensitive data, such as patient records and medical histo-
ries. Parallel Committees’ focus on robust consistency and resilience to
faults guarantees the dependable and precise management of healthcare
transactions, even when faced with network challenges or node failures.

– Prevention of Malicious Activities: The proactive strategies implemented
by Parallel Committees to counter malicious actions play a crucial role
in bolstering the security of healthcare data. Safeguarding against
unauthorized access and maintaining the integrity of patient informa-
tion stands as a paramount consideration in healthcare applications.

– Transaction Consistency and Security: The integration of BFT consen-
sus mechanisms in Parallel Committees guarantees strong consistency,
even in extensive networks. This is vital in healthcare applications
where accurate and consistent views of patient data are imperative for
informed medical decisions.

– Permissioned and Permissionless Operational Modes: The support for
both permissioned and permissionless network modes in Parallel Com-
mittees provides deployment flexibility. In healthcare, where access
controls and permission levels are crucial, this flexibility proves benefi-
cial.

• Gaming Industry: The decentralized and flexible characteristics of Parallel
Committees, combined with attributes like scalability, resilience to faults,
and cutting-edge sharding methodologies, establish it as an apt solution for
navigating the complexities of online gaming platforms. Together, these

148

aspects synergistically enhance the effective handling and administration of
player engagements, transactions, and data within the gaming environment.

– Scalability for Handling Concurrent Users: Online gaming platforms of-
ten experience fluctuating and high levels of concurrent users, especially
during peak gaming hours or events. The scalability of Parallel Com-
mittees allows it to handle increased demand by dynamically adjusting
the number of processors and efficiently distributing tasks, ensuring a
smooth gaming experience.

– Write-Intensive Workload Handling: Gaming platforms involve frequent
transactions, such as in-game purchases, updates to player inventories,
and real-time interactions. Parallel Committees’ innovative sharding
techniques and support for efficient data distribution can optimize the
handling of write-intensive operations in the gaming environment.

– Fault Tolerance and Reliability: Dependability holds utmost impor-
tance in the gaming sector to uphold uninterrupted gameplay and ward
off disruptions. Parallel Committees places a robust focus on fault tol-
erance, utilizes proactive measures to counteract malicious activities,
and integrates a dynamic circulation of committee members, thereby
making a substantial contribution to enhancing the reliability of gaming
platforms.

– Punctual Completion of Operations: Transactions in online gaming,
encompassing real-time interactions and in-game purchases, necessi-
tate prompt execution. The effectiveness of Parallel Committees in
managing simultaneous transactions, combined with its fault tolerance
mechanisms, proves beneficial for gaming situations that mandate quick
access to precise data.

– Endorsement for Controlled and Open Modes: The adaptability of Par-
allel Committees in endorsing both controlled / permissioned and open
/ permissionless network modes furnishes gaming platforms with de-
ployment alternatives tailored to specific security and access control
prerequisites, guaranteeing the protection of player data and transac-
tions.

149

• Social Media Platforms: The distributed and adaptive nature of Paral-
lel Committees, along with its features such as scalability, fault tolerance,
and innovative sharding techniques, makes it well-suited for addressing the
complexities of social media platforms. These features contribute to the ef-
ficient processing and management of user-generated content, interactions,
and real-time updates in the social media environment.

– Scalability for Handling Large User Bases: Social media platforms typ-
ically have large and dynamic user bases. The scalability of Parallel
Committees allows it to handle increased user activity by dynamically
adjusting the number of processors and efficiently distributing tasks,
ensuring a responsive and engaging user experience.

– Efficient Handling of Write-Intensive Workloads: Social media involves
constant user-generated content, including posts, comments, and mul-
timedia uploads. Parallel Committees’ innovative sharding techniques
and support for efficient data distribution can optimize the handling of
write-intensive operations, such as updating timelines and user profiles.

– Dynamic Workload Adaptation: Social media platforms experience
varying workloads based on factors like user engagement, trending top-
ics, and live events. Parallel Committees’ ability to dynamically adapt
to changes in the number of processors and nodes allows for efficient
handling of fluctuating workloads.

– Fault Tolerance and Reliability: Reliability is crucial in social media to
maintain user trust and satisfaction. Parallel Committees’ emphasis on
fault tolerance, proactive strategies to mitigate malicious actions, and
dynamic committee member circulation contribute to the reliability of
the social media platform.

– Time-Sensitive Operations: Social media transactions, such as post-
ing updates and interacting with content, often require timely execu-
tion. Parallel Committees’ ability to handle concurrent transactions
efficiently, coupled with its fault tolerance mechanisms, is beneficial for
social media scenarios requiring rapid access to accurate data.

150

– Consistency and Security in Transactions: The use of BFT consensus
mechanisms in Parallel Committees ensures strong consistency even
in large-scale networks. This is crucial for social media applications
where maintaining a consistent view of user timelines, comments, and
interactions is essential for a cohesive user experience.

– Endorsement for Restricted and Unrestricted Modes: The adaptabil-
ity of Parallel Committees in endorsing both restricted / permissioned
and unrestricted / permissionless network modes furnishes social media
platforms with deployment alternatives that conform to precise security
and access control prerequisites, guaranteeing the safeguarding of user
data and privacy.

• Supply Chain Management (SCM): The scalability, fault tolerance, dy-
namic workload adaptation, and innovative sharding techniques of Parallel
Committees make it potentially well-suited for addressing the challenges in-
herent in Supply Chain Management. The architecture’s features align with
the requirements of managing complex and dynamic supply chain networks
efficiently.

– Scalability for Handling Complex Supply Chains: Parallel Committees
offer scalability by dynamically adjusting the number of processors and
efficiently distributing tasks. This is crucial for SCM systems dealing
with the complexities of large and interconnected supply chain networks
involving suppliers, manufacturers, distributors, and retailers.

– Write-Intensive Workload Handling: SCM involves frequent transac-
tional data updates, such as order placements, inventory changes, and
logistics tracking. The innovative sharding techniques of Parallel Com-
mittees can optimize the handling of write-intensive operations in the
supply chain.

– Dynamic Workload Adaptation: SCM operations are dynamic, with
varying workloads based on market demand, seasonal trends, and un-
foreseen disruptions. Parallel Committees’ ability to dynamically adapt

151

to changes in the number of processors and nodes allows for efficient
handling of fluctuating workloads in SCM.

– Fault Tolerance and Reliability: Reliability is critical in SCM to en-
sure the continuous and smooth flow of goods and materials. Parallel
Committees emphasize fault tolerance, proactive strategies to mitigate
malicious actions, and dynamic committee member circulation, con-
tributing to the reliability of SCM systems.

– Operations with time constraints: In the realm of SCM, transactions
such as order processing, tracking shipments, and managing inventory
frequently necessitate prompt execution. The proficiency of Paral-
lel Committees in managing simultaneous transactions with efficiency,
combined with its fault tolerance mechanisms, proves advantageous in
SCM contexts demanding swift access to precise data.

– Uniformity and Security in Transactions: Employing BFT consensus
mechanisms within Parallel Committees guarantees robust consistency,
even within expansive networks. This is pivotal for SCM applications,
where sustaining a dependable and precise perspective on inventory,
orders, and logistics is indispensable for the efficacy of supply chain
planning.

– Support for Controlled / Permissioned and Open / Permissionless Modes:
The adaptability inherent in the Parallel Committees architecture, en-
abling support for both permissioned and permissionless network modes,
furnishes Supply Chain Management applications with diverse deploy-
ment alternatives harmonizing with distinct security and access control
prerequisites. This guarantees the safeguarding of sensitive data within
the supply chain, fortifying the security of SCM operations.

4.9 Summary of Chapter 4
In this chapter, we proposed a novel fault-tolerant, self-configurable, scalable, se-
cure, decentralized, and high-performance distributed database replication archi-
tecture using an innovative sharding technique to enable the use of Byzantine fault

152

tolerance consensus mechanisms in very large-scale networks.

With our innovative full sharding approach, supporting both processing and stor-
age sharding, the system’s computing power and storage capacity increase indefi-
nitely as more processors and replicas join the network. This scalability is achieved
while maintaining the robustness of a classic BFT consensus.

Our approach also allows an unlimited number of clients to join the system simul-
taneously without reducing system performance and transactional throughput.

We introduced several innovative techniques for distributing nodes between shards,
processing transactions across shards, improving security and scalability of the
system, proactively circulating committee members, and forming new committees
automatically.

We proposed a novel approach for distributing nodes between shards, using a pub-
lic key generation process that simultaneously mitigates Sybil attacks and serves
as a proof-of-work mechanism. In this regard, we proved that it is not straightfor-
ward for an attacker to generate a public key in such a way that all characters of
the key match the ranges set by the system.

We explained how to automatically form new committees based on the rate of
candidate processor nodes. The purpose of this technique is to optimally use all
network capacity, so that inactive surplus processors in the queue of a committee
that were not active are employed in the new committee and play an effective role
in increasing the transactional throughput and the efficiency of the system. This
technique maximizes the utilization of processor nodes and enhances the compu-
tational and storage capacity of the network. It aims to increase both processing
sharding and storage sharding to their maximum potential.

In the proposed architecture, committee members are proactively and alternately
replaced with backup processors. This proactive circulation of committee members
yields three main benefits:

153

• Prevention of prolonged occupation of a committee by a group of processor
nodes, especially Byzantine and faulty processors.

• Prevention of committees from growing excessively, thereby avoiding scala-
bility issues and latency in processing clients’ requests.

• Due to the proactive circulation of committee members, over a given time-
frame, there exists a probability that several faulty nodes are excluded from
the committee and placed in the committee queue. Consequently, during
this time-frame, the faulty nodes in the committee queue do not impact
the consensus process. This procedure can improve and enhance the fault
tolerance threshold of the consensus mechanism.

We also elucidated strategies to thwart the malicious action of “Key-Withholding”,
where previously generated public keys are prevented from future shard access.
The approach involves periodically altering the acceptable ranges for each charac-
ter of the public key.

The proposed architecture effectively reduces the number of undesirable cross-
shard transactions that are more complex and costly to process than intra-shard
transactions.

In terms of the consistency model, the Parallel Committees architecture leverages
classic fault-tolerant consensus mechanisms, ensuring strong consistency even in
large-scale networks.

We also provided an explanation for the decision not to employ a blockchain struc-
ture in the proposed architecture.

To perform the necessary tests of the Parallel Committees architecture, in addition
to the presented theoretical analysis, we implemented the protocol as a simulator
software. Using this simulator, we demonstrated that in a distributed replication
network that uses a PBFT consensus to process clients’ requests and transactions,
thanks to the proposed idea, as the network grows in terms of the number of nodes,

154

the number of processed requests per second increases outstandingly. While with-
out our architecture, the transactional throughput of the same PBFT algorithm
decreases drastically, as the number of nodes increases.

Additionally, we conducted a comparison between the proposed architecture and
various distributed databases and data replication systems, including Apache Cas-
sandra, Amazon DynamoDB, Google Bigtable, Google Spanner, et ScyllaDB, to
enhance clarity and comprehension. These distinctions are detailed in Section 4.7.

155

Chapter 5

Fallacies of Blockchain

5.1 Blockchain: A Hyped Term
The state replication or SMR can be achieved and implemented using various al-
gorithms, depending on the failures the system must be able to tolerate [173]. For
example, Paxos algorithm can achieve state replication even though a minority of
nodes in the system may crash [173], or PBFT can make state replication where a
minority of nodes in the system may be Byzantine, albeit, the complexity and effi-
ciency of PBFT is higher and lower than Paxos, respectively. We discussed this in
detail in Chapter 3. Blockchain is another relatively new form of state replication
that developed and expanded after the popularity of the Bitcoin network [173]. In
the design of Bitcoin architecture, an attempt has been made to ensure that no
centralized and pre-selected entity decides the fate of transactions that are waiting
for approval in the network. This is the newest type of state replication, which is
more applicable to and more compatible with Fintech use cases [173].

Blockchain, as a replication system, has become a hyped term today, and this
noise and hype can lead to increased misunderstandings about blockchain leading
to the implementation of applications based on some incorrect assumptions and
hypotheses. In fact, without understanding the philosophy behind the “chaining
of recorded data” and the main features of the blockchain, it cannot be utilized
in a correct way. The blockchain is a type of distributed ledger that consists of
a read-only and append-only distributed database maintaining a list of records

156

called blocks and can be secured from tampering on a permissionless network and
under certain conditions. The lack of native support for advanced programmabil-
ity in early blockchain deployment, such as Bitcoin, encouraged the development
of a new generation of blockchain, extending the semantic of transaction through
a program, called smart contract to process data on-chain in order to implement
various business rules, written in Turing-complete languages such as Solidity [76].

Since January 2017, more than 150 companies have been trying to combine elec-
tricity grids with blockchain platforms [77]. After reviewing about 143 published
articles [208–344] and almost 33 startups [345–377] on the use of blockchain for
renewable energy, we realized that there are widespread misunderstandings and
misconceptions about blockchain as a distributed replication system, the most im-
portant of which we describe in this chapter.

These important misconceptions and fallacies1 about blockchain led us to investi-
gate its functionality in more detail. Consequently, we decided not to incorporate
it into our proposed architecture, Parallel Committees, as described in Chapter 4.
Based on our research, we found blockchain to be unhelpful in our architecture, as
we employ a classic consensus mechanism, and therefore, chaining data based on
the hash of previous records (i.e., blockchain) can no longer add anything to the
security of the system. A significant part of these fallacies is due to the marketing
that has taken place in the field of blockchain.

In this chapter, we first explain why blockchain can no longer be beneficial and
effective without a sufficiently difficult PoW. Following that, we describe the most
repeated misconceptions found in published scientific articles about blockchain.

For better understanding and clarification of the issue, as well as for ease of ex-
planation, we use the following two terms: The first one is ‘proof-of-work-chain’,
which is used in the main article of the Bitcoin network (see Figures 1.1 and 5.1)

1Fallacy: an idea that a lot of people think is true but is in fact false. (Cambridge Dictio-
nary) [182]. A mistaken or delusory belief or idea, an error, especially one founded on unsound
reasoning. (Oxford Dictionary) [183].

157

and addresses exactly the same type of blockchain used in the Bitcoin network [6].
The second term we use is ‘merely-chaining-blocks’, which refers to blockchain-
based systems that use classic distributed consensus algorithms or methods such
as proof-of-stake instead of proof-of-work to propose the next block.

In the following, we will show that in the absence of proof-of-work for proposing
new blocks, that is, in a ‘merely-chaining-blocks’ model, if someone is able to alter
a block, they are also able to recalculate the hashes of all subsequent blocks, so
that all blocks are made based on the hash of previous blocks and therefore, all new
blocks will be valid. That is, a blockchain, partially or entirely, can be replaced by
a new blockchain, so that all new blocks are valid, because each block is created
based on the hash of the previous one.

We show below that this hash calculation is practical using a relatively fast com-
puter, because unlike the ‘proof-of-work-chain’ model, in the ‘merely-chaining-
blocks’ model, the time required to calculate the hash of one block is not much
different from the time required to calculate the hash of numerous blocks. Even if
the proof-of-work difficulty level is not sufficient considering the total computing
power of the network, the ‘proof-of-work-chain’ model is also not resistant to al-
tering the data recorded in the blockchain such as the Bitcoin network, let alone
only chaining the data based on the hash of the previously recorded data in the
‘merely-chaining-blocks’ model.

If no one can alter a single block (e.g., due to restricted access or cryptographic data
protection), there is no necessity to chain the stored data to create the blockchain.

5.2 Permissionless vs. Permissioned Networks
To clarify the issue, we will first define the following two models that are commonly
employed in most blockchain-based replication systems:

Definition 5.2.1 (Permissionless Network). A network is permissionless or public
if participation in the submission and the process of transactions is permitted

158

to everyone. There is no special permission for submitting transactions beyond
the possession of some way to pay transaction fees. Anyone is also permitted to
be a validator to participate in the processing of transactions. This must be in
actual practice accessible to everyone who makes a reasonable attempt to earn it.
Everyone who sends validly signed transactions to the network should be capable
of fairly expecting the network to execute without having to concern that some
particular group or entity can decide to prohibit their transactions in particular.

Definition 5.2.2 (Permissioned Network). A network is considered permissioned
or private if it does not allow open participation in either submitting or processing
transactions. In this context, sending a transaction requires more than the mere
possession of a means to pay transaction fees. Participants cannot reasonably
expect the network to resist censorship, meaning that not all participants have
a practical guarantee that their transactions will not be discriminated against in
a way that significantly affects their ability to leverage the network and reap its
benefits.

Remark. It is worth noting that any permissioned network is private, and any per-
missionless network is “public”. When we use the term “public”, it refers to being
“publicly accessible for use” rather than “publicly viewable in terms of transac-
tion history”. It’s important to clarify that a private network can also be publicly
viewable but is not intended for public use. This misconception is seen in some
articles such as [64].

5.3 PoW: Indispensable Component in Blockchain
In the following, we demonstrate that it is the combination of PoW with the chain-
ing operation that renders Bitcoin’s recorded data tamper-resistant, rather than
solely relying on the chaining of historical transactions. Bitcoin’s blockchain was
introduced as a peer-to-peer system aimed at removing the need for a TTP in trans-
actions between participants. As depicted in Figure 1.1, by the last sentence in
the conclusion section of the article proposing the Bitcoin network, the designer(s)
of the Bitcoin network convey the message that the “proof-of-work chain”, as a
single entity consisting of two parts: (1) the proof-of-work mechanism, plus (2)

159

Figure 5.1: The term “proof-of-work chain” itself indicates the indispensable role of proof-of-
work to produce the chain of blocks in the Bitcoin network architecture.

the chaining process, can perhaps be considered as a consensus-like mechanism.

Pseudonym Satoshi Nakamoto has mentioned three times in the Bitcoin white
paper the structure used in the Bitcoin network under the title of “proof-of-work
chain” [6] (see also Figure 5.1). Before 2009, also the term “time-chain” was used
rather than “block chain”. The term “time-chain” then has been replaced by the
term “block chain” (with a space) in the code, while in the white paper, the term
“proof-of-work chain” was used, instead. The term “proof-of-work chain” itself
indicates the indispensable role of proof-of-work to produce the chain of blocks in
the Bitcoin network architecture.

Apart from whether this combined mechanism proposed by the Bitcoin network
can be considered as a consensus mechanism or not, and there is a serious differ-
ence of opinion in this field [35–38] (because the Bitcoin network mechanism does

160

not fulfill all the conditions of a consensus mechanism listed in Section 2.9.), it
is highly important to note that the designer(s) of the Bitcoin network proposed
the “proof-of-work chain” as a consensus, i.e. the combination of proof-of-work
with the chaining process, both together, and proof-of-work alone has not been
proposed as a consensus mechanism. Therefore, it seems that the early title,
“proof-of-work chain”, is a more accurate title than the later title, “blockchain”,
because we are dealing with a combination: the proof-of-work mechanism plus the
chaining process, and consequently, separating the two affects everything in the
network, including whether or no the chaining process (blockchain) can still be
effective even without proof-of-work.

In the following, we have brought up a general PoW-based example and not for
a specific platform, such as Bitcoin or Ethereum etc. to show that how PoW, as
a Sybil and DoS attack prevention mechanism2, can make historical transactions
tamper-resistant. By the following scenario, we’ll show that only chaining transac-
tions to each other based on the hash of the previous recorded data, cannot protect
the data from tampering. To avoid potential misunderstanding, we would like to
emphasize that we do not argue that PoW is the only acceptable mechanism to
prevent tampering with historical transactions. Instead, we also demonstrate that
merely chaining transactions without a Sybil and DoS attack prevention mecha-
nism, such as PoW, is insufficient to protect data from tampering.

5.3.1 Block and Hash Function

A hash function is a mathematical function transforming any arbitrary input into
a string with a set of numbers and letters, such that any slight change in the input
creates a completely new output hash. In the following examples, we use SHA-256
hash function, and the term “token” can be interpreted as a crypto-currency or
any kind of crypto-token3.

SHA-256(hash) = d04b98f48e8f8bcc15c6ae5ac050801cd6dcfd428fb5f9e65c4e16e7807340fa

2The DoS can be defined as preventing the normal operation of a computer by bombarding
it with spurious traffic [88].

3The European Central Bank has chosen to define crypto-assets as a new type of asset recorded
in digital form and enabled by the use of cryptography [27].

161

So that with a negligible change in the input, the output of the hash function will
be changed entirely. Assuming the following example, where usera sends 1 token
to userb :
transactionn: usera sent 1 token to userb

SHA-256(transactionn) = 18bfc2f753b3430f7392d058332cbee02ec�a10d167ea64b64a5ced50487c74

Now, if userb changes 1 token to 2 tokens in transactionn, then the hash of
transactionn will be changed completely as follows:
transactionn: usera sent 2 tokens to userb

SHA-256(transactionn) = 3653438a67b57cc8334ca81060451d22e341b3a87df729c7e5a2b85ce9d21982

Thus, a tampering transactionn is easily “detectable” thanks to the hash function.
While historical transactions are now “tamper-evident” thanks to the hash func-
tion, altering transactions still incurs negligible costs. This implies that historical
transactions are not yet “tamper-resistant”.

5.3.2 Chaining Transactions

Thus, to increase the cost of altering a transaction, the record of each transaction
is chained to the previous one:
transactionn−1: userx sent 1 token to usery
hash: SHA-256(transactionn−2 || transactionn−1)

transactionn: usera sent 1 token to userb
hash: SHA-256(transactionn−1 || transactionn)

transactionn+1: userz sent 1 token to userk
hash: SHA-256(transactionn || transactionn+1)

If userb still intends to change transactionn, then all transactions after transactionn

will no longer be valid, such that userb will have to re-calculate all the computations
from transactionn+1 to the end of the chain, while at the same time the chain is
growing by newer transactions. Nevertheless, userb is motivated enough to spend
a long time to re-calculate all the hashes to earn more tokens. Therefore, the
chained transactions are not still tamper-resistant. To achieve this goal, another
complementary step is necessary to make it exceedingly difficult or impossible for
the attacker to alter historical transactions.

162

5.3.3 Nonce, PoW and Mining

The next step is to add a cryptographic puzzle to be solved by the validators of
transactions. In this process, a number, known as “nonce”, is added after each
transaction. The nonce can be considered as a counter concatenated to the trans-
action data. Consequently, the hash will be generated from this entirely new
buffer. To demonstrate that solely chaining transactions is insufficient to protect
data from tampering, we implemented Java code based on the functionality of
PoW and the SHA-256 hash function.

Our code is accessible through a Github repository in [79]. This code has been
implemented based on Algorithm 11. The hash generated in hexadecimal will be
then converted to decimal as a BigInteger in an infinite loop, in which there is a
condition, comparing the decimal value of the hash with a variable, called “target”.
If the hash is smaller than the target, then the PoW is solved and the associated
nonce is the correct PoW answer.

If we consider a smaller target, the PoW becomes more difficult, as the range of
the sample space including the correct answer of PoW will be smaller, resulting
in decreasing the probability that the generated hash is among the numbers of
the sample space. By adding a timer to the code, we calculated the time it takes
for a single hash computation using an ordinary computer with a processor i7-
8650U4. By initializing the target variable to 1077, the PoW was solved after a
single attempt, and it took 0.0099151 seconds. Figure 5.2 shows the screenshot of
the output of the code.

5.3.4 Decentralization

Bitcoin’s blockchain, as of May 24, 2023, consists of 791,126 blocks [81]. A miner
device such as AntMiner S9 designed especially for SHA-256 is able to compute
almost 14 × 1012 hashes per second [82], meaning that it can compute a single
hash in 1 / (14 × 10−3) nanoseconds, that means by using such device it could
be feasible to re-calculate all blocks’ hashes of the Bitcoin network in only ≈ 5.6

4Processor Base Frequency: 1.90 GHz, Configurable TDP-up Frequency: 2.10 GHz [80].

163

Algorithm 11: Sample proof-of-work implemented with Java
1 nonce← 0;
2 txh← null ; /* Transaction hash in decimal. */

3 target ; /* Determines the difficulty level of PoW. */

4 tcn← null ; /* Transaction concatenated with nonce. */

5 txs ; /* Content of transaction. */

6 while true do
7 nonce ++ ; /* The nonce is incremented by one unit after each attempt. */

8 tcn← txs + nonce;
9 txh ← H(tcn).decimal ; /* H: SHA-256 hash function. */

10 if txh < target then
11 break ; /* The PoW is solved and the current nonce is the correct answer. */

12 end
13 end

Figure 5.2: The proof-of-work was solved after 0.0099151 seconds, where the target had been
initialized to 1077 run by a computer with a processor of i7-8650U (Processor Base Frequency:
1.90 GHz, Configurable TDP-up Frequency: 2.10 GHz) using a Java code, based on Algorithm
11.

164

seconds, if PoW is removed from the Bitcoin network. This fact simply shows that
without a sufficiently challenging proof-of-work mechanism, Bitcoin’s blockchain
is neither tamper-proof nor tamper-evident.

Obviously if the network is permissioned, we no longer need a PoW (or simi-
lar mechanisms), because re-calculation of all blocks’ hashes are feasible by an
authoritative entity which gives the permissions to the participants for either sub-
mitting or validating transactions. This authoritative entity can consist of multiple
trusted and known participants whose trust is based on a legally valid contract, so
that although the transactions may become tamper-resistant using these legally
valid contracts and signatures, not at all due to chained stored data.If one asserts
that the blockchain can be employed in a permissioned network solely to achieve
tamper-evidence (without necessarily being tamper-resistant), the response is that
if the entire blockchain hashes are recalculated, no one, using the blockchain alone,
can detect changes in the stored data. This is because each block is recalculated
based on the hash of the previous block, thereby re-validating the entire chain.

The difficulty of PoW, a crucial factor in mitigating Sybil and DoS attacks, is
adjusted based on the total computational power of the network. Therefore, to
find the correct answer for PoW, miners need to determine the correct “target”
value. In the Bitcoin network, the miners are able to compute the current difficulty
using the data of the previous blocks, that is, each 2,016 blocks should be created
in two weeks [83, 84]. If this time is different, then the current difficulty will be
multiplied by:

14 days
time spent for 2016 blocks (5.1)

to adjust and find the correct difficulty.

By having the difficulty, the target is found using the following equation:

PoW difficulty =maximum target
current target (5.2)

165

According to the Bitcoin protocol, the maximum target value is ≈ 2.7× 1029 [85].
By setting this value as the target, the proof-of-work will be at its easiest difficulty
level. Through the aforementioned procedure and by adjusting the difficulty of
PoW, it becomes exceedingly challenging for an attacker to alter historical trans-
actions.

The mining process has a significant cost for the miners (i.e. considerable elec-
tricity consumption along with providing requirements such as CPU or GPU etc).
Thus, to motivate the miners for performing hashing calculations to find the cor-
rect answer of PoW, they receive some rewards for every new block generation.
The miners’ reward is not limited to only “block reward”, but they also get the fees
for every transaction that users pay. Logically, to achieve more reward, the miners
usually will arrange transactions with higher fees to be inserted in the blockchain,
resulting in transactions with fewer fees might have to wait a long time to be val-
idated.

To ensure the tamper resistance of the transaction history, all the above steps are
necessary. All blocks are linked to each other using their hash values. If someone
intends to change the content of one block, they have to recalculate the hashes of
all subsequent blocks. With a sufficiently difficult PoW, this is practically impos-
sible or, at the very least, much too difficult.

As a result of the above explanations, as well as definitions 5.2.1 and 5.2.2, in
a permissioned blockchain where historical transactions are maintained and up-
dated in a centralized manner, chaining transactions can no longer be effective for
either tamper-evidence or tamper-resistance properties. In fact, two reasons that
contribute to the increased authenticity of data in a blockchain system are “decen-
tralization” and “transparency”. While a permissioned blockchain may maintain
transparency, it can significantly compromise decentralization. If authoritative
and privileged nodes go rogue or fail to reach consensus, the network may collapse.
The value of a permissioned blockchain would have to be derived from some bene-
fits of centralization, such as accelerating transactional throughput, but at the cost

166

of placing a very high level of trust in the trusted, permitted, and privileged nodes.

Nonetheless, we acknowledge the existing problems in permissionless blockchains,
such as scalability issues, low transactional throughput, latency, etc. However, we
aim to emphasize that the solution to these issues is not a permissioned blockchain,
as this type of blockchain renders chaining blocks meaningless. A permissioned
blockchain, obviously, requires permission to join, and thus proof-of-work is not
necessary. In such a network, if a node misbehaves, it can be eliminated from the
network through a process that prevents the entire world from joining.

Figure 5.3 provides a high-level view of the permissioned blockchain architecture
and illustrates how transactions between clients are validated by a centralized
TTP. A permissioned blockchain could be extended with a rule, for example: a
specific transaction must be ignored, or the tokens in a particular address must be
considered to be in another address. This allows for the effective alteration and
tampering of historical transactions, where the central authoritative entity (such
as a company or consortium) has the ability to compel its validators to accept such
changes. In a permissioned blockchain, by definition, there is a mechanism to hire
or fire validatorsindividuals or entities permitted to append new blocks [86]. This
mechanism is controlled by a centralized entity, either a single person, company,
or a consortium of known and trusted entities bound by legally valid contracts.
These entities are trusted by all participants through contracts that are legally
valid and enforced by a TTP [86].

An organization that utilizes a permissioned blockchain, where the assurance of
tamper-resistant transactions is not solely reliant on the blockchain and chained
data but also on legal contracts, TTPs, cryptography, and digital signatures, can
opt to use traditional replicated databases without employing a blockchain.

5.4 Misconceptions on Blockchain
After reviewing approximately 143 published articles [208–344] and nearly 33 star-
tups [345–377] focused on the use of blockchain for renewable energy, we recognized

167

Figure 5.3: A high level view of the permissioned blockchain architecture which shows that
the transactions between parties are validated by a centralized TTP.

168

that there are numerous misunderstandings and misconceptions about blockchain
as a distributed replication system. The most important of these are described in
this chapter. We classified the scientific papers based on the following topics:

• Peer-to-Peer (P2P) Energy Trading (reviewed papers: [208–261]): That is,
purchasing and selling of energy among multiple parties connected to dis-
tributed energy grid. It can permit the users to transfer any excess energy,
frequently in the form of solar energy, and sell to other prosumers through
a secure platform. It also allows consumers the choice to decide on whom
they buy electricity from, and who they sell it to.

• Electro Mobility and Electric Vehicles Charging (reviewed papers: [262–
277]): That is, allowing electric vehicles to communicate with distributed
power grid for selling demand response services, as well as enabling bidi-
rectional flow of communication and electricity between vehicles and smart
grid, aiming to offering more efficient energy trading.

• IoT, Asset Management and Smart Metering (reviewed papers: [278–290]):
One of the first stages for building up the city-wide distributed grids is
smart metering using IoT devices helping addressing challenges relating to
energy/resources consumption. They can also enable energy providers for
optimizing distribution of the energy thanks to offering real-time data on the
energy and resources usage, as well as enabling consumers to make smarter
decisions on their consumption.

• Green Certificates and Energy Tokenization (reviewed papers: [291–296]):
A green certificate, also known as Renewable Energy Certificate (REC), as
a traceable asset can provide proof that electricity has been produced us-
ing Renewable Energy Sources (RES). They are issued mainly regarding the
type of source, such that more innovative technologies may receive more cer-
tificates per watt hour of electricity, whereas their price is usually dependent
on their scarcity in the market.

• Privacy Preserving and Security (reviewed papers: [297–312]): The trans-
parency of a blockchain originates in the fact that transactions of each public

169

address are open to viewing. Using an explorer it is feasible to see the trans-
actions that users have carried out. However, this level of transparency can
be problematic since everybody can see every historical transaction in the
clear in an explorer site. On the other hand, recent efforts in cryptography
enable people to better protect their data and identity from entities that we
interact with.

• Energy Internet (reviewed papers: [313–317]): As a new form of energy sys-
tem development, it can realise the integration of energy flow, information
flow and business flow [87]. It can be considered as an important vision for
future energy systems by which ubiquitous ownership, ubiquitous use, and
ubiquitous sharing of energy can be reached in real time.

• General Reviews (reviewed papers: [318–344]): Containing scientific articles
and publications that provide a general overview of blockchain and DLT with
an emphasis on energy use cases.

We also categorized the reviewed startups based on the blockchain platform and
their fields of activity as follows:

• Based on blockchain platforms:

– Ethereum-based [345–362]

– Hyperledger-based [363–368]

– Tendermint-based [369–372]

– EWF-based5 [373–375]

– Bitcoin-based [377]

• Based on activity field:

– P2P Energy trading

– Electro mobility
5Energy Web Foundation (EWF) is a global non-profit on a mission to accelerate the en-

ergy transition by developing and deploying open-source Web3 technologies that help companies
unlock business value from clean and distributed energy resources [376].

170

– Automated and smart billing

– Green certificates

– IoT and asset management

– Energy tokenization

We detail the widespread misconceptions we have discovered about blockchain in
our review as follows:

5.4.1 Reducing Costs

That is, the intermediary organizations are monopolising platform delivery and
imposing considerable intermediation costs [208, 209, 279, 320–323]. One of the
imprecise issues attributed to the blockchain concept is its potential to reduce
costs through disintermediation. In other words, intermediary organizations often
monopolize platform delivery, leading to significant intermediation costs [208,209,
279, 320–323]. It is true that central management brings intermediary costs and
the need for a TTP; nevertheless, we must keep in mind that blockchain cannot
necessarily reduce costs. In the case of permissioned blockchains that use a set of
known, identified, and trusted validators, we do not eliminate either cost or trust.
The identified validators even sign a legally valid contract to be compensated for
their job. In the case of using a permissionless blockchain, although we replace
the identified TTP with trust in the entire network operation, we still need to in-
centivize unknown validators (sometimes known as miners) with transaction fees.
This can sometimes make transactions unaffordable, as these fees are usually cal-
culated based on transaction size. Another feature that is inaccurately attributed
to blockchain is the reduction in the cost of micro-financial transactions due to
the elimination of intermediaries by blockchain [208, 323]. We need to consider
that Bitcoin transaction fees are flat, meaning that they are not based on the
transaction amount, unlike Visa and Mastercard fees, which are percentage-based
on the transaction amount. This causes the fees for larger amounts on Bitcoin to
be equal to the fees for smaller amounts. Based on Visa transaction fees, which
are generally over 1% [89, 90], any transaction above 75 USD will be more cost-
effective on Bitcoin. We can therefore say that it is even inverse, which means

171

Bitcoin or Ethereum transactions for larger amounts are more affordable. How-
ever, in the case of lower amount transactions, on-chain transactions are not very
inexpensive. That is why off-chain transactions, such as those facilitated by the
Lightning Network [91], are used for micropayments. The off-chain networks have
their own challenges, such as inefficiency in expanding the number of participants.
The required routing process and their time complexity in the network between
sender and receiver become problematic.

5.4.2 dApps Are Not Necessarily Open Source

Another misconception is to introduce Decentralized Application (dApp)6 as an
open source application [323]. Of course the bytecodes living on the blockchain
are readable for everybody and we do not have to reveal the smart contract code.
Although a developer can obfuscate the code to make it difficult for an observer to
understand it, nonetheless, in practice, smart contracts are simpler than making
them difficult to understand. As an example, CryptoKitties, as a blockchain-based
video game allowing players to buy, sell, and create Non-Fungible Tokens (NFT)7

using Ethereum network [169], has an off-chain code that is closed source, while
the bytecodes of the on-chain contracts is yet readable by everybody. This means
that the whole of a dApp is not necessarily open source. In general, only 15.7%
of dApps are fully open source, with both the dApp code and associated smart
contracts available, while 25.0% of dApps are completely closed source [78].

5.4.3 TTP & Trustless

One of the common points that is repeated in many papers about blockchain is
that when they describe the blockchain concept they address the lack of a cen-
tral point of authority and TTP in all blockchain-based systems. Whereas, all
blockchain platforms are not necessarily without a central point of authority and
TTP. By a permissioned blockchain, the historical transactions is maintained and

6Decentralized applications that typically include smart contracts as well as web applications
connected to a blockchain-based system.

7Unlike crypto-currencies where each coin is equivalent to another one in the same blockchain
platform, NFTs are unique to each other. NFTs were initially created on the Ethereum network
for digital art and games [170].

172

updated in a centralized manner, as we discussed this in [11].
A term often misused in the context of networks like Bitcoin is to attribute the ad-
jective “trustless” to these systems. In reality, a more accurate term is a “non-TTP
network” rather than a “trustless network”. For instance, when sending bitcoins to
a recipient, can it be done without trust? Despite being able to prove the transac-
tion by referencing the transaction history, demonstrating that a certain amount
of bitcoin was sent to a specific address on a certain date, proving ownership be-
comes challenging if the recipient denies the association with the receiving address.
Assuming the recipient has provided an invoice, preferably with a digital signa-
ture, expressing the desire to receive the amount through the Bitcoin network, the
bitcoin sender can refer to the invoice and the corresponding transaction recorded
in the Bitcoin blockchain as evidence. However, the question arises: To whom
should the sender show the receipt to validate their claim? The answer is often
a trusted third party (TTP). In reality, there exists a level of trust between the
sender and the receiver of bitcoins. Consequently, using the term “trustless” is not
entirely accurate. It should be noted that transactions in networks like Bitcoin are
processed, committed, and recorded without the involvement of a trusted third
party. On the other hand, individuals conducting transactions through traditional
banks trust the bank as a trusted entity. Similarly, those using a network like
Bitcoin place trust in the Bitcoin network as a trusted entity. Therefore, applying
the term “trustless” is not applicable in either case.

5.4.4 Smart Contracts Do Not Run Automatically

In several papers we reviewed, we observed that smart contracts are not properly
defined and described, such as [253] where we read: “Smart contracts are scripts
running on the blockchain that can process inputs ‘automatically’ and provide re-
sults according to the predefined logical calculation”. A smart contract is nothing
more than a deterministic program that a replica executes when a particular mes-
sage is delivered. The main difference from conventional code is that the smart
contract code runs on multiple nodes rather than on a single computer, resulting in
better tolerance to a single point of failure. Smart contracts do not run ‘automat-
ically’. With this interpretation, it can be said that traditional and conventional

173

programs and codes can also be executed ‘automatically’ on a computer. There is
no automated process for achieving consensus on the output of smart contracts.
The output of smart contracts must be verified by volunteer validators in per-
missionless networks like Ethereum or by pre-selected validators in permissioned
networks like Hyperledger.

5.4.5 Blockchain Never Can Be Closed-Source

We can never classify blockchain as closed-source and open-source, for example in
[323] we read: “In terms of governance and protocol rules of the system operation,
blockchains can be classified as ‘open-source’ or ‘closed-source’.” As for closed-
source, blockchain can never have a native crypto-currency. On the other hand,
users have to trust developers. A closed-source blockchain can be suspected of
being a Ponzi scheme [92], for example, Bitconnect [93].

5.4.6 Immutability, Tamper-Proof, & Security of Blockchain

One of the common misconceptions about blockchain is the use of the term ‘im-
mutability’ when referring to the security of blockchain-based systems.
We first define the term “immutability”, since it is used widely as a blockchain’s
key feature in many papers, for example in [94–99] and many others. We define
immutability as ‘tamper-resistance’ since nothing in nature is unchanging over
time. In other words, Bitcoin’s network, contrary to formal definitions of the term
‘consensus’, never reaches a state that cannot be rolled back, at least in theory,
yet, the amount of computation required increases over time as more miners join
the network and more blocks are added on top of a given block targeted to be
altered. Hence, the property of resistance to tampering, as opposed to the prop-
erty of immutability, can be realized thanks to the steps detailed in Section 5.3.
Taking into account all the points explained above, as well as the fact that the
proposed architecture, Parallel Committees that is detailed in chapter 4, aims to
improve the performance and scalability of replication systems that use consen-
sus mechanisms to process transactions and client requests, we did not find any
feature in the blockchain that can match the circumstances and architectural fea-
tures in our system so that can improve the designed system in terms of security

174

level or any other parameters. Hence, we did not use blockchain in the proposed
sharding-based idea, unlike other recent sharded replication systems.

5.5 Summary of Chapter 5
In this chapter, we detailed under what conditions a blockchain-based solution can
be effective.
We argued that although permissionless blockchains have serious issues (such as
scalability, throughput, etc.), however, a permissioned blockchain, contrary to
common belief, cannot be recognized as the right solution to those issues. That
is, chaining recorded data in a permissioned network is no longer able to protect
the data from tampering.
In this way, we implemented a Java code based on PoW functionality to demon-
strate that chained blocks can be entirely replaced by an altered chain. This holds
true either in the absence of a sufficiently difficult PoW or in a permissioned net-
work.
We emphasized that we never argued that PoW is the sole solution to prevent data
tampering. Furthermore, we criticized the existential philosophy of permissioned
blockchains.
In other words, we never ignored the existing problems in permissionless networks
(such as scalability of the network, transaction throughput, etc.), but also, we
argued that a permissioned blockchain cannot be the right solution for those prob-
lems.
We also provided an in-depth bibliography study about issues in current blockchain-
based solutions, especially for the energy market. In this way, after reviewing
about 143 published articles and almost 33 startups on the use of blockchain for
renewable energy, we realized that there are many misunderstandings and miscon-
ceptions about blockchain as a distributed replication system, the most important
of which we described in this chapter.

175

Chapter 6

Conclusions

6.1 Conclusions and Achievements
Distributed systems are configurations of interconnected computers that collabo-
rate to achieve a shared objective, offering benefits like enhanced reliability and
scalability. Distributed databases, a subset of distributed systems, distribute data
across multiple nodes to improve performance and fault tolerance compared to cen-
tralized databases. Data replication is a pivotal aspect of distributed databases,
involving the creation and maintenance of copies of data across diverse nodes or
locations. This redundancy not only boosts fault tolerance but also facilitates load
balancing and improves read performance. By strategically duplicating data, dis-
tributed systems can seamlessly navigate individual node failures or high demand
scenarios, ensuring robustness and continual functionality. If the data does not
change, replication is simple because it only needs to copy the data once per node;
hence, the main challenge in replication is managing data changes, where the data
is called “dynamic” or “transactional”, that is, the data is frequently modified after
being stored in the database [49].

Transactions are sequences of operations (reads and writes) that are executed
atomically, meaning they either complete entirely or leave the system in a consis-
tent state. Transactional throughput in distributed networks and databases refers
to the rate at which transactions can be processed within the system. It quantifies
how many transactions can be executed per unit of time, reflecting the system’s

176

capacity to handle concurrent requests and maintain data consistency across mul-
tiple nodes in a distributed environment. Higher transactional throughput often
indicates better performance and scalability in handling a large volume of trans-
actions concurrently.

Nevertheless, having multiple replicas can even make reliability of the system more
critical, assuming that faults are not correlated, because the more replicas there
are, the more likely it is that any of the replicas will become faulty at any given mo-
ment of time. When a system does not work as a whole, a “failure” has occurred,
whereas, if only some of its components do not work, a “fault” has happened, and
those components are called “faulty” nodes. In distributed systems and databases,
common causes of faults and failures include network issues, hardware failures,
software bugs, communication delays, and partitioning problems (split-brain sce-
narios). These factors can lead to data inconsistency, unavailability, and system
instability, highlighting the importance of implementing fault-tolerant mechanisms
to address these challenges. However, if the system can continue to work despite
the fact that some replicas can be faulty, then the reliability will improve, as the
probability that all replicas are faulty at the same time is much less than the prob-
ability that only one replica will be faulty1. As a result, details of how a replication
system is implemented have a significant impact on the reliability of the system.

In recent years and after the popularity of the Bitcoin network model, the potential
applications of replication systems that use a Byzantine fault-tolerant consensus
mechanism to process clients’ requests have been developed and expanded. Such
replication systems are commonly known as DLT, where there are a significant
number of replicas on the network to process transactions and requests. Due to
the permissionless feature that is mainly inherited from the Bitcoin network model,
it is not obvious to predict and determine the number of nodes in the network,
which is usually joined by a large number of nodes. And therefore, because of
the high message complexity of classic Byzantine consensus algorithms, described
in Section 2.9, using these consensus mechanisms to process requests is a serious

1For more details on this, see Section 2.7.

177

challenge. For example, as shown in Table 4.1, the PBFT consensus with only
30 replicas and 3 clients can only process 49 transactions per second, and with
only 40 replicas and 3 clients did not terminate due to huge delays as a result of
the high number of messages exchanged between nodes, while DLT networks may
consist of several thousand nodes [171]. Even if the number of processor nodes
gets limited by a centralized approach and using a privileged entity in a permis-
sioned network, by increasing the rate of clients’ requests, the processor nodes
hardware performance is still limited, causing significant latency in response to
the clients [5]. Therefore, data replication systems that use consensus to process
transactions and clients’ requests face problems such as scalability and system effi-
ciency. Such limited scalability and low throughput can be significantly improved
by using sharding approach as a technique for partitioning a state into multiple
shards, each of which is handled by a subset of the network in parallel.

While sharding has been successfully implemented in various data replication sys-
tems and distributed databases, demonstrating notable potential to enhance per-
formance and scalability, current sharding techniques still grapple with significant
scalability and security issues. In this regard, after reviewing the current protocols
that use the sharding approach in replication systems and distributed databases,
we detailed the main challenges of this technique in Chapter 3. In Chapter 4, we
proposed and designed a novel fault-tolerant, self-configurable, scalable, secure,
decentralized, and high-performance distributed database replication architecture.
This architecture utilizes an innovative sharding technique to enable the use of
BFT consensus mechanisms. This approach is particularly advantageous in very
large-scale networks. In Section 4.7, we conducted a comparative analysis between
our novel idea and other sharding-based protocols. In Chapter 5, we explored and
presented reasons for not adopting a blockchain-based approach in our proposed
architecture. We argued that utilizing a classic consensus algorithm, equipped
with the required properties for a consensus mechanism2, eliminates the need for
incorporating a blockchain-based methodology. It is worth noting that when the
dissertation mentions that a blockchain-based approach is not necessary in cer-
tain cases, it implies that under specific scenarios and conditions, it may suffice

2The properties required for a consensus mechanism are mentioned in Section 2.9.

178

to implement and build a distributed ledger using a classic consensus mechanism
to generate a sequence of totally-ordered client requests. The aim is to highlight
that the blockchain approach is a distinct form of distributed ledger. While every
blockchain system is a form of DLT, not every distributed ledger is a blockchain
system. Nevertheless, in both scenarios, concepts such as smart contracts and
distributed transactions can be applied.

The goal is to design a system that even when the network is permissionless, it is
possible to use classic consensus mechanisms, which, as explained in Chapter 3,
have severe scalability limitations. Sometimes, in order to design a decentralized
system and remove trusted entities, it is necessary to use a permissionless network,
like what the designer(s) of the Bitcoin network intended. The most obvious fea-
ture of these types of systems is the absence of a trusted privileged entity. A
trusted authority, also known as a TTP, is an entity in a given system that is
trusted by all entities to satisfactorily perform a particular service [175]. In such
permissionless networks, utilizing the distributed consensus mechanisms described
in Section 2.9 is challenging. This is because, in a permissionless network, pre-
dicting the number of server and client nodes that will join becomes impossible.
As the number of nodes increases, the efficiency and throughput of the consensus
algorithm are significantly reduced, leading to a drastic drop. Consequently, the
system becomes unable to respond to clients’ requests due to the high delay caused
by the huge number of exchanged messages between nodes3. If there is a privileged
central entity in the network in order to limit the number of nodes, the network
is no longer permissionless but permissioned, and that privileged entity is consid-
ered a trusted authority. For the definitions of permissionless and permissioned
networks, refer to Section 5.2. The designers of the Bitcoin network architecture
recognized the impracticality of using distributed consensus mechanisms for its de-
sign. The permissionless nature of the network, combined with the large number
of nodes4, poses a challenge for achieving consensus within the expected time and
responding to clients’ requests with acceptable throughput5. As a result, the de-

3In this case, refer to Table 4.1.
4For example, Bitcoin and Ethereum have over 16,000 and 8,000 nodes respectively at the

time of writing this thesis [171,172].
5See Section 3.1 for more details.

179

signer(s) of the Bitcoin network architecture opted for a combination of the PoW
mechanism and the chaining process, detailed in Chapter 5, instead of classic con-
sensus mechanisms. This choice aimed to eliminate the dependence of the average
time required for consensus on the number of nodes. Hence, in the Bitcoin net-
work, the time required to reach an agreement on each transaction depends on the
difficulty level of the PoW mechanism. This difficulty level is, in turn, contingent
on the computing power of the entire network. Therefore, as the computing power
of the entire network increases, so does the difficulty level of the PoW mechanism6.
In its early stages, when the computing power of the entire Bitcoin network was
modest, consisting mainly of computers with ordinary processing capabilities, the
network operated with relatively acceptable efficiency. However, over time, as a
substantial number of powerful computing machines joined the network, the en-
ergy consumption of the Bitcoin network soared. Consequently, it transformed
into an energy-intensive system with a significant carbon footprint [176–178], es-
timated to rival the annual energy consumption of some mid-sized countries [179].
At the time of writing this thesis, Bitcoin’s annualised electricity consumption is
136.34 TWh according to the Cambridge Bitcoin Electricity Consumption Index
(CBECI) [180], and by consuming this amount of energy, it is only able to process
about ≈ 7-10 transactions per second [4].

The solution presented in this thesis is the design of several innovative techniques
based on the sharding approach in distributed databases to enable the use of clas-
sic consensus mechanisms in very large-scale networks. In a typical scenario, a
single database system is well-equipped with storage and performance capabilities
to handle the transaction processing needs of an enterprise. However, challenges
arise when dealing with applications catering to millions or even billions of users,
such as social media platforms or large-scale user-centric applications in major
institutions like banks [202]. Imagine an organization that has developed an appli-
cation relying on a centralized database. As the user base grows, the limitations of
the centralized database become evident, struggling to meet the increasing storage
and processing speed requirements. To address this, a commonly adopted strat-
egy is the practice known as “sharding”. This involves the segmentation of data

6For more details on this, see Section 5.3.

180

across multiple databases, with each database handling a subset of users. Shard-
ing, fundamentally the distribution of data across multiple databases or machines,
proves essential in achieving scalability and improved performance [202]. As the
number of databases grows, the risk of potential failures increases, elevating the
likelihood of losing access to critical data. To safeguard against such scenarios,
replication becomes essential, ensuring continued accessibility even in the face of
failures. However, managing these replicas introduces additional complexities, de-
manding careful attention to guarantee their consistency and effectiveness [202].
Sharding across multiple databases involves the partitioning of records among dif-
ferent systems. In other words, records are distributed across systems. In contrast
to conventional sharding approaches where each shard represents a centralized
traditional database that may lack information about other databases [202], in
the architecture presented in this thesis, each shard functions as a replicated data
system comprising multiple processors. So that, they collaboratively handle client
requests and transactions following a classic consensus mechanism. These shards,
operating as replicated data systems, can interact with other shards and jointly
process transactions between them.

6.1.1 Main Contribution and Achievement of the Thesis

The primary contribution of this thesis is the design of a novel distributed database
replication architecture.
In this PhD thesis, I designed and proposed a novel fault-tolerant, self-configurable,
scalable, secure, decentralized, and high-performance distributed database repli-
cation architecture, named “Parallel Committees”.
I utilized an innovative sharding technique to enable the use of BFT consensus
mechanisms in very large-scale networks.
With this innovative full sharding approach supporting both processing sharding
and storage sharding, as more processors and replicas join the network, the system
computing power and storage capacity increase unlimitedly, while a classic BFT
consensus is utilized.
My approach also allows an unlimited number of clients to join the system simul-
taneously without reducing system performance and transactional throughput.

181

I introduced several innovative techniques: for distributing nodes between shards,
processing transactions across shards, improving security and scalability of the
system, proactively circulating committee members, and forming new committees
automatically.
I introduced a novel approach of distributing nodes between shards, using a pub-
lic key generation process, called “KeyChallenge”, that simultaneously mitigates
Sybil attacks and serves as a proof-of-work mechanism. The “KeyChallenge” idea
is published in the peer-reviewed conference proceedings of ACM ICCTA 2024,
Vienna, Austria. In this regard, I proved that it is not straightforward for an at-
tacker to generate a public key so that all characters of the key match the ranges
set by the system.
I detailed how to automatically form new committees based on the rate of candi-
date processor nodes. The purpose of this technique is to optimally use all network
capacity, so that inactive surplus processors in the queue of a committee that were
not active are employed in the new committee and play an effective role in in-
creasing the throughput and the efficiency of the system. This technique leads
to maximum utilization of processor nodes and the capacity of computation and
storage of the network to increase both processing sharding and storage sharding
as much as possible.
In the proposed architecture, members of each committee are proactively and alter-
nately replaced with backup processors. In the Parallel Committees architecture,
committee capacity refers to the maximum number of members (processors) al-
lowed in each committee at any given time. The predetermined number of ‘seats’
for each committee is set during system configuration, with the flexibility to dy-
namically adjust parameters as needed. This adaptability accommodates changing
requirements, considering factors such as variations in transaction rates per time
unit and overall system throughput. Each seat is occupied by a processor node, so
that once a committee capacity is completed, none of the backup processor nodes
in the committee queue can join the committee until a seat gets vacated. As soon
as a seat in a committee gets vacated due to exhausting the ttl (Time-To-Live)
of a processor, one of the backup nodes waiting in the committee queue occupies
the free seat.

182

I defined Omega (Ω), as the expected delay for completing a consensus round, ini-
tialized based on the average delay in specific consensus mechanisms like PBFT,
Paxos, Raft, etc. If a consensus round exceeds the Omega period of time, indicat-
ing a potential fault tolerance breach, the “force majeure ttl reduction” reduces
the highest-identifier processor’s ttl by one unit. This triggers automatic removal
of faulty nodes from the committee, replaced by backup nodes. This technique of
proactively circulating committee members has three main results:

• preventing a committee from being occupied by a group of processor nodes
for a long time period, in particular, Byzantine and faulty processors,

• preventing committees from growing too much, which could lead to scalabil-
ity issues and latency in processing the clients’ requests,

• due to the proactive circulation of committee members, over a given time-
frame, there exists a probability that several faulty nodes are excluded from
the committee and placed in the committee queue. Consequently, during
this time-frame, the faulty nodes in the committee queue do not impact the
consensus process.

This procedure can improve and enhance the fault tolerance threshold of the con-
sensus mechanism.
I also elucidated strategies to thwart the malicious action of “Key-Withholding”,
where previously generated public keys are prevented from future shard access.
The approach involves periodically altering the acceptable ranges for each charac-
ter of the public key.
The proposed architecture effectively reduces the number of undesirable cross-
shard transactions that are more complex and costly to process than intra-shard
transactions.
In terms of the consistency model, the Parallel Committees architecture leverages
classic fault-tolerant consensus mechanisms, ensuring strong consistency even in
large-scale networks.
Additionally, I provided an explanation for the decision not to employ a blockchain
structure in the proposed architecture. To perform the necessary tests of the “Par-
allel Committees” architecture, in addition to the presented theoretical analysis,

183

we implemented the protocol as a simulator software. Through the use of this sim-
ulator, we illustrated that in a distributed database employing the PBFT consen-
sus mechanism to process client requests, the proposed architecture significantly
enhances the number of processed requests per second as the network scales in
terms of the number of nodes. In contrast, without the proposed architecture, the
transactional throughput of the same PBFT algorithm experiences a substantial
decrease with an increasing number of nodes.
I conducted a comparison between the proposed architecture and various dis-
tributed databases and data replication systems, including Apache Cassandra,
Amazon DynamoDB, Google Bigtable, Google Spanner, and ScyllaDB, to enhance
clarity and comprehension. These distinctions are detailed in Section 4.7.
The proposed idea has been published in the peer-reviewed conference proceedings
of IEEE BCCA 2023 [12].

The proposed architecture opens the door to a new world for further research in
this field and is a significant step forward to improve the distributed databases
and data replication systems.

6.1.2 Other Contributions of the Thesis

The other contributions of the thesis are as follows:

• I presented a detailed introduction to the architectural philosophy behind
Bitcoin and permissionless networks.

• I provided a comprehensive exploration of the challenges that data replica-
tion systems face.

• I conducted a thorough examination of the challenges associated with sharded
distributed databases and data replication.

• I provided an in-depth bibliography study about issues in current blockchain-
based solutions, especially for the energy market.

• I detailed under what conditions a blockchain-based solution can be effective.

184

6.2 Future Work
6.2.1 Developing and Implementing a Prototype and an

MVP

Successful databases often evolve through practical implementation and continuous
refinement. Commencing with developing a prototype is a pragmatic approach,
focusing on a specific use case or industry where the architecture can effectively
address a particular need. This enables a targeted demonstration of its value. The
process can be outlined as follows:

1. Choosing a Specific Use Case: Choosing a specific industry or application
where the architecture can provide immediate benefits.

2. Building a Minimal Viable Product (MVP): Developing a simplified version
of the distributed database system to showcase its core functionalities within
the chosen use case.

3. Collecting Feedback: Engaging with potential users and developers to col-
lect feedback on the prototype, aiming to understand what works well and
identifying areas for improvement.

4. Iterating and Refining: Refining the architecture based on received feedback,
considering factors such as scalability, performance, and ease of integration
into existing systems.

5. Gradual Expansion: Gradually expanding the system with increasing confi-
dence and positive responses to address broader use cases or industries.

6. Collaboration with Developers: Encouraging developers to experiment with
the prototype, providing comprehensive documentation and support to fa-
cilitate smooth adoption.

185

Bibliography

[1] Luu, Loi, et al. "A secure sharding protocol for open blockchains." Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 2016.

[2] Kokoris-Kogias, Eleftherios, et al. "Omniledger: A secure, scale-out, decentral-
ized ledger via sharding." 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018.

[3] Zamani, Mahdi, Mahnush Movahedi, and Mariana Raykova. "Rapidchain: Scal-
ing blockchain via full sharding." Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security. 2018.

[4] Team, Zilliqa. "The zilliqa technical whitepaper." Retrieved September 16
(2017): 2019.

[5] Skidanov, Alex, and Illia Polosukhin. "Nightshade: Near protocol shard-
ing design." Available online at: https://nearprotocol.com/downloads/
Nightshade.pdf(2019):39.

[6] Nakamoto, Satoshi. Bitcoin: A peer-to-peer electronic cash system. Manubot,
2019.

[7] Buterin, Vitalik. "Ethereum white paper." GitHub repository 1 (2013): 22-23.

[8] Tanenbaum, Andrew S., and Maarten Van Steen. Distributed systems: princi-
ples and paradigms. Prentice-Hall, 2007.

186

https://nearprotocol. com/downloads/Nightshade. pdf (2019): 39.
https://nearprotocol. com/downloads/Nightshade. pdf (2019): 39.

[9] Mori, K., K. Sano, and H. Ihara. "Autonomous controllability of decentralized
system aiming at fault-tolerance." IFAC Proceedings Volumes 14.2 (1981): 1833-
1839.

[10] Back, Adam. Hashcash-a denial of service counter-measure. (2002).

[11] Solat, Siamak, Philippe Calvez, and Farid Naït-Abdesselam. "Permissioned
vs. Permissionless Blockchain: How and Why There Is Only One Right Choice."
Journal of Software. 16.3 (2021): 95-106.

[12] Solat, Siamak, and Farid Naït-Abdesselam. "Parallel Committees: High-
Performance, Scalable, Secure and Fault-Tolerant Data Replication Using a
Novel Sharding Technique." 2023 Fifth International Conference on Blockchain
Computing and Applications (BCCA). IEEE, 2023.

[13] Solat, S., Nait-Abdesselam, F. (2024). "Sharding Distributed Replication Sys-
tems to Improve Scalability and Throughput." "Building Cybersecurity Applica-
tions with Blockchain and Smart Contracts." Signals and Communication Tech-
nology. Springer, Cham. https://doi.org/10.1007/978-3-031-50733-5_5

[14] Oram, Andy. Peer-to-Peer: Harnessing the power of disruptive technologies.
" O’Reilly Media, Inc.", 2001.

[15] King, Sunny, and Scott Nadal. "Peercoin: Peer-to-peer crypto-currency with
proof-of-stake." self-published paper, August 19.1 (2012).

[16] Ongaro, Diego, and John Ousterhout. "In search of an understandable con-
sensus algorithm." 2014 USENIX Annual Technical Conference (Usenix ATC
14). 2014.

[17] Diego Ongaro. Why the "Raft" name? Available online at: https://groups.
google.com/g/raft-dev/c/95rZqptGpmU?pli=1. December 15, 2015.

[18] Leslie Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133169, May 1998.

187

https://doi.org/10.1007/978-3-031-50733-5_5
https://groups.google.com/g/raft-dev/c/95rZqptGpmU?pli=1
https://groups.google.com/g/raft-dev/c/95rZqptGpmU?pli=1

[19] Castro, Miguel. "Practical Byzantine fault tolerance." Ph.D. Dissertation.
Massachusetts Institute of Technology. Laboratory for Computer Science. Cam-
bridge, Massachusetts, USA. January 31, 2001. Available online at: https:
//pmg.csail.mit.edu/~castro/thesis.pdf

[20] Alqahtani, Salem, and Murat Demirbas. "Bottlenecks in blockchain consen-
sus protocols." 2021 IEEE International Conference on Omni-Layer Intelligent
Systems (COINS). IEEE, 2021.

[21] Choi, Beongjun, et al. "Scalable network-coded PBFT consensus algorithm."
2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019.

[22] Raynal, Michel. "Parallel computing vs. distributed computing: a great con-
fusion?(position paper)." European Conference on Parallel Processing. Springer,
Cham, 2015.

[23] Herlihy, Maurice, Sergio Rajsbaum, and Michel Raynal. "Power and limits of
distributed computing shared memory models." Theoretical Computer Science
509 (2013): 3-24.

[24] Herlihy, Maurice, and Nir Shavit. "The topological structure of asynchronous
computability." Journal of the ACM (JACM) 46.6 (1999): 858-923.

[25] Mosakheil, Jamal Hayat. "Security threats classification in blockchains."
(2018).

[26] Team, Harmony. "Harmony: Technical Whitepaper." (2018).

[27] Chimienti, Maria Teresa, Urszula Kochanska, and Andrea Pinna. "Under-
standing the crypto-asset phenomenon, its risks and measurement issues." Eco-
nomic Bulletin Articles 5 (2019).

[28] Androutsellis-Theotokis, Stephanos, and Diomidis Spinellis. "A survey
of peer-to-peer content distribution technologies." ACM computing surveys
(CSUR) 36.4 (2004): 335-371.

188

https://pmg.csail.mit.edu/~castro/thesis.pdf
https://pmg.csail.mit.edu/~castro/thesis.pdf

[29] Oki, Brian M., and Barbara H. Liskov. "Viewstamped replication: A new pri-
mary copy method to support highly-available distributed systems." Proceedings
of the seventh annual ACM Symposium on Principles of distributed computing.
1988.

[30] Dooley, Kevin. Designing Large Scale Lans: Help for Network Designers. "
O’Reilly Media, Inc.", 2001.

[31] Keidar, Idit, and Sergio Rajsbaum. "A simple proof of the uniform consensus
synchronous lower bound." Information Processing Letters 85.1 (2003): 47-52.

[32] Alqahtani, Salem, and Murat Demirbas. "Bottlenecks in blockchain consen-
sus protocols." 2021 IEEE International Conference on Omni-Layer Intelligent
Systems (COINS). IEEE, 2021.

[33] Dwork, Cynthia, and Moni Naor. "Pricing via processing or combatting junk
mail." Annual international cryptology conference. Springer, Berlin, Heidelberg,
1992.

[34] Jakobsson, Markus, and Ari Juels. "Proofs of work and bread pudding proto-
cols." Secure information networks. Springer, Boston, MA, 1999. 258-272.

[35] Ethereum community. Consensus mechanism, Sybil resistance & chain se-
lection. “PoW and PoS alone are not consensus protocols, but they are often
referred to as such for simplicity.” Available onlaine at https://ethereum.org/
en/developers/docs/consensus-mechanisms/#sybil-chain. Also available
in the Internet Archive at: https://web.archive.org/web/20230727221549/
https://ethereum.org/en/developers/docs/consensus-mechanisms/

[36] Gün Sirer, Emin. “there is a terribly wrong framework emerging
around consensus protocols. People think that PoW and PoS are consen-
sus protocols, and that they are the only two consensus protocols out
there. This is false.” 13 jun 2018. Tweet. Also available in the Inter-
net Archive at: https://web.archive.org/web/20230728023656/https://
twitter.com/el33th4xor/status/1006931658338177024

189

https://ethereum.org/en/developers/docs/consensus-mechanisms/#sybil-chain
https://ethereum.org/en/developers/docs/consensus-mechanisms/#sybil-chain
https://web.archive.org/web/20230727221549/https://ethereum.org/en/developers/docs/consensus-mechanisms/
https://web.archive.org/web/20230727221549/https://ethereum.org/en/developers/docs/consensus-mechanisms/
https://web.archive.org/web/20230728023656/https://twitter.com/el33th4xor/status/1006931658338177024
https://web.archive.org/web/20230728023656/https://twitter.com/el33th4xor/status/1006931658338177024

[37] Zhelezov, Dmitrii. “PoW, PoS and DAGs are NOT consensus protocols.”
(2018). Medium. Available online at: https://medium.com/coinmonks/a-
primer-on-blockchain-design-89605b287a5a

[38] Beyer, S. “Proof-of-Work Is Not a Consensus Protocol: Understand-
ing the Basics of Blockchain Consensus.” Medium. Available online at:
https://medium.com/cryptronics/proof-of-work-is-not-a-consensus-
protocol-understanding-the-basics-of-blockchain-consensus-
30aac7e845c8 (accessed April 1, 2019) (2019).

[39] Douceur, John R. "The sybil attack." International workshop on peer-to-peer
systems. Springer, Berlin, Heidelberg, 2002.

[40] Liu, Lintao, et al. "R-Chain: A Self-Maintained Reputation Management
System in P2P Networks." ISCA PDCS. 2004.

[41] Hoepman, Jaap-Henk. "Distributed double spending prevention." Interna-
tional Workshop on Security Protocols. Springer, Berlin, Heidelberg, 2007.

[42] "Parity Ethereum client." Available online at: https://github.com/
openethereum/parity-ethereum

[43] Johnson, Don, Alfred Menezes, and Scott Vanstone. "The elliptic curve digital
signature algorithm (ECDSA)." International journal of information security 1.1
(2001): 36-63.

[44] Ng, Harald. "Distributed Consensus: Performance Comparison of Paxos and
Raft." (2020).

[45] Wu, Yaqin, Pengxin Song, and Fuxin Wang. "Hybrid consensus algorithm
optimization: A mathematical method based on POS and PBFT and its appli-
cation in blockchain." Mathematical Problems in Engineering 2020 (2020).

[46] Yin, Maofan, et al. "Hotstuff: Bft consensus with linearity and responsive-
ness." Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing. 2019.

190

https://medium.com/coinmonks/a-primer-on-blockchain-design-89605b287a5a
https://medium.com/coinmonks/a-primer-on-blockchain-design-89605b287a5a
https://medium.com/cryptronics/proof-of-work-is-not-a-consensus-protocol-understanding-the-basics-of-blockchain-consensus-30aac7e845c8
https://medium.com/cryptronics/proof-of-work-is-not-a-consensus-protocol-understanding-the-basics-of-blockchain-consensus-30aac7e845c8
https://medium.com/cryptronics/proof-of-work-is-not-a-consensus-protocol-understanding-the-basics-of-blockchain-consensus-30aac7e845c8
https://github.com/openethereum/parity-ethereum
https://github.com/openethereum/parity-ethereum

[47] Cybersecurity and Infrastructure Security Agency. Security Tip (ST04-015).
Understanding Denial-of-Service Attacks. Original release date: November 04,
2009 | Last revised: November 20, 2019. Available online at: https://www.
cisa.gov/uscert/ncas/tips/ST04-015

[48] Jansma, Nicholas, and Brandon Arrendondo. "Performance comparison of
elliptic curve and rsa digital signatures." nicj. net/files (2004).

[49] Stephens, Ryan, and Ronald Plew. Database design. Sams Publishing, 2000.

[50] Kleppmann, Martin. Designing data-intensive applications: The big ideas
behind reliable, scalable, and maintainable systems. " O’Reilly Media, Inc.",
2018.

[51] The Bitcoin Wiki, Category: Proof-of-x. Available online at: https://en.
bitcoin.it/wiki/Category:Proof-of-x

[52] Wood, Gavin. "Polkadot: Vision for a heterogeneous multi-chain framework."
White paper 21.2327 (2016): 4662.

[53] Kwon, Jae, and Ethan Buchman. "Cosmos whitepaper." A Netw. Distrib.
Ledgers (2019).

[54] Dhillon, Vikram, David Metcalf, and Max Hooper. "The hyperledger project."
Blockchain enabled applications. Apress, Berkeley, CA, 2017. 139-149.

[55] Limitations of Zilliqas sharding approach. Available online at:
https://medium.com/nearprotocol/limitations-of-zilliqas-sharding-
approach-8f9efae0ce3b

[56] Syta, Ewa, et al. "Keeping authorities" honest or bust" with decentralized
witness cosigning." 2016 IEEE Symposium on Security and Privacy (SP). Ieee,
2016.

[57] Kogias, Eleftherios Kokoris, et al. "Enhancing bitcoin security and perfor-
mance with strong consistency via collective signing." 25th usenix security sym-
posium (usenix security 16). 2016.

191

https://www.cisa.gov/uscert/ncas/tips/ST04-015
https://www.cisa.gov/uscert/ncas/tips/ST04-015
https://en.bitcoin.it/wiki/Category:Proof-of-x
https://en.bitcoin.it/wiki/Category:Proof-of-x
https://medium.com/nearprotocol/limitations-of-zilliqas-sharding-approach-8f9efae0ce3b
https://medium.com/nearprotocol/limitations-of-zilliqas-sharding-approach-8f9efae0ce3b

[58] Recommended Parameters secp256k1. Standards for Efficient Cryptography.
SEC 2: Recommended Elliptic Curve Domain Parameters. https://www.secg.
org/sec2-v2.pdf#subsubsection.2.4.1

[59] Validation of Elliptic Curve Public Keys. Standards for Efficient Cryptog-
raphy. SEC 1: Elliptic Curve Cryptography. https://www.secg.org/sec1-
v2.pdf#subsubsection.3.2.2

[60] Bernstein, Philip A., Vassos Hadzilacos, and Nathan Goodman. Concurrency
control and recovery in database systems. Vol. 370. Reading: Addison-wesley,
1987.

[61] Lindsay, Bruce G., et al. Notes on distributed databases. IBM Thomas J.
Watson Research Division, 1979.

[62] Mohan, C., Bruce Lindsay, and Ron Obermarck. "Transaction management
in the R* distributed database management system." ACM Transactions on
Database Systems (TODS) 11.4 (1986): 378-396.

[63] Bez, Mirko, Giacomo Fornari, and Tullio Vardanega. "The scalability chal-
lenge of ethereum: An initial quantitative analysis." 2019 IEEE International
Conference on Service-Oriented System Engineering (SOSE). IEEE, 2019.

[64] Taskinsoy, John. "Blockchain: a misunderstood digital revolution. Things you
need to know about blockchain." Things You Need to Know about Blockchain
(October 8, 2019) (2019).

[65] George, Coulouris, et al. "Distributed Systems: Concepts and Design Series
5th Ed." (2012).

[66] Bracha, Gabriel, and Sam Toueg. "Asynchronous consensus and broadcast
protocols." Journal of the ACM (JACM) 32.4 (1985): 824-840.

[67] Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. "Sharper:
Sharding permissioned blockchains over network clusters." Proceedings of the
2021 international conference on management of data. 2021.

192

https://www.secg.org/sec2-v2.pdf#subsubsection.2.4.1
https://www.secg.org/sec2-v2.pdf#subsubsection.2.4.1
https://www.secg.org/sec1-v2.pdf#subsubsection.3.2.2
https://www.secg.org/sec1-v2.pdf#subsubsection.3.2.2

[68] Ren, Zhijie, et al. "A scale-out blockchain for value transfer with spontaneous
sharding." 2018 Crypto Valley Conference on Blockchain Technology (CVCBT).
IEEE, 2018.

[69] Dang, Hung, et al. "Towards scaling blockchain systems via sharding." Pro-
ceedings of the 2019 international conference on management of data. 2019.

[70] Newton-Raphson Method. Garrett, Stephen. Introduction to actuarial
and financial mathematical methods. Academic Press, 2015. Available on-
line at: https://www.sciencedirect.com/topics/mathematics/newton-
raphson-method

[71] Behl, Johannes, Tobias Distler, and Rüdiger Kapitza. "Hybrids on steroids:
SGX-based high performance BFT." Proceedings of the Twelfth European Con-
ference on Computer Systems. 2017.

[72] Chun, Byung-Gon, et al. "Attested append-only memory: Making adversaries
stick to their word." ACM SIGOPS Operating Systems Review 41.6 (2007): 189-
204.

[73] Levin, Dave, et al. "TrInc: Small Trusted Hardware for Large Distributed
Systems." NSDI. Vol. 9. 2009.

[74] Ren, Liuyang, Paul AS Ward, and Bernard Wong. "Toward reducing cross-
shard transaction overhead in sharded blockchains." Proceedings of the 16th
ACM International Conference on Distributed and Event-Based Systems. 2022.

[75] Cassez, Franck, Joanne Fuller, and Aditya Asgaonkar. "Formal verification of
the ethereum 2.0 beacon chain." Tools and Algorithms for the Construction and
Analysis of Systems: 28th International Conference, TACAS 2022, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2022, Munich, Germany, April 27, 2022, Proceedings, Part I. Cham: Springer
International Publishing, 2022.

[76] Ethereum Solidity Documentation. Available online at: https://docs.
soliditylang.org/en/v0.7.1/

193

https://www.sciencedirect.com/topics/mathematics/newton-raphson-method
https://www.sciencedirect.com/topics/mathematics/newton-raphson-method
https://docs.soliditylang.org/en/v0.7.1/
https://docs.soliditylang.org/en/v0.7.1/

[77] Henly, Claire, et al. "Energizing the future with blockchain." Energy LJ 39
(2018): 197.

[78] Wu, Kaidong, et al. "A first look at blockchainbased decentralized applica-
tions." Software: Practice and Experience 51.10 (2021): 2033-2050.

[79] Implementing PoW in Java Github. Available online at: https:
//github.com/ngafep/Proof-of-Work-SHA-256-in-Java/blob/master/
PoW_Java.java

[80] Intel Core i7-8650U Processor. Available online at: https://ark.intel.
com/content/www/us/en/ark/products/124968/intel-core-i78650u-
processor-8m-cache-up-to-4-20-ghz.html

[81] Number of blocks of Bitcoin on the date of 24/05/2023. Available online at:
https://www.blockchain.com/explorer/blocks/btc

[82] Mining hardware comparison. Available online at: https://en.bitcoin.it/
wiki/Mining_hardware_comparison

[83] What network hash rate results in a given difficulty? Available online
at: https://en.bitcoin.it/wiki/Difficulty#What_network_hash_rate_
results_in_a_given_difficulty.3F

[84] Garay, Juan, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, Berlin, Hei-
delberg, 2015.

[85] What is the maximum target? Available online at: https://en.bitcoin.
it/wiki/Target#What_is_the_maximum_target.3F

[86] Jorge Stolfi, NISTIR 8202 (DRAFT): Blockchain Technology Overview, IN-
STITUTE OF COMPUTING STATE UNIVERSITY OF CAMPINAS

[87] Zhou, Kaile, Shanlin Yang, and Zhen Shao. "Energy internet: the business
perspective." Applied Energy 178 (2016): 212-222.

194

https://github.com/ngafep/ Proof-of-Work-SHA-256-in-Java/blob/master/PoW_Java.java
https://github.com/ngafep/ Proof-of-Work-SHA-256-in-Java/blob/master/PoW_Java.java
https://github.com/ngafep/ Proof-of-Work-SHA-256-in-Java/blob/master/PoW_Java.java
https://ark.intel.com/content/www/us/en/ark/products/124968/intel-core-i78650u-processor-8m-cache-up-to-4-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/124968/intel-core-i78650u-processor-8m-cache-up-to-4-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/124968/intel-core-i78650u-processor-8m-cache-up-to-4-20-ghz.html
https://www.blockchain.com/explorer/blocks/btc
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://en.bitcoin.it/wiki/Difficulty#What_network_hash_rate_results_in_a_given_difficulty.3F
https://en.bitcoin.it/wiki/Difficulty#What_network_hash_rate_results_in_a_given_difficulty.3F
https://en.bitcoin.it/wiki/Target#What_is_the_maximum_target.3F
https://en.bitcoin.it/wiki/Target#What_is_the_maximum_target.3F

[88] Hamid Jahankhani, David Lilburn Watson, Gianluigi Me, Frank Leonhardt.
Handbook of Electronic Security and Digital Forensics. Page 591. World Scien-
tific Publishing Company. 2010.

[89] https://usa.visa.com/dam/VCOM/download/merchants/interlink-
interchange-reimbursement-fees.pdf

[90] https://usa.visa.com/dam/VCOM/regional/na/us/support-legal/
documents/visa-usa-interchange-reimbursement-fees.pdf

[91] Poon, Joseph, and Thaddeus Dryja. "The bitcoin lightning network: Scalable
off-chain instant payments." (2016).

[92] https://www.sec.gov/investor/alerts/ia_virtualcurrencies.pdf

[93] https://coinmarketcap.com/currencies/bitconnect/

[94] Puthal, Deepak, et al. "The blockchain as a decentralized security framework
[future di-rections]." IEEE Consumer Electronics Magazine 7.2 (2018): 18-21.

[95] Sankar, Lakshmi Siva, M. Sindhu, and M. Sethumadhavan. "Survey of con-
sensus protocols on blockchain applications." 2017 4th International Conference
on Advanced Computing and Communication Systems (ICACCS). IEEE, 2017.

[96] Zheng, Zibin, et al. "An overview of blockchain technology: Architecture,
consensus, and future trends." 2017 IEEE International Congress on Big Data
(BigData Congress). IEEE, 2017.

[97] Underwood, Sarah. "Blockchain beyond bitcoin." (2016): 15-17.

[98] Xu, Xiwei, et al. "The blockchain as a software connector." 2016 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA). IEEE, 2016.

[99] Hackius, Niels, and Moritz Petersen. "Blockchain in logistics and supply chain:
trick or treat?." Proceedings of the Hamburg International Conference of Logis-
tics (HICL). epubli, 2017.

[100] Oracle Active Data Guard Real-Time Data Protection and Availability, Or-
acle White Paper, June 2013.

195

https://usa.visa.com/dam/VCOM/download/merchants/interlink-interchange-reimbursement-fees.pdf
https://usa.visa.com/dam/VCOM/download/merchants/interlink-interchange-reimbursement-fees.pdf
https://usa.visa.com/dam/VCOM/regional/na/us/support-legal/documents/visa-usa-interchange-reimbursement-fees.pdf
https://usa.visa.com/dam/VCOM/regional/na/us/support-legal/documents/visa-usa-interchange-reimbursement-fees.pdf
https://www.sec.gov/investor/alerts/ia_virtualcurrencies.pdf
https://coinmarketcap.com/currencies/bitconnect/

[101] Lin Qiao, Kapil Surlaker, Shirshanka Das, et al.: On Brewing Fresh Espresso:
LinkedIns Distributed Data Serving Platform, at ACM International Conference
on Management of Data (SIGMOD), June 2013.

[102] Jun Rao: Intra-Cluster Replication for Apache Kafka, at ApacheCon North
America, February 2013.

[103] Highly Available Queues, in RabbitMQ Server Documentation, Pivotal Soft-
ware, Inc., 2014.

[104] Distributed Replicated Block Device. Available online at https://linbit.
com/drbd/

[105] Cachin, Christian, Rachid Guerraoui, and Lus Rodrigues. Introduction to re-
liable and secure distributed programming. Springer Science & Business Media,
2011.

[106] Distributed Systems Abstractions. Course piazza, Course canvas. Available
online at https://www.cs.ubc.ca/~bestchai/teaching/cs538b_2020w1/
index.html

[107] Dwork, Cynthia, Nancy Lynch, and Larry Stockmeyer. "Consensus in the
presence of partial synchrony." Journal of the ACM (JACM) 35.2 (1988): 288-
323.

[108] Lindsay, Bruce G., et al. Notes on distributed databases. IBM Thomas J.
Watson Research Division, 1979.

[109] Gifford, David K. "Weighted voting for replicated data." Proceedings of the
seventh ACM symposium on Operating systems principles. 1979.

[110] DeCandia, Giuseppe, et al. "Dynamo: Amazon’s highly available key-value
store." ACM SIGOPS operating systems review 41.6 (2007): 205-220.

[111] Amazon DynamoDB. Available online at https://aws.amazon.com/
dynamodb/

196

https://linbit.com/drbd/
https://linbit.com/drbd/
https://www.cs.ubc.ca/~bestchai/teaching/cs538b_2020w1/index.html
https://www.cs.ubc.ca/~bestchai/teaching/cs538b_2020w1/index.html
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/

[112] Kshemkalyani, Ajay D., and Mukesh Singhal. Distributed computing: prin-
ciples, algorithms, and systems. Cambridge University Press, 2011.

[113] Chandra, Tushar Deepak, and Sam Toueg. "Unreliable failure detectors for
reliable distributed systems." Journal of the ACM (JACM) 43.2 (1996): 225-267.

[114] Agrawal, Divyakant, and Amr El Abbadi. "The Tree Quorum Protocol: An
Efficient Approach for Managing Replicated Data." VLDB. Vol. 90. 1990.

[115] Cheung, Shun Yan, Mostafa H. Ammar, and Mustaque Ahamad. "The grid
protocol: A high performance scheme for maintaining replicated data." IEEE
Transactions on Knowledge and Data Engineering 4.6 (1992): 582-592.

[116] Garcia-Molina, Hector, and Daniel Barbara. "How to assign votes in a dis-
tributed system." Journal of the ACM (JACM) 32.4 (1985): 841-860.

[117] A. Kumar, "Hierarchical quorum consensus: a new algorithm for managing
replicated data," in IEEE Transactions on Computers, vol. 40, no. 9, pp. 996-
1004, Sept. 1991, doi: 10.1109/12.83661

[118] Maekawa, and M. A. Sqrt. "A. Sqrt. Algorithm for mutual exclusion in de-
centralized systems." ACM Transactions on Com puter Systems 3.2 (1985):
145.

[119] Naor, Moni, and Avishai Wool. "The load, capacity, and availability of quo-
rum systems." SIAM Journal on Computing 27.2 (1998): 423-447.

[120] Peleg, David, and Avishai Wooly. "Crumbling Walls: A Class of Practical
and E cient Quorum Systems." Proceedings of the 14th ACM Symposium on
Principles of Distributed Computing. 1996.

[121] Whittaker, Michael, et al. "Read-write quorum systems made practical."
Proceedings of the 8th Workshop on Principles and Practice of Consistency for
Distributed Data. 2021.

[122] Quoracle tool. Available online at https://mwhittaker.github.io/
publications/quoracle.html

197

https://mwhittaker.github.io/publications/quoracle.html
https://mwhittaker.github.io/publications/quoracle.html

[123] Attiya, Hagit, Amotz Bar-Noy, and Danny Dolev. "Sharing memory robustly
in message-passing systems." Journal of the ACM (JACM) 42.1 (1995): 124-142.

[124] Mills, David L. "Internet time synchronization: the network time protocol."
IEEE Transactions on communications 39.10 (1991): 1482-1493.

[125] Lamport, Leslie. "Time, clocks, and the ordering of events in a distributed
system." Concurrency: the Works of Leslie Lamport. 2019. 179-196.

[126] Fidge, Colin. "Logical time in distributed computing systems." Computer
24.8 (1991): 28-33.

[127] Mattern, Friedemann. Virtual time and global states of distributed systems.
Univ., Department of Computer Science, 1988.

[128] Schmuck, F. The use of efficient broadcast in asynchronous distributed sys-
tems. Diss. Ph. D. Thesis, Cornell University, 1988.

[129] Charron-Bost, B., F. Pedone, and A. Schiper. "Replication: Theory and
Practice, ser. LNCS, vol. 5959." (2010).

[130] van Renesse, Robbert, and Rachid Guerraoui. "Replication techniques for
availability." Replication: Theory and practice. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010. 19-40.

[131] Kemme, Bettina, et al. "Database replication: A tutorial." Replication: The-
ory and Practice (2010): 219-252.

[132] Poledna, Stefan. Fault-tolerant real-time systems: The problem of replica
determinism. Vol. 345. Springer Science & Business Media, 2007.

[133] Cooper, Eric C. Circus: A replicated procedure call facility. CALIFORNIA
UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND COM-
PUTER SCIENCES, 1984.

[134] Ahamad, Mustaque, et al. "Fault Tolerant Computing in Object Based Dis-
tributed Operating Systems." Proceedings-Symposium on Reliability in Dis-
tributed Software and Database Systems. IEEE, 1987.

198

[135] Chérèque, Marc, et al. "Active replication in Delta-4." [1992] Digest of Pa-
pers. FTCS-22: The Twenty-Second International Symposium on Fault-Tolerant
Computing. IEEE, 1992.

[136] Keichafer, R. M., et al. "The MAFT architecture for distributed fault toler-
ance." IEEE Transactions on Computers 37.4 (1988): 398-404.

[137] Kopetz, Hermann, et al. "Distributed fault-tolerant real-time systems: The
Mars approach." IEEE Micro 9.1 (1989): 25-40.

[138] Wensley, John H., et al. "SIFT: Design and analysis of a fault-tolerant com-
puter for aircraft control." Proceedings of the IEEE 66.10 (1978): 1240-1255.

[139] Wojciechowski, Pawel T., Tadeusz Kobus, and Maciej Kokocinski. "Model-
driven comparison of state-machine-based and deferred-update replication
schemes." 2012 IEEE 31st Symposium on Reliable Distributed Systems. IEEE,
2012.

[140] Herlihy, Maurice P., and Jeannette M. Wing. "Linearizability: A correct-
ness condition for concurrent objects." ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 12.3 (1990): 463-492.

[141] Lamport, Leslie. "On interprocess communication: part I: basic formalism."
Distributed computing 1 (1986): 77-85.

[142] Gifford, David Kenneth. Information storage in a decentralized computer
system. Stanford University, 1981.

[143] Schneider, Fred B. "Implementing fault-tolerant services using the state ma-
chine approach: A tutorial." ACM Computing Surveys (CSUR) 22.4 (1990):
299-319.

[144] Alsberg, Peter A., and John D. Day. "A principle for resilient sharing of dis-
tributed resources." Proceedings of the 2nd international conference on Software
engineering. 1976.

199

[145] Hunt, Patrick, et al. "ZooKeeper: Wait-free coordination for internet-scale
systems." 2010 USENIX Annual Technical Conference (USENIX ATC 10). 2010.
Available online at: https://zookeeper.apache.org/

[146] A distributed, reliable key-value store for the most critical data of a dis-
tributed system. Available online at: https://etcd.io/ and https://github.
com/etcd-io/etcd#etcd

[147] etcd, the fault-tolerant open source key-value database. IBM. Available on-
line at: https://www.ibm.com/topics/etcd

[148] Junqueira, Flavio P., Benjamin C. Reed, and Marco Serafini. "Zab: High-
performance broadcast for primary-backup systems." 2011 IEEE/IFIP 41st In-
ternational Conference on Dependable Systems & Networks (DSN). IEEE, 2011.

[149] Fischer, Michael J., Nancy A. Lynch, and Michael S. Paterson. "Impossibility
of distributed consensus with one faulty process." Journal of the ACM (JACM)
32.2 (1985): 374-382.

[150] Vitalek Buterin, "Merge blocks and synchronous cross-shard state exe-
cution." Available online at: https://ethresear.ch/t/merge-blocks-and-
synchronous-cross-shard-state-execution/1240

[151] Casey Detrio, "Synchronous cross-shard transactions with consolidated
concurrency control and consensus (or how I rediscovered Chain Fibers)"
Available online at: https://ethresear.ch/t/synchronous-cross-shard-
transactions-with-consolidated-concurrency-control-and-consensus-
or-how-i-rediscovered-chain-fibers/2318

[152] Martino, Will, Monica Quaintance, and Stuart Popejoy. "Chainweb: A proof-
of-work parallel-chain architecture for massive throughput." Chainweb whitepa-
per 19 (2018).

[153] Vlad Zamfir, Ethereum Sharding Proof of Concept. Avail-
able online at: https://github.com/smarx/ethshardingpoc/tree/
a0ec249f3fec61279fcde30b403cefebfb23580d#ethereum-sharding-proof-
of-concept

200

https://zookeeper.apache.org/
https://etcd.io/
https://github.com/etcd-io/etcd#etcd
https://github.com/etcd-io/etcd#etcd
https://www.ibm.com/topics/etcd
https://ethresear.ch/t/merge-blocks-and-synchronous-cross-shard-state-execution/1240
https://ethresear.ch/t/merge-blocks-and-synchronous-cross-shard-state-execution/1240
https://ethresear.ch/t/synchronous-cross-shard-transactions-with-consolidated-concurrency-control-and-consensus-or-how-i-rediscovered-chain-fibers/2318
https://ethresear.ch/t/synchronous-cross-shard-transactions-with-consolidated-concurrency-control-and-consensus-or-how-i-rediscovered-chain-fibers/2318
https://ethresear.ch/t/synchronous-cross-shard-transactions-with-consolidated-concurrency-control-and-consensus-or-how-i-rediscovered-chain-fibers/2318
https://github.com/smarx/ethshardingpoc/tree/a0ec249f3fec61279fcde30b403cefebfb23580d#ethereum-sharding-proof-of-concept
https://github.com/smarx/ethshardingpoc/tree/a0ec249f3fec61279fcde30b403cefebfb23580d#ethereum-sharding-proof-of-concept
https://github.com/smarx/ethshardingpoc/tree/a0ec249f3fec61279fcde30b403cefebfb23580d#ethereum-sharding-proof-of-concept

[154] Polkadot Wiki. Available online at: https://wiki.polkadot.network/
docs/getting-started

[155] Ethereum 2.0 Block Time. Available online at: https://github.
com/ethereum/consensus-specs/blob/676e216/specs/phase0/beacon-
chain.md#time-parameters

[156] Buterin, Vitalik, et al. "Combining GHOST and casper." arXiv preprint
arXiv:2003.03052 (2020).

[157] OBrien, Dermot, et al. "Final Report of the Exploratory Research Project,
Blockchain for Transport (BC4T)." (2022).

[158] Tennakoon, Deepal, and Vincent Gramoli. "Dynamic blockchain sharding."
5th International Symposium on Foundations and Applications of Blockchain
2022 (FAB 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[159] Buterin, Vitalik, and Virgil Griffith. "Casper the friendly finality gadget."
arXiv preprint arXiv:1710.09437 (2017).

[160] Ethereum Developers Docs Consensus Mechanism Gasper. Available online
at: https://ethereum.org/en/developers/docs/consensus-mechanisms/
pos/gasper/

[161] Sompolinsky, Yonatan, and Aviv Zohar. "Secure high-rate transaction pro-
cessing in bitcoin." Financial Cryptography and Data Security: 19th Interna-
tional Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Re-
vised Selected Papers 19. Springer Berlin Heidelberg, 2015.

[162] Burdges, Jeff, et al. "Overview of polkadot and its design considerations."
arXiv preprint arXiv:2005.13456 (2020).

[163] Ethereum 2.0 Phase 0 – Beacon Chain Fork Choice. Available online
at: https://github.com/ethereum/annotated-spec/blob/master/phase0/
fork-choice.md

[164] Lamport, Leslie. "Proving the correctness of multiprocess programs." IEEE
transactions on software engineering 2 (1977): 125-143.

201

https://wiki.polkadot.network/docs/getting-started
https://wiki.polkadot.network/docs/getting-started
https://github.com/ethereum/consensus-specs/blob/676e216/specs/phase0/beacon-chain.md#time-parameters
https://github.com/ethereum/consensus-specs/blob/676e216/specs/phase0/beacon-chain.md#time-parameters
https://github.com/ethereum/consensus-specs/blob/676e216/specs/phase0/beacon-chain.md#time-parameters
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/gasper/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/gasper/
https://github.com/ethereum/annotated-spec/blob/master/phase0/fork-choice.md
https://github.com/ethereum/annotated-spec/blob/master/phase0/fork-choice.md

[165] Pease, Marshall, Robert Shostak, and Leslie Lamport. "Reaching agreement
in the presence of faults." Journal of the ACM (JACM) 27.2 (1980): 228-234.

[166] Leslie Lamport’s Home Page. https://www.lamport.org

[167] Distributed systems definition by Leslie Lamport. Available online at https:
//amturing.acm.org/award_winners/lamport_1205376.cfm

[168] RethinkDB, the open-source database for the realtime web. Website: https:
//rethinkdb.com/

[169] Ante, Lennart. "Non-fungible token (NFT) markets on the Ethereum
blockchain: Temporal development, cointegration and interrelations." Eco-
nomics of Innovation and New Technology (2022): 1-19.

[170] Fowler, Allan, and Johanna Pirker. "Tokenfication - The potential of non-
fungible tokens (NFT) for game development." Extended abstracts of the 2021
annual symposium on computer-human interaction in play. 2021.

[171] Ethereum Mainnet Statistics. Available online at: https://www.
ethernodes.org/ Also available in the Internet Archive at: https://web.
archive.org/web/20230727204645/https://www.ethernodes.org/

[172] Bitnodes. Estimating the relative size of the Bitcoin peer-to-peer network
by finding all of its reachable nodes. Available online at: https://bitnodes.
io/ Also available in the Internet Archive at: https://web.archive.org/web/
20230727192540/https://bitnodes.io/

[173] Wattenhofer, Roger. The science of the blockchain. Inverted Forest Publish-
ing. First Edition 2016. ISBN-13 978-1522751830. ISBN-10 1522751831.

[174] Hyperledger Fabric, Pluggable Consensus. Available online at:
https://hyperledger-fabric.readthedocs.io/en/release-2.5/whatis.
html#pluggable-consensus

[175] Adams, C. (2011). Trusted Third Party. In: van Tilborg, H.C.A., Jajodia,
S. (eds) Encyclopedia of Cryptography and Security. Springer, Boston, MA.
https://doi.org/10.1007/978-1-4419-5906-5_98

202

https://www.lamport.org
https://amturing.acm.org/award_winners/lamport_1205376.cfm
https://amturing.acm.org/award_winners/lamport_1205376.cfm
https://rethinkdb.com/
https://rethinkdb.com/
https://www.ethernodes.org/
https://www.ethernodes.org/
https://web.archive.org/web/20230727204645/https://www.ethernodes.org/
https://web.archive.org/web/20230727204645/https://www.ethernodes.org/
https://bitnodes.io/
https://bitnodes.io/
https://web.archive.org/web/20230727192540/https://bitnodes.io/
https://web.archive.org/web/20230727192540/https://bitnodes.io/
https://hyperledger-fabric.readthedocs.io/en/release-2.5/whatis.html#pluggable-consensus
https://hyperledger-fabric.readthedocs.io/en/release-2.5/whatis.html#pluggable-consensus
https://doi.org/10.1007/978-1-4419-5906-5_98

[176] De Vries, Alex. "Renewable energy will not solve bitcoin’s sustainability prob-
lem." Joule 3.4 (2019): 893-898.

[177] Gallersdörfer, Ulrich, Lena Klaaßen, and Christian Stoll. "Energy consump-
tion of cryptocurrencies beyond bitcoin." Joule 4.9 (2020): 1843-1846.

[178] De Vries, Alex. "Bitcoin’s growing energy problem." Joule 2.5 (2018): 801-
805.

[179] Isabella Gschossmann, Anton van der Kraaij, Pierre-Loïc Benoit, Emmanuel
Rocher. "The estimated carbon footprint of crypto-assets." The European Cen-
tral Bank (ECB). Research & Publications. Macroprudential Bulletin.

[180] Cambridge Bitcoin Electricity Consumption Index. Bitcoin network power
demand. Available online at: https://ccaf.io/cbnsi/cbeci Also available
in the Internet Archive at: https://web.archive.org/web/20230727204958/
https://ccaf.io/cbnsi/cbeci

[181] Antonopoulos, Andreas M. Mastering Bitcoin: Programming the open
blockchain. " O’Reilly Media, Inc.", 2017. page 27. "Jings company now runs
a warehouse containing thousands of ASIC miners to mine for bitcoin 24 hours
a day."

[182] Cambridge English Dictionary. https://dictionary.cambridge.org/
dictionary/english/fallacy

[183] Oxford English Dictionary. https://www.oed.com/search/dictionary/
?scope=Entries&q=fallacy

[184] Googles English dictionary provided by Oxford Languages. Oxford Univer-
sity Press. https://languages.oup.com/google-dictionary-en/

[185] Vitaliks Annotated Ethereum 2.0 Spec. The document was written
in July-Aug 2020. The original link: https://notes.ethereum.org/
@vbuterin/SkeyEI3xv#Vitalik%E2%80%99s-Annotated-Ethereum-20-Spec.
The backup link saved in the Wayback Machine - Internet Archive
website: https://web.archive.org/web/20231219093907/https:

203

https://ccaf.io/cbnsi/cbeci
https://web.archive.org/web/20230727204958/https://ccaf.io/cbnsi/cbeci
https://web.archive.org/web/20230727204958/https://ccaf.io/cbnsi/cbeci
https://dictionary.cambridge.org/dictionary/english/fallacy
https://dictionary.cambridge.org/dictionary/english/fallacy
https://www.oed.com/search/dictionary/?scope=Entries&q=fallacy
https://www.oed.com/search/dictionary/?scope=Entries&q=fallacy
https://languages.oup.com/google-dictionary-en/
https://notes.ethereum.org/@vbuterin/SkeyEI3xv#Vitalik%E2%80%99s-Annotated-Ethereum-20-Spec
https://notes.ethereum.org/@vbuterin/SkeyEI3xv#Vitalik%E2%80%99s-Annotated-Ethereum-20-Spec
https://web.archive.org/web/20231219093907/https://notes.ethereum.org/@vbuterin/SkeyEI3xv#Vitalik%E2%80%99s-Annotated-Ethereum-20-Spec
https://web.archive.org/web/20231219093907/https://notes.ethereum.org/@vbuterin/SkeyEI3xv#Vitalik%E2%80%99s-Annotated-Ethereum-20-Spec

//notes.ethereum.org/@vbuterin/SkeyEI3xv#Vitalik%E2%80%99s-
Annotated-Ethereum-20-Spec

[186] Danksharding Ethereum 2.0. The original link: https://ethereum.org/
en/roadmap/danksharding. The backup link saved in the Wayback Machine
- Internet Archive website: https://web.archive.org/web/20240128121338/
https://ethereum.org/en/roadmap/danksharding#what-is-sharding

[187] 3GPP TS 36.300, Evolved Universal Terrestrial Radio Access (E-UTRA)
and Evolved Universal Terrestrial Radio Access Network (E-UTRAN), Overall
description, Stage 2 (Release8), March 2008.

[188] Carpenter, Jeff, and Eben Hewitt. Cassandra: The Definitive Guide,(Re-
vised). " O’Reilly Media, Inc.", 2022.

[189] Strickland, Robbie. Cassandra high availability. Packt Publishing Ltd, 2014.

[190] The official Apache Cassandra documentation. https://cassandra.
apache.org/doc/

[191] Lakshman, Avinash, and Prashant Malik. "Cassandra: a decentralized struc-
tured storage system." ACM SIGOPS operating systems review 44.2 (2010):
35-40.

[192] Amazon DynamoDB Developer Guide. ISBN-10 : 9888408771. ISBN-13 :
978-9888408771. Author: Amazon Web Services. (June 26, 2018).

[193] Vyas, Uchit, and Prabhakaran Kuppusamy. DynamoDB Applied Design Pat-
terns. Packt Publishing Ltd, 2014.

[194] Deshpande, Tanmay. Mastering DynamoDB. Packt Publishing Ltd, 2014.

[195] Google Cloud Bigtable Documentation. Available online at: https://
cloud.google.com/bigtable/docs

[196] Google Cloud Whitepapers. https://cloud.google.com/whitepapers

[197] Corbett, James C., et al. "Spanner: Googles globally distributed database."
ACM Transactions on Computer Systems (TOCS) 31.3 (2013): 1-22.

204

https://web.archive.org/web/20231219093907/https://notes.ethereum.org/@vbuterin/SkeyEI3xv#Vitalik%E2%80%99s-Annotated-Ethereum-20-Spec
https://web.archive.org/web/20231219093907/https://notes.ethereum.org/@vbuterin/SkeyEI3xv#Vitalik%E2%80%99s-Annotated-Ethereum-20-Spec
https://web.archive.org/web/20231219093907/https://notes.ethereum.org/@vbuterin/SkeyEI3xv#Vitalik%E2%80%99s-Annotated-Ethereum-20-Spec
https://web.archive.org/web/20231219093907/https://notes.ethereum.org/@vbuterin/SkeyEI3xv#Vitalik%E2%80%99s-Annotated-Ethereum-20-Spec
https://ethereum.org/en/roadmap/danksharding
https://ethereum.org/en/roadmap/danksharding
https://web.archive.org/web/20240128121338/https://ethereum.org/en/roadmap/danksharding#what-is-sharding
https://web.archive.org/web/20240128121338/https://ethereum.org/en/roadmap/danksharding#what-is-sharding
https://cassandra.apache.org/doc/
https://cassandra.apache.org/doc/
https://cloud.google.com/bigtable/docs
https://cloud.google.com/bigtable/docs
https://cloud.google.com/whitepapers

[198] Google Cloud Spanner Documentation. Available online at: https://cloud.
google.com/spanner/docs

[199] Bacon, David F., et al. "Spanner: Becoming a SQL system." Proceedings of
the 2017 ACM International Conference on Management of Data. 2017.

[200] ScyllaDB Documentation. Available online at: https://docs.scylladb.
com/

[201] GitHub Repository: ScyllaDB. Available online at: https://github.com/
scylladb/scylladb/wiki

[202] Silberschatz, Abraham, Henry F. Korth, and Shashank Sudarshan. Database
system concepts. McGraw-Hill, 2011.

[203] MongoDB’s official documentation. Available online at: https://docs.
mongodb.com/

[204] Apache HBase Reference Guide. Available online at: https://hbase.
apache.org/apache_hbase_reference_guide.pdf

[205] Meyer, Mathias. Riak handbook. Technical report, Basho, 2011.

[206] Couchbase Documentation. Available online at: https://docs.couchbase.
com/home/index.html

[207] Hubail, Murtadha AI, et al. "Couchbase analytics: NoETL for scalable
NoSQL data analysis." Proceedings of the VLDB Endowment 12.12 (2019):
2275-2286.

[208] Mengelkamp, Esther, et al. "A blockchain-based smart grid: towards sus-
tainable local energy markets." Computer Science-Research and Development
33.1-2 (2018): 207-214.

[209] Mylrea, Michael, and Sri Nikhil Gupta Gourisetti. "Blockchain for smart
grid resilience: Exchanging distributed energy at speed, scale and security."
2017 Resilience Week (RWS). IEEE, 2017.

205

https://cloud.google.com/spanner/docs
https://cloud.google.com/spanner/docs
https://docs.scylladb.com/
https://docs.scylladb.com/
https://github.com/scylladb/scylladb/wiki
https://github.com/scylladb/scylladb/wiki
https://docs.mongodb.com/
https://docs.mongodb.com/
https://hbase.apache.org/apache_hbase_reference_guide.pdf
https://hbase.apache.org/apache_hbase_reference_guide.pdf
https://docs.couchbase.com/home/index.html
https://docs.couchbase.com/home/index.html

[210] Mannaro, Katiuscia, Andrea Pinna, and Michele Marchesi. "Crypto-trading:
Blockchain-oriented energy market." 2017 AEIT International Annual Confer-
ence. IEEE, 2017.

[211] Pieroni, Alessandra, et al. "Smarter city: smart energy grid based on
blockchain technology." Int. J. Adv. Sci. Eng. Inf. Technol 8.1 (2018): 298-306.

[212] Peck, Morgen E., and David Wagman. "Energy trading for fun and profit buy
your neighbor’s rooftop solar power or sell your own-it’ll all be on a blockchain."
IEEE Spectrum 54.10 (2017): 56-61.

[213] Di Silvestre, Maria Luisa, et al. "A technical approach to the energy
blockchain in microgrids." IEEE Transactions on Industrial Informatics 14.11
(2018): 4792-4803.

[214] Mengelkamp, Esther, et al. "Designing microgrid energy markets: A case
study: The Brooklyn Microgrid." Applied Energy 210 (2018): 870-880.

[215] Park, Lee, Sanghoon Lee, and Hangbae Chang. "A sustainable home energy
prosumer-chain methodology with energy tags over the blockchain." Sustainabil-
ity 10.3 (2018): 658.

[216] Hukkinen, Taneli, et al. "A Blockchain Application in Energy." ETLA Re-
ports 71 (2017).

[217] Oh, Se-Chang, et al. "Implementation of blockchain-based energy trading
system." Asia Pacific Journal of Innovation and Entrepreneurship 11.3 (2017):
322-334.

[218] Sikorski, Janusz J., Joy Haughton, and Markus Kraft. "Blockchain technol-
ogy in the chemical industry: Machine-to-machine electricity market." Applied
Energy 195 (2017): 234-246.

[219] Kounelis, Ioannis, et al. "Fostering consumers’ energy market through smart
contracts." 2017 International Conference in Energy and Sustainability in Small
Developing Economies (ES2DE). IEEE, 2017.

206

[220] Zhaoyang, D. O. N. G., L. U. O. Fengji, and Gaoqi Liang. "Blockchain:
a secure, decentralized, trusted cyber infrastructure solution for future energy
systems." Journal of Modern Power Systems and Clean Energy 6.5 (2018): 958-
967.

[221] Vangulick, David, Bertrand Cornélusse, and Damien Ernst. "Blockchain for
peer-to-peer energy exchanges: design and recommendations." 2018 Power Sys-
tems Computation Conference (PSCC). IEEE, 2018.

[222] Schlund, Jonas, Lorenz Ammon, and Reinhard German. "ETHome: Open-
source blockchain based energy community controller." Proceedings of the Ninth
International Conference on Future Energy Systems. ACM, 2018.

[223] Xu, Chenhan, Kun Wang, and Mingyi Guo. "Intelligent resource man-
agement in blockchain-based cloud datacenters." IEEE Cloud Computing 4.6
(2017): 50-59.

[224] Ouyang, Xu, et al. "Preliminary applications of blockchain technique in large
consumers direct power trading." Proceedings of the CSEE. Vol. 37. No. 13. 2017.

[225] Sabounchi, Moein, and Jin Wei. "Towards resilient networked microgrids:
Blockchain-enabled peer-to-peer electricity trading mechanism." 2017 IEEE
Conference on Energy Internet and Energy System Integration (EI2). IEEE,
2017.

[226] Dispenza, Jason, Christina Garcia, and Ryan Molecke. "Energy Efficiency
Coin (EECoin) A blockchain asset class pegged to renewable energy markets."
(2017).

[227] Morstyn, Thomas, et al. "Using peer-to-peer energy-trading platforms to in-
centivize prosumers to form federated power plants." Nature Energy 3.2 (2018):
94.

[228] Horta, José, Daniel Kofman, and David Menga. "Novel paradigms for ad-
vanced distribution grid energy management." arXiv preprint arXiv:1712.05841
(2017).

207

[229] Thomas, Lee, et al. "Automation of the supplier role in the GB power sys-
tem using blockchain-based smart contracts." CIRED-Open Access Proceedings
Journal 2017.1 (2017): 2619-2623.

[230] An-ping, Wang, et al. "Application of Blockchain in Energy Interconnection
[J]." Electric Power Information & Communication Technology (2016).

[231] Mengelkamp, Esther, Johannes Gärttner, and Christof Weinhardt. "Decen-
tralizing energy systems through local energy markets: the LAMP-project."
Multikonferenz Wirtschaftsinformatik. 2018.

[232] Magnani, Antonio, Luca Calderoni, and Paolo Palmieri. "Feather forking as a
positive force: incentivising green energy production in a blockchain-based smart
grid." Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for
Distributed Systems. ACM, 2018.

[233] Johnson, Luke, et al. "Connecting the Blockchain to the Sun to Save the
Planet." Available at SSRN 2702639 (2015).

[234] Zhao, Shengnan, et al. "Integrated Energy Transaction Mechanisms Based
on Blockchain Technology." Energies 11.9 (2018): 2412.

[235] Cheng, S., B. Zeng, and Y. Z. Huang. "Research on application model of
blockchain technology in distributed electricity market." IOP Conference Series:
Earth and Environmental Science. Vol. 93. No. 1. IOP Publishing, 2017.

[236] Mihaylov, Mihail, et al. "Boosting the renewable energy economy with
NRGcoin." ICT for Sustainability 2016. Atlantis Press, 2016.

[237] Merz, Michael. "Potential of the Blockchain Technology in energy trading."
Blockchain technology Introduction for business and IT managers (2016): 51-98.

[238] Danzi, Pietro, et al. "Distributed proportional-fairness control in microgrids
via blockchain smart contracts." 2017 IEEE International Conference on Smart
Grid Communications (SmartGridComm). IEEE, 2017.

208

[239] Casino, Fran, Thomas K. Dasaklis, and Constantinos Patsakis. "A systematic
literature review of blockchain-based applications: current status, classification
and open issues." Telematics and Informatics (2018).

[240] Aggarwal, Shubhani, et al. "Energychain: Enabling energy trading for smart
homes using blockchains in smart grid ecosystem." Proceedings of the 1st ACM
MobiHoc Workshop on Networking and Cybersecurity for Smart Cities. ACM,
2018.

[241] Cioara, Tudor, et al. "Enabling new technologies for demand response de-
centralized validation using blockchain." 2018 IEEE International Conference on
Environment and Electrical Engineering and 2018 IEEE Industrial and Com-
mercial Power Systems Europe (EEEIC/I&CPS Europe). IEEE, 2018.

[242] Hinterstocker, Michael, et al. "Potential Impact of Blockchain Solutions on
Energy Markets." 2018 15th International Conference on the European Energy
Market (EEM). IEEE, 2018.

[243] Luo, Fengji, et al. "A distributed electricity trading system in active distri-
bution networks based on multi-agent coalition and blockchain." IEEE Trans-
actions on Power Systems (2018).

[244] Hinterstocker, Michael, et al. "Faster switching of energy suppliersa
blockchain-based approach." Energy Informatics 1.1 (2018): 42.

[245] Tushar, Wayes, et al. "Transforming Energy Networks via Peer-to-Peer En-
ergy Trading: The Potential of Game-Theoretic Approaches." IEEE Signal Pro-
cessing Magazine 35.4 (2018): 90-111.

[246] Horta, José, et al. "Novel market approach for locally balancing renewable
energy production and flexible demand." 2017 IEEE International Conference
on Smart Grid Communications (SmartGridComm). IEEE, 2017.

[247] Blom, Fredrik, and Hossein Farahmand. "On the Scalability of Blockchain-
Supported Local Energy Markets." 2018 International Conference on Smart En-
ergy Systems and Technologies (SEST). IEEE, 2018.

209

[248] Kostmann, Michael, and Wolfgang K. Härdle. "Forecasting in Blockchain-
Based Local Energy Markets." Energies 12.14 (2019): 2718.

[249] Dorri, Ali, et al. "SPB: A Secure Private Blockchain-Based Solution for Dis-
tributed Energy Trading." IEEE Communications Magazine 57.7 (2019): 120-
126.

[250] Pipattanasomporn, Manisa, Murat Kuzlu, and Saifur Rahman. "A
Blockchain-based Platform for Exchange of Solar Energy: Laboratory-scale Im-
plementation." 2018 International Conference and Utility Exhibition on Green
Energy for Sustainable Development (ICUE). IEEE, 2018.

[251] Vangulick, David, Bertrand Cornélusse, and Damien Ernst. "Blockchain
for peer-to-peer energy exchanges: Probabilistic approach of Proof of Stake."
CIRED WORKSHOP 2018. 2018.

[252] Xu, Yujie, et al. "Research on application of block chain in distributed en-
ergy transaction." 2017 IEEE 3rd Information Technology and Mechatronics
Engineering Conference (ITOEC). IEEE, 2017.

[253] Yu, Qianchen. Design, Implementation, and Evaluation of a Blockchain-
enabled Multi-Energy Transaction System for District Energy Systems. MS the-
sis. ETH Zurich, 2018.

[254] Xue, Lei, et al. "Blockchain technology for electricity market in microgrid."
2017 2nd International Conference on Power and Renewable Energy (ICPRE).
IEEE, 2017.

[255] Blom, Fredrik. A Feasibility Study of Blockchain Technology as Local Energy
Market Infrastructure. MS thesis. NTNU, 2018.

[256] Ferrag, Mohamed Amine, and Leandros Maglaras. "DeepCoin: A Novel Deep
Learning and Blockchain-Based Energy Exchange Framework for Smart Grids."
IEEE Transactions on Engineering Management (2019).

[257] Devine, Mel T., and Paul Cuffe. "Blockchain Electricity Trading Under De-
murrage." IEEE Transactions on Smart Grid 10.2 (2019): 2323-2325.

210

[258] Guerrero, Jaysson, Archie C. Chapman, and Gregor Verbi. "Decentralized
p2p energy trading under network constraints in a low-voltage network." IEEE
Transactions on Smart Grid (2018).

[259] Kostmann, Michael. Forecasting in blockchain-based smart grids: Test-
ing a prerequisite for the implementation of local energy markets. MS thesis.
Humboldt-Universität zu Berlin, 2018.

[260] Xu, Zixiao, Dechang Yang, and Weilin Li. "Microgrid Group Trading Model
and Solving Algorithm Based on Blockchain." Energies 12.7 (2019): 1292.

[261] Tanaka, Kenji, Kosuke Nagakubo, and Rikiya Abe. "Blockchain-based elec-
tricity trading with Digitalgrid router." 2017 IEEE International Conference on
Consumer Electronics-Taiwan (ICCE-TW). IEEE, 2017.

[262] Gao, Feng, et al. "A blockchain-based privacy-preserving payment mecha-
nism for vehicle-to-grid networks." IEEE Network 32.6 (2018): 184-192.

[263] Su, Zhou, et al. "A secure charging scheme for electric vehicles with smart
communities in energy blockchain." IEEE Internet of Things Journal (2018).

[264] Liu, Hong, Yan Zhang, and Tao Yang. "Blockchain-enabled security in elec-
tric vehicles cloud and edge computing." IEEE Network 32.3 (2018): 78-83.

[265] Baza, Mohamed, et al. "Blockchain-based privacy-preserving charging coor-
dination mechanism for energy storage units." arXiv preprint arXiv:1811.02001
(2018).

[266] Huang, Xiaohong, et al. "LNSC: A security model for electric vehicle and
charging pile management based on blockchain ecosystem." IEEE Access 6
(2018): 13565-13574.

[267] Lei, Ao, et al. "Blockchain-based dynamic key management for heterogeneous
intelligent transportation systems." IEEE Internet of Things Journal 4.6 (2017):
1832-1843.

211

[268] Sharma, Vishal. "An Energy-Efficient Transaction Model for the Blockchain-
enabled Internet of Vehicles (IoV)." IEEE Communications Letters 23.2 (2018):
246-249.

[269] Sharma, Pradip Kumar, Seo Yeon Moon, and Jong Hyuk Park. "Block-VN:
A distributed blockchain based vehicular network architecture in smart City."
JIPS 13.1 (2017): 184-195.

[270] Donnerer, David, and Sylvie Lacassagne. "Blockchain and energy transition-
what challenges for cities?." (2018).

[271] Jindal, Anish, Gagangeet Singh Aujla, and Neeraj Kumar. "SURVIVOR: A
blockchain based edge-as-a-service framework for secure energy trading in SDN-
enabled vehicle-to-grid environment." Computer Networks 153 (2019): 36-48.

[272] Hua, Song, et al. "Apply blockchain technology to electric vehicle battery
refueling." Proceedings of the 51st Hawaii International Conference on System
Sciences. 2018.

[273] Liu, Chao, et al. "Adaptive blockchain-based electric vehicle participation
scheme in smart grid platform." IEEE Access 6 (2018): 25657-25665.

[274] Wang, Yuntao, Zhou Su, and Ning Zhang. "BSIS: Blockchain based Se-
cure Incentive Scheme for Energy Delivery in Vehicular Energy Network." IEEE
Transactions on Industrial Informatics (2019).

[275] Pajic, Jelena, et al. "Eva: Fair and auditable electric vehicle charging service
using blockchain." Proceedings of the 12th ACM International Conference on
Distributed and Event-based Systems. ACM, 2018.

[276] Jin, Ruijiu, et al. "Blockchain-Enabled Charging Right Trading Among EV
Charging Stations." Energies 12.20 (2019): 3922.

[277] Knirsch, Fabian, Andreas Unterweger, and Dominik Engel. "Privacy-
preserving blockchain-based electric vehicle charging with dynamic tariff de-
cisions." Computer Science-Research and Development 33.1-2 (2018): 71-79.

212

[278] Li, Zhetao, et al. "Consortium blockchain for secure energy trading in indus-
trial internet of things." IEEE transactions on industrial informatics 14.8 (2017):
3690-3700.

[279] Pop, Claudia, et al. "Blockchain based decentralized management of demand
response programs in smart energy grids." Sensors 18.1 (2018): 162.

[280] Hwang, Junyeon, et al. "Energy prosumer business model using blockchain
system to ensure transparency and safety." Energy Procedia 141 (2017): 194-
198.

[281] Dorri, Ali, et al. "Blockchain for IoT security and privacy: The case study
of a smart home." 2017 IEEE international conference on pervasive computing
and communications workshops (PerCom workshops). IEEE, 2017.

[282] Lombardi, Federico, et al. "A blockchain-based infrastructure for reliable and
cost-effective IoT-aided smart grids." (2018): 42-6.

[283] Khan, Minhaj Ahmad, and Khaled Salah. "IoT security: Review, blockchain
solutions, and open challenges." Future Generation Computer Systems 82
(2018): 395-411.

[284] Fernández-Caramés, Tiago M., and Paula Fraga-Lamas. "A Review on the
Use of Blockchain for the Internet of Things." IEEE Access 6 (2018): 32979-
33001.

[285] Sharma, Pradip Kumar, Shailendra Rathore, and Jong Hyuk Park.
"DistArch-SCNet: blockchain-based distributed architecture with li-fi communi-
cation for a scalable smart city network." IEEE Consumer Electronics Magazine
7.4 (2018): 55-64.

[286] Lundqvist, Thomas, Andreas De Blanche, and H. Robert H. Andersson.
"Thing-to-thing electricity micro payments using blockchain technology." 2017
Global Internet of Things Summit (GIoTS). IEEE, 2017.

213

[287] Li, Shuling. "Application of blockchain technology in smart city infrastruc-
ture." 2018 IEEE International Conference on Smart Internet of Things (Smar-
tIoT). IEEE, 2018.

[288] Feng, Shaohan, et al. "Competitive data trading in Wireless-Powered Inter-
net of Things (IoT) crowdsensing systems with blockchain." 2018 IEEE Inter-
national Conference on Communication Systems (ICCS). IEEE, 2018.

[289] Zhang, Yu, and Jiangtao Wen. "The IoT electric business model: Using
blockchain technology for the internet of things." Peer-to-Peer Networking and
Applications 10.4 (2017): 983-994.

[290] Pop, Claudia, et al. "Blockchain-based scalable and tamper-evident solution
for registering energy data." Sensors 19.14 (2019): 3033.

[291] Imbault, F., et al. "The green blockchain: Managing decentralized energy
production and consumption." 2017 IEEE International Conference on Envi-
ronment and Electrical Engineering and 2017 IEEE Industrial and Commercial
Power Systems Europe (EEEIC/I&CPS Europe). IEEE, 2017.

[292] Castellanos, J. Alejandro F., Debora Coll-Mayor, and José Antonio Notholt.
"Cryptocurrency as guarantees of origin: Simulating a green certificate market
with the Ethereum Blockchain." 2017 IEEE International Conference on Smart
Energy Grid Engineering (SEGE). IEEE, 2017.

[293] Hahn, Adam, et al. "Smart contract-based campus demonstration of de-
centralized transactive energy auctions." 2017 IEEE Power & Energy Society
Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2017.

[294] Nehai, Z., and G. Guerard. "Integration of the blockchain in a smart grid
model." Proceedings of the 14th International Conference Of Young Scientists
On Energy Issues (CYSENI 2017), Kaunas, Lithuania. 2017.

[295] Leonhard, Robert. "Developing renewable energy credits as cryptocurrency
on ethereum’s blockchain." Available at SSRN 2885335 (2016).

214

[296] Wang, Jian, et al. "A novel electricity transaction mode of microgrids based
on blockchain and continuous double auction." Energies 10.12 (2017): 1971.

[297] Aitzhan, Nurzhan Zhumabekuly, and Davor Svetinovic. "Security and pri-
vacy in decentralized energy trading through multi-signatures, blockchain and
anonymous messaging streams." IEEE Transactions on Dependable and Secure
Computing 15.5 (2016): 840-852.

[298] Gai, Keke, et al. "Privacy-preserving energy trading using consortium
blockchain in smart grid." IEEE Transactions on Industrial Informatics (2019).

[299] Mylrea, Michael, and Sri Nikhil Gupta Gourisetti. "Blockchain: A path to
grid modernization and cyber resiliency." 2017 North American Power Sympo-
sium (NAPS). IEEE, 2017.

[300] Laszka, Aron, et al. "TRANSAX: A blockchain-based decentralized forward-
trading energy exchanged for transactive microgrids." 2018 IEEE 24th Interna-
tional Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2018.

[301] Casado-Vara, Roberto, Javier Prieto, and Juan M. Corchado. "How
blockchain could improve fraud detection in power distribution grid." The 13th
International Conference on Soft Computing Models in Industrial and Environ-
mental Applications. Springer, Cham, 2018.

[302] Bergquist, Jonatan, et al. "On the design of communication and transaction
anonymity in blockchain-based transactive microgrids." Proceedings of the 1st
Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers.
ACM, 2017.

[303] Patil, Akash Suresh, et al. "A framework for blockchain based secure smart
green house farming." Advances in Computer Science and Ubiquitous Comput-
ing. Springer, Singapore, 2017. 1162-1167.

[304] Dabbaghjamanesh, Morteza, et al. "Networked Microgrid Security and Pri-
vacy Enhancement By the Blockchain-enabled Internet of Things Approach."
2019 IEEE Green Technologies Conference (GreenTech). IEEE, 2019.

215

[305] Kvaternik, Karla, et al. "Privacy-preserving platform for transactive energy
systems." arXiv preprint arXiv:1709.09597 (2017).

[306] Sharma, Pradip Kumar, and Jong Hyuk Park. "Blockchain based hybrid
network architecture for the smart city." Future Generation Computer Systems
86 (2018): 650-655.

[307] Shuaib, Khaled, et al. "Using Blockchains to Secure Distributed Energy Ex-
change." 2018 5th International Conference on Control, Decision and Informa-
tion Technologies (CoDIT). IEEE, 2018.

[308] Liang, Gaoqi, et al. "Distributed blockchain-based data protection frame-
work for modern power systems against cyber attacks." IEEE Transactions on
Smart Grid 10.3 (2018): 3162-3173.

[309] Gürcan, Önder, et al. "An Industrial Prototype of Trusted Energy Perfor-
mance Contracts using Blockchain Technologies." 2018 IEEE 20th International
Conference on High Performance Computing and Communications; IEEE 16th
International Conference on Smart City; IEEE 4th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2018.

[310] Gao, Jianbin, et al. "Gridmonitoring: Secured sovereign blockchain based
monitoring on smart grid." IEEE Access 6 (2018): 9917-9925.

[311] Shaomin, Zhang, Zhang Qiqi, and Wang Baoyi. "An Electricity Blockchain
Transaction Privacy Protection Scheme based on Homomorphic Encryption."
Internet of Things (IoT) and Engineering Applications 4.1 (2019): 1-6.

[312] Laszka, Aron, et al. "Providing privacy, safety, and security in IoT-based
transactive energy systems using distributed ledgers." Proceedings of the Sev-
enth International Conference on the Internet of Things. ACM, 2017.

[313] Yang, Tianyu, et al. "Applying blockchain technology to decentralized oper-
ation in future energy internet." 2017 IEEE Conference on Energy Internet and
Energy System Integration (EI2). IEEE, 2017.

216

[314] Wu, Lijun, et al. "Democratic centralism: A hybrid blockchain architecture
and its applications in energy internet." 2017 IEEE International Conference on
Energy Internet (ICEI). IEEE, 2017.

[315] Wu, Jiani, and Nguyen Tran. "Application of blockchain technology in sus-
tainable energy systems: An overview." Sustainability 10.9 (2018): 3067.

[316] Zhang, Ning, et al. "Blockchain technique in the energy internet: preliminary
research framework and typical applications." Proceedings of the CSEE 36.15
(2016): 4011-4022.

[317] Fan, Tao, et al. "A study of pricing and trading model of Blockchain &
Big data-based Energy-Internet electricity." IOP Conference Series: Earth and
Environmental Science. Vol. 108. No. 5. IOP Publishing, 2018.

[318] Zhang, Chenghua, et al. "Review of existing peer-to-peer energy trading
projects." Energy Procedia 105 (2017): 2563-2568.

[319] Ahl, Amanda, et al. "Review of blockchain-based distributed energy: Im-
plications for institutional development." Renewable and Sustainable Energy
Reviews 107 (2019): 200-211.

[320] Chitchyan, Ruzanna, and Jordan Murkin. "Review of blockchain tech-
nology and its expectations: Case of the energy sector." arXiv preprint
arXiv:1803.03567 (2018).

[321] Albrecht, Simon, et al. "Dynamics of blockchain implementation-a case study
from the energy sector." Proceedings of the 51st Hawaii International Conference
on System Sciences. 2018.

[322] Donnerer, David, and Sylvie Lacassagne. "Blockchain and energy transition-
what challenges for cities." (2018).

[323] Andoni, Merlinda, et al. "Blockchain technology in the energy sector: A
systematic review of challenges and opportunities." Renewable and Sustainable
Energy Reviews 100 (2019): 143-174.

217

[324] Mattila, Juri, et al. Industrial blockchain platforms: An exercise in use case
development in the energy industry. No. 43. ETLA Working Papers, 2016.

[325] Goranovic, Andrija, et al. "Blockchain applications in microgrids an overview
of current projects and concepts." IECON 2017-43rd Annual Conference of the
IEEE Industrial Electronics Society. IEEE, 2017.

[326] Sanseverino, Eleonora Riva, et al. "The blockchain in microgrids for trans-
acting energy and attributing losses." 2017 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData). IEEE, 2017.

[327] Abdella, Juhar, and Khaled Shuaib. "Peer to peer distributed energy trading
in smart grids: A survey." Energies 11.6 (2018): 1560.

[328] Dahlquist, Olivia, and Louise Hagström. "Scaling blockchain for the energy
sector." (2017).

[329] Sijie, C. H. E. N., and L. I. U. Chen-Ching. "From demand response to
transactive energy: state of the art." Journal of Modern Power Systems and
Clean Energy 5.1 (2017): 10-19.

[330] Burger, C., et al. "Blockchain in the energy transition. A survey among
decision-makers in the German energy industry." DENA German Energy Agency
(2016).

[331] Kouhizadeh, Mahtab, and Joseph Sarkis. "Blockchain practices, potentials,
and perspectives in greening supply chains." Sustainability 10.10 (2018): 3652.

[332] Kim, Nam Ho, Sun Moo Kang, and Choong Seon Hong. "Mobile charger
billing system using lightweight Blockchain." 2017 19th Asia-Pacific Network
Operations and Management Symposium (APNOMS). IEEE, 2017.

[333] Saberi, Sara, et al. "Blockchain technology and its relationships to sustain-
able supply chain management." International Journal of Production Research
57.7 (2019): 2117-2135.

218

[334] Edeland, Charlotta, and Therese Mörk. "Blockchain Technology in the En-
ergy Transition: An Exploratory Study on How Electric Utilities Can Approach
Blockchain Technology." (2018).

[335] Konashevych, O. I. "Advantages and current issues of blockchain use in mi-
crogrids." Electronic Modeling (2016).

[336] Kushch, Sergii, and Francisco Prieto Castrillo. "A review of the applications
of the Block-chain technology in smart devices and dis-tributed renewable energy
grids." (2017).

[337] Gustafsson, Robert. "Exploring technological transitions: Case study on the
implications of the blockchain technology in the development of the Finnish
energy sector." (2017).

[338] Voets, Amber. "Blockchain Technology in the Energy Ecosystem: An ex-
plorative study on the disruptive power of blockchain technology in the Dutch
energy Ecosystem." (2017).

[339] Yan, Hu, Bi-Bin Huang, and Bo-Wen Hong. "Distributed energy transaction
pattern and block chain based architecture design." DEStech Transactions on
Environment, Energy and Earth Sciences epee (2017).

[340] Kim, GeunYoung, Junhoo Park, and Jaecheol Ryou. "A Study on Utilization
of Blockchain for Electricity Trading in Microgrid." 2018 IEEE International
Conference on Big Data and Smart Computing (BigComp). IEEE, 2018.

[341] Kim, Seong-Kyu, and Jun-Ho Huh. "A study on the improvement of smart
grid security performance and blockchain smart grid perspective." Energies 11.8
(2018): 1973.

[342] Serpell, Oscar. "Energy and the Blockchain-Opportunities and Challenges for
Climate and Energy Governance." Kleiman Center for Energy PolicyUniversity
of Pennsylvania School of Design (2018).

219

[343] Zhang, Chuan, et al. "From numerical model to computational intelligence:
the digital transition of urban energy system." Energy Procedia 143 (2017):
884-890.

[344] Mihaylov, Mihail, Iván Razo-Zapata, and Ann Nowé. "NRGcoinA
Blockchain-based Reward Mechanism for Both Production and Consumption
of Renewable Energy." Transforming Climate Finance and Green Investment
with Blockchains. Academic Press, 2018. 111-131.

[345] The Alliander group. Website: https://www.alliander.com/en

[346] CarbonX, an environmental software fintech designed to drive transforma-
tion to a lower carbon world economy by creating investment for carbon miti-
gation projects. Website: https://www.carbonx.ca

[347] DAISEE, Hybridize communities, disciplines and universes to address the
complexity of energy transitions. Website: https://www.daisee.cc/

[348] DAO IPCI. Public programmable blockchain ecosystem for carbon markets,
societal cost mitigation instruments, environmental assets, rights and liabili-
ties. White Paper: https://ipci.io/wp-content/uploads/2018/06/WP_5.0-
2.pdf

[349] Synergy, a peer-to-peer (P2P) energy trading platform. Electrify.Asia Web-
sitre: https://electrify.asia/

[350] eMotorwerks, north America’s first peer-to-peer electric vehi-
cle charging network with blockchain payments. Websitre: https:
//www.enelxway.com/us/en/resources/releases/emotorwerks-and-
share-charge-deliver-north-americas-first-peer-to-peer-electric-
vehicle-charging-network-with-blockchain-payments

[351] Everty, managing EV charging stations. Website: https://everty.com.au/
home/products/

220

https://www.alliander.com/en
https://www.carbonx.ca
https://www.daisee.cc/
https://ipci.io/wp-content/uploads/2018/06/WP_5.0-2.pdf
https://ipci.io/wp-content/uploads/2018/06/WP_5.0-2.pdf
https://electrify.asia/
https://www.enelxway.com/us/en/resources/releases/emotorwerks-and-share-charge-deliver-north-americas-first-peer-to-peer-electric-vehicle-charging-network-with-blockchain-payments
https://www.enelxway.com/us/en/resources/releases/emotorwerks-and-share-charge-deliver-north-americas-first-peer-to-peer-electric-vehicle-charging-network-with-blockchain-payments
https://www.enelxway.com/us/en/resources/releases/emotorwerks-and-share-charge-deliver-north-americas-first-peer-to-peer-electric-vehicle-charging-network-with-blockchain-payments
https://www.enelxway.com/us/en/resources/releases/emotorwerks-and-share-charge-deliver-north-americas-first-peer-to-peer-electric-vehicle-charging-network-with-blockchain-payments
https://everty.com.au/home/products/
https://everty.com.au/home/products/

[352] Greeneum, creating a P2P trusted framework for recording, management,
and trading of products, data, and energy. Websitre: https://www.greeneum.
net/greeneum-home/

[353] Gridplus, building natively Ethereum-based utilities in deregulated markets.
White Paper: https://www.allcryptowhitepapers.com/grid-whitepaper/

[354] Hive Power, managing and optimising energy grid, and EV Charging. Web-
sitre: https://www.hivepower.tech/

[355] ImpactPPA, creating a decentralized energy platform, by decentralizing
Power Purchase Agreements (PPAs). White Paper: https://www.impactppa.
com/wp-content/uploads/2018/03/ImpactPPA_WP_v1.2WEB.pdf

[356] Inuk, les moyens de la réduction des émissions carbone. Website: https:
//www.inuk.co/

[357] Local-e, increase clean, renewable energy solar energy. Website: https://
www.local-e.us/sell-sun-es/

[358] MyBit, a Blockchain-based Infrastructure for the Next Era of Wealth Man-
agement. White Paper: https://whitepaper.mybit.io/

[359] OLI, developing digital solutions for the energy transition. Website: https:
//www.my-oli.com/en/

[360] Power Ledger, developing software solutions for the tracking, tracing and
trading of renewable energy. White Paper: https://www.powerledger.io/
company/power-ledger-whitepaper

[361] Power Ledger Website: https://www.powerledger.io/

[362] WePower, a blockchain-based green energy trading platform. White Paper:
https://www.allcryptowhitepapers.com/wepower-whitepaper/

[363] Energy-Blockchain Lab (IBM), Enabling trusted data exchange and work-
flow automation beyond the boundaries with distributed ledger technology and
blockchain. Website: https://www.ibm.com/blockchain?lnk=fps

221

https://www.greeneum.net/greeneum-home/
https://www.greeneum.net/greeneum-home/
https://www.allcryptowhitepapers.com/grid-whitepaper/
https://www.hivepower.tech/
https://www.impactppa.com/wp-content/uploads/2018/03/ImpactPPA_WP_v1.2WEB.pdf
https://www.impactppa.com/wp-content/uploads/2018/03/ImpactPPA_WP_v1.2WEB.pdf
https://www.inuk.co/
https://www.inuk.co/
https://www.local-e.us/sell-sun-es/
https://www.local-e.us/sell-sun-es/
https://whitepaper.mybit.io/
https://www.my-oli.com/en/
https://www.my-oli.com/en/
https://www.powerledger.io/company/power-ledger-whitepaper
https://www.powerledger.io/company/power-ledger-whitepaper
https://www.powerledger.io/
https://www.allcryptowhitepapers.com/wepower-whitepaper/
https://www.ibm.com/blockchain?lnk=fps

[364] Filament, building blockchain hardware & software solutions for enterprise
and IoT. Website: https://www.crunchbase.com/organization/filamenthq

[365] SunChain, mutualiser et partager la production solaire. Website: https:
//www.sunchain.fr/

[366] Tennet, crowd Balancing Platform - Blockchain Technology. Website:
https://www.tennet.eu/about-tennet/innovations/crowd-balancing-
platform-blockchain-technology

[367] Sonnen, decentralised home storage systems for tomorrows energy infras-
tructure. Website: https://sonnengroup.com/blockchain-pilot-reveals-
potential-decentralised-home-storage-systems-tomorrows-energy/

[368] Vandebron, decarbonisation, decentralisation, and net-zero emissions. Web-
site: https://www.ibm.com/downloads/cas/KABXYGAR

[369] CGI, un système darchivage et déchange sécurisé. Website: https://www.
cgi.com/sites/default/files/pdf/or16277_block_chain_white_paper-
fr.pdf

[370] EnLedger, Energy Efficiency Coin (EECoin), A Blockchain Asset Class
Pegged to Renewable Energy Markets. White Paper: https://enledger.io/
Energy_Efficiency_Coin_Whitepaper_v1_0.pdf

[371] Cleantech, Blockchain in Energy: The Scale-up Race https://www.
cleantech.com/wp-content/uploads/2018/05/CFE2018_Blockchain-in-
Energy.pdf

[372] EnerChain, decentrally traded decentral energy. Website: https://
enerchain.ponton.de/index.php

[373] Freeelio, Crowdsourced, crowdfunded investment pool of solar smart micro-
grids in Global South and the North. Website: http://freeel.io/

[374] Grid Singularity, building grid-aware energy markets. Website: https://
gridsingularity.com/

222

https://www.crunchbase.com/organization/filamenthq
https://www.sunchain.fr/
https://www.sunchain.fr/
https://www.tennet.eu/about-tennet/innovations/crowd-balancing-platform-blockchain-technology
https://www.tennet.eu/about-tennet/innovations/crowd-balancing-platform-blockchain-technology
https://sonnengroup.com/blockchain-pilot-reveals-potential-decentralised-home-storage-systems-tomorrows-energy/
https://sonnengroup.com/blockchain-pilot-reveals-potential-decentralised-home-storage-systems-tomorrows-energy/
https://www.ibm.com/downloads/cas/KABXYGAR
https://www.cgi.com/sites/default/files/pdf/or16277_block_chain_white_paper-fr.pdf
https://www.cgi.com/sites/default/files/pdf/or16277_block_chain_white_paper-fr.pdf
https://www.cgi.com/sites/default/files/pdf/or16277_block_chain_white_paper-fr.pdf
https://enledger.io/Energy_Efficiency_Coin_Whitepaper_v1_0.pdf
https://enledger.io/Energy_Efficiency_Coin_Whitepaper_v1_0.pdf
https://www.cleantech.com/wp-content/uploads/2018/05/CFE2018_Blockchain-in-Energy.pdf
https://www.cleantech.com/wp-content/uploads/2018/05/CFE2018_Blockchain-in-Energy.pdf
https://www.cleantech.com/wp-content/uploads/2018/05/CFE2018_Blockchain-in-Energy.pdf
https://enerchain.ponton.de/index.php
https://enerchain.ponton.de/index.php
http://freeel.io/
https://gridsingularity.com/
https://gridsingularity.com/

[375] Wirepas, Proof of Concept Wirelessly Connecting Physical Devices to Digital
Blockchain. Website: https://medium.com/energy-web-insights/wirepas-
and-energy-web-foundation-announce-proof-of-concept-wirelessly-
connecting-physical-devices-42ca9b13ecff

[376] Energy Web Foundation, Website: https://www.energyweb.org/why-we-
exist/

[377] Paying utility bills with Bitcoin. Available online at: https://news.
bitcoin.com/japanese-pay-utility-bills-bitcoin/

223

https://medium.com/energy-web-insights/wirepas-and-energy-web-foundation-announce-proof-of-concept-wirelessly-connecting-physical-devices-42ca9b13ecff
https://medium.com/energy-web-insights/wirepas-and-energy-web-foundation-announce-proof-of-concept-wirelessly-connecting-physical-devices-42ca9b13ecff
https://medium.com/energy-web-insights/wirepas-and-energy-web-foundation-announce-proof-of-concept-wirelessly-connecting-physical-devices-42ca9b13ecff
https://www.energyweb.org/why-we-exist/
https://www.energyweb.org/why-we-exist/
https://news.bitcoin.com/japanese-pay-utility-bills-bitcoin/
https://news.bitcoin.com/japanese-pay-utility-bills-bitcoin/

	Introduction
	Philosophy of Permissionless Networks
	Introduction to Distributed Databases and Data Replication
	Distributed Systems
	Critical Challenges in Distributed Systems

	Distributed Databases
	Crucial Concepts in Distributed Databases

	Contributions
	Publications

	Distributed Data Replication Challenges
	Replication Definition
	Synchrony & Timing Assumptions
	Single-Leader Replications
	Multi-Leader Replications
	Leaderless Replications
	Faults & Failures
	Fault-Tolerance & Quorum
	SMR & Total-Order Broadcast
	Implementing Replication Using Broadcast Algorithms

	Distributed Consensus Mechanisms
	Summary of Chapter 2

	Sharding Distributed Data Replications
	Fault-Tolerant Consensus Scalability Limit
	Sharding at a Glance
	Sharding Challenges
	Distributing Nodes Between Shards
	Transactions Processing in Sharded DLTs
	Challenges With Shared Ledger Among Shards
	Challenges With Cross-Shard Transactions

	Overview of Sharding in Distributed Systems
	Ethereum 2.0: Homogeneous Multi-Chain
	Beacon Chain: A Shared Ledger Among Shards
	PoS and Block Generation
	Roles and Terminology in Ethereum 2.0
	Consensus in Ethereum 2.0

	Polkadot: Heterogeneous Multi-Chain
	Other Sharded Blockchains
	Sharding in Classic Distributed Databases
	MongoDB
	Apache HBase
	Riak
	Couchbase

	Summary of Chapter 3

	A Novel Distributed Database Architecture
	The Parallel Committees Architecture
	Network Model
	Node Public Key
	Assigning Public Keys to Shards
	Validation of the Key by Committee
	How to Set the Range for Each Public Key Character
	Key-Withholding Prevention

	Graph View of the Network
	Proof-of-Work: Mitigating Sybil & DoS Attacks
	Creating Processor Identifier
	Sending Clients' Requests to Committees

	Node's Crypto-Tokens
	Proactively Circulating Committee Members
	Processor's TTL
	Committee Queue & Backup Processors
	Force Majeure TTL Reduction Mechanism
	Forming New Committees Automatically
	Transactions Across Shards
	Cross-Shard Processing
	Associated Clients

	Node Identifier General Format

	Implementation & Experimental Results
	Consensus in Parallel Committees
	Why NOT Using Blockchain?
	System Bootstrapping
	Discussion
	Related Works and Comparison With Other Distributed Databases
	Apache Cassandra
	Parallel Committees Architecture vs. Cassandra

	Amazon DynamoDB
	Parallel Committees Architecture vs. DynamoDB

	Google Bigtable
	Parallel Committees Architecture vs. Bigtable

	Google Spanner
	Parallel Committees Architecture vs. Spanner

	ScyllaDB
	Parallel Committees Architecture vs. ScyllaDB

	Additional Comparative Insights with Existing Models

	Potential Applications & Use Cases
	Summary of Chapter 4

	Fallacies of Blockchain
	Blockchain: A Hyped Term
	Permissionless vs. Permissioned Networks
	PoW: Indispensable Component in Blockchain
	Block and Hash Function
	Chaining Transactions
	Nonce, PoW and Mining
	Decentralization

	Misconceptions on Blockchain
	Reducing Costs
	dApps Are Not Necessarily Open Source
	TTP & Trustless
	Smart Contracts Do Not Run Automatically
	Blockchain Never Can Be Closed-Source
	Immutability, Tamper-Proof, & Security of Blockchain

	Summary of Chapter 5

	Conclusions
	Conclusions and Achievements
	Main Contribution and Achievement of the Thesis
	Other Contributions of the Thesis

	Future Work
	Developing and Implementing a Prototype and an MVP

