
HAL Id: tel-04500393
https://theses.hal.science/tel-04500393v1

Submitted on 12 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterization and detection of semantic textual
outliers

Jérémie Pantin

To cite this version:
Jérémie Pantin. Characterization and detection of semantic textual outliers. Artificial Intelligence
[cs.AI]. Sorbonne Université, 2023. English. �NNT : 2023SORUS347�. �tel-04500393�

https://theses.hal.science/tel-04500393v1
https://hal.archives-ouvertes.fr


École Doctorale Informatique, Télécommunications et Electronique
Laboratoire d’Informatique de Paris 6

Équipe LFI

Détection et caractérisation sémantique de
données textuelles aberrantes

Par Jeremie PANTIN

Thèse de doctorat d’Informatique

Dirigée par Christophe Marsala

Présentée et soutenue publiquement le 11 Septembre 2023

1. Rapporteur Gregory SMITS
Brest
IMT Atlantique

2. Rapporteur Anne LAURENT
Montpellier
LIRMM

3. Examinateur Bernd AMANN
Paris
LIP6 - Sorbonne Université

Directeur de thèse Christophe MARSALA
Paris
LIP6 - Sorbonne Université





École Doctorale Informatique, Télécommunications et Electronique
Laboratoire d’Informatique de Paris 6

Learning, Fuzzy and Intelligent systems

Detection and semantic characterisation of
textual outliers

Jeremie PANTIN

Ph.D. thesis in Computer Science

Supervised by Christophe Marsala

Presented and publicly defended on September 11, 2023

1. Rapporteur Gregory SMITS
Brest
IMT Atlantique

2. Rapporteur Anne LAURENT
Montpellier
LIRMM

3. Examinateur Bernd AMANN
Paris
LIP6 - Sorbonne Université

Directeur de thèse Christophe MARSALA



Jeremie PANTIN
Detection and semantic characterisation of textual outliers
On outlier analysis with text data, September 11, 2023
Rapporteurs: Gregory SMITS et Anne LAURENT
Examinateur: Bernd AMANN
Directeur de thèse: Christophe MARSALA

Sorbonne Université
Learning, Fuzzy and Intelligent systems
Laboratoire d’Informatique de Paris 6
École Doctorale Informatique, Télécommunications et Electronique
4 Place Jussieu
75005 and Paris



In memory of my mother.





Abstract
Recent artificial intelligence advances are bound to the increasing number of data
that industry and research fields have access to. Hence, it can be wrong to admit that
artificial intelligence is only referring to processing data and observations. A global
view of the field refer the ability of the machine to perform and/or imitate cognitive
behaviors such as decision making, learning, perceiving and reasoning. Thus, we ex-
pect from the machine to perform actions following human reflection and mechanisms,
based on given environments or observations.

Such expectation is recently motivated by the growing usage of internet by the
population and appearance of large number of data. Machine learning answers to
the problem of handling dedicated tasks with a vast variety of data. Such algorithms
can be either simple or difficult to handle and data might be similar to deal with.
Low dimensional data (2-dimension or 3-dimension) with an intuitive representation
(average of baguette price by years) are easier to interpret/explain for a human than
data with thousands of dimensions. For low dimensional data, the error leads to a
significant shift against normal data, but for the case of high dimensional data it is
different.

Outlier detection (or anomaly detection, or novelty detection) is the study of
anomalous observations for detecting what is normal and abnormal. Methods that
perform such task are algorithms, methods or models that are based on data dis-
tributions. Different families of approaches can be found in the literature of outlier
detection, and they are mainly independent of ground truth. They perform outlier
analysis by detecting the principal behaviors of majority of observations. Thus, data
that differ from normal distribution are considered noise or outlier. We detail the
application of outlier detection with text. Despite recent progress in natural language
processing, computer still lack profound understanding of human language in absence
of information. For instance, the sentence "A smile is a curve that set everything
straight" has several levels of understanding and a machine can encounter hardship
to chose the right level of lecture.

This thesis presents the analysis of high-dimensional outliers, applied to text.
Recent advances in anomaly detection and outlier detection are not significantly rep-
resented with text data and we propose to highlight the main differences with high-
dimensional outliers. We also approach ensemble methods that are nearly nonexistent
in the literature for our context. Finally, an application of outlier detection for elevate
results on abstractive summarization is conducted.

We propose GenTO, a method that prepares and generates split of data in which
anomalies and outliers are inserted. Based on this method, evaluation and benchmark
of outlier detection approaches is proposed with documents. Also, learning without
supervision often leads models to rely in some hyperparameter. For instance, Local
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Outlier Factor relies to the k-nearest neighbors for computing the local density. Thus,
choosing the right value for k is crucial. In this regard, we explore the influence of
such parameter for text data.

While choosing one model lead to obvious bias against real-world data, ensemble
methods allow to mitigate such problem. They are particularly efficient with outlier
analysis. Indeed, the selection of several values for one hyperparameter can help to
detect strong outliers. Importance is then tackled and can help a human to understand
the output of black box model. Thus, the interpretability of outlier detection models
is questioned. We find that for numerous dataset, a low number of features can be
selected as oracle. The association of complete models and restrained models helps to
mitigate the black-box effect of some approaches.

In some cases, outlier detection refers to noise removal or anomaly detection. Some
applications can benefit from the characteristic of such task. Mail spam detection
and fake news detection are one example, but we propose to use outlier detection
approaches for weak signal exploration in marketing project. Thus, we find that the
model of the literature help to improve unsupervised abstractive summarization, and
also to find weak signals in text.



Résumé
L’intelligence artificielle (IA) a connu une croissance spectaculaire ces dernières années
avec l’évolution de l’informatique, du hardware et d’internet. Les récents progrès
dans ce domaine sont liés au nombre croissant de données auxquelles l’industrie et la
recherche ont accès. Il est difficile d’admettre que l’intelligence artificielle ne concerne
que le traitement des données. Une vision globale de l’IA fait référence à la capacité
de la machine à réaliser et/ou imiter des comportements cognitifs tels que la prise
de décision, l’apprentissage, la perception et le raisonnement. Ainsi, nous attendons
de la machine qu’elle effectue des actions en suivant la réflexion et les mécanismes
humains, en fonction d’environnements ou d’observations donnés.

Cette attente a récemment été motivée par l’utilisation croissante d’internet par
la population, avec l’apparition d’un grand nombre de données. L’apprentissage au-
tomatique répond au problème du traitement de tâches spécifiques pour une grande
variété de données. Ces algorithmes peuvent être simples ou difficiles à mettre en
place, et c’est par ailleurs le même constat qui peut être fait pour les données. Les
données de faible dimension (2 ou 3 dimensions) avec une représentation intuitive (ex.
moyenne du prix des baguette par années) sont plus faciles à interpréter/expliquer
pour un humain que les données avec des milliers de dimensions. Pour les données
à faible dimension, une donnée aberrante conduit souvent à un décalage conséquent
par rapport aux données normales, mais pour le cas des données à haute dimension,
c’est différent. Les données à haute dimension ont besoin d’un traitement particulier
qui consiste aussi bien à réduire la dimensionalité à un nombre plus convenable, ou à
explorer les sous-espaces.

La détection des données aberrantes (ou détection d’anomalie, ou détection de
nouveauté) est l’étude des observations singulières pour détecter ce qui est normal et
anormal. Les méthodes qui exécutent cette tâche sont des algorithmes ou des mod-
èles qui sont basés sur l’utilisation des distributions de données. Différentes familles
d’approches peuvent être trouvées dans la littérature, elles sont souvent indépendantes
de la vérité terrain. Ces appoches effectuent une analyse des valeurs aberrantes en
détectant les comportements principaux de la majorité des observations. Ainsi, les
données qui diffèrent de la distribution normale sont considérées comme du bruit ou
des aberrations. Nous nous intéressons à l’application de cette tâche au texte. Malgré
les progrès récents dans le traitement du langage naturel, les ordinateurs n’ont toujours
pas une compréhension profonde du langage humain en l’absence d’informations. Par
exemple, la phrase "Un sourire est une courbe qui redresse tout" a plusieurs niveaux
de compréhension, et une machine peut rencontrer des difficultés pour choisir le bon
niveau de lecture.

Cette thèse présente la recherche de valeurs aberrantes ou d’anomalies en présence
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de grandes dimensions, appliquée au texte. Les avancées récentes en matière de dé-
tection d’anomalies et de détection de valeurs aberrantes ne sont pas représentées de
manière significative avec les données textuelles et nous proposons de mettre en évi-
dence les principales différences avec les valeurs aberrantes à haute dimension. Nous
abordons également les méthodes d’ensemble qui sont quasiment inexistantes dans la
littérature pour notre contexte. Enfin, nous pouvons voir que l’application de la détec-
tion de valeurs aberrantes amène des améliorations sur le résumé de texte automatique
par abstraction.

Dans nos travaux, nous proposons GenTO, une méthode qui prépare et génère
un fractionnement des données dans lequel sont insérées des anomalies et des valeurs
aberrantes. Sur la base de cette méthode, nous proposons une évaluation et un bench-
mark des approches de détection de valeurs aberrantes avec des documents. En outre,
l’apprentissage sans supervision conduit souvent les modèles à se fier à certains hyper-
paramètres. Par exemple, Local Outlier Factor s’appuie sur les k plus proches voisins
pour calculer la densité locale. Ainsi, le choix de la bonne valeur pour k est crucial.
À cet égard, nous explorons l’influence de ce genre de paramètres pour les données
textuelles.

Alors que le choix d’un seul modèle peut entraîner un biais évident par rapport aux
données du monde réel, les méthodes d’ensemble permettent d’atténuer ce problème.
Elles sont particulièrement efficaces pour l’analyse des valeurs aberrantes. En effet,
la sélection de plusieurs valeurs pour un hyperparamètre peut aider à détecter des
valeurs aberrantes fortes. L’importance est alors abordée et peut aider un humain à
comprendre la sortie d’un modèle boîte noire. Ainsi, l’interprétabilité des modèles de
détection de valeurs aberrantes est remise en question. Nous constatons que pour de
nombreux jeux de données, un faible nombre d’attributs peut être sélectionné comme
oracle. L’association de modèles complets et de modèles restreints permet d’atténuer
l’effet boîte noire de certaines approches.

Dans certains cas, la détection des aberrations fait référence à la suppression du
bruit ou à la détection des anomalies. Certaines applications peuvent bénéficier de
la caractéristique d’une telle tâche. La détection des spams et des fake news en est
un exemple, mais nous proposons d’utiliser les approches de détection des aberrations
pour l’exploration des signaux faibles dans les résumés automatique par abstraction.
Ainsi, nous observons que les modèles de la littérature aident à améliorer les approches
de résumé de texte par abstraction, sans supervision. Ceux-ci permettent également
de trouver les signaux faibles dans le texte.
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Chapter 1

Introduction

Artificial intelligence has grown spectacularly these past years with the evolution
of computer science, computer hardware and internet. Recent artificial intelligence
advances are bound to the increasing number of data that industry and research fields
produce and have access to. Hence, it can be wrong to admit that artificial intelligence
is only referring to processing data and observations. A global view of the field can
refers to the ability of the machine to perform and/or imitate cognitive behaviors
such as decision making, learning, perceiving and reasoning. Thus, we expect from
the machine to perform actions following human reflection and mechanisms, based on
given environments or observations.

The impetus for such expectations has recently arisen from the widespread use of
the internet by the global population and the concomitant surge in data generation.
Machine learning offers a solution to the challenges posed by handling diverse tasks
across vast datasets. Its ubiquitous applications are evident in various domains, in-
cluding fraud prevention (such as credit card fraud, system intrusion, and financial
fraud), recommendation systems (spanning web navigation, e-commerce, social media,
and entertainment websites), computer vision (encompassing facial recognition, object
detection, and image segmentation), healthcare (covering disease detection, identifica-
tion of cancer cells, diagnosis, and molecular exploration), and marketing (including
consumer clustering, user analysis, and audience targeting), among numerous others
in fields such as agriculture, automobiles, and human resources. Despite its consider-
able success across diverse applications, machine learning is not without its significant
shortcomings on various levels. While some models are naturally understandable for
a human1, they are often outperformed by more complex models that are referred as
black boxes. Artificial neural networks are one example of black box model.

Machine learning algorithms vary in complexity, ranging from simple to intricate,
but dealing with data can pose similar challenges. Low-dimensional data, typically
in 2D or 3D with an intuitively interpretable representation (e.g., the average price
of a baguette by years), is more straightforward for humans to comprehend than
high-dimensional data with thousands of dimensions. While this is not a universal
rule, it highlights a primary drawback of machine learning, which is intricately tied
to the nature of the data itself. When a model underperforms, several factors may

1E.g the resulting form of a trained model. For instance, tree-like structures can be simpler to
tackle than n-dimensional vectors (with n being high).
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Chapter 1. Introduction

contribute to its shortcomings, including a scarcity of data (as neural networks often
excel with ample training observations), non-uniformity in the data (e.g., missing
features), the presence of feature constraints (such as the impossibility of negative
age), or suboptimal algorithm choices. Examining the relationship between machine
learning and data reveals a significant aspect—trained models inherently lack true
comprehension. For instance, a model may not inherently understand that a person’s
age cannot be negative; it merely learns from the data it has been trained on. This lack
of true understanding becomes evident when considering that age is fundamentally
linked to the time elapsed since an individual’s birth. In this context, the emergence
of negative age values can result in nonsensical outcomes, especially in applications
sensitive to such data anomalies (e.g., post-birth complication data with age around
zero). For low-dimensional data, errors can lead to a notable shift away from normal
data patterns. However, the impact differs in the case of high-dimensional data.

Addressing these challenges often involves the application of deterministic tech-
niques. In contrast to stochastic models, which lack explicit rules and often operate
in a probabilistic manner, deterministic approaches provide more structured and pre-
dictable outcomes. While stochastic models are frequently juxtaposed with symbolic
approaches that emulate human learning processes, symbolic artificial intelligence of-
fers a distinctive strategy for tackling various tasks. However, within the machine
learning context, a specialized application addresses the study of abnormal data: out-
lier detection (or anomaly detection). Outlier detection involves scrutinizing obser-
vations to discern what is considered normal and abnormal. Methods employed for
this task rely on data distributions, encompassing a diverse array of algorithms, meth-
ods, or models. Various families of approaches, largely independent of ground truth,
conduct outlier analysis by identifying the principal behaviors exhibited by the ma-
jority of observations. Consequently, data that deviate from the inlier distribution are
labeled as "noise" or "outliers." Remarkably, the application of outlier detection in
the realm of text is infrequently explored. Despite notable advancements in natural
language processing, computers still grapple with a profound understanding of human
language due to the lack of comprehensive information. For instance, the sentence "A
smile is a curve that sets everything straight" possesses multiple levels of interpreta-
tion, presenting a challenge for machines to accurately discern the intended level of
meaning.

Motivation

The intricacies of human language present distinctive challenges for machine learning
algorithms, particularly in the realm of identifying outliers within text data. Uncov-
ering these outliers can yield valuable insights, such as recognizing emerging trends,
pinpointing fraudulent activities, unveiling hidden patterns, or even identifying po-
tential errors in data collection or labeling. Consider online product reviews as an
illustrative example. Outlier detection in this context proves instrumental in discern-
ing fake or spam reviews, ensuring that consumers can make well-informed decisions.

2



Chapter 1. Introduction

Nevertheless, the contextual nature of language, the presence of multiple layers of
meaning, and varying degrees of ambiguity contribute to the complexity and demands
of the outlier detection task. Effectively identifying outliers hinges on a comprehen-
sive understanding of the normal patterns and behaviors inherent in text data. This
understanding is crucial for navigating the intricacies of language and successfully
discerning deviations from expected norms.

As AI-driven applications increasingly impact various facets of society, the iden-
tification and management of outliers in text data become pivotal for enhancing the
interpretability and explainability of artificial intelligence models. This is crucial not
only for building trust with users but also for averting potentially biased or harmful
decisions rooted in erroneous outliers. Despite significant strides in natural language
processing and machine learning, research and applications related to outlier detection
in text data remain relatively unexplored. This thesis aims to bridge this gap by fo-
cusing on the analysis of high-dimensional outliers within the context of textual data.
Our approach involves leveraging recent advances in outlier detection and anomaly de-
tection methodologies, integrating them with innovative techniques tailored for text
data. The goal is to develop robust and more interpretable outlier detection ap-
proaches. By delving into the challenges and proposing potential solutions for outlier
detection in text data, this thesis aspires to contribute to the broader vision of con-
structing AI systems that exhibit greater human-like understanding, reasoning, and
decision-making capabilities.

Research objectives

As explained previously, the principal objective of the thesis is to tackle outlier de-
tection with text data. Achieving such goal requires special attention, and several
research questions to investigate have been focused on.

Problem 1. Outlier detection in text data, a formal definition One of the
main research objectives is to explore the challenges and opportunities of outlier de-
tection in high-dimensional text data. Textual data present several levels of study
(syntax, semantic, . . . ) and it can be confusing to compare different applications with
each other because of this characteristic. Literature on high-dimensional data is rich
and presents numerous successful approaches that can be compatible with textual
data. We aim to understand how the high dimensionality of textual features impacts
the performance of existing outlier detection techniques and whether specialized ap-
proaches are required to handle such complexity effectively. Among recent surveys and
overviewing works of the outlier detection literature and anomaly detection literature,
an attention is often taken regarding textual data but dedicated and comprehensive
surveys does not exists for tackling outlier detection with text data. Inherently to
such concerns, because textual data are a special kind of high-dimensional data, the
related taxonomy for outliers is different from other kind of data. As a consequence,
three research questions should be answered:

3



Chapter 1. Introduction

1. What is an outlier in the context of textual data ?

2. Considering outlier detection with high-dimensional data, what kind of require-
ments are needed to introduce a definition for textual outliers? Do they share
any similarities with common outliers, or are they fundamentally different?

3. Are reference methods to detect outliers efficient when applied to text ?

Problem 2. Evaluation and real-world data, an experimental problem
Based on the investigation of high-dimensional outliers in text data, novel outlier
detection algorithms should not only consider the unique nature of text data but also
demonstrate improved performance compared to traditional approaches. Thus, the
issue of conducting experimental study has to be deepen in this context. Browsing ref-
erence surveys of our context, it appears that reference works for outlier detection in
text are often proposing different experimental settings to evaluate their approaches.
As a consequence, several questions blossoms:

1. Availability of corpora is an occurring challenge in machine learning, is it similar
in the textual outlier detection context ? How such corpora should be built and
used ?

2. Considering the lack of global comparative works, are state-of-the-art approaches
exploring and defining the same kind of detection problem ?

Problem 3. On the lack of diversity for existing methods In our context,
lack of comprehensive study of the field is a problem, resulting in a poor diversity
of approaches according to state-of-the-art approaches. Popular methods performing
outlier detection in text data are mostly tackling the task through text representation
with either dimension reduction techniques or text representation improvements. This
phenomena raises several questions we aim to answer in this thesis:

1. Are state-of-the-art approaches achieving a comprehensive or sufficient compar-
ative study with their results ?

2. Is there any model enabling to perform global experimental protocols ?

3. Are there some kind of outlier detection approaches in the literature not already
exploited in our context ? If there are, how do they perform with text corpora ?

Problem 4. Application impact of textual outlier analysis In some appli-
cations, outlier detection results might trigger critical decisions or human interven-
tions. One interesting focus concerns how outlier detection methods can influence
decision-making processes and the extent to which their interpretability helps human
understanding and trust. The issue of interpretability in machine learning models is
critical, particularly in applications where human decision-making is involved. Ex-
ploring methods to enhance the interpretability and explainability of outlier detection
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models for text data can enable users to understand the rationale behind outlier clas-
sifications, leading to two main questions:

1. What kind of applications could benefit of outlier detection in text ?

2. What is the impact of such study for users ?

Roadmap

This thesis delves into the analysis of outliers in the context of text data and proposes
innovative approaches to address the scientific challenges discussed in the previous
section. Notably, recent advances in anomaly and outlier detection lack substantial
representation in the realm of text data, and our work aims to underscore the key
distinctions. Our contribution begins with a comprehensive examination of outlier
analysis in textual data, featuring a comparative study and the introduction of the
GenTO algorithm. This contribution addresses the initial challenges by presenting
a taxonomy for textual outliers and conducting an experimental analysis of high-
dimensional methods. Additionally, we explore potential extensions to augment the
availability of corpora.

Subsequently, we shift our focus to providing an overview of the field while main-
taining a tangible connection to traditional outlier detection and a close alignment
with anomaly detection literature. Our experimental study reveals the surprising
efficacy of traditional literature in a textual context.

To address the issue of method diversity, we conduct a study and extend en-
semble methods, which remain largely unexplored for text data. Our research also
investigates recent language models and incorporates interpretability within our con-
text. The exploration of applying outlier detection techniques to ensemble methods
demonstrates the potential for extending outlier analysis in text to other applications
within the natural language processing field. We particularly delve into abstractive
summarization, an intriguing textual application that incorporates a diverse array of
techniques. Employing robust text representation through outlier analysis enhances
the performance and reliability of such models.

Structure of the thesis

In the pursuit of addressing the challenges associated with detecting outliers in a tex-
tual context, as outlined earlier, the initial Chapter 2 serves to introduce the domain.
This chapter elucidates the key concepts underpinning the thesis and synthesizes in-
sights from machine learning, data mining, and outlier analysis. With a foundation
in these notions, the chapter transitions to the specific challenge of performing out-
lier detection with text data. Notably, we aim to bridge the gap between text data
and other data types for outlier detection, leveraging insights from the burgeoning
literature on other data types.

5



Chapter 1. Introduction

Chapter 3 narrows the focus to the distinctive challenges of performing outlier
detection with text data. A comprehensive overview of outlier detection techniques
dedicated to textual data is provided. The chapter’s contribution lies in unifying
outlier detection in text with other data types through the proposition of a generic
setup applicable across the literature. We define what constitutes an outlier in the
textual context, explore various outlier detection approaches suitable for text, and
present an evaluation of these approaches through an experimental study.

Expanding our research in Chapter 4, we delve into ensemble learning and data
fusion techniques for outlier detection in text. The concept of outlier ensembles is
explored for their potential benefits in enhancing detection performance. Our con-
tribution in this chapter is the introduction of an ensemble autoencoder approach
tailored for effective handling of textual outliers. New features for outlier detection
in text are introduced, and the interpretability of the proposed methods is discussed.
To showcase the practical applicability of our formalism, we apply outlier ensemble
techniques to the real-world problem of abstractive summarization of text.

Chapter 5 introduces the application of our outlier analysis techniques to abstrac-
tive summarization. We focus on the utilization of neural networks for abstractive
summarization and discuss unsupervised text summarization methods. By incorpo-
rating our outlier analysis methods, we aim to achieve robust and reliable abstractive
summarization results. An evaluation of our improved summarization approach is
provided to showcase its efficacy in handling outlier text data.

The concluding chapter (Chapter 6) synthesizes the main contributions of this
thesis and provides a comprehensive discussion of the results obtained throughout
our research. It highlights the practical implications and potential future directions
in outlier detection with text data. This chapter serves as a conclusion to our work,
offering insights into the broader scope of applying outlier analysis techniques to
various domains. It concludes with a reflection on the contributions and proposes
further exploration and future research.

In summary, this work aims to present a comprehensive and coherent analysis of
outlier detection with text data, along with its potential applications and extensions.
Each chapter contributes to the overarching goal of bridging the gap between outlier
detection in text and other data types, providing novel insights and opening new
avenues for research.
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Chapter 2

Study of outliers: background
knowledge

As introduced in the introduction, outlier analysis brings together several tasks that
enable knowledge extraction from outlying observations. This chapter is particularly
important for the rest of the thesis as it provides a comprehensive overview of required
knowledge to become familiar with outlier analysis across various applications and
types of data. Within different applications, outlier detection is relevant for either
removing noise or improving prediction robustness. Outlier detection is particularly
effective for explaining normality (scope of what is expected) and machine learning
decisions.

Study of outliers involves expressing through a formalism what normality is, in
our context, i.e. machine learning. Obviously, once the notion of normality has been
established, it becomes easier to formalise the notion of abnormality. However, once
this formalism has been defined, normality can also vary depending on the context,
the data and even the type of approach. In our work, we make a distinction between
several abnormalities in order to prioritize and differentiate outliers from each other
(noise is different from an anomaly, the same goes for a typo and a grammatical error).
There are also several methods for analyzing and detecting aberrations. These can be
fundamentally different in several key aspects, for example logic rules require different
attention than neural networks. Because of the diversity of approaches and types of
outliers, the evaluation step (manual or automatic) makes it possible to compare, rank
and explain results of experimental protocols on outliers.

Thus, in this chapter we present a view of outlier analysis domain through the
study of comprehensive works and surveys of the literature. Common knowledge and
main notations of machine learning and classification are presented in Section 2.1.
Principal goals and motivations of outlier analysis are recalled in Section 2.2. The
Section 2.3 defines what is an outlier and compare its definition against different appli-
cation level. It also compares the neighboring terms that can be associated to several
outlier analysis characteristics. A taxonomy of outliers is proposed in Section 2.4 with
further explanation about proximity between anomaly and outlier. Methods that per-
form outlier detection are based on a particular techniques, they are introduced in
Section 2.5. The question of performing benchmarks with protocols and evaluation
for approaches of the literature is proposed in Section 2.6.
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Figure 2.1: Binary scenario (left) and multiclass scenario (right).

2.1 Learning from observations

The thesis is primarily devoted to textual data and tackles several aspects from nat-
ural language processing. Though this type of data is unique to work with, it is
nonetheless data from which it is possible to learn from. In this section, we introduce
the different notations and the context of machine learning. Because outlier detection
is often performed through binary classification, and more precisely one-class classi-
fication (D. M. J. Tax, 2001), we also introduce our notations in such a context. In
supervised machine learning, the classification task can be generalized as the algo-
rithmic categorization of instances where the principal purpose is to assign a class, or
category, to each instance to be classified.

2.1.1 Dataset, features, labels and classes

Let X be a set of N instances, X = {x1, ..., xN}. An instance xi refers to data,
observation or point. An instance is described by one or more input variables called
features. A simple problem takes instances with a small set of features, but more
complex problems can involve thousands or millions of features. For all xi ∈ X, with
X ⊆ RN×D, where D is the number of features, we note xi,j (or xij) the value of the
j-th feature of instance xi.

X =



x1,1 · · · x1,j · · · x1,D

...
. . .

...
. . .

...
xi,1 · · · xi,j · · · xi,D
...

. . .
...

. . .
...

xN,1 · · · xN,j · · · xN,D


(2.1)

Classification commonly involves machine learning with supervised, semi-supervised
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2.1. Learning from observations

or unsupervised learning. For supervised and semi-supervised learning, a target pre-
diction, label or class, can be associated to each instance. Let Y be a set of labels
associated to X, (xi, yi) ∈ X × Y is a labelled instance. In the case where labels are
available, each xi is associated with a label †i:

Y =


y1

...
yN

 (2.2)

The set of labels Y depends of the application. For binary classification:

yi ∈ {−1,+1} (2.3)

In this case we face a problem with two possible outcomes, and represents a task that
is often observed. Another type of problem involves classifying instances into one of
three or more classes. In such cases, the label y is a value that contains K values, it
refers to multiclass classification.

Figure 2.1 displays two scatterplot presenting binary classification and multiclass
classification (four exactly). In addition of the classification type, the Figure 2.1
shows two different distributions of classes: balanced and imbalanced. An imbalanced
dataset refers to a kind of dataset where the number of observations for one or more
class greatly differs from one or more other class. Such situation is not unique and
can be addressed with several strategies.

2.1.2 Machine learning

Machine learning is a subfield of artificial intelligence (AI) that focuses on the de-
velopment of algorithms, models or agents that enable computer systems to learn
and make predictions or decisions without being explicitly programmed. Machine
learning refers to the description of agents who can improve their behavior (and/or
performance) through diligent study of their own experiences. There exist several
kinds of labels which are often related to the application they are associated with.
Features from instances and labels can be either quantitative or categorical. The first
is often continuous or near-continuous. For categorical variables, it depends of a dis-
crete set of groups (i.e. the gender of a person or the color of a fruit, ...). Categorical
variables can also be numeric values that represent a hierarchy, order or any other
organized structure. In machine learning, the reference task with quantitative label
is named regression and classification with categorical target.

Within supervised learning, many problems and tasks can be written mathemati-
cally in the form of optimization (Eisenstein, 2019):

ŷ = argmax
y∈Y

Υ(x, y; θ), (2.4)

where Υ is a scoring function such as Υθ : X× Y −→ R. θ is the parameter vector
of the function Υ. Following Equation 2.4, the output maximize the scoring process.
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Convention and notations can differ in the literature for different applications. The
scoring function is also named model. We note that labelling an instance x can be
written Y(x).

With Equation 2.4, a simplified view of the learning process consists of finding
parameters θ. This step is usually performed with a training dataset Xtr (it is often a
subset of X). There exist two other kinds of dataset: the validation dataset Xvl often
used to compare multiple models built on the same training dataset with different θ,
and the testing dataset Xts used to evaluate the final model.

2.1.3 Learning without supervision

We assume that a training set Xtr possesses observations xi that are associated with a
label yi. However, learning without labelled data is possible and refers to unsupervised
learning. Unsupervised learning methods, in contrast to supervised learning, focus on
understanding data distribution, extracting characteristic features, and uncovering
underlying structures. These methods operate without relying on labeled data, allow-
ing them to discover unknown patterns within the data. By not being constrained by
the limitations and biases of labeled data, unsupervised learning approaches can esti-
mate important features and offer the advantage of easily accumulating information
without manual intervention. However, it is important to note that despite these ben-
efits, unsupervised learning may exhibits lower accuracy and can be more dependent
on the chosen model. In cases where the data types are challenging, supervised learn-
ing often provides a more straightforward approach, enabling the learning of complex
patterns and structures.

Learning from distributions Furthermore, in supervised learning, where labeled
data is used, the learning process heavily relies on the correctness and quality of the
provided labels. However, labeled data can sometimes be limited in quantity or suffer
from biases introduced during the labeling process. These limitations and biases can
affect the performance and generalizability of the learned models (Bengio, Courville,
et al., 2013). On the other hand, unsupervised learning methods operate without the
need for explicit labels. Instead, they focus on understanding the underlying structure
and patterns within the data itself. This freedom from labels allows unsupervised
learning algorithms to estimate and identify important features directly from the data,
without being influenced or biased by predefined labels (Hinton and Salakhutdinov,
2006; Le, 2013). By estimating important features, unsupervised learning can uncover
hidden relationships, identify clusters or groups within the data, detect anomalies, or
reveal latent factors that may not be apparent in the labeled data1.

Challenging data When the data types present inherent complexities or pose spe-
cific challenges, such as high dimensionality, noise, or ambiguity, supervised learning

1This ability to extract valuable features directly from the data contributes to the exploratory
nature of unsupervised learning, where it can uncover insights and uncover previously unknown
patterns that may be overlooked in supervised learning scenarios.
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methods often offer a more straightforward and reliable approach. In challenging data
scenarios, having access to labeled data can provide valuable information and guid-
ance to the learning process (Hastie et al., 2001). The presence of explicit labels helps
in disentangling complex patterns, reducing uncertainty, and allowing the model to
make more accurate predictions (Bishop, 2006). By explicitly knowing the desired
output for each input, supervised learning algorithms can directly optimize their per-
formance to minimize errors and align with the provided labels. While unsupervised
learning has its own merits and advantages, it may face difficulties in dealing with
challenging data types since it lacks the explicit supervision and guidance provided
by labeled data.

Considering that Equation 2.4 describes a supervised learning scenario, we write an
unsupervised scoring model is usually denoted as:

Υθ : X −→ R (2.5)

Such model highly depends of its parameters θ. In addition to its parameters, the
success of a model depends also of the underlying characteristics of the data and the
learning paradigm. Regarding the latter, we observe several approaches that belong
to different families such as clustering, latent variable learning or association rules.

2.2 Outlier analysis

Outlier detection is a fast-growing field that concerns numerous domains and ap-
plications, although it is not a brand new research topic (Abraham and Box, 1979;
Hawkins, 1980). A great number of contributions were achieved by the Statistics
community and led to mathematically more precise methods with a simplified view of
data representation (Rousseeuw and Hubert, 2011). With the recent trends in data
mining, topics such as algorithmic description and interpretability are now getting
more attention (C. C. Aggarwal, 2017a). Recent works also focus on definition of
methods that are dedicated to much more complex data representations such as text
and images. With the emergence of data mining, the field of outlier analysis has grown
along with various communities and different application areas (time series, financial
systems, information systems, . . . ) (C. C. Aggarwal and Yu, 2001; Prastawa et al.,
2004; Basu and Meckesheimer, 2007; Blazquez-Garcia et al., 2021).

Study of outliers can be motivated by several needs or questions at different steps
of a problem. The elimination of outliers is often desired during the data cleaning or
preprocessing step. In this case, outliers are not different than noise in the same way
as anomalies. Another motivation of outlier analysis lies in helping models to be more
robust to noise and rares observations. Alternatively, outlier awareness can be inte-
grated to a model beforehand through dedicated techniques, leading to more robust2

approaches. In the context of outlier detection and machine learning, robustness refers
2We note that usage of the term robust or robustness is defined differently depending of the task

and domain.
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NOVELTY
INLIER

NOISE ANOMALY

THRESHOLD
(EXPERT, HYPERPARAMETER)

Outlier Score

Figure 2.2: A one class-classifier learn the normal distribution and
provides an outlier score. Depending of the selected approach, or of the
expert, the instances are considered outliers from a certain threshold.
Furthermore, an outlying instance can be either noise, anomaly or also
novel considering the value of the score (high score means abnormal).

to the ability of a method or model to maintain its performance and reliability even
when faced with challenging or anomalous data points, including outliers (Hawkins
et al., 1984; Rousseeuw and Leroy, 1987; Zimek, Schubert, et al., 2012). A robust
outlier detection method should be resilient to the presence of outliers and should not
be unduly influenced by them, ensuring that the detection results remain accurate
and consistent.

Figure 2.2 (adapted from C. C. Aggarwal, 2017a) describes how a model can
considers an outlier score. Although noise and anomaly both refer to an intensity of
normality, novelty is a special kind of observation. The latter refers to a new generation
of data, whether normal or aberrant. In the context of outlier detection and machine
learning, distinguishing between noise, anomaly, and novelty is important. While
noise is typically considered as unwanted variation, anomalies can provide valuable
insights or indicate important events or patterns in the data. Novelty, on the other
hand, represents new and previously unseen data that may require specific handling or
treatment (Markou and Singh, 2003; Pimentel et al., 2014). The statement emphasizes
that novelty encompasses both normal and aberrant instances, highlighting the idea
that encountering previously unseen data, regardless of its nature, is considered novel.

2.3 What is an outlier ?

This section delves into the exploration of outlier definition in various scenarios. Ini-
tially, we introduce the commonly adopted definition of an outlier based on its lexical
interpretation. Subsequently, we compare this definition with that of anomaly. The
motivation behind this comparison stems from the prevailing confusion that considers
an anomaly to be synonymous with an outlier. Building upon this initial analysis, we
proceed with a comprehensive comparison of the diverse definitions proposed in the
existing literature. Finally, we engage in a discussion aiming to derive a conclusive
and applicable definition in the context of this research.
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2.3.1 Outlier and anomalies: general definitions

Depending on the field, the nomination of an abnormality can be done in several ways,
such as anomaly or outlier. These terms share a semantic relationship with normal (or
normality) but can not be used without a proper understanding of their differences.
The common definition of an outlier is:

Definition 2.3.1 (Outlier). Something (such as a geologic feature) that is situated
away from or classed differently from a main or related body3.

The interesting part of this definition is that an outlier can only be expressed with
regards to a group of individuals (related body). There is also a conflict between what
is relevant and what is less, i.e. classified differently from a main or related body.
Works of Statistics community like Hawkins (1980) have used the term of outlier in
order to describe observation that wrongly occurs in a distribution. Another common
definition for this domain is:

Definition 2.3.2 (Statistical outlier). A statistical observation that is markedly
different in value from the others of the sample.

The difference with this definition is the notion of metric and intensity (markedly).
Such metric aims at computing whether the observation is outside, to a certain degree,
of expectations (distance, similarity, . . . ). Comparing both definitions, an outlier,
opposed to inliers (normal observations), is an observation that does not follows the
same criterion of normality than other data. Depending of both application and
structure of data, the notion of normality is different. For instance, expecting to find
Football and Tennis news in a sport media is normal but Astronomy news is not
normal in this media. At another level, the expectation can be done with searching
Football news, and finding instead Tennis news.

Identification of outliers can be similar to finding rare items that should not appear,
or also looking for anomalies. It is interesting to note that the literature also use the
term of anomaly when processing this task. The definition of anomaly from the same
source as Definition 2.3.2 is:

Definition 2.3.3 (Anomaly). Something different, abnormal, peculiar, or not easily
classified: something anomalous.

The comparison with the definition of an outlier leads to conclude that finding an
anomaly requires, obviously, the description of normality. Thus, the main difference
between an anomaly and an outlier is to be the definition of a group of individuals.
Outlier is a term that strongly induce a group of individual, while anomaly
does not necessarily. For example, the rules of a game dictate how the game should
be played, but if a player performs a move that takes advantage of a flaw in the rules,
it can be considered as an anomaly. Such anomaly will not necessarily depend of a
group of observation to be abnormal. Both terms are often used interchangeably in

3The definition is extracted from the Merriam Webster dictionary.

13

https://www.merriam-webster.com/dictionary/outlier


Chapter 2. Study of outliers: background knowledge

data mining and Statistics. A brief review of these definitions defines an anomaly as
an observation that deviates from an expectation of normality and an outlier as an
instance that is observably different.

2.3.2 Towards data mining

In the previous section we observe two different definitions for outlier: usual and
statistical. Considering statistical works on outlier, Hawkins (1980) has proposed an
intuitive definition:

Definition 2.3.4 (Statistical outlier (Hawkins, 1980)). An observation which
deviates so much from other observations as to arouse suspicions that it was generated
by a different mechanism.

The notion of mechanism is important, it refers to a kind of scenario where outliers
occur. Two mechanisms are described:

• Instances come from a distribution where any observation is in any way erro-
neous.

• Instances come from two distributions: basic distribution and contaminating
distribution.

For generalization purpose, information theory notations can be vastly used for nu-
merous applications involving data distributions. Based on this work, we introduce
the following definition for the data generating probability:

Definition 2.3.5 (Data Generating Probability). Let X denote the space of possi-
ble observations. The data generating probability function P (x;θ) assigns a probability
to each observation x ∈ X , parameterized by θ. It represents the underlying probability
distribution from which the data is generated.

Considering that the latter mechanism is more often studied, Definition 2.3.4 im-
plies that there exist a probability distribution for inliers and a probability distribution
for outliers that we define as:

Definition 2.3.6 (Inlier/Outlier Distribution). Let X be a random variable rep-
resenting the observations. For any observation x ∈ X , we define a statistical model
P(x; θ) to assign a probability to x according to parameters θ. The data generating
process represents the causal mechanism from which the data originate. We define
Pin(x; θ) as the probability distribution of inliers among X and Pout(x; θ) as the prob-
ability distribution of outliers among X .

For a discrete random variable, the probability distribution can be defined using
a probability mass function (PMF). The PMF P (X = x) gives the probability of X

taking the value x. For a continuous random variable, the probability distribution can
be defined using a probability density function (PDF). The PDF p(X = x) specifies the
relative likelihood of X taking the value x. While Definition 2.3.5 and Definition 2.3.6
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are needed for tackling very recent works, they do not represent the only way to
formalize outliers. However, they succeed to connect the notations from former and
latter reference studies that are furthermore presented.

In a more contemporary context, Hodge and Austin (2004) have put forward
the definition initially suggested by Grubbs (1969). The focus of both works lies
in exploring the characteristics of outliers to deviate from inliers with respect to their
membership attributes:

Definition 2.3.7 (Outlier (Grubbs, 1969)). An outlying observation, or outlier,
is one that appears to deviate markedly from other members of the sample in which it
occurs.

In this study, the occurrence of outliers can be attributed to a range of factors,
including human error, instrument error, natural variations within populations, fraud-
ulent behavior, and various other causes. It can be stated that the types of outliers are
diverse and numerous, with each application potentially presenting unique instances.
Based on Definition 2.3.6, a membership function can be employed to evaluate the
extent of membership in the context of normality. The membership function provides
a way to assess the conformity of each data point to the expected behavior defined by
the data generating process. Often, a threshold τ ≥ 0 such that a probability under
Pin is small enough to be considered in the a low probability region (we develop it
next with Definition 2.3.10). Such a function plays a crucial role in characterizing the
concept of normality within the dataset.

The field of data mining has witnessed significant advancements, leading to notable
improvements in the study of data. In statistical contexts, the term "outlier" has often
been employed interchangeably with anomaly. Noteworthy contributions in the area
of anomaly detection (AD), such as Chandola et al. (2009), have provided a specific
definition of an anomaly as follows:

Definition 2.3.8 (Anomaly (Chandola et al., 2009)). Anomalies are patterns in
data that do not conform to a well defined notion of normal behavior.

Hence, a distribution of observations is expected to conform to a state of normal-
ity or exhibit normal behavior. Any instance that deviates from this expectation is
considered an anomaly. Chandola et al. (2009) assert that the nature of input data
plays a crucial role and determines whether instances within a dataset exhibit any
relationship. Consequently, various types of anomalies can manifest in this context.
Definition 2.3.8 introduces a novel concept that diverges from Definition 2.3.7 by incor-
porating the notion of a pattern. This definition aligns more closely with data mining
applications, where normality can be defined and identified as a specific pattern.

While anomalies and outliers exhibit certain similarities, particularly with their
characterization of normal behavior. Traditionally, the definition of an outlier is typ-
ically outlined by researchers in the introductory sections of their studies. However,
J. Zhang (2013) present a contrasting perspective. They advocate for tailoring the
definition of an outlier to each specific application, employing a dedicated taxonomy.
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A common observation across various studies is that an outlier is characterized by its
substantial deviation from the remaining data points. In a more recent contribution
in data mining, C. C. Aggarwal (2017a) proposed the following definition:

Definition 2.3.9 (Outlier (C. C. Aggarwal, 2017a)). An outlier is a data that
is significantly different from the remaining data.

In Definition 2.3.9, the concept of similarity is introduced with usage of term differ-
ent, distinguishing it from other approaches that typically emphasize the notion of
distance. Consequently, an outlier is defined as an observation that encompasses both
the possibilities of being an anomaly or noise. In Schubert et al. (2014), there is a
formal distinction between noise and anomaly, considering the locality of outliers. As
per C. C. Aggarwal (2017a), an "anomaly" refers to a special kind of outlier that is
of interest to an analyst.

Recently, Ruff, Kauffmann, et al. (2021) have proposed a definition of an anomaly
that is similar to Definition 2.3.4: an outlier is similar to an anomaly but is considered
rare/unique:

Definition 2.3.10 (Anomaly (Ruff, Kauffmann, et al., 2021)). An anomaly is
an observation that deviates considerably from some concept of normality.

In addition, they propose a formal conceptualization relying on the principles of Prob-
ability Theory and Information Retrieval: a concept of normality is a distribution P+,
on a specific data space X , it represents the ground-truth law of normality for a task
or application. An anomaly is an observation that deviates considerably from such
law. A distinction is proposed between the three terms anomaly, novelty and outlier
which refer to observations from low probability region of P+. Thus, an anomaly
is a point from a distinct distribution other than P+ (generated from another pro-
cess than inliers). An outlier is a rare observation from the low probability region
of P+, and novelty is an observation of some new region of P+. Differently from our
Definition 2.3.6, Ruff, Kauffmann, et al. (2021) notes an anomaly as follows:

A = {x ∈ X |p+(x) ≤ τ}, τ ≥ 0 (2.6)

which assumes that P+ has a corresponding PDF p+(x) and τ a threshold such that
the probability of A under P+ is sufficiently small. Such formalism is conveniently
fitting a wide range of applications, either being an anomaly or an outlier.

2.3.3 Discussion

The definition of an outlier has traditionally been clear within statistical scenarios.
However, with recent advances in complex data such as images and text, new defi-
nitions are needed. Terms like anomaly and novelty are often used to refer to ob-
servations similar to outliers. A recent definition proposed by Ruff, Kauffmann, et
al. (2021) unifies the notions of anomaly and outlier, which can be compared with
the definition presented by C. C. Aggarwal (2017a). This comparison reveals a clear
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Hawkins (1980) 3 3 3

Hodge and Austin (2004) 3 3 3 3

Chandola et al. (2009) 3 3 3 3

J. Zhang (2013) 3 3 3

C. C. Aggarwal (2017a) 3 3 3 3 3 3 3 3

Ruff, Kauffmann, et al. (2021) 3 3 3 3 3 3 3

Table 2.1: Reviewing table of the definition of an anomaly and outlier
according to the literature. The table is separated in four categories:
work subject, reference formalism, principal criteria of the definition
and additional highlighted features. A/O disambiguity refers to the

distinct definition of the difference between anomaly and outlier.

similarity between anomaly and outlier. An outlier is characterized by its rarity and
uniqueness, making it a special case of an anomaly.

Through this research, it becomes evident that an outlier can be viewed as an
anomaly or as an observation that deviates from the normality. The concept of dis-
tance, originally inherent in the etymological definition of an outlier, has evolved
into a notion of difference. While the statistical community primarily associated the
term outlier with static instances, its meaning has evolved in the data mining com-
munity, aligning more closely with the definition of an anomaly. Consequently, it is
not uncommon to find works that use these two terms interchangeably. An outlier is
characterized by its rarity as an occurrence that deviates from the rest of the group,
while an anomaly is defined by its differentiation from other instances within the same
group.

The distinction between anomaly and outlier lies in the context in which they
appear. An anomaly cannot be explained through the analysis of the base distribution.
It occurs when the assumptions of normality are correct, but the appearance of such
an observation is deemed impossible. On the other hand, an outlier is an event that
can be explained according to the base distribution, regardless of whether it is an
anomaly or not. Furthermore, an anomaly is not necessarily restricted to the rest of
the observations, unlike an outlier.

2.4 Different kinds of outliers

In Section 2.3 we have described what an outlier can refers to. Also, several terms
like anomaly or noise are often associated to an outlier, in practice. While anomaly
and outlier are different, as introduced in Section 2.3.3, it appears that in practice
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Single Multiple

(a) Hawkins (1980)

Type-2Type-1 Type-3

(b) Hodge and Austin (2004)

Figure 2.3: Taxonomy of outliers for Hawkins (1980) (left) and
Hodge and Austin (2004) (right). Hawkins proposes unsupervised
methods on static distribution through hypothesis. Hodge and Austin
separate outliers in three types where type-2 is aware of outliers and

type-3 is aware of what is normal.

they can be interchangeably employed. This section carries the purpose of detailing
the different kinds of anomalies and outliers.

In Section 2.3, a compatible definition of an outlier can be found in early works
from Statistics. We propose to study in Section 2.4.1 the taxonomy from Hawkins
(1980) as a reference for early works. While it provides an easy-to-apply taxonomy,
appearance of numerous methods in machine learning and data mining has moti-
vated the definition of a more complete and dedicated taxonomy. Thus, we study
in Section 2.4.2 the proposed outlier taxonomy of Hodge and Austin (2004) which is
dedicated to more recent needs. From this point, we note several works that aim to
introduce a proper taxonomy for outliers and anomalies. We propose in Section 2.4.3 a
study of different kinds of anomalies in the recent years. The Section 2.4.4 propose an
analysis of the recent taxonomy of outliers in recent works. Several similarities can be
illustrated with both taxonomy of anomalies and outliers, we propose a comprehensive
comparison in Section 2.4.5.

2.4.1 Outliers: a statistical consideration

One of the main concern of outlier analysis according to Hawkins (1980) is a scenario
where a distribution of independent data has only one outlier. He names it single
outlier and follow his study with multiple outliers (Figure 2.3a). Considering this
context, such taxonomy takes place where outlier detection is applied with univariate
or parametric methods on controlled scenarios (static or artificial distributions). The
principal drawback of such taxonomy arises when there is not a known underlying
distribution of instances. In this case, non-parametric and/or multivariate methods
are required. Another kind of outlier can be introduced when discrete distributions are
considered (Ben-Gal, 2005). Thus, the required conditions of the presence of an outlier
are unknown and attributes hypothesis is needed. This statement is reminiscent of
the condition discussed in Section 2.3.3 for differentiating an anomaly from an outlier.
With such kind of scenario, an anomaly is different of an outlier. An outlier is an
outlying instance that deviates considerably from most of the distribution.
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Point Collective Contextual

(a) Chandola et al. (2009)

High-Level Low-Level

(b) Ruff, Kauffmann, et al. (2021)

Figure 2.4: Corresponding contributions from Chandola et al. (2009)
(left) and Ruff, Kauffmann, et al. (2021) (right). The first contribution
defines the three well-established kinds of anomaly (point, collective
and contextual), while the second extends the former taxonomy with

two new types.

2.4.2 Outliers with data mining methods

According to Hodge and Austin (2004) the choice of a method must be motivated by
the characteristics of the data. They introduce an intuitive categorization of these
methods by grouping them according to the learning approach: Type-1, Type-2 and
Type-3 with respectively unsupervised, supervised and semi-supervised techniques.
The Type-1 approach assumes that data distribution is static and outliers are lo-
cated in the most remote parts of the distribution. Intuitively, the hypothesis is that
anomalies are naturally separated from "normal" data. Type-2 approaches consider
supervised classification where a distribution of normal data can be subdivided into
distinct classes. The last type of approaches, Type-3, refers to novelty detection or
methods that focus on learning inliers only.

Figure 2.3b illustrates these two approaches for outlier identification. The most
common situations are those where information about outliers are missing. While
Hodge and Austin consider a first kind of outlier that gather all unsupervised methods,
they introduce an applicable extension for data mining with Type-2 and Type-3.

2.4.3 Kinds of anomalies

Data mining has quickly converged on the task of anomaly detection instead of out-
lier detection. The growth of these related tasks led to the definition of a common
formalism which is still actively applied. It is intimately related to the popularity
of common data sets such as fraud, spam, . . . Similarly to Hodge and Austin (2004),
contributions of anomaly detection are highly dependent of available data and appli-
cations. Afterwards, Chandola et al. (2009) have identified three kinds of anomalies:

1. Point anomalies are observations that fall outside the boundaries of normal
regions. It is the simplest type of anomaly and it is the focus of majority of
research on anomaly detection.

2. Contextual anomalies rely on the context that is induced by the structure of
the data. Contextual anomalies are then dependent on the problem formulation
and can be defined with contextual attributes and/or behavioral attributes.
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3. Collective anomalies represent observations that belong to a sequence or spatial
data (ex. vehicular traffic). Point anomalies can be found in any data set, but
for collective anomalies, relationships between instances are required.

Furthermore, the difference between contextual and collective anomalies is the
availability of context attributes in the instances. Following this taxonomy, five types
of anomaly are considered by Ruff, Kauffmann, et al. (2021): point anomaly, con-
ditional (contextual) anomaly, group (collective) anomaly, low-level sensory anomaly
and high-level semantic anomaly :

1. Point anomaly is an individual anomalous observation. It is the most commonly
studied type in the literature.

2. Conditional, or contextual, anomaly is an anomalous observation considering a
context such as time or space.

3. Group, or collective, anomaly is a set of related observations that together are
anomalous. The notion of relationship often implies that group anomalies tend
to be also contextual.

4. Low and high refers to the degree of hierarchy between the features. Low-level
sensory anomaly belong to observations associated with normal features with
few variations (e.g. artifacts in a picture or texture defects).

5. High-level semantic anomaly describe a kind of anomaly that is dependent of
specific and dedicated representation.

Figure 2.3b illustrates the three principal kinds of anomaly that can be found in
literature. They are also connected to outlier taxonomy which can be observed on
various references (J. Zhang, 2013; C. C. Aggarwal and Sathe, 2015; Fouché et al.,
2020). We detail furthermore in Section 2.4.4 those similarities. Additionally we note
that both the high-level anomaly and the low-level anomaly (Figure 2.4b) have a close
relationship with the contextual anomaly. One possibility is to consider them both as
subtypes of contextual anomalies.

2.4.4 Taxonomy of outliers

For J. Zhang (2013), an outlier is applied to a set of instances and its definition
depends on it. First, he describes two kinds of outliers:

1. Point outliers which is the simplest to analyse and the most studied. It corre-
sponds to an observation that deviates significantly from the rest of the data.
Such kind of observation is considered an outlier regarding its unique character-
istic rather than with remaining inliers.

2. Collective outliers collective outlier which is a subset of data that deviates sig-
nificantly from the rest of the instances: an element of this set can be normal,
but considered an outlier according to its membership to a group of anomalies.

20



2.4. Different kinds of outliers
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(a) Principal outlier taxonomy
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Figure 2.5: While J. Zhang (2013) has first introduced a taxonomy
that integrates single/multiple outliers (left) with application outliers
(right), it lacks the definition of a contextual outlier (left part). C. C.
Aggarwal (2017a) identifies three principal kinds of outliers in addi-
tion of application outliers, identifying contextual outliers as a kind of

interest. Green instances are inliers and red instances outliers.

An additional kind of outliers is introduced: application outliers (Figure 2.5b).
In this category, one can find vector outliers, sequence outliers, trajectory outliers or
graph outliers, for example. The Figure 2.5b illustrates two examples of such kind
of outliers: oriented graph (outlier is the linkage that goes backward) and trajectory
(outlier is the trajectory with measurement error).

Similarly to Chandola et al. (2009), three kinds of outliers are proposed by C. C.
Aggarwal (2017a):

1. The first and most studied type of anomaly is the independent anomaly. It can
refers to a point anomaly or noise.

2. When data carries dependencies, contextual and/or collective anomalies can
arise. For a contextual anomaly, an observation is declared to be an outlier
because of its relationship to the remaining data items.

3. Collective anomaly refers to a set of data declared outliers. Such type of anomaly
highly occurs in dependency-oriented data, such as sequences for textual data.
There exists multiple other way to define such type of anomaly, and is related
to the application.

In this work, data governs analysis of outlying observations. Special attention is given
to each type of data and an introduction to many applications is also provided.

2.4.5 Conclusion

The taxonomy proposed by Hodge and Austin (2004) is further examined in the work
of C. C. Aggarwal (2017a), explicitly addressing the differentiation between anomaly,
outlier and noise. Depending on the degree of differentiation of an observation ac-
cording to its distribution, an outlier can be considered either an anomaly or noise.
This distinction helps to clarify the differentiation between undesirable outliers and
outliers that warrant consideration. Furthermore, recent work by Ruff, Kauffmann,
et al. (2021) introduces two novel types of anomaly based on the notion of intensity:
low-level sensory anomaly and high-level semantic anomaly. The former deals with

21



Chapter 2. Study of outliers: background knowledge

Si
ng

le

M
ul
ti
pl
e

In
de
pe

nd
en
t

C
on

te
xt
ua

l

C
ol
le
ct
iv
e

A
pp

lic
at
io
ns

Sp
ec
ia
lc

on
te
xt

N
oi
se

an
d
in
te
ns
it
y

Fe
at
ur
e
le
ve
l

Hawkins (1980) 3 3 3

Hodge and Austin (2004) 3 3 3

Chandola et al. (2009) 3 3 3 3

J. Zhang (2013) 3 3 3

C. C. Aggarwal (2017a) 3 3 3 3 3 3 3

Ruff, Kauffmann, et al. (2021) 3 3 3 3 3 3

Table 2.2: Taxonomy of anomaly and outlier, as introduced by the
different references of the literature. Applications refer to applications
related anomalies/outliers. Special context denotes the definition of
contextual anomalies/outliers that requires special attention in several
applications. Noise and intensity is the definition of an intensity of
anomaly/outlier that differentiate noise and anomaly/outlier. Feature
level is the introduction of special kind of contextual anomaly in which

the features are difficult to handle.

observations that appear normal but possess slight variations that set them apart.
The latter defines anomalies dependent on data representation and its dependencies.

Hawkins (1980) proposed a taxonomy for outliers, which has seen significant im-
provements over time. The taxonomy identifies two main situations: one involving
independent and singular outliers, and the other involving collective outliers that oc-
cur together. The second situation can manifest in diverse forms depending on the
application context, leading to the distinction between collective outliers and con-
textual outliers. While collective outliers are often contextual, occurence of multiple
outliers which are abnormal together highly differ from multiple outliers which share
common features, such as time or semantics, making them collectively abnormal. The
integration of the notion of intensity for the definition of this taxonomy is essential.
This approach offers an interesting perspective for understanding and characterizing
outliers across various applications.

Figure 2.5 presents the combined taxonomy of collective and contextual outliers,
as proposed by J. Zhang (2013). However, it is crucial to acknowledge that in certain
applications, these two types can have distinct meanings. It reinforces the significance
of the notion of intensity in outlier analysis. Table 2.2 illustrates how the literature
overviewed the different kinds of anomalies and outliers. We denotes two principal
things: taxonomy for both anomaly and outlier are similar and recent works aim to
detail contextual anomalies/outliers. Also, we can observe that if contextual are not
an identified kind, the application justifies the presence of anomalies/outliers. It is
highly related to recent works that aim to specify contextual properties in purpose of
more visibility.

Overall, the proposed taxonomy and the integration of the notion of intensity
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offer valuable insights into understanding and classifying outliers, contributing to the
advancement of outlier detection research. In conclusion, a taxonomy of three outliers
can fit a wide number of situations but for other scenarios, the level at which the
context is study is required.

2.5 Outlier detection approaches

Although the definition of an outlier can take several forms and methods for detect-
ing them are numerous. They can be grouped into several families that are pre-
sented in this section. Before that, we introduce the one-class classification (OCC)
task which is nowadays the most common task to perform outlier detection. Then,
we present a comparison of the previously mentioned works that perform a com-
prehensive analysis of the task. Families of methods are then introduced: statis-
tical approaches, proximity-based approaches, matrix factorization problem, high-
dimensional approaches, outlier ensemble and neural approaches. For each of these
families, we present the approaches studied in this thesis. Finally, we conclude the
section with a discussion.

2.5.1 Unsupervised one-class learning

We previously introduced the task of outlier detection that aims to find out-of-
distribution observations. Recent progress in data mining has seen its application
to numerous fields such as computer vision, time series, natural language processing,
etc . . . Performing unsupervised one-class classification is similar to Equation 2.5. The
output of a one-class classifier can be either a score or a label. For a label, we have:

f :RD −→ {−1,+1}
x 7−→ f(x)

(2.7)

with usually −1 if x is an outlier. In the case of a method that return a score, we
have:

s :RD −→ R

x 7−→ s(x)
(2.8)

The characteristic of using s is that, the higher the score, the greater the possibility
that the instance is an inlier. On the other hand, the instance has more chance to
be an outlier if the score is negatively low. In the case of point outlier an instance is
considered outlying with respect to other data: when the score exceeds a threshold θ.

f(x) =

{
+1 if s(x) > θ

−1 if s(x) ≤ θ
(2.9)
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Figure 2.6: Example of two models with a set of multiclass data with
local noise. Blue area is the inlier distribution predicted by the model

and red contour its boundary decision.

Similarly to recent works (Zhao, Nasrullah, and Li, 2019; Fouché et al., 2020; Ruff,
Kauffmann, et al., 2021; Manolache et al., 2021) we chose to refer to outliers as
the positive class, for all this thesis. Thus, if a scoring model Υ(x) ∈ [0, 1] (see
Equation 2.5) perform an outlier detection on x, the higher the score is, more is the
probability that x is an outlier.

The efficiency of a method highly depends of its ability to generalize the normal
distribution I (see Definition 2.3.6). Figure 2.6 displays two different models that
perform one-class classification: proximity-based with k-nearest neighbors (left) and
one-class support vector machine (right). Both of these methods differently separate
the space according to training data. The k-nearest neighbors method succeeds to
draw a more accurate decision boundary than the one-class support vector machine.
This difference can be explained with two arguments: hyper parameters are not set
accordingly for the support vector machine or there exists situations where one method
excels and not the other. Preparing multiclass dataset for one-class classification
induces several problems. While they have access to the same data, both methods
handle such scenario differently from each other, not all methods can fit all situations.
The noise for a class is obviously not the same for another. Figure 2.6 demonstrates
that the choice of an approach against another one is an important step of outlier
analysis.

In the context of outlier detection, the term "contamination" refers to the pres-
ence of outliers or abnormal observations within a dataset. It represents the degree
to which the dataset is affected by the presence of such outliers. A contaminated
dataset contains a non-negligible proportion of outliers compared to the overall data.
Contamination can arise due to various reasons, including errors in data collection,
measurement inaccuracies, anomalies, or rare events (see Section 2.3). These outliers
can significantly deviate from the expected or normal behavior of the majority of the
data. The level of contamination can vary from mild, where only a small fraction
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of outliers is present, to severe, where a substantial portion of the data consists of
outliers.

Handling contamination is crucial because outliers can distort statistical analysis,
modeling, and decision-making processes. Contamination can impact the performance
of outlier detection algorithms, as they need to accurately identify and distinguish out-
liers from the normal data instances. It also poses challenges in defining appropriate
thresholds or criteria for determining what constitutes an outlier in the presence of
contamination. Addressing contamination typically involves using robust outlier de-
tection techniques that are designed to handle contaminated datasets. In this thesis,
we note ν the contamination rate of a dataset X such as ν ∈ [0, 1], but is in practice
define as ν ∈ [0, 0.3]. The upper bound of ν is not intended to be high because outliers
are intended to be in minority.

2.5.2 Overview of the literature

A comprehensive view of the field is made by C. C. Aggarwal (2017a). It results in
covering almost all types of data that can be studied in data mining. In this section
we introduce the reference works that have influenced recent studies.

Chandola et al. (2009) propose an identification of different types of output related
to anomaly detection techniques. There exists a first kind of techniques that assign
an anomaly score and another kind that output a label. The first type associates
either a score of "abnormality" or a score based on "normality" to each instance.
One example consists in sorting instances according to such score. The difference
between them is that the former gives an analyst the opportunity to use, for example,
domain-specific rules. In the case of the latter, it is only possible to tweak the input
parameters. For outlier detection, there exists a wide number of approaches in the
literature. Chandola et al. (2009) propose the following classification of approaches:
classification-based methods, nearest neighbor-based methods, clustering-based methods,
statistical methods and information theoretic methods.

J. Zhang (2013) proposes a comprehensive study of approaches. His study mainly
focuses on applied outlier detection. Outlier detection methods for Low Dimensional
Data are one of the earliest work in outlier detection. J. Zhang (2013) proposes a
classification into four categories based on the techniques: statistical, distance-based,
density-based and clustering-based. It differs from Chandola et al. (2009) with usage
of categories of methods instead of task-related categories. The benefits lie in the
granularity of method characteristics.

1. Statistical methods rely on distribution or probability models to fit the given
data set. They cover parametric methods, like Gaussian model-based and re-
gression model-based methods, and non-parametric methods, like histograms
and kernel density function where there is no assumptions about the statistical
distribution of data.
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2. Distance-based methods rely on a distance metric (Euclidean, . . . ) in order to
find outliers. It does not assume any underlying data distributions but scale
better to multi-dimensional space and more complex data structures.

3. Density-based methods are a family of methods that involves to investigate not
only local density of the instance but also local densities of its nearest neighbors.
Methods such as Local Outlier Factor (LOF) and Connectivity-based Outlier
Factor (COF).

4. Finally, clustering-based methods that deal with outliers depending of their
characteristics. These methods implicitly define outliers as the background noise
of clusters and some of them are built with mechanisms to reduce the negative
effects of outliers. DBSCAN or CLIQUE are example of such kind of methods.

Outlier detection methods for High Dimensional Data are approaches that can
handle dozens, hundreds or/and even millions of dimensions. In such kind of data, the
curse of dimensionality appears and one of the main issues is dealing with sparse data.
This situation often makes methods like distance-based inefficient because data tend to
be equidistant to each other. J. Zhang (2013) proposes three categories: Methods for
Detecting Outliers in High-dimensional Data, Outlying Subspace Detection for High-
dimensional Data and Clustering Algorithms for High-dimensional Data.

1. Methods for detecting outliers in high-dimensional data address such instances
through two main categories. The first one consists in performing a dimension
reduction in order to apply low dimensional methods and/or feature selection.
The second one aims at developing dedicated mechanisms, although more chal-
lenging to elaborate.

2. Outlying subspace detection for high-dimensional data is a technique that allow
to investigate a subspace where the observation is exceptional or divergent from
the rest of the population. We find dedicated methods in this category that study
subspace characteristics, but also genetic methods (J. Zhang and H. Wang, 2006;
J. Zhang, Q. Gao, et al., 2006; Sathe and C. C. Aggarwal, 2016).

3. Clustering algorithms for high-dimensional data are clustering methods that
have been elaborate for such type of data. They are methods that focus on
grouping data depending of the attributes and the of their characteristics. Often,
finding a group of similar data imply to identify data that do not align with the
rest of the distribution.

While static data, high-dimensional data, time series and numerical data were
often presented, C. C. Aggarwal (2017a) proposes to describe how the task can be
approached with the others. Thus, categorical, text, mixed attribute, discrete se-
quences, spatial, graphs and networks data are tackled. Although former methods
are presented, most recent algorithms are also addressed in this contribution. Then,
fundamental knowledges are approached and most studied scenarios are covered.
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Figure 2.7: Statistical methods for Z-score outlier analysis on two
histograms including normal distribution (left), and a third scenario
with linearly correlated data (right). The first Z-score scenario is
more suited for extreme value analysis, which not necessarily needs

threshold.

2.5.3 Statistical methods

Early study were interested to compare an observation against a population. Statisti-
cal works were already achieving such analysis on various distribution and scenarios.
These methods aim to find outliers according to the Definition 2.3.2. We propose to
describe two popular approaches in such context: the Z-score based approach and
the Mahalanobis distance based approach.

Outlier analysis with Z-score

One of the most popular approach for outlier detection, and also one of the most
simple, is computation of Z-scores on univariate points (Rousseeuw and Hubert, 2011;
V. Aggarwal et al., 2019; Chikodili et al., 2021) :

zi =
xi − µ
σ

(2.10)

Z-score has equivalent names including Z-value, normal scores or standardized vari-
ables. Z-score is computed with the mean of the population µ and the standard
deviation σ. Such score aims to estimate how a value is relevant based on the other
values of the dataset. Data mining tasks often take advantages of distance metrics for
comparing observations with each other. Equation 2.10 can be extended with absolute
value of numerator when applied in this context. The score will then relates how the
current instance corresponds from the population mean of the standard deviation.

The Figure 2.7 displays three scenarios in which Z-score can be applied. Despite
such method succeeds on artificial distribution, it is different for real-world data.
Several drawbacks can be observed. In practice, complete intelligence about a dataset
is rare. Another problem is that the Z-value assumes a normal distribution for the
projected population. For data that carry contextual properties over their attributes,
results of Z-score are expected to be poor. Finally, one last problem lies in the
amount of data to get a significative Z-score. We note that sparse data are a kind
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of observation where statistical methods struggle to be robust. Sparse data can be a
challenge for statistical methods because such data are not fully observed and may
have missing or uninformative variation per variable.

Extreme-value analysis with Mahalanobis distance

An intuitive outlier analysis aims to study extreme values when associated with dis-
tances or other metrics. The Mahalanobis distance has been widely used in outlier
detection because it allows to measure a distance between a point x and a distribution
X of dimension N×D. Based on C. C. Aggarwal (2017a), we note x the D-dimensional
mean vector of X and Σ its D ×D covariance matrix. The covariance matrix is pro-
cessed with computation of each element Cov(Xi,Xj), which represents the covariance
between variable Xi and Xj . Considering that we note x an D-dimensional data, we
define the Mahalanobis distance dM as follows:

dM (x, x,Σ) =
√

(x− x)Σ−1(x− x)> (2.11)

In contrast of Z-score previously approached, Mahalanobis distance is robust against
the number of dimension thanks to the use of Σ. This characteristic is also important
regarding the extreme value analysis categorization of this method. Indeed it can not
be fully referred as an Extreme Value Analysis (EVA) because it normalizes the data
through inter-attribute correlations. Another advantage of Mahalanobis is that it is
parameter-free. Although EVA is efficient with aberrant data, they lack stability if
the distribution is unknown and if the values are imbalanced as EVA focuses around
the bounds.

2.5.4 Proximity-based approaches

For proximity-based approaches, we observe two principal categories that are popular
in the literature. We present distance-based approaches and then present density-
based approaches. The latter is often compared to the former.

Proximity induced that an object can be near or far of another object. It is obvious
that methods that attempt to assert this property rely on distance metrics.

Definition 2.5.1 (Distance metric definition). A distance d is a measure:

d : X×X→ R

Such that for any x1, x2, x3 ∈ X:

1. d(x1, x2) = 0⇐⇒ x1 = x2 identity of indiscernibles
2. d(x1, x2) = d(x2, x1) symmetry
3. d(x1, x3) ≤ d(x1, x2) + d(x2, x3) triangle inequality

Distance-based approaches

Proximity-based approaches are among the most popular methods that can be found
in numerous tasks. The basic idea is that an observation can be compared depending
of its distance with its (nearest) neighbors.
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Figure 2.8: Three kinds of proximity-based approaches. The dif-
ference between them lies in the distance notion and from where and
what it is processed. The intuitive method is the pure distance-based
method (left) which compare an observation with its neighbors through
a distance metric. Another kind of approach is based on the density
(middle) such that if instances are near from each other, they create
a dense area. The last types presented integrate the locality concept
(right) which compare an observation with the local density of its

neighbors.

Definition 2.5.2 (Distance-based outlier). An outlier is a data that is significantly
distant from other observations.

Ramaswamy et al. (2000) have proposed to use the study of k-Nearest Neighbors
(kNN). kNN is a distance-based approach that has numerous extensions. For one-
class classification, the targeted result is a score or a label. Because outlier analysis
is often unsupervised, a special version is often used.

Definition 2.5.3 (kth-Nearest Neighbor based outlier score). For xi ∈ X, the
distance between xi and its kth nearest neighbor within X\{xi} is its score of outlier-
ness.

In this context, we define distancek(x) the function that finds the k nearest neighbors
with their corresponding distance.

Definition 2.5.4 (distancek). Let d(x1, x2) the distance between x1 ∈ X and x2 ∈ X

which is computed through euclidean distance, cosine distance or any other metric.
Also, dk(x1) is the distance function such that in the context of the kNN , for any
k ∈ N we have:

1. for at least k observations x2
′ ∈ X\{x1}, d(x1, x2

′) ≤ d(x1, x2)

2. for at most k − 1 observations x2
′ ∈ X\{x1}, d(x1, x2

′) < d(x1, x2)

Although the Definition 2.5.4 details how a distance metric can be used for an obser-
vation, the kNN returns the k-nearest neighbors of a point:

kNN(a) = {x ∈ X\{a}|d(a, x) ≤ distancek(a)} (2.12)
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Based on Equation 2.12, the cardinal |kNN(x1)| can be greater than k if several
observations are similarly distant from x1. Considering Equation 2.12, the kth-Nearest
Neighbor (Definition 2.5.3) is deduced as follows:

kth-NN(x1) = max{kNN(x1)} (2.13)

In the Definition 2.5.3 we introduces a score related to the kth nearest neighbor, but
another approach focuses on the first nearest neighbor. A common attention is needed
regarding the hyperparameter k that needs to be wisely chosen. There exist extensions
of the Definition 2.5.3 that propose a differently defined score.

Definition 2.5.5 (Weighted k-Nearest Neighbor). For xi ∈ X, the outlier score
is the average distance between xi and its k-nearest neighbors within X\{xi}.

All these approaches needs only one hyperparameter k and one distance metric. The
performance of such method can be negatively impacted if the value of k is set too
high or too low. If k is set too high, the method may be overly influenced by the
majority of neighboring points, potentially leading to a loss of sensitivity in detecting
outliers. Conversely, if k is set too low, the method may become too sensitive to noise
or small fluctuations in the data, resulting in a higher likelihood of false positives.

The extension proposed by Definition 2.5.5 tackles this problem. It introduces the
concept of weight distance, where the influence of each neighboring point is weighted
based on their average distance. By incorporating the average distance, the decision-
making process for selecting a suitable value of k is mitigated to some extent. The
inclusion of the average distance provides a more nuanced and adaptive approach,
allowing the method to adapt to varying densities and local structures within the data
(Ramaswamy et al., 2000). This partially resolves the issue of strong dependency on
the choice of parameters, enabling more robust outlier detection.

Density-based approaches

A popular type of proximity-based approaches is density-based methods. We have
seen that distance-based methods estimate an outlier score with distance between ob-
servations. In contrast, density-based approaches locate an instance against principal
areas where most of observation are gathering.

Definition 2.5.6 (Density-based outlier). An outlier is located outside the dense
area formed by the inliers.

Distance-based methods, while naturally suitable for boundary-based tasks, can also
be applied to address local density-related problems. One widely used approach for
this purpose is the Local Outlier Factor (LOF) algorithm, which assesses the outlier-
ness of an observation based on its proximity to the local density. The local density of
a data point is computed by counting the number of data points within its neighbor-
hood. A higher count indicates a higher local density, implying that the data point
is surrounded by a dense cluster of neighboring points. Conversely, a lower count
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suggests a lower local density, indicating that the data point resides in a sparser re-
gion. Similar to DBSCAN (Ester et al., 1996), LOF relies on two important concepts:
reachability distance and core distance. According to Breunig et al. (2000) and Defi-
nition 2.5.4 , for x1 ∈ X and x2 ∈ X\{x1} we define the reachability distance of x with
respect to x2:

reach-distk(x, a) = max{distancek(a), d(x, a)} (2.14)

Density-based algorithms such as DBSCAN consider that an instance x is a core
instance if at least MintPts4 are reached within a range distance. Based on those
parameters, a last characteristic of such kind of methods is the cluster volume. The
cluster volume is determined by the collection of all core instances and their reachable
neighboring instances. From here we refer to kNN(x) as Nk(x). For LOF, the local
reachability density (lrd) of an observation x is performed as follow:

lrdk(x) = 1/


∑

a∈Nk(x)

reach-distk(x, a)

|Nk(x)|

 (2.15)

Along with Definition 2.5.6, k refers to the minimum number of instances a dense
area needs to reach. The Equation 2.15 showcases a local approach of such definition.
Similarly to Definition 2.5.5, it is often more stable and interesting to compare an
observation against other instances. The local outlier factor of x is defined as:

LOFk(x) =

∑
a∈Nk(x)

lrdk(a)

lrdk(x)

|Nk(x)|
=

∑
a∈Nk(x)

lrdk(a)

|Nk(x)|.lrdk(x)

(2.16)

The computation of LOF, as described in Equation 2.16, is influenced by several
factors that density-based methods attempt to address. One advantage of the ap-
proach is its ability to identify outliers in remote areas with limited samples. However,
this characteristic also presents a challenge as the outlier threshold varies depending
on the data distribution. To mitigate this issue, several contributions have proposed
solutions.

One notable work by Schubert et al. (2014) provides a comprehensive study of
shared properties related to locality and distances, specifically focusing on LOF-based
approaches. Based on this work, a simplified version of LOF, referred to as Simplified-
LOF, is introduced, as represented by Equation 2.14. Additionally, extensions such
as Local Outlier Probability (LoOP), proposed by Kriegel, Kröger, et al. (2009a), are
included in their study. These efforts aim to improve the robustness and applicability
of LOF to different scenarios and data types.

LOF offers a valuable approach for outlier detection, offering various possibilities
among different applications and data types. To address some of the challenges associ-
ated with density-based methods, recent works have made significant contributions by

4Or minimum number of data points required to form a dense region
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Analysis
(input dimensions)

Factorization

A = UΣVT

Linear factorization

Figure 2.9: Linear decomposition of 10× 3 raw matrix A in 10×K
projected matrix A′ with K = 2. If the linear model is PCA, the
three eigenvectors (left), or principal components, describe how the
raw data can be linearly projected. The factorization using K = 2
with blue and violet principal components is displayed on the right.
Such scenario can be applied with different method such as Singular

Vector Decomposition.

investigating the properties of locality and distances, introducing simplified versions
of LOF, and exploring extensions such as LoOP. These advancements contribute to
the ongoing development and refinement of LOF-based outlier detection techniques,
and its usage in more recent works.

2.5.5 Matrix factorization problem

Matrix factorization problem is tackled in various domains and is not restricted to
outlier analysis. Approaches that are proposed under this kind of problem are also
referred as linear models. It involves decomposing a given matrix or tensor into a
product of lower-dimensional matrices or tensors. This decomposition aims to cap-
ture the latent structure or underlying factors present in the data. Latent features
refer to representations or dimensions in a model that capture underlying patterns or
meaningful information information in the data (Cortes and V. Vapnik, 1995; Bengio,
Courville, et al., 2013; LeCun et al., 2015). Thus, data distribution plays a crucial role
in factorization matrix problems because it influences the nature and characteristics
of the latent factors that are being extracted. Different data distributions can lead
to distinct patterns and structures in the data, which can impact the effectiveness of
factorization methods.

Matrix factorization aims to find a decomposition of the original matrix to reduce
dimensionality while retaining as much information as possible. As an illustration,
the goal is to approximate a given matrix A using a composition of two matrices, W
and Z:

A ≈ Ã = WZ> (2.17)

The original matrix A of dimensions N×D is approximated as a decomposition of two
matrices. Matrix W of dimensions K × D, with K < D, captures the latent factors
(or patterns) from the original data. Each row of W represents a low-dimensional

32



2.5. Outlier detection approaches

representation of a feature of A. The matrix Z of dimensions N × K, captures the
weights (or importance) assigned to each latent factors (rows of W ). The purpose
of such decomposition is that any matrix A is decomposed into multiple matrices
for keeping as much information while reducing dimensionality. The objective of
this matrix factorization is to find optimal values for W and Z that minimize the
reconstruction error between the original matrix A and its approximation Ã. This
process allows for dimensionality reduction while preserving important patterns or
relationships in the data (D. Lee and Seung, 2000; Koren et al., 2009).

Thus, such methods can also be referred to dimension reduction approaches be-
cause they map D-dimensional features data to K-dimensional latent factors. For
proximity-based approaches, outliers can be found in peculiar area of space in which
they are arrange differently from inliers. In contrast, linear models aim to find lower-
dimensional subspaces where outliers have a high chance to be found. For C. C. Aggar-
wal (2017a), such method can be viewed as an orthogonal version of proximity-based
methods which try to describe data horizontally rather than vertically. Horizontal
view of data refer to seeing such observation on rows or data values rather than on
vertical view which refers to columns or dimensions. The assumption for analysing
outliers with matrix factorization approaches is as follows:

Definition 2.5.7 (Outlier with linear models). An outlier is an observation that
presents dimension values that are poorly or differently correlated with features of the
rest of data.

For outlier analysis, Shyu et al. (2003) have proposed an approach using Princi-
pal Component Analysis (PCA) (Hastie et al., 2001) with the Mahalanobis distance
(Equation 2.11). Thus, they achieve outlier analysis with their approached called
Principal Component Classifier (PCC). The mentioned method use PCA for analysis
of principal components, which are eigenvectors of the covariance matrix Σ. Consid-
ering that a data set A of D dimensions and N observations is mean-centered, we
note the covariance matrix Σ:

Σ =
A>A

N
(2.18)

Principal components are a key notion of PCA, we note K ∈ {1 . . . D − 1} the ap-
proximated largest number of eigenvectors. Thus, PCA follows three properties:

1. principal component are uncorrelated

2. the first principal component has the highest variance

3. variance of transformed instance along each eigenvector is the corresponding
eigenvalue

Any data can be transformed through orthonormal eigenvectors matrix called P .
We note A′ the transformed data matrix:

A′ = AP (2.19)
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Angle-based Isolation Forest Support vector
machine

High-dimensional

Figure 2.10: Presentation of three popular approaches that tackle
high-dimensional data. The intuitive angle-based method finds out-
liers through short angles (left). For IF (middle), the outlier score is
processed with the path length among isolation trees. SVM estimates
a D − 1 dimension hyperplane that separate the observations (right).

Based on Shyu et al. (2003) and C. C. Aggarwal (2017a) and Equation 2.11, with e
an eigenvector of eigenvalue (variance) λ, the estimated outlier score is computed as
follows:

PCC(x) =
D∑
j=1

(x− x).ej
λj

(2.20)

The Equation 2.20 can be assimilated as the sum of weighted projected distances to
the eigenvector hyperplanes. In addition, Shyu et al. (2003) propose to filter outlying
data through Mahalabonis distance before applying PCA on the sampled distribution.
For the rest of the thesis, we refer to PCC following the Equation 2.20.

While PCC can perform as both low and high dimensional approach for outlier
analysis, it arises two principal drawbacks: noise sensitivity and regularization issues.
In Shyu et al. (2003) setup, extreme values are filtered through Mahalabonis distance
and PCA can then focus on low correlated observations. Depending of the data and
the real contamination (ν), PCA may poorly performs with respect to the optimal
hyperplane. It is also sensitive to particular features or sparse matrices. PCA is also
dependent of the number (N) of observations: if there are not a sufficient amount of
instances in X, the covariance matrix can be hard to estimate.

2.5.6 High-dimensional approaches

High-dimensional data sets are characterized by having a large number of features,
which can imply unique challenges for traditional data analysis methods. The com-
plexity of high-dimensional data arises from several factors. One of these factors is
the presence of complex correlation structures, where variables may exhibit intricate
relationships with each other. Additionally, high-dimensional data can exhibit vari-
ous characteristics, such as sparsity (where most of the variables have zero or very
few non-zero values), contextual correlation (where the correlation between variables
depends on specific contexts or subsets of the data), or even lack of correlation. For
addressing the challenges mandated by high-dimensional data, numerous methods and
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algorithms have been developed. These methods aim to uncover meaningful patterns,
identify outliers, or perform other tasks in the context of high-dimensional data anal-
ysis. Some popular high-dimensional approaches include distance-based approaches
with subspace rotation and cosine distance. These methods focus on finding similari-
ties or dissimilarities between high-dimensional data points based on their orientations
in different subspaces. Another class of methods uses tree-based approaches, such as
Isolation Forest (IF), which leverages the concept of isolating anomalies in a decision
tree-like structure.

High-dimensional approaches are methods that focus on multivariate distribution
with complex correlation. Nature of data can be sparse, contextually correlated,
uncorrelated, ... Methods tackling such kind of data are numerous and may even-
tually been applied on full dimensionality or partial dimensionality of raw distribu-
tion. Among those approaches, we find distance-based approaches with subspace
rotation and cosine distance, or also tree-based approaches such as Isolation Forest
(IF), to mention a few. Thus, we propose to study methods that are designed for high-
dimensional purpose first. Subspace-based methods are popular and approaches such
as Rotation-based Outlier Detection (ROD), proposed by Almardeny et al. (2020),
or Subspace Outlier Detection (SOD) of Kriegel, Kröger, et al. (2009b) have found
success with high-dimensional data. Furthermore, the definition of high-dimensional
outliers can be difficult to formalize hence the number of application is high.

Definition 2.5.8 (High-dimensional outlier). An outlier in high-dimensional data
refers to an observation that deviates from the correlation patterns observed in the
majority of the data. Moreover, outliers can also manifest in subspaces where inliers
are not adequately represented.

For high-dimensional outlier detection methods, we first propose the study of
methods based on angles and rotations. Specifically, the cosine distance emerges as a
popular metric widely applied to high-dimensional data. We prefer to categorize this
approach as high-dimensional rather than distance-based (Section 2.5.4) because the
emergence of this kind of method was motivated by the high-dimensional property of
the data. Additionally, we describe the isolation forest method, which can be consid-
ered an ensemble approach for outlier detection due to its utilization of several decision
trees. Given its success in dealing with high-dimensional data, we categorize it as a
high-dimensional approach. Furthermore, we present the One-Class Support Vector
Machine (OCSVM), which leverages the kernel trick to identify outliers. OCSVM can
also be categorized as a linear model in terms of its underlying principles, we pro-
pose to categorize it in high-dimensional methods in regard to how SVM can tackle
a wide amount of scnenarios. While various approaches exists, these three kind of
approaches allow to exhibit different and unique techniques that address outliers in
high-dimensional data.
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Angle-based methods

Angle-based approaches present interesting properties against high-dimensional data.
Indeed, the approach is more suitable with this type of data because of its use of
angles instead of distance metrics. In Section 2.5.4, distance-based approaches have
been mentioned. They find success for numerous applications and types of data. While
common distance metrics can be used for high-dimensional data, they get poor results
with exploding number of dimension. They also lack success with sparse matrices. Dis-
tances like euclidean distance consider all dimensions the same way. One drawback
of such property is the sensitivity to irrelevant dimensions: in high-dimensional data,
some dimensions may be irrelevant or contain noise. Euclidean distance treats all
dimensions equally, which means that irrelevant or noisy dimensions can significantly
impact the distance calculations and potentially introduce inaccuracies in outlier de-
tection. All of these problems are included ad referred as curse of dimensionality.
Angle-based methods offer an alternative approach that can mitigate the effects of the
curse of dimensionality. Instead of relying solely on distances between data points,
angle-based methods focus on the relationships between vectors or subspaces formed
by the data. By considering the angles between vectors or subspaces, these methods
can capture the intrinsic structure of high-dimensional data more effectively.

Cosine distance is often a key part of such kind of methods due to several reasons
The cosine distance is the complement of the cosine similarity with matrices of positive
features, and is purely not a distance metric. The reason is that the cosine distance
does not follows the triangle inequality (Definition 2.5.1). Considering two feature
vectors x1, x2 ∈ X, we note the cosine similarity is defined as follows:

scos(x1, x2) =
x1 · x2

||x1|| · ||x2||
(2.21)

Here, || · || represents the L2-norm, and scos(x1, x2) ∈ [−1, 1] where −1 means that a

is opposite to b, 1 that they are the same and 0 that they are orthogonal. Hence, any
other values indicate relative similarity or dissimilarity. Based on Equation 2.21, the
cosine distance is performed as follows:

dcos(a,b) = 1− scos(a, b) (2.22)

With non-negative features, dcos(x1, x2) ∈ [0, 1] and is often used as distance metric
for high-dimensional and sparse data. Proximity-based methods can benefit from
Equation 2.22.

Cosine distance is insensitive to the magnitude or length of vectors. It only consid-
ers the orientation of the vectors, not their absolute values. This property can be seen
in the cosine similarity Equation 2.21, where the similarity is determined by the angle
between the vectors, not their magnitudes. In cosine distance calculation, vectors are
implicitly normalized by dividing them by their magnitudes. This normalization step
ensures that the distance calculation is not biased by varying vector lengths. The
normalized vectors can be represented as x′ = x

||x|| with x′.
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A popular angle-based approach for outlier analysis is Angle-Based Outlier De-
tection (ABOD) (Kriegel, S hubert, et al., 2008). The idea of this algorithm is to
measure the coverage of angle for an observation (spectrum). An observation with a
large coverage is most likely to be an inlier, and one with a low coverage an outlier. For
example, the Figure 2.10 shows that inliers have high angles to cover most of nearing
observations while the outliers need a low one. ABOD uses an Angle-Based Outlier
Factor (ABOF) that, given a point x ∈ X and a norm || · || : RD → R+, consider the
scalar product denoted by < ·, · >: RD × RD → R.

Based on Kriegel, S hubert, et al. (2008), ABOF is valued as:

ABOF (x) = Cov(x1, x2) ·
(
< (x1 − x), (x2 − x) >

||x1 − x||2 · ||x2 − x||2

)
(2.23)

for any x1, x2 ∈ X.
Based on Equation 2.23, ABOD performs the ABOF on every pair of points, which

has a high computational cost. For tackling this problem, another approach proposed
by the same authors consists in approximating results with usage of sampling. This
method is defined as FastABOD (Kriegel, S hubert, et al., 2008) and take less time
to compute than original ABOD thanks to sampling. Regarding this latter enhance-
ment, ABOD can also be categorize as a probabilistic approach. ABOD can also be
considered an extreme-value analysis method, and is therefore sensitive to contextual
outliers. While angle-based approaches can tackle the problem of curse of dimen-
sionality, they are not an all-in-one paradigm. We also note that they are often free
parameter methods.

Isolation forest

Isolation forest (F. T. Liu et al., 2008) is an anomaly detection approach that is close
to random forests. It is widely used in anomaly detection, outlier detection, fraud
detection, and many others. However, its categorization can be complicated with
its characteristics to build tree ensembles or subspace sampling. The first refers to
ensemble outliers, which is detailed in the next section, and the second to subspace
methods.

The isolation forest algorithm build several isolation trees which are typically
proper binary decision trees (each node in the three has exactly zero or two daughter)
with at most N leaf nodes. Each of these leaf nodes represent exactly one instance.

Definition 2.5.9 (Isolation tree). Given T a node of the tree, it can be either an
external node with no child or an internal node with one test and exactly two daughter
nodes Tl and Tr. For a feature j and a split value p, the test j < p separates data
points into Tl and Tr.

The first step of the algorithm is to build isolation trees with recursively dividing X

into subsets with randomly selected features j and split value p. It is achieved until:

1. a depth limit is reached
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2. |X| = 1

3. all observations in the considered subset have the same values

The path length of a point x is noted h(x). It is measured by the number of
edges x traverses an iTree from the root node until the traversal is terminated at an
external node. Evaluation is done by means of a scoring function based on the average
path length avg(h(x)) among isolation trees. Precisely, the path is measured by the
number of edges that traverses isolation trees from the root node to the corresponding
node (external) of observation x. Given Hn the n-th harmonic number, estimated by
ln(n) + 0.57721 (Euler’s constant), the isolation forest score for a given x ∈ X and the
number of examples N in the training set is performed as:

IF (x) = 2
− avg(h(x))

2HN−1−
2(N−1)

N (2.24)

Considering that IF is monotonic to h(x), in Equation 2.24 and based on F. T. Liu
et al. (2008), the score follows the assessment: i) if IF (x) is very close to 1, then x is
an outlier, ii) if IF (x) is much smaller than 0.5, then x is a normal instance and iii) if
all instance x ∈ X return IF (x) ≈ 0.5 then the entire sample does not have distinctive
outlier.

With isolation forest, outlying points are scored during the test phase using the
split condition (p) computed in training phase. Strictly speaking, observation that
reach an external node quickly are considered outliers. It can be view as out-of-sample
observation that does not fit regular behavior of the majority of sample instances.
The subsampling characteristic of IF is similar to the axis-parallel subspaces method
proposed by Kriegel, Kröger, et al. (2009b).

One-class support vector machine

Support Vector Machine (SVM) are method with a rich literature, and are subject to a
high number of extensions. Also, this kind of method is defined by supervised learning
in which yi ∈ {−1, 1}. Outlier detection is often depicted as an unsupervised problem
regarding the lack of labelled data set. One-Class Support Vector Machine (OCSVM)
is a type of SVM which does not requires any target label. OCSVM assumes that
all observations belong to the inlier class (see Section 2.5.1). Thus, the origin of a
kernel-based representation belongs to outliers (C. C. Aggarwal, 2017a).

Given the Φ unknown non-linear function that projects the raw data to a space
with higher dimension and its corresponding coefficients vector w, the hyperplane that
separates the inliers from outliers is represented as follows:

w · Φ(x)− ρ = 0 (2.25)

where ρ ∈ R is a bias variable that determine the position of the hyperplane that
separates inliers from outliers. For w, it represents the weight vector in the feature
space and is a parameter that determines the orientation and direction of the hyper-
plane. We present the optimization problem extended from this equation in which
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the computed value is positive for majority of X. This property has been mentioned
previously and is the result of the hypothesis that all observations belong to inliers.
From Equation 2.25 the margin regularizer term ||w||2

2 is added and separate ρ from
the objective function for closing the origin with inliers. The objective function is
then performed as follows:

Minimize
||w||2

2
+
C

N

N∑
i=1

max{ρ− w · Φ(xi), 0} − ρ (2.26)

In Equation 2.26, the slack penalty max{ρ−w ·Φ(xi), 0} aims to handle the scenario
in which result of Equation 2.25 is negative. Also, the constant C > 1 estimates the
trade-off between maximizing the margin and the training errors.

Instead of solving w, the optimization approach is often preferred using the kernel
trick. It allows to perform the high-dimensional projection and substitute max{ρ −
w · Φ(xi), 0} with slack variables ξ1 . . . ξN in Equation 2.26:

Minimize
||w||2

2
+
C

N

N∑
i=1

ξi − ρ (2.27)

For Schölkopf, Williamson, et al. (2000), introduction of the parameter ν = 1
C now

characterize the solution which sets an upper bound on the fraction of outliers (con-
tamination) and a lower bound on the number of training examples used as support
vector. This extension is referred as ν–SVM or ν-SVC in the literature, and is the
version we are using in this thesis.

The dual formulation has N variables α = [α1 . . . αN ]T which correspond as La-
grangian parameters. Every αi weight the decision function and few of them are
actually non-zero value. Thus, for a kernelfunction K(x, xi) = Φ(x)TΦ(xi), we score
OCSVM as follows:

Υ(x) =
N∑
i=1

αi ·K(x, xi)− ρ (2.28)

While being successful, OCSVM with ν extension has several drawbacks such as
the choice of the kernel function which often is either linear, polynomial, sigmoid or
Radial Basis Function (RBF). Hidden parameter such as C can also make it difficult
to use kernel function. The method also needs N to be high enough to efficiently
estimates the hyperplane. Despite the mentioned drawbacks, the approach has been
widely used for numerous applications and is still competitive in recent benchmarks
of the literature.

2.5.7 Outlier ensemble

Ensemble methods are popular in numerous domain, and is not strictly limited with
outlier analysis. The main idea behind these methods is that combination of several
models, also called base detectors, and their outputs is more robust than a single
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Median :     ϒi

...

Ensemble method

Figure 2.11: Ensemble method performing the fusion technique (av-
erage, median, etc ...) with X and local density model (k ∈ [1, 3]).
Observations that were not estimated as outliers with every models

are represented in purple.

model. Base detectors are not limited to be identical, they can be different. Al-
though the possibility to combine multiple base detectors is intuitive, the design of
such approaches needs special attention regarding normalization of outputs. Another
attention is also needed in the choice of the base detector. Independently of the pre-
vious statements, sampling the raw data set X is also important. Sampling can then
be applied either with data sampling or with features sampling.

There exist three basic and popular policies for performing outlier combination:
Average, Maximum and Median. The average is popular among classification liter-
ature and offers to outlier detection more robust and stable results. Such method
succeed to trivially generalize meaningful behaviors of inliers and reduce the bias ef-
fect raised with unbalanced distribution. Median and maximum functions are more
complicated to generalize because they rely on the success of a base detector. For the
average, if all base detector perform poorly, the result is more often to be biased. Bias
can be reduced thanks to the distribution selection or the feature bagging techniques.

Feature bagging, also known as random subspace method, is an ensemble learning
technique (Breiman, 1996). It involves creating multiple subsets of features from the
original dataset and training individual models on each subset. The predictions from
these models are then combined to make the final prediction. The main idea behind
feature bagging is to introduce diversity among the models by using different subsets
of features. This helps to reduce overfitting and improve the overall performance and
generalization ability of the ensemble.

C. C. Aggarwal and Sathe (2015) have proposed approaches that rely on base
detector pooling. They are referred as Average-of-Maximum (AOM) or Maximum-of-
Average and integrate feature bagging for mitigating bias-variance tradeoff.

2.5.8 Neural networks

Based on the natural structure of the human brain, artificial neural networks (ANN)
simulate the synaptic system. For human beings, the learning process is performed by
increasing importance of the connections between neurons (also called cells or units).
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Figure 2.12: The simplest perceptron has a single layer (left) and
uses a linear activation function to make predictions based on weighted
inputs. The multilayer perceptron (right) is built with multiple layers

of interconnected neurons.

Artificial neural networks have similar behavior: neurons are connected through
weighted links. Thus, a neuron receives its input from other neurons based on con-
nections to other neurons, or input values. Nowadays, there exist numerous types of
neural networks. Some of them have exactly one layer of connected units to the input,
while some have hidden layer(s) of neurons between the input and the output. Mul-
tiple layers can also be considered for connecting one layer to the next one, multiple
times.

We present in Figure 2.12 the most basic artificial neural network: the perceptron
(Rosenblatt, 1958). The single layer perceptron, noted Υ as referring to Equation 2.5,
processes the weighted sum of the input x such as:

Υ(x) =

D∑
i=1

wi · xi (2.29)

On top of this basic computation, a differentiable activation function is usually used
(Bishop, 2006). Multilayer perceptron is the sequential addition of several perceptron
connected with each other. Considering that setting, more complex architecture can
be built. Two types of neural network framework are explored for outlier detection:
one-class neural networks and replicators.

One-class classification

In this section, we introduce a simple approach based on a one-class perceptron with
mean squared error (MSE) loss for outlier detection, inspired by C. C. Aggarwal
(2017a). As the perceptron is a simple model, we aim to present the key concepts for
performing one-class classification with neural networks. The key assumption behind
one-class neural networks is that the output of the perceptron, denoted as Υ, should
ideally be zero, despite the non-zero weights wi (i ∈ [0, D]) associated with it (see
Equation 2.5). In this model, all training observations are assumed to be inliers, and
thus, the prediction Υ(x) is expected to be 0. However, if Υ(x) deviates from 0,
it indicates that the instance is an outlier and does not conform to the underlying
inlier model. Consequently, the objective of a one-class neural network is to optimize
the model in such a way that it maximizes the score for outliers while minimizing
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Neural networks
(One-class classification)

Figure 2.13: One-class classification performed with neural networks
are often projecting the input space in a new feature space that aims

to characterize the normal data behavior.

the score for inlier data. Thus, a decision boundary that maximizes the separation
between inliers and outliers is expected.

To achieve such optimization, we use the backpropagation algorithm which trains
a feedforward ANN by updating its weights. This algorithm aims to solve the op-
timization problem for finding a local minimum of a differentiable function. In this
context, we use the Mean Squared Error (MSE). This function estimates the loss
by calculating the average squared error between the predicted value and the actual
value. To illustrate a one-class perceptron, we consider the squared error function.
Such a function is compatible with the characteristics of the outlier detection task
previously explained. Let W be the set of all weights values, the squared error of the
instance values x is computed as follows:

Υ(x)2 = (W · x)2 (2.30)

The gradient descent is performed for each training instance with the weight update
W − η∇Υ(x)2 in which η > 0 is the learning rate and ∇ the corresponding activation
rule of the neural network. Considering the squared error at the iteration p, the
gradient descent update of the weights is performed as follows:

Wp+1 = Wp − xηΥ(x) (2.31)

All instances of X are given to the perceptron and W is updated until convergence is
reached. At this point, the one-class perceptron output is is valued as:

Υ(x) = (W · x)2 (2.32)

For the case of the multilayer perceptron, W is not anymore a vector but a matrix
that corresponds to each layers weights values. The multilayer case is more challenging
because the sum of the squares errors of each output is performed. Normalization of
the weight is performed with the additional constraintW>W = I that ensures mutual
orthogonality.
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The perceptron is the basic version of actual neural networks. With recent ad-
vances in neural networks there exist numerous approaches for tackling the optimiza-
tion problem of one-class neural networks. Recently, Ruff, Vandermeulen, et al. (2018)
have proposed an application of the Support Vector Data Description (SVDD), intro-
duced by D. M. Tax and Duin (2004), as a kernel function that minimizes the volume
of a hypersphere. This approach is called Deep SVDD and the optimization problem
is tackled as follows:

Minimize
R,W

R2 +
1

νN

N∑
i=1

max {0, ||φ(xi;W)− c||2 −R2}+
λ

2

L∑
l=1

||Wl||2F (2.33)

where X̃ ⊆ Rp is the output space of dimension p and φ(·;W ) : X → X̃ a neural
network with L ∈ N hidden layers. We set the weight W l of layer l ∈ {1, . . . , L}
consideringW = {W 1, . . . ,WL}. For the kernel SVDD, minimizing R2 minimizes the
volume of the hypersphere characterized by the radius R > 0 of center c ∈ X̃ . In
this equation || · ||F is the Frobenius norm and there are two hyperparameters: λ and
ν. The ν-parameter (Section 2.5.1) is related to the expected contamination of the
data sample and λ > 0 a weight decay regularizer on the network parametersW. The
authors propose a simplified objective function:

Minimize
W

1

N

N∑
i=1

||φ(xi;W)− c||2 +
λ

2

L∑
l=1

||W l||2F (2.34)

Then, the outlier score is performed as follows:

Υ(x) = ||φ(x;W∗)− c||2 (2.35)

where W∗ are the network parameters of a trained model. Deep SVDD is a one-class
neural network that proposes a boundary separation of the data that can be illustrated
in Figure 2.13.

Reconstruction problem

In the previous section we have approached the one-class neural network framework
with a basic illustration and a state of the art technique. There exists another ap-
proach for estimating an outlier score with neural network that is referred as replicator
neural networks. Instead of minimizing a projection error through all attributes, the
model aims at predicting the input xi with the reconstructed x̃i. In this setting, the
final output dimension is identical to the input, as illustrated in Figure 2.14. Basically,
let x be an instance and x̃j the predicted value corresponding to x, the reconstruction
error is estimated by

D∑
j=1

(xj − x̃j)2, (2.36)

This error should be minimized in the training step. Autoencoders are the most
popular approach for reconstructor neural networks and can handle high-dimensional
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Figure 2.14: Autoencoder is a neural network architecture that is
built with the encoder/decoder framework. The main idea is that
an encoder (left part) aims to perform dimensionality reduction for
keeping meaningful features and weights (the bottleneck of the archi-
tecture). The decoder attempts to reconstruct the original input (right

part).

data in a similar behavior than PCA or matrix factorization (Section 2.5.5).
These past years, different types of autoencoders have been proposed in the lit-

erature. It is the case of the Variational Autoencoders (Kingma and Welling, 2013),
referred as VAE. It differs from autoencoders in the output of the encoder one: it is
a probability distribution instead of a single output. Thus, the VAE aims to describe
the samples of the dataset at the latent space level. The loss function is also different
than the basic autoencoder, the Kullback-Leibler divergence is used. We observe sev-
eral benefits with this kind of autoencoder: the trained model is a generative model
that relies on the latent variables and can be used as a one-class estimator.

Based on such kind of neural networks, we can highlight two examples of out-
lier detection algorithms in recent contributions: a Generative Adversarial Network
(GAN) by Y. Liu, Li, et al. (2019) and a reconstruction-based autoencoder by Lai
et al. (2020). The former is based on the GAN neural network approach that is built
with a generative network that generates observations and a discriminative network
that evaluates them. For instance, the case of Single Objective Generative Adversarial
Active Learning (SO-GAAL) (Y. Liu, Li, et al., 2019), the generator proposes outliers
while the discriminator estimates a rough boundary. The principal issue lies in the
trained model which can be more or less successful to estimate what an outlier really is.
For mitigating this issue, Y. Liu, Li, et al. (2019) have proposed a Multiple-Objective
Generative Adversarial Active Learning (MO-GAAL) approach with sub-generators
that handle different subspaces. The idea of using multiple generators helps to miti-
gate the bias problem mentioned in Section 2.5.7.

On the other hand, Lai et al. (2020) have proposed a Robust Subspace Recovery
(RSR) AutoEncoder that aims to robustly and nonlinearly reduce the dimension of the
original data (Lerman and Maunu, 2018). It is an autoencoder with a RSR layer which
map the inliers around their original locations and the outliers far from their original
locations. The Figure 2.15 depicts such method. With RSR layer they also propose a
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Figure 2.15: Often, the reconstruction error of autoencoders is per-
formed for outlier analysis. The model presented here (middle) is an
autoencoder, which has three main parts: encoder (left in blue) and
decoder (right in blue) with an hidden layer (yellow). We can see
through the decoding step, outliers can not be as well reconstructed

than inliers.

reconstruction loss function that combines the usual loss described in Equation 2.36
with the RSR loss. For a training data matrix A ∈ RN×D and any instance xi of A,
the RSR loss is processed as follows:

LRSR(A) = λ1LRSR1(A) + λ2LRSR2(A)

:= λ1

N∑
i=1

‖xi −A>Axi‖2 + λ2‖AA> − Id‖2F (2.37)

with λ1, λ2 > 0 two hyperparameters, Id the d × d identity matrix. The first term
of Equation 2.37 is a term that increases robustness while the second term optimizes
orthogonality. During the training step, the RSR layer attempts to find an orthogonal
projector whose subspace robustly approximates the dataset.

A brief conclusion for reconstruction problem is that recent advances in neural
networks have brought promising approaches that can be used in several applications.
This characteristic lies in the heavy use of the hidden state of encoder-decoder archi-
tecture. The bottleneck formed by the output of the encoder acts as a dimensionality
compressor that codes informative subspaces. Several approaches for learning recon-
structor have been highlighted previously and they are near from each other when we
compare how the loss optimization is performed. For instance, the RSR layer can be
applied in a GAN approach for learning a more robust generator.

2.5.9 Discussion

Methods for outlier detection have increased greatly over the years. Although dedi-
cated methods are very popular to perform the task, there is also the possibility to use
techniques from other fields. It is also possible to see a clear evolution in the interest of
the community towards data types that were not represented initially. First, artificial
data have been used by statisticians, then real world data have been introduced by
the data mining community. Recently, the study of outliers has been able to address
high dimensional data issues. Advances in the various fields of artificial intelligence
have allowed the community to focus on more complex data.
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True class
Positive
(outlier)

Negative
(inlier)

Predicted
class

Positive
(outlier)

True positive
Tp

(Correct)

False positive
Fp

(Incorrect)

Negative
(inlier)

False negative
Fn

(Incorrect)

True negative
Tn

(Correct)

Table 2.3: Confusion matrix applied to outlier detection task. We
consider the positive (1) as outlier and the negative one (0) as inlier.

For these last data, we observe a trend to either reduce the dimension of high-
dimensional data or creating dedicated methods. The dimensionality reduction al-
lows to then apply common methods like distance-based approaches or parametric
approaches. Also, we note that several techniques are not limited to one kind of ap-
proach. It is the case of the matrix factorization techniques that can be used among
most of mentioned methods. Independently of the outlier detection task, neural net-
works share similar optimization problem that matrix factorization techniques.

From statistical methods to outlier ensemble methods, outlier detection approaches
often rely on the parameter ν which can be used as hyperparameter. This parameter
can be estimated based on the input distribution, or also on the model. While it
can be difficult to find, few works are approaching the ambiguity of setting it. For
instance, in the ν−SVM model this parameter can be an inhibitor for the boundary
of the projected subspace. On the other hand, we also find this parameter in the data
preparation and the evaluation. Finally, we can observe that most of the approaches
are following two kind of policy for discovering outliers: progressive and regressive.
Progressive approaches separate the data based on the representative sample and
evict/penalize points that do not fit such assumption. Regressive method like LOF
are expressive for outlier and less informant for inliers and thus explores outliers, not
inliers.

2.6 Evaluation

We have previously presented several methods that perform outlier detection through
different paradigms. Performing a machine learning task is separated in several steps.
We have introduced that we tackle outlier detection and have presented algorithm
and models that perform this task. Once the problem is defined and the model
selected/built, an expert has to split the original dataset. Often, data are separated
between train split, test split and validate split. This step allows to evaluate a model
on a prepared data split that the model has not been trained on.

The idea of comparing several approaches is intuitive and special preparation is
required. In this section we introduce how methods are performed in order to be
benchmarked against the literature. Firstly, we describe how the evaluation step is
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tackled in the literature. Secondly, we present the common benchmark properties for
performing outlier analysis. Lastly we present the evaluation metrics that are used in
this thesis.

2.6.1 How to evaluate outlierness ?

The question of the evaluation of outlier detection approaches has often been made in
relation to the field of application. In our context, we refer to evaluation of a classifier
or of a system in information retrieval. For Hawkins (1980), the problem of evaluation
was intimately linked to the case study since the evaluation hypotheses were made at
the same time as the construction of the observations. However, this method allows
for qualitative evaluation in an unsupervised setting.

Subsequently, the evaluation methods of the approaches were often derived from
modelling techniques. Each application strongly influences the type of automatic
evaluation that is carried out. For example, in the work of Hodge and Austin (2004),
Chandola et al. (2009), and J. Zhang (2013) it is possible to find the use of the
confusion matrix with the F1-measure or the accuracy when predicting an outlier.
Another popular method in data mining was the mean-squared radius. Nevertheless,
the evaluation step was still largely dependent on the application domain and the type
of modeling.

The formalism of evaluation methods is taken up by C. C. Aggarwal (2017a) by
proposing a comparison of recent trends in data mining. He depicts a progressive
evolution of the field towards an automatic evaluation methodology common to many
methods. Thus, a measure of external validity is raised by the joint use of precision
and recall when predicting an instance or an outlier. The latter makes it possible to
evaluate the output of an anomaly score according to a threshold. Ruff, Kauffmann,
et al. (2021) complements the evaluation step with an analysis of several scenarios in
which it is preferable to focus on such metrics. In the absence of expert feedbacks,
precision and recall are preferred for evaluation of an unbalanced problem like OD.

The current version of evaluation step is recent and keep growing thanks to ad-
vances in data mining. Proposition of a metric based on precision and recall shows a
willingness to compare each contributions within numerous applications. The problem
of comparing outlier detection methods remains, however, dependent on the fields of
application and the clarity of the protocols. In this respect, Ruff, Kauffmann, et al.
(2021) wisely raises the question of the interpretability of the output of the methods.
They also highlight the importance of this step in a field where protocols tend to be
different.
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2.6.2 Benchmarking and preparation

Special attention is required for the preparation of the experimental setup. While
resources like ODDS5 or UCI6 give access to various data set, it is difficult to find
real-world data that are designed for outlier detection. Literature of data mining for
outlier analysis has proposed to prepare data set from classification and clustering
domains to fit the needs of the task. Thus, for C. C. Aggarwal (2017a) and Ruff,
Kauffmann, et al. (2021) the benchmark and the data are keys requirements for outlier
analysis.

There exist several strategies for preparing data set from other tasks. With binary
or multiclass data set, one class is selected as inlier and other classes are outliers.
Depending of the application, several classes can be selected as inliers. Another strat-
egy consists in having data set with human labelled on outliers, inliers or both. This
scenario is the ideal one. Lastly, generation of synthetic outliers allows to get full
control on the benchmark properties.

Above strategies have their advantages and disadvantages but they often consider
a supervised evaluation. The first strategy implies some risks in the way that noise
and conflictual inliers can not be properly identified beforehand. While the second
strategy avoids this drawback thanks to a manual preparation of the data, labels and
annotations can be incomplete. Finally, the last mentioned strategy is often used
in statistical setup but unfrequent in data mining. Outliers in data mining can be
difficult to reproduce or to generate. For all of these reasons, the first scenario is often
preferred in data mining.

2.6.3 Evaluation metrics

When performing outlier detection on observations of a dataset, we observe four out-
comes that can be drawn in the confusion matrix. For example, a model that attempts
to classify cats and dogs can find cat among cat pictures, find dogs among dogs pic-
tures, confuse dogs as cat or confuse cats as dogs. For OCC, we define outlier as the
positive class and inlier as the negative class. The Figure 2.3 describes a confusion
matrix applied to OCC.

Based on the confusion matrix, we find evaluation metrics that measures different
characteristics of a model can be drawn. The first metric is the Precision and displays
the proportion of correct positive identifications:

Precision =
TP

TP + FP
(2.38)

The Recall is often used to complement Precision. It displays the proportion of real
positive examples among the predicted positive ones:

5ODDS is a dedicated resource gathering outlier detection dataset and can be found following this
link: http://odds.cs.stonybrook.edu/.

6It is a machine learning repository gathering multiple data set for numerous tasks. Numerous of
the mentioned data set in the literature are using it. The resource can be found in http://odds.cs.
stonybrook.edu/.
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Recall =
TP

TP + FN
(2.39)

The Recall can also be named True Positive Rate (TPR). Usage of both metrics is
popular in numerous contributions in classification, information retrieval, ...

It is different for outlier detection because a score is almost always computed.
Based on such score, ranking can be more convenient for evaluation. For displaying
performances of an approach with automatic metric, a threshold τ is chosen.

The Receiver Operating Characteristic (ROC) curve is one of the most popular
evaluation metric for outlier detection. It plots TPR with False Positive Rate (FPR)
at different classification thresholds τ . If Equation 2.39 is equivalent to TPR, the
FPR is computed as follows:

FPR =
FP

FP + TN
(2.40)

If the ROC curve draws TPR against FPR, the usually used aggregated evaluation
metric is the Area Under the ROC curve (AUROC). AUROC provides a metric from
[0, 1] where 1 is the perfect classifier, 0.5 a random classifier and 0 a degenerate model.
AUROC can be overly optimistic with high imbalanced test sets.

Another metric is often used for outlier detection in order to complement the
AUROC. This metric is called Area Under the Precision-Recall curve (AUPRC). Sim-
ilarly to AUROC, it draws a curve based on Precision against Recall for a classification
threshold τ . The Average Precision (AP) is more robust for computing AUPRC. In
every scenario, the interpretation of both metrics has to be carefully done. Depend-
ing of the application, one curve can be more informative than another. With no
preference, both are recommended.

2.7 Conclusion

As we have shown in this chapter, different concepts are associated with the study of
outliers and it is not surprising for this task that is used in many fields. A comparison
of the literature has allowed us to build a concrete vision of how it evolves through
recent days. Formally, the definition of an outlier has been developed over time, as
evidenced by Definition 2.3.1, Definition 2.3.7 and Definition 2.3.9. However, the
emergence of data mining methods has further influenced the definition of outliers.
Additionally, terms such as anomaly and novelty have been used interchangeably with
outliers.

Based on this observation, it becomes evident that a significant portion of the
research community is motivated by the practical applications of studying outliers.
Tasks like spam detection have emerged, leveraging advancements in outlier detection
and anomaly detection techniques. Despite their common usage, it is important to
note that these terms have distinct characteristics that impact their execution. For
instance, spam detection can be based on metadata or raw data, where outlier de-
tection approaches may not necessarily be utilized. It is therefore important to note
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that the study of outliers extends beyond its name, a notion that we develop in the
Chapter 3.

Following this analysis of the state of the art, we have detailed the main approaches
that perform outlier detection with unsupervised learning. These approaches can be
used in a very large number of applications, we focus particularly in text in Chapter 3.
Some approaches are not treated at all in the context of textual data, we address this
in the Chapter 4. To this day, the study of outliers is mainly associated with the field
of data mining and thus benefits from popular automatic evaluations. However, we
observe that this evaluation step is dependent on the availability of labels and data
sets. However, the clear advantage of this task is the presence of methods that allow
the removal of noise or the pre-processing in absence of labels. We explore this use
case in Chapter 5.
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Chapter 3

Outlier analysis for text

The Chapter 2 introduces outlier analysis and the task of outlier detection. Thus, we
know that outlier detection is originally performed through statistical domains before
appearing in data mining research works. Such evolution has successfully been made
for high-dimensional data but several types of data lack reasonable number of contri-
butions and interest. Textual data are poorly represented in outlier detection task to
such an extent that anomaly detection and novelty detection are preferred. This ob-
servation is related to the characteristic of text that follows different rules depending
of the generation model (news article, email, technical report, fantasy book, . . . ). For
instance spam detection benefits from outlier detection techniques but is not neces-
sarily associated to such domain.

In this thesis we aim at studying outlier analysis for textual data through several
applications and recent trends. Because there is few contributions that focus on
text, we mainly propose an analysis of compatible techniques from anomaly detection,
novelty detection, spam detection and plagiarism detection. In Section 2.1 we have
introduced background knowledge and notations for unsupervised learning with data.

We describe in Section 3.1 the problems and motivations of applying outlier anal-
ysis to text. Section 3.2, proposes an introduction to natural language processing for
data mining (text mining). The Section 3.3 focuses on the definition of a textual out-
lier. Some difference can be observed depending of the study of raw text: syntax and
semantic. An outlier taxonomy is proposed in Section 3.3.4, adapted from Section 2.4
and taking into consideration Section 3.3. In Section 2.5 we focus on the issue of out-
lier detection techniques that are best suited for one or multiple types of data. The
same observation can be made with text, and we highlight the principal approaches
of the literature in Section 3.4. Section 3.5.2 presents the general evaluation protocol
of the literature and our algorithm GenTO which prepares data for outlier detection
benchmarking. Based on GenTO, we present an experimental study of the best per-
forming and most popular approaches of the literature for outlier detection on text in
Section 3.6. We conduct an extensive analysis of experimental results in Section 3.7
and conclude in Section 3.8.
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3.1 Problems and motivations

Outlier detection is a task that concerns numerous domains and applications. The task
is not recent, Abraham and Box (1979) and several of contributions that introduces
it are already available in the literature (Hawkins, 1980; Hodge and Austin, 2004;
Chandola et al., 2009; J. Zhang, 2013; C. C. Aggarwal, 2017a; Ruff, Kauffmann, et
al., 2021). Formerly, the task was performed through statistical domain (Beckman
and Cook, 1983) with static data and parametric methods. The recent definition of
outlier is not the same than in the past and implies a different way of performing
outlier analysis. Most popular methods have emerged within high-dimensional and
parametric context. Although these approaches produce significant results in many
types of data, its application to text lack clarity at different levels: definition of a
textual outlier, a dedicated taxonomy and how to properly evaluate reference methods.

3.1.1 Problems

In Chapter 2 we have observed that there are sufficient number of works that offer a
survey of outlier detection task (Hawkins, 1980; Hodge and Austin, 2004; Chandola
et al., 2009; J. Zhang, 2013; C. C. Aggarwal, 2017a; Ruff, Kauffmann, et al., 2021)
but they rarely investigate the scenario in which data are purely textual. They have
proposed and detailed numerous characteristic such as taxonomy of outliers, taxon-
omy of methods, scenarios, applications, evaluation and more recently interpretability.
Interest for textual outlier detection has recently been ignited with neural networks
(Gorokhov et al., 2017; Ruff, Zemlyanskiy, et al., 2019; Lai et al., 2020) and matrix
decomposition methods (Allan et al., 2008; Kannan et al., 2017). While these contri-
butions focus to perform outlier detection task, referred as anomaly detection, they
do not investigate the nature of OD within text. In this issue, we also note two related
problems to the current state of the literature: recent approaches are not comparing
themselves with recent contributions and they do not investigate outliers built with
their experimental setup.

3.1.2 Motivations

The main motivation of this chapter lies in exploring how outlier analysis is performed
with text and also how to properly conduct the task. In Figure 3.1 we present an illus-
trative example involving three newspapers. Although the main topic is Sport/Tennis,
we observe the presence of an article from Politics in the corpus, indicating a misclas-
sification. Such scenario is common, and the task of spam detection has similarities
with this problem. However, the existing literature on Textual Outlier Detection
(TOD) can be confusing to navigate due to variations in terminology and the lack of
dedicated datasets. In addition, most of the recent contributions create a new experi-
mental setup each time with old and new datasets. Because there is not yet dedicated
datasets for textual outlier detection, the proposal of an algorithm for outlier genera-
tion seems necessary.
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Topic: Sport/Tennis. Inlier documents:
x1: Naomi Osaka came to Flushing Meadows to entertain and did not disappoint
on Monday, overcoming a slow start to beat Czech Marie Bouzkova 6-4 6-1 and
get her U.S. Open title defence under way in front of a roaring capacity crowd.
x2: World number one Novak Djokovic had to work hard for a three-set victory
over Hungarian Marton Fucsovics at the Paris Masters on Tuesday in his first
match since losing the U.S. Open final in September.

Topic: Politics. Outlier document:
x3: The Olympic Games have started and yet, all countries are [...] Japanese
tennis star Naomi Osaka on Friday lit the Olympic cauldron to mark the formal
start of Tokyo 2020, in an opening ceremony shorn of glitz and overshadowed by
a pandemic but celebrated as a moment of global hope.

Figure 3.1: Example of three articles from Reuters and Eurosport
when searching for news about tennis and politic topics (for readability,
only sentences of interest are presented). Inliers documents address
Tennis results of players while the outlier topic is the open ceremony

of Olympic Games that appears to mention a tennis player.

Approaching the task of TOD is difficult for many reasons: poor number of ex-
tensive comparison with state of the art approaches, domain specific problems (email,
news papers, scientific articles, . . . ) that are similar but associated to different tasks
naming (spam detection, plagiarism detection, anomaly detection, novelty detection,
. . . ), lack of dedicated datasets and divergent experimental protocols from the litera-
ture. Our contribution to formalize outlier detection in text can be structured around
three challenges: lack of comprehensive works tackling textual outliers which catego-
rize and reference recent advances, a definition of an outlier in this context and an
experimental study on approaches of the literature. We propose a short introduction
to each of these points.

Extensive study of related works

Our first contribution is the study of OD for text data, with an extensive analysis
of related methods. While TOD approaches are rare in the literature, we also study
popular methods of novelty detection, anomaly detection, plagiarism detection, spam
detection and one-class classification. Furthermore, we explore the similarities and
differences between these methods and outlier detection in text, identifying common-
alities in terms of methodologies, feature extraction techniques and evaluation metrics.
This comparison allows us to draw connections between different domains and lever-
age insights from related areas to inform the development of effective outlier detection
techniques for text data. Conducting this extensive study aims to provide researchers
and practitioners in the field of textual outlier detection a comprehensive overview of
existing methods and their suitability for different kind of text data. This analysis
serves as a foundation for our subsequent contributions, enabling us to build upon the
existing knowledge and identify gaps that need to be addressed.
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Taxonomy and generation approach of outliers

To facilitate a comprehensive understanding of outliers in the context of text data,
we propose a taxonomy that categorizes different kinds of outliers. This taxonomy
is based on the established formalism from past surveys and works of outlier detec-
tion. This identification not only provides a structured categorization of outliers but
also establishes a connection to well-known types of outliers discussed in the existing
literature. It takes into account factors such as semantic coherence, topic relevance,
and contextual relationships within the text. Following this taxonomy, we propose an
approach that generates point/independent outliers and contextual/conditional out-
liers: GenTO. Our algorithm is generic and can be easily applied to any corpus with
a hierarchy of topics and therefore applied in future works.

Comparative experimental setup

The type of outlier is not clearly identified in the evaluation step of the literature,
leading to an incomplete read of the results. In addition of this issue, we define
ν the contamination rate of a corpus (weight of outliers number in a corpus). In
various work, such parameter can varies in order to give an idea of the robustness
of one approach against real-world data. A comparative work that highlights these
characteristics, based on GenTO, is also proposed in order to evaluate state of the
art approaches at a same level. By conducting a comprehensive evaluation using the
GenTO algorithm as a baseline, we can provide a fair and informative comparison of
state-of-the-art techniques, facilitating a deeper understanding of their effectiveness
in this domain.

3.1.3 Applications

We have seen in the literature that there are many applications for outlier detection,
it is also the case for textual data. It may seem difficult to list all the possible and
existing applications, but it is interesting to highlight the most common applications.
There are four popular applications: spam detection, plagiarism detection, "topic
drift" detection and first story (novelty) detection. These applications can also be
seen in many works from the NLP field, such as translation or text classification.

Spam detection

Email spam refers to the appearance of messages that differ in malicious or marketing
characteristics, in terms of content, from expected messages in an email box (Karim
et al., 2019; Spirin and Han, 2012). This application has seen a strong interest over
the years, mainly motivated by the increasing integration of email into the daily lives
of users. There are also a large number of techniques in the literature that perform
this task, including the use of anomaly detection methods. These include density-
based techniques (You et al., 2020; Idris et al., 2014), semantic similarity (Laorden
et al., 2014) and systems (Idris et al., 2014). It is interesting to note that other types
of data than e-mails are also subject to the same problems. For example, the spam
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detection task can be tackled with outlier detection methods and applied to twitter
data (T. Wu et al., 2018). Popular data sets are Spambase, SMS Spam Collection
and Enron Email.

Plagiarism detection

Plagiarism is a problem that has been studied for a long time by scholars and aca-
demics. Although there are many forms of plagiarism, the data mining community
is particularly interested in plagiarism of documents (whole or partial) and web con-
tent (Parker and Hamblen, 1989; Chang et al., 2021). By studying a document and
its composition, outlier detection methods can target parts that differ from the rest
(D. Guthrie, L. Guthrie, et al., 2007). This application is called intrinsic plagiarism
detection. There is also the scenario where the comparison is done by document,
and in this case also the use of outlier detection techniques is effective. Among the
techniques used are the probabilistic study of a distribution (Stein and Eissen, 2007),
parametric methods on document representations (Muhr et al., 2009) and clustering
(Potthast et al., 2011).

Semantic outlier detection

We categorize the topic drift (rare topic) detection task as the detection of documents
that do not belong to the main topic of a corpus (Ruff, Kauffmann, et al., 2021; C. C.
Aggarwal, 2017b; Mahapatra et al., 2012). It is one of the most studied tasks in
the context of textual outlier detection. Precisely, the task consists in characterising
the main topic or topics of a corpus in order to find documents that greatly differs
from it. Among the outlier detection techniques used are neural networks (Lai et al.,
2020; Ruff, Zemlyanskiy, et al., 2019; Hu and Khan, 2021), density-based methods
(Kannan et al., 2017), Support Vector Machine (SVM) (Manevitz and Yousef, 2001),
proximity-based (C. C. Aggarwal, 2017b) and fuzzy clustering (Lazhar, 2019). Most
popular data sets are 20-Newsgroups and Reuters-21578.

First story detection

The task of novelty detection in text consists of identifying a new document that
differs from the rest of the corpus. It is often considered as a technique to increase
the efficiency of a neural network technique (Kryściński et al., 2018) or statistical
approaches. Applications can also be found in streaming or big data where it is
important to detect a change of feature or topic (F. Wang et al., 2018; Shanmugam
et al., 2020). In this context, novelty detection shares similarities with the concept
drift task (Lu et al., 2018; Bhattarai et al., 2020), which is concerned with the latter
problem.
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3.2 Representation models for text

In the previous chapter we have observed that study of outliers is related to data
mining field. When data mining is applied to text, we refer to the sub domain of text
mining. Notations and popular techniques of dat mining can be addressed to text
but text mining also integrates natural language processing (NLP) methods. Natural
language processing is a set of approaches and structures that make human language
accessible to computers. Its application are numerous in real world through dialog
assistants, translation and other examples. It takes benefit from artificial intelligence
and machine learning literature and shares several characteristics with them.

In text mining, we represent text through vectors, graphs, etc ... One of the most
popular and easiest way to represent text is the tokenization with bag-of-words. In
this representation, raw text is transformed in a sequence of tokens (or terms). A
token can be a symbol, a word, a pair of words, a sentence and many others. Through
this representation, a document represents a sentence, a quote, a paragraph, a section,
an email, a tweet, a blog, etc...

Textual data are special data derived from natural language. In order to apply
algorithms on them, it is necessary to choose or develop a representation. These tech-
niques often consist of transforming the raw textual data into vectors. Several kind of
these representations are presented in this section. First, the most common and easier
representation to apprehend is bag-of-words, presented in Section 3.2.1. An extension
of bag-of-words, the term frequency inverse document frequency representation, is de-
tailed in Section 3.2.2. In Section 3.2.3 we present the linear decomposition approach.
We detail in Section 3.2.4 the recent language models and in Section 3.2.5 the very
recent large language models. Finally, a discussion is proposed in Section 3.2.6 that
outline the numerous challenges of text representation.

3.2.1 Bag-of-words

Bag-of-Words (BOW) consists to build a dictionary of terms, here words, which are
independent of each other.Each dimension xj of a document x is the count number
of the j-th word in the corpus X.In another way, each dimension can either be repre-
sented by the term frequency tf or the document frequency df.The Table 3.1 displays
an application of a term frequency bag-of-words representation with two documents.
For the document x2 we can observe that the majority of the dimensions of its rep-
resentation x′2 are set to 0. Such phenomena is expected to worsen as we add more
documents, resulting in increasing the size of vocabulary V. We note that in this ex-
ample with BOW representations, a term is a word be can be an n-gram or any other
feature type. Transforming a text with this method gives a high-dimensional and
sparse vector. Because we intuitively transform raw text based on a vocabulary, for
short and moderate documents most of the dimensions are set to 0. This phenomena
is also referred as curse of dimensionality.

In practice, several techniques exist for tackling this problem but they present
cons and pros on top of their solution. One the most known techniques is stop words
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Vocabulary (V) x′1 x′2
a 1 2
little 1 1
cat 0 1
hope 1 0
eating 0 1
however 1 0
desperate 1 0
is 1 1
never 1 0
withtout 1 0
worth 1 0
fish 0 1

(a) BOW representation

Document Raw text
x1 a little hope, however desperate,

is never without worth
x2 a little cat is eating a fish

(b) Raw documents (corpus)

Table 3.1: Example of a BOW model (left) with two documents x1

and x2 (right). For each word (term) of V the frequency is counted
for documents, one by one. Thus, each dimension of the BOW model
represent the term frequency in a document. This example displays

how a document from raw space X is represented in space X ′.

filtering which consists of removing most recurrent words of a language. For the
Table 3.1 the term with the higher frequency is "a" and is expected to appear in
numerous documents. Examples of stop words foe english language include "the",
"and", "is", "are" and "a". These words are often filtered as they do not contribute
much to the overall understanding of differentiation of documents. It also contribute
to reduce the dimensionality of BOW representation and potentially improve the
effectiveness of classification models.

Another optimization can be found in the tokenization process which break down
a text document into individual tokens. The goal of tokenization is to segment the
text into meaningful units that can be further analyzed. Such technique can involve
removing punctuation marks, splitting on white spaces and handling special cases like
contractions or hyphenated words. In Table 3.1 punctuation has been removed. In
addition, other preprocessing steps may also be applied to text data before creating
BOW representation. These can include lowercasing all raw texts for ensuring case-
insensitive matching, stemming or lemmatization to reduce tokens to their base form
(e.g., "eating" to "eat"), filtering special characters and handling numerical/special
symbols. For any application and task, it is important to note that removal of stop
words or choosing any other preprocessing step on raw text is not always necessary
or beneficial. A special attention is needed regarding these optimization.

3.2.2 Term frequency inverse document frequency

The most popular extension of bag-of-words is Term Frequency Inverse Document
Frequency (TFIDF) approach where the frequency of each term is discounted by its
frequency in the corpus. The term’s weight processed by TFIDF is computed as
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follows:
xi,j = tfi,j · log (

N

dfi
) (3.1)

The recurrent problems of BOW methods are sparsity, dimensionality and semantics.
Although its popularity in Information Retrieval literature, TFIDF is the target of
some issues such that lack of term distribution knowledge and relevance/quality crite-
rion. There are other methods in machine learning which allow to represent the text
with other properties. One type of approach is to reduce the BOW representation
of the text into a latent space in order to extract strong features such as seman-
tics. Such approaches include Latent Semantic Analysis/Indexing (either LSA or
LSI) (Deerwester et al., 1990; Landauer et al., 1998), Principal Component Analysis
(PCA) or Autoencoder (AE).

3.2.3 Linear decomposition

PCA and AE have been explained in Section 2.5, we complete matrix factorization
methods (Section 2.5.5) with LSA (or LSI). LSA explores the best subspace approxi-
mation of the original document space based on term co-occurence. This characteristic
is related to semantic relationship within terms connection. Singular Vector Decom-
position (SVD) (Stewart, 1993) is the technique used by LSA for identification of re-
lationship patterns between terms. Given a term matrix (BOW matrix) X′ ∈ RN×D

and an approximation rank r, LSA decompose X′ as follows:

X′ = UΣV> (3.2)

with Σ = diag(σ1, . . . , σr) where σ1 ≥ σ2 ≥ · · · ≥ σr are the singular values of X′.
U and V are orthogonal matrices that are respectively called left and right singular
vectors, and Σ is a diagonal matrix. The Truncated singular-vector decomposition
is a popular technique in machine learning and natural language processing. The
approximation objective is preformed as follows:

min
U,Σ,V

||X′ −UΣV>||F (3.3)

in which U ∈ RV×r considering UUT = I and VT ∈ RN×r considering VVT = I. In
Equation 3.3, || · ||F is the Frobenius norm with ||X′||F =

√∑
i,j X′2i,j . In truncated

singular-vector decomposition, the hyperparameter r truncates the r largest singular
values with their corresponding singular vectors (U and V). Based on Equation 3.3,
the approximated matrix has a minimal error and all documents from X are now
represented as dense vectors of continuous numbers. More importantly, the embed-
ded matrix now refer to a semantic space and the features are now called latent
features/variables. In this chapter, we study how such representations can address
outlier detection task.
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3.2.4 Language models

Language models (Bengio, Ducharme, et al., 2000) refer to models that are designed to
understand and generate human language. They are statistical or probabilistic models
that capture the patterns and structure of language. Language models can range from
simple n-gram models that calculate the probability of word sequences based on their
frequency in a given corpus, to more complex models like recurrent neural networks
(RNNs) (Sutskever, Martens, et al., 2011) or transformer models that learn to predict
the likelihood of a sequence of words given the context.

Language models are a kind of approach that focuses on the representation of text
according to its natural distributed representation at several levels. These methods
compute the probability of a word sequence, not term only, for addressing fluency and
vocabulary issues. Neural network methods are among the most effective methods
in a wide range of applications. Neural Language Models (NLM) such as Word2Vec
(Mikolov et al., 2013), GloVe (Pennington et al., 2014) or BERT (Devlin et al., 2019)
can be cited. These methods can be used to represent different levels of text, such as
letters, words, sentences, paragraphs or documents. Language models are prone to be
used in generative tasks because of their ability to handle sequences. Although these
methods are highly efficient, they are complex to develop and require a substantial
computing environment.

Word embedding

Word2Vec and GloVe represent text as a dense vector that capture the semantic
and syntactic relationship between words. Such kind of approach is also referred as
word embedding. For Word2Vec, neural networks are used with either Continuous
Bag-of-Words or Skip-gram (D. Guthrie, Allison, et al., 2006; Mikolov et al., 2013)
architectures. This approach predict the context of a token given its neighboring
tokens, or vice versa. On the other hand, GloVe is a combination of two model: global
matrix factorization, which refers to Equation 2.17 in Section 2.5.5 and Section 3.2.3,
and local context window methods (Bengio, Ducharme, et al., 2000; Collobert and
Weston, 2008). It leverages global co-occurence statitics of words within a corpus.

Word embeddings offer several advantages for representing text. First, they can
capture semantic similarities between words enabling to find semantic relationship.
Second, word embeddings provide compact and dense representations, which are com-
putationally efficient and can be easily used as input for downstream tasks. Ad-
ditionally, the embeddings can be pretrained on large corpora and then fine-tuned
on domain-specific data, leveraging the general language knowledge learned from the
pretraining phase.

However, it’s important to note a few limitations of word embeddings. They may
struggle with representing rare words or words that are not present in the training
corpus. Out-of-vocabulary words might be represented by unknown tokens or have
suboptimal embeddings. Additionally, word embeddings lack explicit representations
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of word order and sentence structure. While they can capture word-level semantics,
they may not fully capture the nuances of longer phrases or sentences.

Contextualized word embedding

To address word embedding limitations, contextualized word embeddings have been
developed. Unlike traditional word embeddings that assign fixed vectors to words,
contextualized word embeddings generate different embeddings for the same word
based on its context. For Embeddings from Language Models (ELMo) (Peters et al.,
2018), a bidirectional Long Short-Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997; Schuster and Paliwal, 1997; Graves and Schmidhuber, 2005) architecture
is used for generating word representations. Then, ELMo can considers the left and
right context of a word simultaneously, allowing it to capture dependencies and nu-
ances that depend on a specific context.

Bidirectional Encoder Representations from Transformers (BERT) is a model that
introduced the transformer architecture for contextualized word embedding. Unlike
ELMo, it employs a self-attention mechanism (Vaswani et al., 2017) to capture global
dependencies and contextual information across the entire input sequence. In recent
years, numerous extension such as XLNET (Z. Yang et al., 2019), RoBERTA (Y.
Liu, Ott, et al., 2019) and ALBERT (Lan et al., 2019) have made improvements in
training objectives and architectures of BERT to enhance the representation quality.
Another kind of contextualized word embedding are OpenAI’s Generative Pretrained
Transformers (GPT) (Radford, Narasimhan, et al., 2018) and GPT-2 (Radford, J. Wu,
et al., 2019). They differ from BERT-based models in their architecture and training
objective. GPT is a generative model that also employs transformer architecture
using an autoregressive approach during training. It learns to predict the next word
in a sequence based on the preceding words. It captures the dependencies between
words in a left-to-right manner so GPT excels at generating coherent and contextually
appropriate text.

Contextualized word embeddings offer several benefits, they can capture word
sense disambiguation, where the same word may have different meanings based on
its context. This is particularly useful in distinguishing rare or unusual word usages.
Contextualized embeddings also help in capturing syntactic and semantic relation-
ships between words, allowing for a more nuanced representation of the text. Despite
their advantages, contextualized word embeddings come with some challenges. Pre-
training and fine-tuning these models can be computationally expensive and require
large amounts of training data. The contextualized nature of these embeddings means
that the representation of a word may vary based on its context, making it challeng-
ing to compare and interpret embeddings directly. Additionally, contextualized word
embeddings are limited to the vocabulary and language patterns present in the pre-
trained data, which can impact their generalizability to specific domains or specialized
texts.
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3.2.5 Large language models

Large Language Models (LLM) are trained on massive amounts of text and can gen-
erate coherent and contextually relevant text. First, they are pretrained on diverse
and extensive corpus, enabling them to learn rich representation. They capture both
shallow and deep semantic relationships between words, contextual dependencies, and
syntactic patterns. The size of these models, often comprising billions of parameters,
allows them to encode vast amounts of knowledge and linguistic nuances. They can
capture not only the meaning of individual words but also the overall coherence and
structure of the text.

One notable feature of large language models is their ability to perform "zero-
shot" or "few-shot" learning. These models can generalize to new and unseen tasks
by leveraging their pretraining on diverse data. For example, they can be fine-tuned
on specific outlier detection tasks with limited labeled data, achieving competitive
performance without extensive task-specific training. However, it is worth noting
that large language models also come with certain limitations. They can exhibit
biases present in the training data, and the generated text may not always be accurate
or aligned with specific domains or expert knowledge. The computational resources
required to train and deploy large language models can be substantial, and real-time
inference may pose challenges in certain scenarios.

The key difference between language models and large language models lies in the
scale and capacity of the models. While language models can vary in complexity and
size, large language models specifically refer to models that are designed to handle
vast amounts of data and exhibit exceptional performance due to their large size.
These models typically require extensive computational resources for training and
deployment. It’s worth noting that the terms "language models" and "large language
models" are not always mutually exclusive. Large language models can be seen as
a subset of language models that possess specific characteristics related to their size
and capacity.

Example of LLM models include GPT-3 (Brown et al., 2020), GPT-4 (OpenAI,
2023) or Text-to-Text Transfer Transformer (T5) (Raffel et al., 2020). GPT-3 and
GPT-4 are generative model known for their large size and impressive language under-
standing and generating capabilities while T5 follows a text-to-text transfer learning
approach. The key idea of T5 is to pretrain on numerous task, then fine-tune for
specific downstream tasks.

3.2.6 Discussion

Count-based and BOW-based models provide a simple and interpretable representa-
tion, allowing for efficient processing of large volumes of text data. However, they
often overlook important semantic and contextual information, limiting their ability
to capture complex outlier patterns accurately. Word embeddings build upon count-
based models succeed in capturing semantic relationships between words, and have
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Part-of-Speech Description
Noun Concrete or abstract entity highly represented in a language
Pronoun Word or group of words that substitutes a noun
Adjective A modifier that change the perception of a word
Verb Verbs are words that present action, mood and basic aspects
Adverb Modifier of an adjective or verb that makes language more precise
Preposition Defines relationship between noun/pronoun and another word
Conjunction Connector between words or group of words
Interjection Express strong statements and feelings

Table 3.2: Table of all possible POS tags that are principally used
in latin language. We can add to these eight POS article/determiner

that marks (in)definiteness.

been widely adopted in various NLP tasks. They offer finer-grained representations
and exhibit overall better performance than BOW models.

Contextualized word embeddings take representation a step further by considering
the contextual information of words within a sentence or document. These models
leverage large-scale pretraining and capture complex linguistic phenomena, leading
to more accurate understanding of a language. Transformer-based models, such as
BERT, have demonstrated exceptional performance in understanding and generating
text, making them valuable for numerous tasks that require comprehensive represen-
tation and analysis.

It is important to note that the choice of representation model should be guided by
the specific requirements of the task, the characteristics of the dataset and the available
computational resources. Choosing a representation model needs to carefully consider
the trade-offs between simplicity, interpretability and the ability to capture intricate
semantic relationships and contextual information.

3.3 Outliers in text

Despite a strong interest in outlier detection in recent years, some types of data have
had few contributions. Nowadays, this is the case for the study of outliers with
textual data where few surveys and introduction works exist. Although this kind
of applications is more and more represented, the formalism as well as the formal
definition remains to be found. In Section 2.3, a definition of an outlier has been
presented. The Section 2.2 presents how anomalies and outliers can find different
definitions based on the application. However, it is interesting to ask whether the
latter definition remains true with textual data. Considering the Definition 2.3.9
applied to text, several issues arise.

Definition 3.3.1 (Naive textual outlier). A textual outlier is a document that is
significantly different from the remaining documents.

However, there is still a problem with this proposition since it does not assimilates
characteristics of a textual data. As a reminder, a document is composed of terms
that rigorously follow the rules of the language. Precisely, a spoken language admits
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phones that defines the successive sounds, phonemes that are groups of phones that
affect terms recognized by a practitioner, and morphemes that refers to the minimal
meaning of a word. In written language, we prefer terms introduced in Section 3.2.
Thus, words are grouped into phrases (verb phrases, noun phrases, adjective phrases,
...). In addition of those rules, there are two principal structure levels: semantic
and syntax. While more precision regarding semantic are presented in this section,
the syntax is less represented in outlier analysis literature and often refer to different
tasks. Indeed, outlier analysis with syntax often implies a different goal where syntax
is more important than semantic information, such as plagiarism detection. Taking
the most commonly used representation of a term, namely words, documents are
almost all different from each other. There are a huge number of words (vocabulary)
in each language, and there are many different ways of representing a document.

Problem 3.3.1. The documents of a corpus are structurally different from each other.
Ocurence of multiple similar documents are considered duplicates.

On a second level, terms can carry semantic meaning and/or information(s). Thus,
a document manages to represent a set of information. One data mining task consists
in searching and gathering such informations in the text for classification of the doc-
uments of a corpus. Then, the documents are associated with themes (sport, music,
politics, etc.) which are called categories or topics. At this level, although the docu-
ments in a corpus are different in form, they may carry common informations. In this
context, the definition of an outlier is:

Definition 3.3.2 (Topic outlier). A textual outlier is a document associated to a
topic that is significantly different from topics of the remaining documents.

If the initial definition is problematic in its application to text because of the Prob-
lem 3.3.1 , this can be solved by using a higher level of representation such semantic.
Notations for studying outlier detection with text are detailed Section 3.3.1 Then,
we propose a focus of both syntax and semantic levels for outlier analysis in Sec-
tion 3.3.2 and Section 3.3.3. Finally, we present our taxonomy for textual outliers in
Section 3.3.4.

3.3.1 Notations

When referring to text data, the term document is often preferred. A collection
of documents is called corpus. In the following, we use the same notations intro-
duced in Section 2.1. Starting from here, a corpus X of N documents is written:
X = {x1, ..., xN}. The difference between a document and observations mentioned in
Chapter 2 are the dimensions. A document corresponds to a sequence of symbols and
punctuation, which rigorously follows language rules such as grammar. With latin
languages, symbols refer to letters, and groups of letters to words or entities. The
length of a document can be ∅ or any number of symbols.

Several types of document can be involved and it is common to observe many
sources regarding the literature. Given a corpus, a textual outlier is a document that
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Statement
[Clause]

A little hope however desperate is never without worth

Determiner Adjective Noun Adverb Adjective Verb Adverb Preposition Noun

Subject
[group]

Subject Complement
[group]

Figure 3.2: Tree parsing of part-of-speech processed with nltk and
perceptron model. It is a simplified view without any additional infor-

mation such as 3rd person for verb.

is significantly different from the remaining documents. Following this definition we
can apply it to news, for instance, where a textual outlier is a document associated to
a topic that is significantly different from topics of the remaining documents. Let a
sequence of M words x1, ..., xM with a fixed vocabulary V of size |V| = V . Each word
is represented as xi ∈ V for i ∈ {1, ...,M} when the representation model is a kind of
Bag-of-Words (BOW). Thus, x ∈ X. Outlier detection is associated with One-Class
Classification (OCC) where most of the time, the output is a score such as s : X 7→ R.
An outlier detection model tries to find the optimal number of divergent data from X

while minimizing as much as possible false positives (Section 2.6).

3.3.2 Syntax level

Syntax is the part of linguistic that studies how morphemes and words are combined
in sentences and, more globally, in the language (Manning and Schütze, 1999; Man-
ning, Raghavan, et al., 2008; Nadkarni et al., 2011). Syntax dictates the grammar of
one language with definition of rules on the position of lexemes (abstractive form of a
word). In computational linguistic, syntax is often represented in a structural hierar-
chy derived from linguistic tools. Through grammar and linguistic theory, text can be
processed automatic and unsupervised acquisition. One of the most popular approach
is assignment of Part-of-Speech (POS) to each element of a document. Thus, each
word is tagged as a grammatical property described in Table 3.2. One of the most
used representation for grammatical structure is the Context-Free Grammars (CFGs)
presented by Chomsky (1956). Such representation can be structurally displayed with
trees or graphs for parsing purposes.

We propose an example of CFG in Figure 3.2 and we can observe that CFG can be
used for grammatical parsing in natural language processing with a tree-like structure.
The POS tagging step is one of the most critical part of grammatical parsing task.
Recent success of machine learning methods for computational linguistic has seen
numerous models applied for this step. POS is not limited to text, spoken language
can be associated to similar structure and contribute to improve efficiency of multiple
machine learning contributions. The example of the Figure 3.2 shows that pattern
mining can be easily performed on top of POS tags.
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x = A little hope, however desperate, is never without worth.

a am ... desperate ... hope however ... is island little ... never without worth ...

18 0 0 2 0 1 11 0 24 0 7 0 9 2 1 0

Citation Sport Politic

0.79 0.13 0.32

Raw space

Bag-of-Words

Latent space

Count  words

A = UΣVT

Figure 3.3: Semantic analysis of a document based on a corpus and
natural language processing methods. The raw document is trans-
formed in a BOW matrix before performing Latent Semantic Analysis

with rank approximation of 3.

CFGs is an easy-to-use and efficient method for applying information retrieval,
or any task, with a grammatical level. In the case of outlier detection, this level of
features for text data is associated to plagiarism, authorship verification (Boukhaled
and Ganascia, 2014) or similar tasks that require morphologic comparison. With this
kind of application, the Definition 3.3.1 is preferred and the Problem 3.3.1 is not
relevant. Instead, another kind of issue for exploring outliers is blossoming:

Problem 3.3.2. Considering the case of documents that are written by a human, an
outlier is close from a typo, for instance. We can imagine a typo in the final version
of a book. Clear difference between an outlier and a typo can be difficult to prove for
all data and depend on the application.

Such problem is not limited to typos but also to the data and its inherent structure.
The case of spam detection in mail requires to handle the special structure hierarchy
of a mail (sender, object, head, body, signature, ...) (Karim et al., 2019) . With
Definition 2.3.8 of an anomaly, the normal behavior of normal document rigorously
follows the grammar and the different rules of the language. In this scenario, anomalies
first handle such errors as an abnormal behavior while the definition of an outlier not
necessarily. If the corpus has multiple documents that have typos but still follow
similar patterns, they are considered normal. One example lies in poetry in which a
French alexandrine is a syllabic poetic metre of exactly twelve syllables, not less or
more.

We note that this section open up several questions. If we keep in mind that an
outlier is linked to a population of observations (corpus), apparition of outliers can be
independent of the normal or of the expected behavior.

3.3.3 Semantic level

When outlier detection is performed on textual data, relationships and dependencies
should be taken into account. One of the growing interest in the community is the se-
mantic property of text. The semantic analysis of text can differs from an application
to an other but for outlier detection, it allows to extract topics and their weight in
a data set. In linguistic, semantic is the exploration of meaning. Distinctly different

65



Chapter 3. Outlier analysis for text

from syntax, semantic values the meaning to be communicated. Thus, meaning rep-
resentation can be addressed through multiple techniques and theories of numerous
background knowledges (cognitive science, logic, statistics, ...).

Semantic representation of text can take several forms and use different kind of
methods. We can cite the use of syntactic trees such as Figure 3.2 in logic for inferring
semantic interpretations. Another approach to semantic representation is based on
psychology and cognitive semantic ignited in seventies and eighties. Works such as
Talmy (2000) introduce and detail multiple representation through conceptualization,
categorization and knowledge acquisition. In recent data mining literature, the sta-
tistical representation is often preferred with projection of bag-of-words matrices into
latent spaces (see Section 3.2) or of the use of neural network language models. The
Figure 3.3 shows a popular pipeline for performing semantic analysis of corpus.

Regarding outlier detection, the task is often associated with text classification
where dataset are available. Those dataset have documents labelled with topics or
concepts. In text classification, the class of one document is corresponding to different
level of knowledge depending of the source of data. For instance, news articles are as-
sociated with a section or a subject of discourse such as sport or politics. In opposition
of syntactic analysis, semantic requires a formal level for studying documents. This
level allows to differentiate an approach that explores relationships between words
and an approach that handle external knowledges (ontologies, for instance). With
this context, a semantic outlier for news articles is different of semantic outlier for
tweets. Considering that documents carry information about one or more topics, we
assume that a hierarchy of topics from the corpus exists. This kind of hierarchy is
needed in order to properly evaluate contextual outliers. In classification task, hier-
archical approaches are not rare (Toutanova et al., 2001) and structure with two or
three levels are common. It is then possible to easily identify the outliers that may
appear depending on the application.

Topics (categories) are organized as a tree-like structure where they can be as-
sociated to at most one parent. In this setup, documents can only appear at leaves
level, and can not therefore be parent of a topic. Let H a hierarchy that has l ∈ N
levels and y ∈ Y topics. Each elements h ∈ H admit a set of children that leads to
the level l + 1 that is either a topic, a leaf or {∅}. If the raw space of representation is
the text itself, we denote X such space. In text mining, text is often transformed in
another latent space X̃ where hidden semantic structures can be easier to find. While
the attributes of the instances of X would be intuitively words and numbers, in X̃ the
latent attributes can represent topics.

While the Definition 3.3.2 proposes a difference with Definition 2.3.9, it is somehow
limited to text classification. A better spelling of a semantic outlier is:

Definition 3.3.3 (Semantic outlier). A semantic outlier is a document carrying a
different subject, topic or meaning that remaining documents.

We have seen that depending of the approach (symbolic, statistical, ...), meaning
representation is prone to capture specific features. For outlier analysis, such repre-
sentations can help to explore relationship between documents.
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3.3.4 Taxonomy

In Section 2.4, several types of outliers have been proposed in the literature: Point
outlier, Conditional/Contextual outlier and Collective/Group outlier. A similar tax-
onomy can be applied to text. In addition of point outliers, text is a type of data
that is naturally contextual. Thus, multiple types of outlier often coexists among
documents of one corpus. The definition of a topic seen in the previous section is
assimilated to the subject that a document can address. Depending on the type of
document, there may be several topics within the same topic (e.g. a sports topic that
talks about football or tennis). Thus, taking into account this hierarchy, a type of con-
textual outlier appears which would be normal but considered outlier when associated
with a small group of the corpus.

Collective outliers are difficult to formalize because of the contextual nature of
text. For illustration: we imagine a legal document that mentions a football player
and wrongly occurring in a sport corpus. Point outliers are observation with a topic
that does not share any relationship with another topic. Precisely, outliers topic and
inliers topic have different parents in the hierarchical structure of categories. Let a
labelled document of a corpus (x, y) ∈ X × Y and ζ be the inlier category, and its
corresponding subset Xζ ⊆ X. We define O the subset of all outliers such as O ⊂ X.
We have:

O = X\Xζ (3.4)

Regarding O, we can make the distinction with two different constraints. First, an
observation xi is considered to be an outlier if its parent topic is different of inlier
parent topics such as:

Op(ζ) = {parent(ζ) 6= parent(y)|(o, y) ∈ O ×Y} (3.5)

The second constraint is corresponding to documents that do not lie in Xζ but share
the same parent topic as ζ. These observations are identified as another kind of outlier:
contextual outliers. We write:

Oc(ζ) = {parent(ζ) = parent(y)|(o, y) ∈ O ×Y,O\Op} (3.6)

3.4 Outlier detection approaches for text

In this section we propose a survey of the literature of outlier detection with text.
In multiple cases, applications mentioned in Section 3.1.3 have methods compatible
with outlier detection. Through one-class classification or semantic representation,
these methods can be successfully used. We present methods of the literature that
can perform outlier detection on text, starting by dimensionality reduction. The
mentioned methods of Section 2.5 that are present in the literature are also introduced.
Thus, distance-based approaches, density-based approaches, kernel approaches and
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neural networks-based approaches are respectively studied. We complete the section
with a discussion.

3.4.1 Dimensionality reduction

Dimensionality reduction addresses one of the problems of studying text for data
mining: high dimensionality. The latter often prevents classical machine learning
approaches from finding success for this type of data. LSA is one of the most popular
dimension reduction methods for text. It computes a latent space from an occurrence
matrix by performing low rank approximation. Although the rank parameter has to
be chosen beforehand, the vectors of the obtained matrix allow to describe the text
in a low dimensional space using Singular Value Decomposition (SVD). In this case,
a chosen number of largest eigenvectors are kept.

PCA and LSA

C. C. Aggarwal (2017b) first presents the possibility of using PCA for textual data.
Since BOW representations fail to detect synonymy and polysemy, because several
terms have the same meaning. The aim of using PCA is to see all these words as
noise and to keep only a single common version of them. The same principle is
described by C. C. Aggarwal (2017b) where the latent representation of LSA can
be judiciously coupled with the use of a distance-based method, for example. C. C.
Aggarwal (2017b) also describes the use of a probabilistic LSA method, pLSA, and
LDA. These methods reduce the dimension of a BOW matrix while treating noise and
proposing a probability of membership of a text to a topic. In this context, C. C.
Aggarwal (2017b) suggests that any method performing the topic modelling task can
be used for outlier detection.

Non-negative matrix factorization

Other low rank approximation methods such as Non-negative Matrix Factorisation
(NMF) can be used for outlier detection with text (Allan et al., 2008; Kannan et al.,
2017). NMF assumes that the data and the components are non-negative. According
to Berry et al. (2007), there are three general classes of NMF algorithm: multiplica-
tive update, gradient/coordinate descent and alternating least squares. Allan et al.
(2008) propose a multiplicative update NMF, based on a mean squared error objective
function. Although the use of this method succeeds to get conclusive results, the ap-
proach seems to encounter difficulties when the volume of documents increases. The
use of Block Coordinate Descent (BCD) is proposed by Kannan et al. (2017). In this
work the experimental protocol and the formal definition of studied outliers are miss-
ing: their experimental protocol focuses on the notion of a weak topic among several
strong topics. This issues the problem of a large representation of inliers against few
outliers from a divergent topic. An interesting addition to this protocol may be the
contamination with various topics.
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Discussion

The advantages of the use of dimension reduction methods are notable for their con-
tributions. All these methods aim to reduce the noise that persists in sparse and
high-dimensional data. Depending on the adopted strategy, the semantic inherent
problem with BOW representation is addressed. This is the case for LSA, pLSA and
NMF but not for PCA which is mainly concerned with noise. Another advantage
of these methods is the possibility of using different kinds of methods on top of the
reduced representation, such as distance-based. However, these methods encounter
difficulties when the size of the BOW matrix increases significantly (millions of doc-
uments) and they fail to correctly separate topics and associated terms when there
exists a huge variety of possible associations (Allan et al., 2008). Their scalability
may also be lacking in this context, but in the case of NMF there is also the choice of
the objective function for the approximation.

3.4.2 Distance-based approaches

Distance-based methods are popular in a wide variety of fields, including outlier detec-
tion. Often, these methods are interested in the k nearest neighbors of an observation
according to a distance metric such as the Euclidean distance or the Cosine distance.
The natural hypothesis for performing outlier detection in this context is: a normal
data is close to its neighbors while an outlier is far from them.

K-Nearest Neighbors

The use of K-Nearest Neighbors (KNN) is common and can be seen in many works
for text (Kannan et al., 2017; Mohotti and Nayak, 2020; Koppel and Seidman, 2013;
Ramaswamy et al., 2000). Koppel and Seidman (2013) proposes the use of KNN from
a second-order similarity metric in plagiarism detection. Although a similarity metric
differs from a distance metric in their range of values ([0, 1] for distance and [−1, 1]

for similarity), KNN is used here as an aggregation function. Few contributions exist
for outlier detection in text with distance-based approaches, the aim of Kannan et al.
(2017) and Mohotti and Nayak (2020) is to compare their proposition with a similar
distance-based approach. Kannan et al. (2017) concludes that KNN is highly sensitive
to the distance metric and fails to perform well.

Relative distance scoring

F. Wang et al. (2018) propose three models that compute the distance from one
document to another, from a document to a cluster, and from a document to the
rest of the corpus. For the two first models, a threshold is processed and KNN is
performed following the detailed distance. Although the outlier detection task focuses
on a given corpus, it is often possible to apply novelty scoring methods to strengthen
the approaches.
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Discussion

Few textual outlier detection methods purely use distance-based approaches alone.
The main motivation is the difficulty of distance metrics to correctly estimate a nu-
merical semantic value for a text. Another drawback of distance-based methods is
that they do not take into account the relative or local position for a fixed distribu-
tion. Density-based methods are interested in these notions of locality, and we propose
to study them in the next section. The computation time of distances can also be
a problem in a context with many documents. However, this type of method has
interesting properties regarding the interpretation of the results thanks to a natural
conceptualisation. Finally, this kind of algorithm can easily distinguish between noise
and outlier, especially when coupled with a topic vector.

3.4.3 Density-based approaches

The main characteristic of distance-based approaches lies in the distance metric. This
notion of distance corresponds to information linking documents together, but some
problems persist. This is the case for positioning a document in a corpus. With this
characteristic, we can determine whether an observation is close or not to a position
where the other observations are gathered. The natural hypothesis which follows that
of the Section 3.4.2 is: an outlier is located outside the dense area formed by the
inliers.

Parametric methods

From a statistical point of view, the analysis of outliers is carried out by assuming the
properties of a distribution to train a probabilistic density function. The use of mixture
models in this context is often made for one of their properties which seek to represent
the presence of a subset of documents among the entire corpus. Srivastava and Zane-
Ulman (2005) propose an approach based on Gaussian Mixture Model (GMM) and
PCA in order to reduce the BOW matrix. They also propose another method based
on an Expectation Maximization algorithm. Although Srivastava and Zane-Ulman
(2005) claims good results, the approaches do not rely on semantic parameters and
is processed with a small corpus. Very recently, Ait-Saada and Nadif (2023) have
proposed a novel approach based on GMM and word embedding, performing anomaly
detection on short text data in french language. This kind of method perfectly match
with the challenge of handling a low amount of documents and short texts.

DBSCAN

DBSCAN estimates density by counting the number of points in a fixed radius and
considers two points to be connected only if they are in each other’s neighbourhood.
Unlike the distance-based approaches seen in Section 3.4.2, DBSCAN handles the
relative position of an observation. Naturally, observations that reside outside the
density area have a chance to be outliers. Works such as Tran Manh Thang and
Juntae Kim (2011) and Celik et al. (2011) focus on the ability of DBSCAN to detect
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outliers. Although the algorithm is very successful in a variety of domains and types
of data, the textual outlier detection task has few contributions.

Local Outlier Factor

This method has quickly become fundamental and is very successful in many situ-
ations, including text. Walkowiak et al. (2020) uses LOF to distinguish documents
incorrectly associated with clusters. These approach is also used with cosine distance
as a comparison for the evaluation step (Lai et al., 2020). The success of this approach
has led to many extensions that can also be applied to text. However, the insufficient
number of works with textual data can be regretted.

Discussion

The density-based methods bring a notion of position with respect to the overall,
or partial, distribution which is an undeniable asset for detecting outliers. Among
these methods, the use of locality for the text manages to capture data that are
moderately distant from each other (Walkowiak et al., 2020). However, the use of
a distance metric is still hard to apply on text. For this reason, it is wise to use a
semantic or dimension reduction method to refine the results (Walkowiak et al., 2020;
Srivastava and Zane-Ulman, 2005). These methods have other limitations, especially
when natural dimensions are not reduced. The distinction between low and high noise
and outlier becomes less clear. It is difficult for this kind of methods to distinguish:

• anomalous documents that use similar words than inliers;

• outliers that target a topic closely related to other documents.

3.4.4 Kernel approaches

A Support-Vector Machine (SVM) constructs a hyperplane in a space that can be high
dimensional. It defines a separation boundary using a hyperplane and there is a wide
variety of applications and extensions of their usage, both linear and non-linear, in
the literature. However, we are particularly interested in SVMs that take advantage
of kernel techniques with the popular One-Class Support-Vector Machine (OCSVM)
approach.

One-Class Support-Vector Machine

OCSVM is an approach that emerged early after the introduction of SVMs. Manevitz
and Yousef (2001) have proposed the use of OCSVM in the text. They have studied
the effectiveness of this method on four text representations with linear, polynomial,
radial and sigmoid kernels. Shravan Kumar and V. Ravi (2017) recently proposed to
use OCSVM coupled with a semantic representation of text using LSA. They add the
reduction of dimensionality step comparing to Manevitz and Yousef (2001).
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Discussion

The ability of OCSVM to handle high-dimensional data, such as BOW, without using
a heavy pre-processing step is undeniably a great strength. When coupled with LSA,
OCSVM is also successful in performing outlier detection task. Although the approach
succeeds in correctly creating a decision boundary within documents of a corpus.
When a large number of documents occurs, OCSVM encounters difficulties in limiting
the number of candidate outliers. The choice of kernels and the parameters are also
a problem when the documents do not come from the same creation process. To
overcome these problems, the sub-sampling of the corpus as well as the use of several
models is a solution to consider (C. C. Aggarwal, 2017a).

3.4.5 Neural Networks-based approaches

Recently approaches using neural networks have increased in popularity and efficiency.
This is largely due to the scalability of the methods as well as the ability to handle
high dimensional data. The outlier detection task is no exception to this rule and
there are a large number of neural network approaches applied to outlier detection.
However, textual data do not have the same appeal as for other types of data. In
the following, methods for text are presented and they have been separated into two
types: reconstruction and one-class classification.

Reconstruction

Reconstruction methods learn the characteristics of the observations in order to re-
produce them regarding a distribution. Concerning outlier detection, an observation
is considered outlier if the model does not manage to reconstruct this same instance
properly. The model aims to minimise the reconstruction error from the decoder that
work on the latent space initially obtained after encoding. Mei et al. (2018) propose
a novelty detection method that uses an autoencoder to perform reconstruction from
a semantic representation. Although the results show that the method lack stability
over experiments, it manages to correctly avoid false positives. The approach pro-
posed by Lai et al. (2020) uses a robust subspace recovery layer that seeks to extract
significant subspaces where outliers would be difficult to locate. This technique facil-
itates the reconstruction stage of the decoder. The advantage of this kind of method
is that it can be generalised to many types of data.

One-class classification

The outlier detection task can be assimilated to one-class classification, whose ap-
proaches seek to learn to characterise the observations of a distribution. Gorokhov
et al. (2017) use a Convolutional Neural Network (CNN) with an RBF activation
function and a logarithmic loss function. This approach is similar to an SVM except
that the CNN is preferred to handle the BOW representation. In Section 3.2, lan-
guage models that perform text representation have been presented. These models
are built with neural networks and a small number of literature approaches exploit
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them. Ruff, Zemlyanskiy, et al. (2019) propose to use these language models with a
Context Vector Data Description (CVDD) that learns several semantic contexts via
self-attention. More recently, Manolache et al. (2021) have introduced an approach
based on ELECTRA (Clark, Luong, et al., 2020) which enforce two independent sig-
nals: one at token level and one at sequence level. Once the original model is trained,
they processed E3Outlier framework (S. Wang et al., 2019) for processing the anomaly
score. This approach considerably outperform CVDD and have a better grasp of token
level attention.

Discussion

Reconstruction models are highly dependent on the constitution of a corpus that
presents an exhaustive set of examples. Although these approaches are robust to out-
liers, it is essential that the inliers are correctly gathered. For one-class classification
methods, the contributions are similar to those seen with SVMs. Indeed, they fol-
low a similar process in order to separate documents, although the use of multiple
representations seems to correctly address the sub-sampling problem.

3.4.6 Discussion and problems

In recent years, the interest on outlier detection for text has grown and several contri-
butions can be observed. We have seen in this section that various type of techniques
and approaches have been proposed. Unfortunately there are still some kind of ap-
proaches that are poorly represented like Isolation Forest (IF) (F. T. Liu et al., 2008)
and outlier ensembles combination (C. C. Aggarwal and Sathe, 2015). Few contri-
butions propose to use such kind of approach with text for many reason such as
comparable method, difficulty to address curse of dimensionality or also interpretabil-
ity issues. Benchmark of various high-dimensional method is nonetheless possible at
the moment where the representation of text has been reduced.

An observable problem through recent and older contributions is the protocol
of experiments. From building an experimental dataset to evaluation of different
methods, the complete process is often different from one contribution to an other.
Independent outliers are almost always benchmarked through Reuters-21578 and 20
Newsgroups, with sometimes contextual outliers being part of benchmark but not
differentiated of independent outliers. It is the case for Lai et al. (2020)’s protocol
that integrates contextual outliers at the same time as independent. Without proper
knowledge of strength and weakness against some kind of outliers, results may be
poorly understood. In addition of the problem of understanding results, without a
common protocol and common experimental setup, state of the art methods need to
be reproducible each time.

Regarding text representation, various kind of approach are represented but we
observe two different types of methodology. The first one consists to train the repre-
sentation model from X with all available corpus and the other one from the prepared
data. It can be noted that most of the time, splitting step of train and test data
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Approach Kind of approach Model Application Text Reference
Dimensionality reduction Matrix factorization NMF Anomaly detection (Allan et al., 2008)

TONMF Outlier detection 3 (Kannan et al., 2017)
l2LSA Outlier detection 3 (Kannan et al., 2017)
LSA Outlier detection 3 (C. C. Aggarwal, 2017b)
pLSA Outlier detection 3 (C. C. Aggarwal, 2017b)

Distance-based Nearest neighbors KNNO Outlier detection 3 (Mohotti and Nayak, 2020)
KNN Outlier detection 3 (Kannan et al., 2017)
KNN Plagiarism detection 3 (Koppel and Seidman, 2013)

Distance scoring P2P Novelty detection 3 (F. Wang et al., 2018)
Density-based Parametric methods EMGMM Anomaly detection 3 (Srivastava and Zane-Ulman, 2005)

Clustering DBSCAN-MP Anomaly detection (Tran Manh Thang and Juntae Kim, 2011)
DBSCAN Anomaly detection (Celik et al., 2011)

Local density LOF Text classification 3 (Walkowiak et al., 2020)
LOF Anomaly detection 3 (Lai et al., 2020)

Kernel-based SVM OCSVM One-class classification 3 (Manevitz and Yousef, 2001)
LSI-OCSVM One-class classification 3 (Shravan Kumar and V. Ravi, 2017)

Neural Networks-based Reconstruction AECB Novelty detection 3 (Mei et al., 2018)
RSRAE Anomaly detection 3 (Lai et al., 2020)

One-class classification RBF-CNN Anomaly detection 3 (Gorokhov et al., 2017)
CVDD Anomaly detection 3 (Ruff, Zemlyanskiy, et al., 2019)
DATE Anomaly detection 3 (Manolache et al., 2021)

Table 3.3: Overview of the literature on compatible methods from anomaly detection, outlier detection, plagiarism detection,
novelty detection and one-class classification. The approaches are categorized as seen in this Section, with their own sub categories.

We provide the information if the approach has been originally introduced for text data.
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is not processed. The main reason is that approaches are unsupervised and evalu-
ation of trained model on a test split refers to a different task: novelty detection.
While training the model of representation on prepared data without splitting train
and test split has obvious advantages, weights of nearly unseen token are insignificant
and out-of-vocabulary (OOV) tokens do not arise, the results are quite biased by the
experimental setup.

In the Table 3.3 we introduce an overview of the literature. We can observe that
anomaly detection is more popular for addressing one-class classification on text data
than outlier deteciton. Another observation lies in the fact that outlier detection for
text tends to use more older approach than for anomaly detection.

Regarding most of the methods of the literature, hierarchical property of topics
and semantic is absent. Interestingly, the nature of text leads to observe complex
relationships where data are often similar in structure but different at several level
such as semantic. We do not observe contributions that focus on these properties of
text and the hierarchical nature that topics can carry.

3.5 Evaluation of outlier detection approaches

Evaluation step in numerous task is important for highlighting strengths and weak-
nesses of a proposed approach. While the quantitative evaluation metric are the same
for outlier detection in text than presented in Section 2.6, the difference lies in the
data preparation.

3.5.1 Existing evaluations

In Section 3.3.4 we have introduce our taxonomy of outlier which can handle single
and multiple outliers, and two different kind of outlier: point outlier and contextual
outlier. As introduced in Section 3.1 there exist challenges when comparing different
approaches of the literature. The principal reason lies in the experimental prepara-
tion of data which incurs contaminating a dataset X following a contamination rate
(we note it ν). For recent works of the literature, the topic hierarchy presented in
Equation 3.5 and Equation 3.6 is not handled. Most of reference works prepare the
data in two different ways. It is either a cherry pick of several documents from few
topics or a simple data contamination without holding any attention to which topic
is contaminating inlier distribution.

For the former scenario, a special attention is given to choosing the right topics so
that inliers greatly differ from outliers. Considering that inlier topics have documents
with a different vocabulary from outlier topics, this scenario is often referring to point
outliers (Equation 3.5). Although such a practice strongly incorporates and reinforces
the bias problem, it still represent a practical scenario where inliers and outliers are
highly different.

The second scenario only considers the Equation 3.4 in which O is the outlier
subset of X considering an inlier topic ζ. While this scenario does not requires any
selection step, each topic of the dataset can be used. This preparation integrates both
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point outliers and contextual outliers. In such context, if the amount of documents
in the training set is not high enough, results reproducibility can be hard to achieve.
Comparing methods from literature can be challenging if no attention is given to the
kind of contaminating outlier, the contamination rate and also the amount of data for
training the approaches. While there exists several protocol for preparing data splits,
we deplore the lack of variety in used corpus.

3.5.2 GenTO: Generation of Topic-level Outliers

Considering that documents may carry information about one or more topics, we
assume that a hierarchy of topics from one corpus exists. This kind of hierarchy is
needed in order to properly evaluate contextual outliers without dedicated dataset. In
classification task, hierarchical approaches are not rare (Toutanova et al., 2001) and
structure with two or three levels already exists. It is then possible to identify the
outliers that may appear depending on the application. We present in this section
how the datasets are chosen, and the data prepared. Thus, we introduce the charac-
teristics that are researched for performing outlier detection with text data. In this
section we present GenTO (Pantin et al., 2022), a method that prepares a dataset, in
Section 3.5.2. GenTO is a generic approach that can be applied to any dataset with
at least two different topics.

Mandatory characteristics of datasets

In Section 3.3.4, a taxonomy of textual outliers has been presented. Based on it, we
target datasets of natural language processing that are compatible with the prepa-
ration of one or all kind of outliers. For the first type of outlier, the independent
outlier, dataset with two classes are the minimal requirement. For text, independent
outliers do not share any direct topic relationship with the inlier class. The researched
characteristic is the difference of subject or information carried by the outlier.

The second type of outlier is the contextual outlier. Based on Section 3.3.4, we
consider that topics (categories) are organized as a tree-like structure where they can
be associated to at most one parent. We also add the constraint that a category is
unique, and that it can not appear as child or parent twice. In this setup, documents
can only appear at leaves level, and can not therefore be parent of a topic. Let H be
a hierarchy, each elements h ∈ H admit a set of children that leads to the next level
of the hierarchy that is either a topic, a leaf or {∅}.

For group outliers, semantic relationship can be difficult to work with. If text
data can be easily contextual on a semantic point of view, group outliers are also
contextual. It is important to separate independent group outliers from contextual
group outliers. The former is rare with texts but can still occurs, while the latter
is more likely dependent of an expert point of view. Indeed, if a group of data is
considered as outlier against the inlier distribution, we can interpret such scenario as
a new topic or a new generation of a data. Because this kind of outliers needs more
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Algorithm 1 GenTO: Generation of Topic-level Outliers
Require: Inlier topic ζ, corpus X, split size l, contamination rate ν
Ensure: 0 < l ≤ N
c← lν
i← 0
Initialize empty matrix Z
O ← {xj × yj ∈ X×Y|∀j ∈ [0, N ], yj 6= ζ} . Outlier Matrix
Xζ ← {X\O} . Inlier Matrix
while |Z| < c do

if Compare(Parent(yi),Parent(ζ)) then
Append(xi, yi) to Z

end if
i← i+ 1

end while
Fill Z with Xζ until |Z| = l
return Shuffle(Z)

attention, we propose to mainly focus on independent and contextual outliers for our
experiments.

Also, we note that the preparation of the data can encounter different kinds of
hardship regarding the proposed taxonomy. If we strictly focus on the label difference
for preparing a dataset, it is interesting to note that the type of document may affect
the value of such taxonomy. As an illustration, let say that our data are mails with
one label that can be either spam or ham. In this setting, building independent
outliers is possible but results of methods using LSA or OCSVM demonstrate good
performances. Because the preparation of the data does not follows any semantic
feature or label, results shows that the associated class is dependent of a topic. Thus,
unknown characteristics of some datasets can be explored through the evaluation step.

GenTO

Based on Equation 3.5 and Equation 3.6 we propose the approach GenTO that gen-
erates outliers for text data. In the previous section we have defined two kinds of
outliers: point and contextual. GenTO can be applied for each one of them with def-
inition of a comparison function. Algorithm 1 describes GenTO and the comparison
method Compare returns true if the outlier is either contextual or independent. The
Compare function corresponds to Equation 3.5 for point outliers and Equation 3.6
for contextual outliers. There are three notables input parameter which are the inlier
topic, the target split size and the contamination rate. GenTO allows to prepare
numerous data split with different level of interpretation. Varying the split size can
describe the how an approach succeed from a specific amount of available data. The
same goes with the contamination which can demonstrate how an approach is robust
with different level of contamination. These parameters are important for highlighting
and fairly comparing approach of literature.
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Dataset Task Documents Vocabulary Tokens (avg.) Classes Hierarchy
20 Newsgroups1 Classification 11000 24000 189 20 3

DBpedia 142 Classification 560000 152000 45 14 3

Reuters-215783 Classification 6500 9000 112 90
Web of Science4 Classification 47000 41000 192 134 3

Enron5 Spam Detection 33000 59000 238 2
SMS Spam6 Spam Detection 5500 2600 15 2
IMDB7 Sentiment Analysis 25000 35000 231 2
SST28 Sentiment Analysis 67000 12000 8 2

Table 3.4: Presentation of datasets from the literature of outlier
detection and inherent tasks. We describe these corpus with showing
the document number that the train split contains. The size of the
vocabulary and the average number of token in the documents (after
stopwords filtering) are based on a naive preprocessing step with a
BOW. The existence of a topic hierarchy in the original corpus labels

is also specified.

3.6 Experimental study

In this section, conducted experiments on TOD with outliers generated with GenTO
are presented. We describe dataset and how they are used, from preprocessing step
to preparation. The evaluation metrics Area Under the Receiver Operating Charac-
teristics curve (AUROC) and Area Under the Precision-Recall curve (AUPRC) are
detailed in the second part. The complete baseline is introduced in the third point,
in addition to their configuration. Finally, the results of our experiment is presented.

3.6.1 Data

Even though there are datasets dedicated to outlier detection, such as ODDS or UCI,
they mainly provide multi-dimensional, time series and computer vision data. Appli-
cations like email spam detection and text classification have a rich set of available
corpus. Recent works (Lai et al., 2020; Ruff, Zemlyanskiy, et al., 2019; Kannan et al.,
2017; Mahapatra et al., 2012) use classification datasets such as Reuters-21578 and
20 Newsgroups with a dedicated preparation in order to benchmark their approaches.

Available datasets

In this chapter we have introduced one of the main problems of performing outlier de-
tection with text, which is the lack of dedicated dataset. To address this problem, ap-
proaches in the literature perform special preprocessing on datasets from other tasks.
The most targeted type of datasets are text classification datasets such as Reuters-
21578 and 20 Newsgroups. However, although they can be prepared for performing
and benchmarking outlier detection approaches, there still lack reference works focus-
ing on the preparation procedure for text data. To be more precise, the literature of
outlier detection with text is mainly concerned on introducing new approaches. Al-
though this interest is important, the problem of evaluating the approaches judiciously
is equally important.
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For this reason, we have identified different kind of datasets among the tasks pre-
sented in Section 3.1.3. The Table 3.4 illustrates the most popular datasets that can
be found in the literature related to outlier detection, spam detection, anomaly detec-
tion and novelty detection. These datasets are the principal materials that we plan
to use among the conducted experiments on textual outlier detection. We plan to use
datasets of text classification, spam detection and sentiment analysis. 20 Newsgroups
and Reuters-21578 are the most popular datasets for outlier detection with text data.
Because Reuters-21578 does not have any original hierarchy, we propose to use the
topic hierarchy of Toutanova et al. (2001). In addition of those corpus, we propose to
use DBpedia 14 and Web Of Science that both have a hierarchy of topic. While these
last two corpus are not so popular in textual outlier detection, they are perfect for
preparing outliers. Enron, IMDB and SST2 are other dataset that can be found in
the literature but do not present any hierarchy of topic (original labels). We propose
to use SMS Spam that is a popular corpus for spam detection. It has interesting
features: spam data are often linked with a topic.

The selection of these corpus is motivated by the completeness of the evaluation
of the approaches. What is missing in the literature is the usage of different kind of
document with different sources. We can see in the Table 3.4 that the characteristics
of the dataset differs from each other. It is also the case for the average length of
documents (token number) and number of categories. Another important value is the
size of the vocabulary that impacts the performances of some kind of approaches.

Preparation

We use the corpora presented in Table 3.4 and for each available category, we apply
independent outlier and contextual outlier preparation with GenTO. To be fair with
each method and dataset, we first set the preparation subset size to 350 and results
are averaged through 10 runs. The value 350 is picked for corresponding to the overall
available amount of document for each topic among the various corpora, and also for
choosing a close value from the literature. The data are preprocessed with lowercase
and stopwords removal. The train split of each corpus is used for training and the
test split for evaluation. The TFIDF model is applied to the entire train set and only
tokens that appear at least three times are kept in the vocabulary. At first, we set
the contamination rate ν = 0.10.

20 Newsgroups We separate subtopics between seven principal topics: computer,
forsale, motors, politics, religion, science, sports. We do not count forsale topic for
contextual outliers because it does not has any sub topics.

1http://qwone.com/~jason/20Newsgroups/
2X. Zhang et al. (2015)
3http://www.daviddlewis.com/resources/testcollections/reuters21578/
4Kowsari et al. (2017)
5https://www.cs.cmu.edu/~enron/
6Almeida et al. (2011)
7Maas et al. (2011)
8Socher et al. (2013)
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Reuters-21578 The corpus has documents associated with several topics. We re-
move all of these documents in order to keep those with single topic only. We reorga-
nize topics in order to get a hierarchy, based on Toutanova et al. (2001) work. Thus,
four parent topics are created: commodities, financial, metals and energy. We apply
GenTO to the eight topics that have the higher number of train documents.

DBpedia 14 We create the topic hierarchy based on the provided ontology9 and
count six parent topics.

Web Of Science This corpus is often used in benchmark of hierarchical classifi-
cation and provides three level of topic hierarchy. The third level topics are divided
among the corresponding first level parents. Thus, seven parent topics are present and
for child topics that are associated with more than one parent, we keep the largest
child set and remove others.

Others For other corpora we prepare them with the independent GenTO and do
not propose additional fine tuning.

3.6.2 Representation of text

For achieving a complete view of the literature, we introduce a comparative study
on three representation of text: TFIDF, GloVe and Distill RoBERTA (Reimers and
Gurevych, 2019; Y. Liu, Ott, et al., 2019). The three of them represent text using
different approaches. Performing a comparative study around those representation
models allow us to compare older model against recent works. Because the represen-
tation of text is one of the most important step, we make the hypothesis that recent
works highly benefits from recent advances in this field.

3.6.3 Evaluation

Outlier detection is a task with highly imbalanced data and where inliers are pre-
dominant. As a consequence, average precision is often used to get a good idea of
performance. The different representations are compared by means of the AUROC
curve and the AUPRC. These classical metrics are derived from the confusion matrix
and are both often used for the outlier detection task. The ROC curve displays True
Positive Rate (TPR) on False Positive Rate (FPR) for many thresholds. Increasing
or decreasing this threshold influences true positives with respect to false positives. It
helps to choose the best threshold for the classifier.

The AUROC can be then considered as an accuracy metric. All experiments have
been conducted on ten runs where Average Precision and AUROC are averaged. In
this work we focus on outlier analysis for text data and it implies that, given a corpus,
we have to detect documents that do not belong to a subset of topics. The evaluation
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step is then performed on prepared test split. Doing the evaluation step on test split
is similar to test the robustness of a model to novelty.

While it can be deceiving, there exist a difference between an anomaly, a novelty
and an outlier. An anomaly is an observation of interest, a novelty is a new kind of
observation that requires models to be updated and an outlier is an instance that is
frequently regarded as a data that should be removed (Ruff, Kauffmann, et al., 2021).
Evaluating on test set highlights the chance of novelty to arise.

3.6.4 Baseline

Our data preparation is quite similar to Kannan et al. (2017), Lai et al. (2020),
Ruff, Zemlyanskiy, et al. (2019), and Fouché et al. (2020) allowing us to perform our
experiment on their implementation. We closely follow their advice and parameter
recommendation in order to be as fair as possible. RSRAE (Lai et al., 2020) is
setup with described parameters in their work, in addition with latent dimension
set to 10, a learning rate of 0.00025 and 200 epochs. The architecture of our One-
Class Autoencoder (OC-AE) is exactly similar with the one of Section 2.5.8. We set
the same number of hidden layers for DeepSVDD, RSRAE and our OC-AE: H =

[128, 64, 32, 32, 64, 128] which corresponds to the dimension for each hidden layers
(first hidden layer has an input dimension of 128 and an output dimension of 64,
etc . . . ).

For the implementation of LOF, Isolation Forest (IForest), OCSVM (Manevitz
and Yousef, 2001), KNN (Ramaswamy et al., 2000), PCC (Shyu et al., 2003) and
DeepSVDD (Ruff, Vandermeulen, et al., 2018) we use the PyOD (Zhao, Nasrullah,
and Li, 2019) tool. The distance metric for LOF is cosine and the number of neighbors
is set to 20, the same goes for KNN. We report better result with neighbors ∈ [20, 30]

but 20 seems to be one of the best stable value. Isolation Forest (IForest) (F. T. Liu
et al., 2008) is a tree-based approach that scores outlierness of an observation against
a corpus. We take the default setup proposed by the authors. Based on PCA, PCC is
a robust principal component classifier that was originally evaluated against KDD’99
dataset. It computes a low dimensional hyperplane constructed by k eigenvectors
and estimates outlier scores as the sum of the projected distance of an instance on
all eigenvectors. We keep all components in our setup. We use the RBF kernel for
OCSVM.

For comparison with works on low-rank approximation, we propose to use La-
tent Semantic Analysis (LSA) and Non-Negative Matrix Factorization (NMF). Ex-
periments for both of them are conducted with Scikit-learn and the outlier score is
processed on the transformed matrix with the l2−norm. For LSA, we chose the rank
r = 30 and for NMF we set r = 30, these choices have been performed after several
attempt with higher and lower ranks. The rank 30 is a middle ground value that per-
form well in most cases. Our implementation of NMF for outlier detection is similar
to the one of TONMF, but instead of using the Block Descent Coordinate solver we
use the Descent Coordinate one. This variant is more robust and has almost always
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better results than TONMF. We set tolerance = 1e− 6 and β-loss is computed with
Frobenius norm. For both of them we process the l2 norm over the low-rank matrix.

3.6.5 Results

Results are presented in the Table 3.5 presents the results of the baseline on all corpus
with independent outliers and the Table 3.6 presents the results for contextual outliers.

Independent outliers

Starting with the results for independent outliers (3.5) and the TFIDF representation,
we observe that IForest is the approach that under perform the most compared to
the baseline. Globally, results are better on text classification corpus than others,
particularly on sentiment analysis dataset (IMDB and SST2) which have the worst
results. The hypothesis of Section 3.5.2 that supposes that binary classification corpus
can be difficult to work with is true in this situation. Indeed, it appears that IMDB
and SST2 are sentiment analysis corpora that do not rely to semantic relationship
only. Often, negative statements and sarcasm are considered for performing such
task. On the other side, the good performances observed on spam detection corpus
strengthen the assumption that different applications of outlier detection share similar
characteristics (see Section 3.1.3).

TFIDF Overall, we observe that half of the approaches have similar performances
on independent outliers. If isolation forest records the worst results, k-nearest neigh-
bours, latent semantic analysis and robust subspace recovery autoencoder are the best
approaches. Right behind these last methods, we find local outlier factor, one-class
support vector machine and one-class autoencoder that also achieve good results. Un-
fortunately, the AUPRC metric shows that they do not find true outlier as much as
the best approaches. With the taxonomy presented in Section 3.4, distance-based
methods and neural networks (reconstruction networks) seems to be the more stable
approaches. The number of neighbours for KNN (k = 20) seems to be the correct
setting for outlier detection with sparse matrix. Because we have a naive setup (we
do not apply stemming or lemmatization for instance) for training our BOW model,
the dimension of our data tends to be wide and the values of our features approximate
0. In such scenario, the distance metric is less exposed to bias and ambiguous tokens.
We are aware of the existence of more popular methods for text representation (see
Section 3.2) but bag-of-word allows us to be fair with old and recent approaches. For
this reason, we did not compare to the results of Ruff, Zemlyanskiy, et al. (2019) and
Manolache et al. (2021) because they are designed on top of a BERT-based language
model.

GloVe The results on GloVe representation present notable differences on the area
under the curve and on the average precision. Both of them are decreasing for all
approaches and we can notice that KNN, OCSVM and PCC are performing the best
with this representation. RSRAE is originally introduced with TFIDF representation
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Independent
TFIDF

Model Metric Newsgroups Reuters WOS DBpedia 14 Enron SMS Spam IMDB SST2 avg.

LOF auroc 0.844 0.771 0.849 0.888 0.671 0.753 0.542 0.545 0.732
auprc 0.339 0.240 0.369 0.482 0.146 0.338 0.117 0.105 0.267

KNN auroc 0.879 0.950 0.970 0.967 0.776 0.718 0.515 0.516 0.786
auprc 0.364 0.740 0.846 0.791 0.326 0.335 0.111 0.093 0.450

OCSVM auroc 0.761 0.877 0.932 0.919 0.731 0.644 0.538 0.558 0.745
auprc 0.252 0.508 0.762 0.727 0.252 0.270 0.119 0.102 0.374

IForest auroc 0.541 0.770 0.641 0.594 0.552 0.543 0.500 0.486 0.578
auprc 0.136 0.295 0.194 0.180 0.114 0.191 0.100 0.113 0.165

PCC auroc 0.649 0.863 0.868 0.734 0.609 0.720 0.543 0.519 0.688
auprc 0.198 0.409 0.500 0.363 0.141 0.281 0.109 0.115 0.264

LSAl2
auroc 0.916 0.841 0.951 0.931 0.741 0.764 0.576 0.611 0.791
auprc 0.484 0.450 0.785 0.792 0.333 0.411 0.128 0.126 0.438

NMFl2
auroc 0.717 0.936 0.790 0.500 0.502 0.712 0.503 0.557 0.652
auprc 0.175 0.574 0.429 0.088 0.088 0.357 0.092 0.099 0.237

OC-AE auroc 0.689 0.876 0.911 0.800 0.663 0.720 0.570 0.531 0.720
auprc 0.241 0.436 0.630 0.492 0.169 0.281 0.122 0.121 0.311

DSVDD auroc 0.615 0.730 0.635 0.654 0.590 0.603 0.514 0.531 0.609
auprc 0.162 0.241 0.199 0.204 0.154 0.158 0.110 0.117 0.168

RSRAE auroc 0.812 0.916 0.952 0.974 0.757 0.767 0.571 0.545 0.787
auprc 0.283 0.539 0.768 0.817 0.262 0.345 0.122 0.099 0.404

GloVe

LOF auroc 0.666 0.783 0.875 0.852 0.633 0.568 0.527 0.515 0.677
auprc 0.164 0.251 0.462 0.468 0.157 0.275 0.128 0.130 0.255

KNN auroc 0.703 0.843 0.910 0.873 0.584 0.569 0.525 0.509 0.690
auprc 0.185 0.376 0.627 0.499 0.142 0.277 0.127 0.125 0.295

OCSVM auroc 0.684 0.837 0.883 0.886 0.575 0.568 0.527 0.521 0.685
auprc 0.175 0.34 0.558 0.497 0.134 0.265 0.126 0.128 0.278

PCC auroc 0.685 0.844 0.897 0.868 0.577 0.570 0.528 0.515 0.686
auprc 0.176 0.357 0.586 0.475 0.134 0.268 0.128 0.126 0.281

SVDl2
auroc 0.556 0.493 0.560 0.567 0.518 0.531 0.505 0.510 0.53
auprc 0.149 0.124 0.188 0.219 0.167 0.145 0.120 0.123 0.154

NMFl2
auroc 0.442 0.559 0.52 0.473 0.394 0.499 0.480 0.499 0.483
auprc 0.114 0.190 0.172 0.159 0.099 0.123 0.113 0.116 0.136

OC-AE auroc 0.556 0.737 0.655 0.599 0.536 0.523 0.503 0.501 0.576
auprc 0.129 0.284 0.195 0.154 0.129 0.302 0.118 0.119 0.179

DSVDD auroc 0.509 0.586 0.504 0.529 0.521 0.576 0.484 0.463 0.521
auprc 0.123 0.158 0.141 0.153 0.128 0.155 0.110 0.11 0.135

RSRAE auroc 0.623 0.735 0.776 0.774 0.582 0.558 0.513 0.513 0.634
auprc 0.152 0.269 0.316 0.287 0.141 0.269 0.124 0.124 0.210

Distill RoBERTA

LOF auroc 0.880 0.768 0.938 0.984 0.730 0.569 0.540 0.562 0.746
auprc 0.487 0.285 0.693 0.882 0.281 0.209 0.131 0.136 0.388

KNN auroc 0.955 0.921 0.982 0.993 0.747 0.632 0.544 0.561 0.792
auprc 0.765 0.652 0.914 0.951 0.335 0.384 0.139 0.141 0.535

OCSVM auroc 0.948 0.917 0.981 0.993 0.723 0.693 0.539 0.575 0.796
auprc 0.739 0.626 0.910 0.954 0.308 0.372 0.138 0.139 0.523

PCC auroc 0.952 0.938 0.982 0.992 0.724 0.685 0.542 0.576 0.799
auprc 0.742 0.681 0.908 0.946 0.317 0.383 0.139 0.144 0.533

SVDl2
auroc 0.928 0.721 0.954 0.9 0.707 0.636 0.535 0.548 0.741
auprc 0.632 0.317 0.789 0.690 0.245 0.368 0.126 0.137 0.413

NMFl2
auroc 0.407 0.570 0.448 0.485 0.479 0.485 0.518 0.510 0.488
auprc 0.099 0.168 0.129 0.132 0.123 0.116 0.126 0.118 0.127

OC-AE auroc 0.697 0.732 0.856 0.837 0.592 0.514 0.517 0.499 0.656
auprc 0.233 0.318 0.516 0.586 0.168 0.351 0.121 0.116 0.301

DSVDD auroc 0.510 0.519 0.507 0.512 0.524 0.505 0.510 0.513 0.513
auprc 0.168 0.137 0.179 0.168 0.140 0.144 0.118 0.123 0.147

RSRAE auroc 0.955 0.940 0.982 0.994 0.731 0.704 0.540 0.577 0.802
auprc 0.731 0.690 0.914 0.956 0.323 0.388 0.139 0.141 0.535

Table 3.5: Results of state of the art models for independent outliers
with the contamination rate ν = 0.10. Average precision (AUPRC)
and Area under ROC (AUROC) are evaluation metric. For making
the results easier to read, we provide a column that average the results
of the corresponding rows. The experimental study is performed on
three representation of text: TFIDF, GloVe and Distill RoBERTA.

Each result is performed on test split prepared through GenTO.
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and perform well with very high-dimensional data. The GloVe space only presents 300

dimension. Neural-based approaches are poorly performing against distance-based ap-
proaches and density-based approaches. The most important observation we can do is
that GloVe representation poorly perform on both text classification corpora and sen-
timent/spam corpora. We remove IForest from the benchmark for this representation
and Distill RoBERTA because its results are too low.

Distill RoBERTA For the last representation of text, we can observe another
change in metric values and also on successful approaches. RSRAE is the best per-
forming approach on distill RoBERTA representation and fall behind KNN few times.
We can observe that performance of the top approach from TFIDF and GloVe rep-
resentation greatly benefits from Distill RoBERTA. The clear difference with TFIDF
lies in the AUPRC which increases of almost 25%, meaning that RoBERTA give more
robust detections to state of the art approaches. Surprisingly, for independent out-
liers, the text representation seems to not benefits that much from recent language
models.

Contextual outliers

Table 3.6 displays similar trend among the ranking of the approaches. This time, KNN
is the best method and is only lacking on one dataset: 20 Newsgroups. Overall, there
is a noticeable drop in results with almost all approaches. Contextual outliers are more
difficult to find than independent outliers. With KNN, the average AUPRC on text
classification corpus and independent outliers is 0.685, against 0.434 for contextual
outliers. Also, we find the same group of approaches for the ranking of the results but
this time, both groups do not have near performances.

TFIDF This evaluation can also illustrate some characteristics of the data. For in-
stance, articles from 20 Newsgroups are more difficult to handle than documents from
Web of Science. While they have a similar text size (tokens number), the difference
of results can be explained with the BOW model of Web of Science that is trained
on more data than 20 Newsgroups. Also, the difference can come from the number of
categories.

GloVe For GloVe representation we can observe a loss in the overall performances
from the literature. Similarly to independent outliers, GloVe lack success against
TFIDF and is also falling behind with top approaches. Approaches based on distance
metrics are also preferred here with neural-based approaches falling behind.

Distill RoBERTA Similarly to independent outliers, the same increase of perfor-
mance from AUPRC is observed. In addition, we can observe that distill RoBERTA
is representation that greatly increase the success of all approaches. We can ob-
serve that this language model is particularly efficient for contextual outlier detection
with textual documents. We can note that the robust PCC is the best approach for
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Contextual
TFIDF

Newsgroups Reuters WOS DBpedia 14 avg.
Model AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC
LOF 0.186 0.707 0.118 0.570 0.239 0.758 0.204 0.700 0.186 0.683
KNN 0.192 0.725 0.462 0.748 0.547 0.888 0.537 0.912 0.434 0.818
OCSVM 0.153 0.644 0.420 0.834 0.514 0.861 0.490 0.861 0.394 0.800
IForest 0.110 0.527 0.202 0.613 0.146 0.580 0.137 0.567 0.148 0.571
PCC 0.135 0.587 0.233 0.656 0.268 0.734 0.231 0.656 0.216 0.658
LSAl2 0.253 0.782 0.315 0.688 0.440 0.828 0.375 0.782 0.345 0.770
NMFl2 0.127 0.638 0.400 0.788 0.332 0.759 0.075 0.500 0.233 0.671
OC-AE 0.146 0.607 0.245 0.669 0.312 0.764 0.290 0.706 0.248 0.686
DSVDD 0.118 0.545 0.163 0.623 0.151 0.580 0.141 0.591 0.143 0.584
RSRAE 0.158 0.664 0.400 0.784 0.434 0.840 0.462 0.854 0.363 0.785

GloVe
Newsgroups Reuters WOS DBpedia 14 avg.

Model AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC
LOF 0.137 0.576 0.277 0.801 0.276 0.741 0.277 0.724 0.242 0.711
KNN 0.136 0.575 0.431 0.866 0.306 0.758 0.380 0.818 0.313 0.754
OCSVM 0.132 0.563 0.409 0.852 0.282 0.726 0.383 0.829 0.302 0.742
PCC 0.133 0.567 0.408 0.860 0.288 0.741 0.371 0.819 0.300 0.747
SVDl2 0.127 0.519 0.122 0.411 0.146 0.518 0.180 0.525 0.144 0.493
NMFl2 0.111 0.466 0.201 0.548 0.130 0.485 0.162 0.512 0.151 0.502
OC-AE 0.123 0.536 0.216 0.62 0.156 0.586 0.178 0.601 0.168 0.586
DSVDD 0.115 0.498 0.173 0.551 0.129 0.501 0.146 0.534 0.141 0.521
RSRAE 0.130 0.556 0.240 0.660 0.206 0.666 0.244 0.687 0.205 0.643

Distill RoBERTA
Newsgroups Reuters WOS DBpedia 14 avg.

Model AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC
LOF 0.223 0.707 0.351 0.741 0.473 0.863 0.639 0.917 0.422 0.807
KNN 0.310 0.778 0.492 0.795 0.620 0.900 0.762 0.948 0.546 0.856
OCSVM 0.282 0.750 0.491 0.811 0.599 0.889 0.759 0.945 0.533 0.849
PCC 0.314 0.776 0.518 0.828 0.613 0.897 0.771 0.954 0.554 0.864
SVDl2 0.250 0.722 0.305 0.686 0.433 0.826 0.411 0.763 0.350 0.749
NMFl2 0.116 0.469 0.168 0.573 0.131 0.470 0.158 0.551 0.143 0.516
OC-AE 0.191 0.623 0.246 0.604 0.249 0.680 0.348 0.735 0.259 0.660
DSVDD 0.138 0.515 0.139 0.511 0.155 0.516 0.143 0.498 0.144 0.510
RSRAE 0.309 0.779 0.506 0.821 0.621 0.900 0.762 0.936 0.550 0.859

Table 3.6: Results of state of the art models for contextual outliers
with contamination rate ν = 0.10. Average precision (AUPRC) and

Area under ROC (AUROC) are evaluation metric.

finding contextual outlier in text data. The dimensionality reduction performed by
PCC is already handling outliers and thanks to distill RoBERTA it outperform other
approaches.

Comparative discussion

We can observe that the representation of text is critical when designing an outlier de-
tection approach for text data. Table 3.5 shows that for independent outliers, TFIDF
perform well and succeed to get better results than GloVe. When comparing the re-
sults through AUROC and AUPRC, the main challenge that TFIDF is encountering is
the out-of-vocabulary tokens. Such issue is highly mitigating when we use GloVe and
Distill RoBERTA thanks to their contextual analysis of text. Also, Table 3.5 reveals
that generic and reference approaches can be top contenders for independent outliers.
In such cases, choosing TFIDF or Distill RoBERTA does not make a fundamental
difference due to the nature of outliers. Outlying documents are not supposed to
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Contextual
Distill RoBERTA GloVe

Newsgroups Reuters Newsgroups Reuters
Model AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC
KNN 0.310 0.778 0.492 0.795 0.136 0.575 0.431 0.866
OCSVM 0.282 0.750 0.491 0.811 0.132 0.563 0.409 0.852
PCC 0.314 0.776 0.518 0.828 0.133 0.567 0.408 0.860
RSRAE 0.158 0.664 0.400 0.784 0.130 0.556 0.240 0.660
CVDD - - - - - 0,771 - 0,969
DATE - - - - - 0,832 - -

Table 3.7: Contextual contamination against Ruff, Zemlyanskiy, et
al. (2019) and Manolache et al. (2021) with contamination rate ν =
0.10. Average precision (AUPRC) and Area under ROC (AUROC) are

evaluation metric.

share a similar vocabulary than inliers, leading to being more dependent from syntax
differences.

From the results we can observe that point outliers are easier to handle for most of
the approaches than contextual ones. It is not surprising, and we can also add that 20
Newsgroups is the most difficult dataset. For neural networks, we can see that they
are more robust against contamination rate. Kernel and distance approaches do not
have great results while low rank approximation mechanisms find competitive results
in most cases. We note that these latter are more robust to point and contextual
outlier than other methods.

While the TFIDF and distill RoBERTA seems to be the best choices for performing
outlier detection in text, we have to be alert about several parameters. One of them is
the split size parameter from GenTO (Section 3.5.2) which can create a bottleneck on
the inlier representation. While the number of inlier increase, it can be more difficult
to detect outliers if the diversity of vocabulary increase. In this scenario, TFIDF is
expected to fall behind against GloVe and distill RoBERTA.

Neural networks approaches can be penalized with a low amount of training data.
The split size of 350 that we have set in GenTO can also be a problem for such ap-
proaches that benefits from large corpora. It can also be a challenge for dimensionality
reduction approach which best perform with more reference samples.

On the other hand, we have not compared our results against recent text anomaly
detection. The principal reason is the problem of reproducibility of their work. Thus,
we propose to compare their recorded results against ours so that we can display their
best results on corresponding corpora. Table 3.7 records the result that corresponding
authors have shared. We can observe that they find success with GloVe representa-
tion and both outperform the literature. Considering RoBERTA representation, only
DATE succeed to beat other approaches of the literature. We note that their proto-
col is similar to performing independent contamination and that the contamination
is higher than ν = 0.1 (Manolache et al. (2021) have recorded results on several
contamination rates). We can observe that they do not perform AUPRC on their
model, it is quite difficult to efficiently compare robustness of their approach against
a low number of outliers. Considering that the experimental contamination of Ruff,
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Zemlyanskiy, et al. (2019) is similar to independent contamination, approach of the
literature a competitive against new and recent works (see Table 3.5). Also, it appears
that results of both contributions are recording their evaluation on only two corpora,
making further difficult compare their state of the art results. In our experimental
results we can observe that four models have top performance on different corpora.
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Figure 3.4: Analysis of ν for contextual contamination on the four
best performing models from Section 3.6. The split size is set to 350
and the AUROC is (AC here) is displayed against ν. The text repre-
sentation is Distill RoBERTA. We add two additional comparison on

a split size of 1000 instead of 350.
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3.7 Discussion

In the experimental study we have introduced the use of GenTO for performing a
comprehensive study of literature’s approaches. The results have been benchmarked
against the area under the receiver operating characteristic curve and the average
precision. Although pure performance record through evaluation metric can describe
the success of an approach against another, we can add more explanation to the results
thanks to varying GenTO parameters. Two main problems can be observed in the
results displayed in Table 3.5 and Table 3.6: the training splits are set to 350, making
greedy-data approaches fall behind, and contamination rate ν is set to 0.1 which is not
ideal because real-world problems often occur an unknown amount of outliers. For this
reason we propose to study both problem in Section 3.7.1 and Section 3.7.2. We also
propose a short statistic study of the output of reference approaches in Section 3.7.3.
Finally, we conclude with a discussion on the correlation between ν and the training
sample size.

3.7.1 Influence of contamination rate ν

We introduce the study of the ν parameter in Figure 3.4 and Figure 3.5. Both average
precision (AP in Figure 3.5) and area under the receiver operating characteristic curve
(AC in Figure 3.4) are performed on a baseline of four approaches. Chosen approaches
are RSRAE, OCSVM, KNN with l2 norm and PCC. They are the top performing
approaches presented in our experimental study (Section 3.6.5) and are categorized
in different kind of approaches (see taxonomy in Section 3.4). The split size is set to
350 and Distill RoBERTA is used as text representation.

The AC (or AUROC) markedly represents how an approach succeeds to separate
positive observations from negative observations (Section 2.6). With outlier detection,
such metric tends to have a high value because outliers are very low amount (they
can’t be outliers if it was not the case). We can observe on all corpora that the
AC is kind of high and slightly decreases when the ν contamination increases. As
seen in Section 3.6.5 the PCC is best performing approach and is the most robust
against contextual contamination. We can observe that RSRAE displays poor AC on
Reuters-21578 corpus. Another observation is the decreasing results on Reuters-21578
corpus.

We propose to increase the split size to 1000, instead of 350, for DBpedia 14
(Figure 3.4e) and Reuters-21578 (Figure 3.4f). Both corpora are the only corpora
that can perform contextual contamination with 1000 documents per inlier. In in this
scenario, KNN performances are worst and RSRAE is the most competitive approach.
As we hint such possibility in Section 3.6.5, neural networks often benefit from getting
a large amount of instances. While doubling the number of training samples, the
RSR autoencoder (Lai et al., 2020) outperform other approaches and succeeds with
Reuters-21578 corpus.

The average precision is an important evaluation metric for imbalance data, it
acts as a relative performance metric which depends of how an approach succeeds to
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(e) DBpedia 14 (1000)
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Figure 3.5: Analysis of ν for contextual contamination on the four
best performing models from Section 3.6. The split size is set to 350
and the AUPRC is (AP here) is displayed against ν. The text repre-
sentation is Distill RoBERTA. We add two additional comparison on

a split size of 1000 instead of 350.

find outliers without falling against false positives. We can observe few differences
with AC results: for DBpedia 14, RSRAE is outperforming other approaches and it
is more evident to see that PCC is the more robust approach against contextual con-
tamination. Another observations lies in RSRAE getting the best performance with
an higher amount of training samples. RSRAE succeeds to correctly represent inliers
with lower and higher amount of instances. From corpora point of view, 20 news-
groups is the hardest corpus to handle because its documents are long (see Table 3.4)
and its topics are similar. The same observation can be proposed for Reuters-21578.
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We can conclude that all approaches succeed to be stable against the contamina-
tion of a corpus. On the other hand, we observed that the amount of training sample
is important and can impact the performance. Comparatively, PCC is the best ap-
proach for tackling real-world problems and seems to be robust against the size of a
corpus.

3.7.2 Importance of inlier representation

Previously we have studied the influence of contextual contamination on reference
approaches. One observation is that this parameter has a noticeable impact on the
overall performances. While models tend to get better performance the more the con-
tamination is, we have also observed significantly changes while increasing the amount
of documents to train on (Figure 3.5e and Figure 3.5f). We propose to investigate
furthermore the influence of the amount of documents in all training splits for con-
textual contamination of ν = 0.1. The same protocol is applied, using GenTO, for
four values of split size which are {100, 350, 1000, 5000}. All corpora do not have as
much documents so the performances are processed when it is possible. Thus, all
corpora are compatible with split size of 100 and 350, Reuters-21578 and DBpedia 14
are compatible with amount of 1000 documents and finally 5000 for DBpedia 14.

Table 3.6 records AC and AP for each models. The first observation is the almost
no difference in performance for both 20 Newsgroups and Web of Science. For these
corpora it seems that 100 documents or 350 is not a significant difference. Despite
this we can note that RSR and OCSVM have a slight increase of their AP and AC
for 20 Newsgroups which indicates that if there was more documents by inlier, results
can be different. For performances recorded on Reuters-21578 and DBpedia 14 there
are notable differences to note. According to the hypothesis stated in Section 3.6.5,
increasing the amount of available data has a positive influence on neural-based ap-
proach RSRAE. On Reuters-21578 we also observe that RSRAE results are under-
performing against other approaches until the amount of documents is increased to
1000. The observation is reversed when comparing KNN results, and confirms that
distance-based approaches are great for a low amount of documents.

One conclusion is that the amount of documents for training an approach has a
noticeable importance. For recent neural-based approaches we can observe that their
experimental setup involves corpora with various sizes. We can also see a logical
link between the motivation of using an optimization term similar to PCA, as seen
in Equation 2.19, and the first RSR loss term LRSR1(A) =

∑N
i=1 ‖xi −A>Axi‖2 in

Equation 2.37. We have observed that PCC is a robust approach against contextual
contamination. On the other hand, contributions like Fouché et al. (2020) that uses
distance or similarity metrics for optimizing early selection of inliers can relate to the
success of KNN in our study.
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Figure 3.6: Analysis of split size {100, 350, 1000, 5000} for contex-
tual contamination on the four best performing models from Sec-
tion 3.6. The ν contamination is set to 0.1 and the AUROC (AC
here) is displayed against the split size. The text representation is

Distill RoBERTA.
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Figure 3.7: Presentation of AC performance of reference approaches
through boxplots on different contextual contamination ν. The split

size is 350.

3.7.3 On the bias problem

We present a statistical analysis of approaches results in Figure 3.7 through boxplots.
A box plot, also known as a box-and-whisker plot, is a graphical representation that
summarizes the distribution of a dataset. It provides a concise and informative way
to visualize the central tendency, spread, and presence of outliers in the data. In the
context of models, a box plot can be used to compare the performance of different
models or visualize the distribution of evaluation metrics obtained from multiple runs
of the same model. A typical box plot consists of a rectangular "box" that spans
from Q1 to Q3, a horizontal line inside the box representing the median (Q2), and
two "whiskers" extending from the box to the minimum and maximum data points
within the 1.5*IQR (interquartile) range. Any data points beyond the whiskers are
shown as individual points and are considered potential outliers.

By visualizing the distribution of evaluation metrics (e.g., accuracy, precision,
recall, F1 score, etc . . . ) using box plots, you can quickly compare the central tendency
and variability of model performance across different models or different runs of the
same model. Key insights that can be derived from box plots include:

• The position of the median within the box provides an estimate of the central
tendency of the data.
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• The length of the box (IQR) indicates the spread of the data. A wider box
suggests higher variability, while a narrower box suggests lower variability.

• The presence of outliers beyond the whiskers can indicate extreme values or
unusual cases in the data.

Box plots are particularly useful for comparing the performance of different models
side by side, identifying models with consistent or varying performance, and gaining
insights into the variability of model evaluation metrics. They provide a clear and
compact summary of the distribution of data, making them a popular choice for data
visualization and model evaluation.

Similarly to C. C. Aggarwal and Sathe (2015) and J. Chen, Sathe, et al. (2017)
we present the AC results of RSRAE, KNN, OCSVM and PCC with boxplots in Fig-
ure 3.7. Our experimental study with GenTO comprises 10 runs on each compatible
inlier candidates by corpus. It results in a large number of evaluation records, making
the study through boxplots important for displaying the real consistency of a model
against another one. First we can see that results on DBpedia and Web of Science
display small boxes with increasing number of outlier as long as the contextual con-
tamination increases. Overall, RSRAE is the most robust approach in these corpora,
displaying less variance than others. For Reuters-21578, RSRAE is the worst model
and often lies under an AC of 0.5 (random classifier). KNN is also an approach with
high variance and is more unstable as the number of outliers in the corpus increases.
Finally the results displayed on 20 Newsgroups are similar over each models.

What we can conclude of this analysis is that approaches are not performing simi-
larly (as observed in Section 3.6). Also, as the contamination rate increases approaches
encounter more hardship to get robust detection of outliers. Neural-based approach
are have the more robust outlier scores over different contextual contamination, and
distance-based approaches fall behind in this regard. Another observation is that all
approaches display high variance against more difficult corpora. Such phenomena can
be tackled through approaches like ensembles and is the subject of further analysis in
the next Section 4.

3.8 Conclusion

In this section, we provided an overview of how to address the outlier detection task
with text data. In Section 2, we presented the recent advancements in outlier detec-
tion. While this task has been explored across various types of data, we highlighted
in Section 3 the lack of reference works detailing outlier detection with text data.
Moreover, our analysis of the state-of-the-art literature revealed an ambiguous usage
of the terms "anomaly" and "outlier," often interchangeably. By offering an inclu-
sive overview of both outlier detection and anomaly detection, we were able to clarify
their distinctions and similarities. Consequently, we established that outlier detection
techniques are inherent in anomaly detection, novelty detection, out-of-distribution
detection, and other related areas.
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Within this context, we proposed an applied taxonomy that connects outlier de-
tection in text data with other types of data. Notably, despite the preparation of
corpora being similar among reference works, no dedicated contribution specifically
addressing the issue of preparing an experimental setup for outlier detection with
text data exists. To address this, we introduced a general algorithm called GenTO,
which facilitates the generation of textual outliers based on two categories: point
outliers (Equation 3.5) and contextual outliers (Equation 3.6). Our contribution ad-
dressed three key challenges in the literature: varying the contamination rate (ν) of
a corpus, analyzing results with different sizes of the training set, and comparing the
performance of approaches against both types of outliers in a fair manner. In our
experimental study (Section 3.6), we benchmarked reference works from the literature
using GenTO, enabling us to assess the approaches on eight corpora instead of the
typical three in the literature. Additionally, we introduced a topic hierarchy on four
corpora to facilitate to perform contextual outlier detection.

Since text representation is a critical aspect of working with text data, we com-
pared selected representations from the literature with more recent ones. Our exper-
imental study revealed that well-established and older approaches can benefit signifi-
cantly from recent representations. Surprisingly, they also demonstrated competitive-
ness with recent works, indicating promising avenues for extensions in the context of
text data.

In Section 3.7, we conducted an extensive analysis of the experimental results. For
text data, approaches generally exhibited better performance and robustness against
point outliers compared to contextual outliers. Consequently, contextual contamina-
tion (ν) and the number of training samples emerged as crucial characteristics for
comparison with reference works. Furthermore, the lack of document samples proved
to be problematic for some approaches, highlighting the significance of considering the
contamination rate as a critical parameter for all contributions of outlier detection in
text. Based on the experimental results, we introduced the problem of bias and vari-
ance in this context. Although this problem has been addressed with other types of
data, it remains relatively unexplored for text data.

Based on this contribution, we can further investigate the use of local synthetic
outliers instead of a global setting for outlier preparation. GenTO serves as a global
setup for conducting experimental studies of outlier detection approaches. However,
we aim to incorporate special cases and more qualitative outliers into the preparation
setup. Including such outliers is akin to introducing local outliers for specific corpora,
and it opens up avenues of exploration in domains such as explainable artificial intelli-
gence (XAI) and counterfactual interpretability. Interestingly, this local approach has
the potential to make classifiers more explainable and robust, specifically with recent
advances in text representation.

Throughout our experimental study, we observed that several approaches encoun-
tered significant challenges under specific scenarios and setups. Handling multiple
corpora with distinct characteristics for a model can be difficult, and hyperparame-
ters play a crucial role in addressing this issue. While ensemble learning techniques
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are commonly used to tackle this problem with other types of data, no contributions
currently explore outlier ensembles with text data. In the next part, we address out-
lier ensembles with text data and introduce several key notions to perform qualitative
analysis of one-class classifiers.
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Outlier Ensemble

In the previous chapters we have shown that there are several ways to perform outlier
detection with text. In Chapter 2, the taxonomies of outliers, the origins as well
as the different methods that allow to analyse these anomalies were introduced. It
is in Chapter 3 that we propose a survey of the task for text. In the latter, we
propose an application of the original taxonomy so that it can be applied to text.
Although there are approaches in the literature that perform outlier detection in text,
we observe very few works that deal with the use of ensemble approaches. Also, it
is possible to see the work of Ruff, Zemlyanskiy, et al. (2019) which is interested in
using another representation of the text than TFIDF. Despite ensemble approaches
and representation of text can be combined for giving promising results, none work
can be found for the textual outlier detection task.

The high-dimensional aspect of textual data implies to propose dedicated text
representations. As introduced in Section 2.5.7, ensemble methods have the strength
of limiting decision biases as well as offering robustness against more difficult datasets.
Nevertheless, the advantage of working with text leads to question the usage of more
text representation types. Indeed, one of the problems revealed in the results of
Section 3.6.5 and the discussion of Section 3.7 is that the TFIDF representation has
limits to handle all datasets. This is the case for SST2 and IMDB, both of which are
datasets derived from sentiment analysis. However, Ruff, Zemlyanskiy, et al. (2019)
manage to score very good results on anomaly detection with IMDB, using a one-class
classification approach with a language model. Our results from the Chapter 3 and the
previously cited have similar observations with 20 Newsgroups and Reuters, but their
OCSVM is not used against IMDB. The addition of a more recent text representation
model to our benchmark would thus increase performance on IMDB.

With the aggregation of several specialized representation of text, it is possible to
get more hints on which characteristics of the text is important in the final decision
of a classifier. For example, the problem of using a unique text vectorizer, such as
word2vec, make it difficult to know if it is the topic or anything else that makes a
text a more outlying point than others. Regarding this concern, the outlier detection
task with textual data raises interesting problems for explainability. It can mitigate
the explanation issues about a dataset or also about a classifier.

In this chapter we are addressing some of the issues let open in the previous
chapter. Thus, we propose a different approach for representation of text, following
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the statement that a textual data carries different kinds of information. Tasks such as
data fusion, ensemble outlier or also multi-modal classification are important in this
chapter. We present an example of fused representation with semantic and polarity
features. Furthermore, we demonstrate, through experiments, that our representation
can be applied to many types of texts (news articles, reviews, social media, etc.) while
achieving state-of-the-art results. Also, we present how outlier analysis can positively
contribute to explainability of models. The structure of the chapter is organised
as follows. Section 4.1 presents data fusion and outlier ensemble, with additional
information about text representation. Section 4.2 introduces REATO, our robust
ensemble autoencoder that tackles outlier detection with text while mitigating bias-
variance tradeoff. Section 4.3 presents PoLSA, our fused representation of text using
early fusion with semantic and polarity features. Section 4.3.1 presents a comparison
with existing approaches and highlights the benefits of our proposal. Section 4.4
presents an analysis of the predictions. Section 4.5 concludes the paper.

4.1 Outlier ensembles and fusion

In this section, approaches for outlier detection are presented, focusing on the case of
textual data. A focus on approaches for outlier detection on texts is presented. This
section introduces required knowledge for tackling outlier ensemble in our context and
representation of text with multimodality.

4.1.1 Context

As introduced in Chapter 2, and following the Definition 2.3.9, An outlier is an obser-
vation that is significantly different from the remaining data. Often, outlier detection
methods aim at defining the "normal" class in order to properly identify outliers.
One-class classification (Manevitz and Yousef, 2001) methods are often used to do so.
Outlier detection can be used to help models remove anomalous data during training
and find decision boundaries. Often, OD methods are based on a hyper-parameter
defined as the contamination rate (Ruff, Kauffmann, et al., 2021) that represents the
ratio of outliers in the dataset. For real-world data, this ratio is unknown and can
be difficult to value. Recent works introduce methods capable of performing outlier
detection without such a hyper-parameter. The type of data is also an issue and
high-dimensional data can be hard to work with (H. Liu et al., 2018).

For instance, outlier detection on texts still poses problems due to their specific
characteristics: textual data are high-dimensional data with many complex under-
lying peculiarities (semantic, grammar, syntax, synonyms, ...) and they are sparse.
Recent methods can partially solve these problems but specific approaches are still
needed. One approach is to use dimensionality reduction techniques, as presented in
Section 2.5.5, to keep meaningful features. We have seen that latent semantic anal-
ysis reduces the dimension of the term frequency matrix and highlights relationships
between terms and topics.

98



4.1. Outlier ensembles and fusion

Raw data (text)

VADER LSA

Polarity Semantic

Fusion

Source

Extraction

Extracted 
representation

Early Fusion

LOF

SOFOD New 
representation

Raw data (text)

VADER LSA

Polarity Semantic

Source

Extraction

Extracted 
representation

Outlier 
detection

Late Fusion

LOF LOF

Outlier 
detection

Fusion: decision fusion

Outlier 
detection Decision

Figure 4.1: Examples of our case study with two representation of
text: polarity for opinion mining and semantic for text classification.

Left is early fusion and right the late fusion.

Another example of complex data are text with special features like emotions and
sentiments are good candidates for representing specific features of a text (Medhat
et al., 2014). Sentiment analysis is a field of study that focuses on people’s feelings
toward entities, peoples or topics (Medhat et al., 2014; B. Liu, 2012). Existing ap-
proaches identify polarity (ie. if a text/word is positive or negative) and subjectivity
(Soleymani et al., 2017). These approaches consider features of the text useful for
many classification problems and are often used on social media data (Yue et al.,
2019; Vashishtha and Susan, 2019; Ruz et al., 2020). However, few approaches have
been proposed for News (W. Zhang and Skiena, 2010) and much more less for outlier
detection.

4.1.2 Data fusion and ensemble methods

Data fusion is a prevalent way to deal with imperfect raw data for capturing reliable,
valuable and accurate information (Bleiholder and Naumann, 2009). It consists to
integrate multiple data sources for mitigating issues of a unique distribution. There
exists several surveys that highlight the principal characteristics of data fusion (Blei-
holder and Naumann, 2009; J. Gao et al., 2020; Meng et al., 2020). Three categories
of fusion are often addressed: early fusion (low), late fusion (high) and hybrid fusion
(intermediate). They correspond to the stage at which the fusion takes place. For the
early fusion, features are integrated immediately after their extraction. Intermediate
fusion combines outputs from early fusion and individual predictors. Finally, late
fusion performs integration after each of the predictors has made a decision. The Fig-
ure 4.1 displays the difference between early fusion and late fusion. For early fusion,
it takes place after the text transformation, and for late fusion it takes place after
each predictors.

Associated methods for the fusion process are disposed as follows:

1. Early fusion often consists to aggregate respective representations
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2. Late fusion uses mechanisms such as averaging, voting schemes, weighting, learn
model and many others

3. Intermediary fusion attempts to exploit the advantages of both in a dedicated
framework

In such context, multi-modality of sources data can be naturally added and this is
what J. Gao et al. (2020) are implying. Thus, multimodal data fusion aims to integrate
the data of different distributions, sources, and types into a global space in which both
intermodality and cross-modality can be represented in a uniform manner. Achieving
early fusion of polarity representation (left diagram in Figure 4.1) with the semantic
one is one kind of multimodal early fusion. With more sources and differences between
the original data, the fused representation can have richer information. One drawback
of early fusion is the risk to merge unwanted bias or ambiguous conflicts between
sources. One example can be: the text "Yes .. very good" can have a sarcastic
sense in twitter but not in blog (or vice-versa). Following this example, in absence
of sarcasm modality in the final representation, the resulting representations may be
contradictory.

With outlier detection, we often encounter outlier ensemble methods. This kind
of methods is one of the most popular approach for outlier outlier analysis (C. C.
Aggarwal and Sathe, 2015; C. C. Aggarwal, 2017a; Zimek, Campello, et al., 2014;
Zhao, Nasrullah, Hryniewicki, et al., 2019; J. Chen, Sathe, et al., 2017). We have
introduced it in the Section 2.5.7 and most of the time, a model solves its shortcomings
by itself by adjusting its hyperparameters. Regarding the late fusion, we can observe
some similarity, if not the same process, between these two types of approach. Thus,
when we use our fused representation we are referring to the early fusion process and
late fusion when presenting several predictors for on representation.

4.1.3 Outlier detection with ensemble approaches for text data

A short outline of Section 3 can be used for introducing challenges of outlier ensemble
with text data. Recently an approach introduces a non-negative matrix factorisation
method (Kannan et al., 2017) based on low rank approximation technique. Another
successful technique consists in using additional contextual information (Mahapatra
et al., 2012) with Latent Dirichlet Allocation (LDA). The Robust Subspace Recovery
AutoEncoder (RSRAE) (Lai et al., 2020) takes advantage of autoencoders and is
applied to textual and image data. One characteristic of this approach is that the
knowledge of a contamination rate is not required, and the autoencoder assumes that
the data is highly polluted. It succeeds in getting state of the art results for many
outliers contamination thresholds on corpus. Several simple features from text can
be efficiently used, such as author, genre, topic or emotional (D. Guthrie, L. Guthrie,
et al., 2007).

Successful methods of outlier detection on texts encounter several issues such as
interpretability (black box models), lack of diversity of document types (news, mails,
sms) and sensitivity to very low contamination rate. Text representation is difficult
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to interpret, whether one uses TF-IDF or language models such as BERT (Devlin et
al., 2019). Neural network methods are not interpretable because of the combination
of non-linear activation neurons on several hidden layers. TF-IDF is based on huge
dictionary size (often several thousands) and this same characteristic makes it difficult
to get high interpretation level.

Outlier detection methods for texts succeed to learn patterns in text and find
anomalies but are difficult to generalise for all types. Dimensionality reduction can be
applied on representation of text with low rank approximation techniques. An other
type of textual features is the polarity of the opinion it contains. Usually, polarity is
valued as positive, negative, or neutral and focuses on a different characteristic of text
than topic. Often, it is studied in data mining on social media.

4.1.4 Latent Semantic Analysis

Singular value decomposition is performed on a bow (or tfidf) matrix and transforms
it in a low rank approximated matrix of rank k. It is used to analyse the relationship
between several documents with the hypothesis that words with similar meanings are
found in similar texts. Regarding this last characteristic, LSA associates a single
meaning to each term and has difficulty handling synonyms.

4.1.5 Sentiment Analysis

Several methods have emerged to perform sentiment analysis (Medhat et al., 2014). A
first kind of approaches takes advantage of term frequency (TF-IDF) with algorithms
like Naive Bayes, or Support Vector Machines (SVM) (Wawre and Deshmukh, 2016).
A second type focuses on the definition of lexicons or lists of specific terms for a rule-
based model (Hutto and Gilbert, 2014). Among the remaining approaches, neural
networks have recently found great success (Ramadhani and Goo, 2017). Although
most of these methods are used in the context of social media where documents
are short, they can be applied to longer texts (Urologin, 2018). Despite the lack of
approaches that use features from sentiment analysis for outlier detection on texts,
some rare works (Savage et al., 2014) demonstrate that the use of sentiment can
capture specific type of anomalies: abnormal polarised discourse. These anomalies
are documents that are highly negative or positive as compared to normal documents.

4.2 Ensemble autoencoder approach for textual outliers

In this section, we consider the problem of applying ensemble methods for outlier
detection on textual data. Outlier ensemble analysis decomposes the outlier detection
error into two components which are the outlier score and the variance. The variance
refers to the problem of an algorithm returning a divergent score when applied to
different subsets of the baseline distribution. In most cases, the available distribution
is generated from an unknown distribution of observations. Bias refers to the incon-
sistent range of scores of a model depending on the application. In the absence of a
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Medical Culture Politic

A portrait created over 170 years ago by Richard Dadd while he was at Bethlem 
Hospital is to be returned to the London institution for the first time.

An art teacher has said she aims to paint all 310 of the churches in her local 
diocese to raise awareness of their beauty.

Just Stop Oil’s Hannah Hunt and Eden Lazarus found guilty after glueing 
themselves to Constable’s The Hay Wain.

Death among pregnant women and new mothers rose sharply during pandemic.

Chinese pray for health in Lunar New Year as COVID death toll rises.

Figure 4.2: Presentation of the studied problem with three docu-
ments topics: medical, culture and politic. Under each topic we repre-
sent a textual document with colored rectangles. Gray and green are
inliers and red ones are outliers. The detailed documents are the ab-
stract of the news articles taken from sources like Reuters, New York
times, BBC, ... The first scenario is the apparition of a culture-related
document in a medical feed, and the second scenario is a political doc-

ument in the culture feed.

label, the correct score cannot be returned and may also be misleading. The outlier
set directly addresses these two components at different levels: data or model.

Outlier ensemble methods are among the most popular approaches to outlier anal-
ysis (Zimek, Campello, et al., 2014; C. C. Aggarwal and Sathe, 2015; C. C. Aggarwal,
2017a; J. Chen, Sathe, et al., 2017; Zhao, Nasrullah, Hryniewicki, et al., 2019). Most
of the time, a model solves its own defects by adjusting its hyperparameters. As far
as late fusion is concerned, we can observe some similarity, or even the same process,
between these two types of approach. Thus, when we use our fused representation, we
refer to the early fusion process, and to late fusion when we present several predictors
for a representation.

4.2.1 Context

Performing outlier detection on textual data is less common than many other types
of data (image, time series and medical) but it comes with several useful applications
that helps discerning wrong web content, hateful message, spam or also errors in news
feed. The difficulty to reproduce experimental protocols and results from the literature
is one of the reason of the unpopularity of the task with text. Indeed, there is a great
difference between tackling independent outliers and contextual outliers (Mahapatra
et al., 2012; Fouché et al., 2020) using semantic in text. For the former, the classifier
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needs to differentiate two kinds of documents that come from unrelated topics (sports
and computer) but for the latter, one topic is contaminated with another "sibling"
topic. The Figure 4.2 describes such scenario. Most of the recent works are contam-
inating corpora without addressing the problem of which kind of anomaly/outlier is
added (Manevitz and Yousef, 2001; Kannan et al., 2017; Ruff, Zemlyanskiy, et al.,
2019; Lai et al., 2020).

Recent advances in word embedding with language models like GloVe (Penning-
ton et al., 2014), Fast-Text (Bojanowski et al., 2016), BERT (Devlin et al., 2019) or
RoBERTa (Y. Liu, Ott, et al., 2019) have shown promising characteristics for outlier
detection. Only few methods of the literature propose their usage (Ruff, Zemlyanskiy,
et al., 2019; Manolache et al., 2021). Other methods like One-Class Support Vector
Machine (OCSVM) (Schölkopf, Platt, et al., 2001) and Textual Outlier using Non-
negative Matrix Factorization (TONMF) (Kannan et al., 2017) rely on tf-idf. On the
other hand, recent methods are not using outlier ensemble methods (Zimek, Campello,
et al., 2014; C. C. Aggarwal and Sathe, 2015; Zhao, Nasrullah, Hryniewicki, et al.,
2019) for performing outlier detection with text data. Additionnaly, AutoEncoders
(AE) have been used for anomaly/outlier detection with high-dimensional data (J.
Chen, Sathe, et al., 2017; Kieu et al., 2019) and are also successful with other kind of
data (An and S. Cho, 2015; C. Zhou and Paffenroth, 2017; Z. Chen et al., 2018; Lai
et al., 2020), but the risk of using autoencoders with language models is the appari-
tion of degenerate solution in the learning step. Robust properties are needed in such
scenario.

We introduce a novel outlier ensemble method that performs outlier detection on
text using word embedding and a Robust Subspace Recovery (RSR) (Rahmani and
Atia, 2017; Lerman and Maunu, 2018) layer. The autoencoder use the RSR layer for
mapping the normal distribution in a subspace where outliers are at the edge (Lai
et al., 2020). Our method, called Robust subspace recovery Autoencoder ensemble
for Text Outlier (REATO), build a RSRAE (Lai et al., 2020) ensemble whose are
randomly connected. RSRAE are a kind of robust autoencoders which aim make the
assumption that outliers are in low-dimensional subspaces. REATO can also be seen as
an ensemble of several subspace that aims to find normal data with different manifold.
In short, such learning method are making the hypothesis that the distribution is
highly contaminated and the inliers (normal data) lie in a low-dimensional subspace.
The performance of REATO are experimented against other state of the art methods
on a total of eight corpora. We are proposing a definition of two different outliers
that can be applied on available corpora and REATO outperforms the literature with
more robust results.

Our autoencoder has the characteristic to perform local neighboring in in its man-
ifold. As we have introduced an outlier taxonomy in Section 3.3.4 for textual data,
this characteristic is particularly efficient for finding contextual outliers. Thus, exper-
imental results are performed on contextual outliers.

103



Chapter 4. Outlier Ensemble

4.2.2 REATO: Robust subspace recovery ensemble autoencoder for
text outliers

This section presents our approach, REATO, and the description of its properties.
While robust subspace recovery autoencoders have successfully tackle anomaly de-
tection with text (see Section 3.6), they lack locality and geometry awareness for
mitigating manifold collapse in transformer-based language models. For this rea-
son we introduce Robust subspace recovery Ensemble Autoencoder for Text Outliers
(REATO) which integrates locality in the latent representation through locally linear
embedding technique.

The section is structured with a presentation of the randomly connected autoen-
coders, followed by a presentation of RSR loss. We then introduce the locally linear
embedding loss term of REATO before presenting its ensemble method. Finally, we
present the representation of text.

Randomly Connected One-Class Autoencoder

Instead of using fully connected autoencoders, we propose to use randomly connected
autoencoders. In the case of RSRAE, it is a novel approach and allow us to build
ensemble autoencoders with different base detectors.

Let X be a dataset of N instances such as X = {x1, ..., xN}. Each instance has
D dimension which correspond to its attributes: xi = {x1, ..., xD}. An Autoencoder
(Section 2.5.8) is a neural networks in which the encoder E maps an instance xi in
a latent representation noted zi = E(xi) ∈ Re of dimension e. The RSR layer is a
linear transformation A ∈ Rd×e that reduces the dimension to d. We note ẑi the
representation of zi through the RSR layer, such as ẑi = Azi ∈ Rd The decoder D
maps ẑi to x̂i in the original space D. The matrix A and the parameters of E and D
are obtained with the minimization of a loss function.

Similarly to J. Chen, Sathe, et al. (2017) we introduce autoencoders with random
connection such as we increase the variance of our model. In the autoencoders ensem-
ble each autoencoder has a random probability of having several of its connections
to be cut. Thus, we setup the probability disconnection with a random rate between
[0.2, 0.5].

Robust Subspace Recovery Layer

The RSR autoencoder follows the reconstruction problem detailed in Section 2.5.8
which aim at generalize the original data in a lower representation and learn to re-
construct it through an optimization problem. We detail the original RSRAE re-
consutruction loss (Lai et al., 2020) presented in Section 2.5.8. The loss function
minimizes the sum of the autoencoder loss function noted LAE with the RSR loss
function noted LRSR.

LpAE(E ,A,D) =

N∑
i=1

||xi − x̂i||p2 (4.1)
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which is the l2,p − norm based loss function for p > 0.
For performing the subspace recovery, we denote two terms that have different

roles in the minimization process. The first term enforces the RSR layer to be robust
(PCA estimation) and the second enforces the projection to be orthogonal:

LqRSR(A) = λ1

N∑
i=1

||zi −ATẑi||q2 + λ2

N∑
i=1

||AA> − Id||qf (4.2)

with A> the transpose of A, Id the d×d matrix and || · ||f the Frobenius norm. λ1 and
λ2 are hyperparameters and q = 1 is corresponding to the optimal lp,q norm (Maunu
et al., 2019). If we simplify Equation 4.2 we have:

LRSRAE(E ,A,D) = λ1L
1
AE(E ,A,D) + λ2L

1
RSR(A) (4.3)

Locally linear embedding term

Locally Linear Embedding (LLE) (Roweis and Saul, 2000; J. Chen and Y. Liu, 2011) is
a popular nonlinear dimensionality reduction technique that aims to preserve the local
geometry of the data in a lower-dimensional subspace. It is based on the assumption
that data points in a local neighborhood can be linearly represented by their neigh-
boring data points. The LLE term in the loss function encourages the autoencoder
to learn representations that preserve the relationships between data points in their
local neighborhoods. By doing so, it helps to project the Euclidean distance with its
neighbors in the learned subspace. Based on Equation 4.2, the reconstruction loss
function of RSRAE enforces robustness with L1

AE and the orthogonality with L1
RSR.

Because the learned representation of the encoder is compressed in a e dimension
space, the locality of the subspace is not handled.

For tackling this problem, we propose to introduce a third term to LRSRAE based
on locally linear embedding. Given a set of data points {xi}Ni=1 in the input space, the
goal of LLE is to find a lower-dimensional representation {zi}Ni=1 in the output space
(the subspace learned by the autoencoder) such that the local relationships between
data points are preserved. We note:

LLLE(A) =
N∑
i=1

∥∥∥∥∥∥xi −
∑
j∈Ni

wijxj

∥∥∥∥∥∥
2

2

(4.4)

where Ni represents the set of indices of the k-nearest neighbors of xi (excluding
xi itself) and wij are the weights assigned to the neighboring data point xj in the
linear reconstruction of xi. The weights wij can be computed using the least squares

method to minimize the reconstruction error: minwi

∥∥∥xi −
∑

j∈Ni
wijxj

∥∥∥2

2
subject to

the constraint
∑

j∈Ni
wij = 1.

The LLE term encourages the autoencoder to find a representation for each data
point as a linear combination of its k-nearest neighbors in the input space. By mini-
mizing the LLE term in the loss function, the autoencoder learns to preserve the local
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linear relationships, which ultimately helps to project the Euclidean distance with its
neighbors in the learned subspace. Our loss function is comuted as follows:

LREATO(E ,A,D) = LRSRAE(E ,A,D) + λ3LLLE(A)

:= LRSRAE(E ,A,D) + λ3

N∑
i=1

∑
j∈Ni

wij‖Axi −Axj‖22 (4.5)

In Equation 4.5, the new term LLLE(A) represents the locally linear embedding term,
which measures the preservation of local neighborhoods. The weight wj assigned to
the neighbor xij in the local linear reconstruction of xi are determined based on the
distance between data points and their neighbors. The inclusion of the LLE term in
the loss function encourages the autoencoder to preserve the local geometric structure
of the data in the learned subspace. The parameter λ3 controls the influence of the
LLE term on the overall loss. Because it controls the influence of locality of the
manifold the term is preferred to be low for avoiding collapsing results.

Ensemble Learning

The main idea behind ensemble methods is that a combination of several models,
also called base detectors, and their outputs is more robust than usage of a single
model. Such robustness can be observed against the bias-variance tradeoff and also
for tackling the issue of overfitting. Although the possibility to combine multiple base
detectors is intuitive, the design of such approaches needs special attention regarding
normalization of outputs. In REATO, we use the RSR reconstruction error of each
autoencoders and then we normalise each base detector scores through the standard
deviation of one unit. We then take the median value for each observation.

Text Representation

In our REATO approach, we use RoBERTA (Y. Liu, Ott, et al., 2019) for text rep-
resentation instead of GloVe, FastText or TFIDF. Ruff, Zemlyanskiy, et al. (2019)
and Manolache et al. (2021) have recorded their results on these language model,
in addition of BERT, but with meticulous observation of the results of Section 3.6
RoBERTA is a top performing representation. The REATO model is not based on the
self-attention mechanism, such as for Ruff, Zemlyanskiy, et al. (2019) and Manolache
et al. (2021), and we propose to use the implementation of Reimers and Gurevych
(2019).

4.2.3 Experiments

Setup

We reproduce the exact same experimental setup as in Section 3.6. We use GenTO
(see Section 3.5.2) for preparing contextual contamination on each candidate inliers
possible with ν = 0.1 and a split size of 350. All results are performed on AUROC and
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Contextual
Distill RoBERTA

Newsgroups Reuters WOS DBpedia 14 avg.
Model AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC
KNN 0.310 0.778 0.492 0.795 0.620 0.900 0.762 0.948 0.546 0.856
OCSVM 0.282 0.750 0.491 0.811 0.599 0.889 0.759 0.945 0.533 0.849
PCC 0.314 0.776 0.518 0.828 0.613 0.897 0.771 0.954 0.554 0.864
OC-AE 0.191 0.623 0.246 0.604 0.249 0.680 0.348 0.735 0.259 0.660
RSRAE 0.309 0.779 0.506 0.821 0.621 0.900 0.762 0.936 0.550 0.859
RCEAE 0.194 0.623 0.278 0.615 0.448 0.810 0.368 0.747 0.322 0.698
REATO 0.362 0.793 0.538 0.880 0.687 0.921 0.840 0.951 0.606 0.886

Table 4.1: Results of state of the art models for contextual outliers
with contamination rate ν = 0.10. Average precision (AUPRC) and

Area under ROC (AUROC) are evaluation metric.

AUPRC reference works from the previous Section. We integrate results of one-class
autoencoder and we also benchmark results on a randomly connected autoencoder
ensemble (RCEAE) (J. Chen, Sathe, et al., 2017). The architecture is similar to J.
Chen, Sathe, et al. (2017) and the autoencoders are following the settings of Sec-
tion 3.6. The same goes for our approach REATO that follows the setup of Lai et al.
(2020). We also keep the number of runs for each corpus to 10.

For REATO and RCEAE we setup similarly than with the autoencoder and we
setup the number of base predictors to 25. Additionally, we also set hyperparameters
λ1 = 0.1, λ2 = 0.1 and λ3 = 0.05. For avoiding manifold collapse problem and
degenerates solutions, we advise that λ3 < λ1. On the other hand, we set the epoch
number to 30 and random connection probability between [0.2, 0.5].

Results

Table 4.1 displays the experimental results conducted with our approach REATO. We
observe that our approach is outperforming others model with AUROC metric and
AUPRC metric. We can see that usage of REATO allow to mitigate unstable decision
of the original RSRAE. We can also see significant difference of performance with Web
of Science corpus and Reuters-21578. PCC is the only approach that succeeds to beat
our approach against AUROC metric of DBpedia 14. Additionally, we can observe
that the original one-class autoencoder highly benefit from randomly connection and
ensemble technique, as it close the gap with other models.

While our performances are competitive, the principal purpose of tackling outlier
detection with ensemble methods is to mitigate the bias-variance tradeoff. We propose
to compare the model results with boxplots, similarly to the previous chapter. The
main objective of our contribution is to robust outlier scores for contextual outliers
with text. The Figure 4.3 and the Figure 4.4 displays an outperforming results from
our approach (rc-rsr-ens). We can see that the variance of our model is noticeable
as the box variance are always smaller than its competitors. Also, the min and max
possible scores are close from the median scores, concluding to see that our approach
is more efficient, more robust and can handle well language model like RoBERTA.
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Figure 4.3: Results of our experimental study with ν = 0.1, split size
of 350 and number of base detector of 25. The performance metric is

AUROC (AC) and the text representation is RoBERTA.

4.2.4 Discussion

In this section we have introduced REATO, an ensemble approach with RSR a autoen-
coders, otpimzed through LLE for tackling contextual outlier in text. Further work
are planned to be conduct regarding the sensitivity of λ3 hyperparameter as well as
other hyperparameters. Another perspective is to study the integration of attention
head for mitigating the black box problem of our model. It is common recently to
display text with their corresponding temperature, thanks to recent language model
based on transformers. The representation of text is a key concept that we want to
investigate in the near future.

4.3 Adding polarity features for outlier detection

In this section, we propose an experimental approach to enrich texts for outlier detec-
tion in texts. This approach is based on a dedicated representation of text for LOF
and density-based methods. TF-IDF is not efficient to address all characteristics of
textual data such as semantic, synonyms, syntax and many others. In our approach,
we perform a low-rank approximation using Singular Value Decomposition (SVD) on
TF-IDF matrix. Each dimension t of the matrix is an explainable topic with a com-
bination of terms. A document is then transformed into a low k-dimensional vector
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Figure 4.4: Boxplots of results of our experimental study with
ν = 0.1, split size of 350 and number of base detector of 25. The
performance metric is AUPRC (AP) and the text representation is

RoBERTA.

of size k. Different ranks have been studied for LSA. The optimal dimension number
is found empirically through experiments presented in Section 4.3.1.

It is clear that words carry other information than semantic or frequency. For
instance, polarity is such kind of information and we propose to use it in addition to
LSA. As presented in Section 4.1.5, VADER (Hutto and Gilbert, 2014) is a simple
and efficient approach that performs sentiment analysis without supervision. It is
an approach based on lexicon and rule-based sentiment analysis that is specifically
designed to detect sentiments expressed in social media. This approach outputs four
attributes: negative, neutral, positive, and compound. We build a sentiment vector
with the negative and positive attributes. This sentiment vector is appended to the
low k-dimensional vector to form a representation vector of the text.

Let C be a TF-IDF matrix m × n, representing m documents with n features
(i.e. terms), and di a document of C where i ∈ [1,m]. In the new feature space, di
becomes:

d′i,k = (t1, t2, ..., tk, s1, s2) (4.6)

(t1, t2, ..., tk) is the corresponding LSA transformation of C and (s1, s2) the sentiment
vector of di. The dimension of the new feature space is thus k′ = k + 2.

This representation of text is performed to help LOF to detect outliers. The main
idea of LOF is to process local density based on nearest neighbors with a distance
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metric. In our approach, we use the Manhattan distance (C. C. Aggarwal, Hinneb-
urg, et al., 2001) because we have found it performs the best against other distance
metric in our empirical test. Distance metrics benefit from low dimensional spaces
and expressive attributes. Polarity can handle abnormal documents that are highly
positive or negative. Depending of context, special words can be used and bring with
them weak signals. With the addition of sentiment attributes, other outliers than
usual ones can thus be detected.

4.3.1 Experiments

This section presents results of the conducted experiments and studies each approach
in respect to three parameters: contamination rate, rank and outlier detection algo-
rithms. First, the experimental setup is introduced, then we present our experiments
on early fusion with news articles (20 Newsgroups and Reuters-21578). We display
the conducted experiments on early fusion with IMDB and finally, we introduce the
results on late fusion (outlier ensemble) with our new representation. All experiments
have been conducted on an Intel Core i7-4770 processor with 16 GB of RAM.

Experimental Setup

Data Experiments have been conducted on three popular datasets: the 20 News-
groups dataset, the Reuters-21578 dataset and the IMDB Movie Reviews dataset.
20 Newsgroups and Reuters-21578 are state-of-the-art reference datasets for outlier
detection on text. They are originally designed for textual classification tasks on News
articles. Also, news articles tend to be neutral. The IMDB Movie Reviews dataset is
used to experiment our proposed approach on subjective and emotional texts. In this
work, we introduce PoLSA, a novel text representation that performs early fusion of
polarity features with semantic features. Our contribution aims to propose a dedi-
cated representation for tackling polarity-based outliers and semantic outliers at the
same time.

The experimental protocol is the one proposed in (Lai et al., 2020) for 20 News-
groups and Reuters-21578. For all datasets we keep the original train/test split and
for each experiment, inliers are documents from fixed class and outlier are sampled
from other classes. We contaminate inliers with outlier with different contamination
rates (see Section 3.6). For instance, a class with 300 documents leads to a subset
containing 270 inliers and 30 outliers when prepared with a contamination rate of 0.1.
The positive class represents the outliers. The experiments have been performed with
the following contamination rates: 0.01, 0.05, 0.1 and 0.15 to cover different conditions
of difficulty to detect outliers.

Representation of texts Four representations are compared: TF-IDF, LSA-k
(with different ranks k), sentiment and our PoLSA. In a preprocessing step, we lower-
case raw text and filter stopwords before removing punctuation and special characters.
For the 20 Newsgroups, we keep the body message and filter empty documents. We
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apply LSA on the TF-IDF representation with k ∈ {30, 50, 100, 200, 300, 500} and
show the best results. For representation with sentiments, VADER is applied on
raw documents using NLTK (Bird et al., 2009). Finally, we concatenate LSA-k with
sentiment features to build our proposed representation of texts.

Outlier detection PoLSA is evaluated with different popular outlier detection ap-
proaches that have been proved to be efficient in the literature and often found in
state of the art baselines: Local Outlier Factor (LOF) (Breunig et al., 2000), One-
Class SVM (OCSVM) (Schölkopf, Platt, et al., 2001) and Isolation Forest (IF) (F. T.
Liu et al., 2008). Even if these methods are not recent, they have shown good results
on high-dimensional data.

LOF highly benefits from dimensionality reduction but isolation forest is also a
candidate to improvements. Unlike LOF and isolation forest, OCSVM records great
results on outlier detection for text. LOF is an interesting approach to study with
its density characteristic. Compared to LOF, Isolation Forest predictions are hard to
explain and interpretability of this model can be hard to do. Black box methods such
as OCSVM are the hardest methods to interpret. Our proposed approach aims to
help density-based approach like LOF to get comparable results while getting better
interpretable properties. To obtain benchmarks on those methods, we adapt our code
with PyOD (Zhao, Nasrullah, and Li, 2019) package for getting outlier scores.

Evaluation Metrics Outlier detection is a task with high imbalanced data where
inliers (true negatives) are predominant. As a consequence, average precision is often
used to get a good idea of performance. The different representations are compared by
means of the Area Under the Receiver Operating Characteristics curve (AUROC) and
the Average Precision. These classical metrics are derived from the confusion matrix
and are both often used for the outlier detection task. The ROC curve displays True
Positive Rate (TPR) on False Positive Rate (FPR) for many thresholds. Increasing
or decreasing this threshold influences true positives with respect to false positives. It
helps to choose the best threshold for the classifier.

The AUROC can be then considered as an accuracy metric. For both metrics, the
corresponding implementation from Scikit-Learn (Pedregosa et al., 2011) is applied
on each conducted experiment. All experiments have been conducted on five runs
where Average Precision and AUROC are averaged for all contamination rates and all
datasets.

4.3.2 Early fusion: News corpora

Setup

We prepare 20 Newsgroups and Reuters-21578 similarly to (Kannan et al., 2017)
and (Lai et al., 2020). The difference is that we keep the original size of each class,
as opposed to the Section 3.6 where we have used a size of 350. We use GenTO
(Section 3.5.2) for preparing all of the split with the independent contamination. For
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(a) 20 Newsgroups AUPRC

(b) 20 Newsgroups AUROC

Figure 4.5: Average precision (AUPRC) and AUROC for different
ranks for 20 Newsgroups with contamination = 0.10. k is the cor-
responding rank used for dimensionality reduction with LSA and Se

means that the sentiment vector is used.

Reuters-21578, we remove all documents that are originally associated with more than
one class. We keep the largest five classes acq, crude, earn, money-fx and trade as can-
didates to be inliers. For TF-IDF representation, we setup LOF with Cosine Distance
and the number of nearest neighbors is experimentally set to 20. On other repre-
sentations we use the Manhattan Distance. For OCSVM we choose the Radial Basis
Function (RBF) with γ = 1

n_features . The number of isolation trees in Isolation Forest
is 100. Further studies will be focused on the influence of these hyper-parameters for
the results.

Results

We first present the results of each method on Figure 4.5 and Figure 4.6. These
figures show AP and AUROC with different ranks. Reducing the dimensionality of
TF-IDF with LSA greatly help LOF and IF to get better performances. The results
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(a) Reuters-21578 AUPRC

(b) Reuters-21578 AUROC

Figure 4.6: Average precision (AUPRC) and AUROC for different
ranks for Reuters-21578 with contamination = 0.10. k is the cor-
responding rank used for dimensionality reduction with LSA and Se

means that the sentiment vector is used.

indicate that LOF clearly outperforms other methods in most scenarios with rank 30
and 50. For Reuters-21578, LOF with our representation and k = 50 outperforms
other approaches and has similar results as LSA. When k > 100, OCSVM with TF-
IDF outperforms all approaches. For 20 Newsgroups, LOF with our representation
and k <= 100 gets similar performance as with LSA on AP. For k = 30, AUROC of
LOF with our representation get similar results than OCSVM and LOF with TF-IDF.
Table 4.2 shows AP and AUROC for several contamination rates. The results for LOF
with LSA for k ∈ {30, 50} (LOF-30 and LOF-50) and results of IF and OCSVM with
k = 30 (OCSVM-30 and IForest-30). We then show results of LOF, OCSVM and IF
with sentiment vector (LOF-Se, OCSVM-Se and IForest-Se) that is built with both
negative and positive attributes.

Finally we present results on proposed approach with sentiment representation
and LSA. At rank 30 and 50, LOF with LSA outperforms other baselines and is the
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Reuters-21578 20 Newsgroups
Models Average Precision AUROC Average Precision AUROC

0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
tfidf
LOF 0.07 0.37 0.39 0.42 0.46 0.76 0.75 0.70 0.11 0.22 0.31 0.36 0.85 0.82 0.80 0.78
OCSVM 0.62 0.66 0.63 0.66 0.95 0.92 0.89 0.86 0.07 0.17 0.28 0.36 0.82 0.80 0.80 0.79
IF 0.03 0.09 0.16 0.20 0.44 0.50 0.51 0.49 0.02 0.06 0.10 0.15 0.44 0.47 0.46 0.47
lsa
LOF-30 0.57 0.70 0.68 0.66 0.93 0.93 0.89 0.88 0.21 0.37 0.48 0.54 0.79 0.81 0.81 0.80
LOF-50 0.59 0.70 0.73 0.72 0.95 0.94 0.91 0.89 0.21 0.35 0.43 0.50 0.80 0.80 0.77 0.76
OCSVM-30 0.49 0.56 0.60 0.62 0.84 0.86 0.82 0.82 0.08 0.15 0.24 0.31 0.75 0.72 0.72 0.70
IF-30 0.50 0.51 0.59 0.57 0.83 0.80 0.81 0.78 0.09 0.14 0.23 0.29 0.69 0.67 0.66 0.64
sentiment
LOF-Se 0.06 0.13 0.15 0.20 0.50 0.58 0.55 0.52 0.01 0.06 0.11 0.16 0.53 0.53 0.51 0.52
OCSVM-Se 0.04 0.10 0.16 0.23 0.61 0.59 0.59 0.60 0.03 0.12 0.14 0.19 0.52 0.53 0.52 0.52
IForest-Se 0.03 0.12 0.17 0.21 0.55 0.61 0.60 0.59 0.02 0.08 0.13 0.18 0.55 0.57 0.55 0.55
PoLSA
LOF-Se-30 0.54 0.67 0.66 0.67 0.92 0.92 0.88 0.86 0.18 0.31 0.40 0.47 0.77 0.78 0.78 0.76
LOF-Se-50 0.57 0.71 0.75 0.73 0.92 0.92 0.93 0.90 0.21 0.30 0.39 0.45 0.76 0.76 0.75 0.75
OCSVM-Se-30 0.44 0.55 0.57 0.57 0.86 0.86 0.83 0.79 0.06 0.13 0.21 0.27 0.69 0.70 0.70 0.68
IForest-Se-30 0.35 0.48 0.57 0.59 0.80 0.83 0.81 0.78 0.06 0.15 0.22 0.29 0.68 0.67 0.66 0.65

Table 4.2: Average precision and AUROC for Reuters-21578 and
20 Newsgroups with different representations of text and for several

contamination rates (contamination ∈ {0.01, 0.05, 0.10, 0.15}).

most robust approach against contamination rate. Our approach with LOF is robust
to low contamination rate and succeeds to challenge other methods in many cases. We
observe that the sentiment representation gets poor results for all cases but results on
Reuters-21578 tends to imply that the corpus admits more polarized discourse than
20 Newsgroups.

In Section 3.7 we have supposed that better text representations than TFIDF
may considerably increase results. We observe that overall approaches benefit from
the LSA topics and even isolation forest that was the most criticized approach is now
getting good results. We note that in the aforementioned experiments, we had set
the split size to 350, leading to all dataset being evaluated similarly. We observe that
increasing the size can get completely different results, in particular the AUPRC which
is relative to the distribution size and contamination. With our fused representation,
LOF is now outperforming the best approaches on Reuters-21578 recorded in the
previous chapter. LSA also increases results on 20 Newsgroups (without sentiment
representation) and outperforms the previous methods also.

Discussion

The results show that LSA is a good technique to help density-based approaches
to detect outliers on text. Performances show that LSA is better than TF-IDF for
outlier detection and it also gets better robustness against low contamination rates.
One of the problem is related to terms that are out of vocabulary on test split. It
particularly affects the results of OCSVM and LOF on 20 Newsgroups leading them
to get lower results than on Reuters-21578. We have proposed to use VADER for our
approach but the method is not only dedicated to news articles and can be exchanged
with a specific one. However, we observe that our representation detects outliers with
sensitive topics that are not recognised by other representations. We also observe
that polarity has a positive impact on LOF. While keeping topic level detection, our
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4.3. Adding polarity features for outlier detection

IMDB Movie Reviews
Models AUPRC AUROC

0.05 0.10 0.05 0.10
tfidf
LOF 0.08 0.11 0.56 0.53
OCSVM 0.06 0.10 0.49 0.50
IF 0.06 0.10 0.51 0.52
lsa
LOF-50 0.09 0.13 0.64 0.58
LOF-100 0.10 0.13 0.64 0.57
OCSVM-50 0.06 0.10 0.56 0.52
OCSVM-100 0.06 0.09 0.57 0.51
IF-50 0.06 0.10 0.56 0.51
IF-100 0.06 0.10 0.55 0.49
sentiment
VADER 0.14 0.18 0.73 0.67
LOF-Se 0.08 0.14 0.55 0.53
OCSVM-Se 0.21 0.23 0.66 0.61
IF-Se 0.14 0.19 0.76 0.67
PoLSA
LOF-Se-50 0.13 0.17 0.59 0.62
LOF-Se-100 0.11 0.24 0.58 0.67
OCSVM-Se-50 0.20 0.24 0.66 0.62
OCSVM-Se-100 0.18 0.23 0.64 0.63
IF-Se-50 0.07 0.13 0.59 0.60
IF-Se-100 0.07 0.14 0.59 0.60

Table 4.3: Results on the IMDB Movie Reviews dataset with differ-
ent representations of text and for different contamination rates (0.05

and 0.10).

representation succeed to detect additional outliers than other representations. We
also note that another gain related to dimensionality reduction is that training and test
time take significantly less time than with TF-IDF. The table 4.4 shows the execution
times that were recorded for all methods and displays a comparison for each data
set and representation. We observe that our representation significantly reduces the
execution time compared to TF-IDF while obtaining similar records with LSA. Our
representation benefits from dimensionality reduction and shows better run times for
all cases. We note that VADER inference makes our representation relatively slower
compared to LSA alone.

4.3.3 Early fusion: Movie reviews dataset

Setup

The IMDB Movie Reviews is a dataset with 50000 documents that is commonly used
for sentiment analysis task. Each document is labelled as negative or positive. For
both classes, we randomly sample between 2000 and 3000 documents and outliers
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Run Time (Seconds)
TF-IDF LSA-30 LSA-Se-30

20 Newsgroups
LOF 165.44 30.21 37.18
OCSVM 514.16 30.03 36.57
IF 74.25 31.46 39.31
Reuters-21578
LOF 174.31 25.02 27.04
OCSVM 847.58 24.59 26.52
IF 60.26 25.01 27.17
IMDB Movie Reviews
LOF 216.08 14.03 15.30
OCSVM 627.57 14.05 15.26
IF 77.31 14.11 15.31

Table 4.4: Comparison of execution times with TF-IDF, LSA-30
and LSA-Se-30 for all datasets (time includes the training time of the

corresponding representation).

are documents from the other class. The setting of baselines is the same as for 20
Newsgroups and Reuters-21578. We add VADER results based on the output of the
approach.

Results

Table 4.3 presents the results for the IMDB Movie Reviews dataset. For contami-
nation rate 0.1 (a medium rate chosen for this first study), LOF with our proposed
representation outperforms other methods on average precision and AUROC. OCSVM
with sentiment features with our representation performs the best on low contami-
nation rate. We observe that our approach has similar results as dedicated methods
for sentiment analysis. While LSA and TF-IDF perform poorly on this dataset, our
approach improves LOF and OCSVM results.

Once again, if we compare the results with those of the Section 3.6, we observe
a great improvement. Indeed, the comparison of the results on IMDB between the
Table 3.5 and the Table 4.2 displays an AUPRC doubled and an AUROC greatly
higher. With the results on the News dataset, we can see that early fusion is working
as intended and does not penalized results of one or another modality. We observe
a clear drawback on the use of isolation forest of our representation instead of the
VADER one.

Discussion

The results on the IMDB Movie Reviews show that our approach performs well on
documents with polarity. We clearly observe that documents of this dataset can not
be fully discriminated using topics but our approach succeed to get better performance
with contamination rate 0.1. Our observation is that LOF use the semantic repre-
sentation (LSA) to place documents in its space and sentiment vector to discriminate
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4.3. Adding polarity features for outlier detection

Models Independent Contextual Collective
AUPRC AUROC AUPRC AUROC AUPRC AUROC

LSA 50 components
LOF 0.315 0.832 0.180 0.729 0.239 0.754

Autoencoder
Average 0.464 0.892 0.362 0.832 0.383 0.898

Maximisation 0.488 0.839 0.342 0.820 0.358 0.885
AOM 0.448 0.890 0.351 0.828 0.363 0.891
MOA 0.457 0.889 0.360 0.829 0.382 0.897
LSA

Average 0.517 0.959 0.427 0.883 0.494 0.889
Maximisation 0.475 0.953 0.420 0.872 0.487 0.884

AOM 0.477 0.950 0.426 0.876 0.487 0.884
MOA 0.497 0.957 0.426 0.882 0.496 0.891
PCA

Average 0.452 0.935 0.390 0.870 0.397 0.912
Maximisation 0.430 0.922 0.382 0.864 0.364 0.895

AOM 0.432 0.922 0.388 0.866 0.380 0.898
MOA 0.446 0.931 0.392 0.867 0.387 0.898

Table 4.5: Results of late fusion methods on three dimensional-
ity reduction techniques on Reuters-21578 dataset. Average precision
(AUPRC) and Area under ROC (AUROC) are evaluation metric.

them. Table 4.4 shows that our representation is faster than TF-IDF but slower than
LSA alone. In future work, emotional features such as fear, joy and anger will be
studied deeper to highlight their influence.

4.3.4 Late fusion: News corpus

Setup

We prepare Reuters-21578 with GenTO (Section 3.5.2) for independent, contextual
and collective outliers (see Section 3.3.4). The collective preparation dataset is done
with half the contamination from one independent outlier class and half from another
contextual outlier class. Thus, collective outliers are created with one independent
cluster and one contextual cluster. We also note that the contamination rate ν = 0.10.
For the experiment, we use our fused representation with a LSA of k = 50 components.
Also, for each model of the baseline we train the same model ten times with different
values for hyperparameters. We average the results on five runs (five different prepared
splits).

Our baseline is formed with an one-class autoencoder, a latent semantic anal-
ysis and a PCC. For LSA and PCC we train models with different values of k ∈
{10, 15, 20, 25, 30, 35, 40, 45, 50, 55}. Regarding the autoencoder, we setup five kinds
of architecture with different hidden layers settings and for each one of them we set
the dropout rate to 0.2 and 0.4. After that, we aggregate the output of all predictors
with the introduced methods of Section 2.5.7.
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Results

The results displayed in Table 4.5 record great performance for all the baseline. If we
compare those results against the previous one, we can see that ensemble methods are
more efficient and more stable. Indeed, we do not observe a considerable drop of scores
from AUPRC and AUROC, even on contextual and collective outliers. Collective
outliers are also harder to work with than independent, but still easier than contextual.
The average process is outperforming the others but its scores still are near. These
results demonstrate that the late fusion can also perform better results with the same
models.

Discussion

The addition of early fusion and late fusion are considerably improving the results
for outlier detection on text data. With picking the right representation and the
right models, we have seen that the outcomes are more stable, robust and efficient.
The results of this section also demonstrate that outlier detection is the problem of
knowing the distribution. Indeed, all this setting with early and late fusion is possible
thanks to the supervised evaluation. In the case with no label in hand, the situation
is different harder to optimize. One solution may be to extract the most significant
features (statistically for instance) and estimate few results on which a human can be
confident to understand. Another way may be to use the characteristic of the corpus
and its document for estimating an expectation of what is structurally "normal".

4.3.5 Conclusion

In this section we have conducted an experimental study of early fusion and late fusion
techniques, adapted to outlier detection with text data. We have introduced PoLSA,
a text representation that integrates a multimodal vector with polarity features and
latent features. Through such aggregation, PoLSA is an efficient and fast representa-
tion of text that can tackle different kind of corpora without decreasing result from
original representation. If we compare results from Table 3.5 with Table 4.3, we ob-
serve a significant performance gap between RoBERTA representation and PoLSA50

for IMDB corpus. The benchmark is performed on traditional approaches like local
outlier factor and one-class support vector machine, promising future works consists
to use recent methods and REATO.

Late fusion (or outlier ensemble) have been explored in Section 4.2 with the in-
troduction of REATO. In this section we explore furthermore traditional technique
for performing late fusion in our context. We applied those techniques on three di-
mensionality reduction approaches and we observe in Table 4.5 that outlier ensemble
technique are promising for performing outlier detection in text data. They find suc-
cess with independent, contextual and collective outliers.

While this section introduce a wide number of viable scenarios for performing
outlier ensemble and fusion at several level, we can conclude that they are promising
methods for future research. The very recent advances in language model can be a
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4.4. Interpretability

Figure 4.7: Feature importances using permutation with LOF and
k = 30. Evaluation metric is average precision and the class is baseball.

beneficial addition to our study and we aim to investigate reduction techniques in this
context. State-of-the-art works Ruff, Zemlyanskiy, et al. (2019) and Manolache et al.
(2021) have used attention head based techniques for performing anomaly detection
in text, such approach can be applied in this context.

4.4 Interpretability

Methods applied on textual data are often hard to interpret due to high dimensionality
and hidden semantic. TF-IDF partially tackle semantic issue but is a representation
of text that is explainable. Compared to recent works on language model (Devlin
et al., 2019), dimensionality reduction based on a term matrix are more interpretable.
Interestingly, BERT-based language models can be analyzed and studied through
their attention head that indicate important learned features. This characteristic has
allowed numerous reference works to succeeds in explaining several behaviors from
such kind of representation (Clark, Khandelwal, et al., 2019; Vig and Belinkov, 2019;
Jain and Wallace, 2019). Our proposition to use Latent Semantic Analysis for outlier
detection also aims to study results.

LSA maps terms and documents under topics that can be retrieved with documents
based on terms. While performing SVD, LSA associate patterns between terms that
are unique. This property reduces noise and estimates textual information, assuming
that a term has nearly one meaning. When density-based methods predict with LSA,
we can retrieve terms that are associated to each topics. Table 4.4 illustrates how
topics can be retrieved for Reuters-21578 with our approach. Similarly to research
papers that aim to explain high-dimensional models Ribeiro et al. (2016), Kim et al.
(2016), and Lundberg and S.-I. Lee (2017), we discovered that LSA succeeds to find
few topics that are positives or negatives.

Outlier detection in textual data can be difficult to define. In this work we have
shown that outlier data can be formalised depending of the application (sentiment
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Figure 4.8: Representation of documents in 2-D dimensions with a
projection of sentiment on Topic 1 vector. Blue points are inliers and
red points are ground truth outliers. The contamination rate is set to

0.10.

analysis and text classification). For News corpus we observe that semantic level
features are the most efficient direction to find outliers. On the other hand, finding
outliers in reviews or social media data needs a different approach. Features from
opinion mining such as polarity are great to handle characteristics of this type of
documents. In this section we explore documents representation with the help of
feature permutation importance.

Model explanation is a blossoming field and there are several approaches that
have emerged (Ribeiro et al., 2016; Lundberg and S.-I. Lee, 2017). In addition to the
emergence of outlier detection and anomaly detection studies, we can find overview
such as Yepmo et al. (2022). In such work, the problem of explaining an anomaly is
addressed in the context of eXplainable Artificial Intelligence (XAI). Numerous works
have been conducted in this context (Dang et al., 2014; Tang et al., 2013; N. Liu
et al., 2017; Macha and Akoglu, 2018; Gupta et al., 2019; Siddiqui et al., 2019; H. Xu
et al., 2021; Smits et al., 2022), and outlier analysis can successfully help to explain
model decision.

Recently, fairness and bias in outlier detection have also been subject of concerns
(Davidson and S. S. Ravi, 2020; Shekhar et al., 2021). In machine learning, an
algorithm trains a model that produces predictions and, in that regard, interpretability
can be global or local. Depending on the type of interpretability, different techniques
can be applied to explain a prediction for an instance or a group of instances.

One of the interesting properties of LOF is that its prediction can be studied
with its nearest neighbors. While the prediction of LOF can be explained with low-
dimensional data, it is impossible with high-dimensional data such as texts with terms
matrices. LSA allows us to perform low-rank approximation and then reduce dimen-
sion of text. Each dimension is a topic, represented by a group of terms, which
facilitates the interpretation of the text. With LSA, one or several topics can be
associated to a document.
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Terms Topic 1 Topic 2 Topic 3
term1 bank increase commission
term2 florida barrel minister
term3 operations intermediate reduce
term4 company price electronic
term5 billions markets equipment
Polarity neutral neutral negative

Table 4.6: Top 5 terms for three topics of Reuters-21578 with our
representation (k = 30).

In our work, results on 20 Newsgroups demonstrate that our representation is
less successful on this dataset than on Reuters-21578. While AUROC has similar
performance with our representation and LSA for k = 30, it gets lower results on
AP. We propose to study our representation with feature selection. Figure 4.7 shows
feature importance for class baseball of 20 Newsgroups, performed with permutation
features. Topic 1 is the most important feature for this class. We observe in Figure 4.7
that sentiment vector positively contributes. We illustrate the impact of the polarity
vector by combining negative and positive in one feature where a negative score means
negative and a positive score means positive.

Figure 4.8 displays documents of baseball class from 20 Newsgroups with selected
features. We observe that half of the outliers are correctly isolated from inliers. Eval-
uation of AP for this class with our representation is originally 0.49. With the selected
features, AP increases to 0.52. Based on LSA, we can retrieve terms that compose
topics and define which words contribute in the outliers detection. We can observe
that few inliers are isolated according to their polarity. In a different context, where
an outlier is defined as "neutral news", these isolated documents would likely be out-
liers. Exploration of interpretability on local instance will be conducted in further
works as well as rule-based approaches.

4.5 Conclusion

In this chapter we have explored outlier ensemble methods and applied it to text.
We introduced the different challenges and motivations that led us to conduct this
work. Based on this context, we introduced a novel ensemble outlier approach for text
data: REATO. The experimental study reveals that our approach REATO outperform
state-of-the-art methods and succeeds to get a robust outlier score with contextual
contamination. Results also demonstrate that REATO is less sensitive to bias and
variance.

We have introduced PoLSA, a new representation of text built from LSA and
sentiment attributes. This approach succeeds to detect outliers on neutral and emo-
tional documents. Our study of low rank approximation with LSA confirms that
density-based approaches can get state of the art results. In addition to reducing the
dimensionality of a TF-IDF matrix, it associates documents with a topic. Through
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PoLSA, our representation can facilitate the interpretability of predictions compared
to a high-dimensional representation such as TF-IDF.

There are several directions for future work on dedicated features like emotion tag-
ging and syntax analysis. Moreover, a deep study on how to estimate contamination
rate will be conducted. When contamination is set as hyper-parameter, methods are
forced to label inliers into outliers in order to fulfil the ratio. Similarly, LOF results
can be improved with study of hyper-parameter such as nearest neighbours.
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Chapter 5

Improved Abstractive
Summarization Through Outlier
Analysis

In the preceding chapters, we delved into outlier analysis and explored its significance
and the various approaches when dealing with text data. We addressed the challenges
of detecting outliers in textual content and proposed novel methods for identifying
both point and contextual outliers effectively. Additionally, we examined the potential
of outlier ensembles and the interpretability of outlier detection models.

Based on Chapter 4, we now shift our focus to an intriguing application of out-
lier analysis in the context of abstractive summarization. Abstractive summarization
involves generating concise and coherent summaries that capture the essential infor-
mation from a given piece of text. This approach has shown remarkable promise in
distilling large volumes of information into succinct summaries, but it is not immune
to challenges, particularly in handling complex or diverse texts.

In this chapter, we investigate how outlier analysis can significantly improve the
performance and robustness of abstractive summarization models. By leveraging the
outcomes of Chapter 3 and Chapter 4, where we developed advanced outlier detection
techniques tailored for text data, we explore novel works to enhance the summarization
process. Our primary focus is on the utilization of outlier detection to bolster the
quality, interpretability, and reliability of abstractive summaries. Furthermore, we
also investigate the problems that can be associated to the evaluation process.

At first, we present the task of abstractive summarization with neural networks in
Section 5.1 and general knowledge associated with. We then introduce the different
challenges to tackle for performing unsupervised text summarization in Section 5.2.
By harnessing neural networks and unsupervised learning, we lay the groundwork for
our improved abstractive summarization model. Next, we present an in-depth study of
evaluation methods of summarization task, comparing existing methods and assessing
their performance under various scenarios. We present the different problems when
performing automatic evaluation with abstractive summarization. An overview and
concluding guideline are given in this context.

Finally, a significant part of this chapter revolves around robust abstractive sum-
marization, where we investigate how outlier analysis can enhance the summarization
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Text Summary (abstractive) Summary (extractive)
the srilankan government on wednesday an- srilankan government
nounced the closure of government schools srilanka closes schools announced closure of
with immediate effect as a military campaign as war escalates schools as a military
against tamil separatists escalated in the campaign
north of the country.

Table 5.1: Illustration of the abstractive summarization task (Q.
Zhou, N. Yang, Wei, and M. Zhou, 2017) as well as by extractive. The

input text is found in the DUC 2004 dataset.

process in the face of complex, noisy, or out-of-distribution texts. We explore in Sec-
tion 5.4 how outlier detection mechanisms can contribute to producing more reliable
summaries, even in challenging and ambiguous contexts.

In conclusion, we summarize the contributions of this chapter and discuss the
implications of our findings. We highlight the potential of outlier analysis with ab-
stractive summarization and lay the foundation for future research in the field. Fur-
thermore, we outline possible directions for extending this work and applying outlier
analysis to other natural language processing tasks. By seamlessly connecting previ-
ous contributions with the domain of abstractive summarization, this chapter presents
a novel perspective on improving the summarization process and offers valuable in-
sights into the potential synergies between outlier detection and neural network-based
text summarization.

5.1 Abstractive summarization with neural networks

The purpose of the summarization task is to generate a compressed version of a text
based on the information of the original document. State of the art methods are similar
to the one of machine translation task. Despite strong differences in the final result,
some techniques that have been proposed in the field of machine translation can be
used in automatic text summarization. Among the approaches that best perform we
find artificial neural networks. Despite their success in this task, they are dependent
on the quality and quantity of the data. We present in this section the principal
architecture of neural networks, the attention mechanism and techniques that make
models of the literature more robust.

5.1.1 A general pipeline

Abstractive summarization is different from extractive summarization, but both aim
to generate a textual summary from an original document. The extraction method
cut the most important parts of the text to assemble a summary. The abstraction
method aims at interpreting the important information contained in the text in order
to spell it differently (eventually). Table 5.1 gives an illustrative example of both of
them.
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5.1. Abstractive summarization with neural networks

The task is separated into three main steps. The first step represent the input
data into a space so that an artificial neural network can ingest it. We use a word
representation learning method called word embedding (Mikolov et al., 2013). Very
often, this technique allows to represent each word of a dictionary by a vector of real
numbers.

In the next step, the sequence-to-sequence (Sutskever, Vinyals, et al., 2014) archi-
tecture takes place. This approach moreover uses the architecture of encoder-decoder
(K. Cho et al., 2014). This one consists in taking as input a sequence (of words) x,
which is then encoded in a sequence vector z. The decoder takes the sequence vector z

as input and produces a sequence y as output. This decoder is usually auto-regressive,
which means that its outputs are fed back as inputs to the decoder. If the encoder
takes the entire word sequence as input, the decoder can generate a word sequence in
one go. Nevertheless if the encoder takes a single word as input, the decoder can also
generate a single word.

The third and final step is performed by a heuristic search algorithm such as
beam search. For choosing the best summary, each part of the proposed sequence
is processed and different words are then submitted. Beam search is used to select
the best proposal by considering the grammatical structure as well as several other
criteria.

The use of a reference abstract poses a problem in supervised learning since it may
be penalized by the absence of a sufficiently rich sample of abstracts. Unsupervised
learning is implemented when there is no reference for each data. The latter therefore
avoids the problem mentioned above.

5.1.2 Sequence-to-Sequence

The sequence-to-sequence (seq2seq) architecture consists in generating sequences with
inputs that are also sequences. With the summarization task, sequences of words
(tokens) are used. This task can first be handled by encoders-decoders, as proposed
by (Sutskever, Vinyals, et al., 2014) in the machine translation task. This proposal
uses several layers of Recurrent Neural Networks (RNN) and more precisely Long
Short-Term Memory (LSTM) for the encoder/decoder. Nallapati et al. (2016) have
proposed to define an encoder with Gated Recurrent Units, or GRUs, sharing their
hidden state with the decoder. The disadvantage of such a model is that its vocabulary
is limited to the words it has learned.

5.1.3 Large vocabulary trick

The Large Vocabulary Trick (LVT) was proposed by (Jean et al., 2015) for giving to a
trained seq2seq model a vocabulary that has not yet been encountered in the learning
step (Nallapati et al., 2016).
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5.1.4 Attention mechanism

(Bahdanau et al., 2014) have proposed an attention mechanism for optimizing word
generation from the source hidden state, along with the soft-max layer of the vocab-
ulary. It is characterized by an additional vector that perform a weighted average of
the hidden states of the encoder. Thus, the resulting vector becomes the hidden state
of the decoder. We can then see the attention as a weight distribution. This technique
influcences the model to learn to focus on specific parts of the input sequence vector
when decoding, instead of relying solely on the hidden vector of the decoder. At each
decoding step, a new attention vector, also called a context vector, is computed. It is
with these two techniques that (Nallapati et al., 2016) propose an architecture that
addresses a wide variety of topics and tackle the problem of unknown tokens.

5.1.5 The redundancy issue

A known problem of this architecture is repetition: for the generation of long sum-
maries, the model tends to repeat itself and formulates the same information several
times. (Vinyals et al., 2015) propose an architecture called pointer network which
aims at establishing token correspondences between input and output. A pointer net-
work aims to "point" to certain elements of the input from a probability rather than
by weighting.

Another cause of this defect is that the seq2seq architecture does not have infor-
mation about all the word positions in a document. This results from its inability to
perceive the relative position of a word in relation to the global state of the positions.
More exactly there is no mechanism allowing the model to take into account what has
been previously generated when a token of the vocabulary is chosen (Tu et al., 2016a;
Mi et al., 2016).

5.1.6 Vocabulary extension

(See et al., 2017) propose to use the global covering mechanism introduced by (Tu
et al., 2016b) for minimizing the repetition problem. In order to prevent the attention
vector (Nallapati et al., 2016) from strongly influencing the choice of one information
against another, an extension is proposed. The extended vocabulary is built from the
union of the LVT and the entirety of the words appearing in the source corpus. The
decision method consists in comparing the original probability distribution with the
extended vocabulary. A global coverage vector is then maintained throughout the
attention technique. Such vector is performed with the sum of the non-normalized
distributions of the attention vector on each previous stage of the decoder. This
extension penalizes the repeated use of a token at a given location.

5.1.7 Hybrid Machine Learning

Despite the use of the global vocabulary coverage, approaches still tend to repeat the
use of the same token of the input. If attention guarantees the use of different parts of
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the encoded input sequence, an optimization on the attention decoder is required. The
motivation is that the decoder can always generate redundant sentences constructed
from its own hidden states. This phenomenon especially occurs when the generated
sequence is long. (Paulus et al., 2017) propose to use reinforcement learning. They
incorporate a discrete metric (see ROUGE in the section 5.3.1) for the selection of
the right part of the input document. This technique allows the attention system to
penalize the repeated use of a text area from the input.

The approach of Paulus et al. (2017) is not the unique one to proposes to use rein-
forcement learning (Pasunuru and Bansal, 2018; Jiang and Bansal, 2018; Q. Zhou, N.
Yang, Wei, Huang, et al., 2018). Recent approaches use optimizations of the attention
mechanism of See et al. (2017). This is the case of Gehrmann et al. (2018) who pro-
pose to apply a technique that add a step at the time of the attention estimation. For
this, they use content targeting that determines which sentences in the source corpus
should be part of the summary. This targeting is used as a "bottom-up" attention
step for constraining the model according to the previously selected sentences.

5.1.8 Transformers

Vaswani et al. (2017) introduce the transformers, a type of architecture of encoder-
decoder. The great success of these models encourages us, for the sake of completeness,
to mention them, but these models need a lot of computational resources. The authors
have developed this architecture in order to make full use of the attention mechanism.
To do so, each position within the processed sequence is encoded, which allows to
know all the states of each position in the text during the learning phase. The main
characteristic of this proposal is that it allows the processing of these positions in
parallel, thus accelerating the training stage.

In the case of the use of recurrent neural networks, the steps are sequential, while
for the Transformers it is enough to have a single layer. The approach called BERT
which uses transformers with great efficiency since they present competitive results in
a wide variety of tasks in automatic natural language processing is proposed by Devlin
et al. (2019). The overall gains in accuracy are remarkable and the transformers
demonstrate a strong ability to extract critical features from text.

We note, however, that the computational power required to train the models built
from this architecture is substantial. In addition to requiring a lot of computational
resources, these approaches need to be trained over more iterations than approaches
with LSTM, for example.

5.2 Unsupervised text summarization

This section presents unsupervised approaches, which have the advantage of not de-
pending on the availability of a desired summary, which relies on a different data
representation (auto-encoders). The first part focuses on the method used for the
representation while the second part focuses on unsupervised approaches to text sum-
marization.
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5.2.1 Autoencoders

To perform the text summarization task, it is necessary to compress the text. Several
approaches have been proposed, we detail the auto-encoder architecture which is often
used. This one was initially introduced by (Rumelhart et al., 1985) then applied in
many tasks including machine translation (Lample et al., 2017). This architecture
is defined by the use of an encoder-decoder to which we add a reconstruction cost
function. From the encoded we try to reconstruct (re-generate) the initial input.

In the case of text summarization, (Miao and Blunsom, 2016) propose to adapt
the auto-encoder architecture in the context of sentence compression. They also use
the pointer network architecture in the reconstructor (decoder).

(Fevry and Phang, 2018) propose an approach consisting in inserting noise in a
data. The noise is represented by a subset of words extracted from another data. The
goal of their contribution thus lies in the ability of their model to choose the right
features of the input and reconstruct a sentence from them.

5.2.2 Sequence-to-Sequence with use of autoencoders

The work of Baziotis et al. (2019) shows the effectiveness of an auto-encoder based
architecture in the context of sentence abstraction compression. Baziotis et al. (2019)
introduce an seq2seq architecture called "SEQ3". It consists in using two encoders/de-
coders, one in charge of compressing and the other one of reconstructing. The first
one, called "Compressor", is in charge of producing a summary from the input text.
The second, called "Reconstructor", tries to reproduce the input from the summary.
They use the attention-based encoders and decoders proposed by Bahdanau et al.
(2014). In an attempt to make the output summaries of the model as abstract as
possible, they employ the technique out-of-vocabulary, inspired by Fevry and Phang
(2018). This technique consists in using an external distribution to handle words that
did not appear during the learning phase.

Despite competitive results, their model suffers from a major flaw. Like Nallapati
et al. (2016)’s approach, SEQ3 tends to copy the first tokens of the text to be summa-
rized. According to Baziotis et al. (2019), this problem is due to the auto-regressive
nature of the reconstructor where each word is conditioned on its predecessor, involv-
ing cascading errors. This problem would cause the compressor to choose the first
words of the input text. Their approach also encounters difficulties in taking into
account word positions. This feature is common to recurrent neural networks that
depend on their hidden state.

West et al. (2019) propose an approach using an unsupervised extractive model to
propose an abstraction-based summarization model. They use the information bottle-
neck technique defined by Tishby et al. (2001). This method is used in information
theory to find the best compromise between precision and compression when summa-
rizing a random variable X, for example. The iterative proposal of West et al. (2019),
with the information bottleneck, searches for subsequences progressively shorter than
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the proposed summary. Using only a pre-trained language model, the model suc-
ceeds in efficiently performing the sentence summarization task by extraction. They
finally propose to have the outputs of the extractive model learned by an abstraction
approach with a language model using transformers.

With emergence of BERT-based approaches, unsupervised abstractive summariza-
tion is still actively researched. Several approaches have been developed, we can note:
sentence rewriting (Z. Zhang et al., 2023), AMR graph (Dohare et al., 2018) and
contrastive learning (Zhuang et al., 2022).

The sentence rewriting approach is the simplest to implement, but it can be dif-
ficult to ensure that the rewritten sentences are both accurate and informative. The
AMR graph approach is the most complex, but it can produce the most accurate
and informative summaries. The contrastive learning approach is relatively new, but
it has shown promising results. Shortly If the application requires summaries that
are accurate and informative, then the AMR graph approach may be a good choice.
If the application requires summaries that are generated quickly, then the sentence
rewriting approach may be a good choice.

5.3 Evaluation

This section presents existing metrics for the crucial phase of evaluating and comparing
existing abstractive summarization systems. In addition to these metrics, we also
propose to evaluate some criteria such as the abstraction rate. These new metrics are
necessary since the evaluation methods used by the state of the art are not sufficient.

CNN/DailyMail (Nallapati et al. (2016)), Gigaword (Rush et al. (2015)) and XSum
(Narayan et al. (2018)) are the datasets mainly used for learning text summarization
models. These datasets propose for a text, one or more summaries that have been
written by humans. The appendix provides a more detailed presentation of these
datasets.

Several methods have been proposed to evaluate the performance of summarization
systems. The simplest and quickest approach to implement is to compare the grams
of the candidate summary with the reference summary. A gram is an element of a
sub-sequence called a gram (of size n) constructed from a sequence of data. The gram
approach encounters several problems that we will raise in the rest of this section. To
improve the evaluation, the authors of the state of the art approaches define additional
manual approaches based for example on the criteria of language fluency as well as
information coverage.

In this section we introduce our notations: for a text t, we note r(t) the summary
of t provided by the method we are evaluating and r∗(t) the reference summary of
t. In some cases, it is possible that a text has several reference summaries. We then
note R∗(t) the set of these reference summaries associated with the text t.

This section presents the automatic evaluation methods of the text summaries,
then in a second time the manual evaluation methods. An assessment is proposed in
the last part.
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BLEU 3 3 3 3 3 3

ROUGE 3 3 3 3 3 3

Pyramid 3 3 3 3 3

METEOR 3 3 3 3 3 3

pBE 3 3 3 3 3

CompWE 3 3 3 3 3

Table 5.2: Summary table of the characteristics of the automatic
metrics seen in the section 5.3.1. The first two columns "With refer-
ence" and "With semantics" indicate respectively if the metric requires
a human reference and if it requires the use of a Word Embedding

model.

5.3.1 Auto text summary evaluation metrics

This part aims at detailing the automatic evaluation approaches, which can be ob-
served in a synthetic way in the table 5.2. First, we propose to study the evaluation
methods by gram and then some other methods.

BLEU

BLEU is an evaluation metric proposed by Papineni et al. (2002) in the context of
machine translation. This method proposes to compare a candidate with one or several
references by using their grams. In their proposal, Papineni et al. (2002) compute the
F-measure of evaluations starting from n-grams, for n = 1 (unigrams) to n = 4. The
F-measure is obtained thanks to the accuracy and the recall. In our context, the
accuracy is the number of n-grams correctly found on the total number of n-grams
proposed. The recall is the number of n-relevant grams found out of the total number
of n-relevant grams.

We denote ng an evaluated gram and the function Count(t, ng) the total number
of occurrences of ng in the text t. The Equation 5.1 formalizes the gram count function
(clip) used by BLEU.

Countclip(r(t), ng) = min(Count(r(t), ng), Count(r∗(t), ng)) (5.1)

This function then defines the BLEU-N metric on which the BLEU method is
based:
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Candidate : the the the the.
Text Count Countclip

Reference 1 The cat is on the mat. 4 2
Reference 2 There is a cat on the mat. 4 1

Table 5.3: Unigram count example between a candidate and two
references with BLUE. The number of match is shown as well as the
number of match with the use of clip. It is possible to see that this

example remains simple and naive.

BLEU-N(t, n) =

∑
r∗∈R∗(t)

∑
ng∈r∗(t)

Countclip(t, ng)

∑
r∗∈R∗(t)

∑
ng∈r∗(t)

Count(t, ng)
(5.2)

In the table 5.3 we can see that calculating the precision between the candidate
and reference 1 gives 2/6 and not 4/6. Calculating the recall in this way allows to
penalize candidates longer than their reference(s). However, when there are several
references for a single candidate, it is not necessary to penalize the candidate each
time. The authors define a method to answer this problem which they call sentence
brevity penalty. To compute it, we define c the size of the candidate and g the size of
the reference text. The brevity penalty (also called BP) is obtained as follows:

BP (c, g) =

1, if c > g

e(1−r/c), else c ≤ g
(5.3)

The final evaluation of BLEU therefore uses the accuracy normally computed with
a single reference as well as a weighting with the BP. We note N = 4 and wn = 1/N ,
with N the largest n-gram we compute and wn the weighting of the BLEU result for
an n-gram. We note |t| the size of t. BLEU in the context of data that have multiple
references per text is then obtained with the following equation:

BLEU(t) = BP (|t|, g) · exp

(
N∑
n=1

wnlogBLEU-N(t, ng)

)
(5.4)

Thus the BLEU metric evaluates a candidate against one or more references ac-
cording to the number, choice and order of words. To conclude, the initial intention
of this metric is, according to its authors, to quickly evaluate the output of a system
against several references according to its syntactic and semantic composition. Nev-
ertheless, BLEU has several weaknesses. BLEU does not attempt to perform a word-
to-word correspondence between the candidate and its reference (see section 5.3.1).
We can then say that the information match between a candidate and a reference is
partially satisfied.

131



Chapter 5. Improved Abstractive Summarization Through Outlier Analysis

ROUGE

The ROUGE metric, or Recall-Oriented Understudy for Gisting Evaluation (Lin
(2004)), is the most widely used evaluation method for evaluating textual summaries,
either by extraction or abstraction. ROUGE-N is an extension of the BLEU metric
and uses grams for its evaluation. It requires one or more reference summaries for a
given text in order to evaluate a model. The equation 5.2 that is used by BLEU is also
used by ROUGE. In the case of ROUGE, the accuracy calculation is differentiated for
each gram, unlike BLEU.

The state-of-the-art proposals use ROUGE-1 (unigram), ROUGE-2 (bi-gram) and
ROUGE-L (Lin (2004)). ROUGE-L represents the evaluation of the longest common
subsequence, called longest common subsequence or LCS, between the candidate ab-
stract r(t) and a reference abstract r∗(t). In ROUGE-L, m is the size of the candidate
summary and n is the size of the reference summary. We note β the coefficient to
weight the F-measure.

RLCS(t) =
LCS(r(t), r∗(t))

m
(5.5)

PLCS(t) =
LCS(r(t), r∗(t))

n
(5.6)

ROUGE-L(t) =
(1 + β2)RLCS(t)PLCS(t)

RLCS(t) + β2PLCS(t)
(5.7)

The equation 5.7 represents the calculation of the F-measure of ROUGE-L. ROUGE-
L is used to detect whether the model (or system) is learning the reference sequences
correctly. It can detect several things such as recopy rate or fluency. Indeed, refer-
ence summaries are written by humans in a correctly constructed and fluent language.
However, the coverage of these criteria is still very limited by the reference abstract.
Evaluating an abstract summary with only ROUGE and its variants is therefore diffi-
cult since there are so many possibilities. If the system tends to be very abstract, the
comparison with a single reference loses relevance. Nevertheless, ROUGE remains an
efficient and quick metric to set up in order to obtain a performance indicator on a
system.

Depending on the quality and the bias of the references used, ROUGE-L allows to
determine if the words used by the system are comparable to those used by a human.
It thus allows to judge if a machine manages to capture the same information as
the human who created the reference summary. Nevertheless, this approach does not
succeed in exhaustively evaluating textual summaries.

Another possible criticism of ROUGE is the lack of an exact match between the
words of the candidate and the reference. In the case of a match of a candidate’s gram
to the reference, its position in the sequence is not taken into account. Matching a
gram to the exact position of the reference is equivalent to matching it to a distant
position (beginning of text vs. end of text for example). This feature becomes a
problem when the desired summary is large and contains the same gram several times,
for example.

132



5.3. Evaluation

First step of METEOR alignment

Candidate: The chair carver loves his job.
Reference: The chair carver loves his chair.
Matching unigram of chair:
[(chaircandidat_pos_4, chairreference_pos_4),
(chaircandidat_pos_4, chairreference_pos_7)]

Figure 5.1: Application of the first step of METEOR alignment on
a candidate/simple sentence. Only the case of the "chair" unigram is
illustrated. The complete step consists in carrying out this treatment

on all the unigrams of the candidate.

METEOR

METEOR is a method proposed by Banerjee and Lavie (2005) for evaluating machine
translation systems. Like BLEU, it uses the grams that compose a text and is an
extension of NIST (Doddington (2002)). It also seeks to solve problems of exact
matching between a candidate gram and a reference gram that BLEU and ROUGE
fail to perform.

To perform the evaluation, METEOR computes a score based on the explicit
gram-to-gram correspondence between the candidate and the reference. To do this an
alignment is created between them, defined as mapping of a candidate unigram with
a reference unigram. Following this step, each unigram of each text is linked with 0
or 1 other unigram. This alignment phase consists of two steps. The first one consists
in listing for a unigram all the possible corresponding unigrams. Figure 5.1 shows an
example of this first step.

The second step is to identify the largest subsequence (largest n of grams) of these
matches. It is then necessary to differentiate the crossings within the unigrams in
such a way that at the end only a single candidate unigram is associated with a single
reference unigram. Let pos(tx) be the position of the unigram tx in the candidate,
while pos(ry) is the position of the unigram ty in the reference. Unigram crossing
(UC), the method proposed by the authors, is as follows:

UC(ti, tk, rj , rl) =

true, if (pos(ti)− pos(tk)) ∗ (pos(rj)− pos(rl)) < 0

false otherwise
(5.8)

A crossover is said to exist when the result of the equation 5.8 is true. The
equation 5.8 allows to know if two unigrams are in a crossing case or not. For each
unigram alignment we proceed to the crossing test. In the case of multiple crossing,
we choose the correspondence with the least crossing. With the example that is given
in figure 5.1, the equation 5.8 shows that there is no crossing for the unigram "chair"
since we obtain 0. If the exact match (same position between candidate and reference)
is used, the resulting alignment at the end of the second stage can be seen in figure 5.2.
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Final alignment

[(chaircandidat_pos_4, chairreference_pos_4), (thecandidat_pos_1, thereference_pos_1),
(ofcandidat_pos_3, ofreference_pos_3), (lovecandidat_pos_5, lovereference_pos_5)]

Figure 5.2: Final alignment found by METEOR at the end of the
two steps on the chosen example in the Figure 5.1.

Instead of using the exact match method, which consists in choosing the match where
the position of the candidate and reference unigrams is closest, the authors state the
possibility of using weights.

When the final alignment is determined, the calculation of the F-measure is per-
formed in the same manner as in the equation 5.2. Precision (P) is valued based on
the candidate unigrams that have a match, divided by the total number of candidate
unigrams. Recall (R) is valued based on candidate unigrams with a match, divided
by the total number of unigrams in the reference. Finally, the F-measure with β = 3

is:

Fmean =
10 · P ·R
R+ 9 · P

(5.9)

The current METEOR F-measure (equation 5.9) does not take into account the
largest matches every time. A penalty is used to deal with this feature. It is computed
by searching for the longest matching subsequences. The function CN(r(t), r∗(t))

counts the chunks number of the largest common sequences between the proposed
summary and the reference summary for a given text t. In the example provided in
Figure 5.1, two sequences are found according to the positions in Figure 5.2: "the"
and "of chair loves". MCU is the max count unigram, or the number of common
unigrams between the proposed summary and the reference summary. The penalty is
valued as:

Penalty(r(t), r∗(t)) = 0.5 ·
(
CN(r(t), r∗(t))

MCU

)3

(5.10)

When calculating the penalty, if no bigram or longer match is found, the number
of matching sequences is equal to the total number of unigrams that were matched.
Finally, the METEOR score is defined as:

METEOR = Fmean · (1− Penalty) (5.11)

If no bigram, or larger n-gram, is found, the penalty has the effect of reducing the
METEOR F-measure in the equation 5.11 by 50%. When there are several references,
the best score is kept for each proposed candidate. The global calculation of METEOR
is performed in the same way as BLEU. METEOR allows to evaluate the fluency of
a system in a better way than ROUGE or BLEU thanks to features like the use of
positioning.
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Summarization Content Units

A1 In 1998 two Libyans indicted in 1991 for the Lockerbie bombing were still
in Libya.
B1 Two Libyans were indicted in 1991 for blowing up a Pan Am jumbo jet over
Lockerbie, Scotland in 1988.
C1 Two Libyans, accused by the United States and Britain of bombing a New
York bound Pan Am jet over Lockerbie, Scotland in 1988, killing 270 people,
for 10 years were harbored by Libya who claimed the suspectscould not get a
fair trail in America or Britain.
D2 Two Libyan suspects were indicted in 1991.

Figure 5.3: SCUs detection example (underlined text) with using the
Pyramid method. Each sentence is assigned a letter that indicates from
which reference it comes and a number that indicates the position of
the sentence in the reference summary. These references are extracted

from the DUC dataset.

METEOR thus proposes a more complex and efficient evaluation for a candi-
date/reference pair. Indeed, the notion of correspondence between the unigrams of a
candidate and its reference allows the evaluation to favor systems that choose judi-
ciously the positioning of words. It also proposes to take into account a characteristic
not taken into account in the latter two, namely the correspondence of n-grams be-
tween a candidate and a reference. However, the metric does not propose a new
treatment for the case of text with multiple references.

In conclusion, this proposal tackles very precisely the shortcomings found in BLEU
(and ROUGE) and allows to deepen the evaluation of a system on other features. In
the case of text summarization, this metric has been used alongside ROUGE-N many
times, for example recently by See et al. (2017) or Guo et al. (2018).

Pyramid

Despite the importance of automatically evaluating a system’s proposals, it is interest-
ing to better understand how annotators go about creating summaries. This is what
Nenkova and Passonneau (2004) proposes to do by giving a method called Pyramid.
It is important to note that Pyramid is applied on datasets that have several anno-
tations, preferably for a text. The intention is to extract from several annotations
of a text, the most important parts that a system should choose. They define the
Summarization Content Units (SCUs) allowing their method to automatically define
what information should be contained in a text summary. An SCU is detected when
a part of a reference is common with the other references. Figure 5.4 illustrates the
SCUs found using the example in Figure 5.3.

When the UCSs have been found, it is necessary to give them a weight. The
weight chosen by the authors is the number of references in which a UCS appears
(one of the reference abstracts) for the same text. This weighting method allows us
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to prioritize the UCSs and thus to define an information score. Using their method,
the authors claim that it is possible to find a little more than 40 SCUs in abstracts
of 100 tokens. This is justified by the fact that SCUs are found through the use of
"factoid" detection (Van Halteren and Teufel (2003)).

Following these steps, a hierarchy is built with the highest weight detected at its
top (in the Figure 5.4 the top is at level 4). This hierarchy is similar to a pyramid,
giving its name to this method. Finally, the method outputs a score defined as a ratio
between the sum of the weights of the SCUs and the sum of the weights of the SCUs
closest to the top. The total of n tiers of the pyramid (Ti) is given with Tn its vertex
and T1 the first tier. The weight of a tier Ti is i and |Ti| is the number of SCUs at
this level. The score Smax of a summary with n SCUs is:

Smax =
n∑

i=j+1

i× |Ti|+ j × (n−
n∑

i=j+1

|Ti|)

with j = max
i

(
n∑
t=i

|Tt| ≥ n) (5.12)

The score given by Pyramid is the result of a distribution of SCUs with a pre-
determined weighting. This method allows to find an automatic consensus between
several annotators (see section 5.3.2). It also provides an efficient way to prioritize
information between several annotations.

Recent metrics

The evaluation metrics studied so far are from the field of machine translation and
automatic text summarization. If we are interested in metrics for text summarization,
many authors are satisfied with using ROUGE. METEOR is often used as a second
metric to compare the fluency and word choice of a system. These two metrics are
successors of BLEU and are mainly based on the unigrams of a corpus.

In recent proposals, it is possible to observe works such as ShafieiBavani et al.
(2018b) and Honda et al. (2018) where automatic metrics that do not necessarily use
human references are defined. More recently, Kryścinski et al. (2019) have proposed
an approach which verifies consistency of a learned model. Their approach is based on
a model that learn at the same time as the original approach and asserts the factual
consistency of the summaries. SummEval Fabbri et al. (2021) is a comprehensive study
of recent state-of-the-art approaches focusing on the re-evaluation of every models
with a single experimental setup. Their contribution allow to update evaluation of
all methods with mentioned metrics. Finally, X. Chen et al. (2022) have proposed
an evaluation solution to two problems: summarization model fails to understand or
capture the gist of the input text and the model over-relies on the language model to
generate fluent but inadequate word.

In the case of ShafieiBavani et al. (2018b) the evaluation in absence of reference
is based on the expression of five criteria:
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Extracting SCUs

SCU1 (w=4): two Libyans were officially accused of the Lockerbie bombing
A1 [two Libyans] [indicted]
B1 [Two Libyans were indicted]
C1 [Two Libyans,] [accused]
D2 [Two Libyan suspects were indicted]

SCU2 (w=3): the indictment of the two Lockerbie suspects was in 1991
A1 [in 1991]
B1 [in 1991]
D2 [in 1991.]

Figure 5.4: Example of extraction of two SCUs on the example that
is presented figure 5.3. The first UCS has a weight of 4 since it appears
in 4 references. The second UCS has a weight of 3 as it appears in 3

references.

1. the semantic similarity of the words of the candidate summary with the original
text;

2. the thematic relevance;

3. the relevance of the content of the summary by performing a query (Question
Answering task) from the embedding of each word of the input text;

4. the coherence;

5. the capacity to interpret (presence of new words).

By means of these criteria, they claim that the proposed evaluation method allows
to do without references. They describe and define these criteria and then combine
them using a Support Vector Regression (SVR) model to learn a linear function that
uses the same parameters as V. N. Vapnik (1999) for the purpose of combining the
presented features. There are several problems with this approach such as the lack of
consistency that a criterion has in giving a robust estimate and the dependence on
the Glove word embedding model used to determine criteria 1 and 2. One feature that
needs to be noted is that this metric does not assess fluency at all.

In a completely different way, Honda et al. (2018) propose a metric that does
not take into account gram frequency and instead looks at semantic overlap using a
word embedding. They modify and simplify the equation 5.2 by replacing the gram
count with a binary function. This function uses the semantic similarity of the word
embedding to determine the correspondence of a candidate unigram with a reference
unigram. To perform this check, they define a set of basic features that represent
the set of reference unigrams. This approach focuses only on the semantic feature
for the purpose of evaluation. However its problem lies in the definition of the basic
elements of reference and the choice of the word embedding model. If words are outside
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the reference vocabulary, the metric cannot successfully perform the evaluation. The
accuracy of this metric also depends on the model of word embedding.

Discussion

The problem of automatic evaluation of textual summaries is still being questioned
and redefined. There are recent methods that allow to evaluate textual summaries,
especially by extending ROUGE with graph theory as shown by ShafieiBavani et al.
(2018a). Among all the evaluation metrics in the field of automatic text summa-
rization, it is notable that some divergence exists within the community as to which
approach to employ. The reason why ROUGE metric is commonly use lies in the
definition of the task itself: there are many possible forms of writing an abstract and
by using the basic elements of the language (Hovy et al., 2006) and specifically the
grams, ROUGE provides a strong comparative indicator as to the quality of a system’s
summary output. In addition to giving an overall evaluation of systems, ROUGE al-
lows the treatment of language fluency and information criterion through the different
variants it offers. Directly extended from BLEU, it shares the same weaknesses and
must eventually be complemented with other measures.

In the case of machine translation, proposals to overcome the weaknesses of BLEU
have emerged. METEOR is a metric that addresses the problem of per-gram evalua-
tion and proposes to reinforce the robustness of recall by defining a method of match-
ing unigrams of a candidate summary to a reference summary (figure 5.2). METEOR
acts directly on the information and consistency evaluation criterion. Nevertheless,
the approach has a critical property which is the inference on the candidate/refer-
ence unigram pairs during several crossings. If the inference policy used is "exact",
the match may be wrong in rare cases. However, METEOR remains a robust metric
complementary to ROUGE. Another important feature of METEOR is its property to
match grams efficiently if the candidate and reference summaries are long. It owes this
feature to its alignment system (equation 5.8) and the penalty it applies on the length
of matches (equation 5.10). This approach also allows us to accurately determine the
copy rate that a system has.

Although the Pyramid metric is very successful for comparing human references
and candidate abstracts, it can only be used when there is a representative number of
references for a single text. Indeed, it is possible to use it to evaluate a candidate ab-
stract only from several reference abstracts. The more references there are, the better
the approach. However, the existing datasets for the automatic text summarization
task rarely have more than three references for a text: in the two of the main datasets
for training systems, namely Gigaword (Rush et al., 2015) and CNN/DailyMail (Nal-
lapati et al., 2016)), there is only one existing reference for a text.

This metric can be used for manual evaluation of text summaries. It allows to
reach a consensus between several validators. Both dependent on the word embedding
approaches it uses and independent of language fluency, the approach proposed by
ShafieiBavani et al. (2018b) allows to evaluate diversity, information and coherence of
summaries.
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The criterion of reliability represents the coherence between the summary pro-
duced and the input text. The evaluation of this criterion depends on the ability
of the evaluation method to provide an evaluation both from the relative context
(candidate/reference) and the absolute context (corpus globality).

In conclusion, it is possible to notice in the table 5.2 that the metrics performing
their evaluation only from the grams encounter difficulties in front of the reliability
criterion. The possible alternatives encounter other types of difficulties, such as the
necessary number of references or the use of a word embedding. One of the solutions
retained by a part of the community to evaluate textual summaries more efficiently is
to use in parallel to automatic metrics, such as ROUGE and METEOR, and a manual
evaluation performed by humans (section 5.3.2).

5.3.2 Manual evaluation protocol for text summarization

This section discusses the manual evaluation methods that can be observed in various
state-of-the-art proposals. A manual evaluation is performed by several humans who
follow a specific protocol. These methods are often done on an as-needed basis and
are difficult to compare with each other. As presented hereafter, research in this area
is still open today and many proposals continue to emerge.

We have chosen three proposals for automatic systems that define their own man-
ual evaluation methods. The first section describes the method applied by Cheng and
Lapata (2016) which focuses on information and fluency criteria. A second section
presents the method proposed by Cao et al. (2018) which focuses on the information
and vagueness criteria. Finally, the third section focuses on the method of Q. Zhou,
N. Yang, Wei, Huang, et al. (2018) which adds the redundancy criterion to the first
two.

Reference evaluation

This section focuses on the manual evaluation method by Cheng and Lapata (2016).
It is based on the diversity of views (sufficient number of humans) and the ranking of
the summaries. They require the participation of several people on twenty abstracts
randomly selected from the UCR 2002 dataset (test). The texts from the dataset and
the summaries made by several automatic systems (with their own) are provided at
the same time. The summaries are ranked from best to worst according to two criteria:
information and language fluency. The final score is an average of the rankings of each
participant.

The information criterion is defined by the appearance of important terms from
the original corpus in the summary. These terms can be proper nouns as well as
adjectives. Fluency of language depends on the structure of the summary and more
precisely on whether there are no spelling mistakes or inconsistent expressions. The
authors ensure that the participants in the evaluation are not biased by using Amazon
Mechanical Turk.
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A total of five rankings per evaluated text are received at the end. The relevance
of this evaluation has been demonstrated by its use in several publications such as
Narayan et al. (2018) and Y. Liu and Lapata (2019).

Addition of information and faithfulness in evaluation

This section describes the method for manually evaluating summaries of Cao et al.
(2018). In this paper the authors seek to demonstrate that summaries in their model
are less likely to be ambiguous or to use bad semantics. As a reminder, one of the
problems with ROUGE is that the evaluation is done at the n-gram level of the
candidate and reference summaries. It regularly happens that the word order of a
sentence has an impact on its semantics. In such cases, the ROUGE score does not
penalize the evaluation of candidate summaries.

The proposal of this method is to define an evaluation based on the faithful inter-
pretation of the input corpus. The manual evaluation consists in randomly drawing
100 texts from the dataset (test). A comparison of the results between their system
and those of the state of the art is performed for the same texts. The participants
are then asked to rank the summaries according to three classes: conform, false and
uncertain. The final score is obtained by calculating, for each model, the percentage
of coverage of the three classes.

The choice to evaluate by class discrimination is due to the desire to directly
demonstrate whether the system is wrong or not. Often, this problem is negligible
when the corpora of a dataset have references with several sentences. However, in the
case where we have small summaries in output, the system can have a good score with
ROUGE while being wrong.

Extended evaluation with redundancy criteria

We study the Q. Zhou, N. Yang, Wei, Huang, et al. (2018)’s approach in this section.
It is possible to observe some similarities with Cheng and Lapata (2016) in the way
of manually evaluating a system. Nevertheless, the authors decide to simplify the
method by reducing the number of steps.

Three volunteers are chosen for the purpose of evaluating the results of the system
as well as the comparison system. Fifty texts in the UCR 2002 (test) dataset. For each
of these texts, summaries of the systems to be compared are also provided. Partici-
pants rank the summaries from best to worst according to three criteria: information,
redundancy and overall quality.

This manual evaluation approach has several questionable points. It is true that it
is difficult to perform an unbiased evaluation based on two systems without considering
the reference summary. If we follow this approach precisely, we cannot compare the
results of one model without comparing ourselves to the reference model chosen by the
authors. The impact we observe as a result and that this evaluation is not intended
to be repeated at a later date. This observation is common in manual evaluations in
the field.
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Information Fluency Clarity Redundancy Inaccuracy
Cheng and Lapata (2016) 3 3

Cao et al. (2018) 3 3

Q. Zhou, N. Yang, Wei, Huang, et al. (2018) 3 3 3 3

Hardy et al. (2019) 3 3 3 3 3

Table 5.4: Summary table of manual evaluation and the criteria they
address. In the case of several proposals, some criteria do not have the
same label but define the same thing. Fluency can be described as

"Well built" or inaccuracy can be referring to model issues.

The method offers the expression of interesting criteria to judge textual summaries.
Indeed, repetition is often a problem pointed out by the community (Hardy et al.
(2019)). The redundancy criterion is relevant because of its use in several publications
as well as the existence of systems such as the one proposed by Ren et al. (2016). In
this proposal the use of redundancy allows the system to choose the best possible
proposal.

Discussion

We have seen that manual evaluation faces several problems and can be outlined
with Table 5.4. An observation of this table leads to point out two criterion, clarity
and redundancy, which are poorly represented in the literature. The first problem to
tackle is the definition of the manual evaluation. Indeed, the great variety of proposals
demonstrates an uncertainty as to the choice of the right methodology to apply. A
second problem concerns the choice of criteria and their definition. In the case of Cao
et al. (2018), the definition of classes is relevant but remains applicable mainly in their
context.

What we retain from these manual evaluation methods is their "tailor-made" char-
acter. This character results in a better understanding of the strengths and weaknesses
of a specific system. However, the wide variety of methods and criteria makes it im-
possible to compare proposals unless one wants to confront only a specific system. As
we have seen, the use of redundancy is an optimization criterion often used in the
context of abstract text summarization. Thus, while there are definite advantages
in the ability to evaluate a system on a small subset of data, the methodology is
cumbersome for evaluators to follow.

5.3.3 Overview

The ROUGE metric is still the most widely used method to evaluate text summaries
provided by an automatic system. Recent contributions are accompanied by manual
evaluation or several other automatic metrics. We use ROUGE to be able to position
our approaches with the state of the art. It is possible to find in the table 5.5 the
metrics complementary to ROUGE that we use. These metrics aim to cover the
criteria raised in this section. They also allow to describe the characteristics of the
approaches we propose.
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Criteria Description
Abstraction rate Comparison of similar words between the input and the generated summary.
Compression rate Reduction ratio of size between input and output.
CompWE Previously mentioned metric (Section 5.3.1) that evaluates fluency.
Processing time Indicates the performance of the calculation time during training.

Table 5.5: Table of the chosen metrics and their description.

5.3.4 Conclusion

We note that there are similarities between the proposals in the machine translation
domain and the text summarization domain. The techniques that are advanced in
one can positively impact the other. However, a number of techniques specific to
the field of text summarization are missing. In the context of unsupervised learning
approaches, it is possible to observe promising specific techniques (Baziotis et al.
(2019), Tishby et al. (2001)).

It is also possible to note a lack of correlation between the abstraction of an
abstract and the technique put forward by an approach. In our context, it is important
to know the degree of abstraction of an approach. Indeed, as raised in section 5.3.1,
the evaluation of the abstraction of an approach strongly depends on the dataset.
We would like to be able to demonstrate that it is possible to use ROUGE while
evaluating the abstraction. Copy rate and compression, as well as semantic similarity,
are promising tools to perform this evaluation.

5.4 Robust abstractive summarization

In the previous section we have questioned the evaluation process of abstractive sum-
marization. This section tackles some of the problems of unsupervised abstractive
summarization. Section 4.4 of Chapter 4 has presented how the raw space X can be
difficult to handle. For this reason, we have proposed different solutions and several
ways of handling non-robust models or rather polluted data. Thus, we propose to
explore two options that a generative model can benefit from: outlier removal in pre-
processing step and adding robust techniques to the model (if possible). The purpose
of this section is to present two case studies that demonstrate the use of our work in
tasks other than outlier detection.

5.4.1 Outlier removal for robust learning

The first case study is the outlier filtering process. In this part we aim to improve the
results of abstractive summarization by working on the original raw space X .

Problem and motivation

Abstractive summarization is a task that is recently popular thanks to advances in
neural networks. While the supervised approaches have state of the art results, the
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Model Rouge-1 Rouge-2 Rouge-L
supervised
Rush et al. (2015) 29.55 11.32 26.42
distillBART-Gigaword 35.73 16.29 32.07
unsupervised
Y. Wang and H.-Y. Lee (2018) 21.26 5.60 18.89
Zhuang et al. (2022) 28.10 11.63 24.14
Baziotis et al. (2019) 25.39 8.21 22.68
Baziotis et al. (2019) with 5% 24.11 9.34 25.18
Baziotis et al. (2019) with 10% 28.47 11.02 27.59

Table 5.6: Results of Seq3 after application of outlier removal of the
5% and 10% most outlying documents. The corpus of training and
evaluation is Gigaword. For comparison, we give a short baseline with

supervised approach.

literature focusing on unsupervised abstractive summarization has not as much popu-
larity. Yet, we can observe several works that aim to close the gap between supervision
and non supervision. However, for every kind of approaches we observe datasets that
are heavy. While they allow to perform a neural network training , these datasets are
often gathered with automatized techniques and methodologies. One problem is that
it is nearly impossible to manually check each document of a multi million document
corpus (unless one is patient enough). We propose to use outlier analysis on the raw
dataset and remove a part of the outlying points.

Experimental setup

For our experimental setting, we chose Seq3 (Baziotis et al., 2019) that is an unsu-
pervised approach based on multiple seq2seq layers. Two seq2seq exactly are working
as a compressor and a decompressor, with a language model prior that handle the
bottleneck. We use the dataset Gigaword that is a well-known corpus for performing
abstractive summarization. It has an original train split of 3 803 957 documents and
has short text compared to CNN Dailymail. For the baseline we have chosen to fine
tune a distillBART model on 2 epochs. This approach has been originally trained on
CNN Dailymail and Xsum. We also present SCR approach from Zhuang et al. (2022)
and we record results they have introduced in their contribution. All of the results
have been averaged on ten runs for mitigating some biases.

Finally, we build our outlier analysis model with an ensemble of KNN and LSA.
For KNN, we take twenty models with k ∈ [20, 120] in which we start from 20 and
end up to 120 after stepping of 5 each time. All of them are using euclidean distance
and the tfidf representation of text is chosen. We proceed similarly with LSA and its
ranks. Based on results of Section 4.3.1, we select the average late fusion technique.
Also, we propose to compare results on outlier removal based on contamination rate
ν = 0.05 and ν = 0.10.
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Results and discussion

The results of the Table 5.6 display clear benefits to remove outlying points with outlier
detection. Based on these results, we can assume several things about Gigaword and
Seq3. First, Gigaword has a large number of documents that may cover a high number
of topics and can also integrate contradictory inside the corpus. Some of the document
can be similar but does not carry the same information, or without supervision it can
be complicated to make learn such rules. In this approach, the model relies on the
language model and its capability to make distinction.

With the analysis of scores of the outlier detection model, we can see that there
exist a real multilevel representation of texts. We identify three levels, with most
of the point being near from each other (it is still reassuring), and two others with
one among them that have a consequent gap of value. A last level has a significant
gap that make its associated observation outliers, but instead low outliers. It can be
difficult to handle those last outliers because some of them may be outliers and the
rest outlier, or vice versa.

5.4.2 Robust Subspace Recovery AutoEncoder for unsupervised sum-
marization

We have previously observed a gain in performance from removing outlying points of
the raw space. In this section we focus on applying robust technique for improving
unsupervised abstractive summarization.

Problem and motivation

One drawback of outlier removal is the suppression of data that can actually help
the model to best perform. In some way, it is a solution that is prompt to increase
the performances but can also hide the real issue. The problem of Seq3 is that it
does not succeed to handle certain kind of documents. There exist several method
of helping a machine learning model to be more robust against peculiar observations.
Adversarial learning is one of them numerous approaches in the literature (Y. Liu, Li,
et al., 2019) or also using ensemble learning (J. Chen, Sathe, et al., 2017). Previously
in Section 5.4.1, we have witnessed that robust subspace recovery layers was a great
addition for autoencoders. Because Seq3 heavily relies on the language model prior
and the hidden states, in addition of the original reconstruction loss we propose to
also use our REATO loss function from Section 4.2 described in Equation 4.5.

Experimental setup

The experimental setting is the same as for outlier removal, but instead we do not
train any outlier detection model (obviously). For the implementation, we keep the
original code of Seq3 with adding the reconstruction term and also the RSR layers
on the bottleneck of each seq2seq. The experiment is processed once again on the
Gigaword dataset and is evaluated with the Rouge metrics.
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Model Rouge-1 Rouge-2 Rouge-L
supervised
Rush et al. (2015) 29.55 11.32 26.42
distillBART-Gigaword 35.73 16.29 32.07
unsupervised
Y. Wang and H.-Y. Lee (2018) 21.26 5.60 18.89
Zhuang et al. (2022) 28.10 11.63 24.14
Baziotis et al. (2019) 25.39 8.21 22.68
Baziotis et al. (2019) with 10% 28.47 11.02 27.59
RSR-Seq3 29.73 11.16 28.97

Table 5.7: Results of Seq3 after application of outlier removal of the
5% and 10% most outlying documents. The corpus of training and
evaluation is Gigaword. For comparison, we give a short baseline with

supervised approach.

Results and discussion

Once again we observe an improvement of the results with this case study. While
this last setup seems to be performing better than outlier removal, the results are still
near from each other. The observation that can naturally occurs in this scenario is if
the results are similar between the suppression of some data and the learning process
on how to handle them, Gigaword possesses outlying point that are confusing models.
Results of our approach RSR-Seq3 are presentend in Table 5.7. Similarly to results
of Section 5.4.1, ROUGE-2 results are outperformed by SCR (Zhuang et al., 2022)
but still presents benefits from our robust autoencoders. We can also observe that
RSR-Seq3 outperform Rush et al. (2015) which is a supervised approach.

While this section introduces an application of our thesis contributions, we want to
explore a better robust representation based on attention head of recent transformers-
based language models. As we have successfully demonstrated with a short experi-
mentation that abstractive summarization can benefit from robust representation, we
want to explore in future works how it can be evaluated with work from Section 5.3.1
and Section 5.3.2. This evaluation can precisely suggest what is improved with our
approach (fluency, . . . ).

5.5 Conclusion

In this chapter we have introduced an experimental application of work detailed in
this thesis over abstractive summarization task. We have first presented the purpose
and challenges of abstractive summarization and taken the opportunity to elaborate a
case study in our context. While abstractive summarization can be tackled with either
supervised or unsupervised approaches, we focus to unsupervised abstractive summa-
rization. Precisely, this setup is challenging due to a complex structure (Section 5.1.1).
In this context we performed an overview of the recent advances.

If difficulties can be encountered in creating an abstractive summarization ap-
proach, the natural characteristics of the task, which can be difficult to formalise
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properly, make the evaluation step crucial. We introduce an overview of the eval-
uation step in Section 5.3. Both automatic evaluation and manual evaluation are
compared and we present how they can be complementary with each other. In this
context, we introduce our evaluation, which is an ensemble of automatic and man-
ual criteria for evaluating abstractive summarization approaches. This evaluation can
perform quantitative evaluation through traditional ROUGE and qualitative evalua-
tion with abstraction rate, compression rate, CompWE (Section 5.3.1) and processing
time. It helps to evaluate the main characteristics of abstractive summarisation and
distinguish it from extractive summarisation.

Finally, we introduce two case studies based on our research contributions with
outlier removal in training corpus and outlier awareness while training. In Section 5.4.1
we have introduce a preprocessing approach that tackles outlying observation before
the training step. This approach and the conducted experiments demonstrate that
Gigaword has several level of normal documents. Such observation can be useful for
designing future approaches. Regarding this case study, future perspectives are a
proposition of an unsupervised independent outlier removal and unsupervised contex-
tual outlier removal.

In the second case study, we introduce RSR-SEQ3 which is a robust and unsuper-
vised approach performing abstractive summarization. In this contribution, we change
the original autoencoders from Baziotis et al. (2019) with our REATO autoencoder.
Results of this experiments are promising and our approach outperforms state-of-
the-art approaches of unsupervised abstractive summarization. Our approach also
outperforms older supervised methods from the literature and is surprisingly efficient
with all corpora. Future perspectives opened with this case study lie in the presen-
tation of the results under our introduced evaluation. Another perspective lies in an
interesting approach consisting to explain furthermore the model with the integration
of special outliers (independent or contextual).

With the results we have presented in Section 5.4, our textual outlier analysis
can presented as a stepping work for improving performance of natural language pro-
cessing tasks. Perspectives on abstractive summarization are numerous, but we can
highlight several limitations. The performed evaluation in Section 5.4 is clearly simple
and does not benefit from the Section 5.3 conclusions. Indeed, for getting a better
understanding of the shortcomings of one model, all the listed criteria of Table 5.5
may be required. Another future work can be addressed, and it is the lack of com-
parison of usage of outlier ensemble instead of the RSR layer. On the other hand,
XAI challenges can be directly involved in this context, and the interesting benefit of
abstractive summarisation is the ability to see the impact of multiple changes through
adversarial or counterfactual observations.
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Conclusion and perspectives

6.1 Outline of the contributions

The principal topic of this thesis work is the analysis of outliers in textual data. Since
there are several approaches to deal with text, we have specified in our work that we
are interested in the semantic level of a text. This interest also follows current prob-
lems encountered by a number of data mining approaches. These problems include
the question of confronting a machine learning model with a desired or undesired per-
turbation. This perturbation can take many forms: noise in a corpus such as empty
text or text filled with a single character, text representing information far from the
subject of study (wrong category of news papers) or different data sources. In a sec-
ond step, it is also a question of allowing a model to correctly process data that are
more or less distant from what it has learned well.

6.1.1 An overview of outlier analysis

The Chapter 1 and the Chapter 2 introduce the basic notions to deal with outlier
analysis in a general framework. The problem inherent in the outlier detection task
is its freshness and the growing number of surveys and reviews in the field. In order
to better understand the difference between the subtasks and the outlier formalism,
we have reviewed a large number from state-of-the-art works. Our contribution lies
in the consolidation of the differences between an outlier and an anomaly. We have
conducted a comprehensive effort to formalize and define what an outlier can be
depending of the application or research domain.

We have proposed in the Chapter 2 a summary as well as an overview of the
outlier detection task. Various connections between applications are not completely
detailed in the literature. Our overview bridges the gap by connecting similar tasks
like outlier detection, anomaly detection, fake news detection, spam detection, and
many others. We have stated their characteristics and how they can be related with
each other. Thus, we introduced the different notions and definitions of the literature
before proposing several taxonomies. Unlike reference surveys, we have proposed a
detailed comparison of state-of-the-art outlier and anomaly taxonomies. This study
allowed us to extract a general taxonomy that can be applied to numerous kind of
data, and particularly text.
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Finally, we introduced a common formalism for studying unsupervised outlier
detection approaches. We have tackled most popular and recent methods from the
literature and categorized them in a dedicated taxonomy. The purpose of presenting a
large number of approaches is motivated by the lack of a sufficient amount of methods
for text data. Our contribution lies in the adaptability of this overview of outlier
detection that can be applied to any other kind of data than text. We have presented
a generic ground for working with popular and recent methods of the task, and can
be easily extended for similar applications.

6.1.2 Outlier detection in text

Recently, a prolific and blossoming literature can be observed among anomaly detec-
tion and outlier detection tasks. Unfortunately, we do not observe the same phenom-
ena for outlier detection in text data. Although there exists several recent works that
are actively interested in performing outlier detection with text, there is no existent
survey dedicated to such kind of data. In absence of such contribution, we have noted
several confusions among reference approaches of the literature.

While we have presented common knowledge for tackling text with unsupervised
machine learning, we have addressed outlier detection with text data through our
introduced generic ground. In our first contribution, we introduced a proper definition
of a textual outlier as well as the different levels that it can occurs. Furthermore, we
define syntax and semantic outliers which can be connected to different application and
tasks. These definitions allowed our work to be connected with other tasks like fake
news detection, email spam detection, sentiment analysis, . . .With such connections,
we have presented a survey of state-of-the-art approaches that have been proposed for
outlier detection and compatible other applications.

One problem of performing outlier detection in text, is that references works often
lack a proper analysis of what is detected and stops at the surface while not taking into
account the specifies of text. This a recurring problem, and contributed to mitigate it
with the introduction of a dedicated textual outlier taxonomy. Our taxonomy properly
define what an independent outlier and a contextual outlier are. This contribution
is critical and results to get another glimpse of the detection problem. For assessing
this, we have introduced GenTO1, a generic algorithm which preprocess corpora with
either independent or contextual contamination.

Based on GenTO, we have proposed a comprehensive experimental study of state-
of-the-art approaches for both independent and contextual outliers. This study re-
vealed that independent outliers are more difficult to tackle than contextual outliers.
Most of reference works are mostly contaminating their corpora with independent con-
tamination, leading in an evident bias against works that mix both outliers randomly.
Thus, we have proposed a comprehensive study of how to detect outliers in text and
the associated problematic. GenTO when associated with the conducted experimen-
tal study also reveals that traditional methods can outperform very recent works.
With the same experimental protocol, non-text dedicated approaches can outperform

1This work was published at the EGC Textmine 22 workshop (Pantin et al., 2022).
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dedicated ones. It contributes to question the recorded results of the literature. An-
other contribution of GenTO lies in its generic setting which allows to apply it to any
corpus.

6.1.3 Outlier ensemble in text

As outlier ensembles are very rarely applied for texts, we have also proposed a chapter
dedicated to them. The motivation for their use lies in the will to perform bias
reduction to different parameterization choices. We have made a comparison between
these methods and the data fusion task, which shares some characteristics. In this
context we introduced REATO, a robust subspace recovery ensemble autoencoder
approach for text data. Unlike recent reference approaches, REATO is independent
of the text representation model and tackles the problem of locality in its latent
representation. While there are not any existing work performing outlier ensemble
with text, our approach successfully outperform state-of-the-art methods. Our method
also displays an incredible score robustness for contextual outliers, as opposed to other
approaches.

Ensemble methods can be performed at different levels and we have introduced
another approach which relies to represent text with polarity features. Our intro-
duced representation, PoLSA, maintains a richer and multimodal representation of
the text and increases performance of reference approaches with different kind of cor-
pora (sentiment analysis and news papers). PoLSA is completed with an experimental
study which consists to a progressive addition of early fusion and late fusion (outlier
ensemble). If the text has several level of information that he can carry, the abil-
ity to integrate different specialized features (opinion, semantic, rules, text statistics,
emotions, ...) is an important factor for motivating the choice of early fusion.

The introduction of PoLSA has also introduced possible extensions of our work
with XAI domain. With a dimension reduction technique and polarity features, our
contribution tackles the problem of explaining decisions of the trained model. PoLSA
can be used for easing such explanation, as demonstrated in Section 4.4. The con-
ducted research in Chapter 4 has open the perspective of performing outlier ensemble
with text while tackling XAI connections.

6.1.4 Case studies

In the Chapter 4 we focus on the issues of interpretability and explicativity in our
context. The given use case is to extract significant attributes, i.e. features that posi-
tively influence the decisions of the model. It is also a question of taking into account
the added representations through data fusion. In our use case, we demonstrated that
it is possible to extract features that are more important than others as well as the
interpretation of the polarity of the text. In doing so, we were able to initiate a step
of understanding the predictive model while extracting a simpler representation. We
have thus introduced a way of explaining the model in terms of semantic and opinion
attributes.
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The Chapter 5 introduces the challenges of text summarization by abstraction
as well as the recurrent problems. This context allowed us to illustrate two cases
where outlier analysis becomes a tool for improving an approach. Thus, we intro-
duce a comparison of the results of abstractive summarisation models with denoised
data (outlier removal). We also present a comparison of results using a robust ver-
sion of the chosen model. In both cases, we have shown that outlier analysis is very
successful. Our approach, robust subspace recovery sequence-to-sequence-to-sequence
(RSR-Seq3), appears to outperform state-of-the-art approaches of unsupervised ab-
stractive summarization. This work open promising perspective for numerous other
applications with text data.

6.2 Significance and limitations

Our research on outlier detection in text data holds significant importance as it ad-
dresses the unique challenges posed by the contextual nature of textual information.
By developing specialized methods that consider the intricate relationships between
words and phrases, we aim to enhance the accuracy and robustness of outlier detec-
tion approaches in this domain. The expected impact of our research is twofold: in
academia and industry.

In academia, our work enriches the body of knowledge on outlier analysis, provid-
ing valuable insights into handling contextual information in outlier detection tasks.
The proposed methodologies and experimental findings serve as a reference for re-
searchers and practitioners interested in exploring outlier detection in text data.

In the industry, the applications of our research are wide-ranging. The developed
techniques can be applied in domains such as cybersecurity, financial fraud detection,
healthcare analytics, and social media monitoring. Detecting unusual patterns and
outliers in textual data helps businesses and organizations to identify hidden anoma-
lies, gain actionable insights, and improve decision-making processes.

Our research offers novel insights into the field of outlier detection in text data
by delving into the intricacies of contextual analysis. By addressing the challenges of
identifying independent outliers and contextual outliers, we pave the way for future
research to explore more sophisticated techniques and refine existing approaches. The
proposed taxonomy and evaluation framework provides a structured methodology to
compare different outlier detection methods effectively. It also open doors to the
development of more specialized algorithms for specific text domains, such as legal
documents, scientific literature, and social media content. Moreover, our work on
outlier ensemble methods and interpretability contributes to the growing interest in
transparent and explainable artificial intelligence systems. This spark further investi-
gations into incorporating human domain knowledge into the outlier detection process
and leveraging ensemble techniques for improved performance.

While our research presents contributions to the field of outlier detection in text
data, it is essential to acknowledge its limitations. One such limitation lies in the
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reliance on labeled data for evaluating some of the proposed algorithms. Future re-
search can focus on exploring semi-supervised or unsupervised approaches to mitigate
the labeling burden and extend the applicability of outlier detection to scenarios with
limited labeled data. Moreover, as the landscape of text data evolves, challenges re-
lated to noisy, unstructured, and multilingual text may emerge. Exploring techniques
that can handle these complexities will be critical to advancing the state-of-the-art in
outlier detection for diverse textual information.

Our work opens up promising avenues for future research in fine-tuning the hyper-
parameters of ensemble methods and exploring novel techniques for combining multi-
ple outlier detection models effectively. Additionally, investigating the interpretability
of ensemble outcomes will contribute to building trust in the decision-making process
based on outlier detection results.

6.3 Future works

6.3.1 Towards a unified textual outlier detection

In the various experiments, we have focused on the semantic aspect of the text. What
about the syntax of a text, and how would this change the methodology applied in
our work? Firstly, outlier detection at the lexical level already has a form in the Fake
news detection and Plagiarism tasks. However, these tasks often make a combined use
of lexical and/or semantic text representation. A future work is therefore to provide a
study and comparison of lexical outlier detection methods. The main motivation is to
be able to add to our current work, the possibility of formalising outlier detection on
the largest number of situations. Thus, similarly than for plagiarism detection, syntax
analysis can highly benefit detection of contextual outliers. Such remark is motivated
with the assessment that, for instance, a technical article is not written similarly than
a sport article (structure, vocabulary, . . . ).

In the same way that the task of sentiment analysis uses both morphological rules
on the text and semantic attributes, we could observe that it was possible to do the
same for outlier detection in the Chapter 4. It represents an interesting perspective
for tackling special documents.

In our overview of outlier analysis and outlier analysis with text, we have cat-
egorized the usage of graph as an application or a data problem. Promising work
Akoglu et al. (2015), Deng and Hooi (2021), and Ma et al. (2021) have presented us-
age of graph neural network approaches or graph-based structure for tackling outlier
detection as a blossoming challenge.

Our approach GenTO is supervised approach that preprocess corpora and perform
independent or contextual contamination. One perspective consists to investigate un-
supervised contamination through a chosen set of methods. The idea of such perspec-
tive is to allow the possibility to perform contextual contamination to any corpus, not
only for those with topic hierarchy. A large number of corpora can be candidate to
such perspective, and can tackle the problem of performing contextual contamination
with any language corpus.
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Chapter 6. Conclusion and perspectives

6.3.2 Toward robust machine learning

There are three areas in which our work can intervene. There is the solution of
cleaning and pre-processing the data sets before starting the learning stage. It is also
possible to give the possibility to a model to represent with more robustness the data
it ingests. We were able to demonstrate the possibility of these last two points in
Chapter 4 and Chapter 5. In the former, the possible bias brought by the data as
well as the parameters of the different approaches is dealt with through the use of
method ensembles and data fusion. Indeed, these two methods have allowed not only
to increase the global performance of the models, but also the stability in front of
different pollution scenarios. Concerning the second chapter mentioned, we used on
a natural language processing task the replacement of a part of the model sensitive
to the input data. We have shown that by replacing the normal autoencoders by
our REATO autoencoders, the performances of ROUGE-1 and ROUGE-2 have been
greatly improved.

The third axis focuses on the definition and interpretation of outliers or anomalies
once the results have been obtained, or before learning. The Chapter 2 and the
Chapter 4 deal with this subject in depth. What can be said from this work is that
the appearance of outliers is often uncontrolled and that knowing how to find them is
as important as knowing why they appeared.

As a result of all this work, the opening up of different subjects is notable. The first
perspectives envisaged concern an unsupervised evaluation method. In the literature,
one can find works such as Marques et al. (2020) and Campos et al. (2016). However,
in the context of the text, it is possible to add singular characteristics to this type
of data. The creation of a metric taking into account size, vocabulary richness or
the definition of a model dealing with non-vocabulary words seems to be a promising
approach. Such a metric could benefit the task of building new datasets, as well as
defining unsupervised learning policies.

A second perspective lies in the use of outliers to generate adversarial observa-
tions and thus make a model more robust. Identifying independent and contextual
outliers have pave avenues for performing a generation of adversarial instances. On
the other hand, outlier analysis can also be positive for counterfactual explanation.
Furthermore, work conducted in the Chapter 5 indicates that text generation can be
influenced. Such influence can be estimated with different metric, and promising work
can involve a novel taxonomy definition regarding the kind of performed robustness.

Finally, one perspective can be addressed with connections of our work with differ-
ent kind of data like images. RSRAE (Lai et al., 2020) is an approach that performs
on image and text with great success. Based on this observation, our work can be de-
clined for other kind of data and image are absolutely a promising direction. Transfer
learning can be an interesting domain for tackling robust learning with several kind
of applications. There exist application like image summarization that can benefits
from our work.
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