
HAL Id: tel-04500708
https://theses.hal.science/tel-04500708v1

Submitted on 12 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data-Driven Model Identification for hyperelasticity :
mapping the strain energy throughout multiaxial

experiments
Léna Costecalde

To cite this version:
Léna Costecalde. Data-Driven Model Identification for hyperelasticity : mapping the strain energy
throughout multiaxial experiments. Mechanics of materials [physics.class-ph]. École centrale de
Nantes, 2023. English. �NNT : 2023ECDN0047�. �tel-04500708�

https://theses.hal.science/tel-04500708v1
https://hal.archives-ouvertes.fr


MEMOIRE DE DOCTORAT DE 

 
 

 

 

L’ECOLE CENTRALE DE NANTES  

 

ECOLE DOCTORALE N° 602  

Sciences de l’Ingénierie et des Systèmes 

Spécialité :   Mécanique des Solides, des Matériaux, des Structures et des 

Surfaces 

 

Data-Driven Model Identification for hyperelasticity: mapping the 
strain energy throughout multiaxial experiments. 
 
Projet de recherche doctoral présenté et soutenu à l’École Centrale de Nantes, le 21 décembre 2023  
Unité de recherche : UMR 6183, Institut de Recherche en Génie Civil et Mécanique (GeM) 
 

Par 

Léna COSTECALDE   

 

 

 

 
  

Rapporteurs avant soutenance : 
 

Jean-Benoit LE CAM  Professeur des universités, Université de Rennes  
Benoit BLAYSAT  Professeur des universités, Université Clermont Auvergne 

 
Composition du Jury :  
 

Présidente : Carole NADOT-MARTIN Professeure des universités, ISAE-ENSMA Poitiers 
Examinateurs :  Jean-Benoit LE CAM  Professeur des universités, Université de Rennes  

Benoit BLAYSAT  Professeur des universités, Université Clermont Auvergne 
Auriane PLATZER  Maîtresse de conférences, INSA Lyon 

Directeur de recherches doctorales : Erwan VERRON Professeur des Universités, Ecole Centrale de Nantes  
Co-dir. de recherches doctorales :     Michel CORET  Professeur des Universités, Ecole Centrale de Nantes  
Co-enc.de recherches doctorales :    Adrien LEYGUE Chargé de recherche, CNRS, Ecole Centrale de Nantes 
 

Invité 
Antoine PERRIOT Dr, Ingénieur de recherche, MICHELIN Cébazat 
 





Remerciements

Tout d’abord, je tenais à remercier tout particulièrement les deux rapporteurs de cette
thèse, Jean-Benoît Le Cam et Benoît Blaysat. Merci infiniment pour votre temps, mais
aussi vos remarques et questions qui ont apporté un éclairage nouveau sur mes travaux. Je
remercie également Carole Nadot-Martin d’avoir accepté de présider mon jury de thèse et
également Antoine Perriot et Auriane Platzer d’avoir accepté d’en faire partie. Un grand
merci à tous les membres du jury pour votre expertise, vos commentaires, vos questions
et votre bienveillance, qui m’ont permis de prendre toujours un peu plus de recul sur
mes travaux, leur richesse, leur complexité et leurs perspectives. Je garderai d’excellents
souvenirs de nos échanges et de leur richesse, et je vous en remercie. J’adresse un merci
particulier à Antoine Perriot, qui a oeuvré chez Michelin pour nous fournir un matériau
sur lequel travailler, et qui a suivi avec intérêt et curiosité mes travaux tout au long de
ces années.

Cette thèse n’aurait pas pu être ce qu’elle est sans l’implication, la curiosité et la
pédagogie de mes trois encadrants de thèse, que je remercie grandement. Adrien Leygue,
tout d’abord, est une source d’idées intarissable, qui permet qu’un problème n’en reste pas
un bien longtemps, si tant est que la solution soit codable d’une manière ou d’un autre.
J’ai apprécié nos discussions sur des coins de tableau, et ton soutien tout au long de cette
thèse, qui malheureusement n’était pas assez longue pour voir aboutir toutes tes belles
idées. Michel Coret, ensuite, est l’élément indispensable d’une campagne expérimentale
réussie. Sa patience, sa curiosité et sa pédagogie transforment presque les sessions expéri-
mentales en jeux d’enfants. Il est également celui qui sait remettre les pieds sur terre à
toute l’équipe, en faisant un lien adéquat avec le pendant expérimental des travaux. J’ai
adoré nos sessions hexapode au CRED, mais aussi nos discussions vélo autour d’un café.
Erwan Verron, enfin, est celui qui a le don, sinon l’expérience, de la gestion du timing. Sa
grande connaissance et son infinie pédagogie font que n’importe quelle question théorique
ne reste sans réponse, ou au moins sans biblio. Ses qualités d’encadrant (et d’enseignant)
restent encore à dénombrer tant il y en a. Je te remercie particulièrement pour tout
mon parcours, de l’intérêt suscité pour les matériaux en école d’ingénieurs, jusqu’à mon
potentiel futur. Merci encore pour toutes ces discussions riches, autour de la science et
du reste, ça a été un immense plaisir de travailler avec vous.

Au sein du laboratoire et au cours de le thèse, j’ai eu la chance de travailler avec
de nombreux enseignant·es-chercheureuses, que je tiens à remercier. La lecture de vos
travaux et le récit de vos parcours ont participé grandement à mon envie de poursuivre
dans l’académique. Dans un premier temps, je remercie particulièrement Bertrand Huneau
et Jean-Charles Passieux, pour leur constribution aux CSI, leurs remarques pertinentes et
leurs conseils éclairés pour la poursuite de la thèse. Je remercie également tous les mem-
bres du groupe de travail Outlaw, pour les discussions scientifiques riches et les moments
partagés. L’UTR Melani a été pour moi un lieu d’émulation scientifique et d’échanges,
dont je remercie tous les membres et en particulier Julien Réthoré et Mathilde Chevreuil
pour l’animation de l’équipe et leur bienveillance et considération pour les thésards, qui



contribuent à notre épanouissement dans ce projet de recherche.

J’adresse des remerciements chaleureux aux collègues avec qui j’ai pu faire équipe au
sein du département d’enseignement Mécanique des Matériaux et Génie Civil, notamment
Sébastien Comas, Guillaume Racineux, Thomas Corre, et toutes celles et ceux avec qui
j’ai pu encadrer des TP. Je remercie également les élu·es du Conseil des Etudes, pour
nos combats et nos échanges qui rythmaient les conseils tout au long de l’année. J’adresse
une pensée particulière à Benjamin, Amélie et les élu·es étudiant·es.

Ensuite, j’adresse mes plus profonds remerciements à mes 3 merveilleux colocataires,
qui m’ont supportée et soutenue tout au long de la thèse. Awen tout d’abord, avec de
judicieuses pauses sportives pendant les confinements et couvre-feux, Louise ensuite, avec
des ateliers créatifs et un retour à cheval, et enfin Léo, celui des trois qui me supporte
le plus : merci pour tout. Merci à toutes les personnes avec qui j’ai eu la chance de
partager un bureau, au bâtiment T ou O, mais aussi de nombreuses pauses café, car la
science ne serait pas ce qu’elle est sans ce partage et ces discussions informelles. Un
merci tout particulier à Héloïse, ma soeur de thèse, avec qui j’ai partagé deux bureaux,
des conférences et une école d’été. Merci enfin à la team footing, la team badminton, la
team vélo et la team squash pour toutes ces heures de sport qui me faisaient relativiser
n’importe quel obstacle rencontré en recherche.

Enfin, je remercie mes parents de m’avoir soutenue dans cette aventure, depuis ma
première journée d’école jusqu’à ma soutenance de thèse. Je leur dois le goût pour les
études, mais aussi la curiosité scientifique et le sport ! Merci à ma famille, mes amis et
toutes celles et ceux qui ont participé à ce que cette soutenance soit une merveilleuse
journée.

Note: While this manuscript is written in english language, I decided to write the
acknoledgements using my mother tongue, to make them accessible to my non-english
speaker friends and family.



Contents

Introduction 3

I General context and study framework 7

1 Overview of identification techniques 9
1.1 Modelling mechanical response of materials . . . . . . . . . . . . . . . . . . 11

1.1.1 Why modelling the mechanical response of materials ? . . . . . . . . 11
1.1.2 Models and constitutive laws . . . . . . . . . . . . . . . . . . . . . . 13
1.1.3 Good practices for the use of constitutive laws . . . . . . . . . . . . 16

1.2 Identification: the classical method . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 Simple deformation states experiments . . . . . . . . . . . . . . . . . 17
1.2.2 Minimisation problem . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.3 Qualitative costs, benefits and drawbacks . . . . . . . . . . . . . . . 19

1.3 Identification: full-field measurement-based methods . . . . . . . . . . . . . 20
1.3.1 Experimental test and full-field measurement . . . . . . . . . . . . . 20
1.3.2 Numerical identification strategies: the example of Finite Element

Model Updating (FEMU) . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.3 Qualitative costs, benefits and drawbacks . . . . . . . . . . . . . . . 24

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Objectives and tools 27
2.1 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Material behaviour and multiaxial tests . . . . . . . . . . . . . . . . 29
2.1.2 Towards an exploration of kinematics . . . . . . . . . . . . . . . . . 29
2.1.3 Towards an exploration of stresses without a constitutive law . . . . 30
2.1.4 Experimental applications . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Tools for data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1 Test bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Material and samples . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 Constitutive model for Finite Element simulations . . . . . . . . . . 41
2.2.4 Software and computation . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

II Exploring the mechanical response of materials 45

3 Data acquisition 47
3.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Sample design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.2 FE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

i



Contents

3.1.3 Numerical experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.4 References to the dataset through the manuscript . . . . . . . . . . . 50

3.2 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.1 Sample design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.3 Acquiring data: DIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.4 The different datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Data structure and open access repository . . . . . . . . . . . . . . . . . . . 56
3.3.1 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2 Open access repository . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 A map to explore the kinematic response of materials 59
4.1 Pre-requisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 How to observe the kinematics of an experiment and why . . . . . . 61
4.1.2 Features for finite strain . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.3 Observing the strain field . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Building a map to explore the kinematics in materials . . . . . . . . . . . . 64
4.2.1 Invariants to characterise strain states . . . . . . . . . . . . . . . . . 64
4.2.2 General principle for building the map . . . . . . . . . . . . . . . . . 67
4.2.3 Kinematic maps for experiments on planar membranes . . . . . . . . 69

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Exploring stress and strain energy density fields 73
5.1 Using DDI to measure stress fields . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.2 Adaptations for hyperelasticity . . . . . . . . . . . . . . . . . . . . . 79
5.1.3 Limitations and possible extension . . . . . . . . . . . . . . . . . . . 82

5.2 A 3D-map to explore the mechanical response of materials . . . . . . . . . . 82
5.2.1 Observation of the stress field . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 From DDI stress field to strain energy density . . . . . . . . . . . . . 84
5.2.3 (K2,K3,W ) map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

III Application to material characterisation 89

6 Data-Driven Model Identification 91
6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1.1 Concept and general framework . . . . . . . . . . . . . . . . . . . . . 93
6.1.2 Minimisation problem . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1.3 Visualisation tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Validation on synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.1 Fitted parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.2 Comparison with DDI fields . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.3 Comparison with reference fields . . . . . . . . . . . . . . . . . . . . 102
6.2.4 Evaluation of two models on simple deformation states experiments 107
6.2.5 Conclusions on the methods applied to synthetic data . . . . . . . . 107

6.3 Application to real experimental tests . . . . . . . . . . . . . . . . . . . . . 108
6.3.1 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

ii



Contents

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Sample design for full-field measurement-based identification methods 117
7.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1.1 Sample base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.1.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 Designs and simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.2.1 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.2.2 Kinematic maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.2.3 Metrics comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3.1 Samples and experimental conditions . . . . . . . . . . . . . . . . . . 124
7.3.2 Experimental kinematic maps . . . . . . . . . . . . . . . . . . . . . . 124
7.3.3 Experimental metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Conclusion 131

Appendices 133

A Résumé étendu en français 135
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.2 Contexte général et cadre de travail . . . . . . . . . . . . . . . . . . . . . . 137

A.2.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.2.2 Objectifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.3 Explorer la réponse mécanique des matériaux . . . . . . . . . . . . . . . . . 140
A.3.1 Acquisition de données . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.3.2 Une carte pour explorer la réponse cinématique des matériaux . . . 141
A.3.3 Explorer les champs de contraintes . . . . . . . . . . . . . . . . . . . 142

A.4 Applications expérimentales . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.4.1 Identification de modèle pilotée par les données . . . . . . . . . . . . 143
A.4.2 Conception d’éprouvettes pour les méthodes d’identification basées

sur les essais multiaxiaux . . . . . . . . . . . . . . . . . . . . . . . . 144
A.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B Lode invariants to describe stress field 147
B.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
B.2 Application to synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.3 Application to experimental data . . . . . . . . . . . . . . . . . . . . . . . . 149

C Convergence issues with Finite Strain DIC on Ufreckles 151
C.1 Results with strain smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . 151
C.2 Results with median smoothing . . . . . . . . . . . . . . . . . . . . . . . . . 152

Bibliography 155

iii





List of Figures

1.1 Principal kinematical features in Continuum Mechanics. The features are
presented from displacements to strain, for both Lagrangian (left) and Eu-
lerian (right) descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Connected Papers [88] chart for He’s review on 85 hyperelastic models [43],
generated the 15th of June 2023. . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Standard identification method process. The identification is based on uni-
axial, planar and equibiaxial tension. Data mining and parameter fitting
steps are exemplified by Treloar’s data [90]. The costs, expressed for each
identification step, are human time, testing machine, samples, and com-
putation time. The optimisation procedure is symbolised by the squared
looping arrow referring to Equation (1.14) in the third step. . . . . . . . . . 17

1.4 FEMU identification process. The costs, expressed for each identification
step, can be human time, testing machine, material or samples, and com-
putation time. The optimisation procedure is symbolised by the squared
looping arrow referring to Equation (1.20) in the second step. . . . . . . . . 23

1.5 Qualitative costs evaluation comparison for Classical Identification method
and FEMU. The description of the different steps can be found in Figures 1.3
and 1.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Illustration of the difficulty of representation for solid body kinematics. The
concept is illustrated with a series of Hencky’s logarithmic strain tensors
corresponding to material points at given time steps. . . . . . . . . . . . . . 30

2.2 Illustration of Data-Driven Identification (DDI) principle: the inputs are
experimental net forces, geometry and kinematic fields and the outputs are
stress-strain couples; the mechanical states are the solution of the mechan-
ical problem and the material states sample the mechanical response of the
material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Experimental setup for planar membranes testing. . . . . . . . . . . . . . . 32
2.4 Samples extracted from the large plate: two large 100 × 65 mm2 samples

and five 10 × 65 mm2 samples for traction tests. The plate displayed is
ANR1. The dimensions of the white squares in the background are 1 cm2. . 34

2.5 Experimental uniaxial tension curves on filled rubber for six different strain
rates at 24°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Displacement command shape for relaxation tests with sinusoidal loading. . 37
2.7 Experimental relaxation curves on filled rubber for five different imposed

strain levels at 24°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Normalised values for vertical force for relaxation tests on filled rubber for

five different imposed strains at 24°C. . . . . . . . . . . . . . . . . . . . . . 38
2.9 DMA testing setup. On the left stands the MetraViB DMA+150 machine,

a dynamic testing machine with 150 N stiffness. . . . . . . . . . . . . . . . . 40
2.10 DMA results. The left plot expresses the storage and loss moduli for the

tested frequencies and the right plot displays the damping for the tested
frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



List of Figures

2.11 Cyclic tests on SBR sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Sample shape and dimensions for synthetic data. . . . . . . . . . . . . . . . 49
3.2 Mesh and boundary conditions for the FE model. The upper boundary

(green) undergoes prescribed vertical displacement while the lower bound-
ary (orange) is fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Icon representing the synthetic dataset in the manuscript. . . . . . . . . . . 51
3.4 Sample used for experimental tests. The 65 × 100 mm2 rectangular mem-

brane of 1.6 mm thick is pierced with six holes: one of 22 mm diameter,
two of 12 mm diameter and three with 6 mm diameter. . . . . . . . . . . . 51

3.5 Prescribed displacements and corresponding sample pictures. The corre-
sponding time of the pictures is labeled by the numbers. . . . . . . . . . . . 53

3.6 Ufreckles software screenshots. . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Observable features during an experiment. The magnifying glass represents
the measuring instruments of physical features during a body deformation. 61

4.2 Bar histogram visualisation for Hencky’s strain tensor components of syn-
thetic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Bar histogram visualisation for Hencky’s strain tensor components of ex-
perimental data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Invariants fields plotted on the deformed mesh for synthetic experiment at
its last time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Invariants fields plotted on the deformed mesh for experimental data at its
last time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 General principle of the kinematics map. . . . . . . . . . . . . . . . . . . . . 67
4.7 Kinematic map for Treloar’s data [90]. . . . . . . . . . . . . . . . . . . . . . 68
4.8 Kinematic map for synthetic data. The dotted lines represent the simple

deformation states zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.9 Improvement of the final kinematic map. . . . . . . . . . . . . . . . . . . . . 68
4.10 Kinematic map for synthetic data experiment. The map represents the

point density of the (K2,K3) plane on which is plotted (K2,K3) couples for
every mesh element at each time step. . . . . . . . . . . . . . . . . . . . . . 69

4.11 Experimental kinematics map for four experiments conducted with the same
sample geometry and loading conditions, but at different loading speeds.
The map represents the point density of the (K2,K3) plane on which is
plotted (K2,K3) couple for every mesh element at each time step. . . . . . 70

5.1 DDI algorithm inputs and outputs. The mechanical states are represented
by circles while the material states are represented with stars. The cluster-
ing of mechanical states and their pairing with material states is represented
by the colours. The dotted lines represent the measured strain. . . . . . . . 77

5.2 DDI: an iterative algorithm. The mechanical states are represented by
circles while the material states are represented with stars. The clustering
of mechanical states and their pairing with material states is represented
by the colours. The dotted lines represent the measured strain. . . . . . . . 80

5.3 Adaptations of DDI algorithm for this work. The mechanical states are
represented by circles while the material states are represented with stars.
The clustering of mechanical states and their pairing with material states
is represented by the colours. The dotted lines represent the measured strain. 81

5.4 Bar histogram visualisation for Cauchy stress tensor components of syn-
thetic data. The stress tensor components values are expressed in Pa. . . . 83

vi



List of Figures

5.5 Bar histogram visualisation for Cauchy stress tensor components of exper-
imental data. The stress tensor components values are expressed in Pa. . . 84

5.6 (a) Kinematic map plotted along the projection of WDDI on the (K2,K3)
plane. On the left figure, the colourmap represents the point density,
whereas on the right figure, the colourmap represent the average DDI strain
energy density value for the points located in the sub-space. (b) Mechanical
response map for synthetic data. The experimental points are presented as
purple dots. The grey surface represents the model response of the Ogden
model used to build the synthetic data. Trelor’s data [91] are presented as
black markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.7 (a) Kinematic map plotted along the projection of WDDI on the (K2,K3)
plane. On the left figure, the colourmap represents the point density,
whereas on the right figure, the colourmap represent the average DDI strain
energy density value for the points located in the sub-space. (b) Mechanical
response map for experimental data. . . . . . . . . . . . . . . . . . . . . . . 86

5.8 DDI (K2,K3,W ) point cloud and (K2,W ) plane projections of the point
cloud data filtred by K3 value. . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Data-Driven Model Identification method process. The costs are expressed
for each identification step: test, DDI algorithm and parameters fitting.
Those costs can be human time, testing machine time, material or samples,
and computation time. The process can be adapted to both synthetic and
experimental data. Two distinct paths can be explored for fitting parame-
ters on the DDI stress field or fitting parameters on the associated strain
energy density field. The optimisation procedures are symbolised by the
squared looping arrows referring to Eqs. (5.8) in the second step and (6.2)
and (6.3) in the third step. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Four illustrations of density plots expressing reference data Wref as a func-
tion of relative error x(W ). . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Relative error between DDI strain energy density and reference strain en-
ergy density field from Finite Element simulation. The three histograms
on the right express the distribution of points within a small variation of
reference strain energy density value. . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Comparison of stress fields between fitted models and DDI results. The first
column indicates the method. Each figure presents a left plot representing
the relative error between the spherical part of the stress tensors, and a
left plot representing the relative error between the Von Mises norm of the
stress tensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Comparison of strain energy density fields between fitted models and DDI
results. The first column indicates the method. Each figure presents the
relative error between the DDI and fitted models’ strain energy density
fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Comparison of stress fields between fitted models and FE reference solution.
The first column indicates the method. Each figure presents a left plot rep-
resenting the relative error between the spherical part of the stress tensors,
and a left plot representing the relative error between the Von Mises norm
of the stress tensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7 Comparison of strain energy density fields between fitted models and FE
reference solution. The first column indicates the method. Each figure
presents the relative error between the reference and fitted models’ strain
energy density fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vii



List of Figures

6.8 Accuracy of the models for the three simple experiments: nominal stress
vs. largest stretch ratio for (a) uniaxial tension, (b) planar tension, and
(c) equibiaxial tension. The initial model is represented by a black contin-
uous line, and the corresponding stress values are depicted by a sky-blue
surface with a tolerance of ±5%. For each identified model, represented
by blue (identified with σDDI) and red (identified with WDDI), the solid
line illustrates the model response at stretch ratios achieved by at least one
finite element during the heterogeneous test. The dashed and dotted lines
are used for extrapolation beyond the tested range. . . . . . . . . . . . . . . 108

6.9 Comparison between fitted Ogden model strain energy density field and
DDI strain energy density field. . . . . . . . . . . . . . . . . . . . . . . . . 110

6.10 Comparison between fitted Ogden model strain energy density field and
DDI strain energy density field: absolute error display. The data is filtred.
The plane sections representing more than a hundredth of the densest plane
section are represented. Only 4% of the data points are removed. . . . . . 111

6.11 Comparison between fitted Yeoh model strain energy density field and DDI
strain energy density field. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.12 Comparison between fitted Yeoh model strain energy density field and DDI
strain energy density field: absolute error display. The data is filtred. The
plane sections representing more than a hundredth of the densest plane
section are represented. Only 4% of the data points are removed. . . . . . 112

6.13 Visualisation of fitted models surfaces and DDI strain energy density data
as functions of K2 and K3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.14 Evaluation of fitted models along with the model fitted by Abaqus on uni-
axial tension data. This is a projection of the experimental data as seen
in Figure 5.7 (b) on the (K2,W ) plane. The dark blue zones represent one
point or less. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.15 Comparison of DDI strain energy density data with Uniaxial Tension data.
DDI data is presented as a density plot using the colour bar and the uniaxial
tension data is represented by the black line. . . . . . . . . . . . . . . . . . 115

7.1 Hole punchers available for sample design. The diameters vary from 3 to
30 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Kinematic map example for metrics definition. . . . . . . . . . . . . . . . . 120
7.3 Entropy metrics visualisation. The blue dotted line represents the value of

−p ln p for given probability values, and the red round markers represent
−
∑
p ln p for a dataset where every point has an equal probability value p. 121

7.4 Sample geometries for FE simulations. . . . . . . . . . . . . . . . . . . . . . 122
7.5 Kinematic maps of two sample geometries. Left: sample (c). Right: sample

(f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.6 Experimental samples for improving deformation modes and diversity.

On the left-hand side Sample (c): ANR2.3, is presented and Sample (f):
ANR3.2 in the right-hand side. A speckle pattern has been applied with
white paint for Digital Image Correlation purposes. The samples are
clamped in the experimental setup. . . . . . . . . . . . . . . . . . . . . . . . 124

7.7 Experimental kinematic maps obtained for samples (c) and (f). Geometry
(c) (top figures) is tested twice to check reproducibility. . . . . . . . . . . . 125

7.8 Superimposition of the two kinematic maps of the (c) samples. The sample
ANR 3.3 is presented in grey levels while the sample ANR 2.3 is presented
in colours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

viii



List of Figures

A.1 Illustration des étapes nécessaires à l’identification d’un modèle de com-
portement, selon la méthode classique. Les coûts exprimés pour chaque
étape sont évalués qualitativement. Ils représentent des coûts en matéri-
aux, temps d’utilisation de machines, temps humain ou encore temps de
calcul. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2 Qualitative costs evaluation comparison for Classical Identification method
and FEMU. The description of the different steps can be found in Figures 1.3
and 1.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.3 Courbes de traction uniaxiale expérimentales pour le SBR chargé au noir
de carbone utilisé pour l’étude. Les essais ont été réalisés à 24°C, et six
vitesses de déformation différentes. . . . . . . . . . . . . . . . . . . . . . . . 139

A.4 Géométrie des éprouvettes utilisées pour les campagnes d’essais. . . . . . . 140
A.5 Banc d’essai expérimental autour de l’hexapode. . . . . . . . . . . . . . . . 141
A.6 Carte de réponse cinématique pour un essai numérique. La carte représente

la densité de points dans le plan (K2,K3) sur lequel sont tracés tous les
couples (K2,K3) correspondant à chaque élément de maillage à chaque pas
de temps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.7 Carte de réponse mécanique pour les données synthétiques. Les points
expérimentaux sont présentés en violet. La surface grise représente le mod-
èle d’Ogden utilisé pour construire le dataset numérique. Les données de
Treloar sont représentées en noir. . . . . . . . . . . . . . . . . . . . . . . . . 143

A.8 Présentation schématique de la méthode d’identification de modèle pilotée
par les données (DDMI). La méthode peut être adaptée aussi bien à des don-
nées synthétiques qu’à des données expérimentales. Deux méthodes peu-
vent être appliquées au moment de l’adaptation des paramètres du modèle
: identifier les paramètres sur le champ de contraintes ou bien sur le champ
de densité d’énergie de déformation. Sur ce schéma, seule l’adaptation des
paramètres sur le champ de densité d’énergie de déformation est représentée.144

A.9 Définition des métriques à partir d’une carte cinématique. . . . . . . . . . . 145

B.1 Description of the periodicity of the Lode angle. From [12], Figure 6.2. . . 148
B.2 Lode invariants representation for synthetic data. . . . . . . . . . . . . . . . 149
B.3 Lode invariants representation for experimental data. . . . . . . . . . . . . . 150

C.1 Results of DIC applied with strain regularisation (40) on Sample ANR 2.1. 151
C.2 Results of DIC applied with strain regularisation (40) and a refined mesh

with elements of 50 px size on Sample ANR 2.1. . . . . . . . . . . . . . . . 152
C.3 Results of DIC applied with Median regularisation (1) on Sample ANR 2.1. 153
C.4 Results of DIC applied with Median regularisation (1) and a larger mesh

with elements of 100 px size on Sample ANR 2.1. . . . . . . . . . . . . . . . 153

ix





List of Tables

2.1 Force sensor characteristics. The z-axis is the fixed plate orthogonal axis. . 32
2.2 Hexapod device limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Strain rate, maximal stretch rate and duration of the test for each experiment. 35
2.4 Fixed strain and average displacement speed in the loading phase for each

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Relaxation curves properties summary. . . . . . . . . . . . . . . . . . . . . . 39
2.6 Parameters of the fitted Yeoh model. . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Parameters of the third-order Ogden model used for synthetic data. . . . . 50
3.2 DIC hardware parameters. Some parameters are specific to each dataset

and are presented in Table 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 DIC solver parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 FE-DIC parameters and associated icon for the four experiments. . . . . . . 55
3.5 Data structure fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6 File names and corresponding datasets. The file names are ranked in al-

phabetical order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 K3 values and corresponding loading. . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Material parameters of the fitted Ogden model with minimisation on the
relative error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Material parameters of the fitted Ogden model with minimisation on the
absolute error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Material parameters of the fitted Ogden model with minimisation on the
absolute error with variable change. . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Parameters of the three-term Ogden model fitted on DDI experimental data.110
6.5 Parameters of the Yeoh model fitted on DDI experimental strain energy

density field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.6 Comparison of the initial shear modulus of the fitted models. . . . . . . . . 113

7.1 Metrics values for the twelve samples of Figure 7.4. The highest values of
each metric is highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Tests parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3 Experimental metrics for the chosen designs. . . . . . . . . . . . . . . . . . 127

xi





Introduction

1





Introduction

Materials are surrounding us and mankind needed no time to understand that materials
had different properties and different responses under loading. Yet, as we delve deeper
into the world of materials, we encounter several intriguing puzzles-among them, the
mechanical behaviour of large strain elastic materials, such as rubber. Understanding
and predicting how these materials respond to external forces, and how they deform,
is a cornerstone of mechanical engineering. It underpins the development of products
ranging from shock-absorbing tires to medical devices. However, this is precisely where
modern material science faces intricate and compelling challenges. Mechanical engineer-
ing proposes tools to model and describe those different material behaviours. Numerous
constitutive laws, relating at least a strain measure to a stress measure, were developed
for each type of material. We can refer particular formulation of a constitutive law as a
model, which also relates strain and stress to different parameters. Models are built to
smooth out experimental noise, shorten experimental campaigns by reducing the number
of needed experiments and offer prediction abilities to anticipate material behaviour in
service.

In this context, identification, the procedure of adapting a model to a material be-
haviour emerged. Three steps are classically mandatory to identify material behaviour.

• First, a series of experiments is run. The experiments are chosen and carefully run
to generate homogeneous strain and stress fields. This property ensures that the
stress field is computable through displacements and net force measures.

• Second, the strain field, stress field, and additional features are calculated.

• Third, a model is chosen and a minimisation procedure is run to find the model
parameters which will minimise the error between the model-calculated stress field
and the experimentally-measured one. A least-squares minimisation procedure is
often considered, with a gradient descent procedure.

Models can be built using microscopic observations, such as macromolecular models for
elastomers, or be based on macroscopic observations, such as phenomenological models.
They can also combine these two characteristics, and have different forms. New models
are developed yearly to precisely describe the mechanical behaviour of new materials or
encompass additional phenomena. This research endeavour plunges headfirst into the
depths of modern material science, aiming to unravel the enigma of identifying the me-
chanical response of hyperelastic materials, with rubber as a prominent example. Part 1
of the present thesis is dedicated to the definition of identification and the presentation
of different existing methods within the first chapter, as well as the presentation of the
tools and materials which are used in this manuscript. The objectives of the thesis are
presented in the second chapter. This first part focuses on the study of hyperelastic
materials, which will be used throughout the manuscript.
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Identification is a term that can be used in different manners. Instead of meaning
“the adaptation of model parameters to an experimental dataset”, identification can be
used to describe “a method that identifies the mechanical response of a material through
the estimation of its stress response”. The mechanical response of a material consists of
related features, including at least a strain field and a corresponding stress field, to which
can be added temporal, energetic or thermal features which characterise the material
behaviour. Identifying the mechanical response of a given material is then finding related
features which describe this response. That is the goal of the Data-Driven Identification
method [57]. This method falls within the Data-Driven paradigm introduced by Kirch-
doerfer and Ortiz in 2016 [50]. It consists in representing the material response with a
discrete point cloud instead of a continuous manifold. This paradigm was first introduced
to propose a model-independent method for computational mechanics: Data-Driven Com-
putational Mechanics (DDCM). DDI is an extension of DDCM built to estimate the stress
response of a material using the corresponding strain field and net forces for complex
experiments but without any use of a model. The method provides a balanced stress field
suitable for further applications. The DDI method is applied to hyperelastic materials in
this work.

Considering the existing diversity of methods to identify, model and predict material
behaviour, the present work addresses the following questions:

• How can we explore the diversity and benefits of non-homogeneous experimental
tests for identification?

• And, in this context, can Data-Driven methods collaborate with traditional mod-
elling to gather benefits from both approaches?

To address these questions, we propose to explore the mechanical response of hyper-
elastic planar membranes, from the design of multiaxial tests and corresponding samples,
to the computation of the full mechanical response of a material, and through the devel-
opment of a new identification method.

First of all, we propose to develop multiaxial tests using an innovative experimental
setup with a hexapod device. The six degrees of freedom of the device allow one to explore
a whole new range of loading conditions, with prescribed displacements and rotations.
A planar SBR sample pierced with six holes is used for experimental purposes. The
experiments and datasets are presented in Chapter 3. The resulting datasets are available
on a public repository. Then, the exploration of the kinematic response of materials
during multiaxial tests led to the construction of a “kinematic map”. The goal of this
map is to compare multiaxial tests and observe their quality in terms of deformation
diversity, considering both mode and magnitude. It is presented in Chapter 4. This map
is then enriched to explore the materials’ full mechanical response, including kinematics
and stress response, in Chapter 5. The final “mechanical response map” is presented at
the end of the chapter. It encompasses the kinematic map and the stress response of the
material. These results are presented in Part 2.

Finally, the third and last part of the manuscript presents the direct application of
previously developed methods and tools. Chapter 6 proposes an innovative identification
method centred on a multiaxial test using both Data-Driven and modelling approaches.
This method presents the benefits of both full-field measurement-based methods and
the fitting ease of the classical method. It is investigated thanks to both synthetic and
experimental data. The “mechanical response map” is used to compare the fitted models
with experimental data. Finally, Chapter 7 proposes answers to the question of a good
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identification test by comparing sample designs. The “kinematic map” is used to compare
the designs and choose the better identification-suited one. Both applications are devel-
oped in Part 3.

We invite you to embark on this intellectual journey through the intricacies of the
mechanics of materials, with a particular focus on deciphering the mechanical response
of large-strain elastic materials. Together, we aim to bring a better understanding of
identification methods applied to hyperelastic materials and the development of enriched
multiaxial tests designed for identification.
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Chapter 1

Overview of identification
techniques

With mechanical engineering emerged the need to model the mechanical response of ma-
terials. This modelling allows engineers to design industrial parts, understand, reproduce
and predict their behaviour. Models, or constitutive equations or laws, are the key tool to
model the mechanical response of the material. They are equations relating at least one
strain measure to a stress measure, and they involve one or several parameters. Plenty of
constitutive laws exist, they are adapted to a material type or property, for a given strain
range.

Some good practices for the use of constitutive laws are highlighted in this chapter.
Identification or “the art” of adapting a constitutive model to the experimental response
of a given material is explored hereafter. The standard method, based on simple deforma-
tion states experiments, allows to adapt model parameters on the stress field. A simple
deformation state experiment allows to calculate the complete corresponding stress ten-
sors. Full-field measurement-based identification methods have recently emerged, thanks
to Digital Image Correlation, allowing identification on a single multiaxial experiment.
Finite Element Model Updating (FEMU) method is detailed as an example of a full-field
measurement-based identification method.

The fitting of models to material response, called “identification” can be done with
different methods. Full-field measurement-based methods provide identification on a large
range of deformation modes, whereas the classical identification method allow for the
model choice to take place at the very end of the procedure. These major advantages
could be coupled into a new identification method.
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1.1. Modelling mechanical response of materials

Each material is unique in its constitution and behaviour, and those two characteris-
tics largely influence the type of industrial applications it can serve. Differences between
materials can be witnessed by simple observation, but tools and models had to be de-
veloped to characterise each unique behaviour precisely. For industrial applications and
everyday use, we need to anticipate and predict material response under loading, for the
sake of safety or simply the design of industrial parts. From empirical observations of
material behaviour to its representation in mechanical problems, the present section in-
vestigates material modelling in mechanical problems.

1.1 Modelling mechanical response of materials

There is evidence of observations of material behaviour since humans began to use tools.
During the Paleolithic period, shaped rocks were observed as possessing properties that
human hands had not [77]. Comparisons between materials were conducted too, as seen
with the development of rocky arrow ends instead of wooden ones. New use and tools
have been developed after discovering new material exhibiting specific properties. For
example, it was witnessed after the Europeans set foot in America in the fifteenth century
and saw indigenous people playing with latex balls, which was completely unknown in
Europe [67].

Contemporary researchers have carried on this observational work, and material prop-
erties have been conceptualised since. Sticking with the general range of elastomers, we
can cite the Payne effect [75] and Mullins effect [70], two material properties of carbon
black-filled rubbers conceptualised in 1962 and 1969 respectively.

1.1.1 Why modelling the mechanical response of materials ?

The use of materials along with physics and mathematics development led to a more
systematic need to characterise, quantify and analyze material behaviour. The industrial
revolution in the nineteenth century is characterised by an acceleration of production and
uniform products. Thus, before launching a new manufacturing line, engineers need to
conceive products and accurately predict their behaviour on the manufacturing line as
well as during their use in service. Objects and industrial parts are subjected to various
loading conditions, either prescribed displacements or applied forces or moments, that will
constitute boundary conditions of the corresponding mechanical problem, which solution
is necessary to predict the behaviour of the part.

Mechanics aims at describing and understanding the relations between matter, forces,
and motions in solid bodies or fluids. It can be divided into three fields: classical mechan-
ics, quantum mechanics and relativistic mechanics. The size of an object of study and its
speed range delimiter the domain of validity of each mechanics field. This work’s major
object of study is solid bodies larger than 10−9 m at a speed far less than light celerity,
entering the spectrum of classical mechanics. Those bodies are considered as a continuum
of matter, at a mesoscopic level, meaning that they can be divided into infinitesimal ele-
ments exhibiting no difference in mechanical properties with the whole body. Continuum
Mechanics relies on the Representative Elementary Volume, which is the smallest volume
over which a measurement can be made that will yield a value representative of the whole.
Continuum Mechanics is a tool to explain and understand various physical phenomena
without detailing these phenomena at a microscopic scale [63]. Kinematics is a field of
classical mechanics attached to the description of the motion of points, bodies or systems.
Continuum mechanics uses a large range of mathematical tools, including tensors, which
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are noted in bold characters in this manuscript, and vectors, noted with an arrow on top.

Kinematical features in Continuum mechanics
In Continuum Mechanics, the kinematics of a transformation is described using var-

ious features. Two descriptions can be considered:

• the Lagrangian description, also called “material description” which consists in ob-
serving the material particles and their motion in space, with regards to the reference
configuration of the object,

• and the Eulerian description, also called “spatial description”, which consists in
observing the evolution of physical quantities, from a fixed point of view.

Figure 1.1 summarises the principal kinematical features for Continuum mechanics.
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Figure 1.1: Principal kinematical features in Continuum Mechanics. The features are
presented from displacements to strain, for both Lagrangian (left) and Eulerian (right)
descriptions.

On the top part of the figure, two configurations of an object are represented: the
reference configuration (C0) on the left, corresponding to the start of the observation
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1.1. Modelling mechanical response of materials

(t = t0), and the current or deformed configuration (C) at time t = ti, with ti > t0.
A transformation takes place, and the object transforms from reference configuration to
current configuration. During the transformation, the material point Pe, represented by
the black square on the body in Figure 1.1, changes of position: it was first described by
its reference location, using the material vector X, and is now represented by the current
spatial vector x(ti).

The displacement u of the point is described using the reference configuration and
current configuration position, with u(X, ti) = x(X, ti) − X. The deformation gradient
F can be calculated from the transformation mapping such as:

F = ∂x

∂X
, (1.1)

then pure extension tensors U and V , and rotation tensor R are calculated using the
polar decomposition of F . Their relation and expressions are displayed in Figure 1.1.

Left and right Cauchy-Green deformation tensors B and C are calculated using the
deformation gradient F and its transpose. They express the change in shape and size
of the material particle. Green-Lagrange and Euler-Almansi strain tensors E and e are
then expressed, I being the identity tensor. The eigenvalues of B and C are the principal
stretches λ1, λ2, λ3. Additional explanations on kinematics can be found in [45].

Definition of a mechanical problem
Solving a mechanical problem consists in finding the tuple (u, ϵ,σ) such as:

• the stress field σ is statically admissible, that is to say, it is balanced at each point
of the continuous body and respects the imposed stress or force conditions on the
boundary,

• the displacement field u is kinematically admissible, that is to say, it is continuous
and differentiable at each point of the domain and respects the imposed displace-
ments boundary conditions,

• the strain field ϵ cen be derived from the transformation mapping,

• the strain and stress fields are compatible in the sense of a certain relationship,
referred to as a constitutive law.

The geometry and boundary conditions of the studied body are the basic inputs of the
problem. Once the kinematics and the equilibrium of the structure have been considered,
the resolution relies on a missing link yet to define and study: the constitutive law.

1.1.2 Models and constitutive laws

A constitutive law is an explicit relation between at least the deformation measure and
stress measure. Constitutive laws express the physical characteristics of a material: incom-
pressibility, linearity, isotropy, etc. For example, linear elastic materials are materials that
exhibit an instantaneous and reversible response to an applied strain, and for which the
applied strain is proportional to the stress. Those materials can be represented by a sim-
ple linear spring in unidimensional representations. For isotropic linear elastic materials,
Hooke’s law relates infinitesimal deformations ϵ and stress σ as follows :

σ = C : ϵ, (1.2)
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Chapter 1. Overview of identification techniques

with σ the stress tensor (Pa), ϵ the strain tensor and C the fourth order stiffness tensor
(Pa). Constitutive laws respect some conditions such as physical principle (particularly
thermodynamic ones), objectivity, determinism, which means that current quantities and
variables at time t depend on variables and quantities at previous times, and locality, which
means that the constitutive variables at material point M depend on variables and quan-
tities defined or measured in its close neighbourhood. Once ensuring those requirements,
the constitutive law is characterised by:

• its name, in our example Hooke’s law,

• its equation, in our example Eq. (1.2),

• its parameters, in our example the components of C,

• and its validity domain, that is to say, the range of deformation the constitutive law
is valid on, in our example the strain range in which the material is elastic.

Isotropic linear elastic materials are fully constrained by their physical properties, and
follow a unique constitutive law. Other types of material are not fully constrained by
their physical properties. Their constitutive law itself is insufficient to completely describe
their behaviour.

Constitutive law for isotropic hyperelastic materials is given by Eq. (1.3).

σ = 2I−1/2
3

[(
I2
∂W

∂I2
+ I3

∂W

∂I3

)
I + ∂W

∂I1
B−1 − I3

∂W

∂I2
B

]
, (1.3)

with σ being Cauchy stress tensor, W the strain energy density, B the left Cauchy-Green
tensor, I the identity tensor, and I1, I2, I3 being the principal deformation invariants
defined by Eq. (1.4): 

I1 = tr(B)

I2 = 1
2
[
tr(B)2 − tr(B2)

]
I3 = det(B),

(1.4)

This constitutive equation is not fully constrained by the physical properties. The
form of the partial derivatives of the strain energy density along the principal strain in-
variants can be chosen by the user: this choice defines a model. The models used in this
manuscript correspond to the general definition of hyperelasticity, as stated by Bonet and
Wood [11]: “In the special case when the work done by the stresses during a deformation
process is dependent only on the initial state at time t0 and the final configuration at time
t, the behaviour of the material is said to be path-independent and the material is termed
hyperelastic”. Isotropic hyperelastic models rely on the expression of the strain energy
density W as a function of strain invariants I1, I2, I3, as stated in Eq.(1.3) or principal
stretches λ1, λ2, λ3. They can be phenomenological, such as Ogden model [71] or based
on micromechanics, such as Arruda-Boyce model [4]. There is a large variety of existing
hyperelastic models, either physically based [99], phenomenological [8], and specialised for
isotropic materials [65]. Models are fitted to experimental data through the adjustment
of different parameters.

For hyperelasticity, there is a large number of models, and choosing the right one to
fit a material’s behaviour can be a challenge. 85 of them were recently reviewed by He
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1.1. Modelling mechanical response of materials

et al. [43]. Figure 1.2 is generated using Connected Papers app [88], and represents the
article network surrounding the review of He et al. [43].
The related articles are sorted by similarity: the closer to the centre they are, the more

Figure 1.2: Connected Papers [88] chart for He’s review on 85 hyperelastic models [43],
generated the 15th of June 2023.

similar subjects are covered. The colour of the associated bullet recalls the publication
year of the paper, and the darker circles correspond to more recent papers. The area
of the circle recalls the number of citations of the related paper. This graph shows that
numerous reviews on hyperelastic models have been written through the years. The first
one displayed here has been published in 2004 and the last one in 2023. The amount of
hyperelastic model reviews published through just twenty years shows that new models
are created and tested each year and their number is still increasing, justifying the need
for regular reviews. Their number and diversity allows a great adaptation to experimental
data, but complexifies the choice of a relevant model.

To conclude this section, and illustrate the diversity of hyperelastic models, three of
them are presented. The first is the Edwards-Vilgis model [33], which is a Gaussian chain
network model based on micro-mechanics. It involves four different parameters:

W = Gc

2

[(
1 − α2) I1
1 − α2I1

+ ln
(
1 − α2I1

)]

+ 1
2Ge

3∑
i=1

 (1 + η)
(
1 − α2)λ2

i(
1 + ηλ2

i

) (
1 − α2∑3

i=1 λ
2
i

) + ln
(

1 + η
3∑

i=1
λ2

i

) , (1.5)

Gc, Ge, α and η being the parameters of the model. This model is constructed using
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Chapter 1. Overview of identification techniques

both principal stretches and strain invariants. This model has a complex formulation and
is very different from the two following polynomial models which are used later in this
manuscript. The second one is Ogden’s model [71], which is a phenomenological model
based on stretch ratios:

W =
N∑

n=1

2µn

α2
n

(λαn
1 + λαn

2 + λαn
3 − 3) , (1.6)

N being the order of the model, αn and µn being the parameters of the model. This model
is power-law based. It can be used with different orders: choosing the order of the model
modifies the number of parameters used as well as the number of mathematical terms in
the expression. In this manuscript, second and third-order Ogden’s model are considered.
The last one is the Yeoh’s model [102], a three-parameter phenomenological model in the
form of a series expressed in terms of invariants:

W =
3∑

i=1
Ci0 (I1 − 3)i , (1.7)

Ci0 being the parameters of the model.

1.1.3 Good practices for the use of constitutive laws

Constitutive laws and models are one of the tools engineers use to solve mechanical
problems, design industrial part and predict their behaviour. However, every tool comes
with safety instructions, and models do not escape the rule. This subsection is dedicated
to explaining good practices and safety rules for model users. It focuses on hyperelastic
constitutive laws.

Hyperelastic models have to be polyconvex functions of F , to satisfy the above-
mentionned principles and guarantee the solubility of mechanical problems [6][42]. This
property also ensures a smooth fitting procedure when identifying material parameters.
This can constrain the validity domain of constitutive law parameters. The associated
strain energy density must be positive when the deformation gradient differs from the iden-
tity tensor, and equal to zero when the deformation gradient is equal to the identity tensor.

Some of the material properties can constrain constitutive law’s formulations. The
three principal material properties hypotheses made in this document are hyperelasticity,
isotropy and incompressibility. When these three hypotheses meet, the strain energy
density can be expressed as a function of two scalar deformation invariants I1 and I2 [94],
defined by Eq. (1.4). The third invariant, I3, is fully determined by incompressibility,
which forces its value to one. The incompressibility hypothesis implies that the model
gives the stress tensor defined without the hydrostatic pressure. The mechanical problem
has to be solved to calculate the nine terms of the stress tensor, reduced to six with the
balance of angular momentum.

One of the good practices that have to be highlighted is to try to minimise the
number of parameters of a constitutive law or material model at the most [98]. It is
tempting to develop a material model that will describe perfectly an experimental curve,
using as many functions as needed. The danger behind this is to build a model that
will be overfitted on the available data but will not be able to describe the material
behaviour for different deformation states or ranges. The over-parametrisation can also
lead to unstable models or non-unique solutions for identification [61]. There are also
compromises to make between the accuracy of the representation and the number of
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1.2. Identification: the classical method

parameters to adapt. Generally, the more parameters a model offers, the more precisely it
can fit the material’s behaviour with adequate parameters. However, adapting parameters
to experimental data is a costly distance minimisation operation, and its complexity relies
mostly on the number of parameters. That is why the following sections will be dedicated
to model-fitting approaches.

1.2 Identification: the classical method

The standard identification process relies on simple deformation states experiments, gen-
erating homogeneous stress fields in the sample’s gauge. Classically, to characterise a
material several different deformation states are required. Figure 1.3 presents the method
divided into three steps: tests, feature choice and parameters fitting. These steps will be
described in the two following sections, then their costs will be qualitatively discussed.
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Figure 1.3: Standard identification method process. The identification is based on uniaxial,
planar and equibiaxial tension. Data mining and parameter fitting steps are exemplified
by Treloar’s data [90]. The costs, expressed for each identification step, are human time,
testing machine, samples, and computation time. The optimisation procedure is symbol-
ised by the squared looping arrow referring to Equation (1.14) in the third step.

1.2.1 Simple deformation states experiments

Step 1 consists of setting up and running one to several simple deformation state experi-
ments, each of them requiring a specific sample shape and machine setup. Classically, for
soft materials, three of them are used for identification purposes:

• Uniaxial Tension, with a dogbone sample mounted on a tensile machine,

• Planar Tension, using large rectangular membrane samples mounted on a tensile
machine,

• and Equibiaxial Tension, a deformation state that can be obtained by inflating cir-
cular membranes or using cruciform samples in a dedicated bi-actuator machine.
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Chapter 1. Overview of identification techniques

Those tests are designed to guarantee homogeneous stress and strain fields. To ensure
this property, the experiments have to be run with carefulness: any misalignment of the
experimental set-up could modify the imposed kinematics of the sample, and compromise
features choice and fitting.

Step 2 of the identification method consists in calculating features of interest from
experimental data. For elastomers, those features of interest can be the measured stretches
λexp and stress σexp as displayed in Figure 1.3 (here, nominal stresses). The main benefit
of these mechanical tests is that they have been developed to ensure that the gauge zone
of the specimen undergoes homogeneous strain and stress, in a controlled way. Most of
the time, these tests are displacement-controlled, and the machine’s cross-bar displace-
ment measurement is the only information needed to capture the kinematics during the
experiment. From this displacement and for incompressible materials, the stretch λ can
be calculated and the transformation gradient F is expressed as follows:

FUT =


λ 0 0
0 λ− 1

2 0
0 0 λ− 1

2

 (1.8)

for Uniaxial Tension (UT),

FPT =


λ 0 0
0 1 0
0 0 λ−1

 (1.9)

for Planar Tension (PT), and

FEQB =


λ 0 0
0 λ 0
0 0 λ−2

 (1.10)

for Equibiaxial Tension (EQB). These particular homogeneous deformation states experi-
ments allow the direct calculation of the associated stress fields. These stress fields can be
calculated using a net force measurement and the components of transformation gradient
F, as explained by Dal et al. [27]. The corresponding Cauchy stress tensors are of the
following form:

σUT =


σUT 0 0

0 0 0
0 0 0

 (1.11)

for Uniaxial Tension,

σPT =


σ1 0 0
0 σ2 0
0 0 0

 (1.12)

for Planar Tension, σ1 being measured and σ2 being unknown, and

σEQB =


σEQB 0 0

0 σEQB 0
0 0 0

 (1.13)
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1.2. Identification: the classical method

for Equibiaxial Tension.

From these strain and stress fields, curves representing the mechanical response of the
material for simple deformation state experiments can be plotted. Treloar’s experimental
data are presented in Figure 1.3 to illustrate the second step of the identification method:
the choice of features [91]. Those curves represent the stress response of the material as
a function of the imposed stretch. They describe the mechanical response of the tested
material for those specific testing conditions. A similar use of simple deformation state
experiments for hyperelastic material identification purposes can be found in the literature,
for example in Kawabata et al. [49] or more recently in Meunier et al. [68].

1.2.2 Minimisation problem

Once the experiments run, the experimental features measured and features of interest
calculated, the constitutive model has to be chosen. This choice constitutes the beginning
of the third step, in Figure 1.3, which consists in fitting the model’s parameters through
a minimisation procedure, to find the best match with experimental data. It consists of
an optimisation procedure:

solution = arg min
y

N∑
j=1

∥ σ̂(λj
exp,y) − σj

exp ∥2
2, (1.14)

y being the parameters of the model, σ̂(λj
exp,y) the stress evaluated using the model

with parameters set y and σj
exp being the N calculated experimental stresses, and where

∥ • ∥2 defines the quadratic norm, defining a least square minimisation problem. In
this manuscript, optimisation procedures will be represented by a squared arrow looping
around the corresponding optimisation equation reference (see Step 3 in Figure 1.3).

1.2.3 Qualitative costs, benefits and drawbacks

In this section, the term “cost” expresses a qualitative evaluation of the resources needed
to complete a set of tasks during an identification process. Those resources are:

• samples,

• testing machine,

• human time for samples preparation, test design and processing, coding,

• and computation time.

These costs are expressed for each identified step of the process: tests, feature choice
and parameters fitting. The costs are evaluated qualitatively, highlighting the most costly
step of the identification method, and based on the expertise of our research group.

Here, Step 1 consists of setting up and running one to several simple deformation
state experiments, each of them requiring a specific sample shape and machine setup. The
numerous tests also require time to be run. The three costs identified for this step are
material samples, testing machines, and human time. The number of tests required and
their specificity, as well as the need for experimental carefulness to guarantee homogeneous
fields, increases the qualitative cost of this step. Step 2 consists of choosing features of
interest and calculating stress fields from experimental features. The resources for this
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step are human time and computational time, and their cost is considered low because
of the homogeneity of the fields generated by the tests. Finally, Step 3 consists in the
optimisation procedure that requires computational time, evaluated at a low cost because
of the simplicity of the procedure, and human time, evaluated at an intermediate cost
because the model must be chosen and its validity domain determined.

Two main advantages can be highlighted regarding this identification method. First,
the homogeneous tests guarantee the availability of the complete mechanical response of
the material for homogeneous tests. Second, the fitting procedure is performed “off-line”,
that is to say, it is done after the costly steps of the method (Step 1 here), meaning that
if a new material model is chosen, the identification process can be done by running the
last step only (Step 3). The major drawback of this method is that the characterisa-
tion is made on a small number of deformation states. The mechanical response of the
material in the general case of non-homogeneous deformation and more complex deforma-
tion states are extrapolated from these tests but are not confirmed by experimental means.

The following section describes and explains full-field measurement-based identifica-
tion methods, highlighting their differences from the present classical identification method
and their costs, benefits and drawbacks.

1.3 Identification: full-field measurement-based methods

The major advances made in full-field measurement techniques such as Digital Image
Correlation (DIC) [86] led researchers to employ new techniques for identification purposes.
This section will first focus on the experimental tests associated with full-field measurement
methods, then the numerical identification strategy will be exemplified with the Finite
Element Model Updating (FEMU) method, and finally, the benefits and drawbacks of
such methods will be pictured using FEMU’s costs qualitative analysis.

1.3.1 Experimental test and full-field measurement

Experimental tests Contrary to the classical identification method, methods based on
full field measurements have been developed using a unique complex experiment [5]. In
his review, Avril states that different types of experiments can be the basis of full-field
measurement-based identification methods, among others:

• a tensile test,

• the Brazilian test,

• a shear-flexural test,

• a biaxial test.

The tensile test exhibits homogeneous strain and stress fields if run perfectly. Using it with
a full-field measurement method allows us to capture some of the uncertainties regarding
the experimental setup [41]. The three other tests display non-uniform strain fields in
the region of interest: Digital Image Correlation is used to measure these fields. The
Brazilian tests consist of a diametrical compression of a cylindrical sample. It is mostly
used to characterise brittle materials. The application of a vertical diametrical load on
a cylindrical sample induces tensile stresses in the perpendicular direction that leads to
failure in the central part of the sample. The shear-flexural test has been developed
by Pierron and Grédiac to characterise concrete with a unique test [78]. The concrete
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specimen is undergoing shear stresses and bending at the same time, making it behave
like a straight rectangular beam in which all the plane stress components are present.
During this test, the sample exhibits tension along one axis, compression along the second
and shear. It allows measuring the corresponding stiffness. Other types of experiments
can be designed and used for full-field measurement-based identification methods, as long
as the experimental kinematic fields can be measured satisfactorily, as shown in the work
of Pierron and Grédiac [79].

Full-Field measurement The development of Digital Image Correlation [86] allowed
scientists to capture and save features using optical tools. Digital Image Correlation (DIC)
is an optical method that uses imaging techniques to measure changes from one picture
to another. DIC tracks position changes of a point, a surface or even an object (using
stereo-DIC). In the following, the focus is laid on 2D-DIC, performed with a single camera.
This method is based on digital images in black and white, capturing an object at a fixed
rate. Those numerical images are large tables containing integer values between 0 and 255,
describing the grey level of the corresponding pixel. A representation of those grey-level
variations can be found in Peters and Ranson’s work [76]. When the object is deformed,
the grey level table is altered as the image changes. A local optimisation process calculates
each pixel’s displacement by minimising the residual between the deformed image and the
reference image. The objective function is defined as follows:

Φ(u) =
∫

Ω
[f(x) − (g(x + u(x))]2 dx, (1.15)

with x the coordinates of the pixel, f the signal of the reference picture, i.e. the
initial gray level table, g the signal of the deformed picture, i.e. the altered grey level
table, and u the displacement field, calculated on Ω, the region of interest defined on the
reference picture. This type of objective function necessitates a non-linear least-square
solver. This method has rapidly been adapted to experimental mechanics [17].

The problem is ill posed because it is based on the minimisation of a scalar equation
whereas the displacement field is vectorial. A regularisation method has to be applied
for the resolution. Usually, the regularisation method assumes the general form of the
displacement field. Two principal types of resolution strategies are considered: global
resolution and local resolution. The local resolution method usually assumes compact
support displacement fields, and searches for the displacement of sub figures one by one.
In this work, the focus is laid on the global resolution method, in particular Finite Element
DIC as proposed by Besnard et al. [9]. The method splits the region of interest into mesh
elements and discretises the resolution process using form functions. The displacements
of every mesh node is searched. Considering Equation (1.15), and assuming that g is
differentiable, and using a displacement increment du, we can write:

f(x) ≈ g(x + u(x)) + ∇g(x + u(x))du. (1.16)

Once the differential expression of the deformed image is written, the displacement
u can be written using form functions inspired by Finite Elements as:

u(x) =
∑
α,n

aα,nψn(x)eα, (1.17)

with eα being a unit vector, aα,n the magnitude of u along direction α according to scalar
form function ψn. du naturally satisfies the same functional definition. This expression
of u allows us to write a second objective function including the form functions:
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Φ(du) =
∫

Ω

[
−
∑
α,n

daα,nψn(x)∇g(x) · eα + f(x) − g(x + u(x))
]2

dx. (1.18)

From this objective function, a linear system of equations can be defined and then
solved to calculate the displacement field:

∑
β,m

daβ,m

∫
Ω

[ψm(x)ψn(x)(∇f · eα)(x)(∇f · eβ)(x)] dx =

∫
Ω

[g(x + u(x)) − f(x)]ψn(x)(∇f · eα)(x)dx. (1.19)

The system is solved by finding the appropriate displacements magnitudes αβ,m and
corresponding unit vectors eα. Smoothing methods and filters can be applied if the noise is
considered too high. Details on processes and advice can be found in Lubineau’s work [59].
Several softwares are now running DIC and a comparison based on a DIC challenge has
been proposed in 2018 [83]. One of the major parameters for a good FE-DIC result
is the match between the speckle pattern size and the mesh element size, as discussed
by Pan et al. [74]. Other recommendations regarding lighting, speckle pattern size and
distribution can be easily found in the literature, for example in the book of Schreier et
al. chapter 10 [85]. Pan et al. discusses the choice of correlation criteria for DIC [73]. Roux
and Hild detail the optimal procedure for setting DIC for identification purposes [84][44].
Archbold et al.proposes a framework for in-plane surface displacement measurements with
double-exposure speckle photography [3]. Regularisation is a central procedure in DIC,
and diverse methods have been developed; for example, Cofaru et al. proposes to include
an adaptative spatial regularisation in the minimisation process to improve displacement
measurements [20]. Some adaptations can be made to study crack propagation with the
help of DIC [64]. The Good Practices Guide developped by International Digital Image
Correlation Society provides further advice on DIC implementation [47]. The DIC method
and parameters chosen and used in this work are described in Section 3.2.3.

Full-field measurement-based identification methods Several field measure-
ment and fitting methods have been proposed: the Constitutive Equation Gap Method
(CEGM) [72], the Virtual Fields Method (VFM) [40], the Equilibrium Gap Method [19],
the Reciprocity Gap Method [2], or EUCLID (Unsupervised discovery of interpretable
hyperelastic constitutive laws) [37], which uses Neural Networks to find the best combina-
tion of constitutive laws to build a tailored model for given experimental data. Another
approach based on FE-like strain energy density computation uses least-square min-
imisation to fit a combination of constitutive laws or material models on experimental
data [97]. The efficiency of these methods is based on the quality of experimental mea-
surements, especially on measurement noise as stated by Roux: “identification appears as
a compromise between a constitutive law describing a material and noise corrupting the
measurements” [84].

The following section will focus on the Finite Element Model Updating method as
an example of a full-field measurement-based identification method.

1.3.2 Numerical identification strategies: the example of Finite Element
Model Updating (FEMU)

Contrary to simple deformation state experiments, complex experiments do not allow
the direct calculation of stress fields: numerical strategies are necessary to fit model
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parameters by making numerical features match experimental features. It is the case of
the Finite Element Model Updating method (FEMU) [46], which is based on successive
finite element simulations based on an a priori choice of the model. Thus, this process
leads to the best set of parameters for a given model. The groundwork of this method can
be found in Kavanagh and Clough, questioning the use of Finite Elements for material
characterisation purposes [48].

The finite Element Model Updating method can be divided into two successive steps,
as shown in Figure 1.4:

𝒖𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅

Boundary

conditions 

Step 1: Test

FEMU loop

Initial 

parameters

Model 
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Step 2: FEMU loop

+                  ++                 ++ +++                                  +Cost

Figure 1.4: FEMU identification process. The costs, expressed for each identification step,
can be human time, testing machine, material or samples, and computation time. The
optimisation procedure is symbolised by the squared looping arrow referring to Equation
(1.20) in the second step.

Step 1 is experimental and consists of setting up and running a single experiment,
that can be referred to as “complex” as opposed to simple deformation state experiments,
and Step 2 is numerical. The complexity of the experimental test steps from sample
geometry, for example including holes, and/or from prescribed kinematics with complex
loading conditions. This “complex” test generates a heterogenous stress field. This unique
test requires an appropriate sample and testing machine and a full field measurement
setup. In FEMU, displacement fields are often measured using Digital Image Correlation,
as seen in the previous section. The sample is then discretised with Finite Elements,
and this mesh is retained for the FEMU loop. Once the displacement field is measured,
a model has to be chosen with arbitrary initial parameters to begin the numerical step
(Step 2). The model and the initial set of parameters are considered inputs for the FEMU
method, as well as the measured displacement field and net forces. The Finite Element
model is built using the geometry and boundary conditions of the complex experiment.
After the finite element simulation is run, the resulting displacement field is compared
with the displacement field measured during the experiment. If their agreement is not
considered satisfactory, the parameters are updated, giving the name to the method and
building a new Finite Element model, and a new finite element simulation is run.

Parameter updates can be made using several methods. The classical one relies on
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gradient-based methods such as gradient or steepest descent. Other methods such as
the Newton-Raphson method or quasi-Newton method can be applied for the parameters
update. The method iterates until reaching the minimal distance between discretised
experimental displacement field {U} and discretised numerical displacement field {V (y)}
with respect to the current set of parameters y:

solution = arg min
y

({U} − {V (y)})T ({U} − {V (y)}), (1.20)

Throughout the FEMU optimisation loop, experimental net forces are used as con-
straints to ensure the reliability of the resulting parameters set. The output of FEMU is
the optimal parameters set for the chosen model, and the predictive quality of the result-
ing model highly depends on the choice of model made a priori. When the optimisation
procedure aims to minimise the distance between measured and simulated displacements,
the method is called U-FEMU. In fact, the classical U-FEMU has been presented in this
section: the measured displacement field is considered as the reference feature with which
the computed displacement field will be compared in the objective function formulation.

Other features can be used as reference features to build the objective function. In
the literature, strain, net forces or stresses are part of the FEMU objective function, as
discussed in Ienny et al. review [46]. FEMU can be written differently and rely on a
different objective function. F-FEMU is a FEMU procedure which minimises the distance
between measured net forces and calculated FE resulting forces. The objective function
is:

solution = arg min
y

1
M − p

M∑
m=1

(
F exp (tm) − FFE (tm)

|F exp|max − |F exp,mean |

)2

, (1.21)

where p is the number of material parameters, tm the time instant and M is the number
of time steps.

FEMU is well suited for identification of complex behaviours, such as hyper-
viscoelastic behaviours as shown by Tayeb et al. [89] who used FEMU to fit a Yeoh
model with Prony series to characterise the hyper-viscoelastic behaviour of an elastomer.
The heterogenous test of their study is a relaxation test on a cruciform sample.

1.3.3 Qualitative costs, benefits and drawbacks

For full-field measurement-based identification methods, the qualitative costs can be ex-
pressed for each step of the process: the experimental step (Step 1) and the numerical step
(Step 2). For the experimental part, the cost is evaluated low, because only one test is
needed to perform the identification method. This places the full-field measurement-based
identification methods above the classical identification method for the material sample
costs. At the same time, machine and time are evaluated to be at an intermediate cost for
the experimental set up including Digital Image Correlation. Step 2 is purely numerical,
and the two identified costs are computation time and human time. The human time is
evaluated short, and the major cost comes from the computation time of the FEMU loop.
This computation time depends on the complexity of the finite element model to run,
including the complexity of the mesh, the number of loading steps and the complexity
of the model considered and the necessary number of iterations, i.e. the number of FE
computations to convergence.
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Another major issue is that the identification problem is often ill-posed. The objective
function often presents numerous local minima and no global minimum. The minimisation
procedure can be really costly and a FE computation remains necessary at each algorithm
iteration.

1.4 Conclusion
Finally, constitutive laws can be seen as key tools for material science. These tools are
necessary for most computational mechanics methods. A large diversity of constitutive
laws exist, and each one of them gathers its particularities. This variety of models induces
a need for extreme carefulness when selecting a model to model the response of a given
material. Their domain of validity and a number of parameters have to be chosen carefully.

Adapting a material model to experimental data to describe a material’s behaviour
is called identification. Figure 1.5 proposes an overview of the qualitative costs detailed
previously for the historical identification method and the FEMU method. The historical
identification method allows a direct calculation of stress and an easy fitting procedure
but needs several experimental tests, as illustrated with the qualitative costs presented
in Figure 1.5. Moreover, the extrapolation from simple deformation states to multiaxial
deformation can generate some errors. Full-field measurement-based identification meth-
ods work with a single multiaxial experiment. However, in this case, the stress fields
are not directly available, and costly numerical strategies have to be run to carry on the
identification process, as illustrated in Figure 1.5.

Step 1: Tests Step 2: Features Choice Step 3: Parameters fitting

+++              +++              +++ +                + +               ++Cost

Step 1: Test Step 2: FEMU loop

+                  ++                 ++ +++                                  +Cost

FEMU

Classical Identification Method

Figure 1.5: Qualitative costs evaluation comparison for Classical Identification method
and FEMU. The description of the different steps can be found in Figures 1.3 and 1.4.

Considering the complexity and challenges induced by constitutive laws and identi-
fication, the present work explores data-driven identification methods for incompressible
isotropic hyperelasticity. The objectives of the study are presented in the following.
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Chapter 2

Objectives and tools

This chapter focuses on setting and describing the objectives of the study:

• setting up and running multiaxial tests,

• develop a visualisation tool to describe the kinematics of the experiments,

• enhance the visualisation tool to encompass the stress response of the material,

• develop an identification method based on multiaxial tests and relying on an “off-
line” choice of the model,

• and use the kinematic visualisation tool to improve the test’s deformation modes
diversity.

The carbon-black-filled SBR that is used for experimental purposes is studied through
uniaxial tension tests, relaxation tests, cyclic uniaxial tension tests and Dynamical Me-
chanical Analysis (DMA). It exhibits some viscous properties and is subjected to the
Mullins effect. The upcoming experimental tests are run with progressive loading to avoid
triggering the Mullins effect and fixed slow strain rates to minimise viscous effects.

The software used in this study is presented at the end of the chapter.
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2.1. Objectives of the thesis

Identifying the mechanical response of a material remains challenging. Choices have
been made to carry out this PhD work and provide insights into hyperelastic material
behaviour. The goal of this project is to build and describe tools to characterise the
complete mechanical response of an hyperelastic isotropic incompressible material, using
a single multiaxial test run with a planar sample. The first section of this chapter details
the objectives of the study while the second section presents the material, samples and
software used in the following.

2.1 Objectives of the thesis

This study focuses on the response of soft materials, especially elastomers. Classically,
they are assumed isotropic and incompressible and we consider hyperelastic models to
reproduce their mechanical response under large strain.

2.1.1 Material behaviour and multiaxial tests

The mechanical response of a material, which is often summarised by a model associated
with chosen parameters, is constituted of a kinematic part and a stress part. This work
will focus on both aspects successively.

These studies are conducted both on synthetic and experimental data. The focus is
laid on multiaxial tests conducted on planar elastomeric membranes with punched holes.
Data has to be generated and gathered to conduct these studies. Chapter 3 details the
methods used to generate synthetic data and collect experimental data from
multiaxial tests on elastomeric planar membranes.

2.1.2 Towards an exploration of kinematics

Within the broader framework of continuum mechanics, the study of kinematics involves
measuring and characterising the deformation of a body (in fact a sample) during a test.
When utilising multiaxial tests for identification purposes, there arises a necessity to
thoroughly examine, describe, and characterise such tests. The wide range of deformation
modes and intensities observed during these tests significantly impacts the quality of
identification.

In the context of kinematics and material deformation, strain tensors play a crucial
role in capturing the relationship between applied forces and observed strain. However,
accurately representing and interpreting these tensors can be a daunting endeavour. As
the dimensionality of tensors increases, so does the complexity of understanding their
meaning. Moreover, visualising tensors with more than three dimensions becomes espe-
cially challenging. This can be an issue when working in the experimental world, with
three-dimensional objects and strain tensors with nine components, as illustrated in Fig-
ure 2.1.

To address this question of visualisation, Chapter 4 aims to develop a graphical
tool that effectively describes the kinematics of a comprehensive and intricate
mechanical test.
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Figure 2.1: Illustration of the difficulty of representation for solid body kinematics. The
concept is illustrated with a series of Hencky’s logarithmic strain tensors corresponding to
material points at given time steps.

2.1.3 Towards an exploration of stresses without a constitutive law

Once we can accurately describe the diversity and quality of kinematic data obtained from
an experiment, there arises a subsequent aspect of the material response: stresses. Tradi-
tionally, stresses are calculated using constitutive laws, models and associated parameters.
However, in recent years, non-parametric methods have emerged as an alternative ap-
proach to construct new forms of material modelling, as exemplified by Montans [69].
This paradigm shift, where material data is represented by extensive databases instead
of relying on a continuous manifold derived from a constitutive law, has been investi-
gated by Kirchdoerfer and Ortiz in the Data-Driven Computational Mechanics (DDCM)
paradigm [50]. Inspired by this novel approach, Leygue et al. developed Data-Driven
Identification [57], a method that enables the calculation of multiaxial stress fields with-
out any reliance on constitutive laws, as illustrated in Figure 2.2.

In line with this innovative approach, the objective of Chapter 5 is to derive
stress fields from multiaxial experiments without the need for constitutive
laws or modelling assumptions. Once these stress fields are accurately calcu-
lated and described, the aim is to enhance the previous kinematic graphical
tool to encompass a comprehensive representation of the material’s complete
mechanical response.
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Inputs: Outputs:

Kinematic fields

DDI
Test, net forces

σ

ε

Mechanical states
Material database
Pairing material
states- mechanical
states

Figure 2.2: Illustration of Data-Driven Identification (DDI) principle: the inputs are
experimental net forces, geometry and kinematic fields and the outputs are stress-strain
couples; the mechanical states are the solution of the mechanical problem and the material
states sample the mechanical response of the material.

2.1.4 Experimental applications

The availability of graphical tools to describe and characterise multiaxial tests generates
numerous applications. Some experimental applications have been developed during this
PhD project.

The first application described in Chapter 6 is a new identification method,
bringing together Data-Driven methods and constitutive modelling. This
method will gather the benefits of an offline parameter fitting and the use of a multiaxial
test as identification data.

The second application developed in Chapter 7 consists in using the kinemat-
ics graphical tool to enhance the diversity of the kinematical states observed
during one multiaxial test.

2.2 Tools for data acquisition

Some tools are necessary to achieve the objectives presented above. The next subsection
is dedicated to the presentation and characterisation of the materials and samples used
in the experimental studies. The second subsection references the software and numerical
tools used for computation.

2.2.1 Test bench

The tests were conducted on a Symetrie Breva hexapod device shown in Figure 2.3.

This kind of device was first designed for driving simulators or precisely positioning
mirrors of telescopes. Six electrical actuators link the fixed base to a moveable upper
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Figure 2.3: Experimental setup for planar membranes testing.

platform. The system can be moved along the six degrees of freedom, component by
component or follow a given positioning trajectory. The Breva device used here has an
amplitude of 80 mm along the vertical (z) axis, and 100 mm along the horizontal (x and y)
axis, as well as 40° amplitude for each rotation. Those amplitudes depend on the position
of the platform because the six jacks have physical limits and cannot reach every position.
Free software called Hexasym is available on Symetrie website [87] to prepare and validate
trajectories to be followed by the upper platform. The clamping jaws were 3D printed to
be fully adapted to sample dimensions and hexapod setup, which is shown in Figure 2.3.
A six-axis sensor located in the moveable platform acquires forces and momentum in the
three directions during the test. The sensor is made by Interface©, model 6A40A-00N. Its
characteristics are given in Table 2.1.

Fx (N) Fy (N) Fz (N) Mx (Nm) My (Nm) Mz (Nm)
200 200 500 5 5 10

Table 2.1: Force sensor characteristics. The z-axis is the fixed plate orthogonal axis.

The force acquisition can be synchronised with the test start and the camera acquisi-
tion using a connected trigger device. The camera is made by Vieworks, model Vieworks
VC-50MX-M30E0 and a lens from Tokina, model atx-i 100mm F2.8 FF Macro is used for
capturing the sample’s deformations. This test bench is located in a controlled temper-
ature room, with a fixed 24°C temperature. Some machine limitations must be checked
when building complex tests on hexapod devices. Those are summarised in Table 2.2,
and must be considered when imposing displacements on the device. Those limitations
induced some experimental choices, such as limiting any slope break when setting imposed
displacements. Most of the time, inserting a quarter sine period at the beginning or the
end of the imposed displacement guarantees a sufficiently smooth acceleration.
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Feature Limit Unit

Maximal actuator length 337.0 mm
Minimal actuator length 258.0 mm

Actuator speed 50 mm.s−1

Actuator acceleration 110 mm.s−2

Actuator load 340 N
Actuator power 0.04 kW

Fixed platform angle (cardan) 55.0 °
Mobile platform angle (cardan) 55.0 °

Screw speed 14 323.9 tr/min
Screw acceleration 345.6 rad.s−1

Motor power 0.10 kW
Motor torque 0.5 N.m
Motor speed 2500.0 tr/min

Motor acceleration 500 rad.s−2

Motor intensity 3.00 A
Motor tension 60.00 V
Machine power 1.12 kW

Actuator displacement 0.06 m

Table 2.2: Hexapod device limits.

Although the force acquisition is synchronised with the hexapod command software,
some trigger issues did occur during our experimental campaings. Investigations have been
conducted to identify the causes of those trigger issues, that are surprisingly reproducible
as the repetition of some experiments displays the same trigger issues. Another surprising
result is that the slower tests do not show the same trigger issues, that is to say, the
issues do not appear when the crossbar displacement is “too slow to detect” as we first
thought. Finally, a change of format in the input files was able to resolve this trigger issue.

2.2.2 Material and samples

Despite the strong will to take some distance from traditional mechanical characterisation,
simple experiments were essential to grasp our material’s properties. This work is con-
ducted in partnership with Michelin which provides material samples of carbon-black-filled
Styrene-Butadiene Rubber (SBR). The provided samples are seven planar membranes of
250 × 65 mm2 area, with cylindrical bulges, as seen in Figure 2.4.

The thickness of the plate varies along the plate, with an average of 1.6 mm. The
local thickness variations are around 10−2 mm. The glass temperature of the material
is estimated at around −65 °C. Three types of samples were extracted from the original
plates: 10×65 mm2 samples for uniaxial tension tests, relaxation tests and cycling tension
tests; 100 × 65 mm2 samples for multiaxial tests; and 10 mm height cylindrical samples
for Dynamical Mechanical Analysis (DMA).
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Figure 2.4: Samples extracted from the large plate: two large 100 × 65 mm2 samples and
five 10×65 mm2 samples for traction tests. The plate displayed is ANR1. The dimensions
of the white squares in the background are 1 cm2.

2.2.2.1 Uniaxial tension tests

Methods Uniaxial traction tests were conducted with constant Hencky strain rate (ϵ̇),
on a hexapod machine shown in Figure 2.3, with maximal hexapod vertical amplitude of
80 mm, corresponding to a stretch of λ = l/l0 = 2.23. This series of experiments aimed
to assess the viscoelastic behaviour of the material in the displacement velocity range
accessible by the device. Nine samples were tested, each with a fixed ϵ̇ value. In our case,
as long as the testing machine is driven by displacement, it can be expressed as:

ϵ̇ = cst. (2.1)

And as long as
ϵ = ln(λ), (2.2)

we have:

ϵ̇ = λ̇

λ
(2.3)

⇒ λ̇ = ϵ̇λ. (2.4)

So it occurs that
λ = αeϵ̇t, (2.5)

with l0 the rest length of the sample, of 65 mm, t the time if the experiment in
seconds, and a constant. The chosen values of strain rates a = ϵ̇, the associated maximal
stretch rate λ̇max, and the duration of the test are given in Table 2.3. The force sensor
values are updated every hundredth of a second. The starting condition λ = 1 at the start
of the experiment, for t = 0 imposes a = 1. This notation will not be conserved in the
rest of the development. Finally, according to the relation between u and λ

λ = 1 + ∥u∥
l0

(2.6)

⇒ u(t) = l0(eϵ̇t − 1)z, (2.7)

z being the vertical unit vector.
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Specimen identification ϵ̇ (s−1) λ̇max (s−1) Duration of
the test (s)

2021-03-10-ANR1-
65x10mm-1 0.16 0.357 5.01

2021-03-10-ANR1-
65x10mm-3 0.1 0.223 8.02

2021-03-10-ANR1-
65x10mm-4 10−2 2.23 × 10−2 80.23

2021-05-03-ANR1.1-
65x10mm-1 10−2 2.23 × 10−2 80.23

2021-05-03-ANR1.1-
65x10mm-2 10−2 2.23 × 10−2 80.23

2021-03-10-ANR1-
65x10mm-2 10−3 2.23 × 10−3 802.34

2021-03-10-ANR1-
65x10mm-5 10−4 2.23 × 10−4 8023.46

2021-04-14-ANR3-
65x10mm-5 10−4 2.23 × 10−4 8023.46

2021-03-10-ANR2-
65x10mm-5 5 × 10−5 4.46 × 10−5 40117.30

Table 2.3: Strain rate, maximal stretch rate and duration of the test for each experiment.
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Figure 2.5: Experimental uniaxial tension curves on filled rubber for six different strain
rates at 24°C.
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Results The results of this series of experiments are displayed in this section. Figure 2.5
shows the uniaxial Cauchy stress as a function of Hencky strain in the loading direction.

It displays a difference between the nine tests conducted. Classically, the slower the
loading, the lower the stress is. This confirms the viscous nature of the material tested.
Otherwise, the general shape of the curves is pretty similar. The duplication of tests with
similar strain rate exhibits a good reproducibility. The small differences between the three
slower tests, corresponding to α = 10−4 s−1 and α = 5×10−5 s−1 suggests that there is no
demonstrative viscous behaviour for these strain rates. Dynamical Mechanical Analysis
tests have been run to ensure that the multiaxial tests will trigger mainly hyperelastic
effects and negligible viscoelastic behaviour.

Remarks Some remarks can be made about the results obtained during this charac-
terisation campaign. In the experimental setup, the Hexapod command is synchronised
with the acquisition and triggers the start and the end of the writing of the output file.
The curves of Figure 2.5 corresponding to ϵ̇ = 0.16 s−1 and ϵ̇ = 0.1 s−1 seem to have had
a bad end trigger timing and continued measuring features after reaching the imposed
strain. About some other curves, a start trigger issue seems to have happened for the
ones corresponding to ϵ̇ = 0.01 s−1, which also displays an end trigger issue. The first
force values written in the file were one or two orders of magnitude higher than the values
accepted when setting the zero. The values have been artificially shifted.

Another source of difference between the curves could be a manifestation of the
Mullins effect since we tested all the samples on the first tension. Some tension tests
should be conducted after a five-cycle “demullinisation” process on a filled SBR sample to
characterise this effect, as well as a tension-relaxation cyclic test.

2.2.2.2 Relaxation tests

Methods Some elastomers exhibit viscous behaviours [38], and one way to characterise
it is to conduct relaxation tests. Relaxation tests were conducted on Symetrie Breva
hexapod device, which is displacement-driven during the tests. The goal of this series of
tests was to go a bit further on assessing the viscoelastic behaviour of the material and
stating if the viscous effects observed during traction tests will manifest themselves during
multi-axial tests, or in the range of stretches and times available on the hexapod device.
Those tests consist of two different phases, as shown in Figure 2.6: a loading phase, from
t = 0 to t = tload and a holding phase, for a duration of tstat from t = tload to the end of
the experiment, t = tload + tstat.

The device accepts high displacement speeds of up to 25 mm.s−1, but cannot undergo
slope breaks when rejoining a command plateau. It was then decided to follow a half-period
sinusoidal curve during the loading phase to avoid issues linked to slope breaks:

u(t) = umax
2

(
cos
(
πvmoy
umax

t

)
− 1

)
, (2.8)

with u(t) the vertical displacement of the machine plate as a function of time t,
umax the maximal vertical displacement of the machine and vmoy the chosen average
displacement speed. The average displacement speed for the loading phase is set to
vmoy = 16 mm.s−1. The static phase was set to a duration of 300 s for two samples and
1000 s for the others. Table 2.4 summarises each experiment’s imposed strain and average
displacement speed.
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Figure 2.6: Displacement command shape for relaxation tests with sinusoidal loading.

Test Number λmax
Average speed in loading

phase (mm.s−1)
Holding phase
duration (s)

2021-03-10-ANR2-
65x10mm-2 2.2308 16 300

2021-04-14-ANR3-
65x10mm-2 2.2308 16 10000

2021-03-10-ANR1-
65x10mm-3 2 16 300

2021-04-14-ANR3-
65x10mm-3 2 16 10000

2021-03-10-ANR2-
65x10mm-4 1.8 16 10000

2021-04-14-ANR3-
65x10mm-1 1.5 16 10000

2021-04-14-ANR3-
65x10mm-4 1.1 16 10000

Table 2.4: Fixed strain and average displacement speed in the loading phase for each
experiment.

Results The results of relaxation experiments are displayed in Figure 2.7, which shows
vertical force amplitude as a function of time.

Classically, the slower the sollicitation, the lower the vertical component of the force
is. A change of slope can be observed around t = 0.2 s and t = 1 s for λ = 2.2308 and
λ = 2 experiments respectively. It can be observed on normalised vertical force values in
Figure 2.8 that there are multiple slope breaks and different behaviours.

Those multiple slope breaks occur at three characteristic times: t = 2×10−1 s, t = 2 s
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Figure 2.7: Experimental relaxation curves on filled rubber for five different imposed strain
levels at 24°C.
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Figure 2.8: Normalised values for vertical force for relaxation tests on filled rubber for five
different imposed strains at 24°C.

and t = 2 × 103 s and suggest that we cannot precisely model this material with a simple
Maxwell model. Three different behaviours can be extracted from this figure, and have
been summarised in Table 2.5. The three higher stretch curves exhibit the same behaviour
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whereas the lower stretch displays two distinct behaviours with a slower relaxation at first,
which tends to increase around 103 s for the lower stretch at λ = 1.1.

Slope break at
λmax t = 2 × 10−1 s t = 2 s t = 2 × 103 s

2.2308 Yes Yes No
2 Yes Yes No

1.8 Yes Yes No
1.5 No Yes No
1.1 No Yes Yes

Table 2.5: Relaxation curves properties summary.

2.2.2.3 Dynamic Mechanical Analysis

Methods Dynamic Mechanical Analysis (DMA) is an experimental technique used to
characterise the extent of viscous and elastic responses of materials, by applying a strain
or stress at controlled frequencies and analysing the strain or stress response to obtain the
storage and loss moduli [66]. Cylindrical samples of 6 mm diameter and 10 mm height
were tested on a MetraviB DMA+150 machine, as shown in Figure 2.9.
A compressive static strain of 10% was imposed with a 3% dynamic strain: the sample

is enduring 7% to 13% compression strain while testing. During the test, the machine
is displacement-controlled. The tests were run with a frequency sweep from 10−2 Hz
to 10 Hz. The tests were conducted in a temperature-controlled environment, with a
temperature set to 23.5°C.

Results DMA results are displayed in Figure 2.10.
The left plot shows the storage and loss moduli in the tested frequency range. There

is one decade difference between storage and loss modulus for each frequency tested:
the hyperelastic behaviour of the material is of higher importance than the viscoelastic
behaviour of the material. In Figure 2.10, the right-hand side plot expresses the damping
for the tested frequencies. The damping is not evolving much in this frequency range, and
the observed values are consistent with classical observations in SBR material.

2.2.2.4 Cyclic uniaxial tension tests

Methods Six cyclic uniaxial tension tests were conducted at different strain rates.
Elastomers can exhibit additional dynamic phenomena when loaded periodically. Two
main phenomena can be exhibited: Mullins effect [70] and Payne effect [75]. The Payne
effect occurs at small strains and will not be considered here. Mullins effect consists
of mechanical softening recorded upon the first stretch. This phenomenon occurs in
carbon-black filled elastomers, as the first stretch damages the rubber matrix and the
filler structure [32]. Cyclic tests were then conducted to assess the presence of Mullins
effect. Two tests were conducted on 10 × 65 mm2s SBR samples, with the same loading
path of 10 cycles of loadings and unloadings with increasing strain at each cycle. The
loading phases were conducted at a fixed strain rate of 0.01 s−1.
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Figure 2.9: DMA testing setup. On the left stands the MetraViB DMA+150 machine, a
dynamic testing machine with 150 N stiffness.
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Figure 2.10: DMA results. The left plot expresses the storage and loss moduli for the
tested frequencies and the right plot displays the damping for the tested frequencies.
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Results The results are displayed in Figure 2.11.
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Figure 2.11: Cyclic tests on SBR sample.

The material exhibits clear signs of Mullins effect, characterised by the difference
between stress responses induced by the same loading path, at strains already reached by
the sample during previous cycles. This additional non-linear effect must be considered to
develop our experimental tests. For example, multiaxial tests will tend to follow a loading
path that ensures that the material is progressively loaded without unloading, to avoid
the influence of Mullins effect.

Despite the availability of models to describe Mullins effect [16], as reviewed by
Diani [31], the phenomenon was not investigated more, as we consider that using virgin
material for each test and conducting progressive loading will ensure the absence of Mullins
effect in experimental data.

2.2.3 Constitutive model for Finite Element simulations

Whereas this work has experimental purposes, it is classical to test and proof algorithms
and methods with synthetic data before working with experimental data. A model was
then needed to represent the carbon-black filled SBR during Finite Element simulations.
The model fitting was made using the included tool of Abaqus CAE [30]. Models are fitted
on uniaxial tension data presented in Figure 2.5, with ϵ̇ = 0.01 s−1. Several hyperelastic
models were proposed and eleven of them are selected:

• Arruda-Boyce, successfully fitted,

• Marlow, unsuccessfully fitted,
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• Mooney-Rivlin, successfully fitted only for uniaxial tension,

• neo-Hookean model, successfully fitted,

• Ogden models of first to fifth rank, successfully fitted by Abaqus but exhibiting fitted
parameters that do not satisfy polyconvexity requirements,

• Van der Waals, unsuccessfully fitted,

• and Yeoh model, successfully fitted.

Yeoh model [102] is chosen to represent the material. Its strain energy density func-
tion is written:

W = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3, (2.9)

with I1 =
∑3

i=1 λ
2
i and C10, C20 and C30 being the parameters of the model. The fitted

parameters are presented in Table 2.6.

Parameters C10 C20 C30

Value (MPa) 0.937 -0.269 0.0598

Table 2.6: Parameters of the fitted Yeoh model.

The corresponding initial shear modulus is calculated as:

µ0 = 2C10 = 1.87 × 106 Pa. (2.10)

2.2.4 Software and computation

This PhD project was achieved thanks to the following numerical tools:

• The codes for numerical procedures, Data-Driven Identification, experimental results
analysis and figure plotting are written in Matlab, using Matlab R2020b version [62].

• Digital Image Correlation is run using the open-source software Ufreckles v2.0,
developed by Réthoré [82].

• The Finite Element simulations are run with Abaqus CAE software developed by
Dassault Systèmes, version 2019 [30]. Interfacing between Matlab and Abaqus has
been written using Ufreckles tool to carry out numerical simulations. Abaqus was
used using the recommendations of Elshorbagy [35].

• GMSH [39] and Paraview [51] were used for visualisation purposes and figure cre-
ation.

2.3 Conclusion
There are still some challenges in identifying the mechanical response of materials. In
this study, material characterisation will be conducted for hyperelastic, isotropic and
incompressible materials. A carbon-black-filled SBR is used for experimental purposes.
Different tests have been conducted to characterise its behaviour. It exhibits some viscous
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effects along with the Mullins effect. The multiaxial tests are designed to limit its viscous
response and focus on hyperelasticity: the viscous behaviour will be neglected in multi-
axial experimental tests. These tests are also designed to apply a progressive loading to
avoid the Mullins effect.

Now that the tools for this study have been defined, we can focus on the successive
objectives of this work.

• First, synthetic and physical multiaxial tests are presented.

• Test kinematics are extracted from these data, and will be studied using a visuali-
sation tool.

• This tool will be extended to encapsulate the material’s stress response.

• Finally, these studies will be used to build two applications: an identification method
based on multiaxial tests and the DDI approach, and a reflection on the diversity of
deformation modes encountered during our tests.
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Part II

Exploring the mechanical response
of materials
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Chapter 3

Data acquisition

Our synthetic and experimental data are presented in this chapter.

Synthetic data is built using a third-order Ogden model fitted on Treloar’s historical
data. This “numerical material” is included in a FE model, constructed with a dogbone
sample pierced with three holes. This sample is loaded in uniaxial tension with prescribed
displacement, until a global stretch of 300%.

Experimental data is obtained using a test bench made of a hexapod device, force
sensor and optical camera. The displacement field is measured using DIC. Carbon black-
filled SBR membranes pierced with six holes are used. A complex test with a multiaxial
loading path is applied with four different execution speeds.

Both synthetic and experimental data sets are formatted into Matlab structures and
stored in a public repository for anyone interested in working with them. This public
repository is accessible here [22].
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3.1. Synthetic data

Our synthetic and experimental data are presented in this chapter. The methods for
obtaining those data are detailed. The deliverable of this chapter is a public repository
for sharing the data used in this work. The datasets presented in this chapter present
planar samples built with incompressible materials. The materials are under plane stress.

3.1 Synthetic data
Some numerical data built with Finite Elements simulation on Abaqus is used in this
work to validate our methods. This data is similar to the one proposed in Dalémat PhD
thesis [28], Chapter 3.

3.1.1 Sample design

The sample geometry used for synthetic data is shown in Figure 3.1. It consists of a
dogbone sample of 200 mm height and 100 mm width pierced with three holes: two small
holes of 25 mm diameter on the upper part and a larger one of 40 mm diameter near the
bottom. The sample presents a vertical symmetry axis. The holes are placed to induce
non-heterogeneous strain fields during stretching.

Figure 3.1: Sample shape and dimensions for synthetic data.

3.1.2 FE model

The Finite Element model is built in Abaqus CAE [30]. A third-order Ogden model is
used to describe the material behaviour. The corresponding strain energy density is given
in Eq. (1.6). Then, the principal Cauchy stress is:

σk = −q +
n∑

i=1
µi λ

αi
k ∀ k ∈ {1,2,3}. (3.1)

The third-order Ogden model’s parameters are the ones fitted by Ogden [71] on
Treloar’s data [90] and are presented in Table 3.1.
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Remark: This model is chosen to build synthetic data and begin numerical investiga-
tions on a "synthetic material" prior to the first experiments on a test bench. This PhD
was conducted during covid-19 pandemic and the experimental part was delayed due to
pandemic restrictions.

Parameters µ1 (Pa) µ2 (Pa) µ3 (Pa) α1 α2 α3

Values 6.18 × 105 1.18 × 103 −9.81 × 103 1.3 5.0 −2.0

Table 3.1: Parameters of the third-order Ogden model used for synthetic data.

Note that the corresponding shear modulus is [45]:

µ = 1
2

3∑
i=1

µi αi ≈ 4.14 × 105 Pa. (3.2)

For simulation, the sample is meshed with 3379 nodes and 6346 linear triangular
finite elements.

3.1.3 Numerical experiment

The numerical computation consists of 20 loading steps. The 61 nodes of the lower sample
boundary are fixed while the 61 nodes of the upper boundary of the sample undergo
a linear prescribed vertical displacement while their x-axis coordinate is fixed. These
boundary conditions are illustrated in Figure 3.2. The prescribed displacements of the
upper boundary make the sample reach a 300% stretch ratio at the final loading step,
with a prescribed vertical displacement of 400 mm.

Figure 3.2: Mesh and boundary conditions for the FE model. The upper boundary (green)
undergoes prescribed vertical displacement while the lower boundary (orange) is fixed.

3.1.4 References to the dataset through the manuscript

This dataset is referred to as “synthetic data” throughout the manuscript. For enhanced
clarity, the icon presented in Figure 3.3 is placed on the side of figures representing data
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related to this synthetic data.

Figure 3.3: Icon representing the synthetic dataset in the manuscript.

Note that Section 6.2 only refers to this dataset.

3.2 Experimental data

This section presents the experimental tests run in this work. Four datasets are presented.
The sample geometry and loading conditions are presented and the differences between the
four tests are highlighted. The tests are run using the test bench described in Section 2.2.1.

3.2.1 Sample design

The sample is a 100 × 65 mm2 carbon-black filled SBR membrane with 6 mm diameter
cylindrical bulges to clamp in the machine’s jaws. The samples are provided by Michelin.
The samples are cut out from one of the SBR plates presented in Figure 2.4. Each sample
is referred to as “ANR” followed by two numbers: the number of the 250 × 100 mm2 plate
it is extracted from and the number of the sample extracted from the same plate. The
sample design is shown in Figure 3.4.

Figure 3.4: Sample used for experimental tests. The 65 × 100 mm2 rectangular membrane
of 1.6 mm thick is pierced with six holes: one of 22 mm diameter, two of 12 mm diameter
and three with 6 mm diameter.
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Six holes are pierced with circular cutting tools:

• a large 22 mm diameter hole in the top left part of the sample,

• two 12 mm diameter holes in the lower right part of the sample,

• and three 6 mm diameter holes located in the sample top right corner and bottom
left corner.

The different sizes and positions of the holes have been chosen empirically. We create
different-sized holes at close locations to intensify the heterogeneity in strain fields.

3.2.2 Experiments

The complex experiment designed for this work is made to use the three degrees of free-
dom accessible for a planar membrane under plane stress hypothesis. The next chapter
illustrates the choice of loading path by characterising the kinematics of the tests. The
test consists in 6 loading “steps”, shown in Figure 3.5:

• the first step consists of a −20 mm vertical displacement of the moveable plate,

• the second step consists of a +10 mm horizontal displacement of the moveable plate,

• The third step consists of a vertical displacement and a rotation of the moveable plate
along the sample orthogonal axis of 12°. Those movements are combined to make
the sample rotate along its bottom right corner and guarantee it will not buckle.

• the fourth step consists in a −10 mm horizontal displacement of the moveable plate,

• The fifth step consists of a vertical displacement and a rotation of the moveable plate
along the sample orthogonal axis of −12°. Those movements are combined to make
the sample rotate along its bottom left corner and guarantee it will not buckle.

• The sixth and final step consists of a −10 mm horizontal displacement of the move-
able plate.

Each displacement trajectory is a half-period sine function with a fixed average speed.
The average speed is different for each test run.

3.2.3 Acquiring data: DIC

A speckle pattern is applied on the samples with white paint. Lights are added to the
experimental setup to guarantee a correct range of grey levels in the images for the DIC
process. An optical camera takes pictures of the sample at a fixed time interval during
the test. The pictures are used to measure the displacement field using Digital Image
Correlation. Each picture is made of 3000 × 6000 pixels.

The DIC procedure is performed with Ufreckles [82]. Two screenshots of the software
are presented in Figure 3.6. The left-hand side picture presents a picture of the sample
before DIC, and the right-hand side picture presents the strain magnitude after DIC com-
putation. The strain field is here presented in the deformed configuration. The deformed
configuration calculated with DIC matched the picture of the deformed sample which is
visible in the background.

52



3.2. Experimental data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

25

30

35

40

Progression

P
o
si
ti
o
n
a
n
d
o
ri
en
ta
ti
o
n
o
f
th
e
u
p
p
er

p
la
te

θx (
◦
)

Y (mm)

Z (mm)

0 1 2 3 4 5 6
(a) Prescribed displacements of the upper plate of the hexapod device

0 1 2

3 4 5

6

Y

Z

θx

(b) Sample pictures during the experiment

Figure 3.5: Prescribed displacements and corresponding sample pictures. The correspond-
ing time of the pictures is labeled by the numbers.

The DIC hardware parameters are presented in Table 3.2 according to International
DIC Society [47].

FE-DIC is run with unstructured triangular mesh elements of 80 px. The parameters
of the solver are presented in Table 3.3. DIC is run with sequential analysis and local
normalisation. The predictions are explicit.
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(a) Image of the deformed membrane at
the end of the test, before
DIC treatement

(b) Results visualisation after DIC treatement:
strain magnitude displayed on top of the de-
formed image

Figure 3.6: Ufreckles software screenshots.

Camera Vieworks VC-50MX-M30E0
Image Size 6000 × 8000 px2

Lens Tokina alx-i 100mm F2.8 FF Macro
Focal Lenght 100 mm

Aperture 100%
Field-of-View 130.7 × 174.2 mm2

Image scale 45.9 px/mm
Stand-Off distance 460 mm

Patterning Technique White spray paint
Pattern Feature Size 2 px

Table 3.2: DIC hardware parameters. Some parameters are specific to each dataset and
are presented in Table 3.4.

Parameter Value
Pixel size 1

Coarse graining 5
Convergence limit 10−3

Maximal iteration 50
Pixel skip 1

Table 3.3: DIC solver parameters.

Smoothing has not been applied to the DIC results presented here. Some regu-
larisation has been tested on the datasets, but the results were not satisfactory. More
explanation on smoothing issues can be found in Appendix C.
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3.2.4 The different datasets

Four experimental tests have been carried out. Each one is run on a new sample, which
has never been deformed. Four different “global displacement speeds” are tested. These
are symbolised by V̄ . This value corresponds to the average mobile plate displacement
speed (mm.s−1) and mobile plate rotation speed (°.s−1). The four samples and their
experimental parameters are presented in Table 3.4. Throughout the manuscript, these
datasets as referred to as “experimental data”. Each figure showing experimental data is
accompanied by one icon representing the dataset that is shown. The icons are presented
in Table 3.4 as well.

Sample ANR 2.1 Icon
Number of frames 500

ത𝑉Number of Mesh Elements 4176
Number of Mesh Nodes 2271

Picture rate 10 Hz
Exposure time 3000 µs

V̄ 0.66 mm.s−1

Sample ANR 1.2 Icon
Number of frames 500

ത𝑉Number of Mesh Elements 3370
Number of Mesh Nodes 1814

Picture rate 1 Hz
Exposure time 8000 µs

V̄ 0.066 mm.s−1

Sample ANR 2.2 Icon
Number of frames 1000

ത𝑉Number of Mesh Elements 3549
Number of Mesh Nodes 1912

Picture rate 0.66 Hz
Exposure time 8000 µs

V̄ 0.05 mm.s−1

Sample ANR 3.1 Icon
Number of frames 1000

ത𝑉Number of Mesh Elements 3424
Number of Mesh Nodes 1844

Picture rate 0.2 Hz
Exposure time 8000 µs

V̄ 0.0066 mm.s−1

Table 3.4: FE-DIC parameters and associated icon for the four experiments.

55



Chapter 3. Data acquisition

3.3 Data structure and open access repository
This section describes the data structures stored in the open-access repository. This
repository gathers ten data files, five in .mat format and five in .ascii format. They
contain the data of the synthetic experiment and the four experimental tests described
above.

3.3.1 Data structure

Each .mat data file contains a Matlab structure named data, containing 10 fields for the
experimental tests data and 11 for the synthetic data. The name, dimensions and values
of each field are described in Table 3.5. The data structure has a dimension of (number
of frames × 1). Synthetic data are the only ones to display the field “sigma”, which
corresponds to the FE stress field computed by Abaqus.

Field name Corresponding feature Dimension
Connectivity FE Connectivity matrix Number of elements × 3

Dirichlet Mesh nodes corresponding to Dirichlet
boundary conditions

Variable

Force_sets Mesh nodes where the net force is cal-
culated

Number of boundary nodes × 1

F Net force value, with two components 1 × 2
H Hencky’s logarithmic strain tensor

components H11, H22 and H12

Number of elements × 3

Hencky_K1
Hencky’s strain tensor invariants

Number of elements × 1
Hencky_K2 Number of elements × 1
Hencky_K3 Number of elements × 1

U Nodes displacement Number of nodes × 2
X Initial nodes position Number of nodes × 2

sigma Cauchy’s stress tensor components
σ11, σ22 and σ12

Number of elements × 3

Table 3.5: Data structure fields.

3.3.2 Open access repository

The open access repository is available here [22]. It contains the data files in two different
formats. The data structure is described above. The correspondence between experiments
and data files is described in Table 3.6.
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File name Sample Icon
dogbone_3holes_Ogden_synthetic_data.ascii

Synthetic dogbone
dogbone_3holes_Ogden_synthetic_data.mat
ANR_1-2_v0066_experimental_data.ascii

ANR 1.2
ത𝑉

ANR_1-2_v0066_experimental_data.mat
ANR_2-1_v066_experimental_data.ascii

ANR 2.1
ത𝑉

ANR_2-1_v066_experimental_data.mat
ANR_2-2_v005_experimental_data.ascii

ANR 2.2
ത𝑉

ANR_2-2_v005_experimental_data.mat
ANR_3-1_v00066_experimental_data.ascii

ANR 3.1
ത𝑉

ANR_3-1_v00066_experimental_data.mat

Table 3.6: File names and corresponding datasets. The file names are ranked in alphabet-
ical order.

3.4 Conclusion
Five experiments have been presented in this chapter. They will be used in this manuscript.
The first one is a synthetic experiment, built with Finite Element simulation and using
a third-order Ogden model. The four other tests are conducted on an innovative test
bench with a hexapod device. Non-homogenous loading paths are applied on pierced
carbon-black-filled SBR planar membranes to generate a heterogeneous strain field. The
displacement field is measured using DIC.

The five data sets corresponding to the five experiments presented above are stored
in a public repository. Researchers may access it and use the data for research purposes.
These data sets will be used as inputs for the DDI algorithm and to develop visual tools
to describe test kinematics.
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Chapter 4

A map to explore the kinematic
response of materials

Multiaxial tests can be used for identification purposes. The major benefit of complex
experimental tests is the ability to characterise the mechanical response of a material on
a large diversity of deformation modes and prescribed loadings. To assess the diversity
of the deformation modes encountered during the test, kinematics must be observed and
described. The observation of kinematics is made through a graphical tool built with
Hencky’s logarithmic strain tensor invariants K1,K2 and K3.

The kinematic map is a heatmap of (K2,K3) couples plotted on the (K2,K3) plane,
K2 indicating the deformation magnitude and K3 the deformation mode. This tool seeks
to provide a visual representation of the various deformations experienced by the material
throughout the test, and their distribution in terms of modes and magnitudes. The
kinematic map is built for synthetic and experimental data. The synthetic data set built
with a perforated membrane undergoing linear axial displacement presents a majority of
points exhibiting uniaxial tension deformation mode. However, the experimental tests
run with hexapod device with varying imposed displacements exhibit a more distributed
kinematic map, enhancing their interest for identification purposes.

By graphically illustrating the complex kinematic behaviour, researchers and prac-
titioners can gain a deeper understanding of the material’s response to applied forces
and its resulting deformation patterns. This graphical tool can facilitate the analysis and
interpretation of test data, leading to improved identification techniques and enhanced
comprehension of material behaviour under different loading conditions.
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4.1. Pre-requisites

4.1 Pre-requisites

Kinematics has been described above, and physical features were defined for Continuum
Mechanics. This section presents the features used in this work to describe the kinematics
of the continuum, and especially the strain tensors. The choice of strain tensor is discussed,
and the strain tensor components from synthetic and experimental data are observed.

4.1.1 How to observe the kinematics of an experiment and why

The goal of this chapter is to develop a graphical tool able to fully describe the kinematics
of an experiment, in a way that is usable for identification purposes. An experiment
mostly stands for measuring and characterising the mechanical response of the material
under given loading conditions. The mechanical response of the material consists of the
relationship between strain and stress. To describe this mechanical response, the observ-
able features are measured during the experiment. For a planar membrane under plane
stress hypothesis, the displacement of the surface of the membrane is observable and
measurable through Digital Image Correlation, as illustrated in Figure 4.1. Net forces can
be measured by force sensor. This measure is not direct: the forces are measured through
the displacement of the mechanical part of the sensor, which undergoes deformation.

𝑡 = 𝑡0 𝑡 = 𝑡𝑖

𝑃𝑒

𝑃𝑒

𝑃𝑒 = 𝑃(𝑿) 𝑃𝑒 = 𝑃 𝒙 𝑡𝑖 = 𝑃 𝑿 + 𝒖 (𝑃, 𝑡𝑖)

Observable features
Deformation

𝑭
Deformation

gradient

Displacement field
Net forces

Figure 4.1: Observable features during an experiment. The magnifying glass represents
the measuring instruments of physical features during a body deformation.

The observed displacements allow the strain calculation and observation throughout
test. However, the stresses are not observable, and the net forces measured do not give
sufficient data to obtain the stresses inside the sample. The complete characterisation of
material response relies on the missing link between strains and stresses. Experimental
cases with strong hypotheses can lead to the direct calculation of stresses, such as the
homogeneous test presented in Chapter 2.

Before getting to stresses, the complete knowledge of the kinematics during a given
experiment allows to quantify the diversity of the deformation undergone by the sample
during this experiment. It also characterises the diversity and magnitude of deformation
modes prescribed to the sample during the experiment. The more diverse the deformation
modes and prescribed loading are, the more complete and relevant for identification a test
is. This is the main reason to develop specific tools to observe and describe the kinematics
during a multiaxial test.
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4.1.2 Features for finite strain

Different strain tensors were presented in Chapter 1. The present work focuses on soft
materials. Thus, the experiments conducted here correspond to finite strain situations.
Hencky’s logarithmic strain tensor can be used to describe finite strain situations. It is
usually used for large strain kinematics description [23], elastoplasticity description for
large strains [36] or integrating elastomer’s incompressible behaviour in Finite Elements
calculations [1]. This strain tensor is chosen for kinematics description in this work, as
advised for finite strain Data-Driven Identification according to Dalémat [28]. Hencky’s
strain tensor H, is derived from deformation gradient F polar decomposition:

H = ln(V ) with F = V R. (4.1)

H is also called true strain tensor because it is the large strain extension of ϵ, the
infinitesimal strain tensor. For example, in the case of a large strain uniaxial tension test,
the strain calculated by incrementing small strain is:∫

dϵ =
∫ l

L

dx
x

= ln
(
l

L

)
= ln(λ), (4.2)

with L the initial length of the sample gauge, and l the length after deformation. We
note dϵ an infinitesimal strain increment. So, the eigenvalues of Hencky’s strain tensor
are the natural logarithm of the principal stretches, which are the eigenvalues of V .

Hencky’s strain tensor is adapted to finite strain and hyperelastic materials. It can
be used to build hyperelastic models, as proposed by Bruhns et al. [13]. It is rarely used
for writing stress-strain relations, and its time derivative expressions can be found in Xiao
and Chen’s work [100].

4.1.3 Observing the strain field

Once the strain tensor is chosen and defined, the kinematics of the experiments can be
discussed. First, Hencky’s tensor components are represented using bar histograms. Each
following figure represents three of them: H11, H22 and H12. Indeed, with the plane
stress assumption, four of the nine components of the strain tensor are equal to zero
and are not represented. The diagonal component H33 is calculated using the measured
strain components and the incompressibility hypothesis. Moreover, V is symmetrical by
property of the polar decomposition, and so is H.

Figure 4.2 presents the bar histogram visualisation of Hencky’s strain field for the
synthetic data presented in Chapter 3.

Those histograms are constructed by considering the full dataset including all mesh
elements at each time step. The bar width is fixed and the four histograms of the Figure
share axis to make their comparison easy. Each histogram represents the distribution if
one tensor component through the elements and the test. It shows that diagonal com-
ponent H11 presents mostly negative values. H22 is mostly positive, and reaches higher
values: it corresponds to the strain along the loading direction. The only non-diagonal
component presented here, H12, displays a majority of near-zero values, and both negative
and positive values. The large number of null values of this component indicates that
deformation occurs within the principal directions.

Figure 4.3 presents the bar histogram visualisation of Hencky’s strain field for the
experimental data presented in Chapter 3.
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Figure 4.2: Bar histogram visualisation for Hencky’s strain tensor components of synthetic
data.
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Figure 4.3: Bar histogram visualisation for Hencky’s strain tensor components of experi-
mental data.

It shows that diagonal component H11 presents mostly negative values. H22 is
mostly positive. The three diagonal components display very different distributions. The
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Chapter 4. A map to explore the kinematic response of materials

only non-diagonal component presented here, H12, displays a majority of near-zero values,
and both negative and positive values. It is difficult to gather information about the de-
formation modes endured by the material during the experiment using this representation.

Finally, this representation with bar histograms shows the distribution of each ten-
sor component value during the experiment. However, this representation misses the link
between the components themselves: are the maximal values of H22 related to the zero
values of H12? Are they related to the minimal values of H12? Those questions can
be answered by using a different representation of kinematics, involving quantities which
summarise the strain tensor to characterise what is endured by the material. The choice
is placed upon invariants which ensure the representation does not change with the coor-
dinate system. This is the goal of the following section.

4.2 Building a map to explore the kinematics in materials

The visual representation of a kinematic field is a challenge due to the dimensions of the
strain fields. This section aims to build a 2D-map summarising the kinematics of a given
experimental test, step by step. Invariants of the logarithmic strain tensor are considered
for this purpose. They are first presented below.

4.2.1 Invariants to characterise strain states

4.2.1.1 Definition

Criscione et al. have defined Hencky’s logarithmic strain tensor invariants [26]. These
three invariants are: 

K1 = tr(H)

K2 =
√

dev(H) : dev(H)

K3 = 3
√

6
K2

3 det(dev(H)),

(4.3)

with
dev(•) = • − tr

((•)
3

)
I, (4.4)

I being the identity tensor and H Hencky’s strain tensor. The invariants can be written
using the principal stretches (λ1, λ2, λ3):

K1 = ln(λ1λ2λ3)

K2 =
√

(lnλ1 − 1
3K1)2 + (lnλ2 − 1

3K1)2 + (lnλ3 − 1
3K1)2

K3 = 3
√

6
K2

3 (lnλ1 − 1
3K1)(lnλ2 − 1

3K1)(lnλ3 − 1
3K1).

. (4.5)

These three quantities summarises the logarithmic strain tensor with three distinct char-
acteristics:

• K1 is a real number characterising the “amount of dilatation”, K1 is equal to zero for
incompressible materials, and therefore will not be further considered in this study,
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4.2. Building a map to explore the kinematics in materials

• K2 is a real positive number characterising the “magnitude of distorsion” of material
points, defining a norm for the Hencky’s strain tensor,

• K3 is a real number in the range [−1; 1], characterising the “mode or type of dis-
torsion” of material points. It has three noteworthy values, indicating particular
deformation modes. They are summarised in Table 4.1.

K3 Type of loading

1 Uniaxial Tension or
Equibiaxial Compression

0 Planar Tension

-1 Equibiaxial Tension or
uniaxial compression

Table 4.1: K3 values and corresponding loading.

The Hencky’s logarithmic strain tensor invariants have already been used to charac-
terise strain magnitude and deformation mode in a Data-Driven context by Platzer [80].
Her work on dense databases sampling derives from Kunc and Fritzen sampling method [52].
The authors developped a strain magnitude measure called the “deviatoric amplitude”
and a direction vector expressing the deformation mode. The role of these two variables
is equivalent to the (K2,K3) pair.

Remark 1: Hencky’s logarithmic strain tensors invariants have been used to char-
acterise the strain undergone by rubber during cyclic tension-torsion tests for fatigue
testing [56][55].

Remark 2: Hencky’s strain tensor invariants posess stress counterparts used to
describe stress states in the study of elastoplastic behaviours [12]. These invariants are
described in Appendix B.

4.2.1.2 Invariants visualisation

Once the invariants are calculated for each mesh element at each time step, they can
be represented on the deformed sample. Figure 4.4 presents the invariants fields on the
deformed synthetic sample, at its maximal stretch at last time step.

The deformed mesh exhibits a large diversity of deformation magnitudes, shown
in Figure 4.4 (a). The colourbar expresses the deformation magnitude using Hencky’s
logarithmic strain tensor invariant K2, which varies from 0 to more than 2 at this time
step. The highest K2 values are located around the sample’s holes, and the lowest ones in
the sample’s larger top and bottom areas. Figure 4.4 (b) displays the deformation modes
at this time step on the deformed mesh using Hencky’s logarithmic strain tensor invariant
K3. The colourbar represents the different groups of “deformation modes”, the red colour
expressing mostly uniaxial tension, the cream one is for planar tension and the dark
blue one for equibiaxial tension. Any intermediate colour expresses also an intermediate
mode. The sample exhibits mostly uniaxial tension deformation mode, and different ones
only at the tom and bottom of the sample, which are the less deformed zones. Figure 4.5
presents the invariants fields for experimental data, at the last time step of the experiment.

The deformation magnitude exhibited by Figure 4.5 (a) presents some diversity, with
a range of Hencky’s logarithmic strain tensor invariant K2 ranging from 0 to 1.1. The
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(a) K2 field (b) K3 field

Figure 4.4: Invariants fields plotted on the deformed mesh for synthetic experiment at its
last time step.

ത𝑉

K2

(a) K2 field

K3

(b) K3 field

Figure 4.5: Invariants fields plotted on the deformed mesh for experimental data at its
last time step.

holes boundaries are exhibiting the highest deformation magnitudes on their left and right
sides, represented in red, but also the lowest deformation magnitudes on their upper and
lower border, represented in dark blue. Various deformation magnitudes are exhibited
away from the holes and are represented by varying colours from light blue to orange.
The deformation modes, presented in Figure 4.5 (b) shows that the major part of the
sample is exhibiting mostly uniaxial tension deformation mode at this time step: the
deformed mesh is mostly red. Other deformation modes are exhibited in low deformation
magnitudes areas, such as on top or underneath holes.
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4.2. Building a map to explore the kinematics in materials

4.2.2 General principle for building the map

The kinematics map is built using Hencky’s logarithmic strain tensor invariants K2 and
K3, respectively representing the “magnitude of distorsion” and the “mode of distorsion”
underwent by the material. The construction of the map is described in Figure 4.6.
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Figure 4.6: General principle of the kinematics map.

The map built-up involves the same process for synthetic and experimental data.
The samples are discretised: synthetic data is built with Finite Elements, and the experi-
mental strain field is measured using FE-DIC. The Hencky’s logarithmic strain tensor is
calculated for each mesh element of the sample at each time step, as shown on the bottom
left part of Figure 4.6. Then Hencky’s tensor invariants are calculated for each Hencky’s
strain tensor. K1 is represented crossed out by a red line because of the incompressibility
of the material. This feature is always equal to zero and is not represented in the kine-
matics map. Once the (K2,K3) couples being calculated for each mech element at each
time step, they are plotted in the (K2,K3) plane, to produce the “kinematic map”. An
example of such a map is presented in the bottom right part of Figure 4.6. The map in
Figure 4.7 is built using Treloar’s data [90], representing experimental data for vulcanized
sulfut-filled rubber.

It exhibits around fifty points, arranged in three horizontal lines of constant K3
values, corresponding to the three noticeable values of K3. Uniaxial tension data from
Treloar’s experiments is located on the horizontal line corresponding to K3 = 1, the planar
tension data on the K3 = 0 line and the equibiaxial tension data on the K3 = −1 line.
Treloar’s data kinematic map is easily readable because of the scarcity of points.

However, with large experimental databases, such a plot can be difficult to describe
if points overlap others, making their density difficult to read. This phenomenon is exam-
plified in Figure 4.8, which presents the (K2,K3) couples for synthetic data.

In this figure, the point cloud densely covers the K3 axis, and spreads horizontally
towards high K2 values. However, the density of points and their overall distribution is
not easily visible. This situation triggers the necessity of improving the map to enhance its
readability. The process of colour-mapping the density of points is explained in Figure 4.9.

a) the (K2,K3) couples are plotted in the (K2,K3) plane,
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Figure 4.7: Kinematic map for Treloar’s data [90].

Figure 4.8: Kinematic map for synthetic data. The dotted lines represent the simple
deformation states zones.
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Figure 4.9: Improvement of the final kinematic map.
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b) the plane presented above is discretised, with 0.04 intervals in both K2 and K3 axis.
The (K2,K3) points are counted in each parcel of the plane,

c) the obtained number is divided by the total number of points represented on the
map. A natural logarithm is applied for enhanced readability. Each parcel of plan
is coloured according to the calculated point proportion it contains. The final map
represents the density of points on the (K2,K3) plane for a given experiment.

4.2.3 Kinematic maps for experiments on planar membranes

In the following, kinematic maps are plotted for synthetic and experimental tests de-
scribed in Chapter 3. Figure 4.10 presents the kinematics map for synthetic experiment.
The density point cloud spreads along the K3 axis, meaning that all deformation modes
are reached during the experiment, from uniaxial tension to equibiaxial tension through
planar tension, and mixed modes. However, the colourmap indicates a very dense zone
located along the horizontal top line of the graph, corresponding to K3 = 1. This zone
corresponds to mesh elements undergoing Uniaxial Tension during the experiment. The
colourbar shows that the uniaxial tension zone gathers the majority of points, the yellow
and green zones representing up to two decades fewer points than the red zones. This
can be due to the choice of loading: during this experiment, the loading consists of a
simple vertical displacement, along the principal axis of the sample. While the sample
is pierced with holes, the general shape and the loading seem to submit the elements to
uniaxial tension. This kinematic map and its analysis did influence the loading path choice
for the hexapod experiments. The chosen loading path encompasses different boundary
displacements to generate more deformation states diversity, as seen in Chapter 3.
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Figure 4.10: Kinematic map for synthetic data experiment. The map represents the point
density of the (K2,K3) plane on which is plotted (K2,K3) couples for every mesh element
at each time step.

Figure 4.11 presents the four kinematic maps of the four experimental tests presented
in Chapter 3. On those maps, points spread along the K3 axis, representing all the possi-
ble deformation modes. Deformation magnitude spreads from zero to K2 = 1.1. The four
maps present a similar shape of dense point clouds, represented by the yellow to green
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areas, and a varying dispersion of low-density areas, represented in blue. The slower the
speed, the larger the area covered by the point cloud is on this map. The largest density
is reached for intermediate K2 values (around 0.3 to 0.6) in uniaxial tension (K3 = 1).
The difference in probability logarithm between the densest area and the rest of the map
is less than one decade, meaning that the points are more evenly spread on the plane
than for the synthetic experiment. It is due to the use of the hexapod device, allowing
multiple directions of loading. The blue areas stand for small numbers of points and the
dispersion observed at lower speeds can be neglected for kinematical comparison between
the four experiments.
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Figure 4.11: Experimental kinematics map for four experiments conducted with the same
sample geometry and loading conditions, but at different loading speeds. The map repre-
sents the point density of the (K2,K3) plane on which is plotted (K2,K3) couple for every
mesh element at each time step.

This representation helps to characterise the amount of deformation modes and mag-
nitudes encountered by the material during the experiment. However, the representation
is dependant of the chosen plane discretisation. Using larger “bins”, because our repre-
sentation is not different from a two-entries histogram, could give a false-sense of plane
coverage, by increasing the plane surface covered by the coloured bins, whereas chosing
smaller bins could help spot the denser areas and their characteristics. Reducing the size
of the bins could, if made extreme, bypass the major interest of the visual tool by resulting
of a map with bins so small they just mimic the point cloud representation and do not
allow to spot the zones density properly.
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4.3 Conclusion
Characterising the strains and kinematics underwent by the material during a complex
test allows to assess the diversity of deformation modes and intensities. Experimental
tests with several deformation modes are more suited for full-field measurement-based
identification purposes. They cover a wider range of strain the material can undergo in
service, and promise better identification of models.

Here, an original map has been built to explore the kinematics of multiaxial tests.
This map allows to observe the diversity of deformation modes and their distribution in
the (K2,K3) plane.

Overall, stretching the material in a unique direction seems to generate uniaxial ten-
sion deformation mode for the majority of points, whereas multiaxial experiments based
on diverse loading directions generate more distributed kinematics maps, even if uniaxial
tension mode remains highly represented. Specific deformation modes seem difficult to
target when looking at large strain magnitudes, at least with the proposed experimental
setup. That is the case of equibiaxial tension for example. The kinematics map allows to
choose tests with evenly distributed maps, which will enhance the representativity of the
data for identification purposes.

More investigations could be made with this tool, for example by looking at the
evolution of the kinematic map during the experiment to assess if the uniaxial tension
deformation mode is “preferred” by the material when the deformation magnitude rises.
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Chapter 5

Exploring stress and strain energy
density fields

The Data-Driven Identification method calculates the experimental stress field without
using a constitutive model. This method is based on clustering and relies on the me-
chanical equilibrium of the structure to provide an admissible stress field. DDI is applied
to synthetic and experimental data. The resulting stress fields are observed using bar
histogram representation. However, this representation is not suitable to be added to the
kinematical map built in Chapter 4 to represent the complete mechanical response of the
material.

Strain energy density represents the stress field weighted by the kinematic field. It
is a feature encompassing strain and stress into a scalar value. Strain energy density is
chosen to represent the mechanical response of materials in the material response map.

The new map encompasses both kinematics and stresses, within a single character-
istic graph. By incorporating stress information alongside kinematic data, this enriched
graphical tool can provide an overview of the material’s behaviour under different loading
conditions, enabling a deeper understanding of its mechanical response. This approach
facilitates the exploration of stress patterns and their relationships with kinematic fea-
tures, ultimately contributing to the advancement of data-driven material modelling and
characterisation techniques.

73



Chapter 5. Exploring stress and strain energy density fields

Contents
5.1 Using DDI to measure stress fields . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.1.1 Definitions and parameters . . . . . . . . . . . . . . . 75
5.1.1.2 Algorithm structure and principle . . . . . . . . . . . 77

5.1.2 Adaptations for hyperelasticity . . . . . . . . . . . . . . . . . . 79
5.1.3 Limitations and possible extension . . . . . . . . . . . . . . . . 82

5.2 A 3D-map to explore the mechanical response of materials . . . . . . . 82
5.2.1 Observation of the stress field . . . . . . . . . . . . . . . . . . . 82
5.2.2 From DDI stress field to strain energy density . . . . . . . . . . 84
5.2.3 (K2,K3,W ) map . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

74



5.1. Using DDI to measure stress fields

The previous chapters of this document highlighted the variety of existing models
for solids and the complexity of identification processes. Modelling inherits an intrinsic
modelling error. To avoid this constitutive error and with the help of numerical processes,
research teams have developed new identification processes based on discrete databases
extracted from experimental data sampling of mechanical behaviour, and called Data-
driven methods. Those methods are based on a different representation of materials,
constitutive laws being replaced by rich and large databases. This representation is
well adapted to new acquisition methods, such as Digital Image Correlation (DIC), and
complex experiments which generate large and rich data. In this section, Data-Driven
Identification (DDI) and its developments are described and used to measure stress fields
from a complex experiment.

Note: Plenty of Data-Driven methods have been developed. The Data-Driven meth-
ods described here rely on the Data-Driven paradigm written by Kirchdoerfer and Ortiz
in 2016 [50]. The other existing Data-Driven method can be non-parametric methods, as
seen in Montans et al. [69]; or involve Singular Value Decomposition and Gaussian pro-
cesses [96] but they can also be based on an alignment assumption [14]. Data-adaptative
methods can also be cited as data-based methods for identification, such as Wiesheier
et al. [97]. Other manifold learning methods have been introduced, such as “What-You-
Prescribed-Is-What-You-Get”, or WYPIWYG, introduced by Latorre and Montans [54],
which process has been adapter to hyperelasticity by Crespo et al. [25].

5.1 Using DDI to measure stress fields
The Data-Driven Identification method is a powerful algorithm developped in 2018 by
Leygue et al. allowing the calculation of balanced stress fields without any constitutive
law [57]. This section is dedicated to the description of the method principle and its
adaptations to hyperelasticity. The general definitions and equations are writen for a
three-dimensional problem. The algorithm principle is schemed using one-dimensionnal
features for the sake of clarity.

5.1.1 Principle

The Data-Driven Computational Mechanics paradigm formulated by Kirchdoerfer and
Ortiz [50] proposes to bypass the “empirical material modelling step” and solve the
mechanical problem without constitutive equations. The mechanical response of the
material is represented by a discrete database of points instead of a model equation. In
2018, Leygue et al. incorporated this paradigm within a sequential looping algorithm
to build Data-Driven Identification (DDI) [57]. Dalémat then adapted this framework
to experimental data, with wise adaptations for large strains, experimental boundaries
and missing data [29]. The general framework is presented in the following section, then
adaptations for our experimental framework are presented.

5.1.1.1 Definitions and parameters

To begin with, some terms and notations are defined:
• The constitutive space is a multi-dimensional space where the material behaviour

will be approximated. For elastic materials, the constitutive space is a 9 × 9 space
(ϵ,σ) where mechanical states and material states can be defined. The constitu-
tive space can be expanded for inelastic problems, including a history variable for
example.
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• The C-norm is defined on the constitutive space using the DDI metric C and (ϵ,σ)
an element of the constitutive space:

∥ (ϵ,σ) ∥2
C= ϵ : C : ϵ + σ : C−1 : σ. (5.1)

The DDI metric C is the DDI distance parameter. It makes the features comparable
and is used to weight differently strains and stresses for distance calculation. It is a
positive definite fourth-order tensor (it has to be invertible). It is different from the
elasticity tensor.

• A mechanical state is an point of the constitutive space representing the strain
and stress state of a point of the sample, most of the time an integration point. The
mechanical states are indexed with the element number •e and a temporal index
•i. They are noted (ϵe

i ,σ
e
i ). Mechanical states contain a strain part and a stress

part. The strain part is measured and the stress part is estimated by the DDI.
Mechanical states constitute the solution to the mechanical problem. A mechanical
state preserves equilibrium equations:

M∑
e=1

Bejweσe = f j ∀j, (5.2)

with M the number of mechanical states, Bej the connectivity matrix, we the el-
ements weights, and f j the net forces. The mechanical states are represented by
round markers in our figures.

• A material state is a point of the constitutive space. The material states constitute
a sampling of the mechanical response of the material, but they are not solution to
the mechanical problem. The group of the material states is called the material
database. The material states are represented as stars in our figures. There is N∗

material states in the database. The r∗ ratio is the ratio between the number of
mechanical states M and material states N∗. It is one parameter of DDI.

• The DDI distance is a distance defined on the constitutive space. It describes
the distance between the mechanical states and the material database. The DDI
distance is defined as:

d = 1
2
∑

e

∑
i

we||(ϵe
i − ϵ∗

ke,i ,σ
e
i − σ∗

ke,i)||2C, (5.3)

(ϵe
i ,σ

e
i ) being the mechanical state associated with element e at time step i and

(ϵ∗
ke,i ,σ

∗
ke,i) the mechanical state of cluster k, in which the element e at time step i

is represented, and we the weight of element e.

• This distance is used to build a pairing between mechanical states and material
states: each mechanical state is paired with the closer material state with regards to
the DDI distance. This pairing defined N∗ clusters of mechanical states, each cluster
beeing paired with one material state. When C increases, the pairing is mostly based
on the strain part of the states and when C decreases, it is mostly based on the stress
part of the states.
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5.1. Using DDI to measure stress fields

5.1.1.2 Algorithm structure and principle

The algorithm principle is illustrated in Figure 5.1. The inputs are:

• the sample,

• the kinematic fields (strain part of the mechanical states),

• the net forces measured during the experiment,

• and the DDI parameters r∗ and C.

The DDI algorithm is searching for the minimisation of the distance between mechanical
states and material states for the whole sample and the complete loading history, while
constraining the stress part of the mechanical states with the equilibrium equation.After
computation, the algorithm delivers three outputs:

• balanced stress fields, which are solutions of the mechanical problem (stress part of
the mechanical states),

• the material database (the gathering of all the material states),

• and the pairing between mechanical and material states.

Inputs: Outputs:

Kinematic fields

DDI
Test, net forces

σ

ε

Mechanical states
Material database
Pairing material
states- mechanical
states

Figure 5.1: DDI algorithm inputs and outputs. The mechanical states are represented by
circles while the material states are represented with stars. The clustering of mechanical
states and their pairing with material states is represented by the colours. The dotted
lines represent the measured strain.

The algorithm has an iterative structure, described in Figure 5.2. The initialisation
step consists of the initialisation of the stress part of the mechanical states, and a k-means
clustering: mechanical states are paired with material states.

Once the initialisation is completed, the iterations begin. Each iteration is composed
of three successive steps:
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Chapter 5. Exploring stress and strain energy density fields

• First, the strain part of the material states is updated. It consists in adjusting the
strain part of the material state to place it at the center of the custer it is paired
with. The material strain is the weighted average of its clusters mechanical states
strain part. It consists in minimising the distance between mechanical states and
the material databases, by searching new material states positions in the constitutive
space such as:

solution = arg min
ϵ∗

ke

1
2
∑

e

∑
i

we||(ϵe
i − ϵ∗

ke ,σe
i − σ∗

ke)||2C. (5.4)

• Second, the algorithm enters a nested loop: the stress part of the mechanical states,
represented by round markers, is adjusted. This adjustment guarantees that the
resulting stress field respects the mechanical equilibrium in the sample, while finding
the stress field which minimises the DDI distance between mechanical states and
the current material database: it is a minimisation procedure, constrained by the
equilibrium equation. The algorithm minimises the distance between the mechanical
states and the material database, with the mechanical stresses as parameters, such
as:

solution = arg min
σe

i

1
2
∑

e

∑
i

we||(He
i − H∗

ke ,σe
i − σ∗

ke)||2C, (5.5)

with respect to Eq. 5.2. Then, the stress part of the material states is adjusted by
calculating the weighted average of its cluster mechanical states stress part, min-
imising the distance between mechanical states and the material database, with this
time material stresses as parameters, such as:

solution = arg min
σ∗

ke

1
2
∑

e

∑
i

we||(He
i − H∗

ke ,σe
i − σ∗

ke)||2C. (5.6)

. This nested loop goes on until the update of the material states stress part is
neglectible. It consists in an alternate minimisation procedure.

• Third, the clustering is updated. A k-means algorithm parts the mechanical states
in a given number of clusters, using their closeness in the sense of the DDI distance.
This is also a distance minimisation procedure, minimising the distance between
each material state and the mechanical states it is paired with, according to DDI
distance, with the pairing as parameter, such as:

solution = arg min
ke

1
2
∑

e

∑
i

we||(He
i − H∗

ke ,σe
i − σ∗

ke)||2C. (5.7)

The iterative process continues while the clustering is adjusted at the end of each itera-
tion. Finally, the algorithm exits with balanced mechanical states stress field, which is the
solution of the mechanical problem and a material database which samples the mechanical
response of the material.

This algorithm has been adapted to experimental applications in 2019 [29], but also
to plasticity in 2022 [53]. The expansion of the constitutive space to encompass viscous
effects or multi-material samples has also been explored [93]; while the coupling between
DDI and Digital Image Correlation (DIC) has been studied for experimental purposes
in 2023 [101]. This work expands the pioneer steps of Dalémat [29] and encompasses a
corrective procedure for erroneous strain results from DIC. This method could be applied
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5.1. Using DDI to measure stress fields

within our framework to ensure a more accurate sress-strain estimation. The sources of un-
certainty have recently been modelled using polymorphic uncertainty modelling to ensure
DDI can properly deal with material natural variability [103]. Such a procedure could be
applied inside our DDI framework, but we did not investigate it due to time considerations.

5.1.2 Adaptations for hyperelasticity

Some adaptations have been made for hyperelastic applications. In her PhD work, Dalémat
proposed a modification of the constitutive space for finite strain [28]. It replaces the
infinitesimal strain tensor ϵ by the Hencky’s logarithmic strain tensor H. Cauchy’s stress
tensor is kept for the stress part of the constitutive space. The minimisation problem is
now written as:

solution = arg min
σe

i ,H∗
ke ,σ∗

ke ,ke

1
2
∑

e

∑
i

we||(He
i − H∗

ke ,σe
i − σ∗

ke)||2C, (5.8)

(He
i ,σ

e
i ) being the mechanical state associated with element e at time step i and

(H∗
ke ,σ∗

ke) the mechanical state of cluster k, in which the element e at time step i is
represented, and we the weight of element e, with respect to Eq. (5.2).

The case of missing data has been investigated [28]. The holes in a pierced sample
have to be considered. During DIC, the mesh elements cannot fit perfectly the sample’s
hole boundaries. This boundary has to be constrained to tackle the issue of a missing
material strip. Each hole edge is constrained to be balanced within itself, according to
Dalémat’s recommandations.

When working with a homogenous material, and no consideration for time-dependent
response, the stress-strain response is unequivocally defined. The strain part of mechan-
ical states is then sufficient to build a perennial clustering, which will not be updated
during DDI iterations. The DDI process used in this work is described in Figure 5.3. The
pairing, noted ke, is now fixed after the initialisation step, and is no longer one of the
minimisation problem variable.

The present framework is based on a constitutive space built with the logarithmic
strain tensor and Cauchy stress tensor, and a simplified iteration procedure. The initiali-
sation of the stress part of mechanical states is made by setting the stress part to the null
tensor. Then, C is defined by setting Young’s modulus to E = 1 MPa and Poisson’s ratio
to ν = 0.5 and writing:

C =


E

(1−ν2)
νE

(1−ν2) 0
νE

(1−ν2)
E

(1−ν2) 0
0 0 2E

2(1+ν)

 . (5.9)
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Chapter 5. Exploring stress and strain energy density fields

The last DDI parameter to be discussed is the ratio between the number of mechani-
cal and material states r∗. For synthetic data, this ratio is chosen at r∗ = 44, according to
Dalémat’s recommendations to set it in the [10; 100] interval. For experimental data, r∗

is set to 1000. The experimental data presented here do present a tighter time sampling
and a higher redundancy than the synthetic data due to the choices of loading: consider-
ing that the hexapod device does not operate with sharp slope breaks in the prescribed
displacements, all displacement trajectories have been smoothed out with sine functions.
The construction of the loading path with sine attenuation at the beginning and end of
each phase is one of the providers of redundancy in the data, by generating kinematically
close successive time steps when reaching the null derivative. The number of material
states is then reduced to avoid overfitting.

5.1.3 Limitations and possible extension

DDI is a quite recent method and can handle specific material behaviours. To this day,
we can cite simple elasticity, dealt with in the original publication of Leygue [57], hy-
perelasticity and noisy data, with an experimental approach, developed by Dalémat [29].
Rethoré [81] completed this work on experimental data with coupling between digital image
correlation and DDI stress calculations. Heterogeneous materials have also been submitted
to DDI by Valdes-Alonzo [93][92], leading to preliminary work on viscoelasticity. Stress
field computation on plastic materials has been developed by Langlois [53], following rec-
ommendations of Eggersmann [34] on the plasticity representation. Ciftci et al. [18] have
been working on the development of DDI approaches for history-dependent behaviours.
Their work presents applications for two-dimensional problems. Whereas, Cameron et
al. [14] have been working on an extension to plasticity, with an alignment assumption
between either strain and stress tensors or stress and strain rates (assumption first made
by Saint-Venant in 1871) on stress and strain. Their method can be applied to elasto-
plasticity in a certain range of strains. Viscoplastic steel response has been successfully
characterised with data-driven identification by Vinel [95], using ultra-high speed imaging
and digital image correlation. Fracture mechanics have been explored with Data-driven
methods by Carrara [15]. All those developments can be coupled with the Data-Driven
Model Identification method presented in Chapter 6 to adapt it to multiple cases.

The following section presents DDI results for synthetic data and one of the experi-
mental datasets. The other DDI results are not presented here.

5.2 A 3D-map to explore the mechanical response of mate-
rials

This section aims to present an enhanced map derived from the kinematic map built in
Chapter 4, representing the full mechanical response of a material (strains and stresses).
First, the stress fields estimated by DDI are observed and described before introducing
the feature which will be added to the map.

5.2.1 Observation of the stress field

The first observation is made similarly to the observation of strain fields from Chapter 4
with bar histograms. Both experiments presented are under the plane stress hypothesis,
and the third diagonal component is always equal to zero. The tensor components repre-
sented have been chosen similarly to the previous chapter. The presented stress tensors
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5.2. A 3D-map to explore the mechanical response of materials

contains both the material response and the hydrostatic pressure. Figure 5.4 presents the
bar histogram visualisation of the DDI stress field for synthetic data.
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Figure 5.4: Bar histogram visualisation for Cauchy stress tensor components of synthetic
data. The stress tensor components values are expressed in Pa.

The second diagonal component, σ22, presented on the bottom right histogram, is
mostly positive and presents the highest values. It is consistent with the strain observation
made before, and is also consistent with the nature of the loading in this experiment:
the sample undergoes a vertical displacement of its upper boundary, the vertical axis
being the second of the coordinate system. The first diagonal component presents smaller
values, close to zero. It is mainly positive. The shear component σ12 seems centred
around zero, presenting both positive and negative values. This is consistent with the
symmetry of the sample described in Figure 3.1. Overall, the majority of the elements
seem to undergo uniaxial tension loading, because both the shear component and the first
diagonal component are close to zero, whereas the stress component corresponding to the
loading direction is larger and positive.

Figure 5.5 presents the bar histogram visualisation of the DDI stress field for exper-
imental data.

This data set is under the plane stress hypothesis, and the third diagonal component
σ33 is always equal to zero. The second diagonal component σ22 presents positive values,
and the maximal values among the components. It corresponds to the direction where the
imposed displacement is the highest. The first diagonal component σ11 displays positive
values of lesser magnitude while the shear component σ12 displays both positive and
negative values of moderate magnitude.

This representation gives an overview of the stress field but is not suited to indicate
the magnitude of the stress nor other relevant information about the stress state the ma-
terial is in. The choice is made to stick to the definition of hyperelasticity and characterise
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Figure 5.5: Bar histogram visualisation for Cauchy stress tensor components of experi-
mental data. The stress tensor components values are expressed in Pa.

the mechanical response of the material with strain energy density.

5.2.2 From DDI stress field to strain energy density

Hyperelastic materials are usually described using strain energy density. Instead of using
a model, strain energy density can be calculated using strain and stress field. The rate of
deformation gradient D is defined by [45]:

D = 1
2((Ḟ · F −1) + (Ḟ · F −1)T ), (5.10)

with F being the deformation gradient. This rate of deformation tensor is used to calculate
the strain energy density field:

W e
i =

∫ ti

0
σe(t) : De(t)dt, (5.11)

for each element e at time step i using DDI stress field σe(t). This feature encompasses
both strain and stress fields, and is used to build a map representing the full mechanical
response of the material. Considering that tr(D) = 0, the strain energy density calculus
gets rid of the hydrostatic pressure that is encompassed into σe

i . When there is no need
to refer to a particular element or time step, W e

i will be referred to as WDDI.

5.2.3 (K2, K3, W ) map

Figure 5.6 presents the mechanical response map for the synthetic data presented in
Chapter 3.

This map is a three-dimensional plot presenting the strain energy density W obtained
experimentally using measured strain field and estimated stress field with DDI, presented
along Hencky’s logarithmic strain invariants K2 and K3. These data are represented by
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Figure 5.6: (a) Kinematic map plotted along the projection of WDDI on the (K2,K3)
plane. On the left figure, the colourmap represents the point density, whereas on the
right figure, the colourmap represent the average DDI strain energy density value for the
points located in the sub-space. (b) Mechanical response map for synthetic data. The
experimental points are presented as purple dots. The grey surface represents the model
response of the Ogden model used to build the synthetic data. Trelor’s data [91] are
presented as black markers.

purple dots. Considering that synthetic data is built using an Ogden model, the surface
corresponding to the model is added to the figure. The experimental points show a good
agreement with the model surface. The two upper figures represents the kinematic map
on the left and an orthogonal projection of WDDI on the (K2,K3) plane. For each pixel
of the map, the average strain energy density value is calculated. These projections are
shown along the mechanical response map to enhance readability.

Treloar’s data [91] are also presented on the plot. This mechanical response map
gives clues of the necessary data to fit a model to a material response. Identifying the
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mechanical response of a material consists in finding the grey surface which will match
experimental points the best. In the classical method, described in Chapter 1, simple
deformation states experiments are used. They represent three “slices” of the surface and
present discontinuous data along the K3 axis. In full-field measurement-based methods,
the data is more spread along the K3 axis and closely mapping the lower part of the sur-
face, with relevant information for every deformation state. This data spread is believed
to be beneficial to ensure identification method provides a model that is adapted to the
material for more than simple deformation states. Figure 5.7 presents the experimental
strain energy density points plotted along logarithmic strain invariants K2 and K3 for our
complex experiments.

0 0.2 0.4 0.6 0.8 1
K

2

-1

-0.5

0

0.5

1

K
3

Kinematic map

-6

-5

-4

-3

-2

P
ro

ba
bi

lit
y 

lo
ga

rit
hm

0 0.2 0.4 0.6 0.8 1
K

2

-1

-0.5

0

0.5

1

K
3

Strain Energy Density

0

50

100

150

200

250

W
D

D
I (

P
a)

(a)

ത𝑉

(b)

Figure 5.7: (a) Kinematic map plotted along the projection of WDDI on the (K2,K3)
plane. On the left figure, the colourmap represents the point density, whereas on the right
figure, the colourmap represent the average DDI strain energy density value for the points
located in the sub-space. (b) Mechanical response map for experimental data.
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5.3. Conclusion

The point cloud seems to follow a curved surface. The point cloud is thin in the strain
energy density direction, meaning that DDI did estimate close strain energy density values
related to close (K2,K3) couples. The upper right figure shows some points do not seem
to follow the trend of the other points: it seem that their strain energy density values are
lower than expected. These points are located around K3 = 0.4 and spread from K2 = 0.4
to K2 = 0.8. Those can be points whose stresses were under-estimated by DDI or points
whose kinematics were triggered by a huge amount of noise during DIC procedure. Their
number is not significant enough for them to corrupt further applications (see Chapter 6).

This mechanical response map is used in Chapter 6 to visualise the agreement between
a fitted model and DDI results for experimental data. Further observation of DDI strain
energy density results can be conducted. Figure 5.8 presents “slices” of the (K2,K3,W )
point cloud in the (K2,W ) plane at five different K3 values. The sampling along K3 axis
is chosen to be periodic with a 0.5 step. The thickness of the resulting filtred point clouds
can be observed. The first one, corresponding to K3 ⩾ 0.995 has a maximal thickness of
0.075 MPa, while the other point clouds exhibits a maximal thickness around 0.05 MPa.
The observed thickness appears to confirm the good strain energy density estimation made
with DDI. Some noise can be observed, resulting from DIC noise or “weak” clusters during
DDI process. Another layer of analysis could be added by plotting the same five point
clouds with a density plot, assessing if the thickness inherits from a few scattered and noisy
points or if the point cloud is homogeneous along its thickness. A hint on the answer is
provider later in the manuscript with Figure 6.15.

5.3 Conclusion
The DDI method allows to calculate an admissible stress field from experimental data.
The diverse observations of the stress field, either with bar histograms or using Lode
invariants, show a good agreement between DDI stress data and kinematic experimental
data. These multiple features could not be easily encompassed in a mechanical response
map, and another feature is chosen to represent the stress response of the material.

The DDI stress field can be used to calculate the strain energy density field, which
characterises the mechanical response of hyperelastic materials. Strain energy density
is then plotted on a three-dimensional graph along Hencky’s logarithmic strain tensor
invariants K2 and K3. The resulting point cloud is widely spread along the K2 and K3
axis, but thin the strain energy density axis: it defines a mechanical response surface,
specific to the tested material.

This graphical tool summarises the identification process for a full-field measurement-
based method: identification is finding the equation of the surface that is best matching
with the point cloud of the mechanical response map. It can also help design experi-
mental tests precisely meshing the response surface to enable good quality identification
procedures.
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Chapter 6

Data-Driven Model Identification

Data-Driven Model Identification or DDMI is an identification method which aims to com-
bine the benefits of both the classical identification method and full-field measurement-
based identification methods. It consists in running a multiaxial experiment and measuring
the corresponding kinematical fields, then running DDI to estimate stress and strain en-
ergy density fields. Once the features are collected, a model can be chosen and fitted
to experimental data. The fitting procedure can be applied to the DDI stress field or
strain energy density field. Different objective functions have been tested and compared
on synthetic data. The best method is then applied to experimental data.

Overall, the best and most convenient fitting method relies on an absolute error-based
objective function written with a variable change, and minimising the distance between
strain energy density fields.

DDMI is applied to experimental data. Two models are fitted on the DDI strain
energy density field: the third-order Ogden model and the Yeoh model. Both model strain
energy density fields are compared with the DDI strain energy density field and show
error levels consistent with the ones observed with synthetic data. The comparison with
uniaxial tension data proves that the two DDMI-fitted models can represent the material
behaviour in the strain range of the experimental dataset.
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6.1. Method

The identification methods have been explored in Chapter 1. The analysis of the
methods and their costs led us to propose an identification method that gathers the
benefits discussed in the first chapter: a unique and complex experiment benefiting from
DIC to measure experimental fields, and a “off-line” fitting step allowing to choose the
model after the high “cost” identification steps. As Data-Driven methods have already
the ability to generate new constitutive laws, for example with unsupervised learning [37],
the proposition is to use DDI to build an identification method. This method has been
described in an article accepted for publication in Rubber Chemistry and Technology [24].
This Chapter presents an extended version of the publication.

6.1 Method

6.1.1 Concept and general framework

The Data-Driven Model Identification process is schemed in Figure 6.1; it consists of three
successive steps.

𝜺𝒊
𝒆

Resulting forces

Step 1: Inhomogeneous experiment

Model 

choice

Model + 

parameters

Step 3: Parameters

fitting

Step 2: Data-Driven

Identification

FE simulation

Or experimental test

λexp,1
λexp,2

𝑊
𝑖𝑒

𝜎
𝑖𝑒

𝐻𝑖
𝑒

𝜎
𝑖𝑒

𝐻𝑖
𝑒

Cost +                      ++                   ++ +                   +++++            +++
Figure 6.1: Data-Driven Model Identification method process. The costs are expressed
for each identification step: test, DDI algorithm and parameters fitting. Those costs can
be human time, testing machine time, material or samples, and computation time. The
process can be adapted to both synthetic and experimental data. Two distinct paths can
be explored for fitting parameters on the DDI stress field or fitting parameters on the
associated strain energy density field. The optimisation procedures are symbolised by the
squared looping arrows referring to Eqs. (5.8) in the second step and (6.2) and (6.3) in
the third step.

The first step is experimental and inherits from full-field measurement methods with
a unique complex test to run. The tests are presented in Chapter 3. The second step
inherits from the features choice step of the standard identification method to compute
stress fields. Nevertheless, the complex experiment generates non-homogeneous stress
fields that cannot be simply computed with experimental features but need the help of
a dedicated algorithm. Here, we use the DDI technique proposed by Leygue et al. in
2018 [57] and its extension to large strain provided by Dalémat [28] as presented in
Chapter 5 to estimate the stress fields without any constitutive law. Finally, similarly
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to the standard method, a constitutive law can be chosen and its parameters fitted,
“off-line”. A qualitative evaluation of the costs of this method is proposed in Figure 6.1.
This evaluation is similar to the ones presented for the classical Identification method and
FEMU in Chapter 1. The first step is equivalent to the first FEMU step and evaluated as
such: with low material sample costs and intermediate costs in machine and human time.
The last step is similar to the last step of the standard one, and evaluated at a low cost
in computational time and an intermediate cost in human time. The majority of the cost
inherits from the DDI step, needing larger computational time.

This method is applied to numerical data presented in Chapter 3 in Section 6.2, and
to experimental data in Section 6.3.

6.1.2 Minimisation problem

Some methods and tools have to be defined regarding Data-Driven Model Identification.
This section will focus first on the objective functions defined for material model param-
eters fitting.

As shown in Figure 6.1, the last step of the Data-Driven Model Identification method
consists of choosing a model and fitting its parameters to experimental data. Different
fitting approaches are presented here:

• on the stress field, as done classically with simple deformation states experiments,

• on the strain energy density field, using the energetic formulation of hyperelastic
constitutive models. This procedure can be achieved thanks to the DDI stress field,
which can be used to calculate the strain energy density field WDDI . Once the strain
energy density field calculated, hyperelastic models parameters can be determined on
strain energy density, as seen in Figure 6.1. For a hyperelastic material, strain energy
density can be calculated using stress field σe

DDIi
and D, the Eulerian deformation

rate tensor, computed from the deformation gradient F, which is extracted from the
kinematic fields measured using DIC:

W e
DDIi

=
∫ ti

0
σe

DDI(t) : De(t)dt, with D = 1
2((Ḟ · F −1) + (Ḟ · F −1)T ). (6.1)

Third-order Ogden models are fitted on both the DDI stress field and strain energy
density field. Ogden model formulation for stress and strain energy density is given in
Eq. (3.1) and (1.6).

Three types of objective functions are used on numerical data, and the most con-
venient one is used for DDMI on experimental data. The first objective function that is
considered is based on relative errors between model data and DDI data, and the second
one is based on absolute errors. The third one is absolute errors-based and includes a
variable change to guarantee the model’s polyconvexity during optimisation procedure.
They are described in the next sections.

6.1.2.1 Relative error-based objective functions

The first method investigated when developing DDI is based on relative errors. The
objective function for the “stress-fit” path is expressed using the DDI σe

DDIi
and model
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6.1. Method

σ̂e
i (y) stress tensors associated with each mesh element e at each time step i and is given

by:

ysol = arg min
y

∑
i

∑
e

∥ σ̂e
i (y) − σe

DDIi
∥2

∥ σe
i ∥2

, (6.2)

with ||σ||22 = (σ : σ) and the model parameters being represented by y. The second
fitting path is built considering the availability of the stress field calculated with DDI, and
the non-linear elastic nature of the materials used for this identification path. The fitting
process is adapted to hyperelastic constitutive laws and models, written as strain energy
densities, and based on a new objective function:

ysol = arg min
y

1
2
∑

i

∑
e

[
W e

DDIi
−W e

i (y)
]2

(W e
DDIi

)2 , (6.3)

W e
DDIi

being the DDI strain energy density for element e et time step i, and W e
i (y)

being the model’s strain energy density calculated with parameter set y, where the double
summation accounts for all the discrete time steps i and finite elements e. The major
advantage of relative error is to lower the importance of the errors associated with large
reference values. These points are scarce in our datasets, meaning larger possible errors
after DDI calculus. This is caused by the clustering regularisation. However, relative
errors tend to enhance the importance of errors related to lower reference value-associated
points.

6.1.2.2 Absolute error-based objective functions

The second method investigated for DDI is based on absolute error. The objective func-
tions are described below:

To discuss the choice of fitting the strain energy density rather than stress data, we
modify Eq. (6.2) by changing the cost function as follows:

ysol = arg min
y

1
2
∑

i

∑
e

∥∥∥σe
DDIi

− σe
i (y)

∥∥∥2

2
. (6.4)

Let y denote the vector of parameters involved in the model, and W e
i (y) represent

the computed strain energy density to be fitted to the measured strain energy W e
DDIi

data
points. The solution ysol is obtained by minimising the following objective function:

ysol = arg min
y

1
2
∑

i

∑
e

[
W e

DDIi
−W e

i (y)
]2
. (6.5)

The absolute error minimisation processes gather the opposite advantages that the
ones described for relative error earlier.

6.1.2.3 Objective function with variable change

As an example, we selected a 3-term Ogden strain energy function, which is the same
model used to generate the data. It is well-known that each pair of parameters (µi,αi)
must satisfy µi αi > 0 to ensure the polyconvexity of the strain energy function (see for
example [45]). To naturally incorporate this constraint into the identification process, the
strain energy density Eq. (1.6) or stress Eq. (3.1) is expressed in terms of (µi, βi), where
βi = √

µi αi, ensuring that µi and αi have the same sign.

95



Chapter 6. Data-Driven Model Identification

The objective functions are the same as the ones from the previous section (6.1.2.2),
the only features that change are the model’s strain energy and stress formulation. Ogden’s
model is written with the variable change below:

σk = −q +
N∑

i=1
µiλ

β2
i

µi
k , (6.6)

q being the hydrostatic pressure, λk (k = 1,2,3) being the principal stretches, σk the
principal stresses, N the order of the model, and (µi, βi) the model parameters after the
variable change. The same variable change can be applied to Ogden’s model strain energy
density formulation, as follows:

W =
N∑

i=1

µ2
i

β2
i

λβ2
i

µi
1 + λ

β2
i

µi
2 + λ

β2
i

µi
3 − 3

 . (6.7)

6.1.3 Visualisation tools

This paragraph aims to present and describe the graphical tool that is used to compare
strain energy density fields in the following sections. The choice has been made to represent
strain energy density fields and stress fields. The stresses are six-component tensors and
are compared using two metrics: the spherical part of the tensor σS = 1

3tr(σ) and the Von
Mises norm of the stress tensor:

σ2
VM = 1

2
[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]
. (6.8)

In this section, the visualisation tool is introduced with a focus on strain energy
density representation. The same process is applied to the stress metrics. This graphical
tool is a plot expressing the distribution of relative errors plotted against reference data.
The reference data is from the finite element simulation described in Chapter 3. The
horizontal axis expresses x, the relative error between the reference strain energy density
field Wref and a given strain energy density field W :

x(W ) = Wref −W

Wref
, (6.9)

and the vertical axis expresses the reference strain energy density field Wref. To
display the distribution of relative error x(W ), the graph is discretised in a 100 × 100
grid. For each square of the grid, the number of points plotted inside is counted, and
divided by the total number of points: this is the probability for one point (x(W ),Wref)e

i

associated with the element e at time i taken randomly in this experience to appear in the
given square. For the sake of reading, a natural logarithm is applied to the probabilities
and a corresponding colour bar is used: a red square expresses a high probability for a
point taken randomly in this experience to appear in the given square, and a blue square
a low density of points. It can be noted that several decades can separate blue and red
squares. Overall, a point located in the right part of the figure, with x(W ) > 0, expresses
an overestimation of the quantity while a point located on the left part of the figure
expresses an underestimation of the quantity.

Figure 6.2 presents four illustrative cases, built with Gaussian distributions:

• the top left figure represents the relative error distribution for a perfect method
(W = Wref), with a Gaussian distribution of reference data: relative errors are set
to zero, and colours express the distribution of the reference data,
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Figure 6.2: Four illustrations of density plots expressing reference data Wref as a function
of relative error x(W ).

• the top right plot represents the distribution of normally distributed relative errors,
centred in zero and with a standard deviation of 0.1 (< W >=< Wref >),

• the bottom left plot represents the distribution of normally distributed relative er-
rors, centred in 0.5 and with a standard deviation of 0.1: this shows a systematic
over-estimation of the data (W e

i > W e
ref,i ∀ (i,e) and < W >= 1.5 < Wref >),

• the bottom right plot represents a method that over-estimates data at large reference
data values and under-estimates data at lower reference data values.

These artificial examples show the general trends that can be exhibited by the density
plots. As shown in the following, these plots can be completed with other distribution
visualisation tools such as histograms representing relative error distribution at a fixed
reference data value.

6.2 Validation on synthetic data

The goal of this section is to present the results of the three fitting campaigns run on DDI
data coming from the numerical experiment. First, DDI stress and strain energy density
data are compared with the reference data, extracted from finite element simulations.
Figure 6.3 displays the distribution of relative error between DDI and reference strain
energy density plotted along the reference strain energy density.
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Figure 6.3: Relative error between DDI strain energy density and reference strain energy
density field from Finite Element simulation. The three histograms on the right express
the distribution of points within a small variation of reference strain energy density value.

The left part of the plot is based on the visualisation tool presented above. At first
sight, one can observe that the vast majority of points, located in the red and orange
areas, are located mostly along the vertical axis, meaning that this majority of points
have a really small error. The DDI seems to estimate well the stress field when compared
with the reference stress field.

The cloud point is shifted on the left at small reference strain energy density values
and shifted on the right at larger reference strain energy density values. It seems that DDI
is overestimating stress values at low reference strain energy density values and underes-
timating stress values at high reference strain energy density values. This phenomenon
can be explained by the DDI path: the stress field estimated by DDI is constrained by
mechanical equilibrium. If DDI overestimates some stress values, it has to underestimate
other stress values to guarantee equilibrium.

The three histograms on the left-hand side relate the distribution of error along a
fixed reference strain energy density value. The error distribution is centred on zero for the
three cases. However, the distribution appears to be thinner when the number of points
is larger. Again, this can be explained by the DDI resolution path: clustering is one of
the keys of the algorithm, and DDI needs a certain number of points to cluster together
to gain efficiency.

6.2.1 Fitted parameters

The first try of the method consisted in minimising the relative error between the fitted
model and DDI stress and strain energy density fields, according to Eqs. (6.2) and (6.3).
The two-term Ogden model and three-term Ogden model have been fitted on the DDI
stress field, and the second-order Ogden model on DDI strain energy density data. The
following sections focus on the “best” fits of the method: the second-order Ogden model

98



6.2. Validation on synthetic data

fitted on DDI strain energy density and the third-order Ogden model fitted on DDI stress
field, which admits a smaller objective function value than the second-order Ogden model
fitted on the same data.

6.2.1.1 Minimisation on relative error

The fitted parameters and corresponding shear modulus are presented in Table 6.1. The
order of magnitude of each parameter is consistent with the reference model parameters
presented in Table 3.1. The shear modulus µ, calculated according to Eq.(3.2), is in
agreement with the reference shear modulus.

6.2.1.2 Minimisation on absolute error

The second test on the method was achieved using objective functions that minimise the
absolute error between fields. Three-term Ogden models were fitted on both DDI stress
and strain energy density. The fitted parameters and related shear modulus are presented
in Table 6.2. Similarily than in the previous case, the order of magnitude of each parameter
is consistent with the reference model parameters (Table 3.1), and the shear modulus µ is
in agreement with the reference shear modulus.

6.2.1.3 Minimisation on an absolute error with variable change

The third test of the method was achieved using the same minimisation on absolute error
but the procedure incorporates the above-mentionned variable change which constrains
the admissibility of the parameters. The fitted parameters and related shear modulus are
presented in Table 6.3. Similar conclusions than the two previous cases can be drawn.
Note that two of the α parameters are close to zero, 10−11 and 10−12 respectively, and
those terms do not influence the model much.

6.2.2 Comparison with DDI fields

As a summary, six models have been fitted. For each model, stress and strain energy
density fields are calculated according to Eqs. (1.6) and (3.1). The visualisation tool pre-
sented in Section 6.1.3 is used to compare the different fields. Each method is represented
by a given colour map. The models fitted on the stress field are presented on the left-hand
side of the figure and the ones fitted on strain energy density fields are presented on the
right-hand side.

First, the six model fields are compared with DDI stress then strain energy density
fields in Figures 6.4 and 6.5. “High-density point clouds” are mentioned in the analysis of
the following figures. This term corresponds to the point cloud, representing most points
through its density. It corresponds to figure areas coloured with the highest colourbar
colour.

6.2.2.1 Comparison with DDI stress fields

Representing stress tensors is difficult because of the dimensions of the objects. In this
section, the choice is made to represent and compare two scalar features for stress field
representation:

• the spherical part of the tensor,

• the Von Mises norm of the tensor.
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Figure 6.4 presents the comparison between fitted models and DDI stress fields.
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Figure 6.4: Comparison of stress fields between fitted models and DDI results. The first
column indicates the method. Each figure presents a left plot representing the relative
error between the spherical part of the stress tensors, and a left plot representing the
relative error between the Von Mises norm of the stress tensors.

Each figure presents the relative error between the spherical part of the tensors on
the left and the relative error between the Von Mises norms on the right. The methods are
presented from top to bottom: relative error minimisation, absolute error minimisation,
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and absolute error minimisation with variable change. Stress-fitted models are presented
on the left and strain energy density-fitted models on the right.

At first sight, the six figures are very similar. For the six of them, the majority of
points are located near the ordinate axis, meaning that the relative error between fitted
model fields and DDI fields is low, due to the minimisation problem. Those zones presents
a point density three to four decades higher than the external point cloud zones. The large
base of the cloud point is due to the choice of representation: relative errors increase when
the reference field value decreases. There is some scattering to be observed: some points
present a larger error than others. Moreover, the scattering is wider on the spherical
tensor part-related figures, meaning that the relative error between the DDI stress field
and the identified stress field is higher on the spherical part of the stress field.

Differences can be observed between the methods: for the same minimisation error,
the point cloud corresponding to the strain energy density-fitted model seems more vertical
at the base, where the majority of points are. Overall, the same amount of scattering can
be observed in both methods. Some seem to exhibit a better fit, with the high-density
point cloud highly vertical and centred on the ordinate axis. That is the case of the W -
fitted model with variable change, which can be observed at the bottom right cell of the
figure.

6.2.2.2 Comparison with DDI strain energy density field

Figure 6.5 presents the comparison between fitted models and DDI strain energy density
fields, using the visualisation tool presented in Section 6.1.3.

Again, the six figures are very similar, showing some scattering, which is amplified
at low DDI strain energy density values by the representation of the relative error. The
majority of points, represented by the top colours of each colourbar, are located near the
ordinate axis in each figure, assessing that the two fields exhibit close values. Those zones
presents a point density three to four decades higher than the external point cloud zones.

However, there are differences between the six high-density cloud points (dark red to
black for the first picture row, orange to yellow for the second row and orange to dark red
for the third row). In the case of stress-fitted models, the origin of the dense cloud point,
with DDI strain energy density values close to zero, seem not to match with the origin of
the axis, meaning that a systematic error on the stress field can exist at low DDI strain
energy density values.

The strain energy density-fitted models exhibit again more upright dense cloud points,
located close to the ordinate axis, with an origin located on the axis origin. This repre-
sentation shows that fitting on strain energy density might be more precise than fitting
on stresses.

6.2.3 Comparison with reference fields

The major benefit of testing this identification method on synthetic data is the availability
of “reference” fields, calculated by finite element simulation. This section is dedicated to
the comparison between fitted model fields and reference fields.
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Figure 6.5: Comparison of strain energy density fields between fitted models and DDI
results. The first column indicates the method. Each figure presents the relative error
between the DDI and fitted models’ strain energy density fields.

6.2.3.1 Comparison with reference stress field

Figure 6.6 presents the comparison between fitted models and reference stress fields. Each
figure presents the relative error between the spherical part of the tensors on the left and
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the relative error between the Von Mises norms on the right.
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Figure 6.6: Comparison of stress fields between fitted models and FE reference solution.
The first column indicates the method. Each figure presents a left plot representing the
relative error between the spherical part of the stress tensors, and a left plot representing
the relative error between the Von Mises norm of the stress tensors.

The six figures present a significantly smaller scattering than the DDI-fit compara-
tive figures. The fitted models appear to match the reference data with more accuracy
than DDI. Here, the six models have filtered the scattering observed amongst DDI data
in Figure 6.3. Again, the spherical tensor part-related figures (on the left of the plots)
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present a wider scatter than the plots related to the Von Mises norm. Once again, it is a
consequence of the incompressibility (see above).

The relative-error minimisation method with a fit on strain energy density seems
to generate more scattering than the other five methods at large reference values, giving
the top right figures a firework look. The third method, absolute error minimisation
with variable change, exhibits again the most upright and zero-centred dense cloud. This
method seems to be the most promising one among the six.

6.2.3.2 Comparison with reference strain energy density field

Figure 6.7 presents the comparison between fitted models and reference strain energy
density fields, using the visualisation tool presented in Section 6.1.3.

The six figures present thin and upright point clouds, differing by their general shape
(straight or curved) and the position of the lowest point of the point cloud (aligned with
axis origin or not).

The three stress-fitted models present a curved form and a point cloud origin which
is not aligned with the axis origin. The two absolute error and stress-fitted models display
a similar curvature; the relative error and stress-fitted models are more upright and closer
to the ordinate axis.

The relative error and strain energy density fitted model (top right figure) presents
a scatter at large reference values (firework shape) and the origin of its dense cloud point
does not match with the axis origin. This model seems not to be the best fitting to our
“numerical material”. The absolute error and strain energy density-fitted model presents a
limited curvature and a reduced scattering; whereas the absolute error with variable change
and strain energy density fitted model (bottom right figure) presents a more upright point
cloud with a very limited scattering. Its dense point cloud origin matches the axis origin.
It is the best matching model in this comparison with reference data.
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Figure 6.7: Comparison of strain energy density fields between fitted models and FE
reference solution. The first column indicates the method. Each figure presents the relative
error between the reference and fitted models’ strain energy density fields.
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6.2.4 Evaluation of two models on simple deformation states experi-
ments

A different validation approach has been conducted on the two absolute errors with vari-
able change models. This “evaluation” is inspired by the classical identification method,
described in Section 1.2, which is based on simple deformation states experiments, and
is used to extrapolate the material behaviour at complex deformation states, using the
fitted model. Considering that the DDMI approach is based on multiaxial experiments,
the fitted models are evaluated on simple deformation states experiments, reversing the
concept of the classical identification method. The models have been evaluated based on
the stretch ratios achieved in Treloar’s experiments [90]. The comparison of their shear
modulus, calculated according to Eq. (3.2), and presented in Tables 6.1, 6.2, and 6.3 shows
that the W -fitted models are more likely to restitute the original shear modulus than the
σ-fitted models. Figure 6.8 presents synthetic uniaxial tension curves corresponding to
the different fitted models.

From a global perspective, both models successfully reproduce the material response
for the range of stretch ratios used in the identification process. However, there is a
discrepancy in the case of uniaxial tension for stretch ratios greater than 4, specifically
corresponding to K2 > 1.7. By examining Figs. 4.8 and 4.10, it is evident that there are
very few data points in this region. As a result, these points have minimal impact on the
objective function.

However, it is important to note that the extrapolated portions of the curves deviate
significantly from the initial model, regardless of the experiment. This observation is a
common phenomenon in hyperelasticity. It is widely recognised that accurately predicting
the large strain response of elastomers requires relevant data points for model fitting.

Finally, it is worth noting that the small strain predictions in both planar and
equibiaxial tension experiments exhibit excellent agreement for the model identified using
the strain energy density field. However, the stress-fitted model shows relatively poorer
agreement in these cases.

6.2.5 Conclusions on the methods applied to synthetic data

Three distinct methods have been investigated on synthetic data. As detailed in the
previous sections, the models that reproduce the “numerical material” behaviour the best
are the models fitted on strain energy density. It seems that by considering the strain
energy density, the identification process becomes less biased towards uniaxial tension
data, which typically provides a large number of data points. Strain energy density
balances the stress field with the strain field. This mitigates the potential dominance of
a single mode of deformation and allows for a more balanced and robust identification of
the material response.

Differences in convenience have also been noted amongst the methods. The relative-
error-based method generates more scattering in comparison with reference data. Both
relative-error and absolute error-based methods had a strong tendency to generate non-
admissible parameters. Numerous optimisation starting points had to be tested to finally
fit an admissible parameter set. This complicates the application of the method and
increases the computing time. Yet, the variable change significantly simplifies the process,
and the third method, based on absolute error and written with variable change, has been
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Figure 6.8: Accuracy of the models for the three simple experiments: nominal stress
vs. largest stretch ratio for (a) uniaxial tension, (b) planar tension, and (c) equibiaxial
tension. The initial model is represented by a black continuous line, and the corresponding
stress values are depicted by a sky-blue surface with a tolerance of ±5%. For each identified
model, represented by blue (identified with σDDI) and red (identified with WDDI), the solid
line illustrates the model response at stretch ratios achieved by at least one finite element
during the heterogeneous test. The dashed and dotted lines are used for extrapolation
beyond the tested range.

the most convenient and most efficient method of the three.

After testing the six methods on synthetic data, DDMI is tested on experimental
data, using the strain energy density and absolute error with the variable change method.

6.3 Application to real experimental tests

Once DDMI has been proven efficient on synthetic data, we can now apply it on experi-
mental data. The chosen test and its parameters are described in the following.
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6.3.1 Experimental methods

6.3.1.1 Experimental data

The experimental dataset chosen for this application of DDMI on experimental data is
described in Table 3.4 and corresponds to the sample ANR 3.1. It corresponds to the
slower experimental test. The corresponding DDI strain energy density field is presented
in Figure 5.7.

6.3.1.2 Models and fitting methods

Two models have been fitted on the DDI strain energy density field:

• a three-term Ogden model, using absolute error with variable change objective func-
tion as described in Section 6.1.2.3,

• a Yeoh model, described by Eq. (1.7), because it is one of the models fitted on
the uniaxial tension curves of the carbon-black filled SBR which presented a good
agreement with the experimental data. This Abaqus-fitted model will be used as a
comparison with the DDMI-fitted models.

The two models’ energetic formulations are recalled below:

W =
N∑

n=1

2µn

α2
n

(λαn
1 + λαn

2 + λαn
3 − 3) ,

describing Ogden model, with αi, and µi being the parameters of the model and

W =
3∑

i=1
Ci0 (I1 − 3)i ,

describing Yeph model, Ci0 being the parameters of the model.

6.3.1.3 Validation path

Working with experimental data means that reference data is not available, and other
“control points” have to be defined to assess the efficiency of the method. First, fitted
models stress and strain energy density fields will be compared with DDI data using
the visualisation tool developed in Section 6.1.3. These figures will be compared to the
ones obtained with synthetic data, to qualitatively evaluate the influence of the use of
experimental data. Second, the fitted models are compared with uniaxial tension data,
reversing the classical identification process. Finally, DDI data is compared to uniaxial
tension data to explain the differences that can be observed between the Abaqus-fitted
model and the DDMI-fitted models.

6.3.2 Results

This section is dedicated to the presentation of the results of DDMI applied to experi-
mental data. The fitted-models strain energy density fields are compared with DDI fields
in the following.
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6.3.2.1 Ogden model

The first fitting procedure conducted with DDI experimental data is set to fit a three-term
Ogden model [71]. The fitted parameters are given in Table 6.4.

Parameters µ1 (Pa) µ2 (Pa) µ3 (Pa) α1 α2 α3

Values 3.76 × 106 1.72 × 106 −2.34 × 106 1.96 × 10−9 3.70 × 10−9 −1.35

Table 6.4: Parameters of the three-term Ogden model fitted on DDI experimental data.

This model’s corresponding strain energy density field is compared with DDI data
using the visualisation tool presented in Section 6.1.3. Figure 6.9 presents the absolute
and relative error between the model’s strain energy density and DDI strain energy density
as a function of WDDI.
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Figure 6.9: Comparison between fitted Ogden model strain energy density field and DDI
strain energy density field.

The absolute error plot, on the left-hand side of the figure, presents a vertical point
cloud, centered on a null error, with highly dense areas located along the ordinate axis.
The majority of the points are located along the ordinate axis, meaning that the absolute
error is low for the majority of points. Some points are diverging away from the rest of
the point cloud, leading to the blue slopes that can be observed in both left-handside and
right-handside plots. The right-hand side plot, showing the relative error between the
DDI and fitted strain energy density field, exhibits a larger point cloud, especially at the
bottom of the plot where the majority of points, yellow and orange areas, is diverging
towards the right side of the plot, meaning that DDI strain energy density values tend
to be higher than the corresponding fitted strain energy density, for small strain energy
density values. DDI may overestimate these small strain energy density values. Overall,
the middle to the upper part of the plot is well-centred on the ordinate axis, confirming
the observations made on the left-hand side plot. Additionnaly, the absolute error plot
of Figure 6.9 (a) is filtred to focus on the denser areas of the plot. The result is shown
in Figure 6.10. The plane section representing a number of points corresponding to a
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hundreth of the point number of the densest area or less are removed. Only 4% of the
data is removed. The resulting density plot is an upright form, centered on the ordinate
axis. This figure shows the accuracy of the fitted model for representing the experimental
data.

ത𝑉

Figure 6.10: Comparison between fitted Ogden model strain energy density field and DDI
strain energy density field: absolute error display. The data is filtred. The plane sections
representing more than a hundredth of the densest plane section are represented. Only
4% of the data points are removed.

6.3.2.2 Yeoh model

The second fitting procedure with DDI experimental data is set to fit Yeoh’s model [102].
The fitted parameters are given in Table 6.5.

Parameter C10 C20 C30

Value (MPa) 0.745 -0.191 0.0341

Table 6.5: Parameters of the Yeoh model fitted on DDI experimental strain energy density
field.

Figure 6.11 presents the comparison of the fitted Yeoh model strain energy density
field and DDI strain energy density field.

The left-handside plot presents the absolute error while the right-handside plot
presents the relative error. The observations made in Figure 6.9 apply to this figure as
well, because both figures exhibit the same characteristics. It can be noted that both
figures look like the plot presented for numerical data in Figure 6.5, but with the charac-
teristic diverging at the bottom of the plot. Both models seem well fitted considering that
the majority of points are located close to the ordinate axis. Additionnaly, the absolute
error plot of Figure 6.11 (a) is filtred to focus on the denser areas of the plot. The result
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Figure 6.11: Comparison between fitted Yeoh model strain energy density field and DDI
strain energy density field.

is shown in Figure 6.12. The plane section representing a number of points corresponding
to a hundreth of the point number of the densest area or less are removed. Only 4%
of the data is removed. The resulting density plot is an upright form, centered on the
ordinate axis. A slight bend can be observed, meaning that the model seem to slightly
over-estimate some of the strain energy density values and under-estimate others. This
figure shows again the accuracy of the fitted model for representing the experimental data.

ത𝑉

Figure 6.12: Comparison between fitted Yeoh model strain energy density field and DDI
strain energy density field: absolute error display. The data is filtred. The plane sections
representing more than a hundredth of the densest plane section are represented. Only
4% of the data points are removed.
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6.3.3 Discussion

DDMI has been applied to experimental data. Two models were successfully fitted to
experimental data through the DDMI procedure. They have to be compared to other
material data to investigate their capacity to predict the material behaviour.

The initial shear modulus of the two DDMI-fitted models and the Abaqus-fitted
model described in Section 2.2.3 are calculated according to EQs. (3.2) and (2.10) and
presented in Table 6.6.

Model Abaqus-fitted Yeoh DDMI-Ogden DDMI-Yeoh
Shear modulus (MPa) 1.87 1.57 1.49

Table 6.6: Comparison of the initial shear modulus of the fitted models.

The three shear moduli share the same order of magnitude. However, the two DDMI-
fitted models’ shear moduli are the closer values, and the modulus of the Abaqus-fitted
model is higher.

Figure 6.13 shows two three-dimensional representations of the two DDMI-fitted
models as grey surfaces and DDI strain energy density data as black dots. These plots
present the DDMI-fitted Ogden plot on the left-hand side of the figure and the DDMI-
fitted Yeoh model on the right-hand side plot.

ത𝑉

(a) Fitted Ogden model

ത𝑉

(b) Fitted Yeoh model

Figure 6.13: Visualisation of fitted models surfaces and DDI strain energy density data as
functions of K2 and K3.

There is a very good agreement between the DDI data and the model in both cases.
The DDI data seems to be laying on both model surfaces, except for some points exhibiting
strain energy density values lower than expected, as mentioned in Section 5.2.3. The two
models exhibit a different curvature when K2 increases: the fitted Yeoh model exhibits a
stiffer slope than the fitted Ogden model. These curvature differences are observed at K2
levels that are poorly or not covered by the experimental data on which they have been
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fitted: this difference is due to the model formulations. Without further data, we meet one
of the limits of every identification method: the model extrapolation on missing data is
one possible description of the material behaviour, but we cannot argue that the material
behaves like this without further experimental investigation. This difference between the
three fitted models is also shown in Figure 6.14.
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Figure 6.14: Evaluation of fitted models along with the model fitted by Abaqus on uniaxial
tension data. This is a projection of the experimental data as seen in Figure 5.7 (b) on
the (K2,W ) plane. The dark blue zones represent one point or less.

This figure shows the evaluation of the three fitted models, the Abaqus-fitted Yeoh
model and the DDMI-fitted Ogden and Yeoh model, on synthetic uniaxial tension curves.
The two DDMI-fitted models are very close to each other in the stretch range correspond-
ing to the experimental data we fit them on, represented by plain lines in the plot. They
diverge around λUT = 2.15, at stretch levels where the experimental data is scarce. Their
slope in the range λUT ∈ [2.3, 2.8] is very different. The DDI-fitted Ogden model presents
a single inflexion. Two of its power parameters, α1 and α2 are close and act as a single
term, as shown in Table 6.4. The Abaqus-fitted model presents stiffer slopes and is always
located above the two others. This model has only been fitted on uniaxial tension data and
no other deformation mode. It seems that either the Abaqus-fitted model overestimated
stress, or the two DDMI-fitted models underestimated stress. One way to sort this out
is to compare DDI data and uniaxial tension data. Figure 6.15 presents the comparison
between DDI data, expressed in terms of strain energy density as a function of K2, and
uniaxial tension data.

Experimental data is represented with a density plot, the yellow areas representing
the highest density of points, and the uniaxial tension data is presented as a black line.
This figure highlights the position of the DDI point cloud compared to the Uniaxial Ten-
sion curve: again, the uniaxial tension data is located above the dense DDI point cloud.
This could explain the differences observed above between the Abaqus-fitted model and
DDMI-fitted models.
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ത𝑉

Figure 6.15: Comparison of DDI strain energy density data with Uniaxial Tension data.
DDI data is presented as a density plot using the colour bar and the uniaxial tension data
is represented by the black line.

6.4 Conclusion
The data-Driven Model Identification method is an innovative identification method to
reconciliate models and Data-Driven approaches. This identification method allows the
exploration of a large variety of deformation modes and preserves the model choice for the
very end of the process, generating a less biased stress field. DDI stress field can be used to
calculate a corresponding strain energy density field. Both fields can be used to fit models.

The method has proven its capacity to fit a model which is representative of the
entry data, first with synthetic data and then with experimental data. The investigations
run with synthetic data highlighted the benefits of fitting models on strain energy density
data. The experimental investigations are run with a strain energy density model fit.

DDMI is still limited both by the Data-Driven Identification applications, which
are increasing year by year, but also by the classical identification limits, such as data
extrapolation for example.

Overall, this method has proven its efficiency for the identification of hyperelastic
material models using non-homogeneous tests on elastomeric planar membranes, in both
synthetic and experimental cases.
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Chapter 7

Sample design for full-field
measurement-based identification
methods

After exploring the identification methods, the kinematic map built in Chapter 4 is used
to design samples that maximise “the multiaxiality” of a heterogeneous test. Two metrics
are defined:

• a measure of the surface covered by the kinematic map points,

• an entropy measure, describing the scattering of the points on the map.

Twelve sample geometries are proposed. They are based on a 100 × 65 mm2 planar
carbon-black filled SBR membrane pierced with holes of different sizes. Finite element
simulations are run, the corresponding kinematic maps plotted and metrics calculated.
The two sample geometries maximising the metrics are chosen to be tested experimentally.
Experimental tests are run and kinematic fields are measured with DIC. The experimental
kinematic maps are plotted and compared with the ones from finite element simulations.

The experimental maps present smaller surface measurements due to the strip of
material that is not considered due to the difficulty of making the DIC mesh match
the boundaries of the sample. Their entropy measure is better than the finite element
simulations, meaning that there are fewer “hot spots” with a high point density on the
experimental kinematic map.
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7.1. Framework

The design of multiaxial tests for full-field measurement-based methods relies on the
choice of the loading conditions and the geometry of the sample. This chapter explores
the possibilities to enrich the kinematics of an experiment by modifying the shape of the
sample. The kinematic map built in Chapter 4 is used to compare the different proposals.

7.1 Framework

This study was conducted by third-year engineering school students (equivalent to under-
graduate Master’s students) from Ecole Centrale de Nantes, in the specialty of Materials
and Processes. The aim of the study was to optimise the shape of a pierced planar mem-
brane to enhance the heterogeneity of an experimental test designed for identification pur-
pose. Aboth numerical and experimental approach was chosen to allow students to carry
on finite element simulations and experimental tests. The goal was to propose samples
for enhanced deformation modes and strain magnitude distribution. Carbon-black-filled
SBR rubber presented in Chapter 2 is used for this study. Only planar membranes are
considered.

7.1.1 Sample base

To be easily reproducible, the samples are designed on a similar basis. They are
rectangular-shaped planar membranes of 100 × 65 mm2 with 1.6 mm thickness. Holes are
punched within the rectangular shape to create a non-heterogenous strain field. Both size
and position of these holes influence the strain field.

The hole punchers used are shown in Figure 7.1.

Figure 7.1: Hole punchers available for sample design. The diameters vary from 3 to
30 mm.

Fifteen sizes are available, with diameters from 3 to 30 mm. The pressure required for
cutting is applied manually, using a lever mechanism similar to that used on drill presses.
These conditions meet the requirement of a reproducible and accessible sample-cutting
process. The different sample designs are meshed and a FE model is built accordingly to
reproduce the loading conditions.
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7.1.2 Experiment

The experiment chosen to test the different designs of samples is presented in Chapter 3.
It is applied on the samples with the chosen velocity V̄ = 0.05 mm.s−1. The experimental
tests are run on the hexapod device, using the test bench described also in Chapter 3.

Numerical simulations are run using Abaqus CAE software [30]. The “numerical
material” is modelled with the Yeoh model [102], defined by Eq. (1.7), whose coefficients
have been determined by Abaqus using uniaxial tension data. The model is described
in Table 2.6. Once the simulations run, metrics are calculated and used to compare the
different designs.

7.1.3 Metrics

Metrics are scalar quantities considered relevant for the choice of the sample geometries.
They are derived to choose the sample that maximises the “multiaxiality” of a given test.
Figure 7.2 is used to define the two metrics used to compare sample designs.
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Figure 7.2: Kinematic map example for metrics definition.

• The first metric considered is a measure of the surface occupied by the kinematics
map points. This metric is calculated by counting the number of non-zero squares
in the partition of the (K2,K3) plane. This measure can be compared between the
different sample geometries because the size of the partition squares is fixed among
the experiments. For example, referring to Figure 7.2, the surface is constituted
of 6 dark blue squares, 10 light blue, 7 green, 5 yellow and 3 orange. We have S = 31.

• The second metric is an entropy measure. It is calculated as:

E = −
∑

K2,K3

p ln p, (7.1)

using the kinematics map. Here, p stands for the probability corresponding to a
given (K2,K3) point of the kinematic map. This metric measures the regularity of
the point’s spreading across the (K2,K3) plane. Any concentration of points will
make the entropy drop. For the kinematic map presented in Figure 7.2, we have:

Npoints = 6 × 1 + 10 × 2 + 7 × 3 + 5 × 4 + 3 × 5 = 82, (7.2)
so the probability associated with each square is 1

82 for dark blue squares, 2
82 for light

blue, 3
82 for green, 4

82 for yellow and 5
82 for orange. The entropy associated with this

heatmap is:
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E = −
∑
S

p ln p

= −6 ×
[ 1

82 ln
( 1

82

)]
− 10 ×

[ 2
82 ln

( 2
82

)]
− 7 ×

[ 3
82 ln

( 3
82

)]
− 5 ×

[ 4
82 ln

( 4
82

)]
− 3 ×

[ 5
82 ln

( 5
82

)]
= 3.32. (7.3)

Remark: The entropy value variation is illustrated in Figure 7.3. The blue dotted line
represents −p ln p as a function of the probability value p between 0 and 1. The maximum
of this function is located around p = 0.37. However, the entropy is calculated using
every point of the kinematic map. Let us consider fictive situations where all the points
of the map have the same probability p. Their number is then a N = 1

p . Therefore,
E = −1

pp ln p = − ln p. 200 of these fictive situations are represented by round red mark-
ers. This illustrates that the entropy increases with a more evenly distributed map instead
of several concentrated areas.
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Figure 7.3: Entropy metrics visualisation. The blue dotted line represents the value of
−p ln p for given probability values, and the red round markers represent −

∑
p ln p for a

dataset where every point has an equal probability value p.

Other metrics could have been chosen, such as the average maximum K2 for each
layer of K3, representing the maximum strain magnitude reached to a given close group
of deformation modes.

Other methods exist and have been developed to optimise sample shape to maximise
a metric: shape optimisation procedures. They are based on an objective function to
maximise or minimise and a series of constraints [10]. They can be used to design het-
erogeneous interior notched specimens for material mechanical characterisation [21]; or to
maximise the heterogeneity of the strain and stress states using topology optimisation [7].
Those methods were not explored here because the resulting designs usually require spe-
cific cutting tools to realise the notches or specifically designed holes.
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7.2 Designs and simulation results

Once the methods and metrics are defined, several sample geometries are investigated.
Their geometry is designed using GMSH [39] and then used in finite element calculations
and the corresponding kinematic map is plotted. Metrics are then calculated and com-
pared to choose the geometries that will undergo experimental testing.

7.2.1 Designs

Twelve geometries are considered for the test phase. They are shown in Figure 7.4.

(a) Complete membrane (b) Central hole (c) Two holes (d) Diagonal holes

(e) Four holes (f) Five symmetrical
holes

(g) Five holes (h) Six holes

(i) Six holes with one
bigger

(j) Six medium holes (k) Six holes with two
bigger ones

(l) Ten holes

Figure 7.4: Sample geometries for FE simulations.

The number of holes varies from zero to ten, with different positions:

• no hole or a unique hole, for samples (a) and (b),

• a few holes of different sizes to trigger mixed deformation modes between the holes,
for samples (c) to (g),

• and several holes with close positions for samples (h) to (l).

7.2.2 Kinematic maps

Kinematic maps are plotted for each sample geometry, and corresponding metrics are
calculated. Two of them are presented in Figure 7.5: sample (c) on the left-handside and
sample (f) on the right-handside.
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Figure 7.5: Kinematic maps of two sample geometries. Left: sample (c). Right: sample
(f).

The two kinematic maps admit a large surface, covering the K3 axis integrally, mean-
ing that all deformation modes are triggered by the experiment. The highest strain levels
are reached in uniaxial tension for both samples. Sample (f) presents a highly distributed
map, with a large area covered by the warm colours of the colour map. The sample (c)
presents a less distributed map, with denser areas located in the top half of the map.
Both maps present their maximal point density in uniaxial tension and a concentration
around K3 = 0 and K2 ≈ 0.

Similarily than in experimental maps presented in Chapter 4, it seems easier to fill
up the upper half of the map, between planar tension and uniaxial tension deformation
modes, than the lower half of the map, and especially the deformation modes close to
equibiaxial tension. The classical way to trigger this deformation mode is either by in-
flating a membrane or using a specific machine with two clamping jaw pairs positioned
perpendicularly [60]. Neither the experimental setup nor the chosen loading corresponds
to these two methods. It explains the difficulty encountered to trigger equibiaxial tension
with larger strain during the tests.

7.2.3 Metrics comparison

The two metrics are calculated for the twelve proposed designs. The results are presented
in Table 7.1.

Sample (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Surface S 651 789 828 795 748 762 787 788 738 803 777 742
S/Smax (%) 78.6 95.3 100 96.0 90.3 92.0 95.1 95.2 89.1 97.0 93.8 89.6
Entropy E 2.42 2.39 2.43 2.45 2.40 2.47 2.45 2.36 2.44 2.45 2.40 2.38
E/Emax (%) 98.0 96.8 98.4 99.2 97.7 100 99.2 95.6 98.8 99.2 97.2 96.4

Table 7.1: Metrics values for the twelve samples of Figure 7.4. The highest values of each
metric is highlighted.

The surface values vary between 651 and 828, with an average value of 767.33 and
a median of 782. Half of the designs obtain a surface value between 750 and 800. The
sample with the largest surface measure is sample (c), designed with two holes of different
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diameters. The entropy values vary between 2.36 and 2.47, with an average value of 2.42
and a median of 2.425. This presents a tight standard deviation. The sample with the
greatest entropy measure is the sample (f), designed with five holes arranged symmetri-
cally. The two samples that maximise the metrics are chosen for experimental tests.

7.3 Experimental results
The two selected sample geometries are tested experimentally. The tests are run on the
hexapod test bench. Experimental results are presented in the following.

7.3.1 Samples and experimental conditions

Samples (c) and (f) have been chosen for the experiments. Two samples (c) are tested to
ensure the consistency of the results: sample ANR 2.3 and ANR 3.3. The geometry (f) is
made on the sample ANR 3.2. Holes are punched into 100 × 65 mm2 planar membranes.
A speckle pattern is applied with white paint. The final samples are shown in Figure 7.6.

Figure 7.6: Experimental samples for improving deformation modes and diversity. On the
left-hand side Sample (c): ANR2.3, is presented and Sample (f): ANR3.2 in the right-hand
side. A speckle pattern has been applied with white paint for Digital Image Correlation
purposes. The samples are clamped in the experimental setup.

The three tests are recorded using an optical camera. FE-DIC is applied for kine-
matic field measurement. Table 7.2 presents the DIC parameters of the three tests. The
other DIC parameters are presented in Table 3.3. The picture rate is 0.66 Hz, and the
exposure time is 8000 µs.

Sample Time steps Mesh nodes Mesh elements

ANR 2.3, design (c) 518 2122 3987
ANR 3.3, design (c) 521 2428 4509
ANR 3.2, design (f) 533 2260 4222

Table 7.2: Tests parameters.

7.3.2 Experimental kinematic maps

The three corresponding experimental kinematic maps are presented in Figure 7.7.
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Figure 7.7: Experimental kinematic maps obtained for samples (c) and (f). Geometry (c)
(top figures) is tested twice to check reproducibility.

The two upper pictures correspond to the geometry (c) and the third one to the
geometry (f), as represented by the miniature icons. The two upper samples have a
similar high-density surface, represented by the red and dark orange areas. However,
the low-density surface, represented by the blue to yellow areas is different. The second
sample, ANR 3.1, presents a larger surface. The three kinematic maps present a sample
response fully covering the K3 axis, and variable K2 maximum values reached for each
deformation mode. Uniaxial tension remains the deformation mode reaching the largest
strain magnitudes, around K2 = 1.2. The kinematic maps of the two samples (c) present
the same dense areas, located close to K3 = 1 and in the region limited by K2 ∈ [0.2; 0.5]
and K3 ∈ [0.6; 1]. Their difference is highlighted in Figure 7.8. This figure is built by
superimposing the two kinematic maps: sample ANR 3.3 kinematic map is placed below,
with a grey level colourmap, while sample ANR 2.3 kinematic map is plotted above to
highlight the differences of coverage. This figure shows that the difference in covered
surface represent a relatively small portion or surface. The second highlight of this figure
comes from colourmaps. The only parts of ANR 3.3 kinematic map that are visible on the
superimposed figure correspond to sparse areas, which do not represent a large amount
of points. The majority of points seem located in the common area of the two kinematic
maps.

These experimental kinematic maps can be compared qualitatively with the finite
element kinematic maps presented in Figure 7.5. The experimental map surface seems
smaller than the ones exhibited by FE simulation maps, especially for K3 values between
−0.2 and 0.6. The DIC technique can explain this discrepancy. When setting up the
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Figure 7.8: Superimposition of the two kinematic maps of the (c) samples. The sample
ANR 3.3 is presented in grey levels while the sample ANR 2.3 is presented in colours.

mesh for the FE-DIC process, it is difficult to make the boundaries of the mesh match the
boundaries of the sample. Most of the time, the mesh lacks a piece of material around the
holes and outer boundaries. Yet these pieces of material are submitted to potential large
strain magnitudes, with the stress concentration role of the holes, or mixed modes when
two close holes influence the behaviour of a piece of material located in-between. This
results in a less heterogeneous kinematic map. Overall, the dense regions of the synthetic
maps corresponds to the dense areas of the experimental maps. The major differences
are observed in sparser regions of the maps, highlighting that the majority of points of
experimental maps, presented in warm colours on the kinematic maps, seem to match
with the densest regions of the synthetic maps.

7.3.3 Experimental metrics

The two metrics presented above, kinematic map surface and entropy measure, are cal-
culated for the three experiments. The results are presented in Table 7.3. The surface
measurements meet the lowest surface values calculated with FE simulations of the twelve
geometries. The covered surface is lower on the experimental maps than on the corre-
sponding numerical map, as observed earlier. However, the entropy measure is better
in the experimental maps, meaning that the points are more evenly distributed in the
covered area.

Numerically, the sample (c) maximises the surface measure while the design (f) max-
imises the entropy measure. Experimental results show that the sample ANR 3.1 with
design (c) maximises the two metrics. Its entropy measure surpasses the ones calculated
with synthetic data while its surface measure reaches the lowest surface measure of the
numerical simulations.

Considering the ability of elastomers to “chose” uniaxial tension over other defor-
mation modes, and the fact that this mode is easily triggered at large strain, the metrics
could have been calculated on a truncated kinematic map more representative of the
“most difficult to reach” deformation modes.
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Geometry Sample Surface Entropy

(c)

ANR 2.3 567 5.21
ANR 3.3 672 5.39

mean 619.5 5.3
FE 828 2.43

(f)
ANR 3.2 606 5.24

FE 762 2.47

Table 7.3: Experimental metrics for the chosen designs.

7.4 Conclusion
The choice of sample design can influence the diversity of deformation modes and mag-
nitudes observed during a test. Pierced membranes have been tested with heterogeneous
tests in this study.

Metrics have been defined to characterise the “multiaxiality” of the test. The Finite
Element Simulation results differ from the experimental results. This can be due to the
choice of model, but also due to the testing protocol where some slipping of the sample
was observed in the jaws.

Further investigation on the influence of sample design on tests’ “multiaxiality” could
be conducted using Topology Optimisation methods.
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General conclusion

In the intricate and ever-evolving realm of mechanics of materials context, our expedition
into the mechanical response of hyperelastic materials, examplified by synthetic rubber,
has unveiled a world of challenges and untapped potential. As we conclude this explo-
ration, we are left with a profound appreciation for the complexities that underlie the
seemingly simple behaviour of these materials.

Identifying the mechanical response of materials remains one of the challenges of
mechanics of materials. The diversity of materials, identification methods and models
renders identification a tricky process. However, modelling the complete mechanical re-
sponse of materials is needed for design and industrial applications. The state-of-the-art of
identification methods and models is still expanding as researchers develop new methods
and models to address the challenge of identification. This work is focused on hyperelastic
materials. It addresses the question of identification through the exploration of both the
kinematic and complete (stress, energy) mechanical responses of materials. The kine-
matic part of the mechanical response of materials is measurable through DIC techniques
while the stress part of the mechanical response is not. However, recent developments in
model-free Data-Driven methods allow us to estimate a balanced stress field without the
influence of a model: this is the role of the Data-Driven Identification (DDI) method [57].
The method provides a stress field that is not smoothed or filtered by the application of a
continuous model. The diversity of the experimental data but also its noise is conserved.
Motivated by the exploration of the possibilities offered by the DDI method, the present
thesis has investigated the exploration and understanding of the kinematic and mechani-
cal response of hyperelastic elastomer materials to complex loads. Motivated also by the
development of tests designed for identification, this study provides the keys to assessing
the quality of mechanical tests in terms of the diversity of deformation states, tests made
possible by an innovative test bench featuring a hexapod machine.

After describing the state-of-the-art of identification methods and their respective
challenges, as well as mechanical models for hyperelastic materials, the objectives of the
study were defined. The first one was to generate synthetic and experimental data on
multiaxial tests designed for pierced elastomeric membranes. A kinematic response map
of the material was then created. This map involves well-chosen invariants of Hencky’s
logarithmic strain tensor to describe the deformation modes and amplitudes undergone
by a material during a test. Representation of the density of points on the map en-
ables comparison between several tests. However, the kinematic map is not sufficient
to describe the complete mechanical response of the material: a stress component is
missing. Integrating it into the kinematic map to create a mechanical response map of
the material was the next objective. For this purpose, a scalar physical quantity was
chosen: the strain energy density. Often used to derive hyperelastic models, the strain
energy density can be calculated from the strain field and the associated stress field. The
mechanical response map describes the mechanical response of the material by relating
kinematic response and strain energy density in a visual tool. In this work, experimental
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stress fields are calculated without a model, using the DDI method in a formulation
adapted to hyperelastic problems. The mechanical response map of materials is included
in the Data-Driven Model Identification (DDMI) method validation process: it shows
how close the adapted models are to the experimental data. The kinematic response map
is used to design specimens that maximise the diversity of deformation states encoun-
tered during testing. Two metrics based on the kinematic map rule the final sample choice.

The major contribution of this thesis work is the development of a new identification
method which reconciles “model-free Data-Driven” methods and models. DDMI was
tested on synthetic data and then successfully applied to experimental data. It emerges
that it is possible to estimate a balanced stress field from a multiaxial test without a
constitutive law, and then to calculate the associated strain energy density field, before
adjusting the parameters of a model to it, a model which is chosen at the end of the
process. The estimated stress field is then free of modelling bias and faithful to the exper-
imental deformation field. The choice of the model postponed at the end of the process
allows it to be changed easily and at a lower cost. The method also allows fitting models
on multiaxial experimental strain energy density field, which represents a new possibility
for identification.

Several minor contributions can be highlighted. First, the enrichment of the test
databases on SBR by making available the experimental data acquired during this thesis
work. Secondly, the development of the two maps allowed us, in this manuscript, to suc-
cessively explore the kinematic response of the materials and their complete mechanical
response. These easy-to-use visual tools allow an overview of the characteristics of a triplet
(material, sample (geometry), loading conditions). They can be used to characterise a
test or to include the quantification of multiaxiality during its development. Finally, this
work renders it possible to consider the optimisation of the geometry of the experimental
specimens developed for identification.

Several prospects emerge from this work:

• The DDMI method could be tested with other materials whose behaviours are cov-
ered by the DDI method: with heterogeneous samples or elastoplastic materials in
a short-term study for example.

• A medium-term prospect could be to enrich the two maps to include additional
features to represent different behaviours, such as dissipation for plastic materials,
or temporal features for viscoelastic materials.

• Regardless of viscous effects, time could be considered when observing the charac-
teristics of a multiaxial test. The follow-up of the position of a given mesh element
on the kinematic map during the test could be studied. This short-term study would
bring more understanding of the benefits of the sample geometry on multiaxiality.

• Sample design could be studied with more advanced techniques, such as topology
optimisation to generate “tailor-made” samples matching with particular prescribed
experimental conditions.

In the end, the prospects proposed here are a reflection of the work from which they
derive: multiple, exploring several directions of work, but all serving the same purpose,
the enrichment, however small, of knowledge around materials and the means to know
their mechanical behaviour a little better.
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Annexe A

Résumé étendu en français

Cette annexe répond à la demande de l’Ecole Doctorale Sciences de l’Ingénierie et des
Systèmes de fournir un résumé substantiel en français pour tout manuscrit rédigé en
langue anglaise. Il présente le travail de thèse dans sa globalité, en suivant le plan du
manuscrit. La majorité des figures du manuscrit ne sont pas reprises afin d’alléger ce
résumé.
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A.1. Introduction

A.1 Introduction

Les matériaux qui nous entourent sont tous différents et possèdent des propriétés uniques.
Il n’a pas fallu longtemps à l’humanité pour découvrir ces différences de propriétés. L’in-
géniérie mécanique a fait naître le besoin d’identifier et de modéliser le comportement
mécanique des matériaux. « Identifier » le comportement mécanique du matériau signifie
souvent lui associer une équation appelée modèle de comportement, puis ajuster ses para-
mètres sur des données expérimentales. En changeant de paradigme et en s’autorisant à
représenter le comportement des matériaux de manière discrète, « identifier » peut alors
vouloir dire « estimer la partie manquante de la réponse mécanique des matériaux par
une approche sans modèle ». C’est le cas de la méthode Data-Driven Identification (DDI,
ou identification pilotée par les données).

Considérant que l’identification, la modélisation et la prédiction du comportement
mécanique des matériaux constitue toujours un défi pour les chercheurs, ces travaux
abordent les questions suivantes :

• Comment peut-on développer des essais hétérogènes pour des matériaux élastiques
en grandes déformations ?

• Peut-on faire collaborer les méthodes pilotées par les données et les approches clas-
siques de modélisation pour bénéficier des avantages de chacune ?

Pour répondre à ces questions, nous proposons d’explorer la réponse mécanique des
membranes élastomères, de la conception d’éprouvettes d’essai au développement d’une
nouvelle méthode d’identification.

Le résumé suivant est structuré en trois sections successives. La première aborde le
contexte général et l’état de l’art des méthodes d’identification, puis développe le cadre de
travail. La seconde section présente les essais développés pour l’étude puis conduit le lec-
teur dans l’exploration de la réponse cinématique du matériau puis sa réponse mécanique
complète. Enfin, la troisième section présente une nouvelle méthode d’identification alliant
méthode pilotée par les données et modélisation, puis une courte étude de l’influence de
la géométrie des éprouvettes sur la multiaxialité des essais.

A.2 Contexte général et cadre de travail

Cette section résume les travaux présentés dans la première partie du manuscrit. Dans
un premier temps, l’état des connaissances concernant les méthodes d’identification, leurs
avantages et inconvénients sont présentés. Dans un second temps, les objectifs de ces
travaux de thèse sont explicités, ainsi que le matériau utilisé pour les essais expérimentaux.

A.2.1 Identification

Avec l’ingénierie mécanique est apparue la nécessité d’identifier et de modéliser la réponse
mécanique des matériaux. Cette modélisation permet aux ingénieurs de concevoir des
pièces industrielles, de comprendre, reproduire et prédire leur comportement. Les modèles,
ou lois constitutives, sont l’outil clé pour modéliser la réponse mécanique du matériau. Il
s’agit d’équations reliant au moins une mesure de déformation à une mesure de contrainte,
et faisant intervenir un ou plusieurs paramètres. Il existe de nombreuses lois constitutives,
adaptées à un type de matériau ou à une propriété, pour une plage de déformation donnée.
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Quelques bonnes pratiques pour l’utilisation des lois constitutives et modèles sont
mises en évidence dans ce travail. L’identification ou « l’art » d’adapter un modèle de
comportement à la réponse expérimentale d’un matériau donné est étudiée. La méthode
classique, basée sur des essais à états de déformation simples, permet d’adapter les para-
mètres du modèle au champ de contraintes. Ce champ de contraintes peut être directement
calculé à partir de mesures expérimentales, grâce aux modes de déformation simples. La
méthode est illustrée sur la Figure A.1.
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Figure A.1 : Illustration des étapes nécessaires à l’identification d’un modèle de com-
portement, selon la méthode classique. Les coûts exprimés pour chaque étape sont évalués
qualitativement. Ils représentent des coûts en matériaux, temps d’utilisation de machines,
temps humain ou encore temps de calcul.

Des méthodes d’identification basées sur des mesures de champ ont récemment vu
le jour, grâce à la corrélation d’images numériques, permettant l’identification sur une
seule expérience multiaxiale. La méthode FEMU (Finite Element Model Updating) est
présentée comme un exemple de méthode d’identification basée sur des mesures de champ.
Ses coûts qualitatifs comparés à ceux de la méthode classique sont présentés en figure A.2

A.2.2 Objectifs

Cette section se concentre sur la définition et la description des objectifs de l’étude :
• la mise en place et l’exécution d’essais multiaxiaux,

• le développement d’un outil de visualisation pour décrire la cinématique de l’essai :
la « carte cinématique »,

• l’amélioration l’outil de visualisation pour englober la réponse en contrainte du ma-
tériau et créer la « carte de réponse mécanique du matériau »,

• le développement d’une méthode d’identification pilotée par les données basée
sur des essais multiaxiaux et reposant sur un choix de modèle en fin de procédure,

• et finalement l’utilisation de la carte cinématique pour améliorer la diversité des
modes de déformation de l’essai en développant de nouvelles géométries d’éprou-
vettes.
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Step 1: Tests Step 2: Features Choice Step 3: Parameters fitting

+++              +++              +++ +                + +               ++Cost

Step 1: Test Step 2: FEMU loop

+                  ++                 ++ +++                                  +Cost

FEMU

Classical Identification Method

Figure A.2 : Qualitative costs evaluation comparison for Classical Identification method
and FEMU. The description of the different steps can be found in Figures 1.3 and 1.4.

Le SBR chargé au noir de carbone utilisé à des fins expérimentales est étudié au
moyen d’essais de traction uniaxiale présentés sur la Figure A.3, d’essais de relaxation,
d’essais de traction uniaxiale cyclique et d’une analyse mécanique dynamique (DMA). Le
matériau présente certaines propriétés visqueuses, observées sur les courbes de traction
uniaxiales à différentes vitesses de déformation, et est sujet à l’effet Mullins. Les essais
expérimentaux mis en oeuvre dans la suite de la thèse sont effectués avec un chargement
toujours croissant pour éviter de déclencher l’effet Mullins, et des taux de déformation
lents et fixes pour minimiser les effets visqueux.
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Figure A.3 : Courbes de traction uniaxiale expérimentales pour le SBR chargé au noir de
carbone utilisé pour l’étude. Les essais ont été réalisés à 24°C, et six vitesses de déformation
différentes.
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Ce travail est mené à l’aide de Matlab pour le développement de code, Abaqus pour
les simulations éléments finis, GMSH pour les maillages et Ufreckles pour la corrélation
d’images numérique.

A.3 Explorer la réponse mécanique des matériaux
Cette section explore les méthodes expérimentales utilisées dans ces travaux. Ensuite,
la représentation de la réponse mécanique des matériaux est envisagée au travers de la
création d’une « carte de réponse cinématique » puis d’une « carte de réponse mécanique
des matériaux ».

A.3.1 Acquisition de données

Les données synthétiques et expérimentales sont présentées dans ce chapitre.

(a) Eprouvette pour les don-
nées synthétiques

(b) Eprouvette pour les données expérimentales

Figure A.4 : Géométrie des éprouvettes utilisées pour les campagnes d’essais.

Les données synthétiques sont construites à l’aide d’un modèle d’Ogden du troisième
ordre ajusté sur les données historiques de Treloar [90]. Ce« matériau numérique » est
inclus dans un modèle elements finis, construit avec une éprouvette type traction uni-
axiale percée de trois trous, présentée en Figure A.4. Cet échantillon est chargé avec un
déplacement imposé de sa limite supérieure, jusqu’à un étirement global de 300 %.

Les données expérimentales sont obtenues à l’aide d’un banc d’essai construit avec un
hexapode, machine à six vérins et six degrés de liberté, un capteur de force et une caméra
optique. Le banc expérimental est présenté sur la Figure A.5. Le champ de déplacement
est mesuré à l’aide d’une méthode de corrélation d’images numériques. Des membranes
SBR chargé au noir de carbone et percées de six trous sont utilisées. Leur géométrie
est présentée sur la Figure A.4. Un essai complexe avec une trajectoire de chargement
hétérogène est appliqué avec quatre vitesses de chargement différentes.

Les bases de données synthétiques et expérimentales sont formatées de manière ho-
mogène et stockées sur un dépôt public en ligne pour que toute personne intéressée puisse
travailler avec. Ce dépôt public constitue le livrable de ce chapitre, il est disponible ici [22].
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A.3. Explorer la réponse mécanique des matériaux

Eprouvette
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Platine fixe
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Figure A.5 : Banc d’essai expérimental autour de l’hexapode.

A.3.2 Une carte pour explorer la réponse cinématique des matériaux

Les essais multiaxiaux peuvent être utilisés à des fins d’identification. Le principal avantage
des essais expérimentaux complexes est la capacité de caractériser la réponse mécanique
d’un matériau pour une grande diversité de modes de déformation et de chargements im-
posés. Pour évaluer la diversité des modes de déformation rencontrés au cours de l’essai,
la cinématique doit être observée et décrite. L’observation de la cinématique est réalisée
à l’aide d’un outil graphique construit avec les invariants du tenseur de déformation
logarithmique de Hencky : la « carte cinématique ».

La carte cinématique est une « heatmap » des couples (K2,K3), K2 indiquant l’am-
plitude de la déformation et K3 le mode de déformation. Cet outil vise à fournir une
représentation visuelle des différentes déformations subies par le matériau tout au long de
l’essai, ainsi que leur répartition entre les modes et les amplitudes. La carte cinématique
est construite pour des données synthétiques et expérimentales. La Figure A.6 présente la
carte de réponse cinématique de l’essai synthétique de traction sur une éprouvette percée.
Ces données présentent une majorité de points présentant un mode de déformation de
traction uniaxiale (K3 = 1). Cependant, les tests expérimentaux effectués avec un dispo-
sitif hexapode sous déplacements imposés variables présentent une carte cinématique plus
distribuée, ce qui renforce leur intérêt à des fins d’identification.

En illustrant graphiquement le comportement cinématique complexe, les chercheurs
et les industriels peuvent mieux comprendre la réponse du matériau aux chargements
appliqués et les modes de déformation qui en résultent. Cet outil graphique peut faciliter
l’analyse et l’interprétation des données d’essai, ce qui permet d’améliorer les techniques
d’identification et de mieux comprendre le comportement des matériaux dans différentes
conditions de chargement.
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Figure A.6 : Carte de réponse cinématique pour un essai numérique. La carte représente
la densité de points dans le plan (K2,K3) sur lequel sont tracés tous les couples (K2,K3)
correspondant à chaque élément de maillage à chaque pas de temps.

A.3.3 Explorer les champs de contraintes

L’Identification pilotée par les données (DDI) est une méthode permettant de cal-
culer le champ de contrainte expérimental sans utiliser de modèle de comportement. Elle
a été développée par Leygue et al. [57]. Cette méthode est basée sur des regroupements
successifs (« clustering ») et s’appuie sur l’équilibre mécanique de la structure pour fournir
un champ de contraintes admissible. La méthode DDI est appliquée à des données synthé-
tiques et expérimentales. Les champs de contrainte résultants sont observés à l’aide d’une
représentation par histogramme. Cependant, la volonté est de résumer les contraintes avec
une variable scalaire et de l’ajouter à la carte cinématique construite dans le chapitre 4.

La densité d’énergie de déformation représente le champ de contraintes pondéré
par le champ cinématique. Il s’agit d’une grandeur qui englobe les déformations et les
contraintes dans une valeur scalaire. La densité d’énergie de déformation est choisie pour
représenter la réponse en contraintes des matériaux dans la carte de réponse méca-
nique des matériaux.

La nouvelle carte, présentée sur la Figure A.7 pour les données synthétiques, englobe
à la fois cinématique et contraintes, dans un seul graphique caractéristique. En incorporant
les informations sur les contraintes aux données cinématiques, cet outil graphique enrichi
peut fournir une vue d’ensemble du comportement du matériau dans différentes condi-
tions de chargement, ce qui permet de mieux comprendre sa réponse mécanique. Cette
approche facilite l’exploration des schémas de réponse en contraintes et de leurs relations
avec les caractéristiques cinématiques, contribuant ainsi à l’avancement des techniques de
modélisation, de caractérisation et d’identification des matériaux pilotées par les données.
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Figure A.7 : Carte de réponse mécanique pour les données synthétiques. Les points
expérimentaux sont présentés en violet. La surface grise représente le modèle d’Ogden
utilisé pour construire le dataset numérique. Les données de Treloar sont représentées en
noir.

A.4 Applications expérimentales
Cette section présente le cœur du travail de ces travaux de thèse. Tout d’abord, une
méthode d’identification basée sur les approches Data-Driven (pilotées par les données) est
présentée et appliquée à des données synthétiques puis expérimentales. Ensuite, plusieurs
géométries d’éprouvettes sont comparées pour augmenter la multiaxialité de nos essais
expérimentaux.

A.4.1 Identification de modèle pilotée par les données

L’identification de modèle pilotée par les données (DDMI) est une méthode d’iden-
tification qui vise à combiner les avantages de la méthode d’identification classique et
des méthodes d’identification basées sur des mesures de champ. Elle consiste à réaliser
une expérience multiaxiale et à mesurer ses champs cinématiques, puis à exécuter la
DDI pour estimer les contraintes et le champ de densité d’énergie de déformation as-
socié. Une fois les grandeurs physiques recueillies, un modèle peut être choisi et ajusté
sur les données expérimentales. Les étapes de la méthode sont présentées sur la Figure A.8.

La procédure d’identification peut être appliquée au champ de contraintes DDI ou
au champ de densité d’énergie de déformation DDI. Différentes fonctions objectives ont
été testées et comparées sur des données synthétiques. La meilleure méthode est appliquée
aux données expérimentales. Dans l’ensemble, la méthode d’ajustement la meilleure et la
plus pratique repose sur une fonction objective basée sur l’erreur absolue, écrite avec un
changement de variable, et minimisant la distance entre les champs de densité d’énergie
de déformation.
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Figure A.8 : Présentation schématique de la méthode d’identification de modèle pilotée
par les données (DDMI). La méthode peut être adaptée aussi bien à des données syn-
thétiques qu’à des données expérimentales. Deux méthodes peuvent être appliquées au
moment de l’adaptation des paramètres du modèle : identifier les paramètres sur le champ
de contraintes ou bien sur le champ de densité d’énergie de déformation. Sur ce schéma,
seule l’adaptation des paramètres sur le champ de densité d’énergie de déformation est
représentée.

L’identification de modèles pilotée par les données est appliquée aux données expé-
rimentales. Deux modèles sont ajustés sur le champ de densité d’énergie de déformation
calculé par DDI : un modèle d’Ogden à trois termes et un modèle de Yeoh. Les champs
de densité d’énergie de déformation des deux modèles sont comparés au champ de densité
d’énergie de déformation DDI et montrent des niveaux d’erreur similaires à ceux obser-
vés avec les données synthétiques. La comparaison avec les données de traction uniaxiale
prouve que les deux modèles ajustés par DDMI peuvent représenter le comportement du
matériau dans les plages de déformation des données expérimentales.

A.4.2 Conception d’éprouvettes pour les méthodes d’identification ba-
sées sur les essais multiaxiaux

Après avoir exploré les méthodes d’identification, la carte cinématique construite dans le
chapitre 4 est utilisée pour concevoir des éprouvettes qui maximisent « la multiaxialité »
d’un essai hétérogène. Deux métriques sont définies :

• une mesure de la surface couverte par les points de la carte cinématique,

• une mesure de l’entropie, décrivant la dispersion des points sur la carte.

Les métriques sont explicitées sur la Figure A.9.

Douze modèles d’éprouvettes sont proposés. Ils sont basés sur une membrane SBR
chargé au noir de carbone de 100 × 65 mm2 percée de trous circulaires de différentes
tailles. Des simulations par éléments finis sont effectuées, les cartes cinématiques sont
tracées et les métriques sont calculées. Les deux modèles maximisant les métriques sont
choisis pour être testés expérimentalement. Les essais expérimentaux sont effectués et
les champs cinématiques sont mesurés à l’aide d’une méthode de corrélation d’images
numériques. Les cartes cinématiques expérimentales sont tracées et comparées à celles
issues des simulations par éléments finis.
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Figure A.9 : Définition des métriques à partir d’une carte cinématique.

Les cartes expérimentales présentent des mesures de surface plus petites à cause
de la difficulté de faire correspondre le maillage DIC aux limites de l’échantillon. Leur
mesure d’entropie est meilleure que les simulations par éléments finis, ce qui signifie qu’il
y a moins de zones avec une forte densité de points sur la carte cinématique expérimentale.

Remarque : Cette application a été réalisée avec des étudiants en troisième année
d’école d’ingénieurs. L’accent a été mis sur la reproductibilité des expériences et la simpli-
cité des modèles proposés. Des recherches plus approfondies sur la conception de l’échan-
tillon pourraient être effectuées à l’aide de techniques d’optimisation topologique, mais
nécessiteraient des techniques de découpe plus avancées pour former les éprouvettes.

A.5 Conclusion
L’exploration du comportement mécanique des élastomères nous a permis d’en approcher
la complexité. Identifier le comportement mécanique de ces matériaux reste un défi de
taille. La diversité des matériaux, méthodes et modèles sont en cause.

Après avoir décrit l’état de l’art des méthodes d’identification et des modèles hyper-
élastiques, les objectifs de l’étude ont été définis. La réalisation d’essais et leur exploitation
pour construire des cartes de réponse cinématique puis une carte de réponse mécanique
du matériau ont constitué les premiers objectifs de l’étude. Ensuite, les méthodes pilo-
tées par les données ont été associées aux méthodes d’identification pour créer la DDMI
(Data-Driven Model Identification), ou Identification de Modèles pilotée par les données.
Enfin, la géométrie des éprouvettes et son influence sur la multiaxialité des essais a été
testée en utilisant une carte de réponse cinématique.

La contribution majeure de ce travail est le développement de la DDMI sur des
données synthétiques et expérimentales, permettant l’adaptation de modèles de compor-
tement sur un champ de densité d’énergie de déformation expérimental.

Les perspectives de ce travail sont nombreuses, mais on peut en citer une qui se
réfère à notre contribution majeure : la DDMI pourrait être adaptée à d’autres matériaux
et d’autres comportements, parmi le spectre déjà traité par la méthode DDI.
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Appendix B

Lode invariants to describe stress
field

B.1 Definition
In plasticity, some mechanical stress invariants are defined to describe the stress state of
a material. Three invariants are recalled and well-described by Brannon [12]:

J1 = tr(σ)

J2 = 1
2tr (dev(σ))2

J3 = 1
3tr (dev(σ))3

, with dev(•) = • − tr((•)
3 )I, (B.1)

σ being Cauchy’s stress tensor. From these three invariants, the Lode invariants (r, θ, z)
can be written: 

r =
√

2J2,

sin, 3θ = J3
2

(
3

J2

)3/2
,

z = J1√
3

,with dev(•) = • − tr((•)
3 )I. (B.2)

These invariants represent a polar coordinate system. Each region of the circular
plan defines the stress state of the material, as shown in Figure B.1: the plane region
corresponding to a Lode angle of θ = 30◦ ± 120◦ represents triaxial extension or biaxial
compression stress states, whereas Lode angles of θ = 0◦ ±60◦ represent shear stress state,
and θ = −30◦ ±120◦ represent triaxial compression or biaxial extension stress states. Each
60◦ wide region, from θ = 30◦ ± 60◦ to θ = 90◦ ± 60◦ corresponds to a specific value order
of the principal stresses. For example, the region which boundaries are θ ∈ [−30◦, 30◦]
corresponds to principal stresses as σ3 > σ2 > σ1.

It can be seen as Hencky’s strain tensor invariants counterparts for stresses.
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Figure B.1: Description of the periodicity of the Lode angle. From [12], Figure 6.2.

B.2 Application to synthetic data
Figure B.2 presents the Lode invariants for synthetic data. The majority of points are
located along the θ = 30◦ straight line, corresponding to triaxial extension / biaxial com-
pression. It is consistent with the uniaxial tension strain state observed on the kinematics
map.
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B.3. Application to experimental data

Figure B.2: Lode invariants representation for synthetic data.

B.3 Application to experimental data
Figure B.3 presents the Lode invariants for experimental data. The points are concen-
trated in the [−30◦, 30◦] area. They are mostly following the triaxial extension / biaxial
compression straight line. This is consistent with the kinematics map presented previously.

This representation gives overall clues of the diversity of the stress field but misses
a link with the kinematic fields. The choice was made not to incorporate it into the
kinematic map.
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Figure B.3: Lode invariants representation for experimental data.
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Appendix C

Convergence issues with Finite
Strain DIC on Ufreckles

The DIC parameters presented in Chapter 3 were not the first parameter set that has been
applied to the experimental data. Smoothing was applied on the FE-DIC model and the
results were not satisfactory. Smoothing is often recommanded to reduce DIC displacement
fields noise, particularly for High Gradient Strain fields [58]. Strain smoothing, median
smoothing were tested, along with varying mesh element sizes. The results are presented
below.

C.1 Results with strain smoothing

Figure C.1 presents the results of DIC on experimental images. FE-DIC was run with
80 px unstructured T3 elements, and a 40" px strain smoothing. The figure shows the
strain magnitude, presented with a colourmap, plotted on the calculated deformed config-
uration. This deformed configuration is plotted on top of the corresponding frame. The
deformed configuration does not match with the sample boundaries on the picture frame.
This means that the DIC process did not succeed in calculating the displacement field.

Figure C.1: Results of DIC applied with strain regularisation (40) on Sample ANR 2.1.
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When observing the calculated deformed configuration plotted on corresponding
frames, frame by frame, it seems that the calculated displacement field begin to diverge
from the observed one around the frame 200 over 500. It seems that once the sample
reaches a given global strain, the smoothed algorithm considers that it cannot be stretched
more and the calculated displacement field diverges from the observed one. The calculated
deformed sample tend to regain its undeformed dimensions, exhibiting only small strains
in the last frames.

Figure C.2 presents the results for a FE-DIC run with 50 px unstructured T3 elements
and strain smoothing of 40 px. The same observations as the previous case can be made:
at some point, around frame 175, the calculated deformed configuration begin to diverge
from the observed one. The final frame presents a deformed configuration with small
strains and which does not match with the picture frame at all.

Figure C.2: Results of DIC applied with strain regularisation (40) and a refined mesh with
elements of 50 px size on Sample ANR 2.1.

C.2 Results with median smoothing
Median smoothing was applied on a 80 px unstructured T3 elements FE-DIC solver.
The results are presented in Figure C.3. The deformed configuration does not match
with the sample boundaries as seen in the corresponding frame. Additionnaly, it seems
that contrarily to the previous examples, the calculated deformed mesh appears “folded”:
some parts seem to be superimposed to others. It is visible on the left area of the sample:
different colours seem superimposed with red mesh elements on light blue.

The same median smoothing was applied on a larger mesh with 100 px unstructured
T3 elements. The results are presented in Figure C.4. This figure presents the same
characteristics as the previous one: the deformed configuration does not match with the
corresponding frame, and some parts of the mesh seem superimposed.
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C.2. Results with median smoothing

Figure C.3: Results of DIC applied with Median regularisation (1) on Sample ANR 2.1.

Figure C.4: Results of DIC applied with Median regularisation (1) and a larger mesh with
elements of 100 px size on Sample ANR 2.1.
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Titre : Identification de modèles pilotée par les données appliquée à l’hyperélasticité : acquisition et 
représentation de la densité d’énergie de déformation au cours d’essais multiaxiaux. 

Mots clés : Identification, piloté par mes données, densité d’énergie de déformation, multiaxial. 

Résumé :  Modéliser la réponse mécanique des 
matériaux consiste à établir une relation (un 
modèle) entre contraintes et déformations, 
dépendant de paramètres identifiés à partir de 
données expérimentales issues d’essais 
mécaniques. D’une part, l’identification basée sur 
des essais homogènes n’apporte pas 
d’information sur la réponse du matériau soumis 
à des sollicitations complexes. D’autre part, 
l'identification basée sur des essais multiaxiaux 
est plus coûteuse numériquement et impose le 
choix du modèle a priori. Récemment, a émergé 
la possibilité de représenter le comportement 
mécanique des matériaux par une base de 
données plutôt que via une loi de comportement 
au travers de la « Data Driven Computational 
Mechanics ».  Dans ce cadre, l’algorithme Data-  

Driven Identification (DDI) développé par 
Leygue et al. (2018) permet d’estimer le champ 
de contrainte lors d’un essai multiaxial.  
Cette thèse propose d’explorer la réponse 
cinématique puis mécanique complète de 
membranes élastomères sollicitées en grandes 
déformations multiaxiales grâce à un montage 
expérimental original mettant en jeu un 
hexapode. La méthode DDI est ensuite utilisée 
pour déterminer la réponse en contraintes du 
matériau lors de ces essais. Deux 
développements sont finalement proposés : une 
méthode d’identification alliant DDI (sans 
modèle) et modèles de comportement, et une 
proposition d’amélioration des géométries 
d’éprouvettes pour les essais multiaxiaux. 

 

Title : Data-Driven Model Identification for hyperelasticity: mapping the strain energy throughout 
multiaxial experiments. 

Keywords :  Identification, Data-Driven, strain energy density, multiaxial. 

Abstract :   Modeling the mechanical response 
of materials involves the derivation of a 
relationship (a model) between stresses and 
strains, depending on parameters. These 
parameters are identified from experimental data 
obtained from mechanical tests. On the one 
hand, identification based on simple tests 
(uniaxial tension, for example) provides no 
information on the response of materials 
subjected to complex loading conditions. On the 
other hand, identification based on multiaxial 
tests is more costly numerically and requires the 
model to be chosen at the outset of the 
procedure.  
Recently, the possibility of representing the 
mechanical behaviour of materials by a database 
rather than via a behaviour law has emerged 
through "Data-Driven Computational  

Mechanics". On this basis, the Data-Driven 
Identification (DDI) algorithm developed by 
Leygue et al. (Computer Methods in Applied 
Mechanics and Engineering, 331, 184-196 
(2018)) can be used to estimate the stress field 
during a multiaxial test. The present thesis 
explores the complete kinematic and 
mechanical response of elastomer membranes 
subjected to multiaxial large strain, using an 
original experimental set-up involving a 
hexapod. The DDI method is then used to 
determine the stress response of the material 
during these multiaxial tests. Two developments 
are finally presented: an identification method 
combining DDI (model-free) and standard 
constitutive models, and a proposal for 
improving sample geometries for multiaxial 
tests. 
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