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Cinétique des réactions influencées par le transport en milieu complexe :
des effets de mémoire aux environnements compartimentés

Résumé : Dans cette thèse, nous caractérisons les propriétés du temps de réaction (défini comme le
temps mis par un marcheur aléatoire pour trouver un cible potentiellement partiellement réactive)
dans trois situations rendues complexes soit par les propriétés de transport (marches aléatoires
à mémoire) ou par la géométrie du problème (espaces avec compartiments, cibles multiples). En
premier lieu, nous étudions les réactions dites imparfaites, pour lesquelles de multiples rencontres
avec la cible peuvent être nécessaires avant d’obtenir une réaction. Nous développons un formalisme
qui détermine le temps moyen de réaction pour un marcheur aléatoire à mémoire cherchant une
cible imparfaite, décrite soit par un taux de réaction dépendant de l’espace ou par le fait que la cible
n’est réactive que de manière intermittente. Nous trouvons que, pour des processus suffisamment
sous-diffusifs, la première contribution du transport au temps de réaction diverge pour les faibles
réactivités, à cause des effets de mémoire. Cette divergence est associée à un exposant non-trivial
que nous calculons analytiquement et vérifions par des simulations numériques. Ensuite, dans le cas
de réactions parfaites, nous étudions les effets de mémoire pour les réactions compétitives, à deux
cibles. Nous développons une théorie pour calculer la probabilité de splitting (définie comme la
probabilité de toucher une cible avant l’autre cible). Nous vérifions les résultats de notre théorie en
la comparant à des observations expérimentales de trajectoires de billes se mouvant dans des fluides
viscoélastiques. Ces expériences prouvent que, à l’instant du temps de réaction, le système est hors
de l’équilibre, à cause des effets de mémoire. Finalement, nous étudions les réactions parfaites dans
des milieux compartimentés. Nous calculons le temps moyen de premier passage d’un marcheur
aléatoire Markovien cherchant une cible au centre d’un compartiment fractal, où le mouvement est
sous-diffusif, immergé dans un domaine où le mouvement est diffusif. Nous validons nos résultats
théoriques par des simulations stochastiques et déterminons dans quelles conditions le temps moyen
de réaction peut être optimisé par la présence du compartiment.

Mots-clés : processus stochastiques, temps de premier passage, réactions imparfaites, marches
non-Markovien, milieux viscoélastiques, diffusion en milieu fractal

Kinetics of Transport-Influenced Reactions in Complex Media:
from memory effects to compartmentalized environments

Abstract: In this thesis, we characterize the properties of the reaction time (defined as the time
needed by a random walker to find a target that is potentially partially reactive) in three situations
that are complex, either due to the transport properties (non-Markovian random walks) or due
to the geometry of the problem (compartmentalized spaces, multiple targets). First, we study
imperfect reactions, where many encounters with the target might be necessary before a reaction
happens. We develop a general formalism that provides the mean reaction time for non-Markovian
processes searching for imperfect targets, where imperfectness comes from sink reactivity and/or
gated reactions. We find that, if a process is strongly subdiffusive, the first transport contribution to
the mean reaction time diverges for small reactivity, as a consequence of memory. This divergence
is characterized by a non-trivial exponent that we analytically identify and verify with simulations.
Then, in the case of perfect reactions, we study the effect of memory in competitive reactions with
two targets. We develop a theory to calculate the splitting probability (the probability to touch
one target before the other) for non-Markovian Gaussian processes. We validate our theoretical
results by comparing them to the experimental observation of beads moving in a viscoelastic fluid.
These experiments prove that, at the reaction time, the system is out-of-equilibrium, due to memory
effects. Finally, we study perfect reactions in crowded compartmentalized media. We calculate the
mean first passage time for a Markovian random walker to a target located in the center of a fractal
compartment, in which the motion is subdiffusive, embedded into a domain where the motion is
diffusive. We verify that our theory is consistent with stochastic simulations and determine in which
conditions the mean reaction time can be optimized by the presence of a compartment.

Keywords: stochastic processes, first passage times, imperfect reactions, non-Markovian walks,
viscoelastic media, diffusion in fractals
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Résumé des Résultats

This thesis summary, in French, is placed here to comply with the instructions of the doctoral
school. An english version of the summary can be found in Chapter 2 (Section 2.3).

Considérons un marcheur aléatoire, qui, à chaque fois qu’il passe à proximité d’une cible,
a une probabilité d’induire un événement, ou de “réagir”. Cette situation est, au sens large,
celle des réactions influencées par le transport. Elle est pertinente pour la description des
réactions chimiques (les réactants doivent se rencontrer avant de réagir, et ne réagissent pas
nécessairement à chaque contact) mais aussi dans d’autres contextes comme la recherche
d’une cible sur l’ADN, la captation de nutriments par des récepteurs membranaires, le calcul
du risque d’être ruiné avant d’atteindre un certain profit, la cinétique la décharge d’un
neurone une fois que le voltage dépasse un seuil, etc. Lorsque la réaction a lieu chaque fois
que la cible est atteinte, elle est dite parfaite, et le problème est celui d’un premier passage.

Le but de cette thèse est de comprendre comment les propriétés de transport et de
réactivité influencent les cinétiques de réaction pour trois exemples de situations complexes,
pour des mouvements complexes du marcheur lui-même (mouvement à mémoire) ou en
présence de géométrie complexe (plusieurs cibles, compartiments). De nombreuses études
ont porté sur les propriétés de premier passage de processus stochastiques complexes dans les
dernières décennies (Redner, 2001; Bray et al., 2013; Metzler et al., 2014), motivées en partie
par les nombreuses observations de mouvement aux propriétés anormales dans les milieux
biologiques ou les fluides complexes (Bressloff and Newby, 2013; Höfling and Franosch, 2013),
posant la question de comprendre si ces propriétés de transport complexe se transfèrent aux
propriétés de réactivité. Cependant, certains aspects demeurent inexplorés et seront l’objet
de cette thèse.

Le premier problème considéré est celui de l’effet de la mémoire et de la réactivité
imparfaite sur les cinétiques de réaction. La mémoire apparaît dès lors que le marcheur
aléatoire interagit avec d’autres variables, et peut être considérée comme la règle plutôt que
l’exception (van Kampen, 1998). Le fait que la réaction ne soit pas parfaite semble aussi
une propriété usuelle (Grebenkov, 2019), et pourtant il n’existe pas de théorie prédisant
les cinétiques de réactions imparfaites pour des variables à mémoire. Ce sera l’objet de la
première partie de cette thèse.

Dans la second partie, nous étudions le problème des réactions compétitives (en présence
de deux cibles) pour les processus à mémoire. Pour les processus à mémoire, les théories
existantes reposent sur des développements perturbatifs (faible mémoire) (Wiese, 2019) ou
des lois d’échelles pour des processus invariants d’échelle (Majumdar et al., 2010), et nous
allons décrire une théorie non-perturbative permettant de prédire la probabilité d’atteindre
une cible plutôt qu’une autre. Nous allons aussi étudier cette situation expérimentalement, ce
qui nous permettra d’établir expérimentalement que l’état d’un système au premier passage
n’est pas un état d’équilibre.
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Enfin, la troisième partie sera consacrée à l’étude des réactions en présence de comparti-
ments. Bien que la présence de compartiments dans les cellules soit couramment observée,
les théories existantes de premier passage supposent des mécanismes de transport diffusifs au
sein de ces compartiments, et nous les généraliserons au cas de transport anormal (fractal,
nous nous limiterons au cas de processus sans mémoire, l’espace lui même présentant déjà
un certain degré de complexité).

Influence de la mémoire sur la cinétique de réactions impar-
faites en confinement

Dans un premier temps, nous étudions les cinétiques de réaction imparfaites pour des proces-
sus aléatoires à mémoire. La mémoire est une propriété importante qui apparaît dès lors que
la dynamique du marcheur considéré résulte de l’interactions avec d’autres degrés de liberté,
cachés ou non, dans son environnement. Un exemple classique est celui du mouvement d’un
monomère, les variables cachées étant les autres monomères. Comme la mémoire provient
des interactions avec d’autres variables, sa présence pourrait être pensée comme la règle
plutôt que l’exception. Pourtant, la majorité des théories de premier passage s’est concentrée
sur les processus sans mémoire. Récemment, des théories ont été proposées pour décrire
l’effet de la mémoire sur les premiers passages; cependant ces théories décrivent uniquement
des réactions parfaites. Pourtant, le fait qu’une cible possède une réactivité finie, de telle
sorte qu’une réaction ne se passe pas nécessairement au premier contact, pourrait également
être pensé comme la règle plutôt que l’exception. L’effet de la réactivité imparfaite sur les
cinétiques de réaction a jusqu’à présent été exploré uniquement pour des processus sans
mémoire. Dans la première partie de cette thèse, nous nous attachons à décrire une théorie
qui tienne compte à la fois des effets de mémoire et de la réactivité finie, afin de déterminer
si la combinaison de la mémoire finie et réactivité finie donne des propriétés particulières aux
cinétiques de réaction.

Dans le chapitre 3, Kinetics of Imperfect Reactions for non-Markovian Walkers in Con-
finement, nous nous intéressons au problème du temps que met un marcheur aléatoire se
mouvant dans un espace à une dimension x(t), pour réagir avec une cible en position x = 0
qui est imparfaitement réactive, ce que nous décrivons par un taux de réaction dépendant
de l’espace k(x) = κ δ(x) qui est pris comme étant ponctuel dans un premier temps. Nous
supposons que le marcheur, en l’absence de cible, est en espace confiné, de telle sorte qu’il
existe une probabilité de présence à l’état stationnaire ps(x), permettant de définir un volume
effectif V = 1/ps(0) (égal au volume géométrique lorsque ps est uniforme).

Notre premier résultat est une expression générale du temps moyen de réaction, valide
lorsque la trajectoire de x est continue mais “rugueuse” (⟨ẋ2⟩ = ∞), auquel cas le temps
moyen de réaction (noté ⟨RT⟩, étant donné que RT représente le “Reaction Time” en anglais)
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Figure 1: Schéma du problème de réactivité imparfaite. Un marcheur aléatoire r(t) se déplace dans
un espace confiné de volume V en présence d’une cible imparfaitement réactive, présentant un taux
de réaction k(r). Combien de temps doit-on attendre avant d’obtenir une réaction ? Ce temps est
connu comme le temps de réaction.

est donné par la formule exacte

⟨RT⟩
V

= 1
κ

+
∫ ∞

0
dt[pπ(0, t) − p(0, t)], (1)

où p(x, t) est la densité de probabilité de présence à la position x à t en l’absence de réaction,
et pπ(x, t) est la densité de probabilité de présence du processus stochastique xπ(t) = x(t+RT)
dans le futur de la réaction.

Pour être plus explicite, nous supposons que, loin des bords du volume, la marche
aléatoire est à incrément stationnaires (pas de vieillissement) et suit une statistique Gaussi-
enne. L’hypothèse de Gaussiannité est forte, mais de nombreux exemples de processus
non-Markoviens sont néanmoins Gaussiens (en dynamique des polymères ou d’interfaces, ou
pour des billes traceurs en milieu viscoélastique par exemple). Les propriétés de transport
sont alors spécifiées par le déplacement quadratique moyen ψ(τ) =

〈
(x(t+ τ) − x(t))2

〉
.

Nous supposons que ψ(t) ≃ Kt2H aux temps longs, avec 0 < H < 1, ce qui signifie que le
marcheur, en l’absence de confinement, ne reste pas piégé près de la cible mais s’éloigne en
explorant l’espace de manière diffusive (H = 1/2), sous-diffusive (H < 1/2) ou super-diffusive
(H > 1/2). Dans la limite de grand volume, l’expression du temps de réaction peut être
évaluée en supposant que le processus xπ(t) est Gaussien, décrit par une moyenne µ(t) et une
covariance approximée par la covariance du processus initial x(t). En utilisant ces hypothèses
dans l’équation (1), le temps moyen de réaction devient

⟨RT⟩
V

= 1
κ

+
∫ ∞

0

dt√
2πψ(t)

[
exp

(
− µ(t)2

2ψ(t)

)
− exp

(
− x2

0
2ψ(t)

)]
, (2)

où x0 = x(0) est la position initiale. Dans cette équation, toutes les variables sont connues,
à l’exception de la trajectoire µ(t). Cependant, il est possible d’obtenir une équation qui
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définit µ(t) de manière auto-cohérente, et qui s’écrit

0 = µ(τ)
κ

+
∫ ∞

0

dt√
2πψ(t)

(µ(t+ τ) − µ(t)M(t, τ))e−µ2(t)
2ψ(t) − x0(1 −M(t, τ))e−

x2
0

2ψ(t)

, (3)

avec

M(t, τ) = ψ(t+ τ) + ψ(t) − ψ(τ)
2ψ(t) . (4)

La résolution de l’équation intégrale (3) permet d’obtenir µ(t), ce qui donne accès au temps
de réaction dans l’équation (2). Jusqu’à présent, cette équation n’avait été obtenue que dans
le cas de réactions parfaites (κ → ∞), pour le problème de premier passage.

Plusieurs remarques générales peuvent être faites à partir des équations pour ⟨RT⟩ et
µ(t). Par exemple, le terme TRC ≡ V/κ peut être vu comme un temps de réaction contrôlé
par la réaction (RC, “Reaction Controlled”). Pour un processus Markovien, pour une cible
ponctuelle, ⟨RT⟩−TRC serait directement égal au temps de premier passage. Cependant, notre
formalisme indique clairement que cette propriété additive ne tient pas pour les processus
à mémoire, car µ(t) dépend de κ, comme cela peut être vu dans l’équation (3). C’est
clairement un effet de mémoire, venant du fait que l’état des degrés de liberté “cachés” (qui
sont responsables de la non-Markovianité du marcheur) n’est pas le même à chaque passage
du marcheur sur la cible.

Sur la figure 2, nous présentons les résultats de simulations de temps de réaction pour
trois processus stochastiques définis par leur déplacement quadratique moyen ψ(t). Nous
comparons ces simulations aux prédictions numériques de notre théorie, ainsi qu’aux résultats
de l’approximation pseudo-Markovienne (appelée approximation de Wilemski-Fixman dans
la littérature), où µ(t) est approximée par µ(t) = 0. Notre théorie prédit quantitativement
les temps moyens de réaction, y compris lorsque l’approche pseudo-Markovienne prédit un
temps moyen de réaction infini.

Dans le but de mieux comprendre analytiquement les équations (2) et (3), nous avons
obtenu les comportements asymptotiques des trajectoires réactives µ(t) dans le cas où la
marche aléatoire (loin de la cible) est un mouvement Brownien fractionnaire, i.e., ψ(t) = Kt2H ,
et nous trouvons

µ(t) ∼
t→∞

{
x0 − A(κ)

t1−2H , H ≤ 1
2

−A(κ)t2H−1, H > 1
2

et µ(t) ∼
t→0

{
κA(x0, K, κ) t2H , H ≤ 1

2
κB(x0, K, κ) t, H > 1

2
. (5)

Il est intéressant de noter que, aux temps longs, pour un processus sous-diffusif H < 1/2, la
position initiale n’est jamais oubliée, et ce même pour des valeurs très faibles de la réactivité κ.
Aux temps cours, pour une particule passive avec H < 1/2, µ(t) ∝ ψ(t), un comportement
qui est formellement équivalent à la trajectoire moyenne d’une particule que l’on aurait
soumise à une force la faisant revenir près de sa position initiale. Pour H > 1/2, aux temps
courts la particle traverse la cible avec une trajectoire de vitesse moyenne finie.
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Figure 2: Comparaison des prédictions théoriques de l’équation ⟨RT⟩ avec les résultats de simu-
lations. Pour les cas a) et c), le processus est invariant d’échelle ψ(t) = Kt2H avec les valeurs
respectives H = 1/4 et H = 0.6. Pour le cas b), le processus est le premier monomère d’une chaîne
flexible de N = 150 billes reliées par des ressorts, un exemple physique qui donne un mouvement
sous-diffusive ψ(t) = K

√
t pour N → ∞, avec K√

τR/l
2
R = 4/

√
π, où lR est la taille d’une liaison et

τR est le temps de relaxation d’un monomère. Les paramètres sont x0 = 5lR, V = 30x0. Les sym-
boles représentent les résultats de simulations, les lignes continues bleues sont le résultat de notre
théorie non-Markovienne, les lignes pointillées rouges sont le résultat asymptotique ⟨RT⟩ = V/κ,
et les tirets verts sont le résultat de l’approche pseudo-Markienne, où µ(t) = 0. Notons que cette
approximation prédit un temps moyen de réaction infini pour H < 1/3. Ici, τ1 = (x2

0/K)1/2H est le
temps de transport typique pour un mouvement Brownien fractionnaire.

Un autre cas limite notable est la limite de faible réactivité, κ → 0. Dans ce cas, nous
trouvons que le temps apparent contrôlé par la diffusion, défini comme ⟨RT⟩−TRC, est donné
par une loi de puissance non-triviale et diverge pour κ → 0:

⟨RT⟩
V

− 1
κ
∼
κ→0

(1
κ

) 1−3H
1−H x2

0

K
1

1−H
νH , (6)

où H < 1/3, et νH est une fonction de H qui peut être calculée à partir de notre théorie.
Cette loi d’échelle indique que le temps de réaction est une fonction non-analytique de
la réactivité, et le régime où le temps de réaction est contrôlé par la réaction est atteint
de manière beaucoup plus lente pour un processus sous-diffusif fortement non-Markovien
(H < 1/3) que pour un processus Markovien. Cette loi d’échelle est l’un des principaux
résultats de cette thèse et a été observée dans nos simulations numériques.

Ensuite, le chapitre 4, Imperfect Reactions for Gated Reactions, Finite Targets and Higher
Dimensions, présente plusieurs extensions de notre formalisme, pour être en mesure de prédire
le temps de première réaction pour des espaces à plusieurs dimensions (nous traitons le cas
de la dimension 2), pour des cibles étendues avec un taux de réaction k(x) non-localisé.
Dans ce cas, nous établissons des équations d’autocohérence qui prédisent la valeur de la
trajectoire après la réaction, mais aussi la distribution de positions du marcheur à l’instant
où la réaction a lieu.

Dans ce même chapitre, nous étendons également le formalisme pour traiter un autre
type de réactions imparfaites, celui de réactions où la cible peut se trouver dans un état
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ouvert (ou la réaction peut avoir lieu) ou fermé. Ce mécanisme de “gated reactions”, où la
cible est ouverte de manière intermittente. Si nous appelons ωi le taux avec lequel la cible
devient inactive, et ωa le taux auquel elle devient active, notre théorie peut être étendue et
donne des équations pour ⟨RT⟩ qui sont similaires à l’équation (2). Lorsque les transitions
entre les états ouverts et fermés sont rares, dans la limite ω = ωi + ωa → 0, la réaction peut
être décrite avec un taux effectif de réaction que nous avons calculé,

⟨RT⟩
V

∼
ω→0

1
κeff

, κeff = ω1−H qs

1 − qs

√
2πK

Γ(1 −H) , (7)

où qs = ωa/ω est la probabilité stationnaire que la cible soit active. Ce résultat indique
que le taux effectif de réaction dépend aussi des propriétés de transport K et généralise des
résultats obtenus pour le cas Markovien (Mercado-Vásquez and Boyer, 2019).

Figure 3: Temps moyen de réaction pour des réactions en deux dimensions et des cibles intermit-
tentes. Les prédictions théoriques sont représentées par des lignes continues, celles obtenues avec
l’approximation pseudo-Markovienne par des lignes pointillées, et les simulations sont représentées
par des symboles. Sur la figure (a) nous traçons le temps moyen de réaction pour une chaîne de
billes et de ressorts de 40 monomères en fonction de la distance initiale , r0 au centre d’une cible
de réactivité Gaussienne. La réactivité totale est κ =

∫
dxk(x et nous utilisons les unités naturelles

du modèle de polymère, τR est le temps de relaxation d’une liaison et lR la longueur typique d’une
liaison. Sur la figure (b), nous traçons le temps moyen de réaction pour une cible intermittente,
de réactivité κa lorsqu’elle se trouve dans l’état actif, lorsque x(t) est un mouvement Brownien
fractionnaire d’exposant H = 0.34. ω est la somme des taux de transition dans les états actifs et
inactifs. L’unité de temps τ1 = (x2

0/K)1/2H est le temps typique de transport pour un mouvement
Brownien fractionnaire.
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Observation expérimentale de l’impact de la mémoire sur les
événements compétitifs

Dans le chapitre 5, Competitive First Passage Events in Viscoelastic Fluids and Confrontation
with Experiments, nous étudions le problème des événements compétitifs pour des marcheurs
aléatoires non-Markoviens. Dans ce cas, un marcheur aléatoire est mis en présence de deux
cibles, et le problème est de trouver quelle est celle qui est atteinte en premier, ce qui est
décrit en calculant la probabilité de splitting (la probabilité de toucher la première cible plutôt
que la deuxième). Il s’agit d’un problème récurrent dans plusieurs domaines (Espenson, 1981;
Bouchaud et al., 2018; Hansen et al., 2019), mais il n’est bien compris que pour des processus
Markoviens. Pour les processus à mémoire, il existe des lois d’échelle (Majumdar et al.,
2010) ou des résultats perturbatifs pour des marcheurs faiblement non-Markoviens (Wiese,
2019). Une autre motivation pour étudier ce problème est que la situation est idéale pour
observer expérimentalement une quantité de premier passage: la présence de deux cibles
permet de ne pas avoir à suivre une particle pendant des trajectoires longues qui pourraient
aller loin de la cible. Dans ce chapitre, nous introduisons une théorie qui permet de prédire
quantitativement les probabilités de “splitting” pour un marcheur Gaussien non-Markovien
à incrément stationnaire, et nous comparons explicitement avec des résultats expérimentaux.

Figure 4: Différence expérimentale entre l’observation de premier passage à une cible et les
événements compétitifs. Expérimentalement, les trajectoires x1(t) et x2(t), en présence de cibles
en rouge, peuvent seulement être vues à l’intérieur de la région délimitée par les lignes pointillées
(correspondant au champ de vision enregistré par la caméra). Dans le cas du premier passage sur
une cible, (a), certaines trajectoires sont perdues. Dans le cas d’événements compétitifs, (b), il n’est
pas possible de perdre des particles avant qu’elles n’atteignent une des deux cibles.

Nous considérons un marcheur aléatoire x(t), symétrique (⟨x(t)⟩ = x0), continu (et
rugueux) à incrément stationnaire, de déplacement quadratique moyen ψ(t), en présence de
deux cibles, la première étant à l’origine x1 = 0, et l’autre à x2 = L > x0 > 0, avec x0 la
position initiale du marcheur aléatoire. Nous dérivons une équation pour la probabilité de
splitting π1, défini comme la probabilité de toucher x1 avant x2:

x0 = lim
t→∞

[π1µ1(t) + (1 − π1)µ2(t)], (8)

où µi(t) est la trajectoire moyenne après avoir touché la cible xi pour la première fois, étant
donné que xi est touchée avant l’autre cible. Notons que cette équation est générale et
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n’implique aucune autre approximation. Pour trouver les trajectoires µi, nous supposons
que le processus dans le futur d’un premier passage sur la cible i est Gaussien, avec la même
covariance que le processus initial. En utilisant cette approximation, nous trouvons un set
de deux équations intégrales

∫ ∞

0

dt√
2πψ(t)

 ∑
j=1,2

πj[µj(t+ τ) − (µj(t) − xi)M(t, τ)]exp
(

−(xi − µj(t))2

2ψ(t)

)

−[x0 − (x0 − xi)M(t, τ)]exp
(

−(xi − x0)2

2ψ(t)

) = 0, ∀i=1,2,

(9)

où M(t, τ) est défini comme auparavant par l’équation (4). En résolvant ces équations, les
fonctions µ1(t) et µ2(t) peuvent être obtenues numériquement, donnant accès à π1(x0) avec
l’équation (9).

Ensuite, nous décrivons un système expérimental qui nous permet d’obtenir des trajec-
toires non-Markoviennes à partir desquelles nous pouvons tester cette théorie non-Markovienne
d’événements compétitifs. Les trajectoires sont obtenues à partir du suivi du mouvement
de billes immergées dans un fluide contenant des polymères de grand poids moléculaire.
Nous vérifions que ces trajectoires sont Gaussiennes, à incréments stationnaires, rugueuses
(à l’échelle des pas de temps expérimentaux), et symétriques, comme supposé dans la théorie.
Le mouvement des billes peut être décrit comme sous-diffusif aux temps courts et diffusif
aux temps longs, ce qui nous conduit à considérer une équation de Langevin généralisée∫ t

0
dt′K(t′)ẋ(t− t′) = F (t), ⟨F (t)F (t′)⟩ = kBTK(|t− t′|), (10)

où le noyau de friction K(t) combine un comportement en loi de puissance et une décroissance
exponentielle:

K(t) = γ0

τ0
fH

(
t

τ0

)
, fH(x) = 1

Γ(1 − 2H)
e−x

x2H , (11)

où H est l’exposant de Hurst aux temps cours, γ0 =
∫∞

0 K(t)dt est le coefficient de friction à
temps longs, et τ0 est un temps de mémoire.

A partir des trajectoires obtenues, nous pouvons extraire les probabilité de splitting et
les trajectoires moyennes après la “réaction” (le premier passage sur l’une des cibles). Sur la
Figure 5, nous montrons que la mémoire, dans ce système viscoélastique, tend à augmenter la
probabilité de toucher la cible la plus proche avant la plus lointaine. Cet effet, qualitativement
présent dans les lois d’échelle présentes dans la littérature, est quantitativement décrit par
notre théorie. De plus, les trajectoires dans le futur d’un premier passage sur une cible xi
ne restent clairement pas sur cette cible mais tendent à revenir dans l’espace entre les cibles.
C’est clairement un effet non-Markovien, montrant que les degrés de liberté externes à la
bille, qui rendent le mouvement non-Markovien (et sont inconnus dans le cas présent), ne
sont pas à l’équilibre au moment du premier passage. Cette observation est la première
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preuve expérimentale directe qu’un système n’est pas à l’équilibre à l’instant du premier
passage. Ces trajectoires sont également bien décrites par notre théorie.

(a) (b)

Figure 5: Comparaison de la théorie non-Markovienne des réactions compétitives avec des données
expérimentales. En vert, nous représentons les prédictions théoriques, en bleu, les observations
expérimentales, et en lignes rouges pointillées la prédiction pseudo-Markovienne, où µi(t) = xi et
π2 = x0/L. Les trajectoires ont été enregistrées avec une résolution temporelles de 500 images
par seconde, dans une solution de polymères concentrée à 500ppm. (a) Courbes de probabilité de
splitting π2, avec L = 1µm, (b) trajectoires moyennes après un premier passage µ1(t) et µ2(t), avec
L = 1µm et x0 = 0.2L, comparé avec les résultats expérimentaux.

Cinétique de réactions dans des milieux compartimentés

Le dernier problème étudié dans cette thèse est la détermination du temps de premier passage
sur une cible localisée à l’intérieur d’un compartiment où les propriétés de transport sont
complexes (sous-diffusives), ce compartiment étant lui même immergé dans un milieu où le
transport est diffusif. Ce problème est inspiré par l’existence d’organelles sans membranes
dans les cellules, où le mouvement est sous-diffusif. Notre objectif est de déterminer le
temps de premier passage pour une telle situation, et de rechercher si une optimisation du
temps de réaction est possible, dans un modèle simple. Ce chapitre 6, First Passage in
Complex Compartmentalized Media, est le seul qui ne traite pas de processus stochastiques
non-Markoviens. Ceci est dû à la difficulté d’implémenter le concept d’interface entre com-
partiments dans des approches théoriques. A la place, nous utilisons un modèle plus simple
où l’espace à l’intérieur du compartiment est supposé avoir une architecture fractale, créant
un effet d’encombrement forçant le mouvement à être sous-diffusif. Dans la littérature, les
temps de premier passage dans les compartiments ont été étudiés seulement dans le cas de
mouvement diffusif au sein du compartiment.

Nous considérons le mouvement d’un marcheur aléatoire dont la position initiale est dans
un volume de confinement V , où le mouvement est diffusif avec diffusivité D, à l’extérieur
d’un compartiment fractal de rayon R et dimension fractale df . Le mouvement à l’intérieur
du compartiment est supposé sous-diffusif, avec un déplacement quadratique moyen ψ(t) ∝
(Kt)2/dw , où K est un coefficient de transport et dw est la dimension de la marche. Nous avons
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Figure 6: Schéma du problème de premier passage à l’intérieur d’un compartiment fractal. In
marcheur aléatoire r(t), commençant à r0 = r(0), se déplace dans un volume de confinement V , et
cherche une cible de rayon a à l’intérieur d’un compartiment fractal de rayon R.

développé un formalisme pour prédire le temps moyen de premier passage pour atteindre
une cible de rayon a au centre du compartiment, obtenant

⟨T⟩ (a|r0 > R)
V

=

e−βE0
ηdfK

R
dw−df−adw−df

dw−df
+ 1

4πD

(
1
R

− 1
r0

)
(d = 3)

e−βE0
ηdfK

R
dw−df−adw−df

dw−df
+ 1

2πD ln
(
r0
R

)
(d = 2)

, (12)

où η est une mesure de l’encombrement à l’intérieur du compartiment (défini de telle sorte que
le volume accessible dans une boule de rayon R est ηRdf ), r0 est la distance initiale au centre
de la cible β = 1/kBT avec kB la constante de Boltzmann et T la température, et E0 est
la valeur d’un gain énergétique que le marcheur a à être dans le compartiment. Ce résultat
est obtenu en utilisant l’opérateur de O’Shaughnessy-Procaccia, qui est une description
macroscopique approximative du mouvement au sein d’une fractale (O’Shaughnessy and
Procaccia, 1985).

Nous avons vérifié que notre description prédit correctement le temps de premier passage
en comparant avec des simulations numériques en dimension d = 2, dans le cas où le
compartiment à l’intérieur de la fractal est un réseau de percolation critique. Les résultats
sont présentés sur la figure 7, où notre théorie prédit de façon quantitative le temps moyen
de premier passage pour plusieurs rayons de compartiment, sans aucun paramètre ajustable.

Ensuite, après avoir vérifié que notre théorie est vérifiée par des simulations, nous avons
cherché les conditions dans lesquelles le temps moyen de premier passage peut être optimisé
par la présence du compartiment, c’est à dire pour lequel la cible est plus rapidement atteinte
qu’une cible de même taille dans un milieu non-compartimenté. Pour ce faire, nous nous
restreignons au cas où le mouvement au sein du compartiment est plus lent qu’à l’extérieur,
du fait de l’encombrement, ce qui impose la condition

Ka2−dw ≪ D. (13)
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Figure 7: Prédictions théoriques (lignes) et résultats de simulations (symboles) pour le temps de
premier passage sur une cible dans un milieu compartimenté. Les simulations ont été effectuées
sur un réseau carré bidimensionnel avec V = 2.5 · 105 (où la taille d’une liaison est ℓ = 1), à
l’intérieur du compartiment de taille R = 50 et R = 100 les liaisons ont été retirées aléatoirement
(avec probabilité p = 0.5) pour obtenir un réseau de percolation critique.

Nous avons montré que, si E0 = 0, il n’y a aucune optimisation possible qui respecte cette
condition. Ceci est dû au fait qu’il y a une barrière entropique qui s’oppose à l’entrée du
compartiment. Ensuite nous avons autorisé une valeur non-nulle de E0, avec la contrainte
que la probabilité stationnaire de trouver le marcheur dans le compartiment n’est pas plus
grande que celle que l’on aurait de le trouver dans une sphère de rayon R dans un milieu
non-compartimenté, signifiant qu’il n’y a pas de sur-concentration de réactants dans le
compartiment, ce qui implique que

E0 ∼ kBT ln
(
Rd−df/η

)
, (14)

où d est la dimension du volume de confinement externe. Dans ces conditions, si d = 3,
nous trouvons que la présence du compartiment peut réduire considérablement le temps de
recherche par rapport à un milieu non-compartimenté à la condition dw < 3, impliquant
que la marche aléatoire n’est pas trop sous-diffusif. Cette optimisation est possible car une
marche diffusive peut trouver une cible infiniment petite en temps fini, alors que le temps
d’une recherche diffusive en dimension 3 diverge pour une petite cible. En dimension d = 2,
aucune optimisation n’est possible.
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Chapter 1
Introduction

Consider a random walker that, at each passage through a reactive region (or a target), has
some probability of undergoing a transformation, which we call a “reaction”. When studying
these situations, one says that there is a transport-influenced reaction. If many passages
through the target are required for a reaction to happen, the target is said to be “imperfect”,
whereas, if reactions happen instantaneously at first passage, the target is “perfect”. At first
glance, one would say that these situations corresponds to chemical reactions; where reactants
must first meet, and then, if an energetic barrier is overcome, react. However, the study of
transport-influenced reactions is not restricted to chemistry and it is useful to study (many)
diverse phenomena as DNA transcription (where transcription factors search for specific DNA
sequences), cell signaling (where extracellular molecules: hormones, neurotransmitters, etc.
search for receptor proteins on the membranes), neurone firing (that happens after a specific
voltage threshold is reached), risk analysis (where an investment might bring the investor
to ruin before reaching a given profit), etc. The purpose of this thesis is to understand how
each of the steps of a transport-influenced reaction is altered in the presence of three complex
situations: reactants with complex transport (characterized by the existence of memory),
multiple targets and compartmentalized media.

First, in Chapter 3, we treat the case of a one dimensional non-Markovian random
walker that is searching for an imperfect point-like target inside a confining volume. So far,
theoretical approaches have either described perfect reactions for non-Markovian random
walks or imperfect reaction for Markovian. To our knowledge, the only approaches that
attempt to take into account memory effects for imperfect reactions rely on the Wilemski-
Fixman approximation, which, as we proceed to show, leads to quantitatively incorrect
predictions. Our theory, which is valid for large confining volumes, enables us to find the
mean reaction time as a function of the reactivity, through the intrinsic reaction rate of
the target, the geometry, through the initial condition and the confining volume, and the
transport properties, through the mean square displacement. To find the mean reaction time,
one first has to find the mean trajectory after reaction, for which our theory finds a closed
equation that can be solved numerically. Notably, we find that, for weakly reactive targets,
a non-trivial exponent emerges as a consequence of memory.

Then, as an extension of Chapter 3, we develop a non-Markovian theory for gated reactions,
a different mechanism of imperfect reactivity, and extend the formalism of imperfect reactions
to finite targets and two dimensional random walkers. These three extensions are described
in Chapter 4. Gated reactions are imperfect reactions where the imperfect target is also
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allowed to exist in either an active or an inactive state. The switch between active and
inactive states happens as a stochastic process with some transition rate to go from inactive
to active and vice versa. We obtain a closed set of equations for the mean reaction time that,
when extended to low transition rates, generalizes previous results obtained for Brownian
motion. In the second section, we first extend the theory of Chapter 3 to finite targets,
which are necessary to the study two dimensional imperfect reactions, where, to have finite
mean reaction times (in the sense that the time scales with the confining volume), the target
must be of finite size. We develop the theory for Gaussian targets and obtain a closed set
of equations for the mean reaction time, the mean trajectory after reaction and the mean
reactive position.

Next, though many theories have been developed to study first passage problems (cor-
responding to perfect targets), experimental observations of the effect of memory in first
passage problems are scarce. In Chapter 5, we describe an experimental setup that can
directly detect the influence of memory on competitive events (the first passage problem
with two targets) and develop a theory that predicts the outcome of such competitive events
for non-Markovian random walkers. Our theory deals with non-Markovian Gaussian random
walkers that are moving between two targets. The goal is to find the probability of touching
one of the targets before the other. Then, by tracking the movement of a bead in a dense long
polymer solution, we can measure the probability for a particle to reach one target before
the other one, with which we can confirm that the theoretical predictions of our theory are
quantitatively correct.

Finally, in Chapter 6, motivated by the existence of small (complex) membraneless
organelles in cells where movement is generally subdiffusive, we study the effect of compar-
timents in the problem of first passage. Though the ideal would be to study this case in
a non-Markovian framework (to better incorporate the complex interior of the organelles),
we argue that this is not yet possible and proceed by assuming that the interior of the
compartments is fractal, thus creating a crowded compartment where many positions are
not available for diffusion. We develop a theory that gives us the mean first passage time
for a random walker that starts its motion outside a fractal compartment (but inside a large
confining volume) and has to find a target inside the compartment. Then, we study the
possibility of reaction optimisation caused by the fractal compartment. We find that, if there
is an energetic gain inside the compartment that compensates the decrease of available sites
(thus making stationary concentration continuos in the interface), then, it is possible to have
a faster reaction time even when movement inside the compartment is slower.

We complete this manuscript by adding an introductory chapter, Chapter 2, where we
briefly review some properties of first passage quantities, reaction times (corresponding to the
imperfect reactivity case) and Gaussian random walks. Then, in the last chapter, Chapter 7,
we present some conclusions and discuss the perspectives and future paths that our research
can take.
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Chapter 2
Introductory Chapter: Kinetics of

Transport-Influenced Reactions
and Non-Markovian Processes

2.1 Random walks and the problem of search processes . . . . . . . . . . . . 4
2.1.1 Some properties of the kinetics of transport-influenced reactions . 5
2.1.2 The mean reaction-controlled time for point-like targets . . . . . . 7
2.1.3 Mean reaction time for a three-dimensional diffusive process . . . . 8
2.1.4 Mean reaction time in scale invariant media . . . . . . . . . . . . . 9

2.2 The importance of memory and its existence in Gaussian processes . . . . 10
2.2.1 Gaussian processes with stationary increments . . . . . . . . . . . 11
2.2.2 Transport-influenced reactions for non-Markovian processes . . . . 13

2.3 Outline of the thesis and summary of results . . . . . . . . . . . . . . . . 14
2.3.1 Influence of memory in the kinetics of imperfect reactions in con-

finement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Experimental observation of the effects of memory in competitive

events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Kinetics of reactions in compartmentalized media . . . . . . . . . . 20

The purpose of this chapter is to introduce some concepts on transport-influenced reac-
tions, non-Markovian processes and diffusion in scale-invariant spaces (fractals) that will be
useful for the rest of the thesis. We start by defining the problem of transport-influenced
reactions, in the case of Markovian processes. In a second stage, we focus on processes
with memory, i.e., non-Markovian, and specify in which conditions Gaussian processes are
Markovian. Finally, we announce the main results of this thesis with a brief summary of the
results.
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2.1. Random walks and the problem of search processes

2.1 | Random walks and the problem of search processes

When the movement of a body results from a large number of interactions, it is (in general)
not possible to describe the system in a deterministic way, which means that another approach
must be used to study the dynamics of these bodies. By observing such systems, e.g., the
movement of microscopic spheres suspended in water (where the interactions correspond
to collision with water molecules), one can see that the movement is irregular, with no
clear explanations as to why the body moves in one direction rather than the other. The
trajectories taken by these bodies are called random walks, and, in fact, their motion is
so irregular that it can only be described with a probabilistic framework, the framework
of stochastic processes (Gardiner, 1985; Van Kampen, 1992). Examples of these walks can
be found in multiple situations: electrical noise, population dynamics, the value of a stock,
the charge of a neuron, etc. Due to their wide range of applications, these random walks
have been an important topic of physics research in the last century. Recent decades have
seen a considerable amount of work on anomalous random walks, i.e., walks r(t) where
⟨r2(t)⟩ ∼

t→∞
tα, with α ̸= 1 (Metzler and Klafter, 2000; Sokolov, 2012). Notably in the field

of Biology, where anomalous walks that result from crowded environments have been used
to model the movement inside cells (Höfling and Franosch, 2013).

One relevant question associated with these random walks is the question of how much
time it takes for such a walk to reach a predetermined position, or a target (Redner, 2001).
This time is commonly known as the first passage time, and, given the stochastic nature
of the walks, it must be itself a stochastic variable. The study of first passage events is
motivated in part by the existence of processes that only happen after a certain threshold
is reached, e.g., the discharge of a neuron after a certain tension is reached, the predator
that only stops hunting after a pray is caught or the investor that only sells a stock once it
reaches a certain profiting value.

However, not all search problems end with a simple passage through a target. One can
imagine a situation where, after reaching said target, some other stochastic process decides
if a transformation (or a reaction) happens or not, see the example in Figure 2.1. This
secondary process introduces an extra step to the kinetics of reaction, thus driving these
problems out of the reach of first passage processes. In fact, one calls such processes imperfect
or transport-influenced reactions, to emphasise the importance of the two steps involved in
the kinetics of these reactions: the transport towards the target and the intrinsic reaction
process at the target (Grebenkov, 2019). Naturally, we call the time that it takes for a
reaction to happen the reaction time, noted RT. Many mechanisms can be at the origin
of such intrinsic reaction processes, ranging from gated reactions, where reactants switch
between reactive and non-reactive states (thus allowing for encounters that do not lead to
a reaction), to the cases where reactions only happen if reactants meet with a prescribed
orientation or energy (corresponding to “entropic” and energetic activation barriers). If the
reaction step in a transport-influenced reaction is instantaneous (corresponding to a first
passage process) one says that the target (and the reaction) is perfect.
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Figure 2.1: Example of a transport-influenced reaction and application. (a) Two random walkers
are searching for each other. However, meeting is not enough for them to bond as this only happens
if they meet with a certain orientation. (b) Schematic representation of a virus immersed in a fluid
with antibodies that can make the surface proteins (represented by the orange blocks) inactive,
thus inactivating the virus. The rate of protein-antibody bonding can be obtained by studying the
problem of transport-influenced reactions in (a).

2.1.1 | Some properties of the kinetics of transport-influenced reactions

In the last decades, much effort has been put into understanding how reactivity influences
the kinetics of imperfect reactions (Grebenkov, 2019). However, most of this work has been
performed for a specific subset of stochastic processes: the Markovian random walks.

A process is Markovian if the statistics of the future steps only depend on the current
state of the process and not on the past trajectory taken by this process. The Markov
property, for a random walker x(t), can be mathematically expressed as

p(x3, t3|x2, t2; x1, t1) = p(x3, t3|x2, t2), with t3 > t2 > t1, (2.1)

where p(x3, t3|x2, t2; x1, t1) is the probability density of finding x(t3) = x3 given that x(t2) =
x2 and x(t1) = x1. Markovian processes are also called memoryless processes as they do not
carry any knowledge of the past trajectory into the consideration of the next steps. Though
the Markov property might seem simple, it allows us to develop many useful tools. For
example, if a process is Markovian, then, one can write a partial differential equation that
determines the dynamics of the propagator, i.e., the probabilistic dynamics of a random
walker. This equation, commonly known as the Fokker-Planck equation, is arguably one
of the most important tools to deal with Markovian processes, and it can be written as
(Van Kampen, 1992):

∂tp(x, t|x0) = Lxp(x, t|x0), (2.2)

where the dynamics of the propagator for a particle to go from x0 to x in a time t, p(x, t|x0), is
connected to the transport operator Lx. In the transport operator, one typically introduces
the properties of the transport and the medium where the transport happens. Though
Eq. (2.4) might be solvable or not, depending on the geometry specific boundary conditions,
it is an essential tool to the calculation of the first passage time and, in a wider sense, the
kinetics of transport-influenced reactions.
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One can incorporate imperfect reactivity into the Fokker-Planck equation in two ways,
with each method characterizing a different mechanism of imperfect reactivity. First, one
might consider that the target influences the motion of x(t) even if the reaction does not
happen, e.g., partially reflective targets. In this case, imperfect reactivity can be introduced
by adding a Robin boundary condition to the Fokker-Planck equation. For a diffusive process,
Lx = D∂2

x, with diffusive coefficient D, this corresponds to the boundary condition:

D∂np(x, t|x0)
∣∣∣
x∈ ∂R

= κnp(x, t), (2.3)

where ∂np(x, t|x0)|x∈ ∂R is the derivative taken in the (outwards) normal direction to the
border (∂) of the reactive region R, and κn is a parameter that quantifies the reactivity of
the surface with dimensions of length per time (even if the reaction problem happens at a
space of d dimensions).

The other mechanism of imperfect reactivity that we present here is the mechanism
of sink reactivity, characterized by a reaction rate k(x) that is spatially localized. When
imperfect reactivity comes from sink reactivity, the trajectory of the random walker is not
changed by a passage through the target without a reaction. In this case, one can rewrite
the Fokker-Planck equation and introduce the reaction rate as an absorbing sink term:

∂tp(x, t|x0) = Lxp(x, t|x0) − k(x)p(x, t|x0). (2.4)

In principle, both situations could be analytically solved to find the full distribution of
reaction times.

Let us now give some basic properties for the mean reaction time when the reactants
are confined to an arbitrary large volume V with a reaction rate k(x) = κδ(x), where κ is
called the reactivity. Due to the lack of memory, it is natural to write the mean reaction
time, ⟨RT⟩ (xT|x0), as the sum of the mean first passage time to the target ⟨T⟩ (xT|x0),
corresponding to the time necessary to reach the target (the mean first passage time), and
a time ⟨TRC⟩, that we call the mean reaction-controlled time, corresponding to the time
necessary for a reaction to happen once the random walker is started at the target. It is
natural to assume that the reaction-controlled time does not depend on the initial conditions.
However, as we argue in the next section that, for point-like targets, this reaction-controlled
time only depends on the volume and on the reactivity. Therefore, one can write the mean
reaction time as a some of two (independent) terms:

⟨RT⟩ (xT|x0) = ⟨TRC⟩ + ⟨T⟩ (xT|x0). (2.5)

In fact, this additivity property is exact for point-like targets in one dimension, reactions
on a network and for small finite targets (as long as the target is so small that reactions
happen uniformly in the surface of the target) (Grebenkov, 2019; Grebenkov and Oshanin,
2017; Grebenkov et al., 2017; Guérin et al., 2021). Additionally, the additivity property is
approximately verified in other situations, as the case where the target is a partially reflective
patch placed in the boundary of a confining volume (Guérin et al., 2023).
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2.1.2 | The mean reaction-controlled time for point-like targets

Let us focus on the mean reaction-controlled time for a random walker, x(t), with x(0) = 0,
to react at a target with reaction rate k(x) = κδ(x), inside a confinement with volume V . It
is easy to show that the reaction-controlled time only depends on V and κ for κ → 0 with
the hypothesis of fast transport but it is much less obvious to state that it holds for all κ.
For simplicity we work within the framework of dynamics on a discrete lattice.

If a random walker is at the site i at time t it has a probability νijdt to jump to a
neighbouring site j between t and t+dt. We assume that there is only one reactive site i = 0
where there is a reaction rate κ. Let us call P the probability that the reaction happens
during one passage at the site i = 0. If S0(t) is the probability of not having jumped to a
neighbour and not having reacted at time t, given that one starts at i = 0 at t = 0, i.e., the
probability of staying at the target without a reaction, then

S0(t) = e−κt−
∑

j
ν0jt, (2.6)

where the sum runs over the neighbouring sites of i = 0. Using S0(t) one can write the
probability density p(t) that the reaction happens at each passage after being at the target
for time t:

p(t) = S0(t)κ = κe−κt−
∑

j
ν0jt. (2.7)

Hence, the probability that the reaction happens during one passage at the target is

P =
∫ ∞

0
dt p(t) = κ

κ+ ν0
, (2.8)

where we have introduced νi = ∑
j νij, which is the inverse waiting time at the site i (in the

dynamics without reaction at the target).

Let us call τ1 the first return time to the target (including the waiting time on the target
when one starts on it). Now, since the number of passages n to obtain a reaction and the
return time τ1 are independent variables, we can write the mean reaction-controlled time as

⟨TRC⟩ = ⟨nτ1⟩ = ⟨n⟩ ⟨τ1⟩ . (2.9)

The probability that the reaction happens during the passage number n at the target is
exactly P (1 − P )n, so that

⟨n⟩ =
∑
n=1

P (1 − P )nn = 1 − P

P
. (2.10)

Therefore, one can write

⟨TRC⟩ = 1 − P

P
⟨τ1⟩ , (2.11)
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which has been obtained, for example in Guérin et al. (2021).

Now, if we note psi the stationary probability to be at site i in absence of reaction at the
target, we may note that

ps0 = ν−1
0 / ⟨τ1⟩ , (2.12)

which follows from ergodicity: the stationary probability can be computed by counting the
amount of time spent at some site in a long period of time. This is actually Kac’s lemma
(from ergodic theory) applied to our situation. Using Eqs. (2.8) and (2.12) into the formula
for the mean reaction-controlled time, Eq. (2.11), one finds

⟨TRC⟩ = 1
κps0

. (2.13)

In the continuous dynamics limit one can write:

⟨TRC⟩
V

= 1
κ
, (2.14)

showing that the mean reaction-controlled time, ⟨TRC⟩, does not depend on transport prop-
erties, which is true for all values of reactivity and not only for small ones. Note that this
derivation could easily be extended to higher dimensions with the same result.

With this mean reaction-controlled time we are now left to find the mean first passage
time, ⟨T⟩ (xT|x0). However, before moving onwards, let us first note that deriving the
reaction-controlled time for low reactivity (assuming that dynamics is fast) does not require
the Markov property, suggesting that the scaling ⟨RT⟩ /V ∼ 1/κ should remain valid for the
low reactivity limit of non-Markovian processes (processes that do not verify the Markov
property).

2.1.3 | Mean reaction time for a three-dimensional diffusive process

Let us combine the results of the two previous sections to compute the mean reaction time
for a three-dimensional random walker that diffuses to react at a target of radius a. We
assume that the random walker is started far from the target.

If imperfect reactivity comes from a semi-reflective target that is spherically symmetric,
then, we may see the Robin boundary condition, Eq. (2.3), as an effective sink reaction
rate k(x) = κnδs(x), where δs(x) is a surface delta function, such that the reactivity can be
written as κ ≡

∫
dxk(x) = 4πa2κn. Therefore, one can write the mean reaction-controlled

time for a spherical target of radius a as

⟨TRC⟩
V

= 1
4πa2κn

. (2.15)
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Combining this result with the mean first passage time for a three-dimensional random walker
that diffuses and is started far from the target of radius a, ⟨T⟩ (a|∞) = 1/(4πaD) (Redner,
2001), one can write the mean reaction time as

⟨RT⟩
V

= 1
4πa2κn

+ 1
4πaD = 1

κeff
, with κeff = 4πa2κnD

aκn +D
. (2.16)

The effective reaction rate found here corresponds to the (steady-state) results of Collins and
Kimball (1949).

2.1.4 | Mean reaction time in scale invariant media

Assume that a random walker moves in a scale invariant space of dimension df , and that it
describes a random walk of dimensions dw, meaning that the mean square displacement is
⟨∆r2⟩ ∼ t2/dw . In this case, one can write the mean first passage time as (Condamin et al.,
2007)

⟨T⟩ (a|r0 = ||x0||)
V

=


A(rdw−df

0 − adw−df ) for dw > df : (compact)
B ln(r0/a) for dw = df : (marginally-compact)
C
(
1/adf−dw − 1/rdf−dw

0

)
for dw < df : (non-compact)

,

(2.17)
where A,B,C > 0 are numerical constants that do not depend on r0 or a. From this result
one can see that, if the search process is compact, dw > df , then the time for the random
walker to find a target of infinitesimal size remains finite and it is proportional to V r0

dw−df .
One example of such a process would be the movement of a Brownian particle (dw = 2) that
is searching for a target in a one-dimensional space, in which case the mean first passage
time is ∼ V r0. Then, in the non-compact case, df > dw one can see that infinitesimal targets
require, on average, an infinite amount of time to be reached. This means, for example that
a Brownian motion in three dimensions would find it much harder to find a small target,
even though it covers the space with a similar walk dimension. Note as well that for random
walkers that start far from the target their initial distance to the target will not influence
the mean first passage time.

Using Eq. (2.14) with this mean first passage time and the mean reaction-controlled
time from Section 2.1.2, one can write the mean reaction time for a random walker (of walk
dimension dw) that searched for a target of radius a and reactivity κ inside a confining volume
of volume V and of dimension df .

⟨RT⟩ (a|r)
V

= 1
κ

+


A(rdw−df − adw−df ) for dw > df : (compact)
B ln(r/a) for dw = df : (non-compact)
C
(

1
a
df−dw − 1

r
df−dw

)
for dw < df : (non-compact)

. (2.18)

This result generalizes the results of last section to the case of scale invariant media and was
studied in Guérin et al. (2021).
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2.2 | The importance of memory and its existence in Gaussian
processes

Though the Markov property is assumed quite generally when developing stochastic models,
it must be noted that this is not always the case. In fact, as soon as a random walker interacts
with an environment that does not relax instantaneously, one must consider that the resulting
process is non-Markovian, as the slow relaxation of the environment acts as a reminder of the
previous positions taken by the process. In general, one can track non-Markovianity to some
hidden or forgotten degrees of freedom that act as memory storage. One example of these
processes is the case of a bead that moves inside a dense solution of long polymers. Due to
the dense and complex networks that long polymers create, any movement of the bead will
create a perturbation on the state of the network, which will eventually (but no instantly)
relax to an equilibrium state. In this case, the polymer network stored the movement of the
bead “in memory” for some time. Yet, during the time that it remained out of equilibrium,
it might have influenced the movement of the bead, thus providing a memory of a past point
in the bead’s trajectory, see Figure 2.2 for a schematic representation of this phenomenon.

Figure 2.2: Schematic representation of a bead moving in a fluid with long polymers as a simplistic
example of a non-Markovian process. Here one can see that after one time step the bead moved dx
thus creating a place of low polymer density. Then, after another time step, the bead moves again
but now influenced by the trail of low polymer density that the last move created. This means that
some memory of the previous trajectory was stored in the network of polymers and it influenced
the future steps of the bead. In the last frame, the polymers that were influenced by the initial
perturbation starts to relax to equilibrium.

Many of the known examples of non-Markovian processes in nature appear to be Gaussian
processes (with stationary increments), as is the cases of single file diffusion (Wei et al., 2000),
the movement of beads in viscoelastic fluids (Mason et al., 1997) or the dynamics of protein
components (Min et al., 2005). It is then natural to raise the question of non-Markovianity
of Gaussian processes, as the most famous of all stochastic processes, the Brownian motion,
is Gaussian, with stationary increments and Markovian.
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2.2.1 | Gaussian processes with stationary increments

A Gaussian process is a stochastic process x(t), where the statistics of all sets {x(ti)}i=1,...,N
is characterized by a multivariate Gaussian function. These processes are uniquely defined by
a mean, m(t) = ⟨x(t)⟩, and covariance, σ(t, t′) ≡ Cov(x(t), x(t′)) = ⟨x(t)x(t′)⟩ −m(t)m(t′).

Influence of stationary increments on the covariance of Gaussian processes

Let us first characterize the covariances of Gaussian processes with stationary increments.
Take a symmetric Gaussian process with stationary increments that is started at x0 at time
t = 0. The mean of this process is x0 (due to the symmetry of the process) and the covariance
is σ(t, t′), with σ(t, 0) = 0, due to the fact that the process is conditioned at t = 0. If a process
displays stationary increments, then, by definition, the statistics of yτ (t) = x(t+ τ) − x(t) is
stationary, meaning that it does not depend on t. The process yτ (t) is also Gaussian with
mean zero and covariance

Cov(yτ (t), yτ (t′)) = σ(t+ τ, t′ + τ) − σ(t+ τ, t′) − σ(t, t′ + τ) + σ(t, t′). (2.19)

Expanding the covariance in Eq. (2.19) for small τ one can write

Cov(yτ (t), yτ (t′)) ∼
τ→0

τ 2∂t∂t′σ(t, t′), (2.20)

which, since yτ (t) is stationary, must only depend on the distance between t and t′, |t− t′|.
Therefore, there must be a function f(t) such that

∂t∂t′σ(t, t′) = f(|t− t′|). (2.21)

Then, one can integrate this equation to obtain the covariance of the original process,

σ(t, t′) = h(t) + h(t′) + g(|t− t′|), (2.22)

where we have used the fact that σ(t, t′) = σ(t′, t) and h, g are two functions of a single
variable. Since the process x(t) is conditioned to the initial position x0 at time t = 0 one
must have σ(0, t′) = σ(t′, 0) = 0, which gives us a condition for h and g, h(t) = −g(t).
Moreover, by definition, the mean square displacement of x(t) is ψ(t) = σ(t, t), which gives
us the function h, h(t) = ψ(t)/2.

Therefore, the covariance of a process that is (i) Gaussian, (ii) symmetric, (iii) with
stationary increments and (iv) with an initial condition that is fixed, x(0) = x0, is given by

σ(t, t′) = 1
2
[
ψ(t) + ψ(t′) − ψ(|t− t′|)

]
. (2.23)
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What is the condition for a Gaussian process with stationary increments to be Markovian?

Let us now study the Markovianity of Gaussian processes. We start by assuming that x(t),
with x(0) = x0, is a symmetric Gaussian process that displays stationary increments. The
covariance of these processes, as shown in Eq. (2.23) can be written as a function of the
mean square displacement, ψ(t).

If a process x(t) is Markovian two conditions must be true. First, the conditioned
probability distributions p(x, t|x′, t′), with t > t′, must be written as

p(x, t|x′, t′) = 1√
2πψ(t− t′)

exp
(

− (x− x′)2

2ψ(t− t′)

)
, (2.24)

Then, the probability distribution of a Markovian process must also verify the Chapman-
Kolmogorov equation (derived by using the Markovian property in Eq. (2.1)),

p(0, t|x0, 0) =
∫ ∞

−∞
dy p(0, t|y, t′)p(y, t′|x0, 0). (2.25)

Combing these two conditions one obtains the equation,

e−x2
0/2ψ(t)√
ψ(t)

= e−x2
0/2(ψ(t−t′)+ψ(t′))√

ψ(t− t′) + ψ(t′)
, (2.26)

which is only possible if
ψ(t) = ψ(t− t′) + ψ(t′). (2.27)

The only (non-trivial) mean square displacement that obeys this condition is the linear one,
ψ(t) = At, corresponding to Brownian motion. This proves that the only process that is (i)
symmetric (ii) Gaussian (iii) with stationary increments and (iv) Markovian is the Brownian
motion, characterized by a mean square displacement that grows linearly with time.

This proof is similar to that of Doob’s theorem (Doob, 1942), where it is stated that
the only stationary Gaussian process that is Markovian is the Ornstein-Uhlenbeck process,
corresponding to a Brownian particle that is moving inside an harmonic potential. Note that
it is possible to draw a correspondence between these two theorems, as ours can be seen as
an integrated version of the original Doob’s theorem.
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2.2.2 | Transport-influenced reactions for non-Markovian processes

In the last decades, first passage properties have been a focus of research for processes with
memory. In the current literature, one can categorize the study of first passage properties
into four categories. First, in a category that we can call the pseudo-Markovian approaches,
we have all the studies that rely on the Wilemski-Fixman approximations, stating that, at
the reaction moment, the system is at equilibrium (Wilemski and Fixman, 1974a,b). As we
show in the next chapters, this approaches are not great and, in some cases, predict wrong
scalings. Then, in a category that can be named perturbative approaches, we have all the
studies that assume weak memory, usually obtained by considering a small perturbation
around the Brownian motion (Delorme and Wiese, 2015; Sadhu et al., 2018; Wiese, 2019;
Walter et al., 2021). Next, we have a category that focuses on the persistence exponents,
that directly gives us the long times scaling laws related to the first passage time, (Bray
et al., 2013; Krug et al., 1997). Finally, we have the category where non-Markovian results
are derived by studying the trajectories in the future of a first passage (Guérin et al., 2016;
Levernier et al., 2020, 2019, 2022).

Interestingly, with the exception of the pseudo-Markovian approaches, none of the meth-
ods described above has been applied to the case of imperfect reaction. In fact, the exceptions
to this observation are only two, the pseudo-Markovian approaches, that sometimes predicts
incorrect scalings, and the case of the random acceleration process, that, due to its par-
ticular properties, allows for theoretical developments that are not possible for any other
non-Markovian process. This is the goal of the first part of this thesis, the study of imperfect
reactions for non-Markovian random walkers. We note that, for non-Markovian processes,
one cannot define a Fokker-Planck equation, so that the Robin boundary condition and the
sink reactivity method are not available when processes display memory. Additionally, the
additivity property, Eq. (2.14), cannot be used when there is memory, as the time for a
reaction to happen once the random walker is at the target must depend on the specific path
that it has taken to reach the target in the first place. Therefore, the results for the mean
first passage time of non-Markovian processes cannot be directly used to deduce the kinetics
of imperfect reactions as in the Markovian case.

Moreover, apart from scaling arguments and perturbative approaches, the classical meth-
ods to deal with memory apply only to single target problems. In a second stage of the
thesis, we apply the method of studying trajectories after a first passage to study the case of
the two target problem.

Last, most methods to treat first passage problems, including the Markovian ones, assume
homogeneous spaces. In the final stage of this thesis, we consider the effect of compartments
(where transport is altered) in the first passage times.
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2.3 | Outline of the thesis and summary of results

In this thesis, we study the reaction kinetics of three complex situations. First, we consider
the case of imperfect reactions with memory. Then, for perfect reactions, we analyze the
case of competitive reactions with memory (theoretically and experimentally). Finally, we
study targets that are immersed in complex compartments.

2.3.1 | Influence of memory in the kinetics of imperfect reactions in
confinement

In Chapter 3, Kinetics of Imperfect Reactions for non-Markovian Walkers in Confinement,
we study the time that it takes for a one-dimensional random walker, x(t), to react at a
target at x = 0 that is imperfect and point-like, with reaction rate k(x) = κδ(x). We assume
that the walker is confined to a space of volume V that can be connected to the stationary
probability in the absence of a target, V = 1/ps(0).

Figure 2.3: Scheme of the problem of imperfect reactivity. A random walker, r(t), moves in a
confining space V in the presence of an imperfectly reactive target, k(r). How much time does it
take for the random walker to react at the target? This time is known as the reaction time, RT.

Our first result is a general expression for the mean reaction time, RT, for any stochastic
process that is continuous but non-smooth (⟨ẋ2⟩ = ∞):

⟨RT⟩
V

= 1
κ

+
∫ ∞

0
dt[pπ(0, t) − p(0, t)], (2.28)

where p(x, t) is the probability density of finding a particle at position x at time t when there
is no target and pπ(x, t) is the probability density of finding the process xπ(t) ≡ x(t+ RT),
known as the process after reaction, at position x at time t.

Though the generality of the previous equation is remarkable, to proceed further, one
has to assume one specific subset of stochastic process. We assume that, far from the bound-
aries of the confining volume, the process is Gaussian and displays stationary increments.
As mentioned in the previous section, many non-Markovian processes are Gaussian, thus
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suggesting that studying Gaussian processes is not an assumption too restrictive. Since the
process displays stationary increments, the covariance of the process, σ(t, t′), is uniquely
characterized by the mean square displacement ψ(τ) =

〈
(x(t+ τ) − x(t))2

〉
, see Eq. (2.23).

We assume that ψ(t) ≃ Kt2H at long times, with 0 < H < 1, meaning that the random
walker does not remain in the initial position and it moves (at long times) in a diffusive way
(H = 1/2), a subdiffusive way (H < 1/2) or in a superdiffusive way (H > 1/2). In the large
volume limit, Eq. (2.28) can be simplified by assuming that the process after reaction, xπ(t),
is Gaussian with mean µ(t) and covariance that is approximately equal to the covariance
of the original process x(t). Using these hypothesis in Eq. (2.28), one can write the mean
reaction time as

⟨RT⟩
V

= 1
κ

+
∫ ∞

0

dt√
2πψ(t)

[
exp

(
− µ(t)2

2ψ(t)

)
− exp

(
− x2

0
2ψ(t)

)]
, (2.29)

where x0 = x(0) is the initial position. In this equation, all variables are known except for
the mean trajectory after reaction µ(t). However, it is possible to obtain a self-consistent
integral equation for µ(t):

0 = µ(τ)
κ

+
∫ ∞

0

dt√
2πψ(t)

(µ(t+ τ) − µ(t)M(t, τ))e−µ2(t)
2ψ(t) − x0(1 −M(t, τ))e−

x2
0

2ψ(t)

, (2.30)

with

M(t, τ) = ψ(t+ τ) + ψ(t) − ψ(τ)
2ψ(t) . (2.31)

Solving the integral equation in Eq. (2.30), one obtains µ(t) that can then be introduced in
Eq. (2.29) to obtain the mean reaction time.

Many remarks can be made from the equations for ⟨RT⟩ and µ(t). For instance, the term
⟨TRC⟩ ≡ V/κ can be seen as a Reaction Controlled time since it dominates for small κ, and
does not depend on the dynamics. For Markovian processes looking for a point-like target,
⟨RT⟩ − ⟨TRC⟩ would be equal to the mean first passage time. However, our formalism clearly
shows that this additivity property does not hold for non-Markovian processes, because µ(t)
depends on κ, as can be seen in Eq. (2.30). This is clearly a non-Markovian effect, physically
coming from the fact that the state of the hidden degrees of freedom (responsable for the
memory of the process) is not the same at each passage at the target.

In Figure 2.4, we present the mean reaction times obtained from the simulation of three
different stochastic processes defined by their distinct mean square displacements. We
compare the simulation results to our theoretical predictions and to the results obtained
with pseudo-Markovian approximations (also known as Wilemski-Fixman approximations in
literature), corresponding to the approximation µ(t) = 0. Our theory quantitatively predicts
the correct mean reaction times, even when the pseudo-Markovian approach predicts infinite
reaction times, Figure 2.4.a.
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2.3. Outline of the thesis and summary of results

Figure 2.4: Comparing our theoretical predictions of ⟨RT⟩ to the results of simulations. In a)
and c), the process is a fractional Brownian motion with Hurst exponents H = 1/4 and H = 0.6
respectively. In b), the process simulated is the movement of the first monomer in a bead-spring
chain with N = 150 monomers, an example of a physical realization of a subdiffusive fractional
Brownian motion with ψ(t) = K

√
t for N → ∞, where K√

τR/l
2
R = 4/

√
π, lR is the typical size of

one bond and τR is the relaxation time of one monomer. The parameters of the simulations are
x0 = 5lR, V = 30x0. The symbols represent the simulation results, the continuous lines (in blue)
represent our theoretical predictions, the dashed lines (in green) represent the pseudo-Markovian
predictions (only represented when it is finite, i.e., in b and c) and the dotted lines (in red)
correspond to the asymptotic behaviour for small κ: ⟨RT⟩ = V/κ. The time unit τ1 = (x2

0/K)1/2H

is the typical time scale of a fractional Brownian motion.

With the hope of obtaining a better understanding of the analytic solutions of Eqs. (2.29)
and (2.30), we study the asymptotic behaviours of µ(t) for random walkers that perform
fractional Brownian motion, i.e., ψ(t) = Kt2H , finding

µ(t) ∼
t→∞

{
x0 − A(κ)

t1−2H for H ≤ 1
2

−A(κ)t2H−1 for H > 1
2

and µ(t) ∼
t→0

{
κA(x0, K, κ) t2H for H ≤ 1

2
κB(x0, K, κ) t for H > 1

2
.

(2.32)
It is interesting to realize that, at long times, for a subdiffusive process (H < 1/2), the
initial position is never forgotten, even for small reactivities (where reactions take more
time to happen). At short times, for subdiffusive particles, µ(t) ∝ ψ(t), corresponding to
the movement of a particle that is being pushed back to the initial position by an external
force. For superdiffusive particles, at short times, the particles cross the target describing
trajectories that have finite mean velocities.

Another interesting limit case is the limit of weak reactivity, κ → 0. In this case, we
find that the apparent diffusion-controlled time, ⟨RT⟩ − ⟨TRC⟩, is dominated by a divergent
non-trivial exponent of κ:

⟨RT⟩
V

− 1
κ
∼
κ→0

(1
κ

) 1−3H
1−H x2

0

K
1

1−H
νH , (2.33)

where H < 1/3 and νH is a function of H that can be calculated from our theory. This new,
non-trivial, scaling law tells us that the mean reaction time is a non-analytical function of
the reactivity and that the regime where the reaction-controlled time dominates the mean
reaction time is reached much slower for non-Markovian process than for the Markovian ones.
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This scaling law is one of the main results of this thesis and it has been observed in our
simulation.

Then, in Chapter 4, Kinetics of Imperfect Reactions for Non-Markovian Walkers in
Confinement, we present three extensions of our formalism. First, in the case of gated
reactions, then, in the case of finite Gaussian-shaped targets in one dimension and, finally, in
the case of two-dimensional Gaussian-shaped targets. The mechanism of gated reactions is
characterized by a target that might be active, with reaction rate k(x) = κaδ(x), or inactive,
with k(x) = 0. The target randomly switches from active to inactive and vice versa,with
rates ωi and ωa respectively. Our theory can be extended to this case obtaining equations for
the mean reaction time of gated reactions that are similar to those of the point-like target.
When transition in the target are rare, corresponding to ω = ωa + ωi → 0, reactions are rare
and the mean reaction time can be written as

⟨RT⟩
V

∼
ω→0

1
κeff

, κeff = ω1−H qs

1 − qs

√
2πK

Γ(1 −H) , (2.34)

where qs = ωa/ω is the stationary probability of finding an active target. This result suggests
that the effective reaction rate depends on the transport properties, K, and generalizes the
results obtained for Markovian processes (Mercado-Vásquez and Boyer, 2019). Additionally,
we find the equations that enable us to calculate the mean reaction time for Gaussian-shaped
targets in one and two dimensions. In Figure 2.5, we compare our theoretical predictions for
gated reactions and two-dimensional Gaussian-shaped targets to the results of simulations.
We find that our theories quantitatively agree with the simulations.

Figure 2.5: Mean reaction times for two-dimensional and gated targets. We represent our
theoretical predictions with continuous lines, the pseudo-Markovian predictions with dashed lines
and the simulations with symbols. In (a) we represent the mean reaction time (for a bead-spring
chain with 40 monomers) as a function of the initial distance to the center of a Gaussian-shaped
target, r0. The reactivity of the target is κ =

∫
dxk(x) and we use the natural units of the bead-

spring chain model, τR is the relaxation time of one monomer and lR is the typical size of one bond.
In (b) we represent the mean reaction time for a fractional Brownian motion, with H = 0.34, in
the case of a gated target with reactivity κa when it is active. The target, that can be active or
inactive, switches from one state to the other at a rate ω. The time unit τ1 = (x2

0/K)1/2H is the
typical time scale of a fractional Brownian motion.
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2.3. Outline of the thesis and summary of results

2.3.2 | Experimental observation of the effects of memory in competitive
events

In Chapter 5, Competitive First Passage Events in Viscoelastic Fluids and Confrontation
with Experiments, we study the problem of competitive events for non-Markovian processes.
In this problem, a random walker is placed in between two targets, and the objective is to find
the probability of touching one of the targets before the other, i.e., the splitting probability.
As shown in Figure 2.6, the problem of competitive events is the ideal configuration for
an experimental study of first passage properties. In that chapter, we develop a theory
that quantitatively predicts the correct splitting probabilities for Gaussian processes with
stationary increments, and compare these predictions to the experimental results.

Figure 2.6: Experimental difference between observing first passage to one target and competitive
events. Experimentally, the trajectories x1(t) and x2(t) that are searching for the red targets can
only be seen inside the dotted region (corresponding to the space that is recorded by the camera).
In the case of a first passage to one target, (a), many trajectories are lost . In the case of competitive
events, (b), it is not possible to lose particles from the recorded region, as trajectories must touch
one of the targets before leaving this region.

We consider a random walker x(t) that is symmetric (⟨x(t)⟩ = x0, with x(0) = x0),
continuous, non-smooth, with stationary increments and mean square displacement ψ(t).
This walker is searching for one of two targets, one at the origin x1 = 0 and one at a distance
L, x2 = L > x0 > 0. We derive the equation for the splitting probability π1, defined as the
probability to reach x1 before reaching x2:

x0 = lim
t→∞

[π1µ1(t) + (1 − π1)µ2(t)], (2.35)

where µi(t) is the mean trajectory after touching xi for the first time, and before touching
the other target. We note that this equation is exact and general, it is true for any process
that has long time mean square displacement Kt2H with H > 0. To find the limits of
µi(t), we assume that the process in the future of touching one of the target for the first
time (and before touching the other targets) is Gaussian with mean µi(t) and covariance
is approximately equal to that of the original process. Using these approximations, it is
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possible to find the set of integral equations that gives us µi(t)

∫ ∞

0

dt√
2πψ(t)

 ∑
j=1,2

πj[µj(t+ τ) − (µj(t) − xi)M(t, τ)]exp
(

−(xi − µj(t))2

2ψ(t)

)

−[x0 − (x0 − xi)M(t, τ)]exp
(

−(xi − x0)2

2ψ(t)

) = 0, ∀i=1,2,

(2.36)

where M(t, τ) is defined as in Eq. (2.31). By solving these equations numerically, it is possible
to obtain the splitting probability π1(x0).

Moreover, we describe an experimental setup that enables us to obtain non-Markovian
trajectories, where one can test competitive first passage theories. The trajectories are
obtained by tracking the movement of a bead in a fluid with concentrated long polymers.
Then, we verify that the trajectories obtained are symmetric, Gaussian, with stationary
increments and non-smooth (at the scale of temporal resolution), thus corresponding to the
assumptions of the theory. The movement of the beads can be described as subdiffusion
that becomes diffusion after some crossover time τ0, which leads us to consider a generalised
Langevin equation∫ t

0
dt′K(t′)ẋ(t− t′) = F (t), ⟨F (t)F (t′)⟩ = kBTK(|t− t′|), (2.37)

with a memory kernel, K(t), that combines power law and exponential decays:

K(t) = γ0

τ0
fH

(
t

τ0

)
, fH(x) = 1

Γ(1 − 2H)
e−x

x2H , (2.38)

where H < 1/2 is the Hurst exponent at short times and γ0 =
∫∞

0 K(t)dt is the long time
friction coefficient.

From the trajectories obtained, one can extract the splitting probability and the mean
trajectory after reaction. In Figure 2.7, we show that memory, in this viscoelastic system,
does influence the splitting probability by making targets that are close easier to reach
first. This effect, qualitatively described by the scaling laws present in the literature, is
quantitatively described by our theory. Additionally, the mean trajectories in the future of
a first passage clearly return from the targets to the space between targets. This is clearly
a non-Markovian effect that shows that the hidden degrees of freedom (corresponding to
the memory) are not at equilibrium at the first passage moment. This observation is the
first direct experimental proof that a non-Markovian system is out-of-equilibrium at the first
passage moment.
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(a) (b)

Figure 2.7: Comparing the predictions of the non-Markovian theory for competitive event to the
experimental results. In green, we represent the theoretical predictions, in blue, the experimental
observations and, in red (dashed) the pseudo-Markovian prediction, where µi(t) = xi and π2 = x0/L.
The trajectories used were recorded at 500fps in a solution of long polymers with concentration
500ppm. (a) Curves of the splitting probability π2 as a function of the initial position x0 with
L = 1µm, (b) mean trajectories after first passage µ1(t) and µ2(t), with L = 1µm and x0 = 0.2L,
compared to the experimental results.

2.3.3 | Kinetics of reactions in compartmentalized media

The last problem that we study in this thesis is the determination of the mean first passage
time for a target that is inside a compartment that is immersed in a regularly diffusive
confining volume. This problem is inspired by the existence of membraneless organelles in
cells, inside which movement is subdiffusive. Our objective is to determine the mean first
passage time in such situations and then, by tuning the parameters of the system, investigate
if it is possible to optimize reactions. This chapter, Chapter 6, First Passage in Complex
Compartmentalized Media, is the only one that does not deal with non-Markovian processes.
This is due to the difficulty of implementing interfaces in the theory of non-Markovian
random walkers. To produce a subdiffusive compartment, we suppose that the space inside
the compartment is fractal. This creates a crowding effect in the compartment that forces
the movement to be subdiffusive. In the literature, the problem of first passage problem
mediated by compartments is restricted to the case of diffusive walks.

We consider a random walker started outside the compartment but inside a confinement
of volume V, where movement is diffusive with diffusivity D. Inside the compartment of
radius R and fractal dimension df movement is subdiffusive, characterized by the mean
square displacement ψ(t) ∝ (Kt)2/dw , where K is a transport coefficient and dw is the walk
dimension. We developed a formalism to predict the mean first passage time to reach a
target of radius a in the center of the fractal compartment

⟨T⟩ (a|r0 > R)
V

=

e−βE0
ηdfK

R
dw−df−adw−df

dw−df
+ 1

4πD

(
1
R

− 1
r0

)
(d = 3)

e−βE0
ηdfK

R
dw−df−adw−df

dw−df
+ 1

2πD ln
(
r0
R

)
(d = 2)

, (2.39)

where η is a measure ot the crowding inside the compartment (defined such that the ac-
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Figure 2.8: Scheme of a first passage problem to a target that is inside a fractal compartment. A
random walker r(t), started at r0 = r(0), moves in a confining volume, V, searching for a target of
radius a inside a fractal compartment of radius R.

cessible volume inside a sphere of radius r is ηrdf ), r0 is the initial distance to the center
of the compartment, β = 1/kBT , with kB the Boltzmann constant and T the temperature,
and E0 is an energetic gain given to the walker when it enters the compartment. This
results is obtained by using the O’Shaughnessy-Procaccia operator, that is an approximative
macroscopic description of the movement inside a fractal (O’Shaughnessy and Procaccia,
1985).

We have verified that our theory quantitatively predicts the mean first passage times
obtained from simulations in the two dimensional case (with no fitting parameters). The
simulations are preformed with a compartment that is a critical bond percolation network.
Our results are represented in Figure 2.9

Figure 2.9: Theoretical predictions (lines) and simulations results (symbols) for the first passage
time to target in the center of a fractal compartment. The simulations were performed in a two-
dimensional square lattice with V = 2.5 · 105 and lattice spacing ℓ = 1. Inside the compartment,
of radius R/ℓ = 50 and R/ℓ = 100, bond are removed with probability p = 0.5 to obtain a critical
percolation network.

Then, after verifying that our theory agrees with simulations, we search for the conditions
that minimize the mean first passage time in the presence of a subdiffusive compartiment.
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However, we do not want an optimisation that comes from fast subdiffusion inside the
compartment, as crowding should impose slower movement than outside the compartment.
Therefore, we are looking for optimisations that obey the condition

Ka2−dw ≪ D. (2.40)

We have shown that, if E0 = 0 (no energetic gain inside the compartment), then it is not
possible to optimize the mean first passage problem while keeping movement slower inside
compartment. This is due to an entropic barrier that prevents the entrance inside the
compartment. Then, we allow for an energetic gain inside the compartment such that the
stationary probability to find the walker inside the compartment is the same as if there was
no compartment. This acts as a compensation to the entropic barrier created by the fractal
environment. The energetic gain must then be

E0 ∼ kBT ln
(
Rd−df/η

)
, (2.41)

where d is the dimension of the confining volume. In this case, if d = 3, we find that the
presence of a compartment can considerably reduce the mean first passage time if the walk
dimension inside the fractal is 2 < dw < 3, implying that the random walker is not too
subdiffusive. This optimisation is made possible because the compartment allows for an
infinitesimal target to be found in finite time, whereas, in three dimensional space, the mean
first passage diverges for small targets. In two dimensions, d = 2, we find that it is not
possible to optimise the mean first passage time.
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When considering chemical reactions, understanding the way reactants move from their
initial positions to reach reactive distance is crucial to determine the time it takes for the
reaction to happen (Rice, 1985; Berg and von Hippel, 1985). This is true in general for
any kind of reaction, i.e., any process where random walkers (reactants) meet and undergo
some transformation. However, this transformation might also depend on other degrees of
freedom of the system and not only on the distance between reactants. When a reaction only
depends on the distance between reactants and happens as soon as reactants reach some
threshold distance, the problem is reduced to a first passage problem (perfect reaction) and
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the transport is the only relevant step of these reactions. These reactions are usually called
diffusion-controlled (or, in a more general way, transport-controlled) reactions (Redner, 2001;
Berg and von Hippel, 1985). However, in some cases the fact that the reactants are within
reactive distance might not be the only condition for the reaction to happen, in this case
the reaction is called an imperfect reaction (Grebenkov, 2019). Imperfect reactions are also
known in the literature as transport-influenced reactions, due to the fact that both transport
and the reactivity play an important role in the reaction process.

The main characteristic of imperfect reactions is that it is not sufficient to have the
reactants within reactive distance for the reaction to occur. There are many mechanisms
in the origin of imperfect reactivity. Here, we will distinguish them into three main classes.
First, some reactions are imperfect due to an entropic barrier, i.e., even when the reactants
are within reactive distance, there is only a small number of configurations where the reaction
is possible (Berg and von Hippel, 1985; Zhou and Zwanzig, 1991). Two examples of entropic
barriers would be: (i) a target coated with absorbing patches outside, so that reactions
can only happen by reaching those patches, see Fig. 3.1.a) (Berg and Purcell, 1977); (ii)
particles that require a prescribed orientation to pass through a slit, Fig. 3.1.b) (Shoup et al.,
1981; Schmitz and Schurr, 1972). A second mechanism of imperfect reactivity is when an
energetic barrier has to be overcome for the reaction to happen. Chemical reactions are a
typical example of this mechanism, Fig. 3.1.c) (Shoup and Szabo, 1982; Hänggi et al., 1990).
Finally, there is also the case of gated reactions, where reactants switch between reactive and
non-reactive states (Reingruber and Holcman, 2009; Bénichou et al., 2000; Mercado-Vásquez
and Boyer, 2019; Scher and Reuveni, 2021b,a; Scher et al., 2022; Spouge et al., 1996). One
example of this would be the capture a firefly on video, where the first passage time (or the
moment the firefly goes in frame) is not necessarily the time where we start seeing the firefly
in the video, Fig. 3.1.d). Another example is the passage through a biological channel that
can be open or closed.

Determining the kinetics of imperfect reactions has attracted considerable attention in
the past years. In the recent literature, one can identify two ways of dealing with imperfect
reactivity. First, one might consider that reactivity does not influence the movement of the
random walkers (as in, not reacting does not change the future steps of walker), which is
the case we consider in this chapter. In this case one says that the imperfect reaction is
characterized by sink reactivity, expressed by a spatially dependent reaction rate (Doi, 1975;
Wilemski and Fixman, 1974a; Guérin et al., 2021; Isaacson et al., 2016). Note that the case
of sink reactivity includes gated reactions, as the random walker does not change its motion
when it passes through an inactive target (Scher and Reuveni, 2021a,b; Mercado-Vásquez
and Boyer, 2019; Reingruber and Holcman, 2009). Then, one might consider the case where
movement is somehow altered by a missed reaction. This would be the case of a particle trying
to react at a partially reactive target, where, if a reaction does not happen, the random walker
is reflected by the target (instead of crossing the target with an unaltered trajectory). In this
case one says that the target is semi-reflective, or that the problem is characterized by a Robin
boundary condition (Grebenkov, 2019; Bressloff, 2022; Grebenkov, 2020, 2010; Grebenkov
et al., 2017, 2018a,b, 2019; Grebenkov and Oshanin, 2017; Lindsay et al., 2017; Grebenkov,
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Figure 3.1: Examples of reactions that can be modeled as imperfect reactions. On the left, a)
and b), we represent reactions that can be seen as imperfect due to an “entropic barrier”. In a)
a random walker (green curve started at r0) searches for a reaction at the circular target that is
coated with absorbing patches (thick orange sections of the target). In b) the particles try to pass
through a slit, but can only do so if they touch the slit with the small orange patch. In c) we
represent a chemical reaction where two species, green and orange, have to meet with energy ∆E
(at least) for the chemical reaction to happen, then producing two particles of the species red. In
d) we represent an example of a gated reaction where one is trying to catch a firefly in video, the
reaction here is when the firefly is glowing inside the frame of the camera.

2022; Grebenkov and Skvortsov, 2022; Chaigneau and Grebenkov, 2022; Grebenkov et al.,
2018a; Lindsay et al., 2015). However, the study of imperfect reactions in the literature
is restricted to Markovian (i.e., memoryless) transport processes. This is usually due to
the fact that Markovian processes allow for many mathematical tools that are not available
in the case of non-Markovian processes. A notable example of these tools is the Fokker-
Planck equation, a partial differential equation governing the dynamics of the propagators of
Markovian processes. Moreover, the main characteristic of Markovian processes is that they
have no memory of the past states of the system, meaning that imperfect reaction problems
can be reduced into two sub problems, one to obtain the time needed for the reactants to
be within reactive distance (usually called a diffusion-controlled step) and one to obtain the
time it takes for a reaction to happen once the reactants are within reactive distance (usually
called a reaction-controlled step). In the Markovian case, these two problems can be solved
independently since there is no memory, at least in networks or for point-like targets.

However, non-Markovian motion should be considered as “the rule rather than the ex-
ception” (van Kampen, 1998). In a non-Markovian walk, the step taken at time t depends
on all the previous steps, and so the process has some intrinsic memory. It is then obvious
that the Markovian reasoning of splitting imperfect reactions into two independent problems
is no longer possible. In the last decade, progress has been made to describe first passage
statistics for non-Markovian processes (Wiese, 2019; Sadhu et al., 2018; Delorme and Wiese,
2015; Levernier et al., 2022, 2020, 2019; Guérin et al., 2016; Walter et al., 2021; Bray et al.,
2013). However, with the exception of the randomly accelerated process (Burkhardt, 2000;
De Smedt et al., 2001), these approaches are limited to perfect reactions. So far, the only
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Figure 3.2: Question investigated in this Chapter. A random walker, r(t), moves in a confining
space V in the presence of an imperfectly reactive target, k(r). What is the mean time, ⟨RT⟩, that
the random walker has to search for a reaction before the reaction happens?

theoretical methods that describe the effect of memory on the kinetics of imperfect reactions
are based on quasi-static (pseudo-Markovian) approximations, also known in the literature as
Wilemski-Fixman approximations (Wilemski and Fixman, 1974a,b). In these approximations
one assumes that, at the moment of reaction, all degrees of freedom of the system (that are
usually the origin of memory) are at equilibrium, effectively “resetting” the memory. Using
this pseudo-Markovian approximation often leads to incorrect scalings and sometimes even
divergent results when one knows that the results should be finite.

In this chapter, we characterize how the interplay between memory and reactivity impacts
the reaction kinetics. We present a general formalism that predicts the mean reaction time
for a non-Markovian random walker in confinement looking for an imperfectly reactive site,
modeled by a spatially localized reaction rate. Our formalism holds in the limit of large
confining volume, when the dynamics near the target is Gaussian. One of our main results is
the impossibility to decompose the mean reaction time as a the sum of a transport controlled
time (the mean first passage time) and a reaction controlled time (which would not depend
on transport properties). This non-additivity holds for point-like targets and is a purely
non-Markovian effect coming from the fact that the state of the system, i.e., the previous
trajectory “stored” in memory, is not the same at successive encounters. This property is
clearly illustrated for strongly subdiffusive processes in the weakly reactivity limit, for which
we find that the deviation to the reaction controlled limit is a non-trivial power-law of the
reactivity and therefore strongly differs from the mean first passage time.

The outline of the chapter is as follows. In Section 3.1, we develop the theory that
gives us the mean reaction time for non-Markovian random walkers in confinement that
is searching for a point-like imperfect target, and compare the theoretical predictions to
stochastic simulations. Then, in Section 3.2, we find the typical behaviour of the random
walkers right after a reaction has happened and a long time after the reaction. Finally,
with the aim of better understanding the analytic solutions of the problem, we study three
perturbative regimes: the weakly non-Markovian regime in Section 3.3; the weakly reactive
regime in Section 3.4.1; and the strongly reactive regime in Section 3.4.2.
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3.1 | Mean reaction time for a point-like target

3.1.1 | Finding the mean reaction time

Consider a one-dimensional Gaussian stochastic process, x(t), moving in an arbitrary volume,
V, in continuous time t, with initial position x(0) = x0. Here, we assume that, far from the
confinement walls, the process is unbiased, ⟨x(t)⟩ = x0, non-smooth, ⟨ẋ2(t)⟩ = ∞, and that
the increments are stationary, so that the statistics of x(t+ τ) − x(t) does not depend on t,
thus leading to the covariance1,

σ(t, t′) ≡ Cov(x(t), x(t′)) = 1
2(ψ(t) + ψ(t′) − ψ|t− t′|), (3.1)

where ψ(t) = ⟨(x(t+ τ) − x(t))2⟩ is the mean square displacement, that is assumed to
behave as a fractional Brownian motion at long times, i.e., ψ(t)∼

t→∞
Kt2H , where K > 0 is

a constant and 0 < H < 1 is the Hurst exponent. Note that this mean square displacement is
defined in unconfined space, whereas in confined space the mean square displacement should
saturate at times where the random walker reaches the confinement. However, as it will be
made clear during this section, the real mean square displacement (the confined one) does
not intervene in the calculation of the mean reaction time, and only the unconfined mean
square displacement will be used.

The probability distribution function of x(t) is written as p(χ, t), meaning that the
probability to find x(t) in the interval [χ, χ + dx[ is given by p(χ, t)dx. It is also useful to
define the joint probability distribution function of this process p(χ, t;x1, t+ t1) so that the
probability of having a trajectory that verifies x(t) ∈ [χ, χ+ dx[ and x(t+ t1) ∈ [x1, x1 + dx1[
is given by p(χ, t;x1, t + t1)dxdx1. In the stationary limit, t → ∞, this joint probability
becomes the joint stationary probability ps(x, 0;x1, t1), with

ps(x, 0;x1, t1) ≡ lim
t→∞

p(x, t;x1, t+ t1). (3.2)

Our goal here is to find the mean reaction time, ⟨RT⟩, for the random walker to react at
a target, located at x = 0, that displays a reaction rate k(x) = κδ(x) with finite reactivity, κ.
Here we assume that the target is localized at the origin, an hypothesis that will be released
in the next chapter. We start with p(0, t) and write a renewal equation for it, where we
split the trajectories into (i) the trajectories that have not yet reacted before t and (ii) the
trajectories for which a reaction has already happened at some time τ < t:

p(0, t) = p(0, t; RT > t) +
∫ t

0
dτ p(0, t; RT = τ), (3.3)

where p(0, t; RT > t) is the joint probability density to find the random walker at the target

1In Section 2.2.1, we prove that unbiased Gaussian processes with stationary increments must have this
covariance.
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at time t and that it has not yet reacted, whereas p(0, t; RT = τ) is the joint probability
density that the random walker is at the target at time t and that it has already reacted at
time τ < t, which is then integrated over τ to take into account all possible reactions from
time 0 to t.

We define the probability distribution function for the reaction time, F (t), such that
F (t)dt is the probability that the reaction time is in the interval [t, t+ dt[. This probability
can be written as

F (t)dt =
∫ ∞

−∞
dχp(χ, t; RT > t)k(χ)dt = p(0, t; RT > t)κdt, (3.4)

where one takes the probability to reach a reactive position without a reaction, p(χ, t; RT > t),
and multiplies it by the probability of a reaction at that position, k(χ)dt = κδ(χ)dt.

Using Eq. (3.4) in Eq. (3.3) and subtracting ps(0) ≡ limt→∞ p(0, t), the stationary proba-
bility density of finding the walker at the target, on both sides, one obtains:

p(0, t) − ps(0) = F (t)
κ

− ps(0)
∫ ∞

t
dτF (τ) +

∫ t

0
dτF (τ)[p(0, t|RT = τ) − ps(0)], (3.5)

with p(0, t|RT = τ) = p(0, t; RT = τ)/F (τ) the conditional probability density of finding the
walker at the target at time t given that a reaction has happened at time τ < t.

If one now integrates Eq. (3.5) over t, it is possible to uncover the mean reaction time
from the second term of the right hand side,∫ ∞

0
dt
∫ ∞

t
dτ F (τ) =

∫ ∞

0
dτ
∫ τ

0
dt F (τ) =

∫ ∞

0
dτ τF (τ) = ⟨RT⟩ . (3.6)

Performing the same integration in the third term of the right hand side of Eq. (3.5) one can
write: ∫ ∞

0
dt
∫ t

0
dτ F (τ)

(
p(0, t|RT = τ) − ps(0)

)
=
∫ ∞

0
dτ
∫ ∞

τ
dt F (τ)

(
p(0, t|RT = τ) − ps(0)

)
(3.7)

=
∫ ∞

0
dτ
∫ ∞

0
du F (τ)

(
p(0, u+ τ |RT = τ) − ps(0)

)
(3.8)

=
∫ ∞

0
du
(∫ ∞

0
dτ F (τ)p(0, u+ τ |RT = τ) − ps(0)

∫ ∞

0
dτ F (τ)

)
(3.9)

=
∫ ∞

0
du(pπ(0, u) − ps(0)). (3.10)

The steps performed to obtain Eq. (3.10) are the switch of the order of integration, the
variable change t → u = t−τ and the integration of F (t) in the term proportional to ps(0) by
using its normalization condition. Then, in the final step, we have identified pπ(x, t), which
we define as

pπ(x, t) =
∫ ∞

0
dτ F (τ)p(x, t+ τ |RT = τ). (3.11)
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The function pπ(x, t) is the probability distribution function of a new process xπ(t), defined
as xπ(t) = x(RT + t), where RT is the reaction time (a random variable by itself), so that
this process represents the trajectory followed after a reaction has happened. In Fig. 3.3, we
represent some realizations of this process for a bead spring chain, and the corresponding
average.

Figure 3.3: Representation of the resulting process after a reaction, xπ(t). In grey, with some
transparency, we represent some trajectories after the reaction has happened, xπ(t) = x(RT + t); in
dashed red we represent the initial position of the original process, x(0) = x0, for reference; and in
blue we represent the mean trajectory after reaction, ⟨xπ(τ)⟩. The simulations were performed by
looking at the first monomer of a bead spring chain with 50 monomers, see Section 3.1.3 for a small
introduction of the bead spring chain. The time unit, τR, is the relaxation time of a single bond.

After the integration over t of Eq. (3.5), one can use Eqs. (3.6) and (3.10) to write the
equation that connects the mean reaction time to the propagators (probability distribution
functions) of our system:

ps(0) ⟨RT⟩ = 1
κ

+
∫ ∞

0
dt (pπ(0, t) − p(0, t)). (3.12)

Note that this equation for the mean reaction time is exact since no approximations have
been made up to here and, additionally, no properties of Gaussian processes have been used,
so this equation is valid for any non-smooth stochastic process. The main difficulty here,
and the reason we have to specifically treat Gaussian processes in what follows, is the fact
that the function pπ(x, t) is not known for most stochastic processes. Moreover, as expected
from Section 2.1.2, we see that the term corresponding to slow reactions and fast diffusion
(equivalent to κ → 0), 1/κ, is still present in Eq. (3.12).

If one now takes the large volume limit, it is possible to approximate the propagators in
confined space by the free space propagators. Therefore, since x(t) is a Gaussian process
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with stationary increments, one can write

p(0, t) ≈ 1√
2πψ(t)

exp
(

− x2
0

2ψ(t)

)
, (3.13)

where ψ(t), as mentioned before, corresponds to the unconfined mean square displacement,
assumed to behave as ψ(t) ∼

t→∞
Kt2H . Additionally, we assume that in this limit one can

still write the stationary probability as ps(0) = 1/V . Note that, if the confinement is a
harmonic potential instead of a solid (hard wall) confinement, it is still possible to write
ps(0) = 1/V where V is an effective volume, with the limit V → ∞ corresponding to a small
harmonic stiffness. Therefore,

⟨RT⟩
V

= 1
κ

+
∫ ∞

0
dt

pπ(0, t) − 1√
2πψ(t)

exp
(

− x2
0

2ψ(t)

). (3.14)

We are now left to find the probability distribution function of the process after reaction,
pπ(x, t). As an approximation, we assume that the process xπ(t) is Gaussian with mean
µ(t) = ⟨x(t+ RT)⟩ and covariance σπ(t, t′) ≈ σ(t, t′). Using this approximation one can write

pπ(x, t) ≈ 1√
2πψ(t)

exp
(

−(x− µ(t))2

2ψ(t)

)
, (3.15)

and the final equation for the mean reaction time reads

⟨RT⟩
V

= 1
κ

+
∫ ∞

0

dt√
2πψ(t)

[
exp

(
− µ(t)2

2ψ(t)

)
− exp

(
− x2

0
2ψ(t)

)]
. (3.16)

Notice that the problem is not yet solved, to use Eq. (3.16) we still need to find the shape
of µ(t), which is not a trivial problem. We also note that this function is the signature of
memory in this system. If there were no memory, then µ(t) should be zero, as a consequence
of the fact that xπ(0) = 0 and the process should not be biased. Note that Eq. (3.16) is
remarkably similar to the equation obtained for the perfect case, where κ → ∞ (Guérin et al.,
2016). The only difference between our equation and that of the perfect case is the term 1/κ,
that, as explained in Section 2.1.2, is inherent to the problem of imperfect reactions. However,
one must not think that this similarity means that the problem of imperfect reactions in
non-Markovian processes is solved by taking the perfect case and adding a term 1/κ. This
would be wrong because one still has to find the function µ(t), which might depend on the
reactivity κ, thus making the problem completely different from that of the perfect case.
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3.1.2 | Self-consistent equation for the mean trajectory after reaction

To find the function µ(t), we have to study the trajectories in the future of a reaction. To
do so, we consider a generalized version of the renewal equation, Eq. (3.3), written for the
joint probabilities with an extra point in the future of a passage through the target:

p(0, t;x1, t+ t1) = p(0, t;x1, t+ t1; RT > t) +
∫ t

0
dτ p(0, t;x1, t+ t1; RT = τ), (3.17)

which is true for arbitrary x1 and t1 > 0. Following similar step to the ones used to
derive Eq. (3.12), starting by the subtraction of ps(x1, t1; 0) on both sides of Eq. (3.17) and
integrating over t from 0 to ∞, one can write

ps(x1, t1; 0) ⟨RT⟩ = pπ(x1, t1)
κ

+
∫ ∞

0
dτ [pπ(0, t;x1, t+ t1) − p(0, t;x1, t+ t1)]. (3.18)

The first term on the left hand side, with the mean reaction time, is obtained as before by
using Eq. (3.6). Similarly, the integral term is obtained with the same steps that led to
Eq. (3.10), the sole difference being that the development is done with joint probabilities
and one must extend the definition in Eq. (3.11) to

pπ(x, t;x1, t+ t1) =
∫ ∞

0
dτ F (τ)p(x, t+ τ, x1, t+ t1 + τ |RT = τ). (3.19)

The term with pπ(x1, t1) in Eq. (3.18) is not so simple to obtain from the previous development.
It comes from the term p(0, t;x1, t+ t1; RT > t) in Eq. (3.17). In fact, to relate p(0, t;x1, t+
t1; RT > t) to pπ(x1, t1) one must first introduce the probability P , defined as

P ≡ P
[
x(t+ t1) ∈ [x1, x1 + dl[ and RT ∈ [t, t+ dt[

]
, (3.20)

where dl and dt are infinitesimals of space and time. This probability can be written in two
different ways. First, we can write it by using the reaction rate:

P =
∫ ∞

−∞
dx k(x)dt p(x, t;x1, t+ t1; RT > t)dl = κ p(0, t;x1, t+ t1; RT > t)dtdl, (3.21)

where we write P as the product of the probability of reaching a reactive position without a
reaction and the probability of a reaction at that reactive position. Alternatively, one can
also write P by using the reaction time probability distribution function, F (t):

P = p(x1, t+ t1|RT = t)dl F (t)dt. (3.22)

Combining the two ways of writing P generalizes the argument in Eq. (3.4):

κ p(0, t;x1, t+ t1; RT > t) = p(x1, t+ t1|RT = t) F (t), (3.23)

which, after integration over t, becomes
∫ ∞

0
dt p(0, t;x1, t+ t1; RT > t) = pπ(x1, t1)

κ
, (3.24)
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thus justifying the term with pπ(x1, t1) in Eq. (3.18).

After multiplication of Eq. (3.18) by x1 and integration over the same variable one can
write

⟨x(t1)|0⟩s
⟨RT⟩
V

= ⟨x(t1)|0, 0⟩π
1
κ

+
∫ ∞

0
dt [⟨x(t+ t1)|0, t⟩π pπ(0, t) − ⟨x(t+ t1)|0, t⟩ p(0, t)],

(3.25)
where ⟨x(t1)|0⟩s = 0 is the stationary average of x(t1) given that, at time 0, the process
is at the target; ⟨x(t+ t1)|0, t⟩π is the mean position after time t + t1 given that, at time
t, the particle was at the target and that it has reacted at time 0. Using the formulas for
conditional averages of Gaussian random variables2 (that we also call projection formulas),
one can write (Eaton, 2007):

⟨x(t+ t1)|0, t⟩π = µ(t+ t1) − µ(t)σ(t, t+ t1)
ψ(t) , (3.26)

⟨x(t+ t1)|0, t⟩ = x0 − x0
σ(t, t+ t1)

ψ(t) . (3.27)

Collecting the expressions of ⟨x(t+ t1)|0, t⟩π, ⟨x(t+ t1)|0, t⟩ and ⟨x(t1)|0⟩s, we can write
the final form of Eq. (3.25), that defines µ(t) in a self-consistent way,

0 = µ(τ)
κ

+
∫ ∞

0

dt√
2πψ(t)

(µ(t+ τ) − µ(t)M(t, τ))e−µ2(t)
2ψ(t) − x0(1 −M(t, τ))e−

x2
0

2ψ(t)

, (3.28)

with

M(t, τ) = σ(t+ τ, t)
ψ(t) = ψ(t+ τ) + ψ(t) − ψ(τ)

2ψ(t) . (3.29)

In principle, we have now a procedure to find the mean reaction time: we have an integral
equation giving us µ(t) that we can insert into Eq. (3.16) thus obtaining the mean reaction
time. However, Eq. (3.28) is a non-linear integral equation that is not analytically solvable.
Nonetheless, there are analytic results that we can obtain in some limiting cases. These
limits will be studied in detail in sections 3.2, 3.3 and 3.4.

As a first remark, we see that the statistics of the trajectories after a reaction depends
on the imperfect properties of the target, κ. This is made obvious in Eq. (3.28) where µ(t)
explicitly depends on the reactivity, κ. Therefore, a priori, the mean reaction time cannot
be decomposed into two independent problems, one for the first passage (which would be the
integral term in Eq. (3.16) but now depends on κ) and one for the reaction once the walker
is started at the target. This dependence is also seen in simulations, see Fig. 3.4, where it is
evident that the statistics of the process xπ(τ) is highly dependent on κ.

2We present these formulas in Appendix A.
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Figure 3.4: The mean trajectory after reaction depends on the reactivity. Mean trajectory of the
simulated x(t) after reaction, µ(τ) = ⟨x(τ + RT)⟩ (and associated standard error of the mean) for
different reactivities, κ. The simulations were performed by looking at the first monomer of a bead
spring chain with 50 monomers, whose dynamics is given by the Langevin equation in Eq. (3.34).
For each reactivity 1000 runs have been performed. The time unit, τR, is the relaxation time of one
monomer in the bead spring chain.

3.1.3 | Simulation results and numerical methods

Let us now introduce a numerical method to solve the integral equation in Eq. (3.28) and
obtain our theoretical predictions of the mean reaction time. One can write Eq. (3.28) as

0 = H([µ], τ) = µ(τ)
κ

+
∫ ∞

0
dt h(t, τ), (3.30)

which, in principle, can be solved with the iteration scheme

µi(t) = µi−1(t) − ∆s H([µi−1], t), (3.31)

where µ0(t) = 0 and ∆s is the iteration step. One can see that, as more iterations are
made, and if ∆s is sufficiently small, a fixed point should be reached. This fixed point is
characterized by small values of H([µi−1], t) for all times t. However, this iteration scheme
assumes that one is dealing with continuous functions, which is not the case for numerical
integrations. Therefore, we discretize time and introduce a cutoff tM, that allows us to
perform the integral in Eq. (3.30) in two parts. First, one computes the integral from 0 to tM
with the trapezoidal method, then, the integral from tM to ∞ can be analytically computed
by assuming that the long time behaviour of µ(t) is known, which is in fact the case as we
will shown in Section 3.2. We choose the following interpolation for µi(t):

µi(t) =
{

[µi(tj) + µi(tj+1)]/2 for tj < t < tj+1
x0 − Ait

2H−1 for t > tM
, (3.32)
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where we have used for the long time behaviour the result of next section, Eq. (3.40). The
constant Ai satisfies the equality:

x0 − Ait
2H−1
M = µi(tM). (3.33)

Note that the integral from tM to ∞ can be performed without discretization. After per-
forming the necessary ns iteration steps, one obtains the numerical solution µns(t), which
one then introduces in Eq. (3.16), thus finding the mean reaction time.

Now that we have a numerical procedure to find the mean reaction time, we would like
to test the accuracy of the theory. To do so, we use stochastic simulations. We use two types
of physical processes. First, we simulate a pure fractional Brownian motion, characterized
by a mean square displacement, ψ(t) = Kt2H , where the confining volume is introduced by
setting the walker on a ring, i.e., x(t) = z(t) mod V, where mod represents the modulo
operator, z(t) is a fractional Brownian motion (unconfined), obtained using the circulant
matrix algorithm (Davies and Harte, 1987; Dietrich and Newsam, 1997), and x(t) is our
process that is searching for a target at the origin of positions while confined to the volume
V .

The second type of stochastic process that we simulate is the bead spring chain (also
known as the Rouse chain) (Doi and Edwards, 1988). In these simulations we consider N
particles with trajectories yi(t), that move in a fluid with friction drag γ and are connected
in series by springs of stiffness k. Their dynamics is described by the Langevin equations

γẏi(t) = k(yi+1(t) − 2yi(t) + yi−1(t)) + fi(t), (3.34)

where ⟨fi(t)⟩ = 0 and ⟨fi(t)fj(t′)⟩ = 2γkBTδijδ(t− t′), with kB the Boltzmann constant and
T the temperature of the surrounding fluid. Note that, for this equation to apply for all
monomers, one has to add two fictitious monomers, y0(t) = y1(t) and yN+1(t) = yN(t). We
introduce, as natural units, the typical length of one bond, lR =

√
kBT/k, and, as the time

unit, its typical relaxation time, τR = γ/k. To “create” a non-Markovian walker one can
look at the first monomer of the chain, x(t) = y1(t). By only looking at one monomer, the
others are forgotten and act as hidden variables where memory is stored. The mean square
displacement of this monomer displays three behaviours (Khokhlov and Grosberg, 1994):

ψ(t) ∼


2Dt for t ≪ τR

(4l2R/
√
π)
√
t/τR for τR ≪ t ≪ τRN

2

2(D/N)t for t ≫ τRN
2

, (3.35)

where D = kBT/γ is the diffusion coefficient of a single (free) monomer. Therefore, if one
simulates bead spring chains with sufficiently large N it is possible to mimic a fractional
Brownian motion with H = 1/4.

Both types of simulation are not compatible with ideal point-like targets. Consequently,
instead of simulating point-like targets, one has to simulate a reactive region of size 2a with
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reaction rate κ(x) = H(a− |x|)κ/(2a), such that
∫∞

0 dxκ(x) = κ. To better approximate a
point-like target one has to verify that a is sufficiently small so that the mean reaction time
converges to the point-like limit.

To find the mean reaction times from these simulations we use two different methods. (i)
For the simulations of a Rouse chain, we numerically solve Eq. (3.34) with some time step
dt. Then, at each time step, we decide if a reaction occurs or not. If it does, we store the
reaction time and create more trajectories. The result of these simulations is the mean value
of the different reaction times. (ii) Alternatively, one can build an estimator for the mean
reaction time based on one trajectory xi(t),

τ̂κ[xi] =
∫ ∞

0
dt e−κℓt[xi], (3.36)

where ℓt[xi] ≡
∫ t

0 dτ δ
(
xi(τ)

)
is the local time at time t associated to the trajectory xi(τ),

i.e., the time that the trajectory xi(τ) spent in the vicinity of the target up to time t. In
practice, for extended targets, the local time is estimated by ℓt = (1/2a)

∫ t
0 dτ Θ(a− |x(τ)|),

where Θ(x) is the Heaviside step function. If one assumes that an extensive sampling of
trajectories is equivalent to an extensive sampling of the local times, then, using the fact that
S(t) =

〈
e−κℓt

〉
(Grebenkov, 2020), it becomes clear that the expected value of τ̂ [xi] is equal

to the mean reaction time3. This method is preferred in comparison to (i), as it converges
much faster. We use (ii) when simulating the fractional Brownian motion.

In Figure 3.5, we compare the theoretical prediction of ⟨RT⟩ to simulation results obtained
for a bead spring chain and for fractional Brownian motions with H = 1/4 and H = 0.6. We
find that our theory quantitatively predicts the correct mean reaction times. This is specially
true when compared to the pseudo-Markovian predictions, where equilibrium is assumed
at the reaction time, i.e., µ(t) = 0. By taking a pseudo-Markovian approach, one would
find that, for H < 1/3, the mean reaction time (over V ) should be infinite, which is clearly
not true after analyzing the results of the simulations. Even though the pseudo-Markovian
approach gives reasonable results for H = 0.6 (and in general for H > 1/3) we still find that
our non-Markovian approach performs better when compared to simulations.

3.2 | Asymptotics of the mean trajectory after reaction, µ(t)

The first analytic results one can get from the theory developed in Section 3.1 is the long
and short time behaviour of µ(t), the mean trajectory after reaction. In this section, we
first focus on a schematic derivation of the long time behaviour of µ(t) for the long time
fractional Brownian motion and then, for fractional Brownian motions, we derive the short
time behaviour or µ(t).

3The derivation goes as follows: ⟨τ̂ [xi]⟩ = 1
Ntraj.

∑Ntraj.

i=1 τ̂ [xi] =
∫∞

0
dt

Ntraj.

∑
e−κℓt =

∫∞
0 dtS(t) = ⟨RT⟩
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Figure 3.5: Testing the theoretical predictions of ⟨RT⟩ against simulations. Simulation results, in
symbols, for different processes in units of x0 and τ1 = (x2

0/K)1/2H . The continuous blue line is the
numerical mean reaction time obtained with our theory, the dotted (red) line is the asymptote 1/κ
and the dashed (green) line is the pseudo-Markovian approach (equivalent to setting µ(t) = 0). Note
that the pseudo-Markovian approach predicts infinite mean reaction times for long time fractional
Brownian motions with H < 1/3. a) and c) are simulations of fractional Brownian motions with
H = 1/4 and H = 0.6 respectively. b) is the simulation of a bead-spring (or Rouse) chain with
parameters x0 = 5lR, V = 30x0 and N = 150.

3.2.1 | Long time asymptotics for a long time fractional Brownian motion

Let us start with a long time fractional Brownian motion, i.e., the mean square displacement
for large times is ∼ Kt2H with 0 < H < 1. Given the similarity of Eq. (3.28) to the equation
obtained in the perfect case (the only difference is the presence of the term µ(t)/κ, that goes
to zero in the perfect limit) one feels tempted to look for a long time asymptotic behaviour
of µ(t) that is similar to the perfect one:

µ(t)∼
t→∞

x0 − A(κ)
tα

, (3.37)

where A(κ) ̸= 0. In comparison to the perfect result, in our ansatz we have added the
possibility for A to depend on κ and used a general exponent α > 0 instead of the 1 − 2H
obtained in the perfect case (Guérin et al., 2016).

Inserting our ansatz into Eq. (3.28) for τ → ∞, and changing t to uτ , we obtain the
following leading order terms

0 = H(τ) ∼ x0 − A(κ)τ−α

κ
− A(κ)

∫ ∞

0

τ 1−H−αdu√
2πKuH

(
1

(u+ 1)α − 1
uα

(u+ 1)2H + u2H − 1
2u2H

)
,

(3.38)

where the exponential terms, e−µ2(t)/2ψ(t) and e−x2
0/2ψ(t) are equal to unity in the limit t =

uτ → ∞ because, in that limit, µ(τ) ≪
√
ψ(τ) and x0 ≪

√
ψ(τ).

For the condition H(τ) = 0 to be true, it must also be true at all orders in τ . However,
as we have developed H(τ) to only obtain its leading terms, Eq. (3.38) can only give us the
equality for the leading term. Looking at Eq. (3.38), since x0 ≠ 0 ̸= A(κ), the only term that
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might be equal to zero is the integral term. Therefore, this must be the leading behaviour of
H(τ), giving us the condition α < 1 −H and implying the equality:

∫ ∞

0

du

uH

(
1

(u+ 1)α − 1
uα

(u+ 1)2H + u2H − 1
2u2H

)
= 0, (3.39)

which is only verified if α = 1 − 2H > 0. Hence, for H < 1/2, one must have µ(t) ∼
x0 − A(κ)/t1−2H .

We are then left to find the leading behaviour of µ(t) for H > 1/2. To do this, we assume
that α might be negative, meaning that A(κ)/tα is now the leading term of µ(t). Nonetheless,
Eq. (3.38) (without the x0) is still the correct expression of the leading term of H(τ) and
therefore α = 1 − 2H is still the only solution of H(τ) = 0, thus giving us the long time
behaviour of µ(t) for H > 1/2.

Combining the results for H < 1/2 and H > 1/2, one obtains the long time asymptotic
behaviour of µ(t):

µ(t) ∼
t→∞


x0 − A(κ)

t1−2H for H < 1
2

x0 − A(κ) for H = 1
2

A(κ)t2H−1 for H > 1
2

, (3.40)

where A(κ) is unknown. In Section 3.4, we find the asymptotic of A(κ) for κ → 0 and
κ → ∞.

In conclusion, we have found that the long time behaviour of the mean trajectory after
reaction in the imperfect case is similar to that of perfect reactions. Therefore, the fact that
the initial position is never forgotten, seen by the presence of x0 in Eq. (3.40), remains true
when the reactions are imperfect (for any reactivity κ, including very small ones).

3.2.2 | Short time asymptotics for a fractional Brownian motion

In this section, we derive the short time behaviour of µ(t). Naturally, one has to additionally
assume a short time behaviour of the mean square displacement, ψ(t). Let us take a fractional
Brownian motion, ψ(t) = Kt2H at all times t. Let us start by expanding the integral equation
that gives µ(t), Eq. (3.28), for small times (τ → 0):

µ(τ)
κ

= − τ 2H 1
2
√

2πK

∫ ∞

0

dt

t3H

µ(t)e− µ2(t)
2Kt2H − x0e

−
x2

0
2Kt2H


− τ

∫ ∞

0

dt√
2πKtH

(µ′(t) −H
µ(t)
t

)
e− µ2(t)

2Kt2H + x0H
1
t
e−

x2
0

2Kt2H

, (3.41)

where µ′(t) denotes de time derivative of µ(t).
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From Eq. (3.41), we see that, if the integrals converge, then, there are two possible short
time behaviours for µ(τ): one for H < 1/2 and one for H > 1/2. For H < 1/2, τ 2H ≫ τ for
small τ , meaning that the mean trajectory after reaction for short times is ∼ τ 2H . Using this
behaviour and the one for long times, Eq. (3.40), it is possible to show that the integral in
the prefactor of τ 2H converges, and, consequently, the short time behaviour is well identified
for H < 1/2. Similarly, for H > 1/2, the integral in the prefactor of the leading term (τ)
becomes convergent if the short time behaviour of µ(τ) is ∼ τ . Therefore, the short time
behaviour of µ(t) is given by

µ(t) ∼
t→0

{
κA(x0, K, κ) t2H for H < 1

2
κB(x0, K, κ) t for H > 1

2
, (3.42)

where A and B are the integral terms in Eq. (3.41), which might depend on x0, K and κ.

In conclusion, we find that, when a reaction happens, a superdiffusive (fractional Brown-
ian) particle crosses the target with a finite average speed, whereas a subdiffusive particle
behaves as if it were being pulled back to the initial position by a force F ∼ κA(x0, K, κ),
with µ(t) ∼ Fψ(t), which can be proved by considering a generalized Langevin equation with
a force, see for example Levernier et al. (2020).

3.3 | Weakly non-Markovian regime

3.3.1 | General solution

Given that the Markovian case is already well studied, it is interesting to see what happens
in its vicinity. To do this, we take a process with a mean square displacement that is the
sum of diffusion, ∼ 2Dt, and a perturbation ψ1(t), such that ψ(t) = 2Dt + εψ1(t) + O(ε2),
where ε ≪ 1 quantifies the deviation from Markovianity (diffusion). We choose the time
units such that D = 1/2. For Markovian processes the mean trajectory after reaction, µ(t),
should be equal to the position of the target (zero in this case), in this perturbative limit we
can write µ(t) = εµ1(t) + O(ε2). Introducing these expansions into Eq. (3.28) (the integral
equation for µ(t)) and differentiating with respect to τ one obtains, at first order in ε, the
linear integral equation:

µ′
1(τ) + κ√

2π

∫ +∞

0

dt√
t
µ′

1(t+ τ) = κ√
2π
g(τ), (3.43)

where the prime denotes temporal differentiation and

g(τ) = −x0

∫ ∞

0

dt√
t

ψ′
1(t+ τ) − ψ′

1(τ)
2t e−

x2
0

2t . (3.44)
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This equation can be solved analytically, however, instead of solving this particular equation
one can solve the general set of second kind Volterra integral equations of the form

f(τ) +
∫ ∞

0
dt K(t)f(t+ τ) = h(τ). (3.45)

In Appendix B, Eq (B.10), we derive the general solution for the case where f(t) = y′(t).
Using this solution and noticing that K(t) = κ/

√
2πt, h(t) = g(t)κ/

√
2π and µ1(0) = 0, one

can write
µ1(t) = κ√

2π

∫ +∞

0
dζ W (ζ)[g(ζ) − g(ζ + t)], (3.46)

where W (t) = L−1
[

1/s(1+K̃(s))
]

(t), with f̃(s) = L[f(t)] (s) =
∫+∞

0 dt f(t)e−st the Laplace
transform of the function f(t). Using the expression of K(t) it is possible to obtain W (t) =
eκ

2 t
2 erfc

(
κ
√

t
2

)
, where erfc(x) is the complementary error function4. Therefore, the solution

to the original integral equation, Eq. (3.43), can be written as

µ1(t) = x0κ

2
√

2π

∫ +∞

0
dξ
∫ +∞

0
dζ e

1
2κ

2ζ erfc
(
κ
√
ζ/2

)
e−

x2
0

2ξ

ξ3/2

·
[
ψ′

1(ζ + t+ ξ) − ψ′
1(ζ + t) − ψ′

1(ζ + ξ) + ψ′
1(ζ)

]
. (3.47)

This is a very general analytic result that is valid for any function ψ1(t). If one takes the
perfect reaction limit, κ → ∞, it becomes clear that Eq. (3.47) is the generalization of the
results in Guérin et al. (2016) to the case of imperfect reactions5. In what follows we test
two particular cases of perturbations to the Markovian case, the first for diffusion with an
exponentially decaying perturbation and the second for a fractional Brownian motion with
Hurst exponent H = 1

2 + ε.

3.3.2 | Long time diffusive process

We start with ψ(t) = t + ε(1 − e−λt), that represents a diffusive process with an effective
diffusion constant 2Deff = 1 + ελ for short times and normal diffusion6, t, for long times
the transition between these two behaviours happens at t ∼ 1/λ. This perturbative case
is the simplest way of adding memory to diffusion, where we only add one relaxation time
scale, it is equivalent to having a Markovian walker that is weakly coupled with a variable
whose relaxation time is 1/λ. This relaxation time is not assumed to be small, in fact we
do not assume fast relaxations of the degrees of freedom here, just weak coupling with this
relaxation time.

As an example of this kind of process one can think of a Brownian particle in a Maxwell
fluid, which is the simplest description of viscoelastic fluids. This fluid is characterized by a

4The complementary error function is defined as erfc(x) = 1 − erf(x) = 1 −
∫ x

0 dt 2e−t2
/
√
π

5Note that: limx→∞ x ex2 erfc(x) = 1/
√
π.

6Note that we have used time units where D = 1/2.
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3.3. Weakly non-Markovian regime

timescale, τM that separates the elastic and viscous regimes of the fluid (Grimm et al., 2011).

Introducing this mean square displacement into the equation for µ1(t) one obtains

µ1(t) = κ

2 + κ
√

2/λ

(
1 − e−λt

)(
1 − e−

√
2λx0

)
, (3.48)

where one notices that the typical time scale with which µ1(t) varies is still 1/λ.

3.3.3 | Perturbative fractional Brownian motion

Here we study the case of almost diffusive fractional Brownian motion, where non-Markovianinty
is seen as a perturbation to normal Brownian motion, ψ(t) = t. The way we do this is by
introducing H = 1

2 + ε in the mean square displacement of a fractional Brownian motion:
ψ(t) = t2H = t + ε2t ln t + O(ε2). Therefore, using Eq. (3.47), the mean trajectory after
reaction reads

µ1(t) = x0κ√
2π

∫ +∞

0
dξ
∫ +∞

0
dζ e

1
2κ

2ζerfc
√1

2κ
2ζ

e−
x2

0
2ξ

ξ3/2 ln
(

(ζ + t+ ξ)ζ
(ζ + t)(ζ + ξ)

)
. (3.49)

Without performing the integrals it is already possible to see that µ1(t) < 0, for all t > 0,
and so, if a process is subdiffusive (ε < 0), the mean trajectory after reaction tends to take
the walker back to its initial position. However, if the process is superdiffusive, then the
mean trajectory after reaction moves away from the initial position, and, in particular, from
the target position.

Next, we analyze the asymptotic behaviour of µ1(t). In Appendix C we show that, to
find the long and short time behaviours of µ1(t), one has to consider two time scales, one
that is of order 1 and another time scale that depends explicitly on the reactivity. Therefore,
one has to look at three different regimes of reactivity to find the asymptotic behaviours of
µ1(t). First, we look at the case where κ is finite. In this case one finds that

µ1(t)∼
t→0
κ fixed

κt ln t and µ1(t)∼
t→∞
κ fixed

C − 2x0 ln t. (3.50)

Then, one also has to check what happens when κ is infinite or infinitesimal, where different
behaviours emerge for the short and long time scales, respectively. We do this by taking the
limits of κ before searching for the time asymptotics. If κ → 0 then

µ1(t) ∼
κ→0
t→∞

−2x0κ
√

2πt. (3.51)

If κ → ∞,
µ1(t) ∼κ→∞

t→0
−2

√
2πt. (3.52)
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These different asymptotic behaviours suggest that there is a time scale τ ∼ 1/κα with α > 0
that is relevant when studying the effects of reactivity on reaction times. One can find the
exponent α by looking at the case of high reactivity κ → ∞. In this limit one must have
the crossover between the short time behaviour ∼ κt and the behaviour in Eq. (3.52), this
implies that the relevant crossover time scale is τ = 1/κ2. The same procedure can be made
in the limit κ → 0 with the same result.

Figure 3.6.(a) summarizes this section. In this figure it is clear that there are three relevant
regions of time for any reactivity κ. In Figure 3.6.(b) it is possible to see that, for κ < 0.01,
the behaviour ∼ t1/2 becomes visible for 1 ≪ t ≪ 1/κ2. Similarly, it is possible to see in
Figure 3.6.(b) that, for κ > 200, the behaviour ∼ κt1/2 becomes visible for 1/κ2 ≪ t ≪ 1.

Figure 3.6: Asymptotics of the mean trajectory after reaction for a perturbative fractional Brownian
motion. (a) Expressions of the asymptotic behaviour of the mean trajectory after reaction (at first
order) for the case of almost diffusive fractional Brownian motions. The green line represents the
relevant time scale t ∼ 1/κ2 that appears once one considers imperfect reactions. The orange and
black dash-dotted lines represent the regions of that correspond to (b) and (c). In (b), we show
the convergence of µ(t) towards 2κ

√
2πt for small times in the when κ → 0. In (c) we show the

convergence towards 2
√

2πt for large times when κ → ∞

3.3.4 | Mean reaction time in the weakly non-Markovian limit

In this final section, we would like to check if these newly derived perturbative memory effects
can be seen in the mean reaction time. For this, we introduce the perturbative mean square
displacement, ψ(t) = t+ εψ1(t), and the mean trajectory after reaction, µ(t) = εµ1(t), in the
equation for the mean reaction time (Eq. (3.16)). Doing this it is straightforward to see that,
in fact, µ1(t) will not intervene in the mean reaction time at first order, since it appears only
in the equation as µ2(t) thus being neglected. Therefore, at first order, the effect of memory
on the mean reaction time would have been well described by a simple pseudo-Markovian
(or Wilemski-Fixman) approach where one just assumes equilibrium of all hidden variables
in the moment of reaction, equivalent to setting µ(t) = 0. In fact,

⟨RT⟩
V

= 1
κ

+
∫ ∞

0
dt

1 − e
x2

0
2t

√
2πt

− ε
∫ ∞

0
dt

ψ1(t)
2
√

2πt3/2

(
1 − e

x2
0

2t

(
1 − x2

0
t

))
+ O

(
ε2
)
. (3.53)
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It is interesting to notice that, in this limit, one recovers the additivity property expected
from Markovian stochastic processes, where there is no memory and one could solve the
problems of imperfect reactions by summing two time contributions: one for the time it takes
to reach the target (the terms in integrals); and another representing the time it takes for
the reaction to happen once the random walker starts at the target (1/κ). Note that, even
though µ1(t) does not influence the mean reaction time at first order, it serves as a guide to
the development of non perturbative approaches. However, we expect to find a dependence
on µ1(t) at order ε2.

3.4 | Matched asymptotic expansions for a fractional Brownian
motion with limit reactivities

Here, we will use the method of matched asymptotics to find the mean trajectory after
reaction and the mean reaction time with the two cases. First, we will look at the case of
weak reactivity, κ → 0, and then, we will look at the case of strong reactivity (or almost
perfect reactions), κ → ∞. We will find these for the specific case of fractional Brownian
motions, ψ(t) = Kt2H . Our goal is to identify, analytically, how the mean reaction time
behaves when κ is close to the limiting cases.

Inspired by the section on weakly non-Markovian walks, Section 3.3, we predict that there
will be a relevant, non-trivial, time scale (∼ 1/κ2 for H = 1/2 + ε) that will play a role in
the scaling laws of the mean trajectory after reaction. Via dimensional analysis it is possible
to form two time scales with the parameters of the problem: x0, K, κ

τ1 =
(
x2

0
K

) 1
2H

and τκ =
(
K

κ2

) 1
2−2H

. (3.54)

Note that many other time scales could be constructed using these two. However, we chose the
two time scales that match the weakly non-Markovian ones (∼ 1 and ∼ 1/κ2). Additionally,
one can physically justify each of these two time scales. The time scale τ1 has already been
shown to be relevant for a fractional Brownian motion in the perfect case (Guérin et al.,
2016), we thus believe it should remain relevant here. Then, the time scale τκ is the only
time scale that depends on reactivity but not on geometry (x0). In principle, there is no
fundamental reason for τκ and τ1 to be the only relevant time scales. On the other hand, if
these time scales were not the relevant ones, then, the solutions we find should be ill-defined.
This is not the case and all the solutions we find are well defined, thus, indicating that τ1
and τκ are the relevant time scales for the case of weak and high reactivities.

In what follows we choose the units of length and space so that x0 = 1 and K = 1. Using
these units the relevant time scales become τ1 = 1 and τκ = 1/κ

1
1−H . In some equations,

considered to be the main results, we will reestablish homogeneity.
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3.4.1 | Weakly reactive targets

Here, we study point targets that are highly imperfect, tending to the inert case, κ → 0. We
start with a naive approach, that fails for some value of H, and then perform the complete
calculation to obtain the behaviour of µ(t) for 0 < H < 1. Then, we introduce this behaviour
into the equation for the mean reaction time, and deduce how it behaves when the target is
almost inert.

3.4.1.1 | Naive approach

Even though we already expect the solutions to vary in two different time scales, τ1 and
τκ, it is interesting to first approach this problem in a naïve way by looking for a mean
trajectory after reaction that is a simple power law expansion around the position of the
target, µ(t) = κg1(t) + O(κ2). Inserting this power expansion in the integral equation for
µ(t), Eq. (3.28), one can obtain g1(t):

g1(τ) =
∫ ∞

0
dt
ψ(t) + ψ(τ) − ψ(t+ τ)

2ψ(t)
e−1/2ψ(t)√

2πψ(t)
. (3.55)

Therefore the mean reaction time is

⟨RT⟩
V

= 1
κ

+
∫ ∞

0

dt√
2πψ(t)

(
1 − e− 1

2ψ(t)

)
. (3.56)

We see that, if ψ(t) ∼ t2H for large times, then the integrals do not converge for H < 1/3
and clearly this naïve approach is incorrect, at least in that regime of highly subdiffusive
processes. Additionally, we know that the behaviour of µ(t) for long times must be the one
in Eq. (3.40), which is not possible to obtain with g1(τ) as defined in Eq. (3.55), at least for
H < 1/2.

3.4.1.2 | Mean trajectory after reaction for H > 1/3

If the naive approach works for H > 1/3, then we will assume that it is also correct in the
complete approach, but only for times of order one. To incorporate the other time scale, τκ,
we introduce another scaling law for µ(t) that is true once t is of order τκ, i.e., when κ → 0:
t/τk = tκ

1
1−H ∼ 1,

µ(t) ∼

κg1(t), for t ∼ τ1

κακgκ(t/τκ), for t ∼ τκ
, (3.57)

where gκ(τ) does not depend on κ. Note that, even when homogeneity is reestablished (x0 ̸= 1
and K ̸= 1), the function gκ(τ) is assumed to not depend on either x0 or K. In this case one
must write µ(t) ∼ x0(τ1κ/x0)ακgκ(t/τκ).

One can introduce an intermediate time scale χ, such that 1 = τ1 ≪ χ ≪ τκ. Using this
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time scale one can write the integral equation, Eq. (3.28), for times of the form τ = vτκ, i.e.,
times of order τκ, with v of order one:

µ(vτκ)
κ

+
∫ χ

0

dt√
2πψ(t)

[
(µ(t+ vτκ) − µ(t)M(t, vτκ))e−µ2(t)

2ψ(t) − (1 −M(t, vτκ))e− 1
2ψ(t)

]

+
∫ ∞

χ

dt√
2πψ(t)

[
(µ(t+ vτκ) − µ(t)M(t, vτκ))e−µ2(t)

2ψ(t) − (1 −M(t, vτκ))e− 1
2ψ(t)

]
= 0, (3.58)

where we have divided the integral in Eq. (3.28) into two integrals, one for times of order
one: t < χ ≪ τκ, and one for times of order τκ: t > χ ≫ 1. One can now perform the change
of variables t = uτκ in the second integral (and t = uτ1 = u in the first one), which enables
us to use the scaling laws, µ(t) ∼

t∼1
κg1(t) and µ(t) ∼

t∼τκ
κακgκ(t/τκ), to evaluate the integrals.

Keeping the terms of lowest order in κ (for all possible values of H) one obtains:

0 =κακ
[
gκ(v) +

∫ ∞

χ/τκ
du
gκ(u+ v) − gκ(u)M(u, v)√

2πuH

]

−
∫ ∞

χ/τκ
du

1 −M(u, v)√
2πuH

+ κ
2−3H
1−H H

∫ χ

0
du
(
u

v

)1−2H e−1/2u2H

√
2πuH

. (3.59)

Let us start by looking at the terms κ0 and κ
2−3H
1−H . If 1/3 < H < 2/3, then, κ0 ≫ κ

2−3H
1−H .

However, the term κ0 is not equal to zero (except for H = 1/2), which means that it has to
be compensated by another term, the remaining term κακ . Therefore, for 1/3 < H < 2/3,
one must have ακ = 0. Furthermore, for H > 2/3, one has instead that the term κ

2−3H
1−H is

much bigger than the term κ0. Since the term κ
2−3H
1−H is never equal to zero one must have

ακ = −3H−2
1−H for H > 2/3. Consequently, the equations for gκ(τ) must be:

0 = gκ(v) +
∫ ∞

0

du√
2πuH

(
gκ(u+ v) − 1 − (gκ(u) − 1)M(u, v)

)
for 1

3 < H <
2
3 , (3.60)

and, for H > 2/3,

0 = gκ(v) +
∫ ∞

0

du√
2πuH

(
gκ(u+ v) − gκ(u)M(u, v) +H

(
u

v

)1−2H
e−1/2u2H

)
, (3.61)

where the integration limits χ/τκ and χ have been taken to ∞ and 0 respectively, which is
allowed because χ is chosen such that 1 ≪ χ ≪ τκ and, if the integrals converge, this is
equivalent to say that the integration limits are ∞ and 0. To show that the integrals do
converge, one has to find the behaviour of gκ(τ) for small τ . This is done by realizing that
κακgκ(t/τκ ≪ 1) ∼ κg1(t ≫ 1) and therefore, after finding the asymptotic behaviour of g1(t)
from Eq. (3.55), one finds gκ(τ ≪ 1) ∼ τ 1−H for 1/3 < H < 2/3 and gκ(τ ≪ 1) ∼ τ 2H−1

for H > 2/3. With this result it is straightforward to show that all integrals in Eq. (3.59)
converge when the limits χ → ∞ and χ/τκ → 0 are taken.
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3.4.1.3 | Mean trajectory after reaction for H < 1/3

Now, let us look at the more problematic case of strong subdiffusion, H < 1/3. Here, we
must assume a general scaling law for times of order one,

µ(t) ∼ κα1g1(t), for t ∼ 1, (3.62)

just like before for times of order τκ. Independent of the limit κ → 0 one should always have
that µ(0) = 0, therefore, α1 must be positive (or zero). Assuming this, the equation for times
of order τκ, Eq. (3.59), is still true, as it would just add a term of order κ1+ακ that would
always be smaller than the other terms. Therefore, the behaviour of µ(t) for times of order
τκ is the same for H < 2/3, i.e., ακ = 0 and gκ(τ) given by Eq. (3.60)7.

To obtain the behaviour of g1(τ) and the value of α1, we write the integral equation for
µ(t), Eq. (3.28), at times of order one, and divide the integral into t < χ ≪ τκ and t > χ ≫ 1.
The leading term resulting from this behaviour are:

0 = κα1g1(τ) + κ
2H

1−H

∫ ∞

χ/τκ
τ 2H du

2
√

2πu3H
(gκ(u) − 1). (3.63)

Therefore, since we want non trivial solution for g1(τ), one must have α1 = 2H
1−H and g1(τ)

given by:
g1(τ) = −τ 2H

∫ ∞

0

dt

2
√

2π
gκ(t) − 1
t3H

for H <
1
3 , (3.64)

where we have, once again, taken the limit χ/τκ → 0, allowed by the fact that, since
g1(τ) ∼ τ 2H , then gκ(τ ≪ 1) ∼ τ 2H .

By analyzing the equations for g1(τ) and gκ(τ), and using the results of Section 3.2, one
can find the remaining asymptotic behaviours of these functions. These are summarized in
Table 3.1.

g1(τ ≪ 1) g1(τ ≫ 1) ∼ gκ(τ ≪ 1) gκ(τ ≫ 1)
H < 1/3

τ 2H τ 2H
1 −Bτ 2H−1

1/3 < H < 1/2
τ 1−H

1/2 < H < 2/3
τ τ 2H−1

H > 2/3 τ 2H−1

Table 3.1: Asymptotic behaviour of the scaling functions g1(τ) and gκ(τ).

In summary (and after reestablishing homogeneity), the mean trajectory after reaction
always displays two scaling laws when κ → 0:

µ(t) ∼
κ→0

{
x1−α1

0 τα1
1 κα1g1(t/τ1) for t ∼ τ1

x1−ακ
0 τακ1 κακgκ(t/τκ) for t ∼ τκ

, (3.65)

7Note that, as we show later, the asymptotic behaviour of gκ(τ) is gκ(τ ≪ 1) ∼ τ2H and gκ(τ ≫ 1) ∼ 1,
meaning that the integral in Eq. (3.60) is still well defined.
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where α1 and ακ are exponents that depend only on H:

α1 =
{ 2H

1−H for H < 1
3

1 for H > 1
3

and ακ =
{

0 for H < 2
3

−3H−2
1−H for H > 2

3
, (3.66)

and the functions g1(τ) and gκ(τ) are given by the equations previously derived. For g1(τ)
we derived the Eqs. (3.64) and (3.55). And, for gκ(τ), Eqs. (3.60), (3.61). Therefore, the
behaviour of µ(t) in the limit κ → 0 is now completely identified. This asymptotic behaviour
is summarized in Table 3.2.[

µ(t) ∼
κ→0

[
t ≪ τ1 τ1 ≪ t ≪ τκ t ≫ τκ[

H < 1
3

[
x0K

− H
1−H κ

2H
1−H t2H

x0
[

1
3 < H < 1

2

[
x

− 2H−1
H

0 K
2H−1

2H κt2H

x0K
−1/2κt1−H[

1
2 < H < 2

3

[
x0K

−1/2κt1
−x0K

− 2H−1
2(1−H)κ

2H−1
1−H t2H−1[

H > 2
3

[
−x2 1−H

H
0 K− 1−H

H κt2H−1

Table 3.2: Typical behaviour of the mean trajectory after reaction for κ → 0.

3.4.1.4 | Consequences of weak reactivity on the mean reaction time

We would now like to see what is the effect of these scaling laws, Eq. (3.65), on the mean
reaction time. It is expected, and seen in simulations, that the main contribution to the
mean reaction time is the term 1/κ, but here we want to investigate the new effects coming
from the memory, so we will look for the first corrections to ⟨RT⟩ /V − 1/κ. To do this, one
introduces the scaling laws in Eq. (3.16) and, after splitting the integral into the different
time scales (1 ≪ χ ≪ τκ), expand it to leading order in κ:

⟨RT⟩
V

− 1
κ
∼
κ→0

∫ χ

0

dτ√
2π

1 − e−1/2τ2H

τH
− κ2α1

∫ χ

0

dτ√
2π

g2
1(τ)

2τ 3H

+ κ
3H−1
1−H

∫ ∞

χ/τκ

dτ√
2π

1
2τ 3H − κ

3H−1
1−H +2ακ

∫ ∞

χ/τκ

dτ√
2π

g2
κ(τ)

2τ 3H , (3.67)

where we have kept the leading terms of each expansion so that now we can use the same
equation for all possible Hurst exponents, H. Using the expressions of α1 and ακ in Eq. (3.66),
one finds two possible leading terms, one for H > 1/3 and one for H < 1/3. The first one
reads

⟨RT⟩
V

− 1
κ
∼
κ→0

∫ ∞

0

dτ√
2πKτH

(
1 − e−

x2
0

2Kτ2H

)
for H >

1
3 , (3.68)

where we have reestablished homogeneity and the integration limit χ was safely taken to
infinity due to the good convergence of the integral. We note that this is the same result as
the one obtained with the naive approach introduced in the beginning of this Section, see
Eq. (3.56). In fact, this is the same behaviour as the one obtained using the pseudo-Markovian
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approach (µ(t) ≈ 0). However, for H < 1/3, we find a new, interesting, result:

⟨RT⟩
V

− 1
κ
∼
κ→0

(1
κ

) 1−3H
1−H x2

0

K
1

1−H
νH for H <

1
3 , (3.69)

with νH =
∫ ∞

0

dτ√
2π

1 − g2
κ(τ)

2τ 3H , (3.70)

where we have reestablished homogeneity and taken the limit χ/τκ → 0 in Eq. (3.67), allowed
by the fact that gκ(τ ≫ 1) ∼ 1 −Bt2H−1, and therefore the integral still converges when this
limit is taken.

We find that the apparent diffusion-controlled time, TDC = ⟨RT⟩ − V/κ, depends on the
reactivity in a diverging way, whereas, in a Markovian mindset, one would expect TDC to
depend only on the transport properties. This result shows (once again) that, due to the
existence of memory, one cannot split a problem of imperfect reactivity into two first passage
problems. Moreover, given that the TDC depends on reactivity in a non-trivial and divergent
way for small κ, we have found a new, relevant, contribution to the mean reaction time of
strongly subdiffusive processes. This is clearly a purely non-Markovian effect, coming from
the fact that the process “remembers” the amount of time spent close to the target.

In Figure 3.7 it is possible to see that the scaling in Eq. (3.69) does exist for the two cases
that we have simulated (see section 3.1.3 for more details): a fractional Brownian motion with
H = 1/4 and a Rouse chain (physical realization of fractional Brownian motion with H = 1/4
for times < N2). The value of νH (ν1/4 ≈ 1.9) can be computed numerically by solving
Eq. (3.60) for H = 1/4 and introducing the resulting gκ(t) into Eq. (3.70). Remarkably, in
Figures 3.7.a) and 3.7.b), we see that the non-trivial scaling found in Eq. (3.69) is a good
fit8 to the mean reaction times found in the simulations, even for reactivities that are not so
small (it seems to works well up to κτ1/x0 ≈ 10).

3.4.2 | Strongly reactive targets

In the last section, we have studied what happens when the target is almost inert, here we
would like to study what happens when the target is almost perfect κ → ∞, and imperfect
reaction are seen as a defect on the normal perfect reactions. The case of non-Markovian
perfect reactions was already studied in (Guérin et al., 2016) so we have a clear idea of what
the extreme case looks like, however, we do not know how small imperfections in the target
affect the mean reaction time.

We follow a similar approach to the one taken in the previous section (Section 3.4.1),
where we introduce two time scales, τ1 and τκ, and expand the theory for κ → 0 taking into
account the two time scales. Note that in Section 3.3 we have already seen the second time
scale, τκ, appearing for short times. In fact the two time scales used before are now changed,

8Note that it is not a fit in the sense that no parameters are adjusted to fit the simulation data.
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Figure 3.7: The non-trivial low reactivity scaling found is compatible with simulations. Simulation
results, in symbols, for different processes. The continuous blue line is the numerical mean reaction
time obtained with our theory, the dotted (red) line is the asymptote 1/κ, the dashed (green) line
is the pseudo-Markovian approach (equivalent to setting µ(t) = 0) and the scaling from Eq. (3.69)
is in dash-dotted line (black). Note that the pseudo-Markovian approach is divergent for long
time fractional Brownian motions with H < 1/3. a) and c) are simulations of fractional Brownian
motions with H = 1/4. b) and d) are simulations of a bead-spring (or Rouse) chain with parameters
x0 = 5lR and V = 30x0. In c) and d) the factor 1/κ was removed so that the scaling from Eq. (3.69)
is the leading contribution of reactivity.

τ1 is still of order one, but τκ, still of order κ− 1
1−H , now goes to zero instead of infinity: the

reactivity modifies µ(t) at very small times only, with the longer times being dominated by
the behaviour of the perfect case.

We assume that the scaling laws for µ(t) are

µ(t) ∼
κ→0

{
κ−αh(t/τκ) for t ∼ τκ
µP(t) for t ∼ 1 , (3.71)

or, reestablishing homogeneity,

µ(t) ∼
κ→0

{
x1+α

0 τ−α
1 κ−αh(t/τκ) for t ∼ τκ
x0µP(t/τ1) for t ∼ τ1

, (3.72)

where h(τ) is a function independent of κ, the exponent α is expected to be positive, and
µP(τ), which does not depend on κ, x0 or K, is the dimensionless solution of the perfect case,

48



Ch. 3. Kinetics of Imperfect Reactions for Non-Markovian Walkers in
Confinement

thus obeying the equation:

0 =
∫ ∞

0

dt√
2πtH

[
(µP(t+ τ) − µP(t)M(t, τ))e−

µ2
P(t)

2t2H − (1 −M(t, τ))e− 1
2t2H

]
. (3.73)

Introducing Eq. (3.73) into the integral equation for µ(t), Eq. (3.28), one can remove the
terms that do not depend on µ(t) or µP(t):

0 = µ(τ)
κ

+
∫ ∞

0

dt√
2πtH

[
(µ(t+ τ) − µ(t)M(t, τ))e−µ2(t)

2t2H

− (µP(t+ τ) − µP(t)M(t, τ))e−
µ2

P(t)
2t2H

]
. (3.74)

From the study of the perfect case, one can assume that the short time behaviour of µP(t)
is given by

µP(t) ∼
t→0

µ0t
H . (3.75)

Though this behaviour is only an assumption, it holds at perturbative order for weakly
non-Markovian processes, see Eq. (3.52), and for the case of a Rouse chain, with H = 1/4
(Guérin et al., 2013). Matching the behaviour of µP(t) and h(t/τκ) for τκ ≪ t ≪ 1, one
realizes that h(t ≫ 1) ∼ tH . Therefore, using the scaling laws of Eq. (3.71) one can obtain
the exponent α,

κ−αh
(
t

τκ
≫ 1

)
∼ κ−αtHκ

H
1−H ∼ µP(t ≪ 1) ∼ tH ⇒ α = H

1 −H
. (3.76)

Note that, here, there are no different exponent laws for different Hurst exponents. Therefore,
in principle, there should not be significant differences in the mean reaction time for different
Hurst exponents, contrary to what we found in the weakly reactive case where the mean
reaction time displays two different behaviours, one for H < 1/3 and another for H > 1/3.

The new found exponent α allows us to expand the integral equation in Eq. (3.74) for
times τ = vτκ where v is fixed as κ → ∞:

0 =κ− H
1−H h(v) + κ− H

1−H

∫ χ/τκ

0

du√
2πuH

(h(u+ v) − h(u)M(u, v))e−h2(u)
2u2H

−
∫ χ/τκ

0

du√
2πuH

(µP((u+ v)τκ) − µP(uτκ)M(u, v))e−
µ2

P(uτκ)
2u2H κ

2H
1−H

, (3.77)

where χ is an intermediate time, such that τκ ≪ χ ≪ 1. The integral was split, at time
χ, into the integrals that remained in Eq. (3.77) and one integral, from χ to ∞, where the
integrand is zero due to the fact that µ(t > χ) ∼ µP(t). If one now notices that, for u ∼ 1,
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µP(uτκ) ≈ µ0κ
− H

1−H uH , one finds the final integral equation for h(v):

0 = h(v) +
∫ ∞

0

du√
2πuH

(h(u+ v) − h(u)M(u, v))e−h2(u)
2u2H

− µ0
(
(u+ v)H − uHM(u, v)

)
e−

µ2
0

2

, (3.78)

where, due to the fact that both terms in the integral go to infinity in the same way, the limit
χ/τκ → ∞ was safely taken. Since we can find a defined equation for h(t) it is reasonable
to assume that the initial assumption: h(t ≫ 1) ∼ tH is correct. Combining this result
with the asymptotes found in Section 3.2 one obtains the full behaviours of h(t) and µP(t),
summarized in Table 3.3.

h(τ ≪ 1) h(τ ≫ 1) ∼ µP(τ ≪ 1) µP(τ ≫ 1)
H < 1/2 τ 2H

τH 1 − Aτ 2H−1
H > 1/2 τ

Table 3.3: Asymptotic behaviour of the scaling functions h(τ) and µP(τ). These functions are
connected to µ(t) by the scaling law in Eq. (3.71).

Reestablishing the units in the scaling laws for µ(t), Eq. (3.71), and introducing the
asymptotic behaviours from Table 3.3, it is possible to obtain the full behaviour of µ(t) for
strongly reactive targets as a function of x0, K and κ, as shown in Table 3.4.

µ(t)∼
κ→∞

t ≪ τκ τκ ≪ t ≪ τ1 t ≫ τ1H < 1/2
 K

1−2H
2−2H κ

H
1−H t2H √

KtH
1 − AK

2H−1
2H x

1−H
H

0 t2H−1

H > 1/2
 κt AK

2H−1
2H x

1−H
H

0 t2H−1

Table 3.4: Typical behaviour of the mean trajectory after reaction for κ → ∞.

Let us now look for the effect that these scaling laws have on the mean reaction time.
We go back to Eq. (3.16) and introduce the scaling laws

⟨RT⟩
V

∼
κ→∞

1
κ

+
∫ ∞

0

dt√
2πtH

(
e−

µ2
P(t)

2t2H − e− 1
2t2H

)
+ 1
κ

∫ χ/τκ

0

dt√
2πtH

(
e−h2(t)

2t2H − e−
µ2

P(tτκ)
2t2H

κ
2H

1−H
)
,

(3.79)
where one identifies in the second term the mean first passage time, i.e., the mean reaction
time in the perfect case, which is naturally the limit of ⟨RT⟩ for κ → ∞. The leading
contribution of reactivity, in ∼ κ−1, can further be simplified by using µP(t ≪ 1) ∼ µ0t

H

and, with this simplification it becomes clear that the integral converges when χ/τκ is taken
to ∞. Therefore, the mean reaction time for strongly reactive targets can be written as

⟨RT⟩
V

∼
κ→∞

⟨T⟩
V

+ 1
κ

[
1 +

∫ ∞

0

dt√
2πtH

(
e−h2(t)

2t2H − e−
µ2

0
2

)]
. (3.80)
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To find the sign of the integral in Eq. (3.80), one can start by realising that |µ(t)|
is a (monotonically) increasing function and, therefore,

∣∣∣κ− H
1−H h(t/τκ)

∣∣∣ ≤
∣∣∣µ0t

H
∣∣∣. If one

now introduces a time u such that t = uτκ, the previous inequality can be written as
|h(u)| ≤

∣∣∣µ0u
H
∣∣∣. Thus proving that the integrand of Eq. (3.80) is always positive.

The fact that the integral correction to the term ∼ κ−1 is positive means that, when there
is memory, the correction for light imperfectness of the target (as is the case in almost perfect
targets) is larger than the one expected if there was no memory, thus making reactions slower
for non-Markovian processes.

3.5 | Conclusion

In this chapter we have developed a theory that quantitatively predicts the mean reaction
time for a Gaussian non-Markovian random walker that reacts at a target with reactive
rate k(x) = κδ(x). The first result of our theory is that for non-Markovian processes one
cannot treat the problem of imperfect reactions as the sum of two first passage problems.
We have found the long and short time behaviours of the mean trajectory after reaction and
prove that, for long time subdiffusive processes, the memory of the initial conditions will
remain infinitely long in the system. Then, we have explored the limiting case of weakly
non-Markovian processes, where we have seen that a small perturbation to Markovianity does
not influence the mean reaction time in a non-trivial way, i.e., pseudo-Markovian approaches
would be enough to predict the mean reaction time. In this case, we have seen that an new
intrinsic time scale appears in the behaviour of µ(t), that is due to reactivity. Additionally, we
have explored the two limiting cases of reactivity for the fractional Brownian motion. In the
weakly reactive case, where the target is almost inert, we found that the mean reaction time
displays a non-trivial, divergent, dependence with reactivity beyond the traditional reaction
controlled time, which means that memory makes reactions much slower when reactions are
already rare. In the strongly reactive limit, the almost perfect target, we see that the mean
reaction time is typically slower than one would predict with a “mixed-Markovian” approach,
where transport (the first passage) would be computed for a non-Markovian walker but the
reaction step would simply be considered by adding the reaction controlled term, ∼ 1/κ.
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In Chapter 3, we have developed a theory that provides the mean reaction time for a
Gaussian random walker moving in a confinement volume. However, this theory is only a first
step in the study of imperfect reactions, as it is limited to the mechanism of sink reactivity,
one dimension and localized (point-like) target. Given these limitations, one would like to
use the insights obtained from this theory to study more general situations.

One important class of imperfect reactions that cannot be studied with the theory of
Chapter 3 is the case of semi-reflective targets (Grebenkov, 2019). In this case, if a reaction
does not happen, then, the particle is reflected. This means that the motion of the particle
is still changed by an encounter with the target even if there is no reaction, which is clearly
not the case in the theory previously developed. To deal with these targets, one has to
find a way of introducing a semi-reflective interface in a non-Markovian system. However,
the introduction of interfaces in non-Markovian system is a problem that has not yet been
solved, with the best result being the introduction of a reflective wall by numerically solving
a generalized Langevin equation (Vojta et al., 2019). There is, then, not much hope to solve
the problem of semi-reflective interfaces before theoretically solving the reflective wall. Here,
we do not focus on this problem, and, therefore, will not deal with this category of imperfect
reactions.

Another mechanism of imperfect reactivity, that is not included in the theory of Chapter
3, is the mechanism of gated reactions, where, in addition to an imperfect target, the target
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might randomly switch to an inactive state, where no reaction can happen. By introducing an
extra process for the dynamics of the target, it is possible to adapt the theory developed before
to study the mechanism of gated reactions. Then, we can also study the case of targets with
finite extensions, where one can also allow for space dependent reactivities. It is important
to understand the relevance of these targets when trying to extend one-dimensional theories
to higher dimensions. In fact, in two dimensions it is virtually impossible for a random
walker that diffuses to find an infinitesimal target, see the Markovian mean reaction time
in Section 2.1.4. Therefore, if one wants to study the problem of sink reactivity in two
dimensions, it is useful to first understand how extended targets can be treated in one
dimension.

In the present chapter, we develop three extensions of the non-Markovian theory for
imperfect reactions. First, in Section 4.1, we study one-dimensional gated reactions. Then,
in Section 4.2, we expand the previous theory to extended targets, where k(x) is no longer a
delta function. Particularly, we study the case of Gaussian-shaped reaction rates. Finally, in
Section 4.3, we obtain the equations that give us the mean reaction time for a two-dimensional
random walker to react at a Gaussian-shaped target.

4.1 | The mechanism of gated reactions.

4.1.1 | Dynamics of the target activity.

Let us start by characterizing the target. The principle of gated reactions is that the target
has two possible states, active (a) and inactive (i). If the target is inactive, then no reactions
are possible k(x, i) = 0; contrarily, if the target is active, then reactions are possible and the
reaction rate is k(x, a) = κaδ(x). Note that, here, the target is considered to be point-like
and the random walker is one-dimensional.

We assume that the target switches from the active to the inactive state with rate ωi, and
from inactive to active state with rate ωa. Additionally, we also assume that these transitions
can be described as a Markov process that is independent of the position x(t), so that

∂tq(a, t) = −ωi q(a, t) + ωa (1 − q(a, t)), (4.1)

where q(a, t) represents the probability to observe the active state at time t, and we have
used q(a, t) + q(i, t) = 1, with q(i, t) the probability of the inactive state. Let us call qs(a)
the stationary probability to observe an active state, and q(a, t|a, 0) the probability that the
target is active at t, given that it was active at t = 0. Then,

q(a, t|a, 0) = qs(a) + (1 − qs(a))e−(ωa+ωi)t with qs(a) = ωa
ωa + ωi

= qs. (4.2)
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Figure 4.1: Representation of gated reactions. A random walker x(t) is searching for an imperfect
target, at the origin of the positions, that switches between active and inactive. When active, the
target is imperfect.

4.1.2 | Mean reaction time to an intermittent target.

Let us now derive the equations that will give access to the mean reaction time. For
simplicity we assume that at t = 0 the probability to start in the active state is stationary
(this hypothesis will only be used only in the final steps of the derivation and would be very
easy to relax). The generalization of Eq. (3.17) is

p(0, a, t;x1, t+t1) = p(0, a, t;x1, t+t1; RT > t)+
∫ t

0
dτ p(0, a, t;x1, t+t1|RT = τ)F (τ), (4.3)

where p(0, a, t;x1, t+ t1) is the joint probability density to observe x(t) = 0, with the target
active, a, at time t, and x(t + t1) = x1. Writing the joint probability to have a reaction at
time t and to obtain x(t+ t1) = x1, we obtain the generalization of (3.23):

κa p(0, a, t;x1, t+ t1; RT > t) = p(x1, t+ t1|RT = t) F (t). (4.4)

Using these relations, and repeating exactly the same calculation steps as in Section 3.1,
we find that the generalization of Eq. (3.18) to gated reactions is

ps(0, a;x1, t1) ⟨RT⟩ = pπ(x1, t1)
κa

+
∫ ∞

0
dt [pπ(0, a, t;x1, t+ t1) − p(0, a, t;x1, t+ t1)], (4.5)

where ps(0, a;x1, t1) = limt→∞ p(0, a, t;x1, t+ t1) is the stationary probability of finding the
particle at an active target and finding it at x1 after time t1.

Next, the joint probability distribution function of the position and state can be evaluated
by using our approximation of independence between the switching dynamics of the target
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and the position x(t). Indeed, we can write:

pπ(0, a, t;x1, t+ t1) = pπ(0, t;x1, t+ t1) q(a, t|a, 0), (4.6)
p(0, a, t;x1, t+ t1) = p(0, t;x1, t+ t1) qs(a), (4.7)

where in the last equality we have used our hypothesis that the probability to start in the
active state is qs(a). With these simplifications, the expression of the mean reaction time in
the non-Markovian theory for gated reactions become

⟨RT⟩
V

qs = 1
κa

+
∫ ∞

0
dt [pπ(0, t)q(a, t|a, 0) − p(0, t)qs], (4.8)

and, using the usual Gaussian approximations for the trajectories after reaction, the integral
equation for µ(t) becomes

µ(τ)
κa

+
∫ ∞

0

dt√
2πψ(t)


[
µ(t+ τ) − µ(t)σ(t+ τ, t)

ψ(t)

]
e−µ(t)2

2ψ(t) q(a, t|a, 0)

−x0

[
1 − σ(t+ τ, t)

ψ(t)

]
e−

x2
0

2ψ(t) qs

 = 0. (4.9)

Note that, since limτ→∞ q(a, τ |a, 0) = qs, then the long time behaviour of µ(t) is not changed
and Eq. (3.40) is still true.

We also note that this result, Eqs. (4.8) and (4.9), generalize to the case of non-Markovian
random walkers the results of (Spouge et al., 1996), specifically Eq. (19) in this reference,
obtained for Markovian random walkers searching for an imperfect gated target.

Let us now look at one limit often studied in the case of gated reactions, the limit of low
switch rates, ω = ωa + ωi → 0, when qs is kept constant. In this limit, one can write the
mean reaction time as

⟨RT⟩
V

= ω

κaωa
+
∫ ∞

0

dτ/ω√
2πψ(τ/ω)

[(
1 + 1 − qs

qs
e−τ

)
e−µ2(τ/ω)

2ψ(τ/ω) − e−
x2

0
2ψ(τ/ω)

]
(4.10)

= ω

κaωa
+ 1
ω1−H

∫ ∞

0

dτ√
2πK

1 − qs

qs

e−τ

τH
, (4.11)

where the arguments in the exponentials go to zero with ω → 0. Therefore, in the low switch
rate limit, reactions become rare and one can write

⟨RT⟩
V

∼
ω→0

1
κeff

, κeff = ω1−H qs

1 − qs

√
2πK

Γ(1 −H) , (4.12)

where κeff is an effective reaction rate that generalizes the result obtained in Eq. (23) of
(Mercado-Vásquez and Boyer, 2019) where the authors studied this problem in the diffusive,
i.e., Markovian (H = 1/2), regime.
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In Figure 4.2, we compare the results of simulations1 to the theoretical predictions. Our
theoretical predictions slightly overestimate the mean reaction times, but, even with this
systematic error, one can consider that our theory provides good predictions of the mean
reaction times in the case of gated reactions with H = 0.34. The predictions are particularly
good when compared to the previous best predictions, the pseudo-Markovian ones, that over
estimates the mean reaction times with a factor of almost 10. We also note that the low
switch rate prediction, found in Eq. (4.12), is verified by the simulations and does not change
with the “real” reactivity of the target, κa.

Figure 4.2: Testing the validity of our theory for gated reactions. Theory (continuous lines) and
simulations (symbols, V = 30x0) of gated reactions for the fractional Brownian motion on a ring
with H = 0.34 for qs = 0.5. The time unit τ1 is defined as τ1 = (x2

0/K)1/2H . The orange (lower)
line is for κaτ1/x0 = 1 and the blue (upper) line is for κaτ1/x0 = 10. The dashed lines represent the
pseudo-Markovian approximation and the dashed-dot line is the asymptotic prediction in Eq. (4.12).

4.2 | One-dimensional extended targets

Let us now study the case of an extended target, with reaction rate k(x). In a latter stage,
we choose to study Gaussian-shaped targets. However, for the sake of generality, we start
with a general reaction rate, localized in the region R, the reactive region. We assume that
the reaction rate is normalized, κ =

∫
R dx k(x), and that it is symmetric and centered at

zero,
∫

R dx xk(x) = 0. We start by generalizing the renewal equation:

p(x, t;x1, t+ t1) = p(x, t;x1, t+ t1; RT > t) +
∫ ∞

0
dτ p(x, t;x1, t+ t1; RT = τ), (4.13)

where we have already used the joint probabilities knowing that it will be relevant for the
calculation of µ(t).

Since the target is no longer point-like one has to use the reaction probability distribution
1The simulations are performed with the methods described in Section 3.1.3
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function, f(x, t), i.e., the probability density for the reaction to happen at x at time t, instead
of only the reaction time density, F (t) =

∫
R dx f(x, t). It is then possible to adapt Eq. (3.23)

to the case of extended targets by noticing that, if P is the probability

P = P
(
x(t) ∈ [x, x+ dx[; x(t+ t1) ∈ [x1, x1 + dx1[ and RT ∈ [t, t+ dt[

)
, ∀x∈R, (4.14)

then P can also be written in two different ways. One way is using the reaction probability
distribution function, f(x, t),

P =
(
f(x, t)dxdt

)(
p(x1, t+ t1|x, t; RT = t)dx1

)
, (4.15)

where f(x, t) takes into account the probability to reach the position x and react at x.
Another way to write P is by using the reaction rate, k(x),

P =
(
k(x)dt

)(
p(x, t; x1, t+ t1; RT > t)dxdx1

)
, (4.16)

where the second propagator takes into account reaching the position x with no previous
reaction and then going to x1 at t+ t1. Note that, since we multiply this propagator by the
probability of reaction at position x, this is equivalent to the probability that RT = t, with
x(RT) = x. Therefore, the argument in Eq. (3.23) is extended as

p(x, t; x1, t+ t1; RT > t)k(x) = f(x, t)p(x1, t+ t1|x, t; RT = t). (4.17)

Following the steps of Section 3.1 one obtains:

k(x)ps(x1, t|x)⟨RT⟩
V

= pπ(x, 0;x1, t1)+k(x)
∫ ∞

0
dt
[
pπ(x, t;x1, t+t1)−p(x, t;x1, t+t1)

]
, (4.18)

where pπ(x, t;x1, t + t1) has the same meaning as in Chapter 3, but a slightly different
definition:

pπ(x, t; x1, t+ t1) =
∫ ∞

0
dτ
∫

R
dχ f(χ, τ)p(x, τ + t; x1, τ + t+ t1|χ, τ ; RT = τ). (4.19)

Note that, using this definition, pπ(x, 0) can be written as

pπ(x, 0) =
∫ ∞

0
dτ
∫

R
dχ f(χ, τ)p(x, τ |χ, τ ; RT = τ) (4.20)

=
∫ ∞

0
dτ
∫

R
dχ f(χ, τ)δ(x− χ) (4.21)

=
∫ ∞

0
dτ f(x, τ) ≡ π(x), (4.22)

and therefore pπ(x, 0)dx = π(x)dx is the probability that the reaction happens in the space
interval [x, x+ dx[. This probability is also known as the splitting probability.

From Eq. (4.18) one obtains the mean reaction time by integrating over x1 and x,

⟨RT⟩
V

= 1
κ

+
∫

R
dx
k(x)
κ

∫ ∞

0
dt[pπ(x, t) − p(x, t)]. (4.23)
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This is an exact result that is valid for any process x(t) and reaction rate k(x). Additionally,
one can obtain another equation by first multiplying Eq. (4.18) by x1 and then integrating
over x1

k(x) ⟨x(t1)|x⟩s
⟨RT⟩
V

= ⟨x(t1)|x, 0⟩π π(x)

+ k(x)
∫ ∞

0
dt
[

⟨x(t+ t1)|x, t⟩π pπ(x, t) − ⟨x(t+ t1)|x, t⟩ p(x, t))
]
,

(4.24)

where we recall that ⟨x(t1)|x, 0⟩π is the mean position at time t1 after the reaction given
that the reaction happened at x (at time 0), ⟨x(t+ t1)|x, t⟩π is the mean value of xπ(t+ t1)
given that xπ(t) = x, ⟨x(t+ t1)|x, t⟩ is the mean value of x(t + t1) given that x(t) = x and
⟨x(t1)|x⟩s is the mean position at time t1 in the stationary limit given that at time 0 the
random walker is at position x.

To proceed further, we have to find an explicit form for pπ(x, t), the probability after
reaction. In the extended case reactions might happen at any x ∈ R with probability density
π(x) = pπ(x, 0). An integral equation for π(x) can be found from Eq. (4.18), by integrating
over x1:

0 = π(x) + k(x)
− 1

κ
+
∫ ∞

0
dt
∫

R
dy

(δ(x− y) − k(y)
κ

)
pπ(y, t)

−
(
δ(x− y) − k(y)

κ

)
p(y, t)

. (4.25)

In principle, one could solve this integral equation coupled with Eq. (4.24). However, these
equations are highly non trivial and even numerically it would be hard to solve them. Given
this difficulty, we have to choose an ansatz for the splitting probability, π(x), which (at this
point) can only be done for a class of reactivities at a time2. We choose to proceed with
reactivity rates that can be described by Gaussians: k(x) = κe−x2/2δ/

√
2πδ, where δ1/2 is

the typical size of the target. With this choice, after performing preliminary simulations,
one is led to believe that a reasonable ansatz for π(x) would also be a Gaussian with two
new parameters: α, the mean position where reactions happen, and β, the variance of this
reaction coordinate. Moreover, following the Gaussian approximations used in the previous
chapter, we approximate pπ(x, t|xπ, 0) by a Gaussian with mean µ(t) + xπ, where µ(t) is
independent of xπ, and covariance Covπ(x(t+ τ), x(t)|xπ, 0) = σ(t+ τ, t), which is verified by
the preliminary simulations. Using these approximations one can write the full distribution
pπ(x, t) as

pπ(x, t) =
∫

R
dxπpπ(x, t|xπ, 0)π(xπ) = 1√

2π(β + ψ(t))
exp

(
−(x− [α + µ(t)])2

2(β + ψ(t))

)
. (4.26)

2Take, for example, ka(x) ∼ 1 − Θ(|x| − a) and kb(x) ∼ e−x2 , the distribution of reaction coordinates is
intuitively different for each of these reactivities.
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Additionally, these approximations allow us to explicitly write the means in Eq. (4.24),

⟨x(τ)|x⟩s = x, (4.27)
⟨x(τ)|x, 0⟩π = x+ µ(τ), (4.28)

⟨x(t+ τ)|x, t⟩π = µ(t+ τ) + α− σ(t+ τ, t) + β

ψ(t) + β
(µ(t) + α− x), (4.29)

⟨x(t+ τ)|x, t⟩ = x0 − σ(t+ τ, t) + β

ψ(t) + β
(x0 − x). (4.30)

Using these means in Eq. (4.24) we obtain

0 = α + µ(τ) +
∫

R
dxk(x)

∫ ∞

0
dt

(µ(t+ τ) + α− (µ(t) + α− x)σ(t+ τ, t) + β

ψ(t) + β

)
pπ(x, t)

−
(
x0 − (x0 − x)σ(t+ τ, t)

ψ(t)

)
p(x, t)

, (4.31)

where we have integrated x and used the facts that π(x) is normalized and that k(x) has
zero mean. The equations for α and β can be obtained from Eq.(4.25):

0 = α +
∫

R
dx xk(x)

∫ ∞

0
dt[pπ(x, t) − p(x, t)], (4.32)

which is obtained by multiplying x and then integrating over the same variable and, finally,

0 = β + α2 +
∫

R
dx x2k(x)

− 1
κ

+
∫ ∞

0
dt
∫

R
dy

(δ(x− y) − k(y)
κ

)
pπ(y, t)

−
(
δ(x− y) − k(y)

κ

)
p(y, t)

, (4.33)

obtained by multiplying x2 and integrating. To finalize this extension to the case of extended
(Gaussian) targets, we introduce the expression of reactivity and perform the remaining
spatial integrals in Eqs. (4.31),(4.32) and (4.33):

0 = α + µ(τ) + κ
∫ ∞

0

dt√
2π

(µ(t+ τ) + α− (µ(t) + α)σ(t+ τ, t) + β

δ + ψ(t) + β

)
e− (α+µ(t))2

2(δ+β+ψ(t))√
δ + β + ψ(t)

− x0

(
1 − σ(t+ τ, t)

δ + ψ(t)

)
e−

x2
0

2(δ+ψ(t))√
δ + ψ(t)

, (4.34)

0 = α + κδ
∫ ∞

0

dt√
2π

 α + µ(t)
δ + β + ψ(t)

e− (α+µ(t))2
2(δ+β+ψ(t))√

δ + β + ψ(t)
− x0

δ + ψ(t)
e−

x2
0

2(δ+ψ(t))√
δ + ψ(t)

, (4.35)
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and

0 = β + α2 − δ + κδ2
∫ ∞

0

dt√
2π

(α + µ(t))2 − (δ + β + ψ(t))
(δ + β + ψ(t))2

e− (α+µ(t))2
2(δ+β+ψ(t))√

δ + β + ψ(t)

− x2
0 − (δ + ψ(t))
(δ + ψ(t))2

e−
x2

0
2(δ+ψ(t))√
δ + ψ(t)

. (4.36)

Thus forming a set of closed equations for α, β and µ(t), which, when solved numerically,
are all the variables needed to find the mean reaction time, given by

⟨RT⟩
V

= 1
κ

+
∫ ∞

0

dt√
2π

 e− (α+µ(t))2
2(δ+β+ψ(t))√

δ + β + ψ(t)
− e−

x2
0

2(δ+ψ(t))√
δ + ψ(t)

. (4.37)

4.3 | Imperfect reactions in two dimensions.

Here, we present the extension of our formalism to the two-dimensional case. We assume
that the process r(t) = (x(t), y(t)) is a two-dimensional stochastic process for which each
coordinate, in absence of confinement, satisfies the hypotheses assumed for one-dimensional
processes. We focus on isotropic walks, so that, in free space, there are no correlations
between the directions x and y:

Cov(xi(t), xj(t′)) = δij σ(t, t′), (4.38)

where i and j label spatial coordinates and σ(t, t′) is given by Eq. (3.1). Similarly to the
case studied in the previous section, we focus on Gaussian targets, with a reaction rate

k(r) = k(r = |r|) = κ
e− r2

2δ

2πδ . (4.39)

It is easy to show that the development leading to Eq. (4.18) in the previous section for
one-dimensional extended targets still holds in two dimensions by replacing x by r∗ and x1
by r1:

k(r∗)ps(r1, t|r∗)
⟨RT⟩
V

= pπ(r∗, 0; r1, t1) + k(r∗)
∫ ∞

0
dt
[
pπ(r∗, t; r1, t+ t1) − p(r∗, t; r1, t+ t1)

]
,

(4.40)
where pπ(r∗, t; r1, t+ 1) is the joint probability distribution function of r(RT + t) = r∗ and
r(RT + t + t1) = r1. Integrating (4.40) over r1 and r∗ leads to the expression of the mean
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Figure 4.3: Schematic representation of a two-dimensional imperfect reaction with sink reactivity.
A random walker r(t) that moves inside a confinement of volume V is searching for a reaction at a
target centered at the origin of coordinates with a Gaussian-shaped reaction rate, k(r).

reaction time:

⟨RT⟩
V

= 1
κ

+
∫ ∞

0
dt

∫
dr∗

k(r∗)
κ

[pπ(r∗, t) − p(r∗, t)]. (4.41)

Note that this expression is, once again, exact and valid for any reaction rate k(r∗) and
process r(t), not necessarily Gaussian.

Let us now give explicit expressions for Gaussian processes. Let us define the center of
the target as the origin of space. Since, for large volumes, the mean reaction time should not
depend on the initial angle θ0 between the vector r0 = r(0) and the x-axis, we assume that
the initial position is uniformly distributed around the target, with a fixed distance r0. In two
dimensions, the probability distribution function of initial angles is therefore p(θ0) = 1/2π.
With this choice of initial condition, if rπ is the position of the random walker at the instant
of reaction, the probability distribution function of the angle θπ between rπ and the x−axis
is also uniform. We define ρ(rπ) the probability distribution function of the distance rπ to
the target center at the reaction time.

As in the one-dimensional case, we assume that the trajectories in the future of the
reaction, given that the reaction happens at polar coordinate (rπ, θπ), display Gaussian
statistics. Additionally, we assume that the mean square displacement of these trajectories
after reaction is the same as the mean square displacement of the original process, and that
the average trajectory is oriented in the direction er(θπ) (defined as the unit vector in the
direction θπ, see Fig. 4.3):

⟨r(RT + t)|reaction at (rπ, θπ)⟩ = ⟨r(t)|rπ, θπ, 0⟩π = [rπ + µ(t)] er(θπ), (4.42)

where µ(t) does not depend on rπ and θπ. We also assume, as in the one-dimensional
case, that all propagators appearing in (4.40) can be evaluated in free space (except for
ps(r∗) = 1/V ). We note that pπ(r, 0), just like before, is the splitting probability, π(r). Using
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the above notations, we obtain

pπ(r, 0) = π(r) = ρ(r)
2πr , (4.43)

with r = |r|. Without loss of generality, we consider a position r∗ = x∗ex along the x-axis,
and Eq. (4.40), after integration of r1, becomes

⟨RT⟩
V

k(x∗) = ρ(x∗)
2πx∗

+ k(x∗)
∫ ∞

0
dt
[ ∫ 2π

0

dθπ
2π

∫ ∞

0
drπρ(rπ)pπ(x∗ex, t|rπ, θπ, 0)

−
∫ 2π

0

dθ0

2π p(x∗ex, t|r0, θ0, 0)
]
, (4.44)

where pπ(r, t|rπ, θπ, 0) is the probability distribution function of r(RT + t) given that the
reaction occurs at a distance rπ from the target center, with an angle θπ, and p(r, t|r0, θ0, 0)
is the probability distribution function of positions at t given that the initial angle is θ0.
With our hypotheses, these conditional probability distribution functions can be written as

pπ(x∗ex, t|rπ, θ, 0) = 1
2πψ(t) exp

(
−x2

∗ + [rπ + µ(t)]2 − 2x∗[rπ + µ(t)] cos θ
2ψ(t)

)
, (4.45)

p(x∗ex, t|r0, θ, 0) = 1
2πψ(t) exp

(
−x2

∗ + r2
0 − 2x∗r0 cos θ

2ψ(t)

)
. (4.46)

To obtain an explicit expression for the mean RT, we multiply (4.44) by x∗ and integrate
over positive x∗. Using the above equation, and the expression (4.39) of k(x∗), the integrals
over x∗ and θπ, θ0 can be performed, leading to

⟨RT⟩
V

= 1
κ

+
∫ ∞

0

dt

2π(δ + ψ(t))

(∫ ∞

0
drρ(r)e− (r+µ(t))2

2(δ+ψ(t)) − e−
r2

0
2(δ+ψ(t))

)
. (4.47)

Next, let us identify the self-consistent equations for µ(t). We write Eq. (4.40) for
r∗ = x∗ex, with x∗ > 0, multiply it by x1 and integrate over all values of r1, leading to

k(x∗)
⟨RT⟩
V

⟨x(t)|x∗ex⟩s = ρ(x∗)
2πx∗

⟨x(t1)|x∗ex, 0⟩π

+ k(x∗)
∫ ∞

0
dt
∫ 2π

0

dθ

2π

 ∫ ∞

0
drπρ(rπ) ⟨x(t+ t1)|x∗ex, t; rπ, θ, 0⟩π pπ(x∗ex, t|rπ, θ, 0)

− ⟨x(t+ t1)|x∗ex, t; r0, θ, 0⟩ p(x∗ex, t|r0, θ, 0)
. (4.48)

Using the isotropy condition, the conditional averages read, see Appendix A,

⟨x(t+ t1)|x∗ex, t; rπ, θ, 0⟩π = [rπ + µ(t+ t1)] cos θ − σ(t+ t1, t)
σ(t, t) ([rπ + µ(t)] cos θ − x∗),

(4.49)
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⟨x(t+ t1)|x∗ex, t; r0, θ, 0⟩ = r0 cos θ − σ(t+ t1, t)
σ(t, t) (r0 cos θ − x∗). (4.50)

To find a self-consistent integral equation for µ(t), we multiply (4.48) by 2πx2
∗ and integrate

over positive values of x∗. Using the above formulas, the integration over θ and x∗ can be
performed analytically, leading to the result

κδ

2π

∫ ∞

0
dt


∫ ∞

0
drρ(r)e

− (r+µ(t))2
2(δ+ψ(t))

δ + ψ(t)

(r + µ(t))2

δ + ψ(t)

(
r + µ(t+ t1)
r + µ(t) −Mδ(t1, t)

)
+ 2(Mδ(t1, t) − 1)



− e−
r2

0
2(δ+ψ(t))

δ + ψ(t)

 r2
0

δ + ψ(t) [1 −Mδ(t1, t)] + 2(Mδ(t1, t) − 1)
+ µ(t1)α = 0, (4.51)

where
Mδ(t1, t) = δ + σ(t+ t1, t)

δ + σ(t, t) , (4.52)

α is the mean radius at the reaction time, α ≡
∫∞

0 drπrπρ(rπ) and we have used (4.44) to
eliminate ⟨RT⟩ /V .

Figure 4.4: Distribution of the reaction distance to the center of the target, ρ(r). The simulations
were performed for a Rouse chain with 40 monomers with a target size δ = lR. The simulation
results are shown by continuous lines. Then, fits were made with the function in Eq. (4.53): the
dashed line is the fit of the simulations with κτR/lR = 10 and r0 = 0.5lR; the dashed-dot line is
the fit with κτR/lR = 100 and r0 = 5lR; the dashed-dot-dot line is the fit with κτR/lR = 10 and
r0 = 5lR; and the equivalent pseudo-Markovian result is shown with a dotted line, 2πrk(r)/κ. We
use the natural units of the Rouse chain model: lR is the typical size of a bond, τR is the relaxation
time of one monomer.

The last step of the theory consists in characterizing the distribution of the radius at the
reaction time, see Fig. 4.4. In principle one could use Eq. (4.44) as an integral equation that,
coupled with Eq. (4.51), would give us ρ(r). However, this is a very difficult procedure to
solve, even if one solves the equations with numerical methods. Therefore, we will set an
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ansatz for ρ(rπ):

ρ(rπ) = 1 − e− rπ
a

Z

e− (rπ−a)2
2b

√
2πb

, (4.53)

where Z is a normalization constant and two new parameters, a and b, have been added to
the problem, thus creating the need for two new independent equations. To find these two
equations, first one multiplies Eq. (4.44) by 2πx3

∗ and integrate over positive x∗:

κδ2
∫ ∞

0
dt

 ∫ ∞

0
drρ(r) e− (r+µ(t))2

2(δ+ψ(t))

2π(δ + ψ(t))
(r + µ(t))2 − 2(δ + ψ(t))

(δ + ψ(t))2

− e−
r2

0
2(δ+ψ(t))

2π(δ + ψ(t))
r2

0 − 2(δ + ψ(t))
(δ + ψ(t))2

+ β + α2 − 2δ = 0, (4.54)

where β = −α2 +
∫∞

0 dx x2ρ(x) is the variance of the reaction distance to the origin. For the
second equation, one can multiply by x5

∗ (instead of 2πx3
∗) and integrating over x∗, with the

resulting equation:

8κδ3
∫ ∞

0
dt

 ∫ ∞

0
drρ(r)e

− (r+µ(t))2
2ψδ(t)

2πψδ(t)

δ
8 [r + µ(t)]4 + ψ(t)ψδ(t)[r + µ(t)]2 − ψ2

δ (t)[ψδ(t) + ψ(t)]
ψ4
δ (t)

,

− e
−

r2
0

2ψδ(t)

2πψδ(t)

δ
8r

4
0 + ψ(t)ψδ(t)r2

0 − ψ2
δ (t)[ψδ(t) + ψ(t)]

ψ4
δ (t)

+
∫ ∞

0
drr4ρ(r) = 8δ2,

(4.55)

where ψδ(t) = δ + ψ(t) is introduced to improve readability.

We have now a set of 3 coupled equations that characterize µ(t), Eq. (4.51), a, Eq. (4.54),
and b, Eq. (4.55). With the solutions of these equations we can use Eq. (4.47) to find the
mean reaction time. After this development it is quite natural to see that a generalization
to three dimensions is possible and no new argument has to be added.

Let us first analyze our predictions of the reaction coordinate distribution, ρ(r). In
Figure 4.4, we represent the distribution of r at the reaction time for three sets of reactivity
and initial positions. We see that ρ(r) can in fact be approximated by the ansatz in Eq. (4.53).
Additionally, for large reactivity, we see that the position where reactions are most probable
is clearly not the center of the target and, in fact, almost no reactions happen at the center
of the target, where the reaction rate is largest, see the cyan curve in Figure 4.4. In the
cases, r0 = 0.5lR, we find that the ansatz is not a good fit to the simulation data at all
regimes, predicting quite well the large r behaviour. As a consequence of this less than ideal
match between the simulation and the ansatz, we do not expect our theory to work for small
initial distances with large reactivities. We note, however, that this was already expected for
particles that start “inside” the target

(
r0 <

√
δ
)
.
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In Figure 4.5 one can see that our theoretical predictions are a very good match to
the simulation results. When analyzing the pseudo-Markovian predictions (e.g., the mean
reaction time for κτR/lR = 10 and r0/lR = 1 is predicted to be negative), it becomes clear
that, to predict the mean reaction times in two dimensions, it is essential to develop non-
Markovian theories that do not rely on pseudo-Markovian approaches. We note that, for
small r0 and large κ (blue curve), we do not represent the theoretical prediction because the
numerical scheme to solve the integral equations does not converge (at least in the set of
parameters we tested), which was expected as we had already shown in Figure 4.4 that this
situation is problematic in our theory. However, when κ → ∞ and the particles is started
inside the target the mean reaction time becomes very small and estimating it does not
represent the most important goal of the theory. Outside this region of initial conditions the
predictions are much better.

Figure 4.5: Verification that our theoretical predictions match simulations in two dimensions.
With continuous lines we represent our theoretical prediction for the mean reaction time in two
dimensions. The mean reaction time obtained from the simulations of a Rouse chain with 40
monomers in two dimensions are represented by the symbols with corresponding uncertainties.
With dashed lines we represent the predictions obtained using a pseudo-Markovian approach. The
parameters of the simulation have been controlled so that a convergent limit is reached. When the
pseudo-Markovian approach is not shown is because it would predict negative mean reaction times
(except for κτR/lR = 0.1, where the pseudo-Markovian is hidden behind the non-Markovian one).
In this case D = l2R/τR is the diffusion constant of a single monomer, lR is the typical size of a
bond, τR is the relaxation time of one monomer and the target size is δ = lR.

4.4 | Conclusion

In this chapter, we have developed three new theories describing the kinetics of imperfect
reactions. First, we have extended the one-dimensional case to include gated reactions, where
a target that is imperfect might be active of inactive. We have found the equations that
enable the calculation of the mean reaction time and verified that our theory incorporates
the previous results for Markovian processes. Then, we have studied the case of extended

66



Ch. 4. Imperfect Reactions for Gated Reactions, Finite Targets and
Higher Dimensions

targets, particularly the case of the Gaussian-shaped ones. Finally, we studied the case of
two-dimensional imperfect reactions with Gaussian-shaped targets. We found equations that
lead to the mean reaction time, the space distribution of the reactions and the mean trajectory
after a rection. Using simulations we have shown that the theory is correct when the particles
are initially outside the target. The fact that the theory in two dimensions is correct when
compared to simulations serves a strong suggestion that the one-dimensional theory for
extended targets is similarly correct, even though we have not performed any simulations in
that case. Moreover, we believe that the two-dimensional approach can easily be extended
to three dimensions, as no new arguments have to be made in the three dimensions.
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Up to now, the work presented in this thesis is only theoretical. The question arises
if the impact of memory on first passage events can be observed in an experimental setup.
Though many physical processes are non-Markovian, experiments are usually restricted to the
observation of the mean square displacement and do not explore the first passage quantities
(Mason et al., 1997; Wei et al., 2000). Experimental observations of first passage quantities
in non-Markovian processes are scarce, limited to the persistence exponents (Bray et al.,
2013; Wong et al., 2001) or the barrier crossing problem (Ferrer et al., 2021; Ginot et al.,
2022). In this chapter, we aim to observe and describe how memory influences competitive
first passage events in viscoelastic fluids.

Viscoelastic fluids are materials that exhibit a combination of viscous and elastic behaviors,
blurring the line between solids and liquids (Denn, 1990; Lin et al., 2005). Their distinctive
characteristics include both resistance to flow under shear stress (viscous behavior) and
the ability to store and release energy during deformation (elastic behavior). These fluids
display time-dependent responses that can be seen as a memory storage: deformations to
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the fluid will be remembered for some time until the fluid finally relaxes back to equilibrium.
Through the use of microrheology, an experimental method that is usually used to infer the
rheological properties of a fluid (Mason and Weitz, 1995), it has been observed that the
movement of beads in (sufficiently) viscoelastic fluids displays anomalous diffusion (Mason
et al., 1997). Microrheology implicitly assumes that the observed processes are Gaussian,
which combined with the observed subdiffusion (and stationary increments) suggests that
the process is non-Markovian, see Section 2.2.1. Therefore, one can use the movement of
beads in viscoelastic fluids to test first passage theories and find first passage properties in
real non-Markovian systems.

There are many first passage properties that one could study. Here, we focus on compet-
itive events. In a general formulation, a competitive event is when there are (at least) two
possible outcomes of a first passage problem and one wants to know the probability of each.
Competitive events are the natural choice if one wants to observe first passage properties
in experiments, see Figure 5.1. This is because, experimentally, one typically has a particle
moving in a frame that is smaller than the physical confining volume. Let us assume that
we want to observe a first passage to one target. If the particle leaves the frame while it is
searching for the target, then, we loose it and, even if it comes back inside the frame, one
cannot be sure that it is the same particle. In contrast, for competitive events, one can place
a target at each exit of the frame, meaning that, before a particle leaves the frame (and we
loose it), it has already performed a first passage to one of the targets.

Figure 5.1: Experimental difference between observing first passage to one target and competitive
events. Experimentally, the trajectories x1(t) and x2(t) that are searching for the red targets can
only be seen inside the dotted region (corresponding to the space that is recorded by the camera).
In the case of a first passage to one target, (a), many trajectories are lost . In the case of competitive
events, (b), it is not possible to lose particles from the recorded region, as trajectories must touch
one of the targets before leaving this region.

In addition to being suitable to experimental observation of first passage events, the
problem of competitive targets is relevant in various domains. An historical example would
be the “gambler‘s ruin problem”, in which one wishes to know the risk for a gambler to get
ruined before achieving a given profit, clearly a relevant problem in financial mathematics
(Bouchaud et al., 2018). Other examples appear in chemical (Espenson, 1981), biochemical
(Hansen et al., 2019) and photochemical (Motti et al., 2019) reactions. The key quantity
characterizing competitive events is the splitting probability, which is the probability for
a random process to realize an event before the other one. Contrary to the case of non-
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Markovian processes, for Markovian (memoryless) processes, splitting probabilities are well-
characterized (Dobramysl and Holcman, 2020; Cheviakov and Ward, 2011; Bressloff, 2020,
2021; Condamin et al., 2008; Bénichou and Voituriez, 2014).

However, memory effects are essential in complex systems (Mason et al., 1997; Squires
and Mason, 2010; Furst and Squires, 2017). Despite their relevance, a general quantitative
theory of competitive events for non-Markovian processes is lacking. For such non-Markovian
processes, first passage theories have mainly been limited to the case of single targets (Guérin
et al., 2016; Bray et al., 2013; Levernier et al., 2019; Dolgushev et al., 2015; Delorme and
Wiese, 2015; Sadhu et al., 2018; Levernier et al., 2022; Walter et al., 2021; Levernier et al.,
2020). For the two-target problem, the prediction of splitting probabilities is limited to
one dimensional processes, in a few specific examples (Masoliver et al., 1986; Bicout and
Burkhardt, 2000) or for scale invariant processes using scaling arguments (Majumdar et al.,
2010) or perturbative methods (Wiese, 2019). The question naturally arises as to whether one
could predict the outcome of competitive events for non-scale invariant stochastic processes,
as in the case of viscoelastic fluids.

Here, we describe an experimental setup that enables us to obtain the movement of beads
in a viscoelastic fluid and obtain some characteristic properties movement. Then, we build
a non-perturbative theory that gives us the splitting probabilities with the intent of testing
it with our experiment. The theory developed here is valid for Gaussian non-Markovian
processes. We experimentally show that, in viscoelastic polymer fluids, memory leads to an
increase of the probability to hit the closest target, which is quantitatively predicted by our
theory. Moreover, our observations provide the first experimental proof that the state of the
system (of the random walker and the additional degrees of freedom, that are at the origin
of memory) at the first passage event is not an equilibrium state. As a consequence of this
non-equilibrium feature, the trajectories after the first passage are biased on average, which
our theory shows is the key to correctly predict splitting probabilities.

The outline of the chapter is as follows. First, in Section 5.1.1, we give a short derivation of
the generalized Langevin equation (a “Langevin” equation that allows for memory), and then,
in Section 5.1.2, we use this equation to find the mean square displacement of different memory
kernels. In Section 5.1.3, we describe an experimental setup that enables the acquisition
of non-Markovian trajectories and characterize these trajectories. Then, in Section 5.2,
we derive the equations that enable us to calculate the splitting probabilities. Finally, in
Section 5.3, we analyze the experimental data to obtain the first passage properties and
compare them to the predictions of our theory.
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5.1 | Non-Markovian motion in viscoelastic fluids and the gen-
eralized Langevin equation

In this section, we study how non-Markovian motion can be described in a viscoelastic
fluid. First, we present a short derivation of the generalized Langevin equation, essential
to mathematically describe motion with memory. We do this derivation for the particular
case of a spring-bead (Rouse) chain. Then, we explore some memory kernels (a function
that describes the delayed response of the fluid) and obtain the corresponding mean square
displacements. To finish the section, we analyze an experimental setup that allows us to see
non-Markovian walks in viscoelastic fluids.

5.1.1 | The Generalized Langevin Equation for a Rouse Chain

The derivation of the generalized Langevin equation typically requires the consideration of a
thermal bath that is linearly coupled to the variables of interest (Zwanzig, 2001; Pavliotis,
2014). Here, for simplicity, we derive the equation in the specific case of a N monomer
spring-bead (Rouse) chain. However, it must be noted that our formalism also allows for
other types of chains and, in a more general way, any combination of N coupled degrees of
freedom. Our derivation is slightly different from the one presented by Panja (2010).

Let us start with a polymer chain with N monomers connected by springs. The position
of each monomer is xi, with i from 1 to N . The objective here, is to find an equation for
the position of the i0th monomer, y(t) = xi0(t), so that all other monomers are hidden in
some effective functions. We allow for an external force that is only applied to the i0th
monomer, F (y(t)). The connectivity matrix, M , is a matrix that describes how monomers
are connected to each other. The dynamics of each monomer (in natural units lR = 1 = τR,
where lR is the typical length of one bond and τR is the relaxation time of one monomer, see
Section 3.1.3 for a small introduction of the Rouse chain) can be described by the following
Langevin equations,

ẋi(t) = −
N∑
j=1

Mijxj(t) + fi(t) + δi0iF (y(t)), ∀i, (5.1)

where we have added two fictive monomers x0(t) = x1(t) and xN+1(t) = xN(t) for Eq. (5.1)
to be valid for all i and introduced the thermal noise (white Gaussian) fi(t), with mean zero
and covariance

⟨fi(t)fj(t′)⟩ = 2δijδ(t− t′). (5.2)

The connectivity matrix, M , is defined by setting Mij = −1 if the monomer i is connected
to the monomer j and Mii equal to the number of connections to the monomer i. This matrix
is clearly symmetric, which means that it can be diagonalized with the matrix of eigenvectors
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P and its transpose P T :
P TMP = D = diag(λ1, ..., λN), (5.3)

where P T = P−1, due to the symmetry of M . The diagonal matrix, D, is a matrix with the
eigenvalues, λi, in the diagonal. Using the matrix P one can define a new coordinate system,
ai = ∑

j Pjixj, that decouples the Langevin equations:

ȧi = −λiai + gi +Gi(y(t)), (5.4)

where gi = ∑
j Pjifj and Gi(y(t)) = Pi0iF (y(t)) = biF (y(t)) with bi ≡ Pi0i. Due to the fact

that P−1 = P T , the new noise term, gi, is still Gaussian with mean zero and covariance
⟨gi(t)gj(t′)⟩ = 2δijδ(t − t′). The new coordinate system is called the normal mode space,
where the ais are called the normal modes (or just modes). The solution of Eq. (5.4) reads

ai(t) = ai(0)e−λit +
∫ t

0
dt′e−λi(t−t′)[gi(t′) +Gi(y(t))]. (5.5)

The first mode, a1, is typically related to the position of the center of mass of the polymer.
If the polymer is free to move (no monomers are fixed at a position), then, when there is no
external force F , the position of the center of mass should diffuse. In Eq. (5.4), it is clear
that the only way for a1 to be diffusive is if λ1 = 0. This is true for any connectivity matrix
M that represents a set of degrees of freedom not attached.

The equation for the monomer of interest, y(t) = xi0(t), can also be written with the help
of these modes,

ẏ(t) = −
N∑
i=2

biλiai + fi0 + F (y(t)), (5.6)

where the i = 1 term of the sum is zero because λ1 = 0. Using the solutions obtained for the
modes ai(t), one can write

ẏ(t) = −
N∑
i=2

biλi

(
ai(0)e−λit +

∫ t

0
dt′e−λi(t−t′)[gi(t′) + biF (y(t))]

)
+ fi0 + F (y(t)), (5.7)

where we identify two functions

h(t) = fi0(t) −
N∑
i=2

biλi

(
ai(0)e−λit +

∫ t

0
dt′e−λi(t−t′)gi(t′)

)
, (5.8)

χ(t) = δ(t) −
N∑
i=2

b2
iλie

−λit. (5.9)

With these functions it is possible to rewrite the equation for y(t) as

ẏ(t) = h(t) +
∫ t

0
dt′χ(t− t′)F (y(t′)). (5.10)

This is one form of the overdamped generalized Langevin equation. Analyzing Eq. (5.10),
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one might think that when there is no external force the memory effects disappear due to
the fact that the equation is reduced to ẏ(t) = h(t). However, the noise term, h(t), is clearly
time-correlated (not white) and it depends on the (initial) conformations of the polymer.
One can, as an example of this dependence, compute the mean of h(t),

⟨h(t)⟩ =
N∑
i=2

biλi ⟨ai(t)⟩ =
N∑
i=2

biλie
−λit ⟨ai(0)⟩ . (5.11)

Let us now assume that the initial configuration is the equilibrium one conditioned to
y(0) = y0. This would be equivalent to finding the stationary limit of Eq. (5.4). The initial
conditions on the modes are1, therefore,

⟨ai(0)⟩ = 0,
⟨ai(0)aj(0)⟩ = δij/λi.

, for i, j ≥ 2, (5.12)

even if there is an external force. Since λ1 = 0 for a free polymer, one cannot extend
Eq. (5.12) to i, j = 1. This is not a problem here because one can always write the modes
with index one as a function of the other modes and the position of the monomer of interest,
y(t).

From the definitions of h(t) and χ(t), Eqs. (5.8) and (5.9), using the initial conditions for
ai(0), one can observe that the fluctuation dissipation theorem is still true

⟨h(t)h(t′)⟩ = χ(|t− t′|). (5.13)

where, once again, it is made clear that, even if the system is started at equilibrium (⟨ai(0)⟩ =
0), the effective “thermal” noise remains correlated.

Another form of the generalized Langevin equation is obtained by using the Laplace
transform2 to invert Eq. (5.10):∫ t

0
dt′K(t− t′)ẏ(t′) = ξ(t) + F (y(t)), (5.14)

where K(t) = L−1[1/χ̃(s)] (t) is the memory (friction) kernel and ξ(t) = L−1
[
h̃(s)/χ̃(s)

]
(t)

is a random force that, in general, is not white. Note that the fluctuation dissipation theorem
is also verified for ξ(t) and K(t),

⟨ξ(t)ξ(t′)⟩ = kBTK(|t− t′|), (5.15)

where we have reestablished the factor kBT , with kB the Boltzmann constant and T the
temperature, that is necessary for homogeneity. Further discussion on the memory kernel is

1In fact, one can write ps(ai(0)|y(0) = y0) ∝ e−V (y0)−
∑

i
λia2

i , with F (y) = −V ′(y), which means that the
statistics of ai(0) conditioned to the fact that y(0) = y0 does not depend on the value of y0, nor the external
force.

2we recall that the Laplace transform of f(t) is f̃(s) = L[f(t)](s) =
∫∞

0 dt e−stf(t)
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given in the end of the next section.

5.1.2 | Calculation of the mean square displacement

One of the first results one can obtain from the generalized Langevin equation is the mean
square displacement of the process y(t) in the absence of an external forces. Let us assume
here that the origin of the coordinate system is at y(0) = 0 and that there are no external
forces. From Eq. (5.10) it is possible to obtain

⟨ỹ(s)ỹ(s′)⟩ = 1
ss′

〈
h̃(s)h̃(s′)

〉
= kBT

χ̃(s) + χ̃(s′)
(s+ s′)ss′ , (5.16)

where we have used the fact that, when ⟨f(t)f(t′)⟩ = g(|t− t′|), the double Laplace transform
of ⟨f(t)f(t′)⟩ is given by

〈
f̃(s)f̃(s′)

〉
= g̃(s)+g̃(s′)

(s+s′) .

If one assumes that the Gaussian process being studied displays stationary increments,
then, the covariance of this process must be

⟨y(t)y(t′)⟩ = 1
2
(
ψ(t) + ψ(t′) − ψ(|t− t′|)

)
, (5.17)

where ψ(t) is the mean square displacement, see Section 2.2.1 for the proof. Performing the
double Laplace transform on ⟨y(t)y(t′)⟩ on obtains

⟨ỹ(s)ỹ(s′)⟩ = 1
2

(
ψ̃(s)
s′ + ψ̃(s′)

s
− ψ̃(s) + ψ̃(s)

s+ s′

)
= s2ψ̃(s) + s′2ψ̃(s′)

2(s+ s′)ss′ . (5.18)

Combining Eqs. (5.16) and (5.18), it is clear that the mean square displacement is given by

ψ(t) = 2kBTI(t), with I(t) = L−1
[
χ̃(s)
s2

]
(t) = L−1

[
1

s2K̃(s)

]
(t). (5.19)

Let us now study some memory kernels. The first result from Eq. (5.19), is that, if K(t)
is integrable, i.e.,

∫∞
0 dtK(t) = K̃(0) exists, then, the long time behaviour is known:

lim
t→∞

ψ(t) = L−1
[
lim
s→0

2kBT

s2K̃(s)

]
(t) = L−1

[
lim
s→0

2kBT

s2K̃(0)

]
(t) ∼ 2kBT

K̃(0)
t. (5.20)

Therefore, if the memory kernel is integrable, then, the long time behaviour of the random
walker is diffusive. It comes as no surprise that when the memory kernel is a Dirac delta
function, the mean square displacement is diffusive at all times, as memory is instantaneously
lost and the system is Markovian. Alternatively, diffusion can still be reached if the memory
kernel decays exponentially. In that case the system is non-Markovian but eventually becomes
diffusive.
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Moreover, let us look for one case where the long time behaviour is not diffusive. One
can, for example, choose the memory kernel

K∞ = α∞

t2H
, with H > 0, (5.21)

that is not integrable. This kernel corresponds to memory that decays as a power law, and,
therefore, memory is long lasting. The resulting mean square displacement is

ψ(t) = kBT sin (2πH)
πHα∞

t2H , for H <
1
2 , (5.22)

corresponding to a subdiffusive fractional Brownian motion, with Hurst exponent H.

Furthermore, we would like to find a memory kernel that is subdiffusive at short times
and becomes diffusive after some crossover time. This is motivated by the study of beads
moving inside polymer solution, where this behaviour is found (Mason et al., 1997). To this
end, we choose a memory kernel that displays a power law decay up to some typical time τ0
and an exponential decay after. The motivation is to create a subdiffusive regime up to τ0
and a diffusive one after. We propose:

K(t) = γ0

τ0
fHv

(
t

τ0

)
, fHv(x) = 1

Γ(1 − 2Hv)
e−x

x2Hv
, for Hv <

1
2 , (5.23)

where γ0 =
∫∞

0 K(t)dt is the long time friction coefficient (this will become evident when the
long time behaviour is analyzed), τ0 is the crossover time from subdiffusion to diffusion and
Hv < 1/2 is the (short time) Hurst exponent of the viscoelastic fluid. Introducing this kernel
into Eq. (5.19), one obtains

ψ(t) = 2τ0kBT

γ0

1
Γ(2Hv)

[(
t

τ0
− 2Hv + 1

)
γ
(

2Hv,
t

τ0

)
+
(
t

τ0

)2Hv
e−t/τ0

]
, (5.24)

where γ(α, x) =
∫ x

0 t
α−1e−tdt is the lower incomplete gamma function. Analyzing the asymp-

totic behaviour of the mean square displacement, one can find that for short times,

ψ(t) ∼
t≪τ0

2τ0kBT

γ0τ
2Hv
0 Γ(1 + 2Hv)

t2Hv , (5.25)

we do find subdiffusion and for long times,

ψ(t) ∼
t≫τ0

2kBT

γ0
t, (5.26)

we find regular diffusion with a diffusion coefficient D = kBT/γ0. In the next section,
we analyze experimental trajectories that are obtained from the tracking of beads in a
viscoelastic fluid. Then, we check if the mean square displacement obtained here matches
the experimental one.
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5.1.3 | Developing an experiment to see non-Markovian effects

In this section, we briefly describe one experimental framework where non-Markovian effects
can be observed. Then, we study the corresponding trajectories and obtain their mean square
displacement. The experiments described in this section have been performed by B. Gorin,
K. Xie and H. Kellay, our experimental colleagues at LOMA, from which we obtained the
trajectories of non-Markovian walkers, that we have further analysed.

5.1.3.1 | Experimental setup and first limitations

With the hope of creating a viscoelastic fluid where memory effects are visible, a solution
of NaCl and polyacrylamide in water is prepared. Polyacrylamide has a long linear chain
structure that, when hydrated, creates gels. Tuning the concentration of polyacrylamide one
can tune the viscoelastic properties of the solution. Now that a complex (viscoelastic) fluid
is prepared, one can immerse acrylic3 fluorescent microspheres in the solution. These are
glass-like spheres with 1µm diameter that emit light and therefore, using a microscope, it is
possible to record their positions. Then, fitting Gaussians to the bright spots on each frame,
it is possible to obtain the trajectories x(ti) for each particle in the frame.

Figure 5.2: The movement of acrylic beads in a viscoelastic solution. (a) Intensity map obtained from
the microscope. (b) Three examples of bead trajectories in solutions with different concentrations
of polymers.

Note that, recording images from a microscope requires the storage of N frames with m×n
pixels. This means that, even though we only want a trajectory, i.e., a list (ti, xi) ∀i=1,...,N , we
have to store a lot of data that is mostly useless to our analysis, thus limiting the amount of
statistics that is reasonably obtainable. To maximize the statistics obtained one can reduce
the size of each frame, however, one has to be careful to not reduce the frame size too much
making it easier to have particles that leave the frame. Alternatively, one could increase the
number of particles in the fluid, thus including more information in one frame. However,
this would mean that particles would interact with each other and we do not want to study
particle interactions here.

3Poly(methyl methacrylate)
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5.1.3.2 | Characterization of the experimental trajectories

Let us now analyze the trajectories obtained from the experiments described before. We
have prepared four different polymer solutions with the hope of producing different ranges of
non-Markovian effects. One solution has no long polymers (water), for control, and the three
others have polymer concentrations of 500ppm, 1000ppm and 2000ppm, where we hope to
see increasing memory effects.

Figure 5.3: Example of a trajectory obtained from the experiments. Trajectory obtained by tracking
the bright spots in the videos. Here, the acrylic bead is moving in a solution with concentration
500ppm of polymers. The frame rate is 500 frames per second.

From Figure 5.3 some characteristics of the underlying stochastic process become evident.
At first observation, it is clear that the trajectories can be seen as non-smooth, ⟨ẋ2(t)⟩ = ∞,
just like in the case of Brownian motion. This means that, in fact, one can ignore the inertia
of the bead in comparison to the effect of friction when describing its motion, as expected for
micron sized objects in fluids more viscous than water. One can then use the overdamped
dynamics that is assumed in Section 5.1.1.

One can also check if these trajectories display stationary increments. In fact, plotting
∆τ (t) = x(t+ τ) − x(t) as a function of t (see Figure 5.4), we see that ∆τ (t) does not depend
on t and, therefore, the trajectories display stationary increments.

Then, one can also check that the process is Gaussian. In Figure 5.5, we represent
the statistics of the normalized steps,

(
x(t+ τ) − x(t)

)
/
√

Var(x(t+ τ) − x(t)), for different
elapsed times, τ . It can be see that the statistics of the steps in the four solutions studied is
Gaussian. Therefore, since the process also displays stationary increments, the covariance of
these trajectories, σ(t, t′), can be written as

σ(t, t′) = ψ(t) + ψ(t′) − ψ(|t− t′|)
2 , (5.27)

where ψ(t) is the mean square displacement, see Section 2.2.1.

Let us now look for the mean square displacement of these trajectories. For this we create
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Figure 5.4: Verification that the trajectories display stationary increments. Representation of
the increments ∆τ (t) = x(t + τ) − x(t) for three different times τ . It is clear that there is no t
dependence in ∆τ (t) showing that the trajectory x(t) is of stationary increments. The trajectory
used is represented in grey and was obtained for a solution of concentration 500ppm with a frame
rate of 500 frames per second.
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Figure 5.5: Verification that the distribution of the steps is Gaussian for each solution. Normalized
histograms (linear and semi-log) of the increments x(t+ τ) − x(t) for water (in blue), 500ppm (in
green), 1000ppm (in yellow) and 2000ppm (in red). Two different elapse times, τ , are represented:
the crosses correspond to τ = τ0 (the memory time obtained from the fit to Eq. (5.19), see figure
5.7) and the circles correspond to τ = τ0/2.

the estimator
δ2(τ, T ) = 1

T − τ

∫ T−τ

0
dt
[
x(t+ τ) − x(t)

]2
, (5.28)

where T is the time length of the trajectory. The mean value of this estimator is the mean
square displacement, ⟨δ2(τ, T )⟩ = ψ(τ), and its variance can be written as

Var
(
δ2(τ, T )

)
=
〈(
δ2(τ, T ) − ψ(τ)

)2
〉

=
∫ T−τ

0
dt
T − τ − t

(T − τ)2

[
ψ(t+ τ) + ψ(|t− τ |) − 2ψ(t)

]2
.

(5.29)

In Figure 5.6 we, represent the estimator δ2(τ, T ) to Ntraj = 59 trajectories tracked in a
solution with concentration 500ppm. The mean of this estimator, equivalent to the mean
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Figure 5.6: Graph of the estimator δ2(τ, T ) for a solution of concentration 500ppm. In partially
transparent lines, δ2(τ, T ) is plotted for each of the Ntraj = 59 tracked trajectories. The mean value,〈
δ2(τ, T )

〉
, and corresponding uncertainty,

√
Var(δ2(τ, T ))/Ntraj, are shown in a blue thick line and

a (small) shaded region of the same color. Two asymptotic lines are drawn: the dotted line, that
represents a fit to the diffusive behaviour (for long times), and the dashed line, representing the fit
to the subdiffusive behaviour with Hv < 1/2. These trajectories were obtained from a solution of
concentration 500ppm (of long polymers) with a frame rate of 500 frames per second.

square displacement, is also represented. In the figure, one can see that for large times the
mean square displacement is linear and, therefore, for large times, the movement of the bead
becomes diffusive. However, for short times, one can see that the mean square displacement
is no longer linear and is in fact subdiffusive (with Hv < 1/2). This suggests that the mean
square displacement in Eq. (5.24), obtained with the memory kernel K(t) ∼ e−t/t2Hv , might
be a good fit to the experimental data. In Figure 5.7, we represent the results of this fit to
the mean square displacement of each solution prepared. There, analyzing Hv as a function
of concentration, it is clear that memory effects increase with concentration.

Combining the facts that the trajectories are Gaussian, with stationary increments and
display subdiffusion, and after checking the properties for the other concentrations, one can
say that the process underlying the movement of beads in viscoelastic fluids is non-Markovian.
This is a consequence of an extension of Doob’s Theorem, see Section 2.2.1.

In order to use these experiments to verify non-Markovian theories, one has to check if
the trajectories are subjected to drift, that is usually a consequence of residual currents in
the fluid. This is important because, up to now, there are no theories studying first passage
events for non-Markovian random walkers that are subjected to drifts. Therefore, one must
first verify that there is no drift. To do this, we build the estimator:

m(τ, T ) = 1
T − τ

∫ T−τ

0
dt
(
x(t+ τ) − x(t)

)
, (5.30)
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Water
D 0.37 µm2/s

500ppm
γ0/kBT 40 s/µm2

τ0 1.48 s
Hv 0.375

1000ppm
γ0/kBT 217.5 s/µm2

τ0 2.9 s
Hv 0.275

2000ppm
γ0/kBT 2415 s/µm2

τ0 7 s
Hv 0.175

Figure 5.7: Mean square displacement of an acrylic bead moving in different viscoelastic solutions.
We represent, in continuous lines the mean square displacement corresponding to the four different
solutions, obtained from δ2(τ, T ), and corresponding uncertainty represented as a shaded region
around ψ(t). The fit of Eq. (5.24) to the data is represented with dashed lines and the extension
outside the time range of the fit is represented with a grey dotted lines. The parameters of the fit
are given in the table on the right.

where one analyzes the time averaged increments. Assuming that the system is ergodic, the
estimator m(τ, T ) is equivalent to ⟨x(t+ τ) − x(t)⟩. If there is no drift, then ⟨x(t)⟩ must
be constant, and, therefore, the no-drift hypothesis is equivalent to saying that one must
observe ⟨m(τ, T )⟩ = 0,∀τ . The variance of this estimator is

Var(m(τ, T )) =
〈
m2(τ, T )

〉
=
∫ T−τ

0
dt
T − τ − t

(T − τ)2

[
ψ(t+ τ) + ψ(|t− τ |) − 2ψ(t)

]
, (5.31)

which is calculated under the hypothesis of no drift. With this estimator, one can check if the
no-drift hypothesis is valid. For this we compute the estimator m(τ, T ) for every trajectory
observed and verify if the estimator leaves the region 0±2σm = ±2

√
Var(m(τ, T )). If there is

no drift, then 95% of the trajectories should fall inside this region for all τ . In Figure 5.8-(a)
we show how this test is performed. We take the trajectories of beads in a 500ppm solution
and compute m(τ, T ) for each trajectory. One can see that ≈ 15 trajectories go outside the
region ±σm, corresponding to 74% of all trajectories and ≈ 2 trajectories leave the region
±2σm, corresponding to 3%. One can see from Figure 5.8 that the four solutions prepared
before verify the no-drift hypothesis.
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Figure 5.8: Verification that the no-drift hypothesis is valid. Representation of the estimator
m(τ, T ), defined in Eq. (5.30), for every trajectory in every solution studied. If there is no
drift, then the estimators m(τ, T ) (one for each trajectory recorded) should land inside the re-
gion in purple, ±2

√
Var(m(τ, T )), with 95% probability. In (a), one aditional region is represented,

±
√

Var(m(τ, T )), where trajectories should land with probability 74%. (a) Solution with 500ppm
of long polymers recorded at 500 frames per second; (b) Water solution recorded at 10 frames per
second; (c) 1000ppm at 245 frames per second; (d) 2000ppm at 250 frames per second.

5.2 | Predicting the splitting probabilities for Gaussian ran-
dom walkers

Now that we have an experimental setup that produces real non-Markovian trajectories, one
can use these trajectories to prove (or disprove) non-Markovian theoretical predictions. In
this section, we develop a theory that enables us to calculate the splitting probabilities for
Gaussian non-Markovian random walkers and test it against experimental results for four
different viscoelastic fluids.

Let us start by assuming that a free random walker x(t), started at x0 > 0, moves in the
search of two targets, one at x1 = 0 and one at x2 = L > x0. Here, we derive the equations
that provide the probabilities of touching the left target before the right one, π1 (π2 is the
opposite). To this end, some properties of the random walker must be assumed. We assume
that the random walker is non-biased (there is no drift), non-smooth (⟨ẋ2(t)⟩ = ∞) and
Gaussian with covariance σ(t, t′) and stationary steps. Due to these assumptions one can
write the covariance as

σ(t, t′) = 1
2(ψ(t) + ψ(t′) − ψ(|t− t′|)), (5.32)

where ψ(t) is the mean square displacement4. One also assumes, for generality, that the

4see Section 2.2.1
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long time behaviour of the mean square displacement is a fractional Brownian motion,
ψ(t) ∼

t→∞
Kt2H , with 0 < H < 1 the Hurst exponent, which includes the particular case

of long time diffusion (as seen in the previous experimental results). Note that H = 1/2
does not correspond to Hv = 1/2, as Hv corresponds to the subdiffusion that happens at
short time scales. In fact, these assumptions “create” trajectories similar to those of the
experiments, i.e., non-biased (no drift), non-smooth, with stationary increments and long
time Brownian motion (if the theory is applied to the case of H = 1/2), see Section 5.1.3.2.
With these assumptions one can write a renewal equation,

p(χ, t) = p(χ, t; FPT > t) + p(χ, t; FPT ≤ t), (5.33)

where p(χ, t), corresponding to the probability distribution function to find x(t) = χ, is split
into two ways of reaching that point. The first term in the right hand side corresponds to the
trajectories that reach the position χ at time t without touching any of the target (FPT > t),
p(χ, t; FPT > t). The second term corresponds to the (joint) probability of touching one of
the targets for the first time (the first passage time, FPT) before t and then reaching the
position χ at time t, p(χ, t; FPT ≤ t). Using the probability distribution function of touching
one of the targets for the first time at time t, F (t), one can further develop Eq. (5.33),

p(χ, t) =
∫ ∞

t
dτF (τ)p(χ, t|FPT = τ) +

∫ t

0
dτF (τ)p(χ, t|FPT = τ). (5.34)

If one now multiplies Eq. (5.34) by χ and integrates over the same variable, one obtains

x0 =
∫ ∞

t
dτF (τ)E[x(t)|FPT = τ ] +

∫ t

0
dτF (τ)E[x(t)|FPT = τ ], (5.35)

where E[x(t)|FPT = τ ] is the mean position of the random walker x(t) given that, at time τ ,
the random walker touched one of the targets for the first time.

Let us now define a new process, the one describing the movement after the random
walker touches one of the targets for the first time, xπ(t) = x(t+ FPT). We assume that this
process has mean µ(t), that can be written as

µ(t) = E[x(t+ FPT)] =
∫ ∞

0
dτF (τ)E[x(t+ τ)|FPT = τ ]. (5.36)

Let us now introduce one variable A, that will later be taken to infinity, and integrate
the function g(t) =

∫ t
0 dτf(t, τ) from 0 to A:

∫ A

0
dt
∫ t

0
dτ f(t, τ) =

∫ A

0
dτ
∫ A

t
dt f(t, τ) =

∫ A

0
dτ
∫ A−τ

0
du f(u+ τ, τ)

=
∫ A

0
du
∫ A−u

0
dτ f(u+ τ, τ). (5.37)
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Using Eq. (5.37) with Eqs. (5.35) and (5.36), one can write
∫ A

0
dt
(
µ(t) − x0 +

∫ ∞

t
dτF (τ)E[x(t)|FPT = τ ]

)
=
∫ A

0
du
∫ ∞

A−u
dτF (τ)E[x(t+ τ)|FPT = τ ] ≡ Q(A). (5.38)

If we can show that Q′(A) goes to zero for large A, then, the integrand of the left hand side
of Eq. (5.38) must also go to zero for large t. Using the change of variables u → v = A− u

one can rewrite Q(A) as

Q(A) =
∫ A

0
dv
∫ ∞

v
dτF (τ)E[x(τ + A− v)|FPT = τ ]. (5.39)

We now argue that, whatever the conditions imposed on the past trajectory, the mean of
the process at long times cannot travel a bigger distance than the square root of the mean
square displacement, ∼ K1t

H . Hence, one can assume that, for large A,

|E[x(τ + A− v)|FPT = τ ]| < K1A
H , (5.40)

where K1 > 0 is arbitrary. Using Eq. (5.40) and the survival probability5, S(v) =
∫∞
v dtF (t) >

0, one can find an upper bound for Q(A):

|Q(A)| < K1A
H
∫ A

0
dv
∫ ∞

v
dτF (τ) = K1A

H
∫ A

0
dvS(v) < K1A

H
∫ ∞

0
dvS(v) = K1A

H ⟨T ⟩ ,
(5.41)

where ⟨T ⟩ =
∫∞

0 dvS(v) is the mean first passage time, which is finite in our case because,
for times larger than (L2/K)1/2H the random walker is almost sure to have reached one of
the targets6. With this, we have shown that Q′(A) ∼ 1/A1−H , with H < 1, goes to zero and,
therefore, the integrand in the left hand side of Eq.(5.38) must also go to zero:

lim
t→∞

(
µ(t) − x0 +

∫ ∞

t
dτF (τ)E[x(t)|FPT = τ ]

)
= 0. (5.42)

If one now notices that the trajectories that have not yet reacted must be inside the
region x(t) ∈]0, L[, it becomes clear that, for τ > t, 0 ≤ E[x(t)|FPT = τ ] ≤ L. It is then
possible to find the upper and lower bounds of the third term of Eq. (5.42):

0 ≤ lim
t→∞

∫ ∞

t
dτF (τ)E[x(t)|FPT = τ ] ≤ L lim

t→∞

∫ ∞

t
dτF (τ) = 0, (5.43)

which means that this term is equal to zero and one can write

lim
t→∞

µ(t) = x0. (5.44)

5The survival probability, S(t), is defined as the probability of not touching any target before time t. It
is naturally equal to the probability of touching a target for the first time at a time larger than t. Therefore,
S(t) =

∫∞
t
dτF (τ).

6This time is such that ψ(t) ∼ L2.
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Finally, by splitting µ(t) into the trajectories that touched the left target first, with probability
π1 and mean trajectory µ1(t), and the trajectories that touched the right target, with
probability π2 and mean µ2(t), one can write

x0 = lim
t→∞

[
π1µ1(t) + π2µ2(t)

]
. (5.45)

In principle, Eq. (5.45) enables us to obtain π1 by using the fact that π1 + π2 = 17. However,
we are still required to find the long time limit of µ1(t) and µ2(t). To find the mean trajectories
after reaction8, one can write a new renewal equation describing the movement after one of
the targets (at x1 = 0 or x2 = L) is met,

p(xi, t; y, t+ τ) =
∫ t

0
dt′F (t′)p(xi, t; y, t+ τ |FPT = t′), (5.46)

where y is an arbitrary position that is reached a time τ > 0 after touching one target at
time t. Developing Eq. (5.46) in a way that is described in Appendix D, one can write:∫ ∞

0
dt
(
E[xπ(t+ τ)|xπ(t) = xi]pπ(xi, t) − E[x(t+ τ)|x(t) = xi]p(xi, t)

)
= 0, (5.47)

where E[xπ(t+ τ)|xπ(t) = xi] is the mean position of the process xπ(t) at time t + τ given
that it was at the xi at time t (after it reacted at time “zero”) and E[x(t+ τ)|x(t) = xi] is
the mean of the process x(t) at time t+ τ given that it was at xi at time t.

Since the joint probability distribution after reaction, pπ(xi, t; y, t+ τ), can be split into
reactions that happened at the left or right targets, one can write

pπ(xi, t; y, t+ τ) =
∑
j=1,2

πjqj(xi, t; y, t+ τ), (5.48)

where qj(xi, t; y, t + τ) is the joint probability distribution function to find xπj(t) ≡ x(t +
FPTj) = xi and xπj(t+ τ) = y with xπj(t) the process that describes the movement of the
particle after it touched (for the first time, at time FPTj) the target at position xj before
touching the other target. Using this decomposition one can write

E[xπ(t+ τ)|xπ(t) = xi]pπ(xi, t) =
∑
j=1,2

πjE
[
xπj(t+ τ)|xπj(t) = xi

]
qj(xi, t), (5.49)

and, therefore, Eq. (5.47) can be rewritten as

∫ ∞

0
dt

 ∑
j=1,2

πjqj(xi, t)Eπj(xπj(t+ τ)|xπj(t) = xi) − p(xi, t)E(x(t+ τ)|x(t) = xi)
 = 0.

(5.50)

Then, since we do not know the functions qj, we assume that the process xπj(t) is

7This is true because, one of the assumptions is that ψ(t) ∼ Kt2H for large t with H > 0
8Here, a reaction is when the random walker touches for the first time one of the targets.
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(approximately) Gaussian with mean µj(t) and covariance σ(t, t′). Thus enabling us to use
the projection law (described in Appendix A) to explicitly write the conditioned means. Using
the fact that qj(xi, t) (and p(xi, t)) is Gaussian with mean µj(t) (mean x0) and covariance
σ(t, t′), one can write two integral closed equations for µ1(t) and µ2(t):

∫ ∞

0

dt√
ψ(t)

 ∑
j=1,2

πj

[
µj(t+ τ) − (µj(t) − xi)

σ(t+ τ, t)
ψ(t)

]
exp

(
−(xi − µj(t))2

2ψ(t)

)

−
[
x0 − (x0 − xi)

σ(t+ τ, t)
ψ(t)

]
exp

(
−(xi − x0)2

2ψ(t)

) = 0, ∀i=1,2,

(5.51)

We have now two coupled integral equations that can be numerically integrated to find the
limits of µ1(t) and µ2(t) at large times. With these limits, the splitting probability can be
found from Eq. (5.45). Now that we have a theory for competitive events, we can test it with
the experiments described in the Section 5.1.3.

5.3 | Testing the theory with experiments

5.3.1 | Choosing appropriate experimental parameters

As mentioned in Section 5.1.3.1, our experimental setup produces a large amount of data
that is irrelevant if one only wants to store the trajectories of different particles. This is due
to the fact that one has to store a video instead of the trajectories, and only after one can
analyze the video to extract the trajectories of the particles. This by it self is the biggest
constraint to the amount of data one can obtain. However, there are other particularities of
the setup that one has to tune to obtain usable data.

As we intend to study first passage events it is important to be sure that, when we detect
such an event it is in fact close to the first passage event. This problem arises from the fact
that, when recording the videos, we have to choose one frame rate f , i.e., the time in between
frames of the video, and this will directly influence the time definition of our trajectories. If
the frame rate is low, then, the particles might realize first passage events in between frames
and we will mesure first passage quantities that are incorrect. We call this artifact a border
effect: when the frame rate is too low, π2(x0) is overestimated for x0 → 0 and underestimated
for x0 → L.

The solution is then to choose a high frame rate. However, as mentioned before, storing
all this frames is expensive and eventually one does meet a maximum number of frames,
Nframes, that can be stored (in our case, ∼ 1TB). This limits the observation time to N/f .
Naturaly, if one increases the frame rate the recording time is reduced and, consequently,
the distance travelled by the particles during the video is smaller. This is a problem because
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we are looking for memory effects that macroscopically influence movement, meaning that,
ideally, we would like to see π(x0) ̸= x0/L (the Markovian prediction) for large L, or at least
of the order of the radius of the particles.

Therefore, one has to find a balance between a high frame rate where border effects are
small and low frame rate where one can see longer trajectories and consequently measure
the memory effect at larger scales.

5.3.2 | Experimental mean trajectories after reaction

Applying the fit parameters, obtained from Figure 5.7, in the Eq. (5.51) one can obtain the
theoretical prediction of the mean trajectory after touching one of the targets for the first
time, µ1(t) and µ2(t). This theoretical prediction is obtained by following a numerical scheme
similar to that of Section 3.1.3. Then, we can compare these theoretical predictions to the
mean trajectories measured from the experiments.

To obtain µ1(t) and µ2(t) from the experiments, we take one experimental trajectory x(t)
and look for the moment it touches one of the targets for the first time. Say, for example,
that the first target touched is the target at xi and it is touched at time FPTi. Then, one
stores the rest of the trajectory, x(t+ FPTi), with 0 < t < Tobs where Tobs is the observation
time9. With the stored trajectories after reaction one computes µi(t) = ⟨x(t+ FPTi)⟩. To
maximize the statistics, one can use the same trajectory multiple times. However, one must
take measures to ensure that the sample is not correlated. To this end, we start at t = 0 and
look for a first passage that happens at the time FPTi, then, we redefine the trajectory as
x(t) = x0 + x(t+ Tsample) − x(Tsample), where the delay Tsample = 2τ0 is added to ensure that
the new starting point of this trajectory has no memory of the previous one, by forcing a
time gap of two memory times (τ0 from Figure 5.7).

In Figure 5.9, we present the mean trajectories after reaction that we have obtained
for the four solutions prepared. One can see that the theoretical predictions quantitatively
match the direct experimental observations, thus verifying the accuracy of our theory10. The
physical intuition of subdiffusion, where particles tend to return to their previous positions
(due to the delayed response forces exerted by the fluid on the particles), is clearly shown in
this figure. This observation is a clear experimental evidence that, right after a first passage
event, the motion of the particle is effectively biased, demonstrating that the suplementary
degrees of freedom (where memory is “stored”) are in a non-equilibrium state at the moment
of the first passage. We note that, in the control case (water), this effects does not happen,
and the trajectory after reaction is in fact unbiased.

9The observation time, Tobs, is the time range of our measurements of µ(t)
10Note that in Figure 5.9 (d) the measured means are constantly jumping, suggesting that the spatial

resolution is poor and the error bars are highly underestimated.
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(a) (b)

(c) (d)

Figure 5.9: Experimental mean trajectory after one of the targets is touched. In green we represent
the theoretical prediction of µi(t) and, in blue (with the respective 95% errorbars), we represent
the experimental analogous. The positions of the targets are x1 = 0 and x2 = L. (a) is obtained in
water with a L = 9µm and x0 = 2µm. (b) is obtained in the solution with 500ppm concentration for
L = 1µm and x0 = 0.2µm. (c) 1000ppm solution with L = 0.5µm and x0 = 0.2µm. (d) 2000ppm
solution with L = 0.6µm and x0 = 0.2µm.

5.3.3 | Experimental Splitting Probabilities

With the theoretical (numerical) prediction of µi(t), one can use Eq. (5.45) to obtain the
theoretical predictions of the splitting probabilities πi. Experimentally, it is easier to obtain
the splitting probabilities πi than µi(t). This is due to the fact that one only has to store
if a first passage event happened or not at xi, and not the full trajectory after it happened,
thus allowing for better statistics. In this case, it is also possible to obtain more statistics
from one trajectory.

In Figure 5.10, we see that the theory (green curves) matches the experiments (in blue) and
predict the correct shapes of π2(x0). This is particularly relevant because the previous best
theoretical estimation of the full π2(x0) is the Markovian one (red dashed line), π2(x0) = x0/L,
which does not take into account memory and is clearly not a good prediction for viscoelastic
fluids. Analyzing the curves of the splitting probabilities for non-Markovian processes it
becomes clear that the effect of memory is to favor the first passage to happen at the closest
target to the initial position. This effect was already qualitatively predicted by the analysis
of scale invariant processes (Majumdar et al., 2010) and is quantitatively predicted by our
theory for non-scale invariant processes.
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(a) (b)

(c) (d)

Figure 5.10: Experimentally measured splitting probability π2 and respective theoretical prediction
for four different solutions. In green we represent the theoretical prediction of π2 and, in blue (with
the respective 95% errorbars), we represent the experimental analogous. The Markovian prediction
is represented with a red dashed line. (a) is obtained in water with a L = 9µm. (b) is obtained in
the solution with 500ppm concentration for L = 1µm. (c) 1000ppm solution with L = 0.5µm. (d)
2000ppm solution with L = 0.6µm.

5.4 | Conclusion

In this chapter, we have described an experimental setup where one can track acrylic beads
that are randomly moving in a viscoelastic fluid of long polymers. We have verified that the
trajectories are Gaussian, with stationary increments. Additionally, we have verified that one
does not need to introduce drift forces (fluid flows) to explain the movement of the beads.
This was important because a theory of how non-Markovian particles move when subjected
to drift forces is lacking. When measuring the mean square displacement we found that
there are two regimes of movement, one, for short times subdiffusive and another, for longer
times, diffusive. It follows, from an extension of Doob’s theorem (see Section 2.2.1), that
the trajectories we have observed in viscoelastic fluids are non-Markovian. Four different
viscoelastic solutions have been studied, with different levels of memory, in water there is no
memory (as expected), but, in the other solutions, we have found that the typical memory
times of these viscoelastic fluids can be of order 1 to 10s, meaning that the effect of memory
is relevant at macroscopic scales.

Then, we have presented a general theory that predicts the effect of memory on the
outcome of competitive events, quantified by the splitting probability to reach one target
before the other for Gaussian stochastic processes. The theoretical predictions for the
splitting probability were tested against the experiments. This test showed that our theory
quantitatively describes the effects of memory in the splitting probabilities. In particular, we
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5.4. Conclusion

showed that, in the context of splitting probabilities, memory makes targets that are close
from the initial condition effectively closer and easier to reach, which is characterized by the
tilted S-shapes in π2(x0). We note that this effect is significatively different from the case
where subdiffusion arises from random jumps with heavy-tailed distributed waiting times,
since the distribution of waiting times does not influence splitting probabilities (Condamin
et al., 2008). By testing the theory against the experiments we have also found the first
direct experimental evidence that, at first passage, the system is not at an equilibrium state,
as seen from the biased trajectories that particles take after the first passage event.
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In this chapter, we study the properties of first passage events when the target is em-
bedded in a compartment where transport is complex. This study is motivated by the
observation of such compartments in biological cells, where membraneless organelles play
crucial roles in cellular processes (Zhao and Zhang, 2020). These organelles lack a surround-
ing membrane, and their formation is driven by liquid-liquid phase separation (Hyman et al.,
2014; Brangwynne et al., 2015; Perry, 2019). Membraneless organelles have been found to
be involved in numerous cellular functions, including RNA processing (Hirose et al., 2023),
signal transduction (Zhang and Herman, 2020), and stress response (Gavrilova et al., 2023).
While their diverse roles have been extensively studied, recent research suggests that these
organelles may also be important for regulating reactivity within the cell (Nakashima et al.,
2019; O’Flynn and Mittag, 2021).

One notable characteristic of membraneless organelles is their high density and viscosity,
which give rise to their viscoelastic properties that have been observed in Elbaum-Garfinkle
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et al. (2015). The viscoelastic behavior is observed through the subdiffusive motion (for short
times) of large beads within these compartments, obtained via microrheology. Subdiffusion
refers to a slower-than-normal diffusion process, often resulting from hindered movement due
to crowding or viscoelasticity.

Given the presence of membraneless organelles and their viscoelastic nature, an intriguing
question arises: can reaction times be optimized by the presence of subdiffusive compart-
ments? The optimization of reaction times is of significant importance in cellular processes,
as it directly affects the efficiency and speed of molecular interactions and signaling cascades.
Previous studies on first passage problems in heterogeneous media with compartments have
focused on diffusive processes (Vaccario et al., 2015; dos Santos et al., 2022). However, the
incorporation of subdiffusion within these compartments to predict first passage properties
remains unexplored.

Addressing the question of optimization mediated by subdiffusive compartments is not
straightforward, as multiple factors come into play. On one hand, in 3-dimensional space,
diffusive walks face difficulty in reaching very small targets, whereas point-like targets (in-
finitesimal) can be reached in finite time for subdiffusive walks, particularly when they are
compact (Condamin et al., 2007). Notably, optimization strategies based on dimensional
changes have been discovered for surface-mediated diffusion (Bénichou et al., 2010) and DNA
search processes (Berg and von Hippel, 1985; Coppey et al., 2004). On the other hand, sub-
diffusion in compartments can also arise due to crowding and viscoelasticity of the medium,
which inherently slows down the motion and is expected to increase the first passage times.

To determine if the speed-up, due to the change of dimensionality, or the slow-down, due
to subdiffusion, dominates, and to explore the potential optimization of mean first passage
times, a theoretical framework is required. There are three main theoretical origins for
subdiffusion. First, one can consider continuous times random walks with long waiting times,
where the random walker waits for a random time between jumps (Metzler and Klafter, 2000).
However, these walks typically need infinite (mean) time to find targets, which is naturally not
suitable for optimisation of reaction rates. The second option to create subdiffusive medium
is viscoelasticity, i.e., developing a full non-Markovian description of the compartment. This
is for now impossible as the theoretical frame work of non-Markovian walks does not allows us
to incorporate interfaces. There are few results for non-Markovian walks close to interfaces,
notably, for the case of a walk close to a reflective wall, the only results available are
obtained from simulations (Vojta et al., 2019). The last theoretical “option” is the use
of fractal networks, where, due to crowding (characterized by lower connectivity between
sites), subdiffusion might happen (O’Shaughnessy and Procaccia, 1985). Since one can write
differential equations that describe the dynamics of diffusive particles in a fractal, this seems
a promising first approach to the study of interfaces between subdiffusive and regularly
diffusive mediums. Therefore, in this chapter, we choose to investigate media with fractal
compartments. Generalization to non-Markovian processes will be postponed due to the
complexity of the problem. However, we note that scaling laws for non-Markovian processes
with stationary increments are often the same as their Markovian counterparts. κ
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In this chapter, we aim to uncover insights into the optimization of reaction times mediated
by subdiffusive compartments described by fractal networks. With this objective, we first
describe how random walkers move in fractals, finding the corresponding Fokker-Planck
equation in Section 6.1. Then, we analyze how the existence of a fractal compartment inside
a regularly diffusive confining volume can be described with a Markovian framework (Section
6.2). We derive the equation providing the mean first passage time for random walkers to
find a target in the center of the compartment (Section 6.3). Then, in Section 6.4, to test the
validity of our theory, we perform simulations in a bond-percolation network and compare the
simulations to the theoretical predictions. To complete the discussion, we study the possible
optimisations of the mean first passage time that the compartment allows (Section 6.5).
There, in Section 6.5, we show that if there is no accumulation (or deficiency) of stationary
probability inside the compartment, it is possible to improve the mean first passage time
even when movement inside the compartment is slower than outside (under some conditions
which we identify).

6.1 | Theory of diffusion in fractals

Let us first remind the features of dynamics in fractals, in a way that can be generalized to
describe compartments. A simple theory for transport in such environments was developed
in O’Shaughnessy and Procaccia (1985), who adopted an effective, coarse grained description
of the dynamics. In what follows, we briefly derive the equation that describes the evolution
of the probability distribution function of the position of a random walker that moves in
a fractal network centered at the origin of our coordinate system. The origin of space is
assumed to be one of the sites of the fractal.

Assume a continuous time random walker, r(t), where r is the distance to the origin, that
moves in a fractal network of dimension df , in a bath of temperature T . As an addition to
the original theory, we allow for the existence of a radial force, F (r), which is not present in
(O’Shaughnessy and Procaccia, 1985) but will be useful for the next sections. The probability
of finding the random walker in a spherical shell between r and r + dr at time t is given by
q(r, t)dr and it is assumed to follow a continuous (no jumps) Markovian dynamics, so that
it satisfies a Fokker-Planck equation, which can be written as

∂tq(r, t) = ∂r

(
χ(r)

[
βϕ′(r)q(r, t) + ∂rq(r, t)

])
, (6.1)

without loss of generality. In Eq. (6.1), ϕ′(r) = ∂rϕ(r) is the derivative of the free energy, ϕ(r),
related to the entropic cost of moving inside the fractal (equivalent to an effective potential),
χ(r) is a space dependent effective diffusivity and β = 1/kBT , with kB the Boltzmann
constant. Note that, in the stationary state, one recovers qs(r) ≡ limt→∞ q(r, t) ∼ e−βϕ(r).

Since ϕ(r) is a free energy, it is related to the entropy of the fractal, S(r) = kB ln Ω(r),
where Ω(r) is the number of possible configurations in a spherical shell of radius r to r + dr,
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6.1. Theory of diffusion in fractals

by the thermodynamic formula

ϕ(r) = U(r) − TS(r) = U(r) − β−1 ln Ω(r). (6.2)

Note that we have also allowed for an energetic potential, U(r), to exist, such that there is a
radial force F (r) = −∂rU(r). From the definition of the fractal dimension, one knows that
inside a volume of radius R the number of sites grows as ∼ Rdf (Bunde and Havlin, 1996).
It is then natural to see that in a spherical shell of radius r, the number of configurations,
can be written as

Ω(r) ∼ rdf−1, (6.3)

up to an unimportant1 spatial cutoff related to the microscopic scale of the sites. Therefore,
using Eq. (6.2),

βϕ′(r) = −βF (r) − df − 1
r

. (6.4)

For the effective diffusivity, χ(r), one assumes that it is a power law, χ(r) = Kr2−dw ,
where dw is known as the walk dimension and is defined in this way so that ⟨r2(t)⟩ ∼ t2/dw .
Note that, in a more natural approach, one could just use χ(r) = Krα with a general
exponent α. Then, when computing ⟨r2(t)⟩, choose α = 2 − dw so that ⟨r2(t)⟩ ∼ t2/dw and
identifying the walk dimension.

The evolution of the propagator q(r, t) can then be written as

∂tq(r, t) = ∂r

[
Kr2−dw

(
−βF (r)q(r, t) − df − 1

r
q(r, t) + ∂rq(r, t)

)]
, (6.5)

where the entropic term, −df−1
r
q(r, t), can be absorbed into the derivative:

∂tq(r, t) = ∂r

[
Kr2−dw

(
−βF (r)q(r, t) + rdf−1 ∂r

(
q(r, t)
rdf−1

))]
. (6.6)

However, in O’Shaughnessy and Procaccia (1985), the results are obtained for the propagator
p(r, t)2, corresponding to the probability distribution function of the position r, i.e., p(r, t)dr
is the probability that the random walker is inside a volume element dr centered at the
position r. If one assumes that there is spherical symmetry, which is often the case in self
similar fractal networks, then, the angular coordinates can be integrated. In that case, one
can think in terms of p(r = |r|, t), the propagator of one specific position r, that is equal to
all the other sites at distance r. One can connect the propagators by the following relation

q(r, t)dr =
∫
dr′p(r′, t)δ(|r′| − r) = Ωdf r

df−1p(r = |r|, t)dr, ∀r: |r|=r, (6.7)

where Ωdf = 2πdf/2/Γ(df/2) is the surface area of the unitary sphere in a space of fractal

1Unimportant because we take the derivative of ln Ω(r), thus removing this dependency with the cutoff.
2The use of vectors as an identifier for a site is a clear abuse of notation, however, it gives an interesting

(physical way) of interpreting fractal spaces
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dimension. Note that Ωnr
n−1 is the Jacobian determinant in a n-dimensional space with

spherical symmetry. Hereafter, for simplicity, we use the form p(r, t) for p(r = r, t). Using
the propagator p(r, t), and ignoring the potential U(r), one obtains

∂tp(r, t) = 1
rdf−1∂r

(
rdf−1 Kr2−dw ∂rp(r, t)

)
. (6.8)

This is the result of (O’Shaughnessy and Procaccia, 1985), that can be interpreted as a
generalization of the Fokker-Planck equation to fractal spaces. It is possible to solve this
differential equation and obtain p(r, t|0, 0), i.e., the probability p(r, t) given that the random
walker starts at the origin:

p(r, t|0, 0) = dw
ΩdfΓ(df/dw)

1
(Kd2

wt)
df/dw

exp
(

− rdw

Kd2
wt

)
, (6.9)

where the normalization
∫
dr (Ωdf r

df−1)p(r, t) = 1 was used and Γ(x) is the gamma function.
This propagator has been analyzed and compared to simulations for the case of Sierpinski
gaskets in (Klafter et al., 1991). There, the authors found that, for finite ξ = r/t1/dw

(corresponding to not too large jumps), the propagator is in good agreement with simulations
and that, for large ξ (big jumps), there is no agreement. However, it must be noted that
small jumps are the most common realizations of the process and Eq. (6.9) is a reasonable
description of motion in a fractal network, at least as first approximation. Now that the
propagator in a fractal is found one can find the moments of the random walker position, for
example the second moment

〈
r2(t)

〉
=
(
Kd2

w

)2/dw Γ((df + 2)/dw)
Γ(df/dw) t2/dw , (6.10)

and so we confirm that dw, is in fact the walk dimension. Here, dw is the parameter indicating
that there is anomalous diffusion, which is the case when dw ̸= 2.

Finally, for later use, we note that using the Chapman-Kolmogorov equation,

q(r, t|r0, t0) =
∫ ∞

0
dr′q(r, t|r′, t′)q(r′, t′|r0, t0), with t0 < t′ < t, (6.11)

and deriving the variable t′, it is possible to obtain the backwards version of the O’Shaughnessy-
Procaccia equation, i.e., how the propagator evolves when r0 is varied (Gardiner, 1985):

∂tq(r, t|r0, 0) = 1
r
df−1
0

∂r0

[
r
df−1
0 Kr2−dw

0 ∂r0q(r, t|r0, 0)
]

+ βF (r0)Kr2−dw
0 ∂r0q(r, t|r0, 0). (6.12)
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6.2. Transport in a medium with a fractal compartment

6.2 | Transport in a medium with a fractal compartment

In this section, we explain the interplay between the compartment and the rest of the d-
dimensional confining space. As explained in the introduction, we use compartments of
fractal dimension, df < d, to model the membraneless organelles, where diffusion happens
according to the last section due to the complex interior. These compartments are embedded
in an arbitrarily shaped confining space (the “cell”) of volume V, where normal diffusion
happens in d-dimensional space. We allow for an energetic gain inside the compartment by
setting the potential U(r) = −E0 < 0 for r < R and zero outside. This potential could
come, for example, from the interaction between random walkers and the polymer matrix
inside compartments; E0 controls the stationary probability for the reactants to be inside
the compartment. See Figure 6.1 for a scheme of the problem studied here.

Figure 6.1: Scheme of the problem studied in this chapter. A random walker r(t), started at
r0 = r(0), moves in a confining volume, V, searching for a target of radius a inside a fractal
compartment of radius R.

6.2.1 | Dynamics in free (infinite) space

Let us start by describing how one can introduce a compartment in free (infinite) space, i.e.,
when there is no confining volume. To facilitate the study, we chose to have a spherical
compartment, and to treat the problem in the radial direction, so that the only relevant
propagator is the radial probability distribution function, q(r, t). In Section 6.3, we prove
that this is in fact the only relevant propagator to find the mean first passage time when
there is an external confinement. Using Eq. (6.6), one can write the dynamics inside and
outside the compartment as

∂tq(r, t|r0) = ∂r

(
rd−1D∂r

q(r, t|r0)
rd−1

)
for r > R, (6.13)

∂tq(r, t|r0) = ∂r

(
rdf−1Kr2−dw∂r

q(r, t|r0)
rdf−1

)
for r < R, (6.14)
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where we note that, since the potential U(r) is constant both inside and outside the compart-
ment, it does not intervene in the dynamic equations. In fact, this energetic gain inside the
compartment is only visible in the free energy, ϕ(r), as previously seen in Eq. (6.2). Using
the general equation for Markovian dynamics, Eq. (6.1), it is possible to combine Eqs. (6.13)
and (6.14)

∂tq(r, t|r0) = ∂r

(
χe(r)∂rq(r, t|r0) + βϕ′

e(r)χe(r)q(r, t|r0)
)

= Prq(r, t|r0), (6.15)

where we introduce the Fokker-Planck operator, Pr and two new effective functions

βϕe(r) =
{

−(d− 1) ln r , r > R

−(df − 1) ln r − C − βE0 , r < R
and χe(r) =

{
D , r > R

Kr2−dw , r < R
.

(6.16)
The constant C is added for generality, since ϕe(r) appears only as a derivative. Note that
these expressions are valid in the limit of large volumes when r is fixed, i.e., r is far from the
confining boundaries.

In search problems, the target position is typically fixed and our objective is to determine
the probability of reaching this point from an initial position r0. In such cases, it can
be beneficial to model the dynamics of q(r, t|r0) using backward Fokker-Planck equations
(Gardiner, 1985). Using the Chapman-Kolmogorov equation, Eq. (6.11), it is possible to
obtain the backwards version of Eq. (6.15):

∂tq(r, t|r0) = ∂r0

(
χe(r0)∂r0q(r, t|r0)

)
− βϕ′

e(r0)χe(r0)∂r0q(r, t|r0) ≡ P†
r0q(r, t|r0), (6.17)

where the operator P†
r0 is the adjoint of Pr at r0.

6.2.2 | Introduction of a confining volume: the stationary distribution

Let us now introduce a confining volume V, of arbitrary shape in the external domain. If
one considers that the confining volume is large, it is natural to assume that, far from the
confinement, the dynamics is the same as in the unconfined case. Then, close to confining
boundaries, the dynamic must change. However, if the volume is large, the regions close to
the boundaries become small in comparison to the volume and one can neglect their effects.

As a first result from this formalism let us find the stationary probability distribution
function, qs(r). To do so, we state that, when r is far from the confinement, qs(r) must
satisfy Eq. (6.15) in the stationary limit, i.e., ∂tqs(r) = 0. This is equivalent to say that the
current JP s(r) must be constant, and, due to the confinement (where there is no current), it
must be equal to zero. This leads to

qs(r) = e−βϕe(r)

Z
, (6.18)
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where Z is a normalization constant. To find Z, we look at the stationary probability ps(r),
previously defined as the probability distribution function of a position r with r = |r|. This
function must be constant outside the compartment, ps(r) = A/V, with A a constant. If one
assumes that the confining volume is large in comparison to the compartment, then A must
be equal to unity. Using Eq. (6.7), we obtain

qs(r) = Ωdr
d−1/V, for r > R, (6.19)

thus giving us Z = V/Ωd when comparing with Eq. (6.18). Therefore, far from the confine-
ment boundaries, the stationary probability, qs(r), is given by

qs(r) = Ωd

V
e−βϕe(r) = Ωd

V

{
rd−1 , r > R

rdf−1eCeβE0 , r < R
. (6.20)

One interesting question is what is the probability to find the random walker inside the
compartment in the stationary regime, P in

s . By definition, we know that the available volume
inside a fractal is ηRdf , where η is a parameter of the specific fractal used, and, therefore,
adding the contribution of the energetic gain inside the compartment, E0, one has

P in
s = eβE0

ηRdf

V
. (6.21)

Alternatively, one can use the stationary radial distribution from Eq. (6.20):

P in
s =

∫ R

0
dr qs(r) =

(
Ωd

df
eC
)
eβE0

Rdf

V
. (6.22)

Combining these two ways of writing P in
s allows us to obtain C, and its relation to the fractal

specific parameter η:
C = ln dfηΩd

. (6.23)

6.3 | Calculation of the mean first passage time

Now that the probability distribution function is well defined inside and outside the com-
partment one can find the mean first passage time, ⟨T⟩, for a particle that is started outside
the compartment to reach a target of radius a inside the compartment.

First, inspired by (Condamin et al., 2007), we would like to find an expression for ⟨T⟩
as a function of the radial distribution function, q(r,Θ, t|r0,Θ), where we have added the
angular components, Θ, to allow for arbitrary shapes of the confinement volume. We start
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by writing a renewal equation

q(a,Θ, t|r0,Θ0) =
∫ t

0
dτ
∫
dΘ′ q(a,Θ, t− τ |a,Θ′)f(τ,Θ′), (6.24)

where f(τ,Θ) is the probability distribution function that the first passage happens at time
τ with angular coordinates Θ. One can also introduce F (τ) =

∫
dΘ f(τ,Θ), the probability

distribution function of the first passage time. If one subtracts qs(a,Θ) on both sides of
Eq. (6.24) and integrates over t from 0 to ∞, we obtain∫ ∞

0
dt
[
q(a,Θ, t|r0,Θ0) − qs(a,Θ)

]
=
∫ ∞

0
dt
∫ t

0
dτ
∫
dΘ′ f(τ,Θ′)

[
q(a,Θ, t− τ |a,Θ′) − qs(a,Θ)

]
− qs(a,Θ)

∫ ∞

0
dt
∫ ∞

t
dτF (τ)

(6.25)

=
∫ ∞

0
dτ
∫ ∞

τ
dt
∫
dΘ′ f(τ,Θ′)

[
q(a,Θ, t− τ |a,Θ′) − qs(a,Θ)

]
− qs(a,Θ)

∫ ∞

0
dτ
∫ τ

0
dtF (τ)

(6.26)

=
∫
dΘ′

∫ ∞

0
dτ f(τ,Θ′)

∫ ∞

0
du
[
q(a,Θ, u|a,Θ′) − qs(a,Θ)

]
− qs(a,Θ)

∫ ∞

0
dτ τF (τ) (6.27)

=
∫ ∞

0
du
∫
dΘ′π(Θ′)

[
q(a,Θ, u|a,Θ′) − qs(a,Θ)

]
− qs(a,Θ) ⟨T⟩ , (6.28)

where the calculation steps are as follows: i) to obtain Eq. (6.25), one uses the fact that
1 =

∫∞
0 dτ F (τ) =

∫∞
0 dτ

∫
dΘ f(τ,Θ); ii) to obtain Eq. (6.26), the time integration order was

reversed; iii) to obtain Eq. (6.27), the change of variables t → u = t− τ was performed; iv)
and, to obtain Eq. (6.28), we have introduced the splitting probability π(Θ) =

∫∞
0 dτ f(τ,Θ),

the probability that the first passage happens with angular coordinates Θ. Therefore the
mean first passage time can be written as

qs(a,Θ) ⟨T ⟩ (a|r0) =
∫ ∞

0
dt
(∫

dΘ′ π(Θ′)q(a,Θ, t|a,Θ′) − q(a,Θ, t|r0,Θ0)
)
, (6.29)

To proceed further, we consider the large volume limit: we approximate q(r,Θ, t|r0,Θ0),
which in general depends on the shape of the confining volume, by its unconfined form,
q∞(r,Θ, t|r0,Θ0):

qs(a,Θ) ⟨T ⟩ (a|r0) =
∫ ∞

0
dt
(∫

dΘ′ π(Θ′)q∞(a,Θ, t|a,Θ′) − q∞(a,Θ, t|r0,Θ0)
)
. (6.30)

Note that, even though we approximate q by the unconfined q∞, the stationary probability
qs(a,Θ) is maintained as the confined one, and, in fact, it is the only contribution of the
confinement to this equation. This result is true for any Θ, therefore, one can integrate over
Θ and obtain

qs(a) ⟨T ⟩ (a|r0) =
∫ ∞

0
dt
(∫

dΘ′ π(Θ′)q∞(a, t|a,Θ′) − q∞(a, t|r0,Θ0)
)
. (6.31)

Since q∞(a, t|a,Θ′) is the propagator in unconfined space there is no reason for q∞(a, t|r0,Θ0)
to depend in Θ0. Hence, the angular dependences can be omitted and, due to the nor-
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malization of π(Θ), one obtains the final form of the equation for the mean first passage
time

T̄ (a|r0) ≡ qs(a) ⟨T ⟩ (a|r0) =
∫ ∞

0
dt
(
q∞(a, t|a) − q∞(a, t|r0)

)
, (6.32)

where T̄ is the mean first passage times rescaled by the factor qs(a). Note that, even though
the propagators in Eq. (6.32) only depend on the radial coordinates, we have just shown that
this expression is true for any shape of the (exterior) confining volume V .

Applying the adjoint Fokker-Planck operator, P†
r0 , defined in Eq. (6.17), to Eq. (6.32)

one obtains
P†
r0T̄ (a|r0) =

∫ ∞

0
dt
(
0 − P†

r0q∞(a, t|r0)
)

= δ(r0 − a), (6.33)

where we have used Eq. (6.15) and realized that limt→∞ q∞(r, t|r0) → 0. Therefore, the
equation that we have to solve to find the mean first passage time is

∂r0

(
χe(r0)∂r0T̄ (a|r0)

)
− βϕ′

e(r0)χe(r0)∂r0T̄ (a|r0) = δ(r0 − a). (6.34)

Let us start by finding the behaviour of T̄ close to the target. We realize that Eq. (6.34)
can be rewritten as

∂r0

(
e−βϕe(r0)χe(r0)∂r0T̄ (a|r0)

)
= e−βϕe(r0)δ(r0 − a), (6.35)

which one can integrate from a− to a+, i.e., from a − ε to a + ε with 0 < ε → 0, giving us
the first boundary condition on the mean first passage time

χe(a)∂r0T̄ (a|r0)
∣∣∣∣
r0=a+

= 1. (6.36)

Note that, to find this result, we have used the fact that inside the target (r < a) the mean
first passage time is trivially zero, and therefore the derivative, ∂r0T̄ , is also zero. A similar
boundary condition was obtained for the case of narrow escape problem in (Bénichou and
Voituriez, 2008), here, we have generalized it to compartmentalized media.

For r0 > a, the delta term in Eq. (6.35) is zero, and one can write

χe(r)∂rT̄ (a|r) = Beβϕe(r), (6.37)

where B = e−βϕe(a) is an integration constant that can be obtained from the boundary
condition at the target, Eq. (6.36). Integrating Eq. (6.37) over r from a to r0 we obtain

T̄ (a|r0) =
∫ r0

a
dr
eβϕe(r)−βϕe(a)

χe(r)
, for r0 > a, (6.38)

where we have used the fact that T̄ (a|r) must be continuous. As we are interested in random
walkers that start outside the compartment we have to find the solution for r0 > R. By
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substituting ϕe(r) and χe(r), one obtains

T̄ (a|r0) = adf−1

K

∫ R−

a
dr rdw−df−1+

∫ R+

R−
dr

eβϕe(r)−βϕe(a)

χe(r)
+ adf−1eCeβE0

D

∫ r0

R+
dr 1/rd−1, (6.39)

where the integral from R− to R+ is equal to zero due to the continuity of the mean first
passage time3. Therefore, using the stationary probability qs(a) = dfη a

df−1eβE0/V from
Eq. (6.20), one obtains

⟨T⟩ (a|r0 > R)
V

= e−βE0

ηdfK

Rdw−df − adw−df

dw − df
+ 1

ΩdD

∫ r0

R
dr 1/rd−1. (6.40)

In particular, for a confining space of 3 dimensions one can write

⟨T⟩ (a|r0 > R)
V

= e−βE0

ηdfK

Rdw−df − adw−df

dw − df
+ 1

4πD

( 1
R

− 1
r0

)
, (6.41)

and, for a 2 dimensional confinement,

⟨T⟩ (a|r0 > R)
V

= e−βE0

ηdfK

Rdw−df − adw−df

dw − df
+ 1

2πD ln
(
r0

R

)
. (6.42)

Additionally, one can also write the mean first passage time by integrating Eq. (6.38) for
r0 < R:

⟨T⟩ (a|r0 < R)
V

= e−βE0

ηdfK

r
dw−df
0 − adw−df

dw − df
. (6.43)

We thus have a theoretical framework to predict the mean first passage time in com-
partmentalized media. In the next two sections, we evaluate the validity of this theory and
question if the compartment can optimize the mean first passage time.

6.4 | The bond-percolation network and simulations

In this section we focus on the specific case of two-dimensional circular bond-percolation
networks and use them as an example of a fractal compartment. The main goal of this
section is to control the validity of our theory, which is easier in two dimensions than in
three, due to the added complexity of the three dimensional simulations. First, we describe
the bond-percolation networks:

• We create a square lattice of size L and spacing ℓ = 1, which is the confining volume.
• Inside a circle of radius R, we remove bonds with probability p, close to the critical

value pc = 0.5.

3∫ R+

R− dr eβϕe(r)−βϕe(a)

χe(r) = T̄ (a|R+) − T̄ (a|R−) = 0.
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6.4. The bond-percolation network and simulations

• For each simulation a new bond-percolation network is created so that one averages
over the disorder.

Then, we develop a simulation scheme for the random walker:

• At each step, the random walker is moved to one of its z neighbours.
• The residence time at each site is τ0/z, with τ0 = 1 defining the time units.
• If the random walker reaches the confinement, then, the step is ignored.
• The target is a circle of radius a, if the random walker enters this circle we say that

there was a reaction.

Finally, we show the simulation results and compare them to the predictions of our theory.

6.4.1 | Parameters of the fractal

There are many examples of fractals that one could study to verify the veracity of our theory,
which should be valid for any fractal medium compartment. Here, we will use the example
of a bond-percolation network. To create the compartment, we take a lattice (in our case
a square lattice with spacing ℓ = 1) and then, with probability p, one goes over all bonds
inside a centered circle of radius R (the compartment) and decides if the bond is removed
or not. This process creates isolated clusters, i.e., sets of sites that are connected by bonds.
The biggest of these clusters can be considered a fractal, when p is equal to the critical value,
in this case p = pc = 0.5 (Bunde and Havlin, 1996). In Figure 6.2 one can see how the
connectivity of each node of the network changes when p increases. We chose this example
of fractal because, as explained before, it is very natural to embed such a compartment in a
larger square lattice.

Figure 6.2: Three realizations of a bond percolation network. The different colors represent different
clusters, i.e., groups of nodes that are connected by bonds. The biggest cluster is always represented
in black. The order parameter is: a) p = 0.25; b) p = 0.5; c) p = 0.75.

When dealing with percolation networks, one usually considers the largest cluster to be
the most relevant and the study is based on this cluster. However, in the case of crowded
compartments, the full network is important and not only the biggest cluster. This is due to
the possibility of a random walker to leave the fractal and reenter it from another cluster,
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which would not be possible if the network was not connected to the exterior medium, since
different clusters have no connecting paths. It is then easy to understand that, at critical
order parameter, the total number of accessible sites in the fractal, N , is much higher than
the one expected by traditional percolation theory, NB, which would be the number of sites
in the biggest cluster. This is clearly visible in Figure 6.3, where the biggest cluster (the one
in black) has only 4419 sites, corresponding to 20% of all accessible sites, defined as the sites
connected to the exterior medium. By counting the sites that are connected to the exterior
of the percolation network, one can see that the existence of the percolation network does
decrease the available space in the compartment, in the case of Figure 6.3, the number of
accessible sites is ≈ 70% of the total number of sites in the compartment.

In Figure 6.3 it is also possible to see that some big regions of the network might be
ignored due to the fact that they are not connected to the exterior. For example the cluster
in green, close to the center of the circle, is never visited by a random walker that is started
outside this cluster. A discussion of the effect of these clusters in the simulation results will
be given in Section 6.4.2.

Figure 6.3: Realization of a circular bond percolation network at critical order parameter. Each
bond at distance r =

√
x2 + y2 < R = 100 is deleted with probability p = 0.5. Different colors

represent different clusters. Each cluster is assigned an index, there are 1170 different clusters in
this figure. The total number of accessible sites is N = 21205 and the number of sites in the biggest
cluster is NB = 4419.

The fractals created by bond-percolation networks have been extensively studied, (Bunde
and Havlin, 1996). It has been found that the fractal dimension of the biggest cluster is exactly
df = 91/48. Here, we will approximate the fractal dimension of the total compartment (with
all accessible sites) to the one for the biggest cluster, so that N(R) ≈ ηRdf . In Figure 6.4 a
fit is performed to obtain the parameter η ≈ 5.18. Note that the real fractal dimension of
the full compartment is larger than df = 91/48, as suggested by the faster growth of N as a
function of R, however, the fit is still good and, as long as we stay in the range used for the
fit, the results of the theory should still be valid.
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6.4. The bond-percolation network and simulations

Figure 6.4: Number of accessible sites as a function of the compartment radius. Simulations
results are shown as black circles and the fit, with η ≈ 5.18 and df = 91/48, is represented by the
continuous line.

6.4.2 | Simulation scheme

In this section, we discuss the simulation scheme used and its limitations. Simulations
are started by creating a bond percolation network where one removes bonds inside the
compartment of radius R with probability p. All bonds connecting to the exterior of the
compartment (r ≥ R) are kept in place so that connectivity between the two media is perfect.
The exterior volume is simulated as a square lattice. After creating the circular network
we start our random walker at a distance r0 from the center of the fractal, which might
land inside or outside the compartment. For each simulation a new fractal is created, thus
eliminating the angular dependence of the simulation, i.e., the simulation can always be
started in the x axis, without loss of generality. Then, as shown in Figure 6.5, the random
walker moves to one of its z neighbours with uniform probability. This step takes a time
τ0/z, where we set τ0 = 1 defining the time units. This choice ensures that the stationary
probability distribution function at each site, ps(ri) = 1/N , is uniform; it is called the
“edge centric dynamics” in (Masuda et al., 2017). Note that, at the confining boundary, we
ignore steps that leave the confining volume, which is not compatible with the “edge centric
dynamics”. However, as these events are rare (due to the simulations being performed at
large volumes), one can still be confident that the stationary distribution remains uniform at
every site in the bulk. Simulations end when the random walker reaches a target of radius a
concentric with the compartment.

This simulation scheme has two main limitations. First, the random walker might start
at a node that does not have any neighbours, in which case the simulation is aborted and
ignored. The second problematic case is the one where the random walker is started inside a
cluster that is not connected to the exterior, see Figure 6.3. This case is clearly impossible
in the real system we want to model because random walkers are usually started outside
the compartment and therefore cannot access this position. Two results can come out of
this case: first, the simulation might never finish due to the fact that the random walker is
trapped. In this case, the maximum time of the simulation is reached without a reaction
and the simulation is ignored; then, the other possible outcome, is if the disconnected cluster
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Figure 6.5: Simulation scheme used inside and outside the compartment. Two situations are
represented, when a random walker moves inside the fractal compartment (blue node), and when it
is outside the compartment (orange node). The waiting time dt at each site is also indicated.

intercepts the target. In that case a reaction might happen, giving us a misleading result
from a system that is equivalent to a simple confinement with volume that is much smaller
than V . We do not have a way of identifying this last case, thus making our simulations
not perfect. However, as discussed before, these clusters only account for ≈ 30% of the total
number of sites and most do not intercept with the target, thus making us believe that the
simulation results are still reasonable. Moreover, this problem does not appear when the
random walker is started outside the compartment, which is the relevant region here, as we
want to optimize reactions by coating a target with a subdiffusive compartment.

6.4.3 | Simulation results

Now that the fractal has been thoroughly characterized and the simulation scheme has been
defined, it becomes possible to simulate random walks and measure the dynamic parameters.
The first three parameters of interest are the walk dimension, dw, the fractal diffusion constant,
K, and the diffusion constant, D.

The walk dimension, dw, has already been investigated in the literature and determined
to be dw = 2.87(2) using the method of exact enumeration of random walks, (Majid et al.,
1984). To determine the values of the diffusion constants, we conduct simulations of random
walks that starts at the center of the circular compartment. These walks evolve to explore
the entire confining volume, allowing us to measure the mean square radial position, see
Figure 6.6. To identify the values of K and D, we employ Eq. (6.10)4. From Figure 6.6, we
find that K ≈ 0.56 and D = 1, which is the exact result for diffusion on a square lattice.

It is worth noting that the method used to determine these dynamic parameters may
fail when the random walk is started within one of the disconnected clusters, effectively

4To find D one uses df = 2 and dw = 2, resulting in
〈
r2(t)

〉
= 4Dt.
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6.4. The bond-percolation network and simulations

Figure 6.6: Simulated
〈
r2(t)

〉
for diffusion in a square confinement with a bond-percolation com-

partment. Simulation results of a random walker that is started at the center of a random circular
bond-percolation network connected to the exterior lattice. Here, R = 100, V = 9 · 108 and p = 0.5.

trapping the walk inside the compartment. To circumvent this issue, we discard any random
walks that have never exited the compartment. This is possible because the probability of
remaining inside the cluster decreases exponentially. Therefore, by employing a sufficiently
large maximum simulation time, the random walkers are virtually guaranteed to leave the
compartment.

df 91/48
η 5.18
dw 2.87(2)
K 0.56
D 1
E0 0

Table 6.1: Summary of the values identified by the simulations that are used to obtain our theoretical
predictions. The values shown in this table are written in natural units l = 1 = τ0, where l is the
space between nodes and τ0/z is the residence time on a node with z neighbours.

We are now in a position where the theory can be tested by comparison to simulations.
A summary of the values used in our theory is given in Table 6.1. In Figure 6.7 it is
possible to see that the theory matches the simulation results. Even though the result is
not quantitatively perfect, it correctly describes the variation of the mean first passage time
with the initial position r0 and the compartment radius, R. Note that, even though the
O’Shaughnessy-Procaccia theory (on which our analysis relies) is not an exact theory, the
average precision of our theory (in the example of Figure 6.7) is around 10%. This is obtained
without any fitting parameters, as a direct consequence of the slower, fractal, subdiffusion
inside the compartment, and validates our formula for ⟨T⟩.
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Figure 6.7: Theoretical predictions and simulations results of the mean first passage time. The-
oretical prediction, Eq. (6.43) for r0 < R and Eq. (6.42) for r0 > R, represented with continuous
lines and simulation results with circles. Simulations were performed in a square confining volume
with V = 2.5 · 105, a circular compartment of radius R = 50 (lower line) and R = 100 (higher line)
at critical order parameter, p = 0.5.

6.5 | Does the compartment facilitate reactions?

Now that we have a valid model for how a compartment influences the mean first passage
time, one might ask if this compartment facilitates reactions, by decreasing the time that it
takes for a reactant to find the target. First, we study the case where the external medium
is of dimension d = 3 and then, if we find an optimization scheme, try to apply it to d = 2
for completeness. Let us assume that the random walker starts far from the compartment
(r0 ≫ R), as would be the case in the biological problem, so that

⟨T⟩∞
V

= e−βE0

ηdfK

Rdw−df − adw−df

dw − df
+ 1

4πD
1
R
. (6.44)

The idea of this section is to compare ⟨T⟩∞ to the mean first passage time if there was no
compartment, ⟨T ⟩NC,

⟨T⟩NC
V

= 1
4πD

1
a
, (6.45)

equivalent to taking R → a. Then, we check if the optimisation is possible even though
movement is slower (at the target scale) inside the compartment,

Ka2−dw ≪ D. (6.46)

Note that this slow down is a necessary constraint when anomalous motion comes from
crowding (dw > 2), which cannot accelerate the dynamics, see Figure 6.6. Note that, if
Eq. (6.46) holds, the dynamics at the scale of the compartment is even slower.
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6.5.1 | Compartment with no energetic bonding

Let us start by assuming that there is no energetic incentive to entering the compartment,
E0 = 0. For simplicity, we will ignore numerical prefactors when dealing with extreme
inequalities, i.e., ≪ and ≫. To test if the compartment does facilitate reactions one is
interested in having ⟨T⟩∞ ≪ ⟨T⟩NC. Consequently, both terms in Eq. (6.44) must be smaller
that ⟨T⟩NC /V, so that

⟨T⟩∞
V

≪ ⟨T⟩NC
V

⇒


1
DR

≪ 1
Da

R
dw−df

ηK
≪ 1

Da

⇒


R ≫ a

K
D

≫ aR
dw−df

η

, (6.47)

where we have assumed that dw > df , as it is usual for random walks on fractals. The last
inequality can be further simplified by noticing that the volume inside a fractal object (with
df < 3) must be smaller than the one inside a 3 dimensional object with the same radius,

ηadf < a3. (6.48)

Therefore, the necessary conditions to have optimization of the mean first passage time are

R ≫ a and Ka2−dw

D
≫ 1, (6.49)

which means that diffusion at the scale of the target, a, is faster inside the compartment than
outside the compartment. This directly contradicts the condition for movement to be slower
inside the compartment, Eq. (6.46). Therefore, the compartment does not allow faster (mean)
first passage, even when the targets are small. This is physically due to two constraints of
the system. The first is that we force diffusion to be slower, thus making it harder to have
faster reactions. The second problem is that entering the compartment requires the passage
through an “entropic” barrier, appearing from the crowding inside the compartment, thus
decreasing the probability of having particles inside the compartment. We thus conclude that
an optimisation is not possible in the absence of an energetic gain inside the compartment.
One is then tempted to add an energetic gain to entering the compartment, so that the
“entropic” barrier is neutralized. This is what we analyze in the next section.

6.5.2 | Compartment with energetic bonding

Let us now assume that there is an energetic gain, E0, when entering the compartment. It is
obvious that, for E0 → ∞, the mean first passage time vanishes, because reactants become
very concentrated near the target. Here, we ask whether one can accelerate a reaction without
concentrating the reactants in the compartment, i.e., we choose the energetic gain so that
the stationary probability to be inside the compartment is equal to that of being inside a
volume (in d = 3) of the same radius, R,

ηRdf eβE0 ∼ R3. (6.50)
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This is naturally equivalent to say that qs(R−) = qs(R+). In this case one has

⟨T⟩∞
V

∼ Rdw−3

K
+ 1
DR

, (6.51)

where we have assumed that dw > df . Comparing ⟨T⟩∞ to ⟨T⟩NC, one obtains R ≫ a and

Ka2−dw

D
≫
(
R

a

)dw−3
=
(
a

R

)3−dw
. (6.52)

If dw < 3, i.e., the walk inside the compartment is not strongly subdiffusive5, this condition
is consistent with the condition for slower movement inside the compartment, Eq. (6.46).
Therefore, we have found a situation where the compartment facilitates reactions even though
movement is slower inside the compartment and reactants are not more concentrated inside
the target on average. This can be seen as a situation, df < dw < 3, where the dynamical cost
is compensated by the reduced space that has to be explored when inside the compartment
and by the localization of the random walker close to the compartment and, consequently,
the target.

6.5.3 | Is optimization still possible in two-dimensional space?

If one now studies the case of d = 2, the mean first passage time to be optimized is the one
in Eq. (6.42). With the assumption that the energetic gain, E0, is so that the stationary
probability to be inside the compartment is equal to that of being inside a volume (in d = 2)
of the same radius, R,

ηRdf eβE0 ∼ R2, (6.53)

one can rewrite Eq. (6.42) as

⟨T⟩
V

∼ Rdw−2

K
+ 1
D

ln
(
r0

R

)
, (6.54)

where we have assumed that dw > df . The mean first passage time without a compartment
is trivially written as

⟨T⟩NC
V

∼ 1
D

ln
(
r0

a

)
. (6.55)

Stating that the compartment improves the reaction time is equivalent to say that

⟨T⟩
V

≪ ⟨T⟩NC
V

⇒


1
D

ln
(
r0
R

)
≪ 1

D
ln
(
r0
a

)
Rdw−2

ηK
≪ 1

D
ln
(
r0
a

) ⇒


R ≫ a

Ka2−dw

D
≫
(
R
a

)dw−2
/ ln

(
r0
a

) , (6.56)

The last condition has two possible outcomes. If dw < 2, then the compartment is superdif-
5We say that a walk is strongly subdiffusive if dw > 3, corresponding to a Hurst exponent of H < 1/3 in

a fractional Brownian motion.
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fusive, which is not compatible with the concept of crowding. In fact, we do not know any
fractal displaying superdiffusive transport. If dw > 2 the condition for optimized reaction
times is Ka2−dw

D
≫
(
R
a

)dw−2
≫ 1 which is inconsistent with the condition for slower movement

inside the compartment, Eq. (6.46).

Therefore, in two-dimensional space, it is impossible to facilitate reactions with a fractal
compartment that slows down movement (at least without overconcentrating the reactants
inside the compartment). This was expected since, contrarily to the three-dimensional case,
the mean first passage time does not diverge for small targets, see Section 2.1.4. Even if
we allow for an energetic gain inside the compartment that forces continuous stationary
probability at the interface6.

6.6 | Conclusion

In this chapter, we have studied how transport properties are modified in the presence of a
fractal compartment embedded in a regular confining volume, where dynamics is described
as regular diffusion. In particular, we have found the Fokker-Planck equations that govern
the dynamics of the propagators in the compartmentalized space. We have also found the
equation connecting the mean first passage to the propagators, which then allow us to find
the mean first passage time as a function of the space properties and walk parameters.

Then, we have validated our theory by comparing the theoretical predictions to simulation
results. These simulations were performed by introducing a circular compartment with a
bond-percolation network of radius R inside the confining volume and allowing a random
walker to freely search for a target inside the compartment.

Finally, we have shown that, if there is an energetic gain when entering the compartment
(enough so that there is no deficiency of stationary probability inside), then, the mean first
passage time can be optimised even when movement inside the compartment is slower. This
is achieved when there is an energetic gain E0 > 0 inside the compartment but for values of
E0 that make the stationary probability to be inside the compartment the same as that of
being in an equivalent sphere of radius R where pure diffusion happens. This comes from the
compact nature of the random walk inside the compartment, so that sites are visited many
times before escaping far away in the surrounding volume. Therefore, our study determines
in which conditions the change of dimensionality can be used to optimize first passage times
for compartments, generalizing other results obtained for surface mediated diffusion or target
searches in DNA.

6Note that if one takes a large energetic gain, eβE0 ≫ Rd−df /η, the reactants concentrate near the target
and it is always possible to optimise ⟨T ⟩ while keeping diffusion slower inside the compartment.
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Chapter 7
Conclusion and Perspectives

In this thesis we have taken some steps towards a better understanding of non-Markovian
processes and the effects of their intrinsic memory on the kinetics of different reaction
mechanisms. In particular, we have studied three different reaction mechanisms in four cases.
First, we have dealt with imperfect reactions that are generated by sink reactivity, where
the failure to react does not influence the movement of the searcher. Then, we continued
our study of imperfect reactions by studying gated (or intermittent) reactivity, characterized
by a target that has two states, active and inactive. In the last two cases studied, we have
assumed that reactions happen instantly upon first contact. First, we developed a theory
for competitive events and then, outside the realms of non-Markovianity (but still studying
subdiffusive motion), we studied the case of compartmentalized media.

In Chapters 3 and 4, we have introduced a formalism to quantify the kinetics of imperfect
reactions of non-Markovian random walkers in confinement. Our theory covers the two
imperfect reactivity mechanisms of sink reactivity and gated reactions. We have developed
the formalism in one and two dimensions, with the eventual adaptation to three dimensions
not presenting any new challenges. In the weakly reactive limit, for sufficiently subdiffusive
processes, the deviation of the mean reaction time from the reaction controlled time is not
equal to the mean first passage time (as expected if one takes a semi-Markovian approach),
but diverges as a non-trivial exponent of reactivity that was analytically identified and
checked with simulations.

Though we have only found the first moment of the reaction time random variable (the
mean), we have reasons to believe that this could lead us to better understand the full
distribution of reaction times. In fact, we suspect that the relation between the mean first
passage time and the survival probability, obtained for the perfect case (Levernier et al.,
2019), can be extended to the case of imperfect reactivity. In that case, one would be able
to write

Sκ(t) ∼
t→∞

⟨RT⟩
V

1
t1−dH , (7.1)

where Sκ(t) is the survival probability, i.e., the probability density of not reacting before
t, in the unconfined case. Since Sκ(t) is connected to the distribution of reaction times,
F (t) = −Ṡκ(t), this could give us an estimate of the probability for a reaction to be slower
than expected. Furthermore, one can write the survival probability as the Laplace transform
of the distribution of local times, ℓt,

Sκ(t) =
〈
e−κℓt

〉
, with ℓt ≡

∫ t

0
dτ δ[x(τ)], (7.2)
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where the reactivity κ acts as a Laplace variable. From this relation, one can expect that the
study of imperfect reactions could give some insight into the distribution of local times for
non-Markovian processes, that are not well characterized (beyond the assessment that they
exist). Moreover, one could also extend the study of imperfect reactions to different systems.
For instance, we have only studied point-like and Gaussian targets, but what would happen if
one considers a one dimensional random walker looking for a reaction at a uniformly reactive
thick wall? Would our formalism helps us find the splitting probability, i.e., the distribution
of reaction coordinates?

Ideally, one would also like to find a formalism that allows us to deal with partially
reflective interfaces, so that the whole class of imperfect reaction can be explored in the
non-Markovian regime. However, at this time there is still no clear path to study these
problems in the case of non-Markovian processes. Nevertheless, the probability distribution
function of x(t) in the presence of a reflecting boundary (roughly) appears to be a truncated
Gaussian (Vojta et al., 2019). One could then imagine that our self-consistent Gaussian
ansatz could be employed to describe such situations.

Then, in Chapter 5, we have studied the problem of competitive events for non-Markovian
processes. In the first part of the chapter, we described an experimental setup that allows us
to record non-Markovian trajectories directly from the movement of a bead in a viscoelastic
fluid. Then, we derived a theory of non-Markovian competitive events that can be tested
with the trajectories obtained from the experiment. When testing the theoretical predictions
of the splitting probability and the mean trajectory after reaction we find that the theory
quantitatively predicts the correct values for all the viscoelastic solutions tested. Moreover,
the experiment that tests the theoretical prediction for the mean trajectory after reaction is
the first direct observation that, at the moment of reaction, the system (bead plus viscoelastic
fluid) is not at equilibrium.

Though the experimental results are promising, one must mention that the non-Markovian
effects are only visible when the distance between the targets is of the order of the size of
the bead. This is in big part a problem of the experimental setup. To study these effects
at a larger scale one could adapt the experiments in two ways. First, one can use more
concentrated solutions, thus creating stronger memory effects that should affect the system
at larger scales. Then, one would have to deal with the problem of the efficiency of data
acquisition. One solution would be to develop a real-time tracking method that would only
store the trajectories (and possibly a compressed version of the video). In this way, longer
videos could be taken and with larger frame, thus allowing the beads to explore a bigger
portion of space before leaving the frame.

Moreover, one could use also study imperfect reactions with a different experimental setup.
By using optical tweezers, one could also create real targets with different reactivities, by
changing the strength of the trapping force. First, reactivity could be measured by tracking
the movement of beads in water, thus obtaining an accurate curve of reactivity as a function
of the trapping force. Then, using different long polymer solutions of different concentrations,
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one could create different ranges of memory effect (as in Chapter 5) and test the theories
developed in Chapter 4. Furthermore, due to the flexibility of optical tweezers, one could
also imagine experiments with more complex targets, such as semi-absorbing walls.

Finally, in Chapter 6, motivated by the existence of membraneless organelles in cells
where movement is subdiffusive, we have studied the effect of compartments on first passage
properties. Due to the difficulty of implementing interfaces in non-Markovian processes we
had to limit our study to the case of Markovian processes. With the intent of creating
a crowded environment inside the compartment, we considered that the interior of the
compartment is a fractal, of fractal dimension smaller than the space outside the compartment.
To treat this problem, we first derived a “diffusion equation” for a random walker that moves
in a fractal subject to some external force. Then, by assuming that the compartment is
spherical with a smaller spherical target inside, we derived the mean first passage time
for random walkers that are started outside the compartment. Using a spherical cut of a
bond percolation network, we developed a simulation scheme where one can test the theory
previously developed. By comparing the simulations to the theoretical predictions of the
mean first passage time, we found that the theory correctly describes the way the mean
first passage time depends on the radius of the compartment and initial distance to the
target. Moreover, we found that the introduction of a slower compartment might improve
the reaction time as long as there is an energetic gain inside the compartment that is enough
to force continuous concentration of probability.

The ideal continuation of the study of complex compartments would be to develop a full
non-Markovian theory that incorporates interfaces. As mentioned above, one first (possible)
step is the study of non-Markovian walks with reflective interfaces, which could later be
adapted to introduce coefficients describing the switching dynamics between the two sides
of an interface. Next, while staying on the Markovian case, one could also find the full
probability distribution function of first passage times that is non-trivial as it incorporates
a mixture of compact and non-compact random walks. Alternatively, one can go back to
the original motivation to the study of compartmentalized media, and understand that
the hypothesis that there is one target in the center of a spherical compartment is not
really a good description of what happens inside membraneless organelles. Then, one could
develop the theory to incorporate non-spherical compartments and, perhaps more relevant
to the study of reaction kinetics in membraneless organelles, one could study the case where
targets are uniformly distributed inside the compartments, which would probably change the
optimisation conditions that we found in Chapter 6.
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Appendix A
Conditioned Gaussian Processes and

Projection Formulas

Let us assume that X, Y, Z are 3 Gaussian variables, fully described by the probability
distribution function

p(X, Y, Z1, . . . , ZN) = 1
(2π)3/2

√
|Σ|

exp
(

−1
2(x−m)TΣ−1(x−m)

)
, (A.1)

with

(x−m) =

X − ⟨X⟩
Y − ⟨Y ⟩
Z − ⟨Z⟩

 and Σ =

σX,X σX,Y σX,Z
σY,X σY,Y σY,Z
σZ,X σZ,Y σZ,Z

 , (A.2)

where σA,B ≡ Cov(A,B) = σB,A for A,B = X, Y, Z.

The idea here is to find the statistics of X and Y once Z is known. To this end, one is
interested in finding the conditioned probability distribution function p(X, Y |Z), that can
be written as

p(X, Y |Z = Z0) = p(X, Y, Z = Z0)
p(Z = Z0)

, (A.3)

where every function is known due to the Gaussian nature of the random variables. It is
then possible to calculate p(X, Y |Z) by completing the squares in the exponential argument
(Eaton, 2007). The resulting probability density is a bivariate Gaussian with means

⟨X|Z⟩ = ⟨X⟩ − σX,Z
σZ,Z

(⟨Z⟩ − Z0), (A.4)

⟨Y |Z⟩ = ⟨Y ⟩ − σY,Z
σZ,Z

(⟨Z⟩ − Z0), (A.5)

and covariance
Cov(X, Y |Z = Z0) = σX,Y − σX,ZσY,Z

σZ,Z
. (A.6)

We note that the conditioned covariance does not depend on the condition applied, and the
only influence of the value of Z0 comes from the averages of the process.

In our case, this expressions are often useful to compute the mean of a process x(t) given
that it has been at some specific point at another time. Assume a Gaussian process with
mean m(t) and covariance σ(t, t′). To apply these equations to this case, one has to study
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the conditioned probability distribution p(x, t; y, t′|z0, t0). This simplifies the previous results
to

⟨x(t)|x(t0) = z0⟩ = m(t) − σ(t, t0)
σ(t0, t0)

(m(t0) − z0), (A.7)

Cov(x(t), x(t′)|x(t0) = z0) = σ(t, t′) − σ(t, t0)σ(t0, t′)
σ(t0, t0)

. (A.8)

We call these three equations the projection formulas.
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Appendix B
Solution to a Class of Second Kind

Volterra Integral Equations

In this appendix, we find the solution of the second kind Volterra Integral Equations of the
form:

f(τ) +
∫ ∞

0
dt K(t)f(t+ τ) = h(τ), (B.1)

where all functions have positive support, i.e., f(t) = 0 = K(t) = h(t) ∀t<0.

To solve this equation we start by considering a special source term, h(τ) = h0(ω)eiωτ ,
and look for solutions of the type f(τ) = f0(ω)eiωτ . For this special case the solution reads

f0(ω) = h0(ω)
1 +

∫+∞
0 dt K(t)eiωt

. (B.2)

Since Eq. (B.1) is linear, the superposition of solutions is itself a solution and to get a general
solution one can just integrate over ω:

f(τ) =
∫ +∞

−∞

dω

2π f̂(ω)eiωτ =
∫ +∞

−∞

dω

2π
ĥ(ω)

1 +
∫+∞

0 dt K(t)eiωt
eiωτ , (B.3)

where f̂(ω) = F [f(t)] (ω) =
∫∞

−∞ dtf(t)e−iωt is the Fourier transform of f(t). For convenience,
let us first analyze the case where f(t) = y′(t). Integrating Eq. (B.3) over τ from 0 to t one
obtains:

y(t) − y(0) =
∫ t

0
dτ
∫ ∞

−∞

dω

2π e
iωτ ŷ′(ω) (B.4)

=
∫ ∞

−∞

dω

2π

(
eiωt − 1
iω

)
1

1 +
∫+∞

0 dt′ K(t′)eiωt′
(∫ ∞

0
dζ h(ζ)e−iωζ

)
(B.5)

=
∫ ∞

0
dζ h(ζ)

∫ ∞

−∞

dω̄

2π e
iω̄ζ 1 − e−iω̄t

iω̄

1
1 +

∫+∞
0 dt′ K(t′)e−iω̄t′ (B.6)

=
∫ ∞

0
dζ h(ζ)

∫ ∞

−∞

dω̄

2π e
iω̄ζ
(
1 − e−iω̄t

)
W̃ (iω̄), (B.7)

where ω̄ = −ω and W̃ (s) =
∫∞

0 dt W (t)e−st = 1/s(1+K̃(s)) that is identified as a Laplace
transform taken at the point s = iω̄. Next, we realize that the integral on ω̄ is actually the
Bromwich integral (or the Mellin’s inverse formula) that can be used to compute the inverse
Laplace transform.
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y(t) − y(0) =
∫ ∞

0
dζ h(ζ)L−1

[(
1 − e−st

)
W̃ (s)

]
(ζ) (B.8)

=
∫ +∞

0
dζ h(ζ)[Θ(ζ)W (ζ) − Θ(ζ − t)W (ζ − t)], (B.9)

and therefore the y(t) is given by

y(t) = y(0) +
∫ +∞

0
dζ W (ζ)[h(ζ) − h(ζ + t)]. (B.10)

Therefore, to solve the integral equation one simply has to take the Laplace transform of
the function K(t), perform the inverse Laplace transform of W̃ (s) = 1/s(1+K̃(s)) and compute
the integral in Eq. (B.10). It is quite easy to see that the expression of f(t) = y′(t) is

f(t) = −
∫ ∞

0
dζ W (ζ)h′(ζ + t). (B.11)
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Appendix C
Asymptotics of the Mean

Trajectory After Reaction for the
Fractional Brownian Motion in the

Weakly non-Markovian Regime

In this Appendix, we derive the asymptotic behaviours of the mean trajectory after reaction
in the case of almost diffusive fractional Brownian motion. In this case, we write ψ(t) =
t2(

1
2 +ε) = t + ε2t ln t and µ(t) = εµ1(t). In Section 3.3, we have shown that the mean

trajectory after reaction can be written as:

µ1(t) = x0κ√
2π

∫ +∞

0
dξ
∫ +∞

0
dζ e

1
2κ

2ζerfc
√1

2κ
2ζ

e−
x2

0
2ξ

ξ3/2 ln
(

(ζ + t+ ξ)ζ
(ζ + t)(ζ + ξ)

)
. (C.1)

Let us first analyze the limiting case of high reactivity. Taking the limit κ → ∞ one
obtains the equation of the perfect case, previously found in (Guérin et al., 2016),

µ1 ∞(t) = x0

π

∫ +∞

0
dξ
∫ +∞

0
dζ

e−
x2

0
2ξ

ξ3/2
√
ζ

ln
(

(ζ + t+ ξ)ζ
(ζ + t)(ζ + ξ)

)
, (C.2)

= −2x0

∫ ∞

0
dξe−

x2
0

2ξ

√
t+

√
ξ −

√
t+ ξ

ξ3/2 . (C.3)

Taking the limit t → 0, one quickly finds that

µ1 ∞(t) −−→
t→0

−2
√

2πt. (C.4)

However, if one takes the limit t → ∞ in Eq. (C.3), the integral on ξ becomes divergent
for large ξ, which we call an ultra-violet divergence. To solve this problem, we rescale the
integration variable ξ → tχ so that the ultra-violet divergence disappears, and the integral
converges after taking the limit t → ∞:

µ1 ∞(t) −−−→
t→∞

−2x0

∫ ∞

0
dχe−

x2
0

2tχ
1 + √

χ−
√

1 + χ

χ3/2 −−−→
t→∞

2x0
(
γ − 2 + ln

(
2x2

0

))
− 2x0 ln t,

(C.5)
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where γ ≈ 0.577 is the Euler γ constant. The integral on χ was performed by Mathematica
and only the limit for large time is shown.

One can also analyze the limiting case of low reactivity in Eq. (C.3), where, at first order,
one can write:

µ1 0(t) = x0κ√
2π

∫ ∞

0
dξ e−

x2
0

2ξ
t ln t+ ξ ln ξ − (ξ + t) ln(ξ + t)

ξ3/2 . (C.6)

Taking the limit t → 0 inside the integral one can find

µ1 0(t) −−→
t→0

κt ln t. (C.7)

The long time limit is also possible to obtain by rescaling the integration constant ξ → tx in
Eq. (C.6) and only then, taking the limit t → ∞

µ1 0(t) −−−→
t→∞

κx0√
2π

1√
t

∫ ∞

0
dχ
χ lnχ− (1 + χ) ln(1 + χ)

χ3/2 −−−→
t→∞

−2κx0
√

2πt. (C.8)

We would now like to find the long and short time limits when κ is finite. To do this it
is useful to study the derivative of µ1(t), since one of the integrals can be performed:

µ′
1(t) = x0κ√

2π

∫ +∞

0
dξ
∫ +∞

0
dζ e

1
2κ

2ζerfc
√1

2κ
2ζ

e−
x2

0
2ξ

ξ3/2
ξ

(ζ + t+ ξ)(ζ + t) (C.9)

= −x0κ

√
π

2

∫ ∞

0
dζ e

1
2κ

2ζerfc
√1

2κ
2ζ

e 1
2
x0
t+ζ erfc

(√
1
2
x0

t+ ζ

)
1

(t+ ζ)3/2 . (C.10)

Let us start by looking at the long times limit. If one tries to perform the limit t → ∞ in
Eq. (C.10), the integral becomes ultra-violet divergent. The dependence on t + ζ of some
terms indicates that ζ might scale with t, hence we rescale the integration variable, such that
ζ → tz. With this change of variables the divergence disappears and, after taking the long
time limit, the integral becomes

lim
t→∞

µ′
1(t) = −

∫ ∞

0
dz

x0

t
√
z(1 + z)3/2 = −2x0

t
. (C.11)

Therefore, the long time behaviour of the mean trajectory after reaction is

µ1(t) −−−→
t→∞

C − 2x0 ln t, (C.12)

where C is a constant that can be calculated by looking at the equality limt→∞
∫ t

0 dτµ
′
1(τ) =

C − limt→∞ 2x0
∫ t

1 dτ/τ .

To find the short time limit in Eq. (C.10), one can take t → 0to find that an infra-red
divergence emerges due to the fact that the integrand behaves as ∼ ζ−1 for small ζ. To
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remove this divergence one is tempted to, just like before, rescale ζ → tz and only after
performing the limit t → 0:

µ′
1(t) −−→

t→0
−
∫ ∞

0
dz

κ

1 + z
. (C.13)

However, this integral also displays a divergence, now an ultra-violet divergence. Seeing that
the divergences happen in different extremes, one can split the integral in Eq. (C.10) in two
different integrals: one, I1(t), from 0 to λ ≫ t, with the rescaled integration variable; and
another, I2(t), from λ ≪ 1 to ∞, with the original scaling of ζ. First, we will compute the
integral from 0 to λ ≫ t:

I1(t) = −
∫ λ/t≫1

0
dz

κ

1 + z
= −

∫ 1

0
dz

κ

1 + z
−
∫ λ/t≫1

1
dz
(

κ

1 + z
− κ

z
+ κ

z

)
(C.14)

= −κ ln 2 +
∫ ∞

1
dz

κ

z + z2 −
∫ λ/t≫1

1
dz
κ

z
(C.15)

= −κ ln λ+ κ ln t, (C.16)

where the first equality is true once one takes the limit t → 0 after rescaling ζ → tz. Then,
we subtract the diverging behaviour and add it again. Note that, if the integrant does not
diverge for large arguments, then, taking the integral from 1 to λ/t ≫ 1 is the same as
integrating from 1 to ∞. For the second term, the integral from λ ≪ 1 to ∞, one can use
the same method, except that, now, there is no need of rescaling.

I2(t) = −x0κ

√
π

2

∫ ∞

λ≪1

dζ

ζ3/2 erfcx
√1

2κ
2ζ

erfcx
(√

1
2
x0

ζ

)
(C.17)

=
∫ 1

λ≪1
dζ
κ

ζ
+
∫ 1

0
dζ

−x0κ
√
π/2

ζ3/2 erfcx
√1

2κ
2ζ

erfcx
(√

1
2
x0

ζ

)
− κ

ζ


− x0κ

√
π

2

∫ ∞

1

dζ

ζ3/2 erfcx
√1

2κ
2ζ

erfcx
(√

1
2
x0

ζ

)
(C.18)

= κ ln λ+ C, (C.19)

where erfcxx = ex
2erfcx is the scaled complementary error function and C is a sum of two

convergent integrals that do not depend on t.

It is then possible to see that, for short times, the mean trajectory after reaction reads

µ1(t) −−→
t→0

κt ln t. (C.20)

The fact that the long and short times do not match the ones in the limiting cases of
reactivity indicates that there is a time scale, 1/κα with α > 0, that is relevant in describing
the asymptotic behaviour of µ1(t). In Section 3.3, we detail how to find this time scale and
how the different behaviours found in this Appendix coexist in distinct time scales.
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Appendix D
Self-Consistent Equations for

Competitive First Passage Events

In this appendix we derive the self-consistent equations that enable the calculation of µi(t).
Note that the derivation performed in this appendix is an intermediate step of Section 5.2,
where we develop a theory for the splitting probabilities. We then assume that the reader
has seen the derivation of Eq. (5.45).

To find the limits of µi(t), we start by writing renewal equation describing the movement
of the particle after one of the targets (at x1 = 0 or x2 = L) is met,

p(xi, t; y, t+ τ) =
∫ t

0
dt′F (t′)p(xi, t; y, t+ τ |FPT = t′), (D.1)

where y is an arbitrary position that is reached a time τ > 0 after meting the target at t. By
the definition of the process after reaction, one can also write

pπ(x, t; y, t+ τ) ≡
∫ ∞

0
dt′F (t′)p(x, t+ t′; y, τ + t+ t′|FPT = t′). (D.2)

Using Eq. (5.37),
∫ A

0 dt
∫ t

0 dτ f(t, τ) =
∫ A

0 du
∫ A−u

0 dτ f(u+ τ, τ), for any function f(t, τ), one
can combine Eqs. (D.1) and (D.2) to write

∫ A

0
dt [pπ(xi, t; y, t+ τ) − p(xi, t; y, t+ τ)]

=
∫ A

0
du
∫ ∞

A−u
dt′F (t′)p(xi, u+ t′; y, u+ t′ + τ |FPT = t′). (D.3)

Then, multiplying this equation by y and integrating over y,∫ A

0
dt
(
E[xπ(t+ τ)|xπ(t) = xi]pπ(xi, t) − E[x(t+ τ)|x(t) = xi]p(xi, t)

)
=
∫ A

0
du
∫ ∞

A−u
dt′F (t′)E[x(u+ t′ + τ)|x(u+ t′) = xi; FPT = t′] p(xi, u+ t′|FPT = t′)

≡ R(A, τ), (D.4)

where E[A|B = b;C = c] is the mean value of A given that B = b and C = c. Introducing
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the change of variables u → v = A− u, R(A) can be rewriten as

R(A, τ) =
∫ A

0
dv
∫ ∞

v
dt′F (t′)p(xi, A− v + t′|FPT = t′)

· E[x(A− v + t′ + τ)|x(A− v + t′) = xi; FPT = t′] (D.5)

Similarly to the argument made to obtain Eq. (5.40), it is reasonable to assume that the
mean position of the random walker does not go infinitely far from xi in a time τ . Therefore,
one can assume that there is a function (of only τ) h(τ) such that:

|E[x(A− v + t′ + τ)|x(A− v + t′) = xi; FPT = t′]| < h(τ). (D.6)

Next, we argue that, for large t (t ≫ τ), p(0, t+τ |FPT = τ) ≈ p(0, t). And, since the cloud of
probability of positions extends over a length tH , it is natural to assume that p(0, t) ∼ K0/t

H .
Therefore, for large A, one can write

p(xi, A− v + t′|FPT = t′) ∼
A→∞

K0/A
H . (D.7)

Using these two last conditions, Eqs. (D.6) and (D.7), one can write

R(A, τ) < K0

AH
h(τ)

∫ A

0
dvS(v) < K0

AH
h(τ)

∫ ∞

0
dvS(v) = K0h(τ) ⟨T ⟩

AH
. (D.8)

Hence, for large A, R(A, τ) vanishes and Eq. (D.4) becomes∫ ∞

0
dt
(
E[xπ(t+ τ)|xπ(t) = xi]pπ(xi, t) − E[x(t+ τ)|x(t) = xi]p(xi, t)

)
= 0. (D.9)

From here, one can split the process xπ(t) in two processes, one that has had the first
encounter with the target at the left target, xπ1(t), and one at the right target xπ2(t). If one
assumes that these processes are Gaussian with means µ1(t), µ2(t) and covariance σ(t, t′),
then using the projection laws described in Appendix A, one can write the final integral
equations that provide µj(t):

∫ ∞

0

dt√
ψ(t)

 ∑
j=1,2

πj

[
µj(t+ τ) − (µj(t) − xi)

σ(t+ τ, t)
ψ(t)

]
exp

(
−(xi − µj(t))2

2ψ(t)

)

−
[
x0 − (x0 − xi)

σ(t+ τ, t)
ψ(t)

]
exp

(
−(xi − x0)2

2ψ(t)

) = 0, ∀i=1,2,

(D.10)
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