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Allocation et optimisation de tolérances géométriques par des polyèdres prismatiques

Résumé: Les écarts géométriques et dimensionnels des pièces mécaniques peuvent causer des perturbations

nuisibles aux fonctionnalités attendues des systèmes mécaniques. Les spécifications géométriques et dimen-

sionnelles représentent les limites des défauts de fabrication des surfaces fabriquées. La détermination des

tolérances n’est pas une tâche aisée car (i) les valeurs des tolérances assignées affectent les fonctionnalités

attendues d’un système et le coût de fabrication de ses pièces, et (ii) l’interdépendance des tolérances et des jeux

rend complexe leur agrégation dans une résultante.

L’analyse de tolérances et la synthèse de tolérances sont les deux méthodes classiques pour aborder la déter-

mination de la résultante. La synthèse de tolérances est traditionnellement considérée comme un “problème

d’optimisation sous contraintes” dans lequel la fonction objectif est généralement une fonction de coût, une

fonction de qualité ou de coût-qualité.

Dans le cas des mécanismes hyperstatiques, la complexité de l’interaction des tolérances ne permet pas de

décrire la résultante par une fonction analytique. Par conséquent, il est courant d’effectuer une allocation de

tolérances au lieu d’une synthèse de tolérances. L’objectif de l’allocation de tolérances est de maximiser les

tolérances et les jeux initialement déterminés selon des retours d’expériences ou des connaissances empiriques,

en incorporant certaines méthodes heuristiques d’optimisation.

Dans ce travail, nous montrons comment effectuer une allocation de tolérances en utilisant l’approche polyédrique

prismatique comme modèle de tolérances et le recuit simulé comme algorithme d’optimisation heuristique.

Pour ce faire, certains problèmes intermédiaires sont discutés, tels que la qualité des opérandes versus le temps

de calcul. Une méthode de réduction de modèle et un indicateur permettant de quantifier la conformité d’un

mécanisme vis-à-vis d’une condition fonctionnelle sont également introduits.

Mots-clés: Allocation de tolérances, analyse de tolérances, optimisation de tolérances, analyse de convergence,

mécanismes hyperstatiques, Polyèdre prismatique

Geometrical tolerance allocation and optimization using the prismatic polyhedral approach

Abstract: Geometric and dimensional deviations of mechanical components can cause problems of assembla-

bility and/or functionality of the mechanisms. The geometric and dimensional specifications represent the

limits of the manufacturing defects of a given surface. Tolerance specification is not an easy task because (i) the

assigned tolerance values affect the functionalities of a system and the manufacturing cost of its parts, and (ii)

design tolerances are often interrelated and contribute to a resultant tolerance.

Tolerance analysis and tolerance synthesis are the two typical ways to approach the problem of tolerance design.

Tolerance synthesis is traditionally seen as a “constrained optimization problem" in which the objective function

is usually a cost function, a quality function or a cost-quality.

In the case of over-constrained mechanisms, the interaction of the tolerances is complex and it is not possible to

describe it by means of an analytical function. Hence, it is typical to do tolerance allocation instead of tolerance

synthesis. The objective of the tolerance allocation is then to complete or increase the tolerance specification,

originally made from experience or empirical knowledge, by incorporating some heuristics or optimization

methods.

In this work, we show how to do tolerance allocation using the prismatic polyhedral approach as a tolerance

model and the simulated annealing as a heuristic optimization algorithm. In order to do this, some intermediate

problems are discussed, such as (i) quality of the operands, (ii) computational time required to do a simula-

tion and we also develop (iii) an indicator to quantify the compliance of a mechanism with its functional condition.

Keywords: Tolerance allocation, tolerance analysis, tolerance optimization, convergence analysis, over-constrained

mechanisms, prismatic, polyhedron
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1.1 Context

Mechanisms are designed for a purpose that defines their

main function. The primary function is the fundamental rea-

son for which the mechanism is designed [1] and it is defined

by the functional requirements, determining what the mech-

anism should do. At the end of the design process, all the

requirements should be reflected by the behaviour attributes

and physical attributes of the real and tangible design ob-

ject.

The kinematic behaviour of a mechanism can be strongly

affected by dimensional and geometric deviations of its com-

ponents that are mainly generated during the manufacturing

process [2], those deviations are unavoidable due to manu-

facturing and measurement imperfections [3]. To limit the

unintentional part deviations, the designer must specify

and allocate tolerances to ensure the fulfilment of specified

quality requirements [4].

However, tolerance specification is not a trivial task be-

cause:

▶ The assigned tolerance values affect the functionalities

of a design and the manufacturing cost of the designed

parts.

▶ Design tolerances are often interrelated and contribute

to a given resultant tolerance [4].

Furthermore, tolerances play an ubiquitous role during the

product life-cycle [5] entailing various tolerance-related prob-

lems that are interrelated with each other.

Traditionally, there have been two ways to approach this

problem. The first way is by analyzing the functionality

of a product taking into account the variabilities of the

individual parts in a bottom-up approach, see Figure 1.1, and

the other way is to allocate tolerances in a top-down approach

maintaining proper functionality of the final product [6], see

Figure 1.2. The first approach is called tolerance analysis and

is considered to be a production function, and the second
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approach named tolerance synthesis is viewed as a design

function [7].

Tolerance synthesis (also called tolerance allocation, toler-

ance selection, tolerance allotment, tolerance distribution or

tolerance design) is traditionally seen as a “constrained opti-

mization problem" in which the objective function is usually

a cost function, a quality function or a cost-quality function

[6]. The objective of the tolerance synthesis is to complete

or increase the tolerance specification, originally made from

experience or empirical knowledge, by incorporating some

heuristic, optimization or other methods [8].

The lack of knowledge and difficulty in obtaining an ana-

lytical expression relating the manufacturing accuracy of a

dimension with its manufacturing cost, lead to the designer

to rely on rules like “the lower the tolerance, the higher the

cost of manufacturing” or “do not specify higher accuracy

than is needed” [10]. The assignment of design tolerances is

normally performed on a trial and error method. Some of

the tolerances are determined based on the experience and

manufacturing knowledge of the designer or with default
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values. The compliance of the tolerances with the require-

ments is verified using tolerance analysis methods and, in the

case of non-compliance, uncritical tolerances are modified

to satisfy these constraints [4]. However, this methodology

requires considerable time and effort and does not lead to

the ideal set of tolerances with minimum production costs

[10]; furthermore, as shown in Figure 1.3, wrong decisions

in the conceptual product development can increase the

manufacturing cost by more than 60% [9].

Tolerance allocation and optimization allows to do this it-

erative work using an optimization algorithm in order to

find an “optimal” set of tolerances that will guarantee the

compliance of the mechanism and the minimal value of a

optimization function, usually a cost, quality or cost-quality

function [11]. The tolerance analysis method that is used

during this optimization process plays an important role on

the kind of mechanisms that we are able to model. Differ-

ent methods of tolerance analysis have been developed in

the literature [8, 12–16]. These methods have been classified

by the dimensionality (1d, 2d or 3d), the type of variations

included (dimensional, dimensional+geometric), the analy-

sis level (part level, assembly level) [17]. However, as it has

been noted in those reviews, each model has advantages and

disadvantages what means that the model must be chosen

in line with the technical system and the assumptions and

simplifications made in it to simplify the real model.

In this work the tolerance analysis method are going to be

classified into two approaches:

▶ based on parametric approaches [18, 19],

▶ based on sets of constraints (SOCs) [20, 21].

The main advantage of the methods based on set of con-

straints is that they allow to model over-constrained mecha-

nisms and to validate the fulfillment of a design criterion in

just one simulation.

This thesis is the continuity of previous works carried out

at the I2M laboratory, and it is focused on the tolerance

allocation and optimization of mechanical system by means

of a tolerance analysis method based on set of constraints

(prismatic polyhedral approach).
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1.2 Contribution of this thesis

The prismatic polyhedral approach models all the possible

deviations of a nominal feature by means of 6-dimensional

unbounded set of constraints. The multidimensionalilty of

these operands makes it harder to quantify the compliance

of a mechanical system when doing tolerance analysis. In

order to solve this problem in the following work we will

introduce an indicator that will help to understand the level

of inclusion or not of a the result of a stack-up of deviations

into a functional condition.

Since the prismatic polyhedral approach is feature based,

we cannot be sure that the level of discretization chosen

when generating the operands is appropriate, hence in most

of the cases the designer tends to choose fine meshes that

increases the complexity of the operands and therefore the

calculation time. In order to face this problem, we propose to

perform a convergence analysis in order to determine the best

compromise between the calculation time and the quality of

the result. In addition, we propose a new property that will

help to reduce the calculation time by simplifying the last

sum on the tolerance analysis.

Finally, we reunite all the works that have been done until now

in tolerance analysis with prismatic polyhedra operands and

we propose a methodology to perform tolerance allocation

and optimization. In order to to this, we propose a cost

function based on the indicator that quantifies the compliance

of the mechanical system introduced in this work. And we

perform the tolerance optimization process using as input

the operands resulting from the convergence analysis.

1.3 Outline

This document is divided into main parts:

▶ In Chapter 2, the tolerance framework is reviewed. In

particular the principal models for the representation

of geometrical deviations are list. The main approaches

for tolerancing analysis are mentioned and the general

strategies for tolerance allocation and optimization are

summarized.
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▶ In Chapter 3, the method for geometric tolerance based

on prismatic polyhedra is presented, describing how

to represent the deviations of a nominal surface by

means of unbounded set of constraints. The operations

to reduce a contact graph by means of prismatic poly-

hedra are formalized. A two step verification process

of the mechanical system compliance is introduced,

separating the kinematic compliance from the tolerance

compliance. Finally, the case of study that is going to

use during all the work is presented.

▶ In Chapter 4, a property to reduce the last operation

on the contact graph reduction in order to decrease

the complexity and the calculation time, is presented.

In addition, this chapter introduces a methodology to

determine the discretization of the prismatic polyhedra

operands in order to have accurate results when doing

tolerance analysis based on a convergence criterion

(tolerance of circumscription).

▶ Chapter 5 uses all the results from the previous chapters

and includes them in an optimization process in order

to perform tolerance allocation and optimization using

the Simulated Annealing as the optimization method.

▶ Finally, in the last chapter, a general discussion is pre-

sented with prospects for further research.

1.4 Physical hypothesis

This work is based on the following considerations:

▶ Parts are considered as rigid bodies,

▶ Local deformations are not taken into account,

▶ Form defects are not taken into account,

▶ Small rotations are considered linear.
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To be able to face the problem of tolerance optimization,

first we need to understand what are design requirements

as well as their relation with the geometrical requirements.

Understanding of this is the first step to start the process of tol-

erance specification, allocation, analysis and finally tolerance

optimization. Those steps can be summarized into:

▶ Translation of the product requirements into a set of

geometrical requirements at the assembly and part

level.

▶ Choice of the specifications by means of the ISO toler-

ancing stantards [22–26].

▶ Allocation of the tolerances values.

▶ Studying the effects of the part deviations and deter-

mining the fulfillment of a quality/functional objective.

▶ Try to achieve an optimal set of tolerances that guaran-

tees the fulfillment of the functional condition while

minimizing an objective function when the tolerance

specification is fixed.

2.1 Technical system representation of
the tolerancing problem

The design function establishes the functional relationships

between the tolerances of the individual components and

the one of the final assembly. In a general way, from a

mathematical point of view this relation can be writen as:

𝑌 = 𝑓 (𝑋1, 𝑋2, 𝑋3, · · · , 𝑋𝑛) (2.1)

Where, 𝑌 is the cumulative stack-up of deviations that de-

pends on the independent deviations 𝑋 of 𝑛 components,

and 𝑓 corresponds to the design function [27]. The system of

interest to be analyzed should be represented by a suitable

model, in which some assumptions and simplifications are

made to obtain a manageable and realistic system [6].
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Figure 2.1: Skin model shape representation of the geometrical deviations [33]

In order to model the independent deviations of the compo-

nents, a physical geometrical and variational model has to

be properly chosen [27].

Geometrical deviations initially occur during the manufac-

turing and assembly processes, hence these deviations will

generate uncertainties in surface orientation position and

form. When products are in operation, other geometric de-

viations related to the friction, heat, forces, etc, may appear.

Depending on the product that is going to be modeled or in

the level of detail required, some of these deviations can be

relevant and may be taken into account. Some works have

been done in order to consider mechanical deformations due

to vibrations [28], thermal deviations [29, 30] or wear diag-

nostic on bearings [31]. However, finding a general method to

consider the deformation of parts for tolerance is a challeng-

ing tasks. The methods developed on the literature are either

time consuming, because they include finite element analysis,

or case specific [32]. Thus, most geometric and tolerancing

approaches assume rigid bodies.

The geometrical model is related to the way in which the

geometrical deviations are taken into account. In specific,

the surface representation can be done by means of two

approaches: i) ideal surfaces and ii) skin model shapes. The

skin model shapes representation is based on the generation

of non-ideal geometries that represent the manufactured

surface including the form defects [33, 34], see Figure 2.1. The

main advantage of this representation is that it can simulates

expected deviations for specific manufacturing processes

[35, 36]. However, the level of detail of the model makes

the simulations time consuming and their use tends to be
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Figure 2.2: Substitute surface representation of the geometrical deviations [37]

restricted to simple assemblies. Hence, tolerance simulations

are often based on ideal surfaces, features of perfect forms

called substituted surfaces, Figure 2.2. Those surfaces are

associated to the real surfaces following a given criterion to

minimize the form defects [37].

In order to represent the geometrical deviations a mathemat-

ical model must be associated with the geometrical model.

Different kinds of models have been proposed for both skin

model-based and substitute feature-based representations.

Variations in skin model shapes are typically simulated by

linear combinations of form error modes associated with the

nominal geometry [38, 39]. When form defects are neglected,

it is equivalent to consider only the first six natural modes.

In these cases, the deviations (in position and orientation) of

the substitute feature are characterized by means of vectors,

transformation matrices or torsors/screws. In 3d tolerancing,

the position and orientation of features can be characterized

by means of homogeneous transformations [40]. However,

working with this representation can be hard since it involves

manipulating non linear relations [41]. If the assumption

of small rotations is made, this non-linear relations can be

linearized [18, 42]. Models like domains [43], T-maps [44],

polytopes [45] and polyhedra [46] represent all the possible

deviations by means of set of constraints (SOCs). The par-

ticularity of the polytope and polyhedra models is that the

boundaries of non linear features are discretized to obtain

linear constraints that are easier to manipulate. In addition,

the polyhedra model allows to model directly the degrees of
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invariance of the features, more details about this approach

will be presented in Chapter 3.

Finally, at the assembly level the behavior model will help

to represent the stack-up of deviations. This interaction de-

pends on how the individual parts are mated and the con-

struction of the assembly response function 𝑓 , see Equation

2.1, depends on how the variations are modeled. By means

of models based on SOCs, the dependencies between rota-

tions and translations are considered, hence, either iso and

over-constrained mechanisms can be modeled and just one

simulation is required to perform the tolerance analysis of

the mechanical system.

2.2 Tolerance analysis

Geometric and Dimensional Tolerancing Analysis (GDTA)

consists in simulating the behavior of a mechanical system

in function of the geometric defects of the parts and their

contact specifications, allowing to model no only the defects

at the part level but their interaction at the assembly level.

2.2.1 Tolerance analysis methods

During the past years, a variety of tolerance models have

been proposed and some review of these researches can be

found in [8, 12–16]. Those methods have been classified by the

dimensionality (1d, 2d or 3d), the type of variations included

(dimensional, dimensional+geometric), the analysis level

(part level, assembly level), etc. [17]. However each model

has advantages and disadvantages hence it must be chosen

in line with the technical system and the assumptions and

simplifications made in it to represent the real model.

One practical way of classifying the tolerance analysis meth-

ods is to divide them into:

▶ The methods based on parametric approaches [18, 19],

▶ The methods based on sets of constraints (SOCs) [20,

21].
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Figure 2.3: Comparison of domains, T-Maps and polytopes [27]

Parametric approaches

Parametric approaches, formalize the relative position of

any two surfaces of a mechanism at a specific point by a

simple expression, (linear or non-linear) between parameters

of position (translation and/or rotation), that can be obtained

by analytic [19, 47–49] or stochastic methods (Monte Carlo [50,

51]). Among these methods we can find CLIC [18], Robustness

Analysis [52], Jacobian Matrices [53], TTRS [54, 55], SDT

[19].

The main advantage of this kind of models is it allows to

easily determine the influence coefficients of the parameters.

However, this method do not take into account the dependen-

cies between the limits of rotation and translation [45]. Hence,

many simulations are needed in order to know the solution

space. In addition, treating over-constrained mechanisms

with this kind of approaches is complicated.

Methods based on sets of constraints

Methods based on sets of constraints (SOCs) were introduced

by Fleming [56]. The main advantage of these methods are

able to model over-constrained mechanisms and to charac-

terize not only the geometric variation but also the contacts

[57]. In these methods, the sets of constraints define the

boundaries of relative displacements between two surfaces

of the same part (geometric constraints) and boundaries of

relative displacements between two surfaces of two separate

parts that are potentially in contact (contact constraints).

By means of models such us domains [21], T-Maps [44], poly-

topes [58] or polyhedra [57, 59], the dependencies between

rotation and translations are considering requiring only one
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simulation to verify the compliance of a mechanical system

in regards to a functional condition. The main difference

between these approaches is the way they model the SOCs,

see Figure 2.3, however although some of these models are

initially able to handle quadratic constraints, they finally

linearize the sets of boundaries because of the complexity of

handling these operands [60].

These methods reduce a mechanical system architecture

by combining the SOCs of the system through sums and

intersections to determine the relative location between two

faces of two parts (among which the functional requirement

is defined) in any mechanical system [56]. The inclusion

of the resulting SOC inside the functional SOC –modelling

a functional requirement– simulates the conformity of the

mechanical system [27].

The polyhedral approach is set-based. Some works have

introduced some statistical distributions on the SOCs and

use stochastic approaches to solve the operations [61]. An

extension of this work on a model based on skin-model

shapes has been done in [62]. A probabilistic approach was

used by Dumas [63] on a model based on substituted surfaces.

The former technique has been used as well with skin-model

shapes in [64].

The main advantage of the methods based on SOCs is that

they allow to model any mechanism whether it is over-

constrained or not. In addition to this, the main advantage of

the polyhedral method is that it allows to model directly the

degrees of freedom of a contact or the degrees of invariance

of a surface without restrictive assumptions [57].

In summary, tolerance analysis can be seen as a black box in

which as inputs we have the functional requirement(s) and

the geometric and contact specifications and as a result we

obtain the answer to the question of if our system is compliant

or not with the functional condition, see Figure 2.4. In order

to pass from this input data to the response, it is necessary to

use a mathematical solver that has as the kernel the tolerance

analysis method that relates the characteristics that represent

our technical system. In general, the mathematical solver

can follow a statistical or a worst-case approach. Hence, the

choice of the tolerance analysis method is related to the type

of mechanism and the assumptions of the technical system.
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2.3 Tolerance synthesis and allocation

In the search for finding a way to overcome the challenge

of tolerance allocation considering both quality and cost

issues, different methodologies for tolerance allocation using

optimization techniques have been developed during the last

years.

In general, the procedure to approach a tolerance synthesis

problem is defined by three issues:

▶ the design function,

▶ the objective function,

▶ the optimization method.

The design function is related to the way the mechanical

system is modeled, the technical system, and how the de-

viations accumulate and/or interact, the tolerance analysis.

On the other hand, the objective function is related to a cost-

tolerance functional relationship or a quality loss functional

relationship [6]. Finally the optimization method is just the

mathematical technique used to find the best solution.

The tolerance synthesis can be seen as an iterative process in

which the geometric specifications are modified each time

in order to find the right set of parameters that allows us to

obtain the system conformity while optimizing the objective

function. However, since it is usually reduce to iteratively

allocate a set of tolerances in order to find an optimum of an

objective function, it is usual to do tolerance allocation and

optimization instead.
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Figure 2.5: Tolerance synthe-

sis/allocation
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2.3.1 Optimization methods

From [6, 11], the optimization methods used for tolerance

allocation can be classified into:

▶ Traditional methods

▶ Manual, iterative application of tolerance analysis

▶ Quality engineering and statistical methods

▶ Stochastic population based search methods

Traditional methods

These methods where developed when the computer technol-

ogy was not available or was limited. It consists in graphical

and analytical methods that used rough rules and do not

consider quantitative cost information [13, 65, 66]. Its appli-

cability is limited and nowadays they are mostly used for

preliminary tolerance assignment in early design stages.

Manual, iterative application of tolerance analysis

In this approach, the tolerances are assigned and checked in

a trial an error basis. Basically, a set of tolerances is allocated

and the designer verifies if the quality requirements are met.

If the quality requirements are not met a new set of tighter

tolerances is allocated. Otherwise, wider tolerances can be

set leading to reduce manufacturing costs [67].
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The identification of the relevant tolerances by means of

sensitivity analysis can help in this kind of processes to

reduce the problem into just modifying them.

This kind of approaches are time consuming and can lead to

not optimal solutions because there is no quantitative cost

information taken into account [68].

Quality engineering and statistical methods

Different statistical methods, such us design of experiments

and analysis of variance, can be used to identify optimal

tolerance designs [69, 70]. This kind of methods can be used

for complex mechanical assemblies, however they are not

universally applicable and do necessarily not lead to optimal

results.

Stochastic population based search methods

A lot of times, the design space of the optimization problem

in tolerancing can become irregular and complex to handle.

This kind of problems can be solved using meta-heuristic

methods [71] such us simulated annealing [72, 73], genetic

algorithms [68, 74], particle swarm optimization [75, 76], etc.

The main problem of this kind of approach is that they are

very time consuming.

2.3.2 Objective functions

Several types of tolerance functions have been used in solving

allocation problems. Most of the time cost-tolerance relation-

ships are used as the objective function [8]. Each of these

functions has a different formulation (power law, exponen-

tial, polynomial, etc.), and includes a set of parameters. The

choice of the function type is a compromise between various

criteria: a complex function is more accurate with respect to

real cost data but requires more computational effort; a sim-

ple function is less accurate but requires less computational

effort [11].

Extensive discussions on cost-tolerance functions are re-

ported in some reviews on tolerance allocation [6, 11, 77–81],
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Table 2.1: Two parameter cost-

tolerance functions

Linear 𝐶 = 𝑎 + 𝑏𝑇
Reciprocal 𝐶 = 𝑎 + 𝑏

𝑇

Reciprocal squared 𝐶 = 𝑎 + 𝑏
𝑇2

Table 2.2: Three parameter cost-

tolerance functions

Reciprocal power 𝐶 = 𝑎 + 𝑏
𝑇 𝑘

Exponential 𝐶 = 𝑎 + 𝑏
𝑒 𝑘𝑇

and in studies comparing different types of functions [82–84].

The cost-tolerance functions can be classified according to

the number of parameters in the cost equation [11, 77]:

▶ Two parameter functions, each parameter related to

the fixed cost and the variable cost

▶ Functions with more parameters define in a more

accurate way the variable cost.

The most common functions found in the literature are

the two and three parameter functions. The two parameter

functions, Table 2.1, have limited accuracy, however they are

interesting due to their ability to provide specially simple and

expressive analytical solutions to the allocation problem. On

the other hand, the functions wit three parameters, Table 2.1,

are the most frequently chosen because they seem to have a

favorable balance of accuracy and ease use. In Table 2.3, there

is a summary of the most used tolerance-cost optimization

used in the literature.

One of the main problems with tolerance-cost functions is the

lack of knowledge and information available. Inconsistent

terminology and the lack of a classification of the various

relevant aspects are obstacles for the application of tolerance-

cost optimization approaches. This makes it difficult to choose

an appropriate cost-tolerance function for a given problem.

Moreover, obtaining accurate cost data is often challenging,

which makes it difficult to develop accurate cost-tolerance

functions [85].

Table 2.3: Breakdown of the ap-

plications of cost-tolerance func-

tions [77]

Function Overall 2010+

Reciprocal 17% 14%

Reciprocal squared 10% 6%

Reciprocal power 25% 26%

Exponential 36% 40%

Others 12% 14%
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2.4 Summary

Considering geometric and dimensional uncertainties is an

essential part during the design stage because it will impact

all the life-cycle of a product. Modeling a mechanical system

implies doing some assumptions in order to simplify the

model to be able to analyze it. These simplifications have to

be carefully done by the designer since it will directly impact

the accuracy of the results of his analysis.

Once the simplification of the mechanical system is done,

a tolerance analysis method, with a mathematical kernel

that is able to handle the assumptions made, can be applied

in order to verify the mechanical compliance of the system

with respect a functional condition. However, sometimes

just verifying the compliance is not enough, and further

information is required. A designer may want to know, for

example, which set of tolerances will guarantee the mechani-

cal compliance of the system or even which set of tolerance

can minimize or maximize a given objective function.

Tolerance allocation and optimization aims to allow the

designer to obtain a set of tolerances that not only guarantees

the mechanical compliance of the system but to optimize an

objective function that is usually cost-based. The complexity

of the mechanical system, the amount of parameters to be

found and the solution space, may lead the designer to choose

a specific optimization method. The objective function to

be optimized is not trivial to choose, in the literature many

options can be found and their parametrization is far from

easy. The lack of information available in terms of the variable

costs makes this an open direction for further research.

2.4.1 Positioning of this work

Based on the summary presented in Figure 2.6, this work is

positioned on it as shown in Figure 2.7.

Although this work has been developed for worst-case it can

be applied also for statistical treatment. In addition, even if

the optimization done in this work is made on a function

that represents indirectly the manufacturig costs, if another

objective function wants to be used the process is the same

and our method works as well.
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Figure 2.6: Summary: the road

towards the tolerance optimiza-

tion
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Figure 2.7: Positioning of this

work
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3.1 Modeling set of constraints

The tolerance zone represents the range of acceptable varia-

tions in the manufacturing process for a specific feature. If

the feature is seen as a collection of discrete points 𝑃𝑖 , each

point has to be within the limits of the tolerance zone, hence

the geometric constraints for all the points can be modeled

as algebraic constraints as follows:

𝑆1 ⊆ 𝑇𝑍 ⇔ ∀𝑃𝑖 ∈ 𝑆0 : 𝑑inf ≤ ®𝑡𝑃𝑖 · 𝑛̂𝑖 ≤ 𝑑sup

(3.1)

where 𝑆1 is the substituted surface related to the nominal

surface 𝑆0, 𝑇𝑍 is the tolerance zone defining the offsetting

limits 𝑑inf
and 𝑑sup

, ®𝑡𝑃𝑖 is the translation displacement of 𝑆1

in relation to 𝑆0 at the point 𝑃𝑖 , and 𝑛̂𝑖 is the normal of 𝑆0 at

the point 𝑃𝑖 , see Figure 3.1.

Calculating the constraints in Equation 3.1 at a common point

𝑀 (that is rigidly connected to the toleranced feature), and

linearizing the rotations under the consideration of small

displacements [86], we have:

𝑑inf ≤
(
®𝑡𝑀 + −−−→

𝑃𝑖𝑀 × ®𝑟
)
· 𝑛̂𝑖 ≤ 𝑑sup

(3.2)

where ®𝑟 is the rotation vector of 𝑆1 in relation to 𝑆0. Hence,

each constraint represents a half-space in the 6-dimensional

space of deviations [58]:

|dsupi |

|dinfi |
t

z
y

x

M

ni

Ni

Tolerance Zone (TZ):
Two parallel surfaces

constructed by offsetting

S0: Nominal surface

S1: Substituted surface

S: Real Surface

Figure 3.1: Toleranced feature

and tolerance zone (reproduced

from [45])
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𝑈
+
𝑘 =

{
𝑥 ∈ ℝ6

: 𝑏𝑘 +
6∑
𝑖=1

𝑎𝑘𝑖𝑥𝑖 ≥ 0, ∀𝑖 ∈ {1 · · · 6}
}

(3.3)

where 𝑥𝑖 with 𝑖 = 1, 2, 3 are the rotation variables (𝑟𝑥 ,𝑟𝑦
and 𝑟𝑧) and with 𝑖 = 4, 5, 6 are the translation variables

(𝑡𝑥 ,𝑡𝑦 and 𝑡𝑧), 𝑎𝑘𝑖 are scalar parameters depending on the

geometry of the toleranced feature and the location of the

calculation point 𝑀, and the constant 𝑏𝑘 is related to the

width of the tolerance zone 𝑡 or the value of the clearance,

in the contacts. When the tolerance zone is centered with

respect to its nominal surface all the 𝑏𝑘 are equal to 𝑡/2 (see

Figure 3.1)

When the boundary of the nominal surface is discretized

in 𝑚 points 𝑃 (the set of discretization points is then 𝑃𝑖
with 𝑖 ∈ {1, · · · , 𝑚}) a set of 𝑘max = 2𝑚 half-spaces is ob-

tained. The intersection of those half-spaces defines a convex

H-polyhedron (where H stands for half-space) in ℝ6
, see

Definition 3.1.1.

Definition 3.1.1
(H-polyhedron) Let the
set {𝑈̄+

𝑚 , 𝑚 ∈ {1, · · · , 𝑘max}}
be a finite number of closed half-
spaces of ℝ𝑛 . The intersection
of {𝑈̄+

𝑚} will generate a convex
H-polyhedron in ℝ𝑛

Γ =

𝑘max⋂
𝑘=1

𝑈̄+
𝑘

For a couple of features potentially in contact, the allowable

displacements inside the clearance can be characterized in

a similar way [45, 58]. The toleranced feature is defined in

the case of permanent contacts between the features and

the tolerance zone is determined according to the clearance

value. For more details about the generation of the operands

refer to [57].

The set of constraints derived from a toleranced feature

usually defines an unbounded set in a 6-dimensional space of

deviations. This is a consequence of the degrees of invariance

of the toleranced features or the DoFs of the joints [45, 87].

According to the Minkowski-Weyl theorem [88], a polyhe-

dron can be decomposed into the sum of a polytope 𝑃 (see

Definition 3.1.2) and a polyhedral cone 𝐶, representing the

unbounded part of the polyhedron [27]:

Γ = 𝑃 ⊕ 𝐶 (3.4)

Definition 3.1.2 (Polytope) A
polytope of ℝ𝑛 is a set 𝑃 ⊆ ℝ𝑛

which can be represented either
as a V-polytope or as an H-
Polytope [88].

Definition 3.1.3 (V-Polytope)

A V-polytope ofℝ𝑛 is the convex
hull of a finite set of points 𝑉𝑖 in
ℝ𝑛 [88].

𝑃 = 𝑐𝑜𝑛𝑣(𝑉𝑖)

Definition 3.1.4 (H-Polytope)

An H-polytope of ℝ𝑛 is a
bounded H-polyhedron of ℝ𝑛

(see Definition 3.1.1).

When such a polyhedron can be represented as a sum between

a polytope and a sum of straight lines we call it a prismatic

polyhedron, see Definition 3.1.5. In geometric tolerancing,
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Figure 3.2: Contact modelling according to functional attributes [57]

Table 3.1: Topological structure of a contact polyhedron [57]

P

∑𝑑
𝑗=1

Δ𝑗

Case (i) floating contact Full polytope of dimension (6 − 𝑑) Affine space of dimension 𝑑

Case (ii) sliding contact Singleton of dimension (6 − 𝑑) Affine space of dimension 𝑑

Case (iii) fixed contact Singleton of dimension (6 − 𝑑) Singleton of dimension 𝑑

this polyhedron can be seen as an ‘extrusion’ of the polytope

(derived from geometric or contact constraints) along its

associated straight lines [89]. This polyhedron has a specific

property that can be decomposed as follows [57]:

Γ = 𝜋(∑𝑗 Δ𝑗(Γ))⊥(Γ) +
∑
𝑗

Δ𝑗(Γ)

The former definition allows us to take advantage of the

orthogonality between the space of the bounded displace-

ments, where the polytopes lives, and the degrees of freedom,

represented by the set of straight lines, see Figure 3.5.

Definition 3.1.5 (Prismatic

Polyhedron) A prismatic poly-
hedron ofℝ𝑛 is an H-polyhedron
of ℝ𝑛 (see Definition 3.1.1) that
can be decomposed into the sum of
a given number of straight lines
Δ𝑗 , 𝑗 < 𝑛 and a polytope.

The prismatic polyhedral approach allows to model the main

kinds of contacts: Floating, sliding and fixed, see Figure 3.2

and Table 3.1.

Example: Cylindrical pair (floating contact)

Let us consider a cylindrical pair, see Figure 3.3. For

illustrative purposes, let us consider it as a 2d model: only

displacements in the plane [𝑥, 𝑦] are taken into account.
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The tolerance zone will restrict the translation of the points

𝑃1 and 𝑃2, from Equation 3.1:

−𝑐/2 ≤ ®𝑡𝑃1
· 𝑗 ≤ 𝑐/2

−𝑐/2 ≤ ®𝑡𝑃2
· 𝑗 ≤ 𝑐/2

M

y

x
ds

a

dh P1 P2

Figure 3.3: A cylindrical joint. In

the case of the 2d example, only

one linear motion is possible (𝑡𝑥),
𝑡𝑦 and 𝑟𝑧 are bounded. The clear-

ance is 𝑐 = 𝑑ℎ − 𝑑𝑠

where, the clearance is 𝑐 = 𝑑ℎ − 𝑑𝑠 , with 𝑑𝑠 and 𝑑ℎ as the

diameters of the shaft and the hole, respectively. When

expressing the former algebraic constraints at the point

𝑀, from Equation 3.2 we have:

−𝑐/2 ≤
(
®𝑡𝑀 + −−−→

𝑃1𝑀 × ®𝑟
)
· 𝑗 ≤ 𝑐/2

−𝑐/2 ≤
(
®𝑡𝑀 + −−−→

𝑃2𝑀 × ®𝑟
)
· 𝑗 ≤ 𝑐/2

since we have 2 discretization points 𝑚, we will have

𝑘max = 4 half-spaces of of ℝ3
, knowing that

−−−→
𝑃1𝑀 = −𝑎/2 𝑖

and

−−−→
𝑃2𝑀 = 𝑎/2 𝑖, we get:

𝑈̄+
1sup

:𝑐/2 − 𝑡𝑦 − 𝑎/2 𝑟𝑧 ≥ 0

𝑈̄+
1inf

:𝑐/2 + 𝑡𝑦 + 𝑎/2 𝑟𝑧 ≥ 0

𝑈̄+
2sup

:𝑐/2 − 𝑡𝑦 + 𝑎/2 𝑟𝑧 ≥ 0

𝑈̄+
2inf

:𝑐/2 + 𝑡𝑦 − 𝑎/2 𝑟𝑧 ≥ 0

In the ℝ2
space spanned by [𝑡𝑦 , 𝑟𝑧], the intersection of

these half-spaces defines a 2-polytope, see Figure 3.6.

When considering the ℝ3
space spanned by [𝑡𝑦 , 𝑟𝑧 , 𝑡𝑥], the

intersection of the half-spaces will generate an unbounded

object, i.e. a polyhedron, see Figure 3.6.

rz

ty
Ū+
2sup

Ū+
1sup

Ū+
1inf

Ū+
2inf

c/a

−c/a

c/2−c/2

Figure 3.4: The subspace of

bounded displacements can be

represented by means of a con-

vex polytope. It is the result of

the intersection of all the half-

spaces obtained after the dis-

cretization of the toleranced fea-

ture

rz

ty
tx

c/a
−c/2

c/2
−c/a

Figure 3.5: The polyhedron Γ𝑐
represents, not only the bounded

displacements but also the DoFs

(unbounded displacements - 𝑡𝑥)
of the toleranced feature, by

means of straight-lines or poly-

hedral cones

3.1.1 Modeling the stack up of deviations with
polyhedra

Under the consideration of rigid parts, the defects propaga-

tion in a mechanical system can be determined by the way

the constituted parts are mated. The cumulative stack-up

of geometric deviations between any couple of surfaces of

an assembly can be modeled with polyhedra. The set of re-

quired operations is determined according to the topological
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Figure 3.6: Since a polytope can-

not be unbounded, two cap half-

spaces have to be added in order

to bound 𝑡𝑥 at the infinite, creat-

ing a capped polytope

structure of the assembly.

When parts are joined in series, defects accumulate. This

can be simulated by calculating the Minkowski sums of the

polyhedra. When parts are mated with multiple contacts,

defects counteract between them. In this case, the intersection

of the respective polyhedra is computed. After reducing the

mechanical system by applying these operations as needed,

the final polyhedron is obtained. Then, the functional con-

dition can be verified by checking if the final polyhedron is

contained within the functional one [89].

Serial architectures

If several parts are mated in a serial configuration, the cu-

mulative stack-up of deviations can be calculated through

the Minkowski sum of the geometric and contact polyhedra

involved in the tolerance chain.

Due to their unbounded nature, the Minkowski sum of poly-

hedra is challenging from the computational and algorithmic

point of view. In [45], the authors proposed to virtually

limit the displacements related to the DoFs of the tolerances

joints and the degrees of invariance of the toleranced features

by introducing additional facets called caps and creating

a capped polytope, Figure 3.6. However, adding cap half-

spaces modifies the topology of the operands and increases

their complexity. In addition, as a result of the accumulation

of DoFs along the tolerance chain, after each sum the com-

plexity of the resulting polytope worsens until becoming far

too significant so that its calculation time consumes most of

the computational resources.

In [89], the authors propose to manipulate simplified sets of

constraints by excluding the straight lines derived from the

unbounded displacements and to sum the underlying poly-

topes of the polyhedra. This method reduces the complexity

of the operands, hence the calculation time and the probabili-

ties of having numerical problems during the calculations.

The prismatic polyhedral approach takes advantage of the

straight lines of the polyhedra operands and calculates the
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Definition 3.1.7 (Dual polyhe-

dral cone) A dual polyhedral
cone 𝐶𝐷(𝑣) of a j-face 𝑣 is de-
fined as the positive linear com-
bination of outer normals of its
corresponding facets.

𝐶𝐷(𝑣) =
{∑

𝛼𝑖 ®𝑛𝑖 , 𝛼𝑖 ≥ 0

}

sum of two prismatic polyhedra operands Γ1 and Γ2

Γ1 = 𝑃1 ⊕
𝑘∑
𝑖=1

Δ𝑖(Γ1) = 𝑃1 ⊕ 𝐶1, 𝑃1 ⊂ 𝐻𝑃1
=

𝑘⋂
𝑖=1

𝑈𝑖

Γ2 = 𝑃2 ⊕
𝑙∑

𝑖=𝑘+1

Δ𝑖(Γ2) = 𝑃2 ⊕ 𝐶2, 𝑃2 ⊂ 𝐻𝑃2
=

𝑙⋂
𝑖=𝑘+1

𝑈𝑖

with𝑈𝑖 = Δ⊥
𝑖 ∀𝑖 ∈ {1, ..., 𝑙}

as the sum of the projection of their underlying polytopes on

the subspace 𝐻𝑃1
∩𝐻𝑃2

plus their respective straight lines:

Γ1⊕Γ2 = 𝜋𝐻𝑃
1
∩𝐻𝑃

2

(𝑃1)⊕𝜋𝐻𝑃
1
∩𝐻𝑃

2

(𝑃2)⊕
𝑙∑
𝑖=1

Δ𝑖(Γ1)⊕
𝑙∑
𝑖=1

Δ𝑖(Γ2)

(3.5)

where 𝜋𝐻 is the orthogonal projection on 𝐻.

As for the sum of the two projected polytopes, in [90] the

authors propose an algorithm that calculates the Minkowski

sum of polytopes in ℝ𝑛
taking advantage of their dual-

ity property. This property states that the normal fan of a

Minkowski sum of two polytopes 𝑃1 ⊕ 𝑃2 is the common

refinement of the normal fan of its summands [88], see

Definition 3.1.6:

N(𝑃1 ⊕ 𝑃2) = N(𝑃1) ∧N(𝑃2) (3.6)

The calculation of the common refinement of the normal fans

of two polytopes is made by intersecting their polyhedral

cones.

Definition 3.1.6 (Normal fan)

The normal fan N(𝑃) of a poly-
tope 𝑃 of ℝ𝑛 is defined as the set
of all the dual cones of 𝑃 (Defini-
tion 3.1.7).

Example: Sum of polyhedra

The Figure 3.7 represents the sum between the polyhe-

dra Γ𝑐 and Γ𝑡 . For the purpose of representability, those

polyhedra are contained in the 3d subspace spanned by

[𝑡𝑦 , 𝑟𝑧 , 𝑡𝑥]. As stated in the Definition 3.1.5, Γ𝑐 and Γ𝑡 can

be decomposed as:

Γ𝑐 = 𝑃𝑐 ⊕
𝑙∑
𝑖=1

Δ𝑖(Γ𝑐)

Γ𝑡 = 𝑃𝑡 ⊕
𝑘∑
𝑗=1

Δ𝑗(Γ𝑡)
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in order to sum these two polyhedra, it is needed to project

both polytopes onto their common subspace to add them:

𝑃sum = 𝜋𝐻𝑃𝑐∩𝐻𝑃𝑡 (𝑃𝑐) ⊕ 𝜋𝐻𝑃𝑐∩𝐻𝑃𝑡 (𝑃𝑡)

Finally, the sum between Γ𝑐 and Γ𝑡 gives a polyhedron

that is the result of extruding 𝑃sum along the straight lines

of both operands.

Γsum = Γ𝑐 ⊕ Γ𝑡

Γsum = 𝑃sum ⊕
𝑙∑
𝑖=1

Δ𝑖(Γ𝑐) ⊕
𝑘∑
𝑖=1

Δ𝑖(Γ𝑡)

Parallel architectures

The interaction of the geometric deviations when parts are

mated in parallel can be calculated as the intersection of the

respective polyhedra derived from the contact chain.

The intersection of two prismatic polyhedra of ℝ𝑛
can be

calculated adding the intersection of their projections on

their added subspace with their common straight lines:

Γ1 ∩ Γ2 =

(
𝜋𝐻𝑃

1
⊕𝐻𝑃

2

(Γ1) ∩ 𝜋𝐻𝑃
1
⊕𝐻𝑃

2

(Γ2)
)
⊕ 𝐶1 ∩ 𝐶2

if we consider Ψ = 𝐻𝑃1
⊕ 𝐻𝑃2

Γ1 ∩ Γ2 =

(
𝜋Ψ(Γ1) ∩ 𝜋Ψ(Γ2)

)
⊕

𝑙∑
𝑖=1

Δ𝑖(Γ1) ∩
𝑘∑
𝑖=1

Δ𝑖(Γ2)
(3.7)

Γ1 ∩ Γ2 =

(
𝜋Ψ(Γ1 ∩ Γ2)

)
⊕

𝑙∑
𝑖=1

Δ𝑖(Γ1) ∩
𝑘∑
𝑖=1

Δ𝑖(Γ2) (3.8)

In the general case, the computation of the intersection

polyhedra requires joining together the half-spaces of the

operands and removing the redundant-ones.

Example: Intersection of polyhedra

In the Figure 3.8 the intersection between the polyhedra
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Γ𝑐 and Γ𝑡 is represented. The first step to intersect the

polyhedra is to project the operands onto the added sub-

space of their polytopes. In this case, the result of adding

the sub-spaces of the polytopes is the complete subspace

spanned by [𝑡𝑦 , 𝑟𝑧 , 𝑡𝑥]. Hence, the result of the intersection

is a polytope and it is:

Γ𝑖𝑛𝑡 = Γ𝑐 ∩ Γ𝑡

Γ𝑖𝑛𝑡 =

(
𝜋𝐻𝑃𝑐⊕𝐻𝑃𝑡 (Γ𝑐) ∩ 𝜋𝐻𝑃𝑐⊕𝐻𝑃𝑡 (Γ𝑡)

)

3.1.2 Compliance with the functional
requirement

The tolerance analysis process aims to verify if the product

meets its functional requirements according to the propa-

gation of the defects of its components. In the prismatic

polyhedral approach, the requirements satisfaction can be

verified if the calculated polyhedron, containing the cu-

mulative stack-up of variations, fits inside the functional

polyhedron.

Considering Γ𝑅 and ΓFC as the resulting and functional

polyhedron, respectively:

Γ𝑅 = 𝑃𝑅 ⊕
𝑘∑
𝑖=1

Δ𝑖 = 𝑃𝑅 ⊕ 𝐶𝑅

ΓFC = 𝑃FC ⊕
𝑙∑
𝑗=1

Δ𝑗 = 𝑃FC ⊕ 𝐶FC

The verification of the inclusion of the resulting polyhe-

dron inside the functional one can be done in a two steps

approach:

1. check if the space generated by the sum of the straight-

lines of the resulting polyhedron is contained in the

space formed by the sum of the straight-lines coming

from the functional polyhedron:

𝐶𝑅 ⊆ 𝐶FC (3.9)
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Figure 3.8: Intersection of two polyhedra
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2. verify the inclusion of the polytope coming from the

resulting polyhedron inside the one coming from the

functional one.

𝑃𝑅 ⊆ 𝑃FC (3.10)

The first step consists in verifying the Kinematic compliance of

the two unbounded sets while the second step verifies the

tolerance compliance [46]. If the kinematic compliance is not

achieved, it means that there is at least one DoF that prevents

the respect of the functional condition and the mechanism

itself needs to be modified. If the kinematic compliance is met,

the second step can be verified by quantifying the inclusion

of the resulting polyhedron, Γ𝑅, inside the polyhedron that

defines the functional condition, ΓFC. If such an inclusion is

satisfied the minimum distance between the two operands is

computed. Otherwise, the maximum distance between the

functional one and the points of Γ𝑅 located outside ΓFC is

calculated.

Since we work in 1 to 6 dimensions, the distance that is

calculated is in reality the magnitude of a vector, and this

value is hard to interpret because it can have units of angle

and/or of length. However, this distance can help us to

quantify the inclusion or non-inclusion of the result inside

the functional polyhedron.

The functional polyhedron ΓFC can be seen as a weighted

Minkowski sum between two operands, Γ′
H1

and Γ′
H2

, deriv-

ing from the surfaces related to the functional condition. We

will call those surfaces handle surfaces.

ΓFC = Γ′
H1

⊕ Γ′
H2

(3.11)

Assuming that the tolerance zones of the handle surfaces are

centered around the nominal surface, the operands can be

written as follow:

Γ′
H1

=

𝑘⋂
𝑖=1

{
𝒙 ∈ ℝ6

:

𝑡 𝑓1

2

+ 𝑎𝑖1𝑥1 + ... + 𝑎𝑖6𝑥6 ≥ 0

}
Γ′

H2

=

𝑙⋂
𝑗=1

{
𝒙 ∈ ℝ6

:

𝑡 𝑓2

2

+ 𝑎 𝑗1𝑥1 + ... + 𝑎 𝑗6𝑥6 ≥ 0

} (3.12)
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room for optimization
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Figure 3.11: The result is in-

cluded inside the target and it

“touches” the boundary

where 𝑡 𝑓1 and 𝑡 𝑓2 are the respective functional tolerances. In

practice, these functional tolerances are very often equal (i.e.

combined zone concept from ISO) or one of them is null (i.e.

datum) [23, 24]. From Equation 3.11 and Equation 3.12, we

can obtain:

ΓFC =
1

2

𝑡 𝑓1ΓH1
⊕ 1

2

𝑡 𝑓2ΓH2
ΓH1

=
⋂𝑘
𝑖=1

{
𝒙 ∈ ℝ6

: 1 + 𝑎𝑖1𝑥1 + ... + 𝑎𝑖6𝑥6 ≥ 0

}
ΓH2

=
⋂𝑙
𝑗=1

{
𝒙 ∈ ℝ6

: 1 + 𝑎 𝑗1𝑥1 + ... + 𝑎 𝑗6𝑥6 ≥ 0

}
(3.13)

Finally, the weighted Minkowski sum can be written as

follows:

ΓFC = 𝑡 𝑓 [𝑘1.ΓH1
⊕ 𝑘2.ΓH2

] with 𝑘1 ≥ 0, 𝑘2 ≥ 0, 𝑘1 + 𝑘2 ≠ 0

(3.14)

Since the multiplication of a polyhedron by a scalar is dis-

tributive over the Minkowski sum [91], for two real positive

numbers 𝜆 and 𝜇 and for any two polyhedra Γ𝐴 and Γ𝐵, the

Minkowski sum satisfies the following properties

𝜆(Γ𝐴 ⊕ Γ𝐵) = 𝜆Γ𝐴 ⊕ 𝜆Γ𝐵

(𝜆 + 𝜇)Γ𝐴 = 𝜆Γ𝐴 ⊕ 𝜇Γ𝐴
(3.15)

Applying the former properties in Equation 3.14, the 𝑡 𝑓 term

can be scaled. If the ratio 𝑘1/𝑘2 is kept constant, the topology

of the resultant polyhedron is maintained and all the result

that can be obtained are homothetic to each other.

The Algorithm 1 presents the strategy to verify the compli-

ance of the resulting polyhedron Γ𝑅 inside the functional

polyhedron ΓFC, and it allows to find an optimal tolerance

𝑡 𝑓circ
for the handle surfaces, starting from an initial tolerance

𝑡 𝑓 . The tolerance 𝑡 𝑓circ
can be seen as an indicator of the quality

of the result, since the deviation |𝑡 𝑓𝑐𝑖𝑟𝑐𝑖 − 𝑡 𝑓𝑖 | is proportional

to the inclusion or the non inclusion of Γ𝑅 inside ΓFC.

In the Algorithm 1, the tolerance is a function of the distance

(𝐷) between the two operands, which means that the toler-

ance is going to increase or decrease proportionally to this

distance.
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Algorithm 1: IncludingΓ𝑅 intoΓFC: verification and fitting

[57]

Data: Γ𝑅 , 𝑘1, Γ1, 𝑘2, Γ2, 𝑡 𝑓 , 𝛿
Result: 𝑡 𝑓circ

such that Γ𝑅 ∈ ΓFC

1 Build the functional polyhedron: ΓFC = 𝑡 𝑓 (𝑘1.Γ1 ⊕ 𝑘2.Γ2);
2 Let {Δ𝑖} be the set of straight lines of ΓFC;

3 Let {Δ𝑗} be the set of straight lines of Γ𝑅;

4 if
{∑

𝑗 𝛽 𝑗Δ𝑗

}
⊂
{∑

𝑖 𝛼𝑖Δ𝑖
}

then
// The kinematic compliance is verified

5 Check the inclusion: Γ𝑅 ⊂ ΓFC;

6 if Γ𝑅 ⊂ ΓFC then
// The tolerance compliance is achieved

7 Compute the distance (𝐷𝑎
min

);

8 (𝐷𝑎
min

) minimum distance between ΓFC and Γ𝑅;

9 Consider a value 𝛿 > 0 to scale up ΓFC;

10 Γ′
FC

= (𝑡 𝑓 + 𝛿)[𝑘1.Γ1 ⊕ 𝑘2.Γ2];
11 Compute the distance (𝐷𝑏

min
);

12 (𝐷𝑏
min

) minimum distance between Γ′
FC

and Γ𝑅;

13 Compute 𝑡 𝑓circ
= 𝑡 𝑓 −

𝐷𝑎
min

𝐷𝑏
min

−𝐷𝑎
min

𝛿;

14 else
15 if Γ𝑅 ⊄ ΓFC then

// The tolerance compliance is not achieved
16 Compute the distance (𝐷𝑎

max
);

17 (𝐷𝑎
max

) maximum distance between ΓFC and a

point of Γ𝑅 located outside ΓFC;

18 Consider a value 𝛿, 𝑡 𝑓 > 𝛿 > 0 to scale down

ΓFC;

19 Γ′
FC

= (𝑡 𝑓 − 𝛿)[𝑘1.Γ1 ⊕ 𝑘2.Γ2];
20 Compute the distance (𝐷𝑏

max
);

21 (𝐷𝑏
max

) maximum distance between Γ′
FC

and a

point of Γ𝑅 located outside ΓFC;

22 Compute 𝑡 𝑓circ
= 𝑡 𝑓 + 𝐷𝑎

max

𝐷𝑏
max

−𝐷𝑎
max

𝛿;

23 end
24 end
25 else

// The inclusion cannot be achieved
26 end

The calculation of the tolerance of circumscription only makes

sense if the two polyhedra are kinematically compliant (see

Equation 3.9):

ΓFCcirc
= 𝑡 𝑓circ

[𝑘1.ΓH1
⊕ 𝑘2.ΓH2

], Γ𝑅 ⊂ ΓFCcirc
, Γ𝑅 ∩ ΓFCcirc

≠ ∅.
(3.16)
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where ΓFCcirc
is the circumscribed polyhedron to Γ𝑅.

After checking the kinematic compliance, the polyhedron Γ𝑅

may or may not be inside the functional polyhedron ΓFC. The

best functional tolerances for both scenarios are 𝑡 𝑓𝑐𝑖𝑟𝑐1 and

𝑡 𝑓𝑐𝑖𝑟𝑐2 , respectively:

if Γ𝑅 ⊂ ΓFC, 𝑡 𝑓𝑐𝑖𝑟𝑐1 = 2𝑘1.𝑡 𝑓circ
≤ 𝑡 𝑓1 , 𝑡 𝑓𝑐𝑖𝑟𝑐2 = 2𝑘2.𝑡 𝑓circ

≤ 𝑡 𝑓2

if Γ𝑅 ⊄ ΓFC, 𝑡 𝑓𝑐𝑖𝑟𝑐1 = 2𝑘1.𝑡 𝑓circ
≥ 𝑡 𝑓1 , 𝑡 𝑓𝑐𝑖𝑟𝑐2 = 2𝑘2.𝑡 𝑓circ

≥ 𝑡 𝑓2

The former relationships show that the difference between the

optimal functional tolerances 𝑡 𝑓𝑐𝑖𝑟𝑐i and the actual functional

tolerances 𝑡 𝑓 i is proportional to the inclusion of Γ𝑅 inside

ΓFC. Hence, this difference can be used as an indicator of how

well the mechanism meets the functional condition.

Example: Compliance test

In order to exemplify the tolerance compliance test process,

let us consider two polyhedra Γ𝑅 and ΓFC, corresponding

to a resulting polyhedron and a functional one, respec-

tively:

Γ𝑅 = 𝑃𝑅 ⊕ 𝐶𝑅
ΓFC = 𝑃FC ⊕ 𝐶FC

in this application 𝐶𝑅 = 𝐶FC, then the kinematic com-

pliance condition is met since 𝐶𝑅 ⊆ 𝐶FC (see Equation

3.9), and the polytopes of both operands are in the same

subspace. Assuming that 𝑃𝑅 and 𝑃FC are 2-polytopes in

the subspace spanned by [𝑢, 𝑣], it is easy to check the tol-

erance compliance by visualizing both polytopes. When

verifying the inclusion of the resulting polytope inside the

functional one, there are two possible results:

1. The functional polytope contains the resulting poly-

tope, 𝑃𝑅 ⊂ 𝑃FC, so the tolerance compliance is

achieved and the mechanism meets the functional

condition, see Figure 3.9.

2. The functional polytope does not fully enclose the

resulting polytope, 𝑃𝑅 ⊄ 𝑃FC which means that

with the given set of tolerances the system does not

respect the functional condition, see Figure 3.10.
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In any of the two former cases the tolerances of circum-

scription can be calculated, see Figure 3.11, in order to find

either the level of over inclusion or of non-inclusion. In

the first case, the minimum distance between 𝑃FC and 𝑃𝑅
is calculated and the functional polytope is scaled down.

In the second case, the maximum distance between 𝑃FC

and the vertex of 𝑃𝑅 that are not included is calculated

and the functional polytope is scaled up.

3.2 Case study: Prismatic polyhedra
approach

In order to illustrate the functioning of the prismatic poly-

hedron method described along this chapter, a complete

tolerance analysis for a high-resolution spectrometer is pre-

sented. This spectrometer uses a magnetic pole to monitor

the ions in the ion beam according to their mass-to-charge

ratio, ions with different mass-to-charge ratios will follow

different paths and reach different positions on a detector or

a photographic plate [92]. By using the spectrometer to count

ions in an ion beam, it is possible to obtain information about

the number, type, distribution, and arrangement of atoms

in the sample. This information can be useful for various

applications, such as material science, geology, biology, and

medicine.

The resolution of the spectrometer presented in Figure 3.12 is

strongly correlated with the location between the cylindrical

surface of the magnetic pole 3 (surface 3, 7) and the ion beam.

In the following, we will assume that the ion beam is the

axis of the cylindrical surface (1, 12) made up of two coaxial

cylindrical surfaces from the experience chamber (1), see

Figure 3.13.

The objective of the simulation according to the functional

condition (FC), is to control the position of the handle sur-

faces (3, 7 and 1, 12) considering manufacturing and contact

deviation on the mating parts. In other words, the relative

orientation, variables [𝑟𝑧 , 𝑡𝑧 , 𝑟𝑦], between these surfaces has

to be controlled. This constraint defines the functional poly-

hedron ΓFC that is built through the Minkowski sum of the

operands deriving from the handle surfaces (Equation 3.14),

with 𝑡 𝑓 = 0.4 and 𝑘1 = 𝑘2 = 1/2.
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Figure 3.12: Spectrometer - CAD model

The topological model helps to determine the set of operands

and operations required to calculate the cumulative stack-up

of deviations between the two handle surfaces. In this graph,

see Figure 3.14, nodes designated as (𝛼, 𝛽) represent the

nominal model of the part 𝛼 when 𝛽 = 0, and the substitute

surfaces when 𝛽 ≠ 0, following the nomenclature illustrated

in Figure 3.13. Each edge of the graph represents geometric

deviations or contact deviations, depending on whether it

connects nodes within the same part or nodes from different

parts. These deviations can be represented by geometric

polyhedra for geometric deviations and contact polyhedra

for contact deviations [45].

The set of operations required to simulate the relative position

of the handle surfaces can be determined by doing the graph

reduction as follows:

Γ𝑅 = Γ3,7 ⊕ Γ
3,0/2,0 ⊕ Γ1,12 (3.17)

with:

Γ
3,0/2,0 =Γ

3,0/2,0−𝑎 ∩ Γ
3,0/2,0−𝑏 ∩ Γ

3,0/2,0−𝑐
Γ

3,0/2,0−𝑎 = Γ3,4 ⊕ Γ
3,4/2,4 ⊕ Γ2,4

Γ
3,0/2,0−𝑏 = Γ3,5 ⊕ Γ

3,5/2,5 ⊕ Γ2,5

Γ
3,0/2,0−𝑐 = Γ3,6 ⊕ Γ

3,6/2,6 ⊕ Γ2,6

(3.18)
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Figure 3.13: Parts and surfaces enumeration of the spectrometer

and with:

Γ
2,0/1,12

=Γ1,12−𝑎 ∩ Γ
1,12−𝑏

Γ
2,0/1,12−𝑎 = (Γ2,1 ⊕ Γ

2,1/1,12
) ∩ (Γ2,2 ⊕ Γ

2,2/1,12
)

Γ
2,0/1,12−𝑏 = Γ2,3 ⊕ Γ

2,3/1,3 ⊕ Γ1,3 ⊕ Γ1,12

(3.19)

The projections of the geometrical polyhedra in the sub-space

of the bounded displacements of the contact polyhedron

of each edge is homothetic. Due to this, the Minkowski

sum of the three elements of each edge is a homothetic

transformation of its contact polyhedra and Equation 3.18

and Equation 3.19 are simplified and rewrited to:

Γ
3,0/2,0−𝑎 =

𝜆2

2

Γ3,4 ⊕
𝜆3

2

Γ2,4
*

Γ
3,0/2,0−𝑏 =

𝜆1

2

Γ
3,5/2,5

Γ
3,0/2,0−𝑐 =

𝜆1

2

Γ
3,6/2,6

Γ
2,0/1,12−𝑎 =

𝜆0

2

Γ
2,1/1,12

∩ 𝜆0

2

Γ
2,2/1,12

Γ
2,0/1,12−𝑏 =

𝜆5

2

Γ2,3 ⊕
𝜆4

2

Γ1,3
* ⊕ 𝜆6

2

Γ1,12

*
The contact between the two planar surfaces is a sliding contact, case

(ii) described in Table 3.1. Hence these polyhedra can be ignored in the

sum.
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Figure 3.14: Contact graph of the spectrometer

𝑡1,12 0.02

�𝐷1,1 145

𝑑1,1_𝑈 +0.148

𝑑1,1_𝐿 +0.085

�𝐷1,2 138

𝑑1,2_𝑈 +0.148

𝑑1,2_𝐿 +0.085

𝑡1,3 0.02

Table 3.2: Experience chamber

dimensions and tolerances

𝑡2,12 (𝑡2,1 = 𝑡2,2) 0.01

�𝐷2,1 145

𝑑2,1_𝑈 +0.068

𝑑2,1_𝐿 +0.043

�𝐷2,2 138

𝑑2,2_𝑈 +0.068

𝑑2,2_𝐿 +0.043

𝑡2,3 +0.02

𝑡2,4 +0.02

�𝐷2,5 = �𝐷2,6 18

𝑑2,5_𝑈 = 𝑑2,6_𝑈 +0.059

𝑑2,5_𝐿 = 𝑑2,6_𝐿 +0.032

Table 3.3: Massive part dimen-

sions and tolerances

The reduction equation becomes then,

Γ𝑅 =
𝜆7

2

Γ3,7 ⊕
((
𝜆2

2

Γ3,4 ⊕
𝜆3

2

Γ2,4

)
∩ 𝜆1

2

Γ
3,5/2,5 ∩

𝜆1

2

Γ
3,6/2,6

)
⊕
(
𝜆0

2

Γ
2,1/1,12

∩ 𝜆0

2

Γ
2,2/1,12

∩
(
𝜆5

2

Γ2,3 ⊕
𝜆4

2

Γ1,3 ⊕
𝜆6

2

Γ1,12

))
(3.20)

where each polyhedron operand is defined as

Γ =

𝑘⋂
𝑖=1

{
𝒙 ∈ ℝ6

: 1 + 𝑎𝑖1𝑥1 + ... + 𝑎𝑖6𝑥6 ≥ 0

}
(3.21)

and, 𝜆𝑖 with 𝑖 = 1 · · · 7 are the sums of the tolerances of each

edge. Changing the value of the 𝜆𝑖 coefficients in Equation

3.20 results in a homothetic transformation of the operands

without changing their topology.

The tolerance and dimensional limits are taken into account

based on the application of the spectrometer and the manu-

facturing processes that are usually used on the parts (see

Figure 3.15, Figure 3.16 and Figure 3.17, and Table 3.2, Table

3.3 and Table 3.5). For the pin and the holes, the clearance

is calculated taking into account the most undesirable con-

dition, Least Material Condition (LMC). In the LMC, it is

considered the maximum size for the holes and the minimum
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Figure 3.15: Experience Chamber Drawing

𝜆0 0.115

𝜆1 0.61

𝜆2 0.00

𝜆3 0.02

𝜆4 0.02

𝜆5 0.02

𝜆6 0.02

𝜆7 0.02

Table 3.4: Values for the 𝜆𝑖 coef-

ficients

𝑡3,4 0.00

�𝐷3,5 = �𝐷3,6 18

𝑑1,1_𝑈 0.059

𝑑1,1_𝐿 0.032

𝑡3,5 = 𝑡3,6 0.01

𝑅3,7 23

𝑡3,7 0.02

Table 3.5: Magnetic pole dimen-

sions and tolerances

size for the shafts, in this case we used the fit E8/p6 based

on the system ISO 286-2. Table 3.4 presents the values for

the 𝜆𝑖 coefficients in Equation 3.20.

All the operands involved in Equation 3.20 were created

with the open-source software PolitoCAT [93] and calculated

at the point 𝑀 (0, 0, 0). The amount of half-spaces of each

operand is presented in Table 3.6.
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Figure 3.16: Massive part drawing

Figure 3.17: Magnetic pole drawing
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Surface Half-spaces

3,7 12

3,4 28

3,5/2,5 6

3,6/2,6 6

2,1/2,12 6

2,2/2,12 6

2,3 44

1,12 24

Table 3.6: Amount of half-spaces

for each operand involved on the

tolerance analysis

Tz

RyRz

ΓR

Figure 3.18: 3d representation of

the resulting polyhedron Γ𝑅

Figure 3.18 shows the result of the tolerancing analysis pro-

jected in the subspace spanned by [𝑟𝑦 , 𝑟𝑧 , 𝑡𝑧]. The chosen

subspace contains only the bounded displacements of the

resulting operand, meaning that no straight-lines shown in

the projection, these figure is just partial representation of

the polyhedron since it originally belongs to ℝ6
.

Since both polyhedra have the same straight-lines, 𝐶𝑅 =

𝐶FC, the kinematic compliance is satisfied. The tolerance

compliance can be verified by checking the inclusion of

𝑃𝑅 inside 𝑃FC. In the Figure 3.19, it is possible to see that

the resulting polytope is over-included on the functional

condition. When the tolerance of circumscription is calculated

we obtain:

𝑡circ ≈ 0.112 (3.22)

The results suggest that the system has more rigorous toler-

ances than necessary. Roughly it will be possible to increase

all the tolerances by a factor of 3.5 and still maintain the

tolerance compliance.

Table 3.7 shows a summary of the calculation time required

to run the tolerance reduction process. . In the table it is pos-

sible to observe that the sums are the most time consuming

operations out of all, and especially the last sum consumes

almost half of the time during the tolerance reduction process.

The identification of the operations on the table is done as

follows from the Equation 3.20:

𝑆𝑢𝑚1 =
𝜆2

2

Γ3,4 ⊕
𝜆3

2

Γ2,4

𝑆𝑢𝑚2 =
𝜆5

2

Γ2,3 ⊕
𝜆4

2

Γ1,3 ⊕
𝜆6

2

Γ1,12

Γ𝑅 =
𝜆7

2

Γ3,7 ⊕
(
𝑆𝑢𝑚1 ∩

𝜆1

2

Γ
3,5/2,5 ∩

𝜆1

2

Γ
3,6/2,6

)
⊕
(
𝜆0

2

Γ
2,1/1,12

∩ 𝜆0

2

Γ
2,2/1,12

∩ 𝑆𝑢𝑚2

)
Operation Time (s) %

𝑆𝑢𝑚1 1.68 21.0

𝑆𝑢𝑚2 1.58 19.8

Intersections 0 0

Final sum (Γ𝑅) 4.70 58.9

Tolerance reduction 7.98 −

Table 3.7: Calculation time

(Computations performed with

the library politopix [93] with an

Intel(R) Xeon(R) Gold 6130 CPU

@ 2.10GHz)
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(a) tf = 0.4 (b) tf = tcirc

Tz

RyRz

ΓFC

ΓR

ΓFC
ΓR

Tz

RyRz

Figure 3.19: Verifying the inclusion of the resulting polyhedron (Γ𝑅) inside the functional one (ΓFC) and

improving the fitting: a) The resulting polyhedron is included into the target but 𝑡 𝑓 can be decreased until

reaching 𝑡 𝑓circ
; b) The resulting polyhedron is included into the target and 𝑡 𝑓 = 𝑡 𝑓circ

The increase of the complexity of the polyhedra after each

sum explains why sums are the most time consuming opera-

tion. Moreover, if the number of discretization points used to

generate the input operands increases, the calculation time

will also increase and it can be expected that the final sum

will consume more computational resources.

3.3 Summary

This chapter explains how to represent the restrictions that

the tolerance zones impose on the toleranced features by

using 6-dimensional sets of constraints. Since most of these

sets of constraints are unbounded, the prismatic polyhedral

approach is reviewed, as it can work directly with the un-

bounded sets of constraints without having any mathematical

nor computational problems (see Figure 3.20).

The prismatic polyhedral method uses the property of decom-

position of geometric and contact polyhedra into a sum of a

polytope and a polyhedral cone to simplify the operations be-

tween operands. This method allows to reduce the tolerance

of a mechanical system effectively, since each polyhedron
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CAD model

Contact graph

Tolerance model

Contact reduction

Compliane verification

� Kinematic compliance

Design test

� Prismatic polyhedra operands

polytope ⊕ straigth-lines

Prismatic Polyhedron

� Sum when in serial contact

� Intersection when parallel contact

Sum and intersection

� The straight lines of the result must be
included in the target

� The resulting polytope must be in-
cluded in the target polytope

Kinematic and tol-
erance compliance

Figure 3.20: Tolerance analysis

with the polyhedral approach

contains only the facets that are of mechanical interest. There-

fore, each polyhedron has the minimum number of faces and

the dimension of the subspace is as small as possible.

To illustrate the functioning of the prismatic polyhedral

method, a case study consisting on a spectrometer was

presented. The equation to reduce the mechanical system was

deduced from the contact graph and simplified by taking into

account the homothety between some of the operands. The

result obtained after running one simulation with the given

operands and set of tolerances represents all the possible

relative positions of the surface involved in the functional

condition.

The methods based on sets of constraints (i.e. prismatic

polyhedral approach) have the advantage of being robust

enough to handle even over-constrained mechanisms, as

shown in the given example. However, since the prismatic

polyhedral method is feature-based, the result of a tolerance

analysis process is highly impacted by the discretization of

the features of the mechanism. To obtain accurate results, it

is essential to conduct a convergence analysis to determine

the required number of nodes. Furthermore, in the reduction

process, the last sum takes the largest part of the calculation

time, and this phenomenon can worsen if the number of

discretization points increases.

Finally, thanks to the result obtained from this work, and

all the previous efforts, now it has been possible to develop

through a collaboration with ”Aquitaine Science Transfert"
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(AST) a software (PolitoCAT_gui) that performs all the pro-

cess shwon in Figure 3.20. This software allows the user to

interact with the CAD model, to generate the contact graph

and to execute the tolerance analysis, see Figure 3.21. The

CAD model can be read from any CAD commercial software

through the Step interface (AP 203). As a result the user

gets to know if the functional requirement is satisfied, and

the value of the tolerance of circumscription. All the work

presented in this chapter was published in [57].
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Figure 3.21: PolitoCAT_gui: Complete tolerance analysis analysis graphical tool. CAD model display, contact

graph and tolerance analysis
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The methods based on set of constraints have as main ad-

vantage that they can model most of the cases in mechanical

design, including over-constrained mechanisms, and that

all the possible deviations on the handle surfaces due to

the interactions in the assembly can be modeled with just

one simulation. However, one of the main drawbacks of

the methods based on set of constraints is that they are

time-consuming due the complexity of the operands and

the operations between them (specifically the Minkowski

sum). As presented in Chapter 3, the prismatic polyhedral

approach has been developed after a lot of works searching

for improving the calculation time and decreasing the com-

putational problems while dealing with set of constraints. In

[94] and [57], it is possible to see the evolution from capped

polytopes to polyhedra and verify through some practical

examples the diminution on calculation time.

The Minkowski sum of two or more sets of constraints entails

the propagation of the facets of the input operands. The

calculation time will increase exponentially if the complexity

of the operands increases. Since prismatic polyhedra method

is feature-based, the complexity of the operands is related

to the amount of discretization points used to represent the

surfaces and the contacts. These will have a high impact on

the calculation time and the quality of the result. Furthermore,

during the process of tolerance stack-up modeling, there are

usually several sums and intersections that are made. The last

sum involves the result of all the calculations made plus the

two handle surfaces making it the more complex operation

out of all the process.

4.1 Discretization and operand
complexity

When modeling set of constraints, the nominal surface has to

be discretized in 𝑚 points 𝑃 and a maximum of 𝑘max = 2𝑚

half-spaces are obtained, see Chapter 3. The intersection of

those 𝑘max half-spaces generates the prismatic polyhedra
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that represents the space of all the possible deviations of the

given feature.

Performing the Minkowski sum of a set of two or more

prismatic polyhedra operands implies summing their un-

derlying polytopes. The sum of a set of polytopes gives as

a result a polytope that is topologically more complex than

the operands since it may have far more vertices than any

of them. As found in [90] a vertex of the sum can only be

obtained by summing vertices of its operands, which give us

the following property:

𝑁sum ≤ 𝑁𝑀𝑠𝑢𝑚 =

𝑛∏
𝑖=1

𝑁𝑖

where 𝑁sum is the number of vertex of the result, 𝑁𝑀𝑠𝑢𝑚 is

the maximum amount of vertices that the resulting polytope

can potentially have, 𝑛 is the amount of operands to be

summed and 𝑁𝑖 corresponds to the amount of vertices of

each operand.

Example: Vertices of a polytope coming from a sum

In order to illustrate the problem of the increase in the

amount of vertices after the operation of sum, let’s imagine

the sum of three 1d polytopes, Figure 4.1.

⊕ ⊕

Figure 4.1: Minkowski sum of 1d

polytopes in a 3d space

The sum of two segments of line will result in a parallel-

ogram, and finally the sum of this parallelogram plus a

segment outside of the plane will generate a parallelepiped

with 8 vertices, Figure 4.2:

𝑁𝑀𝑠𝑢𝑚 =

𝑛∏
𝑖=1

𝑁𝑛 = 2 · 2 · 2 = 8

Figure 4.2: Result of a

minkowski sum of three 1d

polytopes in a 3d space

In the particular case in which two of the segments are

collinear, Figure 4.3, the sum of the three segments will

give as a result a parallelogram with only 4 vertices Figure

4.4.

⊕ ⊕

Figure 4.3: Minkowski sum of

three 1d polytopes, where two

operands are parallel to each

other

Figure 4.4: Result of the

minkowski sum of three 1d

polytopes, with two parallel

operands

In order to determine the amount of discretization points

needed for a given surface, it is important to identify its type

of boundary. For linear-boundary surfaces, the discretization

points are equal to the vertices. In the case of non-linear-
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boundary surfaces, a big amount of discretization points will

lead to operands that are closer to a theoretical representation

of the variations of the given surface.

Example: The effect of the discretization of a circular
surface

Let us imagine a circular surface on the plane [𝑥, 𝑦] with a

diameter of 𝑑 = 30𝑚𝑚 and with a tolerance of 𝑡 = 0.1𝑚𝑚.

The domain that represents all its possible deviations lies

in the 3d space [𝑡𝑧 , 𝑟𝑥 , 𝑟𝑦] and it can be represented by

double cone, two cones stuck together at their wide end.

In theory, the shape and dimensions of a polytope related

to this surface under those characteristics should tend to

the double cone while the amount of discretization points

approaches the infinite. The volume of the polytope can

be taken as a parameter to compare it with the double

cone and to visualize this convergence.

The volume of the double cone is given by the diameter

of the wide end of the cones:

𝐷 =
2𝑡

𝑑
𝑅𝑐𝑜𝑒 𝑓 𝑓

and the height of each of them:

ℎ =
𝑡

2

𝑇𝑐𝑜𝑒 𝑓 𝑓

where, 𝑅𝑐𝑜𝑒 𝑓 𝑓 and 𝑇𝑐𝑜𝑒 𝑓 𝑓 are two homogenization coeffi-

cients that are usually 𝑅𝑐𝑜𝑒 𝑓 𝑓 = 100 and 𝑇𝑐𝑜𝑒 𝑓 𝑓 = 1. The

theoretical volume of the polytope should be then:

𝑉 =
𝜋𝑟2ℎ

3

≈ 1.164 × 10
−2𝑚𝑚 · 𝑟𝑎𝑑2

In PolitoCAT [93], it is possible to model the polytopes

that represent the subspace of deviations of the surface

with a given discretization.

Figure 4.6 shows how the variation of the volume due to

the amount of discretization points is significant when the

discretization is rough and become less important when

the discretization is more precise.
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tz

txry

tz

txry

tz

txry

tz

txry

(a) 3 nodes (b) 5 nodes

(c) 7 nodes (d) 11 nodes

Figure 4.5: Comparisson of the result with different amount of nodes (in blue) vs the double cone (in red)

In Figure 4.5 it is possible to notice that increasing the

amount of discretization points decreases the size of the

calculated polytope. Then it becomes closer to the expected

theoretical result.

The example shows that a rough discretization creates larger

polytopes. This may give a conservative result for tolerance

analysis simulation. One may be tempted to assume that a

finer discretization would also satisfy the functional condi-

tion, if this result is compliant, but this is not guaranteed. It is

necessary to take into account that the functional polyhedron

will also improve with a finer discretization of the handle

surfaces.

In some specific cases, when calculating the set of constraints

of a surface or a contact, some nodes will generate redun-

dant half-spaces. In those cases, increasing the number of

nodes does not imply an improvement of the polyhedron

operand.

Example: Ball-and-cylinder pair

The ball-and-cylinder pair is an example of contact type in

which some discretization points will generate redundant

constraints. In a ball-and-cylinder joint with a clearance

of 𝑐, the contact surface is a circle, hence to generate the
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Figure 4.6: Variation of the vol-

ume with respect to the amount

of discretization points

polyhedron we will need to discretize this circle, see Figure

4.7.

Following Equation 3.2, for each point𝑁𝑖 with 𝑖 = 1, · · · , 6
we have that:

−𝑐/2 ≤ 𝑡𝑥 cos𝜃 + 𝑡𝑦 sin𝜃 ≤ 𝑐/2 (4.1)

for the sine and cosine we have that:

cos𝜃 = − cos (𝜃 + 𝜋)
sin𝜃 = − sin (𝜃 + 𝜋)

N1

N2

N3

N4

N5
N6

M

y

x

r

c

θ

Figure 4.7: Variation of the vol-

ume with respect to the amount

of discretization points (the

dashed lines represent the de-

limitation of the clearance zone)

In this example, each point generates two constraints.

When two points are placed facing each other at an angle

of 𝜋, the constraints generated by both points are identical.

Hence, in the case of the ball-and-cylinder pair, when

discretizing the contact surface, it is recommended to

use an odd number of discretization points if the nodes

are uniformly distributed. When using an even number

of points, at least half of the constraints obtained with

Equation 4.1 will be redundant.

Since some nodes can cause redundant half-spaces, for the

convergence test we are going to use, as parameter of the

complexity of the polyhedra, their number of half-spaces in-

stead of the amount of discretization points used to represent

the feature.
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4.2 The final sum in a tolerancing
analysis problem

In a general case, the last operation in a tolerance reduction

process consists of a Minkowski sum of one or both handles

plus the results of all the previous operations modeling the

interactions of the the components of the mechanical system.

Hence, to solve a tolerancing analysis problem is equivalent

to check that:

Γ𝑅 ⊂ ΓFC (4.2)

where ΓFC is calculated as an homothety of the sum of the

two handle surfaces.

ΓFC = 𝑐 ·
(
𝑡H1

2

ΓH1
⊕ 𝑡H2

2

ΓH2

)
(4.3)

with 𝑡H1
and 𝑡H2

as the tolerances of the handle surfaces in

the tolerance reduction process and 𝑐 > 1. The term 𝑐 is

directly related with the value of the functional tolerance 𝑡 𝑓
and the values of 𝑘1 and 𝑘2, from Equation 3.14 and Equation

4.3:

𝑐 =
2𝑡 𝑓 𝑘1

𝑡H1

=
2𝑡 𝑓 𝑘2

𝑡H2

(4.4)

The calculation of Γ𝑅 is done in one of the following ways:

1. when the two handles are added at the end since none

of them interact with more than one surface at the same

time, see Figure 4.8:

Γ𝑅 = Γ𝐴 ⊕ 𝑡H1

2

ΓH1
⊕ 𝑡H2

2

ΓH2
(4.5)

2. when one of the handles is involved in a previous

operation (i.e. the Spectrometer, see Section 3.2){
Γ𝑅 = Γ𝐴 ⊕ 𝑡H

1

2
ΓH1

Γ𝑅 = Γ𝐴 ⊕ 𝑡H
2

2
ΓH2

(4.6)

3. when the two handles are involved in previous opera-

tions and they are not added at the end.

Γ𝑅 = Γ𝐴 (4.7)

Knowing that Γ𝐴 is the result of a complete set of previous
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Figure 4.8: Calculation of Γ𝑅 as the Minkowski sum between Γ𝐴 and the two handles

sums and intersections, it is expected it to be composed by

many facets. Therefore, the calculation of the last Minkowski

sum is potentially the most time consuming operation to

perform during the tolerance reduction process. In order to

simplify this operation, it will be convenient to prove that:

Γ𝐴 ⊕ 𝑡H1

2

ΓH1
⊕ 𝑡H2

2

ΓH2
⊂ 𝑐 ·

(
𝑡H1

2

ΓH1
⊕ 𝑡H2

2

ΓH2

)
(4.8)

is equivalent to:

Γ𝐴 ⊂ (𝑐 − 1) ·
(
𝑡H1

2

ΓH1
⊕ 𝑡H2

2

ΓH2

)
(4.9)

The former equivalence is going to be proved first with

polytopes and then with polyhedra.

Proposition 4.2.1 Let A and H be polytopes, let 𝑐 ∈ ℝ, 𝑐 > 1

𝐻 + 𝐴 ⊂ 𝑐.𝐻 ⇔ 𝐴 ⊂ (𝑐 − 1)𝐻

Proof. Lets assume that 𝐻 + 𝐴 ⊂ 𝑐.𝐻, 𝑐 ∈ ℝ, 𝑐 > 1

⇒ 𝐴 ⊂ 𝑐.𝐻 − 𝐻 according to [95]

⇒ 𝐴 ⊂ (𝑐 − 1)𝐻 as 𝑐.𝐻 − 𝐻 = (𝑐 − 1)𝐻 according to [96]

Under the assumption that 𝐴 ⊂ (𝑐 − 1)𝐻

Let 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐻.

𝐴 ⊂ (𝑐 − 1)𝐻 ⇒ 𝑥 ∈ (𝑐 − 1)𝐻
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Hence (𝑥 + 𝑦) ∈ (𝑐 − 1)𝐻 +𝐻 = 𝑐𝐻 which proves the second

part.

Proposition 4.2.2 Let A and H be prismatic polyhedra, let
𝑐 ∈ ℝ, 𝑐 > 1

𝐻 + 𝐴 ⊂ 𝑐.𝐻 ⇔ 𝐴 ⊂ (𝑐 − 1)𝐻

Proof. Let {Δ𝑗(𝐴)} be the set of lines of the prismatic polyhe-

dron 𝐴.

If𝐴 is a prismatic polyhedron:𝐴 = 𝜋(∑𝑗 Δ𝑗(𝐴))⊥(𝐴)+
∑
𝑗 Δ𝑗(𝐴)

where 𝜋(∑𝑗 Δ𝑗(𝐴))⊥(𝐴) = 𝑃𝐴 is a polytope. Following the same

logic, we have 𝐻 = 𝑃𝐻 +∑
𝑘 Δ𝑘(𝐾).

Under the assumption that 𝐻 + 𝐴 ⊂ 𝑐.𝐻, 𝑐 ∈ ℝ, 𝑐 > 1.

𝐻 + 𝐴 ⊂ 𝑐.𝐻 ⇒ ∑
𝑗 Δ𝑗(𝐴) ⊂

∑
𝑘 Δ𝑘(𝐻) as no straight line of∑

𝑗 Δ𝑗(𝐴) can be outside the set

∑
𝑘 Δ𝑘(𝐻) to make sure the

inclusion 𝐻 + 𝐴 ⊂ 𝑐.𝐻 is respected.

𝐻+𝐴 = 𝑃𝐴+𝑃𝐻 +∑
𝑘 Δ𝑘(𝐻) ⊂ 𝑐

(
𝑃𝐻 +∑

𝑘 Δ𝑘(𝐻)
)
= 𝑐.𝑃𝐻 +∑

𝑘 Δ𝑘(𝐻)

The basic property of prismatic polyhedra (see Definition

3.1.5) states that

𝑃𝐴 +∑
𝑘 Δ𝑘(𝐻) = 𝜋(∑𝑘 Δ𝑘(𝐻))⊥(𝑃𝐴) +

∑
𝑘 Δ𝑘(𝐻)

so if

𝑃′
𝐴
= 𝜋(∑𝑘 Δ𝑘(𝐻))⊥(𝑃𝐴)

it is possible to say now that 𝑃′
𝐴

and 𝑃𝐻 belong to the same

space

( ∑
𝑘 Δ𝑘(𝐻)

)⊥
.

So 𝑃′
𝐴
+ 𝑃𝐻 +∑

𝑘 Δ𝑘(𝐻) ⊂ 𝑐.𝑃𝐻 +∑
𝑘 Δ𝑘(𝐻) and since 𝑃′

𝐴
∈( ∑

𝑘 Δ𝑘(𝐻)
)⊥

and 𝑃𝐻 ∈
( ∑

𝑘 Δ𝑘(𝐻)
)⊥

it implies that 𝑃′
𝐴
+

𝑃𝐻 ⊂ 𝑐.𝑃𝐻 which means according to Proposition 4.2.1 that

𝑃′
𝐴
⊂ (𝑐 − 1).𝑃𝐻

𝑃′
𝐴
⊂ (𝑐 − 1).𝑃𝐻∑

𝑗 Δ𝑗(𝐴) ⊂
∑
𝑘 Δ𝑘(𝐻)

}
⇒ 𝐴 ⊂ (𝑐 − 1)𝐻

Making the assumption that 𝐴 ⊂ (𝑐 − 1).𝐻, 𝑐 ∈ ℝ, 𝑐 > 1.

∀𝑥 ∈ 𝐴, 𝑥 ∈ (𝑐−1)𝐻 then 𝑦 ∈ 𝐻 ⇒ (𝑥+𝑦) ∈ 𝑐𝐻 ⇒ 𝐴+𝐻 ⊂
𝑐𝐻.
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By means of the previous propositions it is possible to prove

the equivalence between Equation 4.8 and Equation 4.9.

4.3 Case study: Simplified model

The case study in Section 3.2 used the minimum number of

half-spaces for each operand, as shown in Table 3.6, based

on the surface complexity. However, if the discretization of

the surfaces is too rough, this result may not be accurate

and more nodes may be needed. A convergence analysis

was done to check the quality of the previous result. During

the convergence analysis, a set of 9 simulations with differ-

ent amounts of discretization points were performed. Each

simulation was executed 10 times in order to get a better

estimation of the calculation time for each operation.

Table 4.1 presents the amount of half-spaces that builds up

each contact or geometrical polyhedron. Table 4.2 presents

the average time for each simulation, and it is possible to see

how the computation time increases with more discretiza-

tion points. The columns 𝑆𝑢𝑚1, 𝑆𝑢𝑚2 and 𝑆𝑢𝑚𝐹 indicate the

average amount of time spent on each sum during the simu-

lation. The time spent on the intersections is not presented

because it is close to 0 𝑠 and it can be neglected.

While the input operands become more complex due to a

finer discretization, the last operation takes up more than 90%

of the calculation time, as seen in Figure 4.9. This behavior

Table 4.1: Amount of half-spaces for each operand during all the simulations performed.

3,7 3,4 3,5/2,5 3,6/2,6 2,1/2,12 2,2/2,12 2,3 1,12

Simulation 0 12 28 6 6 6 6 44 24

Simulation 1 20 36 10 10 10 10 56 40

Simulation 2 28 52 14 14 14 14 68 56

Simulation 3 36 60 18 18 18 18 80 72

Simulation 4 44 68 22 22 22 22 92 88

Simulation 5 52 84 26 26 26 26 104 104

Simulation 6 60 92 30 30 30 30 116 120

Simulation 7 68 108 34 34 34 34 128 136

Simulation 8 84 124 42 42 42 42 152 168
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Figure 4.9: Contribution in per-

centage of each Sum in the calcu-

lation time for each simulation

(see Table 4.1)
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shows that it is important to pay special attention to the last

operation in the reduction process.

From the Proposition 4.2.2 it is possible to reduce the equation

that models the system (Equation 3.20). Due to the topology

of the problem, in this study case, it is possible to reduce only
one handle and the reduction equation becomes then:

𝑆𝑢𝑚𝐹 =

(
𝑆𝑢𝑚1 ∩

𝜆1

2

Γ
3,5/2,5 ∩

𝜆1

2

Γ
3,6/2,6

)
⊕
(
𝜆0

2

Γ
2,1/1,12

∩ 𝜆0

2

Γ
2,2/1,12

∩ 𝑆𝑢𝑚2

) (4.10)

with,

Table 4.2: Calculation time for

each sum during every simula-

tion process of tolerance reduc-

tion(Computations performed

with the library politopix [93]

with an Intel(R) Xeon(R) Gold

6130 CPU @ 2.10GHz).

Time(s) 𝑇circ

𝑆𝑢𝑚1 𝑆𝑢𝑚2 𝑆𝑢𝑚𝐹 Total

Simulation 0 1.68 1.58 4.70 8.0 0.1125

Simulation 1 1.74 1.73 9.31 12.8 0.1140

Simulation 2 1.89 2.49 25.13 29.5 0.1137

Simulation 3 2.01 2.95 49.42 54.4 0.1129

Simulation 4 2.14 3.11 89.66 94.9 0.1130

Simulation 5 2.39 3.42 187.95 193.8 0.1133

Simulation 6 2.44 3.97 341.76 348.2 0.1130

Simulation 7 2.68 4.65 595.60 602.9 0.1130

Simulation 8 2.73 6.51 1 337.69 1 346.9 0.1130
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Time(s) 𝑇circ

𝑆𝑢𝑚1 𝑆𝑢𝑚2 𝑆𝑢𝑚𝐹 Total

Simulation 0 1.698 1.736 4.276 7.720 0.1125

Simulation 1 1.708 1.790 8.147 11.645 0.1140

Simulation 2 1.915 2.489 22.235 26.639 0.1137

Simulation 3 2.011 2.876 43.839 48.726 0.1129

Simulation 4 2.114 3.125 79.428 84.667 0.1130

Simulation 5 2.307 3.476 170.210 175.993 0.1133

Simulation 6 2.479 3.958 308.311 314.748 0.1130

Simulation 7 2.706 4.735 547.650 555.091 0.1130

Simulation 8 2.820 6.470 1 222.404 1 231.694 0.1130

Table 4.3: Calculation time for

each sum during every simula-

tion process of tolerance reduc-

tion without handles and toler-

ance of circumscription of the

result of each simulation (Com-

putations performed with the li-

brary politopix [93] with an In-

tel(R) Xeon(R) Gold 6130 CPU @

2.10GHz).

𝑆𝑢𝑚1 =
𝜆2

2

Γ3,4 ⊕
𝜆3

2

Γ2,4

𝑆𝑢𝑚2 =
𝜆5

2

Γ2,3 ⊕
𝜆4

2

Γ1,3 ⊕
𝜆6

2

Γ1,12

Since the handle 3.7 is being removed from the last operation

(𝑆𝑢𝑚𝐹) of the tolerance reduction, it is needed to modify

the operand that models the functional condition. The new

functional condition is then:

ΓFC = 𝑐
𝑡H1

2

ΓH1
⊕ (𝑐 − 1) · 𝑡H2

2

ΓH2

and according to the Equation 4.4, if 𝑘1 = 𝑘2 = 1/2:

ΓFC =
𝑡 𝑓

2

ΓH1
⊕ 1

2

(𝑡 𝑓 − 𝑡H2
)ΓH2

The Table 4.3 displays the average time taken for each simu-

lation from Table 4.1 following the equation Equation 4.10.

Figure 4.10 shows that, with and without handles, the cal-

culation time increases exponentially as the complexity of

the operands increases. However, as expected, the amount

of time spent on each simulation is less when excluding the

handle 3.7 than when adding it at the end. The Table 4.4

shows that the calculation time of 𝑆𝑢𝑚𝐹 decreases by an

average of 10%, and the total calculation time is reduced by

9%.

In terms of the results obtained from each simulation, com-

paring Table 4.2 and Table 4.3 we can see that the value of

the tolerance of circumscription for each simulation with

and without handles is exactly the same. The Figure 4.11
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Table 4.4: Percentage of time variation between the model with both handles and the model without a handle

(Computations performed with the library politopix [93] with an Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz).

% Time variation (Time handles/ Time No handles)

𝑆𝑢𝑚1 𝑆𝑢𝑚2 𝑆𝑢𝑚𝐹 Total

Simulation 0 1% 10% -9% -3%

Simulation 1 -2% 4% -13% -9%

Simulation 2 2% 0% -12% -10%

Simulation 3 0% -2% -11% -10%

Simulation 4 -1% 0% -11% -11%

Simulation 5 -4% 2% -9% -9%

Simulation 6 1% 0% -10% -10%

Simulation 7 1% 2% -8% -8%

Simulation 8 3% -1% -9% -9%

Average 0% 2% -10% -9%

Figure 4.10: Calculation time

with and without handles
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illustrates that as the number of half-spaces on the input

operands increases, the tolerance of circumscription for the

result converges to a value close to 0.113. The tolerance of

circumscription is measured in 𝑚𝑚, hence having an oscilla-

tion of ±2 · 10
−4 𝑚𝑚 is not significant from a manufacturing

point of view. From these results, it is possible to state that,

in this particular case study, the best compromise between

the quality of the result of the simulation and the calculation

time is obtained with the operands of the Simulation 3.

From the cases stated in Equation 4.5, Equation 4.6 and

Equation 4.7 we can know that the complexity of the last

sum depends on the topology of the mechanical system,

hence we can expect to have a more significant reduction on

the calculation time in a mechanical system in which both

handles can be subtracted, see Equation 4.5.
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Figure 4.11: Convergence of

the tolerance of circumscription

while increasing the quality of

the input operands, see Table 4.1

Figure 4.12: Pump: CAD model

and enumeration of parts and

surfaces

Example: Excluding both handles in the tolerance analy-
sis reduction
Let us take a pump, see Figure 4.12, as an example. This

pump is mainly composed of two sub-assemblies: the shaft

(impeller + the central rotating shaft) and the housing.

The housing is made up of two parts joined through three

pins and a planar pair. No degree of mobility is permitted

between the two parts of the housing, and the joint between

them is hyper-static. The proper functioning of the pump

depends on the coaxiality between the impeller and the

housing.

The topological model of the pump is presented in Figure

4.13, according to the enumeration of the parts and the

surfaces. The reduction of the contact graph to simulate

the relative position of the handle surfaces (surfaces 3.3

and 1.6, see Figure 4.12) is made as follows:

Γ𝑅 = Γ
1.0/3.0 ⊕

𝜆7

2

Γ1.6 ⊕
𝜆8

2

Γ3.3 (4.11)

with,

Γ
1.0/3.0 =Γ

1.0/3.0𝑎 ∩
𝜆1

2

Γ
1.5/3.2 with,

Γ
1.0/3.0𝑎 = Γ

1.0/2.0 ⊕
𝜆2

2

Γ
2.5/3.1

Γ
1.0/2.0 =

𝜆3

2

Γ
1.1/2.1 ∩

𝜆4

2

Γ
1.2/2.2 ∩

𝜆5

2

Γ
1.3/2.3 ∩

𝜆6

2

Γ
1.4/2.4

where each polyhedron operand is defined as
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Figure 4.13: Pump: Contact

graph
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Γ =

𝑘⋂
𝑖=1

{
x ∈ ℝ6

: 1 + 𝑎𝑖1𝑥1 + ... + 𝑎𝑖6𝑥6 ≥ 0

}
(4.12)

According to the proposition Proposition 4.2.2 we can

simplify the Equation 4.11 to:

Γ𝑅 = Γ
1.0/3.0 ⊕

𝑗∑
𝑖=1

Δ𝑖 (4.13)

where

∑𝑗

𝑖=1
Δ𝑖 are the straight lines of the operands Γ3.3

and Γ1.6.

A set of six simulations varying the discretization of the

contacts and surfaces where done, see Table 4.5. Figure

4.14 shows the exponential variation on the time while

the complexity of the operands increases. In general, an

average of 25% of the calculation time was reduced when

performing the simulation without handles. Finally, in

Figure 4.15 we can see how the tolerance of circumscrip-

tion converges, and we can see that, for this mechanical

system, a set of operands with 10 half-spaces (meaning

5 discretization points on the ball-and-cilinder contacts)

gives a good result. Since this example is just illustrative,

the value of all 𝜆𝑖 was taken as 0.1.
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Figure 4.14: Pump: Calculation

time with and without handles

Table 4.5: Pump: Amount of half-spaces for each operand during all the simulations performed.

1.1/2.1 1.2/2.2 1.3/2.3 1.4/2.4 2.5/3.1 1.5/3.2 1.6 3.3

Simulation 0 6 6 6 102 6 6 6 6

Simulation 1 10 10 10 116 10 10 10 10

Simulation 2 14 14 14 146 14 14 14 14

Simulation 3 18 18 19 170 18 18 18 18

Simulation 4 22 22 22 202 22 22 22 22

Simulation 5 26 26 26 220 26 26 26 26
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Figure 4.15: Pump: Convergence

of the tolerance of circumscrip-

tion
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4.4 Summary

To model stack-up of deviations by means of operations

with polyhedra, it is necessary to discretize the surfaces and

contacts in order to create the operands. Choosing the amount

of discretization points is not a trivial work since that will

impact on the amount of time needed to do the simulations

as well as the quality of the result. A rough discretization

will generate simpler operands and operations between them

will be less expensive in terms of computational resources,

however the results that we will obtain are not necessary

reliable.

To determine a good discretization of the surfaces and con-

tacts, we proposed to perform a convergence analysis by

executing a set of simulations with different sets of operands.

The results obtained in the study case show that there is a

tendency to converge towards a specific result when the qual-

ity of the input operands improves, see Figure 4.11. However,

the calculation time increases as operating on SOCs with a

bigger amount of facets is more expensive. It worsens after

each operation due to the propagation of the facets when

summing.

In many cases, the tolerance analysis reduction ends up with

a sum between one or more polyhedra plus at least one of the

operands related to the handles. In general, this last operation

is the most time consuming and can take up to 99% of the

complete calculation time. We found that avoiding to add the

handles and doing a Minkowski substraction (the functional

polyhedron minus the handles) leads to obtain the same

results while reducing an average of 9% of the calculation

time (in the study case) or 25% in the pump example. The

percentage of time reduced depends on the complexity of

the last sum, whether if the two handles are added or not,

and the dimension in which the sum is performed.

The strategy presented in this chapter, summarized in Figure

4.16 enables the determination of the quality required for

the set of operands that describes the surfaces and contacts

of a mechanical system to perform the tolerance analysis

process. Furthermore, the reduction of the model allows to

reduce both the calculation time and memory space required

to perform this process. The former allows us to think about
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� Verify the convergence of the circum-
scription tolerance
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Figure 4.16: Model reduction

process

the possibilities of performing tolerance allocation and op-

timization, since now we can be sure of the quality of the

tolerance analysis and the calculation time is acceptable. The

example of the pump presented in this chapter, was used in

[97] were we presented a sensitivity analysis to determine

the influential operands in a tolerance analysis process.
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Tolerance allocation consists in assigning the tolerance values

among the important features of a part and/or assembly

in order to guarantee functionality and assemblability. Tol-

erances are assigned most of the time based on expertise

or empirical data, leading to choose values that are tighter

than required, generating high-quality products but at a high

manufacturing cost too [11].

Tolerances have a significant impact on the manufacturing

and assembly processes, as well as on the customer satisfac-

tion and product life cycle. Therefore, finding the optimal

balance between tight tolerances that ensure high quality

and loose tolerances that reduce cost (see Figure 5.1) is a

challenging and important task for designers and engineers

[98].

Tolerance allocation and optimization consist in assigning a

set of tolerances that not only guarantees the functionality

of the product, but also allows to achieve some desired

objectives such as minimizing the total cost, maximizing the

quality, or enhancing the robustness of the product.

In order to solve the problem of balancing cost and quality,

several methods have been developed. In [11], the tolerance

allocation approaches have been classified on:

▶ traditional methods

▶ manual–iterative application of tolerance analysis

Tolerance

C
os
t

Optimum

Total cost

Assembly
scrap cost

Manufacturing
cost

Figure 5.1: Quality-cost conflict

in tolerance allocation (Repro-

duced from [11])
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▶ quality engineering methods

Traditional methods were developed mostly when there were

big limitations on computer technology and/or capability,

those methods depend on strong assumptions because of the

limited availability of quantitative cost information, hence

they are generally employed in preliminary tolerance assign-

ment in early design stages [7]. In the iterative application of

tolerance analysis the tolerance values are assigned in a trial

and error basis, starting with a set of tolerances and then

checking if the quality requirements are met:

▶ if they are not accomplished tighter tolerances are

assigned

▶ otherwise wider tolerances are chosen and the tolerance

analysis is executed again

Iterative approaches are time-consuming and lead to non-

optimal solutions [4, 68]. Finally, quality and statistical meth-

ods are used as an alternative to solve tolerance-cost problems

on complex mechanical assemblies taking into account the

process knowledge. This kind of approaches have been used

to do robust design, however they are not applicable to all

the mechanisms and do not lead to an optimal result [16].

Tolerance allocation and optimization can be formulated as a

mathematical optimization problem that involves the integra-

tion of different models and tools, such as tolerance analysis,

tolerance-cost models, technical system models, and statisti-

cal models [11]. Tolerance analysis is the process of evaluating

how the deviations of individual features propagate and af-

fect the overall quality of the product. Tolerance-cost models

are mathematical expressions that relate the tolerances to the

cost factors, such as machining cost, inspection cost, scrap

cost or warranty cost. Technical system models are represen-

tations of the physical structure and behavior of the product,

such as kinematic models or functional models. Statistical

models are used to describe the probability distributions

of the deviations and their effects on the quality indicators,

such as yield, reliability or robustness. Finally, depending on

the complexity and characteristics of the problem, different

optimization methods can be applied, such as gradient-based

methods, evolutionary algorithms or multi-objective opti-

mization methods.

In Chapter 2, we introduced the tolerance problem and

framework as well as the technical system representation.
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1: See Section 2.2 for more infor-

mation about tolerance analysis

and Chapter 3 for information

about the tolerance method used

on this work

Once the key features and the contact graph are extracted, the

tolerance analysis is used to verify the effects of the defects

of each part
1
. The tolerance cost-model will translate this

information related to tolerances into a cost value that we

will search to minimize until a specific value by means of

an optimization algorithm. In Section 5.2 we will introduce

the cost model that will be used, and in Section 5.3 the

optimization algorithm. Finally, Section 5.4 illustrates an

application on our study case.

5.1 Introduction to the optimization
problem

The general objective of an optimization problem is to search

for the solution that best fulfills the design requirements.

Thus, the optimization problem can be formulated as the

minimization of a cost function 𝑓 , while keeping a set of con-

straints expressed as equalities, inequalities and/or boundary

limits of the design variables

min𝑥∈Ω 𝑓 (𝑥)
subject to: ℎ(𝑥) = 0

𝑔(𝑥) ≤ 0

𝑥min ≤ 𝑥 ≤ 𝑥max

 Constraints

(5.1)

The objective function has to be defined in a way that its

minimum provides an optimum configuration for the set of

design variables. The design variables are the domain of the

objective function and constraints. When the design variables

assume values, they model a candidate solution inside the

design search space.

In the case of tolerance allocation and optimization, the

aim is to find the set of tolerances that will generate an

“optimal" compromise between quality and cost while the

tolerance specification is fixed [78, 99]. Hence, the tolerances

𝑡 = [𝑡1, · · · , 𝑡𝐼] are the design variables of the problem. These

design variables are constrained by the lower 𝑡𝑖 ,min and upper

limits 𝑡𝑖 ,max in compliance with the manufacturing process

limits. When the objective function is to maximize the quality

𝑄(𝑡) without exceeding a predefined cost limit 𝐶max, the
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Figure 5.2: Tolerance allocation and optimization cycle

optimization problem is called best-quality tolerance cost-
optimization and it can be written as follows:

max 𝑄(𝑡)
subject to: 𝐶(𝑡) ≤ 𝐶max

𝑡𝑖 ,min ≤ 𝑡𝑖 ≤ 𝑡𝑖 ,max∀𝑖 = 1, · · · , 𝐼
(5.2)

On the other hand, when the objective function is to minimize

the cost 𝐶(𝑡) while ensuring the fulfillment of the quality

requirements 𝑄min the optimization problem is called least-
cost tolerance optimization and it goes:

max 𝐶(𝑡)
subject to: 𝑄(𝑡) ≥ 𝑄min

𝑡𝑖 ,min ≤ 𝑡𝑖 ≤ 𝑡𝑖 ,max∀𝑖 = 1, · · · , 𝐼
(5.3)

The iterative cycle, represented in Figure 5.2, involves tol-

erance allocation and optimization, specifically least-cost

tolerance optimization. In this view, setting the requirements

corresponds to defining i) the objective function that rep-

resents the cost, as well as ii) the product characteristics

and design constraints that are represented as the functional

condition of the mechanical system. The tolerance allocation

step proposes candidate solutions by assigning values to
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the design variables while respecting their boundaries. The

analysis step evaluates the cost function as well as compli-

ance with the functional condition of the system (tolerance

analysis, see Chapter 3). Finally, the evaluation step verifies if

the objective function value obtained from the analysis is the

minimum and if the quality constraint has not been violated.

This cycle is iterated until an optimal solution is found.

5.2 Function to optimize: Cost model

Tolerance cost-functions allow to describe mathematically the

relationship between cost and tolerance taking into account

empirical and analytically estimated manufacturing and cost

information. The former includes a quantification of many

variables such as costs for material, tooling, fabrication, as-

sembly, inspection and rejection. Several algebraic functions

have been proposed in order to model the tolerance-cost

relation [13, 100]. In [11], the authors classify the functions

as traditional, non-traditional, and advanced tolerance-cost

functions. The traditional functions presented in the litera-

ture are the linear, reciprocal and exponential with two up to

four parameters [77], see Table 5.1. Non-traditional functions

are higher order polynomial functions, or functions deriving

from the combinations of the traditional ones, see Table 5.2.

Finally, advanced cost functions are generated by more com-

plex models such as hybrid models or artificial and fuzzy

neural networks.

The selection of the model type and its fitting parameters de-

pends on the amount and type of data influenced by the given

manufacturing process, machine and its settings, feature type,

etc. The lack of current and accessible tolerance-cost data

makes it hard to parameterize correctly these tolerance-cost

Name Coefficient Function
𝑚 𝑘

Linear 0 −1 𝐶 = 𝑎 + 𝑏 · 𝑡
Reciprocal 0 1 𝐶 = 𝑎 + 𝑏/𝑡
Reciprocal squared 0 2 𝐶 = 𝑎 + 𝑏/𝑡2
Reciprocal power 0 𝑐 𝐶 = 𝑎 + 𝑏/𝑡𝑐
Exponential 1 0 𝐶 = 𝑎 + 𝑏/𝑒 𝑡
Hybrid 𝑐1 𝑐2 𝐶 = 𝑎 + 𝑏/𝑒 𝑐1𝑡+𝑒 𝑐2𝑡

Table 5.1: Common tolerance-

cost function with its coefficient,

[11]
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Table 5.2: Non-traditional

Tolerance-cost functions

Function Function

Linear - Exponential 𝐶 = 𝑎 + 𝑏1𝑡 + 𝑏2/𝑒 𝑡
Reciprocal power - Exponential 𝐶 = 𝑎 + 𝑏1/𝑡𝑐1 + 𝑏2/𝑒 𝑐2𝑡
Polynomial functions 𝐶 = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝑑𝑡3 + · · ·

functions. However several research has been done in this

regard [77, 85].

In the scope of our work, we propose to use a function

that models indirectly the manufacturing cost by using the

assumption of “the lower the tolerance, the higher the cost

of manufacturing” [10]. Hence the objective is to maximize

the value of each tolerance making the mechanical system

compliant with the functional condition.

The prismatic polyhedron operands used to model the set of

constraints of the toleranced features and contacts live in a

6d space. Thanks to the work presented in Section 3.1.2, we

can use the tolerance of circumscription as an indicator to

quantify the quality of the inclusion of a resulting polyhedron

inside the functional one. When the tolerances of the surfaces

and contacts involved in the tolerance reduction process

increase, the size of the input operands, as well as the size of

the resulting polyhedron and the value of the tolerance of

circumscription, will also increase. On the other hand, when

the tolerances of the surfaces and contacts decrease, the value

of the tolerance of circumscription will decrease as well.

If the value of the tolerance of circumscription is bigger

than the value of the functional tolerance coming from the

requirements specified by the user, the tolerance set used on

the tolerance analysis is not compliant with the functional

requirement. The objective is to find the set of tolerances that

guarantees the tolerance compliance of the system (Γ𝑅 ⊆ ΓFC)

while maximizing the value of the each tolerance in the

tolerance set. From Equation 3.14 and Equation 3.16, we can

write this as:

Γ𝑅 ⊆ ΓFCcirc

ΓFCcirc
⊆ ΓFC{
ΓFC = 𝑡 𝑓 [𝑘1.ΓH1

⊕ 𝑘2.ΓH2
] with 𝑘1 ≥ 0, 𝑘2 ≥ 0, 𝑘1 + 𝑘2 ≠ 0

ΓFCcirc
= 𝑡 𝑓circ

[𝑘1.ΓH1
⊕ 𝑘2.ΓH2

], Γ𝑅 ⊂ ΓFCcirc

(5.4)
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were ΓH1
and ΓH2

come from the handle surfaces:
ΓH1

=
⋂𝑘
𝑖=1

{
𝒙 ∈ ℝ6

: 1 + 𝑎𝑖1𝑥1 + ... + 𝑎𝑖6𝑥6 ≥ 0

}
ΓH2

=
⋂𝑙
𝑗=1

{
𝒙 ∈ ℝ6

: 1 + 𝑎 𝑗1𝑥1 + ... + 𝑎 𝑗6𝑥6 ≥ 0

} (5.5)

From Equation 5.4 we can observe that, in terms of the

tolerance of circumscription, maximizing the size of the

resulting polyhedron inside the functional condition comes

to:{
min(𝑡 𝑓 − 𝑡 𝑓circ

) when: Inclusion: Γ𝑅 ⊆ ΓFC

max(𝑡 𝑓 − 𝑡 𝑓circ
) when: Non-Inclusion: Γ𝑅 ⊈ ΓFC

(5.6)

The two cases in Equation 5.6 can be represented in just

one equation either by using an absolute value function or

a quadratic function. In optimization, quadratic functions

are preferred since the absolute value functions are not

differentiable at zero. In conclusion, the function that we are

going to optimize in order to find the “best" set of tolerances

for the mechanical system is:

min (𝑡 𝑓 − 𝑡 𝑓circ
)2

subject to: 𝐶𝑅 ⊆ 𝐶FC

𝑡𝑖 ,min ≤ 𝑡𝑖 ≤ 𝑡𝑖 ,max∀𝑖 = 1, · · · , 𝐼
(5.7)

where, 𝐶𝑅 ⊆ 𝐶FC represents the constraint of kinematic

compliance of the system, see Equation 3.9, and 𝑡𝑖 are the

contact and geometric tolerances of the system that we are

going to determine throughout the optimization process.

5.3 Optimization algorithm

Heuristic methods allow to find the optimal or nearly opti-

mal solution to complex problems what makes them able

to handle tolerance allocation problems. The most common

meta-heuristic methods include simulated annealing, ge-

netic algorithms, particle swarm optimization, ant colony

optimization and tabu search. The main difference between

these heuristic methods is the way they move between pos-

sible candidate to solutions in order to find the optimal

one or a solution close to the optimal [101]. For example,
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genetic algorithms use genetic operators such as mutation

and crossover to evolve a population of candidate solutions

inspired by the process of natural selection. Particle swarm

optimization is inspired by the social behavior of bird flock-

ing and fish schooling. Ant colony optimization is based

on the behavior of ants searching for food. Tabu search is a

local search method that uses memory to avoid revisiting

previously visited solutions. The application of meta-heuristc

algorithms, such as simulated annealing [72, 102], genetic

algorithms [103] and particle swarm optimization [104], has

become increasingly popular for optimally allocating product

tolerances.

Choosing between the best metaheuristic methods depends

on the specific optimization problem that is needed to be

solved. Simulated annealing, for example, is useful when

the solution space is complex and has many local minima

because it can escape local minima by randomly accepting

a “bad" move. On the other hand, genetic algorithms are

useful when there are many possible solutions and when

it is difficult to determine which solutions are better than

others. They can combine and mutate the best solutions from

a population, which allow them to explore a larger solution

space [101, 105].

Since in the tolerance allocation problem we expect to have

many minimum that can potentially satisfy the objective

function, Equation 5.7, in this work we have chosen to use

the Simulated Annealing as the optimization algorithm.

5.3.1 Simulated annealing

Simulated annealing is a meta-heuristic technique based

on the mechanical annealing process. This process consists

in heating a solid and cooling it slowly to remove strain

and crystal imperfections by minimizing the free energy of

the particles that conform the solid. Similarly, in simulated

annealing, a search process starts with a high-energy state

(an initial solution) and gradually lowers the temperature

(a control parameter) until it reaches a state of minimum

energy (the optimal solution) [106].

The simulated annealing was initially proposed by Kirk-

patrick et al. [107] and Cerny [108] by applying the Metropolis
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Figure 5.3: Simulated Annealing

algorithm: general flowchart

criterion introduced in [109]. The basic elements of simulated

annealing method include:

▶ The definition of the problem to optimize by defining

the energy function, in our case the cost function.

▶ Setting the initial temperature value and defining the

cooling schedule to control the uphill movements dur-

ing the optimization process.

▶ Setting the initial candidate solution, in our case this

means to define the value of the set of tolerances of the

mechanism.

▶ Computing the energy of the initial candidate solution

(evaluate the energy function for the initial solution).

▶ Randomly perturbing the current solution and accept-

ing this perturbation with a certain probability (using

the Metropolis criterion).

Figure 5.3 presents a flowchart with the summary of the

basic elements of the simulated annealing. In Section 5.2, we

presented the cost function that will be used to calculate the

“energy” of each candidate solution. In the following section

we will present the parametrization of the cooling schedule,

as well as the configuration of the neighboring, for the case
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of tolerance allocation and optimization, and some details

about the metropolis criterion.

5.3.2 Parameterization

Candidate solution

In the problem of tolerance allocation and optimization, a

candidate solution 𝑛 is defined by the set of tolerances of the

mechanical system. This set of tolerances is represented the

following way:

®𝑥𝑛 = (𝑡1, · · · , 𝑡𝐼)

where 𝐼 is the total amount of tolerances that need to be set,

𝑡𝑖 ∀𝑖 ∈ {1, · · · , 𝐼} is the value of each tolerance and it can

vary in a continuous domain delimited by a minimum 𝑡𝑖 ,min

and a maximum 𝑡𝑖 ,max value.

Neighboring

For each ®𝑥𝑛 we can define a set of neighbors, and another

configuration ®𝑥𝑛+1 can be obtained by choosing a random

element from the neighborhood. A move represents the

various types of alterations that can be carried out. These

moves account for the optimization variables of the problem

under study. In our case, in order to move to a new possible

solution the perturbation will be generated as follows:

®𝑥𝑛+1 = ®𝑥𝑛 + ®𝜀 (5.8)

where ®𝑥𝑛+1 is the potential new set of tolerances, ®𝑥𝑛 is the

actual set of tolerances (or current solution), and ®𝜀 is a vector

with the random variation for ®𝑥𝑛 . All the elements of ®𝜀 are

0 except one 𝑎 that is chosen randomly and whose value is

coming from a normal distribution on [𝑡𝑎,min, 𝑡𝑎,max]:

®𝜀 = (0, · · · , 0, 𝑎, 0, · · · , 0) (5.9)
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Figure 5.4: Simulated Annealing

algorithm: acceptance criterion

Acceptance criterion

In the simulated annealing algorithm, when minimizing an

objective function 𝑓 (®𝑥), if Δ 𝑓 = 𝑓 (®𝑥𝑛+1) − 𝑓 (®𝑥𝑛) is negative

(Δ 𝑓 < 0), the candidate solution ®𝑥𝑛+1 is accepted as the new

solution and the process is continued with it. On the other

hand, if Δ 𝑓 (®𝑥) ≥ 0, the new solution is accepted with a given

probability determined by means of the metropolis criterion.

The metropolis criterion is written as [109]:

𝑅 < exp

(
−
Δ 𝑓

𝑇

)
(5.10)

where 𝑅 is a random number coming from an uniform

distribution on [0, 1] and 𝑇 is the temperature of the system.

If 𝑅 < exp(−Δ 𝑓 /𝑇) then the candidate solution is accepted

and ®𝑥𝑛+1 becomes ®𝑥𝑛 , otherwise the candidate solution is

rejected. The temperature is a parameter that controls the

exploration of the search space and decreases progressively

from an initial value to zero.

In tolerance cost optimization, the function to minimize is a

cost function 𝐶, hence:

𝑅 < exp

(
−Δ𝐶

𝑇

)
(5.11)
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Figure 5.4 illustrates the acceptance criterion for the cost

function 𝐶(®𝑥).

Cooling schedule

The parameter of temperature used on the metropolis crite-

rion, Equation 5.10, is what allows the simulated annealing

to escape from a local minimum and to potentially find a

better solution. When the value of the temperature is high,

the condition imposed by the metropolis criterion will be

more likely to be true, a great percentage of new candidate

solutions will be accepted even if they are not better than the

former solution (random walk). On the other hand, when

the temperature approaches 0, new solutions that are not

better than the former solution will have a low or null chance

of being accepted, the algorithm will be performing just

downhill movements to reach the minimum.

At the beginning of the simulation, the temperature has to be

high enough to allow the algorithm to move to different solu-

tions doing a domain exploration, however the temperature

has to slowly decrease taking the system to an equilibrium

state in which the minimum is found. The cooling process

has to be done slowly in order to avoid being trapped in a

local minimum. The former implies that selecting and tuning

the cooling schedule is an important task for the correct

behavior of the Simulated Annealing. In [110], the authors

showed that exponential cooling must be preferred over the

logarithmic cooling when the available computing time is

bounded [111]. The exponential cooling schedule is written

as:

𝑇𝑛 = 𝑇0 · 𝑎𝑛 (5.12)

where, 𝑇0 is the initial temperature, 𝑛 is the number of

iterations and 𝑎 is a constant whose values are typically in

between 𝑎 = 0.99 and 𝑎 = 0.9. The value of 𝑎 will define how

fast the algorithm passes from a high temperature to a low

temperature state, see Figure 5.5.

To choose the value of 𝑇0, it is necessary to take into account

that it has to be high enough in order to be able to explore the

domain at the beginning. However, it cannot be extremely

high because then the algorithm will spend a lot of time

exploring and will take a lot of time to converge. When the
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maximum change of the objective function is known, the

value of 𝑇0 can be calculated as follows [106]:

𝑇0 ∼
maxΔ 𝑓

ln 𝜒0

(5.13)

wereΔ 𝑓 is the maximum change of the objective function and

𝜒0 is a given probability of accepting an uphill movement.

If the maximum change of the objective function is not

known, we can do an heuristic approach, starting with a high

temperature and reducing it quickly until just the 50% or

60% of the worse moves are accepted. A way of calculating

an approximation for the parameter 𝑇0 is performing a set of

𝑁 iterations and then calculating its value by means of the

following relation [112]:

𝑇0 ≈
Δ 𝑓 + 3𝜎Δ 𝑓

ln
1

𝜒0

(5.14)

where Δ 𝑓 =
|Δ 𝑓 |
𝑁 and 𝜎Δ 𝑓 is the standard deviation of Δ 𝑓 .

In the case of tolerance cost optimization Equation 5.14 is

written as:

𝑇0 ≈ Δ𝐶 + 3𝜎Δ𝐶

ln
1

𝜒0

(5.15)
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5.3.3 Feasibility of optimizing

The optimization process aims to find an optimal or near-

optimal solution for the objective function on a domain.

Simulated Annealing can help achieve this goal. However,

before engaging in the hard iterative process of finding

the optimal solution, it is necessary to guarantee that there

exists an actual solution for our tolerancing problem in the

given domain. As stated in Section 3.1.2, we can ensure the

compliance of a mechanism with a functional condition when

using prismatic polyhedra by verifying the tolerance and

the kinematic compliance, see Equation 3.10 and Equation

3.9. If kinematic compliance is not ensured, modifying the

tolerance values will not make our system meet the functional

condition even when using the tightest tolerances. On the

other hand, we have to ensure that:

▶ when using a candidate solution with the minimum

value of all tolerances 𝑡𝑖 we obtain a resulting polyhe-

dron that is compliant with the functional condition,

▶ when using the maximum value of all the tolerances the

resulting polyhedron is not included in the functional

polyhedron.

The first condition guarantees that there is at least one so-

lution that meets the functional requirements, while the

second tells us that there is room for optimization. If the

polyhedron with the highest set of tolerances is compliant

with the functional condition, then the set of tolerances

®𝑥𝑛 = (𝑡1,max, · · · , 𝑡𝐼 ,max) is the optimal solution and there is

no need to search for another.

In summary, in order to perform the verification of the

feasibility of optimizing the tolerances of a mechanical system,

two steps must be followed:

1. Verification of the conditions to achieve compliance

▶ It is needed to guarantee the kinematic compliance

of a resulting polyhedron inside the functional

condition and guarantee the tolerance compliance

when ®𝑥𝑛 = (𝑡1,min, · · · , 𝑡𝐼 ,min)

Γ𝑅(𝑡𝑖 ,min) ⊂ ΓFC (5.16)

2. Verification of the conditions to perform “optimization"
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▶ Guarantee that there is no tolerance compliance

when ®𝑥𝑛 = (𝑡1,max, · · · , 𝑡𝐼 ,max), Equation 3.10

Γ𝑅(𝑡𝑖 ,max) ⊈ ΓFC (5.17)

The value of 𝑡𝑖 ,max can be chosen following the

general tolerances [113, 114].

5.3.4 Pre-processing of the input data

When doing tolerance allocation and optimization by means

of an optimization algorithm, e.g. Simulated Annealing, the

tolerance analysis is made iteratively. The former can make

the process time-consuming and computationally expen-

sive.

The prismatic polyhedral approach is a method that can be

applied to all kinds of contact architectures, regardless of

whether they are iso or over-constrained, with or without

mobility. The main advantage of this approach is that it works

for all mechanisms and the way of applying the method

is the same for all. The prismatic polyhedral method is

feature-based, hence the discretization of the surfaces plays

an important role in the quality of the result obtained with

the method. Furthermore, it impacts directly the calculation

time because of the increasing amount of half-spaces for each

operand and the way they propagate after each operation.

In the optimization process, we must ensure that the operands

can accurately represent the system being modeled. To de-

termine the appropriate number of discretization points for

the surfaces or half-spaces of the operands, a convergence

analysis must be performed before starting the tolerance

allocation and optimization process, see Section 4.1. The

Minkowski sum of two or more operands has a significant

impact on the tolerance reduction time of a mechanism. The

Minkowski sum is more time-consuming when the operands

have many half-spaces and/or when the affine sub-space

in which the sum is performed is high, Section 3.1.1. Once

the convergence analysis is complete, we must choose the

set of operands that provides a good balance between result

quality and calculation time to reduce computation time.

Additionally, we propose simplifying the chain of operations

by eliminating the last sum (the most complex operation)
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min max

𝜆0 0.115 0.5

𝜆1 0.61 0.5

𝜆2 0.02 0.5

𝜆3 0.02 0.5

𝜆4 0.02 0.5

𝜆5 0.02 0.5

𝜆6 0.02 0.5

𝜆7 0.02 0.5

Table 5.3: Lower and upper

bounds for the 𝜆𝑖 coefficients

Operand # Half-Spaces

3,7 36

3,4 60

3,5/2,5 18

3,6/2,6 18

2,1/2,12 18

2,2/2,12 18

2,3 80

1,12 72

Table 5.4: Amount of half-spaces

for each opera

and performing a subtraction on the operand related to the

functional condition, see Section 4.2.

5.4 Case study: Spectrometer

Let us continue with the example introduced in Section 3.2.

The pre-processing of the input data, operands, was done

in Section 4.3 were we found which is the best compromise

between the quality of the result and the calculation time, see

Figure 4.10 and Figure 4.11. From the results obtained in the

previous chapters, the discretization of the set of operands

that will be used to perform the next simulations is presented

in Table 5.4.

The tolerance reduction process is made based on the contact

graph Figure 3.14, from which we obtained the Equation

3.20 that models the spectrometer. Equation 3.20 depends

on 8 variables 𝜆 that represent the tolerance or the sum of

tolerances of a contact edge in the contact graph. Hence, in

the optimization problem each candidate solution will be

characterized as:

®𝑥𝑛 = 𝜆𝑖 ∀𝑖 = 0, · · · , 𝐼with: 𝐼 = 7

The cost function that is going to be optimized was presented

in Equation 5.7, and for this study case it becomes:

min (𝑡FC − 𝑡 𝑓circ
)2

subject to: 𝜆𝑖 ,min ≤ 𝜆𝑖 ≤ 𝜆𝑖 ,max∀𝑖 = 1, · · · , 𝐼 (5.18)

Where 𝑡FC is the tolerance of the handles in the functional

condition, and it is equal to 0.4 mm.

Before starting the tolerance allocation and optimization

process, the feasibility has to be verified. The condition of

kinematic compliance as well as the tolerance compliance

when ®𝑥 = 𝜆𝑖 ,min was verified in Section 3.2. When the set of

values of ®𝑥 are at its maximum, the tolerance compliance must

not be achieved in order to be able to perform an optimization

process. In the case of the spectrometer, when ®𝑥 = 𝜆𝑖 ,max,

𝑡circ = 0.8, hence since 𝑡𝑐𝑖𝑟 > 𝑡FC the condition presented in

Equation 5.17 is satisfied. Figure 5.6 illustrates the two steps

of the feasibility test process, at the left it is possible to see
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Figure 5.6: Verification of the feasibility condition i) left: Γ𝑅(𝑡𝑖 ,min) ⊂ ΓFC ii) right: Γ𝑅(𝑡𝑖 ,max) ⊄ ΓFC

that when the set of tolerances takes its minimum value the

inclusion is satisfied (figure at the left), and when it takes the

value of the maximum tolerances the tolerance compliance

is not satisfied.

In order to determine the value of the initial temperature𝑇0 for

the simulated annealing, a set of 𝑁 = 100 simulations while

doing random walk was carried out. The exploration of the

domain was done following the Equation 5.8. As a result of

those simulations we obtained the following information:

Δ𝐶 ≈ 3.568

𝜎Δ𝐶 ≈ 5.568

With the average of Δ𝐶 and his standard deviation, we can

apply Equation 5.15 when considering an initial acceptance

rate of uphill movements of 𝜒0 = 60% we obtain that the

initial temperature is:

𝑇0 ≈ 40.22 (5.19)

It is important to notice that this is an approximate value and,

if it is calculated with another set of randomly generated

simulations, it may change.

Once the initial temperature is found, the cooling schedule

can be parameterized by setting a value of 𝑎. As shown in Fig-

ure 5.5, this parameter will define how fast the temperature

decreases and it will have a direct impact on the convergence
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Figure 5.7: Results simulated annealing (𝑎 = 0.9 𝑇0 = 41)

of our optimization algorithm. If we choose 𝑎 = 0.9 as the

smallest value recommended in the literature, and we con-

sider that our system is cooled at 𝑇𝑓 ≈ 1𝑒 − 3, hence we need

to do around 100 iterations. If, on the other hand, we decide

to choose 𝑎 = 0.95, around 200 iterations will be needed.

Figure 5.7 presents the convergence result when using this

cooling schedule:

𝑇𝑛 = 41 · 0.9𝑛 (5.20)

In the Cost graph it is possible to see that during the first

30 iterations “bad” solutions are being accepted in order

to go out of some local minima. Around the iteration 50 it

seems that the algorithm is just going downhill in order to

find the best solution. In the last graph of the Figure 5.7 we

can see the variation on the value of the 𝑇circ and while the

algorithm converges to a minimum cost, the tolerance of

circumscription approximates the value of the tolerance of

the functional condition. At the optimum value found of the

cost function 𝑡circ = 0.398.

Similarly, Figure 5.8 represents the convergence to an optimal
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Figure 5.8: Results simulated annealing (𝑎 = 0.95 𝑇0 = 41)

𝑎 = 0.95 𝑎 = 0.9

𝜆0 0.195 0.282

𝜆1 0.174 0.162

𝜆2 0.147 0.101

𝜆3 0.171 0.034

𝜆4 0.184 0.497

𝜆5 0.456 0.339

𝜆6 0.183 0.167

𝜆7 0.084 0.203

Table 5.5: The best solution

founded with the simulated an-

nealing for each schedule

solution while using a cooling schedule:

𝑇𝑛 = 41 · 0.95
𝑛

(5.21)

For this cooling schedule the amount of iterations needed

in order to arrive to a convergence is higher since Equation

5.21 decreases slower than Equation 5.20. Since the cooling

is slower, the algorithm will be able to explore more the

domain but it will take longer to converge to an optimum.

In the cost plot of Figure 5.8, we can see how the cost varies

almost randomly at the beginning until the iteration 45, and

after this, some “bad" solutions are accepted from time to

time until the iteration 120 where the solution stabilizes. The

graph of the tolerance of circumscription shows how the 𝑡circ

converges while the cost value decreases, at the end of the

optimization process, with the cooling schedule of Equation

5.21, 𝑡circ = 0.401.

With both cooling schedules the Simulated Annealing man-

aged to find optimal or nearly optimal solutions that max-

imizes the resulting polyhedron inside the functional one

by controlling the value of the tolerance of circumscription
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Figure 5.9: Identification of the𝜆
parameters in the contact graph
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through the cost function. In terms of the parameters, the

solution found with each cooling schedule is presented in

Table 5.5. The values of 𝜆𝑖 can be directly related to the geo-

metrical and dimensional tolerances by means of Equation

3.20. In order to have a better representation of this relation

see Figure 5.9.

From a global point of view the architecture of the spectrom-

eter is arranged following a serial configuration between the

experience chamber (1), the massive part (2) and the mag-

netic pole (3). From the Table 5.5, we can observe that in the

solution when 𝑎 = 0.9, the tendency is to control with tighter

tolerances the position between the experience chamber (1)

and the massive part (1), and to give wider tolerances between

the massive part (1) and the magnetic pole (3). On the other

hand, in the solution when 𝑎 = 0.95, tighter tolerances are

imposed between the massive part (2) and the magnetic pole

(3), relaxing the tolerances between the experience chamber

(1) and the massive part (2). In Figure 5.6 it is possible to see

that the mechanical system tends to lose the conformity to

the functional condition in terms of the rotation with respect

𝑧 (𝑅𝑧). Hence, it makes sense that the value of the parameter

𝜆7 related to the handle surface 3.7 is considerably tight

when the tolerances between the magnetic pole (3) and the

massive part (2) are relaxed (𝑎 = 0.9). Otherwise, the value
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Calculation 𝑎 = 0.95 𝑎 = 0.9

𝐺1,1 𝐷1,1 + (𝜆0 + 𝜆6)/2 145.189 145.224

𝐺1,2 𝐷1,2 + (𝜆0 + 𝜆6)/2 138.189 138.224

𝐺2,1 𝐷2,1 − (𝜆0 + 𝜆6)/2 144.811 144.775

𝐺2,2 𝐷2,2 − (𝜆0 + 𝜆6)/2 137.811 137.775

𝐺2,5 𝐷2,5 − 𝜆1/2 17.913 17.919

𝐺3,5 𝐷3,5 + 𝜆1/2 18.087 18.081

𝑡1,3 𝜆4 0.184 0.497

𝑡2,3 𝜆5 0.456 0.339

𝑡2,4 𝜆3 0.171 0.034

𝑡3,4 𝜆2 0.147 0.101

𝑡3,7 𝜆7 0.084 0.203

Table 5.6: Values for the draw-

ings Figure 5.10, Figure 5.11 and

Figure 5.12 (in 𝑚𝑚)

of 𝜆7 is bigger when the tolerances between the magnetic

pole (3) and the massive part (2) are tighter (𝑎 = 0.95).

From the values obtained via the optimization process, in

Table 5.6, Figure 5.10, Figure 5.11 and Figure 5.12, we propose

to define the value of the tolerances in the technical drawings

using the recent update of the standard ISO 2692 [25] by

using directly the sizes of the virtual LMC gauges.

Figure 5.10: Experience Chamber Drawing
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Figure 5.11: Massive part drawing

Figure 5.12: Magnetic pole drawing
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5.5 Summary

In this chapter, we introduced a methodology to perform

tolerance allocation and optimization using the prismatic

polyhedra method and Simulated Annealing. The prismatic

polyhedra method is used to represent the geometric devia-

tions of the components of the mechanism. The simulated

Annealing is then used to optimize the tolerances of the

mechanical system. As function to optimize we proposed

a relation between the tolerance of circumscription of the

resulting polyhedron and the tolerance of the functional

condition, this function allows to maximize the value of the

tolerances of the components while keeping the tolerance

compliance of the mechanism.

The tolerance allocation and optimization method proposed

makes use of the results obtained in the previous chapters

to prepare the operands and to reduce the calculation time

in order to obtain accurate results in the least time possible.

Figure 5.13 summarizes the steps that are needed to be

followed in order to perform the optimization process, the

kinematic compliance is the first thing that has to be verified.

If it is not achieved it means that the designer made a mistake

in the mechanical system and the optimization process cannot

be performed. If the kinematic compliance is achieved, a

convergence test needs to be carried out in order to find

out the discretization of the operands that offer a good

compromise between quality of the result and calculation

time, see Chapter 4. Once the set of operands is defined, a

feasibility test is performed in order to know if the tolerance

set can be optimized or not. Finally if the optimization can

be carried out, the iterative cycle of optimization is started

until an stopping criteria is fulfilled.

The case study presented in the previous chapter is contin-

ued in order to illustrate the methodology proposed. The

parametrization of the Simulated Annealing algorithm is

made by performing a random set of 100 iterations to calculate

the initial temperature. Two exponential cooling schedules

are used in order to verify the behavior of the optimization

process. The results obtained with both cooling schedules

seems promising and, in both cases, the difference between

the tolerance of circumscription and the functional tolerance

is less than 0.002 mm, or 0.5%. Once the optimal solutions
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Figure 5.13: Tolerance allocation

and optimization

CAD model

Contact graph

Pre-processing

Feasibility test

Tolerance optimisation

� Kinematic compliance

Design test

� Model simplification

� Discretization of the operands

Convergence test

� Tolerance compliance when ~ti,min

� NO tolerance compliance when ~ti,max

Can it be optimized?

� Parametrization

� Tolerance allocation and optimisation
cycle

Optimisation process

are found there is a direct relation between the result and the

tolerances of the surfaces and clearances of the mechanism.

The strategy presented in this chapter allows to find the

set of tolerances that makes a mechanical system compliant

with a functional condition while maximizing the individual

tolerances of the surfaces and the clearances. The former

is important because it allows to know the tolerances that

can potentially be less expensive and easier to manufacture.

An option that has not been explored in this chapter is that

instead of searching for the “best" solution we can search for

a set of solutions that satisfy a condition, e.g. 𝐶(®𝑡) < 0.01,

and then the designer can choose the one that fits them more

in terms of real cost or the manufacturing process that they

have available.
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6.1 Conclusion

In this work, an strategy to perform tolerance allocation

and optimization is proposed. The strategy is based on the

prismatic polyhedron method and the optimization process

is made by means of the Simulated Annealing algorithm.

The prismatic polyhedral approach models the geometrical

deviations of the surfaces as well as the contact deviations by

means of unbounded sets of constraints (SOCs) that constitute

the polyhedra operands. A prismatic polyhedron can be

decomposed into the sum of a polytope and a set of straight

lines, that represent the unbounded directions. In tolerancing,

we decompose this polyhedron directly into a polytope and

a set of straight lines that are orthogonal to the subspace in

which the polytope lies. The former decomposition allows

to find a direct relation between the set of displacement

restrictions, and the degrees of freedom of a contact (or the

degrees of invariance of a surface) with the polytope and the

straight lines, respectively. This approach derives directly

from the duality between the wrench screws and the twist

screws.

In order to determine whether a mechanical system is com-

pliant or not with a functional condition, it is needed to:

▶ Define the contact graph,

▶ Generate the geometric and contact operands,

▶ Perform the contact graph reduction,

▶ Verify the inclusion of the resulting polyhedron Γ𝑅

inside the functional one ΓFC.

Before performing the contact graph reduction it is conve-

nient to verify the kinematic compliance of the mechanical

system with the functional condition. We proposed to take

advantage of the direct relation between the straight lines

of the operands and the degrees of freedom to perform the

kinematic compliance test. The kinematic compliance test

is validated if and only if the set of straight lines of Γ𝑅 is

included inside the set of straight lines of ΓFC. If the kinematic
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compliance is not satisfied then the mechanism will never

satisfy the functional condition whatever the value of the tol-

erances and the clearances. In such a situation, the designer

has to modify the contact graph. If the kinematic compliance

is achieved, it makes sense to perform the contact graph re-

duction by summing (for serial architectures) or intersecting

(for parallel architectures) the operands, and then verify the

tolerance compliance of the system by determining if the

underlying polytope of Γ𝑅 is included inside the polytope

of ΓFC. Since the polytope can live in a 6 dimensional space,

quantifying the compliance of the system is not a trivial task,

to do so we proposed an indicator that we call the tolerance

of circumscription. The tolerance of circumscription (𝑡circ)

derives from the coefficient of the homothety applied to ΓFC

to circumscribe Γ𝑅. If the value of 𝑡circ is inferior or equal to

the functional tolerance, the resulting polyhedron is included

inside the functional one (the coefficient of the homothety

is inferior or equal to 1). Otherwise, if the value of 𝑡circ is

superior than the functional tolerance the inclusion of the

resulting polyhedron inside the functional one is not satisfied

(the coefficient of the homothety is strictly superior than 1).

The prismatic polyhedra approach is feature based, this

means that the quality of the operands is highly impacted by

the discretisation of the surfaces from which they represent

the deviations. Having a rough discretisation may mean that

the result is not going to be accurate, but having a very fine

discretisation can imply an explosion of the complexity of

the operands and the calculation time. In order to solve this

problem, we proposed to perform a convergence test in which

the tolerance reduction has to be performed for various sets

of operands, with discretisation that vary from rough to fine,

and the tolerance of circumscription is calculated each time.

At the end of this test, the user is able to choose the best

set of operands, with the right discretisation, in terms of a

convergence criterion for 𝑡circ and taking into account the

calculation time.

Performing a tolerance reduction for a mechanical system

can be computationally expensive, this is the reason why

strategies to simplify the process are in constant development.

While doing the convergence test, we noticed that the last

sum takes most of the calculation time, in the worst cases it

can take more than 90% of the total time. The former is due

to the complexity of the operands that increases after each
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Minkowski sum, hence the last sum on the contact reduction

is the most complex since it is performed over operands that

are the result of more operations. In most of the cases, the

last sum can be written as

Γ𝑅 = Γ𝐴 ⊕ 𝑡𝐻1

2

Γ𝐻1
⊕ 𝑡𝐻2

2

Γ𝐻2
(6.1)

Where Γ𝐴 comes from previous operations, Γ𝐻1
and Γ𝐻2

re-

present the topology of the operands related to the handle

surfaces and 𝑡𝐻1
and 𝑡𝐻2

are the tolerances of the handles.

In order to reduce the complexity of this sum and the com-

putational time required to perform it, we propose to avoid

adding the two handles performing a subtraction of those

handles on the functional condition instead. By doing so,

we manage to decrease the calculation time, on the study

case presented the time was reduced by 9%. It is important

to notice that the percentage of reduction of the calculation

time depends on the dimension in which the last sum is

performed and whether the two handles can be removed or

not.

Once the kinematic compliance has been verified, the operands

with the right discretisation has been chosen and tolerance

reduction equation has been defined, it is possible to perform

tolerance analysis. Then, tolerance allocation and optimiza-

tion can be performed knowing that the result that we can

obtain will be potentially accurate. Tolerance allocation and

optimization can be seen as an iterative process of toler-

ance analysis in which the tolerances are allocated each time

searching to optimize a function that is usually a function

of cost, of quality or a cost-quality function. In a general

case, we can suppose that the cost is directly related with

the tolerances, if the tolerances are tighter the cost is higher.

Hence our objective is to maximize the geometrical and di-

mensional tolerances of the mechanical system while keeping

the tolerance compliance, in order to potentially minimize

manufacturing costs.

In order to do tolerance allocation and optimization we

propose a cost function that relates the tolerance of circum-

scription with the functional tolerance, and the objective

of the optimization process is to minimize the difference.

The optimization process is carried out with an algorithm of

Simulated Annealing using two different exponential cooling

schedules with the same initial temperature. The speed of
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CAD model

Contact graph
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Tolerance optimisation

� Kinematic compliance
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the design
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from ΓFC

Model reduction
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� Sets of operands with a given level of
discretization

Operands generation
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� Intersection when parallel contact

Contact reduction

� Verify the convergece of the tolerance
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scription is not achieved, the user has to ver-
ify either the level of discretization of the
operands or the criterion of convergence

� Tolerance compliance when ~ti,min

� NO tolerance compliance when ~ti,max

Can it be optimized?
If the conditions are not satisfied, the user has
to increase the upper limit of the parameters
(the tolerances) and/or to verify if the toler-
ance of the functional condition can be modi-
fied

� Parametrization

� Tolerance allocation and optimisation
cycle

Optimisation process

If a minimum is not found, the parameteriza-
tion needs to be re-evaluated

Pre processing

Figure 6.1: Complete tolerance allocation and optimization process with the prismatic polyhedral approach

convergence of the algorithm is closely related to the value

of the initial temperature, coming from the parametriza-

tion, and how fast this temperature decreases during the

simulation. With both cooling schedules, we found optimal

solutions that have tolerances of circumscription values less

than 1% different from the functional tolerance. Due to the

nature of the objective function:

min(𝑡FC − 𝑡 𝑓circ
)2 (6.2)

for two different values of 𝑡 𝑓circ
the cost value can be the

same, leading to solutions that can be slightly outside of the

functional condition. However, taking into account that we

work in millimeters, being outside the target for 1𝜇𝑚, like in

the example, is not significant from a manufacturing point

of view.

In summary, along this work we have presented a methodol-

ogy to perform tolerance allocation and optimization starting
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CAD model

Contact graph

Feasibility test

Tolerance optimisation

� Kinematic compliance

Design test

Chapter 3

� Remove the handles from the last sum

� Do the substraction of the handles
from ΓFC

Model reduction

� Prismatic polyhedra operands

polytope ⊕ straigth-lines

� Sets of operands with a given level of
discretization

Operands generation

� Sum when in serial contact

� Intersection when parallel contact

Contact reduction

� Verify the convergence of the tolerance
of circumscription

Convergence test

Chapter 4

� Tolerance compliance when ~ti,min

� NO tolerance compliance when ~ti,max

Can it be optimized?

� Parametrization

� Tolerance allocation and optimisation
cycle

Optimisation process

Chapter 5

Pre processing

Figure 6.2: Summary: Contributions of this work

from a mechanical system and its 3d nominal representation,

CAD model. If this methodology is followed, the designer

will be able to know at each step if the process is going well

or if there are parameters that need to be revised or adjusted

Figure 6.1. The kinematic compliance verification, the capa-

bility to find out which is the discretization needed for the

operands and finding out which set of tolerances maximizes

the resulting polyhedron inside the functional condition are

the main contributions of this method, see Figure 6.2.

6.2 Future work

This work leaves open many possibilities for future research

regarding the discretization of the nominal features as well

as exciting perspectives in terms of tolerance allocation and
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the selection of manufacturing process:

▶ As it was shown in Chapter 4, the way the nominal

features are discretized plays an important role on the

complexity of the operands, hence on the tolerance

analysis process, and the tolerance allocation and opti-

mization process with prismatic polyhedra. While we

can now evaluate the quality of a result with a given

set of operands using an analysis of convergence, it

would be interesting to investigate whether the distri-

bution of discretization points on the nominal surface

impacts operand quality. This would enable us to have

fewer points while strategically positioning them on

the nominal surfaces based on the functional condition

of the mechanism.

▶ In the direction of tolerance allocation and optimization,

it will be interesting to add a function of weighting

for the tolerances. This weight could be based on the

cost and/or difficulty of the manufacturing process, as

well as other criteria defined by the designer. By doing

so, the tolerance optimization process would prioritize

tolerances related to the most complicated surfaces

by assigning them larger values, while tolerances of

surfaces that are easy or less expensive to manufacture

would be assigned tighter values.

▶ The problem of computational time continues being an

important point for future research, and it is even more

important now that we need to perform 𝑁 iterations in

order to do tolerance allocation and optimization. Since

while doing tolerance allocation and optimization just

one operand is changing each time, identifying the

operations that are kept constant and avoiding to re-

calculate them can be a key step in order to reduce the

overall calculation time. Furthermore, while perform-

ing the optimization process, a lot of simulations are

being carried out, and it will be interesting to perform

some statistical tests in order to verify if it is possi-

ble to identify which is the level of influence of each

toleranced feature or joint regarding the functional

condition
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