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Preface

At staring this thesis, I was the archetypal doctor-turned-geek, eager to delve into the trove of data at
the Pitié-Salpêtrière Hospital. The journey began with establishing a multimodal data collection unit,
but it was soon evident that data collection was only the first step. Aggregating and processing these
data presented unforeseen challenges, leading to a realization: data in healthcare requires meticulous
preparation before it can be meaningfully analyzed.

Embarking on this doctoral journey at the intersection of medicine and machine learning, I have
been continually reminded of the transient nature of knowledge, as eloquently captured by Nikola
Tesla: ”The history of science shows that theories are perishable.” This thesis represents a foray into
the dynamic, ever-evolving landscape of artificial intelligence, with a particular focus on its application
in healthcare.

As a physician, my initial foray into the world of machine learning was met with the challenge of
unlearning and relearning. My medical training had instilled a patient-centric approach, contrasting
starkly with the data-driven, algorithmic focus of machine learning. Yet, it was this very difference that
fueled my motivation: the transformative potential of AI in healthcare, specifically in sleep medicine,
a field burdened by chronic insomnia yet rich in data waiting to be deciphered.

This thesis represents a journey of balancing two worlds. On one hand, the empathetic, nuanced
practice of medicine; on the other, the precise, data-centric realm of machine learning. The aim was
to harness machine learning to not only predict and personalize treatment for chronic insomnia but
also to illuminate the debated clinical concept of Paradoxical Insomnia.

Throughout, I have strived to merge the analytical prowess of AI with the compassionate ap-
proach of medicine. This interdisciplinary endeavor has underscored the importance of collaboration
in advancing healthcare, requiring a continuous process of learning and adapting.

Under the tutelage of Jesse Read, the journey took a turn towards not just achieving accurate
predictions but understanding and evaluating the reliability of these machine learning models. This
paradigm shift—from seeking good prediction scores to ensuring the reliability of predictions in a
medical context—has been the crux of my doctoral research.

In conclusion, this thesis is more than an academic pursuit; it is a narrative of bridging two
distinct yet complementary worlds and a testament to the potential of interdisciplinary collaboration
in revolutionizing healthcare.
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Chapter 1

Introduction

This dissertation is at an intersection of sleep medicine driven by expert knowledge and methods driven
by data (Machine Learning). The modern understanding of sleep science has several open questions;
we launch this thesis with the intent to provide answers to some of these questions. It is necessary
to overcome the inherent cross-disciplinary difficulties (different views, traditions, and terminology
used in the different fields) to do so. The general hypothesis is that we can produce new knowledge
from “old” data by harnessing Machine Learning and then pass this knowledge back to the medical
community.

1.1 Historical Perspective: Medical Practice and the Rise of Data

Since the beginning of human civilization, medical knowledge has primarily relied on clinical and
anatomical observations. Medicine was initially seen as an art passed down through mentorship.
However, advancements in tools and methodologies, from early mechanisms for observing living or-
ganisms and blood cells in the 17th century to the digitization of medical data in the 21st century,
have significantly influenced medical practices and research.

A major medical revolution occurred in the late 19th century with the introduction of descriptions
of pathogenic bacteria and the emergence of medical imaging departments and electrocardiograms. In
the 20th century, we witnessed numerous medical breakthroughs, including the invention of the Elec-
troencephalogram (EEG) in 1929, the development of X-ray scanners and high-resolution ultrasounds
in the 1970s, and the application of Magnetic Resonance Imaging (MRI) to humans in 1977. With
the exponential growth in computing power, the digital transformation of medical examinations has
accelerated, particularly in the 21st century.

The dynamics and evolution of medical knowledge and publications have reached unprecedented
levels. In 1950, it took 50 years to double the number of medical publications; today, it takes only
a few months. However, as medical knowledge has expanded, integrating and assimilating this vast
amount of data has become increasingly challenging for the human brain. Compounding this problem
is the cumulative decline in the number of doctors graduating in France and practicing in the private
sector, which has put additional pressure on those who remain. Doctors are now expected to keep up
with demanding and well-informed patients, handle administrative tasks, publish academic papers,
and cope with the ever-increasing number of publications to read.

The overwhelming amount of medical publications, especially in the last decade (see Figure 1.1),
coupled with controversies and limitations, poses a significant challenge for doctors who must navigate
this sea of information to provide evidence-based medical care. Though impressive, this explosion in
medical activity raises concerns about the reliability of published medical studies. Artificial Intelligence
(AI) systems designed to synthesize vast amounts of data, like IBM’s Watson, have faced challenges
[215] in clinical decision-making. These systems often recommend unsafe or incorrect treatments due
to limitations in the data used [96] to train them. The reliance on single studies with statistical
significance, measured by a p-value of less than 0.05, has also contributed to a high rate of non-
replication in research findings[91].

The question arises: How can research and the effectiveness of treatment and medical knowledge
be improved amidst the influx of often unreliable data?

1.2 Motivation and Aim: Contributions to Sleep Medicine

To explore potential solutions in the sleep medicine area, this thesis draws inspiration from derma-
tology, specifically the advancements made in melanoma care. Over time, dermatologists have refined
their understanding of melanoma from observations and inference studies on small datasets to pre-
dictive models based on genetic associations and clinical characteristics. Today, in that field, the
accumulated knowledge allows a better understanding of genetic mutations, the metastatic process,
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Figure 1.1: Divariate evolution of
the number of Pubmed publications
corresponding to the entry ”Study”
from 1935 to 2022

Figure 1.2: Divariate evolution of
the number of Pubmed publications
corresponding to the entry ”Sleep”
from 1935 to 2022

Figure 1.3: Divariate evolution of
the number of Pubmed publications
corresponding to the entry ”Insomnia”
from 1935 to 2022

and the different stages and responses to treatment. In the end, a dozen clinical types are described,
and physicians can subgroup melanoma patients and match genotypes with therapies. These discover-
ies have recently benefited from predictive models that combined immune-related genes with clinical
and morphologic characteristics to estimate melanoma patient survival and improve the decision-
making in the treatment [125]. We are far from that in the sleep research area, but by applying a
similar approach to sleep medicine, which emerged as an interdisciplinary field in the second half of the
20th century, we hope that using predictive models could help to gain insights into Chronic Insomnia
Disorder (CID), particularly Paradoxical insomnia (ParI).

Although the severity of insomnia is infinitely less conducive to active research on an individ-
ual level, insomnia affects a significant portion of the population (10% to 30%) and remains poorly
understood and challenging to categorize. However, its proper management is crucial due to its signif-
icant social, economic, and medical consequences, which are often underestimated. Despite ongoing
research, the diagnosis of insomnia lacks clear objective criteria or biomarkers, and the treatment
is moderately effective, with a 50% relapse rate at three years [145]. The International Classifica-
tion of Sleep Disorders (ICSD-3) published in 2014 [183] consolidated various subtypes of CID into
a single category, eliminating previously recognized subtypes due to poor convincing evidence. This
simplification carries with it the risk of the clinician and the future sleep specialist losing some of the
subtleties of the various manifestations of this disorder. It is also interesting to note that since these
last classification, the number of publications has been the same as the total amount from 1945 to
2014 (See Figures 1.2 and 1.3) where the red cone represents the initiation point of the doubling of
the publication count up until 12-31-2022). Perhaps this observation should spur us to find a new way
of exploiting this gigantic mass of available data through tools that enable us to extract knowledge
differently. At least, that’s what we’ve tried to do in this work, based on classic data from a sleep
assessment centre.

Indeed, a systematic evaluation and treatment unit for CID was established at the Pitié-Salpêtrière
Hospital in 2011 to address these challenges. This thesis work builds upon the data collected through
this unit to understand treatment-resistant CID better and contribute to the validation of insomnia
subtypes observed in clinical practice, especially ParI.

The decision to employ Machine Learning (ML) in this research is motivated by the belief in
ML potential to uncover novel patterns and relationships between variables using predictive models.
Recent studies have emphasized the advantages of this approach, demonstrating that traditional linear
models used in classical statistical inference may not capture the complexity of the data and may
yield divergent results when applied to the same dataset [30]. In contrast to classical inference,
ML techniques are specifically designed to extract knowledge directly from the data, making them
well-suited for discovering intricate patterns that may have scientific implications in understanding
biological, physiological, or clinical processes. By bridging the theoretical foundation provided by
classical inference with the predictive capabilities of ML on real-world data, our working hypothesis
is that leveraging the strengths of both approaches to identify patterns will bring meaningful insight
into insomnia research, not only scientifically but also reproducible on unseen data. This last point
aims to be a first step in the personalization and real-time use of data assisted by ML tools to improve
the diagnosis and treatment of CID.
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1.3 Research Questions

Thanks to many detailed publications on ParI described in datasets comparable to ours, but generally
with far fewer features, we could use the learning capabilities of predictive tools used in Machine
Learning to verify what the main and most accurate models among most efficient and popular binary
classifier for each type of definitions published on our dataset. Once the prediction is achieved, we
expect to explain each of the predictions with the assistance of different feature selection tools and
compare them.

Our primary hypothesis is that we will find homogeneity in the different predictions to define ParI
from the data perspective without preconception.

Q1. Can we provide an improved definition of ParI using a data-driven approach with
Machine Learning tools? We will need to investigate the following points (sub-hypotheses):

• gather, study, and validate the definitions provided hitherto in the literature regarding ParI

• show that our dataset is a sufficient representation of the general insomniac population

• provide a robust and explainable definition with a minimum number of features, for reasons of
interpretability and reliability

Our second aim is to understand better the treatment outcome, especially the resistance factor
and relapses in CID. We aim not to evaluate a treatment’s efficacy but to understand the factors
determining its negative evolution.

Our secondary hypothesis is that we will find new insight into treatment resistance in a sample of
CID patients using binary classification between favorable evolution (i.e., significant improvement) or
unfavorable evaluation (no improvement of the problem or even worsening).

Q2. What are the main factors (features) driving negative evolution in treatment
outcomes of CID?

We will need to investigate the following points (sub-hypotheses):

• find high-performing models

• identify the important features

• extract insight from the results

Our third interest in this work is times series analysis, specifically in the form of EEG brain
recording signals. Indeed as we use brain recording every day, we wanted to know if the ML approach
could bring some new insight into the two first hypotheses from a brain analysis perspective. But
as we know, extracting useful features from a brain recording could be hard, especially when the
recording is ambulatory like ours. Our third hypothesis is that we can find a reliable ML algorithm to
extract meaningful data from non-controlled clinical recording with two sub-objectives: - Standardize
the prediction of sleep stages and spindles from brain sleep recording to reproduce our research on
other datasets with the same feature extraction protocol. - Depending on the results from above, use
reliable brain-derived features extraction to predict ParI profiles and treatment outcomes in CID.

Q3. Can we use ML tools on brain recordings to accurately classify ParI profiles and
treatment outcomes of CID?

We will need to investigate the following points (sub-hypotheses):

• automate the classification of sleep stages (as reliably as a human expert – or as close to this as
possible)

• turn this information into features

• build predictive models for classification of ParI

• build predictive models for prediction of treatment outcomes
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1.4 Thesis Organisation

This thesis will be elaborated as outlined below. Given this thesis’s ‘interface’ (cross-disciplinary)
aspect, we have made particular efforts to provide the key references to each field; throughout the
manuscript. In the same spirit, two glossaries specific to each research area are present at the beginning
of the thesis, and two sub-sections containing the main definitions for each research area make up the
first part of the Appendix (B.1.1 for Sleep Medicine and B.1.2 for Machine Learning).

• Chapter 2 will summarize the main concepts of sleep medicine; and ParI in particular. We will
also explain why we chose Machine Learning tools to tackle these problems instead of traditional
statistics and methods.

• Chapter 3 will describe the data collection methodology, the difficulties encountered, the de-
sign and construction of the datasets (needed to overcome such difficulties), and their main
characteristics; essentially to justify our final datasets as a representative insomniac population.

• Chapter 4, is devoted to testing ML and Deep Learning tools in different predictive tasks con-
cerning the Macro and Micro sleep analysis. The first two experiments will concern sleep stages
prediction; the following two will predict specific sleep biomarkers like spindles, and the last will
be a cluster-based analysis of insomniac patients from ambulatory EEG recordings. The main
objective is to see to what extent those methods could improve the standardization of sleep pat-
tern analyses, enhance the understanding of insomnia, and participate in predicting treatment
outcomes.

• Chapter 5 is devoted to the study of ParI in our clinical sample through the definitions provided
by the scientific literature on this topic; in particular 20 proposed ‘formula’ (definitions) of Para-
doxical insomnia (ParI). After evaluating the prevalence of each formula and their correlation
in our sample, we evaluated the predictability of each formula (i.e., accuracy); and we proposed
a new definition. A secondary outcome of this chapter is that we propose a protocol suited to
medical doctors to explain the predictions of ML tools.

• Chapter 6 is devoted to predicting therapeutic response. We included our new definition of para-
doxical insomnia in the data set. We used the same protocol as before, i.e., we selected the most
appropriate binary classifier after hyperparameter adjustment and evaluated the accuracy using
different metrics after cross-validation. We then evaluate the explainability of the prediction
using the same protocol.

• Finally, in Chapter 7, we synthesize and discuss the general results and outcome of the thesis
research, its contributions, and potential impact; we mention limitations and elaborate on some
future perspectives.

Introduction La thèse présentée vise à approfondir la compréhension de l’insomnie paradoxale
(IP), un des sous types de l’insomnie chronique qui affectent 10 à 20 Contexte et Problématique
L’IP se manifeste par une discordance entre la perception subjective du sommeil et les mesures ob-
jectives, telles que celles obtenues par l’enregistrement d’un électroencéphalogramme (EEG). Les pa-
tients souffrant d’IP ont l’impression de ne pas dormir une grande partie de leur nuit de sommeil
quand un enregistrement de leur sommeil montre une quantité de sommeil en général normale. Ainsi
malgré des traitements adaptés, cette perception peut persister et conduire à un sentiment d’échec et
d’impuissance de la part du thérapeute et du patient, entrainer une anxiété accrue et à une surenchère
de traitements parfois iatrogènes entrainant des risques psycho-sociaux accrus. A ce jour, il existe
encore une compréhension incomplète de ce trouble et une controverse concernant son existence pro-
pre. En effet il n’est pas encore tranché si l’IP est un sous-type de l’insomnie chronique ou un simple
symptôme commun à tous les patients insomniaque chronique étiqueté mauvaise perception du som-
meil . Cette controverse pose la question encore en suspens concernant l’existence même d’une entité
propre nommée IP qui nécessiterait donc une définition claire et un traitement spécifique et la notion
de mauvaise perception du sommeil qui serait un continuum intrinsèque à l’insomnie chronique. Dans
les deux cas, il existe un problème commun non résolu qui est la définition d’un seuil de perception
du sommeil considéré comme normal. Mais, au-delà de ce seuil à définir, il reste à trancher si l’IP
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correspond à un sous type distinct de l’insomnie chronique, qui serait donc défini par d’autres car-
actéristiques cliniques, physiologiques ou psychologiques. Pour essayer de répondre à ces questions,
nous avons décidé d’utiliser des outils d’AA pour utiliser sans à priori toutes les données disponibles
concernant un groupe d’insomniaques et prédire le degré de perception du sommeil et les définitions
publiées jusqu’ici de l’IP. Nous voulons également étudier l’impact de ces problématiques sur la réponse
thérapeutique. Enfin, nous avons voulu savoir si les outils d’IA pourraient nous permettre d’exploiter
de manière plus fiables et reproductibles les données complexes utilisées en neurophysiologie. Ces
problématiques correspondent aux 3 hypothèses de recherche décrites ci-après. La première hypothèse
testée dans cette thèse est qu’il est possible d’améliorer la définition d’un seuil de perception anormal
du sommeil utilisable en clinique pour définir l’IP à l’aide d’une approche fondée sur les données et
l’apprentissage automatique. Cette première hypothèse inclue de tester l’hétérogénéité des définitions
déjà publiées sur un dataset représentatif d’insomniaques chroniques, et la proposition d’une unifi-
cation de la définition basée sur une analyse de sommeil sur sept nuits consécutives au lieu d’une
nuit habituellement. La deuxième hypothèse de recherche est que nous pouvons obtenir une meilleure
compréhension des facteurs responsables de l’efficacité ou de la résistance à un traitement classique
de l’insomnie chronique à l’aide d’une approche fondée sur les données et l’apprentissage automa-
tique. Cette deuxième hypothèse inclut la possibilité d’une prédiction fiable du succès ou de l’échec
thérapeutique sur des nouveaux patients. La troisième hypothèse générale est que l’on peut utiliser
un algorithme de ML fiable pour extraire des caractéristiques significatives à partir de données EEG
brutes et automatiser les interprétations et les prédictions pour pouvoir uniformiser la recherche sur le
sommeil sans dépendre de la variabilité inter-experts. Matériels et Méthodes La première hypothèse
est testé sur une base de données multimodale de 335 patients souffrant d’insomnie chronique (IC)
constituée dans un centre spécialisé dans le diagnostic et la prise en charge de l’insomnie. Cette base
inclut des données cliniques, psychométriques, actimétriques et polysomnographiques, comme l’EEG.
Chaque patient inclus a été suivi pendant au moins six mois, permettant une évaluation précise du
diagnostic et de la réponse au traitement standard. En utilisant des outils d’AA, l’étude a cherché à
identifier des sous-groupes de patients et à tester des hypothèses existantes concernant les profils d’IP
à travers l’analyse de l’EEG et psychométriques. La deuxième hypothèse concernant la réponse au
traitement et l’implication des différents sous-types de l’insomnie chronique a été conduite sur une base
plus élargie de 423 patients mais des données actimétriques moins exhaustives. La troisième hypothèse
concerne différentes sous hypothèses dédiées à l’utilisation des tracés EEG pour prédire les stades de
sommeil, l’extraction et la prédiction des fuseaux de sommeil, et la prédiction de l’intensité de la
somnolence subjective. Résultats obtenus pour la première hypothèse : Les résultats de l’étude sur
l’insomnie paradoxale (IP) révèlent une grande hétérogénéité dans les définitions existantes de cette
condition. Plusieurs formules utilisées pour diagnostiquer l’IP ont montré que la majorité des patients
étudiés étaient classifiés comme souffrant d’IP selon au moins une définition, mais il n’y avait pas
de consensus général. La recherche a également indiqué qu’un groupe homogène de patients atteints
d’insomnie chronique (IC) n’étaient jamais classés comme souffrant d’IP, quelles que soient les formules
utilisées. Cette observation suggère que la perception erronée du sommeil n’est pas pathognomonique
de l’IC. En utilisant l’apprentissage automatique, notre travail à permis de proposer une nouvelle
définition de l’IP, basée sur une analyse temporelle plus longue et moins sujette aux aléas d’une seule
nuit d’enregistrement, qui semble mieux refléter la réalité des patients et permet de distinguer plus
clairement l’IP des autres formes d’IC. Résultats obtenus pour la deuxième hypothèse : L’hypothèse
2 de l’étude visait à améliorer la compréhension des résultats du traitement de l’insomnie chronique,
en se concentrant sur les facteurs de résistance et de rechute. L’étude a utilisé des modèles prédictifs
reconnus, notamment le Random Forest, l’Extreme Gradient Boosting et le Support Vector Machine,
pour prédire l’issue du traitement chez 423 patients, atteignant une précision supérieure à 0,8. Les
résultats ont souligné l’importance de la nouvelle définition de l’IP définie dans la première partie
comme prédicteur majeur de la réponse au traitement. Cette découverte ouvre la voie à une approche
plus personnalisée dans le traitement de l’insomnie chronique, bien que des études supplémentaires
soient nécessaires pour une compréhension plus approfondie et pour valider ces résultats. Résultats
obtenus pour la troisième hypothèse : A partir de l’EEG brut, ni un algorithme combinant la den-
sité spectrale de puissance et la décomposition en mode empirique pour l’EEG, ni l’utilisation de
réseaux de neurones (Convolutional Neural Network) n’ont montré une performance suffisante pour
la prédiction fiable des états de sommeil, avec une précision inférieure à l’objectif fixé correspondant
à l’agreement interscoreur (précision de 0,8). De plus le test de l’algorithme CNN pour l’évaluation
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automatisée du sommeil a montré qu’il ne reproduit pas les résultats précédents sur d’autres ensem-
bles de données, soulignant les limites de la transférabilité des algorithmes. L’évaluation de différents
algorithmes pour la prédiction des fuseaux de sommeil a révélé une performance variable et souvent
insuffisante, nécessitant la vérification par des experts. Enfin l’application de méthodes de clustering
pour analyser les données EEG n’a pas permis de différencier significativement les groupes de patients
basés sur des caractéristiques du sommeil. Ainsi globalement, cette hypothèse met en lumière les
défis et les limites des techniques d’apprentissage automatique et d’analyse de données EEG dans le
contexte de l’insomnie chronique.

Implications Cliniques et Perspectives Futures Les résultats de cette recherche ont des implications
cliniques importantes. Ils suggèrent que l’approche actuelle de traitement de l’IP pourrait nécessiter
une révision, en mettant davantage l’accent sur la perception subjective du sommeil sur plusieurs
nuits. Cette approche pourrait aider à identifier plus précisément les patients souffrant réellement
d’IP et à leur fournir des traitements plus ciblés et efficaces. En outre, cette recherche ouvre la voie à
de futures études utilisant l’AA pour mieux comprendre et traiter d’autres troubles du sommeil. La
capacité de l’AA à analyser de grandes quantités de données et à identifier des modèles complexes
peut révolutionner la manière dont nous abordons les troubles du sommeil, conduisant à des diag-
nostics plus précis et à des traitements plus personnalisés. Conclusion Cette thèse représente une
avancée significative dans la compréhension et le traitement de l’insomnie paradoxale. En utilisant
des outils d’AA pour analyser des ensembles de données complexes, cette recherche contribue à une
meilleure caractérisation de l’IP et à une prédiction plus précise de la réponse au traitement de l’IC.
Les découvertes faites dans ce cadre pourraient transformer la pratique clinique et offrir de nouvelles
perspectives pour les patients souffrant de troubles du sommeil.
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Chapter 2

Background

Part I: Sleep and Insomnia

Chapter Highlights (PART I: Sleep and Insomnia)

1. Sleep Physiology and Sleep Medicine The classification of sleep into stages is based on
the Electroencephalogram (EEG). The stages have identifiable brainwave patterns, and the
scoring rules are well-established.

2. Sleep Physiology and Sleep States Sleep is characterized by three distinct levels of regu-
lation: Wake (W), Non rapid eye movement (N-REM), and Rapid Eye Movement (REM)
sleep. The sleep cycle comprises four stages: N1, N2, N3, and REM.

3. Sleep: From Normal Sleep to Disorders (a Categorization) Description of the different sleep
disorders published in the third edition of the International Classification of Sleep Disorders
(ICSD). Chronic Insomnia Disorder (CID) Classification of Insomnia has been harmonized
with other international classifications and removed the different subtypes of CID like ParI,
Psychophysiological Insomnia and Idiopathic Insomnia. These subtypes were removed for
the lack of consensual scientific agreement, especially ParI.

4. Insomnia or Paradoxical Insomnia – Is an Objective Definition of Insomnia Possible? This
thesis focuses largely on ParI; we discuss why there are so many definitions for this cat-
egorization and what are the difficulties in obtaining one. Indeed, despite more than 20
definitions published and attempts to find biomarkers, there is no one agreed-upon defini-
tion of ParI, and the scientific community remains divided on whether it is a disorder in its
own right.

5. Launching this Thesis Our global thesis hypothesis is that ParI is a complex subtype of CID
needing a more data-driven approach to be understood. We will take a Machine Learning
approach.

Key Terms and concepts
Acronym/term Definition Ref.

CBT-I Cognitive and Behavioral Therapy for Insomnia p. 169 (B.1.1)
CID Chronic Insomnia Disorder p. 192 (B.9)
EEG Electroencephalogram p. 169 (B.1.1)
ICSD International Classification of Sleep Disorders p. 25 (2.4.1)
ISI Insomnia Severity Index p. 31 (2.4.1)
MMPI Minnesota Multiphasic Personality Inventory p. 32 (2.4.1)
ParI Paradoxical Insomnia p. 32 (2.4.2)
PsyI Psychophysiological Insomnia p. 170 (B.1.1)
nSSM negative Sleep State Misperception p. 170 (B.1.1)
SE Sleep Efficiency p. 170 (B.1.1)
SOL Sleep Onset Latency p. 170 (B.1.1)
TST Total Sleep Time p. 170 (B.1.1)
WASO Wake After Sleep Onset p. 170 (B.1.1)
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This chapter covers the theoretical background needed to understand the value of using Machine
Learning (ML) tools to study chronic Insomnia. First, we’ll look at the basics of sleep physiology, the
clinical assessment of sleep, and the main disorders encountered. We will then review the particularity
of Paradoxical insomnia (ParI) or negative nSSM in the somnological clinic and the difficulty of
defining it according to homogeneous criteria. Finally, we will see how ML tools could help us better
understand this problem compared to the more conventional statistical tools.

2.1 Sleep Physiology and Sleep Medicine

It is well known that sleep can be classified into stages [7]; and that there are deep sleep and REM
sleep. To a large extent, we owe these discoveries to physiological researchers and the contribution of
EEG, a real-time recording of brain waves obtained by attaching flat metal discs (electrodes) to the
scalp and reflecting the summation of the activity of millions of neurons close to the electrode. Figure
2.1 shows characteristic changes in brain wave amplitude and frequency during wakefulness.

Figure 2.1: Typical EEG of relaxed waking state with alpha rhythm -
increased amplitude in the occipital region [158]

Two additional physiological signals for identifying sleep exist: Electrooculogram and the Elec-
tromyogram.

The transformation by a sleep expert of the visual analysis of these different signals per 30-second
period (epochs) into a staging code is called manual sleep scoring. The scoring rules are well-established
and internationally recognized [191].

The five main stages of sleep are Wakefulness (W), N1 (Stage 1), N2 (Stage 2), N3 (Stage 3-4),
and REM; where N1 to N3 are often referred to as N-REM sleep (as opposed to REM sleep). We
can see in Figure 2.2 the characteristic aspect of the main stages. We describe each in more detail in
Section 2.2.

In Figure 2.3 are represented EEG patterns caused by artifacts that have nothing to do with the
brain signal. To avoid misinterpretations, the expert’s task is to recognize all possible EEG aspects.

Standardized rules were edited to harmonize sleep scoring and the minimum quality standards to
limit this possible misinterpretation. So, after applying these scoring rules, when all the epochs of
each physiological signal are scored, we can visualize a chronological juxtaposition of all epochs scores
called hypnogram (See Figure 2.4).

The EEG patterns of interest for scoring sleep stages are alpha, theta, delta waves, sleep spindles,
and K-complexes, We as exemplified in Figure 2.5).

What’s important to remember is that a scorer epoch corresponds to a kind of generalization of
the EEG aspect observed over 30 seconds; an epoch is not an exact reflection of the frequency bands
observed. To be scored in a certain stage, the EEG frequency corresponding to that 30-sec epoch must
be present for at least 15 seconds. There is an exception for the W state; when the arousal duration
is between three and 15 seconds of the total epochs, it is scored as a micro-arousal.
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Figure 2.2: EEG visualization for the main sleep
stages. N1 is a transitional state (see Figure 2.7 for
EEG aspects) [31] Figure 2.3: Classical artefacts seen in EEG [31]

Figure 2.4: Typical normal hypnogram of scored human sleep staging in young-middle age adult [140]
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Figure 2.5: Main EEG frequencies and bandwidth seen in sleep scoring Adapted
from G.Boeree 2009
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2.2 Sleep Physiology and Sleep States

We will now briefly review the brain systems behind the signals recorded and their link with each
stage.

Sleep

Sleep is a partial, periodic, immediately reversible suspension of consciousness under sufficient stim-
ulation of the organism’s sensory-motor and sensory relations with the environment. It is an active
physiological process with several distinct behavioral stages and characteristic physiological states
such as Heart Rate (HR), respiratory pattern, and cerebral rhythms. Sleep is different from a state of
coma or anesthesia.

As we saw, sleep is characterized by three distinct levels of regulation: wakefulness (W), N-REM
sleep, and REM sleep. The sleep state is a complex and dynamic process regulated by different brain
and brainstem areas (mainly the Reticular formation). The alternation of these three states is done
according to precise physiological rules under the dependence of homeostatic regulation processes, the
circadian clock, and dedicated intra-cerebral nuclei.

Let’s review each system.

Wakefulness (being awake)

It’s a complex set of interdependent and competing systems involving different neurotransmitters that
control the waking state or arousal. These wake circuits are all involved and interdependent to keep
the brain awake no matter what, for obvious survival reasons. So, the waking state is volitional up to
a point. These circuits are represented in Figure 2.6. In Figure 2.1, we can observe the digitization of
the electrical signal when the brain is awake; these wake circuits are all involved and interdependent,
aiming to keep but in a relaxed or drowsy state with a typical alpha rhythm.

Figure 2.6: Main neural groups facilitating EEG desynchronization (wake) and awake motor behaviors such
as walking. These neuronal groups are identified and differentiated by the neurotransmitters produced like
Histamine (HA) in the Tubero Mamilar Nucleus (TMN), Acetylcholine (ACh) in the Basal Forebrain (BF),
and pons (PPT/LDT), Serotonin (5-HT) in the Raphe nucleus, Noradrenaline (NA) in the Locus Coeruleus
(LC) and Dopamine (DA) in the substantia nigra (SN). These systems depend on a neuropeptide synthesized
in the lateral and dorsomedial hypothalamus, Orexin (hypocretin)). The electrodes mentioned, F (Frontal),
C (Central), and O (Occipital), correspond to the electrodes usually used to record sleep. Adapted from
[182]
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The activity of the arousal circuits prevents the onset of sleep. The neuronal circuits of wakefulness
constitute a permissive system that inhibits sleep. The N-REM and REM sleep dynamic could be
triggered when this inhibition is lifted. This is when the different sleep stages can occur in a determined
order. Above all, it’s important to understand that the deregulation of these neurotransmitters
can be at the root of many sleep disorders, including Insomnia, when hyper-activated. Indeed,
Insomnia, especially in healthy young subjects, is more often a disorder of wakefulness regulation than
sleep network functioning. In that case, thanks to sleep homeostasis, sleep always prevails in the
absence of neurological disease, and the first sleep stage coming first physiologically is N-REM Sleep.

N-REM sleep

Here are the main sleep stages in detail.

N-REM sleep is divided into three stages of increasing depth. The ventrolateral preoptic nucleus
controls the system involved in N-REM sleep. This nucleus inhibits the arousal system and thus
promotes sleep. N1, N2, and N3 stages represent different intensities in the hyperpolarization of
the thalamocortical neurons. The EEG pattern reflects these intensities, with a specific pattern
recognizable in stage N2, the sleep spindles (See Figure 2.5).

Stage N1: This is the transition stage between wakefulness and sleep, during which a person may
experience light sleep and muscle relaxation. The brain frequency slows down on the EEG signal,
passing from alpha or beta to theta rhythm without spindles or K-complex (Figure 2.7).

Stage N2: This is the stage of light sleep during which a person’s heart rate and body temperature
decrease, and their brain waves become slower. On the EEG signal, the brain frequency keeps going
in theta rhythm but with spindles and K-complex. Also, the percentage of delta rhythm is less than
20% (Figure 2.8).

Stage N3: This is the stage of deep sleep or Slow Wave Sleep during which a person’s brain waves
become even slower, and their body undergoes restorative processes such as tissue repair and growth
hormone release. On the EEG signal, the brain frequency slows down in the delta rhythm; spindles
can be seen in (Figure 2.9).

Figure 2.7: Typical N1 stage with
dominant theta rhythm (from per-
sonal collection)

Figure 2.8: Typical N2 stage with
K-complex and spindles

Figure 2.9: Typical N3 stage with
dominant delta rhythm

REM sleep (paradoxical sleep)

This sleep state is characterized by a brain activity close to EEG de-synchronization observed in the
W state but mixed with slower theta rhythms and specific waves called “sawtooth waves” (Figure
2.2). Although REM sleep could be identified by an experienced sleep expert only with EEG, the task
is made easier using EMG and EOG to characterize better rapid eye movements and muscle atonia
generally associated. During REM sleep, the brain is highly active (vivid dreams), and the body
undergoes various physiological changes. Indeed, heart rate and breathing become faster and more
irregular, and blood pressure and body temperature could change.
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REM sleep consists of two distinct periods: phasic REM and tonic REM. Phasic REM is charac-
terized by bursts of rapid eye movements recognizable by their phase inversion (Figure 2.10). Tonic
REM sleep comprises the same background activity without eye movements (Figure 2.11). REM sleep
is usually accompanied by muscular atonia with brief contractions visible on the EMG sensors, but
sometimes it could be missing.

Figure 2.10: Typical Phasic REM sleep Figure 2.11: Typical tonic REM sleep

Now that we’ve seen the physiology of sleep circuits, we need to understand the role of the biological
clock.

Biological clock

To briefly describe this other sleep-regulating system, we’ll say that the biological clock in the suprachi-
asmatic nucleus is the conductor of the variation of biological rhythms. Under its influence, the body’s
various functions fluctuate over 24 hours, like temperature. This is the “circadian rhythm”, partly de-
fined by the alternation of day and night. Every 24 hours or so, these activities peak and trough. These
peaks respond to a temporal structure genetically programmed by our organism. Over time, natural
selection has favored an endogenous rhythm. It synchronizes with a time close to the Earth’s rotation,
even without environmental signals (daylight, social activity, etc). This endogenous rhythmicity is
regulated by genes that underpin the functioning of the biological clock.

This clock regulates our sleep rhythm and is located in the suprachiasmatic nucleus of the hypotha-
lamus. Each person has their clock rhythmicity, and the importance of the biological clock in sleep
is linked to its favorable or unfavorable action on the conditions that promote the activation of sleep
circuits and the deactivation of wakefulness circuits. The role of the biological clock is, so to speak, to
determine the “sleep gates” by creating the optimal conditions to fall asleep (e.g., by causing a drop in
temperature). Thus, the biological clock plays a central role in the sleep-wake balance, particularly its
close link with melatonin secretion. Melatonin is an hypnogen. Its intracerebral secretion is regulated
by the biological clock and light intensity, especially blue light. All this regulation, which can vary
from one individual to another depending on the length of the clock period, is at the origin of different
chronotypes in the population, resulting in those who go to bed early, those who go to bed late, and
the “normals”.
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2.3 Sleep: From Normal Sleep to Disorders (a Categorization)

Normal sleep for adults

This Section aims to describe normal sleep in healthy adults. We won’t be talking about children’s
sleep, which has physiological peculiarities parallel with brain development.

A normal adult’s average sleep time is between 7h30 before working days and 8h30 on weekends.
The physiological variation in duration is between a minimum of 5-6h and a maximum of 9-10h. But
what makes sleep normal is also, and above all, the distribution and duration of sleep stages. The
sleep distribution or structure shown in Figure 2.4 underpin the importance ofN-REM sleep in the first
part of the night. REM sleep normally appears quantitatively more at the end. The appearance of
these sleep stages obeys an arrangement in the form of cycles, averaging 90 minutes each and bringing
together a different proportion of each stage, starting withN-REM and ending with REM (influence
of the circadian clock). On a normal night, we generally count 4 to 6 sleep cycles. At the end of a
standard 8-hour night’s sleep, its restorative effect is assured if the following quantitative parameters
are met:

1. Wakefulness during sleep generally for less than 5% of the night.

2. N1 Sleep as a transitional stage accounts for 2-5% of sleep.

3. N2 sleep represents between 45% and 55% of sleep.

4. N3 sleep accounts for 13% to 23% of sleep.

5. REM sleep accounts for 20-25% of sleep

6. Micro-arousals can occur during sleep and do not indicate an abnormality if less than 15-20 per
hour.

These values are slightly modified with age but remain stable up to 60 yo (See Figure 2.12. From
age 65-70, we could observe a progressively increasing reduction in stage N3 and a physiological
increase in stages N1 and W symbolized by the increasing time spent in Wake After Sleep Onset,
often with polyphasic sleep. Sleep in older people is, therefore, a subject in itself. All of the above
illustrate the importance of age groups in sleep studies.

Figure 2.12: Graphic evolution of sleep stages proportion for a night duration 7h45 (465 minutes). W =
SOL + WASO [107]
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Sleep disorders

Sleep disorders are categorized in a standard way in the third edition of ICSD-3 [183]. The main sleep
disorders listed are:

1. Sleep-related breathing disorders: Breathing disorders linked to sleep primarily affect nor-
mal respiration during nighttime hours. The principal issue is the recurrent interruption of
breathing, which can be either partial (hypopnea) or total (apnea), causing sleep fragmentation
and resulting in daytime consequences like heightened drowsiness and diminished cognitive func-
tions. These disorders are chiefly categorized into obstructive and central sleep apnea, based on
whether the disruption originates from obstructions in the upper airways or malfunctions within
the respiratory control center.

2. Central disorders of hypersomnolence: The symptoms are excessive daytime sleepiness
despite adequate sleep at night, often accompanied by automatic behavior and sleep attacks.
Specific questionnaires can assess the complaint, but the diagnosis must be confirmed by multiple
naps recorded during the day showing a short sleep latency (less than 8 min). This test is the
Multiple Sleep Latency Test. The emblematic disorder is narcolepsy.

3. Circadian rhythm sleep-wake disorders: It’s a mismatch between the timing of the sleep-
wake cycle and the external environment, leading to impaired daytime functioning. It is a
disorder of the biological clock, of which the most frequent are the delayed sleep-wake phase
disorder and shift work disorder.

4. Parasomnias: They correspond to behaviors or experiences during sleep. Depending on the
stage of sleep in which they appear, we will have the disorders of N-REM sleep like sleepwalking
or sleep terrors, or those appearing during REM sleep like REM sleep behavior disorder or
Nightmare disorder. Other parasomnias are described as night eating disorders or hallucinations.

5. Sleep-related movement disorders: They are characterized by abnormal movements during
sleep, such as periodic limb movement disorder and restless legs syndrome.

6. Other sleep disorders: a group of sleep disorders that do not fit into the other categories.

As this is the subject of our study, we will describe Insomnia in detail in the next Section.

2.4 Insomnia or Paradoxical Insomnia – Is an Objective Definition
of Insomnia Possible?

In this Section, we place ParI in the global context of Insomnia and the evolution of diagnostic criteria
since the 1970s. At the same time, the tools, especially questionnaires or objective measures, evolved.
We think it is important first to develop the general Insomnia diagnostic context and the assessment
tools before describing ParI diagnostic and definitions. In the Subsection 2.4.1, we will evaluate the
main tools used to assess Insomnia, some of which were used in our sample are marked with a † and
will benefit from an extensive description.

2.4.1 A historical perspective

Unlike many other medical disorders, Insomnia has been described and classified very differently across
time; i.e., the existing definition of Insomnia can already be considered unstable. Indeed, in addition
to the ICSD-3, Insomnia is also described in the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5 [8]) and the International Statistical Classification of Diseases and related health problems
(ICD-11 [156]). These last two classifications are aligned with the diagnostic criteria proposed in the
ICSD-3 that we will retain as the primary reference. However, this has not always been the case.
This harmonization of classifications is the result of a long process that began with the publication of
the first classification in 1979, the Diagnostic Classification of Sleep and Arousal Disorders (DCSAD),
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which was created in the United States under the auspices of the Association of Sleep Disorders
Centers and the Association for the Psychophysiological Study of Sleep. Remembering the history of
the various classifications is crucial, as it aids in grasping the intricate nature of Insomnia and the
breadth of what it encompasses..

Although we have had many definitions, one can argue that now we have too few (from 16 subtypes
to only 2), as we still have not arrived at an objective definition of Insomnia or its sub-types, in
particular, ParI (our main point of study in this work), whereas in everyday clinical practice, we can
continue to observe clear evidence for subtypes. This is a key motivation for our work. See, Table 2.1.

ICSD-2

1. Adjustment sleep disorders*
2. Psycho-physiological Insomnia
3. Paradoxical Insomnia (ParI) **
4. Idiopathic Insomnia
5. Insomnia due to mental disorder
6. Behavioral Insomnia of Childhood
7. Insomnia due to a medical condition
8. Insomnia due to a drug or substance
9. Non Organic Insomnia
10. Organic Insomnia

Table 2.1: ICSD-2:Different subtypes of Insomnia
described in the second edition of the ICSD (2005)
*acute Insomnia **formerly nSSM

ICSD-3

1. Chronic Insomnia disorder
2. Short-term Insomnia disorder
3. Other Insomnia disorder
4. Isolated symptoms-normal variants
5. Excessive time in bed
6. Short sleeper

Table 2.2: ICSD-3: Different subtypes of Insomnia
described in the third edition of the ICSD (2014)

This simple description is a sufficient reference now for the diagnosis (of CID). Indeed,
it is even mentioned in ICSD-3 that “the degree of sleep disturbance required to assign
a chronic Insomnia disorder diagnosis is somewhat arbitrary.”

One may even wonder how 35 years after the first classification of sleep disorders [190]
in which numerous Insomnia sub-types are mentioned, there are only these minimalist
diagnostic criteria to explain this disorder. Indeed, with the constant progress of medicine for
a disorder affecting between 10 and 30 percent of the population depending on its intensity, how is it
possible not to be able to define clear subgroups of Insomniacs that could lead to a better understanding
and, therefore, better management? This is all the more difficult to understand given that this
simplification of Insomnia categorization has occurred simultaneously as an almost exponential increase
in publications on the subject (See Figure 1.3).

Supporting our point, the authors of ICSD-3 stated that distinguishing these subtypes is challeng-
ing. This is the case because the present definitions fall short of providing the scientific community
with a solid basis for decision-making, and the existing identification methods are not consistently
reliable.[183].

However, this claim seems to be more of a concession of the scientific community’s inability to
decode the intricate nature of studies on this topic, primarily due to the absence of clear diagnostic
criteria. This lack of precision since the earliest classifications has allowed for including Insomnia
patients under varying criteria in different studies. Consequently, the surge in publications since
the 1970s has muddled the understanding of this ubiquitous disorder rather than clarifying it. The
increasing amount of data on the subject results in more confusion, creating a cyclic dilemma akin to
a snake biting its tail.

We argue that there is an objective truth (definition) for ParI, and we set out to gather evidence
towards defining it.

Drawing Parallels with Hypersomnia: The Complexity of Classifying Insomnia Subtypes

Our thesis choice, the study of subtypes of a disorder that lacks an official classification, demands a
robust defense. To highlight our perspective, we draw an analogy with Hypersomnia, a disorder at
the opposite spectrum, also mentioned in ICSD-3 [183].

Unlike Insomnia, Hypersomnia, particularly type 1 Narcolepsy, has a distinct biomarker – the
generalized absence of hypocretin peptides in human narcoleptic brains [166]. This condition serves as
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a model of the interplay between the immune system, the nervous system, and the sleep-wake system
[115]. As a result, it presents a model with specific biological and somnological criteria, marking it
as a “primary disorder” or “intrinsic disorder” as outlined in the ICSD-3’s Central Disorders of Hy-
persomnolence chapter. The diagnosis is precise, with objective sleep measures and clear thresholds
for determining the presence of the disorder. However, upon closer examination and comparing the
broader classification of ”Central Disorders” (disorders of neurological origin), we could find individu-
alized subtypes of Hypersomnia like Idiopathic Hypersomnia (IH), but also Hypersomnia “secondary
to”, for example, to mental disorders. This up-to-date classification can be seen in Table2.4. But
the point here is that this Hypersomnia subtyping mirrors the last classification of Insomnia in the
ICSD-2, now removed (see Table 2.3). So, all these subtypes distinctions still present in Hypersomnia
would have disappeared for Insomnia for insufficient specificity in the diagnostic criteria previously
used, unlike the ones used in Hypersomnia.

ICSD-2: Insomnia categorization
Psycho-physiological Insomnia
Paradoxical Insomnia (ParI) *
Idiopathic Insomnia
Insomnia due to mental disorder
Insomnia due to a medical condition
Insomnia due to a drug or substance
Non Organic Insomnia
Organic Insomnia
Isolated Symptoms and Normal Variants
Short Sleeper

Table 2.3: ICSD-2:Differents Subtypes of Insomnia
described in the second edition of the ICSD (2005)
*formerly nSSM

ICSD-3: Hypersomnia categorization
1.Narcolepsy Type 1
2.Narcolepsy Type 2
3.Idiopathic Hypersomnia
4.Kleine-Levin Syndrome
Hypersomnia Associated with PD
Hypersomnia Due to an MD
Hypersomnia Due to molecules
Insufficient Sleep Syndrome
Isolated Symptoms and Normal Variants
Long Sleeper

Table 2.4: ICSD-3:Different Subtypes of Hypersom-
nia described in the third edition of the ICSD (2014),
MD = Medical disorder, PD = Psychiatric Disorder

However, when we look closely at the diagnostic criteria for Idiopathic Hypersomnia, for example,
it is a clear individualized subtype, exactly as Paradoxical Insomnia in the previous classification).
So, the reason for keeping Idiopathic Hypersomnia is the presence of objective criteria clearly defined,
especially the results obtained in the Multiple Sleep Latency Test (MSLT). This test is used as the
main physiological proof of sleepiness [34]. This criteria to be fulfilled require the presence of the two
following objective sub-criteria:

1. The MSLT shows a mean sleep latency of ≤ 8 minutes.

2. Total 24-hour sleep time is≥ 660 minutes (typically 12–14 hours) on 24-hour polysomnographic
monitoring (performed after correction of chronic sleep deprivation) or by wrist actigraphy in
association with a sleep log (averaged over at least seven days with unrestricted sleep.

This criterion gives the feeling of a clear cut-off to validate or not the subjective complaint of
sleepiness described by the patient. But, it is mentioned in note 4 under the diagnostic criteria:
Occasionally, patients fulfilling other criteria may have an MSLT mean sleep latency longer than 8
minutes and total 24-hour sleep time shorter than 660 minutes. Clinical judgment should be
used in deciding if these patients should be considered to have idiopathic Hypersomnia
(IH). Great caution should be exercised to exclude other conditions that might mimic the disorder.
A repeat MSLT at a later date is advisable if the clinical suspicion for IH remains high[183]. In the
same classification, it’s mentioned that no consistent precipitating factor has been identified, that the
prevalence is unknown, and that the pathophysiology of IH is unknown.

Put together; we have a disorder (Idiopathic Hypersomnia) whose origin we do not know, which
has precise objective diagnostic criteria but can be modified according to clinical judgment.
This is exactly the criticism leveled at Insomnia subtypes, especially Paradoxical Insomnia. Therefore,
we argue we should not withdraw a diagnostic categorization (of Insomnia) that has been
clinically observed for decades because we still do not have the explanation. This is the
argument that is central to the subject of this thesis.
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Figure 2.13: Pubmed research for Chronic Insomnia in April 2023

Related work trying to find biomarker of Insomnia subtypes

The main cause of seeing Insomnia removed from the official classification is arguably due to lack of
objective biomarkers. Now, we look at other work that has tried identifying such biomarkers with
modern data-driven approaches.

As we saw, half of the publications on Insomnia have occurred since 2014, with many proposing
either new diagnostic criteria or new approaches, making it difficult to compare different studies.
One of the difficulties, in particular, concerns the definition of Insomnia diagnoses, the comparabil-
ity of groups, and associated or non-associated comorbidities. For Machine-Learning and Big Data
purposes, the biggest database to date with physiological and psycho-social is the UK Biobank with
500000 subjects [200]. However, concerning full physiological sleep data crossed with a psychological
evaluation, the biggest databases are less than 1000 subjects, even to find subgroups of CID[19]. The
biggest sample using several thousand subjects with online questionnaires didn’t show sufficiently high
sensitivity and specificity, especially without physiological data [168].

One study empirically derives and evaluates potential subtypes of CID through cluster analysis
from Polysomnography recording [141]. They performed a cluster analysis using Euclidean distance
and Ward’s method on a population. But they chose priory distinct clustering variables on theoretical
grounds and previous research on the objective sleep parameters, including TST, SOL, and WASO.
Other possible cluster solutions were examined against external variables associated with CID for
validity, like neurocognitive performance, sleep-onset measures of quantitative EEG, and heart rate
variability. The studies concerned 100 volunteers (61 females, mean age 41.4 SD 11.8) with the CID
diagnostic. They found two distinct clusters: Insomnia with Normal Sleep Duration (I-NSD) and
Insomnia with Short Sleep Duration (I-SSD). Surprisingly, they found no differences in subjective
sleepiness between the two groups measured by the Epworth Sleepiness Scale as a possible effect of
sleep deprivation. The study by [48] examined empirically derived symptom cluster profiles in 175 in-
dividuals (63% female) with CID based on scores on validated questionnaires (Insomnia Severity Index
(ISI)), Glasgow Sleep Effort Scale, Fatigue Severity Scale, Beliefs and Attitudes about Sleep, ESS and
Pre-Sleep Arousal Scale). They found three symptom cluster profiles: “High Subjective Wakefulness”
(HSW), “Mild Insomnia” (MI), and “Insomnia-Related Distress” (IRD). However the population is a
mix of psychophysiological Insomnia and Insomnia disorder comorbid with Obstructive Sleep Apnea.
Thus, we could observe a bias through the mean and Apnea-hypopnea index, respectively 29.2 (±
8.8) and 15.2 (± 21.6). This means a weight close to obesity and moderate sleep apnea syndrome.
They showed that the MI type corresponds to the patients having more apnea; the first would be
related to a wrong perception of sleep, and the 3rd the most related to the worries before sleeping.

Other authors have attempted to work on much larger patient cohorts using an online platform
and linked database that extensively surveys sleep, personality, and affect traits, life events, and
health conditions. A study [19] involving 4322 subjects and the inclusion criteria were the completion
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at their convenience of at least one of 34 available questionnaires assessing six dimensions with 523
items in total (Sleep(5), Life history(2), Fatigue and arousal(7), Personality traits (9), Mood (8) and
Happiness(2)), a demographic questionnaire, and an assessment of their Insomnia Severity Index (ISI).
On the only basis of ISI score > 10, 2224 (51%) participants fulfilled the probable Insomnia disorder
criterion. The authors mentioned that they confirmed the validity of this threshold in a subsample
of 244 subjects. They used a model-based unsupervised (see definition in B.1.2) clustering technique
named latent class analysis and identified five subtypes (see Figure B.9 in Appendix). The subtypes
are mainly driven by the personality, mood, and happiness questionnaires with no influence on ESS,
the chronotype, or the family history of Insomnia. The researchers validated their five-subtype model
in a nonoverlapping sample and found exceptional subtype stability after a mean follow-up of 4.8
years, especially for subtype 1, highly influenced by negative affect, childhood trauma, and life events
(80% of women). For the follow-up, they used 207 items only (after colinearity exclusion and LASSO
regularization (see the definition in B.1.2). They also investigated the clinical relevance of these
subtypes for the developmental trajectories of sleep complaints, current comorbidities, depression
risk, and response to benzodiazepine intake, as well as an EEG biomarker and the effectiveness of
cognitive-behavioral therapy for Insomnia for two of the subtypes. For the response to benzodiazepine
intake, they found a clinical relevance of using those subtypes by showing differential subjectively
experienced effects (112 subjects). The EEG biomarker was an Auditory event-related potential for
classic tones and deviant tones recorded during an oddball task, but they did not find any significant
control subtype difference (n=16 for subtype 2, n=13 for subtype 4, n=31 for the control group). For
CBT-I, again insufficient data were available for subtypes 1, 3, and 5; only 43 subjects subtype 2
(mean age 50·8±12·9 years, 88% females) and 25 subtypes 4 (mean age 53·2±9·8 years, 96% females)
could participate. They couldn’t show a significant difference but a slight difference in the treatment
response between these two subtypes regarding the decrease in ISI score. In the end, although this
study has the merit of crossing multiple data on Insomniac profiles with many subjects, it seems there
are several limitations to be accepted by the community. First, the subjects were recruited online,
presenting a basic bias regarding profiles. Secondly, there is no standardization of the questionnaires
since only one out of 34 is required to be included in the study. There is no objective assessment
of sleep. The EEG assessment was performed on a small fraction of the patients and only on two
subgroups of five, as well as the online CBT-I. Thus, this study confirms the need for standardization
and objectification of subgroups of Insomniacs, showing that this could allow the evaluation of the
response to treatment, but this remains to be determined. It opens the way to publications using ML
tools like LASSO to select the most significant parameters. Finally, this study also shows that it can
be easy to set up an online questionnaire but is much more difficult to follow and evaluate the subjects
objectively since only 0.01% of the sample could have an EEG and 0.03% an CBT-I.

The purpose of this long summary of the history of Insomnia classification from 1979 to 2019 is to
show the complexity of the concept of chronic Insomnia, the complexity of its classification, and the
difficulty of harmonizing the results of the various studies published over the last 40 years.

Before digging into the ParI concept and the main studies that have attempted to determine what
ParI is, it is worth describing the tools used in most studies to understand better their scope and the
features used.

Assessment of Insomnia

Apart from research, in clinical practice, the most important aspect of sleep assessment is the clinical
interview and examination, looking for pathognomonic signs and comorbidity that could explain sleep
disorders. If there is a sleep problem, that’s when you can schedule tests. Although the ICSD-3
specifies that the diagnosis of Insomnia is clinical, it also states that tools to objectify the Insomniac’s
complaint are necessary in complex or resistant cases. In our practice, this is generally always the case.
In Section 2.1, we have already seen the importance of recording brainwaves to characterize sleep, but
how sleep can be objectively and subjectively assessed has been the subject of research, resulting in
numerous tools available for the clinician and the researcher. We’ll take a look at the main ways of
assessing sleep. The tools used in our different studies are marked with a † and won’t have additional
descriptions to avoid further repetitions. In the same spirit, the features extracted from these tools,
which we will use to build our various datasets, are summarized in Tables in the Appendix B.3 for
each type of data collected and marked with a ‡
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First, Polysomnography† is the gold standard for an extensive sleep evaluation. In clinical prac-
tice, we add sleep-specific sensors to the EEG, like oxygen, respiration, and leg movement sensors, to
evaluate respiratory and neurological sleep disorders, usually coupled with video and sound recording
(see Figure B.8). However, it is a rather invasive examination, generally done in a sleep laboratory
under the control of trained personnel. It is quite possible to do it at home, which is generally desirable
when evaluating sleep quality, but at the cost of artifacts. When recording at home, intervening if an
electrode becomes partially detached is impossible. There can also be electromagnetic artifacts from
electronic devices, transportation, or sweat if the temperature is poorly regulated. The particularity
of a PSG compared to a simple EEG is that the placement of the electrodes requires expertise so that
it can record a physiological signal correctly for several hours. So, the different sleep states can be
recorded and identified directly by electrodes collecting the electrical activity produced by the brain.
However, as the electric signal must be conducted through the meninges (the three membranes that
cover and protect the brain and spinal cord), the skull, and the skin, a strict protocol must be followed
to obtain a good signal. In the case of sleep recordings, the electrodes must remain in place for an
average of ten hours, cleaning and rubbing the skin, applying a conductive paste, and maintaining the
electrodes with a strong glue to hope to have a good quality signal throughout the night. The ideal is
to have an impedance of 100 Kohms and, in any case, lower than 5 Kohms for each electrode as the
reflection of a good signal-to-noise ratio.

The international rules state that the EEG signal must be recorded on the scalp with electrodes
located in the Frontal (F), Central (C), and Occipital (O) regions, usually F3, F4, C3, C4, O1, and
O2. By convention, even numbers are on the right, and odd numbers are on the left (See Figures B.5,
B.7 and B.6 in Appendix B.4). The choice of this setup is justified by the need to cover the whole
scalp with a minimum of electrodes, avoid artifacts (Electrocardiogram, movement), and also because
some EEG patterns are more specific to a given region.

We can see in Figures 2.14 and 2.15 the technical difficulties of a polysomnographic recording and
an example of an artifact when an electrode becomes partially detached. In general, the electrodes
must be completely detached to be unable to interpret the different stages of sleep. Still, rescheduling
patients in case of a bad recording is part of the usual practice. When a sleep expert has manually
scored a sleep recording, he can print the synthesis as a sleep report with the primary data on the
patient’s sleep, such as the total time of sleep, the number of awakenings, the percentages of each stage,
etc. Although EEG is usually sufficient for labeling the different stages of sleep, the findings on REM
sleep and its peculiarities, such as rapid eye movements and muscle atonia have led to the addition of
muscle and eye sensors to reach better accuracy. As we used this test, a detailed description of the
features is shown in Appendix B.3 in Table B.4‡.

• Actigraphy† is used to evaluate sleep over a longer period. It’s a body-worn activity moni-
toring device used to document physical movement associated with applications in physiological
monitoring. The device is intended to monitor body movements during daily living and sleep.
Numerous studies have shown a good correlation with PSG. These devices allow a rough but
relatively accurate evaluation of TST, Time in Bed (TIB), and SOL with a sensitivity of 0.9 and
an accuracy of 0.8 [111]. For WASO, actigraphy tends to under-evaluate the time spent awake
[122, 111]. Depending on the type of actigraph used, we could extract different information
about the activity level or the inter-day stability. As we used this test, a detailed description of
the features is shown in Appendix B.3 in Table B.5‡.

For more accurate results and better assessment, a sleep diary† is recommended, theoretically
providing information on sleep times and any awakenings during the night. In addition, the sleep
diary provides information on the patient’s life during the observation period. It’s a tool for
day-to-day self-assessment of sleep perception over several days, usually one or two weeks. The
patient annotates on a sleep log the primary information about their sleep, especially Bedtime,
time in bed (TIB), TST, SOL, and WASO. Researchers have tested the ability of different
thresholds of these quantitative parameters to predict Insomnia. SOL and WASO are the most
used parameters to diagnose Insomnia.

However, even before testing, numerous questionnaires have been developed thanks to the expe-
rience acquired by sleep researchers in the field of sleep disorders. We won’t describe them all
here, but only those most common that will be used in this thesis. The different questionnaires
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Figure 2.14: Polysomnography

Figure 2.15: Noise secondary to partial detachment of the
M2 electrode
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could be general to assess sleeper typologies, global sleep normality, or specific symptoms like
sleepiness. They could be more specific to understand disorders like sleep apnea syndrome or
Restless Legs Syndrome. Additional questionnaires concerning frequent comorbidities associ-
ated with sleep disorders are used in clinical practice, such as personality, depression, or anxiety
questionnaires. The benefits of all these validated questionnaires are to target the patient better,
assess clinical and therapeutic progress, and compare studies with each other.

Transversal sleep questionnaires

• Describing extensively those questionnaires is useful to understand the meaning of the main
features used in this work.

• Horne and Ostberg questionnaire [89], also known as the Morningness-Eveningness Questionnaire†.
It’s a self-assessment questionnaire designed to measure “morningness” or “eveningness”, which
is the preference for morning or evening activities.

• The Pittsburgh Sleep Quality Index Questionnaire is a subjective sleep self-report questionnaire
over a one-month interval. The measure consists of seven items to calculate an overall score as
an index of sleep quality and a screening of the major sleep disorder [27].

• The SLEEP-50 is designed to detect common sleep disorders in the general population. It could
detect five sleep disorders: apnea, narcolepsy, restless legs/periodic limb movement disorder,
circadian rhythm disorder, and sleepwalking [194].

• The ESS† [95] asks the respondent to rate their usual chances of dozing off or falling asleep.
It’s widely used to validate improvement in sleepiness. The higher the ESS score, the higher the
average sleep propensity in daily life. A score of 11 or higher is usually significant for sleepiness.
A study compared the ESS score between Insomniacs and the general population on more than
700 subjects and found a mean score of 9,4 (±4.65) for CID vs 8,05 (±3.86) [181].

Insomnia questionnaires

• The Insomnia Severity Index (ISI)† [65], is internationally used in Insomnia research for
diagnostic, follow-up, and treatment outcome [10]. It is a 7-point self-report instrument com-
monly used in Insomnia research and clinics. A score of 10 or higher is very specific and sensitive
in a community sample. In the clinical sample of Insomniacs, the results vary between studies,
but the score is generally between 17.5 and 19 (SD±4) [41, 100]

• Dysfunctional Beliefs and Attitudes about Sleep Scale† [147] was designed to evaluate
the belief about sleep and is also widely used in Insomnia assessment. It was designed to measure
sleep-related cognitions. It consists of 30 questions intended to measure five dimensions:

1. Misconceptions about the causes of Insomnia

2. Misattributions or amplification of its consequences

3. Unrealistic expectations

4. Control, and predictability of sleep

5. Dysfunctional beliefs about sleep-promoting practices.

There is no clear cut-off score [147]. Other scales developed in Insomnia assessment were designed
to evaluate a hyperarousal specific to bedtime. One is the Pre-Sleep Arousal Scale (PSAS)
[205] created to measure somatic and cognitive arousal in the period that is right before sleep.
This scale is highly correlated with stress measure [204]. A study shows that cognitive and
physiological arousal is linked to sleep perception [196]. But in another study, pre-sleep worry
(PSAS cognitive arousal) was associated with interpretational bias but not sleep misperception
[72]. PSAS is correlated with DBAS and STAI in the 0.4 range [204, 72]. Another study
shows that PSAS, ISI, and DBAS increased in the same proportion between normal sleepers and
Insomniac patients [155].

Psychological questionnaires
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• Minnesota Multiphasic Personality Inventory 2 (MMPI2)† [26]is a test widely used for
general psychological assessment, as well as a treatment outcome predictor [1] and as psycho-
metric evaluation in Insomnia [99]. It is a psychological test used to measure personality traits
and psychopathology. Subjects are asked 567 true-or-false questions designed to detect various
psychological problems. It also includes validity scales to determine whether a subject is willing
to exaggerate or mask his psychological disorders. 120 scales and subscales are built from the
initial questionnaire. The scales are built using T-score calculation. The T-score is derived from
the raw scores obtained on the MMPI scales. It is calculated by converting the raw score into
a standard score with a mean of 50 and a standard deviation of 10. The T-score allows for
easy comparison of an individual’s scores to a large normative sample. A T score above 70 is
significant for a given scale, and the limit is between 65 and 70. As we used this test, a detailed
description of the features is shown in Appendix B.3 in Table B.2‡.

• Beck Depression Inventory-Second Edition (BDI2)†is also widely used [14]. It contains
21 items that measure the severity of depressive symptomatology on a three-point scale (0 =
absence of symptoms, 3 = most severe). Initially standardized for monitoring depression, the
BDI2 is an effective psychometric instrument with standard cutoff scores to categorize depressive
disorders. The total scores could be between 0 and 63, with proposals for increased severity:14–19
for mild, 20-28 for moderate” and 29–63 for severe. The cutoff is not homogeneous, but a score
of 17 seems appropriate for significative mild depression with good specificity and sensitivity
(81% and 79%) [207], especially in the Insomniac population [33].

• State-Trait Anxiety Inventory Form (STAI-F)† is also widely used in assessing anxiety as
a state (present) or a trait (usual feeling)). The two forms include 20 self-descriptive statements
on a four-point scale (1 = not at all, 4 = very much so) [193]. The score that differentiates
significative anxiety in the Insomniac population seems to be around 47 for STAI-T and 55 for
STAI-S when a score of 40.22 and 51 is not associated with significant stress or anxiety [119]

2.4.2 Paradoxical Insomnia: numerous propositions, low specificity

The last official definition of ParI could be found in the last ICSD-3 ([183]). ParI corresponds to under-
estimating real sleep time measured by PSG, sometimes with sub-estimates of sleep far from objective
reality. The ICSD3 now recognizes that this characteristic is shared by most patients suffering from
Insomnia, which tend to underestimate sleep duration and overestimate sleep latency and awakenings,
unlike good sleepers. This subjective-objective mismatch is considered secondary to physiological
hyperarousal and could be considered one of the main characteristics of Insomnia and no longer a
subtype of Insomnia. There is no quantitative definition. This modest mention in the ICSD-3 should
be seen in the context of the numerous publications trying to define it until recently. Indeed, ParI
is perhaps the best example of the inability of the scientific community to harmonize definitions and
diagnostic criteria to describe the same phenomenon until it disappears, drowned out by the diversity
of definitions used. Apart from the fact that this disorder has changed its name greatly in the last
few decades, it has been the subject of hundreds of publications purporting to study the populations
concerned but with rarely identical definitions. In other words, to take a trivial example, it is like
trying to categorize and understand obesity by systematically changing the definition and calculation
of the body mass index. We will try to understand this paradox in many ways by first reviewing the
evolution of the different classifications before reporting all the meaningful studies on the subject until
2023.

History of the definition

We will describe the history of this disorder by referring chronologically to the various classifications
whose chronological appearance corresponds to the numbering below.

1. The first mention of this subtype appeared officially in 1979 in the Diagnostic Classification of
Sleep and Arousal Disorders (first edition) [190] under the heading “Disorders of Initiating and
Maintaining Sleep (DIMS or Insomnias) Complaint without Objective Findings”. This name
has the merit of being a definition in itself. The subjective nature of Insomnia is already at the
heart of this definition with an idea of the acceptable thresholds that can be used to define a
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“good objective sleep”, namely a sleep latency (SL) of fewer than 20 minutes and a TST of more
than 6.5 hours. One aspect of the diagnosis at the time concerns the honesty of the complaint,
which is associated with the notion of “lack of psychopathology”. It is even made a warning
about the secondary benefits of this complaint in some cases It is necessary to separate the
subjective DIMS patients from malingerers who claim they sleep poorly to obtain drugs and for
other reasons. Therefore, from its first classification, this subtype already raises controversial
questions. The adjective “paradoxical” appears in the text along with “perplexing” condition
but not in the diagnosis. This condition is evaluated at 25% of all Insomnia complaints. This
term emphasized the declarative aspect of this subtype of Insomnia compared to an objective
examination such as PSG.

2. The term was then changed to nSSM in the first classification of sleep disorders in 1990. However,
the definition is globally the same. Thus, the criteria include a complaint of Insomnia with sleep
of normal duration and quality on PSG examination (PSG demonstrates a normal sleep pattern,
with sleep latencies of less than 15 to 20 minutes, and sleep durations greater than 6,5 hours),
without objective sleepiness, and without another disorder that could explain it.

3. Then, finally, this subtype took the name of ParI in the ICSD-2 in 2005, and the objective PSG
parameters disappeared from the Diagnostic criteria. The latest officially recognized diagnostic
categorization is presented in table 2.5

ICSD-2 Paradoxical Insomnia
A Patient’s symptoms meet the criteria for Insomnia
B The Insomnia is present for at least one month
C One or more of the following criteria apply:
i: The patient reports a chronic pattern of little or no sleep most nights;
with rare nights during which a relatively normal amount of sleep is obtained.;
ii: Sleep log data during one or more weeks of monitoring shows an average
sleep time below the published age-adjusted normative value, often with no
Sleep at all indicated for several nights per week and no nap;
iii The patient shows a consistently marked mismatch between objective findings
from PSG or actigraphy and subjective sleep estimates derived from self-report;
D At least one of the following is observed:
i: The patient reports near-constant awareness of environmental stimuli
throughout most nights;
ii:The patient reports a pattern of conscious thoughts or rumination
throughout most nights.
E The daytime impairment reported is consistent with that reported by other
insomnia subtypes, but it is much less severe than expected given the extreme
level of sleep deprivation reported.
F No other disorders explain these symptoms better.

Table 2.5: ICSD-2 diagnostic criteria: All the capitalized criteria are mandatory to diagnose ParI

Nowadays, the community remains divided on this topic, with one side believing that the un-
derestimation of sleep duration is a characteristic of all Insomniac patients, which led to its removal
from the latest classification of sleep disorders. The other part, of which we are part, believes it is a
clinical entity in its own right, for which the objective criteria for detecting and explaining it are not
yet known. But diagnosing and explaining are two distinct issues that are sometimes mixed in some
papers.

Before reviewing the main studies that have attempted to determine what ParIis, it is worth
describing the tools used in most studies to better understand their scope and the features used.

From the extensive work of [35], we added new definitions published since then, extracted from
44 articles giving a quantification of ParI. This relative freedom of interpretation of the diagnostic
criteria regarding the intensity of poor sleep perception has opened the way to a kind of competition
between research teams to find the best diagnostic criterion supposed to define ParI, this is all the
more true since several hypotheses have not yet been determined such as

1. Misperception of sleep as wakefulness;
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2. Anxiety and selective attention to sleep-related threats;

3. Presence of brief awakenings;

4. Local arousal and local sleep [35].

We will describe the different definitions found in this study with another published since then
with the terminology used in this review. Then, all reproducible definitions from 1979 to 2019 were
labeled with a different alphabet letter for each different one [35]. For articles published later, we use
the same procedure as that article by adding letters to designate them (we just added the Z). It should
be noted that this alphabetical classification is not chronological since several articles published at
different dates may refer to a particular definition. We can see in Table 2.6 the formula used and the
studied sample’s prevalence by publication.

2.4.3 Attempts to find biomarkers of ParI

Attempts to find specific biomarkers of ParI have mainly focused on analyzing brain waves during
sleep to find proof of brain hyperarousability.

The most promising attempts at explaining ParI come from EEG spectral analysis trying to find
some brain signature related to sleep misperception. Concerning the EEG spectral analyses, many
studies have been interested in this aspect with the hypothesis that Insomnia could correspond to a
cortical hyperarousal, which would be translated by a decrease in the power of the spectral waves of low
frequencies (Delta, Theta) to the benefit of high-frequency waves of Beta type. This has been shown
between chronic Insomniacs (not specifically ParI) and control subjects [139, 163]. However, studies
have focused on the difference between Insomniacs with poor sleep perception (ParI or Subjective In-
somnia) and other primary Insomniacs (Objective Insomnia or Psychophysiological Insomnia). One of
them, [108], which corresponds to the J formula (see Table 2.6, evaluated the spectral analysis between
subjective and objective Insomnia and found a link between the degree of objective-subjective sleep
discrepancy and N-REM EEG relative delta activity, and an association with elevated high-frequency
relative activity. Greater Delta relative power was associated with higher sleep-quality ratings, and
greater relative N-REM alpha power was predictive of less TST. This study also evaluated these dif-
ferences according to scaled cutoffs for the TST and the percentage of bad perception. Paradoxically,
they found a loss of this difference for Delta rhythms when the percent underestimation of sleep is
below 10%, which seems counter-intuitive if it is a marker of hyperarousability; in fact, one would
expect an increase. It is even worse for beta rhythms since there is no significant relationship with
TST underestimation. In the study [94], with the base for Formula Q, they compared a control group
to ParI and PsyI on two nights. They found, on the totality of the analyzed sleep period, absolute
delta activity at C3 and P3 in ParI compared with PsyI. They didn’t find significant results in the
Beta activity or gamma activity. But, they found higher sigma activity at P3 in N-REM sleep. It’s
interesting because it’s the same frequency as spindles, so spindles could be of interest as a marker
of ParI (this point will be discussed in Section 4.2). Also, absolute alpha activity was higher in ParI
than PsyI at P3. However, the differences between groups in absolute did not translate in the sleep
macro-structure (similar in duration and time spent in all sleep stages). The last significant study
on the subject [117], which corresponds to formula S, selected a subgroup of ParI subjects with an
underestimation of more than 40% compared to the norm in a cohort of 2092 participants. It should
be noted that the authors use the term underestimator and not ParI, although they have a higher
score on the PSQI (Pittsburgh Sleep Quality Index) scale and the DFA questionnaire (Difficulties
Falling Asleep in < 30 minutes) and on the FNA questionnaire (Frequency of Nocturnal Awakenings).
They found, with EEG acquired with a 256-channel system, that individuals who underestimate their
total sleep time display a more ‘wake-like’, activated EEG (higher relative power in the beta band
in central regions in N-REM sleep) and lower relative power in the delta band over the right frontal
electrode in both N-REM sleep (N2-N3 combined and N2) and REM sleep, while opposite changes
are observed in REM sleep in subjects who overestimate their sleep time. The authors suggested that
Insomnia patients may correctly perceive subtle shifts toward wake-like brain activity. At the same
time, they didn’t find a higher number of scorable arousal than normal sleepers. Therefore, in the
end, the results are contradictory according to the studies and the definitions, and the samples remain
relatively small. It is, therefore, still difficult to explain or predict the intensity of ParI according to
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23 different definitions of ParI published with sample prevalence (Prev)
Name Formula Calcul Prev N Ref

A-1N sSOL/oSOL > 1.5 60% 29 1979 [22]

B-3N
oSE > 90% AND

oN2SL < 30 min
NA 16 1985 [195]

C-2N
sSOL < 30 min

AND oSE > 87%
50% 16 1989 [109]

D-3N

+7acti

oSE > 85% AND

oSOL < 40
22% 36 1992 [85]

E-2N*3
oSE >90% AND

oTST-sTST >=60 min
33% 21 1992 [180]

F
oSE > 80% AND (sSOL−oSOL)/oSOL > 0.2

AND (oTST-sTST)/oTST>=0.2
25% 28 1995 [138]

G-2N

sWASO >40 min AND sSOL >45 minAND oSOL

<30min AND oSOL <30minAND oSE >90%

AND oSE/sSE >2 AND oSOL >20 min

NA 18 1997 [21]

H sSOL/oN2SL >1.5 50% 18 1997 [55]

J
oTST >390 min AND oSE >85% AND

sTST <390 min (at home)
25% 57 2002 [177]

K
oTST >390 min AND oSOL <30 min AND

oTST-sTST >120 min AND sSOL/oSOL >120%
NA 20 2012 [160]

L oTST-sTST >120 min NA 159 2010 [131]

L2 oTST-sTST >=60 min NA 142 2011 [62]

M
(oTST-sTST)/oTST >= 0.9

AND oTST > 120 min
17% 159 2010 [131]

N oSE > 85% 45% 205 2011 [62]

0 oTST >360 min 55% 444 2010 [61]

P
oTST >360 min AND oSE >85% AND

oTST-sTST >60 min OR sSE-oSE >=15%
36% 112 2010 [103]

Q-3N

oTST >380 min OR oSE >= 80% AND

sSOL−oSOL >= 60 min OR oTST-sTST

>= 60 min OR oSE-sSE >= 15% 3n

NA 87 2013 [94]

R
oTST >390 min AND oSE >= 85% AND

sSE-oSE >= 15% AND oTST-sTST >= 60 min 4n
NA 58 2013 [11]

S (sTST/oTST) * 100 < 58.8% NA NA 1979 [195]

T oTST >= 390 min AND oSE >= 85% 26% 250 2015 [144]

U sSOL−oSOL (no cut-off) NA 32 2015 [102]

V

300 min <oTST <600 min + oSOL <30 min + 50 min <

REML <100 min + 55% <N1 + N2 <60% + 15% <N3 <25% +

15% <REM <25% + WASO <5% TST OR <30 wake ep

52% 255 2018 [210]

Z
oSOL ≤ 30 min AND WASO ≤ 30 min

AND TST ≥ 360 min
18% 335 2020 [3]

Table 2.6: Main formulas proposed across publications. Each letter corresponds to a specific calculation explained in
the ”Formula Calcul” column. The prevalence, when available in the paper, is provided. N corresponds to the number
of subjects in each study, and N corresponds to the number of sleep laboratory night recordings

the spectral analysis; good quality studies on many subjects with a homogeneous definition would be
necessary.

However, all studies investigating sigma rhythms (11-14 Hz) have increased ParI. This frequency
band corresponds to the frequency of spindles. Studies have specifically addressed this issue. In 2016,
[152] compared ParI, PsyI, and Normal Sleeper. They used an algorithm for spindle detection [143].
They found that the duration of sleep spindles was shorter for ParI (mean shorter than good sleepers
but not from PSY-I). Other characteristics were not significantly different. But surprisingly, in these
studies, the subjects labeled PsyI had a longer TST than good sleepers and ParI, which is the opposite
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of most studies on ParI. Moreover, the validity of the spindles detection algorithm is not discussed, nor
is the formula validity. In 2020, a group [3] used spindles analysis and ML tools to evaluate chronic
Insomnia and ParI. This study is the reference for the Z formula. They studied 288 CID patients
(59 ParI). The different PSG features (hypnogram, EEG spectrum, and sleep microstructure) were
extracted (slow waves, spindles). To detect slow waves and spindles, the algorithm is not mentioned.
They used supervised (see definition in B.1.2) algorithms to differentiate the patients. They found that
sleep spindles have reduced amplitude and increased frequency and duration in all Insomnia patients
but no specificity concerning ParI. A more recent study studied spindles and personality traits in ParI
compared to Healthy Subjects. The formula used is not clear. All subjects corresponding to three
different definitions were included (at least one of the following equations should be met: E, L2, or
M). The analysis of sleep spindles was conducted only onN-REM 2 sleep stages; artifact-free-epochs
were selected at first and the last sleep cycle of the night on C3 and F4. The detection was made
by a semi-automatic algorithm (not described) and revised by a Sleep Expert. They didn’t find a
significant difference in duration and frequency, but the density was significantly decreased in ParI.
On the other hand, the duration of sleep spindles showed positive correlations with the extroversion
dimension scores [188].

A study evaluated subjective and objective sleep features and psychometric measures in patients
with primary Insomnia. The main objective was to find, in a population of primary Insomnia, one or
more psychometric measures that could be correlated with sleep perception [54]. They analyzed nSSM
as a dimensional value and confirm that a variable degree of misperception is observed in most patients
without any clinical or psychometric measure that could differentiate these Insomnia subtypes. But
they found that lower scores on the Self-Administered Anxiety scale were associated with nSSM. This
finding diverged from precedent studies [197, 62] where the subjects with nSSM presented more anxiety
on the subjective scales.

A recent study [124] tried to link poor sleep perception with chronic anxiety. In this study, all 305
patients were diagnosed with anxiety-related disorders. Their formula corresponds to the L2 formula
described in Table 2.6. Patients were divided into normal sleep perception, positive sleep perception
abnormality, and negative sleep perception (underestimation of TST > 60 min). The PSG indicators
significantly related to negative sleep perception (50% of the samples) compared to normal perception
were an increase in objective TST, in the total number of awakenings, in spontaneous arousal times,
and a decrease in Sleep Latency and WASO. In that study, 67.3% of patients with ParI, according to
the L2 formula group, had used sedative-hypnotic drugs. Unfortunately, they didn’t assess the level
of anxiety during the study.

2.5 Launching this Thesis

In conclusion, after reviewing the different methods and explanations for ParI, it isn’t easy to under-
stand this concept accurately, so great are the divergences between studies. The main confounding
factor is the choice of starting definition for the studies. As we have just seen, most studies we have
cited use different formulas, making comparisons difficult. This is the purpose of [35] comparative
study, which tested these different formulas on a data set of 200 Insomniacs subjects and controls to
show the agreement between most of the formulas. In Figure 2.16, the agreement calculation on 16
formulas showed clearly the vast majority of no concordance between formulas. This shows that the
first step before trying to explain a phenomenon is to try to define it.

They also concluded that the current state of the art indicates that TST should be preferred
to define Paradoxical Insomnia rather than SOL, but above all, that evidence-based knowledge on
Paradoxical Insomnia should be obtained with larger case-control observational studies assessing mul-
tiple subjective and objective sleep parameters (not only TST and SOL). Furthermore, they proposed
adding sleep logs and prolonged actigraphy before the recording nights. All these recommendations
aim to have as much available data as possible to achieve this difficult objective, define Paradoxical
Insomnia.

It’s exactly what we had in mind with our database collection to bring new insight into this subject.

But why is it so important to define ParI patient? The first reason concerns the patient’s and the
doctor’s behavior according to the category type. When a patient is labeled ParI, they would likely be
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Figure 2.16: Poor agreement between formulas on the same dataset, on clinical(N=200, left panel) or controls (N=200,
right panel) [35]

categorized as a complicated patient, or worse, a malingerer with all the negative a priori that could
imply. This categorization can directly impact the therapeutic relationship or management, especially
if the therapeutic response is negative or the patient already has ineffective treatments. As a second
argument, we saw that different studies using causal inference protocol, assuming that the definition
they chose is accurate, tried to explain the ParI with costly studies with EEG or MRI, without a
discussion about the reality of the concept. In that sense, it must be wiser, as in the last studies we
mentioned [117, 124], to use a kind of spectrum of nSSM instead of a categorial diagnosis, in the ideal
case correlated with the intensity of the complaint to find the best cut off. But to do that, we need
to tackle the high complexity and interrelation of all the available characteristics for these subjects
without reproducing the existing ones to bring a new light on this topic. We will see in the next
chapter why MLcould be a good choice to tackle this problem and the main algorithm that could be
used.
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Part II: Machine Learning for Applied Medicine

Chapter Highlights (Part II: Machine Learning)

1. Why Machine Learning? ML algorithms are designed to learn complex, meaningful rela-
tionships between variables to apprehend what defines the best target to be predicted under
the defined model parameters. In our case, it is our purpose to know which variables could
predict subjects with ParI.

2. Frequentist Statistics versus Machine Learning Frequentist Statistic FS is a paradigm de-
signed to capture elements in a sample to reveal an explication about the target population
(inference). ML is about prediction and refers to using a trained model to estimate or
forecast an output value given some input data by learning from the data. We use ML
methodologies to find new variables explaining ParI.

3. Considerations of Sample Size: In Defense of ‘Small’ Data We will focus on linear and
classifier models widely used on medical datasets.

4. Data Mining and Exploratory Data Analysis (EDA) We will describe the techniques and
algorithms used in this first step, also called Exploration Data Analysis, like non-supervised
pattern detection or clustering methods.

5. Building Predictive (ML) Models We will cover the building of predictive models. Predic-
tive models can be used as simple tools to guide a human diagnostic (indeed, this is our
primary consideration); or as prescriptive models, i.e., the model’s output will be taken as
a recommendation.

6. In this thesis: ML as a tool In this thesis, we use ML to discover new relationships, in
conjunction with expert medical knowledge, to reveal new insights about ParI.

Key Terms and concepts
Acronym/term Definition Ref.

DT Decision Trees p. 172 (B.1.2)
EDA Exploratory Data Analysis p. 45 (2.9)
KNN K-Nearest Neighbors p. 50 (2.10.1)
KMEANS K-Means Clustering p. 46 (2.9.3)
LASSO Least Absolute Shrinkage and Selection Operator p. 173 (B.1.2)
LR Logistic Regression p. 50 (2.10.1)
PCA Principal Component Analysis p. 47 (2.9.4)
OLS Ordinary Least Squares p. 39 (2.7)
RF Random Forest p. 49 (2.10.1)
SVM Support Vector Machine p. 50 (2.10.1)
tSNE t-Distributed Stochastic Neighbor Embedding p. 47 (2.9.5)
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2.6 Why Machine Learning?

In this thesis, we use ML tools to answer our research questions. This choice was made to complement
frequentist (classic) statistics. We aim to use complementary tools to gain the fullest possible under-
standing of the data. After explaining the difference and the complementarity of these two approaches
(see Table 2.7 for the synthesis), in Part II of this current chapter, we describe some of these tools for
medical experts who might be unfamiliar with them. We also refer this reader to our brief published
review on the subject written for physicians for a global view of Artificial Intelligence and ML. [157].

2.7 Frequentist Statistics versus Machine Learning

The classical statistic is typically focused on obtaining an estimate of some parameter of a population
(e.g., of all people with chronic Insomnia) based on data from a sample (e.g., diagnosed Insomniacs
attended at a particular clinic). Part of classical statistics is frequentist statistics; the parameters
are fixed, and the data are random, meaning the parameters are not considered random variables.
This differs from Bayesian statistics, which allow for parameter probability distributions. Frequentist
statistic is the most used in medical research. Indeed, we are referring to a paradigm about the
definition of probability as the long-run frequency of an event occurring when an experiment is repeated
an infinite number of times under identical conditions [38]. This branch of statistics focuses on data
collection, analysis, interpretation, presentation, and organization. This interpretation is aligned with
the practical, empirical view of probability used in many parts of science and medicine, for example,
in a clinical trial [116].

A typical example in the field of sleep medicine could be the average hours of sleep per night,

Let’s say that the parameter of interest is y (hours of sleep); statistical tests can be employed to
estimate how close the estimated value is to the true value (which we can never have because it is
not possible to accurately and unambiguously survey every single possible patient). Ordinary Least
Squares (OLS) could be used to estimate the unknown parameters in a linear regression model.

From the point of view of OLS regression, we assume the true model is:

yi = f(xi,1, xi,2; θ) + ϵ = θ1xi,1 + θ2xi,2 + ϵ

where xi,1 describes the 1-st feature of the i-th patient (e.g., frequency of spindles they experience
per night); and yi some aspect about this patient that we are interested in estimating (e.g., number
of hours sleeping per night). The ϵ term refers to the irreducible Bayes error, which indicates that
even the best possible diagnosis (even by a medical expert) based on the observations of these two
features may not be correct.

So in statistics, one wishes to infer (i.e., perform inference of) parameters, producing estimates
of θ̂1 and θ̂2 which defines our [estimated] model. These θ tell not only the function of that feature
but also its relative importance (for estimating y). Once again, statistical tests are typically implied
to obtain confidence regarding how close estimated θ̂ is to true [hypothetical] θ.

However, all this is based on major assumptions of the true concept (i.e., of what θ represents
here, such as linearity, feature independence), including that there is a linear relationship between
features xi,j and the target variable yi. Such assumptions, more often than, do not hold in the real
world. Some key concepts are:

• The population follows a predetermined distribution (Parametric models).

• The formulation of hypothesis testing to reject the null hypothesis (statement of no effect or
difference) through the available data.

• After the use of a statistical test (t-test for comparing the means of two groups, ANOVA for
several groups, Chi-Square test for categorical variables, etc..), the probability (p-value) of ob-
serving major difference from what we would expect under the null hypothesis is calculated,
and in general in medicine, if the p-value is small (typically, less than 0.05), then the evidence
against the null hypothesis is strong.
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• To estimate the range within which the true population parameter lies with a certain confidence
level, Confidence Intervals are used [38].

• The main goal of all these processes, except comparing differences between groups or clinical
trials, is to capture some significant explicative elements in a sample of a given population to
reveal some characteristic properties of the larger population it is supposed to represent. This
goal is named inference, typically involving regression models, point estimation, and hypothesis
testing [28].

In the medical field, this paradigm is especially fitted to evaluate the relevance of each candidate
variable associated with each patient in its possibility to affect the outcome of interest. Most of the
time, the variable was chosen based on existing knowledge. Then, this approach, in the context of
rigorous experimental control like two-sample hypothesis testing, is the routine academic statistics for
small to medium datasets [59].

Of course, this model could be very effective in establishing bio/physiological effects that provide
insight into what leads or not to some disorders at the population level.

For example, in [6], to test if hypocretin deficiency is associated with abnormally low serum leptin
levels as a consequence of increased Body Mass Index in type 1 Narcolepsy (see definition in B.1.1), they
used Chi-2 tests and ANOVA to compare respectively categorical and continuous variables between
groups. They used another ANOVA to identify determinant factors when a significant difference was
found. In the end, they performed a linear regression. The significance level was < 0.05 for variance
and linear regression analysis and < 0.01 for post hoc tests. This rigorous statistical protocol is a
good example of the traditional frequentist statistic. So, most of the time and for the big discovery,
medical experts, with access to these traditional statistical tools, provide the most significant insight
into specific problems and can still outperform AI on most of the diagnoses and treatment procedures
in most medical areas.

So, as there are already efficient statistics tools, what is the point of using ML tools without a
clear experimental protocol? One of the reasons is that the exponential increase in computing power
(Moore’s Law) is at the root of the need to use ML. Indeed, regarding patient analytics, the expert
task (in discovering and providing key insights) becomes impossibly lengthy due to the increasing
amount and complexity of data provided by increasingly sophisticated monitoring.

At the same time, statisticians and computer scientists have developed many different methods in
the last decades, and aligned with the great increase in computing power and electronic data collection,
some tools designed initially for computer science issues started to be more suitable and usable for
medical studies involving more data [64]. So ML is to be used as a set of investigative tools to assist,
both in practice and research, the expert and certainly not a replacement of this expert, much more
an assisting tool.

Let us consider an example: prediction versus inference. The interest in ML from the research
point of view and its ability to discover new knowledge, even on an already studied dataset by using
frequentist statistics, was addressed by [28]. Yet, in a publication in 2019, [29], they discussed this
issue specifically in neuroscience after a major experiment in 2018 [30]. The main debate in these
papers is not about the different statistical approaches or tools but about the sight of the goal to
be achieved. The typical inferential approach wants to tackle, for example, which specific gene could
impact or partly explain Narcolepsy [106] or an epileptic syndrome [20]. In the prediction case, we
want to know which gene locations are collectively useful to discriminate subjects with or without
diseases. Indeed, this is the key point: faced with a data set, do we want to move towards inferences
or predictions? Machine Learning (ML), on the other hand, also produces a model, θ̂, from a sample
(training data, in ML terminology) but is more concerned with the accuracy of predictions,
ŷ = f(x1, x2; θ̂) from that model; or a loss metric (less is better; i.e., inverse to accuracy) L(y, ŷ; θ̂);
and in many cases also the confidence in those predictions. Many more complex models overcome
some of the simplistic assumptions of least squares (several of which we use and review below) but
at the cost of increased model complexity (θ̂ maybe hundreds, millions, or billions of dimensions,
intricately connected in diverse ways).

The challenge of ML is the fact that the test instances x (e.g., new patients) have not been seen
by the model before; therefore, the model must generalize (in ML terminology: avoid overfitting the
training data). Another important challenge, particularly in the context of domains such as medicine,
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beyond simply better predictive performance (low L(y, ŷ; θ̂), is interpreting the model (which can
be very complex) and explaining how it made such a prediction; in a way which is accessible for a
human domain-expert (medical doctor, in our case).

These concepts are covered in standard ML textbooks, e.g., [84].

Comparison of Machine Learning Prediction and Frequentist Inference

Machine Learning (Pre-
diction)

Frequentist Statistics (Infer-
ence)

Objective
Focus on predicting out-
put y for new input x

Focus on drawing conclusions
about population parameters

Process

Training a model on la-
beled data to learn the
relationship between x
and y

Formulating a hypothesis, col-
lecting data, and using statis-
tical tests for inference

Evaluation Metrics
Accuracy, precision, re-
call, mean squared error

P-values, confidence intervals,
statistical significance

Nature of Data

Handles complex, high-
dimensional data; cap-
tures complex nonlinear
relationships

Deals more with structured
data and linear relationships;
focuses on causality

Goal
Making accurate pre-
dictions for new data

Making conclusions about
population parameters based
on sample data

Data Utilization
Data-driven, uses com-
plex algorithms for
high-dimensional data

Focuses on testing hypotheses
and estimating parameters re-
liably

Nature of Analysis

May not provide in-
sights into causality or
relationships between
variables

Aims to understand relation-
ships and cause-and-effect

Uncertainty Represen-
tation

Prediction intervals or
probabilities

Confidence intervals and p-
values

Complementarity

ML can enhance pre-
dictive accuracy using
complex data, while fre-
quentist methods can
provide robust statisti-
cal inference to validate
ML predictions

Frequentist methods can ben-
efit from ML’s data-driven ap-
proaches for exploratory anal-
ysis and prediction, while
ML can incorporate frequen-
tist techniques for hypothesis
testing and validation

Table 2.7: Comparison of Machine Learning Prediction and Frequentist Inference [29].

In ML, prediction refers to using a trained model to estimate or forecast an output value given
some input data. This process involves leveraging patterns and relationships learned from the training
data to make informed predictions on new, unseen data points.

In the context ofsupervised learning, where we have labeled training data consisting of input-
output pairs (x, y) (let us recall that x may be multi-dimensional), the typical prediction process
involves fitting a model to the training data and then using that trained model to predict the output
(y) for new input data (x).

Mathematically, we can represent the prediction process as follows:

Training Phase

So, given a training dataset with n samples:

{(x1, y1), (x2, y2), . . . , (xn, yn)}

We aim to find a model approximating the underlying mapping between input (x) and output (y).
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Let’s denote this model as1 h(x; θ), where θ represents the model parameters.

The model is typically defined as a function that takes input features (x) and produces an output
prediction (ŷ).

The goal is to find the optimal values of the model parameters (θ) that minimize the discrepancy
between the predicted outputs (ŷ) and the true outputs (y) in the training data. This is often done
by minimizing a loss function, denoted as L(y, ŷ; θ).

The training phase typically involves an optimization algorithm to update the model parameters
and minimize the loss function iteratively.

The training phase aims to find the optimal parameters that minimize the average loss over the
training data:

θ̂ = arg min
θ

1

n

n∑
i=1

L(yi, h(xi; θ))

Prediction Phase

After the model is trained, we can use it to predict the output (ŷ) for new, unseen input data (x).

Given a new input sample (xn+1), we use the trained model h(x; θ̂) to estimate the corresponding
output (ŷn+1):

ŷn+1 = h(Xn+1; θ̂)

The predicted output (ŷn+1) is the model’s estimation based on the learned patterns and relation-
ships from the training data.

The prediction process can differ depending on the ML algorithm used. Here are a few common
approaches:

Regression: In regression, the goal is to predict a continuous numeric outcome. The model aims
to learn a function f(x; θ) to predict a real-valued output y for a given input x. The model is trained by
minimizing the discrepancy between the predicted and true values of y. This can be accomplished by
optimizing a loss function, such as Mean Squared Error (MSE). In medical applications, a regression
can predict a patient’s blood pressure based on various factors such as age, weight, diet, exercise
habits, and genetics. This can be useful for determining the risk of conditions like hypertension and
heart disease. In that sense, the medical community is already using the spirit of ML massively, for
example, when risk factors or predictors are calculated on a big cohort (Like the Framingham risk
score (1998) [212]). We can see in Figure 2.19 that this type of work (red circles 19) is the first level
in ML using computer power, on four. Each level corresponds to an increase in computer assistance
and a decrease in human action [13].

Classification: Unlike regression, classification predicts categorical outcomes. The function
h(x; θ) maps input features to discrete classes. The loss function, often a cross-entropy loss for mul-
ticlass classification problems, measures the difference between the true class labels and the model’s
predictions. A common application of classification in medicine is disease diagnosis. For instance,
based on symptoms and medical test results, an ML model can be trained to classify whether a pa-
tient has a certain disease. Another example would be categorizing tumors as benign or malignant
based on characteristics such as size, shape, and growth rate.

Time Series Forecasting: Time series forecasting uses historical data to predict future values.
Here, the input x typically includes data points from previous time steps, and the output y is the
predicted value for the next time step. Many algorithms used for regression can be used for time series
forecasting, with modifications to handle temporal dependencies. It could be applied to predict the
spread of an infectious disease over time. By training a model on past infection rates, the model can
forecast future trends and help public health officials prepare and respond more effectively. Similarly,
in individual patient care, time series analysis can be used to forecast the progression of chronic
diseases, helping healthcare providers to make more informed treatment decisions.

Anomaly Detection: Anomaly detection is a bit different, as it focuses on identifying abnormal
or unusual data points in the dataset. In this scenario, the function h(x; θ) learns to capture the

1Typically f for regression; and h for a classification model – but this is just a question of notation)

42 Chapter 2 Olivier Pallanca



’normal’ patterns in the data, and any deviation from these patterns is considered an anomaly. The
output y is often binary, indicating whether an instance is normal or an anomaly. This algorithm
could be very useful in medical imaging to identify unusual patterns that may indicate disease. For
example, a model could be trained to recognize normal brain scans and then used to detect stroke in
new scans.

Despite their differences, all these approaches follow the same fundamental process: they train a
model on existing data and then use that trained model to make predictions on new, unseen data. By
minimizing a loss function, the model learns to find patterns in the input data that can help it make
accurate predictions. ** In our work, we will mainly use the classification algorithm.

2.8 Considerations of Sample Size: In Defense of ‘Small’ Data

It is important to note that the predictive accuracy relies heavily on the quantity and quality of the
training data (including the feature engineering process) as much as the choice of model.

Authors of [30] systematically investigated more than 100,000 simulated datasets, with n between
10 and 100000, and the number of features between 1 and 40, changing characteristics to compare
models for inference and prediction. For inference, they used ordinary linear regression; for predic-
tion, they also took a linear model LASSO (cf. B.1.2) on identical datasets. So, the interest of this
experiment is comparing the ability to recover the “meaningful” variables simultaneously. They eval-
uated the significance of the subset of correctly detected variables with OLS and the positivity of
the LASSO coefficients. These metrics allowed the comparison of the number of correctly identified
variables, analogously for OLS and LASSO. In Figure 2.17, we can see the correlation between the
inference and the prediction on recovering relevant variables across the different dataset scenarios. We
can see the disagreement in many cases, especially on small datasets (<100 samples). Interestingly,
for many datasets, there is a poor correlation, with the correlation increasing in proportion to the
number of samples (yellow), but even for high numbers (10 to 100000), the results are not the same.
Thus, they could demonstrate that diverging conclusions can emerge from the same dataset
even with both linear models, which implies that the meaningful variables detected are
not the same.

2.8.1 Low patient count (n) implies neither small nor meaningless data

Our data collected (which we describe in intricate detail in the next chapter) is relatively small (in
the big data era) but only in terms of the number of samples n (between 300 and 1000), whereas
the number of features is large, ranging easily into the thousands (depending on how many features
are extracted from the signals data per patient). Furthermore, we meticulously curated our datasets
to ensure they are clean and representative of a typical Insomniac population. Except for the recent
trend of deep learning, our collection might be considered a relatively ‘standard’ size, indeed greater
in dimension than many benchmark datasets like the Montreal dataset, for example, [153].

In Figure 2.17, we can see the influence of the sample size on the results. The triangles represent
the different data sets, their size, the number of significant variables, and their color corresponds to
the number of samples; the upward point means that the LASSO found more significant variables than
OLS, and the rightward point is the opposite. We’ve added a few indications to this graph. Firstly,
we’ve plotted the color spectrum (purple gradient with a red line) for the ‘standard sample size’ from
350 to 1000. The aim is to visualize better the likely corresponding recovery rate scores for LASSO and
OLS (between 0.4 and 0.6). The red circle represents the most likely maximum given this gradient,
i.e. 0.8 for OLS and 0.95 for LASSO. LASSO performed better with smaller sample sizes and more
meaningful variables. At the same time, OLS tended to be more successful at recovering important
variables with larger sample sizes and smaller numbers of relevant variables. They also concluded that
even small predictive performances typically coincided with finding underlying significant statistical
relationships in most cases when even statistically strong associations with very low p values often
shed only modest light on their value for the goal of prediction. However, this figure also shows us
the possibility of having low scores with high sample sizes, showing that understanding predictions
and choosing the right algorithms is just as important as sample size and that for each dataset, pre-

Chapter 2 Olivier Pallanca 43



litigation work to select the most suitable algorithms is essential and constitutes the art of the data
scientist.

2.8.2 Choosing a suitable ML framework

According to [28], given that our dataset could be at a maximum of one thousand samples with
numerous explicative variables, we have a high probability of getting significant results, especially
with LASSO techniques. Indeed, LASSO used L1 regularization that promotes sparsity by driving
some coefficients to zero, selecting a subset of the most important features, and effectively eliminating
the other from the model [199].

Other studies like [79] had tested three commonly used classifiers (see definition in B.1.2): They
compared performance by changing the feature’s sample size and signal-to-noise levels. They also eval-
uated the effect of non-Gaussian (skewed) feature distributions, the correlation between biomarkers,
the imbalance in class distribution, and the choice of metric for quantifying classifier performance. In
one of the experiments, they tested a binary prediction in a Gaussian distribution biomedical dataset
with 10 to 50 meaningful biomarkers and 990 to 950 noisy features (like at random) on samples from
100 to 400. They showed that the most important was the percentage of meaningful biomarkers more
than the sample size, even with only 150 samples. These results align with [28] on different algorithms.
In our case, several samples with hundreds of features are available for binary classification, and all
the features are possibly linked to the class prediction. The main classifiers corresponding to this task,
LASSO, RF, SVM, and KNN are described in Table 2.8. These methods can be effective for medical
datasets, where accuracy and interpretability are critical. However, the dataset’s specific characteris-
tics, like the features’ nature, the prevalence of noise, and the need for interpretability, should guide
the final choice of the classifier.

Classifier Main characteristics Limitations

LASSO Useful in high-dimensional datasets for feature selection.
Able to perform both variable selection and regularization to
enhance the prediction accuracy and interpretability of the
statistical model it produces. With many features, it can be
useful in identifying the most relevant features, potentially
aiding in binary classification tasks [199].

Important to consider
the interpretability and
relevance of selected
features [199].

RF Handles many features well; generally effective in binary
classification. The performance of RF was observed to im-
prove with an increasing number of features, indicating its
suitability for datasets with a large feature set [172].

Potential biases in vari-
able selection; inter-
pretability can be a
challenge [172].

SVM Effective in binary classification, especially with a clear mar-
gin of separation. In medical datasets, where separability
might not always be clear, SVM’s soft margin approach can
be beneficial [135].

In cases of unclear sepa-
rability, it requires care-
ful tuning of the soft
margin [135].

KNN Simple and flexible, suitable for a variety of datasets. Performance can
degrade with
noisy/irrelevant fea-
tures; requires careful
choice of ’k’ and feature
scaling [142].

Table 2.8: Suitability of Various Classifiers for Binary Classification in Medical Datasets

Common methods include RF, SVM, and KNN (description in the next Section).

The predictive approach is fully compatible with our goal, as we just showed. This choice is further
strengthened by the fact that the ParI diagnosis or even the treatment outcome does not meet stable
criteria, as we have seen in 2.4, and so the question that arises first is who belongs to the ParI whatever
the criteria involved more than what is the factor that explains ParI.

But in this case, the logical question is how to predict something that isn’t clearly defined. This is
where ML tools themselves would have a limit because they can only predict what has been learned,
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Figure 2.17: Difference in meaningful variables recovery
between Statistical Inference tested with OLS and LASSO
algorithm [28]

Figure 2.18: Transparency of the decision made by
the algorithm versus complexity. The red circles cor-
respond to the most used models in our work. [29]

Figure 2.19: The schematic scale of ML spectrum and expert involvement adapted from [13]. The blue cone symbolizes
the spectrum of our research, with the line of classical ML algorithms like RF at the base of the cone, and the tip of
the cone corresponds to Deep Learning. On the x-axis, we can see the data size scales, and on the y-axis, the amount of
expert effort required.

and therefore, on a unique dataset without ground truth reference, it wouldn’t make much sense to
learn something.

However, the hypothesis inside the hypothesis is that thanks to many detailed publications on ParI
described in datasets comparable to ours, but generally with far fewer features, we could use these
learning capabilities to see what makes a ParI patient according to each study on our dataset. And,
as we have additional data not previously taken into account, we hope for a sort of homogeneity in
the different predictions to define what ParI is. But not only in terms of objective PSG criteria, much
more as a concept that pushed so many teams in the world for 40 years to put the “stick” ParI on the
forehead of the patient.

Figure 2.20 presents the five essential steps in any data science project. Steps 3 and 4 will serve
as a blueprint for briefly describing the main ML algorithms in this chapter.

2.9 Data Mining and Exploratory Data Analysis (EDA)

2.9.1 What is EDA ?

Once the data is collected and cleaned, we can start the data exploration or mining. This step is also
named EDA. We won’t go into all the statistical techniques used to visualize data, but the most useful
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Figure 2.20: The schematic process in five steps of computer science to transform collected data into new knowledge and
ultimately into decision support. Data science (DS) is at the crossroads of expertise, computing, Information Technology
(IT), Software Development (DEV), ML, Applied Mathematics, and Statistic and Classical Statistics techniques

will be the display of means, standard deviations, correlations, and potential comparisons between
groups using t-tests, for example. The aim is to understand how the data relate to each other and
their impact on a possible output. This step is primarily devoted to understanding the data structure,
finding outliers, and identifying patterns or relationships between variables. The methods we’re going
to use, which will form part of the description of our data set in the next chapter, are a mixture of
descriptive statistics and unsupervised learning to visualize the data in the best possible way, both
literally and figuratively (as a synonym for conceptualizing).

2.9.2 Simple statistical analysis

To understand the distribution, we will use simple descriptive statistics techniques such as mean,
median, mode, standard deviation, skewness, and kurtosis, to have information about the average
value of a dataset. This first analysis would be completed with histograms, bar charts, box plots, and
scatter plots to visually examine data and identify trends, patterns, and outliers. This preliminary
analysis could be very effective in identifying patterns or associations between variables; heatmaps
can visually represent the correlation between variables. Then, to make inferences about a population
based on sample data, t-tests, chi-square tests, and different types of analysis of variance or covariance,
such as ANOVA, could be applied depending on the nature of the data and the research question [84]

2.9.3 Cluster analysis

In the context of EDA, the first step towards discovering hidden patterns is using unsupervised algo-
rithms to discover group data points with similar characteristics or properties whose differences we’ll
then have to investigate without preconceived ideas.

Other algorithms could be used to investigate without preconceived ideas, like KMEANS, hierar-
chical clustering, or Density-Based Spatial Clustering of Applications with Noise [51]. The clustering
techniques aim to identify groups or clusters in the data based on similarity measures. Clustering
techniques aim to maximize intra-cluster similarity and minimize inter-cluster similarity.

We will develop only KMEANS here. This technique could be very useful for data segmentation
into distinct groups or clusters based on similarity. We used this method to group similar observations
and potentially show outliers. The k-means clustering algorithm is an iterative process that moves
the cluster centers or centroids to the average position of their constituent points and reassigns the
instances to their category [51].
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2.9.4 Principal components analysis

Principal Component Analysis (PCA) [97] This old and classic dimensionality reduction tech-
nique transforms a large set of variables into a smaller one that keeps most of the information. This
is achieved by reducing the dimensionality of the feature space by projecting the data onto a lower-
dimensional subspace in vectorial space. This new set of variables, called principal components, is
uncorrelated. This projection method uses the Mean and extreme variance of the data points, seeking
their linear combinations. This clusterization can help visualize high-dimensional data, understand
the underlying structure or remove redundancies.

We can see an example of PCA decomposition in 2D in Figure 2.21.

Figure 2.21: PCA1 (First Principal Component) and PCA2 (Second Principal Component) are the first two principal
components. They are orthogonal (at right angles to each other) and represent the directions of maximum variance in
the data. This 2D representation helps visualize the most significant patterns in the data, reducing the complexity of
high-dimensional datasets to more understandable two-dimensional representations.

2.9.5 Tools to aid visualization

t-Distributed Stochastic Neighbor Embedding(tSNE) [202] is another technique for data visu-
alization when we seek non-linear dimensionality reduction. It’s an algorithm also used for exploring
high-dimensional data and is particularly useful for visualization in two or three dimensions. In
high-dimensional data, every data point can be considered a point in high-dimensional space. The
“distance” between any two points can be considered a measure of how similar these points are.
These distances can be calculated in various ways, like the Euclidean distance method. Unlike PCA,
tSNE preserves small pairwise distances or local similarities, which could be useful when dealing with
non-linear manifold structures in the data. Converting high-dimensional Euclidean distances between
points into lower-dimensional space is done by conditional probabilities representing similarities. As
a result, tSNE is performant at preserving the local structure of the data and then can help in visu-
alizing clusters. But this technique is very sensitive to perplexity, a measure of the effective number
of neighbors.

Chapter 3 will use all these algorithms.

2.10 Building Predictive (ML) Models

Our work will use classifier algorithms in the supervised context. As described above, the model
learns a relation between input data (X) and corresponding output classes (Y) on labeled training
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examples. The algorithm learns how to generalize from the labeled data to predict the same output
classes on new datasets. When only two classes exist, this is a binary classification problem; if more,
it’s a multilabel classification.

2.10.1 Which model to use?

An extensive review of 120 classifiers from different families tested on 121 datasets (from 10 to 130000
samples) [60]. The whole characteristics and hyper-parameters tuning (see B.1.2 for the description)
are described in [60] for all the classifiers. The interesting finding is that five classifiers from the RF
family and two from the SVM are included among the top 10 best classifiers tested. Among the three
left, there is a DT (C5.0Tree-t), a neural network classifier (mlp-t), and a direct kernel perceptron
(dkp-C). The mean score of the maximum accuracy of these 20 classifiers and their names are presented
in Figure 2.22.

Figure 2.22: 20 best classifiers on 120 tested by [60]. The different families tested are DT (n = 15), Rule-based classifiers
(n=12), Boosting (n=20), Stacking (n=2), Bagging (n=24), RF (n=8), Others Ensembles models (n=11), Generalized
linear models (n=5), Nearest Neighbors (n=5), others methods (n=18). The vertical delimitation corresponds to the top
10 on the left side. The hexagons correspond to the RF family classifiers. The losanges correspond to the SVM family
classifiers.

Those results were in some way replicated in [110]. A more recent paper [187] that tested SVM,
KNN, Naive Bayes, and DT have also found SVM with the best results and DT as the second.
Publications using ML on medical databases [93] also showed SVM and RF as the best algorithms,
but also Extreme Gradient Boosting (XGB). LR was less efficient in predicting the target, but the
scores were still competitive. Another study that compared RF, LR, KNN, Naive Bayes, and DT on
the Breast cancer Wisconsin’s dataset [9] found that LR had excellent accuracy after 10-fold cross-
validation, and the best was RF. The main metrics used to establish accuracy were F-Measure and
Matthews Correlation Coefficient [110]. We decided to test and compare all the algorithms described
above for our predictions. We’ll briefly describe them. A diagram with the level of transparency of
the main algorithms cited is shown in Figure 2.18.

DT is used for classification and regression tasks. DT main principle is creating a flowchart-like
model that makes predictions based on a series of binary decisions. Understanding their principles
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and construction is a prerequisite to understanding RF. The general aim of DT is to explain a value
from a series of discrete or continuous. If Y (the target) values are continuous, we will use a Regression
DT; if the value is qualitative, it is a classification DT. The main principle of a DT is splitting the
data according to selecting the most informative feature from the input dataset. The goal is to create
subsets that are as pure as possible, meaning that the instances within each subset share similar
characteristics. We have to choose the splitting criterion at each DT node to do that. The most
commonly used criteria include Gini impurity and entropy for classification tasks and mean squared
error or mean absolute error for regression tasks (See the definition for these terms in B.1.2). These
criteria measure the impurity or the error in the subsets resulting from the split. After this process, a
tree is built (see Figure for an example). Each internal node represents a decision based on a specific
feature, and each leaf node represents a predicted output or a class label. The path from the root
node to the leaf node represents the decision-making process for reaching a prediction. To avoid
overfitting a pruning step may be performed to prevent overfitting. Once the DT is constructed, it
can predict new, unseen instances. The predicted output or class label associated with that leaf node
is then assigned to the instance. DT has many advantages, especially in the medical field, because the
prediction process can be understood and interpretable. We can see an example of DT algorithm in
Figure 2.23.

Figure 2.23: In this example, we took the Iris dataset containing flower characteristics to predict the class or species
of an Iris flower based on its features. The DT algorithm is trained on the dataset with known class labels to learn the
patterns and relationships between the features and the corresponding class labels. It’s a multilabel classification of the
three species (Setosa, Virginica, and Versicolor). As an example, we can take the first node. The node is split based on
the petal width (cm) feature, and the threshold value is 0.8. The node contains 150 samples (instances) that satisfy
this condition. The class distribution for this node is [50, 50, 50], indicating that the instances belong to the three classes
the values mean. This first node classifies all the Setosa directly from that feature (orange color; class = setosa)

As they can handle numerical and categorical features, DT could be used in a wide range of
problems, and data preprocessing is minimal, making them easy to use. However, they can be prone
to overfitting if not properly regularized or if the tree grows too deep. It’s then important to set
the limit in the hyperparameters. Another algorithm, such as RF, can address these limitations and
enhance the performance of DTs. The next paragraph will focus on this wide-use algorithm.

RF is part of the Ensemble Learning algorithms or Tree-Based ML Models. DT, Bagging, and
Boosting are part of these models (see definition in B.1.2). So there are DT at the origin of the
RF. This method combines multiple DT to make predictions. Instead of relying on a single DT, RF
aggregates the predictions of multiple trees to achieve better overall performance. The main objective
is to reduce overfitting. With a few more details, RF uses a bagging technique to create diverse
subsets of the original dataset. Subsets of the studied sample will be replaced so that each subset is
used to train an individual DT. In addition, RF randomly selects each DT node to create diversity in
the resulting ensemble. For each subset of the data, a DT is constructed using a specific algorithm
(typically, the Classification and Regression Trees (CART) algorithm [24]). The DT is trained to
recursively split the data based on the selected features to maximize the homogeneity of the target
variable within each resulting branch or leaf. In Scikit-learn [162], RF could be highly tunable, with
many hyperparameters. This could be very time-consuming. The main parameters are the number of

Chapter 2 Olivier Pallanca 49



DT to be used in the random forest, the criterion (quality of split), the maximum depth of each DT,
the minimum number of samples required to split, the minimum number of samples required to be
at a leaf node and the randomness of the algorithm. In the end, RF uses its collective predictions to
make a final prediction by voting. In classification tasks, the class that receives the majority vote from
the individual tree is selected as the final prediction. In regression tasks, the average or the median
of the predicted values from all the trees is taken. One of the advantages of RF in medicine is that it
can help visualize the algorithm’s decision-making process.

SVM is an extended version of maximum margin classifiers, in which they have to find a decision
boundary or hyperplane that maximally separates different classes in the data while maintaining a
margin of separation. The margin refers to the distance between the decision boundary (hyperplane)
and the nearest data points of each class. SVM aims to find the decision boundary that maximizes
this margin, thus creating a clear separation between the classes. The support vectors are the closest
data points to the hyperplane, influencing its position. They are linear classifiers designed for classes
separated by a hyperplane. However, SVM can also handle non-linearly separable data by using the
kernel trick. The kernel trick involves mapping the original feature space into a higher-dimensional
space where the data becomes linearly separable. Commonly used kernels include the linear kernel,
polynomial kernel, and radial basis function kernel. These kernels are part of the hyperparameters
included in the algorithms. In Scikit-Learn, we can tune these hyperparameters to improve the
prediction. The process of hyperparameter tuning could be done automatically. In the case of SVM,
the other tunable parameters are the regularization parameters to find the best balance between
maximizing the margin and minimizing the training error. [45]

K-Nearest Neighbors does not make any assumptions about the underlying distribution of the
data (non-parametric ML model) and uses the training data directly for classification. The model
memorizes the training observation for classifying the unseen test data. KNN compares the test
observations with the nearest training observations based on a chosen distance metric (Euclidean
distance) to determine the class or value. KNN does not learn a representation of the underlying data
distribution. The theory behind it is far from new [47] . As KNN requires comparing each test data
point with the training data to find the nearest neighbors, it can be computationally expensive and
inefficient for large datasets. The time complexity of KNN grows linearly with the size of the training
data, making it less suitable for big data scenarios. This curse of dimensionality can lead KNN to
struggle a lot to find meaningful nearest neighbors due to the increased sparsity of the data in high-
dimensional spaces. This can lead to a deterioration in performance as the distance-based similarity
measures become less reliable. But in our case, this classifier could be useful or at least worth to be
tested. The main tunable hyperparameters are the number of nearest neighbors to consider and the
weights that could be proportional to the inverse of the distance.

Naive Bayes algorithm or Bayesian classifiers use Bayes’ theorem (feature independence). They
calculate the probability of a class given a set of features by considering the conditional probabilities
of each feature given the class. This independence assumption simplifies the computation and allows
the model to handle many attributes efficiently. The problem in our case is the amount of data
necessary with this classifier. The interest with many features could be the joint probabilities of
multiple features. Indeed, Bayesian classifiers can capture the collective influence of these attributes,
which can contribute to very good classification. Thus, the Naive Bayes classifier is effective on tasks
such as email classification based on words with high dimensions of vocabulary. But, if we have
to tackle feature dependencies or interactions, especially with small datasets, this classifier could be
inappropriate [175, 51].

Logistic regression is a linear model that estimates the relationship between the predictor variables
and the probability of the binary outcome. It uses the logistic function (also known as the sigmoid
function) to map the linear combination of the predictors to a value between 0 and 1, representing
the probability. The model is trained using the maximum likelihood estimation method, which finds
the parameters that maximize the likelihood of the observed data given the model [9].
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2.10.2 Deep learning

In the context of our thesis, we avoided deep learning classifiers for the lack of transparency (except
for Time series analyses). See Figure 2.18. Indeed, as we wanted to explain the predictions as much as
possible, not only did we want the best trade-off between performance and transparency, but we added
a model designed to explain which variables (or features) were involved in the decision to the classifier
we will use as many as possible understandable algorithms that can provide important insights into
what drives predictions. As we know the possible and well-known failings, we distrust ML and approach
its use with abundant caution. Hence, our emphasis is on trustworthiness and explainability. Like in
[28], we used the LASSO algorithm, and we added two more to increase the reliability in the prediction
explanation, Morris sensitivity and Global Shap values. It helps in understanding which features are
more important in model decision-making. We will develop this part extensively in Chapter 5.

2.10.3 Explainability methods

LASSO is a regularization technique used in linear regression models. It introduces a penalty term
to the linear regression cost function, encouraging sparsity in the coefficient estimates and performing
automatic feature selection. The L1 penalty term shrinks some coefficients to exactly zero, effec-
tively excluding less important predictors from the model. LASSO is useful for improving model
interpretability and handling high-dimensional datasets [199].

SHapley Additive exPlanations (SHAP) (Shapely value analysis) is a method for explaining the
output of any ML model. It provides a unified framework for assessing the contribution of each feature
to the prediction. SHAP values are based on Shapley values from cooperative game theory and provide
a way to attribute the prediction to different features by quantifying their impact on the output. SHAP
values offer local and global interpretability, allowing for individual instance explanations and overall
feature importance analysis [130].

Morris sensitivity analysis is a global method to assess input variables’ impact on a model’s
output. It is a variance-based method that measures the effect of one input variable at a time while
keeping the others fixed at different levels. Morris sensitivity provides a qualitative ranking of input
variables based on their influence on the output and helps identify influential factors for further analysis
or model refinement [150].

2.11 In this thesis: ML as a tool

Then, the question here is not using ML as a magic tool with a black box but more using the math and
the statistics behind some of these tools to understand hidden complex patterns involved in predicting
the ParI concept and the outcome of CID. Explainable methods are recommended for this goal, such
as generalized linear models [13]. We did this by using more ML algorithms than Deep Learning
Algorithms. As we can see in Figure 2.19, ML tools are in a medium position in terms of human
effort needed or, let’s say, expertise. To situate it, we symbolized our work area with a blue cone on
the ML spectrum. The human symbols correspond to the number of parameters predetermined by
humans about the research question. The trade-off between the human specification of a predictive
algorithm’s properties vs learning those properties from data is what is known as the ML spectrum.
In Figure 2.19, we can also see that our area of work is not really “big data” but sufficient to apply
ML algorithms, as mentioned earlier.

Causal inference in the medical field is key to understanding the effectiveness of treatments, inter-
ventions, and policies. This concept refers to concluding a causal connection based on the conditions
of the occurrence of an effect. Based on the observed data, the goal is to infer a causal relationship
between a treatment (the cause) and an outcome (the effect). In a randomized study, the treatment
assignment is random, which helps to balance confounding variables (variables that influence both the
treatment and the outcome) across treatment groups. This helps to establish a causal relationship
between the treatment and the outcome, given the assumption that there are no hidden biases due
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to confounding. We hypothesized that we could learn and predict this causal relationship with a
data-driven approach using ML classifiers and explainers. However, it’s important to note that while
ML has potential advantages, there are also challenges. These include the risk of overfitting, difficulty
interpreting complex models, choosing a fitted algorithm to the task with good hyperparameter tun-
ing, and, for some, the need for large amounts of data. These questions will be part of the discussion
after each experiment in Chapters 5 and 6.
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Chapter 3

Data Collection and Visualization

Chapter contents

We discuss our data collection, database curation, dataset construction, data mining, and visu-
alization.

1. Data collection phase We collected data and built the different datasets used for this research
with a three-step process: recovery, selection, and aggregation.

2. Difficulties Encountered During Database Collection and Recommendation from Experience
Our strategy to overcome difficulties faced during database and dataset aggregation is
described. We discuss here how we dealt with missing values and why we decided not to
use missing value imputation methods.

3. Exploratory Data Analysis on the Different Databases We describe the data extracted
from each database to do the first EDA before aggregation. All the features used will be
described. Correlation analysis and dimensional reduction clustering methods will describe
the potential informative knowledge.

4. Exploring the impact of respiratory and neurological events on sleep fragmentation We
evaluated the impact of different thresholds of respiratory events and limb movements on
sleep fragmentation in our sample.

5. Evaluation of the Relevance of Datasets to the Assumptions Made We evaluated the rele-
vance of our sample dataset regarding the representativity of the CID population and the
link with Paradoxical Insomnia.

Key Terms and concepts
Acronym/term Definition Ref.

AHI Apnea-Hypopnea Index p. 169 (B.1.1)
CID Chronic Insomnia disorder p. 193 (B.7)
EDA Exploratory data Analysis p. 45 (2.9)
EDF European Data Format p. 169 (B.1.1)
KMEANS K-Means Clustering p. 46 (2.9.3)
MMPI Minnesota Multiphasic Personality Inventory p. 32 (2.4.1)
OSA Obstructive Sleep Apnea p. 24 (2.4.1)
PCA Principal Component Analysis p. 47 (2.9.4)
PLM Periodic Limb Movement p. 24 (5)
tSNE t-Distributed Stochastic Neighbor Embedding p. 47 (2.9.5)
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3.1 Data Collection and Datasets Aggregation Process

3.1.1 Data collection phase

Data were collected in the Insomnia investigation and treatment centre attached to the sleep disorders
federation at the Pitié-Salpêtrière Hospital in Paris. This unit was an annex in the neurophysiologic
department of the Sleep Disorders Federation and was mainly dedicated to treating CID. With the
technical support of a neurophysiologic department, our multi-disciplinary approach, both psychiatric
and neurological, has enabled us to systematically and comprehensively assess patients with CID in a
multi-modal way.

Overall, the patients we saw over the years were middle-aged (between 40 and 50 y.o.), with
a professional activity for the vast majority (nearly 80%), and about 66% of women. They were
generally without severe organic or psychiatric disorders, apart from a few exceptions. Around 40%
had sleep medication at the first interview, and a few percentage could present treated or not the
primary complaint of Obstructive Sleep Apnea (OSA) (defined by Apnea-hypopnea index (AHI) ≥
15 per hour) and Restless Legs Syndrome (RLS) with or without Periodic Limb Movements (PLM)
(defined by PLM index ≥ 15 per hour).

How recruitment and assessment were organized had much to do with this. Patients had to fill
in questionnaires at the time of application. These questionnaires then served as a first selection
step, enabling patients with psychiatric, organic, or other sleep-related disorders besides Insomnia to
be referred directly to the relevant departments, especially subjects with typical symptoms of OSA,
hypersomnia or neurological sleep disorders like REM Sleep Behavior Disorders (See definitions in
B.1.1).

So, the patients evaluated in our department were autonomous, often followed for CID from several
months to several years before, with no other predominant sleep disorders apart from a few comorbidi-
ties with treated OSA presenting with Insomnia, comorbid, treated RLS. The subjects recruited were
theoretically between 18 and 65 for the Insomnia assessment protocol, with older subjects referred to
a senior sleep center. However, some older subjects managed to pass this filter.

The data in this thesis were collected with the patient’s informed consent and written authorization
in the frame of retrospective non-interventional research. Data was gathered from 2011 to 2017
during routine hospital care. We adhered to the regulations and recommendations of the Commission
Nationale de l’Informatique et des Libertés (CNIL) regarding data mining. The data were anonymized,
protected, and restricted to essential information for the study, and only the author (O. Pallanca) had
access to the patient’s personal information. Further details of the efforts are shown in Figure 3.1.

The features and the sample selected to be part of the final datasets will participate in understand-
ing and determining the profile of CID and ParI. So, the aim was to have a dataset compatible with
assessing CID as the primary complaint and not secondary to psychiatric or medical disorders. The
data collected come from different databases corresponding to the tests, questionnaires, and clinical
assessments made routinely in the department. The theoretical part of these tests and questionnaires
were already described in the Assessment of Insomnia subsection (See 2.4.1). So here, we will talk
about the data retrieval process and the number of features selected at each stage of the database
retrieval and assembly process. The process will be explained for each database and the difficulties
encountered in the next section.

3.1.2 From databases to datasets

We needed to put data in a format upon which we could deploy machine learning, i.e., to datasets
with definitive instances, features, and (where possible) class labels.

Figure 3.1 presents the data retrieval process and aggregation in three steps:

• The first step corresponds to the recovery of all available data. Data sources are represented as
data storage (marked sources one to five in orange), each containing specific information for up
to 1,735 patients.

• The second step corresponds to the first data selection with source A as a reference. Indeed as
we wanted the psychological profile of chronic Insomniacs patients, source A included selected
MMPI-2 scores of CID patients (1182), we then tried to retrieve data from sources B, C, D and
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E corresponding to the patient’s ID in source A. This process led to four Databases (I, II, III,
and IV) with the maximum sample size for each source without applying the definitive selection
criteria (CID assumption was made only with clinical diagnosis).

• The third step corresponds to the aggregation between the four Databases plus additional missing
values provided by source C. Five datasets were built according to the different hypotheses. The
first three used European Data Format (EDF) files from the EEG. Dataset two used MMPI-2
scores for prediction, and Dataset three ISI and ESS for clustering. Dataset four aggregated all
the features from databases I to IV except EDF files and Treatment outcome features. Dataset
five aggregated all the features from databases I to III except EDF files and most actigraphic
features.

The 91 features selected in the DI-PSYCH are listed in the Appendix (see Table B.2) The 45 features
selected in the DII-DBAS are listed in the Appendix (see Table B.3) The 38 features selected in the
DIII-PSG are listed in the Appendix (see Table B.4) The 27 features selected in the DIV-AG are listed
in the Appendix (see Table B.5) Seven additional features from the sleep log (LOG) are included and
listed in the Appendix (see Table B.6):

The EEG features extracted from EDF files will be described in Chapter 4.
Then, if we remove the keys and duplicates for age and gender, a maximum of 202 original features

were selected from the five data sources.
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Figure 3.1: Selection process for datasets used in this thesis work



As we can see, our expectation in terms of sample size was lower than expected. The process and
the main difficulties encountered in building our datasets are listed in the next section.

3.2 Difficulties Encountered During Database Collection and Rec-
ommendation from Experience

The process started with the MMPI-2 source available in one block on a secured computer. We
were optimistic with 1182 CID MMPI-2 scores selected on 1345 total. We thought it would be
easy to create a final dataset of at least 1000 patients with all the other features available in the
other sources. But very quickly after the beginning of this work, difficulties inherent in our lack
of knowledge of data storage, human errors, organizational problems, hospital regulations on data
retention time, oversights, losses, inappropriate external interventions, patients who did not return
usable data, etc., have somewhat dampened our hopes. The data collection process for this project
experienced significant challenges, leading to considerable data loss. The main challenges are described
in the next subsection.

3.2.1 Main challenges in the data collection process

1. Data Fragmentation: The datasets were fragmented and stored in different locations and
formats. For instance, MMPI-2 was stored on PC1, while the DBAS questionnaire was stored
in Excel on a technician’s computer.

2. Incomplete Records: There were substantial missing data. Of the potential 1182 patients,
only 713 had fully completed the DBAS questionnaire. Missing data was due to various reasons,
including hand corrections instead of computer inputs, deletions, or patients simply not filling
them out. However, the number of non-random missing data was relatively low. This was
because patients had to fill in questionnaires on the spot, which the technicians collected. As a
result, there was little useful information in the missing data.

3. Data Retrieval Issues: The retrieval process was difficult. Questionnaires filled in on paper
had to be retrieved from archives, and many were either lost or discarded, reducing the usable
questionnaire data to 519 records.

4. Data Deletion: Unforeseen circumstances like unannounced computer maintenance led to the
deletion of some files. This resulted in only 350 out of 519 actigraph results being recoverable.

5. Partial Salvaging: Despite these obstacles, the team salvaged additional data from other
patient databases, specifically average sleep times over a week. However, this was not sufficient
to fully compensate for the lost data.

6. Corrupted data: Although we will address this issue in Chapter 4 regarding retrieving polysomno-
graphic data in EDF format, we encountered several types of difficulty. First of all, EDF formats
did not take expert scoring into account. We had to re-export files in XML format that could not
be directly superimposed with the EDF formats, with a risk of error. At this point, we devised
the idea of using automatic scoring algorithms after realizing that the one we had available in
the EDF files was unreliable. Another problem was the portion of PSG data with artifacts.
Although they appeared legible at the time of their interpretation, when we applied data ex-
traction, we realized how difficult it was to obtain reliable data, which explains the smaller size
of the data sets for the EEG study. Again, we prioritized quality to explain the study subjects
better rather than adding corrupted data.

7. Formatting errors: As the results of each PSG were exported in Word format, some of the
information was only available there. We, therefore, had to create an extremely laborious VBA
code to retrieve all the data from all the fields in the Word documents. All these files had
to be cleaned by hand to remove export errors, not to mention all the commas and periods
hidden, added by hand during the test, making the CSV files extremely difficult to put back
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in order. During maintenance work carried out by our IT staff, some of the archived scoring
reports disappeared. We had to score the tracing and export it again for around fifty patients,
corresponding to at least 50 hours of extra work.

3.2.2 Main solutions and proposals to solve these challenges

1. Data cleaning: Once all the data had been recovered and the formatting errors repaired, all
the data sets had to be transformed. Variables were renamed. Data were anonymised. Keys
were created for merging the databases. We transformed strings into float when necessary.

2. Missing values: When the missing values were random, we replaced them with the mean of
the retrieved features (less than 5%). We had some missing values not at random, like some
Sleep Latency when the patients didn’t sleep; we had to represent the fact that the latency was
long without any value; in that case, we chose to fill with a high generic number like 999.

3. Crossing sources Whenever possible, we searched the physical files for missing information. We
even called some patients back to obtain information, particularly on their treatment outcomes.
We created a special questionnaire mailed to them to evaluate it objectively when the data was
missing.

But from our experiences, we wanted to formulate some recommendations that would probably be
useful to other medical departments.

1. Centralization of the database: We regret not implementing a centralized data storage
system to avoid fragmentation. All the data should be stored in one location accessible to all
relevant parties. A cloud-based system could facilitate this and offer robust data protection and
recovery options.

2. Standardization of Data Entry: This is also fundamental to establishing a standard proce-
dure for data entry to ensure consistency and completeness. Using systematic computer-based
forms instead of paper to store the data in the database directly. This reduces manual input er-
rors and makes data retrieval easier. This needs the full compliance and training of technicians
and medical doctors. In the ideal, this process could use Data Validation Checks during the
data entry process to ensure the data is complete and in the correct format. This could include
prompts for missing entries or warnings for data that does not fit expected formats or values.

3. Regular Backups are also fundamental when storing data on a specific computer, even in the
hospital, to avoid loss from unexpected incidents like system failures or accidental deletion.

4. Clear Communication with IT Staff : is also an issue. We have to inform the IT staff of the
importance of the data and the specific formats and software used. Clear communication and
instructions can prevent unintended loss or corruption of data during maintenance or updates,
as we experienced.

We will now make some EDA on the databases recovered and cleaned.

3.3 Exploratory Data Analysis on the Different Databases

We will present this EDA on all the databases to benefit from the maximal number of samples. We
will describe them in the sorted order from Database I to IV, corresponding to the descending sample
size from 1182 for Database I to 335 for Database IV.

We wanted to describe each database individually to have an insight into the data with unsu-
pervised learning before aggregating them in datasets four and five used in 5 and 6. We will follow
the same process of EDA for each database with descriptive statistics, PCA, t-SNE, and K-means
clustering. Only meaningful results will be shown.
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3.3.1 Database I (DI-PSYCH)

(DI-PSYCH) is the database gathering all the MMPI-2 questionnaire responses. These responses (567
in total - “yes” or “no” choices) are used to build some different psychological scales. The score used
in this thesis is the T-score. In the MMPI-2, T-scores are a standardized scores used to interpret the
results and better understand how an individual’s score relates to the scores of others who took the
same test on each test scale. The T-score is calculated to have a mean (average) of 50 and a standard
deviation of 10 in the reference population. For most MMPI-2 scales, a T-score of 65 or above is usually
considered clinically significant, meaning it may indicate the presence of a psychological problem. This
cut-off can vary, though, depending on the specific scale and the context in which the test is being
used. But in general, High T-scores (>70) indicate that the test taker similarly answered the questions
to individuals in the clinical group (those with a diagnosed mental health disorder). Low T-scores
indicate that the test taker answered the questions similarly to the normative group (people without
diagnosed mental health disorders), But an extremely low T-score could have the same value as a very
high T-score in some scales, especially in the validations scales.

The MMPI-2 questionnaire and its interest in Insomnia research were described in section 2.4.1.
Compared with the studies described above that used only the main 10 general scales (see Table3.1), we
decided to retain all the validated scales and subscales available for each analysis of the 567 responses
given by each patient. In the end, 91 features corresponding to the 91 scales were retained, enabling a
more detailed analysis of patients’ psychological profiles. The features and their definitions are listed
in the Appendix (Table B.2). The main results of this first EDA are listed below.

Distribution

The Distribution of each T-score for 80 scales is shown in Figure 3.23. We can see an interesting
deviant peak for the Es scale in the third plot (DI-PSYCH 3), showing that a significant proportion of
the sample is below 40 for this scale. That means all the patients concerned generally have a poor self-
image, feel worthless, ruminate, feel powerless or maladjusted with old problems, tend to be inhibited,
and have physical ailments, chronic fatigue, fears, or phobias. They often feel unable to cope with
the pressures of their environment and are often a little rigid in solving problems. They often express
a desire for change in their care but do nothing. This scale is very important in predicting good
treatment adherence. Also, we could see a peak in the scale TRT (Negative Treatment Indicators).

General Statistics

The average age is 44.9 ±13.8 yo, and the female proportion is 65.4%.
The mean, standard deviation (SD), median, and quartiles of the T-score concerning the general

scales are shown in Table 3.1.

scales Hs5K D Hy Pd4K Mfm Pa Pt1K Sc1K Ma2K Si

mean 66.4 67.0 65.9 58.5 51.4 59.6 63.2 60.5 50.4 56.1
std 12.7 12.6 13.7 12.5 10.4 13.8 12.3 12.6 10.8 10.4
25% 57.0 58.0 56.0 50.0 45.0 51.0 54.2 52.0 42.0 49.0
50% 66.0 66.0 66.0 56.0 50.0 58.0 62.0 59.0 48.0 56.0
75% 75.0 76.0 74.0 66.0 57.0 68.0 71.0 68.0 57.0 63.0

Table 3.1: T-scores for the 10 General scales on 1182 patients. This scale is theoretically sufficient to
detect a pathological profile if the validity scales are in the normal range, as is the case here

Correlations analysis

The previous results showed that some specific scales increased the T-score means, like Hy, D, or H5K.
Others showed particular distributions on the dataset and were linked to the treatment outcome, like
Es and TRT. The plot DI-PSYCH 1 in 3.2 showed that the feature FB (one on the main validation
scales related to fatigue and attentional issues) is almost sufficient to represent three clusters according
to its T-Score on our dataset. We present in Figure 3.3 a specific focus on the Pearson correlation
between these features.
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Figure 3.2: The Distribution for each scale is plotted with the T-score in the x-axis and the ratio to total sample size in
the y-axis. 80 scales are represented. The main validity and general scales are represented in plots 1 and 2. Plots 3 to 10
represent the MMPI-2 subscales. We can see that the validity scale (VRIN, TRIN, L, and F) allowing the interpretation
of the MMPI-2 is largely under a T-score of 70. We can see in Plot 3 that the Es scale T-score is separated in two
around 40, with a peak below 40. This scale is related to mental ruminations and low self-esteem. We can see a strange
distribution for the Ma1 scale in DI-PSYCH 9 with four peaks, all below the pathological threshold. Also of interest is
a peak for the scale TRT that is also related to negative treatment

The results show a high correlation between FB and the feature TRT, so it’s possible that the
cluster with the highest FB T-score could be the one with the most treatment resistance. TRT and Es
are anti-correlated in a significant way, which means that these two scales are linked to a profile. The
correlation between Fb and Es is weaker, so Es must cover a wider field than the treatment outcome.
On the other hand, the highest T-score mean in our sample, Hy, D, and Hs, are poorly correlated to
FB, so we have effectively different clusters of psychological profiles. In detail, we could even observe
a cluster in the cluster with Hy and Hs5K poorly correlated to TRT when D does. This observation
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could lead to the interpretation that being depressed is a risk factor for poor treatment outcomes.

Figure 3.3: Pearson correlation analysis between scales with increased T-score means(Hy, D, and H5K), the ones linked
to a negative treatment outcome (Es, TRT), and FB heavily involved in the three clusters found in our dataset

Dimensionality reduction and clustering

The main results for 3D PCA are presented in Figure 3.4. We couldn’t visualize any clusters in
the high-dimensional data for the t-SNE results after perplexity tuning from three to 100. For K-
means clustering, we tested 3 to 6 clusters corresponding to the main numbers of insomnia subgroups
published until now. Figure 3.26 presents the visually discriminative results.

Figure 3.4: PCA on the 10 main scales on the
MMPI-2 dataset with age and gender. We found after
several experiments that only age could slightly affect
the PCA representation, below or above 35.

Figure 3.5: K-means clustering in 3D for K=6 for
MMPI-2 Tscore with the validity scale VRIN, TRIN
and Fb. We could see three distinct cluster regions
almost entirely linked to the Fb scale. When the Fb T-
score is elevated scale, it is potentially linked to fatigue,
attention disorders, a tendency to show oneself in an
unfavorable light, or a sign of severe psychopathology.
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Discussion

• So, in our population of chronic Insomniacs, from 1182 subjects, visualization by K-means
clustering enabled us to identify three clusters differentiated solely by their T scores on the
87 MMPI2 scales and subscales. We can see that Fb is heavily involved in discriminating the
different clusters. This is the only study to have used so many patients and all the scales on such
a large population of chronic Insomniacs. It confirms and further extends a similar study [56]
involving only 100 patients and 13 scales. It also found three clusters using T scores on the three
validity and 10 clinical MMPI scales with the Fortran clustering procedure available. Even if the
method is not described in the paper [56], we could find it in the Fortran book for clustering [213],
and centroid technique and Nearest-Neighbor were available in Fortran Programming. What is
also of interest is that the author, Jack Edinger, was a pioneer in Insomnia subtyping, chair
of the Insomnia sections of the ICSD-2 and ICSD-3 and headed AASM’s Research Diagnostic
Criteria for Insomnia Workgroup, and currently is leading the academy’s Insomnia Treatment
Guidelines Task Force. So, it seems that 35 years later, our results confirm these clustering
premises. However, by the time of this study, one of the three groups was too small and removed
from further descriptive or inferential statistical findings [56]; so they kept only two clusters
without any similar attempt with MMPI. In 2017, he participated in a paper whose title is
evocative: “Characterization of Patients Who Present With Insomnia: Is There Room for a
Symptom Cluster-Based Approach?”. In that paper [48], they found three clusters among 170
patients with Latent profile analysis from sleep logs, questionnaires, and PSG features again.

• We could see that two subscales (Es and TRT) used as a treatment adherence and outcome indi-
cator showed elevation peaks in our sample. TRT reveals a significant positive relation between
scores and readmission to the hospital for patients who may be at high risk for unsuccessful
substance abuse treatment [73].

So from these first observations, we could see that some scales are specifically interesting in finding
different clusters in CID, like Hs5K, D, Hy, Ma1, TRT, and Es. We will finish this first EDA with a
correlation matrix for the scale of interest.

Conclusions

The findings suggest strong relationships among certain variables in the MMPI-2 (Minnesota Multi-
phasic Personality Inventory-2) psychological profiles. A notable positive correlation exists between
the FB (Infrequency Back) scale and the TRT (Treatment Resistance) feature. This implies that the
cluster with the highest FB T-score could potentially represent individuals with the most resistance
to treatment.

A significant negative correlation exists between the TRT and Es (Ego Strength) scales. This
anti-correlation suggests that these two scales collectively characterize a distinct psychological pro-
file. However, the relationship between FB and Es is unclear, suggesting that Es may have broader
implications beyond negative treatment outcomes.

Despite having the highest average T-scores in the sample, the Hy (Hysteria), D (Depression), and
Hs (Hypochondriasis) scales show weak correlations with FB. This suggests the existence of distinct
clusters of psychological profiles.

Further analysis reveals nuanced relationships within these clusters. For instance, while Hy and
Hs5K show weak correlations with TRT, D exhibits a notable correlation. This differential relationship
can be interpreted as indicating that depression may pose a significant risk factor for poor treatment
outcomes independent of hysteria and hypochondriasis.

These results highlight the multifaceted nature of psychological profiles in the Chronic Insomniac
population. The identified clusters and correlations might be analyzed with the sleep features to see
if they could inform therapeutic strategies or help predict treatment resistance.

3.3.2 Database II (DII-QUEST)

Database II (DII-QUEST) is the aggregation of the Dysfunctional Beliefs and Attitudes about Sleep
(DBAS) questionnaire with the other transversal questionnaires used to assess the severity of Insomnia
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(ISI), sleepiness (ESS), anxiety (STAI-T and STAI-S), depression (BDI-II), and the circadian profile
(HO) (see Section 2.4.1 for background). The DBAS is a 30-item self-report questionnaire designed
to identify and assess various sleep/Insomnia-related cognitions (e.g., beliefs, attitudes, expectations,
appraisals, attributions). The importance of the DBAS was emphasized in Dysfunctional sleep-related
cognitions and attitudes as a model of Insomnia [81]. This study shows that negative emotions in
cognitions could lead to arousal, activating selective monitoring of physiological and environmental
factors related to sleep performance. Thus, Insomniacs could classify them as inefficient and could
conclude there is a sleep deficit. This aspect is of great interest for ParI analysis. In this Database
II, all the scores for each of the 30 individual questions of the DBAS are available. The interest is
that each question is an assertion about sleep (for example, ” I need to sleep 8 hours each night to
feel refreshed”) with an estimated agreement to each assertion between 1 (low) and 10 (high) (see the
full questionnaire in Appendix in Figure B.4). This questionnaire allows a good understanding of the
cognitive representation of Insomniacs and could help in understanding specific profiles.

Transversal questionnaires on sleep, 519 patients

Although 713 DBAS questionnaire IDs matched with the DATABASE I (DI-PSYCH), we could find
only 519 corresponding transversal questionnaire IDs.

Distribution We can see the Distribution for each questionnaire in Figure 3.6

General statistics This DII-QUEST allowed the evaluation of Insomnia severity with the ISI ques-
tionnaire in our sample and compared it to the literature. The description of each score is presented
in Table 3.3.2.

count mean std min 25% 50% 75% max

Female 519.00 64.93 47.76 0.00 0.00 100.00 100.00 100.00
Age 519.00 45.46 13.92 18.00 35.00 45.00 56.00 84.00
ISI 519.00 19.49 4.06 11.00 17.00 19.00 22.00 28.00
ESS 519.00 8.13 5.14 0.00 4.00 8.00 12.00 23.00
DBAS 519.00 153.04 34.87 13.00 132.00 154.00 177.00 232.00
Ho 519.00 50.58 11.22 7.00 44.00 51.00 57.00 86.00
stai etat 519.00 40.77 12.23 20.00 31.00 39.00 48.00 80.00
stai trait 519.00 48.06 9.69 18.00 41.00 48.00 55.00 72.00
BDI 2 519.00 16.90 10.47 0.00 9.00 15.00 23.00 59.00

Table 3.2: Mean score, standard deviation, and quartiles for the different transversal questionnaires
and the total score of DBAS

Correlation analysis The correlations between the transversal questionnaires and the total score
of the DBAS questionnaire are presented in Tables 3.7 and 3.8.

Dimensionnality reduction We did a PCA on the merge of DI-PSYCH and DII-QUEST presented
in Figure 3.9 with poor results.

We also ran a K-means clustering and a t-sne, but the results presented in 3.10 and 3.19 are not
contributives.

Regressor Decision trees To see if we could predict the DBAS total score with the psychological
profiles, we took the merge of DABS and MMPI-2 with 713 patients, and we ran a Decision Tree
regressor presented in Figure 3.12.
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Figure 3.6: This figure shows eight plots ((DII(DBAS) 1 to 8) distribution on our sample. Plots DII(DBAS) 1 to 6
show the subscore Distribution for each of the 30 questions of the DBAS questionnaire on the x-axis and the ratio to
total sample size on the y-axis. Plots DII(DBAS) 7 to 8 show the score Distribution of the other sleep questionnaires.
Epworth (ESS) shows a non-normal distribution that we need to investigate, as many questions of the DBAS. We could
observe the discrepancy between the anxiety scale designed to evaluate anxiety on the entire life (stai-trait) and the
present time evaluation (stai-etat). We could see the non-normal Distribution of the depression scale (BDI-II) showing
a kind of subgroups of more depressed subjects and a similar one with the STAI-E
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Figure 3.7: Graphical pairwise comparison and Distribution between the question-
naires. We could observe the high correlation between the questionnaires designed
to assess the anxiety trait and state (STAI-T and STAI-E) and the questionnaire
used to assess depression (BDI2).

Figure 3.8: Pearson correlations between the questionnaires shown in Figure 2.7.
We could observe the high correlation score between the questionnaires designed to
assess the anxiety trait (STAI-T and STAI-E) and the questionnaire used to assess
depression (BDI2).
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Figure 3.9: PCA on RangeIndex: 519 entries, 0 to 518 Columns: 126 entries with MMPI-2 scales and QUEST features.
We can see the first two components on this plot; the data points appear scattered and do not form any discernible
clusters or patterns. So, a very small percentage of the total variance is explained by the first two principal components,
leading to the conclusion that PCA did not reveal meaningful structure in the data.

Figure 3.10: t-sne on the DII-QUEST
Figure 3.11: K-means on DII QUEST x-axis is ISI
score and y-axis the ESS score
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Figure 3.12
This decision tree shows that the main criterion for separating the sample was the MMPI anxiety scale (ANX). By following the leaves from ANX, we can see
that the lowest score is on the left of the tree (Blue box), with 44 subjects having a mean DBAS value of 108, and the highest on the right (Red box) of the tree
at the bottom, with a score of 206 for 12 subjects. This result already confirms the correlation of the DBAS with the anxiety scales, meaning that the lowest
score on the anxiety scale of the MMPI could predict a low score on the DBAS scale.



We ran a PCA visualization to understand better the feature’s influence with only the contributive
features shown in the Decision Tree regressor. We can see the spatial representation of these features
according to the total DBAS score (we reinforced the visualization with a proportional coloration
gradient). This figure shows an interesting link between the anxiety scale (ANX) and problem at work
scale (WRK) and the dysfunctional beliefs and attitudes toward sleep. On the contrary, the scales Do
(Dominance) and Re (Responsability) are poorly linked with the high DBAS score.

Figure 3.13: PCA with visualization of the main scales involved in the Decision Tree process to predict DBAS Total
Score. Blue = Low DBAS score, and Yellow = High DBAS score. To better understand the Decision Tree shown in
Figure 3.12, this graph confirms the influence of the MMPI anxiety scale in predicting the DBAS total score. DBAS
total scores are distributed along the axis symbolized by the ANX (highest score) and Do (lowest score) scales, meaning
that the higher the ANX score, the greater its influence in predicting the DBAS total score; conversely, the higher the
Do score, the lower the DBAS score.

Discussion

In the dataset with 713 samples mixing the MMPI2 and DBAS scales, we found interesting and
concordant results mixing a DT for a regression problem to predict the total score obtained on DBAS
and a PCA using the features extracted from the DT. From these analyses, we could show with the
DT that the Anxiety scale of MMPI2 was the most important node, which is not very new as we
know that DBAS is correlated with anxiety scales [204], but most interestingly, we showed that the
lower score, which means people with normal beliefs and attitude toward sleep, so in theory not the
target for I-CBT, corresponded to the lower scores on the Lie scale in MMPI2 and high score in
social responsibility and dominance. This profile suggests that this cluster of people does not feel
vulnerable and is not afraid of being judged. Conversely, the patients with higher scores of DBAS are
highly depressed, and they could feel alienated, inadequate, unattractive, unlikable, and vulnerable to
judgment from others.
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Conclusion

Thanks to the DT regressor and a PCA visualization technique, we found discriminant features as-
sociated with psychological profiles to predict the degree of preoccupation with sleep and possible
insomnia (Anxiety versus Social responsibility). This opened new perspectives on more personalized
cognitive treatment.

3.3.3 Database III (DIII-PSG)

DIII-PSG (D-PSG) is the database gathering features available in the sleep report generated by the
experts after sleep scoring. Table B.4 shows the total feature list. The features extracted were from
the reports after expert scoring. The features are the classic parameters explored in sleep studies but
with significant additional features compared to most studies on Paradoxical Insomnia like

1. The distinction between spontaneous, respiratory, and related to periodic limb movements. The
goal is to discriminate the sleep fragmentation origin.

2. The number of awakenings longer than one minute during the sleep episode. The goal is to have
a specific assessment of the awakenings that could be theoretically remembered.

3. The number of awakenings between 15 and 60 sec.

4. The average HR and the RR interval in the different stages with the SD to evaluate the sympa-
thetic activity during the sleep episodes.

5. The index of respiratory events, meaning the number of partial or total respiratory limitations
per hour of sleep, specifically on the back position. Indeed, insomnia linked to respiratory
disorders can sometimes only occur in the supine position and go unnoticed during an initial
check-up for sleep apnea.

6. The number of stage changes during the sleep episode.

Distribution

We will show the Distribution of the central features displayed in a sleep report in Figure 3.14

General Statistics

The mean, standard deviation (SD), median, and quartiles of the T-score concerning the general scales
are shown in Table 3.3.

count mean std 25% 50% 75%
Efficacy % 576.0 74.75 15.44 67.00 78.30 86.20

TIB h 576.0 7.54 1.16 7.05 7.42 8.28
TPS h 576.0 6.66 1.39 6.09 6.58 7.43
TST h 576.0 5.65 1.33 5.02 6.00 6.44

WASO min 576.0 58.76 50.04 22.00 43.50 79.03
AHI /h 576.0 5.71 7.79 0.90 2.90 8.02
MicA /h 576.0 20.50 11.47 12.60 18.80 25.52
TotAr /h 576.0 23.84 12.40 15.15 22.10 30.00

PLM-index /h 576.0 9.57 14.61 0.90 3.70 12.05
Wake1min number 576.0 10.74 9.09 6.00 9.00 13.00
StageCh number 576.0 85.58 44.73 60.00 79.00 100.00

SOL min 576.0 31.97 34.69 10.28 21.05 40.02

Table 3.3: PSG features mean, standard deviation (SD), median and quartiles
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Figure 3.14: The Distribution for the main features used in PSG reports are displayed. The y-axis corresponds to the
ratio of the total sample size, and the x-axis changes upon the features. For plot 1 (Sleep Efficiency), it corresponds to
percentage; for plot 1 (Sleep Efficiency), it corresponds to percentage; for plots 2,3 and 4 (Time in Bed, Time Period of
sleep, Total Sleep Time and) it corresponds to hours, For plot 5 (Wake after Sleep Onset), it corresponds to minutes, For
plot 6,7,8 and 9 (Apnea Hypopnea Index, Micro-Arousal, Total Arousal, and Periodic Limb Movements) it corresponds
to the number of events per hour of sleep and for plot 10 (Wake episodes above 1 minute) it corresponds to the total
number of wake episode.

Exploring the impact of respiratory and neurological events on sleep fragmentation

In our inclusion criteria, unlike most studies on the Insomniac population, we discarded applying the
usual selection criteria for respiratory events or abnormal movements, usually < 15/h, to be considered
serious enough. Even if the results presented in 3.3 are quite normal concerning this aspect, we had
some patients with higher indexes. We will concentrate our first EDA analysis on its influences to
consider its influence. The justification for this choice is developed in the Appendix in B.3.4.

We would like to know how Respiratory events like obstructive sleep apnea (OSA) and Periodic
Legs Movements (PLM) affect objective sleep quality and fragmentation in our specific samples of
Insomniac patients.

The correlation matrix in figure 3.15 shows the interactions between the number of events detected
in our sample (number of respiratory and movement events per hour) and the main features showing
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sleep fragmentation. We could notice that only the Micro-arousal index is moderately correlated, but
there is no correlation with WASO, TST, and SOL, the usual metrics used in Insomnia assessment,
respectively the wake during the sleep episode, the Total sleep time and the sleep onset Latency.

In most papers studying Chronic Insomnia Disorder, the patients with more than 15 events per
hour of sleep (respiratory (AHI) and movements (PLM)) are discarded from the studies. This threshold
corresponds to mild disorder. They removed the subjects because these events could impact the sleep
quality by themselves and then somehow change the observation of the sample, especially the sleep
fragmentation, the sleep onset latency for PLM, and also WASO as the patients will wake up during
the night. We just saw, surprisingly, that SOL and WASO were not correlated with the number of
events.

We proceeded with an impact evaluation according to different thresholds to see the exact impact
on sleep fragmentation and find a significant threshold that could have too much impact on our
analysis. We removed the patients in our dataset according to their events index from above 40 to
less than 5. The results are presented in the table 3.4 with the number of subjects remaining in the
dataset after each drop of the corresponding sub-sample.

index/h
> 40 Max 57 < 40 < 30 < 15 < 10 < 5

AHI 0.58 0.55 0.52 0.48 0.36 0.36
N 576 574 568 534 480 396

index/h
> 40 Max 111 < 40 < 30 < 15 <10 < 5

MPJ 0.49 0.48 0.4 0.25 0.28 0.25
N 576 566 524 478 409 361

Table 3.4: Evolution of AHI and PLM index Pearson correlation with micro-Arousal index according
to different index threshold

For the AHI index, we could see that the correlation decreased very slowly until the threshold of
10/h, and after that, there was a stabilization. There is a decrease between 30 and 15/h for the PLM
index, but no difference after.

To see the influence of MPJ and AHI, we ran a PCA and t-SNE, and K means with the threshold
of 10 for AHI and 15 for MPJ (see Figures 3.17 and 3.16)). We can see that an increase in PLM defines
a subgroup of patients, more than AHI > 15. This effect disappears when we remove the subject with
PLM >15. This effect is not observed for AHI. So it seems that PLM has more effect on our sample
than AHI; we will see in our predictive models if this effect could impact sleep perception.

mean std min 25% 50% 75% max

Snore index 37.27 98.08 0.0 0.00 0.2 15.85 705.7

MicAr index 20.50 11.47 5.0 12.60 18.80 25.52 64.4

Mic Ar wakebouts index 23.36 11.22 5.4 15.15 22.1 29.70 71.6

Mic Ar Respi index 4.27 5.93 0.0 0.40 1.8 5.40 47.8

Mic Ar PLMS index 4.71 6.95 0.0 0.40 2.1 6.15 58.9

RDI back 9.13 15.01 0.0 0.40 3.1 11.05 101.5

Wakebouts 1mini 10.74 9.09 0.0 6.00 9.0 13.00 28.0

Stade changes 85.58 44.73 11.0 60.00 79.0 100.00 208.0

Table 3.5: PSG features related to the sleep fragmentation, mean, SD, median, and quartiles

Dimensionality reduction and clustering

We did a PCA on the PSG features in datasets four and five. Indeed, as the number of samples is not
so different, unlike Database I and II, we wanted to see the exact relationship between PSG features
on the datasets built for explaining Paradoxical Insomnia and the Treatment outcome.

The PCA with the correlation with the two first components is presented in Figure 3.20
We also try to find clusters with K-Means. We can see the results in Figure 3.21
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Figure 3.15: Pearson correlation between the index of respiratory events per hour of
sleep (AHI) and the index of movements per hour of sleep (MPJ) and the features reflectin
sleep fragmentation

Figure 3.16: PCA with the transformation into class
0 or 1 of Periodic limb movement (PLM) > 15 (class
1 (blue points))

Figure 3.17: PCA with the transformation into class
0 or 1 of Apnea-Hypopnea Index (AHI) > 15 (class 1
(blue points))

Figure 3.18: PCA with the transformation into class
0 or 1 of Periodic limb movement (PLM) > 5 but <
15 (class 1 (blue points)). The patients with an index
> 15 are removed

Figure 3.19: PCA with the transformation into class
0 or 1 of Apnea-Hypopnea Index (AHI) > 5 but < 15
(class 1 (blue points)). The patients with an index >
15 are removed

Discussion

Concerning the DIII-PSG, we want to emphasize that based on our correlation analysis described in
3.4, the impact of the threshold of AHI is almost the same with an index of 15 or 30 per hour on
the sleep fragmentation, and that this is the threshold of 10 that showed a notable change in the
correlation, but this impact doesn’t change even if the AHI index is below 5. Thus, concerning the
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Figure 3.20: The PCA for DIII-PDG is presented in these figures. The x-axis corresponds to the first component and
the y-axis to the second component. We can see that the five features on the upper right are positively correlated with
each other and contribute significantly to the first and second principal components. It is interesting to note that Time
in Bed (TIB) is correlated to the sleep fragmentation illustrated by Wakebouts above one minute. On the lower right, it’s
interesting that RDI back and PLM are positively correlated, but they show an inverse relation with the second principal
component compared to the first group of features. These features might provide contrasting information to the first
group. These features negatively correlate with the REM sleep percentage, possibly impacting sleep structure. Finally,
we can see that sleep latency is negatively correlated with TIB. This negative correlation appeared very significant in
our dataset.

Figure 3.21: Kmeans clustering for the PSG features
with K=3, x-axis = sleep efficacy in %, y-axis ) wake-
bouts number

proportion of Sleep Apneas in the final datasets used for ParI prediction (dataset four) and treatment
outcome prediction (dataset five), the percentage of AHI index > 10 are respectively 16.7% and 4.4%.
Concerning the impact of MPJ, there is a clearer cut-off corresponding to the usual recommendation
of 15 (See 3.4). The percentage of MPJ index > 15 is respectively 15.3% and 7%. We will see in
the corresponding chapter the impact of having kept these subjects in the sample, mainly of the ParI
prediction where the percentage is higher. It would be interesting to see if these factors would be
considered.

Concerning the PCA and clustering techniques, we could observe subgroups of patients with dif-
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ferent wakebout numbers and Time in Bed as discriminant features inversely correlated with sleep
latency.

3.3.4 Database IV (DIV-AG)

D-ACTI is the database gathering all the feature’s values recorded by an actigraph worn continuously
during an entire week by 350 patients. For this EDA, we will describe the 335 patients selected in
dataset four (see 3.1), and we added socio-economical features values and sleep logs features values to
better understand the activity-rest cycle according to labor activity. The detailed feature’s definition
can be found in the Appendix in Tables B.5, B.6. We reduced the different information for the socio-
economic status in four quantitative values with the label MDV (Mode De Vie). We assume to make
arbitrary quantitative gradation corresponding to:

1. MDV = 0 for unemployed and single

2. MDV = 1 for unemployed and in a relationship

3. MDV = 2 for employed and single

4. MDV = 3 for employed and in a relationship

Distribution

This choice is arbitrary but aims to investigate the correlation between supposed heavy constraints
for the MDV = 3 to relatively low in the case of MDV = 0.

Figure 3.22 shows the distribution of the various features.

General Statistics

mean std min 25% 50% 75% max
MDV 2.21 0.96 0.00 2.00 2.00 3.00 3.00

H coucher 1421.20 74.77 1211.00 1378.00 1409.00 1450.50 1972.00
Esti tps eNaNormt 100.69 411.63 0.00 21.00 38.00 68.00 3420.00

NB reveil/nuit 2.19 1.93 -1.00 1.00 2.00 3.00 18.00
Esti duree Tot reveil pdt som 188.01 575.14 0.00 30.00 60.00 124.00 3420.00

Tps Tot Som esti pdt nuit 324.63 93.45 13.00 262.50 330.00 390.00 585.00
Tps passe hors lit 31.86 92.60 0.00 0.00 3.00 11.00 400.00

H sortie lit 487.53 85.18 244.00 443.00 476.00 520.00 865.00
Assumed sleep 483.59 82.82 1.00 446.50 482.00 521.00 1314.00

Actual sleep time 416.24 66.20 21.00 386.00 419.00 454.00 661.00
Mean sleep last day 366.98 75.58 30.00 326.50 378.00 416.50 555.00
log lastnight dur 277.48 108.54 0.00 210.00 300.00 360.00 545.00

Sleep latency 21.33 50.70 0.00 6.00 13.00 23.00 830.00
Wake bouts 26.30 9.62 0.43 19.26 25.88 31.36 87.57

Mean sleep bout time 23.50 69.89 4.00 13.00 17.00 23.00 1280.00
Mean wake bout time 2.49 9.27 0.00 1.00 2.00 2.00 170.00

Immibile mins 405.81 60.70 221.40 373.94 407.25 442.38 635.43
Mouving mins 77.82 31.90 11.50 56.59 71.86 96.48 201.00

Nb of immobile phases 42.58 13.47 10.14 33.94 42.00 49.29 110.86
Mean length immobility 10.80 5.54 3.29 7.86 9.71 11.94 61.00
One minute immobiloty 8.39 5.71 0.00 4.94 7.43 10.57 66.14

Tot activity score 12963.52 57728.20 860.57 5002.00 7465.43 10636.19 860151.57
Mean activity score 26.84 130.24 1.86 9.54 14.52 22.27 1865.71

Mean score in active periods 182.65 860.43 31.88 77.74 95.50 118.32 10442.29
Fragm index 33.00 11.64 2.88 25.20 31.43 40.14 82.80

Avg wake mvmt 252.26 316.99 0.00 169.88 218.29 262.62 4184.43
Interdaily stability 0.51 0.12 0.07 0.43 0.53 0.59 0.84

Intradaily variability 0.87 0.20 0.36 0.73 0.84 0.99 1.75
Lowest 5h count 1111.89 918.20 94.00 561.00 855.00 1384.50 7321.00
Max 10h count 15450.19 6068.29 864.00 11606.50 14543.00 18427.50 56424.00

Table 3.6: General statistics on the Database IV (AG) with additional features from sleep log (yellow)
and work/marital status (grey)

Correlations analysis

The previous results showed that some specific scales increased the T-score means, like Hy, D, or H5K.
Others showed particular distributions on the dataset and were linked to the treatment outcome, like
Es and TRT. We saw that the feature FB is almost sufficient to represent three clusters according
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Figure 3.22: Non normalized Distribution of the raw values obtained with the actigraph. We can see that the visual
distribution is difficult to assess due to the wide disparity of the value scales. Indeed, there is a mixture of cumulative
values, such as the number of movements per 24 h, and transformed values, such as total sleep time, which makes it
difficult to visualize the features together. In the next figure, we have normalized all the values to make them more
comparable.

to its T-Score on our dataset. We present in Figure 3.3 a specific focus on the Pearson correlation
between these features.

The results show a high correlation between FB and the feature TRT, so it’s possible that the
cluster with the highest FB T-score could be the one with the most treatment resistance. TRT and Es
are anti-correlated in a significant way, which means that these two scales are linked to a profile. The
correlation between Fb and Es is weaker, so iEs must cover a wider field than the treatment outcome.
On the other hand, the highest T-score mean in our sample, Hy, D, and Hs, are poorly correlated to
FB, so we have effectively different clusters of psychological profiles. In detail, we could even observe

Chapter 3 Olivier Pallanca 75



Figure 3.23: Distribution of the normalized values obtained with the actigraph. We can see here the visual distribution
of the different values. In plot eight, we see two groups related to the L5onset (the period of the five more stable hours
of sleep)

a cluster in the cluster with Hy and Hs5K poorly correlated to TRT when D does. This observation
could lead to the interpretation that being depressed is a risk factor for poor treatment outcomes.

Dimensionality reduction and clustering

The main results for 3D PCA are presented in Figure 3.25. We couldn’t find significant t-SNE results
after perplexity tuning from three to 100. For K-means clustering, we tested 6 clusters. Figure 3.26
presents the visually discriminative results.
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Figure 3.24: Pearson correlation analysis between scales with increased T-score means(Hy, D, and H5K), the ones
linked to a negative treatment outcome (Es, TRT), and FB heavily involved in the three clusters found in our dataset

Figure 3.25: PCA on the 10 main scales on the
MMPI-2 dataset with age and gender. We found after
several experiments that only age could slightly affect
the PCA representation, below or above 35. But the
PCA here doesn’t help much.

Figure 3.26: K-means clustering in 3D for K=6 for
MMPI-2 Tscore with the validity scale VRIN, TRIN
and Fb. We could see three distinct cluster regions
almost entirely linked to the Fb scale. According to
[26], when the Fb T-score is above 70, it is potentially
linked to fatigue, attention disorders, a tendency to
show oneself in an unfavorable light, or a sign of severe
psychopathology.

3.3.5 Dataset 4 and 5

In the forthcoming Chapters 5 (Explaining Negative Sleep State Misperception) and 6 (Explaining
Therapeutics Issues), a comprehensive exposition will be provided for datasets 4 and 5, which represent
the culmination of the aggregation of databases I through IV, and databases I through III, respectively.
Before this detailed discussion, exploratory unsupervised modeling was conducted to determine the
preliminary cluster formations within these datasets. The initial findings are depicted in Figures 3.27
and 3.28.

Upon examination through Principal Component Analysis (PCA), datasets 4 and 5 exhibit consid-
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erable similarities, with minor differences. Specifically, dataset 4, which amalgamates data from 335
patients across databases I to IV, appears to be particularly influenced by the MMPI2 scales, espe-
cially the Dominance scale. Further investigation will ascertain the impact of this scale on Paradoxical
Insomnia (ParI). However, when applied based on socioeconomic criteria, additional analytical tech-
niques such as t-distributed Stochastic Neighbor Embedding (t-SNE) and K-Means Clustering failed
to yield further insights.

Conversely, dataset 5—which combines data from 423 patients across databases I to III—shares
similarities with dataset 4 as indicated by PCA but does not demonstrate a notable influence from
the Dominance scale. Interestingly, the t-SNE visualization with a perplexity setting of 30 suggested
the presence of two minor clusters.

Collectively, these analytical approaches suggest the existence of at least two to three
distinct patient subgroups within the datasets, providing a foundational understanding
that will be elaborated upon in the detailed analyses in the aforementioned chapters.
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(a) PCA with all the features in the dataset 4

(b) PCA with all the features in dataset 4 accord-
ing to the socio-economic status.

(c) T-sne with all the features in dataset 4

(d) K-means clustering according to MMPI scale
D and R, K=3

Figure 3.27: Dimensionality reduction and clustering on Dataset 4
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(a) PCA with all the features in the dataset 5

(b) PCA with all the features in dataset 5 accord-
ing to the socio-economic status. (c) T-sne with all the features in dataset 5

(d) K-means clustering according to percentage of
SWS and REM sleep D and R, K=3

Figure 3.28: Dimensionality reduction and clustering on data 5

80 Chapter 3 Olivier Pallanca



3.4 Evaluation of the Relevance of Datasets to the Assumptions
Made

3.4.1 Sample representativeness

Age and gender

Significant studies in general population samples diagnosed with indistinct Insomnia based on stan-
dardized questionnaires showed across different countries: -In China, a study [32] on 14263 subjects
found a mean age of 43.7 y.o of and 55% of female proportion. -In Canada, a study [148] on 2000
subjects found a mean age of 48.6 ±12 yo and 60.5% of female proportion. -In France, a study [15]
on 7844 subjects found a mean age of 46.2 yo±13 yo and 56% of female proportion.

Significant studies specific to primary Insomnia samples (especially without psychiatric comorbid-
ity) showed: -On 567 subjects with Primary Insomnia, a study [66] found a mean age of 58 y.o ±14of
and 59% of female proportion. -On 429 subjects with severe Insomnia in the general population, a
study [87] found a mean age of 45 yo (only age class available) and 65% of female proportion. -On
283 subjects (124 clinical patients (chronic primary Insomnia) and 159 research(primary Insomnia or
comorbid Insomnia (mostly anxiety and depression)), a study [146] found a mean age of 46.6 yo (±
10.0, 20 to 71 yo) and 59.5% female proportion.

Significant studies of so-called comorbid Insomnia showed: - A meta-analysis of 23 studies involving
1379 patients [71] found a mean age of 53.0 yo (± 10.0 y), and the female proportion was 66.5%. So,
our sample is close in terms of age and gender of the target population studies in the literature,
especially those corresponding to severe Insomnia or mixed primary-secondary Insomnia with possible
sub-clinical anxiety and depression issues.

Psychological profile

MMPI scores

A study [217] on 199 patients compared the MMPI-2 scales for four types of profiles, psychiatric,
PsyI, ParI, and nocturnal myoclonus. The graphical results of the main scores are shown in Figure 3.29.
The results from 3.1 were reported on this subtype differentiation. Our sample is highly superimposable
on the two intermediate curves corresponding to the two primary types of Insomnia, PsyI (Pp on the
figure) and ParI (NOFon the figure). With a more detailed analysis, our population doesn’t share
any highly significant score with the psychiatric Insomnia (Ps) profile with a T score above 70 in five
scales. So, our sample aligns with age, gender, and psychological profile with the thesis objective,
describing ParI, initially classified as primary Insomnia, as we discussed previously. A recent review
found that the scale usually increased in chronic or primary Insomnia studies are Hs5K, D, Hy, and
Pt1K, and the mean score for these scales. Finally, a few studies tried to make clustering, like [56],
which found two subtypes with few patients. Nevertheless, as they found more than 20 subjects per
group, the results are interesting according to [50]. Indeed, in their paper studying different clustering
analyses, like K-Means or Fuzzy clustering, they found that clustering outcomes were mostly unaffected
by differences in covariance structure. Sufficient statistical power was achieved with small samples
(N=20 per subgroup). In Table 3.7, we compared the scores of this study with our global results.
Again, we found very similar results except for the Hs scale. However, although this sample is the
same in terms of mean age (45.7 yo (±15.5)), the gender repartition is not in line with most of the
studies as the female proportion is only 45%. This could explain why Hs is lower, but still, this result
aligns with the usual finding on Primary Insomniacs patients described in [112].

Insomnia type Number Hs D Hy Pd Pa Pt Sc Ma Si
PI 88 59.7 64.75 65.38 60.0 59.0 63.0 60.0 53.0 55.0
CI 1182 66.4 67.0 65.9 58.5 59.6 63.2 60.50 50.4 56.1

Table 3.7: CI = Chronic Insomnia PI = Primary Insomnia
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SOL WASO TST SE N1 perc N2 perc N3 perc N4 perc REM perc

mean 33.47 64.52 351.80 75.63 4.37 52.23 18.19 6.14 19.00

std 33.52 56.95 79.33 13.71 4.10 12.27 8.57 7.84 7.24

min 0.00 0.00 74.00 15.50 0.00 8.80 0.00 0.00 0.00

25% 12.10 24.50 301.50 68.85 1.70 43.65 12.55 0.00 13.95

50% 23.80 48.00 358.00 79.10 3.00 52.20 17.10 2.00 18.50

75% 41.45 87.00 404.50 85.05 5.90 60.35 22.60 10.45 23.90

max 214.10 429.50 642.00 97.20 29.70 90.90 46.00 45.60 42.60

Table 3.8: Main PSG features description in the dataset five

Figure 3.29: The diagram shows target diagnostic categories,
denoted in yellow, which are nearly perfectly superimposed
with our sample mean of MMPI elevations (red stars). The
diagnostic categories include NM (Nocturnal Myoclonus), Pp
(Psychophysiological Disorder), NOF (No Objective Find-
ings), and the MMPI scales are Ps (Psychiatric Disorder), Hs
(Hypochondriasis), D (Depression), Hy (Hysteria), Pd (Psy-
chopathic Deviate), Mf (Masculinity-Femininity), Pa (Para-
noia), Pt (Psychasthenia), Sc (Schizophrenia), Ma (Mania),
and Si (Social Introversion) from [217].

Specific and general questionnaires usually used in CID evaluation

Subjective index of Insomnia severity on the sample On the DII-DBAS, our sample is in line
with the major studies on Insomnia Indeed, with a mean of 19.4 ± 4 to the ISI scale, the mean score
is comparable to [41] who found a mean score of 17.51 (± 4.41) on 250 clinical Sample patients (Mean
age 49.6 (± 13.65), women 55%), and [100] who found a mean score of 18.4 (± 3.7) and 19.4 (± 4.1)
on two clinical groups (N = 49 and 51) with a mean age of age 41.4 ± 10.5 and 41.3 ± 12.5, female
71% and 79%. Also in line with [149].

Subjective depression score on the sample For the depression inventory, our results are
also in line with the literature. Indeed, as mentioned earlier, a score of 17 seems to be the cut-off
for depression detection; with 16.8, our sample is just below. Subjective anxiety score on the
sample For the STAI-trait and state, our sample is closer to the population of Insomniacs without too
much stress described in [119], which is in line with all the others scores obtained in particular in the
MMPI-2 scale, adding a stone to the representativeness of our sample to study primary Insomniacs
subtypes.

Polysomnographic evaluation

We compared the main PSG values in dataset five (N=423) to several studies on CID and Primary
Insomnia. The features used for the comparison are described in Table 3.8.
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We compared the mean and SD to three studies on CID. We can see the visual comparison in
Figures 3.30, 3.31 and 3.32. We can see that the mean overlapped with most of the studies on CID
in terms of TST and sleep stage percentage. We can see that the SD of WASO is quite high in our
sample compared to [10] and [94], but our sample size is almost 10 times each of these studies; this
could explain this variability.

Figure 3.30: Visual comparison of the eight main
PSG features between our dataset and a population of
indistinct CID (N=16) [185]

Figure 3.31: Visual comparison of the eight main
PSG features between our dataset and a population of
ParI and PsyI (N=30 for PsyI, N=28 for ParI)[11]

Figure 3.32: Visual comparison of the eight main
PSG features between our dataset and a population of
ParI and PsyI (N=26 for PsyI, N=20 for ParI) [94]

3.5 Conclusions

Our visualizations showed that our dataset highly represented the populations of chronic Insomniacs
described in the literature, especially primary Insomnia. Indeed, we have shown that the psychological
profiles of our patients correspond to so-called primary Insomniacs and that our sample is, therefore,
suitable for studying the determinants of Paradoxical Insomnia. We showed that the linear (PCA)
and non-linear (t-sne) visualization methods could allow us to find subgroups in datset4 and 5. For
the MMPI-2 scales, we also found three clusters on 1182 patients.

On a representative dataset of a population of 713 chronic Insomniacs, we were able to find
subgroups of patients in terms of rumination and preoccupation identified by the DBAS according
to scores on the MMPI-2 psychological assessment scale, thanks to a prediction tool (Decision Tree).
This is the first study to predict preoccupation and rumination around sleep using the MMPI-2. The
next step will be to create a specific scale in the MMPI-2 for Insomnia. This finding seems confirmed
by a clustering method finding three subgroups of patients similar to the clustering produced on the
1182 MMPI-2 results. We also show that the subscale of the MMPI-2 is useful to predict the different
subgroups; until now, only the 10 basic scales have been used in the various studies cited previously.
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Chapter 4

Investigating Machine Learning Tools for EEG Analysis

in Sleep Medicine

The purpose of this chapter is to assess the feasibility and reliability of ML tools for analyzing elec-
troencephalogram (EEG), particularly for standardized sleep scoring. A particular aspect we look at is
spindle detection. Finally, we look into clustering the features we extracted with tools in our analysis.
The global objective is to standardize the sleep analysis for ParI characterization and phenotyping.

Chapter Highlights : Five experiments on EEG, from automatic sleep stage scoring,
to spindles detection until EEG features engineering for CID clustersization and
subtyping

1. Automated Sleep Scoring In this exploratory study, we are testing the primary hypothe-
sis that an EEG signal detection algorithm, which employs Empiric Mode Decomposition
(EMD) and bandwidth filtering, can accurately score sleep stages based on varying quali-
ties of sleep EEG (either clean or noisy), achieving results comparable to those of expert
scoring. The data used are 2*1000 epochs from six EEG channels, one from corrupted and
one from good PSG. The Data preprocessing include low and high band filter (0.3-30 HZ).

2. Convolutionnal Neural Network (CNN) for automated sleep scoring In this study, we are
testing the primary hypothesis that an EEG signal detection algorithm, which employs
Convolutional Neural Network (CNN) and bandwidth filtering, can accurately score sleep
stages, achieving results comparable to those of expert scoring. The goal is to evaluate the
reliability and transferability of such an algorithm. The algorithm is tested from different
sources (our dataset, MASS, and Sleepphysionet) with 60 PSG recordings each. The Data
preprocessing include low and high band filter (0.3-30 HZ).

3. Benchmark for Spindles Detection: In this study, we used micro biomarkers useful in phe-
notyping but fastidious to detect manually, specifically sleep spindles, which have already
been used to characterize ParI in previous studies; we test and compare algorithms on our
dataset to assess their reliability. The dataset here is one single night from a young patient,
with high-quality signals and expert scoring of the ground truth. The Data preprocessing
include low and high band filter (0.3-30 HZ).

4. Spindles and Personality Prediction: The main hypothesis is that sleep spindles, as a
biomarker, can predict predispositions towards certain psychopathological traits
important to understand CID clusters or subtypes. The characteristics of sleep spindles
(including their density, average duration, average frequency, and the average number of
oscillations) can be used to predict the occurrence of a patient’s predisposition towards cer-
tain psychopathological traits as assessed by the MMPI-2 questionnaire. we used spindles
detection algorithms on 267 subjects from our dataset with density and duration detection
of spindles.The Data preprocessing include low and high band filter (0.3-30 HZ).

5. Subtyping Insomniacs with Significant Difference in Subjective Sleepiness using Graph Spec-
tral Theory and clustering techniques on raw EEG and hypnogram scored by expert The
main hypothesis is that we could find clusters (linked to specific subtypes) of CID patients
with a significant difference in terms of subjective sleepiness (ESS questionnaire score) and
insomnia severity (ISI questionnaire score) using Graph Spectral Theory and clustering
techniques on raw EEG and hypnograms scored by sleep experts from 386 PSG recording.
The Data preprocessing include low and high band filter (0.3-30 HZ).
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Key Terms and concepts
Acronym/term Definition Ref.

AdamOptimizer Adaptive Moment Estimation p. 171 (B.1.2)
CNN Convolutional Neural Networks p. 171 (B.1.2)
EDF European Data Format p. 169 (B.1.1)
EMD Empirical Method Decomposition p. 172 (B.1.2)
ESS Epworth Sleepiness Scale p. 31 (2.4.1)
ICA Independent Component Analysis p. 173 (B.1.2)
IMF Intrinsic Mode Functions p. 172 (B.1.2)
ISI Insomnia Severity Index p. 31 (2.4.1)
MASS MASS Sleep Dataset p. 169 (B.1.1)
MMPI Minnesota Multiphasic Personality Inventory p. 32 (2.4.1)
PSD Power Spectral Density p. 175 (B.1.2)
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4.1 Automated Sleep Scoring

The main objective of this section is to get an idea of the feasibility of automatic sleep stage detection
on our dataset. At the start of our thesis, this need was in anticipation of a possible extension of our
ParI and Treatment outcome predictions to other datasets. In this case, being able to replicate and
ideally explain precisely how these sleep stages were scored would increase the reliability of our results
and avoid criticism of the reliability of expert scoring. Indeed, our interest in the automatic scoring of
sleep stages lies in the desire to standardize analysis so that they can be extended to larger databases
and not depend on inter-rater variations, which can complicate comparisons between datasets. A
recent meta-analysis [121] on the subject confirms analyzing 11 studies that Cohen’s kappa for manual,
overall sleep scoring was 0.76 (0.71-0.81). In another four studies by sleep stage, the agreement was
0.70, 0.24, 0.57, 0.57, and 0.69 for the W, N1, N2, N3, and R stages, respectively. These results reflect
that sleep scoring can sometimes prove difficult due to the multiplicity of parameters to be considered
and the variability of EEG aspect as a function of age, associated pathologies, medication, or artifacts.
So, if we could have an algorithm powerful enough to exceed 0.8 (more than manual scoring agreement
predictions), and one that we could also explain, this would be ideal for subsequent replication of our
studies.
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4.1.1 Characterization of sleep states with EEG pattern detection according to
the quality: a proof of concept study

Introduction and hypothesis genesis

We did a first proof of concept (PoC) study as a preliminary investigation with small-scale data
exploration. We chose this first experiment because our sleep acquisition software (BrainRT) was
designed to enable interfacing between clinical recording and research and allow us to implement
specific features to analyze the signal. After contacting the BrainRT RD team, we could access the
algorithm based on empirical method decomposition (EMD). After the state-of-the-art review, we
could see that this technique could be efficient in noisy recording. So we decided to make a brief PoC
on a noisy and good-quality recording to see if we could reliably use this algorithm to standardize the
analysis and earn some time.

Background

The automatic sleep scoring algorithm used in this experiment is a mix of automatic denoising algo-
rithms using Empirical Method Decomposition (EMD), notch filtering for electrical currents, Electro-
cardiogram filtering, spindles, delta, and alpha detection with EMD, and handcraft denoising setting
criteria to limit and classify as artifact part of the signal exceeding some limits in-band frequency
spectrum analysis, power, duration, amplitude. The setting allows the implementation of AASM [90]
criteria for sleep scoring, like the percentage of Slow Wave Sleep or alpha in one single epoch, to be
classified in the proper sleep stages.

The issue was whether it made sense to test this particular algorithm about our goal of achieving
relatively reproducible and reliable results, even on artifact-based tracings. We have to analyse the
state-of-the-art literature on the subject to first answer this question.

The question here is to evaluate the interest of EMD in the case of noisy signals. Usually, conven-
tional time-frequency representation algorithms, such as the short-time Fourier transform and contin-
uous wavelet transform, have been commonly employed to help in EEG quantification. However, these
methods limit the time-frequency representations by relying on predefined sets of basis functions. This
fixed arrangement may not fully capture the characteristics of the data and especially in bad quality
data where ”non” desired figures named artifacts could appear, especially in ambulatory analysis.
We already know from experience with expert scorers that the sleep EEG, especially in ambulatory
recording, could be very noisy. Indeed, noise could come from multiple origins, internal or external.
The internal origin could be eye blink or movement, ECG pulse, chewing, swallowing, clenching, sniff-
ing, talking, scalp contraction, etc.. The external could be electrode displacement and pop-up, cable
movement, poor ground, electrical or magnetic or sound waves, body movements, etc.[92] In figure
4.1, we can see a moderately corrupted EEG as an example in[92].

Figure 4.1: Visual appearance of a bad quality EEG trace
on 10-sec scalp EEG segment (all channels corrupted with
muscle activity) [92]

The hypothesis that we could use automatic scoring on the corrupted recording was encouraged by
recent findings [44] suggesting that accurate power spectral density estimates strongly resembling the
output of visual scoring can be achieved by very simple detection algorithms detection and claiming
that the method was robust against inter-/intra-subjects and raters variability. At the time of our
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preliminary study in 2017, a reference of [92] extensively reviewed 35 methods for artifact detection
from scalp EEG. From this review, the recommendation for ambulatory EEG monitoring, when the
number of channels is fewer than standard EEG, was wavelet-based Transform algorithms. It offers
good time-frequency localization, making it suitable for analyzing non-stationary signals like EEG.
Wavelet denoising techniques can help remove unwanted noise components from the signal while
preserving EEG features. Independent Component Analysis was also described as a good statistical
method to separate a multichannel signal into statistically independent components. It can effectively
isolate EEG sources from artifacts and external noise sources. By assuming the sources are statistically
independent, ICA can separate EEG components from other signals recorded simultaneously, such as
muscle artifacts. But around the same period, a paper [83] found that using EMD could perform even
better than these two techniques on EEG.

So without further research, we decided to test the performance of this algorithm on our data.
The methodology and the algorithm pseudo-code will be described in the section methodology.

Methodology

Rationale for our methodology choice The work of Coppieters et al. inspires our study’s
methodology [44]. They devised a four-step protocol, examining the algorithm’s performance on one
to six different nights’ data from 35 subjects. Our aim differs from theirs, as we intend to predict sleep
stages while considering artifacts using heterogeneous data. The Coppieters protocol begins with six
PSG recordings from five healthy young subjects under controlled laboratory conditions. Furthermore,
spindle detection was also part of their algorithm. A human rater visually inspected each recording to
identify and reject artifacts and arousals. They progressed to the subsequent step only if they achieved
positive results in the current step. Their first step already delivered satisfactory results compared to
expert scoring ( Since there is neither any ground truth data available nor any universal nor standard
quantitative metric(s) used in the literature that can capture both amounts of artifact removal and
distortion), with sensitivity (87 ± 5%), Kappa coefficient (0.70 ± 0.15), and average overlap of detected
events (0.70 ± 0.10). However, the False Discovery Ratio was less impressive (39% ± 17%). We want
to achieve similar results in our first phase before going further. Our methodology tested our algorithm
on two datasets characterized by extreme differences in quality and artifact levels (Good versus bad).
This first step aims to understand the accuracy range our algorithm can achieve compared to the
ground truth (expert scoring) in these two recording quality scenarios. This information is crucial
to understanding why certain parts of the recording could not be detected, allowing us to adjust the
algorithm’s tuning for subsequent steps.

Choice of the recording The PSG recording was chosen to represent our sample, i.e. women
(mean age 48 ± 4 yo) with no other sleep disorders than CID. The algorithm used all the available
signals and electrodes recorded by the two EOG (EOG 1 and EOG2), the EMG, the six EEG electrodes
(C3, C4, F3, F4, O1, and 02), and the two Mastoids electrodes M1 and M2. The EEG montage is
bipolar, with each EEG electrode associated with the opposed Mastoid electrode. The montage could
be viewed in the illustrations in B.7 and B.6.

So one recording was of very good quality, with only minor artifacts when the other was highly
corrupted but still interpretable by a sleep scorer expert. The visual aspect of these two recordings
for the six EEG can be seen in Figures 4.2 and 4.3.

Description of the algorithmic protocol The algorithm based on Empirical Mode Decomposition
(EMD), a data-driven method used for the time-frequency analysis of signals decomposes a signal into
intrinsic mode functions (IMFs) or modes. Each IMF represents a specific oscillatory pattern in the
signal, providing a localized representation of the signal in the time-frequency domain.

In the EMD algorithm, we performed an iterative decomposition process on an N-point EEG
epoch, represented as X. The algorithm identified local extrema, constructed envelopes, and iteratively
subtracted the local mean curve from the signal until convergence. The outcome is a set of IMFs
representing the time-frequency components of the original EEG signal.

The general formula for EMD decomposition can be written as:
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Figure 4.2: Visual appearance of a good-quality EEG
trace on F3-M2, C3-M2, and O1-M2 (top) and F4-M1, C4-
M1 and O2-M1 (bottom) during 15 seconds of stage N3
with bandwidths 0.3-30 Hz filter. Channel C4-M1 presents
light but continuous artifacts secondary to partial electrode
detachment, which is common during recording. The Blue
lines correspond to Delta rhythm prediction and the Ma-
genta to the sigma

Figure 4.3: Visual appearance of a bad quality EEG
trace on all channels but increasing in C4-M1 and 02-
M1 (bottom) during 15 seconds of stage W with the
application of bandwidths 0.3-30 Hz filter. Note the
EOG at the top with artifacts; the orange line is the
eye movement detection. These artifacts are secondary
to partial to almost complete electrode detachment

x(t) =
N∑
i=1

ci(t) + r(t) (4.1)

Here, x(t) represents the original signal, ci(t) denotes the i-th IMF, N is the total number of IMFs,
and r(t) is the residual signal.

The algorithm has been enhanced for the application of BrainRT. We changed the applied limits
on the frequency threshold to be more selective on the artifacts detection. The entire pseudo code
with all the parameters tuned is described in Appendix in B.2.1

Description of the performance evaluation Evaluating the performance of a classifier becomes
quite challenging when the classes are imbalanced. Indeed, we will evaluate 16 hours of EEG with
a majority of wake time and some discrepancy between each sleep stage. To assess the algorithm’s
performance in detecting sleep stages, we recovered all the 30-second epochs scored by the algorithm
with the 5 classes corresponding to the different sleep stages (W, N1, N2, N3, and REM). The two EEG
recordings correspond to around 1900 epochs, each assigned one of the 5 classes. We used confusion
matrices with raw and percentage (after normalization) of accuracy between the algorithm prediction
and the Ground Truth (expert scoring) to compare results between the automatic scoring algorithm
and expert scoring.

The schematic generic confusion matrix is depicted in Figure 4.4

Figure 4.4: Generic confusion matrix for a binary classi-
fication

Results

The results are presented in the four confusion matrix in Figures 4.5, 4.6, 4.7 and 4.8.

The following results were noted:
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1. For the Good quality recording, the main results are:

• Even for the good quality recording, the prediction was poor, with a global accuracy of
0.64, essentially due to the high accuracy in predicting W stages. Indeed, the balanced
global accuracy is 0.4.

• For the sleep stages, the accuracy is only 18% for stage N1, 27% for stage N2, 21% for stage
N3 and 40% for REM sleep.

• There was also a tendency for the algorithm to over-predict stage N3 instead of N2.

2. For the poor-quality recording, the main results are:

• The results are surprisingly identical in terms of global accuracy than for the good quality.
However, the balanced accuracy is only 0.32.

• But looking at the detailed results, the W prediction is still good, but of practically 0% for
stages N1, N3, and REM.

• Stage N2, on the other hand, is very well predicted despite the artifacts with 77% accuracy.

• More annoying is the prediction of false positives, notably for REM sleep, or N2, which
means that the algorithm ”invents” sleep in a high percentage during wake time.

Figure 4.5: Non normalized Confusion Matrix between
automatic scoring and visual expert scoring (Good quality
recording)

Figure 4.6: Normalized Confusion Matrix between
automatic scoring and expert scoring (Good quality
recording)

Discussion

The feasibility of automatic sleep stage detection based on our dataset was the primary aim of this
study. Our initial anticipation was the potential expansion of our ParI and Treatment outcome
predictions to other datasets, emphasising replicability and accuracy of sleep stage scoring to increase
the reliability of our results. Our interest was predominantly in the automatic staging of sleep stages to
standardise analyses for larger databases and to mitigate inter-rater variations that could potentially
complicate comparisons between datasets. The results from our proof-of-concept (PoC) study revealed
several important findings.

In our PoC study, we explored small-scale data and incorporated Empirical Mode Decomposition
(EMD) for sleep stage scoring. EMD was chosen due to its known effectiveness in noisy recording.
To evaluate the utility of EMD in our task, we examined the state-of-the-art literature and adopted
an algorithm based on it. The selected algorithm had a mixed design, including automatic denoising
algorithms using EMD, notch filtering for electrical currents, and other features.
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Figure 4.7: Non normalized Confusion Matrix between au-
tomatic scoring and visual expert scoring (Corrupted record-
ing)

Figure 4.8: Normalized Confusion Matrix between
automatic scoring and expert scoring (Corrupted
recording)

Our findings were that even with good-quality recordings, the prediction was suboptimal, with
an overall accuracy of 0.64 with the same result on noisy recordings. This subpar performance was
primarily due to high accuracy in predicting W stages and a tendency to overpredict stage N3 instead
of N2. This result brings into question the generalizability of these findings to our dataset.

The algorithm notably excelled at identifying the N2 stage in the noisy environment when it failed
on good quality recording. Upon examining the spindle detection component of the algorithm, we
found it exhibited strong accuracy in predicting sleep spindles. This consistency aligns with the original
design of the algorithm, where considerable emphasis was put on EMD and the Viterbi algorithm to
enhance spindle detection. This might also clarify the observed false positives when predicting N3 for
N2, as spindles are a common element in both stages. In the case of insufficient detection of slow wave
sleep, the algorithm may wrongly consider slow wave sleep and spindles as N3 instead of N2 if delta
detection is not performant enough. Nevertheless, spindle detection remains accurate in both cases.

As stated in the hypothesis, if the first phase were unsuccessful, we would stop the experiment.

Limitations

The first limitation is our reliance on a single algorithm for our data analysis, but it was part of the
hypothesis as we wanted to test the ones we already had. But of course, given the diverse algorithms
available for sleep stage detection, our results may not represent the results achievable with other
methods. Furthermore, our algorithm was based on EMD, a technique primarily used for noisy
recordings. Although we did test the algorithm on both good-quality and noisy recordings, further
research should examine the performance of different algorithms on various types of data.

Then, our sample size was limited, with our methodology based on a single PSG recording that
was highly homogenous (i.e., women with a mean age of 48 years and no other sleep disorders than
CID). The algorithm’s performance on a larger and more diverse population remains untested.

Also, our study did not account for inter-rater variability in the scoring of sleep stages. Although
we aimed to develop an algorithm that could mitigate this variability, we did not validate our algorithm
against multiple raters to test this claim truly.

Conclusion

In conclusion, our study aimed to assess the feasibility of automatic sleep stage detection using an
algorithm based on EMD. While the algorithm was successful in standardising the analysis and saving
time, the accuracy was less than desired, especially considering previous findings in the literature.
Given the limitations of our study, it is apparent that further research is required, including the use
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of diverse algorithms, a larger and more diverse population, and validation against multiple raters to
truly assess the potential of automatic sleep stage detection. But this EMD method could be efficient
in sleep spindles detection alone. We then abandon the idea of using this algorithm, and in the next
experiment, we will implement an ICA with CNN. algorithm to increase our chance of getting accurate
results.
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4.1.2 Convolutionnal Neural Network (CNN) for automated sleep scoring

4.1.3 Introduction, Background and hypothesis genesis

The primary aim of this second experiment is to leverage automated scoring for standardising out-
comes and enhancing the reliability and reproducibility of results. Initially, we hesitated to employ a
deep learning algorithm due to our interest in the explicability of predictions. However, the inferior
performance of the EMD-based automatic scoring algorithm led us to consider an algorithm with a
strong precedent in publications and practical application.

Background

Our selection fell upon an algorithm proposed by [36], recognized as one of the most advanced at
the time of our research and fitting our aforementioned criteria. Numerous other algorithms using
Convolutional Neural Networks (CNN) or Recurrent Neural Networks (RNN), both or Attentional
Networks, were published during this period. To sverify if our results are of interest regarding the
recent publications, we will do the states of the arts of the algorithms tested on the same Sleep
database, MASS (see the description in Appendix B.1.1). We synthesised the different results in
Table 4.1

Ref Years Input Sequence encoder Accuracy
Supratak et al
(2017), Phan
et al (2019)

Raw RNN 0.800

U-Time Perslev
et al (2019

Raw CNN 0.800

TinySleepNet
Supratak and
Guo (2020)

Raw RNN 0.782

GraphSleepNet Jia
et al (2020)

Raw Attention 0.834

SeqSleepNet Phan
et al (2019)

Time freq RNN 0.815

Algorithm used in our experiment Raw CNN 0.820

Table 4.1: Balanced accuracy score for sleep stages prediction on the MASS dataset used to train
the algorithm used in our experiment since its publication in 2018. Only Attention sequence encoder
performed a little bit better.

Hypothesis

Our objective was to study the reproducibility of a performant sleep-scoring neural network. The
model we are studying was introduced in 2018 by [36]. It is a deep neural network that performs tem-
poral sleep stage classification from multimodal (typically EEG, EMG and EOG) and multivariate
time series. The model in question efficiently amalgamates information from various sensors using a
linear spatial filtering operation. This helps construct a hierarchical representation of Polysomnog-
raphy (PSG) data via temporal convolutions. Furthermore, the model also incorporates data from
different modalities, which are processed via distinct pipelines. This model’s structure can be observed
in Figure 4.9

The algorithm we chose was specifically designed for home sleep helmets, with practical applica-
tions in military and space usage. Its development was facilitated by a sleep laboratory and INRIA.
The algorithm is built on a deep convolutional neural network and performs temporal sleep stage
classification using multivariate and multimodal time series. It was designed to work effectively with
a limited number of electrodes and, as per the authors, attains 80% accuracy for multilabel balanced
sleep stage classification, outperforming manual scoring.
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Figure 4.9: Graphical depiction of the sleep staging model’s framework

[36]

If successful on our data, this algorithm would not only provide more consistent sleep stage classifi-
cation but would also potentially allow replication of our results on other datasets. This is particularly
significant if sleep stages and their patterns play a role in explaining ParI or treatment responses in
chronic insomnia. Unlike the first experiment, where we only used our data, we added two other
datasets from different sources to evaluate the algorithm’s performance. In addition to testing the
algorithm, the idea here is to see if our data quality is comparable to datasets used in the literature.
The two other datasets are the Montreal Archive of Sleep Studies (MASS) dataset [153] and the
SleepPhysionet dataset [74].

4.1.4 Methodology

Data preparation and preprocessings

We aimed to evaluate our model’s performance across various datasets to evaluate the reproducibility,
which implied that these datasets needed to be comparable, possessing similar EEG/EOG/EMG
channels concerning electrode placement. Regrettably, our datasets didn’t contain identical channels,
especially in terms of EEG channels, which hindered our ability to compare our model’s performance
across all datasets uniformly. Instead, we had to evaluate them on a pair-by-pair basis.

Figure 4.10 illustrates the diversity of the EEG channels across each dataset, highlighting their
heterogeneity. We drew comparisons between MASS and SleepPhysionet and our Clinical dataset
(Clinical in this section), but a comparison between SleepPhysionet and Clinical was unfeasible. For
each pair of datasets, we selected various EEG, EOG, and EMG channels, which will be outlined
below.

Figure 4.10: EEG electrodes positioning used in each dataset
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SleepPhysionet dataset The SleepPhysionet dataset encompasses 153 full-night polysomnographic
sleep recordings obtained from 78 individuals (typically two recordings per subject). The dataset
includes two EEG channels (Fpz-Cz and Pz-Oz), one EOG channel (horizontal), and one EMG channel
(submental chin). Accompanying these recordings are annotations of sleep patterns. The hypnograms
were manually scored by a variety of skilled technicians in accordance with the Rechtschaffen and
Kales manual [98]. The sleep stages are denoted as W, R, N1, N2, N3, N4, M (Movement time),
and ? (not scored). In our analysis, we retained the annotations W, R, 1, and 2, while we combined
stages 3 and 4 for consistency with other recordings scored according to the AASM rules [90]. During
our investigation, we concentrated on subjects 0-60, excluding subject 39, and only the first recording
from each subject was retained.

MASS dataset The Montreal Archive of Sleep Studies (MASS) dataset is a public resource. In
our research, we emphasized the recordings from the third session, denoted SS3, comprising 62-night
records from distinct subjects (28 males and 34 females). These records include 20 EEG channels (C3,
C4, Cz, F3, F4, F7, F8, O1, O2, P3, P4, Pz, T3, T4, T5, T6, Fp1, Fp2, Fz and Oz), 2 EOG channels
(left and right), and 3 EMG bipolar channels (chin). The EEG channels are referenced to either CLE
(computed linked ear) or LER (linked ear reference with 10kΩ resistance). Sleep was classified by
proficient PSG technicians according to the AASM guidelines. In our study, we focused on subjects 1-
62, excluding subjects 43 and 49 due to preprocessing difficulties with their recordings. For comparing
our model’s performance between MASS and SleepPhysionet, we selected 2 EEG channels (Fpz-Cz
and Pz-Oz, with Cz and Oz as respective references), 1 EOG channel (EOG horizontal, defined as
the average between EOG left and EOG right), and 1 EMG channel (EMG Chin1). To contrast our
model’s performance between MASS and Clinical, we chose 6 EEG channels (C3, C4, F3, F4, O1 and
O2), using the average of these channels as a reference, 2 EOG channels (EOG left and EOG right),
and 1 EMG channel (EMG Chin1).

Our clinical dataset We used a subset of the EDF+ files available to compare to the two other
datasets. After our first experiment, we focused on 60 subjects with artifact-free EEG channels. The
patients were between 18 and 76 y.o. (mean 45.84 ± 13.05 with 66.5% females).

Data preprocessing To streamline data processing, we converted our datasets to the Brain Imaging
Data Structure (BIDS) [76, 164]. Neuroimaging data is complex to arrange, as it typically originates
from various experiments and generates multiple files for a single patient. Given the lack of con-
sensus on how to organise and share such data, two researchers within the same lab may choose to
organise their data differently. The BIDS standard offers a simple and adaptable way of organising
neuroimaging data, using file formats compatible with existing software, unifying common practices
in the field, and capturing metadata essential for most data processing operations. In particular, the
BIDS standard substantially simplifies the analysis of neuroimaging data using Python, with the help
of the mne-python [78] and mne-bids [4] libraries.

We used the mne-python package for preprocessing our datasets, following the same steps as [36].
As the most relevant information in sleep EEG data is below 30Hz; we applied a low-pass filter
with a 30Hz cutoff frequency to reduce the impact of high-frequency noise. We downsampled to a
sampling frequency of 100Hz (the SleepPhysionet dataset frequency, whereas the other two datasets
were sampled at 256Hz) and converted signals from V to µV. We also eliminated 30 minutes of wake
events before and after other sleep events. After applying these steps, we divided our signal into 30s
windows, each corresponding to a specific sleep stage. Each window was individually standardised to
have zero mean and unit variance. This standardization is crucial due to the variability in recording
conditions over the nearly 8-hour recording period. Individual standardization addresses potential
shifts, rescaling frequency power in every band without altering their relative amplitude.

Algorithmic methodology

Model description The full model description is detailed in [36], but we can see the detailed
architecture in Figure 4.11
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Figure 4.11: This network has three key features: linear spatial filtering, to estimate virtual channels, convolutional
layers, to capture spectral features and separate pipelines. It can handle various input channels and several modalities
at the same time, iEEG/EOG channels and EMG channels through separate pipelines. It performs spatial filtering for
each modality and applies convolutions, non-linear operations and max-pooling (MP) over the time axis. The outputs
of the different pipelines are concatenated to feed a softmax classifier from [36]

Training Protocol This model was developed using the PyTorch library [161]. For each experiment,
we studied 60 subjects, using stratified 10-fold cross-validation to ensure that approximately 60% of
the events were part of the training set, 20% in the validation set, and 20% in the testing set. This
protocol ensures that the model is trained, validated, and tested on datasets representative of the
overall class distribution.

We initialized weights with a normal distribution with mean µ = 0 and standard deviation σ = 0.1.
The loss function (criterion) used was categorical cross-entropy, and optimization was performed using
AdamOptimizer (see definition in B.1.2). Minimization was achieved with stochastic gradient descent
with a learning rate of lr = 0.0005 and a batch size of 8. The model was trained over 10 epochs (we
chose this number considering the small size of the dataset).

Performance evaluation

• We used a confusion matrix as described in 4.1.1, and we added the three most used metrics,
Precision, Recall, and F1 score (see definitions in B.1.2,B.1.2 and B.1.2).

• Precision, recall, and F1-score are statistics used to study a binary classification. In the case of
multi-class classification, we compute the precision, recall, and F1 score per class.

• We also used a balanced accuracy score for the average accuracy. Balanced accuracy is a metric
often used for imbalanced class problems since it considers the varied nature of the classes. In
multiple classes, balanced accuracy is defined as the recall average for each class.

4.1.5 Results

As mentioned in the introduction, we could not compare the three datasets simultaneously but only
two by two. We will present the results of MASS and Physionet and then our Clinical dataset.

MASS and Physionet

The four confusion matrices are presented in Figure 4.12 and the metrics in Tables 4.13 and 4.14

MASS and Clinical Dataset

The four confusion matrices are presented in Figure 4.15 and the metrics in Figures 4.16 and 4.17
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Figure 4.12: Confusion matrix table, comparing MASS and Physionet datasets average scores. The predicted label
are on the Y-axis and the True lable on the X-axis. We can notice the low scores in the N1 column, showing that the
model rarely predicts N1
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Figure 4.13: Table of balance accuracy results,
comparing the datasets MASS and SleepPhys-
ionet. We can notice the loss in accuracy when
the algorithm is trained on a dataset different
from the testing set. This shows poor repro-
ducibility.

Figure 4.14: Table of classification reports, comparing the datasets MASS and SleepPhysionet.
We can see the difficulty in predicting N1 stage.
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Figure 4.15: Confusion matrix table, comparing MASS and our Clinical Dataset
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Figure 4.16: Table of results, comparing bal-
ance accuracy between datasets MASS and Clin-
ical. On these balanced accuracy scores we no-
tice an increase in the scores for MASS-MASS
(0.817 compared to 0.802) and the low score for
physionet when the algorithm is trained on clin-
ical and applied on Clinical. The training on
MASS and the test set on clinical is even lower
with only a score of 0.39

Figure 4.17: Table of classification reports, comparing the datasets MASS and Clinical. We
notice a similar behaviour with regards to N1, this class is quite difficult to predict
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4.1.6 Discussion

Our research has yielded crucial insights into the performance of the CNN model and the underlying
characteristics of the utilized datasets. A major finding is that the model performs significantly better
on the MASS dataset than the SleepPhysionet and Clinical datasets. This superior performance might
be attributed to different reasons discussed below:

1. The preprocessing steps might not be appropriately tailored for the latter datasets. It involves
a set of operations that prepare and transform the raw data into a format the model can more
effectively process. These operations include data cleaning, normalization, transformation, and
feature extraction, and if there are not optimised for a specific dataset, the model’s ability to
learn from that data could be compromised, leading to suboptimal performance.

2. As the algorithm was initially benchmarked using the MASS dataset, it may have led to a
degree of overfitting to the characteristics specific to the MASS dataset, making the model less
generalizable to other datasets with different characteristics. But it would be surprising because
this algorithm was used massively to analyze the sleep of clients who bought the Dreem headset
for ambulatory sleep analysis; we could imagine that they would have changed the algorithm if
the results were not so good as claimed in the seminal paper[36].

3. Another explanation for such bad results may be non-optimal hyperparameters. Indeed, as they
control the learning process and can significantly affect the model’s performance, it is plausible
that the chosen hyperparameters were not ideal for these datasets, thus undermining the model’s
performance.

4.1.7 Limitations

A notable limitation of our study is the difficulty in accurately classifying the N1 sleep stage. This
challenge could manifest the class imbalance problem, a common issue in machine learning where the
classes are unequal. In such scenarios, the learning algorithm may become biased towards the majority
class, leading to poorer performance in the minority class. Future studies could explore strategies to
mitigate this issue, such as implementing resampling techniques or adopting different performance
metrics more resilient to class imbalance.

Interestingly, our model performed similarly on the Clinical and SleepPhysionet datasets. This
similarity could be due to the increased number of channels used in our Clinical dataset offsetting
the potentially higher noise level inherent in clinical data. This finding indicates the importance
of leveraging multiple data sources and incorporating more comprehensive features in sleep stage
classification tasks.

However, the model’s performance varied substantially between datasets, indicating a degree of
overfitting and poor generalizability. These findings highlight the need for adopting more sophisticated
model architectures or regularization techniques that can effectively mitigate overfitting. Additionally,
adaptive hyperparameter tuning methods could be explored to optimise model performance across
different datasets.

4.1.8 Conclusion

To sum up, our study provides valuable insights into the complex task of sleep stage classification
using machine learning techniques. While the CNN model demonstrates promising results, especially
on the MASS dataset, there are several areas for improvement and further investigation. Pursuing this
research could significantly advance the field of sleep stage classification and facilitate the development
of more effective and generalizable models. But the conclusion for our specific study is that the CNN
model didn’t perform any better than the EDM model described previously, and then we concluded
with this second experiment that we could not use a reliable and reproducible algorithm to harmonize
the sleep stage scoring in our thesis.
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4.2 Benchmark for Spindles Detection

4.2.1 Spindles and sleep

EEG sleep analysis can mix meaningful events for sleep classification and clinical assessment. The
Macro-structured neural events refer to segments that are usually 30 s long and represent different
sleep stages or epochs, or levels of sleep compared to the awake condition (Wake, N1, N2, N3 and
REM sleep). On the other hand, micro-structured neural events refer to local and short segments,
such as sleep spindles, K complex, alpha rhythm, etc. These micro-neural events are also important
for finding the right sleep stages and better characterising the pathology.

Sleep spindles, which are the most typical sleep pattern, typically occur during sleep stage 2 and
are believed to be generated from the Thalamus area of the brain. The definition of a spindle varies
across studies, but we will consider two different consensual criteria. The first one is the bandwidth;
a spindle could be defined as an increase in EEG power over consecutive NREM sleep stage two
repeatedly found in the 11±16 Hz (sigma rhythm) but most of the time between 12 and 14 Hz, with
a duration > 0.5 seconds up to 3 seconds [218, 17, 176].

To detect those spindles automatically, a lot of algorithms were built, essentially on bandwidth
detection corresponding to the spindles bandwidth, so that could be different across studies. The most
used methods rely on performing threshold on a filtered signal (fixed or not) with different techniques
of signal analysis applied like Fourier transform or wavelet [206, 46, 173, 113, 63, 143, 151]. See [154]
for review.

The second is the shape, with a typical waxing and waning. The third is the amplitude; the
minimum peak-to-peak amplitude [176] of the spindle should be 10 micro-volts.

Figure 4.18: Typical spindle shape recorded on C3 derivation during typical N2 sleep stage. Illustration
of the waxing and waning shape, the frequency is 13 Hz, the duration is about 1 sec, and the amplitude
is about 40µV. The Spindle appears superimposed on a slower wave symbolized by the arrows.

Recently, new approaches using sparse optimization iterative shrinkage/thresholding algorithm
(ISTA) [159] and deep learning was also proposed [36].

Besides the sleep stages characterization, the main interest in spindles is the possible character-
ization of different psychiatric or neurological disorders such as dementia, schizophrenia, depression,
sleep disorders, or stroke recovery [208].

4.2.2 Hypothesis and design of experiments

Sleep dataset This preliminary study used a single night of a young, healthy subject, totally
artifact-free. The hypothesis is that we could achieve at least 0.8 accuracy in spindle prediction with
at least one of the published algorithms. [113], for example, declared very good results close to 0.8
accuracy.

Methods

Pre-processing and expert spindle detection Sleep experts first visually detected the evaluation
of sleep stages and spindles. Sleep stages (N1, N2, N3, and REM sleep), awake time, and movement
artifacts were scored offline for 30-sec intervals according to the AASM criteria [17]. EEG data from
the sleep cycle were chosen, and analyses targeted the bipolar channels C4-M1 and C3-M2, where
spindles are most pronounced. [208] observed that 14% of the spindles fell in the 0.3-0.5 s duration
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and that 85 % of the spindles duration was between 0.5 and 2 seconds. Following this observation,
we performed spindle detection according to AASM rules (Sigma rhythms (11–16 Hz) are visible on
NREM, EEG for at least 0.3 sec (maximum 2 seconds) using a band-pass filter (0.5–30 Hz). A spindle
event was included in the analysis only if it was validated 2 times by the expert using this rule. 616
spindles were detected in total on 276 epochs of N2 sleep (mean 5.46 ±1.15 spindles/ min), which is in
line with the range of mean density (0-10/min) found in the ”gold standard data set” spindle density
found in 110 subjects [208] and with the mean spindle density (4±2 /min) found in average across 3
nights in 24 young adults[165]. A typical spindle’s pattern is shown in figure 4.18

(a)

(b)

(c)

Figure 4.19: Typical NREM2 stage (6 sec) on C4-M1 with one typical spindle; 2a Spindle manually
detected by a human expert, 2b Same Spindle detected by Mo11[143] that have the best F-Measure,
2c False positive spindle detected two times by FASST (fMRI artifact rejection and sleep scoring
toolbox). At the same time, the right spindle is not detected. [118]

Automatic spindles detection Using nine different algorithms, we used an open-source tool for
spindle detection (Gio Piantoni / Jordan O’Byrne). Seven are published Mo11 [143], Fe07 [63],
Nir11 [151], Ray15 [173], FASST [118], mar13 [134], La18, [113] and two unpublished algorithms,
the UCSD algorithm (the University of California based on wavelet analysis) and CONCORDIA
algorithm (Concordia University) based on Root Mean Square (RMS) of the signal. We benchmarked
those algorithms, choosing the same bandwidth for the spindle definition (11-16 Hz). Experts apply
the same criterion to detect spindles. We will describe the main principle used by these algorithms in
the next paragraph, mainly Wavelet convolution and detection threshold.

Wavelet convolution A wavelet is a wave-like oscillation with an amplitude that begins at zero,
increases, and then decreases back to zero. also known as a wave packet in physics. Morlet’s wavelet
is designed to have the optimal properties for detecting spindle-like activity as it has the shape of a
sleep spindle. (see figure 4.20). This method convolves the Morlet’s wavelet with the EEG signal.
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If a real spindle is present in the EEG signal, it will be multiplied by the spindle-like wavelet, thus
resulting in a very high amplitude signal. Applying a threshold to the resulting amplitude allows us to
detect the spindles. Methods such as RAY2015[173] and UCSD - University of California, San Diego
(unpublished) use convolution.

Figure 4.20: Morlet’s wavelet

Detection thresholds A second more common and more precise way of detecting sleep spindles is
through thresholds. This aims to progressively identify by eliminating which parts of the EEG signal
compose sleep spindles. Many methods use thresholds; for instance, Moelle 2011[143] use thresholds
based on the root mean square (RMS) value. They follow a different detailed protocol but with the
same structure.

1. Detect signals within the sigma frequency range (11-16 Hz).

2. Compute the Root mean square (RMS) of the detected signals using an adjustable window size
and step.

3. Compute the RMS threshold: RMSthresh = RMSmean + 1.5 ∗RMSstd

4. Spindles are detected whenever RMS > RMSthresh

5. Only the spindles lasting between 0.5s and 3s are retained.

Depending on the algorithm, the core structure may include some more complex or detailed steps.
For instance, step 1 can be achieved by applying a simple band pass filter. Or, by making use of a
Short Term Fourier Transform (STFT) to detect whenever the signal has a relative power in the sigma
frequency range ≥ 0.2 to ensure that the increase in sigma power is specific to the sigma frequency
range and not just due to a global increase in power (e.g. caused by artifacts).

4.2.3 Results

Spindles detection: true positives and false negatives vs domain expert

We observed an overall sub-estimation for all algorithms except the FASST algorithm but with a very
high cost in (i.e., many) false negatives. In total, three algorithms significantly exceed the total
number of spindles detected by the expert (250), the FASST (3 times), Mo11 (2 times), and
Ray15 (less than two times).

Although the PSG recording was high quality, some periods are light artifacts by natural move-
ments during NREM2 sleep. We were surprised to see how this very brief period of artifact could
increase the false negatives for almost all the algorithms tested. We can see in 4.21 an example of an
artifact, very different from a spindle; however, detected as a spindle by seven of the nine algorithms
(except La18 and Mo11).
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Figure 4.21: Artifact during NREM2 sleep, channelC4-M1. False detection as a spindle by mar13,
FeO7, FASST, Concordia, UCSD, Nir11 and Ray15.

Precision/recall and F-measure

We see in Figures 4.22 and 4.23 the prediction results. There is a global homogeneity between Precision
and Recall except for FASST, which shows the biggest discrepancy due to an overestimation of spindles
with, at the same time, a lot of false negatives and double detection.

4.2.4 Discussion

Our study delineated performance disparities when juxtaposed with the outcomes from [113, 208].
Contrary to these studies, our inclusion of [143] revealed it as the superior algorithm with an F-measure
of 54.8, showcasing a commendable balance between Precision and Recall. We further extended our
analysis to compare La18[113] against Ray15, UCSD, and FASST, each surpassing La18. This was
complemented by juxtapositions with methodologies from [63] and [134], affirming the consistency of
our preliminary assessments with antecedent benchmarks, notwithstanding the smaller scale of our
dataset.

While indicative of performance, the F-measure may mask underlying inconsistencies in detection
accuracy. A case in point involves FASST and La18, where an equivalent F-measure of approximately
0.49 belies divergent Recall and Precision statistics. As [154] contends, a more comprehensive metric,
such as the MCC (Matthew’s Correlation Coefficient), is imperative for a nuanced comparison of
algorithms.

Our empirical evaluations highlighted the imperative to discern between precision and the propen-
sity for algorithms to replicate detections.

Furthermore, the persistence of artifacts poses a significant impediment in ambulatory EEG record-
ings, rarely devoid of such distortions. This challenge, as evidenced by our dataset, is prevalent even
in meticulous hospital settings and is exacerbated in portable EEG devices employing dry electrodes.
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Figure 4.22: Comparison of the precision, the recall, and the F-measure for each algorithm against the
expert detection (GT for ”Ground Truth”). F-Measure is Fe07[30.6], mar13[41.5], Concordia[45.8],
Nir11[47.8], La18[48.8], FASST[49.4], UCSD[49.6], Ray15[52.1], Mo11[54.8].

Figure 4.23: Comparison of the precision and the % of spindles detected at least two times on a single
channel by the algorithm with overlap.
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4.3 Spindles and Personality Prediction

4.3.1 Introduction and hypothesis genesis

Background

Following our evaluation of sleep spindle detection and analysis, we became interested in whether this
could enhance the diagnostic process for sleep disorders and predict predispositions towards certain
psychopathological traits. Previous research has endeavoured to characterize sleep spindles to un-
derstand their genetic architecture better [171]. Furthermore, sleep spindles have been characterized
within specific populations, such as patients with major depressive disorder [167], intellectually dis-
abled children [189], and schizophrenic patients along with their unaffected relatives [49]. However,
the extent to which sleep spindles can be utilized to diagnose specific sleep disorders like paradoxical
insomnia (ParI) or psychological conditions such as Hypochondria remains unexplored. Although our
investigation focuses on ParI explanation, we wanted to test a first hypothesis linked to the psycho-
logical profile to see if spindles could discriminate very different psychological profiles. The selection
of sleep spindles is driven by their integral role in sleep and the evidence showing strong associations
between sleep disorders and psychopathological traits such as Depression, Anxiety, Post-traumatic
Stress, Schizophrenia, Bipolar Disorder, Eating Disorders, Borderline Personality Disorder, among
others [211, 133, 136]. To date, no previous study uses sleep EEG spindles to predict psychopatho-
logical traits labelled by the MMPI-2 questionnaire.

Hypothesis

From this observation, we hypothesise that Sleep spindles, as a biomarker, can predict predispositions
towards certain psychopathological traits important to understand CID clusters or subtypes. The
characteristics of sleep spindles (including their density, average duration, average frequency, and the
average number of oscillations) can be used to predict the occurrence of a patient’s predisposition
towards certain psychopathological traits as assessed by the MMPI-2 questionnaire.

Protocol in brief

We begin by identifying sleep spindles in the patients’ Electroencephalogram (EEG) data using three
distinct algorithms for the highest level of accuracy. We then compile a spindle dataset, extracting
parameters such as density, average duration, average frequency, and the average number of oscillations
from sleep spindles occurring in stages 2 and 3 of non-rapid eye movement sleep. Next, we test the
prediction of ParI using this dataset. ParI is a sleep disorder in which the patient’s perception
of insomnia severity significantly exceeds any observed sleep disturbance, often believing they are
not sleeping well despite evidence to the contrary. Visualization of the dataset and application of
classification techniques, however, suggest that spindle data cannot accurately predict ParI, and, thus,
cannot aid in its diagnosis. Finally, we analyse if spindle data can predict a patient’s predisposition
towards a psychopathological trait. We accomplish this using the scales of the MMPI-2 questionnaire
(explained further in the following sections) taken by all patients.

4.3.2 Methodology and experiment design

Dataset

EEG dataset From the EDF files available in our dataset, we kept 267 patients (mean age 47± 12,
56% are Female). We tried to be the most selective as possible and we kept only the EEG labelled
as good or very good after expert visual inspection. This implied that all the PSR records with more
than one noisy channel, irreducible EMG artifacts or interference were removed to reduce the risk of
misclassification by the algorithm. As we saw in our benchmarking of spindles detection algorithm
4.2, we could have a lot of False positives even on a good quality recording, so we wanted to maximize
the chance to have good results for this research question aimed to find qualitative results.

We used the six following EEG electrodes available in our dataset :
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• A1 − C4 • A2 − C3 • A1 − F4 • A2 − F3 • A1 −O2 • A2 −O1

We apply a notch filter of 50Hz to the data to cancel any potential interference created by the
electric plugs in the patient’s room. The recordings last 6-14 hours, but we only focus on N2 and N3
sleep stages.

Feature Extraction On 267 recordings, we could extract 746.4 hours of sleep stage scored N2
(average of 169 minutes per patient) and 247.4 hours of sleep stage scored N3 (average of 55 minutes
per patient).

We apply a notch filter of 50Hz to the data to cancel any potential interference from the electric
plugs in the patient’s room. The recordings last 6-14 hours, but we only focus on certain parts of the
night.

MMPI-2 dataset The description is already done in 2.4.1 and the features used in this experiment
in B.2 To test our hypothesis, we selected only five scales belonging to the Main clinical scales described
in 3.1. These scales are Hy, D, Hs, Pa and Sc. Indeed these five features can already discriminate two
major psychological profiles observed in daily practice, Neurotic and psychotic. We made these choices
to keep the experiment simple and linked to daily practice. Indeed as we already described, the first
three scales are the most significant in Insomnia care as described in 3.4.1, and the only ones with a
mean > 65 in our sample (considered as significant threshold)[69]. These three scales are considered
as “neurotic triad” [16].

• The Hs scale stands for Hypochondriasis and measures the preoccupation level for health and
bodily functions. Individuals who score high on this scale are often seen as excessively worried
about their health and may believe they have serious illnesses despite a lack of medical evidence.

• The D scale stands for Depression and measures pessimism and general dissatisfaction with their
own life.

• The Hy scale stands for Hysteria and is used to evaluate histrionic behaviour, somatization, and
defense mechanisms such as denial and repression.

So the neurotic triad (Hs, D, and Hy) often suggests difficulties in coping with stress, a tendency
to internalise conflicts and potential vulnerability to stress-related physical or mental health issues.
But in general, this triad is unrelated to psychotic disorder [52].

On the other hand, the psychotic profiles are essentially linked to two scales, Pa and Sc [52]. We
will briefly describe these two scales.

• The Sc Scale stands for Schizophrenia scale. This scale assesses a person’s tendency towards
schizophrenic behaviours and thoughts. High scores on the Sc scale can indicate unusual thought
processes, bizarre fantasies, difficulties in concentration, and social withdrawal. While this scale
was initially intended to identify individuals with schizophrenia, it is now seen as a measure of
a person’s general ”strangeness” or ”unusualness” and can be high in other conditions such as
bipolar disorder, severe anxiety, and depression.

• The Pa Scale stands for the Paranoia scale. It measures an individual’s level of paranoia. High
scores may suggest a person is overly suspicious, sensitive, feels persecuted, or is experiencing
delusions of grandeur.

So these two scales could be elevated in case of psychotic disorder like Schizophrenia or bipolar
disorder [52].

Sleep spindles detection The process of accurately identifying sleep spindles, defined by unique
bursts of oscillatory brain activity, is quite easy for sleep experts. They primarily appear during the
N2 sleep phase and fall within the 11-16 Hz frequency range. Sleep spindles have been associated with
numerous functions, such as maintaining the disconnection from the external environment during
sleep, aiding in sleep-dependent memory consolidation, and playing a role in cortical development.
Nevertheless, the detection of sleep spindles can be arduous due to their ambiguous definition, the lack
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of consensus among experts in scoring them, the absence of standard automated detection techniques,
and inconsistencies in the methods used to assess the performance of automated detectors. [209, 189,
191].

Various methods have been developed to detect sleep spindles, predominantly around wavelet
convolution and threshold detection. Morlet’s wavelet, designed with a shape similar to a sleep
spindle, is particularly conducive for detecting spindle-like activity in EEG signals. However, our
previous study 4.2 found that this method fell short in accuracy due to the variations in spindle
shapes, frequencies, and oscillations, making it challenging to find a one-size-fits-all wavelet for spindle
detection. From the previous experiment described before 4.2, we could conclude that extracting
spindles properly is not an easy task. For this experiment, we wanted to increase our accuracy in the
detection by using multiple detection algorithms.

From our first experiment on spindles detection 4.2, even if the results with the wavelet transform
were not fantastic, we could at least confirm the results published by [143] with their algorithm
(named Molle2011 here), and it was the best on our dataset, so we decided to keep it. Furthermore,
this method allows for adjusting all parameters, offering significant flexibility. From our experiment
using the BrainRT algorithm with Empiric Mode Decomposition (EMD) in Section 4.1.1, we could
observe that the N2 sleep stages was the only stage keeping an accurate classification even in case of
corrupted EEG. The efficient spindle detection provided by the EMD algorithm could explain these
results, so we also decided to keep it for the experiment. As we wanted explainable models, we
didn’t search Deep Learning based spindle algorithms. To add another spindles detection method, we
explored numerous techniques such as Yet Another Spindle Algorithm (YASA) [201], and FAAST2
[186], which set thresholds based on the Root Mean Square (RMS) value of detected signals. YASA
emerged as an attractive choice due to its precise detection capabilities and the output of valuable
parameters regarding the spindles. It applies three different thresholds: relative σ power to detect
signals within the sigma frequency range, correlation to detect spindles visible on the raw EEG signal,
and RMS threshold to detect an increase of energy in the EEG signal.

So we decided to keep Molle2011, BREMD (that we renamed violet) and YASA for our experiment.

Tuning hyper parameters We used a domain expert to detect spindles on one EDF file: EDF-
MANUELX4. Indeed, the detection is extremely time-consuming as the sleep recording is over 8 hours
long while spindles last between 0.5 and 2 seconds which explains we only had one such annotated
file. The domain expert’s detection is used as the ground truth to tune the parameters of the three
methods.

Merging spindles The initial data comprises 6 channels. Moelle 2011 and Violet detected spindles
on each channel separately and did not include a way of merging these results. Indeed, by analysing
this detection, we noticed many spindles overlapped in time; thus, computing the spindle density
per 30 seconds by simply summing the spindles found on each channel would have been error-prone.
Instead, we decided on a merge rule presented in figure 4.24 where the red line represents the duration
of the merged spindle. The merge rule decided was the one used by YASA and was added to the code
of Moelle 2011 and Violet so that all 3 methods could be in accordance. Note we use density per
30 seconds for historical reasons. Indeed before the use of computers, the scoring of sleep was done
on paper. One paper corresponded to 30 seconds; thus, 30 seconds is considered an epoch for sleep
scoring.

Working with phase segments For each patient, we first set out to obtain the nine features seen
in figure 4.25. It is important to note that the overall density over N2 or N3 is not the average of the
segment densities since the density is measured concerning the duration of each segment; hence it is
a weighted average.

Checking for errors Errors can occur due to an error in the code or a misunderstanding of the
data. Therefore, it is extremely important to check the results’ coherence. Units, for instance, can be
a source of mistakes as the duration and time in the original data are given in microseconds while the
data we extract uses seconds.
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Figure 4.24: Spindle merging rule

Figure 4.25: Feature extraction for the EDF recording used in phase N2. Files with underscore
correspond to N2 segments. missing segments were dropped due to missing values. den = density, av
dur = average duration, seg dur = segment duration, freq = frequency, osci = oscillation

Visualization is a key method to spot errors; this is how an error was found in the code extracting
the features using the Violet algorithm. We plotted the densities in decreasing order; this gave the
plot in figure 4.26. Indeed, as a spindle duration is usually between 0.5 and 2 seconds, on a 30-second
epoch, it’s quite rare to have more than 10 spindles. This fact led to notice that some densities were
much too high. Indeed, the densities should be no bigger than 10 spindles per 30 seconds. Moreover,
the densities should be more or less the same amongst all segments, while here we see huge disparities
(standard deviation amongst N2 segments of patient 0228 - the first patient to the left of the x-axis
in figure 4.26 - was off of 317,62).

This error was due to a misunderstanding of the annotation file, which caused some N2 segments
to last the entirety of the recording rather than the found duration. The code was fixed, and we
obtained the results in 4.27, which are much more coherent.

Classification protocol The best results were achieved using the data from all algorithms (Mo,
yasa, and violet); we merged all the spindle detection from N2 and N3.

Once the spindles were extracted with our protocol, we used an RF classifier for binary classification
to predict each of the five scales according to its characterization in normal (≤ 65) or significant >
65. This allows for a binary problem (Class 1 for scores above 65, 0 otherwise). However, this cutoff
does not, in all cases, create a class balance; thus, the F1 score was the most suitable measurement
to interpret the results. We chose this instead of a regression problem to see if we could find a clear
cluster according to the pathological aspect.
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Figure 4.26: Densities found by Violet in decreasing order, in y-axis the density of spindles per 30
seconds, in x axis N2 segments with their file name

Figure 4.27: Densities found by fixed Violet, in y-axis the density of spindles per 30 seconds, in x axis
N2 segments with their file name

4.3.3 Results

In Table 4.2, we can separate the interpretation into two groups:

1. The three neurotic scales: Hypochondria, Depression, and Somatization.

2. The two psychotic scales: Paranoia and Schizophrenia.

The F1 scores remaining around 0.5 for the neurotic scales, we may conclude that sleep spindles cannot
help to predict any of the three typical neurotic scales. In the case of psychotic scales, the F1 score
for Class 0 is above 0.8 for the two typical psychotic scales.

This is a very interesting result as it could help domain experts in their diagnosis as they could
eliminate these possibilities to focus their diagnosis better. It is interesting to note that we can
interpret this differently for psychotic and non-psychotic. This leads to the question of whether the
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Mean F1 score Hypochondria Depression Somatisation Paranoia Schizophrenia

Class 0 = False 0.478± 0.27 0.657± 0.32 0.514± 0.38 0.818± 0.29 0.822± 0.36
Class 1 = True 0.614± 0.28 0.528 ± 0.32 0.557± 0.35 0.226± 0.33 0.139± 0.4

Table 4.2: Mean F1 scores over ten folds for the prediction of 5 psychopathological traits with Violet
algorithm. The dataset is balanced (51% for Class 1, 49% for Class 0).

link between the psychopathological traits and the characteristics of the sleep spindles is proportional
to the severity of the trait. Indeed, psychotic traits are considered to be more severe diagnoses.

4.3.4 Discussion

This study is conducted on a relatively small data set comprising 267 patients. Moreover, these patients
had consulted the domain expert for sleep-related issues. Hence, these patients do not represent a
broad enough population. The study should be conducted on patients from a wider background to be
properly generalized. Moreover, not all parameters were taken into account. For instance, our study
did not consider a patient’s medical treatments, which may affect sleep spindles.

The spindle detection has its limits as the three detection algorithms used gave drastically different
measures for the density and duration of the spindles. However, they conserved the order, meaning
that if patient A had a higher density than patient B, as evaluated by Moelle 2011, YASA would also
show a higher density of spindles for A than B. Then, these values can be used within the study, but
any given value may not be extracted and interpreted. For instance, stating that female patients have
an average spindle density of 3.5 is false, but saying that female patients have a higher spindle density
than men may be true.

Finally, there is a limitation that may be linked to our choice to consider only stages N2 and N3 for
the spindle detection. Although spindles normally only appear in these two stages, this choice could
theoretically impact the number of spindles in absolute terms when some spindles are part of another
epoch labeled N1, W, or R but not in terms of density. As we considered essentially the spindle density
per epoch and the spindle duration as the main features and not the number of spindles per night, we
considered this potential source of error marginal.
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4.4 Subtyping Insomniacs with Significant Difference in Subjective
Sleepiness using Graph Spectral Theory and clustering techniques
on raw EEG and hypnogram scored by expert

4.4.1 Introduction and hypothesis genesis

In this last study, given the results we have so far from using EEG features, we designed a protocol
to predict the two most important subjective features in our populations, namely insomnia severity
and perceived daytime sleepiness potentially associated with sleep deprivation. We have decided to
include this section in this chapter because of the signal analysis work involved, which goes beyond
simple data exploration. Indeed, we have a specific hypothesis: the prediction of insomnia severity
and sleep perception and alertness with EEG signal. Depending on the results, we hope to be able to
cross-reference these findings with the prediction of Paradoxical Insomnia. For this study, we took a
subsample of CID patients with only the ISI and ESS scores to see what could predict these scores
from the sleep EEG and hypnogram organization. For this experiment, we need to extract EEG
microstructure, mainly usual bandwidth frequencies, and chronological scoring from the expert. The
main objective is to find clusters of insomniacs, verify if they are related to the main subjective scales,
and perhaps reveal some non-evident characteristics of different groups [48].

Theoretical background

As described extensively in 2.4.1, the ISI questionnaire is associated with insomnia severity perception
and the ESS questionnaire with sleepiness perception. Then, these two questionnaires evaluate two
cardinal values in sleep medicine, namely the presence of wakefulness in sleep (ISI) and the presence
of sleep in wakefulness (ESS). So, they are theoretically designed to give a correct and symmetrical
reflection of a physiological disturbance, both to measure clinical evolution and to assess a treatment’s
efficacy. For ESS, a recent review on physiological correlates of ESS [127] reveals on a community-
based sample, using ML models, that standard measures of sleep are not predictive of ESS scores,
nor are these scores well correlated with measures of sleepiness. They used RF regression analysis
and LASSO to predict the ESS score. They used two types of variables: medical and sleep variables.
The sleep variables (18) included time spent in stage REM, N1, N2, N3, PSG, WASO, stage REM-
N1 shifts per hour, stage REM-N2 shifts (per hour), stage REM-N3 shifts (per hour), stage W-sleep
shifts (per hour), stage N2–N1 shifts (per hour), stage N3-N2 and N1 shifts (per hour), REMLatency,
RDI, Arousal Index, NREM Arousal Index, REM Arousal Index, and TIB. Raw EEG was not used.
They chose to explain the variance of ESS according to 55 variables, including the 18 sleep variables
described. 7.15%–10.0% of the variance of ESS scores could be explained. The most important
predictor was the self-reported frequency of not getting enough sleep, age, and gender. A study could
test the impact of the AHI range on the EES score and find a significant relationship between the
AHI index and the snoring status with the ESS score. The other PSG features and EEG were not
available in this study [77]. Same research in Pubmed for “”Physiological correlates of Insomnia
Severity Index”” and “”EEG” AND ”Insomnia Severity Index”” didn’t retrieve any publication on
the subject. So, our study would be the first to explore this relationship.

Hypothesis genesis

The main hypothesis here is that we could find clusters (linked to specific subtypes) of CID patients
with a significant difference in terms of subjective sleepiness (ESS questionnaire score) and insomnia
severity (ISI questionnaire score) using Graph Spectral Theory and clustering techniques using raw
EEG and hypnograms scored by sleep experts. We also hypothesize that this could help better
understand ParI subtypes. The advantage of using these two questionnaires is that they are the two
most closely related to the perception of wakefulness and sleepiness, so we hope to find a link between
sleep state misperception (SSM), EEG, and ISI/ESS scores to help refine its clinical and physiological
definition. Recently, a study [101] supports our hypothesis of finding neurophysiological insomnia
subtypes after sleep deprivation. Indeed, they could find three subtypes derived from the data-driven
classification of PSG, EEG spectral power, and interhemispheric EEG asymmetry index. They also
claimed that this subtyping process could be linked to SSM, with a subtype named Short Sleep
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Deficiency. However, a quick analysis of the results presented shows that there are some limitations in
this study, such as the small sample size (N=26 subjects) and the fact that this small sample subtype
presents a huge SD with a significant proportion of subjects presenting positive sleep misperception.
Anyway, the interest of this study is showing that we could find some clusters based on EEG features
and hypnogram features and that with more subjects we could probably find some physiological
subtypes.

So, we are making the assumption, despite the results described in [127] that didn’t study specifi-
cally CID population, that we could find a link between these two central questionnaires, the raw EEG
and the Sleep report features given by experts to find some clusters of insomniac patients. Indeed
there is no similar attempt in the literature to find some correlations between quantitative values be-
tween subjective questionnaires theoretically designed to give a correct and symmetrical reflection of a
physiological disturbance, both to measure clinical evolution and to assess the efficacy of a treatment.

4.4.2 Methodology and experimental design

Dataset used

In this research, EEG data were procured from the 576-participant PSG Database DIII-PSG, as de-
tailed in Table 3.3. A subset of 386 records was meticulously chosen based on superior data quality.
Furthermore, the inclusion of three participants with Insomnia Severity Index (ISI) scores below ten
was intentional, to underscore the potential disparities between ISI scores and derived EEG charac-
teristics.

Feature extraction protocol

Macro Features From the hypnogram Analysis generated by two experts, the different steps to use
these macro features were done as follows:

We used the following standard features:

Feature Description
W 30 s of EEG scored Wake
N1 30 s of EEG scored N1
N2 30 s of EEG scored N2
N3 30 s of EEG scored N3
REM 30 s of EEG scored REM
Time in bed (min) Time from go to bed until get up
Sleep time (min) Total time sleep (from first episode of sleep to last Wake episode)
Stage time(min) Time spent in W, N1, N2, N3, REM sleep stages (min)
Stage percentage Percentage spent in W, N1, N2, N3, REM sleep stages (%)
Awake frequency Frequency of awakening during Total sleep time
Awake Percentage e Percentage of awakening during Total sleep time
Frequency of stage Stage shifting frequency

Table 4.3: 15 Standard hypnogram features used to generate standard hypnogram features, graph
spectral features and Levenshtein feature

We used a similar experimental design concerning graph spectral theory described in [37] that
already attempts to describe complex sleep dynamics throughout transition networks and scalar mea-
sures in insomnia. This study used EEG and sleep stages to quantify and differentiate control and
insomnia on the sleep onset periods period only. From this study, we kept the same protocol con-
cerning the transition Networks and Graph Spectral Theory described as follows, but we didn’t apply
classification, instead, we performed a K-Means clustering.
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Transition Networks and Graph Spectral Theory design

Hypnograms were converted into sleep transition networks analyzed by spectral graph theory to rep-
resent sleep stage interactions regarding matrix properties and spectra. This approach avoids visual
graphical representations in favor of isomorphic network comparisons based on eigenvalues and eigen-
vectors. Subsequently, similarity distances derived from graph spectral metrics were calculated to
quantify the similarity between each subject’s sleep transition networks.

Then, to compare this graph similarity, if G and H are transition networks of two subjects with the
same structure as in Figure 4.28, they will have different edge weights according to their transitions
amongst sleep stages. We could call it a vector signature. Initially, each network’s degree matrix DG,
adjacency matrix AG, and incidence matrix CG are derived for two networks G and H.

Degree matrix D is a diagonal matrix with D(i, i) = 0 if vertex i has no self-directing shifts or
D(i, i) = 1.

Adjacency matrix A depicts the connection between different vertices and is a 5 × 5 matrix (true
for fixed model size) with A(i, j) = 0 if vertex i has no shift to vertex j, or else A(i, j) = 1.

The incidence matrix shows the connection relationship between vertices and edges. In our project,
the incidence matrix C is a 5 × 25 matrix, where each row represents one vertex and each column
represents one edge. For vertex i and edge jk,

C(i, jk) =


2

w(j,k) , if i = j = k and w(j, k) ̸= 0,
−1

w(j,k) , if i = j, j ̸= k and w(j, k) ̸= 0,
1

w(j,k) , if i = k, j ̸= k and w(j, k) ̸= 0,

0, otherwise.

Three similarity distance measures based on these graph-related matrices were calculated for the
experiment based on [37].

The similarity distance d1(G,H) between G and H; correspond to subtraction between the diagonal
matrix of noninverted weights (degree matrix DG|H) and the full-rank matrix of inverted directed
weights (adjacency matrix AG|H) to produce a Laplacian matrix LG|H .

Upon the Laplacian matrix, an Eigenvalue Decomposition (EVD) finds the corresponding eigen-
value for each network (See B.1.2). So at the end, we have the eigenvalues

λi from G network and νi from H network.

LG|H = DG|H −AG|H
EVD
= QG|HΛQT

G|H

Λ =

λ1 0 0
0 λ2 0
0 0 λ3

 , d1(G,H) =


√∑N

i=1(λi − νi)2/
∑N

i=1 λ
2
i , if

∑N−1
i=0 λ2

i ≤
∑N

i=1 ν
2
i ,√∑N

i=1(λi − νi)2/
∑N

i=1 ν
2
i , if

∑N
i=1 λ

2
i ≥

∑N−1
i=0 ν2i .

The similarity distance d2(G,H) use the adjacency matricesAG|H to perform an EVD. The total
transformation is presented below.

AG|H EVD = QG|HΛQT
G|H , ∆ = AG −QGQHAHQT

HQH

∆ =

δ1 0 0
0 δ2 0
0 0 δ3

 , d2(G,H) =
1√
N

√√√√ N∑
i=1

δ2i .

The similarity distance d3(G,H) follows the same steps as d2(G,H), however, an incidence matrix
CG|H triggers the calculation rather than the adjacency matrix.

CG|H SVD = UG|HΣV T
G|H , ∆̂ = CG − Y T

G UHCHV T
H VG

∆̂ =

δ̂1 0 0

0 δ̂2 0

0 0 δ̂3

 , d3(G,H) =
1√
N

√√√√ N∑
i=1

δ̂2i .
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From the sleep stage sequence, we generated a network of sleep stage transitions (See Figure 4.28).
We can see a network of 5 vertices, each representing one sleep stage. The weight of the directed edge,
e.g. from vertex N 1 to vertex N 2, represents the shift frequency from sleeping stage N1 to N2. We
applied graph spectral theory to describe sleep patterns in graph-related matrices and spectra. The
comparison of two hypnograms is turned into the comparison between two networks with homogeneous
structures (See Figure 4.28).

Figure 4.28: Sleep stage transition network of 5 vertices. The arrows represent the potential edge
from vertex i to vertex j. The weight of the edge measures correspond to the shifting frequency from
vertex i to vertex j.

String similarity feature

Based on the generated sleep stage sequence, the Levenshtein distance [67] was used to measure the
similarity of two hypnogram patterns. It calculates the number of operations (insertion, replacement,
deletion) to transform string1 into string2. We used the same reference patient mentioned before
and calculated the Levenshtein distance between the reference sequence and all the other 386 patient
sequences*. The process used is as follow :

To calculate the Levenshtein distance between two strings, let’s say string A and string B, the
algorithm follows these steps:

1. Initialize a matrix (often called the Levenshtein matrix) with dimensions (m+1)×(n+1), where
m and n are the lengths of strings A and B, respectively.

2. Initialize the first row and the first column of the matrix with values 0 to m and 0 to n,
respectively. These values represent the number of insertions or deletions required to convert an
empty string to A or B.

3. Iterate through the matrix, starting from the second row and the second column.

4. At each position (i, j) in the matrix, calculate the cost of transforming A[1 : i] to B[1 : j] as
follows:

• If the characters A[i] and B[j] are the same, the cost is equal to the value at position
(i− 1, j − 1) in the matrix.

• Otherwise, the cost is the minimum of the following three values:

– The value at position (i− 1, j) + 1, representing the cost of deleting the character A[i].

– The value at position (i, j−1)+1, representing the cost of inserting the character B[j].

– The value at position (i−1, j−1)+1, representing the cost of substituting the character
A[i] with B[j].

5. Once the iteration is complete, the value at the bottom-right corner of the matrix represents the
Levenshtein distance between strings A and B.
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Microfeatures selection

Power Spectral Density features EEG signals obtained was first filtered (0.3-30Hz), with Notch de-
noising and artifacts were removed by the expert. Only EEG signal of channel ’F3-M2’,’C3-M2’,’C4-
M1’,’O1-M2’ were used in our analysis

The power spectral density (PSD) was calculated using the Welch Method for an entire frequency
range of 1-30Hz with the MNE-Python package. Then for the particular EEG rhythms: delta (0.5–4
Hz), theta (4–8 Hz), alpha (8–11 Hz), sigma (11-16hz), beta (16–30 Hz), their average power of
frequency band were calculated respectively.

Clustering

We conducted clustering based on standard hypnogram feature embedding, graph spectral distances,
and Levenshtein distances, respectively. Our embedding was first transformed to a 3-dimension vector
if their dimension was larger than 3, and then a K-means clustering method with k=2,3,4,5 was used
after the optimal number of clusters determination by the ”elbow” method.

Statistical analysis

Once the clusters were detected, we carried out a one-way ANOVA and the Kruskal test for the ISI
and ESS scores of different clusters, respectively. We accept that there are at least two clusters with
a significant difference in their mean score with a confidence level of 5%. A further two-pair T-test
was conducted to determine if there was a significant difference for each pair of clusters.

Embedding Paradigm

For each patient, we have constructed the following features with the following dimensions, for a total
of 2200 possible features:

1. Standard hypnogram features: 15

2. Graph Spectral Distances: 3

3. Levenshtein distances: 2

4. Entire EEG signal PSD (4 channels)

5. Entire EEG signal Average Band power (4 channels)

6. Sleep stage (5 stages) EEG signal PSD (4 channels)

7. Sleep stage (5 stages) EEG signal Average Band power (4 channels)

8. First 20% EEG signal Sleep stage (5 stages) EEG signal PSD (4 channels)

9. First 20% EEG signal Sleep stage (5 stages) EEG signal Average Band power (4 channels)

10. Last 20% EEG signal Sleep stage (5 stages) EEG signal PSD (4 channels)

11. Last 20% EEG signal Sleep stage (5 stages) EEG signal Average Band power (4 channels)

4.4.3 Results

ISI and ESS description on the dataset

A patient with an ISI score lower than 11 is regarded as having slightly no insomnia, and an Epworth
score lower than 11 indicates that the patient has very little tendency to feel tired after a night’s sleep.
Among the 386 patients with the two scores, we separated them into 4 groups:

• Group 1: ISI < 11, Epworth ≤ 11

• Group 2: ISI < 11, Epworth > 11
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• Group 3: ISI ≥ 11, Epworth ≤ 11

• Group 4: ISI ≥ 11, Epworth > 11

From Figure 4.29, it could be observed that the majority of the patients fall into the 3rd and 4th
groups, with an ISI score mean of 19.47 (std 4.50) and an Epworth score mean of 8.14 (std 5.10).

The description of the sample concerning ISI and ESS score plot is presented in 4.30.

Figure 4.29: Scatter plot for ISI and ESS score
Figure 4.30: Distribution of ISI
and Epworth (ESS) Scores

Impact of Respiratory Disturbance Index (RDI) on ESS severity score

From the first section, we saw that RDI (Respiratory Disturbance Index) could have an impact on ESS
score via the sleep microfragmentation[77]. To see if our protocol could have only detected clusters
of patients presenting more RDI, we ran a simple Pearson Correlation analysis on our sample. The
results are presented in Table 4.4. We could see that there is no correlation in our sample. We will
discuss this observation later.

RDI ESS severity

RDI 1.000000 0.084168

ESS severity 0.084168 1.000000

Table 4.4: Pearson correlation between the ESS score severity and the Respiratory Disturbance Index
(RDI). The RDI take into account all the respiratory events detected (Sleep apneas and respiratory
limitations (without oxygen desaturation >3%)).

Clustering with Hypnogram features

As mentioned earlier, we generated three types of hypnogram features: standard hypnogram fea-
tures (15-dimensional vector), spectral graph features (3-dimensional vector), and Levenshtein fea-
tures (2-dimensional vector). Considering all the hypnogram features, we have a data embedding of
20 dimensions.

We obtained different clusters using K-means directly on this embedding, with cluster numbers
ranging from 2 to 5. After conducting a one-way ANOVA test at a confidence level of 5%, we found
that none of the cluster results showed a significant group difference in the patient group or ISI score.
However, for cluster numbers 2, 4, and 5, there was a significant difference between groups in terms
of Epworth score.

The results of the ANOVA for ISI and ESS are presented in Table 4.5 and 4.6.

Clustering with EEG features

Using the EEG PSD features, we conducted the same analysis method with the 2180 dimension
embedding data. Unfortunately, The ANOVA test showed that none of the patient scores of obtained
clusters manifests a significant group difference. So the result is not presented to save space.
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Cluster number F-statistic p-value H-statistic p-value

2 0.78 0.37 0.72 0.39

3 2.22 0.10 1.96 0.37

4 2.46 0.06 5.65 0.12

5 2.20 0.06 5.44 0.24

Table 4.5: ANOVA test and Kruskal test of different cluster number on Patient ISI score data

Cluster number F-statistic p-value H-statistic p-value
2 14.64 0.00015* 13.15 0.00028*
3 2.47 0.08 4.09 0.12
4 4.94 0.0022* 13.47 0.0037*
5 3.31 0.01* 12.19 0.01*

Table 4.6: ANOVA test and Kruskal test related to the number of clusters on ESS scores

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
7.6 ± 4.9 (2) 10.03 ± 5.3 (1) None None None
8.57 ± 5.4 7.67 ± 4.7 10.07 ± 5.1 None None
7.88 ± 5.1 (2) 10.15 ± 5.3 (1,3) 7.25 ± 4.5 (2) 8.57 ± 4.30 None
7.22 ± 4.7 (4) 7.30 ± 4.6 (4) 8.57 ± 4.3 9.85 ± 5.3 (1,2,5) 8.06 ± 5.1 (4)

Table 4.7: Comparison of the Mean of ESS scores with t-test when we applied k=2

4.4.4 Discussion

The study aimed to predict insomnia severity (ISI) and perceived daytime sleepiness (ESS) in CID
patients using EEG features. The clustering analysis was conducted based on hypnogram, and EEG
features to identify potential clusters of insomniac patients and explore their relationship with sub-
jective scales. The main points of discussion are :

• The study utilised standard hypnogram features, spectral graph features, and Levenshtein fea-
tures for clustering analysis. While no significant differences were observed in ISI scores among
the clusters, significant differences were found in Epworth scores for certain cluster numbers.
This is the first study showing such a result in a sample of CID. This finding highlights the po-
tential of clustering techniques, combined with the analysis of sleep-related features, to uncover
distinct subgroups or phenotypes within the CID population based on subjective sleepiness.
This novel insight can contribute to a better understanding of the subjective experiences and
symptomatology of individuals with CID.

• However, it is worth noting that no significant differences were observed in Insomnia Severity
Index (ISI) scores among the clusters. This finding is surprising because ISI is one of the most
validated measures that assess the severity of insomnia symptoms. The absence of significant
differences in ISI scores suggests that the clustering analysis may have been less effective in
capturing variations in insomnia severity within the CID population or that this subjective scale
is not correlated to the objective measure of sleep fragmentation.

• These findings underscore the complexity and heterogeneity of CID as a sleep disorder. Insom-
nia manifests in various ways, with diverse underlying causes and subjective experiences. The
significant differences in ESS scores indicate that subjective sleepiness may be a more prominent
and discernible feature among CID patients, while insomnia severity may be influenced by many
factors not easily captured by the selected features and clustering approach.

4.4.5 Limitations

The study acknowledged limitations, including the small sample size and potential heterogeneity
within the patient population. Future studies with larger sample sizes and diverse populations could
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Figure 4.31: Projected cluster visualization (for different values of k) using Spectral Embedding for
Hypnogram features with each ESS mean and SD score

provide more robust insights into the relationship between EEG features, hypnogram organization,
and subjective sleep measures. Additionally, exploring alternative EEG analysis techniques, such as
Deep Learning algorithms, may perhaps offer deeper insights into the physiological characteristics of
different insomnia subtypes.

4.4.6 Conclusion

In conclusion, this study aimed to predict insomnia severity and daytime sleepiness using EEG fea-
tures and hypnogram organization in a population of CID patients. The clustering analysis based on
hypnogram features revealed significant differences in perceived daytime sleepiness among certain clus-
ters. However, the clustering analysis using EEG features did not yield significant group differences
in patient scores. The correlation analysis did not show a significant relationship between RDI and
ESS severity scores. These findings suggest that the selected EEG features and clustering approach
may have limited predictive power for insomnia severity and daytime sleepiness in this population.
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Further research with larger sample sizes and alternative EEG analysis techniques is necessary to gain
a better understanding of the physiological characteristics underlying different insomnia subtypes and
their associations with subjective sleep measures.
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Chapter 5

Explaining Negative Sleep State Misperception: AMachine-

Learning Approach

Chapter Highlights

We used a dataset with 335 samples and all the features available to assess CID (see dataset four
in 3.1.1) to apply the formulas published in the literature for defining ParI (cf. Table 2.6), we
want to test the following hypotheses:

1. First hypothesis: The implementation in our dataset of the main formulas published to
define ParI and their prevalence analysis will confirm the poor overlap between formulas:
We will confirm that there is poor or no overlap between the subjects diagnosed as ParI,
depending on the formulas used.

2. Second hypothesis: Finding the more accurate predictive model on each formula prediction
will allow their explanation We determined the most accurate predictive models ( among
most used binary classifiers) selected after benchmarking (plus LASSO, for its feature-
selection characteristics), and we did feature importance analysis and feature selection to
explain the prediction. Our methodology is named “Ensemble Type Method for Prediction
Explanation” (ETMPE) for final feature selection.

3. ParI, is there a possible harmonization across formula definitions? By adding the selected
variables found by ETMPE, we proposed new meta bio-markers to reinvent the diagnostic
and characterization of ParI.

4. Proposal for a new definition of Paradoxical Insomnia including seven nights sleep analysis
We consolidate the results above to propose a new definition of ParI.

Key Terms and concepts
Acronym Definition Ref.

AG Actigraphy p. 28 (2.4.1)
CV Cross-validation p. 172 (B.1.2)
CID Chronic Insomnia Disorder
EEG Electroencephalogram p. 169 (B.1.1)
FI Feature Importances p. 173 (B.1.2)
LASSO Least Absolute Shrinkage and Selection Operator p. 173 (B.1.2)
MMPI Minnesota Multiphasic Personality Inventory p. 32 (2.4.1)
ParI Paradoxical Insomnia p. 32 (2.4.2)
PsyI Psychophysiological Insomnia p. 170 (B.1.1)
MoSA Morris Sensitivity Analysis p. 170 (B.1.1)
SOL Sleep Onset Latency p. 170 (B.1.1)
SHAP SHapley Additive exPlanations p. 175 (B.1.2)
XAI explainable AI p. 176 (B.1.2)
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5.1 Introduction and hypothesis genesis

This chapter will test our first main hypothesis described in 1.3, i.e.: Can we provide an improved
definition of ParI using a data-driven approach with machine learning tools?

We discussed in previous chapters why this question is of interest: firstly for the sleep medicine
community, but also in terms of a new approach to making causal inferences in medicine using ML
tools as a new way to bring new insight on unresolved issues like ParI (see 2.6).

So, in this chapter, we will use predictive and explainability methods (see B.1.2 for definition),
making the general hypothesis that we can find a new way to explain ParI thanks to the explanation
of complex feature interaction in the predictive models. In particular, we aim to study the use of
feature explanation algorithms associated with classifier models to evaluate this hypothesis.

This hypothesis came after seeing the interest in using ML as a new tool to solve or improve
medical issues is directly linked to the transparency of the algorithms and the techniques involved in
explainability. These methods belong to a relatively new field, the explainable AI (XAI, see definition
and development in B.1.2), which has been growing since the late nineties [105]. So, these tools
could make the perfect intermediary between complex algorithm understanding with good results in
predicting an outcome and the need for understanding the prediction by the final user, especially in
medicine. We also think that these tools could also participate in discovering new causal inferences in
sleep medicine research.

Our approach aims to provide a holistic understanding of the model behavior rather than focusing
on individual predictions. This is exactly what the Global Explanation model is doing, trying to
explain the overall logic, decisions, or rules the model uses on the entire data to predict the target.
On the contrary, we had no interest in our protocol to use local explanations for individual prediction
as we wanted to explain the concept of ParI and not why a specific subject is classified ParI. Indeed,
Global Explanations provide an overview of how a model makes decisions or predictions across all
data instances. This contrasts with local explanations, which focus on specific individual predictions.
Global explanations aim to describe the overall behavior and logic of the model, offering insights
into feature importance, decision rules, and the model’s structure. These explanations are crucial in
contexts where understanding the model’s decision-making process is as important as the predictions,
especially in high-stakes areas like healthcare. Then, in the case of a model-centered global explanation,
the FI analysis could analyze the weight of each feature and its influence on the output. So, depending
on the model and the explainer used, the weight of a given feature on the result can change; it is the
uncertainty of FI. [179].

From a mathematical perspective, depending on the model used, Global Explanation involves
summarizing the overall decision-making process of the model. This explanation describes the model’s
behavior on the entire data distribution. Unlike local explanations focusing on individual predictions or
instances, Global Explanations provide insights into the model’s general rules and patterns. Depending
on the model type, these can be mathematically represented in various forms. For example, in the
case of the Linear model or Decision Tree, the Global explanation could be explained as follows:

• Linear Models: For a linear model like linear regression, global explanation can be directly
interpreted from the model coefficients. For a model f with features x1, x2, . . . , xn and coefficients
β1, β2, . . . , βn, the importance of each feature can be understood from the magnitude and sign
of the coefficients. The model can be represented as:

f(x) = β0 + β1x1 + β2x2 + . . . + βnxn (5.1)

• Decision Trees: In decision trees, global explanations can be derived from the structure of
the tree itself. The splits at the top (near the root) have more global importance as they affect
more data points. The structure can be represented as a series of if-else conditions leading to a
decision.

This Chapter aims to evaluate the possibility of explaining the ParI diagnosis using a Global
Explanation. As we have already explained in the section 2.4, there are many definitions of this
syndrome, diagnosis, or subtype of insomnia to choose from, although all clinicians dealing with CID
are confronted at least every week to this paradox. So, the problem is using supervised ML on a
fluctuating definition from one formula to another and doing systematic feature extraction with many
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possible explicative features to see if other features not initially involved in the definition process could
bring a new angle of understanding on each definition.

Despite the development of many so-called XAI methodologies, most of this work does not directly
consider the utility of methods to a practitioner who may not be well versed in probability theory
or game theory and may remain (quite rightfully) distrustful of the most novel developments. This
concept, under the name “causability”, was addressed by [88], who proposed using an explanation
interface after the explainable part to facilitate experts’ use and trust. Indeed, in the ideal, the experts
could and probably should participate in the understanding, the learning, and why not correcting the
algorithm [88].

Our experiment will involve five steps symbolized in Figure 5.1 corresponding to the four hypotheses
formulated to interpret the knowledge extracted from the predictive model (Steps two and three are
part of the second hypothesis).

1. Implementation and comparison with [35] in our dataset four of the different formulas used to
define ParI described in 2.6 (Hypothesis one).

2. Each formula will give a target on our dataset for each sample (0 or 1), six classifiers will be
trained on each target, and the one with the best performance will be kept to apply the explainers
(Part I of hypothesis two).

3. Two Global Explainer models will use the most performant classifier, LASSO does an additional
explanation, and the top ten features among the three are compared (Part II of hypothesis two).

4. Our explainable interface consists of generating a Reliability Score to improve the uncertainty
of FI. The metric involved in this evaluation is the Mathews correlation coefficient (MCC)
(Hypothesis not developed here).

5. Once the important features are selected, we will cross the results with group comparison by
t-test on all the features to discriminate the ones involved in subjects labeled ParI, whatever the
formula used (Hypothesis three).

6. Could we have new reliable insight on ParI after this process and perhaps explain or propose a
new definition of ParI?

Figure 5.1: Six steps of our experiment protocol: Moving from our datasets to new conclusions about
ParI.

5.2 First hypothesis: The implementation in our dataset of the
main formulas published to define ParI and their prevalence analysis
will confirm the poor overlap between formulas

5.2.1 Many proposed formulas; too much diversity, insufficient agreement

We have already described the vast diversity of definitions used to define ParI from 1979 to 2020 (See
2.6 in the subsection 2.4.2), with most of them already implemented in a single dataset of chronic
insomniac patients (N=200) and a control group (N=200) by [35] to evaluate the overlap between most
of the formulas (See correlation matrix in Figure 2.16). The agreement ranged from −0.19 to 0.9. A
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brief analysis of the results presented shows that certain formulas are highly correlated in the CID
sample, such as B and E (>0.8), A and H (>0.7), I and O (>0.7), or the R, T, P, Q, and F formulas >
0.8 between each other. Others are not at all, like M with almost all the other formulas, or B, which
is negatively correlated with all the others except E, and the vast majority of the other formulas are
weakly to moderately correlated with each other (from 0.2 to 0.4). In the same study (right correlation
matrix in Figure 2.16), we can see the correlation matrix applied to a control population. Surprisingly,
there is a big change in the correlations compared to the CID sample, especially in a decreasing way,
like B and E, which are no longer correlated at all (<0.2), or T and R (from 0.9 to 0.14), or less
correlated like I and O (<0.5). Conversely, formulas uncorrelated in insomniac subjects become much
more correlated in control subjects, such as L and K (from 0.33 to 0.66) or E and Q (from 0.4 to
0.65). If these results are confirmed, they highlighted that the ParI definition doesn’t uniquely define
a measure, which may seem surprising because these are a priori formulas with clear cutoffs. This
observation raises the question of the indistinct use of ParI and SSM, which could cover two different
concepts. The first could refer to pathology, and the second to the perception of sleep. Indeed, more
and more studies are now trying to explain SSM negatively and positively, assuming that the negative
SSM is the equivalent of ParI. On the other hand, numerous studies claimed that SSM is present
in most CIDs, and that’s why the subtype ParI should be removed from the classification, but the
observation from these findings could lead to separating these two concepts. The second observation
from the results presented is the presence of clusters(c), defined by a strong correlation inter-formula
> 0.6 or a weak < 0.4 with all the other formulas for a singleton. Applying these criteria to the CID
population, six clusters could describe c1(B, E), c2(M), c3(L), c4(R, T, F, Q, P), c5(A, H) and c6(N,
I, O). So, at least six different populations of insomniacs could be classified with the same diagnosis
across different studies according to these results.

Logically, given the results described above, the prevalence of ParI in a CID sample varies hugely
among the studies, between 8% and 66% according to the review of [35]. The prevalence found in
their 16 formula implementation ranged from 12 to 64%; They didn’t evaluate the correlation between
the prevalence and the agreement between formulas. In the studies used to generate the formula
calculation (27 papers judged as relevant for the analysis of 282 publications), the prevalence varies
from 16 to 60% of the CID sample studies. Some studies pre-selected specifically ParI subjects; in
that case, the prevalence is not available for comparison (NA in the table 2.6).

5.2.2 Methodology and tools to test the hypothesis

The initial results described before suggest that our hypothesis is likely to be confirmed. However, the
variability of correlations observed in the two data sets prompts us to repeat the same prevalence and
correlation study on our dataset. We have to check if we will obtain results close to the one described
by [35] on our CID population to reinforce the legitimacy of our dataset for studying this issue versus
leading studies on the subject, and thus the power of any results found subsequently. However, we
demonstrated in Chapter 3 that our dataset represented a population of chronic insomniacs, so it
would be surprising to find divergent results. Furthermore, the prevalence and correlation of formulas
not implemented by [35] could be implemented in our dataset (including the new formula published),
which would complement the work done by [35] in a sort of update.

We will describe the dataset used and the 20 formulas implemented in the following.

Dataset: 335 CID-subjects described by 198 features

The dataset used for this experiment is dataset four (cf. 3.1.1).

Once data was collected and aggregated, we reduced the number of features by removing duplicates
and colinear variables. We made feature engineering removing high correlated value (≥ 0.95). The
final dataset used to implement the different formulas contains 198 features and 335 subjects with
CID according to the selection process described in 3.1.

The main characteristics of our dataset are a mean age of 46 ± 12 yo, 66% of women, a TST of
355±75 min, and a mean ISI score of 19.7±4.
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Implementing the Paradoxical Insomnia formulas/definitions from the literature

From the 23 formulas described in Table 2.6, we have the features needed to reproduce the formula on
our dataset for 20. We conveniently used the same name as in [35]. So we kept 18 formulas described
in [35], namely A, B, C, D, E, F, J, K, L, L2, M, N, O, P, Q, R, T, and V formulas. We used the
original publication to implement the calculation ([22, 195, 109, 85, 180, 138, 58, 57, 160, 131, 152,
62, 103, 94, 10, 144, 102]. We added a formula used in a recent publication [3] named Z. We used
the definition S described recently in [117]. After implementation, each subject in our sample was
categorized as ParI negative or positive according to each feature’s threshold described in each formula
publication.

Table B.1 in the appendix shows the distribution by age range, sex ratio, total sleep time, and
insomnia severity scale score for the dataset and each formula computation on our dataset. The main
characteristics are a mean age of 47±10 yo, 66% of women, a TST of 358±80 min, and a mean ISI
score of 19.7±4.

5.2.3 Results (analysis of prevalence and overlap of ParI diagnoses)

We used a representation tool (UpSet plots [123]) to show the prevalence for each formula on our
dataset and the overlapping subject by subject (See Figure 5.3a). This plot shows the cardinality of
every category combination seen in our data.

We also calculated Pearson’s correlations between each formula; the correlation matrix is shown
in Figure 5.5.

Correlation matrix We could find the same range of correlation and clusters described earlier
by comparing the results obtained on our dataset to [35]. Indeed, Formula M has no significative
correlation with other formulas, Formula L neither, except with L2 not implemented in [35]. We also
found high correlations between T, P, Q, R, F; between I and O; and B and E. We didn’t implement
the H formula, so the comparison was impossible for this formula. The J formula is assimilated to the
T formulas on the dataset (correlation = 1).

The fact that the differences between the different formulas are quite similar to [35] allows us to
draw two conclusions: 1) Our dataset is representative of the target population of CID (considering the
validity of the paper [35]). 2) The fact that the results are similar to those studied on another sample
makes it even more important to understand what predicts each formula, as this can be reproduced
in different clinical samples from different sleep centers.

Overlapping An overlapping visualization technique evaluates the correspondence in our population
between the different formulas. We used a graphical representation in Figure 5.3a. This first plot
aimed to find a group of patients who could belong to several different definitions of unification.
Unfortunately, this plot confirms the discrepancy between formulas, showing that very few subjects
on our dataset shared common ParI diagnoses across formulas. Not a single subject had a ParI status
common to the 20 formulas. A total of 139 combinations are found, with most combinations shared
only by one or two subjects. When we look at the combinations shared by at least ten subjects, there
are only five, with the biggest involving 29 subjects. But these combinations concerned a few common
formulas; for the most part, only one formula is part of this combination. Ultimately, this plot shows
that the biggest sample sharing common definitions are the subjects never categorized as ParI (N=62).
But at the same time, taking all the combinations, 82% of our sample was categorized as ParI with
at least one formula.

These findings confirm the poor agreement between formulas and between subjects, even with new
formulas implemented (L2, S, and Z).

Prevalence The prevalence found on our dataset for each formula aligns with the previous results
and shows a very different percentage of subjects categorized as ParI. Indeed, the prevalence presented
in 4.19b shows a minimum of 3% of subjects with the Formula M to 51% for the formulas A and L2.
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Figure 5.2: Graphical representation of each subject ac-
cording to their negative or positive categorization as ParI
and the common categorization between formulas. A total of
138 combinations for a positive categorization are described
for 273 subjects and 62 subjects are categorized as negative
ParI as a result of the negative consensus between the 20
formulas

(a)

Figure 5.3: Figure(a) is an enlargement of the graphical
overlap representation showing the prevalence according to
each formula and the 20 first combinations.

5.2.4 Discussion

• We could confirm that our dataset highly represents the typical CID samples used to describe
ParI and that our next hypothesis is feasible, at least regarding the target population. Even if
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Figure 5.4: Comparison between the original paper prevalence for 13 of the 20 formulas implemented
and the prevalence found in our dataset. For the seven left, the information was not available

we don’t have a perfect match in terms of prevalence with some of the original papers, we have a
perfect agreement with some of the reference papers as [58]. The results are comparable with the
literature, especially the study from [35] with similar prevalence in our dataset. We found that
the J and T formulas applied to our dataset covered the same subjects [58]; this overlapping
was not tested by the previous study by [35]. Figure 5.4 shows the differential comparison
with the prevalence found in the original paper. Our dataset shows an under-representation of
subjects classified as ParI for formulas E and V. In the case of formula V, this is explained by
the sample, which is relatively young and from a military population with few women, which
does not correspond to a usual clinical population (17% women and majority of men between
17 and 35 years). This is the biggest difference. For Formula E, the population was recruited by
advertisement and did not correspond to a CID consultation. In addition, the mean age in this
study is about 35 years, which does not correspond to a typical population of chronic insomniacs
either.

• We confirmed the great variability between formulas in their ParI definition and the poor cor-
relation on average between formulas. The best indicator of this very low specificity is the huge
percentage of subjects detected as Paradoxical Insomniacs in our sample, which rises to 82% for
all formulas combined, even though prevalence varies from 3% to 50% depending on the formula.

• There are no clear clusters corresponding to different subgroups of formulas. Indeed, on 273
patients classified as ParI in our sample, there are 139 mini clusters or, let’s say, different ways
to classify ParI according to the different formulas. We can see in Figure 5.3a that the bigger
cluster corresponds to a unique formula (A).

• There is not a single patient sharing all the formula definitions.

• The most surprising is the lack of agreement between the less specific formulas, A and L2.
The correlation between these two formulas is very weak (0.2). Indeed, the number of subjects
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Figure 5.5: Correlations inter-formulas. As the formulas J and T are perfectly overlapping, we removed
the J formula from the correlation matrix.

sharing these two formulas is only 17 out of 165, which shows the great diagnosis disparity. This
observation is very important, as it means there is no correlation between the prevalence and
recovery of formulas. In other words, in that case, this discrepancy in prevalence is not due to
a change in specificity or sensitivity but to different criteria for diagnosing ParI.

5.2.5 Limitations

The main limitations of this first experience are:

• We could not implement all the published formulas, as some of the parameters required to
calculate them were unavailable in our dataset. However, the features used were broadly the
same, but the duration criterion could not be met for one, formula G, which set the criterion of
a subjective WASO observed four times a week for one year, a piece of information we did not
have. We didn’t have the cut-off provided for formula U, but the features were the same as for
formula A.

• The number of subjects, although larger than most studies on the subject, often limited to a
few dozen patients, fell short of our initial target of 1,000 subjects to increase the power of our
study.

5.2.6 Conclusions

We were able to confirm our first initial hypothesis showing that the implementation of the most
reliable formulas described in [35] and the most recent papers [117, 3] have a poor global overlap or
no overlap at all. We also showed that some formulas differentiated by [35] as O and I are almost
perfectly correlated on our dataset, and J and T are fully correlated. Finally, we have shown that our
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dataset is very representative of the target population, i.e. a clinical population of CID, as evidenced
by the similarities with [35], and the same ParI prevalence in our dataset as in [58] who is the most
recognized reference in the field.

As our sample is representative, as we could reproduce the very low specificity of almost all the
used ParI definitions on a single representative dataset, we could test our second hypothesis claiming
that using additional features available in our dataset, coupled with the use of ML tools; we could
identify better the type of profiles to which these different sub-groups of subjects categorized under
the single label ParI belong. This is all the more true as we have shown that identical prevalences
detected by different formulas did not always overlap between subjects, which means that the different
formulas used are not only different thresholds of a single continuum but could correspond to different
profiles. The difficulty here will be to differentiate the categorical aspect from the dimensional.

5.3 Second hypothesis: Finding the more accurate predictive model
on each formula prediction will allow their explanation

We demonstrated in the previous section that our sample was representative of the target population of
CID. Compared to most studies, it’s a large sample with additional characteristics. So, by predicting
each formula from all the available features except the one involved in the initial calculation and
explaining each prediction, we must shed new light on the different subgroups corresponding to each
formula, especially when there is no correlation between them.

5.3.1 Hypothesis background and definition

Hypothesis definition

The general hypothesis we want to test here is that a particular ensemble learning protocol might
reveal reliable relationships between the dataset features and the target prediction after applying the
best possible predictor according to a previous benchmark.

The two following conditions will serve as the tests for this hypothesis:

• If the ensemble learning protocol retrieves at least one shared feature, it suggests the model
correctly identifies key relationships.

• If the model never selects a randomly generated feature (within the quantitative range of a
common feature in the dataset), this would suggest that the model appropriately and reliably
distinguishes between relevant and irrelevant features. By randomly generated features, we refer
to a variable or attribute in a dataset created by random processes rather than derived from
real-world observations or measurements. These features can serve several purposes, but in our
case, a randomly generated feature can be included in feature selection or feature importance
analysis to act as a control. If a machine learning model assigns significant importance to this
random feature, it might indicate overfitting or issues with the feature selection process.

If both conditions are met, we could support the hypothesis and use the results to gain insight into the
ParI explanation. Our objective is to find an acceptable balance between reliability and explanation.

Hypothesis background

The following rationale could support the choice of this hypothesis:

• The algorithms used in this task are supervised learning algorithms, specifically those that deal
with binary classification problems, as we want to predict and explain the prediction of each of
the formulas defining being ParI positive or negative.

To increase the chance of success in our experiment, we need to implement tried-and-tested
performant classifiers, which can also be implemented in explainers, on the understanding that
their decision mode is accessible and explainable, at least to another algorithm. This excludes
black box models such as Neural Network classifiers from the outset, especially for the lack
of feature attribution. Indeed, unlike models that use easily interpretable decision rules (like
decision trees), neural networks do not inherently provide clear attribution of how much each
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input feature contributes to the final output. So we chose the non-neural network classifiers
from an extensive review of different algorithms on hundreds of different databases and datasets
[60] showed that six Random Forests classifiers (RF) and three Support Vector Machine (SVM)
are included among the 20 most performant classifiers after hyperparameters tuning, which were
the two best families. Those results were in some way replicated in [110]. A more recent paper
[187] that tested SVM, K-Nearest Neighbours (K-NN), Naive Bayes, and Decision Tree (DT)
have also found SVM with the best results and DT as the second one. Publications using
ML on medical databases [93] showed SVM and RF as the best algorithms, but also Gradient
Boosting (XGB). Logistic regression (LR) was less efficient in predicting the target, but the
scores were still competitive. Another study that compared RF, LR, K-NN, Naive Bayes, and
DT on the Breast cancer Wisconsin’s dataset[9] found that LR had excellent accuracy after
10-fold cross-validation, and the best was RF. Based on these publications, we could conclude
that six algorithms (RF, SVM, DT, XGB, LR, and NB) will likely be the predictive models to
test our hypothesis.

• As we want to explain relationships between features from the predictive model, we also have
to choose carefully the good metric to assess the classifier performance. Our goal is to focus on
a reliable prediction of positive instances (ParI positive), so having an idea of the true positive
prediction accuracy is critical. The F1 score (see definition in B.1.2) is well suited to measuring
a binary classifier’s performance, particularly when dealing with imbalanced datasets [169, 203].
The F1 score is the harmonic mean of precision and recall. Specifically, the F1 score can be
interpreted as a weighted average of the precision and recall, where an F1 score reaches its best
value at 1 (perfect precision and recall) and worst at 0. So, using the F1 score on positive
predictions would measure how well the model predicts positive instances (ParI positive) in
terms of both precisions (how many of the instances predicted as positive are positive) and
recall (how many of the actual positive instances the model can capture). But more recently,
a paper highlighted the advantage of Matthews Correlation Coefficient (MCC) (see definition
in B.1.2 methods [40]. To rank the classifiers, we needed the most reliable metric to detect the
variables with the greatest impact on the positive prediction of ParI, but also to detect True
Negative. MCC is a reliable statistical rate that produces a high score only if the prediction
obtained good results in all of the four confusion matrix categories (true positives, false negatives,
true negatives, and false positives), proportionally both to the size of positive elements and the
size of negative elements in the dataset. Given the selectivity of our criteria for rejecting the
hypothesis, we need the most reliable metric to choose the best classifier, so we decided to keep
MCC as the main metric for the prediction accuracy, and we added F1 on positive value as an
indicator and the classic AUROC (area under the receiver operating characteristic curve).B.1.2

• Once the classifier and the metric are set, the explainability of the prediction needs additional
tools named explainer models. These algorithms belong to a complex area of research with
many different proposed models. To explain here means determining which inputs have the
most influence on the output of the model used. Those algorithm developments took place in
response to the need to understand better the decisions made by the increasing implementation
of ML algorithms, especially in medicine. So, we want to use these models to help us explain
the ParI prediction on our dataset. The choice of good models is not an easy task. We aim
to be as selective as possible to avoid selecting meaningless features that could invalidate our
hypothesis while keeping sufficient information to explain the prediction. As we want to explain
the prediction’s main output, we need a Global Explainer model that allows us to understand
the average impact of the variables on the prediction. Our literature review focuses on finding
complementary models to triangulate the feature selection. At the same time, the explainer
should allow us to implement the predictive model or should be adapted to our dataset. We can
divide the main explainers models into Interpratables models, surrogate models, and Explana-
tions Generation [25]. The Interpretable models are interpretable alone (white box); the typical
example is a Decision Tree or a Linear Model such as LASSO (see the definition in B.1.2). The
surrogate models, known to be more flexible and accurate, use the Supervised Machine Learning
algorithm (black box) for prediction, but a white box surrogate model of the black box model is
provided for explicability. The typical examples are LIME or SHAP [130].
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The third category, Explanation generation, is an explainer function that takes a Supervised
Machine Learning algorithm (black box or interpretable) and explains it. They are independent
of certain model predictions and try to reveal the properties of the black box model. The
Leave-One-Out approach and the Global Sensitivity Analysis are two examples [25].

Our conclusion after this review is that we must take one explainer from each category.

We will describe our choices in the methodology section

5.3.2 Methodology and tools to test the hypothesis

Classification tools

• We kept the following six algorithms:

– Random Forest from scikit-learn

– Support Vector Machine from scikit-learn

– Decision trees from scikit-learn

– Logistic Regression from scikit-learn

– Naive Bayes from scikit-learn

– Gradient Boosting (XGB) from the XGBoost library

We added Gradient Boosting (XGB) from the XGBoost library, which recently proved its good
performance in medical datasets on accuracy and feature selection [39] at the cost of trans-
parency. We also kept the LR and Naive Bayes classifier as described in Section 2.5.

– Before training each classifier, we used the grid-search protocol available in Scikit-Learn
[162] for automatic hyperparameter tuning.

– Then we trained each classifier on the dataset for each of the formulas described (A to Z)
after removing all the features involved in the definitions except the sleep stages percentage
used only in the V definition (see Table 2.6). Indeed, the risk of seeing only these features
as the main predictor is high and of poor interest to our research question. A good example
to avoid such truism in the explanation of ParI could be found in the B formula paper
[195], where the authors have chosen a formula including objective SE ≥ 90 % and OSOL≤
30 min, and in conclusion, they found statistically that what differentiates the most the
different groups were these two variables! We aim to see behind this first line of basic
definitions which other features could emerge. The last point explains why we are very
selective in the feature selection process because we know that removing the main features
involved in the construction of the target could lead to low prediction accuracy, and the risk
of selecting meaningless features for the explanation is high. The Ensemble type method
for prediction explanation described in Chapter 5 and conditions one and two described
previously are designed to avoid such a pitfall.

– For each classifier, we used 10-fold cross-validation (CV) for hyperparameter tuning and
prediction. The use of CV is a means of predicting the effectiveness of a model on a
hypothetical test set of new patients (results averaged from 10 models, each trained on 90%
and tested on 10% of the data, ensuring that the model is always tested on instances it
has not been built on). This ensures a generalization of performance. Although we were
unable to use a separate Test Set due to the limited number of samples, we limited the risk
of overfitting by applying the following protocol:

1. Class unbalance adjustment of the hyperparameters for each classifier to avoid bias
towards the majority class.

2. Cross-validation of hyperparameter tuning to find the optimal hyperparameters while
using the entire dataset. It ensures that the tuning process is not biased towards a
specific subset of the data.
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3. Repetition of 10*10 cross-validations with additional random columns for each turn
and stratified sampling. This step helps to get a more stable estimate of the model’s
performance. It reduces the variability that might arise from a single round of cross-
validation, especially when the sample size is small. The random column addition is
designed to test the robustness of the model. If the model starts to assign importance
to these random features, it might indicate overfitting. We chose this approach to
ensure that the model is not just memorizing the data. The stratified sampling ensures
that each cross-validation fold maintains the same proportion of each class as in the
full dataset.

Metrics used to assess the predictive model performance

We quantify the performance via MCC, area under the receiver operating characteristic
curve (AUROC), and F1 score on the positive prediction. To optimize the classification
metrics score (AUROC, F1, and MCC) obtained on each new data set for each classifier, we
also tuned the class-weight option of Scikit-learn [162] with the corresponding ratio to avoid
bias on the results, especially F1 but also MCC who has shown that he is also sensitive to
unbalanced dataset [216].

Explainers and Feature importances Selection

∗ To ensure the minimum robustness and reliability in the predictive model’s explanation,
we then chose to use the three categories of explainers (surrogate, interpretable, and
interpretation generation), and we chose from them LASSO, Shap, and Sensitivity
Analysis.

∗ This approach is a voting protocol between three different models, a sort of algorithmic
triangulation designed to eliminate a feature from the FI selection. As there is simili-
tude with the ensemble models, we named it the Ensemble type method for prediction
explanation (ETMPE).

∗ To understand the minimum to consider a feature as meaningful, we added a random
feature in the dataset.

∗ The protocol adopted was to keep the best ten mean scores associated with each feature
after ten runs of explanation after dataset sampling.

∗ Once the top 10 means for each explainer are kept, we compared the features and kept
only the shared features. This approach is an existing measure of faithfulness already
published and described as ”Correlation to others”, a common method of testing ex-
plainers. The principle is to compare their output to other popular existing methods
[2].

∗ The originality of our methods is that we applied a systematic 10-fold repetition for
each explainer with the randomly filled column. So, we ran 30 Feature importance
determinations per formula, then 600 in total, to evaluate the rate of random feature
selection and the score we could consider significant.

5.3.3 Results

Best predictions for each Formula

The performance results in predicting ParI are shown in Table 5.1. The best performance
on the F1 score on the positive prediction on MCC and AUC is shown for each classifier.
We can see that few formulas reach satisfactory prediction scores. Indeed, only formulas
B, D, I, and O seem to be able to be predicted with AUC scores ≥ 85% and an F1 score
≥ 70%. Formula N is at the limit, with an AUC score of 84% and an F1 score of 68%.
Interestingly, this corresponds to the most correlated formulas.
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Formula Model AUC F1 MCCb

A XGB .57±.01 .58±.02 .15±.03
B LR .91±.02 .67±.02 .53±.03
C SVM .84±.01 .52±.02 .31±.03
D LR .87±.00 .70±.01 .51±.02
E SVM .88±.01 .48±.03 .28±.04
F SVM .64±.02 .47±.02 .18±.03
K RF .85±.00 .40±.01 .27±.02
L XGB .68±.01 .50±.01 .18±.03
L2 LR .69±.01 .61±.01 .26±.01
M RF .80±.01 .29±.01 .15±.02
N LR .84±.00 .68±.00 .47±.01
O XGB .88±.00 .78±.01 .56±.01
P LR .84±.01 .57±.01 .38±.02
Q RF .80±.00 .49±.00 .29±.01
R RF .82±.01 .38±.01 .22±.01
S RF .76±.01 .45±.01 .25±.01
T LR .80±.01 .60±.01 .40±.02
V RF .68±.00 .38±.00 .18±.01
Z SVM .84±.01 .58±.02 .40±.03

Table 5.1: Best score obtained on Matthews Correlation coefficient after 10*10 Fold cross Validation
for each of the 19 formulas among the six classifiers tested (we removed the I and the J formulas
for their high correlations with the O and T formulas). The satisfactory prediction scores for MMC
(above 0.3) are in bold.

Results after the protocol of Ensemble Type method for prediction explanation
(ETMPE)

After applying the protocol, the results are as follows:

∗ The number of definitions predicted by the set of features present in our dataset (minus
the ten features used to calculate them) by the best classifier and which could be
explained by our protocol is 17 out of 19 (or 19 out of 21 if we considered the I and J
formulas).

∗ The total number of features selected is small; only 11 features account for the 17
formula predictions according to our protocol.

The raw results for each formula after the ETMPE selection are presented in Figure 5.6
and the synthesis in Table 5.2. The complete Feature importance selection is available as
supplementary content in the Appendix (Figure B.1 for LASSO, Figure B.2 for SHAP, and
Figure B.3 for Sensitivity Analysis)

We can see that for each formula, there are, on average, two or three features in common.
We can see that 16 formulas out of 19 have in common the first features Time in Bed and
Time Period of Sleep. The meaning full results are listed below :

∗ Concerning the two definitions without reliable explicative variables, M and S, we
could assume that for these two formulas, the removed features contain almost all
the information useful for their prediction. This observation is confirmed by the low
scores obtained in the prediction assessed by MCC or F1 score, especially for the M
formula with the lowest scores compared to the others (0.15 and 0.29, respectively).
These two definitions use exclusively objective TST and subjective TST. In the case
of Formula M, each of these two features is used twice for the calculation (see 2.6). It
was also in our dataset the lowest prevalence with only three % of the sample, so it
is possible that the relatively unbalanced class could explain these results even if we
adjusted the hyperparameters according to the prevalence. For the formula S, we can
apply the same observations even if the MCC score is not the worst with 0.25, nor
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PSG ActiG MMPI Formulas
TIB 11 A, B, C, D, E, F, N, Q, T, Z
TPS 16 A, B, C, D, E, F, K, L, N, O, P, Q, R, T, Z
Arousal 2 O,C
MicEv 1 O
Stadechanges 1 V
Meansleeplastday 3 C,O,Z
Totalactivityscore 1 L2
assumedsleep 1 C
Hsortielit 1 C
Low5 1 L2
Hs 1 R

Table 5.2: Total features selected to explain the ParI among the 18 formulas. The features are grouped according to the
Pre-dataset origin (PSG, AG, and MMPI). TIB=Time in Bed, TPS = Total Period of Sleep, Arousal = Total Number of
Arousal, MicEV =Micro-arousal index, Stadechanges = Total number of sleep stade changes, Meansleeplastday = TST
measured by AG the same night that PSG, Totalactiivity score = AG activity measured during the day, assumed sleep =
total elapsed time between “Fell Asleep” and “Woke Up” times, Hsortielit= Get up time, Low5 = lowest activity during
the night measured by AG, Hs = hypochondriac scale.

is the sample percentage with a prevalence of 7 %, but as they chose a very selective
cut-off, as they did for the formula M, it’s possible that in both case all the useful
information are contained mainly in the ratio oTST/sTST chosen by the authors. But,
more surprisingly, even with this similarity, these two formulas are barely correlated
on our dataset with a Pearson correlation of 0.27. So for these two formulas, the low
perception percentage of the objective TST seems to be the main explicative criterion.

∗ Concerning the 17 remaining formulas with explicative features, 13 have two features
in common, TPS and TIB as main predictors, 11 have TPS as the most important
feature, five have TIB as the most important feature, and 16 have at least one of these
two features as the most important.

∗ The other features remain related to objective sleep measures, and very few are (only
one) related to the psychological profile or the questionnaires, even the most specific
to sleep, like ISI, ESS, or HO. There is no great influence from age, gender, or belief
and attitude towards sleep. These results are quite surprising as they show that the
main predictor of ParI is the relation between the time spent in bed (TIB) and the
total sleep period (TPS). So, studying the relationship between these two variables is
essential to define better how they are closely linked to the prediction of ParI.

∗ TIB refers to the total duration a person spends in bed, regardless of whether they are
actively attempting to sleep or awake. It includes both the time spent asleep and the
time spent awake when a person is in bed.

∗ TPS, on the other hand, is the time spent in bed specifically for sleeping. It includes
the time spent asleep and any time spent awake during sleep, contrary to TST, which
considers only the time of sleep. So here, TPS is the time from the first episode of
sleep to the last episode of waking.

Although this finding is of great interest to our research questions, we can see a huge se-
lection of FI with our ETMPE protocol, with a probable loss in the complex interaction
between features. To understand the potential information loss, we calculated the total nor-
malized weight of FI from the three explainers for each feature to see how much information
has been lost.

As 82 features were selected, we will detail only the meaningful features in Table 5.7a. The
cutoff for meaningful features is calculated using the random feature mean score, and SD
presented in Table 5.8a. All the features below, or with a mean score in the range of the
random feature score SD or with an SD overlapping the random feature SD, are removed.
In the end, only 58 features left. We calculated the summed score ratio for each compared
to the random feature summed score.
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Figure 5.6: Mean and sd normalized score for each feature selected with our ETMPE protocol for the 18 formulas for
which we could have at least one feature

We will synthesize the meaningful ones by feature’s origin category and importance from
the results described previously to see if we can define a ”Generic” ParI patient. Indeed,
from the 58 contributive features described in 5.7a, the global feature’s summed score by
pre-dataset described in 3.1.1 is used. So the four categories correspond to MMPI-2 T-
scores (Database I), questionnaire scores (Database II), PSG features (Database III), and
Actigraphic features (Database IV), and the data coming from the sleep logs added in the
end (see B.6. We included the dataset origin as a variable, as ML could sometimes learn a
dataset structure. The global weights are presented in Table 5.3.

Discussion

The Ensemble Type method for prediction explanation (ETMPE) protocol results revealed
that 17 out of 19 (or 19 out of 21 if considering the I and J formulas) formulas could be
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Features Sum Sco Sum SD IF r Origin
Timeperiodsleep 4.233248 2.576903 14K 1 PSG
Timeinbed 2.440031 2.058738 7K 2 PSG
LatREM 2.282124 2.059576 7K 3 PSG
Avgwakemvmt 1.364706 1.527187 4K 4 ACTI
Meansleeplastday 1.011161 0.905045 5 ACTI
Totactivityscore 0.842664 1.024457 3K 6 ACTI
Arousalnumber 0.725582 0.758414 7 PSG
tempsaulitagenda 0.684860 0.608199 2K 8 LOG
MicArindex 0.404562 0.417502 9 PSG
Hcoucher 0.345849 0.347014 10 LOG
Hsortielit 0.328778 0.437622 11 LOG
M10Onset 0.287455 0.401189 1K 12 ACTI
N3tot 0.284374 0.088259 13 PSG
Max10hcount 0.282445 0.427656 14 ACTI
Lowest5hcount 0.266474 0.416496 15 ACTI
ArousalTotaltime 0.260922 0.201383 16 PSG
Sleeplatency 0.198865 0.301632 17 PSG
Relativeamp 0.184833 0.147801 18 ACTI
Actualsleeptime 0.171682 0.208601 19 ACTI
Assumedsleep 0.151588 0.201966 500 20 ACTI
actiefficacy 0.141913 0.206234 21 ACTI
19 0.121106 0.150179 22 QUEST
ISI 0.108288 0.153929 23 QUEST
25 0.095746 0.084429 24 QUEST
Intradailyvariability 0.093158 0.101075 25 ACTI
Ho 0.092388 0.106839 26 QUEST
Stadechanges 0.092311 0.115564 27 PSG
Immibilemins 0.087855 0.161363 28 ACTI
2 0.081100 0.100964 29 QUEST
N2perc 0.069948 0.046 30 PSG
17 0.057522 0.033516 31 QUEST
MDSx 0.054178 0.057735 32 MMPI
PdSx 0.044586 0.057777 100 33 MMPI
REMperc 0.041415 0.018739 34 PSG
Hy4x 0.039494 0.020301 35 MMPI
Dox 0.037313 0.057309 36 MMPI
epworth 0.036100 0.038516 37 QUEST
MaSx 0.035656 0.026347 38 MMPI
Wakebouts1mini 0.034948 0.030934 39 PSG
WRKx 0.034758 0.057143 40 MMPI
1 0.031873 0.059793 41 QUEST
Hs5Kx 0.031640 0.037146 42 MMPI
30 0.029731 0.041106 43 QUEST
staietat 0.028432 0.050624 44 QUEST
FRmoysom 0.022619 0.015391 45 PSG
N1perc 0.020044 0.026745 46 PSG
Wakebouts 0.018779 0.020619 47 ACTI
Lx 0.018393 0.024967 48 MMPI
Esx 0.015294 0.020136 49 MMPI
HRREM 0.014092 0.033490 50 PSG
Ma4x 0.012972 0.013896 51 MMPI
Agex 0.008449 0.002617 10 52 PHYSIO
Rx 0.007222 0.001938 53 MMPI
RDIback 0.004660 0.001189 54 PSG
HRwake 0.003413 0.001434 55 PSG
IPR 0.001568 0.000164 56 PSG
Fragmindex 0.001548 0.000275 57 ACTI
Dx 0.001484 0.000883 58 MMPI

(a) Summed normalize scores of the 58 significant features sorted by Impact factor
scaled on the Random features score mean + SD. This table ranks features in de-
scending order according to the sum of normalized scores after the explainer sorting
process (Lasso, Shap, and SA). IF corresponds to the impact factor, the proportional
factor of importance about the random feature (e.g., 1 K = a score 1000 times higher
than that of the random feature). Boxes colored red correspond to features detected
by our ETMPE protocol. Finally, the database origin of each feature is noted on the
right.
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Table 5.3: Total summed score weight of the main features selected by the three explainers by dataset
origin

ORIGINE Summed Score Summed SD

PSG 11.134726 8.752056
ACTI 4.906261 5.749964
LOG 1.359487 1.392835
QUEST 0.682286 0.819895
PSYCH 0.334070 0.376179

predicted and explained using the selected features. This indicates that the predictive mod-
els, in combination with the explainers, were able to provide insights into the relationships
between features and the formula predictions.

The complementary analysis of all the meaningful features selected by each explainer shows
that some important features were removed by our EMTPE protocol but proportionally to
the summed scores of FI across the three different explainers. Indeed 70% of the top 10
features were kept by our EMPTE protocol.

After, we could observe a reduction, with 30% of the biggest summed scores of FI from 11
to 20, and then less than 5% of the following with an increased dispersion. So we could
confirm that our ETMPE protocol could select the major part of the meaningful
features and highlight the ones involved in specific formula prediction, like Stade
changes that are the only meaningfully detected for the V formula.

But this ETMPE protocol removed important FI like LatREM when we looked at the
explainer-by-explainer comparison for LatREM; it was removed, for example, for the for-
mula C as the main FI to explain the formula for SA and Shap but not selected by LASSO,
so it was excluded from the final selection. We could see different examples of such diver-
gence in the explainer’s selection in Figure 6.2.

We wanted to understand why this important feature, REM latency, was not se-
lected with a summed score almost equivalent to TIB. After analysis, this parameter’s
problem was that very few patients had no REM sleep during the night. As a result, dur-
ing database construction, the value 999 was set to reflect the absence of available latency
while at the same time reflecting reality, i.e., a much longer duration to reach REM sleep.
This is the only feature with this characteristic. This example is interesting because it
shows how the different explainers reacted to the choice of this variable. In the selection
process, both Shap and SA chose this feature, and the cross-selection between both put this
feature as the most important. In the meantime, LASSO didn’t keep it, so our EMTPE
protocol removed these features. An explanation could be that the LASSO penalty term
encourages sparsity in the model by promoting some coefficients to exactly zero, effectively
excluding corresponding features from the model. In our case, where a particular feature
has a value significantly higher than the other features, it may still be chosen as important
by LASSO if it strongly impacts the prediction outcome. However, the fact that the fea-
ture represents less than 1% of the dataset could potentially diminish its importance in the
LASSO feature selection process.

Indeed, in LASSO, the feature selection is primarily driven by the coefficients associated
with each feature. If the feature with high values is not strongly correlated with the target
variable or if its influence on the predictions is not substantial relative to other features,
LASSO may assign its coefficient a value close to zero, excluding it from the model. LASSO
aims to balance prediction accuracy and model simplicity by selecting a subset of features
that explain the data well. In contrast, sensitivity analysis and Shap with SVM focus
on the impact of features on the predictions rather than the coefficients. These methods
consider the overall contribution or sensitivity of each feature, irrespective of the coefficient
values; in that specific case, the huge value of this feature seems to have influenced these
two explainers. So, thanks to our ETMPE protocol, we could understand why a feature
was not chosen, and our initial hypothesis on the triangulation of the feature selection by
different algorithmic approaches is quite effective in increasing the reliability of FI selection
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Features Summed score Summed SD
Si3 0.001080 0.000601

Pd4K 0.000998 0.000696
GF 0.000948 0.000698
Ma3 0.000741 0.000131
Sc6 0.000714 0.000178

Snoreindex 0.000691 0.000364
D4 0.000687 0.000769

PLMSindex 0.000642 0.000827
Mouvingmins 0.000575 0.000025

Pt1K 0.000527 0.000074
D3 0.000476 0.000365
LSE 0.000422 0.000250
Hy 0.000400 0.000645

randNumCol 0.000344 0.000674
activeperiods 0.000307 0.000200

APS 0.000278 0.000448
F 0.000265 0.000313

L5Onset 0.000209 0.000135
Sc2 0.000204 0.000430

DBAStotal 0.000027 0.000057
RRN2 0.000000 0.000000
VRIN 0.000000 0.000000
Sexe 0.000000 0.000000
TRIN 0.000000 0.000000

staitrait 0.000000 0.000000

(a) Summed score of each feature selected by at least one of the three explainers in the random column range

in that case.

The findings from this study contribute to understanding the different subgroups corre-
sponding to each formula and highlight the importance of accurate predictive models and
explainers in gaining insights from complex datasets.

The last aspect to be discussed is the surprising importance of random features, selected
in the top 10 features by the three explainers 10% of the FI selection process. It was in
60% by LASSO and 20% by the two others each. The three explainers never chose the
Random feature simultaneously, and only LASSO could select several times the Random
Features for a given formula. This finding raises a real question about the reliability of the
FI explanation with only one explainer. We can see the random feature summed score in
Table 5.8a.

Limitations

There are two major limitations in our experiment:

1. The absence of a mathematical demonstration of our empirical approach is a major
limitation. Even if our choice is empirically logical and based on the theoretical back-
ground, our approach is more practical, based on the assumption that three algorithms
built on different mathematical foundations will be able to overcome each other’s short-
comings. Although it seems to work in our case and provide new information on the
subject of interest, we need to mathematically formalize this approach before a possible
generalization to other datasets (at least to optimize the number of explainers and the
complementary between each other).

2. The 2nd limitation is the lack of systematization. We haven’t tested every possible
combination of explainers, choosing to associate three, even without exploring the
mathematical underpinnings.

5.3.4 Conclusion

This second experiment, based on an empirical feature selection protocol called the En-
semble type method for prediction explanation, enabled us to select the important features
explaining the prediction of each formula defining Paradoxical Insomnia on our data set.
We could show that most of the features selected on our core dataset corresponded to two
variables from the Polysomnography report, Time In Bed and Time Period of Sleep, which
were the most important features for 16 of the 19 formulas. However, since we cannot
mathematically assert that our empirical protocol is reliable, our next experiment is to
compare these results with classical inferential statistics by T-test on most of the variables
present in the dataset.
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5.4 ParI, is there a possible harmonization across formula
definitions?

To go further in the explanation, we built two classes on the dataset: the subjects never
categorized ParI, whatever the formula, and those categorized as ParI at least once.

We will see in the first subsection a systematic analysis of the value of the features between
the two categories to get some insight into the no Paradoxical Insomniac patients. We will
also see the main feature correlations with Paradoxical Insomnia.

The second subsection will cross the ML and classical statistics results to describe the
Paradoxical Insomniac profile.

As there is no doubt left about the most Important Features, TIB and TPS, to understand
the relation between these two features better, we created a new feature, TIME, which is
the simple difference between them. The idea was to see the impact of time awake before
the sleep period, which must be correlated to sleep latency.

TIME = TIB - TPS

5.4.1 Systematic feature impact analysis between subject classified ParI
positive or negative on our dataset

1. T-tests with post-hoc Bonferroni [42] correction on all the features in the dataset. We
included the new feature TIME described above. We listed all the significant and
non-significant results of interest in Table 5.4.
.

2. Pearson correlation analysis to see the most correlated features with ParI.

T-test analysis

The t-test for the main features involved between the two groups is presented in Table 5.4

From the Table 5.4 we could make some conclusions :

1. The main features detected by EMTPE on each formula are highly discriminative when
applied to the global distinction between subjects classified ParI or Not, whatever the
formulas. Then, there is a clear link between these features and the global concept of
ParI.

2. Objective TST on one night is the most discriminative feature between all the subjects
classified ParI or Not, whatever the formulas. This feature shows that the ParI subject
slept much more on one night than the other CID. This feature is used by some formu-
las as the only feature to explain the ParI concept with the assumption that restorative
sleep is linked to the number of minutes spent in sleep, and if this sleep is not more
fragmented, the hypothesis is that ParI subjects don’t perceive it because of a sort of
”active state” concomitant to sleep. Our results confirmed that microsleep fragmen-
tation detected by the MicArousal index is no different in our sample, but when we
look at the features linked to cumulative sleep fragmentation (not per hour), we can
see that the number of episodes of wake, less or above one minute long are much more
frequent in the ParI population, as the number of stages changes.

3. There is no difference between the two main scales, ISI and ESS.

4. There is a clear difference in chronotype with the ParI subject toward the morning
type more than the other CID. This tendency is confirmed by the Actigraph sensor
(AG), showing that the ParI subjects go to bed 35 minutes earlier than the others (see
Bedtime-H-acti in the Circadian profile cell in Table 5.4).

5. There is no big psychological difference. Still, some are significant, like less tendency
toward addiction acknowledgment and more inhibition of aggressivity and anger,

6. So TST on night PSG has the main impact on differentiating the ParI and NoParI
subjects. Still, we look at the mean of TST on seven nights, symbolized by the Actual
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Features ParI+ ParI- ttest-ind p-value sign

Percentage of the sample 81.5 18.5

gender and age

Women(%) 69 59 -1.50 0.13 NS
Age(y.o.) 45.8±12 47.7±13 -1.00 0.31 NS

PSG one night

Timeperiodsleep(TPS in min) 432±73 352±77 7.41 7.10e-11 ***
Totalsleeptime(TST in min) 370±68 290±70 8.04 3.45e-12 ***
Timeinbed(TIB in min) 474±71 437±65 3.95 0.0001 ***
LatenceN1(min) 25.4± 21.9 63.8±47.3 6.26 3.03e-08 ***
LatenceN2(min) 29.4± 23.5 69.2±51.5 5.92 1.18e-07 ***
LatenceREM(min) 106.7± 58.5 108.5±78.9 -0.16 0.86 NS
TIME(min) 42.3±37.5 84.8±56.8 5.61 3.29e-07 ***
WASO(min) 61.5±52 60.8±45 -0.11 0.9 NS
PSGWakebouts 18.5±9.8 13.2±8.7 4.22 5.37e-05 ***
PSGWakbouts1min 10.3±5.8 7.8±4.2 3.95 0.0001 ***
MicArindex(per hour) 20.5±10.7 19.7±9.6 0.59 0.55 NS
Arousalnumber 126±67 94±52 4.08 8.37e-05 ***
Stadechanges 84±32 63±31 4.68 9.43e-06 ***
N1(%) 4.2±3 4.3±4 0.39 0.69 NS
N2(%) 52±12 48±12 2.13 0.03 *
N3(%) 23.6±10.7 28.3±11.7 -2.86 0.005 **
REM(%) 19.4±6.7 18.7±8.4 0.60 0.54 NS

ACTI seven nights

Actualsleepime(min) 414±63 424±77 -0.96 0.33 NS
Avg wake mvmt 265±348 196±58 3.08 0.002 **
Meansleeplastday(min) 374±77 335±59 4.35 3.01e-05 ***
Fragmindex 33±12 33±10 0.53 0.59 NS
ActiWakebouts 26.5±8.7 25.2±12.6 0.78 0.43 NS
Interdailystability 0.51±0.12 0.47±0.11 2.65 0.009 **
Lowest5hcount 1102±916 1151±934 0.37 0.71 NS

Circadian profile

Ho 52.5±10.5 48±10 3.09 0.0025 **
Bedtime-H-acti 23:34±75 0:09±66 -3.61 0.0004 ***

Psychological profile

Addiction Acknowledgement 51±10 54±10 2.19 0.03 *
Masc-Fem 51±10 54±10 -1.99 0.048 *
Inhib of Aggression 53±11 50±11 2.03 0.04 *
Anger 50±11 53±11 -2.07 0.04 *
Rscale 56±10 53±10 2.21 0.029 *

Sleep Questionnaire profile

ISI 20±4.2 18.4±6.35 1.89 0.06 NS
Epworth 7.3±5.2 7.6±4.6 -0.40 0.68 NS

Table 5.4: Main features Mean and comparison between ParI positive or negative with t-test and
post-hoc Bonferroni correction.

Sleep time feature, and we can see no difference between the two groups. Indeed, The
ParI subjects slept more or less the same amount of time, and the other CIDs slept much
more than the single PSG night. But on the last night of AG, ”meansleeplastday”, the
difference is very significant. So, it means that last night’s recording with the PSG
device changed the TST for CID without ParI much compared to CID with ParI. This
observation leads to reconsidering the choice of objective TST by a single night PSG
to discriminate ParI patients in a sample. Our observation is strengthened by the fact
that we used Ambulatory PSG, which is theoretically less prone to sleep disturbance
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than Laboratory PSG, especially in Insomniac samples, which are usually very sensitive
to new environments.

7. Our analysis confirms the main hypothesis that ML algorithms could bring new knowl-
edge compared to Classical inference for some features. One of the main discoveries
from this difference is the selection of the Micro-arousal index as one of the top 10
features detected by our EMPTE protocol to predict ParI, but with no significant
difference in the t-test comparison. For example, we could observe less obvious differ-
ences for the ISI scale still in the quiet, meaningful range of FI detected but with no
significant difference with the t-test.

8. Our analysis also shows the overlap between ML and Inferential statistics, especially
for the most important features like TPS, TIB, or arousal numbers, but with different
magnitudes showing that the different approaches are not detecting the same relation
between features. We also analyzed why Latency to REM sleep was discarded by our
protocol, and going back to the dataset; we saw that two samples had a very high
value left in the dataset to traduce the fact that they didn’t have any REM sleep, so
no calculation of the latency was possible. Interestingly, this anomaly was detected by
the ETMPE that discarded this feature even if the cumulative score was high. Only
LASSO couldn’t discard it.

Correlation impact analysis

As mentioned, we implemented TIME in our dataset to see the relationship with being
ParI positive. We also used all the features, including the ones necessary for formula calcu-
lation—only the correlations above 0.3 or below -0.3 were kept. The results are presented
in Correlation Matrix 5.9. We can see that this featured biomarker, equivalent to global
sleep latency but with the additional time between going to bed and turning off the light,
is more anti-correlated than WASO and slightly more than SL to N1 or N2. So it means
that the most correlated variable, not ParI, is this time between going to bed and the first
episode of sleep, whatever the sleep stages, N1 or N2. We can see that TST and SE on one
night have better scores than TPS for the positive correlation.

We also calculated the correlations of TIME with the prevalence of the 18 explainable
formulas. We can see in Figure 5.10 the high correlation between TIME in minutes and the
percentage of prevalence on our dataset. Even if the correlation is not causality, we could
hypothesize that the different definitions of ParI (at least the 18 studies here) could be a
continuum of the same phenomenon, leading to different groups depending on the chosen
threshold.

(a)

Figure 5.9: Best positive and negative correlation to ParI positive on our sample.
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Figure 5.10: Correlation of the feature TIME with the percentage of prevalence of each of the 18
formulas.

5.4.2 Mixing ML and inferential statistics to describe the generic ParI
concept

We will analyze according to the origin of the features. In this analysis, we will call ”Generic
Paradoxical patient” the mean profile corresponding to the formula overlap. This analysis
aims to see the big picture of a Paradoxical Patient looks like using the different meaningful
features.

PSG features

From these results, we can see that PSG features have the strongest contributions. It is
quite logical since the formulas all use at least a PSG feature in their calculations. The
main results are listed below:

1. From TIME, SL(N1, N2), and HO, we can deduce that the Generic ParI goes to bed
earlier, switches off the light and falls asleep far more quickly than the other CID.

2. From the results presented in 5.10 and 5.9 we can observe a correlation between the
duration of TIME in minutes and the probability for a subject to be diagnosed as ParI.

3. TST and SE are the most positively correlated to the positive ParI diagnosis, so the
Generic ParI sleeps in total much more than the other chronic insomniac patients and
more efficiently.

4. But the Generic ParI patient sleeps with significantly more wake bouts, especially above
one-minute duration.

5. The very light sleep, N1, is the same percentage, but as patients sleep more, the
duration of N1 sleep becomes higher for the Generic ParI.

6. The Generic ParI patient has more stage N2, arousal number, and stage changes.

From all these, we can retain that the Generic ParI sleep more and in total, fall asleep more
quickly, BUT with far more arousals and more light sleep but without an increase in the
microsleep fragmentation detected by the Micrarousal index.

All these PSG findings suggest that the Generic ParI has not a sleep problem
but a wake problem and that probably the sum of all these wake-bouts gives
him the sensation of being awake all night. This fact is to be put in perspective
because one can’t memorize his sleep but can memorize wake-bouts, especially
when they are over one minute long. Furthermore, spending more time in light
NREM sleep can also give a feeling of drowsiness without real sleep, especially
in N1 sleep.

Chapter 5 Olivier Pallanca 143



Actigraphic features

1. From actualsleeptime corresponding to the average TST calculated by the actigraphy,
we can see no difference between the two groups. This is a huge surprise because we
could observe the significant difference only on the last night corresponding to the PSG
night, i.e., the night serving to calculate the ParI insomnia.
This finding is extremely important because it calls into question calculating the percep-
tion of sleep over a single night. So, the Generic parI sleeps more or less simultaneously
as the No parI patient sleeps much less during the PSG recording night in our sample.

2. From the feature Interdailystability, we could infer that the Generic ParI have a more
rest/activity cycle than the No ParI patients.

All these actigraphic findings suggest that the Generic ParI has a more stable
activity/rest cycle and sleep duration during a whole week. But the main
finding here is the opposite sleep duration during seven days and the last night
corresponding to the PSG recording for the subjects categorized non-ParI.
These findings question in a frontal way the relevance of the definitions used to
date, based on the last night of polysomnographic recording, for distinguishing
between ParI and non-ParI subjects.

Questionnaires features

1. From the circadian features, we can see that the Generic ParI is more of an early bird
and goes to bed earlier than the other Chronic Insomnia Disorders. .

2. From the Specific sleep questionnaires, there is no difference in ISI and ESS.

Psychological features

There are no significant differences between the two groups but only some tendencies.
So, compared to the no-ParI, the Generic ParI acknowledges less addiction tendency, less
gender affirmation, more aggressivity inhibition, less expressed anger and more emotional
repressed, and more conformism.

5.4.3 Discussion

In this section, we intend to harmonize the different ParI formula Definitions. By analyzing
the dataset using various formulas, we could identify common features that are highly
discriminative for distinguishing ParI patients from non-ParI patients. This suggests that
there may be a shared underlying concept of ParI, regardless of the specific formula used.
We could show that the TIME features are highly correlated with the prevalence of each
formula on our dataset. Even if a correlation is not causality, we could infer that this TIME
feature, as a reflection of the sleep latency plus the time in bed, is a sign that the faster
insomniac subjects fall asleep, the longer they stay in bed, the more they will have multiple
long wake bouts, and the end, the less they would perceive sleep.

Of great interest in these results is the significance of total sleep time (TST) on one night
as the most discriminative feature between ParI and noParI and the inversion of this value
on a whole week.

We could also find some interesting findings concerning the psychological profile, even if only
tendencies; the Generic Paradoxical patient seems less introverted and globally repressed
his anger and emotional state.

Finally, concerning a possible explanation of Paradoxical Insomnia across the different
studies, our findings go toward a specific sleep profile shared by all the definitions, i.e., a
longer Total Period of sleep than the other insomniacs, a shorter sleep latency, but also
more wakes episodes during the night and especially above one minute. This finding is
important since we intentionally introduced this feature with a hidden hypothesis that it
could be linked to memorizing wake episodes.
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Indeed, it was shown in an old study now, [214], that the closer a stimulus (in this case,
words) was presented to sleep and, in particular, in the three minutes preceding it, the
more it was forgotten in the case of implicit memory, i.e., without instruction. This case
figure could be the closest to an awakening in an insomniac subject. The results of their
experiment are presented in Figure 5.11. This would mean that physiologically, the longer
an awakening, the more likely it is to leave a trace if it is followed by a sleep of more than 10
minutes. Therefore, brief awakenings of less than one minute are unlikely to leave any trace.
This aspect alone could explain why a subject awakening several times during the night,
with long episodes but in between numerous episodes of sleep (that we can’t memorize),
could have a more important memory of this night, in terms of awakenings and thus have
the impression of not having slept [214].

Figure 5.11: Free recall task performance: This figure shows that the closest a stimulus is to
the sleep onset, the less the recall, or that you need time, in general, more than three minutes
to recall something from [214]

5.4.4 Limitations

As always in this thesis, the sample size is relatively modest and could avoid generalization,
but we could show that our dataset was representative of the target population. Even if we
provide a selective empirical model for feature importance, we can’t prove that our protocol
has selected the best features. That’s why we made the statistical comparisons with t-tests
and correlation analysis. But even in that case, t-test results and correlations are given
without providing effect sizes, confidence intervals, or statistical power information. These
additional measures would have strengthened our results. But, the fact that two different
approaches are going in the same direction is already a good result, even if replication and
further statistical analysis are needed.

5.4.5 Conclusions

Our two main conclusions (under the abovementioned limitations) are:
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∗ that Paradoxical Insomniacs shared a longer sleep period and more wake episodes than
the other insomniacs. Time in Bed and Time period of Sleep are the main predictors of
Paradoxical Insomnia, and the difference between these two features is highly correlated
with the percentage of subjects categorized as Paradoxical Insomniacs in our sample.
We then support one of the three hypotheses proposed by [82] to explain the sleep
misperception, i.e., the presence of brief awakenings. A deficit in time estimation
ability was not supported. At this step of our work, we don’t have any argument to
support the two others: misperception of sleep as wake and worry,

∗ that objective Total Sleep Time, the main feature involved in the definitions of Para-
doxical Insomnia and the biggest difference in statistical terms between Paradoxical
and Not Paradoxical Insomniacs, is no longer statistically different if we take seven
days of analysis instead of a single night. This finding opens the path to a new defini-
tion based on an entire week instead of only one night. This is the last section of the
experiment.
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5.5 Proposal for a new definition of Paradoxical Insomnia
including seven nights sleep analysis

Because of the previous results and observations on the difference between the objective
TST on seven days versus one night, it appeared necessary to change at least the method
to define ParI, if not the current features. Indeed, as we have shown, the TST between
one night and one week is different for the Non-ParI insomniacs when it stayed equivalent
for PArI, with an inversion in terms of comparison, from much less TST to even more
TST than ParI. This observation, on the same dataset, on such a fundamental feature
involved in the ParI diagnosis is very surprising. The validity of these results is supported
by comparing the TST for PSG and AG on the same night that completely coincides with
the ParI subgroup (370±68 for PSG versus 374±77 for ActiG). The conclusion is that the
predominant discrimination by objective TST measured by PSG over one or two nights in
the sleep laboratory does not seem to represent the reality of sleep at home over one week
without PSG.

As we have concomitantly one week of actigraphic measures and one polysomnographic
evaluation, we applied a corrective factor based on the ratio between psgTST and actiPSG
to increase the reliability of the objective TST calculated by actigraphic. Thus, the esti-
mated seven-day TST is labeled woTST (for Week objective TST). The formula definition
is described in the formula 5.3

woTST =
oTST

actlastnightTST
× actimeanTST (5.2)

We then took the same formula L2 described in 2.6 but applied for seven days. We took it
because these formulas involved only TST, and we expected a major change in the subject
detected by our formula.

IP = woTST − wsTST > 60min (5.3)

To evaluate the impact of different cut-offs on the correlation with the other formulas, we
created 12 derivatives features listed in Table 5.5 to cover an 8-hour night in increments of
30 minutes.

Formula

IP woTST-wsTST >60 min

IP2 woTST-wsTST >90 min

IP3 woTST-wsTST >120 min

IP4 woTST-wsTST >150 min

IP5 woTST-wsTST >180min

IP6 woTST-wsTST >210 min

IP7 woTST-wsTST >240 min

IP8 woTST-wsTST >270 min

IP9 woTST-wsTST >300 min

IP10 woTST-wsTST >330 min

IP11 woTST-wsTST >360 min

IP12 woTST-wsTST >390 min

IP13 woTST-wsTST >420 min

Table 5.5: ParI formulas scaled on a 30-minute basis. woTST = objective Total Sleep Time on seven
days, wsTST = subjective Total Sleep Time on seven days

In Figure 5.12, we can see the correlations with the other formulas, except for the formula
S; almost no correlation exists between our formula and the 19 others. The prevalence in
our dataset is 43% for IP.
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Figure 5.12: Correlations between the new formula and its derivatives to the current formulas to define Paradoxical Insomnia.



Chapter conclusion on ParI understanding

This work on the explicability of classifiers using the Paradoxical Insomnia model has
also led to a better understanding of this clinical entity. Indeed, on the 19 formulas we
reproduced on our database and predicted from 200 variables, including objective data
such as polysomnography and psychological data, the main explanatory variables found
were the high time spent in bed. Indeed, The features Time In Bed TIB and Total Sleep
Time (TST) were the most explicative. Surprisingly, there was no significant difference in
the microarousal index between subjects classified PArI or not - (20.5 vs. 19.7), which means
that the poor perception of sleep is not linked to the direct impact of microarousal. On the
other hand, if we take the cumulative arousals over the night, they are significantly more
important in the Paradoxical Insomnia group. On the other hand, the percentage of stage
N1 is not different between the two groups either. Thus, Paradoxical Insomnia appears to
correlate with a higher absolute number of awakenings. In terms of psychological profiles,
four scales of the MMPI 2 seemed to be significantly different between the two groups, but
only in a modest way, namely the masculinity-femininity scale, the aggression inhibition
scale, the anger scale, and the Repression scale, but the scores remained within the norm
on average, so it isn’t easy to draw any conclusions. Concerning the scales classically used
in sleep medicine, the ISI and Epworth scores were not significantly different. On the other
hand, the Horne and Hosberg Circadian typology scale was significantly larger in the ParI
group, which theoretically translates into a tendency to go to bed earlier. On the other
hand, all the formulas are the major determinant of the prediction. Thus, our work allows
us to harmonize the various published works on Paradoxical Insomnia. Indeed, objective
sleep data does not explain the different formulas intended to represent the perception of
sleep. They all spend too much time in bed, which seems to be the main determinant of
Paradoxical Insomnia. Insofar as the arousability indexes are identical, the recovery sleep
times are similar, but only the number of cumulative awakenings is statistically different;
one could wonder if Paradoxical Insomnia is not simply the reflection of a threshold of
awakenings or micro-awakenings from which the insomniac has a perception of having
woken up too much and thus gives him this sensation of not sleeping, in the end not
so paradoxical since it corresponds well to an experience of more important cumulative
awakenings without cutting down the recovery.

The other finding was the difference in terms of TST between one night and 7 seven days,
especially in the non-ParI patients. We took an existing formula, the L2 formula, using
only the difference between subjective and objective sleep perception, but on one single
night. We calculated the formula on 7 seven nights and compared it to the other formula.
After this process, the correlation with L2 was only 0.19. So, we conclude that our formula
detects something different than just sleep perception in one night. To see the impact of
our new formula, we implemented it in dataset 6 for the last experiment, predicting the
treatment outcomes in CID.
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Chapter 6

Explaining Therapeutic Issues: AMachine-Learning

Approach

Chapter Highlights

We use similar methods (machine learning classifiers) as the previous chapter, but
here, we insist upon a certain level of accuracy before explainability analysis.

1. The first hypothesis tested in this experiment is the predictability of treatment
outcome in a binary problem (label 1 for a positive outcome, 0 for a negative
outcome). We will use the six classifiers described in the previous chapter (RF,
SVM, DT, XGB, LR and NB) 5, but to increase our probability, we add a neu-
ral network classifier (MLP) (see B.1.2), an Adaboost classifier(see B.1.2) and a
KNN classifier (see 2.10.1). As our primary outcome is the response to treatment
prediction, we will use classical metrics such as AUROC, Classification Accuracy,
Precision, Recall, and F1 score (see B.1.2 for definitions). Based on the usual
literature on prediction accuracy, we will consider our hypothesis validated if the
main metrics are > 0.8, whatever the model used.

2. The second hypothesis is dependent on the primary hypothesis validation,
as we want to explain the prediction; in this case, it only makes sense if the
accuracy of the prediction is validated. So, suppose the classification accuracy
and AUROC are above 0.8. In that case, we are postulating that we could explain
the treatment outcome prediction, at least partially, by using the same Feature
Importance detection described in the previous chapter.

3. The dataset used is dataset five with a sample size of 423 CID with the phar-
macologic treatment taken at the time of the test and clinical evaluation at least
six months later for the outcome categorization.

Key terms and concepts
Acronym/term Definition Ref.

CBT-I Cognitive and Behavioral Therapy for Insomnia p. 169 (B.1.1)
MLP Multilayer Perceptron p. 174 (B.1.2)
CA Classification Accuracy p. 171 (B.1.2)
XGB Extreme Gradient Boosting p. 176 (B.1.2)
AdaBoost Adaptive Boosting p. 171 (B.1.2)
ROC Receiver Operating Characteristic p. 171 (B.1.2)
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6.1 Hypothesis one: Predicting treatment outcome in CID
using ML classifiers

6.1.1 Hypothesis and background

The interest in predicting treatment outcomes in CID could have several impacts. Among
others, perhaps the most important could be a shift toward personalized treatment. Predict-
ing who will respond to which treatments could allow more comprehension of the patient,
which would likely improve patient outcomes in any case. For instance, cognitive-behavioral
therapy for Insomnia (CBT-I) may work well for some individuals, while others might ben-
efit more from pharmacotherapy or alternative treatments. Predictive models could help
determine the most effective treatment approach for each individual. Another big interest
in predicting treatment outcomes for Insomnia, as for that last mentioned point on CBT-I,
is the need to make the most of the limited time and caregivers available at a time when
psychiatry and healthcare, in general, are suffering from a lack of resources. Predicting
treatment response could help optimize resources by reducing the time and cost associ-
ated with trial-and-error treatment approaches. Instead of trying multiple treatments to
see what works, predictions could guide the initial treatment choice, giving the patient
more confidence and compliance. If patients can see the results of treatment predictions
showing a high likelihood of success, they may be more motivated to adhere to treatment
plans. This could significantly improve treatment outcomes and be therapeutic if we could
reassure the patient. Indeed, the stress associated with relapse or loss of control of the
disease could be an aggravating or perpetuating factor. Undermining the impact of the
stress associated with sleep dissatisfaction is, per se, a potential risk factor for psychiatric
and general health conditions disorders. Besides the clinical aspect, predicting treatment
response could provide insight into the underlying mechanisms of Insomnia and its treat-
ment, potentially leading to the development of new, more effective treatments, or at least
to use the most efficient with the best chance of success.

So, we hypothesize that ML algorithms could achieve this difficult task of predicting the
treatment outcome in our dataset. As for Paradoxical Insomnia, the great difficulty here
is defining a good or a bad treatment outcome. We will discuss that point later, but
as mentioned before, sleep satisfaction is the main factor here. Although no equivalent
hypothesis was tested in a publication at the beginning of the thesis, studies have since
been published in 2021 and 2022 using MRI design (see Table 6.1). The design of these
studies has nothing to do with our own, neither in terms of the number of subjects nor the
data used; anyway, these studies using ML on insomniacs reinforce our hypothesis insofar as
they manage to find subgroups of subjects more likely to respond to treatment presenting
functional connectivity disturbances [129] and different spatial covariance pattern of blood
oxygen level-dependent (BOLD) in PsyI compared to healthy subjects [120]. In both cases,
these findings support our hypothesis first to predict the treatment outcomes in our samples
and try to explain the prediction a second time.

Year N of CI Data ML Model Ref

2022 51 T1 MRI, rsfMRI, DWI HoTS [129]
2021 19 fMRI (BOLD) SVM [120]

Table 6.1: Studies on Predicting Treatment Outcome in Chronic Insomnia with ML. HoTS: Hollow
Tree Super, rsfMRI:resting-stage functional magnetic resonance imaging, DWI: diffusion-weighted
imaging

6.1.2 Methodology and tools to test the hypothesis

Dataset

The dataset used is five, described in 3.1.1, with 423 CID subjects and almost 200 features.
All the features described in Section3.3 are included to predict the treatment outcome, ex-
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cept the actigraphic features are unavailable for all patients. But even if the whole features
were lost for 88 subjects, we could retrieve at least the mean sleep duration for the last
night and the mean for the week in our database necessary to calculate the new ParI defini-
tion described in Chapter5. As already mentioned, the complete list of features used can be
found in Section 3.3 and in Appendix B.3 in the Tables B.4, B.3, and B.2. We are using 180
features in total, considering the objective sleep measurements, the psychological aspects,
the socio-economic aspect, the gender, the sex, the comorbidities, the different treatments,
and the chronotype. The few missing data, only numerical, were imputed via the median of
the training data. We used feature analysis to process data and select the most important
predictors. We preserve an optimal ratio between features and labels in the dataset to
avoid overfitting. We mostly used correlation-based feature selection filtering, especially
in the features issued from polysomnograpĥic recording to remove repeated features. We
used dimensionality reduction algorithms like PCA (linear) and T-SNE (Nonlinear) for vi-
sualization, intending to have the smallest number of independent features in the training
dataset to create our model to have a more stable and robust model to minimize the risks
of overfitting the data. At the end of the process, 166 features were kept.

Class determination: how did we define treatment outcome ?

The primary outcome was an improvement or no improvement after evaluation and treat-
ment in a prospective way six months to 24 months after the initial evaluation. The main
goal here was to predict the profile of patients that the preconized treatment could efficiently
treat according to the sleep European Guidelines [174].

The definition of what should be considered a successful outcome in treating Insomnia is
not an easy task. The first paper on the subject appeared in 2003 [145]—the recommenda-
tions of this seminal paper listed candidates for assessing outcomes in insomnia treatment
studies. The conclusion for the practice was that treatment outcomes should be evaluated
with daily sleep diaries and selected self-report questionnaires targeting sleep/insomnia
symptoms, psychological and fatigue symptoms, and more global measures of treatment
satisfaction/acceptability. Several assessment instruments were proposed in this first at-
tempt to standardize the measurement of insomnia treatment outcomes. From this paper,
the recommendations were using different tools and symptoms to assess in the interview
like:

.

∗ A sleep diary to assess the sleep/wake parameters,

∗ assessing the insomnia symptoms by the Insomnia Severity Index questionnaire,

∗ assessing daytime functioning by interview

∗ assessing the psychological symptoms by Beck Depression Inventory 2, State-trait anx-
iety Inventory, or interview.

The evaluation was made at least six months after the treatment. Because there is still no
established clinical significance to evaluate the outcome [137], we focused on the following
categories:

For this study, we chose the following criteria :

∗ The evaluation was made at least six months after the treatment

∗ Principal criteria: At least one clinical improvement on the three main criteria used to
define Insomnia according to ICSD 3 assessed by clinical interview and ISI improvement
(at least 3 points) with Sleep-Diary evaluation and at least one of the minor criteria

∗ Minor criteria:2) satisfaction/acceptability of the treatment or 3)improvement in psy-
chological and fatigue symptoms assessed by interview.

Machine Learning Approach

As in the previous experiment described in 5, we used Supervised learning algorithms
dealing with binary classification.

From the previous experiment, we kept the same six classifiers :
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1. RF: Random Forest classifier (see 2.10.1),

2. SVM: Support Vector Machine (see 2.10.1),

3. DT: Decision Tree classifier (see B.1.2),

4. XGB: XGBoost, which stands for eXtreme Gradient Boosting (see B.1.2),

5. LR: Logistic Regression (see 2.10.1),

6. NB: Naive Bayes classifier.

To increase the chance of success in predicting the accuracy of the treatment outcome, we
added three other classifiers (the definitions for each model are available in the Appendix
in B.1.2):

1. Adaboost: Adaptive Boosting (see B.1.2)

2. A Neural network classifier based on Multilayer Perceptron (see B.1.2)

3. KNN: K-Nearest Neighbors classifier (see 2.10.1)

For each classifier, we tuned the hyperparameters to increase the chance of success.

The main parameters used for each classifier are listed below and were chosen after hyper-
parameters tuning using a grid search method (see B.1.2):

∗ The DT is based on the Gini quality measure,

∗ The NB classifier assumes a Gaussian distribution

∗ The SVM was defined with the radial bias function kernel

∗ The RF classifier used 100 trees.

We developed a prediction model using 70% of the dataset to train and 30% to test the
model internally. This process was repeated ten times. We used the mean AUROC and CA
to determine which model performed best, which was then tested with the testing dataset.

So, in this first experimental part, we compared these nine algorithms using scikit-learn
library [162]

6.1.3 Results

The data set is relatively well balanced with 188 output = 1 (44.4%) and 235 output = 0
(55.6%). This first result shows a relatively low success rate in positive treatment outcomes.
Table 6.2 shows results after 10-fold cross-validation;

Table 6.2: Performance metrics of various models

Model AUC CA F1 Precision Recall

RandomForest 0.857 0.827 0.822 0.798 0.861
XGBoost 0.851 0.814 0.810 0.777 0.862

SVM 0.848 0.801 0.802 0.801 0.818
NeuralNetwork 0.849 0.787 0.763 0.755 0.771

Tree 0.794 0.787 0.783 0.791 0.783
LogisticRegression 0.836 0.768 0.746 0.727 0.766

AdaBoost 0.723 0.723 0.698 0.678 0.718
NaiveBayes 0.694 0.624 0.622 0.562 0.697

kNN 0.568 0.574 0.508 0.522 0.495

We could see that four models scored above 0.8 for the three metrics targeted (ROC-AUC,
CA, and F1). An ANOVA test was conducted among the four most performant classifiers
on F1 metric and showed statistical differences (F-Statistic: 147.67, P-Value: 7.16e-12).
We then used Tukey’s Honestly Significant Difference (HSD) test as a post-hoc analysis to
compare the different means. The results are presented in Table 6.3.

We generated the ROC curves for RF and XGBoost in Figure 6.1 to have a graphical
representation of the prediction.
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Group 1 Group 2 Mean Diff P-Adj Lower Upper Reject

Neural Network Random Forest 0.1542 0.0091 0.0355 0.2728 True
Neural Network SVM -0.5651 0.001 -0.6838 -0.4465 True
Neural Network XGBoost 0.217 0.001 0.0984 0.3357 True
Random Forest SVM -0.7193 0.001 -0.8379 -0.6007 True
Random Forest XGBoost 0.0628 0.4528 -0.0558 0.1815 False
SVM XGBoost 0.7821 0.001 0.6635 0.9008 True

Table 6.3: Pairwise Comparisons of means for RF, XGBoost, NeuralNetwork and SVM. We can see
that only RF and XGB, the two best classifiers, are not statistically different

Figure 6.1: ROC Curves for the two models of classification algorithms tested on the positive outcome
predictions from 10 Folds Cross-Validation

6.1.4 Discussion

The results from this study reinforce the potential role of ML algorithms in predicting treat-
ment outcomes for chronic Insomnia (CID). The results validated our hypothesis that ML
algorithms could predict treatment outcomes using the available dataset. The RandomFor-
est (RF) and XGBoost (XGB) models, which are ensemble learning algorithms, emerged
as the top performers in this task ( See Table .

The selection of an appropriate algorithm was a critical aspect of this study. Machine
learning algorithms function differently based on their inherent mathematical and statistical
principles. Some may be more sensitive to outliers or skewed distributions, while others
may be better equipped to handle imbalanced data. In our case, ensemble models proved
to be the most robust and consistent performers. Ensemble methods, like RF and XGB,
operate by constructing many decision trees during training and outputting the class that
is the mode or mean prediction of the individual trees. This ’wisdom of crowd’ effect allows
them to make more accurate predictions and avoid overfitting.

Another factor that may have contributed to the effectiveness of the RF and XGB models is
their ability to handle high-dimensional data, a key characteristic of our dataset. A total of
166 features were considered in our models, presenting a challenge of high dimensionality.
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RF and XGB algorithms are well-suited for this, as they can effectively handle many input
variables without variable deletion, providing a clear view of the critical variables.

However, the size of the dataset can also influence the performance of the ML algorithms.
With 423 CID subjects, our study had a moderate-sized dataset. It is known that ML
algorithms, particularly complex ones, perform better when trained with larger datasets
because they can learn more complex patterns without overfitting. While our dataset
wasn’t small, it was not extremely large, which might explain the lower performance of
models like SVM or Neural Networks. These models often require larger datasets to learn
and generalize adequately, even if their results are not so far from the ensemble learning
algorithms.

Looking at the performance metrics, our top classifiers (RF and XGB) showed acceptable
levels of accuracy, precision, and recall. This indicates not only the capacity to make ac-
curate predictions (as indicated by high accuracy) but also the ability to minimize false
positives (as indicated by high precision) and false negatives (as indicated by high recall).
The balanced performance across these three metrics suggests that our models can effec-
tively identify patients who would respond to the treatment without overestimating or
underestimating the treatment outcomes.

6.1.5 Limitations

We could find several limitations in our study that could impact the reproducibility and
reliability of our findings. The first one is our sample size, which is relatively small, which
limits the complexity of models we can reliably use, potentially impacting the performance
of our models. Then, we utilized a single set of criteria to define successful treatment
outcomes; we could imagine other criteria that could change the prediction. However,
the clinical reality of insomnia disorders is complex and subjective, with different patients
possibly having different definitions of what they consider a successful treatment outcome.
While our criteria were based on expert recommendations and patient-reported outcomes,
they may not capture all the nuances of a successful treatment. The features used in the
models were based on the data available in our dataset. Other unmeasured variables could
be influential in predicting treatment outcomes, such as genetic markers or specifics about
individual treatment plans or, unfortunately, the actigraphic features. Lastly, while we
have attempted to validate our models using cross-validation, our results still need to be
tested in an external dataset to assess the reproducibility of our findings to other patient
populations.

6.1.6 Conclusion

The use of ML algorithms, specifically RF and XGB, effectively predicted treatment out-
comes with an overall accuracy of > 0.8 in our specific dataset of CID using a moderately
sized dataset with high dimensional features. The results of this study signify an important
step towards personalized treatment strategies for Insomnia, allowing for more efficient use
of resources and potentially leading to better patient outcomes. However, further research
is needed, ideally with larger and more diverse datasets, to validate these findings and fine-
tune the prediction models. Future studies may also explore more advanced or specialized
machine learning and statistical techniques to tackle the complexities inherent in treatment
prediction tasks. Also, the definition of treatment outcome must be more investigated.
Despite all these limitations, as we validated our first hypothesis, we could test the second
one, explaining the prediction.

6.2 Hypothesis two: Explaining the treatment outcome

6.2.1 Hypothesis background and definition

This experiment continues the use of ML models to predict treatment outcomes. We could
demonstrate, with all the limitations, that we could predict the treatment outcome with a
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relatively good accuracy assessed by F1 score, AUROC, and Classification Accuracy > 0.8.
We also confirm the relatively low rate of therapeutic success in our clinical population,
with only 44% of positive outcomes at least six months after the initial treatment. This
prevalence is in line with the existing studies showing that even in the case of efficient recom-
mended treatment(medication and Cognitive Behavioral Treatment for Insomnia (CBT-I))
[174], the rate of relapse is high with more than 50 % of chance in the four years [137].
In our case, some patients were followed for several years, so our success rate is in line
with the literature, although not very satisfactory. Although some authors were interested
in describing why some patients dropped out from standard therapy, giving information
about the insomniac characteristics, there is still a lack of studies evaluating personalized
treatment and assessing in detail the profile of responder or no responder to the different
components of pharmacological or behavioral treatment. One of the reasons could be the
difficulty of processing all the data generated by an exhaustive assessment according to the
international recommendation using clinical evaluation, psychiatric evaluation, psychologi-
cal evaluation, questionnaires, demographics data, physiological recording of one or several
nights (± video), pharmacological evaluation, personality evaluation, and wrist actigraphy
for one or two weeks. Altogether, it could be a huge amount of parameters for only one
patient.

So, our experiment attempts to bring new knowledge on the variables that could explain
treatment resistance.

6.2.2 Methodology

As we had some encouraging results in the prediction, we have a good chance to find some
interesting knowledge using the same protocol Ensemble Type Model for Prediction expla-
nation (ETMPE) used in the Paradoxical Insomnia chapters (see 5.3.2). So, we will apply
our EMPTPE protocol with the same RF predictive model used in the precedent section.
We decided to add two feature importance Explanations using the Feature importance
algorithm available in Scikit-Learn to compare with our protocol.

6.2.3 Features extraction from Random Forest

The results of our process with the RF are presented in Figure 6.2 for LASSO, Figure
6.3 for Shap, and Figure 6.4 for Sensitivity Analysis. We could see clearly that the three
explainers share one feature, our New definition of Paradoxical Insomnia (IP on the three
figures). With a small effect, the Hysteria scale of the MMPI-2 (Hy) is also slightly involved
in the prediction.

Figure 6.2: Top 10 features selected
by LASSO explainer

Figure 6.3: Top 10 features selected
by Shap explainer

Figure 6.4: Top 10 features selected
by SA explainer

To have another view, we ran FI on RF and XGB; the results are presented in Tables 6.4a
and 6.4b. We could see the same results, with the new definition of Paradoxical Insomnia
as the main explicative features and the Hysterical Scale (named Som for somatoform).

To understand better these features and their interaction, we used visualization techniques.
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Table 6.4: Features Importances for Random Forest and XGboosting

(a) Random Forest

Features Mean Sd

IP 0.327 0.023
Som C 0.020 0.003
TTout 0.020 0.003

Arousalnumber 0.016 0.002
LatRem 0.015 0.002
Efficacy 0.015 0.002

ArousalTotaltime 0.014 0.001
StadeChanges 0.014 0.001
PLMSindex 0.013 0.003
Sleeplatency 0.013 0.002

ISI 0.012 0.002
SA 0.012 0.003

N1perc 0.011 0.002
REMperc 0.011 0.002

TTent 0.011 0.002
HyO 0.011 0.010
Hs5K 0.011 0.002
RRN2 0.010 0.001

FRmoysom 0.010 0.001
Hy 0.010 0.001

RDIback 0.010 0.001
TTS 0.010 0.001

HRwake 0.010 0.001
Wakebouts 0.010 0.001

(b) XGBoosting

Features Mean Sd

IP 0.08 0.005
Som C 0.026 0.004

SA 0.021 0.012
Ds 0.018 0.001

SC1 0.018 0.008
Wakebouts 0.018 0.006

TTent 0.018 0.002
25 0.018 0.003

PdO 0.017 0.003
Dc2 0.017 0.003
Sexe 0.017 0.001

MACR 0.017 0.003
HyO 0.016 0.002

PLMAr 0.016 0.007
FB 0.015 0.002
Hy2 0.015 0.001
15 0.015 0.002

MicAr 0.015 0.006
StadesChanges 0.015 0.005

PLMSindex 0.014 0.004
LatREM 0.013 0.001
RDIback 0.013 0.002
TOTAL 0.013 0.001

1 0.013 0.001

6.2.4 Data visualization

Linear Projection

The first is a PCA to confirm the clear separation between a positive and negative treatment
outcome. We can see the results in Figure 6.5

Figure 6.5: PCA with a clear separation between the patients with a positive outcome and negative
outcome
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FreeViz and DT We used two other visualization techniques to understand the rela-
tionship between the different features better.

1. The FreeViz algorithm has a different data representation. This method finds a good
two-dimensional linear projection of the given data, where the quality is defined by
separating the data from different classes and the proximity of the instances from the
same class [86].

2. The DT, as described previously in B.1.2 and 2.10, is a very useful technique to see the
clear relationship between the features. We must remember that the representation
of a single tree is one view of the problem and not the true relationship between the
different features represented.

We can see the relationship of the features with FreeViz in Figure 6.6 and one example of
DT in Figure 6.7 with still Paradoxical Insomnia as the most important feature detected.

Figure 6.6: Linear Projection through FreeViz Algorithm showing the great interaction between the
Paradoxical Insomnia feature positive and the negative treatment outcome.

158 Chapter 6 Olivier Pallanca



Figure 6.7: One example of Decision Tree used in Random Forest
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6.2.5 Discussion and Limitations

The feature selection subsection reveals that the most influential factor identified by our
ETMPE protocol, the FI for the best-performing algorithms (RF and XGB) and all the
visualization techniques, is the new definition of Paradoxical Insomnia.

All the results presented above showed the major influence of being classified as Paradoxi-
cal or not on the treatment outcome. The other parameters pointing toward the negative
outcome seem much more anecdotal, such as the hysteria scales of MMPI-2 or the type of
treatment used. On the other hand, having awakenings during the night, having numer-
ous sleep stage changes, seeing a shortened REM sleep latency, and respiratory events on
the back or periodic leg movements are good prognoses for management. These elements
are also reflected in the DT classifier. All these findings require further investigation to
understand their relationships.

Indeed, consistently finding the same feature’s importance across different methods can
offer compelling evidence of its importance in predicting the outcome variable. However,
the consistency of a feature’s importance across different models does not automatically
indicate its causal impact on the outcome variable. We are keeping this fact in mind until
a better understanding. At least we can assume a strong correlation, but the underlying
reasons may be more complex and could involve other confounding variables not included in
the models. Therefore, while it provides strong grounds for further investigation, it does not
definitively prove causality. Nevertheless, the diversity of techniques used in our protocol,
with different approaches, confirms that this feature is very important in predicting the
treatment outcome, even if it is not the causal factor.

We must also keep in mind that the ParI feature is positive for half of the sample, and
there is perhaps a risk of overfitting. In any case, a deeper investigation may be necessary
to discover the actual cause-effect relationships.

6.3 Conclusion

Despite these limitations, the study has provided valuable insights into the potential use
of ML models for predicting and explaining treatment outcomes. The study confirms the
complexity of insomnia treatment outcomes and highlights the importance of personalized
treatment strategies.

Our findings, in line with the literature, affirm the relatively low therapeutic success rate
and high relapse rate. Despite this, we established the influence of a new definition of
Paradoxical Insomnia as a major factor in predicting treatment outcomes.

The models and techniques used in this study, such as the ETMPE protocol and the Feature
Importance Algorithm, have shown their potential to handle the high dimensionality of
patient data. Moreover, visualization techniques like PCA, FreeViz, and DT contributed
to a better understanding of data patterns and interactions.

The study underscores the importance of further research into personalizing treatment
and understanding the predictors of therapeutic success. Future studies should focus on
improving the predictive power of machine learning models, investigating the underlying
mechanisms for the identified predictors, and identifying new predictors for better person-
alizing treatments for Insomnia.
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Chapter 7

Conclusions and Future Perspectives

The main contributions will be listed according to the three main research questions (RQ)
developed in the Chapter 1, in the Sections 7.1, 7.2 and 7.3.

At the beginning of each contribution, we chose a color code according to their impact in
terms of:

1. Generating a new hypothesis

2. Confirming an existing hypothesis

3. Invalidating an existing hypothesis

4. Confirming a recognized and admitted hypothesis

5. Invalidating a recognized and admitted hypothesis.

Each contribution will be introduced with a colored C1.7 and a number corresponding to
one of the three hypotheses.

7.1 Hypothesis 1: An Improved Definition of Paradoxi-
cal Insomnia using a Data-Driven Approach with Machine
Learning Tools

C1.0 is the reinforced confirmation of the heterogeneity of the Paradoxical Insomnia defini-
tions in clinical research studies. We could find similar results from the first study on
the topic published in 2019 [35] and add some new results. Our results confirm the
increased heterogeneity over time by adding two recent publications since 2019 using
two new definitions ([117, 3]. We could show that these two last studies are adding
more confusion in the definition with even a correlation equal to 0 between them. So,
in total, after implementing 20 different formulas on our dataset, 82% of our sample
was diagnosed with Paradoxical Insomnia (ParI) with at least one definition, and we
could find 139 combinations (among 335 subjects) between the different formulas to di-
agnose a subject. But the biggest sample combination was the subjects never classified
as ParI, whatever the formulas, meaning that there is a subgroup of Chronic Insomnia
Disorder (CID) patients who are not ParI. In conclusion, the different definitions used
are not specific to a single subgroup of Paradoxical Insomnia nor different homoge-
nous subgroups, but they could define a clear subgroup of CID that is not Paradoxical
Insomniac. So, this first analysis could be used to state that Sleep State Mispercep-
tion is not a shared symptom by all CIDs but that the definitions used have very low
specificity.

We could demonstrate that our dataset was representative of CID in terms of questionnaires,
MMPI psychological profiles, and PSG features with similar results to the reference paper
on Paradoxical Insomnia [58]

We used an ML algorithm to provide a robust and explainable definition with a minimum
number of features for reasons of interpretability and reliability. In particular:

C1.1 We showed on our dataset that it could avoid selecting random features in the top
10 explicative features that would have been selected by an explainer only. In total,
10% of the whole top Feature’s Importance (FI) was random. In conclusion, using an
explainer only among the most popular ones could not ensure reliability.

C1.2 We found two features (TIB and TPS) and an engineered feature TIME corresponding
to the difference between them that could explain 80% of the definitions predictions.
We could also show that this new feature, TIME, is correlated at 0.7 with the prevalence
of each definition in our sample. These findings lead to the notion of the continuum or
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dimensionality of Paradoxical Insomnia instead of categorization. Further discussion
between experts is required in the next steps.

C1.3 We showed that the main criteria used until now to define Paradoxical Insomnia, Total
Sleep Time (TST) calculated with the PSG, was different between the PSG recording
on one night and the six days before for the no Paradoxical Insomnia patients. These
findings could lead to abandoning the usual definition to systematically adopt an entire
week of analysis.

C1.4 We proposed a new definition of Paradoxical Insomnia based on seven days with a proto-
col to correct the TST of the actigraphic measures with the PSG recording personalized
for each patient. We could show that our definition found very different subgroups of
subjects compared to all the other formulas, meaning that criteria applied on a single
night do not represent a full week of sleep, no matter which TST is used. This new
definition demonstrates significant differences when applied to subgroups of subjects
compared to existing definitions with only a light correlation with the S formula. This
finding highlights that criteria based on a single night’s sleep data may not represent
the reality of the Insomniacs studied neither of the Paradoxical Insomnia

C1.5 We brought out, using Features Importance-based explanations and inferential statis-
tics, useful information that overlaps in the case of a major impact of a predictor on
the outcome and could be complementary for the more modest contributions needed
to gain a finer understanding of the complex interactions between the features used for
predictions, especially when there are numerous.

C1.6 In three points:

(a) Thanks to our ETMPE protocol used on states-of-the-art predictive models, the use
of unsupervised learning algorithms such as PCA and classical inferential statistics,
we were able to show that the explanatory variable TIME was associated with
a highly significant increase in periods of arousal, particularly of more than one
minute in the group of subjects categorized as Paradoxical Insomniac whatever the
formula.

(b) At the same time, we confirmed that the index of micro-arousals per hour of sleep
was not significantly different between ParI and non-ParI subjects.

(c) So we claimed that the hypothesis already evoked in some publications that¨Paradoxical
Insomnia may reflect an accumulation of memorized arousals in parallel with a nor-
mal sleep time in terms of quality and duration is the most likely explanation for
this disorder and not a different sleep leading to abnormal vigilant consciousness.

C1.7 is the demonstration that Sleep State misperception is not a general trait found in
all CID (unlike as stated in the last ICSD-3; p 35 of [183]). Further explorations
are needed to delimit the normal from the pathologic. However, we argue that the
term sleep state misperception is incorrect and should instead be called Wake State
Overperception.

7.2 Hypothesis 2: Better understanding of treatment out-
come, especially the resistance factor and relapses in Chronic
Insomnia Disorder and the factors determining its negative
evolution

C2.2 was to show, thanks to the systematic benchmarking, grid search, and hyparameters
tuning of nine popular predictive models, including one neural network model, we could
predict the treatment outcome for 423 patients with an Accuracy > 0.8 with three of
them: Random Forest, Extreme Gradient Boosting and Support Vector Machine with
similar scores around 0.82. These findings are a step toward treatment personalization
(but this needs replication and further discussion, especially regarding the choice of a
good or a bad treatment outcome).
Once the Accuracy score of the prediction was validated, we used the same ETMPE
protocol described in the 5, and we added a Feature Importances (FI) extraction from
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the RF and the XGBoost to compare the results.

C2.1 was to show that, thanks to the FI selection process, the main feature involved in the
prediction was the new definition of Paradoxical Insomnia implemented in the dataset.
Whatever the method used to explain the prediction, this new definition of ParI is a
great predictor of treatment response and, as we could expect, negatively correlated
with a positive outcome. Of course, these findings need replication and more analysis
to be understood, but it’s going in the way to rehabilitate this subtype of Chronic
Insomnia.

Our third interest in this work is time series analysis, specifically in the form of EEG brain
recording signals. Indeed, as we use brain recording daily, we wanted to know if the ML
approach could bring some new insight into the two first hypotheses from a brain analysis
perspective. But as we know, extracting useful features from a brain recording could be
hard, especially when the recording is ambulatory like ours.

7.3 Hypothesis 3: Identifying a Reliable ML Algorithm to
Extract Meaningful Features from Raw EEG Data

C3.1 is that using an algorithm mixing Power Spectral Density extraction with Empirical
Mode Decomposition implementation on spindles, SWS, and alpha rhythm is unable to
provide enough reliable results on corrupted or not corrupted recording with an overall
prediction accuracy of 0.63, below our expected minimum accuracy of 0.8 to use such
an algorithm in our protocol. Our other small contribution shows that accuracy mat-
ters and the temporal distribution of the detection. Indeed, as we tested the automatic
detection algorithm on 16h long datasets, we could see that sleep episodes, whatever
the stages (N1, N2, N3, or REM), could be falsely detected seven hours before the
real first sleep, both, on good quality or corrupted EEG. So, beyond the accuracy in
sleep stage prediction, what poses the most problems here is the failure to consider
the sleep episode itself and its structure. This is especially true if we want to predict
characteristics of insomniac patients like TIB, TST, TPS, or nap episodes. Indeed, hav-
ing distorted information on the data type could jeopardize or even mislead insomnia
subtype characterization or treatment plans for a given subject.

C3.2 was that after reproducing CNN, automated sleep scoring could achieve a global accu-
racy score of 0.8 on the original dataset used for its design (MASS dataset), we couldn’t
reproduce this score on our or another open-source medical dataset (physionet). Like
the previous experiment, we obtained an overall accuracy score of 0.63 for these two
data sets. So, we found that the DL base learning algorithm was not better than EMD
on our dataset or a classical dataset used for sleep studies. These results enhance the
danger of assuming that a result obtained after training on a single database can be
taken at face value in the real world, especially with complex data such as EEG. In-
deed, in the special case of this algorithm, a device intended to be a medical device used
these results to claim its reliability in sleep detection of insomnia and even proposed
treatment based on these results.

C3.3 was to find an unsatisfactory prediction of spindles by nine algorithms, most of which
have been published in sleep research studies and do not achieve the same performance
as advertised in most cases, except for the less under-performing algorithm [143]. F-
measure scores ranged from 30 to 55 in our sample, making it difficult to trust their
eventual contribution if used alone without expert verification. These preliminary
results have some important limitations. First, the limited amount of data that we
could not increase for this first preliminary study. Indeed, scoring spindles manually is
time-consuming, and this time couldn’t be taken. Second, there is a limit in the global
benchmarking because we didn’t test all the algorithms available, especially the new
techniques like deep learning techniques.

C3.4 We could accurately predict the low probability for a given subject in our dataset of
being detected as psychotic by the MMPI-2 scales Pa and Sc. The study is conducted
on a relatively small data set comprising 267 patients. The patients are all CID, so we
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must generalize to other datasets to reproduce these results. More parameters should
be included as treatment, which may affect sleep spindles detection.

C3.5 is that using K-means clustering methods (K = 2,3,4,5) on 20 embedded vectorial
dimensions generated from sleep hypnograms features, after conducting a one-way
ANOVA test at a confidence level of 5%, we found that cluster numbers 2, 4, and
5 showed a very significant difference between groups in terms of ESS score (F-statistic
and p-Value respectively 14.6 (0.0001), 4.94 (0.002) and 3.31 (0.01).

C3.6 is that using K-means clustering methods (K = 2,3,4,5) on 20 embedded vectorial
dimensions generated from sleep hypnograms features, after conducting a one-way
ANOVA test at a confidence level of 5%, we could not found a significant difference
between groups in terms of ISI score (Best F-statistic and p-Value for cluster number
4 with 2.46 (0.06) and 5 with 2.2 (0.06).

C3.7 is that using K-means clustering methods (K = 2,3,4,5) on 2180 embedded vectorial
dimensions generated from EEG Power Spectral Dimensional features, after conducting
a one-way ANOVA test at a confidence level of 5%, we could not found a significant
difference between groups in terms of ISI and ESS scores

7.4 Other Contributions Emerging from the Initial Hy-
potheses

The following contributions are somehow linked to Paradoxical Insomnia into the insomnia
subtypes classifications removed from the last ICSD-3([183]. As paradoxical Insomnia was
a subtype of Primary Chronic Insomnia, discoveries or confirmation of previous discoveries
leading to the identification of homogeneous subcategories of chronic insomniacs are con-
sistent with the need for a more refined semiology and a more personalized diagnostic and
therapeutic approach to chronic insomnia. Therefore, these discoveries support the idea of
including subtypes of chronic insomnia in the international classification of sleep disorders,
including Paradoxical Insomnia, however defined.

7.4.1 Finding concerning clusters of CID

C4.1 was to find three clusters on 1182 insomniac patients with K-means clustering on the 87
scales and subscales of the MMPI2. These findings confirm and further extend results
found in an old, similar study [56] involving only 100 patients and 13 scales also found
three clusters using T-scores on the three validity and ten clinical MMPI scales with
the Fortran clustering procedure available. What is also of interest is that the author,
Jack Edinger, was a pioneer in insomnia subtyping, chair of the insomnia sections of the
ICSD-2 and ICSD-3 and headed AASM’s Research Diagnostic Criteria for Insomnia
Workgroup, and currently is leading the academy’s Insomnia Treatment Guidelines
Task Force. So, it seems that 35 years later, our results confirm these clustering
premises. However, by the time of this study, one of the three groups was too small
and removed from further descriptive or inferential statistical findings [56]; so they
kept only two clusters without any similar attempt since then. In 2017, this author
participated in a study whose title is evocative: “Characterization of Patients Who
Present With Insomnia: Is There Room for a Symptom Cluster-Based Approach?”.
In that paper [48], they found three clusters among 170 patients with Latent profile
analysis from sleep logs, questionnaires, and PSG features again. So, our findings
massively support that at least three clusters of CID, mainly based on Psychological
profiles, could be found.

C4.2 was to find a link between MMPI-2 subscales (Es and TRT) used as a treatment adher-
ence and outcome indicator showed elevation peaks in our sample and are correlated
with one of the three clusters we just mentioned. Even if this discovery needs more
research to be confirmed, it could pave the way for a specific approach to these patients,
who seem most resistant to the various treatments from a purely psychological angle.
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C4.3 was to find very distinct psychological profiles provided by the MMPI2 scales (different
from the previous ones) explaining high and low scores on the Dysfunctional Beliefs
and Attitude toward Sleep (DBAS) scale thanks to a DT for a regression problem.
The Anxiety (ANX) scale of the MMPI-2 and the Lie (L) scale could help discriminate
subjects with low scores on the DBAS questionnaire from the ones with high scores.
This finding could help personalize the cognitive Behavioral Treatment for insomnia,
especially in the cognitive part of the treatment, by providing more personalized insight
into the psychological profile of the CID patients.

7.5 Final Words

Machine Learning tools have helped identify key polysomnographic features never used
before to categorize Paradoxical Insomnia.

From these findings, we proposed a new definition of Paradoxical Insomnia. Overall, we
conclude that. Paradoxical Insomnia is not a “Sleep State Misperception” but a “Wake
State Overperception”.

We also obtained a better understanding of the factors contributing to treatment outcomes,
particularly resistance and relapse in Chronic Insomnia Disorder.

We could not find a way to use an automated sleep scoring reliably on our data set (re-
gardless of data quality). Neither could we predict sleep spindles accurately, even after
an extensive benchmarking of the different predictive models published in the literature.
But this itself is an interesting outcome. We thus could not involve spindle detection in
support of our two main hypotheses. However, we could find clusters of significantly more
sleepy insomniac patients thanks to a graph-spectral method based on EEG and hypnogram
features.

This thesis was at the interface between medical and computer science research with a
constant tradeoff between algorithm transparency, explainability, and expert knowledge.
We hope this work could lead to increased collaboration between Medical Doctors and
Computer Scientists, which will become essential in the face of the tide of medical data,
patient demands, and the personalization of medicine.

The main limitation of our study is the sample size. Although we have defended that it is
sufficient to advance our hypotheses, it also limits how far we have advanced them and the
certainty we can have around them. We recommend more reliable data-collection practices
to anyone undertaking a similar research experience and before commencing, along with an
adequate background in data science – even for medical professionals.
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Appendix A

Synthèse du Manuscrit en Français

A.1 Introduction

La thèse présentée vise à approfondir la compréhension de l’insomnie paradoxale (IP), un
des sous types frequent de l’insomnie chronique (IC) qui affecte 10 à 20 % de la population
générale. Cette condition se caractérise par une perception erronée de l’état de sommeil.
Bien que fréquent, ce trouble reste mal compris et constitue encore un défi thérapeutique.
Notre recherche s’articule autour de l’utilisation d’outils d’apprentissage automatique (AA)
pour caractériser l’IC et en particulier l’IP. De plus nous évaluons l’hypothèse de l’apport
de l’AA pour prédire la réponse thérapeutique en incluant ce sous-type, dans le but de
mieux comprendre les rechutes fréquentes qui affectent 50% des patients avec IC traités.

A.2 Contexte et Problématique

L’IP se manifeste par une discordance entre la perception subjective du sommeil et les
mesures objectives obtenues par polysomnographie (PSG). Suivant les définitions utilisées,
les patients souffrant d’IP ont la perception de ne pas dormir une plus moins grande partie
de leur nuit de sommeil quand un enregistrement de leur sommeil montre une quantité
de sommeil en général normale. Ainsi, malgré des traitements adaptés, cette perception
peut persister et conduire à un sentiment d’échec et d’impuissance de la part du thérapeute
et du patient, entrainer une majoration de l’anxiété et à une surenchère de traitements,
parfois iatrogènes, avec des risques psycho-sociaux accrus. A ce jour, il existe encore une
compréhension parcellaire de ce trouble et une controverse concernant son existence propre.
En effet il n’est pas encore tranché si l’IP est un sous-type de l’IC ou un simple symptôme
(mauvaise perception du sommeil) commun à tous les patients insomniaques. Cette con-
troverse pose la question de l’existence même du diagnostic d’IP, qui, si il était confimrmé,
nécessiterait donc une définition claire et un prise en charge spécifique. Mais même dans
l’hypothèse où la mauvaise perception du sommeil serait uniquement un symptôme ubiq-
uitaire de l‘IC, il persiste une question additionnelle non résolue concernant la définition
d’un seuil de mauvaise perception du sommeil considéré comme anormal. Pour essayer de
répondre à ces questions, nous avons décidé d’utiliser des outils d’AA pour utiliser sans à pri-
ori toutes les données disponibles concernant un groupe d’insomniaques et prédire le degré
de perception du sommeil grâce aux différentes définitions de l’IP publiées jusqu’ici. Nous
avons voulu également étudier l’impact de ces problématiques sur la réponse thérapeutique.
Enfin, nous avons voulu savoir si les outils d’AA pouvaient nous permettre d’exploiter
de manière plus fiables et reproductibles les séries temporelles enregistrées lors des PSG,
théoriquement objectives mais soumises à une variabilité de l’interprétation humaine. Ces
problématiques correspondent aux 3 hypothèses de recherche décrites ci-après.

La première hypothèse testée dans cette thèse est qu’il est possible d’améliorer la définition
d’un seuil de perception anormal du sommeil utilisable en clinique et de l’utiliser pour
définir l’IP comme un sous-type clinique à l’aide d’une approche fondée sur les données
et l’apprentissage automatique. Cette première hypothèse inclue de tester l’hétérogénéité
des définitions déjà publiées sur un dataset représentatif d’insomniaques chroniques, et la
proposition d’une unification de la définition basée sur une analyse de sommeil sur sept
nuits consécutives au lieu d’une nuit habituellement.

La deuxième hypothèse de recherche est que nous pouvons obtenir une meilleure compréhension
des facteurs responsables de l’efficacité ou de la résistance à un traitement classique de
l’IC à l’aide d’une approche fondée sur les données et l’apprentissage automatique. Cette
deuxième hypothèse inclut la possibilité d’une prédiction fiable du succès ou de l’échec
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thérapeutique sur des nouveaux patients.

La troisième hypothèse générale est que l’on peut utiliser un algorithme d’AA fiable pour
extraire des caractéristiques significatives à partir de séries temporelles brutes, en partic-
ulier issues de l’électroencéphalographie (EEG) et ainsi automatiser les interprétations et
les prédictions pour pouvoir uniformiser la recherche sur le sommeil sans dépendre de la
variabilité inter-experts.

A.3 Matériels et Méthodes

La première hypothèse est testé sur une base de données multimodale de 335 patients
souffrant d’IC constituée dans un centre spécialisé dans le diagnostic et la prise en charge
de l’IC (Service de Neurophysiologie Clinique, Hopital de la Pitié-salpétrière, Pris). Cette
base inclut des données cliniques, psychométriques, actimétriques et polysomnographiques
incluant des enregistrements EEG sur huit canaux. Chaque patient inclus a été suivi
pendant au moins six mois, permettant une évaluation précise du diagnostic et de la réponse
au traitement standard. En utilisant des outils d’AA, l’étude a cherché à identifier des
sous-groupes de patients et à tester des hypothèses existantes concernant les profils d’IP à
travers l’analyse des données présentes pour chaque patient. Pour prédire chaque définition
nous avons sélectionné le modèle le plus performant parmi les plus utilisés (notamment,
Random Forest, Extreme Gradient Boosting ou Support Vector Machine), puis nous avons
utilisé des modèles globaux d’explicabilité de la prédiction pour comprendre les variables
impliquées. La deuxième hypothèse concernant la réponse au traitement et l’implication
des différents sous-types de l’IC a été conduite sur la meme base élargie à 423 patients. Le
protocole est comparable, mais la prédiction porte sur l’appartenance ou non au groupe des
patients ayant répondu positivement à un traitement standardisé. Nous avons également
appliqué trois modèles d’explicabilité pour essayer de comprendre de manière fiable ce qui
conduisait à un échec thérapeutique. La troisième hypothèse concerne la fiabilité des outils
d’AA appliqués à l’EEG pour prédire les stades de sommeil et détecter des fuseaux de
sommeil mieux que ne le ferait un expert.

A.4 Résultats

Nous retrouvons une grande hétérogénéité dans les définitions existantes de l’IP sur notre
dataset et donc des seuils de mauavaises perceptions du sommeil. L’application des différentes
définitions quantitatives utilisées pour diagnostiquer l’IP sur notre dataset ont montré que
la majorité des patients étudiés étaient classifiés comme souffrant d’IP selon au moins une
définition, mais il n’y avait pas de consensus général. La recherche a également indiqué
qu’un groupe homogène de patients atteints d’IC n’était jamais classé IP, quelles que soient
les 20 définitions utilisées. Cette dernière observation suggère que la perception erronée du
sommeil n’est pas pathognomonique de l’IC et donc que l’IP est bien un sous-type de l’IC.
En utilisant l’apprentissage automatique, notre travail a permis de proposer une nouvelle
définition de l’IP, basée sur une analyse temporelle plus longue et moins sujette aux aléas
d’une seule nuit d’enregistrement, qui semble mieux refléter la réalité des patients et permet
de distinguer plus clairement le sous type IP des autres formes d’IC.

Nos résultats sur la prédiction de la réponse thérapeutique ont atteint une précision supérieure
à 0,8 grace à un modèle ajusté de Random Forest. L’analyse des variables explicatives
impliquées dans cette prédiction mettent en évidence l’importance de l’IP définie comme
prédicteur majeur de la réponse au traitement. Cette découverte ouvre la voie à une ap-
proche plus personnalisée dans le traitement de l’insomnie chronique, bien que des études
supplémentaires soient nécessaires pour une compréhension plus approfondie et pour valider
ces résultats.

Concernant les outils d’AA pour harmoniser les analyses de séries temporelles nos résultats
n’ont pas montré une performance suffisante pour la prédiction fiable des états de som-
meil, avec une précision inférieure à l’objectif fixé correspondant à l’agreement inter-scoreur
(précision de 0,8).
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A.5 Implications Cliniques et Perspectives

Les résultats de cette recherche ont des implications cliniques importantes. Ils suggèrent
que l’approche actuelle de traitement de l’IP pourrait nécessiter une révision, en mettant
davantage l’accent sur la perception subjective du sommeil sur plusieurs nuits. Cette ap-
proche pourrait aider à identifier plus précisément les patients souffrant réellement d’IP et
à leur fournir des traitements plus ciblés et efficaces.

En outre, cette recherche ouvre la voie à de futures études utilisant l’AA pour mieux
comprendre et traiter d’autres troubles du sommeil. La capacité de l’AA à analyser de
grandes quantités de données et à identifier des modèles complexes peut révolutionner la
manière dont nous abordons les troubles du sommeil, conduisant à des diagnostics plus
précis et à des traitements plus personnalisés.

A.6 Conclusion

Cette thèse représente une avancée significative dans la compréhension et le traitement de
l’IP. En utilisant des outils d’AA pour analyser des ensembles de données complexes, cette
recherche contribue à une meilleure caractérisation de l’IP et à une prédiction plus précise
de la réponse au traitement de l’IC.
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Appendix B

B.1 Definitions

B.1.1 Sleep and Medicine Definitions

Apnea-Hypopnea Index is a measure used in sleep medicine to evaluate the severity of
sleep apnea. The AHI quantifies the average number of apneas and hypopneas per hour of
sleep. To calculate the AHI, the total number of apneas and hypopneas observed during
a sleep study (usually obtained through polysomnography) is divided by the total number
of hours of sleep. The result is the number of apnea and hypopnea events per hour. The
AHI is used to classify the severity of sleep apnea: AHI < 5: Normal, AHI 5-15: Mild, AHI
15-30: Moderate, AHI > 30: Severe

BDNF The protein brain−derived neurotrophic factor (BDNF) is a member of the neu-
rotrophin family of growth factors involved in the plasticity of neurons in several brain
regions. There is evidence that BDNF expression is decreased by experiencing psychologi-
cal stress and that a lack of neurotrophic support causes major depression. [184]

Cognitive and behavioral therapy for Insomnia is a non-pharmacological technique
that has shown its efficacity in CID. [149]. The main axes of this therapy are Sleep edu-
cation: Learning about the factors that influence sleep, sleep patterns, and the impact of
lifestyle choices on sleep. Sleep restriction: Establishing a consistent sleep schedule and
limiting time spent in bed to match actual sleep time helps improve sleep efficiency. Stim-
ulus control: Adjusting the sleep environment and bedtime routine to associate the bed
with sleep and relaxation, reducing factors that may interfere with sleep. Sleep hygiene:
Adopting healthy sleep habits, such as maintaining a regular sleep schedule, avoiding stim-
ulants close to bedtime, and creating a comfortable sleep environment. Cognitive therapy:
Identifying and challenging negative thoughts and beliefs about sleep that contribute to
insomnia and replacing them with more positive and realistic ones. Relaxation techniques:
Practicing relaxation exercises, such as progressive muscle relaxation or deep breathing,
to reduce physical and mental tension before bedtime. CBT-I is typically delivered in a
structured format over several sessions with a trained therapist.

European data Format is a file format commonly used for storing and exchanging medical
time series data, particularly physiological signals such as EEG. The EDF format allows for
the standardized representation of data collected during medical examinations or research.
It provides a structured way to organize and store multiple channels of time series data,
along with relevant metadata and annotations.

Electroencephalography is a method of cerebral exploration that measures the brain’s
electrical activity using electrodes placed on the scalp, often represented as an electroen-
cephalogram trace. Comparable to the electrocardiogram, which studies the functioning of
the heart, the EEG is a painless, non-invasive examination that provides information on the
neurophysiological activity of the brain over time, and of the cerebral cortex in particular,
either for diagnostic purposes in neurology or for research in cognitive neuroscience. The
electrical signal at the origin of the EEG is the summation of synchronous post-synaptic
potentials from many neurons.

Montreal Archive of Sleep Studies (MASS) is an open-access and anonymized polysomno-
graphic dataset that contains sleep studies on various patient groups, including healthy
subjects and patients with various sleep disorders. The dataset includes raw EEG, de-
mographic, and hypnograms, which are sleep stage scoring data. MASS is highly useful
for developing and evaluating automatic sleep staging algorithms or studying various sleep
disorders and conditions. There are different subsets of the sample.
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Narcolepsy is a neurological disorder characterized by severe, irresistible daytime sleepi-
ness and sudden loss of muscle tone (cataplexy) and can be associated with sleep−onset or
sleep−offset paralysis and hallucinations. These sudden sleep attacks may occur during any
activity at any time of the day. This disorder is secondary to the early loss of neurons in
the hypothalamus that produce Orexin, a wakefulness−associated neurotransmitter. The
cause of neural loss could be autoimmune since most patients have the HLA DQB1*0602
allele that predisposes individuals to the disorder

Psychophysiologic insomnia, also known as psychophysiological insomnia or learned
insomnia, is a type of sleep disorder characterized by difficulty falling asleep or staying
asleep that is primarily caused by psychological or emotional factors. A chronic condi-
tion often develops due to a person’s negative thoughts, worries, and anxieties surrounding
sleep. Individuals with psychophysiological insomnia typically experience hyperarousal and
awareness of their sleep-related thoughts and bodily sensations. This heightened state of
vigilance can make it difficult for them to relax and fall asleep, leading to chronic insom-
nia. The condition often develops through a process known as conditioned arousal. This
occurs when an individual begins associating their bed or sleep environment with frustra-
tion, anxiety, and wakefulness instead of relaxation and sleep. This negative association
creates a cycle of sleeplessness and further reinforces the individual’s difficulties with sleep.
Psychophysiologic insomnia is often linked to psychological and emotional factors, such as
stress, anxiety, depression, and traumatic experiences. It can also be influenced by mal-
adaptive sleep habits, poor sleep hygiene, irregular sleep schedules, excessive time spent in
bed while awake, and an overall preoccupation with sleep. Treatment for psychophysiolog-
ical insomnia typically involves a combination of cognitive-behavioral therapy (CBT) and
sleep hygiene practices. [149]

REM sleep behavior disorder Patients with REM sleep behavior disorder (RBD) en-
act violent dreams without normal muscle atonia during REM sleep. This disorder is
highly frequent in patients with synucleinopathies (60%−100% of patients) and rare in
other neurodegenerative disorders. The disorder is detected by interview plus video and
sleep monitoring [5].

Sleep efficiency is another important parameter that refers to the percentage of total
time in bed spent in sleep. It is calculated as the sum of Stage N1, Stage N2, Stage N3, and
REM sleep, divided by the total time in bed and multiplied by 100. Sleep efficiency gives an
overall sense of how well the patient slept but does not distinguish frequent, brief episodes
of wakefulness. A low sleep efficiency percentage could result from long sleep latency and
long sleep offset to lights on time with otherwise normal quantity and quality of sleep in
between. Sleep onset latency (SOL) is the duration of time between when the lights are
turned off (lights out) as the patient attempts to sleep until the time patient falls asleep,
as evidenced by EEG and behavioral parameters changes consistent with sleeping (three
epoch of Stage N1 sleep or one epoch of other sleep stages) Sleep state misperception in
The International Classification of Sleep Disorders, Revised [198], sleep state misperception
(also known as pseudo insomnia or subjective insomnia) is a disorder in which a complaint
of insomnia arises when polysomnography demonstrates a “normal sleep pattern” with
sleep onset latencies of less than 15 to 20 minutes, sleep durations over 6.5 hours, and
an average number and duration of awakenings. total sleep time is the total sleep time
scored during the total recording time. This includes the time from onset to offset and is
distributed throughout the sleep time as minutes of Stage N1 sleep, Stage N2 sleep, Stage
N3, and REM sleep. Recurrent awakenings, define as high sleep fragmentation levels and
stage shifts, may result in complaints of non-restorative sleep even when a normal total
sleep time is present.

Wake After Sleep Onset refers to periods of wakefulness occurring after sleep onset
latency. This parameter measures wakefulness, excluding the wakefulness occurring before
sleep onset.
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B.1.2 Machine Learning Definitions

AdaBoost for Adaptive Boosting is an ensemble learning algorithm that constructs a
classifier by fitting multiple weak classifiers on various data distributions and then com-
bines them into a weighted sum to form a final single strong classifier. [68] Adam for
”Adaptive Moment Estimation” is an optimization algorithm used in deep learning appli-
cations, which can be used to replace the classical stochastic gradient descent procedure
to update network weights iteratively based on the training data. Adam is known for its
computational efficiency and has little memory requirements. It is particularly suitable for
problems with large data or many parameters. Adam maintains a per-parameter learning
rate that improves performance when dealing with sparse gradients on noisy problems. It
uses estimations of the first and second moments of the gradient to adapt the learning rate
for each weight of the neural network. Adam includes bias correction estimates to handle
the issues of sparse gradients and noisy data [104].

Area Under the ROC Curve (AUC−ROC) The AUC−ROC is a performance metric
used for binary classification. It measures the model’s ability to discriminate between pos-
itive and negative instances across different probability thresholds. A higher AUC−ROC
value indicates better classification performance [70]. Bagging Stand for Bootstrap Ag-
gregating. It is an ensemble learning technique that aims to improve the stability and
accuracy of ML models by combining predictions from multiple models trained on different
subsets of the original training data. Each model is trained independently on a randomly
sampled subset of the training data with replacement. Bagging reduces the variance and
helps mitigate overfitting by averaging the predictions of individual models [23]. Black
Box Refers to a model or system whose internal workings or decision-making process is not
transparent or easily interpretable. Although the model can provide accurate predictions
or outputs, it may not clearly understand how it arrives at those results. Black box models
are essentially referred to as deep learning models [18].

Boosting is an ensemble learning technique that combines multiple weak or base learners
to create a strong predictive model. Unlike bagging, boosting trains models sequentially,
where each subsequent model is trained to correct the mistakes made by the previous
models. The final prediction is a weighted combination of the predictions from all the
models. Boosting focuses on reducing bias and variance, improving overall performance
[68].

CART stands for Classification and Regression Trees, a machine learning algorithm used
for classification and regression tasks. A decision tree−based algorithm recursively parti-
tions the input space into smaller regions, creating a tree−like model for making predictions.

Classification Accuracyis a metric accuracy measures the proportion of correct predic-
tions to the total number of predictions. It is a simple and widely used metric, but it may
not be suitable for imbalanced datasets [70].

Classifier A machine learning model used in supervised machine learning. It is designed
to assign input data points to predefined categories or classes based on their features or
attributes. Examples of classifiers include logistic regression, decision trees, support vector
machines, and neural networks [70].

Convolutional Neural Networks are a type of artificial neural network specifically de-
signed for analyzing visual data. Inspired by the visual cortex in animals, CNN utilizes
convolutional layers to learn local patterns and spatial hierarchies in input data automat-
ically. CNN detects features such as edges and textures by sliding filters over the data.
Pooling layers reduce dimensionality while retaining important information. Non-linear
activation functions introduce non-linearity, fully connected layers learn high-level repre-
sentations, and backpropagation enables training. CNN excels in image-related tasks by
extracting meaningful representations and can be adapted for other data types like time
series analysis. [75]

Cross−validation A technique used to evaluate the performance of a machine learning
model. It involves dividing the dataset into multiple subsets or folds. The model is trained
on some data (training set) and tested on the remaining data (validation set). This process
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is repeated multiple times, with each fold being the validation set once. The results are
then averaged to estimate the model’s performance [51].

Decision Tree The decision tree algorithm is used for both classification and regression
tasks. We used the Gini index as the splitting criterion to build the DT. The Gini index
measures the impurity of a set of samples by computing the probability of misclassifying a
sample in that set if it were randomly assigned to a class. The Gini index ranges from 0 to
1, with 0 indicating a completely pure set and 1 indicating a completely impure set.

The algorithm for building a decision tree using the Gini index can be described as follows:

If all samples in the current node belong to the same class, stop and return that class
label. For each feature, calculate the Gini index of the split resulting from splitting on that
feature. Select the feature that results in the lowest Gini index and split the node based
on that feature. Recursively apply steps 1−3 to the resulting child nodes until a stopping
criterion is met.

The formula for the Gini index is:

Gini(D) = 1 −
c∑

i=1

p2i (B.1)

where D is the set of samples being considered, c is the number of classes, and pi is the
proportion of samples in D that belong to class i [84].

Data Mining is the process of discovering patterns, relationships, and insights from large
datasets. It involves extracting valuable information from raw data using various tech-
niques, such as statistical analysis, machine learning, and pattern recognition. Data min-
ing aims to uncover hidden patterns or knowledge that can be useful later in building a
prediction model or understanding complex systems [170].

Data Science refers to the interdisciplinary field that involves extracting insights and
knowledge from data using various techniques, including statistical analysis, machine learn-
ing, data visualization, and data mining. It combines elements from mathematics, statistics,
computer science, and domain expertise to uncover patterns, make predictions, and gain
actionable insights from complex and large datasets [170].

Deep Learning is a subfield of ML that focuses on training deep neural networks, which are
artificial neural networks (ANN) with multiple layers. Deep learning models are designed
to automatically learn hierarchical representations of data by stacking layers of artificial
neurons [DLbishop2006pattern].

Eigenvalue Decompositionis a method used to decompose a square matrix into its con-
stituent parts. Specifically, given a matrix A, its Eigenvalue Decomposition represents A
as the product of three matrices: V , Λ, and V −1. − V is a matrix whose columns are the
eigenvectors of A. − Λ is a diagonal matrix containing the eigenvalues of A. − V −1 is the
inverse of V . The Eigenvalue Decomposition of a matrix A can be expressed as:

A = V ΛV −1

Eigenvalue Decomposition is particularly useful because it provides insights into the prop-
erties and behavior of the original matrix. It can reveal important characteristics such as
the eigenvalues (representing scaling factors) and eigenvectors (representing directions of
transformation) associated with the matrix.

Empirical Mode Decomposition is a signal processing technique that decomposes a
given signal into a set of Intrinsic Mode Functions (IMFs). Each IMF represents a specific
oscillatory mode contained within the signal. EMD does not rely on predefined basis
functions and adapts to the local characteristics of the signal. It has been widely used for
analyzing nonlinear and non-stationary data.

Intrinsic Mode Functions are the building blocks of EMD. In EMD, a given signal is
decomposed into a set of IMFs representing the different oscillatory modes or components
present in the signal. Thus, IMF captures the intrinsic oscillatory behavior of a signal at
a specific scale. The first IMF generally represents the highest-frequency oscillation, while
subsequent IMFs capture progressively lower-frequency components.
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F1 Score The F1 score is the harmonic mean of precision and recall. It provides a balanced
measure of a model’s performance by considering both precision and recall [70].

Feature Importances correspond to the assessment process of the relevance or contribu-
tion of individual features or variables in a dataset towards predicting a target variable or
outcome. It is commonly used in machine learning and statistical modeling to understand
which features significantly impact the model’s predictions..

Freeviz Freeviz, like Radviz, is a visualization method. The data instances are plotted
inside a circle, the position of each determined by the value of its features and the positions
of the corresponding anchors. Informally, each anchor pulls the instance towards itself with
a strength proportional to the value of the corresponding feature, so the position of an
example depends upon the relative values of features (e.g., if all features have equal values,
the instance is placed in the center). Despite a slightly different mathematical formulation,
RadViz and FreeViz are similar, with the essential difference that in FreeViz, the “anchors”
can be anywhere in the projection plane and are not placed evenly around the circle. To
use FreeViz visualization in classification, the projection is used to find the coordinates of
a new, unclassified instance and let the instances from the original training set “vote” for
its class, with the weight inversely proportional to their distance to the new instance. The
classifier can either predict a class or normalize the distribution of votes to obtain a class
probability estimate [53]

Hyperparameter Tuning Involves selecting the optimal values for the hyperparameters
of a machine learning model. Hyperparameters are parameters not learned from the data
but are set by the practitioner before training the model. Hyperparameter tuning is impor-
tant as it can significantly impact the model’s performance. Independent Component
Analysisis a statistical signal processing technique that separates a set of mixed signals
into their underlying independent components. It assumes that the observed signals are
linear combinations of statistically independent source signals and aims to estimate the
mixing matrix and the source signals by maximizing statistical independence. [43]

K-Nearest Neighbors or KNN is a non-parametric and lazy learning algorithm. Its
purpose is to use a database in which the data points are separated into several classes to
predict the classification of a new sample point. KNN does not make any assumptions on
the underlying data distribution, but it does assume that data is in a feature space and the
distance metric can be calculated. [80]

LASSO (Least Absolute Shrinkage and Selection Operator) LASSO is a feature
selection and regularisation technique in linear regression models. It works by imposing
a penalty on the sum of the absolute values of the regression coefficients, which encour-
ages sparse solutions and helps to avoid overfitting. LASSO is particularly useful when
dealing with high-dimensional datasets with potentially irrelevant or redundant features.
It can help identify the most relevant features for the prediction and improve the model’s
interpretability and generalization. LASSO is a powerful technique for feature selection in
binary classification problems, which can provide insights into the most important features
for prediction. [84].

Loss Function A loss function, also known as a cost function or error function, is a
function that maps a set of parameter values for a model to a scalar value that represents
the cost, error, or “loss” of the model’s predictions with those parameters, compared to
the true values of the target variable. The goal of a machine learning algorithm is typically
to find the model parameters that minimize the loss function. There are many types of
loss functions [84], and the choice of the loss function can depend on the specific machine
learning task. Here are a few examples:

∗ Mean Squared Erroris commonly used in regression tasks. It is the average squared
difference between the predicted and actual values.

L(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2

∗ Cross−Entropy Loss: This is often used in classification tasks, particularly with
probabilistic outputs. It measures the dissimilarity between the predicted probability
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distribution and the actual distribution.

L(y, ŷ) = −
n∑

i=1

yi log(ŷi)

∗ Hinge Loss: This is used for “maximum−margin” classification tasks, most notably
with Support Vector Machines.

L(y, ŷ) = max(0, 1 − yi · ŷi)

Matthews correlation coefficient measures the quality of binary classifications, which
considers true and false positives and negatives. It ranges from−1 to +1, with +1 indicating
a perfect prediction, 0 indicating a random prediction, and−1 indicating a completely
incorrect prediction. The formula for MCC is:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(B.2)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives.

MNE for MNE-Python is an open-source software package designed to process, analyze,
and visualize functional neuroimaging data (specifically MEG, EEG, sEEG, ECoG, and
fNIRS data). [78]

Multilayer Perceptron (MLP) is a type of artificial neural network model often used
for classification tasks, including in medical datasets where the goal might be to predict the
presence or absence of a disease given a set of symptoms or other similar tasks. An MLP
consists of at least three layers of nodes: an input layer, a hidden layer, and an output
layer. Each node in one layer connects with a certain weight to every node in the following
layer. These networks are called ’fully connected’.MLPs use a supervised learning technique
called backpropagation for training. [12]

a Model is a mathematical or computational representation of a real−world process, sys-
tem, or phenomenon. It captures the relationships and patterns within the data to make
predictions, classifications, or other forms of analysis. Models can be created using various
algorithms and techniques and are trained or optimized based on available data [84].

Naive Bayes is a family of simple ”probabilistic classifiers” based on applying Bayes’ theo-
rem with strong (näıve) independence assumptions between the features. It is a simple and
efficient classification task method, particularly for large datasets. The ”naive” assumption
of this classifier is that the presence of a particular feature in a class is unrelated to the
presence of any other feature, even if these features are dependent on each other. This
simplifies computation, and that’s why it is considered ’naive’. [132]

Optimization An optimization algorithm in machine learning is a procedure or method
used to improve a model or function at a given task. Optimization algorithms navigate the
landscape of the chosen model’s loss function to find parameters that minimize the loss.
Several optimization algorithms are used in machine learning, and the choice depends on
the specific task, model, and sometimes even the data. A common example is Gradient
Descent optimization [178].

In all these examples, f(θ) is the objective function, ∇f(θ) is the gradient of the function
at θ, H is the Hessian matrix (matrix of second derivatives), and α is the learning rate,
which determines the step size during the iterative process.

These algorithms aim to find the model parameters that minimize the loss function, making
the model’s predictions as accurate as possible.

Out−of−Sample Prediction Refers to evaluating a machine learning model’s perfor-
mance on data it has not seen during the training phase. It involves predicting new, unseen
data points to assess how well the model generalizes and performs in real-world scenarios.
Power Spectral density is denoted as S(f) and is calculated as the squared magnitude
of the Fourier Transform of the signal x(t):

S(f) = |X(f)|2
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where X(f) is the Fourier Transform of x(t).

Parameters The variables within a model that are learned or estimated during the training
process. These values define the specific configuration or behavior of the model. In machine
learning, parameters are adjusted iteratively to minimize the difference between predicted
and actual outputs. They are often learned from the data and can affect the model’s
performance and generalization ability [84].

Precision Precision is the ratio of true positive predictions to the total number of positive
predictions. It measures the model’s ability to identify positive instances correctly. High
precision indicates a low rate of false positives [84].

Prediction Estimating or forecasting an unknown or future outcome based on available
data and learned patterns. Prediction typically involves using a trained model to make in-
ferences or generate outputs for new or unseen data points. It can be made for various types
of problems, such as regression (predicting a continuous value) or classification (predicting
a categorical label) [84].

Pruning Refers to reducing a decision tree’s size by eliminating unnecessary branches or
nodes. The goal of pruning is to improve the generalization capability of the tree by reducing
overfitting, where the model becomes too specific to the training data and performs poorly
on new, unseen data [84].

Recall Recall is the ratio of true positive predictions to the total number of positive in-
stances. It measures the model’s ability to identify all positive instances. High recall
indicates a low rate of false negatives [84].

Root Mean Squared Error RMSE is the square root of MSE, providing a measure of
the average prediction error in the original units of the target variable. It is commonly used
for regression problems and measures the average prediction error [84].

Shap Shapley Values is a technique used to explain the predictions of a model by assigning
contributions to each input feature in the prediction. It is a model-agnostic technique
that provides a unified framework for feature importance measurement, even when the
features are correlated. Shapley values are based on cooperative game theory and assign
the contribution of each feature to the prediction by comparing its inclusion in different
subsets of features. This technique can help to understand how different features contribute
to the model’s predictions and to identify potential biases or confounding factors.

Sensitivity Analysis is a technique used to determine how sensitive a model’s predic-
tions are to changes in the input variables. It involves varying the values of one or more
input variables while keeping the other variables constant and observing the corresponding
changes in the model’s output. Sensitivity analysis can help identify the most important
input variables that drive the model’s predictions and evaluate the robustness of the model.

Specificity Specificity is the ratio of true negative predictions to the total number of actual
negative instances. It measures the model’s ability to identify negative instances correctly.
High specificity indicates a low rate of false positives [84].

Supervised Learning A paradigm in which an algorithm learns a mapping between input
data and corresponding output labels by being provided with labeled training examples.
The algorithm learns to generalize from labeled data and can predict unseen data based on
the learned patterns [84].

Unsupervised Learning An approach where the algorithm learns patterns and structures
in the input data without being provided with explicit labels or supervision. The objective
is to explore the data’s inherent structure and identify patterns, clusters, or relationships
within it [84].

Explainable AI is invested in making the decisions taken by algorithms understandable
to humans. In brief, algorithms could be categorized as white-box if explainable or black-
box if hardly understood by domain experts [128]. So understanding the reasoning behind
decisions or predictions is the holy grail of this discipline, where research focuses on news al-
gorithms designed to “interpret” or “explain” mainly black-box algorithms and, in any case,
to achieve more transparency in the decision-making process leading to a given prediction.
These three terms correspond to different definitions.
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1. Interpretability refers to the degree to which a human can understand the cause of
a decision made by a machine learning model. An interpretable model can explain the
relationship between the input features and the predictions [126].

2. Explainability focuses more on providing insights into the factors that led to a par-
ticular decision. In this context, an explanation might be a set of features in the
interpretable domain that have contributed to a decision for a given example [88].

3. Transparency is more related to explaining the whole process of transformation be-
hind the algorithm from the input data into training features, how the learning process
works, and how predictions are generated from the testing data. This term is the most
related to ethical aspects. Theoretically, The points that need to be addressed under
this concept are the algorithms, data, goals, outcomes, compliance, influence, and usage
[114].

Extreme Gradient Boosting (XGBoost) is a scalable and improved version of the
gradient boosting algorithm designed for speed and performance. It is a machine learning
algorithm that belongs to the ensemble learning method, and it constructs new classifiers
that aim to predict more accurately than existing ones and is often used for supervised
learning problems. [39]

The XGBoost algorithm can be described using the following formula:

ŷi = ϕ(xi) =
∑

k = 1Kfk(xi) (B.3)

In this equation, each fk(xi) represents the prediction made by the k-th decision tree in the
ensemble for the input vector xi. The sum of these individual predictions

∑
k = 1Kfk(xi)

produces the final prediction ŷi where ŷi is the predicted value for the i-th sample, xi is the
input vector for the i-th sample, K is the number of decision trees in the ensemble, and
fk(xi) is the prediction of the k-th decision tree.

Each decision tree fk is constructed to minimize a loss function L with an additional
regularization term that penalizes the complexity of the tree:

L =
n∑

i=1

L(yi, ŷi) +
K∑
k=1

Ω(fk) (B.4)

where yi is the true value for the i−th sample, ŷi is the predicted value, and Ω(fk) is the
regularization term that penalizes the complexity of the tree fk.

The regularization term can be expressed as:

Ω(fk) = γT +
1

2
λ

T∑
j=1

w2
j (B.5)

where T is the number of leaves in the tree, wj is the weight of the j-th leaf, γ is a hyper-
parameter that controls the complexity of the tree, and λ is the regularization parameter.

The prediction of each decision tree fk is computed as a sum of the predicted values of its
leaves:

fk(x) =

T∑
j=1

wq(x)j (B.6)

where wq(x)j is the weight of the j−th leaf for the input vector x, and q(x)j is the index of
the leaf node that x falls into.
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B.2 Results

B.2.1 Pseudocode algorithm EMD

Input: EEG signal, EOG signal EXG signal

Output: Spindle detection and Sleep scoring

Procedure RemoveEXG(EEG signal, EXG signal):

Combine EEG signal and EXG signal

Perform Empirical Mode Decomposition on the combined signal to obtain IMFs

Remove IMFs associated with the EXG signal

Extract modified EEG signal from the remaining IMFs

Return modified EEG signal

Procedure EMD(EEG signal):

Perform Empirical Mode Decomposition on the EEG signal to obtain IMFs

Return IMFs

Procedure CalculateLikelihood(IMFs):

Extract robust additional features from the decomposed IMFs

Calculate the likelihood of each signal segment belonging to a spindle

using the additional features

Return likelihood values

Procedure ViterbiDecoder(likelihood values):

Train the Viterbi decoder using the labeled spindle and non-spindle segments

. Decode the spindle likeness based on the likelihood values using the

trained Viterbi decoder

Return spindle classification result

Procedure SpindleAnalysis(EEG signal):

IMFs = EMD(Modified EEG signal)

Likelihood values = CalculateLikelihood(IMFs)

Spindle classification = ViterbiDecoder(Likelihood values)

Return spindle classification

Procedure Slowwavesleep Analysis(EEG signal):

IMFs = EMD(Modified EEG signal)

Likelihood values = CalculateLikelihood(IMFs)

SWS classification = ViterbiDecoder(Likelihood values)

Return Slowwavesleep classification

Procedure AlphawaveAnalysis(EEG signal):

IMFs = EMD(Modified EEG signal)

Likelihood values = CalculateLikelihood(IMFs)

Alphawave classification = ViterbiDecoder(Likelihood values)

Return Alphawave classification

Procedure ApplyLimitsforsleepclassification(EEG signal, EOG signal, spindles):

If AlphawaveAnalysis(EEG signal) = True

If alpha frequency (7.5 and 12.5 Hz), 10 uV < amplitude < 50 uV

AND/0R beta frequency (15 and 30 Hz),

0 uV < amplitude < 250 uV > 15 sec

then epochs = Wake.

Else if theta > 15 sec, with theta frequency between 3.5 and 7.5 Hz

Apply limits on amplitude: 25 uV < amplitude < 100 uV,

duration > 1 sec

Return 30 sec epochs = N1
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Else if theta > 15 sec, with theta frequency between 3.5 and 7.5 Hz

Apply limits on amplitude: 25 uV < amplitude < 100 uV, duration > 1 sec

if SpindleAnalysis(EEG signal) return = true

Apply limits on sigma power: rhythm frequency between 11.5 and 14.5 Hz

Apply limits on sigma amplitude: 10 uV < amplitude < 70 uV,

duration between 0.5 and 2 sec

Apply limits on delta power: delta < 20% in 0.35-2 Hz band

Apply limits on delta amplitude: 75 uV < amplitude < 300 uV,

duration > 0.6 sec

Classify as an artifact if amplitude > 300 uV

Return 30 sec epochs = N2

Else if delta > 6 sec with delta frequency between 0.3 abd 2 Hz

Apply limits on delta amplitude: 75 uV < amplitude < 300 uV,

duration > 0.6 sec

Classify as an artifact if amplitude > 300 uV

if SpindleAnalysis(EEG signal) return = true

Apply limits on sigma power: rhythm frequency between 11.5 and 14.5 Hz

Apply limits on sigma amplitude: 10 uV < amplitude < 70 uV,

duration between 0.5 and 2-sec Return 30 sec epochs = N3

Else if theta > 15 sec, with theta frequency between 3.5 and 7.5 Hz

Apply limits on theta power: theta > 60 uV

Apply limits on amplitude: 25 uV < amplitude < 100 uV, duration > 1 sec

if SpindleAnalysis(EEG signal) return = False

if DeltaAnalysis(EEG signal) return = False

Apply limits on eye movement: EOG eye movement duration

between 0.09 sec < x < 500 ms

Ensure REM episodes are separated by at least 5 sec

Apply limits on beta power: beta frequency between 15 and 30 Hz,

0 uV < amplitude < 25 uV

End If

Return modified EEG signal
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B.2.2 Top 10 features for LASSO, Shap and SA

B.2.3 Sample description for each paradoxical Insomnia formula

Dataset ............. meanA1 meanA0 meanB1 meanB0 meanC1 meanC0
Age(yo) 46 ± 12 46 ± 12 46 ± 13 40 ± 10 47 ± 13 43 ± 12 46± 13
Wo(%) 66 69 64 77 65 75 66
TST(min) 355± 75 362± 73 347 ± 76 416 ± 68 346 ± 72 418 ± 61 347 ± 73
ISI(score) 19.7±4.75 20 ± 4 19.4 ± 5 19.4 ± 4 19.7± 5 19.2 ± 4 19.7± 5

meanD1 meanD0 meanE1 meanE0 meanF1 meanF0 meanJ1 meanJ0
Age(yo) 43 ± 11 47 ± 13 43 ± 12 46± 13 45 ± 12 46± 13 41 ± 11 47 ± 13
Wo(%) 72 65 80 66 77 64 74 65
TST(min) 409 ± 59 338 ± 71 434± 65 349 ± 73 403 ± 56 344 ± 75 440 ± 40 337± 68
ISI(score) 19.6 ± 4 19.7 ± 5 20.4 ± 4 19.6 ± 5 20.4 ± 4 19.5± 5 19.2± 4 19.8 ± 5

meanK1 meanK0 meanL1 meanL0 meanL21 meanL20 meanM1 meanM0
Age(yo) 44 ± 11 46 ± 13 47± 13 45 ± 13 47 ± 12 45± 13 49 ± 10 45 ± 13
Wo(%) 74 66 69 66 69 66 70 66
TST(min) 460± 67 348 ± 71 386 ± 70 343 ± 74 374 ± 67 343 ± 74 373 ± 79 354± 75
ISI(score) 20.8± 3 19.3 ± 5 20.7 ± 4 19.3± 5 20.6 ± 4 19.3±5 20.6 ± 3 19.7 ± 5

meanN1 meanN0 meanO1 meanO0 meanP1 meanP0 meanQ1 meanQ0
Age(yo) 42 ± 11 47 ± 13 44 ± 12 48 ± 13 44 ± 10 46± 13 43 ± 11 47 ± 13
Wo(%) 71 65 73 61 74 66 76 65
TST(min) 410± 57 335 ± 71 413 ± 44 301 ± 55 443 ± 47 343 ± 70 430 ± 39 339 ± 71
ISI(score) 19.4 ± 4 19.8 ± 5 19.9 ± 4 19.5± 5 20.3 ± 3 19.6±5 20.4 ± 4 19.5 ± 5

meanR1 meanR0 meanT1 meanT0 meanV1 meanV0 meanZ1 meanZ0
Age(yo) 42 ± 11 46 ± 13 41 ± 11 47 ± 13 44 ± 10 46± 13 41 ± 11 47 ± 13
Wo(%) 78 64 74 65 77 66 78 65
TST(min) 448± 48 348 ± 72 440 ± 40 337 ± 68 399 ± 65 350 ± 75 420 ± 41 347 ± 74
ISI(score) 21.5 ± 4 19.5 ± 5 19.2 ± 4 19.8± 5 18.2 ± 5 19.9±5 18.7 ± 4 19.8 ± 5

Table B.1: Comparisons for each formula implemented in our dataset of the mean and the standard
deviation for the Age, the Total Sleep Time recorded with the polysomnography, the score on the
Index of Severity of Insomnia (ISI) and the percentage of women in each subgroup. For each formula
the subgroup corresponding to the Paradoxical Insomnia group is labeled meanformula1
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Figure B.1: Top 10 features selected by LASSO regularization
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Figure B.2: Top 10 features selected by Shap
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Figure B.3: Top 10 features selected by sensitivity analysis
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B.3 Data

B.3.1 DI-PSYCH features definitions

DI-PSYCH
Feature Definition Feature Definition
A Anxiety AAS Addiction Admission
Age yo ANX Anxiety
ANG Anger APS Addiction Potential
ASP Antisocial Practices BIZ Bizarre Mentation
CYN Cynicism D Depression
D1 Subjective Depression D2 Psychomotor Retardation
D3 Physical Malfunctioning D4 Mental Dullness
D5 Brooding DEP Depression
DO Depression Objective Do Dominance
DS Depression subjective Es Ego Strength
F Infrequency FAM Family Problems
FB Back FRS Fears
Fb Back F Gender two categories
GF Gender Role – Feminine GM Gender Role – Masculine
HEA Health Concerns Hs5K Hypochondriasis (Hs)
Hy Hysteria (Hy) Hy1 Denial of Social Anxiety
Hy2 Need for Affection Hy3 Lassitude-Malaise
Hy4 Somatic Complaints Hy5 Inhibition of Aggression
HyO Hysteria Objective HyS Hysteria Subjective
ID Coded key K Correction
L Lie LSE Low Self-Esteem
MACR MAC-R- (Alcool) Ma1 Amorality
Ma2 Psychomotor Acceleration Ma2K Hypomania (Ma)
Ma3 Imperturbability Ma4 Ego Inflation
MaO Hypomania Objective MaS Hypomania subjective
MDS Marital Distress Mfm Masculinity-Femininity (Mf)
Mt College Maladjustment OBS Obsessiveness
OH Overcontrolled Hostility P Psychopathic Deviate (Pd)
Pa Paranoia (Pa) Pa1 Pa1- Persecutory Ideas
Pa2 Pa2- Poignancy Pa3 Pa3- Näıveté
PaO Paranoia Objective PaS Paranoia subjective
Pd1 Familial Discord Pd2 Authority Problems
Pd3 Social Imperturbability Pd4 Social Alienation
Pd4K Psychopathic Deviate (Pd) Pd5 Self-Alienation
PdO Psychopathic PdS Psychopathic subjective
PK Post-Traumatic Stress Disorder PS Post-Traumatic Stress Disorder
Pt1K Psychasthenia (Pt) R Repression
Re Social Responsibility Sc1 Social Alienation
Sc1K Schizophrenia (Sc) Sc2 Emotional Alienation
Sc3 Lack of Ego Mastery-Cognitive Sc4 Lack of Ego Mastery-Conative
Sc5 Lack of Ego Mastery-Defective Inhibition Sc6 Bizarre Sensory Experiences
Si Social Introversion (Si) Si1 Shyness / Self-Consciousness
Si2 Social Avoidance Si3 Alienation- Self and Others
SOD Social Discomfort TPA Type A
TRIN True Response Inconsistency TRT Negative Treatment Indicators
VRIN Variable Response Inconsistency WRK Work Interference

Table B.2: DATABASE II (PSYCH) extracted from MMPI-2 database: 1182 samples; 91 features
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B.3.2 DII-QUEST features definitions

DII-QUEST
Feature Definition Feature Definition
ID Coded key Gender 2 categories
Age yo SES Work/marital status (4 categories)
ISI 0-28 score ESS 0-24 score
H0 16-86 score STAI T 20-80 score
STAI S 20-80 score BDI 2 0-63 score
DBAS1 0-10 score DBAS2 0-10 score
DBAS3 0-10 score DBAS4 0-10 score
DBAS5 0-10 score DBAS6 0-10 score
DBAS7 0-10 score DBAS8 0-10 score
DBAS9 0-10 score DBAS10 0-10 score
DBAS11 0-10 score DBAS12 0-10 score
DBAS13 0-10 score DBAS14 0-10 score
DBAS15 0-10 score DBAS16 0-10 score
DBAS17 0-10 score DBAS18 0-10 score
DBAS19 0-10 score DBAS20 0-10 score
DBAS21 0-10 score DBAS22 0-10 score
DBAS23 0-10 score DBAS24 0-10 score
DBAS25 0-10 score DBAS26 0-10 score
DBAS27 0-10 score DBAS28 0-10 score
DBAS29 0-10 score DBAS30 0-10 score
DBASTotal 0-300 score TT outcome 2 categories
TT ent 8 categories, cumulative Dc ent 9 categories, cumulative
TT out 8 categories, cumulative

Table B.3: DATABASE II (QUEST) with 713 samples with DBAS scale scores and 519 with the
others features. 45 features. DBAS questions from 1 to 30, Treatment outcome positive or negative at
least six months after the assessment, Treatment taken during the assessment, Comorbid Diagnostic
(treated or not) at the time of the assessment, and Treatment given after the assessment
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B.3.3 DBAS questionnaire

Figure B.4: DBAS questionnaire with 30 questions scored
from 1 to 10 [147]
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B.3.4 DIII-PSG features definitions

DIII-PSG
Features Definition
ID Coded Key

Arousalnumber Total arousal number (Microarousal + Wakebouts)

AHI Apnea−Hypopnea Index

HRmoyN1 Average Heath Rate in N1

HRmoyN2 Average Heath Rate in N2

HRmoyN3 Average Heath Rate in N3

HRmoyREM Average Heath Rate in REM

HRmoywake Average Heath Rate during wake

LatREM Latency to REM

MicArPLMindex Mircorousal index secondary to Periodic limb movement

NREM Non−rapid eye movement sleep (N1,N2 and N3)

N1SL stage−1 latency

N1perc Percentage of N1

N2SL sleep−onset latency + stage−2 latency

N2perc Percentage of N2

N3tot Percentage of N3

PLMindex Periodic limb movement index

RDI Respiratory Disturbance Index, including apneas and hypopneas

RDIback Respiratory Disturbance Index in the supine position

RDInotback Respiratory Disturbance Index in non supine position

REM Rapid eye movement sleep

REMperc Percentage of REM

RESP Respiration (the rate of breathing)

RF Respiratory rate during sleep

RRREM Heart Rate variation in REM

RRN1 Heart Rate variation in N1

RRN2 Heart Rate variation in N2

SE Sleep Efficiency

SOL Sleep Onset Latency

SpO2 Blood oxygen saturation

Stade Changes Total number of stades changes during the sleep episode

SWS Slow−Wave Sleep

TIB Time In Bed

TPS Time Period of Sleep

TST Total Sleep Time

WASO Wake After Sleep Onset

Wakebouts Number of awakening (> 15 sec and < 60 s)

Wakebouts1mini Number of awakening ≥ 1 minute

Table B.4: DATABASE III (PSG) PSG features-578 samples, 38 features
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Justification for keeping the respiratory events and periodic limb movements

1. As we saw in section 2.4.2, an a-priori categorical approach to insomnia seems to create
more confusion than real diagnostic criteria. Moreover, although there is evidence that
a high number of sleep apneas or periodic movements can impact sleep fragmentation,
our clinical experience has taught us that there is not necessarily a correlation between
sleep perception and microsleep fragmentation. So as we have the origin of each mi-
croarousals, we wanted to see the influence of such events on sleep perception and the
treatment outcome.

2. We are considering the complaints of insomnia first, of course, provided that the patient
has no complaint neither of his legs nor his nocturnal breathing, and even more if he
is already treated for it.

3. This dimensional approach is highly compatible with machine learning algorithms,
which learn from data and can detect whether poorly or insufficiently treated respira-
tory events or periodic movements have a role to play in sleep perception or response
to treatment. It might even be said that knowing this in the context of resistant in-
somniacs would be desirable. The aim of our work is precisely to take into account as
much data as possible.

4. Furthermore, cluster studies like [19] lack objective data, meaning that it is possible
that the subjects included also suffer from respiratory disorders or PMJ, so we consider
that retaining this data coupled with ML tools could enable us to understand the links
between OSA, PMJ, and insomnia from a new angle.
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B.3.5 DIV-AG features definitions

DIV-AG
Features Definition
ID Coded key
Time in bed Time between “Lights Out” and “Got Up”
Assumed sleep total elapsed time between “Fell Asleep” and “Woke Up” times.
Actual sleep time total time spent in sleep
Actual sleep (%) expressed as a percentage of assumed sleep time.
Actual wake time total time spent in wake
Actual wake (%) Actual wake time as a percentage of assumed sleep time.
Sleep efficiency (%) Actual sleep time as a percentage of time in bed.
Sleep latency time between “Lights Out” and “Fell Asleep.”
Sleep bouts several adjacent sections categorized as sleep
Wake bouts several adjacent sections categorized as wake.
Mean sleep bout average length of each of sleep bouts.
Mean wake bout average length of each of the wake bouts.
Immobile mins total time categorized as Immobile
Immobile time (%) immobile time expressed as a percentage of assumed sleep time.
Mobile mins total time categorized as mobile
Mobile time (%) mobile time expressed as a percentage of assumed sleep time.
Immobile bouts several adjacent sections are categorized as immobile
Mean immobile bout average length of each of immobile bouts.
Immobile bouts <=1min number of immobile bouts less 1 minute
Immobile bouts <=1min (%) expressed as a percentage of the total number of immobile bouts.
Total activity score total of all activity counts during the assumed sleep period.
Mean activity /epoch total activity score divided by epochs in the assumed sleep period.
Fragmentation Index sum of “Mobile time (%)” and “Immobile bouts 1 min (%).

Table B.5: DATABASE IV (AG) extracted from actigraphic features: 350 samples, 27 features

B.3.6 SLEEP LOG features definitions

Sleep log features
Features Definition
Bedtime “Lights Out”
Get up time “Lights on” and definitive get up from bed

TSTs subjective total sleep time
Time spent outside the bed declarative time spent outside bed.
total wake time total time spent in wake estimated

SOLs subjective sleep onset latency
Wake bouts estimated subjective count of period categorised as wake.

Table B.6: Features extracted from sleep-log, seven features

B.4 Illustrations
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Figure B.5: 10−20 system

Figure B.6: Location of EOG and EMG

Figure B.7: Recommended EEG Sleep PSG montage
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Figure B.8: PSG illustration adapted from [pallanca]
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B.5 Supplement Material to find out more about Paradox-
ical Insomnia Concept

History of Paradoxical Insomnia across the differents international classifica-
tions

1. The first classification approach, the DCSAD [190] was mainly based on symptoms
with a detailed description of the disorders and their semiology. In this first classifica-
tion, insomnia is classified under the banner Disorders of Initiating and Maintaining
Sleep or DIMS. Nineteen sub-types of the current concept of chronic insomniac were
described dispatched in nine categories (see Table B.7 in the Appendix). Each category
was extensively described by detailed clinical descriptions, useful to the clinician but
lacking systematization. It should also be understood that it was at this time that the
ICD-9 was published under the aegis of the World Health Organization (WHO) to list
and categorise all known diseases. But, as the United States did not recognize it in the
’70s, it was revised in the ’80s, especially to be adapted to US constraints.

2. Thus, the second classification, ICSD, published in 1990 [198] began to build bridges
with the revised ICD-9 (ICD-9-CM), and some categories described in the DCSAD
were removed from the section “Insomnia”. So although the ICSD was published as a
continuation of the DCSAD, the authors used a multiaxial system for stating and coding
diagnoses in clinical reports and database purposes. The main difference is that sleep
disorders were classified according to presumed pathophysiological mechanisms and not
centred on the main symptoms. Insomnia disorder is then classified as extrinsic and
intrinsic dyssomnia (see Table B.7 in the Appendix). The sleep disorders associated
with medical or psychiatric conditions were transferred to a new third section and
replaced the categories 2a-c and 3d. Categories 8a and 8b describing atypical PSG
features were described in the Axis-B, which comprises the ICD-9-CM’s classification
of procedures. So the remaining Insomnia category is then divided into Dyssomnias-
Sleep Disorder Intrinsic or extrinsic (see Table B.7 in the Appendix). Intrinsic must
be understood as primarily sleep disorders that either originate or develop within the
body or arise from causes within the body. The list of intrinsic sleep disorders includes
multiple items, such as PsyI, nSSM, and idiopathic insomnia, primarily producing
insomnia. So this is the first time that insomnia is recognised as a disorder
in itself, implicitly naming the direct consequence of a disturbance of the sleep-wake
systems or primary. Two of the three categories of insomnia meeting this criterion were
already present under the same name in the DCSAD, except category 9b, corresponding
to Subjective DIMS Complaint without Objective Findings - which becomes nSSM. This
effort to classify disorders jointly continued with the third classification, the ICSD-
2 in 2005 [192], which extended the relationship to the new, 10th edition of the ICD
and the DSM-4-TR. This is the first classification with a chapter called Insomnia,
and in this movement of harmonisation of diagnoses, part of the disorders previously
described is referred either to the ICD-10 when it comes to somatic pathologies or the
DSM-IV-TR when it comes to mental pathologies. However, the classification remains
relatively close to that of the ICSD and ICSD-R (see Table B.7, with ten categories of
CID that are broadly similar to those of the ICSD-R. We find the notion of primary
insomnia with the same names as PsyI and idiopathic insomnia but a name change
for nSSM, which becomes ParI. The notion of secondary insomnia is mainly reflected
in five categories whose causal character is mentioned by “Due to”, either a mental
disorder, drug/substance, or medical condition, Non-organic not otherwise specified,
or organic not otherwise specified. Although this classification has the merit of pooling
all the categories with insomnia as a common and principal complaint, when reading
the diagnostic criteria carefully, one realises many fuzzy areas. For example, concerning
insomnia due to mental disorders, the fourth diagnostic criterion states that insomnia
must be more important than that typically associated with the mental disorders, which
leaves a wide latitude of interpretation both in terms of the diagnosis and in terms of
the treatment to be introduced depending on the psychiatric disorder. Moreover, it can
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be observed in this classification that there are still no mandatory validated objective
criteria for the disorders described in the Insomnia chapter.

3. This lack of objectivity in the diagnostic criteria of the different categories of insomnia
maintained until then has led to a drastic simplification of Insomnia description in the
fourth classification, the ICSD-3, in 2014. Indeed, of the ten categories, only one
remains, regrouping in an indistinct way all the categories described until now. This
last evolution is shown in Tables 2.1 and 2.2. This classification is harmonized with the
ICD-11 and DSM-5, which abandoned any attempt to categorize insomnia by presumed
pathology and left aside the primary/secondary and organic/nonorganic dichotomies.
The reason exposed was that there is too much overlap between primary and secondary
insomnia symptoms. In addition, many people with insomnia have multiple medical
and psychiatric comorbidities making causal attribution difficult. As a result, discrim-
ination between these subtypes has proven difficult given their current definitions and
available methods, and they have been removed. Then, only the subtype, CID, is now
available. The diagnostic criteria from ICSD-3 are included in Appendix. Six criteria
must be met from A to F, with criteria A and B related to the clinical symptoms, C
to the sleep condition, D the frequency (at least three times a week), E the duration
(at least three months), and F a mention on other sleep disorder that must be not the
better explanation for insomnia.

Figure B.9: Diagnostic criteria for CID in ICSD3 [183]
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DCSAD(1979) ICSD−R[1990-1997] ICSD−2(2005) ICSD−3TR[2014-2023]

A−DIMS

1−Dyssomnias
A−ISD

B−ESD

3−SDA (with M,N, or 0)

Insomnia
Primary and Secondary

Insomnia

1−Psychophysiological
1a−Persistent

2 + Psychiatric D
2a−Symptom & Personality D

2b−Affective D

2c−Other Functional Psychoses

3+ Use with Drug and OH
3a−Tolerance or Withdrawal

from CNS Depressants

3b−Sustained Use of CNS

Stimulants

3c−Sustained Use or Withdrawal

from Other Drugs

3d−Chronic Alcoholism

4+ Sleep−Induced RI
5+ Sleep−Induced
Myoclonus and RLS
6+ other Medical, Toxic,
Environmental Conditions
7+ Childhood−Onset DIMS
8+ Other DIMS Conditions
8a−Repeated REM Sleep

Interruptions

8b−Atypical PSG Features

8c−NOS

9+ No DIMS Abnormality
9a−Short Sleeper

9b−Subjective DIMS Complaint

without Objective Findings

9c−NOS

BLANK
1A1−Psychophysiologic I.

1B1−Inadequate sleep hygiene

3M3−Anxiety and Panic D

3M2−Mood D

3M1−Psychoses

1B10−Hypnotic−Dependent D

1B11−Stimulant−Dependent D

Use Axis B

3M5−Alcoholism

1A13 Extrinsec

Environmental Conditions

Idiopathic Insomnia

Use Axis B

Use Axis B

BLANK
4.1−Short Sleeper

1A2−Sleep State Misperception

BLANK
Psychophysiological I.

Insomnia due to Mental D

Inadequate sleep hygiene

I. due to drug or substance

I. due to medical condition

I. not due to a substance or

known physiological

condition, unspecified

Physiological (organic)

insomnia unspecified

Idiopathic Insomnia

Behavioral I. of Childhood

BLANK

Short Sleeper

Paradoxical I.

Chronic I.D
Short−Term I.D

Other I.D
Excessive TIB
Short Sleeper

Table B.7: DIMS: Disorders of Initiating and Maintaining Sleep,+: Associated with, D: Disorder,
U: Usage, OH: Alcohol, CNS: Nervous System, I.: Insomnia, Central, RI: Respiratory Impairment,
RLS: Restless Legs Syndrome, PSG: Polysomnographic, NOT: Not Otherwise Specified, ISD: Intrinsic
Sleep Disorders, ESD: Extrinsic Sleep Disorders, SDA: Sleep Disorders Associated, M: Associated
with Mental Disorders, N: Associated with Neurologic Disorder, O: associated with Other Medical
Disorders,
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Features Origin Findings N Au Age(σ) T W%

PSG features

N3 stages Lower 63.6 vs 92.0 min (Psycho−I) 17 [22] ±20 − ?

SOL Lower 20 vs 45 min (Psycho−I) 17 [22] ±20 − ?

Personnality/cognitive features

MMPI scales > 65 score globaly higher than Psycho−I 17 [22] ±20 − ?

Ma(69.6),Pt(67),Sc(68.6)

Treatment features

Progressive relaxation No efficient 17 [22] ± 20 − ?

Training

Table B.8: Formula A explanation (compared to psychopgysiological Insomnia)− N= number of ParI
subjects, Au = Authors,T = Presence of treatment (+ =yes,−=No),W% = percentage of women

Features Origin Findings N Au Age(σ) T W%

PSG features

TST Higher 420 vs 379.0 min 8 [195] 32(10) − 75

N2 stages Higher 61.9 vs 53.6 % 8 [195] 32(10) − 75

Personality/cognitive features

AVT omissions score globally higher 3h 8 [195] 32(10) − 75

after awakenings

Table B.9: Formula B explanation (compared to objective DIMS)− N= number of ParI subjects, Au
= Authors,T = Presence of treatment (+ =yes,−=No),W% = percentage of women,AVT=Auditory
Vigilance Task

Features Origin Findings N Au Age(σ) T W%

PSG features

NA 8 [109] 32(12) − 50

Table B.10: Formula C explanation (compared to objective DIMS)− N= number of ParI subjects,
Au = Authors,T = Presence of treatment (+ =yes,−=No),W% = percentage of women,

Features Origin Findings N Au Age(σ) T W%

PSG features

TST Higher 373 vs 339(1) vs 313(2) min 8 [85] 45(24−69) − 66

Actigraph

TST Lower 337 vs 364(1) vs 341(2) min 8 [195] 45(24−69) − 66

Table B.11: Formula D explanation (compared to objective (1)=Psychophysiological Insom-
nia,(2)=Psychiatric Insomnia)− N= number of ParI subjects, Au = Authors,T = Presence of treat-
ment (+ =yes,−=No),W% = percentage of women,(1)=Psychophysiological I,(2)=Psychiatric Insom-
nia

194 Appendix B Olivier Pallanca



Features Origin Findings N Au Age(σ) T W%

PSG features

TST Higher 456 vs 418(1) vs 452 (2) min 7 [180] 35(6) − 45

Wake N Lower 3.5 vs 7.2 (1) vs 3.5 (2) 7 [180] 35(6) − 45

N2 stages Lower 55 vs 59(1) vs 52 (2) % 7 [180] 35(6) − 45

N3 stages Higher 12 vs 7(1) vs 15 (2) % 7 [180] 35(6) − 45

cognitive features

MMPI scales > 65 score higher than (1) and (2) 7 [180] 35(6) − 45

Pd(70) and Hy(65)

Table B.12: Formula E explanation (compared to objective (1)=Psychophysiological Insomnia,
(2)=Psychiatric Insomnia)− N= number of ParI subjects, Au = Authors, T = Presence of treatment
(+ = yes, − = no), W% = percentage of women, (1) = other Insomnia, (2) = Control

Features Origin Findings N Au Age(σ) T W%

PSG features

TST Higher 366 vs 288(1) min 9 [138] 35(6) − 65

SOL Lower 9.6 vs 25.3(1) min 7 [138] 35(6) − 65

Table B.13: Formula F explanation
(compared to objective (1)=Psychophysiological Insomnia,− N= number of ParI subjects, Au =

Authors,T = Presence of treatment (+ =yes,-=No),W% = percentage of women)

Features Origin Findings N Au Age(σ) T W%

PSG features

TST Higher 451 vs 433(1) min 9 [21] 31.7(8) − 40

Personnality/cognitive features

MMPI scales > 65 score higher than (1) 9 [21] 31.7(8) − 40

Table B.14: Formula G explanation (compared to (1)= Controls)− N= number of ParI subjects,
Au = Authors,T = Presence of treatment (+ =yes,−=No),W% = percentage of women

Features Origin Findings N Au Age(σ) T W%

PSG features

TST equal 414 vs 392(1)vs 303(2) min 9 [55] 20(18−25) − 30

SLN2 lower 15.6 vs 61.6(1)vs 40(2) min 9 [55] 20(18−25) − 30

awake N equal 2.2 vs 1.7 (1)vs 2(2) 9 [55] 20(18−25) − 30

Stage 1/2 lower/equal 6/60 9 [55] 20(18−25) − 30

vs 12/60 (1) vs 10/65(2) %

Stage N3 Higher 62 vs 31 (1)vs 40 (2) 9 [55] 20(18−25) − 30

cognitive features

EPI NS 9 [55] 20(18−25) − 30

Table B.15: Formula H explanation(compared to objective (1)=Psychophysiologic
Insomnia,(2)=Control,− N= number of ParI subjects, Au = Authors,T = Presence of treat-
ment (+ =yes,−=No),W% = percentage of women, EPI = Eysenck Personality Inventory
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Features Origin Findings N Au Age(σ) T W%

PSG features

TPS (min) 463 vs 442(1)vs 439(2) vs 453(3) 22 [58] 57(10) − 55

TST (min) 392 vs 330(1)vs 342(2) vs 399(3) 22 [58] 57(10) − 55

Questionnaires features

STAI trait NS 22 [58] 57(10) − 55

BDI NS 22 [58] 57(10) − 55

DBAS NS 22 [58] 57(10) − 55

Table B.16: Formula I explanation compared to objective (1)=Psychophysiologic Insomnia,(2)=
Control with SSM, (3) = Control without SSM,− N= number of ParI subjects, Au = Authors,T =
Presence of treatment (+ =yes,−=No),W% = percentage of women, BDI=Beck Depression Incentory,
STAI=State−Trait Anxiety Inventory, DBAS=Dysfunctional Beliefs and Attitudes About Sleep

Features Origin Findings N Au Age(σ) T W%

PSG features

TPS (min) 463 vs 442(1)vs 439(2) vs 453(3) 22 [58] 57(10) − 55

TST (min) 392 vs 330(1)vs 342(2) vs 399(3) 22 [58] 57(10) − 55

Higher 427 vs 303 (1)vs 395 (4) 12 [108] 56(12) − 66

REM (min) Higher 112 vs 63(1)vs 84(4) 12 [108] 56(12) − 66

SOL(min) equal 12 vs 19(1)vs 16(4) 12 [108] 56(12) − 66

Questionnaires features

STAI trait NS 22 [58] 57(10) − 55

BDI NS 22 [58] 57(10) − 55

DBAS NS 22 [58] 57(10) − 55

EEGq features in NREM

Mean and DS of RSP

Delta Low/(4) 67 vs 70(1) vs 74(4) 12 [108] 56(12) − 66

Theta equal 16 vs 15(1)vs 14(4) 12 [108] 56(12) − 66

Alpha equal 9 vs 8(1)vs 7(4) 12 [108] 56(12) − 66

Sigma Higher 5.6 vs 4.5(1)vs 3.4 (4) 12 [108] 56(12) − 66

Beta Higher 2.4 vs 1.9(1)vs 1.7(4) 12 [108] 56(12) − 66

Gamma equal 0.4 vs 0.4(1)vs 0.4(4) 12 [108] 56(12) − 66

Table B.17: Formula J explanation compared to objective (1)=Objective Insomnia,(2)= Control
with SSM,(3)= Control Without SSM, (4) = Control Global− N= number of ParI subjects, Au = Au-
thors,T = Presence of treatment (+ =yes,−=No),W% = percentage of women, BDI=Beck Depression
Inventory, STAI=State−Trait Anxiety Inventory, DBAS=Dysfunctional Beliefs and Attitudes About
Sleep,RSP:Relative Spectral power,Relative power was computed as the power within a frequency
band (in micV2 /Hz) divided by the power across all frequencies (0.5−60 Hz) (also in micV2 /Hz) and
is therefore dimensionless. In this table the values are multiplied by 100, indicating the percentage of
power in the frequency band of interest
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Features Origin Findings N Au Age(σ) T W%

PSG features

TPS (min) 415 vs 424(1) 17 [152] 41(7) − 80

TST (min) 356 vs 376 (1) 10 [117] 41(7) − 80

N3 (min) Lower 60 vs 87(1) 10 [117] 41(7) − 80

Awakenings equal 19.75 vs 19.70 (1) 10 [117] 41(7) − 80

Table B.18: Formula S explanation compared to (1) Healthy Subject− N= number of ParI subjects,
Au = Authors,T = Presence of treatment (+ =yes,−=No),W% = percentage of women

Features Origin Findings N Au Age(σ) T W%

PSG features

TST (min) 410 vs 395 (1) vs 415 (2) 26 [94] 41(10) − 55

N3 dur (min) 41 vs 29 (1) vs 31 (2) 26 [94] 41(10) − 55

Table B.19: Formula Q explanation compared to Formula Q explanation
compared to objective (1)= Psychophysiological Insomnia (2)= Good Sleepers, N= number of ParI
subjects, Au = Authors,T = Presence of treatment (+ =yes,−=No),W% = percentage of women

Features Origin Findings N Au Age(σ) T W%

PSG features

TPS (min) 415 vs 424(1) 10 [117] 41(7) − 80

TST (min) 356 vs 376 (1) 10 [117] 41(7) − 80

N3 (min) Lower 60 vs 87(1) 10 [117] 41(7) − 80

Awakenings equal 19.75 vs 19.70 (1) 10 [117] 41(7) − 80

Table B.20: Formula S explanation compared to (1) Healthy Subject− N= number of ParI subjects,
Au = Authors,T = Presence of treatment (+ =yes,−=No),W% = percentage of women
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Appendix C

List of publications

C.1 Refeered Journal Paper

∗ Agrigoroaie Roxana, Pallanca Olivier, Tapus Adriana, Impact of Insomnia and User
Profile on Cognitive Performance, IEEE Transactions on Affective Computing Under
Review

∗ Pallanca Olivier, Read Jesse, General principles and definitions in artificial intelli-
gence,Archives des maladies du coeur et des vaisseaux Pratique Vol 2021 - N° 294 P.
3-10 - janvier 2021 Doi : 10.1016/j.amcp.2020.11.002

C.2 Refereed Workshop and Symposia Paper

∗ Pallanca Olivier, Khalife Sammy and Read Jesse, ”Detection of sleep spindles in NREM
2 sleep stages: Preliminary study and benchmarking of algorithms,” 2018 IEEE Inter-
national Conference on Bioinformatics and Biomedicine (BIBM),Madrid, 2018, pp.
2652-2655, doi: 10.1109/BIBM.2018.8621305.

∗ Agrigoroaie Roxana; Pallanca Olivier; Tapus Adriana, Impact of insomnia and morningness-
eveningness type on cognitive performance, Journee Fedev 2018

C.3 Refereed Poster Papers

∗ Pallanca Olivier, Boniol Paul, Read Jesse, Characterization of sleep states with EEG
pattern detection and impact of signal quality,DS3-2018
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Titre : Une meilleure compréhension de l’insomnie paradoxale (IP) : une approche basée sur la connaissance
utilisant des outils d’apprentissage automatique (AA)

Mots clés : médecine du sommeil, insomnie paradoxale, modélisation prédictive, explicabilité,
électroencéphalogramme (EEG)

Résumé : Cette thèse à pour but la caractérisation de
l’insomnie et la prédiction de la réponse thérapeutique
afin de mieux comprendre les rechutes fréquentes de
ce troublequi affecte 10-20% de la population générale.
En particulier, l’IP, qui est une perception erronée de
l’état de sommeil. L’IP est fréquente mais est encore
mal comprise et difficile à gérer. Cette thèse vise à ap-
porter un éclairage nouveau sur ce sujet grâce à des
outils d’AA. Nous avons créé une base de données
décrivant 423 patients diagnostiqués avec une insom-
nie chronique (IC), sur lesquels nous avons effectué des
examens cliniques, psychométriques, actimétriques et
polysomnographiques (tels que l’EEG) au début d’une
étude prospective et un suivi d’au moins six mois avec
une évaluation de la réponse au traitement standard;
ce qui donne autour de 200 caractéristiques par pa-
tient. Nous avons utilisé des outils d’AA pour identi-
fier des groupes particuliers Nous avons testé les hy-
pothèses existantes selon lesquelles les profils d’IP
pouvaient être identifiés par l’analyse EEG, afin de
déterminer leur fiabilité. L’application des outils d’AA
sur les tracés EEG n’étaient pas suffisamment fiables
pour prédire la perception erronée de l’état de sommeil.
Nous avons trouvé des sous-groupes de patients avec

présentant une somnolence subjective. Nous avons re-
produit et confirmé sur notre ensemble de données la
faible concordance entre 20 formules publiées dans la
littérature pour définir l’IP (qui consiste essentiellement
à préciser le seuil de discordance considéré comme pa-
thologique entre la perception subjective et objective du
sommeil). Grâce à des outils d’AA, nous avons montré
que seules deux caractéristiques intervenaient dans la
prédiction de l’IP par la plupart des formules. Cette
constatation contribue à l’harmonisation de la définition
de l’IP; Nous avons également montré que les patients
souffrant d’IP présentaient une augmentation significa-
tive des longues périodes d’éveil au cours du sommeil,
ce qui explique dans une certaine mesure le paradoxe
de l’IP. Nous avons proposé une nouvelle définition de
l’IP, en étendant la période d’analyse du sommeil d’une à
sept nuits afin d’améliorer la fiabilité de la perception du
sommeil. Au-delà de l’IP, nous sommes les premiers à
utiliser l’AA pour prédire avec précision l’amélioration de
l’IC après traitement à six mois (évaluée selon l’échelle
ISI [Index Severity of Insomnia]), et nous avons montré
que notre nouvelle définition de l’IP en était le principal
facteur prédictif.

Title : An improved understanding of ParI: A knowledge-based approach using Machine Learning (ML) tools

Keywords : sleep medicine, paradoxical insomnia, predictive modeling, explainability, electroencephalogram
(EEG)

Abstract : This thesis sets out to improve the charac-
terization of insomnia, in order to provide a better un-
derstanding of treatment outcome and avoid frequent re-
lapses in this disorder, which affects 10-20% of the ge-
neral population. In particular, ParI, a decreased sleep-
state misperception (the patient is unable to accurately
estimate their objective sleep length and quality). PI is
common in clinical practice, yet is still not well unders-
tood and difficult to manage. This thesis aims to shed
new light on this subject. We curated a new database
describing 423 patients diagnosed with chronic insom-
nia, on whom we performed clinical, psychometric, ac-
timetric, and polysomnographic analysis (such as EEG)
examinations at the beginning of the prospective study
and a follow-up of at least six months with response to
standard treatment; resulting in 200 features per patient.
We used ML tools to identify distinct groups among chro-
nic insomniacs, particularly identifying characteristics of
those with ParI and the influence on treatment outcome.
We tested existing hypotheses that ParI profiles could be

identified via EEG analysis, in order to determine their
reliability. We determined that EEG profiles were insuffi-
ciently reliable to be used as predictors of PArI. Howe-
ver, we did find subgroups of insomniac patients with
subjective sleepiness (as per the Epworth sleepiness-
scale questionnaire). We confirmed on our dataset the
poor agreement among 20 published formulas for defi-
ning ParI.. With ML tools, we showed that only two fea-
tures were involved in the prediction of PI by most of the
formulas. This finding leads us to harmonize the defini-
tion. We also found that the PI patients had a significant
increase in long wake bouts during the sleep episode,
which explains to some extent, the paradox of ParI. We
propose a new definition of PI, extending the sleep analy-
sis period from one to seven nights to improve the reliabi-
lity of sleep perception. Beyond PI, we are the first to use
ML to predict the improvement of insomnia accurately (all
types) after treatment at six months (evaluated with the
Insomnia Severity Index), and we showed our new defi-
nition of ParI was, in fact, the main predictive factor.
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