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Introduction (condensée, en
Frangais)

Dans ce travail, nous considérons des problémes de mots aléatoires et leurs applications. Un mot
aléatoire de longueur n est une suite finie de variables aléatoires i.i.d. a valeurs dans un ensemble
fini appelé alphabet (par exemple, une suite de lancers de picces FPPPFPPF est un mot aléatoire
de longueur 8). Le point de départ est le probléme suivant: étant donné deux mots aléatoires,
"qu'ont-ils en commun"? Le probléme d’analyser la ressemblance entre deux mots aléatoires a
émergé indépendamment dans de nombreux domaines, notamment l'informatique, la biologie, la
linguistique...

Malheureusement, peu de choses ont été démontrées sur ce probléme fondamental de la
longueur maximale d’une sous-séquence commune (notée LCS): la distribution limite, et méme
le comportement asymptotique de la variance, ne sont pas connus. Cependant, en modifiant
légérement le probléme, il devient plus simple de trouver la distribution limite: le premier chapitre
de notre travail est dédié a la limite en distribution de la longueur maximale des sous-séquences
communes et croissantes. Cela signifie que ’on considére un alphabet ordonné, disons 1,...,m, et
les sous-séquences qui sont simplement faites d’un bloc de 1’s, suivi d’un bloc de 2’s, ... et ainsi
de suite (la sous-séquence est croissante, mais pas strictement). Jusqu’a présent, seul le cas ou les
deux mots aléatoires ont leurs lettres suivant la méme loi uniforme sur 1,...,m avait été traité
[12], et il y avait une conjecture dans le cas d’une distribution commune aux deux mots. Nous nous
placons dans le cas le plus général: les deux mots ont deux distributions éventuellement différentes.
Dans ce cadre, nous sommes capable de donner la distribution limite, ainsi que le comportement
asymptotique de I’espérance et de la variance.

Dans le chapitre deux, nous nous intéressons au probléme de la variance de LCS. Déterminer si
la variance est d’ordre n est un probléme ouvert important (notamment car cela pourrait permettre
de donner la distribution asymptotique de LCS). En introduisant des outils plus généraux, des
résultats partiels pour la variance de LCS sont obtenus. Si X1, ..., X,, sont des variables aléatoires
iid. et S est une fonction telle que S(Xi,...,X,) a une variance finie, suivant [8], posons pour
ke{l,...,n}

1 ) ) ) .
By i=E— D GGy — G

TG,

ot G, est le groupe symétrique d’ordre n et S%»-i -1 désigne S(X7, . .., X,,) mais avec X;,,..., X
remplacés par des copies indépendantes. Il a été montré que Var S = B1+- - -+B,, et que (Bg)1<k<n
est décroissante, nous prouvons que (By)i<k<n est absolument monotone. Pour des fonctions de
variables aléatoires indépendantes, diverses bornes supérieures et inférieures sont étudiées dans
différents cadres. Elles sont ensuite appliquées au cas Bernoulli, Gaussien, indéfiniment divisible
et a des variables aléatoires & valeurs dans un espace de Banach. Les méthodes vont du jackknife
aux semi-groupes. De nouvelles applications sont présentées, permettant de retrouver et améliorer,
en particulier, tous les encadrements connus de la variance de la longueur des plus longs sous-mots
communs de deux mots aléatoires. Nous trouvons une nouvelle borne inférieure de la variance,
d’ordre n, dans le cas d’une distribution des lettres en Bernoulli de paramétre p, avec p "petit"

Tk—1
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mais améliorant ce qui avait déja été fait dans ce cas. Nous donnons aussi des conditions perme-
ttant de retrouver que la variance est d’ordre n dans le cas uniforme, 'une est uniquement testée
par des simulations numériques et donne un argument de plus que la variance est bien d’ordre
n, Pautre est un résultat apparaissant déja dans [28] (nous prouvons qu’il implique la linéarité
asymptotique de la variance).

Dans le troisiéme et dernier chapitre, nous considérons la longueur maximale d’une sous-
séquence croissante (notée LIS) d’un seul mot aléatoire, et le lien étonnant avec les statistiques
quantiques. En effet, estimer le spectre d’une matrice de densité d’un systéme quantique & partir
de n copies de ce systéme équivaut & estimer la distribution des lettres d’un mot de longueur n
étant donné la forme de son tableau obtenu par l’algorithme Robinson—Schensted-Knuth (RSK). Il
existe un estimateur simple du spectre: ’estimateur de Young empirique, qui renvoie simplement,
si A1,...,Aq est la forme du diagramme de Young, A1/n,...,Aq/n. Cet estimateur (Empirical
Young Diagram, EYD) a un risque quadratique d’ordre d/n, mais existe-t-il un estimateur de
risque quadratique d’ordre inférieur? C’est & cette question que nous apportons quelques éléments
de réponse.

1 Les plus longues sous-séquences communes

En informatique, trouver la plus sous-séquence commune correspond & trouver le nombre minimal
d’insertions et de suppressions pour passer d’'un mot a 'autre. C’est pourquoi le programme Unix
calcule la longueur maximale des sous-séquences communes. En biologie, un ADN est représenté
par un mot aléatoire avec des lettres dans 'ensemble { A, T\, G, C'}. D’aprés la théorie de évolution,
ce mot évolue par 'insertion de nouvelles lettres, ainsi un mot d’un ancétre d’une espéce est une
sous-séquence (un sous-mot) du mot correspondant & 'espéce. Quand deux espéces ont sous-
séquence commune conséquente, on peut en déduire que cela n’est pas le fruit du hasard, et est di
au fait qu’elles ont un ancétre commun (voir par exemple [74]). Cependant, comme [61] et [3] le
notent, on doit faire attention car deux mots aléatoires ont en commun 65% de leur longueur en
moyenne, ce qui peut étre per¢u comme contre-intuitif. Le calcul de la longueur moyenne de plus
longues sous-séquences, nécessaire pour faire des statistiques en biologie, est une motivation pour
létude des plus longues sous-séquences initiée par Chvatal et Sankoff [15] en 1975.

Soit A un ensemble fini, appelé alphabet, et appelons "mots" les séquences & valeurs dans
A. Par exemple, pour modéliser les brins d’ADN, on prend A = {A,T,G,C}. Pour (z1,...,xs),
(y1,---,y:) deux séquences dans A, on note LCS(x1 ... xs;y1-..y:) le plus grand entier k tel qu’il
existe 1 < i1 < --- < <5, 1 < gy < -0 < g <t ovérifiant a;, = bj,,..., a4, = bj,, ou 0 il
n’existe pas de tel entier.

Par exemple, LCS(ACCGAT; GACT) = 3 car on peut prendre i1 = 1,iy = 2,i5 = 6 et
Jj1 = 2,72 = 3,j3 =4, ce qui extrait le mot ACT des deux mots, mais on ne peut extraire un mot
plus long. Le mot ACT est une plus longue sous-séquence, pas la seule, par exemple GAT 1est
aussi. Graphiquement, cela consiste & relier un maximum de lettres identiques sans croisements
(voir figure 1).

G A C T

Figure 1: ACT est une sous-séquence de longueur maximale

On peut aussi voir cela comme un probléme de percolation, en mettant le premier mot suivant
I’axe des abscisses, le second suivant 1’axe des ordonnées, le but est de trouver le chemin strictement
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croissant (chaque coordonnée augmente strictement) ayant un maximal de points (représentant
Pégalité des lettres). Ici, le maximum est trois (voir figure 2).

T /t
//
C o
A ®
G ®
A Cc C G A T

Figure 2: ACT comme un chemin strictement croissant avec un nombre maximal de points.

Cela peut étre réduit & un probléme de percolation sur les arétes. Considérons le quadrillage
plan avec des arétes reliant (z,y) & (z 4+ 1,y + 1), et définissons les poids de ces arétes comme 1 si
les lettres correspondantes sont égales et zéro sinon, avec les autres arétes (horizontales, verticales)
de poids nul. On cherche un chemin de (0,0) a (s,t) de poids maximal, suivant le graphe orienté:
c’est un probléme de percolation de dernier passage (voir figure 3).

» » » » » >
> > » > » >

Q
Y
Y
Y
Y

BN
A
A
A
A
A
A

G

\{
\{
\{
\{
\{
\4

A C c G A T

Figure 3: ACT comme un chemin de poids maximal.

On peut maintenant considérer la ressemblance entre deux mots aléatoires. Soit (Xj)k>1,

(Yi)r>1 deux suites de variables aléatoires indépendantes identiquement distribuées, a valeurs
dans un alphabet fini A. Nous nous intéressons a la variable aléatoire LCS(X1 ... X,,;Y7...Y,),
simplement notée LC,,.

Par exemple, si A = {0, 1} et les X}’s sont des Bernoulli de paramétre 1/2, alors LC est aussi
Bernoulli de parameétre 1/2, mais P(LCy =0) =1/4, P(LCy =1) =1/2 et P(LCy; =2)=1/4. 1
est difficile de calculer la distribution de LC), explicitement, donc nous nous intéressons surtout a
sa distribution asymptotique, en particulier pour I’espérance et la variance.

Commengons par une propriété de LC,,:

Proposition 1.1 (Chvatal et Sankoff, 1975, [15]). Pour tous m,n > 1,

ELCpyin > ELC,, + ELC,.

Proof. On coupe en deux comme sur la figure 4.
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X1 /. mel Xm Xerl N XTT.L+TL
Yl Ym— 1 Ym )/m—i- 1 Ym+n

Figure 4: Couper deux mots de longueur m + n

On a

LOS(X1 ... Xpan: Yi . Yipan) > LOS(X1 ... X3 Vi ... Yo)
+ LCS(Xm+1 e X’I’L-‘r’l’na Ym+1 . Ym+n)

et comme LCS(X,t1 - Xntn; Yma1 - - - Yinan) a la méme distribution que LC,, le résultat suit.
O

On dit que la suite (ELC),),>1 est superadditive. Le corollaire suivant est une conséquence
immeédiate du lemme de Fekete (1923), et de I'inégalité LC,, < n:

Corollaire 1.2. La suite (ELC,,/n), ., converge vers sup, ELC,/n < 1.

Habituellement nous notons v la limite de ELC,, /n, ou 7% dans le cas d’un alphabet avec k
lettres uniformément distribué. Méme dans les cas les plus simples, il est difficile de déterminer ~:
par exemple, il n’y a pas de valeur exacte connue de v,. Le meilleur encadrement est 0.788071 <
Y2 < 0.826280 [52], ce qui montre l'inexactitude d’une ancienne conjecture [66], 72 = 2/(1 +
\/5) ~ (0.828427. Plus récemment, Tiskin [68] a montré que v, est algébrique, mais sans permettre
d’estimations numériques.

De nombreuses simulations numeériques, par exemple [3], semblent montrer que pour un al-
phabet & deux lettres, v est minimal lorsque la distribution est uniforme. Cela est intuitif: la
probabilité que deux lettres coincident est minimale quand p = 1/2, et nous nous attendons a
avoir l'espérance de LC,, minimale quand il y a le moins (en moyenne) de paires de lettres iden-
tiques. Dans [3], les auteurs tentent de prouver cela, mais leur preuve n’est pas convaincante, et il
semble que ce fait ne soit pas prouvé a ce jour.

Nous nous intéressons & présent & comment LC), est proche de son espérance, avec des tech-
niques de concentration classiques. On évalue ensuite la variance de LC,, a l'aide de l'inégalité
d’Efron-Stein, ce qui est le point de départ du chapitre deux de notre travail.

1.1 Inégalités de concentration

On rappelle le résultat suivant (un léger raffinement par rapport a ce que donne 'application de
I'inégalité d’Hoeffding):

Théoréme 1.1 (McDiarmid, 1989 [53|). Pour tout t > 0,

+2

P(LC, —ELC, >t) <e n.

En appliquant la méme méthode a la variable —LC,,, on a:
Corollaire 1.3. Pour tout € > 0,

P (‘ LC, ELC,

n n

> e) < 92e7 €,
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Comme ELC,, /n converge vers v € R, ce corollaire entraine la convergence de LC,, /n vers 7.
Plus précisément,

Proposition 1.4. Presque sdrement, |LC,, — ELC,| = O (\/nlog n) .

1.2 La variance

Nous avons vu que l'ordre asymptotique de l’espérance est plutot bien compris. L’ordre de la
variance 1’est beaucoup moins.

Nous commengons par une borne supérieure. Le corollaire 1.3 implique Var LC,, < 8n. Pour
un résultat légérement meilleur, nous utilisons le résultat suivant, une genéralisation du résultat
original d’Efron-Stein [20] aux fonctions non symmétriques.

Théoréme 1.2 (Steele, 1986 [65]). Soient Z1,...,Zn, W1, ..., W, des variables aléatoires i.i.d. et
f:R™ — R Borel-mesurable. Soit F' = f(Z1,...,7Zy,) et, pour 1 <i <mn,

Fi=f(Z,....Zi 0, Wi, Zigr, .., Zn).

Alors
VarF' <

N |

S E((F - F)?).

En appliquant ce résultat & LC),:
Corollaire 1.5 (Steele, 1986 [65]). Soit, pour tout a € A, p, = P(X1 = a) (les X; et'Y; sont i.i.d.

a valeurs dans A). Alors
Var LC,, <n <1 — Zpi) .

acA

Nous revisitons et améliorons cette borne supérieure dans le chapitre 2. Le plus délicat est de
donner une borne inférieure non triviale. Il semble que ni la divergence vers plus 'infini ni méme
la croissance de la variance n’aient été prouvés dans le cas uniforme binaire. Cependant, pour
certaines distributions de lettres (ou une lettre a une trés forte probabilité d’apparaitre, les autres
trés petites), [48] (dans le cas binaire) et [36] ont prouvés que la variance avait une borne inférieure
d’ordre n, et donc était d’ordre n. Waterman [74] a fait la conjecture que la variance était toujours
d’ordre n, et nous ne connaissons aucun contre-exemple & cette conjecture. Dans tous les cas, il
est difficile d’évaluer 'ordre de la variance numériquement, car la variance croit lentement pour
les petites valeurs de n, ce qui semble avoir conduit Chvatal et Sankoff [15] & la conjecture d’une
variance d’ordre n?/3. Mais des simulations plus récentes (Juillet 2016, [50]) sont en accord avec
Waterman. Ces simulations par Monte-Carlo avec 10000 tirages, pour n allant entre 50000 & plus
de 1000000, donnent I'exposant « tel que Cn® approche au mieux la variance. L’exposant est trés
proche de 1 et ce pour les trois distributions de lettres testées ('exposant trouvé est d’autant plus
proche de 1 que la distribution a une entropie faible, mais dans le cas binaire uniforme, I’exposant
reste plutdt proche de 1: a = 0.9086).

Le probléme de trouver 'ordre de la variance est d’autant plus intéressant qu’il a été prouvé
[28] que si la variance était d’ordre n, alors LC,,, renormalisé, convergeait en distribution vers une
Gaussienne. Plus précisément:

Théoréme 1.3 (Houdré et Islak, 2022). Supposons qu’il existe C' > 0 tel que Var LC,, > Cn, alors

pour tout n € (0,1/10),
LC, —ELC 1
d bt — =0 =
W < v/ Var LC,, g) (n")

ot G est une Gaussienne centrée réduite et dyy est la distance de Wasserstein.
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Comme mentionné dans [28], une borne inférieure plus faible suffit: Supposons qu'il existe
C > 0et 8> 9/10 tels que Var LC,, > Cn?, alors pour tout € € (0,3 — 9/10),

LC, —ELC, 1
dw | —/————,6 | =0 — ).
v/ Var LC,, ne
Remarquons que la convergence vers la distribution Gaussienne pour dyy implique la conver-

gence en probabilité et pour la distance de Kolmogorov.

Nous avons vu les premiéres propriétés de LC,,. On s’intéresse maintenant & une variante, la
longueur des plus longues sous-suites communes et croissantes, qui est ’objet du premier chapitre
de notre travail.

2 Les plus longues sous-séquences communes et croissantes

Dans cette section, notons A, := {1,...,m}, m > 2. Pour (z1,...,2s), (y1,...,y:) deux séquences
prenant des valeurs dans 4, nous désignons par LCIS(z1...xs;y1...y:) la longueur maximale
d’une sous-séquence croissante (donc une sous-séquence avec un bloc de 1, suivi d’un bloc de 2,...
et ainsi de suite) des deux mots. Plus formellement, nous définissons LOIS(zy ... 2591 .- Yt)
comme le plus grand entier k tel qu'il existe 1 < i1 < -+ < i <net 1< j; <+ < jp <ntels
que

o Vse{l,....k}, z;, =y,

® Tjy lezgg‘r’bk etyjl Sy]zggyjkv

et 8’il n’existe pas d’entier vérifiant ces deux conditions, nous définissons LCIS(z1 ... Zs;y1 ... Y1) =
0.

4 1 3 3 3 1 2 2

[ ] [ ] [ ] [ ]

M 2
[ ]

Figure 5: (1,1,2,2) est une sous-séquence commune croissante de longueur maximale.

[ JISN
o— @
o
(Y%

Comme dans le cas du LCS, nous considérons deux suites indépendantes de variables aléatoires
iid. (Xg)e>1, (Yi)r>1, de plus les Yy, peuvent avoir une distribution différente de celle des Xj.
Soient pyX,...,px, px >0,i=1,...,met p{,....,pY, p¥ > 0,i=1,...,m leurs distributions
respectives, et soit LCT, = LCIS(X; ... X,;Y1,...Y,). Ce modéle a été principalement étudié en
informatique (voir par exemple [13], [60]), les principales motivations étant la généralisation des
plus longues sous-séquences croissantes d’un seul mot (voir la section suivante) et les applications
potentielles a la bio-informatique (par exemple [17]). La convergence en distribution de LCIT,
(renormalisé) a été étudiée d’abord dans le cas binaire [31] et ensuite dans le cas uniforme a m
lettres [12]. Notons qu'il est facile d’adapter a cette variante les inégalités de concentration et les
bornes supérieures de variance vues dans la partie précédente.

Lorsque les lettres des deux mots suivent la méme distribution uniforme, la distribution asymp-
totique a été trouvée (ci-dessous, A est ’abréviation de minimum), voir le Théoréme 1.1.1 et sa
généralisation conjecturée le Théoréme 1.1.2. Le premier chapitre de notre travail obtient la dis-
tribution limite de LCI,, sans supposer que les Xy et Yi (k= 1,2,...) ont la méme distribution,
et fournit également une preuve alternative du Théoréme 1.1.1 ainsi qu’une preuve du Théoréme
conjecturé 1.1.2.
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3 Les plus longues sous-séquences croissantes

On définit les sous-séquences croissantes les plus longues comme précédemment, sauf qu’il n’y a
plus qu'un seul mot: Pour z1,...,25 € A, notons LIS(z1...xs) le plus grand entier k tel qu’il
existe 1 <ip < -+ < i < s tel que x;, <z, <--- <z, et siaucun entier ne satisfait ces deux
conditions, nous définissons LIS(z1...2z5) = 0. Le LIS a d’abord été étudié lorsque les lettres
sont tirées d’une permutation aléatoire. Soit 7 une permutation aléatoire (selon la distribution
uniforme) de {1,...,n}, et soit I,, = LIS (w(1),...,m(n)). Le probléme du comportement asymp-
totique de I,, a été introduit par Ulam [72] en 1961, et popularisé par Hammersley [26]. Des
décennies plus tard, Kerov [45], Tracy et Widom [70] ont étudié le comportement asymptotique
de LI, = LIS (X4,...,X,) ot X1,...,X, sont des variables aléatoires i.i.d. avec une distribution
uniforme sur {1,...,m}. En d’autres termes, il s’agit du probléme des plus longues sous-séquences
croissantes d’un mot aléatoire, plutot que d’une permutation aléatoire. Ce probléme de recherche
des plus longues sous-séquences croissantes d’'un mot aléatoire, ou plus précisément la générali-
sation telle qu’exposée ci-dessous, a un lien surprenant avec les statistiques quantiques, qui sera
présenté dans la partie 4.

Commengons par la correspondance Robinson-Schensted-Knuth (RSK), qui est un outil im-
portant pour les problémes de permutation aléatoire et de mot aléatoire. Ensuite, nous passons en
revue certains résultats asymptotiques. Enfin, les théorémes limites pour une permutation aléatoire
apparaissent comme cas limites des résultats précédents (nous procédons dans cette présentation
dans un ordre non chronologique).

3.1 L’algorithme de Robinson—Schensted—Knuth

Considérons un mot w € {1,...,m}" (il peut s’agir d’'une permutation lorsque m = n). Schensted
[63] a été le premier a relier LIS (w) a la taille de la premiére pile lors d’un certain type de tri. Cela
a ensuite été généralisé en l'algorithme de Robinson—Schensted-Knuth (RSK). Nous renvoyons a
la partie 0.3.1 pour une explication de cette procédure. Cet algorithme transforme w en une
paire (P, @) de tableaux de Young (un arrangement d’entiers naturels avec des longueurs de lignes
décroissantes - pour une introduction sur les tableaux de Young, voir [21]) de méme forme, notée
RSKshape(w). De plus, P a aussi chaque ligne croissante, et chaque colonne strictement croissante,
de tels tableaux sont appelés Tableaux de Young semi-standards (SSYT). Un tableau de Young
standard (SYT) est un tableau de Young dont les lignes et les colonnes sont strictement croissantes
et qui contient exactement les nombres 1 a n (le nombre total de cases). Le tableau @ est un SYT.
Lorsque 'entrée w est une permutation, P est également un SYT.

Une partition A de n est une liste décroissante d’entiers non négatifs (x1,...,x¢) tels que
1+ -+ xp = n, et s’écrit A F n. Notons £(\) la longueur de A, le nombre d’éléments non nuls
dans la liste. Pour toute partition A, nous pouvons la compléter par un nombre arbitraire de zéros,
de sorte que Ay soit bien défini pour tout k£ > 1 (nul lorsque k& > £(\)). La forme d’un tableau de
Young de taille n (ce qui signifie que le nombre total de boites est n) est définie comme la partition
de n composée des longueurs de ses lignes.

Un diagramme de Young est un arrangement de boites dont les longueurs des lignes sont
décroissantes (en d’autres termes, un tableau de Young avec des boites vides). On définit le dual
d’un diagramme de Young comme sa réflexion par rapport a la droite y = —zx.

En utilisant cette correspondance avec le dual, on peut définir pour toute partition A - n la
partition duale A’. Sur la figure 6 par exemple, la partition est (5,4, 4,2) et la partition duale est
(4,4,3,3,1).

Nous pouvons maintenant énoncer le résultat suivant:

Théoréme 3.1 (Greene, 1974 [25]). Soitw € {1,...,m}", soit A b n la forme des tableaux obtenus
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N
N
N

N L1

N

y=—x

Figure 6: La correspondance entre un diagramme de Young et son dual.

par algorithme RSK avec le mot w, et X' son dual. Alors, pour tout k < £(N\), A\ +---+ i est égal
a la somme des longueurs des k plus longues sous-séquences croissantes disjointes de w, et pour
tout £ < LX), Nj +---+ X, est égal & la somme des longueurs des plus longues { sous-séquences
strictement décroissantes disjointes de w.

Pour A F n, notons SYT(X) l'ensemble des SYT de forme A, SSYT()A) I'ensemble des SSYT
de forme X\, SSYT,,()\) ceux dont les entrées sont dans {1,...,m}, et enfin notons f* := | SYT()\)|
(cela est aussi souvent noté dim A). Les polynomes de Schur sont définis par

o0
S)\(‘Tl, To,... ) _ § : H x?ombre d’entrées i dans T'
TESSYT(N) i=1
Soit, pour k > 1 (et avec un léger abus de notation):
sx(@1,...,xk) = sa(x1, ..., 2x,0,0,...).

On a, en particulier:

m
_ nombre d’entrées 7 dans T
Sa(T1y .y Tm) = g Hml :

TESSYT,, (N) i=1

Sans entrer dans les détails (voir la partie 0.3.1), le résultat essentiel utilisé par la suite est que
si Xq,...X,, sont i.i.d. suivant la distribution p; ..., pm, la distribution de RSKshape(Xy, ..., X;,)
est explicite:

P (RSKshape(X1 ..., Xm) = A) = fAsx(p1,-- -, Pm)- (3.1)

En particulier, d’aprés le théoréme 3.1, cela donne la distribution de LI,,.

Nous utiliserons également la formule du bialternant de Cauchy: pour tout A - n, pour tout
m > L(N),

det (x?ﬁm_j)

a1,y ) = 1sijsm
Awn - am)
Notons que ce polyndme est bien défini: le déterminant est alterné, il est donc divisible par
A(z1,...,2,m). Rappelons également que lorsque m < ¢(A), sy(x1,...,2,) = 0. Cette formule

montre que les polynémes de Schur sont symétriques. En utilisant (3.1), cela implique:

Proposition 3.1. Soit o0 € G,,, soit X1,...,X, des variables aléatoires i.i.d. avec distribution
Ply- -y Pm, 800t Y1,..., Yy di.d. avec distribution ps(1),...,De(m). Alors, RSKshape(Xi,...,X,)
et RSKshape(Y1,...,Y,) ont la méme distribution.
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La distribution de RSKshape(Xy,...,X,) est appelée distribution de Schur-Weyl avec les
parameétres p,n, et elle est notée SW"(p). Nous écrivons également SW.,, dans le cas particulier
de la distribution uniforme p = (1/m,...,1/m).

Dans la suite, et en particulier dans le chapitre 3 de notre travail, pour étudier la distribution
de RSKshape(Xj, ..., X, ) nous supposons donc, sans perte de généralité, que p; > pa > -+ > pp,
(on dira p ordonnée).

Nous allons maintenant passer en revue les théorémes limites, d’abord pour le modéle des
mots aléatoires, puis pour le modéle des permutations aléatoires.

3.2 La forme du RSK pour les mots aléatoires

Nous passons maintenant en revue quelques résultats connus sur la distribution asymptotique
de LI, = LIS(Xy,...,X,), et plus généralement, de RSKshape(X3,...,X,), pour Xi,..., X,
variables aléatoires i.i.d. prenant des valeurs dans {1,...,m} avec la distribution py, ..., pm.

La distribution asymptotique de LI, , et plus généralement de RSKshape, s’avére étre étroite-
ment liée aux valeurs propres de certaines matrices aléatoires: les matrices avec la distribution de
Pensemble unitaire gaussien (GUE). Nous rappelons que I'ensemble unitaire gaussien de taille m,
noté GUE,,, est la distribution de probabilité des matrices hermitiennes H de taille m x m définie
comime suit:

e Pour tout i € {1,...,m}, H;; ~ N(0,1);

e Pour tout ¢,j € {1,...,m} tel que i < j, H; j ~ Nc(0,1) (la gaussienne standard complexe,
égale a N'(0,1/2) +iN(0,1/2));

e Ces entrées sont tirées indépendamment les unes des autres.

On peut calculer la densité de probabilité de la cglistribution GUE,,: pour une certaine con-
stante de normalisation C' > 0, la densité est e~ ™(7)/2/C' (c’est une conséquence directe de la
définition, et c’est une autre définition équivalente de GUE,,).

En utilisant les notations de [41], nous définissons également le GUE sans trace de taille m,
CGUEY,, comme la distribution de H — (Tr(H)/m)I,, ot H ~ GUE,,. 1l s’agit de la distribution

m?
conditionnelle de GUE,, étant donné que la trace est nulle. Le premier résultat de distribution

asymptotique a été obtenu par Tracy et Widom, dans le cas uniforme.

Théoréme 3.2 (Tracy et Widom, 2001 [70]). Soit H ~ GUE?, et uy(H) sa plus grande valeur
propre. Dans le cas uniforme avec m lettres, nous avons la convergence en distribution:

LI, —n/m

/n/m n—o0

pa (H).

Il a été conjecturé dans [70] que la convergence s’applique a 'ensemble du diagramme de
Young, et prouvé plus tard par Johansson:

Théoréme 3.3 (Johansson, 2001 [44]). Soit H ~ GUEY, et puy(H) > -+ > pn(H) ses valeurs
propres. St A ~ SW  nous avons la convergence en distribution:

m?’

(/\1—71/771 Am —n/m

) == (j(H), ..., i (H)).

Ce dernier résultat a été prouvé plus tot (1994) par Kerov [45, Chap. 3, Sec. 3.4, Théoréme
2]. Tl a ensuite été généralisé a une distribution non uniforme. Nous suivons [41] pour les notations
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suivantes. Pour toute distribution p ordonnée (c’est-a-dire avec p1 > -+ > py,) sur {1,...,m},
définissons la distribution GUE sans trace généralisée GUEO(p) comme la distribution de H, ou
H est définie comme suit. Soit di,...,d; les multiplicités de p, ce qui signifie p; = --- = pq, >
pd1+1 = :pd1+d2 >
e Supposons que Hy ~ GUEgl, ey Hy ~ GUEgk_ soient des matrices aléatoires indépendantes;
e Soit B la matrice m x m définie par blocs avec Hy, ..., Hi sur sa diagonale;

Soit T' = ZZI \/ITiBi,i;
e Enfin, pour i,j € {1,...,m}, soit H; j = B; jsii#jet Hi; = B;; — \/pil.

Comme indiqué dans [41], GUE"(p) est la distribution de la somme directe d’ensembles uni-
taires gaussiens mutuellement indépendants d; x d; conditionnellement aux valeurs propres p1, . . . fiq
satisfaisant \/pip1 + -+ + /Pmitm = 0. Nous pouvons maintenant énoncer la généralisation du
théoréme précédent:

Théoréme 3.4 (Its, Tracy, Widom, 2001 [42]). Soit p une distribution ordonnée sur {1,...,m},
soit H ~ GUE®(p) et soit i (H) > --- > pm(H) ses valeurs propres. Si X ~ SW™(p), nous avons
la convergence en distribution:

<)\1 —pin )\m _pmn>

s
pin Pmn

— (,Ll,l(H),,‘LLm(H))

n—oo

Remarques.

(i) En particulier, si py > -+ > pm, ce qui signifie dy = -+ = dp, = 1, la distribution limite est
gaussienne multivariée.

(i) En rappelant la Proposition 8.1, il n’y a pas de perte de généralité avec I’hypothése que p est
ordonnée.

La distribution GUEO(p) n’est peut-étre pas trés intuitive, mais le théoréme suivant permet
une interprétation plus naturelle de la limite. On désigne par p(, pour 1 < i < k, la probabilité
de multiplicité d; (autrement dit, (py,...,pm) = (M, ..., pM,p® .. p@ . p® L pk))),

Théoréme 3.5 (Méliot 2012 [55], tel qu'énoncé par Wright [76]). Soit H € GUE’(p), soit
g1, - ., g des variables aléatoires gaussiennes centrées avec une covariance (]li:jdi — d;idj/p™ \/p(j))
1

7

<i,j<k
et pour chaque i € {1,...,k}, H; ~ GUEgi (le vecteur g et les H; étant indépendants). On a alors
l’égalité des distributions suivantes:

(), i (D) 2 (2 4y (HL), o 2 4 gy (L), 2 4 (), 25 g () )
dy dq dy dp

La distribution limite peut également étre écrite sous la forme d’une fonction brownienne:
cela a été fait tout d’abord dans [32] pour le LIS, puis dans [33] pour le LIS dans un cadre
markovien (les lettres sont une chaine de Markov, généralisant le cadre i.i.d.), et enfin dans toute
sa généralité dans [34] pour 'ensemble du diagramme de Young toujours dans un cadre markovien
(voir également [41]). L’idée principale pour obtenir de telles limites est de revoir le théoréme
de Greene mais avec des sous-séquences disjointes. Les mouvements browniens apparaissent alors
comme des marches aléatoires renormalisées comptant le nombre d’occurrences de chaque lettre.
Le principal avantage de cette approche n’est pas seulement la possibilité de généraliser a un
cadre markovien, mais aussi de donner des taux de convergence non asymptotiques, comme nous
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le verrons au chapitre 3. Nous rappelons un cas simple: la limite de LI, (la longueur de la
premiére ligne du diagramme de Young), lorsque la distribution des lettres est p. En notant d; la
multiplicité de p1, et B = (Bg(t))1<k<d, tc[o,1] Un mouvement brownien standard de dimension d,
on a le résultat suivant de convergence en distribution [32, Corollaire 3.3]:

dy
LI, — VI—dipr—1
pt 2 Y Bi()+  max  (Bj(t;) — Bj(t;-1)).

PN n—00 dq 0=tg<--<tq, =1

j=1

Puisque la distribution limite du diagramme de Young est déja connue (Théoréme 3.4 et
Théoréme 3.5 ci-dessus), la fonctionnelle brownienne doit avoir la méme distribution. Ceci n’est
pas surprenant étant donné les liens entre certaines fonctionnelles browniennes et les valeurs propres
de la GUE ([5], [24]). Plus précisément, le théoréme suivant de [6], qui est une généralisation de
[5], rend la connexion compléte. Suivant [6], nous introduisons d’abord quelques notations. Soit
B = (By(t))1<k<n,te[o,1] un mouvement brownien standard de dimension M. Soit P I’ensemble
des fonctions cadlag, non décroissantes de [0,1] vers {1,...,M}. Pour m € P, 7 peut étre écrit

comme Z]J\izl G,y ey + M1 et notons

tar—1,ta)s
1
A B = / dBr 1) (t)
0
=Y (Bj(tj) = Bj(tj—1))-
j=1

Soit H ~ GUE,,, et pour 1 < k < M, soit pu} > --- > /LZ les valeurs propres du principal k X k
mineur de H.

Théoréme 3.6 (Benaych-Georges et Houdré, 2013 [6]). On a I’égalité suivante en distribution:

i=1

¢
d
(”i'c)lgegkgM = <sup{ZAmB;m,...m eEPm < <m< k}) .
1<e<k<M

Nous pouvons maintenant prouver directement que le terme de droite dans (0.3.2) a la méme
distribution que la limite donnée par le théoréme (3.5), a savoir uj (H1) + (¢91/d1). Tout d’abord,
[6, Corollaire 2] affirme que 1’égalité de distribution suivante est vraie:

di
@ZBj(l)+ max (B-(tj)—Bj(tj_l))i@ﬂ(HHm(H),

J
dl = 0=tp<---<tgq, =1 dl

ot H ~ GUE,, . Deuxiémement, en utilisant I'indépendance des projections d’une variable aléatoire
gaussienne sur des espaces orthogonaux, H — (Tr(H)/dy)I4, et Tr(H) sont indépendants, et

\/1—d1p1—1

Te(H VI —dip
Te(H) + () = oo (11— B, ) VIS Dby
d1 dl dl
_ 2
:NI(HO)_F%Z
1

ouw H = H — (Tr(H)/dy) 14, ~ GUE?Z1 et Z est une gaussienne standard indépendante, ce qui est
exactement la limite du théoreme 3.5.

Notons que la limite de LC1I,,, donnée au chapitre 1, est aussi une fonctionnelle brownienne,
mais & ce jour, le lien avec les valeurs propres de la GUE reste inconnu.
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3.3 La forme RSK pour les permutations aléatoires

Nous allons maintenant passer en revue quelques résultats connus sur la distribution asymptotique
de I, := LIS(w(1),...,m(n)), et plus généralement, A\(®) := RSKshape(n(1),...,7(n)), pour 7
une permutation aléatoire de {1,...,m} (suivant la distribution uniforme). Ce probléme, comme
mentionné précédemment, est plus ancien que le modéle des mots aléatoires, et il y aurait beaucoup
plus & dire, mais nous nous concentrons sur le lien avec les modéles précédents.

Nous désignons par TW la distribution de Tracy-Widom, dont la densité est définie comme
la solution d’une équation de Painlevé, voir par exemple [71]. Sa moyenne est d’environ —1.771 et
sa variance d’environ 0.813. Tracy et Widom ont prouvé le résultat de convergence suivant:

Théoréme 3.7 (Tracy et Widom, 1994 [69]). Soit H,, ~ GUE,,, et ui(H,,) désigne sa plus
grande valeur propre. Nous avons la convergence en distribution:

h=2vn gy

nl/6 n—o00

11 S’avére que c’est aussi la distribution limite de I, (une fois remise a ’échelle):

Théoréme 3.8 (Baik, Deift et Johansson, 1999 [4]). Nous avons:

I, —2
M:TW.

nl/6 n— 00

Pour tout n, quand m tend vers l'infini, LI, converge vers I, en distribution. Ainsi, le
théoréme suivant est une généralisation du précédent.

Théoréme 3.9 (Johansson, 2001 [44]). Soit m € NN tel que (logn)'/®/m,, —— 0, alors dans le
—00

n
cas uniforme on a:

LI, —n/m,—2yn

53 TW.
nt/6 (1 +/n/my) N0

Comme dans le cas d’un mot aléatoire, il y a des théorémes sur la limite de la forme des
diagrammes de Young, voir la partie 0.3.3 pour plus de précisions.

4 Statistiques quantiques

Nous donnons & présent une bréve introduction aux statistiques quantiques, et explorons les liens
avec I'algorithme RSK. Ceci est 'objet du chapitre 3 de ce travail.

Un systéme quantique d-dimensionnel est un systéme qui se trouve dans un état mixte de d
états quantiques, ce qui signifie qu’il a une probabilité p; d’étre dans létat u; € C¢, py d’étre
dans l'état ug € C4, ..., pqg d’étre dans I'état ug € C¢. La matrice p = pruiuj + - -+ + pauqul
est positive hermitienne avec une trace égale a un, on ’appelle la matrice de densité du systéme.
Réciproquement, pour toute matrice hermitienne positive p avec une trace égale a un, il existe
(au moins) un systéme avec une matrice de densité p: si (pi,...,pq) sont les valeurs propres de p
et uq,...,uq les vecteurs propres unitaires, on peut en effet considérer I’état mixte: u; avec une
probabilité py, us avec une probabilité ps, ... avec une matrice de densité pyuiuj +- - - +pauqu) = p.
Dans la suite, on appelle matrice de densité toute matrice hermitienne positive avec une trace égale
a un.

Deux systémes ayant la méme matrice de densité sont physiquement indiscernables. Ainsi,
on peut supposer que les vecteurs propres sont les différents états et les valeurs propres sont les
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différentes probabilités de ces états. Bien siir, il est impossible de mesurer directement p, mais on
peut obtenir une mesure de p, qui est une variable aléatoire comme défini ci-dessous.

Le type le plus simple de mesure est la mesure de base: on donne une base orthonormale
v1,...,vq de C?, et le résultat de la mesure est une variable aléatoire N & valeurs dans {1,...,d}
avec probabilités:

d
P(N =i) = ij<ui,7)j>2

= Tr(pE]) ou E; := v;v

= (p, E;) avec le produit scalaire habituel sur les matrices.

Plus généralement, pour effectuer une mesure projective, on donne FE, ..., E4 des projections
auto-adjointes (c’est-a-dire des projections orthogonales) telles que Ey +- - -+ Eq = I, et le résultat
de la mesure est une variable aléatoire N prenant des valeurs dans {1,...,d} avec probabilités:

P(N = i) = (p, ).

Remarquons que si on connait une base orthonormale de vecteurs propres (c’est-a-dire les
états quantiques), alors une mesure de base avec cette base a une distribution pi,...,pq, donc
estimer les p; de cette maniére revient a des statistiques classiques.

En statistiques quantiques, aprés chaque mesure, 1’état s’effondre, donc il faut n copies in-
dépendantes du systéme quantique pour effectuer n mesures indépendantes. Mais au lieu de faire
n mesures I'une aprés l'autre, il est en fait préférable de considérer les n copies comme un seul
systéme quantique avec une matrice de densité p®”, puis de faire une seule mesure, appelée mesure
intriquée, pour estimer p. Parmi toutes les mesures que I'on peut effectuer sur p®”, il s’avére que
I'une d’entre elles est optimale: une mesure projective appelée échantillonnage faible de Schur.
Par "optimale", on entend optimale pour calculer n’importe quelle propriété du spectre p1, ..., D4,
au sens de [76, Theorem 2.6.3|: si nous disposons d’un algorithme pour calculer une propriété
qui a un risque (3, alors il existe un algorithme similaire pour le faire en utilisant uniquement
I’échantillonnage faible de Schur. Par conséquent, dans ce travail, nous nous concentrons sur cette
mesure de p®". La famille de projecteurs auto-adjoints de cette mesure projective est donnée par le
théoréme de dualité Schur-Weyl, et est indexée par les partitions de n. Par conséquent, le résultat
de cette mesure, ’échantillonnage faible de Schur, est une partition aléatoire A - n, et il est bien
connu (voir par exemple [76]) que sa distribution est SW™(p). En d’autres termes, on peut voir la
mesure A comme la forme du diagramme obtenu par I’algorithme RSK appliqué a un mot aléatoire
de longueur n et de lettres tirées avec distribution p. Le probléme est de trouver un bon estimateur
de p, étant donné A.

Comme vu précédemment, les distributions limites de A ~ SW"(p) sont bien connues, mais
dans la premiére partie du chapitre 3, nous revisitons les taux de convergence, en raison de la
nécessité de résultats d’estimation non asymptotiques. Ainsi, nous étudions quelques aspects de la
convergence en distribution des diagrammes de Young associés a des mots aléatoires, obtenant des
vitesses de convergence pour la distance de Kolmogorov. Puisque la longueur de la premiére ligne du
tableau est LIS, une vitesse de convergence est donnée dans ce cas. Cela vient préciser, de maniére
non asymptotique, un résultat de vitesse de convergence déja donné dans [40]. Nous donnons
ensuite des résultats sur deux estimateurs du spectre, avec des simulations numériques tendant
a4 montrer que leur risque est inférieur & celui de 'estimateur "diagramme de Young empirique"
(EYD). Le premier repose sur du bootstrap (a partir PEYD, nous voyons comment 'itérer, mais
sans preuve théorique), le second est en quelque sorte un équivalent théorique du premier, ot
nous donnons une conjecture restante pour arriver & démontrer que son risque quadratique est
inférieur. Nous prouvons ensuite une nouvelle borne pour la somme des variances d’un diagramme
de Young, et enfin, nous prouvons une borne sur "l’excés" d’un diagramme de Young avec une
chaine de Markov (cela généralise un résultat déja connu sur I'excés des diagrammes).
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Introduction

This work considers some random words combinatorial problems and their applications. A random
word of length n is an n-tuple of, say, i.i.d. random variables taking values in a finite set called
alphabet (for example, a sequence of coin tosses HTTTHTTH is a random word of length 8). The
starting point of this endeavor is the following question: given two random words, "how much do
they have in common"? The problem of analyzing the similarity between two random words has
emerged independently in various fields, including computer science, biology, linguistics... See, for
example, [62] for a description of numerous applications.

Unfortunately, too little is known on the fundamental problem of the study of the length of
the Longest Common Subsequences (LCS) of two random words: the asymptotic distribution, and
even the asymptotics of the variance, are unknown. However, by slightly twisting this problem,
it becomes easier to find the asymptotic distribution: the first chapter of our work is dedicated
to the asymptotic distribution of the length of the longest common and increasing subsequences.
There we consider a totally ordered alphabet with an order, say {1,...,m}, and the subsequences
are simply made of a block of 1’s, followed by a block of 2’s, ... and so on (such a subsequence
is increasing, but not strictly). In this framework, we are able to provide the asymptotic mean,
variance and distribution of its maximal length.

In the second chapter, we deal with the problem of the variance of the LCS. It is an important
open problem to determine whether or not the variance is linear in n. By introducing a general
framework going beyond this problem, partial results in this direction are presented. Indeed, for
functions of independent random variables, various upper and lower variance bounds are revisited
in diverse settings. These are then specialized to the Bernoulli, Gaussian, infinitely divisible cases
and to Banach space valued random variables. Frameworks and techniques vary from jackknives
through semigroups and beyond. Some new applications are presented, recovering and improv-
ing, in particular, all the known estimates on the variance of the length of the longest common
subsequences of two random words.

In the third and final chapter, we consider the Longest Increasing Subsequences (LIS) of
one random word, and the surprising connection with quantum statistics. Indeed, estimating the
spectrum of a density matrix of a quantum system with n copies of this system is equivalent to
estimating the distribution of the letters of a word of size n given the Robinson—-Schensted—Knuth
(RSK) output shape of this word (a partition of n whose first term is the length of the LIS).
Therefore, we revisit some aspects of the convergence of the cumulative shape of the RSK Young
diagrams associated with random words, obtaining rates of convergence in Kolmogorov’s distance.
Since the length of the top row of a diagram is the length of the longest increasing subsequences of
the word, a corresponding rate result follows. We then provide results on two spectrum estimators,
with numerical simulations tending to prove that their risk is smaller than with the empirical Young
diagram estimator. Then we bound the sum of the variances of the Young diagram, and lastly,
prove a bound on the "excess" of the shape of the RSK algorithm with the help of a Markov chain.
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0.1 The longest common subsequences

In computer science, finding the length of the longest common subsequences amounts to finding an
edit distance corresponding to the minimum number of characters that must be deleted or inserted
to go from one word to another. This is why the Unix program "diff", used to compare different
versions of a file, computes the length of the longest common subsequences of two strings. In
biology, a strand of DNA can be represented by a word written with the alphabet {A4,T, G, C}.
With the theory of evolution, this word evolves by the insertion of new letters, thus the ancestor
of a species has a DNA which is a subsequence of the DNA of the latter. When two species DNA
share a long common subsequence, we can infer that this is not the result of chance but because
of the existence of a common ancestor (see for example [74]). However, as [61] and [3] note, one
has to be careful because two random "long" strands of DNA share on average about 65% of their
length, which can be perceived as counter-intuitive. The computation of this average similarity,
necessary to make statistical hypotheses on the existence or not of common ancestors, is one of
the motivations of the mathematical study of the similarity between two random words initiated
by Chvatal and Sankoff [15] in 1975.

Let A be a finite set, called an alphabet, and call "words" finite sequences of variables in A.
For instance, to model DNA strands, one takes A = {A, T, G, C}. For (z1,...,xs), (y1,...,¥¢) two
sequences taking values in A, we denote by LCS(x1 ...2s;y1 - .. y:) the largest integer k such that
there exists 1 <4y < --- <4 <5, 1 < 51 < --- < jp < tsatisfying a;, = bj,,...,a;, = bj,, or 0 if
there is no such integer.

For instance, LCS(ACCGAT; GACT) = 3 as one can take i; = 1,i5 = 2,i3 = 6 and j; =
2,j2 = 3,43 = 4, which extracts the word ACT from the two words, but one cannot extract a
longer word. The word ACT is an extracted word ("common ancestor") of maximum length, but
it is not the only one, because one could also have extracted GAT. Graphically, finding the longest
common word consists in connecting identical letters without crossings (see Figure 7).

Figure 7: ACT is a subsequence of maximum length

One can also view LCS as a percolation problem (see Figure 8): if one puts the first word
on the z-axis, the second one on the y-axis, and draws a dot each time the z-axis and the y-axis
have the same letter, the aim is to find one strictly increasing path (along which the z-axis and
the y-axis strictly increase) passing through the largest number of dots, i.e., vertices (here, the
maximum is three).

T
//G
/
C @
A @
G ®
A C C G A T

Figure 8: ACT as an increasing path containing a maximum number of dots
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This can be reduced to an edge percolation problem. If one adds diagonal edges to the graph,
linking (z,y) to (x+ 1,y + 1), and set their weight to one if there is a dot at (z,y), zero otherwise,
with the other edges (horizontal, vertical) of zero weight, one needs to find the path from (0, 0) to
(s,t) of maximum weight, following the appropriately oriented edges: this is a last-passage directed
percolation problem (see Figure 9).

\{
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\{
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»-

N
\
\
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Y
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A
\
A
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A
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Figure 9: ACT as a path with maximum weight

We can now consider the similarity between random words. Let (Xg)g>1, (Yi)x>1 be two
sequences of independent, identically distributed random variables, with values in a finite alphabet
A. In particular, we are interested in the random variables LCS(X;...X,;Y:1...Y,,), simply
denoted by LC,,.

For example, if A = {0,1} and X}’s are Bernoulli random variables with parameter 1/2, then
LC is also a Bernoulli random variable with parameter 1/2, but P(LC; = 0) = 1/4, P(LCy =
1) =1/2 and P(LC = 2) = 1/4. It is difficult to compute the distribution of LC,, explicitly, so we
are mainly interested in its asymptotic behavior, and in particular its expectation and variance.

Let us start with a simple property of LC),:

Proposition 0.1.1 (Chvatal and Sankoff, 1975, [15]). For all m,n > 1,

ELC)ysp > ELC,, + ELC,,.

Proof. We cut in half as in Figure 10.

Xl Xm—l Xm Xm+1 Xm+n
/./ I \. I .
I [} [ ] \.
Yl mel Ym Ym+1 Ym+n

Figure 10: Cutting words of length m + n

We have

LOS(X1 ... Xomyn: Y1 Yipin) > LOS(Xy ... X1 Y1 ... V)
+ LCS(Xm+1 e Xn—‘,—ma Ym+1 N Ym+n)

and as LOS(X,41 -+ - Xontn; Ymt1 - - - Yimin) has the same distribution as LC),, the result follows.
O
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We say that the sequence (ELC),),>1 is super-additive. The following corollary is an imme-
diate consequence of Fekete’s lemma (1923), and the inequality LC,, < n:

Corollary 0.1.2. The sequence (ELC,,/n),~, converges to sup, ELC,, /n < 1.

Usually we let v be the limit of ELC,,/n, or ~; in the case of an alphabet with k letters with
uniform distribution. Even in the simplest cases, it is difficult to determine ~: for example, we
do not have any explicit value for 75. The best bound is 0.788071 < 75 < 0.826280 [52], which
disproves an old conjecture of Steele [66], vo = 2/(1 + v/2) ~ 0.828427. More recently, Tiskin [68]
was able to prove that -5 is algebraic, however, this work does not yield any numerical estimation,
and is limited to the uniform, binary case.

Numerical simulations, e.g. [3], tend to show that for a two-letter alphabet the constant ~
is minimal when the distribution is uniform. This is intuitive: the probability that two letters
coincide being minimal when p = 1/2, we expect the expectation of LC,, to be minimal when there
are on average the fewest number of pairs of identical letters. In [3], the authors attempt to show
this fact, but their proof is not convincing, so it does not seem to have been proved, to this day.

We notice that v; > 1/k, and more generally, if the p.m.f. of the letters is p1,...,pg, 7 >
p? + -+ + p2, because LC,, > Z?:1 Ix,—y,. It is trickier to upper bound ~;:

Theorem 0.1.3 (Chvétal and Sankoff, 1975, [15]). Let, for 0 < x < 1, hy(x) = k*/22%(1 —2)' %,
and let yi be the unique real in (0,1) such that hy(yr) = 1. Then v < yg.

Proof. Let ¢ € (0,1) and g(c¢, n, k) be the number of pairs of words of length n with values in an
alphabet of size k with a longest subsequence of length greater than cn, in other words, let

g(n,c,k) = {z,y € A"; LCS(z;y) > en}|.
Let m = [en], for z,y € A", if LCS(x;y) > cn , then there exist iy,...,%, and ji,...,jm, such
that Xi1 = )/}11'°'7Xim

k?"=™ choices for the letters, so g(n,c, k) < (7””)2k2”*m. With the help of Stirling’s formula we
get

=Y; . We have (;)2 possible choices for these two extractions, then

gn.c.k) _ 1
k2n - hk (C)an '
In particular, for ¢ = yi, P(LC,, > yxn) tends to zero. Now ELC,, /n < yi +P(LC,, > yxn), hence
v < Yk. O

We can generalize this result as follows: if the letters are drawn according to a non-trivial
distribution, then v < 1, and we have an upper bound according to the distribution. More precisely,
let p1,...,pm be the p.m.f. of the letters, let P, = p? + -+ + p2,, and assume Pp # 1 (the "non-
trivial" assumption), let y € (0,1) be such that 2% (1 — 2)*~(1/P,)*/? = 1, then v < y. Indeed,
letting m = [yn], we have

2
P(LC, > yn) < (Z) Py

Pm
R
(v (1 —y)¥)*'n
1
-o(t)
n
so we can conclude as previously that v < y.

We know that ELC,, is super-additive, thus denoting b,, = ELC,,/n, for all k > 0, bg,, > by,
which may suggest that (b,,),>1 is increasing. Computer simulations go in that direction, but it
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remains an open problem to show that (b,)n>1 is increasing [19]. Note that if a sequence (up,)n>1
is super-additive, the sequence (u,/n),>1 needs not to be increasing, as the following example
shows: u,, = n — 1, is odd-

We now investigate how close LC,, is to its mean, with standard concentration techniques.
We then evaluate the variance of LC,,, using the Efron-Stein inequality, which is the starting point
of the second chapter of our work.

0.1.1 Concentration inequalities

We recall the following theorem, often attributed to Azuma:

Theorem 0.1.4 (Hoeffding, 1963). Let (Sk, Fr)o<k<n be a martingale. Suppose that there exist
ag, b € R such that ay, < Sg — Sk—1 < by for all 1 < k <n. Then for all t > 0 we have

2¢2

P(S, — Sy >t) <e Tk=1Cran)?

Corollary 0.1.5. Let Zy,...,Z, be i.i.d. random variables, and f : R™ — R Borel-measurable.
Suppose that there exist c1,...,c, € R such that for all 1 <k <n and z1,..., 2z, wx € R,

|f(Zla-~~7Zk—1,2k72k+1,~~-72n) - f(Zla--~7Zk—1,wk72k+1,~~-72n)| < ¢k.

Then for all t > 0,
P(f(Zy,....Z0) —B(f(Z1,....Zy)) > 1) <e *Ti17i.

Proof. We set, for 1 <k <n, Fp, =0(Z1,...,2Z) and Fy the trivial o-algebra, and

Clearly, (Sk, Fr)o<k<n is a martingale, moreover, denoting by W}, a random variable with the same
distribution as Zy and independent of Z1, ..., Z,, Ye_1 = E(f(Z1,. .., Zk—1, Wik, Zks1s- -+ Zn)| Fr)
and therefore —cp < Yi — Yr_1 < c¢g. Then, apply Theorem 0.1.4 with ax = —cg, by = cy. O

Corollary 0.1.6. For allt > 0,

2

P(LC, — ELC, >t) < e in.

Proof. The variable LC), is a function of 2n independent random variables:
LC,=LCS(Xy... X;Y1...Y,).

Changing one of the variables does not change the absolute value of LC),, by more than one unit:
we therefore have the hypotheses of the corollaries verified with ¢, = 1, hence the result. O

The following result is a slight improvement of this inequality:

Theorem 0.1.7 (McDiarmid, 1989 [53]). For all t > 0,

2

P(LC,, —ELC, >t) <e .

Proof. We use Z1, ..., Zs, to denote the random variables X;,...,X,,Y7,...,Y,. Forall 1 <k <
2n,
LCS(Zy... 2k 1Zpy1 ... Zon) < LC, < LCS(Zy ... Zx—1Zk41 .. Zon) + 1,
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and therefore, with the previous notations,

E(LCS(Z1 ... Zjor Zgr - - - Zan) | Fi) < S S E(LCS(Zy .. Zjoor Tt - - - Zan) | Fie) + 1

Let apy = E(LCS(Zy ... Zx—1Zk+1 - - Zon)|Fr) — Sk—1, by = ar + 1, thus ay and by are Fp_1-

measurable. Following the original proof of Theorem 0.1.4, when ay,b; are Fj_i-measurable
_ 2¢2

random variables, the expectation of the right-hand term e *i=1®»~»? is also an upper bound.

This grants the result. O

By applying the same method to the variable —LC,,, we get the following corollary:

> e) < 2e7M

As ELC,,/n converges to v € R, the last corollary ensures the convergence in probability of
LC,/n to v. In fact, even almost sure convergence holds true. This follows from the following
result:

COIOllaIy 0-1-8- 107 a/ll € > O,

n n

Proposition 0.1.9. Almost surely, |LC,, — ELC,| = O (\/nlog n) .

Proof. Thanks to Theorem 0.1.7,
+oo +oo 9
ZIP (|LCk —ELCy| > \/ix/klogk) < Z 72 < +o0.
k=1 k=1

Hence, by the Borel-Cantelli lemma: almost surely, from a certain rank, |[LCy — ELCy| < v2vE log
which implies the result.

0.1.2 Rate of convergence of the expectation

The following theorem gives a useful rate of convergence, we refer to Rhee [58] for an elementary
proof of it.

Theorem 0.1.10 (Alexander, 1994). There exists a universal constant K > 0 such that for all
n>1,

logn ELC,
<
n n

v—K <. (0.1.1)

In Alexander [1], it is specified that for any K > 2 + /2, the bound (0.1.1) is valid for all
sufficiently large n.

With a more complete study to choose the partitions, it is possible to show that any K > /2
is also suitable for sufficiently large n (see [49] and [30] for a Markovian model). As Alexander [1]

points out, even a /1/n bound instead of /logn/n might be true.

0.1.3 The variance

We have seen that the asymptotics of the expectation are rather well understood, but the order of
the second moment is still an open problem. Here is what is known so far, note that in Chapter 2
of our work we will present some contributions to this topic.
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We start with an upper bound. First note that Corollary 0.1.8 implies Var LC,, < 8n. To get
a slightly better result, we use the following theorem, a generalization to the original Efron-Stein
inequality [20] to non-symmetric functions.

Theorem 0.1.11 (Steele, 1986 [65]). Let Z1,...,Zyn, W1,..., W, be random variables i.i.d. and
f:R™ = R Borel-measurable. Let F = f(Z1,...,Zy) and, for 1 <i<mn,

Fo=f(Z1,....,Z;-1, Wi, Ziya, ..., Zy).

Then
1TL
VarF < =Y E((F — F)?).
wF < 53 B(F— )

This theorem is the starting point of our investigation in Chapter 2, where we provide an
alternative proof, so it is worth recalling one of the classical proofs, which is as follows.

Proof. Tt is a matter, just as in Corollary 0.1.5, of generalizing a result valid for a sum of n variables
to any function of n variables, by writing this function as a sum. Let, for 0 < i < n, E;(.) =
E(.|Z1, ey Z,L) and EL() = IE(|Zl7 ey Zifh Zi+1; ey Zn) For i > 0, let Ai = EZ(F) — Elfl(F)

We have F —EF = Y""" | A; and therefore

K2

VarF = zn: E(A7) +2) E(AA)).

i=1 j>i

For j > i, B(AA;|F) = AE(A|F) = 0, so E(A;A;) = 0. Moreover, as E;_1(F) =
E;(E'(F)), A; = E;(F —E'(F)), so by the conditional Jensen’s inequality A? < E;((F —E(F))?)
and E(A?) < E((F — EY(F))?) = E(Var'F), where Var'F = E{((F — E{(F))?). So we have

n
VarF < (Z VariF> )

=1

Conditionally on Zi,...,Z; 1, Ziy1,...,Zy, F and F; are independent, so E'(F — F)?) =
2 (F?) — 2E(F)?, so 2Var'F = E!((F — F;)?), hence 2E(Var'F) = E((F — F;)?), which yields
the desired result. O

We now apply this result to the random variable LC),:

Corollary 0.1.12 (Steele, 1986 [65]). Let, for all a € A, p, = P(X1 = a) (recall that the X; and
Y; are i.4.d. with values in A). Then

Var LC,, <n (1 — Zpi) .

acA

Proof. By renaming 71, ..., Za, the variables X1, ..., X,,,Y1,...,Y,,, LC,, can be written as f(Z1, ...

and E((F — F;)?) can here be bounded above by 1 — %~ , p2. Indeed, changing a single Z; only
changes LC,,, in absolute value, by at most 1, and there is a probability > . , p? that Z; = W; in
which case LC),, remains unchanged. O

We will revisit and improve this last bound in Chapter 2. The most challenging part of the
study of the variance is to find a non-trivial lower bound. To the best of our knowledge, it is
not even proved, in the uniform binary case, whether or not the variance diverges to infinity, and
whether or not it increases with n. However, for some distributions of letters (where one letter has

) ZQH)?
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a very high probability of appearing, the others having a very low probability), [48] (in the binary
case) and [36] proved that the variance had a lower bound of order n, and therefore was of order
n. Waterman [74] conjectured that the variance was always of order n, and we do not currently
know of a counterexample to this conjecture. In any case, it is difficult to evaluate the order of the
variance computationally, because it grows slowly for small values of n, which may have led Chvatal
and Sankoff [15] to the conjecture of a variance of order /3. But posterior simulations (July 2016,
[50]) agree with Waterman. These Monte-Carlo simulations with 10000 draws, for n varying from
50000 to more than 1000000, give the exponent « such that Cn® approaches the variance as closely
as possible. The exponent found is very close to 1, and this for the three distributions of letters
tested (the exponent is closer to 1 when the distribution has a low entropy, but the uniform binary
distribution still gives an exponent quite close to 1: a = 0.9086).

The problem of finding the order of the variance is particularly interesting because it was
shown in [28] that if the variance has a linear lower bound, then LC),, renormalized, tends to a
Gaussian distribution. More precisely:

Theorem 0.1.13 (Houdré and Iglak, 2022). Suppose there is C > 0 such that Var LC,, > Cn,

then for any n € (0,1/10),
LC, — ELC, 1
dy | —F——,G | =0 =
W ( v/ Var LC), g) (n”)

where G is a standard normal random variable and where dyy is the Wasserstein distance.

As mentioned in [28], even a weaker bound on the variance allows to conclude: Suppose there
is C' > 0 and B > 9/10 such that Var LC,, > Cn®, then for any ¢ € (0,3 — 9/10),

g (LCn—ELCw o\ _ (1
W\ Warto, 7)) T \ne )

Note that convergence to the Gaussian distribution for dy, implies convergence in probability
and for the Kolmogorov distance.

We have reviewed the basic properties of LC,,. We now turn to a variant, the longest common
and increasing subsequences, which will be the main object of the first chapter of our work.

0.2 The longest common and increasing subsequences

In this section, let A,, := {1,...,m}, m > 2. For (z1,...,2s), (y1,-..,¥:) two sequences taking
values in A, we denote by LOTS(x1 ... 2Zs;y1 - . . y¢) the maximal length of an increasing subsequence
(so a subsequence with a block of 1’s, followed by a block of 2’s,... and so on) of both words. More
formally, we let LCIS(x1...2s;y1...y:) be the largest integer k such that there exist 1 < i; <
o <ip<nand 1< j; <--- < Jjr <nsuch that

o Vs e {1,...,k}, Ti, = Yjo»

o z;, <z, <--- <y, and Yy, <y, <o LYy,

and if no integer satisfies these two conditions, we set LCIS(z1...2s;y1...9:) = 0.

In similarity to the LCS case, we consider two independent sequences of i.i.d. random variables
(Xk)k>1, (Yi)k>1, and moreover the Y;’s may have a different distribution than the Xj’s. Let
pi, . pa,pX >0,i=1,...,mand pY,...,p}, pY >0,i=1,...,m be their respective p.m.f.,
and let LCI, = LCIS(X;...X,;Y1,...Y,). This model has been mostly studied in computer
science (see e.g. [13], [60]), the main motivations being the generalization of the longest increasing
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Figure 11: (1,1,2,2) is a common increasing subsequence of maximum length

subsequences of one single word (see the next section) and potential applications to bioinformatics
(e.g. in [17]). The asymptotics of the distribution of LCT, were studied first in the binary case
[31] and then in the uniform m letters case [12]. Note that it is easy to adapt the concentration
bounds and variance upper bounds seen in the previous section to this variant.

When the two words are sampled from the same uniform distribution, the asymptotic dis-
tribution has been found (below, as usual, A is short for minimum), see Theorem 1.1.1 and its
conjectured generalization Theorem 1.1.2. The first chapter of our work obtains the limiting dis-
tribution of LCI,,, without assuming that the X and Yy, (k = 1,2, ...) have the same distribution;
providing also an alternative proof of Theorem 1.1.1 as well as a proof of the conjectured Theorem
1.1.2.

One may wonder if the problem of the variance is solved in this setup because, of course, the
convergence in distribution does not imply the convergence of any moment. Let us prove that in
fact the convergence of moments as well. Theorem 0.1.7 continues to hold in this setup (clearly,
changing one variable does not change the absolute value of LCT,, by more than one unit), so we
have for any ¢t > 0,

2

P (|LCI, — ELCI,| >t) < 2™,

hence for any k& > 1,

2k
p ((LCI = ELCL\™ _ -
v

LCI,—ELCI,
un
integrable. Denoting by L the limiting distribution of %, we also have that the sequence

k
so for any k£ > 1, the sequence ( ) is bounded in Ly and therefore is uniformly

k
(%) converges in distribution to L*, and therefore we get that L* is integrable and

k
& ((LCL, — ELCI, EL*
\/ﬁ n— o0

the desired result (in particular, the problem of the variance is solved).

With this variant of the LCS problem in mind, let us recall results on the longest increasing
subsequences of one single word.

0.3 The longest increasing subsequences

Define the longest increasing subsequences as previously, except that now there is only a single
word: For z1,...,25 € A, let LIS(z;1...2,) be the largest integer k such that there exist 1 <
i1 < --- <1 < ssuch that ;;, <z, <--- <z, and if no integer satisfies these two conditions,
we set LIS(xy...xzs) = 0. The LIS was first studied when the letters are drawn from a random
permutation. Let 7 be a random (according to the uniform distribution) permutation of {1,...,n},
and let I,, = LIS (n(1),...,7(n)). The problem of finding the asymptotics of I,, was introduced
by Ulam [72]| in 1961 , and made popular by Hammersley [26]. Decades later, Kerov [45], Tracy
and Widom [70] investigated the asymptotics of LI, = LIS (Xy,...,X,) where Xy,...,X,, are
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i.i.d. random variables with uniform distribution on {1,...,m}. In words, this is the problem of
the longest increasing subsequences of a random word, rather than a random permutation. This
problem of finding the longest increasing subsequences of a random word, or more precisely a
generalization as exposed next, has a surprising connection with quantum statistics, that will be
presented in Section 0.4.

Let us start this section with the Robinson—Schensted-Knuth (RSK) correspondence, which
is an invaluable tool for both the random permutation and the random word problems. Then,
we will review some limiting results on the random word problem. Finally, limit theorems for the
random permutation problem will appear as a limiting case of the previous results (we proceed in
this presentation in a non-chronological order).

0.3.1 The Robinson—Schensted—Knuth correspondence

Consider a word w € {1,...,m}"™ (note that it may be permutation when m > n). Schensted
[63] was the first to connect LIS(w) to the size of the first pile in patience sorting. Let us recall
the steps of this process. Initially, we consider an empty list L. Then, for ¢ ranging from 1 to n,
insert the letter w; in the list L, such that the entries in L are weakly increasing (so w; is inserted
between two consecutive entries a,b so that a < w; < b, or inserted as the last entry of the list if
it is greater than all other entries). If w; is the largest entry, return L, else, delete ("bump") the
first entry strictly greater than w; (the entry b) and return L. See Figure 12 below for an example
of the patience sorting process.

(3 was bumped)
(2 was bumped)

Figure 12: Patience sorting of w = (1,3,2,1,1)

Schensted’s theorem [63] states that the length of L, which is the result of applying patience
sorting to w, is equal to LI S(w). Let us denote by |L| the length of L. In order to prove the theorem,
one can prove, by induction on n, a stronger result: |L| = LIS(w) and for any ¢ € {1,...,|L|},
LC; is the minimal integer such that there exists a weakly increasing subsequence of w made of
1 letters smaller or equal to LC;. In our previous example, this means that L gives the extra
information that there exists an increasing subsequence of length 3 (the maximal length) with all
letters smaller or equal to 1.

This theorem already allows a better understanding of the LIS, but Schensted took it one
step further: instead of just discarding the bumped letters, these are used for the next line, where
we apply the same rules of patience sorting. The result of such a procedure, called the Schensted
insertion, is not merely a list but an arrangement of n natural integers in boxes. See Figure 13
for an example of the Schensted insertion of w = (1,3,2,1,1), the bold letters being the newly
inserted ones.
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2
3 ‘ (3 was bumped)
1]1]
2 (2 was bumped to the second line, bumping 3 to the third line)
3
11]1]
2
3

Figure 13: The Schensted insertion procedure applied to the word w = (1,3,2,1,1)

[ ]

Figure 14: The Young diagram of the last tableau of Figure 13

Note that the lengths of the lines of the last tableau are 3,1,1 and therefore are weakly
decreasing. More generally, the output P of the Schensted insertion procedure always has weakly
decreasing row lengths, so it is a Young tableau (an arrangement of natural integers with weakly
decreasing row lengths - for a standard introduction on Young tableaux, see [21]). Furthermore, P
also has each row weakly increasing, and each column strictly increasing, such tableaux are called
Semistandard Young Tableaux (SSYT). One can prove by induction on n that any output of the
Schensted insertion procedure is a SSYT. A Standard Young Tableau (SYT) is a Young tableau
with strictly increasing rows and strictly increasing columns and containing exactly the numbers
1 through n (the total number of boxes). So when the input w is a permutation, P is also a SYT.

A partition X of n is a weakly decreasing list of non-negative integers (x1,...,x¢) such that
x1 + -+ 4+ x, = n, and this is written A - n. We also denote by ¢(\) the length of A\, the number
of nonzero elements in the list. For any partition A, we may complete it with an arbitrary number
of zeros, so that Ay is well defined for all k¥ > 1 (and it is zero when k& > ¢(\)). The shape of a
Young tableau of size n (meaning the total number of boxes is n) is defined as the partition of n
composed of the lengths of its rows.

A Young diagram is an arrangement of boxes, with weakly decreasing row lengths (in other
words, a Young tableau with empty boxes). Figure 14 is the Young diagram of the last tableau of
Figure 13.

Clearly, there is a canonical one-to-one correspondence between the Young diagrams of size n
and the partitions of n. For any Young diagram T, if ¢y, ..., ¢, are the lengths of its columns, the
Young diagram 7" with rows of length ¢y, ..., ¢k is called the conjugate of T. One can also define
the conjugate diagram as its reflexion about the line y = —x.
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N
N
N

N L1

N

y=—x

Figure 15: The correspondence between a Young diagram and its dual

Using the correspondence between partitions and Young diagrams, we may also consider for
A n the conjugate partition A’. In the Figure 15 example, the first partition is (5, 4,4, 2) and the
conjugate on the right is (4,4, 3,3,1).

We can now state the following result, generalizing Schensted’s theorem:

Theorem 0.3.1 (Greene, 1974 [25]). Let w € {1,...,m}", let Ak n be the shape of the output of
the Schensted insertion procedure of w, and X' its conjugate. Then for any k < £(N\), A1 +---+ A
is equal to the length of the longest k disjoint increasing subsequences of w, and for any £ < £(X\'),
A+ -+ X} is equal to the length of the longest ¢ disjoint strictly decreasing subsequences of w.

As an example, this theorem states that the word (1,3,2,1,1) has two disjoint increasing
subsequences of total length 341 = 4 (see Figure 13), and indeed one may consider the subsequences
(1,1,1) and (2). It also implies that the maximal length of a strictly decreasing subsequence is 3
(and indeed there is the subsequence (3,2, 1)).

Note that given a SSYT, there may be different words giving this same output. For example,
(3,2,1,1,1) gives the same output as above. In order to make the procedure a bijection between the
words and the outputs, the RSK procedure keeps track of the insertion order in another tableau,
the recording tableau. The output is a couple (P, Q) of P the SSYT output from the Schensted
insertion, and @ a tableau with the same shape (meaning the i-th line of P has same length as the
i-th line of Q) recording the order of insertion. To construct @, when the i-th letter is inserted,
a cell 7 where a new cell appears in P. Still with our previous example, we get the pair (P, Q) as
detailed in Figure 16.

The recording tableau @ is always a SYT. Here is the key fact establishing the bijection
mentioned above:

Theorem 0.3.2. The RSK procedure is a bijection between:

e The set of words {1,...,m}"™ and the pairs of Young tableaux (P, Q) such that P,Q have
same shape, same size n, P is a SSYT with alphabet {1,...,m}, Q is a SYT.

e The symmelric group &, and the pairs of Young tableauz (P, Q) such that P,Q have same
shape, same size n, P and @ are SYT.

We now provide an informal proof of this theorem. The key is to proceed in reverse: given
(P,Q), one knows the position of the letters added last (that is where the entry n is in @), and
from there, read in P the chain of insertions and bumps that lead to this insertion, so read the last
letter of the input. For example, consider the following output (P, Q):

We read in the recording tableau on the right that the last letter inserted was at the bottom
box. From the tableau on the left, we see it is a 4, and to get there, it must have been bumped
from the line above, and necessarily by a 2, which in turn must have been bumped by the insertion
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2 \ 12 \
3 3
11 \ 12 \
2 3
3 4
1]1 | 1 \ 12 | 5 \
2 3
3 4

Figure 16: The RSK procedure applied to the word w = (1,3,2,1,1)

1 7 1l2]4]6 \
2 8 3 7
4 8

of a 1 in the line above. So the last letter of the input was a 1. We also know what were the
tableaux P, Q) before the last letter. So we can go on, and find the whole input, (2,4,3,6,5,8,7,1).

In the sequel, for any word w, we denote by RSKshape(w) the shape of the tableaux P,Q
given by the RSK algorithm with input w.

The first corollary of the RSK correspondence is an explicit formula for the distribution of I,,
and more generally, the distribution of RSKshape(w) for 7 a random permutation of {1,...,n}
(recall that by Greene’s Theorem, I, = RSKshape(w);). Let A+ n, by the RSK correspondence,
the number of permutations o such that RSKshape(o) = X is equal to the number of pairs of SYTs
of same shape A\. We denote by SYT()) the set of SYTs of shape A, and define f* := | SYT()\)
(this is also denoted in the literature by dim A). We then have:

P (RSKshape(m) = A\) =

To make this formula more explicit, we now remind the Hook Length Formula for f*. For any
box O in A (we identify any partition with its Young diagram), we define h(O) to be the number
of boxes either on the same column, but down [, or on the same line, but to the right of (. For
example, here is a Young diagram with, in each box, its hook length:

1]

’H|[\DO’Y@OO
]
—
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More explicitly, let i, 7 be the coordinates of O (i is the number of the line, j is the number
of the row, we start the numbering at 1), and let A’ be the conjugate of A, we have

h(O) =X+ X, —i—j+1.
The Hook Length Formula states that:

= o
e, h(O)

One may also rewrites the term [[5., A(CJ) a bit differently. Let
hi = Xi +L(X) — 1,
this is the hook length of the first square of the i-th row. One shows
hit = [T (ki = hy) TT (@i),
J>i J<Xi

where [J; ; is the box with coordinates 4, j. Hence

N p
H h(D) = Hz:l - )
Oex A(hlv"'ahé(k))

where A(hy, ..., hy)) is the Vandermonde determinant H1<i<_j<l()\)(hi — h;), and finally we get
an alternative Hook Length Formula T

n'A(hl, ey hg()\))

f/\ = 76}
1Y) hat

Let us now turn to the distribution of RSKshape(Xy,...,X,) where X,...,X,, are i.i.d.
random variables taking values in {1,...,m} with distribution p1,...,pm,. For A F n, let SSYT(X)
be the set of SSYTs of shape A and let SSYT,,,(\) be the set of SSYTs of shape A with entries in
{1,...,m}. The Schur polynomials are defined as

oo
number of entries ¢ in T'
sa(zy,@e,...) = E Hxl .

TESSYT(N) i=1

Let, for any integer £ > 1 (and with a slight abuse of notation):
sx(z1,...,zE) = sa(z1, ..., 25,0,0,...).

We have, in particular:

m
— number of entries ¢ in T
sa(xi,. . xm) = E 1—[:102 .

TESSYT,, (A) i=1

Note that if A has more than m lines, SSYT,,(A\) = 0 and sx(z1,...,2Zm) = 0. We now
compute P (RSKshape(Xy,...,X,,) = A). We have

P (RSKshape(X; ..., X,,) = \) = > P (RSK(X1,..., X,n) = (P,Q))
PESSY T (A),QESYT(N)
= > P (Xi,...,X,» =RSK'(P,Q)),

PESSY T, (A),QESYT(N)
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where RSK~1(P, Q) is the unique word giving the output (P, Q). Note that the number of letters
7 in this word is the number of entries 7 in P, so

P ()(17 o ,Xm — RSK_l(P7 Q)) — Hp’rilumber of entries 7 in P,
=1
and
P (RSKshape(X; ..., X,,) =) = Z Hp;mmber of entries i in P
PESSYT,,(A),QESYT(A) i=1
= fAs)\<p17'-~>pm,)~ (031)

In particular, this provides an explicit formula for the distribution of LI, .

We will also use Cauchy’s bialternant formula: for any A F n, for any m > £()),

det (m?ﬁm_j)
1<i,j<m
Alor, - m)
Note that this polynomial is well defined: the determinant is alternating, therefore it is divisible

by A(x1,...,%,). Also, recall that when m < £(\), sx(z1,..., %) = 0. From this formula, it is
clear that the Schur polynomials are symmetric. Using (0.3.1), this implies:

sa(z1,. .. ) =

Proposition 0.3.3. Let 0 € G,,, let Xq,..., X, be i.i.d. random variables with p.m.f. p1,...,Pm,
and let Yy, ..., Y, bei.i.d. random variables with p.m.f. ps(1), ..., Po(m). Then, RSKshape(X1,...,X,)
and RSKshape(Y7,...,Y,,) have the same law.

The distribution of RSKshape(X7, ..., X,,) is called the Schur-Weyl distribution with param-
eters p,n, and it is denoted by SW™(p). We also write SW. in the special case of the uniform
distribution p = (1/m,...,1/m).

In the sequel, and especially in Chapter 3 of our work, to investigate the distribution of
RSKshape(X1, ..., X,) we will therefore assume, without loss of generality, that py > py > --- >
Pm-

We now review limiting theorems, firstly for the random word model, secondly, the random
permutation model.

0.3.2 The RSK shape for random words

We now review some known results on the asymptotic distribution of LI, = LIS(Xy,...,X,),
and more generally, RSKshape(X1,...,X,,), for X1,...,X,, i.i.d. random variables taking values
in {1,...,m} with distribution py, ..., pm.

The asymptotic distribution of LI,,, and more generally of the RSKshape, turns out to be
closely connected to the eigenvalues of certain random matrices: the matrices with the Gaussian
unitary ensemble (GUE) distribution. We remind that the Gaussian unitary ensemble of size m,
denoted by GUE,,, is the probability distribution of the m x m Hermitian matrices H defined as
follows:

e Forany i€ {1,...,m}, H;; ~ N(0,1);

e For any i,j € {1,...,m} such that ¢ < j, H; ; ~ Nc(0,1) (the complex standard Gaussian,
equal to N'(0,1/2) +iN(0,1/2));
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e These entries are drawn independently.

One may compute the density of probability of the distribution GUE,,,: for some normalizing
constant C' > 0, the density is e~ T*(H *)/2 /C' (this is direct consequence of the definition, and an
alternative equivalent definition of GUE,,).

Using the notations of [41], we also define the traceless GUE of size m, GUE?,L, as the dis-
tribution of H — (Tr(H)/m)I,, where H ~ GUE,,. This is the conditional distribution of GUE,,
given that the trace is zero. The first asymptotic distribution result was obtained by Tracy and
Widom, in the uniform case.

Theorem 0.3.4 (Tracy and Widom, 2001 [70]). Let H ~ GUE?, and let juy(H) denote its largest
eigenvalue. In the uniform case with m letters, we have the convergence in distribution:

LI, —n/m

Vafm o

pi(H).

It was conjectured in [70] that the convergence holds for the whole Young diagram, and later
proved by Johansson:

Theorem 0.3.5 (Johansson, 2001 [44]). Let H ~ GUEY, and py(H) > -+ > p(H) denote its
etgenvalues. If A ~ SWT | we have the convergence in distribution:

m?’

M —nfm A —njm LHD, L (HD).
( \/Vrl/im ) ) m > n— o0 (/’[/ ( )’ ’/’[/m< ))

This last result was proved earlier (1994) by Kerov [45, Chap. 3, Sec. 3.4, Theorem 2].
This result was then generalized to a non-uniform distribution. We follow [41] for the following

notations. For any sorted p.m.f. p on {1,...,m}, define the generalized traceless GUE distribution
GUE’ (p) as the distribution of H, where H is defined as follows. Let dy, ..., d} be the multiplicities
of p, which means p1 = -+ = D4, > Day+1 = = Pdy+dy > - - -

e Let Hy ~ GUESl17 o Hy ~ GUEgk be independent random matrices;

e Let B be the m x m matrix defined by blocks with Hy,..., H; on its diagonal;

[ ] Let T = Z?il \/prBL“
e Finally, for i,j € {1,...,m}, let H; ; = B; ; if i # j and H;; = B;; — \/piT.

As shown in [41], GUE(p) is the the distribution of the direct sum of mutually independent
d; x d; Gaussian unitary ensembles conditional on the eigenvalues p1, ... g satisfying /piu; +
<o+ +/Dmttm = 0. We may now state the generalization of the previous theorem:

Theorem 0.3.6 (Its, Tracy, Widom, 2001 [42]). Let p be a sorted distribution on {1,...,m}, let
H ~ GUE"(p) and let p1(H) > -+ > pp(H) denote its eigenvalues. If X ~ SW™(p), we have the
convergence in distribution:

()\1 —pin Am — PmT
pin ’ ’ \/pmn

) . (u1(H),. .., pm(H)).

Remarks.

(i) In particular, if p1 > -+ > pm,, which means dy = -+ = d,, = 1, the limiting distribution is
multivariate Gaussian.
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(i) Recalling Proposition 0.3.3, there is no loss in generality with the assumption that p is sorted.

The distribution GUE®(p) may not be very intuitive, but the next theorem allows a more nat-
ural interpretation of the limit. We denote by p(¥, for 1 < i < k, the probability with multiplicity
di (lIl other WOI'dS, (pla s apm) = (p(l)v cee 7p(1)7p(2)7 R 7p(2)a s ap(k)v R 7p(k)))

Theorem 0.3.7 (Méliot 2012 [55], as stated by Wright [76]). Let H € GUE’(p), let g1,...,gx

be centered Gaussian random variables with covariance (]li:jdi —d;d; \/p(i)\/p(j)> i<k’ and let
1<i,5<

foreachie{1,... k}, H; ~ GUEgi (the vector g and the H;’s being independent). Then, we have
the following equality in distribution:

(lu‘l(H)anum(H)) i 971 +N’l(I_Il)a"'vgil +:U'd1(H1)7@ +:L"1(H2)7"~797k +:u’dk(Hk) :
dy dy da dp,

The limiting distribution may also be written as a Brownian functional: it was done firstly in
[32] for the LIS, then in [33] for the LIS in a Markovian framework (the letters are a Markov chain,
generalizing the i.i.d. framework), and lastly in full generality in [34] for the whole Young diagram
still in a Markovian framework (see also [41]). Broadly, the main idea to get such limits is to
revise Greene’s Theorem but with disjoint subsequences. Then, the Brownian motions appear as
renormalized random walks counting the number of occurrences of each letter. The main advantage
of this approach is not only the ability to generalize to a Markovian framework, but also to give
non-asymptotic rates of convergence, as seen in Chapter 3. We recall a simple case: the limit
of LI, (the length of the first line of the Young diagram), when the distribution of the letters
is p. Denoting by d; the multiplicity of k, and letting B = (Bg(t))1<k<d, te[o,1] be a standard
dy-dimensional Brownian motion, the following convergence in distribution result holds true [32,
Corollary 3.3]:

dy
LI, — VI—dipr — 1

pin n—o dy

2 L (Bj(t;) — Bj(tj-1)) - (0.3.2)

Since the limiting distribution of the Young diagram is already known (Theorem 0.3.6 and
Theorem 0.3.7 above), the Brownian functional must have same distribution. This is not surprising
given the connections between some Brownian functionals and the eigenvalues of the GUE (5],
[24]). More precisely, the following theorem from [6], which is a generalization of [5], makes the con-
nection complete. Following [6], we first introduce some notations. Let B = (By(t))1<r<nste[0,1]
be a standard M-dimensional Brownian motion. Let P be the set of cadlag, non-decreasing func-
tions from [0, 1] to {1,..., M}. For # € P, m might be written as Z;‘i}ljl[trhtj) + M1y,
and let

1
AWB:/ dBr)(t)
0

= Z (Bj(tj) — Bj(tj-1))-

j=1

Let H ~ GUE,,, and for 1 < k < M, let u’f > > u’,z be the eigenvalues of the principal k x k
minor of H.

Theorem 0.3.8 (Benaych-Georges and Houdré, 2013 [6]). We have the following equality in dis-
tribution:

¢
d
(uf)lgngM = (sup{ZAmB;m,...m eEP,m <o <mp < k}) .
1<0<k<M

i=1
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Now, we may prove directly that the right-hand term in (0.3.2) has the same distribution as
the limit given by Theorem 0.3.7, namely, pi(H;) + (g91/d1). Firstly, [6, Corollary 2| asserts the
following equality in distribution holds true:

i \/1—d1p1—1

max (B;(t;) — Bj(tj-1)) 4

dy
v1—d -1
- B;(1) + Te(H) + pn (H),
= 0=tp<---<tgq, =1

dy ;

where H ~ GUEy,. Secondly, using the independence of the projections of a Gaussian random
variables on orthogonal spaces, H — (Tr(H)/dy)I4, and Tr(H) are independent, and

\/1—d1p1—1

Te(H VI—dip
To(H) + i (H) = oo (= S ) V=i gy
d1 dl dl
2
= m(H®) + 7d1d it Z
1

where H' = H — (Tv(H)/d1)1g4, ~ GUES1 and Z is an independent standard Gaussian, which is
exactly the limit in Theorem 0.3.7.

Note that the limit of LCI,,, given in Chapter 1, is also a Brownian functional but to this
date, the connection with GUE eigenvalues remains unknown.

0.3.3 The RSK shape for random permutations

We now review some known results on the asymptotic distribution of I, :== LIS(w(1),...,7(n)),
and more generally, A" := RSKshape(7(1),...,n(n)), for 7 a random permutation of {1,... ,m}
(following the uniform distribution). This problem, as mentioned before, is older than the random
word model, and there would be much more to say, but we focus on the connection with the
previous models.

We denote by TW the Tracy-Widom distribution, whose density is defined as the solution of a
Painlevé equation, see e.g. [71]. Its mean is approximately —1.771 and its variance is approximately
0.813. Tracy and Widom proved the following convergence result:

Theorem 0.3.9 (Tracy and Widom, 1994 [69]). Let H,, ~ GUE,,, and p1(H,,) denotes its largest
etgenvalue. We have the convergence in distribution:

V2mtS (pi(Hy) — 2v/m) == TW.

n— oo

It turned out to be also the limiting distribution of I,, (once rescaled):

Theorem 0.3.10 (Baik, Deift and Johansson, 1999 [4]). We have:

Li=2/n o

n1/6 n—00

Note that for any n, when m goes to infinity, LI, tends to I, in distribution. Therefore, the
following theorem is a generalization of the former one.

Theorem 0.3.11 (Johansson, 2001 [44]). Let m € NN be such that (logn)*/%/m, —— 0, then
n—oo

in the uniform case, we have:

LI, -— n— 2
n = n/m *2//? — TW.
nt/6 (1 + /n/my) n=oo
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Let us also note that similarly to the random word case, there are also theorems on the limiting
shape of the Young diagrams. This time, the number of rows goes to infinity, so a renormalization
is in order: let, for all 2 > 0,

)\(")
A () = [zvn] ’
(@)= "=

let G(™) be the set under this function, that is, G = {(x, y) y < AW (z),z > 0}, and finally let

C= {(m,y) o< (ff + 1) sin(6) + 2 cos(8),y < (29 _ 1) sin(6) + 2 cos(6),0 [-2.7] } .

s s s 272
Then we have the following result:

Theorem 0.3.12 (Logan, Shep, Vershnik and Kerov, 1977, as stated in [59]). For any ¢ > 0, we
have
P ((1 —e)CcG™ 1+ a)c) — 0.
n— oo
Remark. This is a slight modification (with the usual Young diagram, instead of a tilted "Russian”
diagram) of a theorem originally proved independently in 1977 in [13] and [51].

There is, once again, a connection with the shape of random words: if we consider, instead
of A", the RSK shape of a word of length n with an alphabet {1,...,m(n)} (with the uniform
distribution), and m(n)/y/n —— 0, then [7] proved that Theorem 0.3.12 continues to hold.

n—oo

However, when m(n)/y/n tends to any other limit than zero, the limiting curve is different, and
is given in [7]: this time, the fact that many letters are repeated makes it very different from the
permutation case.

To conclude, let us mention two connections between this model and the longest common
subsequences problem.

Firstly, I,, = LCS(m;1,) and if 7’ is another independent random permutation, I,, has the
same distribution as LCS(m;7’), because LOS(m;n') = LOS(r~n';1,,) = LIS(mn~17').

Secondly, the study of I,, has consequences on the study of ~;. Although we do not know the
exact value of any 7k, we have the following theorem:

Theorem 0.3.13 (Kiwi, Loebl, Matousek, 2005 [46]). klim vk = 2.
—00

The idea is to study the case k >> n, where one can use the results on I,,, then to come back
to this case by partitioning into blocks. It is based in particular on a very strong concentration
inequality from [4].

0.4 Quantum statistics

We now give a brief introduction to quantum measurements, and explore connections with RSK.
This is the object of Chapter 3 of this work.

A d-dimensional quantum system is a system that is in a mixed state of d quantum states,
which means it has probability p; to be in the state u; € C?, py to be in the state us € C%, ..., pg
to be in the state uq € C? The matrix p := pyuju} + -+ + pguqu; is positive semi-definite
(p.s.d.) Hermitian with trace one, it is called the density matrix of the system. Reciprocally, for
any p.s.d. Hermitian matrix p with trace one, there is (at least) one system with density matrix
p: if (p1,...,pq) are the eigenvalues of p and wuq,...,us the unit eigenvectors, one may indeed
consider the mixed state: w; with probability pi, us with probability po, ... with density matrix
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pruruy + - - + pguquy; = p. In the following, we call density matrix any p.s.d. Hermitian matrix
with trace one.

Physically, two systems with the same density matrix are indistinguishable. So we may assume
that the eigenvectors are the different states and the eigenvalues are the different probabilities of
these states. Of course, it is impossible to measure directly p, but one may get a measurement of
p, which is a random variable as defined next.

The simplest kind of measurement is the basis measurement: one provides an orthonormal
basis v1, ..., v of C?, and the outcome of the measurement is a random variable N taking values
in {1,...,d} with p.m.f.:

d
P(N =i) =Y p;{ui,v;)?
j=1

= Tr(pE}) where E; := v;v}
= (p, E;) with the usual dot product on matrices.

More generally, to make a projective measurement, one provides E1, ..., E4 some self-adjoint
projections (i.e. orthogonal projections) such that Ey 4+ --- + E4 = I, and the outcome of the
measurement is a random variable N taking values in {1,...,d} with p.m.f.:

P(N = i) = (p, ).

Note that if one knows an orthonormal basis of eigenvectors (i.e. the quantum states), then
a basis measurement with this basis has p.m.f. py,...,pg, therefore estimating the p;’s this way
amounts to classical statistics.

In quantum statistics, after each measurement the state collapses, so one needs n independent
copies of the quantum system to complete n independent measurements. But instead of making
n measurements one after the other, it is actually best to see the n copies as one single quantum
system with density matrix p®", and then make one single measurement, called entangled mea-
surement, to estimate p. Out of all the measurements that one may perform on p®", it turns out
that one of them is optimal: a projective measurement called weak Schur sampling. By "optimal",
we mean optimal to compute any property of the spectrum py, ..., pg, in the sense of [76, Theorem
2.6.3]: If we have an algorithm for computing the property which has failure rate § on any density
matrix, then there is a similar algorithm for doing so using only weak Schur sampling followed by
classical post-processing. Therefore, in this work, we will focus on this measurement of p®™. The
family of self-adjoint projectors of this projective measurement is given by the Schur-Weyl duality
Theorem, and is indexed by the partitions of n. Therefore, the outcome of this measurement, the
weak Schur sampling, is a random partition A - n, and it is well known (see e.g. [76]) that its law
is SW"(p). In other words, one may see the measurement A as the shape of the RSK algorithm
applied to a random word of length n and letters drawn with p.m.f. p. The problem is to find a
good estimator of the p.m.f. p, given .

As previously seen, the limiting distributions of A ~ SW"(p) are well known, but in the first
part of Chapter 3 we will revisit the rates of convergence, because of the need for non-asymptotic
estimation results. Then, we will improve two results connected with the estimation of p, the first
one is a bound on the sum of the variances of \, the second one is a bound on the "excess" of \.



Chapter 1

The Limiting Law of the Length of
the Longest Common and Increasing
Subsequences in Random Words

This chapter is taken from our publication [18]. We sincerely thank an Associate Editor and a
referee for their detailed readings and numerous comments which greatly helped to improve this
manuscript.

Let (Xj)k>1 and (Y%)r>1 be two independent sequences of i.i.d. random variables, with values
in a finite and totally ordered alphabet A,, := {1,...,m}, m > 2, having respective probability
mass function py,...,px and pl,...,pY. Let LCI, be the length of the longest common and
weakly increasing subsequences in X, ..., X,, and Y7, ..., Y,,. Once properly centered and normal-
ized, LCI, is shown to have a limiting distribution which is expressed as a functional of two
independent multidimensional Brownian motions.

1.1 Introduction and preliminary results

1.1.1 Introduction

We analyze the asymptotic behavior of LC1I,, the length of the longest common subsequences
in random words with an additional weakly increasing requirement. Throughout, (Xj)r>1 and
(Yi)r>1 are two independent sequences of i.i.d. random variables with values in the finite totally
ordered alphabet A,, := {1,...,m}, m > 2, and respective p.m.f. p3*,....pX pX >0,i=1,...,m
and pY,....,pY pY >0,i=1,...,m. Next, LCI,, the length of the longest common and weakly
increasing subsequences of the two random words X; --- X,, and Y7 ---Y,,, is the largest integer
r € {1,...,n} such that there exist 1 <i; < --- < i, <mand 1 <j; <--- < j,. <nsuch that

o Vse{l,...,r}, X;, =Y

ER)

o X;, <X, < <X; and V), <Vj, <o <Y

r?

and if no integer satisfies these two conditions, we set LCI,, = 0.

A thorough discussion of the study of LCI,,, with potential applications, and a more complete
bibliography, is present in [12], where the following is further proved (below, as usual, A is short

39
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for minimum):

Theorem 1.1.1. Let Xy and Yy (k=1,2,...) be uniformly distributed over {1,...,m}. Then,

LCI,, —n/m _1m ¥ s NS
/r/m n—»oo§ O:togtllngaﬁcgtmzl [( E;Bl (1)+Z(Bz (tz) Bz (tzfl)) A

=1
(;iBZ W+ (BY (1) - Bz/(ti_l))> ]

where BX and BY are two independent m-dimensional standard Brownian motions on [0,1].

The results of [12] extended (and corrected) the proof of the case m = 2 analyzed in [31] and
also conjectured the following generalization:

Theorem 1.1.2. Let Xy and Yy, (k = 1,2,... ) have the same distribution, let pmax = MaX;e(1,....m} piX
and let k* be its multiplicity. Then

LCI,, — npmax max m Z BX
\/m n—00 0=to<t; < <tpx=1

-
Z(Bf(m)—Bmi_l)))A(V R ZBY +Z<BB” (t) = BY wﬁ))],

=1

where BX and BY are two independent k*-dimensional standard Brownian motions on [0, 1].

Clearly, in case k* = m, the two limiting distributions in (1.1.1) and (1.1.2) are the same but
they differ otherwise. Indeed, (1.1.1) involves two independent m-dimensional Brownian motions
while (1.1.2) involves k*-dimensional ones. So, in particular, if £* = 1, then the right-hand side of
(1.2) is just the minimum of two independent centered normal random variables. In view of the
results obtained in the one-sequence case, e.g., see [32], [6], and the many references therein, it is
tantalizing to conjecture that both the right-hand side of (1.1.1) and of (1.1.2) can be realized as
maximal eigenvalues of some Gaussian random matrix models.

Below, we aim to obtain the limiting distribution of LCI,,, without assuming that the X and
Y: (k=1,2,...) have the same distribution; providing also an alternative proof of Theorem 1.1.1
as well as a proof of the conjectured (1.1.2). A brief description of the content of our notes is as
follows: the rest of the current section is devoted to studying the asymptotic mean of LCT,. This
asymptotic mean result is already not so predictable and allows for the proper centering in the
limiting theorem whose proof is provided in the next section. The third and final section is mainly
devoted to studying extensions and complements, such as results for sequences with blocks and
infinite countable alphabets.

1.1.2 Probability

Forie{1,...,m}and j € {1,...,n}, let £ € N={0,1,2, ...}besuchthatj+€§n+1, and let

]Z _ZHAXJJrk =t <I‘ebp NZ _Zﬂ +k_i>7

be simply the number of letters ¢ between, and including, j and 5+ ¢ — 1 in Xy,..., X, (resp.
Y1, ..., Y,), with the convention that the sum is zero in case £ = 0. From the very definition of
LC1I,, it is clear that

X1 Y1
LCI, = _max NMX/\NMY—l—NXZX/\NYZY—i— +N
ZX,KYGN”L X7 1
Ot =n
O 4ty =n

Y m
X+ +£X71235L/\N2Y+ ey 1eY)'



1.1. INTRODUCTION AND PRELIMINARY RESULTS 41

Next, let A = {A € (R)" =1[0,4+00)™ : Ay + -+ Ay, = 1}. For A € A, let
A=A+ A)n] = [(M+ -+ Aima)n],

where |.] is the usual integer part, aka the floor, function. When A runs through A, ¢"(\) =
(™M1, ..., €"(N)m) runs exactly through {£ € N™ : ¢y +---+ £, =n}, so

LCI, = )\XH;%/XGA (N é’L()\X)l

NX m NYm )

Y,1 X,2 Y,2
/\N 1,en(AY )y +N’7L(AX)1’E’IL(>\X)2 A N[n (AY)1, Z!L(Ay)z

(AT )14l (A ) o 1€"(>\X)m L (AY )14 (A ) — 1,8 (A )i

For ease of notations, throughout the paper, for all = € (Rm)2, we write x = (:cX , xy) so, for

example, above, AX, A\Y € A becomes \ € A2.
For i € {1,...,m} and ¢ € [0, 1], let now
NX —pZth

E@X (t) _ 1,|tn]

NY —pZYtn
P (L=p)n

=n.Y 1,|tn]
, resp. B;"" (t) =
( py (1—=p))n

and for A € A2, let

VX OX) = o (=) (B O 0 = B 408,

2
VYY) = ol (= p!) (B OF 4+ A) = BPY O 40

so that (1.1.2) becomes

LCI, = maxz [(npl )xX + fV"X()\X)) (npz )\Y + \FV"Y()\Y))]

AEA?

The above identity provides a representation of LCI, as a maximum over the locations,
A € A2, where to pick in each word X1,..., X, and Y1,...,Y,, the letters 1,2,...,m in order to
form a common sub-word. This is different from the approach in [12], where the maximum is over
the numbers of letters 1,2,...,m in a common sub-word. Of course the two representations are
equivalent. However, the advantage of our approach is that A takes its values in a deterministic
set, as opposed to a random set.

In order to keep dealing with maxima it will be convenient to replace Ez" in (1.1.2) by its
continuous alternative: for ¢ € {1,...,m} and ¢ € [0,1], let

NXL”LJ + (tn — [tn)) x|, =i — piin

B (t) =
P (1—p)n
and v
N+ (tn— i)y, =i — Pl tn
Bin’y(t) _ T 'L,tn] ( L J) Ltn]+ i .

p; (1—p])n
Next define V"X V™Y just as in (1.1.2) and (1.1.2), replacing B by B, and let

AEA?

LCI; = max Z [ (anX/\iX + \/ﬁVZ"X(/\)) A (nsz)\Y + \/ﬁVlnY(/\)) ] .
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Our analysis rests upon estimating the variations of B?’X and of Bf’y. To do so, let n €
(0,1/6) and let A” be the event:
X,i
N v pf(g < nn\/?’
— 2 Vn

Vi € {1,,m},V] S {1,...,71},\766 {0,,n+17]}7 j,l\/ﬁ

n”\/?
< —y/—.
- 2 n

Y,i Y
i Pt

NG

and

By Hoeffding’s inequality,
1—P (A7) < 2n(n + 1)mexp (—"2> , (1.1.1)

and so if A7 occurs, then for all ,y in [0,1] and i € {1,...,m},

n n n" 1
o) (B ) - B @) < gl ol + L
and in particular,
n nn—1/2
o =) (B ) - B2 )| < Vel + e <

and the same applies to Y instead of X.

1.1.3 Asymptotic mean: distinct cases

Let us investigate the limiting behavior of LCI, /n. From (1.1.2),

LCI, S X\ X vn,x(/\x) Y\Y ‘7'n’Y()‘Y)
= max AP CANEI S CARAS IV (P95} @ELCARNS oAy B )
n Aea® i [(p v g v

Note that [V"*(A\X) — V"X (A\X)| < 1/y/n (and similarly for Y). Thus, using (throughout the
paper) the following elementary inequality, valid for any a,b,c,d € R,

laAb—(a+c)A(b+d)| <max(|c|,|d]), (1.1.2)
we get
Lcr, LCI: s m
n n —n

Moreover, if A7 occurs, then for all A € A?

55 Kpf‘Af . VX}AX)) A (mz + V}“)] SSlmn A )| < o

i=1 i=1

so, letting f : (]Rm)2 — R be given via

m

£ 0 =) (@) A F v (1.1.3)

i=1

we have:

LCI,
‘ Ol _ max f(/\)’ < mn"Y/2,
n Aen?
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By the Borel-Cantelli lemma (recalling (1.1.1)), almost surely, eventually A? occurs so LCIE /n
and LCI, /n both converge almost surely to

€max ‘= max f(\). (1.1.4)
AEA?
From
LCI,
——— €mazx, &S,
n n—oo
we also get by dominated convergence
ELCI,
emaa:'
n n—0o0

One can think of ey, as the length ratio of the longest common and increasing subse-

quences in a continuous, non-probabilistic setup: the letters have density masses pi*, ps, ..., px
and p¥7p2y7 R 7p’l¥"74'
Now, let
U u U U
U:{uG(R+)m R N P e T <1},
P Dm b1 Pm

and let ¢ : R™ — R be given by ¢ : u +— ug + -+ + Upy,-

On U, there is a correspondence between f in (1.1.3), and the above ¢. Indeed, for A € A2,
defining u by u; = (pf{)\;x) A (ply)\ly), f(\) = ¢(u), and for u € U, there exists A € A2, such that
NS > w;/pX and A} > w;/pY so that f(A) > ¢(u). Therefore, emax = max,cyy ¢(u). Also, let

Kpz = f7 ({emax}) NA%, and Ly = ¢! ({emax}) N U.

The above correspondence provides for each element of K2 an element of Ly, and for each element
of Ly at least one element of K,z (if one of the two inequalities defining U is strict, then there is
more than one way to define the corresponding A). Next, let I be the set of integers i € {1,...,m}
such that there exists u’ € Ly with u! > 0. One can think of I as the letters that can be used to
maximize ¢, or, equivalently, to maximize f. Let

1 .
I E i 1.1.
U 7] u’, (1.1.5)

el

sou! € Ly and for all i € I, u{ > 0. Thanks to the above correspondence, we define (and will use
throughout the paper) a € A? such that aX =a} =0 for alli ¢ I and aX > u!/pX, a} > ul/pY,
for all i € I (a is a correspondent of ur). Since f(a) > ¢(u!) = emax, a € Kp2. We shall see,
and use, that when restricting the alphabet to I, asymptotically (when properly centered and
normalized) the distribution of LCI,, remains unchanged.

Two distinct cases need to be analyzed in order to study the limiting distribution of LCI,.

Case a) There exists u € Ly such that At =land 5+ 4 2 <L
For example, when p*X = (3/8,3/8,1/4) and p¥ = (1/2,3/8,1/8). Here the maximum is 3/8,
and I ={1,2}.

Heuristically, this case indicates that the length of the common words is limited by the word
X;---X, and not by Y;---Y,. Using the correspondence between L;; and K2, this case is
equivalent to the following statement: there exists A\ € K2 such that foralli € {1,...,m},pXA\¥ <
py A} with at least one strict inequality. In this case, one has:
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Lemma 1.1.3. Let p,. = maxjeq1. myp; . Then I = {i € {1,....m} : p{ = pp..} and
Emax = Pisax- Moreover there exists iy € I such that p}j > pX o

Proof. Let i,j € {1,. m} be such that p¥ < p] , and assume, by contradiction, that ¢ € I. Let
u € Ly satlsfymg b4+ =1and “; +ot e <l andletv= (u +u)/2, so that v € U,

v; > 0, p ---+;*;g <1and “1+ p¢ < 1. Let for € > 0, v(e) be the vector v except at
1 m m
the coordinates ¢ and j where U(E) = v; —epy and v(e); == v; + aij. It is clear that, when &

is small enough, v(e) € U and ¢ (v(¢)) = emax + (P} — P;*) > €max, leading to a contradiction.
Hence I C {i € {1,...,m} : p;* = pX..}. Reciprocally, let i € {1,...,m} be such that p;* = pX_.
and let j € I. If i = j we are done. Otherwise, one can slightly change u by adding ¢ to the ith
coordinate and subtracting € to the jth coordinate so that ¢(u) remains unchanged, and w is still
in U (for e small enough), so I = {i € {1,...,m} : pX =pX..}.

Since % + -+ + 38 =D i) px pxX— > Dier e there exists i1 € I such that p}, > p,.. It is

1

finally clear that e, = completmg the proof O

X
Pmax»

As a consequence of the above lemma, we prove next that

g pl} ={\Y : Ne Ky}, (1.1.6)

J_{AXGA VigI, \f =

i€l

(in particular, this set is non-empty which is all that is really needed in the rest of the proof). To
show this equality, first note that {)\X e K Az} C J since, indeed, when A € K2, for every
i€ 1, pX MK <pYAY and then take the sum. Conversely, if /\X eJ, Zlelpmaxx\l /p¥ <1, s0let
AY be such that for every i € I, AY > p AN /pY and >, AY =1, while for i € I¢, let )\Y = 0.
Clearly, A € Ke.

Case b) Forallue Ly, & ¥ ~-~+;T3§:§T}+-~-+Z—g:1.

Heuristically, this second case indicates that in order to form the longest common words, it is
necessary to make full use of both words. Using the correspondence between Ly and K2, this case
is equivalent to the following: for all A € Kz, foralli € {1,...,m},pX A\ = pY' AY. We can further
distinguish two subcases, namely, we are in Case bl) if each coordlnate of PX := (1 /i )l cr € R!

is equal to each coordinate of PY = (1/pZY)Z,E[ € R!, and in Case b2) otherwise.

For example, if p* = (1/3,1/3,2/9,1/9) and p¥ = (1/3,1/3,1/9,2/9), we are in Case bl) and
emax = 1/3. If pX = (2/3,1/6,1/6) and p¥ = (1/6,2/3,1/6), we are in Case b2) and eya, = 4/15.
In both of these examples, I = {1,2}.

Below Span(PX) (resp. Span(PY)) is the linear span of PX (resp. PY).

Lemma 1.1.4. In Case b2), there exists a unique pair of reals s,t such that sP~X +tPY = (1)er

Proof. The only alternatives to Case bl) are: PX and PY are linearly independent, or PX and
PY are linearly dependent and PX # PY. If the latter, given that PX and PY have positive
coordinates, PX < PY (coordinate by coordinate) or PY < PX. But PX < PY clearly implies that
Case a) occurs, and not Case b) leading to a contradiction (and similarly PY < PX). Therefore,
the only alternative to Case bl) is for PX and PY to be linearly independent. We now prove
that H := (1);er € Span(PX,PY). To do so, we use an elementary duality result: if E is a
finite-dimensional space with dual E*, and if I1, 1,13 € E*, then Ker(l;) NKer(lz) C Ker(l3) if and
only if I3 € Span(ly,ls). Indeed, considering the restrictions lyker(i,) and l3jker(i,) of l2 and I3 to
the subspace Ker(l;), we have Ker(lzker(1,)) C Ker(l3jker(i,))- Therefore, I3jker,) = Majker(i,) for

some A € R, and if u ¢ Ker(ly), then I3 = A + Wh (because this is true on Ker(l;) and
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on u). So, returning to our problem, H € Span(P~, PY) is equivalent to: Ker(PX )NKer(PY") C
Ker(H*), where for any L € R!, L* denotes the linear form defined by L*(y) = L -y. Let
z € Ker((PX)") N Ker((PY)"). Clearly, there exists ¢ > 0 such that u! + ez and u/ — ez have
non-negative coordinates, and so they are in Ly, and H*(u! +ex) = H*(u! —2) = emax otherwise
one of them would be greater than ey, hence z € Ker(H*). O

For instance, taking again pX = (2/3,1/6,1/6) and p¥ = (1/6,2/3,1/6), we get PX =
(3/2,6), PY = (6,3/2) and s =t = 2/15.

Without loss of generality (switching the roles of X and Y'), one can thus assume that either
Case a) or Case b) occurs.

In Case b), the following technical lemma, whose proof (given in the Appendix) is not crucial
to understand the rest of this manuscript, is needed to state our main theorem. Let us define first,
in Case bl),

X
i 2€max €max (pf( —P;

tX =1- Sx,
0» 1f {Z S IC»P;'X 2 emax} = (Z)a

Y pX o) e o
Sx 1= {maxielctp pl(pliemd}’; if {i € IC,pZX > emax) 7 0,
and, similarly,

P (0} —emax)

: ; c. Y
sy = MAXie1e,pY >emax emax (DY —pX )’ ?f {Z €l ZZ/Z 2 emaxh 7 0, ty :=1— sy.
0, if {i € I°,p > emax} =0,

It is clear, from the definition of I, that if ¢ € I is such that pZX > €max, then pZY < €max,
therefore sx and sy are well defined and one can check that sx,tx,sy,ty € [0, 1].

In order to state our next lemma, below let £ = {& € R™ : 21 4+ -+ 4+ x,, = 0} and let
E'={zeE:Vielx >0}

Lemma 1.1.5. Let v € (Rm)2 be such that for all i € I¢,vX = v) = 0, then the following
mazximum is well defined:

m(v) = max [(p 2" +vX) A () 2) +v)7)]. (1.1.7)
reRtI
and .
m(y) = max > [(pFaf ) A el 1)), (1.1.8)

l[2]loo <2Cm||v]| 00 =1

for some constant C' > 0, depending only on p* and p¥, as given in Lemma 1.2.3. In Case b1),
writing S® =Y, vP, then
sxSY +txSX, ifS¥ <SY,
m(v) = X Y  ragX s Qv c
sy S*t +tySY, ifST >S".
In Case b2), and recalling the notations of Lemma 1.1.4, then

s 4
; i

€1 g

1.1.4 Representation of e,,,,

We now aim to give a more explicit expression for e,,,, defined by (1.1.4). To do so, let us start
with the following lemma which asserts that, in the non-probabilistic setup, "two letters are enough
to reach the maximum".
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Lemma 1.1.6. There existi,j € {1,...,m} and X € K2 such that for allk ¢ {i,j}, \¥ = A} =0.

Proof. Let u € Ly having (at least) three non-zero coordinates. Then, recalling the correspondence
between Ly and K2, in order to prove the result it is enough to show that there exists a v € Ly
having one less null coordinate. Without loss of generality, let uy, us,us > 0, and let

V:{xeRm Sy fﬂ;‘zmz...:xn:o},

i=1 Pi i=

Since the dimension of V' is at least one, let € V'\ {0}. Then clearly, there exists ¢t € R such that
v := u + tx has non-negative coordinates and one more null coordinate than u. Moreover, v € Ly,
which completes the proof. O

If there exists u € Ly such all its coordinates except one, call it i, are zeros, then €. =
pX A pY. Otherwise, let i,j be defined as in the statement of the lemma. At first, assume that
pX = p;( and that p! < p}/, then epax < (AXpX A /\}/p}/) + ()\JXpZX A )\}/p}/) < (ApX + )\fp;-x) A
(/\lyp}/ + )\j/pf) = pX ApY, 50 emax = p¥ Ap) and we are actually in the first case, giving a
contradiction. Similarly, if p;* < pf( and p} < p}/, using AXpX A A pY < AKX p]X A )\ZYp}/ we get
a contradiction as well. Therefore, in the second case, necessarily, possibly permuting ¢ and j,
P < p]X and p)y > p}/. Additionally, it is necessary to have that p;X < pY, otherwise emax = p}
and we are in the first case. Similarly, p}f < pf . Then, in this case, the maximum is when the
quantities in each minima are equal, and so one shows that
oo = el ) = pipl (pf *f{z +p§p£(pf *pf).

b; by —Di Py

Therefore,
X Y . .
= XA ) ) 1.1.9
Cmax = Max (128571 (0 A wi) T :I;Ialfa)épj‘ (i, J) ( )
AV
pl >p)
Note that

X Y X Y
max SAD: ) < emax < max p; A | max p;
1<i<m (pl Pi ) — max = <1§i§mp’ ) (1§i§mpl > ’

where the left inequality is clear, while the right one is easily seen from the expression of f. Note
also that above, e,,4, is equal to the lower bound when the second max in (1.1.9) is over the
empty set, and is equal to the upper bound when there exists i such that p. = pX < p! or

Yy _.Y X
Pmax = P; sz .

When pX = p¥ (same distribution for each word), we see that epa., = maXje(1,....m} pX is
minimal when p¥ is uniform (for a given alphabet). This is to be contrasted with the case of the
length of the longest common subsequences, LC,, (defined just as LCI,, but without the increasing
condition). Indeed, little is known about v* := lim,,_, 1o ELC,, /n, for instance whether or not it
is minimal (for a given alphabet) for the uniform distribution. Since LC,, is defined with one less
constraint than LCI,, clearly ena < v* which is of potential interest since the exact value of ~+*
is unknown, even in the uniform binary case. (This last inequality provides a lower bound on v*,
no matter the distributions on the letters. For uniform letters, eyax = 1/m, although it is known
that, then, asymptotically, v* ~ 2/y/m, see [46].)
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1.1.5 A criterion to distinguish the three cases

For a given distribution, it is not completely apparent which situation is in play as far as the
respective cases a), bl) and b2) are concerned. Our next result makes this more transparent.
First, set

_ X Y _ .o
€1 = 1lax (pz /\pz ) ’ €2 = IH)E(%X ¥ G(Z,j),
1<i<m ,J 1 P <pj
AV
p; >p)

so that, by (1.1.9), emax = max(eq, €2).
Theorem 1.1.7. Let ey < ey, then Case b2) holds true. Let ey > es, then:

(i) If for some i € {1,...,m} such that pX Ap}Y = e1, one has p;* # pY, then Case a) holds
true or so does its symmetric version: there erists u € Ly such that ;j—,l, + 42 py =1 and
1

MLy ug "
p{<+ +p7;7<1<1.

(i) Otherwise, i.e., if for all i € {1,...,m} such that piX Ap! = ey, one has p;X = pY, then
if e1 > ey Case bl) holds true, while if e; = eq, then so does Case b2).

Proof. First, for any 0 < 6 < 1, let emax,s, €1,6, €25 and es(i,j) be defined just as emax, €1, €2
and e(i, j) but replacing pY with §p}, for all i € {1 m} Next, from the very definition of
Case a) There exists u € Ly such that “1 + - =1 and o+ Z¢ < 1. Letting

0p i= & +- -+ L we have

3 py et 6"’" =1so emax 60 > Emax and therefore (clearly, emax.s
is non- decreasmg in 0) emax,60 = €max- S0 When Case a) occurs there exists 0 < §y < 1, such that
for all § € (do, 1], €max,s = €max, and one can easily check the converse. A similar result continues

to hold for the symmetric version of Case a).

We can now prove the statement of the theorem by distinguishing the following four occur-
rences.

(1) Let e; < ea. Let 0 < §p < 1 be close enough to 1 such that for any § € (dg, 1], the set of

e X X X
pairs 4,5 € {1,...,m} such that p/\ ¢ is equal to the set of 7,5 € {1,...,m} such that AV

P >p}/ 5p) > op)
Since for every 4,j in this set, it is immediate to check that e(i,7) > es(i,7), the maximums
satisfy ea > e52. Since e; < eq, by continuity, for § close enough to 1, max(es1,€es52) = €52 S0
€5, max < €mag, hence we are in Case b). There are 4,j € {1,...,m} such that enax = €2 = e(i, j),
50 i,j are in I, but p;¥ < pX so we are in Case b2).

(2) Let e; > eg, and let there exists i € {1,...,m} such that pX A p} = e; and pX # pY,
say, p;X < pY. Then, the very definition of Case a) is verified with the vector u € R™ having
coordinates equal to zero except for u; = pX. If instead, pX > pY then the symmetric case holds
true.

(3) Let e; > ey and let for all i € {1,...,m} such that pX Ap} = e1, pX = p!. By continuity,
for ¢ close enough to 1, max(es,1, €5.2) = €5,1 = 0€max S0 we are in Case b). Additionally, one verifies
that under our assumptions I is restricted to the set of i € {1,...,m} such that p;* = p} = epax.
Therefore, we are, in fact, in Case bl).

(4) Let e; = ey and let for all i € {1,...,m} such that pX A pY = ey, pX = p}. From what
is done above, we see that for ¢ close enough to 1, esmax < €max hence we are in Case b). Once
again, since there are 7,5 € {1,...,m} such that ey = e2 = e(i, j), we are in Case b2). O

To present another explicit example, let us fully corner the case m = 2, with p, p¥, pl’, and
py . The following completely describes the various cases:
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o If pi¥ = pY, then (since, necessarily, p5 = pY ) €mar = max(p:, p5) = max(py,1 — py ) and
we are in Case bl).

o If p¥ # pY and 1/2 € (min(pyX, p!’), max(p:<, p)), then
Cmazr = max(min(pf,p{), min(p§7p%/)) = max(min(p{(,p}/), min(1 — p{(, 1-— pf)),
and we are in Case a) or its symmetric.

o If pi* #pi and 1/2 ¢ (min(p, py ), max(pi, py)), then

X Y/ X Y X, Y/ Y X
pipY (05 —py) + vy (0} —p
e = P12 pyp) pi(pi( L2 Y 4 pXpY = p¥pY + (1-p)(1 - p)),
M1 P2

and we are in Case b2).

1.2 The limiting law

It is clear, from the previous section, that the proper way to center (and normalize) LCI, is via

LOIn — M€max

ARG
= max Z [(VApX A+ 77X 0%)) A (Vapd A + 77 ()] = Viremas.
Let also
e _ LCIS — LCI}; — nemax

from (1.1.3) we have

m
Zn = Znl < —=

vn'
and therefore the convergence in distribution of Z¢ will imply the convergence, in distribution, of
Z,, towards the same limit.

1.2.1 Statement of the theorem

Below is the main result of the paper. In this statement, the covariance matrices of the Brownian
motions stem from the covariance matrix of the rescaled variables (1x,—;)ies (resp. 1y, —;,7 € I)
used to construct the polygonal approximations B;"* (here, and throughout, e is short for either

X or Y). Indeed, note that E (xy=i—P)Ox=—pi) \ _ [ p¥pf (with a similar result
' ’ VX O—pX)/pX (1—pX) =X (1=pF)
for Y).

Theorem 1.2.1. Let BX and BY be two independent |I|-dimensional Brownian motions defined

X X
on [0,1] with respective covariance matriz CX defined by ClXZ =1 and ClXJ = — %,
\/ ; p
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fori # j in I, and CY defined in a similar fashion, replacing p;* by pY and pJX by p}/. For all
ANE Kp2 and i € 1, set

i i—1
X
VO =X =pX) [ BE [ DA | =B [ DA )
j=1 j=1
i i—1
Y\ Yy _ Y Y Y Y Y Y
Vi (A )—\/Pi (1—201') B; ZAJ‘ - B, Z)‘j
j=1 j=1

If there exists uw € Ly such that % +---+ 2% =1 and % +--- + 3 <1 (Case a)), then
1 m 1 m

L In_ max
LOL, = nemax == 7% := max ZVZ-X(/\X),

Vn n— 2eg el
where J is given by (1.1.6).
If forallue Ly, %+ -+ % =3 ...+ % =1 (Case b)), then
Py P Py Pm
LOI - max
n — Nema Z%:= max m (VX(/\X),VY(/\Y)) ;
\/’ﬁ n—o0 )‘EKA2

where m is given by (1.1.7).

At this point, one can remark that e, ., is invariant with respect to the order in which the
letters are chosen, and that both in Case a) and Case bl), the above limiting laws are invariant
as well (to see this fact in Case a), recall Lemma 1.1.3). Therefore, in Case a) and Case bl), no
matter the prescribed order (increasing, decreasing, etc..) the asymptotic behavior of the length
of the corresponding optimal alignments is the same. We refer the reader to Section 1.3.2 for more
general results of this flavor.

In Case b2) it is less clear that the limiting distribution is permutation-invariant as it might
not just boil down to m(v). Indeed, in Case b2) the limiting law can be written as the law of

Z=max Y V)]

R
AEK 2
Aieft,...,m}
ec{X,Y}

where V(X) is in (R™)?, and defined via

% i—1
Ve =B [ Yo N =B [ Do
j=1 j=1

where the B} are Brownian motions which are, up to a multiplicative factor, as in our main
theorem. Further introducing, for any permutation o of {1,...,n}, V,()\) defined via

o Hi)—1

o)
vei=Br | S x|l -8 Y x|
j=1 j=1

we have V(\) = Vjq()), where Id is the identity permutation. When the letters are not required
to be non-decreasing, but instead follow an order given by o, the limiting law is simply the law
of Zy := maxyer,, Y ie{1,...m} Vo(N)F- It is still not that clear whether or not this last quantity
ec{X,Y}

depends on o. For example, if m = 3 and K> = A? and B{¥ is a standard Brownian motion,
while all others are null, define o by o(1) = 2,0(2) = 1,0(3) = 3, then with probability one
Z, > Ziq. However, in Case b2) it is actually not possible to have K> = A? (and also to have
only one non null Brownian motion) but this shows that a general argument for the validity of the
permutation-invariance is not that transparent.
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1.2.2 Proof of Theorem 1.2.1

The proof of this theorem is based on a non-probabilistic lemma. First, let E]! be the set
all continuous functions b from [0,1] into R such that: for all z,y in [0,1], |b(y) — b(x)| <

(n” ly — z| +n’7*1/2) /2. Then, for all b € (EN)™, i € {1,...,m} and X\ € A, set v?()\) =
bi(Ar+ -+ X)) —bi(A1 + -+ A1), and for all bX,6Y € (E7)™ and A € A? let

A=

zZn(A)

S (VRN + o)) A (VP! A +48” )] = Vi

i=1

One can think of b;* (resp. b)) as /pX (1 —pf()B?’X(w) (resp. v/p} (1 —p} )B™Y (w)) for a
fixed w € A", where the symbol b (resp. b¥) is used for ease of notation and in order to emphasize
the non-probabilistic nature of the proof. For further ease of notation, we omit the dependency

in ¥ and bY in the notation z,. This omission is also present in v and v¥X is just short for o™
(similarly with Y), and further write v(X) := (v*(AX), 0¥ (AY)).

In Case a), for all AX € A, let
22(\Y) = ZviX(/\X).
iel
In Case b), for all A € A2 let
2\ =m (v (M), 0" ().

Next, let us finally present two simple inequalities stemming from the very definition of E,
often used in the sequel, which are valid for all b € E}!, A, N € A, i € {1,...,m}, e € {X,Y},
namely,

. /\® n—1/2
e ()] < = Z;” and in particular |uf(A*)] < n, (1.2.1)
) =t < [ oma et A = = X (122)
1€l,....m

< n"/m||[IA = N|oo + 0" /2,

Lemma 1.2.2. There exists a sequence (€p)n>1 of positive reals converging to zero and such that for
alln > 1 and bX,bY € (EN™, either | maxyepz 2, () — maxyey 22(\)| < &,, or | maxycp2 2,(\) —
maxyex , 2°(A)| < en, in Case a) or b), respectively.

The proof of this crucial lemma is delayed to the next subsections, and instead we turn our
attention to the proof of the main theorem.

Proof of Theorem 1.2.1. Let us assume that Case b) is occurring. Let

Zz = max m (V"’X()\X), V"’Y()\Y)) )

AEK 2

For all w € A7, B™X(w) and B™Y (w) are in E7 so by Lemma 1.2.2, |Z¢(w) — Z%(w)| < &,. So
VAR ZZ’ Tyn < ep, but Z;, — 7b = (Zfl - Zﬁ) Tan + (ZfL - ZZ) L(anye, where this second term
tends to zero in probability, therefore so does Z¢ — Z°. Next, by Donsker’s theorem and the
continuity of m (recalling Lemma 1.1.5), Z% tends to Z° in distribution, so does Z¢ and finally so
is the case for Z,,, recalling (1.2). The proof in the Case a) is analogous and therefore omitted. [
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Let us now turn to the proof of Lemma 1.2.2. The method of proof goes as follows: Maximizing
zn () is equivalent to maximizing

2N/ Vi = 2 [(PENE 0" )W) A (YA 40 (0)/V) | = ema

which converges, as n goes to infinity, to f(A\) — emax- S0 one can expect that A must "almost"
be maximizing f, i.e., be in or "close to" the set Kj2. In Case a), we bound the maximum by
taking the maximum over two sets which are closer and closer to the set J. In Case b), first write
A = AKx2 4 )" (actually dealing with a A — a in order to have a vector space, but the idea is the
same), then ignore the small perturbation term A" in v, and the idea is (roughly) to fix A*a2 and
to find the maximum over A". In both cases, the end of the proof consists in showing how the
maximum of the relevant function (2% or z%) over a set of parameters that "tends to" a limiting
set goes to the maximum over this limiting set.

1.2.3 Proof of Lemma 1.2.2, Case a)

Restriction to 1

First, fix b = (bX,bY) € ((E:{)m)2 Next, for ease of notation, omit in the sub-index b in z and v.
Roughly speaking, we begin by proving that any A maximizing z,, must have "small" coordinates
outside of I, and therefore we can "replace" the variations v;, for i ¢ I, by zero.

Let
pX = maxiglp;x I#{1,...,m},
see 0 I={1,....m}

Let us assume first that I # {1,...,m}. Then by Lemma 1.1.3, pX_ < pX,.. Our first observation
is that if A maximizes z,, i.e., if z,()\) = maxyeca2 2,(\), then

2mn’7 1/2
_ X <
S: g A; p - (1.2.3)
il max sec

In words, the above indicates that the contribution of the letters not in I is, as expected, very
limited. To prove this inequality, note that on the one hand (recalling Lemma 1.1.3 and (1.2.1)),

m
Z"L Z X>\X + U, ( )) - \/ﬁpr)r(lax S \/’E (pr)riax(l - 8) +p§gcs) =+ mn'l — \/ﬁpﬁa)u

i=1
while on the other hand, for A € K2, using (1.2.1) and the elementary inequality (1.1.2),
Zn(A) > 2, (A) > Vuf(A) — mn — /npX, = —mn". (1.2.4)

The inequality (1.2.3) follows, and it therefore allows, for i ¢ I, to replace the terms v (AX) by
zero. More precisely, let for all A € A2,

2L\ = Z[(pr/\X—I—U (NN A (Vap! AL + 0] (A1)

i€l

+ 3 [(VapENS) A (Vapd AT+ ol ()] = Viemax,
il

then as shown next,

I |IC| n 2mn’7_1/2 n—1/2
e zn(A) - %M% M ox o T )
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and this inequality remains true when I = {1,...,m} (since then maxye2 2,(\) = maxycp2 25 ()
and |I¢| = 0).

Indeed, let A € A? be such that z,(\) = maxyep2 2,(A). Using (1.1.2) along with (1.2.1)
AKX <2mn=V2 ) (pX. . —pX.), for all i ¢ I), it follows that

I¢ 2mnn—1/2
max 2711()‘) > ()\) > max zn(/\) — | | n" % +n17—1/2 ]
AeA? A€A? 2 pmax - p5ec

Moreover, let A € A? be such that maxep2 21 () = zI(X\). Then, just as in proving (1.2.3), it
follows that ;. NS <2 In 12 ) (pX, — pZX.). Hence

pmax

n
AEA? AEA? 2 Pmax — Psec

¢ 2 n—1/2
max 2z, (\) > z,(A) > max 2z (\) — 1 <n" % + n"_1/2> )

which completes the proof.

Bounds on the maximum with different sets of constraints

Let us next define two sets "close" to J. To do so, let S, = 2|I[>n""1/2 let Cf = 3, ; p%, let
T, = Cr2n"1/2_ and finally let

AX 1+ 5
+ — X E: 7 n
Jn_{)\ <A Y< X },

pmax

and

AL 1-T,
— X . i n
an{A eA.§ < — }

pmax

Note that by Lemma 1.1.3, setting 6;; = (Li=i);eq1,. > 0in € J, eventually. We show, in
this part of the proof, that

max 2%(\) < max 2/ (\) < max 2%(\). (1.2.5)
Ty AEA2 XeJt

Let us prove the upper bound first. Let A € A% be such that z1(\) = max,cp2 2Z()\), and let
S be the unique real such that
/\ff 1+ S
pi pmax

i€l
Then, there exists g € I such that,

S
Mol < \XpX - =
pzo — pmax ‘I‘ ?

since otherwise, >, ; A/ Y~ 1, which is a contradiction. Then, using the following inequalities,
vie I\{io} (Vap ¥ + o (V) A (Viapi A+ ol (W) < (VA xF +0F ()
S
(Vpig Ay +viy W) A (Vapig A + vl (W) < (Vi (Axpmax - m) +v3§(A‘”>) 7
Vig I (Vapi X)) A (Vap] A + o) (A1) < Vapt AT,
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leads to

<fng<AX+ S (O 40l ()) — Vi — Ve

1]
i€I\{io}
S
< >0 @)+ ) - \/ﬁm
i€l\{io}
< [I|n" — nf

Just as in obtaining the inequality (1.2.4), we have —|I|n" < zL()\), hence S < 2|I|?n"~1/2,
i.e., \X € JF, leading to conclude with the upper estimate:

max zL (A) = 2L (\) < V/f(A%) + 22\ = Viemax < 2°(0Y) < max 27(\).
XEA2 AeJy

Let us now turn our attention to the lower bound. Let AX € J- be such that z¢(\X) =

max, . ;- 2“(A). Since
S (¥ 20 2) fp) <1,

iel
there exists \Y € A such that for i € I, AY > (pX A~ +2n771/2) /pY¥ and for i ¢ I, AY = 0. For
alli e 1,
Vipy A+ v (A) = Vaph A+ 207 + 0} (AY)
> Vipga A o (W) = Vipi AT + o ().
Therefore,

2N =D (Vi AY + 0¥ () + D [(VapEAS) A 0] — Vipa

el gl
=D X (V) = 2(\) = max 2 (),
iel AETn

and max, . ;- 2%(\) < maxyepz 25 (N).

End of the proof

Both quantities | max, . ;- 2%(\) —maxyes 2*(A)] and | max, ¢ ;+ 2%(A) —maxyes 2*(A)]| still need to
be investigated. Let C; = ( p')*(‘m‘> > 0. For AX € Aand t € (0,1), let At =t6;, + (1 —t)A¥X.

It is straightforward to prove that for all n greater than some constant, depending only on 7, p
and pY¥, and for all AX € J, )\X’% is well defined, and is in J;, while for all \X € J, )\X’% e J.
This is useful since for all i € {1,...,m},
AT AT A = = <2
and therefore, using (1.1.2) along with (1.2.2),

“N) — “\) < T
max 2%(}) fé%iEZ()_II

AeJ;F Aed

max z%(A) —max z%(\) < |I| (nﬁ 45 +n’7_1/2> .
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Putting these two inequalities, together with (1.2.5), leads to

6n—1 _
max 2 (A) — max 2"(\)| < Con- 4 [,

for some constant C'; depending only on the p’s but need not be made explicit. The lemma is thus
proved in this case.

1.2.4 Proof of Lemma 1.2.2, Case b)

Preliminaries

Fix b = (bX,bY) € ((E}l)m)2 Just as in Case a), we omit in the notation the sub-index b. Let
E={xe€R™: 2y + -+, =0}, let K be the subspace of E? defined by

K={zeE® :Vielp‘zX=pla) Vi¢ Iz} =y =0},

i

and let P (recalling the definition of a following (1.1.5): a € Kz, for all i € I,pXaX =p}a) >0,
fori ¢ I,a? =0, and f(a) = emax) be given by:

P={zeE?:Vie{l,....m},a}¥ > —a 2} > —a)}. (1.2.6)

)

Note that A2 = a + P. By definition of the case b), for all A € K2, for all i € I \XpX = \YpY,
while for all i ¢ I, X = A} = 0. Reciprocally, let A € A? such that for all i € I \XpX = \Y'p} and
for all i ¢ I, \X =AY =0, we show that A € Kx2. Let u € R be defined by u; = p;* \;¥ — pXaX
for all i € I. We have that u- PX =u-PY =1—1=0so by Lemma 1.1.4, u - (1);e7 = 0, hence
the result. This characterization of K2, combined with A% = a + P, gives us

Ky=a+KNP. (1.2.7)

Since pXaX = pYal, forallie {1,...,m},

mmatz) =Y [(VapXaX + o) (@™ +2%) A (Vap) =) +0) (@ +2))].
=1
Clearly,

a A) = ma + ).
R o) = gzt )

Note also that for all z € (R™)?, f(a+ z) = f(a) + f(z) so by (1.2.7)
Ve e P, f(£) <0 and (f(z)=0) < (z€ KNP). (1.2.8)
Our next result is an elementary projection result.

Lemma 1.2.3. There exists C > 0 depending only on p* and p¥ such that for all x € P, there
ezist t5"F € KNP and 2" € E? such that x = 2577 + 27 and ||2"|| o < —Cf(z).

Proof. Let K+ be the orthogonal complement of K in E? (for the usual Euclidean inner product
defined on E? by, for 2,y € E%, z -y := a5y + - +anys +aYyl +--+atyy). Letx € P
(so # € E?) and let (25, 25") be its orthogonal decomposition, i.e., X € K, 25" € K+ and
z = 2K + 25" Without loss of generality, assume 2% # 0. For ease of notation, set g = — f. Let

Gmin = Mina;.
el
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In order to bound the image of z% f we first rescale it to make it an element of P: it is easy to
check that y := ( dmin ) oK e p. Now, consider the sphere,

L
(S (P

S, = {ZGKJ' : Hz||oo:amin}.

Gmin

Then, S,_.. N P is a non-empty compact set, so let

min

M = i .
cednin ,9(2)

Recalling (1.2.8), M > 0. Since y € S,,,, N P, M < g(y) so that, using g (xKl) = g(z),

Qmin

€ Qi
o oo < g (a).

This is almost the desired result, except that xz might not be in P. Let us assume, firstly,

L
that g(z) < M (and therefore that |25 ||cc < @min). Let 2K7P = (1 - M) 2% and let

- Qmin

oK 4 2K We next prove that %™F ¢ K N P. Since x € P, fori € I,

K+ K+ K+
N T A R T A e
Gmin Amin Gmin

K+ K+
KOP 5 g 4 12 |m%_<l_m:|m)xKL

%
Gmin Gmin

min

Ki
L X L
> —a; + |5 || oo — <1 - |a|m) 2% oo
Z —aq,
and for i ¢ I, K"P = 0, since 2K € K. So 25" ¢ KN P.

Let us turn to 2”. Since a + z € A2, ||z||c < 1. Moreover, ¥ is the orthogonal projection of

7 50 |25 ||oo < V2m||7||ee < v2m and

V2
|ﬂms<am+gkﬂww

V2m Qmin
< 1 .
o ( Amin * M g (x)

Setting C' := (\/2m+amin) /M, we have just proved that if g(z) < M, then there exist
suitable x5 and z" satisfying the lemma. Finally, if g(z) > M, we let z5"F =0 and 2" = z, so
that ||z7]|ec <1 < g(z)/M < Cg(z) which completes the proof. O

Separation of the parameters

To begin with, we prove that max,cp z,(a + =) can be written as a maximum over two kind of
parameters, one belonging to K in the variations v;, the other one being a small remaining term.

Let € P be such that z,(a + ) = maxyecp2 2,(A). Then,

—mn" < z,(a) < zp(a+ ) < /nf(x) +mn,
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and so
—f(z) < 2mn""1/2, (1.2.9)

Now, let
D= {(a""" 2" e (KNP)x E* : """ 42" € P},

and, recalling the constant C' from Lemma 1.2.3, let
D, = {(xKﬂP,xT) € (KNP)x E® : ||2"]loc < 2Cmn~Y/2 K0P | 47 ¢ P} .
Then, for all (zK"F 2™) € D, set
Z0(@K0P 27) = 2, (a + 25OP 4 ") =

Z [(pr rX+vZ;<(aX+meP,X+$r,X)) (\fpy rY+vZ}/(aY+$KﬁP,Y+xr,Y))‘|.

i=1

Applying Lemma 1.2.3 to (1.2.9) gives max,cp,, Zn(x) = maxzcp zn(a + x).
Let us next define a slight modification of z,, by letting, for all (z%"" 2™) € D,
zZ, (a5 Z l(\fpx Y o (0t xKﬁP’X)) (\fpy oY o) (@ + xKﬂP’Y))].
i=1
The parameters are now "separated". For all (zX"F z") € D,,, by (1.2.2),
12, (257, 27) — 2, (zK"F 2")| < m (nn 20m2nn—1/2 +n’7*1/2) 7

so that

max Zn(x) — max 7, zZ(x)

<m (n"\/20m2n77*1/2 n n”*1/2) . (1.2.10)

max zn(a+ ) — max Z, zZ(x)

Independence of the parameters

A major issue with D,, is the condition 2X™" 4 2" € P. We would rather have a set of possible
values for 2" independent of the value of £X™F. To try to achieve that goal, let

P, = {x CE?:VielYoe {X,Y},at > —at +20mn"" V2 Vi ¢ [,aX > 0,27 > 0} c P,
and let D!, C D,, be given by
D) = {(mlmp",a:r) € (KNP, x E? 1 ||2"]|oo < 2Cmn"™ Y2 K00 4 g7 ¢ P}.
Now, recalling the definition E' = {x € E: Vi € I¢,2; > 0} C E, we have that
D, = {@" 2"y € (KNP x B? ¢ 2" o < 2Cmn"~1/2

For (zK7F 2™) € D,,, and for n large enough so that M < 1, it follows that, letting

Gmin

/KNP .= (1 — 7207"””_1/2) oKOP (/KNP 2™y € D! so by (1.2.2)

20 m2nn—1/2
<1 |y [ 2 ) (1.2.11)
Amin

—/ .
max Z, (2) ;Iel%xz (@)
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Connections with the functions of Lemma 1.2.2

Let us now prove that for n large enough,

=0l X\ X\ Y Y
grel%);(lzn(x) Aear-r;-l%()%an(U (M%), 0" (A1) .

KNP, KNP,

Fix z € KN P,. Applying the previous lemma to v := v(a + x ), since ||V|loo < 0",

by Lemma 1.1.5

m m

X rX X YrY _ X rX X
o SR )2 (1 +00)] = 3 (e )

27 o0 S2Cmn7 =1 i=1
/\( Y TY+V )}

= m(v),
and so
m
max_ Z (2K ™) = max_ E [(\fpx A ) (\fpy 7waLVZ-Yﬂ
z"eE’ z"€E’ —
|27 || oo <2Cmn=1/2 |27 || oo <2Cmn—1/2 =1
m
_ X X X Yy, Y Y
= max, E [(pi +v ) (pz T+ )]
X .
4" s <2Cmn? i=1
=m(v).
Finally,
maxz r) = max max Z (@ X = max m\v v . /N
’/n KﬁPn’ T X )\X ) Y )\Y 1212
€D, xeKNP, rER"? A€a+KNP,

l|#]lco <2Cmm7—1/2

End of the proof

Just as done with (1.2.11),

20 m2nn—1/2
max m(v(\) — max m(v()\))‘ < |1 [y | g2
Aea+KNP ACa+KNP, Gmin

and so, using (1.2.10), (1.2.11) and (1.2.12) (recall that a + K N P = Kjz),

+ 2]+ m)n 12,

max z,(a + ) — max m(v()\))‘ < (2”' + )W

zeP AEK 2 Amin

1.3 Consistency with previous results and generalizations

1.3.1 Two words with identical distributions

As stated in the introductory section, Theorem 1.1.1 and the conjectured Theorem 1.1.2 are con-
sequences of our main theorem. Indeed, let X; and Yy (k= 1,2,...) have the same distribution,
then note that

I:{ZE{L,m} : p;;X:pmax}a
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and so the multiplicity &* of pmax is equal to |I| and we are in Case bl). It is also clear that
Kpe={A€A? :Vig LAY =)\ =0}°.

In this case, Lemma 1.1.5 simplifies and gives m(v) = SX A SY, so our theorem states that the

limiting distribution of Z,,/v/Pmax(l — Pmax) is

i i—1 i—1
e | (S (o) - (S) ) o (S (35 ) - (S
AEK 2 icl j=1 j=1 el Jj=1

k* k*
(Z (BX(t:) — Bix(tiﬂ)) A (Z (B (t;) — Biy(til))>] ;

max
O=to<t; <--<tpx=1 ‘ 5
=1 =1

where BX and BY are two independent k*-dimensional Brownian motions on [0, 1] with respective
covariance matrix defined in Theorem 1.2.1. The proof of Corollary 3.3 in [32] shows that, by
writing BX and BY as linear combinations of independent standard Brownian motions, Z,, is
identical in law to

&
pmaxl <\/ — k* pmax Z + Z (EZX(Q) — B;)((Q_l)))

y
A(m ZB _;’_Z(Bz/(ti)—Bz/(ti—l)))]a

where now B and B are two independent k*-dimensional standard Brownian motions on [0, 1].
Dividing both sides by \/Pmax, One obtains the conjectured Theorem 1.1.2 which reduces to Theo-
rem 1.1.1 when k* = m.

max
0=tp<t1 <---<tpx=1

1.3.2 Generalization to any fixed sequence of blocks

As pointed out by an Associate Editor, and also developed, for binary alphabets, in [77], a longest
common increasing subsequence can be viewed as a longest common subsequence where letters are
aligned in blocks. (For LCI,,, a non-void block only aligns a single type of letter and the first block
consists of the letter (1) := 1, then the second one counsists of «(2) := 2 and so on, up to the last
block eventually consisting of the letter a(m) := m.) So, more generally, one could investigate the
longest common subsequences where letters are aligned in blocks of letters «(1),...,«(l), for any
I > m, and where o : {1,...,l} = A,, is onto. For any fixed «, the length of the longest common
subsequences where letters are aligned with blocks « is at most equal to LC),, the length of the
longest common subsequences, and moreover, LC,, is the maximum of these lengths over all the
possible block-orders « (I is not fixed). To pass from the block version to LC,,, there is, however, a
major issue of iterated limits. In what follows, at first, we merely give for any fixed «, the limiting
law of the length of the (rescaled) longest common subsequences where letters are aligned in blocks
a(l),...,a(l), and then the corresponding limiting laws, when allowing for a fixed numbers of such
blocks.

Firstly, defining for any k € N, k > 2, A, :={\ € (R+)k =: A+ + X =1}, we claim that:

l m
X X Y Y XX Y\Y
max 4/\,-)/\( i)\z)]:max TN ) A (D A ) - 1.3.1
AEA? pa |:(poz(z) a(i) Pa(i)Na(i) AEAZ P [(p i ) (p )] ( )
Indeed to see the validity of this equality, note that above the left-hand side is greater or equal than
the right-hand side since « is onto, while it is also less or equal since we can partition {1,... 1} via
a Y{1}),a"t({2}),...,a 1 ({m}) and use the basic inequality (a Ab) + (cAd) < (a+c) A (b+d).
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Next, to adapt the proof of our main theorem, we need to define the set U%, as well as all
other quantities which depended on m or p, with [ instead of m and p;(l), ce DY ) instead of
p%,...,py,. Note also that, when | > m, the quantities p;(l), . ,p;(l) do not form a probability
mass function (their sum is not equal to one), but all their elements are positive which is enough
to have everything well defined.

Formally, for example,

U = {ueRﬂr N A +<1}
Pa() Paq Pa(1) Pa
¢* : R! = R is given by
% tu > up + -+ uy,

and I is now defined to be the set of integers i € {1,...,[} such that there exists u’ € Ly« with
u® > 0. Using almost the same proof as the one showing the equality of the two maxima in (1.3.1),
we get a~1(I) = I*, where I is defined as before. There is no need to redefine the various cases
a), bl), b2) here since they coincide with those previously defined when taking p;(l), e ,p;(l)

instead of pl,...,pm For example, "there exists u € U® maximizing ¢* over U% such that
Y44 % =1 and + .-+ ¢ < 1" is equivalent to Case a) defined in Section 1.1.3.
Pa1) Pay a(l) pa(l)

Finally, the function m defined in Lemma 1.1.5 can be extended naturally to (Rl) .
Within this generalized setting, the proof of Lemma 1.2.2 carries over, giving us the following
theorem for, LCY, the length of the longest common subsequences with blocks (1), ..., a(l).

Theorem 1.3.1. Let BX and BY be two independent |I|-dimensional Brownian motions defined

X X
’;?mpa(j)X
— — M
(A=pZ ) (1=pZ ;)

fori#j in I, and CY defined in a similar fashion. For all \ € K3, and i € I, set

1—1
X X X X
Paw) | Bad) Z AN =B (22N ]
J=1
7 1—1
a,Y (YN Y Y Y Y Y Y
V) = ok (=) | Bia [ D2 | — Bl [ 2N
j=1 =1

If there exists u € Ly such that + .- =1 and + .-
(y(l) p(x(l) a(1>

a(l)
if there exists uw € Ly such that ;“ + % =1 and ;‘,} +-+p <1 (Case a)), then
1 1 1 m

on [0, 1] with respective covariance matriz C* defined by CZXl =1 and CZXJ =—

‘/;a7X()‘X> = pé((i)(l

«@
LCY — nemax

\/ﬁ n—00 )\Xe]“ el C
If for all w € Ly, X —|— =1 and R =1, or equivalently if for all
( Paw) Paa) Pa
uELU,"T%—i—'-A——’" la d—¢+~-~+“¢—1(0aseb)) then
Pi pl Py Pm

L o max
C’"ine —— 7= max m (VQ’X()\X),VQ’Y()‘Y)) )
\/ﬁ n—o00 )\EKX2

where, again, now m is defined on (RZ)Q.

For instance, for m = 2 and in the uniform case, the order a(1) = 2, a(2) = 1, a(3) = 2 gives
the limiting distribution:

LCY —
S Ty b= max m (VYY) VY (AY)),
vn n—o0 AN AT +AF =1
A HAY ) =1
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ie.,

LC% —ne 1
e b= max min (BS(A\}) + B\ +\3) — BY(\?
S 2ty e i (BEOD) ¢ BIOG D)~ BIOD
AV HAY Y =1

+B3(1) = B3 (AT +23)) -

Also note that, sometimes, the limit in the above theorem is simply a normal random variable.
Indeed, take pi* = 1/3,p5 = 2/3,pY =1/4,p) = 3/4, and a(1) = 1,a(2) = 2, then we are in Case
a), I = {2} and:

LCS — nemax g

\/ﬁ n—o00

This is also, as one would expect, the limiting distribution of the number of 2’s in the first
word (which is almost equal to LCY). However, if we take a(l) = 2, «(2) = 1, a(3) = 2, the limit
is more involved.

For b € N such that b > m, let now F? denote the set of all surjections from {1,...,b} to
{1,...,m}, and let LCr(Lb) be the length of the longest common subsequences with b > m blocks,
with for each letter at least one block of this letter, and still allowing the blocks to have size zero.
This is nothing but the maximum, over all the possible a € F?,, of LC2, so, recalling the discussion
preceding the statement of Theorem 1.3.1, we have:

Theorem 1.3.2. In Case a),

LC}lb) — N€max a a, X 1\ X
S T 70 = max Y VN (M),
\/ﬁ n—oo AX e - g
a€F?, i€

Zb = a,X )\X a,Y )\Y )
i o 2 s m(VETON), V()
acF?,

Proof. The proof of this theorem follows lines of the proof of our previous main result, considering
p;(i) instead of pg. O

Note that LC,, the length of the longest common subsequences without any conditions on
blocks, corresponds to LC’,(L"J””) (or to be more precise, LC’flb) for any b > m+n—2: this is because
when, say, there are only two kind of letters involved in the longest common word, we have to take
m — 2 additional empty blocks to make « onto). Although the above theorem requires a fixed
number of blocks, say, b, it is nevertheless noteworthy that no matter this fixed number,

ELCY
lim n

n—-+oo n

= €max-

1.3.3 Countably infinite alphabet

To continue, let us consider, as in [32, Section 4], the generalization to countably infinite alphabets.
Let the alphabet be N* = {1,2,...}, let (p/X);>1 and (p¥);>1 be two probability mass functions
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on this alphabet, we are now interested in LCI°, the length of the longest common and increasing
subsequences over this countably infinite alphabet. Let

Aw:{xe(&) = [0, +o0)" Z)\ _1}

and let N
e = sup Y [N A YAY)]
Ae(A™)? 55

Let m € N,m > 2 be such that 37 p/X < e and 7 pfY < e, . Let us consider the
distributions over {1,...,m} obtained by replacing all the letters greater or equal to m by m,
namely, let pX = piX for i < m and p : Z+ mpl , and let pY', 1 < i < m, be defined in
a similar fashion. Let now LCI, be the length of the longest increasing subsequences formed
by replacing all the letters greater or equal to m by m, i.e., the longest common and increasing
subsequences on {1,...,m} associated with the probability mass functions p’* and p’Y. Next we
argue, via a sandwmhlng argument, that when properly centered and scaled (note that el =
emax), LCI® and LCI, tend to the same limit. Indeed, let LCI! be the length of the longest
common and increasing subsequences not using the letter m, i.e., the length of the longest common
and increasing subsequences on {1,...,m — 1} associated with the probability mass functions p’'*X
and p'Y or, equivalently, p* and p¥. Since m ¢ I (where I is defined with the distribution
(P )1<i<m and () )1<i<m), (LCI} — nemax)/v/n and (LCT, — nemax)/+/n converge to the same
limiting distribution. But,

LCI} — nemax < LCIZ® — nemax < LCI,, — nemax
vn - Vn - Vn ’

completing the proof.

From the proofs presented above, the passage from two to three or more sequences is clear:
the minimum over two Brownian functionals becomes a minimum over three or more Brownian
functionals, and such a passage applies to the cases touched upon above and below.

Throughout the text, the two sequences (Xj)i>1 and (Y)r>1 are assumed to be independent
with respective i.i.d. components. In view of [34] or [30], one expects that the i.i.d. assumption
could be replaced by a Markovian one or even a hidden Markovian one. Moreover, one further
expects that the independence of the two sequences is unnecessary and that a potential dependence
structure between the two sequences would carry over to corresponding 2m-dimensional Brownian
functionals, another case at hand could be the hidden Markov framework. Finally, it should also
be of interest (as already done in [12] for uniform letters) to study the ramifications/connections
of our results with last passage percolation.

Appendix: proof of Lemma 1.1.5

Proof. Define f, : E> 5 Rby f, :x+— Y v, [( XX + I/lX) A (p?’xz/ + VIY)} In order to prove
that m(v) is well defined and (1.1.8), it is enough to prove that for all z € E'?, there exists
2’ € E'? such that |||« < 2Cm|v|e and f,(2') > f.(z). Let z € E2. Firstly, assume that
xz € P (recalling (1.2.6)). If f,(z) < f.(0), taking 2’ = 0 works, so assume f,(z) > f,(0). B
(1.1.2) (applied twice),

—mvlee < fu(0) < fu(z) S ml[vflec + f(2)

hence —f(z) < 2m||v|| and, by Lemma 1.2.3, there exists 2K € K N P and 2" € E? such that
=28 12" and ||27 ]| < —Cf(z) < 2Cm||v||so- But from the definition of K, f, (25" +27) =
f@EOPY 4 f,(27), and by (1.2.8), f(zX"F) = 0 so f,(x) = f,(z"). Moreover, since z € P and
K0P — 0 for all i € I, 2" € E2.

K3
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Now, if we do not assume x € P anymore, observe that for ¢ > 0 small enough, ex € P,
0 feu(2') > f.,(ex) for some 2’ € E'? such that [|2]» < 2Cm|ev| . Finally, dividing by e,
fo((1/e)x') = fu(x) where [|(1/€)a"]|oc < 2CMm||voc.

In Case bl), let us begin with the subcase I = {1}. In this instance, pi* = pY = emax, while
forall 1 <i<m, piX < €max O pZY < emax (otherwise ¢ would be in I). We now show that “the
maximum of f, is realized with the first letter plus one other letter”, more precisely, there exists
x € E' such that f,(r) = m(v) and |[{i € {2,...,m} : zX # 0 or x} # 0}| < 1. Indeed, using
the same method than in the proof of Lemma 1.1.6, keeping in mind v = --- = v, = 0, one can
see that there exists some z maximizing f, such that {i € {1,...,m} : X # 0 or 2} # 0} has at
most two elements, and they can’t both belong to {2,...,m} otherwise they would be null (by the
definition of E’).

Returning to the proof of the lemma, we have shown that

ma ) = ma. su X).
max fu() e z@gz fu(®)

Vie{2,....,m}\{io},z; =0
Fixing ig € {2,...,m}, we have

sup fu(z)= sup [(VIX — emaxtX) A (1/%/ - emaxty) + (pfgtx) A (p%ty)] .
z€E'? tX 1Y >0
Vie{2,...,m}\{io},27=0

It is then easily seen that this last supremum does not change with the additional condition
pfgtx = p%ty. (Indeed, if, for example, pfgtx > p%ty, reducing t* to transform this strict
inequality into equality will only increase the sum of the two minima in the definition of f,.)
Hence,

X
p,
sup fu(x) = sup l(ulx — Emaxt™ + pfgtx) A (V%/ - emaxﬁtX + pfgtx>]

zcE'? tX >0 0
Vie{2,...m}\{io},e=0

sup
tX >0

X
p,
o 0 =) (o 2 - )

10

Since ig ¢ I, it is impossible for both p¥ — emax and p}, — emax to be positive, so this last
supremum is attained at * = 0 (and is equal to vi* A 1}") unless v{* < v} and p;. — €max > 0,
pr LY _ X

ig Vi T
emax i —p}
value at which the two sides in the above minimum are equal to each other. So if ;¥ < v¥ and
pfg — emax > 0, or V1X > Vly and p% — €max > 0, then

or v{¥ > v and p% — emax > 0, in which case the supremum is attained at t¥ =

a

X Y Y (X
io \€max — P; i io — €max
sup fo(z) = p—ZO( i{ pg‘;)ylx + Pig Wiq — Cmax) (szX i,) vy,
rcE'? emax(pio - io) emax(pio 7pi0)
Vie{2,...,m}\{io},z; =0

Assuming that v{¥ < v}, we see that in this case m(v*,vY) = sxSY + txS¥. This remains true
if S = SY (in this case, m(v*,vY) = SX = SY), and, similarly, when S¥ < S¥X. The proof of
Case bl) is therefore done when I = {1}.

Still in Case bl), but without the assumption that I = {1}, assume, without loss of generality,
that I = {1,...,k}, k > 2. Define o by 7§ = S® and & = 0, for all i > 2. Let 2° € E'? be defined
by 2%V =0, 2% = (SX = 8Y 407 — 1) /emax, 207 = (v) —1X) /emax, for all i € {2,...,k}, and

x?" =0forallie€ {k+1,...,m}. Note that for all x € E"2, f,(z + 2°) = f5(x), so m(v) = m(D).
Moreover, defining 2’ via z{* = 2} + - - + a3, 2/* =0, for i € {2,...,k}, and 2}* = 2} everywhere
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else, we have 2’ € E'%, and

(emaX(xf{ 4ty ) + 7 ) (emaX(x}/ + oty ) + ) (emaxxl + ) A (emaxx{ + ﬂ}/)
+emax (@3 + T ) A2y + oy,

(Emax(I{( + -4 Ii() + ﬁix) A (emax(l'%/ 4+ .4 CC};) 4 17}/) > (emaxmix + 171X) A (emaxx%/ + 17}/)
+ emax(xg( A JU;/) + -+ (1’? AN (E{)
Hence, f3(2') > fz(x), and therefore

m@)= max  fy(z).
vie{2,...,k},z2=0

Now applying the subcase I = {1} concludes the proof of Case bl).

In Case b2), again assume without loss of generality that I = {1,...,k}, k > 2. Let L; =
(1,0,...,0,—1,0,...,0) € R? having k — 1 zeros between the two non-zero coordinates, let
Ly = (0 1 0,...,0,—1,0,...,0) (still with £ —1 zeros between the two non-zero coordinates), and
iterate this process up to L. Let also PX be the concatenation of PX € R¥ ﬂhgve R¥, and let
PY be the concatenation of 0 € R*¥ with PY € R*. The vectors L1, ..., Ly, PX, PY are linearly
independent since, as already seen in Lemma 1.1.4, PX and ]i’; are linearly independent. Now, let

Q@ be a 2k x 2k invertible matrix with first rows Ly, ..., Ly, PX PY (for example, to form such a

matrix @, one could complete the first columns with vectors from the canonical basis), let A € R?*
be defined by

A vl —vX ifie{l,... k}
R ) ifie{k+1,...,2k},

and let u € R?* be defined by

b J@7A) ifie {1k
=0, ifie{k+1,...,2k}.

We have uX —uY =vY —vX (where uX is the vector of the first k& coordinates of u and uY the
vector of the last k coordinates of u) for all ¢ € {1 k} these conditions stem from the rows
Ly,...,Lg. Moreover, uf /py + -+ +uX /px = u1 /p1 -+ uY /pY =0 (conditions stemming

from the rows PX PY) Then, expand uX and ¥ to R™ by ﬁlling with zeros, so that u := (uX,uY)

is now in (R™)?. Setting, for all i € {1,...,m}, y¥X = uX/pz 71‘11 = u) /pY, lead to y € (R™)?,

more precisely y € E'? such that for all i € {1,...,m},pXyX + v = pYyY + /¥, with moreover
m X, X X | Y, Y Y
piyi tvi +piyi tv
S (0 ) A G ) = 30 (P ),
i=1 iel
Setting UX = (uX)ie; € RE, UY = (u) )icr, RY = ()icr and RY := (v} )ier, the above

expression becomes

S WX +0) A @Y +0))) = G0 + RX 4+ 0¥ + BY) - (e
i=1

With the notations of Lemma 1.1.4,
UX - (1)ier = UX - (sPX +tPY)
=U~ - tPY
= (UX -UY) -tPY
= (RY — RY)-tP".
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Similarly, UY - (1);e; = (RX — RY) - sPX. So,

[0 + 0 A ) +00)] = (R = BY)- (P —1PY)
=1

1
- 5(RX + RY) - (sPX +tPY)
= RX .sPX + RY -tPY

This shows that

m

max 37 [(pXa + 7)) A Y e + )] 2 D (97 ol + 0 o).
i=1 el

Now let = € E"?,

m

Z[(pZX‘T;X+VZX) p1 93 +V Z(ﬂX vy +T Z>
i=1 i€l
m

m
S @+ v (F el + )= (05w + ) A vl + )]
=1

s
Il
-

(X (= 9)¥) A () (= —9)))]

I
NE

-
Il

I
~
® o=

—y).

We have © — y € E'? (recall, also, that y; = 0 for all i € I¢), so for some ¢ > 0, (z —y)/c € P,
and then f((z —y)/c) < 0, so f(z —y) < 0. Hence 1", [(pfx" + ) A (pY 2y +1))] —
Sies (50X /pX + Y /pY) <0 and, finally,

m

mae 3 [(pX e + ) A (el + )] =D (s o7+ )
i=1 i€l



Chapter 2

Variance Bounds: Some Old and
Some New

As mentioned in the introduction of this work, the problem of finding the asymptotic behavior of
the variance of the length of the longest common subsequences of random word was the motivation
to introduce some tools to study the variance, that we now present in the most general frame-
work. For functions of independent random variables, various upper and lower variance bounds
are revisited in diverse settings. These are then specialized to the Bernoulli, Gaussian, infinitely
divisible cases and to Banach space valued random variables. Frameworks and techniques vary
from jackknives through semigroups and beyond. Some new applications are presented, recovering
and improving, in particular, all the known estimates on the variance of the length of the longest
common subsequences of two random words.

2.1 Introduction and preliminary results

We revisit below various lower and upper bounds on the variance of functions of independent ran-
dom variables. Throughout and unless otherwise noted, Xi,...,X,,X7,..., X, are independent
random variables such that for all k¥ € {1,...,n}, X} and X, are identically distributed, while
S : R® — R is a Borel function such that ES(X,...,X,)? < +oco. Next, and if S is short for
S(X1,...,Xp), for any k € {1,...,n}, let S* := S(Xy,..., Xp—1, X}, Xt+1,...,Xp) and more
generally if « C {1,...,n}, let S“ be defined as S(Xj,...,X,) but with X}, replaced by X, for all
k € a. With these preliminary notations, we next recall the definitions of various quantities which
will play an important role in the sequel.

Following (8], for k € {1,...,n}, let

1 7 7 D1 yeensl
B, = Eﬁ Z S(S Lisblom1 Gy k), (2,1,1)
€S,

where &,, is the symmetric group of degree n and where for k = 1, %% -1 = §. Ag the following
sum is telescopic:

- 1 T
> Bi= B > 8(8 = &) = Var S,
k=1 €S,
One key fact motivating the definition of the By’s is that they can be rewritten as:
1 . o o
Bk - F— Z (S _ Szk)(szl,...,zk,l _ S“"""Zk).

2n!
€S,

65
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Indeed, if o, 8 C {1,...,n},
E (S*S%) = E (55*47) (2.1.2)

where A denotes the symmetric difference operator, so

E(S _ Sik)(sil,...,ik,l _ Sh,.“,ik) — 9k (Ssil,...,ik,l _ SS“”“‘) .

Next, for all k € {1,...,n}, let AxS := S — S*, and iterating this operator: for k # ¢, let
Ap oS = Ap(ArS) = S— Sk — 54 SF¢ (note the commutativity property: Ag(ApS) = Ay(ALS)).
Iterating this process, let A;, ;.S = Ag(A4, ..., 5). Using this notation, we have

,,,,

1 T yeeey Tp—1
Br=Eg— GZG: (A, 5)(Ai,S) B (2.1.3)

and so By, > 0 since if U, U’ and V are independent with U and U’ identically distributed, then for
any function F' such that F'(U,V) is integrable, E (F(U,V)F(U',V)) =E (E (F(U, V)|V)2) > 0.

We are now ready to generalize the approach used to go from (2.1.1) to (2.1.3), leading to novel
properties of the By s.

Lemma 2.1.1. Let o, 8 be two disjoint subsets of {1,...,n}. Then

E (S(A.S)7) = %E (AaS(A.S9)7). (2.1.4)

Proof. Firstly, by a straightforward induction on k := |«|, note that A,S = ZQ,CQ(—l)W lga’,
Then, for any o/ C a,
(_1)‘@’|Sa/(AaS)ﬂ _ Z (_1)‘C¥/|+‘C¥//‘S(X/S(X”U57
a//ca

and so using (2.1.2) (a and 8 are disjoint and o’ C a so ’A(a U B) = (a/Aa) U ),

E ((-1)‘“'5&’(%5)5) =K ( > (—1)|a’+la”ssw/ﬁa”wﬁ) :

a'’Ca

Since o — o/ Aa” is just a permutation of the subsets of v and (—1)' 2" = (—1)l’[+le"]

E ((—1)|a’|sa'(Aa5)ﬂ) —E < 3 (—1)“”55a”uﬂ> = E (S(AnS)7),

a’’ Ca

and so

Let T be the forward shift operator, i.e., for k € {1,...,n— 1}, let TBy, := By41 and let D be
the backward discrete derivative: D :=Id—T (so for k € {1,...,n— 1}, DBy, = By — Bj41), and
denote by D’ (¢ > 0) its {-th iteration. It is known (see [8]) that the finite sequence (By)1<k<n is
non-increasing. More can be said.

Theorem 2.1.2. For all{ >0 and k€ {1,...,n—{},
1 i i
DZBk = EM Z (Ah ----- iz+1s)(Ai1,---7ie+1S) Er2oathte, (215)
€6,

In particular, DBy, > 0, i.e., (Br)1<k<n is completely monotone (recall that D = Id —T).
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Proof. With the previous lemma, it is enough to prove that for all £ € {0,...,n — 1} and k €
{1,...,n— 1},
1 i i
D'By, = B D S(Ady gy, S) 2L (2.1.6)
€S,

This is done by induction on £. When ¢ = 0, (2.1.6) is just the very definition of Bj. Assume next
that (2.1.6) holds for ¢ € {0,...,n —2}. Let k € {1,...,n— ({ +1)}. Then,

1 , - 1 . .
D“‘lBk — I[{)m Z S(Ailw S)ietasnine Eﬁ Z S(Ail,...,ie+1S)Z£+27M7Zk+l+e

sl
. iEG, : Pl
1 . . 1 ' _
— G0h3yeensik ' ‘ P
N Eﬁ Z S(Ail’“"i“ls) o = Em Z S(Au,.uﬂwﬂs) 2 k414-¢
i€6n <
]' . .
- Eﬁ Z S(Aiy g S) et
s,
where in getting the second equality, the terms are reindexed. -

We wish now to study potential connections between the Bj’s and jackknives operators Jy
and K}, previously studied in [10]. For Y € o(X3,...,X,,), i.e.,, Y measurable with respect to the
o-field generated by X,..., X, and i € {1,...,n}, let EOY := B(Y|X1,..., Xi 1, Xit1,..., Xp)
and more generally for a subset « of {1,...,n}, let

EYY := B(Y|(X,)iga)-

For i € {1,...,n}, let
Var®y .= EOy? — (EWY)?

and iterating, for i € G,,, let
Varlt--) y .= B0 (Var(z-#) y) — arlz-—i)(E)y),

For k € {1,...,n}, let
Ji = Z Var(itri) g

ilsﬁiz...#ik
and
Ky = Z Varit it [ g,
i1 Al Fig
where (i1,...,%5) = (ik41,...,%n). For ease of notation, set also Jj, := J/k! and K, := Ki/k!.

The next lemma provides relationships between these quantities and the By’s, it will allow us to
get easily, and in a unified fashion, many of the known expressions involving the variance, along
with some new ones.

Lemma 2.1.3. Let o, 8 be two disjoint subsets of {1,...,n}. Then

E (Var* E°S) = E (S(A.S5)7). (2.1.7)
Proof. This is straightforward by induction on the cardinality of «. O
Recalling (2.1.6), we get from (2.1.7) that for all k € {1,...,n},

Jl = (Z)D’“lBl and K|, = (Z)D’“an_k+1. (2.1.8)
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It is easy to check that for any finite sequence (ap)i<k<n and any positive integers k €

(1,...,n},
ay :IS(—l)j (kgl)Djal zg(";k>D1an_j. (2.1.9)

k—1 , (kfl)
Bp =) (=1) == Jjs1 (2.1.10)
3=0 (]-‘rl)
By = > (n;k) K! 2.1.11
k= ) 41 (2.1.11)
j=0 \j+1

We can now connect the J;.’s and K}.’s to the variance.

Lemma 2.1.4. For all k € {1,...,n},

VarS — J| +Jy — -+ (=D)FJ, = (=1)* > DB, (2.1.12)

1<ip < <ig41<n

VarS — K} - Ky —--- — K}, = > D*B;, ... (2.1.13)

1<ip < <igpp1<n

Proof. Let us prove (2.1.12) by induction on k € {1,...,n}. For the base case:

n n j—1
VarS —.J =Bi+--+By,—nBi=)» (Bj—B1)=-Y_Y DB,
j=2 j=2i=1
For the inductive step: assume it is true for k € {1,...,n}. Then,
Var S — J| + Jy — -+ (=D)F T, + (=D)L = (-1)F > D*By, | = Jhis

1<iy < <tp41<n

—(=1F Y (DB - D'By)

1<ip < <ig41<n

= (=1)* > > -DM'B,

1<) < <igg1<n 1<ip<iy

— (_1)k+1 Z Dk‘JrlBiO'

1<ip<i1 <-<ip41<n

The proof of (2.1.13) is very similar and so it is omitted. The following proposition recovers and
extends some of the results obtained in [10]. O

Proposition 2.1.5.
VarS = J; — Jy+---+ (=1)" "1 J., (2.1.14)

VarS = K} + K} + -+ K/,
and for all k € {1,...,n},
Kiy < (D)F (VarS— Jj + Jp — -+ (-1 J}) < Jipy,

Ky <VarS— K| —Kb—- - — Ky < Ji,,.
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n

— 1
Var§ = J — Jp4 4 (CDF L (CDF S (7 ] )K;. (2.1.15)
=kt

k k k n—k n—k n—k
VarS:%)J{—%)Jé+~-~+(—1)k_1QJ,’C+( 1 )K§+( 2 )K§+-~-+(”’k) | ke (2.1.16)
1 2

) ) G @) (5) () "

Proof. Above, the first two equalities simply follow from the fact that the right-hand terms in
Lemma 2.1.4 are zero when k = n. Then, the first two inequalities follow from Lemma 2.1.4 and
the complete monotonicity of the By’s: for 1 < i1 < n—k, D*B,_; < D’“Bi1 < DFB;. Let us
turn to the identity (2.1.15).

Applying the inversion formula (2.1.9) to (D*B;)1<i<n—k, with i <n — k, we get

DRSS ol Gl 0
1<ip < <ig41<n =1
n—kn—k—
D U [ Lot
i=1 =0 k J
i=1 =0 k J (k+?+1)
_ n_m_z:k_j <n - Z) <l€ +j> K
o i \ktd ko) (i)
n—1 .
k+j
= ( 1 )K1/c+j+1v
=0

where the last equality stems from the hockey-stick formula and reindexing.

To finish, let us prove (2.1.16) which will follow from VarS = By +-+-+ By + Biy1+- -+ By
Indeed, the equality (2.1.14) remains valid for any sequence (a,),>1, namely, the same proof shows

that
a1+ +a, = (T) D%, — <Z) Dlaj + -+ (=1 ! (Z) D" 'ay

In particular,

Bi+---+ By = (f) DB, — (];)DlBl o (=) (Z)Dk_131
(];) / (g) / k—1 (IZ) /
M 67 ()"
The second part, Byi1 + - -+ + By, is treated similarly. O

The equality (2.1.16) could be of use to find the order of VarS as n tends to infinity. For
example, if there is a constant C' > 1 (independent of n) such that J5(n) < CJj(n), then, taking
k= |55] will lead to
. . . VarS(n) 1
| f—— > .
noee  Ji(n) = 4C

We have proved that the finite sequence (Bj)i<k<n is completely monotone and we already
knew from [8] that it is non-increasing, so it is natural to wonder if one could find further properties
of the By’s. On the other hand, one may also wonder whether or not (Kj)1<k<n does satisfy any
further property except, of course, from being non-negative. Both answers appear to be negative:
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Proposition 2.1.6. For any ai,...,a, > 0, there exists S : R® — R a Borel function such that
forallk € {1,...,n}, K = ay.

Corollary 2.1.7. If (bi)i<k<n 15 completely monotone, then there exists S : R™ — R a Borel
function such that for all k € {1,...,n}, By = by.

Proof of the Corollary. It is easy to see that (bg)1<k<n is completely monotone if and only if for all
ke{l,...,n}, D*=1b, 4.1 > 0. From the statement of the proposition, there exists S : R"* — R
a Borel function such that for all k € {1,...,n}, Kx = (nr_”k)!Dk’lbn_kH, and, recalling (2.1.8),
since there is no choice for the By’s knowing the Ki’s, By = by. O

Proof of the proposition. This follows from using the link with the Hoeffding decomposition ob-
served in [10]. Consider for example Ay,..., A, > 0 and S(X1,...,X,) = 4 Elgilgn(xh —
EX,)+ A2 Y1 iy cien(Xin = BX3 ) (Xiy ~BX3,) + 4 An 1oy i <n (X —EX3,) . (X, —
EX;, ). Then, from [10],

Kp=Ap K > Var(X;, - EX;) ... (X;, - BX;,)
1<ip < <ip<n
=ALR > Var(Xy,)... Var(X;,),
1<i1 < <ig<n
so it is possible to adjust the Aj’s to have the Kj’s as wanted. O

One could expect the Ji’s to behave like the Kj’s and to also be able to take any values, but
this is unfortunately not the case, for example 2J5/n = (n — 1)(B; — B) < nBy = Jj.

To conclude this section, we connect the By’s and the quantities T4 introduced in [14]. For
any subset A of {1,...,n}, T4 is defined as

Ta=Y A;S(4;8)4,
JjgA

and then T is defined as

It is easy to check that for all k € {1,...,n},

Be= 2 2(n — A ()

Ai|A|=k—1
hence ET = >"}_, B, = Var S (as expected).
Remark. (i) One might wonder if the above variance results can be transferred to the ®-entropy.
Let @ be a convex function of the real variable such that E|®(S)| < +oo, and let the P-entropy
Hg of S (e.g., see [9]) be defined as:
Hs(S) = E®(S) — (ES).
Following [10], fori € {1,...,n}, let
Hy(5) = EOB(S) — (B (S)),
while fori # j € {1,...,n},

Hy"(8) == BV H(S) — H (BD)S) = Hy P (S).
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Still iterating, for iy # ... # i € {1,...,n},
Hgl’”"i’“)(S) — E(il)HgQ,...,ik)(S) . Hg“’"“’ik)(E(il)S).

Define the corresponding By ’s as,

1 i i1yt
Bi:=E— 3 Hy" (B-0s),
€S,

forallk € {1,...,n}. Once again the sum is telescopic:

> By = E— > BHGE 1) §) — (B §) = HyS.
k=1 €S,

By the conditional Jensen inequality, the By’s are non-negative. Just like in the variance
case, it is clear by induction that for all £ € {0,...,n — 1},

D'B, :E% Z Hgl"“’i“l)(]E(”“ """ i"‘”)S).
€S,
Let us now look for the class of convex functions ® such that for any S and Xy,...,X,
satisfying the basic independence and integrability assumptions, (Bj)i1<k<n 1S non-increasing.
In particular, for any random variable Z defined on a product space Q1 X Qo satisfying the
integrability conditions, choosing S and Xi,...,X, such that S = Z (S = f(X1,X2) for
some function f), we have that

DlBk _ E]E Z Hél 2)(E(13,...,zk+1)s)
1€Gy
2 2
EHg " (5)

Tl

= %E (<I>(Z) —~d(EMZ) - d(EPZ) + <I>(]E(1’2>Z)> 7

s0E(®(2) — ®(EMZ) — (EPZ) + ¢(EN? Z)) > 0. Reciprocally, if for any random vari-
able Y defined on a product space 1 X Qo satisfying the integrability conditions,

E (@(Y) —EVY) - o(E®Y) + @(EW‘)Y)) >0,

then clearly D'By, >0 for allk € {1,...,n—1}. Theorem 1 in [75] tells us that this happens
if and only if © is affine or is twice differentiable with ®” > 0 and 1/®" concave.

One may further wonder what conditions on ® would guarantee (By)1<k<n to be completely
monotone, or, at least, to have D*By, > 0 for all k € {1,...,n — 2}. Unfortunately, the
variance is basically the only case for which this holds true. Indeed, if the condition D?>By, > 0
is satisfied for all S, then, as before, choosing S = f(X1, Xa, X3), we get

DlBk — EE Z Héh 2, 3)(E(13,...,zk+2)s)
EISIC

= %EHS’2’3)(S)
6 (03 (o7
=—E > (e Ees).

ac{1,2,3}

Therefore, for any random wvariable Y defined on a product space Q1 x Qo X Q3 satisfying
the integrability conditions, Zac{u’g}(—l)'a@(E“Y) > 0. Reciprocally, this guarantees the
non-negativity of D?By, for any k € {1,...,n — 2} and any S. According to [75, Theorem
2/, this happens if and only if there exist a,b,c € R with a > 0 and ® : x +— ax® + bxr +c. So
for any function ® that is not of this form, the Ki’s and the Jy’s (defined as the variations
of By ’s) are not always non-negative: for some functions S they are negative.
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(1i1) It is tempting to use the representation of completely monotone functions for the Bys. Un-
fortunately, a completely monotone finite sequence may not be the restriction of a completely
monotone function.

2.2 Connection with a more general decomposition of the
variance

Let Uy, ..., U, berandom variables taking values in (0, 1) and independent of X1, ..., X, X1,..., X].
For any a € [0,1], let X(® be the vector with coordinates, XZ-(a) =1o<, Xi+ 1o, X, 1 <i<m.
Then,

Var§ = E (5(X<0>) (S(X<0>) - S(X<1>))) ,

and it is tempting to rewrite this last term as an integral. Let us assume that each U; has a density
v;. For any 0 < o < o/ < 1, denote by A, o the random set of indices ¢ € {1,...,n} such that
a < U; < o'. By the Cauchy-Schwarz inequality,

[ (S(X@)S(X)) B (S(X)S(X))| < 2B(S)P (| Aa,cr] > 0)
< 2E(S )ElAa o \

< 2E S2 / dv;,

hence a — E (S(X©)S(X()) is absolutely continuous, its derivative is well defined almost
everywhere, integrable, and
'd
Var§ = E (5(X<0>)S(X<°>)) ~E (S(X<0>)5(X<1>)) - / ) (S(X(O))S(X(O‘))> dee.2.1)

o da

In order to compute the derivative in (2.2.1), fix a € (0,1) and € € (0,1 — «). Conditioning
on Ag,a4e and letting

A E (S(X©)S(X(+9)) — E (S(X©)S(X())

¢, c

we get

E(S(X)(S(X ) =$(X )| Aa,ate={i1, i} , X
Aa,s = Zl§i1<~--<ik§n,k§n ( ( € ) - - . )IP (Aa,aJr& = {117 ce 7746}) )

so for almost every «,

— Zn: E (S(XO)(S(X) — S(X©)) vi(a),

where X (@) is defined like X (@ but with X; for its i-th coordinate, and X (@) is defined like X (@)
but with X/ for its i-th coordinate. So we get finally:

Var § = Z / XOys(x (“)’i)fS(X(a)*%)))dz/i(a). (2.2.2)

Let us further define, for ¢ € {1,...,n} and any z1,...,2z, € R", d;S via,

diS(z1,...,xn) == S(x1,...,zn) —ES(z1, ..., 2i—1, Xiy Tigt1y - -+, Tn)-
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Note that if Z; is independent of all the other random variables and has same distribution as X;,
we have

d;S(X)=FEgz (S(X)—-S(X1,..., Xi—1,Zi, Xit1,-- -, Xn)) -
Therefore we notice, conditioning on Uj;, that
E (diS(X(O))d,-S(X(“))> = P(a < U)E (S(X(O))(S(X(O‘)*i) - S(X@ﬂ))) .

We can rewrite the variance as

=S [ E (x5O L (. 9
Var § ;/0 E(dZS(X )d;S(X )) f;dw(a)d,() (2.2.3)

Note that in the special case where U; are uniformly distributed on [0, 1],

da,

S fj ' d;S( XN, S(x (@ !
Var S = E (d;S(X©)q,8(X
ar i_l/(; ( ( ) ( ))1

and a simple change of variables allows us to recover again (2.2.3). Therefore, we will focus on the
uniformly distributed case.

2.2.1 Connection with the B.’s

From (2.2.2),
— zn:/l E (S(X((]))(S(X(a),i) _ S(X(oc)yi))) da
B 1n 1 ) -
_ Z/O X(O))(S(X(“)’Z) - S(X("‘“))) jag, o\ (i} =kder

- / nz%ZE(s<Ais>ﬂkvi)IP<|Ao,a\{z‘}|:k>da
k=0 1=1

where Sy ; is a random set of k elements chosen in {1,...,n}\ {i}. Clearly P (J4o,o \ {i}| =k) =
(”gl)ak(l — )" 17F and from the representations (2.1.3) and (2.1.4), we get

ii ( ASﬁ’”)ZBkJrh

™M1

hence

n—1 1 n—1
n—1 el
VarS:Z/O n( f )ak(l—a) ! kBkJrldOé:ZBkJrl.

k=0 k=0

2.2.2 Connection with a semigroup approach

The semigroup approach, as developed in [43] for the hypercube, boils down to the same integration
trick along . We need first to rewrite our results in a more general setup: we assume the X;’s
are i.i.d. discrete variables, taking a finite number of values and this time, S takes values in a
Banach space (E, || ||g). We also consider a continuous convex function ® : E — RT, so instead of
considering Var S = E||S — ES|| = [|S — ES||3, 5, we consider E (®(S — ES)). The price to pay is
a suboptimal constant, as seen next, and the lack of connection with the Bj’s, which do not seem
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to have any equivalent in this setup. We hope that making this connection casts a new light on
the breakthrough [43], but also gives prospects to generalize it: indeed, while it is not clear what
would be the adequate semigroup when the X;’s are not binary variables, our theorem works for
all discrete distributions with finite support (and it is straightforward to generalize to all discrete
distributions or even bounded continuous distributions).

Theorem 2.2.1. For any o € (0,1), let e1(a),...,en(®) be i.i.d. random wvariable such that

Pi(a) =1) =1— o, P(&(a) = —1) = a, and let §;(a) = %\/%ﬁ((;) Then, with the notations

above,

E(D(S — ES)) < /01 Ed <7rzn:6i(a)di5(X)> W\/%.

Proof. Firstly, without loss of generality, we may assume ES = 0 (one may check all the following
results are true when one adds a constant to S). Following [43], denoting by ®* the convex
conjugate of ®, we note that for any = € F,

B() = sup ({4.4) = 9" (1)).

and therefore, since the X;’s only take a finite number of values,
E(®(S - ES)) = sup E(T,S) — ®*(T)). (2.2.4)
T is 0(X1,...,X,)—measureable, taking values in € E*
Now we bound the term E((T,S) — ®*(T)). We write, as in (2.2.1),

E((T, S) — *(T)) = - / < (BT, S(X))) da — B2 (T)),

and just like we obtained (2.2.2), we get

E(T,S) — ®*(T)) = /01 E((T, En: S(X@i) = §(x(@)1)))da — E*(T).
i=1

Note that _ . ‘ .
S(X @1y - §(X (1) = ¢, §(X (1) — ¢, S(X (@),

and by independence,
E((T,diS(X 1)) =0,
SO

E(T,S) — ®*(T)) = Zn: /01 E(T,d;S(X(")da — E®*(T). (2.2.5)

Now, let

a(l—a) 2v/a(l — )
where the last equality is here to show that this is just a renormalized random variable taking
values in {—1,1}, much like the &;(¢)’s, random variables with P(&;(t) = 1) = (1 4+ e *)/2 and
P(&(t) = —1) = (1 — e ")/2 introduced in [43]. We have:

1y,>0di S(X (7)) — (1 — ) (Ly,>0di S(X)7) + 1U1‘<OédiS(X(a)72))>
7 a(l —a)

5i(a) = Lysa —(1—a)  2(Ly;>a —1/2) — (1 —2a)

)

E(T,5;(a)d;S(X))) =E <<T

a(l —a)

~ B ({7, /all = ald,s ).

e <<T aﬂUfzadiS(X(a)%)
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hence, with (2.2.5) we get:

E((T,S) — @*(T))

/1 E({T 0:(@)diSXN) ey

a(l —a)

|
<.
M@
_

da

myv/a(l —a)
</m<za dsx<a>>da
= /o i all-a)

Note that (Uy, ..., Un,Xfa), . ,X,(la)) has the same distribution as (Uy,..., Uy, X1,...,X,),

/ (T, 7r25 )d;S(X())) — E®*(T)
0

SO

E((T,5) — (1)) g/o E® (wZ&(a)dﬁ(X)) m/%'

Recalling (2.2.4), the result follows. O

Let us see how the above allows us to recover the main results of [43], for Rademacher random
variables. We recall the notation in use in [43]: for x € {—1,1}", let

S(T1yee oy Tiyee oy @y) — S(T1, 0oy —Tiy ooy Ty)

DZS(LL‘) = B)

We may now state the corollary, in the Rademacher case:

Corollary 2.2.2. In particular, if X;’s follow a Rademacher distribution,

B(®(S — ES)) < /O o (wZéi(a)DiS(X)> W\/%,

so with a change of variable we get [43, Theorem 1.2], with a different & and the constant w instead
of m/2 in :

oo " o 2dt
E(®(S — ES)) g/o Ed (WZ&i(e )D,—S(X)) T

i=1

Proof. Since E® S does not depend on z;,
(S —EDS)(z1,. .. 2y sxn) — (S —EDS) (zy,...,—2iy. .., xp)
2
diS(x1, . Ty X)) — diS(T1, o, =Ty X))
2

- dzs(x)a

the last equality coming from the fact that d;S(x, ..

Sl xn) = —diS(z1,. .., —1,. .., x,) since
E®(d;S(X)) = 0.
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The above implies a slightly weaker [43, Theorem 1.2], i.e., with a different absolute constant,
but the fact that Enflo type and Rademacher type coincide still follows from Theorem 2.2.1 just
as it follows from [43, Theorem 1.4] with, as indicated there, a routine symmetrization argument.

To make the connection complete, recall the additional notations in [43]: the operator A is
defined by

and the semigroup P, is defined as

In the case where the X;’s are Rademacher random variables, the crucial observation in [43]
is that (we denote by &', §’ the variables &, § introduced there, to avoid any confusion with &
previously defined):

‘diis - \/E%Eﬁ’@ (Z 5§(f)Di5(§'(t)X)> : (2.2.6)

where &'(t)X is defined as (§1(¢)X1,...,&, () Xn).

Something similar holds in a more general framework (when the X!s are random variables
taking a finite number of values):

Theorem 2.2.3. With the same assumptions as in Theorem 2.2.1,

dEx: 7 S(X (@) 1 =
—-—— = Ex- §i(@)d; S(X ) |
< T R ; (a)dsS(XT)
Proof. This is essentially the same proof as Theorem 2.2.1. O

We conclude this section with a remark on the Talagrand L; — L, inequality in Banach spaces
of Rademacher type 2.

As noted in [16], it is natural, to try and understand for which Banach spaces (E,|| - | g)
there exists C' = C'(E) > 0 such that for any function function S of Rademacher random variables
X1,..., X, taking values in F,

2 - ID:S|%
IS = ES||%, < Co(S)) X (2.2.7)
i=1 1+log (7||DisnEil)
where || - ||ge = (E| - ”%)1/k7 which is a generalization of Talagrand’s L1 — Lo inequality (see

Theorem 2.3.6) to Banach spaces.

Clearly, if a Banach space satisfies (2.2.7), it must be Rademacher type 2. It is still unknown
whether or not the converse is true. The best result, to date, is:

Theorem 2.2.4 ([16, Theorem 1]). Let (E,| - ||g) be a Banach space with Rademacher type 2.
Then there there exists C = C(E) > 0 such that for any function function S of Rademacher
random variables X1, ..., X, taking values in F,

2 - 1DiS|% 2

”S_ES”EJ SCU(S)Z D25 )
i—1 1 +log N0l E,2

i=1 (llDiSHE,l

where 0(S) = max;e(1,... n} log (1 + log (%))
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It is still unclear whether or not the logarithmic term o(S) is needed or not, but we now show
how hypercontractivity comes short to removing it.

As noted in [16], one may apply (2.2.6) to P.S instead of S (for a fixed t), while the chain rule
and semigroup property give:

_dljftts _ \/71@5 ® <Z§ t)D; P,S(¢'(t )X)) .

Hence, using the fact that F is Rademacher type 2, if we denote by K its constant, we get
(see e.g. [16, (57)]):

too [ ) 2 dt
1S = ES|p,2 < 4K/ Z 1DiPeS||s N~ (2.2.8)
0 i=1 -

We now show that in some cases hypercontractivity may not be enough to get rid of the factor
o(S). More precisely, let

o2t 1/2
I= /+°<> il (”D S”El) e dt
0 | DiS|| .2 et — 1

which is the upper bound on the right term of (2.2.8) one gets using hypercontractivity.

We let L¢:10g< ll ‘;}l ) di = || DiS| g2 and 6(t) = 14_9,22,50

too (& RY
I~ d2e—2Li0(t) e
/0 <Z ! et — 1

i=1

With a change of variable,

L/ n 1/2
IN/ Zdze_%"e 7019
0o \= ! 0(1—9)

1/2
/1/2 Zn:dz’e*%" / %+i U
0 —~ VO V2 )i V/1-0

(we already know it is bounded by ¢(5)) is equivalent to bounding

1/2 _ 1/2
fO (Zz 1d3 2k 0) %
Zl 1 z/L

so bounding ﬁ
=1 "

R :=

d/1

Letting \; := BT

we get

1/2 n 1/2 de
R= \/i/ )\,’Lieil‘ie —.

Assume L; = 2071 \; = 1/n. Then for any 6 € (1/2",1), there exists ip € {1,...,n} such
that 1/2% < < 1/2%~! and

n 1/2 . 1/2 —
S AiLie b > (A Lige F0?) /2 > Li, e tio? S V22
o idsq = igd4ig Z 9 =

=1 "

n N
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SO

2@/1 de 2Ve—2
R > — > 2Ve2log(2)yn > max L;.
2T e T 2 BTIORON 2 oy s B

Thus in this case is lower bounded by Co(S), for some constant C' > 0.

12
P d7 /L

2.3 Some applications

To finish these notes, we present some applications of the above inequalities to various contexts,
in particular to lower-bounding the variance of the length of the longest common subsequences
between two random words. For (z1,...,zs), (y1,...,4:) two sequences taking values in a finite
set A, Recall that we denote by LCS(z1 ...2s;y1 ... y:) the largest integer k such that there exists
1< <o <ip <5, 1 < gy <o < jp < tsatisfying a;, = bj,,...,a4, = bj,, or 0 if there
is no such integer. In the sequel, we take A = {1,...,m} (for some m we specify in each case),
Xi1,..., X, 11,...,Y, iid. random variables taking values in A (according to a distribution we
specify), and consider the length of the longest common subsequences of these two random words,
LCS(X;... X Y1 ... Y,,), written simply LC,.

2.3.1 Iterated gradients and Gaussian (in)equalities

It is well known that one can transfer the finite samples results of the previous section to functions
of normal random variables, somehow reversing the analogies between iterated jackknives and
iterated gradients first unveiled in [27]. This transfer is then followed by a study of the infinitely
divisible framework and by the semigroup approach to these inequalities.

Let Z be a standard random variable and G be an absolutely continuous function. As well
known, the Gaussian Poincaré inequality asserts that

VarG(Z) < E(G'(2)?),
while in [29], this inequality is generalized with higher order gradients.

Lemma 2.1.4 and Proposition 2.1.5 allows us to quickly recover Gaussian results. Indeed,
e.g., see [9] in the case k = 1, one can infer from the discrete decomposition of the variance a
decomposition for Var G(Z).

Lemma 2.3.1. Let G be a real-valued m-times continuously differentiable function, such that
E (G(k)(Z)Q) < 400, k=0,...,m. Let X1,...,X,,X],...,X], be independent Rademacher ran-

dom variables and let S(X1,...,X,):=G (%) Then for all k € {1,...,m},

) ——B(CO(2)?)  and Ky(n) —— (B (G<k>(2)))2.

n—-+oo n——+oo

Proof. 1t is enough to prove the theorem for G m+1-times continuously differentiable with compact

support. From (2.1.6), we have
Ty = k!(Z)D’“lBl,

so (using (2.1.5)),
n 1 2
Ji :k!<k)E2kn! E (Aiy,.inS)

€S,
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By symmetry of the function S(Xi,...,X,) =G (Xl"'i\/gX”), this simplifies to

For any i € {1,...,k},

with
DiS(ﬂ;‘) _ S(I17 ) L 7$n> _23(1717 y — L4, 7-73n)
Iterating,
Ay kxS = (D kS)Qk]lxlzxg ..... Xp=X]
hence
E 1 A )2 — 2
27( 1,..69) =E(D1, 1S)°.

We now expand, for any € {—1,1}", Dy S(x). Let us denote for A C {1,...,k},
A= (2Il1€A -1, 21/6614 - 17xk+1a s axn)-

It is straightforward to prove by induction that

1
DL,__,kS(Q?) _ ( )|z€{1 ..... k}: mz_l\ﬁ Z (—1)|A|S($A),

which simplifies to

k .
i =1 L k i 2=kt T+t T,
Dy 1S(x) = (—1)li€lkhiw 1|272 (Z>(_1),G( k\-;% ) .
=0

By Taylor’s formula, and using the fact that S5 (¥)(—1)%¢/¢! = (=1)¥ Loy, for any £ € {0, ...

we get that

G(k) k+l‘k+1+"'+xn)
BN vn

|D1,...,

with @ uniform in 2 (thanks to the compact support assumption). This leads to

2
En* (D, 1,S)? —— E (G(k)(Z)>

n—roo

and using (2.3.1) and (2.3.2), we get the desired result

EJy(n) —— E (G("’)(Z))2 .

n—o0

The other limit in the theorem is obtained in a very similar fashion.

We now see, using (2.1.10) and (2.1.11), that for any fixed k > 1,

Be(n) ~ons e B (G(2)%) and By y(n) ~nssoe - (B(C(2))°.

More generally, for any a € (0, 1),

1 o= a’(—1) ;
Blan)(n) ~notoo i Z (j')E (G(]"'l)(Z)Q) .
=0

79

(2.3.1)

(2.3.2)

7k}7
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Note that

oo

' (-1 j _
/0 Ban) (n)da —— 2% S (G<- +1>(Z)2) = Var G(2),

i—
as one could expect.

Proposition 2.3.2. Under the same assumptions on G, for all k € {1,...,m — 1},

(k+1) 2 (k) (72 (k1) 7\2
(B (G (2)° e BGE(2)°  (EGW(2)) _EGEH(2)?)
G S VarG)-(EE(2) - 2 T k! A UES

The above indicates that the difference between the variance and each partial sum is squeezed
between the Cauchy-Schwarz inequality. We may also get equalities, when G is infinitely differen-
tiable, with additional conditions. Indeed,

Corollary 2.3.3. Let G be a real-valued infinitely-differentiable function, such that, for all k > 0,
E(G®(2))? < 4+00. Then,

varG(z) = S (- EE0EP)

i=1

9

i!
if and only if limy_, o B(G*)(2))?/k! = 0, and under such a condition,

Var G(Z f G() ))) .

For any k > 1,
oot -ctar B, B, (5 e
’ Jj=k+1 )
: (2.3.3)
For any a € [0,1],
i =3 (1w OO o g ECHANT) gy

Proof. This is nothing but Lemma 2.3.1 together with Proposition 2.1.5. To get the last equality,
apply (2.1.16) to k = |an]. O

The equality (2.3.3) is a generalization of the equality in [10], where k& = 1. Note that (2.3.4)

can be rewritten as
2 G( )(z E (GW)(2)))? .
] (U S S

+o0 G(Z
VarG(Z) = Z (
=1 j>i

which gives us the additional equality: for all 4 > 1,

E(G(i)(z)Q) Z <j> (]E (G(J')(Z)))Q.
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This gives an alternative way to find (2.3.1) again:

>y BE sy (7))

! 1
ikt 1 J2i>k+1

- 5 (S () e

j=k+1 \i=k+1

_ f (j;)(E(GiW

b

j=k+1

where the last equality comes from a simple formula for the partial alternate sum of binomial
coefficients.

Multivariable versions of the above results remain true, and in fact, so do infinite-dimensional
ones on Wiener space or Poisson space or even Fock space. In each case, what is needed is a proper
definition of the gradient, e.g., see [38] for some infinite dimensional setting (Wiener and Poisson
spaces). In the multivariate setting here is a small sample of results which can be easily obtained
via the techniques developed to this point: Let m > 1, let G : R™ — R be a smooth function
(for the sake of simplicity, just assume differentiability up to the correct order, as above), and let
Z1y..., Zy beiid. standard normal random variables. Now, for k > 1, let

kG 5
O = Z (E (M(Zh...,zm))) 7

1<iy, i, <m

mw= > (IE (&(zh...,zm))z) :

1<iy,.. ik <m

and let

Let further (Xz',j)z'e{l,...,m},je{l,...,n} be independent Rademacher random variables and let

X X 7 Xﬂ X
S(Xl,l,...,XWL)::G( 1,1+\/ﬁ+ o L,l+ﬁ+ m,n>.
Then for all £ > 1,

Jp(n) —— m, and  Kgi(n) —— 0.

n—-+o0o n—-+4o0o
Moreover, for all k> 1,
Or+1 e 2 Mk Ni+1
< (-1 (V G(Zy. . Zo)—m+ 2 (1 7)< .
Gog i = (D (VarG(z m) =M+ D) S
Or11 02 Ok Mk+1
<VarG(Zy,....Zp)— 0 — = — - — — < .
Gy = VG2 Zm) =0 =5 K= (et 1)
Remark. It is well known that if Z1, Zs, ..., Zy are tid standard normal random variables, and if

12113 := Y"1, Z2, then (Z1/\| Z |2, - - -, Zm /|| Z||2) is uniformly distributed on the m—1-dimensional
unit sphere. Therefore, the above multivariate Gaussian case allows to recover and extend various
variance bounds and covariance representations on the high-dimensional sphere.

2.3.2 The Infinitely divisible case

Let Y be an infinitely divisible real-valued random variable, and G : R — R be a smooth function

such that its derivatives of all order are well defined and I (G(}“)(Y))2 < 4oo for all k > 0. We
are interested in the decomposition of the variance of G(Y').
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We let (Y;)i>1 be the corresponding Lévy process (i.e. Y7 has the same distribution as Y'), we
denote by (b, o, v) its generator (from the Lévy—Khintchine representation), and let (Y):>0,(YY’)i>0
be independent copies of (Y;);>0. For 1 < ¢,m, let

X@,m = YvZ/m - Yr(éfl)/ma
Xé,m = Y-Z//m - YV(/Efl)/m7
and let
Sn = G(Xl,n + -+ Xn,n)-

We now study, for any fixed a € (0, 1), the limit when m goes to infinity of nB|q,| (the By’s
of S,,) where n = 2™ + 1, which allows us to recover in another way the representation of the
variance from [39].

Theorem 2.3.4. Let o € (0,1). Then with the notations above,

2"Bla@m)+1 5 B (UG’(Ya +YL)G (Yo + YT, + / AuG(Yo + YL )AuG(YS + Y{’_a)dv> :
m o0 R

where A,G(z) = G(z + u) — G(x).

Proof. We first prove this fact for a a dyadic rational number, o = a/2* € (0,1). Let m > b

and n = 2™, with m > b. The proof is more convenient to write for a slightly different function:
instead of computing the By’s of S, (n = 2™), we compute the By’s of

Tn = G(Xl,n +-- Xn,n + Xn-l—l,n)-

Since the difference between the former and latest has order O(1/n), this is enough to get the
desired result. We have

BLanJJrl = E<G (Z?:Jrll Xim) (G <X1 + Z?:;ba+l X;n + Z;:r21m*ba+2 Ximr) -G (Z?:;baﬂ X;,,n + Z;:rzlm*baﬂ XHL)))
=B (G(Ziyn+ Vi 4 Y0) (G + Ya + Y1) = G(Z1 ), + YL+ YIL0))).

where Z and Z' are two independent copies of Y, since (Zy, Z{/n,Ya,Yo’é,Yf’_a) has the same

bt 2™ Pa+1 27" a1 1
distribution as (X1, X7, 30, 7 Xin Yoo, TR XL S Xin)-

i, Lai=2m—bg42

Let Go1(1) = E(G(-4+Ya+Y))|Ya, Y ) and Go 2(-) = E(G(-+ Yy + Y)Y, Y{" ), we then have

Blanjs1 = E (Ga1(Z1/n)Ga2(Z1n) = Gat (0)Ga2(0) = (Ga(Z1/n)Ga2(ZL ) = Gan(0)Ga,2(0)))

so if A; be the infinitesimal generator of (Y;,Y:);>0 and A is the infinitesimal generator of
(Y;S,Y;I)tZOa then

nBL(mH_l :;;j)E ((Al — AO)Ga,l ® Gavz(o, 0))
_E (O—Gm LYY A + / AG(Ya + Y )AGY! + Yl”a)dz/> ,
R
(2.3.5)

since (A — Ao)(f ® 9)(0,0) = o f(0)g'(0) + [ Auf(0)Ayg(0)dr. (This computation is in [39,
Proposition 2].)

Since the finite sequence By is non-decreasing, a routine density argument shows that for any
€ (0,1), nB| 4y has limit (2.3.5), which is the desired result. O
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Corollary 2.3.5.

1
Var G(Y) = / E (aG’(Ya + Y )G (Y. + Y ,)+ / ALG(Yo + Y] )ALG(Y, + Yl"_a)du> da.
0 R

This above representation of the variance stems from the decomposition Var G(Y) = >"7_, By,
and it can also be found, with a different approach, in [39]. Although we have only been concerned
with representations of the variance, similar representations continue to hold for covariances in the
spirit of the work just cited.

For example, we note that in the Poisson case, the limit (2.3.5) is simply
E (DG(Y, +Y{_,)DG(Y, +Y]",)),

where DG(z) = G(z+1)—G(x), Y, Y., Y{" , are Poisson distributed independent random variables
(with respective parameter «, «, and 1 — ). In the Gaussian case, it is

E(G'(Z10)G (Z2.0)) 5

where Z; o, Z2,o are Gaussian random variables centered with variance one and covariance 1 — .

2.3.3 A weaker Talagrand L; — L, inequality

Let us focus on the special case where the X;’s are Bernoulli with parameter 1/2. Fori € {1,...,n},
let

TiS(Xl, ven ,Xn) = S(Xl, .o ;Xi—1707Xi+1; PN ,Xn) - S(Xl, SN 7Xi—17 17Xi+1; . ,Xn)
(so this does not depend on X;). Then, Talagrand’s L; — Lo inequality can be stated as follows:

Theorem 2.3.6 ([67, Theorem 1.5]). There exists C > 0 such that for any function f :{0,1}"™ —
R, the following inequality holds
- 75113

Var S < C W,
=1 (f258)

where S = f(X1,...,X,).

We now prove a weaker form of this inequality using the By s, in the special case where there
exists a > 0 such that for all s € {1,...,n}, |7;S| € {0,a}. We can further assume without loss of
generality by rescaling that a = 1. Note that this particular case includes LC,, (changing a letter
can only change LC,, by at most one).

Firstly, conditioning on whether X; = X| or X; # X| , we can rewrite (2.1.3) as

(7

1 ) )
By, = Efn' (73, 8) (13, S) ot (2.3.6)
Ties,

SO

S 1 1 yeeeyllo—1
Var S = ;Em Z (Tiks)(TikS) etk

Ties,

_ ﬁ S S Er, §) (7, §)iei,

€S, k=1
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Let us fix i € &,, and bound Y }_, E(7;, S)(7;,5)™ . For ease of notation, by reindexing

the X;’s, we may assume i = Id, also, let us write X := (Xs,...,X,). Since, by assumption,
715 is boolean, there exists m < 2"~! and z!,...,2™ € {0,1}"~! pairwise distinct such that
TS| = > Ly Let, for a € {2,...,n}, N(a) := [{(3,5) € {1,...,m}* : Vk € a,z}, =z} }|.
We have

(k+1,....n})
2n+k72 :

. N
E(1.8)(118)%F < B|m S||m S| * = (

Let £ € {1,...,n — 1} be such that 2= < m < 2 (we may exclude the trivial case m = 0). Using
that for any k € {1,...,£}, N{k+1,...,n}) <m2¥~1 and the trivial bound N({k+1,...,n}) <
m? when k > ¢, we get

n 4 m n m2
ZE(Tls)(Tls) """ < Z gn—1 + Z ontk—2
k=1 k=1 k=1+1

2
m
<l 25w
m 2
< ({+2) =T = L+ 2)||mS|l5-

Note that log (%) = 10g< 2"_1> = log(2)(n — 1 —logy(m))/2s0 £ +2 < n+2—

2 [l S|
Ee) log (I\TiSHf) hence

- 2 71512
E 2k < (2 1 2.
e R (= ) L

k=1

Finally,
1 n
Var S = ol ZE(TZIS)(TIIS)U, in
€6, k=1
1 2 173, 5|2 2
< — 2 — 1 ! i S
<5 2 (2 s () ) ot
- 2 2 1755l 2
< 1+ —— lo ( J 7:55.
2N\ wlog® s ) ) 15T
To see that it is weaker than L; — Lo Talagrand’s inequality, consider for example X1,..., X,
independent Bernoulli variables of parameter 1/2, and S defined on {0,1}™ by S(z1,...,2,) =
T1...%,/5 (assuming n is even). Then, for any j € {1,...,n/2}, 7S]y = (1/2)2 7" and ||7; 5|2 =

\/II7iS][1. So on the one hand, Talagrand’s inequality gives a bound of order (1/2)% ~!, which is
optimal, while on the other hand, our weaker bound gives an upper bound of order n(1/2)% .

2.3.4 An upper bound on the variance of the length of the longest com-
mon subsequences

We got the upper bound for the variance Var .S < nBj, which was already known in [65]. Let us
apply it to LC),, and then improve it.

Let Z1,..., Zay, be i.i.d. Bernoulli random variables of parameter 1/2, and consider the By’s
of the function S(Zi,...,Z2,) := LCS(Z) = LC,,. We know that Var LC,, < 2nB;(2n). Using
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(2.3.6), B1(2n) < 1/4 so Var LC,, < n/2 (see also [36]). But this bound can be improved: note that
by symmetry of the zeros and ones in LC,, (that is, if Z; :==1— Z;,i € {1,...,2n}, S(Z) = S(Z)),
E7;5=0 so Ban(2n) = 0. By convexity of B, By(2n) + --- + By,(2n) < 2p2120E8mCn) -,
Var LC,, < n/4.

More generally, in the case of an alphabet {1,...,m}, conditioning on X; # X! we get
Bi(2n) < (1 =341, p?) /2, and when additionally Ba,,(2n) = 0, then Var LC,, < (1 — >, p?) n/2,
which improves, by a factor of two, on Steele’s bound [65], Var LC,, < (1 — >~ p7) n. The con-
dition By, (2n) = 0 is realized when p; = --- = p,,, = 1/m, for instance (by symmetry).

In the remaining part of this section, we focus on lower bounds for the variance of LC),. By
Theorem 2.1.2, (By)1<k<2n 18, in particular, non-decreasing, so

Var LC,, > 2nDBs,, (2.3.7)

which we will use throughout this section to lower bound the variance. [48, Theorem 2.1]| provides
a lower bound on the variance of LC,,, proving that when p is smaller than some universal (but
extremely small) constant, the variance has order n, see also [36] for more explicit bounds (we
already know by Efron-Stein that the variance is less than n). To obtain this bound, the authors
first show Theorem 2.2 there, and then prove that it implies that the variance has order n. The
proof of this implication is long and we aim to show that the jackknives tools we developed greatly
simplifies it. We also generalize the case where one letter is omitted, and then proceed to prove,
in the binary case, another slightly weaker bound: for some p; € (0.096,0.5) (so not as small as in
[48] or [36]), the limit superior of the variance over n is not zero. Finally, we give further partial
results on the order of the variance in the uniform case.

2.3.5 On the order of the variance under a hypothesis on a modification
of LC,

In this section we prove how Theorem 2.2 in [48] or Theorem 2.1 in [36] imply their main theorem,
namely the linear order of the variance. This shows how the use of the By’s greatly simplify
some proofs, and it is of interest to infer, more generally, a lower bound on the variance from a
random perturbation that has an effect on the expectation. More specifically, here, the random
perturbation is to pick a random 1 from the letters (if there is at least one), and turn it into a
0. The original letters are denoted by Zi,..., Zs,, the new letters (with a 1 turned into a 0) by
Zi,...,Zan. We refer to [48] and [36] for a more formal definition of Z. Theorem 2.2 /Theorem
2.1 there implies, in particular, that for any ¢ € (0,21 — ag), where oy, as are constants defined
there such that oy > «q, for n large enough,

E (LCS(Z) - LCS(Z)) > 6.

From this, it is natural to try to prove that Bs,(2n) is greater than some absolute constant,
to infer that the variance has linear order. Let, for all z € {0,1}?", z € {0,1} and k € {1,...,2n},
2P = (21, ..., 2k_1,T, Zky1, - - -, Z2n). Consider the modifications of Z, ZN¥'! and ZN0 with N
picked in {1,...,n} uniformly. Intuitively, this is "almost" like the previous pair (Z, Z). But it is
easier to write Bs,(2n) in terms of E (LCS(ZN'') — LCS(ZN?). Indeed, we have

]‘ i il ’i2 —1 il 12
By, (2n) :E42(2n)' Z (S — Gion)(Gitrizn=1 _ Gitrion)
T i€Ga,
1 2n
- _akyveofl,.2n\{kY _ o{1,....2n}
5 ;(S SM)IS s )

conditioning on (Zy,,, Z;, ) (first term when its (0, 1), second term (1,0), the other terms are null)
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we get

an(2’n

(Z8%) — LCS(ZzM1)) (LCS(Z'™%°) — LCS(Z'*1)) p(1 — p)+

Z (LCS(Z¥t) — LCS(ZF0)) (LCS(Z™Y) — LCS(Z'™°)) p(1 — p),

k=1

2(2n)

and by independence,

2n
Bon(2n) = o3 (B (LOS(Z) — LOS(249))) (1~ p),

k=1

so by the Cauchy-Schwarz inequality,
Ban(2n) > (B (LCS(ZNY) — LCS(ZN9)))? p(1 - p). (2.3.8)

We now give a lower bound on E (LCS(ZY%) — LCS(Z™-')). First note that if Ny denotes the
number of ones, for any ¢ € {1,...,2n}, (ZN:1, ZN:9) conditionally on Ny(ZN:!) = ¢ has the same
distribution as (Z, Z) conditionally on Ni(Z) = ¢. Indeed, this is the uniform distribution on all
the possible pairs of 2n bits, the first one having k£ ones and the second one being identical except
exactly for a 1 turned into a 0. To simplify the notations, for £ € {0,...,2n}, let

fO)=E (LCS(Z) - LCS(Z)|N1(Z)) .
We have

2n

E (LC’S(Z) - LCS(Z)) =" FOP(N(Z) = 0)

while, since f(0) =0,

E (LCS(ZN1Y) — LCS(ZN0)) = i E (LCS(ZN1Y) — LCS(ZNO) Ny (2)) P(N1(ZN1) = ¢)
(=1

- Zf - e(e_ 11)
- Zf(ﬁ)]%IP(Nl(Z) =1)

=1
_B (f(Nl(Z))Nl(Z)> :

so by dominated convergence,

E(LCS(ZVY) — LOS(ZV0) —— (LCS(Z) - LCS(Z))

n— oo

and so for any 0 € (0,7 — a2), for n large enough,
E (LCS(ZN1Y) — LCS(ZN0) > 6

so using (2.3.7) and (2.3.8),
Var LC,

> 2p(1 — p)d2.
- > 2p(1 —p)
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2.3.6 On the order of the variance when one letter is omitted

As in [35], we consider the letters X7, ..., X,, drawn from an alphabet aq, ..., ay,+1 and the letters
Y1,...,Y, drawn from an alphabet aq, ..., q;,: SO a1 18 an omitted letter, not belonging to any
longest common subsequence. We let p = P(X; = a,,11) and assume p > 0, but in contrast to
[35], we only make minimal assumptions on px 1 :=P(X; = a1),...,px,m := P(X; = am),py1 =
P(Y; = ai1),...,py,m = P(Y; = a,,): we assume that there are all strictly positive, but these
letters are no longer equiprobable, and we assume m > 1 (the case m = 1 is trivial and may be
dealt with separately). Using

Var LC,, > 2nBy,(2n), (2.3.9)

we see that it is enough to find a constant lower bound on By, (2n). Firstly, we write

2n
1 L
Bo,(2n) = o Z E (AjLCn(AjLC’n)1""’3_1’”1"“’”)

J=1

2n m
1 ;. 2 =a\ 2
= ZZ > (EAJ'LC? e ) P(Z; = a;)P(Zj = o) conditioning
n

j=14,i'=1
1 n m Xj:ai,XJ/-:arrrL+1 2
> >N (IEAJ»LC,L ) PX,iP
j=1i=1
2
]_ n i Xj:aqj,Xj/vZOtm-f-l
> @ ZEAJLC’I’L Px.i p-
j=1 \i=1

Writing LC),—1,, := LCS(X1 ... X,,_1;Y7...Y,), we have for any j € {1,...,n},

m
X":aiyxﬁ:anz
> EA;LC,’ T i = B(LC,) — B(LC,_1.,),
=1
hence

Bon(2n) > ~ (B(LCy) — E(LCy_1.0)) p. (2.3.10)

R

Let (w,n) be the alignment of (X5 ..., X,,_1),(Y7,...,Y,) that is minimal for the lexicographic
order, so (m,7n) is well defined as a (measurable) function of X; ..., X,,—1,Y7,...,Y,. Let F, be the
event "nrco, < n'", in other words, Y, does not contribute to the longest common subsequences,

then Y7, AnLC’,)L(”ZO”’XT/L:CKerl > 1p,, hence
E(Lcn) - E(Lcn—l,n) 2 pX,minIP(Fn)7 (2311)

where px min = MiNi<i<m Px -

We are now going to combine this bound with another one with some elements already present
in[35. Let Vi =m —1,Va=my—m1—1,..., VLo, = TLe, —7Lo,—1 — 1, and let M be the number
of indices 4 such that V; > 0. In terms of [35], M is the number of nonempty matches (except
that there is also the term V). We denote by I; ; the event: "inserting a; at the j-th position in
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(X1...,Xn-1),(Y1,...,Y,) increases the longest common subsequence". Observe that
E(LC,) — B(LC,_1.,) = B(LCS(Xy ... X; 1 X, X; ... X 11 Y1 ..., Y,)—

= pxiP(Li)
i=1

= % Z ZPX,iIP(Ii,j)

j=11i=1

> pX,minEiiI )
.
j=11i=1

EM
ZpX,minT- (2312)

From (2.3.11) and (2.3.12), we get

E(LCy) — E(LCh_1.,) > prm (IP(Fn) + E?i”) . (2.3.13)

Let v* be the limit of E(LC),)/n, we have v* <1 —p < 1. Fix kg > 0 such that

1—
Z mk(l _pY,min)k é 27 .
k>ko

When F;, does not hold, that is, m, = LC),, we have

LC,
i=1
SO

=1

LC,
E (Z m—) >E((n—LCy)lp:) > E(n— LC,) — P(F,)n > (1 — " )n — P(F,)n.

Furthermore,
LC,
kEM > E <Z Vﬂh@g%) .
i=1

On the other hand, (7, n) is minimal, so any unmatched gap has (at least) one letter of the alphabet
not used, namely, the letter used in the next match. Therefore the average number of indices @
such that V; = k is no more than nm(1 — py7rnin)k, and

LC
n 1 _
B (z mka) <n 3wk~ )t < 27

i=1 k>ko

Finally we get

*

koEM >

1—
27 n—P(F,)n,

and

EM - koEM + P(F,)n 21 —
n kon - 2k ’
so putting it together with (2.3.9), (2.3.10) and (2.3.13), we get

P(F,) +

PPX min(1 —7%)

>
Var LC,, > Sko
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2.3.7 A weaker kind of lower bound

Let us return to the Bernoulli framework with parameter 0 < p < 1, and let v, (p) = ELC,, /n and
¥(p) = limy, 00 o (p)- It seems reasonable to expect that Var LC,, /n converges when n tends to
infinity, but unfortunately a proof of this result has been elusive so far. Actually little is known on
the variance: to the best of our knowledge, it is still an open problem to determine whether or not
the variance tends to infinity in the uniform case. The function v is clearly symmetric around 1/2,
and it is expected to be strictly convex with a minimum at 1/2, but besides numerical simulations
there is no proof of this fact yet. The goal of this section is to prove:

Theorem 2.3.7. Let py € (0,1/2) be such that v(po) > v(1/2). Then there exists p1 € (po,1/2)
such that when p = p1,

LC,
lim sup % > 2po(1 — po) (

n—0o0

v(po) — ’7(1/2))2.

1/2—po

Remark. Using the bound v(1/2) < 0.8263 from [52], and since v(p) > p?+ (1 —p)?, we can apply
the above theorem with po = 0.096, to get for some p1 € (0.096,0.5),limsup,,_, ., Var LC, /n >
1.8/108%. Clearly, by symmetry, this limsup result is also valid for some pay € (0.5,0.904).

Proof. We have

1/2 dry 1/2
Yn(Po) — 10 (1/2) = —/ 7d; (p)dp = / — Y B, (LC}° — LCK") dp,
Po P

where we used a Russo-Margulis kind of formula. This is not strictly the Russo-Margulis lemma
since LC,, is not monotone, but the proof of this version is elementary: as in [22], we rewrite 7,
as a function of 2n parameters, the parameters of each letter (Bernoulli random variables):

dym v dm N9
O (p) = b (P.ps- D) =Y k(p,p,u-,p),

which yields the result. Hence,

v(po) —(1/2) = hfffolip Yn(P0) — n(1/2)

1/2 1 2n
< / lim sup — Z E, (LCS’O — LC’S’l) dp,
P

2n
0 n— o0 k:l

so there exists p1 € (pg,1/2) such that

2n
—7(1/2)
limsup — S B, (LCRO _ [ok1y > 200 Z7(1/2)
libolip2n; p1( n n)— 1/2_p0

Let us fix p = p;. As seen previously,

By, (2n) = % > (B (LC,(27°) - LCn(Z’“’l)))zpl(l — 1),
k=1
2n
Var LG, > 3 (E (LC.(Z5°) — LCW(Z21)))” po(1 — po)
k=1

2n 2
1 k,0 k1
> 2n <2n ;Em (LCEY = LCEY | po(1 = po),
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and finally

LCy —~(1/2)\?
limsupu > 2po(1 — po) (7(1%)7(/))
n—00 n 1/2_p0

O

Remark. As already mentioned, it is expected that the function v is strictly convez, but even
proving that v is non-increasing on [0,1/2] and non-decreasing on [1/2,1] seems to be lacking. It
also seems reasonable that for a fived alphabet, say binary uniform, the sequence (ELC,, /n)p>1 is
non-decreasing, but again a proof is lacking.

2.3.8 On the order of the variance in the uniform case

A long-standing open problem is to find the order of the variance of LC,, when the distribution is
uniform. In this section, we focus on the uniform binary case, so lim, o ELC,, /n = 7(1/2) := 7».
We recall, from [37], the definition of the function ¥: for any p > 0,

_ E(LCS(X1 ... Xu: V1. Vi)
=1 )
(p) := lim, n(1+p)/2

By a superadditivity argument, this limit is well defined and 7 is concave, non-decreasing on [0, 1]
and non-increasing on [1,400) (for the details, and more properties, we refer to [37]).

By symmetry, in this case, B, (2n) = 0. However, letting 77 = (X1,Y1), Zo = (X2,Y2),..., 2,
(Xn,Y,), then the last By is B, (n) which can also be written as

el

with transparent notations (the proof is similar). So it is enough to find a lower bound for this
quantity, which is doable for the terms on the edge (1 or n) but seems tricky for the terms in the
middle.

E (LCS(ZH00) — LeS(2401)))?,

S\H
»&\H

We may also fix b > 2 and let Z; = X4,..., X, Z9 = Xpt1,..., Xop, .... In this case, one
gets that lower bounding B,,(n) amounts to finding w,ws € {0,1}* and 6 > 0 such that for all
n>1,

1 3 (B (LCS(Z5) — LOS(Z4v2)))* > 6.
=1

3

For example, intuitively, it is likely to get a larger LCS with w; = (1,0) than with we = (1, 1),
and with w; = (1,0,1,0,1) than with wy = (1,1,1,1,1). Running simulations in Python, Figure
2.1 seems to indicate that B,(n) is lower bounded by a strictly positive constant (which would
yield the linearity of the variance).

We now pick again Z; = X1, Zs = Xs, ..., Zo, =Y, and study B (2n). Note that if By (2n)
was converging to zero, this would rule out the possibility of a linear lower bound on the variance.
In the following, we study Bj(2n), and find that it is lower bounded by a constant.

Let X1,...,X,,Y1,...,Y, be independent Bernoulli random variables with parameter 1/2,
and let v < n. We may assume, for ease of notations, that n = vm is a multiple of v, but it is not
hard to adapt all the following proofs to the general case. Let R := {7} eN?":1=rg<r <

- <1y =n}, and, for any T eR, let

7) = mz_: LCS (P,
=0
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Figure 2.1: B,(n) for w; = (1,0),ws = (1,1) (left), and w; = (1,0,1,0,1), we = (1,1,1,1,1)
(right), with the empirical measure over 1000 simulations.

where P; := ((Xuvit1,- - X(wt1)i)s Yrss -5 Yripi—1)) (with the convention (Y;,,..., Y, —1) = ()
if r; = r;y1). For any 7 eR, call 7 an alignment if LC,, = LCn(7).

Denote by N; the number of letters in the cell P;, that is, v 4+ r;31 — r;. For any T e R,
let I, p,(7) = {i € {0,...,m — 1};701 — 5 € [Up1,vps]}, and I, ,,(7) its complementary in

{0,...,m — 1}. Next, let B be the event that: for any alignment 7,

£€,P1,P2
Y Nz (17§)2n.
2

i€1p, py (77)

Forgetting about the slight difference in notations for the alignments, as we define them following
[28] with non-strict inequalities ro < r; < ... rather than the strict inequalities in [37], we have
BZ, », C AL, ,,, Where this event is defined in [37]. Indeed, if B, ,, is not satisfied, there is
an alignment % such that

which implies Card (I, ,, (7)) > em, which means AL . p, 18 not satisfied. Therefore, the following
is a strengthening of [37, Theorem 2.2].

Lemma 2.3.8. Lete > 0. Let 0 < p1 < 1 < pa be such that F(p1) < (1) = v2 and F(p2) < Y2
and let 6 € (0, min(y2 —5(p1), 72 — ¥(p2)))-

Fiz the integer v to be such that (1 + In(1 +v))/v < §%¢2/16, then

n 822 1+In(l1+wv
]P(BEJJIM) >1—exp (—n( T 1() ))>,

for all n large enough.

Proof. Let 7 € R be such that > et Vi > en. We first prove that

P17P2( )
E(LC,(7) - LC,) < ——

for all n large enough. We follow the proof of [37, Lemma 3.1]. Let 6* = min(ye —%(p1), 2 —7(p2))-
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Using the superadditivity of 7, we get

E(LC,(TN<w| > F|+e-0| >
i€1py o (T) 1€1p1 py (T)

o*e
< (72— 5 )n

Moreover, for n is large enough,

E0) - (n- 5% )n

2
so combining together these two inequalities, we get the desired result:

B(LCW(7) ~ LCy) < 2.

The end of the proof is exactly like in [37], the only difference is, as pointed out in [28, Remark
2.2], that the cardinality of R is now ("!") instead of () so Inv becomes In(1 + v).

O
Theorem 2.3.9. There exists C > 0 such that for all n large enough, B1(2n) > C.

Proof. For any 7 € R, let S(7) = {i € {0,...,m—1}; LCS(P;) = min(v, ;41 —7r;)} the set of the
indices of "saturated" cells, meaning that LC'S(F;) is maximal given the size of the cell. We first
show that for some & > 0, with high probability, for any alignment 7, Card(S(7)) < (1 — &)m.
The idea behind is that the em non-saturated cells will guarantee the lower bound on Bj(2n), as
changing their coordinates might increase LC),.

Let x = 0.28,p1 = 1 — x,p3 = 1/p;, we know from [37] that Y(p1) < v2 and F(p2) < 2. Let
n= 2(%7;3)772, from the upper bound v5 < 0.8263, see [52], it that n > 0. Let ¢ € (O, m , and,
lastly, let § € (0, min(y2 — 5(p1),72 — ¥(p2))) and fix v to be such that (1+In(1+v))/v < §%¢2/16.

Let C™ be the event: for any alignment 7, Card(S(7)) < (1 —e)m. If (C7)°N BZ, p, 18
realized, then there is some alignment 7 such that Card(S(7)) > (1 — &)m, and

N; min(v, rip1 —74)
LCy 2 > ) N '
ies(?)ﬂlmmz ™) 2
For any 7 € I, 5, (7), Tit1 — T € [Up1, Up2] SO
min(v, rjy1 — 7y 2 2 2(1 —z
( N )21 -2 )2724-77
& +p2 1+p 2-x
o) N
LC, > > - (2 + 7).
iES(?)mIpl,pz (7)
Furthermore,

N; N; N;
> 5= > S5+t > 3

i€S(T)Npy py (T) i€S(T )Ny py (T) i€1py py (T)
1
<wv —;pz em + %

< 2en,
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so we get
LCy > (1—2¢)(72 + n)n,

but given the choice of €, (1 — 2¢)(y2 +1) > 72, so by concentration, this has probability exponen-
tially small to happen. Therefore, P ((C2)¢) < P ((C2)° N BL,, ,,) + P ((BX,, »,)¢) goes to zero
(exponentially fast) as n goes to infinity.

Now for i € {1,...,m}, let

LOS(X1 ... XyGoy®1 - @ Xuig1 - X3 V1. Y,) = LOS(Xy ... X3 Y1 .. Y]

V= max
z€{0,1}v

For any i € S(7), V; > 1, hence

1
E(— 2 P(C).
(23w2) > epiex
Now let for € {0,1}" and j € {v(i — 1) +1,...,vi},

6] ({E) :LCS(Xl N Xv(i_l)xl PN xj—v(i—l)Xj+1 N Xn7 Y1 N Yn)
7LCS(X1 ce Xv(i_l):cl “e 7xj—v(i—1)—1Xj . .Xn; Y1 N Yn),

so that

V2= max Z d;(x)

e{0,1}v
RS A P S

v

< max v Z §;(z)?

we{0.1} j=v(i—1)+1
vl
<w max 4;(z)%
=u(imy+1 SO

Note that EA% = |d; (X7, ..., X,)? (see the next section to recall the definition of A;), and

1
X;AQ. > — max 6;(x).

Ex
X J T2V zef0,1}v

1000

Hence,

1
2 2
EAY > QUEzGI?(i‘i{}’U 0;(x)*,

SO

2 v 2
VZ<u2v Y EAZ
j=v(i—1)+1

1 V2Y O
£(1 3w <2 S eay
(m i=1 mia
eP(CT) < v?2Y By (2n),
and when n is large enough, B;(2n) > &/20v22v. O

Remark. The above result is a necessary condition (certainly not sufficient, though) to have
Var LC,, asymptotically linear. This implies that there exists C' > 0, such that for allm, B1(2n) >
C’, as for all n, B1(2n) > 0.
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2.3.9 A note on a potential implication of [28]

In this section, « € (0,1), v = n®, and 7 is a random alignment. Let Xi,.., XY, ... Y be
independent Bernoulli variables with parameter 1/2, independent from all the previous variables.
As previously, we write Z = (Z1,...,Z2,) = (X1,...,Xn, Y1,...,Y,), and as in [2§], for j €
{1,...,2n}, let
A, := LCS (P;) — LCS (P))

where P; is the cell of length v containing Z; and P} is the same cell but with Z]’- instead of Z;.
We also write for j, k € {1,...,m}:

LC) = LCS(Zy...Z}... Zay)

LCH* = LCS(Zy... Z} ... Z}, ... Zon)
Ajy = LC, — LCY — LCY + LCI*.

It is claimed in [28] that |E ‘AVJ -Ajl=E (AN] - Aj> is exponentially small in n. The equality
comes from the fact that A\; —A; >0 (as explained in [28]). Furthermore, EA; = 0, so the problem
boils to controlling E&; Let us assume, in this section, that EE; < exp(—tn) for some ¢ > 0 not
depending on j,n, and let us denote by A, the event &; —Aj =0. Of course, P(A$) < exp(—tn).
Finally, let C; be the event "Z; and Zj are not in the same cell". Let j,k € {1,...,n} and
suppose A;, Ay and C} j are all realized, then when Xj; is flipped to X]’~, the alignment 7 = 7(Z)
is still an alignment for (Zy,...,2},..., Z2,), s0

LCIF — LCI > —A, = LC* — LC,
S0, in other terms,

Ajplalale,, > 0. (2.3.14)

Let us write Aj, = A;fk — A, (the positive and negative parts), using the bounds |A; x| < 2
and (2.3.14) we get
Aj_,k < 2(1 — ]lAj]lAkﬂCj,k)

so (A;k)2 <41 =1 4,14,1¢,,), and
E(A};)? < 4(P(AF) + P(A7) + P(C5 ) ,
E(A],)? < 2BAT, = 2BA7, < 4 (P(A5) + P(A7) + P(C5 )
hence
E(Aj ) <8 (P(AS) + P(A7) + P(C5,)) -
We may now give an upper bound on Bj(2n) — Bz(2n):

1
B1(2n) — B2(2n) = =T S B4
Jj#k
J.ke{1,....2n}
_ 2 ,
T 4(2n)(2n—1) ; E(Ajx)° (by symmetry)
jE{l,...,n},k’E{l,...,Qn}

2 2
S L Los, |+~ P(AS) + P(A]
~ n(2n—1) Z ci | T n(2n —1) Z (A7) + (A7)
Jj#k i#k
Je{l,...,n} je{l,...n}
2

< m(?nv —n) + 2exp(—itn)
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So when n is large enough,

and by convexity of B, and using the lower bound 0 < C

- 20(i — 1
Var LC,, = By(2n) + -+ + Baa(2n) > > C — (-1)

which is equivalent to C?n/(4v). So for some constant C’ > 0,

Var LC,, > C'n'~2,

Once again, this is under the assumption that ]EE; < exp(—tn). If, additionally, this assump-
tion holds for some a < 1/10, then by [28] there is convergence of the properly rescaled LC,, to a
Gaussian.

There is also a somewhat weaker assumption that would guarantee the linearity of the variance.
Recalling the percolation interpretation of the LCS as seen in Section 0.1, we denote by Geo the
(random) set of geodesics, and for any a,b € {1,...,2n}, Geo” the set of geodesics when the Z, is
turned into Z!, and Geo™® the set of geodesics when Z, is turned into Z/, and Zj, is turned into Zj.
For j,k € {1,...,m}, let A; be the event: there exists (p, q) such that j < p < k and there exist
(91,92, 93, 91) € GeoN Geo’ NGeo” N Geo”* such that (p,q) € g1 NgaNgsNgs. In words, this is the
event that it is possible to find X, aligned with Y; no matter the values of X; and Xj. Similarly, let
B, . be the event: there exists (p, q) such that j < p and k> g or j > p and k < ¢ and there exist
(91,92, 93, 92) € GeoNGeo’ NGeo ™ NGeo? ¥ ™ such that (p,q) € g1Ng2NgsNgs. In words, this is
the event that it is possible to find X, aligned with Y, no matter the values of X; and X}, and such
that X, Y} are not both "on the same side". Now suppose that P(A$ ), P(B5 ;) < exp(alk — j|)
for some constant a > 0. Then an adaptation of the proof above shows that the variance is lower
bounded by C’'n for some constant C’ > 0.
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Chapter 3

Quantum Statistics

In this chapter, we are interested in quantum spectrum tomography, which consists in estimating
the spectrum of the density matrix of a quantum system, given n independent copies of this system.
As seen in Section 0.4, the Weak Schur sampling allows to reformulate this problem as follows:
given A ~ SW"(p), how to estimate p? Note that from now on, we assume p; > py > --- > pg, as
by Proposition 0.3.3, there is no loss in generality.

If one works with the Ls-loss function (the Li-loss and others may also be considered), the
goal is to find a function g, such that Iy swn (p)|lgn(X) — p||? is as small as possible . To date, the
best estimator is simply the empirical Young diagram, originally introduced in [2]:

gn(A) = A= (AlAd) (3.0.1)

n n

This is the quantum equivalent of the empirical distribution, except that the expected Lo-loss
(the risk) is not in 1/n, but d/n (see, e.g., [76]):

d
Ex swn(pllgn(X) — p||> = O <n> 7

and one may check that in the uniform case, asymptotically, the risk has order d/n (using Theorem
0.3.5), therefore this upper bound is tight.

The question of the existence of an estimator with a risk of order 1/n (as in classical statistics),
or at least a "better" estimator than the empirical Young diagram, is an important open question
in quantum statistics.

This is made difficult by the fact that that none of the limiting theorems for the shapes of
Young diagrams had explicit rates. Our first goal is to compute explicit rates of convergence of
A ~ SW"(p). In this first part, we revisit, beyond the uniform case, some aspects of the convergence
of the cumulative shape of the RSK Young diagrams associated with random words, obtaining rates
of convergence in Kolmogorov’s distance. Since the length of the top row of the diagrams is the
length of the longest increasing subsequences of the word, a corresponding rate result follows.

It turns out that the rates of convergence are not sharp enough to infer an estimator better
than the empirical Young diagram, so in a second part we introduce different estimators and the
conditions that would make them better than the empirical Young diagram.

Finally, the difference between the shape of the RSK diagram and the "classical" histogram,
which is called the excess, is investigated.

97
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3.1 Rates of convergence of the shape of Young diagrams

Let Xi,...,X, be ii.d. random variables with values in a finite alphabet {1,...,m} and with
probability mass function given by pi,...,pm. For i € {1,...,m} and j € {0,...,n}, and with
elements of the notation in [32, 12, 18], let N} = Z{:1 1 x,—; be the number of letters ¢ within the
first j letters, and for ¢ € [0, 1], let

_ N, — piltn]
O'i\/ﬁ ’

where 0; = /pi(1 —p;). Let A={A€[0,1]": Ay 4+ -+ + A\, = 1}, and for A € A, let

Bp(t)

7

V(N = o; (E?(/\l o4 N) — B\ +-~-+>\i_1)),

i€ {1,...,m} with for i = 1, the convention that B"(A; 4 - - + A\;_1) = 0.

Hence, LI,, the length of the longest increasing subsequences of X; - -+ X, is given by:

m m
LI, = 0=k0§k?1§a¥gkm=nz (Nki — Nk?i—l) = /{%g}\)i ; <npi)\i + \/ﬁvz (/\)> )

where now Ag :={(j1/n, .-, Jm/N) : J1, s Jm EN 1+ + jm = n}.
For A € A let, finally,

m

Zn(A) =) (\/ﬁ(pi — Pmax)Ai + ﬁ(/\)) )

i=1
where prax = max;—1,....m Pi, so that

LIn — NPmax o
S = Za(), (3.1.1)

Tt is known (see [32, 12, 18] and the references therein) that the limiting distribution of (3.1.1)
is the distribution of maxyca Z/,(A) where Z), is defined as Z,, but with B, a Brownian motion,
instead of E? (as stated more precisely in the sequel). Note that Z/, has the same distribution for
all n, so that the limiting distribution above is well defined. Below, our main goal is to provide
a rate of convergence for this result. To do so, the strategy is to use a KMT approximation
to build a coupling: we will define on the same probability space B and B that are very close.
Then, when the letters are uniformly distributed, Z,(\) simplifies to Z,(\) = Y.~ V/*(A), and
therefore it is straightforward to infer from the coupling the rate of convergence bound. This can
also be done for the other lines of the RSK Young diagrams associated with the word. When the
distribution is not uniform, the strategy is to first approximate maxyea, Zn(A) by maxyenr, Zn(A),
where A, = {\ € Ay : pi # Pmax —> i = 0}, because then for each A € A, Z,(A) = 327 V/A(N),
as previously.

3.1.1 A coupling via KMT and rates of convergence

To start with, we prove the following key coupling lemma:
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Lemma 3.1.1. Let o > 1. For every m > 2, every probability mass function p1,...,pm, and every
n > 2, there exists a probability space with X1,...,X,, B®, as above, and B™ an m-dimensional
Brownian motion with covariance matriz ¥ := Cov ((1x,=;/04)1<i<m), defined on it, such that

P sup O'iB\zL(t) —0;Bl'(t)| > C———=—— (3.1.2)

where C is a universal constant.

Proof. By the KMT approximation [47] (see also [64] for further details and extensive references,
in particular on Kiefer processes), there exists a probability space with (U;);>1 1.i.d. uniform on
[0, 1] random variables and a Kiefer process (K(s,t)) s¢jo,1) such that for all z > 0,

t€[0,00)
1
1 K (s,1) logn + x
P sup |— 1y, <s—8) — ’ >Cilogn——— | <e™7,
0<s<1 \/ﬁ,;( S vn SV
le{l,...,n} -
where C] is a universal constant (throughout, C,Cj3, ... are universal constants). In particular,

for = alogn one gets

!
1 K (s,1) (logn)? 1
Pl sup |[—=S (1 co—s)— 235 900,o V80 | o 313
0<s21 \/ﬁ;(“‘ " VIR B (34
1e(T, m} =
To replace the discrete parameter [ € {1,...,n} by a continuous one I’ € [0, n], note that

P sup sup |K (s,1) — K (s,1')] > 2C1a(logn)? | < ZIP sup |K (s,1) — K (5,1')] > 2C1a(logn)?
0<s<1 Ie[i—1,1] — 0<s<1
le{1,...,n} U'eli-1,1]

<nP | sup |K (s,t)] > 2C1a(logn)?
0<s<1
0<t<1

)

<nP |2 sup |W (s,t)| >2C a(logn)?
0<s<1
0<t<1

where W is a two-dimensional Brownian sheet (using the facts that (s,t) — K(s,l) — K(s,l —1t)

and (s,t) — W (s,t) — sW(1,t) are Kiefer processes on [0,1]?). From [23, Theorem 3|, and if ® is
the standard normal cumulative distribution function,

P | sup [W (s,t)| > Cra(logn)? | < 4®(—Cra(logn)?). (3.1.4)
o5
If C is large enough, which can be assumed without loss of generality, for all « > 1 and all n > 2,
40 (—Cha(logn)?) < 1/n'te. Therefore,

P sup sup |K (s,1) — K (s,1)] > 2C1a(logn)? | < —— = —,
O{SSSI }l'e[l—l,l] n
le{1,..., n
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and using (3.1.3),

K (s,tn) (logn)? 2
P| su (Ly,<s — —F——| 2 4Ca < =
0<sI<)1 \F Z e = 9) = Vn vn ne

0<t<1

(3.1.5)

For i € {1,...,n}, let X, := mlnke{l ,,,,, mitk Ui < p1+--- +pi}. Clearly, the X; are ii.d
random variables Wlth values in {1 .,m} and probability mass function p1,...,pm. So, with the
notations above,

Ea(t) _ Nf,Ltnj — piltn] _ Lth (]lUk<p1+ dps— 1+ i) —Lue<pitotps +P1+ - _|_pi71)

O'i\/ﬁ O'i\/ﬁ
Fori e {1,...,m} and t € [0, 1], then

K (py+--+pitn) — K (pr + -+ + pi—1,1n)
O'Z‘\/ﬁ ’

are Brownian motions with covariance matrix ¥ := Cov ((1x,=:/0;)1<i<m). Note that

Bl (t) :=

[tn
v K (s,tn
sup ‘Uile(t) - JiBZ-"(t)’ <2 sup E (Ly,<s — L ,
i€{1,...,m} 0<s<1 k: Vvn
0<t<1 0<t<1

and so from (3.1.5) the following coupling inequality:

—~ a(logn)? 2
P sup |o;B!(t) — o, B} ‘ >8C, —2=~ | < —,
L L (t) (t) N s
0<t<1

is valid and this gives the desired result (letting C' = 8C}).

O

From now on, our setting is the probability space introduced in Lemma 3.1.1 with its notation.

To start with, we address the case of uniformly distributed letters and study the rate of con-
vergence, in Kolmogorov distance, for the cumulative shape of the RSK Young diagrams associated
with the random word.

Let (Rk(n,m))1<k<n be the shape of the RSK Young diagram associated with the random
words X - -+ X,, with uniformly distributed letters over {1,...,m}, and define for 1 < k < m,
Vie(n,m) = 25:1 R (n,m) (so that, for example, V1 (n,m) = Ri(n,m) = LI,). From |34, Corollary
3.1], for properly defined I ., (keeping the notations of [34]), (Vi(n,m))1<k<n is such that:

n/m n—oo tEIk,m, ,_

Vie(n,m) — kn/m LR ing
d = maxz Z \/ —l/m Bl jl (]171)) s
1<k<m l=j 1<k<m

(3.1.6)
where the convergence is in distribution, and B is a m-dimensional Brownian motion with covari-
ance matrix having diagonal terms equal to 1 and off-diagonal terms equal to —1/(m — 1), i.e., the
covariance matrix ¥ of Lemma 3.1.1. Recall finally that the limiting law in (3.1.6) is the spectra

of a traceless m x m GUE matrix.

To simplify notations, let

k. m—k+j
(Jl,ma-“me,m = trEnI%)fnZ Z \/ - 1 /m B ( Jlfl>)
j=1 1=j 1<k<m
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and
(Tims s Tonm) = (Vi) = kn/m)//ufm)
Theorem 3.1.2. For everyn,m >2 and 1 < k < m,
(logn)?

Sup|P (T > 2) =P (Jpm > 2)| < C(m ,
Ielﬁy (T, ) =P (Jg, )| < C(m) n

where C(m) is a constant only depending on m.

Proof. As shown in [34, (3.7)],

k m—k+j
Tiosm = max o> Vim-1)/m (Bf(tj,l) - Bz"(tj,lfl)) ;
,m j=1 l=]

so applying (3.1.2), since |Tg m — Jr,m| < 2k(m — &k + 1)y/msupieqi,... m} aiB\z‘(t) —0;B(t)],

0<t<1
(logn)? 2
P <|Tk7ka7m| > 2k(m — k+1)ymCa NG < vt (3.1.7)
Recall next that with ©4 : R* — R* given by (04(x)); = 5:1 z;, 1 < j < k, it follows
that @;Ll(JLm, ..y Jm,m) has the same distribution as the ordered spectrum of an m x m traceless

GUE matrix. Moreover, by a bound on the joint density of the eigenvalues (see (3.5) in [40]), there
exists D(m) > 0 bounding the supremum of the density of Jj ., (for 1 <k <m).

So, for any = € R,

1 2
P (Tem > 2) = P (Jem > )| <P (ITk,m i = 2k(m — k + 1)y/mCa 108 )

NG
+P <|Jk,m — | < 2k(m —k + 1)ymCa (10\%1) )
= ni + D(m)2k(m — k +1)y/mCa (lo\g/g)Q,

s0 sup,ep [P (Th,m > &) — P (Ji,m > )| is upper bounded as stated.

O

As a corollary, we can also study the speed of convergence of T' ., = (Tk.m)1<k<m towards
J.m = (Ji,m)1<k<m, in the Kolmogorov distance, rather than coordinate by coordinate. Just as
before, we have

1 2 2
P (IIT. m—J ol = max [T —J.m| > gmszacawm> <2
' e 1<k<m = 7 ’ vn ne
and
1 2 1 2
P ( max |Jgm — x| < 2m5/20a((ﬁgn)) < mD(m)2m5/20am,
tksm Vi v

so for any z1,..., T, € R,
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‘IP < max Ty, > xk> -P ( max Jy ;> ;vk)‘ < P <||T‘,m —Jomll > 2m5/20a%)

1<k<m 1<k<m '
1 2
+P (maxlgkgm [Jkm — x| < 2m5/20a%)

2 (lo n)2
<&+ mD(m)2m5/QCozg7ﬂ.

As in [11], for m no longer fixed, let us consider conditions on the sequences (m(n)),>1 (writing
just m for m(n)) under which for all € > 0,

P (‘ (T1 = 23/m) mY/® — () — 2¢/m) ml/ﬁ‘ > a) — 0. (3.1.8)

n—roo

Then, since (Jy,, — 2/m)m!/% converges in distribution to the Tracy-Widom distribution

Frw, this implies that (Ty,,, — 2/m)m'/%, that is, ((LIn —n/m) /y/n/m — 2\/m) m*/6, con-
verges to Fry as well.

Applying (3.1.7) gives
1/6 1/6 1/6 a(log n)2 2
P \(Tl,m—z)\/ﬁ)m — (Jim — 2¢/m) m ‘ZCm 2km — k+ VT ) <

so that if m'/62k(m—k+1)/mCa(logn)?/\/n converges to zero, that is, if m = o((n/(logn)*)3/19),
then (3.1.8) follows, and therefore the convergence in distribution of the properly centered and
scaled LI, to the Tracy-Widom distribution also follows.

Beyond the uniform case, in order to evaluate the rate of convergence to the limiting law
for arbitrary distributions, we first need to control how close maxyea, Zn(A) is to maxyepr, Zn(A)
where again,

A:i = {(jl/n7~-~>jm/n):j1+"'+jm:nandpi7épmax - ji:0}~

Lemma 3.1.3. Let n,m > 2,a > 1,a = 6 + 3 and A = pmax — Pond, where pang is the second
highest of the p;’s. Let alogn < 24/n/A. Then,

P (’maerAd Zn(\)  maxyepr Zn(A)‘ S (alogn)?  am logn) L 2m

v/Pmax - v/Pmax AA\/MPmax ~ /MPmax

_na'

Proof. Our analysis of this result rests upon estimating the variations of B?’ To do so, let A,, be
the event:

z*N;*Pixé

<Uz‘\/z+1
Vvn

IRAC

Nt
vie{l,....m},Vj€{0,....,n—1},Vee{l,....n—j}, |2 alogn.

By Bernstein’s inequality:

1-P(4,) < zmn(”mexp< 1(oiVl+1)?(alogn)? )

2 780?—!—%(@\/@4— Dalogn
and since
Yo+ 1P (alogn)? L(on/T + 1Y(alogn)? oI P alogn)? a,
to? + (ol +1)alogn — 2(o;Vl+1)alogn + 3(o;V/ + 1)alogn lo? + Llo? =38
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it follows that

[\

m
<=

[e3

wlp

1-P(A,) <2mn*"

If A, occurs, then for all A € Agand i € {1,...,m},

V(A) < alogn (ai\/EJr %) . (3.1.9)

Let A,, occur. Let A € Ay. Let s = Zj:pﬁépmx Aj, let i € {1,...,m} be such that p; = pmax and

let \ be defined as: )\;» =0 for all j such that p; # pmax, A} = A; + s, and )\3 = \; elsewhere. So
X € A, and from (3.1.9),

1 1
Zn(N') > Z,(N\) + V/nsA — <gi\/§+ \/ﬁ> alogn — | Z (aj\//\j + \/ﬁ> alogn,
J:PjFPmax
which leads by the Cauchy-Schwarz inequality to

amlogn

Zn(N) > Zn(N) + VnsA — /salogn — 7n

Hence, since alogn < 2\/nA,

(alogn)? _amlogn

Zn(X) > Zn()‘) -

4A\/n N
and finally
(alogn)?  amlogn
0< Zn(A) — Zn(N) <
_ineé}é () )r\ré%\)é n(A) < AA/n Jn

Therefore,

P (’max'\EAd Zn(\)  maXyen, Zn(N) - (alogn)? N amlogn) <1-P(4,) < Qﬂ

v/ Pmax v/ Pmax 4A v/ "Pmax V/MPmax ne

O

We can now deduce our theorem, where below Jj is defined as in [40, Theorem 4.1] (Jj has
same law than Jy ;++/(1 — kpmax)/kZ, where Z ~ N (0, 1) is independent from the other variables)

Theorem 3.1.4. Let n,m > 2 and let k be the multiplicity of pmax, then,

L—[n — NPmax (IOg n)2 21
P2 s 0 ) — P (i > 2)| < 2D(K, s — : 1.1
P (F e o) P (> )| <200 VL (K 4 Cam) . 110

where Co is a universal constant, where D(1, pmax) := 1/4/27(1 — Pmax), and where for k > 2,
D(kapmax) = min {\/k/2ﬂ-(1 - kpmax)7 kgk(?ﬂ'eQ)k/Q\/ e/ﬂ'}.

Proof. We apply Lemma 3.1.1, and for A € A" := {A € A : p; # Pmax =— N = 0}, let
Z! (M) be defined as Z,(\) but with B} instead of B*. For any A € A, |Z,(\) — Z, (V)| <

2m SUP;e(1,....m} ‘O’iB?(t) — UiBf(t)’, hence

0<t<1
]P (

For all A € A, Z,(\) = X7, V/(A), so SUP, cpv Zn(A) = maxyecpr, Zn(A). So

sup Zn(A) — sup Z;, ()
AeN’ AN’

(3.1.11)

2Cam(logn)? 2
> — | < —.
- Vn - on®



104 CHAPTER 3. QUANTUM STATISTICS
2

max Z,(\) — max Z/, (\)| > 2Cam(logn)” < 3

N ne

P
AeA AeA’

For any x € R, « > 1, and a = 6 + 3«

maxy  eA Zn \) - maXyeA) Zn(N)
v/ Pmax V/Pmax

(alogn)? amlogn

4A\/MPmax V/MPmax )

: Zn(A 1 ZI (A
‘P(WEx)P(WEw)

o
e

II]&X)\eA:j Zn()‘) _ maXAeA’ Z;()\)

> 2Cam(logn)? )

vV Pmax VPmax vV MPmax
4P maxy -/ Z;,(N) _ 2l < (alogn)? amlogn 2Cam(logn)?
V/Pmax — 4A/NPmax VMPmax V/NPmax :

Now, with the notations of [40, Theorem 4.1|, we see that maxy ¢, Z},()\)//Pmax has the same
law than Ji. Indeed, one can check that in [40], Bis an (m—1)-dimensional Brownian motion with
the same covariance as
((UTB;L - 0T+1Bf+1)/\/pr +pra1 — (pr — pr+1)2) o and rewriting B that way gives exactly

1<r<m
maxyep’ Z,,(A)/y/Pmax- Assuming alogn < 2y/nA, from 3.1.3, [40, Proposition 3.1 (ii)] and the
inequality a = 6 + 3a < 9a, one gets

LIn_npmax )
Pl ————— >z | -P(Jy>=2
‘ ( VMPmax (i 2 @)

dm (logn)? [21a? 9

< — 4+ 2D(k, pax) ——— 2C + — )

- no +2D(k,p )‘/npmax A + * log 2 am
(3.1.12)

where we refer to [40, Proposition 3.1] for a proof that D(k, pmax) is @ bound on the infinity norm
of the density of the limiting distribution maxyc,/ Z;,(A). Taking a = 1 and using D(k, pmax) >
1/4/27, one gets, in particular, (3.1.10). Now if we no longer assume that alogn < 2\/nA, the
bound (3.1.12) (and therefore (3.1.10)) above is still valid because its right-hand side is then greater
than 1. O

3.1.2 Some remarks

(i) Theorem 3.1.4 is slightly weaker than Theorem 4.1 in [40], because of the (logn)? factor
instead of logn and of the extra term 21/A.

The supplementary logn comes from the different version of the KMT Theorem (strong em-
bedding) that is used compared to the one in [40] (weak embedding for each coordinate).
Moreover, the proof that they can be built on a same probability space with the right co-
variance has been in question. More precisely, in [40], the authors use the KMT Theorem to
get for each i € {1,...,m} a probability space with a version of the random walk B? and a
Brownian motion approximating it, but it is not clear how this implies that on some probabil-
ity space, there are versions of BY,..., B satisfying the additional covariance requirement
B\f‘ 44 EE = 0. However, using Kiefer’s version of the KMT approximation, we have a
probability space with (U;)1<;<y uniform on [0, 1] and with BY,...,Bp well defined on it
(and satisfying the right covariance relation) as shown in the proof of Lemma 3.1.2.

Note that to the best of our knowledge, it is still an open problem to know whether or not the
extra logn or (logn)? factors in the strong embedding could be improved. Note, nevertheless,
the rate 1/4/n in the uniform binary case (see [40, Theorem 5.1]).

The extra term 21/A is needed because if one picks A = ppax — Poang very small, there is
no hope, for any fixed m, to have a sequence (A7"),>2 converging to zero such that for any
distribution p1,...,pm, any n > 2 and = € R,

'IP (LIn — NMPmax

> — >
N _x) P(Jy>2)| <
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Indeed, assume it is the case for, say, m = 2. Let us apply this bound to

e Case a) p1 = p2 = 1/2, and denote (LI, — nPmax) /+/MPmax DY Zn
e Caseb) py =1/241/2",py =1/2 —1/2", and denote (LI, — nPpmax) /+/"Pmax by Z,.

We get
P(Z,>x)—P(Ja>2)-P(Z,>z)+P(J, >x) —— 0.
n—oo
There is a coupling such that with high probability, the letters Xi,...,Y,, in case a) are all
equal to the letters in case b), hence

P(Z,>x)—P(Z, >x) —— 0.
Furthermore, J; has distribution N/ (0, % — 271%) SO

P(Jy>a2) —— P (Z1)4 > 2),

n—oo

where Z; 4 ~ N (0,1/4). Putting together these three limits, we get
P(Jy>a)=P(Z14>2x),

which means that the limiting law for the uniform binary case is normal. However, this is
known to be false. So, (A7")n>2 has to depend on the distribution. We can actually find
a contradiction as soon as A = o(1/y/n). Our bound (3.1.10), on the other hand, is not
exposed to this kind of cases because if the right-hand side is less than 1 then A > logn/\/n.

So Theorem 4.1 in [40] only holds for n large enough, and not for all n > 2.

As before, let us no longer consider m, k and the distribution py,...,p, to be fixed. We
assume that both m and k converge to infinity with n, and aim to find for which sequences
we have for all € > 0,

Lln NPmax 1/6 1/6
> . . .
P (‘ < = - 2\/%) k (Jk 2\/%) k g A—‘—>n 0 (3 1 13)

Then, since (Jk — 2\/%) k1/6 has the same distribution as (Jl,k — 2\/%) EYO 4k 6\ /(1 = kpmax) /EZ,

it will converge in distribution to Fry,, implying that ((LIn — NPmax) /+/MPmax — 2\/%) k1/6
converges to Fry as well.

Applying the Lemma 3.1.3 and the bound (3.1.11) lead to

P (‘ (Lf—npm - 2\@ KO — (T 2VR) VS

2
e St (2 ) <t

VMPmax \ A ne

Taking m = o((n/(logn)*)?/10) (as previously done in the uniform case) and m = o(\/mpmaxA/(logn)?),
then (3.1.13) follows.

Note that in particular, when the conditions of Theorem 6 in [11] are satisfied, the condition
m = o(\/MPmaxA/logn) follows. This is not enough to conclude, first, we need (logn)?
instead of logn, and more importantly, the first condition m = o((n/(logn)*)3/1°) is missing.
This is an omission in [11], because as it is, there is no condition on m and this leads to a
counterexample. Indeed, let k = n'/? ppac =n"2/3 m = 2" + k, panq = (1 —n®/?) /27, it is
easy to check that the conditions of Theorem 6 there, hold true but its conclusion does not.
The two conditions on m we give above do fix this issue.
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(iii) Let us investigate the convergence of moments which, in particular, will provide a speed of
convergence result in the distance Wp,, p > 1, given by

. 1
W,(X,Y) = inf (B[X' —Y'|")"".
X’ has same law than X
Y’ has same law than Y

Let us start with the uniform case. We have seen that

a(logn)? 2
m m| =2 - HyvmC—— | < —.
]P<|Tk7 Tl 2 20(m — 1) VinO »

In particular, taking o = p, and setting €, x := 2k(m — k + 1)y/mCp(logn)?/v/n, we have

E|Tim = Jeml” < E (lTk,m = Jiml" Uiy =il <enamok) + T = Tkml” Le(uam )< (T = Jim|<2mym
p
+ ‘Tk’m - Jk’ml ]IQmﬁS‘Tk,m_kan‘>

< e(n,m, k)P+(2m\F) +E|2ka| Ly i Tl

(since Ty m| < v/n < my/n). Using, once more, (3.1.4) and an integration by parts, one gets
for some constant C(p)

m p
E(2Jk,m|” L m<i g < C (D) (f) ;

and therefore, for some constant C’(p),

Wo (T Jim) < E|Thm — Jem|” < C'(p)e(m, n, k).

(iv) Theorem 3.1.4 can be generalized to longest common and increasing subsequences. We
use the notations and framework in [18]. Additionally, let Z,, = (LCI,, — nemax)/+/n and
let Z be its limiting distribution, that is, either Z% or Z® depending on the distributions
pX,pY. The proof of Lemma 2.2 in [18], taking n = 1/12, holds for the sequence (&,) =
Cy(m,pX, p¥)n=18 where Cy(m,pX,p") is a constant depending on m, p*,p¥". To study the
cases a) and b) under the same umbrella, let us define the function L : (R™)* — R by: for all
(X, 0Y) € (R™)?, in case a), L(vX,0Y) = >, v¥, and in case b), L(v*,vY) = m(v¥, ).
It is not hard to see, from the expression of m in Lemma 1.5 in [18], that in each case,
there is a constant Co(m, p*,pY) such that L is Cy(m,p”,pY)-Lipschitz for the ¢!-distance
on (]Rm)2 Now, as a consequence of Lemma 2.2 there, it follows that if B™* B™Y are in

, then

Cl( apY)

1/8 J

‘Z — max L(V™X vV <
AeU

where U = J in case a) and U = K2 in case b). Therefore,
X Y
P < > Cl(mmm)) <1-P (Ai/”) <9 g

nt/8 n
where C(m) is a constant (recalling (1.9) in [18]). Furthermore, from the expression of the
limiting distribution in Theorem 2.1, we see that in any case a) or b), the limiting distribution
may be written as L(BX, BY). We construct, with our Lemma 2.1, two Brownian motions

Z,, — max L(V”’X, V"’Y)
AeU

BX BY "close" to B™X, B™Y | on the same probability space (this is possible by applymg
the lemma twice, and then takmg the product space). Let 7, = = maxycy L(V™ VnX , Vs Y), it
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has the same distribution as the limiting distribution Z, and

"

—

0B () — oiB?’X(t)‘ >e

max L(V™X, ymY) — ZL > Qng(m,pX,pY)€> <P sup

\eU ie{l,...,m}
0<t<1
+P sup |0 B"Y (t) — aiB?’Y(t)‘ >e |,
i€{1,....m}
0<t<1
so in particular, applying Lemma 2.1,
P logn)? 4

P LV vnYy Z 7| s omCo(m, p¥, p¥ )o 2008 o 4 3.1.15

(glea’[ig ( ) ) n| > 24m 2(m7p , P ) \/ﬁ = po ( )

Putting together (3.1.14) and (3.1.15), with a = 1, gives
b Culmp* ") (logn)?\ _ Cm) +4
vno )~ '

PSVE
If, just as in the single subsequence case, a bound D(m, p~, p¥’) on the density of Z is possible,
then we can conclude in the same way: For all x € R,

Ci(m,p*,p") x vy (logn)®
>T+2m02(m7]9 P )C \/ﬁ

Ci(m, p*,p¥) x v~ (logn)?
T—i—Zng(m,p ,p')C n

Z — 7| > + 2mCy(m, p~, p¥)C

n

|1P(Zn>x)—1P(Z>x)|<IP(‘Zn—Z

+

o~

Zn—x’§

C(m) +4 X Y C1(m,p*,p") X .Y (logn)?
Cs(m, p™,p")
nl/8

Note that the exponent —1/8 can be improved taking a smaller 7, but only up to —1/4. This
is because in [18], the focus was to get convergence in distribution, rather than a tight bound.
It might even be possible to get (logn)?/y/n instead.

3.2 Two other estimators

In this section, we go back to our main motivation of finding an estimator with lower risk than the
empirical Young diagram (we refer to Definition (3.0.1)).

3.2.1 Bootstrapping

We introduce a bootstrap estimator and compute the empirical risk, which seems to be upper
bounded by C/n in all the simulations we ran, and beats the classical empirical Young diagram
estimator (although there is no formal proof at this point). The idea, given a Young diagram A,
is to take pg := A as the first estimate of p, and draw \; ~ SW™(py). Then, we assume that
A1 — Po (which is related to the "excess", developed in Section 3.3) is "close" to A — p. Therefore,
a "better" estimate for p is

p1 := descending(A — (A1 — o)),
where descending sorts a list in descending order (in order to avoid absurd results), and we iterate
this process: assume p,, is defined, draw A, 11 ~ SW"(p,,) and let

Prt1 = descending(A — (A1 — Pn)).
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The following plot gives the empirical mean (over 100 simulations) of the Lo-loss of pg (the
empirical young diagram estimator) and pi,p1,...,P50 for n = 100000, d = 100, and various
distributions:

e (1/100,...,1/100) (uniform)
e (3/200,...,3/200,1/200,...,1/200) (a "fifty-fifty" distribution)
e (C/1,C/2,...,C/100) (Zipf distribution)

a0 - — | Iniform distribution
"Fifty-fifty" distribution
70 1 — Zipf distribution
w B0 A
[P}
I=]
& 501
m
=40 -
‘B
§ %
20 1
10 A
D T T T T T

1] 10 20 30 40 50
Mumber of iterations

Figure 3.1: The risk of the bootstrap estimator as a function of the number of iterations

3.2.2 Minimum mean square error estimator; improvement on the sum
of the variances

Let Ay = {(p1,---,pd) :P1,---sPa > 0,p1 + -+ pa = 1} and let g, be defined, for any \° - n, by
gn(\?) = argmin E)\1~SW"(1})||)‘1 — 292, (3.2.1)
PEAq

In order to prove that this estimator has a risk of order 1/n, we make the following conjecture:

Conjecture 3.2.1. There exists a universal constant C' > 0, for any p1,p2 € Ag,

(AL A2)~SW (p1)@SW (pg) [ AT — A2[|?
nEyioswn (py) AL — EAL|®

E
lp1 —pe2|* < C

This conjecture is, once again, consistent with numerical simulations. Let R, (p1,p2) denote
the ratio

- 2pEs wqwn AL — EAL 2
Ro(pr.pa) = 1L P2 PErtswe i) | u

E (31 22)wsWr (p1)@SWn (p2) [IAT — A2[|2
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some numerical simulations tending to show that R,, is upper bounded: below, we fix n = 50000
and draw, for various d, two distributions p;, p2 by picking the probabilities randomly uniformly
between 0 and 1, renormalizing to get a probability distribution and sorting in descending order.

16 1

14 -

0.8

Rnlp1, Dz)

0.6 -

0.4 4

0.2 1

I}.':I I I I I I

Figure 3.2: R,,(p1,p2) for various distributions p1, ps

Proposition 3.2.2. If Conjecture 3.2.1 holds, then the estimator g, defined in (3.2.1) has a risk
lower than 8C/n.

Proof. Assume Conjecture 3.2.1. Fix A F n. Then,
E(x1 22)~sWn () esw (g, ) A — N[
nExi swn(p) A — BAL?
2
(VEx~swn ) [AT = A + v/Exznswr g, 00 [IA = 3TP)
nExi swn (p) AL — EAL|®

2
o (2/Exicswn(p [AT = A?)
nEx wswn (p) AT — EX|?

Ip = ga(WII* < C

<C

hence
8C

Exwswrpllp = gn(N)|* < -

O

In an effort to prove the conjecture, a better understanding of the quantity i wgwn ;) H)\l —EX H2

is useful. In the following, A ~ SW"(p), so this quantity may be rewritten as ZZ:1 Var A;. Nu-

merical simulations tend to indicate that ZZ:1 Var A\, < n, which would also be consistent with
the asymptotics of A (Theorem 0.3.7). We prove below a slightly weaker result.

It is known [56, Proposition 4.8] that for any k € {1,...,d},

Var \j, < 16n. (3.2.2)
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We also remind the useful result [56, Proposition 2.2|, with the notation A<y = Z§=1 Aj
Proposition 3.2.3. Assume w,w’ € {1,...,d}" differ in exactly one coordinate and let k €

{1,...,d}, A = RSKshape(w), \ = RSKshape(w’) Then,
A<k — A <1,
and

A — A < 2.

Note that Proposition 3.2.3 follows from Greene’s Theorem 0.3.1, while the bound (3.2.2)
follows from Proposition 3.2.3, using Hoeffding’s inequality (Theorem 0.1.4).

The variance bound (3.2.2) provides a weak upper bound on 22:1 Var Ag:

d
> Var A < 16dn.
k=1

We leave open the conjecture that the sum of the variances is bounded by n, but we prove
the following:

Theorem 3.2.4. We have

d
Z Var A\p < 30n°/4/logn.

k=1

Proof. For any j € {1,...,d}, let \; = A\; —E);, and A\ ; = 321 A%. Using Proposition 3.2.3 and
Hoeffding’s inequality gives

t2
P (] 2 ) < 2e7%0. (3.2.3)
Now rewrite the sum of the variances, for any k € {1,...,d An} (to be chosen later):
d dAn
> Vard; =E | Y AN
Jj=1 j=1
k dAn
=k Z)‘J)‘;’ + Z /\j( /gj - /gj—1)
Jj=1 j=k+1
k dAn
=B Z)‘J)‘Q’ + Z (A = Aj+1)AS — e Ay,
Jj=1 j=k+1
k dAn
/ ’
LYk rE| D) 05 e, e, o+, g D
= fin

< k(16n) + 2E (k max |)\’<j|)\k+1) ,

<j<dAn

with the convention Ag+1 = 0, and where we use the facts that A; — A;4; > 0 for any j > 1 and
A; =0 for any j > d An. Since (k+ 1)\g11 < n (the A;’s are decreasing with sum n),

, n /
. < — i
B 2nms Wl ) < B (o D).
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and by the concentration inequality (3.2.3), we get for any a > 0

IP( max |)\’§j’ > \/2cm10gn> < 2nnia,

k<j<dAn

SO

1
!
v <k<rjr‘13§m |)\<j|> < V2anlogn + <2nnf’> n
and taking oo = 3/2,

IE)( max ‘X<j|><5\/nlogn.

k<j<dAn

Now letting k = |n'/*] (we may assume without loss of generality k < d, otherwise the upper
bound Z;l:l Var \; < 16n5/4 is trivial), we get

d

Z Var \; < 16n°/* + 10n%/%/nlogn
j=1
< 30n5/4\/10g n.

O

To conclude, note that if p; = 1/2, then [42] proved that VarA; = pi1(1 — p1)n + O(1) =
n/44+0O(n). So there is no universal upper bound on the variance (not depending on the distribution
p) of order lower than n. In some particular cases, for example the uniform case with n = m?2,

(Z?zl Var A;)/n may go to zero.

3.3 A generalization of a result on the excess of the RSKshape

When p; = -+ = pg = 1/d (the uniform case), the asymptotic behavior of A\;(n), ..., Ag(n) (where
A(n) ~ SW"(p), or equivalently A(n) is the RSK shape of the word X7,..., X,, with letters drawn
according to p) is well known, it converges in distribution to the eigenvalues of the traceless GUE.
We remind the well known result (see ,e.g., [54]) that these eigenvalues have a density in RY

proportional to
1 d 2
D 2
e 2 %fllll(mi—xj),
i<j

the term e~ 3 Xi-1 ¥/ being the density of independent Gaussian random variables, and the term
[Tic;(@i— z;)? reveals the "eigenvalues repulsion". This last term explains the difference between
the diagram A(n) and Ni(n),..., Ng(n) the numbers of occurrences of 1,2,...,d in the random
word X ... X, introduced in [56] and called the "excess": for kg € {1,...,d}, let

ko ko
El(cz) (p)=E (Z Ae(n) = Nk(”)) :
k=1 k=1

The goal of this section is to better understand the behavior of this "excess" in a non-uniform
setting. In what follows, we assume p; > -+ > pg, and let A(n) be the RSK shape of the word
Xi,...,Xp, with letters drawn according to p (so A(n) ~ SW"(p)). In [57], it is proven that
(A(n))n>1 is a Markov chain, but we are going to consider a slightly different one, that will have
the advantages of being irreducible, aperiodic, positive recurrent. Let us define for n € N and
1<k <{¢<d, mge(n) the number of occurrences of the letter ¢ in the k-th row of P(n). Clearly,

Z my.e(n) = n.

1<k<(<d
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Moreover, for any kg € {1,...,d},

ko ko kO
DD mie(n) =D Ni(n)
k=1t=k k=1
where Ni(n) is the number of occurrences of the letter k in P(n) (or equivalently, in Xy, ..., X,,),
hence
ko ko
D M) =3 N+ > mueln),
k=1 k=1 1<k<ko<t<d
hence
EP(p) =E S mue(n) | (3.3.1)
1<k<ko<t<d
Theorem 1.13 in [56] states that
(n) De
k<ho<t<d Pk — Pt

We will see that this theorem comes from a more general convergence result on the my ¢(n).
From now on, we will simply write m(n) for the vector (my ¢(n)), ., - Note that we drop the
diagonal terms my i, as they can simply be written as Ny — ml,k(n_) — = my—1,,(n), which also
means there was no hope of convergence.

Theorem 3.3.1. (m(n)),>0 is an irreducible, aperiodic, positive recurrent Markov chain with
mvariant measure
tpi= ® GEO <p£> .
1<k<t<d Pk

Furthermore,

E<m<n>>—>( e )
n—=oo \Pk — Pt/ 1<k<i<d

Corollary 3.3.2. Using (3.3.1), the previous result (3.3.2) follows immediately.

Proof. Firstly, the fact that m is a Markov chain comes from the construction of the RSK algorithm:
there is a deterministic function f; such that P(n + 1) = f4(P(n), X,11), since X,,+1 and P(n)
are independent (and the Xj’s are i.i.d.), P is a Markov chain, and in particular, m is a Markov
chain.

Let us check that it is irreducible. To do so, it suffices to show that there is a path leading
from the state 0 = (0)1<k<r<q tO any state a € Nn(";l), and reciprocally. Fix a € N5 We
construct the letters x1,. .., x, that will produce the state a, which means more precisely that the
resulting SSYD P(n) from the RSK satisfies (P(n)x.¢); ;o< = - Let us first see how to produce
a state ¢ with only one non-zero coordinate, say ar, = 1. We see that the sequence of letters
£ k—1,k—2,...,1 works. Now, we may apply the same treatment to the other letters, taking
care of them in order: we start with z4_1 4, and take the sequence d,d — 2,...,1 and repeat this
block z4_1,4 times. Then we proceed similarly for x4_2 41, then 24_2 41, and so on. We get a
sequence of n < (d—1) Y ;o< y @k, ¢ letters, which has the desired property. In order to go from
the state a to the state 0, simply consider M = maxi<k<s<q ar,¢ and the sequence of letters of a
block of M d’s, followed by a block of 2M d — 1’s, ... up to a block of dM 1’s. It "clears out" the

upper diagonal of P, in other terms, this brings the term 0. So the chain m is irreducible.

The aperiodicity comes from the fact that in the state 0, the letter 1 makes it stay in the state
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Let us now prove, by induction on d < 2, that y, is an invariant distribution (which implies
the chain is positive recurrent).

Base case: When d = 2, m is one-dimensional, this is a well known birth-death Markov chain.

Inductive step: Assume the result holds at rank d — 1 > 2, we prove it holds at rank d. Let

M ~ p,, we need to check that fy(M,X1) ~ pp. Let y € N%, and let k1 < --- < k. be the
integers in {2,...,d} such that y; 5, # 0 (if there is any), let also kg = 1,kc+1 = d + 1 and for
0<i<elet A, = {k‘l +1,...,ki+1} (SO Ug:OAi = {2,...,d}).

We have

P(fa(M,X1)=y) = > pp(@)p

k=121 fa(z,k) =y

Let k € {2,...,d}. If k ¢ {ko,...,k.}, there exists no x such that f;(z,k) =y (because then
y1,5 would be non zero, a contradiction with the definition of the k;’s). So let i € {0,...,c}, we
see that z is such that fq(z,k;) = y if and only if all one of the two conditions below is satisfied:

e (No letter is bumped to the second line) ¢ = ¢, x1 x, = y1,k, —1 and for any £ # k., z1.0 = y1,0.

e (One letter is bumped to the second line) If ¢ # 0, then z1 4, = 1%, — 1; there exists an
integer £ € A;, x10 =10+ 1, and for any ¢ ¢ {k;, 0}, z1,0 = y1¢.

We will denote (z; j)a<i<j<a by z*T. Let

p2+:< P2 Pd >
l—p 1-p

We see that m?t ~ pp2+, and therefore by the induction hypothesis,

d
> > fp+ (@2 )PEt = e (y°T),

k=2 a2+ o (22+ k)=y2+

I
=
S|
—
=
bS]
&

|
(]

o (T)Pr; + (Y — O(,0)=(1 k) )Pk

N
[}

LeA; z:fd_l(m2+,€):y
Z1,0=Y1,0+1,i#0=21 k, =Y1Kk, —1
Ve ¢ {ki L}, 1,0=y1,e

T1e
which we may rewrite, with the notation s (x) := H{Z:Q (;;—f) (1 - %) (the restriction of
to the first line) as:
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C
Pe D1 P1
P(fa(M,X1)=y)=>_ > > 1y () = =i+ (2 )pr, + pip(y) —Dr.
i=0 L€A; 22t f,_ 1 (22 £)=y P1 Pk; Pk
d
= 1% Y > Pty (27 )pr, + prpip(y)

=2 I2+:fd71(z2+,€):y
= pp (W) (1 = p1) e+ (U*T) + prup(y)
= 1p(y),

which concludes the inductive step.

All there is left to prove is the convergence of the expectation, but this is a very general result:
for any K > 0,

E (Mk,z]le,e(npK) = Em(O):M (mk,e]lmk,g(n)ﬂ() = Z Em(0)=x (mk,e(n)ﬂmk,z(an) /‘p(f)
e
SO

1
By 0)=0 (Mi,e(n) Ly ,y> i) < ——B (Mg eLag, ,(n)>k)
Hp(o)

which indicates that the Markov chain m starting at 0 is uniformly integrable. Since there is
convergence in total variation, there is also convergence in L, and

De
Pk — Dr

E (mg,e(n)) —— E (M) =
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Titre : Plus longues sous-séquences de mots aléatoires: limites, variance, et statistiques quantiques.
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Résumé : Nous considérons des problémes de "mots
aléatoires”, et leurs applications. Le point de départ
est le probléme suivant : étant donné deux mots
alétoires, "combien ont-ils en commun”? Bien qu'il
soit fondamental en biologie, informatique, linguis-
tique, il reste largement irrésolu. Nous commengons
par I'étude des plus longs sous-mots communs crois-
sants : cela signifie que I'on considére un alphabet
ordonné, disons 1,....m, et les sous-mots qui sont sim-
plement faits d’'un bloc de 1’s, suivi d’'un bloc de 2’s,

... et ainsi de suite. Ensuite, nous nous intéressons
au probleme de la variance de la longueur des plus
longs sous-mots communs. En introduisant des ou-
tils plus généraux, nous faisons des progrés sur la
compréhension de cette variance, et nous revisitons
des bornes supérieures et inférieures de la variance
dans d’autres cadres. Enfin, nous considérons la lon-
gueur maximale d’'un sous-mot croissant d’un seul
mot aléatoire, et le lien étonnant avec les statistiques
quantiques.
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Abstract : This work considers some random words
combinatorial problems and their applications. The
starting point of this endeavor is the following ques-
tion : given two random words, "how much do they
have in common”? Even if this question has emer-
ged independently in various fields, including compu-
ter science, biology, linguistics, it remains mostly un-
solved. Firstly, we study the asymptotic distribution
of the length of the longest common and increasing
subsequences. There we consider a totally ordered
alphabet with an order, say 1,....m, and the subse-

quences are simply made of a block of 1’s, followed
by a block of 2’s, ... and so on (such a subsequence
is increasing, but not strictly). Secondly, we deal with
the problem of the variance of the LCS. By introdu-
cing a general framework going beyond this problem,
partial results in this direction are presented, and va-
rious upper and lower variance bounds are revisited
in diverse settings. Lastly, we consider the Longest
Increasing Subsequences (LIS) of one random word,
and the surprising connection with quantum statistics.
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