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Processus de Hawkes sur des
graphes aléatoires en neurosciences :
limite en grande population et
stabilité en temps long

Résumé

Dans cette thèse, nous nous concentrons sur un modèle de population de neurones,
où l’activité neuronale de la population est représentée par un processus de Hawkes
multivarié. L’activité de chaque neurone est décrite par un processus de comptage,
où chaque saut du processus représente l’émission d’un potentiel d’action (également
appelé spike) par le neurone. Une étiquette est attribuée à chaque neurone, liée à sa
fonction ou à sa localisation spatiale. La connectivité entre les neurones est donnée
par un graphe aléatoire éventuellement dilué et inhomogène, où la probabilité de
présence de chaque arête dépend des étiquettes de ses sommets. Le taux d’excitation
de chaque neurone dépend du passé des neurones connectés : il augmente en cas
d’excitation par d’autres neurones, ou diminue en cas d’inhibition.

La motivation principale est d’étudier le comportement du système dynamique
lorsque la taille de la population tend vers l’infini, lorsque le graphe d’interaction
est fixé. Une question importante est de comprendre comment l’inhomogénéité
spatiale (dans l’interaction) influence le comportement en temps long du système.
Une autre question consiste à relier le modèle microscopique à la Neural Field
Equation (NFE), qui modélise une dynamique neuronale à grande échelle avec des
interactions non locales.

Après une introduction en français et une autre introduction plus détaillée en
anglais, ce document contient trois chapitres. Le chapitre 3 introduit notre modèle
principal, et décrit sa limite en grande population par des processus ponctuels de
Poisson inhomogènes. Nous prouvons un résultat de propagation du chaos, valable
sur des intervalles de temps finis. Nous nous concentrons aussi sur le comportement
en temps long de la limite en grande population dans le cas linéaire. Les chapitres
suivants explorent des cas où il est possible d’étudier le comportement en temps
long du système microscopique, plus précisément jusqu’à des temps polynomiaux
en la taille de la population. Dans le chapitre 4, la dynamique de la limite en
grande population est attirée par une solution stationnaire unique de la NFE.
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Nous prouvons la stabilité en temps long de la dynamique du système microscopique
autour de cette solution. Dans le chapitre 5, la NFE admet un ensemble de solutions
stationnaires stables qui forment une variété. Nous montrons la proximité en temps
long entre le système microscopique et cette variété. En particulier, nous prouvons
que sur une échelle de temps de l’ordre de la taille de la population, la dynamique du
système peut être décrite par un mouvement brownien sur la variété des solutions
stationnaires.

Mots-clés
processus de Hawkes non linéaire multivarié, processus ponctuel, champ-moyen, système
spatialement étendu, propagation du chaos, graphes aléatoires, convergence de graphe,
équation de champ neuronal



Hawkes processes on random graphs
in neuroscience: large population
limit and long time stability

Abstract

In this thesis, we are interested in a model of a population of neurons represented
by a multivariate Hawkes process. The activity of each neuron is described by
a counting process, where each jump represents a spike of the neuron. A label
is attributed to each neuron, linked to its function or to its spatial location.
The connectivity between neurons is given by a random possibly diluted and
inhomogeneous graph where the probability of presence of each edge depends on
the labels of its vertices. The firing rate of each neuron depends on the history of
the connected neurons: this rate increases in case of excitation by others neurons,
or decreases in case of inhibition.

The main motivation of this work is to study the behavior of the dynamical
system when the size of the population goes to infinity, for fixed realization of the
interaction: we focus on the large population limit in a quenched setting. One main
issue is the understanding of how the spatial inhomogeneity (in the interaction)
influences the large time behavior of the system. Another issue is to link the
microscopic model to the Neural Field Equation (NFE), which models large-scale
neural dynamics with non-local interactions.

This document contains, after an introduction in French and one (more detailed)
in English, three chapters. Chapter 3 sets out the formal framework of the main
model and gives its large population limit, described by inhomogeneous Poisson
point processes. We prove a propagation of chaos result, valid on finite time
intervals. A focus is also made on the large time behavior of the large population
limit in the linear case. The following chapters explore cases where one can study
the long-time behavior (up to time horizons that are polynomial in the size of the
population) of the microscopic system. In Chapter 4 the dynamics is attracted
to a unique stationary solution of the NFE. We prove the long-time stability of
the dynamics of the system around this solution. In Chapter 5 the neural field
equation admits a manifold of stable stationary solutions. We show the long-
time proximity of the microscopic system to this manifold. In particular we prove
that the dynamics of the system can be illustrated by a Brownian motion on the

v



manifold, when the time scale is of order the size of the population.

Key words
multivariate nonlinear Hawkes processes, point processes, mean-field systems, spatially
extended systems, propagation of chaos, random graphs, graph convergence, neural field
equation
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Chapitre 1

Introduction

Dans ce chapitre nous présentons les principales motivations de cette thèse. En
particulier, nous faisons un bref rappel des modèles mathématiques issus des neuro-
sciences et des notions mathématiques utilisées, avant de présenter notre principal
modèle étudié. Une version anglaise des deux premières parties de ce chapitre se
trouve au Chapitre 2. La dernière partie présente le modèle étudié durant cette
thèse et rassemble les résultats principaux de chaque chapitre. Une version anglaise
plus complète, présentant le contexte mathématique et un résumé très détaillé des
résultats démontrés se trouve dans le Chapitre 2.

Sommaire
1.1 Contexte biologique . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Activité neuronale . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Le b.a.-ba du neurone . . . . . . . . . . . . . . . . . . 2

1.2 Comment modéliser l’activité neuronale ? . . . . . . . . . . . . 4

1.2.1 Systèmes dynamiques et modèles continus . . . . . . . 4

1.2.2 Processus ponctuel . . . . . . . . . . . . . . . . . . . . 6

1.3 Le modèle général . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Chapitre 3 : Processus de Hawkes multivariés sur des
graphes aléatoires inhomogènes . . . . . . . . . . . . . 12

1.3.2 Chapitre 4 : Stabilité en temps long des processus de
Hawkes en interaction sur des graphes aléatoires . . . . 13

1.3.3 Chapter 5 : Stabilité des bumps pour les processus de
Hawkes en interaction sur le cercle . . . . . . . . . . . 15

1.1 Contexte biologique

1.1.1 Activité neuronale

Les neurones sont les principaux composants du système nerveux, en tant que
cellules spécialisées dans la réception, l’intégration et la transmission d’informations.
Si le cerveau humain compte en moyenne 86 milliards de neurones, il existe une

1



1. Introduction

grande diversité dans le règne animal : les insectes ont environ un million de
neurones, et l’un des plus petits cerveaux du monde (un ver microscopique) en
contient environ 300.

Le comportement neuronal est très complexe, et l’étude des mécanismes à
l’oeuvre est assez récente. Galvani découvre que la propagation nerveuse est liée à
une activité électrique au 18ème siècle, lors d’expériences sur des grenouilles. Vers
1900, Bernstein découvre l’élément clé du codage de l’information, le potentiel
d’action. Golgi et Ramón y Cajal décrivent anatomiquement les neurones pendant
cette même période et observent des réseaux complexes avec une forte hétérogénéité.
Broca s’intéresse à l’organisation spatiale du cortex. L’avancée des techniques
d’observation telles que l’EEG (électroencéphalographie) et l’IRM (imagerie par
résonance magnétique) — utilisées en science à partir des années 1950 — ont
profondément contribué à la compréhension de la physiologie d’un neurone, et à
l’établissement des premiers modèles mathématiques décrivant l’activité neuronale.

Cependant, notre compréhension du cerveau est loin d’être complète et est
toujours à l’étude. Nous présentons ici un bref résumé des mécanismes en jeu.

1.1.2 Le b.a.-ba du neurone

L’émission des potentiels d’action (ou spikes) code le transfert d’information dans
le cerveau. Succintement, un neurone émet un potentiel d’action en fonction des
informations qu’il reçoit des autres neurones, et en retour ce potentiel d’action peut
influencer la dynamique des autres neurones avec lesquels il interagit. Ces processus
sont complexes et impliquent de nombreux éléments chimiques et électriques.

Il existe plusieurs familles de neurones (sensoriels, moteurs... voir la classification
de Luo (2020)), mais tous partagent certaines caractéristiques communes : leur
membrane est polarisée, et chaque neurone peut se décomposer en plusieurs zones
morphologiques distinctes explicitées sur la Figure 1.1, chacune ayant des fonctions
spécifiques. Le neurone reçoit de l’information grâce à des connexions sur son
arbre dendritique, composé de dendrites qui sont des extensions cellulaires avec
de nombreuses branches. Le soma, corps du neurone, contient entre autres son
noyau. L’axone est un long prolongement de la cellule qui transporte les signaux
nerveux loin du soma, vers une ramification étendue qui sont les régions terminales.
Également appelées terminaux de l’axone, elles permettent la communication avec
de nombreuses cellules cibles vers d’autres neurones par l’intermédiaire de synapses.
La transmission synaptique repose sur la libération de messagers chimiques.

Des canaux ioniques présents sur la membrane plasmique du neurone la rendent
perméable : des échanges d’ions (sodium Na+, potassium K+, calcium Ca2+ et
chlorure Cl−) se font entre l’intérieur et l’extérieur de la cellule. En l’absence
d’interaction, les différences de concentration ionique de part et d’autre de la
membrane induisent une différence de potentiel, appelée le potentiel de repos. Lors
des synapses, les récepteurs de l’arbre dendritique perturbent la perméabilité des
canaux ioniques de la membrane et entraînent ainsi une variation du potentiel
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1.1. Contexte biologique

Figure 1.1: Schéma d’un neurone

membranaire, due notamment au courant transmembranaire de K+ et Na+, ce que
l’on peut voir sur la Figure 1.2. Si cette variation est suffisamment importante sur
un court laps de temps, c’est-à-dire si elle atteint le potentiel seuil, le neurone génère
un signal électrique appelé potentiel d’action ou spike. Le diagramme d’un spike
typique est représenté sur la Figure 1.2. Il consiste en une dépolarisation (l’entrée
d’ions sodium dans la cellule) et une repolarisation (la sortie d’ions potassium de
la cellule), suivies d’une période réfractaire pendant laquelle le neurone ne peut
pas déclencher un autre spike (le temps que les canaux sodiques se rétablissent),
ou alors avec une difficulté inhabituelle car le seuil devient plus élevé.

Ce phénomène est bref dans le temps, de l’ordre de quelques millisecondes, et
les potentiels d’action restent similaires pour un neurone donné. Une fois émis, le
spike est propagé le long de l’axone jusqu’aux terminaisons et aux synapses, où le
processus synaptique a lieu.

Figure 1.2: Schéma d’un potentiel d’action typique (from Wikimedia Commons
(https://commons.wikimedia.org/wiki/File:Potentiel_d%27action.svg), CC BY-
SA 3.0)
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1. Introduction

1.2 Comment modéliser l’activité neuronale ?

Des modèles mathématiques simplifiés ont été introduits pour étudier l’activité
neuronale. Leur diversité reflète le grand nombre de questions que les biologistes
se posent, et l’échelle à laquelle se concentrer : sommes-nous plus intéressé.e.s par
l’évolution du courant potentiel ? par la libération de neurotransmetteurs ? par les
trains de spikes (la suite des instants de spikes) d’un ou de plusieurs neurones ?
Nous présentons quelques-uns de ces modèles de neuroscience mathématique.

1.2.1 Systèmes dynamiques et modèles continus

Commençons par introduire les modèles dits continus, qui se concentrent sur la
modélisation de l’évolution du potentiel membranaire par des équations différentielles
ordinaires (EDO) ou des équations différentielles stochastiques (EDS). Ils ne sont
pas l’objet de cette thèse, mais nous les présentons ici car ils ont été les premiers
modèles historiques à aborder ces questions.

Un neurone ou une population finie de neurones (échelle
microscopique)

Une manière de simplifier le processus biologique est de considérer des modèles de
type "Intègre-et-tire". Prenons u le potentiel membranaire d’un neurone, évoluant
selon une EDO comme u̇t = F (ut). Lorsque u atteint une valeur donnée, un seuil
fixe Uth, on considère que le neurone émet un spike et nous réinitialisons u à sa
valeur de repos Urest. Ce modèle a été introduit par Lapicque (1907) et a été
beaucoup étudié depuis, avec des variations intégrant de l’aléatoire (comme Galves
& Löcherbach (2013); Delarue et al. (2015) et Sacerdote & Giraudo (2013)). Notons
que les derniers articles considèrent une population finie de neurones, où chaque
neurone est modélisé par une EDO ou une EDS avec des interactions au sein de la
population.

Comme il existe une certaine variabilité dans le seuil nécessaire pour émettre un
spike, d’autres modèles évitent de fixer ce seuil. Le modèle d’Hodgkin-Huxley est
probablement le plus célèbre concernant la modélisation déterministe d’un neurone.
Basé sur l’étude d’un axone géant de calamar et à l’origine du prix Nobel de
physiologie et médecine en 1963, Hodgkin & Huxley (1952) introduisent un système
dynamique de 4 équations différentielles basées sur la conductance, représentant
les interactions entre le potentiel membranaire (ut) et les variables décrivant les
canaux ioniques de potassium (nt) et de sodium (mt), ainsi qu’avec un canal de
fuite (ht). L’activité neuronale est ainsi modélisée par sa dynamique intrinsèque
avec le système 

dut = Itdt− F (ut, nt,mt, ht)dt

dnt = (αn(ut)(1− nt)− βn(ut)nt) dt

dmt = (αm(ut)(1−mt)− βm(ut)mt) dt

dht = (αh(ut)(1− ht)− βh(ut)ht) dt,
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où F (v, n,m, h) = gnn
4(v − vn) + gmm

3h(v − vm) + gh(v − vh) et les paramètres
gi, vi, αi et βi sont des conductances ou des taux associés à chaque canal i. Le
comportement de ce système dépend fortement du stimulus extérieur It, et a
beaucoup été étudié depuis, par exemple dans Rinzel & Miller (1980); Aihara et al.
(1984), et également dans Baladron et al. (2012); Bossy et al. (2015); Höpfner et al.
(2017) avec des versions stochastiques. Cependant, en raison de la complexité de ce
modèle (à 4 équations pour un neurone), d’autres modèles ont été introduits pour
en simplifier l’analyse.

Le modèle de FitzHugh-Nagumo, introduit dans FitzHugh (1961); Nagumo
et al. (1962), simplifie celui de Hodgkin-Huxley en ne considérant plus que deux
équations par neurone, l’une pour le potentiel membranaire (ut) et l’autre auxilliaire
(Ct) :  dut =

(
ut −

u3
t

3
− Ct + It

)
dt

τdCt = (ut + a− bCt) dt,

avec a, b et τ des paramètres et I le stimulus. Des versions stochastiques de ce
modèle existent également, on peut les retrouver par exemple dans Baladron et al.
(2012); Luçon & Poquet (2021b); Colombani & Bris (2022).

Une grande population de neurones (échelle mésoscopique)

Si les modèles microscopiques sont nécessaires pour représenter l’activité neuronale
à l’échelle d’un neurone, nous pouvons être intéressés par des modèles à plus grande
échelle, portant sur une grande partie du cortex par exemple. Mais les neurones
ne sont alors plus identiques : il est possible alors de leur attribuer des étiquettes.
Mentionnons deux principaux exemples que nous utiliserons dans notre travail. Les
neurones sont localisés dans le cerveau, et leur activité ou leur fonction peut être
liée à cette position spatiale. Nous pouvons donc étiqueter chaque neurone d’une
(grande) population de neurones en fonction de sa position. Un autre modèle très
étudié est le ring model, qui se concentre plus spécifiquement sur le cortex visuel. Au
lieu d’assigner à chaque neurone une position spatiale, les neurones sont différenciés
en fonction de leur rôle : chaque neurone possède une préférence d’orientation qui
stimule son activité (voir Georgopoulos et al. (1982); Bosking et al. (1997)). Nous
ne considérons pas alors une population finie de neurones, mais une distribution de
neurones en fonction de leur étiquette.

D’après les travaux de Wilson & Cowan (1972); Amari (1977) sur un modèle
basé sur la conductance d’un réseau de neurones, Bressloff (2012) établit un modèle
purement phénoménologique en introduisant le champ scalaire neuronal (Neural
Field Equations que nous noterons NFE)

∂ut(x)

∂t
= −αut(x) +

∫
S

w(x, y)f(ut(y))dy + It(x). (1.2.1)

Dans ce modèle, ut(x) représente le potentiel membranaire du neurone portant
l’étiquette x, qui diminue à taux α. Le noyau w représente la distribution spatiale
des connexions synaptiques neuronales, la fonction f représente les effets de filtrage
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du traitement synaptique et It(x) est le stimulus que le neurone reçoit au temps
t. Cette équation modélise à grande échelle la dynamique de réseaux neuronaux
structurés en espace. De nombreux phénomènes peuvent apparaître, comme des
oscillations, des ondes (progressives), des bumps... ce qui explique le large intérêt
que la NFE suscite : Ermentrout & McLeod (1993); Veltz & Faugeras (2010);
Bressloff & Webber (2012); Kilpatrick & Ermentrout (2013); Bressloff (2014);
Touboul (2014); Faugeras & Inglis (2015); Inglis & MacLaurin (2016); Lang &
Stannat (2017); MacLaurin & Bressloff (2020). Ces structures apparaissent notamment
grâce à l’invariance de la mesure de Lebesgue (présente dans l’intégration dy dans
(1.2.1)).

Quelques commentaires sur la stochasticité

En ce qui concerne l’aléa, si les modèles précédents sont déterministes, des versions
stochastiques (déjà mentionnées) ont également été développées en ajoutant un
bruit aux EDO. Plusieurs raisons expliquent ce choix. L’une des grandes questions
des neurosciences mathématiques est de comprendre comment la complexité des
phénomènes microscopiques (tels que ceux impliqués dans l’activité neuronale,
à l’échelle du neurone) se traduit à l’échelle mésoscopique (pour une portion du
cortex, par exemple) ou macroscopique. L’introduction de bruit permet de prendre
en compte tous les micro-phénomènes que l’on ne comprend pas, ou qui sont trop
difficiles à modéliser à l’échelle considérée.

De plus, il existe de la stochasticité biologique tout au long de la chaîne de
réaction. Les arguments suivants sont issus de Pouzat (2020).

• A l’échelle d’une population de neurones, il peut y avoir une variabilité au
sein de la population (sur le seuil qui permet les spikes, sur la libération de
messagers chimiques...).

• A l’échelle du neurone, certains spikes sont spontanés (Fatt & Katz (1952)).
En raison de l’état binaire des canaux ioniques (ouvert/fermé), ces changements
d’état entraînent des fluctuations (Verveen & Derksen (1968)). De plus, certaines
spikes ne sont pas correctement propagés le long de l’axone et ces échecs de
propagation peuvent être aléatoires (Smith (1980)).

• A l’échelle de la synapse, la libération des neurotransmetteurs est très fluctuante :
la quantité de messagers chimiques libérés par le neurone présynaptique peut
varier, les récepteurs du neurone postsynaptique peuvent être plus ou moins
occupés et la réponse des récepteurs se fait également par des portes binaires.

Dans la suite et plus particulièrement dans notre modèle, tout cet aléa est
considéré à travers l’aléa associé à l’émission d’un spike, considéré alors comme un
phénomène aléatoire.

1.2.2 Processus ponctuel

Il est possible de modéliser l’activité neuronale par des processus ponctuels — des
processus stochastiques où chaque réalisation consiste en un ensemble de points
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isolés. Comme le montre la Figure 1.2, un spike est un phénomène stéréotypé qui
est bref dans le temps : l’information est codée dans la distribution inter-spikes. On
peut simplifier la modélisation de l’activité neuronale d’un neurone en représentant
un spike par un instant — le pic du potentiel d’action — et donc en considérant
qu’un spike est un événement d’un processus ponctuel sur la droite réelle. La Figure
1.3 illustre la simplification de l’activité d’un neurone cortical par un processus
ponctuel sur la droite réelle.

t• • • ••• • • • • • • • • • • • • •• •

Figure 1.3: Réponse d’un neurone cortical à un stimulus (d’après Rossant et al. (2011))
et le processus ponctuel associé

Les trains de spike étant modélisés par des processus ponctuels, il convient
maintenant de décrire comment ces spikes apparaissent. On utilise pour cela la
notion d’intensité stochastique, qui caractérise la loi des arrivées des spikes.

1.2.2.1 Processus ponctuel et intensité stochastique

Rappelons d’abord quelques notions théoriques sur les processus ponctuels (Daley
& Vere-Jones, 2006). Un processus ponctuel Z sur R+ peut être représenté de
manière équivalente par

• une suite strictement croissante de points (Tn)n≥1 sans point d’accumulation
lorsque n→∞,

• une mesure de comptage sur R+ définie par Z =
∑

n≥1 δTn — où δ est la
mesure de Dirac,

• un processus de comptage t 7→ Z(t) = Z([0, t]) =
∑

n≥1 1t≤Tn ,

et on fixe Z0 = 0. A chaque nouveau point Tn, on dit que le processus saute, et les
(Tn) sont les sauts du processus. Pour toute fonction f on note∫

[0,t]

f(s)dZ(s) =
∑
n≥1

f(Tn)1Tn≤t.

Le processus ponctuel le plus commun est le processus de Poisson homogène de
paramètre λ > 0, lorsque les temps d’attente entre deux événements consécutifs
(Tn+1 − Tn)n≥1 sont indépendants et suivent une loi exponentielle de paramètre λ.
Dans ce cas, pour tout 0 < a < b, Z([a, b]) suit une loi de Poisson de paramètre
λ(b − a), et la constante λ est appelée l’intensité du processus. Lorsque λ est
une fonction déterministe λ : R+ → R+, on peut définir de manière similaire un

7



1. Introduction

processus de Poisson inhomogène d’intensité λ lorsque pour tout 0 < a < b, Z([a, b])
suit une loi de Poisson de paramètre

∫
[a,b]

λ(s)ds. Dans ces deux cas, les temps inter-
arrivées sont indépendants, il n’y a pas d’auto-excitation du processus, ce que l’on
cherche à avoir en neuroscience. Une manière d’introduire cette interaction est de
considérer des intensités stochastiques, de sorte que la probabilité d’un nouveau
saut dépende du passé du processus.

Définition 1.2.1. Soient (Ft) une filtration sur R+, Z un processus ponctuel
(Ft)-adapté sur R+ tel que E[Z(t)] < +∞ pour tout t ≥ 0, et λ un processus
aléatoire progressif par rapport à (Ft). On dit que Z admet la (Ft)-intensité λ si(
Z(t)−

∫ t
0
λsds

)
est une (Ft)-martingale.

Dans la majeure partie des cas, on prend Ft = σ (Z(s), s ≤ t), l’histoire du
processus. Il n’y a pas d’unicité pour une telle intensité stochastique (on peut
considérer λ(t−)), mais si on se restreint aux intensités prévisibles alors il y a
unicité. Sauf mention du contraire dans la suite nous parlerons toujours de l’intensité
prévisible. L’intérêt d’introduire l’intensité stochastique est que si λ est l’intensité
de Z, alors informellement

P (Z saute pendant le laps de temps (t, t+ dt)|Ft) = λ(t)dt.

L’intensité est donc vue comme le taux de saut instantané du processus : plus elle
est grande, plus le processus aura tendance à produire un nouveau saut. Comme
ce taux peut dépendre du passé du processus, cela nous permet d’inclure de l’auto-
excitation et des interactions dans notre modèle.

1.2.2.2 Elaguer des mesures aléatoires de Poisson

Pour construire des processus ponctuels admettant des intensités stochastiques, on
peut utiliser des mesures aléatoires de Poisson.

Définition 1.2.2. π est une mesure aléatoire de Poisson sur R+ ×R+ d’intensité
dtdx si

1. pour tout C borélien de R+ × R+, π(C) suit une loi de Poisson qui a pour
paramètre la mesure de Lebesgue de C,

2. pour tous boréliens C1, . . . , Cn mutuellement disjoints, (π(C1), . . . , π(Cn)) est
une famille de variables aléatoires indépendantes.

Les processus ponctuels définis par leur intensité stochastique peuvent être
construits en élaguant une mesure aléatoire de Poisson — on parle de thinning,
méthode utilisée par Ogata (1988).

Proposition 1.2.3. Soient (Ft) une filtration sur R+, π une mesure aléatoire de
Poisson sur R+×R+ d’intensité dtdx et λ un processus positif progressif par rapport
à (Ft). On définit le processus Z pour tout t ≥ 0 par

Z(t) =

∫ t

0

∫ ∞
0

1z≤λ(s)π(ds, dz).

Alors Z admet la (F)t-intensité λ.
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Cette construction a été fréquemment employée, par exemple dans les travaux
Brémaud & Massoulié (1996); Chevallier (2017); Chevallier et al. (2019). Cela
signifie que pour construire un processus Z d’intensité stochastique λ, on peut
se donner une réalisation d’une mesure aléatoire de Poisson π et regarder chaque
point (s, z) de π : si z ≤ λ(s) alors s devient un saut du processus Z. Nous
donnons un exemple jouet d’une telle construction par élaguage dans la Figure
1.4 pour un processus auto-excitant Z(t) d’intensité stochastique λ(t) = 1 +∫

]0,t[
1[0,1](t − s)dZ(s) : dès que Z a un nouveau saut, l’intensité est augmentée

de 1 pendant une unité de temps. Cette augmentation représente l’auto-excitation,
dans notre exemple le troisième spike T3 se produit grâce à l’excitation résiduelle
du deuxième spike T2. Dans cet exemple, Z est un processus ponctuel particulier
puisqu’il appartient à la classe des processus de Hawkes linéaires.

1.2.2.3 Processus de Hawkes

Les processus de Hawkes ont été introduits par Hawkes (1971) en tant que processus
ponctuels auto-excitants. Un processus de Hawkes Z se définit de manière générale
comme un processus ponctuel admettant une intensité stochastique de la forme

λ(t) = f

(
v(t) +

∫ t−

0

h(t− s)dZ(s)

)
, (1.2.2)

où f : R → R+, v : R+ → R et h : R+ → R. La fonction h est le noyau de
mémoire du processus, qui décrit comment un point du passé affecte le taux de saut
instantané du processus. Les processus de Hawkes ont été introduits pour décrire
les tremblements de terre et leurs répliques dans Hawkes & Oakes (1974); Ogata
(1988), mais depuis les domaines d’application se sont diversifiés avec notamment
la finance et les neurosciences. Le caractère bien posé de ces processus se montre
classiquement en utilisant une itération de Picard (Delattre et al. (2016a); Chevallier
et al. (2019)).

Dans le cadre spécifique des neurosciences (et plus généralement pour décrire
un système de particules en interaction comme Delattre et al. (2016a)), on étudie
une grande population de neurones. Aussi on considère un processus de Hawkes
multivarié, soit une collection de processus de Hawkes évoluant conjointement.
Chaque neurone est associé à un processus ponctuel (où chaque point représente
un potentiel d’action du neurone) et l’intensité de chaque processus ponctuel prend
en compte les spikes passés du neurone lui-même mais aussi ceux de la population.
Ainsi, une modélisation de N neurones par un processus de Hawkes multivarié est
un processus (ZN,1, . . . , ZN,N) où chaque ZN,i est un processus ponctuel d’intensité

λN,i(t) = fi

(
vi(t) +

1

N

N∑
j=1

∫ t−

0

w
(N)
ij hj→i(t− s)dZN,j(s)

)
, 1 ≤ i ≤ N, (1.2.3)

les fonctions f , v et h de (1.2.2) pouvant dépendre du neurone considéré, et avec
w

(N)
ij l’influence du je neurone sur le ie. Nous donnons un exemple pour deux

neurones (notés A et B) modélisé par deux processus de Hawkes ZA et ZB dans
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Figure 1.4: Méthode par thinning pour construire un processus Z d’intensité
stochastique λ(t) = 1 +

∫
]0,t[

1[0,1](t− s)dZ(s)

1re étape : on tire une réalisation π de la mesure aléatoire de Poisson, certains de ces points
projetés sur l’axe des abscisses formeront les sauts du processus Z,
2e étape : sans saut, l’intensité reste à 1 jusqu’à ce qu’elle soit au dessus d’un point de π,
3e étape : le point rouge (issu de la réalisation de π) est sous l’intensité, donc devient un point
du processus Z et affecte l’intensité du processus qui augmente de 1 pour une unité de temps,
4e étape : on itère, lorsque l’intensité se trouve au dessus d’un point de π, elle augmente de 1
pour une unité de temps car le processus ponctuel gagne un nouveau saut,
dernière étape : tous les points de π situés sous l’intensité λ(t) sont projetés sur l’axe des abscisses
et forment la suite (Tn) des instants de saut du processus Z.
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Figure 1.5: Deux neurones A et B en interaction modélisés par un processus de
Hawkes, d’intensités λA et λB définies en (1.2.4) et (1.2.5)

On associe indépendamment à chaque neurone la réalisation d’une mesure aléatoire de Poisson
(πA et πB). Lorsque le neurone A émet un potentiel d’action (c’est-à-dire lorsqu’un point (s, z)
de πA est sous l’intensité λA(s)), cela a pour effet d’augmenter les intensités des deux neurones
pendant une unité de temps. Lorsque le neurone B émet un spike (c’est-à-dire lorsqu’un point
(s, z) de πB est sous l’intensité λB(s)), le neurone s’inhibe lui-même et son intensité diminue de
2 pendant une unité de temps, sans descendre en dessous de 0.

la Figure 1.5, avec A un neurone auto-excitant et qui excite le neurone B et B un
neurone auto-inhibant : on prend

λA(t) = 1 +

∫
]0,t[

1[0,1](t− s)dZA(s), (1.2.4)

λB(t) = max

{
0, 1 +

∫
]0,t[

1[0,1](t− s)dZA(s)− 2

∫
]0,t[

1[0,1](t− s)dZB(s)

}
. (1.2.5)

La fonction f choisie comme f(u) = max{0, u} garantit que, malgré la présence
d’inhibition, l’intensité du processus ponctuel ZB reste positive.

1.3 Le modèle général
On modélise l’activité d’une population de N neurones. L’activité du ie neurone
est décrite par un processus ponctuel : ZN,i(t) compte le nombre de spikes que le ie
neurone a émis pendant l’intervalle [0, t], chaque saut du processus correspond à un
spike du neurone. Ce processus est caractérisé par son intensité stochastique notée
λN,i(t) : plus cette intensité est importante, plus le neurone est enclin à émettre
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un spike. Pour le choix de cette intensité, nous prenons en compte la dépendance
de l’activité du neurone sur son interaction avec les autres neurones du système en
considérant

λN,i(t) = µt(xi) + f

(
vt(xi) +

1

N

N∑
j=1

w
(N)
ij

∫ t−

0

h(t− s)dZN,j(s)

)
. (1.3.1)

Ici, xi ∈ I ⊂ Rd représente une étiquette associée au ie neurone, on considérera
que I est le domaine spatial, f : R −→ R+ représente l’intégration synaptique
(où comment le modèle traduit le potentiel membranaire en probabilité de saut),
µt(xi) ∈ R+ représente l’activité spontanée et vt(xi) un stimulus passé du neurone
au temps t, h : R+ −→ R est la fonction de mémoire par laquelle le neurone se
rappelle du passé et enfin le terme w(N)

ij représente l’interaction entre les neurones,
plus précisément comment le je neurone agit sur le ie. Ce modèle est une continuation
des articles Delattre et al. (2016a); Chevallier et al. (2019). L’originalité de cette
thèse est de considérer que l’interaction entre les neurones n’est non pas déterministe
comme dans les précédents articles cités, mais aléatoire : on suppose que l’interaction
entre deux neurones d’étiquettes xi et xj se fait selon la réalisation d’un graphe
aléatoire, dans le sens où la probabilité que l’interaction ait lieu dépend des étiquettes
xi et xj à travers un noyau spatial W .

L’étude du comportement macroscopique de grandes populations de neurones
en interaction est un problème mathématique de longue date. Une difficulté réside
dans la compréhension de la dynamique des neurones à des échelles différentes : à
une échelle microscopique (celle d’un neurone) et à une échelle méso-macroscopique,
i.e. au niveau de la dynamique d’une région du cortex cérébral. Dans ce contexte,
des questions importantes sont de comprendre l’influence du bruit sur la dynamique
à ces différentes échelles ainsi que l’influence de la topologie du graphe d’interaction
entre les neurones sur leur comportement en temps long.

1.3.1 Chapitre 3 : Processus de Hawkes multivariés sur des
graphes aléatoires inhomogènes

Un premier résultat consiste à regarder la limite en grande population (lorsque
N →∞) du processus multivarié (ZN,1 (t) , ..., ZN,N (t))t≥0 défini comme suit.

Définition 1.3.1. Soit (πi(ds, dz))1≤i≤N une suite i.i.d. de mesures de Poisson sur
R+×R+ d’intensité dsdz. Le processus de comptage (ZN,1 (t) , ..., ZN,N (t))t≥0 défini
pour tout t ≥ 0 et 1 ≤ i ≤ N par

ZN,i(t) =

∫ t

0

∫ ∞
0

1{z≤λN,i(s)}, πi(ds, dz), (1.3.2)

où λN,i est définie en (1.3.1), est appelé un processus de Hawkes multivarié.

Nous prouvons dans ce chapitre que la limite macroscopique du système (1.3.1)
sur des intervalles de temps bornés s’exprime sous la forme d’une famille de processus
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1.3. Le modèle général

de Poisson inhomogènes spatialement étendus, d’intensités (λt(x))x∈I solutions de
l’équation de convolution suivante

λt(x) = µt(x) + f

(
vt(x) +

∫
I

W (x, y)

∫ t

0

h(t− s)λs(y)ds ν(dy)

)
, (1.3.3)

où ν représente la distribution spatiale macroscopique des neurones. Ce résultat
s’obtient en utilisant, grâce à la famille (πi)1≤i≤N , un couplage adéquat entre
le processus (ZN,1 (t) , ..., ZN,N (t))t≥0 et des processus de Poisson indépendants(
Z1 (t) , ..., ZN (t)

)
t≥0

d’intensités (λt(xi))1≤i≤N .

Un autre intérêt de ce chapitre est de comprendre le comportement en temps
long de cette limite macroscopique (1.3.3) et d’observer les effets de l’inhomogénéité
du graphe d’interaction. Dans le cadre champ moyen classique (où w(N)

ij = 1 pour
tout i, j), il n’y a plus de dépendance spatiale et (1.3.3) devient une équation de
convolution scalaire λt = µt + f(vt +

∫ t
0
h(t − s)λsds). Lorsque de plus on choisit

le cas linéaire, c’est-à-dire f(x) = x, µt = µ et νt = 0 dans (1.3.3) (et donc avec h
fonction à valeurs positives), le comportement de λt quand t→∞ est bien connu :
il y a un phénomène de transition de phase dans le comportement en temps long
(Delattre et al., 2016a, Théorèmes 10,11) selon le choix de la fonction de mémoire
h. Lorsque ‖h‖1 =

∫∞
0
h(t)dt < 1 (cas sous-critique), λt −−−→

t→∞

µ

1− ‖h‖1

, tandis que

lorsque ‖h‖1 > 1 (cas sur-critique), λt −−−→
t→∞

∞. Nous étendons cette transition
de phase lorsque l’interaction est inhomogène : en notant r∞ le rayon spectral de
l’opérateur d’interaction TWg(x) 7→

∫
I
W (x, y)g(y)ν(dy), dans le cas sous-critique

qui devient ‖h‖1r∞ < 1, pour tout x ∈ I l’intensité macroscopique λt(x) converge
vers `(x) l’unique solution de

`(x) = µ(x) +

∫
I

W (x, y)‖h‖1`(y)ν(dy); (1.3.4)

et dans le cas sur-critique ‖h‖1r∞ > 1, ‖λt‖2 →∞. Enfin, dans ce premier travail
nous caractérisons également l’influence de l’interactionW dans le cas sous critique
avec la proposition suivante.

Proposition 1.3.2 (Proposition 3.4.5). Supposons que la fonction µ est constante.
Alors la fonction ` solution de (1.3.4) est constante si et seulement si le degré
rentrant du graphe x 7→

∫
I
W (x, y)ν(dy) est constant.

1.3.2 Chapitre 4 : Stabilité en temps long des processus de
Hawkes en interaction sur des graphes aléatoires

Les comportements asymptotiques (N →∞ et t→∞) ne sont pas interchangeables
pour des modèles de champ moyen. Ce chapitre porte sur l’étude d’un cas où l’on
obtient une convergence en temps long du système microscopique décrit en (1.3.1).

Un premier résultat du chapitre étend la condition de sous criticalité ‖h‖1r∞ <
1 du chapitre précédent pour des cas non linéaires (c’est-à-dire où f n’est plus
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1. Introduction

l’identité). Dans ce cas, on demande comme condition suffisante de sous-criticalité

‖f ′‖∞‖h‖1r∞ < 1, (1.3.5)

et alors l’intensité macroscopique λt converge vers une fonction spatiale solution

de l’équation de convolution `(x) = µ(x) + f

(
v(x) + ‖h‖1

∫
I

W (x, y)`(y)ν(dy)

)
,

où µ = limt→∞ µt et v = limt→∞ vt.

Un second résultat du chapitre consiste à se placer dans le cas sous critique
(1.3.5) avec une fonction de mémoire spécifique de la forme h(t) = e−αt pour α > 0
fixé et regarder le comportement du système microscopique (1.3.2) sur des échelles
de temps polynomiaux en la taille de la population N . Le domaine spatial est ici
réduit au segment I = [0, 1], et les N neurones de la population sont disposés de
manière régulière le long de I. L’interaction entre deux neurones i et j est fixée par

le terme w(N)
ij =

ξij
ρN

, où ξij suit une loi de Bernoulli de paramètre ρNW (xi, xj) avec

ρN un facteur de dilution du graphe d’interaction. Le choix d’un noyau exponentiel
permet de faire apparaître que la limite macroscopique du potentiel membranaire
ut (défini en lisant λt = µt + f(ut) dans (1.3.3)) lorsque vt = ρe−αt est solution de
la NFE (1.2.1).

La quantité microscopique qui nous intéresse est le potentiel synaptique, défini
par

XN,i(t) =
N∑
j=1

w
(N)
ij

N

∫ t

0

e−α(t−s)dZN,j(s), XN(t)(x) :=
N∑
i=1

1 i−1
N
<x≤ i

N
XN,i(t).

Il admet une limite en grande population donnée par Xt(x) =
∫
I
W (x, y)

∫ t
0
h(t −

s)λs(y)ds dy. Le cas sous-critique (1.3.5) permet de garantir l’existence d’une
unique solution stationnaire à la NFE (1.2.1) et la convergence de la limite déterministe
Xt versX∞ := ‖h‖1TW `. Le résultat principal, de stabilité deXt en temps polynomiaux,
s’écrit sous la forme du théorème suivant :

Théorème 1.3.3 (Théorème 4.2.12). Fixons tf > 0 et m ≥ 1. Alors sous des
hypothèses de régularité des paramètres (f, µ, v) et de dilution du graphe, dans le
cas sous-critique (1.3.5), P p.s. par rapport à la réalisation du graphe on a pour
tout ε > 0

P

(
sup

t∈[tε,(NρN )mtf ]

‖XN(t)−X∞‖2 ≥ ε

)
−−−→
N→∞

0,

où tε > 0 est indépendant de N .

Le temps tε correspond au temps nécessaire pour que la dynamique déterministe
Xt soit suffisamment proche de la limite en temps long X∞. Les résultats du
chapitre précédent impliquent que XN est lui même proche de Xt avec grande
probabilité sur des intervalles de temps finis. Enfin, pour lier XN et X∞, on utilise
un raisonnement par récurrence : sur un intervalle de temps fini, la dynamique
déterministe prend le dessus sur le bruit donc siXN etX∞ sont proches, ils le restent
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1.3. Le modèle général

pour toute la durée de cet intervalle. En utilisant que le processus (XN,i(t))1≤i≤N,t≥0

est Markovien grâce au choix h(t) = e−αt, on obtient le résultat en étudiant le
comportement infinitésimal du processus et en contrôlant le bruit provenant des
sauts et des connections.

1.3.3 Chapitre 5 : Stabilité des bumps pour les processus
de Hawkes en interaction sur le cercle

Ce dernier chapitre propose un cadre où l’on peut regarder ensemble les limites
N →∞ et t→∞ lorsque la condition (1.3.5) n’est pas vérifiée. Les deux premiers
chapitres de ma thèse étudient le comportement du modèle présenté en (1.3.2) dans
un cadre sous-critique, dans lequel la limite obtenue est unique, car la NFE (1.2.1)
admet alors une unique solution stationnaire. Une autre situation intéressante
consiste à perturber le système pour obtenir des comportements asymptotiques
plus variés, c’est à dire par exemple que la NFE (1.2.1) admette plusieurs solutions
stationnaires. C’est l’objet de ce dernier travail.

On considère maintenant une interaction avec de l’inhibition, non plus aléatoire
mais déterministe avec w(N)

ij = 2π cos(xi − xj) dans (1.3.1), et les neurones sont
placés sur le cercle S = (−π, π] de manière régulière. La fonction f n’est plus
générale puisqu’on prend une fonction sigmoïde de paramètre (κ, %) :

f(u) = fκ,%(u) :=
(
1 + e−(u−%)/κ

)−1
. (1.3.6)

On reste dans le cadre exponentiel avec h(t) = e−t, on prend de plus µt = 0
et vt(x) = ρ(x)e−t avec ρ une distribution initiale des potentiels membranaires.
Ce choix spécifique des paramètres de (1.3.1) vient du ring model, qui modélise
l’activité de neurones dans le cortex visuel à une échelle mésoscopique : chaque
position x ∈ S représente une orientation préférentielle du neurone sur le cercle,
les neurones ayant des orientations préférentielles similaires ont tendance à s’exciter
mutuellement, alors que ceux ayant des orientations préférentielles opposées s’inhibent,
d’où le choix du cosinus comme noyau d’interaction. Lorsque κ → 0, la sigmoïde
(1.3.6) converge vers la fonction de HeavisideH%(u) = 1u≥% de seuil %. Ainsi, lorsque
κ est assez petit, lorsque son potentiel membranaire est élevé un neurone émet un
spike à taux 1, et ce taux est proche de 0 si le potentiel n’est pas assez haut.

La quantité microscopique qui nous intéresse ici est

UN,i(t) = ρ(xi)e
−t +

2π

N

N∑
j=1

cos(xi − xj)
∫ t

0

e−(t−s)dZN,j(s) =: ρ(xi)e
−t +XN,i(t),

(1.3.7)
et on définit similairement UN(t)(x) :=

∑N
i=1 UN,i(t)1x∈(xi−1,xi] (avec x0 = −π et

xi = 2π
N

(
i− N

2

)
). Avec ce choix de paramètres, pour κ suffisamment petit la NFE

(1.2.1) admet un cercle de solutions stationnaires stables

U := (A cos(·+ φ))φ∈S =: (uφ)φ∈S , (1.3.8)

où A est la plus grande solution de A =

∫
S

cos(y)fκ,% (A cos(y)) dy. La variété

U est ainsi indexée par le cercle S, chaque fonction uφ est un cosinus translaté

15
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appelé bump. L’objet du chapitre est d’analyser le comportement en temps long du
processus (1.3.7) le long de U grâce au théorème suivant.

Théorème 1.3.4 (Théorème 5.2.11). Soit τf > 0. Si ρ est suffisamment proche de

U , il existe θ0 ∈ S, un certain temps τ0(N) ∝ log(N)

N
et un processus càdlàg

(WN(t))t∈(τ0(N),τf ) convergeant faiblement dans D ([0, τf ], S) vers un mouvement
brownien tels que pour tout ε > 0,

lim
N→∞

P

(
sup

τ∈(τ0(N),τf )

∥∥UN(Nτ)− uθ0+σWN (τ)

∥∥
2
≤ ε

)
= 1, (1.3.9)

où σ :=

(
2π

∫
S

sin2(x)f(A cos(x))dx

) 1
2

.

L’idée principale derrière ce résultat est que, si l’on part d’une condition initiale
proche de U , la dynamique déterministe ramène le potentiel proche du cercle de
solutions stationnaires U , et le bruit du système induit un déphasage aléatoire
sur le cercle. De plus, ce déphasage correctement renormalisé est quantifié par un
mouvement brownien. Le temps Nτ0(N) correspond au temps nécessaire pour que
UN(t) soit suffisamment proche de U .
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Chapter 2

Introduction
Sections 2.1 and 2.2 consists in an English translation of Sections 1.1
and 1.2. Section 2.3 develops the mathematical background and our
main model. Section 2.4 contains a detailed summary of the results
obtained for each chapter.

The goal of this chapter is to present the motivation and neuroscience context
behind the model studied in this thesis. A brief and non-exhaustive history of
mathematical models derived from neuroscience is presented, as well as some
mathematical tools that will be useful in explaining our model. We then introduce
our model and give the main results of the thesis.
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2. Introduction

2.1 Biological context

2.1.1 Neural activity

Neurons are the primary components of the nervous system, as cells specialized
in the reception, integration and transmission of information. While the human
brain has an average of 86 billion neurons, there is huge diversity in the animal
kingdom: insects have around a million neurons, and one of the world’s smallest
brain (a microscopic worm) contains around 300 neurons.

Neuronal dynamics are highly complex, and the study of neuronal mechanisms
is fairly recent. Galvani discovered that nerve propagation is linked to electrical
activity in the 18th century, while experimenting on frogs. Around 1900, Bernstein
discovered the key element in information coding, the action potential. Golgi and
Ramón y Cajal described neurons anatomically during the same period, observing
complex and highly heterogeneous networks. Broca was interested in the spatial
organization of the cortex. Advances in monitoring techniques used in science
from the 1950s onwards such as EEG (Electroencephalography) and MRI (Magnetic
Resonance Imaging) have contributed to the understanding of the physiology of a
neuron. The first mathematical models describing neuronal activity followed, and
are discussed below.

Nevertheless, our understanding of the brain is far from complete, and is still
under study. We present here a brief summary of the mechanisms behind neural
activity, starting with the ways in which one neuron communicates.

2.1.2 Basics about neurons

The emission of spikes encodes the transfer of information in the brain. In a few
words, a neuron emits an action potential according to the information it receives
from other neurons, and in return this action potential influences the dynamics of
other neurons. These processes are complex, involving many chemical and electrical
elements.

There are several families of neurons (sensory, motor, and others; see Luo
(2020)), but they all share a number of common features: their membrane is
polarized and they have distinct morphological regions that one can see in Figure
2.1, each one with specific functions. The dendritic tree, made up of dendrites that
are cellular extensions with many branches, is the zone where the neuron receives
connections. The soma, the body of the neuron, contains the nucleus. The axon is
a long extension that carries nerve signals away from the soma to an extensive set
of branches called the terminal regions. Also called the axon terminals, they enable
communication with other neurons through synapses, where chemical messengers
are released.

The plasma membrane of the neuron is permeable: ion channels allow the
exchange of ions between the inside and outside of the cell. The ions involved in
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2.1. Biological context

Figure 2.1: Diagram of a neuron

these exchanges are sodium Na+, potassium K+, calcium Ca2+ and chloride Cl−.
In the absence of interaction, differences in intra-membrane ionic concentration
induce a potential difference, called the resting state. During synapses, the receptors
of the dendritic tree disturb the permeability of ion channels in the membrane and
thus induce a change in the membrane potential due to the transmembrane current
of K+ and Na+, as can be seen in Figure 2.2. If this change is large enough over a
short time interval, that is if it reaches the voltage threshold, the neuron generates
an all-or-nothing electric signal called an action potential or spike. We also say
that the neuron fires. The diagram of a typical spike can be found in Figure
2.2. It consists in a depolarization (the entry of sodium ions into the cell) and a
repolarization (the exit of potassium ions from the cell), followed by a refractory
period in which the neuron cannot fire another spike (as the sodium channels
recover), or with unusual difficulty with a higher threshold to reach.

Figure 2.2: A typical action potential (from https://commons.wikimedia.org/wiki/
File:Action_potential.svg Wikimedia Commons, CC BY-SA 3.0)

The duration of one spike is short, around 1 ms, and the shape of the action
potential remains the same for a given neuron. Once emitted, the spike is propagated
along the axon to the synapses, where the process of synaptic transmission occurs.
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2. Introduction

2.2 How to model neural activity?
Some simplifying mathematical models have been introduced to study neural activity.
Their diversity reflects the large number of questions biologists have, and the scale
we want to focus on: are we more interested in the evolution of the potential
current? in the release of neurotransmitters? or in the spike trains of one or several
neurons? We present in the following some of these models that are commonly
found in mathematical neuroscience.

2.2.1 Dynamical systems and continuous models

Let us start with the so-called continuous models, that focus on the evolution
of the membrane potential modeled by ordinary differential equations (ODE) or
stochastic differential equations (SDE). They are not the focus of the thesis, but
we present them here because they are the first historical models.

Single neurons and finite population of neurons (microscopic scale)

One way to simplify the biological process is to consider Integrate-and-fire models.
Let u represent the membrane potential of a neuron, and let it follow some ODE
u̇t = F (ut). When u reaches a given value, a fixed threshold Uth, we say that the
neuron has emitted a spike and we let u take its resting value Urest. This model has
been introduced by Lapicque (1907) (see Lapicque (2007) for a recent translation)
and extensively studied since, with variations integrating stochasticity (see Galves
& Löcherbach (2013); Delarue et al. (2015); see also the review by Sacerdote &
Giraudo (2013)). Note that the last articles consider a finite population of neurons,
where each neuron is modeled by an ODE or a SDE with possible interaction inside
the population.

Other models avoid fixing the spiking threshold, as it can exhibit variability in
nature. The Hodgkin-Huxley model is probably the most famous one concerning
the deterministic modelling of a neuron. Based on the study of a squid giant
axon for which they received the 1963 Nobel Prize in Physiology or Medicine,
Hodgkin & Huxley (1952) introduced a conductance-based dynamic system of 4
differential equations, representing interactions between the membrane potential
(ut), potassium (nt) and sodium (mt) ion channels, and a leakage (ht) channel.
The neuronal activity is thus modeled via its intrinsic dynamics

dut = Itdt− F (ut, nt,mt, ht)dt

dnt = (αn(ut)(1− nt)− βn(ut)nt) dt

dmt = (αm(ut)(1−mt)− βm(ut)mt) dt

dht = (αh(ut)(1− ht)− βh(ut)ht) dt,

where F (v, n,m, h) = gnn
4(v−vn)+gmm

3h(v−vm)+gh(v−vh) with gi, vi, αi and βi
being conductance and rates associated with channel i. The behavior of this system
depends heavily on the exterior stimulus It and have been thoroughly studied, see
amongst others Rinzel & Miller (1980); Aihara et al. (1984), for stochastic versions
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2.2. How to model neural activity?

see Baladron et al. (2012); Bossy et al. (2015); Höpfner et al. (2017). However, due
to its complexity, other models have been introduced to simplify the analysis.

The FitzHugh-Nagumo model (from FitzHugh (1961); Nagumo et al. (1962))
simplifies the Hodgkin-Huxley model by considering only two equations, one for
the membrane potential (ut) and one for a recovery variable (Ct): dut =

(
ut −

u3
t

3
− Ct + It

)
dt

τdCt = (ut + a− bCt) dt,

where a, b and τ are constant parameters and I the stimulus. Stochastic versions
of this system also exist; see Baladron et al. (2012); Luçon & Poquet (2021b);
Colombani & Bris (2022).

Large population of neurons (mesoscopic scale)

While microscopic models are necessary to represent neuronal activity at the scale
of one neuron, we may be interested in models on a larger scale, looking at a
large portion of the cortex for example. However, at this scale, the assumption
of identicality of neurons is not realistic. We can therefore assign them labels.
Let us mention two main examples that we will use in our work. Neurons are
spatially located in the brain, and their activity or role can be linked to this spatial
position. We can then label each neuron of a (large) population by its position.
Another much studied model is the ring model, which focuses more specifically on
the visual cortex. Instead of assigning each neuron to a spatial position, neurons
are differentiated according to their role: each neuron possesses an orientation
preference that stimulates its activity (see Georgopoulos et al. (1982); Bosking
et al. (1997)). Then, in all generality, we do not consider finite population of
neurons, but a distribution of neurons according to their label.

This led to the establishment of a purely phenomenological model: from the
original works of Wilson & Cowan (1972); Amari (1977) about a conductance-based
model of a network of synaptically coupled spiking neurons, Bressloff (2012) derives
continuum Neural Field Equations (NFE) that can be written

∂ut(x)

∂t
= −αut(x) +

∫
S

w(x, y)f(ut(y))dy + It(x). (2.2.1)

Here, ut(x) stands for the membrane potential of a neuron with label x and leaking
rate α. The kernel w represents the spatial distribution of neuronal synaptic
connections, the function f the temporal filtering effects of the synaptic processing
and It(x) the stimulus neuron with label x receives at time t. This equation models
the large-scale dynamics of spatially structured biological neural networks. It has
been extensively studied for the diversity of nonlinear dynamics patterns that can
be obtained, such as oscillations, (traveling) waves and bumps, as evidenced by
the wide range of articles on the subject, see Ermentrout & McLeod (1993); Veltz
& Faugeras (2010); Bressloff & Webber (2012); Kilpatrick & Ermentrout (2013);
Bressloff (2014); Touboul (2014); Faugeras & Inglis (2015); Inglis & MacLaurin
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(2016); Lang & Stannat (2017); MacLaurin & Bressloff (2020). These structures
appear thanks to the invariance of the Lebesgue measure (the integration dy in
(2.2.1)).

Comments on stochasticity

Let’s take a slight digression to talk about stochasticity. One of the primary
issues in mathematical neuroscience is the understanding of how the complexity of
microscopic phenomena (such as those involved in neural activity, on the scale of
the neuron) translates on a mesoscopic (for a portion of the cortex, for example)
or macroscopic scale. While previous models were deterministic, stochastic versions
(already mentioned) have been developed by adding noise to the ODEs. Introducing
some noise allows us to take into account all the microscopic phenomena that we
do not understand, or that are too difficult to model at the scale of interest.

Moreover, there is in particular biological stochasticity throughout spike emission.
The following points can be found in Pouzat (2020):

• At the scale of a population of neurons, there might be variablity within the
population (of the threshold that allows spikes, of the release of chemical
messengers, etc.).

• At the scale of the neuron, some spikes are spontaneous (Fatt & Katz (1952)).
Due to the binary state of ion channels, there are some fluctuations from these
changes of state (Verveen & Derksen (1968)). Moreover, some spikes are not
correctly propagated along the axon and this physical failure may be random
(Smith (1980)).

• At the scale of the synapse, the release of neurotransmitters is subject to
fluctuations: the quantity of chemical messenger liberated by the presynaptic
neuron may vary, the receptors of the postsynaptic neuron may be more or
less occupied and the response of the receptors is also controlled by binary
gates.

In the following and in our model, all this randomness is incorporated through
the randomness associated with the emission of a spike, seen as a random phenomenon.

2.2.2 Point processes

A different point of view to model neural activity from SDEs or PDEs is to use point
processes, which are collections of randomly located points. As seen in Figure 2.2,
a spike is a stereotyped phenomenon that lasts only a short time, and information
is coded in the inter-spike distribution. A way to simplify the modelling of spike
trains is to represent a spike by one instant in time (the peak of the spike) and
thus consider a spike as one event of a point process on the real line. See the
following Figure 2.3 where a spike train from a cortical neuron is simplified into a
point process on the real line.
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t• • • ••• • • • • • • • • • • • • •• •

Figure 2.3: Response of a cortical neuron to a stimulus (from Rossant et al. (2011))
and the associated point process

Now that spike trains are represented by point processes, the question is how to
characterise the arrival of the spikes. To do so, we introduce the notion of stochastic
intensity, which explains the law of the arrival of the spikes.

2.2.2.1 Point processes and stochastic intensity

First, let us recall some elements of point process theory (Daley & Vere-Jones,
2006). A point process Z on R+ can be equivalently represented by a strictly
increasing sequence of jumping times (Tn)n≥1 with no accumulation point as n→
∞, by a counting measure on R+ defined by Z =

∑
n≥1 δTn where δ denotes the

Dirac measure, or by the counting process t 7→ Z(t) = Z([0, t]) =
∑

n≥1 1t≤Tn . By
convention, we set Z0 = 0. For any function f , write∫

[0,t]

f(s)dZ(s) =
∑
n≥1

f(Tn)1Tn≤t.

The most famous point process is the homogeneous Poisson point process of
parameter λ > 0, where the lengths of time between two jumps (Tn+1 − Tn)n≥1

are independent and follow an exponential law of parameter λ. Then for any
0 < a < b, Z([a, b]) follows a Poisson distribution with parameter λ(b−a), and the
constant λ is called the intensity of the process. When λ is a deterministic function
λ : R+ → R+, we can define similarly an inhomogeneous Poisson point process of
intensity λ where for any 0 < a < b, Z([a, b]) follows a Poisson distribution with
parameter

∫
[a,b]

λ(s)ds. However, in these two cases, the inter-spike intervals are
independent. We do not have self-excitation nor interaction as we are looking for in
the neuroscience setting. A way to introduce interaction it is to consider stochastic
intensities, where the probability of a new jump depends on the history of the
process.

Definition 2.2.1. Let (Ft) be a filtration on R+, let Z be a point process (Ft)-
adapted on R+ satisfying E[Z(t)] < +∞ for all t ≥ 0, and let λ be a progressive
nonnegative process with respect to (Ft). We say that Z admits the (Ft)-stochastic
intensity λ if

(
Z(t)−

∫ t
0
λsds

)
is a (Ft)-martingale.

Most of the time, the filtration is chosen as Ft = σ (Z(s), s ≤ t) (the history of
the process). The main point of introducing stochastic intensity is that if λ is the
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intensity of Z, we have informally

P (Z jumps between (t, t+ dt)|Ft) = λ(t)dt.

The intensity is then seen as the instantaneous jump rate of the process: the larger
the intensity is, the more likely is the process to jump. Having this rate depend
on the past on the system allow us to include self-excitation and interaction in the
model.

2.2.2.2 Thinning of Poisson Random Measures

An easy (and visual) way to construct point processes with stochastic intensities
is to use Poisson random measures.

Definition 2.2.2. π is a Poisson random measure (PRM) on R+ × R+ with
intensity dtdx if

1. for any Borel set C of R+ × R+, π(C) follows a Poisson distribution with
parameter the Lebesgue measure of the set C,

2. for all Borel sets C1, . . . , Cn that are mutually disjoint, (π(C1), . . . , π(Cn)) is
an independent family of random variables.

Point processes defined by means of their stochastic intensity can be represented
by a thinning of a PRM, as e.g. done by Ogata (1988).

Proposition 2.2.3. Let (Ft) be a filtration on R+, let λ be a progressive nonnegative
process with respect to (Ft) and let π be a PRM on R+ × R+ with intensity dtdx.
Let, for any t ≥ 0,

Z(t) =

∫ t

0

∫ ∞
0

1z≤λ(s)π(ds, dz).

Then Z admits the (F)t-stochastic intensity λ.

This construction has been widely used, see Brémaud & Massoulié (1996);
Chevallier (2017); Chevallier et al. (2019). It means that, to construct Z which
admits λ as stochastic intensity, we need to look at each point (s, z) of the PRM π,
and if z ≤ λ(s), s becomes a jump of the point process Z. Let us give a toy example
in Figure 2.4 of the thinning method for a self-exciting process Z(t) with stochastic
intensity λ(t) = 1 +

∫
]0,t[

1[0,1](t− s)dZ(s): it means that as soon as there is a new
jump, the intensity increases by 1 for 1 time unit. This temporary increase in the
intensity implies self-excitation, in our example the third spike T3 occurs thanks to
the excitation due to the second spike T2. In fact, Z can be described as a linear
Hawkes process.

2.2.2.3 Hawkes Processes

Hawkes Processes have been introduced by Hawkes (1971) as self-exciting and
mutually exciting point processes. A general way to define a Hawkes process Z is
to have a point process which admits a stochastic intensity of the form

λ(t) = f

(
v(t) +

∫ t−

0

h(t− s)dZ(s)

)
, (2.2.2)
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Figure 2.4: Thinning method to construct a point process Z with stochastic
intensity λ(t) = 1 +

∫
]0,t[

1[0,1](t− s)dZ(s)

Step 1: Draw a PRM π. Some of these points projected on the x-axis will be the spikes of the
process Z.
Step 2: If there is no jump, the intensity remains at one until it is above a point of π.
Step 3: The red point under the intensity becomes a point of the point process Z and induces a
change in the intensity as it rises by 1 for one time unit.
Step 4: Iterate, when the intensity is above a point of π it rises by 1 for one time unit and the
point process Z gains a new point
final step: We put together all the red points projected on the x-axis to form the sequence (Tn)
of jumps of Z
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where f : R → R+, v : R+ → R and h : R+ → R. The function h is the memory
kernel and represents how a point in the past of the process affects the current
intensity. Hawkes processes were originally introduced to study earthquakes and
their aftershocks in Hawkes & Oakes (1974); Ogata (1988), but have since been
used in many other fields, such as finance and neuroscience. Note that the well
posedness of such processes is classically established by a Picard argument as in
Delattre et al. (2016a); Chevallier et al. (2019).

In the specific context of neuroscience (and more broadly to describe systems
of interacting particles, see Delattre et al. (2016a)), we study large population of
neurons so we consider multivariate Hawkes processes, which are Hawkes point
processes evolving jointly. Each neuron is assigned to a point process (recall that
each point represents a spike of the neuron), and the intensity of each neuron
takes into account the past spikes of not only itself but also the past spikes of the
population. A common writing for N neurons modeled by a multivariate Hawkes
process is the process (ZN,1, . . . , ZN,N) with respective intensities

λN,i(t) = fi

(
vi(t) +

1

N

N∑
j=1

∫ t−

0

w
(N)
ij hj→i(t− s)dZN,j(s)

)
, 1 ≤ i ≤ N, (2.2.3)

where the functions f , v and h in (2.2.2) may depend on the neuron, and w
(N)
ij

represents the influence of the jth neuron on the ith neuron. We give an example
of two neurons A and B (that is N = 2) modeled with Hawkes processes ZA and
ZB in Figure 2.5, where neuron A is self-exciting and excites neuron B, and neuron
B is self-inhibiting:

λA(t) = 1 +

∫
]0,t[

1[0,1](t− s)dZA(s), (2.2.4)

λB(t) = max

{
0, 1 +

∫
]0,t[

1[0,1](t− s)dZA(s)− 2

∫
]0,t[

1[0,1](t− s)dZB(s)

}
. (2.2.5)

The function f(u) = max{0, u} is used here with inhibition to ensure that the
intensity of the point process ZB stays nonnegative.

2.3 Our general model
In this thesis, we study a multivariate Hawkes process to model a population of N
neurons interacting with each other. Before presenting formally our main model,
we present the mathematical background and the main questions of interest.

2.3.1 Mathematical context and motivation

By modelling a population of N neurons interacting as a Hawkes process given by
(2.3.7), we give a microscopic description of the neural activity for this population.
In the neuroscience context, studying large particle systems makes sense due to
the large amount of neurons in the brain. But as N →∞, one can derive simpler
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Figure 2.5: Two neurons A and B in interaction modeled by Hawkes processes,
with respective stochastic intensities λA and λB given in (2.2.4) and (2.2.5).

Each neuron is assigned with a PRM (πA and πB , here the points were arbitrarily and
pedagogically chosen). When neuron A fires a spike, it increases the intensity of both neurons by
1 for one time unit. When neuron B fires a spike, there is self inhibition and λB decreases by 2
for one time unit.

models from this microscopic point of view to obtain mesoscopic models of the
neural activity.

Let us first introduce the work of Delattre et al. (2016a) . The authors generalise
the construction of multivariate Hawkes processes (Zi) interacting on a countable
directed graph. The main focus is made on the mean-field situation, where the
interaction between a particle and all the others is approximated by the mean
of interactions, and the N particles behave similarly. The process of interest is
(ZN,1, . . . , ZN,N) with respective intensities (2.2.3) for the choice vi ≡ 0, fi ≡ f ,
hj→i ≡ h and w(N)

ij ≡ 1. In this case, the particles are exchangeable and Delattre
et al. (2016a) show that the Hawkes process can be approximated by a suitable
coupling with an i.i.d family

(
Z1, . . . , ZN

)
of inhomogenous Poisson processes of

intensity λt solving

λt = f

(∫ t

0

h(t− s)λsds
)
. (2.3.1)

Theorem 8 of Delattre et al. (2016a) states a propagation of chaos result, in the
sense that for any T > 0, there exists C = Ch,f,T such that

E

[
sup
t∈[0,T ]

∣∣ZN,i(t)− Zi(t)
∣∣] ≤ C√

N
. (2.3.2)
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The large time behavior of (2.3.1) is also treated in this paper for the linear case
(where f(u) = µ + u and h ≥ 0). There is a phase transition around the critical
value ‖h‖1 = 1: in the subcritical case ‖h‖1 < 1 the intensity λt (2.3.1) converges as
t→∞ towards a constant

µ

1− ‖h‖1

(Delattre et al., 2016a, Theorem 10) whereas

in the supercritical case ‖h‖1 > 1, λt explodes exponentially (Delattre et al., 2016a,
Theorem 11).

Mean-field analysis goes back to McKean (1967); Sznitman (1991), originally
for diffusion models where the process of interest is the empirical measure µN,t :=

1

N

N∑
i=1

δθN,i(t) of N particles (θN,i(t))1≤i≤N,t≥0 diffusing according to the system

dθN,i(t) = f(θN,i(t))dt+
1

N

N∑
j=1

g(θN,i(t), θN,j(t))dt+ σdBi,t (2.3.3)

with (Bi,t)1≤i≤N,t≥0 Brownian motions, g an interaction kernel and σ a diffusion
coefficient. The mean-field limit to this particle system is described by the nonlinear
process

(
θ(t)

)
t≥0

solution to

dθ(t) = f
(
θ(t)

)
dt+

∫
g
(
θ(t), θ

)
µt(dθ) + σdBt, (2.3.4)

where µt is the law of θ(t). The classic propagation of chaos result states that for
any T ≥ 0, there exists C = Cf,g,σ,T such that

E

[
sup
t∈[0,T ]

|θN,i(t)− θi(t)|

]
≤ C√

N
, (2.3.5)

where (θi(t))1≤i≤N,t≥0 is an i.i.d. family of variables following (2.3.4), suitably
coupled to (θN,i(t))1≤i≤N,t≥0 with the same Brownian motions and initial conditions
(Sznitman (1991)). Equivalently on bounded time intervals µN,t converges as N →
∞ towards µt, the solution to some nonlinear Fokker-Planck equation. This is
to be compared to our present situation of Hawkes processes where, as seen with
Delattre et al. (2016a), in the mean-field analysis the large population limit is given
in terms of an inhomogeneous Poisson process whose intensity solves a convolution
equation, and similarly (2.3.5) is to be compared with (2.3.2).

One of the purposes of this thesis is to study the links between the microscopic
scale, represented by a particular instance of (2.2.3), and its mesoscopic limit.

Interaction between neurons is a key element in information transfer mechanisms.
There are about 10,000 billion nerve connections in 1 cm3 of the human brain.
However, assuming a complete interaction graph is not relevant in this context:
neurons in the brain are not interchangeable, while they share a similar mechanism,
their function, form and connections may differ. Some neurons are excitatory
(they tend to promote the neuronal activity of their neighbors), while others are
inhibitory (they tend to extinguish or diminish it). Some neurons are densely
connected to the population, while others are not. Certain areas of the cortex are
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also spatially differentiated: for example, the visual cortex has a columnar spatial
organization, linked to the roles of the neurons, see Bosking et al. (1997). It is
therefore important to examine the so-called interaction graph between neurons,
and its influence on neuronal dynamics.

A first step to enrich the model of Delattre et al. (2016a) is to add labels to the
population of particles. Let us mention the work of Ditlevsen & Löcherbach (2017):
there, a population of N particles, divided into a finite number of classes, is also
described by a multivariate Hawkes process. The interaction is inhomogeneous at
the scale of the population as the classes interact differently with each other, but
homogeneous at the scale of each class as the particles are exchangeable inside the
same class. The paper studies the large population limit (as N → ∞) and also
describes a propagation of chaos property: each class behavior can be approximated
by a Poisson process. The large time behavior of this limit system is also considered
in particular cases and exhibits oscillatory behaviors.

Other extensions of multivariate Hawkes processes exist, in particular the works
of Chevallier (2017) consider an additional feature with age dependence, and Duval
et al. (2022) consider two interacting classes of neurons (one excitating and one
inhibiting). In Chevallier et al. (2019), the authors extend the mean-field framework
to take into account the presence of a macroscopic spatial structure in the interaction.
A position xi is attributed to each particle i, and the intensities of the multivariate
Hawkes process studied are given by (2.2.3) for the choice vi(t) = e−αtv(xi), fi ≡ f ,
hj→i(t) ≡ e−αt and w

(N)
ij = w(xi, xj), where w is a matrix of synaptic lengths, v

an initial input and α > 0 a leakage rate. The authors study the associated mean-
field limit given by an inhomogeneous Poisson process of intensity λt(x) = f(ut(x))
where u solves the NFE (to compare with (2.2.1))

∂tut(x) = −αut(x) +

∫
w(x, y)f(ut(y))ν(dy) (2.3.6)

with initial condition u0(x) = v0(x) and with ν the distribution of the spatial
positions. It was the first rigorous derivation of the NFE as a mean-field limit
of spatially structured Hawkes processes. Compared to the first NFE introduced
in (2.2.1), here there is no external stimulus (It = 0) and the integration is done
with respect to a probability measure ν (of the position) instead of the Lebesgue
measure. Note that this change disrupts the existence of traveling waves obtained
with the classic NFE (2.2.1).

A motivation of our work is to further extend this inhomogeneity in the graph of
interaction, and give a microscopic interpretation of the spatial structure in terms
of random graphs. We will assume that the interaction between neurons is given
by a possibly inhomogeneous and diluted graph, where the probability of presence
of an edge (that is when w(N)

ij 6= 0 in (2.2.3)) depends on the positions of its vertices.

The main example that we have in mind concerns the class of W -random
graph (see Diaconis & Janson (2008); Lovász (2012); Janson (2013); Borgs et al.
(2018, 2019)). The previous works on particle systems with similar interaction
address the case of diffusions as (2.3.3), see the wide range of articles on the
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subject: Medvedev (2013); Delattre et al. (2016b); Coppini et al. (2019); Oliveira
& Reis (2019); Bet et al. (2020); Luçon (2020); Bayraktar et al. (2023) among
others. A question usually adressed is the dilution of the graph: to obtain a
similar propagation of chaos as the classic mean-field framework (on a complete
graph of interaction with exchangeability), one needs to make assumptions on
the connectivity of the graph. For instance, in case of homogeneous Erdös-Rényi
graph where two particles interact with each other with probability ρN , the classic
threshold for the connectedness is given by ρN = log(N)

N
(Durrett (2006)). Another

question is what sense to give to the notion of convergence of interactions when
N → ∞. In this direction, the works of Lovász (2012); Borgs et al. (2019, 2018)
guided us to use the notion of graphon, that can be seen as an infinite graph.
In this thesis, a large focus is made on the adaptation of similar propagation of
chaos results for Hawkes processes on inhomogeneous random graphs. A common
motivation between Hawkes processes and diffusions is to understand how the
inhomogeneity of the underlying graph may or may not influence the long time
dynamics of the system.

The behavior of the dynamics introduced (diffusions and Hawkes processes) on
a time scale no longer bounded (but that may depend on the size of the population)
is a current research problem: an issue common to all mean-field models (and their
perturbations) is that there is, in general, no possibility to interchange the limits
N → ∞ and t → ∞. The usual propagation of chaos result seen in (2.3.2) is
valid only on bounded time intervals, with C of the form exp(CT ), so that it
remains relevant only up to T ∝ logN in the case of Hawkes processes. It has
been improved for the so-called subcritical case (Delattre et al., 2016a, Remark 9)
to C linear in T , so that it remains relevant up to T = o(

√
N). Others works have

complemented this propagation of chaos result: Central Limit Theorems (CLT)
have been obtained in Delattre et al. (2016a); Ditlevsen & Löcherbach (2017);
Heesen & Stannat (2021) for homogeneous mean-field Hawkes processes (when
both time and N go to infinity), with age-dependence in Chevallier (2017) and with
spatial extension in Chevallier & Ost (2020). In particular, in the latter second
order approximations of the microscopic system are given in terms of stochastic
versions of the NFE. All of these works provide approximation results that are
either valid on a bounded time interval [0, T ] or under a strict growth condition on
T (see in particular the condition T/N → 0 for the CLT in Ditlevsen & Löcherbach
(2017)). Similar results have been considered in the context of diffusions, notably
for phase oscillators (e.g. the Kuramoto model), see e.g. Bertini et al. (2014);
Giacomin & Poquet (2015); Luçon & Poquet (2017); Giacomin et al. (2018); Luçon
& Poquet (2021a); Coppini (2022) and references therein. In particular, Coppini
(2022) goes even further by showing that the propagation of chaos is valid up to
T ∝ exp(o(N)). In our context of Poissonian noise, we are concerned with time-
scales that grow polynomially with N , and how these long time-scales influence the
microscopic dynamics.
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2.3.2 The main model

Let us now formally introduce the general model that we study throughout this
thesis. We consider a population of N neurons, N ≥ 1. Each one has a label xi ∈
I ⊂ Rd and its activity is represented by a point process ZN,i, and ZN,i(t) counts
the number of spikes the ith neuron has emitted during the time interval [0, t]. The
domain I represents the labelling of neurons, we have in mind for instance a spatial
domain where each neuron is located in one position, or a role domain where each
neuron is associated with one feature. Let Ft := σ (ZN,i(s), s ≤ t, 1 ≤ i ≤ N). The
process (ZN,1(t), · · · , ZN,N(t))t>0 is defined as a multivariate Hawkes process where
for any 1 ≤ i ≤ N , ZN,i(t) admits the (Ft)-intensity

λN,i(t) = µt(xi) + f

(
vt(xi) +

1

N

N∑
j=1

w
(N)
ij

∫ t−

0

h(t− s)dZN,j(s)

)
. (2.3.7)

At time t ≥ 0, the different parameters stand for

• µt : I −→ R+ the spontaneous activity of the neuron,

• f : R −→ R+ the synaptic integration, that is the temporal filtering effects
of the synaptic processing,

• vt : I −→ R+ the past activity or stimulus on the membrane of the neuron
that may depend on the label,

• w
(N)
ij ∈ R the influence of the jth neuron on the ith neuron,

• h : R+ −→ R the way the neuron remembers a past spike.

We can rewrite the intensity as

λN,i(t) = µt(xi) + f (vt(xi) +XN,i(t−)) = µt(xi) + f (UN,i(t−)) , (2.3.8)

and then UN,i represents the membrane potential of the ith neuron, and XN,i

gathers the stochastic terms. The function f is thus the link between the membrane
potential and the activity of the neuron.

Let us discuss possible choices for the parameters that appear in our model
(2.3.7).

About the interaction

The main novelty and originality of this work, as already mentionned, is the choice
of the interaction term w

(N)
ij . The classic mean-field framework takes w(N)

ij = 1 for
all 1 ≤ i, j ≤ N (Delattre et al. (2016a)), but as we saw before it is not biologically
realistic in neuroscience. In this work and more especially in both Chapters 3 and
4, we go further as we provide a microscopic interpretation of the spatial structure
in terms of random graphs. For N ≥ 1, w(N)

ij is taken proportional to ξ(N)
ij which

follows a Bernoulli distribution with parameter WN(xi, xj): ξ
(N)
ij = 1 means that

the jth neuron excites the ith neuron whereas ξ(N)
ij = 0 means there is no edge j → i

31



2. Introduction

in the graph of interaction, and the
(
ξ

(N)
ij

)
are mutually independent. The spatial

kernel WN stands for a microscopic interaction structure, depending on the labels
of the two neurons considered. We assume we know a macroscopic limit of these
synaptic interactions given by a graphonW . All the asymptotic results given in this
work are quenched, it means that when we consider N →∞, we fix the sequence of
the interaction terms G(N) :=

(
ξ

(N)
ij

)
1≤i,j≤N

. The idea behind is that while brains

share the same interaction laws, the realization and connections among different
brains may vary. Thus, we have two different sources of randomness: one from
the interaction graph — in the following defined on a probability space

(
Ω̃, F̃ ,P

)
,

and one from the spikes arrival — in the following defined on a filtered probability
space

(
Ω,F , (Ft)t≥0 ,P

)
. Our main results are given P-a.s.

This quenched setting, while new in the case of Hawkes processes, has been
studied in the case of diffusions given by (2.3.3). Law of Large Numbers (LLN)
and Large Deviations results on homogeneous Erdös-Rényi graphs (that is when
W is a constant function) have been considered in Delattre et al. (2016b); Coppini
et al. (2019); Oliveira & Reis (2019), and further extended to the inhomogeneous
case in Bet et al. (2020); Luçon (2020); Bayraktar et al. (2023); Medvedev (2013)
on a bounded time interval.

In the last Chapter 5 however, we do not consider the interaction to be random
anymore as we fix wij proportional to a cosine kernel cos(xi− xj) — depending on
the preferential orientation of neurons labelled xi and xj, cf page 21. This choice
is made to focus more on the particular asymptotic behavior in the framework
introduced in the chapter.

About the synaptic integration

A usual assumption for f is to be Lipschitz continuous (Brémaud & Massoulié
(1996); Delattre et al. (2016a); Chevallier et al. (2019)). Common choices are to
have f linear or affine, then the process (ZN,1(t), · · · , ZN,N(t))t>0 is linear. In case
of inhibition (that is, we allow UN,i in (2.3.8) to take negative values), we have to
take f ≥ 0.

In this work, in both Chapters 3 and 4, the results are valid for general f
Lipschitz continuous. In Chapter 4 we are interested in a particular case and we
take f a sigmoid fκ,%(u) :=

(
1 + e−(u−%)/κ

)−1 with κ, ρ > 0. This choice offers the
advantage of having a smooth synaptic integration function f close to the Heaviside
function H% = 1[%,∞) when κ is small, thus allowing neurons to spike only if they
have potential membrane high enough.

About the memory kernel

A usual assumption for h is to be locally integrable or integrable (Brémaud &
Massoulié (1996); Delattre et al. (2016a); Chevallier et al. (2019)). This memory
kernel is central to the model because it governs how the system remembers the
past: we can model long memory (if the support of h is large), short memory (for
instance with our previous example in Figure 2.4 with h = 1[0,1])... It is also possible
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to include inhibition by making h take negative values: in Cattiaux et al. (2022),
the Hawkes processes are chosen with signed memory kernel allowing excitation
and inhibition, and exhibiting a renewal structure when h is compactly supported.

The choice commonly found in the literature is that of the exponential kernel,
with h(t) = exp(−αt) (Zhu (2015); Chevallier et al. (2019)): it means that the
particle forgets the past with a leakage rate α > 0. With this kernel, the Hawkes
process is Markovian. Note that the Markov property remains valid in the more

general setting of Erlang kernels of the type h(t) =
tn

n!
e−αt, see e.g. Duarte et al.

(2019). In the particular context of neuroscience, the exponential kernel presents
also the advantage of coming back to the NFE (2.2.1), as shown in Chevallier et al.
(2019): as said before, the macroscopic intensity is written λt(x) = f(ut(x)) where
u solves the NFE (2.3.6).

In this thesis, the results of Chapter 3 and the first part of Chapter 4 are given
for a general locally integrable memory kernel h. For the long time behavior studied
in the second part of Chapter 4 and in Chapter 5, the results highly depend on this
exponential kernel as the Markovian properties and the stability of the underlying
large population limit dynamics resulting from it play a central role in the proofs.

2.4 Chapter organisation and contents

In this section, we present the main results of each chapter of this thesis, all of
which being published or submitted articles. With each Proposition or Theorem, we
indicate where it can be found in the manuscript. These results will be reintroduced
in their respective chapters with their relationship to existing literature. Here the
point is to give an exhaustive summary of the results demonstrated over the thesis.

2.4.1 Chapter 3: Multivariate Hawkes processes on
inhomogeneous random graphs

In this thesis I focus on the study of the process (ZN,1(t), · · · , ZN,N(t))t>0 with
intensity (2.3.7). In Chapter 3, we consider µt = 0 and w(N)

ij = κiξ
(N)
ij , where κi is a

dilution parameter (so that the interaction term remains of order 1 as N →∞) and
where ξ(N)

ij follows a Bernoulli distribution with parameter WN(xi, xj), WN being

the microscopic interaction kernel, on a common probability space
(

Ω̃, F̃ ,P
)
, and

the
(
ξ

(N)
ij

)
are mutually independent.

The main motivation is to understand how the inhomogeneity in the interactions
plays a role in the large population limit, and its long time behavior.

We fix the sequences of positions
(
x(N)

)
N≥1

=
((
x

(N)
1 , . . . , x

(N)
N

))
N≥1

and

interactions
(
ξ(N)

)
N≥1

=

((
ξ

(N)
ij

)
i,j∈J1,NK

)
N≥1

. We work on a filtered probability
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space
(
Ω,F , (Ft)t≥0 ,P

)
as usual, rich enough for our process of interest to be

defined thanks to a family of Poisson random measures as seen in Definition 2.2.2.

Definition 2.4.1. Let (πi(ds, dz))1≤i≤N be a sequence of i.i.d. Poisson random
measures on R+ × R+ with intensity measure dsdz. A (Ft)-adapted multivariate
counting process (ZN,1 (t) , . . . , ZN,N (t))t≥0 defined on

(
Ω,F , (Ft)t≥0 ,P

)
is called a

multivariate Hawkes process with the set of parameters
(
N, f, ξ(N),WN , v, h, x

(N)
)

if P-almost surely, for all t ≥ 0 and i ∈ J1, NK:

ZN,i(t) =

∫ t

0

∫ ∞
0

1{z≤λN,i(s)}πi(ds, dz) (2.4.1)

with λN,i defined by

λN,i(t) = f

(
vt(x

(N)
i ) +

κ
(N)
i

N

N∑
j=1

ξ
(N)
ij

∫ t−

0

h(t− s)dZN,j(s)

)
. (2.4.2)

One preliminary result concerns the well-posedness of (ZN,1, . . . , ZN,N) given by
(2.4.1).

Proposition 2.4.2 (Proposition 3.2.5). We suppose that f is Lipschitz continuous,
h is locally square integrable on [0,+∞), that (t, x) 7→ vt(x) is continuous in t and
Lipschitz continuous in x (uniformly in t) and that v is bounded uniformly on
R+× I.Then, for a fixed realization of the family (πi)1≤i≤N , there exists a pathwise
unique multivariate Hawkes process such that for any T <∞,

sup
t∈[0,T ]

sup
1≤i≤N

E[ZN,i(t)] <∞.

The existence and pathwise uniqueness of this process is standard (see Delattre
et al. (2016a); Chevallier et al. (2019)) and is ensured by the use of the total
variation distance and a Picard iteration argument.

2.4.1.1 Large population limit

We are interested in the large population behavior of (ZN,1, . . . , ZN,N). The first
main result of Chapter 3 is the description of this limit in terms of an inhomogeneous
Poisson process whose intensity involves the macroscopic spatial structure of the
graph.

Recall (2.4.2), and let us look at its behavior when N →∞ (large population).
As we consider N positions (xi)1≤i≤N , a minimal requirement is that the empirical
distribution of the positions 1

N

∑N
i=1 δx(N)

i
has itself a macroscopic limit ν. Regarding

the interaction terms w(N)
ij (that may depend on the labels), another minimal

requirement is that the graph G(N) =
(
{1, . . . , N} , ξ(N)

)
converges in some way.

The way to define this graph convergence uses the formalism of graph convergence
introduced in Lovász (2012); Diaconis & Janson (2008) and further developed in
Borgs et al. (2011, 2018, 2019) (and references therein). The idea is that, for every
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N ≥ 1, one can divide the spatial domain I into N parts (BN,i)1≤i≤N of measure
1/N with respect to the macroscopic distribution of the positions ν. It is possible
to represent the annealed graph G(N)

m =
(
{1, . . . , N} , (κiWN(xi, xj))1≤i,j≤N

)
(here,

m stands for mean) by a step function

W G(N)
m (u, v) :=

N∑
i,j=1

κiWN(xi, xj)1BN,i×BN,j(u, v)

defined on I × I. The graphon convergence is then expressed in terms of the
convergence of W G(N)

m towards W : I × I −→ R+ the macroscopic interaction
graphon using the cut-distance norm defined by

‖W‖2 := sup
S,T⊂I2

∣∣∣∣∫
S×T

W (x, y) ν(dx)ν(dy)

∣∣∣∣ .
The analogy between this distance and graphs is detailed in the added Section 3.B.
The simple case to keep in mind is when I = [0, 1], xi = 1/N and BN,i =

(
i−1
N
, i
N

]
for 1 ≤ i ≤ N (so that ν(dx) = dx): then the interaction graph G(N) (respectively
its mean G(N)

m ) can be represented by a step function on the square I×I that takes
the value ξ(N)

ij on BN,i × BN,j (respectively κiWN(xi, xj)). For instance in Figure
2.6, we can see the representation of the step functions associated to the simulations
of G(100) and G(1000), and the graphon limit for the choiceWN(x, y) = W (x, y) = xy
and κi ≡ 1.
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Figure 2.6: Graph convergence

On the figures on the left and the center, we represent the step function (x, y) 7→∑N
i,j=1 ξ

(N)
ij 1( i−1

N , i
N ](x)1( j−1

N , j
N ](y) on [0, 1]2, where ξ

(N)
ij ∼ B

(
ij
N2

)
for N = 100 (left) and

N = 1000 (center). On the figure on the right, we represent the graphon limit W : (x, y) 7→ xy.

Then, as N → ∞, an informal Law of Large Numbers argument shows that
the empirical mean in (2.4.2) becomes an expectation with respect to both the
candidate limit for ZN,i and the macroscopic law ν of the positions: the sum in
(2.4.2) becomes an integral over ν on I and y describes the positions of the neurons,
the microscopic interaction term w

(N)
ij becomes the macroscopic term W (x, y), and

the past activity of the neuron dZN,j(s) is remplaced by its intensity in large
population. Hence, the macroscopic description of a neuron at position x ∈ I
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should be described in terms of its intensity λt(x) solving the convolution equation

λt(x) = f

(
vt(x) +

∫
I

W (x, y)

∫ t

0

h(t− s)λs(y)ds ν(dy)

)
. (2.4.3)

Thus the limit process at position x is defined as an inhomogeneous Poisson point
process with deterministic intensity (λt)t≥0 satisfying (2.4.3). This result is a spatial
extension to Delattre et al. (2016a); Chevallier et al. (2019), with a microscopic
interpretation of the interactions.

The well-posedness and uniqueness of the macroscopic intensity (λt)t∈[0,T ] for
any T > 0 is ensured under some regularity assumptions on W with respect to
ν. Let us mention in particular the macroscopic indegree boundedness hypothesis:
we ask that x 7→ D(x) =

∫
I
W (x, y)ν(dy) has a Hölder regularity and is uniformly

bounded on I. Then we can introduce a suitable coupling between the Hawkes
process (ZN,1, . . . , ZN,N) and independant Poisson processes

(
Z1 (t) , ..., ZN (t)

)
t≥0

of respective intensities (λt(xi))1≤i≤N given by a thinning on the same family of
PRM (πi)1≤i≤N :

Zi(t) =

∫ t

0

∫ ∞
0

1{z≤λs(xi)}πi(ds, dz).

This coupling enables us to prove a propagation of chaos result on finite time
intervals.

Theorem 2.4.3 (Theorem 3.3.10). Let T > 0. Under suitable regularity assumptions
on the dilution of the graph G(N)

m , if the indegrees and outdegrees of the annealed
graph are bounded, that is if there exists C such that

max

{
sup

1≤i≤N

1

N

N∑
j=1

κiWN(xi, xj), sup
1≤j≤N

1

N

N∑
i=1

κiWN(xi, xj)

}
≤ C,

then for P-almost realizations of the connectivity sequence and positions,

1

N

N∑
i=1

E

[
sup
t∈[0,T ]

∣∣ZN,i(t)− Zi(t)
∣∣] −−−→

N→∞
0.

A direct consequence of these large population results concerns the behavior as
N → ∞ of the empirical distribution on the space D ([0, T ],N) × I of trajectories
and positions. Define the probability measures:

µN(dη, dx) :=
1

N

N∑
i=1

δ(
ZN,i([0,T ]),x

(N)
i

)(dη, dx),

µ∞(dη, dx) := P[0,T ],∞ (dη|x) ν(dx),

where P[0,T ],∞ (·|x) is the law of an inhomogeneous Poisson point process with
intensity (λt(x))0≤t≤T (solution of (2.4.3)). Note that µN is random. Then, under
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the same assumptions, Theorem 3.3.15 gives that E [dBL (µN , µ∞)] −−−→
N→∞

0, where
dBL is the bounded Lipschitz distance defined by

dBL(µ1, µ2) := sup
g,‖g‖L+‖g‖∞≤1

∣∣∣∣∫
E

g (dµ1 − dµ2)

∣∣∣∣ .
Another consequence relates to the spatial profile

UN(t)(x) :=
N∑
i=1

UN,i(t)1BN,i(x), x ∈ [0, 1],

where UN,i(t) is defined in (2.3.8) in the case I = [0, 1], xi = i/N and ν(dx) = dx.
In this case the membrane potential UN(t) has a large population limit ut defined
by

ut(x) := vt(x) +

∫ 1

0

W (x, y)

∫ t

0

h(t− s)λs(y)dy

in the following sense:

Proposition 2.4.4 (Proposition 3.3.17). Under suitable regularity assumptions on
the parameters, for P-almost realizations of the connectivity sequence and positions,

E

[∫ T

0

∫ 1

0

|UN(t, x)− ut(x)| dx dt
]
−−−→
N→∞

0.

2.4.1.2 Asymptotics of λt in the linear case: phase transition

The second part Chapter 3 focuses on the long time behavior of the macroscopic
intensity λt solving (2.4.3), in the linear case, that is when f(u) = u in (2.4.2) with
h, vt,W ≥ 0. We assume in this part that limt→∞ vt = v∞ with v∞ sufficiently
smooth. The aim is to understand how the inhomogeneity of the graph affects the
phase transition described for mean-field linear Hawkes processes in Delattre et al.
(2016a) previously mentionned on page 27.

Let us first consider an explicit example, the exponential case h(t) = exp(−αt)
with the kernel interaction W (x, y) = f(x)g(y) for f, g ≥ 0 (and assuming without
loss of generality

∫
I
gdν = 1). It is possible to compute exactly the solution λ

of (2.4.3), and show that there is also a phase transition in terms of the sign of
〈f, g〉 − α, where 〈f, g〉 =

∫
I
f(x)g(x)ν(dx):

〈f, g〉 > α⇒ ∀x ∈ I, λt(x) −−−→
t→∞

+∞ and

〈f, g〉 < α⇒ ∀x ∈ I, λt(x) −−−→
t→∞

v∞(x) +
〈g, v〉

α− 〈f, g〉
f(x),

see Proposition 3.4.2 and Example 3.4.3 for precise computations.
Adding the spatial inhomogeneity in a more general context (that is, for general

h andW ) leads also to a new phase transition defined in terms of the linear operator

TW : L∞(I) −→ L∞(I)

g 7−→
(
TWg : x 7−→

∫
I
W (x, y)g(y)ν(dy)

)
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and more specifically its spectral radius r∞. The phase transition is now given in
terms of ‖h‖1r∞ < 1 (subcritical case) and ‖h‖1r∞ > 1 (supercritical case).

In the subcritical case we find again that λt converges when t→∞.

Theorem 2.4.5 (Theorem 3.4.4). Assume ‖h‖1r∞ < 1. Under suitable regularity
assumptions on the parameters,

• there exists a unique function ` : I 7→ R+ solution of `(x) = v∞(x) +
‖h‖1

∫
I
W (x, y)`(y)ν(dy) for all x ∈ I, continuous and bounded on I,

• for any x ∈ I, λt(x) −−−→
t→∞

`(x).

This asymptotic limit can be explicitly defined thanks to the linear operator by
` =

∑∞
k=0 ‖h‖k1T kWv∞. When v∞ is constant, we can even write for all x ∈ I

`(x) =

(
∞∑
k=0

‖h‖k1D(k)(x)

)
v∞,

withD(0) = 1,D(1) = D(x) andD(k+1) = TWD
(k). We can see how the inhomogeneity

of the underlying graph influences the macroscopic dynamics. We obtain also
with Proposition 3.4.5 an important characterization: if (t, x) 7→ vt(x) is constant,
then ` is uniform (i.e. x 7→ `(x) = `) if and only if the indegree is uniform (i.e.
x 7→ D(x) =

∫
I
W (x, y)ν(dy) = D) and in such a case, r∞ = D. A consequence is

that we can have a homogeneous asymptotic limit with an inhomogeneous graph
interaction if the indegree of the graph is constant (we can say that the graph is
not "inhomogeneous enough").

With uniform interaction (i.e. W = 1), the subcritical threshold ‖h‖1r∞ > 1
reduces to ‖h‖1 > 1 and it can be shown (see Delattre et al. (2016a), Theorem
11) that λt ∼ αeβt → ∞ for some α, β > 0. In our context with nontrivial W ,
different behaviors inside the population are possible: some parts of the population
can have a converging intensity and others can explode. Let us give an example
of this situation for I = [0, 1]: consider W (x, y) = α1[0, 1

2
)2(x, y) + β1[ 1

2
,1]2(x, y) for

α > β, then r∞ = α
2
. This corresponds to two disconnected mean-field components

A (for neurons with positions in IA = [0, 1
2
)) and B (for neurons with positions

in IB = [1
2
, 1]). The critical parameter for population A (respectively B) is hence

αc = 2
‖h‖1 (respectively βc = 2

‖h‖1 ). With α > αc and β < βc, we have indeed
‖h‖1r∞ > 1 but one does not have λt −−−→

t→∞
∞ uniformly on I as the population

B is subcritical, we only have λt(x) −−−→
t→∞

∞ for x ∈ IA. This possibility of having
different asymptotic behaviors (i.e. converging towards a constant or ∞) along
the spatial domain as t → ∞ led us to add hypotheses on the connectivity of the
graphon.

Proposition 2.4.6 (Proposition 3.4.8). For k ≥ 1, let W (k) be the kernel of
the operator T kW , that is W (k)(x, y) :=

∫
I×···×IW (x, x1) · · ·W (xk−1, y)dx1 · · · dxk−1.

Assume there exists k such that W (k) > 0 and assume that W is symmetric and
smooth enough, then in the supercritical case ‖h‖1r∞ > 1,

∫
I
λt(x)2ν(dx) −−−→

t→∞
∞.
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The added hypotheses ask the graphon W to be sufficiently connected, so that
having two different asymptotic behaviors on I for λt is not possible anymore.

2.4.1.3 Mid-conclusion and next steps

The first part of this chapter sets out the formal framework of the model (2.3.7) and
demonstrates its convergence in large population towards inhomogeneous Poisson
processes of intensities λt on bounded time intervals. In the second part of this
chapter, the focus is on the special case of the linear framework and the asymptotic
behavior of the limit λt by exhibiting a phase transition. We can sum up these
results by writing the different convergences of the intensities defining the processes

λN(t) −−−→
N→∞

λt
linear case−−−−−−→
t→∞

` for the subcritical case,

λN(t) −−−→
N→∞

λt
linear case−−−−−−→
t→∞

+∞ for the supercritical case.

There is, in general, no possibility to interchange the limits N → ∞ and t →
∞. The natural question is then: can we find some frameworks for which the
approximation of λN remains valid for unbounded time scales?

The next step is to look at the long-term behavior of the process, and find cases
were the limits t → ∞ and N → ∞ could be treated jointly. As the analysis of
mean-field interacting processes on long time scales has a significant history in the
case of interacting diffusions, we were inspired by the Kuramoto model that focus
on the empirical measure µN,t := 1

N

∑N
i=1 δθi,t of the system of interacting diffusions

(θ1, . . . , θN) solving the system of coupled SDEs dθi,t = −K
N

N∑
j=1

sin(θi,t − θj,t)dt+

dBi,t. Standard propagation of chaos techniques show the weak convergence of µN
on a bounded time interval [0, T ] to the solution µt to the nonlinear Fokker-Planck
(NFP) equation ∂tµt = 1

2
∂2
θµt + K∂θ

(
µt(sin ∗µt)

)
, to be compared to our UN(t)

that converges towards ut solving the NFE. The Kuramoto model presents a phase
transition: whenK ≤ 1, µ ≡ 1

2π
is the only (stable) stationary point of the previous

NFP (subcritical case), whereas it coexists with a stable circle of synchronised
profiles when K > 1 (supercritical case), we refer to Bertini et al. (2014); Luçon
& Poquet (2017); Giacomin et al. (2012); Coppini (2022) for references on the
Kuramoto model. Our two following articles (Chapters 4 and 5) propose hypotheses
on the parameters for recovering similar behaviors within the framework of Hawkes
processes. Chapter 4 recovers a similar subcriticality condition that can be written
‖f‖∞‖h‖1r∞ < 1 under which there is a unique stationary limit for the NFE.
Chapter 5 presents a framework where this subcriticality condition is not satisfied
and with particular choices for f , h and W , so that the NFE admits a manifold of
stable stationary solutions.

One main difficulty for these works was to deal with the different noise (a
jumping Poissonian noise rather than a continuous Brownian one) in the microscopic
dynamics.
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2.4.2 Chapter 4: Long-term stability of interacting Hawkes
processes on random graphs

In this Chapter, we carry on with the study of our main model (2.3.7). We

restrict ourselves to the case I = [0, 1] and xi =
i

N
for 1 ≤ i ≤ N . We take

w
(N)
ij =

ξ
(N)
ij

ρN
, where ρN is a dilution parameter, ξ(N)

ij follows a Bernoulli distribution

with parameter ρNW (xi, xj) and W is a macroscopic interaction kernel. This is a
simplification of the interactions introduced in Chapter 3 by taking κi ≡ ρ−1

N and
WN = ρNW . We give another writing of the intensity (2.3.7) as we consider

λN,i(t) = F (XN,i(t−), ηt(xi)) ,

where η represents deterministic contributions to the intensity and XN,i is given
in (2.3.8). It is straightforward to go back to (2.3.7) by considering η = (µ, v) and
F (X, η) = µ+ f(v +X).

2.4.2.1 Extension of the asymptotic behavior of λt in the general case

The first part of Chapter 4 concerns the extension of Theorem 2.4.5 when f is no
longer restricted to be linear. It affects the subcritical case definition in the sense
that we ask now ‖∂XF‖∞‖h‖1r∞ < 1 instead of ‖h‖1r∞ < 1. We state a general
convergence result as t→∞ of Xt, the large population limit of XN defined as

Xt(x) =

∫
I

W (x, y)

∫ t

0

h(t− s)λs(y)ds dy.

Theorem 2.4.7 (Theorem 4.2.7). Assume there exists η∞ such that ηt → η∞
uniformly on I. In the subcritical case and under suitable regularity assumptions
on the parameters,

(i) there exists a unique continuous function X∞ : I 7→ R+ solution of X∞ =
‖h‖1TWF (X∞, η∞),

(ii) Xt converges uniformly on I when t→∞ towards X∞.

This Theorem directly implies that λt converges uniformly on I towards ` the
solution to ` = F (‖h‖1TW `, η∞), the correspondance being X∞ = ‖h‖1TW `. This
result comes from the classic study and convergence of an ODE.

In the particular case of the exponential memory function (h(t) = exp(−αt)),
we show that X∞ is a stable stationary point to

∂tYt = −αYt + TW (∂XF (X∞, η∞)Yt) , (2.4.4)

which is the linearised system associated with the dynamics of Yt := (Xt − X∞).
The subcritical condition, which becomes ‖∂XF‖∞r∞ < α, translates into the
existence of a spectral gap for the operator associated with (2.4.4).
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Proposition 2.4.8 (Proposition 4.2.10). Assume that the memory kernel is h(t) =
e−αt and define the linear operator

L : L2(I) −→ L2(I)

g 7−→ L(g) = −αg + TW (∂XF (X∞, η∞)g).

Under suitable regularity assumptions on the parameters, L generates a contraction
semi-group

(
etL
)
t≥0

on L2(I) such that for any g ∈ L2(I), ‖etLg‖2 ≤ e−tγ‖g‖2 where
γ := α− r∞ ‖∂XF‖∞ > 0 is the spectral gap.

2.4.2.2 Long-term stability of the microscopic profile XN for the
exponential case

The main contribution of the article is centered on the long-term stability of
the microscopic profile XN for the particular choice of the exponential kernel
h(t) = e−αt. To study the dynamics of XN , we assume some additional dilution
controls on the graph: in the case of F bounded for instance, we ask Nρ2

N →∞.

Recall the large population convergence of the membrane potential UN seen in
Proposition 2.4.4. We show first uniform convergence of XN(t) in L2(I) instead of
L1(I).

Proposition 2.4.9. Let T > 0. In the subcritical case and with the exponential
memory kernel, for any ε > 0, P-a.s.

P

(
sup
t∈[0,T ]

‖XN(t)−Xt‖2 ≥ ε

)
−−−→
N→∞

0.

Hence XN(t) is close to Xt on any bounded time interval. The asymptotic
dynamics of (Xt) is known, it converges towards X∞ which is stable as seen in
Proposition 2.4.8. It is then natural to study the proximity between XN(t) and
this limit X∞. We thus state the main result of the paper, the proximity between
XN(t) and X∞ valid up to arbitrary polynomial times in NρN .

Theorem 2.4.10 (Theorem 4.2.12). Choose some tf > 0 and m ≥ 1. Then,
under regularity assumptions on the parameters (F, η), under dilution controls of
the graph, in the subcritical case and with the exponential memory kernel, P-a.s.
for any ε > 0,

P

 sup
t∈[tε,(NρN )mtf ]

‖XN(t)−X∞‖2 ≥ ε

 −−−→
N→∞

0,

for some tε > 0 independent of N .

Let us give a short sketch of the proof, divided into several steps.

• We give a semimartingale decomposition of YN := XN −X∞. The point is to
decompose the dynamics of YN in terms of the linear dynamics (2.4.4), with
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drift terms coming from the graph and its mean-field approximation, a noise
term and a quadratic remaining error coming from the nonlinearity of F . We
do a careful control on each of these terms in the semimartingale expansion
on a bounded time interval.

• The variable tε corresponds to the time the deterministic dynamics of Xt

needs to reach a neighborhood of X∞ of size ε. With the spectral gap seen
in Proposition 2.4.8, one can show that tε is of order − log ε/γ. Then, using
Proposition 2.4.9, the microscopic process XN is itself ε-close to X∞ with
high probability.

• The previous argument is the starting point of an iterative procedure that
works as follows: the point is to see that, provided XN is initially close to
X∞, it will remain close to X∞ on some [0, T ] for some sufficiently large
deterministic T > 0. The key argument is that on a bounded time interval,
the deterministic linear dynamics dominates over the contribution of the
noise, so that one only has to wait some sufficiently large T so that the
deterministic dynamics prevails against the other contributions. The rest
of the proof consists in an iterative procedure from the previous argument,
taking advantage of the Markovian structure of the dynamics of XN (because
of the exponential memory kernel). The time horizon at which one can pursue
this recursion, polynomial in NρN , is controlled by moment estimates on the
noise.

2.4.2.3 Mid-conclusion and comments

This Chapter presents thus a case for which the mean-field limit of our microscopic
system is stable up to polynomial times: we have

XN(t) −−−→
N→∞

Xt
exponentially−−−−−−−→

t→∞
X∞,

and for the general subcritical case and an exponential memory kernel, we can
write

XN(t)
P−−−−−−−−−−−−−−−−−−→

N→∞, t polynomial in (NρN )
X∞.

However the Chapter raises new questions.
The subcriticality condition ‖∂xF‖∞r∞ < α is used several times: it ensures

the existence of a unique fixed point to X∞ = ‖h‖1TWF (X∞, η∞), it guarantees
the convergence of Xt towards X∞ and the long-term stability of XN around X∞.
What happens if this subcriticality condition is not met anymore?

The different proofs rely on the fact that in the framework of the Chapter, the
dynamics of the membrane potential Xt admit a unique stationary solution X∞.
What happens when we do not have this uniqueness anymore?

2.4.3 Chapter 5: Stability of wandering bumps for Hawkes
processes interacting on the circle

In this Chapter, we study our main model (2.3.7) in a particular context, when the
subcriticality condition ‖f‖∞r∞‖h‖1 < 1 is not met. To do so, we focus on a case
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Figure 2.7: Graph of fκ,% for % = 0.5 and different choices of κ

where the NFE no longer admits a unique stationary solution.

We consider the ring model that focuses on the visual cortex (Kilpatrick &
Ermentrout (2013)): each neuron possesses an orientation preference xi in I =
(−π, π] =: S, and we assume that the labels (xi)1≤i≤N are regularly distributed
on I. The interaction term is no longer random and we consider inhibition as we
take a cosine kernel: wij = 2π cos(xi−xj), so that neurons with similar preferential
orientations tend to excite each other, while those with opposite preferential orienta-
tions inhibit each other. The synaptic function f is fixed as a sigmoid of parameter
(κ, %), where κ is related to the slope of the sigmoid at its threshold point %:

fκ,%(u) :=
(
1 + e−(u−%)/κ

)−1
.

We stay in the exponential case as we take h(t) = e−t (the leakage rate is fixed
as α = 1), and moreover we take µt = 0 and vt(x) = ρ(x)e−t with ρ an initial
distribution of the membrane potential.

We thus study the multivariate Hawkes processes (ZN,1 (t) , ..., ZN,N (t))t≥0 with
intensities

λN,i(t) = fκ,%

(
ρ(xi)e

−t +
2π

N

N∑
j=1

cos(xi − xj)
∫ t−

0

e−(t−s)dZN,j(s)

)
, i = 1, . . . , N.

When κ → 0, the sigmoid fκ,% converges to the Heaviside function H%(u) = 1u≥%
with threshold %, see in Figure 2.7 the illustration of the influence of the choice of
κ on fκ,%. Moreover, the slope of fκ,% as κ → 0 is steeper, so that we are not in
the subcritical case as ‖fκ,%‖∞ � 1. Thus, for κ small enough, when its membrane
potential is high a neuron emits a spike at rate close to 1, and this rate is close to
0 if the potential is not high enough.

This model is linked to a particular instance of the NFE introduced in (2.2.1):
the limit of the membrane potential UN is given by ut which solves the NFE

∂ut(x)

∂t
= −ut(x) +

∫
S

cos(x− y)fκ,%(ut(y))dy, t ≥ 0. (2.4.5)

Recall our previous comment on page 21 on the NFE (2.2.1), where thanks to the
translation invariance of the Lebesgue measure on R, one can show the existence
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of traveling waves solutions (see also Lang & Stannat (2016) for stability estimates
of these traveling waves), and the NFE (2.3.6) derived by Chevallier et al. (2019),
which requires a probability measure ν on I but where such traveling waves are
lost. The present choice of I = S and ν(dy) =

1[−π,π)
2π

dy combines the two previous
advantages: ν is a probability measure (hence the large population analysis when
N → ∞ applies) and translation invariance is preserved in the present periodic
case. In particular as explained below, the NFE (2.4.5) exhibits localized patterns,
called bumps, that are stationary pulse solutions.

2.4.3.1 A manifold of stationary solutions to the NFE

We first study the asymptotic behavior of ut satisfying (2.4.5). From a standard
Grönwall estimate, we can show that for any T > 0, there exists a unique solution
(ut)t∈[0,T ] in Cb(S,R) to (2.4.5) with initial condition u0 = g smooth enough. We
can then define the flow of (2.4.5) by (t, g) 7→ ψt(g), that is the solution at time t
of (2.4.5) starting from g at t = 0:

ψt(g)(x) = e−tg(x) +

∫ t

0

e−(t−s)
∫
S

cos(x− y)fκ,%(ψs(g)(x))ds. (2.4.6)

We show that, unlike in the previous chapter, there is no uniqueness in the limit of
ut when t→∞: there exists a manifold of (stable) stationary solutions to (2.4.5).

Proposition 2.4.11 (Proposition 5.2.2 and Corollary 5.2.6). If κ is small enough,
there exists A > 0 solving A =

∫
S

cos(y)fκ,%(A cos(y))dy such that the following
manifold of functions S → R indexed by S

U := (A cos(·+ φ))φ∈S =: (uφ)φ∈S

is a set of stationary solutions to (2.4.5). Moreover, U is locally stable under
the flow (2.4.5): there exists ε0 > 0 such that, for any g ∈ L2(S) satisfying
distL2(g,U) ≤ ε0, we have lim

t→∞
distL2(ψt(g),U) = 0.

The manifold U is then a set of stationary solution (uφ)φ∈S parameterized by
S. Each function is a translation of a cosine, a bump on S. We can define a proper
phase reduction of functions along U : as the manifold U is stable and attractive, a
solution to the NFE (2.4.5) from a neighborhood of U is attracted to U . As t→∞,
it identifies with one stationary solution of the manifold, its isochron.

Proposition 2.4.12 (Isochronal phase, Proposition 5.2.8). For any g close enough
to U , there exists a unique θ(g) ∈ S called the isochronal phase of g such that

‖ψt(g)− uθ(g)‖2 −−−→
t→∞

0. (2.4.7)

Isochrons have been introduced byWinfree (1974) and studied by Guckenheimer
(1975), in a larger context than here with periodic orbits. The main idea is that,
given a metric space (E, d) and a dynamics evolving with a flow map (t, x) ∈
R ×M 7→ ψt(x) with M ⊂ E a smooth manifold, one can define the orbit of ψ
through x ∈ M by the set {ψt(x), t ∈ R}. The orbit is periodic if we can define
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τ = inf {t > 0, ψt(x) = x}. If for all t ≥ 0, ψt(x) = x, x is a stationary point to
the dynamics of ψ — with a period of zero. If Γ is a stable limit cycle of ψ, that
is a periodic orbit stable in the sense that there exists a neighborhood V of Γ such
that for all y ∈ V , d (ψt(y),Γ) −−−→

t→∞
0, one can define the isochron of x ∈ Γ as

expressed in Giacomin et al. (2018) by

W (x) =
{
y ∈ V : lim

t→∞
d (ψt(x), ψt(y)) = 0

}
.

The isochron is then constituted of points of V that have a similar behavior to the
dynamics starting at x, meaning the points that are synchronized with x.

In our context, we consider stationary solutions to the dynamics that constitute
a manifold U parameterized by S. Each uφ ∈ U can be seen as a stable limit point
of ψ (that is considering Γφ := {uφ}), and one can similarly define the isochron by

W (uφ) =
{
g ∈ V (uφ) : lim

t→∞
d (ψt(g), uφ) = 0

}
,

as ψt(uφ) = uφ for all t ≥ 0 (the period is zero). We can reformulate this by saying
that the isochron of uφ is constituted of the functions g close enough to U such
that the flow ψ brings g on uφ. One can show that φ ∈ S 7→ W (uφ) is injective,
so that we can define the isochronal phase on a well-chosen neighborhood of U by
θ : g 7→ φ ∈ S such that g ∈ W (uφ), which is exactly (2.4.7). Here we do not have
one stable limit cycle Γ, but a manifold of stable stationary solutions (which we
can denote informally by U = ∪φ∈SΓφ), so that the isochronal phase θ is a way
to define a projection of a neighborhood of U to S, and thus we can reduce the
dimensional complexity: the system dynamics can be seen as phase dynamics.

2.4.3.2 Long time behavior: the emergence of a Brownian motion

The rest of the Chapter is about our microscopic process (ZN,1(t), · · · , ZN,N(t))t>0

and its proximity with U provided the initial condition is close to the manifold.

The first result ensures that UN(t) reaches a neighborhood of U in time of order
log(N) and stays inside it for arbitrary polynomial times in N .

Theorem 2.4.13 (Theorem 5.2.9). Suppose that ρ is smooth enough and close
enough to U . Let α, τf > 0. There exists some C > 0 such that, defining for any
N ≥ 1, T0(N) := C log(N), for any ε > 0,

P

(
sup

t∈[T0(N),Nατf ]

distL2 (UN(t),U) ≤ ε

)
−−−→
N→∞

1.

For this result, we use the same strategy as the one explained for Theorem 2.4.10
in page 41. Here, the time T0(N) ∝ log(N) plays the same role as tε introduced for
Theorem 2.4.10, it is the time we have to wait for which distL2 (UN(T0(N)),U) ≤
N2η

√
N

, with 0 < η < 1
4
. This essentially boils down to following the predominant

deterministic dynamics of the NFE.
Now that we know that UN(t) is close to U , we can use the isochronal phase

and an adapted rescaling to characterize the behavior of UN(t) along the manifold.
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Figure 2.8: Evolution of UN(t)(x)

We run a simulation for N = 500 and represent the evolution of UN (t)(x). The time t ∈ [0, 500]
is on the x-axis and the position x ∈ S is on the y-axis. The system is initialised close to U with
ρ(x) = A(κ) cos(x) + cos(2x), for the choice (κ, %) =

(
1
20 ,

1
2

)
.

Theorem 2.4.14 (Theorem 5.2.11). Under the same hypotheses with α = 1, let

τf > 0. There exist a deterministic θ0 ∈ S and for every N some τ0(N) ∝ log(N)

N
and a càdlàg process (WN(t))t∈(τ0(N),τf ) that converges weakly in D ([0, τf ], S) towards
a standard Brownian such that for every ε > 0,

lim
N→∞

P

(
sup

τ∈(τ0(N),τf )

∥∥UN(Nτ)− uθ0+σWN (τ)

∥∥
2
≤ ε

)
= 1,

where σ :=

(
2π

∫
S

sin2(x)f(A cos(x))dx

) 1
2

.

The main idea behind this result is that, provided the initial condition is
close enough to U , the deterministic dynamics brings the potential close to the
manifold of stationary solutions U , and the noise induces a random phase shift
on the circle. Moreover, this phase shift correctly renormalized is quantified by
a Brownian motion. On Figure 2.8, one can see an illustration of this theorem:
the maximum intensity seen by the population (in yellow), initially in 0 spatially
wanders through time.

Let us give a short sketch of the proof. The time Nτ0(N) corresponds to
the required time for UN(t) to be sufficiently close to U : it is related to T0(N)
given by Theorem 2.4.13. We use the semimartingale decomposition of UN given
by dUN(t) = BN(t)dt + dMN(t), with BN some drift and MN a martingale,
and Itô formula to write the semimartingale decomposition of θ(UN(t)) on the
interval [T0(N), Nτf ], for which one can show a careful control on each of the terms
appearing. The difficulty here is to show rigorously that there is no macroscopic
drift appearing on this time scale (this point is essentially due to the invariance
by rotation of the whole problem). After rescaling the time by N , we identify the

46



2.4. Chapter organisation and contents

noise with a Brownian motion thanks to Aldous’ tightness criterion and Lévy’s
characterization.

2.4.4 Conclusion

The first article (Chapter 3) deals with the process (2.3.7) in all its generality, and
lays a solid foundation for more detailed study of particular cases. The "random
graph" vision required a lot of work and adaptation to find the right metric and the
least restrictive assumptions for our model. The two following articles (Chapter 4
and 5) explore the long-time stability of the microscopic system introduced in
Chapter 3, give two examples of long-time behavior, one where the system is
attracted to a single stationary solution to the NFE and the other where the system
is attracted to a manifold of stationary solutions and wanders on it.

Perspectives

Scaling
Let us briefly comment on the scaling choice 1/N made in (2.3.7). It is a

usual scaling found in the mean-field framework and the propagation of chaos: in
the large population limit, as N goes to infinity a particle is connected to more
and more particles and to counterbalance this, the strengths of the interactions
reduce. However, different scaling can be found in the litterature such as 1/

√
N ,

the diffusive regime. See the LLN results in the case of exchangeable particles in
Erny et al. (2022), the LLN and CLT results where there is a random environment
in Erny (2023) or with inhibition in Pfaffelhuber et al. (2022).

A question could be how to adapt our propagation of chaos result of Chapter
3 (on finite time intervals) with this diffusive scaling while keeping inhomogeneity
between the interactions. The convergence of graph we used here is not relevant
anymore and should potentially be changed to adapt to this different scaling.

Dilution
Our results of Chapter 3 work on possibly diluted graph, with a controlled

dilution: for the Erdös-Rényi random graph for instance where ρNw
(N)
ij ∼ B (ρN),

we essentially ask that ρN � log(N)/N (see the details on page 62).
Can we go beyond this dilution condition? Several works with diffusions as

Oliveira et al. (2020); Lacker et al. (2023) study limit theorems with the interaction
made on sparse graphs. In particular Oliveira et al. (2020) shows that for the
stochastic Kuramoto model, the propagation of chaos result (on finite time intervals)
is valid when NρN → c ∈ R+ and in such a case the limiting object is described in
terms of a dynamics evolving on a Galton-Watson tree.

Similar results might be applied to Hawkes processes. The first step is to
formally define an (infinite) Hawkes process on a Galton-Watson tree, in this
direction one could adapt the results of Delattre et al. (2016a) for the well posedness
of Hawkes process on infinite graph. The main difficulty would be to adapt
the formalism developped by Oliveira et al. (2020) for a similar large population
convergence. The other interesting point would be the long time dynamics of such
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particle system living on a Galton-Watson tree, see similarly the case of nearest
neighbors interactions on Zd in Delattre et al. (2016a).

Stable limit cycle: towards periodicity
On page 45, we introduced the notion of isochrons for stable limit cycle Γ with

period τ for dynamics with flow ψ. In Chapter 5, we only need the case where
τ = 0 as we focus on stationary solutions. A natural extension could be to consider
(deterministic) dynamics allowing a stable limit cycle Γ = {qt, t ∈ [0, τ)} of the
flow, with period τ > 0.

It is the case in the article Ditlevsen & Löcherbach (2017), presented on page
29: the population is divided into several classes, and the large population limit
is described for each class by a nonlinear differential equation driven by a Poisson
random measure. They consider also a particular case where the system interact
through a monotone feedback loop, and prove the existence of a non trivial attractive
periodic orbit for the large population limit system. To adapt these results to our
situation (and obtain large time behavior of the microscopic system around the
limit cycle), there are several difficulties. First the memory function is not the
same: in Ditlevsen & Löcherbach (2017) h is chosen as an Erlang kernel whereas
we use a decreasing exponential in both Chapters 4 and 5. Erlang kernels offer
the same advantage of Markovian structure as our exponential kernel, but the
computations are harder as they follow a cascade structure as seen in Ditlevsen &
Löcherbach (2017). The exponential kernel also enables us to find a spectral gap
γ in the dynamics of the limit process, thus having stability and attraction to the
manifold as stated in Proposition 2.4.8. It is not clear whether this spectral gap
persists in case of Erlang kernels. Another difficulty relies on the analysis of the
behavior on the limit cycle: in our case, we prove that the Brownian motion that
emerges does not have any drift, but with a periodic stable limit, one can expect
that the deterministic dynamics would drive a drift. Characterizing and computing
this drift remains open.

Note that periodicity seems to be extremely linked to inhibition, see for example
Duval et al. (2022), even if the existence of stable cycles is not yet proven.

Random graph in the ring model
In Chapter 5, the interaction between neurons is deterministic, unlike the two

previous chapters. This choice was made to focus mainly on the large time dynamics
and to study how the Brownian motion that the isochronal phase follows appears,
which is a similar result as what was done for diffusions in Bertini et al. (2014);
Giacomin et al. (2018); Luçon & Poquet (2020, 2021b). A natural question is then,
what happens when we add the random graph framework to Chapter 5?

In this direction, Coppini (2022) in the case of diffusions on random graphs
shows the long time stability of the microscopic process around the limit manifold.
Similar results in our situation can be expected, the main issue is how to characterize
the behavior on the manifold: the random interactions add a new term in the Itô’s
decomposition used in the proof of Theorem 2.4.14, and it is not clear how it affects
the dynamics.
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Time dependent graph
Another direction could be to consider time dependent graphs with ξij = ξij(t),

see for instance Bhamidi et al. (2019); Nguyen et al. (2020). With the neuroscience
context, the idea behind is to model learning behavior of the brain, where the
interactions between neurons can evolve through time to represent new learnt paths.
One difficulty to deal with is the different time scales involved: one can imagine
to have a slow dynamics for the graph interactions evolution (representing the
learning process), and a fast one for the neural activity. How to correctly define
Hawkes processes on such interaction dynamics and the large population and long
time behaviors resulting remain open issues.
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Chapter 3

Multivariate Hawkes processes on
inhomogeneous random graphs

This chapter consists in a modified version of my article Agathe-Nerine
(2022) (expanded with some computations), published in Stochastic Processes
and their Applications, with minor wording and notation changes for
harmonization purposes.

In this Chapter, we study our general model (2.3.7) for the choice µt = 0 and
w

(N)
ij = κiξ

(N)
ij , where κi is a dilution parameter (so that the interaction term

remains of order 1 as N →∞) and where ξ(N)
ij follows a Bernoulli distribution with

parameter WN(xi, xj), WN being the microscopic interaction kernel.

Abstract

We consider a population of N interacting neurons, represented
by a multivariate Hawkes process: the firing rate of each neuron
depends on the history of the connected neurons. Contrary to the
mean-field framework where the interaction occurs on the complete
graph, the connectivity between particles is given by a random
possibly diluted and inhomogeneous graph where the probability
of presence of each edge depends on the spatial position of its
vertices. We address the well-posedness of this system and Law
of Large Numbers results as N → ∞. A crucial issue will be to
understand how spatial inhomogeneity influences the large time
behavior of the system.
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3.1 Introduction

3.1.1 Biological and mathematical context

Neurons are cells specialised in the reception, integration and transfer of information
in the brain. A propagating electrical signal is transmitted from a neuron to the
others in terms of all-or-none emission of action potential also called spike which is a
stereotyped phenomenon. More precisely, neurons possess a permeable membrane
which allows ion exchanges. Without stimulus, the difference of respective ion
concentrations induces a voltage gradient called resting potential. This potential
evolves depending on the information received from other neurons: a presynaptic
neuron emitting a spike leads to the release of neurotransmitters, and induces a
change in the ions distribution around the membrane of post-synaptic neurons. If
the stimulus reaches a sufficient threshold, the neuron generates an action potential,
the synaptic integration.

The progress of monitoring methods as MRI (Magnetic Resonance Imaging)
and ECG (Electrocardiography) since the 50’s led to a better understanding of the
physiology of a neuron. As a result, the implementation of mathematical models
started with the Hodgkin-Huxley model (Hodgkin & Huxley, 1952) describing the
evolution of the membrane potential in terms of a system of four ODEs, further
simplified in two equations by FitzHugh (1961) and Nagumo et al. (1962).

Stochasticity is intrinsic to the neuronal activity: noise in neuronal systems may
come from different sources. To name a few, randomness accounts for the emergence
of spontaneous spikes (Fatt & Katz, 1952), failed propagation (Smith, 1980), and
the stochastic opening and closing of the ion channels (the probability of the
channel being open or closed depends on the membrane potential). Stochasticity
is also present at the scale of a whole population in the large variability of synaptic
connections between neurons. From a mathematical perspective, this naturally led
to diffusion models: mean-field Hodgkin-Huxley and FitzHugh-Nagumo’s models
in Baladron et al. (2012), mean-field Piecewise Deterministic Markov Processes
(PDMP) in Masi et al. (2014); Cormier et al. (2020). Another popular model is
the integrate-and-fire dynamics, first introduced in the seminal work of Lapicque
(1907), and still studied mathematically, as e.g. in Delarue et al. (2015).

The previous type of modeling of the membrane potential typically leads to
non-linear Fokker–Planck equations whose large time behavior is often hard to
determine analytically. A usual approach in this context (that we follow here) yields
more tractable and explicitely solvable models: as spikes are stereotyped, all the
information is coded in the duration of time between the spikes. Hence we model
the activity of a neuron by a point process where each point represents the time of
a spike. In this context, the framework of Hawkes processes is particularly relevant
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3. Hawkes processes on inhomogeneous random graphs

since it can account for the dependence of the activity of a neuron on the past of
the whole population: the spike of one neuron can trigger others spikes. Hawkes
processes have been first introduced in Hawkes (1971) to model earthquakes, and
have been thoroughly studied since (with applications for instance to seismology
in Ogata (1988)). It is not possible to quote the vast mathematical literature
on Hawkes processes since the seminal works of Hawkes (1971); Hawkes & Oakes
(1974); Brémaud &Massoulié (1996), we refer nonetheless to Delattre et al. (2016a);
Hodara & Löcherbach (2017); Chevallier (2017) and references therein.

In this paper, the main issue we concentrate on is the structure of interaction
between neurons. There is indeed experimental evidences that neurons are spatially
organized (Bosking et al., 1997; Mountcastle, 1997). The first approach, where this
spatial structure is missing, assumes a complete graph of interaction (mean-field
framework). Mean-field analysis goes back to McKean (1967); Sznitman (1991),
originally for diffusion models as in Baladron et al. (2012). The literature on mean-
field analysis is huge and does not restrict to neuroscience applications (see the
following references as far as neurosciences are concerned: integrate and fire models
Delarue et al. (2015), PDMP Masi et al. (2014); Cormier et al. (2020)). As for
mean-field Hawkes processes, similar models have been considered in Delattre et al.
(2016a); Heesen & Stannat (2021); Hodara & Löcherbach (2017) and expanded
with additional features (age dependence in Chevallier (2017); Raad et al. (2020),
inhibition in Costa et al. (2020); Duval et al. (2022); Raad & Löcherbach (2020)).
What makes the mean-field analysis for Hawkes processes particularly tractable
is that the large population limit is given in terms of an inhomogeneous Poisson
process whose intensity solves a convolution equation (Delattre et al., 2016a).

The spatial organization in the brain has been originally analysed mathematical-
ly from a phenomenological perspective: we may refer to the celebrated neural field
equation (Wilson & Cowan, 1972; Amari, 1977; Bressloff, 2012), which has given
a macroscopic description of excitable units with non-local interaction. Several
works have extended the mean-field framework to take into account the presence
of a macroscopic spatial structure in the interaction (originally for diffusion models
(Touboul, 2014; Luçon & Stannat, 2016; Budhiraja & Wu, 2016), as well as for
Hawkes processes (Ditlevsen & Löcherbach, 2017; Chevallier et al., 2019)). More
specifically, Chevallier et al. (2019) has given a mesoscopic interpretation of the
neural field equation in terms of the limit of spatially extended Hawkes processes
interacting through a mesoscopic spatial kernel.

The main contribution of this paper is to go further and provide a microscopic
interpretation of this spatial structure in terms of random graphs. We assume
that the interaction between neurons is given by a possibly inhomogeneous and
diluted graph, where the probability of presence of an edge depends on the positions
of its vertices. The main example that we have in mind concerns the class of
W -random graph (see Diaconis & Janson (2008); Lovász (2012); Janson (2013);
Borgs et al. (2018, 2019)), that includes homogeneous Erdös-Rényi graphs. The
only previous works so far on particle systems with similar interaction address the
case of diffusions. Law of Large Numbers (LLN) and Large Deviations results on
homogeneous Erdös-Rényi graphs have been considered in Delattre et al. (2016b);
Coppini et al. (2019); Oliveira & Reis (2019), and further extended to the inhomo-
geneous case in Bet et al. (2020); Luçon (2020); Bayraktar et al. (2023); Medvedev
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(2013) on a bounded time interval. The behavior of such systems on a time scale
no longer bounded (but may depend on the size of the population) is more difficult,
and remains largely open so far (in this direction, see Coppini (2022)). The present
work is, to the best of our knowledge, the first paper to address similar issues to
Hawkes processes. We address here quenched LLN results on bounded time interval
and large time asymptotics of the limiting process. The behavior of the system
on unbounded time scale is a work in progress. Note also that all the existing
works consider graphs with interaction of diverging degrees. The case with sparse
interaction (see Oliveira et al. (2020); Lacker et al. (2023) for diffusions) remains
open for Hawkes processes and will be the object of future works.

3.1.2 Our model

The aim of this paper is to describe the behavior in large population and large
time of a network of particles interacting on a spatially structured random graph.
Let N be the size of the population, consider the multivariate Hawkes process
(ZN,1(t), · · · , ZN,N(t))t>0: for i = 1 · · ·N , the ith neuron is located on xi ∈ I where
I ⊂ Rd represents the spatial domain of the neuron (suppose e.g. that I = [0, 1]
or I = Rd), ZN,i(t) counts the number of spikes during the time interval [0, t]. Its
intensity at time t conditioned on the past [0, t) is given by

λN,i(t) = f

(
vt(xi) +

1

N

N∑
j=1

w
(N)
ij

∫ t−

0

h(t− s)dZN,j(s)

)
. (3.1.1)

Here, f : R −→ R+ represents the synaptic integration, vt : ×I −→ R a
spontaneous activity of the neuron at time t, h : R+ −→ R a memory function
which models how a past jump of the system affects the present intensity. The
novelty here is w(N)

ij , representing the random inhomogeneous interaction between
the neurons i and j that depends on their positions xi and xj. We refer to Section
3.2 for precise definitions.

We study the behavior of the process (ZN,1(t), · · · , ZN,N(t))t>0 as N →∞ and
t → ∞. The large population convergence is considered for a fixed realization of
the graph (quenched model). Its limit is described in terms of an inhomogeneous
Poisson process whose intensity involves the macroscopic spatial structure of the
graph. A second aspect of the present work of independent interest will be to
analyse the long time dynamics of the macroscopic process. We generalise the
phase transition already observed for mean-field linear Hawkes processes in Delattre
et al. (2016a). An important issue will be to understand how the inhomogeneity of
the graph influences the long time dynamics. This will be illustrated by different
examples and simulations.

3.1.3 Organisation of the paper

After introducing some notation, we start in Section 3.2 by defining formally
the process of interest (3.2.2). The well-posedness of such process is treated by
Proposition 3.2.5. We study the large population behavior of the Hawkes process
(ZN,1(t), . . . , ZN,N(t))t>0 in Section 3.2.3. We show, under suitable hypotheses on
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3. Hawkes processes on inhomogeneous random graphs

the parameters, that the behavior of a neuron located in x ∈ I within an infinite
population is described by an intensity λt(x) solving

λt(x) = f

(
vt(x) +

∫
I

W (x, y)

∫ t

0

h(t− s)λs(y)ds ν(dy)

)
. (3.1.2)

Here, W : I × I −→ R+ is seen as the limit interaction kernel, and ν, probability
measure on I describes the macroscopic distribution of the positions. Well-posedness
and regularity of (3.1.2) is considered in Theorem 3.2.7. In Section 3.3, we study
the behavior of the process (3.2.2) in large population (Theorems 3.3.10 and 3.3.12).
The behavior of the empirical measure and respectively the spatial profile (Definition
3.3.16) is analysed in Section 3.3.4 (resp. Section 3.3.5). In Section 3.4, we study
the behavior of (3.1.2) as t → ∞ in the linear case, that is when f(u) = u. We
extend the phase transition observed without spatial structure in Delattre et al.
(2016a) to a general interaction kernel W . Finally in Section 3.5, we apply our
results to concrete cases and present some simulations. The proofs are gathered in
the remaining Sections.

3.2 A system of N interacting particles on a
graph and its limit

3.2.1 Notation

For n ∈ N, we write ‖ · ‖ for the usual Euclidian norm in Rn, ‖ (x1, · · · , xn) ‖ =

(|x1|2 + · · ·+ |xn|2)
1
2 . For (E,A, µ) a measured space, for a function h in Lp(E, µ)

with p ≥ 1, we write ‖h‖E,µ,p :=
(∫

E
|h|pdµ

) 1
p . When p = 2, we write as

< f, g >E,µ=
∫
E
fgdµ the scalar product. Without ambiguity, we may omit

the subscript (E, µ) or µ. For instance, for T > 0 and h in Lp([0, T ]), we write

‖h‖[0,T ],p :=
(∫ T

0
|h(t)|pdt

) 1
p . When we omit the notation [0, T ], the integration

is on R+. For a real-valued bounded function g on a space E, we write ‖g‖∞ :=
‖g‖E,∞ = supx∈E |g(x)|. If d is a distance on E, we denote by ‖f‖L = supx 6=y |f(x)−
f(y)|/d(x, y) the Lipchitz seminorm of a real-valued function f on E. We also
denote by ‖f‖BL := ‖f‖L + ‖f‖E,∞ the bounded Lipschitz norm of f . For µ and
ν measures on E, we define

dBL(µ, ν) := sup
g,‖g‖BL≤1

∣∣∣∣∫
E

g (dµ− dν)

∣∣∣∣ . (3.2.1)

We denote by D ([0, T ],N) the space of càdlàg (right continuous with left limits)
functions defined on [0, T ] and taking values in N. For any integer N ≥ 1, we
denote by J1, NK the set {1, · · · , N}. For any distribution ν, X ∼ ν means that
the random variable X has distribution ν. We denote by U(0, 1) the uniform
distribution on [0, 1], and for any p ∈ [0, 1], B(p) denotes the Bernoulli distribution
with parameter p.
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3.2. A system of N interacting particles on a graph and its limit

3.2.2 The model

3.2.2.1 Definitions

The graph of interaction for (3.1.1) is constructed as follows:

Definition 3.2.1. On a common probability space
(

Ω̃, F̃ ,P
)
, we consider a sequence((

x
(N)
i

)
i∈J1,NK

)
N≥1

of (possibly random) positions and a family of random variables

ξ(N) =
(
ξ

(N)
ij

)
N≥1,i,j∈J1,NK

on Ω̃ such that under P, for any N ≥ 1 and i, j ∈ J1, NK,

conditioned on the positions
(
x

(N)
1 , . . . , x

(N)
N

)
, ξ(N) is a collection of mutually

independent Bernoulli random variables such that for 1 ≤ i, j ≤ N , ξ(N)
ij has

parameter WN(xi, xj). We assume that the particles in (3.1.1) are connected
according to the oriented graph G(N) =

(
{1, · · · , N} , ξ(N)

)
. For any i and j,

ξ
(N)
ij = 1 encodes for the presence of the edge j → i and ξ(N)

ij = 0 for its absence.

It is possible to construct via a coupling this graph simultaneously for all N :
consider an infinite sequence of fixed positions in I (x1, . . . , xN , . . .) (that is, for each
N ≥ 1, x

(N)
i = xi) and i.i.d. random variables (Ui,j)i,j∈N ∼ U [0, 1]. Define ξ(N)

ij =

1{Ui,j≤WN (xi,xj)}: conditioned on the positions (x1, . . . , xN), ξ(N) is a collection of
independent variables and ξ

(N)
ij ∼ B (WN(xi, xj)). We now fix these sequences,

and work on a filtered probability space
(
Ω,F , (Ft)t≥0 ,P

)
rich enough for all the

following processes can be defined. We denote by E the expectation under P and
E the expectation with respect to P. In the following definitions, N is fixed and
we denote by x(N) =

(
x

(N)
1 , . . . , x

(N)
N

)
the vector of positions.

Definition 3.2.2. Let (πi(ds, dz))1≤i≤N be a sequence of i.i.d. Poisson random
measures on R+ × R+ with intensity measure dsdz. A (Ft)-adapted multivariate
counting process (ZN,1 (t) , . . . , ZN,N (t))t≥0 defined on

(
Ω,F , (Ft)t≥0 ,P

)
is called a

multivariate Hawkes process with the set of parameters
(
N, f, ξ(N),WN , v, h, x

(N)
)

if P-almost surely, for all t ≥ 0 and i ∈ J1, NK:

ZN,i(t) =

∫ t

0

∫ ∞
0

1{z≤λN,i(s)}πi(ds, dz) (3.2.2)

with λN,i(t) defined by

λN,i(t) = f

(
vt(x

(N)
i ) +

κ
(N)
i

N

N∑
j=1

ξ
(N)
ij

∫ t−

0

h(t− s)dZN,j(s)

)
. (3.2.3)

We denote by κ(N)
i ≥ 0 a dilution parameter which may depend on x(N), and

ξ(N). The idea behind this dilution parameter is that κ(N)
i ' N

E[degN(i)]
(where

degN(i) =
∑N

j=1 ξ
(N)
ij is the indegree of the particle i, that is, the number of edges

incident to it), so that the interaction term remains of order 1 as N → ∞. This
means that the interaction in (3.1.1) is fixed as w(N)

ij = κ
(N)
i ξ

(N)
ij .
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3. Hawkes processes on inhomogeneous random graphs

Remark 3.2.3. By (Delattre et al., 2016a, Proposition 3), the Hawkes process
(ZN,1 (t) , . . . , ZN,N (t))t≥0 defined by (3.2.2) is such that P-almost surely, for all
i 6= j the processes ZN,i and ZN,j do not jump simultaneously and for all i ∈ J1, NK,
the compensator of ZN,i(t) is

∫ t
0
λN,i(s)ds (see Jacod & Shiryaev (2013) about

compensators of increasing processes).

3.2.2.2 Existence

We first provide well-posedness results of (ZN,1, . . . , ZN,N) given by (3.2.2). We
require the following assumptions:

Hypothesis 3.2.4. We suppose that f is Lipschitz continuous with Lipschitz
constant Lf ≥ 0, and that either f is nonnegative or that f(x) = x with vt ≥ 0 for
all t ≥ 0 and h ≥ 0 (linear case). We also suppose that h is locally square integrable
on [0,+∞), that (t, x) 7→ vt(x) is continuous in t and Lipschitz continuous in x
(uniformly in t) with Lipschitz constant Lv ≥ 0. Moreover v is supposed bounded
uniformly in (t, x) i.e, ‖v‖∞ := supt≥0 ‖vt‖∞ <∞.

Proposition 3.2.5. Under Hypothesis 3.2.4, for a fixed realization of the family
(πi)1≤i≤N , there exists a pathwise unique multivariate Hawkes process (in the sense
of Definition 3.2.2) such that for any T <∞, supt∈[0,T ] sup1≤i≤N E[ZN,i(t)] <∞.

The proof of Proposition 3.2.5 will be given in Section 3.7.1.

3.2.3 Large population limit process

We want to study the behavior of the process defined in Definition 3.2.2 when
N → ∞ on bounded time interval. After some heuristics, we show the well-
posedness of the limit of the system 3.2.2.

3.2.3.1 Heuristics

In this paragraph, we motivate the proper limit for the particle system (3.2.2) as
N →∞. A minimal requirement is that the empirical distribution of the positions

ν(N) :=
1

N

N∑
i=1

δ
x
(N)
i

has itself a macroscopic limit ν. We will consider below different

scenarios under which such LLN holds. Concerning the macroscopic behavior of
the graph, another minimal requirement is that in a way to define later on, the
graph G(N) given in Definition 3.2.2 converges towards a macroscopic interaction
kernel W : I × I −→ R+. We refer to Section 3.3.2 for more precise statements.
Then, as N → ∞, an informal LLN argument shows that the empirical mean in
(3.2.3) becomes an expectation w.r.t both the candidate limit for ZN,i and w.r.t the
macroscopic law ν of the positions: we can replace the sum in (3.1.1) by the integral
in (3.1.2), the microscopic interaction term w

(N)
ij in (3.1.1) by the macroscopic

term W (x, y) in (3.1.2) (where y describes the macroscopic distribution of the
positions), and the past activity of the neuron dZN,j(s) by its intensity in large
population. Hence, the macroscopic description of a neuron at position x ∈ I
should be described in terms of its intensity λt(x) solving (3.1.2). This heuristics
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3.3. Convergence of the model in large population

gives a limit process at position x defined as an inhomogeneous Poisson point
process with deterministic intensity (λt)t≥0 satisfying (3.1.2).

3.2.3.2 Well-posedness of the macroscopic limit

We propose a framework under which (3.1.2) is well-posed, with more hypotheses
on the regularity of (f, v,W ).

Hypothesis 3.2.6. Assume that the macroscopic indegree at position x defined
by

D(x) =

∫
I

W (x, y)ν(dy) (3.2.4)

has a Hölder regularity and is uniformly bounded on I: there exist Cw > 0 and
ϑ ∈]0, 1] such that∫

I

|W (x, y)−W (x′, y)|ν(dy) ≤ Cw‖x− x′‖ϑ, x, x′ ∈ I and (3.2.5)

sup
x∈I

D(x) =: C
(1)
W <∞. (3.2.6)

Theorem 3.2.7. Let T > 0. Under Hypotheses 3.2.4 and 3.2.6, there exists a
unique solution (t, x) 7→ λt(x) to (3.1.2) that is continuous and bounded on [0, T ]×I
and this solution is nonnegative. Moreover, there exists Cλ > 0 depending on
(f, v,W, h, ν, T ) such that for all (t, x, z) ∈ [0, T ]× I × I,

|λt(x)− λt(z)| ≤ Cλ
(
‖x− z‖+ ‖x− z‖ϑ

)
=: Cλφ (‖x− z‖) . (3.2.7)

In the linear case f(x) = x, h ≥ 0, vt ≥ 0 for all t ≥ 0, if v is continuously

differentiable in time and (t, x) 7→ ∂vt
∂t

(x) is bounded on [0, T ]× I, h is continuous
and piecewise continuously differentiable, then λ is differentiable in time and

∂λt
∂t

(x) =
∂vt
∂t

(x)+h(t)

∫
I

W (x, y)λ0(y)ν(dy)+

∫
I

∫ t

0

h(t−s)W (x, y)
∂λs
∂s

(y)ν(dy)ds,

(3.2.8)

and (t, x) 7→
∣∣∣∣∂λt∂t (x)

∣∣∣∣ is bounded on [0, T ]× I.

Theorem 3.2.7 will be proved in Section 3.7.2. Note that Theorem 3.2.7 provides
the existence of a unique solution λ of (3.1.2) that is continuous on R+ × I and
locally bounded.

3.3 Convergence of the model in large population

3.3.1 Coupling

From now on, λ refers to the unique solution to (3.1.2). To check that our heuristics
about the large population behavior is correct, we introduce a suitable coupling
between the process defined in (3.2.2) (at positions xi) and a Poisson process with
intensity λ(xi) at the same position xi.
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3. Hawkes processes on inhomogeneous random graphs

Definition 3.3.1. For the family (πi (ds, dz))1≤i≤N of i.i.d. PRM on R+×R+ from
Definition 3.2.2, we construct for all i in J1, NK:

Zi(t) =

∫ t

0

∫ ∞
0

1{z≤λs(xi)}πi(ds, dz) (3.3.1)

with λ satisfying (3.1.2). Each process Zi is an inhomogenous Poisson process
with (deterministic) intensity (λt(xi))t, and as the family (πi) is independent, the
processes

(
Zi

)
i=1,...,N

are also independent.

3.3.2 Hypotheses

Regarding the behavior of the graph when N → ∞, we use here the formalism of
graph convergence developped in Lovász (2012) and introduce different norms on
I2. The key notion is to represent graphs in term of graphons, that are positive
kernels defined on I2. Note that we will not necessarily restrict ourselves to the
symmetric case and bounded graphons.

Definition 3.3.2. Let W be a R-valued function defined on I × I, where I is
endowed with some probability measure ν. When the following terms are correctly
defined, we write:

‖W‖2,ν : = sup
S,T⊂I

∣∣∣∣∫
S×T

W (x, y) ν(dx)ν(dy)

∣∣∣∣ , (3.3.2)

‖W‖∞→1,ν : = sup
‖g‖∞≤1

∫
I

∣∣∣∣∫
I

W (x, y)g(y)ν(dy)

∣∣∣∣ ν(dx), (3.3.3)

‖W‖∞→∞,ν : = sup
‖g‖∞≤1

sup
x∈I

∣∣∣∣∫
I

W (x, y)g(y)ν(dy)

∣∣∣∣ . (3.3.4)

These norms go back to the formalism of graph convergence introduced in
Lovász (2012); Diaconis & Janson (2008) and further developed in Borgs et al.
(2011, 2018, 2019) (and references therein). The last two norms can be seen as
the norms of the linear operator TW : g 7→

(
x 7−→

∫
I
W (x, y)g(y)ν(dy)

)
when

considering respectively TW : L∞(I, ν) → L1(I, ν) and TW : L∞(I, ν) → L∞(I, ν).
We also define the cut-distance between two functions by

d2,ν (W1,W2) = ‖W1 −W2‖2,ν . (3.3.5)

Remark 3.3.3. Lemma 8.11 of Lovász (2012) gives that ‖ · ‖2,ν and ‖ · ‖∞→1,ν are
equivalent: if W is a function defined on I2 with values in R, then

‖W‖2,ν ≤ ‖W‖∞→1,ν ≤ 4‖W‖2,ν . (3.3.6)

As ‖W‖1,ν :=
∫
I2
|W (x, y)| ν(dx)ν(dy), we always have ‖W‖2,ν ≤ ‖W‖1,ν .

Usual representations of graphons consist in taking I = [0, 1] endowed with
Lebesgue measure. We extend this definition to the general case where ν is a
probability measure on I. To do this, we require the following assumption for the
whole article.
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Hypothesis 3.3.4. The probability measure ν is absolutely continuous with respect
to Lebesgue measure on Rd.

Lemma 3.3.5. Under Hypothesis 3.3.4, for any N ≥ 1, there exists a partition
PN := (BN,i)i=1,...,N of I (and we use the notation I =

⊔N
i=1BN,i) such that for all

i = 1, . . . , N , ν (BN,i) =
1

N
.

Without ambiguity, we will forget the upper index (N) and only write the
partition (B1, . . . , BN).

Proof. Denote by ν(1) the first marginal of ν that is absolutely continuous with
respect to Lebesgue measure on R. Let F1 be its continuous probability distribution
function. Then for all i = 1, . . . , N , defining Bi :=

(
F−1

1

((
i−1
N
, i
N

])
× Rd−1

)
∩ I

gives the result.

For every weighted graph G with weights (gij), we associate a step-function W G

constructed, upon this partition, as follows (see e.g. Lovász (2012); Borgs et al.
(2011)):

W G(u, v) =
N∑
i=1

N∑
j=1

gij1Bi(u)1Bj(v), (u, v) ∈ I2. (3.3.7)

Definition 3.3.6. We denote by G(1)
N the directed weighted graph with vertices

{1, · · · , N} such that every edge j → i is present, and with weight κ(N)
i WN(xi, xj).

Here G(1)
N represents the average version of the graph G(N) (where the interaction

ξij ∼ B (WN(xi, xj)) has been replaced by E (ξij)), renormalized by the dilution
coefficient κ(N)

i . A key argument of Theorems 3.3.10 and 3.3.12 will be to show
that G(N) and G(1)

N are close as N → ∞ through concentration arguments that
require the following uniformity assumptions on WN .

Hypothesis 3.3.7. We suppose that there exist κN ≥ 1 and wN ∈]0, 1] such that:

max
i∈J1,NK

(
κ

(N)
i

)
≤ κN , (3.3.8)

max
i,j∈J1,NK

(WN(xi, xj)) ≤ wN , (3.3.9)

1

κN
≤ wN ≤ 1, and asymptotically: (3.3.10)

κ2
NwN =

N→∞
o

(
N

log(N)

)
and

κN
N
−−−→
N→∞

0. (3.3.11)

We also suppose that there exists CW > 0 independent of N such that

sup
i∈J1,NK

1

N

N∑
j=1

κ
(N)
i WN(xi, xj) ≤ CW . (3.3.12)

61



3. Hawkes processes on inhomogeneous random graphs

To illustrate the above conditions, think of the case where WN = ρN is a
constant with ρN −−−→

N→∞
0. This corresponds to a diluted Erdös-Rényi random

graph. In this case, we can take wN = ρN and κ(N)
i = κN = 1/ρN . Then (3.3.11)

boils down to ρN � log(N)/N . Inequality (3.3.12) is the microscopic counterpart
of (3.2.6): we require that the weighted indegrees of vertices in G(1)

N are uniformly
bounded.

3.3.3 Convergence

We study the proximity between the particle systems (3.2.2) and its macroscopic
limit (3.3.1). We show two theorems that require different sets of hypotheses on
the parameter functions, under two main scenarios.

Definition 3.3.8. We consider two different frameworks for the choices of the
positions:

1. Random spatial distribution: For (x̃1, x̃2, . . . , x̃N , . . .) a random sequence
of i.i.d. variables distributed according to ν on I, we set for all N ≥ 1

x(N) =
(
x

(N)
1 , . . . , x

(N)
N

)
as the lexicographic ordering of the N first positions

(x̃1, x̃2, . . . , x̃N). We assume that ‖W‖Lχ(I2,ν⊗ν) <∞ for some χ > 5.

2. Deterministic regular distribution of the positions: For every N ≥ 1
and 1 ≤ i ≤ N , we set x(N)

i = i/N and I = [0, 1] endowed with ν(dx) = dx.
We assume that W is piecewise continuous on [0, 1]2.

The assumption χ > 5 of Scenario (1) is required in Proposition 3.8.6, as a
sufficient hypothesis for a Borel-Cantelli argument.

3.3.3.1 First case: convergence in average

Hypothesis 3.3.9. We suppose that the annealed graph G(1)
N converges to W for

the cut-distance:

d2,ν

(
W G(1)N ,W

)
−−−→
N→∞

0, as well as (3.3.13)

sup
j∈J1,NK

1

N

N∑
i=1

κ
(N)
i WN(xi, xj) ≤ CW . (3.3.14)

Note that (3.3.13) implies that lim
N→∞

‖W G(1)N −W‖∞→1,ν = 0 (see Remark 3.3.3).
The hypothesis (3.3.14) differs from (3.3.12) in the sense that (3.3.14) asks for a
uniform bound on the outdegree (that is, the number of tail ends adjacent to a
vertex) whereas (3.3.12) relates to a uniform bound on the indegree.

Theorem 3.3.10. Let T > 0. Suppose that the sequence of positions
(
x(N)

)
N

satisfies one of the scenarios of Definition 3.3.8. Then, under the set of Hypotheses
3.2.4, 3.2.6, 3.3.4, 3.3.7, and 3.3.9, we have

1

N

N∑
i=1

E

[
sup
t∈[0,T ]

∣∣ZN,i(t)− Zi(t)
∣∣] −−−→

N→∞
0 (3.3.15)
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3.3. Convergence of the model in large population

for P-almost realizations of the connectivity sequence and positions
(
ξ(N), x(N)

)
N≥1

.

The proof of Theorem 3.3.10 will be given in Section 3.8.2.

3.3.3.2 Second case: convergence of the supremum

Some graphs do not satisfy (3.3.14), see the examples of Section 3.5.1.2. We propose
here another result of convergence that does not require the control (3.3.14), but
ask in return for a stronger convergence of the graphons.

Hypothesis 3.3.11. We suppose that

‖W G(1)N −W‖∞→∞,ν −−−→
N→∞

0. (3.3.16)

Theorem 3.3.12. Let T > 0. Suppose that the sequence of positions
(
x(N)

)
N

satisfies one of the scenarios of Definition 3.3.8. Consider the coupling introduced
in Definition 3.3.1. Then, under the set of Hypotheses 3.2.4, 3.2.6, 3.3.4, 3.3.7
and 3.3.11, we have

max
1≤i≤N

E

[
sup
t∈[0,T ]

∣∣ZN,i(t)− Zi(t)
∣∣] −−−→

N→∞
0. (3.3.17)

P-almost surely.

The proof of Theorem 3.3.12 will be given in Section 3.8.3.

Remark 3.3.13. Theorems 3.3.10 and 3.3.12 are quenched results, and do not
provide any speed of convergence. In this case, the speed of convergence is unknown.
Nevertheless, if we integrate also with respect to the graph (annealed case), one
can obtain explicit speed of convergence as follows:

max
1≤i≤N

EE

[
sup
t∈[0,T ]

∣∣ZN,i(t)− Zi(t)
∣∣] ≤ CT

κN
√
wN√
N

,

1

N

N∑
i=1

EE

[
sup
t∈[0,T ]

∣∣ZN,i(t)− Zi(t)
∣∣] ≤ CT

κN
√
wN√
N

.

Working in the annealed case simplifies considerably the proof (left to the reader),
the previous estimates can be easily derived from the calculation done in the proofs
of the previous theorems: we no longer have to deal with concentration estimates
(see the term A

(N)
i,t,3 below in (3.8.12) which becomes a simple variance term).

3.3.4 Consequence on the empirical measure

A direct consequence of Theorems 3.3.10 and 3.3.12 concerns the behavior as N →
∞ of the empirical distribution on the space S := D ([0, T ],N) × I of trajectories
and positions.

63



3. Hawkes processes on inhomogeneous random graphs

Definition 3.3.14. We define the following probability measures on S:

µN(dη, dx) :=
1

N

N∑
i=1

δ(
ZN,i([0,T ]),x

(N)
i

)(dη, dx), and (3.3.18)

µ∞(dη, dx) := P[0,T ],∞ (dη|x) ν(dx), (3.3.19)

where P[0,T ],∞ (·|x) is the law of an inhomogeneous Poisson point process with
intensity (λt(x))0≤t≤T (solution of (3.1.2)). Note that µN is random.

Theorem 3.3.15. Under the assumptions of Theorem 3.3.10 or Theorem 3.3.12,
for P-almost realizations of the connectivity sequence and positions

(
ξ(N), x(N)

)
N≥1

we have
E [dBL (µN , µ∞)] −−−→

N→∞
0, (3.3.20)

where dBL is the bounded Lipschitz distance introduced in (3.2.1).

The proof of Theorem 3.3.15 will be given in Section 3.9.1. We can see this
result as an extension of Theorems 1 and 2 of Chevallier et al. (2019), where the
memory function is an exponential kernel and the interaction comes from a fixed
interaction kernel that depends on the positions.

3.3.5 Spatial profile

Here we are under the conditions of Scenario (2) of Definition 3.3.8, where λ solves
(3.1.2).

Definition 3.3.16. Define the random profile

UN(t, x) :=
N∑
i=1

UN,i(t)1x∈( i−1
N
, i
N ], where (3.3.21)

UN,i(t) := vt(xi) +
κ

(N)
i

N

N∑
j=1

ξ
(N)
ij

∫ t

0

h(t− s)dZN,j(s), (3.3.22)

and the deterministic profile

ut(x) := vt(x) +

∫
I

W (x, y)

∫ t

0

h(t− s)λs(y)ds dy. (3.3.23)

We see from Theorem 3.2.7 that u is continuous and bounded on [0, T ]× IS.

Note that λN,i(t) = f (UN,i(t−)) and that UN,i(t) describes the accumulated
activity of neuron i up to time t. A similar quantity has already been considered
in Chevallier et al. (2019) for h(t) = e−αt with a deterministic graph of interaction.
In this case, with vt(x) = e−αtρ(x), (3.3.23) is the solution of the scalar neural field
equation

∂tut(x) = −αut(x) +

∫
I

W (x, y)f(ut(y))dy.

It has been extensively studied in the literature as an important example of macros-
copic structured model with non local interaction (see Amari (1977); Wilson &
Cowan (1972); Bressloff (2012)).

64



3.4. Large time behavior of the limit process in the linear case

Proposition 3.3.17. Under the Hypotheses of Theorem 3.3.10,

E

[∫ T

0

∫ 1

0

|UN(t, x)− ut(x)| dx dt
]
−−−→
N→∞

0, (3.3.24)

for P-almost realizations of the connectivity sequence and positions
(
ξ(N), x(N)

)
N≥1

.

The proof of Proposition 3.3.17 will be given in Section 3.9.2.

3.4 Large time behavior of the limit process in
the linear case

We want to see how the limiting intensity (3.1.2) behaves as t → ∞. We restrict
here to the following linear case, that is, when f(x) = x:

λt(x) = vt(x) +

∫
I

W (x, y)

∫ t

0

h(t− s)λs(y)ds ν(dy), (3.4.1)

for (t, x) ∈ R+ × I. The case without spatial interaction, that is, λt = µ +∫ t
0
h(t−s)λsds with µ ≥ 0 is standard and has been thoroughly studied in (Delattre

et al., 2016a, Th. 10 and 11). Depending on the value of ‖h‖1, there is a phase
transition in the behavior of such λ when t→∞: in the subcritical case (‖h‖1 < 1),
λt −−−→

t→∞

µ

1− ‖h‖1

and in the supercritical case (‖h‖1 > 1), λt −−−→
t→∞

∞. The point

of the present paragraph is to extend this result to the spatial case. We require the
following assumptions:

Hypothesis 3.4.1. Suppose that we are in the linear case of Hypothesis 3.2.4.
In addition to Hypotheses 3.2.4 and 3.2.6, we suppose that h is in L1(R+) and
piecewise continuously differentiable. We also suppose that t 7→ vt is continuously
differentiable and that there exists Cv > 0 such that

sup
x∈I

∥∥∥∥t 7→ ∂vt
∂t

(x)

∥∥∥∥
1

= sup
x∈I

∫
R+

∣∣∣∣∂vs∂s (x)

∣∣∣∣ ds ≤ Cv <∞. (3.4.2)

We also suppose that there exists v∞ Lipschitz continuous on I such that lim
N→∞

sup
x∈I

|vt(x)− v∞(x)| = 0. Hence, when it does not depend on time, we simply suppose
vt = v = v∞.

To describe the phase transition, we introduce the following linear operator

TW : L∞(I) −→ L∞(I)

g 7−→
(
TWg : x 7−→

∫
I
W (x, y)g(y)ν(dy)

)
.

(3.4.3)

The continuity of TW follows directly from (3.2.6), and we have ‖TW‖ ≤ C
(1)
W . We

denote by r∞(TW ) the spectral radius of TW :

r∞ := r∞(TW ) = sup
σ∈Sp(TW )

|σ| = lim
n→∞

‖T nW‖
1
n . (3.4.4)

The phase transition is given in terms of ‖h‖1r∞ < 1 (subcritical) and ‖h‖1r∞ > 1
(supercritical). The two cases are described separately below, after dealing with
the usual exponential case.
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3. Hawkes processes on inhomogeneous random graphs

3.4.1 The exponential case

Previous works (Chevallier et al., 2019) have considered h(t) = e−αt with α > 0
(hence ‖h‖1 = 1/α). The term α is then called the leakage rate. Note that in this
case, the dynamics becomes Markovian (Dion et al., 2021). At the large population
limit, the spatial profile seen in Section 3.3.5 is in this case linked to the scalar
neural field equation (Chevallier et al., 2019). In the exponential case, with the
introduction of the operator TW we can give an explicit solution of (3.4.1).

Proposition 3.4.2. In the exponential case h(t) = e−αt with vt = v, the solution
of (3.4.1) is explicitly given by

λt(x) = e−αtetTW v(x) + α

∫ t

0

e−α(t−s)e(t−s)TW v(x)ds, (3.4.5)

where
(
etTW

)
t≥0

is the semigroup of the bounded operator TW defined as

etTWu :=
∞∑
k=0

tk

k!
T kWu, u ∈ L∞(I). (3.4.6)

Proof. Define for t ≥ 0 A(t) := x 7→ eαtλt(x). Multiplying (3.4.1) by eαt, we obtain

that A(t) solves in L∞(I) the differential equation
d

dt
A(t) = αeαtv + TWA(t) with

A(0) = λ0(·) = v. As t → etTWu is the unique solution of X ′(t) = TWX(t) with
initial condition X(0) = u for u ∈ L∞(I), a variation of constants formula gives
A(t) = etTW v + α

∫ t
0
e(t−s)TW eαsvds, and (3.4.5) follows by definition of A.

Example 3.4.3. Consider the particular case of Expected Degree Distribution
(EED) (see Chung & Lu (2002); Ouadah et al. (2019)), where W (x, y) = f(x)g(y)
with f and g two positive functions on I such that f, g ∈ L2(I, ν). Without any
loss of generality, we assume

∫
I
gdν = 1 and then D(x) = f(x) and r∞ = 〈f, g〉.

When α 6= 〈f, g〉, the solution of (3.4.5) is given by

λt(x) = v(x) +
〈g, v〉

α− 〈f, g〉
(
1− et(〈f,g〉−α)

)
f(x).

The large time behavior depends then explicitly on the sign of 〈f, g〉 − α:

〈f, g〉 > α⇒ ∀x ∈ I, λt(x) −−−→
t→∞

+∞ and

〈f, g〉 < α⇒ ∀x ∈ I, λt(x) −−−→
t→∞

v(x) +
〈g, v〉

α− 〈f, g〉
f(x).

Proof. Recall that we have here vt(x) = v(x). By induction, we have explicitly that

for k ≥ 1, T kWv = f〈g, v〉〈f, g〉k−1. Since etTWu = u+
∞∑
k=1

tk

k!
T kWu when u ∈ L∞(I),
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3.4. Large time behavior of the limit process in the linear case

together in (3.4.5), we obtain

λt(x) = e−αt

(
v(x) +

∞∑
k=1

tk

k!
f(x)〈g, v〉〈f, g〉k−1

)

+ α

∫ t

0

e−α(t−s)

(
v(x) +

∞∑
k=1

(t− s)k

k!
f(x)〈g, v〉〈f, g〉k−1

)
ds

= v(x) + f(x)
〈g, v〉
〈f, g〉

(
e−t(α−〈f,g〉) − e−α(t) +

α
(
1− e−t(α−〈f,g〉)

)
α− 〈f, g〉)

− 1 + e−αt

)

which gives then the result.

We now consider the general case.

3.4.2 Subcritical case

We assume that:
‖h‖1r∞ < 1. (3.4.7)

The main result is the following

Theorem 3.4.4. Assume (3.4.7). Under Hypotheses 3.2.6 and 3.4.1

• there exists a unique function ` : I 7→ R+ solution of

`(x) = v∞(x) + ‖h‖1

∫
I

W (x, y)`(y)ν(dy), (3.4.8)

continuous and bounded on I. Moreover, there exists C` > 0 such that for all
(x, y) ∈ I2,

|`(x)− `(y)| ≤ C`φ (‖x− y‖) , (3.4.9)

where φ is given in (3.2.7).

• for any x ∈ I, we have the convergence

λt(x) −−−→
t→∞

`(x). (3.4.10)

The proof of Theorem 3.4.4 will be given in Section 3.10.1. We are now in
position to address the question that motivates our paper: to what extent does the
inhomogeneity of the underlying graph influence the macroscopic dynamics?

Proposition 3.4.5. In the subcritical case (3.4.7), ` solution of (3.4.8) is explicitly
defined by

` =
∞∑
k=0

‖h‖k1T kWv∞. (3.4.11)

In particular, if (t, x) 7→ vt(x) is constant (i.e. for all (t, x), vt(x) = v∞(x) = v),
` is uniform (i.e. `(x) = ` for every x ∈ I) if and only if the indegree is uniform
(i.e. D(x) =

∫
I
W (x, y)ν(dy) = D for every x ∈ I). In such case, r∞ = D.
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Note that (3.4.11) informs us about the influence of the macroscopic graph W
on the dynamics: when v∞ is constant, we have

`(x) = v∞

(
∞∑
k=0

‖h‖k1D(k)(x)

)
, (3.4.12)

where D(0) = 1, D(1) = D(x) and D(k+1) = TWD
(k). We see from (3.4.12) that

in order to understand `(x), one needs to explore the structure of the macroscopic
graph around x.

Proof. Equation (3.4.8) can be written ` = v∞ + ‖h‖1TW ` which leads to

‖h‖1

(
Id

‖h‖1

− TW
)
` = v∞.

As r∞ < 1
‖h‖1 in the subcritical case,

(
Id
‖h‖1 − TW

)
is invertible (recall that r∞ =

supσ∈Sp(TW ) |σ|) and then ` = (Id− ‖h‖1TW )−1 v∞ =
∑∞

k=0 ‖h‖k1T kWv∞.
We take now v∞ constant. Theorem 3.4.4 gives the existence of a unique `

satisfying (3.4.8). Assume that this solution is a constant function `0, then for all
x ∈ I we have from (3.4.8) `0 = v∞ + ‖h‖1`0

∫
I
W (x, y)ν(dy) thus

∫
I
W (x, y)ν(dy)

is constant and is equal to
`0 − v∞
`0‖h‖1

. Conversely, assume
∫
I
W (x, y)ν(dy) constant

and equal to D. Then, a direct computation gives ‖TWf‖∞ ≤ ‖f‖∞D hence
(as r∞ = limn→∞ ‖T nW‖

1
n ) r∞ ≤ D. As TW1 = D1 (where 1(x) ≡ 1), we have

D ≤ r∞ thus D = r∞. The subcritical case can then be written as ‖h‖1D < 1

and we can define `0 :=
v∞

1− ‖h‖1D
> 0. The constant function `0 is continuous,

bounded and solution of (3.4.8) which is unique: thus the solution of (3.4.8) is
indeed constant.

3.4.3 Supercritical case

We assume that:
‖h‖1r∞ > 1. (3.4.13)

Note again that, without space interaction (i.e. W = 1), (3.4.13) reduces to ‖h‖1 >
1 and it can be shown (see Delattre et al. (2016a), Theorem 11) that λt ∼ αeβt →∞
for some α, β > 0. In our context with nontrivial W , one does not expect to
have λt(x) −−−→

t→∞
∞ uniformly on x as one can see from the obvious following

example: take W (x, y) = α1[0, 1
2

)2(x, y) + β1[ 1
2
,1]2(x, y) for α > β, then r∞ = α

2
.

This corresponds to two disconnected mean-field components A (for neurons with
positions in IA = [0, 1

2
)) and B (for neurons with positions in IB = [1

2
, 1]). The

critical parameter for population A (resp. B) is hence αc = 2
‖h‖1 (resp. βc =

2
‖h‖1 ). Taking now α > αc and β < βc, (3.4.13) is satisfied but one does not have
λt(x) −−−→

t→∞
∞ uniformly on x as the population B is subcritical, we only have

λt(x) −−−→
t→∞

∞ for x ∈ IA.
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In order to avoid such trivial examples, we assume that the graphon W is
sufficiently connected in the following way. Defining for k ≥ 1:

W (k)(x, y) :=

∫
I×···×I

W (x, x1) · · ·W (xk−1, y)dx1 · · · dxk−1,

we assume primitivity of W i.e. that there exists k such that

W (k) > 0. (3.4.14)

Note that W (k) is the kernel of the operator T kW . To understand (3.4.14), think
of the finite dimensional case with N particles interacting through a connectivity
matrix A. In this context, A being primitive means the existence of some k ≥ 1
such that Ak(i, j) > 0 for all i, j. Hypothesis (3.4.14) is the exact counterpart in
infinite dimension. We also assume the more technical assumptions:

Hypothesis 3.4.6.

sup
x

∫
I

W (x, y)2ν(dy) =: C
(2)
W <∞, (3.4.15)

and
W (x, y) = W (y, x), for all (x, y) ∈ I2. (3.4.16)

We also assume that we can define the Laplace transform of h for any z ≥ 0 :
L(h)(z) :=

∫∞
0
e−tzh(t)dt <∞. Having h of polynomial growth works for instance.

Proposition 3.4.7. Under Hypothesis 3.4.6, for all p ≥ 1, the linear operator
T pW is continuous from L2(I) to L2(I), is compact, self-adjoint, its spectrum is the
union of {0} and a discrete sequence of eigenvalues (µ

(p)
n )n≥1 such that µ(p)

n → 0 as
n→∞. Moreover, the spectral radius r2(T pW ) verifies

r2(T pW ) = rp∞ (3.4.17)

where r∞ defined in (3.4.4).
Secondly, if one assumes further hypothesis (3.4.14) for p = k, µ(k)

0 := r2(T kW ) > 0

is an eigenvalue of T kW with a unique normalized eigenfunction h(k)
0 that is bounded,

continuous and strictly positive on I. Moreover, every other eigenvalue µ(k)
n of T kW

has modulus
∣∣∣µ(k)
n

∣∣∣ < r2(T kW ).

Proposition 3.4.8. Suppose that we are in the supercritical case (3.4.13). Under
Hypotheses 3.4.1 and 3.4.6,

∫
I
λt(x)2ν(dx) −−−→

t→∞
∞.

The proofs of Propositions 3.4.7 and3.4.8 will be given in Section 3.10.2.

Remark 3.4.9. Proposition 3.4.8 provides a divergence result in L2 norm, that is
not uniform in x. But under more restrictive hypotheses on the connectivity of W
(without supposingW symmetric), one can easily derive uniform divergence result.
Assume 0 < infx∈I u(x) =: u < ∞ and ‖h‖1 infx∈I ‖W (x, ·)‖1,ν > 1, we have then
that infx∈I limt→∞ λ(t, x) = +∞. Note that by Fatou Lemma, infx∈I ‖W (x, ·)‖1,ν ≤
r∞, hence it also implies the result of Proposition 3.4.8.
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3. Hawkes processes on inhomogeneous random graphs

Proof of Remark 3.4.9. Let u(t, x) := infs≥t λs(x). For all x ∈ I, set

`(x) = lim inf
t→∞

λt(x).

We have for all t > 0, using the positivity of W,h and λ, and the fact that λs(y) ≥
u( t

2
, y) for all s ∈ [ t

2
, t],

λt(x) = vt(x) +

∫ t
2

0

∫
I

W (x, y)h(t− s)λs(y) ν(dy) ds

+

∫ t

t
2

∫
I

W (x, y)h(t− s)λs(y) ν(dy) ds

≥ vt(x) +

∫ t
2

0

h(s)ds

∫
I

W (x, y)u

(
t

2
, y

)
ν(dy),

then taking lim inf
t→∞

, we obtain as u(·, y) is non decreasing by monotone convergence

inf
x∈I

`(x) ≥ v∞ + inf
y∈I

`(y)‖h‖1 inf
x∈I

∫
I

W (x, y)ν(dy).

As v∞ is positive and ‖h‖1 infx∈I ‖W (x, ·)‖1,ν > 1 (in the subcritical case), it implies
that infx∈I `(x) = infx∈I limt→∞ infs≥t λs(x) = +∞ hence the result.

3.5 Applications
We give here examples of graphs

(
G(N)

)
and corresponding graphons that satisfy

the hypothesis of the paper. The main class of examples we have in mind fall into
the framework of W -random graphs, see Lovász & Szegedy (2006); Luçon (2020).

3.5.1 A general class of examples

Given a positive measurable kernel (x, y) 7→ P(x, y) on I2, for any N ≥ 1 we
consider the interaction kernel

WN(x, y) := ρN min

(
1

ρN
,P(x, y)

)
(3.5.1)

with ρN > 0. If P is bounded, by modifying ρN , we can suppose with no loss of
generality ‖P‖∞ = 1 and WN(x, y) = ρNP(x, y) whenever ρN ≤ 1

‖P‖∞
. Then, one

distinguish the dense case when limN→∞ ρN = ρ > 0 and the diluted case when
ρN → 0.

3.5.1.1 Uniformly bounded degrees

Suppose supx
∫
I
P(x, y)ν(dy) < ∞. Recall that the prefactor κ(N)

i in (3.2.3) was
here to ensure that the interaction remains of order 1 as N → ∞. In the dense
case renormalization is not necessary, one can take κ(N)

i = 1; and in the diluted
case we can take κ

(N)
i = ρ−1

N . In either case, we take wN = ρN . To satisfy
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Hypothesis 3.3.7, we require
NρN

log(N)
−−−→
N→∞

+∞. Hypothesis 3.3.9 or Hypothesis

3.3.11 with W = P are satisfied under regularity assumption on P , see (Luçon,
2020, Propositions 3.2, 3.4, 3.6 and 3.9). Note that if ρN = 1, it is a direct
consequence of Proposition 3.8.4 (in this case W G(1)N = W G(2)N , see Definition 3.8.3
for the graph G(2)

N ). Typical examples include the classic Erdös-Rényi graph with
P = 1 (hence WN = ρN is uniform), interaction with the P-nearest neighbors (see
Omelchenko et al. (2012)), or the EDD model previously defined in Example 3.4.3.
These examples are thoroughly detailed in the next part.

3.5.1.2 Unbounded degrees

Suppose that
∫
I

P(x, y)2ν(dy) < ∞ for all x ∈ I and P∗ := inf
z∈I

∫
P(z, y)ν(dy) >

0, but sup
x∈I

∫
I

P(x, y)ν(dy) = ∞. Then we take the dilution parameter κ(N)
i =

N

(
ρN
∑N

j=1 min

(
1

ρN
,P(xi, xj)

))−1

, and the macroscopic interaction kernel is

W (x, y) =
P(x, y)∫

I
P(x, z)ν(dz)

. For such examples, see (Luçon, 2020, Section 3.4). For

instance, consider P(x, y) = x−αg(y) with g a probability measure on [0, 1] and
α < 1

2
.

We present in the following different concrete examples of application of our
results. We focus on the framework I = [0, 1] with the regular distribution of the
positions x(N)

i = i
N
, 1 ≤ i ≤ N and ν the Lebesgue measure. We take f(x) = x to

apply the results of Section 3.4.

3.5.2 Example: Erdös-Rényi graph

Taking P ≡ 1 with ρN ∈ [0, 1], (3.5.1) becomes WN ≡ ρN . This corresponds to the
case where G(N) is a (possibly diluted) Erdös-Rényi random graph: the dense case
corresponds to ρN → ρ ∈ (0, 1] (and one takes κi ≡ 1 for all i) whereas the diluted
case corresponds to ρN → 0 (and one chooses κi ≡ 1

ρN
). The dilution condition

(3.10) reduces to
NρN
logN

−−−→
N→∞

+∞. (3.5.2)

Note that the condition (3.5.2) is the very same condition already met in the similar
context of diffusions interacting on Erdös-Rényi random graphs (see Delattre et al.
(2016b); Bet et al. (2020)), in the quenched case (i.e. where the randomness of the
graph is frozen). In the (technically simpler) annealed case (where one integrates
also with respect to the randomness of the graph), it is possible to get rid of this
supplementary logN term (that is required, in the present quenched setting, for our
Borel-Cantelli arguments to work) and assume only NρN → ∞ (as this has been
done for diffusions in an annealed setting e.g. in Bhamidi et al. (2019); Coppini
et al. (2019); Bayraktar et al. (2023)). Here, the limiting graphon is given by
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3. Hawkes processes on inhomogeneous random graphs

W ≡ ρ (with ρ = 1 in the diluted case). Condition (3.2.5) is then trivially satisfied
and one can apply Theorems 3.3.10 and 3.3.12 (the convergence of graphs is seen
in Proposition 3.8.4). As the degree is constant, Proposition 3.4.5 gives r∞ = ρ.
As Hypothesis 3.4.6 is satisfied, there is a transition phase around ρc = 1

‖h‖1 .
In the subcritical case ‖h‖1ρ < 1, Theorem 3.4.4 gives that for any x ∈ I,

λt(x) −−−→
t→∞

`(x) =
v∞(x)(1− ‖h‖1ρ) + ‖v∞‖I,ν,1‖h‖1ρ

1− ‖h‖1ρ
. Note that if v∞ is constant,

` =
v∞

1− ‖h‖1ρ
. Corresponding simulations are given in Figures 3.1 and 3.2.

In the supercritical case ‖h‖1ρ > 1, as W is constant, we can directly apply
Remark 3.4.9 and obtain infx∈I limt→∞ λt(x) = +∞.

3.5.3 Example: P-nearest neighbor model (Omelchenko
et al., 2012)

Consider the kernel W (x, y) = 1dS1 (x,y)<r for any (x, y) ∈ I2 and for some fixed
r ∈ (0, 1

2
), with

dS1(x, y) = min(|x− y|, 1− |x− y|). (3.5.3)

It means that the particles at positions x and y interact if and only if they are at
distance less than r on the circle S1 := R/[0,1]. This corresponds to a deterministic
graph. As (3.2.5) is satisfied - for any (x, x′) ∈ I2,

∫
I
|W (x, y)−W (x′, y)|ν(dy) =∫ 1

0

∣∣1|x−y|<r − 1|x′−y|<r
∣∣ dy ≤ 4|x − x′|, we can apply Theorems 3.3.10 and 3.3.12.

As for any x ∈ I,
∫
I
W (x, y)dy = 2r, Proposition 3.4.5 gives that r∞ = 2r. The

assumptions (3.4.15) and (3.4.16) are trivially verified, and as W (k) is positive for
k := inf

{
n ≥ 0, nr ≥ 1

2

}
, Hypothesis 3.4.6 is satisfied and there is a transition

phase around rc = 1
2‖h‖1 . In the subcritical case (r < rc), Proposition 3.4.5 gives

that when vt(x) = v for all (t, x) ∈ R+ × I, the limiting intensity is explicit and
` =

v

1− 2r‖h‖1

. We give an example of simulation in this case in Figure 3.3. In

the supercritical case (r > rc), as the degree is constant, we can directly apply
Remark 3.4.9 and obtain infx∈I limt→∞ λt(x) = +∞.

3.5.4 Example: Inhomogeneous graph with EDD (Chung &
Lu, 2002)

Recall Example 3.4.3: W (x, y) = f(x)g(y) with f and g two positive bounded
functions on I such that f, g ∈ L2(I, ν) and

∫
I
gdν = 1. We also suppose that f

satisfies a Hölder condition for ϑ ∈ (0, 1] and is bounded. Note that the indegree
is D(x) = f(x). Hypothesis 3.2.6 is satisfied and we can apply Theorems 3.3.10
and 3.3.12. The operator TW is then defined as TWk(x) = f(x)〈g, k〉 for k ∈ L∞.
An iteration gives T nW = 〈f, g〉n−1TW for all n ≥ 1, and then r∞ = 〈f, g〉, so that
the phase transition is given in term of 〈f, g〉‖h‖1 < 1 or 〈f, g〉‖h‖1 > 1 (and we
retrieve Example 3.4.3 in the exponential case).

In the subcritical case ‖h‖1〈f, g〉 < 1, Theorem 3.4.4 gives that for any x ∈
I, λt(x) −−−→

t→∞
`(x) where ` is the solution of (3.4.8), that is `(x) = v∞(x) +
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for 1 ≤ i ≤ N , and the plain line corresponds to
the macroscopic limit `(x).
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(c) Evolution of microscopic and macroscopic intensities of three particles at
positions x =0.25 (blue - the lowest), 0.5 (red) and 0.75 (green - the highest).
In each case, the colored line represents λN,i(t), the dashed line represents
λt(x) and the dotted line represents the limit `(x).

Figure 3.1: Simulation of Example 3.5.2 with inhomogeneous vt

We chose h(t) = e−αt with α = 2, ρ = 0.5 for the Erdös-Rényi graph and vt(x) = x+ 1. We are
in the subcritical case ‖h‖1ρ < 1 and the limiting intensity is given by `(x) = x + 1

2 . We run a
simulation for N = 1000 and T = 5: in 3.1a, we show the matrix of the Erdös-Rényi graph G(N).
In 3.1b, we represent the spatial distribution of intensities at fixed time T . In 3.1c, we show the
time evolution of the intensities for different positions. Note here that the inhomogeneity of `(x)
is due to the inhomogeneity of the vt, not of the graph.
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(c) Evolution of microscopic and macroscopic intensities of two particles at
positions x =0.5 (red) and 0.75 (blue). The colored lines represent λN,i(t),
the dashed line represents λt and the dotted line represents the limit `.

Figure 3.2: Simulation of Example 3.5.2 with homogeneous vt

We chose h(t) = e−αt with α = 2, ρ = 0.5 for the Erdös-Rényi graph and vt(x) = 1, we are in
the subcritical case (‖h‖1ρ = 1

4 < 1). As the graph is homogeneous in space and the self-activity
is constant, the limit solution of (3.1.2) dos not depend of the position: λt = 4

3 −
1
3e

− 3
2 t. The

limiting intensity is constant ` = 4
3 . We run a simulation for N = 1000 and T = 5. In 3.2a,

we show the matrix of the Erdös-Rényi graph G(N). In 3.2c, we show the time evolution of the
intensities for different positions. In 3.2b, we represent the spatial distribution of intensities at
fixed time T .
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(b) Evolution of microscopic and macroscopic intensities of two particles at
positions x =0.5 (red) and 0.1 (blue). The colored lines represent λN,i(t), the
dashed line represents λt and the dotted line represents the limit `.

Figure 3.3: Simulation of Example 3.5.3 in the subcritical case

We chose h(t) = e−2t, r = 0.1 and vt(x) = 1, hence we are in the subcritical case as 2r‖h‖1 < 1.
The graph is not homogeneous in space but has a symmetry and the self-activity v is constant,
hence the solution of (3.1.2) does not depend of the position: λt = 10

9 −
1
9e

− 9
5 t. The limiting

intensity is constant ` = 10
9 . We run a simulation for N = 500 particles and a final time T = 10:

in 3.3a, we show the matrix of the graph G(N) obtained. In 3.3b, we show the time evolution
of the intensities for different positions. We see that the simulated intensities follow indeed the
behavior expected, as they are close to λt(x) and converge toward a constant limit `.
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3. Hawkes processes on inhomogeneous random graphs

‖h‖1
f(x)〈v∞, g〉

1− ‖h‖1〈f, g〉
. We give an example of simulation in the case f = g in Figure

3.4.

3.5.5 Example: Multi-class interaction populations

Another interesting case concerns deterministic and inhomogeneous graphs modeling
the macroscopic organization of neurons into vertical columns. A generic construction
is the following: divide I = (0, 1] into P consecutive subintervals Ij with respective
length αj > 0, that is, Ij = (α1 + · · ·+ αj−1, α1 + · · ·+ αj] and α1 + · · ·+ αP = 1.
Take any connectivity matrix M between the P populations, M = (mij)1≤i,j≤P
with mij ∈ {0, 1} modeling the deterministic connection between subpopulations
i and j. Take the self-activity fixed for each population, described by u0(t) =
(u0,i(t))1≤i≤P and converging towards u = (ui)1≤i≤P as t → ∞. Define finally
W (x, y) =

∑P
i,j=1 mij1x∈Ii1y∈Ij , as well as M̃ = (αjmij)1≤i,j≤P . Then r∞ = ρ(M̃)

where ρ(M̃) is the spectral radius of M̃ so that the phase transition described above
is given here in terms of ρ(M̃)‖h‖1 < 1 or ρ(M̃)‖h‖1 > 1.

The limiting intensity λt(x) is constant on each population, described by the
vector λ̃(t) = (λi(t))1≤i≤P which solves λ̃(t) = u0(t) +

∫ t
0
h(t − s)M̃λ̃(s)ds. In the

subcritical case, the limit ` = (`i)1≤i≤P is piecewise constant (on each population)
and solves ` = u+ ‖h‖1M̃`. In the supercritical case,

∑P
i=1 αiλi(t)

2 t→∞−−−→∞ when
M̃ is symmetric and primitive.

Remark. A closer look at the proof of Theorem 2.3 and (2.5) of Athreya & Murthy
(1976) shows that λi(t)→∞ for all i ∈ J1, pK in the simpler case when M is only
irreducible but not necessarily symmetric nor primitive (e.g. the case considered
in Ditlevsen & Löcherbach (2017)).

3.6 Possible extensions
Inhibition is an important factor in neuronal dynamics. In the present model, we
restricted ourselves for simplicity to a nonnegative interaction kernelW . Neverthe-
less, we can easily introduce a dependence in inhibition by considering signed spatial
interaction W : take w(N)

ij in (3.1.1) of the form wij = κ
(N)
i ξ

(N)
ij s(xi, xj), where

s(x, y) ∈ {±1} expresses the nature of interaction between neurons located in x
and y: s(x, y) = 1 if the interaction is excitatory or −1 if it is inhibitory. For
instance, if the nature of the interaction only depends on the neuron sending the
information, take s(x, y) = s(y). The resulting macroscopic limit is now expressed
in terms of a signed interaction kernel W . The results presented in this paper
remain the same with appropriate regularity assumptions on s, up to notational
changes in the norms where W is replaced by |W |.

Another possible extension concerns the memory kernel h. In our paper, this
kernel is identical on the population. One could think that neurons can present an
inhomogeneity in the way they remember the past information, that is considering
a memory kernel depending also on the positions of the neurons h(t, x, y). With
enough regularity on such h, the same results hold up to notational changes.
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(d) Evolution of microscopic and macroscopic intensities of two
particles at positions x =0.5 (blue - the highest) and 0.3 (red - the
lowest). In each case, the colored line represents λN,i(t), the dashed
line represents λt(x) and the dotted line represents the limit `(x).

Figure 3.4: Simulation of Example 3.5.4

We chose h(t) = e−αt with α = 2, vt(x) = 1 and f(x) = g(x) = x, that is W (x, y) = xy: we
are in the subcritical case (‖h‖1〈f, f〉 < 1) and the limiting intensity is `(x) = 1 + 3

10x. We run
a simulation for N = 500 and T = 10: in 3.4b, we represent the graphon W , and in 3.4a we
show the matrix random graph G(N) obtained. In 3.4c, we represent the spatial distribution of
intensities at fixed time T . In 3.4d, we show the time evolution of the intensities for different
positions. Note here that the inhomogeneity of `(x) is only due to the inhomogeneity of the kernel
W .
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3.7 Existence and uniqueness of the model and its
limit (proofs)

3.7.1 Proof of Proposition 3.2.5

We study the pathwise uniqueness by considering the total variation distance
between two such processes. We show the existence by constructing a Cauchy
sequence adapted and using a Picard iteration argument. We follow the structure
of the proof proposed in (Delattre et al., 2016a, Theorem 6). Let N ≥ 1, we
consider a family of independent Poisson measures (πi (ds, dz))1≤i≤N with intensity
dsdz. We start by showing uniqueness and we omit the notations (N) and N for
simplicity. We set (Zi (t))i∈J1,NK,t≥0 and (Zi (t))i∈J1,NK,t≥0 two solutions of the system
(3.2.2) such that E [Zi (t)] < +∞ and E [Zi (t)] < +∞ for any i ∈ J1, NK and t ≥ 0.
For any i ∈ J1, NK, we consider the total variation distance between Zi and Zi on
[0, t]:

∆i(t) :=

∫ t

0

|d (Zi(s)− Zi(s)) |.

∆i(t) counts the number of unshared jumps between Zi and Zi on [0, t]. We denote
respectively by λi and λi the stochastic intensities of Zi and Zi. As they are
constructed on the same Poisson measure πi, the unshared jumps are the points of
πi located between the two intensities, thus we have

∆i(t) =

∫ t

0

∫ +∞

0

∣∣1{z≤λi(s)} − 1{z≤λi(s)}
∣∣ πi (ds, dz) .

Setting δi(t) := E [∆i(t)], we obtain with Fubini’s Theorem

δi(t) = E

[∫ t

0

∫ +∞

0

∣∣1{z≤λi(s)} − 1{z≤λi(s)}
∣∣ dzds] =

∫ t

0

E [|λi(s)− λi(s)|] ds.

Using (3.2.3) and as f is Lipschitz continuous (Hypothesis 3.2.4), we have

δi(t) =

∫ t

0

E

[∣∣∣∣∣f
(
u0 (s, xi) +

1

N

N∑
j=1

wij

∫
]0,s[

h (s− u) dZj (u)

)

−f

(
u0 (s, xi) +

1

N

N∑
j=1

wij

∫
]0,s[

h (s− u) dZj (u)

)∣∣∣∣∣
]
ds

≤
∫ t

0

E

[
Lf

∣∣∣∣∣ 1

N

N∑
j=1

wij

∫
]0,s[

h (s− u)
(
dZj (u)− dZj (u)

)∣∣∣∣∣
]
ds

≤ Lf
1

N

N∑
j=1

wijE

[∫ t

0

∫
]0,s[

|h (s− u)| d∆j(u)ds

]
.

We apply Lemma 3.A.1 (∆i is with finite variations, ∆i(0) = 0 and h is locally
integrable) and obtain

δi(t) ≤ Lf
1

N

N∑
j=1

wij

∫ t

0

|h (t− s)| δj (s) ds.
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We set δ(t) =
∑N

i=1 δi(t) and WN = max(i,j)∈J1,NK2 wij. Then, summing on i, we
have

δ(t) ≤ Lf
1

N

N∑
i=1

N∑
j=1

WN

∫ t

0

|h (t− s)| δj (s) ds ≤ Lf WN

∫ t

0

|h (t− s)| δ (s) ds.

Since h is locally integrable, δ is nonnegative and locally bounded, we can apply
Lemma 3.A.3 (i) and obtain that δ(t) = 0 for all t ≥ 0. As each ∆i is nonnegative,
we obtain that for all i ∈ J1, NK and t ≥ 0, ∆i(t) = 0 almost surely. Hence
Zi(t) = Zi(t) almost surely for all i ∈ J1, NK and t ≥ 0, which gives the uniqueness.

We show now the existence of a process satisfying (3.2.2). To do it, we proceed
by iteration: for all i ∈ J1, NK and t ≥ 0, let Zi,0(t) = 0. Then, for all n ≥ 0 we
set:

Zi,n+1(t) =

∫ t

0

∫ +∞

0

1{z≤f(vt(xi)+ 1
N

∑N
j=1 wij

∫ s−
0 h(s−u)dZj,n(u))}πi(ds, dz).

With i and n fixed, such a process (Zi,n+1) exists: it is a counting process with
stochastic intensity λi,n+1(t) = f

(
v (xi) + 1

N

∑N
j=1 wij

∫ t−
0
h (t− u) dZj,n (u)

)
. As

for the uniqueness, we set for all i ∈ J1, NK, n ≥ 0 and t ≥ 0, δn(t) =
N∑
i=1

δi,n(t)

with δi,n(t) = E

[∫ t

0

|dZi,n+1(s)− dZi,n(s)|
]
. As done previously, we find:

δi,n+1(t) = E

[∫ t

0

|dZi,n+2(s)− dZi,n+1(s)|
]

= E

[∫ t

0

∫ +∞

0

∣∣1{z≤λi,n+2(s)} − 1{z≤λi,n+1(s)}
∣∣ dzds]

≤
∫ t

0

E

[
Lf

∣∣∣∣∣ 1

N

N∑
j=1

wij

∫
]0,s[

h (s− u) (dZj,n+1 (u)− dZj,n (u))

∣∣∣∣∣
]
ds.

Summing on i and using Lemma 3.A.1 we obtain

δn+1(t) ≤ Lf WN

∫ t

0

|h (t− s)| δn(s)ds. (3.7.1)

We want to apply Lemma 3.A.3(ii), but for this we have to show that δn is locally
bounded. We notemi,n(t) = E [Zi,n(t)] andmn(t) =

∑N
i=1mi,n(t). By construction,

mi,n+1(t) = E

[∫ t

0

∫ +∞

0

1{z≤f(vs(xi)+ 1
N

∑N
j=1 wij

∫ s−
0 h(s−u)dZj,n(u))}πi(ds, dz)

]
.

As πi is a random Poisson measure with intensity dsdz, we have

mi,n+1(t) = E

[∫ t

0

f

(
vs (xi) +

1

N

N∑
j=1

wij

∫ s−

0

h (s− u) dZj,n (u)

)
ds

]
.
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By Hypothesis 3.2.4, we have that f(y) ≤ f(0) + Lf |y| for all y so that:

mi,n+1(t) ≤ E

[∫ t

0

(
f(0) + Lf

∣∣∣∣∣vs(xi) +
1

N

N∑
j=1

wij

∫ s−

0

h (s− u) dZj,n (u)

∣∣∣∣∣
)
ds

]

≤ f(0)t+ Lf‖v‖∞t+
1

N

N∑
j=1

wij

∫ t

0

∫ s−

0

|h (s− u)| dmj,n(u)ds.

Applying Lemma 3.A.1 and summing on i we obtain

mn+1(t) ≤ Nt (f(0) + Lf‖v‖∞) +WN

∫ t

0

|h (t− s)|mn(s)ds. (3.7.2)

As m0 = 0 and h is locally integrable, by induction mn is locally bounded for all
n ≥ 0. Yet δn(t) =

∑N
i=1 E

[∫ t
0
|dZi,n+1(s)− dZi,n(s)|

]
≤ mn+1(t) +mn(t) hence δn

is indeed locally bounded for all n. Lemma 3.A.3(ii) and (3.7.1) give then that for
all T > 0, there exists CT such that supt∈[0,T ]

∑
n≥0 δn(t) ≤ CT <∞. Thus we have

sup
t∈[0,T ]

∑
n≥0

N∑
i=1

E

[∫ t

0

|dZi,n+1(s)− dZi,n(s)|
]
≤ CT <∞.

Thus for i fixed, the sequence of random variables (Zi,n)n is Cauchy in L1 on
the space D([0, t],R) with the expectation of the total variation distance. Hence
there exists a process Zi such that E

[∫ T
0
|dZi,n(s)− dZi(s)|

]
−−−→
n→∞

0. From this
convergence and a diagonal argument, there exists an extraction ϕ such that for
all i, ∫ T

0

∣∣dZi,ϕ(n)(s)− dZi(s)
∣∣ −−−→
n→∞

0.

Since
∫ T

0
|dZi,ϕ(n)(s)−dZi(s)| is an integer, Zi,ϕ(n) is a.s. stationary and one obtains

from this that the right hand side of

Zi,ϕ(n)+1(t) =

∫ t

0

∫ +∞

0

1{z≤f(vt(xi)+ 1
N

∑N
j=1 wij

∫ s−
0 h(s−u)dZj,ϕ(n)(u))}πi(ds, dz) (3.7.3)

is equal to
∫ t

0

∫ +∞

0

1{z≤f(vt(xi)+ 1
N

∑N
j=1 w(xj ,xi)

∫ s−
0 h(s−u)dZj(u))}πi(ds, dz). Hence the

left hand side of (3.7.3) converges too, towards some Z̃i(t). It remains to show that
Z̃ = Z. Fatou’s Lemma gives

E

[∫ T

0

|dZi(s)− dZ̃i(s)|
]
≤ lim inf

n→∞
E

[∫ T

0

|dZi,ϕ(n)(s)− dZi,ϕ(n)+1(s)|
]

= 0

as (Zi,n)n is a Cauchy sequence. We have then that the limit process verifies a.s.

Zi(t) =

∫ t

0

∫ +∞

0

1{z≤f(vs(xi)+ 1
N

∑N
j=1 wij

∫ s−
0 h(s−u)dZj(u))}πi(ds, dz).
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This gives the existence of (Z1(t), ..., ZN(t))t≥0 satisfying (3.2.2). Now let us
verify that t 7→ sup

1≤i≤N
E[ZN,i(t)] is locally bounded. Recall (3.7.2): as mn is

locally bounded, by Lemma 3.A.3(iii) for all T > 0, there exists CT such that
supt∈[0,T ] supn≥0mn(t) ≤ CT < +∞ hence

sup
t∈[0,T ]

sup
n≥0

N∑
i=1

E [Zi,n(t)] ≤ CT < +∞

and by dominated convergence, for all T > 0, sup
t∈[0,T ]

N∑
i=1

E [Zi(t)] < +∞ and the

proof is concluded with the multivariate Hawkes process (Z1(t), ..., ZN(t))t≥0 =
(ZN,1(t), ..., ZN,N(t))t≥0.

3.7.2 Proof of Theorem 3.2.7

We show existence and uniqueness of a continuous and bounded solution (t, x) 7→
λt(x) to equation (3.1.2) on [0, T ]×I. For the purpose of the proof, we write λt(x) =
λ(t, x). We follow the proof proposed in (Chevallier et al., 2019, Proposition 5),
with major changes to accomodate our hypotheses. We apply Banach fixed-point
Theorem. We consider the map F defined on Cb ([0, T ]× I,R), that is the set of
bounded continuous functions defined on [0, T ]×I, by for any g ∈ Cb ([0, T ]× I,R):

F (g)(t, x) = f

(
vt(x) +

∫
I

W (x, y)

∫ t

0

h(t− s)g(s, y)ds ν(dy)

)
, (t, x) ∈ [0, T ]× I.

We check first that F takes values in Cb ([0, T ]× I,R): consider g ∈ Cb ([0, T ]× I,R).
Let us show that F (g) is bounded. Fix (t, x) ∈ [0, T ] × I. As f is Lipschitz
continuous and with Hypothesis 3.2.4, we have:

F (g)(t, x) ≤ f(0) + Lf‖v‖∞ + Lf

∫
Rd
|W (x, y)|

∫ t

0

|h(t− s)|g(s, y)ds ν(dy).

As g is bounded and h is locally integrable by Hypothesis 3.2.4, we have

sup
t∈[0,T ]
x∈I

F (g)(t, x) ≤ f(0) + Lf

(
‖v‖∞ + ‖h‖[0,T ],1‖g‖∞ sup

x∈I

∫
Rd
W (x, y)ν(dy)

)
<∞,

where we used Hypothesis (3.2.6).
We check now that F (g) is continuous. We show the sequential continuity: we

fix (t, x) ∈ [0, T ]× I and a sequence (tn, xn) converging to (t, x). As f is Lipschitz
continuous, we have:

|F (g)(tn, xn)− F (g)(t, x)| ≤ Lf |vtn(xn)− vt(x)|

+Lf

∣∣∣∣∫
I

(
W (xn, y)

∫ tn

0

h(tn − s)g(s, y)ds−W (x, y)

∫ t

0

h(t− s)g(s, y)ds

)
ν(dy)

∣∣∣∣ .
(3.7.4)
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The first term Lf |vtn(xn)− vt(x)| tends to 0 when n tends to infinity as (t, x) 7→
vt(x) is continuous in time and space by Hypothesis 3.2.4. To show the convergence
of the second term, we use the following bound:∣∣∣∣∫

I

W (xn, y)

∫ tn

0

h(tn − s)g(s, y)dsν(dy)−
∫
I

W (x, y)

∫ t

0

h(t− s)g(s, y)dsν(dy)

∣∣∣∣
≤
∣∣∣∣∫
I

(W (xn, y)−W (x, y))

∫ tn

0

h(tn − s)g(s, y)dsν(dy)

∣∣∣∣
+

∣∣∣∣∫
I

W (x, y)

(∫ tn

0

h(tn − s)g(s, y)ds−
∫ t

0

h(t− s)g(s, y)ds

)
ν(dy)

∣∣∣∣ =: An +Bn.

As h is locally integrable, g bounded, we can upper bound An immediately:

An ≤ ‖h‖[0,T ],1‖g‖∞
∫
I

|W (xn, y)−W (x, y)| ν(dy)

≤ ‖h‖[0,T ],1‖g‖∞Cw‖x− xn‖ϑ −−−→
n→∞

0,

using (3.2.5). To study the convergence of Bn, we do a substitution and split the
integral in two:

Bn ≤
∫
|W (x, y)|

∣∣∣∣∫ tn

0

h(u)g(tn − u, y)du−
∫ t

0

h(u)g(t− u, y)ds

∣∣∣∣ ν(dy)

≤
∫
|W (x, y))|

(∫ t

0

|h(u)| |g(tn − u, y)− g(t− u, y)| du
)
ν(dy)

+

∫
|W (x, y)|

(∫ max(t,tn)

min(t,tn)

|h(u)|g(tn − u, y)du

)
ν(dy) =: an + bn.

Since g is continuous, we have
∫ t

0
|h(u)| |g(tn − u, y)− g(t− u, y)| du −−−→

n→∞
0 for

all y ∈ I, and since
∫ t

0
|h(u)| |g(tn − u, y)− g(t− u, y)| du ≤ 2‖h‖[0,T ],1‖g|∞, we see

from dominated convergence theorem that an −−−→
n→∞

0. We focus on the term bn,
we have∫ max(t,tn)

min(t,tn)

|h(u)|g(tn − u, y)du =

∫ T

0

|h(u)|g(tn − u, y)1[min(t,tn),max(t,tn)](u)du

≤ ‖g‖∞
∫ T

0

|h(u)|1[min(t,tn),max(t,tn)](u)du.

Yet |h(u)|1[min(t,tn),max(t,tn)](u) −−−→
n→∞

0, and we obtain bn −−−→
n→∞

0 by dominated
convergence as h is locally integrable. We have shown that for all (t, x) ∈ [0, T ]×I,
limn→∞ |F (g)(tn, xn) − F (g)(t, x)| = 0 for any sequence (tn, xn) tending to (t, x):
F (g) is continuous.

We show now that there exists a constant C > 0 such that for all (t, x, z) ∈
[0, T ]× I2:

|F (g)(t, x)− F (g)(t, z)| ≤ C
(
‖x− z‖+ ‖x− z‖ϑ

)
. (3.7.5)
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3.7. Existence and uniqueness of the model and its limit (proofs)

Let (t, x, z) ∈ [0, T ]× I × I. As done previously (f and vt are Lipschitz continuous
with Hypothesis 3.2.4), we have:

|F (g)(t, x)− F (g)(t, z)| ≤ LfLv‖x− z‖

+ Lf

∫
I

∫ t

0

|h(t− s)|g(s, y)ds |W (x, y)−W (z, y)|ν(dy).

Since g is bounded, h is locally integrable, using (3.2.5) we have

|F (g)(t, x)− F (g)(t, z)| ≤ LfLv‖x− z‖+ Lf‖g‖∞‖h‖[0,T ],1Cw‖x− z‖ϑ,

which gives (3.7.5) .
Hence, Cb ([0, T ]× I,R) is stable by F . We prove that F admits a unique fixed

point, which is λt(x) = λ(t, x) satisfying (3.1.2). To do it, we show that some
iteration of F is contractive, and the Banach fixed-point Theorem gives the result.
Let t ∈ [0, T ], g and g̃ be two functions in Cb ([0, t]× I,R). We use the distance
Dt(g, g̃) := sups∈[0,t] supx∈I |g(s, x)− g̃(s, x)| which makes the space Cb ([0, t]× I,R)

complete. Obviously, for all s ≤ t, Ds(g, g̃) ≤ Dt(g, g̃). Let x ∈ Rd. As previously,

|F (g)(t, x)− F (g̃)(t, x)| ≤ Lf

∣∣∣∣∫
I

W (x, y)

∫ t

0

h(t− s) (g(s, y)− g̃(s, y)) ds ν(dy)

∣∣∣∣
≤ Lf

(
sup
z∈I

∫
I

|W (z, y)|ν(dy)

)∫ t

0

|h(t− s)|Ds(g, g̃)ds.

Using Cauchy-Schwarz inequality, as h is in L2
loc under Hypothesis 3.2.4,∫ t

0

|h(t− s)|Ds(g, g̃)ds ≤ ‖h‖[0,T ],2

(∫ t

0

(Ds(g, g̃))2 ds

) 1
2

.

Using (3.2.6), we have then shown the existence of a constant C(f,W, ν, h, T, p)
such that for all mappings g and g̃, for all t ∈ [0, T ]:

Dt(F (g), F (g̃)) ≤ C

(∫ t

0

(Ds(g, g̃))2 ds

) 1
2

. (3.7.6)

By induction on k ∈ N, with (3.7.6), we show that for all t ∈ [0, T ] and for any

mappings g and g̃: Dt(F
k(g), F k(g̃)) ≤ Ck

(
tk

k!

) 1
2

Dt(g, g̃). The initialisation is

immediate, and then for k ≥ 0, using (3.7.6) and the induction hypothesis

Dt(F
k+1(g), F k+1(g̃)) ≤ C

(∫ t

0

(
Ds(F

k(g), F k(g̃))
)2
ds

) 1
2

≤ C

(∫ t

0

C2k s
k

k!
Ds(g, g̃)2ds

) 1
2

≤ Ck+1

(
tk+1

(k + 1)!

) 1
2

Dt(g, g̃),

which concludes the induction. We have then that for all k and any functions g
and g̃ of Cb ([0, T ]× I,R+), the k-th iteration of F verifies DT (F k(g), F k(g̃)) ≤
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3. Hawkes processes on inhomogeneous random graphs

Ck

(
T k

k!

) 1
2

DT (g, g̃). Hence there exists a rank k such that F k is contractive,

thus has a unique fixed point which is also then the unique fixed point of F in
Cb ([0, T ]× I,R) that we call λ. Furthermore, we have shown that any image by
F verifies the property (3.7.5), so in particular λ verifies it too and (3.2.7) is then
true (with Cλ the constant of equation (3.7.5) for g = λ). Note that such a λ is
necessarily nonnegative, as the iterative map F preserves positivity in both cases
f ≥ 0 and f(x) = x with vt, h ≥ 0.

We focus now on the second part of Theorem 3.2.7: we consider (t, x) 7→ vt(x)

continuously differentiable in time and (t, x) 7→ ∂vt
∂t

(x) bounded on [0, T ] × I,
h continuous and piecewise continuously differentiable, and f(x) = x. First,
we ensure that (3.2.8) admits a unique continuous bounded solution. Then, by
studying a sequence of functions that converges towards λ, we show that λ is

differentiable in time and
∂λ

∂t
satisfies (3.2.8). Using the same method as above,

we show that the map G defined on Cb ([0, T ]× I,R) by

G(g)(t, x) =
∂vt
∂t

(x) + h(t)

∫
I

W (x, y)λ(0, y)ν(dy)

+

∫
I

∫ t

0

h(t− s)W (x, y)g(s, y)ν(dy)ds

admits a unique fixed point called µ. Moreover, we can introduce a sequence of
function (µn)n that converges uniformly towards µ defined by iteration, with µ0 = 0
and

µn+1(t, x) :=
∂vt
∂t

(x) + h(t)

∫
I

W (x, y)λ(0, y)ν(dy)

+

∫
I

∫ t

0

h(t− s)W (x, y)µn(s, y)ν(dy)ds.

Similarly, we introduce a sequence of function (λn)n that converges uniformly
towards λ defined by iteration, with λ0 = 0 and λn+1(t, x) := vt(x) +

∫
I

∫ t
0
h(t −

s)W (x, y)λn(s, y)ν(dy)ds. By induction, for every n, λn is differentiable in time
and bounded and then, by integration by parts we obtain

∂λn+1

∂t
(t, x) =

∂vt
∂t

(x) + h(t)

∫
I

W (x, y)λn(0, y)ν(dy)

+

∫ t

0

∫
I

W (x, y)h(t− s)∂λn
∂s

(s, y)ν(dy)ds. (3.7.7)

Now, we can compare µn and
∂λn
∂t

: setting $n(t, x) := µn(t, x)− ∂λn
∂t

(t, x) for all
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n, for any (t, x) ∈ [0, T ]× I,

|$n+1(t, x)| =
∣∣∣∣h(t)

∫
I

W (x, y) (λ(0, y)− λn(0, y)) ν(dy)

+

∫ t

0

∫
I

W (x, y)h(t− s)$n(s, y)ν(dy)ds

∣∣∣∣ ,
so that ‖$n+1(t, ·)‖∞ ≤ h(t)C

(1)
W ‖λ(0, ·)−λn(0, ·)‖∞+C

(1)
W

∫ t
0
h(t−s) ‖$n(s, ·)‖∞ ds.

We obtain, as (λn) converges uniformly to λ, that lim supn→∞ ‖$n+1(t, ·)‖∞ ≤
C

(1)
W

∫ t
0
h(t − s) lim supn→∞ ‖$n(s, ·)‖∞ ds. This gives, from Lemma 3.A.3 (i) and

provided that one has verified that lim sup
n→∞

‖$n(s, ·)‖∞ < +∞ is finite, sup
t∈[0,T ]

lim sup
n→∞

‖$n(t, ·)‖∞ = 0. It implies that, as (µn) converges uniformly to µ, so does
(
∂λn
∂t

)
n

,

and then as λ is differentiable, λn
uniformly−−−−−−→
n→∞

λ and
∂λn
∂t

uniformly−−−−−−→
n→∞

µ, we obtain
∂λ

∂t
= µ. It remains to check that lim sup

n→∞
‖$n(s, ·)‖∞ is indeed finite. As (λn)

converges to λ, it is uniformly bounded and as (t, x) 7→ ∂vt
∂t

(x) is bounded, we can

find g locally bounded such that, from (3.7.7), ‖∂tλn+1(t, ·)‖∞ ≤ g(t)+C
(1)
W

∫ t
0
h(t−

s) ‖∂sλn(s, ·)‖∞ ds. Lemma 3.A.3 (iii) gives then that sup
s∈[0,T ]

sup
n≥0
‖∂sλn(s, ·)‖∞ <∞.

We can do the same for (µn) and obtain sup
s∈[0,T ]

sup
n≥0
||µn(s, ·)||∞ <∞ which concludes

to lim sup
n→∞

‖$n(s, ·)‖∞ <∞ for any s ∈ [0, T ].

3.8 Convergence of the mean-field process
(proofs)

3.8.1 Toolbox

We present useful results that come up in the main proofs.

Proposition 3.8.1. Recall the definitions of κN and wN in Hypothesis 3.3.7. Let
(αij) and (αijk) such that for every (i, j, l) ∈ J1, NK3, |αlj| ≤ 1 and |αijl| ≤ 1.
Define

Xj :=
κN
N

N∑
l=1

αljξlj, X̃i :=
κN
N

N∑
l=1

αilξil, Xij :=
κN
N

N∑
l=1

αijlξil,

with ξlk := ξ
(N)
lk −WN(xl, xk). Then, under Hypothesis 3.3.7, P-almost surely if N

is large enough:

sup
1≤j≤N

|Xj| ≤ εN , sup
1≤i≤N

|X̃i| ≤ εN and sup
1≤i,j≤N

|Xij| ≤ εN ,

for εN := 32
κ2
NwN
N

log(N).
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Note that under Hypothesis 3.3.7, εN −−−→
N→∞

0.

Proof. We rely on Lemma 3.A.7. We derive a uniform bound on (Xj)j∈J1,NK: fixing

j, we apply Lemma 3.A.7 for the choice Ul = ξ
(N)
lj , pl = WN(xl, xj) (note that

(3.3.9) yields that pl ≤ wN), dl = αlj and the constant κN > 0. We obtain, taking
the supremum on j and a union bound:

P

(
sup

j∈J1,NK
|Xj| > εN

)
≤ 2N exp

(
−16 log(N)B

(
4
√

2

(
log(N)

NwN

) 1
2

))
.

As B(u) = u−2 ((1 + u) log (1 + u)− u) → 1

2
when u → 0 and

log(N)

NwN
≤

log(N)

N
κ2
NwN → 0 when N → ∞ using (3.3.10) and (3.3.11), we can choose a

deterministic p such that for all N ≥ p, B

(
4
√

2

(
log(N)

NwN

) 1
2

)
≥ 3

16
. We then

have if N ≥ p: P
(
supj∈J1,NK |Xj| > εN

)
≤ 2N exp (−3 log(N)) =

2

N2
. Hence,

by Borel-Cantelli Lemma, there exists Õ ∈ F such that P(Õ) = 1 and on Õ,
there exists Ñ < ∞ such that if N ≥ Ñ , supj∈J1,NK |Xj| ≤ εN . We can show
similarly that sup1≤i≤N |X̃i| ≤ εN . To show the result on (Xij), we use the same

Lemma 3.A.7 but we need to lower-bound B

(
4
√

2

(
log(N)

NwN

) 1
2

)
differently: we

can choose a deterministic p̃ for all N ≥ p̃, B

(
4
√

2

(
log(N)

NwN

) 1
2

)
≥ 1

4
and

then the same argument as before works to obtain P
(
supi,j∈J1,NK |Xij| > εN

)
≤

2N2 exp

(
−16 log(N)

1

4

)
≤ 2

N2
, and we conclude by Borel-Cantelli Lemma.

Corollary 3.8.2. Under Hypothesis 3.3.7, we have P-almost surely if N is large
enough:

sup
1≤j≤N

(
N∑
i=1

κ
(N)
i

N
ξ

(N)
ij

)
≤ 1 + sup

1≤j≤N

(
N∑
i=1

κ
(N)
i

N
WN(xi, xj)

)
(3.8.1)

sup
1≤i≤N

(
N∑
j=1

κ
(N)
i

N
ξ

(N)
ij

)
≤ 1 + sup

1≤i≤N

(
N∑
j=1

κ
(N)
i

N
WN(xi, xj)

)
(3.8.2)

1

N3

N∑
i,j=1

(
κ

(N)
i

)2

ξ
(N)
ij ≤

κN
N

(
1 +

N∑
i,j=1

κ
(N)
i

N2
WN(xi, xj)

)
. (3.8.3)

Proof. It is a direct application of Proposition 3.8.1 (as for any i,

∣∣∣∣∣κ(N)
i

κN

∣∣∣∣∣ ≤ 1

with (3.3.8)), as εN defined in Proposition 3.8.1 tends to 0 as N → ∞ under
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Hypothesis 3.3.7, hence for N large enough εN ≤ 1. For instance for (3.8.3), with

Xj =
κN
N

N∑
i=1

(
κ

(N)
i

κN

)2 (
ξ

(N)
ij −WN(xi, xj)

)
we have

1

N3

N∑
i,j=1

(
κ

(N)
i

)2

ξ
(N)
ij ≤

κN
N2

N∑
j=1

Xj +
κN
N3

N∑
i,j=1

κ
(N)
i WN(xi, xj) ≤

κN
N

(εN + CW ) ,

where we used Proposition 3.8.1 and (3.3.12).

We introduce the following auxiliary graph.

Definition 3.8.3. We denote by G(2)
N the directed weighted graph with vertices

{1, · · · , N} such that every edge j → i is present, and with weight W (xi, xj).

The proof of the following technical Proposition is postponed in Section 3.8.4.

Proposition 3.8.4. Under the Scenarios of Definition 3.3.8,

d2,ν

(
W G(2)N ,W

)
−−−→
N→∞

0, (3.8.4)

‖W G(2)N −W‖∞→∞,ν −−−→
N→∞

0, (3.8.5)

max
1≤i≤N

∫ T

0

∣∣∣∣∫
I

W (xi, x)γ(s, x)
(
ν(N)(dx)− ν(dx)

)∣∣∣∣ ds −−−→N→∞
0 (3.8.6)

and

1

N

N∑
i=1

∫ T

0

∣∣∣∣∫
I

W (xi, x)γ(s, x)
(
ν(N)(dx)− ν(dx)

)∣∣∣∣ ds −−−→N→∞
0, (3.8.7)

where γ(s, x) :=
∫ s

0
h(s− u)λu(x)du.

If (3.8.4) and (3.8.7) are satisfied in another configuration of positions than in
the Scenarios of Definition 3.3.8, Theorem 3.3.10 still applies. Likewise, if (3.8.5)
and (3.8.6) are satisfied, Theorem 3.3.12 still applies.

3.8.2 Proof of Theorem 3.3.10

Recall the definitions of ZN,i and Zi in (3.2.2) and (3.3.1). We remind that we
consider the sequences

(
x(N)

)
N≥1

and
(
ξ

(N)
ij

)
N≥1

i,j∈J1,NK
fixed (our result is quenched).

Let t ∈ [0, T ]. For each i ∈ J1, NK, let ∆
(N)
i (t) be the total variation distance

between ZN,i and Zi on [0, t]:

∆
(N)
i (t) =

∫ t

0

∣∣d (ZN,i(s)− Zi(s)
)∣∣ . (3.8.8)
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Remark that we always have sup
t∈[0,T ]

∣∣ZN,i(t)− Zi(t)
∣∣ ≤ ∆

(N)
i (T ). We have taking

the expectation

E
[
∆

(N)
i (t)

]
= E

[∫ t

0

∫ ∞
0

|1{z≤λN,i(s)} − 1{z≤λs(xi)}|πi(ds, dz)
]

=

∫ t

0

E [|λN,i(s)− λs(xi)|] ds.

Using the Lipschitz continuity of f and recalling the definition of λN,i in (3.2.3)
and of λ in (3.1.2), we obtain:

E
[
∆

(N)
i (t)

]
≤ Lf

(
5∑

k=1

A
(N)
i,t,k

)
, (3.8.9)

where A(N)
i,t,1 :=

∫ t

0

E

[∣∣∣∣∣κ(N)
i

N

N∑
j=1

ξ
(N)
ij

∫ s−

0

h(s− u)
(
dZN,j(u)− dZj(u)

)∣∣∣∣∣
]
ds,

(3.8.10)

A
(N)
i,t,2 :=

∫ t

0

E

[∣∣∣∣∣κ(N)
i

N

N∑
j=1

ξ
(N)
ij

∫ s−

0

h(s− u)
(
dZj(u)− λu(xj)du

)∣∣∣∣∣
]
ds, (3.8.11)

A
(N)
i,t,3 :=

∫ t

0

∣∣∣∣∣κ(N)
i

N

N∑
j=1

(
ξ

(N)
ij −WN(xi, xj)

)∫ s

0

h(s− u)λu(xj)du

∣∣∣∣∣ ds, (3.8.12)

A
(N)
i,t,4 :=

∫ t

0

∣∣∣∣∣ 1

N

N∑
j=1

(
κ

(N)
i WN(xi, xj)−W (xi, xj)

)∫ s

0

h(s− u)λu(xj)du

∣∣∣∣∣ ds and

(3.8.13)

A
(N)
i,t,5 :=

∫ t

0

∣∣∣∣∣ 1

N

N∑
j=1

W (xi, xj)

∫ s

0

h(s− u)λu(xj)du

−
∫
I

W (xi, y)

∫ s

0

h(s− u)λu(y)du ν(dy)

∣∣∣∣ ds. (3.8.14)

We are going to control each term 1
N

∑N
i=1A

(N)
i,t,k. The term A

(N)
i,t,1 captures the

proximity between the particle system ZN,i with its mean-field counterpart Zi at
the same position. We have, as the graph

(
ξ(N)

)
is fixed,

A
(N)
i,t,1 =

∫ t

0

E

[∣∣∣∣∣κ(N)
i

N

N∑
j=1

ξ
(N)
ij

∫ s−

0

h(s− u)
(
dZN,j(u)− dZj(u)

)∣∣∣∣∣
]
ds

≤ 1

N

N∑
j=1

κ
(N)
i ξ

(N)
ij E

[∫ t

0

∫ s−

0

|h(s− u)|
∣∣∣d(∆

(N)
j (u)

)∣∣∣ ds] .
We use Lemma 3.A.1 so that

A
(N)
i,t,1 ≤

1

N

N∑
j=1

κ
(N)
i ξ

(N)
ij E

[∫ t

0

|h(t− s)|∆(N)
j (s)ds

]
, (3.8.15)
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then we have, by summation:

1

N

N∑
i=1

A
(N)
i,t,1 ≤

1

N

N∑
j=1

(
N∑
i=1

κ
(N)
i

N
ξ

(N)
ij

)∫ t

0

|h(t− s)|E
[
∆

(N)
j (s)

]
ds

≤ sup
1≤j≤N

(
N∑
i=1

κ
(N)
i

N
ξ

(N)
ij

)∫ t

0

|h(t− s)|E

[
1

N

N∑
j=1

∆
(N)
j (s)

]
ds.

We use (3.8.1) and (3.3.14) to obtain P-almost surely if N is large enough the
bound

1

N

N∑
i=1

A
(N)
i,t,1 ≤ (1 + CW )

∫ t

0

|h(t− s)|E

[
1

N

N∑
j=1

∆
(N)
j (s)

]
ds. (3.8.16)

The second term A
(N)
i,t,2 captures the proximity between the limit process and its

expectation. We have that

A
(N)
i,t,2 =

∫ t

0

E

[∣∣∣∣∣ 1

N

N∑
j=1

(
V i
j (s)− E

[
V i
j (s)

])∣∣∣∣∣
]
ds,

where V i
j (s) = κ

(N)
i ξ

(N)
ij

∫ s−
0

h(s − u)dZj(u) is a family of independent random
variables (by independence of the πi). Note that E

[
V i
j (s)

]
= κ

(N)
i ξ

(N)
ij

∫ s
0
h(s −

u)λu(xj)du. Define M i
j(s) := V i

j (s)− E
[
V i
j (s)

]
, which can also be written as

M i
j(s) =

∫ s

0

∫ ∞
0

1{z≤λu(xj)}κ
(N)
i ξ

(N)
ij h(s− u)πi(du, dz)

−
∫ s

0

∫ ∞
0

1{z≤λu(xj)}κ
(N)
i ξ

(N)
ij h(s− u)dudz,

so that

Var
(
V i
j (s)

)
= E

[
M i

j(s)
2
]

= E

[∫ s

0

∫ ∞
0

(
1{z≤λu(xj)}κ

(N)
i ξ

(N)
ij h(s− u)

)2

dudz

]
=

∫ s

0

(
κ

(N)
i

)2

ξ
(N)
ij h(s− u)2λu(xj)du.

Thus summing on i and using Lemma 3.A.2, we have

1

N

N∑
i=1

A
(N)
i,t,2 ≤

1

N

N∑
i=1

∫ t

0

1

N

√√√√ N∑
j=1

∫ s

0

(
κ

(N)
i

)2

ξ
(N)
ij h(s− u)2λu(xj)du ds.

We apply Jensen’s inequality to both uniform measures on {1, . . . , N} and [0, t] to
obtain:

1

N

N∑
i=1

A
(N)
i,t,2 ≤

t

N

∫ t

0

√√√√ 1

N

N∑
i=1

N∑
j=1

∫ s

0

(
κ

(N)
i

)2

ξ
(N)
ij h(s− u)2λu(xj)du

ds

t

≤ t

N

√√√√ 1

Nt

N∑
i,j=1

(
κ

(N)
i

)2

ξ
(N)
ij

∫ t

0

∫ s

0

h(s− u)2λu(xj)duds
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By Hypothesis 3.2.4 on h, we have

1

N

N∑
i=1

A
(N)
i,t,2 ≤ t‖h‖t,2

√
‖λ‖[0,t]×I,∞

√√√√ 1

N3

N∑
i,j=1

(
κ

(N)
i

)2

ξ
(N)
ij .

We use (3.8.3) and (3.3.12) to obtain P-almost surely if N is large enough the
bound:

1

N

N∑
i=1

A
(N)
i,t,2 ≤ t‖h‖t,2

√
‖λ‖[0,t]×I,∞

√
κN
N

(1 + CW ). (3.8.17)

The term A
(N)
i,t,3 captures the proximity between the realization of the graph(

ξ(N)
)
and its expectation. We define for (s, x, y) ∈ [0, T ]× I × I:

γ(s, x) :=

∫ s

0

h(s− u)λu(x)du, (3.8.18)

ΓT (x, y) :=

∫ T

0

γ(s, x)γ(s, y)ds. (3.8.19)

Note that we always have |γ(s, x)| ≤ ‖h‖s,1‖λ‖[0,s]×I,∞ =: γs,∞ and 0 ≤ ΓT (x, y) ≤
Tγ2

T,∞. Recall that ξij := ξ
(N)
ij −WN(xi, xj). Then

A
(N)
i,t,3 =

∫ t

0

∣∣∣∣∣κ(N)
i

N

N∑
j=1

ξijγ(s, xj)

∣∣∣∣∣ ds ≤
∫ T

0

∣∣∣∣∣κ(N)
i

N

N∑
j=1

ξijγ(s, xj)

∣∣∣∣∣ ds.
Note that one cannot apply Proposition 3.8.1 directly in the integrand since we
would not get an a.s. result. Therefore, we control its square, by Jensen’s inequality:

A
(N)
i,t,3

2
≤ T

∫ T

0

(
κ

(N)
i

N

N∑
j=1

ξijγ(s, xj)

)2

ds = T 2γ2
T,∞

κ
(N)
i

N

N∑
j=1

ξijXij,

where we set Xij :=
κ

(N)
i

N

N∑
l=1

ξil
ΓT (xj, xl)

Tγ2
T,∞

. Now, by Proposition 3.8.1, P-almost

surely for N large enough, sup1≤i,j≤N |Xij| ≤ εN , thus

A
(N)
i,t,3

2
≤ T 2γ2

T,∞
κ

(N)
i

N

N∑
j=1

(
ξ

(N)
ij +WN(xi, xj)

)
sup
i,j
|Xij|

≤ T 2γ2
T,∞εN

κ
(N)
i

N

N∑
j=1

(
ξ

(N)
ij +WN(xi, xj)

)
. (3.8.20)

Taking the square root then summing on i, we use the discrete Jensen’s inequality
to obtain

1

N

N∑
i=1

A
(N)
i,t,3 ≤

√
εNTγT,∞

1

N

N∑
i=1

√√√√κ
(N)
i

N

N∑
j=1

(
ξ

(N)
ij +WN(xi, xj)

)

≤
√
εNTγT,∞

√√√√ N∑
i=1

κ
(N)
i

N2

N∑
j=1

(
ξ

(N)
ij +WN(xi, xj)

)
,

90



3.8. Convergence of the mean-field process (proofs)

if N is large enough P-almost surely. Using (3.8.2) and (3.3.12), we have

1

N

N∑
i=1

A
(N)
i,t,3 ≤

√
εNTγT,∞

√√√√ 1

N

N∑
i=1

κ
(N)
i

N

N∑
j=1

ξ
(N)
ij +

1

N

N∑
i=1

κ
(N)
i

N

N∑
j=1

WN(xi, xj)

≤
√
εNTγT,∞

√√√√1 + CW + sup
i∈J1,NK

(
κ

(N)
i

N

N∑
j=1

WN(xi, xj)

)
(3.8.21)

≤
√
εNTγT,∞

√
1 + 2CW . (3.8.22)

The term A
(N)
i,t,4 captures the proximity between the law of the graph on N

particles and the limit graphon W . Recall the definition of γ in (3.8.18) and the
graphs introduced in Definitions 3.3.6 and 3.8.3. Denoting by c(s) = (cj(s))1≤j≤N =(
γ(s, xj)

γt,∞

)
1≤j≤N

∈ [−1, 1]N , we obtain using (3.3.7) and introducing for any c =

(c1, · · · , cN) ∈ [−1, 1]N the step function gc(v) =
∑N

l=1 cl1Bl(v) for ∈ I, after
summation:

1

N

N∑
i=1

A
(N)
i,t,4 =

γt,∞
N2

∫ t

0

N∑
i=1

∣∣∣∣∣
N∑
j=1

(
κ

(N)
i WN(xi, xj)−W (xi, xj)

)
cj(s)

∣∣∣∣∣ ds
= γt,∞

∫ t

0

∫ ∣∣∣∣∫ (W G(1)N (u, v)−W G(2)N (u, v)
)
gc(s)(v)ν(dv)

∣∣∣∣ ν(du)ds

≤ TγT,∞‖W G(1)N −W G(2)N ‖∞→1,ν ,

where ‖ · ‖∞→1,ν is defined in (3.3.3). Hence, with Remark 3.3.3 we obtain:

1

N

N∑
i=1

A
(N)
i,t,4 ≤ 4TγT,∞

(
d2,ν

(
W G(1)N ,W

)
+ d2,ν

(
W G(2)N ,W

))
. (3.8.23)

We use (3.8.4) to deal with d2,ν
(
W G(2)N ,W

)
.

The term 1
N

∑N
i=1A

(N)
i,t,5 captures the proximity between the empirical measure

of the positions of N particles µ(N) and its limit ν. We control A(N)
t,5 := 1

N

∑N
i=1A

(N)
i,t,5

with (3.8.7). Combining (3.8.16), (3.8.17), (3.8.21) and (3.8.23), we obtain if N is
large enough P-almost surely for every t ∈ [0, T ]:

E

[
1

N

N∑
i=1

∆
(N)
i (t)

]
≤ C1

∫ t

0

|h(t− s)|E

[
1

N

N∑
j=1

∆
(N)
j (s)

]
ds+C2

√
κN
N

+C3

√
εN

+ C4d2,ν

(
W G(1)N ,W

)
+ C4γT,∞d2,ν

(
W G(2)N ,W

)
+ LfA

(N)
t,5 , (3.8.24)

with C1, C2, C3, C4 constants depending on Lf , CW , h and T . Recall that the
total variation supt∈[0,T ]

∣∣ZN,i(t)− Zi(t)
∣∣ ≤ ∆

(N)
i (T ), we apply Lemma 3.A.5 with
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u(t) = E

[
1

N

∑N
i=1 ∆

(N)
i (t)

]
on [0, T ] to obtain P-almost surely on the realization

of
(
ξ(N)

)
if N is large enough:

1

N

N∑
i=1

E

[
sup
t∈[0,T ]

∣∣∣Z(N)
i (t)− Zi(t)

∣∣∣] ≤ C

(√
κN
N

+
√
εN + d2,ν

(
W G(1)N ,W

)
+d2,ν

(
W G(2)N ,W

)
+ A

(N)
T,5

)
, (3.8.25)

with C =
√

2 max (C2, C3, C4, Lf ) exp
(
C2

1‖h‖2
T,2T

)
. By (3.3.11), lim

N→∞
εN = 0,

lim
N→∞

κN
N

= 0 and by (3.3.13) d2,ν
(
W G(1)N ,W

)
−−−→
N→∞

0. Combined with Proposition
3.8.4, we conclude the proof of (3.3.15).

3.8.3 Proof of Theorem 3.3.12

It is almost the same as for Theorem 3.3.10 with changes due to the fact that we
take now the maximum on i. Let us go back to the inequality (3.8.9). We are going
to control each term max1≤i≤N A

(N)
i,t,k. Concerning A

(N)
i,t,1, the same estimate (3.8.15)

as in the proof of Theorem 3.3.10 leads now to

max
1≤i≤N

A
(N)
i,t,1 ≤ max

1≤i≤N

(
1

N

N∑
j=1

κ
(N)
i ξ

(N)
ij

)∫ t

0

|h(t− s)| max
1≤i≤N

E
[
∆

(N)
i (s)

]
ds.

We use (3.8.2) and (3.3.12) to obtain P-almost surely if N is large enough:

max
1≤i≤N

A
(N)
i,t,1 ≤ (1 + CW )

∫ t

0

|h(t− s)| max
1≤i≤N

E
[
∆

(N)
i (s)

]
ds. (3.8.26)

Note that here, we do not use the same control as is the proof of Theorem 3.3.10,
we only need the uniformly bounded indegree. Concerning A(N)

i,t,2, we obtain as in
the proof of Theorem 3.3.10

A
(N)
i,t,2 ≤

∫ t

0

1

N

√√√√ N∑
j=1

∫ s

0

(
κ

(N)
i

)2

ξ
(N)
ij h(s− u)2λu(xj)du ds.

We use Jensen’s inequality on the probability measure 1
t
dt on [0, t] and then the

boundedness of h and λ to obtain

A
(N)
i,t,2 ≤

t

N

∫ t

0

√√√√ N∑
j=1

∫ s

0

(
κ

(N)
i

)2

ξ
(N)
ij h(s− u)2λu(xj)du

ds

t

≤ t

N
√
t
κ

(N)
i

√√√√ N∑
j=1

ξ
(N)
ij

∫ t

0

∫ s

0

h(s− u)2λy(xj)du ds

≤ ‖h‖t,2
√
‖λ‖[0,t]×Rd,∞

√
t

N
κ

(N)
i

√√√√ N∑
j=1

ξ
(N)
ij ,
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and taking the maximum leads to

max
1≤i≤N

A
(N)
i,t,2 ≤

√
κN
N

√√√√ max
1≤i≤N

κ
(N)
i

N

N∑
j=1

ξ
(N)
ij ‖h‖t,2

√
t‖λ‖[0,t]×Rd,∞.

Using as before (3.8.2) and (3.3.12), we obtain P-almost surely if N is large enough

max
1≤i≤N

A
(N)
i,t,2 ≤

√
κN
N

√
1 + CW‖h‖t,2

√
t‖λ‖[0,t]×Rd,∞. (3.8.27)

Concerning A(N)
i,t,3, we obtain as in the proof of Theorem 3.3.10 (see (3.8.20), with

(3.8.2) and (3.3.12)) that P-almost surely

A
(N)
i,t,3 ≤ TγT,∞

√√√√εN
κ

(N)
i

N

N∑
j=1

(
ξ

(N)
ij +WN(xi, xj)

)
,

hence taking the maximum and using (3.8.2) and (3.3.12), we obtain P-almost
surely if N is large enough

max
1≤i≤N

A
(N)
i,t,3 ≤ TγT,∞

√
εN
√

1 + 2CW . (3.8.28)

Concerning A(N)
i,t,4, we recognise

A
(N)
i,t,4 = γt,∞

∫ t

0

∣∣∣∣∣ 1

N

N∑
j=1

(
κ

(N)
i WN(xi, xj)−W (xi, xj)

)
cj(s)

∣∣∣∣∣ ds.
We obtain, using Definitions 3.3.6 and 3.8.3 with Lemma 3.3.5 that as

sup
1≤i≤N

∣∣∣∣∣ 1

N

N∑
j=1

(
κ

(N)
i WN(xi, xj)−W (xi, xj

)
cj(s)

∣∣∣∣∣
= sup

u∈I

∣∣∣∣∣
N∑
i=1

1BN,i(u)

∫
I

N∑
j=1

(
κ

(N)
i WN(xi, xj)−W (xi, xj

)
1BN,j(v)cj(s)ν(dv)

∣∣∣∣∣
= sup

u∈I

∣∣∣∣∫ (W G(1)N (u, v)−W G(2)N (u, v)
)
gc(s)(v)ν(dv)

∣∣∣∣ ,
we have

sup
1≤i≤N

A
(N)
i,t,4 = γt,∞ sup

1≤i≤N

∫ t

0

∣∣∣∣∣ 1

N

N∑
j=1

(
κ

(N)
i WN(xi, xj)−W (xi, xj)

)
cj(s)

∣∣∣∣∣ ds
≤ γt,∞

∫ t

0

sup
‖g‖∞≤1

sup
u∈I

∣∣∣∣∫ (W G(1)N (u, v)−W G(2)N (u, v)
)
g(v)ν(dv)

∣∣∣∣ ds
≤ TγT,∞‖W G(1)N −W G(2)N ‖∞→∞,ν
≤ TγT,∞

(
‖W G(1)N −W‖∞→∞,ν + ‖W −W G(2)N ‖∞→∞,ν

)
. (3.8.29)
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Concerning A(N)
i,t,5, we denote by Ã

(N)
t,5 = max1≤i≤N A

(N)
i,t,5. It is controlled with (3.8.6).

Combining (3.8.26), (3.8.27), (3.8.28) and (3.8.29), we obtain if N is large enough
P-almost surely for every t ∈ [0, T ]:

E

[
max

1≤i≤N
∆

(N)
i (t)

]
≤ C1

∫ t

0

|h(t− s)|E
[

max
1≤i≤N

∆
(N)
j (s)

]
ds+ C2

√
κN
N

+ C3

√
εN + C4‖W G(1)N −W‖∞→∞,ν + C4‖W G(2)N −W‖∞→∞,ν + Lf Ã

(N)
t,5 , (3.8.30)

with C1, C2, C3 and C4 constants depending on h, f , CW and T . Recall (3.8.8), as
sup
t∈[0,T ]

∣∣ZN,i(t)− Zi(t)
∣∣ ≤ ∆

(N)
i (T ), Lemma 3.A.5 with u(t) = E

[
max1≤i≤N ∆

(N)
i (t)

]
on [0, T ] gives that P-almost surely on the realization of

(
ξ(N)

)
if N is large enough

max
1≤i≤N

E

[
sup
t∈[0,T ]

∣∣ZN,i(t)− Zi(t)
∣∣] ≤ C

(√
κN
N

+
√
εN + ‖W G(1)N −W‖∞→∞,ν

+‖W G(2)N −W‖∞→∞,ν + Ã
(N)
t,5

)
, (3.8.31)

with C =
√

2 max (C2, C3, C4, Lf ) exp
(
C2

1‖h‖2
T,2T

)
. By (3.3.11), lim

N→∞
εN = 0,

lim
N→∞

κN
N

= 0 and by (3.3.16) lim
N→∞

‖W G(1)N −W‖ = 0. Combining with Proposition
3.8.4, it concludes the proof of (3.3.17).

3.8.4 Proofs: Application to the Scenarios of Definition
3.3.8

In this section, we prove Proposition 3.8.4. We start with auxiliary results that
come up in the main proof.

3.8.4.1 Toolbox

Lemma 3.8.5. Let (x̃i)i≥1 be a sequence of i.i.d positions on [0, 1] with distribution
U [0, 1]. For all N ≥ 1 and for i = 1, · · · , N , define xi = x̃(i) as the order statistics
of (x̃1, · · · , x̃N) (i.e. {x̃1, · · · , x̃N} = {x1, · · · , xN} and x1 < · · · < xN). Then, for
any borelian sets A and B of (0, 1],

1

N

N∑
i=1

1xi∈A, iN ∈B
−−−→
N→∞

Leb(A ∩B) a.s. (3.8.32)

where Leb denotes the Lebesgue measure on [0, 1].

Proof. It is sufficient to show that for all (t, t′) ∈ (0, 1]2,

1

N

N∑
i=1

1xi≤t, iN≤t′
−−−→
N→∞

min(t, t′) a.s.
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We introduce the uniform sample quantile function as in Csörgő (1983): define for
any y ∈ [0, 1]

UN(y) =

 0 if y = 0

xk if
k − 1

N
< y ≤ k

N
, k ∈ J1, NK.

(3.8.33)

First, we show that lim
N→∞

1

N

N∑
i=1

1xi≤t, iN≤t′
= lim

N→∞

∫ t′

0

1UN (y)≤tdy. We note k the

integer such that xk ≤ t < xk+1 (and k = 0 if x1 > t). We have two cases.

If t′ ≥ k
N
, then

1

N

N∑
i=1

1xi≤t, iN≤t′
=

1

N

N∑
i=1

1xi≤t,i≤Nt′ =
1

N

Nt′∑
i=1

1xi≤t =
k

N
, and∫ t′

0

1UN (y)≤tdy =

∫ t′

0

1y≤ k
n
dy =

k

N
. If t′ <

k

N
,
∫ t′

0

1UN (y)≤tdy =

∫ t′

0

1y≤ k
n
dy = t′

and
1

N

N∑
i=1

1xi≤t, iN≤t′
=

1

N

k∑
i=1

1i≤Nt′ =
bNt′c
N

−−−→
N→∞

t′. Then, we know from

Csörgő (1983) that sup
0≤y≤1

|UN(y) − y| a.s.−−−→
N→∞

0, and hence almost surely, for any

fixed y ∈ [0, 1], UN(y)
p.s.−−−→

N→∞
y and by dominated convergence

∫ t′
0
1UN (y)≤tdy −−−→

N→∞∫ t′
0
1y≤tdy = min(t, t′), which concludes the proof.

Proposition 3.8.6. Under the Scenario (1) of Definition 3.3.8, for any function
g such that ‖g‖Lχ(I×I),ν×ν <∞ with χ > 5,

sup
1≤i≤N

∫
I

g(xi, y)
(
ν(N)(dy)− ν(dy)

)
−−−→
N→∞

0 (3.8.34)

P-almost surely on the realization of the sequence
(
x(N)

)
N
.

Proof. Fix M > 0, and define the function pM(u) = u1|u|≤M +M1u>M −M1u<−M
on R. Set gM = pM ◦ g. The following arguments come from Luçon (2020) in the
proof of Proposition 3.4. We have

sup
1≤i≤N

∫
I

g(xi, y)
(
ν(N)(dy)− ν(dy)

)
≤ sup

1≤i≤N

1

N

N∑
j=1

|g(xi, xj)− gM(xi, xj)|

+ sup
1≤i≤N

∫
I

|g(xi, y)− gM(xi, y)| ν(dy) + sup
1≤i≤N

∫
I

gM(xi, y)
(
ν(N)(dy)− ν(dy)

)
=: (I) + (II) + (III).

To study (I), note that |g(x, y)− gM(x, y)| = |g(x, y)− gM(x, y)|1|g(x,y)|>M ≤
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2|g(x, y)|1|g(x,y)|>M , and that for any independent X, Y with distribution ν we have

E
[
|g(X, Y )|1|g(X,Y )|>M

]
=

+∞∑
l=0

E
[
|g(X, Y )|12lM<|g(X,Y )|≤2l+1M

]
≤

+∞∑
l=0

2l+1M
(
P
(
|g(X, Y )| > 2lM

)
− P

(
|g(X, Y )| > 2l+1M

))
= 2MP (|g(X, Y )| > M) +

+∞∑
l=1

2lMP
(
|g(X, Y )| > 2lM

)
≤ E [|g(X, Y )|χ]

(
2

Mχ−1
+

+∞∑
l=1

2lM

(2lM)χ

)
≤ 3E [|g(X, Y )|χ]

Mχ−1
,

using Markov inequality. Since

E

[
1

N

N∑
l=1

|g(xi, xl)− gM(xi, xl)|

]
≤ 2

N

N∑
l=1

E
[
|g(xi, xl)|1|g(xi,xl)|>M

]
,

it implies for the choice of M = N δ1 with δ1 > 0 to be defined later, using Markov

inequality and a union bound that P
(

(I) >
1

N δ2

)
≤ 6E [|g(X, Y )|χ]

N δ1(χ−1)−δ2−1
. Similarly,

we can show that P
(

(II) >
1

N δ2

)
≤ 6E [|g(X, Y )|χ]

N δ1(χ−1)−δ2−1
. We will use the two previous

bounds with Borel-Cantelli Lemma to deduce that P-almost surely, (I)+(II) −−−→
N→∞

0 by asking δ1(χ− 1)− δ2 − 1 > 1. To deal with (III) we use the boundedness of

gM . Note that (III) can be re-written sup
1≤i≤N

1

N

N∑
l=1

Y
(i),M
l with

Y
(i),M
l := gM(xi, xl)−

∫
I

gM(xi, y)ν(dy) = gM(xi, xl)− E [gM(xi, Y )|xi] .

We set F (i)
l = σ (xi, x1, . . . , xl). We have for l 6= i

E
[
Y

(i),M
l

∣∣∣F (i)
l−1

]
= E

[
UM(xi, xl)− EY [UM(xi, Y )|xi]

∣∣∣F (i)
l−1

]
= 0.

As
∣∣∣Y (i),M
l

∣∣∣ ≤ 2M , we can then apply Lemma 3.A.6: for any x > 0,

P

 1

N − 1

N∑
l=1
l 6=i

Y
(i),M
l

2M
≥ x

 ≤ exp

(
−(N − 1)

x2

2
B(x)

)
,

with the function B defined in (3.A.1). We consider a sequence εN such that
εN −−−→

N→∞
0 (we precise later on which one), and we apply the previous result with
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x =
εNN

2M(N − 1)
. As B(u) = u−2 ((1 + u) log (1 + u)− u) → 1

2
when u → 0, we

can choose a deterministic p such that for all N ≥ p, B
(

εNN

2M(N − 1)

)
≥ 1

4
. We

then have if N ≥ p: P

 1

N

N∑
l=1
l 6=i

Y
(i),M
l ≥ εN

 ≤ exp

(
− 1

32M2

ε2
NN

2

N − 1

)
, doing the

same for −Y (i)
l and with a union bound we obtain

P

 sup
1≤i≤N

∣∣∣∣∣∣∣
1

N

N∑
l=1
l 6=i

Y
(i),M
l

∣∣∣∣∣∣∣ ≥ εN

 ≤ 2N exp

(
− 1

32M2

ε2
NN

2

N − 1

)
.

It is sufficient to find εN such that εN −−−→
N→∞

0 and
∑

N 2N exp

(
− 1

32M2

ε2
NN

2

N − 1

)
<

∞ to conclude by Borel-Cantelli’s Lemma, P-almost surely if N is large enough

sup1≤i≤N

∣∣∣∣∣∣ 1

N

N∑
l=1
l 6=i

Y
(i),M
l

∣∣∣∣∣∣ ≤ εN . We set then ε2
N := 32M2(N − 1)Nγ, and require

−2 < γ < −1− 2δ1. As Y
(i),M
i is bounded (by 2M), adding the term 1

N
Y

(i),M
i does

not change the convergence if δ1 < 1 which was already asked for the conditions
on εN (recall M = N δ1). We are left with finding parameters (δ1, δ2, γ) such that
δ1 > 0, δ2 > 0, δ1(χ − 1) − δ2 − 1 > 1, −2 < γ < −1 − 2δ1 (to ensure that the
probabilities obtained with (I), (II) and (III) are summable and the sufficient
conditions on εN). As χ > 5, any choice such that δ1 ∈ (0, 1

2
) and δ2 ∈ (0, 1) works

(as δ1(χ − 1) − 1 < 1) with γ ∈ (−2,−1 − 2δ1), and we obtain (3.8.34) P-almost
surely.

Corollary 3.8.7. Under Scenario (1) of Definition 3.3.8, we define

εi,1 :=

∫
I×I

W (xi, y)W (xi, z)Γ(y, z)
(
ν(N)(dy)ν(N)(dz)− ν(dy)ν(N)(dz)

)
(3.8.35)

εi,2 :=

∫
I×I

W (xi, y)W (xi, z)Γ(y, z)
(
ν(dy)ν(N)(dz)− ν(dy)ν(dz)

)
, (3.8.36)

where Γ is defined in (3.8.19). Then under Hypothesis 3.3.7, P-almost surely,

sup
1≤i≤N

εi,1 −−−→
N→∞

0 and sup
1≤i≤N

εi,2 −−−→
N→∞

0.

Proof. Define φ(x, z) := W (x, z)
∫
I
W (x, y)Γ(y, z)ν(dy), then (3.8.36) becomes

εi,2 =
∫
I
φ(xi, z)

(
ν(N)(dz)− ν(dz)

)
. As Γ is bounded, |φ(x, z)| ≤ |W (x, z)| ‖Γ‖∞C(1)

W

and since W ∈ Lχ(I2, ν × ν), ‖φ‖Lχ(I×I),ν×ν < ∞ thus sup1≤i≤N εi,2 −−−→
N→∞

0

is an immediate application of Proposition 3.8.6. Similarly, define gN(x, y) :=
W (x, y)

∫
I
W (x, z)Γ(y, z)ν(N)(dz) and g(x, y) := W (x, y)

∫
I
W (x, z)Γ(y, z)ν(dz),

(3.8.35) becomes

εi,1 =

∫
I

(gN(xi, y)− g(xi, y))
(
ν(N)(dy)− ν(dy)

)
+

∫
I

g(xi, y)
(
ν(N)(dy)− ν(dy)

)
.
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As done with (3.8.36), we have immediately that

sup
1≤i≤N

∫
I

g(xi, y)
(
ν(N)(dy)− ν(dy)

)
−−−→
N→∞

0.

The other term can be written εi,3 :=
∫
I
W (xi, y)αN(xi, y)

(
ν(N)(dy)− ν(dy)

)
where

αN(xi, y) :=
∫
I
W (xi, z)Γ(y, z)

(
ν(N)(dz)− ν(dz)

)
. As Γ is bounded, Proposition

3.8.6 (and its proof) gives then that αN(xi, y) −−−→
N→∞

0 uniformly in i and y.
Another application of Proposition 3.8.6 gives that sup1≤i≤N εi,3 −−−→

N→∞
0, which

concludes the proof.

3.8.4.2 Proof of Proposition 3.8.4 for Scenario (1)

We treat the estimates (3.8.4), (3.8.5), (3.8.6) and (3.8.7) separately.

Proof of (3.8.4) We remind that we want to prove d2,ν
(
W G(2)N ,W

)
−−−→
N→∞

0,
when the positions are i.i.d. according to ν on I. Recall the definition of (x1, · · · , xN)
as the lexicographic reordering of the i.i.d. sample (x̃1, x̃2, · · · , x̃N). The proof is
organised as follow: we start by looking at the case d = 1, I = [0, 1] and ν is the
Lebesgue measure on I, and then extend to the general case

Step 1 - Approximation of W in norm L1. We first prove that for ε > 0, there
exists m ≥ 1 sufficiently large such that ‖W −WPm‖L1(I2) ≤ ε. We fix ε > 0. As
W ∈ L1(I2, ν), there exists W̃ continuous such that ‖W − W̃‖1,ν ≤

ε

3
. As W̃ is

also uniformly continuous, there exists η > 0 such that if ‖u− u′‖+ ‖v − v′‖ ≤ η,∣∣∣W̃ (u, v)− W̃ (u′, v′)
∣∣∣ ≤ ε

3
. We fix m large enough such that 1

m
≤ η, and denote

by Pm = tmi=1Ji the partition with Ji =
(
i−1
m
, i
m

]
. It verifies then, for each i ∈

(1, · · · ,m) Diam(Ji) ≤ η. We define the step function (which average the values
of W over cells obtained with the partition)

WPm(u, v) := m2

m∑
i,j=1

∫
Ji×Jj

W (x, y)ν(dx)ν(dy)1Ji(u)1Jj(v). (3.8.37)

We note G(3)
N the directed weighted graph with vertices {1, · · · , N} such that every

edge j → i is present, with weight WPm(xi, xj). We use it to upper-bound the
cut-distance between W and W G(2)N :

d2,ν

(
W G(2)N ,W

)
≤ ‖W G(2)N −W‖1,ν

≤ ‖W G(2)N −W G(3)N ‖1,ν + ‖W G(3)N −WPm‖1,ν + ‖WPm −W‖1,ν .
(3.8.38)

We are going to control each term of the right hand side of (3.8.38) in the following
steps.
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Step 2 - Control of ‖WPm −W‖1,ν. We have

‖WPm −W‖1,ν ≤ ‖WPm − W̃Pm‖1,ν + ‖W̃Pm − W̃‖1,ν + ‖W̃ −W‖1,ν .

As ‖W − W̃‖1,ν ≤
ε

3
, and as for any partition P , ‖WP‖1,ν ≤ ‖W‖1,ν , we have

‖WPm − W̃Pm‖1,ν ≤
ε

3
and

‖W̃Pm − W̃‖1,ν =
m∑

i,j=1

∫
Ji

∫
Jj

∣∣∣∣∣W̃ (u, v)−m2

∫
Ji

∫
Jj

W̃ (x, y)ν(dx)ν(dy)

∣∣∣∣∣ ν(du)ν(dv)

≤
m∑

i,j=1

∫
Ji

∫
Jj

m2

∫
Ji

∫
Jj

∣∣∣W̃ (u, v)− W̃ (x, y)
∣∣∣ ν(dx)ν(dy) ν(du)ν(dv)

≤
m∑

i,j=1

∫
Ji

∫
Jj

m2

∫
Ji

∫
Jj

ε

3
ν(dx)ν(dy) ν(du)ν(dv) ≤ ε

3
,

hence ‖WPm −W‖1,ν ≤ ε (recall here that ν is the Lebesgue measure on [0, 1]).

Step 3 - Control of ‖W G(2)N −W G(3)N ‖1,ν. For all N ≥ 1, we recall from Lemma

3.3.5
(
B

(N)
1 , · · · , B(N)

N

)
the partition of I with Bi =

(
i− 1

N
,
i

N

]
(we omit by

simplicity the upper index (N)). Using the notation introduced in (3.3.7), we have

‖W G(2)N −W G(3)N ‖1,ν =
N∑

i,j=1

∫
Bi

∫
Bj

|W (xi, xj)−WPm(xi, xj)| ν(du)ν(dv)

=
1

N2

N∑
i,j=1

|W (xi, xj)−WPm(xi, xj)| =:
1

N2

N∑
i,j=1

F (xi, xj).

(3.8.39)

We use the following proposition to show that it converges almost surely to ‖WPm−
W‖1,ν .

Proposition 3.8.8 (Hoeffding (1961)). Let X1, X2, · · · be a sequence of i.i.d.
random variables with distribution ν, and f a real-valued measurable function.
Then if E [|f(X1, X2)|] < +∞,

1

N(N − 1)

N∑
i,j=1
i 6=j

f(Xi, Xj)
a.s.−−−→

N→∞
E [f(X1, X2)] =

∫ ∫
f(x, y)ν(dx)ν(dy). (3.8.40)

We have indeed

N∑
i,j=1

F (xi, xj) =
1

N2

N∑
i=1

F (xi, xi) +
N(N − 1)

N2

1

N(N − 1)

N∑
i,j=1
i 6=j

F (xi, xj),

99



3. Hawkes processes on inhomogeneous random graphs

where the second term converges as N →∞ to
∫∫

F (x, y)ν(dx)ν(dy) a.s. and

1

N2

N∑
i=1

F (xi, xi) ≤
1

N

(
1

N

N∑
i=1

|W (xi, xi)|+
1

N

N∑
i=1

|WPm(xi, xi)|

)
−−−→
N→∞

0

as the sums are controlled by Hypothesis 3.2.6.

Step 4 - Control of ‖W G(3)N −WPm‖1,ν. We have

‖W G(3)N −WPm‖1,ν =
N∑

i,j=1

∫
Bi

∫
Bj

|WPm(xi, xj)−WPm(x, y)| ν(dx)ν(dy). (3.8.41)

Recalling (3.8.37) and setting αkl = m2
∫
Jk×Jl

W (u, v)ν(du)ν(dv) we have

‖W G(3)N −WPm‖1,ν

=
N∑

i,j=1

∫
Bi

∫
Bj

∣∣∣∣∣∑
k,l

αkl1Jk×Jl(xi, xj)−
∑
k′,l′

αk′l′1Jk′×Jl′ (x, y)

∣∣∣∣∣ ν(dx)ν(dy)

=
N∑

i,j=1

∑
k,l

∑
k′,l′

|αkl − αk′l′|1Jk×Jl(xi, xj)
∫
Bi

∫
Bj

1Jk′×Jl′ (x, y)ν(dx)ν(dy)

=
∑
k,l

∑
k′,l′

|αkl − αk′l′|
N∑

i,j=1

1Jk×Jl(xi, xj)ν(Jk′ ∩Bi)ν(Jl′ ∩Bj).

We consider N large enough (N > m) such that every box Bi =
(
i−1
N
, i
N

]
(of size

1
N
) is inside a larger box Jk′ =

(
k′−1
m
, k
′

m

]
(of size 1

m
) (there might be some Bi that

are on two different parts of the partition Pm, but we can neglect this contribution

- at most of order m
N
−−−→
N→∞

0). Then ν(Jk′ ∩ Bi) = 1{Bi⊂Jk′}ν(Bi) =
1

N
1{ iN ∈Jk′},

and

‖W G(3)N −WPm‖1,ν

≤
m∑

k,l=1

m∑
k′,l′=1

|αkl − αk′l′|
N∑

i,j=1

1

N2
1{(xi,xj)∈Jk×Jl,Bi⊂Jk′ ,Bj⊂Jl′}

≤
m∑

k,l=1

m∑
k′,l′=1

|αkl − αk′l′ |
N∑

i,j=1

1

N2
1{(xi,xj)∈Jk×Jl, iN ∈Jk′ ,

j
N
∈Jl′}

≤
m∑

k,l=1

m∑
k′,l′=1

|αkl − αk′l′ |

(
1

N

N∑
i=1

1{xi∈Jk, iN ∈Jk′}

)(
1

N

N∑
j=1

1{xj∈Jl, jN ∈Jl′}

)
.

Then, from Lemma 3.8.5,
1

N

N∑
i=1

1{xi∈Jk, iN ∈Jk′}
a.s.−−−→

N→∞
λ(Jk ∩ Jk′) =

1

m
1k=k′ , hence

we obtain that

lim sup
N→∞

∥∥∥W G(3)N −WPm
∥∥∥

1,ν
≤ 1

m2

m∑
k,l=1

m∑
k′,l′=1

|αk,l − αk′,l′ |1k=k′1l=l′ .
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3.8. Convergence of the mean-field process (proofs)

The claim is that the above bound is uniformly 0 for all m: the sum reduces to
k = k′ and l = l′ hence the prefactor |αk,l − αk′,l′ | gives that this last contribution
is 0, thus almost-surely (on the realization of the sequence of positions) we have
‖W G(3)N −WPm‖1,ν −−−→

N→∞
0.

Conclusion when the positions are uniformly drawn - From (3.8.38) and Steps
3 and 4, we obtain that lim sup

N→∞
d2

(
W G(2)N ,W

)
≤ 2 ‖WPm −W‖1,ν . Choosing now

m as in Step 2 gives that lim sup
N→∞

d2

(
W G(2)N ,W

)
≤ ε for all ε > 0, which concludes

the proof for the case xi ∼ U(0, 1).

Generalisation: from [0, 1] to [0, 1]d - Consider the case xi =
(
u

(1)
i , . . . , u

(d)
i

)
where

(
u

(j)
i

)
1≤j≤d

are drawn uniformly on (0, 1] (but not necessarily independent),

and the partition I = (0, 1]d =
N⊔
i=1

Bi =
N⊔
i=1

((
i− 1

N
,
i

N

]
× (0, 1]d−1

)
. Proposition

3.8.8 still apply, and the treatment of the terms ‖W G(2)N −W G(3)N ‖1,ν and ‖WPm −
W‖1,ν in (3.8.38) remains the same. For the term ‖W G(3)N −WPm‖1,ν , it suffices to
note that the chosen partition

⊔
Bi only affects the first coordinates to conclude

by the same arguments.
General case - Consider ν absolutely continuous with respect to Lebesgue

measure, and I ⊂ Rd. From Sklar’s theorem (Nelsen, 1999, Theorem 2.3.3), we
have:

fν(x
(1), . . . , x(d)) = c(F1(x(1)), . . . , Fd(x

(d)))f1(x(1)) . . . fd(x
(d)),

where c is the copula density function of ν, fi the i-th marginal probability density
functions, Fi the i-th marginal cumulative distribution functions and fν the density
of ν with respect to Lebesgue measure: ν(dx) = fν(x

(1), . . . , x(d))dx(1) . . . dx(d). It
implies, by the change of variables u =

(
F1(x(1)), . . . , Fd(x

(d))
)
that c(u)du =

fν(x)dx. Define also ui =
(
F1(x

(1)
i , . . . , Fd(x

(d)
i )
)
and

WF (u, v) := W
((
F−1

1 (u(1)), . . . , F−1
d (u(d))

)
,
(
F−1

1 (v(1)), · · · , F−1
d (v(d))

))
,

the previous change of variable gives then that

‖W G(2)N −W‖1,ν =
N∑

i,j=1

∫
Bi

∫
Bj

|W (xi, xj)−W (x, y)| ν(dx)ν(dy)

=
N∑

i,j=1

∫
( i−1
N
, i
N ]×(0,1]d−1

∫
( j−1
N
, j
N ]×(0,1]d−1

|WF (ui, uj)−WF (u, v)| c(u)c(v)du dv,

with
Bi :=

(
F−1

1

(
i− 1

N
,
i

N

]
× F−1

2 ((0, 1])× · · · × F−1
d ((0, 1])

)
(note that this partition corresponds to the one introduced in Lemma 3.3.5). The
previous case gives immediately the result.
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3. Hawkes processes on inhomogeneous random graphs

Proof of (3.8.5) We remind that we want to prove ‖W G(2)N −W‖∞→∞,ν −−−→
N→∞

0.
As in the proof of (3.8.4), we start with the case I = [0, 1], x̃i ∼ U (0, 1) i.i.d.
(then ν is the Lebesgue measure). What changes is that we no longer integrate
with respect to the first variable, but we take the supremum. The approximation
in L1(I2) is not adapted anymore, thus we approximate W differently. Recall that

‖W G(2)N −W‖∞→∞,ν = sup
‖g‖∞≤1

sup
u∈I

∣∣∣∣∫
I

(
W G(2)N (u, v)−W (u, v)

)
g(v)ν(dv)

∣∣∣∣ .

Step 1 - A first bound. Fixing g such that ‖g‖∞ ≤ 1 and u ∈ I, for any N there

exists a unique i such that u ∈ BN,i =

(
i− 1

N
,
i

N

]
. Then

∫
I

(
W G(2)N (u, v)−W (u, v)

)
g(v)ν(dv) =

N∑
j=1

∫
Bj

(W (xi, xj)−W (u, v)) g(v)ν(dv)

≤

∣∣∣∣∣
N∑
j=1

∫
Bj

(W (xi, xj)−W (xi, v)) g(v)ν(dv)

∣∣∣∣∣+
∣∣∣∣∫
I

(W (xi, v)−W (u, v)) g(v)ν(dv)

∣∣∣∣
=: A(g, u) +B(g, u).

Step 2 - Upper-bound of A(g, u) by approximated functions independent of g. As
‖g‖∞ ≤ 1, we have A(g, u) ≤

∑N
j=1

∫
Bj
|W (xi, xj)−W (xi, v)| dv. Note that it does

not depend anymore on g and it depends on u only by the index i. To control this
term, we first approximate W by a stepfunction in L1(I), W̃Pm . Introduce (ϕη)η>0

as ϕη(x) = η−1φ(x
η
) where φ is a nonnegative continuous function of I with

∫
φ = 1.

Define for all x ∈ I W̃η(x, ·) := W (x, ·) ∗ ϕη. Note that y 7→ W̃η(x, y) ∈ R is a
continuous function for all x ∈ [0, 1]. As for any (x, x′) ∈ I2, ‖W (x, ·)−W (x′, ·)‖1 ≤
Cw‖x − x′‖ϑ using (3.2.5), x 7→ W (x, ·) is continuous from [0, 1] to L1(I), so that
the set of functions F := {W (x, ·), x ∈ [0, 1]} is compact. Hence, for ε > 0, we
can find p ≥ 1 and p positions y1, · · · , yp such that F ⊂ ∪pk=1BL1 (W (yk, ·), ε).
Then, there exists η > 0 such that for all k ≤ p, ‖W̃η(yk, ·) − W (yk, ·)‖I,1 ≤ ε.
From now, we may omit the notation η for W̃ . Let m ≥ 1 and Pm = tmi=1Ji for

Jr =

(
r − 1

m
,
r

m

]
the regular partition of I of order m. For any kernel H on I2,

define

HPm (x, v) := m

m∑
r=1

(∫
Jr

H(x, y)dy

)
1Jr(v). (3.8.42)

The function H 7→ HPm is continuous: ‖HPm‖L1(I2) ≤ ‖H‖L1(I2). Note that
this definition is different from the one used in the proof of (3.8.4) where we
integrated on both variables. By continuity of y 7→ W̃ (yk, y) for all k = 1 · · · p,
there exists m ≥ 1 such that sup1≤l≤p ‖W̃ (yl, ·) − W̃Pm (yl, ·) ‖∞ ≤ ε, and thus
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3.8. Convergence of the mean-field process (proofs)

sup
1≤l≤p

∫ ∣∣∣W̃ (yl, y)− W̃Pm (yl, y)
∣∣∣ dy ≤ ε. Then, for any x ∈ I,

‖W (x, ·)− W̃Pm(x, ·)‖I,1 ≤ ‖W (x, ·)−W (yl, ·)‖I,1︸ ︷︷ ︸
≤ε by the cover of F

+ ‖W (yl, ·)− W̃ (yl, ·)‖I,1︸ ︷︷ ︸
≤ε by the choice of η

+ ‖W̃ (yl, ·)− W̃Pm(yl, ·)‖I,1︸ ︷︷ ︸
≤ε by the choice of m

+‖W̃Pm(yl, ·)− W̃Pm(x, ·)‖I,1

≤ 3ε+ ‖W̃ (yl, ·)− W̃ (x, ·)‖I,1 ≤ 4ε,

where we used the fact that for any partition P , ‖W̃P‖I,1 ≤ ‖W̃‖I,1 and because∥∥∥W̃ (yl, ·)− W̃ (x, ·)
∥∥∥
I,1

= ‖(W (yl, ·)−W (x, ·)) ∗ ϕη‖I,1
≤ ‖W (yl, ·)−W (x, ·)‖I,1 ‖ϕη‖I,1

by Young’s inequality. By compactness of F and since BL1(W (yl, ·))l=1,··· ,p is an
ε-covering of F , this last term is smaller than ε. Using this approximation, we can
now upper bound A(g, u) independently of the choice of g and relying on the choice
of u only by the index i such that u ∈ BN,i: we have

A(g, u) ≤ 1

N

N∑
j=1

∣∣∣W (xi, xj)− W̃Pm(xi, xj)
∣∣∣+

N∑
j=1

∫
Bj

∣∣∣W̃Pm(xi, xj)− W̃Pm(xi, v)
∣∣∣ dv

+
N∑
j=1

∫
Bj

∣∣∣W̃Pm(xi, v)−W (xi, v)
∣∣∣ dv =: A

(i)
1 + A

(i)
2 + A

(i)
3 .

Step 3 - Uniform control of the A(i)
k . As A(i)

3 = ‖W̃Pm(xi, ·) −W (xi, ·)‖I,1, we
control it by the work done previously independently of the index i (see Step 2):
supiA

(i)
3 −−−→

N→∞
0. Set g(x, y) := W (x, y)− W̃Pm(x, y), and as W ∈ Lχ(I2), so does

g. We can then apply Proposition 3.8.6 and we obtain

sup
1≤i≤N

∣∣∣A(i)
3 − A

(i)
1

∣∣∣ = sup
1≤i≤N

∫
I

g(xi, y)
(
ν(N)(dy)− ν(dy)

)
−−−→
N→∞

0.

We focus now on A(i)
2 and show that sup

x

N∑
j=1

∫
Bj

∣∣∣W̃Pm(x, xj)− W̃Pm(x, v)
∣∣∣ dv tends

to 0: denoting by αk(x) = m
∫
Jk
W̃ (x, y)dy, we have

N∑
j=1

∫
Bj

∣∣∣W̃Pm(x, xj)− W̃Pm(x, v)
∣∣∣ dv

=
N∑
j=1

∫
Bj

∣∣∣∣∣
m∑
k=1

αk(x)1Jk(xj)−
m∑
k′=1

αk′(x)1Jk′ (v)

∣∣∣∣∣ dv
≤

m∑
k,k′=1

|αk(x)− αk′(x)|
N∑
j=1

1Jk(xj) |Jk′ ∩Bj| .
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3. Hawkes processes on inhomogeneous random graphs

Similarly to what has been done in Step 4 for the proof of (3.8.4), we consider N
large enough (N > m) such that every box Bi =

(
i−1
N
, i
N

]
is inside a larger box

Jk′ =
(
k′−1
m
, k
′

m

]
, then ν(Jk′ ∩Bj) = 1{Bj⊂Jk′}ν(Bj) = 1

N
1{ jN ∈Jk′} and

N∑
j=1

∫
Bj

∣∣∣W̃Pm(x, xj)− W̃Pm(x, v)
∣∣∣ dv ≤ m∑

k,k′=1
k 6=k′

|αk(x)− αk′(x)|
N∑
j=1

1

N
1{xj∈Jk, jN ∈Jk′}.

As αk(x) ≤ m
∫
I
W̃ (x, y)dy ≤ mC

(1)
W which is independent of x and k,

N∑
j=1

∫
Bj

∣∣∣W̃Pm(x, xj)− W̃Pm(x, v)
∣∣∣ dv ≤ 2mC

(1)
W

m∑
k,k′=1
k 6=k′

N∑
j=1

1

N
1{xj∈Jk, jN ∈Jk′}.

From Lemma 3.8.5,
1

N

N∑
j=1

1{xj∈Jk, jN ∈Jk′}
a.s.−−−→

N→∞
λ(Jk∩Jk′) =

1

m
1k=k′ , thus a.s. (on

the realization of the sequence of positions),
N∑
j=1

∫
Bj

∣∣∣W̃Pm(x, xj)− W̃Pm(x, v)
∣∣∣ dv

tends to 0 independently on the choice of x. We have shown that P-a.s.,

sup
g,‖g‖∞≤1

sup
u∈I

A(g, u) −−−→
N→∞

0.

Step 4 - Control of B(g, u) and conclusion. Using(3.2.5) from Hypothesis 3.2.6,
we have

B(g, u) ≤
∫
I

|W (xi, v)−W (u, v)| ‖g‖∞ν(dv) ≤ Cw‖xi − u‖ϑ.

Let us show that sup
x∈I

N∑
i=1

1Bi(x)‖xi − x‖ϑ −−−→
N→∞

0. Recall (3.8.33): we have

N∑
i=1

1Bi(x)‖xi − x‖ϑ = ‖UN(x) − x‖ϑ by definition of UN , the uniform sample

quantile function. As we know from Csörgő (1983) that sup
0≤y≤1

|UN(y)− y| a.s.−−−→
N→∞

0,

almost surely sup
g,‖g‖∞≤1

sup
u∈I

B(g, u) −−−→
N→∞

0. It concludes the proof for (3.8.5).

Proof of (3.8.7) and (3.8.6) The term of interest is A(N)
i,T,5, defined in (3.8.14),

we have by Jensen’s inequality
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3.8. Convergence of the mean-field process (proofs)

A
(N)
i,T,5

2
≤
(∫ T

0

∣∣∣∣∫
I

F (xi, y, s)
(
ν(N)(dy)− ν(dy)

)∣∣∣∣ ds)2

≤ T

∫ T

0

(
1

N

N∑
j=1

(
F (xi, xj, s)−

∫
I

F (xi, y, s)ν(dy)

))2

ds

≤ T

N2

N∑
j,l=1

∫ T

0

(
F (xi, xj, s)F (xi, xl, s) +

(∫
I

F (xi, y, s)ν(dy)

)2

−2F (xi, xj, s)

∫
I

F (xi, y, s)ν(dy)

)
ds.

As F (xi, y, s)F (xi, z, s) = W (xi, y)W (xi, z)γ(s, y)γ(s, z) for any y and z, denoting
by Γ(y, z) :=

∫ T
0
γ(s, y)γ(s, z)ds we obtain

A
(N)
i,T,5

2
≤ T

N2

N∑
j,l=1

W (xi, xj)W (xi, xl)Γ(xj, xl)

− 2T

N

N∑
j=1

∫
I

W (xi, xj)W (xi, y)Γ(xj, y)ν(dy)

+ T

∫
I2
W (xi, y)W (xi, z)Γ(y, z)ν(dy)ν(dz), (3.8.43)

which is equal to

T

∫
I×I

W (xi, y)W (xi, z)Γ(y, z)
(
ν(N)(dy)ν(N)(dz)− 2ν(N)(dy)ν(dz) + ν(dy)ν(dz)

)
and T (εi,1 + εi,2), recognising εi,1 and εi,2 from Corollary 3.8.7. Taking the square
root and then summing on i or taking the supremum, (3.8.7) and (3.8.6) follow.

Remark 3.8.9. If we ask for more regularity of W , we can have a more direct
proof of (3.8.7). Assume that there exist LW > 0 and MW > 0 such that

sup
x∈I

sup
y 6=y′

|W (x, y)−W (x, y′)|
‖y − y′‖

≤ LW and sup
x,y∈I
|W (x, y)| ≤MW .

Hypothesis 3.2.6 is trivially satisfied with ϑ = 1 and Cw = LW , which implies that
λ is uniformly Lipschitz continuous in the second variable (in (3.2.7), φ(x) = 2‖x‖).
We show first that F defined above in (3.8.39) is also uniformly Lipschitz continuous
in the second variable: for any (x, y, y′, s) ∈ I3 × [0, T ],

F (x, y, s)− F (x, y′, s) = (W (x, y)−W (x, y′)) γ(s, y)

+W (x, y′)

∫ s

0

h(s− u) (λu(y)− λu(y′)) du,
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then

|F (x, y, s)− F (x, y′, s)|

≤ |W (x, y)−W (x, y′)| |γ(s, y)|+ |W (x, y′)|
∫ s

0

|h(s− u)| |λu(y)− λu(y′)| du

≤ ‖h‖T,1‖y − y′‖
(
‖λ‖[0,T ]×I,∞LW + 2MWCλ

)
=: LF‖y − y′‖,

with LF > 0 independent of the choice of s and x. Recall (3.8.14), as F is uniformly
Lipschitz continuous in the second variable with constant LF , we have

1

N

N∑
i=1

A
(N)
i,T,5 ≤ LF sup

g∈BL

∫ T

0

∣∣∣∣∫
I

g(y)
(
ν(N)(dy)− ν(dy)

)∣∣∣∣ ds
≤ TLFdBL

(
ν(N), ν

)
−−−→
N→∞

0

by Varadarajan Theorem (see (Dudley, 2002, Theorem 11.4.1) and Varadarajan
(1958)).

3.8.4.3 Proof of Proposition 3.8.4 for Scenario (2)

Recall that I = [0, 1], x(N)
i = i

N
, and ν(dx) = dx. We focus on the case W

continuous. When W is piecewise continuous, the same results follow as we can
work on each rectangle where W can be extended to a continuous function, and
these rectangles are in finite number.

Proof of (3.8.4) Using Remark 3.3.3 and (3.3.3), we have

d2

(
W G(2)N ,W

)
≤ ‖W G(2)N −W‖∞→1 = sup

‖g‖∞≤1

∫ ∣∣∣∣∫ (W G(2)N −W
)

(x, y)g(y)dy

∣∣∣∣ dx
≤
∫ ∫ ∣∣∣(W G(2)N −W

)
(x, y)

∣∣∣ dxdy = ‖W G(2)N −W‖L1,[0,1]2

=
N∑

i,j=1

∫ i
N

i−1
N

∫ j
N

j−1
N

∣∣∣∣W (
i

N
,
j

N

)
−W (x, y)

∣∣∣∣ dxdy.
As W is continuous on the compact [0, 1]2 in this scenario (2), it is uniformly
continuous due to Heine-Cantor theorem thus for any ε > 0, there exists η > 0
such that |x− x′|+ |y− y′| ≤ η ⇒ |W (x, y)−W (x′, y′)| < ε. For N large enough,

1
N
< η and then (3.8.4) holds as d2

(
W G(2)N ,W

)
≤

N∑
i,j=1

∫ i
N

i−1
N

∫ j
N

j−1
N

ε dxdy = ε.

Proof of (3.8.5) Recall that

‖W G(2)N −W‖∞→∞,ν = sup
‖g‖∞≤1

sup
u∈[0,1]

∣∣∣∣∫ 1

0

(
W G(2)N (u, v)−W (u, v)

)
g(v)dv

∣∣∣∣ .
As done for (3.8.4), we use the uniform continuity of W : for any ε > 0, we take
η > 0 such that |x − x′| + |y − y′| ≤ η ⇒ |W (x, y)−W (x′, y′)| < ε. Fix g
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3.9. The empirical measure and the spatial profile (proofs)

such that ‖g‖∞ ≤ 1 and u ∈]0, 1], for any N there exists a unique i such that

u ∈ BN,i =

(
i− 1

N
,
i

N

]
. For N large enough,

2

N
< η and we have then

∫ 1

0

(
W G(2)N (u, v)−W (u, v)

)
g(v)dv =

N∑
j=1

∫
Bj

(
W

(
i

N
,
j

N

)
−W (u, v)

)
g(v)dv

≤
N∑
j=1

∫ j
N

j−1
N

∣∣∣∣W (
i

N
,
j

N

)
−W (u, v)

∣∣∣∣ |g(v)|dv ≤ ε,

independently from the choices of g and u: we have shown that in this Scenario,
‖W G(2)N −W‖∞→∞,ν −−−→

N→∞
0.

Proof of (3.8.7) and (3.8.6) AsW is continuous on [0, 1]2 and (s, y) 7→ γ(s, y) =∫ s
0
h(s − u)λu(y)du is also continuous on [0, T ] × [0, 1] as a convolution between

h locally integrable and λ continuous, the application (x, y, s) 7→ F (x, y, s) =
W (x, y)γ(s, y) is continuous on the compact set K = [0, 1] × [0, 1] × [0, T ], it is
uniformly continuous due to Heine-Cantor theorem. Then, for ε > 0, there exists
η > 0 such that for any (x, y, s) and (x′, y′, s′) in K, |x− x′|+ |y − y′|+ |s− s′| ≤
η ⇒ |F (x, y, s)− F (x′, y′, s′)| < ε. For N large enough, 1

N
< η and we have then

A
(N)
i,T,5 =

∫ T

0

∣∣∣∣∣
N∑
j=1

∫ j
N

j−1
N

F (xi, xj, s) dy −
N∑
j=1

∫ j
N

j−1
N

F (xi, y, s)dy

∣∣∣∣∣ ds
≤
∫ T

0

N∑
j=1

∫ j
N

j−1
N

|F (xi, xj, s)− F (xi, y, s)| dy ds ≤ Tε. (3.8.44)

Summing on i or taking the supremum, (3.8.7) and (3.8.6) follow.

3.9 The empirical measure and the spatial profile
(proofs)

3.9.1 Proof of Theorem 3.3.15

We prove the convergence of E [dBL(µN , µ∞)] −−−→
N→∞

0. Some of the following
arguments come from Chevallier et al. (2019). We consider D ([0, T ],N) with the
distance d0 introduced in (Billingsley, 1968, §14) which makes it complete, and
we have for any η, ζ in D ([0, T ],N) , d0(η, ζ) ≤ supt≤T |η(t) − ζ(t)|. Recall that
dBL (µN , µ∞) = sup‖φ‖BL≤1

∣∣∫ φdµN − ∫ φdµ∞∣∣. We start by proving that for any
φ fixed, E

∣∣∫ φ (dµN − dµ∞)
∣∣ −−−→
N→∞

0. By an argument of compactness, we show
how it implies (3.3.20).

Step 1 - Convergence when φ is fixed. We fix φ a real-valued function on S
(recall that S := D ([0, T ],N) × I) such that ‖φ‖BL ≤ 1. Then with the coupling
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3. Hawkes processes on inhomogeneous random graphs

introduced in Definition 3.3.1:

E

∣∣∣∣∫ φ (dµN − dµ∞)

∣∣∣∣ = E

∣∣∣∣∣ 1

N

N∑
i=1

φ
(
Z

(N)
i , xi

)
−
∫
φ(η, x)P[0,T ],∞ (dη|x) ν(dx)

∣∣∣∣∣
≤ E

∣∣∣∣∣ 1

N

N∑
i=1

∫
φ (η, xi)P[0,T ],∞ (dη|xi)−

∫
φ(η, x)P[0,T ],∞ (dη|x) ν(dx)

∣∣∣∣∣
+ E

∣∣∣∣∣ 1

N

N∑
i=1

(
φ
(
Zi, xi

)
−
∫
φ (η, xi)P[0,T ],∞ (dη|xi)

)∣∣∣∣∣
+ E

∣∣∣∣∣ 1

N

N∑
i=1

(
φ
(
Z

(N)
i , xi

)
− φ

(
Zi, xi

))∣∣∣∣∣ := A+B + C.

The term A is treated easily with Theorems 3.3.10 or 3.3.12: as φ is Lipschitz
continuous and ‖φ‖L ≤ 1,

A ≤ 1

N

N∑
i=1

E
[
d0

(
Z

(N)
i , Zi

)]
≤ 1

N

N∑
i=1

E

[
sup
t≤T

∣∣∣Z(N)
i (t)− Zi(t)

∣∣∣] −−−→
N→∞

0.

To treat B, we set for each i ∈ J1, NK Gi := φ
(
Zi, xi

)
, it is a random variable

with expectation
∫
φ (η, xi)P[0,T ],∞ (dη|xi). We have then applying Lemma 3.A.2,

B ≤ 1

N

√∑N
i=1 Var(Gi). To calculate Var(Gi), let

(
Z̃i(t)

)
0≤t≤T

be an independent

copy of
(
Zi(t)

)
0≤t≤T and set G̃i := g

(
Z̃i, xi

)
, then denoting by Ẽ the expectation

taken with respect to G̃i, we have

Var(Gi) = E
[
(Gi − E [Gi])

2] = E

[
Ẽ
[
Gi − G̃i

]2
]
≤ E

[
Ẽ

[(
Gi − G̃i

)2
]]

by Jensen’s inequality. We have, as ‖g‖L ≤ 1,

Ẽ

[(
Gi − G̃i

)2
]
≤ Ẽ

[
d0

(
Zi, Z̃i

)2
]
≤ Ẽ

[(
sup

0≤t≤T

∣∣∣Zi(t)− Z̃i(t)
∣∣∣)2
]

≤ 2Zi(T )2 + 2Ẽ
[
Z̃i(T )2

]
as the processes are increasing. Thus we obtain Var(Gi) ≤ 4E

[
Zi(T )2

]
. As Zi(T )

is a Poisson random variable with rate
∫ T

0
λt(xi)dt,

E
[
Z̃i(T )2

]
= Var

(
Z̃i(T )

)
+
(
E
[
Z̃i(T )

])2

=

∫ T

0

λt(xi)dt+

(∫ T

0

λt(xi)dt

)2

which is finite as λ is bounded (Theorem 3.2.7). We have then shown that B −−−→
N→∞

0. To treat C, note that it can be rewritten as

C =

∣∣∣∣∫ ∫ φ(η, x)P[0,T ],∞(dη|x)
(
ν(N)(dx)− ν(dx)

)∣∣∣∣ .
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We denote by h the bounded function h(x) =
∫
φ(η, x)P[0,T ],∞(dη|x). Under

Scenario (1), C =

∣∣∣∣ 1

N

∑N
i=1 h(xi)−

∫
I
h(x)ν(dx)

∣∣∣∣ −−−→N→∞
0 by the Law of Large

Numbers. Under Scenario (2), C =

∣∣∣∣ 1

N

∑N
i=1 h

(
i
N

)
−
∫ 1

0
h(x)dx

∣∣∣∣ and we recognise

a Riemann sum: it suffices to show that h is continuous to have C −−−→
N→∞

0. Fix x
in I and consider a sequence (xn) such that xn −−−→

n→∞
x. We have

|h(xn)− h(x)| ≤
∫
|φ(η, xn)− φ(η, x)|P[0,T ],∞(dη|xn)

+

∣∣∣∣∫ φ(η, x)
(
P[0,T ],∞(dη|x)− P[0,T ],∞(dη|xn)

)∣∣∣∣ .
We deal with the first term: by the Lipschitz continuity of φ and the fact that
P[0,T ],∞(·|xn) is a probability measure, we have∫

|φ(η, xn)− φ(η, x)|P[0,T ],∞(dη|xn) ≤ ‖x− xn‖ −−−→
n→∞

0.

As x is fixed, to have the second term converging to 0, we show that for any
function ψ with Lipschitz constant ‖ψ‖L ≤ 1 defined on D ([0, T ],N), the function
ρ(y) :=

∫
ψ(η)P[0,T ],∞(dη|y) is continuous on I: let π be a random Poisson measure

with intensity dsdz on R+×R+, and for each y ∈ I construct a Poisson point process
Z
y on [0, T ] with intensity (λt(y)) by taking Zy

(t) =
∫ t

0

∫∞
0

1z≤λs(y)π(ds, dz). Then,
as ψ is Lipschitz continuous,

|ρ(x)− ρ(xn)| =
∣∣E [ψ (Zxn)− ψ (Zx)]∣∣ ≤ E

[
d0

(
Z
xn
, Z

x)]
≤ E

[
sup

0≤t≤T

∣∣Zxn
(t)− Zx

(t)
∣∣] ≤ E

[∫ t

0

∣∣d (Zxn
(s)− Zx

(s)
)∣∣]

≤ E

[∫ t

0

∫ ∞
0

∣∣1z≤λs(xn) − 1z≤λs(x)

∣∣ π(ds, dz)

]
≤
∫ t

0

|λs(xn)− λs(x)| ds ≤ T‖x− xn‖ϑ −−−→
n→∞

0,

with (3.2.7). Then ρ is indeed continuous on I, and so is h hence C −−−→
N→∞

0. We
have shown that for any function φ on S such that ‖φ‖BL ≤ 1, we have

E

∣∣∣∣∫ φ (dµN − dµ∞)

∣∣∣∣ −−−→N→∞
0. (3.9.1)

Step 2 - Approximation of any φ by a finite set of functions and conclusion. To
derive (3.3.20), we use an argument from (Luçon, 2020, Lemma 4.5) and (Dudley,
2002, Theorem 11.3.3). For all ε > 0, there exists a compact set K ⊂ S with
µ∞(K) > 1− ε. The set of functions B :=

{
φ|K , ‖φ‖BL ≤ 1

}
, restricted to K is a

compact set by Arzela-Ascoli Theorem, hence there exists k ≥ 1 and k functions
in B, φ1, . . . , φk, such that for any φ satisfying ‖φ‖BL ≤ 1, there exists j ≤ k that
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verifies supy∈K |φ(y)− φj(y)| ≤ ε. We denote by Kε := {z ∈ S, dS (z,K) < ε}.
Then supz∈Kε |φ(z)− φj(z)| < 3ε as for any z ∈ Kε, we can find yz ∈ K such that
dS(z, yz) < ε and

|φ(z)− φj(z)| ≤ |φ(z)− φ(yz)|+ |φ(yz)− φj(yz)|+ |φj(yz)− φj(z)|
≤ ‖φ‖LdS(z, yz) + ε+ ‖φj‖LdS(z, yz) ≤ 3ε.

We introduce the function g(z) = max

(
0, 1− dS(z,K)

ε

)
on S. Note that 1K ≤

g ≤ 1Kε and g is bounded and Lipschitz continuous. Then, integrating on µN , we
obtain µN(Kε) ≥

∫
gdµN . We put together all the previous bounds to have, for

any φ such that ‖φ‖BL ≤ 1:∣∣∣∣∫ φ (dµ∞ − dµN)

∣∣∣∣ ≤ ∫ |φ− φj| (dµ∞ + dµN) +

∣∣∣∣∫ φj (dµ∞ − dµN)

∣∣∣∣
≤
∫
Kε

|φ− φj| (dµ∞ + dµN) +

∫
S−Kε

|φ− φj| (dµ∞ + dµN) +

∣∣∣∣∫ φj (dµ∞ − dµN)

∣∣∣∣
≤ 3ε.2 + 2µ∞ (S −Kε) + 2µN (S −Kε) +

∣∣∣∣∫ φj (dµ∞ − dµN)

∣∣∣∣ .
Hence, taking the supremum on such function φ we obtain

sup
φ,‖φ‖BL≤1

∣∣∣∣∫ φ (dµN − dµ∞)

∣∣∣∣ ≤ 8ε+ 2

(
1−

∫
gdµN

)
+ max

1≤j≤k

∣∣∣∣∫ φj (dµ∞ − dµN)

∣∣∣∣ .
Using (3.9.1), for N large enough E

[∫
gdµN

]
>
∫
gdµ∞ − ε. As

∫
gdµ∞ ≥

µ∞(K) ≥ 1 − ε, we have E
[∫
gdµN

]
> 1 − 2ε and then E [dBL (µN , µ∞)] ≤

12ε + E
[
max1≤j≤k

∣∣∫ φj (dµ∞ − dµN)
∣∣]. Using (3.9.1), as there is a finite number

of functions considered, we have that E
[
max1≤j≤k

∣∣∫ φj (dµ∞ − dµN)
∣∣] −−−→

N→∞
0

which concludes the proof of (3.3.20).

3.9.2 Proof of Proposition 3.3.17

We show the convergence of the spatial profile UN , when the positions are regularly
distributed on [0, 1] and W is continuous. We have

E

[∫ T

0

∫ 1

0

|UN(t, x)− ut(x)| dxdt
]
≤ E

[∫ T

0

1

N

N∑
i=1

|Ui,N(t)− ut(xi)| dt

]

+

∫ T

0

∫ 1

0

∣∣∣∣∣
N∑
i=1

1( i−1
N
, i
N ](x) (ut(xi)− ut(x))

∣∣∣∣∣ dxdt.
The first term is dealt with the proof of Theorem 3.3.10: recall (3.8.9), we recognise∫ T

0

E [|Ui,N(t)− u(t, xi)|] dt ≤

(
5∑

k=1

A
(N)
i,T,k

)
,

110



3.10. Behavior in large time limit - Linear case (proofs)

and we have showed that
1

N

N∑
i=1

A
(N)
i,T,k −−−→

N→∞
0 P-almost surely for each k = 1, . . . , 5.

We then have E

[∫ T

0

1

N

N∑
i=1

|Ui,N(t)− ut(xi)| dt

]
−−−→
N→∞

0 P-almost surely. The

other term is treated easily: as (t, x) 7→ ut(x) is continuous on the compact set
[0, T ] × [0, 1] it is uniformly continuous. Fix ε > 0, then there exists η > 0 such
that if ‖t− t′‖+ ‖x− x′‖ ≤ η, |u(t, x)− u(t′, x′)| ≤ ε

T
. We have then for N large

enough (such that
1

N
≤ η):

∫ T

0

∫ 1

0

∣∣∣∣∣
N∑
i=1

1( i−1
N
, i
N ](x) (ut(xi)− ut(x))

∣∣∣∣∣ dxdt =

∫ T

0

N∑
i=1

∫ i
N

i−1
N

|ut(xi)− ut(x)| dxdt

≤
∫ T

0

ε

T
dt = ε,

which concludes the proof.

3.10 Behavior in large time limit - Linear case
(proofs)

3.10.1 Proof of Theorem 3.4.4

We show that in the subcritical case, λt(x) has a large time limit given by (3.4.8).
Assumption (3.4.7) implies the existence of some n0 such that ‖h‖n0

1 ‖T n0
W ‖ < 1.

Step 1 - We show existence and uniqueness of ` by applying Banach fixed-point
Theorem. We consider the map defined on Cb (I,R) (the set of bounded continuous
functions defined on I):

F : g 7−→ F (g) such that for all x ∈ I,

F (g)(x) = v∞(x) + ‖h‖1

∫
I

W (x, y)g(y)ν(dy).

As v∞ is bounded on I, F (g) is bounded for any g ∈ Cb (I,R) by ‖v∞‖∞ +

‖h‖1‖g‖∞C(1)
W < ∞. We check now that for any g, F (g) is continuous. Let

(x, z) ∈ I × I. We have as v∞ is Lipschitz continous and using (3.2.5), for any
g ∈ Cb (I,R):

|F (g)(x)− F (g)(z)| ≤ |v∞(x)− v∞(z)|+ ‖h‖1

∣∣∣∣∫
I

(W (x, y)−W (z, y)) g(y)ν(dy)

∣∣∣∣
≤ ‖v∞‖L‖x− z‖+ ‖h‖1‖g‖∞‖x− z‖ϑ.

We have then shown the existence of a constant Cg independent of the choice of
(x, z) such that |F (g)(x)− F (g)(z)| ≤ Cgφ (‖x− z‖) . Hence, Cb (I,R) is stable by
F .
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3. Hawkes processes on inhomogeneous random graphs

We are going to prove that F admits an unique fixed point, which is `
satisfying (3.4.8). To do it, we show that some iteration of F is contractive,
and then the Banach fixed-point Theorem gives the result. Let g and g̃ be two
functions in Cb (I,R). As Fg = v∞ + ‖h‖1TWg, we have immediately that F n0g =∑n0−1

k=0 ‖h‖k1T kWv∞ + ‖h‖n0
1 T

n0
W g. Then

‖F n0g − F n0 g̃‖ = ‖h‖n0
1 T

n0
W (g − g̃) ≤ ‖h‖n0

1 ‖T n0
W ‖‖g − g̃‖∞.

As n0 is chosen such that ‖h‖n0
1 ‖T n0

W ‖ < 1, F n0 is contractive, thus has an unique
fixed point which is also the unique fixed point of F in Cb (I,R) that we call `,
solution to (3.4.9). Note that such a ` is necessarily nonnegative, as the iterative
map F preserves positivity.

Step 2 - Let us show that under the present hypotheses, supt≥0 supx∈I |λt(x)| <
∞. As λt(x) = vt(x) + h ∗ (TWλt) (x), TWλt(x) = TWv(t(x) + h ∗ T 2

Wλt(x) and the
iteration gives λt(x) =

(∑n0−1
k=0 h∗k ∗ T kWvt

)
(x)+h∗n0∗T n0

W λt(x) for any (t, x) ∈ R+×
I, hence ‖λt‖∞ ≤ C + ‖h‖n0

1 ‖T n0
W ‖‖λt‖∞ with C = C(v, h,W ) a positive constant.

As we are in the subcritical case, it gives then supt≥0 ‖λt‖∞ ≤
C(v, h,W )

1− ‖h‖n0
1 ‖T n0

W ‖
<

∞. As (t, x) 7→ λt(x) is then continuous and bounded on R+× I, we can define its
(temporal) Laplace transform: for any x ∈ I and z > 0, let

Λ(z, x) :=

∫ ∞
0

e−tzλt(x)dt. (3.10.1)

Let us study zΛ(z, x). We have, for any x ∈ I and z > 0,

zΛ(z, x) =

∫ ∞
0

ze−tzλt(x)dt = λ0(x) +

∫ ∞
0

e−tz
∂λt
∂t

(x)dt.

Suppose that we are able to show that I(x) :=

∫ ∞
0

∣∣∣∣∂λt∂t (x)

∣∣∣∣ < ∞ for some x.

Then, by dominated convergence theorem,
∫ ∞

0

e−tz
∂λt
∂t

(x)dt converges as z → 0

to the finite limit
∫ ∞

0

∂λt
∂t

(x)dt. This implies in particular that λt(x) has a finite

limit as t → ∞, and we have in this case lim
z→0

zΛ(z, x) = lim
t→∞

λt(x). We have, by

integrating by parts that
∂λt
∂t

(x) is equal to

∂vt
∂t

(x) + h(0)

∫
I

W (x, y)λt(y)ν(dy) +

∫ t

0

∫
I

W (x, y)h′(t− s)λs(y)ν(dy) ds

=
∂vt
∂t

(x) +

∫
I

W (x, y)h(t)λ0(y)ν(dy) +

∫ t

0

∫
I

W (x, y)h(t− s)∂λs
∂s

(y)ν(dy) ds,

where we used Theorem 3.2.7 for the regularity of
∂λs
∂s

. We also know from Theorem

3.2.7 that (t, x) → ∂λt
∂t

(x) is bounded on [0, T ] × I for any T > 0, which implies
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that for any A > 0, sup
x∈I

∫ A

0

∣∣∣∣∂λt∂t (x)

∣∣∣∣ dt < ∞. Integrating on [0, A], we have using

(3.4.2)

∫ A

0

∣∣∣∣∂λt∂t (x)

∣∣∣∣ dt ≤ Cv + ‖h‖1‖λ‖∞D(x)

+

∫ A

0

∫ t

0

∫
I

W (x, y)h(t− s)
∣∣∣∣∂λs∂s (y)

∣∣∣∣ ν(dy)dsdt.

Yet with a change in the bounds of the integrals (0 ≤ s ≤ t ≤ A), we have

∫ A

0

∫ t

0

∫
I

W (x, y)h(t− s)
∣∣∣∣∂λs∂s (y)

∣∣∣∣ ν(dy) ds dt

=

∫
I

W (x, y)

∫ A

0

∫ t

0

h(t− s)
∣∣∣∣∂λs∂s (y)

∣∣∣∣ ds dt ν(dy)

=

∫
I

W (x, y)

∫ A

0

(∫ A

s

h(t− s)dt
) ∣∣∣∣∂λs∂s (y)

∣∣∣∣ ds ν(dy)

≤ ‖h‖1

∫
I

W (x, y)

∫ A

0

∣∣∣∣∂λs∂s (y)

∣∣∣∣ ds ν(dy).

Setting IA(x) :=

∫ A

0

∣∣∣∣∂λs∂s (x)

∣∣∣∣ ds and C = Cv +‖h‖1‖λ‖∞C(1)
W , we have shown that

IA(x) ≤ C + ‖h‖1 (TW IA) (x) and by iteration

IA(x) ≤
n0−1∑
k=0

C‖h‖k1C
(1)
W

k
+ ‖h‖n0

1 T
n0
W IA(x) ≤

n0−1∑
k=0

C‖h‖k1C
(1)
W

k
+ ‖h‖n0

1 ‖T n0
W ‖‖IA‖∞,

and then ‖IA‖∞ ≤
C(h, v,W )

1− ‖h‖n0
1 ‖T n0

W ‖
= C ′, with C ′ a positive constant independent

of A. We can then let A → ∞ to obtain supx∈I I(x) < ∞. Hence by dominated
convergence limz→0 zΛ(z, x) exists for any x ∈ I and is equal to limt→∞ λt(x) =:
`(x) that can now be defined. Coming back to the definition on Λ, we do the same
for v and define for any x ∈ I and z > 0 V (z, x) :=

∫∞
0
e−tzvt(x)dt. As vt(x) −−−→

t→∞
v∞(x), note that limz→0 zV (z, x) = v∞(x). As h is integrable in this framework,
we can also define its Laplace transform for any z ≥ 0 by H(z) :=

∫∞
0
e−tzh(t)dt,

with H(0) = ‖h‖1. Using the fact that the Laplace transform of a convolution is
the product of the Laplace transforms, we have for any x ∈ I and z > 0

zΛ(z, x) = zV (z, x) +H(z)

∫
I

W (x, y)zΛ(z, y)ν(dy). (3.10.2)

Letting z → 0 in (3.10.2), we obtain that ` is solution of the equation (3.4.8).

113



3. Hawkes processes on inhomogeneous random graphs

3.10.2 Proof of Propositions 3.4.7 and 3.4.8

Proof of Proposition 3.4.7. The boundedness of TW on L2(I) follows from (3.4.15)
and Cauchy-Schwarz inequality: for g ∈ L2(I)

‖TWg‖2
2 =

∫ (∫
W (x, y)g(y)ν(dy)

)2

ν(dx)

≤
∫ (∫

W (x, y)2ν(dy)

)(∫
g(y)2ν(dy)

)
ν(dx) ≤ ‖g‖2

2C
(2)
W .

It is standard to see that TW is compact on L2(I) and self-adjoint, by (3.4.16), so
that the same result holds readily for T pW for all p ≥ 1. The fact that the spectrum
of T pW is made of a countable set of eigenvalues with no other accumulation points
than 0 is a mere application of the spectral theorem for compact operators. Let
us now prove (3.4.17): first note that it suffices to prove that r2(T 2

W ) = r∞(T 2
W ).

Indeed, for any continuous operator T with spectral radius r(T ), for all p ≥ 1,

r(T p)
1
p =

(
limn→∞ ‖T pn‖

1
n

) 1
p

= limn→∞ ‖T pn‖
1
pn = r(T ), so that r(T p) = r(T )p.

Hence r2(T 2
W ) = r∞(T 2

W ) gives r2(TW ) = r∞(TW ) and (3.4.17) follows. We prove
that r2(T 2

W ) = r∞(T 2
W ) by proving that they have the same spectrum. To do so,

first note that T 2
W : L∞(I)→ L∞(I) is compact: consider (fn)n a bounded sequence

of L∞(I). It is then also bounded in L2(I), and as TW : L2(I)→ L2(I) is compact,
there exists a subsequence

(
fφ(n)

)
such that TWfφ(n) converges in L2(I) to a certain

g. Then for any x ∈ I,

|T 2
Wfφ(n) − TWg|(x) ≤

∫
I

W (x, y)
∣∣TWfφ(n)(y)− g(y)

∣∣ dy
≤
√
C

(2)
W ‖TWfφ(n) − g‖2 −−−→

n→∞
0,

thus T 2
W : L∞(I) → L∞(I) is compact. Hence, if one denotes by σ∞(T 2

W ) and
σ2(T 2

W ) the corresponding spectrum of T 2
W (in L∞(I) and L2(I) respectively), we

have that each nonzero element of σ∞(T 2
W ) and σ2(T 2

W ) is an eigenvalue of T 2
W : let

µ ∈ σ2(T 2
W ) \ {0}, there exists g ∈ L2(I) such that µg = T 2

Wg. As∣∣T 2
Wg(x)

∣∣ =

∣∣∣∣∫
I

W (x, y)

∫
I

W (y, z)g(z) ν(dz)ν(dy)

∣∣∣∣ ≤ C
(1)
W

√
C

(2)
W ‖g‖2 <∞,

g = 1
µ
T 2
Wg ∈ L∞(I) and µ ∈ σ∞(T 2

W ). Conversely, let µ ∈ σ∞(T 2
W ) \ {0}, there

exists g ∈ L∞(I) such that µg = T 2
Wg. As L∞(I) ⊂ L2(I), µ ∈ σ2(T 2

W ). Hence
r2(T 2

W ) = r∞(T 2
W ) and (3.4.17) follows.

Let us now prove the second part of Proposition 3.4.7: this is essentially a
reformulation of the Jentzsh-Krein-Rutman Theorem (see Theorem 3.A.8): under
assumption (3.4.16), the spectral radius r2(T kW ) is an eigenvalue of T kW with a
unique normalized eigenfunction h0 such that h0 > 0, ν a.e. on I and every other
eigenvalue µ of T kW has modulus |µ| < r2(T kW ). It remains to prove that h(k)

0 is

in fact continuous and bounded. As ‖T kWh
(k)
0 ‖∞ ≤

(
C

(1)
W

)k−1
√
C

(2)
W ‖h

(k)
0 ‖2 (using

Cauchy-Schwarz inequality) and h0 = 1
r(TkW )

T kWh
(k)
0 , h(k)

0 is bounded. Condition
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3.10. Behavior in large time limit - Linear case (proofs)

(3.2.5) implies that TWh
(k)
0 is continuous on I, hence h(k)

0 is a positive continuous
function on I.

Proof of Proposition 3.4.8. Consider for the moment the case k = 1 (see (3.4.14)).
One benefit of working in L2(I) instead of L∞(I) is to take advantage of the
Hilbert structure associated to TW : we know from the spectral theorem, that we
can complete h0 in an Hilbert orthonormal basis (h0, h1, · · · ) of eigenvectors in L2(I)
associated to the eigenvalues (µ0 = r∞, µ1, µ2, · · · ) with supk≥1 |µk| =: r̃(TW ) < r∞.
We denote by P0 the projection on Vect(h0) and P1 = Id− P0: for any g ∈ L2(I),
P0g = 〈g , h0〉h0 =: p0(g)h0 (with p0(g) ∈ R) and P1g =

∑
n≥1 〈g , hn〉hn. The

strategy of proof of Proposition 3.4.8 is then to analyse separately the dynamics
of P0λ and P1λ for λ solution to (3.4.1). Concerning P0λ, as P0 projects onto h0,
eigenfunction associated to the dominant eigenvalue r2(TW ), its analysis reduces
to a simple one-dimensional linear convolution equation, whose behavior in large
time has been analysed in details (see (Delattre et al., 2016a, Lemma 26) or (Feller,
1941, Th 4)). The second step is to show that the contribution of P1λ remains of
lower order as t→∞.

We focus first on the dynamics of P0λ. Using (3.4.1), as T and P0 commute,

p0(λt)h0 = P0λt = P0vt +

∫ t

0

h(t− s)TWP0λsds

=

(
p0(vt) + r∞

∫ t

0

h(t− s)p0(λs)ds

)
h0.

As h0(x) > 0 everywhere (since h0 is continuous), we obtain that p0(λt) solves the
convolution equation in R

p0(λt) = p0(vt) + r∞

∫ t

0

h(t− s)p0(λs)ds. (3.10.3)

Theorem 3.A.9 gives then that p0(λt) ∼t→∞ Ceσrt where C > 0 depends on the
parameter functions and σr > 0 verifies r∞

∫∞
0
e−σrth(t)dt = 1. We focus now on

the other projection, P1λ. We project on the rest of the space and take the norm

L2(I): ‖P1λt‖2 ≤ ‖P1vt‖2 +

∫ t

0

h(t− s)‖TWP1λs‖2ds. As

TWP1λs = TW

(∑
n≥1

〈P1λs, hn〉hn

)
=
∑
n≥1

〈P1λs, hn〉µnhn,

we have ‖TWP1λs‖2
2 =

∑
n≥1

|〈P1λs, hn〉|2 |µn|2 ≤ r̃(TW )2‖P1λ(s, ·)‖2
2 so that

‖P1λt‖2 ≤ ‖P1vt‖2 + r̃(TW )

∫ t

0

h(t− s)‖P1λs‖2ds. (3.10.4)

If we define α(t) = ‖P1λt‖2, we see that α satisfies the convolution inequality

α(t) ≤ ‖P1vt‖2 + r̃(TW )

∫ t

0

h(t− s)α(s)ds,
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3. Hawkes processes on inhomogeneous random graphs

hence we can compare it to βr̃(t) solution of the convolution equality

β(t) = ‖P1u0(t, ·)‖2 + 1 + r̃(TW )

∫ t

0

h(t− s)β(s)ds

with Lemma 3.A.4: α(t) ≤ β(t) for all t ≥ 0, that is ‖P1λt‖2 ≤ βr̃(t) for all t ≥ 0.
We want now to show that βr̃(t) = o (eσrt) when t → ∞. First suppose that we
are in the case ‖h‖1r̃(TW ) > 1. We apply (as done for P0) Theorem 3.A.9 and
obtain βr̃(t) ∼t→∞ C̃eσr̃t where C̃ > 0 depends on the parameter functions and
σr̃ > 0 verifies r̃(TW )

∫∞
0
e−σr̃th(t)dt = 1. In this case, σr̃ < σr as r̃(TW ) < r∞,

and βr̃(t) = o (eσrt) follows. Suppose now that we are in the case ‖h‖1r̃(TW ) ≤ 1.
As ‖h‖1r∞ > 1, we can find r such that r̃(TW ) < r < r∞ and ‖h‖1r > 1. Then,
considering δ satisfying δr(t) = ‖P1vt‖2 + 2 + r

∫ t
0
h(t − s)δr(s)ds, as done before

Lemma 3.A.4 gives βr̃(t) ≤ δr(t) and Theorem 3.A.9 gives δr(t) ∼t→∞ Ceσrt where
C > 0 depends on the parameter functions and σr > 0 verifies r

∫∞
0
e−σrth(t)dt = 1.

We have then that βr̃(t) ≤ δr(t) ∼t→∞ Ceσrt = o (eσrt). In any case, we obtain
‖P1λt‖2 = o (eσrt), and as Parseval equality gives

‖λt‖2
2 = ‖P0λt‖2

2 + ‖P1λt‖2
2,

it implies that ‖λt‖2 ∼t→∞ Ceσrt −−−→
t→∞

+∞, with C a positive constant, hence the
result.

Case k > 1. We deal with k = 2 and leave the generalisation to the reader.
Hypothesis 3.4.6 (3.4.14) is then that the kernel of T 2

W is positive. As λt(x) =
vt(x) +

∫ t
0
h(t− s)TWλs(x)ds, we have TWλt(x) = TWvt(x) +

∫ t
0
h(t− s)T 2

Wλs(x)ds
and

λt(x) = vt(x) +

∫ t

0

h(t− s)TWvs(x)ds+

∫ t

0

h(t− s)
∫ s

0

h(s− u)T 2
Wλu(x)duds

= ṽt(x) +

∫ t

0

h̃(t− s)T 2
Wλs(x)ds. (3.10.5)

with h̃ = h ∗ h and ṽt(x) = vt(x) +
∫ t

0
h(t − s)TWvs(x)ds. As ‖h̃‖1 =

∫∞
0

∫ t
0
h(t −

s)h(s)dsdt =
∫∞

0
h(s)

∫∞
s
h(t− s)dtds = ‖h‖2

1 and
√
r(T 2

W ) = r(TW ), the condition
(3.4.13) implies ‖h̃‖1r(T

2
W ) = ‖h‖2

1r(TW )2 > 1. Then, we can apply the previous
case (k = 1) on λ satisfying (3.10.5).

3.A Useful results

We gather here useful results that we use in the paper.

3.A.1 Various technical lemmas

The proof of the Lemmas 3.A.1 and 3.A.3 can be found respectively in Lemmas 22
and 23 of Delattre et al. (2016a).

116



3.A. Useful results

Lemma 3.A.1. Let φ : [0,∞[ −→ R be locally integrable and α : [0,∞[ −→ R with
finite variations on compact intervals such that α(0) = 0. Then for all t ≥ 0, we
have∫ t

0

∫ s−

0

φ (s− u) dα (u) ds =

∫ t

0

∫ s

0

φ (s− u) dα (u) ds =

∫ t

0

φ (t− s)α (s) ds.

Lemma 3.A.2. Let (Xi)1≤i≤N be a family of N independent random variables.
Then

E

[∣∣∣∣∣ 1

N

N∑
i=1

(Xi − E [Xi])

∣∣∣∣∣
]
≤ 1

N

√√√√ N∑
i=1

Var (Xi).

Proof. We set Y :=
1

N

∑N
i=1Xi, then E [Y ] =

1

N

∑N
i=1 E[Xi] and Var(Y ) =

1

N2

∑N
i=1 Var(Xi) by independence. We have using Jensen’s inequality that

E

[∣∣∣∣∣ 1

N

N∑
i=1

(Xi − E [Xi])

∣∣∣∣∣
]

= E [|Y − E[Y ]|] ≤
√
E
[
(Y − E[Y ])2] =

√
Var(Y ),

and the result follows with the expression of Var(Y ).

Lemma 3.A.3. Let φ : [0,∞[ −→ [0,∞[ be a locally integrable function and
g : [0,∞[ −→ [0,∞[ a locally bounded function.

i) Let u be a locally bounded nonnegative function such that for all t ≥ 0: u(t) ≤
g(t) +

∫ t
0
φ(t− s)u(s)ds. Then for all T ≥ 0 there exists CT (depending on T

and φ) verifying sup
[0,T ]

u(t) ≤ CT sup
[0,T ]

g(t).

ii) Let (un) be a sequence of locally bounded nonnegative functions such that for
all t ≥ 0 and n ≥ 0: un+1(t) ≤

∫ t
0
φ(t − s)un(s)ds. Then for all T ≥ 0 there

exists CT (depending on T , φ and u0) verifying sup
[0,T ]

∑
n≥0

un(t) ≤ CT .

iii) Let (un) be a sequence of locally bounded nonnegative functions such that for
all t ≥ 0 and n ≥ 0: un+1(t) ≤ g(t) +

∫ t
0
φ(t− s)un(s)ds. Then for all T ≥ 0

there exists CT (depending on T , φ, u0 and g) verifying sup
[0,T ]

sup
n≥0

un(t) ≤ CT .

Lemma 3.A.4. Let r > 0, h be a nonnegative locally integrable function, u, α and
β be locally bounded nonnegative continuous functions such that for all t ≥ 0:

α(t) ≤ u(t) + r

∫ t

0

h(t− s)α(s)ds,

β(t) = u(t) + 1 + r

∫ t

0

h(t− s)β(s)ds.

Then α(t) ≤ β(t) for all t ≥ 0.
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3. Hawkes processes on inhomogeneous random graphs

Proof. Let t∗ = inf {s > 0, α(s) > β(s)}. Note that t∗ > 0 as β(0) − α(0) ≥ 1.
Suppose t∗ < ∞, then β(t∗) − α(t∗) ≥ 1 +

∫ t∗
0
h(t − s) (β(s)− α(s)) ds ≥ 1 which

is impossible, then necessarily t∗ = +∞ and α(t) ≤ β(t) for all t ≥ 0.

Lemma 3.A.5. Let u and h be locally square integrable functions, u nonnegative,
T > 0 and α, β two constants. Assume that for any t ∈ [0, T ], u(t) ≤ α

∫ t
0
h(t −

s)u(s)ds+ β. Then u satisfies the following Grönwall’s inequality:

u(T ) ≤
√

2β exp
(
α2‖h‖2

T,2T
)
.

Proof. Using Cauchy-Schwarz inequality, u(t)2 ≤ 2α2‖h‖2
T,2

∫ t
0
u(s)2ds + 2β2. We

conclude by applying standard Grönwall lemma to u2 and taking the square root
(since u ≥ 0).

Lemma 3.A.6. Fix N > 1 and (Yl)l=1,...,n real valued random variables defined
on a probability space (Ω,F ,P). Suppose that there exists ν > 0 such that, almost
surely, for all l = 1, . . . , n− 1, Yl ≤ 1, E [Yl+1 |Yl ] = 0 and E

[
Y 2
l+1 |Yl

]
≤ ν. Then

P (n−1(Y1 + . . .+ Yn) ≥ x) ≤ exp
(
−nx2

2ν
B
(
x
ν

))
for all x ≥ 0, where

B(u) := u−2 ((1 + u) log (1 + u)− u) . (3.A.1)

Proof. A direct application of (Dembo & Zeitouni, 1998, Corollary 2.4.7) gives that

P
(
n−1(Y1 + . . .+ Yn) ≥ x

)
≤ exp

(
−nH

(
x+ ν

1 + ν
| ν

1 + ν

))
,

where H(p|q) := p log(p/q) + (1− p) log((1− p)/(1− q)) for p, q ∈ [0, 1]. Then, the
inequality H

(
x+ν
1+ν
| ν
1+ν

)
≥ x2

2ν
B
(
x
ν

)
(see (Dembo & Zeitouni, 1998, Exercise 2.4.21))

gives the result.

Lemma 3.A.7. Fix N ≥ 1, (p1, . . . , pN) in [0, 1] and a sequence (d1, . . . , dN) such
that |dl| ≤ 1 for any l ∈ J1, NK. Suppose that there exists κN > 0 and wN ∈]0, 1]

such that pl ≤ wN for any l ∈ J1, NK. Then, setting εn := 32
κ2
NwN
N

log(N) for
(U1, . . . , UN) independent random variables with Ul ∼ B(pl), we have

P

(∣∣∣∣∣κNN
N∑
l=1

(Ul − pl) dl

∣∣∣∣∣ > εN

)
≤ 2 exp

(
−16 log(N)B

(
4
√

2

(
log(N)

NwN

) 1
2

))
(3.A.2)

with B defined in (3.A.1).

Proof. This is a simple corollary of Lemma 3.A.6 applied to Yl := (Ul − pl)dl.

3.A.2 Spectral theory

We include here advanced results of spectral analysis that are used in the Chapter.
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3.B. About matrices, graphs and graphon

3.A.3 Jentzsch/Krein–Rutman Theorem

The following theorem can be found in (Schaefer, 1974, Theorem 6.6) or in (Zerner,
1987, Theorem 1).

Theorem 3.A.8. Let E := Lp(µ), where 1 ≤ p ≤ +∞ and (X,Σ, µ) is a σ-finite
measure space. Suppose T ∈ L(E) is an operator given by a (Σ × Σ)-measurable
kernel K ≥ 0, satisfying these two assumptions:

i) Some power of T is compact.

ii) S ∈ Σ and µ(S) > 0, µ(X \ S) > 0 implies∫
X\S

∫
S

K(s, t)dµ(s)dµ(t) > 0.

Then r(T ) > 0 is an eigenvalue of T with a unique normalized eigenfunction f
satisfying f(s) > 0 µ a.e. Moreover, if K(s, t) > 0 µ ⊗ µ a.e. then every other
eigenvalue λ of T has modulus |λ| < r(T ).

3.A.4 Renewal theory

The following theorem can be found in (Feller, 1941, Theorem 4). This article
studies the behavior of solutions of the integral equation

u(t) = g(t) +

∫ t

0

u(t− x)f(x)dx, (3.A.3)

where f and g are measurable, nonnegative and bounded in every finite interval
[0, T ].

Theorem 3.A.9. Suppose
∫∞

0
f(t)dt > 1,

∫∞
0
g(t)dt = b <∞. Suppose moreover

that there exists an integer n ≥ 2 such that the moments mk =
∫∞

0
tkf(t)dt, k =

1, 2, · · · , n, are finite and that the functions f(t), tf(t), t2f(t), · · · , tn−2f(t) are of
bounded total variation over (0,∞). Suppose finally that

lim
t→∞

tn−2g(t) = 0 and lim
t→∞

tn−2

∫ ∞
t

g(x)dx = 0.

Then there is a unique α0 > 0 such that Lf (α0) = 1 and for some constant C
depending on (mu, f, g):

u(t) ∼t→∞ Ceα0t, where u solves (3.A.3).

3.B About matrices, graphs and graphon
Here we give a small introduction to the illustration of graphs by graphon, that
gathers results from Lovász (2012).
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3. Hawkes processes on inhomogeneous random graphs

For a system of N particles, we set ξ(N) a N ×N matrix representing the graph
of their interaction, with values in {0, 1} : if the edge from the j-th particle to the
i-th exists, then ξ(N)

ij = 1 and 0 otherwise.
We can consider different norms on matrices.

Definition 3.B.1. Let A = (aij) be a N ×N matrix. Its cut-norm is defined as

‖A‖2 :=
1

N2
max

S,T⊂{1,...,N}

∣∣∣∣∣ ∑
i∈S,j∈T

aij

∣∣∣∣∣ , (3.B.1)

and we define also

‖A‖∞→1 := sup
si,tj∈{±1}

N∑
i,j=1

aijsitj. (3.B.2)

Lemma 3.B.2. The norms ‖ · ‖2 and ‖ · ‖∞→1 are equivalent: if A is a N × N
matrix, then

N2‖A‖2 ≤ ‖A‖∞→1 ≤ 4N2‖A‖2. (3.B.3)

Proof from Alon & Naor (2006). Let A = {aij}1≤i,j≤N and xi, yi in {±1} for 1 ≤
i ≤ N . Denote by I+ = {i, xi = 1}, I− = {i, xi = −1}, J+ = {j, yj = 1} and
J− = {j, yj = −1}, we have

N∑
i,j=1

aijxiyj =
∑

i∈I+,j∈J+

aij +
∑

i∈I−,j∈J−

aij −
∑

i∈I−,j∈J+

aij −
∑

i∈I+,j∈J−

aij

≤

∣∣∣∣∣∣
∑

i∈I+,j∈J+

aij

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

i∈I−,j∈J−

aij

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

i∈I−,j∈J+

aij

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

i∈I+,j∈J−

aij

∣∣∣∣∣∣
≤ 4N2‖A‖2.

Taking the sup on {xi, yj ∈ {±1}}, we obtain

‖A‖∞→1 ≤ 4N2‖A‖2.

To show the other inequality, suppose that N2‖A‖2 =
∑

i∈S,j∈T aij (or consider
−A if N2‖A‖2 = −

∑
i∈S,j∈T aij). Then, for every i and j in {1, . . . , N}, let

xi = 1i∈S−1i/∈S and yj = 1j∈T−1j /∈T . We then have
(

1 + xi
2

)(
1 + yj

2

)
= 1i∈S,j∈T

and can write

N2‖A‖2 =
∑

i∈S,j∈T

aij =
N∑

i,j=1

aij

(
1 + xi

2

)(
1 + yj

2

)

=
1

4

N∑
i,j=1

aij +
1

4

N∑
i,j=1

aijyj +
1

4

N∑
i,j=1

aijxi +
1

4

N∑
i,j=1

aijxiyj.

Taking the sup on {xi, yj ∈ {±1}} on each term, we obtain N2‖A‖2 ≤ ‖A‖∞→1.
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3.B. About matrices, graphs and graphon

To each N ×N matrix A = (aij) with real values, we can associate a graphon
function WA defined on [0, 1]2 by, for every (u, v) ∈ [0, 1]2 :

WA(u, v) =
N∑

i,j=1

aij1( i−1
N
, i
N ]×( j−1

N
, j
N ] (u, v) .

Note that we have then

1

N2

N∑
i,j=1

aij =

∫ 1

0

∫ 1

0

WA(u, v)dudv.

This association between a graph of N particles and a graphon allows us to
represent a graph (with ordered vertices) by a function, and to study sequences
of graphs eventually defined on different numbers of particles. Particularly, we can
link the study of a sequence (AN) of graphs such that AN is a graph on N particles
to the study of functions WAN defined on [0, 1]2. We can see in Figure 2.6 an
illustration to this convergence.

In a analogous manner as Definition 3.B.1, we can define the following norms.

Definition 3.B.3. Let W be a function defined on [0, 1]2 with values in R. We
define

‖W‖2 := sup
S,T⊂[0,1]2

∣∣∣∣∫
S×T

W (x, y) dxdy

∣∣∣∣
and

‖W‖∞→1 : = sup
‖g‖∞≤1

∫
[0,1]

∣∣∣∣∫
[0,1]

W (x, y)g(y)dy

∣∣∣∣ dx
= sup
‖f‖∞,‖g‖∞≤1

∣∣∣∣∫ ∫ W (x, y)f(x)g(y)dxdy

∣∣∣∣ .
Notation 3.B.4. We define the cut-distance between two functions by

d2 (A,B) = ‖A−B‖2.

Lemma 3.B.5. ‖ · ‖2 and ‖ · ‖∞→1 are equivalent: if W is a function defined on
[0, 1]2 with values in R, then

‖W‖2 ≤ ‖W‖∞→1 ≤ 4‖W‖2.

The proof can be find in (Lovász, 2012, Lemma 8.11).
Remark. We can also extend these norms and use them not on [0, 1]2 but on any
measure space I with probability measure ν by defining

‖W‖2,ν := sup
S,T⊂I

∣∣∣∣∫
S×T

W (x, y) ν(dx)ν(dy)

∣∣∣∣
and

‖W‖∞→1,ν := sup
‖g‖∞≤1

∫
I

∣∣∣∣∫
I

W (x, y)g(y)ν(dy)

∣∣∣∣ ν(dx).
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Chapter 4

Long-term stability of interacting
Hawkes processes on random graphs

This chapter consists in a modified version of my article Agathe-Nerine
(2023a) (expanded with some computations), published in Electronic
Journal of Probability, with minor wording and notation changes for
harmonization purposes.

In this Chapter, we study our main model (2.3.7), but we give a more general
writting as we consider

λN,i(t) = F (XN,i(t−), ηt(xi)) ,

where η represents deterministic contributions to the intensity and XN,i is given in
(2.3.8). This choice was made as we focus here more on the stochastic contribution
XN,i in the intensity, on its asymptotic behavior. It is straightforward to go back
to (2.3.7) by considering η = (µ, v) and F (X, η) = µ+ f(v+X). See Remark 4.1.3
below for more details.

We also restrict to the case I = [0, 1] and the neurons are evenly located on I,

that is for 1 ≤ i ≤ N , xi =
i

N
. The interaction term is chosen as w(N)

ij =
ξ

(N)
ij

ρN
,

where ρN is a dilution parameter and ξ
(N)
ij follows a Bernoulli distribution with

parameter ρNW (xi, xj), W being a macroscopic interaction kernel.

Abstract

We consider a population of Hawkes processes modeling the
activity of N interacting neurons. The neurons are regularly
positioned on the segment [0, 1], and the connectivity between
neurons is given by a random possibly diluted and inhomogeneous
graph where the probability of presence of each edge depends on
the spatial position of its vertices through a spatial kernel. The
main result of the paper concerns the long-time stability of the
synaptic current of the population, as N → ∞, in the subcritical
regime in case the synaptic memory kernel is exponential, up to
time horizons that are polynomial in N .

123



4. Long-term stability of interacting Hawkes processes

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.1.1 Hawkes processes in neuroscience . . . . . . . . . . . . 124

4.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.1.3 The model . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2 Hypotheses and main results . . . . . . . . . . . . . . . . . . . 130

4.2.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . 132

4.2.3 Examples and extensions . . . . . . . . . . . . . . . . . 134

4.2.4 Link with the literature . . . . . . . . . . . . . . . . . . 138

4.2.5 Strategy of proof and organization of the paper . . . . 140

4.3 Asymptotic behavior of (Xt) . . . . . . . . . . . . . . . . . . . 141

4.3.1 Estimates on the operator L . . . . . . . . . . . . . . . 141

4.3.2 About the large time behavior of Xt . . . . . . . . . . 142

4.4 Large time behavior of XN (t) . . . . . . . . . . . . . . . . . . . 144

4.4.1 Mild formulation . . . . . . . . . . . . . . . . . . . . . 144

4.4.2 Proof of the large time behaviour . . . . . . . . . . . . 146

4.5 Noise perturbation (proofs) . . . . . . . . . . . . . . . . . . . . 149

4.5.1 Control of the moments of the process ZN,i . . . . . . . 150

4.5.2 Proof of Proposition 4.4.2 . . . . . . . . . . . . . . . . 151

4.6 Drift term (proofs) . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.6.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.6.2 Preliminary results . . . . . . . . . . . . . . . . . . . . 156

4.6.3 Proof of Proposition 4.4.3 . . . . . . . . . . . . . . . . 165

4.7 About the finite time behavior (proofs) . . . . . . . . . . . . . 165

4.7.1 Main technical results . . . . . . . . . . . . . . . . . . 165

4.7.2 Proofs of Propositions 4.7.1 and 4.7.2 . . . . . . . . . . 166

4.A Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.A.1 Concentration results . . . . . . . . . . . . . . . . . . . 168

4.A.2 Other technical results . . . . . . . . . . . . . . . . . . 170

4.1 Introduction

4.1.1 Hawkes processes in neuroscience

In the present paper we study the large time behavior of a population of interacting
and spiking neurons, as the size of the population N tends to infinity. We model
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4.1. Introduction

the activity of a neuron by a point process where each point represents the time of
a spike: ZN,i(t) counts the number of spikes during the time interval [0, t] of the
ith neuron of the population. Its intensity at time t conditioned on the past [0, t)
is given by λN,i(t), in the sense that

P (ZN,i jumps between(t, t+ dt)|Ft) = λN,i(t)dt,

where Ft := σ (ZN,i(s), s ≤ t, 1 ≤ i ≤ N).
For the choice of λN,i, we want to account for the dependence of the activity

of a neuron on the past of the whole population : the spike of one neuron can
trigger others’ spikes. Hawkes processes are then a natural choice to emphasize
this interdependency. A generic choice is

λN,i(t) = µt(xi) + f

(
vt(xi) +

1

N

N∑
j=1

w
(N)
ij

∫ t−

0

h(t− s)dZN,j(s)

)
. (4.1.1)

Here, with the ith neuron at position xi = i
N
∈ I := [0, 1], f : R −→ R+ represents

the (possible) non linear synaptic integration, µt : I −→ R+ a spontaneous activity
of the neuron at time t, vt : I −→ R a past activity and h : R+ −→ R a memory
function which models how a past jump of the system affects the present intensity.
The term w

(N)
ij represents the random inhomogeneous interaction between neurons

i and j, that will be modeled here in terms of the realization of a random graph.
Since the seminal works of Hawkes (1971); Hawkes & Oakes (1974), there has

been a renewed interest in the use of Hawkes processes, especially in neuroscience.
A common simplified framework is to consider an interaction on the complete graph,
that is taking w(N)

ij = 1 in (4.1.1), as done in Delattre et al. (2016a). In this case,
a very simple instance of (4.1.1) concerns the so called linear case, when f(x) = x,
µt(x) = µ and v = 0, that is λN,i(t) = λN(t) = µ + 1

N

∑N
j=1

∫ t−
0
h(t − s)dZN,j(s),

with h ≥ 0 (see Delattre et al. (2016a)). The biological evidence Bosking et al.
(1997); Mountcastle (1997) of a spatial organisation of neurons in the brain has
led to more elaborate Hawkes models with spatial interaction, possibly including
inhibition (see Touboul (2014); Ditlevsen & Löcherbach (2017); Chevallier et al.
(2019)). This would correspond in (4.1.1) to take w(N)

ij = W (xi, xj), where W is a
macroscopic interaction kernel, usual examples being the exponential distribution

on R, W (x, y) =
1

2σ
exp

(
−|x− y|

σ

)
or the “Mexican hat” distribution W (x, y) =

e−|x−y|−Ae
−|x−y|

σ , A ∈ R, σ > 0. The macroscopic limit of the multivariate Hawkes
process (4.1.1) is then given by a family of spatially extended inhomogeneous
Poisson processes whose intensities (λt(x))x∈I solve the convolution equation

λt(x) = µt(x) + f

(
vt(x) +

∫
I

W (x, y)

∫ t

0

h(t− s)λs(y)dsdy

)
. (4.1.2)

A crucial example is the exponential case, that is when h(t) = e−αt for some α > 0.
In this case, the Hawkes process with intensity (4.1.1) is Markovian (see Ditlevsen
& Löcherbach (2017)). Denoting in (4.1.2) ut(x) := vt(x) +

∫
I
W (x, y)

∫ t
0
h(t −

s)λs(y)dsdy as the potential of a neuron (the synaptic current) localised in x at time
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4. Long-term stability of interacting Hawkes processes

t (so that (4.1.2) becomes λt(x) = f(ut(x))), an easy computation (see Chevallier
et al. (2019)) gives that, when vt(x) = e−αtv0(x) for some v0, u solves the Neural
Field Equation (NFE)

∂ut(x)

∂t
= −αut(x) +

∫
I

W (x, y)f(ut(y))dy + It(x), (4.1.3)

with source term It(x) :=
∫
I
W (x, y)µt(y)dy. Equation (4.1.3) has been extensively

studied in the literature, mostly from a phenomenological perspective (Wilson &
Cowan, 1972; Amari, 1977), and is an important example of macroscopic neural
dynamics with non-local interactions (we refer to Bressloff (2012) for an extensive
review on the subject).

In a previous work Agathe-Nerine (2022) (that is Chapter 3 of the present
thesis), we give a microscopic interpretation of the macroscopic kernelW in terms of
an inhomogeneous graph of interaction. We consider w(N)

ij = ξ
(N)
ij κi in (4.1.1), where(

ξ
(N)
ij

)
1≤i,j≤N

is a collection of independent Bernoulli variables, with individual

parameter W (xi, xj): the probability that two neurons are connected depends on
their spatial positions. The term κi is a suitable local renormalisation parameter,
to ensure that the interaction remains of order 1. This modeling constitutes a
further difficulty in the analysis as we are no longer in a mean-field framework:
contrary to the case w(N)

ij = 1, the interaction (4.1.1) is no longer a functional of
the empirical measure of the particles (ZN,1, · · · , ZN,N). A recent interest has been
shown to similar issues in the case of diffusions interacting on random graphs (first
in the homogeneous Erdős-Rényi case (Delattre et al., 2016b; Coppini et al., 2019,
2022; Coppini, 2022), and secondly for inhomogenous random graph (Luçon, 2020;
Bet et al., 2020; Bayraktar et al., 2023)). See also Pfaffelhuber et al. (2022) where
the interaction is random (either excitatory or inhibatory) on the complete graph
with a diffusive scaling in 1/

√
N when the excitation and inhibition are balanced.

A common motivation between Agathe-Nerine (2022) in the case of Hawkes
processes and Luçon (2020); Bet et al. (2020); Bayraktar et al. (2023) in the case
of diffusions is to understand how the inhomogeneity of the underlying graph may
or may not influence the long time dynamics of the system. An issue common
to all mean-field models (and their perturbations) is that there is, in general, no
possibility to interchange the limits N →∞ and t→∞. More precisely, restricting
to Hawkes processes, a usual propagation of chaos result (see (Delattre et al.,
2016a, Theorem 8), (Chevallier et al., 2019, Theorem 1) and (Agathe-Nerine, 2022,
Theorem 3.10)) may be stated as follows: for fixed T > 0, there exists some
C(T ) > 0 such that

sup
1≤i≤N

E

(
sup
s∈[0,T ]

∣∣ZN,i(s)− Zi(s)
∣∣) ≤ C(T )√

N
, (4.1.4)

where Zi is a Poisson process with intensity (λt(xi))t≥0 defined in (4.1.2) suitably
coupled to ZN,i, see the above references for details. Generically, C(T ) is of the
form exp(CT ), such that (4.1.4) remains only relevant up to T ∼ c logN with
c sufficiently small. In the pure mean-field linear case (w(N)

ij = 1, f(x) = x),

126



4.1. Introduction

there is a well known phase transition (Delattre et al., 2016a, Theorems 10,11)
when ‖h‖1 =

∫∞
0
h(t)dt < 1 (subcritical case), λt −−−→

t→∞

µ

1− ‖h‖1

, whereas when

‖h‖1 > 1 (supercritical case), λt −−−→
t→∞

∞. This phase transition has been extended
to the inhomogeneous case in Agathe-Nerine (2022). In the subcritical case, one
can actually improve (4.1.4) in the sense that C(T ) is now linear in T so that
(4.1.4) remains relevant up to T = o(

√
N). A natural question is to ask if this

approximation remains valid beyond this time scale. The purpose to the present
work is to address this question: we show that, in the whole generality of (4.1.1),
in the subcritical regime and exponential case (see details below), the macroscopic
intensity (4.1.2) converges to a finite limit when t → ∞ and that the microscopic
system remains close to this limit up to polynomial times in N .

4.1.2 Notation

We denote by Cparameters a constant C > 0 which only depends on the parameters
inside the lower index. These constants can change from line to line or inside a
same equation, we choose just to highlight the dependency they contain. When it
is not relevant, we just write C. For any d ≥ 1, we denote by |x| and x · y the
Euclidean norm and scalar product of elements x, y ∈ Rd. For (E,A, µ) a measured
space, for a function g in Lp(E, µ) with p ≥ 1, we write ‖g‖E,µ,p :=

(∫
E
|g|pdµ

) 1
p .

When p = 2, we denote by 〈·, ·〉 the Hermitian scalar product in L2(E). Without
ambiguity, we may omit the subscript (E, µ) or µ. For a real-valued bounded
function g on a space E, we write ‖g‖∞ := ‖g‖E,∞ = supx∈E |g(x)|.

For (E, d) a metric space, we denote by ‖g‖L = supx 6=y |g(x)− g(y)|/d(x, y) the
Lipschitz seminorm of a real-valued function g on E. We denote by C(E,R) the
space of continuous functions from E to R, and Cb(E,R) the space of continuous
bounded ones. For any T > 0, we denote by D ([0, T ], E) the space of càdlàg (right
continuous with left limits) functions defined on [0, T ] and taking values in E. For
any integer N ≥ 1, we denote by J1, NK the set {1, · · · , N}. For any p ∈ [0, 1],
B(p) denotes the Bernoulli distribution with parameter p.

4.1.3 The model

First, let us focus on the interaction between the particles. The graph of interaction
for (4.1.1) is constructed as follows:

Definition 4.1.1. On a common probability space
(

Ω̃, F̃ ,P
)
, we consider a family

of random variables ξ(N) =
(
ξ

(N)
ij

)
N≥1,i,j∈J1,NK

on Ω̃ such that under P, for any

N ≥ 1 and i, j ∈ J1, NK, ξ(N) is a collection of mutually independent Bernoulli
random variables such that for 1 ≤ i, j ≤ N , ξ(N)

ij has parameter WN( i
N
, j
N

), where

WN(x, y) := ρNW (x, y), (4.1.5)

with ρN some dilution parameter and W : I2 → [0, 1] a macroscopic interaction
kernel. We assume that the particles in (4.1.1) are connected according to the
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oriented graph GN =
(
{1, · · · , N} , ξ(N)

)
. For any i and j, ξ(N)

ij = 1 encodes for the
presence of the edge j → i and ξ(N)

ij = 0 for its absence. The interaction in (4.1.1)
is fixed as

w
(N)
ij =

ξ
(N)
ij

ρN
, (4.1.6)

so that the interaction term remains of order 1 as N →∞.

The class (4.1.5) of inhomogenous graphs falls into the framework ofW -random
graphs, see Lovász & Szegedy (2006); Borgs et al. (2008, 2012). One distinguishes
the dense case when limN→∞ ρN = ρ > 0 and the diluted case when ρN → 0.

We now fix these sequences
(
ξ(N)

)
, and work on a filtered probability space(

Ω,F , (Ft)t≥0 ,P
)
rich enough for all the following processes can be defined. We

denote by E the expectation under P and E the expectation with respect to P. In
the following definitions, N is fixed and the particles are regularly located on the
segment I = [0, 1]. We denote by xi = i

N
the position of the i-th neuron in the

population of size N . We also divide I in N segments of equal length, denoted by

BN,i :=

(
i− 1

N
,
i

N

)
. (4.1.7)

We can now formally define our process of interest.

Definition 4.1.2. Let (πi(ds, dz))1≤i≤N be a sequence of (Ft)-adapted i.i.d. Poisson
random measures on R+ × R+ with intensity measure dsdz. The multivariate
counting process (ZN,1 (t) , ..., ZN,N (t))t≥0 defined by, for all t ≥ 0 and i ∈ J1, NK:

ZN,i(t) =

∫ t

0

∫ ∞
0

1{z≤λN,i(s)}πi(ds, dz) (4.1.8)

where
λN,i(t) = F (XN,i(t−), ηt(xi)), (4.1.9)

and

XN,i(t) =
N∑
j=1

w
(N)
ij

N

∫ t

0

h(t− s)dZN,j(s), (4.1.10)

ηt : I −→ Rd for any t ∈ [0,+∞) for some d ≥ 1 and F : R×Rd −→ R+ is called
a multivariate Hawkes process with the set of parameters

(
N,F, ξ(N),WN , η, h

)
.

Our main focus is to study the quantity (XN,i)1≤i≤N defined in (4.1.10) as
N →∞, and more precisely the random profile defined for all x ∈ I by:

XN(t)(x) :=
N∑
i=1

XN,i(t)1x∈BN,i , (4.1.11)

where BN,i is defined in (4.1.7).
As N →∞, an informal Law of Large Numbers (LLN) argument shows that the

empirical mean in (4.1.10) becomes an expectation w.r.t. the candidate limit for
ZN,i: we can replace the sum in (4.1.10) by the integral, the microscopic interaction
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term w
(N)
ij in (4.1.10) by the macroscopic term W (x, y) (where y describes the

macroscopic distribution of the positions), and the past activity of the neuron
dZN,j(s) by its intensity in large population. In other words, the macroscopic
spatial profile will be described by

Xt(x) =

∫
I

W (x, y)

∫ t

0

h(t− s)λs(y)ds dy, (4.1.12)

where the macroscopic intensity of a neuron at position x ∈ I denoted by λt(x) =
F (Xt(x), ηt(x)) solves

λt(x) = F

(∫
I

W (x, y)

∫ t

0

h(t− s)λs(y)dsdy, ηt(x)

)
. (4.1.13)

Such informal law of large number on a bounded time interval has been made
rigorous under various settings, we refer for further references to Delattre et al.
(2016a); Chevallier et al. (2019) and more especially to Agathe-Nerine (2022) which
exactly incorporates the present hypotheses.

Remark 4.1.3. In the expression (4.1.9) of the intensity λN,i, XN,i given in (4.1.10)
accounts for the stochastic influence of the other interacting neurons, whereas ηt
represents the deterministic part of the intensity λN,i. Having in mind the generic
example given in (4.1.1), a typical choice would correspond to taking d = 2 with
η := (µ, v) and

F (X, η) = F (X,µ, v) = µ+ f(v +X). (4.1.14)

Once again, µ here corresponds to the spontaneous Poisson activity of the neuron
and one may see v as a deterministic part in the evolution of the membrane potential
of neuron i. Note that we generalize here slightly the framework considered in
Chevallier et al. (2019) in the sense that Chevallier et al. (2019) considered (4.1.14)
for µ ≡ 0 and vt(x) = e−αtv0(x) for some initial membrane potential v0(x). In the
case of (4.1.14), one retrieves the expression of the macroscopic intensity λt(x)
given in (4.1.2). Typical choices of f in (4.1.14) are f(x) = x (the so-called linear
model) or some sigmoïd function. Note that there will be an intrinsic mathematical
difficulty in dealing with the linear case in this paper, as f is not bounded in
this case. As already mentioned in the introduction, for the choice of h(t) =
e−αt and vt(x) = e−αtv0(x), a straightforward calculation shows that ut(x) :=
vt(x)+Xt(x) solves the scalar neural field equation (4.1.3) with source term It(x) =∫
I
W (x, y)µ(t, y)dy.
We choose here to work with the generic expression (4.1.9) instead of (4.1.1)

not only for conciseness of notation, but also to emphasize that the result does not
intrinsically depend on the specific form of the function F .

Remark 4.1.4. We have assumed for simplicity in the current definition (4.1.10)
of XN,i(t) that XN,i(0) = 0. Define more generally, for any (ϑi)i=1,...,N , ϑi ∈ R,

Xϑi
N,i(t) = ϑi+

∑N
j=1

w
(N)
i,j

N

∫ t
0
h(t−s)dZN,j(s) the same process starting at ϑi (here, ϑi

accounts for the history of the process before t = 0). Write then the corresponding
intensity (4.1.9) and process (4.1.8) as λϑiN,i(t) and Z

ϑi
N,i(t) respectively. In particular,

when h is exponential (see (4.2.4)), the process (Xϑi
N,i)i=1,...,N is Markovian (see
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e.g. (Ditlevsen & Löcherbach, 2017, Section 5)). The analysis of the profile
Xϑ
N(t) :=

∑N
i=1 X

ϑi
N,i(t)1BN,i remains the same, under the additional hypothesis

that
∑N

i=1 ϑi1BN,i −−−→N→∞
ϑ in L2(I). In the following, the actual dependence in

the initial condition ϑ will be dropped, whenever it is clear from the context, for
simplicity of notation.

4.2 Hypotheses and main results

4.2.1 Hypotheses

Hypothesis 4.2.1. We assume that

• F is Lipschitz continuous : there exists ‖F‖L such that for any x, x′ ∈ R,
η, η′ ∈ Rd, we have |F (x, η)− F (x′, η′)| ≤ ‖F‖L (|x− x′|+ |η − η′|).

• F is non-decreasing in the first variable, that is for any η ∈ Rd, for any
x, x′ ∈ R such that x ≤ x′, one has F (x, η) ≤ F (x′, η). Moreover, we assume
that F is C2 on Rd+1 with bounded derivatives. We denote by ∂XF and ∂2

XF
the partial derivatives of F with respect to X and (with some slight abuse
of notation) ∂ηF = (∂ηkF )k=1,...d as the gradient of F with respecto to the
variable η ∈ Rd as well as ∂2

X,ηF =
(
∂2
X,ηk

F
)
k=1,...d

and ∂2
ηF =

(
∂2
ηk,ηl

F
)
k,l=1,...d

the Hessian of F with respect to the variable η.

• (ηt(x))t≥0,x∈I is uniformly bounded in (t, x). We also assume that there exists
η∞ Lipschitz continuous on I such that

δt := sup
x∈I
|ηt(x)− η∞(x)| −−−→

t→∞
0. (4.2.1)

• The memory kernel h is nonnegative and integrable on [0,+∞).

• We assume thatW : I2 → [0, 1] is continuous. We refer nonetheless to Section
4.2.3.4 where we show that the results of the paper remain true under weaker
hypotheses on W .

It has been showed in Agathe-Nerine (2022) that the process defined in (4.1.8)
is well-posed, and that the large population limit intensity (4.1.13) is well defined
in the following sense.

Proposition 4.2.2. Under Hypothesis 4.2.1, for a fixed realization of the family
(πi)1≤i≤N , there exists a pathwise unique multivariate Hawkes process (in the sense
of Definition 4.1.2) such that for any T <∞, supt∈[0,T ] sup1≤i≤N E[ZN,i(t)] <∞.

Proposition 4.2.3. Let T > 0. Under Hypothesis 4.2.1, there exists a unique
solution λ in Cb([0, T ]× I,R) to (4.1.13) and this solution is nonnegative.

Both Propositions 4.2.2 and 4.2.3 can be found in Agathe-Nerine (2022) as
Propositions 2.5 and 2.7 respectively, where F is chosen as η = (µ, v) and F (x, η) =
f(x+v) with f a Lipschitz function. The same proofs work for our general case F .
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Proposition 4.2.3 also implies that the limiting spatial profile Xt solving (4.1.12) is
well defined.

Before writing our next hypothesis, we need to introduce the following integral
operator.

Proposition 4.2.4. Under Hypothesis 4.2.1, the integral operator

TW : H −→ H

g 7−→
(
TWg : x 7−→

∫
I
W (x, y)g(y)dy

)
is continuous in both cases H = L∞(I) and H = L2(I). When H = L2(I), TW is
compact, its spectrum is the union of {0} and a discrete sequence of eigenvalues
(µn)n≥1 such that µn → 0 as n → ∞. Denote by r∞ = r∞(TW ), respectively
r2 = r2(TW ) the spectral radii of TW in L∞(I) and L2(I) respectively. Moreover,
we have that

r2(TW ) = r∞(TW ). (4.2.2)

The proof can be found in Section 4.3.1.

Hypothesis 4.2.5. In the whole article, we are in the subcritical case defined by

‖∂XF‖∞ ‖h‖1r∞ < 1. (4.2.3)

Note that in the complete mean-field case, W ≡ 1 and r∞ = 1 so that one
retrieves the usual subcritical condition as in Delattre et al. (2016a). In the linear
case η = µ and F (x, η) = µ + x, (4.2.3) is exactly the subcritical condition stated
in Agathe-Nerine (2022).

The aim of the paper is twofold: firstly, we state a general convergence result as
t→∞ of Xt defined in (4.1.12) (or equivalently λt in (4.1.13)), see Theorem 4.2.7.
This result is valid for any general kernel h satisfying Hypothesis 4.2.1. Secondly,
we address the long-term stability of the microscopic profile XN defined in (4.1.11),
see Theorem 4.2.12. Contrary to the first one, this second result is stated for the
particular choice of the exponential kernel h defined as

h(t) = e−αt,with α > 0. (4.2.4)

The parameter α > 0 is often called the leakage rate. The main advantage of
this choice is that the process XN then becomes Markovian (see Remark 4.1.4).
This will turn out to be particularly helpful for the proof of Theorem 4.2.12. As
already mentioned in the introduction, (4.2.4) is the natural framework where to
observe the NFE (4.1.3) as a macroscopic limit, recall Remark 4.1.3. Note that in
the exponential case (4.2.4), we have that ‖h‖1 = 1/α hence the subcritical case
(4.2.3) reads

‖∂XF‖∞ r∞ < α. (4.2.5)

For our second result (Theorem 4.2.12), we also need some hypotheses on the
dilution of the graph. Recall the definition of ρN in Definition 4.1.1.
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Hypothesis 4.2.6. The dilution parameter ρN ∈ [0, 1] satisfies the following
dilution condition: there exists τ ∈ (0, 1

2
) such that

N1−2τρ4
N −−−→

N→∞
∞. (4.2.6)

If one supposes further that F is bounded, we assume the weaker condition

Nρ2
N −−−→

N→∞
∞. (4.2.7)

Remark. Hypothesis 4.2.6 is stronger than NρN
logN

−−−→
N→∞

∞, which is a dilution
condition commonly met in the literature concerning LLN results on bounded time
intervals for interacting particles on random graphs: it is the same as in Delattre
et al. (2016b); Coppini et al. (2019) (and slightly stronger than the optimal NρN →
+∞ obtained in Coppini et al. (2022) in the case of diffusions and as in Agathe-
Nerine (2022) in the case of Hawkes processes).

4.2.2 Main results

Our first result, Theorem 4.2.7, studies the limit as t → ∞ of the macroscopic
profile Xt (as an element of C(I)) defined in (4.1.12). Our second result, Theorem
4.2.12, focuses on the large time behaviour of XN(t) defined in (4.1.11) on any time
interval of polynomial length.

4.2.2.1 Asymptotic behavior of (Xt)

Recall the definition of Xt in (4.1.12).

Theorem 4.2.7. Under Hypotheses 4.2.1 and 4.2.5,

(i) there exists a unique continuous function X∞ : I 7→ R+ solution of

X∞ = ‖h‖1TWF (X∞, η∞) . (4.2.8)

(ii) Xt converges uniformly on I when t→∞ towards X∞.

The proof can be found in Section 4.3.2.

Remark 4.2.8. Translating the result of Theorem 4.2.7 in terms of the macroscopic
intensity λt defined in (4.1.13) gives immediately that λt converges uniformly to `
solution to

` = F (‖h‖1TW `, η∞) . (4.2.9)

The correspondence between X∞ and ` (recall (4.1.12)) is simply given by X∞ =
‖h‖1TW `.

Remark 4.2.9. In the particular case of an exponential memory kernel (4.2.4),
as a straightforward consequence of the expression of Xt in (4.1.12) and X∞ in
(4.2.8), we have the following differential equation

∂t (Xt −X∞) = −α (Xt −X∞) + TW (F (Xt, ηt)− F (X∞, η∞)) . (4.2.10)
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A simple Taylor expansion of Xt around X∞ shows that the linearised system
associated to the nonlinear (4.2.10) is then

∂tYt = −αYt + TW (GYt) , (4.2.11)

where
G := ∂XF (X∞, η∞). (4.2.12)

The subcritical condition (4.2.5) translates into the existence of a spectral gap
for the linear dynamics (4.2.11), which makes the stationary point X∞ linearly
stable. More precisely,

Proposition 4.2.10. Assume that the memory kernel h is exponential (4.2.5).
Define the linear operator

L : L2(I) −→ L2(I)

g 7−→ L(g) = −αg + TW (Gg).
(4.2.13)

Then under Hypotheses 4.2.1 and 4.2.5, L generates a contraction semi-group(
etL
)
t≥0

on L2(I) such that for any g ∈ L2(I)

‖etLg‖2 ≤ e−tγ‖g‖2, (4.2.14)

where
γ := α− r∞ ‖∂XF‖∞ > 0. (4.2.15)

The proof can be found in Section 4.3.1.

4.2.2.2 Long-term stability of the microscopic spatial profile

From now on, we place ourselves in the exponential case (4.2.4). We first state a
convergence result of XN towards the macroscopic X on a bounded time interval
[0, T ].

Proposition 4.2.11. Let T > 0. Under Hypotheses 4.2.1, 4.2.5 and 4.2.6, P-a.s.
for any ε > 0,

P

(
sup
t∈[0,T ]

‖XN(t)−Xt‖2 ≥ ε

)
−−−→
N→∞

0. (4.2.16)

The proof can be found in Section 4.7. Note that Proposition 4.2.11 slightly
generalises (Agathe-Nerine, 2022, Proposition 3.17), that is Proposition 3.3.17 in
the present thesis, where it is proven that E

[∫ T
0

∫
I
|XN(t)(x)−Xt(x)| dx dt

]
−−−→
N→∞

0 for any T > 0 (see also (Chevallier et al., 2019, Cor. 2) for a similar result). Here,
we are more precise as we show uniform convergence of XN(t) in L2(I) instead of
L1(I).

We are now in position to state the main result of the paper: the proximity
stated in Proposition 4.2.11 is not only valid on a bounded time interval, but
propagates to arbitrary polynomial times in NρN .
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Theorem 4.2.12. Choose some tf > 0 and m ≥ 1. Then, under Hypotheses 4.2.1,
4.2.5 and 4.2.6, P-a.s. for any ε > 0,

P

 sup
t∈[tε,(NρN )mtf ]

‖XN(t)−X∞‖2 ≥ ε

 −−−→
N→∞

0, (4.2.17)

for some tε > 0 independent on N .

The proof can be found in Section 4.4.
Remark. The variable tε in Theorem (4.2.12) represents essentially the time for the
deterministic dynamics Xt to reach a neighborhood of X∞ of size ε. The time tε
is of order − log ε/γ (where γ is the spectral gap (4.2.15) given by the mean-field
dynamics) and diverges as ε → 0. Using the fact that on any finite [0, T ] (and in
particular on [0, tε] for any fixed ε), XN,t converges as N →∞ to Xt (Proposition
4.2.11), a simple triangle inequality gives that the following statement is also true:
under the Hypotheses of Theorem 4.2.12, P-a.s., for all ε > 0,

P

(
sup

t∈[0,(NρN )mtf ]

‖XN(t)−Xt‖2 ≥ ε

)
−−−→
N→∞

0.

Since F is Lipschitz and λN,i(t) = F (XN,i(t−), ηt(xi)) by (4.1.9), it is straightforward
to derive from Theorem 4.2.12 a similar result for the profile of intensities

λN(t)(x) :=
N∑
i=1

λN,i(t)1x∈BN,i , x ∈ I, (4.2.18)

where BN,i is defined in (4.1.7).

Corollary 4.2.13. Recall the definition of ` in (4.2.9). Under the same set of
hypotheses of Theorem 4.2.12 and with the same notation,

P

 sup
t∈[tε,(NρN )mtf ]

‖λN(t)− `‖2 ≥ ε

 −−−→
N→∞

0. (4.2.19)

4.2.3 Examples and extensions

We give here some illustrating examples of our main results.

4.2.3.1 Mean-field framework

To the best of the knowledge of the author, already in the simple homogeneous
case of mean-field interaction, there exists no long-term stability result such as
Theorem 4.2.12. We stress that our result may have an interest of its own in this
case. Let us be more specific. When ρN = WN = 1 and µt(x) = µ ≥ 0, the process
introduced in Definition 4.1.2 reduces to the usual mean-field framework Delattre
et al. (2016a):

ZN,i(t) =

∫ t

0

∫ ∞
0

1{z≤λN (s)}πi(ds, dz) (4.2.20)
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with λN(t) defined by
λN(t) = F (XN(t−), η), (4.2.21)

where

XN(t) =
N∑
j=1

1

N

∫ t

0

h(t− s)dZN,j(s), (4.2.22)

In this simple case, the spatial framework is no longer useful (in particular the
spatial profile defined in (4.1.11) is constant in x so that the L2 framework is not
relevant, one has only to work in R). The macroscopic intensity and synaptic
current (respectively (4.1.13) and (4.1.12) become

Xt :=

∫ t

0

h(t− s)λsds, λt := F (Xt, η). (4.2.23)

The main results of the paper translate then into

Theorem 4.2.14. Under Hypothesis 4.2.1 and when ‖∂XF‖∞ ‖h‖1 < 1, there
exists a unique X∞ ∈ R+ solution to X∞ = ‖h‖1F (X∞, η), and (Xt)t≥0 defined
in (4.2.23) converges when t → ∞ towards X∞. Respectively, (λt)t≥0 converges
towards the unique solution ` ∈ R+ to ` = F (‖h‖1`, η). Moreover, under the
same hypotheses, in the exponential case (4.2.4), for any tf > 0 and m ≥ 1,
P-a.s. for any ε > 0, there exists tε > 0 independent on N such that both

P

 sup
t∈[tε,Nmtf ]

|XN(t)−X∞| ≥ ε

 and P

 sup
t∈[tε,Nmtf ]

|λN(t)− `| ≥ ε

 tend to 0 a

N →∞.

Remark 4.2.15. The previous result applies in particular to the linear case where
η = µ and F (x, η) = µ + x. We have then that ` =

µ

1− ‖h‖1

in this case, as in

Delattre et al. (2016a).

4.2.3.2 Erdős-Rényi graphs

An immediate extension of the last mean-field case concerns the case of homogeneous
Erdős-Rényi graphs: choose WN(x, y) = ρN for all x, y ∈ I. The results of our
paper are valid under the dilution Hypothesis 4.2.6. It is however likely that these
dilution conditions are not optimal (compare with the result of Coppini (2022) with
the condition NρN →∞ in the diffusion case, but a difficulty here is that we deal
with a multiplicative noise whereas it is essentially additive in Coppini (2022)).

4.2.3.3 Examples in the inhomogeneous case

As mentionned in Hypothesis 4.2.1, the results are valid for any W continuous,
interesting examples include W (x, y) = 1−max(x, y), W (x, y) = 1−xy, see Borgs
et al. (2011, 2018). Note also that we do not suppose any symmetry onW . Another
rich class of examples concerns the Expected Degree Distribution model (Chung
& Lu, 2002; Ouadah et al., 2019) where W (x, y) = f(x)g(y) for any continuous
functions f and g on I. The specificity of such class is that we have an explicit
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formulation of r∞, that is r∞ =
∫
I
f(x)g(x)dx when

∫
I
g = 1. In the linear case,

we obtain an explicit formula for λt in (Agathe-Nerine, 2022, Example 4.3), that
is Example 3.4.3 in the present thesis.

4.2.3.4 Extensions (weaker hypothesis on W )

It is apparent from the proofs below that one can weaken the hypothesis of continuity
of W . Under the hypothesis that W is bounded, Proposition 4.2.3 remains true
when Cb([0, T ] × I) is replaced by C ([0, T ], L∞(I)) (continuity of λt and Xt in x
may not be satisfied). Supposing further that there exists a partition of I into
p intervals I = tk=1,··· ,pCk such that for all ε > 0, there exists η > 0 such that∫
I
|W (x, y)−W (x′, y)| dy < ε when |x − x′| < η and x, x′ ∈ Ck, then for every

k, λ|[0,T ]×C̊k and X|[0,T ]×C̊k are both continuous. When p = 1, both λ and X are
continuous on [0, T ]× I.

Concerning Theorem 4.2.7, defining for k ∈ {1, 2}:

RW
N,k :=

1

N

N∑
i,j=1

∫
BN,j

|W (xi, xj)−W (xi, y)|k dy, (4.2.24)

and

SWN :=
N∑
i=1

∫
BN,i

(∫
I

|W (xi, y)−W (x, y)|2 dy
)
dx, (4.2.25)

Theorem 4.2.12 remains true when RW
N,1, R

W
N,2, S

W
N −−−→

N→∞
0, see Lemmas 4.6.4,

4.6.5, 4.6.6 and 4.6.7. These particular conditions are met in the following cases
(details of the computation are left to the reader):

• P-nearest neighbor model (Omelchenko et al., 2012): W (x, y) = 1dS1 (x,y)<r

for any (x, y) ∈ I2 for some fixed r ∈ (0, 1
2
), with dS1(x, y) = min(|x− y|, 1−

|x− y|),

• Stochastic block model (Holland et al., 1983; Ditlevsen & Löcherbach, 2017):
it corresponds to considering p communities (Ck)1≤k≤p. An element of the
community Cl communicates with an element of the community Ck with
probability pkl. This corresponds to the choice of interaction kernelW (x, y) =∑

k,l pkl1x∈Ck,y∈Cl .

4.2.3.5 Extensions (subcritical case)

The point of this paragraph is to discuss the possibility of relaxing the subcriticality
condition given in (4.2.3). This condition is used at several times in the paper:

(a) as a sufficient condition to ensure the existence of a (unique) fixed-point X∞
to (4.2.8) (see Theorem 4.2.7 (i)),

(b) to prove the convergence of the deterministic Xt to X∞ (see Theorem 4.2.7
(ii)), for general h, not necessarily exponential,
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(c) to prove the long-term stability of XN around X∞, in the exponential case
(see Theorem 4.2.12).

The trickiest point is actually the first one (a), i.e. the existence of a fixed-point
to (4.2.8). To fix ideas, let us think of the pure mean-field case seen in Section
4.2.3.1, for the generic example (4.1.1) (that is, F (X, η) = µ + f(X)). The fixed-
point relation (4.2.8) is then finite-dimensional and it reduces to find X∞ ∈ R
solution to

X∞ = ‖h‖1 (µ+ f(X∞)) . (4.2.26)

The condition (4.2.3) is then the same as

‖f ′‖∞ ‖h‖1 < 1, (4.2.27)

which is essentially the generic subcriticality condition that one finds in the literature
for mean-field nonlinear Hawkes processes (Brémaud & Massoulié, 1996). In the
linear case (corresponding to f(x) = x), condition (4.2.27) reduces to ‖h‖1 < 1
which is optimal. However, it is quite obvious that (4.2.3)/(4.2.27) is no longer
optimal with respect to the existence of a solution to (4.2.26) for general f : there
may very-well be a unique fixed-point to (4.2.26) whereas (4.2.27) is violated, for
example in the case a sigmoid f (sufficiently close to the Heaviside function 1[κ,+∞)

for some κ > 0): as long as κ /∈ [‖h‖1µ, ‖h‖1(µ + 1)], there is a unique solution to
(4.2.26) whereas (4.2.27) is not true, as ‖f ′‖∞ is very large. Not to mention the
possibility of having several (three) fixed-points in this sigmoid case, while (4.2.27)
still does not hold. In this homogenous mean-field case, one can compute the
solution to (4.2.26) by hand, as it reduces to a simple equation in dimension 1. The
situation gets really more complicated in the spatially-extended setting as (4.2.8)
is intrinsically infinite dimensional. It is unclear if there exists a condition (that
would be weaker than (4.2.3)) ensuring the existence of a (possibly non unique)
solution to (4.2.8) for general W .

However, an important point is the following: provided we have obtained the
existence of such X∞, unique or not, solution to (4.2.8) (which is again a straight-
forward task for (4.2.26) but may be complicated for (4.2.8)), points (b) (the
convergence Xt → X∞ in Theorem 4.2.7) at least for h exponential and (c)
(the long-term stability result in Theorem 4.2.12) remain valid under the weaker
condition

sup
x
|∂XF (X∞(x), η∞(x))| ‖h‖1 r∞ < 1. (4.2.28)

Condition (4.2.28) is weaker than (4.2.3) in the sense that it is only local, around
X∞, whereas (4.2.3) is global (note that in the the homogeneous case (4.2.28)
translates into |f ′(X∞)| ‖h‖1 < 1, to compare with (4.2.27)). The only modification
one has to make in the statements of Theorems 4.2.7 and 4.2.12 is that they are
now essentially local, i.e. valid provided the initial condition X0 is sufficiently close
to X∞. More precisely, an alternative statement of item (ii) of Theorem 4.2.7
would be:

Proposition 4.2.16. Suppose that Hypothesis 4.2.1 is true and that we are in the
exponential case (4.2.4). Assume the existence of some X∞ ∈ L2(I) solution to
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(4.2.8) such that (4.2.28) is satisfied. Then, there exists some ε0 > 0 such that
whenever ‖X0 −X∞‖2 < ε0, one has Xt −−−→

t→∞
X∞ in L2(I).

However, this extension of point (b) is only valid when h is exponential. A
convergence result under (4.2.28) for general h (not necessarily exponential) remains
open: as it is, the proof of Theorem 4.2.7 uses in an essential way the uniform
condition (4.2.3). In a same way, the corresponding local stability result concerning
XN is then

Theorem 4.2.17. Choose some tf > 0 and m ≥ 1. Assume Hypotheses 4.2.1
and 4.2.6. Assume the existence of some X∞ ∈ L2(I) solution to (4.2.8) such
that (4.2.28) is satisfied. Let ε0 > 0 given by Proposition 4.2.16 and assume that
‖X0 −X∞‖2 < ε0. Suppose that for all ε > 0, P (‖XN(0)−X0‖2 > ε) −−−→

N→∞
0.

Then P-a.s., for any ε > 0 (4.2.17) is true, for some tε independent of N .

Remark in particular that the operator L in Proposition 4.2.10 (whose spectral
properties are the main key to the long term stability result) is only expressed in
terms of G = ∂XF (X∞, η∞), that is the exact local quantity appearing in (4.2.28).
In particular, under (4.2.28), the spectral gap γ in (4.2.15) becomes γ = α −
supx |∂XF (X∞(x), η∞(x))| > 0 and the rest of the proof follows from the same
arguments. We stress also that this result never requires the fixed-point X∞ to
be unique (it is indeed the case under the present condition (4.2.3) but it is never
used in the proof of the long-term stability result, that is essentially a result of
local nature, around X∞).

4.2.4 Link with the literature

Several previous works have complemented the propagation of chaos result men-
tioned in (4.1.4) in various situations: Central Limit Theorems (CLT) have been
obtained in Delattre et al. (2016a); Ditlevsen & Löcherbach (2017) for homogeneous
mean-field Hawkes processes (when both time and N go to infinity) or with age-
dependence in Chevallier (2017). One should also mention the functional fluctuation
result recently obtained in Heesen & Stannat (2021), also in a pure mean-field
setting. A result closer to our case with spatial extension is Chevallier & Ost
(2020), where a functional CLT is obtained for the spatial profile XN around its
limit. Some insights of the necessity of considering stochastic versions of the NFE
(4.1.3) as second order approximations of the spatial profile are in particular given
in Chevallier & Ost (2020). Note here that all of these works provide approximation
results of quantities such that λN or XN that are either valid on a bounded time
interval [0, T ] or under strict growth condition on T (see in particular the condition
T
N
→ 0 for the CLT in Ditlevsen & Löcherbach (2017)), whereas we are here

concerned with time-scales that grow polynomially with N .
The analysis of mean-field interacting processes on long time scales has a

significant history in the case of interacting diffusions. The important issue of
uniform propagation of chaos has been especially studied mostly in reversible
situations (see e.g. the case of granular media equation in Bolley et al. (2013)) but
also more recently in some irreversible situations (see Colombani & Bris (2022)).
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There has been in particular a growing interest in the long-time analysis of phase
oscillators (for a comprehensive review on the subject, see Giacomin & Poquet
(2015) and references therein). We do not aim here to be exhaustive, but as the
techniques used in this work present some formal similarities, let us nonetheless
comment on the analysis of the simplest situation, i.e. the Kuramoto model.
One is here interested in the longtime behavior of the empirical measure µN,t :=
1
N

∑N
i=1 δθi,t of the system of interacting diffusions (θ1, . . . , θN) solving the system

of coupled SDEs dθi,t = −K
N

N∑
j=1

sin(θi,t − θj,t)dt + dBi,t. Standard propagation

of chaos techniques show that µN converges weakly on a bounded time interval
[0, T ] to the solution µt to the nonlinear Fokker-Planck (NFP) equation ∂tµt =
1
2
∂2
θµt + K∂θ

(
µt(sin ∗µt)

)
. The simplicity of the Kuramoto model lies in the

fact that one can easily prove the existence of a phase transition for this model:
when K ≤ 1, µ ≡ 1

2π
is the only (stable) stationary point of the previous NFP

(subcritical case), whereas it coexists with a stable circle of synchronised profiles
when K > 1 (supercritical case). A series of papers have analysed the longtime
behavior of the empirical measure µN of the Kuramoto model (and extensions) in
both the subcritical and supercritical cases (see in particular Bertini et al. (2014);
Luçon & Poquet (2017); Giacomin et al. (2012); Coppini (2022) and references
therein). The main arguments of the mentioned papers lie in a careful analysis of
two contradictory phenomena that arise on a long-time scale: the stability of the
deterministic dynamics around stationary points (that forces µN to remain in a
small neighborhood of these points) and the presence of noise in the microscopic
system (which makes µN diffuse around these points). In particular, the work that
is somehow formally closest to the present article is Coppini (2022), where the long-
time stability of µN is analysed in both sub and supercritical cases for Kuramoto
oscillators interacting on an Erdős-Rényi graph. We are here (at least formally)
in a similar situation to the subcritical case of Coppini (2022): the deterministic
dynamics of the spatial profile XN (given by (4.1.11)) has a unique stationary
point which possesses sufficient stability properties. The point of the analysis relies
then on a time discretization and some careful control on the diffusive influence
of noise that competes with the deterministic dynamics. The main difference
(and present difficulty in the analysis) with the diffusion case in Coppini (2022)
is that our noise (Poissonian rather than Brownian) is multiplicative (whereas it
is essentially additive in Coppini (2022)). This explains in particular the stronger
dilution conditions that we require in Hypothesis 4.2.6 (compared to the optimal
NρN → ∞ in Coppini (2022)) and also the fact that we only reach polynomial
time scales (compared to the sub-exponential scale in Coppini (2022)). There is
however every reason to believe that the stability result of Theorem 4.2.12 would
remain valid up to this sub-exponential time scale.

Note here that we deal directly with the control of the Poisson noise. Another
possibility would have been to use some Brownian approximation of the dynamics of
XN . Some results in this direction have been initiated in Ditlevsen & Löcherbach
(2017) for spatially-extended Hawkes processes exhibiting oscillatory behaviors:
some diffusive approximation of the dynamics of the (equivalent of) the spatial
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profile is provided (see (Ditlevsen & Löcherbach, 2017, Section 5)). Note however
that this approximation is based on the comparison of the corresponding semigroups
and is not uniform in time. Hence, it is unclear how one could exploit these
techniques for our case. Some stronger (pathwise) approximations between Hawkes
and Brownian dynamics have been further proposed in Chevallier et al. (2021),
based on Komlós, Major and Tusnády (KMT) coupling techniques (Ethier & Kurtz,
1986). Recently, Prodhomme (2023) used similar KMT coupling techniques applied
to finite dimensional Markov chains and found the Gaussian approximation to
remain precise for very large periods of time. However these results are valid
for Zd-valued continous-time Markov chains, and it is unclear how they can be
applied in our situation (with infinite dimension and space extension). The proof
we propose is direct and does not rely on such Brownian coupling. Another recent
work Erny et al. (2022) about Hawkes processes with mean-field interactions in
a diffusive regime extended also the propagation of chaos to longer time periods,
but the scaling used there is different from ours. This diffusion scaling can also
be found in Pfaffelhuber et al. (2022). To the author’s knowledge, this is the first
result on large time stability of Hawkes process (not mentioning the issue of the
random graph of interaction, we believe that our results remain also relevant in the
pure mean-field case, see Theorem 4.2.14).

4.2.5 Strategy of proof and organization of the paper

Section 4.3 is devoted to prove the convergence result as t→∞ of Theorem 4.2.7.
This in particular requires some spectral estimates on the operator L defined in
Proposition 4.2.10 that are gathered in Section 4.3.1.

The main lines of proof for Theorem 4.2.12 are given in Section 4.4. The strategy
of proof is sketched here:

1. The starting point of the analysis is a semimartingale decomposition of YN :=
XN −X, detailed in Section 4.4.1. The point is to decompose the dynamics
of YN in terms of, at first order, the linear dynamics (4.2.11) governing the
behavior of the deterministic profile X, modulo some drift terms coming from
the graph and its mean-field approximation, some noise term and finally some
quadratic remaining error coming from the nonlinearity of F .

2. A careful control on each of these terms in the semimartingale expansion on
a bounded time interval is given in the remaining of Section 4.4.1. The proofs
of these estimates are respectively given in Section 4.5 (for the noise term)
and Section 4.6 (for the drift term).

3. The rest of Section 4.4 is devoted to the proof of Theorem 4.2.12, see Section
4.4.2. The first point is that for any given ε > 0, one has to wait a deterministic
time tε > 0, so that the deterministic profile Xt reaches an ε-neighborhood
of X∞. It is easy to see from the spectral gap estimate (4.2.14) that this tε is

actually of order
− log(ε)

γ
. Then, using Proposition 4.2.11, the microscopic

process XN is itself ε-close to X∞ with high probability.
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4. The previous argument is the starting point of an iterative procedure that
works as follows: the point is to see that provided XN is initially close to
X∞, it will remain close to X∞ on some [0, T ] for some sufficiently large
deterministic T > 0. The key argument is that on a bounded time interval,
the deterministic linear dynamics dominates upon the contribution of the
noise, so that one has only to wait some sufficiently large T so that the
deterministic dynamics prevails upon the other contributions.

5. The rest of the proof consists in an iterative procedure from the previous
argument, taking advantage of the Markovian structure of the dynamics of
XN . The time horizon at which one can pursue this recursion is controlled
by moment estimates on the noise, proven in Section 4.5.

The rest of the paper is organised as follows: Section 4.7 collects the proofs for
the finite time behavior of Proposition 4.2.11 whereas some technical estimates are
gathered in the Appendix 4.A.

4.3 Asymptotic behavior of (Xt)

This section is related to the proof of Theorem 4.2.7.

4.3.1 Estimates on the operator L
Proof of Proposition 4.2.4. The continuity and compactness of TW come from the
boundedness of W . The structure of the spectrum of TW is a consequence of
the spectral theorem for compact operators. The equality between the spectral
radii is postponed to Lemma 4.A.8 where a more general result is stated (see also
Proposition 4.7 of Agathe-Nerine (2022) for a similar result), that is Proposition
3.4.7 in the present thesis.

Proof of Proposition 4.2.10. Let us introduce the operator

U : L2(I) −→ L2(I)

g 7−→ U(g) = TW (Gg),
(4.3.1)

we have then L = −αId+U . By Hypothesis 4.2.1, G is bounded. Then, for any g ∈
L2(I) using Cauchy-Schwarz inequality, ‖U(g)‖2

2 ≤ ‖W‖2
2‖G‖2

∞‖g‖2
2. The operator

U is then compact and thus has a discrete spectrum. Moreover, r2(U) = r∞(U), see
Lemma 4.A.8, and r∞(U) ≤ r∞(TW )‖G‖∞ as for any g ∈ L∞ and x ∈ I, |Ug(x)| ≤
‖TW‖∞‖Gg‖∞ ≤ ‖TW‖∞‖G‖∞‖g‖∞. Then L also has a discrete spectrum, which
is the same as U but shifted by α. Since r2(U) = r∞(U) (see Lemma 4.A.8), for any
µ ∈ σ(L)\{0}, |µ+α| ≤ r∞(U) thus Re(µ) ≤ −α+r∞(U) ≤ −α+r∞‖∂uF‖∞ < 0
by (4.2.3). The estimate (4.2.14) follows then from functional analysis (see e.g.
(Pazy, 1974, Theorem 3.1)).
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4.3.2 About the large time behavior of Xt

Proof of Theorem 4.2.7. We prove that

• there exists a unique function ` : I 7→ R+ solution of (4.2.9), continuous and
bounded on I, and that

• (λt)t≥0 converges uniformly when t→∞ towards `.

It gives then that X∞ := ‖h‖1TW ` is the unique solution of (4.2.8). Then, as
Xt(x) =

∫
I
W (x, y)

∫ t
0
h(t − s)λs(y)ds dy, as (λt) is uniformly bounded, and as h

is integrable and λt → ` uniformly, we conclude by dominated convergence that
uniformly on y,

∫ t
0
h(t− s)λs(y)ds −−−→

t→∞
‖h‖1`(y). As TW is continuous, the result

follows: Xt converges uniformly towards X∞. We show first that (λt) is uniformly
bounded. Let λt(x) = sups∈[0,t] λs(x), we have then with (4.1.13), for s ∈ [0, t]

λs(x) ≤ F (0, 0) + ‖F‖L|ηs(x)|+ ‖∂XF‖∞
∫
I

W (x, y)

∫ s

0

h(s− u)λu(y)dudy

≤ F (0, 0) + ‖F‖L sup
s,x
|ηs(x)|+ ‖∂XF‖∞‖h‖1TWλt(x),

hence λt(x) ≤ CF,η + ‖∂XF‖∞‖h‖1TWλt(x). An immediate iteration gives then
λt(x) ≤ CF,η,n0,h + ‖∂XF‖n0

∞‖h‖
n0
1

∣∣T n0
W λt(x)

∣∣, so that, by (4.2.3) and choosing n0

sufficiently large such that ‖∂XF‖n0
∞‖h‖

n0
1 ‖TW‖n0 < 1, we obtain that ‖λt‖∞ < C,

where C is independent of t. Passing to the limit as t → ∞, this implies that
(λt)t>0 is then uniformly bounded, i.e. supt≥0 supx∈I |λt(x)| =: ‖λ‖∞ <∞.

We show next that (λt) converges pointwise. We start by studying the supremum
limit of λt, denoted by x 7→ `(x) := lim supt→∞ λt(x) = infr>0 supt>r λt(x) =:
infr>0 Λ(r, x). Then for any x ∈ I, r > 0 and t > r, λt(x) can be decomposed into

F

(∫
I

W (x, y)

∫ r

0

h(t− s)λs(y)ds dy +

∫
I

W (x, y)

∫ t

r

h(t− s)λs(y)ds dy, ηt(x)

)
,

which by monotonicity of F in the first variable and by positivity of W and h is
upper bounded by the term

F

(∫
I

W (x, y)

∫ r

0

h(t− s)λs(y)ds dy +

∫
I

W (x, y)Λ(r, y)

∫ t

r

h(t− s)ds dy, ηt(x)

)
.

As
∫ t
r
h(t− s)ds ≤ ‖h‖1, it gives

λt(x) ≤ F

(∫
I

W (x, y)

∫ r

0

h(t− s)λs(y)ds dy + ‖h‖1

∫
I

W (x, y)Λ(r, y)dy, ηt(x)

)
,

and as h(t)→ 0, by dominated convergence
∫
I
W (x, y)

∫ r
0
h(t−s)λs(y)ds dy −−−→

t→∞
0

and by continuity and monotonicity of F , we obtain

`(x) ≤ F
(
‖h‖1

(
TW `

)
(x), η∞(x)

)
. (4.3.2)
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Note that ‖`‖∞ ≤ ‖λ‖∞ < ∞, by the first step of this proof. Denote in a same
way `(x) := lim inft→∞ λt(x) = supr>0 inft>r λt(x) =: supr>0 v(r, x), for any t > 0
we have by monotonocity of F in the first variable:

λt(x)

=F

(∫ t
2

0

∫
I

W (x, y)h(t− s)λs(y)dyds+

∫ t

t
2

∫
I

W (x, y)h(t− s)λs(y)dyds, ηt(x)

)

≥F

(∫ t

t
2

∫
I

W (x, y)h(t− s)v
(
t

2
, y

)
dyds, ηt(x)

)

=F

(∫ t
2

0

h(u)du

∫
I

W (x, y)v

(
t

2
, y

)
dy, ηt(x)

)
.

Taking lim inft→∞ on both sides, by monotone convergence, we obtain

`(x) ≥ F (‖h‖1 (TW `) (x), η∞(x)) . (4.3.3)

Combining (4.3.2) and (4.3.3), setting H : l ∈ L∞ 7→ F (‖h‖1TW l, η∞) ∈ L∞, we
have shown

H` ≤ ` ≤ ` ≤ H`. (4.3.4)

For any l and l′ in L∞(I) and any x ∈ I, we have

|Hl(x)−Hl′(x)| ≤ |F (‖h‖1 (TW l) (x), η∞(x))− F (‖h‖1 (TW l
′) (x), η∞(x))|

≤ ‖∂XF‖∞ ‖h‖1 |(TW (l − l′)) (x)| .

By iteration one can show that ‖Hn0l−Hn0l′‖∞ ≤ ‖∂uF‖n0

∞ ‖h‖
n0
1 ‖T n0

W ‖‖l−l′‖∞, so
that, choosing again n0 sufficiently large, Hn0 is a contraction mapping by (4.2.3).
Hence, by (4.3.4), one has necessarily that for all x ∈ I `(x) = `(x) < +∞ thus (λt)
converges pointwise towards ` = ` = ` the unique fixed point of H which satisfies
(4.2.9).

We show now that the family (λt)t≥0 is equicontinuous so that the pointwise
convergence will imply uniform convergence on the compact set I. For any (x, y) ∈
I and t ≥ 0, we have

|λt(x)− λt(y)| = |F (Xt(x), ηt(x))− F (Xt(y), ηt(y)|
≤ ‖F‖L (|Xt(x)−Xt(y)|+ |ηt(x)− ηt(y)|) .

With (4.2.1), we have

|ηt(x)− ηt(y)| ≤ |ηt(x)− η∞(x)|+ |η∞(x)− η∞(y)|+ |η∞(y)− ηt(y)|
≤ 2δt + ‖η∞‖L|x− y|,

and as λ is bounded, we have

|Xt(x)−Xt(y)| =
∣∣∣∣∫
I

(W (x, z)−W (y, z))

∫ t

0

h(t− s)λs(z)dsdz

∣∣∣∣
≤ ‖λ‖∞‖h‖1

∫
I

|W (x, z)−W (y, z)| dz. (4.3.5)
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Then |λt(x)− λt(y)| ≤ CF,λ,h,W
(
δt + |x− y|+

∫
I
|W (x, z)−W (y, z)| dz

)
. Fix ε >

0, with (4.2.1), one can find T such that CF,λ,h,W δt ≤
ε

2
for any t ≥ T , and as W

is uniformly continuous on I2, one can find η > 0 such that

CF,λ,h,W

(
|x− y|+

∫
I

|W (x, z)−W (y, z)| dz
)
≤ ε

2

when |x − y| ≤ η. We can divide [0, 1] in intervals [zk, zk+1] such that for any k,
zk+1 − zk ≤ η. Then, for any x ∈ [0, 1], one can find zk such that |zk − x| ≤ η, and
|λt(x) − `(x)| ≤ |λt(x) − λt(zk)| + |λt(zk) − `(zk)| + |`(zk) − `(x)|. By pointwise
convergence, |λt(zk)−`(zk)| ≤ ε for t large enough (but independent of the choice of
x), and |`(zk)−`(x)| ≤ ε by taking the limit when t→∞ in |λt(zk)−λt(x)| ≤ ε. It
gives then |λt(x)−`(x)| ≤ 3ε hence supx∈I |λt(x)−`(x)| −−−→

t→∞
0, i.e. (λt) converges

uniformly towards `. Similarly to (4.3.5), for any x, x′ ∈ I,

|X∞(x)−X∞(x′)| ≤ ‖h‖1‖`‖∞
∫
I

|W (x, y)−W (x′, y)| dy

which gives, as W is uniformly continous, the continuity of X∞.

4.4 Large time behavior of XN(t)

The aim of the present section is to prove Theorem 4.2.12. To study the behavior
of ‖XN(t)−X∞‖2, let

YN := XN −X∞. (4.4.1)

The first step is to write the semimartingale decomposition of YN , written in a
mild form (see Section 4.4.1). The proper control on the drift and noise terms
are given in Propositions 4.4.2 and 4.4.3. In Section 4.4.2, we give the proof of
Theorem 4.2.12, based in particular on the convergence on a bounded time interval
in Proposition 4.2.11.

4.4.1 Mild formulation

Proposition 4.4.1. The process (YN(t))t≥0 satisfies the following semimartingale
decomposition in D([0, T ], L2(I)), written in a mild form: for any 0 ≤ t0 ≤ t

YN(t) = e(t−t0)LYN(t0) + φN(t0, t) + ζN(t0, t) (4.4.2)

where (recall (4.1.7) the partition of I in N segments of equal length):

φN(t0, t) =

∫ t

t0

e(t−s)LrN(s)ds (4.4.3)

ζN(t0, t) =

∫ t

t0

e(t−s)LdMN(s), (4.4.4)

with

MN(t) =
N∑
i=1

N∑
j=1

wij
N

(
ZN,j(t)−

∫ t

0

λN,j(s)ds

)
1BN,i (4.4.5)
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and

rN(t)(x) = TW (gN(t)) (x)+ (4.4.6)
N∑
i=1

(
1

NρN

N∑
j=1

ξ
(N)
ij F (XN,j(t−), ηt(xj))−

∫
I

W (x, y)F (XN(t, y), ηt(y))dy

)
1BN,i(x)

with

gN(t)(y) := ∂ηF (X∞(y), η∞(y)) · (ηt(y)− η∞(y)) +

∫ 1

0

(1− r) (ηt(y)− η∞(y)) ·

∂2
ηF (X∞(y) + rYN(t)(y), (1− r)η∞(y) + rηt(y)) (ηt(y)− η∞(y)) dr

+

∫ 1

0

(1− r)∂2
xF (X∞(y) + rYN(t)(y), (1− r)η∞(y) + rηt(y))YN(t)(y)2dr

+

∫ 1

0

2(1− r)∂2
x,ηYN(t)(y)·

F (X∞(y) + rYN(t)(y), (1− r)η∞(y) + rηt(y)) · (ηt(y)− η∞(y)) dr. (4.4.7)

φN is the drift term and ζN is the noise term coming from the jumps of the
process XN .

Proof of Proposition 4.4.1. From (4.1.10) and (4.1.11), as we are in the exponential
case (4.2.4), we obtain that XN verifies

dXN(t) = −αXN(t)dt+
N∑
i=1

N∑
j=1

wij
N
dZN,j(t)1BN,i . (4.4.8)

The centered noise MN defined in (4.4.5) verifies

dMN(t) :=
N∑
i=1

N∑
j=1

wij
N

(dZN,j(t)− F (XN,j(t−), ηt(xj))dt)1BN,i ,

and is a martingale in L2(I). Thus recalling the definition of X∞ in (4.2.8) and by
inserting the term

∑N
i=1

∑N
j=1

wij
N
F (XN,j(t−), ηt(xj))dt1BN,i in (4.4.8), we obtain

dYN(t) = −αYN(t) + dMN(t) +
N∑
i=1

(
N∑
j=1

wij
N
F (XN,j(t−), ηt(xj))

)
1BN,idt

− TWF (X∞, η∞)dt. (4.4.9)

A Taylor’s expansion gives

F (XN(t, y), ηt(y))−F (X∞(y), η∞(y)) = ∂XF (X∞(y), η∞(y)) (XN(t, y)−X∞(y))

+ gN(t)(y),

with gN given in (4.4.7). Hence, we have with G defined in (4.2.12)

TWF (X∞, η∞)(x) =

∫
I

W (x, y)F (XN(t, y), ηt(y))dy − TW (GYN(t))− TWgN(t)(x),
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hence coming back to (4.4.9) and recognizing the operator L (4.2.13)

dYN(t) = LYN(t) + dMN(t) +
N∑
i=1

(
N∑
j=1

wij
N
F (XN,j(t−), ηt(xj))

)
1BN,idt

− TWF (XN(t, ·), ηt(·))dt+ TWgN(t).

We recognize rN defined in (4.4.6), and obtain exactly

dYN(t) = LYN(t)dt+ rN(t)dt+ dMN(t). (4.4.10)

Then the mild formulation (4.4.2) is a direct consequence of (Zhu et al., 2017,
Lemma 3.2): the unique strong solution to (4.4.10) is indeed given by (4.4.2).

Proposition 4.4.2 (Noise perturbation). Let m ≥ 1 and T > t0 ≥ 0. Under
Hypotheses 4.2.1 and 4.2.6, there exists a constant C = C(T,m, F, η0) > 0 such
that P-almost surely for N large enough:

E

[
sup
s≤T
‖ζN(t0, s)‖2m

2

]
≤ C

(NρN)m
.

The proof is postponed to Section 4.5.

Proposition 4.4.3 (Drift term). Under Hypothesis 4.2.1, for any t ≥ t0 > 0,
P-almost surely if N is large enough,

‖φN(t0, t)‖2 ≤ Cdrift

(∫ t

t0

e−(t−s)γ‖YN(s)‖2
2ds+GN +

∫ t

t0

e−γ(t−s) (δ2
s + δs

)
ds

)
,

(4.4.11)

where Cdrift = CW,F,α, γ is defined in (4.2.15), δs is defined in (4.2.1) and GN =
GN(ξ) is an explicit quantity to be found in the proof that tends to 0 as N →∞.

The proof is postponed to Section 4.6.

4.4.2 Proof of the large time behaviour

We prove here Theorem 4.2.12, based on the results of Section 4.4.1. The approach
followed is somehow formally similar to the strategy of proof developed in Coppini
(2022) for the diffusion case.

Proof of Theorem 4.2.12. Choose m ≥ 1 and tf > 0. Let

ε0 =
γ

6Cdrift
, (4.4.12)

where γ is defined in (4.2.15) and the constant Cdrift comes from Proposition 4.4.3
above. Note that it suffices to consider ε small enough, such that ε < ε0: tε defined
below increases as ε ↘ 0, so that it suffices to take tε = tε0 whenever ε ≥ ε0. As
(Xt) converges uniformly towards X∞ (Theorem 4.2.7), there exists t1ε < ∞ such
that

‖Xt −X∞‖2 ≤
ε

4
, t ≥ t1ε. (4.4.13)
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Moreover, with (4.2.1), we also have that
∫ t

0
e−γ(t−s) (δ2

s + δs) ds −−−→
t→∞

0, hence
there exists t2ε <∞ such that

Cdrift

∫ t

0

e−γ(t−s) (δ2
s + δs

)
ds ≤ ε

18
, t ≥ t2ε. (4.4.14)

We set now tε = max(t1ε, t
2
ε). Let T such that

e−γT <
1

3
, T > tf . (4.4.15)

The strategy of proof relies on the following time discretisation. The point is to
control ‖XN(t)−X∞‖2 on [tε, TN ] with

TN := aNT + tε, with aN := d(NρN)me, (4.4.16)

which will imply the result (4.2.17) as [tε, (NρN)mtf ] ⊂ [tε, TN ] since T > tf . We
decompose below the interval [tε, TN ] into aN intervals of length T . We define the
following events, with 0 ≤ ta ≤ tb (recall that YN(t) = XN(t)−X∞)

AN1 (t, ε) :=
{
‖YN(t)‖2 ≤

ε

2

}
for t ≥ 0, (4.4.17)

AN2 (ε) :=

{
sup

t∈[tε,tε+T ]

‖ζN(tε, t)‖2 ≤
ε

18

}
, (4.4.18)

E(ta, tb) :=

{
max

(
2 ‖YN(ta)‖2 , sup

t∈[ta,tb]

‖YN(t)‖2 , 2 ‖YN(tb)‖2

)
≤ ε

}
. (4.4.19)

As Proposition 4.2.11 gives that P
(

supt∈[0,tε] ‖YN(t)‖2 >
ε

4

)
−−−→
N→∞

0 and by
(4.4.13), we have by triangle inequality

P
(
AN1 (tε, ε)

)
−−−→
N→∞

1. (4.4.20)

Step 1 We have from the definition (4.4.19) of E(ta, tb) that

P

(
sup

t∈[tε,TN ]

‖YN(t)‖2 ≤ ε

)
≥ P (E(tε, TN)) = P

(
E(tε, TN)|AN1 (tε, ε)

)
P
(
AN1 (tε, ε)

)
.

(4.4.21)
Moreover,

P
(
E(tε, TN)|AN1 (tε, ε)

)
= P

(
E(tε, tε + aNT )|AN1 (tε, ε)

)
≥ P

(
E(tε, tε + aNT ) ∩ E(tε, tε + (aN − 1)T )|AN1 (tε, ε)

)
= P

(
E(tε, tε + aNT )|E(tε, tε + (aN − 1)T ) ∩ AN1 (tε, ε)

)
·P
(
E(tε, tε + (aN − 1)T )|AN1 (tε, ε)

)
.
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Recall that we are in the exponential case (4.2.4), so that (XN(t))t is a Markov
process. Thus by Markov property

P
(
E(tε, tε + aNT )|E(tε, tε + (aN − 1)T ) ∩ AN1 (tε, ε)

)
= P (E(tε + (aN − 1)T, tε + aNT )|E(tε, tε + (aN − 1)T ))

= P
(
E(tε + (aN − 1)T, tε + aNT )

∣∣∣{‖YN(tε + (aN − 1)T )‖2 ≤
ε

2

})
= P

(
E(tε + (aN − 1)T, tε + aNT )

∣∣AN1 (tε + (aN − 1)T, ε)
)
.

P
(
E(tε + (aN − 1)T, tε + aNT )|AN1 (tε + (aN − 1)T, ε)

)
means that, under an initial

condition at tε + (aN − 1)T , we look at the probability that YN stays below ε on
the interval [tε+(aN −1)T, tε+aNT ] of size T and comes back below

ε

2
at the final

time tε + aNT . By Markov’s property, it is exactly P
(
E(tε, tε + T )|AN1 (tε, ε)

)
. An

immediate iteration gives then

P
(
E(tε, TN)|AN1 (tε, ε)

)
≥ P

(
E(tε, tε + T )|AN1 (tε, ε)

)aN . (4.4.22)

By (4.4.20), from now on we consider that we are on this event AN1 (tε, ε) and omit
this notation for simplicity.

Step 2 We show that
AN2 (ε) ⊂ E(tε, tε + T ). (4.4.23)

Let us place ourselves in AN2 (ε). As we are also under AN1 (tε, ε), we have indeed
‖YN(tε)‖2 ≤

ε

2
for the first condition of E(tε, tε + T ). As YN verifies (4.4.1), it can

be written for t ≥ tε

YN(t) = eL(t−tε)YN(tε) + φN(tε, t) + ζN(tε, t). (4.4.24)

For any t ∈ [tε, tε + T ],

‖φN(tε, t)‖2 ≤ Cdrift

(∫ t

tε

e−(t−s)γ‖YN(s)‖2
2ds+GN +

∫ t

t0

e−γ(t−s) (δ2
s + δs

)
ds

)
≤ Cdrift

(∫ t

tε

e−(t−s)γ‖YN(s)‖2
2ds

)
+
ε

9
(4.4.25)

where the first inequality comes from Proposition 4.4.3, and the second is true for
N large enough using GN → 0 and (4.4.14). Coming back to (4.4.24), using that
by Proposition 4.2.10 ∥∥eL(t−tε)YN(tε)

∥∥
2
≤ e−γ(t−tε) ‖YN(tε)‖2 , (4.4.26)

and using (4.4.25), we have on AN1 (tε, ε) ∩ AN2 (ε)

‖YN(t)‖2 ≤
ε

2
+ Cdrift

(∫ t

tε

e−(t−s)γ‖YN(s)‖2
2ds

)
+
ε

9
+

ε

18
.

Let δ > 0 such that δ ≤ min

(
ε

6
,

γ

9Cdrift

)
. Recall that ‖YN(·)‖2 is not a continuous

function, it jumps whenever a spike of the process (ZN,1, · · · , ZN,N) occurs, but the
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4.5. Noise perturbation (proofs)

size jump never exceeds
1

N
, and for N large enough

1

N
≤ δ

2
. Then, one can apply

Lemma 4.A.9 and obtain that for all N large enough,

sup
t∈[tε,tε+T ]

‖YN(t)‖2 ≤
ε

2
+ 3δ ≤ ε. (4.4.27)

It remains to prove that ‖YN(tε + T )‖2 ≤
ε

2
. We obtain from (4.4.24), (4.4.25) and

(4.4.26) for t = tε + T on AN1 (tε, ε) ∩ AN2 (ε)

‖YN(tε + T )‖2 ≤ e−γT
ε

2
+
ε

6
+ Cdrift

∫ tε+T

tε

e−(tε+T−s)γ‖YN(s)‖2
2ds.

Using the a priori bound (4.4.27)

‖YN(tε + T )‖2 ≤ e−γT
ε

2
+

ε

12
+ ε2Cdrift

γ
≤ e−γT

ε

2
+
ε

6
+
ε

6
≤ ε

2
,

where we recall the particular choices of T in (4.4.15) and ε < ε0 in (4.4.12). This
concludes the proof of (4.4.23).

Step 3 We obtain with (4.4.22) and Markov’s inequality,

P (E(tε, TN)) ≥ P (E(tε, tε + T ))aN ≥ P(AN2 (ε))aN

=

(
1−P

(
sup

t∈[tε,tε+T ]

‖ζN(tε, t)‖2 >
ε

18

))aN

≥

1− 182m′
E
[
supt∈[tε,tε+T ] ‖ζN(tε, t)‖2m′

2

]
ε2m′

aN

,

where we have taken m′ > m. With Proposition 4.4.2, it gives

P (E(tε, TN)) ≥

(
1− C

(ε2NρN)m
′

)aN

= exp

(
aN ln

(
1− C

(ε2NρN)m
′

))
.

By definition (4.4.16), aN = o (NρN)m
′
, the right term tends to 1 as N goes to ∞

under Hypothesis 4.2.6. By (4.4.21), we conclude that

P

(
sup

t∈[tε,TN ]

‖XN(t)−X∞‖2 ≤ ε

)
−−−→
N→∞

1.

This concludes the proof of Theorem 4.2.12.

4.5 Noise perturbation (proofs)
In this section, we prove Proposition 4.4.2 concerning the control of the noise
perturbation ζN(t0, t) defined in (4.4.4). For simplicity of notation, we assume that
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4. Long-term stability of interacting Hawkes processes

t0 = 0. Recall the expression of (ZN,j)1≤j≤N in (4.1.8). Introduce the compensated
measure π̃j(ds, dz) := πj(ds, dz) − dsdz, so that with the linearity of (etL)t≥0, we
obtain that ζN can be written as

ζN(0, t) =
N∑
j=1

∫ t

0

∫ ∞
0

e(t−s)Lχj(s, z)π̃j(ds, dz), (4.5.1)

with χj(s, z) :=

(
N∑
i=1

1BN,i
wij
N

)
1z≤λN,j(s) ∈ L2(I). The proof of Proposition 4.4.3

relies on a adaptation of an argument given in (Zhu et al., 2017, Theorem 4.3),
where a similar quantity to (4.5.1) is considered for N = 1.

4.5.1 Control of the moments of the process ZN,i
Proposition 4.5.1. Let m ≥ 1 and T > 0. Under Hypotheses 4.2.1 and 4.2.6,
P-almost surely

sup
N≥1

E

[
1

N

N∑
j=1

ZN,j(T )m

]
<∞.

Proof. Let N ≥ 1. We have for any i ∈ J1, NK

E [ZN,i(T )m] ≤ E

[((
ZN,i(T ))−

∫ T

0

λN,i(t)dt

)
+

∫ T

0

λN,i(t)dt

)m]
≤ 2m−1E

[(
ZN,i(T )−

∫ T

0

λN,i(t)dt

)m]
+ 2m−1E

[(∫ T

0

λN,i(t)dt

)m]
≤ 2m−1CE

[(∫ T

0

λN,i(t)dt

)m
2

]
+ (2T )m−1E

[∫ T

0

λN,i(t)
mdt

]
,

(4.5.2)

where we used Jensen’s inequality and Burkholder-Davis-Gundy Inequality on the
martingale

(
ZN,i(T )−

∫ T
0
λN,i(t)dt

)
. Similarly, we obtain

E

[(∫ T

0

λN,i(t)dt

)m
2

]
≤ T

m
2
−1E

[∫ T

0

(λN,i(t))
m
2 dt

]
.

We focus now on the term E
[∫ T

0
λN,i(t)

kdt
]
for k ≥ 1. From the definition of λN,i

in (4.1.9), by Lipschitz continuity of F and with Jensen’s inequality

E

[∫ T

0

λN,i(t)
kdt

]
≤ 2k−1TF (0, ηt(xi))

k

+ 2k−1‖F‖kLE

∫ T

0

(
1

N

N∑
j=1

∫ t−

0

wije
−α(t−s)dZN,j(s)

)k

dt

 .
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4.5. Noise perturbation (proofs)

Let Si :=
N∑
j=1

wij
N

. By Lemma 4.A.4, we have that P-a.s., lim sup
N→∞

sup
1≤i≤N

Si ≤ 2. We

obtain with discrete Jensen’s inequality that for any t ≥ 0(
1

N

N∑
j=1

∫ t−

0

wije
−α(t−s)dZN,j(s)

)k

≤ Ski

(
N∑
j=1

wij
NSi

ZN,j(t)

)k

≤ Sk−1
i

N∑
j=1

wij
N
ZN,j(t)

k.

We obtain then

E

[∫ T

0

λN,i(t)
kdt

]
≤ CT,F,η0,k + Ck,F

N∑
j=1

wij
N

E

[∫ T

0

ZN,j(t)
kdt

]
,

thus going back to (4.5.2), with C = CT,F,η0,m

E

[
1

N

N∑
j=1

ZN,j(T )m

]
≤ C

N

N∑
i=1

(
E

[∫ T

0

λN,i(t)
m
2 dt

]
+ CE

[∫ T

0

λN,i(t)
mdt

])

≤ C

(
1 +

N∑
i,j=1

wij
N2

E

[∫ T

0

ZN,j(t)
m
2 dt

]
+

N∑
i,j=1

wij
N2

E

[∫ T

0

ZN,j(t)
mdt

])

≤ C

(
1 +

∫ T

0

E

[
1

N

N∑
j=1

ZN,j(t)
m
2

]
dt+

∫ T

0

E

[
1

N

N∑
j=1

ZN,j(t)
m

]
dt

)

P-a.s. for N large enough, where we used (4.A.2). As for any t ≥ 0

E

[
1

N

N∑
i=1

ZN,i(t)

]
=

1

N

N∑
i=1

E

[∫ t

0

λN,i(s)ds

]

≤ CT,η0,F + CT,η0,F

∫ t

0

E

[
1

N

N∑
j=1

ZN,j(s)

]
ds,

Grönwall’s lemma gives that sup
t≤T

E

[
1

N

N∑
i=1

ZN,i(t)

]
<∞ (independently of N) and

similarly an immediate iteration gives that sup
N≥1

E

[
1

N

N∑
j=1

ZN,j(T )2k

]
<∞ for any

k ≥ 0, which concludes the proof.

4.5.2 Proof of Proposition 4.4.2

Proof. We divide the proof in different steps. Fix m ≥ 1. We prove Proposition
4.4.2 for the choice t0 = 0, but it remains the same for a general initial time t0 ≥ 0.
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4. Long-term stability of interacting Hawkes processes

Step 1 The functional φ : L2(I)→ R given by φ(v) = ‖v‖2m
2 is of class C2 (recall

that ζN ∈ L2(I)) so that by Itô formula on the expression (4.5.1) we obtain

φ (ζN(t)) =

∫ t

0

φ′ (ζN(s))L (ζN(s)) ds+
N∑
j=1

∫ t

0

∫ ∞
0

φ′ (ζN(s−))χj(s, z)π̃j(ds, dz)

+
N∑
j=1

∫ t

0

∫ ∞
0

[φ (ζN(s−) + χj(s, z))− φ (ζN(s−))− φ′ (ζN(s−))χj(s, z)]πj(ds, dz)

:= I0(t) + I1(t) + I2(t). (4.5.3)

We have then that for any v, h, k ∈ L2(I), φ′(v)h = 2m‖v‖2m−2
2 〈v, h〉 ∈ R and

φ′′(v)(h, k) = 2m(2m− 1)‖v‖2m−4
2 〈v, k〉〈v, h〉+ 2m‖v‖2m−2〈h, k〉.

Step 2 We have I0(t) =
∫ t

0
2m‖ζN(s)‖2m−2

2 〈ζN(s),L(ζN(s))〉ds. From Proposition
4.2.10, L generates a contraction semi-group hence by Lumer-Philipps Theorem
(see (Pazy, 1974, Section 1.4)), for any s ≥ 0, 〈ζN(s),L(ζN(s))〉 ≤ 0. Then for any
t ≥ 0 we have I0(t) ≤ 0.

Step 3 Let us focus now on I1 in (4.5.3), denoting by αj(s, z) := 2m‖ζN(s−)‖2m−2
2

〈ζN(s−), χj(s, z)〉 ∈ R, we have

I1(t) =
N∑
j=1

∫ t

0

∫ ∞
0

αj(s, z)π̃j(ds, dz).

I1 is then a real martingale. Using that the (πj)1≤j≤N are independent so that
there are almost surely no simultaneous jumps and hence [π̃j, π̃j′ ] = 0 if j 6= j′,

[I1]t =
N∑
j=1

∫ t

0

∫ ∞
0

αj(s, z)
2πj(ds, dz)

=
N∑
j=1

∫ t

0

∫ ∞
0

(
2m‖ζN(s−)‖2m−2

2 〈ζN(s−), χj(s, z)〉
)2
πj(ds, dz)

≤ 4m2 sup
0≤s≤t

(
‖ζN(s)‖4m−2

2

) N∑
j=1

∫ t

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz).

Then, by Burkholder-Davis-Gundy inequality, for some C > 0,

E

[
sup
s≤t
|I1(s)|

]

≤ C2mE

 sup
0≤s≤t

(
‖ζN(s)‖2m−1

2

)( N∑
j=1

∫ t

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

) 1
2

 .
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4.5. Noise perturbation (proofs)

Applying Hölder inequality with parameter 2m−1
2m

+ 1
2m

= 1 for the random

variables sup
0≤s≤t

(
‖ζN(s)‖2m−1

2

)
and

(
N∑
j=1

∫ t

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

) 1
2

, we obtain

that E
[√

[I1]t

]
is upper bounded by

2m

(
E

[
sup

0≤s≤t

(
‖ζN(s)‖2m

2

)]) 2m−1
2m

(
E

[(
N∑
j=1

∫ t

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

)m]) 1
2m

.

Let ε > 0 to be chosen later. From Young’s inequality, for any a, b ≥ 0, we

can write ab =
(
ε

2m−1
2m a

)(
ε
−(2m−1)

2m b
)
≤ 2m−1

2m

(
ε

2m−1
2m a

) 2m
2m−1

+ 1
2m

(
ε
−(2m−1)

2m b
)2m

=

2m−1
2m

εa
2m

2m−1 + 1
2m
ε−(2m−1)b2m. Then this gives for the choice

a =

(
E

[
sup

0≤s≤t

(
‖ζN(s)‖2m

2

)]) 2m−1
2m

and

b =

(
E

[(
N∑
j=1

∫ t

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

)m]) 1
2m

,

that

E
[√

[I1]t

]
≤ (2m− 1)εE

[
sup

0≤s≤t

(
‖ζN(s)‖2m

2

)]
+ ε−(2m−1)E

[(
N∑
j=1

∫ t

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

)m]
.

We have then shown that, for the constant C given by Burkholder-Davis-Gundy
Inequality,

E

[
sup
s≤T
|I1(s)|

]
≤ C(2m− 1)εE

[
sup

0≤s≤T

(
‖ζN(s)‖2m

2

)]
+ Cε−(2m−1)E

[(
N∑
j=1

∫ T

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

)m]
. (4.5.4)

Step 4 Let us focus now on I2 in (4.5.3), recall that it is

N∑
j=1

∫ t

0

∫ ∞
0

[φ (ζN(s−) + χj(s, z))− φ (ζN(s−))− φ′ (ζN(s−))χj(s, z)]πj(ds, dz).

For any jump (s, z) of the Poisson measure πj, from Taylor’s Lagrange formula
there exists τs ∈ (0, 1) such that

φ (ζN(s−) + χj(s, z))− φ (ζN(s−))− φ′ (ζN(s−))χj(s, z)

=
1

2
φ′′ (ζN(s−) + τsχj(s, z)) (χj(s, z), χj(s, z)) .
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4. Long-term stability of interacting Hawkes processes

As φ′′(v)(h, k) = 2m(2m−1)‖v‖2m−4
2 〈v, k〉〈v, h〉+2m‖v‖2m−2〈h, k〉 for any v, h, k ∈

L2(I), one has with Cauchy–Schwarz inequality that

φ′′ (ζN(s−) + τsχj(s, z)) (χj(s, z))
2 ≤ 4m2‖ζN(s−) + τsχj(s, z)‖2m−2

2 ‖χj(s, z)‖2
2.

But as ‖x + τy‖2
2 ≤ max (‖x‖2

2, ‖x+ y‖2
2) for any x, y ∈ L2(I) and τ ∈ (0, 1), we

have here

‖ζN(s−) + τsχj(s, z)‖2m−2
2 ≤ max

(
‖ζN(s−)‖2m−2

2 , ‖ζN(s−) + χj(s, z)‖2m−2
2

)
.

As ‖ζN(s−)+χj(s, z)‖2m−2
2 = ‖ζN(s)‖2m−2

2 ≤ sup
s≤t
‖ζN(s)‖2m−2

2 and ‖ζN(s−)‖2m−2
2 ≤

sup
s≤t
‖ζN(s)‖2m−2

2 , we obtain

E

[
sup
s≤t
|I2(s)|

]
≤ 2m2E

[
sup
s≤t
‖ζN(s)‖2m−2

2

N∑
j=1

∫ t

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

]
.

We proceed now similarly as for I1. From Hölder inequality, as 2m−2
2m

+ 1
m

= 1 we
know that for any A,B random non-negative variables,

E [AB] ≤
(
E
[
A

2m
2m−2

]) 2m−2
2m

(E [Bm])
1
m .

For the choice A = sup
0≤s≤t

(
‖ζN(s)‖2m−2

2

)
and B =

N∑
j=1

∫ t

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz),

it leads to E
[
sups≤t |I2(s)|

]
upper bounded by

2m2

(
E

[
sup

0≤s≤t

(
‖ζN(s)‖2m

2

)]) 2m−2
2m

(
E

[(
N∑
j=1

∫ t

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

)m]) 1
m

.

With the same ε introduced for I1, from Young’s inequality, for any a, b ≥ 0, we

can write ab =
(
ε

2m−2
2m a

)(
ε
−(2m−2)

2m b
)
≤ 2m−2

2m

(
ε

2m−2
2m a

) 2m
2m−2

+ 1
m

(
ε
−(2m−2)

2m b
)m

=

2m−2
2m

εa
2m

2m−2 + 1
m
ε−(2m−2)bm. For the choice

a =

(
E

[
sup

0≤s≤t

(
‖ζN(s)‖2m

2

)]) 2m−2
2m

and

b =

(
E

[(
N∑
j=1

∫ t

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

)m]) 1
m

,

it gives that

E

[
sup
s≤t
|I2(s)|

]
≤ m(2m− 2)εE

[
sup

0≤s≤t

(
‖ζN(s)‖2m

2

)]
+ 2mε−(2m−2)E

[(
N∑
j=1

∫ t

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

)m]
. (4.5.5)
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Taking the expectation in (4.5.3) and combining (4.5.4) and (4.5.5), we obtain
that

E

[
sup
s≤T
‖ζN(s)‖2m

2

]
≤ ε (C(2m− 1) +m(2m− 2))E

[
sup

0≤s≤T

(
‖ζN(s)‖2m

2

)]
+
(
Cε−(2m−1) + 2mε−(2m−2)

)
E

[(
N∑
j=1

∫ T

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

)m]
.

(4.5.6)

Step 5 We can now fix ε such that ε (C(2m− 1) +m(2m− 2)) ≤ 1
2
so that

(4.5.6) leads to

E

[
sup
s≤T
‖ζN(s)‖2m

2

]
≤ 2CE

[(
N∑
j=1

∫ T

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

)m]
, (4.5.7)

where C > 0 depends only on m.

Step 6 Let AN := E
[(∑N

j=1

∫ T
0

∫∞
0
‖χj(s, z)‖2

2πj(ds, dz)
)m]

. We have

‖χj(s, z)‖2
2 =

∫
I

(
N∑
i=1

1BN,i(x)
wij
N

1z≤λN,j(s)

)2

dx = 1z≤λN,j(s)

N∑
i=1

ξij
N3ρ2

N

,

which leads to, with the definition of ZN,j in (4.1.8)

AN = E

[(
N∑

i,j=1

∫ T

0

∫ ∞
0

1z≤λN,j(s)
ξij

N3ρ2
N

πj(ds, dz)

)m]

≤
(

1

NρN

)m
E

[(
N∑

i,j=1

ξij
N2ρN

ZN,j(T )

)m]
.

With (4.A.2), Jensen’s discrete inequality and (4.5.7), it leads to

AN ≤
(

1

NρN

)m
E

[(
N∑
j=1

1

N

(
sup
j

N∑
i=1

ξij
NρN

)
ZN,j(T )

)m]

≤ C

(NρN)m
E

[
1

N

N∑
j=1

ZN,j(T )m

]
,

hence the result with Proposition 4.5.1.

4.6 Drift term (proofs)
In this section, we prove Proposition 4.4.3 concerning the control of the drift term
perturbation φN(t0, t) defined in (4.4.3).
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4.6.1 Notation

We introduce the following constants

Θt,i,1 :=
1

NρN

N∑
j=1

(
ξ

(N)
ij − ρNW (xi, xj)

)
F (XN,j(t−), ηt(xj)), (4.6.1)

Θt,i,2 :=
1

N

N∑
j=1

W (xi, xj) (F (XN,j(t−), ηt(xj))− F (XN,j(t), ηt(xj))) , (4.6.2)

Θt,i,3 :=
1

N

N∑
j=1

W (xi, xj)F (XN,j(t), ηt(xj))−
∫
I

W (xi, y)F (XN(t, y), ηt(y))dy,

(4.6.3)

and the auxiliary function in L2(I)

Θt,i,4(x) :=

∫
I

(W (xi, y)−W (x, y))F (XN(t, y), ηt(y))dy. (4.6.4)

From the expression of rN in (4.4.6), we have then

rN(t) =
N∑
i=1

(
4∑

k=1

Θt,i,k

)
1BN,i + TW (gN(t)) , (4.6.5)

and we can divide φN defined in (4.4.3) in several terms φN(t) =
4∑

k=0

φN,k(t) with

φN,0(t) :=

∫ t

t0

e(t−s)LTW (gN(s)) ds, (4.6.6)

φN,k(t) :=

∫ t

t0

e(t−s)L
N∑
i=1

1

N
Θs,i,k1BN,ids for k ∈ J1, 4K, . (4.6.7)

4.6.2 Preliminary results

Lemma 4.6.1. Denoting by ỸN(s)(v) := YN(s)

(
dNve
N

)
, we have

sup
s≥0
‖ỸN(s)− YN(s)‖2 −−−→

N→∞
0. (4.6.8)

Proof. A direct computation gives, for any s ≥ 0,

‖ỸN(s)− YN(s)‖2
2 =

∑
j

∫
BN,j

(XN,j(s)−X∞(xj)−XN(s)(y) +X∞(y))2 dy.

By definition of XN(s) in (4.1.11), XN = XN,j on BN,j hence

‖ỸN(s)− YN(s)‖2
2 =

∑
j

∫
BN,j

(X∞(y)−X∞(xj))
2 dy.
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4.6. Drift term (proofs)

Then (4.6.8) is a straightforward consequence of the uniform continuity of X∞ on
the compact I (see Theorem 4.2.7). It still holds under the hypotheses of Section
4.2.3.4 by decomposing the sum on each interval Ck.

We will often use

1

N

N∑
j=1

|YN(s)(xj)|2 = ‖ỸN(s)‖2
2 ≤

1

2

(
1 + ‖ỸN(s)‖4

2

)
≤ 1

2

(
2 + ‖YN(s)‖4

2

)
, (4.6.9)

the last inequality being true for N large enough (independently of s) using Lemma
4.6.1.

Lemma 4.6.2. Under Hypothesis 4.2.1,

RW
N,k −−−→

N→∞
0, k ∈ {1, 2}, SWN −−−→

N→∞
0, (4.6.10)

where RW
N,k and SWN are respectively defined in (4.2.24) and (4.2.25).

Proof. Fix ε > 0. As W is uniformly continuous on I, there exists η > 0 such that
|W (x, y) −W (x, z)| ≤ ε for any (x, y, z) ∈ I3 with |y − z| ≤ η. Then, for N large
enough (such that 1

N
≤ η, we have directly that RW

N,1 ≤ ε and RW
N,2 ≤ ε hence the

result. We can do the same for SWN .

Lemma 4.6.3. Under Hypothesis 4.2.1, for any t > t0 ≥ 0,

‖φN,0(t)‖2 ≤ CF,W

∫ t

t0

e−γ(t−s) (‖YN(s)‖2
2 + δs + δ2

s

)
ds. (4.6.11)

Proof. By Proposition 4.2.10 we have ‖φN,0(t)‖2 ≤
∫ t
t0
e−γ(t−s) ‖TWgN(s)‖2 ds. As

for any x ∈ I, |TWgN(s)(x)| ≤
∫
I
W (x, y) |gN(s)(y)| dy, and as

|gN(s)(y)| ≤
∥∥∂2

XF
∥∥
∞ YN(t)(y)2 +

∥∥∂2
ηF
∥∥
∞ |ηt(y)− η∞(y)|2

+ 2
∥∥∂2

X,ηF
∥∥
∞ |YN(t)(y)| |ηt(y)− η∞(y)|+ ‖∂ηF‖∞ |ηt(y)− η∞(y)| ,

with Hypothesis 4.2.1 it gives

‖TWgN(s)‖2
2 =

∫
I

(∫
I

W (x, y)gN(s)(y)dy

)2

dx

≤ CF

∫
I

(∫
I

W (x, y)
(
YN(s)(y)2 + δ2

s + YN(s)(y)δs + δs
)
dy

)2

dx

≤ CF,W
(
‖YN(s)‖4

2 + ‖YN(s)‖2
2δ

2
s + δ2

s + δ4
s

)
≤ CF,W

(
3

2
‖YN(s)‖4

2 +
3

2
δ2
s + δ4

s

)
as W is bounded. We obtain then, as

√
a+ b ≤

√
a+
√
b,

‖φN,0(t)‖2 ≤ CF,W

∫ t

t0

e−γ(t−s) (‖YN(s)‖2
2 + ‖YN(s)‖2δs + δs + δ2

s

)
ds.

Then (4.6.11) follows as ‖YN(s)‖2 ≤
1

2

(
1 + ‖YN(s)‖2

2

)
and sups δs <∞.
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4. Long-term stability of interacting Hawkes processes

Lemma 4.6.4. Under Hypotheses 4.2.1 and 4.2.6, P-almost surely for N large
enough and for any t > t0 ≥ 0,

‖φN,1(t)‖2 ≤ CF

∫ t

t0

e−(t−s)γ ‖YN(s)‖2
2 ds+GN,1, (4.6.12)

where GN,1 = GN,1(ξ) is explicit in N and tends to 0 as N →∞. Moreover, if we
suppose F bounded, we have a better bound

sup
t>0
‖φN,1(t)‖2 ≤

CF√
Nρ2

N

. (4.6.13)

Proof of Lemma 4.6.4. Proposition 4.2.10 gives that

‖φN,1(t)‖2 ≤ K

∫ t

t0

e−(t−s)γ‖γN(s)‖2ds (4.6.14)

with

γN(s) :=
N∑
i=1

Θi,s,11BN,i =
N∑

i,j=1

1

NρN
ξijF (XN,j(s−), ηs(xj))1BN,i . (4.6.15)

where we have used the notation

ξij = ξ
(N)
ij −WN(xi, xj), (4.6.16)

Forgetting about the term F (XN,j(s−), ηs(xj)) in (4.6.15), γN is essentially an
empirical mean of the independent centered variables ξij and thus should be small
as N → ∞. One difficulty here is that concentration bounds (e.g. Bernstein
inequality) for weighted sums such as

∑
j ξijui,j (for some deterministic fixed weight

ui,j) are not directly applicable, as ui,j = F (XN,j(s−), ηs(xj))1BN,i depends in
a highly nontrivial way on the variables ξ(N)

i,j themselves. A strategy would be
to use Grothendieck inequality (see Theorem 4.A.1). We refer here to Coppini
(2022); Coppini et al. (2022) where the use of such Grothendieck inequality (and
extensions) has been implemented in a similar context of interacting diffusions on
random graphs. However here, a supplementary difficulty lies in the fact that F
need not be bounded (recall that a particular example considered here concerns
the linear case where F (x, η) = x + µ). Hence the application of Grothendieck
inequality is not straightforward when F is unbounded. For this reason, we give
below two different controls on γN : a general one, without assuming that F is
bounded and a second (sharper) one, when F is bounded (using Grothendieck
inequality). In the first case, we get around the difficulty of unboundedness of F
by introducing F (X∞(xj), η∞(xj)) which is bounded, since X∞ is.

First begin with the general control on γN : we can write

γN(s) =
N∑

i,j=1

1

NρN
ξij (F (XN,j(s−), ηs(xj))− F (X∞(xj), η∞(xj)))1BN,i

+
N∑

i,j=1

1

NρN
ξijF (X∞(xj), η∞(xj))1BN,i =: γN,1(s) + γN,2. (4.6.17)
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4.6. Drift term (proofs)

Denoting by

∆Fj := F (XN,j(s−), ηs(xj))− F (X∞(xj), η∞(xj)),

we have, as 〈1BN,i ,1BN,i′ 〉 =
1i=i′

N
and with Sjj′ :=

1

N

N∑
i=1

ξij ξij′ , ‖γN,1(s)‖2
2 =

1

N2ρ2
N

N∑
j,j′=1

∆Fj∆Fj′
1

N
Sjj′ . Define the following quantity Smax

N := sup1≤j 6=j′≤N |Sjj′ |.

The purpose of Lemma 4.A.5 is exactly to control Smax
N , see in particular (4.A.3).

We have

‖γN,1(s)‖2
2 =

(
1

N2ρ2
N

N∑
j 6=j′=1

∆Fj∆Fj′
Sjj′

Smax
N

)
Smax
N +

1

N3ρ2
N

N∑
i,j=1

∆F 2
j ξij

2

≤ Smax
N

(
1

Nρ2
N

N∑
j=1

|∆Fj|2
)

+
1

N2ρ2
N

N∑
j=1

∆F 2
j .

As |∆Fj‖ ≤ ‖F‖L (|YN(s−)(xj)|+ δs), we obtain as s 7→ δs is bounded

‖γN,1(s)‖2
2 ≤ CF

(∥∥∥ỸN(s−)
∥∥∥2

2
+ 1

)(
Smax
N

ρ2
N

+
1

Nρ2
N

)
,

hence using (4.6.9) and the fact that ‖YN(s−)‖2 ≤ ‖YN(s)‖2 + C
NρN

,

‖γN,1(s)‖2
2 ≤ CF

(
‖YN(s)‖4

2 + 1
)(Smax

N

ρ2
N

+
1

Nρ2
N

)
. (4.6.18)

For the second term of (4.6.17), we have

‖γN,2‖2
2 =

1

N

N∑
i=1

(
1

NρN

N∑
j=1

ξijF (X∞(xj), η∞(xj))

)2

=
1

N3ρ2
N

N∑
i=1

N∑
j,j′=1

ξij ξij′F (X∞(xj), η(xj))F (X∞(xj′), η∞(xj′)).

Define

αi,j,j′ :=
F (X∞(xj), η∞(xj))F (X∞(xj′), η∞(xj′))

‖F (X∞, η∞)‖2
∞

∈ [0, 1],

Rk :=
k∑

i,j,j′=1
j 6=j′

αi,j,j′ξij ξij′ and

Fk = σ (ξij, 1 ≤ i, j ≤ k) .

We have then ‖γN,2‖2
2 =

CF,X∞
N3ρ2

N

N∑
i,j=1

αi,j,jξij
2

+
CF,X∞
N3ρ2

N

RN ≤
CF,X∞
Nρ2

N

+
CF,X∞
N3ρ2

N

RN .

We show next that (Rk)1≤k≤N is a (Fk)-martingale. Let ∆Rk = Rk+1 − Rk. For
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4. Long-term stability of interacting Hawkes processes

any k ≥ 1 (note that R1 = 0), we have

∆Rk =
k∑

j,j′=1
j 6=j′

αk+1,j,j′ξk+1,j ξk+1,j′ +
∑

1≤i≤k+1
1≤j≤k

(αi,j,k+1 + αi,k+1,j′) ξi,k+1 ξij,

and thus E [∆Rk|Fk] = 0 as E
[
ξij ξij′|Fk

]
= 0 if j 6= j′ and at least one of the

indexes i, j, j′ is equal to k + 1 by independence of the family of random variables
(ξij)i,j. Moreover, as each |ξi,j| ≤ 1 and |αi,j,k| ≤ 1, it gives |∆Rk| ≤ 3k2 + k.
Theorem 4.A.2 gives then that

P
(∣∣∣∣CF,X∞N3ρ2

N

RN

∣∣∣∣ ≥ x

)
= P

(
|RN | ≥

xN3ρ2
N

CF,X∞

)

≤ 2 exp

−
(
xN3ρ2

N

CF,X∞

)2

2
∑N

k=1 (3k2 + k)2

 = 2 exp

(
− x2N6ρ4

N

C2
F,X∞

P (N)

)
,

with P (N) ∼
N→∞

18

5
N5. For the choice x2 =

C2
F,X∞P (N)

N6−2τρ4
N

with τ introduced in

(4.2.6), that is x2 ∝ 1

N1−2τρ4
N

,

P

∣∣∣∣CF,X∞N3
RN

∣∣∣∣ ≥
√
C2
F,X∞P (N)

N6−2τρ4
N

 ≤ 2 exp
(
−N2τ

)
,

which is summable hence by Borel-Cantelli Lemma, there exists O ∈ F such that

P(O) = 1 and on O, there exists Ñ < ∞ such that if N ≥ Ñ ,
∣∣∣∣CF,X∞N3

RN

∣∣∣∣ ≤√
C2
F,X∞P (N)

N6−2τρ4
N

∝ 1

N1/2−τρ2
N

, hence P-a.s. for N large enough

‖γN,2‖2
2 ≤ C

(
1

Nρ2
N

+
1

N1−2τρ4
N

)
. (4.6.19)

Coming back to (4.6.17), combining (4.6.18) and (4.6.19) and a control of Smax
N

from Lemma 4.A.5, we have P-a.s. for N large enough

‖γN(s)‖2
2 ≤ CF

(
‖YN(s)‖4

2 + 1
)( 1

N1/2−τρ2
N

+
1

Nρ2
N

)
+ CF

(
1

Nρ2
N

+
1

N1−2τρ4
N

)
,

hence taking the square root and using (4.6.14),

‖φN,1(t)‖2 ≤ CF

∫ t

t0

e−(t−s)γ ‖YN(s)‖2
2 ds+GN,1,

where GN,1 = CF

(
1

Nρ2
N

+
1

N1−2τρ4
N

+
1

N1/2−τρ2
N

)
→ 0 under Hypothesis 4.2.6.
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Let us now turn to the sharper control on γN defined in (4.6.15) when F is
bounded. Coming back to (4.6.17), we have

‖γN(s)‖2
2 =

∫ ( N∑
i,j=1

1

NρN
ξijF (XN,j(s−), ηs(xj))1BN,i(x)

)2

dx

=
1

N

N∑
i=1

(
N∑
j=1

1

NρN
ξijF (XN,j(s−), ηs(xj))

)2

=
1

N3ρ2
N

N∑
i,j,k=1

ξij ξikF (XN,j(s−), ηs(xj))F (XN,k(s−), ηs(xk))

=

(
‖F‖∞
NρN

)2
1

N

N∑
j,k=1

αjkFjFk,

with αjk :=
∑N

i=1 ξij ξik and Fj :=
F (XN,j(s−), ηs(xj))

‖F‖∞
. Grothendieck inequality

(see Theorem 4.A.1) gives then that there exists K > 0 such that

‖γN(s)‖2
2 ≤ K

1

N

(
‖F‖∞
NρN

)2

sup
sj ,tk=±1

∑
j,k

αjksjtk

≤ CF
N3ρ2

N

sup
sj ,tk=±1

N∑
i,j,k=1

ξij ξiksjtk.

Fix some vectors of signs s = (si)1≤i≤N and t = (tj)1≤j≤N . Let A =
(
ξij
)

1≤i,j≤N ,

then
N∑

i,j,k=1

ξij ξiksjtk = 〈t, A∗As〉 where 〈, 〉 denotes the scalar product in RN and

A∗ the transpose of A. As for any sign vector t, ‖t‖2 =
∑N

k=1 t
2
k = N , and ‖A∗A‖ =

‖A‖2
op, we obtain as |〈t, A∗As〉| ≤ ‖t‖‖A∗As‖ ≤ N‖A‖2

op:

‖γN(s)‖2
2 ≤

CF
N3ρ2

N

N‖A‖2
op =

CF
N2ρ2

N

‖A‖2
op.

From Theorem 4.A.3, there exist Ca and Cb positive constants such that for any
x ≥ Ca,

P
(
‖A‖op > x

√
N
)
≤ Ca exp (−CbxN) .

We apply it for x = Ca, hence, by Borel-Cantelli Lemma as exp(−CN) is summable,
there exists Õ ∈ F such that P(Õ) = 1 and on Õ, there exists Ñ < ∞ such that
if N ≥ Ñ , ‖A‖op ≤ Ca

√
N . We obtain then that

‖γN(s)‖2
2 ≤

CF
Nρ2

N

P-a.s. for N large enough, which concludes the proof in the bounded case with

(4.6.14) as
∫ t
t0
e−(t−s)γds ≤ 1

γ
.
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Lemma 4.6.5. Under Hypothesis 4.2.1, there exists CF > 0 such that for any
t > t0 ≥ 0,

‖φN,2(t)‖2 ≤
CF
NρN

.

Proof. Recall the definition of φN,2(t) in (4.6.7) and Θt,i,2 in (4.6.2), it directly
comes from the Lipschitz continuity of F and the fact that ZN,1, · · · , ZN,N do not
jump simultaneously.

Lemma 4.6.6. Under Hypothesis 4.2.1, for any t > t0 ≥ 0,

‖φN,3(t)‖2 ≤ CF,X∞,η,W

∫ t

t0

e−(t−s)γ (‖YN(s)‖2
2 + δs

)
ds+GN,2, (4.6.20)

where GN,2 is explicit in N and tends to 0 as N →∞. Moreover, if we suppose F
bounded, we have

‖φN,3(t)‖2 ≤ C

(∫ t

t0

e−(t−s)γδsds+
√
RW
N,2 +

1

N

)
, (4.6.21)

with RW
N,2 defined in (4.2.24).

Proof. We have, with Θs,i,3 defined in (4.6.3), Θs,i,3 ≤ es,i,1 + es,i,2 + es,i,3 with

es,i,1 :=
N∑
j=1

∫
BN,j

(W (xi, xj)−W (xi, y))

(F (XN(s, xj), ηs(xj))− F (X∞(xj), ηs(xj))) dy

es,i,2 :=
N∑
j=1

∫
BN,j

(W (xi, xj)−W (xi, y))F (X∞(xj), ηs(xj)) dy

es,i,3 :=
N∑
j=1

∫
BN,j

W (xi, y) (F (XN(s, xj), ηs(xj))− F (XN(s, xj), ηs(y))) dy.

We upper-bound each term. We have as F is Lipschitz continuous that es,i,1 is
upper-bounded by

N∑
j=1

|F (XN(s, xj), ηs(xj))− F (X∞(xj), ηs(xj))|

∣∣∣∣∣
∫
BN,j

(W (xi, xj)−W (xi, y)) dy

∣∣∣∣∣
≤

N∑
j=1

‖F‖L |YN(s)(xj)|

∣∣∣∣∣
∫
BN,j

(W (xi, xj)−W (xi, y)) dy

∣∣∣∣∣ ,
≤ CF

(
N∑
j=1

∣∣∣∣∣
∫
BN,j

(W (xi, xj)−W (xi, y)) dy

∣∣∣∣∣
) 1

2

(
N∑
j=1

|YN(s)(xj)|2
∣∣∣∣∣
∫
BN,j

(W (xi, xj)−W (xi, y)) dy

∣∣∣∣∣
) 1

2

,
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using discrete Jensen’s inequality. We haveN
∣∣∣∫BN,j (W (xi, xj)−W (xi, y)) dy

∣∣∣ ≤ C

as W is bounded, hence

es,i,1 ≤ CF,W

(
N∑
j=1

∣∣∣∣∣
∫
BN,j

(W (xi, xj)−W (xi, y)) dy

∣∣∣∣∣
) 1

2
(

1

N

N∑
j=1

|YN(s)(xj)|2
) 1

2

≤ CF,W

(
N∑
j=1

∣∣∣∣∣
∫
BN,j

(W (xi, xj)−W (xi, y)) dy

∣∣∣∣∣
) 1

2 ∥∥∥ỸN(s)
∥∥∥

2
.

We have then

1

N

N∑
i=1

e2
s,i,1 ≤

CF,W
N

N∑
i=1

(
N∑
j=1

∣∣∣∣∣
∫
BN,j

(W (xi, xj)−W (xi, y)) dy

∣∣∣∣∣
)∥∥∥ỸN(s)

∥∥∥2

2

≤ CF,WR
W
N,1

∥∥∥ỸN(s)
∥∥∥2

2
,

where RW
N,1 is defined in (4.2.24).

For the second term, we have as x 7→ sups F (X∞(x), ηs(x)) is bounded

1

N

N∑
i=1

e2
s,i,2 =

1

N

N∑
i=1

(
N∑
j=1

∫
BN,j

(W (xi, xj)−W (xi, y))F (X∞(xj), ηs(xj)) dy

)2

≤ CF
N

N∑
i=1

N∑
j=1

∫
BN,j

|W (xi, xj)−W (xi, y)|2 dy ≤ CFR
W
N,2,

where RW
N,2 is defined in (4.2.24).

For the third term, as F is Lipschitz continuous

es,i,3 ≤
N∑
j=1

∫
BN,j

W (xi, y)‖F‖L|ηs(xj)− ηs(y)|dy

≤
N∑
j=1

∫
BN,j

W (xi, y)‖F‖L (|ηs(xj)− η∞(xj)|+ |η∞(xj)− η∞(y)|) dy

≤ CF,X,W

(
δs +

1

N

)
.

We obtain then with (4.6.9)

1

N

N∑
i=1

Θ2
s,i,2 ≤

3

N

N∑
i=1

(
e2
s,i,1 + e2

s,i,2 + e2
s,i,3

)
≤ CF,X∞,X,W

(
RW
N,1

(
1 + ‖YN(s)‖4

2

)
+RW

N,2 + δ2
s +

1

N2

)
.

With (4.6.7) and Proposition 4.2.10, ‖φN,3(t)‖2 ≤
∫ t
t0
e−(t−s)γ‖

∑N
i=1 Θs,i,31BN,i‖2ds,

and as ‖
∑N

i=1 Θs,i,31BN,i‖2
2 =

1

N

∑N
i=1 Θ2

s,i,3, the result follows with

GN,2 =
√
RW
N,1 +RW

N,2 +
1

N
,
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and Lemma 4.6.2.
When F is bounded, similarly we show that

1

N

N∑
i=1

Θ2
s,i,3 ≤ CF,X∞,η,W

(
RW
N,2 + δ2

s +
1

N2

)
,

hence the result.

Lemma 4.6.7. Under Hypothesis 4.2.1, for any t > t0 ≥ 0,

‖φN,4(t)‖2 ≤ CF,X∞,W

∫ t

t0

e−(t−s)γ (‖YN(s)‖2
2 + δs

)
ds+GN,3, (4.6.22)

where GN,3 is explicit in N and tends to 0 as N →∞. Moreover, if we suppose F
bounded, we have

sup
t≥0
‖φN,4(t)‖2 ≤

√
SWN , (4.6.23)

where SWN is defined in (4.2.25).

Proof. We have

‖
N∑
i=1

Θs,i,41BN,i‖2
2 =

∫
I

(
N∑
i=1

Θs,i,4(x)1BN,i(x)

)2

dx

=
N∑
i=1

∫
BN,i

(∫
I

(W (xi, y)−W (x, y))F (XN(s, y), ηs(y)) dy

)2

dx

≤
N∑
i=1

∫
BN,i

(∫
I

(W (xi, y)−W (x, y))2 dy

)(∫
I

(F (XN(s, y), ηs(y)))2 dy

)
dx,

with Cauchy Schwarz’s inequality. We can recognize SWN defined in (4.2.25), and
we have that, as F is Lipschitz continuous and y 7→ F (X∞(y), η∞(y)) is bounded,∫

I

F (XN(s, y), ηs(y))2 dy

≤
∫
I

(F (XN(s, y), ηs(y))− F (X∞(y), ηs(y)))2 dy +

∫
I

F (X∞(y), ηs(y))2 dy

≤ ‖F‖2
L

∫
I

YN(s)(y)2dy + ‖F (X∞, η∞)‖2
∞ ≤ CF,W

(
‖YN(s)‖2

2 + 1
)

≤ CF,W
(
‖YN(s)‖4

2 + 1
)
.

As done before, (4.6.7) and Proposition 4.2.10 give that

‖φN,4(t)‖2 ≤
∫ t

t0

e−(t−s)γ‖
N∑
i=1

Θs,i,41BN,i‖2ds and

‖
N∑
i=1

Θs,i,41BN,i‖2
2 ≤ CF,WS

W
N

(
‖YN(s)‖4

2 + 1
)
,

hence the result with GN,3 = CF,W
√
RN,3 and Lemma 4.6.2. When F is bounded,

we directly have ‖
N∑
i=1

Θs,i,41BN,i‖2
2 ≤ SWN hence (4.6.23) as

∫ t
t0
e−(t−s)γds ≤ 1

γ
.
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4.6.3 Proof of Proposition 4.4.3

Proposition 4.4.3 is then a direct consequence of (4.6.6) and (4.6.7), of the controls
given by Lemmas 4.6.3, 4.6.4, 4.6.5, 4.6.6 and 4.6.7, with GN = GN,1 +GN,2 +GN,3,
and of Lemma 4.6.2 to have GN → 0.

4.7 About the finite time behavior (proofs)
In this section, we prove Proposition 4.2.11.

4.7.1 Main technical results

In the following, we denote by ŶN(t) := XN(t)−Xt.

Proof of Proposition 4.2.11. Let t ≤ T . Recall the definition of XN(t) in (4.1.11)
and Xt in (4.1.12). Proceeding exactly as in the proof of Proposition 4.4.1, and
recalling the definition of MN(t) in (4.4.5), we have

dŶN(t) + αŶN(t)dt− dMN(t)

=
N∑

i,j=1

1BN,i
wij
N
F (XN,j(t−), ηt(xj)) dt− TWF (Xt, ηt) dt

=
4∑

k=1

N∑
i=1

Θt,i,k1BN,idt+ TW (F (XN,j(t−), ηt(xj))− F (Xt, ηt)) dt,

with the notations introduced in (4.6.1) - (4.6.4). It gives then, as ŶN(0) = 0,

ŶN(t) =

∫ t

0

e−α(t−s)r̂N(s)ds+

∫ t

0

e−α(t−s)dMN(s) =: φ̂N(t) + ζ̂N(t)

with

r̂N(t) =
4∑

k=1

N∑
i=1

Θt,i,k1BN,i + TW (F (XN(t−), ηt)− F (Xt, ηt)) .

Note that we obtain a similar expression as for YN in Proposition 4.4.1, but with
e−αt instead of the semi-group etL. We use then the two following results, similar
to Propositions 4.4.2 and 4.4.3.

Proposition 4.7.1. Let T > 0. Under Hypothesis 4.2.1, there exists a constant
C = C(T, F, ‖η‖∞) > 0 such that P-almost surely for N large enough:

E

[
sup
s≤T
‖ζ̂N(s)‖2

]
≤ C√

NρN
.

Proposition 4.7.2. Under Hypotheses 4.2.1 and 4.2.6, for any t > 0,

‖φ̂N(t)‖2 ≤ C

(∫ t

0

e−α(t−s)‖ŶN(s)‖2ds+ ĜN

)
, (4.7.1)

where ĜN is an explicit quantity to be found in the proof that tends to 0 as N →∞.
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Their proofs are postponed to the following subsection. Hence we obtain∥∥∥ŶN(t)
∥∥∥

2
≤ C

(
ĜN +

∥∥∥ζ̂N(t)
∥∥∥

2
+

∫ t

0

e−α(t−s)
∥∥∥ŶN(s)

∥∥∥
2
ds

)
,

which gives with Grönwall lemma

sup
t≤T

∥∥∥ŶN(t)
∥∥∥

2
≤ C

(
ĜN + sup

t≤T

∥∥∥ζ̂N(t)
∥∥∥

2

)
.

With Proposition 4.7.1, it leads to

E

[
sup
t≤T

∥∥∥ŶN(t)
∥∥∥

2

]
≤ C

(
ĜN +

1√
NρN

)
,

hence the result (4.2.16) as (4.2.6) implies
1√
NρN

→ 0 and ĜN → 0.

4.7.2 Proofs of Propositions 4.7.1 and 4.7.2

Proof of Proposition 4.7.1. We do as for Proposition 4.4.2, and apply Îto’s formula
on

ζ̂N(t) =
N∑
j=1

∫ t

0

∫ ∞
0

e−α(t−s)χj(s, z)π̃j(ds, dz).

The term I0(t) in (4.5.3) becomes −α
∫ t

0

∥∥∥ζ̂N(s)
∥∥∥

2
ds which is still non-positive.

About I1(t) and I2(t), the proof remains the same aside from the fact that we now
consider ζ̂N instead of ζN .

To prove 4.7.2, we introduce an auxilliary quantity as in Lemma 4.6.1.

Lemma 4.7.3. Let Y N(s)(v) := ŶN(s)

(
dNve
N

)
. Then for any T ≥ 0

sup
0≤s≤T

‖Y N(s)− ŶN(s)‖2 −−−→
N→∞

0. (4.7.2)

Proof. It plays the role of ỸN(s) introduced in Lemma 4.6.1. Similarly to what has
been done before, we have

∥∥∥ŶN(s)− Y N(s)
∥∥∥2

2
=

N∑
j=1

∫
BN,j

(
ŶN(s)(y)− Y N(s)(y)

)2

dy

=
N∑
j=1

∫
BN,j

(Xs(xj)−Xs(y))2 dy,

which tends to 0 by uniform continuity of X on [0, T ]× I. It still holds under the
hypotheses of Section 4.2.3.4 by decomposing the sum on each interval Ck.

166



4.7. About the finite time behavior (proofs)

Proof of Proposition 4.7.2. We divide φ̂ as in (4.6.7) and study each contribution.
About φ̂N,0(t) :=

∫ t
0
e−α(t−s)TW (F (XN(s), ηs)− F (Xs, ηs)) ds, we have

‖TW (F (XN(s), ηs)− F (Xs, ηs))‖2
2 ≤ CW,F

(∫
I

‖F‖L |XN(s)(y)−Xs(y)| dy
)2

≤ CW,F

∥∥∥ŶN(s)
∥∥∥2

2
,

which gives ∥∥∥φ̂N,0(t)
∥∥∥

2
≤ CW,F

∫ t

0

e−α(t−s)
∥∥∥ŶN(s)

∥∥∥
2
ds.

About φ̂N,1(t) :=

∫ t

0

e−α(t−s)
N∑
i=1

Θs,i,1

N
1BN,ids, we do as in Lemma 4.6.4: we

insert the terms F (Xs(xj), ηs(xj)) (instead of the terms F (X∞(xj), η∞(xj)) in
(4.6.17)), that is

γN(s) ≤
N∑

i,j=1

1

N
κN,iξij (F (XN,j(s−), ηs(xj))− F (Xs(xj), ηs(xj)))1BN,i

+
N∑

i,j=1

1

N
κN,iξijF (Xs(xj), ηs(xj))1BN,i =: γ̂N,1(s) + γ̂N,2(s).

The treatment of γ̂N,1 is similar of γN,1: we make Y N(s−) appear instead of ỸN and

obtain ‖γ̂N,1(s−)‖2
2 ≤ CF

(∥∥∥ŶN(s)
∥∥∥2

2
+ 1

)(
Smax
N

ρ2
N

+
1

Nρ2
N

)
with (4.7.2). About

γ̂N,2, we do as γN,2 as supt∈[0,T ],x∈I F (Xt(x), ηt(x)) < ∞ and obtain that P-almost

surely if N is large enough, ‖γ̂N,2‖2
2 ≤ C

(
1

Nρ2
N

+
1

N1−2τρ4
N

)
. We have then that,

P-almost surely if N is large enough,∥∥∥φ̂N,1(t)
∥∥∥

2
≤ CF

∫ t

t0

e−α(t−s)
∥∥∥ŶN(s)

∥∥∥
2
ds+GN,1,

where GN,1 → 0.

About φ̂N,2(t), we proceed as Lemma 4.6.5 to show that ‖φ̂N,2(t)‖2 ≤
CF
NρN

.

About φ̂N,k(t) :=
∫ t

0
e−α(t−s)∑N

i=1
Θs,i,k
N

1BN,ids for k ∈ {3, 4}, we proceed similarly,
doing as in 4.6.6 and 4.6.7 but instead of inserting the terms F (X∞(xj), η∞(xj))
we insert the terms F (Xs(xj), ηs(xj)): then there is no δs terms. We obtain then

‖φ̂N,3(t)‖2 ≤ C

∫ t

t0

e−α(t−s)
∥∥∥ŶN(s)

∥∥∥
2
ds+GN,2, and

‖φ̂N,4(t)‖2 ≤ C

∫ t

t0

e−α(t−s) ‖YN(s)‖2 ds+GN,3,

where both GN,2 and GN,3 tends to 0. Note that we can obtain better bounds when
F is bounded. By putting all the terms φ̂N,k together, we get (4.7.1).
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4.A Auxiliary results

4.A.1 Concentration results

Theorem 4.A.1 (Grothendieck’s inequality as in Coppini (2022)). Let {aij}i,j=1,··· ,n
be a n× n real matrix such that for all si, tj ∈ {−1, 1}

n∑
i,j=1

aijsitj ≤ 1.

Then, there exists a constant KR > 0, such that for every Hilbert space (H, 〈·, ·〉H)
and for all Si and Tj in the unit ball of H

n∑
i,j=1

aij〈Si, Tj〉H ≤ KR.

Theorem 4.A.2 (Azuma–Hoeffding inequality). Let (Mn) be a martingale with
M0 = 0. Assume that for all 1 ≤ k ≤ n, |∆Mk| ≤ ck a.s. for some constants (ck).
Then for all x ≥ 0

P (|Mn| ≥ x) ≤ 2 exp

(
− x2

2
∑n

k=1 c
2
k

)
. (4.A.1)

Theorem 4.A.3 (Upper tail estimate for iid ensembles, Corollary 2.3.5 of Tao
(2012)). Suppose that M = (mij)1≤i,j≤n, where n is a (large) integer and the mij

are independent centered random variables uniformly bounded in magnitude by 1.
Then there exist absolute constants C, c > 0 such that

P
(
‖M‖op > x

√
n
)
≤ C exp (−cxn)

for any x ≥ C.

Lemma 4.A.4. Under Hypothesis 4.2.6, we have P-almost surely if N is large
enough:

sup
1≤j≤N

(
N∑
i=1

ξ
(N)
ij

NρN

)
≤ 2, sup

1≤i≤N

(
N∑
j=1

ξ
(N)
ij

NρN

)
≤ 2. (4.A.2)

Proof. It is a direct consequence of a previous work (Agathe-Nerine, 2022, Corollary
8.2), that is Corollary 3.8.2 in the present thesis, in the case wN = ρN , κN = 1

ρN
,

WN(xi, xj) = ρNW (xi, xj) with W bounded.

Lemma 4.A.5. Let N ≥ 1, for j 6= j′ in J1, NK, let Sjj′ :=
1

N

N∑
i=1

ξij ξij′ with ξ

defined in Definition 4.1.1, and Smax
N := sup1≤j 6=j′≤N |Sjj′|. Then, under Hypothesis

4.2.6, P-a.s.
lim sup
N→∞

Smax
N ≤ N τ− 1

2 (4.A.3)

where τ ∈ (0, 1
2
) comes from Hypothesis 4.2.6.
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Proof. When j and j′ are fixed and j 6= j′,
(
Xi := ξij ξij′

)
1≤i≤N is a family of

independent random variables with |Xi| ≤ 1, E[Xi] = 0 and E[X2
i ] ≤ 1. Bernstein’s

inequality gives then for any t > 0

P

(∣∣∣∣∣
N∑
i=1

ξij ξij′

∣∣∣∣∣ > t

)
≤ 2 exp

(
−1

2

t2

N + t
3

)
hence for the choice t = N

1
2

+τ with τ ∈ (0, 1
2
),

P

(∣∣∣∣∣
N∑
i=1

ξij ξij′

∣∣∣∣∣ > N
1
2

+τ

)
≤ 2 exp

(
−1

2

N2τ

1 + 1
3
N−

1
2

+τ

)
≤ 2 exp

(
−1

4
N2τ

)
as 1 + 1

3
N−

1
2

+τ ≤ 2. With an union bound

P

(
sup
j 6=j′
|Sjj′| >

1

N
1
2
−τ

)
≤ 2N2 exp

(
−1

4
N2τ

)
.

We apply then Borel Cantelli’s lemma and obtain (4.A.3).

Lemma 4.A.6. Fix N > 1 and (Yl)l=1,...,n real valued random variables defined
on a probability space (Ω,F ,P). Suppose that there exists ν > 0 such that, almost
surely, for all l = 1, . . . , n− 1, Yl ≤ 1, E [Yl+1 |Yl ] = 0 and E

[
Y 2
l+1 |Yl

]
≤ v. Then

P
(
n−1(Y1 + . . .+ Yn) ≥ x

)
≤ exp

(
−nx

2

2v
B
(x
v

))
for all x ≥ 0, where

B(u) := u−2 ((1 + u) log (1 + u)− u) . (4.A.4)

Proof. A direct application of (Dembo & Zeitouni, 1998, Corollary 2.4.7) gives that

P
(
n−1(Y1 + . . .+ Yn) ≥ x

)
≤ exp

(
−nH

(
x+ v

1 + v
| v

1 + v

))
,

where H(p|q) := p log(p/q) + (1− p) log((1− p)/(1− q)) for p, q ∈ [0, 1]. Then, the
inequality H

(
x+v
1+v
| v
1+v

)
≥ x2

2v
B
(
x
v

)
(see (Dembo & Zeitouni, 1998, Exercise 2.4.21))

gives the result.

Corollary 4.A.7. Let (Zij)i,j be a family of independent Bernoulli variables, with
E[Zij] = mij. Let (βij)ij be a sequence such that for any i, j, βi,j ∈ (0, 1].Then, for
all x ≥ 0

P

(
1

N2

N∑
i,j=1

βij
(
(Zij −mij)

2 − E (Zij −mij)
2) ≥ x

)
≤ exp

(
−N

2x2

2
B(x)

)
.

Proof. Fix a bijection φN : J1, N2K → J1, NK × J1, NK. For any k ∈ J1, N2K and
(i, j) = φN(k), let Rk = βij

(
(Zij −mij)

2 − E (Zij −mij)
2). As the (mij)i,j are

independent, the family of randon variables (Rk)1≤k≤N2 is also independent. As
Rk ≤ 1 a.s., E [Rk+1|Rk] = 0 and E

[
R2
k+1|Rk

]
≤ 1, Lemma 4.A.6 implies that for

any x ≥ 0,

P

(
1

N2

N2∑
k=1

Rk ≥ x

)
≤ exp

(
−N

2x2

2
B(x)

)
where B is defined in (4.A.4).
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4.A.2 Other technical results

Lemma 4.A.8. Let K be a kernel from I2 → R+ such that supx∈I
∫
I
K(x, y)2dy <

∞. Let TK : g 7→ TKg :=
(
x→

∫
I
K(x, y)dy

)
be the operator associated to K, that

can be defined from L2(I) → L2(I) and from L∞(I) → L∞(I). We assume that
T 2
K : L2(I)→ L2(I) is compact. Then

r2(TK) = r∞(TK).

Proof. First note that for both r = r2 and r = r∞, we have, for all p ≥ 1, r(T pK)
1
p =(

limn→∞ ‖T pnK ‖
1
n

) 1
p

= limn→∞ ‖T pnK ‖
1
pn = r(TK), so that r(T pK) = r(TK)p. Hence

r2(T 2
K) = r∞(T 2

K) gives r2(TK) = r∞(TK).
Denote by σ∞(T 2

K) and σ2(T 2
K) the corresponding spectrum of T 2

K (in L∞(I)
and L2(I) respectively). Let us prove that r2(T 2

K) = r∞(T 2
K) by proving σ∞(T 2

K) =
σ2(T 2

K). To do so, first note that T 2
K : L∞(I) → L∞(I) is compact: consider

(fn)n a bounded sequence of L∞(I). It is then also bounded in L2(I), and as
TK : L2(I) → L2(I) is compact, there exists a subsequence

(
fφ(n)

)
such that

TKfφ(n) converges in L2(I) to a certain g. Then for any x ∈ I,

|T 2
Kfφ(n)−TKg|(x) ≤

∫
I

K(x, y)
∣∣TKfφ(n)(y)− g(y)

∣∣ dy ≤ CK‖TKfφ(n)−g‖2 −−−→
n→∞

0,

thus T 2
K : L∞(I) → L∞(I) is compact. Now we prove that σ∞(T 2

K) = σ2(T 2
K): let

µ ∈ σ2(T 2
K) \ {0}, there exists g ∈ L2(I) such that µg = T 2

Kg. As∣∣T 2
Kg(x)

∣∣ =

∣∣∣∣∫
I

K(x, y)

∫
I

K(y, z)g(z) ν(dz)ν(dy)

∣∣∣∣ ≤ CK‖g‖2 <∞,

g = 1
µ
T 2
Kg ∈ L∞(I) and µ ∈ σ∞(T 2

K). Conversely, let µ ∈ σ∞(T 2
K) \ {0}, there

exists g ∈ L∞(I) such that µg = T 2
Kg. As L∞(I) ⊂ L2(I), µ ∈ σ2(T 2

K). Hence
r2(T 2

K) = r∞(T 2
K) and (4.2.2) follows.

Lemma 4.A.9 (Quadratic Grönwall’s lemma). Let f be a non-negative function
piecewise continuous with finite number of distinct jumps of size inferior to θ on
[t0, T ], let g be a non-negative continuous function and h ∈ L1([t0, T ]). For any
t ∈ [t0, T ], assume f satisfies

f(t) ≤ f(t0) + g(t) +

∫ t

t0

h(t− s)f(s)2ds.

Then, for δ <
1

9‖h‖1

, if θ ≤ δ

2
and if supt∈[t0,T ] g(t) ≤ δ, we have

sup
t∈[t0,T ]

f(t) ≤ f(t0) + 3δ.

Proof. Let A = {t ∈ [t0, T ], f(t) > f(t0) + 3δ}, suppose A 6= ∅. Let t∗ = inf{t ∈
[t0, T ], f(t) > f(t0)+3δ}. If there is no jump at t0, by the initial conditions t∗ > t0,

and if there is a jump, f(t+0 ) ≤ f(t0) +
δ

2
hence we also have t∗ > t0. Moreover,
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for all t ∈ [t0, t
∗), f(t) ≤ f(t0) + δ + 9δ2

∫ t
t0
h(t − s)ds ≤ f(t0) + 2δ. If there is

a jump at t∗, it is of amplitude θ ≤ δ

2
hence f(t∗) ≤ f(t0) +

5δ

2
< f(t0) + 3δ

which is a contradiction. If there is no jump at t∗, by local continuity we have
f(t∗) ≤ f(t0) + δ + 9δ2

∫ t∗
t0
h(t − s)ds ≤ f(t0) + 2δ which is also a contradiction.

We conclude then that supt∈[t0,T ] f(t) ≤ f(t0) + 3δ.
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Chapter 5

Stability of wandering bumps for
Hawkes processes interacting on the
circle

This chapter consists in a modified version of my article Agathe-Nerine
(2023b) (expanded with some computations), with minor wording and
notation changes for harmonization purposes. It has been submitted.

In this Chapter, we study our main model (2.3.7) in a particular context. The
synaptic function f is fixed as a sigmoid, the interaction terms (w

(N)
ij ) come from

a cosine kernel and the memory kernel h is chosen as a decreasing exponential
h(t) = e−t. There is no spontaneous activity (µt = 0) but we consider an initial
activity v0(x) = ρ(x) that leaks at rate 1. These choices were made to exhibits
particular phenomena in the large population and time limit.

Abstract

We consider a population of Hawkes processes modeling the
activity of N interacting neurons. The neurons are regularly
positioned on the circle [−π, π], and the connectivity between
neurons is given by a cosine kernel. The firing rate function is
a sigmoid. The large population limit admits a locally stable
manifold of stationary solutions. The main result of the paper
concerns the long-time proximity of the synaptic voltage of the
population to this manifold in polynomial times in N . We show
in particular that the phase of the voltage along this manifold
converges towards a Brownian motion on a time scale of order N .
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5.1 Introduction

5.1.1 Hawkes Processes and Neural Field Equation

In the present paper we study the large time behavior of a population of interacting
and spiking neurons indexed by i = 1, . . . , N , N ≥ 1, as the size of the population
N tends to infinity. We model the activity of a neuron by a point process where
each point represents the time of a spike: for i = 1, . . . , N , ZN,i(t) counts the
number of spikes during the time interval [0, t] of the ith neuron of the population.
Denoting λN,i(t) as the conditional intensity of ZN,i at time t, that is

P (ZN,i jumps between(t, t+ dt)|Ft) = λN,i(t)dt,

where Ft := σ (ZN,i(s), s ≤ t, 1 ≤ i ≤ N), we want to account for the dependence
of the activity of a neuron on the past of the whole population : the spike of one
neuron can trigger other spikes. Hawkes processes are then a natural choice to
emphasize this interdependency and we take here

λN,i(t) = fκ,%

(
ρ(xi)e

−t +
2π

N

N∑
j=1

cos(xi − xj)
∫ t−

0

e−(t−s)dZN,j(s)

)
, i = 1, . . . , N.

(5.1.1)
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The neurons are located on the circle S = (−π, π] with positions (xi)1≤i≤N regularly
distributed, that is xi =

π

N
(2i−N). We subdivide S into N intervals of length

2π/N denoted by

BN,i = (xi−1, xi] for 1 ≤ i ≤ N,with x0 := −π. (5.1.2)

The function fκ,% : R −→ R+ models the synaptic integration of neuron i with
respect to the input of the other neurons j in the population, modulated by the
spatial kernel cos(xi− xj). It is chosen as a sigmoid with parameters (κ, %), κ > 0,
% ∈ (0, 1), that is

fκ,%(u) :=
(
1 + e−(u−%)/κ

)−1
. (5.1.3)

The function ρ : S −→ R represents the initial inhomogeneous voltage of the
population and leaks at rate 1. The exponential term e−(t−s) in the integral in
(5.1.1) quantifies how a jump lying back t − s time units in the past affects the
present (at time t) intensity: each neuron tends to forget progressively its past.
The main object of interest of the paper is the synaptic voltage

UN,i(t) = ρ(xi)e
−t +

2π

N

N∑
j=1

cos(xi − xj)
∫ t

0

e−(t−s)dZN,j(s) =: ρ(xi)e
−t +XN,i(t),

(5.1.4)
(i.e. λN,i(t) = fκ,% (UN,i(t−))) and more precisely the random profile defined for all
x ∈ S by:

UN(t)(x) :=
N∑
i=1

UN,i(t)1x∈BN,i . (5.1.5)

The specific form of (5.1.1) originates from the so-called ring model introduced
by Shriki et al. (2003), modelling the activity of neurons in the visual cortex on
a mesoscopic scale. Here each position x ∈ S represents a prefered orientation
for each neuron, see the biological works of Georgopoulos et al. (1982); Bosking
et al. (1997) and the mathematical works of Veltz & Faugeras (2010); MacLaurin &
Bressloff (2020) amongst others. We are looking here at the microscopic counterpart
of this model. It means that neurons that prefer close orientation tend to excitate
each others, whereas neurons with opposite orientation inhibit each others. Making
κ→ 0 in (5.1.3), we see that fκ,% converges towards H% the Heaviside function

H%(u) = 1u≥%. (5.1.6)

Hence for κ small, a neuron can spike only when it has a high potential with rate
approximately 1, and with rate approximately 0 otherwise.

This model (5.1.1) is a specific case of a larger class of mean-field Hawkes
processes for which one can write the intensity in the form

λN,i(t) = µt(xi) + f

(
vt(xi) +

1

N

N∑
j=1

w
(N)
ij

∫ t−

0

h(t− s)dZN,j(s)

)
, i = 1, . . . , N.

(5.1.7)
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The current model (5.1.1) corresponds to the choice h(t) = e−t and w
(N)
ij =

2π cos(xi − xj). In (5.1.7), the neurons are placed in a spatial domain I endowed
with ν a probability measure that describes the macroscopic distribution of the
positions. The parameter function µt : I −→ R+ represents a spontaneous activity
of the neuron at time t, vt : I −→ R a past activity, h is the memory kernel of the
system, f : R −→ R+ and w(N)

ij represents the interaction between neurons i and
j. For a suitable class of connectivity sequence (w

(N)
ij ) that can be approximated

by some macroscopic interaction kernel w(x, y) as N → ∞ (see Chevallier et al.
(2019); Agathe-Nerine (2022) for precise statements), a usual propagation of chaos
result as N →∞ (see (Delattre et al., 2016a, Theorem 8), (Chevallier et al., 2019,
Theorem 1), (Agathe-Nerine, 2022, Theorem 3.10)) may be stated as follows: for
fixed T > 0, there exists some C(T ) > 0 such that

sup
1≤i≤N

E

(
sup
s∈[0,T ]

∣∣ZN,i(s)− Zi(s)
∣∣) ≤ C(T )√

N
, (5.1.8)

where the limiting process
(
Zi, i = 1, . . . , N

)
consists of independent copies of

inhomogeneous Poisson process suitably coupled to ZN,i with intensity (λt(xi))t≥0

solving

λt(x) = µt(x) + f

(
vt(x) +

∫
I

w(x, y)

∫ t

0

h(t− s), λs(y)dsν(dy)

)
(5.1.9)

(see the above references for details on this coupling, or Definition 3.3.1 of Chapter
3), where ν is the macroscopic distribution of the positions. Moreover, for the
specific choice h(t) = e−t, denoting the macroscopic potential of a neuron (the
synaptic current) with position x at time t by

ut(x) := vt(x) +

∫
I

w(x, y)

∫ t

0

h(t− s)λs(y)dsν(dy), (5.1.10)

an easy computation (see Chevallier et al. (2019)) gives that, when vt(x) = ρ(x)e−t,
u solves the Neural Field Equation (NFE)

∂ut(x)

∂t
= −ut(x) +

∫
I

w(x, y)f(ut(y))ν(dy), t ≥ 0, (5.1.11)

with initial condition u0 = ρ. The NFE that first appears in Wilson & Cowan
(1972) has been extensively studied in the literature, mostly from a phenomenological
perspective (Amari, 1977), and is an important example of macroscopic neural
dynamics with non-local interactions (we refer to Bressloff (2014) for an extensive
review on the subject). Let us mention here an important point: whereas the
analysis of Chevallier et al. (2019) requires the measure ν in (5.1.11) to be a
probability measure on I, the historical version of the NFE was originally studied
when ν(dy) = dy is the Lebesgue measure on R. In this last case, thanks to
its translation invariance of the Lebesgue measure, one can show the existence of
travelling waves solutions to (5.1.11), see Ermentrout & McLeod (1993); Lang &
Stannat (2016) for details. The same analysis when ν(dy) = dy is remplaced by a
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probability measure fails, as translation invariance of (5.1.11) is then broken. In
this respect, the present choice of I = S and ν(dy) =

1[−π,π)
2π

dy combines the two
previous advantages: ν is a probability measure (hence the previous analysis when
N → ∞ applies) and translation invariance is preserved in the present periodic
case. It can be shown (Kilpatrick & Ermentrout (2013)) that (5.1.11) exhibits
localized patterns (wandering bumps) which are stationary pulse solutions.

We are interested in this paper in the long time behavior of the microscopic
system (5.1.1) and its proximity to these wandering bumps. Before focusing on
the microscopic scale, we say a few words on the behavior of the macroscopic
system (5.1.9)/(5.1.10). In the pure mean-field case (when w

(N)
ij = 1 for all i,

j), the spatial dependency is no longer relevant and (5.1.9) reduces to the scalar
nonlinear convolution equation λt = µt + f(vt +

∫ t
0
h(t− s)λsds). An easy instance

concerns the so-called linear case where f(x) = x, µt = µ and νt = 0: in this
situation the behavior of λt as t → ∞ is well known. There is a phase transition
(see (Delattre et al., 2016a, Theorems 10,11)) depending on the memory kernel h:
when ‖h‖1 =

∫∞
0
h(t)dt < 1 (the subcritical case), λt −−−→

t→∞

µ

1− ‖h‖1

, whereas when

‖h‖1 > 1 (the supercritical case), λt −−−→
t→∞

∞. This phase transition was extended
to the inhomogeneous case in Agathe-Nerine (2022) (and more especially where
the interaction is made through the realization of weighted random graphs), and
the existence of such a phase transition now reads in terms of ‖h‖1r∞ < 1 (then
λt(x) → `(x) the unique solution of `(x) = µ(x) +

∫
I
w(x, y)‖h‖1`(y)ν(dy)) and

‖h‖1r∞ > 1 (then ‖λt‖2 → ∞), where r∞ is the spectral radius of the interaction
operator TWg(x) 7→

∫
I
w(x, y)g(y)ν(dy). In the fully inhomogeneous case and

nonlinear case (f no longer equal to Id), a sufficient condition for convergence of
λt is given in Agathe-Nerine (2023a): whenever

‖f ′‖∞‖h‖1r∞ < 1, (5.1.12)

λt converges to ` as t→∞, ` being the unique solution to

` = µ+ f (‖h‖1TW `) . (5.1.13)

Note that the present model (5.1.1) obviously does not satisfy (5.1.12), as ‖f ′‖∞ is
very large (recall (5.1.3): f = fκ,% is a sigmoid close to the Heaviside function H%

(5.1.6)). Understanding the longtime behavior of λt when (5.1.12) does not hold
may be a difficult task for general h. However the present model is sufficiently
simple to be analyzed rigorously: as it was originally noted by Kilpatrick &
Ermentrout (2013), the stationary points of (5.1.9) when w is a cosine can be found
by solving an appropriate fixed point relation (see (5.2.2) below) and by invariance
by translation, each fixed-point gives rise to a circle of stationary solutions to
(5.1.9). One part of the proof will be to show the local stability of these circles
(extending the results of Kilpatrick & Ermentrout (2013) when f is the Heaviside
function).

The main concern of the paper is to analyse the microscopic system (5.1.5)
on a long time scale. An issue common to all mean-field models (and their
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perturbations) is that there is, in general, no possibility to interchange the limits
N →∞ and t→∞. Specifying to Hawkes processes, the constant C(T ) in (5.1.8)
is of the form exp(CT ), such that (5.1.8) remains only relevant up to T ∼ c logN
with c sufficiently small. In the linear subcritical case, C(T ) is linear (C(T ) = CT )
so that the mean-field approximation remains relevant up to T = o

(√
N
)
(Delattre

et al. (2016a)). In a previous work Agathe-Nerine (2023a), we showed that, in the
subcritical regime defined by (5.1.12) with h(t) = e−t, the macroscopic intensity
(5.1.9) converges to ` defined by (5.1.13) and the microscopic intensity (5.1.7)
remains close to this limit up to polynomial times in N , see Chapter 4 and more
especially Theorem 4.2.12 for more details. Here, the main difference is that (5.1.10)
admits a manifold of stable stationary solutions parameterized by S, instead of a
unique one. We show here that, with some initial condition close to this manifold,
our microscopic process (5.1.5) stays close to the manifold up to time horizons that
are polynomial in N , and moreover the dynamics of the microscopic current follows
a Brownian motion on the manifold.

Organization of the paper The paper is organized as follows: after introducing
some notations, we start in Section 5.1.2.2 by introducing the precise mathematical
set-up. In Section 5.2, we present the main results of our paper. Section 5.2.1 is
divided into three parts: in the first part 5.2.1.1, we present the deterministic
dynamics of (5.1.16) and the manifold of stationary solutions U defined in (5.2.4).
In the second part we introduce two ways of defining some phase reduction along U ,
the variational phase (Proposition 5.2.7) and isochronal phase (Proposition 5.2.8).
In the last part, Theorem 5.2.9 ensures that if the system is close to U , it stays
so for a long time, and with Theorem 5.2.11, we analyze the dynamics of the
isochronal phase of UN along U . Such dynamics are represented in the simulations
of Figure 5.2. In Section 5.2.2, we explain how our paper is linked to the present
litterature on the subject. In Section 5.2.3, we sketch the strategy of proof we
follow. Section 5.3 collects the proofs of the results of Sections 5.2.1.1 and 5.2.1.2,
Section 5.4 concerns the proof of the proximity between UN and U seen in Theorem
5.2.9 and Section 5.5 is devoted to prove the diffusive behavior of UN along U seen
in Theorem 5.2.11. Some technical estimates and computations are gathered in the
appendix.

5.1.2 Notations and definition

5.1.2.1 Notations

We denote by Cparameters a constant C > 0 which only depends on the parameters
inside the lower index. These constants can change from line to line or inside a
same equation, and when it is not relevant, we just write C. For any d ≥ 1, we
denote by |x| and x · y the Euclidean norm and scalar product of x, y ∈ Rd. For
(E,A, µ) a measured space, for a function g in Lp(E, µ) with p ≥ 1, we write
‖g‖E,µ,p :=

(∫
E
|g|pdµ

) 1
p . When p = 2, we denote by 〈·, ·〉 the Hermitian scalar

product in L2(E, µ). Without ambiguity, we may omit the subscript (E, µ) or µ.

178



5.1. Introduction

For a real-valued bounded function g on a space E, we write ‖g‖∞ := ‖g‖E,∞ =
supx∈E |g(x)|.

For (E, d) a metric space, we denote by ‖g‖L = supx 6=y |g(x)− g(y)|/d(x, y) the
Lipschitz seminorm of a real-valued function g on E. We denote by C(E,R) the
space of continuous functions from E to R, and Cb(E,R) the space of continuous
bounded ones. For any T > 0, we denote by D ([0, T ], E) the space of càdlàg (right
continuous with left limits) functions defined on [0, T ] and taking values in E. For
any integer N ≥ 1, we denote by J1, NK the set {1, · · · , N}.

For any h, k, l ∈ E, we denote by Dg(h)[k] ∈ S the derivative of g : E → F at
h in the direction k, and similarly for second derivatives D2g(h)[k, l].

5.1.2.2 Definition of the model

We define now formally our process of interest. Definition 5.1.1 follows a standard
representation of point processes as thinning of independent Poisson measures, see
Ogata (1988); Delattre et al. (2016a).

Definition 5.1.1. Let (πi(ds, dz))1≤i≤N be a sequence of i.i.d. Poisson random
measures on R+ × R+ with intensity measure dsdz. The multivariate counting
process (ZN,1 (t) , ..., ZN,N (t))t≥0 defined by, for all t ≥ 0 and i ∈ J1, NK:

ZN,i(t) =

∫ t

0

∫ ∞
0

1{z≤λN,i(s)}πi(ds, dz), (5.1.14)

where λN,i is defined in (5.1.1) is called a multivariate Hawkes process with set of
parameters (N, κ, %, ρ).

It has been showed in several works (see e.g. Agathe-Nerine (2022); Delattre
et al. (2016a) amongst others) that the process defined in (5.1.14) is well posed in
the following sense.

Proposition 5.1.2. For a fixed realization of the family (πi)1≤i≤N , there exists a
pathwise unique multivariate Hawkes process (in the sense of Definition 5.1.1) such
that for any T <∞,

sup
t∈[0,T ]

sup
1≤i≤N

E[ZN,i(t)] <∞.

Proposition 5.1.2 can be found in (Agathe-Nerine, 2022, Propositions 2.5). In
our framework, the macroscopic intensity (5.1.9) population limits is

λt(x) = fκ,%

(
ρ(x)e−t +

∫
S

cos(x− y)

∫ t

0

e−(t−s)λs(y)dsdy

)
, (5.1.15)

and the neural field equation (5.1.11) becomes

∂ut(x)

∂t
= −ut(x) +

∫
S

cos(x− y)fκ,%(ut(y))dy. (5.1.16)

Proposition 5.1.3. Let T > 0. There exists a unique solution (ut)t∈[0,T ] in Cb(S,R)
to (5.1.16) with initial condition u0 = ρ.
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Proposition 5.1.3 can be found in (Agathe-Nerine, 2022, Propositions 2.7), and
follows from a standard Grönwall estimate. We can then define the flow of (5.1.16)
by (t, g) 7→ ψt(g), that is the solution at time t of (5.1.16) starting from g at t = 0:

ψt(g)(x) = e−tg(x) +

∫ t

0

e−(t−s)
∫
S

cos(x− y)fκ,%(ψs(g)(x))ds. (5.1.17)

5.2 Stability of wandering bumps for interacting
Hawkes processes

5.2.1 Main results

5.2.1.1 Stationary solutions to (5.1.16)

We are concerned here with the stationary solutions to (5.1.16), that is

u(x) =

∫ π

−π
cos(x− y)f(u(y))dy. (5.2.1)

We follow a similar approach to Kilpatrick & Ermentrout (2013), see Appendix
5.A.1.

Remark 5.2.1. For a general choice of f , if u is solution to (5.2.1), then for any φ,
x 7→ u(x+ φ) is also solution to (5.2.1) by invariance of S. Expanding the cosine,
(5.2.1) becomes

u(x) = cos(x)

∫ π

−π
cos(y)f(u(y))dy + sin(x)

∫ π

−π
sin(y)f(u(y))dy.

By translation symmetry, with no loss of generality we can ask
∫ π
−π sin(y)f(u(y))dy =

0 and solving (5.2.1) means finding A ≥ 0 such that

A =

∫
S

cos(y)f (A cos(y)) dy. (5.2.2)

As (5.2.1) is invariant by translation, any A solution to (5.2.2) gives rise to the set
UA := {x 7→ A cos(x+ φ), φ ∈ [−π, π]} of stationary solutions to (5.2.1).

Recall (5.1.6), when f = H% the Heaviside function with threshold %, Kilpatrick
& Ermentrout (2013) and Veltz & Faugeras (2010) showed that for % ∈ [−1, 1], the
unique solutions to (5.2.2) are

A = 0, A−(0) =
√

1 + %−
√

1− % and A+(0) :=
√

1 + %+
√

1− %. (5.2.3)

This result is recalled in Appendix 5.A.1. One can show that the set UA−(0) is
unstable whereas UA(0) and U0 are locally stable. In the following we focus on the
largest fixed point A+(0) which we rename for A(0) by convenience. Recall that in
the paper, we are under the assumption that f = fκ,% defined in (5.1.3) for a small
fixed κ. As fκ,% −−→

κ→0
H%, our first result is that when κ is close enough to 0, we

can still find a stationary solution to (5.1.16) of the form u = A(κ) cos where A(κ)
is also close to A(0).
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Figure 5.1: Graph of G : A 7→
∫
S
A cos(x)f (A cos(x)) dx

We represent the fixed-point function G appearing in (5.2.2) for the choice f = H% defined
in (5.1.6) in gray and its smooth version with f = fκ,%, defined in (5.1.3) in blue. We chose
(κ, %) =

(
1
10 ,

1
2

)
. The black line is the graph of y = x and its intersections with the two other

lines give the fixed points of G. Note that we are interested here on the fixed point on the far
right, that is A(0) for the gray line and A(κ) for the blue line.

Proposition 5.2.2. Assume % ∈ (−1, 1). Then there exists κ0 > 0 and a function
A : (0, κ0)→ (|%|,+∞) of class C1 such that for any κ ∈ (0, κ0), u = A(κ) cos is a
stationary solution to (5.1.16) when f = fκ,% and A(κ) −−→

κ→0
A(0) given in (5.2.3).

Moreover, there exists κ1 ∈ (0, κ0) such that for any κ ∈ (0, κ1), 1 < I(1, κ) < 2
for I(1, κ) :=

∫
S
f ′κ,%(A(κ) cos(x))dx.

Proposition 5.2.2 is based on a simple implicit function argument and is proved
in the Appendix 5.A.2. An illustration of this Proposition is done in Figure 5.1:
we see that for each A solving (5.2.2) for the Heaviside function, there is indeed
another close A solving (5.2.2) for the sigmoid function with small κ. For the rest
of the paper we fix % ∈ (−1, 1), κ < κ1 and A = A(κ) and may omit the indexes
(κ, %). We have then established that

U := (A cos(·+ φ))φ∈S =: (uφ)φ∈S (5.2.4)

is a set of stationary solutions to (5.1.16), which is a manifold parameterized by the
circle S. To study the stability of these stationary solutions, we introduce linear
operators that are also parameterized by the circle S.

Definition 5.2.3. Let φ ∈ S, and define for any function ψ ∈ L2(S)

Tφψ(x) :=

∫
S

cos(x− y)f ′(uφ(y))ψ(y)dy (5.2.5)

Lφψ := −ψ + Tφψ. (5.2.6)

Define also L2
φ := L2

f ′(uφ), that is the L2 weighted space defined by the scalar
product

〈g1, g2〉2,φ =

∫
S

g1(x)g2(x)f ′(uφ(x))dx.
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We denote by ‖ · ‖2,φ the associated norm. Recall (5.2.4) and define

vφ := ∂xuφ = −A sin(·+ φ). (5.2.7)

We consider also the orthogonal projection P ◦φ on Span(vφ) and its complementary
projection P⊥φ , both defined for any g ∈ L2

φ by

P ◦φg :=
〈g, vφ〉2,φ
‖vφ‖2,φ

vφ =: α◦φ(g)vφ (5.2.8)

P⊥φ g := g − P ◦φg. (5.2.9)

We will also need the projection on Span(uφ) hence we define

αγφ(g) =
〈g, uφ〉2,φ
‖uφ‖2,φ

. (5.2.10)

Remark 5.2.4. Without ambiguity and for a general φ, we may write ‖·‖φ instead
of ‖ · ‖2,φ to gain in clarity. Note that by compactness of S, since 0 < inf [−A,A] f

′ <

sup[−A,A] f
′ <∞, the norms ‖ ·‖2 and ‖ ·‖2,φ are equivalent: there exists C0, C̃0 > 0

(independent of φ) such that for any g ∈ L2(S),

C̃0‖g‖2 ≤ sup
φ∈S
‖g‖2,φ ≤ C0‖g‖2. (5.2.11)

Proposition 5.2.5. Let φ ∈ S. The operator Lφ defined in (5.2.6) is self-adjoint in
L2
φ and has three distinct eigenvalues, −1, 0 and γ ∈ (−1, 0). If for ι ∈ {−1, γ, 0},

we denote by Eι the eigenspace associated to the eigenvalue ι, one has that E0 =
KerLφ = Span(vφ), Eγ = Span(uφ) and E−1 = (Span(uφ, vφ))⊥. Moreover, E0 ⊥ Eγ.
Furthermore, there exists CL, CP such that for any φ ∈ S, Lφ generates an analytic
semigroup of contraction

(
etLφ

)
and for any g ∈ L2

φ, t ≥ 0,

‖etLφP⊥φ g‖2,φ ≤ etγ‖P⊥φ g‖φ, (5.2.12)

‖etLφg‖2 ≤ CL‖g‖2, (5.2.13)
‖etLφP⊥φ g‖2,φ ≤ CP‖g‖2,φ. (5.2.14)

Proposition 5.2.5 is proved in Section 5.3.1. A straightforward corollary of
Proposition 5.2.5 is the following

Corollary 5.2.6. The manifold U is locally stable under the flow (5.1.16): there
exists ε0 > 0 such that, for any g ∈ L2(S) satisfying distL2(g,U) ≤ ε0, we
have limt→∞ distL2(ψt(g),U) = 0 where ψ is defined in (5.1.17). We denote by
B(U , ε0) := {g ∈ L2(I), distL2(g,U) ≤ ε0}.

5.2.1.2 Representation on the manifold

Recall that we are interested in the behaviour of the process (5.1.5), when the
initial condition UN(0) to (5.1.5) is close to the manifold U introduced in (5.2.4).
We need a way to define a proper phase reduction of UN along U . We have two
ways to do so that we use in our results that are well explained in the recent work
Adams & MacLaurin (2022), which takes the NFE as a good class of examples
and motivation. The first one is via the variational phase, defined in the following
Proposition 5.2.7:
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Proposition 5.2.7 (Variational phase). There exists $ > 0 such that, for any g ∈
L2(S) satisfying distL2(S)(g,U) ≤ $, there exists a unique phase φ := projU(g) ∈ S
such that P ◦φ(g − uφ) = 0 and the mapping g 7→ projU(g) is smooth.

The second one is via the isochronal phase, defined in the following Proposition
5.2.8. In a few words, as the manifold U is stable and attractive, a solution to the
NFE from a neighborhood of U is attracted to U and converges to it. As t → ∞,
it identifies with one stationary solution of the manifold, we call it its isochron.

Proposition 5.2.8 (Isochronal phase). For any g ∈ B(U , ε0) (see Corollary 5.2.6),
there exists a unique θ(g) ∈ S such that

‖ψt(g)− uθ(g)‖2 −−−→
t→∞

0, (5.2.15)

where ψ is defined in (5.1.17). Such a map θ : B(U , ε0)→ S is called the isochronal
map of U , and θ(g) is the isochronal phase of g. Moreover, it is three times
continuously Fréchet differentiable (in fact C∞), and in particular for uφ ∈ U ,
h, l ∈ L2(S), we have

Dθ(uφ)[h] =
〈vφ, h〉φ
‖vφ‖φ

, and (5.2.16)

D2θ(uφ)[h, l] =
1

2A2

(
α◦φ(h)βφ(vφ, l) + α◦φ(l)βφ(vφ, h) + βφ(h, l)

)
+

1 + γ

2A2(1− γ)

(
αγφ(h)βφ(uφ, l) + αγφ(l)βφ(uφ, h)

)
− (2− γ)(1 + γ)

2(1− γ)

(
α◦φ(h)α◦φ(l) + αγφ(h)αγφ(l)

)
, (5.2.17)

where α◦φ and αγφ are respectively defined in (5.2.8) and (5.2.10), and

βφ(h, l) :=

∫
S

f ′′(uφ(y))vφ(y)h(y)l(y)dy. (5.2.18)

Note that in particular, as uθ(g) ∈ U and U consists in stationary points,
ψt(uθ(g)) = uθ(g). Propositions 5.2.7 and 5.2.8 are proved in Section 5.3.2.

5.2.1.3 Long time behavior

The first result uses the variational phase to ensure that (UN(t)) defined in (5.1.5)
reaches a neighborhood of U in time of order log(N) and stays inside it for arbitrary
polynomial times in N .

Theorem 5.2.9. Suppose that ρ ∈ B(U , ε0) and

‖UN(0)− ρ‖2 −−−→
N→∞

0. (5.2.19)

Let α, τf > 0. There exists some C > 0 such that, defining for any N ≥ 1,
T0(N) := C log(N), for any ε > 0,

P

(
sup

t∈[T0(N),Nατf ]

distL2 (UN(t),U) ≤ ε

)
−−−→
N→∞

1. (5.2.20)
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Remark 5.2.10. In fact, we show a more precise result than (5.2.20) that will be
useful for the proof of Theorem 5.2.11: we prove that for any fixed η ∈ (0, 1

4
), we

have with some constant C > 0

P

(
sup

t∈[T0(N),Nατf ]

distL2 (UN(t),U) ≤ CNη−1/2

)
−−−→
N→∞

1.

Theorem 5.2.9 is proved in Section 5.4. The second main result of the paper is
the analysis of the behavior of UN along U when α = 1.

Theorem 5.2.11. Let ρ ∈ B(U , ε0). Suppose (5.2.19). Let τf > 0. There exist

a deterministic θ0 ∈ S and for every N some τ0(N) ∝ log(N)

N
and a càdlàg

process (WN(t))t∈(τ0(N),τf ) that converges weakly in D ([0, τf ], S) towards a standard
Brownian such that for every ε > 0,

lim
N→∞

P

(
sup

τ∈(τ0(N),τf )

∥∥UN(Nτ)− uθ0+σWN (τ)

∥∥
2
≤ ε

)
= 1, (5.2.21)

where

σ :=

(
2π

∫
S

sin2(x)f(A cos(x))dx

) 1
2

, (5.2.22)

with A = A(κ) defined with Proposition 5.2.2.

Theorem 5.2.11 is proved in Section 5.5. We have run several simulations to
illustrate our results, see Figure 5.2. We represent the evolution of the current
UN(t, x) for t ∈ [0, Tmax] where the time is on the x-axis and spatial position on
the y-axis. The different values taken are scaled with a color bar. We can see the
wandering bumps evolving in Figure 5.2a, whereas in Figure 5.2b the initialization
is too far from the manifold and the system is no longer attracted to U .

5.2.2 Link with the literature

Hawkes processes have been introduced in Hawkes (1971) to model earthquakes and
have been thoroughly studied since, see e.g. Brémaud & Massoulié (1996). The
seminal work of Delattre et al. (2016a) has renewed the interest for large population
of interacting Hawkes processes, which have proven to be particularly useful in a
neuroscience context to model the mutually exciting properties of a population of
neurons, see for instance Ditlevsen & Löcherbach (2017); Chevallier et al. (2019).

In this respect, a common setting for the modelling of interacting neurons is the
mean-field framework. For instance, in Baladron et al. (2012), the authors describe
the propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo
neurons. Another popular model is the integrate-and-fire dynamics, first introduced
in the seminal work of Lapicque (1907), and still studied mathematically, as e.g.
in Masi et al. (2014); Delarue et al. (2015) and also Cormier et al. (2020).

Several works have extended the mean-field framework to take into account
the presence of a macroscopic spatial structure in the interaction, originally for
diffusion models (see Touboul (2014); Luçon & Stannat (2016)), as well as for
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5.2. Stability of wandering bumps for interacting Hawkes processes

(a) The initialization in the vicinity of U leads to wandering bumps

(b) The initialization far from the vicinity of U does not trigger the wandering
bumps

Figure 5.2: Evolution of the voltage UN(t)(x)

We chose (κ, %) =
(

1
20 ,

1
2

)
and run simulations of N = 500 neurons following (5.1.1). We represent

the evolution of the current UN (t, xi) obtained for two different simulations where we changed
the initial profile ρ. In 5.2a, we start in a vicinity of U as we take for initialization ρ(x) =
A(κ) cos(x) + cos(2x), where A(κ) solving (5.2.2) for f = fκ,% is found by a numerical root
finding method, with a final time Tmax = 500 (of the same order that the size of the population).
In 5.2b, we initialize the system with ρ(x) = 1

4A(κ) cos(x). It is too far from the manifold U
and we can see that the dynamics is attracted to UA where A is the smallest solution of (5.2.2)
(in Figure 5.1 it corresponds to the far left intersection of the black and blue lines) which is
approximately 0, hence we only run the simulation with a final time Tmax = 5.
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5. Stability of wandering bumps for Hawkes processes

Hawkes processes (see Ditlevsen & Löcherbach (2017); Chevallier et al. (2019)).
The main difficulty with this extension is that we lose the exchangeability specific
to homogeneous mean-field models as in Sznitman (1991); Delattre et al. (2016a).
Concerning our present model, Chevallier et al. (2019) was the first to provide
with a rigorous mesoscopic interpretation of the neural field equation (5.1.11) in
terms of the limit of spatially extended Hawkes processes interacting through a
mesoscopic spatial kernel. The recent work Agathe-Nerine (2022) extends this
result for Hawkes processes interacting on inhomogeneous random graphs. Another
possiblity to circumvent the exchangeability issue would have been to use replica
mean-field models as Davydov (2022) and describe the propagation of chaos for an
infinite number of replicas. Note however that this description keeps the size N of
the population fixed, whereas we want to have N →∞.

Note also that the present model include interaction that may be negative: this
reflects some inhibitive effect among neurons with opposite orientations. Modelling
the inhibition present in the brain has been historically difficult. For Hawkes
processes, a common approach is to allow the synaptic kernel h in (5.1.7) to take
negative values. This is however impossible for linear Hawkes processes as the
intensity cannot be negative. To circumvent this, one has to choose a non-negative
and nonlinear function f to preserve the non-negativity of the intensity. A classic
choice is to take f(x) = max (0, µ+ x) (see for instance Bonnet et al. (2021) for
estimation model or Costa et al. (2020); Cattiaux et al. (2022) with h in (5.1.7)
signed and with compact support). One can also introduce inhibition through a
signed multiplying factor (that may depend or not on the neuron), see for instance
Duarte et al. (2019); Ditlevsen & Löcherbach (2017); Pfaffelhuber et al. (2022).
Some works have also parted the whole population into two subclasses of neurons,
the excitatory ones and the inhibitory ones (Raad & Löcherbach, 2020; Duval
et al., 2022). In the latter, the inhibition is made thanks to a (small) multiplicative
factor onto the intensity of the excitatory population. The present work is another
contribution concerning models with inhibition, as it is present thanks to the
cosine interaction kernel that takes negative values. This choice is essential to our
dynamics as the balance between excitation and inhibition within the population
of neurons allows to have a stable manifold of stationary solutions to (5.1.16).

The analysis of mean-field interacting processes on long time scales has a
significant history in the case of interacting diffusions, in particular in the case
of phase oscillators as the Kuramoto model (Kuramoto (1975), see Giacomin &
Poquet (2015) and references therein for a comprehensive review on the subject).
The techniques used in the present work have some formal similarities to the ones
used for diffusions, the main difference being that with Hawkes processes, the noise
is Poissonian (rather Brownian) and multiplicative (rather than additive). The
so-called uniform propagation of chaos concerns situations where estimates such
as (5.1.8) are uniform in time. Such estimates are commonly met in reversible
situations (e.g. granular type media diffusions in Bolley et al. (2013)). See also
the recent paper of Colombani & Bris (2022), where the authors studies a uniform
propagation of chaos on the FitzHugh-Nagumo diffusive model.

Let us comment on the analysis of the Kuramoto model as it presents some
informal proximity with our model. One is here interested in the longtime behavior
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of the empirical measure µN,t := 1
N

∑N
i=1 δθi,t of the system of interacting diffusions

(θ1, . . . , θN) solving the system of coupled SDEs

dθi,t = −K
N

N∑
j=1

sin(θi,t − θj,t)dt+ dBi,t,

with (Bi) i.i.d. Brownian motions. Standard propagation of chaos techniques show
that µN converges weakly on a bounded time interval [0, T ] to the solution µt to
the nonlinear Fokker-Planck (NFP) equation

∂tµt =
1

2
∂2
θµt +K∂θ

(
µt(sin ∗µt)

)
, (5.2.23)

(to compare with our microscopic current UN,i in (5.1.4) converging towards ut
solution to the NFE (5.1.16)). One can easily prove the existence of a phase
transition for (5.2.23): when K ≤ 1, µ ≡ 1

2π
is the only (stable) stationary

point of (5.2.23) (subcritical case), whereas it coexists with a stable circle of
synchronised profiles when K > 1 (supercritical case). A series of papers have
analysed the longtime behavior of the empirical measure µN of the Kuramoto model
(and extensions) in both the subcritical and supercritical cases, the first one being
Bertini et al. (2014), followed by Giacomin et al. (2012); Luçon & Poquet (2017);
Coppini (2022); Delarue & Tse (2021). The main arguments of the mentioned
papers lie in a careful analysis of two contradictory phenomena that arise on
a long-time scale: the stability of the deterministic dynamics around stationary
points (that forces µN to remain in a small neighborhood of these points) and the
presence of noise in the microscopic system (which makes µN diffuse around these
points).

We are here in a similar situation to the supercritical case: the deterministic
dynamics of the spatial profile UN (given by (5.1.5)) has a stationary manifold
U (defined in (5.2.4)) which possesses sufficient stability properties, see Corollary
5.2.6. The point of the analysis relies then on a time discretization and some careful
control on the diffusive influence of noise that competes with the deterministic
dynamics. In a previous work Agathe-Nerine (2023a), we have analysed in depth
the case where (5.1.13) has a unique solution, that would be comparable to the
subcritical case of the Kuramoto model.

The first main result of the paper is to show that once UN(0) is close to the
stationary manifold U , it stays so for a long time, see Theorem 5.2.9. The next step
is to find a way to describe the projection of the dynamics onto U . A convenient
tool for this is the use of isochronicity, we refer to Guckenheimer (1975) for a precise
approach on the subject, and to Giacomin et al. (2018) for their use of isochronicity
to study the proximity between the noisy trajectory of interacting particles and the
limit cycle in a finite dimensional setting. See also Luçon & Poquet (2021a) where
the microscopic system is a diffusion and the large population limit admits a stable
periodic solution: they show that the empirical measure stays close to the periodic
solution with a random dephasing. The isochron map in this case helps to describe
the dephasing as a Brownian motion with a constant drift.
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Going back to Hawkes processes, several other works have already complemen-
ted the propagation of chaos result mentioned in (5.1.8) and studied, mostly at the
level of fluctuations, finite approximations of the NFE. Central Limit Theorems
(CLT) have been obtained in Delattre et al. (2016a); Ditlevsen & Löcherbach
(2017) for homogeneous mean-field Hawkes processes (when both time and N go
to infinity) or with age-dependence in Chevallier (2017). One should also mention
the functional fluctuation result recently obtained in Heesen & Stannat (2021), also
in a pure mean-field setting. A result closer to our case with spatial extension is
Chevallier & Ost (2020), where a functional CLT is obtained for the spatial profile
UN around its limit. Note here that all of these works provide approximation results
of quantities such that λN or UN that are either valid on a bounded time interval
[0, T ] or under strict growth condition on T (see in particular the condition T

N
→ 0

for the CLT in Ditlevsen & Löcherbach (2017)), whereas we are here concerned
with time-scales that grow polynomially with N .

One alternative to study large time behavior is to use a Brownian approximation
of the dynamics of UN , see the initial work of Ditlevsen & Löcherbach (2017).
However this approximation is based on the comparison of the corresponding
semigroups and is not uniform in time. Nevertheless, let us comment on this
diffusive approximation in large population regime on bounded time intervals that
can be found in both Ditlevsen & Löcherbach (2017); Chevallier & Ost (2020). A
second order approximation of the NFE was proposed in Chevallier & Ost (2020)
with (adapted to the notations of the present article)

dUN(t) = −UN(t)dt+ w ∗ f(UN(t))dt+ C

∫
S

w(x, y)

√
f(UN(t)(y))√

N
W (dt, dy),

(5.2.24)
where W is a Gaussian white noise. This approximating diffusion process (5.2.24)
is a noisy NFE, it can be seen as an intermediate modeling between the microscopic
scale given by the Hawkes process and the macroscopic scale given by the NFE.
In our framework with a cosine kernel, the infinitesimal increment of the noise in
(5.2.24) can be expanded as

C cos(x)

∫
S

cos(y)

√
f(UN(t)(y))√

N
W (dt, dy)

+ C sin(x)

∫
S

sin(y)

√
f(UN(t)(y))√

N
W (dt, dy).

To compare with our result, let us informally project the last quantity on Ker(L0)
introduced in Proposition 5.2.5. The scalar product 〈·, v0〉2,0 with v0 = −A sin(·)
gives that the cosine term becomes zero and the noise left is a random variable of
the form

− CA
∫
S

sin2 f ′(A cos)

∫
S

sin(y)

√
f(UN(t)(y))√

N
W (dt, dy)

= −C
∫
S

sin(y)

√
f(UN(t)(y))√

N
W (dt, dy),
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using (5.3.2). The infinitesimal noise that effectively drives the dynamics of (5.2.24)

along U is then Gaussian with variance proportional to
∫
S

sin2(y)
f(UN(t)(y))

N
dydt,

which is exactly the variance found in (5.2.22), rescaled by 1
N

and where UN(t) has
been replaced by the limit ut. This analogy remains informal, but shows that our
results are compatible to the computations of Ditlevsen & Löcherbach (2017) and
Chevallier & Ost (2020): one could see the present result as a rigorous justification
that the approximation introduced by Ditlevsen & Löcherbach (2017); Chevallier
& Ost (2020) can be extended for polynomial times in N .

Approximation between Hawkes and Brownian dynamics has also been studied
in Chevallier et al. (2021); Erny (2023), based on Komlós, Major and Tusnády
(KMT) coupling techniques (see Ethier & Kurtz (1986)). Recently, Prodhomme
(2023) used similar KMT coupling techniques applied to finite dimensional Markov
chains and found Gaussian approximation to remain precise for very large periods of
time. However these results are valid for Zd-valued continous-time Markov chains,
it is unclear how they can be applied in our situation (with infinite dimension
and space extension). The proof we propose is direct and does not rely on such
Brownian coupling.

The question of Stochastic Neural Field Equations has also been considered
directly from a macroscopic perspective at multiple times. It consists in considering
the NFE (5.1.11) with an additive or multiplicative spatio-temporal noise, see for
instance Bressloff & Webber (2012); Krüger & Stannat (2014). Existence and
uniqueness results have been obtained for various expressions of the noise, see
Faugeras & Inglis (2015); Inglis & MacLaurin (2016). Let us mention in particular
Kilpatrick & Ermentrout (2013); MacLaurin & Bressloff (2020); Cihak et al. (2022)
who propose a heuristical derivation of the diffusion coefficient of the wandering
bumps in a setting similar to ours (the ring model with f the Heaviside function).
See also MacLaurin (2023) where the author studies the effect of the added noise
on patterns such that traveling waves and oscillations thanks to the use of some
projection of the dynamics, to obtain long time stability. Whereas all of the
previous results are concerned with a macroscopic approach concerning stochastic
perturbation of the NFE, we provide here a rigorous and microscopic interpretation
of this phenomenon.

5.2.3 Strategy of proof of the long time behavior

5.2.3.1 About Theorem 5.2.9

Section 5.4 is devoted to prove the proximity result of Theorem 5.2.9. This in
particular requires some spectral estimates on the operators Lφ introduced in
Definition 5.2.3 and the stability of stationary solutions to (5.1.16), results that
are gathered in Section 5.2.1.1 and proved in Section 5.3. The main lines of proof
for Theorem 5.2.9 are given in Section 5.4. The strategy of proof is sketched here,
and follows the one used in a previous work Agathe-Nerine (2023a).

First we show in Proposition 5.4.1 that one can find some initial time T0(N) ∝
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log(N) for which distL2 (UN(T0(N)),U) ≤ N2η

√
N

, with 0 < η < 1
4
. This essentially

boils down to following the predominant deterministic dynamics of the NFE. Let
Tf (N) = Nα, we discretize the interval of interest [T0(N), Tf (N)] into nf intervals
of same length T denoted by [Ti, Ti+1], T chosen sufficiently large below. On each
subinterval, we can decompose the dynamics of UN(t) in terms of, at first order, the
linearized dynamics of (5.1.16) around any stationary solution, modulo some drift
terms coming from the mean-field approximation, some noise term coming from the
underlying Poisson measure, and some quadratic remaining error coming from the
nonlinearity of f . It gives a semimartingale decomposition of UN(t)− uproj(UN (Ti))

for t ∈ [Ti, Ti+1], detailed in Section 5.4.2.
Provided one has some sufficent control on each of these terms in the semi-

martingale expansion on a bounded time interval, we do an iterative procedure
that works as follows: the point is to see that provided UN is initially close to
uproj(UN (Ti)) ∈ U , it will remain close to it for a time interval of length T for some
sufficiently large deterministic T > 0 so that the deterministic dynamics prevails
upon the other contributions. The time horizon at which one can pursue this
recursion is controlled by moment estimates on the noise in Proposition 5.4.3.

5.2.3.2 About Theorem 5.2.11

Section 5.5 is devoted to prove the analysis of the behavior of UN along U seen
in Theorem 5.2.11. We sketch here the strategy of proof. First we use the
semimartingale decomposition of UN

dUN(t) = BN(t)dt+ dMN(t)

(with BN some drift and MN a martingale defined in (5.4.30)) and Itô formula to
write the semimartingale decomposition of θ(UN(t)) on the interval [T0(N), Nτf ].
As in Theorem 5.2.9, one can show a careful control on each of the terms appearing
in the semimartingale decomposition, as done in Section 5.5.3. The difficulty here
is to show rigorously that there is no macroscopic drift appearing on this time scale
(this point is essentially due to the invariance by rotation of the whole problem).
After rescaling the time by N , we identify the noise with a Brownian motion
thanks to Aldous’ tightness criterion and Lévy’s characterization so that the result
of Theorem 5.2.11 follows.

5.2.3.3 Extensions

On the interaction kernel - Note that Theorem 5.2.11 is of local nature:
stability holds provided the initial condition ρ is sufficiently close to U . Following
Kilpatrick & Ermentrout (2013), it would be possible to consider the more general
interaction kernel

w(x, y) =
n∑
k=0

Ak cos(k(x− y)),
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with more that one Fourier mode. The fixed point equation (5.2.2) becomes a more
complicated system of equations

Ak =

∫
S

cos(kx)f

(
n∑
k=0

Ak cos(kx)

)
dx. (5.2.25)

The exact number of solutions to (5.2.25) remain unclear but if one can solve
(5.2.25) and show local stability of the solutions uφ(x) =

∑N
k=0Ak cos(k(x + φ)),

the same strategy should apply: we would obtain local stability provided one starts
sufficiently close to these structures.

Oscillatory behavior - Note that U consists of stationary points. We claim
that a similar strategy should apply also to situations where (5.1.1) admits generic
oscillations, see Giacomin et al. (2014) in a context of diffusion. We have in
particular in mind the framework proposed in Ditlevsen & Löcherbach (2017):
the authors study interacting Hawkes processes with Erlang memory kernel. The
population is divided into classes, and the classes interact with a cycling feedback
system, so that the large population limit is attracted to non-constant periodic
orbits. It is reasonable to think that our techniques can be transposed to this
situation, to show that the microscopic system is closed to the limit cycle under
their hypotheses in large times and without using the approximating diffusion
process.

5.3 Stationary solutions (proofs)
Let us first define for any function r ∈ L2(S)

I(r) :=

∫
S

r(y)f ′(u0(y))dy, (5.3.1)

where u0 is defined in (5.2.4). We start by giving a computation Lemma that will
be useful in the whole paper.

Lemma 5.3.1. We have

I(sin2) = 1, I(cos2) = I(1)− 1 and I(sin cos) = 0.

Proof. Recall that u0 = A cos, as A solves (5.2.2) by integrating by parts we obtain

A =

∫
S

cos(y)f (A cos(y)) dy = A

∫
S

sin2(y)f ′ (u0(y)) dy = AI(sin2), (5.3.2)

and as A > 0 it implies I(sin2) = 1. By integrating by parts we also have

−AI(cos sin) =

∫ π

−π
sin(y)f(A cos(y))dy.

Since y → sin(y)f(A cos(y)) is odd, we obtain that I(cos sin) = 0. As cos2 =
1− sin2 and I is linear, we have I(cos2) = I(1)− I(sin2) = I(1)− 1.
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5.3.1 Stability

Here we prove Proposition 5.2.5.

Proof. Let φ ∈ S. Let us first show that the operator Lφ is indeed self-adjoint in
L2
φ. Let g1, g2 ∈ L2

φ, we have by Fubini’s theorem and recalling Definition 5.2.3

〈Lφg1, g2〉φ

= −
∫
S

g1g2f
′(uφ) +

∫
S

(∫
S

cos(x− y)f ′(uφ(y))g1(y)dy

)
g2(x)f ′(uφ(x))dx

= −
∫
S

g1g2f
′(uφ) +

∫
S

f ′(uφ(y))g1(y)

(∫
S

cos(x− y)g2(x)f ′(uφ(x))dx

)
dy

= 〈g1,Lφg2〉φ,

hence Lφ is self-adjoint in L2
φ.

We focus now on its spectrum, we want to prove that it has three distinct
eigenvalues, -1, 0 and γ ∈ (−1, 0). The following arguments follow the same
procedure of the one that can be found in Kilpatrick & Ermentrout (2013). First
note that Tφ is compact in L2

φ (in fact, with finite range). Hence it has a discrete
spectrum consisting of eigenvalues. Let λ be an eigenvalue of Lφ and ψ an associated
eigenvector, that is Lφψ = λψ hence (λ + 1)ψ = Tφψ with Definition 5.2.3. As
seen in Remark 5.2.1, λ does not depend on φ and if ψ is an eigenvector for φ = 0,
then ψ(· − φ) is an eigenvector for φ. Hence, in the following, we focus on the case
φ = 0. We have

T0ψ(x) = A0(ψ) cos(x) +B0(ψ) sin(x), (5.3.3)

with

A0(ψ) :=

∫
S

cos(y)f ′ (u0(y))ψ(y)dy, B0(ψ) :=

∫
S

sin(y)f ′ (u0(y))ψ(y)dy.

(5.3.4)
The eigenvalue -1 is spanned by functions ψ ∈ L2 such that A0(ψ) = B0(ψ) = 0.
Recall (5.3.1), we have that, since (λ+ 1)ψ = T0ψ,

(λ+ 1)A0(ψ) =

∫
S

cos(y)(λ+ 1)ψ(y)f ′(u0(y))dy

=

∫
S

cos(y) (A0(ψ) cos(y) +B0(ψ) sin(y)) f ′(u0(y))dy

= A0(ψ)I(cos2) +B0(ψ)I(sin cos), (5.3.5)

and similarly,

(λ+ 1)B0(ψ) = A0(ψ)I(sin cos) +B0(ψ)I(sin2). (5.3.6)

See Lemma 5.3.1 for the computations of I(cos2), I(sin2) and I(sin cos). Putting
these computations into (5.3.5) and (5.3.6) implies that (λ, ψ) solves L0ψ = λψ if
and only if {

(λ+ 1)A0(ψ) = (I(1)− 1)A0(ψ)

(λ+ 1)B0(ψ) = B0(ψ).
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With no loss of generality, one can suppose that ψ is such that (A0(ψ), B0(ψ)) 6=
(0, 0) (and thus λ 6= −1). Then (λ, ψ) solves the previous system if and only if,
either λ = 0 with A0(ψ) = 0 and B0(ψ) 6= 0 (and hence we see from (5.3.3) that
the eigenvalue 0 is spanned by sin ∝ v0) or λ = γ given by

γ := I(1)− 2 =

∫
S

f ′(A cos(x))dx− 2, (5.3.7)

with A0(ψ) 6= 0 and B0(ψ) = 0, so that the eigenspace related to γ is one-
dimensional, spanned by cos ∝ u0. The fact that 〈uφ , vφ〉φ = 0 follows immediately
from the fact that uφ is even and vφ is odd. The last eigenvalue λ = −1 is spanned
by ψ such that A(ψ) = B(ψ) = 0.

To conclude the proof of Proposition 5.2.5, it remains to prove the inequalities
(5.2.12), (5.2.13) and (5.2.14). We come back to a general φ ∈ S. By definition of
the projection P ◦φ in (5.2.8), we have that LφP ◦φ = 0. Moreover, by definition of P⊥φ
in (5.2.9), we have that for any g ∈ L2

φ, P⊥φ g belongs in the orthogonal of Ker(Lφ)

in L2
φ. Then LφP⊥φ = Lφ(Id − P ◦φ) generates a contraction semigroup on L2(S)

and (5.2.12) follows then from functional analysis (see e.g. (Pazy, 1974, Theorem
3.1)). For the two last inequalities, we use Remark 5.2.4. From the definition of
the projection P ◦φ in (5.2.8), we have that

etLφP ◦φg =
〈g, vφ〉φ
‖vφ‖φ

etLφvφ =
〈g, vφ〉φ
‖vφ‖φ

vφ,

as vφ ∈ Ker(Lφ). We obtain then ‖etLφP ◦φg‖φ ≤ ‖g‖φ‖vφ‖φ. From (5.2.12) we have
‖etLφP⊥φ g‖φ ≤ eγt‖P⊥φ g‖φ ≤ CP‖g‖φ for some CP > 0, that is exactly (5.2.14).
As ‖etLφg‖2 ≤ ‖etLφP ◦φg‖2 + ‖etLφP⊥φ g‖2, (5.2.13) follows for the choice CL =

C1C2 max
(
supφ∈S ‖vφ‖φ, CP

)
.

5.3.2 Projections on the manifold

We prove that both the variational phase seen in Proposition 5.2.7 and isochronal
phase seen in Proposition 5.2.8 are well defined.

Proof of Proposition 5.2.7. (similar to (Luçon & Poquet, 2017, Lemma 2.8)) Define
for any (g, φ) ∈ L2(S)× S:

F (g, φ) :=

∫
S

(g(x)− uφ(x)) vφ(x)f ′(uφ(x))dx = 〈g − uφ, vφ〉φ.

We have for any fixed φ0, F (uφ0 , φ0) = 0. Note that F is smooth in both variables as
it can be written F (g, φ) = −A

∫
S

(g(x)− A cos(x+ φ)(x)) sin(x + φ)f ′(uφ(x))dx.
Moreover, ∂φF (uφ0 , φ0) = −〈vφ0 , vφ0〉φ0 = −A2Iφ0(sin2) with Iφ(r) :=

∫
S
r(y +

φ)f ′(uφ(y))dy. By invariance on the circle Iφ0(sin2) = I(sin2) defined in (5.3.1)
and Lemma 5.3.1 implies then that ∂φF (uφ0 , φ0) = −A2 = −A(κ)2 6= 0 with
Proposition 5.2.2. By the implicit function theorem, for any φ0 there exists a
neighborhood V(uφ0) of uφ0 such that the projection is well defined (i.e. for any
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$

uφ = A cos(·+ φ)
•

uφ0
•

g•
vφ0

U

φ0 = proj(g)

g − uφ0 ⊥ vφ0

Figure 5.3: Projection of g ∈ L2(S) on U

g ∈ V(uφ0), there exists a unique φ such that F (g, φ) = 0 and g 7→ projU(g) is
smooth). By compactness of U , the existence of $ and the result of Proposition
5.2.7 follow. The situation can be summarized by the following Figure 5.3.

Proof of Proposition 5.2.8 . We reproduce the argument of (Adams, 2023, Theorem
3.1) that establishes the existence and regularity of the isochron map in a more
general context than here.

Let g ∈ B(U , ε0) and (εn)n a sequence decreasing to 0. The first step is
to prove that θ(g) satisfying (5.2.15) exists. To do so, using the stability of U
proved in Corollary 5.2.6, one can find an increasing sequence of times (tn) and a
sequence of closed non-empty sets Φn ⊂ U such that for all n ∈ N and θ ∈ Φn,
‖ψtn(g) − uθ‖2 ≤ Cεn for some constant C > 0. It gives in particular that the
diameter of Φn tends to zero as n→∞, hence the existence of an unique θ(g) such
that ∩n∈NΦn = {uθ(g)} by Cantor’s Intersection Theorem. The second step is to
prove the regularity of θ : B(U , ε0)→ S. As U is parameterized by S, we can define
π(u) for u ∈ U as the unique φ ∈ S such that u = uφ. As the flow ψ is C∞, the map
g 7→= limt→∞ ψt(g) is well defined and C∞, and we have also limt→∞ ψt(g) = uθ(g).
Then θ(g) can be written as π (limt→∞ ψt(g)), hence g 7→ θ(g) is indeed C∞.

We focus now on the derivatives of g 7→ θ(g). Define Γ : g ∈ B(U , ε0) 7→ Γ(g) =
limt→∞Ψtg = uθ(g) ∈ U . From Proposition 5.2.8, Γ is smooth and is differentiable,
and for g, h ∈ L2(S), DΓ(g)[h] = u′θ(g)Dθ(g)[h] = vθ(g)Dθ(g)[h] ∈ L2. Applied for
g = uφ and taking the scalar product with vφ, one obtains

〈DΓ(uφ)[h], vφ〉 = Dθ(uφ)[h]‖vφ‖2. (5.3.8)

Let us focus on DΨtg[h]. Let gt be the solution of (5.1.16) with g0 = g, that is
gt = Ψt(g), and ht the solution of (5.1.16) with h0 = g + h, that is ht = Ψt(g + h).
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Then with Taylor’s formula we have

∂t(ht − gt) = −(ht − ut) + cos ∗ (f(ht)− f(gt))

= −(ht − gt) + cos ∗ (f ′(gt)(ht − gt)) + rt,

where rt := cos ∗
(

(ht − gt)2 ∫ 1

0
(1− s)f ′′ (gt + s (ht − gt)) ds

)
= o(‖h‖). We have

then that DΨt(g)[h] =: wt with

∂twt = −wt + cos ∗ (f ′(Ψtg)(wt)) , w0 = h. (5.3.9)

In particular for the choice g = uφ, DΨt(uφ)[h] = etLφh where Lφ is defined in
(5.2.6). Moreover we can write with the operators defined in Definition 5.2.3

etLφh = etLφ
(
P ◦φh+ P⊥φ h

)
=
〈h, vφ〉φ
‖vφ‖φ

vφ + etLφP⊥φ h.

From (5.2.12), ‖etLφP⊥φ h‖φ ≤ etγ‖P⊥φ h‖φ hence limt→∞ e
tLφh =

〈h, vφ〉φ
‖vφ‖φ

vφ. As

Γ(uφ) = limt→∞Ψtuφ = uφ and limt→∞DΨt(uφ)[h] =
〈h, vφ〉φ
‖vφ‖φ

vφ, we obtain that

DΓ(uφ)[h] = D
(

lim
t→∞

Ψtuφ

)
[h] = lim

t→∞
DΨt(uφ)[h] = lim

t→∞
etLφh =

〈h, vφ〉φ
‖vφ‖φ

vφ,

which gives with (5.3.8) the result (5.2.16).
We focus now on D2θ. Recall Γ, for g, h, l ∈ B(U , ε0),

D2Γ(g)[h, l] = −Dθ(g)[h]Dθ(g)[l]uθ(g) +D2θ(g)[h, l]vθ(g).

Applied for g = uφ, it gives with (5.2.16)

D2Γ(uφ)[h, l] = −〈vφ, h〉φ〈vφ, l〉φ
‖vφ‖2

φ

uφ +D2θ(uφ)[h, l]vφ.

Taking the scalar product with vφ, as 〈uφ, vφ〉φ = 0 we obtain

D2θ(uφ)[h, l] =
〈D2Γ(uφ)[h, l], vφ〉φ

‖vφ‖2
φ

. (5.3.10)

Let us focus on D2Ψtg[h, l]. We have that DΨt(g)[h] = wt, recall that it solves
(5.3.9). Let DΨt(g + l)[h] := w̃t, it solves

∂tw̃t = −w̃t + cos ∗ (f ′(Ψt(g + l))w̃t) , w̃0 = h.

As done before, we obtain that ζt := w̃t − wt solves with ζ0 = 0

∂tζt = −ζt + cos ∗ [f ′ (Ψt(g + l)) w̃t − f ′ (Ψtg)wt]

= −ζt + cos ∗ [f ′ (Ψt(g + l)) (ζt + wt)− f ′ (Ψtg)wt]

= −ζt + cos ∗ [f ′ (Ψt(g + l)) ζt] + cos ∗ [(f ′ (Ψt(g + l))− f ′ (Ψtg))wt] .
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From Taylor’s expansion in l,

f ′ (Ψt(g + l)) = f ′
(

Ψt(g) +DΨt(g)[l] +

∫ 1

0

(1− s)D2Ψt(g)[l]2ds

)
= f ′ (Ψt(g)) + f ′′ (Ψt(g))DΨt(g)[l] + o(‖l‖)

hence
cos ∗ [f ′ (Ψt(g + l)) ζt] = cos ∗ (f ′ (Ψt(g)) ζt) +O(‖l‖),

and

cos ∗ [(f ′ (Ψt(g + l))− f ′ (Ψtg))wt] = cos ∗ (f ′′(Ψtg)DΨtg[l]wt) + o(‖l‖)
= cos ∗ (f ′′(Ψtg)DΨtg[l]DΨtg[h]) + o(‖l‖).

We obtain then after linearizing that D2Ψtg[h, l] = ξt is solution of

∂tξt = −ξt + cos ∗ (f ′(Ψtg)ξt) + cos ∗ (f ′′(Ψtg)DΨtg[l]DΨtg[h]) , ξ0 = 0.

In particular, for the choice g = uφ,

∂tξt = Lφξt + cos ∗
[
f ′′(uφ)

(
etLφh

) (
etLφl

)]
, ξ0 = 0,

hence it solves the mild equation

ξt =

∫ t

0

e(t−s)Lφ
(
cos ∗

(
f ′′(uφ)

(
esLφh

) (
esLφl

)))
ds.

Recall (5.3.10), hence we focus now on 〈ξt, vφ〉φ. From Proposition 5.2.5, Lφ is
self-adjoint hence

〈ξt, vφ〉φ =

∫ t

0

〈e(t−s)Lφ
(
cos ∗

(
f ′′(uφ)

(
esLφh

) (
esLφl

)))
, vφ〉φds

=

∫ t

0

〈cos ∗
(
f ′′(uφ)

(
esLφh

) (
esLφl

))
, e(t−s)Lφvφ〉φds

=

∫ t

0

〈cos ∗
(
f ′′(uφ)

(
esLφh

) (
esLφl

))
, vφ〉φds

as vφ ∈ KerLφ. Recall (5.2.8) and (5.2.10). By the spectral decomposition of Lφ
along its eigenvalues 0, γ and −1, one has with Proposition 5.2.5, for s ≥ 0,

esLφh = α◦φ(h)vφ + esγαγφ(h)uφ + e−s
(
h− α◦φ(h)vφ − αγφ(h)uφ

)
= e−sh+ α◦φ(h)(1− e−s)vφ + αγφ(h)

(
esγ − e−s

)
uφ,

so that one obtains(
esLφh

) (
esLφl

)
= α◦φ(h)α◦φ(l)

(
1− e−s

)2
v2
φ + αγφ(h)αγφ(l)

(
esγ − e−s

)2
u2
φ (5.3.11)

+ e−s(1− e−s)
{
α◦φ(h)l + α◦φ(l)h

}
vφ (5.3.12)

+ e−s
(
esγ − e−s

) {
αγφ(h)l + αγφ(l)h

}
uφ (5.3.13)

+
(
1− e−s

) (
esγ − e−s

) {
α◦φ(h)αγφ(l) + α◦φ(l)αγφ(h)

}
uφvφ (5.3.14)

+ e−2shl. (5.3.15)
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We compute now 〈ξt , vφ〉φ based on the previous decomposition. Fix some generic
test functions h and l. Then

〈cos ∗ (f ′′(uφ)hl) , vφ〉φ =

∫
S

vφ(x)f ′(uφ(x))

∫
S

cos(x− y)f ′′(uφ)(y)h(y)l(y)dy dx.

Expanding the cosine within the convolution and as
∫
S
vφ(x)f ′(uφ(x)) cos(x +

φ)dx = 0, we have with Lemma 5.3.1

〈cos ∗ (f ′′(uφ)hl) , vφ〉φ

=

(∫
S

vφ(x)f ′ (uφ(x)) sin(x+ φ)dx

)∫
S

sin(y + φ)f ′′(uφ(y))h(y)l(y)dy,

= −AI(sin2)

∫
S

sin(y + φ)f ′′(uφ(y))h(y)l(y)dy =

∫
S

f ′′(uφ(y))vφ(y)h(y)l(y)dy.

If now we take h = l = vφ or h = l = uφ, we see that the two terms of (5.3.11)
give a zero contribution to 〈ξt , vφ〉ϕ as the function within the last integral is odd.
Taking now h = vφ (resp. h = uφ) for given l, we see that the generic term within
(5.3.12) (resp. (5.3.13)) gives rise to

〈cos ∗ (f ′′(uφ)lvφ) , vφ〉φ =

∫
S

f ′′(uφ)vφ(y)2l(y)dy,

〈cos ∗ (f ′′(uφ)luφ) , vφ〉φ =

∫
S

f ′′(uφ)vφ(y)uφ(y)l(y)dy.

Applying finally the last expression for l = vφ gives for (5.3.14), by integration by
parts

〈cos ∗ (f ′′(uφ)uφvφ) , vφ〉φ =

∫
S

f ′′(uφ)vφ(y)2uφ(y)dy

= −
∫
S

d

dy
{uφ(y)vφ(y)} f ′(uφ(y))dy

= −
∫
S

vφ(y)2f ′(uφ(y))dy +

∫
S

uφ(y)2f ′(uφ(y))dy = A2γ,

where we used (5.3.7). Recall the definition of βφ in (5.2.18), putting all these
estimates together we obtain

〈ξt, vφ〉φ =

∫ t

0

[
e−s
(
1− e−s

) (
α◦φ(h)βφ(vφ, l) + α◦φ(l)βφ(vφ, h)

)
+e−s

(
esγ − e−s

) (
αγφ(h)βφ(uφ, l) + αγφ(l)βφ(uφ, h)

)
+
(
1− e−s

) (
esγ − e−s

)
A2γ

(
α◦φ(h)α◦φ(l) + αγφ(h)αγφ(l)

)
+ e−2sβφ(h, l)

]
ds,

so that

lim
t→∞
〈ξt , vφ〉φ =

1

2

(
α◦φ(h)βφ(vφ, l) + α◦φ(l)βφ(vφ, h)

)
+

1 + γ

2(1− γ)

(
αγφ(h)βφ(uφ, l) + αγφ(l)βφ(uφ, h)

)
− A2 (2− γ)(1 + γ)

2(1− γ)

(
α◦φ(h)α◦φ(l) + αγφ(h)αγφ(l)

)
+

1

2
βφ(h, l).

As D2θ(uφ)[h, l] =
1

A2
limt→∞〈ξt, vφ〉φ, we obtain (5.2.17).
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5.4 Long time behavior (proofs)

The aim of this section is to prove Theorem 5.2.9.

5.4.1 Main structure of the proof of Theorem 5.2.9

First, fix some constant η such that

0 < η <
1

4
. (5.4.1)

We also look for some T > 0 that verifies

CPCLe
Tγ ≤ 1/4, (5.4.2)

where CP , CL and γ are introduced in Proposition 5.2.5. We first define the
initial time T0(N) thanks to the following Proposition, whose proof is postponed
to Section 5.4.3.

Proposition 5.4.1 (Initialisation). In the framework of Theorem 5.2.9, there exists
a deterministic phase θ0 ∈ S, an event BN such that P(BN) −−−→

N→∞
1 and a constant

C > 0 such that for all ε > 0, for N sufficiently large, on the event BN , the
projection ψ = ψN0 = proj (UN (C logN)) is well defined and

‖UN(C logN)− uψN0 ‖2 ≤
N2η

√
N
, (5.4.3)

|ψN0 − θ0| ≤ ε. (5.4.4)

We define T0(N) thanks to Proposition 5.4.1 by T0(N) = C log(N). Define
the time discretisation of the interval [T0(N), Nατf ] into subintervalls of length T ,
[Tn, Tn+1]: define nf = inf{n ∈ N, Nατf ≤ T0(N) +nT} and for n = 0, · · · , nf − 1,
Tn = T0(N) + nT . Let Tf (N) := Tnf , by construction, Tf (N) ≥ Nατf . We prove
in fact a more precise result that Theorem 5.2.9 as stated in Remark 5.2.10: we
show that there exists some C > 0 such that we have

P

(
sup

t∈[T0(N),Tf (N)]

distL2 (UN(t),U) ≤ CNη−1/2

)
−−−→
N→∞

1. (5.4.5)

We focus on a process (Vn(t))n∈J1,nf K,t∈[0,T ] that iteratively compares UN and its
projection on U at each step. We ensure it is correctly defined in the next part,
then we give the main proof before the proof of some technical results we also need.

Discretization In order to define the projection of UN(Tn) into U , following
Proposition 5.2.7, we need to ensure that distL2 (UN(Tn),U) ≤ $. In order to do
so, we introduce the stopping couple

(nτ , τ) := inf {(n, t) ∈ J1, nfK× [0, T ] : distL2 (UN(Tn−1 + t),U) > $} , (5.4.6)
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where the infimum corresponds to the lexicographic order. We introduce then

τn :=

{
T if n < nτ

τ if n ≥ nτ .
(5.4.7)

The process we consider is then (UN(Tn∧nτ−1 + t ∧ τn))n∈J1,nf K,t∈[0,T ]. The projection
of this stopped process is well defined on the whole interval [T0(N), Tf (N)] by
construction, so that we can now define rigorously the random phases φn−1 for
n = 1, · · · , nf by

φn−1 := proj(UN(Tn∧nτ−1). (5.4.8)

The object of interest is then the process Vn(t) of L2(S) defined for n = 1, · · · , nf
and t ∈ [0, T ] by

Vn(t) := UN(Tn∧nτ−1 + t ∧ τn)− uφn−1 , (5.4.9)

as (5.4.5) translates then into

Proposition 5.4.2. There exists an event ΩN with P(ΩN) −−−→
N→∞

1 such that on
ΩN ,

sup
1≤n≤nf

sup
t∈[0,T ]

‖Vn(t)‖2 = O

(
N2η

√
N

)
, (5.4.10)

where the error is uniform on ΩN .

Here are the steps of the proof of Proposition 5.4.2.

Step 1 - We show that the process (Vn(t))n∈J1,nf K,t∈[0,T ] satisfies the mild equation

Vn(t) = e(t∧τn)Lφn−1Vn(0) +

∫ t∧τn

0

e(t∧τn−s)Lφn−1Rn(s)ds+ ζn(t ∧ τn) (5.4.11)

where

ζn(t) :=

∫ t

0

e(t−s)Lφn−1dMN(s), (5.4.12)

and

Rn(t) = cos ∗
(
y 7→ Vn(t)(y)2

∫ 1

0

f ′′
(
uφn−1(y) + rVn(t)(y)

)
(1− r)dr

)
+

(
N∑

i,j=1

2π cos(xi − xj)
N

f(UN,j(t−))1BN,i − cos ∗f(UN(t))

)
, (5.4.13)

where the notation ∗ stands for the convolution f ∗g(x) =
∫ π
−π f(x−y)g(y)dy. The

rigorous meaning of (5.4.11) is given in Proposition 5.4.4, postponed to Section
5.4.2.
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5. Stability of wandering bumps for Hawkes processes

Step 2 - We show a control of several terms of (5.4.11) with the following
Proposition, whose proof is postponed to Section 5.B.1.

Proposition 5.4.3 (Noise perturbation). Define the event

AN :=

{
sup

1≤n≤nf
sup
t∈[0,T ]

‖ζn(t)‖2 ≤
Nη

√
N

}
. (5.4.14)

In the framework of Theorem 5.2.9, P(AN) −−−→
N→∞

1.

Now recall BN from Proposition 5.4.1 and let ΩN := AN ∪ BN , we have
P(ΩN) −−−→

N→∞
1 with Propositions 5.4.3 and 5.4.1. For the rest of the proof, we

place ourselves now on this event ΩN .

Step 3 - Based on Steps 1 and 2 above, it remains to prove (5.4.10). We proceed
by induction. We know (as ΩN ⊂ BN) that ‖V1(0)‖ ≤ N2η−1/2. Suppose that
‖Vn(0)‖2 ≤ N2η−1/2 for some n ≥ 1. From the mild formulation satisfied by (Vn(t))
seen in (5.4.11) we get

‖Vn(t)‖2 =
∥∥∥e(t∧τn)Lφn−1Vn(0)

∥∥∥
2

+

∥∥∥∥∫ t∧τn

0

e(t∧τn−s)Lφn−1Rn(s)ds

∥∥∥∥
2

+ ‖ζn(t ∧ τn)‖2 .

By Proposition 5.2.7 and (5.4.8), Pφn−1,0

(
UN(Tn∧nτ−1)− uφn−1

)
= 0 hence

Vn(0) = UN(Tn∧nτ−1)−uφn−1 = Pφn−1,sVn(0). Proposition 5.2.5 and more especially
(5.2.12) give then, with the induction hypothesis

‖e(t∧τn)Lφn−1Vn(0)‖φn−1 ≤ e(t∧τn)γ‖Vn(0)‖φn−1 ≤ C0e
(t∧τn)γN2η− 1

2 ,

where C0 is introduced in (5.2.11). From Proposition 5.2.5, we have∥∥∥∥∫ t∧τn

0

e(t∧τn−s)Lφn−1Rn(s)ds

∥∥∥∥
2

≤ TCL sup
0≤s≤T

‖Rn(s)‖2.

By definition of AN , sup1≤n≤nf supt∈[0,T ] ‖ζn(t)‖2 ≤ Nη−1/2 as we are on ΩN . We
obtain then, for any t ∈ [0, T ]

‖Vn(t)‖2 ≤ C0e
(t∧τn)γN2η− 1

2 + TCL sup
0≤s≤T

‖Rn(s)‖2 +Nη−1/2. (5.4.15)

For any t ∈ [0, T ], recalling (5.4.13),

sup
0≤s≤t

‖Rn(s)‖2

≤ sup
0≤s≤t

∥∥∥∥cos ∗
(
y 7→ Vn(s)(y)2

∫ 1

0

f ′′
(
uφn−1(y) + rVn(s)(y)

)
(1− r)dr

)∥∥∥∥
2

+ sup
0≤s≤t

∥∥∥∥∥
N∑

i,j=1

2π cos(xi − xj)
N

f(UN,j(s−))1BN,i − cos ∗f(UN(s))

∥∥∥∥∥
2

= (A) + (B).

(5.4.16)
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5.4. Long time behavior (proofs)

Using Young’s inequality ‖u ∗ v‖2 ≤ ‖u‖1‖v‖2 and the boundedness of f ′′, we have

(A) ≤ sup
0≤s≤t

(
‖ cos ‖2

∫
S

∣∣∣∣Vn(s)(y)2

∫ 1

0

f ′′
(
uφn−1(y) + rVn(s)(y)

)
(1− r)dr

∣∣∣∣ dy)
≤ C sup

0≤s≤t
‖Vn(s)‖2

2

for some positive C. For the second term (B) of (5.4.16), we introduce

Υ1,i,s =
2π

N

N∑
j=1

cos(xi − xj) (f(UN,j(s−))− f(UN,j(s)))

Υ2,i,s =
2π

N

N∑
j=1

cos(xi − xj)f(UN,j(s))−
∫
S

cos(xi − y)f(UN(s)(y))dy

Υ3,i,s(x) =

∫
S

(cos(xi − y)− cos(x− y)) f(UN(s)(y))dy, x ∈ S. (5.4.17)

From the Lipschitz continuity of f and the fact that the processes ZN,1, · · · , ZN,N
do not jump simultaneously, |Υ1,i,s| ≤

C

N
hence

∥∥∥∑N
i=1 Υ1,i,s1BN,i

∥∥∥2

2
= O

(
1

N2

)
.

As 1BN,i1BN,j ≡ 0 for i 6= j, for any 0 ≤ s ≤ t we have that

∥∥∥∥∥
N∑
i=1

Υ2,i,s1BN,i

∥∥∥∥∥
2

2

is

equal to

2π

N

N∑
i=1

(
N∑
j=1

∫
BN,j

(cos(xi − xj)− cos(xi − y)) f(UN(s)(y))dy

)2

.

As f is bounded (by 1) and cos is 1-Lipschitz continuous, we obtain∥∥∥∥∥
N∑
i=1

Υ2,i,s1BN,i

∥∥∥∥∥
2

2

≤ 2π

N

N∑
i=1

(
N∑
j=1

∫
BN,j

|xj − y|dy

)2

≤ 8π5

N2
. (5.4.18)

Similarly,∥∥∥∥∥
N∑
i=1

Υ3,i,s1BN,i

∥∥∥∥∥
2

2

=

∫
S

N∑
i=1

Υ3,i,s(x)21BN,i(x)dx

=
N∑
i=1

∫
BN,i

(∫
S

(cos(xi − y)− cos(x− y)) f(UN(s)(y))dy

)2

dx

≤
N∑
i=1

∫
BN,i

(∫
S

|xi − x|dy
)2

dx ≤ 8π5

N2
. (5.4.19)

Hence we have for some positive CR,1

sup
0≤s≤t

‖Rn(s)‖2 ≤ CR,1

(
sup

0≤s≤t
‖Vn(s)‖2

2 +
1

N

)
. (5.4.20)
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5. Stability of wandering bumps for Hawkes processes

Define then t∗ as

t∗ := inf

{
t ∈ [0, T ] : ‖Vn(t)‖2 ≥ 2C0

N2η

√
N

}
. (5.4.21)

Note that with no loss of generality, one can assume that C0 > 1. Since by

assumption ‖Vn(0)‖2 ≤
N2η

√
N

< C0
N2η

√
N

, we have ‖Vn(t)‖2 ≤ 2C0
N2η

√
N

at least

for t < t1 where t1 is the first jump among (ZN,1, · · · , ZN,N). Hence t∗ > 0. If
t ≤ t∗, sup0≤s≤t ‖Rn(s)‖2 ≤ CR,2N

4η−1 (as η > 0, N−1 � N4η−1). Coming back to
(5.4.15), we obtain that (for some positive constant CR)

‖Vn(t)‖2 ≤ C0e
(t∧τn)γN2η− 1

2 + TCRN
4η−1 +Nη−1/2. (5.4.22)

Since 0 < η <
1

4
, N4η−1 � N2η−1/2 hence for N large enough TCRN4η−1+Nη−1/2 ≤

C0N
2η−1/2 thus as γ < 0, t∗ = T . By construction of the stopping time τn in (5.4.7),

we have then that τn = T , hence

sup
0≤t≤T

‖Vn(t)‖2 ≤ 2C0N
2η−1/2. (5.4.23)

To conclude the induction, we need to show that ‖Vn+1(0)‖2 ≤ N2η−1/2. By
definition (5.4.9) and as τn = T , Vn+1(0) = UN(Tn) − uφn and Vn(T ) = UN(Tn) −
uφn−1 hence Vn+1(0) = Vn(T ) + uφn−1 − uφn . Moreover, as Vn+1(0) = P⊥φnVn+1(0)

since by definition Vn+1(0) ∈ Ker (Lφn)⊥ (recall Proposition 5.2.5), we obtain

Vn+1(0) = P⊥φn
(
Vn(T ) + uφn−1 − uφn

)
=
(
P⊥φn − P

⊥
φn−1

)
Vn(T ) + P⊥φn−1

Vn(T ) + P⊥φn
(
uφn−1 − uφn

)
. (5.4.24)

We are going to control each term of (5.4.24). First, using the smoothness of the
phase projection from Proposition 5.2.7,

|φn−1 − φn| = |proj
(
UN
(
T(n−1)∧nτ−1

))
− proj (UN (Tn−∧nτ−1)) |

≤ Cproj
∥∥UN (T(n−1)∧nτ−1

)
− UN (Tn−∧nτ−1)

∥∥
2

≤ Cproj ‖Vn−1(0)− Vn−1(T )‖2 ≤ CN2η−1/2, (5.4.25)

using (5.4.23). Recall (5.2.4) and (5.2.7), we have for any x ∈ S

uφn−1(x)− uφn(x) = A cos (x+ φn−1)− A cos (x+ φn)

= −2A sin (φn−1 − φn) sin

(
x+ φn +

φn−1 − φn
2

)
= 2 sin (φn−1 − φn)

(
cos

(
φn−1 − φn

2

)
vφn(x)− sin

(
φn−1 − φn

2

)
uφn(x)

)
thus, as P⊥φnvφn = 0,

P⊥φn
(
uφn−1 − uφn

)
= −2 sin (φn−1 − φn)) sin

(
φn−1 − φn

2

)
P⊥φnuφn .
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5.4. Long time behavior (proofs)

As uφn is bounded and sin is Lipschitz continuous, we obtain with (5.4.25) a control
of the third term of (5.4.24)

‖P⊥φn
(
uφn−1 − uφn

)
‖2 ≤ C (φn−1 − φn)2 = O(N4η−1). (5.4.26)

Similarly, recall (5.2.9), φ 7→ P⊥φ is smooth, hence for some C > 0∥∥(P⊥φn − P⊥φn−1

)
Vn(T )

∥∥
2
≤ C|φn−1 − φn|‖Vn(T )‖ = O(N4η−1). (5.4.27)

Combining (5.4.26) and (5.4.27) in (5.4.24), using (5.4.23) at time t = T and
recalling Proposition 5.2.5, we obtain for N large enough

‖Vn+1(0)‖2 ≤ ‖P⊥φn−1
Vn(T )‖2 +O(N4η−1) ≤ 2CPC0e

TγN2η−1/2 +O(N4η−1).

From the choice of T satisfying (5.4.2), the fact that ‖Vn+1(0)‖2 ≤ N2η−1/2 follows
and the recursion is concluded, so that Theorem 5.2.9 follows.

5.4.2 About the mild formulation

Step 1 of Section 5.4.1 is a direct consequence of the following proposition.

Proposition 5.4.4. Fix φ ∈ S and 0 < ta < tb. Recall the definition of UN in
(5.1.5), and define, for any t ∈ [ta, tb],

ŨN,φ(t) = UN(t)− uφ. (5.4.28)

The process
(
ŨN,φ(t)

)
t∈[ta,tb]

satisfies the following semimartingale decomposition

in D([ta, tb], L
2(S)), written in a mild form: for any ta ≤ t ≤ tb

ŨN,φ(t) = e(t−ta)LφŨN,φ(ta) +

∫ t

ta

e(t−s)LφrN,φ(s)ds+

∫ t

ta

e(t−s)LφdMN(s), (5.4.29)

with

MN(t) =
N∑
i=1

N∑
j=1

2π cos(xi − xi)
N

(
ZN,j(t)−

∫ t

0

λN,j(s)ds

)
1BN,i (5.4.30)

and

rN,φ(t) = cos ∗
(
y 7→ ŨN,φ(t)(y)2

∫ 1

0

f ′′
(
uφ(y) + rŨN,φ(t)(y)

)
(1− r)dr

)
+

(
N∑

i,j=1

2π cos(xi − xj)
N

f(UN,j(t−))1BN,i − cos ∗f(UN(t))

)
. (5.4.31)

Proof of Proposition 5.4.4. From (5.1.4), we obtain that UN verifies

dUN(t) = −UN(t)dt+
N∑

i,j=1

2π cos(xi − xj)
N

dZN,j(t)1BN,i . (5.4.32)
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5. Stability of wandering bumps for Hawkes processes

The centered noise MN defined in (5.4.30) verifies

dMN(t) :=
N∑
i=1

N∑
j=1

2π cos(xi − xj)
N

(dZN,j(t)− f(UN,j(t−))dt)1BN,i ,

and is a martingale in L2(S). Thus recalling that uφ solves (5.2.1) and by inserting

the terms
N∑
i=1

N∑
j=1

2π cos(xi − xj)
N

f(UN,j(t−))dt1BN,i and uφ, we obtain

dŨN,φ(t) = −ŨN,φ(t)dt+ dMN(t)

+

(
N∑

i,j=1

2π cos(xi − xj)
N

f(UN,j(t−))1BN,i −
∫ π

−π
cos(· − y)f(uφ(y))dy

)
dt.

A Taylor’s expansion gives that for any y ∈ S,

f(UN(t)(y))− f(uφ(y)) = f ′(uφ(y))ŨN,φ(t)(y)

+

∫ 1

0

f ′′
(
uφ(y) + rŨN,φ(t)(y)

)
(1− r)drŨN,φ(t)(y)2,

hence identifying the operator Lφ defined in (5.2.6) we have

dŨN,φ(t) = LφŨN,φ(t)dt+ dMN(t)

+

∫ π

−π
cos(· − y)

∫ 1

0

f ′′
(
uφ(y) + rŨN,φ(t)(y)

)
(1− r)drŨN(t)(y)2dydt

+

(
N∑

i,j=1

2π cos(xi − xj)
N

f(UN,j(t−))1BN,i −
∫ π

−π
cos(· − y)f(UN(t)(y))

)
dt,

and recognizing rN,φ defined in (5.4.31) we have

dŨN,φ(t) = LφŨN,φ(t)dt+ rN,φ(t)dt+ dMN(t). (5.4.33)

Then the mild formulation (5.4.29) is a direct consequence of (Zhu et al., 2017,
Lemma 3.2): the unique strong solution to (5.4.33) is indeed given by (5.4.29).

5.4.3 About the initialisation

We prove here Proposition 5.4.1, that we use to define the initial time T0(N) and
in the second part of Step 2 of Section 5.4.1.

Proof of Proposition 5.4.1. To prove Proposition 5.4.1, we proceed in several steps,
as done in (Luçon & Poquet, 2017, Proposition 2.9).

a. We rely on the convergence in finite time of UN to its large population limit,
that is ut solving (5.1.16) with initial condition ρ. From the deterministic
behavior of ut and the stability of U , UN approaches U in a 2ε0-neighborhood;
and this takes a time interval of order | log ε0|.
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5.4. Long time behavior (proofs)

b. We rely on the stability of U and the control of the noise to show that, from
a 2ε0-neighborhood, UN approaches U in a N2η−1/2-neighborhood; and this
takes a time interval of order logN .

c. We ensure that UN stays at distance N2η−1/2 from U at time T0(N).

Step a. We focus first on ψt(ρ), solution to (5.1.16) with initial condition ρ ∈
B(U , ε0). Thanks to Corollary 5.2.6, we have that it converges as t→∞ towards
some uθ0 ∈ U . Thus, there exists a time s1 ≥ 0 such that ‖us1 − uθ0‖2 ≤ ε0, and

this time is of order
1

γ
log ε0. We focus then on the random profile UN . We use a

mild formulation similar to the one used in Proposition 5.4.4: one can obtain, with
ut solving (5.1.16)

d (UN(t)− ut) = − (UN(t)− ut) dt+ dMN(t)

+

(
N∑

i,j=1

2π cos(xi − xj)
N

f (UN,j(t−))1BN,i −
∫ π

−π
cos(· − y)f(ut(y))dy

)
dt,

where MN is defined in (5.4.30). We have then for any t ≥ 0

UN(t)− ut = e−t (UN(0)− ρ) +

∫ t

0

e−(t−s)dMN(s) +

∫ t

0

e−(t−s)rN(s)ds

with

rN(s) :=
∑
i

1BN,i
∑
j

2π cos(xi − xj)
N

(f (UN,j(s−))− f (UN,j(s)))

+
∑
i

1BN,i

(∑
j

2π cos(xi − xj)
N

f (UN,j(s))−
∫ π

−π
cos(xi − y)f(UN(s)(y))dy

)

+
∑
i

1BN,i

∫ π

−π
(cos(xi − y)− cos(· − y)) f(UN(s)(y))dy

+

∫ π

−π
cos(· − y) (f(UN(s)(y))− f(us(y))) dy

=
N∑
i=1

1BN,i (Υ1,i,s + Υ2,i,s + Υ3,i,s) + Υ4,s. (5.4.34)

As done for Υ1,i,s, Υ2,i,s and Υ3,i,s (5.4.17) in Proposition 5.4.2, we have for some
C > 0 ∥∥∥∥∥

N∑
i=1

1BN,i (Υ1,i,s + Υ2,i,s + Υ3,i,s)

∥∥∥∥∥
2

2

≤ C

N2
.

Moreover an immediate computation gives, as f is Lipschitz continuous

‖Υ4,s‖2 ≤ C‖UN(s)− us‖2.
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5. Stability of wandering bumps for Hawkes processes

Then we have for any t ∈ [0, s1] with ζN(s) :=
∫ s

0
e−(s−u)dMN(u),

‖UN(t)−ut‖2 ≤ ‖UN(0)−ρ‖2+‖ζN(t)‖2+
C

N
+

∫ t

0

e−(t−s)‖UN(s)−us‖2ds. (5.4.35)

Take N sufficiently large so that ‖UN(0) − ρ‖2 ≤
ε0

2
. We place ourselves on the

event

CN :=

{
sup
t∈[0,s1]

‖ζN(t)‖2 ≤ Nη−1/2

}
. (5.4.36)

As done in Proposition 5.4.3, P(CN) −−−→
N→∞

1. Going back to (5.4.35), we have on
CN

‖UN(t)− ut‖2 ≤
ε0

2
+Nη−1/2 +

C

N
+

∫ t

0

e−(t−s)‖UN(s)− us‖2ds.

We deduce with Grönwall lemma that for N large enough, ‖UN(s1) − us1‖2 ≤ ε0

on CN , which means that ‖UN(s1) − uθ0‖2 ≤ 2ε0 hence dist (UN(s1),U) ≤ 2ε0.
Choosing ε0 small enough so that 2ε0 < $ (recall Proposition 5.2.7), we can define
ψ1

0 = proj (UN(s1)) and |ψ1
0 − θ0| ≤ Cε0.

Step b. Since we know that distL2 (UN(s1),U) ≤ 2ε0 with increasing probability
as N →∞, we show that UN approaches U up to a distance N2η−1/2 doing a similar
iteration as in Proposition 5.4.2. Define the sequence (hn) such that h1 = 2ε0 and
hn+1 = hn/2, and let ñf := inf

{
n ≥ 1, hn ≤ N2η−1/2

}
. Note that such ñf is of

order O(logN). Fix T̃ satisfying

CPC0e
T̃ γ ≤ 1/4, (5.4.37)

and define then for any n ∈ J1, ñfK the times T̃n = s1 + (n− 1)T̃ . As in (5.4.6) and
(5.4.7), define

(ñτ , τ̃) := inf
{

(n, t) ∈ J1, ñfK× [0, T̃ ] : distL2

(
UN(T̃n−1 + t),U

)
> $

}
, (5.4.38)

and

τ̃n :=

{
T̃ if n < ñτ

τ̃ if n ≥ ñτ .
(5.4.39)

The process we consider is then
(
UN

(
T̃n∧nτ̃−1 + t ∧ τ̃n

))
n∈J1,ñf K,t∈[0,T̃ ]

, which is

exactly (UN(t))t∈[s1,T̃ñf ] unless the process has been stopped. The projection of
this stopped process is well defined on the whole interval, so that we can now
define rigorously the random phases φ̃n−1 for n = 1, · · · , ñf by

φ̃n−1 := proj(UN(T̃n∧ñτ−1). (5.4.40)

The object of interest is then the process Ṽn(t) of L2(S) defined for n = 1, · · · , ñf
and t ∈ [0, T̃ ] by

Ṽn(t) := UN(T̃n∧ñτ−1 + t ∧ τ̃n)− uφ̃n−1
. (5.4.41)
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5.4. Long time behavior (proofs)

It satisfies the mild equation

Ṽn(t) = e
(t∧τ̃n)L

φ̃n−1 Ṽn(0) +

∫ t∧τ̃n

0

e
(t∧τ̃n−s)Lφ̃n−1 R̃n(s)ds+ ζ̃n(t ∧ τ̃n) (5.4.42)

where

ζ̃n(t) :=

∫ t

0

e
(t−s)L

φ̃n−1dMN(s), (5.4.43)

and

R̃n(t) = cos ∗
(
y 7→ Ṽn(t)(y)2

∫ 1

0

f ′′
(
uφ̃n−1

(y) + rṼn(t)(y)
)

(1− r)dr
)

+

(
N∑

i,j=1

2π cos(xi − xj)
N

f(UN,j(t−))1BN,i − cos ∗f(UN(t))

)
. (5.4.44)

Define the event

BN := CN
⋂{

sup
n∈J1,ñf K

sup
t∈[0,T̃ ]

‖ζ̃n(t)‖2 ≤ Nη−1/2

}
. (5.4.45)

As done in Proposition 5.4.3, P(BN) → 1 and from now on we work under BN .
We want to show by induction that on BN , for all n ∈ J1, ñfK, Ṽn(0) ≤ hn. The
first step of the proof ensures that on CN , Ṽ1(0) ≤ h1. Assume for some n < ñf ,
Ṽn(0) ≤ hn. From the mild formulation (5.4.42) we obtain (as done in (5.4.22))

‖Ṽn(t)‖2 ≤ C0e
(t∧τ̃n)γhn + T̃CL sup

0≤s≤T̃
‖R̃n(s)‖2 +Nη−1/2. (5.4.46)

Define then t∗ as

t̃∗ := inf
{
t ∈ [0, T̃ ] : ‖Ṽn(t)‖2 ≥ 2C0hn

}
. (5.4.47)

We have t̃∗ > 0, and if t ≤ t̃∗, sup0≤s≤t ‖R̃n(s)‖2 ≤ CR2(h
2
n + N−1), as done in

(5.4.20). Coming back to (5.4.46), we obtain that (for some positive constant CR̃)

‖Ṽn(t)‖2 ≤ C0e
(t∧τn)γhn + TCR̃(h2

n +N−1) +Nη−1/2. (5.4.48)

Since n < ñf , 2ε0 ≥ hn > N2η−1/2 hence for N large enough, Nη−1/2, N−1 are
negligible with respect to hn, same for h2

n thus t̃∗ ≥ T̃ . To conclude the induction,
we need to show that ‖Ṽn+1(0)‖ ≤ hn+1 = hn

2
. As shown in (5.4.24), Ṽn+1(0) =(

P⊥
φ̃n
− P⊥

φ̃n−1

)
Ṽn(T̃ ) +P⊥

φ̃n−1
Ṽn(T̃ ) +P⊥

φ̃n

(
uφ̃n−1

− uφ̃n
)
. From the similar controls

(5.4.26) and (5.4.27) and using (5.4.48) for t = T̃ , we have for N large enough,

‖Ṽn+1(0)‖2 ≤ ‖P⊥φ̃n−1
Ṽn(T̃ )‖2 +O(h2

n) ≤ 2CPC0e
T̃ γhn +O(h2

n).

Recall (5.4.37) and γ < 0, the fact that ‖Ṽn+1(0)‖2 ≤ hn+1 follows then and the
iteration is concluded. Thus, we have constructed a time s2 = s1 + (ñf − 1)T̃ such
that, on BN for N large enough, setting ψ2

0 := proj (UN(s2)), we have ‖UN(s2) −
uψ2

0
‖2 ≤ N2η−1/2 and |ψ2

0−ψ1
0| ≤ Cε0, which gives |ψ2

0−θ0| ≤ C ′ε0 sor some C ′ > 0.
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5. Stability of wandering bumps for Hawkes processes

Step c. So far, we have constructed a time s2 = C (| log ε0|+ logN) for which we
have distL2 (UN(s2),U) ≤ N2η−1/2. We want some s3 = C̃ logN ≥ s2, C̃ = C + 1,
independent of ε0 such that with ψ3

0 := proj(UN(s3)),
∥∥∥UN(s3)− uψ3

0

∥∥∥ ≤ N2η−1/2.
For this, it suffices to decompose the dynamics on [s2, s3] in a same way as before
in both Steps 1 and 2. This induces a drift |ψ3

0 − ψ2
0| ≤ CN2η−1/2 log(N) ≤ ε0 for

N large enough. This last step concludes the proof with T0(N) = s3.

5.5 Fluctuations on the manifold (proofs)

The aim of this section is to prove Theorem 5.2.11. We start by giving an auxiliary
lemma.

Lemma 5.5.1. There exists some C > 0 such that for any g ∈ B(U , ε0),

distL2 (g,U) ≤ ‖g − uθ(g)‖2 ≤ CdistL2 (g,U) .

Proof. Let g ∈ B(U , ε0). The first inequality directly comes from the definition of
distL2 (g,U). By compactness of U , there exists some y ∈ U such that distL2 (g,U) =
‖g − y‖2 (and y = uθ(y)). Then

‖g − uθ(g)‖2 ≤ ‖g − y‖2 + ‖uθ(y) − uθ(g)‖2,

and as φ 7→ uφ and θ are Lipschitz continuous (recall uφ = A cos(·+ φ) and θ is C2

from Proposition 5.2.8), ‖uθ(y)− uθ(g)‖2 ≤ Ĉ‖g− y‖2 for some Ĉ > 0 (independent
of the choice of g).

5.5.1 Main structure of the proof of Theorem 5.2.11

First, Theorem 5.2.9 and Lemma 5.5.1 give that one can find an event ΩN such
that P(ΩN) −−−→

N→∞
1 and on this event

sup
t∈[T0(N),Tf (N)]

∥∥UN(t)− uθ(UN (t))

∥∥
2

= O
(
Nη−1/2

)
, (5.5.1)

with T0(N) = C log(N) and Tf (N) = Nτf . It remains to study the behavior of
the isochron map of the process, that is θ(UN(t)). We do a change of variables and

introduce τ0(N) :=
T0(N)

N
, we define for any τ ∈ [τ0(N), τf ] the rescaled process

θ̂N(τ) = θ (UN (Nτ)) . (5.5.2)

In the proof, we keep the notation t for the microscopic time variable, that is when
t ∈ [T0(N), Tf (N)] and τ for the macroscopic time variable, when τ ∈ [τ0(N), τf ].
Theorem 5.2.11 relies on the following decomposition of θ̂N , obtained by Itô’s
lemma.
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5.5. Fluctuations on the manifold (proofs)

Proposition 5.5.2. For any initial condition τ0 ≥ τ0(N), for any τ ≥ τ0, θ̂N(τ)
can be written as

θ̂N(τ) = θ̂N(τ0) + ϑN(τ0, τ) + ΘN(τ0, τ), (5.5.3)

where
sup

τ0(N)≤τ0≤τ≤τf
E (|ϑN(τ0, τ)|) −−−→

N→∞
0

and ΘN(τ0, τ) is a real martingale with quadratic variation

[ΘN ]τ =
1

N

N∑
j=1

∫ τ

τ0

Φ(xj, θ̂N(s))f(uθ̂N (s)(xj))ds (5.5.4)

with
Φ(x, θ) := 4π2 sin2(x+ θ). (5.5.5)

The proof of Proposition 5.5.2 is postponed to Section 5.5.2. The remaining of
the proof of Theorem 5.2.11 is to prove the tightness of

(
θ̂N(t)

)
and to identify its

limit. We apply Aldous criterion: note first that for any τ ∈ [ε, τf ], θ̂N(τ) ∈ S a
compact set. Let (τN)N be a bounded sequence of θ̂N -optional times, let (hN) be a
sequence of positive constants such that hN → 0. From Proposition 5.5.2, we have

θ̂N(τN + hN)− θ̂N(τN) = ϑN(τN , τN + hN) + ΘN(τN , τN + hN),

where ϑN(τN , τN + hN)
L1

−−−→
N→∞

0 and ΘN has the quadratic variation

[ΘN ]τN+hN
=

1

N

N∑
j=1

∫ τN+hN

τN

Φ(xj, θ̂N(s))f(uθ̂N (s)(xj))ds.

Using Burkholder-Davis-Gundy inequality, as Φ and f are bounded, we have that

E
[
ΘN(τN , τN + hN)2

]
≤ CE

[
[ΘN ]τN+hN

]
≤ ChN

for some positive constants C. We obtain then that θ̂N(τN +hN)− θ̂N(τN)
L1

−−−→
N→∞

0

hence the convergence in probability: for all ε > 0,

P
(∣∣∣θ̂N(τN + hN)− θ̂N(τN)

∣∣∣ > ε
)
−−−→
N→∞

0.

We can then use Aldous criterion (see (Billingsley, 1968, Theorem 16.8)): the
process

(
τ ∈ [εN , τf ] 7→ θ̂N(τ)

)
N
is tight. Let τ 7→ θ̂(τ) be a limit in distribution of

any subsequence of (τ 7→ θ̂N(τ))N (by convenience renamed θ̂N) , that is θ̂N
law−−−→

N→∞

θ̂. By Skorokhod’s representation theorem, we can represent this convergence on a
common probability space such that θ̂N

a.s.−−−→
N→∞

θ̂. Using this in (5.5.4), we obtain

that for any τ ∈ [0, τf ], as N goes to infinity, the quadratic variation of θ̂ is[
θ̂
]
τ

= 2π

∫ τ

0

∫
S

sin2(x+ θ̂(s))f
(
A cos(x+ θ̂(s))

)
dx ds = σ2τ,

with σ defined in (5.2.22). We conclude by Lévy’s characterization theorem and
obtain (5.2.21).
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5. Stability of wandering bumps for Hawkes processes

5.5.2 About the decomposition of Proposition 5.5.2

Proof of Proposition 5.5.2. To show (5.5.3), we study (θ(UN(t))t∈[T0(N),Tf (N)]. To
simplify the notations, we introduce

θN(t) := θ (UN(t)) . (5.5.6)

Note that from the decomposition (5.4.29) of UN(t) and the definition MN(t) in
(5.4.30), one can write

dUN(t) = BN(t)dt+ dMN(t)

where BN(t) := −UN(t) + cos ∗f (UN(t)) + Υt, with

Υt(x) =
N∑
i=1

(
2π

N

N∑
j=1

cos(xi − xj)f(UN,j(t−))

−
∫
S

cos(x− y)f(UN(t)(y))dy

)
1BN,i(x). (5.5.7)

The starting point is to write the semimartingale decomposition of θ(UN(t)) from
Itô formula:

θ(UN(t)) = θ (UN(t0)) +

∫ t

t0

Dθ (UN(s−)) [−UN(s) + cos ∗f (UN(s−))]ds

+

∫ t

t0

Dθ (UN(s−)) Υsds+

∫ t

t0

Dθ (UN(s−)) [dMN(s)]

+
N∑
j=1

∫ ∫
[θ (UN(s−) + χj(s, z))− θ (UN(s−))−Dθ (UN(s−)) [χj(s, z)]] πj(ds, dz)

=: θ(UN(t0)) + IN1 (t0, t) + IN2 (t0, t) + IN3 (t0, t) + IN4 (t0, t). (5.5.8)

We are going to focus on each of the terms of (5.5.8), that is INk (t0, t) for k ∈
{1, 2, 3, 4}. We have the following lemmas.

Lemma 5.5.3. We have

sup
t0∈[T0(N),Tf (N)]

sup
t∈(t0,Tf (N))

∣∣IN1 (t0, t)
∣∣ −−−→
N→∞

0 (5.5.9)

in probability.

Lemma 5.5.4. We have

sup
t0∈[T0(N),Tf (N)]

sup
t∈(t0,Tf (N))

∣∣IN2 (t0, t)
∣∣ −−−→
N→∞

0 (5.5.10)

in probability.
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5.5. Fluctuations on the manifold (proofs)

Lemma 5.5.5. For any t0, t ∈ [T0(N), Tf (N)], t0 ≤ t, we have

IN3 (t0, t) = Θ̃N(t0, t) + JN3 (t0, t) (5.5.11)

where sups∈(t0,Tf (N)) E
(∣∣JN3 (t0, s)

∣∣) −−−→
N→∞

0 and Θ̃N is a real martingale with
quadratic variation

[Θ̃N ]t =
1

N2

N∑
j=1

∫ t

t0

Φ(xj, θ(UN(s−)))f(uθ(UN (s−))(xj))ds

with Φ defined in (5.5.5).

Lemma 5.5.6. We have

sup
t0∈[T0(N),Tf (N)]

sup
t∈(t0,Tf (N))

E
(∣∣IN4 (t0, t)

∣∣) −−−→
N→∞

0.

The proofs of these fours lemmas are postponed to Section 5.5.3. Combining
them, we can define some random variable JN(t0, t) such that

sup
s∈(t0,Tf (N))

E
(∣∣JN(t0, s)

∣∣) −−−→
N→∞

0

and for any t0, t ∈ [T0(N), Tf (N)], t0 ≤ t,

θ (UN(t)) = θ (UN(t0)) + JN(t0, t) + Θ̃N(t0, t).

Recall the change of variables used to define θ̂ in (5.5.2). Define similarly the
quantities ϑN(τ0, τ) := JN(Nτ0, Nτ) and ΘN(τ0, τ) = Θ̃N(Nτ0, Nτ) for τ0 = t0/N
and τ = t/N . Then we have exactly shown (5.5.3).

5.5.3 Control of the terms of the decomposition

For simplicity, we may write Ik(t) instead of INk (t0, t). In the following, we use the
notations gs = O(αN) with g : s ∈ I 7→ gs ∈ L2(S) for some time interval I and a
sequence (αN) independent of the time s when there exists some C (independent
of N) such that for all x ∈ S, sups∈I supx∈S |gs(x)| ≤ CαN . Recall the definition of
θN(t) in (5.5.6). In the following proofs, this notation will be essentially used for
t = s−, so that we write for simplicity θN = θN(s−).

5.5.3.1 Proof of Lemma 5.5.3

Recall that

I1(t) :=

∫ t

t0

Dθ (UN(s−)) [−UN(s) + cos ∗f (UN(s))]ds.

Define for g ∈ L2(S)
V(g) := −g + cos ∗f(g).
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5. Stability of wandering bumps for Hawkes processes

Recall that for any φ ∈ S, L(uφ) = 0 and DV(uφ)[h] = Lφh. Let g ∈ B(U , ε0),
and t 7→ gt := ψt(g) defined in (5.1.17), that is the flow of (5.1.16) under initial
condition g. Note that by definition of the isochron map θ in Proposition 5.2.8 and
the fact that U consists of stationary solutions to (5.1.16), one has that θ(ψt(g)) =
θ(ψ0(g)) = θ(g). Differentiating with respect to t (recall Proposition 5.2.8) gives
that Dθ(gt)[∂tgt] = Dθ(gt)[−gt + cos ∗f(gt)] = 0. Since this is for all t ≥ 0, taking
t = 0 gives Dθ(g)[−g+ cos ∗f(g)] = 0. Hence for any s, Dθ (UN(s)) [V(UN(s))] = 0
and as V(uθ(UN (s))) = 0, we have

I1(t) =

∫ t

t0

Dθ (UN(s−)) [V(UN(s))]ds

=

∫ t

t0

(Dθ (UN(s−))−Dθ (UN(s)))[V(UN(s))]ds

=

∫ t

t0

(Dθ (UN(s−))−Dθ (UN(s)))[V(UN(s))− V(uθ(UN (s))]ds.

As θ and V are Lipschitz continuous, as from (5.1.4) a jump of the process gives
a.s. at most an increment of 2π

N
between UN(s−) and UN(s), using (5.5.1) there

exists some C > 0 (independent of N and of the time) such that

I1(t) ≤ (t− t0)‖θ‖L
2π

N
‖V‖L‖UN(s−)− uθ(UN (s))‖2 ≤

CTf (N)

N
Nη−1/2

on the event ΩN (given by Theorem 5.2.9). As Tf (N) ∝ N and from the choice on
η, (5.5.9) follows.

5.5.3.2 Proof of Lemma 5.5.4

We place ourselves again on the event ΩN (given by Theorem 5.2.9) on which we
have (5.5.1). Recall that I2(t) :=

∫ t
t0
Dθ (UN(s−)) Υsds, where the definition of Υ

is given in (5.5.7). We have

I2(t) =

∫ t

t0

(Dθ(UN(s−))−Dθ(uθN )) [Υs] ds+

∫ t

t0

Dθ (uθN )
[
Υs − Υ̃s

]
ds

+

∫ t

t0

Dθ (uθN )
[
Υ̃s

]
ds, (5.5.12)

with

Υ̃s(x) =
N∑
i=1

(
2π

N

N∑
j=1

cos(xi − xj)f(uθN (xj))−
∫
S

cos(x− y)f(uθN (y))dy

)
1BN,i .

(5.5.13)

From (5.4.18) and (5.4.19) we have that ‖Υs‖2 ≤
C

N
for some C > 0 independent

of N and s, thus, for the first term of (5.5.12), as done before using (5.5.1),∫ t

t0

(
Dθ(UN(s−))−Dθ(uθ(UN (s−)))

)
[Υs] ds ≤ (t− t0)C‖θ‖LNη−1/2C

N

≤ CTf (N)

N
Nη−1/2.
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5.5. Fluctuations on the manifold (proofs)

For the third term of (5.5.12), using (5.2.16), we have Dθ
(
uθ(UN (s−))

) [
Υ̃s

]
=

〈vθ(UN (s−)), Υ̃s〉θ(UN (s−))

‖vθ(UN (s−))‖θ(UN (s−))

. As shown in (5.3.2), ‖vθN‖θN = A. From trigonometric

formula one has

〈vθN , Υ̃s〉θN

= 〈vθN ,
2π

N

N∑
i,j=1

cos(xi − xj)f(uθN (xj))1BN,i −
∫
S

cos(· − y)f(uθN (y))dy〉θN

=

(
2π

N

N∑
j=1

cos(xj + θN)f(uθN (xj))

)(
N∑
i=1

cos(xi + θN)〈vθN ,1BN,i〉θN

)

+

(
2π

N

N∑
j=1

sin(xj + θN)f(uθN (xj))

)(
N∑
i=1

sin(xi + θN)〈vθN ,1BN,i〉θN

)

−
(∫

S

cos(y + θN)f(uθN (y))dy

)
〈vθN , cos(·+ θN)〉θN

−
(∫

S

sin(y + θN)f(uθN (y))dy

)
〈vθN , sin(·+ θN)〉θN . (5.5.14)

By invariance of rotation and with Lemma 5.3.1 we have 〈vθN , cos(· + θN)〉θN =
I(sin cos) = 0, and similarly

∫
S

sin(y + θN)f(uθN (y))dy = 0. We can then write
(5.5.14) as 〈vθN , Υ̃s〉θN = A1A2 +A3A4. From the computations (5.B.11), (5.B.12),
(5.B.13) and (5.B.14) of Lemma 5.B.4, we obtain that

〈vθN , Υ̃s〉θN :=
πA2

N
+ o

(
1

N

)
. (5.5.15)

For the second term of (5.5.12), we have with Lemma 5.3.1 that 〈vθN , sin(· +
θN)〉θN = −AI(sin2) = −A thus

〈vθN ,Υs − Υ̃s〉θN = A2

(
2π

N

N∑
j=1

cos(xj + θN) (f (UN(s−)(xj))− f (uθN (xj)))

)

+ A4

(
2π

N

N∑
j=1

sin(xj + θN) (f (UN(s−)(xj))− f (uθN (xj)))

)

+ A

∫
S

sin(y + θN)f(UN(s−)(y))dy.

Let us show that

DN :=
2π

N

N∑
j=1

cos(xj + θN) (f (UN(s−)(xj))− f (uθN (xj))) = O
(
Nη−1/2

)
.

(5.5.16)
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5. Stability of wandering bumps for Hawkes processes

Setting ûθN (y) :=
∑N

k=1 uθN (xk)1y∈BN,k , we have

|DN | =

∣∣∣∣∣
N∑
j=1

cos(xj + θN)

∫
S

(f (UN(s−)(xj))− f (uθN (xj)))1y∈BN,jdy

∣∣∣∣∣
≤ ‖f‖L

N∑
j=1

∫
S

|UN(s−)(y)− ûθN (y)|1y∈BN,jdy.

With Cauchy–Schwarz inequality and Jensen’s discrete inequality, we have

|DN | ≤ Cf

N∑
j=1

(∫
S

|UN(s−)(y)− ûθN (y)|2 1y∈BN,jdy
)1/2(∫

S

1y∈BN,jdy

)1/2

=

√
2πNCf
N

N∑
j=1

(∫
S

|UN(s−)(y)− ûθN (y)|2 1y∈BN,jdy
)1/2

≤
√

2πNCf

(
1

N

N∑
j=1

∫
S

|UN(s−)(y)− ûθN (y)|2 1y∈BN,jdy

)1/2

= C
√
N

(
1

N

∫
S

|UN(s−)(y)− ûθN (y)|2 dy
)1/2

= C ‖UN(s−)− ûθN‖2 ≤ C ‖UN(s−)− uθN‖2 + C ‖uθN − ûθN‖2 ,

hence with (5.5.1) and as ‖uθN − ûθN‖2 = O(1/N), we have indeed shown that
DN = O

(
Nη−1/2

)
. Similarly, one can show that

2π

N

N∑
j=1

sin(xj + θN) (f (UN(s−)(xj))− f (uθN (xj))) = O
(
Nη−1/2

)
.

Using Lemma 5.B.4 and as
∫
S

sin(y + θN)f(uθN (y))dy = 0, we have

〈vθN ,Υs− Υ̃s〉θN = O
(
Nη−3/2

)
+A

∫
S

sin(y+θN) (f(UN(s−)(y))− f(uθN (y))) dy

− A2π

N

N∑
j=1

sin(xj + θN) (f (UN(s−)(xj))− f (uθN (xj))) .

Using Taylor’s expansion, we obtain

〈vθN ,Υs − Υ̃s〉θN = o

(
1

N

)
+ A ∆N , (5.5.17)

where

∆N =

∫
S

sin(y + θN)f ′(uθN (y)) (UN(s−)(y)− uθN (y))) dy

− 2π

N

N∑
j=1

sin(xj + θN)f ′(uθN (xj)) (UN(s−)(xj)− uθN (xj)) .
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Define ûθN (y) :=
∑N

j=1 uθN (xj)1BN,j(y), we introduce it in ∆N so that

∆N =
N∑
j=1

∫
BN,j

[sin(y + θN)f ′(uθN (y)) (UN(s−)(y)− uθN (y)))

− sin(xj + θN)f ′(uθN (xj)) (UN(s−)(y)− ûθN (y))] dy,

thus

∆N =
N∑
j=1

∫
BN,j

(sin(y + θN)f ′(uθN (y))− sin(xj + θN)f ′(uθN (xj))) ·

(UN(s−)(y)− ûθN (y)) dy +
N∑
j=1

∫
BN,j

sin(y + θN)f ′(uθN (y)) (ûθN (y)− uθN (y)) dy.

(5.5.18)

For the first term of ∆N , let αN(y) := sin(y+θN)f ′(uθN (y))−sin(xj+θN)f ′(uθN (xj)),
one has with Cauchy–Schwarz inequality that

N∑
j=1

∫
S

(UN(s−)(y)− ûθN (y))αN(y)dy

≤
N∑
j=1

(∫
S

(UN(s−)(y)− ûθN (y))2 1BN,jdy

)1/2
(∫

Bn,j

αN(y)2dy

)1/2

.

As
∫
Bn,j

αN(y)2dy ≤
∫
Bn,j

(y−xj)2dy = O

(
1

N3/2

)
, for some C > 0, using Jensen’s

inequality

N∑
j=1

∫
S

(UN(s−)(y)− ûθN (y))αN(y)dy

≤ C√
N

1

N

N∑
j=1

(∫
S

(UN(s−)(y)− ûθN (y))2 1BN,jdy

)1/2

≤ C√
N

√√√√ 1

N

N∑
j=1

∫
S

(UN(s−)(y)− ûθN (y))2 1BN,jdy

≤ C√
N

√
1

N
‖UN(s−)− ûθN‖2

2.

As ‖uθ − ûθN‖2
2 = O

(
1

N2

)
and with (5.5.1), we obtain that the first term of
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(5.5.18) is in O
(
Nη−1/2

N

)
. For the second term of ∆N , we have

N∑
j=1

∫
BN,j

sin(y + θN)f ′(uθN (y)) (ûθN (y)− uθN (y)) dy

=
N∑
j=1

∫
BN,j

sin(y + θN)f ′(uθN (y)) (A cos(xj + θN)− A cos(y + θN)) dy

= A

N∑
j=1

∫
BN,j

sin(y + θN)f ′(uθN (y)) sin(xj + θN)(y − xj)dy + o

(
1

N

)

= A
N∑
j=1

sin(xj + θN)2f ′(uθN (xj))

∫
BN,j

(y − xj)dy + o

(
1

N

)

= A
N∑
j=1

sin(xj + θN)2f ′(uθN (xj))

(
−2π2

N2

)
+ o

(
1

N

)
= − π

N

∫
S

A sin(y + θN)2f ′(uθN (y))dy + o

(
1

N

)
= −Aπ

N
+ o

(
1

N

)
.

Coming back to (5.5.17), we have then that

〈vθN ,Υs − Υ̃s〉θN = −πA
2

N
+ o

(
1

N

)
. (5.5.19)

This term (5.5.19) cancels with the previous computation (5.5.15) up to some rest

of order o
(

1

N

)
. We obtain then (5.5.10) after integrating on (t0, t) and using

Tf (N) ∝ N .

5.5.3.3 Proof of Lemma 5.5.5

Recall that I3(t) :=
∫ t
t0
Dθ (UN(s−)) [dMN(s)]. Recall the definition of χj in (5.B.2)

and introduce the compensated measure π̃j(ds, dz) := πj(ds, dz)−λN,jdsdz, we can
re-write the term IN3 (t0, t) and introduce Dθ(uθN ):

I3(t) =
N∑
j=1

∫ t

t0

∫ ∞
0

(Dθ (UN(s−))−Dθ (uθN )) [χj(s, z)]π̃j(ds, dz)

+
N∑
j=1

∫ t

t0

∫ ∞
0

Dθ (uθN ) [χj(s, z)]π̃j(ds, dz). (5.5.20)

Let us focus first on

Q0(t) :=
N∑
j=1

∫ t

t0

∫ ∞
0

(Dθ (UN(s−))−Dθ (uθN )) [χj(s, z)]π̃j(ds, dz).
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It is a real martingale. We denote by [Q0]t =
∑

s≤t |∆Q0(t)|2 its quadratic variation.
It is computed as follows (as the (πj)1≤j≤N are independent, there are almost surely
no simultaneous jumps so that [π̃j, π̃j′ ] = 0 if j 6= j′):

[Q0]t =
N∑
j=1

∫ t

t0

∫ ∞
0

((Dθ (UN(s−))−Dθ (uθN )) [χj(s, z)])
2 πj(ds, dz)

≤ C‖θ‖2
L

(
sup
t∈[t0,t]

‖UN(s−)− uθN‖2

)2 N∑
j=1

∫ t

t0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

≤ CN2η−1 1

N2

N∑
j=1

∫ t

t0

∫ ∞
0

1z≤λN,j(s)πj(ds, dz),

using (5.5.1) and the computation (5.B.6) for some constants C > 0. Then, by
Burkholder-Davis-Gundy inequality and as f is bounded

E
[
Q0(t)2

]
≤ CE [[Q0]t] ≤ CN2η−3E

[
N∑
j=1

∫ t

t0

∫ ∞
0

1z≤λN,j(s)πj(ds, dz)

]

≤ CN2η−1Tf (N)

N
−−−→
N→∞

0,

hence Q0(t) converges in L1 towards 0 as N →∞ uniformly in t.
The other termQ(t) :=

∑N
j=1

∫ t
t0

∫∞
0
Dθ
(
uθ(UN (s−)

)
[χj(s, z)]π̃j(ds, dz) in (5.5.20)

is also a real martingale, we denote by [Q]t =
∑

s≤t |∆Q(t)|2 its quadratic variation
and it is computed as follows:

[Q]t =
N∑
j=1

∫ t

t0

∫ ∞
0

(Dθ (uθN ) [χj(s, z)])
2 πj(ds, dz)

=
N∑
j=1

∫ t

t0

∫ ∞
0

(
〈vθN , χj(s, z)〉θN
‖vθN‖θN

)2

πj(ds, dz),

where we used (5.2.16). Recall the notation w
(N)
ij = 2π cos(xi − xj), from the

computation (5.3.2), ‖vθN‖θN = A hence

[Q]t =
1

A2

N∑
j=1

∫ t

t0

∫ ∞
0

(
〈vθN ,

N∑
i=1

1BN,i
w

(N)
ij

N
1z≤λN,j〉θN

)2

πj(ds, dz)

=
1

A2

N∑
j=1

∫ t

t0

∫ ∞
0

(
N∑
i=1

w
(N)
ij

N
〈vθN ,1BN,i〉θN

)2

1z≤λN,jπj(ds, dz). (5.5.21)

Let us focus on the termEN :=
∑N

i=1

w
(N)
ij

N
〈vθN ,1BN,i〉θN . We have with trigonometric
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formula

EN =
2π

N

(
cos(xj + θN)

(
N∑
i=1

cos(xi + θN)〈vθN ,1BN,i〉θN

)

+ sin(xj + θN)

(
N∑
i=1

sin(xi + θN)〈vθN ,1BN,i〉θN

))
.

As
N∑
i=1

cos(xi + θN)〈vθN ,1BN,i〉θN −−−→
N→∞

∫
S

A cos sin f ′(A cos) = 0 (by symmetry)

and
N∑
i=1

sin(xi + θN)〈vθN ,1BN,i〉θN −−−→
N→∞

−
∫
S

A sin2 f ′(A cos) = −A with (5.3.2),

we have that
N∑
i=1

w
(N)
ij

N
〈vθN ,1BN,i〉θN ∼N→∞ −

2π

N
A sin(xj + θN).

Hence we have

(∑N
i=1

w
(N)
ij

N
〈vθN ,1BN,i〉θN

)2

=
A2

N2
Φ(xj, θN) with Φ(xj, θN) ∼N→∞

(2π sin(xj + θN))2 (bounded independently of N , θN). Coming back to (5.5.21),
we have

[Q]t =
1

N2

N∑
j=1

∫ t

t0

∫ ∞
0

Φ(xj, θN)1z≤λN,jπj(ds, dz) + o

(
1

N

)
.

Let

Q1(t) :=
1

N2

N∑
j=1

∫ t

t0

∫ ∞
0

Φ(xj, θN)
(
1z≤f(UN,j(s−)) − 1z≤f(uθN (xj))

)
πj(ds, dz)

Q2(t) :=
1

N2

N∑
j=1

∫ t

t0

∫ ∞
0

Φ(xj, θN)1z≤f(uθN (xj))π̃j(ds, dz)

Q3(t) :=
1

N2

N∑
j=1

∫ t

t0

∫ ∞
0

Φ(xj, θN)1z≤f(uθN (xj)) dsdz,

so that [Q]t = Q1(t) +Q2(t) +Q3(t) + o

(
1

N

)
. We have (recall that Φ is bounded)

E [|Q1(t)|] ≤ 1

N2

N∑
j=1

E

[∫ t

t0

∫ ∞
0

Φ(xj, θN)
∣∣∣1z≤f(UN,j(s−)) − 1z≤f(uθN (xj))

∣∣∣ πj(ds, dz)]

=
‖Φ‖∞
N2

N∑
j=1

∫ t

t0

E [|f(UN,j(s−))− f(uθN (xj))|] ds

≤ ‖Φ‖∞‖f‖L
N

(t− t0)CNη−1/2 ≤ C
Tf (N)

N
Nη−1/2 −−−→

N→∞
0,
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using (5.5.1). About Q2, we use once again that Q2 is a real martingale with
quadratic variation

[Q2]t =
N∑
j=1

∫ t

t0

∫ ∞
0

(
1

N2
Φ(xj, θN)1z≤f(uθN (xj))

)2

πj(ds, dz)

≤ C

N4

N∑
j=1

∫ t

t0

∫ ∞
0

1z≤f(uθN (xj))πj(ds, dz),

hence with Burkholder-Davis-Gundy inequality,

E
[
Q2(t)2

]
≤ CE [[Q2]t] ≤

C

N4
E

[
N∑
j=1

∫ t

t0

∫ ∞
0

1z≤f(uθN (xj))πj(ds, dz)

]

≤ C

N2

Tf (N)

N
−−−→
N→∞

0.

The last term Q3(t) gives the term Θ̃N(t0, t) that appears in (5.5.11).

5.5.3.4 Proof of Lemma 5.5.6

Recall that I4(t) is defined in (5.5.8):

I4(t) =
N∑
j=1

∫ t

t0

∫ ∞
0

∫ 1

0

(1− r)D2θ (UN(s−) + rχj(s, z)) [χj(s, z)]
2 dr πj(ds, dz).

A Taylor’s expansion gives that I4(t) = L1(t) + L2(t) + L3(t) + L4(t) with

L1(t) =
N∑
j=1

∫ t

t0

∫ ∞
0

∫ 1

0

(1− r)D2θ (UN(s−) + rχj(s, z)) [χj(s, z)]
2 dr π̃j(ds, dz),

L2(t) =
N∑
j=1

∫ t

t0

∫ ∞
0

∫ 1

0

(1− r)
(
D2θ (UN(s−) + rχj(s, z))−D2θ (UN(s−))

)
· [χj(s, z)]2 drdsdz,

L3(t) =
N∑
j=1

∫ t

t0

∫ ∞
0

∫ 1

0

(1− r)
(
D2θ (UN(s−))−D2θ (uθN )

)
[χj(s, z)]

2 dr ds dz,

L4(t) =
N∑
j=1

∫ t

t0

∫ ∞
0

∫ 1

0

(1− r)D2θ (uθN ) [χj(s, z)]
2 dr ds dz.

L1 is a real martingale and

[L1](t)

=
N∑
j=1

∫ t

t0

∫ ∞
0

(∫ 1

0

(1− r)D2θ (UN(s−) + rχj(s, z)) [χj(s, z)]
2 dr

)2

πj(ds, dz)

≤ ‖D
2θ‖2
∞

2

N∑
j=1

∫ t

t0

∫ ∞
0

‖χj(s, z)‖4
2πj(ds, dz) ≤

C

N4

N∑
j=1

∫ t

t0

∫ ∞
0

1z≤λN,j(s)πj(ds, dz).
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As done for Q2 in the proof of Lemma 5.5.5, we obtain that

E
[
|L1(t)2|

]
≤ C

N2

Tf (N)

N
−−−→
N→∞

0. (5.5.22)

We have, using (5.B.6) and the fact that f is bounded

L2(t) =
N∑
j=1

∫ t

t0

∫ ∞
0

∫ 1

0

(1− r)(
D2θ (UN(s−) + rχj(s, z))−D2θ (UN(s−))

)
[χj(s, z)]

2 drdsdz

≤
N∑
j=1

∫ t

t0

∫ ∞
0

‖D2θ‖L‖χj(s, z)‖2‖χj(s, z)‖2
2 dsdz

≤ C

N∑
j=1

∫ t

t0

∫ ∞
0

(
1

N
1z≤λN,j(s)

)3

dsdz ≤ C

N3

N∑
j=1

∫ t

t0

λN,j(s)ds ≤
CTf (N)

N2
.

Similarly, using (5.5.1)

L3(t) =
N∑
j=1

∫ t

t0

∫ ∞
0

∫ 1

0

(1− r)
(
D2θ (UN(s−))−D2θ (uθN )

)
[χj(s, z)]

2 drdsdz

≤ 1

2
‖D2θ‖L

N∑
j=1

∫ t

t0

∫ ∞
0

‖UN(s−)− uθN‖2‖χj(s, z)‖2
2dsdz

≤ CNη−1/2

N∑
j=1

∫ t

t0

∫ ∞
0

1

N2
1z≤λN,j(s)dsdz ≤ C

Tf (N)

N
Nη−1/2.

For L4, we use the computation of D2θ (uθN ) [χj(s, z)]
2 given by Lemma 5.B.3:

for some C = CA,γ,

L4(t) =
1

2

N∑
j=1

∫ t

t0

∫ ∞
0

D2θ (uθN ) [χj(s, z)]
2 dsdz

=
N∑
j=1

∫ t

t0

∫ ∞
0

1z≤λN,j(s)

(
C

N2
cos(xj + θ) sin(xj + θ) +O(N−3)

)
dsdz

=
C

N2

N∑
j=1

∫ t

t0

λN,j(s) cos(xj + θN) sin(xj + θN)ds+O

(
Tf (N)

N2

)

=
C

N2

N∑
j=1

∫ t

t0

(f(UN(s−)(xj)− f(uθN (xj))) cos(xj + θN) sin(xj + θN)ds

+O

(
Tf (N)

N2

)
+

C

N2

N∑
j=1

∫ t

t0

f(uθN ) cos(xj + θN) sin(xj + θN)ds.
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As done before for DN in (5.5.16),
2π

N

N∑
j=1

(f(UN(s−)(xj)− f(uθN (xj))) cos(xj +

θN) sin(xj + θN) = O(Nη−1/2) and

C

N2

N∑
j=1

f(uθN (xj)) cos(xj + θN) sin(xj + θN)

=
C

N

(∫
S

f(uθN (x)) cos(x+ θN) sin(x+ θN)dx+O(N−1)

)
= O

(
1

N2

)
,

hence as Tf (N) ∝ N , L4(t) = O
(
Nη−1/2

)
. Combining our results on L2, L3, L4, we

have then shown that supt∈[T0(N),Tf (N)] (L2(t) + L3(t) + L4(t)) = O
(
Nη−1/2

)
−−−→
N→∞

0. We conclude with (5.5.22).

5.A On the stationary solutions to the Neural
Field Equation

5.A.1 When f is the Heaviside function

Here we study the NFE equation (5.1.11) and its stationary solutions (5.2.1) when
f = H%. We recall the results from of Kilpatrick & Ermentrout (2013) and Veltz
& Faugeras (2010).

Proposition 5.A.1. There exist non-zero stationary solutions to (5.1.11) when
f = H%, ν(dy) =

1[−π,π)
2π

dy and w(x, y) = 2πcos(x − y) if and only if % ∈ [−1, 1],
and in this case, the set of stationary solutions is U0 ∪ UA+(0) ∪ UA−(0), where
A+(0) and A−(0) are defined in (5.2.3).

Proof. (following Kilpatrick & Ermentrout (2013)) First, u = 0 is an evident
solution to (5.2.1). We focus now on the other solutions. To solve (5.2.1), we
need to find A solving (5.2.2). As A cos(x) = −A cos(x + π), UA = U−A and we
can focus on the case A > 0.

Let A > 0 be a solution to (5.2.2) with f = H%. Note that we necessarily need
A ≥ |%|, because if A < %, the threshold % is never reached in (5.2.2) hence the
unique solution is A = 0 which is a contradiction (and similarly for % < −A). Then
as |%| ≤ A, Arccos(%/A) ∈ [0, π] is well defined and verifies A cos(y) ≥ % ⇔ |y| ≤
Arccos(%/A), hence (5.2.2) becomes

A = 2

∫ Arccos(%/A)

0

cos(y)dy = 2 sin (Arccos(%/A)) = 2

√
1−

( %
A

)2

. (5.A.1)

Equation (5.A.1) has two non-negative solutions A+(0) and A−(0) defined in (5.2.3)
if and only if % ∈ [−1, 1], which indeed verify % ∈ [−A,A], hence the result.
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5.A.2 When f is a sigmoid

Here we prove Proposition 5.2.2, following the previous result when f = H% and
using the fact that fκ,% −−→

κ→0
H%.

Proof of Proposition 5.2.2. Define the function g : R× (|%|,+∞)→ R such that
g(κ, a) := a−

∫ π
−π cos(y)fκ,% (a cos(y)) dy, (κ, a) ∈ R∗+ × (|%|,+∞),

g(κ, a) := a−
∫ π
−π cos(y)H% (a cos(y)) dy

= a− 2

√
1−

(%
a

)2

, (κ, a) ∈ R− × (|%|,+∞).

(5.A.2)
As fκ,% −−→

κ→0
H%, by dominated convergence, g is continuous on R × (%,+∞).

It is differentiable on R∗+ × (%,+∞) and on R∗− × (%,+∞), we now focus on its

differentiability in (0, a) for any a ∈ (%,+∞). We first show the continuity of
dg

da
,

that is showing

lim
κ→0

dg

da
(κ, a) =

dg

da
(0, a) = 1− 2%2

a3

√
1−

(%
a

)2
. (5.A.3)

For any κ > 0, recalling the definition of fκ,% in (5.1.3),

dg

da
(κ, a) = 1−

∫ π

−π

cos(y)2e−(a cos(y)−%)/κ

κ (1 + e−(a cos(y)−%)/κ)
2dy = 1− 2

∫ π

0

cos(y)2e−(a cos(y)−%)/κ

κ (1 + e−(a cos(y)−%)/κ)
2dy,

and by the change of variables a cos(y)− % = u, we get∫ π

0

cos(y)2e−(a cos(y)−%)/κ

κ (1 + e−(a cos(y)−%)/κ)
2dy =

∫ a−%

−a−%

(u+ %)2

a3

√
1−

(
u+%
a

)2

e−u/κ

κ (1 + e−u/κ)
2du

=
1

a3

∫
R
h(−u)ϕκ(u)du =

1

a3
(h ∗ ϕκ)(0)

with h(u) := 1(%−a,a+%)(u)
(−u+ %)2√
1−

(−u+%
a

)2
and ϕκ(u) :=

e−u/κ

κ (1 + e−u/κ)
2 . By Lemma

5.B.1, (h ∗ ϕκ) (0) −−→
κ→0

h(0) =
%2√

1−
(%
a

)2
and (5.A.3) follows. We show now the

continuity of
dg

dκ
, that is

lim
κ→0

dg

dκ
(κ, a) = 0. (5.A.4)

For any κ > 0, we obtain similarly

dg

dκ
(κ, a) = 2

∫ π

0

cos(y) (a cos(y)− %) e−(a cos(y)−%)/κ

κ2 (1 + e−(a cos(y)−%)/κ)
2 dy

=
2

a2κ

∫ (a−%)/κ

(−a−%)/κ

h̃(κv)
e−v

(1 + e−v)2dv
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with h̃(u) :=
u(u+ %)√
1−

(
u+%
a

)2
. Let F (κ) :=

∫ (a−%)/κ

0

h̃(κv)
e−v

(1 + e−v)2dv, by dominated

convergence F (κ) −−→
κ→0

h̃(0)
∫∞

0

e−v

(1 + e−v)2dv =
h̃(0)

2
= 0. Setting F (0) := 0, F is

continuous on [0,∞) and differentiable on (0,∞) with

F ′(κ) = −(a− %)

κ2
h̃(a− %)

e−(a−%)/κ

(1 + e−(a−%)/κ)
2 +

∫ (a−%)/κ

0

vh̃′(κv)
e−v

(1 + e−v)2dv.

By dominated convergence, F ′(κ) −−→
κ→0

0 + h̃′(0)
∫∞

0

ve−v

(1 + e−v)2dv = h̃′(0) ln(2) =

% ln(2)√
1 +

(
%
a

)2
. Hence by Taylor’s theorem, F (κ) = κ

% ln(2)√
1 +

(
%
a

)2
+ o(κ) as κ → 0.

Similarly, let

G(κ) :=

∫ 0

(−a−%)/κ

h̃(κv)
e−v

(1 + e−v)2dv =

∫ (a+%)/κ

0

h̃(−vκ)
ev

(1 + ev)2dv,

we also have G(κ)→ 0. Setting G(0) := 0, G is differentiable on (0,∞) with

G′(κ) = −a+ %

κ2
h̃(−a− %)

e(a+%)/κ

(1 + e(a+%)/κ)
2 −

∫ (a+%)/κ

0

vh̃′(κv)
ev

(1 + ev)2dv,

thus G′(κ) −−→
κ→0

−h̃′(0) ln(2). Hence by Taylor’s theorem G(κ) = −κ % ln(2)√
1 +

(
%
a

)2
+

o(κ) as κ→ 0. We obtain then

dg

dκ
(κ, a) =

2

a2κ
(F (κ) +G(κ)) =

2

a2κ

(
κh̃′(0) ln(2)− κh̃′(0) ln(2) + o(κ)

)
= o(1),

hence (5.A.4) is true. We have shown that g is indeed C1 on R× (|%|,+∞).
Our aim is to apply the implicit function theorem. With Proposition 5.A.1, we

have that g(0, A+(0)) = 0. Let us show that
dg

da
(0, A+(0)) 6= 0. Using (5.2.3), we

obtain
dg

da
(0, A+(0)) = 1− 2%2

2
(

1 +
√

1− %2
)√

2 + 2
√

1− %2 − %2

,

we then need %2 6=
(

1 +
√

1− %2
)√

2 + 2
√

1− %2 − %2, which is true if and only
if % 6= 1. We conclude by implicit function theorem.
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It remains now to prove that there exists κ1 > 0 such that for any κ ∈ (0, κ1),
I(1, κ) =

∫
S
f ′κ,%(A(κ) cos(x))dx ∈ (1, 2). We have

I(1, κ) = 2

∫ π

0

e−(A(κ) cos(y)−%)/κ

κ (1 + e−(A(κ) cos(y)−%)/κ)
2dy

= 2

∫ A(κ)−%

−A(κ)−%

1

A(κ)

√
1−

(
u+%
A(κ)

)2

e−u/κ

κ(1 + e−u/κ)2

= h ∗ φκ(0) −−→
κ→0

2

A+(0)
√

1− %2

A+(0)2

,

with h(u) = 1(%−A(κ),A(κ)+%)(u)
2

A(κ)

√
1−

(
−u+%
A(κ)

)2
and using Lemma 5.B.1 and as

A(κ) −−→
κ→0

A+(0) defined in (5.2.3). As

1

A+(0)
√

1− %2

A+(0)2

=
1√

2 + 2
√

1− %2 − %2

< 1

when % ∈ (−1, 1), by continuity of κ 7→ A(κ) there exists κ1 > 0 such that for
κ < κ1, we have indeed I(1, κ) < 2. Let us show know that for small κ we have
also I(1, κ) > 1. We have

I(1, 0)− 1 =
2√

2 + 2
√

1− %2 − %2

− 1 =
2−

√
2 + 2

√
1− %2 − %2√

2 + 2
√

1− %2 − %2

,

and as 2
√

1− %2 − %2 < 2 we have indeed I(1, 0)− 1 > 0. Similarly by continuity
it implies that I(1, κ) > 1 for κ small enough.

5.B Some computations

5.B.1 Control of the noise perturbation

We prove here Proposition 5.4.3, which is a part of the Step 2 of the proof of
Theorem 5.2.9 in Section 5.4. The proof relies on a adaptation of an argument
given in (Zhu et al., 2017, Theorem 4.3), where a similar quantity to the following
(5.B.1) is considered for N = 1, and used in the proof of Proposition 4.2 of Agathe-
Nerine (2023a).

Proof of Proposition 5.4.3. Recall the expression of (ZN,j)1≤j≤N in (5.1.14) and the
compensated measure π̃j(ds, dz) := πj(ds, dz)−λN,jdsdz, so that with the linearity
of (etLφn−1 )t≥0, we obtain that ζn can be written as

ζn(t) =
N∑
j=1

∫ t

0

∫ ∞
0

e(t−s)Lφn−1χj(s, z)π̃j(ds, dz), (5.B.1)
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with

χj(s, z) :=

(
N∑
i=1

1BN,i
w

(N)
ij

N
1z≤λN,j(s)

)
. (5.B.2)

Fix m ≥ 1. The functional φ : L2(I) → R given by φ(v) = ‖v‖2m
2 is of class C2

(recall that ζn(t) ∈ L2(I)) so that by Itô formula on the expression (5.B.1) we
obtain

φ (ζn(t)) =

∫ t

0

φ′ (ζn(s))Lφn−1 (ζn(s)) ds

+
N∑
j=1

∫ t

0

∫ ∞
0

φ′ (ζn(s−))χj(s, z)π̃j(ds, dz)

+
N∑
j=1

∫ t

0

∫ ∞
0

[φ (ζn(s−) + χj(s, z))− φ (ζn(s−))− φ′ (ζn(s−))χj(s, z)]πj(ds, dz)

:= I0(t) + I1(t) + I2(t). (5.B.3)

We also have that for any v, h, k ∈ L2(I), φ′(v)h = 2m‖v‖2m−2
2 (〈v, h〉) ∈ R and

φ′′(v)(h, k) = 2m(2m− 1)‖v‖2m−4
2 〈v, k〉〈v, h〉+ 2m‖v‖2m−2〈h, k〉.

We have I0(t) =
∫ t

0
2m‖ζN(s)‖2m−2

2 (〈ζN(s),L(ζN(s))〉) ds. From Proposition
5.2.5, the operator Lφn−1 has only three non-positive eigenvalues hence by Lumer-
Philipps Theorem (see Section 1.4 of Pazy (1974)),

(
〈ζn(s),Lφn−1(ζNns))

)
〉 ≤ 0.

Then for any t ≥ 0, I0(t) ≤ 0.
Let some ε > 0 to be chosen later. About I1, using Burkholder-Davis-Gundy

inequality, the independence of the family (πj) and Hölder inequality with some
well chosen parameter, one can show

E

[
sup
s≤T
|I1(s)|

]
≤ C(2m− 1)εE

[
sup

0≤s≤T

(
‖ζn(s)‖2m

2

)]
+ Cε−(2m−1)E

[(
N∑
j=1

∫ T

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

)m]
, (5.B.4)

as done for Proposition 4.2 of Agathe-Nerine (2023a), with C some deterministic
constant. About I2, using Taylor’s Lagrange formula and both Hölder and Young’s
inequalities, one can show

E

[
sup
s≤T
|I2(s)|

]
≤ m(2m− 2)εE

[
sup

0≤s≤t

(
‖ζn(s)‖2m

2

)]
+ 2mε−(2m−2)E

[(
N∑
j=1

∫ t

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

)m]
. (5.B.5)

Fixing ε such that ε (C(2m− 1) +m(2m− 2)) ≤ 1

2
and taking the expectation

in (5.B.3), we get

E

[
sup
s≤T
‖ζn(s)‖2m

2

]
≤ 2CE

[(
N∑
j=1

∫ T

0

∫ ∞
0

‖χj(s, z)‖2
2πj(ds, dz)

)m]
,
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where C > 0 depends only on m. As supi,j w
(N)
ij ≤ 2π,

‖χj(s, z)‖2
2 =

1

N

N∑
i=1

(
w

(N)
ij

N

)2

1z≤λN,j(s) ≤
4π2

N2
1z≤λN,j(s). (5.B.6)

As f is bounded by 1, we have that E
[
sup
s≤T
‖ζn(s)‖2m

2

]
≤ C

Nm
E

[
1

N

N∑
j=1

Z̃j(T )m

]
,

where
(
Z̃j(t)

)
are i.i.d copies of a Poisson process on intensity 1. Hence for some

constant C = C(T,m, κ, %) > 0, for any 1 ≤ n ≤ nf , E
[

sup
0≤t≤T

‖ζn(t)‖2m
2

]
≤ C

Nm
.

It implies

P

(
sup
t∈[0,T ]

‖ζn(t)‖2 ≥
Nη

√
N

)
≤

E
[
sup0≤t≤T ‖ζn(t)‖2m

2

]
N2ηm

Nm ≤ CN−2mη,

hence by a union bound P(ACN) ≤ CnfN
−2mη = CNα−2mη. We can then choose m

large enough to obtain the result of Proposition 5.4.3.

5.B.2 Analysis complements

Lemma 5.B.1. Define ϕ(u) =
e−u

(1 + e−u)2 . For any κ > 0, let ϕκ(u) := 1
κ
ϕ
(
u
κ

)
.

Then (ϕκ)κ>0 is an approximate identity and ϕκ ∗ h −−→
κ→0

h for any h ∈ Lp, with
1 ≤ p <∞.

Proof. It suffices to check that∫
R
ϕ(u)du =

∫
R

e−u

(1 + e−u)2
du =

[
1

1 + e−u)

]+∞

−∞
= 1.

Lemma 5.B.2. Let N ≥ 1, recall that S = [−π, π) and its regular subdivision

xi =
2iπ

N
− π for 0 ≤ i ≤ N . For any function g ∈ C2(I,R), we have

2π

N

N∑
j=1

g(xj) =

∫
S

g(y)dy − 1

2

(
2π

N

)2 N∑
j=1

g′(xj) + o

(
1

N

)
. (5.B.7)

Moreover, for any function h ∈ C1(I,R), we have

N∑
i=1

h(xi)

∫ xi

xi−1

g(y)dy =

∫
S

h(x)g(x)dx−
N∑
i=1

h′(xi)

∫ xi

xi−1

(y − xi)g(y)dy + o

(
1

N

)
.

(5.B.8)
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Proof. Let Cj = (xj−1, xj) for 1 ≤ j ≤ N . From Taylor’s expansion, g(y) =
g(xj) + g′(xj)(y − xj) +

∫ y
xj
g′′(t)(y − t)dt hence the result (5.B.7) as

∫
S
g(y)dy =∑N

j=1

∫
Cj
g(y)dy. About (5.B.8), we proceed similarly as

∫
S

hg =
∑
j

∫
Cj

g(y)

(
h(xj) + h′(xi)(y − xj) +

∫ y

xj

h′′(t)(y − t)dt

)
dy.

5.B.3 Auxilliary lemmas

5.B.3.1 About the derivatives of the isochron

Lemma 5.B.3. Let φ ∈ S. There exists C = CA,γ such that

D2θ(uφ)[χj(s, z)]
2 = 1z≤λN,j(s)

(
C

N2
cos (xj + φ) sin(xj + φ) +O(N−3)

)
, (5.B.9)

where the notation O(N−3) is uniform in (s, z, φ).

Proof. Recall (5.2.17), we have

D2θ(uφ)[χj(s, z)]
2 =

1

2A2

(
2α◦φ(χj(s, z))βφ(vφ, χj(s, z)) + βφ(χj(s, z), χj(s, z))

)
+

1 + γ

A2(1− γ)
αγφ(χj(s, z))βφ(uφ, χj(s, z))

− (2− γ)(1 + γ)

2(1− γ)

(
α◦φ(χj(s, z))

2 + αγφ(χj(s, z))
2
)
, (5.B.10)

Let us compute each term. About α, using some trigonometric formula and Lemma
5.B.2 we have

α◦φ(χj(s, z)) =
〈χj, vφ〉φ

A
=

1

A

∫
S

χjvφf
′(uφ)

=
2π

A
1z≤λN,j(s)

N∑
i=1

cos(xi − xj)
N

∫
S

vφf
′(uφ)1BN,i

=
2π

AN
1z≤λN,j(s)

(
cos(xj + φ)

N∑
i=1

cos(xi + φ)

∫
S

vφf
′(uφ)1BN,i

+ sin(xj + φ)
N∑
i=1

sin(xi + φ)

∫
S

vφf
′(uφ)1BN,i

)

=
2π

AN
1z≤λN,j(s)

(
cos(xj + φ)

∫
S

cos(x+ φ)vφ(x)f ′(uφ(x))dx

+ sin(xj + φ)

∫
S

sin(x+ φ)vφ(x)f ′(uφ(x))dx+O(N−1)

)
,
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using Lemma 5.3.1, hence

α◦φ(χj(s, z)) = 1z≤λN,j(s)

(
−2π

N
sin(xj + φ)I(sin2) +O(N−2)

)
= 1z≤λN,j(s)

(
−2π

N
sin(xj + φ) +O(N−2)

)
.

We prove in a same way that

αγφ(χj(s, z)) = 1z≤λN,j(s)

(
2π

‖uφ‖φN
cos(xj + φ)(I(1)− 1) +O(N−2)

)
.

About β, we have similarly using Lemma 5.B.2 that

βφ(vφ, χj(s, z)) =

∫
S

f ′′(uφ(y))vφ(y)2χj(s, z)(y)dy

=
N∑
i=1

w
(N)
ij

N
1z≤λN,j(s)

∫
S

f ′′(uφ(y))vφ(y)21BN,i(y)dy

= 1z≤λN,j(s)
2π

N

(
cos(xj + φ)

N∑
i=1

cos(xi + φ)

∫
S

f ′′(uφ(y))vφ(y)21BN,i(y)dy

+ sin(xj + φ)
N∑
i=1

sin(xi + φ)

∫
S

f ′′(uφ(y))vφ(y)21BN,i(y)dy

)

= 1z≤λN,j(s)
2π

N

(
cos(xj + φ)

∫
S

cos(y + φ)f ′′(uφ(y))vφ(y)2dy

+ sin(xj + φ)

∫
S

sin(y + φ)f ′′(uφ(y))vφ(y)2dy +O

(
1

N

))
= 1z≤λN,j(s)

2π

N

(
cos(xj + φ)

∫
S

cos(y + φ)f ′′(uφ(y))vφ(y)2dy +O

(
1

N

))
.

With Lemma 5.3.1 and an integration by parts, we obtain∫
S

cos(y + φ)f ′′(uφ(y))vφ(y)2dy = A2

∫
S

cos(y + φ)f ′′(A cos(y + φ)) sin2(y + φ)dy

=

∫
S

(−A sin(y)f ′′(A cos(y)) (−A sin(y) cos(y)) dy

= −
∫
S

f ′(A cos(y))
(
−A+ 2A sin2

)
dy

= A
(
I(1)− 2I(sin2)

)
= Aγ

recalling (5.3.7), hence βφ(vφ, χj(s, z)) = 1z≤λN,j(s)

(
2π

N
Aγ cos(xj + φ) +O(N−2)

)
.

We prove in a same way that

βφ(uφ, χj(s, z)) = −1z≤λN,j(s)
(

2π

N
Aγ sin(xj + φ) +O(N−2)

)
.
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Finally we have

βφ(χj(s, z), χj(s, z)) =

∫
S

f ′′(uφ(y))vφ(y)

(
N∑
i=1

1BN,i(y)
w

(N)
ij

N
1z≤λN,j(s)

)2

dy

= 1z≤λN,j(s)

(
2π

N

)2 N∑
i=1

∫
BN,i

f ′′(uφ(y))vφ(y)dy

(cos(xi + φ) cos(xj + φ) + sin(xi + φ) sin(xj + φ))2

= 1z≤λN,j(s)

[(
2π

N

)2

2 cos(xj + φ) sin(xj + φ)∫
S

cos(y + φ) sin(y + φ)f ′′(uφ(y))vφ(y)dy +O(N−3)

]
.

With an integration by parts and recognising (5.3.7),∫
S

cos(y + φ) sin(y + φ)f ′′(uφ(y))vφ(y)dy

= −A
∫
S

cos(y) sin(y)f ′′(A cos(y)) sin(y)dy

=

∫
S

(−A sin(y)f ′′(A cos(y))) (cos(y) sin(y)) dy = −γ,

hence we obtain that

βφ(χj(s, z), χj(s, z)) = 1z≤λN,j(s)

(
−8γ

π2
cos(xj + φ) sin(xj + φ) +O(N−3)

)
.

Putting all the previous estimates together in (5.B.10), we obtain (5.B.9) for some
constant C = CA,γ.

5.B.3.2 About the fluctuations

Lemma 5.B.4 (Some computations for the proof of Proposition 5.5.2). Let φ ∈ S.
Recall the definitions of uφ and vφ in (5.2.4) and (5.2.7). We have

A1 :=
2π

N

N∑
j=1

cos(xj + φ)f(uφ(xj)) = A+ o

(
1

N

)
(5.B.11)

A2 :=
N∑
i=1

cos(xi + φ)〈vφ,1BN,i〉φ =
Aπ

N
+ o

(
1

N

)
(5.B.12)

A3 :=
2π

N

N∑
j=1

sin(xj + φ)f(uφ(xj)) = o

(
1

N

)
(5.B.13)

A4 :=
N∑
i=1

sin(xi + φ)〈vφ,1BN,i〉φ = −A+ o

(
1

N

)
, (5.B.14)

where the notation o
(

1
N

)
is uniform in the choice of φ.
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Proof. From Lemma 5.B.2, more especially (5.B.7) applied to g(y) = cos(y +
φ)f(uφ(y)), we have using (5.3.2) that

A1 =
2π2

N2

N∑
j=1

(sin(xj + φ)f(uφ(xj))− cos(xj + φ)f ′(uφ(xj))vφ(xj))

+

∫
S

cos(x+ φ)f(uφ(x))dx+ o

(
1

N

)
= A+

2π2

N2

N∑
j=1

(sin(xj + φ)f(uφ(xj))− cos(xj + φ)f ′(uφ(xj))vφ(xj)) + o

(
1

N

)
= A+ o

(
1

N

)
,

as

2π

N

N∑
j=1

(sin(xj + φ)f(uφ(xj))− cos(xj + φ)f ′(uφ(xj))vφ(xj))

=

∫
S

sin(y+φ)f(A cos(y+φ))dy+A

∫
S

cos(y+φ)f ′(A cos(y+φ)) sin(y+φ)dy+O

(
1

N

)
= O

(
1

N

)
.

Similarly we can prove (5.B.13) as

A3 = −2π2

N2

N∑
j=1

(cos(xj + φ)f(uφ(xj)) + sin(xj + φ)f ′(uφ(xj))vφ(xj))

+

∫
S

sin(x+ φ)f(uφ(x))dx+ o

(
1

N

)
= −2π2

N2

N∑
j=1

(cos(xj + φ)f(uφ(xj)) + sin(xj + φ)f ′(uφ(xj))vφ(xj)) + o

(
1

N

)
= o

(
1

N

)
,

using that
∫
S

sin(x+ φ)f(uφ(x))dx = 0 by symmetry and

2π

N

N∑
j=1

(cos(xj + φ)f(uφ(xj)) + sin(xj + φ)f ′(uφ(xj))vφ(xj))

=

∫
S

(cos f(A cos)− sin f ′(A cos)A sin)+O

(
1

N

)
= A−A+O

(
1

N

)
= O

(
1

N

)
.

From Lemma 5.B.2, more especially (5.B.8) applied to g(y) = vφ(y)f ′(uφ(y))
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and h(x) = cos(x+ φ), we have that

A2 =
N∑
i=1

cos(xi + φ)〈vφ,1BN,i〉φ =
N∑
i=1

cos(xi + φ)

∫
BN,i

vφ(y)f ′(uφ(y))dy

=
N∑
i=1

sin(xi + φ)

∫
BN,i

(y − xi)vφ(y)f ′(uφ(y))dy

+

∫
S

cos(x+ φ)vφ(x)f ′(uφ(x))dx+ o

(
1

N

)
=

N∑
i=1

sin(xi + φ)

∫
BN,i

(y − xi)vφ(y)f ′(uφ(y))dy + o

(
1

N

)

=
N∑
i=1

sin(xi + φ)vφ(xi)f
′(uφ(xi))

∫
BN,i

(y − xi)dy + o

(
1

N

)

= −
N∑
i=1

sin(xi + φ)vφ(xi)f
′(uφ(xi))

1

2

(
2π

N

)2

+ o

(
1

N

)
=

π

N

(
A

∫
sin(x+ φ)2f ′(A cos(x+ φ))dx+O

(
1

N

))
+ o

(
1

N

)
=
Aπ

N
+ o

(
1

N

)
,

and similarly, for the choice h(x) = sin(x+ φ) and using (5.3.2)

A4 =
N∑
i=1

sin(xi + φ)〈vφ,1BN,i〉φ =
N∑
i=1

sin(xi + φ)

∫
BN,i

vφ(y)f ′(uφ(y))dy

=

∫
S

sin(x+ φ)vφ(x)f ′(uφ(x))dx

−
N∑
i=1

cos(xi + φ)

∫
BN,i

(y − xi)vφ(y)f ′(uφ(y))dy + o

(
1

N

)

= −A−
N∑
i=1

cos(xi + φ)

∫
BN,i

(y − xi)vφ(y)f ′(uφ(y))dy + o

(
1

N

)

= −A+ A

N∑
i=1

cos(xi + φ)

∫
BN,i

(y − xi) sin(y + φ)f ′(uφ(y))dy + o

(
1

N

)
.
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As

N∑
i=1

cos(xi + φ)

∫
BN,i

(y − xi) sin(y + φ)f ′(uφ(y))dy

=
N∑
i=1

cos(xi + φ) sin(xi + φ)f ′(uφ(xi))

∫
BN,i

(y − xi)dy +O

(
1

N2

)

= − π
N

2π

N

N∑
i=1

cos(xi + φ) sin(xi + φ)f ′(uφ(xi)) + o

(
1

N

)
= − π

N

∫
S

cos(x+ φ) sin(x+ φ)f ′(uφ(x))dx+O

(
1

N2

)
+ o

(
1

N

)
= o

(
1

N

)
,

we obtain (5.B.14).
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