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Abstract

To meet the growing demand for achievable information rates (AIR), the optical fiber net-

work—the backbone of global communication infrastructure—must continually evolve to

support faster data transmission speeds. However, this effort is hindered by distortions

affecting the optical signals. Both linear and nonlinear effects, as well as noise, impact

the signals propagating through optical fibers. These distortions critically compromise

signal quality, especially at higher transmission rates. Linear effects, which broaden the

pulse width, become more pronounced at higher transmission rates and can be effectively

corrected through optical means, such as dispersion compensating fiber (DCF), or electron-

ically, using digital signal processing (DSP) algorithms at the receiver. While DCFs were

common in earlier network generations, they have been largely replaced by highly optimized

DSP chains, now prevalent in commercial applications, capable of coherent equalization.

The Kerr effect specifically emerges from the nonlinear optical behavior of fiber material,

leading to changes in refractive index proportional to the light intensity. As signal power

increases, this nonlinearity’s impact intensifies, resulting in various impairments in op-

tical fiber networks, including four-wave mixing, self-phase modulation, and cross-phase

modulation.

The two primary limiters of AIR in optical fiber networks are nonlinear channel effects,

originating from Kerr nonlinearity, and amplified spontaneous emission (ASE) noise. As

the demand for AIR increases, these nonlinear effects pose a serious challenge, diminishing

network efficiency. Equalizing these effects is challenging, requiring processing capabilities

beyond those of traditional commercial systems. Digital backpropagation (DBP) is a

theoretical method that can mitigate these issues by sequentially correcting linear and

nonlinear effects across small segments, addressing each effect individually. Despite its

promise, the computational demands of DBP limit its practical application in commercial

settings.

Recent advances in machine learning have spurred numerous efforts to apply these

techniques for nonlinearity mitigation in optical networks. Neural networks, in particular,

have gained prominence due to this ability to learn from examples, making them well-

suited for addressing nonlinear distortions. They can learn the channel model based on



pairs of transmitted and received signals, allowing them to approximate the inverse chan-

nel transfer function. Additionally, neural networks could offer a simpler alternative to

traditional nonlinearity mitigation methods like DBP, even without precise knowledge of

channel parameters.

Within the realm of neural network-based optical signal equalizers, two primary design

strategies exist: model-agnostic and model-based approaches. Model-agnostic neural net-

works (NNs) are valued for their design flexibility, where the selection of hyperparameters

is determined without specific assumptions about the data model. This process often in-

volves using optimization techniques, like Bayesian optimization, to find the most effective

configurations. Although model-agnostic approaches are lauded for their flexibility and

adaptability, enabling their integration at various points within the receiver’s DSP, they

demand large models and extensive datasets to achieve optimal performance. In contrast,

model-based approaches, grounded in existing models rather than arbitrary design, utilize

the physical propagation model for structuring and initializing neural networks. This leads

to more efficient designs. However, these approaches often require detailed knowledge of

the system’s parameters, which may not always be available or easy to estimate. They can

also be less flexible in adapting to new data or scenarios that deviate from the modeled

conditions, potentially limiting their applicability across different or evolving environments.

In this thesis, we specifically focus on the model-based neural network approach, with

emphasis on a prominent model known as Learned Digital Backpropagation (LDBP).

LDBP is a neural network method that adopts DBP as the foundational model for the

neural network structure, effectively optimizing DBP parameters through neural networks.

Notably, model-based methods have shown proficiency in many-to-many equalization, as

opposed to the common one-to-one or many-to-one equalization observed in model-agnostic

or black-box neural network equalizers. The ability to perform many-to-many equaliza-

tion can potentially simplify complexity and is well-suited for real-time implementation

in optical receivers. We introduce simplifications through "parameter sharing" to reduce

trainable parameters. The parameter sharing method in neural networks involves reusing

the same weights across multiple layers. This approach significantly reduces the total num-

ber of unique trainable parameters, leading to a more efficient and compact model that

requires less computational resources to train and can generalize better to new data.

Moreover, we propose repurposing legacy Dispersion-Managed (DM) systems, which

typically use basic modulation formats such as intensity modulation and direct detection

(IM/DD), by integrating higher-order modulation formats like 16-QAM and 64-QAM.

This work aims to boost data rates within these systems. Initially, we propose a flexible

DBP implementation tailored to DM systems, featuring a fractional number of steps per

span. Subsequently, LDBP is utilized at the receiver to equalize channel impairments

in multi-channel, dual-polarization transmission systems by parameterizing the proposed

7



DBP and optimizing its parameters using stochastic gradient descent. Our comprehensive

performance and complexity analysis shows that the proposed algorithms surpass both

linear equalization and DBP across various transmission setups.
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Résumé

Pour répondre à la demande croissante en débits d’information réalisables (AIR), le réseau

de fibres optiques, épine dorsale de l’infrastructure de communication mondiale, doit évo-

luer continuellement pour supporter des vitesses de transmission de données plus rapides.

Cet effort est entravé par des distorsions affectant les signaux optiques, compromettant gra-

vement la qualité du signal, surtout à des taux de transmission élevés. Les effets linéaires

et non linéaires, ainsi que le bruit, impactent les signaux se propageant dans les fibres

optiques. Les effets linéaires, élargissant la largeur d’impulsion, deviennent plus prononcés

à des taux de transmission plus élevés et peuvent être corrigés efficacement par des moyens

optiques, tels que la fibre à compensation de dispersion (DCF), ou électroniquement, en

utilisant des algorithmes de traitement du signal numérique (DSP) au récepteur. Tandis

que les DCF étaient courants dans les générations précédentes de réseaux, ils ont été large-

ment remplacés par des chaînes DSP hautement optimisées, désormais prévalentes dans les

applications commerciales, capables d’une égalisation cohérente. L’effet Kerr, émergeant

spécifiquement du comportement optique non linéaire du matériel de fibre, conduit à des

changements de l’indice de réfraction proportionnels à l’intensité de la lumière. Avec l’aug-

mentation de la puissance du signal, l’impact de cette non-linéarité s’intensifie, résultant

en diverses altérations dans les réseaux de fibres optiques, incluant le mélange à quatre

ondes, la modulation de phase auto-induite et croisée.

Les deux principaux limitateurs de AIR dans les réseaux de fibres optiques sont les

effets de canal non linéaires, provenant de la non-linéarité de Kerr, et le bruit d’émission

spontanée amplifiée (ASE). Avec l’augmentation de la demande pour AIR, ces effets non

linéaires posent un défi sérieux, diminuant l’efficacité du réseau. Égaliser ces effets est

difficile, nécessitant des capacités de traitement au-delà de celles des systèmes commerciaux

traditionnels. La rétropropagation numérique (DBP) est une méthode théorique qui peut

atténuer ces problèmes en corrigeant séquentiellement les effets linéaires et non linéaires à

travers de petits segments, abordant chaque effet individuellement. Malgré sa promesse, les

exigences computationnelles de DBP limitent son application pratique dans les contextes

commerciaux.

Les avancées récentes dans l’apprentissage automatique ont incité de nombreux efforts



pour appliquer ces techniques à l’atténuation de la non-linéarité dans les réseaux optiques.

Les réseaux de neurones, en particulier, ont gagné en importance grâce à leur capacité

à apprendre à partir d’exemples, les rendant bien adaptés pour aborder les distorsions

non linéaires. Ils peuvent apprendre le modèle de canal basé sur des paires de signaux

transmis et reçus, leur permettant d’approximer la fonction de transfert inverse du canal.

De plus, les réseaux de neurones pourraient offrir une alternative plus simple aux méthodes

traditionnelles d’atténuation de la non-linéarité comme DBP, même sans connaissance

précise des paramètres du canal.

Dans le domaine des égaliseurs de signal optique basés sur les réseaux de neurones,

il existe deux stratégies de conception principales : les approches agnostiques au modèle

et les approches basées sur le modèle. Les réseaux de neurones agnostiques au modèle

sont appréciés pour leur flexibilité de conception, où la sélection des hyperparamètres se

fait sans hypothèses spécifiques sur le modèle de données. Ce processus implique souvent

l’utilisation de techniques d’optimisation, comme l’optimisation bayésienne, pour trouver

les configurations les plus efficaces. Bien que les approches agnostiques au modèle soient

louées pour leur flexibilité et adaptabilité, permettant leur intégration à différents points

dans le DSP du récepteur, elles nécessitent de grands modèles et d’importants ensembles

de données pour atteindre une performance optimale. En contraste, les approches basées

sur le modèle, qui s’appuient sur des modèles existants plutôt que sur une conception arbi-

traire, utilisent le modèle de propagation physique pour structurer et initialiser les réseaux

de neurones, menant à des conceptions plus efficaces. Cependant, ces approches requièrent

souvent une connaissance détaillée des paramètres du système, qui peuvent ne pas tou-

jours être disponibles ou faciles à estimer. Elles peuvent également être moins flexibles

pour s’adapter à de nouvelles données ou à des scénarios qui s’écartent des conditions mo-

délisées, limitant potentiellement leur applicabilité à travers différents environnements ou

en évolution.

Dans cette thèse, nous nous concentrons spécifiquement sur l’approche des réseaux de

neurones basée sur le modèle, en mettant l’accent sur un modèle important connu sous le

nom de Rétropropagation Numérique Apprise (LDBP). LDBP est une méthode de réseau

de neurones qui adopte le DBP comme modèle fondamental pour la structure du réseau

de neurones, optimisant ainsi efficacement les paramètres du DBP à travers les réseaux

de neurones. De plus, nous proposons de réaffecter les systèmes Gérés par Dispersion

(DM) existants, utilisant typiquement des formats de modulation de base, en intégrant des

formats de modulation d’ordre supérieur comme le 16-QAM et le 64-QAM. Ce travail vise

à augmenter les débits de données au sein de ces systèmes. Initialement, nous proposons

une mise en œuvre flexible du DBP adaptée aux systèmes DM. Ensuite, le LDBP est

utilisé au récepteur pour égaliser les altérations de canal dans les systèmes de transmission

multi-canaux à double polarisation, en paramétrant le DBP proposé et en optimisant ses

10



paramètres à l’aide de la descente de gradient stochastique. Nos analyses complètes de

performance et de complexité montrent que les algorithmes proposés surpassent à la fois

l’égalisation linéaire et le DBP dans diverses configurations de transmission.
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CHAPTER 1

Introduction

In today’s digital era, the vast majority of the world’s data travels through optical fiber

networks. The adoption of optical fibers, in place of their copper predecessor, has rev-

olutionized the telecommunications industry, enabling the seamless transmission of vast

amounts of data with unparalleled speed, reliability, and security. The inherent advantages

of optical fibers have propelled them to become the backbone of global communication net-

works, supporting the increasing demands of our digital world. In fact, more than 99%

of global Internet traffic now passes through these optical fiber networks, placing them

under constant scrutiny as they strive to meet the ever-increasing demand. Moreover, the

relentless advancements in technology and the advent of emerging applications like Inter-

net of Things, artificial intelligence, and virtual reality further amplify the demand for

faster and more robust data transmission. The seamless integration of these transforma-

tive technologies relies on the steadfast performance of optical fiber networks to support

their data-intensive requirements.

Given the paramount significance of optical fiber networks in facilitating the trans-

mission of the world’s data, the burden falls upon these networks to rise to the occasion.

To meet the ever-growing demands placed upon them, optical fiber networks must con-

tinually evolve and adapt. This involves deploying cutting-edge technologies, upgrading

infrastructure, and optimizing network architectures. Additionally, ongoing research and

development efforts are essential to explore innovative solutions that enhance the capacity,

efficiency, and resilience of optical fiber networks.

The two primary limiters of the achievable information rate (AIR) in optical fiber

networks are the nonlinear channel effects originating from the Kerr nonlinearity and the

amplified spontaneous emission (ASE) noise. While the linear effects also impact the signal

transmission through fiber, they can be corrected through simple linear equalization, in

contrast to their nonlinear counterpart. The Kerr effect in optical fiber arises from the

nonlinear optical response of the material, resulting in a change in the refractive index with

the intensity of the light. As the power of transmitted signal is increased, the impact of



the fiber nonlinearity becomes more significant. The Kerr nonlinearity gives rise to several

impairments in optical fiber networks, such as the four-wave mixing, self- and cross-phase

modulation. The ASE noise, on the other hand, is a fundamental quantum effect resulting

from spontaneous photon emission within amplifiers, and not reversible. As the demand for

higher data rates increases, network operators require adopting higher-order modulation

formats. This requires increasing transmission power, pushing communications further into

the nonlinear regime. However, achieving spectrally-efficient transmission in the nonlinear

regime is challenging.

The digital back-propagation (DBP) is an effective equalizer to mitigate the channel

effects in optical fiber [90]. However, due to its high computational requirement, DBP is

impractical for real-time operation [46]. Extensive research has been dedicated to reducing

the computational burden associated with DBP, resulting in significant advancements such

as the proposal of the folded-DBP [34, 69, 110, 111], filtered-DBP[27, 87], enhanced-

DBP [91, 92], and generalized DBP [30]. With the rapid progress in the field of machine

learning, the attention has recently focused on leveraging the advances in neural networks

for the nonlinear equalization. These emerging approaches harness the capabilities of neural

networks to learn and model the intricate nonlinear patterns present in the received signals.

Recent studies have showcased promising outcomes, achieving comparable performance to

the traditional methods such as DBP with reduced computational complexity [2, 12, 48,

49, 55].

The integration of the neural networks into fiber-optic communication systems is a

noteworthy advancement, as it presents a promising alternative to the nonlinearity mitiga-

tion techniques that are often computationally demanding. By capitalizing on the learning

capabilities of the neural networks, researchers aim to overcome the limitations of the

traditional approaches and enhance the performance and reliability of the fiber-optic com-

munication systems.

The main focus of this thesis is to investigate the potential of the model-based neu-

ral network equalizers, primarily the learned digital back-propagation (LDBP), for low-

complexity mitigation of the linear and nonlinear effects in dual-polarization optical fiber

transmission. The performance and complexity trade-off of the different equalizers is stud-

ied, applied to both dispersion-uncompensated links, as well the legacy dispersion-managed

(DM) systems with inline optical dispersion compensation. Below, the contributions of this

PhD work are described for each chapter.

Chapter 2 provides an overview of the optical fiber transmission systems relevant to

this thesis. The chapter starts by describing the physical structure and characteristics

of optical fiber. This sets the stage for the subsequent sections, where we explore the

linear effects, such as the chromatic dispersion, and the nonlinear effects, such as self-

and cross-phase modulation, that impact the propagation of optical signals in both single-
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polarization and dual-polarization transmission. Proceeding further, we delve into the

mathematical model of the propagating signal, characterized by the nonlinear Schrödinger

equations, along with the vectorial form of the Schrödinger’s equation averaged over fast-

varying polarization mode dispersion (PMD). Continuing our exploration, we investigate

the optical transmitter, starting with the advanced modulation formats, followed by an

analysis of the Mach-Zehnder modulator (MZM), which converts the electrical to optical

signals. We subsequently delve into the techniques for generating optical signals with

higher-order modulations through the use of the MZM. The chapter then introduces the

receiver, highlighting the equalization of the adverse channel effects. We will then describe

in detail the linear DSP chain, comprising the CD compensation, MIMO equalization,

carrier frequency offset estimation, and constant phase estimation. Finally, we present the

LDBP for equalizing the linear and nonlinear effects within the channel.

In Chapter 3, we delve into the fundamentals of neural networks, which constitute an

important part of this research. Our exploration begins with the mathematical model of

the perceptron, which serves as the fundamental building block for constructing neural net-

works. We outline the mathematical model underlying the neural networks, introduce vari-

ous architectures including the fully-connected, convolutional, and long short-term memory

(LSTM) neural networks, and provide an exposition of the training algorithms. Further-

more, we provide literature examples on the neural network-based approaches to mitigating

the effects of optical fiber channels. Through Chapters 2 and 3, we establish the essential

background necessary for comprehending the subsequent chapters of the thesis.

In Chapter 4 , we compare the performance and complexity of LDBP and LDBP. We

will highlight the problem with the training complexity of LDBP in long-haul transmission,

and introduce a parameter sharing approach in order to simplify the training of LDBP,

applied to the uncompensated fiber transmission links.

Chapter 5 represents the core contribution of this thesis, where we study the poten-

tial of LDBP in enhancing DM systems with coherent transmission, thereby doubling the

achievable data rates. LDBP is a model based neural network that shares the same com-

putational graph as the LDBP, except that, in the case of LDBP, the filter taps are treated

as "free weights" that can be learned. By doing so, the model can be trained to capture

the complex interactions in the signal propagating in the channel, while maintaining the

same complexity as the LDBP. Despite their outdated nature, DM systems continue to

be utilized in certain segments of optical fiber networks, primarily for carrying informa-

tion at bitrates in the tens of Gbits/s range, using basic on-off keying (OOK) modulation.

Our research demonstrates a substantial increase in achievable bitrates to the order of

several hundreds of Gbits/s. This is made feasible by leveraging modern techniques like

polarization-division multiplexing and higher order M -quadrature amplitude modulation

(QAM) modulations, effectively harnessed through the implementation of the LDBP re-

14



ceiver.

Finally, Chapter 6 concludes the thesis and provides insights into potential areas for

future research.
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CHAPTER 2

Fiber-optic communication systems

An optical communication system has three main components: a transmitter, a receiver,

and a transmission channel. The goal of fiber-optic communication systems is to carry the

information reliably from the transmitter to the receiver through the optical fiber channel.
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2.1 Introduction

Optical communication systems have revolutionized the way information is transmitted

over long distances, offering high-speed and reliable data transfer. These systems comprise



2.1. Introduction

three main components: the transmitter, the receiver, and the optical fiber transmission

channel. The primary objective of fiber-optic communication systems is to ensure the

seamless and efficient delivery of information from the transmitter to the receiver through

the optical fiber channel.

Unlike the transmitter and receiver, we have limited control over the optical fiber com-

ponents. While the fabrication of optical fibers can be improved, there are theoretical limits

for the fiber parameters. For example, the lowest-ever transmission losses were achieved in

2018 by researchers at Sumitomo’s Optical Communications Laboratory in Japan, with re-

ported attenuation coefficients of 0.1419 dB/km at 1560 nm wavelength and 0.1424 dB/km

at 1550 nm in a Ge-free silica-core optical fiber [99]. Prior to this, progress in reducing

attenuation coefficients was relatively slow with values around 0.162 dB/km in 2010 [82],

0.154 dB/km in 2013 [53], and 0.152 dB/km in 2016-17 [104]. Even with the accelerated

technological advancements, the attenuation of silica-glass cannot be brought to zero, since

it is approaching its theoretical limit. The Chromatic Dispersion of a fiber is another nega-

tive impacting effect that can be changed by acting on the physical properties of the mate-

rial. Various fiber types were developed to reduce dispersion, including dispersion-shifted

fiber (DSF) with a dispersion parameter D < 1 ps/(nm.km) at a wavelength λ = 1550

nm, and non-zero dispersion-shifted fiber (NZ-DSF) with a D value ranging from 2 to

4 ps/(nm.km). The most commonly used fiber in networks is referred to as ’dispersion-

unshifted’ single-mode fiber (SMF). SMF exhibits low chromatic dispersion in the optical

window around λ =1310 nm but experiences higher chromatic dispersion (CD) in the

1550 nm region, limiting transmission length without appropriate compensation. SMF

is designed to minimize chromatic dispersion in the 1550 nm window, achieving D ≈17

ps/(nm.km), but it has zero dispersion somewhwer between 1525 nm and 1575 nm [19].

However, DSF has drawbacks, such as significant four wave mixing (FWM) generation,

rendering communication systems incorporating dense wavelength-division multiplexing

(DWDM) practically impossible. Additionally, randomly varying effects like polarization

mode dispersion (PMD) and state of polarization (SOP) further pose challenges to com-

munication systems. Overcoming these fiber-related challenges requires smart design and

optimization of the transmitter and receiver.

This chapter aims to explore the effects of the fiber channel that influence the quality

of optical signal transmission through optical fiber. We categorize these effects into three

main groups: attenuation, linear effects, and nonlinear effects. We then explore the design

aspects of optical fiber transmitters, as well as the modulation formats employed for optical

fiber transmission. Furthermore, we examine the essential components of optical fiber

receivers, focusing on the various DSP blocks that constitute modern coherent receivers

widely utilized in contemporary communication systems. By covering these topics, we

gain a comprehensive understanding of the key elements involved in achieving reliable and

17
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Figure 2.1: Refractive index profile.

high-performance optical fiber communication.

2.2 Optical Fiber Channel

Optical fibers are narrow strands made of silica glass which carry the optical signal from

one end to the other. Step-index fibers consist of a core made of glass with a refractive

index n1 that is higher than the refractive index of the surrounding cladding layer nc,

as shown in Figure 2.1. This configuration traps light propagating inside the fiber by

continuously bouncing the light against the boundary separating the core and cladding

[6]. The refractive index difference can be achieved by either increasing the refractive

index for the core silica through germanium-oxide (GeO2) doping, or by decreasing the

refractive index of the cladding through fluoride (F ) doping. Additionally, the polymer

coating is sometimes considered as a third layer. However, this layer does not interfere

with the signal propagation; its primary purpose is to provide protection for the glass fiber

against external abrasion, environmental factors, micro-bending loss, and stress corrosion

or fatigue

Within these optical fibers, the light can travel according to one or several modes.

Here, the term ’mode’ denotes the unique routes or patterns that the light follows as it

propagates within the fiber. These modes correspond to varied spatial arrangements of the

light waves as they reflect and traverse along the fiber. The number of modes that a fiber

can accommodate is dependent on several parameters, including the size of the core, the

refractive index distribution, and the operational wavelength. This multiplicity of modes

leads to the classification of optical fibers into two fundamental categories: single mode

fibers and multi-mode fibers. Single mode fibers permit the propagation of a single signal

mode, whereas multi-mode fibers supports multiple orthogonal modes. The capability

of a fiber to support single or multi-mode propagation at a given wavelength primarily

hinges on the difference in refractive index between the core and the cladding, denoted

as ∆n = n1 − nc, in conjunction with the diameter of the core. Conversely, a smaller

refractive index disparity and a smaller core diameter result in a fiber that can support
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fewer modes.

The principal impairments that occur during long-haul transmissions can be broadly

categorized into two groups: linear and nonlinear effects. Linear transmission effects en-

compass phenomena such as chromatic dispersion that causes pulse spreading, attenuation

leading to signal power loss, and polarization mode dispersion. On the other hand, non-

linear transmission effects arise due to interaction between the optical signal and fiber’s

nonlinear characteristics resulting in signal distortion and degradation. These nonlinear

effects include phenomena such as self and cross-phase modulation, four-wave mixing, cross-

polarization modulation, stimulated Raman and Brillouin scattering [83]. These impair-

ments can greatly affect the quality of the transmission and must be carefully considered

in the design and operation of long-haul optical networks. In the subsequent sections, we

delve into the various impairments that affect long-haul transmissions.

2.2.1 Linear Transmission Effects

2.2.1.1 Attenuation

The power of the signal propagating through the fiber decreases exponentially with respect

to z, which follows the equation:

P (z) = P0 · exp (−αz), (2.1)

where P0 is the launched power measure in [W], z is the distance in [km] and α is the atten-

uation coefficient measured in [/km]. The attenuation of optical fibers is often quantified

in [dB/km] units, which is calculated using the following formula:

α[dB/km] = 10 log10
(
exp (α[/km])

)
≈ 4.343 · α[/km]. (2.2)

Expressing the attenuation in [dB/km] simplifies the calculation of loss, as the signal loses

α [dB] of its power for each kilometer it travels. Typically, single mode fiber has a minimum

loss around 0.2 dB/km for fibers operating in the at 1550nm.

Several factors contribute to fiber loss, but the primary causes are material absorption

and Rayleigh scattering. Silica glass, which is commonly used in fiber optics, has electronic

resonances in the ultraviolet and vibrational resonances in the far-infrared, but it does not

absorb much light in the 0.5 to 2 µm wavelength range [6]. Despite the numerous attempts

to reduce fiber losses since the invention of glass fiber as a means of data transmission,

the ultimate limit on how low fiber attenuation can get is set by the intrinsic Rayleigh

scattering. This loss, which varies with the wavelength as λ−4 and is most prominent at

short wavelengths, is intrinsic to silica fiber and cannot be completely eliminated.

Doping the fiber also contributes to increased losses, however to a lesser extent. While

both fluoride and Germanium-Oxide dopants can result in higher losses, using fluoride
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Figure 2.2: Wavelength-dependent refractive index n and group refractive index ng for fused silica.

to dope the cladding rather than Germanium-Oxide in the core can lead to better at-

tenuation characteristics as the majority of the signal’s energy is propagated through the

core. Additionally, other factors such as bending of the fiber and scattering of light at the

core-cladding interface also impact fiber losses.

The current lowest-ever achieved transmission losses in a Ge-free silica-core optical fiber

is reported in [99], where the authors used fluorine co-doping and a two-layered polymer

coating.

2.2.1.2 Chromatic Dispersion

The refractive index of the transparent optical medium through which the optical signal

propagates depends on the optical frequency, denoted as f . The propagation velocity of

the signal is determined by the refractive index of the medium, causing different frequency

components to travel at distinct velocities, represented as c/ng(ω), where ω = 2πf is the

angular frequency in [rad/s], c is the speed of light in vacuum, measuring 2.9979×108m/s,

and ng(ω) is the frequency dependant group index, defined as:

ng(ω) =
∂

∂ω

(
ω · n(ω)

)
= n(ω) + ω

dn

dω
. (2.3)

The variation of the refractive index and group index for silica glass, in relation to the

wavelength, are illustrated in Figure 2.2. This dependency of the refractive index on

the angular frequency, also known as material dispersion, is an intrinsic characteristic of

silica glass, which is a fundamental component of optical fibers. The group velocity vg,

corresponding to any spectral component of the wave propagating through the optical

fiber, is given by:

vg(ω) =
c

n(ω) + ω dn
dω

. (2.4)
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Due to the varying propagation speeds of spectral components, a phase shift occurs

among the different spectral components of a signal as it travels through the fiber, resulting

in the phenomenon known as CD. The chromatic dispersion leads to a broadening of the

pulse in the time domain, as illustrated in Figure 2.3. This dispersion causes interference

between symbols and consequently impairs the propagation of short optical pulses, even

in the linear regime where nonlinear effects are less pronounced.

When defining the wavelength-dependent refractive index of a transparent optical ma-

terial, the Sellmeier equation 1 is commonly used:

n(λ) ≈

√
√
√
√1 +

m∑

j=1

Ajλ2

λ2 − λ2
j

, (2.5)

where λj is the wavelength corresponding to the resonance frequency ωj , and Aj is a

parameter determined experimentally by measuring the dispersion at various wavelengths

and fitting the measurements to Eq. 2.5. For instance, when calculating the refractive

index value for fused silica, as documented by Malitson [71], the equation becomes:

n(λ) ≈
√

1 +
0.6961663λ2

λ2 − 0.0684043
+

0.4079426λ2

λ2 − 0.1162414
+

0.8974794λ2

λ2 − 9.896161
, (2.6)

which provides an accurate measurement for wavelengths ranging from 0.21 µm to 3.71 µm

at 20 ◦C.

The effects of fiber dispersion can be effectively seen by considering the Taylor series

expansion of the mode-propagation constant β around the central frequency ω of the pulse

spectrum

β(ω) = β0 + β1(ω − ω0) +
1

2
β2(ω − ω0)

2 +
1

6
β3(ω − ω0)

3 + . . . , (2.7)

where the term βi is the i-th derivative of the propagation constant with respect to the

angular frequency ω0, such as

βi =
∂iβ

∂ωi

∣
∣
∣
ω=ω0

(i = 0, 1, 2, . . . ). (2.8)

Each of the constants βi, characterizes different effects related to the propagation of

optical signals in an optical fiber. The zero-order term, β0, measured in [km−1], represents

a common phase shift in the propagating signal. The first-order term, β1, is measured in

units of [ps/km] and is the inverse of the group velocity vg, which represents the speed at

which the overall energy of the signal propagates. The group index ng is defined as the

ratio of the speed of light c to the group velocity vg, i.e., ng = c/vg. The second-order

term β2, measured in [ps2/km], corresponds to the group velocity dispersion (GVD), and

1The equation in Sellmeier’s original work [71] uses wavelengths. However, a modified version of the

Sellmeier equation, which operates with optical frequency, is derived by replacing λj with ωj and the

constants Aj with Bj .
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Optical fiber Optical fiber

Figure 2.3: A schematic diagram of the pulse spreading due to chromatic dispersion. The attenu-

ation due to transmission over fiber is neglected.

quantifies the change in velocities of different spectral components within a propagating

pulse. Finally, the third-order term β3 is measured in [ps3/km], and represents the slope

of the GVD and indicates the variation of GVD with respect to angular frequency.

When a pulse with a spectral width ∆ω is launched into the fiber of length L, the pulse

broadening for the fiber length is governed by

∆TCD =
∂T

∂ω
∆ω =

∂

∂ω

( L

vg

)

∆ω = L
∂2β

∂ω2
∆ω = Lβ2∆ω, (2.9)

where T denotes the duration required for the pulse to propagate. This indicates that

the severity of chromatic dispersion is primarily influenced by the coefficient β2, the total

length of the optical fiber, and the spectral width of the signal. Eq. (2.9) uses the definition

vg = (∂β/∂ω)−1.

When considering fiber-optic transmission systems, it is generally more prevalent to uti-

lize the dispersion coefficient, D, and its slope, D′. These factors depend on the wavelength

and are connected to β2 and β3 as follows:

D =
∂β1
∂λ

= −2πc

λ2
β2 (2.10)

D′ =
∂D

∂λ
=

4πc

λ3

(

β2 +
πc

λ
β3

)

, (2.11)

where D is measured in [ps/(nm.km)] and D′ is measured in [ps/(nm2.km)]. Apart from

the material dispersion we just discussed, another type of dispersion, called waveguide

dispersion, arises due to the fiber’s structure, which is determined by the transverse index

profile. It affects the propagation of different modes, leading to variations in their group

velocities and causing further broadening of the optical pulse. While material dispersion

alone cannot be zero, it is possible to achieve zero dispersion at a specific wavelength,

known as the zero-dispersion wavelength, where the influences of material and waveguide

dispersion have equal magnitudes but with opposite signs.

2.2.1.3 Polarization Mode Dispersion

Single-mode fibers can support two signals polarized in orthogonal directions, x and y,

which are represented by two orthogonally polarized modes in linear superposition. This
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Figure 2.4: A diagram illustrating the effect of first order PMD (also referred to as DGD) in time-

domain over a fiber with constant birefringence.

allows for any polarized optical wave to be decomposed into these two modes, each carrying

independent information. However, the phenomenon of PMD may arise in systems utilizing

dual-polarization transmission due to variations in the refractive index along the length of

the fiber, which affects the propagation of each polarized mode differently. The PMD can

be caused by a variety of factors, including material birefringence, random imperfections

or bending of the fiber, mechanical stress, and temperature changes.

These factors lead to an asymmetry in the fiber, causing one polarized mode to propa-

gate at a different velocity than the other, leading to the differential group delay (DGD).

A diagram illustrating the effect of DGD is shown in Figure 2.4. In an ideal fiber, the

properties of both modes are the same because of its cylindrical symmetry, but in real

fibers, asymmetry causes the modes to have different properties, leading to PMD. The

birefringence Bm and the difference in group velocity ∆β1 are linked together by the equa-

tion

Bm =
c

ω0
|β1x − β1y| = |nx − ny|, (2.12)

where β1x and β1y are the inverse of the group velocities of each mode respectively along

the x- and y- axes, and nx and nx is the respective refractive indices. The axes x and y are

sometimes referred to with the slow and fast axes depending on the propagation velocity.

The difference in propagation velocities across each polarization leads to pulse broadening

due to PMD. In fibers with constant birefringence, the time delay due to DGD, denoted

as ∆TDGD, between the two polarization components propagating inside a fiber of length

L can be estimated by

∆TDGD =

∣
∣
∣
∣

L

vgx
− L

vgy

∣
∣
∣
∣
= L |β1x − β1y| , (2.13)

where vgx and vgy are the group velocities of the signals propagating in the x- and y-

polarizations, respectively. When a continuous wave signal is transmitted through an

optical fiber at an angle to one of its axes, the velocity difference between the two axes

induces a phase shift between the two polarizations. The polarization state of the light in

this case oscillates from linear to elliptical, then to circular, and back to linear. The beat

length, defined as LB = λ/Bm, corresponds to the distance at which this cycle repeats once.
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Birefringence effects and polarization orientation change randomly every approximately 1

cm in high-birefringence fibers, and up to tens of meters in low-birefringence fibers [8].

2.2.2 Nonlinear Transmission Effects

The Kerr effect is a nonlinear optical phenomenon characterized by a change in the refrac-

tive index of a material that is proportional to the intensity of an electric field within the

material. This change in refractive index leads to a change in the phase of light passing

through the material, resulting in nonlinear optical effects such as self-phase modulation,

four-wave mixing, and soliton formation. The Kerr effect thus start to impact the trans-

mission system at high transmitted power.

The change in refractive index with the intensity of the signal, |q|2, can be modeled by:

ñ(ω, |q|2) = n(ω) +
n2

Aeff

|q|2, (2.14)

where Aeff is the effective core area of the fiber measured in [m2], n(ω) is the linear part

of the refractive index given by Eq. (2.5), and n2 is the nonlinear index in [m2/W]. The

typical values of these parameters are n2 = 2.5−3.2×10−20 m2/W and Aeff = 50−120µm2.

For SMF, Aeff = 80µm2.

The channel effects discussed so far, including attenuation, chromatic dispersion, and

nonlinearities, simultaneously impact the transmission of a signal along a fiber. We

will denote the dual-polarized signal at time t and distance z with the vector q(z, t) =

[qx(z, t), qy(z, t)]. The propagation of a signal over a long, randomly birefringent transmis-

sion fiber is governed by the nonlinear Schrödinger equation (NLSE):

∂q(z, t)

∂z
= −α

2
q− jβ2

2

∂2q

∂t2
+

β3
6

∂3q

∂t3
+ jγ |q|2 q, (2.15)

where γ is the nonlinear coefficient which is defined as:

γ =
8

9

2π

λ

n2

Aeff

. (2.16)

The factor 8/9 in the nonlinear coefficient in Eq. 2.16 is specific to randomly birefringent

fibers, and changes to 1 in fibers with constant birefringence. The NLSE demonstrates

that the strength of the Kerr effect is directly proportional to the optical signal power,

as represented by |q|2. This means that the impact of the Kerr effect is strongest in the

initial kilometers of the fiber transmission, where the optical power is high. As the optical

signal attenuates inside the fiber, the effect of nonlinearity becomes negligible at the end of

the fiber. It is useful to define an effective length Leff normalized against the signal power.

This formula is derived by integrating the normalized power along the entire length of the

fiber.

Leff =

∫ L

0
exp (−αz)dz =

1− exp (−αL)
α

, (2.17)
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Figure 2.5: An illustration of the effect of self-phase modulation (SPM) on the received symbols

constellation.

where L is the fiber length and α is the attenuation coefficient. The effective length of a

100 km fiber assuming an attenuation coefficient of 0.2 dB/km is calculated to be 21.5 km.

However, for a 15 km fiber, the effective length is half of this value, demonstrating that

approximately 50% of the nonlinearity in a 100 km fiber occurs in the first 15 km of the

fiber transmission.

Nonlinear effects attributed to Kerr nonlinearity form a wide family of different ad-

verse effects impacting the quality of the propagating signal. When different signals with

different wavelengths propagate together in the fiber (as is the case in wavelength-division

multiplexing (WDM)), the combined energy contribute to nonlinear impairments which

impact all the signals. Depending on the source of the nonlinear impairment, Kerr effect

is divided in two categories namely: inter-channel and intra-channel effects. Intra-channel

refers to nonlinearities occurring within a wavelength channel itself whereas inter-channel

effects originate from the interaction between different wavelength channels. Both types

of effects can be in turn broken down into more elementary nonlinearities arising either

from signal-signal interactions or from the interplay between the optical signal field and

the noise, mainly amplified spontaneous emission (ASE).

2.2.2.1 Self-Phase Modulation

As the electromagnetic field propagates through the optical fiber, it interacts with the

refractive index based on its instantaneous power, as described in Eq. 2.14. This interaction

results in a nonlinear phase shift known as self-phase modulation (SPM). The impact of

SPM can be studied using the NLSE, represented by Eq. 2.15, assuming a non-dispersive

channel (β2 = β3 = 0). The simplified equation capturing the nonlinear components of the
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NLSE is:
∂q(t, z)

∂z
= −α

2
q + jγ |q|2 q. (2.18)

The solution for this reduced model is obtained as:

q(t, z) = q(t, 0) · exp
(−αz

2

)

exp (jΦNL(t, z)) (2.19)

ΦNL(t, z) = γ · 1− exp (−αz)
α

∣
∣q(t, 0)2

∣
∣ , (2.20)

where ΦNL(t, z) represents the SPM-induced nonlinear phase. The effects of phase distor-

tion generated by SPM are illustrated in Figure 2.5. The figure demonstrates that SPM

distorts the initial circular noise cloud into an elongated ellipse as it propagates through

the fiber with a length of L. Two dashed circular arcs indicate the range of amplitude

fluctuation. The induced phase distortion adversely affects the coherent receiver’s ability

to accurately detect the transmitted signal’s phase. Furthermore, the interaction between

CD and SPM can introduce distortions in the signal’s amplitude. Therefore, it is crucial to

meticulously design the system to mitigate the influence of SPM. This involves operating

within the linear regime by reducing the launched power to a lower level. The SPM-induced

phase shift results in a nonlinear frequency shift, which is described by the equation

∆fNL(t) = −
1

2π

∂ΦNL

∂t
. (2.21)

SPM can hence lead to the generation of new frequency components as the pulse propagates

through the fiber, which prompts the need to consider SPM impact when designing optical

filters.

2.2.2.2 Cross-Phase Modulation

cross-phase modulation (XPM) is a nonlinear optical effect that can occur in optical fibers.

It arises when two or more optical signals simultaneously propagate through a medium and

dynamically interact with each other. This interaction leads to a significant phase shift

experienced by one or both of the signals involved in the SPM process. The mechanism of

SPM can be understood by considering the interaction between the optical fields and the

refractive index of the medium through which they are propagating. When two or more

optical fields are present, they create a time-varying refractive index in the medium, which

in turn affects the propagation of each of the fields. The resulting phase shift in one of the

fields depends on the intensity and wavelength of the other fields, as well as the length of

the fiber and the nonlinear coefficient of the medium.

Let us consider the WDM signal with a complex envelope denoted as q(0, t), which is

launched into the fiber link by combining the signals from different WDM channels:

q(0, t) =
∑

n

qn(0, t)e
−jωnt, (2.22)
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2.2. Optical Fiber Channel

where qn(0, t) represents the signal propagating in the n-th channel of the WDM, centered

at ωn. The index n = 0 corresponds to the central channel, and ω0 represents the central

frequency. Under the same assumptions made in Eq. 2.18, the induced nonlinear phase

due to SPM can be expressed as:

ΦNL,XPM(z, t) = γ · 1− exp (−αz)
α

∑

n ̸=0

|qn(0, t)|2 . (2.23)

Similar to SPM, SPM poses challenges to transmission systems as it generates “ inter-

channel crosstalk ” when multiple signals propagate together. In the case of multi-channel

transmission, the detrimental effects of XPM are more pronounced compared to SPM. This

is because the receiver only perceives the signal from one channel and remains unaware

of the other signals propagating in adjacent channels. However, it is worth noting that

XPM can also have positive effects on optical communication systems, particularly when

employed for wavelength conversion or signal regeneration purposes.

2.2.2.3 Four-Wave Mixing

FWM is a nonlinear phenomenon where two or more frequency components interact to

generate new ones. Four-wave mixing in fibers shares a common origin with self-phase

modulation and cross-phase modulation, all resulting from the Kerr nonlinearity, where

the intensity-dependant refractive index of silica is modulated by different frequency com-

ponents. When two co-propagating input frequency components f1 and f2 are present,

a refractive index modulation occurs, resulting in the generation of two new frequency

components (f3 = 2f1 − f2 and f4 = 2f2 − f1). Other frequency components can also

be generated, however they are less commonly used due to difficulty in phase-matching,

especially in fiber optic systems. Two scenarios are considered in the context of FWM.

In the first scenario, where f1 ̸= f2, the frequency of the fourth wave is determined by

adding the frequencies of the first and second waves and then subtracting the frequency of

the third wave, denoted as f4 = f1 + f2 − f3. This is referred to as ’non-degenerate FWM

Generation.’ In the second scenario, when f1 = f2, the frequency of the fourth wave is

expressed as f4 = 2f1− f3. This unique condition results in a distinct phenomenon known

as ’Degenerate FWM,’ which, although similar to SPM and XPM, differs in the degeneracy

of the involved waves.

2.2.3 Optical Amplification

As optical signals travel through the fiber, they experience losses due to absorption and

scattering, which weakens the signal and reduces its quality. To overcome the attenuation

and dispersion effects that occur in optical fiber transmission, optical signal amplification

is necessary. This compensates for the losses by boosting the signal power in the optical
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Figure 2.6: Schematic diagram of EDFA

domain, which is achieved through various methods, including erbium-doped fiber ampli-

fiers (EDFAs), semiconductor optical amplifiers (SOAs), and Raman amplification. Fiber

amplifiers are a type of optical amplifier that use optical fibers as a laser gain medium.

They utilize glass fibers doped with rare earth ions such as erbium, neodymium, ytterbium,

praseodymium, or thulium. These active dopants are provided with energy by pumping

them with light from a laser, such as a fiber-coupled diode laser.

When it comes to long-haul optical fiber communications, EDFAs are by far the most

adopted fiber amplifiers. EDFAs have the ability to effectively amplify light in the wave-

length range of 1550 nm, where the optical fiber incurs the lowest loss. In EDFA, ampli-

fication is conducted through an Erbium-doped optical fiber which is pumped with light

from the laser diodes. The pump light which propagates through the fiber core together

with the signal to be amplified, which is typically 980 nm or 1480 nm in wavelength, is

used to excite the Erbium ions (Er3+) into an excitation state. By periodically amplifying

the signal along the fiber, a significant loss of signal quality can be avoided.

EDFA Amplification is accompanied with ASE, which originates from the optical am-

plifier itself. Specifically, ASE is caused by the spontaneous emission of photons in the gain

medium of the amplifier that are amplified by the same gain medium, resulting in amplified

noise. This consecutively diminishes the signal-to-noise ratio. When using a series of cas-

caded lumped amplifiers, the accumulation of ASE noise can significantly increase. Each

amplifier adds ASE noise, which is further amplified by the subsequent amplifiers in the

link. If all amplifiers in the chain have the same gain G = eαLA and are spaced apart by

the same distance LA, the total ASE power for a chain of NA amplifiers can be calculated

as follows [5]:

Ptot = 2nsphν0NA(G− 1)∆ν0 = 2NASASE∆ν0. (2.24)

Here, the factor 2 in the equation accounts for the ASE generated for the two orthogonal

polarizations. SASE represents the power spectral density of the ASE noise, h is Planck’s

constant, 1 < nsp ≲ 1.5 is the spontaneous emission factor, ν0 is the carrier frequency, and

∆ν0 is the bandwidth of the amplifier gain.
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Figure 2.7: A diagram showing a fiber divided into a series of small birefringent segments coupled

randomly.

2.2.4 Vectorial Form of the Nonlinear Schrödinger Equation

The equation which governs the evolution of the signals in two polarizations in optical fiber

is the coupled nonlinear Schrödinger’s equation (CNLSE) [73]

∂qx
∂z

+ β1x
∂qx
∂t

+
jβ2
2

∂2qx
∂t2

+
α

2
qx = jγ

(

|qx|2 +
2

3
|qy|2

)

qx +
γ

3
q2yq

∗
x exp(j∆βz), (2.25a)

∂qy
∂z

+ β1y
∂qy
∂t

+
jβ2
2

∂2qy
∂t2

+
α

2
qy = jγ

(

|qy|2 +
2

3
|qx|2

)

qy +
γ

3
q2xq

∗
y exp(j∆βz), (2.25b)

where qx and qy represent the complex envelopes of the signal in the x-polarization and

y-polarization, respectively, as functions of time t and distance z, β1x and β1y are the first-

order dispersion coefficients along each polarization, which are related to the beat length

LB with the formula ∆β = β1x−β1y = 2π/LB. The parameters β2 and γ are the same for

either polarization since they operate at the same wavelengths. The last term in (2.25a)

and (2.25b) is caused by the coherent coupling between both polarizations, however for

fiber length Lfiber ≫ LB its contribution averages out to zero [8].

The first-order dispersion coefficients β1x and β1y are polarization-dependent, which re-

sults in DGD between the two polarizations. In practice, the direction of light polarization

is not always maintained due to various factors such as fiber imperfections and twisting,

which can introduce rapidly varying birefringence.

2.2.4.1 Numerical Resolution: Split Step Fourier Method

To numerically simulate the signal propagation in the forward direction, from the trans-

mitter to the receiver, the commonly used method is the split-step Fourier method (SSFM)

with distributed PMD [7]. The system of equations in (2.25) is solved within each span by

discretizing the fiber span into Nseg segments of length δs. Within each segment i, a linear

step, a PMD step, and a nonlinear step are performed iteratively from the transmitter end

to the receiver end, as follows.

1. Linear step: Solves for the signal loss and CD in the frequency domain, by assuming
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γ = 0. Considering only the terms which include α and β2 in Eq. (2.25), we obtain

q̂x/y(z, ω)→ exp

(

−α

2
δs +

jβ2
2

ω2δs

)

q̂x/y(z, ω), (2.26)

where q̂x/y(z, ω) denotes the Fourier transform of the time domain signal qx/y(z, t).

2. PMD step: The PMD effects, including the DGD and random PSP, can be both

modeled by applying the unitary Jones matrix J(i)(ω) to the signal vector q̂(z, ω) =

[q̂x(z, ω), q̂y(z, ω)]
⊤ as follows

q̂(z, ω)→ J(i)(ω)q̂(z, ω), (2.27)

where J(i)(ω) = R(i)D(i)(ω). The R(i) here is a rotation matrix described as

R(i) =




ej

φi
2 cos θi e−j

φi
2 sin θi

−ej
φi
2 sin θi e−j

φi
2 cos θi



 , (2.28)

where θi and ϕi, i ∈ 1, 2, ..., Nseg, are sequences of independent identically distributed

(i.i.d.) random variables drawn from a uniform distribution from [0, 2π). Further-

more, D(i)(ω) is the DGD matrix

D(i)(ω) =




e−jω

τi
2 0

0 ejω
τi
2



 , (2.29)

where the DGD parameters (τi)
Nseg

i=1 are taken to be as i.i.d. random variables drawn

from the normal probability distribution N (0, τ
√
δs), where τ is the characteristic

constant of the channel called the PMD coefficient.

3. Nonlinear step: Solves for the signal nonlinear effects by only considering the terms

which include γ in Eq. (2.25)

qx/y(z, t)→ exp

(

jγδs
(
|qx/y|2 +

2

3
|qy/x|2

)
)

qx/y(z, t). (2.30)

Upon performing the three aforementioned steps, the signal propagation is numerically

simulated at a distance of z + δs, resulting in the signal qx/y(z + δs, t). This process is

iteratively repeated for each segment until the end of the span. To simulate the entire

optical fiber channel, amplification is applied at the end of each span to compensate for

signal attenuation, and noise generated by ASE is added. The SSFM simulation continues

until the signal has propagated through the entire optical fiber link.

2.2.4.2 Manakov Equation

One challenge in solving CNLSE is the rapidly changing SOP with a length scale of 0.3-

100m, whereas PMD, chromatic dispersion, and Kerr nonlinearity have much larger length
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scales spanning hundreds or thousands of kilometers. This changing SOP can cause the

x-polarization and y-polarization signals to be indistinguishable due to rapid changes in

the orientation of the axes of birefringence θ along the fiber. When the PMD is small

but the birefringence varies rapidly, the Manakov equation can be used to describe signal

propagation, which is given by [73]

∂q

∂z
=

(

− 1

2
α− β1(z)

∂

∂t
− jβ2

1

2

∂2

∂t2
+ j

8

9
γ||q||2

)

q. (2.31)

Here, q(z, t) = [qx(z, t), qy(z, t)]
T is the Jones vector containing the propagating signals

in both polarizations, and β1(z) describes the evolution of β1 with distance. The Man-

akov equation is particularly well-suited for digital back-propagation (DBP) applications,

especially when the evolution of the SOP along the fiber is unknown.

2.3 Optical Transmitters

The data carrying the information starts at the transmitter as a stream of bits, 1s and 0s,

and are then encoded into a continuous signal using a modulation format. The continuous

signal in the electrical domain must be transformed to the optical domain before being

launched in the fiber. Some means of achieving this include: directly modulated Lasers

(DML), electro-absorption modulators (EAM), Mach-Zehnder modulators (MZMs), and

phase modulators. The MZM stands out as the most suitable option for practical long-

haul high-speed transmission systems, making it the focus of this thesis.

Current optical fiber links are typically bi-directional, utilizing two fibers for two-way

signal transmission. The combination of optical transmitters and receivers is usually housed

in a single module known as a transponder.

2.3.1 Mach-Zehnder Modulators for OOK Modulation Format

The MZM is a type of external modulation component that is widely used in long-haul

high-speed transmission systems. In this system, the Mach-Zehnder modulator is cascaded

with a continuous wave (CW) distributed feedback (DFB) laser. The reasons why the

MZMs stands out as a suitable option among all the other modulators, such as Directly

Modulated Lasers (DML), Electro-Absorption Modulators (EAM), and Phase Modulators,

are discussed in the following. First, the MZMs has a high electro-optical bandwidth.

This means that it can support high data rates, which are essential for long-haul high-

speed transmission systems. This high electro-optical bandwidth of the MZMs makes it a

suitable choice for transmission rates of 40 Gb/s or higher, which have been demonstrated

experimentally. On the other hand, Directly Modulated Lasers (DML) have a relatively

small electro-optical bandwidth, which makes them less suitable for high-speed long-haul

WDM systems. Another advantage of the MZMs is its low frequency chirp behavior.
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Figure 2.8: Mach-Zehnder modulator, (a) Schematic of the modulator circuit, (b) Relationship

between the optical output and the voltage difference in a MZMs.

Chirp is an undesired phase modulation that results from the direct modulation of the

pump current at high data rates. This results in a broadened spectrum and increased

sensitivity to chromatic dispersion, which can degrade the signal quality. In contrast, the

MZMs modulates the phase of the signal, which minimizes the impact of chirp on the signal

quality.

MZMs were first proposed by Ernst Mach and Ludwig Zehnder and consist of a 3-dB

coupler, a 3-dB splitter (sometimes referred to as a Y-junction), and two waveguides (arms)

of equal length. The incoming light is divided in half and travels through each waveguide.

The two waveguides are made of materials with strong electro-optic properties, such as

LiNbO3, GaAs, and InP. When electric fields are applied across the electro-optic material,

this alters the optical path length, which induces a phase-shift in the optical signal based on

the applied voltage as depicted in Fig. 2.8, leading to phase modulation. By adjusting the

drive voltage, a specific phase difference between the signals in each arm can be achieved,

which is then translated into amplitude fluctuations when the signals at the end of each

arm interfere through the second 3-dB coupler. The input-output relationship of the MZM

is determined by the voltages V1 and V2 applied to its arms, which modulate the output

electric field, Eout, as a function of the input, Ein. This modulation is described by:

Eout ∝ Ein cos

(

π
V1 − V2

2Vπ

)

, (2.32)

where the phase shift in Eout is controlled by the difference V1 − V2, with Vπ being

the voltage that induces a π radian phase shift. This voltage difference also corresponds

to a change from constructive interference to destructive interference. Both arms are

often modulated jointly with V1 = −V2, the modulator is referred to as a "push-pull"

configuration.
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Figure 2.9: non-return-to-zero (NRZ)-OOK: (a) Constellation Diagram with Normalized Power,

(b) Modulated Optical Signal Generation via MZMs.

2.3.1.1 Intensity Modulation/Direct Detection Systems

When optical fiber systems first emerged, they relied on basic modulation formats based

on intensity modulation (IM), such as non-return-to-zero (NRZ)-OOK, combined with

direct-detection (DD) at the receiver. In the NRZ-OOK modulation format, binary data

in its electrical form is directly transformed into an optical signal. This is accomplished by

replicating the binary sequence as pulses of light in the optical domain. The "0"s in the

electrical binary sequence are encoded as weak optical-field power, ideally with null power,

while the "1"s are encoded with high power. This direct encoding of the binary data in

the amplitude of the optical field makes OOK a type of amplitude-shift keying (ASK)

modulation. The constellation diagram of an NRZ signal, as seen in Fig. 2.9, displays the

possible symbols used by the modulation scheme as points in the complex plane, and the

amplitude is null for "0" symbols and high for "1" symbols with a constant phase. In OOK

modulation format, assuming that the signal average power is E, the Euclidean distance

dmin between two points in the complex plane has a value of
√
2E. This Euclidean distance

is closely related to the bit-error-ratio (BER), as they are linked by the equation

BER = Q





√

d2min

2N0



 , (2.33)

where N0/2 is the spectral density assuming additive white Gaussian noise (AWGN) and

Q(·) is the Q-function described as

Q(x) =
1

2
erfc

(
x√
2

)

. (2.34)
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The BER for OOK is hence

BEROOK = SEROOK = Q

(√

Eb

N0

)

, (2.35)

where Eb is the energy per bit. For long-haul optical transmissions, the NRZ-OOK

format is typically generated through a continuous-wave DFB laser and a MZM. The

MZM’s bias voltage is set at the quadrature point, which is positioned in the middle of

the linear region of the MZM transfer function. The MZM’s output is then driven by the

modulating signal whose minimum and maximum levels are within this linear region as

shown in Fig.2.9b. To ensure that the MZM operates within the linear region, the electrical

drive signal must have a peak-to-peak amplitude of less than Vπ. Beyond the quadrature

point in either direction, the linear relationship weakens, and the transfer function enters

the quadratic region. On the receiving end, a single photodiode converts the optical signal

into an electrical signal, and an electrical circuit integrates the photocurrent over a specific

time period. The system’s receiver, equipped with a clock, then detects the pulses and

determines the transmitted binary data through a threshold decision, which is represented

as a slicer in Fig. 2.4-a.

2.3.2 I&Q Mach-Zehnder Modulator for Advanced Modulation Formats

The transmission of information at a high bit rate is one of the primary goals of commu-

nication systems. To achieve this goal, various modulation formats have been proposed

that support coherent detection. In coherent detection, both the amplitude and phase

information of the carrier signal are extracted, making it possible to recover the original

information with high accuracy.

Modulation relies on the concept of the geometric representation of signals, which

represents a set of M energy signals [si(t)] as a linear combination of N orthonormal basis

functions, where N ≤ M . For a set of real-valued energy signals s1(t), s2(t), . . . , sM (t)

with duration T seconds, each signal is expressed as

si(t) =
N∑

i=1

si,jϕj(t),







0 ≤ t ≤ T

i = 1, 2, . . . ,M
(2.36)

where the coefficients si,j are defined as

si,j −
∫ T

0
si(t)ϕi(t)dt,







i = 1, 2, . . . ,M

j = 1, 2, . . . , N
(2.37)

The basis functions ϕj(t) are orthonormal, which means that all real-valued basis functions

satisfy the condition
∫ T

0
ϕi(t)ϕj(t)dt =







1 if i = j

0 if i ̸= j
(2.38)
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The analysis above demonstrates that a finite energy signal can be uniquely represented

as a set of orthonormal basis functions, and there is a one-to-one correspondence between

the signal and the orthogonal basis constructing it. The coefficients for a N -dimensional

vector, called the signal vector s⃗i, is defined as:

s⃗i =












si,1

si,1

. . .

si,N












, i = 1, 2, . . . ,M. (2.39)

Thus, the use of an orthogonal basis set allows for efficient representation of finite energy

signals in terms of a finite number of coefficients. The receiver uses a maximum likelihood

procedure to determine the transmitted signal. It begins by finding the received signal vec-

tor through an inner product between the received signal waveform and each orthonormal

basis. The procedure then assumes that the transmitted signal is the closest signal vector

from a pre-defined set of constellation points.

The choice of modulation format depends on factors such as available bandwidth, chan-

nel conditions, and noise level. Popular modulation formats, including ASK, frequency-

shift Keying (FSK), phase-shift keying (PSK), and quadrature amplitude modulation

(QAM). Each modulation format has unique advantages and disadvantages, making it

difficult to definitively state that one modulation format is superior or inferior to another.

While higher modulation enables higher bitrates, it also increases susceptibility to noise

and interference, requiring a higher signal-to-noise ratio (SNR) for reliable transmission. In

general, no single modulation format is superior to all others in all aspects. The following

sections discuss some of these modulation formats.

2.3.2.1 Phase-Shift Keying

PSK is a widely used modulation format in optical fiber communication. It involves trans-

mitting a signal with a constant amplitude, with information encoded within a set of M

phase levels, where each phase corresponds to a specific value from 0 to 2π. To understand

the advantages of coherent detection and phase encoding, a direct comparison between

binary PSK and OOK can be made, as both schemes transmit one bit of data in each sym-

bol. The signal constellations of binary phase-shift keying (BPSK) and OOK, as shown in

Fig.2.10 and Fig.2.9, illustrate the increased minimum distance dmin of BPSK compared to

OOK, demonstrating BPSK’s superior noise sensitivity. By normalizing the BPSK constel-

lation diagram with respect to the square root of the average power of the optical signal,

the increased minimum distance, dmin, in the case of BPSK compared to OOK, results in

better noise sensitivity, as the BER decreases with the increase of dmin, according to (2.33)

(the Q-function is a monotonically decreasing function). This is due to the fact that both
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Figure 2.10: Constellation diagrams for (a) binary PSK, (b) quadrature PSK, and (c) 8-PSK

modulation schemes, along with their minimum distance values.

Re

Im

(a)

Re

Im

(b)

Figure 2.11: Two examples of M -QAM constellations with Grey coded bit sequences, (a) shows an

8-QAM constellation, and (b) shows a 16-QAM constellation.

symbols in BPSK carry the same energy, but with different phases (either 0 or π). Thus,

the same Euclidean distance as OOK can be achieved with half the power. This leads to a

3-dB lower optical signal-to-noise ratio (OSNR) requirement to achieve the same BER as

OOK. The symbol-error-ratio (SER), which is equivalent to the BER formula for BPSK,

is given by the formula:

BERBPSK = SERBPSK = Q

(√

2Eb

N0

)

, (2.40)

where Eb is the energy per bit and N0/2 is the noise spectral density.

2.3.2.2 Quadrature Amplitude Modulation

In general, as the number of phases in M -PSK increases, the sensitivity to noise also

increases rapidly. This is why values for M higher than 8-PSK are rarely used in practice.

However, to encode more information in the signal while still maintaining a reasonable

level of noise sensitivity, amplitude modulation can be used to add an extra dimension for

information encoding. One such modulation technique is QAM, which combines changes

in both amplitude and phase levels. Compared to PSK, QAM can achieve higher spectral

efficiency and allows for transmitting more information per symbol. Therefore, it is a

popular modulation technique used in modern communication systems.
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Figure 2.12: Principle of 16-QAM signal generation with tandem operation of two IQ-modulators

Fig. 2.11 shows the constellation points of 8-QAM and 16-QAM, and the encoded bits

using Grey coding. The BER for M -QAM is approximately [86]

BERMQAM ≈
1

log2(M)
SERMQAM =

4

log2(M)
Q

(

1− 1√
M

)(
√

3Es · log2(M)

N0(M − 1)

)

,

(2.41)

where Es is the energy of the symbol, and N0/2 is the spectral density of the AWGN.

Generating an M -QAM signal typically requires the use of two MZMs operating in tan-

dem. One MZM generates the in-phase component, while the other produces the quadra-

ture component. These components are added together after applying a phase shift of π
2

to the quadrature component.

For M > 4, each MZM’s driving signal is multi-level, comprising log2M levels. How-

ever, using multi-level driving signals for the MZMs introduces challenges that impede the

generation of high-quality QAM signals: i) Imposing stringent bandwidth requirements on

both the modulator and the electrical drivers when handling multi-level electrical driving

signals. ii) Introducing high complexity associated with high-order optical integration.

Therefore, an alternative to multi-level electrical driving signals is the use of binary elec-

trical driving signals, which can simplify the generation of advanced optical modulation

formats [70]. In this scenario, multiple binary-signal-driven IQ-MZMs are employed in

tandem, as illustrated in Fig. 2.12.

2.3.3 Polarization-Division Multiplexing I&Q Modulator

polarization-division multiplexing (PDM) is a technique used in fiber optic transmission

systems to increase the amount of data that can be transmitted. This is accomplished by

exploiting the polarization property of light waves, which allows data to be sent simul-

37



Chapter 2. Fiber-optic communication systems

taneously over the same physical medium (in this case, an optical fiber). Light can be

polarized in two orthogonal directions, typically referred to as the vertical and horizontal

states. PDM works by modulating the signal data onto two orthogonally polarized light

waves, which are then combined and transmitted through the same fiber. At the receiving

end, the light is split into its constituent polarization states, and the data is demodulated.

Because the two states of polarization do not interfere with each other, the data streams

can be separated cleanly at the receiving end, effectively doubling the transmission capacity

of the fiber.

PDM has become particularly important with the advent of coherent optical fiber

systems, which use a local oscillator and coherent detection to receive the signal. These

systems can accurately separate the two polarization states, making PDM an effective way

to increase data transmission capacity. In addition to being used on its own, PDM is often

used in combination with other multiplexing techniques, such as WDM. The combination

of WDM and PDM can further increase the capacity of fiber optic systems. For example,

PDM-quadrature PSK is a commonly used format in long-haul transmission systems due

to its high spectral efficiency and resilience to fiber nonlinearities

While PDM offers numerous advantages, it also comes with its own set of challenges.

For instance, a phenomenon known as PMD can occur in optical fibers, which causes

the different polarization modes to propagate at different speeds. This can lead to signal

degradation and limit the overall system performance. PMD is a significant issue in older

fibers but has been largely mitigated in newer, higher-quality fibers. Additionally, adaptive

equalization techniques at the receiver can compensate for PMD to some extent.

2.4 Digital Coherent Receiver

The receiver’s primary goal is to retrieve the transmitted bits. In essence, the receiver

operates in reverse order compared to the transmitter, converting the optical signal to the

electrical signal, and then processing the electrical signal to retrieve the transmitted bits.

Since we generally have no control over the fiber channel connecting the transmitter and

the receiver, the receiver has the additional task of mitigating the deterministic channel

effects that impact the transmitted signal, a process known as channel equalization.

Optical receivers can be divided into two categories based on whether they use the

signal’s phase to decode information: direct detection and coherent detection. Direct de-

tection receivers, widely used in earlier optical fiber transmission systems, are the simplest

type of receivers. In this type of receiver, a photodiode produces an electrical signal pro-

portional to the light’s power, and the receiver’s decision is based on a set of thresholds

determined by the signal energy. This mode of reception is utilized in amplitude modula-

tion techniques such as ASK, including its simpler variant, OOK.
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Coherent detection, on the other hand, is fundamentally different from direct detection

in that it retrieves both the amplitude and phase of the optical signal, or alternatively, the

I- and Q-components. This is accomplished by using a local oscillator wave that matches

the frequency of the oscillator at the transmitter. By mixing the optical signal and the

local oscillator wave, an electrical signal is generated. The signal is then sampled at a rate

of at least the Nyquist rate, and the resulting data can be processed by the digital signal

processing block to compensate for channel impairments. As a result, coherent detection

allows for a wider range of modulation formats, including mixed phase and amplitude

modulation formats like M -QAM.

Coherent reception relies on compensating for the channel effects that affect the trans-

mitted signal as it travels through the fiber channel. The DSP chain at the receiver is

responsible for equalizing the channel effects, and it consists of multiple individual blocks,

each designed to address a specific type of distortion or impairment. The DSP chain starts

with matched filtering to reduce noise, followed by chromatic dispersion compensation to

compensate for the dispersion effect, multiple input multiple output (MIMO) equalization

to mitigate PMD, and carrier and frequency offset estimation to correct for phase and fre-

quency offsets. The linear DSP can effectively perform equalization for linear effects, but

nonlinear equalization may require the incorporation of blocks such as the DBP to jointly

reverse the chromatic dispersion and nonlinear impairments. In the following sections, we

will provide a concise description of each of these processing blocks.

2.4.1 Polarization Diversity Coherent Detector

The coherent optical detector consists of a local oscillator, a 90◦ optical hybrid, balanced

photodiodes, and trans-impedance amplifiers. To achieve polarization diversity, a polar-

ization beam splitter is added to split the oscillator’s signal and the received signal into

their polarization components, and a second 90◦ optical hybrid is used. The local oscillator

generates a strong optical signal with a stable phase and frequency, which is mixed with

the received optical signal in each 90◦ optical hybrid. An illustration of the polarization

diversity coherent detector is shown in Fig. 2.13.

Assuming the emitted optical field qs(t) carries information on its two orthogonal po-

larizations, x and y, through polarization division multiplexing, where both fields are

phase-modulated, the signal can be expressed as follows, neglecting any added AWGN:

qs(t) =




qs,x(t)

qs,y(t)



 =





√
Ps,x exp(jωLOt+ jϕs,x(t) + jϕ∆ν(t))

√
Ps,y exp(jωLOt+ jϕs,y(t) + jϕ∆ν(t))



 , (2.42)

where ω0 = 2πf0 is the central angular frequency of the laser, Ps,x and Ps,y are the powers

of each polarized field, ϕs,x(t) and ϕs,y(t) are the modulated phases, and ϕ∆ν represents

the phase distortion effecting both polarizations. The linearly polarized light of the local
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LO

Figure 2.13: polarization diversity coherent detector.

oscillator is also split into two polarization components, and each beam is directed into a

coherent mixer. A polarizer and quarter-wave plate are then used to transform the linear

polarization, allowing each beam to be represented as:

qLO(t) =
1

2




exp(j π2 )qLO

qLO



 =
1

2





√
PLO exp(jωLOt+ j π2 )
√
PLO exp(jωLOt)



 , (2.43)

where PLO is the power output of the oscillator. The diagram in Figure 2.13 shows that

the signals from the optical hybrids are connected to balanced photodiodes. These photo-

diodes produce two currents, representing the I and Q components of the optical signal’s

polarization, respectively, which are given by:

Ix = IPD1 = RPD

√

Ps,xPLO cos(∆ωt+ ϕs,x(t) + ϕ∆ν(t)) (2.44)

Qx = IPD2 = RPD

√

Ps,xPLO sin(∆ωt+ ϕs,x(t) + ϕ∆ν(t)) (2.45)

Iy = IPD3 = RPD

√

Ps,yPLO cos(∆ωt+ ϕs,y(t) + ϕ∆ν(t)) (2.46)

Qy = IPD4 = RPD

√

Ps,yPLO sin(∆ωt+ ϕs,y(t) + ϕ∆ν(t)), (2.47)

where RPD is the photodetector responsivity coefficient.

2.4.2 DSP-Based Equalization

The invention of digital coherent receiver revolutionized the design of optical transmission

systems. Not only had digital coherent receivers contributed to improving the sensitivity

of transmission systems, but they can also be used to overcome optical impairments such

as CD and PMD [89]. There are four key subsystems that make up an optical receiver:

Map the optical signal into a set of electrical signals, convert the analogue signal into a
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Figure 2.14: Key components of a traditional DSP chain.

digital signal, equalize and demodulate the signal, and apply error correction decoding and

detection. Since we are mainly concerned with the third block in this thesis, we assume

knowledge of the signal q(z, t) = [qx(z, t), qy(z, t)]
T in the digital domain.

The DSP chain, as depicted in Fig. 2.14, is designed to compensate for the linear effects

within the channel, including chromatic dispersion, phase and frequency mismatch, and

the effects arising from polarization mode dispersion. In the absence of nonlinear effects,

the DSP algorithm can perform optimally, eliminating all linear effects.

2.4.2.1 Chromatic Dispersion Compensation

The effects of CD has been addressed earlier. Since CD is a polarisation-independent

phenomenon, it can be compensated first before equalising and demultiplexing the received

signal. This can be achieved by designing a filter that compensates for the residual amount

of chromatic dispersion in the fiber. The value of dispersion can be accurately determined

as it primarily relies on two factors, namely the dispersion parameter β2 and the total

length L of the fiber, which are often known by design. The transfer function of the

chromatic dispersion compensation (CDC) filter is

H(ω,L) = exp

(

−jDλ2

4πc
ω2L

)

. (2.48)

Here, D represents the dispersion coefficient of the fiber, λ is the wavelength, and c is the

speed of light. The fraction Dλ2

4πc can sometimes be replaced with the dispersion parameter

β2/2 for ease of expression.

While an analytical expression for this filter exists, it cannot be practically implemented

due to its infinite duration. Therefore, finite frequency response (FIR) filters are used,

whose length depends on the amount of CD to be compensated for. To recover the original

signal from the dispersed signal as demonstrated in [88], the FIR filter with tap weights

given by:

hcd[k] =
1√
ρ
exp
(

− j
π

ρ

[

k − N − 1

2

]2)

, (2.49)
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Figure 2.15: MIMO equalizer as shown in [88].

where k ∈ [0, N − 1], N = ⌊|ρ|⌋ is the number of taps equal to the memory of the channel

given by

ρ = 2πβ2Ltotal/T
2
ADC , (2.50)

where TADC is the sampling time of the analog-to-digital converter (ADC). In addition to

the CD compensation, dynamic channel equalization is needed to compensate time-varying

effects such as the state of polarization and PMD.

2.4.2.2 Multi-Input Multi-Output Equalization

After extracting and converting the signals for each polarization component into the elec-

trical domain and compensating for time spreading caused by dispersion, the PMD effects

need to be addressed. As PMD effects are time-varying, they require adaptive filters

for dynamic processing. To perform adaptive equalization of PMD effects, a set of four

complex-valued FIR filters is required, which together form a 2x2 MIMO matrix and per-

form the inverse of the Jones matrix of the dynamic channel in Eq. (2.27). The outputs of

the MIMO equalizer are expressed as:

xout[k] = hxx xin[k] + hxy yin[k] (2.51)

yout[k] = hyx xin[k] + hyy yin[k] , (2.52)

where hxx,hxy,hyx,hyy are vectors of length N representing the FIR taps, with xin[k] and

yin[k] representing the sliding window of length N + 1 over which the filter is convolved,

expressed as

xin[k] = xin(t = k′ · Ts, t = (k′ + 1) · Ts, . . . , t = (k′ +N) · Ts) (2.53)

yin[k] = yin(t = k′ · Ts, t = (k′ + 1) · Ts, . . . , t = (k′ +N) · Ts), (2.54)

where Ts is the symbol period and k′ = k · ns − N
2 , where ns is the oversampling rate of

the input signals, measured with the number of samples per symbol. Following the MIMO

equalizer, the output sequences are sampled at 1 sample/symbol.
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A popular method for optimizing the FIR taps blindly and adaptively is called the

constant modulus algorithm (CMA), which is typically used for phase modulations. Here

these coefficients hxx,hxy,hyx,hyy are updated, using the stochastic gradient method,

which is described as

hxx → hxx + µεxxout · x∗
in (2.55)

hxy → hxy + µεyyout · x∗
in (2.56)

hyx → hyx + µεxxout · y∗
in (2.57)

hyy → hyy + µεyyout · y∗
in, (2.58)

where µ is a convergence parameter, and εx and εy are normalized error terms given by

εx = 1− |xout| (2.59)

εy = 1− |yout| , (2.60)

and assume a unit amplitude signals such as quadrature phase-shift keying (QPSK). How-

ever, for higher order M -QAM modulations, an enhancement called the radially directed

equalizer (RDE) [89] is used conjointly with the CMA. It is worth mentioning that an

adaptive equalizer that employs complex tap coefficients can additionally compensate for

any remaining chromatic dispersion resulting from the misevaluating the amount of the

dispersion in the link.

2.4.2.3 Carrier Frequency Offset Estimation

Accurate frequency estimation plays a crucial role in the coherent reception of optical

signals. The presence of frequency offset causes the phase of the signal to change rapidly,

making it challenging for constant phase estimation (CPE) to track the signal phase. To

tackle this issue, CPE and carrier frequency offset (CFO) are treated as separate blocks

in the DSP, handling two different but related tasks. A good CFO algorithm ensures

that CPE works effectively by reducing the amount of phase CPE has to track, thereby

improving carrier recovery efficacy. The impact of frequency mismatch and phase offset on

signal detection can be expressed by the following equation:

xsym[k] = xMIMO[k] exp(j[ϕ[k] + 2π∆fkTsym]), (2.61)

Here, xMIMO refers to the output samples of the MIMO system, xsym represents the accu-

rately detected symbols, ∆f is the frequency offset, and ϕ[k] is nonlinear phase noise. The

objective is to estimate the frequency mismatch ∆f , which causes a continuous and linear

phase drift. One popular method for CFO estimation is the Viterbi model proposed by

Viterbi and Viterbi [103] for wireless transmission. The Viterbi phase estimator, shown in

Fig. 2.16, is designed for M -PSK modulation and involves using a nonlinear function based
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Figure 2.16: Viterbi-based phase estimator for M-PSK carriers

on the M -power of the symbol sequence. The nonlinear function transforms the symbol

xI + jxQ into x′I + jx′Q using the rule:

x′I + jx′Q = F (ρk)e
jΦ(ϕx) (2.62)

where, ρk =
√

x2I + x2Q

and, ϕx = tan−1(xQ/xI)

In this equation, F (ρ) = ρM is an arbitrary nonlinear function, and Φ(ϕ) = Mϕ is a

function effecting the phase which produces a multiple of M of the original phase. This

ensures that all the points in the constellation are aligned, and the only phase variation is

due to the phase drift resulting from frequency mismatch. The average value of the phase

drift in the k-th symbol, ϕ̂[k], is:

E
[

ϕ̂[k]
]

= 2π(∆f)kTsym, (2.63)

2.4.2.4 Phase Recovery

The transmission of optical signals depends on the precise frequency of the laser source.

However, the light emitted by a single-frequency laser is practically not monochromatic,

mainly due to technical imperfections such as excess noise from the pump source, vibrations

of the laser resonator, or temperature fluctuations, as well as quantum noise, specifically

associated with spontaneous emission in the gain medium. These factors result in laser

phase noise (PN), which manifests as fluctuations in the optical phase. A common mea-

sure of the phase noise characteristics of a laser source is the linewidth of the laser ∆ν,

which refers to the width of its optical spectrum, typically measured as a root-mean-square

width. It is a measure of the spectral distribution of the laser’s emitted electric field, with

respect to frequency. A narrower linewidth corresponds to lower phase noise and improved

performance. The Discrete-time Wiener model [72] describes the phase noise as

ϕi = ϕi−1 + σPNνi, (2.64)
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(a) No laser PN. (b) 100 kHz. (c) 200 kHz.

Figure 2.17: Effect of laser linewidth on phase noise and symbol constellation in 16-QAM modula-

tion format during transmission of 24,000 symbols at a 10 GBaud rate. (a) Reference case with no

laser phase noise. (b) Laser phase noise with a linewidth of 100 kHz. (c) Laser phase noise with a

linewidth of 200 kHz.

where νi ∼ N(0, 1), and σ2
PN = 2π∆νTs is the variance of the difference between two

adjacent samples of phase noise. Here, ∆ν corresponds to the laser linewidth, and Ts is

the sample period. The power spectral density (PSD) of the complex exponential signal

influenced by Wiener phase noise is known to follow a Lorentzian function, with a 3-dB line-

width equal to σ2
PN/(4π) = ∆νTs/2. The impact of laser phase noise is therefore largely

determined by the value of the product ∆νTs. Therefore, the lower the symbol rate, the

narrower the laser linewidth should be to minimize this product and mitigate the impact

of phase noise on the transmitted signal. Figure 2.17 illustrates the effects of laser phase

noise on symbols modulated using 16-QAM. As the linewidth of the laser increases, the

phase shift due to laser phase noise becomes larger, which causes the constellation points

to merge into each other, resulting in a significant degradation in transmission quality.

The phase offset is composed of two main types of errors: phase error and phase noise.

Phase error is caused by channel deterministic effects, while phase noise results from non-

deterministic random effects from laser sources that are associated with the laser linewidth,

as previously discussed. To compensate for these effects, a process called CPE needs to be

performed. CPE is a method used to recover the phase offset θ, which is defined as follows:




xsym[k]

ysym[k]



 = e−jθ




xMIMO[k]

yMIMO[k]



 (2.65)

There have been several CPE algorithms proposed in the literature. For QPSK modu-

lation, a potential method to remove the signal component of the phase involves using the

fourth-order power of the signal, which aligns all the constellation points in one quadrant.

To estimate the phase offset in a symbol block of size N +1, the Barycenter algorithm [15,

45



Chapter 2. Fiber-optic communication systems

Linear
step

Nonlinear
step Gain Power

normalization

Figure 2.18: A diagram illustrating DBP using the Wiener model.

54] can be utilized. This algorithm can be modeled as follows:

θ[k] =
1

N + 1

N/2
∑

k=−N/2

w[k] arg
{
x4MIMO[k + n]

}
. (2.66)

Here, w[k] represents a weighing function, and arg{·} represents the argument of a complex

number. A simplified form of CPE is non-blind recovery using pilot symbols, where the

angle between the transmitted symbols and the pilots is calculated over a sliding window.

This can be done by directly comparing the angles between the received symbols and the

pre-known pilot symbols. The symbols in the window are then rotated according to the

mean angle between the pilots and transmitted symbols. The output of CPE is then passed

to the detection block, which assigns the equalized symbol to the nearest symbol in the

constellation and demaps the symbol to its corresponding bits.

2.5 Digital Back Propagation

DBP is a popular method to effectively mitigate nonlinear impairments in optical fiber

transmission systems by numerically solving the NLSE equation [16, 56, 78]. In contrast

to SSFM, which simulates signal propagation in the forward direction, DBP equalizes the

received signal by simulating signal propagation in the reverse direction, using fewer steps

than SSFM in order to reduce the computational burden on the hardware.

The DBP block is placed before the MIMO equalizer in the DSP, which means that the

input signals are subject to PMD variations in the optical fiber. However, it is important

to note that the standard DBP algorithm is not designed to equalize random effects like

PMD. Instead, it primarily addresses deterministic effects such as CD and nonlinear effects.

In practical systems, the DBP is typically based on the propagation model in Eq. (2.31),

which is averaged over the rapidly-varying SOP along the fiber due to the presence of PMD.

DBP operates by dividing the optical channel into equal-length spatial segments known

as "steps," denoted as δd. Within each step, we separately consider the dispersive and

nonlinear channel effects. To tackle this, we split Eq. (2.31) into two distinct equations,
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Figure 2.19: DBP order of operations in different nonlinear models [78]: (a) Wiener model, with a

linear substep followed by a memoryless nonlinear substep; (b) Hammerstein model, with a memo-

ryless nonlinear substep followed by a linear substep; (c) Wiener-Hammerstein model, consisting of

a linear substep followed by a memoryless nonlinear substep, followed by a second linear substep.

one addressing linear effects and the other nonlinear effects

∂q

∂z
=

(

− jβ2
1

2

∂2

∂t2

)

q, (2.67)

∂q

∂z
=

(

− 1

2
α+ j

8

9
γ||q||2

)

q. (2.68)

Upon solving the two equations, where (2.67) is solved in the frequency domain and (2.68)

is relatively simpler to solve in the time domain, two partial solutions can be obtained:

q(z + δd, ω) = exp

(

−jβ2
1

2
ω2δd

)

︸ ︷︷ ︸

L(δd,ω)

q(z, ω), (2.69)

q(z + δd, t) = exp

(
1

2
αδd − j

8

9
γ||q(z, t)||2δd

)

︸ ︷︷ ︸

N(δd,t)

q(z, t), (2.70)

where the location z is measured relative to the receiver, with z = 0 corresponding to

the receiver’s location. The DBP is hence characterized by two sets of operators: the

linear operator L(δd, ω) and the nonlinear operator N(δd, t). The equalized signal can be

obtained from the received signal by alternating between these two solutions along the

length of the fiber in the backward direction (from the receiver to the transmitter).
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2.6 Summary

Optical fibers made of silica have enabled transmission systems to exceed previously impos-

sible speeds due to their low attenuation and noise, and high transmission speed. However,

as demand for high-speed and bandwidth increases, limitations in optical fiber transmission

systems have started to impact communications.

Some of the channel effects that impact the quality of optical signal transmission in-

clude dispersion, which spreads symbols in time and leads to inter-symbol interference

(ISI) if no equalization measures are taken. Nonlinearities also become problematic, es-

pecially at higher signal powers. ASE noise generated by signal amplification needed for

long-range transmission is another issue. Imperfections in components such as the laser

source generate laser phase noise, which affects the quality of transmission. There are

additional effects that impact the signal to varying degrees in different scenarios, whether

it be high power, high speed, single-channel or WDM transmission. Researchers have pro-

posed various solutions to mitigate these effects with varying degrees of success. Fast and

efficient DSP algorithms enabled the utilization of available transmission bandwidth more

effectively through coherent transmission and detection. DSP utilizes algorithms such as

CD compensation, MIMO-based equalization, and CPE and CFO estimation to correct

for linear channel effects. These processes allow for the use of higher-order modulations

such as QPSK and M -QAM to transmit data at higher rates than ever possible. However,

more advances in optical receivers are necessary to deal with nonlinearities as systems push

towards achieving higher transmission speeds.
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Neural networks for equalization in optical fiber com-

munication
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3.1 Introduction

Neural networks are a type of machine learning algorithm modeled after the structure

and function of the human brain. They consist of layers of interconnected "neurons" that
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process information and can be trained to recognize patterns and make predictions. The

origins of neural networks can be traced back to the 1940s and 1950s, when researchers

first began exploring the idea of using mathematical models to simulate the behavior of

neurons in the brain. Early work in this field was led by Warren McCulloch and Walter

Pitts, who proposed the first mathematical model of an artificial neuron, called perceptron,

in 1943. Their work laid the foundation for the development of neural networks and

machine learning. The perceptron was first demonstrated by a machine implementation in

1958 by Frank Rosenblatt, a psychologist and computer scientist working at the Cornell

Aeronautical Laboratory. His work in this field focused on the development of simple

perceptrons, which is considered as one of the first models of a neural network, and it

consists of a single layer of artificial neurons that can be trained to recognize patterns

in data. The free parameters that control the output of the perceptron were adjusted

manually in the earliest stages of its development. The perceptron was initially seen as

a promising solution for a wide range of problems, such as image recognition, natural

language processing, and even artificial intelligence. However, soon it was discovered that

the perceptron algorithm was limited in its capability to solve problems that are not linearly

separable, this led the researchers to develop other algorithms and architectures that can

solve such problems. This realization led to a decline in interest in neural networks, and

it wasn’t until the late 1970s and early 1980s that the field began to see renewed growth.

Some of the major breakthroughs in neural network research include the development

of backpropagation algorithm in the 1980s, which greatly improved the ability of neural

networks to learn from data. Also, the breakthrough of using deep neural networks with

multiple fully connected layers which improved the accuracy of the predictions. This made

it possible to train neural networks with multiple layers, which is known as multi-layer

perceptron (MLP) and it is considered as the backbone of the fully connected neural

networks. Additionally, the advent of high-performance computers and the availability of

large amounts of data for training, made it possible to train large fully connected neural

networks, allowing them to process and represent a wide range of information.

In the following subsections, we will present a detailed examination of various neural

network architectures, including their mathematical models and underlying principles. We

will also provide examples of their applications and their strengths and limitations. Ad-

ditionally, we will delve deeper into the mathematical derivations and the optimization

techniques used to train these architectures.

3.1.1 Mathematical model of the perceptron

The perceptron network processes input data, which is represented as a feature vector

x = (x1, x2, . . . , xd) with a dimensionality of d. These input values are then propagated

from the input layer to the output node via edges, each carrying a weight assigned from
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(a) (b)

Figure 3.1: Perceptron’s mathematical model (a) with a bias node, and (b) with the bias node

replaced by an input x0 = 1 multiplied by a weight w0.

the weight vector w. In the output node, these weights are employed to compute a linear

function. The sign of this calculation is subsequently used to make predictions for the

binary class variable ŷ associated with the input data, whose target output is y. To

enhance prediction accuracy, it is a common practice to introduce a bias term b at the

output node, which adjusts the output values. The prediction ŷ is determined as follows

[4]:

ŷ = sign{w · x+ b} = sign{
d∑

j=1

wjxj + b} (3.1)

where the sign function maps a numeric value to either +1 or -1, which is suitable for

classification into two distinct classes. The perceptron algorithm enables the classification

of inputs into different categories by optimizing the weight vector w and the bias term b.

To make the derivation of training equations easier, the bias may be treated as a

constant node multiplied by a weight as described in Fig. 3.1. The prediction error is

represented by E(w,x, y) = y − ŷ, which is a value selected from {−2, 0, 2}. The aim of

the perceptron algorithm is to reduce the number of errors in classifying the input data,

which we describe mathematically as

min
w

L(w; (x, y)) =
∑

{(x,y)}∈D

E(w,x, y)2 =
∑

{(x,y)}∈D

(y − sign{
d∑

j=1

wjxj})2, (3.2)

where L(w; (x, y)) represents the loss function based on squared error, while D denotes

the input-output dataset. The minimization of the expression is achieved by adjusting the

weights w through a heuristic method known as gradient descent. This method employs a

step-by-step approach to iteratively adapt the model parameters, ultimately reducing the

error function and enhancing prediction accuracy.

It is important to note that the objective function specified in Eq. (3.2) is not a smooth

function. To overcome this issue, the perceptron algorithm uses an approximation of the

gradient of this objective function, which is intrinsically set to minimize the perceptron

criterion for each example:

∇L =
∑

{(x,y)}∈D

(y − ŷ) · x (3.3)
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Following this, the update rule for each example is stated as

w← w + η · (y − ŷ) · x (3.4)

where η is the learning rate. During the training process, the perceptron updates its weight

vector w and bias term b using a set of correctly labeled examples using the following update

rule.

3.1.2 Activation functions

Neural networks comprise numerous perceptrons organized into discrete layers. For effec-

tive weight updates within neural networks, it is imperative that each perceptron function

is differentiable to facilitate gradient calculation, which is an essential step for weight

optimization using gradient-based optimization techniques. However, the ’sign’ function

employed in perceptrons lacks differentiability across its entire domain and can only ac-

commodate binary decision boundaries. This limitation proves inadequate for addressing

real-world problems that necessitate complex and continuous input-to-output mappings.

Consequently, the ’sign’ function is replaced by specialized nonlinear functions referred to

as “activation functions”.

The activation function serves as a vital element in introducing nonlinearity to the net-

work. Without the activation function, the network collapses into a single layer, limited

to performing linear transformations on the input. Hence, the activation function plays

a crucial role in expanding the representational capacity of the neural network by allow-

ing it to model a broader range of functions. Although functions like tanh and sigmoid

were popular historically, their approximations and derivatives can impose computational

overhead in hardware implementations. To address this issue, simpler activation functions

such as ReLU and hard tanh have gained popularity in recent years. These functions are

easy to compute and their derivatives are straightforward to calculate, making them more

hardware-friendly. However, it’s worth noting that the choice of activation function should

ultimately depend on the specific requirements of the task at hand. The sigmoid function

is particularly suitable for classification tasks that involve categorical data, as it maps the

output to a range between 0 and 1. This allows for a straightforward binary decision on

whether an input belongs to a class or not. the ReLU activation function, on the other

hand, is often preferred for approximating continuous functions as it is not bounded and

can more effectively handle a wider range of values.

3.1.3 The Input and Outputs of Neural Networks

The neural network training follows the supervised learning scenario, where a set of ex-

amples D = {(xi,yi)}1≤i≤n is provided to the neural network, each composed of a set of

explanatory variables xi ∈ RN as inputs, and a target yi ∈ RM as outputs. The objective

52



3.1. Introduction

(a) tanh (b) Hard tanh (c) Sigmoid

(d) Perceptron (e) ReLU (f) Leaky ReLU

Figure 3.2: Example of commonly used activation functions.

Name Function σ(x) Derivative σ′(x)

Sigmoid
1

1 + e−x
σ(x)(1− σ(x))

ReLU max(0, x)







1, if x ≥ 0

0, if x < 0

tanh
ex − e−x

ex + e−x
1− σ2(x)

Hard tanh max(min(1, x),−1)







1, if |x| < 1

0, if |x| > 1

Leaky ReLU







x x ≥ 0

ax x < 0







1, if x ≥ 0

α, if x < 0

ELU







x x > 0

α(ex − 1) x ≤ 0







1, if x ≥ 0

αex, if x < 0

Table 3.1: Common activation functions and their derivatives
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of the neural network is to forecast output values based on the input values provided. In

this sense, the neural network’s learning algorithm can be viewed as a mapping from an

input dataset D to a decision procedure H. The decision procedure H in this case is able

to associate an output y ∈ Y to any input x ∈ X . Then we have H : x ∈ X −→ y ∈ Y
[22]. The inputs of the neural network learning can hence be either a whole data set D, or

a particular instance x for which we want to find the prediction y. The former represents a

neural network operating in the training phase, and the later represents a neural network

operating in the inference phase.

The input element x can belong to one of the following categories:

• Vectorial : where the input data is taken from a relational database and the descrip-

tors are treated as dimensions of an input space, typically a vectorial space. This

allows for the definition of a distance metric, which transforms the vectorial space

into a normed vectorial space. This type of data representation is particularly useful

for various mathematical techniques that have been developed for such spaces.

• Non Vectorial : where the number of elements within a given example is not fixed.

This type of data is commonly found in areas such as natural language processing,

where machine learning algorithms are tasked with analyzing documents with an

undefined number of words or pages, or in image recognition, where the algorithm is

expected to provide a descriptive text of undefined length based on the input image.

Due to the nature of this type of data, it can be challenging to define appropriate

distances, however, specialized techniques have been developed to accommodate this.

• Structured data: refers to data that can be analyzed based on its internal structure.

It can be broken down into further categories, such as: sequential data (ordered

elements), spatial data (dependencies between adjacent elements), graphical data

(described as graphs), and relational data (complex structures like DNA snippets or

texts).

3.2 Neural Networks Architectures

Multiple neural network architectures exist to perform the decision procedure H : x ∈
X −→ y ∈ Y, with each architecture more suited to specific tasks. To model a wide range

of functions, a neural network must possess two important elements. Firstly, it should have

adjustable parameters w = {wi}1≤i≤n that are optimized to minimize training error. Sec-

ondly, a neural network must contain nonlinear elements, commonly known as activation

functions, to enable the so-called “expressive power” of the neural network. The neuron is

the fundamental building block of a neural network, incorporating both adjustable param-

eters and nonlinear activation functions. Neurons are inspired by perceptrons, but they
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Figure 3.3: A diagram illustrating the structure of a Multilayer Perceptron (MLP) consisting of an

input layer with Ni units, two hidden layers with Nh1
and Nh2

units, respectively, and an output

layer with No units.

use smooth continuous activation functions instead of the unit step activation used by per-

ceptrons. Each neuron comprises a weight vector w and bias b, which are adjusted during

the training process to minimize the training error. The choice of activation function and

hyperparameters such as the depth and width of the neural network is left to the designer

during the initialization phase. The parameters w, on the other hand, are usually initial-

ized randomly and then optimized during training using the gradient descent algorithm,

which is discussed in later sections.

Here, we discuss three common architectures: multi-layer perceptrons, convolutional

neural networks, and recurrent neural networks.

3.2.1 Multi-layer perceptrons

Multi-layer perceptrons (MLPs), are named after the perceptron. MLPs are composed of

multiple layers of interconnected neurons, where each neuron in one layer is connected to

every neuron in the next layer. The flow of information in the network is unidirectional,

moving from the input layer to the output layer through consequent hidden layers. Fig. 3.3

provides an illustration of the fully-connected neural network. Each layer l in the network,

with dl hidden units, takes input from the previous layer (denoted by l − 1), and applies

the mapping Ψl : R
Nhl−1 7→ R

Nhl to the input xl−1. This transforms the input into the

output as shown below:

xl = Ψl(xl−1) (3.5)

= σl(W
T
l xl−1 + bl),

where Wl ∈ Rdl−1×dl is the weight matrix, bl is the bias vector, and σl(·) is the
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activation function, applied element-wise to its vector argument.

3.2.2 Convolutional neural networks

convolutional neural networks (CNNs) were first introduced by Yann LeCun in the late

1980s as a specialized type of neural network designed to process grid-like data. Originally

developed for image recognition, CNNs have been applied to a broad range of tasks, includ-

ing natural language processing and speech recognition. CNNs are particularly well-suited

for processing sequential data using a series of convolutional layers to extract features,

followed by fully-connected layers for classification. With their ability to learn features au-

tomatically from raw data, CNNs are especially effective at identifying spatial patterns and

hierarchies of features in image data, enabling them to achieve state-of-the-art performance

on many image classification benchmarks.

The mathematical function for a single convolutional layer in the CNN is expressed as

x
(l+1)
ij = σ





C(l)
∑

k=1

Fl∑

p=1

Fh∑

q=1

Wkpqx
(l)
(i+p−1)(j+q−1),k + bj



 , (3.6)

where x
(l+1)
ij is the output of the j-th feature map at location (i, j) in the l-th layer, C(l) is

the number of feature maps in the (l)-th layer, Fl and Fh are the filter dimensions of the

convolutional layer, W (l+1)
kpq is the weight of the connection between the k-th feature map

in the (l)-th layer and the j-th feature map in the l-th layer at the offset (p, q), and b
(l+1)
j

is the bias term for the j-th feature map in the l-th layer. The activation function σ(·) is

applied element-wise to the output of each neuron. Although the output of a convolutional

operation is a 2D array with a single feature map, convolutional layers have an additional

parameter called the number of channels, which controls the number of feature maps

produced by that layer and enables the network to learn multiple representations of the

input data.

3.2.3 Recurrent neural networks

While fully-connected and convolutional neural networks are suitable for tasks with fixed

input and output dimensions, they are not well-suited for tasks that involve sequential

data that has time dependencies. Both types of neural networks consider each input to be

independent of all previous inputs, which makes it difficult to model temporal dependen-

cies between inputs. To address this issue, researchers developed recurrent neural networks

(RNNs), which have connections between their hidden layers that allow them to maintain

an internal state and process sequential data. RNNs include connections that feed in-

formation back into the network, allowing them to process sequential data with temporal

dependencies. At each step in the sequence, the RNN updates its hidden state based on the
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current input and the previous hidden state. The function of a simple recurrent network

(SRN), also known as the Elman model [28], with a hidden state ht at time step t, taking

input xt and outputting yt can be stated as follows

ht = σh(Whht−1 +Wxxt + bh) (3.7)

yt = σy(Wyht + by) (3.8)

Where σh and σy are activation functions, Wh and Wx are weight matrices for the

hidden state and input, respectively, Wy is a weight matrix for the output, and bh and by

are bias vectors. The output of the network at time step t depends not only on the input

xt, but also on the current hidden state ht, which is updated based on the previous hidden

state ht−1 and the current input xt.

One of the key features of RNNs is their ability to handle variable-length inputs, as the

internal state of the network can be adjusted to match the length of the input sequence.

This makes them well-suited for tasks such as speech recognition or natural language

processing, where the length of the input varies from one example to the next.

3.2.4 LSTM Networks

One limitation of standard RNNs is that they can struggle with learning long-term de-

pendencies due to the vanishing gradient problem, where the gradient of the loss function

becomes very small for long sequences, making it difficult for the network to update its

weights. To address this issue, researchers have developed variants of RNNs such as long

short-term memory (LSTM) and gated recurrent units (GRU), which use different types

of gating mechanisms to selectively update the internal state and avoid the vanishing gra-

dient problem. In an LSTM network, information is stored and retrieved through a set of

memory cells and associated gates.

The LSTM network can be defined as follows. Let xt be the input at time step t, and

let ht and ct be the hidden state and cell state, respectively, at time step t. The LSTM

network consists of the following equations:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3.9)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (3.10)

c′t = tanh(Wxc′xt +Whc′ht−1 +Wcc′ct−1 + bg) (3.11)

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo) (3.12)

ct = ftct−1 + itc
′
t (3.13)

ht = ot tanh(ct) (3.14)
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+

+ + + +

tanh

tanh

Figure 3.4: Diagram illustrating the detailed structure of the LSTM building block. The LSTM cell

contains four interacting neural network layers that control the flow of information: the input gate,

the forget gate, the output gate, and the cell memory state. The gates are controlled by sigmoid

activation functions and the cell memory state is updated by a hyperbolic tangent activation

function. This architecture allows the LSTM to selectively remember or forget information from

previous time steps, while maintaining a stable gradient during training.

where σ is the sigmoid function, and it, ft, c′t, and ot are the input state, forget state,

candidate cell state, and output state, respectively. The weights Wxi, Whi, Wci, Wxf ,

Whf , Wcf , Wxc′ , Whc′ , Wcc′ , Wxo, Who, Wco, and biases bi, bf , bc, bo of the neural network,

are learned during training. In this model, the input gate it controls the flow of new

information into the cell state ct, the forget gate ft controls the amount of old information

that is retained in the cell state, and the output gate ot controls the flow of information

from the cell state to the output ht. The cell gate c′t is the candidate new memory content.

3.2.5 Loss functions and training algorithms

The objective of training a neural network is to optimize its parameters such that it

minimizes a specified loss function. The loss function, denoted as L, is a mathematical

function that measures the difference between the predicted output of the neural network

and the true output. The goal is to minimize the loss function over the training data, so

that the neural network can accurately predict the output for new inputs.

The choice of loss function depends on the type of task at hand. For regression tasks,

where the goal is to predict a continuous output y, the mean-squared error (MSE) loss

function is commonly used. The MSE is defined as:

LMSE =
1

n

n∑

i=1

(yi − ŷi)
2

where n is the number of data points, yi is the true output, and ŷi is the predicted
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output of the neural network.

For classification tasks, where the goal is to predict a discrete output, different loss

functions are used depending on the nature of the problem. If the output classes are

mutually exclusive, meaning that each input can belong to only one of several classes, then

the categorical cross-entropy loss function is commonly used. The categorical cross-entropy

is defined as:

LCE = − 1

n

n∑

i=1

C∑

j=1

yi,j log(ŷi,j)

where C is the number of classes, yi,j is the true label of the i-th data point for the

j-th class, and ŷi,j is the predicted probability of the i-th data point for the j-th class.

On the other hand, if the output classes are independent of each other, such as in binary

classification, then the binary cross-entropy loss function is used. The binary cross-entropy

is defined as:

LBCE = − 1

n

n∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

where yi, ŷi ∈ [0, 1] are the true label and the predicted probability of the i-th data

point, respectively.

3.2.5.1 Gradient descent

Gradient descent is a widely used optimization algorithm in neural network training. It is a

first-order optimization method that iteratively updates the weights of the neural network

to minimize the loss function L. The gradient descent algorithm works by computing

the gradient of the loss function with respect to the weights of the neural network. The

gradient represents the direction of the steepest ascent of the loss function. The weights

are then updated by subtracting a small fraction, denoted as η, of the gradient (referred

to as the learning rate) from the current weights, which are typically small positive values.

The update rule for the weights of a neural network using gradient descent is as follows:

wi ← wi − η
∂L

∂wi
, (3.15)

where wi is the i-th weight of the neural network. The partial derivative of the loss

function with respect to the weights, ∂L
∂wi

, is computed using the chain rule. This requires

computing the partial derivative of the output of the neural network with respect to each

weight, and then using those partial derivatives to compute the partial derivative of the loss

function with respect to each weight. The gradient descent algorithm iteratively updates

the weights of the neural network using the update rule above until the loss function reaches

a minimum or a stopping criterion is met. The stopping criterion can be a maximum
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number of iterations, a minimum value of the loss function, or a combination of both.

Gradient descent has several variants, including stochastic gradient descent, batch gradient

descent, and mini-batch gradient descent. In stochastic gradient descent, the gradient is

computed using only one training example at a time, while in batch gradient descent, the

gradient is computed using all training examples at once. Mini-batch gradient descent is a

compromise between the two, where the gradient is computed using a small subset of the

training examples.

3.2.5.2 Stochastic gradient descent

The stochastic gradient descent algorithm updates the parameter vector in the following

way:

w = w − η
1

n

n∑

i=1

∇wL(w;xi, yi). (3.16)

The algorithm randomly selects a batch of training examples and updates the param-

eter vector based on the gradient computed using only those examples. This allows the

algorithm to make faster progress towards the solution compared to batch gradient descent.

Algorithm 1 Stochastic Gradient Descent Algorithm

Require: Training dataset (xi, yi)
n
i=1, learning rate η, batch size m, maximum number of

epochs Tmax.

Ensure: Learned parameters w.

1: Initialize parameters w randomly.

2: for t = 1 to Tmax do

3: Shuffle the training dataset.

4: for i = 1 to n
m do

5: Randomly select a mini-batch Bi = (xj , yj)
m
j=1 from the training dataset.

6: Compute the gradient estimate gi using the mini-batch:

gi =
1

m

∑

∇wL(w;xj , yj) , for (xj , yj) ∈ Bi.

7: Update the parameters using the gradient estimate:

w← w − ηgi.

8: end for

9: end for

Here, the algorithm randomly selects mini-batches of size m from the training dataset,

computes a gradient estimate based on the mini-batch, and updates the parameters using
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the gradient estimate and a learning rate η. The algorithm repeats this process for a

maximum number of epochs Tmax.

3.3 Neural network-based equalization in fiber-optic commu-

nications

In previous chapters, we discussed the interplay of five effects in a dual-polarization op-

tical fiber transmission system: chromatic dispersion, polarization-mode dispersion, Kerr

nonlinearity, amplified spontaneous emission (ASE), and component imperfections. The

equalization at the receiver is performed by the DSP, which compensates for the deter-

ministic linear channel effects and estimates the randomly varying effects such as PMD.

However, the nonlinearity resulting from Kerr effect is often disregarded due to its high

complexity, which limits the system performance at the high power regime.

Given that fiber nonlinear effects are distributed along the fiber’s length, mitigat-

ing these nonlinear effects necessitates concurrent compensation for chromatic dispersion.

Hence, the digital back-propagation (DBP) method remains a preferred choice as it effec-

tively addresses both aspects incrementally. However, Many studies such as [27, 45, 58, 64,

95, 101], have highlighted the high complexity associated with DBP, which primarily arises

from the substantial number of FFTs and IFFTs required to execute DBP. The complexity

of NLC has ignited extensive research into developing techniques and DSP algorithms for

addressing this challenge [18, 96]. Volterra series-based equalization [41], which precisely

models and compensates for nonlinear effects introduced by the fiber channel, has also

been introduced.

Neural network-based equalization is a promising solution for overcoming the challenges

posed by the complex interplay of different effects in optical fiber transmission systems.

Neural networks can model complex functions and estimate the inverse of the channel to

perform channel equalization. However, utilizing neural networks for channel equalization

presents several challenges. Firstly, neural network-based equalizers require careful and

specialized customization to adapt to the unique nature of the problem. This is particu-

larly challenging considering that state-of-the-art transponders, which utilize forward error

correction (FEC), require a minimum bit-error-ratio (BER) of 10−2−10−3, a performance

that far exceeds what is considered excellent for typical neural task, i.e. , image recognition.

Secondly, the complexity of the neural network must be carefully managed to ensure effi-

cient and implementable performance in real-world systems operating at high data rates.

To address these challenges, neural networks must demonstrate higher efficiency in both

learning and inference complexity compared to other fields [37].

Another aspect of neural networks that needs to be addressed is that neural network

models need to be retrained when faced with dynamic effects such as randomly varying
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Figure 3.5: A schematic diagram illustrating an example of a multi-layer perceptron (MLP) equal-

izer that performs many-to-one equalization. The equalizer takes multiple symbols as input and

outputs a single symbol that is extracted from both polarizations. Specifically, the input of the

neural network is a vector formed by concatenating four signals, which are the real and imaginary

parts of the X- and Y-polarizations. This approach allows the neural network to process depen-

dencies between different signals, which enhances its ability to perform accurate equalization.

polarization mode dispersion (PMD) and laser noise. Retraining a neural network can

be computationally expensive, which highlights the importance of combining the neural

network equalizer with the receiver’s DSP to mitigate the impact of rapidly changing

effects such as randomly varying PMD and laser noise. To avoid the need of retraining the

model for each instance of dynamic effects, the neural network can directly receive its input

from the output of the DSP, which has already undergone equalization to accommodate

these dynamic effects. Alternatively, the neural network can be placed behind the DSP,

and joint training with the DSP can be performed [31]. Joint training allows the neural

network to learn from the DSP processing, which enables a more efficient training and

achieves better performance. In both cases, however, the input to the neural network entails

temporal dependencies resulting from the impact of the coupling between the nonlinearity

and channel dispersive effects. As a result, many-to-one equalization (such as the one

shown in Fig. 3.5) is favored over one-to-one equalization even if the neural network is

placed after the DSP.

In the following we provide a review of the recent state-of-the-art neural network-based

equalizers in the literature. Specifically, we highlight two essential approaches: model-

agnostic approaches and model-based approaches (also referred to as model-informed ap-

proaches). We will discuss the advantages and limitations of each approach and provide

insights into the application of these approaches in various communication systems. More-

over, in Chapter 4 of this dissertation, we focus on utilizing the model-based approach to

equalization in dispersion-managed (DM) systems.
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3.3.1 Performance metrics

To assess the effectiveness of channel equalization, various metrics can be used, such as

the error vector magnitude (EVM), effective signal-to-noise ratio (SNReff), and the Q-

factor related to BER. It is worth noting that both neural network-based equalizers and

conventional methods can be evaluated using these metrics.

The EVM measures the average deviation between the ideal received signal xn and the

actual received signal yn. It is defined as follows:

EVM =

[∑N
n=1 |yn − xn|2
∑N

n=1 |xn|2

] 1
2

(3.17)

However, it is important to note that the SNReff provides a reliable estimation of the

SNR under the assumption that the error deviation follows a Gaussian distribution. The

SNReff, representing the ratio of signal power to distortion power, is computed as follows:

SNReff =
1

EVM2 (3.18)

The Q-factor is another metric for evaluating the quality of transmission and is com-

puted using the BER. It is defined as follows:

Q-factor =
√
2 erfc−1(2 BER) (3.19)

where erfc(·) is the complementary error function. It is important to mention that the

BER can only be linked with SNR assuming that the error deviation follows a Gaussian

distribution. In this case, all four metrics described above are interrelated and can be

obtained from each other. Literature provides extensive information on the BER for various

modulation schemes and signal constellations in digital communication systems [52].

3.3.2 Model-agnostic approaches

In model-agnostic approaches, designing the neural network typically involves a trial-and-

error process. Users experiment with various types and hyperparameters to identify the

most performing option, the one with the least complexity, or a suitable trade-off between

the two. In this context, users enjoy greater flexibility and autonomy, allowing them

to choose the neural network’s type and structure to align with their specific needs and

preferences. Notably, the neural network structure in these approaches does not directly

replicate the physical model of the phenomena it simulates.

In [17], a fully connected neural network comprising two layers, each with 50 or 100

neurons, is introduced to address nonlinear effects in optical fibers. This neural network

was integrated into the DSP chain, and its performance was evaluated at two positions

within the chain: after multiple input multiple output (MIMO) equalization and after

CPE, just before the symbol decoder.
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The proposed system model operated at 32 GBaud, employing DP-16-QAM modula-

tion. In each simulation setup, an ITU-T G.652 standard single-mode fiber (SMF) link

with varying lengths L ∈ 100, 200, 300, 400 km was considered. Notably, the neural net-

works employed in all scenarios were initialized randomly, meaning they possessed no prior

knowledge of the channel parameters. The architecture of the fully connected neural net-

work utilized in this study is illustrated in Figure 3.7. The authors observed a Q-factor

improvement ranging from 0.5 dB to 1 dB when employing the neural network as opposed

to linear equalization. This gain was validated through both simulation and experimental

results. Figure 3.8 depicts the performance gain achieved by the neural network when

placed after CPE.

Figure 3.6: Simulated systems with neural networks (NNs) for nonlinear effects mitigation as shown

in [17] for two cases: after CPE (a) and after MIMO (b).

Figure 3.7: Artificial neural network design as shown in [17].

Considering the extensive range of hyperparameters that require optimization, more

effective methods such as Bayesian hyperparameter optimization [84] can be used for fine-

tuning neural network hyperparameters. This method has been applied in [36] to determine

the hyperparameters for a novel complex-valued neural network design operating in both

standard SMF and large effective-area fiber (LEAF) links, particularly in highly nonlinear

regimes. Numerical and experimental tests were conducted, with results from DP-64QAM

32 GBd single-channel optical signal test cases indicating that this approach consistently

outperforms standard DSP and conventional neural networks in both experimental and
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Figure 3.8: Simulated Q-factor vs. span input power of the WDM multiplex with experimental

data, when the neural network is located after CPE as shown in [17].

numerical evaluations.

The studies in [18, 25, 32, 106] offer valuable insights into the performance comparisons

among various model-agnostic NN models. However, the study presented in [39] stands

out as a unique contribution, providing invaluable insights into the trade-offs between

complexity and performance across different model-agnostic neural networks.

In [109], the authors introduced a fully-connected neural network, to learn from received

data and compensate for nonlinear impairments without prior knowledge of the transmis-

sion system. Their system-agnostic neural network algorithm demonstrated approximately

0.6 dB in Q-factor improvement following signal transmission spanning a distance of 2800

km over standard SMF at a rate of 32 Gbaud.

In [24], the authors introduced the utilization of LSTM architectures for compensating

fiber nonlinearities in digital coherent systems. They conducted numerical simulations

involving both C-band and O-band transmission systems, considering single-channel and

multi-channel 16-QAM modulation formats with polarization multiplexing. the authors

conducted transmission simulations in both single-channel and multi-channel scenarios to

evaluate the performance of a bi-directional long short-term memory (Bi-LSTM) neural

network for compensating fiber nonlinearities in optical communication systems. In single-

channel transmission, they utilized various equalization techniques, including FDE, FDE

followed by Bi-LSTM, and DBP with varying numbers of steps per span. They compared

performance at two different wavelengths, 1310 nm and 1550 nm. The results showed that

Bi-LSTM significantly improved BER compared to linear equalization, especially in the

C-band, where it outperformed DBP with 2 steps per span. In multi-channel transmission,

Bi-LSTM was compared to FDE and DBP. Despite focusing only on the information from

the central channel, Bi-LSTM demonstrated superiority over DBP, which only addressed

intra-channel effects. This performance improvement was particularly pronounced in the

C-band. The authors also analyzed the impact of several internal properties of the Bi-
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LSTM network, such as the number of hidden units and the word length, on classification

performance. They found that increasing the number of hidden units improved BER

performance, and a word length exceeding 20 symbols was optimal. Additionally, the word

length’s significance related to the channel memory, determined by accumulated dispersion,

was highlighted. In the C-band, where channel memory increased due to higher dispersion,

the optimal word length surpassed 50 symbols.

In the paper [61, 62], the authors present an innovative approach where they imple-

ment an optical fiber communication system as an end-to-end deep neural network. This

system encompasses the complete transceiver, including the transmitter, channel model,

and receiver, enabling a joint optimization process. The study focuses on intensity modu-

lation/direct detection (IM/DD) systems and demonstrates the capability to achieve BERs

below the 6.7% hard-decision forward error correction (HD-FEC) threshold. NN techniques

are applied to discover transmitter and receiver configurations that minimize the symbol er-

ror rate. The authors’ proposed training method is validated through simulations, ensuring

the development of robust and flexible transceivers capable of reliably transmitting signals

over a wide range of link dispersions. Notably, the experimental results align with the sim-

ulation findings. Achieving information rates of 42 Gb/s below the HD-FEC threshold at

distances exceeding 40 km, the end-to-end deep learning approach surpasses conventional

IM/DD solutions using PAM2/PAM4 modulation and receiver equalization. The study

also introduces a training method that enhances the system’s robustness to variations in

the link distance, offering flexibility in real-world implementations. The research signifies

a pioneering step toward the utilization of end-to-end deep learning for optimizing optical

fiber communication systems, with the potential for broader applications beyond IM/DD

systems.

The paper [25] compares three bi-directional RNN models: Bi-LSTM, bi-GRU, and

bi-Vanilla-RNN, as equalization techniques for mitigating fiber nonlinearities in digital co-

herent systems carrying polarization-multiplexed 16-QAM and 32-QAM signals. The study

reveals that all three bi-RNN models significantly enhance BER performance when com-

pared to linear equalization in a transmission experiment spanning 960 km. Among these

models, bi-Vanilla-RNN stands out as it offers competitive performance while maintaining

the lowest complexity. These models prove particularly effective in dispersion unmanaged

systems and consistently outperform Volterra nonlinear equalizers. Furthermore, the re-

search demonstrates that bi-Vanilla-RNN maintains its superiority even when dealing with

more complex modulation formats and higher baud rates. The complexity analysis high-

lights that bi-Vanilla-RNN is notably less complex than the Volterra nonlinear equalizer,

particularly when decoding multiple symbols simultaneously.

Applications of NNs in optical fiber communication extend beyond direct symbol equal-

ization. In [59], the authors propose a novel receiver for nonlinear frequency division
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multiplexed (NFDM) optical systems, utilizing neural networks (NNs) to adaptively de-

tect NFDM signals amid losses and noise. Traditional methods, like the nonlinear Fourier

transform (NFT) receiver, assume ideal conditions and struggle with real-world distortions.

The NN receiver excels at handling these distortions, enabling reliable NFDM transmission

over long distances. The study also investigates the impact of various hyperparameters on

the NN receiver’s performance. This work presents an improved alternative to traditional

NFDM receivers for practical optical communication systems.

In [79], the authors introduce a novel approach called Co-LSTM (center-oriented long

short-term memory network) for mitigating fiber nonlinearity in coherent optical com-

munication systems. This method aims to overcome the high computational complexity

associated with neural network-based equalization schemes. The authors conduct exper-

iments using a ten-channel wavelength division multiplexing (WDM) transmission over

1600 km of standard SMF with 64 Gbaud polarization-division-multiplexed 16-QAM sig-

nals. Co-LSTM demonstrates a 0.51 dB improvement in Q2-factor, which is comparable

to the performance of DBP, while its computational complexity is significantly lower.

Co-LSTM’s complexity remains nearly constant regardless of the transmission distance,

providing a distinct advantage over DBP.

Finally, to comprehensively address the issue of the performance-complexity tradeoff

inherent in various model-agnostic neural network architectures, the authors in [39] have

provided insights into the performance and complexity of several neural network types.

These include CNN combined with biLSTM layers (CNN+biLSTM), CNN with MLP

(CNN+MLP), biLSTM networks, three-layer perceptrons (MLP), and echo state networks

(ESN). This extensive analysis encompasses both numerical simulations and practical ex-

perimental optical fiber transmission setups. For each setup, they optimized the hyper-

parameters of these networks using Bayesian optimization. Computational complexity

expressions in terms of real multiplications per symbol were measured for each neural net-

work type. One of their key findings is the remarkable performance of the CNN+biLSTM

architecture, which outperforms other counterparts when computational complexity is not

a constraint. This architecture delivers a 4.38 dB improvement in the Q-factor compared

to conventional DSP. In scenarios where computational resources are limited, simpler ar-

chitectures like the MLP prove to be the optimal choice.

This study, however, sheds light on a fundamental drawback of model-agnostic neural

networks: their inherent complexity. While it does not provide direct comparisons with

model-based approaches, it does offer a relevant comparison with DBP (with equivalent

complexity to learned digital back-propagation (LDBP), as explained in later chapters).

All neural networks discussed in the paper fall under the model-agnostic approach, and

their complexity is shown to be orders of magnitude higher than that of DBP. For instance,

DBP achieves a complexity of 103.33 RMpS, whereas the complexity for CNN+biLSTM,
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CNN+MLP, ESN, biLSTM, and MLP stands at 107.52, 106.89, 104.93, 107.23, and 105.09

RMpS, respectively.

In the simulation results, DBP ranked as the third best performing method, offering

4.12 improvement in Q-factor compared to linear equalization (LE). This performance

placed it behind only CNN+biLSTM and biLSTM, which achieved Q-factor improvements

of 4.38 and 4.33 over LE, respectively. However, the modest improvement relative to DBP

does not justify the significantly greater complexity associated with the other methods.

In experiments, however, since all the neural network-based models are inherently train-

able, and the signals obtained from real-life experimental scenarios are influenced by various

distortions and channel imperfections, these neural network methods displayed the capac-

ity to generalize and adapt to these real-world complexities, ultimately outperforming the

DBP. We hypothesize that enabling the DBP with the capability for training, similar to

other neural network methods, could help it acquire the capacity to learn and adapt to

real-life distortions. This, in turn, could potentially lead to improved performance in ex-

perimental setups while maintaining its low complexity. The LDBP effectively embodies

this concept by adopting a model-based approach, which entails parameterizing a neural

network with the DBP. This strategy enables the network to undergo training, effectively

equipping it with the ability to capture and adapt to additional factors influencing the

signal.

3.3.3 Model-based neural network equalizers

In contrast to the arbitrary design of model-agnostic neural networks, where design el-

ements like architecture (shape, type, width, depth), and activation functions are often

determined through a trial-and-error approach based on user experience, the model-based

approach to neural network design alleviates the challenge of hyperparameter testing and

selection. This is accomplished by deriving the neural network structure from the physical

model of the phenomenon it aims to simulate.

One of the pioneering instances of the model-based approach can be found in the

work of Sidelnikov et al. in [97]. In this work, they introduced a deep CNN (DCNN)

characterized by alternating layers, roughly resembling the computational graph of SSFM.

The activation function employed in their neural network is based on the enhanced SSFM

approach. This function incorporates the nonlinear interactions between the considered

symbols within the channel of interest, and its neighboring symbols from the surrounding

channels.

Another prominent approach in the model-based neural network category is the LDBP

proposed by Häger et al. in [12, 47–50]. The LDBP approach is based on the computational

graph of the DBP, which consists of alternating between linear and nonlinear operators.

The neural network’s computational graph consists of a sequence of linear layers and non-
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Figure 3.9: The system model shown in [49]. The top processing branch depicts DBP implemented

via the SSFM, while the bottom branch shows the LDBP approach obtained by "unrolling" the

SSFM. The LP and MF blocks represent the low-pass and matched filters, respectively. LDBP

performs similarly to DBP in the absence of parameter optimization via deep learning and when

the same number of steps/layers are used.

linear activation functions, which is identical to the corresponding computational graph of

the DBP. This similarity allows us to use the DBP’s computational graph as a blueprint

for the neural network. The neural network implemented in LDBP is complex-valued and

replaces the chromatic dispersion compensation (CDC) block in the DSP at the receiver.

An illustration of the LDBP is shown in Fig. 3.9, where the upper branch shows the compu-

tational graph generated by the symmetric DBP with 2 steps/span, and the lower branch

shows the proposed equivalent LDBP with similar graph, but the parameters in the linear

layers and nonlinear functions are trainable and optimized by the neural network.

In the research presented in [65] and [47], the first simulations of LDBP were conducted

for single-channel transmission, specifically focusing on 16-QAM modulated signals, and

were carried out at a transmission rate of 10.7 Gbaud, and subsequently in [49], at a rate of

20 Gbaud. The scope of these simulations was later expanded to encompass multi-channel

wavelength-division multiplexing (WDM) transmission, as detailed in [48]. Throughout

these simulations, the optical fiber link spanned a total distance of 3200 km, divided into

32 spans, each with a length of Lsp = 100 km. Notably, LDBP consistently demonstrated

a reduction in computational complexity while concurrently maintaining, and in some

instances even enhancing, Q-factor performance. For instance, the performance gain of

LDBP over DBP and linear equalization is demonstrated in 3.10, which is obtained by

comparing the performance of LDBP with 1 step/span to DBP with 2 steps/span. The

authors report that LDBP achieves comparable performance while utilizing only half the

number of steps, resulting in a remarkable 50% reduction in complexity compared to DBP

with similar performance. These compelling results strongly indicate that LDBP holds

substantial promise as a more efficient alternative for mitigating nonlinear interference in

long-haul optical communication systems.

The authors extended their model in subsequent studies [12, 50], to include PMD ef-

fects in their simulations. This expansion aimed to tackle the challenges associated with

PMD in optical communication systems. In their simulation setup, the authors fine-tuned
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Figure 3.10: Simulation results comparing the proposed LDBP against DBP and linear equaliza-

tion, as shown in [49].

parameters within the LDBP model to introduce PMD emulation at each simulation step,

and labeled their method as "LDBP-PMD". The authors examined different parameter-

ization options, including Free MIMO Filters, Free DGD Filters + Free Matrices, Free

DGD Filters + SU(2)* Matrices, Lagrange Filters + Free Matrices, and Lagrange Fil-

ters + SU(2)* Matrices. Among these, "Lagrange Filters + SU(2)* Matrices" emerged

as the method offering optimal balance between performance and complexity. Remark-

ably, LDBP-PMD demonstrated efficient convergence, delivering performance levels close

to those in PMD-free scenarios, all without requiring prior knowledge of specific PMD

realizations.

As a continuation of the previous task, which aimed to equip model-based approaches

with the capability to perform adaptive equalization, the authors in [31] have taken a

significant step forward by combining ML with adaptive DSP within a single trainable

model called the generalized digital back-propagation (GDBP). Integrating adaptive DSP

components as stateful Neural Network (NN) layers not only facilitates the utilization of

standard ML training techniques but also enhances the performance of optical communi-

cation systems. The authors tested the GDBP in a multichannel scenario, employing a

7x288 Gb/s transmission experiment. Their results demonstrate that GDBP outperforms

existing methods, including DBP, enhanced digital back-propagation (EDBP), filtered dig-

ital back-propagation (FDBP), and CDC, both in experimental and numerical evaluations

over a transmission distance of 1125 km.

In [100], the authors propose a novel method for joint intra and inter-channel nonlinear-

ity compensation in long-haul coherent optical communication systems. They introduce a

deep-unfolded neural network architecture called DU-DBP-NPCC, which combines conven-

tional DBP and nonlinear polarization crosstalk canceller (NPCC) into a single trainable

model. Through their simulations of a 7-channel, 20-GBaud DP-16QAM, 3200-km co-
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herent optical transmission system, DU-DBP-NPCC achieves a performance improvement

of 1 dB and 0.36 dB in Q-factor compared to CDC and cascaded DBP-NPCC, respec-

tively, at a launch power of -1 dBm/channel. DU-DBP-NPCC extends the maximum

transmission reach by 28% (700 km) compared to CDC, demonstrating its effectiveness

in long-haul communication systems. It also outperforms cascaded DBP-NPCC by 7%

in terms of transmission distance. An analysis of computational complexity reveals that

DU-DBP-NPCC offers approximately 26% lower computational complexity compared to

conventional DBP-NPCC.

Finally, in [40], the authors focus on improving the performance of nonlinear frequency

division multiplexing (NFDM) communication systems, which rely on the nonlinear Fourier

transform (NFT). NFDM systems have shown remarkable progress but face challenges re-

lated to fiber loss and noise, as the NFT theory assumes a lossless transmission fiber. To

address this, the authors propose a novel approach involving the replacement of the conven-

tional NFT receiver with a time-domain NN-based symbol decisor. They experimentally

validate this idea by developing a receiver architecture that combines a two-stage iterative

carrier recovery with an NN-based symbol decisor. The experimental results demonstrate

significant improvements, with a two-fold increase in transmission reach (approximately

1600 km) compared to a conventional NFT receiver (approximately 560 km) in a practical

link scenario using erbium-doped fiber amplifiers (EDFAs).

3.3.4 Comparing model-agnostic and model-based approaches

While literature, to the best of our knowledge, lacks a specific study directly compar-

ing model-based approaches and model-agnostic approaches, we can discern several key

advantages and drawbacks associated with each of these approaches.

Model-based approaches offer several compelling advantages when designing neural net-

works. Firstly, they typically involve fewer trainable parameters, which not only reduces

the risk of convergence-related issues but also mitigates overfitting concerns, enabling train-

ing with smaller datasets and saving time [51]. Moreover, model-based methods are rooted

in the physical model of a phenomenon (e.g., DBP in the case of LDBP), which enables

accurate parameter optimization to enhance accuracy and performance. Consequently,

LDBP is expected to consistently outperform models like DBP. Additionally, model-based

approaches have demonstrated the capability to perform many-to-many equalization, in

contrast to many black-box neural network equalizers that typically perform one-to-one

or many-to-one equalization. Many-to-Many equalization may contribute more effectively

to reducing complexity and may be better suited for real-time implementation in optical

receivers.

On the contrary, model-agnostic approaches, also known as black-box approaches, offer

distinct advantages. Firstly, they provide greater flexibility in selecting hyperparameters
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and designing the neural network. Secondly, deep neural networks are recognized as uni-

versal approximators, meaning that they can model any function with sufficient neural

network width. Lastly, these approaches can be positioned at various points within the

DSP chain, either at the receiver or even at the transmitter for pre-equalization, granting

versatility in their integration into optical communication systems.

Indeed, while both approaches offer their respective advantages, it is crucial to acknowl-

edge their associated limitations. Model-based approaches, for instance, often employ a

lower number of parameters, potentially constraining their representational power. Over-

coming this limitation typically requires precise and appropriate initializations to ensure

effective convergence. Additionally, effectively implementing the model-based approach

depends on having sufficient knowledge of the channel, including parameters like fiber

properties and lengths. Furthermore, these approaches may face constraints concerning

their placement within the receiver architecture. Take the example of LDBP, a model-

based approach which must be situated in the DSP instead of the CDC block since DBP

takes the place of CDC in DSP.

Lastly, model-agnostic approaches have their own limitations. They tend to create

large and complex models, increasing their computational complexity [39]. These models

demand extensive datasets for effective learning and to prevent overfitting. Since they lack

grounding in specific physical phenomena or established theories, comprehending what the

neural network is learning can be challenging. It remains uncertain whether the acquired

knowledge is inherently linked to the channel it operates in or if it can be applied to

different channels. Experiments have shown that such neural networks can even learn

random number generator sequences and perform well in controlled experiments. However,

their performance decreases in practical systems with truly random data. Furthermore,

model-agnostic approaches typically perform one-to-one equalization.

Considering the advantages and limitations of each approach, the decision between

a model-based and a model-agnostic approach ultimately depends on the user’s specific

needs. Both approaches have their merits and drawbacks, and there is no one-size-fits-all

solution. The choice should be guided by the particular application at hand, ensuring it

aligns with the strengths of the selected approach.

3.4 Summary

When it comes to channel equalization using neural networks, two main categories of ap-

proaches can be distinguished: model-agnostic and model-based neural networks. Model-

agnostic neural networks do not rely on prior knowledge or assumptions about the under-

lying physical system, while model-based approaches incorporate known physical models

of the channel into the neural network design.
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Model-agnostic approaches, such as dense neural networks (DNNs), CNNs, and RNNs,

have gained significant attention in recent years due to their ability to learn complex

mappings between input and output signals without any assumptions about the underlying

physics. These models are trained on large datasets of input-output pairs, and they are

able to generalize to unseen data by learning patterns and correlations from the training

data. Model-based approaches, on the other hand, take advantage of the known physical

models of the channel to design neural networks that can perform channel equalization.

For example, LDBP is a model-based approach that uses a physical model of the fiber

channel to compensate for signal distortion caused by fiber dispersion and nonlinearity.

One advantage of model-agnostic approaches is their flexibility and ability to learn

complex mappings without any prior knowledge of the physical system. However, these

approaches may suffer from overfitting if the training data does not represent the full range

of channel impairments, and they may not generalize well to unseen channels or scenarios.

On the other hand, model-based approaches have the advantage of incorporating prior

knowledge of the physical system into the design of the neural network, which can lead to

better performance and more accurate channel equalization. However, these approaches

are often limited by the accuracy of the physical model, and they may not perform well if

the channel is significantly different from the model assumptions.
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CHAPTER 4

Low-Complexity Learned Digital Back-Propagation

for Dual-Polarization Systems

We propose the use of a parameter-sharing method applied in convolutional neural network

to mitigate the effects of fiber transmission. This approach significantly reduces the number

of trainable parameters by a factor of five compared to other equalization methods while

improving Mean Squared Error (MSE) by 3.5 dB in comparison to digital back-propagation

(DBP), while maintaining similar complexity.
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4.1 Introduction

As the need for higher data rates continues to grow, so does the stress on optical fiber

networks. To attain these higher data rates, the utilization of higher-order modulation for-

mats becomes necessary. However, these advanced modulation formats demand increased

transmitted power. As the transmission power increase, the distortions induced by Kerr
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nonlinearity become a critical limiting factor for achievable information rates (AIRs). The

mitigation of the nonlinear effects is a major challenge for network operators, one that is

becoming increasingly necessary to address if they wish to elevate the transmission rates

to meet today’s demands.

Many effective methods for the mitigation of nonlinear distortions have been proposed,

most notably, DBP, as found in multiple studies such as [23, 57, 74, 78, 81]. DBP excels in

the realm of nonlinear equalization because it offers a step-by-step process to eliminate the

nonlinearity at each step, which mirrors the model describing how the signal propagates.

DBP, however, requires knowledge of fiber parameters, and can be computationally ex-

pensive in part due to potentially large number of spatial segments. Furthermore, several

studies have indicated that DBP parameters require system-specific optimization [46, 90,

93, 94], making it challenging to find universally optimal parameters.

Neural networks provide a potentially less complex alternative [108]. Importantly,

neural networks can address certain limitations of the model by training their parameters

for channel equalization without requiring perfect knowledge of channel parameters. Neural

network-based methods have the capability to learn the channel model from data, utilizing

a set of examples for training.

In Chapter 3, we highlighted the use of neural network-based methods for equalizing

optical signals. This has led to numerous equalization techniques, mainly falling into

two categories: model-agnostic (black box) approaches and model-based (model-informed)

approaches. Model-based approaches are systematic and generally more compact than

their counterparts. One example of a model-based approach is the learned digital back-

propagation (LDBP), proposed in [12], which combines the strengths of DBP, known for its

high performance, with neural networks, recognized for their ability to learn the channel

model from a set of training data. C. Häger introduced the LDBP as the pioneering

model-based approach, paving the way for others in the same vein, such as Enhanced-DBP

(EDBP)[91, 92] and Generalized-DBP (GDBP)[31].

The LDBP approach, which is model-based and inspired by the computational graph

of the DBP, optimizes the linear filters within the DBP using the built-in neural network

learning algorithm. When comparing LDBP to DBP, LDBP clearly outperforms it while

maintaining the same level of complexity. In the pursuit of improving LDBP, several

directions have been proposed: reducing the complexity of the activation function by

replacing it with generic, easy-to-compute activation functions such as ReLU and tanh, or

reducing the complexity of the linear operators. However, both approaches have proven to

be challenging for the following reasons: Firstly, the activation function in LDBP, which

is the same as the nonlinear function used in DBP, plays a crucial role in LDBP’s correct

operation, but generic activation functions like ReLU and tanh cannot capture the complex

relationships between the signal and the nonlinear phase distortions affecting it, as well as
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Figure 4.1: Block diagram of the coherent receiver with DBP used in our simulation. (LC=Linear

compensation, and NLC = Nonlinear compensation)

the interactions between the two signals in the two polarizations. Secondly, the number

of taps in the linear steps is proportional to the distance traveled and cannot be reduced

beyond what DBP and LDBP already achieve. However, one potential simplification of

LDBP, which we aim to explore, involves reducing the number of trainable parameters.

This can be achieved by exploiting similarities among DBP steps, where similar steps are

assigned identical weights, thus streamlining parameters into a single trainable layer. We

refer to this method as ’parameter sharing’ and explore its advantages in this study.

This chapter is divided into two sections: the first section is dedicated to optimizing the

step size in DBP. In the second part of the chapter, we explore the LDBP, which represents

another DBP optimization approach, leveraging neural networks for further enhancement

in performance.

4.2 DBP step-size optimization

The DBP technique employs an iterative multi-step process to reverse the channel. Each

step consists of a linear substep that equalizes chromatic dispersion, followed by a nonlinear

substep that compensates for the nonlinearity introduced by Kerr effects, as described in

Chapter 2. While DBP theoretically has the ability to completely counteract the nonlinear

effects of optical fiber propagation, practical limitations exist due to the stochastic nature of

certain impairments such as amplified spontaneous emission (ASE) and polarization mode

dispersion [60]. However, in practical applications, the complexity of hardware implemen-

tation is limited, which directly limits the total number of DBP steps, which highlights

the importance of step optimization in DBP under specific complexity constraint.

4.2.1 Simulated system model

We simulated an optical fiber transmission system with a symbol rate of 32 Gbaud using

PM-16QAM modulation format. The noise figure of the erbium-doped fiber amplifier

(EDFA) used in the simulation is 5.5 dB. The transmission fiber consists of 32 spans,
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each measuring 72 km in length. The effect of polarization mode dispersion (PMD) are

included in the simulation, where PMD coefficient is 0.05 ps/
√

km. At the receiver, the

signal is converted into an electrical signal by the polarization diversity integrated receiver

and sampled to 2 samples/symbol. it is then passed to either the chromatic dispersion

compensation (CDC) block, or the DBP algorithm. The output is then processed by the

DSP block. The DSP block chain consists of a polarization demultiplexer, carrier frequency

offset (CFO), and constant phase estimation (CPE) block. The output of the DSP chain

is sampled at 1 sample/symbol. A block diagram of the receiver is shown in Fig. 4.1.

The Manakov-PMD equation is widely used to simulate the signal propagation in the

fiber in the presence of PMD effects

∂q

∂z
= −α

2
q+

jβ2
2

∂2

∂t2
q− jγ

8

9
||q||2q (4.1)

The equation can be split into two subequations describing the linear effects and non-

linear effect, such as
∂q

∂z
= (D̂ + N̂)q (4.2)

where, q = [qx, qy]
T is the signal vector, D̂ = jβ2

2
∂2

∂t2
, N̂ = −jγ 8

9q
Hq− α

2 ,

The solution of the Manakov-PMD equation can thus be described as

q(z + h, t) = exp
(

h(D̂ + N̂)
)

q(z, t) ≈ exp(hD̂) exp(hN̂)q(z, t) (4.3)

The attenuation coefficient in the nonlinear operator N̂ alters the signal intensity during

fiber propagation, resulting in attenuation in the forward direction (for SSFM) or magnifi-

cation in the backward direction (as in DBP). The effect of attenuation can be omitted by

assuming that DBP operates on signal with normalized power, in which case, the transmis-

sion distance must be normalized. This can be performed by taking the effective nonlinear

length described as

Leff =
1− exp(−αLspan)

α
(4.4)

where Lspan is the span length. Assuming the asymmetric Wiener-Hammerstein model,

and solving for one span using 1 steps per span (StpS), the solution can be written as

follows:

q(z + Lspan, t) ≈ exp(µLspanD̂) exp(εLeffN̂) exp
(

(1− µ)LspanD̂
)

q(z, t). (4.5)

Here, µ ∈ [0, 1] is a parameter controlling the distance of the first linear substep. It can

be seen that µ = 1 corresponds to a Wiener model, µ = 0 corresponds to a Hammerstein

model, and µ = 0.5 corresponds to a symmetric Wiener-Hammerstein model, as shown in

Fig. 2.19. Another degree of freedom, ε ∈ [0, 1], has been introduced in equation 4.5 to

improve the optimization process. It can be observed that when ε = 0, this corresponds

to performing linear equalization.
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Figure 4.2: Performance of DBP measured in SNReff [dB] as a function of the parameters µ and

ε, with a signal launch power of -2 dBm. The left plot shows the 3D surface, while the right plot

presents a contour plot for easier visualization.

4.2.2 Simulation Results

In the following, we demonstrate the results obtained form numerical optimization of 1

StpS and 2 StpS DBP by optimizing the step sizes and the nonlinear coefficient.

4.2.2.1 Optimizing 1 step/span DBP

DBP with a StpS resolution of 1 is the most commonly utilized approach in industrial

systems [13, 78]. Although higher resolutions may theoretically offer better results [49,

81], as the complexity of the system increases, the interactions between linear and non-

linear effects become more intricate and challenging to solve with a greater number of

StpS. Therefore, increasing the StpS may not always guarantee improved performance,

and system operators often opt for a 1 StpS resolution to avoid excessive complexity.

For the 1 StpS DBP, we assume that the position of the nonlinear step and the value

of ε are the same for each span, which provides two degrees of freedom to optimize the

DBP according to Eq. 4.5, namely µ and ε, where the PM-16QAM signal is launched at

a launch power of -2 dBm. The equalization performance of the 1 StpS DBP is evaluated

across various values of µ and ε through a grid search. Fig.4.2 shows the performance of

the DBP as a function of µ and ε, measured by the effective SNR (SNReff), defined as:

SNReff =

∑N
n=1 |ŝx,n − sx,n|2
∑N

n=1 |sx,n|2
, (4.6)

where ŝx,n represents the estimated symbols, and sx,n represents the real symbols. The

graph displays peak performance at µ = 1 and ε = 0.62, indicated by the red cross symbol,

with a peak performance of 21.4 dB. However, in the unoptimized case of ε = 1 and

µ = 0.5, which corresponds to equal lengths for the two linear half-steps within each DBP

step, the DBP performance declines to 20.3 dB, a reduction of 1.1 dB compared to the

optimized parameters.
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4.2.2.2 Optimizing DBP with more than 1 step/span

Figure 4.3: Performance of DBP measured in SNReff [dB] shown as two 3D surface plots and their

respective contour plots, as a function of parameters µ1 and µ2 (upper) and ε and ε2 (lower). The

red cross symbol indicates the location of the maximum performance in both diagrams.

In multi-step DBP, different optimization parameters can be assigned to each substep,

denoted as µ1, µ2, . . . , and ε1, ε2, . . . . Similar studies have explored the impact of this

kind of optimization on DBP performance [9, 10, 90]. The evaluation of the 2 StpS DBP’s

equalization performance consists of two stages. Initially, a grid search is performed across

various values of µ1 and µ2. The optimal combination of µ1 and µ2 is selected from

this search. In the second stage, ε1 and ε2 are optimized through a similar grid search.

The performance results are presented in Fig. 4.3, featuring two graphs. The first graph

illustrates the performance variations with changes in µ1 and µ2. The peak performance,

marked by the red cross symbol, is achieved at µ1 = 0.52 and µ2 = 0.46. The second graph

in Fig. 4.3 depicts the performance while altering ε1 and ε2, with µ1 and µ2 fixed at their

previously optimized values (µ1 = 0.52 and µ2 = 0.46). The peak performance is achieved

at ε1 = 0.68 and ε2 = 0.9, reaching 22.2 dB. The optimal parameter values for DBPs with

1, 2, and 3 StpS are summarized in Table 4.1.

Finally, we present a comparison between unoptimized DBP and optimized DBP in

Fig. 4.4. The PMD-aware DBP shown in the figure is an unrealistic DBP that assumes
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Figure 4.4: Comparison between different DBP equalizers.

as many DBP steps as there are steps in the split-step Fourier method (SSFM) used to

simulate the signal propagation in the forward direction, and it also assumes knowledge of

all the PMD values, phase rotations, and polarization mixing in each step in the SSFM.

This way, the PMD-aware DBP is able to mitigate all the channel effects except for the

ASE noise generated by the EDFAs, and hence represents the upper limit of what is

achievable by different equalization techniques. We also simulated the max-precision DBP,

which has as many steps per span as the SSFM but without the knowledge of PMD values.

Additionally, we included a comparison of the linear equalization performance in Fig. 4.4

to provide a benchmark for the performance of the different DBP models.

For the 1 StpS DBP, the unoptimized version achieves a maximum peak performance

of 20.8 dB at a launch power of -2 dBm. In contrast, the optimized DBP with the same

StpS achieves a peak value of 21.4 dB, which occurs at a launch power between 1 dBm

and 2 dBm. Similarly, for the 2 StpS DBP, the unoptimized version attains a maximum

peak performance of 21.9 dB at a launch power of -1 dBm, while the optimized DBP with

the same StpS achieves a higher peak value of 22.2 dB at the same launch power. In the

case of the 3 StpS DBP, the unoptimized version reaches a maximum peak performance

of 22.5 dB at a launch power of -1 dBm. Conversely, the optimized DBP with the same

StpS achieves an even higher peak value of 23 dB, observed at a launch power of 0 dBm.

Generally, by comparing the optimized and unoptimized DBP in the figure, the simulation

results demonstrate the potential improvement of DBP through step-size and parameter

optimization.
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µ1 µ2 µ3 ε1 ε2 ε3

1 StpS 1.000 0.619

2 StpS 0.518 0.468 0.676 0.910

3 StpS 0.304 0.352 0.278 0.516 0.972 1.162

Table 4.1: The optimal values of µi and εi for different DBP resolutions

4.3 Learned Digital Back-propagation

In the previous section, we have explored the optimization of DBP by manually adjusting

a few key parameters, such as step-sizes and the nonlinear parameter. In the next section

however, we take a different approach. Instead of manually fine-tuning a limited set of

parameters, we harness the power of LDBP as a novel tool which enables us to optimize

individual DBP filter taps and capture more intricate interactions between the linear and

nonlinear channel effects than achievable by conventional DBP optimization methods.

In the following sections, we introduce the fundamental concept of LDBP and present

our novel approach to reduce its complexity. The results presented in the subsequent

sections have been published in [1] in the Signal Processing in Photonic Communications

(SPPCom).

4.3.1 Simulated system model

We consider a single-channel transmission of a polarization division multiplexed (PDM)

signal using the system illustrated in Fig. 4.5. Here, we make the assumption that the

channel operates without considering the effects of PMD. The dual-polarization transmit-

ted signal, denoted as qx,y(t, 0), can be expressed as:

qx,y(t, 0) =

Ns∑

k=1

skx,yp(t− kTs) (4.7)

In this equation, p(t) represents the pulse shape as a function of time t, {skx,y}k are

transmitted symbols drawn from a constellation S, Ns denotes the number of symbols, and

Ts is the symbol period. We generate this signal using the 16-QAM format and launch it

into the optical fiber. The propagation of the signal through the optical fiber is modeled

by the vector nonlinear Schrödinger system:

∂qi
∂z

=

[

−α

2
− jβ2

2

∂2

∂t2
+ jγ (|qi|2 +

2

3
|qī|2)

]

q
i

(4.8)

In this equation, (i, ī) can take values (x, y) or (y, x), z represents distance, and α, β2,

and γ stand for the loss, dispersion, and nonlinearity coefficients, respectively. Analyz-
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Figure 4.5: Block diagram of the end-to-end system model

ing the system, it becomes apparent that the signal propagating through the channel is

primarily affected by chromatic dispersion and the Kerr nonlinearity originating from the

signal itself. Since all these effects are deterministic (except for the noise generated from

EDFAs), DBP equalization is practically capable of mitigating these effects, leaving only

the noise that affects the signal. The DBP has been previously studied in Chapter 2. In

the following, we will discuss the operation of the LDBP.

4.3.2 Mathematical Model of LDBP

When designing NNs, incorporating prior knowledge of the system’s model can significantly

expedite the training process and improve the convergence rate to a lower local minimum

compared to black-box approaches [97]. The similarity between the SSFM and deep feed-

forward NNs had been pointed out in the literature [12, 49], where both involve alternating

between linear matrix multiplication and nonlinear element-wise operator. This similarity

can be exploited to design a model-based NN with DBP as a blueprint, which allows for

optimizing DBP parameters using the SGD algorithm [49].

The LDBP equalizer is a deep neural network model comprising a series of alternat-

ing layers Each layer in the LDBP is inspired by its equivalent step in the DBP, and it

replicates both the linear and nonlinear components of the DBP step. Similarly to deep

feed-forward NNs, the LDBP can be mathematically represented as a series of alternat-

ing linear operations, denoted as A(k), and element-wise activation function, denoted as

Φ(k). These operations create a mapping from an input vector u to an output vector v, as

follows:

v = Φ(dl)(A(dl)(Φ(dl−1)(. . .A(0)(u)))), (4.9)

where Nl represents the number of layers in the LDBP, and the superscript (k) denotes

the index of the k-th layer of the LDBP. The function performed by the linear operator

A(k) varies depending on the neural network architecture. In the case of fully-connected

NNs, it performs matrix multiplication. However, in the case of convolutional NNs, it

performs convolution. When fully-connected NNs are considered, The k-th LDBP step

linear operator A(k) is a d× d matrix, which can be expressed as

A(k) = F−1diag(H1, ..., HN )F. (4.10)

Here, diag(·) represents a diagonal d×d matrix with diagonal elements Hk = α
2 δ− j β2

2 ω
2
kδ
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for k = 1, 2, . . . , d, where ωk = 2πfk and fk denotes the k-th discrete frequency. Addition-

ally, F denotes the discrete Fourier transform (DFT) matrix

F =
1√
d








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
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. (4.11)

The activation function for the k-th layer ρ(k) : Cd 7→ Cd is modeled as ρ(i)(x) = xe−jαi|x|
2
,

where αi is a trainable parameter.

The primary goal of equalization is to estimate the true output vector v ∈ Cd as v̂ ∈ Cd

based on the input vector u ∈ Cd, while minimizing the error represented by the difference

between the output and estimated vectors.

4.4 Simplifying LDBP with Parameter-Sharing

Let us consider the i-th layer in the LDBP, Each layer in the LDBP comprises two weight

matrices, W (i)
1 ,W

(i)
2 ∈ Cd×d, where d is the dimension of the neural network weight matri-

ces. During training, the weight matrices are constrained, such that they perform circular

convolution with a symmetric filter of length 2Km+1, where Km is a hyper-parameter. The

matrix rows are a circularly shifted version of the vector (u−Km , . . . , u−1, u0, u1, . . . , uKm ,

0, . . . , 0), where ui ∈ C and u−i = ui. The weight initializations are based on a pruned

version of the matrix Aδ/2 in DBP (top branch in Fig. 3.9), where the final layer in LDBP

W (l) ∈ Cm performs match filtering and reduces the input’s dimensionality to m < n to

account for the memory induced by dispersive channel effects. We note that the same

DBP steps are repeated in each span. Thus, instead of joint training of all neural network

layers, we train a few unique layers that are shared in network depth. With this parameter

sharing method, we substantially reduce the number of model trainable parameters.

In CNNs, each layer maps the input vector X⃗(l−1) to an output vector X⃗(l) = Φ( ⃗̃W (l) ∗
X⃗(l−1)) by convolution multiplication with a kernel ⃗̃W (l). The main idea of this paper is to

exploit the similarity between the neural network function and the un-folding of the SSFM,

since both involve alternating between linear and nonlinear operations in their functions.

It is hence possible to initialize the deep CNN parameters to perform SSFM; This approach

has been studied and is referred to as model-based neural networks. We extend the model-

based design of neural networks by assuming that some of the training parameters can be

shared between multiple layers. Fig.4.6 shows the proposed CNN equalizer with parameter

sharing and the corresponding SSFM with M = 2 steps per span. Since the linear and

nonlinear operations of SSFM (i.e. Am and σ in Fig.4.6, respectively) are repeated

in each span in the optical fiber, we are able to identify 4 layers with unique parameters,
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Figure 4.6: An illustration of the proposed neural network architecture. The top branch corre-

sponds to asymmetric DBP, and the bottom branch to the proposed CNN. q
(0)
x,y and q

(L)
x,y refer to

the signals at the transmitting and receiving ends of the fiber, where L is the number of segments.
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Figure 4.7: Comparison between compensation algorithms.

namely W1
∧
= G1A1, W2

∧
= A2G2A3, W3

∧
= A4G1A1 and W4

∧
= A4. Overall, the number

of uniquely defined layers is M+2 regardless of the number of spans in the optical link. The

nonlinear activation function used in our CNN is Φ(X⃗) = X⃗ej(||X⃗||2+ 2
3
||Y⃗ ||2) and Φ(Y⃗ ) =

Y⃗ ej(||Y⃗ ||2+ 2
3
||X⃗||2) for each polarization. In our model, amplification is applied after each

segment such that
∏M

k=1Gk = 1. With this, we provide the neural network the ability to

adjust the intensity of the signal, and hence, the nonlinear phase rotation without the need

of trainable parameters in the activation function.

4.5 Results

In our simulations, we generate dual-polarized 16-QAM signals at 32 Gbaud using root

raised cosine pulse-shaping (roll-off factor = 0.1). We set the fiber length Lf=1000 km, and

the number of spans Nsp=10. Forward-propagation is simulated with 50 StpS, and data

is initially sampled at a high sampling rate of 16 samples/symbol. On the receiver side,

the signal is down-sampled to 2 samples/symbol before being processed by either CNN or

84



4.6. Summary

DBP algorithms. We use Keras API built on TensorFlow to implement and optimize the

neural network parameters. During the training of the model, examples consisting of input-

output pairs were randomly chosen from the set of launch powers P ∈ {0,1,2,3,4} dBm.

For each point in Fig.4.7, we generate 3300 input-output pairs for testing. We express

the performance gain in terms of the normalized mean squared error (MSE) defined as
||X−X̂||2+||Y−Ŷ ||2

||X||2+||Y ||2
. The proposed CNN with 1 layer/span achieved MSE of 25 dB at 2 dBm

launch power which corresponds to 3.5 dB improvement compared to the best performance

attained by DBP with optimized step-size and equivalent complexity. For 2 layers/span,

the peak MSE value for the CNN is 27 dB caluclated at 5 dBm launch power, which is 3

dB higher than DBP with similar complexity. Comparing to LDBP (asterisks in Fig.4.7),

a small gain in MSE is observed. We explain this gain by the neural networks ability

to generalize better with fewer training parameters. In terms of training complexity, our

model uses 3 uniquely defined layers comparing to 11 layers for LDBP, in the 1 layer/span

setup, and 4 uniquely defined layers comparing to 21 layers for LDBP, in the 2 layers/span

setup.

4.6 Summary

A parameter sharing method is proposed to reduce the training complexity of CNNs for

equalization in optical fiber. The proposed approach yields 3 – 3.5 dB gain in MSE com-

pared to optimized DBP with comparable complexity, and five-fold reduction in number

of trainable parameters compared to LDBP at the same MSE.
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CHAPTER 5

Learned Digital Back-Propagation for Dispersion Man-

aged Systems

This chapter investigates the application of learned digital back-propagation (LDBP) for

dual-polarization fiber-optic transmission in dispersion-managed (DM) links. The eval-

uation is performed in a simulated wavelength-division multiplexing (WDM) system at

256 Gbit/s per channel, covering a 2016 km link with 15% residual dispersion. Results

indicate LDBP significantly enhances single-channel transmission by 6.3 dB compared

to linear equalization (LE) and 2.5 dB compared to digital back-propagation (DBP). In

WDM, Q-factor gains are 1.1 dB and 0.4 dB, respectively. Additionally, the complexity

analysis favors the frequency-domain (FD) implementation of LDBP and DBP over the

time-domain approach. This highlights LDBP’s effectiveness in mitigating nonlinear ef-

fects in DM fiber-optic systems. The research and findings presented in this chapter have

been published in the Optics Express journal in [3].
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5.1. Introduction

5.1 Introduction

In earlier generations of optical receivers, prior to the advent of coherent detection, disper-

sion management was utilized to mitigate chromatic dispersion optically. This technique

involved using dispersion-compensating fiber (DCF) fibers with a strongly negated disper-

sion coefficient D of appropriate length, effectively reducing chromatic dispersion to zero

at the receiver’s end. A typical dispersion-managed (DM) system configuration consisted

of the following components in each span: single-mode fiber (SMF), a first-stage erbium-

doped fiber amplifier (EDFA), DCF, and a second-stage EDFA. The DCF, characterized

by its high negative dispersion coefficient, was strategically integrated into the link to

compensate for a specified percentage of dispersion.

5.1.1 History of Dispersion-Managed Systems

The advent of the EDFA in the late 1980s marked a significant milestone in long-distance

fiber transmission[26, 75]. It eliminated the need for signal reconstruction and regeneration

during transmission, effectively addressing the issue of signal attenuation in optical fibers.

Additionally, the widespread adoption of dispersion-shifted fibers (DSFs) in the early 1990s,

characterized by near-zero dispersion at the operating wavelength, successfully mitigated

chromatic dispersion challenges [80]. However, it’s important to note that DSF introduced

its own set of challenges, particularly nonlinear distortions like Four-Wave Mixing (FWM),

which becomes prominent at zero chromatic dispersion [44].

The earliest DM systems utilized a combination of NZDSFs with opposite dispersion

signs to achieve a near-zero net chromatic dispersion (CD) value while maintaining high

local CD values over specific distances to counteract phenomena such as four wave mixing

(FWM) [20]. This approach offered effective compensation, to some degree, for both CD

and nonlinearities and found widespread use in high-speed dense wavelength-division mul-

tiplexing (WDM) commercial systems. These systems primarily used intensity modulation

(IM)/direct-detection (DD), in which information was encoded in the signal envelope, while

the signal phase was disregarded. They typically achieved data rates of around 10 Gb/s

per wavelength, which were later upgraded to 40 Gb/s.

However, between 2000 and 2010, with the introduction of coherent detection, IM/DD

systems rapidly gave way to their more advanced counterpart. Coherent detection improves

receiver sensitivity compared to IM/DD [68]. Coherent systems used advanced modulation

formats and sophisticated digital signal processing algorithms, offering improved spectral

efficiency and better performance compared to DM systems. The ability to capture both
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the amplitude and phase information of the optical signal enabled higher data rates and

longer transmission distances. This transformation revolutionized optical communication,

enabling transmission capacities in the multi-terabit per second range and facilitating the

deployment of advanced modulation formats such as quadrature amplitude modulation

(QAM) to maximize spectral efficiency. As a result, DM systems became less prevalent,

with coherent detection emerging as the de facto scheme, effectively replacing DM systems.

5.1.2 Advancement in Coherent Detection

The advent of coherent receivers enabled the complete compensation of accumulated CD

in the electrical domain through digital signal processing (DSP) [89], eliminating the need

for traditional DM systems. Consequently, the focus shifted from intricate optical con-

figurations to advanced DSP algorithms capable of mitigating CD effects. Despite this,

commercial DM links continue to operate today. This is primarily due to the significant

cost associated with upgrading deployed DM solutions, particularly in long-haul and sub-

marine fiber links. Ongoing research and development efforts in nonlinear mitigation offer

opportunities to improve the performance and extend the lifespan of deployed DM systems.

By leveraging these advancements, it becomes possible to enhance the capabilities of DM

networks and adapt them to meet the evolving demands of modern optical communication.

One such advancement is digital back-propagation (DBP), a technique designed to

counteract deterministic nonlinear effects by digitally simulating signal propagation at the

receiver using reversed fiber parameters [57]. However, DBP’s effectiveness is constrained

by hardware limitations, particularly as data rates increase, resulting in exponential com-

plexity growth. The practical complexity constraints of DBP limit its applicability. Fur-

thermore, DBP struggles to accurately account for signal interactions between adjacent

channels, making it less suitable for WDM scenarios. Considerable research efforts have

been devoted to optimizing DBP algorithms to achieve lower complexity and better perfor-

mance in various transmission scenarios [46, 90]. In the context of DM and non-dispersion-

managed (NDM) systems, numerical optimization of channel parameters for DBP has been

conducted [67]. Notably, the combination of transmitter-side DBP with frequency refer-

enced carriers has demonstrated the potential to effectively double the transmission reach

[102]. Additionally, optimal DBP step sizes for polarization-division multiplexing (PDM)

transmission systems have been investigated [93].

To further enhance the performance of DBP, several variants have been proposed. One

such variant is correlated-DBP, which takes into account the correlation between neighbor-

ing signal samples [66]. Another variant, dispersion folded-DBP, was originally designed

for zero-residual dispersion but has been extended to accommodate any dispersion map

[34, 69, 110, 111]. filtered digital back-propagation (FDBP) introduces a parameterized

low-pass filter (LPF) in the nonlinear step to improve phase tracking [27, 87]. Additionally,
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enhanced digital back-propagation (EDBP) considers interactions between channel signals

and adjacent channels, leading to further performance enhancements [91, 92]. In the con-

text of WDM systems, coupled-Channel EDBP focuses on achieving optimal cross-phase

modulation (XPM) equalization [21].

More recently, the integration of neural networks (NNs) has emerged as a promising

approach to enhance DBP. learned digital back-propagation (LDBP) utilizes a deep NN

inspired by the split-step Fourier method (SSFM) computational graph, optimized using

stochastic gradient descent (SGD)[2, 12, 48, 49, 55]. LDBP treats the LPF filter taps in

DBP as free parameters optimized by the NN. This approach has been extended to dual-

polarization transmission in NDM systems [12] and experimentally demonstrated with one

layers per span (LpS) [48]. Additionally, generalized digital back-propagation (GDBP) em-

ploys a deep NN to parameterize DBP, combining NN training with adaptive digital signal

processing [30]. The integration of these advanced techniques, such as optimized DBP

algorithms and NN-based enhancements like LDBP and GDBP, holds great promise for

significantly improving the performance and capabilities of optical communication systems.

5.1.3 Motivation and Objectives

Despite DM systems being mostly outdated, several optical fiber cables, especially subma-

rine optic cables constructed prior to the year 2000, are still in deployment today, utilizing

variations of optical CD compensation. Instead of restricting these systems to IM/DD

schemes, this chapter explores repurposing legacy DM links for use in coherent transmis-

sion systems, thereby expanding their data-carrying capacities. To achieve this, we lever-

age recent successful advancements in coherent detection, specifically DBP and LDBP. For

DBP, we propose a variant tailored for systems with arbitrary dispersion maps. We ob-

serve that the linear filters in the DBP steps benefit from inline dispersion management as

they are required to mitigate less chromatic dispersion, requiring a smaller number of filter

taps compared to linear dispersion map in NDM systems. This contributes to reducing

DBP complexity by allowing us to use smaller filters or fewer steps. Indeed, one of our

realizations in this study is that DM systems allow DBP to operate with less than 1 steps

per span (StpS), going as low as 1/14 StpS. This DBP variant serves as the basis for the

subsequent implementation of LDBP. We assess the performance of both DBP and LDBP

in a realistic long-haul dual-polarization WDM DM transmission system, considering var-

ious channel effects including loss, CD, Kerr nonlinearity, polarization mode dispersion

(PMD), amplified spontaneous emission (ASE) noise, and laser phase noise (PN).

We do not claim that DM systems are superior to NDM systems. Our objective here is

solely to investigate the possibility of upgrading already-deployed DM systems, commonly

used for IM/DD, to enable coherent transmission. To achieve this, we employ machine

learning techniques to optimize DBP, specifically utilizing the Learned-DBP method [2,
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Figure 5.1: The DM-WDM optical fiber system.

12, 48, 49, 55].

Our results can be summarized as follows: In the context of single-channel transmission,

the utilization of LDBP yields significant enhancements in terms of the effective signal-to-

noise ratio (SNReff). Specifically, LDBP achieves a remarkable SNReff improvement of 6.3

dB and 2.5 dB compared to linear equalization (LE) and conventional DBP, respectively.

For WDM transmission, LDBP further elevates the quality factor (Q-factor) by 1.1 dB and

0.4 dB compared to LE and DBP, respectively. To provide a comprehensive analysis, this

research presents both time-domain (TD) and frequency-domain (FD) implementations of

LDBP, denoted as TD-LDBP and FD-LDBP. Moreover, the impact of fiber parameter vari-

ations resulting from aging and laser PN on LDBP performance is thoroughly examined.

Our investigations reveal that laser PN incurs a minor Q-factor penalty of less than 0.2

dB, as long as the laser linewidth remains below 200 kHz. Additionally, we demonstrate

the robustness of LDBP by showcasing that its performance gains over DBP are consis-

tently maintained even when the LDBP model is retrained with updated fiber parameters

post-aging. These findings build upon the earlier work presented in [2] and provide valu-

able insights for enhancing data rates in DM systems through the utilization of coherent

detection and LDBP techniques.

5.2 DBP Adaptation to DM Systems

5.2.1 System Model

In the polarization-multiplexed fiber transmission, two random bit streams with Nb bits,

bx = (b
(1)
x , b

(2)
x , . . . , b

(Nb)
x ) and by = (b

(1)
y , b

(2)
y , . . . , b

(Nb)
y ), b(i)x/y ∈ {0, 1}, are generated at the

transmitter, then each is mapped into a sequence of Ns symbols sx = (s
(1)
x , s

(2)
x , . . . , s

(Ns)
x )

and sy = (s
(1)
y , s

(2)
y , . . . , s

(Ns)
y ), where s

(i)
x/y are drawn from the constellation S. The Gray

mapping is used to map the bit stream to the symbols in the constellation. The baseband
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signal of the polarization x is obtained by modulating sx into the waveform

qx,n(z = 0, t) =

Ns∑

i=1

s(i)x,n p(t− iTs), (5.1)

where qx,n is the complex envelope of the signal in the WDM channel n as a function of

distance z and time t, p(·) is the pulse shape, and Ts is the symbol period. z = 0 indicates

that the signal is located at the transmitter. The equations for qy,n(0, t) are identical upon

replacing x with y. The waveforms qx,n and qy,n are modulated into an optical signal

qn(0, t) = [qx,n, qy,n] using a dual-polarization Mach-Zehnder modulator. The complex

envelope of the WDM signal q(0, t) launched in the fiber link is generated by adding the

signals of the different WDM channels

q(0, t) =
∑

n

qn(0, t)e
−jn∆ωt, (5.2)

where ∆ω is the frequency spacing between adjacent WDM channels. The WDM signal

is launched through an optical fiber channel consisting of multiple spans, where each span

includes a SMF, dual-stage EDFAs, separated by a DCF with a proper length to compen-

sate for dispersion. DCF has a higher nonlinearity compared to SMF, so the first-stage

DCF provides pre-DCF gain, but only to a power level that would not generate exces-

sive nonlinear effects. The second EDFA in the span then amplifies the signal further to

its original power level. The end-to-end channel with all components can be described

by the interplay between CD, PMD and Kerr nonlinearity effects. The propagation of

signals inside each span in the presence of PMD is governed by the coupled nonlinear

Schrödinger’s equation (CNLSE), modeling the interaction between the two states of po-

larization. The CNLSE was previously discussed in Chapter 2, particularly in Eq. 2.25.

Furthermore, we consider a birefringent fiber, where the fiber length L is much larger

than the beat length LB = 2π/(β0x − β0y), and the coherent cross-polarization terms can

be neglected [5, Eq. 6.1.11–12]. At the end of the span, an EDFA with gain G compen-

sates for the fiber attenuation and introduces ASE noise. The noise n(t) is a band-limited

white circularly-symmetric complex Gaussian process with the auto-correlation function

E
(
n(t)n∗(t)

)
= σ2

0δB(t− t′), where δB(x) = Bsinc(Bt), σ2
0 = 1

2(G− 1)Bhν0NF, where ν0

is the carrier frequency, B is the signal bandwidth, h is Planck constant, and NF is the

amplifier’s noise figure.

In our experiments, we simulate the transmission system using Python, specifically

employing the SSFM as detailed in chapter 2. Our simulations adopt a symmetric SSFM

configuration, where the nonlinear step is applied in the middle of the two linear half-steps

At the receiver, a polarization-diversity coherent receiver converts the optical signal to

the electrical domain. A low-pass filter with the same bandwidth of the central WDM

channel is applied to the signal, obtaining q0(z = L, t). The resulting signal is sampled at
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2 samples/symbol, and translated into four electrical signals corresponding to the I and

Q components of each polarization, which are then processed by the DSP chain [89]. The

DSP chain consists of the following components.

1. CD compensator (CDC), which reverses the CD as

q̂x(L, ω)→ exp
(

−j β̄2
2
ω2L

)

q̂x(L, ω), (5.3)

where β̄2 is the mean group velocity dispersion in the link. According to Eq. (5.3),

chromatic dispersion compensation (CDC) requires processing the signal in frequency

domain using fast Fourier transform (FFT), followed by inverse fast Fourier transform

(IFFT) to transform the signal back to the time domain. An alternative implemen-

tation of the CDC in the time domain can be realized using finite frequency response

(FIR) filters, which we will discuss in Section 5.4.

2. multiple input multiple output (MIMO) equalizer, which compensates the time-varying

PMD and the random state of polarization (SOP) in the channel. The adaptive

equalization of both effects requires using a set of four real-valued FIR filters, which

together preform the inverse of the Jones matrix of the dynamic channel in Eq. (2.27).

The outputs of the MIMO equalizer are given by

xMIMO,out[k] = hH
xx xin[k] + hH

xy yin[k] (5.4a)

yMIMO,out[k] = hH
yx xin[k] + hH

yy yin[k] , (5.4b)

where hxx, hxy, hyx, and hyy are vectors of size ξ, representing the taps of the FIR

filter, and xin and yin are sliding windows of the signal after CD compensation.

These windows have a length of ξ, and they can be defined as xin[k] = [xin[k],

xin[k − 1], . . . , xin[k − ξ]] and yin[k] = [yin[k], yin[k − 1], . . . , yin[k − ξ]]. We employ

the radially directed equalizer in conjunction with the constant modulus algorithm
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(CMA) proposed in [89] to determine the filter taps of the MIMO equalizer, as

detailed in Eq. 2.58. The output sequences of the MIMO are sampled at a rate of 1

sample per symbol.

3. Carrier phase estimation (CPE): The last step in the DSP is to estimate the PN, ϕN ,

resulting from the phase fluctuations between the local oscillator at transmitter and

receiver ends [85]. Within a single coherence time, the PN varies slowly compared to

the signal, and can thus assumed to be constant. Therefore,

xsym[k] = xCPE,in[k] exp(−jϕN ), (5.5)

where xCPE,in is the same as the output of the MIMO, xMIMO,out.

The aforementioned optical fiber receiver only concerns equalizing the linear effects of

the signal resulting from the dispersive channel and PMD.

5.2.2 Digital Back-Propagation

In Fig. 5.1, the DBP block takes the place of the CDC in the receiver and operates at

the same sampling rate of 2 samples/symbol. DBP employs the SSFM with negative

propagation parameters and larger spatial segments compared to the SSFM. This approach

helps to mitigate the high complexity typically associated with a large number of segments

in the SSFM, while maintaining accurate signal reconstruction. In practice DBP is limited

to 3 or less StpS.

Let us assume that the time-sampled vector U(n) = [X(n),Y(n)]T represents a dis-

cretized version of the propagating dual-pol signal q(z, t). Here, X(n) ∈ CN and Y(n) ∈ CN .

The superscript (n) refers to the DBP step, with n = 0 representing the input to the DBP,

and n = Nd representing the output of the DBP. The linear step is represented by a matrix

multiplication, given by

U(n) → BU(n−1) = W−1diag(eδdH1 , ..., eδdHn)WU(n−1), (5.6)

where B ∈ CN×N is a matrix representing the linear operator, W denotes the discrete

Fourier transform matrix, Hk = −jβ2ω2
k/2, and ωk = 2πfk, where fk corresponds to the

k-th discrete frequency. The nonlinear step is represented by the nonlinear transformation

K(·)

U(n) → K
(

U(n−1)
)

= U(n−1) exp

(

−jγεδeff
8

9

(

X(n−1) ⊙X(n−1)∗ +Y(n−1) ⊙Y(n−1)∗
))

.

(5.7)

where ⊙ denotes the Hadamard product. Additionally, a real-valued parameter ε ∈ [0, 1] is

introduced, to accurately model the nonlinear effects. The optimization of this parameter

will be discussed in the results section.
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The DBP algorithm we use in our work allows for flexible selection of StpS values less

than 1, enabling us to include multiple spans in a single DBP step, similar to what is

considered in [42, 81, 92]. To model the accumulated dispersion in the fiber, we denote

by Dc(z) the total accumulated dispersion inside the fiber as a function of distance z;

see Fig. 5.2. The linear step is adjusted as follows: Let us assume Nd + 1 spatial steps,

dividing a fiber of length L into spatially equal segments with step size δd = L/Nd, with

the exception of the first and last steps where each has length δd/2. Each step spans

[zk, zk+1], where zk = (k − 1
2)δd, k ∈ {1, . . . , Nd}, z0 = 0, zNd+1 = L. This configuration

is similar to the Wiener-Hammerstein model in [78]. Within each step, we calculate the

weighted-average dispersion coefficient, which is described by the following equation

D̄ =
Dc(zk)−Dc(zk−1)

δd
. (5.8)

The equation Eq. (5.8) is essentially approximating the dispersion map between points

zk and zk+1 with a linear dispersion map with a D̄ that is between the values of D for SMF

and DCF. The power injected at the input of the DCF is set small enough to guarantee a

quasi-linear transmission regime. As a consequence, the nonlinear step is performed with

the coefficient γ̄ = γSMF determined by the SMF. This approximation is accurate, as shown

in the numerical simulations that will be presented in Sec. 5.3.2. The linear and nonlinear

steps in the proposed DBP alternate until the algorithm spans over the entire optical link.

5.2.2.1 Time Domain and Frequency Domain Implementation of DBP

The conventional method for implementing DBP involves using FFT and IFFT for each

step, which can be computationally demanding due to the numerous FFTs and IFFTs

required. However, considering the relatively low accumulated dispersion at the receiver

in DM systems, we are interested in investigating whether a time-domain implementation

of DBP could provide a complexity advantage over the FD approach. In this time-domain

implementation, we replace the parameter B in Eq. 5.6 by employing an FIR filter with

complex-valued taps, denoted as hCDC(δd). This filter performs circular convolution with

the backpropagating signal to compensate for the dispersion introduced within a step of

length δd. The DBP step in this case can be represented as [35]

q(z + δd, t) = (q(z, t) ∗ hCDC(δd)) · exp(αδd/2) · exp(−jδeffεγ||q||2), (5.9)

where hCDC = (h−F , . . . , h−1, h0, h1, . . . , hF ), and each hi for i = 1, 2, . . . , F denotes an

individual tap. It is worth noting that the filter taps exhibit symmetry, such that hi = h−i.

The minimum number of taps needed in the FIR filter to compensate for dispersion within

a DBP step is mainly determined by the length of the impulse response, approximated

using the formula provided in [98]

τCD(δd) =
λ2
c

c
|Dacc|∆f, (5.10)
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Figure 5.3: Block diagram of DBP (upper branch) and LDBP (lower branch) structures. The

following symbols represent: IX := Re{X}, QX := Im{X}, IY := Re{Y}, and QY := Im{Y}.

where |Dacc| = D̄ δd is the total accumulated dispersion inside a step with length δd, ∆f is

the signal spectral width for a single channel, λc = c/fc is the carrier wavelength, and c is

the speed of light. The channel impulse response length τCD(δd) is measured in seconds,

in which case, the number of filter taps for any step is

NCDC,δd =

⌈
τCD(δd)

Ts
ns

⌉

, (5.11)

and ⌈x⌉ denotes the smallest integer larger or equal to x, and ns is the oversampling ratio.

5.3 Learned Digital Back-Propagation for DM systems

As discuss previously in chapter 4, LDBP is a neural network model based on the compu-

tational graph of the DBP. In our application for signal equalization, we specifically utilize

the convolutional NN model. Within this model, the linear operator A(k)(c) in each layer

is defined as A(k)(c) = c∗Ω(k)+b(k), where Ω(k) ∈ Cm represents the convolutional filter,

and b(k) ∈ CN is the bias vector.

5.3.1 Architecture of LDBP

Fig. 5.3 depicts the block diagrams of LDBP and its blueprint DBP. The NN architecture

of LDBP is a complex-valued network that comprises two real-valued networks operating

jointly. Each of these networks contains Nl = Nd layers and accepts four input vectors (IX,

QX, IY , and QY ). Each layer of the network consists of two parallel convolutional filters,

ΩR and ΩI , corresponding respectively to the real and imaginary parts of the filter, and

a nonlinear function Φ, which takes four input vectors and generates four output vectors.

The number of non-zero weights in the convolutional filter is determined numerically, as

will be described in the simulation setup section later. These layers perform the real-valued

equivalent of the operation described in Eq. (5.9) in the time domain without the need for
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FFT and IFFT. Biases are not utilized in our model and are set to zero. In our model,

we do not use the biases and therefore set them to zero. The input dimension of LDBP is

[Nex, N, 4], and its output dimension is [Nex, N − 2M, 4], where M represents the memory

of the dispersive channel.

To train the LDBP, we simulated a five-channel WDM PMD-free transmission of a

block of 215 symbols at various launch powers. The signal was initially sampled at 16

samples per symbol duration for forward propagation using SSFM. However, after the

WDM demultiplexer, the signal from the central channel was sampled at a sampling ratio

of ns = 2 samples per symbol, resulting in a received block consisting of 216 samples.

The NN operates in a sliding window fashion, with a window size of N sliding over the

transmission block and advancing by L× ns, where the sliding factor L is an integer that

determines the number of symbols shifted between examples. For LDBP training, we

generated input-output pairs with a size of 1024 samples (512 symbols) for the input, and

the corresponding output was 852 samples (426 symbols) long due to the dispersive channel

effects (43 symbols on each side). We set the sliding factor to L = 8, generating Nex = 4021

input-output pairs for training. To test LDBP, we generated 8 transmission blocks with

PMD using the same overlapping and shifting technique as for training. However, this

time, the sliding factor was set to L = 426 to ensure that each symbol in the transmission

block was detected exactly once. The output of LDBP was then passed to the DSP to

equalize PMD and dynamic channel effects.

We implement a symmetric DBP as the blueprint of LDBP, such that all layers are

initialized with the corresponding parameters in a linear step of DBP at the full step size

δd, except for the first and last layers which correspond to a half step δd/2. The NN

is trained by minimizing the mean squared error (MSE) loss function, using the Adam

optimizer with a learning rate of 0.001. During training, 20% of the training examples

were used for validation to monitor the LDBP’s progress. The LDBP was trained for up

to 75 epochs, with an early-stop condition triggered if the validation error did not decrease

within 5 epochs. The best-performing epoch’s weights were used in the final LDBP. After

training at each launch power, we evaluate the performance of the LDBP by calculating

the Q-factor using independently generated testing data.

5.3.2 Simulated System Setup and Performance Results

The performance results are based on the simulation of the transmission system shown

in Fig. 5.1. All elements of the transmission system, including the transmitter, receiver,

and channel, are simulated in Python, while the NN is implemented using the TensorFlow

library. In this section, we present the performance results of DBP and LDBP for four

different setups: (A), (B), (C), and (D). Setup (A) represents a single-channel transmis-

sion system with 16-QAM modulation, while setups (B) and (C) are WDM transmission
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# of channels Modulation format fiber coefficients

Setup (A) 1 16-QAM

α=0.2 dB/km, PMD = 0.05 ps/
√

km,

D=17 ps/(nm.km), γ= 1.4/W/km

Setup (B) 5 16-QAM Same as above

Setup (C) 5 64-QAM Same as above

Setup (D) 5 16-QAM

α=0.24 dB/km, PMD = 0.3 ps/
√

km,

D=17 ps/(nm.km), γ= 1.4/W/km

Table 5.1: Description of the simulated setups.

systems with 16-QAM and 64-QAM modulation formats, respectively. Setup (D) is also a

WDM transmission using 16-QAM modulation, but it includes aging effects where a fiber

channel undergoes aging. The aging study will be described in detail when we present the

performance results for this setup. Table 5.1 provides a detailed description of each setup.

For all setups (A)–(D), the transmission symbol baud rate B = 32 GBaud for each

channel using a root-raised-cosine (RRC) pulse-shape with a roll-off factor ρ = 0.06. The

optical fiber link consists of Nsp = 28 spans, each span including an SMF and a DCF

measuring 72 km and 13 km, respectively. The length of DCF is chosen such that it

compensates for 85% of the CD in each span. An amplifier with gain GSMF = 6.5 dB is

applied at the end of the SMF, and a second amplifier with gain of GDCF = 14.4 dB is

applied after the DCF. The SMF parameters and PMD value for all setups are provided

in Table 5.1. For WDM setups (B)–(D), the WDM channels are separated by a frequency

spacing of 37.5 GHz, resulting in a guard band of 5.5 GHz between adjacent channels.

The lasers used for these setups had a linewidth of 50 kHz. To avoid overestimation

of nonlinear crosstalk, the data symbols of all WDM channels were intentionally made

unsynchronized in terms of time, polarization state, and phase. At the receiver, an RRC

filter with a bandwidth of (1 + ρ)B is applied to filter out the adjacent channels, such

that only the central channel is processed by the DBP or LDBP algorithms. The forward

signal propagation using SSFM is simulated with 72 steps for each SMF and 13 steps for

each DCF. The signals are sampled at a rate of 16 samples per symbol. At the receiver,

the signal is downsampled to twice the symbol rate before being processed by either the

CDC, DBP, or LDBP algorithms. Finally, the output of the CDC, DBP, or LDBP is

downsampled to one sample per symbol and processed by the conventional DSP chain,

which equalizes PMD effects and polarization mixing.

5.3.2.1 DBP Parameters Optimization

To optimize the performance of the DBP for all transmission scenarios (A)–(D), we select

the parameter ε in Eq. 5.7 such that each DBP achieves the highest Q-factor at the optimal

97



Chapter 5. Learned Digital Back-Propagation for Dispersion Managed Systems

30 40 50 60 70 80
7

8

9

10

11

12

Number of Filter Taps

𝑄
-f

ac
to

r
[d

B
]

1 StpS

0.5 StpS

0.25 StpS

(a)

30 40 50 60 70 80
1

2

3

4

5

6

7

Number of Filter Taps

𝑄
-f

ac
to

r
[d

B
]

1 StpS

0.5 StpS

0.25 StpS

(b)

Figure 5.4: Achieved Q-factor by DBP at the optimal launch power (-2 dBm) for different values

of StpS as a function of filter taps per step for (a) 16-QAM and (b) 64-QAM.

launch power. For a single channel transmission, we find that the value of ε is 1 for all

values of StpS. For the WDM transmission of 5 channels (Set-ups B, C and D), we find

that the optimal values are ε = 0.85 for DBP with 1 StpS, ε = 0.75 for DBP with 0.5

StpS, and ε = 0.64 for DBP with 0.25 StpS. It should be noted that ε = 0 corresponds to

performing LE, and in this case, all DBP configurations perform similarly to LE, regardless

of the number of StpS. The filter size in each DBP step varies depending on the number of

StpS, Optimal values of F were determined for different DBP configurations by numerical

optimization. Specifically, F = 16 was found to be optimal for both 1 StpS and 0.5 StpS

DBP, F = 24 for 0.25 StpS, F = 30 for 1
7 StpS, and F = 36 for 1

14 StpS. These values

represent the minimum required to ensure all DBP configurations outperform LE at all

launch powers. The impact of filter width on performance is shown in Fig. 5.4, based on

the Q-factor as the performance metric. The Q-factor is defined as follows

Q-factor = 20 log10[
√
2erfc−1(2BER)], (5.12)

where erfc(·) is the complementary error function.. It is worth noting that this finding

agrees with previous literature, specifically [30], which reported that the filter width has a

significant impact on the performance of DBP-based equalizers (see Fig.(9) in [30]).

5.3.2.2 Performance Comparison of DBP and LDBP in Single Channel Trans-

mission

A single channel transmission is simulated in setup (A). We choose (SNReff) as a perfor-

mance measurement for single channel transmission, which is defined as

SNReff =
||̂sx||2+||̂sy||2

||sx − ŝx||2+||sy − ŝy||2
, (5.13)
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Figure 5.5: DBP performance for different StpS values in single channel transmission (setup A).

The performance of LDBP is also shown for 3 launch powers around the peak SNReff.

where ŝx and ŝy denote the estimated symbols at the output of the DSP, with true

values sx and sy, respectively. The choice of SNReff is motivated by the high reliability

of signal transmission in a single channel, which results in an extremely low bit-error-ratio

(BER). Accurately measuring BER becomes challenging when it is very low, as it requires

a substantial number of training examples for precision. Under such circumstances, SNReff

offers a more practical performance metric. The performance of the DM-adapted DBP and

LDBP in setup (A) is depicted in Fig. 5.5 for varying signal launch powers. The PMD-

aware DBP in Fig. 5.5 is a genie-aided model which assumes perfect knowledge of PMD

and SOP across the fiber channel at the receiver and uses them in the back-propagation

with the same step size δs used for SSFM. Despite its impracticality, the PMD-aware DBP

model provides a useful upper bound on the performance that can be achieved by PMD-

agnostic DBP and LDBP algorithms. Our simulations consider DBP and LDBP equalizers

with a fractional number of StpS or LpS that is less than or equal to 1.

At the optimal launch power, LDBP with 1 LpS outperforms DBP with the same

complexity by providing an SNReff of 22.3 compared to 19.8 dB, with the optimal launch

powers differing by about 1 dBm between the two algorithms. The LE achieves its best

performance at an SNReff value of 16 dB, which is achieved with a launch power of -4

dBm. Both DBP and LDBP outperform the LE with varying gains, with LDBP with 1

LpS achieving the highest gain of 6.3 dB and DBP with 1 StpS achieving a gain of 3.8 dB.

The simulated LDBP with the least complexity has 2 layers (1 full step and 2 half steps)

and 2 activation functions, and outperforms DBP with similar complexity by 1.4 dB and
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Figure 5.6: Achieved Q-factors for DBP and LDBP with different values of StpS and LpS for

WDM transmissions over a 2016 km fiber with 32 Gbaud using (a) 16-QAM modulation, and (b)

64-QAM modulation.

the LE by 1.8 dB.

5.3.2.3 Performance Comparison of DBP and LDBP in Multi-Channel Trans-

mission

Setups (B)–(D) present multiple WDM transmission scenarios. In such cases, the nonlin-

earity affecting the received signal is dominated by the nonlinear interference introduced

by the adjacent channels via XPM. Since only the signal from one single channel is fed to

the receiver, the information in adjacent channels is unknown to the receiver. Therefore,

the nonlinearity generated by adjacent channels impacts all equalizers and limits their

performance in the nonlinear regime. The performance of the PMD-aware DBP equalizer

in these setups can be characterized by a bell-shaped curve, as seen in Figures 5.6 and

5.7(b), in contrast to the straight line observed in the single-channel scenario (A) shown

in Fig. 5.5.

For setups (B) through (D), we employ the previously described Q-factor. Simulation

results for setups (B) and (C) are presented in Fig. 5.6. In these setups, the DBP and LDBP

algorithms were simulated with varying numbers of total steps or layers (M ∈ 7, 14, 28).

In setup (B), LDBP with 1 StpS achieved a peak Q-factor of 11 dB at the optimal

launch power of P = −3 dBm. Notably, the peak performance of LDBP with 1 StpS is

comparable to that achieved by the PMD-aware DBP at the same launch power. When

comparing LDBP to DBP with 1 StpS, LDBP outperformed DBP by 0.3 dB at the same

launch power. Furthermore, LDBP with 0.5 StpS and 0.25 StpS achieved 10.8 dB and 10.7
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Figure 5.7: Achieved Q-factors for LDBP and DBP with different StpS and LpS values for Set-up

(D) simulating transmission over a 2016 km aged fiber at 32 Gbaud. Figure (a) shows Q-factors

across launch powers, and (b) displays the impact of laser PN on the peak Q-factor of LDBP with

varying LpS values.

dB, respectively, both outperforming DBP with similar numbers of StpS by 0.4 dB.

In setup (C), The LDBP with 1 StpS achieved a peak Q-factor of 5.8 dB, which is 0.3

dB higher than the peak performance achieved by the DBP with a similar number of StpS.

The LDBP with 0.5 StpS and 0.25 StpS achieved a peak Q-factor of 5.8 dB and 5.6 dB,

respectively, both outperforming the DBP with a similar number of StpS by 0.5 dB. On

the other hand, the LE achieved a peak Q-factor of 4.7 dB.

It is worth noting that the launch powers corresponding to the peak Q-factor in both

Fig.5.5 and Fig.5.6 are shifted by 4 dB for WDM transmission compared to single-channel

transmission. This is due to the XPM generated by the four adjacent channels, which

dominates the nonlinearity affecting the received signal in WDM setups, unlike single-

channel transmission, which only experiences self-phase modulation (SPM) from the same

channel, as explained in [29].

5.3.2.4 Impact of Aging Effects on LDBP Performance

Optical fiber links deployed for intensity modulation and direct detection (IM-DD) commu-

nication, especially those utilizing dispersion management, are particularly susceptible to

aging and poor maintenance due to being outdated systems [11, 14]. Changes in the fiber

material occur as the fibers age, leading to the deterioration of their parameters over time.

Additionally, yearly temperature variations can contribute to higher values of differential

group delay (DGD). Additionally, fiber splicing, which is done during maintenance, can

increase attenuation and necessitate higher amplification gain in the link, resulting in ASE

101



Chapter 5. Learned Digital Back-Propagation for Dispersion Managed Systems

noise. To reflect these changes in a more realistic transmission scenario, we consider the

impact of aging and maintenance-induced changes on the fiber link. It is worth noting that

the CD coefficient β2 and the nonlinearity coefficient γ are not affected by aging effects.

While only these two coefficients are used to initialize the LDBP, the new attenuation

coefficient α in aged fibers can cause a reduction in the effective length Leff. Thus, retrain-

ing the NN with the updated parameters is necessary. Our goal is to examine how these

changes affect the LDBP’s performance relative to DBP, and compare the two methods in

a realistic transmission scenario that incorporates aging and maintenance-induced changes

in the fiber link.

The fiber parameters selected for setup (D) aim to simulate aging effects and consist

of an attenuation coefficient of α = 0.24 dB/km and a PMD coefficient of 0.3 ps/km−1/2.

The value of the attenuation coefficient after degradation is based on experimental findings

reported in [14]. The simulation results for this particular setup are presented in Figure

5.7. To account for the changes in the fiber link, we retrained the model using data

generated from simulations with the new parameters. The LDBP with 1 StpS achieved a

peak Q-factor of 8.8 dB at a launch power of P = −2 dBm, which is 0.6 higher than the

peak Q-factor of the DBP with similar complexity. Furthermore, we compared setup (D)

with setup (B), which simulates a similar transmission scenario without aging effects. We

observed an average drop in Q-factor of 2.2 dB across all graphs, but the Q-factor gain of

LDBP over DBP was still maintained. This suggests that deploying the LDBP long-term

is feasible with retraining of the model.

The existing DM systems deployed for IM/DD may not be optimized for coherent

transmission. In fact, lasers used in IM/DD systems typically have higher laser PN than

those used in coherent transmission, which can potentially impact the performance of

receivers used for coherent detection [33]. In general, laser phase noise does not have a

significant impact on the system, as the time interval over which the laser phase noise

changes is much longer than the symbol period. However, to investigate its impact on the

performance of LDBP for set-up (D), we choose to retrain the neural network using data

that incorporates varying degrees of laser PN. While it is the primary role of the DSP

following the LDBP to mitigate dynamic effects like laser PN, when the LDBP is exposed

to examples of data affected by PN, it may be possible for the neural network to learn and

reduce the impact of PN to some extent. The peak Q-factor achieved for different values

of LpS and a range of laser linewidths is shown in Fig. 5.7(b). Since the input vector for

LDBP has a width of 512 symbols, the deviation in PN for the laser linewidth used in the

simulations is approximately 0.01 radian, which is too small to significantly impact the

performance. The results indicate that the average drop in Q-factor is 0.1 dB for a laser

linewidth of 100 kHz and 0.2 dB for a laser linewidth of 200 kHz.
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LE LDBP

Set-up B

LE LDBP

Set-up C

Figure 5.8: Constellation diagrams for LE and LDBP at their respective optimal launching powers

for Set-ups B&C. These constellations were obtained at the end of the DSP prior to hard-decision.

5.4 Complexity of DBP and LDBP

We quantify the complexity of each step in terms of the number of real multiplications

per symbol (RMpS), excluding additions. It is important to note that both DBP and

LDBP exhibit the same complexity when considering the same number of StpS and LpS.

Therefore, the complexity formulas derived for LDBP in this section are identical to those

for DBP.

To efficiently compute the exponential function in the activation function, various ap-

proximation algorithms can be employed, such as the CORDIC algorithm [43, 76]. These

algorithms utilize look-up tables and bit-shifts, eliminating the need for multiplications.

By employing similar algorithms, the activation function can be computed efficiently, with

each computation of the activation requiring only 9 real multiplications (RMs).

We make a distinction between the complexities of TD-LDBP and FD-LDBP and

present their respective complexity formulas as follows:

FD-LDBP Complexity The total complexity of FD-LDBP per detected symbol, can be

calculated in RMpS for a signal with input size N and sampled at rate ns samples/symbol.

The complexity is given by [97]

CFD–LDBP = (Nd + 1)

(

4
N(log2(N) + 1)ns

N − 2NCDC,L + 1

)

+
9

2
Ndns. (5.14)

TD-LDBP Complexity The complexity of TD-LDBP for each detected symbol is de-

termined by the convolution of a kernel with size F and an input of size N , which involves

4FN RMs. This computation assumes a dilation of 1, stride of 1, and padding of F − 1,

resulting in an output size that is the same as the input size for each convolutional layer.

Therefore, the total complexity per detected symbol for TD-LDBP can be calculated as

CTD–LDBP = (Nd + 1)

(

4
(2F + 1)Nns

N − 2NCDC,L + 1

)

+
9

2
Ndns. (5.15)
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Figure 5.9: Trade-off between complexity and performance for different equalizers in both FD-

LDBP (represented by triangles) and TD-LDBP (represented by circles).

Fig. 5.9 depicts the RMpS complexity of DBP and LDBP using both TD and FD

implementations. The complexity of FD-LDBP (or FD-DBP) is primarily dependent on

the number of steps involved in the algorithm, and can be approximated by 114 times the

number of FFT/IFFT uses. The complexity of 1 LpS FD-LDBP, which uses 29 FFT/IFFT

pairs, is approximately 3300 RMpS. On the other hand, TD-LDBP with the same number

of LpS has a complexity of around 14000 RMpS. In fact, FD-LDBP is less computationally

complex compared to TD-LDBP across all values of LpS. We initially hypothesized that,

due to the lower accumulated dispersion in the DM system compared to NDM, smaller

filters would be sufficient for each linear step in the DM system. However, our results

indicate that TD implementation did not provide any complexity advantage over FD im-

plementation. We hypothesize that this is due to the accumulation of truncation errors

with each subsequent step in the DBP, resulting in a high overall error. As a result, larger

filters are required to mitigate the truncation error and reduce its impact. We determined

the number of filter taps required in each step through numerical simulations, as demon-

strated by Fig. 5.4. Nevertheless, TD implementation restricts the neural network to a

lower number of trainable parameters, which simplifies the training process and enhances

training convergence even with smaller training datasets.

5.5 Summary

In this chapter, we have presented the LDBP approach for mitigating nonlinear effects in

DM optical fiber transmission systems. LDBP is a DBP optimization method that lever-

ages NNs training algorithms to optimize the DBP parameters. Our comparative study

has shown that LDBP outperforms DBP, providing a significant gain in Q-factor, with an

average improvement of 0.4 dB. The application of NNs to DM links is an important new
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development, as it demonstrates the possibility of repurposing DM systems for coherent

transmission. The results have significant implications for the fiber-optics industry, sug-

gesting that data rates in conventional DM optical links can be substantially improved

using modern, simple coherent receivers. Additionally, we demonstrated the complexity

of both DBP and LDBP in the TD and FD implementations. TD-implementation was

found to be more complex across all values of LpS. Overall, our findings highlight the

potential of LDBP as an effective method for mitigating nonlinear effects in DM optical

fiber transmission systems.
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Conclusions and Perspectives

Conclusions

In today’s communication landscape, where the demand for high data rates continues to

surge, optical fiber network operators must address the challenge of nonlinearity–an inher-

ent feature of optical fiber networks. This need arises because achieving and sustaining

these high data rates necessitates the use of advanced modulation formats. However, these

formats require increased transmission power, leading to distortions caused by Kerr non-

linearity that significantly affect achievable information rates (AIRs). Traditional methods

for mitigating nonlinearity, like digital back-propagation (DBP), have proven impractical,

with DBP rarely deployed in commercial systems to date. To tackle this challenge, optical

network operators are exploring innovative tools, such as neural networks. Neural networks

have demonstrated their effectiveness in various complex tasks across different applications

in artificial intelligence, including image recognition and complex language models.

This work lies at the intersection of optical fiber communications, with a particular

focus on coherent optical receiver design, and machine learning models, specifically neural

networks. It explores the application of neural network models to mitigate nonlinear effects

affecting optical signals transmitted through optical fiber channels.

This thesis begins with an introduction and a motivation of the problem in Chapter 1,

followed by a comprehensive review in Chapter 2, delving into optical fiber physics, chan-

nel effects on signal propagation, optical signal generation, and the optical fiber receiver,

including its various blocks for equalization and symbol detection. This section addresses

the first aspect of the thesis title: optical fiber systems.

Chapter 3 discusses the second aspect of the thesis, focusing on the fundamentals

of neural networks and highlighting two known approaches: the model-agnostic and the

model-based approaches. This chapter also includes a brief literature review of recent

advances in optical channel equalization using neural networks. Model-agnostic neural

networks have been the subject of many studies in the literature on neural network equal-

izers. These models offer design and hyperparameter flexibility and are flexible with their

position within the receiver architecture. However, they often exhibit unnecessary size and



high complexity, posing challenges for practical implementation.

Model-based neural networks draw inspiration from the physical model of signal propa-

gation and tend to be more compact, performing well with careful initialization. We focus

specifically on the LDBP model-based approach in Chapter 4. Here, we introduce the

"parameter sharing" method, reducing the number of trainable parameters in the neural

network, which enhances training and enables better convergence with smaller datasets.

The LDBP with parameter sharing achieved a 3–3.5 dB reduction in mean squared error

(MSE) compared to optimized DBP with comparable complexity and reduced the number

of trainable parameters by a factor of five compared to conventional LDBP with the same

MSE.

In Chapter 5, we explore the potential of LDBP in transitioning dispersion-managed

(DM) systems from intensity modulation with direct detection (IM/DD) to coherent de-

tection. This transition extends the AIR achievable in these systems. Our comparative

study shows that LDBP outperforms DBP in DM systems, providing a significant Q-factor

improvement, averaging 0.4 dB. This application of neural networks to DM links signifies a

significant development, enabling the repurposing of DM systems for coherent transmission.

We do not claim that DM systems surpass the commonly used non-dispersion-managed

(NDM) systems. Our objective is to investigate the feasibility of upgrading deployed DM

systems, primarily used for IM/DD, to enable coherent transmission. These findings hold

significant implications for the fiber-optics industry, suggesting that data rates in tradi-

tional DM optical links can be substantially improved using modern, straightforward co-

herent receivers. Additionally, we analyzed the complexity of both DBP and LDBP using

two techniques: time-domain (TD) and frequency-domain (FD) implementation. Contrary

to our initial assumption, TD implementation was found to be more complex across all

layers/spans. In summary, our findings underscore the potential of LDBP as an effective

method for mitigating nonlinear effects in DM optical fiber transmission systems.

Perspectives

Despite the promising results of neural network-based approaches in the context of nonlin-

earity mitigation, particularly those achieved by learned digital back-propagation (LDBP),

a notable limitation becomes evident: These methods are designed for processing signals

from a single channel, making them well-suited for single-channel transmission scenarios

but less suitable for multi-channel wavelength-division multiplexing (WDM) configurations.

To grasp the gravity of this limitation, let us consider a scenario where 20 channels are

co-propagating alongside the channel of interest in a WDM setup. In this context, most of

the nonlinearity affecting the channel of interest is due to cross-phase modulation (XPM),

caused by neighboring channels that co-propagate with the channel of interest, while a
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minority of it results from self-phase modulation (SPM), caused by the signal itself.

The existing literature on neural network equalization has predominantly focused on

addressing nonlinear impairments in single-channel transmission, yielding remarkable per-

formance improvements compared to conventional equalization methods. For instance,

studies have reported a 2.9 dB gain with CNN+biLSTM over linear equalization (LE)

[39], and a 2 dB gain with complex-valued neural networks over LE [38]. However, there

is a notable scarcity of literature addressing equalization in the context of WDM trans-

missions. The few studies that have explored this area, such as [30], have reported more

modest performance gains, like the 0.4 dB improvement achieved with generalized digital

back-propagation (GDBP) compared to LE [30].

There’s a critical need for neural networks capable of jointly processing adjacent channel

signals to model external nonlinear effects. However, as channel numbers increase, com-

plexity grows exponentially. Innovative machine learning models, like the Siamese neural

network (SNN) in [77], alleviate this complexity. SNNs use symbols from the main channel

in one branch while extracting meaningful features from adjacent channels for input into

other branches. LDBP can draw inspiration from the SNN by employing multiple input

branches, each fed with input consisting of features extracted from adjacent channels to

aid the decision-making process.

Another promising approach to mitigate fiber nonlinear impairments is the utilization

of random forests, as proposed in [63, 105, 107]. In particular, [63] demonstrates its effec-

tiveness in an experimental setting, specifically in a 120 Gb/s, 375 km, dual-polarization

64-quadrature amplitude modulation (QAM) optical fiber communication platform. Ran-

dom forests divide constellation points into two regions using a specific decision threshold,

then uses different random forest equalizers to compensate points in these distinct re-

gions. This innovative strategy significantly reduces system complexity, as it relies only

on comparisons, achieving a decision with 0 multiplications. Moreover, the random forest-

based equalizer proves feasible for real-world optical fiber communication systems due to

its simple design. LDBP can significantly benefit from innovative approaches like random

forests for extracting meaningful features from adjacent channels with very low complexity.

These features can then be used in the LDBP algorithm to make more informed decisions,

enhancing its performance beyond analyzing signals solely from the channel of interest.

Similar innovations are key enablers of significantly reducing the complexity associated

with ML-based equalization. They pave the way for less computationally demanding meth-

ods capable of simultaneously processing multiple signals, thereby enhancing the modeling

of nonlinearity originating from adjacent channels without introducing additional complex-

ity.
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Titre : Égalisation dans la Communication par Fibre Optique en Utilisant des Réseaux Neuronaux Basés sur

des Modèles

Mots clés : Fibre optique, Apprentissage automatique, Traitement du signal

Résumé : Répondre à la demande croissante de

transmission de données à haute vitesse nécessite

des solutions efficaces pour atténuer la non-

linéarité dans les systèmes de communication op-

tique. Les méthodes traditionnelles telles que la

rétropropagation numérique (DBP) sont confrontées

à d’importants défis computationnels, les rendant

impraticables pour les systèmes du monde réel.

Les modèles de réseaux neuronaux ont émergé

comme une approche prometteuse pour résoudre

ce problème. Deux approches principales existent

pour la conception de réseaux neuronaux : les

méthodes agnostiques au modèle et les méthodes

basées sur le modèle. Les techniques agnostiques

au modèle offrent de la flexibilité en termes de

taille et d’hyperparamètres et peuvent être placées

à différentes positions dans la chaı̂ne de traitement

du signal numérique (DSP) du récepteur. Cepen-

dant, elles exigent une taille substantielle et des

données d’entraı̂nement étendues pour fonctionner

efficacement. En revanche, les approches basées

sur le modèle emploient des réseaux neuronaux

guidés par le modèle physique de la propagation

du signal. Ces approches ont tendance à être plus

compactes mais nécessitent une initialisation soi-

gneuse pour une généralisation correcte. Une tech-

nique basée sur le modèle de premier plan est la

rétropropagation numérique apprise (LDBP), qui op-

timise les paramètres DBP à l’aide de réseaux neu-

ronaux. LDBP promet des performances améliorées

ou une complexité réduite par rapport à DBP. Cette

étude se concentre principalement sur LDBP, introdui-

sant des simplifications par le biais du ”partage de pa-

ramètres” pour réduire les paramètres entraı̂nables.

De plus, nous proposons de réaffecter les systèmes

hérités à gestion de la dispersion (DM) en incorpo-

rant des formats de modulation d’ordre supérieur tels

que 16-QAM et 64-QAM pour améliorer les débits

de données au sein de ces systèmes. Une analyse

approfondie des performances et de la complexité

démontre que les algorithmes proposés surpassent

l’égalisation linéaire et DBP dans divers systèmes de

transmission.

Title : Equalization in Optical Fiber Communication Using Model-based Neural Networks

Keywords : Optical fiber, Machine learning, Signal processing

Abstract : Meeting the increasing demand for high-

speed data transmission requires effective solutions

for mitigating nonlinearity in optical communication

systems. Traditional methods like Digital Backpro-

pagation (DBP) face significant computational chal-

lenges, rendering them impractical for real-world sys-

tems. Neural network models have emerged as a

promising approach to address this issue. Two pri-

mary approaches exist for designing neural networks:

model-agnostic and model-based methods. Model-

agnostic techniques offer flexibility in terms of size and

hyperparameters and can be placed at various posi-

tions in the receiver’s Digital Signal Processing (DSP)

chain. However, they demand substantial size and ex-

tensive training data in order to operate effectively.

In contrast, model-based approaches employ neural

networks guided by the physical model of signal pro-

pagation. These approaches tend to be more com-

pact but require careful initialization for proper gene-

ralization. One prominent model-based technique is

Learned Digital Backpropagation (LDBP), which opti-

mizes DBP parameters using neural networks. LDBP

offers the promise of improved performance or re-

duced complexity compared to DBP. This study pri-

marily focuses on LDBP, introducing simplifications

through ”parameter sharing” to reduce trainable pa-

rameters. Additionally, we propose repurposing the

legacy Dispersion-Managed (DM) systems, by incor-

porating higher-order modulation formats such as 16-

QAM and 64-QAM, to enhance data rates within these

systems. A comprehensive analysis of the perfor-

mance and complexity demonstrates that the pro-

posed algorithms outperform linear equalization and

DBP in various transmission systems.

Institut Polytechnique de Paris
91120 Palaiseau, France
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