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Abstract

In the past decade, monumental breakthroughs in Artificial Intelligence (AI), par-
ticularly in Machine Learning (ML), have shaped various fields. The widespread
integration of complex ML models into various aspects of daily life, including health-
care, finance, and transportation, has created an urgent demand for transparency
and accountability in ML systems. Unfortunately, understanding the rationale be-
hind the decisions made by the most advanced ML models is challenging for hu-
mans. This lack of transparency can lead to several critical issues, including bias
and unfair outcomes, jeopardized safety in safety-critical applications, and regu-
latory non-compliance. In response to these challenges, the field of eXplainable
AT (XAI) has emerged as a crucial research domain. XAI aims to bridge the gap
between the inner workings of AI/ML systems and human understanding to estab-
lish trustworthy Al Its significance is underscored by guidelines, recommendations,
and regulations from influential bodies (e.g. European Union, UNESCO). XAI of-
fers several benefits, including enhancing trust in Al systems, mitigating biases,
improving safety in autonomous vehicles, among others.

However, most of XAI approaches that have gained the most attention are com-
monly known as model-agnostic methods (e.g. LIME, SHAP). More importantly,
model-agnostic XAI methods offer no guarantees of rigor and may produce logically
unsound explanations. The limitations inherent in these non-formal XAl approaches
pose a substantial challenge to the dependability of model-agnostic explanations,
particularly in contexts classified as high-risk or safety-critical.

As an alternative, there is a growing trend in the application of automated
reasoning techniques for explaining and verifying ML models, broadly known as
formal XAI. This approach is logic-based and model-specific, designed to deliver
formal explanations. These formal explanations are characterized by their rigor
and provability, distinguishing them from non-formal XAI methods. The thesis
delves into formal XAI methods, contributing to the development of formal ex-
plainability and offering insights into the evolving landscape of XAl research. The
thesis also addresses various aspects of formal explanations for machine learning
classifiers. Firstly, the thesis identifies the conditions enabling the computation
of formal explanations in polynomial time for a class of tractable graph models
(e.g. decision trees and d-DNNF circuits). It also provides practical and efficient
methods for enumerating these explanations. Secondly, the thesis offers practical
solutions for transforming decision trees into explained decision sets, enhancing
their explainability. Thirdly, the thesis investigates the computational complexity
of specific explainability queries across various classifiers (e.g. random forests), ac-
companied by practical and efficient problem-solving approaches. Lastly, the thesis
compares SHAP scores with formal explanations and reveals some issues associated
with SHAP scores in the field of explainability.

Keywords: explainable AI, formal explainability, automated reason-
ing
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Résumé

Au cours de la derniére décennie, des avancées monumentales dans le domaine
de D'Intelligence Artificielle (IA), en particulier dans I’Apprentissage Automatique
(Machine Learning, ML), ont fagonné divers domaines. L’intégration généralisée de
modeles ML complexes dans divers aspects de la vie quotidienne, notamment dans
les domaines de la santé, de la finance et des transports, a créé une demande urgente
de transparence et de responsabilité dans les systéemes de ML. Malheureusement,
comprendre la justification des décisions prises par les modeéles de ML les plus
avancés est un défi pour les humains. Ce manque de transparence peut entrainer
plusieurs problémes critiques, notamment des biais et des résultats injustes, une
mise en danger de la sécurité dans des applications critiques, et une non-conformité
réglementaire.

En réponse a ces défis, le domaine de I'Intelligence Artificielle Explicable (eX-
plainable AI, XAI) a émergé en tant que domaine de recherche crucial. Le XAI
vise a combler I’écart entre le fonctionnement interne des systemes d’IA/ML et la
compréhension humaine pour établir une TA digne de confiance. Son importance
est soulignée par les directives, recommandations et réglementations de grandes or-
ganisations (par exemple, 'Union Européenne, 'UNESCO). Le XAT offre plusieurs
avantages, notamment ’amélioration de la confiance dans les systémes d’IA, la ré-
duction des biais, I'amélioration de la sécurité dans les véhicules autonomes, entre
autres.

Cependant, la plupart des approches de XAI qui ont attiré le plus d’attention
sont communément appelées méthodes agnostiques au modele (par exemple, LIME,
SHAP). Plus important encore, les méthodes de XAI agnostiques au modele ne
garantissent pas de rigueur et peuvent produire des explications illogiques. Les lim-
itations inhérentes a ces approches de XAl non formelles posent un défi substantiel &
la fiabilité des explications agnostiques au modele, en particulier dans des contextes
classés comme a haut risque ou critiques pour la sécurité.

En alternative, une tendance croissante se dessine dans I'application de tech-
niques de raisonnement automatisé pour expliquer et vérifier les modeles ML, large-
ment connue sous le nom d’XAI formel. Cette approche est basée sur la logique et
spécifique au modele, concue pour fournir des explications formelles. Ces explica-
tions formelles se caractérisent par leur rigueur et leur démontrabilité, les distin-
guant des méthodes de XAI non formelles. La thése se penche sur les méthodes
d’XAI formel, contribuant au développement de ’explicabilité formelle et offrant
des apercus sur I’évolution de la recherche en XAI. La theése aborde également
divers aspects des explications formelles pour les classificateurs d’apprentissage au-
tomatique. Premieérement, la these identifie les conditions permettant le calcul
d’explications formelles en temps polynomial pour une classe de modeles graphiques
gérables (par exemple, les arbres de décision et les circuits d-DNNF). Elle four-
nit également des méthodes pratiques et efficaces pour énumérer ces explications.
Deuxiemement, la thése propose des solutions pratiques pour transformer les ar-
bres de décision en ensembles de décisions expliqués, améliorant leur explicabilité.
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Troisiemement, la thése examine la complexité informatique des requétes spécifiques
en matiere d’explicabilité au sein de différents classificateurs (par exemple, les foréts
aléatoires), accompagnée d’approches pratiques et efficaces pour résoudre ces prob-
lemes. Enfin, la thése compare les scores de SHAP aux explications formelles et
met en lumiére certaines problématiques liées aux scores de SHAP dans le domaine
de 'explicabilité.

Mots-clés: IA explicable, explicabilité formelle, raisonnement au-
tomatisé
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CHAPTER 1

Introduction

1.1 Successes of Machine Learning

Over the last decade, there has been a broad consensus that the breakthroughs
witnessed in the fields of Artificial Intelligence (Al), particularly in Machine Learn-
ing (ML), have been truly monumental [41, 228]. These remarkable achievements,
driven by advancements in algorithms, increased computing power, and the avail-
ability of vast datasets, have transformed various domains.

In the realm of language technology, a standout achievement has emerged with
the development of Large Language Models (LLMs) [66, 210, 58, 107], exemplified
by groundbreaking models like ChatGPT. These models represent a big leap in nat-
ural language understanding and generation capabilities, showing their versatility
across various applications, including chatbots, and content generation. Similarly,
in the area of image generation, the emergence of applications such as StableDi-
fussion and Midjourney [87, 302, 307, 378] have made a profound impact, notably
raising the standards of image generation in domains such as computer graphics
and artistic design. Meanwhile, the field of reinforcement learning has reached re-
markable milestones, exemplified by the exceptional performance of Al agents like
AlphaGo [268, 326, 327], which defeated world champions in complex games like
Go and chess, showcasing Al’s potential in strategic decision-making.

The societal importance of the advances in ML is also demonstrated by the
numerous efforts by major companies, specifically dedicated to the general areas of
ATI/ML. Concrete examples include Amazon, Facebook, Google, Microsoft, among
many others. Moreover, the rise of AI for Science (Al4Science) [4, 379], situated
at the intersection of AI technologies and scientific disciplines, has emerged as a
powerful approach to expedite scientific research and discovery. It harnesses Al’s
computational capabilities to analyze intricate scientific data, propose hypothe-
ses, and facilitate breakthroughs in fields such as genomics [121, 354], climate sci-
ence [206, 102], and materials science [61].

These achievements have not only heightened awareness of the transformative
potential of ML but have also underscored the critical importance of dependable
and trustworthy AI [355, 230, 212, 315, 253, 258]. Although these technologies
offer boundless potential, ethical considerations, transparency, and responsible de-
ployment are paramount to guarantee their positive impact on society.


https://chat.openai.com/
https://stablediffusionweb.com/
https://stablediffusionweb.com/
https://www.midjourney.com/
https://www.deepmind.com/research/highlighted-research/alphago
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1.2 Why eXplainable AI (XAI)?

The remarkable advancements in ML have further accelerated the integration of
complex ML models into our daily lives, influencing decisions in diverse domains
such as medical treatments, healthcare [283, 251, 295, 296, 310], law [289, 220],
finance [308, 143, 25], and transportation [1, 278, 156]. Complex ML models are
often viewed as "black boxes" [244, 362, 374, 65] because their internal workings
are not readily understandable by humans. As complex ML models continue to
gain widespread adoption, an increasing demand for transparency and accountabil-
ity [294, 345, 227, 152] in its decision-making processes has arisen. Users, regulators,
and stakeholders need to understand why an Al system made a particular recom-
mendation or decision. The absence of such transparency and accountability can
give rise to several critical issues:

+ Bias and Fairness: Al systems may make unfair or biased decisions [16, 164].
Understanding how and why these biases occur is essential for addressing
them and ensuring fairness in Al systems.

o Robustness and Safety: In safety-critical applications such as self-driving cars,
understanding how Al systems navigate unforeseen scenarios is paramount.
The lack of transparency poses significant challenges in ensuring the robust-
ness and safety of Al systems, particularly in situations where Al model op-
eration may be a potential factor contributing to events with catastrophic
consequences [103, 323].

o Regulatory Compliance: In various industries, including finance and health-
care, regulations mandate that decisions be explainable and auditable. Non-
compliance can result in legal and ethical consequences [204, 312, 76].

In response to the current state of affairs and driven by recent regulations and
recommendations [114, 160, 280], along with existing proposals for AI/ML system
regulation [112, 337, 344, 291], there is an urgent need to build trust in the operation
of AI/ML systems. This demand has spurred rapid growth in the research domain
of eXplainable AT (XAI). XAI can be defined as the process of bridging the gap
between the inner workings of AI/ML systems and human understanding, all with
the goal of establishing trustworthy AI [253].

The significance of XAI. Recent guidelines and regulations from influential
entities (e.g. UNESCO, the OECD, the European Union (EU)) underscore the
importance of both trustworthy Al and XAI [114, 90, 159, 160, 113, 112, 277, 32,
31, 280, 337, 253]. Here are some key reasons for the significance of XAI:

o Enhancing Trust: XAI provides insights into how AI models arrive at their
decisions, allowing users to trust the system’s recommendations. This is cru-
cial in healthcare, where doctors need to trust Al-assisted diagnoses, and in
finance, where investors rely on Al-driven investment advice.
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o Mitigating Bias: By explaining why an Al system made a particular decision,
XAI helps identify and rectify biases.

e Improving Safety: In autonomous vehicles, XAl can assist human operators in
comprehending the rationale behind a driving system’s actions. This under-
standing is essential for safety-critical scenarios, such as avoiding accidents.

e Aiding Compliance: XAl facilitates regulatory compliance by providing trans-
parent documentation of Al decision-making processes. This is vital in sectors
subject to strict regulatory oversight, such as pharmaceuticals and finance.

Methods of XAI. Various methods are employed in XAI to enhance the trust-
worthiness and transparency of ML systems. XAl methods can be classified accord-
ing to various criteria.

e Intrinsic vs. post hoc: Intrinsic methods focuses on designing ML models in
a way that they are inherently interpretable from the beginning. Models with
simple structures are often considered intrinsically interpretable. Examples
include decision trees, decision rules, and linear regression models [363, 304].
In contrast, post hoc methods [299, 247, 300] involves applying interpretation
techniques to a ML model after it has been trained. These methods can be
applied to complex and inherently non-interpretable models, such as ensemble
methods, neural networks.

o Model-agnostic vs. model-specific: Model-agnostic methods [299, 247, 300]
can be used with any ML model. These methods are typically applied after
the model has completed its training phase, making them post hoc in nature.
Model-agnostic methods often operate by analyzing feature input and output
relationships, without relying on access to the model’s internal details such
as weights or structural information. It is undeniable that model-agnostic
methods represent the mainstream in the field of XAl In contrast, model-
specific methods are tailored to particular model classes and are not broadly
applicable. Model-specific methods can provide deeper insights into certain
model types, but they are limited to those specific models. There is a growing
trend in utilizing formal methods in the verification of ML systems [315],
where logic-based explainability plays a key role [178, 257, 95, 253, 258].

 Global vs. local: Global methods [18, 225] focus on understanding the overall
behaviour and decision-making process of the ML model across the entire
feature space. In contrast, local methods [299, 332, 333, 101, 247, 300, 253,
258] offer insights into individual predictions, providing trust at the level of
single data points.

Most of the XAI methods examined in this thesis can be categorized as post-hoc
and local methods. For a more comprehensive understanding of these methods,
interested readers are referred to the reference [15, 269, 294, 95, 358, 161, 178, 253,
258].
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1.3 Why Formal Explainability?

Model-agnostic explanations are unsound. The XAI approaches that have
gained the most attention are commonly known as model-agnostic methods [148,
299, 247, 300]. However, it is unfortunate that many of the widely adopted XAI
methods introduced in recent years suffer from several issues. These include the
generation of unsound explanations [189, 276, 178, 257] and challenges related to
out-of-distribution sampling [330, 224, 369, 368].

The limitations of these non-formal XAI approaches present a significant chal-
lenge to the reliability of model-agnostic explanations, especially in settings catego-
rized as high-risk or safety-critical [305, 304, 303, 345, 289, 88, 162, 253]. Depending
on such unsound explanations could potentially result in catastrophic consequences
in such scenarios. Besides unsoundness, other limitations of model-agnostic expla-
nations have been reported [62, 108, 218, 201, 173, 174, 175].

Formal explanations. As an alternative, there is a growing trend in the appli-
cation of automated reasoning techniques for explaining and verifying ML models.
This approach is generally referred to as formal XAI, characterized by logic-based
and model-specific XAI methods [178, 257, 95, 253]. Explanations generated using
these methods are termed formal explanations or logic-based explanations. There
are two main approaches for computing formal explanations. The first one is based
on exploiting knowledge compilation techniques [320, 321, 72, 319, 96, 97, 94],
whereas the second one builds on exploiting abductive reasoning [189, 187, 178,
255, 182, 257, 183, 168, 192, 169, 170, 167, 198, 256, 373, 322, 276]. It should be
noted that a number of other works also propose formal approaches for computing
explanations [12, 237, 292, 293, 357].

Compilation-based computation of formal explanations. This approach
compiles the decision function of a given ML model into a tractable circuit [320].
The obtained circuit is tractable and replicates the input-output behavior of the
ML models. The tractability, i.e. efficient representation and manipulation, of
the resulting circuits solely depends on the queries and transformations [99, 341]
they can supports. Once the target tractable circuit is obtained, this method can
be highly effective. By examining the resulting circuit, formal explanations for
any instance become easily accessible [320]. However, in practice, the process of
compilation is worst-case exponential in both time and space [72, 178].

Abduction-based computation of formal explanations. This approach does
not rely on the explicit transformation of the classification function associated with
the ML model into tractable circuits. Therefore, it is not limited by the size of
the representation. However, a defect is that it requires the computation of an
explanation for each instance [178]. In practice, and in many cases, the utilization
of abductive reasoning entails the development of a logic-based representation for
the given ML model [178]. (Recent work introduced a method that utilizes various
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robustness tools for computing formal explanations [172], which does not explicitly
require the development of a logic representation of the ML models.) The efficiency
of such approaches depends not only on the optimization of the encoding but also on
the performance of automated reasoning tools, such as SMT (Satisfiability Modulo
Theories), SAT (Boolean Satisfiability), and QBF (Quantified Boolean Formula)
reasoners [45].

Intrinsically interpretable models need to be explained. Intrinsically in-
terpretable models [269, 304, 37, 235, 67, 314], as the name suggests, are inherently
capable of providing explanations without the need for additional computation. Ex-
amples of such interpretable models include decision trees [288], decision lists [301],
and decision sets [263, 264, 223]. Recent research has shown that formal explana-
tions for decision tree classifiers can be considerably more concise than explanations
provided by interpretable classifiers [193, 194], with explanations in the case of de-
cision trees corresponding to the tree paths. Additionally, the interpretability of
decision lists and sets is also problematic [258]. These findings suggests that even
interpretable ML models need to be explained.

Goal of the thesis. Considering the ongoing rapid growth of the XAI field, this
thesis aims to present recent advancements in formal explainability, shedding light
on this evolving domain, and providing insights into potential directions for future
research.

1.4 Structure of the Thesis

As an emerging field, formal explainability requires knowledge of propositional logic
and machine learning. We review these fundamental concepts and definitions in
Chapter 2.

The next four chapters introduce the recent advance in formal explainability.
Chapters 3 and 4 focus on the computation and enumeration of formal explana-
tions for tractable decision graphs and tractable boolean circuits. In these two
chapters, we present conditions enabling the computation of formal explanations in
polynomial time for these classifiers. Furthermore, we propose a practically efficient
solution for enumerating formal explanations. These two chapters are based on the
following publications:

o Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, Joao Marques-Silva. On
Efficiently Explaining Graph-Based Classifiers. In Proceedings of the
18th International Conference on Principles of Knowledge Representation and
Reasoning Special Session on KR and Machine Learning, KR-2021.

o Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, Martin C. Cooper, Nicholas
Asher and Jodo Marques-Silva. Tractable Explanations for d-DNNF
Classifiers. In Proceedings of the 36th AAATI Conference on Artificial Intel-
ligence, AAAT-2022.
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Chapter 5 presents an application of formal explainability, that is, constructing
explained decision sets from decision trees. This chapter is based on the following
published paper:

o Xuanxiang Huang, Joao Marques-Silva. From Decision Trees to Ex-
plained Decision Sets. In Proceedings of 26th European Conference on
Artificial Intelligence, ECAT 2023.

Chapter 6 is concerned with solving explainability queries. In this chapter, two
specific explainability queries: feature necessity and feature relevancy are studied.
Besides, we prove the computational complexity of these problems with respect to
a wide range of classifiers. Additionally, we propose algorithms for their solution in
practice. The work in this chapter is based on the following publications:

o Xuanxiang Huang, Yacine Izza, and Jodao Marques-Silva. Solving Explain-
ability Queries with Quantification: The Case of Feature Relevancy.
In Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI-
2023.

e Xuanxiang Huang, Martin C. Cooper, Antonio Morgado, Jordi Planes and
Jodo Marques-Silva. Feature Necessity & Relevancy in ML Classifier
Explanations. In Proceedings of Tools and Algorithms for the Construction
and Analysis of Systems: 29th International Conference, TACAS 2023.

Chapter 7 conducts a comparative study between SHAP scores and formal expla-
nations, highlighting potential concerns with Shapley values in the context of ex-
plainability. In this chapter, we illustrate, both theoretically and empirically, that
utilizing SHAP scores for explainability will yield misleading information about the
relative importance of features for predictions. The work in this chapter is based
on the following papers:

o Xuanxiang Huang and Jodo Marques-Silva. The Inadequacy of Shapley
Values for Explainability. arXiv 2023.

o Xuanxiang Huang and Joao Marques-Silva. A Refutation of Shapley Val-
ues for Explainability. arXiv 2023.

o Xuanxiang Huang and Joao Marques-Silva. Refutation of Shapley Values
for XAI — Additional Evidence. arXiv 2023.

e Xuanxiang Huang and Joao Marques-Silva. On the Failings of Shapley
Values for Explainability. International Journal of Approximate Reason-
ing 2024.

Chapter 8 summarizes the thesis and provides an outlook on future research.



CHAPTER 2

Background

This chapter provides an overview of the fundamental knowledge underpinning the
work presented in this thesis. We describe most concepts informally and refer to
the literature for formal definitions.

This chapter comprises three sections. In Section 2.1, we present the basic con-
cepts and definitions of propositional logic. We also introduce fundamental notions
of boolean functions and their graph representation, which are commonly referred
to as boolean circuits. Additionally, we present various queries and transformations
defined on boolean circuits. Next, our focus shifts to inconsistent formulas, where
we present two essential concepts. Following that, we provide a brief introduction
to quantified boolean formulas, which represent a generalization of propositional
logic, along with an overview of complexity classes.

In Section 2.2, we present machine learning models aiming for classification
problems. More specifically, we will focus on tractable graph models, such as deci-
sion trees, decision graphs, and decision diagrams. Additionally, we will introduce
rule-based systems like decision lists and decision sets. Furthermore, we will discuss
random forest classifiers, and monotonic classifiers.

In Section 2.3, we present a brief history of eXplainable Al, focusing on well-
known model-agnostic methods. However, model-agnostic methods are susceptible
to a range of critical issues, including the unsoundness of explanations. As a result,
this section will shed more light on an emerging area of research: formal eXplainable
Al, which aims to address these limitations and focus on ensuring the rigor of
explanations.

2.1 Logic Foundations

This section reviews standard notions in propositional logic, boolean circuits, and
other related topics. For a more comprehensive introduction, we refer the readers
to the relevant literature [60, 39, 351, 85, 40, 44, 284, 91, 99, 165, 232, 231].

2.1.1 Propositional Formulas

Definition 1 (Proposition Formulas). Propositional formulas ¢, ¢,... are built
from atoms x1,xs,..., the unary connective —, the binary connectives A, V, and
parentheses (,). The logic operators =, A and V are read "NOT", "AND" and "OR’,
respectively. Formulas are defined recursively as follows:

1. Any atom z; is a formula.
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2. If x; is a formula, then —x; is also a formula.
3. If x;, x; are formulas, then (x; A x;) is also a formula.
4. If x;, x; are formulas, then (x; V x;) is also a formula.

Other often used logic operators include — (implication) and <+ (equivalence),
where (¢ — ¢) stands for (- V ¢), and (¢ <> ¢) stands for ((¢ — @) A (¢ — ©)).
Besides, a subformula of a formula ¢ is any substring of ¢ which is a formula.

Definition 2 (Truth Assignment). A truth assignment is a map u : {atoms} —
{T,L}, where {T, L} represents {true,false}. ({1,0} will also be employed to
denote {true, false}). A truth assignment p can be extended to assign either T or
L to any formula, as follows:

L (mp)t =T iff pt = L.

2. (pAPHF =T iff o =T and ¢* =T.

3. (pVo)r =Tiff ot =T or ot =T.

Definition 3 (Satisfiable, Unsatisfiable). A truth assignment p satisfies o iff ' =
T. u satisfies a set of A of formulas iff v satisfies ¢ for all ¢ € A. The set A is
satisfiable iff some truth assignment p satisfies A; otherwise A is unsatisfiable.

Definition 4 (Entailment). Ak ¢ (i.e. ¢ is a logical consequence of A) iff for every
truth assignment u, if u satisfies A, then u satisfies .

Two formulas ¢ and ¢ are considered equivalent (denoted ¢ = ¢) if they entail
each other, that is, pF ¢ and ¢ F ¢.

Definition 5 (Valid Formula). A formula ¢ is valid iff F ¢ (i.e. p* =T for all u).
A walid propositional formula is called a tautology.

Definition 6 (Literal). A literal [ is either the positive occurrence of an atom z;,
i.e. [ = x; or the negative occurrence of an atom x;, i.e. | = —x;.

Definition 7 (Clause). A clause w is a disjunction of a set of literals.
Definition 8 (Term). A term 7 is a conjunction of a set of literals.

Definition 9 (CNF). Given a set of clauses {w1,...,wm}, wi A+ Awp, is a con-
Junctive normal form (CNF) formula.

Definition 10 (DNF). Given a set of terms {7y,..., 7}, 1V- - -V 7y, is a disjunctive
normal form (DNF) formula.

Definition 11 (Prime Implicants). Given a propositional formula ¢ and a term 7.
T is an implicant of ¢ if TE @. 7 is a prime implicant of ¢ if 1) 7 is an implicant of
¢, and 2) for any term 7’ such that 7E 7' but 7 # 7/, then 7/ F .

Definition 12 (Prime Implicates). Given a propositional formula ¢ and a clause
w. w is an implicate of ¢ if pFw. w is a prime implicate of  if 1) w is an implicate
of ¢, and 2) for any w’ such that w’'Fw but w’ # w, then ¢ Fu'.
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2.1.2 Boolean Functions & Boolean Circuits

Definition 13 (Boolean Functions [85]). Let n be a positive integer and let B =
{0,1}. A boolean function with n variables is a function from B" to B, where B"”
denotes the n-fold cartesian product of B. A point x = (z1,22...,2,) € B"is a true
point (respectively, false point) of the boolean function f if f(x) =1 (respectively,

f(x) =0).

Building on earlier work [91, 99, 165, 59], we introduce boolean circuits repre-
sented as negation normal form (NNF) and some tractable boolean circuits that
are strictly less succinct than NNF.

Definition 14 (NNF). The language negation normal form (NNF) is the set of all
directed acyclic graphs (DAGs), where each leaf node is labeled with either T, L,
x; or -z, for x; € X, and has no child nodes. Each internal node is labeled with
either A or V and has at least two child nodes.

Definition 15 (DNNF). The language decomposable NNF (DNNF) is the set of
all NNFs, where for every node labeled with A, no atoms are shared between its
child nodes.

Definition 16 (d-DNNF). The language deterministic DNNF (d-DNNF) is the set
of all DNNFs, where for every node labeled with V, each pair of its child nodes is
inconsistent.

Definition 17 (sd-DNNF). The language smooth d-DNNF (sd-DNNF) is the set
of all d-DNNFs, where for every node labeled with V, all its child nodes are defined
on the same set of atoms.

Definition 18 (Shannon expansion, Boole’s expansion [317, 53]). Let f: B" — B
be a boolean function defined on X = {x1,...,2z,}. Let z; € X, the function f can
be decomposed as follows:

f=@iAfla=1) V (=2 A flo=0) | (2.1)
where f|z,=1 (f|z;—=0) denotes the cofactor [55] of f with respect to x; =1 (x; = 0).

Definition 19 (BDD [5, 59, 351, 137], BP). A Binary decision diagram (BDD)
is a DAG with two types of nodes: terminal nodes and non-terminal nodes. Each
non-terminal node is labeled by a variable x; € X, and has two outgoing edges, one
labeled by 0 and the other by 1. Each terminal node is labeled by a 1 or 0, and has
no outgoing edges. BDDs are also known as Branching Programs (BPs).

Definition 20 (FBDD, ROBP [351, 137]). A BDD is read-once if each variable is
tested at most once on any path from the root node to a terminal node. A read-once
BDD is also referred to as a free BDD (FBDD) or ROBP (Read-Once BP).

Lwhich is also referred to as the decision property [59, 99].
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Definition 21 (OBDD). A BDD is ordered (OBDD) [5, 59] if the features are
tested in the same order on all paths.

Definition 22 (SDD). Sentential decision diagrams (SDDs) [93, 341, 71, 73] are a
subset of the d-DNNF. SDDs are based on a boolean function decomposition, called
(X, Y)-partitions. Let f be a boolean function defined on two disjoint sets X and
Y, f can be decomposed as:

= (X) AN si(Y)] V-V [pn(X) A sn(Y)] (2.2)

where sub-functions p;(X) are mutually exclusive, ezhaustive, and non-false. More-
over, p;(X) are referred to as primes and s;(Y') are referred to as subs.

An SDD can be constructed from a propositional formula by recursively apply-
ing (X,Y)-partitions on primes and subs. Variables and constants are SDDs but
cannot be further decomposed. The decomposition of a boolean function f using
the (X, Y)-partitions is governed by a vtree.

Definition 23 (Vtree [93, 341, 71, 73]). A wvtree is a full binary tree with its leaves
labeled with variables. Each internal node of the viree partitions a variable set into
those appearing in its left subtree (X) and those appearing in its right subtree (V).

2.1.3 Queries & Transformations

In this thesis, we focus on some specific queries and transformations supported
by different circuits. The queries we consider are: 1) polytime consistency check
(CO), 2) polytime validity check (VA), and 3) polytime model counting (CT). The
transformations we consider are: 1) polytime conditioning (CD), and 2) polytime
negation (—C).

Let L denote a subset of NNF, we adopt the standard definitions of these queries
and transformations as described in the literature [91, 99, 165, 59].

Definition 24 (CO, VA). A propositional language L satisfies CO (VA) iff there
exists a polynomial-time algorithm that can decide whether an arbitrary formula ¢
from L is consistent (valid).

Definition 25 (CT). A propositional language L satisfies CT iff there exists a
polynomial-time algorithm that can count the number of models for any formula ¢
from L.

Definition 26 (Conditioning). Let ¢ represent a propositional formula and let 7
denote a consistent term (7 L). The conditioning [99] of ¢ on 7, denoted as |,
is the formula obtained by replacing each variable x; by T (resp. L) if ; (resp. —x;)
is a positive (resp. negative) literal of 7.

Definition 27 (CD). A propositional language L satisfies CD iff there exists a
polynomial-time algorithm that maps every formula ¢ from L and every consistent
term 7 into a formula in L that is logically equivalent to ¢|;.
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Definition 28 (—C). A propositional language L satisfies —C iff there exists a
polynomial-time algorithm that maps every formula ¢ from L to a formula of L
that is logically equivalent to —p.

It is well-known that d-DNNFs, SDDs, FBDDs, OBDDs satisfy the queries CO,
VA, CT. Additionally, SDDs, FBDDs, OBDDs satisfy transformations CD and
—C. However, it should be noted that d-DNNFs do not satisfy —C. There are
additional queries and transformations, the interested readers are referred to [99].

2.1.4 Hitting Sets

Given a collection € of sets from some finite domain D.

Definition 29 (Hitting Sets). A hitting set H of Q is H C D such that VS €
QHNS#0)

A hitting set is considered minimal or irreducible if removing any element from
it results in the loss of the property of being a hitting set [232, 231]. The hypergraph
transversal problem [42, 213, 111, 146] is equivalent to the hitting set problem.

2.1.5 Inconsistent formulas

For an unsatisfiable CNF formula ¢, let B denote the set of clauses in .

Definition 30 (MUS). A subset U C B is an minimal unsatisfiable subset (MUS)
if U is unsatisfiable and Yw; € U, U \ {w;} is satisfiable.

Definition 31 (MCS). A subset C C B is an minimal correction subset (MCS) if
B\ C is satisfiable and Vw; € C, B\ {U \ {w;}} is unsatisfiable.

An MUS can be seen as a minimal explanation of the unsatisfiability of the
formula ¢ and cannot be made smaller without becoming satisfiable. An MCS can
be seen as a minimal effort required to "correct" the unsatisfiability of the formula
¢ and cannot be made smaller without becoming unsatisfiable [232, 231, 261].

Additionally, there is a (subset-)minimal hitting set (MHS) relationship between
MUSes and MCSes. The MHS relationship between MUSes and MCSes was first
established in the field of model-based diagnosis [297, 253, 258] and subsequently
investigated for propositional formulas in clausal form [47, 253, 258].

2.1.6 Quantification Problems

A well-known generalization of propositional logic is quantified boolean formulas
(QBFs), where two additional logic operators, namely ¥V and 3 are used to quantify
the possible values of variables. A prenexr QBF is of the form,

Q121Q272 . .. QumTim-@
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where @; € {3,V} and ¢ is a propositional formula. Moreover, ¢ is referred to as
the matriz and Q1x1Q2xs ... QT as the prefiz. The decision problem for QBF
is PSPACE-complete [24]. In this thesis, our primary focus centers on quantified
problems with two levels of quantifiers, concretely 3V, which is a well-known 2213_
complete decision problem [24].

2.1.7 Complexity Classes

The thesis adopts standard notation and definitions when addressing the decision
problem for propositional logic, specifically the Boolean Satisfiability (SAT) prob-
lem [45], which is well-known to be NP-complete [80]. The thesis addresses several
well-known classes of decision problems, including P, NP, and 25. Interested read-
ers are referred to a standard reference on computational complexity [24].

2.2 Classification Models in Machine Learning

In this section, we introduce some well-known machine learning classifiers studied in
the thesis. For readers who are not familiar with Machine Learning, we recommend
referring to [381, 382, 48, 155] for a comprehensive introduction.

2.2.1 Classification Problems

A classification problem is defined on a set of features F = {1,...,m} and a set
of classes K = {c1,¢2,...,cx}. Each feature i € F has a domain D;. D; can be
categorical or ordinal, with values that can be boolean, integer, or real-valued. K
can also be categorical or ordinal. Feature space is defined as F = D7 x Dy X

. X D,,. For boolean domains, D; = B, ¢ = 1,...,m, and F = B™. Moreover,
the set of variables associated with features is X = {z1,...,2,,}. The notation
x = (x1,...,%,,) denotes an arbitrary point in feature space, where each z; is a
variable taking values from D;. The notation v = (vy, ..., v,,) represents a specific
point in feature space, where each v; is a constant representing one concrete value
from ;. With respect to the set of classes I, the size of K is assumed to be finite;
no additional restrictions are imposed on K. An ML classifier M is characterized
by a (non-constant) classification function k that maps feature space F into the
set of classes K, i.e. k : F — K. An instance is a pair (v, c) representing a point

v = (v1,...,vy) in feature space, and the classifier’s prediction, i.e. k(v) = c.
Abusing notation, we will also use x, j to denote xg, ..., 2, and v, ; to denote
Va,---,Vp. In addition, for a subset S of F, we will use vs to denote the partial

point of v, which represents the restriction of the complete point v to those features
in S. Finally, a classifier M is a tuple (F,F, K, k).

2.2.2 Decision Trees, Diagrams & Graphs

A decision tree (DT) [288, 194, 197, 192] T = (V, E) is a DAG having at most one
path between every pair of nodes. 7 has a root node, characterized by having no
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incoming edges. All other nodes have one incoming edge. We consider univariate
decision trees where each non-terminal node is associated with a single feature
i € F, and each terminal node is associated with a value from K. Each edge is
labeled with a literal, relating a feature (associated with the edge’s starting node)
with some values (or range of values) from the feature’s domain. We will consider
literals to be of the form z; € I;, whereas I; C ID;. The type of literals used to label
the edges of a DT allows the representation of the DTs generated by a wide range
of decision tree learners (e.g. [339]). Paths in the DT are represented as a sequence
of numbers, e.g. P = (r1,72,...,7y), such that each pair (rj,7;11) denotes an edge
of T. The set of paths of T is denoted by P (where the dependency on 7 is omitted
for simplicity). For each path P € P from the root node to a terminal node, a
feature can be tested more than once (in other words, it is not read-once). Besides,
if we conjunct all the literals of a path P, we will obtain a term 7.

Given a path Py, the features tested in the non-terminal nodes of Pj, are repre-
sented by ®(Py). Also, for a path Py of T, and a set of features X C ®(Py) C F,
A(Py, X) denotes the set of literals associated with the features in X along path P.
The definition of A accounts for situations where a feature is tested more than once,
but we will not delve into that in this thesis. Concretely, for each feature i € ®(Py),
we have literals z; € I;, where I; C ID; is the intersection of the sets in each of the
literals of Py on feature ¢. Finally, it is assumed that DTs are organized such that
the computed classification function is total. (Evidently, DTs can be envisioned for
which « is not total [194, page 270], or for which « is not a function, but it is instead
a relation [194], e.g. when node domain splits do not form a partition.)

Decision graphs (DGs) [281] can be viewed as a generalization of DTs, in the
sense that each non-terminal node can have more than one incoming edges, so a
sub-graph can be shared by different nodes. Moreover, each non-terminal node can
have more than two outgoing edges. Furthermore, the DTs as well as the DGs
considered in this thesis are assumed to satisfy the following three restrictions:

Assumption 1. The literals associated with the outgoing edges of each non-
terminal represents a partition of I;. Every path from the root node to a terminal
node is not inconsistent. Each path consistent with some points in the feature
space.

The first restriction means that for any v € F and an arbitrary non-terminal
node labeled x;, the value v; will activate exactly one of its outgoing edges. The
second restriction means that 7% L (7 is the conjunction all the literals of a path
R). With these restrictions, any v € F is consistent with ezactly one path in 7.
By consistent we mean that the literals associated with the path are satisfied (or
consistent) with the feature values in v. A more in-depth analysis of explaining
decision trees is available in [195, 194]. Moreover, FBDD lies the intersection of
propositional languages and decision graphs. To show that FBDDs are subset of
DGs: 1) Every FBDD contains only binary features, and each non-terminal node
has two outgoing edges, one labeled by 0 and the other labeled by 1. So the literals
associated with the outgoing edges of each non-terminal node represent a partition
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of {0,1}. 2) Every FBDD is read-once, so it is impossible to have an inconsistent
path in FBDD. According to the definition of DG, any FBDD is a DG.

2.2.3 Decision Lists & Sets

Decision lists (DLs) [301, 182] and sets (DSs) [263, 264, 223, 190] represent families
of classifiers based on rules. A rule is of the form: IF cond THEN class, i.e. if the
condition cond is true given the values assigned to features, then class is predicted.
When cond is true, we say that the rule fires [258]. A decision list is a set of ordered
rules, of the form:

Ri: IF (r1) THEN ¢

Ro: ELSEIF () THEN ¢

(2.3)
Ry : ELSEIF (7,) THEN ¢,

[RpEF : ELSE Cri1]

If it is known that the conditions cover the feature space, then the default rule is
unnecessary, as it will never fire. For some of the examples, we will use a more
compact notation for rules, of the form:

T — c (2.4)

This more compact representation has the same interpretation as before, i.e. if the
condition 7 is true, then the prediction is ¢. Boolean literals in the conditions of
rules will be represented by variables, e.g. x, or their negations, e.g. -z or z. (For
the more complex examples, we will opt for the more compact notation, i.e. Z.)

In contrast to DLs, a DS is a set of unordered rules. Decision sets exhibit a
number of issues, which complicate their analysis. One issue is overlap, i.e. two or
more rules predicting different classes firing on the same inputs [253, 258]. Another
issue is coverage of feature space, i.e. no rule firing one some input [253, 258]. A
solution to the problem of coverage is to add a default rule, which fires only when
none of the other rules do. This condition also complicates reasoning about DSs.

2.2.4 Random Forest Classifiers

There are a variety of classifiers that aggregate decision trees. Well-known examples
of tree ensembles [381, 180] include random forests [56], but also boosted trees [124].
Different types of tree ensembles are induced with different learning algorithms.
Random Forests (RFs) with majority voting [56, 364, 136] are very popular and
widely used tree ensemble ML models. Conceptually, an RF is collection of decision
trees (DTs), where each tree 7; of the ensemble M is trained on a randomly selected
subset of the training data so as the trees of the RF are not correlated. (In contrast
to a single DT, RFs are less prone to over-fitting and so offer in general better
accuracy on test data.) The predictions of a RF classifier are made by majority vote
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of trees, that is each tree predicts for a class and the class with largest score is picked.
(Note that other versions of RFs using probabilities or weights are implemented
by different learning tools, e.g., scikit-learn [286], XGBoost [69], etc. However,
and similarly to related work [198], this thesis considers the original proposal for
RFs [56].)

2.2.5 Monotonic Classifiers

Monotonic classifiers find a number of important applications, and have been stud-
ied extensively in recent years [117, 365, 236, 328, 256]. Let < denote a total
order on the set of classes K. Concretely, we assume ¢; < ¢ < ...cx. Fur-
thermore, we assume that each domain ID; is ordered such that the value taken
by feature i is between a lower bound A(i) and an upper bound p(i). Given
vi = (V11 -, V14 -« -, V1) and Vo = (Va1, ..., V2, ..., Vo), We say that vi < vy if|
V(i € F).(v1; < vy;). Finally, a classifier is monotonic if whenever vi; < va, then
k(v1) = k(va).

2.3 eXplainable Artificial Intelligence

Motivated by the widespread adoption of machine learning (ML) in a ever-increasing
range of domains, eXplainable AT (XAI) is becoming critical, both to build trust,
but also to validate ML models [148, 309, 269]. Techniques used in XAI to in-
terpret the behavior of ML models can be classified according to various criteria.
including whether they are intrinsic [363, 304] or post-hoc [299, 247, 300, 257],
model-agnostic [299, 247, 300] or model-specific [315, 178, 257], and global [18, 225]
or local [299, 300, 178, 257]. However, the thesis will exclusively concentrate on
local methods.

How does the ML model make predictions? Global methods [18, 225] focus
on understanding the overall behavior and decision-making process of the ML model
across the entire feature space. These methods provide insights into the model’s
general tendencies, biases, and feature importance.

Why does the ML model make such a prediction about this data point?
On the other hand, local methods offer insights into individual predictions, provid-
ing trust at the level of single data points. The local explanation problem can be
defined as follows:

Definition 32 (Local Explanation Problem). A local explanation problem & is a
tuple (M, (v, ¢)), where M = (F,F, K, k) is a classifier such that x(v) = c.
2.3.1 Model-Agnostic Methods for Local Explainability

Popular local methods of explainability can be broadly organized into two families:
those based on feature attribution and those based on feature selection. Feature
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selection methods identify sets of features (i.e. an explanation) relevant for a pre-
diction, while feature attribution methods assign an importance to each feature.
Most well-known solutions are model-agnostic, meaning that they can be applied
to any black-box ML model without requiring access to the model’s internal struc-
ture or parameters.

Local Interpretable Model-agnostic Explanations. Local Interpretable Model-
agnostic Explanations (LIME) [299, 82, 269] is a popular model-agnostic feature
attribution method used in the field of XAI. The key idea behind LIME is to ap-
proximate the behavior of a black-box ML model around a specific instance by
creating a simpler model called a "surrogate model" or "local model." LIME gener-
ates local explanations by perturbing the input instance of interest and observing
how the model’s predictions change. It provides explanations in the form of fea-
ture importance scores, enabling users to understand how the model arrived at its
decision for a particular instance.

In this approach, an explanation is defined as a model g € s, where ¢ is a class
of potentially interpretable models (e.g. decision trees). Since not every g €
may be sufficiently simple to be interpretable, we let £2(g) denote a measure of the
explanation’s complexity (as opposed to interpretability) for g € ». Additionally,
we employ 7y (X) as a proximity measure between an instance x to v, so as to define
locality around v. Finally, let L£(k,g,my) be a measure of how unfaithful g is in
approximating « in the locality defined by my,. The explanation produced by LIME
is obtained by the following:

Definition 33 (LIME [299, 82]). Given a classifier M over a set of features F,
which is associated with a classification function x, and a data point v € F, LIME
is defined as

§(v) = argminge,, L(x, g, mv) + Q(g) (2.5)

Here, we aim to minimize £(k, g, my) while ensuring that {2(¢) remains suitably
low, in order to attain explanations that encompass both interpretability and local
fidelity.

Shapley Values & SHapley Additive exPlanations. Shapley values were
first introduced by L. Shapley [318, 10] in the context of game theory. Given a
cooperative game, Shapley values represent a way to distribute the worth of the
game by each player. Shapley values have been extensively used for explaining the
predictions of ML models, e.g. [332, 333, 101, 247, 245, 68, 262, 329, 349], among a
vast number of recent examples. Given an instance, these methods treat each feature
(and its associated value) as an individual player, and a numeric value is assigned
to each feature that quantifies its contribution with respect to the prediction.
SHapley Additive exPlanations (SHAP) [247, 245, 269] is one such method that
computes so-called SHAP scores, which instantiate Shapley values in the context
of explainability. It is arguably among the most popular model-agnostic feature-
attribution methods. SHAP calculates how each feature’s inclusion or exclusion
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from a model affects the predictions. It takes into account all possible feature
combinations and computes the average contribution of each feature over all possible
permutations. It is well-known that the exact computation of SHAP scores is
computationally hard [21, 20, 22, 105, 106]. However, for restricted families of
classifiers, the computation of SHAP scores is polynomial [21, 20, 22, 105, 106].
To produce SHAP scores, we need a probability distribution over the features.
We denote the probability of a data point as Pr(-). Let Y : 27 — 2F be defined by

T(S;v) :={x € F| Nies ©i = v;} (2.6)

T(S;v) denotes all the points in feature space that have in common with v the
values of the features specified by S. The expected value of a classification function
k is denoted as E[k]. For a complete data point v, we have E[x|y] = £(v). Further-
more, let E[x|y¢] denote the expected value of the boolean function x|yg, which is
defined as follow:

Elihe = 3 #(%)- Pr(xlvs) (27)
x€T(S;v)

Let ¢ : 27 — R be defined by
d(S; M, v) = Elk|vg] (2.8)

In the case of uniform distribution, we have:

1
¢(S;M’V):W Z K(x) (2.9)
XET(S;v)

To simplify the notation, the following definitions are used,
A(i, 8 M, v) = (S U{i}; M, v) = ¢(S; M, v)) (2.10)

ISIHF] - 1] - 1!
Kl

S(S; M, v): (2.11)
Definition 34 (SHAP Score [247, 245, 106, 21, 22]). Given a classifier M over a set
of features F, a probability distribution Pr, a data point v € F, and a feature i € F,
the SHAP score of feature 7 on v with respect to M, denoted as SHAP : F — R, is
defined as

SHAP(i; M, v) = Z S(S; M, v) x A(i,S; M, v) (2.12)

SC(F\{i})

It is important to note the sum of the SHAP scores of all features is related
to the prediction of the given instance and the expected value of the classification
function & [332, 333, 105, 106]:

Z SHAP(i; M, v) + ¢(0; M, v) = k(v) (2.13)
1€EF
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Anchors Explanations. Anchor Explanations (Anchor) [300, 82, 269] is a popu-
lar model-agnostic feature-selection method that provides explanations for the pre-
dictions of complex ML models. The main idea behind Anchor is to identify small
and easily understandable "anchor rules" that sufficiently explain a model’s predic-
tions for specific instances. These anchor rules are simple IF-THEN statements
that capture the key features or conditions under which the model makes a par-
ticular prediction. Anchor explanations are concise and human-readable, providing
users with insights into how the model makes its decisions for specific instances.

Definition 35 (Anchors [300, 82]). Given a classification function k, and a data
point v being explained, A is an anchor if

Ep(x4) [Lex)=r(v)] = 6, A(v) =1 (2.14)

wherein D(-|A) denote the conditional distribution when the rule A applies. 0 <
0 < 1 specifies a precision threshold, only rules that achieve a local fidelity of at
least § are considered a valid result. And 1, (x)—x(v) is the indicator function.

A is a rule (set of predicates) acting on such an interpretable representation,
such that A(v) returns 1 if all its feature predicates correspond to v’s feature values.

2.3.2 Limitations of Model-Agnostic Methods

Model-agnostic approaches disregard the intricacies of the ML model itself and,
instead, focus on analyzing its input-output behavior. It’s crucial to highlight that
model-agnostic approaches are susceptible to several critical issues, including the
generation of unsound explanations [189, 276, 178, 257 and out-of-distribution sam-
pling [330, 224, 369, 368]. These issues exacerbate the problem of trust in Al
Relying on such unsound explanations could lead to catastrophic consequences in
high-risk or safety-critical scenarios [305, 304, 303, 345, 289, 88, 162]. Besides
unsoundness, other limitations of model-agnostic explanations have been reported
[62, 330, 224, 108, 218, 201, 173, 174, 175].

2.3.3 Formal Explainability

In contrast with the model-agnostic approaches [299, 247, 300, 148] which offer
no guarantees of rigor, recent work studied rigorous model-based approaches for
explainability [178, 257, 253, 258, 194], known as formal XAI (FXAI) methods.
FXAT aims to provide rigorous and provable explanations for ML models predic-
tions. Current theoretical framework builds on two distinct formal explanations:
abductive explanations and contrastive explanations.

Abductive Explanations (AXps). Prime implicant (PI) explanations [320] de-
note a minimal set of literals (relating a feature value z; and a constant v; € D)
that are sufficient for the prediction. Pl-explanations are related with abduction,
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and so are also referred to as abductive explanations (AXps) [187]2. Moreover, ab-
ductive explanations are an example of explainability by feature selection, i.e. the
selection of a subset of features as the explanation. Formally, given a local expla-
nation problem & = (M, (v,c)) where v = (v1,...,vy) € F with k(v) = ¢, a set
of features X C F is a weak abductive explanation (or weak AXp) if the following
predicate holds true:

WAXp(X;F, k,v,c) :=V(x € F). [Njex(zi = v;)] = (k(x) =¢) (2.15)

Moreover, a set of features X C F is an abductive explanation (or AXp) if the
following predicate holds true:

AXp(X;F,k,v,c) = WAXp(X;F, k,v,c) A

, , (2.16)
V(X' C X).-WAXp(X'; T, k,v,c)

Clearly, an AXp is any weak AXp that is subset-minimal (or irreducible). It is
straightforward to observe that the definition of predicate WAXp is monotone, and
so a AXp can instead be defined as follows:

AXp(X;F, k,v,c) = WAXp(X;F, k,v,c) A

) ) (2.17)
V(j e X).-WAXp(X \ {i};F, &, v,c)

This alternative equivalent definition of abductive explanation is at the core of most
algorithms for computing one AXp [187, 188, 276, 255, 193, 256, 198, 250, 182]. It
is apparent that Formulas (2.15), (2.16), and (2.17) can be viewed as representing
a (logic) rule of the form:

IF Aiex (zi =v;)) THEN k(x) =c¢ (2.18)

Unless otherwise noted, this interpretation of explanations will be assumed through-
out the thesis.

AXps can be interpreted as answering a “Why?” question, i.e. why is some
prediction made given some point in feature space? The answer to this question
is a (minimal, or irreducible) set of the features, which is sufficient (or entails) the
prediction.

2PI-explanations were first proposed in the context of boolean classifiers based on restricted
bayesian networks [320]. Independent work [187] studied PI-explanations in the case of for more
general classification functions, i.e. not necessarily boolean, and related instead explanations with
abduction. This thesis follows the formalizations used in more recent work [255, 198, 182, 256, 81,
180, 257].

3Each predicate associated with a given concept will be noted in sans-serif letterform. When
referring to the same concept in the text, the same acronym will be used, but in standard letterform.
For example, the predicate name AXp will be used in logic statements, and the acronym AXp will
be used throughout the text.
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Contrastive Explanations (CXps). Similarly to the case of AXps, one can
define (weak) contrastive explanations (CXps) [266, 185]*. ¥ C F is a weak CXp
for a local explanation problem & = (M, (v, ¢)) if,

WCXp(V;F, k,v,c) := 3(x € F). [/\igzy(l'i = Uz)} A (k(x) # ¢) (2.19)

Thus, given a local explanation problem &, a weak CXp is a set of features which,
if allowed to take any value from their domain, then there is an assignment to the
features that changes the prediction to a class other than c¢. Furthermore, a set
Y C F is a CXp if, besides being a weak CXp, it is also subset-minimal, i.e.

CXp(ViF,r,v,e) = WCXp(ViF, s, v, ) A

, , (2.20)
(V' € V). ~WCXp(Y';F, &, v, )

Similarly to the case of AXps, it is straightforward to observe that the definition of
predicate WCXp is monotone, and so a CXp can instead be defined as follows:

CXp(V;F,k,v,e) = WCXp(V;F,k,v,c) A

. | (221)
V(] S y>_‘WCXp(y \ {]}7 F, kv, C)

As with the case of AXps, this alternative equivalent definition of constraints ex-
planation is at the core of most algorithms for computing one CXp [193, 256, 198,
250, 182].

A CXp can be viewed as a possible answer to a “Why Not?” question, i.e.
why isn’t the classifier’s prediction a class other than ¢? (Clearly, the definition
can be adapted to the case when we seek a concrete change of class.) A different
perspective for a contrastive explanation is as the answer to a “How?” question,
i.e. how to change the features so as to change the prediction. In recent literature
this alternative view has been investigated under the name actionable recourse [338,
343, 209, 208].

Throughout the thesis, we will omit the parameterization associated with each
predicate, and so, we will use the notation AXp(X') instead of AXp(X;F,k,v,c),
when the parameters are clear from the context. The same convention applies to
CXp().

Duality Between AXps and CXps. Given the definitions of AXp and CXp,
and building on Reiter’s seminal work [297], recent work [186, 185] proved the
following duality between minimal hitting sets:

Proposition 1 (MHS duality between AXps and CXps [186, 185]). Given a local
explanation problem &£, X is an AXp iff X is a minimal hitting set of the set of
CXps. Y is a CXp iff Y is a minimal hitting set of the set of AXps.

4Contrastive explanations are related with counterfactual explanations [238]. For simple literal-
based explanation functions contrastive correspond counterfactual explanations. However, this is
not the case for more complex explanation functions.



CHAPTER 3
Formal Explanations for
Tractable Decision Graphs

This chapter shows that for a wide range of classifiers, globally referred to as decision
graphs, and which include decision trees and binary decision diagrams, but also
their multi-valued variants, there exist polynomial-time algorithms for computing
one abductive explanation. In addition, this chapter also proposes a polynomial-
time algorithm for computing one contrastive explanation. These novel algorithms
build on explanation graphs (XpG’s). XpG’s denote a graph representation that
enables both theoretical and practically efficient computation of explanations for
decision graphs.

Furthermore, this chapter proposes a practically efficient solution for the enu-
meration of explanations. For the concrete case of decision trees, this chapter shows
that the set of all contrastive explanations can be enumerated in polynomial time.
Finally, the experimental results validate the practical applicability of the algo-
rithms proposed in this chapter on a wide range of publicly available benchmarks.

3.1 Introduction

The emerging societal impact of Machine Learning (ML) and its foreseen deploy-
ment in safety critical applications, puts additional demands on approaches for
verifying and explaining ML models [353]. The vast majority of approaches for ex-
plainability in ML (often referred to as eXplainable AT (XAI) [149]) are heuristic, of-
fering no formal guarantees of soundness, with well-known examples including tools
like LIME, SHAP or Anchors [299, 247, 300]. (Recent surveys [148] cover a wider
range of heuristic methods.) Moreover, recent work has shed light on the important
practical limitations of heuristic XAI approaches [276, 189, 62, 330, 224, 108, 178].

In contrast, formal approaches to XAI have been proposed in recent years [320,
187, 321, 188, 96, 29, 26] (albeit it can be related to past work on logic-based expla-
nations (e.g. [316, 116, 287])). The most widely studied form of explanation consists
in the identification of prime implicants (PI) of the decision function associated with
an ML classifier, being referred to as Pl-explanations, and are also referred to as
abductive explanations(AXps) [187]. Although AXps offer important formal guar-
antees, e.g. they represent minimal sufficient reasons for a prediction, they do have
their own drawbacks. First, in most settings, finding one AXp is NP-hard, and in
some settings scalability is an issue [320, 187]. Second, users have little control on
the size of computed AXps (and it is well-known the difficulty that humans have in

21
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grasping complex concepts). Third, there can be many AXps, and it is often un-
clear which ones are preferred. Fourth, in practice users may often prefer high-level
explanations, in contrast with feature-based, low-level explanations. Despite these
drawbacks, it is plain that AXps offer a sound basis upon which one can expect
to develop theoretically sound and practically effective approaches for computing
explanations. For example, more recent work has demonstrated the tractability
of AXps for some ML models [193, 29, 255, 256, 196], in some cases allowing for
polynomial delay enumeration [255]. Also, recent work [178, 198, 182, 196] showed
that, even for ML models for which computing an AXp is NP-hard, scalability may
not be an obstacle.

Moreover, it was recently shown that finding explanations can be crucial even
for ML models that are generally deemed interpretable!. One such example are
decision trees [193]. Decision trees (DTs) are not only among the most widely used
ML models, but are also generally regarded as interpretable [57, 123, 298, 272, 309,
269, 266, 148, 304, 358, 325]. However, recent work [193] has shown that paths in
DTs may contain literals that are irrelevant for identifying minimal sufficient reasons
for a prediction, and that the number of redundant literals can grow asymptotically
as large as the number of features. Furthermore, it was also shown [193] that AXps
for DTs can be computed in polynomial time. Moreover, independent work showed
that finding a smallest explanation is hard for NP [35], thus hinting at the need to
finding AXps in the case of DTs.

This chapter complements this earlier work with several novel results. First,
the chapter considers AXps and CXps [266, 185], which will be jointly referred
to as explanations (XPs). Second, the chapter shows that XPs can be computed
in polynomial time for a much larger class of classifiers, which will be conjointly
referred to as decision graphs [281, 215]2. For that, the chapter introduces a new
graph representation, namely the explanation graph, and shows that for any classifier
(and instance) that can be reduced to an explanation graph, XPs can be computed
in polynomial time. (For example, multi-valued variants of decision trees, graphs
or diagrams can be reduced to explanation graphs.) The chapter also shows that
the MARCO algorithm for enumerating MUSes/MCSes [231] can be adapted to the
enumeration of XPs, yielding a solution that is very efficient in practice. For the case
of DTs, the chapter proves that the set of all CXps can be computed in polynomial
time. In turn, this result offers an alternative approach for the enumeration of
AXps, e.g. based on hitting set dualization [297, 232].

The chapter is organized as follows. Section 3.2 relates the chapter’s contri-
butions with earlier work. Section 3.3 studies explanation graphs (XpG’s), and
shows how XpG’s can be used for computing explanations. Afterwards, Section 3.4
describes algorithms computing one XP (either AXp or CXp) of XpG’s, and a

nterpretability is regarded a subjective concept, with no accepted rigorous definition [234]. In
this chapter, we equate interpretability with explanation succinctness.

2The term decision graph is also used in the context of Bayesian Networks [202, 92], and more
recently in explainability [320, 321]. However, and to the best of our knowledge, the term “decision
graph” was first proposed in the early 90s [281] to enable more compact representation of DTs.
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MARCO-like algorithm for the enumeration of XPs. Section 3.4 also proves that
for DTs, the set of all CXps can be computed in polynomial time. Section 3.5
discusses experimental results of explaining DTs and reduced ordered binary deci-
sion diagrams, including AXps, CXps and their enumeration. Finally, the chapter
concludes in Section 3.6.

3.2 Related Work

This chapter can be related with recent work on bayesian classifiers and decision
graphs [320, 321, 96], but also tractable boolean circuits from the knowledge com-
pilation (KC) map [29, 26]. In addition, we build on the recent results on the
interpretability and the need for explainability of DTs [193]. The algorithms de-
scribed in some of the previous work [320, 321, 96] cover AXps (and also minimum
cardinality explanations, which we do not consider), but do not consider contrastive
explanations. The focus of this earlier work is on ordered decision diagrams, and
the proposed algorithms operate on binary features. Furthermore, the proposed
algorithms are based on the compilation to some canonical representation (referred
to as an ODD). If the goal is to find a few explanations, the algorithms described
in this chapter are essentially guaranteed to scale in practice, whereas compilation
to a canonical representation is less likely to scale (e.g. see [255]). Similarly, other
recent work [29] investigates tractable boolean circuits from the knowledge com-
pilation map, which consider binary features. In addition, the tractable classifiers
considered in [29] for AXps do not intersect those studied in this chapter. In a
companion work, [26] prove that for several XAI queries proposed in [29], including
AXp extraction, there exist polynomial algorithms for the case of DTs. In [35], the
focus is on the complexity of smallest AXps, and the results prove its tractability
for FBDDs, which generalize OBDDs and DTs. Lastly, [105, 106, 21, 20] show that
computing SHAP explanations [247] is tractable for the KC languages d-DNNFs,
including FBDDs, SDDs OBDDs and DTs [99].

Running Examples

Throughout this chapter, we will use the following DT and OMDD as our running
examples.

Example 1. For the DT in Figure 3.1, F = {1,2,3,4}, denoting respectively
Age (¢ {W,T,0}), Income (€ {L,M,H}), Student (€ {N,Y}) and Credit Rating
(e {P,F,E}). The prediction is the type of hardware bought, with N denoting No
Hardware, T denoting a Tablet and L denoting a Laptop. For Age, W, T and O
denote, respectively, Age < 30 (tWenties or younger), 30 < Age < 40 (Thirties)
and 40 < Age (forties or Older). For Income, L, M, H denote, respectively, (L)ow,
(M)edium, and (H)igh. For Student, N denotes not a student and Y denotes a
student. Finally, for Credit Rating, P, F and E denote, respectively, (P)oor, (F)air



3.3. EXPLANATION GRAPHS 24

Figure 3.2: Example OMDD, v = (0,1,2) and x(v) = R

and (E)xcellent. For the instance v = (O, L, Y, P), with prediction T (i.e. Tablet),
the consistent path is shown highlighted.

Example 2. For the OMDD in Figure 3.2, F = {1,2,3}, with D; = Dy = {0,1},
D3 = {0,1,2}. The prediction is one of three classes K = {R,G,B}. For the
instance v = (0, 1,2), with prediction R, the consistent path is shown highlighted.

3.3 Explanation Graphs

A difficulty with reasoning about explanations for DTs, DGs, OBDDs and OMDDs
(and also in the case of other examples of ML models), is the multitude of cases that
one needs to consider. For the concrete case of OBDDs, features are restricted to be
boolean. However, for DTs and DGs, features can be boolean, categorical, integer



3.3. EXPLANATION GRAPHS 25

or real. Moreover, for OMDDs, features can be boolean, categorical or integer.
Also, it is often the case that || > 2. Explanation graphs (XpG) are a graph
representation that abstracts away all the details that are effectively unnecessary
for computing AXps or CXps. In turn, this facilitates the construction of unified
explanation procedures.

Definition 36. An Explanation Graph (XpG) is a 5-tuple D = (Gp, S, v, ay, ag),
where:
1. Gp = (Vp, Ep) is a labeled DAG, such that:
e Vp =Tp U Np is the set of nodes, partitioned into the terminal nodes
Tp (with deg’(q) = 0, ¢ € Tp) and the non-terminal nodes Np (with
deg™(p) > 0, p € Np);
o Ep C Vp x Vp is the set of (directed) edges.
e Gp is such that there is a single node with indegree equal to 0, i.e. the
root (or source) node.
2. S={s1,...,5n} is a set of variables;
3. v: Np — S is a total function mapping each non-terminal node to one
variable in S.
4. ay : Vp — {0, 1} labels nodes with one of two values.
(avy is required to be defined only for terminal nodes.)
5. ag: Ep — {0, 1} labels edges with one of two values.
In addition, an XpG D must respect the following properties:
i. For each non-terminal node, there is at most one outgoing edge labeled 1; all
other outgoing edges are labeled 0.
ii. There is exactly one terminal node t € T labeled 1 that can be reached from
the root node with (at least) one path of edges labeled 1.

We refer to a tree XpG when the DAG associated with the XpG is a tree. Given
a DG G and an instance (v,c), the (unique) mapping to an XpG is obtained as
follows:
1. The same DAG is used.
2. Terminal nodes labeled ¢ in G are labeled 1 in D. Terminal nodes labeled
d # cin G are labeled 0 in D.
3. A non-terminal node associated with feature ¢ in G is associated with s; in D.
4. Any edge labeled with a literal that is consistent with v in G is labeled 1 in D.
Any edge labeled with a literal that is not consistent with v in G is labeled 0
in D.
Since we can represent DTs, OBDDs or OMDDs with DGs, then the construction
above ensures that we can also create XpG’s for any of these classifiers.
The following examples illustrate the construction of XpG’s for the chapter’s
two running examples.

Example 3. For the DT of Example 1 (shown in Figure 3.1, given the instance
(v=(0,L,Y,P),T), and letting S = (s1, S2, $3, S4), with each s; associated with
feature 4, the resulting XpG is shown in Figure 3.3.
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Figure 3.4: XpG for the OMDD of Figure 3.2, given v = (0, 1, 2)

Example 4. For the OMDD of Example 2 (shown in Figure 3.2), given the instance
((0,1,2),R), and letting S = (s1, s2, s3), with each s; associated with feature i, the
resulting XpG is shown in Figure 3.4.

Evaluation of XpG’s. Given an XpG D, let S = {0,1}", i.e. the set of possible
assignments to the variables in S. The evaluation function of the XpG, op : S —
{0,1}, is based on the auxiliary activation function ¢ : S x Vp — {0,1}. Moreover,
for a point s € S, op and ¢ are defined as follows:

1. If r is the root node of Gp, then (s, r) = 1.

2. Let p € parent(r) (i.e. a node can have multiple parents) and let s; = v(p).
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e(s,r) = 1iff e(s,p) = 1 and either ag(p,r) =1 or s; =0, i.e.

e(s,r) = \/ (e(s,p) A —s;) \/ (s, p) (3.1)

pEparent(r) pEparent(r)
A=ag(pr) Nag (p,r)

3. op(s) = 1 iff for every terminal node ¢ € Tp, with ay(t) = 0, it is also the
case that (s, t) =0, i.e.

op(s) = /\tGTD/\ﬂaV(t) —e(s, t) (3.2)

Observe that terminal nodes labeled 1 are irrelevant for defining the evaluation
function. Their existence is implicit (i.e. at least one terminal node with label 1
must exist and be reachable from the root when all the s; variables take value 1),
but the evaluation of op is oblivious to their existence. Furthermore, and as noted
above, we must have op(1,...,1) = 1. If the graph has some terminal node labeled
0, then op(0,...,0) =0.

Example 5. For the DT of Figure 3.1, and given the XpG of Figure 3.3, the
evaluation function is defined as follows:

op(s) (/\re{ﬁ,9,12,13,15} (s, r))

with,
[e(s,1) 1] A [e(s,2) <> e(s,1) A —s3] A
[e(s,3) ¢»e(s,1)] A [e(s,5) ¢re(s,2) Ams1] A
[e(s,6) > e(s,3) A—s4] A [e(s,7) < e(s,3)] A
[e(s,8) ¢ e(s,5) A —sa] A [e(s,9) «re(s,5)] A
[e(s,11) <> (s, 7) A —s1] A [e(s,12) 3 e(s,8) A —s1] A
[e(s,13) <> e(s,8) A —s1] A [e(s,15) +> (s, 11)]

(where, for simplicity and for reducing the number of parenthesis, the opera-
tor A has precedence over the operator «<».) Observe that op(1,1,1,1) = 1 and
op(0,0,0,0) = 0.

Example 6. For the OMDD of Figure 3.2, and given the XpG of Figure 3.4, the
evaluation function is defined as follows:

with,
[e(s, 1) 1] A [e(s,2) ¢ e(s, 1) A s3] A
[e(s,3) (s, 1)] A [e(s,4) <> e(s, 2)] A
[e(s,5) ¢ e(s,3)] A [e(s,7) <> e(s,4) A—s1] A
[e(s,8) <> &(s,5) A —s1]

Properties of XpG’s. The definition of op is such that the evaluation function
is monotone (where we define 0 < 1, sy < sp if for all 4, s;; < s24, and for
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monotonicity we require s; =< s2 — op(sy) =< op(s2).
Proposition 2. Given an XpG D, op is monotone.

Proof. Observe that ¢ is monotone (and negative) on s € S, and op is monotone
(and negative) on e. Hence, op is monotone (and positive) on s. 0

Given the definition of op, any PI will consist of a conjunction of positive
literals [86]. Furthermore, we can view an XpG as a classifier, mapping features
{1,...,m} (each feature i associated with a variable s; € S) into {0,1}, with
instance ((1,...,1),1). As a result, we can compute the AXps and CXps of an
XpG D (given the instance ((1,...,1),1)).

Example 7. Observe that by setting so = s3 = 0, we still guarantee that op(1,0,0,1) =
1. However, setting either s; = 0 or s4 = 0, will cause op to change value.
Hence, one AXp for the XpG is {1,4}. With respect to the original instance
((0,L,Y,P), T), selecting {1,4} indicates that (z; = O) A (x4 = P) (i.e. Age in
the forties or Older and a Credit Rating of Poor) suffices for the prediction of T.

Example 8. With respect to Example 6, we can observe that so is not used for
defining op. Hence, it can be set to 0. Also, as long as s; = 1, the prediction will
remain unchanged. Thus, we can also set s3 to 0. As a result, one AXp is {1}.
With respect to the original instance ((z1,z2,3),¢) = ((0,1,2),R), selecting {1}
indicates that x1 = 0 suffices for the prediction of R.

As suggested by the previous discussion and examples, we have the following
result.

Proposition 3. There is a one-to-one mapping between AXps and CXps of op
and the AXps and CXps of the original classification problem (and instance) from
which the XpG D is obtained.

Proof. The construction of the XpG from a DG ensures that for any node in the
XpG, if e(s,r) = 1, then there exists some assignment to the features corresponding
to unset variables, such that there is one consistent path in the DG from the root
to r. Thus, if for some pick of unset variables, we have that £(s,q) = 1, for some
q € Tp with ay(g) = 0, then that guarantees that in the DG there is an assignment
to the features associated with the unset variables, such that a prediction other
than ¢ is obtained. a

3.4 Computing Explanations

It is well-known that prime implicants of monotone functions can be computed
in polynomial time (e.g. [141, 142]). Moreover, whereas there are algorithms for
finding one PI of a monotone function in polynomial time, there is evidence that
enumeration of PIs cannot be achieved with polynomial delay [150].
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Nevertheless, and given the fact that op is defined on a DAG, this chapter
proposes dedicated algorithms for computing one AXp and one CXp which build
on iterative graph traversals. Furthermore, the MARCO algorithm [231] is adapted
to exploit the algorithms for computing one AXp and one CXp, in the process
ensuring that AXps/CXps can be enumerated with exactly one SAT oracle call per
each computed explanation. (A recent work on explaining monotonic classifiers
[256] proposes a poly-time algorithm to compute one AXp (resp. CXp) and a
practically efficient algorithm for the iterative enumeration of XPs.)

3.4.1 Finding One Explanation

Different polynomial-time algorithms can be envisioned for finding one prime impli-
cant of an XpG (and also of a monotone function). For the concrete case of op, we
consider the well-known deletion-based algorithm [70], which iteratively removes lit-
erals from the implicant, and checks the value of op using the DAG representation.
(It is also plain that we could consider instead the algorithms QuickXplain [205]
or Progression [259], or any other algorithm for finding a minimal set subject to a
monotone predicate [260].)

As highlighted in the running examples, if op(u) = 1, for some u € S, then in
the original classifier this means the prediction remains unchanged. The only way
we have to change the prediction is to allow some features to take some other value
from their domain. As a result, we equate s; = 1 with declaring the original feature
as fized, whereas we equate s; = 0 with declaring the original feature as free. By
changing some s; from 1 to 0, we are allowing some of the features to take one value
from their domains. If we manage to change the value of the evaluation function
to 0, this means that in the original classifier there exists a pick of values to the
free features which allows the prediction to change to some class other than c¢. As a
result, the algorithms proposed in this section are solely based on finding a subset
maximal set of features declared free (respectively, fixed), which is sufficient for the
prediction not to change (respectively, to change).

To enable the integration of the algorithms, the basic algorithms for finding one
XP are organized such that one XP is computed given a starting seed.

Checking path to node with label 0. All algorithms are based on graph traver-
sals, which check whether a prediction of 0 can be reached given a set of value picks
for the variables in S. Besides, the existence of a path to nodes with label 0 implies
that there is a weak CXp thus, the predicate WAXp(-) and WCXp(+) can be defined
as follows:

WCXp(Z) := pathToZero(D, Z)

(3.3)
WAXp(Z) := - WCXp(S \ 2)

This graph traversal algorithm is simple to envision, and is shown in Algorithm 1.
As can be observed, the algorithm returns 1 if a terminal labeled 0 can be reached.
Otherwise, it returns 0. Variables in set Z serve to ignore the values of outgoing
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Algorithm 1 Check existence of path to 0-labeled terminal
Input: XpG D = (Gp, S,v,ay,a); Reference set: Z C S
procedure pathToZero(D, Z)

Q « init(root(Gp))
while not empty(Q) do

1:

2

3

4 (Q, p) < dequeue(Q)
5: if isTerminal(Gp,p) then
6

7

8

9

if ay(p) =0 then
return true

else
: s; < v(p)
10: for all ¢ € children(Gp, p) do
11: if s; € Z or ag(p,q) =1 then
12: Q « enqueue(Q, q)
13: return false

edges of a node if the variable is in Z. The algorithm has a linear run time on the
XpG’s size (i.e. |Vp|+ |Ep]).

Algorithm 2 Extraction of one AXp given seed X
Input: XpG D = (Gp, S,v,ay,ap); Seed set: X C S
Output: AXp X

1. procedure findAXp(D, X)

2: for all s; € X do

3: if WAXp(X \ {s;}) then
4.

5

X — X\ {si}

return X

Extraction of one AXp and one CXp given seed. Given a seed set X C S
of fixed variables, and so a set ) = S\ X of free variables (which are guaranteed to
be kept free), Algorithm 2 drops variables from X’ (i.e. makes variables free, and so
allows the original features to take one of the values in their domains). Since op is
monotone, the deletion-based algorithm is guaranteed to find a subset-minimal set
of fixed variables such that the XpG evaluates to 1.

Similarly, given a seed set Y C S of free variables, and so a set X = S\ ) of
fixed variables (which are guaranteed to be kept fixed), Algorithm 3 drops variables
from Y (i.e. makes variables fixed, and so forces the original features to take the
value specified by the instance).

3.4.2 Enumeration of Explanations

As indicated earlier in this section, we use a MARCO-like [231] algorithm for enu-
merating XPs of an XpG (see Algorithm 4). (An in-depth analysis of MARCO is
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Algorithm 3 Extraction of one CXp given seed Y
Input: XpG D = (Gp, S,v,ay,ag); Seed set: Y C §
Output: CXp Y

1: procedure findCXp(D,))

2: for all s; € Y do

3: if WCXp(Y \ {si}) then
4: Y~V \{si}

5 return )

Algorithm 4 Enumeration of AXps and CXps
Input: XpG D = (Gp, S,v,ay,ap)

1. procedure Enumerate(D)

2 H+0 > H defined on set S
3 repeat

4 (outc,r) < SAT(H)

5: if outc = true then

6 X%{SiES’T’i:1}

7 y(f{SiGSM“i:O}

8 if not WCXp()) then

9: X + findAXp(D, X)

10: reportAXp(X)

11: H—HU{(Vs,exsi)}
12: else

13: Y « findCXp(D, )

14: reportCXp(Y)

15: H— HU{(Vs,eysi)}
16: until outc = false

included in earlier work [231].) Algorithm 4 exploits hitting set duality between
AXps and CXps [185], and represents the sets to hit (resp. block) as a set of pos-
itive (resp. negative) clauses H, defined on a set of variables S. The algorithm
iteratively calls a SAT oracle on ‘H while the formula is satisfiable. Given a model,
which splits S into variables assigned value 1 (i.e. fixed) and variables assigned
value 0 (i.e. free), we check if the model enables the prediction to change (i.e. we
check the existence of a path to a terminal node labeled 0, with ) as the reference
set). If no such path exists, then we extract one AXp, using X" as the seed. Other-
wise, we extract one CXp, using ) as the seed. The resulting XP is then used to
block future assignments to the variables in S from repeating XPs.

Enumerating CXps for DTs. The purpose of this section is to show that, if the
XpG is a tree (e.g. in the case of a DT), then the number of CXps is polynomial
on the size of the XpG. Furthermore, it is shown that the set of all CXps can be
computed in polynomial time. This result has a number of consequences, some of
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which are discussed in Chapter 6. For the concrete case of enumeration of XPs of
tree XpG'’s, since we can enumerate all CXps in polynomial time, then we can exploit
the well-known results of Fredman&Khachiyan [122] to prove that enumeration of
AXps can be obtained in quasi-polynomial time. The key observation is that,
since we can enumerate all the CXps in polynomial time, then we can construct
the associated hypergraph, thus respecting the conditions of Fredman&Khachiyan’s
algorithms [122, 214].

Proposition 4. For a tree XpG, the number of CXps is polynomial on the size of
the XpG, and can be enumerated in polynomial time.

Proof. To change the prediction, we must make a path to a prediction ¢ € K\ {¢}
consistent. In a tree, the number of paths (connecting the root to a terminal)
associated with a prediction in ¢ € IC\ {c} is linear on the size of the tree. Observe
that each path yielding a prediction other that ¢ contributes at most one CXp,
because the consistency of the path (in order to predict a class other than ¢) requires
that all the inconsistent literals be allowed to take some consistent value. We
can thus conclude that the number of CXps is linear on the size of a tree XpG.
The algorithm for listing the CXps exploits the previous remarks, but takes into
consideration that some paths may contribute candidate CXps that are supersets
of others (and so not actual CXps); these must be filtered out. O

3.5 Experimental Results

This section presents the experiments carried out to assess the practical effectiveness
of the proposed algorithms. The assessment is performed on the computation of
AXp and CXp for two case studies of DGs: OBDDs and DTs.

Experimental setup. The experiments consider a selection of datasets that are
publicly available and originate from UCI Machine Learning Repository [109], Penn
Machine Learning Benchmarks [282] and openML [342]. These benchmarks are or-
ganized into two categories: the first category contains binary classification datasets
with fully binary features, and counts 11 datasets; the second category comprises
binary and multidimensional classification datasets with categorical and/or ordinal
(i.e. integer or real-valued) features, and counts 34 datasets. Hence, the total num-
ber of considered datasets is 45. The subset of the binary datasets is considered
for generating OBDDs, while the remaining selected datasets are used for learning
DTs.

To learn OBDDs, we first train DLs on the given binary datasets and then
compile the obtained DLs into OBDDs using the approach proposed in [275]. DLs
are learned using Orange3 [104], the order of rules is determined by Orange3 and
the last rule is the default rule. The compilation to OBDDs is performed using
BuDDy [233]. For training DTs, we use the learning tool TAI [43, 177], which
provides shallow DTs that are highly accurate. To achieve high accuracy in the
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Table 3.1: Listing all XPs (AXp’s and CXp’s) for OBDDs. Columns m and #TI
report, respectively, the number of features, and the number of tested instances,
in the dataset. (Note that for a dataset containing more than 1000 instances, 30%
of its instances, randomly selected, are used to be explained. Moreover, duplicate
rows in the datasets are filtered.) Column XPs reports the average number of total
explanations (AXp’s and CXp’s). Sub-Columns #N and %A show, respectively,
total number of nodes and test accuracy of an OBDD. Sub-columns M and avg of
column AXp (resp., CXp ) show, respectively, the maximum and average number
of explanations. The average length of an explanation (AXp/CXp) is given as %L.
Sub-columns M and avg of column RunTime reports, respectively, the maximal and
average time in second to list all the explanations for all tested instances.

Dataset m #TI OBDD XiPs AXp CXp Runtime
#N %A avg M avg %L M avg %L M  avg
corral 6 64 6 100 4 4 2 34 4 2 22 0.002 0.001
dbworld-bodies 4702 62 7 92 4 2 1 1 3 2 1 0.002 0.001
dbworld-bodies-s 3721 62 6 84 3 3 1 1 4 2 1 0.001 0.001
dbworld-subjects 242 63 14 84 5 2 1 2 5 4 1 0.003 0.001
dbworld-subjects-s 229 63 18 &4 6 3 1 2 5 4 1 0.007 0.003
mofn_3 7 _10 10 251 21 98 11 33 5 34 33 7 23 0.022 0.005
mux6 6 64 9 100 5 4 2 51 4 3 24 0.004 0.002
parity5+5 10 222 71 80 8 11 2 59 15 6 14 0.015 0.006
spect 22 93 284 87 11 24 4 22 36 7 14 0.074 0.019
threeOf9 9 205 33 95 8 16 3 39 18 5 21 0.017 0.004
xd6 9 325 11 100 7 18 4 34 27 3 18 0.010 0.002

DTs, the maximum depth is tuned to 6 while the remaining parameters are kept in
their default set up. (Note that the test accuracy achieved for the trained classifiers,
both OBDDs and DTs, is always greater than 75%).

All the proposed algorithms are implemented in Python, in the XpG package®.
The PySAT package [184] is used to instrument incremental SAT oracle calls in XP
enumeration (see Algorithm 4) and the dd 4 package, implemented in Python and
Cython, is used to integrate BuDDy, which is implemented in C. The experiments
are performed on a MacBook Pro with a 6-Core Intel Core i7 2.6 GHz processor
with 16 GByte RAM, running macOS Big Sur.

Results. Table 3.1 summarizes the obtained results of explaining OBDDs. As can
be observed, the maximum running time to enumerate XPs is less than 0.074 sec for
all tested XpG’s in any OBDD and does not exceed 0.02 sec on average. In terms of
the number of XPs, the total number of AXps and CXps per instance is relatively
small. Thus the overall cost of the SAT oracle calls made for XP enumeration is
negligible. In addition, these observations apply even for large OBDDs, e.g. OBDD
learned from the spect dataset has 284 nodes and results in 11 XPs on average.

Shttps://github.com/yizza91/xpg
‘https://github.com/tulip-control/dd
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Table 3.2: Listing all XPs (AXp’s and CXp’s) for DTs. Sub-Columns #D, #N and
%A report, respectively, tree’s max depth, total number of nodes and test accuracy
of a DT. The remaining columns hold the same meaning as described in the caption
of Table 3.1.

Dataset m AT DT gs AXp CXp Runtime

D #N %A avg M avg %L M avg %L M  avg
adult 12 1766 6 83 T8 8 11 2 41 12 5 13 0.010 0.003
agaricus-lepiota 22 2437 6 37 100 6 6 3 17 7 4 7 0.006 0.002
anneal 38 886 6 29 99 9 8 3 14 10 6 5 0.015 0.005
bank 19 10837 6 113 88 18 38 9 33 21 9 12 0.032 0.008
cancer 9 449 6 37 87 7T 8 3 39 7 4 21 0.006 0.003
car 6 519 6 43 96 4 4 2 39 6 2 24 0.004 0.001
chess 36 959 6 33 97 7 10 3 12 10 5 5 0.012 0.003
churn 20 1500 6 21 75 2 1 1 5 1 1 5 0.002 0.001
colic 22 357 6 55 81 11 18 5 23 10 6 8 0.011 0.004
collins 23 485 6 29 75 4 1 1 11 4 3 5 0.002 0.001
dermatology 34 366 6 33 90 7T 6 2 14 11 5 4 0.007 0.003
divorce 54 150 5 15 90 6 8 3 7 4 3 3 0.010 0.005
dna 180 901 6 61 90 10 28 4 3 12 5 2 0.097 0.036
hayes-roth 4 84 6 23 78 3 3 1 54 3 2 27 0.001 0.001
hepatitis 19 155 5 17 77 6 10 3 18 5 3 10 0.004 0.002
house-votes-84 16 298 6 49 91 9 30 5 25 10 4 13 0.016 0.003
iris 4 149 5 23 90 5 3 2 58 4 3 39 0.003 0.001
irish 5 470 4 13 97 3 2 1 33 2 2 23 0.001 0.001
kr-vs-kp 36 959 6 49 96 7 23 4 12 8 4 5 0.014 0.003
lymphography 18 148 6 61 76 11 15 5 28 12 6 10 0.009 0.004
promoters 58 106 6 17 86 4 6 2 6 5 2 3 0.008 0.004
monk1 6 124 4 17 100 3 2 1 38 3 2 18 0.002 0.001
monk?2 6 169 6 67 82 6 7 2 65 9 5 23 0.005 0.002
monk3 6 122 6 35 80 4 6 2 45 4 3 23 0.004 0.001
mouse 5 57 3 9 83 3 4 1 41 3 2 25 0.001 0.001
mushroom 22 2438 6 39 100 6 b5 2 18 7 4 7 0.007 0.002
new-thyroid 5 215 3 11 95 4 2 1 54 3 3 21 0.001 0.001
pendigits 16 3298 6 121 88 8 12 2 37 13 6 9 0.011 0.003
seismic-bumps 18 T4 6 37 89 7T 12 4 17 7 4 11 0.009 0.004
shuttle 9 17400 6 63 99 4 4 1 34 6 3 13 0.005 0.002
soybean 35 622 6 63 88 7T 4 1 15 7 5 4 0.012 0.005
spambase 57 1262 6 63 75 10 22 3 11 15 7 3 0.019 0.005
tic-tac-toe 9 958 6 69 93 9 13 4 51 12 6 20 0.009 0.003
700 16 5 6 23 91 5 2 1 24 6 4 9 0.003 0.002

Similar observations can be made with respect to explanation enumeration for
DTs, the results of which are detailed in Table 3.2. Exhaustive enumeration of
XPs for a XpG built from a DT takes only a few milliseconds. Indeed, the largest
average runtime (obtained for the dna dataset) is 0.036 sec. Furthermore and as
can be observed, the average length %L of an XP is in general relatively small,
compared to the total number of features of the corresponding dataset. Also, the
total number of XPs per instance is on average less than 11 and never exceeds 18.

Although the DGs considered in the experiments can be viewed as relatively
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small and shallow (albeit this only reflects the required complexity given the public
datasets available), the run time of the enumerator depends essentially on solving
a relatively simple CNF formula (H) which grows linearly with the number of
XPs. (The run time of the actual extractors in negligible.) This suggests that the
proposed algorithms will scale for significantly larger DGs, characterized also by a
larger total number of XPs.

3.6 Summary

This chapter introduces explanation graphs, which allow several classes of graph-
based classifiers to be explained with the same algorithms. These algorithms allow
for a single AXp or a single CXp to be computed in polynomial time, and enumer-
ation of explanations to be achieved with a single call to a SAT oracle per com-
puted explanation. This chapter also relates the evaluation of explanation graphs
with monotone functions. In addition, this chapter proves that for decision trees,
computing all contrastive explanations. The experimental results demonstrate the
practical effectiveness of the ideas proposed in the chapter.



CHAPTER 4
Formal Explanations for
Tractable Boolean Circuits

Tractable boolean circuits find a growing number of practical uses, including in con-
straint programming, diagnosis, and machine learning, among others. One concrete
example is the utilization of tractable boolean circuits as classifiers. These circuits
can be compiled from complex machine learning models, such as Bayesian Networks.
As a result, a natural question arises: How can we explain the predictions made by
these circuits?

This chapter shows that for classifiers represented with some of the best-known
tractable boolean circuits, different kinds of explanations can be computed in poly-
nomial time. These tractable boolean circuits include deterministic decomposable
negation normal form (d-DNNF) and any other tractable boolean circuit that is
strictly less succinct than d-DNNF. Furthermore, this chapter also examines the
conditions under which the polynomial time computation of explanations can be
extended to boolean circuits that are more succinct than d-DNNF. The experimen-
tal results validate the practical applicability of the algorithms proposed in this
chapter.

4.1 Introduction

The growing use of machine learning (ML) models in practical applications raises a
number of concerns related with fairness, robustness, but also explainability [234,
353, 271]. Recent years have witnessed a number of works on computing explana-
tions for the predictions made by ML models'. Approaches to computing explana-
tions can be broadly categorized as heuristic [299, 247, 300], which offer no formal
guarantees of rigor, and non-heuristic [320, 187, 96, 29], which in contrast offer
strong guarantees of rigor. Non-heuristic explanation approaches can be further
categorized into compilation-based [320, 321, 96] and oracle-based [187, 250].
Compilation-based approaches [320, 321] compile the decision function associ-
ated with an ML classifier into some propositional language (among those covered
by the knowledge compilation map [99]). As a result, more recent work studied such
propositional languages from the perspective of explainability, with the purpose of
understanding the complexity of computing explanations [29, 35, 26], but also with

!There is a fast growing body of work on the explainability of ML models. Example references
include [148, 309, 266, 265, 17, 267, 358, 274].

36
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the goal of identifying examples of queries of interest [29, 26]. Furthermore, al-
though recent work [29, 35] analyzed the complexity of explainability queries for
classifiers represented with different propositional languages, it is also the case that
it is unknown which propositional languages allow the expressible functions to be
explained efficiently, and which do not. On the one hand, [29] proposes conditions
not met by most propositional languages. On the other hand [35] studies restricted
cases of propositional languages, but focusing on smallest AXps. Also, since one
key motivation for the use of propositional languages is the efficiency of reasoning,
namely with respect to specific queries and transformations [99], a natural question
is whether similar results can be obtained in the setting of explainability.

This chapter studies the computational complexity of computing AXps [320]
and CXps [266] for classifiers represented with well-known propositional languages.
Concretely, the chapter shows that for any propositional language that implements
in polynomial time the queries of consistency (CO) and validity (VA), and the
transformation of conditioning (CD), then one AXp or one CXp can be computed
in polynomial time. This requirement is strictly less stringent than another one
proposed in earlier work [29], thus proving that explanations can be computed
in polynomial time for a larger range of propositional languages. Concretely, the
chapter shows that for classifiers represented with several propositional languages,
that include d-DNNF, one AXp or one CXp can be computed in polynomial time.
The result immediately generalizes to propositional languages less succinct than
d-DNNF, e.g. OBDD, SDD, to name a few. Moreover, for the concrete case of
SDDs, the chapter shows that practical optimizations lead to clear performance
gains. Besides computing one explanation, one is often interested in obtaining mul-
tiple explanations, thus allowing a decision maker to get a better understanding of
the reasons supporting a decision. As a result, the chapter also outlines a MARCO-
like [231] algorithm for the enumeration of both AXps and CXps. Furthermore, the
chapter studies the computational complexity of explaining generalizations of deci-
sion sets [223], and proposes conditions under which explanations can be computed
in polynomial time.

The chapter is organized as follows. Section 4.2 relates the chapter’s contribu-
tions with earlier work. Section 4.3 shows that for several classes of propositional
languages, one AXp and one CXp can be computed in polynomial time. In addition,
Section 4.3 also shows how to enumerate explanations requiring one NP oracle call
(in fact a SAT reasoner call) for each computed explanation. Section 4.4 investigates
a number of generalized classifiers, which can be built from propositional languages
used as building blocks. Section 4.5 assesses the computation of explanations of
d-DNNFs and SDDs in practical settings. Section 4.6 concludes the chapter.

4.2 Related Work

Although recent years have witnessed a growing interest in finding explanations of
machine learning (ML) models [234, 148, 353, 271], explanations have been stud-



4.2. RELATED WORK 38

ied from different perspectives and in different branches of Al at least since the
80s [316, 116, 287], including more recently in constraint programming [14, 52, 133].
In the case of ML models, non-heuristic explanations have been studied in recent
years [320, 187, 321, 276, 188, 189, 96, 179, 178, 29, 255, 35, 185, 193, 347, 198, 250,
182, 81, 169, 26, 257, 180, 322]. Some of these earlier works studied explanations for
classifiers represented with propositional languages, namely those covered by the
knowledge compilation map [320, 321, 96, 29, 35, 169, 26]. However, results on the
efficient computation of explanations for classifiers represented with propositional
languages are scarce. For example, [320, 321, 96] propose compilation algorithms
(which are worst-case exponential) to generate the AXps from OBDDs. Concretely,
a classifier is compiled into an OBDD, which is then compiled into an OBDD rep-
resenting the AXps of the original classifier. Moreover, [29] proves that, in the
context of multi-class classification, if a propositional language satisfies CD, FO,
and IM, then one AXp can be computed in polynomial time. Our results in Sec-
tion 4.4 consider multi-class classification with multiple classifiers. [35] studies the
computation complexity of computing smallest AXps. Explanation enumeration
based on the MARCO algorithm [231] was investigated in recent work (e.g. [256]).
The main difference in Algorithm 7 is the explicit use of transformation and queries
from the knowledge compilation map. Perhaps more importantly, the computation
of AXps and CXps for a classifier represented as a d-DNNF circuit is fairly orthog-
onal to earlier work on the computation of explanations for propagators operating
on d-DNNF circuits [135]. Indeed, in the case of propagators, the d-DNNF encodes
valid assignments to a constraint, and explanations are always computed against a
valuation of 1 of the d-DNNF, i.e. the allowed assignments to the constraint.

Running Examples

Throughout this chapter, we will use the following d-DNNF as our running exam-
ples.

Figure 4.1: Example d-DNNF circuit, (v, c) = ((0,0,0,0),0)
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Figure 4.2: The corresponding smooth d-DNNF circuit of Figure 4.1

Example 9. Let F = {1,2,3,4} and X = {x1,z2,23,24}. The d-DNNF circuits
in Figures 4.1 and 4.3 represent the boolean function k((z1,x2,x3,24)) = ((z1 A
x4)V (mx1 Axyg)) A (23 V (23 A z2)). Moreover, this chapter considers the concrete
instance (v, ¢) = ((0,0,0,0),0).

4.3 Explanations for d-DNNF

There is a tight connection between the definitions of AXp and CXp (see (2.16)
and (2.20)) and the queries VA, CO and the transformation CD. Indeed, for
(2.16) and (2.20), CD can serve to impose that the values of some features (3,
represented by variable x;) are fixed to some value v;. In addition, VA (resp. CO)
is used to decide (2.16), after conditioning, when ¢ = 1 (resp. ¢ = 0). Similarly,
VA (resp. CO) is used to decide (2.20), again after conditioning, when ¢ = 1
(resp. ¢ = 0). Thus, the predicate WAXp(-) and WCXp(-) can be defined as follows:

WAXp(S) := [c = T AisValid(k|vs)] V [c = L A —isConsistent(x|v )]

s _ _ (4.1)
WCXp(F\ S) :=[c =T A -isValid(k|vg)] V [c = L AisConsistent(k|v)]

This means for languages respecting VA, CO and CD, one AXp and one CXp can
be computed in polynomial time. This is detailed in the rest of this section.

4.3.1 Finding One Explanation

Finding one AXp. We start by detailing an algorithm to find one AXp. We
identify any X C {1,...,m} with its corresponding bit-vector s = (s1,...,Sm)
where s; = 1 < ¢ € X. Given vectors x,v,s, we can construct the vector x5V (in
which s is a selector between the two vectors x and v) such that

25V = (2 A3V (v A si) (4.2)

)
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Algorithm 5 Finding one AXp given starting seed X

Input: Classification function x; Seed Set X C F; Instance (v, c)
Output: AXp X

1: procedure findAXp(k, X, v,c)

2 for all i € X do

3: if WAXp(X \ {i}) then

4: X+ X\ {i}

5

return X

To find an AXp, Algorithm 5 is used. For now, seed X is set to F. Algo-
rithm 5 is a general greedy algorithm that is well-known and used in a wide range
of settings, e.g. minimal unsatisfiable core extraction in CSPs [70, 33|, but which
is also present in the seminal work of Valiant [340]. The novelty is the use of the
same algorithm for finding AXps (and also CXps) of propositional languages that
respect concrete transformations and queries of the knowledge compilation map.
Possible alternatives would include the QuickXplain [205] or the Progression [259]
algorithms, among other options [260].)

Considering s and v as constants, when ¢ = 1, k(x*V) is valid iff X' is a weak
AXp of k(v) = c¢. Furthermore, when ¢ = 0, k(x*V) is inconsistent iff X' is a weak
AXp of k(v) = c¢. We therefore have the following proposition.

Proposition 5. For a classifier implemented with some propositional language L,
finding one AXp is polynomial-time provided the following three operations can be
performed in polynomial time:

1. construction of k(x*V) from &, s and v.

2. testing validity of x(x>V).

3. testing consistency of k(x*V).

Corollary 1. Finding one AXp of a decision taken by a d-DNNF is polynomial-
time.

Proof. 1t is sufficient to show that d-DNNFs satisfy VA, CO and CD. To transform
a d-DNNF calculating x(v) into a d-DNNF calculating x(x*V), we need to replace
each leaf labelled x; by a leaf labelled (x; A'5;) V (v; A s;) and each leaf labelled
T; by a leaf labelled (T; A'5;) V (7; A s;). Note that s and v are constants during
this construction. Thus, we simplify these formulas to obtain either a literal or a
constant according to the different cases:
o 5, =0: label (z; A5;) V (v; A s;) is z; and label (Z; AS;) V (T; A s;) is 7. In
other words, the label of the leaf node is unchanged.
o 5, = 1o label (x; A5;) V (v; A s;) is the (constant) value of v; and label
(Ti A5;) V(U7 A s;) is the (constant) value of .
Indeed, this is just conditioning, i.e. fixing a subset of the variables x;, given by
the set S, to v;. a

Figure 4.3 illustrates the proposed transformation for part of the d-DNNF of Fig-
ure 4.1.
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Figure 4.3: Partial Modified d-DNNF for x(x*V), with v = (0,0, 0,0)

i S K(x5Y) Justification Decision
1 (0,1,1,1) 0 sq4 = 1: left branch takes value 0, and so k(x*¥) =0 Drop 1
2 (0,0,1,1) 0 s4 = 1: left branch takes value 0, and so k(x>¥) =0 Drop 2
3 (0,0,0,1) 0 s4 = 1: left branch takes value 0, and so k(x>Y) =0 Drop 3
4 (0,0,0,0) 1 Simply set x = (1,1,1,1), and so k(x>V) =1 Keep 4

Table 4.1: Example of finding one AXp

Example 10. The operation of the algorithm for computing one AXp is illustrated
for the modified d-DNNF shown in Figure 4.3 for the instance (v, ¢) = ((0,0,0,0),0).
By inspection, we can observe that the value computed by the d-DNNF will be 0
as long as s4 = 1, i.e. as long as 4 is part of the weak AXp. If removed from the
weak AXp, one can find an assignment to x, which sets x(x*v) = 1. The computed
AXp is X = {4}.

Finding one CXp. To compute one CXp, (2.20) is used. In this case, we identify
any Y C {1,...,m} with its corresponding bit-vector s where s; = 1 < i ¢ Y
(Y = F\ X). Moreover, we adapt the approach used for computing one AXp, as
shown in Algorithm 6. As in the case of Algorithm 5, seed ) is set to F, for now.
K is assumed not to be constant, and so a CXp can always be computed.

Proposition 6. For a classifier implemented with some propositional language L,
finding one CXp is polynomial-time provided the operations of Proposition 5 can
be performed in polynomial time.

Corollary 2. Finding one AXp/CXp of a decision taken by a classifier is polynomial-
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Algorithm 6 Finding one CXp given starting seed Y

Input: Classification function x; Seed Set Y C F; Instance (v, c)
Output: CXp Y

1: procedure findCXp(k, Y, v,c)

2: for alli € Y do

3: if WCXp(F\ (Y \ {i})) then

4: Y+« Y\{i}

5: return Y

i s K(x%Y) Justification Decision
1 (1,0,0,0) 1 Pick x = (0,1,1,1), and so k(x%V) =1 Drop 1
2 (1,1,0,0) 1 Pick x = (0,0,1,1), and so x(x>V) =1 Drop 2
3 (1,1,1,0) 0 s = 1: right branch takes value 0, and so k(x%V) =0 Keep 3
4 (1,1,0,1) 0 s4 = 1: left branch takes value 0, and so k(x>V) =0  Keep 4

Table 4.2: Example of finding one CXp

time if the classifier is given in one of the following languages: d-DNNF [99],
SDD [93], OBDD [99], PI [99], IP [99], renH-C [118], AFF [118], dFSD [279], and
EADT [216].

Proof. It suffices to observe that the languages listed above satisfy the conditions
of Propositions Propositions 5 and 6. O

Example 11. The operation of the algorithm for computing one CXp is illustrated
for the modified d-DNNF shown in Figure 4.3 for the instance (v, ¢) = ((0,0,0,0),0).
By inspection, we can observe that the value computed by the d-DNNF can be
changed to 1 as long as s3 = 0 A s4 = 0, i.e. as long as {3,4} are part of the weak
CXp. If removed from the weak CXp, one no longer can find an assignment to x
that sets k(x>Y) = 1. Thus, the computed CXp is Y = {3,4}.

4.3.2 Enumeration of Explanations

Finally, we outline a MARCO-like algorithm [231] for on-demand enumeration of
AXps and CXps. For that, we use Algorithm 5 and Algorithm 6, but now allow for
some initial set of features (i.e. a seed) to be specified. The seed is used for comput-
ing the next AXp or CXp, and it is picked such that repetition of explanations is
disallowed. As argued below, the algorithm’s organization ensures that computed
explanations are not repeated. Moreover, since the algorithms for computing one
AXp or one CXp run in polynomial time, then the enumeration algorithm is guar-
anteed to require exactly one call to an NP oracle for each computed explanation,
in addition to procedures that run in polynomial time.

The main building blocks of the enumeration algorithm are: (1) finding one AXp
given a seed (see Algorithm 5); (2) finding one CXp given a seed (see Algorithm 6);
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Algorithm 7 Enumeration algorithm

Input: Classification function x; Feature Set F; Instance (v, c)

1: procedure Enumerate(F, k, v, ¢)

2 H <0 > H defined on set R = {ry,...,rm}
3 repeat

4 (outc,r) + SAT(H)

5: if outc = true then

6 X—{ieF|r=1}

7 YV {ie F|r=0}

8 if WAXp(X) then

9: X « findAXp(k, X,v,¢)
10: reportAXp(X)

11: H <—HU{(\/Z‘€X—\T‘Z‘)}
12: else

13: Y « findCXp(k, Y, v, c)
14: reportCXp(Y)

15: H <+ HU{(Vieyri)}

16: until outc = false

and (3) a top-level algorithm that ensures that previously computed explanations
are not repeated (see Algorithm 7). The top level-algorithm invokes a SAT oracle
to identify the seed which will determine whether a fresh AXp or CXp will be
computed in the next iteration. As argued earlier, the algorithms for computing
one AXp and one CXp use one transformation, specifically conditioning and two
queries, namely consistency and validity. In the case of computing one AXp, if
the prediction is T, we need to check validity, i.e. for any point in the conditional
feature space, the prediction is also T. In contrast, if the prediction is 1, then we
need to check that consistency does not hold, i.e. for any point in the conditional
feature space, the prediction is also L. In the case of computing one CXp, we
need to change the tests that are executed, since we seek to change the value of
the prediction. It should be noted that, by changing the conditioning operation,
different propositional languages can be explained. Finally, Algorithm 7 shows
the proposed approach for enumerating AXps and CXps, which adapts the basic
MARCO algorithm for enumerating minimal unsatisfiable cores [231]. From the
definitions, we can see that for any X C F, either X is a weak AXp or J) = F\ X
is a weak CXp. Every set X" calculated at line 6 of Algorithm 7 has the property
that it is not a superset of any previously found AXp and that ) (calculated at line
7) is not a superset of any previously found CXp.

Example 12. Table 4.3 summarizes the main steps of enumerating the AXps and
CXps of the running example (see Figure 4.1). It is easy to confirm that after four
explanations are computed, H becomes inconsistent, and so the algorithm termi-
nates. Also, one can confirm the hitting set duality between AXps and CXps [185].
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H SAT(H) p AXp(1), S AXp CXp Block
CXp(0)?
0 1 (1,1,1,1) 1 {1,2,3,4} {4} — by = (—ps)
{bl} 1 (1717170) 1 {17273} {273} - by = (_‘pQ\/_‘pZ%)
{blbe} 1 (1707170) 0 {1’3} - {274} b3 = (p2 \/p4)
{b1, b2, b3} 1 (1,1,0,0) 0 {1,2} —  {3,4}  bs=(p3Vpa)
{b1,b2,b3,b4} 0 — — — — — —

Table 4.3: Example of AXp/CXp enumeration, using Algorithm 7

4.4 Generalizations

This section generalizes earlier results by considering multi-class classification, i.e.
the set of classes is now K = {c1,...,cx}.

Explanations for generalized decision functions. First, we consider that
each class ¢; € K is associated with a total function k; : F — {0,1}, such that
the class ¢; is picked iff k;(v) = 1. For example, decision sets [223] represent one
such example of multi-class classification, where each function k; is represented by
a DNF, and a default rule is used to pick some class for the points v in feature
space for which all x;(v) = 0. Moreover, decision sets may exhibit overlap [190],
i.e. the existence of points v in feature space such that there exist j; # jo and
ki, (V) = Kj,(v) = 1. In practice, the existence of overlap can be addressed by
randomly picking one of the classes for which x;(v) = 1. Alternatively, DS learning
can ensure that overlap is non-existing [190].

Here, we consider generalized versions of DSes, by removing the restriction
that each class is computed with a DNF. Hence, a generalized decision function
(GDF) is such that each function x; is allowed to be an arbitrary boolean function.
Furthermore, the following two properties of GDFs are considered:

Definition 37. A GDF is binding if,

V(x € F). \/KM k(%) (4.3)

Thus, a binding GDF requires no default rule, since for any point x in feature
space, there is at least one ; such that x;(x) holds.

Definition 38. A GDF is non-overlapping if,

V(x € F). \ (71 (%) V 2k, (%)) (4.4)

1<51,52<K,j1#j2

Thus, a binding, non-overlapping GDF computes a total multi-class classifica-
tion function. Furthermore, we can establish conditions for a GDF to be binding
and non-overlapping:
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Proposition 7. A GDF is binding and non-overlapping iff the following formula
is inconsistent:
IxeF).k(x)+...+rr(x) #1 (4.5)

Proof. Given Definition 37 and Definition 38,
1. Clearly, there exists a point v € F such that x1(v) + ... + kx(v) = 0 iff the
GDF is non-binding;
2. Clearly, there exists v € F such that x1(v) + ...+ kx(v) > 2 iff the GDF is
overlapping.
Thus, the result follows. a

Remark 1. For a GDF where each function is represented by a boolean circuit,
deciding whether a GDF is binding and non-overlapping is in coNP. In practice,
checking whether a GDF is binding and non-overlapping can be decided with a call
to an NP oracle.

Proposition 8. For a binding and non-overlapping GDF, such that each classifi-
cation function is represented by a sentence of a propositional language satisfying
CO and CD, then one AXp or one CXp can be computed in polynomial time.
Furthermore, enumeration of AXps/CXps can be achieved with one call to an NP
oracle per computed explanation.

Proof. For computing one AXp of class c,, one can iteratively check consistency on
the remaining literals of the other functions ¢ # p. Conditioning is used to reflect,
in the classifiers, the choices made, i.e. which literals are included or not in the
AXp. For a CXp a similar approach can be used. For enumeration, we can once
again exploit a MARCO-like algorithm. O

Corollary 3. For a binding non-overlapping GDF, where each «; is represented by
a DNNF, one AXp and one CXp can be computed in polynomial time. Furthermore,
enumeration of AXps/CXps can be achieved with one call to an NP oracle per
computed explanation.

Thus, for GDFs that are both binding and non-overlapping, even if each function
is represented by the fairly succinct DNNF, one can still compute AXps and CXps
efficiently. As clarified by Proposition 8, VA is unnecessary to find an AXp/CXp;
for any GDF implemented with propositional languages satisfying CO and CD,
an AXp/CXp can be computed in polynomial time. In addition, a MARCO-like
algorithm [231] can be used for enumerating AXps and CXps. The results above can
be generalized to the case of multi-valued classification, where binarization (one-
hot-encoding) can serve for representing multi-valued (non-continuous) features.

4.5 Experimental Results

In this section, we present the experiments carried out to assess the practical effec-
tiveness of the proposed approach. The assessment is performed on the computation
of AXps and CXps for d-DNNFs and SDDs.



46

4.5. EXPERIMENTAL RESULTS

16T 100°0 €00°0 6000 T1€0°0 Oc
16°T 0000 TO0'0 €000 9000 ¥

9¢ V& 8T L (43 88 66 L6 6 9px

g ¥ 8¢ 8¢ 76 1574 8V *930A

8¢€°L 7€0°0 ¢v1'0 9600 ¥8E0 8 LT GC €e 4l 60T 611 V6 96 LC »90) 0e} o1
0Tt 0000 TOO'0 2000 ¢cO'0  S8I 6 9¢ ¢l L 9¢ 18 00T 19 6 630991}
'l ¢00°'0  ¥00°0 4200 080°0 OI ¢l 81 vL o 01 19 V1T LL LS 44 10ads
¢LLS 10000 T00°0 €000 G000 T g ! ¥ g Ve 8¢ 18 IT €€ S1jowroxd
Ge'c ¥00°0 6000 T€00 1600 €T 1T  4¢ ST 1) LTT 79 28 L1 toumy-Areurd
107 €00'0 %000 LT10°0 &gco'0 8 6 Ve 9 1T qq 78 99 6 (44 woanperadogsod
¥9'8T  T00°'0 €000 9500 GAT'0 ¢TI ar 29 8 0T 10T LTy 98 ¢IT 0T g+ghyrred
940 0000 0000 €000 G000 ¢c ¥s g €3 8¢ c6 €l 9 gxnut
¥s0 0000 0000 TOO'0 TOOO 6 € VI ¥ ¥ 6 L1 66 qq g1 xguont
€6°L 9000 9T0°0 850°0 TI9T'0 @I (A% ve Gl 00T 961 79 L1 qT xGuomt
LLE 100°0 1000 6000 @&c00 TII 6 LG ¥ 9 ()% €6 86 99 qT « [uomt

0Tt 100°0 @00°0 €T0°0 9900 ¢€c
8¢'T ¢00'0 7000 0¥0'0 €80°0 9T
qre ¢00°'0  L00°0 <¢lI0°'0 €¥00 G
17°0 0000 0000 TOO'0 €000 ¢c

Lo €€
[
IT €1

61 11T ¥ L0126 TET 0T 01 L ¢ wouw
71 €1 16 61 6L 96 €1 orgderSowwey
6 L 09 68 86 0ge 8¢ LA sAT
A 4} ge 00T 91 9 [e1100
€9°¢ 1800 2310 6080 ¥I60 ¢ 6z QI ¥e ¢¢  6FT 00€ L9  L19  9F ,Seduroo
L0°¢ 7000 L0000 €100 €500 G A4l 6 4 ¥Q 88 66 0z¢ 8¢ 4SSO

Sae Sae N Sae N 1% s N % Sae N Saw GN# AN# VY%

S — w 108010
Jopuy adas ANNA-P dxp dxv SdX [PPOIN LL# a

<+ T N0 - O <H 00N 00D~ O M K 0N M
io]

N AN O N NN 0 N o) A
<t

“UWN]OD 1Se[ 9} UL UMOYS ST S{NN(I-P o3 10} suorjeur[dxe 107ouy 9induwod 0} SOWIIUNI 9SRIOAR o) ‘A[[RUL] "SOOURISUI POIso] [ JO
SJX [I® 98T 0} (SPU0des UT) oWIIUNI oFeloar pue wmurxew ‘dsor ‘p1oder (IS "dsor) JNN(-P UWN[0D JO 8A® pUR J\ SUWM[0J-(NG
"% se ueal8 st Ay /dXy ue jo (w jo a8ejusdiad ur) y)3us| ofeIes® o], ‘suoljeuR[dXe JO IDqUNU 9FRISAR PUR WNUIIXeW 1]} ‘dsal
‘moys (dyp -dser) dyy uwmnjoo jo Sae pue [N suwnjoo-qug ‘(s dy) pue s dyy) suorjeue[dxe [e}0} Jo Ioqunu dgerose o) syprodar
sdxX uwmio)) (qgs ‘dse1) INN-P po[iduod oy} Ul Sopou Jo Ioquinu [ejo0) 9y} smoys (SN# "dsel) (IN# pue [opou oY) Jo AoeImooe
(1599) o173 sy10der Y9y, uwn[o)-qng (‘A[muopuel pajos[es ‘eyep o) JO %] sjuesordar G# sojdures pajse) JO Ioquunu o T,) ‘josejep oY)
ur (seouegsur) sojdures pajso) Jo IDQUINT ) PUR SoIN)ed] Jo Ioqunu oY) ‘dsor ‘p10dol [ # pue w suwinjo)) ('seanjes) [RUISLIO o) 0}
10adse1 Yym jou pue sarnjesy (JH(O) pozLIeUI| oY) 0} 100dsor [iim pauygep ore suorjeur[dxe ponduwod ‘sjose)ep pozLIRUI( 9S9Y) I10]
‘gmsor ' sy *(HH(Q) SUrpoous 301 dUO oY) SUISN POZLIRUIQ oM [DIYM PUR ‘Bjep [RILI0F0IRD Paurejuod A[[eUISLIO Jey) 9s0y) juosoIdoal

CHINVNVIVA 0T YS10)se e ) Sowen joseyep oy Jei} 9A108qQ) SAdS PU SINNA-P 10§ 8,dXD /5, dXV [[8 Sunsr] 5y o[qelL



4.5. EXPERIMENTAL RESULTS 47

Experimental setup. The experiments consider a selection of 19 binary classi-
fication datasets that are publicly available and originate from the Penn Machine
Learning Benchmarks [282] and the UCI Machine Learning Repository [109]. 8
datasets are fully binary and the remaining 11 datasets comprise categorical/binary
features. Then, categorical features are binarized using the well-known one-hot-
encoding. We note that the explanations are computed with respect to the new
(one-hot-encoded) features, and not with respect to the original features. To learn
d-DNNFs (resp. SDDs), we first train Read-Once Decision Tree (RODT) models
on the given datasets using Orange3 [104] and then compile the obtained RODTs
into d-DNNFs (resp. SDDs). A RODT is a FBDD whose underlying graph is a
tree [35, 351]. The compilation of RODTs to d-DNNFs can be easily done by direct
mapping, since RODT is a special case of FBDDs, and FBDDs is a subset of d-
DNNFs [99]. To compile SDDs, we use the PySDD package?, which is implemented
in Python and Cython. PySDD wraps the well-known SDD package® which offers
canonical SDDs*. Employing canonical SDDs allows performing consistency and va-
lidity checking in a constant time (If the canonical SDD is inconsistent (resp. valid)
then it is a single node labeled with L (resp. T) [93]), so in practice it may improve
the efficiency of explaining SDD classifiers. Moreover, all presented algorithms are
implemented in Python, in the Xddnnf package °. In addition, the PySAT toolkit
[184] is used to instrument incremental SAT oracle calls to enumerate AXp/CXp.
As a baseline comparison, we also include in this evaluation an heuristic explainer
Anchor [300] to assess the runtime performance of our approach. Lastly, we run
the experiments on a MacBook Pro with a 6-Core Intel Core i7 2.6 GHz processor
with 16 GByte RAM, running macOS Big Sur.

Results. Table 4.4 summarizes the obtained results of explaining d-DNNFs and
SDDs. (Note that, for each dataset, the compiled d-DNNF and SDD represent the
same decision function of the learned RODT. Hence, the computed explanations
are the same as well. The size of the d-DNNF is on average twice as large as the
corresponding SDD. Also note that compilation time is not included in the runtimes
shown in the table, since these are not directly related with the computation of
explanations.) Performance-wise, the maximum runtime to enumerate XPs is less
than 1.0 sec for all the d-DNNFs, and less than 0.2 sec for all the SDDs. On average,
total enumeration of XPs takes at most 0.4 sec for d-DNNFs; and for SDDs at most
0.05 sec. Thus the overall cost of the SAT oracle calls performed by Algorithm 7 is
negligible. Given the results, one can conclude that the SAT calls do not constitute
a bottleneck for enumerating the AXps/CXps of the classifiers represented as d-
DNNFs or SDDs. However, in settings where the total number of explanations is
much larger (i.e. exponentially large on the number of features), the cost of SAT

*https://github.com/wannesm/PySDD

3http://reasoning.cs.ucla.edu/sdd

4Since PySDD offers canonical SDDs, the CD transformation is not implemented in worst-case
polynomial time [341]. However, in practice, this was never an issue in our experiments.

“https://github.com/XuanxiangHuang/Xddnnf
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calls could become dominant. Apart from the runtime, one observation is that
the total number of AXps and CXps per instance is relatively small. Moreover, if
compared with the number of features, the average length of an AXp/CXp is also
relatively small. Despite that runtimes reported in Table 4.4 are small for AXp and
CXp, one might not argue that the explanation problems studied in this chapter are
fairly easy. In fact, as can be observed Anchor’s runtimes can exceed the running
times of the d-DNNF non-heuristic explainer by several orders of magnitude.

To conclude, for the concrete case of classifiers that can be represented efficiently
using d-DNNF and SDD, the experimental results confirm that, if a classifier can
be represented with a propositional language that implements CO and VA as well
CD, then the computation and enumeration of explanations is not only practical,
but substantially more efficient than alternative heuristic approaches. Regarding
the limitations of proposed approach, these are the same as for all compilation-
based methods: the off-line compilation phase may theoretically be very expensive
in time and space. This limitation has not prevented compilation being used in
large-scale industrial applications.

4.6 Summary

This chapter proves that for any classifier that can be represented with a d-DNNF,
both one AXp and one CXp can be computed in polynomial time on the size of
the d-DNNF'. Furthermore, the chapter shows that enumeration of AXps and CXps
can be implemented with one NP oracle call per explanation. The experimental
evidence confirms that for small numbers of explanations, the cost of enumeration
is negligible. In addition, the chapter proposes conditions for generalized decision
functions to be explained in polynomial time. Concretely, the chapter develops
conditions which allow generalized decision functions represented with DNNFs to
be explainable in polynomial time. Finally, the experimental results validate the
scalability of the polynomial time algorithms and, more importantly, the scalability
of oracle-based enumeration.



CHAPTER 5
From Decision Trees to
Explained Decision Sets

Recent work demonstrated that path explanation redundancy is ubiquitous in deci-
sion trees, i.e. most often paths in decision trees include literals that are redundant
for explaining a prediction. The implication of this result is that decision trees must
be explained. Nevertheless, there are applications of decision trees where running
an explanation algorithm is impractical. For example, in settings that are time or
power constrained, running software algorithms for explaining predictions would be
undesirable.

Although the explanations for paths in decision trees do not generally represent
themselves a decision tree, this chapter shows that one can construct a decision set
from some of the decision tree explanations, such that the decision set is not only
explained, but it also exhibits a number of properties that are critical for replacing
the original decision tree.

5.1 Introduction

Recent years witness groundbreaking advances in machine learning (ML) [41]. How-
ever, these advances raise concerns about whether the operation of complex ML
models can be understood and trusted by human decision makers. Such concerns
are at the core of ongoing efforts on understanding the operation of ML models, e.g.
stability of predictions and rationale for predictions. Moreover, the ongoing efforts
towards understanding the rationale of predictions broadly represent the burgeoning
field of eXplainable Artificial Intelligence (XAI). XAl is characterized by a number
of different approaches for tackling the problem of explaining ML models [148]. One
important approach is referred to as intrinsic interpretability [269], where so-called
interpretable models are used, and where the model is itself the explanation.
Decision trees (DTs) have long been deemed interpretable [57], and are at the
core of proposals for the use of interpretable models, especially in high-risk appli-
cations of ML [304, 305]. Explanations in DTs are apparently very easy to derive,
in that the literals in the path consistent with the input represent the explanation.
Unfortunately, recent work demonstrated that paths in DTs can be arbitrarily re-
dundant when compared with logically sufficient (abductive) explanations for a
prediction [194]. The main consequence of these recent results is that, similarly
to other ML models, decision trees must be explained. (It should be noted that
this consequence hinges on the assumption that explanation succinctness matters.

49
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However, succinctness must always matter when it comes to explainability, since
otherwise one could argue that the input to the ML model would suffice as an
explanation.) Redundancy has also been observed in other so-called interpretable
models, including decision lists [258].

There exist very efficient polynomial-time algorithms for computing abductive
explanations in DTs [194]. However, one immediate question is whether one can
remove explanation redundancy from paths, so that decision makers have immediate
access to the actual explanations. (Also, in some settings, the iterated computation
of explanations might be unrealistic, due to constraints on available resources.)
Unfortunately, the removal of redundancy breaks the structure of DTs. In addition,
it is known that the family of DTs that do not exhibit explanation redundancy is
very restricted [194].

Since mapping a DT to an explanation-irredundant DT is unachievable, this
chapter proposes a different solution. Concretely, this chapter proposes an algo-
rithm for mapping a DT into a decision set (DS), but such that the resulting DS
exhibits a number of critical properties, which ensures it operates as a DT. Since
DSs are unordered, they can display a number of fundamental issues. Firstly, DSs
can exhibit overlap, and thus may not even compute a classification function. Sec-
ondly, for DSs that exhibit no overlap, the classification function may not be total,
i.e. for some inputs there is no prediction. In this case, the use of a default rule
requires special handing, so that the default rule is only used when no other rule
applies. Lastly, DSs require being explained, and explanations for DSs are harder
to compute than for DTs [182, 26]. Furthermore, this chapter indirectly proposes
a practical solution to the abstract goal of intrinsic interpretability (304, 269, 306],
where the classifier is itself the explanation. Indeed, the algorithm proposed in this
chapter offers a solution to deliver a classifier where the explanation can be ex-
tracted by manual inspection from the classifier. The experimental results validate
the scalability of the proposed algorithm, and offer comprenhensive evidence to the
quality of the obtained DSs, with a key metric being the total number of literals
used for explaining the DT paths.

A generalization of (exact) abductive explanations are probabilistic (abductive)
explanations [347, 35, 192], which aim at providing decision makers with shorter
explanations (which are easier to grasp) and which, albeit not as rigorous, still offer
strong probabilistic guarantees of rigor. As an additional contribution, and in the
case of probabilistic explanations, this chapter shows that the properties of the DSs
obtained from DTs no longer hold. As a result, this chapter outlines a simple, albeit
less compact, solution that can be employed in the case of probabilistic explanations.

This chapter is organized as follows. Section 5.2 briefly overviews related work.
Section 5.3 introduces the notion of path abductive explanations, which represents
a restriction of abductive explanations. Section 5.4 introduces the notion of proba-
bilistic abductive explanations, which serves as a generalization of abductive expla-
nations. Section 5.5 develops the algorithm for mapping a DT into an (explained)
DS, proves the key properties of the resulting DS, and investigates the limitations
of the algorithm in the case of probabilistic explanations. Section 5.6 presents
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experimental results that confirm the properties of DSs obtained from explaining
DTs. The results confirm the explained DSs offer significantly more compact (and
subset-minimal) explanations than the explanations obtained from the paths in the
original DTs. Section 5.7 concludes the chapter.

5.2 Related Work

Decision trees. As indicated earlier, it is generally assumed that DTs compute
total functions, but this may not always be the case [194, page 270]. Without
exception, tree induction algorithms guarantee that the resulting DT computes
a classification function. However, it is possible to force a greedy tree induction
algorithm to generate a DT that does not compute a total function. Nevertheless,
deciding whether a DT computes a total function can be formulated as a decision
problem, and answered with an automated reasoner. In the rest of the chapter, we
assume that such checking has been performed, and so DTs are assumed to compute
a total function.

Despite the recent interest in computing explanations for DTs [193, 35, 169, 26,
194, 23], there seems to be no simple way to remove the redundancy from DT paths.
Observe that the set of explanations associated with paths in a DT most often does
not represent a DT, and attempts at constructing a DT from such explanations
would necessarily re-introduce redundancy.

Decision sets & lists. Decision sets and lists have been studing since the 1960s [263],
with extensive work in the 80s and 90s [264, 74, 77, 78, 79, 129]. The learning DLs
and DSs is still an ongoing theme of research [130, 131, 223, 176, 190]. As noted
above, DSs exhibit a number of limitations, the most important of which being
overlap between rules predicting different classes. There exist solutions which guar-
antee that overlap is non-existing [190], but the computed classification function is
either not total, or require the use of a default rule with a dedicated semantics.

The use of a default rule with a dedicated semantics complicates interpretability
or approaches for computing explanations. The alternative solution, i.e. allowing
for the classification function not to be total, is also not desirable. To the best of
our knowledge, there is no solution for learning a decision set that produces DSs
that exhibit no overlap, require no default rule, and which offer explanations by
inspection (i.e. guarantee that there is no need for computing explanations).

Despite being considered interpretable models, DTs, DLs and DSs have been
shown to require the computation of explanations [182, 194, 258], most often because
of explanation redundancy.

Running examples

Throughout this chapter, we will use the following two running examples.
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Example 13. The first running example is the DT of Figure 5.1, which is adapted
from [229]. The DT serves to diagnose the most severe case of meningitis, Meningo-
coccal Disease (MD), without invasive tests. Clearly, F ={1,...,9}, £ = {Y,N},
D; = {0,1} fori = {1,2,3,4,6,7,8,9}, and D5 = {0, 1,2}. (Observe that Age is ordi-
nal (integer or real), but we only test whether the value is greater than 5.) Moreover,
we will consider the instance (v,¢) = (A =1,P=0,N =0,V =1,Z=0,5 =
0,H =0,C =0,G =1),Y). The paths predicting Y are numbered Py, ..., Ps.
The paths predicting N are numbered Qj, ..., Q5. The paths and their numberings
are obtained from an in-order traversal of the tree. For example P; = (1,2,4),
Q1 = (1,2,5), Qs = (1,3,6,8,10,13,15,17), Qs = (1,3,6,8, 10,13, 16, 20, 22, 24),
Ps = (1,3,6,8,10,14), and P; = (1,3,6,9). For P5, ®(P5) = {1,2,3,4,5}, where
the mapping of features is as shown in Figure 5.1, i.e. feature 1 is A, feature 2 is P,

and so on. In addition, and also for Ps, A(Ps,{1,4,5}) = {(4), (V),(Z=0)}.

Name Definition
A Age > 57

Petechiae?

Stiff Neck?

P

N

\%4 Vomiting?
Z Zone=0, 1,27
S Seizures?
G

H

C

Gender?

Headache?

Coma?

(b) Features’ meaning

23 24

(a) Decision tree

Figure 5.1: First example DT, adapted from [229]

Example 14. The second running example is shown in Figure 5.2. This second
running example will be used to illustrate the computation of probabilistic abductive
explanations. The figure also shows the truth table for the DT, and for each row
in the table, the number of points in feature space consistent with that row.
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x1  x2 w3 k(x) Path [
1 11 o Q=(,24 1
1 1 2 o 9 1
1 24 1 @ Pr={(1,25) 3
1 24 2 @ P 3
24 1 1 @ P2=(1,36) 3
24 1 2 @& Py={(1,36) 3
2.4 24 1 © Q=(,378 9
2.4 24 2 @® P3=(1,3,7,9 9
(b) Truth table

(a) Decision tree

Figure 5.2: Second example DT, adapted from [192]

5.3 Path Abductive Explanations

In this chapter we use the restriction of AXp’s to the case when features must be
taken from the path. Such AXp’s are referred to as path AXp’s [194]. Throughout
the chapter, path AXp’s are AXp’s, but where the features that can be included in
the explanation must exist in the path.

Example 15. For the running example (see Figure 5.1), and the instance ((A =
L,P=0N=0V=12Z2=08=0H=0,C =0,G = 1),Y), this point
corresponds to the path (1,3,6,8,10,14). We can show that one AXp is {4, 7}
(technically, we should write {1,5}).

To offer a more detailed insight into the process of computing this path AXp,
one possible computation is summarized next. While the we will argue that the
order of features {S, H, C, G} does not matter, the remaining features are analyzed
in order (A, P, N,V, Z). (Depending on the explanation problem, the order features
may or may not matter.)

1. As the features in {S, H,C, G} do not appear in the path, we can assign any
value to these features. As a result, during the computation of this path’s
AXp’s, these features are not taken into consideration.

2. Let feature A take any possible value from its domain. In this case, we can
find a point (A=0,P=0,N=0,V=1,2=0,S=0,H=0,C=0,G=1)
that makes the path (1,2,5) consistent, which predicts a different class N.
Thus, this violates the definition of path AXp. Hence, feature A must be
fized to the value 1.

3. Let feature P take any possible value from its domain. In this case, we cannot
find a point in the feature space that makes consistent some path predicting
the different class IN. As a result, feature P can be declared free, allowing it
to take any value from its domain.

4. For the same reason, features in {N,V} can also be freed, i.e. no path pre-
dicting the different class N can be made consistent when these features are
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allowed to take any values from their domains.

5. Finally, let feature Z take any possible value from its domain. In this case,
we can find a point (A=1,P=0,N=0,V=1,Z=1,S=0,H=0,C =
0,G = 1) that makes the path (1, 3,6, 8,10, 12) consistent, which predicts the
different class N. As before, this violates the definition of path AXp. Hence,
feature Z must be fixed to the value 0.

6. In summary, we obtain the path AXp {A, Z}.

Thus, we can confidently state the following rule, representing a sufficient condition
for predicting Y,

IF (Age >5) A (Zone=0) THEN k(-)=Y

Using the more compact notation proposed earlier, we could also write, ANZ =0 — Y.
The use of explanations allows identifying possible model learning issues with the
example DT; this is further discussed elsewhere [253].

5.4 Probabilistic Abductive Explanations

Building on earlier work [347, 23, 192], we define weak probabilistic AXp (or weak
PAXp) X C F as a set of fixed features for which the probability of predicting the
correct class ¢, for points consistent with the values of X in v, exceeds § > 0, with
¢ = k(v). Thus, X C F is a weak PAXp if the following predicate holds true,

WeakPAXp(X;TF, k, v, c,0)
= Prx(k(x) =c|xy =vy) >0 (5.1)
_ Hx € F:k(x)=cA (xx =vx)}

K eF: G =va))] '

(Where the restriction of x to the variables with indices in X is represented by xy =
(24)icx. Concretely, the notation xy = vy represents the constraint Ajexxz; = v;.)
The condition above means that the fraction of the number of points predicting the
target class and consistent with the fixed features (represented by X'), given the total
number of points in feature space consistent with the fixed features, must exceed
d. We can adapt (2.16) to define a PAXp given the definition of WPAXp. Since
the definition of weak PAXp (see (5.1)) is non-monotonic, then the computation of
PAXp’s cannot be simplified [192] using (2.17).

For DTs with categorical features, and for each pick of fixed features, one can
compute the conditional probability in polynomial-time [192]. For the purposes of
this chapter, we will use the truth table of Figure 5.2.

Example 16. For the DT of Figure 5.2, let us consider the instance (v,c) =
((1,1,1),©) and X = {1,2}. Then, the number of points where 1 = 1Azy = 1 is 2.
Moreover, for all those points, x(-) = ©. Thus, Pry(k(x) = © %19y = v{12y) = 1.
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Moreover, when (v,c¢) = ((2,2,2),®) and X = {3}, the number of points where
x3 = 2 is 16 and, among these, the number of points for which k(-) = @ is 15.
Thus, Prx(r(x) = ©[x3y = vy3y) = 15/16. Finally, with § = 0.9, it is the case that
{1,2} is a WPAXDp for (any instance of) Qp, and {3} is a WPAXp for (any instance
of) Ps. It is simple to show that both WPAXp’s are PAXp’s [192].

5.5 From Decision Trees to (Explained) Decision Sets

To the best of our knowledge, there is no simple way to remove redundancy from a
DT such that some DT can be reconstructed. As a result, one solution is to consider
removing redundancy from a DT such that a different ML model is obtained. How-
ever, one key requirement for such ML model is that it must allow for explanations
to be easily extracted, i.e. no algorithm is to be executed. The next section shows
one basic approach to obtain such an ML model. Afterwards, we discuss extensions
to the basic approach, their limitations, and alternative solutions.

5.5.1 Mapping a DT into a DS

This section develops an algorithm which, given a DT computing a total classifica-
tion function, creates a DS with the following key properties:

1. The DS does not include a default rule;

2. The DS does not exhibit overlap (i.e. it computes a classification function);
3. The DS computes a total classification function; and

4. Each rule is a path AXp of the original DT.

Given the above properties, the DSs obtained with the algorithm described below
will be referred to as explained decision sets.

The above properties are critically important, since the created DS does not
exhibit any of the issues that are problematic for existing implementations of DSs.
Furthermore, for any point in feature space, if some rule R fires, then the condition
of the rule represents a path AXp of the original DT, i.e. there is no need for
computing AXp’s.

Algorithm 8 represents the proposed solution for constructing a DS starting
from a DT. As can be observed, for each path in the DT, the algorithm computes
one AXp. This AXp is then used for constructing a decision rule, using the literals
obtained from the literals included in the AXp. In the end, duplicate rules are
removed. The algorithm used for computing one path AXp, i.e. FindPathAXp, can
be any of the algorithms proposed in earlier work [193, 194].

Example 17. Table 5.1 summarizes the execution of Algorithm 8 on the example
DT of Figure 5.1. Each row lists: (a) the list of path nodes; (b) the features in
the explanation when the path represents the explanation; (c) the condition of the
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Algorithm 8 Converting DT to DS
Input: Decision Tree M with classification function s

1: function DT2DS(M)
2 S+ 0 > S: DS to be constructed
3 P « AllPaths(M) > P: set of all paths in M
4 while P # () do
5: Py + PickPath(P) > Pg: some path not yet explained
6 P+ P\ {P:}
7 X <+ FindPathAXp(Py) > E.g. algorithms from [194]
8 S+ SU{IF Neaep,,x)! THEN k() = c}
9 S < RemoveDuplicateRules(S)
10: return §
Rop: IF [P] THEN k(-) = Y
Roz: IF [A A P|THEN «(-) = N
Ros: IF [PAN AV A Z=1] THEN «(-) = N
Ros: IF [PANAVANZ=2ANSAG] THEN k() =N
Ros: IF [ANZ=2ASAG] THEN k(-) = Y
Ros: IF [F/\W/\V/LZ:EAF/\H] THEN £(-) =N (5.2)
Ror: IF[ANZ=2NSNHANC] THEN k(-) =Y
Ros: IF [ANZ=2 AT AG] THEN w(-) =Y
Rog: IF [PANAV ANZ=2ANCAG| THEN k(-) =N
Rio: IF [AA Z=0] THEN &(-) =Y
Rip: IF [AA V)] THEN w(-) =Y
Riz: IF [A A N] THEN k(\) = Y

rule that would be obtained in such a situation; (d) the features in some path AXp;
and (e) the condition of the rule obtained from the features in the AXp. In total,
the DT has 13 paths, and so Table 5.1 summarizes the algorithm’s execution for
each of the 13 paths. As can be observed, the last row creates a rule which is a
duplicate, and so it will not be added to the DS. As a result, the DS consists of
12 rules (i.e. obtained from the first 12 executions of the algorithm’s main loop).
These are shown in (5.2) below. The order of the rules can be any, since the result
is a decision set. The order shown in (5.2) is taken from the order in which paths
are analyzed in Table 5.1, with duplicate rules removed.

As will be demonstrated in the next section, each rule is itself an abductive
explanation (of the original DT), the DS computes a function (i.e. it exhibits no
overlap), and the computed function is total. More importantly, as an be observed
in Table 5.1, while the path literals for the DT total 75 literals, the explanations
obtained from the DS total 44 literals, representing a reduction of more than 40%
on the total number of literals used in explanations.
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Extensions. The proposed algorithm leaves some flexibility on how to compute
each AXp. One solution is to compute one subset-minimal AXp, since there are
polynomial-time algorithms in the case of DTs [193, 169, 194]. Alternatively, one
can consider computing cardinality-minimal AXp’s, thus obtaining shortest expla-
nations for each path. It is well-known that computing one cardinality-minimal
AXp is NP-hard [35], but with a decision problem in NP. Thus, given proposed
Horn encodings [194], a cardinality-minimal AXp can be computed by solving Horn
Maximum Satisfiability (MaxSAT).

There has been recent work on inferring and exploiting constraints on the inputs
when computing abductive explanations [145, 373]. It is also immediate to account
for constraints on the inputs when computing explanations. Thus, Algorithm 8 can
be used to produce an explained DS that takes input constraints into account.

Finally, we should observe that for each path in the DT there can be more
than one path AXp. Indeed, in the worst-case, the number of path AXp’s can be
exponential on the number of features. As a result, the proposed algorithm can be
adapted to allow for the (restricted) navigation of the space of AXp’s for each path,
thus enabling a human decision maker to select which AXp to associate with each
path. It should be noted that in the case of the DT from Figure 5.1, and given the
AXp’s computed in Table 5.1, none of the paths exhibits more than one AXp.

Algorithm’s complexity. The complexity of Algorithm 8 is linear on the com-
plexity of computing abductive explanations. For plain subset-minimal AXp’s, Al-
gorithm 8 runs in polynomial-time, since there exist polynomial-time algorithms for
computing one AXp [193, 194].

When the DS is to be constructed from cardinality-minimal AXp’s, Algorithm 8
computes one such explanation a number of times that is linear with the nodes in
the DT. However, computing one smallest AXp in the case of DTs is NP-hard [35].
Moreover, the algorithms for computing cardinality-minimal AXp’s will require at
most a logarithmic number of calls to an NP oracle in the worst-case. In the case
of cardinality-minimal AXp’s for DTs, a DS is obtained solving Horn MaxSAT a
number of times that grows with the number of (terminal) nodes in the DT. Finally,
navigation of the space of AXp’s will also impact complexity, depending on how
many AXp’s are to be enumerated.

5.5.2 Properties of Explained Decision Sets

As suggested in earlier sections, we now prove the key properties of the DS created
with Algorithm 8. First, we prove that each rule condition in the DS maps to
a path AXp of the original DT. Then, we prove that Algorithm 8 creates a DS
that computes a (classification) function, i.e. there is no overlap between rules with
different predictions. Finally, we prove that the DS computes a total function, i.e.
for any point in feature space, at least one rule fires.

Proposition 9. The conditions of each rule in the DS represent a path AXp of the
original DT.
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Proof. This result is an immediate consequence of Algorithm 8, since each rule in
the DS is obtained from a path AXp of the original DT. a

As a consequence of Proposition 9, each rule corresponds to some path(s) of the
original DT. Furthermore, and under the hypothesis that the original DT computes
a total function, we can prove the following results. The first result ensures that the
DS computes a function (i.e. there is no overlap). The second results ensures that
the computed function is total (i.e. there is a prediction for every point in feature
space).

Proposition 10. The constructed DS is non-overlapping.

Proof. Suppose the constructed DS is overlapping, which means there exist at least
two rules with non-contradicting conditions that predict two different classes. In
such a case, there would exist a point in the feature space that is consistent with two
paths of the original DT leading to two different classes, which contradicts with the
hypothesis that the DT computes a total function. Hence, DS is non-overlapping.
O

Proposition 11. The constructed DS is total.

Proof. If the constructed DS is not total, it implies the existence of a point in
the feature space that is not consistent with any rule in the DS. As a result, this
point is also not consistent with any path of the original DT, which contradicts the
hypothesis that the original DT is total. Thus, the constructed DS is total. ad

5.5.3 Limitations & Solutions

The basic algorithm proposed in the previous section (see Algorithm 8) allows
mapping DTs to (explained) DSs when an path AXp is associated with each path.
This section investigates limitations of the proposed algorithm and outlines possible
solutions.

Probabilistic explanations. There has been recent work on computing rigor-
ous probabilistic explanations [347, 196, 197, 199, 23, 192]. Similarly to comput-
ing AXp’s, Algorithm 8 could be instrumented to compute probabilistic AXp’s
(PAXp’s) or locally minimal PAXp’s (LmPAXp’s) [192]. Thus, a DS would be
constructed using different notions of probabilistic explanations instead of plain ab-
ductive explanations. Unfortunately, in this case the resulting DS would not respect
the properties established in Section 5.5.2, in that overlap is no longer guaranteed
not to exist. The following example illustrates the issue of overlap that PAXp’s can
induce.

Example 18. We use the example DT in Figure 5.2, and the WPAXp’s studied
in Example 16 to convey the issues raised by probabilistic explanations.

Let § = 0.9. For the path (1,2,4), the (only) PAXp is {1, 2}, which would yield
the rule z; € {1} Az2 € {1} — &. Moreover, for the path (1,3,7,9) a PAXp is
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{3}, which would yield the rule z3 € {2} »— @. It is plain to conclude that there
exists overlap between the two rules.

DT annotation. In the case of probabilistic explanations, there is a simple, but
less compact, approach to pre-compute the explanations of each path. The solution
is to annotate the terminal nodes of DTs with the computed explanations. In the
case of probabilistic explanations, it suffices to compute a (Lm)PAXp for each path,
and then annotate the terminal node of the path with that explanation. It is plain
that the DT guarantees the non-existence of overlap. Moreover, annotating the
terminal nodes will have no effect on whether the DT computes a total function.

There are downsides to this solution, which Algorithm 8 addresses. First, DT
annotation yields a less compact representation of both the ML model and a possible
universe of explanations. Second, a human decision maker will be expected to be
able to relate computed explanations with the paths the explanations are associated
with.

5.6 Experiments

This section presents experimental results that evaluate the practical efficiency of
the proposed approach for mapping a Decision Tree into a Decision Set. It is
important to emphasize that the experiment did not consider computing cardinality-
minimal AXp’s for extracting rules and constructing DS.

Experimental setup. The evaluation comprises 44 datasets that are originate
from Penn ML Benchmarks [282]. The datasets used in the chapter consist of
features with either categorical or ordinal domains (i.e. integer or real-valued).
The number of features ranges from 6 to 240, while the number of classes varies
from 2 to 26, with an average of 47 features and 5 classes. Each dataset is divided
into training and testing sets, with 80% of the data used for training and 20% used
for testing. DTs are learned using Orange3 [104], the maximum depth set to 9 while
the minimal test accuracy set to 70%. It is worth noting that Orange3 is capable
of handling features with categorical or ordinal domains. Furthermore, a prototype
of the proposed algorithm was implemented in Python and is publicly available in
the repository ! Finally, the experiments were performed on a MacBook Pro with
a 6-Core Intel Core i7 2.6 GHz processor with 16 GByte RAM, running macOS
Monterey.

Results. Table 5.2 summarizes the results of mapping DTs to DS. For the learned
DTs, 34 out of the 44 DTs have depth more than 7, 33 out of the 44 DTs achieve a
test accuracy of over 80%. Moreover, the number of nodes in the learned DTs ranges
from 13 to 689, with 22 out of 44 models having more than 100 nodes. Besides, the
number of tree paths for DTs varies from 7 to 345, with an average of 74 paths.

"https://github.com/XuanxiangHuang/dtree2dset
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The total number of literals in tree paths varies from 26 to 3021, with an average
of 566 literals.

Through the transformation of DTs into DSes, we have successfully reduced the
number of rules and literals required for decision-making. The number of rules
for the DSes ranged from 6 to 259, with an average of 66 rules. Besides, the total
number of literals in the rules varied from 12 to 1915, with an average of 423 literals.
On average, roughly 10% tree paths are redundant, and roughly 25% literals are
redundant.

More specifically, for the adult, car__evaluation, coil2000, connect_ 4, and corral
datasets, we observe that 43.4%, 22%, 25.4%, 24.9%, and 57.1%, respectively, of
the tree paths are redundant. Although the tree paths for the cancer 2, promot-
ers 3, sonar, spectf, and wdbc datasets are not redundant, a non-negligible ratio of
redundant literals exists within the tree paths. Specifically, for these datasets, the
maximal ratio of redundant literals in the tree paths is 50%, 50%, 42.9%, 66.7%, and
50%, respectively, while the average ratios of redundant literals in the tree paths
are 26%, 16.7%, 19.4%, 41.1%, and 25.2%, respectively. An additional observation
is that in 34 out of the 44 DTs, the maximal ratio of redundant literals in the tree
paths is at least 40%, and in some cases, can exceed 70% (e.g., datasets ionosphere
and ring). Additionally, in 24 out of 44 DTS5, the average ratio of redundant literals
in the tree paths is at least 20%. However, there are indeed some DTs where the
average ratio of redundant literals in the tree paths is small, such as authorship 4
and dermatology.

Finally, the table shows that the runtime for mapping DTs into DSes is negligi-
ble, as indicated in the last column. This can be attributed to the algorithm used,
which leverages a polynomial-time method for extracting one path AXp from each
tree path.

5.7 Summary

This chapter demonstrates that (non-explained) decision trees can be mapped onto
(explained) decision sets, such that the obtained decision sets exhibit all the key
properties of decision trees. The chapter proposes an algorithm that constructs
an explained decision set starting from a decision tree. In contrast with other
algorithms for constructing decision sets proposed in the recent past [223, 252, 190,
140, 138, 370, 139, 371, 181], the algorithm proposed in this chapter ensures that
the resulting decision sets compute a total function, such that the condition of each
rule is the explanation for the prediction when the rule fires. Given the existing
proposals for intrinsic interpretability [304, 269, 306], the algorithm proposed in this
chapter offers a solution to deliver a classifier where the explanation is extracted, by
inspection, from the classifier. The experiments demonstrate not only the scalability

2 breast_cancer wisconsin
3molecular biology promoters
4analcatdata_ authorship
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of the proposed algorithm, but also the significantly tighter representations that
explainable decision sets achieve.

Future work will investigate the impact on the size of the explained DT of
computing smallest explanations for each path in the DT. Similarly, additional
heuristics for selecting the explanations to consider for each path in the DT will be
investigated. For example, one could give preference to picking explanations that
match already picked explanations, so as to minimize the total number of rules in
the DS.
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Table 5.2: The table shows statistics for datasets, decision trees and the resulting
decision sets. The table includes the number of features (m) and the number of
classes (K) for each dataset. For each DT, the table reports the tree depth (D),
the number of nodes (#N), test accuracy (A%), the number of paths (|P|), and
|A(P)|, which is the total number of literals in all tree paths. For the resulting DS,
the table reports the number of rules (|S|) and |A(S)|, which is the total number
of literals in all rules. Moreover, the table reports the maximum (max R%) and
average (avg. R%) path redundancy ratio, which refers to the proportion of literals
that can be removed from a decision path to convert it into a decision rule over the
total number of literals included in that path. The last column reports the runtime
(in seconds) for converting DT into DS.

Dataset m K DT DS Time (s)

D #N A% |P| [A(P)| |S| |A(S)| max R% ave. R%

adult 14 2 9 151 86.0 76 639 43 212 62.5 37.8 0.21
authorship 70 4 5 25 953 13 51 13 49 20.0 3.1 0.02
ann__thyroid 21 3 8 25 99.7 13 66 11 33 60.0 33.2 0.02
cancer 30 2 6 13 921 7 27 7 18 50.0 26.0 0.01
car__evaluation 21 4 9 117 96.2 59 478 46 299 50.0 17.8 0.13
chess 36 2 9 43 994 22 155 21 94 66.7 32.5 0.05
churn 20 2 9 93 92.8 47 303 43 178 60.0 34.8 0.09
¢0il2000 8 2 9 117 939 59 467 44 254 66.7 23.9 0.18
connect_ 4 42 3 9 689 724 345 3021 259 1915 44.4 15.0 1.55
corral 6 2 5 27 100.0 14 56 6 12 60.0 46.1 0.01
dermatology 3 6 7 17 959 9 42 9 40 14.3 3.2 0.02
dna 180 3 9 149 925 75 563 73 468 50.0 14.9 0.22
ionosphere 34 2 7 29 93.0 15 73 13 38 71.4 36.3 0.03
kr_vs_kp 36 2 9 39 989 20 135 20 89 66.7 31.0 0.05
letter 16 26 9 499 73.9 250 2122 229 1514 50.0 21.6 0.87
mfeat_ factors 216 10 9 155 84.8 78 579 78 544 25.0 5.5 0.21
mfeat_ fourier 76 10 9 217 75.0 109 826 107 692 44.4 13.5 0.30
mfeat karhunen 64 10 9 253 77.2 127 980 125 816 42.9 14.8 0.34
mfeat_ pixel 240 10 9 185 87.0 93 658 93 637 22.2 2.9 0.26
mfeat_zernike 47 10 9 293 74.2 147 1187 145 1076 33.3 7.7 0.46
mofn_3_7 10 10 2 7 93 974 47 294 46 174 57.1 38.9 0.17
promoters 57 2 4 15 727 8 26 8 21 50.0 16.7 0.01
movement_ libras 90 15 9 127 73.6 64 414 64 401 28.6 2.9 0.16
mux6 6 2 6 55 100.0 28 141 15 46 50.0 34.7 0.04
optdigits 64 10 9 353 89.3 177 1433 177 1367 25.0 4.3 0.61
pendigits 16 10 9 235 94.0 118 903 115 776 44.4 10.6 0.33
ring 20 2 9 107 83.6 54 394 48 219 77.8 37.1 0.32
satimage 36 6 9 333 86.2 167 1351 154 980 66.7 20.9 0.47
sonar 60 2 7 27 786 14 68 14 52 42.9 19.4 0.02
soybean 35 18 9 79 844 40 260 38 212 33.3 10.6 0.07
spambase 57 2 9 141 920 71 509 68 379 62.5 20.1 0.19
spect 22 2 9 77 796 39 268 34 170 66.7 23.2 0.09
spectf 44 2 9 29 857 15 91 15 53 66.7 41.1 0.04
splice 60 3 9 91 89.2 46 319 46 257 50.0 20.1 0.12
texture 40 11 9 167 904 84 660 81 552 33.3 12.3 0.24
threeOf9 9 2 8 63 100.0 32 185 23 75 57.1 34.6 0.06
tic_tac_ toe 9 2 9 113 91.7 57 389 48 240 55.6 23.8 0.14
tokyol 44 2 9 27 943 14 91 12 46 44.4 30.9 0.03
twonorm 20 2 9 351 83.8 176 1409 171 1232 44.4 9.3 0.69
vote 16 2 8 19 93.1 10 50 10 35 40.0 25.0 0.02
waveform 21 21 3 9 343 75.6 172 1375 154 1026 44.4 15.5 0.56
waveform__40 40 3 9 391 75.0 196 1596 180 1244 44.4 14.3 0.70
wdbc 30 2 6 17 895 9 40 9 28 50.0 25.2 0.01
xd6 9 2 9 79 100.0 40 243 30 90 66.7 44.2 0.10




CHAPTER 6

Feature Necessity and
Relevancy in Formal
Explanations

In previous chapters, we studied the computation of formal explanations for a wide
range of classifiers. However, there are several additional explainability queries that
are of interest. Two concrete examples are feature necessity and relevancy. Feature
necessity asks whether a feature must occur in all explanations of a given prediction.
In contrast, feature relevancy asks whether a feature occurs in some explanation of
a given prediction.

This chapter investigates both the computational complexity of these problems,
but also algorithms for their solution in practice. In terms of algorithms for fea-
ture relevancy, this chapter studies algorithms for specific families of classifiers,
but also general-purpose algorithms, which can be applied to families of classifiers
used in most systems of Al and ML. The experimental results confirm that feature
membership can be efficiently decided in practice, for a wide range of families of
classifiers.

6.1 Introduction

The advances in ML over the years, and the fact that ML models are most often
opaque, sparked the ongoing efforts on eXplainable artificial intelligence (XAI).
Furthermore, the existing and expected uses of ML in high-risk applications of
AT [112] motivate the need for explainability approaches that offer guarantees of
rigor, and so can be trusted. Such need is underscored by the ample evidence of bias
in ML models [249]. Unfortunately, the most visible XAI approaches [299, 247, 300]
offer no guarantees of rigorous. For example, existing results have shown that such
informal explanations can be consistent with points in feature space for which the
prediction differs [189, 276, 178].

Pioneered by work on explaining boolean classifiers represented with restricted
families of bayesian networks [320], there have been a stream of results on formal
explainability, which are summarized in recent overviews include [257, 254, 253]. 1

! Additional references include [320, 187, 321, 188, 189, 276, 357, 94, 178, 96, 179, 185, 29, 193,
255, 35, 256, 198, 250, 182, 81, 169, 26, 19, 49, 12, 347, 100, 196, 257, 168, 180, 145, 98, 28, 13, 27,
120, 239, 194, 197, 372, 171, 199, 23].

64
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In addition to the problem of computing one explanation, recent work also studied
a number of queries [29, 169, 26], which can be addressed in the context of formal
explainability, and which find numerous applications.

By building on the relationship between explainability and logic-based abduc-
tion [125, 313, 110, 187], this chapter analyzes two concrete queries, namely feature
necessity and relevancy. Given a local explanation problem comprising an ML clas-
sifier, an instance (i.e. point in feature space and associated prediction) and a target
feature, the goal of feature necessity is to decide whether the target feature occurs
in all explanations of the given instance. Under the same assumptions, the goal of
feature relevancy is to decide whether a feature occurs in some explanation of the
given instance. For example, and motivated by existing regulations and guidelines
(e.g. [114, 115, 112]), the target feature can be a sensitive feature, e.g. age, gen-
der, ethnic origin, etc., and the existence of an explanation that includes the target
feature would represent a violation of such regulations.

Feature relevancy is also interesting from a theoretical standpoint, since the
problem is in general complete for the second level of the polynomial hierarchy [169].
Thus, feature relevancy represents another practical example where efficient QBF
(Quantified Boolean Formula) solvers are important.

This chapter covers both the computational complexity of feature necessity and
relevancy, as well as practical algorithms for solving feature relevancy. For exam-
ple, this chapter details QBF encodings of the feature relevancy decision problem,
this chapter also proposes a general purpose algorithm based on the well-known
paradigm of abstraction refinement [75]. As a side result, the QBF formulas re-
sulting from modelling feature relevancy can serve as a new source of challenging
problem instances for QBF solvers. The chapter also studies families of classifiers
for which solving feature relevancy is substantially easier than the general cases. Fi-
nally, this chapter presents experimental results confirming that feature relevancy
can be solved efficiently in practice for several families of classifiers.

The chapter is organized as follows. Section 6.2 defines the problems of feature
necessity and relevancy, and studies the computational complexity of the problem,
for a wide range of families of classifiers. Given the complexity results of Sec-
tion 6.2, Section 6.3 studies general purpose solutions for feature relevancy, and
highlights the concrete case of random forests as the example classifiers. After-
wards, Section 6.4 details algorithms for several other families of classifiers, for
which more efficient solutions can be devised. These include decision trees, dia-
grams and graphs, boolean circuits, and monotonic classifiers. Section 6.5 evaluates
the algorithms proposed in Sections 6.3 and 6.4 on representative datasets. Finally,
Section 6.6 concludes this chapter.

Running Examples

Throughout this chapter, we will use several running examples, which will serve to
illustrate different claims and results.
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Figure 6.1: Random Forest Running Example.

Figure 6.2: d-DNNF Running Example.

F=1{1,2,3,4}

D; ={0,1},i=1,...,4 () = 1 if o1 +x24+23>2
K ={0,1} 0 otherwise

(a) Definition of F,D;, K (b) Definition of &

Figure 6.3: Example of a monotonic classifier

Example 19. Figure 6.1 shows the running example of a RF classifier containing
3 decision trees 71, T3 and 73. The RF represents a classification function « defined
on the set of features F = {1,2,3} and set of classes K = {c1,c2,c3} = {S,®,®}.
Moreover, the domain of the features are, respectively, D; = {0,1}, Dy = [0, 50]
and D3 = {0,1,2}. We consider the instance (v,c) = ((1,10,1),®), the highlighted
edges indicate the prediction of each tree.

Example 20. Figure 6.2 shows the running example of a d-DNNF classifier repre-
senting a boolean function k(z1, z2, z3,24) = (1 V 3) A (mx2 V —4). Consider the
instance (v,c) = ((1,0,1,1),1).

Example 21. The monotonic classifier we consider is shown in Figure 6.3. It has
four boolean features and two classes. The instance that is considered throughout
this chapter is (v,c¢) = ((1,1,1,1),1).
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6.2 Feature Necessity & Relevancy: Theory

This section starts by defining feature necessity and relevancy. The next step is
to investigate the complexity of feature necessity. The rest of the section is then
dedicated to establishing membership and hardness results for feature relevancy.

6.2.1 Defining Necessity, Relevancy & Irrelevancy

Given a local explanation problem & = (M, (v,c)). The sets of AXps and CXps
are defined as follows:
A(E) ={x € FIAXp(X)}
C(E) ={Y S F|Xp(V)}

Moreover, let Fy(€) = Uyeae)X and Fc(€) = Uyece)Y. Fa(€) aggregates the
features occurring in any AXp, whereas F (&) aggregates the features occurring in
any CXp. In addition, minimal hitting set duality between AXps and CXps (see
Proposition 1) yields the following result.

(6.1)

Proposition 12. F; (&) = Fc(€).

By examining the occurrences of features in formal explanations, we can define
relevant features and necessary features.

Definition 39. Let t € F be a target feature, then:
1. t is necessary (for AXps), or AXp-necessary, if t € NyecaX;
2. t is relevant (for AXps), or AXp-relevant, if ¢t € Fu(E);
3. t is irrelevant (for AXps), or AXp-irrelevant, if t € Fy (&).

Similarly, we can define necessity, relevancy and irrelevancy for CXps.

Definition 40. Let t € F be a target feature, then:
1. t is necessary (for CXps), or CXp-necessary, if t € NyccY;
2. t is relevant (for CXps), or CXp-relevant, if t € F¢(&);
3. t is irrelevant (for CXps), of CXp-irrelevant, if ¢t & F(E).

Furthermore, it should be noted that feature irrelevancy is a fairly demanding
condition in that, a feature t is irrelevant if it is not included in any subset-minimal
set of features that is sufficient for the prediction.

Example 22. We consider the d-DNNF' classifier example from Figure 6.2, and
the instance presented in Example 20, ie. (v,¢) = ((1,0,1,1),1). The AXps are
{1,2},{2,3}, and the CXp are {1,3} and {2}. It is straightforward to see that 2 is
AXp-necessary, and 1,2,3 are AXp-relevant features for the instance. In contrast,
features 1,2, 3 are CXp-relevant features. Finally, feature 4 is AXp/CXp-irrelevant
for this instance.

Example 23. We consider the monotonic classifier in Example 21, and the cor-
responding instance (v,c) = ((1,1,1,1),1). In this case, the set of AXps is the
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same as the set of CXps. These correspond to all the combinations of two features
disregarding feature 4, that is, the AXps/CXps are {1,2}, {1,3}, {2,3}. Since the
set of AXps is the same as the set of CXps, then the set of AXp-necessary features,
and the set of CXp-necesary features are the same. As such, in the remainder of
the example we will refer only to a feature as necessary to refer to both an AXp-
necessary feature and a CXp-necesary feature. Similarly, to relevant and irrelevant
features.

As can be seen, no feature belongs to the intersection of all the explanations,
that means that there is no necessary feature. On the other hand, features 1, 2,
and 3 belong to the union of all explanations, which means that 1,2 and 3 are the
relevant features. Finally, feature 4 does not belong to any explanation, and is
therefore an irrelevant feature.

Throughout the remainder of the chapter, the problem of deciding feature ne-
cessity is represented by the acronym FNP, and the problem of deciding feature
relevancy is represented by the acronym FRP. The use of the prefixes (AXp/CXp)
will be used when necessary. Furthermore, the following results can be proved.

Proposition 13. Given a local explanation problem £ = (M, (v,c)), a feature
t € F is AXp-relevant iff ¢ is CXp-relevant.

Proof. This result follows from Proposition 1, since a feature is included in some
AXp iff it is included in some CXp. a

As a result, when studying feature relevancy, we can ignore the prefix(es)
and simply state whether a feature is relevant (instead of AXp-relevant or CXp-
relevant). Furthermore, minimal hitting set duality between AXps and CXps allows
to prove the following results:

Proposition 14. Given a local explanation problem £ = (M, (v,c)), a feature
t € F is AXp-necessary iff {t} is a CXp.

Proof. 1f t is AXp-necessary, then it must be included in all AXps. It follows that
F\ {t} is not a weak AXp, and hence {t} is a CXp. If {¢t} is a CXp, then it must
hit (i.e. be included in) all AXps, and so t is AXp-necessary. O

Proposition 15. Given a local explanation problem & = (M, (v,c)), a feature
t € F is CXp-necessary iff {t} is an AXp.

Proof. By duality (see Proposition 1), we can use the proof of Proposition 14, but
replacing AXps with CXps and vice-versa. O
6.2.2 Complexity Results for Feature Necessity

We start this section with a lemma which is used in the proof of the next proposition.

Lemma 1. There exists an AXp that does not include a target feature ¢t € F iff
WAXp(F \ {t}) holds.
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Proof. Suppose there is some AXp Z that does not include ¢. Then, it must be
the case that any superset of Z is a weak AXp. Thus, it must be true for the set
F\ {t}. Hence, if such AXp Z exists, then F \ {¢} must be a weak AXp. Suppose
that WAXp(F \ {t}) holds. Then there must exist at least one subset minimal set
Z C F\ {t} that is an AXp, and such a set does not include ¢. O

Proposition 16. If deciding WAXp(&X') is in the complexity class €, then FNP is
in the complexity class co-€.

Proof. From the previous Lemma 1, we can decide feature necessity by a single
call to WAXp(F \ {t}). Since positive instances of FNP are negative instances of
WAXp(F \ {t}), we conclude that FNP belongs to co-C. 0

Given the known polynomial complexity of deciding whether a set is a weak
AXp for several families of classifiers [257], we then have the following result:

Corollary 4. For DTs, XpG’s, d-DNNF classifiers and monotonic classifiers, FNP
is in P.

6.2.3 Feature Relevancy: Membership Results

This section proves a number of membership results for FRP. These will be com-
plemented in the next section with hardness results.

Proposition 17. FRP for DTs is in P.

Proof. From Proposition 4, we know that enumeration of all CXps can be achieved
in polynomial time. Hence, we can simply run the algorithm outlined in the proof
of Proposition 4, obtain F(€) and decide whether the target feature ¢ is included
in Fp (5 ) 0

Moreover, for several families of classifiers, deciding FRP is actually in NP, and
so in these cases FRP can (in theory) be decided with one NP oracle call.

Proposition 18. If deciding WAXp(X) is in P, then FRP is in NP.

Proof. Let t € F be a target feature, and let X C F be some guessed set of
features, with ¢t € X. To decide whether X is an AXp, we need to check that
WAXp(X) holds, which runs in polynomial time. Then, we must also check that,
for all 1 € X, WAXp(X \ {i}) does not hold, again in polynomial time. Hence,
deciding feature relevancy is in NP. ad

Corollary 5. For DGs, FBDDs, XpGs, d-DNNF classifiers and monotonic classi-
fiers, FRP is in NP.

Proposition 19. If deciding WAXp(X) is in NP, then FRP is in X¥.
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Proof. Let t € F be a target feature, and let X C F be some guessed set of features,
with ¢ € X. Following the same arguments presented in Proposition 18, we need
to check that WAXp(X') holds, additionally, we must ensure that, for all i € X,
WAXp(X \ {i}) does not hold. By hypothesis, deciding whether X’ is an AXp is in
NP, this means we can check whether X is an AXp containing the target feature ¢ in
polynomial time, given access to an NP oracle deciding WAXp(X'). Thus, deciding
feature relevancy is in X5 0

Corollary 6. For DNFs, DLs, DSs, and RFs, FRP is in X¥.

6.2.4 Feature Relevancy: Hardness Results

We now investigate the hardness of FRP.
Proposition 20. FRP for monotonic classifiers is NP-hard.

Proof. We say that a CNF is trivially satisfiable if some literal occurs in all clauses.
Clearly, SAT restricted to nontrivial CNFs is still NP-complete. Let ® be a not
trivially satisfiable CNF on variables 1, ...,z;. Let N = 2k. Let ® be identical
to ® except that each occurrence of a negative literal z; (1 < i < k) is replaced by
Zirp. Thus @ is a CNF on N variables each of which occurs only positively. Define
the boolean classifier k (on N+1 features) by k(zo, z1,...,2ny) =1iff x; = x4 =1
for some i € {1,...,k} or 29 A ®(x1,...,xy) = 1. To show that s is monotonic
we need to show that a < b = k(a) < k(b). This follows by examining the two
cases in which k(a) = 1: if a; = a;4p = 1 Aa < b, then b; = b1 = 1, whereas, if
ag A ®(ay,...,ay) =1and a <b, then by A ®(by,...,by) =1 (by positivity of ®),
so in both cases k(b) =1 > k(a).

Clearly k(1ny41) = 1. There are k obvious AXps of this prediction, namely
{i,i+k} (1 <i<k). These are minimal by the assumption that & is not trivially
satisfiable. This means that no other AXp contains both ¢ and i + k for any
i € {1,...,k}. Suppose that ®(u) = 1. Let X, be {0} U{i |1 < i< kAu =
1JU{i+k|1<i<kAu =0} Then X, is a weak AXp of the prediction
k(1) = 1. Furthermore X, does not contain any of the AXp’s {i,7 + k}. Therefore
some subset of X, is an AXp and clearly this subset must contain feature 0. Thus
if @ is satisfiable, then there is an AXp which contains 0.

We now show that the converse also holds. If X' is an AXp of k(1y41) =1
containing 0, then it cannot also contain any of the pairs i,i + k (1 < i < k),
otherwise we could delete 0 and still have an AXp. We will show that this implies
that we can build a satisfying assignment u for ®. Consider first v = (v, ...,vn)
defined by v; =1ifi € X (0 <i < N) and v;4j = 1 if neither ¢ nor ¢ + k belongs
to X (1 <i<k), and v; = 0 otherwise (1 <i < N). Then k(v) = 1 by definition
of an AXp, since v agrees with the vector 1 on all features in X. We can also note
that vop = 1 since 0 € X. Since X does not contain ¢ and i + k (1 < i < k), it
follows that v; # v;1x. Now let u; = 1iff i € X A1 < ¢ < k. It is easy to verify that
d(u) = d(v) = K(v) = 1.
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Thus, determining whether x(1x41) = 1 has an AXp containing the feature 0
is equivalent to testing the satisfiability of ®. It follows that FRP is NP-hard for
monotonic classifiers by this polynomial reduction from SAT. ad

Example 24. Given a CNF ¢ := (x;Vxa)A(—-x1V—xg), To reduce ® to a monotonic
classifier k, we replace —x1 with x4, —z9 with x5 and —x3 with x4, and derive a
monotonic CNF & := (1 V ) A (24 V ). We then introduce the target variable
o and construct the monotonic classifier 5 := (g A ®) V [(x1 A z4) V (23 A 26)], We
omit (zg Aws) since there is no -z in ¢. Pick an instance v = (vg = 1,v1 = 1,vy =
1,3 = 1,v4 = 1,v5 = 1,v6 = 1). It can be verified that {1,4} is an AXp since for
any point u such that (u; = 1,u4 = 1), we have x(u) = 1. It can also be verified
that {0,1,6} containing the target feature 0 is an AXp, and more importantly, this
AXp corresponds to true points (1 = 1,23 = 0) of ® which confirm that & is
satisfiable. Finally, pick a true point (z1 = 0,22 = 1,23 = 0) of ®, we can construct
a weak AXp {0,2,4,6} of x such that the target feature 0 cannot be removed. One
can extract either AXp {0,2,4} or {0,2,6} from {0,2,4,6}.

Proposition 21. FRP for FBDD classifiers is NP-hard.

Proof. Let 1 be a CNF formula defined on a variable set X = {z1,...,zn} and
with clauses {w1,...,w,}. We aim to construct an FBDD classifier M (representing
a classification function k) based on ¥ and a target variable in polynomial time,
such that: v is SAT iff for k there is an AXp containing this target variable.

For any literal I; € w;, replace l; with l; Let ¢/ = {w],...,w),} denote the
resulting CNF formula defined on the new variables {z},... 2L, ... 2%, ... 2%}
For each original variable x;, let I f and [ i denote the indices of clauses containing
literal x; and —x;, respectively. So if i € I;r, then ;v; cwl,ifie I;, then —m:é- € wi.
To build an FBDD D from ¢': 1) build an FBDD D; for each w}; 2) replace the
terminal node 1 of D; with the root node of D;;1; D is read-once because each
variable az; occurs only once in 7.

Satisfying a literal xz € w} means z; = 1, while satisfying a literal ﬁxf € wy,
means x; = 0. If both x; and ﬂa:? are satisfied, then it means we pick inconsis-
tent values for the variable x;, which is unacceptable. Let us define ¢ to capture
inconsistent values for any variable x;:

= Vigien ((vie@* mf) " (vke@- s )) (62)

If I;r = (), then let <Vielj :cé) =0. If I; =0, then let (szelj —ur:é“) = 0. Any true
point of ¢ means we pick inconsistent values for some variable x;, so it represents an

unacceptable point of ¢. To avoid such inconsistency, one needs to at least falsify
either \/,_+ m§ or Vier- —m? for each variable x;. To build an FBDD G from ¢:
J J

1) build FBDDs Gj and G for V; .+ a:; and V- ﬂxg?, respectively; 2) replace
J J

the terminal node 1 of G;r with the root node of G, let G; denote the resulting
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FBDD; 3) replace the terminal 0 of G with the root node of Gj41; G is read-once
because each variable :c; occurs only once in ¢.

Create a root node labeled z§, link its 1-edge to the root of D, 0-edge to the root
of G. The resulting graph M is an FBDD representing  := (z) A ¢') V (=2 A ¢),
Kk is a boolean classifier defined on {zJ,z},..., 2%} and 2 is the target variable.
The number of nodes of M is O(n x m). Let Z = {(0,0),(1,1),...(n,m)} denote
the set of variable indices, for variable 1’;-, (i,7) € I.

Pick an instance v = {v],... ,vj-, ... } satisfying every literal of ¢’ (i.e. v;- =1
and v}“ = 0 for xé-, —a:f € ¢') and such that v) = 1, then ¥/(v) = 1, and so k(v) = 1.
Suppose X C Z is an AXp of v: 1) If {(4, ), (k,j)} C X for some variable x;, where
i€ []TF and k € I;, then for any point u of £ such that uz = vj- for any (i,j) € X,
we have k(u) = 1 and ¢(u) = 1. Moreover, if u sets u) = 1, then x(u) = 1 implies
Y'(u) = 1, else if u sets uf = 0, then k(u) = 1 because of ¢(u) = 1. x(u) = 1
regardless the value of uf), so (0,0) ¢ X. 2) If {(4,5), (k,4)} € X for any variable
x;, where 1 € If and k € I, then for some point u of k such that u; = vj- for any
(1,7) € X, we have ¢(u) # 1, in this case £(u) = 1 implies ¥'(u) = 1, besides, any
such u must set uJ = 1, so (0,0) € X.

If case 2) occurs, then 9 is satisfiable. (a satisfying assignment is z; = 1 iff
di e I;“ s.t. (4,4) € X). If case 2) never occurs, then 1 is unsatisfiable. It follows
that FRP is NP-hard for FBDD classifiers by this polynomial reduction from SAT.

g

Corollary 7. FRP for d-DNNF and DG classifiers is NP-hard.

Proof. The language FBDD is a subset of d-DNNF, so the hardness of FRP for
FBDD implies the hardness of FRP for d-DNNF. Additionally, the language FBDD
is a subset of DG, so the hardness of FRP for FBDD implies the hardness of FRP
for DG. O

Example 25. Given a CNF ¢ := (21 V 22 V 23) A (mx1 V —22) A (021 V 22 V
—z3). To reduce ¢ to a FBDD classifier x, we first construct a FBDD ¢/ :=
(x1 v ad v ad) A (23 v —2d) A (=23 Vv 23 v —23). We then build the constraint
¢ = [() A (m22 Vv —2d)] Vv [(2d v a3) A (=23)] V [(z1) A (—23)] and transform it
into a FBDD. Then we introduce the target variable xJ and construct our FBDD
classifier k 1= (z) A ¢') V (mz) A ¢) (See the Figure 6.4). Pick an instance v =
(v = 1,01 = 1,03 = 1,0} = 1,02 = 0,03 = 0,0} = 0,03 = 1,0 = 0). It can be
verified that {(1,1),(3,1)} is an AXp as it represent a unacceptable point of ¢. Let
X ={(0,0),(1,1),(2,2),(3,3)}, then it can be checked for any point u such that
(ud = 1,ut = 1,u3 = 0,u3 = 0), we have x(u) = 1, so X is an AXp, moreover,
it represents the true point (1 = 1,29 = 0,23 = 0) of ¢. Finally, choose a true
point (0,1, 1) of ¢, we can construct a weak AXp {(0,0),(1,2),(1,3),(2,1),(3,1)}
where feature (0,0) cannot be removed. In addition, it contains two AXps, namely,
{(0,0), (1,2), (2,1), (3, 1)} and {(0,0), (1,3), (2,1), (3, 1)}.
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Figure 6.4: FBDD classifier k. The left subgraph of the root node is the FBDD
representing the modified CNF ¢/. The right subgraph of the root node is the
FBDD representing the constraint ¢. Edges corresponding to value 0 (resp. 1) are
indicated by dashed lines (resp. solid lines). Non-terminals are represented as circle
nodes, terminal nodes are represented as boxes. The bold edges are consistent with
the given instance.

6.2.5 Summary of Results & Perspective

Table 6.1 summarizes the computational complexity results for FRP for a number
of well-known families of ML classifiers, most of which were proved in the previous
sections. Furthermore, the results from Table 6.1 will now be used for deriving
algorithms for all the families of classifiers shown in the table.

The presentation of algorithms is organized into two main groups. The first
group, described in Section 6.3, exploits membership in X5 to propose two different
algorithms. The first one builds on the QBF formulation. In this case, a logic en-
coding is required to guarantee that the prediction remains unchanged. The second
algorithm exploits abstraction refinement, and does not require a dedicated logic
encoding for each families of classifiers. The second group of algorithms, described
in Section 6.4, devises one dedicated algorithm for each family of classifiers.

6.3 Feature Relevancy: General Purpose Algorithms

This section proposes two classes of algorithms for deciding feature relevancy in the
case of an arbitrary ML classifier. The first class of algorithms builds on the QBF
formulation. The second class of algorithms exploits the paradigm of abstraction
refinement, which has been used in a wide range of practical settings.

In the rest of this section, we assume a given classifier M, and a logic encoding
that allows to decide the following predicates WAXp(X). To concretize the two
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Classifier Membership Hardness Reference
DT P P Proposition 17
DG NP NP Corollaries 5 and 7
XpG NP NP Corollaries 5 and 7
FBDD NP NP Corollary 5 and Proposition 21
d-DNNF NP NP Corollaries 5 and 7
Monotonic NP NP Corollary 5 and Proposition 20

Table 6.1: Summary of membership & hardness results

main approaches proposed in this section, we will consider RFs as the target family
of classifiers.

6.3.1 QBF Encodings

We outline the main ideas for developing QBF encodings for deciding feature rele-
vancy. Afterwards, we show how these ideas can be applied in the case of a concrete
family of classifiers. We can prove that deciding whether feature ¢ € F is included
in some explanations corresponds to deciding the following QBF statement:

(X € F).(t € X) ANWAXp(X) A [Ajex=WAXp(X \ {j})] (6.3)

The proof of Propositions 18 and 19 offers a solution for solving feature relevancy
in the case that computing AXps. However, the practical solutions hinted by the
proof reveal inefficiencies, namely testing in the worst case (and in polynomial time)
the predicate WAXp a total of m + 1 times, with m = |F|. This is also the case
with monotonic classifiers.

Below, we propose a different proof argument, which involves far fewer tests of
WAXp. This reduction in the number of runs of WAXp can have important practical
impact, including the algorithms proposed in Section 6.3. The proposed approach
hinges on the following result:

Proposition 22. Let X C F represent a pick of the features, such that, WAXp(&X')
holds and WAXp(X \ {t}) does not hold. Then, for any AXp Z C X C F, it must
be the case that t € Z.

Proof. Let Z C F by any AXp such that Z C X but t € Z. Clearly, by definition
WAXp(Z) must hold. As the predicate WAXp(X') is monotonic (i.e. if WAXp(&X)
holds for X C F, then WAXp(X”’) holds for any X C X’ C F), it is also the case
that WAXp(Z2’) must hold, with 2’ = ZU (X \ (Z U {t})), since Z C 2/ C F.
However, by hypothesis, WAXp(X \ {t}) does not hold; a contradiction. O

When compared with Propositions 18 and 19, Proposition 22 offers a simpler
test to decide whether ¢ is included in some AXp, in that it suffices to guess a set
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X which is a weak AXp, and such that removing ¢ will cause X \ {t} not to be a
weak AXp. An apparent drawback of this simpler test to decide AXp membership
is that the guessed set X may not itself represent an AXp. However, since any AXp
contained in X must include t, we can then extract an AXp starting from the set
X with existing techniques [198, 169, 168].

As a consequence of Proposition 22, a more compact QBF encoding can be
devised:

(X C F).(t € X) A WAXp(X) A =WAXp(X \ {t}) (6.4)

and can be further expanded as:
X CF).(t e X)A
[Yx e F). (A, (i =) = (5(x) = )| & (6.5)
[E!(x € F). (/\iex\{t}(mi = Ui)) A (k(x) # C)]

It should be noted that the QBF encoding for (6.5) uses only two levels of quantifiers
(i.e. 3V). However, one must introduce another level of quantification to account
for the auxiliary variables used for representing the matrix in clausal form. We
denote this QBF encoding as the 3V encoding.

Furthermore, it is important to note that there is indeed a pure 2QBF encoding
for feature relevancy. To achieve this, it suffices to 1) negate (6.4), and 2) decide
whether the resulting formula is false. The resulting adjusted formula is as follows:

V(X C F).((t € X) AWAXpP(X)) — WAXp(X \ {t}) (6.6)
and can be further expanded as:
V(X CF).(t ¢ X)V
[V(x €F). ( AN vi)) — (k(x) = c)] v (6.7)
B e B). (A, (@i = v)) A (5(x) # 0)]

In this case, the existentially quantified auxiliary variables, used for converting
the matrix to clausal form, do not change the number of levels of quantification.
For this resulting adjusted formula, we are now checking whether there is no AXp
containing the target feature t. When the answer is No, it confirms the existence of
an AXp X such that ¢t € X. We denote this alternative QBF encoding as the V3
encoding.

6.3.2 Case Study: Random Forest classifiers

We overview an existing propositional encoding for computing AXps of RFs. Then,
we build on this encoding to devise a 2QBF encoding. It should be noted that
the general-purpose algorithm for deciding feature relevancy described in the next
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section is also built on this propositional encoding.

Propositional encoding for RFs. We start by detailing how to encode the clas-
sification function k of an RF M. This section exploits the propositional encoding
proposed recently for computing AXps of RFs [198]2. The encoding comprises: 1)
the structure of an RF M, and 2) the majority votes. Moreover, we make the
following assumptions:

Assumption 2. Each ID; has n; distinct values or disjoint intervals. Values/intervals
are ordered (from 1 to n;).

To present the encoding of M = {7T1,...,T,}, we introduce some auxiliary
boolean variables and predicates:

1. gj, 1 <i<m,1 <35 < n. ¢ =1 if feature 7 assigned with the j-th
value/interval from its domain D;.
Dij, 1 <i<n,1<j< K, p;;=1if tree 7; predicts the class j.
Class(P) denotes the class (i.e. the label of a terminal node) of a path P.
L(P) denotes the set of literals of a path P.
Votes(c) denotes the number of trees picking the class ¢ € K.
To encode the structure of an RF M, one needs to encode each 7;. The encoding
of a tree is achieved by encoding all its paths. The set of paths P; of 7; is encoded

/\PePi (/\leL(P) [ — CIass(P)) (6.8)

Each feature i is assigned with exactly one value:

/\1§z‘§m Z::l G =1 (6.9)

Each tree 7; predicts exactly one class:

K
/\lgign ijlpm' =1 (6.10)

Both constraints in (6.9), (6.10) represent a cardinality constraint EqualsOne().
Next, we detail how to use cardinality constraints (AtLeastK()) to encode the
majority votes. Suppose w.lo.g. K = {¢j,c¢j,,cj,} such that j1 < jo < js,
and the prediction of the given instance is c¢j,. If (Votes(c;,) < Votes(cj,)) A
(Votes(cj,) > Votes(cj,)) then the prediction of M remains unchanged. Other-
wise, if (Votes(c;j,) > Votes(cj,)) V (Votes(c;,) < Votes(cj,)) then the prediction of
M changes.

The case where the prediction of M remains unchanged can be encoded with
the following constraints:

n n
Zz’:l Pija + Zizl i = 1+n (6.11)

20ne possible alternative was proposed in more recent work [54]. However, this encoding is less
optimized and so it does not scale as well in practice. Other representations of RFs [72, 29, 285]
are not applicable in this context.

ANl

as follows:
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Zz 1 Piga T Z TPijs 2 (6.12)

These require the use of K —1 cardinality constraints, each comparing the Votes(c;, )
with the votes of some other class.
The case where the prediction of M changes can be encoded with the following

constraints:
Z i1 Pin + Z _'pZ,]Q > (6.13)

> Piga Y, g =14 (6.14)

These require only 2 (instead of K — 1) cardinality constraints [198].

3V QBF encoding. This 2QBF formulation comprises two predicates. To encode
these two predicates, one needs to distinguish the set of picked features X and the
set of unpicked features F \ X. For any feature i € X, its value is fixed, which
means that there is exactly one ¢;; = 1. For any feature i ¢ &, its value is not
fixed, which means that any legal combination of the g;; is allowed, excluding
illegal combinations since they violate the constraint (6.9). Given (6.5), we use
two copies (M° and M?) of the same RF M to encode the problem. M encodes
WAXp(X) (i.e. the prediction of M remains unchanged, [x°(x) = ¢]), M! encodes
“WAXp(X \ {t}), or equivalently WCXp(F \ (X \ {t})) (i.e. the prediction of M
changes, [rk!(x) # c]). To present the constraints included in this QBF encoding,
we need to introduce additional auxiliary boolean variables:

1. s;, 1 <i<m. s;is a selector such that s; = 1 iff feature 7 is included in X.
Moreover, s; = 1 also means that feature ¢ must be fixed to its given value v;,
while s; = 0 means that feature ¢ can take any value from its domain.

2. w;, 1 <i<m. w; is a set of boolean variables (a bit vector) for ID; such that
|w;| = logyn;. Since values/intervals of I; are ordered, each value/interval
has an index (from 1 to n;) that can be represented by an assignment of wy.
Let g : B/"il — N be a function mapping binary numbers to the indices of
values/intervals of ;. The space of w; is usually larger than D;, but due to
constraint (6.9) that we always pick a value from D;, we leave some g(w;)
undefined. More importantly, w; is activated if i ¢ X (i.e. s; =0), and w; is
deactivated if i € X' (i.e. s =1).

Suppose, for the given instance v = (v1,...,v,,), that each value v; corresponds
to the first literal z;; of its domain I, so the instance is represented as v =
(21,15 -+ 2m1)- Let Q(k°) (vesp. Q(x')) denote the set of variables of the encoding
of M? (resp. M?).

The QBF encoding based on (6.5) (quantifiers and constraints) is as follows:

1. 3(s1y...ySm)

2. V(Wi,Wa, ..., Wp)

3. (L") UQ(KY))

4. /\1§z’§m(3i — 921)
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. /\1§z‘§m,1§j§ni(ﬂ3i AN(glwy) =j—1)— Q?,j) 3
[ﬁo(q?,b AR Q?,nl’ R qgn,l? te 7q9n,nm) = C}
. /\lgigm,i;ﬁt(si — Qf,1)
[f@t(ﬁ,p---,q{,w Qs Qo) F C]

9. s¢
The first existential quantifier picks a weak AXp candidate X. The universal quan-
tifier considers all possible values of F. The second existential quantifier assigns
values to the remaining variables. Line 4 states, for any feature i of M, if i € X,
then it is fixed to the given value. Line 5 states, for any feature i of MY, if i ¢ X,
then if the value represented by the w; equals j—1 then feature i is assigned the j-th
value/interval. Line 6 is the propositional encoding of M® comprising constraints
(6.8) to (6.12). Line 7 states that, for any feature i (except the target feature t) of
Mt if i € X, then it is fixed to the given value. Line 8 is the propositional encoding
of M! comprising constraints (6.8) to (6.10), and constraints (6.13) to (6.14). Line
9 states that target feature ¢ is included in &X.

© N o

V3 QBF encoding. Next, we detail the alternative 2QBF encoding based on (6.7),
we use M to encode “WAXp(X), and M? to encode WAXp(X \ {t}):
V(S1ymeey Smy W1, W2, oy, Wyy)
3(Q(r%) U Q(x"))
Ni<i<m(si = Q?J)
UO AR {Ko(qg,lﬁ AR q(l),nlv R q(r)n,,lv R qgn,nm) 7& C}
A1§i§m7i7ét(3i — Qf,1)
Algigm,i;«ét,lgjgni(_‘si ANgwi)=j—1)— Qf,ﬂ
/\lgjgnt((g(wt) =j—-1)— qg,j)
Ut A [Ht(qi,b AR qlls,nN cee 7qfn,17 ce 7q7tn,nm) = C}

9. =5, VolVvotl
The universal quantifier picks all possible subsets of F as well as all possible values
of F. The existential quantifier assigns values to the remaining variables. Line 4
is the propositional encoding of M?, and we associate it with a variable ¢°. Line
7 states that, for the target feature t of M?, it is always not fixed. Line 8 is the
propositional encoding of M!, and we also associate it with a variable of. Line 9
states that if feature t is picked and X is a weak AXp then X\ {t} is still a weak
AXp, which means there is no explanation containing target feature ¢. If this is not
the case, then there is an AXp containing ¢.

© N ok W

Example 26. Given the RF in Figure 6.1 and the instance v = (1, 10, 1), suppose
the target feature is 3. For feature 1, define variables {q1,1,¢1,2} such that g1 =1
iff 1 =0, 12 = 1iff z; = 1. For feature 2, define variables {¢21,¢22} such that
g2 = 1 iff zo0 < 20 and gop = 1 iff 29 > 20. And for feature 3, define variables
{431,932, ¢33} such that g37 = 1 iff 23 =0, g32 = 1 iff 23 = 1 and ¢33 = 1 iff

3_1 serves as offset since indices range from 1 to n; but binary numbers range from 0 to n; — 1.
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x3 = 2. Moreover, define bit vector w; = {wi} mapping w; = 0 to ¢1,; and
w1 = 1 to q1,2. Bit vector wp = {ws} mapping wa =0 to ¢2;1 and wa =1 to ga2.
Bit vector wg = {ws,ws 1} mapping wz = (0,0) to ¢g31, w3 = (0,1) to ¢z 2, and
w3 = (1,0) to g33. The given instance v = (1, 10, 1) is translated to (¢1,2,¢2.1,¢3,2)
and the QBF encoding based on (6.5) is as follows:
1. 3(81, S92, 83).V(’LU170, w20, W3,0, ’LU371).E|(Q(/€0) U Q(I{t)).
2. (51— al2) A(s2 = a81) A (s3 — qf)
3. (—|81 A wi o — ql 1) A (—\81 ANwip — q?’Q) A
(=52 A —wa0 = g51) A (ﬁsl Awao = 495) A
(—|83 AN w3 o A w31 — Q3 1)
(—|83 A wsog Awg1 — qs, 2) (—|83 ANwso A —w3 1 — qg73)
&
(
&

0( 0\ _
Q1 Ly 2 q2,17 Q2,27 ‘J3,1a %,27 q3’3) = C}
t
51— qf 2) (52 — CI2,1)
t ottt
Q1,17Q1,2a CIQ,17 42,2, 93,1> 432> Q3,3) # C}

S

7. (83)
Solving these QBF formulas, we will obtain an AXp {1,3} containing the target
feature.

6.3.3 Abstraction Refinement

This section details a general-purpose algorithm for feature relevancy, that solely
requires testing whether a set of features X C F is (or is not) a weak AXp, i.e.
it just requires the ability to decide (2.15). The novel algorithm iteratively refines
an over-approximation (or abstraction) of all the subsets S of F such that: i) S
is a weak AXp, and ii) any AXp included in S also includes the target feature ¢.
Formally, the set of subsets of F that we are interested in is defined as follows:

H £ {SCF|WAXp(S)AV(X CS).[AXp(X) — (t € X)]} (6.15)

Evidently, X € H iff X respects the conditions of Proposition 22.

The proposed algorithm iteratively refines the over-approximation of set H until
one can decide with certainty whether ¢ is included in some AXp. The refinement
step involves exploiting counterexamples as these are identified.* In practice, it will
in general be impractical to manipulate such over-approximation of set H directly.
As a result, we use a propositional formula (in fact a CNF formula) #, such that
the models of H encode the subsets of features about which we have yet to decide
whether each of those subsets only contains AXps that include ¢. (Formula # is
defined on a set of feature selectors S = {s1,..., i, }, where assigning s; = 1 denotes
that feature ¢ is included in a given set X'.) The algorithm then iteratively refines
the over-approximation by filtering out sets of sets that have been shown not to be
included in H, i.e. the so-called counterexamples.

“The approach is referred to as counterexample-guided abstraction refinement (CEGAR), since
the use of counterexamples in abstraction refinement can be related with earlier work (with the
same name) for model checking of software and hardware systems [75].
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Algorithm 9 Deciding feature relevancy for an arbitrary classifier

Input: Instance v, Target Feature ¢; Features F, Classifier

1: function FRPCGR(v,t; F, k)

2 H<+ 0 > H overapproximates H
3 repeat

4: (outc,s) <— SAT(H, st) > Pick candidate weak AXp containing ¢
5: if outc = true then

6 X—{ieF|s =1} > Set X: candidate weak AXp, t € X
7 Y {ieF|s =0} > Y represents F \ X
8 if “WAXp(X) then > Is X not a weak AXp?
9: H < H U newPosCl(Y; t, k) > X not weak AXp; block set
10: else > X is a weak AXp
11: if “WAXp(X \ {t}) then > X\ {t} not a weak AXp?
12: reportWeakAXp(X) > ¢ is included in any AXp Z C X
13: return true

14: H < H UnewNegCl(X;t, k) > t unneeded; block set
15: until outc = false

16: return false > If H becomes inconsistent, then no AXp contains ¢

Algorithm 9 summarizes the proposed approach®. Algorithms 10 and 11 provide
supporting functions. We now detail the key aspects of Algorithm 9. The algorithm
iteratively uses an NP oracle (in fact a SAT solver) to pick (or guess) a subset X of
F, such that any previously picked set is not repeated. Since we are interested in
feature t, we enforce that t € X. (This step is shown in lines 4 to 7.) Given a set X
of picked features, that includes the target feature ¢, we can check the conditions
of Proposition 22, namely:

1. X is a weak AXp; and

2. X\ {t} is not a weak AXp.
If the two conditions above hold, then we know that X belongs to set H. Further-
more, X represents a witness that there must exist some AXp that contains ¢, and
we know how to compute such an AXp by starting from X. If the picked set X is
not a weak AXp, then we can safely remove it from further consideration. This is
achieved by enforcing that at least one of the non-picked elements is picked in the
future. Why? Because we want to find a set that is at least a weak AXp, and the
set we picked is not one. (As can be observed H is updated with a positive clause
that captures this constraint, as shown in line 9.) After adding the new clause, the
algorithm repeats the loop. Otherwise, the picked set X is a weak AXp (and so the
first condition above holds). As a result, we now need to check whether removing
t makes X \ {t} not to be a weak AXp. If X\ {t} is not a weak AXp, then we
know that any weak AXp included in X must include ¢, and this also applies to
any (subset-minimal weak) AXp. In this case, the algorithm reports X’ as a weak
AXp that is guaranteed to be included in H. (This is shown in line 12.) It should

5The algorithms are parametrized with the arguments shown after the semi-colon.
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Algorithm 10 Create new positive clause (example)
Input: Set V; ¢, &, ...
1: function newPosCl(Y;t, &, .. .)
2: for all 2 € Y do

3 if “WAXp(F \ (V\ {i})) then
4 Y« Y\ {i}

5: W 4 (Vieysi)

6: return w

Algorithm 11 Create new negative clause (example)
Input: Set X; ¢, k&, ...
1: function newNegCl(X;t, K, .. .)
2: for alli € X\ {t} do

3: if WAXp(X \ {t,i}) then
4: X« X\ {i}

5: w (vieX\{t}_‘Si)

6: return w

be noted that X is not necessarily an AXp. However, by Proposition 22, X is guar-
anteed to be a weak AXp such that any of the AXps contained in X must include
feature t. Furthermore, we can extract an AXp from a weak AXp with a polynomial
number of calls to an oracle that decides (2.15), and in this case we are guaranteed
to always pick one that includes t. Finally, the last case is when allowing ¢ to take
any value does not cause the prediction to change. This means we picked a set X
that is a weak AXp, but not all AXps in X include the target feature ¢ (again due
to Proposition 22). As a result, we must prevent the same weak AXp from being
re-picked. This is achieved by requiring that at least one of the picked features not
to be picked again in the future. (This is shown in line 14. As can be observed, H
is updated with a negative clause that captures this constraint.)

With respect to the clauses that are added to H at each step, as shown in Al-
gorithms 10 and 11, one can envision optimizations (shown in lines 2 to 4 in both
algorithms) that heuristically aim at removing features from the given sets, and so
produce shorter (and so logically stronger) clauses. The insight is that any feature,
which can be deemed irrelevant for the condition used for constructing the clause,
can be safely removed from the set. For the experiments, we opted to use the sim-
plest approach for constructing the clauses, and so opting to reduce the number
of classification queries. Nevertheless, simple optimizations are easy to implement.
For example, with respect to the last case (i.e. adding a negative clause in line 14),
X\ {t} must be a weak AXp. From (2.15), this test requires deciding the satisfiabil-
ity of Ajex\(ey(®i = vi) A (k(x) # ¢), and getting an unsatisfiability result. Hence, a
simple refinement of X is given by the unsatisfiable core yielded by the satisfiability
test.

Given the above discussion, we can conclude that the proposed algorithm is
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sound, complete and terminating for deciding feature relevancy for arbitrary clas-
sifiers.

Proposition 23. For a classifier M, defined on set of features F, with £ mapping
F to I, and an instance (v,c), v € F, ¢ € K, and a target feature ¢t € F, Algorithm 9
returns a set X C F iff X is a weak AXp for (v, ¢), with the property that any AXp
Z C X is such that t € Z.

Proof. A set P respects set H if S is a weak AXp, and any of its subsets X’ that is
an AXp is such that t € X.

1. Algorithm 9 is terminating. At each step, the algorithm adds a clause that
guarantees that a picked assignment is not repeated. In total, 27 assignments
can be made to the s; variables. Hence, the main loop of Algorithm 9 executes
at most 21 times.

2. Algorithm 9 is sound. Given the conditions used to report a picked P, then
by Proposition 22 we know that this picked set respects set H, and so any
AXp contained in P will include t.

3. Algorithm 9 is complete. It is plain that each clause added to H blocks
only sets that ought not be included in H. The SAT solver will enumerate
assignments (i.e. and so a picked set) while that set is not yet blocked by
clauses added to H. If there exists a set P that respects H, then it will
eventually be picked.

0

6.4 Feature Relevancy: Classifier-Specific Algorithms

This section investigates the solution of deciding feature relevancy for specific fami-
lies of classifiers, including d-DNNF circuits and monotonic classifiers. Additionally,
it is worth noting that for DTs, as proven in Proposition 17, deciding feature rele-
vancy is in P.

6.4.1 Case Study: d-DNNF Circuits

This section details a propositional encodings that decide feature relevancy for d-
DNNFs. The propositional encoding follow the approach described in the proof
of Proposition 22, and comprise two copies (MY and M?) of the same d-DNNF
classifier M, M encodes WAXp(X) (i.e. the prediction of x remains unchanged),
M? encodes “WAXp(X \ {t}) (i.e. the prediction of s changes). The encoding
is polynomial in the size of classifier’s representation. The encoding is applicable
to the case k(x) = 0. The case k(x) = 1 can be transformed to —x(x) = 0,
so we assume both d-DNNF M and its negation - M are given. To present the
propositional encoding, we define some auxiliary boolean variables and predicates:
1. 7“;? (1 <j5<|M[,0<E<m), 7“;? is the indicator of node j in the k-th
replica, such that rf = 1 if the sub-d-DNNF rooted at node j in k-th replica

is consistent. Let the root node of d-DNNF be indexed by 1.
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Table 6.2: SAT encoding for deciding whether there is a weak AXp including feature
t, where 0 <k <m,1<i<m,1<j<|M|

Conditions ‘ Constraints ‘ Fml #

Ter(j), Feat(y,14), Sat(Lit(j), v;) r;? (6.2.1)
Ter(j), Feat(j,4), —=Sat(Lit(j),v;),i = k r (6.2.2)
Ter(j), Feat(j,4), ~Sat(Lit(y ) i)yt £k r§?<—>—|si (6.2.3)
—Ter(j), Oper(j) = 7% < Viechildren(j) 7T | (6:2:4)
—Ter(j), Oper(j) = 7% < Niechidren(y) 7T | (6:2:5)

k(v) =0 -7 (6.2.6)

k(v)=0 s>t (6.2.7)

St (6.2.8)

2. Ter(j) = 1if the node j is a terminal node, otherwise node j is a non-terminal
node.

3. Feat(j,7) = 1 if the terminal node j is labeled with feature i.

4. Sat(Lit(j),v;) = 1 if for terminal node j, the literal on feature i is satisfied by
the value v;.

Propositional encoding. The idea behind this encoding is checking consistency
of the d-DNNF classifier. It is applicable to the case k(x) = 0. The case k(x) =1
can be transformed to the —x(x) = 0, so we assume both d-DNNF M and its
negation =M are given. This encoding is summarized in Table 6.2. As literals are
terminal d-DNNFs, the values of the selector variables only affect the values of the
indicator variables of terminal nodes. Constraint (6.2.1) states that for any terminal
node j whose literal is consistent with the given instance, its indicator 7“;? is always
consistent regardless of the value of s;. On the contrary, constraint (6.2.3) states
that for any terminal node j whose literal is inconsistent with the given instance,
its indicator rf is consistent iff feature ¢ is not picked, in other words, feature ¢ can
take any value. Because replica k (k > 0) is used to check the necessity of including
feature k£ in X', we assume the value of the local copy of selector s is 0 in replica k.
In this case, as defined in constraint (6.2.2), even though terminal node j labeled
feature k has a literal that is inconsistent with the given instance, its indicator rf
is consistent. Constraint (6.2.4) defines the indicator for an arbitrary V node j.
Constraint (6.2.5) defines the indicator for an arbitrary A node j. Together, these
constraints declare how the consistency is propagated through the entire d-DNNF.
Constraint (6.2.6) states that the prediction of the d-DNNF classifier M remains
0 since the selected features form a weak AXp. Constraint (6.2.7) states that if

feature i is selected, then removing it will change the prediction of M. Finally,
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constraint (6.2.8) indicates that feature ¢ must be included in X.

Example 27. Given the d-DNNF classifier of Figure 6.2 and the instance (vi,¢1) =
((0,1,0,0),0), suppose that the target feature is 3. We have selectors s = {s1, s2, s3, 54},
and the encoding is as follows:

L (Vi) Ao A Ao rdArd) Al erdved) A

(12 < P ATINA (1 < PO ATIN A (1) 5 =51 A (PG < DA (18 <3 DA (1Y) < —83) A

(ri1 € 2s2) A (rfy € ms2) A (115 € =sa) A (2r]) A (s3)
2. (VI AT ori A AT rdAr) A (2o rdvrd) A
(12 g AT A (8 = r3s AT A (rd 0 =s1) A (1R < DA (rg < DA (3, < 1A
(rf1 ¢ 284) A (115 <3 ms2) A (15 4 254) A (s3> 79)
Given the AXps listed in Example 20, by solving these formulas we will either obtain
{1,3} or {1,4} as the AXp.

6.4.2 Case Study: Monotonic Classifiers

This section adapts the previous proposed general-purpose algorithm to decide fea-
ture relevancy in the case of monotonic classifiers. No assumption is made regarding
the actual implementation of the monotonic classifier.

Given a monotonic classifier M and an instance v = (v1,...,0y), let v =
(vLys.-.,vLy) be the lower bound of v and vy = (vy,,...,vy,) be the upper
bound of v, that is, vi < v < vy. Define v; (vy) as the updated lower (upper)
bound with respect to a given Z C F.

i = A (on =) A\ (on, = AG)) (6.16)

€2 jg¢Z
vu = N\ (o, =vi) N\ (vo, = () (6.17)
€2 j2Z

Features not in Z are deemed universal, we need to account for the range of possible
values that these universal features can take. For that, we update lower and upper
bounds on the predicted classes. For the features in Z we must use the values
dictated by v. Next, define WAXp predicates as follow:

WAXp(X) := [£(VL) = &(Vu)] (6.18)

So “WAXp(X) := [k(VL) # k(Vy)], also note that “WAXp(X) is equivalent to
WCXp(F\ X). Given a X, if the lower and upper bounds do not differ, then X is a
weak AXp. Otherwise, F\ X is a weak CXp. Each execution of the predicate WAXp
comprises at most two calls to the classification function «. Besides, for different
set Z, one needs to obtain updated lower bound v; and upper bound vy before
invoking the predicates WAXp(-) in the algorithms Algorithm 9, Algorithm 10 and
Algorithm 11.

Example 28. We consider the monotonic classifier of Figure 6.3, with instance
(v,e) =((1,1,1,1),1). Table 6.3 summarizes a possible execution of the algorithm
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Table 6.3: Example algorithm execution for ¢t = 4

s X y k(vy) k(vy) Decision New clause Line
(0,0,0,1) {4} {1,2,3} 0 1 New pos clause  (s1VsaVsg) 9
(1,0,0,1)  {1,4} {2,3} 0 1 New pos clause (s2V s3) 9
(1,1,0,1) {1,2,4} {3} 1 1 New neg clause (ms1Vos) 14
(1,0,1,1) {1,3,4} {2} 1 1 New neg clause (ms1V-s3) 14
(0,1,1,1) {2,3,4} {1} 1 1 New pos clause (s1) 9

— — — - - ‘H inconsistent - 16

Table 6.4: Example algorithm execution for ¢t =1

S X Yy k(vy) k(vy) Decision New clause Line
(1,0,0,0) {1} {2,3,4} 0 1 New pos clause  (s2Vs3Vsy) 9
(1,1,0,0) {1,2}  {3,4} 1 1 Weak AXp: {1,2} - 12

when ¢ = 4. Similarly, Table 6.4 summarizes a possible execution of the algorithm
when ¢ = 1. (As with the current implementation, and for both examples, the
creation of clauses uses no optimizations.) In general, different executions will be
determined by the models returned by the SAT solver.

6.5 Experimental Results

This section reports the experimental results of deciding feature relevancy for the
classifiers studied in the earlier sections, namely: random forests, d-DNNF circuits,
and monotonic classifiers. For each case study, the used benchmarks and the train-
ing/compilation procedure will be described, followed by a table summarising the
results will be presented. At last, the results will be discussed. All the experiments
were performed on a MacBook Pro with a 6-Core Intel Core i7 2.6 GHz processor
with 16 GByte RAM, running macOS Monterey. Prototype implementations of the
proposed approaches were implemented in Python. The PySAT toolkit [184]% was
employed to implement the propositional encoding as well as the positive and neg-
ative clauses of the CEGAR approach. Except the case of solving 2QBF instances,
PySAT was configured to run the Glucose 4 [30]" solver.
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6.5.1 Case Study 1: Random Forests

The QBF solvers we used are DepQBF [242]% and CAQE [290]°. Moreover, we
combined CAQE with preprocessor Blogger [46]!°. We ran both QBF solvers with
their default configurations. Moreover, all presented algorithms are implemented
in Python and are publicly available in the repository .

Benchmarks & Training. The 27 datasets are split into two sets of datasets: the
first one contains 9 small datasets that have at most 16 features (the average number
of features is 8.4), and used to compare the performances of the two methods; the
second one contain 18 datasets, with an average number of 21.5 features, which
mainly serves to assess the CEGAR approach. The RF models are trained with
varying the maximum depth from 4 to 6 and the number of trees from 20 to 100, so
that we obtain the most accurate models. (These numbers are in line with RFs used
in practice.) As aresult, small RFs (i.e. with a number of trees less or equal 30) form
the first set and the large RFs (with 100 trees) constitute the second benchmark set.
For each dataset, a suite of 200 samples randomly picked is tested or all input data
if there are less than 200 rows in the dataset. Moreover, the candidate feature set
in the query is picked randomly for each test. (Hence, for each dataset, we generate
200 feature relevancy queries.) The time limit for deciding one query was set to
1200 seconds, and we capped the time for finishing 200 queries by 5 hours.

Results: QBF versus CEGAR. Table 6.5 summarizes the comparison results
of QBF and CEGAR. Unsurprisingly, we observe that the resulting QBF encodings
are somewhat larger that the SAT encodings. Indeed, the QBF formulation encodes
two copies of the RF, i.e. M? and M!, whereas the CEGAR encodes only one, i.e.
M?. In addition, we note that encoding M requires (K —1) cardinality constraints,
therefore for a multi-class problem the encoding size of QBF can be larger than the
CEGAR SAT encoding. Table 6.5 also shows the average running times of both
approaches for solving one feature relevancy query. (Note that the reported average
running times are computed on successful tests, and so the tests that time out are
omitted.) Clearly, the results show that CEGAR outperforms QBF on all datasets.
More importantly, the running times for CEGAR are most often negligible and at
least one order of magnitude smaller than running times for QBF. Furthermore,
we observe that in some datasets, QBF solvers were unable to terminate for some
tests (e.g. 2 timeouts (resp. 1) for CAQE (resp. DepQBF) with crz dataset (resp.
glass2 dataset)) or all tests (e.g. DepQBF with crz dataset).

Shttps://github.com/pysathq/pysat
"https://www.labri.fr/perso/lsimon/glucose/
Shttps://github.com/lonsing/depgbf
%https://github.com/ltentrup/caqe

Ohttp://fmv. jku.at/blogger/

"https://github. com/XuanxiangHuang/frpRF-experiments
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https://www.labri.fr/perso/lsimon/glucose/
https://github.com/lonsing/depqbf
https://github.com/ltentrup/caqe
http://fmv.jku.at/bloqqer/
https://github.com/XuanxiangHuang/frpRF-experiments
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Results: Alternative QBF encoding. Table 6.6 summarizes the results of the
QBF encoding based on Equation (6.7). Compared with the results reported in
Table 6.5, this method produces much larger encoding, the size of the encoding is
roughly 3 times as large as that reported in Table 6.5. In terms of runtime, when
running DepQBF on these QBF examples, it failed to solve all QBF queries for
datasets crz, ecoli, glass2, house_wvotes 84 and new__thyroid. For the rest datasets,
the average runtime is one order of magnitude larger than the average runtime of
running DepQBF on the QBF examples reported in Table 6.5, this indicates that
the encoding based on (6.5) is more efficient than the encoding based on (6.7).
When running CAQE on these QBF examples, the average runtime (except crz),
is approximately 3 times that of the runtime reported in Table 6.5.

Results: CEGAR. Since the main goal is to assess the scalability of the CE-
GAR method on large RFs (of sizes common in practical applications), instances
obtained from RFs with 100 trees (as described earlier) were also considered. The
number of nodes in these RFs ranges from 1426 to 10176. The results are shown
in Table 6.7. As can be observed, the average running times of CEGAR to decide
one feature relevancy query take from 0.1s to 6.9s (resp. 0.1s to 62s) for outputs
“Yes” (resp. “No”). It should be underscored that CEGAR computes in general
more counterexamples to solve a negative decision (i.e. answer No), as this can
be confirmed from the results, where the number of calls to the SAT oracle are
substantially larger for decisions answered No on the majority of datasets (e.g. 11
261 calls for No against 285 for Yes, for kr_vs_kp dataset). As a result, and with
a few exceptions, the running times of feature relevancy tests of output No are
larger than tests answered Yes. Also, we emphasize that in contrast to the QBF
solvers, no timeouts were observed with the CEGAR method, for the results shown
in both tables. Additional results of the QBF method based on (6.5) (since this
encoding is more efficient) on the second set of RFs are detailed in Table 6.8; as
can be observed, the QBF method times out on the vast majority of the instances.

As can be concluded from the results, the CEGAR-based algorithm is effective in
practice and usable on large size RFs induced from realistic datasets. Furthermore,
the results also indicate that CEGAR substantially outperforms the encoding to
QBF, being able to solve a vast number of feature relevancy queries that QBF
solvers are unable to.

6.5.2 Case Study 2: d-DNNF Circuits

We consider SDDs (note that SDDs are a subset of d-DNNFs) as our target classifier.
SDDs support polynomial time negation, so given a SDD M, one can obtain its
negation - M efficiently. All presented algorithms are implemented in Python and
are publicly available in the repository '2.

2https://github. com/XuanxiangHuang/frp-experiment


https://github.com/XuanxiangHuang/frp-experiment

6.5. EXPERIMENTAL RESULTS 88

103 : :
—o— Mushrooms
—=— Plants
——  Audio
1024 W
—— Jester
\Q; //
E 10
2 J
2
: : ot
100 P
107!

60 65 70 75 80 85 90 95 100
instances

Figure 6.5: Running times of Audio, Jester, Mushrooms and Plants.

Benchmarks & Compilation. For SDDs, we selected 11 datasets from Density
Estimation Benchmark Datasets!3. [243, 151, 226]. 11 datasets were used to learn
SDD via using LearnSDD [38] (with parameter mazEdges=20000). The obtained
SDDs were used as binary classifiers (albeit the selected circuits/datasets might not
originally target classification tasks.) SDD models were loaded by using PySDD
package.

Results of SDDs. For each SDD classifier, 100 test instances were randomly
generated. All tested instances have prediction 0. (We didn’t pick instances pre-
dicted to class 1 as this requires the compilation of a new classifier which may have
different size). Besides, for each instance, we randomly picked a feature appearing
in the model. Hence for each SDD, we solved 100 queries. Note that for SDDs
learned from LearnSDD, the reported number of features includes both original
features and generated features (e.g. for Audio the original number of features is
100). Also note that PySDD offers canonical SDDs whose conditioning may take
exponential time in the worst-case. Nevertheless, this worst-case behaviour was not
observed in the experiments. Table 6.9 summarizes the obtained results of deciding
feature relevancy on SDDs. It can be observed that the number of nodes of the
tested SDD is in the range of 3704 and 9472, and the number of features of tested
SDD is in the range of 183 and 513. Besides, the percentage of examples for which
the answer is Y (i.e. target feature is in some AXp) ranges from 85% to 100%.
Regarding the runtime, the largest running time for deciding one feature relevancy
query can exceed 15 minutes. But the average running time to solve a query is less
than 25 seconds, this highlights the scalability of the proposed encoding. However,

3https://github.com/UCLA-StarAl/Density-Estimation-Datasets
“https://github.com/ML-KULeuven/LearnSDD
https://github. com/wannesm/PySDD
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notice that for SDDs representing Audio, Jester, Mushrooms and Plants, the largest
running time for deciding one feature relevancy query can exceed 3 minutes. As
a result, we analyzed these results in greater detail. Figure 6.5 depicts a cactus
plot showing the running time (in seconds) of deciding feature relevancy queries
for these 4 datasets (note that the runtime axis is scaled logarithmically, and the
instances axis starts from 60). As can be observed, for each of dataset, around 85
queries can be solved in a few seconds. This means that the running times of the
method only exceeds a few seconds for a few concrete examples, and for a few of
the datasets considered.

6.5.3 Case Study 3: Monotonic Classifiers
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Figure 6.6: CPU time calling DLN’s predict function.

We consider the Deep Lattice Network (DLN) [365] ¢ as our target classifier.
DLN is an architecture integrating linear embeddings, ensembles of lattices and
calibrators. The trained networks are guaranteed to be monotonic with respect to
a user-specified subset of the inputs. Since our approach is model-agnostic, it could
also be used with other approaches for learning monotonic classifiers [352, 236] in-
cluding Min-Max Network [324, 89] and COMET [328]. Moreover, all presented
algorithms are implemented in Python and are publicly available in the reposi-
tory 17,

Benchmarks & Training. We selected five publicly available datasets: aus-
tralian, breast_cancer, heart_c, nursery [282] ¥ and pima [9] 1°. In this case

https://github. com/tensorflow/lattice
"https://github.com/XuanxiangHuang/frp-experiment
8https://epistasislab.github.io/pmlb/index.html
Yhttps://sci2s.ugr.es/keel/dataset.php?cod=21
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Figure 6.7: Number of calls to DLN’s predict function.

study, we used the three-layer DLN architecture: Calibrators — Random Ensemble
of Lattices — Linear Layer. All calibrators for all models used a fixed number of
20 keypoints. And the size of all lattices is set to 3. Table 6.10 shows the summary
of trained DLN models. To evaluate the runtime performance (i.e. CPU time for
predicting one datapoint) of the trained DLN, we ran trained DLNs on 10000 ran-
domly picked datapoints from feature space, and report the maximum and average
time (in seconds) for predicting one data point.

Results. Table 6.11 summarizes the experimental results. For each DLN model,
we randomly picked 200 tested instances, and for each tested instance, we randomly
pick a feature. Hence for each DLN, we solved 200 queries. The use of a SAT solver
has a negligible contribution to the running time. Indeed, for all the examples
shown, at least 97% of the running time is spent running the classifier. This should
be unsurprising, since the number of the iterations of Algorithm 9 never exceeds a
few hundred. (The fraction of a second reported in some cases should be divided
by the number of calls to the SAT solver; hence the time spent in each call to the
SAT solver is indeed negligible.) As can be observed, the percentage of examples
for which the answer is Y (i.e. target feature is in some AXp and the algorithm
returns true) ranges from 35% to 74%. There is no apparent correlation between
the percentage of Y answers and the number of iterations. The large number of
queries accounts for the number of times the DLN is queried by Algorithm 9, but
it also accounts for the number of times the DLN is queried for extracting an AXp
from set X (i.e. the witness) when the algorithm’s answer is true. A loose upper
bound on the number of queries to the classifier is 4 x NS + 2 x |F|, where NS
is the number of SAT calls, and |F| is the number of features. Each iteration of
Algorithm 9 can require at most 4 queries to the classifier. After reporting X, at
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most 2 queries per feature will be required to extract the AXp (see Section 2.3.3).
As can be observed this loose upper bound is respected by the reported results.

Figure 6.6 depicts a cactus plot showing the accumulated CPU time (in seconds)
calling DLN’s predict function for deciding feature relevancy queries. Figure 6.7
depicts a cactus plot showing accumulated number of calls to DLN’s predict function
for deciding feature relevancy queries. It should be noted that the Y-axis is scaled
logarithmically.

6.6 Summary

This chapter studies the problem of feature necessity and feature relevancy in logic-
based explanations for several families of classifiers. The chapter starts by studying
the complexity of both feature necessity and feature relevancy. Given the complexity
gap between the two problems, most of the problem is dedicated to the feature
relevancy. For the concrete case of feature relevancy, a number of membership
and hardness results are proved. The chapter also devises a number of algorithms
for deciding feature relevancy. This includes algorithms specific to each family of
classifiers, but also general purpose algorithms, that can be used with any family
of classifiers. The experimental results demonstrate that feature relevancy can be
decided efficiently for a large range of families of classifiers. This observation also
holds for the case of more complex classifiers, e.g. random forests.

A number of lines of research can be envisioned to continue this work. One line
of work is to consider more sophisticated relevancy queries.
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Table 6.6: Deciding feature relevancy results of alternative QBF encoding.

Dataset m K i Y% QBF DepQBF CAQE
#N A% vars clauses Yes No Yes No
crx 15 2 522 81.8 90 7650 23670 — — 7.85 93.39*
ecoli 7 5 526 87.8 60 19680 54517 — — 18.78  16.59
glass2 9 2 348 84.8 87 7003 20988 — — 444  10.89
hayes_roth 4 3 336 84.2 71 12846 34457 391 6.60 7.61 7.24
votes_ 84 16 2 464 91.3 97 3645 11440 — — 1.59 1.96
iris 4 3 224 100 52 13042 34969 27.93 40.92 7.02 6.70
mofn 10 2 582 86.3 40 2672 9397 2.72 36.35 0.84 0.89
monk3 6 2 472 943 22 2778 9148 0.27 1.128 0.79 0.78
n_ thyroid 5 3 284 100 83 15003 40979 — — 8.7 9.67

Table 6.7: Assessing CEGAR approach on larger datasets and RFs trained with 100
trees. Column AXp reports the average size of computed AXps for queries answered
Yes. Column Time reports average runtimes (in seconds) for solving one feature
relevancy query. Column #SAT calls reports the average number of oracle guesses
(counterexamples) performed in the CEGAR loop (i.e. number of iterations) to
solve one feature relevancy query. The remaining columns have the same meaning
as described in the caption of Table 6.5.

Dataset m K RF CNF Y% AXp Time #SAT calls
#N A% vars clauses sz Yes No Yes No
agaricus_lepiota 22 2 1866 99.2 3343 6310 89 10 02 4.7 52 2538
allbp 29 3 2492 96.5 16038 26452 47 4 26 43 65 261
ann_thyroid 21 3 2192 989 16802 27509 26 6 1.0 1.0 33 75
appendicitis 7 2 1426 90.9 4674 8736 97 4 01 01 4 20
collins 23 13 2890 86.6 24772 42186 95 12 34 04 38 16
hypothyroid 25 2 2034 959 4768 9347 53 4 04 13 32 324
ionosphere 34 2 1566 87.1 5922 12594 98 19 64 0.6 1272 232
kr_vs_kp 36 2 2268 94.2 2952 8102 71 11 0.6 205 285 11261
magic 10 2 2990 81.9 10631 22403 86 6 02 0.1 14 36
mushroom 22 2 2078 99.0 3374 6386 90 1 02 28 46 1375
pendigits 16 10 3098 85.0 22656 38420 99 10 16 1.5 18 70
ring 20 2 2458 84.1 9113 18815 68 15 02 05 20 130
segmentation 19 7 2288 92.8 20822 35114 91 9 16 4.5 45 290
shuttle 9 7 2618 99.8 19543 31942 78 4 09 09 14 31
texture 40 11 3040 81.4 27018 47325 97 23 6.9 620 210 5522
twonorm 20 2 3100 93.5 11729 24904 94 12 0.3 10.6 25 2606
vowel 13 11 10176 90.4 44530 88700 98 9 41 5.7 19 56
waveform_ 21 21 3 3100 83.5 22446 39732 75 10 1.2 126 47 943
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Table 6.8: QBF method solves queries for dataset crr and datasets in Table 6.5.
The first row shows the timeout information for dataset crx. The rest show the
timeout information for datasets in Table 6.7. #Test(TO) shows the number of
feature relevancy queries tested in 5 hours, inside the parentheses is the number of
timeout queries. If the query is solved, then its total and average time (in seconds)
are reported in Column Yes Time and No Time. A ‘*’ indicates out of time.

Datasets DepQBF CAQE
#Test(TO) Yes Time No Time #Test(TO) Yes Time No Time
Total Avg. Total Avg. Total Avg. Total Avg.
crx 21(14) 614.33 122.87 68.43 68.43 200(2) 21344 121 770.6  36.7
agaricus_ lepiota 17(15) 0.1 0.1 0.0 0.0 68(13) 2138.7 42.8  36.4 9.1
allbp 17(15) * £ 00 00 17(15) * 00 00
ann_thyroid 23(14) 1.9 0.6 7315 146.3 49(13) 1083.6  180.6 909.1  31.3
appendicitis 19(14) 1095.0  273.7 * * 27(13) 15163 1264 6435 643.5
collins 16(15) * * 0.0 0.0 16(14) 1199.4 1199.4 0.0 0.0
hypothyroid 15(15) * * * * 18(13) 9731  486.6 698.4 349.2
ionosphere 16(15) 0.2 0.2 * * 15(15) * * * *
kr vs kp 21(14) 814.9 163.0 0.0 0.0 29(13) 1430.6  102.2 0.0 0.0
magic 22(14)  638.2 91.2 * * 20(13) 1692.7 4232 522 26.1
mushroom 18(14) 1018.1 1018.1 0.0 0.0 37(12) 3238.7 161.9 0.0 0.0
pendigits 16(15) 1.8 1.8 * * 17(14) 6479 3239 * *
ring 20(14) 1103.3  220.7 * * 72(14) 707.6 147 573.6 574
segmentation 16(15) 1.2 1.2 * * 17(14)  307.1  153.5 * *
shuttle 16(15) 1.2 1.2 * * 24(12) 2148.2  268.5 425.8 141.9
texture 15(15) * * * * 15(15) * * * *
twonorm 18(14) 15.9 8.0 383.2 383.2 16(14) * * 23.5 235
vowel 21(14) 7156  119.3 * * 17(12) 3500.2  875.1 * *
waveform 21 17(15) 1.6 0.8 * * 15(15) * * * *
Table 6.9: Deciding feature relevancy for SDDs.

Name SDD Y% CNF Runtime (s)

m  #N vars clauses Max Avg.

Accidents 415 8863 97 26513 78276 56.4 3.5

Audio 272 7224 88 31148 100972 663.1 22.0

DNA 513 870 91 29155 91288  86.3 11.0

Jester 254 7857 85 35998 121508 362.1 22.7

KDD 306 8109 99 26402 83480 111.2 2.8

Mushrooms 248 7096 91 23874 82112 266.3 15.8

Netflix 292 7039 94 25520 83324 105.7 4.2

NLTCS 183 6661 100 19817 58494 1.4 0.5

Plants 244 6724 97 25356 84782 950.7 20.6

RCV-1 410 9472 90 33438 102500 153.6 11.2

Retail 341 3704 87 10601 28342 1.8 1.1
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Table 6.10: Summary of DLN features

Test #Parameters predict(v) Time

DLN Accuracy
Max Avg.
australian (aus) 88% 775 0.74 0.08
breast__cancer (b.c.) 67% 429  0.30 0.06
heart_c 73% 755  0.67 0.08
nursery 76% 415  0.32 0.06
pima 82% 655 0.52 0.06
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CHAPTER 7

The Inadequacy of SHAP
scores: Initial Results

Explainable Artificial Intelligence (XAI) is widely considered to be critical for build-
ing trust into the deployment of systems that integrate the use of machine learning
(ML) models. For more than two decades Shapley values have been used as the
theoretical underpinning for some methods of XAI, some of which now rank among
the most widely used, including in high-risk domains.

This chapter proves that the use of the well-known SHAP scores for explain-
ability can yield misleading information about the relative importance of features
for predictions. This chapter identifies a number of ways in which misleading in-
formation can be conveyed to human decision makers, and proves that there exist
classifiers which will yield such misleading information. Furthermore, this chap-
ter offers empirical evidence that such theoretical limitations of SHAP scores are
routinely observed in ML classifiers.

7.1 Introduction

Feature attribution is one of the most widely used approaches in machine learning
(ML) explainability, begin implemented with a variety of different methods [332,
299, 309]. Moreover, the use of Shapley values [318] for feature attribution ranks
among the most popular solutions [332, 333, 247, 84, 246], offering a widely accepted
theoretical justification on how to assign importance to features in machine learn-
ing (ML) model predictions. One notable example is the tool SHAP [247], which
endeavors to approximate the so-called SHAP scores—instantiations of Shapley
values in the context of explainability. Despite the success of using SHAP scores
for explainability, it is also the case that their exact computation is in general in-
tractable [21, 22, 105, 106], with tractability results for some families of boolean
circuits [21, 22]. Furthermore, the definition of SHAP scores (as well as its use
in explainability) is purely axiomatic, i.e. there exists no formal proof that SHAP
scores capture any specific properties related with explainability (even if defining
such properties might prove elusive).

Feature selection represents a different alternative to feature attribution. The
goal of feature selection is to select a set of features as representing the reason for a
prediction, i.e. if the selected features take their assigned values, then the prediction
cannot be changed. There are rigorous [253] and non-rigorous [300] approaches for
selecting the features that explain a prediction. This chapter considers rigorous
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(or model-precise) approaches for selecting such features. Furthermore, it should
be plain that feature selection must aim for irredundancy, since otherwise it would
suffice to report all features as the explanation. Given the universe of possible
irreducible sets of feature selections that explain a prediction, the features that do
not occur in any such set are deemed irrelevant [167] for a prediction; otherwise
features that occur in one or more feature selections are deemed relevant [167].

Since both feature attribution and feature selection measure contributions of
features to explanations, one would expect that the two approaches were related.
However, this is not the case. We observed that SHAP scores could produce mis-
leading information about features [173, 174, 175], in that irrelevant features (for
feature selection) could be deemed more important (in terms of feature attribution)
than relevant features (also for feature selection). Clearly, misleading information
about the relative importance of features can easily induce human decision makers
in error, by suggesting the wrong features as those to analyze in greater detail. Fur-
thermore, situations where human decision makers can be misled are inadmissible in
high-risk or safety-critical uses of ML. The existence in practice of those misleading
issues with SHAP scores for explainability is evidently problematic for their use as
the theoretical underpinning of feature attribution methods. This chapter proves
that the identified misleading issues with SHAP scores for explainability exists for
boolean functions with arbitrarily larger number of variables, and one can easily
construct functions which exhibit the identified misleading issues. Empirically, this
chapter studies a number of non-boolean classifiers, and shows that the conclusions
of earlier work also apply to those non-boolean classifiers.

This chapter is organized as follows. In Section 7.2, we briefly review key con-
cepts and introduce supplementary ones that are essential for this chapter. Sec-
tion 7.3 relates the chapter’s contributions with earlier work. Section 7.4 uncovers
a number of possible issues that SHAP scores may exhibit, which would confirm the
inadequacy of SHAP scores for explainability, and illustrates the existence of those
issues in a number of motivating example boolean functions. Section 7.5 presents
the chapter’s main results, proving that all the issues with SHAP scores for ex-
plainability occur for boolean functions with arbitrarily larger number of variables.
Section 7.6 summarizes identified issues with SHAP scores in a number of decision
trees, d-DNNF circuits and OMDDs, all of which are either available in published
works, or are learned from publicly available datasets. Section 7.7 discusses several
potential threats to the validity of the results in this chapter. Section 7.8 concludes
the chapter.

7.2 Preliminaries

The preliminary knowledge of this chapter consists of three parts. The first part,
which covers SHAP scores, is elaborated on in Section 2.3. The second part, focusing
on the concept of feature relevancy in formal XAI, can be found in Section 6.2. The
third part establishes a connection between the CXp and Adversarial Examples.
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We will use the predicate Relevant(i) to denote whether feature 7 is relevant, and
predicate Irrelevant(i) to denote whether feature i is irrelevant.

Besides, for the purposes of this chapter, we consider solely a uniform input
distribution, and so the dependency on the input distribution is not accounted for.
A more general formulation is considered in related work [21, 20, 22, 106, 105].
However, assuming a uniform distribution suffices for the purposes of this chapter.

How irrelevant are irrelevant features? The fact that a feature is declared
irrelevant for a local explanation problem & = (M, (v, ¢)) is significant. Given the
minimal hitting set duality between AXp and CXp, then an irrelevant features does
not occur neither in any AXp, nor in any CXp. Furthermore, from the definition
of AXp, each AXp for £ can be represented as a logic rule. Let R denote the set of
all irreducible logic rules which can be used to predict ¢, given the literals dictated
by v. Then, an irrelevant feature does not occur in any of those rules.

To further strengthen the above discussion, let us consider a (feature selection
based) explanation X C F such that WAXp(X) holds (i.e. (2.15) is true, and so
X is sufficient for the prediction). Moreover, let i € F be an irrelevant feature,
such that ¢ € X. Then, by definition of irrelevant feature, there must exist some
Z C (X \ {i}), such that WAXp(Z) also holds (i.e. Z is also sufficient for the
prediction). It is simple to understand why such set Z must exist. By definition of
irrelevant feature, and because i € X', then X is not an AXp. However, there must
exist an AXp W C X which, by definition of irrelevant feature, must not include i.
Furthermore, and invoking Occam’s razor', there is no reason to select X' over Z,
and this remark applies to any set of features containing some irrelevant feature.

Adversarial Examples vs (Ir)relevant Features. Besides studying the rela-
tionship between SHAP scores and formal explanations, we also study their rela-
tionship with adversarial examples in ML models [144].

We use Hamming distance as a measure of distance between points in feature
space. The Hamming distance is also referred to as the Iy 2 measure of distance [163,
153], being defined as follows:

Ix = yllo =" ITE(w: # 9, 1,0) (7.1)

where ITE(a, b, ¢) represents an IF-THEN-ELSE operator, with the semantics that
the result is b if the predicate a is true, and it is ¢ if the predicate a is false. Thus,
the Hamming distance represents the number of different variables (or features)
between two vectors x and y.

Given a point v in feature space, an adversarial example (AE) is some other
point x in feature space, such that the prediction on x differs from the prediction
on v, and such that x is close enough to v, according to some measure of distance

'Here, we adopt a fairly standard definition of Occam’s razor [50]: given two explanations of
the data, all other things being equal, the simpler explanation is preferable.
*We also use dg(-,-) to denote the Hamming distance.



7.3. RELATED WORK 100

l,. Formally,
3(x € F).flx — vl < €A (k(x) # 5(v)) (7.2)

(in our case, we consider solely p = 0.) If (7.2) is true, then we say that the classifier
has an e adversarial example (or e-AE). Using [y, then (7.2) states that, if we allow
e features to change value, then there exists some point in feature space (that differs
from v in at most e features) for which the prediction changes. The relationship
between adversarial examples are explanations is well-known [188, 185].

Proposition 24. Given £ = (M, (v,¢)), Y C F is a weak CXp iff M has an e-AE,
with [y distance € = |)|.

Proof. If there exists one weak CXp ), this means that, if we allow the features in
Y to change value, then the prediction changes values. Thus, if we allow € = |}
features to change value, we are guaranteed to find an adversarial example. If there
exists an e adversarial example, then we construct Y, with || = € by picking the €
features that change their value with respect to v in the adversarial example. Thus,
Y is a weak CXp. ad

Furthermore, the following result relates adversarial examples with irrelevant
features:

Proposition 25. If a classifier M on instance (v,c) has an adversarial example
with [y distance ¢ that includes an irrelevant feature j € F, then there exists an
adversarial example with [y distance § — 1 that does not include j.

Proof. From Proposition 24, we have that each e-AE maps to a weak CXp ) and
vice-versa. So, if the 6-AE includes and irrelevant feature j, then we can construct
a weak CXp W that also includes feature j. However, since j is irrelevant, then
there must exist a (weak) CXp ), with ) = W\ {j}. Using again Proposition 24,
it is the case that ) maps to some e-AE, with e = § — 1. O

Thus, irrelevant features are not included in subset- (or cardinality-) minimal
adversarial examples.

7.3 Related Work

Shapley values for explainability is one of the hallmarks of feature attribution meth-
ods in XAT [332, 333, 101, 247, 68, 246, 262, 84, 127, 83, 126, 329, 203, 311, 349,
8, 51, 147, 7, 346]. Motivated by the success of Shapley values for explainability,
there exists a burgeoning body of work on using Shapley values for explainability
(e.g. [200, 367, 356, 191, 270, 34, 11, 376, 222, 6, 331, 375, 248, 348, 240, 241, 380,
132, 134, 166, 2]). Recent work studied the complexity of exactly computing SHAP
scores [21, 22, 105, 106]. Finally, there have been proposals for the exact computa-
tion of SHAP scores in the case of circuit-based classifiers [21, 22]. Although there
exist some differences in the proposals for the use of Shapley values for explainabil-
ity, the basic formulation is the same and can be expressed as in Section 2.3.
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A number of authors have reported pitfalls with the use of SHAP and Shapley
values as a measure of feature importance [330, 366, 219, 334, 262, 128, 361, 273,
3, 350, 217, 64, 63]. However, these earlier works do not identify flaws with the use
of SHAP scores in explainability, as we have identified in this chapter. Attempts at
addressing those pitfalls include proposals to integrate SHAP scores with abductive
explanations, as reported in recent work [221].

Running Examples

Throughout this chapter, we will use the following boolean functions, which are
represented by truth tables, as our running examples. The highlighted rows will
serve as concrete examples throughout.

Example 29. We consider the example boolean functions of Figure 7.1. If the
functions are represented by a truth table, then the SHAP scores can be computed
in polynomial time on the size of the truth table, since the number of subsets
considered in (2.12) is also polynomial on the size of the truth table [173]. (Observe
that for each subset used in (2.12), we can use the truth table for computing the
expected values in (2.8).) For example, for x1; (see Figure 7.1a) and for the point
in feature space (0,0, 1), one can compute the following SHAP scores: SHAP(1) =
—0.417, SHAP(2) = —0.042, and SHAP(3) = 0.083.

Example 30. Similar to the computation of SHAP scores, given a truth table
representation of a function, and for a given instance, there is a polynomial-time
algorithm for computing the AXp’s [173]. For example, for function x4 (see Fig-
ure 7.1d), and for the instance ((1,1,1,1),1), it can be observed that, if features 3
and 4 are allowed to take other values, the prediction remains at 1. Hence, {1, 2}
is a weak AXp, which is easy to conclude that it is also an AXp. When interpreted
as a rule, the AXp would yield the rule:

IF (r1=1)A(xz2=1) THEN &k(x)=1

In a similar way, if features 1 and 4 are allowed to take other values, the prediction
remains at 0. Hence, {2,3} is another weak AXp (which can easily be shown to
be an AXp). Furthermore, considering all other possible subsets of fixed features,
allows us to conclude that there are no more AXp’s.

7.4 Relating SHAP scores with Feature Relevancy

In this section, we list a number of issues that can be associated with SHAP scores.
We consider relative feature importance, i.e. the ranking of features obtained by
comparison of their absolute SHAP scores. Each issue captures a situation where
SHAP scores provide misleading information about relative feature importance. By
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x1 w2 x3 Kn(x) r1 x2 x3 K (X) r1 x2 x3 Kr3(x)

0O 0 o0 0 0 0 O 1 0 0 O 0

0 0 1 0] 0O 0 1 0 0O 0 1 0

0 1 0 0 0o 1 O 1 0o 1 0 0

0 1 1 0 0 1 1 1 0 1 1 1

1 0 0 0 1 0 0 1 1 0 0 1

1 0 1 1 1 0 1 1 1 0 1 0

1 1 0 1 1 1 0 0 1 1 0 1

1 1 1 1 1 1 1 0] 1 1 1 1]

(a) Function £y (b) Function s/, (¢) Function kr3
x1 x2 w3 xs kp(x) w1 we w3 w4 Ky(x) w1 w2 x3 x4 Krs(X)
0O 0 0 0 0 0O 0 0 0 0 0 0 0 0O 0
0O 0 O 1 0 0O 0 0 1 1 0O 0 0 1 0
0 O 1 0 0 O 0 1 0 0 0O 0 1 o0 0
o 0 1 1 0 0O 0 1 1 1 0 0 1 1 0
0O 1 0 O 1 0O 1 0 O 0 0 1 0 0 0
0O 1 0 1 0 0O 1 0 1 0 0o 1 0 1 0
0 1 1 0 1 0 1 1 0 1 0 1 1 0 0
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1
1 0 0 O 1 1 0 0 O 1 1 0 0 O 0
1 0 O 1 1 1 0 0 1 1 1 0 0 1 0
1 0 1 0 1 1 0 1 0 0 1 0 1 0 0
1 0 1 1 0 1 0 1 1 0 1 0 1 1 1
1 1 0 0 1 1 1 0 0 1 1 1 0 0 0
1 1 0 1 1 1 1 0 1 1 1 1 0 1 1
1 1 1 0 1 1 1 1 0 1 1 1 1 0 0
M1 1 1 1 1 [ 1 1 1 i [1 1 1 1 0]
(d) Function 4 (e) Function (f) Function ks

Figure 7.1: Example functions for the issues described in 11, I3, 14, and I5, respec-
tively: k1, K}y, K13, K14, Ky, and Krs.

misleading, this chapter signifies that SHAP scores either give undue high impor-
tance or undue low importance to some feature, when compared to some of the
other feature(s), and given the relative importance of features.

Issues with SHAP scores for explainability. In this chapter, we consider the
following main issues of SHAP scores for explainability:
I1. For a boolean classifier, with an instance (v, ¢), and feature i such that,

Irrelevant(i) A (SHAP(7) # 0)

Thus, an I1 issue is such that the feature is irrelevant, but its SHAP score is
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non-zero.

I2. For a boolean classifier, with an instance (v, ¢) and features i; and is such that,

Irrelevant(iy) A Relevant(iz) A (|SHAP(i1)| > |SHAP(i2)|)

Thus, an 12 issue is such that there is at least one irrelevant feature exhibiting
a SHAP score larger (in absolute value) than the SHAP score of a relevant
feature.

I3. For a boolean classifier, with instance (v, ¢), and feature 7 such that,
Relevant(i) A (SHAP(i) = 0)

Thus, an I3 issue is such that the feature is relevant, but its SHAP score is
ZETO.

I4. For a boolean classifier, with instance (v, ¢), and features ¢; and iy such that,
[Irrelevant(i;) A (SHAP(i1) # 0)] A [Relevant(iz) A (SHAP(i2) = 0)]

Thus, an 14 issue is such that there is at least one irrelevant feature with a
non-zero SHAP score and a relevant feature with a SHAP score of 0.

I5. For a boolean classifier, with instance (v, c¢) and feature i such that,
[Irrelevant(i) VAN vlgjgm,jyéi (|SHAP(])‘ < |SHAP(2)|)]

Thus, an I5 issue is such that there is one irrelevant feature exhibiting the

highest SHAP score (in absolute value).
The issues above are all related with SHAP scores for explainability giving mis-
leading information to a human decision maker, by assigning some importance to
irrelevant features, by not assigning enough importance to relevant features, by as-
signing more importance to irrelevant features than to relevant features and, finally,
by assigning the most importance to irrelevant features.

In the rest of the chapter we consider mostly I1, I3, 14 and I5 given that I5
implies I2.

Examples exhibiting issues. We study the example functions of Figure 7.1,
which were derived from the main results of this chapter (see Section 7.5.2). These
example functions will then be used to motivate the rationale for how those results
are proved. In all cases, the reported SHAP scores are computed using the truth-
table algorithm outlined in earlier work [173]. Similarly, the relevancy /irrelevancy
claims of features use the truth-table algorithms outlined in earlier work [173].

Example 31. Figure 7.1a illustrates a boolean function that exhibits issue I1. By
inspection, we can conclude that the function shown corresponds to k1 (1, x2, x3) =
(1 Axg A—x3)V (21 Azs). Moreover, for the instance ((0,0,1),0), Table 7.1 confirms
that an issue I1 is identified.
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Table 7.1: Examples of issues of SHAP scores for functions in Figure 7.1

Case Instance Relevant Irrelevant SHAP’s Justification

n ((0,0,1),0) 1 2,3 SHAP(1) = —0.417 Irrelevant(3) A SHAP(3) > 0
SHAP(2) = —0.042
SHAP(3) = 0.083

n o ((1,1,1),0) 1,2 3 SHAP(1) = —0.292 Irrelevant(3) A SHAP(3) < 0
SHAP(2) = —0.292
SHAP(3) = —0.042
SHAP(1) = 0.125 B
3 ((1,1,1),1) 1,2,3 - SHAP(2) = 0.375 Relevant(3) A SHAP(3) =0
SHAP(3) = 0.000
SHAP(1) =0.125 Relevant(3) A SHAP(3) =0
o(@LLLL) 123 ! SHAP(2) = 0.333 Irrelevant(4) A SHAP(4) < 0
SHAP(3) = 0.000
SHAP(4) = —0.083
SHAP(1) = 0.042 Relevant(3) A SHAP(3) = 0
4 (1LLL1),1) 1,23 4 SHAP(2) = 0.292 Irrelevant(4) A SHAP(4) > 0
SHAP(3) = 0.000
SHAP(4) = 0.042
SHAP(1) = —0.12 Irrelevant(4)A
B ((LLL1),0) 1,23 4 SHAP(2) = —0.12 y(; £ 4) |SHAP(j)| < SHAP(4)|
SHAP(3) = —0.12
SHAP(4) = 0.172

Example 32. Figure 7.1b illustrates a boolean function that exhibits issue I1. By
inspection, we can conclude that the function shown corresponds to k%, (21, z2, z3) =
(mx1 A —x3) V (mxe A —x) V (mxp Axe A xg) V (z1 A —xe A xg). Moreover, for the
instance ((1,1,1),0), Table 7.1 confirms that an issue I1 is identified.

Example 33. Figure 7.1c illustrates a boolean function that exhibits issue 13. By
inspection, we can conclude that the function shown corresponds to kr3(x1, x2, x3) =
(x1 A =) V (z2 A x3). Moreover, for the instance ((1,1,1),1), Table 7.1 confirms
that an issue I3 is identified.

Example 34. Figure 7.1d illustrates a boolean function that exhibits issue 14. By
inspection, we can conclude that the function shown corresponds to kr4(x1, X2, x3,x4) =
(x1 A—xg) V(22 A—myg) V (21 A3 Azg) V (2 Azg Azg). Moreover, for the instance
((1,1,1,1),1), Table 7.1 confirms that an issue I4 is identified.

Example 35. Figure 7.1e illustrates a boolean function that exhibits issue 4. By
inspection, we can conclude that the function shown corresponds to k', (21, x2, T3, 24) =
(331 VANV WA ﬁx4) V (xg Nx3 N —\334) V (—\.131 VANmY D) /\x4) V (:131 VAU WA $4) \Y (xg AR 2 WAN $4).
Moreover, for the instance ((1,1,1,1),1), Table 7.1 confirms that an issue I4 is
identified.
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Example 36. Figure 7.1f illustrates a boolean function that exhibits issue I5. By
inspection, we can conclude that the function shown corresponds to k75(x1, x2, x3,x4) =
((x1 Ao A—x3) V (x1 Axs A—xg) V (ze Axs A—x1)) Axy. Moreover, for the instance
((1,1,1,1),0), Table 7.1 confirms that an issue I5 is identified.

7.5 Issues with SHAP scores: Theory

This section proves that for arbitrary large numbers of variables, there exist boolean
functions and instances for which the SHAP scores exhibit the issues detailed in Sec-
tion 7.4. Throughout this section, let m be the number of variables of the boolean
functions we start from, and let n denote the number of variables of the functions
we will be constructing. In this case, we set F = {1,...,n}. Furthermore, for the
sake of simplicity, we opt to introduce the new features as the last features (e.g.,
feature n). Besides, we opt to set the values of these additional features to 1 in
the instance (v, c) that we intend to explain, that is, v, = 1. This choice does not
affect the proof’s argument in any way.

We will outline a paradigm for computing SHAP scores for these additional
features, then present a list of propositions exposing issues detailed in Section 7.4,
each proposition will be followed by an example illustrating how to find boolean
functions as listed in Figure 7.1. Furthermore, we will analyze a case study, as
presented in Section 7.5.3, to illustrate the limitations of SHAP scores.

7.5.1 Proof Approaches

For a boolean function k, we use kg to denote the conditioning of the function &
on z, = 0 (i.e. K|g,=0), and k1 to denote the conditioning of the function x on
x, = 1. Besides, we use kg to denote the conditioning of the function x on x,, = 0
and z,—1 = 0 (i.e. K|g,=0,2,_1=0), ko1 for the conditioning on x, = 0 and z,—; =1,
k10 for the conditioning on z,, = 1 and x,—; = 0, and k11 for the conditioning on
zn, = 1 and z,—1 = 1. In general, the following equations hold for E[x] under a
uniform input distribution:

1

E[H] = — 'E[FLQ] +

5 - E[k1], (7.3)

— N

E[K‘] = i ' E[HOO] + i ' E[/‘901] + Z : E[Klo} + i : E[HH]. (74)

As stated previously, we assumed that the instance (v,c) to be explained satisfies
either v, = 1 when only one additional feature is considered, or v,_1 = v, = 1
when two additional features are considered.

In the case where only feature n is the additional feature. For feature n, consider
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an arbitrary subset S C F \ {n}, we can derive

A(n,S; M, v)
= Eltlvs )] — Elslvs] (7.5)
_ %  (Elk1]vs) — Elkolvs))-

In the case where feature n and feature n—1 are additional features. For feature
n, consider an arbitrary subset S C F \ {n — 1,n}, we can derive

A(n,S; M, v)
~ Elilveug] - Bl (76)
= i - (Elk10|vs] — Elkoolvs]) + % - (Elrulvs] = Elroilvs))-

For feature n, consider an arbitrary subset S C F \ {n — 1,n} and feature n — 1,
we can derive

An,SU{n -1} M,v)

= E[F""V'Su{n,nfl}] - E[H‘Vsu{nfl}] (77)
1

= 5 . (E[lﬂl’vs] — E[’%l’vs])'

For feature n — 1, consider an arbitrary subset S C F \ {n — 1,n}, we can derive

A(n—1,8;M,v)

=El[slv, (1)) — Elklvs] (7.8)
1

=1 (Elroilvs] = Elroolvs]) + i - (E[k11lvs] — E[r10lvs])-

For feature n — 1, consider an arbitrary subset S C F \ {n — 1,n} and feature n,
we can derive

An—1,SU{n}; M,v)

= E[H’v‘gu{n’n,l}] - E[H’V.Su{n}] (79)
— % . (E[/‘Gll‘vs] - E[’§10|V$])'

By choosing different boolean functions for kg, k1, kKoo, ko1, k10 and K11, we are
able to construct boolean functions x exhibiting issues reported in Section 7.4.

CXps, Hamming distance and Counterexamples. Contrastive explanations
are tightly related with counterexamples around the instance (v,c) we intend to
explain. Counterezamples refer to any data point v/ such that x(v’') # ¢. Note
that counterexamples differ from adversarial examples (see Equation (7.2)) because
v/ does not necessarily need to be close to v. The size of a CXp measures the
Hamming distance [153] between the point v and one of its counterexamples v'.
Let dg(+,-) denotes the Hamming distance [153] between two points in the feature
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x1 Ty x3 K(X)
x1 Ty ki1(x) Ro(x) K3(x) 0 0 0 0
0 O 2 3 0 0 0 1 0
0 1 2 2 0 0 1 0 1
0 2 3 0 3 0 1 1 0
1 0 0 1 2 1 0 0 O
1 1 1 1 1 1 0 1 1
1 2 1 0 3 1 1 0 0
T T T T

(a) Three discrete functions k1, ko and Kg.
(b) A function k.

Figure 7.2: Tabular representations for some example discrete classifiers demon-
strating CXps, hamming distance and counterexamples.

space. When considering an explanation problem & = (M, (v,c)), where M is a

discrete classifier 3, we can observe the following basic facts about CXps:

Proposition 26. For an explanation problem & = (M, (v,c)), if there exists a
CXp with a size of k then there is a counterexample v/ in the feature space which
has a Hamming distance of exactly k from the point v:

B eCE).(Y =k)] = B €F).(du(v, V') =k) A ((v)) £0)]  (7.10)

Remark 2. The existence of a CXp Y with size k only indicates the existence of
a counterexample v/ having a Hamming distance of k from the data point v. But
we do not know how many counterexamples are covered by the CXp ).

Remark 3. For two discrete classifiers M7 and My defined on the same set of
features. Let & = (M, (v,c)) and & = (Ma, (v,c)). If Y € C(&1)NC(E2), then we
can infer that 3(v' € F).(dg(v,Vv') = k) A (k1(V') # ¢) and (V" € F).(dy(v,Vv") =
k) A (k2(v") # ¢). Tt does not mean that v/ = v” or k1(v') = ka(v").

Example 37. Figure 7.2a shows three different discrete classifier M1, Mgy and M3
defined on the same set of features. For the instance (v,c) = ((1,1),1) and three
explanation problems &1, & and &3, we have C(&;) = C(&) = C(&) = {{1},{2}}.

Proposition 27. For an explanation problem & = (M, (v, ¢)), if there is a coun-
terexample v/ in the feature space which has a Hamming distance of k from the
point v, then there exists a CXp with a size of at most k:

BV € F)(du(v,V) = k) A (k(V)) £ )] = B € CE)L(VI < B)] (711

3If both the domains and the set of classes are ordinal (and discrete), then the classifier is
referred to as discrete
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Proof. The existence of a counterexample v’ in the feature space which has a Ham-
ming distance of k from the point v implies that there exists a weak CXp with a
size of k. Thus, there is an CXp with a size of at most k. O

Corollary 8. Given an explanation problem & = (M, (v,c)) such that V) €
C(£).]Y| < k. For any counterexample v’ such that dg(v,v’) > k, v/ is not covered
by any CXp.

Example 38. Figure 7.2b shows a classifier M and an explanation problem & =
(M, ((1,1,1),1)) such that C(€) = {{1},{3}}. However, there is no CXp covering
the counterexample ((0,0,1),0) and ((1,0,0),0). They are covered by the weak
CXps {1,2} and {2, 3} respectively.

Again, by choosing different boolean functions for kg, K1, koo, K01, K10 and kK11,
and taking into account the fundamental insights about about CXps, i.e. Propo-
sitions 26 and 27 and Corollary 8, we are able to construct boolean functions
exhibiting issues reported in Section 7.4.

7.5.2 Main Results for Boolean Classifiers

By utilizing Equation (7.5), Equation (7.6), Equation (7.7), Equation (7.8), Equa-
tion (7.9), Propositions 26 and 27 and Corollary 8, we present negative results per-
taining to the SHAP scores of irrelevant features and relevant features. Specifically,
we provide evidence that confirm the existence of the issues detailed in Section 7.4.
When considering both feature n and feature n — 1, we will assume that the feature
n is irrelevant while the feature n — 1 is relevant. In addition, for each result, we
will illustration how to construct functions that exhibit these issues. We will use
the example functions listed in Figure 7.1 as references.

In the following, we provide evidence that an irrelevant feature can have non-
zero SHAP score. We will focus on instances (v, c¢) where ¢ = 0. The case where
¢ =1 can be proven using similar techniques.

Proposition 28. For any n > 3, there exists boolean functions defined on n vari-
ables and at least one instance (v,c) and an irrelevant feature i € F such that
SHAP(i) > 0.

Proof. Let M be a classifier defined on the feature set F and characterized by the
boolean function defined as follows:

Ho(Xl m) if Tp = 0

R(X1.m,Tn) i= { h (7.12)

K1(X1..m) ifz,=1

The non-constant sub-functions kg and k; are defined on the feature set F \ {n},
and satisfy the following conditions: 1) kg = k1 and 2) kg # K1.
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Choose a n-dimensional point v such that: 1) v, =1, and 2) ko(v) = k1(v) =0,
this means k(v) = 0. For any S C F \ {n}, we have

A(n,S; M, v)
7.13
= 5 (Blsthe] ~ Elsols)). e

Given that ko = k1 but kg # k1, it follows that for any points x € Y(S;v),
if ko(x) = 1 then r1(x) = 1. In other words, if k1(x) = 0 then ko(x) = 0.
Moreover, there are cases where the inequality holds E[x1|vs] —E[ko|vs] > 0. Hence,
SHAP(n; M,v) > 0.

To prove that the feature n is irrelevant, we assume the contrary that the feature
n is relevant, and X', where n € X, is an AXp of the point v. Based on the definition
of AXp, we only include points x for which 1 (x) = 0 holds. However, as k1(x) =0
implies that ko(x) = 0, X \ {n} will not include any points x such that either
ko(x) =1 or k1(x) = 1 holds. This means X'\ {n} remains an AXp of the point v,
leading to a contradiction. Thus, feature n is irrelevant. ad

Example 39. Let ko(x1,22) = 21 Axe and k1 (21, 22) = 1. Clearly, we have kg =
k1 and kg # k1. Set x, = x3, and build k1 (21, 22, 23) = (x1 Aze A—x3) V (21 A23).
Moreover, as shown in Example 31 and Table 7.1, it is the case that feature 3 is
irrelevant but SHAP(3) > 0.

Proposition 29. For any n > 3, there exists boolean functions defined on n vari-
ables and at least one instance (v,c) and an irrelevant feature ¢ € F such that
SHAP(i) < 0.

Proof. Let M be a classifier defined on the feature set F and characterized by the
boolean function defined as follows:

/@(Xlnm,"L‘n) — { Hl(xl..m) \ f(xl..m) if Tp =10 (714)

K1(X1.m) ifz, =1

The non-constant sub-functions x; and f are defined on the feature set F \ {n},
and satisfy the following conditions:

1. k1 #Kk1V fand k1 A f =0.
2. Both k1 and k1 V f predict a specific point vyi_,, to 0.

3. The set of CXps for both x1 and k1 V f with respect to the point v ,, are
identical.

Choose this specific m-dimensional point vy _,, and extend it with v, = 1. This
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means ko(v) = k1(v) = 0, and therefore x(v) = 0. For any S C F \ {n}, we have

A(n,S; M, v)
_ %  (Blralvs] = E[(51V Flvs])
2 (7.15)
= 3 (E[Fél‘vs] — E[fﬂ’vs] - E[f‘Vs])
= % : (_E[f|V$])7

we can infer that —E[f|y] < 0 for some S, which implies SHAP(n; M, v) < 0.

To prove that the feature n is irrelevant, we assume the contrary that the feature
n is relevant, and X', where n € X', is an AXp of the point v. Based on the definition
of AXp, we only include points x for which x1(x) = 0 holds. As k1 and k1 V f share
the same set of CXps, they have the same set of AXps. This means X' \ {n} will
not include any points x such that either x1(x) =1 or (k1 V f)(x) = 1 holds. This
means X \ {n} remains an AXp of the point v, leading to a contradiction. Thus,
feature n is irrelevant. a

Example 40. Let k1(z1,22) = (mx1 Ax2) V (21 A —xe) and f(x1,22) = -2 A "xa.
Clearly k1 V f = ~x1V —xo, k1 # k1 V f and k&1 A f = 0. Both k1 and k1 V f
predict the point (1,1) to 0. More importantly, the set of CXps for these two
functions with respect to this point are identical {{1},{2}}. Set z;,, = x3, and build
K (x1,x2,23) = (mx1r A —xg) V (mxg A nxg) V (mzp A e Axg) V(T Az A x3).
Moreover, as shown in Example 32 and Table 7.1, it is the case that feature 3 is
irrelevant but SHAP(3) < 0.

The above two propositions demonstrate that an irrelevant feature can have
positive or negative SHAP scores, regardless of the class value of the given instance.

In the following, we provide evidence that a relevant feature can have zero SHAP
score. We will focus on instances (v, c) where ¢ = 1. The case where ¢ = 0 can be
proven using the same techniques.

Proposition 30. For any n > 3, there exists boolean functions defined on n
variables and at least one instance (v,c) and a relevant feature i € F such that

SHAP(i) = 0.

Proof. Let M be a classifier defined on the feature set F and characterized by the
boolean function defined as follows:

(X1 s Xoee L2 ) = K0 (X1..m) if 2, =0 (7.16)
K1(Xm+1..2m) if x,, =1

The non-constant sub-functions kg and k; are defined on the feature sets Fy =
{1,....,m}and F; = {m+1,...,2m}, respectively. It is important to note that xg
is independent of k1 as Fg and F; are disjoint. Moreover, kg and k1 are identical
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up to isomorphism. (For simplicity, we assume that the feature i corresponds to
the feature m + i for all i € {1,...,m}.)

Choose a n-dimensional point v such that: 1) v, = 1, 2) v; = vy4; for any
1 <i<m,and 3) ko(v) = k1(v) = 1. This means x(v) = 1. For any S C F\ {n}
such that S # 0, let {Sp, S1} be a partition of S such that Sy C Fy and S; C F,

then
A(n,S; M, v)
1 (7.17)

=5 (E[lﬂ‘vsl] - E[’%O‘VSO])'

For any {Sp,S1}, we can construct a unique new partition {S),Si} by replacing
any ¢ € S with m + 4 and any m + i € §; with i. Let 8’ = S, U S}, then we have

A(n, 8" M, v)
1 (7.18)

=5 (E[“l‘v%] - E[’i0|vsg])'

Besides, we have E[r1|vg | = E[ro|v,, | and E[kolvs,| = E[s1]v, |, which means
1 0

A(n,S; M, v) = —A(n,S'; M, v), (7.19)

note that ¢(S; M, v) = ¢(S; M, v). Hence, for any S C F \ {n} such that S # 0,
there is a unique &’ that can cancel its effect. Besides, if S = () or S = F\ {n}, then
we have A(n,S; M,v) = 0. We can derive that SHAP(n; M, v) = 0. However, n is
a relevant feature. To prove this, it is evident that F \ Fy represents a weak AXp.
Moreover, F \ (Fo U {n}) is not a weak AXp because allowing z,, to take the value
0 will include points x such that ko(x) = 0. Hence, there are AXps containing the
feature n. O

Example 41. Let ko(x1) = x1 and k;1(x2) = z2. Clearly kg and k; are defined on
disjoint feature sets. Set z, = x3, and build kr3(z1, z2,23) = (21 A—-x3) V (22 A23).
Moreover, as shown in Example 33 and Table 7.1, it is the case that feature 3 is
relevant but SHAP(3) = 0.

Furthermore, we present evidence demonstrating the simultaneous occurrence
of an irrelevant feature with a non-zero SHAP score and a relevant feature with a
zero SHAP score. We will focus on instances (v, c¢) where ¢ = 1. The case where
¢ = 0 can be proven using similar techniques.

Proposition 31. For any n > 4, there exist boolean functions defined on n vari-
ables, and at least one instance (v, c), for which there exists an irrelevant feature
i1 € F, such that SHAP(i1) < 0, and a relevant feature io € F \ {i1}, such that
SHAP(iz) = 0.

Proof. Let M be a classifier defined on the feature set F and characterized by the
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boolean function defined as follows:

Ko(X1..2m) ifx, =0
K(X1.ms Xm41.2m» Tn—1,Tn) = K10(X1..m) ifz,=1Azp1 =0 (7.20)

K11 (Xm+1..2m) ifep,=1Nxp_1=1

The non-constant sub-functions kg, k19 and k17 are defined on the feature sets
F\{n—1,n}, Fo={1,...,m}and F; = {m+1,...,2m}, respectively. It is worth
noting that k19 is independent of k11 as Fy and Fi are disjoint. Also note that
k1 = (m@p—1 A K10) V (Tn—1 A K11). Moreover, kg, k19 and k11 satisfy the following
conditions: 1) k19 and k11 are identical up to isomorphism, 2) k1 = ko, and 3)
ko # k1. (For simplicity, we assume that the feature i corresponds to the feature
m+iforallie {1,...,m}.)

Choose a n-dimensional point v such that: 1) v, = 1, 2) v; = vy,4; for any
1 <i<m,and3) ki19(v) = k11(v) = 1. This implies x(v) = 1. Forany S C F\{n},
we have

A(TL,S;M,V)
7.21
= % - (Elr1]vs] — Elrolvs]) ( )

Since k1 = ko but K1 # Ko, we can apply the same reasoning as presented in
the proof of Proposition 28 to deduce that SHAP(n; M, v) < 0 even though feature
n is irrelevant. Next, we show that SHAP(n — 1; M, v) = 0 but the feature n — 1 is
relevant. For any S C F \ {n — 1,n} such that S # ), we have

A(n—1,8M,v)
(- (Blsonlvs] ~ Blsunhs]) + 5 - (Blinlv] - Bliswolve)) (722
. % - (Elr11lvs] — E[x10lvs])

moreover, we have
A(n—1,8U{n}; M,v)
1 (7.23)

—_ 5 . (E[/‘€11|vs] — E[/€10|vs])

According to the proof of Proposition 30, for any S there is a unique S’ such that
|S| = |S’| to cancel the effect of S. Thus, SHAP(n — 1; M, v) = 0. Again, applying
the same reasoning presented in the proof of Proposition 30, we can infer that
F\ (Fou{n}) is a weak AXp but F\ (FoU{n —1,n}) is not a weak AXp. Thus,
we can conclude that the feature n — 1 is relevant. ad

Example 42. Let ko(z1,22) = 21 V 22, k1o(z1) = 21 and k11(z2) = zo. Clearly,
k10 and k11 are defined on disjoint feature sets. Set x,_1 = z3, then xi(z1,z2) =
(mx3 A x1) V (23 A x2) and we have k1 = ko and kg # k1. Set x, = x4, and build
H[4(x1,l'2,.%'3,x4) = (1'1 VAN —|.1‘4) vV (xg AN ﬁ{L‘4) vV (1‘1 N —x3 A 1'4) V (1‘2 N x3 N\ 1'4).
Moreover, as shown in Example 34 and Table 7.1, it is the case that feature 3 is
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relevant but SHAP(3) = 0 and feature 4 is irrelevant but SHAP(4) < 0.

Proposition 32. For any n > 4, there exist boolean functions defined on n vari-
ables, and at least one instance (v, c), for which there exists an irrelevant feature
i1 € F, such that SHAP(i1) > 0, and a relevant feature io € F \ {i1}, such that
SHAP(i2) = 0.

Proof. Let M be a classifier defined on the feature set F and characterized by the
boolean function defined as follows:

k00 (X1..m) if 2, =0Axp_1=0
’i(xl..ma Xm+1..2m> Ln—1, xn) = K01 (Xm+1..2m) if Tp=0Azp1=1

KO(XLQm,xn_l) \ f(Xl..Zm) ifx, =1
(7.24)
The non-constant sub-functions kg, ko1 and f are defined on the feature sets Fy =
{1,....om}, Fr = {m +1,...,2m}, and F \ {n — 1,n}, respectively. It is worth
noting that koo is independent of kg1 as Fy and Fi are disjoint. Also note that
K1 = ko V f. Moreover, koo, ko1 and f satisfy the following conditions:

1. koo and kg1 are identical up to isomorphism. (For simplicity, we assume that
the feature ¢ corresponds to the feature m + i for all i € {1,...,m}.)
2. ko F koV f, koo N f=0and kg1 A f =0.

3. Both k¢ and kg V f predict a specific point vi_,_1 to 1, where v,,_1 = 1, and
Vi = U4 for any 1 <7 < m.

4. The set of CXps for kg and o V f with respect to the point vy ,_1 are
identical.

Choose this specific n — 1-dimensional point v ,_1 and extend it with v, = 1, then
ko(v) = k1(v) =1 and k(v) = 1. For any S C F \ {n}, we have

A(n,S; M, v)
= 3 . (E[(Ko vV f)|v5] - E[’{0|vs]) (7'25)
— 5 (Bl

which implies SHAP(n; M,v) > 0. As ko and ko V f share the same set of CXps,
they have the same set of AXps. By applying similar reasoning as presented in
the proof of Proposition 29, we can conclude that feature n is irrelevant. Next,
we show that SHAP(n — 1; M, v) = 0 but the feature n — 1 is relevant. For any
S C F\ {n —1,n} such that S # (), we have

An—1,5;M,v)
1

(5 - (Elrotlvs] — Elroolvs]) + % - (Elsnlvs] — Els10lvs])) (7.26)

- (E[ko1lvs] — Elroolvs]),

NN
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besides, we have

An—1,8U{n}; M,v)

- (Elr11lvs] — Elr1olvs]) (7.27)

- (E[ko1lvs] — Elroolvs]),

also note that A(n — 1,S8; M,v) =0 when S =0 or S = F \ {n — 1}. By applying
the same reasoning as presented in the proof of Proposition 31, we can conclude
that SHAP(n — 1; M, v) = 0 but the feature n — 1 is relevant. 0

N = DN —

Example 43. Let koo(z1) = x1, ko1(x2) = x2 and f(x1,z2) = —x1 A —x9. Clearly,
koo and ko1 are defined on disjoint feature sets. Furthermore, we have koo A f =0
and ko1 A f = 0. Set z,—1 = x3, we have ko(z1,22) = (mx3 A z1) V (23 A 22).
Moreover, we have kg # ko V f. Both kg and k; predict the point (1,1,1) to 1,
and the set of CXps of these two functions with respect to this point are the same
{{2},{1,3}}. Set x, = x4, and build &}, (z1,x2,x3,24) = (21 A "3 A —24) V (T2 A
x3N—xg)V (mz1 Az Axg) V(21 Amxs Axyg) V (z2 Axg Axy). Moreover, as shown in
Example 35 and Table 7.1, it is the case that feature 3 is relevant but SHAP(3) =0
and feature 4 is irrelevant but SHAP(4) > 0.

In the following, we prove that irrelevant features can have highest SHAP score
(in absolute value). We will focus on instances (v, c¢) where ¢ = 0. The case where
¢ =1 can be proven using similar techniques.

Proposition 33. For any n > 4, there exists boolean functions defined on n
variables, and at least one instance, for which there exists an irrelevant feature
i€ F=1{1,...,n}, such that |[SHAP(7)| = max{|SHAP(j)| | j € F}.

Proof. Let M be a classifier defined on the feature set F and characterized by the
boolean function defined as follows:

(7.28)

H(Xl..my xn) =

0 ifx, =0
K1(X1.m) ifz,=1

Its sub-function x; is a non-constant boolean function defined on the feature set
F\ {n}, and satisfies the following conditions:
1. k1 predicts a specific point vi_,, to 0.
2. For any point X1 _,, such that ||X1 m — Vi.m|lo = 1, we have k1 (X1 m) = 1.
3. k1 predicts all the other points to 0.
For example, k1 can be the function >, —~z; = 1, which predicts the point 1; ,,
to 0 and all points around this point with a Hamming distance of 1 to 1.

Select this specific m-dimensional point vy _,, such that x1(vi ) = 0. Extend
V1.m with v, = 1, we have k(v) = 0. Applying the same reasoning presented in the
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proof of Proposition 28, we can deduce that the feature n is irrelevant. In addition,
for k1 and any S C F \ {n}, we have

m — ||

For feature n and an arbitrary S C F, we have
A(n,S; M, v)
1
= 5 Elslvs] (7.30)
1S
2 omoIs|Y

this means SHAP(n; M, v) > 0. Besides, the unique minimal value of A(n,S; M, v)
is 0 when § = F \ {n}.
We now focus on a feature j # n. Consider an arbitrary S C F\ {j,n}, we have
A(j,SU{n} M, v)
= E[”1|Vsu{j}] — E[r1|vg]

_m—|5[-1 m—|S| (7.31)
om—|S|—-1 om—|S|

- m— S| -2

 om—|S]

In this case, A(j,S U {n}; M, v) = —3 if |[S| = m — 1, which is its unique minimal
value. A(j,SU{n};M,v) = 0if |S| = m — 2, and A(j,S U {n};M,v) > 0 if
|S| < m — 2. Besides, we have

A(f, S; M, v)
= E[K/|Vsu{j}] — E[xlvs]
1 7.32
= 5 (Blktlvaug] — Blalys) (7:52)
1 om =S -2
T2 omlsl
In this case, A(j,S; M, v) = —% if |S| = m — 1, which is its unique minimal value.

A(j,S;M,v) =01if |S| =m — 2, and A(j,S; M,v) > 0if [S| <m — 2.

Next, we prove |[SHAP(n; M, v)| > |SHAP(j; M, v)| by showing SHAP(n; M, v)+
SHAP(j; M, v) > 0 and SHAP(n; M, v)—SHAP(j; M, v) > 0. Note that SHAP(n; M, v) >
0. Additionally, A(j,S U {n}; M,v) < 0 and A(j,S; M,v) < 0 only when |S| =
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m — 1. Compute the SHAP score for feature n:

(m — !
SHAP(n; M, v) = Z 5[tm = IS])! ’?‘)‘-A(H,S;M,V)

SCAvn) (m+1)!
oy Islm s 1 om s

SCF\{n} (m +1)! 2 2l

1 1 Z IS|'(m —|S)! m — S|

.- . o

2 m+1 SCAm) m! 2m—|S|

B 1 > |S|!(m — |S)! m! m —|S|
— .. . - oS
2 m+1 0<is<m m/! IS|'(m —|S|)!  2m-IS]
1 1 ik

2 m+1 k:12’€

11 2t -2

2 m+1 2m

1 amtl o2

_m+1 om+1

(7.33)
Now we focus on a feature j # n. Consider the subset S = F \ {j,n} where
|S| = m — 1, we have

[SU{n}|!(m — |SU{n})! m—|S] -2

1 1 '
2 m4+1
moreover, we have
IS|!(m — |S|)! 1 m—|S|—2
(m+1)! 2 2m—|S|
o 1 (7.35)
4 m(m+1)
The sum of these three values is
1 omtl -2 1 1 1 1
m+1 2m+1 2 m+1 4 mim+1)
m+1 _ _ m m—1
_ (2 m—2)m  m2m 2 (7.36)
m+1 m2m+l m2mtl  p2mtl

:nmn+WWH'Om_2pm_m_Jm»

since m > 3, the sum of these three values is always greater than 0. Thus, we can
conclude that SHAP(n; M, v) + SHAP(j; M,v) > 0.

To show SHAP(n; M,v) — SHAP(j; M,v) > 0, we focus on all S C F \ {n}
where |S| < m — 2. This is because, as previously stated, A(j,SU{n}; M,v) <0
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and A(7,S; M,v) <0if |S| >m — 2.
Moreover, for all S C F \ {n} where |S| =k and 0 < k < m — 3, we compute
the following three quantities:

Ql = Z A(TL,S;M,V),
SCF\{n},|S|=k

QQ = Z A(]’S U {n};M,V), (737)
SCA{jn}|S|=k-1

Q3 = Z A(j?‘S;M?V):

SCA\{jn}|S|=k

and show that Q1 —Q2—Q3 > 0. Note that @1, Q2 and @3 share the same coefficient
W For feature n, we pick all possible S C F \ {n} where |S| = k, which

implies |SU {n}| =k + 1, then

fm\ 1 m—|[S] [(m) 1 m-—k
Ql(m)’z' 21s) (k> TR (7.38)

For a feature j # n. We pick all possible S C F \ {j,n} where |S| = k — 1, which
implies [SU {j,n}| = k + 1, then

(m—=1\ m—|S|]-2 (m-1\ 1 m—-k—-1
Q2_< S| ) Zn1S) _<l<:—1> 3 ger (19
We pick all possible S C F \ {j,n} where |S| = k, which implies |[SU {j}| =k + 1,
then
m—1\ 1 m—|S|—2 m—1\ 1 m—k—2
— S bl B T A4
@ <|Sy> 2 om-IS| ( k ) 2 gm-k (7.40)

Then we compute Q1 — Q2 — Q3:
m\y 1 m-—k m—1\ 1 m—-k—-1 m—1\ 1 m—-—k—2
k)] 2 omk \gk—1) 2 omk \ g | 2 omk
1 1 -1 -1
:2.2m_kK?:)(m—k:)—(7;;_1>(m—k:—1)—<mk )(m—k:—Q)]
1 1 m—1 9 m—1
“o gk [\ko1) T k ’
(7.41)

this means that SHAP(n; M, v) —SHAP(j; M, v) > 0. Hence, we can conclude that
|SHAP(n; M, v)| > |SHAP(j; M, v)|. O

Example 44. Let k1 (z1, 22,23) = (21 Axa A—x3) V(21 AzgA—x) V (22 Axg A2y)
Clearly, 1 predicts the point (1,1,1) to 0, and its set of CXp with respects to this
point is {{1},{2},{3}}. Set x, = x4, and build k5(x1,x2, x3,24) = ((x1 A 22 A
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Tow # 1 X2 X3 T4 K3
1 0 0 0 0 o
2 0 0 0 1 oy
3 0 0 1 0 oy
4 0 0 1 1 o4
5 01 0 0 0
6 0 1 0 1 0
7 0 1 1 0 0 € {1}
8 0 1 1 1 0 o
9 1 0 0 0 0
10 1 0 0 1 0
11 1 0 1 0 0
12 1 0 1 1 0
13 1 1 0 0 «
14 1 1 0 1 «
15 1 1 1 0 «
[ 16 1 1 1 1 «a

(a) Tabular representation

Figure 7.3: Example parameterized classifier k3. Both the TR and the DT represent
the target parameterization

—x3) V (21 A xs A —x2) V (x9 A xs A —x1)) A 4. Moreover, as shown in Example 36
and Table 7.1, it is the case that the feature 4 is irrelevant but [SHAP(4)| is the
highest.

7.5.3 Case Study — Multi-Valued Classifier

This case study focuses on constructing arbitrary many examples of the occurrence
of issue Vj € F.([Relevant(j) A (SHAP(j) = 0)] V [Irrelevant(j) A (SHAP(j) # 0)]),
which implies I1 to I5.

Classifier & instance. This case study is represented by the tabular represen-
tation (TR) shown in Figure 7.3a. By inspection, we conclude that F = {1,2,3,4},
D; = {0,1}, i € F, and F = {0,1}*. We also pick K = {0,a,01,...,04}. We pick
v = (1,1,1,1), and set the target instance to be ((v,c¢) = ((1,1,1,1), ), as high-
lighted in Figure 7.3a. And we impose a # 05,7 = 1,...,4, but also that a # 0.
Figure 7.3b shows a possible DT for the parameterized classifier.

Figure 7.4 shows two possible instantiations of the parameterized classifier. One
example instantiation of the classifier is shown as the DT of Figure 7.4a, and it is
obtained by setting a = 1, 01 = 4, 0o = 03 = 6 and o4 = 0. Another example
instantiation of the classifier is shown in Figure 7.4b, and it is obtained by setting
a=2,01=4,09=03=06and g4 =0. In terms of the differences between the two
DTs, only a single terminal node (i.e. terminal node 7) changes its predicted class.

Feature influence in predicted class. By (manual) inspection of the parame-
terized TR & DT shown in Figure 7.3, and the instantiations in Figure 7.4, it is plain
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(a) DT for k3q (b) DT for k3

Figure 7.4: Two example instantiations for the classifier k3, with o9 = 4, g9 = 6,
o3 =6, 04 = 0 and either @ =1 (case k34) or @ = 2 (case K3p).

that, for any point in feature space, the prediction is « if and only if z1 = zo = 1;
otherwise the predicted class is other than «. It is also plain that the predicted
class « is determined solely by the values assigned to features 1 and 2, and it is
independent of the values assigned to features 3 or 4. Observe also that these are
properties of the classifier’s function, and the DTs serve only to make the argument
simpler to grasp. Evidently, the same arguments apply when our aim is to change
the prediction to a class other than a. Therefore, for the target point (1,1,1,1),
and given this analysis of the influence of each feature on the predicted class «, one
should expect features 1 and 2 to play some role in answering the question why the
predicted class is «, but also in answering the question why not a predicted class
other than «, i.e. what to change to also change the prediction.

Abductive & contrastive explanations. For the instance ((1,1,1,1),«), and
for any of the classifiers that can be instantiated from Figure 7.3a, the sets of AXps
and CXps are:

A={{1,2}}
C={{1},{2}}

As a result, it is clear that features 1 and 2 are relevant, and that features 3 and 4

(7.42)

are irrelevant, for the target instance.

Adversarial examples. We seek minimal [g-distance adversarial examples. Re-
call that the target instance is ((1,1,1,1), «). Given the DTs shown in Figures 7.3b
and 7.4, it is plain that to obtain a predicted class other than o = 1, we must
change the value of either feature 1 or 2. Hence, an lp-minimal adversarial example
must assign z1 = 0 or xo = 0, but not both. Evidently, for a minimal AE, the
features 3 or 4 must not be changed.

Similarly to the case of abductive and contrastive explanations, we conclude
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S $(S) P(SuUfl}) A(S) s(S) $(8) x A(S)
0 (i1 o9)/16 + /4 af2 afs— i o)16 Y afie— (3, 09)/64
{2} /2 « af2 1/12 /24
{3} (03+04)/8 4 /4 a/2 aj4 — (oa+oa)fg /12 /48 — (03+04)/96
{4} (02+04)/8 4 /4 af2 ajq — (o2toa)fg /12 a/4g — (o2+04)/96
{2,3} af2 e /2 1/12 /o4
{2,4} a/2 e a/2 /12 a/24
{3,4} o4/4 + a4 a/2 afq —oafq 1/12 /48 — 04/48
{2,3,4} af2 « af2 1/4 /g
SHAP score for feature 1 SHAP(1) = 3a/s — (301+502+503+1104)/192
S ¢(S) P(SU{2}) A(S) s(5) $(8) X A(S)
0 Cioistao/s afe ofa— (i o)fie Yaoo afie— (X, 05)/64
{1} a/2 e a/2 /12 a/24
{3} (03+04)/8 4 /4 af2 ajq — (ostoa)fg 112 a/4g — (03+04)/96
{4} (02+04)/8 4 /4 a/2 a/q — (o2+oa)/g /12 a/4g — (02404)/96
{1,3} /2 a af2 /12 /24
{1,4} /2 a af2 1/12 /24
{3,4} o1fa + /s af afy —oafq 1/12 /48 — 0a/48
{1,3,4} a/2 e a/2 1/4 a/s
SHAP score for feature 2 SHAP(2) = 3o/g — (301+502+503+1104)/192

Table 7.2: Computation of SHAP scores for the example DT of k3 and instance
((1,1,1,1), ), for features 1 and 2. For each feature i, the sets to consider are
all the sets that do not include the feature. The average values are obtained by
summing up the values of the classifier in the rows consistent with S and dividing
by the total number of rows.

about the importance of features and 1 and 2, and about the unimportance of
features 3 and 4. We also conclude that a more formal analysis yields the same
conclusions we obtained by manual inspection of the DTs.

SHAP scores. For the target instance ((1,1,1,1),«), we compute the SHAP
scores for the parameterized classifier, and then use the obtained symbolic expres-
sions to obtain the conditions to devise classifiers for which SHAP scores produce
misleading information. The computation of SHAP scores is summarized in Ta-
bles 7.2 and 7.3.

Given the computated of the SHAP scores in Tables 7.2 and 7.3, we proceed to
derive the conditions for a classifier, parameterized by Figure 7.3b, to have an issue
Vi € F.([Relevant(j) A (SHAP(j) = 0)] V [Irrelevant(j) A (SHAP(j) # 0)]). Given
that both features 1 and 2 are relevant, and features 3 and 4 are irrelevant, then
we seek to obtain: SHAP(1) = 0, SHAP(2) = 0, SHAP(3) # 0, and SHAP(4) # 0.
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S ¢(S) P(SU{3}) A(S) S(S8)  <(8) x AS)
1] (Ejzl 9j)/16 + /4 (03+04)/8 4 /4 (-o1—-02+03+04)/16 1/4 (—01—02+03+04)/64
{1} a/2 a/2 0 /12 0
{2} af2 /2 0 /12 0
{4} (02+04)/8 + /4 o4/4 + afy —o2/g +oufs 112 —02/96 + 04/96
{1,2} a a 0 /12 0
{1,4} a/2 af2 0 /12 0
{2,4} a/2 a/a 0 1/12 0
{1,2,4} a @ 0 Vs 0
SHAP score for feature 3 SHAP(3) = (=301-502+303+504)/192
S ¢(S) P(SU{4}) A(S) S(5)  <(8) x AS)
1] (Zj:] 0j)/16 + /4 (02404)/8 4 /4 (—o1+0o2—-03+04)/16 1/4 (—01+02—03+04)/64
{1} a/2 af2 0 /12 0
{2} a/2 a/2 0 /12 0
{3} (o3+04)/8 + /4 oa/s+ /s —osfg+o4fs 112 —03/96 4 04/96
{1,2} a a 0 /12 0
{1,3} af2 af2 0 /12 0
{2,3} a/2 af2 0 /12 0
{1,2,3} a a 0 14 0
SHAP score for feature 4 SHAP(4) = (=301+302-503+504)/192

Table 7.3: Computation of SHAP scores for the example DT of k3 and instance
((1,1,1,1), @), for features 3 and 4.

Since SHAP(1) = SHAP(2), we obtain the following constraints:

o = (301+502+503+1104)/72 (7.43)
(73017502+303+504)/192 # 0 (7.44)
(=3014302—503+504)/192 £ () (7.45)

By plugging in the instantiated values in the above constraints, we can conclude
that Figure 7.4a respects the conditions above, whereas Figure 7.4b does not. For
the two instantiated DTs, the computed SHAP scores are shown in Table 7.4. As
can be observed, despite the minor changes between the two DTs, the differences
in computed SHAP scores are not only very significant, but also cause important
differences in the obtained ranking of feature importance. (The ranking of features
is by decreasing absolute SHAP score.)

Further analysis of the conditions to set SHAP(1) = SHAP(2) = 0 yielded the
case 01 = 09 = 4, 03 = 8 and o4 = 0, with @ = 1. This solution reduces the number
of nodes in the template DT (see Figure 7.5a). By changing the value of o we are
able to increase the importance of features 1 and 2. The resulting DTs are shown
in Figure 7.5b.

The computed SHAP scores for the classifiers represented by the DTs in Fig-
ures 7.4 and 7.5 is shown in Table 7.4. The results confirm that, as expected, for
the two DTs configured to cancel the SHAP scores of the key features 1 and 2
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Classifier SHAP(1) SHAP(2) SHAP(3) SHAP(4) Rank

K30 0.000 0.000 -0.125 0125  (3:4,1:2)
K 0.375 0.375 -0.125 0125  (1:2,4:3)
K. 0.000 0.000 -0.042 0208 (4,3,1:2)
K34 0.375 0.375 -0.042 0208 (1:2,4,3)

Table 7.4: SHAP scores for the classifiers in Figures 7.4 and 7.5

9 9
e {0} e {1} € {0} e {1}
: ol
(a) DT for k3 (b) DT for k3,4

Figure 7.5: Two more example instantiations for the classifier k3, with o1 = g9 = 4,
o3 =8, 04 =0, and either o = 1 (case K3.), or a = 2 (case k3 q).

(see Figures 7.4a and 7.5a) we get a SHAP score of 0. By only changing one value
in the DTs, i.e. increasing « from 1 to 2, we get completely different SHAP scores,
which now assign importance to features 1 and 2 (see Figures 7.4b and 7.5b).

Assessment. The conclusion to draw from this case study is that SHAP scores
produce misleading information about relative feature importance. Indeed, the case
study analyzed in this section reveals an issue Vj € F.([Relevant(j) A (SHAP(j) =
0)] Vv [Irrelevant(j) A (SHAP(j) # 0)]). For k3 4, SHAP scores assign some importance
to features 3 and 4, and no importance to features 1 and 2. The features that have
any influence of the predicted class are exactly features 1 and 2, i.e. the features
assigned no importance in terms of SHAP scores.

Preliminary remarks. It is straightforward to devise really simple classifiers
for which the relative feature importance obtained with SHAP scores is evidently
misleading. In the case study, and depending on the selection of picked classes, the
most important feature can be forced to be assigned a SHAP score of 0, denoting no
importance. We also showed that one can devise classifiers where several relevant
features can be forced to be assigned no importance according to SHAP scores.
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Also significant is that several of the classifiers shown are parameterized, and so
this effectively indicates that there are arbitrary many instantiated classifiers that
will yield the conclusions obtained with the case studies analyzed in this section.

One may ask why is it fairly straightforward to force SHAP scores to produce
misleading information. The key reason is that the computation of SHAP scores
accounts for all possible subsets of fixed features, and some of these subset subsets
play no role in the prediction that is being explained. By suitably picking average
values, we can force SHAP scores to completely misrepresent the relative importance
of features. Evidently, if we can generate those examples, then similar situations
are bound to occur in practice.

The next sections present additional evidence, demonstrating that similar results
are obtained in a wide range of situations, including classifiers learned form publicly
available datasets.

7.6 Issues with SHAP scores: Practice

This section demonstrates that the identified issues with SHAP scores as discussed
in Section 7.4, are indeed exist in a number of decision trees, d-DNNF circuits and
OMDDs. These models have either been described in published works or can be
learned from publicly available datasets. The experiments were performed on a
MacBook Pro with a 6-Core Intel Core i7 2.6 GHz processor with 16 GByte RAM,
running macOS Ventura.

7.6.1 Examples of Decision Trees

This section studies two example DTs. However, in contrast with the classifiers
studied earlier in this chapter, these DTs has been studied in earlier works [229, 382],
and represent concrete use cases. The choice of DTs is motivated by their size, i.e.
the DTs are not too small and so not trivial to analyze, and by the fact that
it exhibits some of the issues with SHAP scores that have been studied in this
chapter.

For the selected DT, we investigate whether there are instances exhibiting issue
12 3i,5 € F.[lrrelevant(i) A Relevant(j) A (|[SHAP(:)| > |SHAP(j)|)], i.e. whether
the rank of SHAP scores is misleading. This test was conducted for all possible
instances in the feature space. The method for computing SHAP scores in the case
of DTs is based on Equation (2.12), under the assumption of a uniform distribution
of data points across the feature space. Computation of explanations is based on
earlier work as well [169, 194].

Example Decision Tree. We consider two decision trees with discrete features
and classes, discussed in the literature [229, Figure 9] and the other from [382,
Figure 4.8]. The DTs are shown in Figures 7.6 and 7.7. For simplicity, the DTs use
set notation for the literals, as proposed in recent work [194]. Table 7.5 shows the
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Table 7.5: Mapping of original features for the DT from [229]. The original classes
{MD, Non-MD} are mapped to {Y,N}.

Feature Acronym Original Domain Feature # Mapped Domain
Age A {A<5,A>5} 1 {0,1}
Petechiae P {no, yes} 2 {0,1}
Neck Stiffness N {no, yes} 3 {0,1}
Vomiting v {no, yes} 4 {0,1}

Zone Z {rural, peri-urban, urban} 5 {0,1,2}

Seizures S {no, yes} 6 {0,1}
Headache H {no, yes} 7 {0,1}
Comma C {no, yes} 8 {0,1}
Gender G {female, male} 9 {0,1}

Table 7.6: Mapping of original features for the DT from [382]. The original classes
{ripe, unripe} are mapped to {Y,N}.

Feature Acronym Original Domain Feature # Mapped Domain
Texture T {slightly blurry, clear, blurry} 1 {0,1,2}
Root {curly, slightly curly, straight} {0,1,2}

R 2
Color c {green, dark, light} 3 {0,1,2}
Surface S {hard, soft} 4 {0,1}
Sound 0 {dull, muffled, crisp} 5 {0,1,2}
Umbilicus U {hollow, slightly hollow, flat} 6 {0,1,2}

feature domains of the DT in Figure 7.6, while Table 7.6 shows the feature domains
of the DT in Figure 7.7.

Summary of results. For each instance, all AXps are enumerated. This serves
to decide which features are relevant and which are irrelevant. Then we com-
pute the SHAP scores for each feature and analyze whether the issue 12 3i,j €
F [Irrelevant(i) A Relevant(j) A (J[SHAP(7)] > |SHAP(j)])] occurs. If an instance
exhibits such an issue, we plot a pair of values (v;,v;). More specifically, v; =
max{|SHAP(k)| |k & Fje)} and v; = min{|SHAP(k)| [k € Fjye)}. (Observe that
this means that the relative order of feature importance will be misleading.) We
then plot v; in yellow and v; in blue, these pairs of values are depicted in Fig-
ures 7.8 and 7.9. Another observation is the occurrence of issues with SHAP scores
is non-negligible. For the DT in Figure 7.6, 151 out of 768 instances exhibit the
aforementioned issue, i.e. 19.7% of the total. Moreover, for the DT in Figure 7.7,
82 out of 486 instances exhibit the same issue, i.e. 16.8% of the total.

Moreover, for the DT in Figure 7.6, we found that for the instance ((1,0,0,0,
0,0,1,1,1),1), there exist two AXps: {1,5} and {1,4} and the SHAP scores are:
SHAP(1) = 0.3572, SHAP(2) = —0.1428, SHAP(3) = —0.0178, SHAP(4) = 0.0449,
SHAP(5) = 0.0449, SHAP(6) = —0.0029, SHAP(7) = —0.002, SHAP(8) = 0.0005,
SHAP(9) = 0.0005. As can be concluded, for this instance, feature 2 is irrelevant
and feature 4 and 5 are relevant. However, we have |SHAP(2)| > |[SHAP(4)| and
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20
e{1} {0}

21 o
e{1} € {0}
¥

Figure 7.6: Example DT, adapted from [229, Figure 9]

ISHAP(2)| > |SHAP(5)|. Additionally, for the same DT, we found two instances such
that relevant features assigned with a SHAP score of 0. Specifically, for the instance
((1,1,1,0,2,1,1,0,1),1), we can compute four AXps: {2}, {1,5,6,7}, {1,4}, and
{1,3}. The SHAP scores are: SHAP(1) = 0.1172, SHAP(2) = 0.1373, SHAP(3) =
0.0123, SHAP(4) = 0.0123, SHAP(5) = 0, SHAP(6) = 0.0016, SHAP(7) = 0.0016,
SHAP(8) = —0.0003, SHAP(9) = 0.0004. Clearly, feature 5 is relevant but its
SHAP score is 0. For another instance ((1,1,1,0,2,1,1,1,0),1), we can compute
four AXps: {2}, {1,5,6,7}, {1,4}, and {1,3}. The SHAP scores are: SHAP(1) =
0.1172, SHAP(2) = 0.1373, SHAP(3) = 0.0123, SHAP(4) = 0.0123, SHAP(5) = 0,
SHAP(6) = 0.0016, SHAP(7) = 0.0016, SHAP(8) = 0.0004, SHAP(9) = —0.0003.
Clearly, for the relevant feature 5, it has a SHAP score of 0.

7.6.2 Examples of d-DNNF circuits

In this section, we repeated the same experiment comparing SHAP scores and fea-
ture relevancy but for d-DNNF circuits. We consider six publicly available datasets
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c{2}

16 17

Figure 7.7: Example DT, adapted from [382, Figure 4.8]

Table 7.7: Description of d-DNNF circuits. # Nodes denotes the number of nodes
in the circuit.

Dataset |F| Feature Domain Sizes |K| # Nodes
corral 6 B6 2 69
mofn 3 7 10 10 B0 2 207
mux6 6 B¢ 2 106
parity5+5 10 BY 2 847
threeOf9 9 B 2 167
xd6 9 B? 2 194

and analyze whether there are instances exhibit the issue 12 3i, j € F.[lrrelevant(i) A
Relevant(j) A (|[SHAP(i)| > |SHAP(j)|)]. Besides, for each dataset we test all possi-
ble instances in the feature space. These six datasets are from the Penn Machine
Learning Benchmarks [282], with boolean features and boolean classes. To obtain
d-DNNF circuits, we first trained Read-once Decision Tree (RODT) models on the
given datasets using Orange3 [104] and then mapped the obtained RODTs into d-
DNNFs. RODTs can be encoded in linear time as d-DNNF circuits [20, 22]. For
computing SHAP scores, we assumed a uniform data distribution for each dataset.
The algorithm for computing SHAP scores of d-DNNFs was proposed in [20, 22].
Computation of explanations is based on earlier work as well [169, 194].

Description of the datasets. Table 7.7 summarizes the characteristics of the
six d-DNNFs used in the experiments.

Summary of results. For the case of d-DNNF circuits, we repeat the experiment
conducted in Section 7.6.1 and plot their results. These results are depicted in
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Figure 7.8: Plot showing whether there exist irrelevant features (dots in yellow)
with higher scores than relevant features (dots in blue) in absolute value, for the
DT in Figure 7.6.
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Figure 7.9: Plot showing whether there exist irrelevant features (dots in yellow)
with higher scores than relevant features (dots in blue) in absolute value, for the
DT in Figure 7.7.
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Figure 7.10: Plot showing whether there exist irrelevant features (dots in yellow)
with higher scores than relevant features (dots in blue) in absolute value.
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Figure 7.10.

An observation is the occurrence of issues with SHAP scores is non-negligible.
For the d-DNNF in Figure 7.10a, 16 out of 64 instances (i.e. 25%) exhibit the
aforementioned issue. For the d-DNNF in Figure 7.10b, 32 out of 1024 instances
(i.e. 3.1%) exhibit the same issue. For the d-DNNF in Figure 7.10c, 38 out of 64
instances (i.e. 59.4%) exhibit the same issue. For the d-DNNF in Figure 7.10d, 344
out of 1024 instances (i.e. 32.6%) exhibit the same issue. And for the d-DNNF
in Figure 7.10e, 290 out of 512 instances (i.e. 56.6%) exhibit the same issue. And
for the d-DNNF in Figure 7.10f, 288 out of 512 instances (i.e. 56.3%) exhibit the
same issue.

7.6.3 Examples of Multi-Valued Decision Diagrams

In this section, we repeated the same experiment comparing SHAP scores and fea-
ture relevancy but for OMDDs. we consider five publicly available datasets and
analyze whether there are instances exhibit the issue 12 3i,j € F.[lrrelevant(i) A
Relevant(j) A ([SHAP(i)| > |SHAP(j)|)]. These five datasets are from the Penn
Machine Learning Benchmarks [282], with discrete features and classes. For each
dataset, we picked a consistent subset of samples (i.e. no two instances are contra-
dictory) for building OMDDs. For example, for the dataset postoperative_pa-
tient_data, there are only 88 instances, and a consistent subset of samples include
66 instances. OMDDs were built heuristically using a publicly available package
MEDDLY *, which is implemented in C/C++. For computing SHAP scores, we
assumed a uniform data distribution for each dataset. Besides, for each dataset we
test randomly picked 200 instances or all instances if there are less than 200 rows
in the dataset.

The method computing SHAP scores is based on Equation (2.12). However, it
is known that OMDDs [279] are deterministic and decomposable. Moreover, they
also supports the query polytime model counting, and the transformation polytime
conditioning [207, 279]. This means the algorithm proposed in [20, 22| for computing
SHAP scores of d-DNNFs can be extended to the case of OMDDs. Computation of
explanations is based on earlier work as well [169, 194].

Description of the datasets. Table 7.8 summarizes the characteristics of the
five OMDDs used in the experiments.

Summary of results. For the case of OMDDs, we repeat the experiment con-
ducted in Section 7.6.1 and plot their results. These results are depicted in Fig-
ure 7.11.

An observation is the occurrence of issues with SHAP scores is non-negligible.
For the OMDD in Figure 7.11a, 23 out of 200 instances (i.e. 11.5%) exhibit the
aforementioned issue. For the OMDD in Figure 7.11b, 49 out of 200 instances (i.e.

‘https://asminer.github.io/meddly/
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Figure 7.11: Plot showing whether there exist irrelevant features (dots in yellow)
with higher scores than relevant features (dots in blue) in absolute value.
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Table 7.8: Description of OMDD classifiers. # Nodes denotes the number of nodes
in the OMDD.

Dataset | F| Feature Domain Sizes ||  # Nodes

car 6 4x4x4x3%x3%x3 4 248
monk1 6 3X3IX2x3Ix4x2 2 68
monk?2 6 3X3Xx2x3x4x2 2 70

6 2
8 2

monk3 3X3IX2x3Ix4x2 74
post._ patient 3X3Xx2x3x2x3x3x%x5H 109

24.5%) exhibit the same issue. For the OMDDs in Figures 7.11c and 7.11d, 64 out of
200 instances (i.e. 32%) exhibit the same issue. And for the OMDD in Figure 7.11e,
22 out of 66 instances (i.e. 33.3%) exhibit the same issue.

7.7 Discussion

This section addresses and rebuts a number of possible criticisms to the results
presented in this chapter.

Definition of (ir)relevant features. Our definition of (ir)relevant features mir-
rors the one proposed and studied in logic-based abduction [110] since the early
and mid 90s. (Logic-based abduction formalizes the concept of abduction, studied
in logic and philosophy for more than a century [154].) Nevertheless, we explicitly
consider subset-minimality for the definition of (abductive) explanation, whereas
logic-based abduction contemplates other possible definitions [110]. For example,
there are other definitions of (minimal) explanation which involve a user indicating
some sort of preference among hypotheses (or features), that can involve some sort
of prioritization or penalization [110]. Since SHAP scores are not defined in terms
of user-specified preferences, this sort of preference-minimal explanations are inap-
plicable in our setting. In addition, another definition of explanations involves those
that are cardinality-minimal [110]. The following is a straightforward observation.

Proposition 34. Any feature that is deemed irrelevant under a subset-minimal
definition of explanation must also be an irrelevant feature under a cardinality-
minimal definition of explanation.

Most of the examples in this chapter and earlier reports [173, 175, 174] already
consider a single explanation which is necessarily cardinality-minimal. Hence, re-
placing a subset-minimal definition of explanation by a cardinality-minimal defini-
tion would not impact the implications of the results presented in this chapter and
earlier reports [173, 175, 174] in terms of the inadequacy of SHAP scores for XAIL
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Furthermore, the results presented in this chapter and earlier reports [173, 175,
174] demonstrate that SHAP scores for XAI do not correlate with the information
obtained from adversarial examples.

Definition of Shapley values for XAI. Although this chapter and earlier re-
ports [173, 175, 174] consider a well-established definition of Shapley values for XAI,
specifically the one proposed in a number of well-known references [247, 21, 105, 106,
22], one possible criticism to our results is that there are other definitions of Shapley
values besides the one being used. One example is the use of baselines [334, 201].
Our initial experiments suggest that the use of baselines is even more problematic
than the original definitions of Shapley for XAI. Concretely, the percentages of de-
tected issues for Boolean classifiers far exceed those reported in earlier work [173].
Future work will build on these initial experiments, and will document the issues
that are also observed when using Shapley values for XAl based on baselines.

Shapley values for XAI unrelated with formal explanations. One addi-
tional criticism to the results in this chapter and earlier reports [173, 175, 174] is
that the fact that Shapley values and SHAP scores for XAI do not capture feature
relevancy is not problematic per se, and it might be the case that we could be
talking about different and unrelated measures of feature importance, one provided
by feature attribution and the other provided by feature selection. As shown in
this chapter, we can construct classifiers with features that are of paramount im-
portance for a prediction, but that are assigned a SHAP score of 0 (i.e. denoting no
importance whatsoever for the prediction). Similarly, we can construct classifiers
(actually the same classifier can be used!) with features that serve no purpose in
terms of explanations, and that also serve no purpose in terms of creating adver-
sarial examples, but which are assigned the largest absolute SHAP score. In such
circumstances, it would be perplexing if there could exist some ascribed meaning
to computed SHAP scores such that the information they convey would not be
misleading for human decision makers.

7.8 Summary

For more than a decade Shapley values have represented one of the most visible
approaches for feature attribution in explainability.

This chapter gives theoretical arguments as well as experimental results to the
fact that SHAP scores for explainability can produce misleading information about
the relative importance of features. This chapter distinguishes between the features
that occur in one or more of the irreducible rule-based explanations, i.e. the relevant
features, from those that do not occur in any irreducible rule-based explanation,
i.e. the drrelevant features. This chapter proves that, for boolean functions with
arbitrary number of variables, irrelevant features can be deemed more important,
given their SHAP scores, than relevant features. Our results are also significant
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in practical deployment of explainability solutions. Indeed, misleading information
about relative feature importance can induce human decision makers in error, by
persuading them to look at the wrong causes of predictions.

Furthermore, this chapter shows that the relative order of feature importance
obtained with SHAP scores for XAI does not correlate with the features that can
serve for producing lp-minimal adversarial examples, i.e. those that are sufficiently
close to the original instance. Thus, besides SHAP scores for XAl not being corre-
lated with feature relevancy, it is also the case that SHAP scores for XAI do not
relate with [g-minimal adversarial examples.

The significance of our results should be framed in light of the rapid growth of
practical uses of explainability methods based on SHAP scores, with one concrete
example being the medical domain, of which [200, 367, 356, 191, 270, 34, 11, 376,
222, 6, 331, 375, 248, 348, 240, 241, 380, 166, 2] represent a fraction of the many
existing examples. And given the results in this chapter, the use of SHAP scores
as a measure of feature importance should be expected to mislead decision makers
when assessing the features that impact some predictions.



CHAPTER 8

Conclusions and Future Work

Conclusions

The explainability of machine learning models has become a crucial area of study,
given their expanding applications in various fields like healthcare, finance, and
law. Ensuring the trustworthiness of machine learning systems relies on the ability
to provide explanations for their decisions. In contrast to well-known non-formal
explanation approaches, formal explainability has emerged as a promising research
area. It aims to provide rigorous and provable explanations for machine learning
model predictions.

This thesis provides an overview of recent advances in formal explainability. It
contributes multiple theoretical results and practical efficient algorithms in formal
explainability. The main contributions of this thesis can be summarized as follows:

e In Chapter 3, we proposed a novel framework called explanation graphs
(XpG’s), which enables the computation of formal explanations in polyno-
mial time for tractable decision graph models. This includes decision trees,
binary decision diagrams, and multi-valued decision diagrams. Furthermore,
we proposed a practically efficient solution for the enumeration of explana-
tions. Additionally, for the concrete case of decision trees, we showed that the
set of all contrastive explanations can be enumerated in polynomial time.

e In Chapter 4, we identified conditions enabling the computation of formal
explanations in polynomial time for classifiers represented as tractable boolean
circuits. This includes well-known d-DNNF circuits and any other tractable
boolean circuit that is strictly less succinct than d-DNNF. Furthermore, we
also identified conditions under which the polynomial time computation of
explanations can be extended to boolean circuits that are more succinct than
d-DNNF.

e Chapter 5 introduced an application of formal explainability, we showed that
one can construct a decision set from some of the decision tree explanations,
such that the decision set is not only explained, but it also exhibits a number
of properties that are critical for replacing the original decision tree.

o Apart from the computation of formal explanations, there are several addi-
tional explainability queries that are of interest. In Chapter 6, we studied two
specific explainability queries: feature necessity and feature relevancy. These
queries, in general, inquire whether a user-interested feature is included in

134
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formal explanations and, if so, how it is included. We proved the computa-
tional complexity of these problems with respect to a wide range of classifiers.
Additionally, we proposed algorithms for their solution in practice.

e One of the hallmarks of XAI are measures of relative feature importance,
which are theoretically justified through the use of Shapley values. In Chap-
ter 7, we illustrate, both theoretically and empirically, that utilizing SHAP
scores for explainability will yield misleading information about the relative
importance of features for predictions.

Future Research

Even though this thesis introduces several advances in formal explainability, various
questions remain to be addressed in future work. We give some directions for future
investigation.

Enhancing Scalability of Formal XAI Methods. Due to the rapidly grow-
ing demand for deploying large-scale ML systems in various fields, the scalability
of XAI methods has become a significant concern. However, formal explainability
is hindered by poor scalability for some families of classifiers, the most significant
being neural networks. As a result, there are concerns as to whether formal explain-
ability might serve to complement other approaches in delivering trustworthy Al
Recent work [36] proposes a novel approach to approximate formal explanations
by leveraging technologies for assessing the robustness of deep neural networks.
(Analysis of robustness is motivated by the existence of adversarial examples in
complex ML model [335].) Besides, recent work [172] addresses the limitation of
scalability of formal explainability, and proposes novel algorithms for computing
formal explanations. Motivated by these works, one future research direction will
be to develop practical and efficient approaches for computing rigorous explana-
tions for complex machine learning models by leveraging off-the-shelf robustness
tools [211, 377, 360, 359, 336, 157, 158, 119].

Comparative Studies Between SHAP scores and Formal Explanations.
Building upon the findings of Chapter 7, one future research direction will be to con-
duct a more extensive and detailed comparative analysis of similarities and differ-
ences between SHAP scores and formal explanations. Another direction of research
is to develop a better understanding of the distributions of functions exhibiting one
or more of the issues of SHAP scores. Furthermore, recent work [369, 368] proposes
a way for applying formal XAI to the case of feature attribution, leveraging the
enumeration of formal explanations. One direction of future research is to devise
other measures of relative importance that might serve as alternatives to the use of
SHAP scores.
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