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Mme Karyn Le Hur
Directrice de recherche au CNRS, CPhT, École polytechnique Directrice de thèse
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Abstract

This PhD thesis is concerned with the interplay of effects of disorder, localization, inter-
action with the environment and topology in quantum many-body systems. It aims at
studying said interface both from a fundamental interest, as well as to develop perspectives
with regards to applications in quantum technology. A special focus of this thesis is on
spin systems, as they form a suitable platform for probing above mentioned effects and
are also interesting from the perspective of experimental realizations and applications.
Starting from a single spin-1/2 in a radial magnetic field, topology can be defined from the
poles of the ground state manifold. This model is analogous to several other condensed
matter models, such as the Haldane model or the Kitaev wire. The definition of topology
in the spin model can be extended to interacting systems comprising multiple spins, as
well as to open systems coupled to an environment.

Experimentally, this topology can be probed from a dynamic protocol driving the
magnetic field acting on the spin in time. In this setup, the thesis investigates a ‘quantum
dynamo effect’ occurring as a consequence of the driven dissipative dynamics when coupling
to an environment. This effect bears an intriguing connection with the ‘dynamically
accessed topology’ of the spin. This thesis defines and investigates thermodynamic
properties of this effect corresponding to a work-to-work conversion coherently displacing
certain modes of the environment. It opens perspectives for energy transfers on the
quantum scale through an environment. The definitions and probes are compared using
different analytical and numerical techniques for evaluating the driven dissipative dynamics.

In interacting systems composed of several spins, the topology of each spin can be
studied and has previously been shown to yield fractional values depending on the symmetry
of the model. This thesis emphasizes the behavior of this fractional topological phase when
disorder is introduced and shows that the latter can lead to its extension. An interpretation
of these effects in terms of Majorana fermions is discussed, enabling considerations for
applications in quantum information.

The effects of disorder and localization physics are discussed in depth for a model which
can be realized using cold atoms and can in a certain limit be mapped to a spin model
as well. A particular form of quenched disorder can be realized in this system through
coupling to a second particle species. In this case, there is an interesting connection to
Z2 lattice gauge theories when the impurities introducing disorder to the system acquire
quantum dynamics themselves. This thesis investigates the interplay between an applied
U(1) gauge field allowing to define a local current and this special form of disorder and in
particular proposes to use this current as an indicator of the localization properties. A
numerical study using exact diagonalisation demonstrates the presence of a many-body
localized phase in this model. This phase is identified from the scaling of the entanglement
entropy and witnessed by the bipartite fluctuations and the local current. The thesis
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offers perspectives for a fundamental understanding of the interplay of topology, open
system dynamics and disorder effects in quantum systems and bridges with experimental
realizations and applications.
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Chapter 1

Introduction

The study of topological properties of condensed matter systems has attracted a lot of
attention in recent years. At the core of this interest is the fact that topological phases
cannot be explained by the traditional theory of spontaneous symmetry breaking due to
Landau [1,2]. Topological phases constitute thus new phases of matter, which makes their
investigation relevant from a fundamental physical interest. As the name ‘topological’
suggests, these properties do not depend on local changes, but are rather evaluated as a
global property of the system [2]. Interest in them is in addition fueled by exotic properties
that are promising for technological applications: A common feature of topological phases is
a bulk-edge correspondence, in which topological properties of the bulk manifest themselves
in the occurence of topologically protected states on the boundary of the system [3]. An
example are topological insulators, which are insulating in the bulk, but show conducting
edge modes, which are in fact related to the topological properties of the bulk [2].

A concrete and foundational example for this is the integer quantum Hall effect
discovered experimentally in 1980 [4]. In a two-dimensional electron gas subject to a strong
magnetic field, it was found that the transverse Hall resistance (and thereby also the Hall
conductance σxy) develops quantized plateaus as a function of the applied gate voltage.
The remarkable stability of these plateaus hints at their topological origin. The relation
found experimentally reads

σxy = ν
e2

h
, (1.1)

where e is the elementary charge, h is the Planck constant and ν is an integer. Theoretical
considerations of this peculiar effect followed suit [5–7]. The band structure of a two-
dimensional electron gas in a strong magnetic field is described by Landau levels, with
finite gaps inbetween. It can be shown that the transverse conductivity due to a band is
related to its topology: In particular, the integer ν observed experimentally is given by
a sum of a topological invariant - the so-called Chern number - for each occupied band,
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CHAPTER 1. INTRODUCTION 5

i.e., [2, 7]

ν =
∑
α

Cα, (1.2)

with

Cα = 1
2π

∫
d~kFα~k . (1.3)

Here, Fα~k = ~∇×Aα~k is the Berry curvature of band α defined from the Berry connection
Aα~k = i

〈
ψα(~k)

∣∣∣ ~∇~k ∣∣∣ψα(~k)
〉
with

∣∣∣ψα(~k)
〉
the Bloch wave function [8] and the integration

ranges over the first Brillouin zone. Similarly to the integral of the Gaussian curvature over
a surface defining its genus, the Chern number is an invariant defined from an integration
of the Berry curvature over the Brillouin zone [2]. This demonstrates the topological
nature of the integer quantum Hall effect.

In 1988, it has been realized by Haldane that a similar Quantum Hall effect can
also occur in a lattice model, namely graphene with additional complex next-nearest
neighbor hopping [9]. In this setup, which we will briefly describe in Sec. 1.1.2, chiral edge
states can be obtained explicitly as a manifestation of the above mentioned bulk-edge
correspondence [2]. As a lattice model, an attractive feature of the Haldane model is that
it can be realized using tunable implementations [10], making it an interesting model both
for experimental verifications of topological properties, but also for further theoretical
developments of these (see e.g. [11–13]).

Another instance of the bulk-edge correspondence is that of a topological p-wave
superconducting wire, which we will also introduce in Sec. 1.1.2. It has a topological phase,
in which it exhibits exotic Majorana edge modes [14].

Phases of quantum matter with topological properties are attractive, since such prop-
erties are stable against local perturbations and disorder and therefore interesting for
technological applications [2]. Especially the above mentioned p-wave superconducting
wire is of high interest for potential applications in topological quantum computing [15–17].
Coming back to the example of the integer quantum Hall effect from above, one can on
the one hand show that the quantization of the transverse conductance is stable upon
adding small disorder [6]. On the other hand, and less intuitively, disorder is playing a
crucial role for the occurence of the quantum Hall plateaus by localizing states that do
not contribute to the conductivity, as we will discuss below in Sec. 1.3.1. The interplay
between topological properties and disorder is thus a complex field, giving rise to subtle
properties, as we will see also in Chap. 3.

The study of disorder effects in quantum systems has itself given rise to a variety of
curious new phenomena and phases. Anderson localization [18], a phenomenon occuring
for particles in a ‘dirty’ environment, inherently because of the wave character of quantum
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particles, was a milestone in this field. We will be focussed on localization effects in
a particular quantum system tailored for experimental realizations in Chap. 4. Ever
since the work of Anderson, the study of more complex setups with interactions among
particles [19–21] has paved the way for the discovery of a phenomenon termed ‘many-body
localization’ (MBL), describing closed systems which do not thermalize after a long time
evolution. Remarkably, MBL is the only known mechanism showing this feature of non-
thermalization in a robust way [22]. The understanding of this phase is essential in order
to design applications in quantum technologies operating in the disordered, interacting,
dynamic regime [23]. We will present a study of the MBL properties of a particular spin
system in Chap. 5.

However, the necessity for the understanding of thermodynamic notions in the quantum
realm in order to enable functional applications is a more general one. Even though the
laws of thermodynamics, formulated for classical systems, can be generalized to quantum
settings under certain restrictions [24], there are quantum setups not described by these
conditions [25,26] and generalizations are desirable [27]. In Chap. 2, we will discuss the
‘quantum dynamo effect’, describing a situation in which a driven system coupled to a
bath can under certain conditions transfer work into the bath. Curiously, this setup and
the effect show parallels with a topological invariant that can be defined for a spin in a
radial magnetic field, but is in fact a model with several analogues in condensed matter,
such as the above mentioned Haldane model. We will therefore start by introducing these
topological notions with some detail for such a spin system.

1.1 Topological properties of a spin-1/2

A remarkable feature of condesed matter physics is that seeminlgy very different models
can be mapped onto each other and in this way their similar physical properties are
understood. This allows on the one hand to understand effects occuring in several models
on a similar footing and on the other hand it opens the perspective to simulate systems,
which otherwise would not be easily accessible, in an analogous setup. This is the paradigm
of quantum simulation [28], where one tries to probe models from various areas of physics
(ranging from condensed matter systems to, for example, gravitational physics) in a
controllable, realizable quantum system. More generally, an early instance in which two
different systems were successfully understood by mapping them onto each other is the
Kramers-Wannier duality, which allows to map the high and the low-temperature regime
of the two-dimensional Ising model onto each other [29]. Another interesting example is
the duality between lattice gauge theory and generalized gauge invariant Ising models
discovered by Wegner [30,31]. We will discuss a special instance of this in Sec. 4.3.2.

In the realm of this thesis, we will be concerned in particular with spin models and their
analogues in the context of topological properties, open system dynamics and disordered
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setups. A recurrent motive throughout this work is the discussion of analogies between
different systems, which can be used to gain a better understanding of physical properties:
We will discuss a spin in a radial magnetic field which can be used to investigate the
topological transition in the Haldane model and the Kitaev wire (see below in Sec. 1.1.2).
This spin system exhibits interesting dynamical properties when coupled to an environment,
that we will discuss especially in the light of the ‘quantum dynamo effect’ [32,33] in Chap. 2.

1.1.1 The model

The simplicity of the model of a spin-1/2 in a radial field enables studies of more complex
setups where several such systems interact, giving rise to exotic fractional topological
phases [12]. This will be the subject of Chap. 3, where we investigate such a model in the
light of its response to disorder and find a disorder-enabled fractional topological region in
the phase diagram in Fig. 3.5. Starting with a simple setup, consider a system governed
by the Hamiltonian [12,32,34]

Hrad(θ, φ) = −H2 (sin θ cosφσx + sin θ sinφσy + cos θσz)− M

2 σz, (1.4)

where σα are the usual Pauli matrices for a spin-1/2, that is here subject to a radial field
parametrized by the two angles θ and φ which are the parameters of this system. Here
and throughout this thesis, we set ~ = 1. In order to introduce the notion of topology
of such a spin-1/2, let us first introduce the most important definitions. We will then
exemplify the relation of this model to other condensed matter models in Sec. 1.1.2.

Calculating the Chern number for a spin-1/2

It has been realized in [34] that the Berry curvature can be understood in generic systems
as a linear response to a change in an external parameter. In fact, given a parameter
(labelled by µ) of a quantum system, one can define the associated Berry connection

Aµ = i〈ψ|∂µ|ψ〉, (1.5)

which then has a purely geometric interpretation [34]. One can then define the Berry
curvature

Fµν = ∂µAν − ∂νAµ. (1.6)

Consequently, if the parameter field lives on a compact manifold, one can then define the
Chern number as [34]

C = 1
2π

∫
S
dSµνFµν , (1.7)

where the integration ranges over the compact parameter manifold S with surface element
dSµν and the state for which it is calculated should be gapped from the other states in the



CHAPTER 1. INTRODUCTION 8

energy surface to observe a quantization of the Chern number. This quantization can be
understood as a dynamical quantum Hall effect in parameter space, as has been pointed
out in [34]. Following [34], we can define the Berry connection and curvature in Eqs. (1.5)
and (1.6) for a dynamical quantum Hall effect in the parameter space of the spherical
model in Eq. (1.4). This procedure in a way disregards the fact that they are spherical
coordinates, treating them as Cartesian. This corresponds to the point of view that we
are simply adapting the definitions of these quantities to a general parameter manifold
without considering an embedding into Euclidean space.

It is straightforward to adapt Eqs. (1.5) and (1.6) for spherical coordinates and
demonstrate that this leaves Eq. (1.7) unchanged for the concrete model of a spin in a
radial field1 [35, 36]. We will see below in Eq. (1.15) that this Chern number depends
only on the spin expectation values at the two poles: Choosing a bipartition of the
spherical parameter manifold, there is a homeomorphism mapping each hemisphere to
the two-dimensional Euclidean space. This underlines that both of the approaches are
equivalent, as long as a bipartition of the sphere is implemented. This will be crucial
also for a generalization of these definitions for interacting systems, that we discuss in
Sec. 1.1.3.

To take the definition from Eq. (1.7) to practice, let us consider a central system of
this thesis which is a spin-1/2 in a radial magnetic field given by Eq. (1.4). As we will see,
this example can showcase rich physics and is relevant to understanding the topological
properties of a variety of other physical systems that can be mapped to it.

Related to the discussion above, the Berry curvature and therefore the Chern number
of this system are defined upon sweeping through the domain of these parameters, i.e.,
θ ∈ [0, π] and φ ∈ [0, 2π). The system under consideration can be diagonalized and yields
the eigenenergies

E± = ∓1
2

√
(H cos θ +M)2 + (H sin θ)2,

with corresponding eigenstates [36]

|ψ+〉 = e−i
φ
2 cos

(
θ̃

2

)
| ↑〉+ ei

φ
2 sin

(
θ̃

2

)
| ↓〉, (1.8a)

|ψ−〉 = − e−i
φ
2 sin

(
θ̃

2

)
| ↑〉+ ei

φ
2 cos

(
θ̃

2

)
| ↓〉, (1.8b)

where θ̃ is defined from

cos θ̃ = H cos θ +M√
(H cos θ +M)2 + (H sin θ)2

, sin θ̃ = H sin θ√
(H cos θ +M)2 + (H sin θ)2

. (1.9)

1A detailed discussion including the said demonstration can be found in the supplemental material
of [35].
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Note that in the solution given in Eqs. (1.8), there is a global gauge freedom to multiply
by a φ-dependent global phase, but the relative phase between the states |↑〉 and |↓〉 is
fixed to eiφ. On a general level, for the rotationally symmetric problem2, one can write
the ground state wave function as [12]

|ψ〉 =
∑
k

ck(θ)|Φk(φ)〉, (1.10)

where |Φk=±(φ)〉 is an orthonormal basis for the spin. In this way, we see that the
dependence on the angle φ is absorbed into the basis, while the dependence on θ is in the
coefficients ck(θ), which is justified by the symmetry argument and the fact that at the
poles with θ = 0, π, the physical properties should not depend on the angle φ. A common
choice of basis is [36]

|Φ+(φ)〉 = e−i
φ
2 | ↑〉, (1.11a)

|Φ−(φ)〉 = ei
φ
2 | ↓〉. (1.11b)

From the ground state |ψ+〉 in Eq. (1.8a), the Berry connections can be evaluated exactly
using Eq. (1.5) and read

Aθ = 0, (1.12)

Aφ = cos θ̃
2 . (1.13)

The Berry connections are independent of the polar angle φ of the spherical parameter
space, which is a manifestation of the rotational symmetry of the Hamiltonian in Eq. (1.4).
From here, we can calculate the Berry curvature Fφθ using Eq. (1.6) and finally integrate
to find the Chern number using Eq. (1.7) as

C = 1
2(sgn(H +M)− sgn(−H +M)). (1.14)

Note that there are thus three possible values C can take in this system, that is C ∈
{−1, 0, 1}. When H > M > 0, we find C = 1, whereas for |H| < |M | we find C = 0. Note
that for the spin in the first case, one would have 〈σz(θ = 0)〉 = 1 and 〈σz(θ = π)〉 = −1,
while in the second case we find 〈σz(θ = 0)〉 = 1 and 〈σz(θ = π)〉 = 1. This allows for an
interpretation of the Chern number in terms of the accessed ground state manifold of the
spin: When the topology is non-trivial (i.e., C 6= 0), upon winding around the parameter
manifold, the spin winds completely around its ground state manifold as well. With
trivial topology (i.e., C = 0), the ground state manifold is not fully explored for a similar
protocol. The Chern number can also be interpreted as a topological charge contained

2The rotational symmetry refers to rotations around the z-axis.
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within the parameter manifold spanned by the magnetic field: The degeneracy point of
the Hamiltonian being within this space corresponds to C = 1, while it being outside
corresponds to C = 0 [12,32,35,37]. Note that in the model of Eq. (1.4), one can in the
ground state identify sgn(H +M) = 〈σz(θ = 0)〉 and sgn(−H +M) = 〈σz(θ = π)〉. For a
spin in a radial magnetic field, it can be shown from the definitions that in general [32]

C = 1
2 (〈σz(θ = 0)〉 − 〈σz(θ = π)〉) . (1.15)

This equation explicitly allows to measure the Chern number defined in Eq. (1.7) for
the system under consideration solely from the poles of the parameter space. A way to
interpret this is similarly in terms of the winding around the ground state manifold. In
Sec. 1.1.3, we discuss a generalization of this notion to interacting systems. Before doing
so, let us explore how the model of a spin in a radial magnetic field is not only interesting
in its own right, but also has applications to other models.

1.1.2 From a spin-1/2 to other condensed matter models

The Haldane model

The Haldane model already evoked above is a two-dimensional model for a honeycomb
layer with complex hopping amplitudes, realizing a quantum Hall effect [9]. It is based on
the tight-binding description of graphene, which is known to yield massless Dirac fermions
at two points of the Brillouin zone which are called the K and K ′ points (or Dirac points),
with a linear dispersion relation and thus semimetallic properties [38, 39]. Here we will
see that the physics at the Dirac points is closely related to the topological properties of
the model through a mapping of these two points to the poles of a spherical parameter
manifold of a pseudo-spinor.

To see this analogy, we start from the unit cell of graphene, which contains two sites
for which a priori there is a sublattice symmetry (cf. Fig. 1.1a)). However, introducing a
staggered potential offset m between the two sites of the unit cell breaks this symmetry
and opens a gap in the energy spectrum, thus creating insulating behaviour. Such a term
is also called a Semenoff-mass [12,40]. The particles can hop between neighboring sites
with a hopping amplitude t1.

The realization of Haldane was that this model exhibits a Quantum Hall effect when
complex second nearest neighbor hoppings of the form t2e

iϕ are added, which correspond to
the effect of a magnetic field with zero net flux around one unit cell [3,9]. Such a term also
opens a gap at the K and the K ′ points of the Brillouin zone, but it can be shown that the
occupied band has a different geometry than in the situation with only nearest-neighbor
hopping and a Semenoff mass. In fact, this is related to the Chern number defined in a
general form in Eq. (1.7) above for an integration over the Brillouin zone, i.e., with µ = kx,
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Figure 1.1: Summary of the Haldane model. a) Reprinted with permission from the
supplemental material of [11]. Setup and notations of the Haldane model in real space. b)
Reprinted with permission from the supplemental material of [37]. Pictorial representation
of the mapping between the spin in a radial field and the Haldane model in momentum
space. Notably, the poles map to the K and K ′ points, respectively. The upper panel
represents the topological phase, while the lower panel represents the trivial phase. c)
Reprinted with permission from [9]. Phase diagram obtained by Haldane in 1988. In the
plot, φ is the complex hopping phase associated with the second nearest-neighbor hopping
t2, M is the Semenoff mass and ν is the topological invariant equivalent to C with the
mapping to the spin. Copyright (2023) by the American Physical Society for all figures.

ν = ky and dSµν = dkxdky. The value of the Chern number C can be evaluated for each
band and is intimately connected to the transport properties of the system. In particular,
the transverse Hall conductance is proportional to the Chern number of the occupied band,
i.e., [3, 36]

σxy = e2

h
C. (1.16)

The analogy with the sphere model introduced above can be seen by writing the Hamiltonian
of the Haldane layer in Fourier space, which reads with the nearest-neighbor and next-
nearest neighbor lattice vectors ~ai and ~bi defined from Fig. 1.1a) [9]

HHaldane =
∑
k

(c†~k,A, c
†
~k,A

)H(~k)
c~k,A
c~k,A

 , (1.17)

with
H(~k) = ~d · ~σ + ε1, (1.18)
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where ~σ is the vector of Pauli matrices, 1 is the 2-by-2 identity matrix, ~k = (kx, ky) and

dx = t1
∑
i

cos
(
~k · ~ai

)
, (1.19)

dy = t1
∑
i

sin
(
~k · ~ai

)
, (1.20)

dz = m− 2t2 sinϕ
(∑

i

sin
(
~k ·~bi

))
, (1.21)

ε = 2t2 cosϕ
(∑

i

cos
(
~k ·~bi

))
. (1.22)

Expanding the Hamiltonian around the Dirac points K and K ′ given by 2π
3a

(
1,± 1√

3

)
where

a is the nearest-neighbor distance, one finds effectively [9, 37,41]

H(k)± = vF (q±x σx ± q±y σy) + v2
F (m∓ 3

√
3at2 sinϕ)σz, (1.23)

with the Fermi velocity vF = 3
2t1a and the H(k)± are the expansions around the K and K ′

point respectively, so that ~q+ = ~k − ~K and ~q− = ~k − ~K ′. We see that the Hamiltonian at
the K and K ′ points corresponds to the spin Hamiltonian in Eq. (1.4) at the north and the
south pole respectively [35,37]. This correspondence is shown pictorially in Fig. 1.1b). Just
like the topological phase transition was determined by the comparison ofM and H for the
spin (cf. Eq. (1.14)), the topology of the Haldane layer is determined by the comparison
of m and 3

√
3at2. According to this development, Haldane predicted a topological phase

transition for |m/t2| < 3
√

3|sinϕ| (see Fig. 1.1c). This analogy has been used to test
the phase topological phase transition in the Haldane model experimentally using the
analogous spin system [35,37]. The lattice model is also experimentally realizable with
cold atoms [10,42].

Therefore, the mapping onto a spin-1/2 on the one hand provides an elegant way to
understand topological properties of the Haldane model and on the other hand allows
to study topological phase transitions experimentally in a simple way. In the following
paragraph, we will see that this analogy is useful also for understanding topological
properties of another condensed matter model, namely the so-called Kitaev wire.

Kitaev wire

The model of a one-dimensional p-wave supercoductor has gained popularity due to
the topical explanation of the occurence of Majorana fermions (see below) at its edges
by Kitaev [14] and is hence often referred to as ‘Kitaev wire’. The fact that such
systems are believed to have promising applications for storing and processing quantum
information [43,44] has motivated a lot of research on them in recent years [45–50]. As we
will explore in this section, the interesting property of hosting free Majorana edge states is
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inherently connected to the topological properties of the system, which can be understood
from an analogy to the spin-1/2 system studied above.

Let us first introduce the model of a one-dimensional system hosting spinless fermions
[14,51]

Hwire = −t
∑
j

c†jcj+1 + ∆eiϕ
∑
j

c†jc
†
j+1 + h.c.− µ

∑
j

c†jcj. (1.24)

Here c†i and ci are the fermionic creation and annihilation operators at site i, t is the hopping
amplitude between two neighboring sites, ∆ is the superconductive pairing strength, ϕ in
this section is the superconducting phase and µ is the chemical potential. Experimental
proposals to realize such a Hamiltonian include heterostructures (such as semiconducting
nanowires in proximity to a superconductor) [49, 50] or supercoducting qubits [44].

In the following paragraph, we will explain how the topological properties of this model
can be understood from a mapping to the Bloch sphere from Sec. 1.1 and explain the
occurence of Majorana bound states in more detail.

Topology from the sphere

Applying a Fourier transformation, the model can be written in a Bogoliubov-de-Gennes-
form when defining Ψ†k = (c†k, c−k) as [51–53]

Hwire =
∑
k

Ψ†k

−(µ2 + t cos(ka)) i∆eiϕ sin(ka)
−i∆e−iϕ sin(ka) (µ2 + t cos(ka))

Ψk, (1.25)

where a is the distance between two neighboring sites. From the 2-by-2-form of this matrix,
the connection with the Hamiltonian in Eq. (1.4) is already starting to become apparent.
We define pseudo-spinors and an anlogue to a magnetic field by [51]

~Sk =


c†kc
†
−k + c−kck

−i(c†kc
†
−k − c−kck)

c†kck − c−kc
†
−k

 , ~dk =


−∆k+∆∗k

2
∆k−∆∗k

2i

−εk

 , (1.26)

with ∆k = i∆eiϕ sin(ka) and εk = −(µ2 + t cos(ka)). The Hamiltonian can be rewritten
as [51]

Hwire = −
∑
k

~dk · ~Sk. (1.27)

As such, the relation with the spin model is clear: The momentum and the superconducting
phase map to a polar angle and an azimuthal angle on a sphere [51]. A sweep along
θ in the spin model thus corresponds to a sweep along the momentum k in the Kitaev
wire. It can be shown that θ = 0 can be identified with ka = 0 and θ = π with ka = π.
The superconducting phase corresponds to a free parameter winding around the xy-plane.
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Taking over the definition from Eq. (1.15) [36,51], we can write for this model

C = 1
2 (〈Sz(ka = 0)〉 − 〈Sz(ka = π)〉) . (1.28)

Since at these two ‘poles’, the off-diagonal components of the Hamiltonian in the BdG-form
vanish, the ground state in terms of the pseudo-spinor is either in the up- or in the down-
state. Thus, we can interprete this number equivalently as counting the winding of the
pseudo-spinor state along its effective ground state manifold (that is, a Bloch sphere) when
‘winding’ the momentum k along half of the Brillouin zone.

This is in fact similar to the interpretation of the Z2 invariant commonly defined for
the Kitaev wire, which in this langauge corresponds to ν = 〈Sz(ka = 0)〉 〈Sz(ka = π)〉
[14, 36,52,53]. It can then be identified with [36]

ν = 1− 2C2. (1.29)

From this simple prescription, we can determine the topological phase transition point of
the Kitaev wire. If t = ∆, we see that the invariants C and ν change at µ = ±2t. For
|µ| > 2t, the wire is in a topologically trivial phase with ν = 1 and C = 0. For |µ| < 2t,
we find in turn ν = −1 and C = 1, corresponding to a winding along the Bloch sphere for
a sweep through the Brillouin zone. This is therefore the topological phase.

On the one hand, the Kitaev wire model is widely popular for this conceptual realization
of a topological phase transition by relatively simple means. On the other hand, it has the
attractive feature of forming Majorana bound states at its edges in the topological phase
as a manifestation of the bulk-edge correspondence, which makes it especially interesting
for applications in quantum technology. We will study this feature in the next paragraph.

Majorana fermions

Majorana fermions are fermionic particles that are their own anti-particles [54]. In the
realm of condensed matter, they are hypothesized as effective excitations in various
models [14,55–57]. In the Kitaev wire, the topological phase features Majorana fermions
at the edges. Another example is the spin-boson model discussed below (cf. Sec. 1.2.2),
where a mapping of the spin degree of freedom to Majorana fermions can be used to study
the phase transition of the spin-boson model using a renormalization group approach [58].

To introduce Majorana fermions and demonstrate the enthusiasm for them in the
condensed matter community, we stay with the example of the Kitaev wire. One can
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introduce two Majorana fermions at each site of the model in Eq. (1.24) by

ηi = c†i + ci√
2
, (1.30a)

αi = c†i − ci√
2i

, (1.30b)

and check that they fulfill fermionic anticommutation relations

{ηi, ηj} = δij, {αi, αj} = δij and {ηi, αj} = 0, (1.31)

as well as the defining properties

η†i = ηi and α†i = αi. (1.32)

In terms of these new operators, the Hamiltonian from Eq. (1.24) reads

Hwire = i(t+ ∆)
∑
j

ηjαj+1 + i(t−∆)
∑
j

ηj+1αj − iµ
∑
j

αjηj. (1.33)

In order to identify two different physical regimes of this model, it is now instructive to
consider two limiting cases, as has been put forward by Kitaev [14]. For simplicity, we set
ϕ = 0.

1. t = ∆ = 0, µ < 0: In this case, the Hamiltonian consists only of the chemical
potential term. The two Majorana fermions on each site are thus coupled locally,
defining the unique ground state.

2. t = ∆, µ = 0: The Hamiltonian reads simply Hwire = i2t∑j ηjαj+1. Adjacent
Majorana fermions from neighboring sites are coupled with one individual Majorana
fermion at each end of the chain remaining free, giving a doubly degenerate ground
state.

These are two distinct phases that cannot be smoothly connected, implying that this
result holds generally even when departing from these two fine tuned limits [52]: The first
case corresponds to the topologically trivial case with ν = 1 and C = 0. The second case
however correponds to the topological case with ν = −1 and C = 1, as can easily be seen
from the winding of the pseudo-spinor from Eq. (1.26).

This constitutes a simple, yet compelling example of the bulk-edge corerspondence in
a topological phase. The latter can be understood by simple means using the analogy to a
spin in a radial field, which therefore proves a useful tool. In the following section, we
will see how the notions established above can be generalized to the case of interacting
systems.
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1.1.3 Generalization for interacting systems

In the previous sections, we saw how a Chern number can be defined in parameter space,
how it can be interpreted and to what other models of condensed matter this is relevant.
Here we want to show an elegant way in which this can be generalized even further, giving
rise to a fractionalization of the partial Chern number [12], which we will define below. As
mentioned above, the Chern number from Eq. (1.7) can, for a single spin, be interpreted as
the winding around the ground state manifold or a topological charge. Here, we will extend
this to interacting systems using a similar formalism. For this, consider two interacting
spin-1/2 according to

H =
2∑
i=1
Hrad,i + rzσ

z
1σ

z
2, (1.34)

where Hrad,i is given by Eq. (1.4) and the model thus consists of two coupled copies of the
model for one spin discussed above. Defining the Berry connection and the Berry curvature
of the i-th spin from the derivative operator acting on site i (i.e., ∂1

α = (∂α11)⊗ 12 and
∂2
α = 11 ⊗ (∂α12)) as [12]

Aiµ = i〈ψ|∂iµ|ψ〉, (1.35)
F iφθ = ∂iφA

i
θ − ∂iθAiφ, (1.36)

extends the above notions to each of the subsystems of the interacting system. The system
described by Eq. (1.34) is still rotationally invariant for rotations around the z-axis. We
can therefore generalize Eq. (1.10) and write the ground state wave function as [12]

|ψ〉 =
∑
kl

ckl(θ)|Φk(φ)〉1|Φk(φ)〉2, (1.37)

where |Φk=±(φ)〉i is an orthonormal basis for spin i and can for example be taken to be
Eq. (1.11). To write the wave function in this form, we again required rotational symmetry
around the z-axis, so that the coefficients ckl(θ) do not depend on the polar angle φ and
in particular, at the poles, all values of φ are equivalent. The partial Chern number can
then be defined by [12]

Ci = Aiφ(0)− Aiφ(π). (1.38)

Note that Aiφ(θ) is a gauge-dependent quantity, while Ci is gauge-independent [12].

The partial Chern number

To prove Eq. (1.38), one starts from the definition of Ci as an integral of the Berry
curvature and writes [12]

Ci = 1
2π

∫ 2π

0
dφ
∫ π

0
dθF iφθ = − 1

2π

∫
S2
d~S · (~∇× ~Ai), (1.39)



CHAPTER 1. INTRODUCTION 17

where ~Ai = (Aiφ, Aiθ)T . Splitting the sphere into two submanifolds by choosing some
boundary separating the north and the south pole, one can choose a specific gauge on
each of them such that the φ-component of the Berry connection vanishes at the pole of
each of the submanifolds [12]. One can then use Stokes’ theorem to evaluate the integral
above by a contour integration along the boundary. Changing the gauge, one arrives at
Eq. (1.38). For the details on this derivation, we refer to [12,36].

Using σzi = |↑〉i 〈↑|i − |↓〉i 〈↓|i to rewrite Eq. (1.38) with the wave function from
Eq. (1.37), we find

Ci = 1
2 (〈σzi (θ = 0)〉 − 〈σzi (θ = π)〉) . (1.40)

Similar to Eq. (1.15) for an individual spin, this formula allows to determine the partial
topology of one of the spins solely from its expectation values at the poles of the parameter
space. We can again interprete it as the winding around the ground state manifold of the
spin i, but now superpositions of different paths are possible due to the interaction with
the second spin. The difference with Eq. (1.15) thus lies in the fact that the expectation
value is now influenced by the interaction with the other spin. One can tune a situation in
which 〈σzi (θ = 0)〉 = 1 and 〈σzi (θ = π)〉 = 0 by requiring [12]

H

2 + M

2 > rz >
H

2 −
M

2 , (1.41)

for which the ground state at the south pole corresponds to

|GS(θ = π)〉 = 1√
2

(| ↑↓〉+ | ↓↑〉). (1.42)

This is a maximally entangled state between the two sites, similar to the famous EPR-
pair [59] or Bell state [60]. From Eq. (1.40), we then immediately find Ci = 1/2, which
demonstrates how, in the interacting case, fractional values of Ci can arise. Compared
to a single spin, the possibility of forming an entangled state between the two spins is
opened, which makes the interpretation of the partial topology of one of the spins less
intuitive. If on mean-field level, the coupling to a second spin can be thought of giving
rise to an additional field acting on the first spin, the possible superposition of different
states of the second spin effectively gives rise to a superposition of the ground state of the
fist spin winding around and not winding around the Bloch sphere, or equivalently the
topological charge being within and ouside of the sphere described by the parameters [12].

This striking, yet simple way to realize fractional topological numbers based on
entanglement between to subsystems can be generalized using the considerations from
Sec. 1.1.2 to two coupled Haldane layers [12] or Kitaev wires [51]. In physical terms,
this partial Chern number defines a topological phase given the interaction [12] and an
exchange symmetry between two subsystems. The concrete fractional values of the partial
Chern number (i.e., Ci = 1/2 for the parameters in the range given by Eq. (1.41)) are
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System

Harmonic oscillator bath

Figure 1.2: Schematic of a system coupled to an environment: The system in blue is
coupled to harmonic oscillator modes (shown in yellow) constituting the environment.
One is often interested in the effective dynamics of the system under consideration (in
blue), for which one might observe decoherence. The entire system (shown in green) is
still closed and is assumed to evolve unitarily.

dependent on the concrete model under study and the types of interaction. It is one
goal of this thesis to see to which extent the notions introduced here can be generalized
to systems with different interactions, disordered systems and open systems, studying
interacting spin models. For this, the following section will introduce a few key notions for
the study of open and driven quantum systems.

1.2 Open quantum systems

The study of open quantum systems is a long standing endeavour, steming from the
fact that in laboratory and real-life applications, quantum systems inherently interact
with their environment [61]. In fact, this has been realized already in the earlier years
of quantum mechanics by John von Neumann [62]. The study of open systems has of
course been active even before the discovery of quantum mechanics in the realm of classical
mechanics and thermodynamics [63], but new concepts are needed to adopt a quantum
description of open systems [64] and remain in fact an active field of study until today,
notably in the form of quantum thermodynamics [65–68] and in the light of emerging
applications [69–74].

1.2.1 Generalities

A common approach to study open quantum systems is to separate the Hamiltonian of
the entire system into the part describing the microscopic system HS, the macroscopic
environment or ‘bath’ HB and their mutual interaction HSB, i.e., [61, 66]

H = HS +HB +HSB. (1.43)

Coupling to an environment leads to dissipation of energy from the system into the bath,
as well as decoherence of the state of the system [64,75].

A common way to model the bath is to consider an infinite collection of quantum
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harmonic oscillators [76], schematically shown in Fig. 1.2. A well-established class of
models is that of Caldeira-Leggett models [77–79] in which the bath is modelled as an
infinite collection of one-dimensional quantum harmonic oscillators and the system is a
single quantum particle. Then, HB takes the form [64,79,80]

HB =
∑
k

(
p2
k

2mk

+ mkω
2
kx

2
k

2

)
, (1.44)

while the coupling term reads
HSB = Ô

∑
k

ckxk, (1.45)

where xk and pk are the position and momentum operators of the k-th bath ocillator,
mk and ωk are its mass and its frequency, Ô is an observable of the system and ck is the
coupling constant to the k-th environment mode. The coupling strength in relation to the
frequency of each mode can be expressed through the spectral function [79,80]:

J(ω) = π

2
∑
k

c2
k

mkωk
δ(ω − ωk). (1.46)

The spectral function characterizes the bath and is defined from the Fourier transform of
the autocorrelation of the average force induced by the bath at thermal equilibrium on
the system [64]. Calling this force R = ∑

k ckxk, this definition reads

F (〈R(t)R(0)〉T ) [ω] = J(ω) coth
(
βω

2

)
, (1.47)

where we denoted the Fourier transform by F .
Perhaps the most famous instance of the class of Caldeira-Leggett models is the spin-

boson model, in which the system is a two-level system, that can thus be interpreted as a
spin-1/2. We will study how the fundamental notions of quantum open systems such as
decoherence, dissipation and a related quantum phase transition can be understood from
this model.

1.2.2 The spin-boson model

The spin-boson model, a special instance of the Hamiltonian in Eq. (1.43), features a spin
as its system coupled to a bosonic environment, usually with the z-component of the spin.
This gives rise to a Hamiltonian of the form [64,79,80]

H = −ε(t)2 σz − ∆(t)
2 σx + σz

2
∑
k

gk(b†k + bk) +
∑
k

ωkb
†
kbk. (1.48)
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Here, we used the bosonic creation and annihilation operators b†k, bk with

bk =
√
mkωk

2

(
xk + i

mkωk
pk

)
,

to rewrite the position and momentum operators of the harmonic oscillator bath. Therefore,
we defined the coupling constants gk = ck(2mkωk)−1/2, so that the spectral density reads

J(ω) = π
∑
k

g2
kδ(ω − ωk). (1.49)

Here and throughout this thesis, let us assume that the environment is described by an
Ohmic spectral function with an exponential large frequency cut-off, which is assumed to
be the largest energy scale in the model, i.e., [79, 80]

J(ω) = 2παωe−ω/ωc , (1.50)

with ωc � ∆. The parameter α determines the coupling strength between the spin and
the bath and plays a crucial role in determining a quantum phase transition, as we will
see below.

The amplitudes ε(t) and ∆(t) can be time-dependent and in fact the ‘quantum dynamo
effect’ arising in the model of Eq. (1.48) studied in Chapter 2 relies on a driven configuration
of the spin part of the Hamiltonian. In order to introduce the physics of open systems
in a general way, we shall in this introductory section first consider the case of a time-
independent spin part of the Hamiltonian, in particular with ∆(t) = ∆.

In order to gain an intuitive view on how the coupling to the bath can influence the
spin and even induce a quantum phase transition, let us consider the unbiasesd version
of the model defined in Eq. (1.48) with ε(t) = 0. If the coupling constants gk → 0, the
spin dynamics is only controlled by the spin part of the Hamiltonian Hspin = −∆

2 σ
x. The

ground state for ∆ > 0 is simply 1√
2(|+〉z + |−〉z) (where |±〉z correspond to |↑〉 and |↓〉

respectively in the notation from above). The situation changes when the coupling to the
environment is turned on.

In order to get a good understanding of the physics in play, let us first discuss an
intuitive approach to study the spin dynamics with coupling to a bath which leads to
a result that is not consistent. The problems occuring in this reasoning will be closely
related to the quantum dynamo effect we introduce in Chap. 2.

In the basis of σz, we can consider what happens to the bath if the spin is in the state
|+〉z or |−〉z. There are then two possibilities for the Hamiltonian involving the bath, i.e.,

H±bath = ±1
2
∑
k

gk(b†k + bk) +
∑
k

ωkb
†
kbk =

∑
k

ωkb
†
k,±bk,±, (1.51)
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where bk,± = bk ± 1
2
gk
ωk

and we neglected a constant contribution in this transformation.
This corresponds to displacing all of the oscillators so that the ground state for each of
these sectors fulfills for all k [81, 82]

bk,± |ψ±〉 = 0 =⇒ bk |ψ±〉 = ∓1
2
gk
ωk
|ψ±〉 . (1.52)

It is thus a many-body coherent state for the bosonic modes and can be written as

|ψ±〉 =
∏
k

|ψ±,k〉 , (1.53)

with |ψ±,k〉 = exp
(
∓1

2
gk
ωk

(b†k − bk)
)
|0〉 ,

where |0〉 is the vacuum of the bk operators. The ground state of the entire system will
with this reasoning be an entangled state between the spin and the bath. If Hspin = −∆

2 σ
x,

the lowest lying eigenstates would then be

|Σ±〉 = 1√
2

(|+〉z ⊗ |ψ+〉 ± |−〉z ⊗ |ψ−〉) . (1.54)

With ∆ > 0, the ground state is |Σ+〉, for which 〈σz〉 = 0 and

〈σx〉 = 〈ψ+|ψ−〉 = exp
(
−1

2
∑
k

g2
k

2ω2
k

)
(1.49)= exp

(
− 1

2π

∫ ∞
0

dω
J(ω)
ω2

)
,

(1.50)= exp
(
−α

∫ ∞
0

dω
e−ω/ωc

ω

)
. (1.55)

Here, we took the continuum limit to switch from a summation over the modes to an
integration of the frequency variable. The last expression predicts that all tunneling
between the spin states is suppressed already for arbitrarily small coupling α > 0. This
result cannot be correct, as a small coupling to the bath should merely have a perturbative
effect [75, 83]. The problem with this calculation lies in fact in the treatment of low-
frequency modes: For modes with large frequencies, one can assume that the reasoning of
displaced oscillators is correct, as those modes will remain equilibrated to the spin at all
times. For low-frequency modes, this does not hold and in fact one needs to treat them
differently. This is done using a procedure called adiabatic renormalization, described in
App. D.1.

There, one effectively neglects frequencies lower than a certain, self-consistent threshold
and studies the convergence of the emerging renormalized tunneling element that we call
∆r. For α < 1 and with an Ohmic spectral density, one finds that the tunneling element
gets renormalized in

H̃ = −∆r

2 σx +
∑
k

ωkb
†
kbk, (1.56)
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as [64,79]

∆r = ∆
(

∆
ωc

) α
1−α

. (1.57)

For α > 1, on the other hand, one observes that the tunneling element is renormalized to
zero, thus leading to a localization of the spin in one of the two states |±〉z. From this
consideration, one identifies a quantum phase transition at α = 1 between a localized phase
(for α > 1) and a delocalized phase (for α < 1) [83]. In addition, in the delocalized phase
with α < 1, we see from Eq. (1.57) that there is a crossover from coherent to incoherent
behavior [80] at α = 1/2, for which the exponent becomes larger than one and initializing
the spin in an eigenstate of σz, coherent oscillations will be suppressed.

Note that in the discussion above, when tracing over the bath degrees of freedom, we
have assumed that the environment evolves essentially freely and thus acts as a fluctuating
force on the spin. We will come back to the discussion of the spin-boson model in Chap. 2,
where we discuss it in the light of a driven protocol, i.e., time-dependent coefficients ∆(t)
and ε(t) and study a possibility to coherently excite certain bath modes and thus transfer
energy from the spin to the bath in a work-to-work conversion. We will in particular come
back to the results from above and compare them to more advanced techniques used to
study the spin-boson model in Sec. 2.3.2. In order to put this into a broader context, we
have to introduce some notions of quantum thermodynamics.

1.2.3 Quantum energy and quantum thermodynamics

The study of open quantum systems naturally leads to the field of quantum thermodynamics,
which is driven by the desire to understand work and heat transfers on the quantum scale
[68]. Especially with the development of quantum technologies and quantum computing
devices picking up speed, this understanding is essential for implementing such technologies
and for their efficient operation. The distinction of work and heat in the quantum regime
remains controversial, as here the delimitation between these two quantities can be
ambiguous [67]. Phenomenologically, one expects the first law of thermodynamics to hold
also for quantum systems, i.e., [67]

dE = δW − δQ, (1.58)

where dE is the change in internal energy of a system and δW and δQ are the variations in
work and heat, respectively. For a quantum system, the repartition between the latter two
is problematic to justify [67]. Other questions concern the thermalization of a quantum
bath, making it difficult to define a temperature [84] and new noise sources arising in the
context of quantum mechanics, such as projective measurements [68]. Nevertheless, it
is possible to formulate the first and the second law of thermodynamics for a quantum
system, and demonstrate them from microscopic grounds [24], which requires however to
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put certain restrictive assumptions [27]. In particular, for a setup as the one shown in
Fig. 1.2, one would assume that work is done to the system by an external work reservoir,
acting only on the system and not on the environment. This is reflected in the system
Hamiltonian (i.e., HS in Eq. (1.43)) becoming explicitly time-dependent [24]. One can
then show that the work done to the entire system (including the environment), from the
first law of thermodynamics corresponds to [24]

W (t) =
∫ t

0
dt′Tr

(
∂H
∂t′

ρ(t′)
)
, (1.59)

where ρ(t) is the density matrix of the full system.
Heat, on the other hand, can be viewed as an energy flow from the system to the

environment, thus quantified by the change of internal energy of the bath and shown
to fulfill the second law of thermodynamics [24]. It is remarkable that the laws of
thermodynamics, formulated for classical systems, can find applications in quantum
systems as well. However, for a full quantum description, questions about the restrictions
posed by the assumptions remain controversial: How can the ‘work reservoir’ be thought
of in a microscopic description and would heat flows to the system affect these laws?
Similarly, can a heat bath function as a work source as well [27]? Recent theoretical studies
show the possibility that energy flows from a reservoir, usually considered as heat, can
also contain contributions showing the properties of work [25,26].

In Chap. 2 we will discuss a driven instance of the model in Eq. (1.43), where the
system is a spin-1/2 similar to the one introduced in Eq. 1.4. We will demonstrate how this
realizes a transfer of work into the coupled environment [33]. It is important to emphasize
that the study of energy transfers on the quantum scale is not only of interest for a better
understanding of the validity of the laws of thermodynamics, but also as a prerequisite for
the development and efficient operation of quantum technologies [73,74,85]. In general, the
study of open systems is of course also relevant since systems implemented in a laboratory
always interact with their environment to some degree. It therefore allows to understand
realistic settings better, which is important for all sorts of applications.

Another step towards the study of realistic settings is the consideration of disorder:
Just like quantum systems interact with their environment, they are subject to some
degree of disorder in their setup. Similarly to open system dynamics, this has lead to the
discovery of myriad new phenomena, relevant also from a fundamental theoretical point of
view, as we will see in the following section.

1.3 Disorder and localization physics

It has been realized by Anderson in 1958 that in certain lattice models the spatial extension
of the wave function decays exponentially in the presence of a disordered potential [86].
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This phenomenon called Anderson localization is a consequence of the interference of the
wavefunction when scattering at impurities and is in contrast to the disorder-free case, in
which the wave function extends through the entire lattice. It has consequently spurred
a lot of theoretical [87–90], experimental [91–94] and numerical [95,96] interest. In this
section, we will give a small cross section of key notions and will describe how localization
can influence the topological properties of a physical system. In Sec. 1.4, we will then
see how the notions of localization are influenced by the presence of interactions between
particles.

1.3.1 Anderson localization

Anderson in 1958 studied ‘diffusion in a random lattice’. The model can be described by a
fermionic tight-binding Hamiltonian with a random on-site potential [18,86,97,98]

HAnderson =
∑
〈m,n〉

tc†mcn + h.c. +
∑
n

µnc
†
ncn, (1.60)

where cj is the fermionic annihilation operator of a particle at site j. The key insight
of Anderson was that the transport across a medium described by such a Hamiltonian
with a disordered chemical potential µn can vanish due to destructive interference of the
particle wave functions upon scattering at impurities. In one dimension, this leads to an
exponentially decaying wave-function of the form [97]

|ψ(x)|2 ∝ exp
(
− |x|
ξloc

)
, (1.61)

where x = ja with j the index of a site, a the lattice constant and ξloc is the localization
length, a characteristic length scale of the system under consideration. The wave functions
are thus confined to certain regions of the chain, which justifies the notion of localization.

This is of course very different from a homogeneous system: If the chemical potential
is not disordered, i.e., µn = µ, the eigenstates of the system in one dimension are the
usual Bloch waves extending over the entire chain [98]. The phenomenon of Anderson
localization is highly dependent on the dimensionality: It is well established that one-
and two-dimensional systems always localize in the presence of disorder [86, 88, 89]. In
three-dimensional systems, one observes a transition from a metallic to insulating behaviour
at a certain energy threshold, the so-called mobility edge [99]. Anderson localization is a
general phenomenon occuring for waves in disordered media, it has therefore been found
to apply for example also to light waves [100] and sound waves [101]. Its importance for
understanding physical observations especially in low-dimensional systems is underlined
by the vast available literature on the topic.

One particularly intriguing implication of Anderson localization concerns the stability
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of plateaus of the transverse conductivity formed in the integer quantum Hall effect for a
two-dimensional electron gas already mentioned above. Anderson localization here plays
an important role in stabilizing these Quantum Hall plateaus [102,103]. To get a better
intuition for this, imagine a Quantum Hall sample whose energy eigenstates are described
by Landau levels. Introducing disorder through a spatially randomly varying potential,
one would still expect the system to exhibit an integer quantum Hall effect as long as
the clean eigenenergies are much larger than the energy fluctuations coming from the
disorder [104]. In presence of disorder, one would then expect a broadening of the Landau
levels [5]. The quantization of the conductance shown in Eq. (1.1) can be demonstrated for
disorder free systems with an integer filling factor ν. Varying the magnetic field from these
integer filling factors, quasi-particle defect states are developed by the system. However,
under the presence of disorder, these states get localized and do not contribute to the
Hall conductivity of the sample, thus explaining the quantized conductance found in
experiments [105]. This curious relation of the topological properties observed in the
integer quantum Hall effect and Anderson localization demonstrate the inherent relevance
of the study of disorder effects in topological systems. These relations can also be observed
in other systems: A prominent example is the Topological Anderson insulator, in which
disorder increases the size of a topological phase, which we will discuss below.

1.3.2 Topological Anderson insulator

Topological properties of materials are expected to be unaltered upon application of
disorder up to a certain strength of the latter, at which it would drive a transition to a
trivial phase [104]. Another way to put it is that a topological state can exist in spite of (a
sufficiently weak) disorder [106]. In the numerical study of topological insulator models, the
following surprising observation has been made: Under certain conditions, a model that is
in a topologically trivial phase can be driven into a topological phase by the application of
disorder [106,107]. The phenomenon has been explained by a renormalization of the system
parameters due to the disorder: In the trivial phase, but close to the transition point,
this renormalization can yield an effective topological model - the topological Anderson
insulator (TAI) [106]. This effect has been verified experimentally in a realization of the
Su-Schrieffer-Heeger (SSH) model [108]. The results are shown in Fig. 1.3. The SSH model
is a one-dimensional topological model with two inequivalent sites per unit cell and thus
different hopping amplitudes for inter- and intracell hopping [109,110]. Recently, several
groups have implemented variants of this model experimentally [111–113]. The model
implemented in [108] leading to the results shown in Fig. 1.3 was of the form

HSSH =
∑
n

(
−imnc

†
n,acn,b + tc†n+1,bcn,a + h.c.

)
, (1.62)
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where a and b denote the two different sites in the n-th unit cell. The intracell hopping
amplitudes mn were disordered as mn = t(m+Wωn) with W being the disorder strength
and ωn being uniformly distributed random variables drawn from the interval [−0.5, 0.5]
[108]. Note that in the clean case with W = 0, following a strategy similar to the one used
in 1.1.2 for the Haldane model and the Kitaev wire, defining pseudo-spinors in Fourier
space c†k = (c†k,a, c

†
k,b), the Hamiltonian in Eq. (1.62) can be rewritten as [110]

HSSH =
∑
k

c†k (~h(k) · ~σ) ck, (1.63)

with
h(k) = (t cos(ka),−t(m+ sin(ka)), 0)T , (1.64)

where a is the length of one unit cell. We see that a mapping to a spin in a radial field can
be achieved in this model as well, but a topological invariant ν is now defined only from a
winding in the xy-plane. This winding number is in fact equivalent to the Zak-phase, i.e.
the integration of the Berry connection of a one-dimensional system across its Brillouin
zone [110]. In the experimental results shown in Fig. 1.3, the autors rather used the ‘mean
chiral displacement’ 〈C〉 as an indicator of the topological phase transition. This uses
the fact that the SSH model possesses a chiral symmetry, which can be seen from the
anticommutation of the Hamiltonian in Eq. (1.63) with σz [110]. The chiral displacement
operator is for this model defined by C = 2σzX [108, 114], where X is the operator
designating the unit cell (i.e., the displacement) of a state it is acting on. It can be shown
that in the thermodynamic limit, and averaging over disorder, measuring the mean chiral
displacement allows to conclude upon the winding number of the system [108,114].

Recently, a similar TAI state of matter has also been verified experimentally in the
disordered Haldane model (cf. Sec. 1.1.2) [115]. This effect has interesting implications:
The possibility of implementing topological systems not only insensitive to disorder, but
harnessing it for the very realization of these properties has promising potential with
regards to real world applications.

In Sec. 1.1 we saw how the topological invariant of the Haldane model can be understood
in terms of the topology of a spin-1/2 in a radial magnetic field. As the definition of the
latter can be extended to interacting systems as well (cf. Sec. 1.1.3), it is interesting to
think about the interplay of interactions, disorder and the (partial) topology in spin and
analogous systems. This will be the subject of Chap. 3.

Taking a step back from the TAI to localization physics, it proves already a challenging
problem to study the interplay of disorder and interactions. This leads us to the fascinating
and active field of many-body localization.
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Figure 1.3: From Fig. 3 of [108]. Reprinted with permission from AAAS. a) Numerical
phase diagram (disorder average) of the SSH chain from Eq. (1.62) showing a topological
invariant ν as a function of the intracell tunneling amplitude m and a disordered additional
contribution to this amplitude W . For strong values of disorder, the topological phase with
ν = 1 is extended. b) Cross section along the black and white bar from a). Experimental
data (gold dots with error bars) for measurement of the expectation value of the chiral
displacement operator C used as an experimental indicator of the topological properties for
a realization of the SSH chain with cold atoms and averaged over 50 disorder realizations.
The gold solid and dashed lines show numerical results, the gray dotted line shows analytical
predictions.

1.4 Many-body localization

In 1977, Philipp W. Anderson was awarded the Nobel prize in physics for his work on
disordered systems3. In his Nobel lecture, he expressed his excitement about the fact that
‘a theory of localization with interactions is beginning to appear’ [18]. Following his work,
it has been established that localization can in fact prevail and even be reinforced with
interactions [19]. However, these considerations concerned only the ground state of the
system. The analysis of disordered interacting states was later extended to systems with
excitations [20–22].

When localization prevails in a quantum system with many interacting constituents at
non-zero temperature, one speaks about many-body localization (MBL) [22]. The notion
of a finite temperature - therefore, a finite excitation present in the system - distinguishes
this phenomenon from Anderson localization with interactions studied in [19] as a ground
state phenomenon, occuring at zero temperature. In order to detect MBL, a study of the
spectral properties of a system is necessary4.

3He was awarded jointly, together with Sir Nevill F. Mott and John H. van Vleck.
4As a side remark, let us mention that an interesting open question concerns the smooth connectedness

of the MBL phase and the so-called Bose glass phase in interacting bosonic systems: The Bose glass
denotes an insulating phase in interacting bosonic systems at zero temperature, theoretically described
in [19]. The Bose glass phase shares the non-ergodicity property with the MBL phase, i.e., it does not
thermalize upon perturbing certain parameters of the system [22]. The question is thus whether the Bose
glass is the low energy limit of the MBL phase in an interacting bosonic system, as has been suggested
by several theoretical studies [116,117]. Recently, the non-ergodic property of the Bose glass has been
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A widely studied one-dimensional model showing this phenomenon is the random-field
XXZ-chain with the Hamiltonian [119,120]

Hdisordered XXZ =
∑
i

(
Jxy(σxi σxi+1 + σyi σ

y
i+1) + Jzσ

z
i σ

z
i+1 + hiσ

z
i

)
. (1.65)

Note that this corresponds to the disordered fermionic model from Eq. (1.60) (upon
application of a Jordan-Wigner transformation [121] mapping spin-1/2 to fermionic degrees
of freedom5) with a nearest-neighbor interaction term proportional to Jz. The longitudinal
field hi is a random variable introducing disorder to the system. It can for example
be drawn from a uniform distribution bounded by a critical field strenght hc, so that
hi ∈ [−hc, hc] with hc > 0. In Chap. 5 we will consider a setup where hi is drawn from
a Bernoulli distribution, so that it takes one of the two values ±hc with probability
0.5 respectively, which is interesting with regards to experimental realizations. Here we
will introduce some key features of the MBL phase, mainly following [120] and [122].
Consequently, we will discuss its experimental and technological relevance.

1.4.1 Properties of the MBL phase

An important property of an MBL phase is the violation of the so-called eigenstate
thermalization hypothesis (ETH). The ETH conjectures that the eigenstates of an isolated
quantum system take a thermal form, meaning that the expectation values of local
operators depend smoothly on the energy of the state of the system. Another way to put
this is that the state of a subsystem (i.e., when tracing over the rest of the system), is
thermal in a sense that its density matrix can be described by a thermal ensemble at a
temperature determined by the state of the full system [120, 123]. Each subsystem can
then be described as a system coupled to an environment, similar to the discussion in
Sec. 1.2. This implies that a system obeying the ETH will inevitably lose the memory
of its initialization: It will thermalize and thus all that matters is the energy that was
initally stored in the configuration. For thermalization to occur, it is necessary to have an
efficient transfer of energy throughout the system [122]. This allows to get a first intuition
why non-interacting localized systems could escape the ETH: If the disorder strength is
dominant, the system will simply remain in a pure state [120]. It has been shown that
this can still be the case when interactions are added [21,124]. This non-thermalization of
the eigenstates has the consequence that states with similar energy can have very different
properties - meaning that local observables can take different expectation values for such
states [120]. The relation of the MBL phase with the violation of the ETH thus hints
that in order to detect an MBL phase, one has to consider spectral properties of a system.

claimed to be verified experimentally [118]. Further experimental advances are hoped to shine more light
on this intriguing question.

5We introduce this mapping in Eq. (3.31).
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Subsystem A Subsystem B

ℓ
N

Figure 1.4: Adapted from [126]. A system with N sites is partitioned into two subsystems
A (with ` sites) and B (with N − ` sites).

One way to detect an MBL phase is therefore to study the level statistics of a system:
In a regime obeying the ETH, the distribution of level spacings are expected to be that
of a Gaussian orthogonal ensemble, while in a localized situation one expects Poisson
statistics [125].

Another way of detection of an MBL phase lies in the determination of the entanglement
entropy of a subsystem for an isolated system at non-zero energy [120,122,125,126]. For
that, one bipartitions the system into two subsystems and evaluates the density matrix
ρA of a subsystem A by tracing over the degrees of freedom of the subsystem B, i.e.,
ρA = TrB (|ψ〉 〈ψ|). The entanglement entropy is then defined by

S = −Tr ρA ln ρA. (1.66)

This is shown pictorially in Fig. 1.4.
In a thermal state, one expects a volume-law scaling of the entanglement entropy, which

should thus be verified for a state in a regime of the ETH [120, 125]. For the situation
in Fig. 1.4, this means that the entanglement entropy evaluated for the subsystem A

grows linearly with `. On the contrary, in a localized state, the entanglement entropy is
much smaller and follows an area law [120], implying for a one-dimensional system that it
remains constant when changing the subsystem size. The properties of the entanglement
entropy in an MBL phase can be understood from the presence of local integrals of motion
in that phase, as demonstrated in [127, 128]. The emergence of these local conserved
quantities intuitively explains that the entanglement entropy is bounded in the MBL
phase. These local integrals of motion can be understood as effective spins and coupling
between them decays exponentially with the distance [122]. Therefore, entanglement
spreads logarithmically in time in a system in the MBL phase [122, 129]. This is a feature
commonly used to identify the MBL phase [120,126,130] and we will make use of this in
Chap. 5. There we will study the scaling of the entanglement entropy and another quantity,
called the bipartite fluctutations [131], which serves as a witness of an MBL phase. For
details, we refer to Sec. 5.1. The advantage of studying these bipartite fluctuations rather
than the entanglement entropy is that they are more easily accessible experimentally. We
will give an overview over the experimental relevance and challenges of MBL below.
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1.4.2 Verification and application

Advances in experimental techniques and quantum simulation have made an experimental
study of MBL feasible in recent years. A challenge is the identification of the MBL phase,
as the entanglement entropy is not easily accessed experimentally. One therefore often
resorts to signatures probing the violation of the ETH in the system as witnesses of the
MBL phase.

Ultracold atoms provide a controllable platform to implement lattice models and we
will refer to them in the context of experimental realizations throughout this thesis (cf.
Sec. 4.4.1). In order to detect the MBL phase, one then uses ‘indirect’ measures6, such
as the imbalance of the particle number between even and odd sites, as a witness of the
MBL transition [132]. A non-relaxation of this imbalance hints at the presence of an MBL
state. Although detectable through such measurement, an active debate remains around
the ‘smoking-gun’ character of such experiments and about the scaling and the properties
of these quantities and the MBL phase in exteded systems more generally [133]. On a
technical level, other experimental techniques such as superconducting circuits [134,135]
or the use of crystalline materials [136] are also available to implement the respective
models7.

In the light of applications, not only the question of how to implement an MBL phase
(using, e.g., quantum simulation), but also the role of MBL for quantum computing devices
is relevant. Such platforms are inherently interacting and reliant on localization to preserve
the many-body state [23]. In the same time, the importance of MBL for a correct operation
of these devices has been pointed out only recently [23] and motivates further study both
on theoretical and experimental grounds.

6This is in a way similar in spirit to the use of the expectation value of the chiral displacement operator
to detect the topological phase of the SSH model discussed in Sec. 1.3.2.

7See also [22] for a wider overview.



Chapter 2

Topological quantum dynamo

As discussed in the introductory Sec. 1.2, extending notions of classical thermodynamics
such as work, heat or the efficiency of energy transfers into the quantum realm is a chal-
lenging, yet promising endeavour. Understanding of these processes enables applications
in quantum technologies thought of in theoretical, idealized setups and in the same time
inspires new mechanisms. In parallel, a lot of interest is dedicated to understanding
topological properties of matter, both from the scientific community, but also with regards
to applications. In this chapter, we will study the ‘quantum dynamo effect’ [32], a new
effect occuring in a driven system coupled to an environment and corresponding to a work
transfer into the bath for modes close to resonance with the driving velocity [33].

A dynamic realization of the topological model of a spin-1/2 in a radial magnetic field
introduced in Sec. 1.1 opens pathways to study both of these effects in the same time.
On the one hand, coupling such a spin to a bosonic bath realizes a driven spin-boson
model. The spin-boson model itself is a standard example to understand effects in open
quantum systems [64, 79, 80], as discussed in Sec. 1.2.2. In the driven case, it can serve as
a case study for applications to convert energy on the quantum scale, as we will see in this
chapter. On the other hand, the model of a spin-1/2 in a radial magnetic field is also an
example of a topological model, which has been realized and studied experimentally [35,37].
In the spirit of studying the interplay of topology and driven dissipative dynamics, it has
been realized in [32] that a dynamical realization of this topological model can exhibit
new physical properties when coupling to a resonant bosonic mode, which has been called
the quantum dynamo effect. We will study this effect in a driven spin-boson model of the
form [32,33]

H = Hspin(t) + σz

2 R +Hbath. (2.1)

The spin part takes the form of the model of a spin-1/2 in a radial magnetic field introduced
in Eq. (1.4), where the latter is explored through a dynamic driving protocol [32–34]:

Hspin(t) = −H2 (cos(vt)σz + sin(vt)σx) . (2.2)

31
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Note that this corresponds to setting θ = vt and φ = 0 in Eq. (1.4). The former allows
to evolve the system from the north pole of its parameter space at t = 0 to the south
pole at t = π/v and thus bridges naturally with the definition of a topological invariant
from the poles, as we will see below. Building on the definitions and the discussion in
Sec. 1.1, we will define the dynamically accessed topology in Sec. 2.1, following [32]. We
will then define the quantum dynamo effect phenomenologically and thermodynamically
and analyze it in detail for the coupling to a single mode in Sec. 2.2. This corresponds to
setting

R = g(b+ b†) and Hbath = ωb†b. (2.3)

An analysis of the dynamically accessed topological properties of the spin in this case
will lead to Eq. (2.46) relating the energy transfer due to the dynamo effect and the
dynamically accessed Chern number of the spin.

We will then generalize our results for coupling to an Ohmic bath of bosonic modes in
Sec. 2.3. There we will set

R =
∑
k

gk(bk + b†k) and Hbath =
∑
k

ωkb
†
kbk, (2.4)

as in the spin-boson model defined in Eq. (1.48). We will see that due to the driven
dynamics and the coupling to an environment, work done to drive the system can be
transferred into coherent excitation of certain modes of the environment, thus leading to a
work-to-work conversion.

The results presented here have their source in a project I worked on together with
Cyril Elouard and Karyn Le Hur [33]. The quantum dynamo effect has previously
been introduced by the group of Karyn Le Hur [32]. The project presented here was
aimed at identifying and classifying the quantum dynamo effect from analytical and
numerical calculations. Together with Karyn Le Hur and Cyril Elouard, we developed
the thermodynamic definitions and their relation with the topological properties of the
model. I tested them numerically by implementing exact diagonalization for coupling to a
single mode and to several modes and a stochastic approach for the bath dynamics which
had previously been developed in the group of Karyn Le Hur [75, 137,138] (see App. B
for an overview of the used numerical techniques). Cyril Elouard developed a GKLS
Master equation approach, to which we compared analytical and numerical results1, and
deepened the thermodynamical definitions, also by contributing insights from his other
recent activities [27].

1These comparisons will also be shown in this chapter, but for the details on the derivation we will
refer to [33].
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2.1 A radially driven spin and its dynamically ac-
cessed topology

In order to define the notion of the dynamically accessed topology we will first consider the
free spin, driven using a dynamical protocol, as described by the Hamiltonian in Eq. (2.2),
in a bit more depth. The dynamics of this model can be solved exactly, for example by
switching to a frame rotating with the time-dependent field using the transformation [33]

Urot = e−
ivt
2 σy , (2.5)

giving the time-independent Hamiltonian

Hrot
spin = −H2 σ

z − v

2σ
y. (2.6)

The spin expectation values can then be evaluated as [33]

〈σx(t)〉 = H2

Ω2 sin(vt)− v

Ω cos(vt) sin(Ωt) + v2

Ω2 sin(vt) cos(Ωt), (2.7a)

〈σy(t)〉 = 2vHΩ2 sin2(Ωt/2), (2.7b)

〈σz(t)〉 = H2

Ω2 cos(vt) + v

Ω sin(vt) sin(Ωt) + v2

Ω2 cos(vt) cos(Ωt), (2.7c)

with Ω =
√
H2 + v2 the energy splitting between the eigenstates of the effective Hamil-

tonian in the rotating frame. Note that non-adiabaticity introduced by driving with a
finite speed manifests itself by an oscillating spin component in y-direction. Adiabaticity
is defined in this setup solely from the difference between v and H and one recovers the
adiabatic dynamics for v � H:

〈σx(t)〉 ' sin(vt), (2.8a)
〈σz(t)〉 ' cos(vt), (2.8b)

corresponding to the undriven result when setting vt = θ, i.e., the expectation values one
would get in the ground state from Eq. (1.8a). The condition for an adiabatic evolution is
modified when coupling to a bath, as we will discuss below.

2.1.1 Dynamically accessed topology

Closely linked to the discussion of adiabaticity is the definition of the Chern number:
Adapting the definition of the Chern number for a spin in a radial field from Eq. (1.15) to
the driven setup under consideration, it is useful to introduce the dynamically measured
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Figure 2.1: Cdyn calculated from Eq. (2.9) using Eq. (2.7c) as a function of v/H with
H = 1.0 and v varying between 0.0 and 2.5.

Chern number Cdyn as [32]

Cdyn = 1
2 (〈σz(t = 0)〉 − 〈σz(t = π/v)〉) , (2.9)

which is obtained from a measurement of the spin expectation values when the poles
have been accessed using the dynamic protocol. In this sense, it can be understood as an
estimate for the actual Chern number C when using such a protocol, i.e.,

Cdyn = C +O (v/H) . (2.10)

It is therefore not a quantized number anymore, but one expects to gain a good
understanding of the topology of the system from it when v � H. A plot of Cdyn

calculated from Eq. (2.9) with the exact analytical result for a driven spin in Eq. (2.7c) is
shown in Fig. 2.1 showing that for v/H � 1, Cdyn → C, while for larger values it starts to
deviate.

In [32] it was shown that this view on adiabaticity changes when the interaction of the
system with its environment is in addition taken into account. We will therefore discuss
some general effects of coupling to an environment on the dynamically accessed topology
in the following.

2.1.2 Influence of the environment on dynamics and topology

We model the environment by implementing it as a bath of quantum harmonic oscillators
as described in Sec. 1.2.2. The coupling to a bath takes the form of Eq. (2.4). The model
thus obtained corresponds to a driven spin-boson model [139–141] as discussed in Sec. 1.2.2.
The spectral density is defined from Eq. (1.49) and we are here working with an Ohmic
spectral density with an exponential cut-off given by Eq. (1.50), i.e.,

J(ω) = 2παωe−ω/ωc . (2.11)
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The coupling strength is determined by α. As described in Sec. 1.2.2, the coupling between
the system and the environment leads to an effective reduction of the spin tunneling
coefficient (i.e. the coefficient of σx in Eq. (2.2)) [75,79], which can be understood from
the adiabatic renormalization procedure outlined in App. D.1. Another way to formalize
this is the polaron transformation described in App. D.2. The renormalized tunneling
element described in Eq. (1.57) now picks up a time-dependence, i.e., [32, 33]

∆r(t) = H sin(vt)
(
H sin(vt)

ωc

) α
1−α

. (2.12)

In [32] it was shown that a natural criterion for quasi-adiabaticity is thus

v � ∆r

(
t = π

2v

)
. (2.13)

The interplay of the driving and the coupling to a bath thus lead to a new condition under
which the dynamically measured Chern number can be seen as an estimate of the true
Chern number of the system.

The effects of the bath discussed up to now merely described the effective shift of the
spin state due to the coupling to the bath. However, the coupling between the spin and
the bath also induces a shift in the bath state which in combination with the driving can
lead to a resonance effect termed the quantum dynamo effect [32,33] which we will discuss
in the following.

2.2 The quantum dynamo effect for coupling to one
mode

The state of a free bath at thermal equilibrium at inverse temperature β is described by

ρbath ∝ e−βHbath , (2.14)

leading to

〈R〉 =
〈∑

k

gk(bk + b†k)
〉

= 0. (2.15)

This implies that the bath does not exert an average force onto a system coupled to it.
However, for the model described by Eq. (2.1), there is a mutual interaction between the
spin and the bath due to the coupling term in Eq. (2.1). A non-zero expectation value
of the system observable 〈σz〉 then has the average effect of displacing the coupled bath
operators, which can in turn effectively drive the system. A schematic of this effect is
shown in Fig. 2.2. In the model under consideration, these effects can be pronounced, as
the bath modes are non-interacting and linear. In general, non-linearities can occur in
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Figure 2.2: Adapted from [33]. Schematic of the quantum dynamo effect. a) Coherently
driving (represented by an explicitly time-dependent Hamiltonian) a system S (in blue)
coupled to a bosonic bath can induce a finite coherent displacement (averaged over one
period of the driving) of some of the bath modes (represented by a shift for modes close
to resonance, while high frequency modes have a purely fluctuating effect), corresponding
to a work-to-work conversion. b) A spin (black arrow) subject to a rotating magnetic field
of fixed amplitude (green arrow), which results in the emission of coherent light in the
bosonic bath vacuum.

many-body systems [142], which can give rise to finite lifetimes of the excitations [143,144].
As mentioned in Sec. 1.2.2, the considered model of an Ohmic bath has nevertheless a
strong and long-standing experimental relevance [145–150].

In the following, we denote the average force exerted by the bath on the spin as the
induced field h(t), i.e.,

h(t) = 〈R(t)〉 =
〈∑

k

gk(bk(t) + bk(t)†)
〉
. (2.16)

This quantity is helpful for understanding the quantum dynamo effect in an intuitive
way. In order to analyze it at a lower level of complexity first, we will in the following
consider the coupling of the spin in a rotating magnetic field to a single bosonic mode
before generalizing the introduced notions to a coupling to a bath in Sec. 2.3.

2.2.1 Phenomenological definition of the dynamo

For the case of coupling to one mode, the Hamiltonian reads

H = −H2 (sin(vt)σx + cos(vt)σz) + g(b+ b†)σz2 + ωb†b. (2.17)

The induced field then is defined as

hω(t) =
〈
g(b(t) + b(t)†)

〉
. (2.18)
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We use the subscript ω to underline that this is the field induced onto the spin by one
bosonic mode with a frequency ω. Note that the resonant driving in this setup corresponds
to a velocity v = ω. Using this definition of the induced field and the Heisenberg equation
of motion, we find [32,33]

1
ω2 ḧω + hω = −g

2

ω
〈σz〉. (2.19)

This equation reflects the coupling of the dynamics of the spin and the bosonic mode
evoked earlier and we will show below how the dynamo effect arises for resonant driving.

Initial conditions

In order to evaluate the dynamics precisely, we need to specify the initial conditions.
Throughout this chapter, we will consider the spin to be initialized in the up-state, i.e.,
|↑〉z. Two different setups for the mode (or more generally a set of bath modes) are
commonly considered [32,33,75,151]:

1. Preparation (1): The bath mode is initially in the ground state of the combined
system under the restriction that 〈σz(t)〉 = 1, i.e., in the ground state of the
Hamiltonian

Hboson = g

2(b+ b†) + ωb†b. (2.20)

This stated corresponds to the shifted vacuum, where the shift comes from the
coupling to the upward pointing spin, so that (b+ g/(2ω)) |GS〉 = 0. This results in
the following initial condition on hω:

hω(0) = g(〈b(0)〉+ 〈b†(0)〉) = −g
2

ω
. (2.21)

2. Preparation (2): The bosonic mode is initialized in its free vacuum and there is no
interaction between the spin and the bath, i.e. |GS〉 = |↑〉z ⊗ |0〉. This results in
hω(0) = 0.

The formal solution of Eq. (2.19) is then given by

hω(t) = −g2
∫ t

0
dt′ sin(ω(t− t′)) 〈σz(t′)〉 − δ(1)

g2

ω
cos(ωt). (2.22)

The symbol δ(1) distinguishes the two initial condition and takes the value 1 for preparation
(1) and 0 for preparation (2). We will in this chapter focus on preparation (1). In the
following, we present two cases in which the analysis is analytically tractable.

Weak coupling and adiabatic driving

For weak coupling between the spin and the mode, we can assume that their mutual
influence on their dynamics is small. If in addition the driving velocity is small, we
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Figure 2.3: One-mode dynamo, from [33]. a) Induced field as a function of vt (with
v = 0.04) from numerical exact diagonalization of the Hamiltonian in Eq. (2.17) for a
total of three driving periods. ω is varied, while g2/ω = 0.16 is kept fixed. The dotted
lines show the comparison to Eqs. (2.24)-(2.26). The inset shows the corresponding
expectation values of the occupation number 〈nω〉. b) Induced field of a resonant mode
with ω = v = 0.04 for different values of the coupling g. The corresponding expectation
value of 〈σz〉 is shown in the inset. The dotted lines show theoretical predictions from the
unitary spin limit in Eq. (2.26) for g = 0.08 and from the frozen spin limit in Eq. (2.29)
for g = 0.4. For comparison, in both plots the external field in z-direction (i.e. −H cos(vt))
is shown by a gray dashed line. In all simulations, H = 1.0 and the system is initialized in
preparation (1). The Hilbert space of the bosonic mode was truncated at an occupation of
Nb = 200 and we checked that the achieved occupations are well below this number.

approximately recover 〈σz(t)〉 ∼ cos(vt). Plugging this into Eq. (2.19), we find the solution

hω = g2ω

ω2 − v2

(
v2

ω2 cos(ωt)− cos(vt)
)
, (2.23)

for preparation (1). From this result, we can gain a first understanding of why the case of
a resonant frequency is special:

• If ω � v, the induced field simplifies to:

hω(t) = −g
2

ω
cos(ωt) +O

(
ω2

v2

)
, (2.24)

that is, the initial field evolves almost freely.

• If ω � v, the spin evolves almost statically as felt by the mode. Therefore, the latter
approximately remains equilibrated to it, i.e.,

hω(t) = −g
2

ω
cos(vt) + 1

v
O
(
v3

ω3

)
. (2.25)

This corresponds to the field from shifted oscillators and is consistent with the
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considerations from Sec. 1.2.2.

• Finally, in the resonant case ω = v, we find:

hv(t) = −1
2g

2t sin(vt)− g2

v
cos(vt). (2.26)

We observe from the first term how the amplitude of the field in the resonant case builds
up in time and thus gets more important for the dynamics of the spin. This can also be
confirmed by exact diagonalization, see Fig. 2.3a). We also observe that the effect of the
induced field in this case opposes the change of the spin induced by the driving field (see
also Fig. 2.3). This is phenomenologically similar to Faraday’s law of induction, which
motivated the designation ‘quantum dynamo effect’ in [32, 33]. Note that this back-action
can also be identified from the induced field averaged over half a period of the driving:

∫ π/v

0
hv(t′)dt′ = −

1
2
g2

v2π, (2.27)

which is actually independent of the initial preparation [33].
The shift induced in the bosonic mode can be interpreted as a coherent displacement

and thus energy stored in the mode which can be rendered ‘useful’ by coupling to a
cavity and thus triggering emission of microwave photons, for example [152, 153]. This
gives an additional motivation of the term ‘quantum dynamo effect’: A rotation of the
quantum system leads to the emission of light (cf. also Fig. 2.2b)). Note furthermore
that the occupation of the bosonic mode in the case considered in this section increases
quadratically in time. Concretely, for weak coupling and slow driving, we can evaluate the
occupation number of the bosoic mode to be

∆ 〈nω=v〉 = g2

16t
2 + g2

16v t sin(2vt) + g2

32v2 (3(cos(2vt)− 1)) . (2.28)

This can also be confirmed from a numerical study of this system, as shown in the inset of
Fig. 2.3a).

Frozen spin limit

The opposite limit of a very strong interaction between the spin and the environment
is also analytically tractable. Considering the effective dynamics of the spin under the
action of the driving Hamiltonian Hspin and the induced field (acting through a term
Hinduced = h(t)/2σz, we readily see that for −h(t) > H � v, the state of the spin will be
restricted to the northern hemisphere of the Bloch sphere. If −h(t) � H > 0, we can
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approximate 〈σz(t)〉 ' 1. Plugging this into Eq. (2.22), we obtain

hω(t) = −g
2

ω
, (2.29)

for preparation (1). This results in the field remaining fixed at its initial value and we
see that the full system is static in this case. This can also be confirmed using exact
diagonalization, see Fig. 2.3b). From Eq. (2.29) we see that the frozen spin limit is reached
for g2/ω � H. As opposed to the previously discussed case of weak coupling, no energy
can be transferred between the different parts of the system in this limit, therefore we
understand that no quantum dynamo effect takes place in this situation.

In the following, we will make the definition of the dynamo effect more precise by
considering the actual energy transferred to the bath by the dynamic response and
comparing it to the work done by driving the system.

2.2.2 Thermodynamic analysis

General definitions

In order to precisely define the dynamo effect, we compare the work done by driving
the system to the energy stored in coherent displacement of the bosonic mode due to its
dynamic response to the system evolution. The work provided by the drive can be defined
with the variation of total energy of the combined system of spin and bosonic mode, i.e.,

Wdr(t) =
∫ t

0
dt′
〈
∂H(t′)
∂t

〉
. (2.30)

This corresponds to Eq. (1.59) and thus to the view that work is done to the spin by
coupling it to an external work reservoir [24]. The energy associated with a coherent
displacement of the bath modes is given by

Edis(t) = ω| 〈b(t)〉 |2. (2.31)

Note that this definition includes a contribution due to the adiabatic response of the mode
to the spin dynamics, as well as an energy contribution coming from the shift of the mode
due to the coupling to the spin in the ground state of the joint system. As the former can
be expected to average to zero over one period of the driving and the latter needs to be
introduced to the system in the process of coupling it, we neglect them in the consideration
of the efficiency of the quantum dynamo effect [33]. This corresponds to defining the
dynamically induced field without the adiabatic contributions coming from equilibration
of the modes to the spin state (cf. also the discussion in Sec. 1.2.2) We therefore define
the dynamo energy as the coherent energy of displacement of the bosonic mode with the
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adiabatic contribution subtracted as a reference, i.e.,

Edyn(t) = ω

∣∣∣∣∣〈b(t)〉+ g

ω

〈σz〉
2

∣∣∣∣∣
2

. (2.32)

The associated energy flow can be evaluated from the Heisenberg equation of motion for
the mode and reads

Ėdyn(t) =
(
h(t) + g2

ω
〈σz(t)〉

)
〈σ̇z(t)〉

2 . (2.33)

We then define the average efficiency of the dynamo as

ηdyn = ∆Edyn

Wdr
. (2.34)

We are using the notation ∆X to designate the change of a variable X with respect to its
initial value, i.e., ∆X = X(t)−X(0).

The system is comprised of the spin and the bosonic mode, therefore the total energy
balance reads

Wdr = ∆Espin + ∆Eint + ∆Ebos, (2.35)

where Espin = 〈Hspin〉, Eint =
〈
g(b+ b†)σz2

〉
and Ebos =

〈
ωb†b

〉
. Using the definition of the

dynamo energy, we can also write an energy balance for the coherent displacement energy
of the bath mode with its adiabatic contribution as a reference (i.e., the dynamo energy)
and the associated energy of fluctuations, i.e.,

Wdr = ∆Espin + ∆Edyn + ∆Efluct, (2.36)

with

Efluct(t) = ω

(〈(
b†(t) + g

ω

σz(t)
2

)(
b(t) + g

ω

σz(t)
2

)〉
−
∣∣∣∣∣〈b(t)〉+ g

ω

〈σz(t)〉
2

∣∣∣∣∣
2 )
. (2.37)

The work done to the system by driving is thus shared between excitations of the spin,
coherent displacement of the bosonic mode from its adiabatic reference due to the dynamic
nature of the driving process and fluctuations of the field around this mean value. Assuming
the system is initialized with Efluct = 0, it is clear that ∆Efluct > 0 and therefore

ηdyn = 1− ∆Efluct(t) + ∆Espin(t)
Wdr(t)

≤ 1. (2.38)

The efficiency of the dynamo thus defined is bounded by one and takes onto account
excitations of the spin and fluctuations of the bosonic mode as sources of inefficiency.
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Calculations for analytic limits

For resonant driving with v = ω, coming back to the limit of weak coupling and quasi-
adiabatic driving (i.e. v � H), we use the approximation 〈σz(t)〉 ' cos(vt) and plug it
into Eq. (2.30) to evaluate the work done by driving the system. This gives

Wdr(t) = g2

32v

(
5(1− cos(2vt)) + 2v2t2 − 2vt sin(2vt)

)
, (2.39)

and we see that besides oscillations with the frequency of the driving velocity, there is a
quadratic increase in time of the work done by driving the system. On the other hand,
evaluating the dynamo energy by integrating Eq. (2.33) gives

∆Edyn|ω=v = g2

32v

(
1− cos(2vt) + 2v2t2 − 2vt sin(2vt)

)
. (2.40)

Note that there is a contribution similarly increasing quadratically in time, as for the
work. Therefore, when the oscillatory components vanish, we see that all the work will be
transferred into dynamo energy. More precisely, we observe that for n ∈ N

ηdyn

(
t = n

π

v

)
= 1. (2.41)

The times of unit efficiency correspond precisely to the poles of the Bloch sphere. This is
consistent with the energy of fluctuations taking the form

∆Efluct = g2

4v sin2(vt), (2.42)

thus constituting a source of inefficiency of the dynamo when deviating from the poles.
When driving the system for several periods, the fraction of work going into coherent
displacement of the bosonic mode will increase, as the weight of the quadratic contribution
in the work and the dynamo energy increases. We can therefore assume the efficiency to
approach unity in the long time limit if the approximation of weak coupling remained true
(which given Eq. (2.26) is not fulfilled for arbitrary long times, as the field induced back
on the system also increases in time and can lead to a breakdown of the dynamo, as we
will discuss below).

Coming back to the frozen spin limit in which the induced field is exerting a strong
influence on the spin and ‘freezing’ it to 〈σz(t)〉 ' 1, we found above that the induced field
with preparation (1) will also be constant (cf. Eq. (2.29)), from which we can immediately
conclude with Eq. (2.33) that ∆Edyn = 0. From above considerations in the weakly coupled
case, we see that the frozen spin limit can not only be reached by initializing the system
with g2/ω � H, but also by driving the resonant system for a sufficiently long time and an
induced field thus building up (coresponding to the contribution with linearly increasing
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amplitude in Eq. (2.26)). We therefore expect the induced field to have an increasing
influence on the spin in the resonant case and at a time around t & H/2g2 to lead to a
breakdown of the dynamo effect. This is accompanied by a ‘freezing’ or restriction to
the northern hemisphere of the Bloch sphere of the spin. This can also be observed in
Fig. 2.3b): When the induced field grows, the dynamics of 〈σz(t)〉 increasingly deviates
from its free solution and therefore also the induced field deviates from this analytical
prescription (cf. the curve with g = 0.08 in Fig. 2.3b)). This is even more pronounced for
the curve with g = 0.2, where the induced field strongly opposes the effect of the external
driving field such that it is not justified anymore to compare this to the solution derived
under the assumption that the spin almost follows its free evolution. The dynamo effect
then breaks down and the induced field does not increase further. This breakdown occurs
when the induced field is of the same order of magnitude as the external field and opposing
it. Increasing g even further (cf. the curve with g = 0.4), initially the induced field is
larger than the external field and the spin dynamics are thus from the beginning almost
frozen, hindering the dynamo effect.

To observe this breakdown in more detail, we present numerical results regarding the
performance of the resonant dynamo in the following section. The simultaneous breakdown
of the dynamo and freezing of the spin makes a curious connection with the dynamically
accessed topology of the spin: Restricting the spin to the northern hemisphere of the Bloch
sphere corresponds to Cdyn → 0. We will make this connection more precise in Sec. 2.2.3

Numerical performance study

To interpolate between the two analytically accessible limits, we study the dynamo effect
numerically for the intermediate parameter regime. From now on, we focus on the resonant
case with ω = v. For this, we evolve the system in time for a driving from north to south
pole, as we identified the poles as the regions of best performance in the previous section.
Reading out the change in dynamo energy ∆Edyn and the associated efficiency ηdyn allows
to make conclusions about optimal parameter regimes of operation. In the previous section,
we found close to unit efficiency at quasi-adiabatic driving speed, suggesting slow driving
as optimal. However, this necessarily increases the time needed to reach the south pole. To
account for situations in which the operating time matters, we analyze the output power
averaged over the driving time as an additional performance indicator, i.e., ∆Edyn/tf

where tf is the final time of the driving.
The numerical results are shown in Fig. 2.4. From Fig. 2.4a) we see the range of

validity of the results obtained above in the limit of weak coupling and adiabatic driving,
which is for a certain driving speed limited by a threshold value of g/v at which the
dynamo energy rapidly starts to decrease when further increasing the coupling. Smaller
driving velocities allow for larger dynamo energies, which is related to better stability
of the effect in these cases. The corresponding efficiencies shown in Fig. 2.4b) similarly
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Figure 2.4: Performances of the one mode dynamo, from [33]. a) Plot of ∆Edyn for different
velocities as a function of g/v at tf = π/v. Each line style represents a different driving
velocity where the color intensive lines show results from ED, while the light lines show a
comparison to Eq. (2.32) at t = π/v. b) The corresponding efficiencies η as a function of
g/v. c) Parametric plot of η vs ∆Edyn/tf (averaged output power) for different velocities
and with a parameter g/v at tf = π/v. The ED results are based on a simulation of the
time evolution under Hamiltonian Eq. (2.17) with H = 1.0 and starting from preparation
(1). The Hilbert space of the bosonic mode is truncated for each data point at a value
well beyond the expectation value of the maximally reached occupation.

show that small velocities are beneficial for an efficient dynamo. In Fig. 2.4c), we show a
parametric plot of the averaged output power (i.e. ∆Edyn/tf ) and the efficiency ηdyn with
g/v as a parameter. This demonstrates that in terms of the output power averaged over
the time of the process, there is a well defined maximum at non-optimal efficiency, which is
largest for intermediate driving speeds. On the one hand, for large values of the paramter
g/v, the dynamo energy, the averaged output power and the efficiency all go to zero, as a
large shift in the bosonic mode leads to a strong induced field ‘freezing’ the spin. On the
other hand, a breakdown of the effect is also occurring when v is decreased too much, as
this firstly leads to a stronger initially induced field (in preparation (1): h(0) = −g2/v)
and secondly increases the time of the experiment, thus decreasing the averaged output
power.

The plots in Fig. 2.4 show a large range of the parameter g/v, thus interpolating
between the weak coupling and the frozen spin limit discussed before. The analytical
understanding provided above is therfore restricted to these limits. More general statements
can be made if we include the topological properties of the spin in our analysis, which will
be discussed in the next section.
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2.2.3 Topological properties

As shown in Sec. 1.1, the topology of a spin-1
2 is determined by the ratio between the radial

field and the constant offset field. In this chapter, we are studying a dynamic protocol to
access the radial field. An additional coupling to a resonant bosonic mode gives rise to
an induced field acting on the spin and an energy transfer to the bosonic mode through
the dynamo effect. As analyzed above, this effect breaks down simultaneously with the
spin getting ‘frozen’ on the northern hemisphere of the Bloch sphere. This suggests that
the dynamo effect is related to the dynamically accessed topology of the spin, defined in
Sec. 2.1.

Relation of the dynamo energy to the dynamic Chern number

In Fig. 2.4a), the transparent lines show the analytical results derived under the approxi-
mation 〈σz(t)〉 ' cos(vt) (quasiadiabatic driving, weak coupling). This corresponds to a
situation where Cdyn → C = 1 according to Eq. (1.15). Comparing to the numerical results
shown by the color intensive lines in Fig. 2.4a), we observe that this approximation is
valid while both lines remain close to each other. On the other hand, when ∆Edyn → 0 for
larger values of g/v, we reach (if v still is quasi-adiabatic) Cdyn → C = 0 and 〈σz(t)〉 ' 1.

Let us thus for adiabatic driving approximate 〈σz(t)〉 ' C(cos(vt)− 1) + 1, which is
certainly a rough estimate, but correctly captures the topology of the spin, i.e., it is correct
at the poles. Using Eq. (2.22) to evaluate the induced field and plugging it into Eq. (2.33),
we find

h(t) + g2

v
〈σz(t)〉 = −1

2Cg
2t sin(vt), (2.43)

and hence
Ėdyn = g2vt

4 sin2(vt)C2. (2.44)

Integration over half a period (i.e., adiabatic driving from north to south pole as required
for the evaluation of the topology) then gives [33]

∆Edyn

(
t = π

v

)
= g2π2

16v C
2. (2.45)

Departing from the adiabatic limit, we replace C → Cdyn and find [33]

∆Edyn

(
t = π

v

)
= g2π2

16v C
2
dyn. (2.46)

The breakdown of the dynamo effect is thus related to a change in the dynamically accessed
topology of the spin. The energy transferred into coherent displacement of the bath mode
decreases with the square of the dynamically measured Chern number. Numerical results
obtained using exact diagonalization can be seen in Fig. 2.5a) and show good agreement
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Figure 2.5: From [33]. The dynamo energy for coupling to a resonant mode from ED
simulations (solid lines) and the prediction from Eq. (2.46) with Cdyn measured numerically
(dashed lines) as a function of g/v. b) The dynamically measured Chern number from the
same simulation as a function of g/v. For both figures, H = 1.0, the system was initialized
in preparation (1) and the Hilbert space of the bosonic mode is truncated at a value well
beyond the expectation value of the filling.

with Eq. (2.46).
The quantity Cdyn thus becomes interesting in its own right (rather than just being

an estimate of C), as it signals the breakdown of the dynamo effect. Physically, the
dynamically accessed topology may change when increasing the driving speed (thus
introducing oscillations of higher order in the dynamics of the spin, which for the free
spin is reflected in Eq. (2.7c)), when increasing entanglement between the spin and the
mode (thus departing from a unitary evolution of the spin) or when adding an offset field
(realized by the term in M in Eq. (1.4) or by an induced field). Stabilizing the dynamically
accessed topology of the spin thus can help to delay the breakdown of the dynamo effect.
We will exploit this observation in the following section.

Effect of a constant bias field

As argued above, one of the factors influencing Cdyn and thereby the dynamo effect through
Eq. (2.46) is an offset field acting on the spin. This can be the induced field discussed in
this chapter (in this case, it is in general time-dependent) or an external bias field as the
term in M in Eq. (1.4). This implies that such a constant bias field can also attenuate
or accelerate the breakdown of the dynamo effect and as such be used to tune it to the
relevant output power. To be clear, consider the initially induced field h(0) = −g2/v.
Including a term

Hbias = −M2 σz, (2.47)

in the Hamiltonian, with 0 > M > −H this field opposes the initially induced field while
the prepared spin state |↑〉 is still the ground state. This allows to stabilize the dynamo
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Figure 2.6: Comparison of the change in dynamo energy (for coupling to one resonant
mode) after driving for half a period between numerical results and Eq. (2.46) with
Cdyn measured numerically (dashed lines), as a function of g/v. The parameters are a)
M = −0.5, b) M = 0.0 and c) M = 0.5. The system is initialized in preparation (1) and
with H = 1.0. The Hilbert space of the bosonic mode is truncated for each data point
at a value well beyond the expectation value of the filling and the parameter g/v ranges
from 0.0 to 8.0.
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Figure 2.7: Adapted from [33]. The averaged output power as a function of the efficiency
ηM defined in Eq. (2.48) with a parameter g/v from ED simulation with a) M = −0.5, b)
M = 0.0 and c) M = 0.5. The parameters are the same as in Fig. 2.6.

effect for larger induced fields without leading to a breakdown. To calculate the efficiency
in this setup, we subtract the introduced energy imbalance M between the spin ground
states at the north and the south pole from the work, i.e.

ηM = ∆Edyn

Wdr −M
. (2.48)

This definition reflects the fact that M is an additional one-shot resource that can be
consumed after initialization. Note that the definition of η in Eq. (2.34) is still sensible
over full periods of the driving. We study the effect of such a term numerically in
Fig. 2.7 in analogy to the results shown in Fig. 2.4c). From these results, we confirm
that M > 0 decreases the averaged output power, while M < 0 increases the maximally
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attainable averaged output power and preserves high efficiency. In this way, adding a
constant negative offset field M constitutes a way to adapt the dynamo to desired output
parameters. The dynamo energy is still related to the dynamically measured Chern number
Cdyn through Eq. (2.46), so this way to modify the dynamo is inherently possible because
of the topological properties of the considered system. We show a comparison of numerical
results and Eq. (2.46) relating the change in dynamo energy to the dynamically measured
Chern number for different values of M in Fig. 2.6

After having shown how the quantum dynamo effect is defined for coupling to one
bosonic mode and and how it is in this case related to the topological properties of the
system, we want to generalize these results for the case of coupling to an environment
with a broad spectrum. This will be the subject of the following section.

2.3 The quantum dynamo effect for coupling to a
bath

We now want to generalize the considerations for coupling to a bath instead of just one
single mode. In this case, the induced field can be defined by Eq. (2.16). We first derive a
few general formulae which are useful in order to study the quantum dynamo effect from
the observed spin dynamics. We then present different techniques that can be employed in
order to study the dynamo effect analytically and numerically. Finally, we present results
for the performance of the dynamo effect and discuss its topological properties.

2.3.1 Generalities on the dynamo effect with a bath

Adiabatically and dynamically induced field

Getting back to the model introduced in Eq. (2.1), we first note that the induced field is
now made up of a collection of bosonic modes. The full dynamics of the system is thus
described by a set of coupled differential equations. Here, we are focussing on preparation
(1). For the modes, we can write from the Heisenberg equation of motion

〈
ḃk(t)

〉
+ iωk 〈bk(t)〉 = −igk

〈σz(t)〉
2 , (2.49)

which formally yields

〈bk(t)〉 = e−iωkt 〈bk(0)〉 − igk
∫ t

0
dt′e−iωk(t−t′) 〈σz(t′)〉

2 . (2.50)
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Integrating by parts yields

〈bk(t)〉 = − gk
ωk

〈σz(t)〉
2 + gk

ωk

∫ t

0
dt′e−iωk(t−t′) 〈σ̇z(t′)〉

2 , (2.51)

where we have used that in preparation (1), 〈σz(0)〉 = 1 and 〈bk(0)〉 = − gk
2ωk

. Eq. (2.51)
allows to analyze the contribution to the dynamics of the mode (and therefore the induced
field) separately: The first term is similar to the induced field one would obtain for a fixed
configuration of the spin, exerting an average force and thereby shifting the equilibrium
value of the spins. When evaluating the induced field by this term, this gives rise to what
we call the adiabatically induced field by one mode k, i.e.,

hkad = − g
2
k

ωk
〈σz〉 , (2.52)

which would be the only contribution if all the modes had a high frequency (cf. the
discussion in Sec. 1.2.2). Here, we are analyzing the contributions to the induced field
corresponding to an adiabatic setup for all the modes, separating them from the non-
adiabatic contributions (where the latter correspond to the second term in Eq. (2.51)).
The total field induced in an adiabatic setting is thus

had =
∑
k

hkad = −
∑
k

g2
k

ωk
〈σz〉 = −〈σz〉

∫ ∞
0

J(ω)
πω

dω. (2.53)

In the last step, we assumed that the number of bath modes is going to infinity and
justifies taking the continuum limit, in which the coupling strength is described by the
spectral density defined in Eq. (1.49). Using an Ohmic spectral density of the form of
Eq. (2.11), we find

had = −2αωc 〈σz〉 . (2.54)

The second contribution to the right hand side of Eq. (2.51) then gives rise to a dynamically
induced field, inherently connected to a variation of 〈σz〉 in time:

hkdyn(t) = g2
k

ωk

∫ t

0
dt′ cos(ωk(t− t′)) 〈σ̇z(t′)〉 , (2.55)

and therefore (in the continuum limit)

hdyn(t) =
∫ t

0
dt′
∫ ∞

0
dω
J(ω)
πω

cos(ω(t− t′)) 〈σ̇z(t′)〉 . (2.56)

With an Ohmic spectral density we obtain [33]

hdyn(t) =
∫ t

0
dt′

2αωc

1 + ω2
c (t− t′)2 〈σ̇

z(t′)〉 . (2.57)
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Note that (1 + ω2
c t

2)−1 vanishes for |t| greater than a few ω−1
c . Since we assume ωc to

be a large frequency cut-off and therefore the largest energy scale of the model, the
typical spin evolution occurs on much longer time-scales so that we can approximate
〈σz(t′)〉 ' 〈σz(t)〉+ (t′− t) 〈σ̇z(t)〉 and perform the integration over t′. We then obtain [33]

hdyn(t) = 2α arctan(ωct) 〈σ̇z(t)〉 −
α

ωc
log
(
1 + ω2

c t
2
)
〈σ̈z(t)〉 ≈ απ 〈σ̇z(t)〉 . (2.58)

In the last step, we used that arctan(ωct) ∼ π/2 for t� ω−1
c and we neglected the second

term since we assume that ωc is the largest energy scale of the problem. Eq. (2.58) thus
gives a simple, approximate way to evaluate the dynamically induced field from the spin
dynamics. Note that the thus induced field opposes the change of the spin (i.e. it acts
to maintain it in its position), which is again in analogy to Faraday’s law of induction
and hints the occurrence of a dynamo effect in this setup as well. We can use Eqs. (2.54)
and (2.57) to evaluate the two contributions to the induced field directly from the spin
dynamics2, i.e.,

h(t) = had + hdyn ≈ −2αωc 〈σz(t)〉+ απ 〈σ̇z(t)〉 . (2.59)

For experimental purposes, this allows to evaluate the induced field from a measurement of
the spin evolution. Furthermore, we can use established analytic and numerical methods
to evaluate the spin dynamics and hence conclude on the induced field. Before describing
several such methods, let us make the definition of the quantum dynamo effect more
precise, in the sense of energetic definition as in Sec. 2.2.2.

Thermodynamic definition

In order to identify the quantum dynamo effect from the energy transferred to the bath
into coherent displacement of the modes, we again compare it to the work done by driving
the system. The latter is defined by Eq. (2.30). The energy flows between the different
constituents of the total system Hspin, Hint = σz

2 R and Hbath (cf. Eq. (2.1)) can be
evaluated as

Ėspin = −H2 (−v sin(vt)〈σz〉+ v cos(vt)〈σx〉)−
〈
σ̇z

2 R
〉
, (2.60a)

Ėint = −
〈
σz

2 Ṙ
〉
, (2.60b)

Ėbath =
〈
σ̇z

2 R
〉

+
〈
σz

2 Ṙ
〉
. (2.60c)

2For preparation (2), there will be an additional contribution to the total induced field, which stems
from the fact that the system is not initialized in an eigenstate of the full Hamiltonian. This therefore
corresponds to a contribution free contribution, which will however quickly be dissipated away for coupling
to a bath, as described in [33].
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Therefore (and in general), adapting Eq. (1.59),

Wdr = −H2

∫ t

0
(−v sin(vt)〈σz〉+ v cos(vt)〈σx〉) , (2.61)

so that the work done by driving to the entire system can be determined from the spin
dynamics.

For the dynamo energy, as in Sec. 2.2.2, we consider the energy stored in coherent
displacement of the bath modes with their adiabatic displacement as a reference. This
amounts to [33]

Edyn(t) =
∑
k

ωk

∣∣∣∣∣〈bk(t)〉+ gk
ωk

〈σz(t)〉
2

∣∣∣∣∣
2

. (2.62)

From Eq. (2.51), we see that only the dynamic part of the induced field contributes to
this quantity, as required. We can therefore write with Eq. (2.55):

Ėdyn(t) = hdyn(t)〈σ̇
z(t)〉
2 . (2.63)

Using Eq. (2.58), we find

∆Edyn ≈
απ

2

∫ t

0
dt′ 〈σ̇z(t′)〉2 . (2.64)

Furthermore, we can again identify from the energy balance (2.36),

Efluct(t) =
∑
k

ωk

(〈(
bk(t)† + gk

ωk
〈σz(t)〉

)(
bk(t) + gk

ωk
〈σz(t)〉

)〉
−
∣∣∣∣∣〈bk(t)〉+ gk

ωk

〈σz(t)〉
2

∣∣∣∣∣
2 )
,

(2.65)
and if initially Efluct(0) = 0, the efficiency of the dynamo ηdyn = ∆Edyn

Wdr
≤ 1 for full periods

of driving [33]. The energy stored in coherent displacement of the bath modes with the
adiabatic displacement as a reference can be understood as work exchanged with the
bath, which can be justified from considering the remainder of the energy variation of the
bath as heat and showing that it fulfills the second law of thermodynamics [27, 33]. This
justifies to speak of a work-to-work conversion through the dynamo effect. Note that from
Eq. (2.63), the dynamo energy can be evaluated only from the spin evolution, as hdyn can
be evaluated from it equivalently. Therefore, we will in the following present techniques to
solve for the spin dynamics of the driven spin-boson model we are considering.

2.3.2 Techniques to solve the spin dynamics

As described in Sec. 1.2.2, the study of a quantum system coupled to an environment
has been a field of extensive interest for decades [76, 77,79, 83,154] and remains an active
area of research (closely related also to the driven setup under study in this chapter, cf.
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e.g. [32, 75, 150,155, 156]). In this section we will discuss several approaches used to tackle
this problem and show how (and under which conditions) they can be applied to the driven
model under consideration. The employed techniques can roughly be clustered into four
categories:

• Expressing the spin dynamics using a real-time path integral: This method, developed
by Feynman and Vernon [76] allows to express the spin evolution as a sum over
different spin paths, whose weight is determined by the influence functional arising
when integrating over the bosonic degrees of freedom. This path integral can then
be simplified:

– Using what is called the non-interacting blip approximation (NIBA), an ap-
proximate analytic solution can be derived [64,139,141].

– Treating the influence functional stochastically, a stochastic Schrödinger equa-
tion can be derived which then gives rise to a numerically exact method to
solve for the spin dynamics [75, 137,151].

• Exact solution by mapping to the Kondo model: The time-independent spin-boson
model can be mapped to the anisotropic Kondo model [157] which has been solved
by the Bethe ansatz [158]. This can give useful insights for certain limiting cases of
the driven model as well.

• Master equations: The influence of an environment on a system at weak coupling
can be treated using a Gorini-Kossakowski-Sudarshan-Lindblad (GKLS) master
equation [61, 159]. In the studied case of a periodically driven system, this gives
rise to a so-called Floquet-Markov master equation [33, 141]. This approach was
developed by Cyril Elouard for the work published in [33] and we will in this thesis
use it for a comparison. Below we will briefly discuss the assumptions made when
using this technique.

• Exact diagonalization: Solving the Schrödinger equation governing the evolution
of the full system can be attempted numerically, but is of course limited by the
dimensionality of the Hilbert space quickly increasing when adding more degrees of
freedom (i.e., more bosonic modes). This technique is thus limited to modelling a
spin coupled to a small finite number of bosonic modes, but can nevertheless serve
as a useful benchmark for other results [33].

We will describe these approaches in more detail and apply them to the radially driven
spin-boson model in the following.
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Expressing the spin dynamics using a path integral

The idea to express the evolution of a system (as the spin described in this chapter)
coupled to an environment by a path integral goes back to Feynman and Vernon [76] and
has consequently been applied to the spin-boson model [75, 79,141,160]. The approach
consists of expressing an element of the reduced spin density matrix by a double path
integral over classical spin paths using the so called influence functional [75,76,79]:

〈σf |ρs(t)|σ′f〉 =
∫
Dσ

∫
Dσ′A[σ]A∗[σ′]F [σ, σ′]. (2.66)

On the left hand side, an element of the reduced density matrix of the spin ρs(t) = Trbathρ(t)
(i.e., the full density matrix of the entire system ρ(t) with the bath degrees of freedom
traced out) is determined using |σf〉, |σ′f〉 ∈ {|↑〉 , |↓〉}. On the right hand side, this element
is evaluated as a sum over classical spin paths σ, σ′ = ±1 (reflecting the z-component of
the spin under consideration). Intuitively, such a spin path can be thought of an evolution
in time from σ(τ = 0) = σi to σ(τ = t) = σf via various spin flips. For the situation under
consideration, initializing the spin in the state |↑〉 corresponds to σi, σ′i = 1 and evaluating
the path integral in Eq. (2.66) for σf , σ′f = 1 allows to evaluate the upper left element of
the density matrix of the spin at time t. One would therefore consider spin paths from
σi = 1 to σf = 1 only, thus necessarily involving an even number of spin flips.

The influence functional described by F [σ, σ′] can be evaluated by integrating over
the bosonic degrees of freedom and therefore encodes the influence of the bath on the spin
dynamics. For a bath of quantum harmonic oscillators (as the one under consideration), it
can be written in the form [75,76,79]

F [σ, σ′] = exp
(
− 1
π

∫ t

t0
dτ
∫ τ

t0
dτ ′[−iL1(τ − τ ′)ξ(τ)η(τ ′) + L2(τ − τ ′)ξ(τ)ξ(τ ′)]

)
. (2.67)

For this, we introduced the reparametrization η(τ) = 1
2(σ(τ) + σ′(τ)) and ξ(τ) = 1

2(σ(τ)−
σ′(τ)) representing the symmetric and antisymmetric spin paths. The bath correlation
functions are defined from [75]

π 〈R(t)R(0)〉 = L2(t)− iL1(t), (2.68)

and can be evaluated assuming a bath at equilibrium by

L1(t) =
∫ ∞

0
dωJ(ω) sin(ωt), (2.69a)

L2(t) =
∫ ∞

0
dωJ(ω) cos(ωt) coth

(
βω

2

)
, (2.69b)

where R(t) = ∑
k gk(b†k + bk) in our case. The functionals A[σ] encode the weight of a spin

path under the free dynamics (i.e., given Hspin), where the field in z-direction contributes
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through an offset, while the field in x-direction contributes by inducing spin flips and
therefore allows to rewrite this path integral in the form of a double sum over spin flips.

In this framework, diagonal states in this double-path description (i.e., for which σ = σ′)
are called ‘sojourn’ states corresponding to η = ±1 and ξ = 0, while off-diagonal states are
called ‘blip’ states corresponding to ξ = ±1 and η = 0. Through the influence functional, a
blip is coupled to all previous blips and sojourns, thus making the problem non-Markovian
and difficult to solve3. In order to find analytical expressions for the elements of the
density matrix, one thus has to resort to approximation schemes or numerical techniques.
We briefly present both in the following, starting with the so called non-interacting blip
approximation (NIBA) and consequently discussing a stochastic approach to tackle the
spin dynamics from the real-time path integral in Eq. (2.66) numerically.

The non-interacting blip approximation (NIBA)

As the name suggests, the ‘non-interacting blip approximation’ (NIBA) consists in neglect-
ing interactions between blips and blip-sojourn interactions except for neighboring ones in
the influence functional Eq. (2.67) [64]. For a driven system, it leads to a set of equation
describing the time evolution of the spin components [139,141]:

〈σ̇z(t)〉 =
∫ t

0
dt′
(
K(−)(t, t′)−K(+)(t, t′) 〈σz(t′)〉

)
, (2.70a)

〈σx(t)〉 =
∫ t

0
dt′
(
Y (+)(t, t′) + Y (−)(t, t′) 〈σz(t′)〉

)
, (2.70b)

〈σy(t)〉 = − 1
H sin(vt) 〈σ̇

z(t)〉 , (2.70c)

with the Kernels

K(+)(t, t′) = ∆(t)∆(t′)e−Q2(t−t′) cos(Q1(t− t′)) cos(ζ(t, t′)), (2.71a)
K(−)(t, t′) = ∆(t)∆(t′)e−Q2(t−t′) sin(Q1(t− t′)) sin(ζ(t, t′)), (2.71b)

and

Y (+)(t, t′) = ∆(t)∆(t′)e−Q2(t−t′) sin(Q1(t− t′)) cos(ζ(t, t′)), (2.72a)
Y (−)(t, t′) = ∆(t)∆(t′)e−Q2(t−t′) cos(Q1(t− t′)) sin(ζ(t, t′)). (2.72b)

The functions Q1(t) and Q2(t) are defined as the second integrals of the bath correlation
functions L1(t) and L2(t) from Eqs. (2.69), which with an Ohmic spectral density (J(ω) =

3In App. B.2.1, we rewrite the influence functional as Eq. (B.12), from which this is even more explicitly
apparent.
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2παωe−ω/ωc according to Eq. (2.11)) and at T = 0 can be calculated as

Q1(t) = 2πα arctan(ωct), (2.73a)
Q2(t) = πα log

(
1 + ω2

c t
2
)
. (2.73b)

For the specific time-dependence of the model under consideration from Eq. (2.1), we
adapt ∆(t) = H sin(vt) and ζ(t, t′) =

∫ t
t′ dt

′′H cos(vt′′). The Eqs. (2.70) can then be solved
numerically, which is represented in Fig. 2.11 by the dotted lines.

Numerically exact stochastic approach

The influence functional in Eq. (2.67) can be evaluated numerically in a stochastic way
[32, 75, 151] and therefore leads to a numerically exact method to evaluate Eq. (2.66).
This involves expressing the influence functional as an average over many realizations of
a stochastic field encoding the properties of the bath. Consequently, one can derive a
stochastic Schrödinger equation for the reduced spin dynamics, thus allowing to determine
the spin expectation values from an average over many realizations of this stochastic
field. Details of this method are presented in App. B.2. The derivation presented there is
justified in the limit where ωc � H and 0 ≤ α < 1

2 [75, 79,151].
This stochastic approach has been developed first for a spin-boson model with constant

fields (i.e., a time-independent spin Hamiltonian) [75], where the results can be compared
to analytical results. It has been shown that the results converge for sufficiently many
realizations of the stochastic field to the correct time evolution of the spin expectation values
[75]. The approach has consequently been adapted to time-dependent spin Hamiltonians
[32, 137] and proven its versatility in the study of systems composed of two spins as
well [138]. It allows to account for the effect of the influence functional in Eq. (2.66) in a
numerically exact way [75]. Here, we use it to evaluate the driven dissipative dynamics of
a spin-1/2 coupled to a bath in order to extract thermodynamic properties with regards
to the quantum dynamo effect [33]. Furthermore, we benchmark the method in the driven
case employing the following comparisons:

1. In the case of slow driving, i.e., a quasi-static evolution, the state of the spin should
approach the ground state of the combined system. For this, we can compare to the
exact solution of the model coming from a mapping to the anisotropic Kondo model.
This will be discussed in the following and good agreement is seen in Fig. 2.8.

2. We compare the results from the stochastic approach to the NIBA results and discuss
how the agreement between the two approaches is related to the limits of validity of
the NIBA, which is shown in Fig. 2.11.

3. Finally, we also compare the results to an ED approach developed in [33], representing
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the bath using a finite number of modes. This is shown in Fig. 2.10 and gives good
qualitative agreement notably also for stronger coupling and larger driving velocities.

Mapping to the anisotropic Kondo model

There is an interesting correspondence between the Ohmic spin-boson model under consid-
eration and the anisotropic Kondo model [157,161]. This correspondence enables us to
use exact results obtained for the Kondo model as a benchmark for our consideration of
the driven spin-boson model, which we are going to use here. The time-independent spin
boson model, i.e., Eq. (2.1) with

Hspin = −∆
2 σ

x − ε

2σ
z, (2.74)

can be mapped to the anisotropic Kondo model of a spin interacting with a fermionic
bath [79,80,157,161–163]. The Kondo model can be solved using the Bethe ansatz [158].
In particular, for 1− α� ωc/∆ and with only a small bias field ε acting on the spin, one
can derive scaling forms of the spin expectation values. The results thus obtained are
then valid for the driven model around the equator, i.e. when vt = π/2 + nπ with n ∈ N

and for quasi-adiabatic driving speed. The dynamics is then controlled by the Kondo
scale TK = ∆ (∆/D)α/(1−α) [163] which has a similar form as the renormalized tunneling
element from Eqs. (1.57) and (2.12). The high-energy cut-off D is related to ωc by [145]

(
D

ωc

)2α
= 2Γ(3/2− α)e−b√

π(1− 2α)Γ(1− 2α)Γ(1− α) , (2.75)

with b = α log(α) + (1− α) log(1− α). The observables then take the form [163]

〈σx〉 ≈ 1
2α− 1

∆
ωc

+ C1(α)TK∆ , (2.76)

〈σz〉 ≈ −2 e
b

2(1−α)

√
π

Γ[1 + 1/(2− 2α)]
Γ[1 + α/(2− 2α)]

(
ε

TK

)
, (2.77)

where C1(α) = e−b(2−2α)
√
π(1−α)

Γ(1−1/(2−2α))
Γ(1−α/(2−2α)) . These expressions allow for a comparison to the

results from other approaches at the equator with θ = π/2 or t = π/(2v). A comparison
of numerical results from the stochastic approach with quasi-adiabatic driving speed with
Eq. (2.76) is shown in Fig. 2.8 and shows good agreement. In Sec. 2.3.3 we show similar
results in Fig. 2.12a) for various driving speeds, showing changed behaviour at the equator
for larger driving speed. Note that from the adiabaticity condition in Eq. (2.13), not only
an increasing velocity, but also a decreased renormalized tunneling element ∆r can lead to
a breakdown of adiabaticity4 and therefore to a deviation from the equilibrium result from

4The renormalized tunneling element decreases when α increases, cf. Eq. (2.12)
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Figure 2.8: Comparison of the analytical result from Bethe ansatz in Eq. (2.76) with
results for 〈σz〉 at t = π/(2v) from the stochastic approach (see above and in App. B.2)
with quasi-adiabatic driving speed v = 0.04 and H = 1.0 and the high-freqeuncy cut-off is
at ωc/H = 100.0. For the stochastic approach, here we used a time step ∆t/t = 2−11 and
averaged over 6 · 105 realizations of the stochastic field (cf. App. B.2).

the Bethe ansatz. The plot of ∆r as a function of α shown in Fig. 2.12b) for comparison
confirms that when the adiabaticity condition is not met, the results start to deviate.

The result in Eq. (2.76) predicts notably that at the equator, the expectation value
〈σx〉 will be decreased from its free value due to entanglement with the bath, which is
confirmed from the numerical results.

GKLS Master equation

Another common approach to study the evolution of a quantum system coupled to its
environment is to derive a Master equation for the evolution of the reduced system density
matrix. A common type of such master equations describing the open system dynamics is
the GKLS equation of the form [33,61,164]

ρ̇S = −i[HS(t) +HLS(t), ρS] +
∑
i

LiρS, (2.78)

where ρS is the reduced density matrix of the system,HS(t) is the Hamiltonian of the system
and HLS(t) is a Lamb-shift operator accounting for a renormalization of the unperturbed
energy levels of the system Hamiltonian due to the coupling to the environment [61].
The last term in Eq. (2.78) accounts for different dissipative processes where we defined
LiρS = γiD[Xi] with the rate γi and the dissipation superoperator [33]

D[Xi]ρS = XρSX
† − 1

2(X†Xρ− ρX†X).

Such an equation has been derived for the radially driven spin-boson model from microscopic
grounds in [33] by Cyril Elouard. Since in the following, we will compare to these
results, we describe some key results here and refer to [33] for the details. In the case
under consideration, there are dissipative processes corresponding to relaxation and pure
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dephasing. In the derivation and discussion, it is beneficial to switch to the frame
rotating with the spin, in a similar way as described by the transformation in Eq. (2.5).
Without coupling to the bath, the spin has two periodic orbits. Relaxation processes
are associated with transitions to the energetically lower lying orbit. These processes
have a rate proportional to J(Ω ± v) (where Ω =

√
H2 + v2 as defined in Sec. 2.1) and

are thus associated to bath modes at frequencies Ω± v. In addition, there are processes
corresponding to pure dephasing in the basis of the two periodic orbits, associated to bath
modes at frequency v. Interestingly, these processes yield a stable solution in the long-time
limit that reads [33]

〈σx(t)〉 = H

Ω sin(vt), (2.79a)

〈σy(t)〉 = v

Ω , (2.79b)

〈σz(t)〉 = H

Ω cos(vt). (2.79c)

These results suggest that in the long time limit, the spin dynamics is stabilized along a
periodic orbit on the Bloch sphere. Eqs. (2.79) are formally close to the free dynamics for
slow driving (i.e., Eqs. (2.8)), with the difference that a finite constant y-component is
acquired and the amplitudes in x- and y-directions are in turn reduced as a manifestation
of dissipation. In the limit in which the GKLS equation works, the secondary oscillations
are smoothed out after a long-time evolution, which is also seen from the numerical results
in Figs. 2.11b) and e)5. The approximations usually made to derive the GKLS equation in
the form of Eq. (2.78) are [61]:

• The Born approximation, which assumes that the coupling between the spin and the
bath is weak, so that the total density matrix can be written as a tensor product of
the density matrices of the two constituting subsystems, i.e.,

ρ ≈ ρspin ⊗ ρbath. (2.80)

• The Markov approximation, which assumes that the observables of the environment
vary on a much shorter time-scale than the spin.

• The derivation of the GKLS master equation usually takes place in the interaction
picture. The secular approximation assumes that the evolution of the spin can be
averaged over rapidly oscillating components (so-called non-secular terms) in the
interaction picture, meaning that only those components varying slowly contribute
to the dynamics.

5There we show the full solution of the GKLS approach, i.e., without taking the long-time limit, as
developed in [33]
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In the present model, these approximations require J(Ω± v), J(v)� kBT � v,H, ωc

[33]. This means that in order to ensure the derivation, the bath temperature T is non-zero,
yet much smaller than the spin frequency and the driving velocity. This constitutes a
key difference to the other approaches described in this section, with which we study the
dynamics at zero temperature. According to these conditions, we expect agreement of the
results from this approach with the other approaches at very weak coupling and higher
velocities.

Exact diagonalization with a finite number of modes

To have a benchmark for the results with a continuous bath, we first consider a setup
in which we can obtain numerical results through exact diagonalization: Considering a
finite number of bath modes, in which we represent a part of the continuous spectrum
by one discrete bosonic mode allows to evaluate the exact eigenstates and thus access all
observables of the spin and the bath directly. In practice, we fix the couplings gk from an
Ohmic spectral density with a hard high-frequency cut-off ωc:

J(ω) =

2παω ω ≤ ωc

0 ω > ωc.
(2.81)

Discretizing the spectral density, we then identify g2
k = 2αωk∆ωk where ∆ωk is the width

of the part of the spectrum that is represented by the mode k. The induced field on
the spin is then given by Eq. (2.16), and the contribution for each mode is described by
Eq. (2.22) (with ω → ωk and g → gk), so that for weak coupling and slow driving, Eq. (2.23)
equivalently holds. Therefore, also the approximations for modes with frequencies far
below, far above and at resonance (cf. Eqs. (2.24)-(2.26)) hold and we see that the induced
field will be dominated by the large frequency contributions, as those constitute the biggest
part of the spectrum for slow driving.

Using the approximation 〈σz(t)〉 ∼ cos(vt) and a spectral density as in Eq. (2.81), we
can integrate the contributions from Eq. (2.23) and obtain for t > 0 and ωct� 1 [33]

h(t) = −α cos(vt)
(

2ωc + v log
(
ωc − v
ωc + v

))
− απv sin(vt) ≈ −2αωc cos(vt)− απv sin(vt),

(2.82)
where the last approximation is justified if ωc � v.

This result is consistent with Eqs. (2.59) obtained for an exponential cut-off, so we
conclude that in this limit the induced field is the same for an Ohmic spectral function
with an exponential and a hard cut-off in the continuum limit. In general, as discussed
in Sec. 1.2.2 and App. D.1, the high-frequency modes equilibrate quickly and lead to a
renormalization of the tunneling element, so as long as the normalization of the spectral
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function remains fixed one thus not expect a big influence on the exact form of the cut-off.
In particular, the form of the renormalized tunneling element can be evaluated with a hard
cut-off to the same expression as given in Eq. (1.57) for an exponential cut-off. However,
when working with the two forms of the spectral function in other setups and in order to
evaluate other observables, one should always analyze the influence on the high-frequency
part of the spectrum carefully.

Having discussed these techniques to study the spin dynamics in the presence of a
bath, we will in the following show and discuss the results they yield.

2.3.3 Results for the Dynamo effect

Using the results of Secs. 2.3.1 and 2.3.2, we are in a position to study the dynamo effect
numerically and analytically from the spin dynamics.

Exact diagonalisation

We will first check the consistency of the ED approach discussed above. Numerically, we can
check that the contributions from modes with different frequencies are consistent with the
analytic results from Eqs. (2.24)-(2.26) and that the total induced field at slow driving and
weak coupling is given by Eq. (2.82). This is shown in Fig. 2.9a). As expected, we observe
that the dominant contribution to the induced field (coming from the high-frequency
modes equilibrated to the spin) tends to follow the spin. However, for the resonant mode,
there is still a field opposing the change of the spin, i.e., the induced field coming from this
particular mode has a large dynamic contribution. Since the contribution of this field to
the total field is small, it also influences the spin to a smaller extent as was the case for the
coupling to only one mode. We thus observe a contrast for the dynamo effect comparing
the coupling of a spin to one and to many modes: In both cases, there is a dynamically
induced field in the resonant mode, but when there is a broad spectrum of modes with
(mainly) high frequency, those can effectively protect the spin dynamics from the effect of
the dynamo field and therefore stabilize it. This then leads to an equivalent stabilization
of the dynamo effect, which requires a rotation of the spin. In fact, we observed for the
one mode dynamo in Sec. 2.2 that freezing of the spin leads to a diminution of the dynamo
effect. The protection of the dynamo effect for coupling to a larger number of modes
can be observed in Fig. 2.9b) from the definition of the dynamo energy in Eq. (2.62) and
the associated efficiency with respect to the work done by driving the system, as defined
in Eq. (2.30). Using exact diagonalisation, the observables of the bosonic modes can be
evaluated and summed directly.

After every half period (i.e. at times t = nπ/v with n ∈ N), the dynamo reaches large
efficiencies (inset of Fig. 2.9b)), while in the same time the depth of the intervening valleys
is decreasing. Instead of breaking down, the efficiency now approaches unity for longer
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Figure 2.9: From [33]. Results from ED for a spin coupled to twelve modes with frequencies
from 0.0 to 100.0 and a (discretized) linear spectral function with cut-off at ωc/H = 100.0
and a small coupling corresponding to α = 0.02. The spin is driven with velocity v = 0.04
and the magnitude of the external field is H = 1.0. The Hilbert space of each mode is
truncated above its maximal occupation. a) The induced field for three different modes.
In the inset, the summed induced field is shown which is dominated by the high frequency
modes. b) The dynamo energy ∆Edyn and in the inset the efficiency η.

times, supporting the claim of a stabilisation of the dynamo effect. In a consistent way, the
dynamo energy in this regime increases and dominates the energy of fluctuations, which
we analyze in Appendix C.

The results for coupling to a finite number of modes hint how the dynamo effect can
be understood for coupling to a continuous environment, in which we expect a similar
protective effect of the high-frequency modes. This will be discussed in the follwong. We
will first present different results found from the previously discussed approaches to solve
the spin dynamics and consequently analyze the performance of the dynamo we find from
them.

Comparison of results for spin dynamics for coupling to a bath

In this section, we will present and discuss results for the driven spin dynamics coupled to
a bath, comparing the different approaches presented before:

• The numerical results from exact diagonalization.

• The stochastic approach (numerical results).

• The NIBA (numerical solution of the analytical Eqs. (2.70)).

• The analytical result from mapping to the anisotropic Kondo model at the equator
for slow driving. In particular, we will compare Eq. (2.76) to the results of the
stochastic approach at the equator.
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Figure 2.10: From [33]. Comparison of numerical results between ED (dotted line) and
stochastic approach (solid line). The expectation values of 〈σz〉, 〈σy〉 and 〈σx〉 are shown in
black, blue (gray) and yellow (light gray) in this order. Here, H = 1.0 and ωc/H = 100.0.
For the ED result, we discretized the spectrum with a hard cut-off at ωc into ten modes.
Their Hilbert space was truncated such that the maximal occupation is well below the
truncation.

• The results from the GKLS equation.

First, let us compare the results from ED to results obtained using the stochastic
approach. The numerical results are shown in Fig. 2.10. We see that for all shown
velocities, the ED agrees very well with the stochastic approach at weak coupling. At
stronger coupling, there are deviations between the two but still there is qualitative
agreement. For an increasing number of modes simulated in the ED, one would expect the
results to correctly model the physical system under consideration. The results in Fig. 2.10
show that for small to intermediate coupling the results from ED with a small number of
modes agree very well with the stochastic approach and therefore give an indication that
on a qualitative level, both approaches in the considered range of parameters correctly
reproduce the physical situation. Note that both approaches differ in the way how a
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Figure 2.11: From [33]. Comparison of numerical results between stochastic approach,
NIBA and GKLS approach. The expectation values of 〈σz〉, 〈σy〉 and 〈σx〉 are shown
in black, blue and yellow in this order. Solid lines represent results from the stochastic
approach, dashed lines represent results from the GKLS approach and dotted lines represent
results from the NIBA. The chosen parameters are similar to those from Fig. 2.10.

cut-off is introduced to the spectral function. While the stochastic approach has been
implemented with an exponential cut-off (i.e., a spectral function of the form of Eq. (2.11)),
we use a hard cut-off (cf. Eq. (2.81)) in the ED for practical reasons. As we showed
from Eq. (2.82), on an analytical level the results for the induced field coincide for small
velocities and from the results in Fig. 2.10 we observe qualitative agreement also for larger
velocities.

Next, let us compare results for the spin expectation values from the stochastic
approach, the theoretical prediction from the NIBA and the GKLS master equation
approach in Fig. 2.11. At quasi-adiabatic to intermediate driving speeds and at small
coupling α = 0.002, the spin follows the drive and shows secondary oscillations with period
Ω, which is consistently reflected in the results of all three approaches. The secondary
oscillations are with time increasingly suppressed which leads to a smoothing of the spin
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Figure 2.12: Adapted from [33]. a) Comparison of the SSE results at t = π/(2v) (Different
markers represent different velocities) with the result from Bethe ansatz Eq. (2.76) (solid
line) for different velocities. We see that for quasi-adiabatic velocities, the value of 〈σx〉
at t = π/(2v) agrees with the equilibrium theory, while for larger velocities and coupling
strengths there are non-adiabatic effects. Except for the velocities giving in the legend,
the parameters are the same as in Fig. 2.8. b) Visualization of Eq. (2.12) showing ∆r for
the parameters used in a) at the equator (i.e., t = π/(2v)) as a function of α.

dynamics. The expectation value 〈σy〉 approaches a constant value. The results from the
NIBA start deviating when approaching t = π/v, i.e., when the external field is mainly
pointing in x-direction. This is in agreement with the limit of validity of the NIBA, which
cannot be justified for a large transverse field (compared to the bias field).

At t = π/(2v) and for intermediate coupling strength (i.e., α = 0.02), the external
field points in x-direction and we find 〈σx〉 < 1 from the stochastic approach, which is
not captured by the NIBA and the GKLS approach. However, this was predicted by
Eq. (2.76) from the mapping with the Kondo model and reflects the entanglement of the
spin-bath ground state. In contrast, such an entanglement is neglected within the GKLS
equation which assumes weak system-bath coupling. The comparison of the results from
the stochastic approach to this formula is shown in Fig. 2.12 for different velocities, which
demonstrates remarkable agreement at quasi-adiabatic driving speed.

For a larger coupling (α = 0.2), the dynamics revealed by the stochastic approach differ:
Secondary oscillations in 〈σz〉 are smoothed out and the shape of the curve is altered.
Intuitively, this can be understood by the changed ground state with the renormalized
tunneling element (given in Eq. (2.12)) due to the bath. Navigating adiabatically from
the north to the south pole with a Hamiltonian

H = −H2 cos(vt)σz − ∆r(t)
2 σx,

we can find the expectation value 〈σz〉 from the adiabatic ground state which leads to a
qualitatively correct prediction in the range of α at question.
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Note that from the Heisenberg equation of motion, we have 〈σ̇z(t)〉 = −H sin(vt) 〈σy(t)〉.
It is interesting to observe that 〈σy〉 stays close to zero initially due to a smoothing of
secondary oscillations in 〈σz〉 corresponding to a suppression of non-adiabatic effects, but
then exhibits a “bump” around time t = π/2v. The expectation value 〈σx〉 approaches its
unbiased value described by Eq. (2.76) in an almost linear fashion which close to the north
pole is captured by the NIBA solution. We note that already at intermediate coupling, the
GKLS approach breaks down, as a consequence notably of the assumption of a product
state formed by the spin and the bath.

Finally, for higher velocities v = H = 1.0, at small values of α, the dynamics of
〈σz〉 is captured by the GKLS approach and agrees with the results of the stochastic
approach. At higher values of α the two approaches start to differ but interestingly the
NIBA now makes matching predictions throughout the half period of the drive shown
in the figure. One of the situations in which the NIBA is working well is that of a large
field in z-direction [139,141]. We can thus hypothesize, that a large field is induced back
onto the spin for the entire time of the drive due to the non-adiabatic response at larger
velocities. We will make the nature of the induced field more explicit in the following
section.

Dynamo performance

Using the results for the spin dynamics and its relation to the (dynamically) induced field
in Eq. (2.58), we can now evaluate the dynamo energy (cf. Eq. (2.64)) and the work done
by driving (cf. Eq. (2.61)) and thus the performance of the quantum dynamo for a driven
spin coupled to a continuous bath. For the ED results, we already saw in Fig. 2.9 that at
an intermediate coupling strength, the efficiency of the dynamo approaches unity in the
long time limit.

In Fig. 2.13a), we show results from the numerically exact stochastic approach for a
similar process as in Fig. 2.4c) for one mode but now with a continuous bath: Driving
the system for half a period (from t = 0 to t = π/v), we numerically evaluate the work
done to perform the drive and the averaged output power ∆Edyn(tf )/tf . We then plot the
ratio η against the averaged output power for different driving velocities. The result is
qualitatively similar to the situation of one mode in the sense that for slow driving, we
can reach a large conversion ratio at relatively small averaged output power. Increasing
the velocity, we can increase the averaged output power at the cost of efficiency of this
conversion mechanism. In Fig. 2.13b), we show the averaged output power as a function
of the coupling strength α, for comparison.

Comparing Figs. 2.4c) and 2.13a), we note that for the same velocity, the maximally
attained output power is higher (in absolute numbers) for the one-mode dynamo than for
coupling to the Ohmic bath. This is related to a dilution of the effect: When coupling to
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Figure 2.13: Adapted from [33]. a) Parametric plot of the averaged output power
∆Edyn(tf)/tf at tf = π/v as a function of η = ∆Edyn(tf)/Wdr(tf) from results of the
stochastic approach. b) The averaged output power as a function of α for comparison.
Here, H = 1.0, ω/Hc = 100.0 and α varies between 0.0 and 0.45.

many modes, the off-resonant modes can consume a fraction of the work done by driving6.
We observe from Fig. 2.13 that at larger coupling, the dynamo effect breaks down with

the averaged output power going to zero. Compared to the situation for one mode, the
mechanism leading to this breakdown is different: Recall that for one mode, the dynamically
induced field by a resonant mode becoming too strong fixes the spin, consequently leading
to a breakdown of the dynamo effect. In a setup with a coupling to a continuous bath,
according to Eq. (2.58) the dynamically induced field is still small compared to the driving
field when the dynamo breaks down. Therefore, the mechanism is different in this case.
As pointed out in [32], when coupling to a bath, the spin gets fixed for larger values of
the coupling due to the creation of strong entanglement between the spin and the bath.
This is consistent with the fact that at strong coupling, the fluctuation energy defined in
Eq. (2.65) grows larger than the dynamo energy and contribute to the breakdown of the
effect. A more detailed analysis of the latter is provided in App. C. Both for coupling to
one resonant mode, as well as to a bath, the effect breaks down when the spin expectation
value is fixed for a full period of the driving. For coupling to one mode, there is a direct
connection between the dynamically accessed topology and the dynamo energy through
Eq. (2.46). For the case of a coupling to continuous bath, we will discuss topological
properties of the dynamo effect in Sec. 2.3.4.

When operating the dynamo for a longer time, the spin dynamics is protected by the
field of the high-frequency modes which tend to follow the spin and by that keep the
influence of the dynamically induced field small. While for coupling to one mode, a large
dynamo field could build up over time (with an amplitude increasing linearly in time),
at weak coupling the dynamo with a continuous bath shows a different behaviour with a

6We discuss this in more detail in the App. C
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growing field only at the resonant mode.
The stochastic approach is based on the sampling of a stochastic field whose properties

depend on the bath correlation and consequently requires to solve a stochastic Schrödinger
equation in time, making it computationally expensive for long times. Therefore, the long
time limit is more suitbaly adressed using the GKLS approach thanks to the convenient
periodic orbit solution from Eqs. (2.79), valid at weak coupling at long times. The
interaction with the drive in the formalism developed in [33] by Cyril Elouard can be
thought of an emission of quanta with energy v. In the long-time limit, only the dephasing
processes are active, for which the rate is γdeph = J(v)H2/8Ω2. Therefore, the work
provided by the drive can be evaluated as [33]

Wdr,t→∞ =
∫ t

0
dt′v

H2

8Ω2J(v) = παv2t
H2

4Ω2 . (2.83)

On the other hand, the change in dynamo energy, using the periodic orbit solution in
Eq. (2.79) can be evaluated from Eq. (2.64) as

∆Edyn = απ

2
H2v2

Ω2

∫ t

0
dt′ sin2(vt′) = απ

2
H2v2

Ω2
1
2

(
t− sin(2vt)

2v

)
−−−→
t→∞

παv2t
H2

4Ω2 . (2.84)

We see that this approach predicts a unit efficiency of the dynamo effect for long times. In
the following, we will try to connect these results to the (effective) topological properties
of the spin in a similar way as in Sec. 2.2.3 for one mode.

2.3.4 Topological properties

In this section, we will discuss inhowfar the results from Sec. 2.2.3 regarding the topological
properties of a spin coupled to a single bosonic mode can be extended to the situation
with a coupling to a continuous bath. It should be mentioned that general topological
properties of a spin coupled to a bath have been discussed in [32]. One effect we can
observe from Figs. 2.11 and 2.10 is the concentration of Berry curvature around the equator
when coupling to a bath. This shows in the numerical results through a ‘bump’ in the
expectation value 〈σy〉 around t = π/(2v). In fact, 〈σy〉 has been used in experiments to
measure the Chern number [35,37], as it is related to the Berry curvature through [32,34]

1
2 sin(vt) 〈σy(t)〉 = v

H
Fφ=0,θ +O

(
v2

H2

)
. (2.85)

The definition of Cdyn in Eq. (2.9) is actually equivalent to

Cdyn =
∫ π/v

0
dtFφθ(t) = H

2v

∫ π/v

0
dt sin(vt) 〈σy(t)〉 . (2.86)
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Figure 2.14: a) From [33]. The dynamo energy for coupling to a continuous bath after a
drive from north to south pole from the stochastic approach (markers connected by solid
lines) and from Eq. (2.89) with Cdyn evaluated from the same results of the stochastic
approach (markers connected by dotted lines). b) Double logarithmic plot of ∆Edyn(t =
π/v)/C2

dyn as a function of α from SSE, showing a linear relation, with deviations when
α→ 1

2 and a velocity dependent offset. Here, H = 1.0 and ωc/H = 100.0.

Besides these general properties, we can also relate the properties of the dynamo effect
to the dynamically accessed topology: Integrating Eq. (2.58) over half a period of the
driving, we immediately find

∫ π/v

0
hdyn(t) = 4παCdyn, (2.87)

i.e., the integral of the induced field over half a period of the driving is proportional to the
dynamically accessed Chern number. Note that assuming the adiabatic free spin dynamics
〈σz(t)〉 ∼ cos(vt) and using Eq. (2.58) for the dynamically induced field, we can evaluate
the dynamo energy ∆Edyn accumulated between t = 0 and t = π/v from Eq. (2.33) and
find

∆Edyn = απ2v

4 . (2.88)

Numerical results from the SSE approach are provided in Fig. 2.14. At small α� 1, they
suggest an extension of (2.88) as

∆Edyn ∼
απ2v

4 C2
dyn. (2.89)

For larger α, the graphs from numerical results and results using Eq. (2.88) deviate in
Fig.2.14a), but interestingly the breakdown of the dynamo effect is still related to C2

dyn.
This can be seen from Fig.2.14b), where we show a double logarithmic plot of the change
in dynamo energy divided by C2

dyn as a function of α. The results suggest that up to a
velocity-dependent prefactor, Eq. (2.89) displays the correct dependence between ∆Edyn,
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Island Reservoir

Vg
Cg EJ, CJ

Figure 2.15: Adapted from [165,167]. Schematic of the charge qubit: The superconducting
island and the superconducting electron reservoir (denoted by ’SC’) are coupled by a
Josephson junction. The island is capacitavely coupled to a gate voltage.

Cdyn and α for α . 0.2. When α approaches 1/2, for small velocities, there are deviations
from this trend7. While at weak coupling the dynamo energy scales linearly in the velocity,
for stronger couplings there is a trade-off between the linear factor of v in Eq. (2.89) and
the square of the dynamically measured Chern number which decreases from Cdyn = 1 for
increasing velocities. This is qualitatively also seen in Fig. 2.14a).

2.4 Proposed experimental realization

In order to observe the quantum dynamo effect in an experimental setting, we will review
used techniques and their applicability in the following. We first discuss the realization of
a driven spin, to then comment on possible coupling to a single mode and a continuous
bath.

2.4.1 Experimentally realizing a radially driven spin

A charge qubit

Experimentally, one can realize a spin-1/2 degree of freedom with a high degree of control
using what is commonly called a charge qubit or Cooper pair box (CPB) [165–167]. It
consists of a superconducting island and a superconducting electron reservoir that are
coupled by a Josephson junction with energy EJ and capacitance CJ , as shown in Fig. 2.15.
A gate voltage Vg is applied via a capacitance Cg [167]. The two-level system is implemented
by the excess number of Cooper pairs in the island, which can be controlled to be either
zero or one. Concretely, the system is implemented in the superconducting regime such that
all electrons are paired to Cooper pairs. The system can then conveniently be described

7While one reason for this can certainly be found in the simplicity of the phenomenological justification
of Eq. (2.89), possibly also the results of the SSE approach can show weaknesses, as they assume free bath
correlation functions given in Eqs. (2.69). However, for stronger coupling, the influence of the dynamically
induced field from modes near resonance becomes sizable. The derivation of the SSE presented in App. B.2
is valid for 0 ≤ α < 1

2 [75, 79,151]. In order to describe the strong coupling limit, further efforts are thus
in order. As here we are analyzing the quantum dynamo effect occuring at high efficiency for weak to
intermediate coupling, we content ourselves with the given analysis.
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by the number of Cooper pairs n on the island, leading to the Hamiltonian [167]

HCPB =
∑
n

(
4EC(n− ng)2 |n〉 〈n| − 1

2EJ (|n〉 〈n+ 1|+ h.c.)
)
. (2.90)

Here, the single energy charging energy of the circuit in Fig. 2.15 is given by EC =
e2/(2(Cg +CJ)), and the gate charge is ng = CgVg/(2e). When ng is close to a half-integer
value, the first term of the Hamiltonian becomes degenerate between two states with the
number of Cooper pairs differing by one and an effective ground state description thus
allows to disregard all other states. The system thus is effectively described by a two-level
system. In order to realize the radially driven form from Eq. (2.2), we first notice that
the z-component can be implemented by applying an additional radially varying gate
voltage, i.e., Vg = V0 + δV cos(ωt). The term V0 produces a constant bias field, similar to
the M -term evoked in Sec. 2.2.3 [36,167].

A way to also vary the field in x-direction in time consists in replacing the Josephson
junction by two junctions in a loop configuration threaded by a magnetic flux, thus
forming a SQUID. This then makes the hopping parameter (i.e., the second term) in the
Hamiltonian (2.90) dependent on the cosine of the magnetic flux [167, 168]. Therefore,
tuning the magnetic flux in time can realize the radial driving of the charge qubit.

From a Cooper pair box to transmons and g-mons

As described above, the realization of the Cooper pair box relies on setting ng ∼ 1
2 to realize

an effective two-level system. The energy difference to higher lying energy states is large
at ng ∼ 1

2 and depending on the value of EJ/EC , can be more or less pronounced [169]. In
the proposal [165], a ratio EJ/EC < 1 had been realized, leading to an effective two-level
description, but at the price of a high sensitivity to precisely tuning ng ∼ 1

2 . Dephasing due
to deviations in ng have thus motivated the development of the transmon [169,170], which
has a similar architecture as a Cooper pair box, but realizes a large quotient EJ � EC .
This leads to a reduced sensitivity to the precise value of ng, while reducing the energy
difference to higher lying energy states. However, the transmon design benefits from the
fact that the sensitivity to deviations in the gate charge decreases exponentially when
increasing the ratio EJ � EC , while the differences to higher lying energy levels decrease
only algebraically [169]. The transmon architecture has hence been further developed [171]
and successfully employed to measure the topology of a radially driven spin-1/2 with the
Hamiltonian (1.4) [37].

Thanks to its versatility and scalability, charge qubit realizations are an actively
researched direction of quantum computation [172] and enjoy dynamic progress. Among
recent developments are so-called gmon-qubits [173,174] allowing a high-degree of control
over the coupling between different qubits. We mention these techniques here, as such
gmon-qubits have been used to experimentally measure the topology of a driven spin-
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1/2 [35]8 and are thus also promising in order to observe the quantum dynamo effect
experimentally. For that, a second ingredient - the coupling to an environment mode or
bath - is necessary. We will therefore in the following comment on how this can be realized
experimentally.

2.4.2 Coupling to bosonic modes

In order to realize the coupling to an environment or a single oscillator mode, different
schemes for an experimental realization have been devised. Examples include the realization
using Bose-Einstein condensates [175,176], a Chiral Luttinger liquid [147,148], microwave
cavities [152, 153, 177] and a long transmission line [145, 146, 178]. Focussing on the
realization using a transmission line, according to its properties and the coupling to the
qubit, it can emulate both a cavity and a bosonic bath: With the qubit placed in the center
of the transmission line and at low energies, one can approximate their interaction as that
of a spin coupled to a single bosonic mode [178], reminiscent of the Jaynes-Cummings
Hamiltonian [179]. This enables the realization of a spin strongly coupled to an oscillator
mode [180].

On the other hand, when the qubit interacts with the entire transmission line, the
latter effectively takes the form of a bosonic bath with a large number of modes [145, 146].
This allows the experimental realization of the spin-boson model, which has also been
demonstrated experimentally for strong coupling and a driven setup [149,150].

2.5 Conclusion

In this chapter, we have studied a dynamical resonance effect when coupling a periodically
driven spin-1/2 to a bosonic environment, called the ‘quantum dynamo effect’. In essence,
the modes with frequency close to resonant with the driving velocity of the spin get
coherently displaced, corresponding to a work-to-work conversion. We introduced the
‘dynamo energy’, measuring the energy stored in coherent displacement of the modes
beyond the adiabatic displacement due to equilibration to the spin. This effect occurs in a
regime where the spin dynamics is such that it can approximately follow the radial driving
field. By adapting the notions of the topology of a spin-1/2 in a radial magnetic field from
Sec. 1.1 for the dynamically driven case, we saw that the quantum dynamo effect is in fact
linked to the dynamically accessed topological properties (in particular the quantity Cdyn

defined in Eq. (2.9)) of the spin system. For coupling to one resonant mode, the effect is
most pronounced, and we gave a phenomenological description of the relation between
the dynamo energy and Cdyn in Eq. (2.46) which we verified using numerical ED. We

8There the authors have benefitted from an average coherence time of ∼ 10µs, while the drive from
north to south pole was realized in 600ns.
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then extended the definitions for coupling to an Ohmic bath, for which we gave analytical
arguments on how to identify the dynamo effect in an accessible way. We then used a
range of approaches including exact diagonalization and a stochastic approach to study
the dynamo effect in this setup. Due to the presence of the full spectrum of modes, the
maximally attained output power is lower than for the case with one resonant mode, but
can be tuned using a trade-off with the efficiency (see Fig. 2.13 and the corresponding
discussion). We also compared to results from a GKLS approach developed in [33] and find
agreement for weak coupling and larger driving velocities. Interestingly, both from exact
diagonalization and the GKLS approach, we predicted that the efficiency of the effect
improves for longer times of operation. The break down of the effect for larger coupling
strength still seems to be connected to the change in the dynamically accessed topology,
signalled by Eqs. (2.87) and (2.89), even though the latter gives only a tendency of the
dynamo energy in this case and not a generally valid relation, as seen by comparing to
numerical results in Fig. 2.14. Our work published under [33] offers perspectives on energy
transfers in the quantum regime [25–27] and quantum thermodynamics [70–72, 74, 84],
which are of great current interest for emerging applications. It explores a relation with
effective topological properties and can thus find experimental implementations using
recent techniques for measuring the topology of a spin-1/2 [35, 37] and coupling spins and
bosonic degrees of freedom [149,150,152,153,177,180].



Chapter 3

Fractional topology, disorder and
Majorana fermions

After having studied the topology of a spin-1/2, possible ways to realize this model using
a driving protocol and a dynamo effect related to this topological number, allowing for a
work-to-work-conversion into a bath when implementing the driving, we now want to turn
towards spin systems with larger extension.

As discussed in Sec. 1.1.3, for two interacting spins in a radial magnetic field, novel
phases with fractional partial Chern numbers occur as a result of entanglement [12]. In the
same time, we introduced the Kitaev wire in Sec. 1.1.2 and showed the occurence of gapless
Majorana bound states at its edges. Having discussed the relation of the Hamiltonian in
Eq. (1.27) of the Kitaev wire in momentum space to that of the spin in a radial field, it
is natural to ask whether interacting fractional topological phases can occur also in two
coupled wire systems and how this influences the Majorana bound states at the edges.
This question has been answered in [51], where a fractional value of C = 1/2 has been
demonstrated from DMRG for the double-critical Ising phase of two coupled wires [181].
From the analogy of two coupled spheres with two interacting Kitaev wires thus established,
it is then interesting to ask whether Majorana bound states can be found in the sphere
system as well and how stable they are [36]. This question of stability naturally brings up
the topic of disorder and how robust these fractional interacting topological phases are
with respect to it. In this chapter, we will first shine some more light on the robustness of
Ci = 1/2 when disordering certain parameters of the system, and consequently study how
this is related to the Majorana signatures of the model of two coupled spins.

Although their experimental evidence remains highly debated, Majorana fermions are
maintaining extraordinary interest in the scientific community with steady experimental
advances [44]. A recent work reports on the observation of Majorana bound states in
a minimal systems composed of only two quantum dots [17], a configuration that has
previously been called ’poor man Majorana bound states’, as they are not topologically
protected [182]. It is thus a topical question how the relation of the fractional topological

73
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phase occuring in a system of two coupled spins found in [12] with Majorana fermions can
be understood and what applications there are for such a system composed of two spins.

The contents of this chapter are part of a project on which I worked together with
Karyn Le Hur, for which an article has been submitted to the preprint server arXiv and is
in preparation for a journal submission [183]. This article also discusses perspectives for
applications in quantum information, which were deepened during the Master’s internship
of Brian Chung Hang Cheung in our group. Karyn Le Hur has previously realized the
relations of the fractional topological phase with Majorana fermions at the poles for the
coupled spin system [36,184] (see Sec. 3.2).

3.1 Fractional topology and disorder

As mentionned in Sec. 1.1.3, interactions between spins can lead to a fractionalization of
the partial Chern number (per spin). Let us first study how this effect responds to the
introduction of disorder. The occurence of a fractional topological number is intimately
connected to the creation of an entangled state at the south pole of the sphere. To that end,
we note that the Hamiltonian in Eq. (1.34) is diagonal at the poles in the tensor product
basis. Therefore, a crucial necessary condition to achieve a fractional state in this case is
the presence of a degenerate ground state subspace at the south pole [12]. For a system
described by a Hamiltonian (1.34), we found under the conditions cited in Eq. (1.41) that
the ground state at the south pole lies in the degenerate subspace {|↑↓〉 , |↓↑〉} due to
the exchange symmetry between the two sites. The state found at the south pole when
applying a drive and starting from the north pole (as realized in experiments [35, 37]) can
be predicted using perturbation theory: Just before reaching the south pole, there are still
transverse fields acting on each of the two spins, proportional to sin θ. Including their
effect by applying effective Hamiltonian perturbation theory, it has been found that they
give rise to an effective Hamiltonian [12]

Heff = −H
2

4 sin2 θ
rz

r2
z − 1

4(H −M)2

1 1
1 1

 , (3.1)

in the degenerate subspace {|↑↓〉 , |↓↑〉}. This fixes the entangled state cited in Eq. (1.42)

|GS(θ = π−)〉 = 1√
2

(| ↑↓〉+ | ↓↑〉), (3.2)

as the ground state just before the south pole and therefore also at the south pole for
adiabatic driving.

In order to maintain an entangled state in the presence of disorder, we thus have two
possibilities: We can either try to maintain a degenerate subspace at one of the poles, or
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modify the system in such a way that the entanglement is enforced differently. We will in
the following investigate how disorder can break the fractional phase to then restore it
using the first option in Sec. 3.1.1 and study the second option in Sec. 3.1.2.

Mass disorder breaking fractional topology

Note that introducing an asymmetry between the two spins in the Hamiltonian changes
the previous analysis. This can most easily be seen by making the angle-independent offset
M site-dependent, i.e., modifying Eq. (1.4) into

Hrad, i(θ, φ) = −H2 (sin θ cosφσxi + sin θ sinφσyi + cos θσzi )−
Mi

2 σzi . (3.3)

This lifts the degeneracy between the states {|↑↓〉 , |↓↑〉}, which now have energies ∓1
2(M1−

M2). The ground state at the south pole is thus changed into |↑↓〉 if M1 > M2 > 0 and
into |↓↑〉 if M2 > M1 > 0. For a numerical example, we refer to Fig. 3.3 a).

Close to the south pole, the detuning between the masses defines the adiabaticity
condition, in the sense that the driving can be called adiabatic if v � |12(M1 −M2)|. This
raises a question relevant for experiments trying to realize the fractional state: As in
experiments, there is a certain degree of error when tuning the system parameters, how
precise does the tuning have to be in order to realize the fractional state?

Following the above consideration, one could be inclined to argue that if there is a small
mass asymmetry, the fractional state can still be observed as long as v � |12(M1 −M2)|.
However, this would actively (and in a way deliberately) violate adiabaticity and thus
not probe the true topology of each subsystem: Instead of the true (1, 0)/(0, 1) topology
(where (C1, C2) are the partial Chern numbers of each spin), one artificially would measure
a dynamically accessed (1

2 ,
1
2) topology. This picks up the discussion of Cdyn from Sec. 2.1

(for a system made up of two interacting spins instead of one spin interacting with a bath)
and underlines the importance of clearly distinguishing it from C.

In the following, we will discuss how the partial Chern number of each spin behaves
and can be accessed in the presence of disorder, focussing on a site-dependent mass Mi.

3.1.1 Vanishing disorder at the south pole

As pointed put above, a necessary condition for the fractional state to occur is the presence
of a degenerate ground state subspace at the south pole. In the presence of a site-dependent
mass term Mi, a straight-forward way to restore the degeneracy at the south pole is thus
to suppress the disorder at the south pole, i.e., setting

Mi = M + fdis(θ)δMi, (3.4)
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where fdis(θ) is a real function vanishing at the south pole (fdis(π) = 0) and with |fdis(θ)| ≤
1. Whether or not the fractional state is destroyed by this form of disorder depends on
the behaviour of the function fdis(θ) close to the south pole:

The off-diagonal elements of the effective Hamiltonian in the degenerate subspace
for the disorder-free case from Eq. (3.1) favour the entangled state and are evolving as
sin2 θ ∝ |θ→π− − (θ − π)2 when driving θ from 0 to π. The additional term coming from
the disorder in this subspace reads

Hdis = −f(θ)
2

δM1 − δM2 0
0 −δM1 + δM2

 . (3.5)

We can therefore assert that the disorder function fdis(θ) vanishing slower than quadratically
in θ leads to a breakdown of the fractional phase: When approaching the south pole, at a
certain critical angle, the disorder Hamiltonian will dominate over the effective interaction
Hamiltonian (3.1). If the disorder vanishes faster than quadratically in θ, the fractional
phase will persist. If the disorder vanishes quadratically, the effective interaction and the
disorder intervene at similar orders. To discuss a concrete case, we discuss in the following
an example where we set

f(θ) = sinγ(θ), (3.6)

where γ is a parameter. For γ < 2, we expect the fractional phase to break down. At
γ = 2 and for small deviations in the masses, the dominant effect of the disorder in the
effective Hamiltonian for the quasi-degenerate subspace will with this form of f(θ) lead to

Heff = − sin2 θ

(δM1 − δM2) rd2

r2−(d−M)2

rd2

r2−(d−M)2 −(δM1 − δM2)

 . (3.7)

Note that this is similar to the Hamiltonian of a single ‘sphere’, i.e., a spin in a radial
magnetic field, at a fixed angle ρ:

Heff = − sin2 θ

√√√√(δM1 − δM2)2 +
(

rd2

r2 − (d−M)2

)2
cos ρ sin ρ

sin ρ − cos ρ

 , (3.8)

where we defined

cos ρ = δM1 − δM2√
(δM1 − δM2)2 +

(
rd2

r2−(d−M)2

)2
. (3.9)

We can interpret this Hamiltonian as that of a single spin near the equator of a radial
parameter space, where the mass imbalance introduces a deviation from the equator. The
ground state is

|GS〉 = cos ρ2 |↑↓〉+ sin ρ2 |↓↑〉 . (3.10)
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Figure 3.1: a) Expectation values 〈σzi 〉 for a single drive (solid lines) with comparison to
the resul from Eq. (3.11) at the south pole (dotted lines). Further parameters are H = 2.0,
(M1,M2) = (1.1, 1.3), rz = 1.0. b) Ci evaluated for a range of γ and for a drive with
different velocities.

Therefore, for γ = 2, we can evaluate

〈σz1/2(θ = π)〉 = ± cos ρ = ± δM1 − δM2√
(δM1 − δM2)2 +

(
rd2

r2−(d−M)2

)2
. (3.11)

We see that the mass disorder vanishing quadratically introduces a shift of the partial
Chern number from the fractional value, vanishing with the mass difference between the
two spheres.

For γ > 2, the disordered term vanishes faster than the effective coupling introduced
by the transverse fields when approaching the south pole and thus the fractional phase
persists. In Fig. 3.1 we study the disordered model with disorder vanishing at the south
pole as f(θ) = sinγ θ numerically using ED. In Fig. 3.1a), we show a drive from north
to south pole with γ = 2. The dotted lines there show the analytical prediction at the
south pole from Eq. (3.11), which agrees with the numerical results. In Fig. 3.1b), we
show the dependence of Ci for i = 1, 2 on the parameter γ. This confirms our prediction
that for γ > 2, the fractional topological numbers are restored. However, there remains a
dependence on the velocity: For smaller velocities, the crossover around γ = 2 becomes
increasingly steeper. Note that since C is evaluated from a driving protocol with finite
velocity, it should be understood in the sense of Cdyn defined in Eq. (2.9).

In the following, we will discuss the case with γ = 2 in a bit more detail, as it bridges
with the situation of a transverse coupling, that we will discuss afterwards.
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Stochastic properties

Assuming the mass deviations δMi are random variables and thus interpreting them as a
form of disorder, we can evaluate the disorder average of the partial Chern number. We
will in the following denote the disorder average of a random variable X by X. Assuming
the mass deviations have a mean of zero, δMi = 0, and a standard deviation σi =√
δM2

i − δMi
2, the different situations discussed from above lead to different properties:

Consider first the disorder-free situation (i.e., setting fdis(θ) = 0). As discussed in
Sec. 1.1.3, we find partial Chern numbers (C1, C2) = (1

2 ,
1
2). Straightforwardly, we can

then also evaluate C2
i = 1

4 .
Now, for the situation with disordered masses having the same weight at all angles

(technically, this corresponds to setting fdis(θ) = 1), we find partial Chern numbers (C1, C2)
as (0, 1) or (1, 0) depending on the realization. Note that this leads to Ci = 1

2 and C2
i = 1

2 .
In an experimental realization, this situation could thus be distinguished from the setup
giving fractional topology by evaluating C2

i .
Note that this way of distinguishing the disordered and the clean case on the one hand

relies on first evaluating the quantum mechanical expectation value and consequently
taking the disorder average. This would mean that it is practicable when the disorder
configuration varies slowly compared to the time-scale of one experiment. On the other
hand, there are interesting perspectives of the measure C2

i with regards to applications for
a quantum dynamo (cf. Chap. 2) or also with regards to light-matter interaction [36, 41]:
In Eq. (2.46), we found a relation of the change of dynamo energy for a single radially
driven spin coupled to a bath with C2

dyn. In [41], it has been argued how C2 can be
measured for a single sphere from the interaction with circularly polarized light. Therefore,
even though both of these applications have been studied for a single sphere, it seems
promising to study similar relations also in interacting systems, which would then also
allow to distinguish the response to disorder. Here, we focus on the effects on the partial
topology from disorder.

Then, with an angle-dependent function fdis(θ) vanishing at the south pole, we showed
in the previous section that the behaviour depends on how quickly the disorder is suppressed
when approaching the south pole. If this suppression is slower than quadratic, we restore
the disordered case. However, if the suppression is faster than quadratic, this correctly
mimicks the clean case.

If the suppression of disorder around the south pole decreases quadratically, using
Eq. (3.11) and Eq. (1.15), we find Ci = 1

2 and for small values of disorder (i.e., (δM1 −
δM2)2 �

(
rd2

r2−(d−M)2

)2
), we can approximate

C2
i ≈

1
4

1 + (δM1 − δM2)2

(
r2 − (d−M)2

rd2

)2
 = 1

4 + (σ2
1 + σ2

2)
(
r2 − (d−M)2

4rd2

)2

,

(3.12)
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where σ2
i is the variance of the disordered δMi. We see that we restore C2

i ≈ 1
4 with

a deviation scaling in the square of the standard deviations σi of the mass disorder.
We therefore conclude that for small disorder values, the clean case can be mimicked
experimentally using this type of disorder. The case with fdis = sin2 θ close to the south
pole presented here gives rise to an effective Hamiltonian similar to that of two spins
coupled according to Eq. (1.34) with an additional xy-coupling. We will see in the following
how this setup can equivalently be used to stabilize a fractional phase against disorder,
builiding on the analysis from above.

3.1.2 Effect of a transverse coupling

Addition of a transverse coupling to the system of two spins giving rise to fractional partial
topology in Eq. (1.34) has first been considered in [12]. The coupling takes the form

Hxy = rxy(σx1σx2 + σy1σ
y
2) = 2rxy(σ+

1 σ
−
2 + σ−1 σ

+
2 ). (3.13)

We emphasize here that this coupling preserves the Z2 exchange symmetry between the
sites and a global symmetry of rotation around the z-axis of the Hamiltonian, which
are crucial conditions to observe a fractional topological state. Upon a first glimpse, it
is also clear that a negative rxy will make the state |ψ〉 = 1√

2(|↑↓〉 + |↓↑〉) energetically
more favorable and that this coupling in general favors entanglement between the two
sites. In the following, we will make this more precise, to then see how this coupling can
improve the stability of the fractional state with respect to disorder and even give rise to
an extended fractional phase.

The clean case

As pointed out out in [12], the Hamiltonian (1.34) together with the xy-coupling from
Eq. (3.13) can conveniently be written in the added momentum basis of the two spin-1/2.
This gives rise to the following singlet-triplet form of the Hamiltonian (for φ = 0) [12]:

H = −(2rxy + rz) |0, 0〉 〈0, 0|+


rz − (H cos θ +M) − H√

2 sin θ 0
− H√

2 sin θ 2rxy − rz − H√
2 sin θ

0 − H√
2 sin θ rz +H cos θ +M

 .
(3.14)

The matrix describing the triplet sector is written in the basis {|1, 1〉 , |1, 0〉 , |1,−1〉} and
the basis of added angular momentum states is defined in the usual way by |0, 0〉 =

1√
2(|↑↓〉 − |↓↑〉), |1, 1〉 = |↑↑〉, |1, 0〉 = 1√

2(|↑↓〉+ |↓↑〉) and |1,−1〉 = |↓↓〉. In this form, a
decoupling between the singlet and the triplet sector of the Hamiltonian becomes apparent
- initialized in one of the sectors, no transitions to the other are allowed. This important
fact has the consequence that a fractional topological state can arise only if the state
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Figure 3.2: Phase diagram from ED for sphere 1 for driving from north to south pole along
the φ = 0 meridian with H = 2.0 and v = 0.005 and the other parameters as indicated.

|1, 0〉 is the ground state at the south pole. When the singlet state |0, 0〉 independently
would be the ground state at the south pole, the system driven from the north pole will
end in an excited state at the south pole. In other words, the lowest lying energy state
accessed through the dynamic driving protocol is always chosen from the triplet sector of
the Hamiltonian. A detailed analysis yields the condition [12]

rz −
H

2 −
M

2 < rxy < min
(
H

2 + M

2 − rz, rz −
∣∣∣∣H2 − M

2

∣∣∣∣) , (3.15)

to find C = 1
2 without disorder, corresponding to a transition from |1, 1〉 to |1, 0〉. A

numerical verification of the topological phase diagram in the rxy-rz-plane and in the
M -rxy-plane can be seen in Fig. 3.2.

We observe that instead of a ground state degeneracy at the south pole, we now find
a unique ground state which preserves the Z2 exchange symmetry in the C = 1

2 phase.
We trivially also find C2 = 1

4 , as for the clean case without a transverse coupling (i.e.,
the situation described in the introductory Sec. 1.1.3) In the following we will study the
changes to the topology when introducing static disorder to this setup.

Adding static disorder

We introduce disorder between the two sites as a deviation of the mass term. We set

Mi = M + δMi, (3.16)

which corresponds to Eq. (3.4) with f(θ) = 1, i.e., we are studying a setup in which the
disorder does not intervene differently at different angles. This mass imbalance between
the two sites introduces a new term in the singlet-triplet representation of the Hamiltonian,
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which we now write in the basis {|0, 0〉 , |1, 1〉 , |1, 0〉 , |1,−1〉} and for φ = 0:

H =


−(2rxy + rz) 0 M2−M1

2 0
0 rz −

(
H cos θ + M1+M2

2

)
− H√

2 sin θ 0
M2−M1

2 − H√
2 sin θ 2rxy − rz − H√

2 sin θ
0 0 − H√

2 sin θ rz +H cos θ + M1+M2
2

 .
(3.17)

Note that the mass difference enables transitions between the singlet and the triplet
sector of the Hamiltonian, therefore the singlet state cannot be excluded from the ground
state subspace at the south pole when initializing the system in the triplet sector at the
north pole and consequently driving downwards. An important consequence of this is the
extension of the fractional topological phase, as we will see in the following section.

From the Hamiltonian in Eq. (3.17), we can find the eigenstates at the north and the
south pole in order to evaluate the topology from Eq. (1.15). Calling ∆M = M1 −M2 =
δM1 − δM2, we can evaluate the eigensystems to first order in ∆M . At the north pole,
we find the following eigenenergies with the respective eigenstates:

−H − M1
2 −

M2
2 + rz |↑↑〉

H + M1
2 + M2

2 + rz |↓↓〉
−
√

(∆M)2

4 + 4r2
xy − rz 1√

2

((
−sgn(rxy)− ∆M

8rxy

)
|↑↓〉+

(
1− ∆M

8|rxy |

)
|↓↑〉

)
√

(∆M)2

4 + 4r2
xy − rz 1√

2

((
sgn(rxy)− ∆M

8rxy

)
|↑↓〉+

(
1 + ∆M

8|rxy |

)
|↓↑〉

)
Table 3.1: Eigensystem of the Hamiltonian in Eq. (3.17) in the disordered case at the
north pole with θ = 0.

On the other hand, at the south pole, we find:

H − M1
2 −

M2
2 + rz |↑↑〉

−H + M1
2 + M2

2 + rz |↓↓〉
−
√

(∆M)2

4 + 4r2
xy − rz 1√

2

((
−sgn(rxy)− ∆M

8rxy

)
|↑↓〉+

(
1− ∆M

8|rxy |

)
|↓↑〉

)
√

(∆M)2

4 + 4r2
xy − rz 1√

2

((
sgn(rxy)− ∆M

8rxy

)
|↑↓〉+

(
1 + ∆M

8|rxy |

)
|↓↑〉

)
Table 3.2: Eigensystem of the Hamiltonian in Eq. (3.17) in the disordered case at the
south pole with θ = π.

To find a phase similar to the Ci = 1
2 -phase encountered without disorder, we see that it

would be preferential to have the state |↑↑〉 at the north pole and the state from the third
line of Table 3.2 at the south pole. Note that the latter for vanishing disorder (∆M → 0)
converges to 1√

2 (−sgn(rxy) |↑↓〉+ |↓↑〉) so that Ci −−−−→
∆M→0

1
2 . The state in the fourth line

has always larger energy than the state in the third line. From the Hamiltonian matrix in
Eq. (3.17) we see that the singlet and triplet sectors are coupled by a term introduced
by the mass imbalance, i.e., M1−M2

2 |0, 0〉 〈1, 0|+ h.c.. This implies that the selection rules
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on transitions between these sectors are lifted. We will discuss this in more detail with
regards to an extension of the fractional phase in Sec. 3.1.3

From a comparison of the eigenenergies in Table 3.1, it is clear that the ground state
at the north pole will be the state |↑↑〉 if

H + M1

2 + M2

2 > max
0, 2rz +

√
∆M2

4 + 4r2
xy

 . (3.18a)

At the south pole the ground state will be the state from the third line in Table 3.2 if

√
∆M2

4 + 4r2
xy > −2rz +

∣∣∣∣H − M1

2 −
M2

2

∣∣∣∣ . (3.18b)

Eqs. (3.18) define a regime closely resembling the C = 1
2 phase in presence of a small mass

disorder.
The Hamiltonian with disorder is still rotationally invariant upon a rotation around the

z-axis for both spins. Therefore, Eq. (1.15) is still applicable to find the partial quantities
Ci. Note however that the Z2 exchange symmetry between the two sites is broken by the
disorder, therefore they should still sum up to an integer value but are not necessarily
fractionalized individually anymore. We will therefore refer to them as ‘disordered partial
Chern markers’ in the following. We observe

C1/2 = 1
2 ∓

∆M
8|rxy|

. (3.19)

Therefore, the partial Chern number picks up a correction to first order in ∆M/rxy for
one realization of disorder. If the realization of such disorder is according to

δMi = 0, (3.20a)√
δM2

i − δMi
2 = σi, (3.20b)

we still find Ci = 1/2 as disorder average. Note moreover that in contrast to the case with
rxy = 0,

C2
1/2 = 1

4 ∓
∆M
4|rxy|

. (3.21)

to first order so that C2
1/2 = 1

4 , similar to the disorder-free case.
We can therefore conclude that when a transverse coupling between the spins is

activated, tuning the disorder to smaller values allows to mimick the C = 1
2 case more

closely while maintaining the adiabatic driving condition. This can therefore be useful in
experiments facing imperfect conditions to stabilize the fractional phase, which we will see
in the following.
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Experimental realization of a ferromagnetic transverse interaction

The realization of a transverse xy-coupling of the form from Eq. (3.13) can be experimentally
realized by coupling the interacting spins to a cavity [36]. This gives rise to a Hamiltonian

Hcavity =
2∑
i=1

gi
2 (σ−i a† + σ+

i a) + ωa†a. (3.22)

To simplify this Hamiltonian, it is beneficial to apply a unitary transformation shifting
the cavity mode according to

ã = a+
2∑
i=1

gi
2 σ
−
i . (3.23)

This allows to rewrite the Hamiltonian as

Hcavity = ωã†ã− g1g2

4ω (σ+
1 σ
−
2 + σ−1 σ

+
2 )−

∑
i

g2
i

4ω (σzi + 12). (3.24)

In the symmetric case with g1 = g2 = g, we see that from an identification with Eq. (3.13),
we find

rxy = − g
2

8ω , (3.25)

we therefore conclude that coupling to the cavity induces a ferromagnetic interaction. In
addition, we find a renormalization of the mass term according to

M̃i = Mi + g2
i

2ω . (3.26)

Care needs thus to be taken that this shift in the mass term does not drive a transition
out of the fractional topological phase. In addition, the form of the induced coupling from
Eq. (3.25) also imposes requirements on the parameters g and ω, so that the condition
(3.15) to reach the fractional phase can be fulfilled.

In relation to the quantum dynamo effect described in the previous section, and in
particular to the one-mode dynamo from Sec. 2.2, we further remark that a similar effect
can occur when the interaction between the system and the bosonic mode is described
by the Hamiltonian (3.22). In this case, we have two spins coupled to one common mode
mediating an interaction [185–187]. In order to maintain adiabaticity of the driving of
the two spins, we require in addition v � ω, which corresponds to the case of a rapidly
equilibrating mode described by Eq. (2.25) for a single spin coupled in z-direction. For a
single spin, this implied an evolution of the spin close to the free case. Here we conclude
that for v � ω, the spins will evolve adiabatically with the effective interaction Hamiltonian
from Eq. (3.24) with little additional effects (in particular, no dynamo effect will occur).
Another way to view this requirement is from the different time-scales of equilibration: If
v � ω, the cavity mode equilibrates quickly to the spins and its state is determined by
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Figure 3.3: Numerical results for the 〈σzi 〉 expectation values in time for driving from north
to south pole. a) Situation without a transverse coupling or a cavity, obtained for H = 2.0,
(M1,M2) = (1.6, 1.602), rz = 1.0 and v = 10−5. b) A similar setup, but now coupled to
a cavity as in Eq. (3.22) with g = 2.0 and ω = 10.0. The cavity was initialized in an
empty state and simulated with an occupation number cut-off at Nb = 10 and we checked
that the maximally reached occupation stays well below this value. This corresponds
to preparation (2) in the language of Chap. 2. c) The situation without the cavity, but
a transverse coupling r̃xy and a renormalized mass according to Eqs. (3.25) and (3.26)
instead.

that of the spins. Due to its fast equilibration, it can effectively mediate an interaction. As
we stated in the discussion around Eq. (2.24), in the opposite case v � ω, the cavity mode
would evolve almost freely and would thus be less effective in mediating an interaction.

The effective interaction introduced by coupling to a cavity mode can be verified
numerically. We present results from ED without coupling to a cavity in Fig. 3.3a), with
coupling to a cavity in Fig. 3.3b) and compare them to those of an interacting spin model
with r̃xy and M̃i according to Eqs. (3.25) and (3.26) in Fig. 3.3c). We verify that the
coupling to a cavity can indeed be described by an effective transverse coupling and a
renormalization of the mass by comparing Figs. 3.3b) and c). A comparison to Fig. 3.3a),
showing the situation with neither a transverse coupling nor a cavity, demonstrates how
the coupling to a cavity can stabilize the fractional phase [36], which due to a small mass
disorder between the two sites would not be observed for the setup shown here. The main
difference between the Fig. 3.3b) and c) are the secondary oscillations, which are slightly
more pronounced for the coupling to a cavity.

We emphasize that the discussed realization allows to implement a ferromagnetic
xy-coupling. This is useful for the case without disorder, in which the fractional phase
occurs when an entangled state is formed at the south pole, which is then stabilized by a
ferromagnetic xy-coupling. An antiferromagnetic coupling would favor the singlet state
with vanishing total spin at the south pole. As discussed above, singlet-triplet transitions
are ruled out by the Hamiltonian (3.14) in the clean case. However, we have also seen how
this selection rule is lifted when disorder is introduced in the form of a mass assymetry
M1 6= M2. We will discuss in the following how this allows to almost double the size of
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the fractional phase in the presence of disorder.

3.1.3 Extending the fractional phase

In Eq. (3.15), we cited the conditions described in [12] to find a fractional Ci = 1/2 phase
in the clean case where no transitions to the singlet sector are possible. Note that this
gave the phase diagram shown in Fig. 3.2 in the rxy-rz-plane with a stripe-like region of
Ci = 1/2, located mainly in the half plane with rxy < 0, but extending slightly into the
half-plane with rxy > 0. Instead of evaluating which state from the triplet sector will have
the lowest energy at the south pole, one can also try and evaluate the ground state of the
full Hamiltonian. At the poles, the Hamiltonian (3.14) (without disorder) is diagonal in
the basis of added spin and has the following eigenenergies [12]:

State energy at north pole energy at south pole
|0, 0〉 −2rxy − rz −2rxy − rz
|1, 1〉 rz −H −M rz +H −M
|1, 0〉 2rxy − rz 2rxy − rz
|1,−1〉 rz +H +M rz −H +M

Table 3.3: Eigensystem of the Hamiltonian in Eq. (3.14) at the north and the south pole.

The state |1, 1〉 is the ground state at the north pole if1 2rz−H−M < 2rxy < −2rz+H+M
[12]. The fractional Ci = 1/2 then occurs when 〈σzi (θ = π)〉 = 0. This is fulfilled
when the state at the south pole is |1, 0〉, but also when it is |0, 0〉. This occurs when
2rxy < 2rz − |H −M | and −2rxy < 2rz − |H −M | respectively. Only considering the
energetics, the two states at the south pole are selected simply by the sign of rxy: If rxy > 0,
we find the singlet state |0, 0〉, while if rxy < 0 we find the state |1, 0〉. In summary, we find
that considering only the ground states at the poles and neglecting selection rules for the
moment, fractional phases are theoretically possible in the phase space region described
by

H +M > max (0, 2rz + 2|rxy|) , (3.27a)
2|rxy| > −2rz + |H −M |. (3.27b)

Note that this is equivalent to Eqs. (3.18) for ∆M → 0. As can be seen from the
Hamiltonian in the presence of a mass asymmetry in Eq. (3.17), transitions are possible
between the two sectors at a rate proportional to the difference in the masses. This can
be checked numerically using ED, which is shown in Fig. 3.4. From the comparison of the
energy levels in the clean and the disordered case in Fig. 3.4a), we see that in the clean case
there is a crossing of the initially lowest lying band (purple in the figure) and the initially
second lowest band (cyan in the figure, corresponding to the singlet state, whose energy

1We are assuming H, M and rz are positive.
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Figure 3.4: Comparison of energy levels ((a) and (b)) and wave function components
in the time-evolved state starting from the ground state at the north pole ((c) and (d))
for the clean case ((a) and (c)) and with a mass disorder ((b) and (d)). In (e), we
compare the expectation value

〈
σ+

1 σ
−
2 + σ−1 σ

+
2

〉
for the time-evolved state starting from

the ground state at the north pole for the clean and the disordered case. Used parameters
are H = 2.0, rz = 0.2, rxy = 0.8, furthermore M = 1.2 for (a), (c) and the clean graph in
(e), (M1,M2) = (1.0, 1.4) for (b), (d) and the disordered graph in (e) and v = 0.001 for
(c),(d) and (e), where θ = vt.

remains constant throughout the drive). However, the system cannot transition due to the
selection rule discussed above and in [12], that forbids transitions between the singlet and
the triplet sector and causes the system to remain in the purple band. Along this band,
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the wave function varies smoothly from |↑↑〉 to |↓↓〉, as can be verified from Fig. 3.4c),
where we plot the absolute values of the wave function components for a drive starting
from the ground state at the north pole. This can be compared to the disordered case in
Figs. 3.4b) and d). There we introduced a mass imbalance ∆M = M1 −M2 between the
two sites. We see that this modifies the band structure by opening a gap between the two
lowest lying bands. This leads to a transition of the wave function initialized in the ground
state at the north pole to a state close to the singlet state at the south pole. In Figs. 3.4b)
and d), ∆M/rxy = 1/2 and the mass imbalance is therefore relatively large, given the
consideration around Eq. (3.19). This was chosen deliberately to clearly demonstrate the
effects around the transition to the singlet state. As seen from the consideration of the
energetics at the two poles in Sec. 3.1.2, the ground state at the south pole with rxy > 0
and disorder to first order in ∆M/rxy is

|GS(π)〉 = 1√
2

(
−
(

1 + ∆M
8rxy

)
|↑↓〉+

(
1− ∆M

8|rxy|

)
|↓↑〉

)
. (3.28)

Therefore a relatively large disorder causes a deviation from the singlet state, but the state
at the south pole remains smoothly connected to it by taking the limit ∆M → 0. This
deviation is seen in the wave function components in Fig. 3.4d) at θ = π and it decreases
with the mass imbalance.

The comparison of the small gap opened and the driving velocity now gives the necessary
conditions for adiabaticity: If the velocity is much smaller than the gap opened, the system
remains in the ground state, while otherwise, a non-adiabatic transition may occur and
the system has a finite probability to end up in the cyan band. In Fig. 3.4, we focus on
the adiabatic case2.

Fig. 3.4e) shows that in the disordered case, the ground state at the south pole for the
disordered case is indeed close to the singlet state from following the expectation value〈
σ+

1 σ
−
2 + σ−1 σ

+
2

〉
in time. This quantity approaches −1 for the case shown in Fig. 3.4e).

Calculating it from the form of the wave function in Eq. (3.28), we find

〈
σ+

1 σ
−
2 + σ−1 σ

+
2

〉
= −1 +

(
∆M
8rxy

)2

, (3.29)

in good agreement with the numerical results3. The fact that this quantity varies only
to second order in ∆M/rxy while transitions to the singlet sector are enabled with a rate
proportional to ∆M makes it interesting for applications, as we will see in Sec. 3.3.

From the discussion of these results, we conclude that the result from Eq. (3.19) for
2The velocity v/H = 0.5·10−3 is much smaller than the gap quantified numerically by ∆E/H ≈ 93·10−3

for the situation shown in Fig. 3.4b).
3With the parameters used in Fig. 3.4e), we find

〈
σ+

1 σ
−
2 + σ−1 σ

+
2
〉
∼ −0.996, while from the ED shown

there, we evaluate it to ∼ −0.992.
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the disordered partial Chern marker Ci holds across the region described by Eqs. (3.27).
There is a correction of the fractional value of the order of ∆M/rxy which can be controlled
by either scaling up the transverse coupling between the spins or scaling down the mass
difference. Crucially, we then find for a mass disorder following a distribution described
by a normal distribution, i.e., by Eqs. (3.20),

Ci = 1
2 , (3.30a)

C2
i = 1

4 , (3.30b)

thus mimicking the clean case when ∆M/rxy → 0.
The possibility to reach the singlet state at the south pole opened by the mass imbalance

is at the core of this mechanism. From here, we can state that the possibility to reproduce
(upon averaging over disorder configurations) a fractional phase for antiferromagnetic
coupling in the presence of disorder effectively extends this phase. Introducing a small
asymmetry can thus be seen as inducing a fractionalization of the averaged disordered
partial Chern marker. In Fig. 3.5a) and b), we show a numerical check of the rxy-rz-plane
and theM -rxy-plane of the disordered partial Chern marker as a disorder average, revealing
the extended fractional phase from a comparison to the clean case shown in Fig. 3.2. In
Fig. 3.5c) and d), we show the same regions in phase space, but now as a phase diagram
for C2

1 , confirming in particular Eq. (3.30b). The dependence of this extension on the
presence of disorder allows to think about interesting applications in the realm of quantum
information storage and manipulation, which we will discuss in Sec. 3.3. For this it is
convenient to introduce a description of the system under study in terms of Majorana
fermions, which we will describe in the following.

3.2 Fractional topology and Majorana fermions

In this section, we want to give an interpretation of the fractional topology per spin in
terms of Majorana fermions. We first recap some results from the clean case, to then
discuss how they carry over to the disordered situation.
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Figure 3.5: Averaged phase diagrams from ED for sphere 1 for driving from north to south
pole along the φ = 0 meridian with H = 2.0 and v = 0.005 and the other parameters as
indicated, showing C1 in a) and b), and C2

1 in c) and d). The phase diagrams were obtained
by averaging the disordered partial Chern marker at each point in parameter space over
40 different configurations of the mass disorder drawn from a normal distribution, which
was of the form of Eqs. (3.20) with δMi = 0 and σi = 0.05.

3.2.1 The clean case

At the north pole

In order to interpret the Hamiltonian in terms of Majorana fermions, we first employ a
Jordan-Wigner transformation of the standard form [121,188]

σzi = 2ni − 1, (3.31a)
σyi = −i

∏
j<i

(1− 2nj)(c†i − ci), (3.31b)

σxi =
∏
j<i

(1− 2nj)(c†i + ci). (3.31c)
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The operators ci fulfill fermionic anticommutation relations and we defined ni = c†ici. The
Hamiltonian at the north pole then reads (with M1 = M2) [36]

H(θ = 0) = −(H +M)(n1 + n2 − 1) + rz(2n1 − 1)(2n2 − 1). (3.32)

Consequently, we can decompose each of these fermions into a real and an imaginary
part similarly to the consideration of the Kitaev wire in Eq. (1.33) discussed in Sec. 1.1.2,
which will give us two Majorana fermions on each site that we call αi and ηi [14,36,52].
We define similarly to Eq. (1.30)

ηi = c†i + ci√
2
, (3.33a)

αi = c†i − ci√
2i

. (3.33b)

The operators ηi and αi fulfill the fermionic anticommutation relations from Eq. (1.31).
From the definition in Eqs. (3.33), we find 2ni − 1 = 2iαiηi and thus we rewrite the
Hamiltonian as

H(θ = 0) = −
(
H

2 + M

2

)
(2iα1η1 + 2iα2η2) + rz(2iα1η1)(2iα2η2). (3.34)

Note that the Hamiltonian commutes with the parity operators Pi = 2iαiηi, i.e., [H,Pi] = 0,
whose eigenvalues are thus good quantum numbers. They are squaring to one, i.e.,
(2iαiηi)2 = 1, so they have possible eigenvalues Pi |ψij〉 = ± |ψij〉, where |ψij〉 is a common
eigentstate of the Hamiltonian and the parity operator Pi and j = ±. From here, we see
that if H

2 + M
2 > rz, the ground state will fulfill 2iαiηi |GS〉 = + |GS〉. To reach Ci = 1

2 ,
we required the condition from Eq. (1.41) for the situation without disorder, which then
fixes these two parities to be positive. This corresponds to two Majorana fermions bound
together on each site, or, stated differently, one local Dirac fermion on each site, similar to
the trivial phase of the Kitaev wire. This is consistent with the ground state being |↑↑〉
on the north pole.

A transverse coupling according to Eq. (3.13) reads in terms of the Jordan-Wigner
fermions Hxy = 2rxy(c†1c2 + c†2c1) and therefore, in terms of the Majorana fermions:

Hxy = 2rxy(2iα1η2 − 2iη1α2). (3.35)

Note that the Hamiltonian now does not commute with the local parity operators Pi =
2iαiηi anymore. Instead, it commutes with the sum of both parities, i.e.,

[H(θ = 0) +Hxy, 2iα1η1 + 2iα2η2] = 0 (3.36)
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This is equivalent to the statement that in a free fermionic model (which the Hamiltonian
corresponds to in terms of the ci-fermions), the total particle number is preserved. Under
the condition identified in Eq. (3.15), the ground state at the north pole is that with
〈2iα1η1 + 2iα2η2〉 = 2, which can only be achieved when for i = 1, 2, 〈2iαiηi〉 = 1.
Therefore, we can conclude that the ground state at the north pole will have two locally
bound Majorana fermions on each site4. In the following we will explore how a different
Majorana signature can be found at the south pole in relation to the fractional phase.

At the south pole

A the south pole, with rxy = 0 and under the condition rz > H
2 −

M
2 , the ground state

is found in the degenerate subspace {|↑↓〉 , |↓↑〉}. Close to the south pole, the effective
Hamiltonian derived from perturbation theory in Eq. (3.1) can in terms of the spin
operators be written as [36]

H
{|↑↓〉,|↓↑〉}
eff (θ = π−) = rzσ

z
1σ

z
2 −

H2

4 sin2 θ
rz

r2
z − 1

4(H −M)2σ
x
1σ

x
2 . (3.37)

Using the Jordan-Wigner transformation from Eqs. (3.31), a consequent rewriting in terms
of Majorana fermions from Eqs. (3.33) and changing the order of the Majorana operators
using the anticommutation relations gives

H
{|↑↓〉,|↓↑〉}
eff (θ = π−) = rz(2iα1η2)(2iη1α2)− H2

4 sin2 θ
rz

r2
z − 1

4(H −M)2 (2iα1η2). (3.38)

This Hamiltonian commutes with the two non-local Majorana parity operators P̃1 = 2iα1η2

and P̃2 = 2iη1α2 and these two parity operators commute with each other. Both P̃1 and
P̃2 square to one, therefore their eigenvalues are ±1. From the first term in Eq. (3.38), we
see that for rz > 0, the ground state of the Hamiltonian will have opposite eigenvalues of
these two parities, i.e., 2iα1η2 |GS〉 = −2iη1α2 |GS〉 = ± |GS〉. The second term, however,
fixes 2iα1η2 |GS〉 = |GS〉. Therefore, we find

2iα1η2 |GS〉 = −2iη1α2 |GS〉 = |GS〉 . (3.39)

This implies that two Majorana fermions are bound across the two sites, thus reflecting
the entanglement of the ground state at the south pole. This allows an interpretation
of the fractional Ci = 1

2 -phase in terms of the pairing of Majorana fermions: While two
Majorana fermions are bound at each site on the north pole, they reach a non-local pairing
at the south pole. This interpretation is shown pictorially in Fig. 3.6. Note that this
scheme consistently remains valid when turning on an rxy-coupling. From the transverse
coupling Hamiltonian in Eq. (3.13) using the Jordan-Wigner transformation (3.31), we

4This of course corresponds to the state |↑↑〉 in the spin language.
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Figure 3.6: Schematic view of the interpretation of the fractional phase in terms of the
Majorana fermions from Eqs. (3.33). The pairing is local on the north pole, but non-local
on the south pole, driving along a Meridian thus leads to a crossover in these signatures.

find the term already cited in Eq. (3.35). This is already written in terms of the non-local
parities 2iα1η2 and 2iη1α2. If rz > 0 and rxy < 0, the ground state therefore consistently
remains fulfilling the condition from Eq. (3.39) above. In this way, the antiferromagnetic
transverse coupling reinforces the Majorana pairing shown in Fig. 3.6.

As we will see in the following, a rotation of the basis at the south pole allows to see
that two of the Majorana fermions at the south pole will be coupled non-locally, while two
others will be energetically free if rxy = 0. This can give rise to interesting applications of
the setup under configuration for quantum information storage and manipulation. Before
discussing these perspectives, let us study the influence of disorder in the masses on the
Majorana structure introduced in the present section.

3.2.2 Disordered case

Disorder through a mass imbalance as introduces around Eq. (3.16) intervenes as

Hdis = −δM1

2 2iα1η1 −
δM2

2 2iα2η2. (3.40)

At the north pole

At the north pole, the full Hamiltonian still commutes with the sum of the local parity
operators, i.e., we can generalize Eq. (3.36) to include the disorder contribution (3.40) on
the left side of the commutator. Then, as discussed in Sec. 3.1.2 using the spin language, if
the disorder has a small variance and a zero average, it is possible to assure the state |↑↑〉
as ground state at the north pole, corresponding to a local pairing of the two Majorana
fermions on each site, i.e., 2iα1η1 |GS〉 = 2iα2η2 |GS〉 = |GS〉. This continues to hold
true when adding a transverse coupling but remaining in the parameter range given in
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Eq. (3.27).

At the south pole

At the south pole, the situation is more subtle: The disorder part of the Hamiltonian (3.40)
does not commute with the non-local parities 2iα1η2 and 2iη1α2. The response of the
Majorana signature to the addition of disorder then underlines the crucial differences
between the cases with and without a transverse coupling pointed out in Sec. 3.1.2 in the
spin language:

Firstly, for the case with rxy = 0, the full Hamiltonian close to the south pole5

commutes with both of the local parities 2iαiηi. The rz-coupling favours opposite sign of
the two parities when acting on the ground state, but the key point is that in this case,
two Majorana fermions are being bounded locally at each site. This corresponds to the
breaking of the Ci = 1

2 phase into a phase with (C1, C2) = (1, 0) or (C1, C2) = (0, 1), as
described in Sec. 3.1.

For the case with rxy 6= 0, the full Hamiltonian at the south pole in the {|↑↓〉 |↓↑〉}-
subspace reads in terms of the Majorana fermions introduced in Eq. (3.33)

H{|↑↓〉,|↓↑〉}(θ = π) = rz(2iα1η2)(2iη1α2)+2rxy(2iα1η2−2iη1α2)− δM1

2 2iα1η1−
δM2

2 2iα2η2.

(3.41)
Without the rxy-term, the Hamiltonian right at the south pole would commute with the
local parities 2iαiηi, but the rxy term breaks this symmetry and introduces a degree of
superposition of the locally and non-locally entangled parity states. In particular, when
δMi goes to zero, we come back to the situation shown in Fig. 3.6, corresponding to a
maximally entangled state.

In the following, we will introduce an alternative mapping to Majorana fermions at the
south pole, allowing to understand the situation there in a different way and also giving
an interesting view towards applications in quantum information.

Alternative mapping at the south pole

In order to understand the situation at the south pole with disorder better and give
perspectives with regards to applications, we introduce a rotated basis for the mapping to

5Close to the south pole, we include the perturbative term as in Eq. (3.38), which commutes with the
local parities.
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Majorana fermions: Consider a rotated Jordan-Wigner transformation of the form [36]

σzi = −i
∏
j<i

(1− 2ndj )(d
†
i − di), (3.42a)

σyi = 1− 2ndi , (3.42b)
σxi =

∏
j<i

(1− 2ndj )(d
†
i + di). (3.42c)

Then we introduce new Majorana operators by

ζi = d†i + di√
2

, (3.43a)

βi = d†i − di√
2i

. (3.43b)

The Hamiltonian from Eq. (3.41) in terms of these new Majorana fermions reads

H{|↑↓〉,|↓↑〉}(θ = π) = −rz(2iζ1β2) + rxy(2iβ1ζ2 + (2iζ1β1)(2iζ2β2))

− δM1

2
√

2β1 −
δM2

2 (2iζ1β1)
√

2β2. (3.44)

We observe that for δMi → 0, the Hamiltonian commutes with the non-local parities
2iζ1β2 and 2iβ1ζ2 and the ground state will for rz > 0 and rxy < 0 satisfy

2iζ1β2 |GS〉 = 2iβ1ζ2 |GS〉 = |GS〉 . (3.45)

This implies a non-local binding of the Majorana fermions across the two different sites.
Note that for rxy > 0, we obtain

2iζ1β2 |GS〉 = −2iβ1ζ2 |GS〉 = |GS〉 , (3.46)

implying that the same signature occurs in the region of phase space that was made
accessible by the disorder in Sec. 3.1.3, but with one parity operator taking an opposite
eigenvalue. From the form of the mass-disorder terms proportional to δMi, we see that both
of them involve an odd number of Majorana fermion operators. Thus, we can immediately
conclude that they do not contribute to first order in δMi/rxy and δMi/rz. Therefore, we
conclude that in a perturbative sense, the non-local Majorana structure is maintained if the
ground state lies in the {|↑↓〉 , |↓↑〉}-subspace. Note that this condition is violated if rxy = 0,
as discussed in Sec. 3.1, such that in this case the mapping to the Majorana structure breaks
down when adding disorder. In Fig. 3.4e, we have plotted the value of

〈
σ+

1 σ
−
2 + σ−1 σ

+
2

〉
in

time, which corresponds in Majorana language to 〈2iβ1ζ2 + (2iζ1β1)(2iζ2β2)〉. In this way
we can verify that a deviation from the parities with disorder occurs only to second order
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in δMi/rxy (cf. Eq. (3.29) and its discussion).
If rxy = 0 and without disorder, the Majorana fermions from Eqs. (3.43) can be used

to rewrite the effective Hamiltonian close to the south pole from Eq. (3.37) obtained from
perturbation theory as

H{|↑↓〉,|↓↑〉}eff (θ = π−) = −rz(2iζ1β2)− H2

4 sin2 θ
rz

r2
z − 1

4(H −M)2 (2iβ1ζ2). (3.47)

We see that for rz > 0 the ground state still satisfies 2iζ1β2 |GS〉 = |GS〉 and if θ . π,
2iβ1ζ2 |GS〉 = |GS〉. However, in this case, when θ = π is reached using the driving
protocol θ = vt introduced in Chap. 2, the Majorana fermions β1 and ζ2 become essentially
free in an energetic sense: Their entanglement properties can be changed without an
energy cost6. We will exploit this in the following to lay out potential applications of this
setup to the storage and modification of quantum information.

3.3 Applications for quantum information

As mentionned above, using a setup without transverse coupling, from the mapping to
Majorana fermions laid out in Eq. (3.43), we find two gapless Majorana zero-modes at
the south pole. This allows to reinterprete the non-local Majorana parity 2iβ1ζ2 as the
z-component of a parity qubit. It has been proposed that the unpaired Majorana edge
modes of a long fermionic chain can be used to store quantum information in a topological
way, which can be thought of as a parity qubit [14]. This way of thinking about a protected
qubit enjoys great interest in theoretical and experimental research, as it is stable towards
local perturbations [16, 47, 52, 182, 189]. Setups where the qubit is realized on two sites
only have been proposed and are studied as realizations of singlet-triplet qubits similar to
the situation of the Hamiltonian at the south pole discussed in this chapter [182, 190–192]
and have recently been realized experimentally [17]. Here we will show how the setup of
two driven coupled spins allows to create and manipulate a parity qubit, how this can
be seen both from the spin language and in terms of Majorana fermions and which role
disorder and the fractional topology play for this.

3.3.1 A parity qubit

As mentioned above, we can interprete the Majorana parity as the z-component of a
quantum spin degree of freedom. For simplicity, we call Pz = 2iβ1ζ2. We already used the
fact that the eigenvalues of this operator are ±1. If we translate the parity operator back

6When driving from north to south pole, the parity will of course remain fixed at 2iβ1ζ2 |GS〉 = |GS〉
due to adiabatic connectedness. What we mean here is that acting with a new Hamiltonian at the south
pole, we now have the freedom to modify this bound without paying an energy cost.
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into the spin language using Eqs. (3.43) and (3.42), we find

Pz = 2iβ1ζ2 ↔ (d†1 − d1)(d†2 + d2)↔ σx1σ
x
2 . (3.48)

From this correspondence, we can conclude that the eigenstates of Pz |pz = ±〉 = ± |pz = ±〉
with eigenvalue pz = ±1 in the spin language are

|pz = ±〉 ↔ 1√
2

(|↑↓〉 ± |↓↑〉) . (3.49)

We see that the two different Majorana parities corresponding to different eigenstates of the
operator Pz correspond precisely to the entangled states which we called |1, 0〉 and |0, 0〉
in Sec. 3.1.2, referring to the basis of two added spin-1

2 . In said Sec. 3.1.2, we concluded
that a mass asymmetry allows to access the singlet state which otherwise is not accessible
when initializing the system in a ferromagnetic state. Therefore, the consideration of a
small asymmetry (or disorder) will reveal important features of the parity qubit proposed
here. From this correspondence and the mapping between the Majorana fermions and the
spin system, it is then straightforward to construct the spin algebra:

Px = |pz = −1〉 〈pz = +1|+ |pz = +1〉 〈pz = −1| ↔ σz1 − σz2
2 ↔ β1√

2
(1 + 2iζ1β2), (3.50)

Py = i |pz = −1〉 〈pz = +1| − i |pz = +1〉 〈pz = −1| ↔ σx1σ
y
2 − σ

y
1σ

x
2

2 ↔ − ζ2√
2

(1 + 2iζ1β2).

(3.51)

3.3.2 Preparing states of a parity qubit

As we showed in the previous section, the ground state space at the south pole can be
identified as that of a parity qubit. We now want to demonstrate how the protocol defining
the (partial) topology of the two spin-1/2 can be used to prepare states of such a parity
qubit in a controlled way. For this, we consider the z-direction as our computational basis.
Using the considerations from the previous section and from Sec. 3.1.2, the ground state
at the south pole will be a fully entangled state if Ci = 1

2 . If in addition rxy < 0, the state
will be |pz = +1〉 (or, equivalently, |1, 0〉 in spin language). On the other hand, if rxy > 0
and there is a small detuning between the masses at both sites, the state at the south pole
will approach |pz = −1〉 (or, equivalently, |0, 0〉 in spin language). As the latter case is
enabled by the presence of disorder, there will be a correction to the state in ∆M/rxy,
which can however be tuned to arbitrarily small values if there is sufficient experimental
control over the mass imbalance ∆M and rxy7.

The setup of two coupled spheres can thus be used to create a non-local parity qubit
7The requirement to take care of is that the driving speed v to go from the north to the south pole

remains much smaller than ∆M .
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state at the south pole oriented along the z-direction (in the basis of the parity qubit)
from a product state at the north pole. The creation of entanglement using this protocol
is directly related to the fractionalization of the partial Chern numbers Ci. We can thus
conclude that a high fidelity of the state preparation manifests itself with Ci → 1/2. This
application requires a finite amount of disorder between the two sites, we can thus argue
that it includes the influence of disorder in a controlled way.

Let us mention that from Eq. (3.50), our protocol also allows to prepare states of the
parity qubit oriented in x-direction. In the spin language, these corresponds to the states
|↑↓〉 and |↓↑〉. As discussed in Sec. 3.1, these correspond to integer partial topological
numbers, with the sum C1 + C2 = 1 maintained at one. These states can be achieved at
the south pole by setting rxy = 0 and adding a small detuning between the masses of both
sites. This then corresponds to locally binding two Majorana fermions at each site.

The fractionalization of the partial Chern number Ci is a measure of entanglement
between both sites and allows for the application to a parity qubit created at the south
pole inherently requiring such formation of entanglement.

3.3.3 A Pauli-X gate

Finally, let us show how a Pauli-X gate could be constructed using the parity qubit and
the considerations regarding the transverse coupling. As we have seen, disorder is needed
in order to access the ground state manifold of the parity qubit. The sign of the transverse
coupling determines the state at the south pole. One can therefore hypothesize a situation
of changing sign of this coupling to switch between the two states of the qubit. This leads
to the following protocol:

1. Preparing the system with parameters for the Ci = 1/2-phase, a transverse coupling
rxy and a small mass detuning ∆M .

2. Driving from the north to the south pole in order to create the parity qubit and
ascribe a state |pz = ±〉 to it.

3. Staying at the south pole, one can now switch the sign of rxy adiabatically in order
to flip the state of the parity qubit with high fidelity. This can be realized, e.g., by
setting rxy|t>π

v
→ rxy cos

(
ωt− π

v

)
, with ω � ∆M to maintain adiabaticity.

This then allows to flip the state of the parity qubit at the south pole with high fidelity,
as can be seen from Fig. 3.7. This protocol can thus be seen as an application of the
Ci = 1/2 phase formed when driving from the north to the south pole: At the south pole,
it allows to create and manipulate a parity qubit which can prospectively be used to store
quantum information with good coherence properties due to its non-local nature. Varying
the rxy-coupling in time, as shown in Fig. 3.7, then induces transitions to the singlet state,
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Figure 3.7: Application of the two-spheres model as a Pauli X-gate. The system is prepared
at the north pole in the ground state |↑↑〉 and consequently driven to the south pole
(shown by the red dashed line), where it is in the entangled state 1√

2 (|↑↓〉+ |↓↑〉). The
rxy coupling is then varied in time, thus flipping the state to 1√

2 (|↑↓〉 − |↓↑〉). A periodic
variation of rxy leads to a formation of plateaus in the parity 〈σx1σx2 〉 or equivalently
〈2iβ1ζ2〉. Here, H = 2.0, (M1,M2) = (0.6, 0.62), rz = 1.0, rxy = −0.1 initially and is then
varied rxy|t>π

v
→ rxy cos

(
ωt− π

v

)
with ω = v = 10−4.

if a finite amount of disorder is present. In this way, this setup can be understood as a
disorder-enabled Pauli-X gate.

3.4 Conclusion

In this chapter, we have studied a model of two coupled spins in a radial magnetic field
in the light of its recently discovered novel fractional topological phases [12]. We have in
particular studied the interplay of these phases with disorder and broken symmetries. We
have discussed that a broken Z2 symmetry in the model of Eq. (1.34) leads to a deviation
from the fractional phase, with the partial topological numbers (C1, C2) going from (1

2 ,
1
2) to

(1, 0) or (0, 1). Then we have seen how adding a transverse coupling can restore properties
of the system mimicking these of the clean fractional phase upon averaging over weak
disorder. Interestingly, disorder also enables new transitions in the spin system, leading to
the occurence of an averaged fractional phase in new regions of phase space. This is a
different mechanism than for the topological Anderson insulator discussed in Sec. 1.3.2
and opens new perspectives on how disorder in interacting systems can change effective
topological properties.

We have then discussed an interpretation of the fractional phases in terms of Majorana
fermions [36] and its relation with the transverse coupling, the disorder and the extended
fractional phase. This opened a view on applications, in which the Majorana fermions at
the south pole can be used to store information [17,182].

As mentioned in the introductory Sec. 1.1.2, the spin model can be seen as an analogue
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of other condensed matter models as a Haldane layer or a Kitaev wire. It is well justified to
ask about the occurence of the fractional phases and applications of the formalism described
in Sec. 1.1.3 also in these analogous models when coupling two similar systems together.
This has been discussed for two Haldane layers [12, 13] and two Kitaev wires [51] and
remains an active question of research in our group. Here, we have studied the spin model
in its own right, as new effects can be straightforwardly understood in this platform, and,
as Chap. 2 and also Sec. 3.3 of the present chapter showed, yield interesting implications
and applications. The relevance of this model is furthermore underlined by experimental
progress on it [35,37]. In general, spin systems constitute a topical platform to describe and
understand new physical effects in the realm of complex quantum systems (in particular,
in one dimension), as they are accessible from a numerical and an experimental point of
view and yield direct connections to potential applications. We have so far already seen
spin systems in the context of (effective) topological properties, quantum open system
dynamics, quantum energy and quantum thermodynamics (cf. Chap. 2) and in relation to
fractional topology, disorder, Majorana fermions and quantum information in the present
chapter. As such, one-dimensional coupled spin systems are also a commonly used platform
to study localization phenomena, introduced in Sec. 1.3. In the following two chapters, we
will focus on such effects in an effective spin chain in different regimes, and put a special
emphasis on implementability and detection of these phenomena, as well as their interplay
with global and local properties of the system.



Chapter 4

From bosonic ladders to spin chains

The models introduced in this thesis so far, ranging from interacting spin models, over one-
and two-dimensional fermionic models to models for open quantum systems, all had unique
features justifying their discussion in the light of fundamental physical understanding
in its own right. An important challenge and in the same time a fascinating aspect of
theoretical condensed matter physics is however finding unifying features across different
models, allowing to understand them in a more universal way and in the same time linking
to experimental progress and applications. The discussion of topological properties in
interacting systems from Sec. 1.1 and Chapter 3 indeed opened perspectives on other
condensed matter models such as the Haldane model, or the Kitaev wire, as discussed in
Sec. 1.1.2.

On a more general level, there are attempts for topological systems to organize them in
a systematic fashion in the form of a classification table, according to their symmetries and
dimensionality and assigning the occurence of topological invariants [193–195]. The Kitaev
wire is a p-wave superconductor [14] in one dimension, the model as stated in Eq. (1.24)
has a combined time-reversal and particle-hole symmetry (thus a chiral symmetry, similarly
as the SSH model from Eq. (1.62)) [195]. The interesting topological properties of the
Kitaev wire discussed in Sec. 1.1.2 require only the particle-hole symmetry, which is then
associated with the Z2 winding number from Eq. (1.29).

The Kitaev wire is a topological superconductor. Superconductivity more generally
is a phenomenon that has been discovered experimentally in materials and discussed
theoretically many years before [196–198]. This can be seen as an allegory for the
new power of theoretical physics in condensed matter: Rather than ‘only’ explaining
experimental observation (a task that is very challenging and cumbersome in itself), the
theoretical study of abstract models for new phenomena can also spur experimental interest.
Superconductivity was first discovered experimentally [196], then described theoretically by
Bardeen–Cooper–Schrieffer (BCS) theory [198], which then allowed Kitaev to hypothesize
the p-wave superconducting wire hosting Majorana edge states [14]. This last step was
done before experimental evidence of these exotic edge states was found, which, as we
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mentioned before, remains in fact controversial until today.
In the spirit of discovering new properties in lower dimensions, while remaining inspired

by established concepts, we will in this chapter introduce a model in a one-dimensional
geometry that exhibits effects analogous to the Meissner effect in three-dimensional
superconductors [197]. To underline the phenomenological journey across different models,
we will show under what conditions this platform can serve as an analogue to spin models
and how it can be used to implement and test disorder and localization physics.

Novel experimental techniques to artificially create condensed matter systems in
laboratories have enabled and fueled research of quantum systems revealing new exotic
properties and collective phenomena. One of these techniques that has gained a lot of
popularity in recent years due to its high degree of control over parameters uses cold atomic
gases in optical lattices [199–202]. This allows to realize a wide range of lattice models,
such as the Bose-Hubbard model [199, 200, 203] or various spin chain models [204], for
example. In addition, synthetic gauge fields can be implemented using periodic modulation
- so called Floquet engineering - of the Hamiltionian [205–207], which allows to study
topological models such as the Haldane model [9,208–210] discussed in Sec. 1.1.2 and gives
itself rise to new physical phenomena, such as anomalous Floquet toplogical phases [211].
Furthermore, Floquet modulation of the Hamiltonian allows to simulate Z2 lattice gauge
theories [212–214].

The bosonic ladder model introduced in this chapter can be implemented using cold
atoms. It is linked to recent studies of the simulation of Z2 lattice gauge theories in bosonic
ladders [213–215]. The model features Peierls phases (which can be implemented using
Floquet engineering) and thus allows to define a current observable and study physical
properties of the system, in particular the localization behaviour when a second particle
species - rendered as impurities - is introduced to the system. This current shows some
analogies with the Meissner effect, which we are going to introduce in the following section.

This chapter is based on results published in [216]. I have started working on this
project during my Master’s under the guidance and supervision of Karyn Le Hur and with
the help of Fan Yang. Karyn Le Hur has worked with collaborators on the Meissner effect in
a bosonic ladder system before [217,218] and initiated this project. I developed analytical
calculations extending these previous results to the situation where a second particle
species populates the lattice, acting as impurities. These included different approximation
schemes, perturbative techniques, as well as bosonization and a renormalization group
analysis. Furthermore, I developed numerical methods to test the physical effect using
exact diagonalization and a fitting of the cut-off of a sum over momentum states.
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Figure 4.1: From [216]. A one-dimensional ladder geometry.

4.1 Meissner effect in a bosonic ladder

In 1933, Walther Meissner and Robert Ochsenfeldt found that a superconductor can screen
a magnetic field that is exerted onto it [197]. The macroscopic explanation of this Meissner
effect through the London equations [219] relates the external magnetic field to a current
density forming on the surface of the superconductor and countering the external field up
to a material-dependent critical field strength. Later it was found that certain so-called
type-II superconductors actually have two critical field strengths: upon crossing the first
one, they transition from the superconducting phase to a vortex phase, in which the
magnetic field can enter the superconductor through a lattice of vortices of quantized
currents [220, 221]. This is similar to the vortices of quantized circulation forming in a
superfluid [222,223].

In the following section, we will explain how an analogue of this effect in a bosonic
two-leg ladder geometry can arise.

4.1.1 Superfluid phase

We are considering a bosonic ladder geometry as shown in Fig. 4.1. Subject to a magnetic
field, what we call an analogue of the Meissner effect is the formation of surface currents
along the ‘edge’ (i.e., the legs) of the ladder, which are proportional to the negative
magnetic flux. In the superfluid phase of the bosonic hopping model, i.e., when tunneling
amplitudes between sites are much larger than local potentials and the wavefunctions
of the particles have large extensions, this effect has been predicted theoretically [224]
and verified experimentally [225]. The Hamiltonian corresponding to the setup shown in
Fig. 4.1 can be written as

Ha = −tax
∑
α,i

eiaAαi,i+1a†αiaα,i+1 − tay
∑
i

e−ia′A⊥ia†2ia1i + h.c.

+ Uaa
2
∑
α,i

naαi(naαi − 1) + V⊥
∑
i

na1in
a
2i − µ

∑
α,i

naαi. (4.1)
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We are using a subscript ‘a’ for the particles, in order to distinguish them from the
impurities which we will introduce in Sec. 4.2 with a subscript ‘f ’. We will in this chapter
also refer to the particles with creation operator a†i as a-particles. They can hop along the
legs and the rungs of the ladder with amplitudes tax and tay respectively. There is an on-site
potential Uaa and an intrarung potential V⊥ assigning an energy cost for two particles
residing on the same site or on the same rung, respectively. Finally, there is a chemical
potential µ.

The effect of a uniform magnetic field (or U(1) gauge field) in a bosonic model can be
introduced by performing a Peierls substitution [226]. In a general way and following [217],
we keep the possiblity to have different components of the magnetic vector potential
along the legs and the rungs of the ladder, which thus enter as Ai,i+1 and A⊥i in the
respective Peierls phases, together with the respective lattice spacings a and a′. The flux
per plaquette can then be calculated from a contour integral around a plaquette. We
obtain the following relation with the components of the vector potential [217,224]:

Φi,i+1 =
∮

A · dl = −a(A1
i,i+1 − A2

i,i+1)− a′(A⊥i+1 − A⊥i). (4.2)

In the superfluid phase, we write the bosonic operators in the phase-angle representation,
i.e., a†αi = √nαieiΘαi and at commensurate filling the interrung hopping-term proportional
to tay then takes the form of a Josphson coupling term between the two rungs [217]. The
minimization of the variational energy with respect to the expectation values 〈Θαi〉 then
leads to a pinning of these phases to A⊥ia′ + Θ1i −Θ2i = 2πl with l ∈ Z when tay is the
dominant energy scale in the system [217].

We can define a local current on each rung as the time-derivative of the relative density
operator, i.e., at a site i

ji = d(n1i − n2i)
dt = i[Ha, n1i − n2i] = ji,⊥ + ji,‖. (4.3)

This gives a perpendicular and a parallel component, i.e., a current along the rung flowing
from one leg to the other and a contriubtion flowing in or out of the rung. Evaluating the
commutator, we define [217]

ji,‖ = itax(eiaA
1
i,i+1a†1ia1,i+1 + eiaA2

i,i+1a†2ia2,i+1) + h.c., (4.4a)
ji,⊥ = −2itay(eia

′A⊥ia†1ia2i) + h.c.. (4.4b)

Then, for weak coupling between the rungs, using the pinning of the phase in the superfluid
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phase discussed above, one can find [217]

〈ji,‖〉 = −2ntax((A1
i,i+1 − A2

i,i+1)a+ (A⊥i+1 − A⊥i)a′) = −2ntaxΦi,i+1, (4.5a)
〈ji,⊥〉 = 0. (4.5b)

This derivation shows how a surface current comes about in the introduced setup. In [224]
it has been shown from studying the low-energy properties of the system that at a critical
field strength, current vortices develop, which lead do a decreasing screening current.
While the development of a screening current along the legs is somewhat intuitive in the
superfluid phase, the effect persists even in the Mott insulating phase of the model. We
will study this more closely in the following section.

4.1.2 Rung-Mott phase

In the rung-Mott insulating phase, the particles are localized at a rung due to strong
interactions. Applying an electromagnetic field (here represented by the U(1) gauge field)
to an insulating phase, one would intuitively not expect the formation of currents as seen
in the superfluid phase. However, due to spin-charge separation in the Mott insulating
phase, one can yet observe a spin current with an insulating charge sector [217]. This will
be made more explicit in this section.

The model described by Eq. (4.1), in the limit of decoupled rungs with tax = 0 and at
commensurate filling, is in the rung-Mott phase for Uaa − V⊥ � tay and V⊥ + tay > µ > −tya
[216,217], as can be shown from a consideration of the energetics in that case. Reintroducing
tax, it can be shown, e.g. using numerical techniques1, that the rung-Mott phase occurs
in a tip-like region in the tax-µ-plane of the phase diagram [217]. We are focussing on the
rung-Mott phase with one particle per rung and a small interrung hopping tax. Then each
particle on a rung can be identified with an effective spin-1/2 degree of freedom, marking
yet another example of the usefulness of working in different languages in condensed matter
setups. Identifying the particle residing on the upper leg with ‘spin up’ and on the lower
leg with ‘spin down’, we can identify the bosonic operators with Pauli operators. Formally,
this corresponds to the Schiwnger-boson representation of the spin SU(2) algebra that
reads [227]

σxi = a†1ia2i + a1ia
†
2i, (4.6a)

σyi = −ia†1ia2i + ia1ia
†
2i, (4.6b)

σzi = a†1ia1i − a†2ia2i. (4.6c)

In this language, the hopping along the legs can then be reintroduced to second order
1In [217], the authors have used a density matrix renormalization group approach.
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in perturbation theory. Hopping from one rung to another leads to an energy cost of
either V⊥ or Uaa, which we assume to be large. Therefore, only second order processes
between two rungs will contribute, in which one particle hops to a neighbouring rung,
from which one of the two particles then hops to the now unoccupied rung. In summary,
using Eqs. (4.6) for the hopping term along the rungs (i.e., proportional to tay) and the
effective Hamiltonian from perturbation theory, we find the effective spin model

Ha =
∑
i

−
(

2Jxyσ+
i σ
−
i+1eiaA

‖
i,i+1 + h.c. + Jzσ

z
i σ

z
i+1 − g (σxi cos(a′A⊥i)− σyi sin(a′A⊥i))

)
.

(4.7)
We called Jxy = (tax)2/V⊥ and Jz = (tax)2(1/V⊥ − 2/Uaa), g = tay, A

‖
i,i+1 = A1

i,i+1 − A2
i,i+1

and we neglected a constant energy shift −(tax)2(2/Uaa + 1/V⊥).
The model in Eq. (4.7) defines an effective spin model in the rung-Mott phase from

the original bosonic ladder model in Eq. (4.1), allowing to study the Meissner effect in this
phase, but moreover provides a platform to propose the study of localization phenomena
in spin chains. This will be the topic of the next sections. The model corresponds to a
gauged XXZ-chain in a transverse field.

As for the Meissner effect, we can straightforwardly evaluate the derivative of the relative
density operator on each rung to find the current operator which reads ji = i[Ha, σ

z
i ]. We

find contributions along the rungs (proportional to g) and along the legs (proportional
to Jxy) and can identify the latter as the Meissner current. For each rung, assuming
g � Jxy, Jz, the spin sector is in a superfluid phase, so that it is justified to adopt a
phase-angle representation and from minimization of the energy, we can find the ground
state in the limit of decoupled rungs to evaluate [217] [217]

〈
j‖,i
〉

= −2JxyΦi,i+1, (4.8a)

〈j⊥,i〉 = 0. (4.8b)

This has a form closely reminiscent of Eqs. (4.5). We can therefore again identify an
analogue of the Meissner effect. In the following section, we want to see how this is
modified under addition of a second particle species.

4.2 Meissner effect with a second particle species -
Localization of the current

We now want to introduce a second particle species to the system, in order to see new effects
in relation with the Meissner current and the U(1) gauge symmetry of the a-particles.
Bosonic ladders with several particle species have recently gained attention as model
systems to realize lattice gauge theories [213,214,228]. Another possibility arising from
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this class of models and the system described by Eq. (4.7) in particular is to study the
localization of one particle species as a response to the properties of the other, thus
effectively rendering the latter as impurities. We will discuss all of these aspects in the
following sections.

On the level of the bosonic Hamiltonian in Eq. (4.1), we can introduce a second particle
species living on the same lattice in a similar way as the previously introduced a-particles.
Let us call them ‘f -particles’ and for now consider them to be static, i.e. they remain
on the same site at all times. On general grounds, we introduce a density-dependent
interaction of the form

Haf
int = Uaf

∑
α,i

naα,in
f
α,i. (4.9)

The f -particles can play several roles: On the one hand, they can lead to flux attachment
for the a-particles [213,214], which is a key to realize lattice gauge theories2. On the other
hand, they in general introduce an additional potential scale felt by the a-particles, thus
changing the physical properties of the system. Having introduced the U(1) gauge field
through a Peierls substitution, we can use the arising Meissner current as an indicator for
this changed behaviour. In particular, we here want to interpret them as impurities and
study the localization behaviour of the a-particles. We are thus requiring:

• There is exactly one f -particle on each rung. This is implemented by a huge intrarung
potential (i.e., a term V f

⊥n
f
1,in

f
2,i with V

f
⊥ →∞) and a half-filling for the f -particles.

• There is at most one single f -particle on each site. This is achieved by a huge on-site
interaction energy of the f -particles (i.e., a term Uffn

f
α,in

f
α,i with Uff →∞).

• Each f -particle is localized on a randomly chosen site.

Under these conditions, we can then directly adopt a Schwinger-boson representation for
the f -particles as well and upon neglecting a constant energy shift rewrite the interaction
part of the Hamiltonian in spin language as [216]

Hint = Uaf
∑
i

σzi τ
z
i . (4.10)

Here, τ zi should be thought of as a classical number taking values ±1.

4.2.1 Weakly coupled rungs

In the limit of weekly coupled rungs with the effective magnetic field formed by g and Uaf
at each rung being much larger than Jxy and Jz, we can solve for the ground state at each
rung independently (thus rendering the rungs as effectively uncoupled). This corresponds
to finding the ground state of a single spin on the Bloch sphere and gives [216]

2We will link our considerations with these interesting developments in Sec. 4.3.2
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〈σxi 〉 = cos(a′A⊥i)√
1 + (τ zi Uaf/(2g))2

, (4.11a)

〈σyi 〉 = − sin(a′A⊥i)√
1 + (τ zi Uaf/(2g))2

, (4.11b)

〈σzi 〉 = −τ zi
Uaf/(2g)√

1 + (τ zi Uaf/(2g))2
. (4.11c)

We can then use these results to evaluate the expectation values of the parallel and the
perpendicular current operators.

Localization of the current

We identify the components of the current ji = j⊥,i + j‖,i in spin language as [217]

j⊥,i =− 2g(σxi sin(a′A⊥i) + σyi cos(a′A⊥i)), (4.12a)

j‖,i =− 4iJxy(eiaA
‖
i,i+1σ+

i σ
−
i+1 − e−iaA

‖
i,i+1σ−i σ

+
i+1),

=2Jxy
(

(σxi σxi+1 + σyi σ
y
i+1) sin

(
aA
‖
i,i+1

)
+ (σyi σxi+1 − σxi σ

y
i+1) cos

(
aA
‖
i,i+1

))
. (4.12b)

Assuming weak coupling of the rungs, we can approximate
〈
σαi σ

β
i+1

〉
≈ 〈σαi 〉

〈
σβi+1

〉
and

thus plug in the results from Eqs. (4.11) to obtain

〈
j‖,i
〉

= −2Jxy
1

1 + (Uaf/2g)2 sin Φi,i+1. (4.13)

We can interpret this result as a localization of the Meissner current, which occurs here in
a polynomial fashion. Therefore, we conclude that the Meissner effect in the Mott phase
still occurs in the presence of impurities. We interpret the polynomial localization of the
current as a weak localization. The validity of this formula for weakly-coupled rungs can
be checked by comparing to results of numerical exact diagonalization, which shows good
agreement, as can be seen from Fig. 4.2.

Symmetry effects

To conclude the consideration of the weak-coupling limit with a second particle species
playing the role of disorder, let us comment on global and local symmetries of the system.
Firstly, as already mentionned above, in the decoupled rung limit and for vanishing gauge
fields, the disordered system has a local symmetry described by the operator [216]

Gi = (cos(a′A⊥i)σxi − sin(a′A⊥i)σyi )⊗ Z2, (4.14)
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Figure 4.2: From [216]. The parallel current 〈ji,‖〉 as a function of the coupling term Uaf
normalized by − sin Φ and Jxy from ED (crosses) averaged over all configurations of disorder
and Eq. (4.13). The parameters used for this simulation were Jxy = 0.01, Jz = 0.01,
g = 1.0, a′A⊥i = aA

‖
i,i+1 = 0.01 for all sites i leading to Φ = Φi,i+1 = −aA‖i,i+1 = −0.01.

The simulation was done for a chain with eight sites and periodic boundary conditions.
The current was measured between two neighbouring sites i, i+ 1.

where Z2 denotes the transformation τ zi → −τ zi for the classical impurities3.
This implies that the current is insensitive to the concrete realization of disorder in this

limit. Turning on the interactions breaks this symmetry and thus the current observable
will start to respond to the concrete realization of disorder. Therefore, we are showing
disorder averages in Fig. 4.2. Throughout this chapter, if not stated differently, we express
expectation values as 〈·〉, while we denote disorder averages of a quantity A over different
realizations of τ zi by a bar, i.e. A.

Note that turning on the interactions, the local symmetries break down, but there is
still a global symmetry corresponding to exchanging the legs of the ladder, described in
the spin language by an operator [216]

R =
∏
i

σxiO ⊗ Z2. (4.15)

Here, we introduced the operator O which changes the direction of the magnetic field
in the Hamiltonian, i.e., Of(A⊥i, A‖i,i+1) |Ψ〉 = f(−A⊥i,−A‖i,i+1)O |Ψ〉 for any state |Ψ〉4.
This exchange symmetry follows naturally from the symmetry of the ladder geometry and
survives also in the strong coupling limit. We will consider this limit in the following
section.

3In the quantum description, this would correspond to the operator τx
i . We will describe this case in

Sec. 4.3.2. Here we used this notation to emphasize that τz
i are classical variables.

4The operator O is equivalent to taking the complex conjugate of the exponential functions involving
the vector potential. Therefore, it acts as O cos(a′A⊥i) = cos(a′A⊥i)O, O sin(a′A⊥i) = − sin(a′A⊥i)O,
OeiaA

‖
i,i+1 = e−iaA

‖
i,i+1O but Oσy

i = σy
iO [216].
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4.2.2 Strong xy-coupling

We now turn to the case of a transverse field g that is negligible compared to the interaction
strength. This gives rise to the Hamiltonian

Ha =
∑
i

(
−2JxyeiaA

‖
i,i+1σ+

i σ
−
i+1 + h.c. + Jzσ

z
i σ

z
i+1 + Uaf

2 σzi τ
z
i

)
, (4.16)

corresponding to a gaugedXXZ-model in a disordered longitudinal field, where the disorder
potential is realized by a binary potential, i.e., τ zi = ±τ zi . The XXZ-model from Eq. (4.16)
(usually with A‖i,i+1 = 0 and the disorder drawn from a uniform distribution) is one of the
standard models to study disorder and localization phenomena. Indeed, as we will see, in the
non-interacting case (i.e., Jz = 0), the model can be mapped to free fermions in a disorder
potential, which is then similar to the seminal work of Anderson on localization in disordered
media [86] that we discussed in Sec. 1.3.1. Including the interactions in Jz, the model is
commonly studied in the realm of many-body localization [119,120,122,125,126,229,230].
In the following sections, we will present several techniques to study the model with a
binary potential and a gauged hopping term and see how the Meissner current can be
used as a signature for the localization [216].

We will first study the case of a strong xy-coupling, but without interactions in z-
direction. We then turn to the case with interactions in Sec. 4.2.3. In Chapter 5, we finally
investigate the many-body localization occuring in this model.

Solutions for specific disorder configurations

We emphasize that an important advantage of the model in Eq. (4.16) (as compared
to a model with uniform disorder and without a gauge field) is on the one hand the
possiblity to measure a current as an indicator of localization, but on the other hand the
controlable way in which the disorder can be realized by coupling to a second particle
species. The latter allows to, for example, consider all possible configurations of disorder
when studying small systems numerically or, potentially, experimentally (cf. Sec. 4.4). For
some specific configurations, namely where all impurities are on the same leg and for a
staggered configuration of impurities, we can find exact results that we will present in the
following paragraphs.

Starting with a configuration where all impurities are on the same leg so that τ zi =
τ z = ±1, we employ the Jordan-Wigner transformation [121,188] already introduced in
Eq. (3.31). At Jz = 0, we then obtain from the Hamiltonian in Eq. (4.16)

Ha = −2Jxy
∑
i

eiaA
‖
i,i+1c†ici+1 + h.c. + Uaf

2
∑
i

(2ni − 1)τ zi . (4.17)

When using periodic boundary conditions, there is an extra term which after the Jordan-
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Wigner transformation gives a contribution depending on the parity of the total fermion
number [216]. This only influences the choice of frequencies in momentum space, so the
differences should vanish in the thermodynamic limit. Fourier transforming using

cj = 1√
N

∑
k

e−ikajck,

the Hamiltonian in momentum space reads

Ha =
∑
k

ω(k)c†kck, (4.18)

with ω = −4Jxy cos
(
ak − aA‖i,i+1

)
+ Uafτ

z and a the lattice spacing of the spin chain
(corresponding to the lattice spacing along the legs of the ladder geometry). The current
can in this fermion basis be written as

j‖,i = −4iJxy(eiaA
‖
i,i+1 c†ici+1 − e−iaA

‖
i,i+1 cic

†
i+1), (4.19)

and we can therefore write 〈
j‖,i
〉

= 2
N

∂E

∂(aA‖i,i+1)
, (4.20)

to calculate the current [216]. Here, E = 〈Ha〉 Inquiring about the ground state, we see
from Eq. (4.18) that negative energy states will be occupied, i.e.

4Jxy cos
(
ak − aA‖i,i+1

)
> Uafτ

z,

so that k must be between k± = A
‖
i,i+1±arccos

(
Uaf τ

z
i

4Jxy

)
/a [216]. From above consideration,

we then find the current per site in the continuum limit from

〈
j‖,i
〉

= −4Jxy
2
N

∑
k

sin (ak − aA‖i,i+1)
〈
c†kck

〉
= −4Jxy

π

∫ k+

k−
dk sin (ak − aA‖i,i+1),

= 4Jxy
π

cos
(
ak − aA‖i,i+1

)∣∣∣∣∣
k+

k−

= 0. (4.21)

In a finite size system, we can yet find a nonvanishing current since (for an odd fermion
number), the allowed momentum values 2πr/L with r = −N/2,−N/2 + 1, ...N/2− 1 (i.e.,
they are centered around 0), while the energy band is shifted by aA‖i,i+1. Hence, in the
non-continuous case, a better estimate can be achieved by integrating exactly between the
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outermost values that are still occupied. This changes the integration boundaries to

k̃− = k− −
(
k− mod 2π

L

)
,

k̃+ = k+ −
(
k+ mod 2π

L

)
,

and we obtain the current

〈
j‖,i
〉
≈ 4Jxy

π

Uafτ zi4Jxy

(
−2 sin

(
aA
‖
i,i+1

)
sinα

)
+

√√√√1−
(
Uafτ zi
4Jxy

)2 (
2 sin

(
aA
‖
i,i+1

)
cosα

) ,
(4.22)

where α = arccos
(
Uaf τ

z
i

4Jxy

)
mod 2π

L
. For large L, α→ 0 and we find

〈
j‖,i
〉

= 8Jxy
π

√√√√1−
(
Uafτ zi
4Jxy

)2

sin
(
aA
‖
i,i+1

)
. (4.23)

From a comparison to exact diagonalization shown in Fig. 4.3, we see that this formula
correctly captures a steep localization of the current at Uaf ∼ 4Jxy. The step-like behavior
for a small system reflects the evoked fact that the occupied states are discrete and only
when Uaf has changed enough to change the sign of the energy of the outermost occupied
state, the current localizes by ‘one more step’.

On the other hand, with an alternating configuration of the impurities (i.e., the
disorder part in the fermionic model taking the form Uaf

∑
j(−1)jnj = Uaf

∑
j eiπjnj), the

Hamiltonian can still be written in momentum space and now gives in BdG form [216]

Ha =
∑
k<0

(c†k c
†
k+π

a
)
−4Jxy cos

(
ak − aA‖i,i+1

)
Uaf

Uaf −4Jxy cos
(
ak − aA‖i,i+1 + π

) ck

ck+π
a

 .
(4.24)

The staggered potential gives rise to a shift in momentum of π/a. This Hamiltonian can
be diagonalized to readily find the ground state energy and from there, using Eq. (4.20),
the current can be found as

〈
j‖,i
〉

= − 2
N

∑
k

16J2
xy cos

(
ak − aA‖i,i+1

)
sin
(
ak − aA‖i,i+1

)
√
U2
af + 16J2

xy cos2(ak − aA‖i,i+1)
, (4.25)

where k ranges over half of the Brillouin zone. This result can be checked numerically
against the results from exact diagonalization for small systems, which is shown in Fig. 4.3.
There we also show the result when averaging over all configurations of disorder5, also

5As the disorder here has only two possible configurations on each site, the number of possible global
configurations is 2N with N being the length of the chain.
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Figure 4.3: Adapted from [216]. The expectation value of the parallel current is shown
as a function of the coupling strength to impurities Uaf . The markers show the results
from ED with a ferromagnetic (orange), anti-ferromagnetic (green) and disordered (blue)
configuration of impurities. For the latter, the result is obtained by taking a disorder
average over all possible configurations. The orange line shows the analytical result from
Eq. (4.23) and the green line the result from Eq. (4.25). The used parameters are N = 10,
Jxy = 1.0, Jz = g = 0.0, aA‖i,i+1 = 0.01 and we used periodic boundary conditions.

showing a strong localization at large values of the disorder strength, i.e., vanishing rapidly
beyond values of the disorder strength of Uaf ∼ 4.

To make this more precise and to consider also the interacting case with Jz 6= 0
(cf. Sec. 4.2.3), we need to bosonize the fermionic Hamiltonian. This technique will be
introduced in the following section for the case of a staggered potential.

Bosonization

To solve for the dynamics with a staggered potential, an interesting alternative way is
to bosonize the Hamiltonian in Eq. (4.17). This allows to account for the coupling in
z-direction as well, which in the fermionic language reads Jz(2ni − 1)(2ni+1 − 1), thus
including four-body interactions. A staggered impurity configuration gives rise to a term
Uaf

2
∑
i(−1)i(2ni − 1). In total, we are starting from the Hamiltonian

Ha = −2Jxy
∑
i

c†ici+1 + h.c. + Jz
∑
i

(2ni − 1)(2ni+1 − 1) + Uaf
2
∑
i

(−1)i(2ni − 1). (4.26)

Note that for simplicity, we here set A‖i,i+1 = 0 assuming that it is small, but its effect can be
reintroduced by a renormalization of Jxy [216]. Restricting to the low energy limit, we can
linearize the spectrum around the Fermi momenta ±kF and therefore define left- and right-
moving fermions described by operators cL/R(x), c†L/R(x) respectively. Defining operators
describing the phase and the density fluctuations which we call θ̃ and φ̃ respectively, we
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can in the continuum limit write [203,231]

c†R(x) = UR√
2πa

eiθ̃(x)eikF xeiφ̃, (4.27a)

c†L(x) = UL√
2πa

eiθ̃(x)e−ikF xe−iφ̃, (4.27b)

where UR/L are the Klein factors [231] ensuring fermionic anticommutation relations by
URUL = i. The details of this procedure and the precise definitions of the fields θ̃ and φ̃
can be found in Appendix E. Following the procedure laid out in Appendix E, we find the
following bosonized Hamiltonian for the case of a staggered impurity configuration [216]:

Ha = v

2π

∫
dx
( 1
K

(∂xφ̃)2 +K(∂xθ̃)2
)
− 1
π

∫
dx
Uaf
a

sin
(
2φ̃
)
. (4.28)

Here, v/a =
√

(4Jxy)2 + 32JzJxy/π and K =
√

4Jxy/(4Jxy + 8Jz/π). This now has the
form of a sine-Gordon model [231,232]. The last term plays the role of a sine-Gordon term
and we will in the following section treat it perturbatively to make predictions about the
localization of the current in this case.

Renormalization group analysis

Assuming Uaf � Jxy, we now want to write down the Renormalization Group (RG)
equation for Uaf using the standard methodology [232] applied in [216]. Assume we scale
the lattice parameter a→ a′ = aedl ≈ a(1 + dl). From this it follows that dl = log(a′/a).
We demand that the partition function remains unchanged under this transformation,
which gives [216]

U2
af (a)
a2 a2K =

U2
af (a′)
a′2

a′2K .

We then redefine the dimensionless quantity gaf = Uafa/v such that

g2
afa

2K−4 = g2
af (a′)a′2K−4.

Upon scaling the lattice constant in the way described above, we find

dgaf
dl = (2−K)gaf . (4.29)

Now for the simple case of Jz = 0 we have K = 1. Therefore, upon increasing l, we also
enhance gaf . Define gaf (l∗), at which this term is for general K of the same order as the
hopping term. Solving the differential equation (4.29) by integrating from a to l we get

gaf (l)
gaf (a) =

(
a(l)
a

)2−K

. (4.30)
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We fix l∗ at which the impurities-matter term is strongly renormalized and becomes
comparable to the kinetic energy, which gives

gaf (l∗) = Jxya

v
, (4.31)

and therefore:

l∗ ∼ a

(
v

aUaf

) 1
2−K

. (4.32)

The expression (4.32) quantifies the gap opened by a sine-Gordon term, which arises from
the staggered magnetic. In order to use it for the calculation of the current, note that
without disorder and in the non-interacting case with Jz = 0, we can use the diagonal
form of the Hamiltonian in momentum space similar to Eq. (4.18), i.e.,

Ha = −4Jxy
∑
k

cos
(
ak − aA‖i,i+1

)
)c†kck. (4.33)

Using Eq. (4.20), we then readily find

〈
j‖,i
〉

= 2
N

∂E

∂aA
‖
i,i+1

= −4Jxy
2
N

∑
k

sin (ak − aA‖i,i+1)
〈
c†kck

〉
. (4.34)

The sum ranges over accessible momentum states, spaced depending on the boundary
conditions up to the Fermi momenta kF = π/(2a) (for the non-interacting, disorder-free
case). Disorder will open a gap quantified by l∗. We therefore account for its effect by
introducing a cut-off of the sum (4.34) so that it ranges only over momenta with absolute
values smaller than |kF − (l∗)−1|. This can be done numerically to obtain a prediction for
the behaviour of the current with a staggered magnetic field. The approximative nature of
Eqs. (4.32) can be accounted for by fitting a free prefactor C, i.e. for K = 1 we fit C in

l∗ = Ca

(
v

aUaf

)
. (4.35)

The results of this procedure and a comparison to results from exact diagonalization
are shown in Fig. 4.4 by the violet curve. Using the bosonization framework, we can
then account for interaction effects through the Luttinger parameter K in Eq. (4.32).
Decreasing K (corresponding to an antiferromagnetic coupling Jz > 0) leads to a decrease
in l∗, therefore the gap increases and there are more terms which are cut off from the sum in
Eq. (4.34). This effect is stronger than the increase in v coming from an antiferromagnetic
coupling Jz, as can be seen from simulation results shown in Fig. 4.4 by the brown
crosses. Therefore an antiferromagnetic coupling of the σzi -spins in this regime supports
the localization of the current, which is seen from the red crosses in Fig. 4.4 from ED.
In the bosonization approach, the effect of the interaction enters through the Luttinger
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Figure 4.4: From [216]. The parallel current with a staggered impurity distribution as a
function of Uaf from ED (crosses) and fitting of the gap (Eq. (4.36), C is a free fitting
parameter) opened by disorder in the sum from Eq. (4.34) (truncated at |kF − (l∗)−1|).
We set Jxy = 1.0, g = 0.0 and aA‖i,i+1 = 0.001 with periodic boundary conditions. The ED
data (crosses) was obtained for a chain with ten sites. The truncated sum (solid lines) was
evaluated on a large system with scaled lattice constant in order to get a smooth result.

parameter K and fitting

l∗ = Ca

(
v

aUaf

) 1
2−K

, (4.36)

i.e., optimizing for the parameter C. Summarizing from Fig. 4.4 and Eq. (4.36), a
ferromagnetic coupling (Jz < 0) tends to hinder the localization in this setup, while an
antiferromagnetic coupling (Jz > 0) supports the localization, which is consistent with the
result from the bosonization approach [216]. In the following section, we will comment on
how a bosonization approach can also be used to adress the case of a similar spin chain
with Gaussian disorder and apply the results to our setup.

4.2.3 Strong coupling with interactions

Bosonization and RG analysis

The interacting case of an XXZ-chain with Gaussian disorder is a well-established model
and using bosonization, one can similarly find a sine-Gordon model for this case. An RG
equation of a form similar to that for staggered impurities presented in Eq. (4.29) can
then be found. Translated to our setup it reads [232]

dgaf
dl = (3− 2K)gaf . (4.37)
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Figure 4.5: From [216]. The crosses show ED results for a system with N = 10 sites and
ferromagnetic, antiferromagnetic and averaged over all τ zi -configurations with aA

‖
i,i+1 =

0.001, Jxy = 1.0, Jz = 0.0 and periodic boundary conditions. The blue and the green solid
lines show Eq. (4.34) with l∗ fitted from Eq. (4.36) and Eq. (4.38) respectively. To obtain
the fit, we sum over 4000 states to obtain a smooth curve. The resulting fitting parameter
C in Eq.(4.36) was evaluated to C = 0.1624 and CG from Eq. (4.38) to CG = 0.3993.

This then leads to an estimate of the localization length given by

l∗ = CGa

(
v

aUaf

) 1
3−2K

, (4.38)

where CG is a fitting paramter that can be determined by fitting with numerical data in a
similar way as for the case of staggered impurities above.

Note that although in our setup given by Eq. (4.16), we use a different form of
disorder given by a two-peak potential, in the limit of large system sizes we expect the
results obtained from Gaussian disorder to be applicable in the spirit of the central limit
theorem [232]. Indeed, already for the relatively small systems under study in Fig. 4.5, we
find a good agreement of this approach with ED results at low values of disorder, which
we will present below.

Numerical results

In Fig. 4.5, we show results from ED for a ferromagnetic (orange) and an antiferromagnetic
(green) setup of impurities, as well as an average over all possible configurations of τ zi
(blue). For the green and the blue curve, we compare to results from the bosonization
approaches for the respective setup described above. In the chosen range of disorder
strength Uaf , the results match the ED results closely, except for a small offset also present
in the impurity-free case with Uaf = 0, which can be ascribed to a mismatch of the highest
occupied state in the band and the Fermi momentum due to the finite system size [216].

The study of the current from a truncated sum in momentum space with the truncation
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depending on the disorder strength shows how the localization mechanism in the case of
strong coupling between the sites of the chain differs compared to the weakly coupled
setup described in Sec. 4.2.1. While there we found a power-law localization for each rung
separately, here we find a cut-off of the sum in momentum space determining the current
expectation value which for increasing disorder strength leads to a strong localization of
the current, that can additionally be favoured by an anti-ferromagnetic Jz interaction
between the sites.

After having studied the τ -spin degree of freedom derived from the impurities on the
ladder as static disorder, we will now bridge with the recent literature describing ways to
engineer Z2 lattice gauge theories in a similar ladder setup [213, 214]. For this, we will
render the impurities as mobile quantum objects and see how the localization properties
of the a-particles (or σ-spins, equivalently) respond to this.

4.3 Behaviour with mobile impurities

4.3.1 Modification of localization in weakly coupled rungs

The situation where the impurities (f -particles/τ -spins) were fixed to their site at all times
allowed us to interprete their effect as a type of disorder leading to a localization of the
a-particles/σ-spins. We now want to see how adding an additional ingredient changes
these results. Concretely, we now want to consider the situation where the impurities can
also hop from one leg to the other, while remaining localized on their respective rung.
This is inspired by the experiments described in [213,214], where a similar setup was used
to study Z2 lattice gauge theories experimentally in a bosonic ladder setup. We will first
describe the response of the Meissner current in the weak coupling limit and then digress
on the effect of a Z2 lattice gauge theory on a double well which arises at each rung in
this setup.

Response of the Meissner current

The dynamics of the f -particles constrained to hopping along a rung corresponds to
addition of a term −gf (f †2if1i + f †1if2i), which using a Schwinger-boson representation for
f -particles in an equivalent way as for the a-particles (i.e., as in Eqs. (4.6)), gives rise to
addition of a term −gfτxi to the Hamiltonian (4.7).

We focus on the case of weakly-coupled rungs, as in Sec. 4.2.1 for the case of static
impurities, but now including hopping of the f -particles along the rungs. The Hamiltonian
can then again be diagonalized on each rung and the ground state can be written down, from
which expectation values can be evaluated directly. Invoking a mean-field approximation
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Figure 4.6: From [216]. The expectation value of the parallel current with mobile impurities
with various tunneling coefficients along the rungs gf from ED (crosses) and Eq. (4.39)
(solid lines). The inset shows the expectation value of σzi τ zi from ED (dots) and from
Eq. (4.40), for the same values of gf . The results are obtained from a chain with six sites
and open boundary conditions and Jxy = Jz = 0.01, g = 1.0, a′A⊥i = aA

‖
i,i+1 = 0.01 for

all sites i.

for the correlations necessary to compute the parallel current in Eq. (4.12b), we obtain

〈j‖〉 = −2Jxy
1

1 +
(
Uaf/2
g+gf

)2 sin Φi,i+1. (4.39)

We compare this result to ED simulations in Fig. 4.6. The form of Eq. (4.39) shows that
the current localizes in a power-law profile similar to a static f -particle configuration, but a
large value of gf protects it against the effects of strong coupling between a- and f -particles
(i.e., large values of Uaf ). This effective protection of the current from localization by the
gf term is also confirmed from the numerical results in Fig. 4.6. Phenomenologically, a
large parameter gf tends to align the ~τ -spins in x-direction, which in turn reduces the
influence of the Uaf -term, as seen from the inset in Fig. 4.6, thus explaining this protection
from localization. Mathematically, the correlation in z-direction between the two spin
species can be evaluated as [216]

〈σzi τ zi 〉 = − Uaf√
4(g + gf )2 + U2

af

, (4.40)

which is confirmed numerically by the inset of Fig. 4.6.
In the following section, we will study how this protection from localization in the case

of quantum impurities can be interpreted using Z2 lattice gauge theory in a double well.
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4.3.2 Symmetries and Z2 lattice gauge theory on a double well

The global symmetry of the system under consideration under exchange of the two legs of
the ladder is still conserved when the impurities are mobile. The operator R introduced
in Eq. (4.15) describing this global symmetry now takes the form

R =
∏
i

σxiO ⊗ τxi , (4.41)

with Ha = RHaR−1 and acting with τxi corresponds to inverting the two legs of the ladder
for the impurity degrees of freedom.

For decoupled rungs with Jxy = Jz = 0, we can again define a local symmetry
operator [216]

Gi = (cos(a′A⊥i)σxi − sin(a′A⊥i)σyi )⊗ τxi , (4.42)

commuting with the Hamiltonian. For each of the decoupled rungs, the situation is then
comparable to a model for Z2 lattice gauge theory (LGT) in a double well [213,215]. To
see this more clearly, we rotate the spin degrees of freedom according to γxi = σzi and
γzi = cos(a′A⊥i)σxi − sin(a′A⊥i)σyi . Then the local symmetry in the decoupled rung limit
simply reads Gi = γzi ⊗ τxi . Each rung then corresponds to a Z2 LGT on a double well
with τ zi as a Z2 gauge field and τxi playing the role of a Z2 electric field [213, 215]. The
Hamiltonian of one rung reads

Ha,i = −gγzi − gfτxi + Uafγ
x
i τ

z
i , (4.43)

we see that for Uaf = 0, we would have the ~γ-spin oriented in z-direction and the ~τ -spin
oriented in x-direction, which would lead to an eigenvalue +1 of the operator Gi. With
non-zero Uaf , the dynamics of both spins are coupled, but since Gi commutes with the
Hamiltonian, its eigenvalue is conserved, therefore flipping γzi requires flipping τxi as
well, which comes with an energy cost proportional to gf [214]. This shows how a large
parameter gf can through the coupling of both spins effectively stabilize the ~γ-spin in the
z-direction in the limit of weakly coupled rungs. Transforming back to the ~σ-variables,
this implies that a large gf term supports the orientation of the ~σ-spin in the direction
given by the g term, i.e., in the xy-plane in which they are not coupled to the impurities.
Therefore, gf stabilizes the superfluid spin current and we thus expect it to hinder the
localization.

To complete the analogy with [213–215], we can define a charge for each site of the
double well (which correspond to the different legs) from the operator γzi by expressing
it through a boson tunnelling between the two sites with γzi = ñ1,i − ñ2,i. Here ñα,i is
the number operator on the respective site of the rung i and the charge would be defined
by Qα = (−1)αγzi . We could then define the two conserved local symmetry operators
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Gi,α = Qα⊗ τxi as in [215]. However, since for the situation of one particle in a double well
Q1 and Q2 are related by Q1Q2 = −1 (similarly to [213]), we drew conclusions about the
influence of this Z2 LGT on a double well directly using the symmetry operator Gi. These
considerations only hold for decoupled rungs. When Jxy, Jz 6= 0, our model cannot be
described by Z2 LGT as the operators Gi do not commute with the Hamiltonian in that
case. Instead, the model then shows the global Z2-symmetry associated with the operator
R as described above.

Further insights about the role of Z2 LGT on a double-well in the decoupled limit and
when activating a small interaction through the Jz term can be reached by considering
the vison operator. In the realm of Z2 LGT, the vison operator or magnetic field operator
is usually defined by Bp = ∏

l∈∂p τ
z
l (with ∂p referring here to the closed path on a given

unit cell) [213]. In our case, we identified a minimal Z2 LGT for each of the decoupled
rungs representing a double well. In general, for one-dimensional Z2 LGT, the magnetic
plaquette term can not be defined [215]. However, considering the ladder as a whole, we
can define the operator Bp = τ zj τ

z
j+1 (where the plaquette p is defined between two rungs

j and j + 1) phenomenologically in the same form as above and use it to describe the
situation for the f -particles.

As we have seen, for the simple case of decoupled rungs, we can evaluate observables
analytically. The Hamiltonian can be diagonalized on each rung and the ground state can
be written down, from which expectation values can be evaluated directly. For the limit of
decoupled rungs, when gf 6= 0 we have 〈τ zi 〉 = 0 and therefore 〈τ zi τ zi+1〉 = 〈τ zi ⊗ τ zi+1〉 = 0.
This implies that Bp is disordered and has a zero expectation value on a square unit cell,
the state corresponds to a vison condensate [213]. For gf = 0, in the decoupled rung limit
we get a degenerate ground state with 〈τ zi 〉 = ±1, so we get a static configuration of Bp.
Turning on a small positive value of Jz, an anti-ferromagnetic configuration of the ~σ-spins
is favored which is through the Uaf -coupling transmitted to the ~τ -spins. Therefore, in
this case we get a static configuration with Bp = −1. These arguments from Z2 LGT in a
double well confirm the conclusions drawn for the localization of the current from Eq. (4.39)
and Fig. 4.6: A coupling to mobile impurities can protect the localization of the current by
hindering flips of the spin through a Z2 electric field (coming form rendering the impurities
as mobile quantum objects, i.e., introducing τxi ), hindering entanglement between the
~σ-spins and the impurities and therefore preserving superfluidity of the spin-sector.

In the following section, we will see how the system responds to large interactions
between the two considered particle species.

4.3.3 Four-body model

When Uaf is of the same order as Uaa and V⊥ in Eq. (4.1) and we allow for hopping of the
f -particles in all directions (and not only along the rungs), we have to account for this
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when doing the perturbation theory to derive the effective spin model. If we consider the
Hamiltonian without any hopping and at half filling, the ground state is on each rung two-
fold degenerate with one a- and one f -particle on different sites of each rung. For a detailed
account of all the perturbative terms arising in this situation, we refer to Appendix D
of [216]. Here we will discuss the resulting Hamiltonian phenomenologically. Reintroducing
the hopping of a-particles perturbatively again produces second-order Ising interactions such
as Jaz σzi σzi+1 with Jaz different from Jz in the previous sections. Now, introducing a hopping
for the impurities along both legs and rungs with −tfx

∑
α,i f

†
αifα,i+1 − tfy

∑
i f
†
2if1i + h.c.

with α = 1, 2, we get a similar term

Jfz τ
z
i τ

z
i+1. (4.44)

The hopping term tfy can be identified with the parameter gf in the spin language of Sec.
4.3. The interchange of an a- and an f -particle along a rung is accounted for by a term

−gafeia′A⊥iσ+
i τ
−
i + h.c.. (4.45)

Finally to fourth order, we also have contributions of the form

−J‖xyeia(A1
i,i+1−A

2
i,i+1)σ+

i τ
−
i σ
−
i+1τ

+
i+1 + h.c.. (4.46)

The effective Hamiltonian can then be written as [216]

H = −J‖xy
∑
i

eia(A1
i,i+1−A

2
i,i+1)σ+

i τ
−
i σ
−
i+1τ

+
i+1 + h.c. + Jaz

∑
i

σzi σ
z
i+1

+ Jfz
∑
i

τ zi τ
z
i+1 − gaf

∑
i

eia′A⊥iσ+
i τ
−
i + h.c.. (4.47)

From here, we can in a similar way as in Eqs. 4.12 evaluate current as the relative density
operator and then - again along the lines of Sec 4.2.1 evaluate the parallel component for
the case of weakly coupled rungs. This limit corresponds with the model in Eq. (4.47) to
a dominant gaf term. We can then analogously find

〈j‖〉 = −2J‖xy sin Φi,i+1. (4.48)

Note that this is again similar to the form of Eq. (4.5a) and Eq. (4.8a), but with a reduced
prefactor. In fact, the prefactor has been found from perturbation theory to be [216]

J‖xy =
8(tax)2(tfy)2

Uaf + V⊥

(
1
U2
af

+ 1
Uaf (Uaf + V⊥) + 1

2(Uaf + V⊥)2

)

+ 8(tax)2(tfx)2

(Uaf + V⊥)2

(
1

2Uaf
+ 1

2V⊥
+ 1

2Uaf + 2V⊥

)
. (4.49)
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This analysis shows that as long as we consider weakly-coupled rungs, the system can
be described through local observables as a result of the dominant transverse magnetic
field in the spin representation. The system still shows an analogue of the Meissner effect
with a parallel current decreasing in a polynomial fashion in the coupling strength Uaf .
Note that because of the mobile character of the impurities, they cannot be understood as
static disorder. The model thus shows some similarities with models studied in the light
of disorder-free localization [233–235].

To conclude this chapter, it remains to show how the studied system can be realized
experimentally. For this, we will first come back to the discussion of ultracold atoms from
the beginning of the chapter and consequently also discuss quantum circuits, leaning on
the discussion from Sec. 2.4.

4.4 Experimental realization

After having demonstrated theoretically how a model of two bosonic particle species on
a ladder can be used to study different regimes of localization and disorder physics (in
relation to effective Z2 LGT on a double well when the impurities can hop along the rungs)
using the response of a Meissner current, we aim to conclude this chapter commenting on
experimental realizations. For this, we will focus on the main ideas and principles used for
setting up these realizations.

4.4.1 Ultracold atoms

Firstly, it should be emphasized that an analogue of the Meissner effect in a bosonic ladder
with one particle species and in the superfluid phase has been observed experimentally [225].
As mentioned, populating such a geometry with a second particle species has been proposed
as a possibility of modelling Z2 LGT experimentally using ultracold atoms [213–215]. As
the setup in Eq. (4.1) and the coupling to a second particle species in Eq. (4.9) closely
resemble the form used in [213, 214], the results found in this chapter could be verified
experimentally using similar techniques.

The basic building block of such realizations consists in a Bose-Einstein condensate in
a periodic potential made up by lasers (i.e., an optical lattice) [199,200]. This then allows
to realize the different hopping parameters and potentials for one particle species. More
recently, these experiments have benefitted from new techniques to artificially realize the
effect of a magnetic field, i.e. mimicking the Peierls phases in the Hamiltonian in Eq. (4.1).
Such artificial gauge fields can be realized using laser-assisted tunneling and described
using a Floquet protocol [205–207,213,236].
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Artificial gauge fields in a double well

To explain this technique on an elementary level, let us first go back to a single particle on
a single rung or double well, to then generalize it to the setup studied in this chapter. The
key ingredient to obtain a Peierls phase for hopping between the two sites is to introduce
both a static and a periodically modulated potential difference between both sites. This
gives rise to the following Hamiltonian:

Hdouble well = −tay(a
†
2a1 + a†1a2) + (∆2,1 + A2,1 cos(ωt+ φ))n2. (4.50)

Performing a unitary transformation using the operator

R2,1 = exp
(
i(∆2,1t+ A2,1

ω
sin(ωt+ φ))n2

)
,

we obtain according to H̃ = RHR† + i(∂tR)R†:

H̃double well = −tay exp
(
i(∆2,1t+ A2,1

ω
sin(ωt+ φ))

)
a†2a1 + h.c.. (4.51)

This Hamiltonian is periodic in time, therefore we can use Floquet’s theorem to evaluate the
time-evolution operator for an integer multiple of the period. For this, we define an effective
Floquet Hamiltonian to zeroth order in 1/ω by averaging over one period [213,236,237].
Assuming the period is short, we can replace the Hamiltonian by this effective Hamiltonian.
Averaging the Hamiltonian (4.51) over one period of the driving, we obtain from the
average of the time-dependent phase [213]

−tay
ω

2π

∫ π−φ
ω

−π−φ
ω

exp
(
i(∆2,1t

′ + A

ω
sin(ωt′ + φ))

)
dt′ = −tayJ1(A/ω)e−iφ,

under the resonance condition ∆2,1 = ω. Here, J1(x) is the Bessel function of the first
kind of first order. In that way, we obtain the effective hopping Hamiltonian [213,238]

H̃double well = −tayJ1(A/ω)(e−iφa†2a1 + eiφa†1a2), (4.52)

where φ now mimicks a gauge field and can thus be used to simulate a vector potential,
which can be seen by comparing its role in eq. (4.52) with the Peierls phases in the
Hamiltonian (4.1). We emphasize that this worked thanks to the particular resonance
condition we invoked, requiring the static potential offset to be equal to the driving
frequency.
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Artificial gauge fields in an effective spin model

A similar procedure can be used to obtain the Peierls phases in the Hamiltonian in Eq. (4.1).
Assume we start from the Hamiltonian of the two interacting particle species, but without
the gauge field, i.e.,

Ha = −tax
∑
α,i

a†αiaα,i+1 − tay
∑
i

a†2ia1i + h.c.

+ Uaa
2
∑
α,i

naαi(naαi − 1) + V⊥
∑
i

na1in
a
2i − µ

∑
α,i

naαi + Uaf
2 (na2 − na1)τ zi . (4.53)

Here we rendered the f -particles as static with one particle per rung and therefore
introduced them in effective spin language (using τ zi ) directly. In the atomic limit (tax = 0)
and if τ zi is a classical variable taking only the values ±1, the Mott phase is then achieved
for

V⊥ +
√

(tay)2 + (Uaf/2)2 > µ > −
√

(tay)2 + (Uaf/2)2.

If we now add a static potential offset and a periodic driving by

∑
α,j

(j + α− 1)(∆ + ∆ω(t))nαj ,

with ∆ω(t) = A cos(ωt+ φ), each link on the ladder behaves like a double well described
above, since the difference of driving and offset between any two sites is ∆ + ∆ω(t).
Therefore, the hopping processes along each link will be renormalized in the same way as
for one single double well and we will get back the Hamiltonian (4.1) with the gauge fields
realized as aAαi,i+1 = a′A⊥i = φ. We can then do the perturbation theory as described in
Sec. 4.1.2, but we need to assume that Uaf � Uaa, V⊥ in order to perform the perturbation
theory in tax as before6. In this framework, we can then obtain Hamiltonian (4.7). This
method to obtain the effective hopping Hamiltonian allows to think about implementing
different artificial gauge fields in both directions [239]. One can then consider setups where
the difference in static potential offset between two sites along the legs is not the same as
along the rungs and in addition a driving with multiple frequencies is realized in order to
achieve a greater freedom in the renormalizations in both directions [213,236].

4.4.2 Quantum circuits

The model studied in this chapter has been inspired by recent theoretical and experimental
progress regarding ultracold atoms [207,213,225], that allows to directly implement hopping
Hamiltonians as Eq. (4.1). However, even before these advances, realisations of bosonic
two-leg ladders using quantum circuits have been discussed extensively [240–242]. For the

6Otherwise, we come back to the situation described in Sec. 4.3.3
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concrete model from Eq. (4.1) with the a-particles only, a realization using two Josephson
junction arrays has been proposed in [217,218]. Each site is realized by a superconducting
resonator, composed of an inductive and a capacitive element. On each individual chain, a
capacitive coupling to ground gives rise to a term mimicking the on-site energy Uaa while
the inductive element mimicks hopping along the chain [218]. A Josephson tunnel element
can be used to couple the two arrays at each corresponding site, leading to a tunneling
term mimicking tay (from the Josephson element) and a potential term mimicking V⊥ from
the capacitive element.

A second particle species could then in principle be realized by realizing a second
ladder for the f -particles in a similar way. Coupling two respective sites of each ladder
capacitively would give a potential similar to Uafnaα,in

f
α,i, thus mimicking the interspecies

Hubbard interaction from Eq. (4.9).
In summary, there are several ways to potentially realize the system studied in this

chapter, which makes it an interesting platform to study the interplay of disorder and
related symmetries with an applied U(1) gauge field and the associated Meissner current.
In the following chapter, we will see how this platform can also be used to test intriguing
effects related to many-body localization.

4.5 Conclusion

In this chapter, we studied a one-dimensional bosonic system, which hosts a superfluid
to Mott transition and can in the rung-Mott phase (i.e., with one particle per rung of
the ladder) be described by an effective spin chain. The effect of a magnetic field can be
introduced by a Peierls substitution and allows to define a local current from the relative
density operator. An analogue of the Meissner effect can be seen in the superfluid phase by
a vanishing perpendicular current and a parallel current proportional to the flux [224,225]
and a similar effect occurs in the rung-Mott phase due to the persistence of superfluidity
in the spin sector [217,218].

Adding a second particle species, that one can consider as impurities, leads to a
localization of this current [216]. We study this phenomenon in various limits. For weakly
coupled rungs, the current localizes in a polynomial fashion and we interprete it as a weak
localization, in which the Meissner effect still occurs. With a strong transverse coupling,
the model maps to the one-dimensional Anderson problem described in Sec. 1.3.1 and with
periodic boundary conditions one expects a persistent current because of the magnetic
flux applied [243]. We checked numerically that the disorder-averaged current in this
limit indeed localizes strongly at large disorder and provided analytical results for two
particular configurations (ferromagnetic/antiferromagnetic configuration of impurities, cf.
Fig. 4.3). We then included interactions for the case of antiferromagnetically configured
impurities and show that an antiferromagnetic interaction supports the localization in
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this case. This is in fact also true for the more general case of Gaussian disorder [232], to
which we fit the results as well. This result is consistent with the prediction of stronger
Anderson localization for repulsive interactions established by Giamarchi and Schulz [19].

We have furthermore studied a situation in which the impurities have a quantum
character themselves and are allowed to tunnel along the rungs. Studying this modification
in the limit of weakly coupled rungs, we saw that this hinders the localization of the
particles, which can be understood from a relation to Z2 lattice gauge theory on a double
well [213,214]. In the limit of a strong interaction between the particles and the impurities,
we showed how a different spin model can be derived, for which we demonstrated the
continued occurence of an analogue of the Meissner effect.

The model we studied is realizable with cold atoms or quantum circuits. The parallel
component of the local current could in these setups be measured dynamically and used
as an indicator of the response to disorder and the localization properties, as done here
in a numerical way. This opens the question on whether this current can also serve as a
witness to the many-body localization transition introduced in Sec. 1.4. This will be the
subject of the following chapter.



Chapter 5

Many-body localization in an
effective spin chain

In Chap. 4, we have seen how the local current defined from an applied U(1) gauge field can
be used to study localization properties of an effective spin system. It is then natural to ask
whether it can be used in a similar way as a witness to a many-body localization transition.
For this, we will continue to study the effective spin model from Eq. (4.7), where disorder
is defined through a random spatial distribution of impurities, thus corresponding to a
positive or a negative value of the potential. A comparable binary disorder potential has
been studied in the context of many-body localization (MBL) [244,245], motivated by its
realizability with ultracold atoms. Here, the goal is to study the MBL phase with a binary
disorder under more general conditions, in particular, including a gauge field and a finite
transverse magnetic field, while testing for different probes that we will introduce below.

We will first introduce the relevant probes to test a many-body localized system in
Sec. 5.1. Consequently, in Sec. 5.2 we will see how these definitions play out in the context
of the effective spin model from Eq. (4.7). As introduced in the introductory Sec. 1.4.1, an
established way of testing an MBL transition is to study the scaling of the entanglement
entropy in time. We will present a numerical study of this property to identify the MBL
phase and compare also to the scaling of the bipartite fluctuations, which is a probe
more easily accessible experimentally, as we will introduce below. Finally, by comparing
the long-time evolution of these quantities to that of the Meissner current introduced in
Chapter 4, we will conclude about the MBL transition in this system and how the current
can be seen as an indicator of the latter.

This chapter is based on work published in [216]. The bipartite fluctuations as a
tool to identify entanglement have been established by Karyn Le Hur and collaborators
before [131, 246]. For this work, I used the entanglement entropy and the bipartite
fluctuations as probes to study the MBL phase of the model numerically under supervision
of Karyn Le Hur. I furthermore developed and implemented the codes and evaluated the
shown results.

127
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5.1 Probes for MBL

As mentioned in the introductory Sec. 1.4, probing many-body localized phases remains
a challenging experimental task [22,120,122,247]. Here we will focus on two established
probes that are commonly studied numerically in the context of MBL, which are the
bipartite fluctuations and the entanglement entropy [120,126]. A commonly studied model
in the realm of MBL is the XXZ-model in a random longitudinal field [119, 120,248, 249].
It has the Hamiltonian introduced in Eq. (1.65), which reads

HXXZ =
∑
i

(
Jxy(σxi σxi+1 + σyi σ

y
i+1) + Jzσ

z
i σ

z
i+1 + hiσ

z
i

)
, (5.1)

where hi is a random variable, often chosen to be drawn from a uniform distribution,
i.e. hi ∈ [−hc, hc] with hc > 0. Note that this corresponds precisely to Eq. (4.7) with
A
‖
i,i+1 = 0, g = 0 and a longitudinal random field hi = Uaf

2 τ zi (which in the case of
Chap. 4 corresponds to a Bernoulli random variable). We will now introduce the bipartite
fluctuations and the entanglement entropy for the model in Eq. (5.1).

5.1.1 Bipartite fluctuations

An important idea for both the bipartite fluctuations and the entanglement is the division
of the full system into two partitions, as shown in Fig. 1.4. The bipartite fluctuations of
the spin in a state |ψ〉 read for a subsystem of size l [131,246]

F(l) = 〈ψ| (Szl )2 |ψ〉 − 〈ψ|Szl |ψ〉
2 , (5.2)

with Szl = ∑l
i=1

1
2σ

z
i .

The bipartite fluctuations are an indicator of entanglement in many-body systems
[131,246] and are well suited to study many-body physics in condensed matter systems
numerically [125,126] or using quantum simulation [250], as they are more easily accessible
than the entanglement entropy defined in Eq. (1.66), which we will discuss below in
Sec. 5.1.2 As an example, we first address the situation of the weakly-coupled rungs limit
for the model we introduced in Eq. (4.7) where we can also solve the dynamics using the
decoupled-rungs approximation from Sec. 4.2.1.

Weakly coupled rungs

When g � Jxy, Jz, the ground state can be found by diagonalizing simultaneously on each
rung, as described in Sec. 4.2.1. We can then calculate the bipartite fluctuation in the
ground state as

F(l) = l

4
1

1 + (Uaf/2g)2 . (5.3)
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Figure 5.1: From [216]. ED results (crosses) for the bipartite fluctuation as a function of
the subsystem size in the weakly-coupled rungs limit for a range of Uaf values. The size
of the full system is fixed to N = 8 and we use Jxy = Jz = 0.01, g = 1.0, aA‖i,i+1 = 0.01
and open boundary conditions. The bipartite fluctuation F was evaluated as an average
over all possible configurations of τ zi . The solid line shows a comparison to Eq. (5.3). The
bipartite fluctuation grows linearly with the subsystem size.

The bipartite fluctuations here scale linearly with the subsystem size. Interestingly, up
to a prefactor, it is equal to the parallel current from Eq. (4.12b). The localization on
a single rung can thus be seen from the bipartite fluctuation and the Meissner current
equivalently. Note that Eq. (5.3) is independent of the disorder configuration since the
localization occurs on each rung independently. In Fig. 5.1, we show the scaling of the
bipartite fluctuation with the subsystem size as an average over disorder configurations
which we call F̄ , confirming Eq. (5.3) in this limit.

Ground state of the XXZ-chain

In order to study many-body localization in the full spin model from Eq. (4.7), we need
to consider interactions. For this, we will consider the Jxy and Jz interactions at the so
called Heisenberg point Jxy = −Jz, in order to compare to previously established results
in the literature [125,126,131,249]. When deriving the Hamiltonian (4.7) from the bosonic
ladder model, we had Jxy > 0 or −Jxy < 0. Here, we thus redefine Jxy → −Jxy in Eq.
(4.7) corresponding now to ferromagnetic couplings. Note that the cases of ferromagnetic
and antiferromagnetic interactions can be mapped onto each other by rotating around the
z-axis for every second spin. In the model of Eq. (4.7), we can set Jxy = −0.25, Jz = 0.25
and g = 0 to make the connection with Ref. [126]. Here, we study the bipartite fluctuations
when tracing half of the system, from the ground state. In the ground state, the bipartite
fluctuations can then be evaluated numerically and for a range of Jz we obtain the results
shown in Fig. 5.2.
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Figure 5.2: From [216]. Bipartite fluctuations averaged over all realizations of τ zi for N = 8
with periodic boundary conditions, the bipartition boundary being in the center of the
chain (i.e. l = N/2). Here, we set Jxy = −0.25 and g = 0.0, so that the curve with
Jz = 0.25 bridges with the results in [126]. We furthermore set aA‖i,i+1 = 0.001.

Figure 5.3: From [216]. Scaling of the average bipartite fluctuations with the subsytem
size for different values of Jz and Uaf . The dots show simulation results in the gapless
phase with Uaf = 0.1 and the solid lines a fit of equation (5.4). The crosses show results
for Uaf = 4.0. Different values of Jz are represented by different colors. The bipartite
fluctuation was evaluated for 1000 randomly chosen configurations of τ zi and consequently
averaged over. These simulations were performed for a chain with 12 sites and periodic
boundary conditions, other parameters are as in Fig. 5.2.
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The gapless phase of the XXZ-model in Eq. (4.7) is realized for −1 < −Jz/Jxy ≤ 1. In
this phase, the low energy physics without disorder is described by the Luttinger liquid
theory [232]. In the region −1 < −Jz/Jxy < 1, the scaling of the fluctuations with the
subsystem size can be evaluated when Uaf → 0 and reads [131,246]

F(l) = K

π2 ln(l) + f2

π2 − A1
(−1)l
π2l2K

, (5.4)

where the Luttinger parameter K is now determined from the Bethe ansatz solution1

K = 1
2

(
1− cos−1 ∆

π

)−1

, (5.5)

with here ∆ = −Jz/Jxy. The ln l contribution in the fluctuations comes from gapless modes
in the effective fermions theory achieved by the Jordan-Wigner transformation. We will
therefore refer to this phase at weak-coupling with impurities, i.e. starting from Uaf = 0, as
gapless phase. When ∆ ≤ −1, Eq. (5.4) is not valid. Instead, the ferromagnetic Ising phase
shows a classical order and the bipartite fluctuations should then be zero when Uaf = 0.
The Heisenberg point ∆ = 1 is also special since in the bosonized framework there is a
marginal operator at this point so that the spin correlations acquire a correction [131,232]
and for ∆ > 1 the system becomes gapped and Eq. (5.4) needs to be modified [232,246].

Including the effects of disorder through Uaf , a phase transition to a localized phase
is anticipated while for small values of disorder the scaling of the bipartite fluctuation
with subsystem size for the disorder-free case from Eq. (5.4) should still hold (at least
qualitatively) as long as we are in the gapless phase with visible bipartite fluctuations.
We verify that disorder induces a transition to a localized phase by plotting the disorder-
averaged bipartite fluctuation F against the disorder strength Uaf for different values of Jz
in Fig. 5.2. For −1 < −Jz/Jxy < 1, the behaviour is qualitatively the same with a sharp
transition to the localized phase for a critical value of disorder strength Uaf depending on
Jz. The curve with Jz = −0.25 is in the ferromagnetic phase, consequently its behaviour
is different for Uaf = 0 and the bipartite fluctuation vanishes. It is interesting to observe
in Fig. 5.2 that for increasing values of disorder the behaviour of this curve can still be
compared to the other curves qualitatively.

In the gapless phase (i.e. at small disorder), interestingly already for small systems
sizes, we can fit the parameters f2 and A1 from Eq. (5.4) to the results from the simulation,
which is shown in Fig. 5.3. The simulation results for the gapless phase are here represented
by dots, the results from fitting to Eq. (5.4) for Uaf = 0.1 are shown by solid lines. In
the strongly localized regime, results for a large value of disorder Uaf lead to a vanishing
bipartite fluctuation for all values of Jz (represented by crosses in the figure). For the

1The form of the Luttinger parameter given below Eq. (4.28) is only valid in the perturbative region
|Jz| � |Jxy|.
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Figure 5.4: The entanglement entropy averaged over all realizations of τ zi for N = 8 with
periodic boundary conditions, the bipartition boundary being in the center of the chain
(i.e. l = N/2). The parameters are similar to Fig. 5.2 and bridge also with Ref. [126].

considered situation, we observe that the curve with Jz = 0.25 corresponding to the
Heisenberg point could be also fitted with Eq. (5.4) in Fig. 5.3 even though corrections
are present in the form of the A1 term [131].

5.1.2 Entanglement entropy

Definition of the entanglement entropy

The entanglement entropy S between two subsystems, as introduced in Eq. (1.66), is
defined by

S = −Tr ρA ln ρA, (5.6)

where ρA = TrB (|ψ〉 〈ψ|) is the density matrix of the ground state with the degrees of
freedom of the composite subsystem (i.e., the subsystem B in Fig. 1.4) traced out. Using
this definition, we can evaluate the entanglement entropy numerically.

Ground state properties

In the interacting model, similar to Sec. 5.1.1, we can plot the entanglement entropy in the
ground state averaged over all disorder configurations as a function of the disorder strength
and for various interaction strengths. The result, shown in Fig. 5.4, reveals similar features
to Fig. 5.2 in the sense that there is a sharp transition in the entanglement entropy for
larger values of disorder.

In order to find a clear indication of the MBL phase, we have to depart from the ground
state description. Therefore, we will in the following study the long-time evolution of the
bipartite fluctuations and the entanglement entropy. The latter will give a clear criterion
to identify the MBL phase [126].
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5.2 MBL in an effective spin model with U(1) gauge
fields

5.2.1 Long-time evolution of the bipartite fluctuations

In order to detect an MBL phase in the model described by Eq. (4.7), we have to depart
from the time-independent ground state description. The bipartite fluctuations can be
a witness2 of an MBL phase when studying its scaling in time and with the system
size [126,251].

To make the connection with [126], we study the bipartite fluctuation in time when
starting from a global quench of the system. For this, we prepare the system of ~σ-spins
in the Néel state in z-direction |↑↓↑↓ ... ↑↓〉 and evolve in time with the Hamiltonian
(4.7) with Jxy = −0.25, Jz = 0.25 and aA

‖
i,i+1 = 0.01. We then evaluate the bipartite

fluctuations of the half chain (i.e. l = N/2) as an average over all configurations of disorder
defined by τ zi = ±1. We then compare qualitatively to the results obtained in [126], where
the authors simulated a system with similar interaction strengths, but without the gauge
field, without a transverse field (i.e., at g = 0) and with disorder drawn from a uniform
distribution.

For g = 0.0, we observe a similar behaviour as in Ref. [126]: With weak disorder,
when initializing the system in the Néel state, the bipartite fluctuations of the half chain
averaged over all possible disorder configurations (that we call F) saturate to a finite value
after a rapid growth (see Fig. 5.5a). In the localized phase with strong disorder (i.e. large
values of Uaf ), the bipartite fluctuations show a rapid growth at short times, after which
they saturate (see Fig. 5.5b).

This situation remains qualitatively similar when adding the transverse field with
g = 0.1. In the two lower panels of Fig. 5.5, we show the results for the the bipartite
fluctuation at g = 0.1 with relatively weak disorder Uaf = 1.0 (see Fig. 5.5c) and with
strong disorder in the localized phase with Uaf = 10.0 (see Fig. 5.5d). For both g = 0.0
and g = 0.1, at long times we find the volume-law scaling with system size for weak
disorder, and a constant saturation value (i.e., an area-law scaling) at strong disorder,
also consistent with [126]. In the following section, we will do a similar comparison to the
results in [126] showing the entanglement entropy.

2In the sense that it is an entanglement witness, meaning that entanglement will manifest itself in a
large value of the bipartite fluctuations. For a sufficient criterion of an MBL phase, one has however to
refer to the entanglement entropy, as there are situations where the bipartite fluctuations do not capture
the transition to an MBL phase [251].
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(a) g = 0.0, Uaf = 1.0 (b) g = 0.0, Uaf = 10.0

(c) g = 0.1, Uaf = 1.0 (d) g = 0.1, Uaf = 10.0

Figure 5.5: Adapted from [216]. Bipartite fluctuation for the half chain (i.e. l = N/2)
starting from the Néel state with g = 0.0 (upper line) and g = 0.1 (lower line), for different
values of disorder (Uaf = 1.0 on the left and Uaf = 10.0 on the right). Here we show an
average over all possible configurations of disorder with open boundary conditions. The
parameters are Jxy = −0.25, Jz = 0.25, g = 0.1 and aA‖i,i+1 = 0.01.

5.2.2 Detecting the MBL phase from the entanglement entropy

To detect the MBL phase, we are attempting to measure the entanglement entropy after a
global quench in time. A slow growth holds as a sufficient criterion to identify an MBL
phase [22,126,129]. To implement this, we use a similar protocol as described in Sec. 5.2.1:
Starting from a global quench, we evolve the system in time for all different disorder
configurations and finally take the disorder average. Keeping the parameters used in
Sec. 5.2.1 (i.e., Jxy = −0.25, Jz = 0.25 and aA‖i,i+1 = 0.01) to compare to Ref. [126] and
starting from the Néel state in z-direction, we find the results shown in Fig. 5.6.

At weak disorder, we find a volume-law scaling at long times of the entanglement
entropy, i.e., S = αN after a long time evolution, where the maximal value for α is
ln(2)/2 when partitioning the system into two half-chains [126]. At strong disorder,
we find the characteristic slow growth of the entanglement entropy after an initial fast
increase [126, 129]. The latter is a characteristic property of an MBL phase. We find
this behaviour at both g = 0.0 and g = 0.1, with the special form of a binary disorder
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(a) g = 0.0, Uaf = 1.0 (b) g = 0.0, Uaf = 10.0

(c) g = 0.1, Uaf = 1.0 (d) g = 0.1, Uaf = 10.0

Figure 5.6: Adapted from [216]. Entanglement entropy for the half chain (i.e. l = N/2)
starting from the Néel state with g = 0.0 (upper line) and g = 0.1 (lower line), for different
values of disorder (Uaf = 1.0 on the left and Uaf = 10.0 on the right). Here we show an
average over all possible configurations of disorder with open boundary conditions. The
parameters are the same as in Fig. 5.5.

potential and complex xy-interaction coefficients. We therefore conclude that at strong
disorder, the model introduced in Eq. (4.7) undergoes a transition to an MBL phase, which
is stable upon adding a U(1) gauge field and a small transverse magnetic field g. In the
following section, we will study the asymptotic behaviour after a long time in more detail
and in particular also examine the local current introduced in Eq. (4.3), which can now be
measured dynamically.

5.2.3 Localization of the dynamical parallel current

In order to complete the comparison with [126], we also check the asymptotic behaviour
at long times of the bipartite fluctuations, the entanglement entropy and finally also the
dynamically measured current. The current at a site i, defined from Eq. (4.3), can in
the spin language be determined by simply measuring the time derivative of 〈σzi 〉, i.e.,
〈ji〉 = 〈σ̇zi 〉 and is thus a local observable easily accessible. Therefore, we evolve the
system with a given disorder configuration for a long time and consequently evaluate
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(a) Bipartite fluctuations (b) Entanglement entropy

(c) Local current

Figure 5.7: Adapted from [216]. Histograms of (a) the bipartite fluctuations, (b) the
entanglement entropy for a half chain and (c) the local current evaluated between the two
sites at the center of the chain as a function of Uaf for all configurations of disorder. The
color shows the number of disorder configurations with an observable in the respective
range. The system was initalized in the Néel state and consequently evolved in time until
t = 1016, at which the respective quantity was evaluated. The green dots show a disorder
average. The parameters are Jxy = −0.25, Jz = 0.25, g = 0.1, aA‖i,i+1 = 0.01 and N = 8.

the observables numerically. The results of this procedure in the form of histograms for
all different configurations of disorder with the bipartite fluctuations, the entanglement
entropy and the local current evaluated for different values of the disorder strength Uaf are
shown in Fig. 5.7. The results for the entanglement entropy and the bipartite fluctuations
show a localization of these quantities at strong disorder with a clear transition value, in
agreement with the existence of an MBL transition and previously established results [126].
Note that at large values of disorder, both the entanglement entropy and the bipartite
fluctuations vanish for most of the disorder configurations, with a second peak occuring
corresponding to the cutting of a singlet at the bipartition boundary [126,252,253]. The
transition is also observed from the sharpness of the peaks in the bipartite fluctuations
and the entanglement entropy: While at small disorder values, the quantities have a finite
mean with a larger variance, they clearly focus to the two peaks with little variance after



CHAPTER 5. MANY-BODY LOCALIZATION IN AN EFFECTIVE SPIN CHAIN137

the transition. The results are qualitatively similar with g = 0.0 (not shown).
Interestingly, this transition can also be observed in the local current: While at smaller

disorder values, it strongly flucutates around its mean for different disorder configurations,
it becomes focussed with small variance after the transition. We thus conclude this
chapter, summarizing that we found a many-body localized phase in the model introduced
in Eq. (4.7), which is stable towards adding a gauge field at the xy-coupling term, a small
transverse field and also with respect to a peaked disorder potential. The existence of the
MBL phase is proven by the scaling in time of the entanglement entropy, but witnessed
equivalently by the bipartite fluctuations and the long-time distribution of the local current.
We emphasize that this is a local measurable quantity, accessible in experimental setups
described in Sec. 4.4.

5.3 Conclusion and outlook

In this chapter, we have studied a gauged XXZ-model with binary disorder and a finite
transverse magnetic field. Studying the scaling of the bipartite fluctuations and the
entanglement entropy of the half-chain in time, we find results in agreement with previous
studies of an XXZ-chain with uniform disorder [126]: With weak disorder, we find a
fast saturation to a volume law of both the entanglement entropy and the bipartite
fluctuations. For strong disorder, the bipartite fluctuations saturate to an area law, while
the entanglement entropy shows the characteristic slow growth. We thus conclude from
the scaling of the entanglement entropy that an MBL transition occurs and see that the
bipartite fluctuations are also a witness.

After a long time evolution, we see that both the entanglement entropy and the bipartite
fluctuations show a transition for increasing disorder. Interestingly, this transition can
also be seen in the expectation value of the local current: While its average value remains
unchanged, its variance when considering many different disorder configurations, also
serves as a witness of this MBL transition.

The analysis in this chapter has shown that the MBL phase is stable towards the
special type of implemented disorder, a U(1) gauge field and a transverse magnetic field.
Combining these findings with the partial topological properties of interacting spins
discussed in Sec. 1.1.3 and Chap. 3, as well as with the dynamical protocol studied in
Chap. 2, it is an interesting question whether the (many-body) localization properties of
the spin chain interact with the partial topology of each spin. To study this question, the
following conditions necessarily need to be satisfied:

1. The MBL phase is preserved upon applying a periodic driving.

2. The partial topology can be defined for systems with N > 2 and in presence of
disorder.
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3. The definition of partial topology makes sense for a system with finite energy.

For each of these conditions, we note the current state of advancement from the scientific
community and our own current activities:

1. This question has been adressed in [254]. There it has been found that an MBL phase
persists with periodic driving at high frequencies. Since in the setup for studying the
topology of a spin-1/2 dynamically, one attempts to reach quasi-adiabatic driving
speeds, this implies that the study of dynamically accessed quantities as Cdyn defined
in Eq. (2.9) is more straightforward in this context. However, a larger disorder
strength can lead to an MBL transistion also in a slowly driven system [254].

2. The occurence of fractional partial Chern numbers for longer systems has been
adressed in [12]. There it has been argued, that in a chain with periodic boundary
conditions and an odd number of sites N and in a chain with open boundary
conditions and an even number of sites, fractional partial Chern numbers can occur.
Using the arguments from Sec. 3.1, a transverse coupling is expected to support
these states when adding weak disorder.

3. This point is a major concern when trying to study the partial topology in relation
with an MBL phase: For the latter, as done in the analysis in this chapter, one
initializes the system in a state that is not necessarily an eigenstate and studies the
thermalization properties. However, for studying a (partial) topological quantity, as
done in Chap. 3, one evolves the system quasi-adiabatically in an eigenstate (or, in
the case of Chap. 3, the ground state) of the system. As these two approaches are
in a way opposing each other, an interesting option is to use other probes of MBL,
such as the energy level statistics of the Hamiltonian. It is an interesting question,
whether doing such a study in time would then allow to make a connection with the
partial topological properties of each spin.

While our efforts in these directions have not yet been conclusive, this study could
potentially serve as an interesting link between MBL and topological properties [229, 255],
relevant for applications trying to harness the potential of topological states, while in the
same time operating in a disordered context.



Chapter 6

Conclusion

In this thesis, we have considered topological properties, effects of driven-dissipative
dynamics and disorder physics in spin systems. From the general definitions introduced
in Sec. 1.1, one can study a topological invariant of a spin-1/2 in a radial magnetic field,
which provides a formalism that can be extended to a spin coupled to an environment (cf.
Chap. 2) and to interacting systems (cf. Sec. 1.1.3 and Chap. 3). In addition, this model
gives a formalism to think about topological invariants in other systems (see Sec. 1.1.2),
such as the Haldane model [9, 35,37], or the p-wave supercoducting wire [51–53].

In Chap. 2, we have then studied a new effect arising when implementing this pre-
scription of a topological invariant using a dynamical protocol and coupling the system to
an Ohmic environment. This effect, called the ‘quantum dynamo effect’ [32,33], occurs
for environment modes close to resonance with the driving velocity and leads to their
coherent displacement, thus corresponding to a work transfer into the bath. This bridges
with recent results in the rapidly developing field of quantum thermodynamics [24–27,67].
We analyzed this effect in detail for a spin coupled to one mode and to an Ohmic bath
using analytical techniques, energetic definitions and numerical approaches, notably exact
diagonalization and a stochastic Schrödinger equation approach (cf. App. B). In this
way, we could find the conditions under which this effect can operate at high efficiency.
Curiously, it is related to the dynamically accessed topological properties of the driven
spin. This work thus opens interesting perspectives for applications with energy transfers
on the quantum scale [74].

We then continued to study topological properties of spins in Chap. 3, but this time
with interactions. Such a setup has been shown to give rise to a fractionalization of the
partial Chern number [12]. Here we studied the interplay of these fractional numbers to
the introduction of an asymmetry due to disorder. We found that this asymmetry, while
leaving the global topology invariant, can lead to a shift from a phase with a 1/2 fractional
topology for each spin to a phase with an integer and a trivial topology for one of the two
sites respectively. However, the introduction of a transverse coupling between the spins,
maintaining the global rotational symmetry, allows to mimick the fractional phase in the
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presence of disorder in the sense of a disorder average. The disorder in this case has the
peculiar effect of extending this fractional phase. The mechanism underlying this extension
is a transition to an entangled singlet state enabled by the disorder. It is therefore a
different effect than the topological Anderson insulator, as its origin is inherently dynamical.
The symmetry breaking due to disorder thus is a two-sided mechanism: On the one hand,
it leads to a finite deviation from the fractionalized topological numbers, on the other hand
it enables their accessibility in another region of phase space. Interpreting the two-spin
setup in terms of Majorana fermions [36] allows to think about the discussed physical
effects in terms of Majorana parities and interpret the fractional numbers as different
Majorana signatures at the two opposite poles. This opens perspectives for applications
as a parity qubit [14,182,189], which bridges with recent experimental progress [17].

In order to study localization phenomena in more extended spin systems and with a
focus on their realization and detection, we introduced a one-dimensional bosonic lattice
model in Chap. 4, which can be mapped onto a spin model in a certain limit giving rise
to a rung-Mott phase. There, we investigate the role of a U(1) gauge field, allowing to
define a current in an analogue of the Meissner effect [197,217,224,225] and its interplay
with a special form of disorder introduced by a second particle species [216]. By studying
different limits of interaction in this effective spin model, we observe that the current
defined from the analogous Meissner effect can be seen as an indicator for localization
due to the interaction with the second particle species. Furthermore, when the second
particle species acquires a quantum dynamics as well, we showed through a relation to Z2

lattice gauge theories on a double well [214,215] how this can hinder the localization of the
current and also considered the limit of very strong coupling to the impurities, in which
an effective spin model featuring four-body interactions can be derived. The relation with
recent works on the relation of such one-dimensional condensed matter systems with Z2

lattice gauge theories opens perspectives on realizations of this setup [213,214].
Finally, in Chap. 5 we inquired about the possibility to realize a many-body localized

(MBL) phase in the model introduced in Chap. 4. Formally, the model we introduced
has been widely studied in this context [119, 120, 126, 249]. We examined the effect of
a binary disorder due to the coupling to impurities, application of a U(1) gauge field
and a finite transverse field. By studying the entanglement entropy, we can identify the
occurence and stability of an MBL phase in our model, which is also witnessed by the
bipartite fluctuations [131,246] and the current defined in Chap. 4, already for relatively
short systems. The study of the localization properties of such spin systems together
with the formalism introduced in Sec. 1.1 for defining the topology of a single spin-1/2
opens interesting perspectives on studying their interplay. As MBL naturally bridges
with thermal properties of quantum systems, this can then potentially also be linked with
the discussion of thermodynamic properties and the quantum dynamo effect discussed in
Chap. 2.
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Appendix A

Résumé en français

Cette thèse de doctorat porte sur l’étude du désordre, de la localisation, de l’interaction
avec un environnement et de la topologie dans des systèmes quantiques à plusieurs corps,
en particulier dans les systèmes de spin. Elle vise à étudier cette interface à la fois d’un
point de vue fondamental et afin de développer des perspectives en ce qui concerne les
applications dans la technologie quantique. Cette thèse se concentre particulièrement
sur les systèmes de spin, qui constituent une plateforme accessible pour sonder les effets
mentionnés ci-dessus et sont également intéressants du point de vue des réalisations
expérimentales et des applications. Pour un spin-1/2 dans un champ magnétique radial, la
topologie peut être définie à partir des pôles de la variété d’état fondamental. Ce modèle
est analogue à plusieurs autres modèles de la matière condensés, tels que le modèle de
Haldane ou le fil de Kitaev. La définition de la topologie dans le modèle de spin peut être
étendue aux systèmes en interaction composés de plusieurs spins et aux systèmes ouverts
couplés à un environnement.

Expérimentalement, cette topologie peut être mesurée en utilisant un protocole dy-
namique pilotant le champ magnétique agissant sur le spin au cours du temps. Pour cette
configuration, la thèse étudie un ‘effet de dynamo quantique’, se produisant comme une
conséquence de la dynamique dissipative entraînée lors du couplage à un environnement. Il
existe une relation curieuse entre cet effet et la ‘topologie accédée dynamiquement‘ du spin.
Cette thèse étudie et définit les propriétés thermodynamiques de cet effet correspondant
à une conversion de travail à travail, déplaçant de manière cohérente certains modes de
l’environnement et ouvrant ainsi des perspectives pour le transfert d’énergie à l’échelle
quantique à travers un environnement. Les définitions et les mesures sont comparées
à l’aide de différentes techniques analytiques et numériques pour évaluer la dynamique
dissipative entraînée.

Dans les systèmes en interaction composés de plusieurs spins, la topologie de chaque
spin peut être étudiée et il a été montré précédemment qu’elle peut donner des valeurs
fractionnaires en fonction de la symétrie du modèle. Cette thèse met l’accent sur le
comportement de cette phase topologique fractionnaire lors de l’introduction du désordre

166



APPENDIX A. RÉSUMÉ EN FRANÇAIS 167

et montre que ce dernier peut conduire à son extension. Une interprétation de ces effets
en termes de fermions de Majorana est discutée et permet d’envisager des applications en
information quantique.

Les effets du désordre et de la physique de la localisation sont examinés en profondeur
pour un modèle qui peut être réalisé à partir d’atomes froids et qui, dans une certaine
limite, peut également être représenté par un modèle de spin. Une forme particulière de
désordre peut être réalisée dans ce système par le biais d’un couplage avec une deuxième
espèce de particule. Dans ce cas, il existe un lien intéressant avec les théories de jauge
sur réseau Z2 lorsque les impuretés introduisant le désordre dans le système acquièrent
elles-mêmes une dynamique quantique. Cette thèse étudie l’interaction d’un champ de
jauge U(1) appliqué permettant de définir un courant local avec cette forme particulière
de désordre et propose en particulier d’utiliser ce courant comme indicateur des propriétés
de localisation. Une étude numérique utilisant la diagonalisation exacte démontre la
présence d’une phase localisée à N-corps dans ce modèle. Elle est identifiée à partir du
comportement de l’entropie d’intrication et attestée par les fluctuations bipartites et le
courant local.

La thèse ouvre des perspectives pour une compréhension fondamentale de l’interaction
de la topologie, de la dynamique des systèmes ouverts et des effets de désordre dans les
systèmes quantiques et fait le lien avec les réalisations expérimentales et les applications.

L’étude des propriétés topologiques des systèmes de matière condensée a attiré beaucoup
d’attention ces dernières années. Au cœur de cet intérêt se trouve le fait que les phases
topologiques ne peuvent pas être expliquées par la théorie traditionnelle de la rupture
spontanée de symétrie formulée par Landau [1, 2]. Les phases topologiques constituent
donc de nouvelles phases de la matière, ce qui rend leur étude pertinente du point de
vue de l’intérêt physique fondamental. Comme le suggère le nom ‘topologique’, ces
propriétés ne dépendent pas de changements locaux, mais sont plutôt évaluées comme
une propriété globale du système [2]. L’intérêt qu’elles suscitent est en outre alimenté
par des propriétés exotiques qui sont prometteuses pour des applications technologiques:
Une caractéristique commune des phases topologiques est une correspondance ‘cœur-
bord’ (bulk-edge), dans laquelle les propriétés topologiques du cœur se manifestent par
l’apparition d’états topologiquement protégés à la frontière du système [3]. Un exemple est
celui des isolants topologiques, qui sont isolants dans leurs cœurs, mais qui présentent des
modes de bord conducteurs, qui sont en fait liés aux propriétés topologiques du cœur [2].

Un exemple concret et fondamental est l’effet Hall quantique découvert expérimen-
talement en 1980 [4]. Dans un gaz d’électrons bidimensionnel soumis à un fort champ
magnétique, on a constaté que la résistance de Hall transversale (et donc aussi la conduc-
tance de Hall σxy) développe des plateaux quantifiés par des nombres entiers. La stabilité
remarquable de ces plateaux laisse entrevoir leur origine topologique. La relation trouvée
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expérimentalement est la suivante

σxy = ν
e2

h
, (A.1)

où e est la charge élémentaire, h est la constante de Planck et ν est un nombre entier. Des
considérations théoriques sur cet effet particulier ont suivi [5–7]. La structure des bandes
d’un gaz d’électrons bidimensionnel dans un champ magnétique intense est décrite par
des niveaux de Landau, avec des bandes interdites entre eux. On peut montrer que la
conductivité transversale due à une bande est liée à sa topologie: En particulier, l’entier ν
observé expérimentalement est donné par la somme d’un invariant topologique - le fameux
nombre de Chern - pour chaque bande occupée, c’est-à-dire [2, 7]

ν =
∑
α

Cα, (A.2)

avec

Cα = 1
2π

∫
d~kFα~k . (A.3)

Ici, Fα~k = ~∇Aα~k est la courbure de Berry de la bande α définie à partir de la connexion
de Berry Aα~k = i

〈
ψα(~k)

∣∣∣ ~∇~k ∣∣∣ψα(~k)
〉
avec

∣∣∣ψα(~k)
〉
la fonction d’onde de Bloch [8] et

l’intégration s’étend sur la première zone de Brillouin. De même que l’intégrale de la
courbure de Gauss définit le genre d’une surface, le nombre de Chern est un invariant
défini à partir d’une intégration de la courbure de Berry sur la zone de Brillouin. Ceci
démontre la nature topologique de l’effet Hall quantique.

En 1988, Haldane a réalisé qu’un effet Hall quantique similaire pouvait également
se produire dans un modèle de réseau, à savoir le graphène avec des sauts complexes
supplémentaires entre voisins suivants les plus proches [9]. Dans cette configuration,
que nous décrirons brièvement dans la Sec. 1.1.2, des états de bord chiraux peuvent
être obtenus explicitement comme une manifestation de la correspondance cœur-bord
mentionnée ci-dessus [2]. En tant que modèle de réseau, une caractéristique attrayante du
modèle de Haldane est qu’il peut être réalisé à l’aide d’implémentations accordables [10],
ce qui le rend intéressant à la fois pour les vérifications expérimentales des propriétés
topologiques, mais aussi pour les développements théoriques ultérieurs de celles-ci (voir
par exemple [11–13]). Un autre exemple de la correspondance cœur-bord est celui d’un
fil supraconducteur topologique, que nous présenterons également dans la Sec. 1.1.2. Il
possède une phase topologique, dans laquelle il présente des modes de bord exotiques de
Majorana [14].

Les phases de la matière quantique dotées de propriétés topologiques sont attrayantes,
car ces propriétés sont stables face aux perturbations locales et au désordre, et donc
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intéressantes pour les applications technologiques [2]. En particulier, le fil supraconduc-
teur mentionné ci-dessus présente un grand intérêt pour les applications potentielles de
l’informatique quantique topologique [15–17]. Pour revenir à l’exemple de l’effet Hall
quantique mentionné ci-dessus, on peut d’une part montrer que la quantification de la
conductance transversale par des nombres entiers est stable lorsqu’on ajoute un petit
désordre [6]. D’autre part, et de manière moins intuitive, le désordre joue un rôle crucial
dans l’apparition des plateaux de Hall quantique en localisant des états qui ne contribuent
pas à la conductivité (voir Sec. 1.3.1). L’interaction entre les propriétés topologiques et le
désordre est donc un domaine complexe, qui donne lieu à des propriétés subtiles, comme
nous le discutons également au Chap. 3.

L’étude des effets de désordre dans les systèmes quantiques a elle-même donné lieu à
une variété de nouveaux phénomènes et phases curieux. La localisation d’Anderson [18], un
phénomène se produisant pour les particules dans un environnement ‘sale’, intrinsèquement
en raison du caractère ondulatoire des particules quantiques, a été une étape importante
dans ce domaine. Nous nous concentrons sur les effets de localisation dans un système
quantique particulier conçu pour une réalisation expérimentale dans le chapitre 4. Depuis
les travaux d’Anderson, l’étude de configurations plus complexes avec des interactions entre
particules [19–21] a ouvert la voie à la découverte d’un phénomène appelé ‘localisation à N-
corps’, décrivant des systèmes fermés qui ne se thermalisent pas après une longue évolution
temporelle. Remarquablement, ce phénomène est le seul mécanisme connu qui présente
cette caractéristique de non-thermalisation de manière robuste [22]. La compréhension de
cette phase est essentielle pour concevoir des applications dans les technologies quantiques
fonctionnant dans le régime désordonné en présence d’interactions [23]. Nous présentons
une étude des propriétés de localisation à N-corps d’un système de spin particulier au
chapitre 5.

Cependant, la nécessité de comprendre les notions thermodynamiques dans le domaine
quantique afin de permettre des applications fonctionnelles est plus générale. Même si
les lois de la thermodynamique, formulées pour les systèmes classiques, peuvent être
généralisées aux environnements quantiques sous certaines restrictions [24], il existe des
configurations quantiques qui ne sont pas décrites par ces conditions [25, 26] et des
généralisations sont souhaitables [27]. Au chapitre 2, nous examinons un effet ‘dynamo
quantique’, qui décrit une situation dans laquelle un système dynamique couplé à un
bain peut, sous certaines conditions, transférer du travail dans le bain. Curieusement,
cette configuration et cet effet présentent des parallèles avec un invariant topologique qui
peut être défini pour un spin dans un champ magnétique radial, mais qui est en fait un
modèle ayant plusieurs analogues dans la matière condensée, comme le modèle de Haldane
mentionné plus haut.



Appendix B

Summary of numerical methods

In this thesis, we have developed and utilized a variety of numerical methods, on the one
hand in order to check the validity of analytical results, on the other hand also to get
a better understanding of the properties of the examined physical systems in order to
then define directions of further investigation. In the following, we will first give a simple
overview over exact diagonalization (ED) techniques (used to obtain results throughout
this thesis) and consequently give an introduction to the stochastic Schrödinger equation
approach to solve the spin dynamics in the spin-boson model, which has been used in
Chap. 2

B.1 Exact diagonalization

In simple terms, exact diagonalization is employed to solve the Schrödinger equation
corresponding to a quantum system exactly by diagonalizing a matrix representation of
the Hamiltonian in a certain basis. This explains the term ‘exact diagonalization’, as
basically one attempts to diagonalize the Hamiltonian matrix numerically. In practice, it
is convenient to use the package QuTip [256], which simplifies the representation of the
operators in terms of matrices and provides a variety of tools to analyze the results.

B.1.1 Time-independent problems

The simplest case is that where the Hamiltonian operator does not depend on time and
one simply aims to find its eigenvalues and corresponding eigenstates. This can be realized
using, e.g., the QR algorithm, decomposing the matrix into an orthogonal and an upper
triangular matrix [257]. In practice, for spin systems as the one considered in Eq. (1.4),
one often chooses the eigenstates of the σz matrix as basis vectors, which corresponds
to the usual Pauli matrices as representations for the spin operators. This gives a 2-by-
2 matrix for a single spin, corresponding to the two-dimensional Hilbert space of the
spin. The situation is slightly more complicated for two coupled spins, as in Eq. (1.34).
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Operators acting on a single spin are promoted to operators in the Hilbert space of the
two spins by forming a tensor product with the identity operator in the other subspace.
The Hamiltonian should thus be written as

H = Hrad,1 ⊗ 12 + 11 ⊗Hrad,2 + rzσ
z
1 ⊗ σz2, (B.1)

where 1i denotes the identity operator in the subspace of the i-th spin. In terms of
matrices, a tensor product operator can be represented by the Kronecker product of the
two matrices.

More generally, in order to diagonalize the Hamiltonian of spin chains, as the one from
Eq. (4.7), one needs to promote local operators to the Hilbert space of the entire system,
i.e., for a local operator A acting on the i-th spin, one has

Ai = 11 ⊗ · · · ⊗ 1i−1 ⊗ A⊗ 1i+1 · · · . (B.2)

Interaction terms are written in a similar way with the tensor product of two local operators
embedded in the full Hilbert space. The size of the Hilbert space increases rapidly with the
system size. For N coupled spin-1/2, the Hilbert space size is 2N . This explains why ED
can be used only for small systems - increasing the system size, the size of the Hamiltonian
matrix grows exponentially.

The same principle works when considering a spin coupled to a number of bosonic
modes, i.e., when discretizing Eq. (2.1) as described in Sec. 2.3.3. Coupling of the spin to
the j-th bath mode would be expressed through an operator

σz

2 gj(b
†
j + bj) = σz

2 ⊗ 11 ⊗ · · · ⊗ 1j−1 ⊗ gj(b†j + bj)⊗ 1j+1 ⊗ · · · , (B.3)

where 1i is the identity operator acting on the j-th mode. Note that the subspaces for the
bosonic modes in general have sizes larger than two and in practice should be chosen such
that they are well above the maximally reached occupation.

This recaps how the Hamiltonian can be set up in order to implement a numerical
exact diagonalization for a time-independent problem. In the following, we will discuss
time-dependent problems and cases, where one is interested in the time-evolution of an
initial state.

B.1.2 Time evolution and time-dependence with ED

To evaluate the unitary time-evolution of an initial state, one needs to solve the time-
dependent Schrödinger equation

i∂t |ψ(t)〉 = H(t) |ψ(t)〉 . (B.4)
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In order to solve it numerically, one needs to discretize the time axis, which is done
by partitioning it as (t0, t1, ..., tN−1, tN) into N intervals of length ∆t . The simplest
method to discretize the differential on the left hand side is the Euler scheme, that gives
∂t |ψ(t)〉 = (|ψ(tn+1)〉 − |ψ(tn)〉)/∆t, where a discrete time step ∆t needs to be fixed.
Consequently, one can obtain an iterative formula by considering the right hand side of
Eq. (B.4) at a discrete time as well: Choosing H(tn) |ψ(tn)〉, one speaks of a ‘forward
Euler’ or ‘explicit Euler’ scheme. Here, we rather choose the ‘backward Euler’ or ‘implicit
Euler’ scheme setting H(tn+1) |ψ(tn+1)〉 due to its favorable stability. Then one obtains
the iterative prescription

|ψ(tn+1)〉 = (1 + i∆tH(tn+1))−1 |ψ(tn)〉 , (B.5)

thus amounting to inverting the matrix 1 + i∆tH(tn+1). In practice, more refined implicit
schemes based on discretization of the Schrödinger equation are available in QuTip and
are used for solving the time dynamics. This has been used in Chaps. 2, 3 and 5.

If the Hamiltonian is time-independent and one is mainly interested in a time-evolved
state at one certain later instant of time, another possibility to evaluate a time-evolved
state consists in directly using the time-evolution operator. This relies on the solution of
Eq. (B.4) of the form

|ψ(t)〉 = e−iHt |ψ(0)〉 . (B.6)

This way relies on computing a matrix exponential and has been used in Chap. 5 to obtain
Fig. 5.7, where we evaluated expectation values only for one certain time.

B.2 Stochastic Schrödinger Equation for the
spin-boson model

When coupling a system to a bath, this implies the presence of an infinite amount of degrees
of freedom. Since ED reaches its limits already for a few coupled degrees of freedom, other
methods are needed to study open system dynamics, as done in Chap. 2 and in particular
in Sec. 2.3. As mentioned there, the spin dynamics can be expressed using the influence
functional to account for the bath effects [76,79] through the path integral in Eq. (2.66).
This formulation has lead to several numerical approaches [75,137,138,258–261]. In Sec. 2.3,
we use the numerically exact stochastic Schrödinger equation (SSE) approach which had
previously been developed in our group [75, 137, 138, 151] to study the thermodynamic
properties of the quantum dynamo effect. In this section, we will summarize the theory
underlying this numerical approach and the concrete implementation realized during this
PhD.
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B.2.1 Rewriting the influence functional

As described in Sec. 2.3.2, one expresses elements of the reduced density matrix of the
spin as a double path integral over classical spin paths through Eq. (2.66). In this section,
we will exemplify the calculation of the upper diagonal matrix element of the reduced spin
density matrix (i.e., initializing the spin with σi, σ′i = 1 and evaluating the path integral
for σf , σ′f = 1).

We are starting from the expression of the influence functional given by Eq. (2.67),
which we print here again:

F [σ, σ′] = exp
(
− 1
π

∫ t

t0
dτ
∫ τ

t0
dτ ′[−iL1(τ − τ ′)ξ(τ)η(τ ′) + L2(τ − τ ′)ξ(τ)ξ(τ ′)]

)
. (B.7)

It uses the reparametrization η(τ) = 1
2(σ(τ) + σ′(τ)) and ξ(τ) = 1

2(σ(τ)− σ′(τ)), repre-
senting the symmetric and antisymmetric spin paths. Also, the bath correlation functions
were defined by

L1(t) =
∫ ∞

0
dωJ(ω) sin(ωt), (B.8)

L2(t) =
∫ ∞

0
dωJ(ω) cos(ωt) coth

(
βω

2

)
. (B.9)

We first reparametrize the spin paths in terms of the times at which a (classical) spin
along one of the two paths σ(t) or σ′(t) is flipped, that is the system switches between a
sojourn (η = ±1 and ξ = 0) and a blip (ξ = ±1 and η = 0). Writing

ξ(t) =
2n∑
j=1

Ξjθ(t− tj), (B.10)

η(t) =
2n∑
j=0

Υjθ(t− tj), (B.11)

with {Ξ1,Ξ2, ...,Ξ2n} = {ξ1,−ξ1, ...,−ξn} and {Υ1,Υ2, ...,Υ2n} = {η0,−η0, ...ηn}, the
influence functional in Eq. (B.7) can be written in the simple form

Fn[{Ξj}, {Υj}, {tj}] = Q1Q2, (B.12)

with

Q1 = exp
 i
π

2n∑
j>k≥0

ΞjΥkQ1(tj − tk)
 , (B.13)

Q2 = exp
 1
π

2n∑
j>k≥1

ΞjΞkQ2(tj − tk)
 . (B.14)
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The functions Q1(t) and Q2(t) are the second integrals of the bath correlation functions
L1(t) and L2(t), which for an Ohmic spectral density and T = 0 read

Q1(t) = 2πα arctan(ωct), (B.15a)
Q2(t) = πα log

(
1 + ω2

c t
2
)
, (B.15b)

as given in Eqs. (2.73) of the main text.
We see that through the influence functional in Eq. (B.12), a blip is coupled to all

previous blips and sojourns, thus making the problem non-Markovian and difficult to
solve. In order to find analytical expressions for the elements of the density matrix, one
thus has to resort to approximation schemes or numerical techniques. The NIBA, whose
results were given in Eqs. (2.70) of the main text, can be justified from here by neglecting
interactions between blips and blip-sojourn interactions except for neighboring ones [64]. In
this chapter, we rather seek to explain how Eq. (B.12) can be used to develop a stochastic
approach to tackle the spin dynamics from the real-time path integral numerically.

B.2.2 A stochastic Schrödinger equation

To simplifiy the notation, let us call the upper left element of the density matrix

p(t) = 〈↑ |ρs(t)| ↑〉 = 1 + 〈σz(t)〉
2 , (B.16)

and write out the effect of
∫
DσA[σ] in Eq. (B.7), which are given by [33]

∫
DσA[σ] =

∞∑
n=0

∫ t

0
dtn
−iH sin(vtn)

2

∫ tn

0
dtn−1

−iH sin(vtn−1)
2 × · · ·

· · · ×
∫ t2

0
dt1
−iH sin(vt1)

2 × exp
(
−i
∫ t

0
dτ
H cos(vτ)

2 σ(τ) |{t1,t2,...,tn}
)
. (B.17)

It can be shown that one then finds [33,75,151]

p(t) = 1 +
∞∑
n=1

∫ t

0
dt2n

iH sin(vt2n)
2 × ...×

∫ t2

0
dt1

iH sin(vt1)
2

∑
(Ξj ,Υj)

FnHn. (B.18)

Here, the spin part of the Hamiltonian contributes by flipping the spin (which allows to
rewrite the path integral as a series of spin flips) and through the bias-dependent factor
Hn which is given by

Hn = exp
−i 2n∑

j=1
Ξj

∫ tj

0
H cos(vt′)dt′

 . (B.19)
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To simplify the influence functional further from Eq. (B.12), let us first note that for large
ωc, we can safely approximate Q1(t) ≈ π2α [75]. Next, let us define a stochastic field hs(t)
satisfying [151]

hs(t) = 0, (B.20a)

hs(t)hs(s) = 1
π
Q2(t− s) + l1, (B.20b)

with l1 a complex constant. This allows to rewrite Eq. (B.12) through (B.14):

Fn = Q1Q2, (B.21)

= exp
iαπ 2n∑

j>k≥0
ΞjΥk

 exp
 2n∑
j>k≥1

ΞjΞk(h(tj)h(tk)− l1)
, (B.22)

= exp
(
iαπ

n−1∑
k=0

ξk+1ηk

)
exp

 2n∑
j=1

hs(tj)Ξj

. (B.23)

One could now introduce a second stochastic field capturing Q1(t) fully [137], thus departing
from the approximation made above. While this should in principle lead to more precise
results, it has for the present work led to significantly worse convergence and therefore
was not used to obtain the results in Chap. 2. One can rewrite the expression for p(t) in
Eq. (B.18) as an average over realizations of this stochastic field by [151]

p(t) =
∞∑
n=0

∫ t

0
dt2n

iH sin(vt2n)
2 × ...×

∫ t2

0
dt1

iH sin(vt1)
2

2n∏
j=1

V (tj), (B.24)

where V (t) is a 4-by-4 matrix defined in the space of classical double spin states |↑↑〉, |↑↓〉,
|↓↑〉, |↓↓〉 by [75,151,262]

V (t) = H sin(vt)
2


0 e−h −eh 0

eiπαeh 0 0 −e−iπαeh

−e−iπαe−h 0 0 eiπαe−h

0 −e−h eh 0

 , (B.25)

and h(t) is defined from Eq. (B.19) and hs(t) by

h(t) = hs − i
∫ t

0
H cos(vt′)dt′. (B.26)

Finally, in this space, using a time-ordered exponential one can write [75,151]

p(t) = 〈Φf | T e−i
∫ t

0 dt
′V (t′) |Φi〉 = 〈Φf |Φ(t)〉, (B.27)
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where
∣∣∣Φi/f

〉
are states in this four-dimensional space, which for the situation we are

considering (i.e., computation of the upper diagonal element of the reduced spin density
matrix) are represented by (1, 0, 0, 0)T [75]. The equation above defines |Φ(t)〉 as the
solution to

i∂t |Φ〉 = V (t) |Φ〉 . (B.28)

This has the form of a Schrödinger equation for one realization of the stochastic field,
one therefore speaks of the stochastic Schrödinger equation (SSE). Note that V (t) is not
Hermitian, for a single realization of the stochastic field, the evolution of the state vector
|Φ(t)〉 is therefore not unitary [75]. Solving Eq. (B.28) allows to evaluate one realization
of p(t). Averaging over many realizations of the stochastic field, one then finds the value
of the upper diagonal density matrix element. Note that

〈σz(t)〉 = 2p(t)− 1. (B.29)

To find expectation values of σx/y, we need to evaluate off-diagonal elements of the density
matrix. Those have contributions from paths which make 2n− 1 transitions. Therefore,
we need to modify the parametrization of the paths to account for that and modify the
expression of the influence functional such that paths end after 2n− 1 transitions in a blip
state. Essentially, it is as if the system stepped back one time step from a final sojourn
state, therefore in order to find [ρs(t)]12, we need to project out the second component
multiplied by e−h(t). Eventually, it holds that [ρs(t)]ij = 〈Σij|Φ(t)〉 where 〈Σ11| = (1, 0, 0, 0),
〈Σ12| = (0, e−h(t), 0, 0), 〈Σ21| = (0, 0, eh(t), 0) and 〈Σ22| = (0, 0, 0, 1) [151].

We finally comment on the realization of the stochastic field. To realize the field
hs(t) with the properties (B.20), we decompose Q2(t) in a Fourier series. For this, realize
that Q2 is a symmetric function. We can define τ = t/tf so that Q2(τtf) is defined on
τ ∈ [−1, 1]. If we extend this to make Q2(τtf ) a periodic function, it is justified to write
it as a Fourier series. We can write [151]

Q2(τtf )
π

= g0

2 +
∞∑
m=1

gm cos(mπτ), (B.30)

because of the symmetry. Then we can define hs(t) in terms of the Fourier coefficients as

hs(τtf ) =
∞∑
m=1

(gm)1/2 [s1,m cos(πmτ)− s2,m sin(πmτ)] , (B.31)

which with s1,m, s2,m being independent normal Gaussian variables gives the properties
(B.20). Finally, this realization of the stochastic field is used to evaluate V (t) from which
the SSE (B.28) is solved. The result is then the solution averaged over the realizations. In
the simulation, the Fourier coefficients are found using the fast Fourier transform.



Appendix C

Numerical results for bath
observables

In this appendix, we show additional numerical results for the different energy flows
involved in the system described by Eq. (2.1) from exact diagonalization and the SSE
approach for a radially driven spin-1/2 coupled to a finite number of bosonic modes. These
results were obtained for the work [33] and support the claims from Sec. 2.3:

1. In the regime of an efficient quantum dynamo effect, the dynamo efficiency improves
for longer operation time.

2. For strong coupling, the energy of fluctuations defined from Eq. (2.65) will after
some time dominate over the dynamo energy and the effect will thus break down.

In particular, we compare the work Wdr defined in Eq. (2.61), ∆Espin defined from the
integral of Eq. (2.60a), ∆Edyn defined in Eq. (2.64) and ∆Efluct defined in Eq. (2.65). From
the latter, we can identify different contributions to the energy of fluctuations by

Efluct(t) =
∑
k

ωk

(〈(
bk(t)† + gk

ωk
S(t)

)(
bk(t) + gk

ωk
S(t)

)〉
−
∣∣∣∣〈bk(t)〉+ gk

ωk
〈S(t)〉

∣∣∣∣2
)
,

=
∑
k

ωk

(〈b†kbk〉− 〈bk(t)†〉 〈bk(t)〉
)

+ gk
ωk

(〈
S(t)(b†k + bk)

〉
− 〈S(t)〉

〈
b†k + bk

〉)

+ g2
k

ω2
k

(〈
S(t)2

〉
− 〈S(t)〉2

),
=
∑
k

Ebath
fluct,k + Eint

fluct,k + Espin
fluct,k. (C.1)

For the model considered in Secs. 2.2 and 2.3, and for this appendix, we set S(t) = σz(t)
2 .

The advantage of ED is that it allows a direct readout of all the energies, decomposed
over the different bath modes. In contrast, when using the SSE approach (see App. B.2), we
need to infer about the bath observables indirectly, from the result for the spin observables
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together with analytical relations from the complete system dynamics, as demonstrated for
the change in dynamo energy in Eq. (2.64). We first present results from ED for coupling
to a single resonant mode, consequently generalize for coupling to several modes, and
finally show results also from the SSE approach.

C.1 One resonant mode from ED

In the regime of an efficient dynamo (i.e., ηdyn → 1), the fluctuation energy is small
compared to the dynamo energy, as expected from the energy balance in Eq. (2.36). This
can be confirmed with ED, which is shown in Fig. C.1a). It is then interesting to study the
individual contributions to the fluctuations according to Eq. (C.1) (see Fig. C.1b), which
are in this case dominated by the spin fluctuations. This underlines that the effect of the
mode on the spin is not that of a fluctuating force, but rather one could interprete this limit
as the opposite. If we now choose a different regime of stronger coupling (see Fig. C.1c)
and d)), we see that an initially efficient dynamo breaks down after a few rotations, which
is signalled by the energy of fluctuations becoming larger than the dynamo energy. In this
case, the energy fluctuation of the bath mode is growing rapidly. Lastly, for coupling so
large that the spin gets frozen, the dynamo effect does not occur and the work done to the
spin leads merely to a change of energy of the spin and the total fluctuations dominate
the dynamo energy mainly due to spin fluctuations (see Fig. C.1e) and f)).

C.2 Results for several modes from ED

To depart from the one mode dynamo, we simulate a spin coupled to a (small) finite
number of bosonic modes using ED, as described in Sec. 2.3.3 and App. B.1. In this case,
one has access not only to the repartition of energy contributions between the dynamo
energy and the corresponding fluctuations, but also to the contributions to each of these
energy changes due to each mode. Results in the regime of an efficient dynamo are shown
in Fig. C.2. At the poles, the dynamo energy dominates the fluctuation energy and running
the dynamo for some time, it will also start to dominate for all times. We see that the
main contribution to the dynamo energy comes from the resonant mode, as expected.
While the total fluctuation energy is oscillating with an amplitude below the dynamo
energy, its individual components can take large values which cancel each other. Note that
at the poles, all components vanish. The numerical analysis is limited by the fact that the
resonant mode reaches large occupations, which require a larger Hilbert space, making ED
simulations difficult (cf. also App. B.1). Therefore, for stronger coupling, we resort to the
stochastic approach in the following.
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C.3 Results from SSE

Using the results from the stochastic approach, we obtain the spin dynamics and can infer
on Wdr, ∆ES and ∆Edyn. The fluctuation energy ∆Efluct can then be calculated from
the energy balance in Eq. (2.36). Numerical results for driving during half a period for
different values of α are shown in Fig. C.3, with a comparison to the corresponding spin
expectation values. We see that in the regime of an efficient dynamo and when Cdyn ≈ 1
(left column), the change in dynamo energy dominates the fluctuation energy. Consequently,
when Cdyn starts to decrease (middle column), the efficiency of the dynamo decreases (i.e.
∆Edyn < Wdr), until at even stronger coupling (right column) the fluctuations dominate
over the change in dynamo energy.
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Figure C.1: Numerical results from ED for a spin coupled to one resonant mode for
different value of the coupling strength g and the velocity v. On the left, we show results
for the changes in the energies ∆Edyn, ∆Efluct and the work Wdr, while on the right we
show the different components of ∆Efluct. In these simulations, we set H = 1.0 and we
truncate the Hilbert space of the bosonic degree of freedom at a value which we verify to
be well above the maximally reached occupation.
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Figure C.2: a) Energy contributions for the total work and the change in dynamo and
fluctuation energy, summed over all modes. b) Different contributions to the fluctuation
energy. c) Individual contributions to the dynamo energy and d) to the fluctuations coming
from some of the simulated modes (only the results for 6 out of 8 modes are plotted),
normalized by the width of the part of the spectrum discretized by this mode. Here, we
set α = 0.02, used an Ohmic spectral density with a hard cut-off at ωc = 100.0, discretized
it by N = 8 modes and checked that their occupations remain well below the value at
which they are truncated. Furthermore, we set H = 1.0.
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Figure C.3: Results from SSE with an Ohmic spectral density with exponential cut-off
and ωc = 100.0, while H = 1.0. a)-c) show results for the changes in the relevant energies
for three different values of α, while d)-f) show the corresponding spin expectation values
for the corresponding values of α.



Appendix D

Calculations for open quantum
dynamics

D.1 Adiabatic renormalization

In this section, we show how to understand the quantum phase transition in the spin-boson
model without driving at coupling strength α = 1 in terms of an adiabatic renormalization
procedure for the tunneling amplitude, as described in Sec. 1.2.2 following [79]. Considering
the model

H = −∆
2 σ

x + σz

2
∑
k

gk(b†k + bk) +
∑
k

ωkb
†
kbk, (D.1)

with an Ohmic spectral density with exponential cut-off, as in Eq. (1.50), we write the
lowest lying eigenstates as

|Σ±〉 = 1√
2

(|+〉z ⊗ |ψ+〉 ± |−〉z ⊗ |ψ−〉) , (D.2)

with |ψ±〉 =
∏
k<l

|ψ±,k〉 ,

and |ψ±,k〉 = exp
(
∓1

2
gk
ωk

(b†k − bk)
)
|0〉 .

Here ωl = p∆ with p� 1, so that only frequencies larger than this cut-off are included
and modes with lower frequencies are being ignored [79]. The overlap between the two
states defines the renormalized tunneling element, i.e.,

∆′(ωl) = ∆
∏
k>l

〈ψ±,k|ψ±,k〉 = ∆ exp
(
− 1

2π

∫ ∞
ωl

dω
J(ω)
ω2

)
. (D.3)

The tunneling element decreases in this procedure and iterating the prescription, one
can include lower lying modes, since now ωl = p∆′ (and p is fixed). This iteration will
converge to a finite value if for a certain finite frequency ωt, all lower lying frequencies
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ω < ωt satisfy d ln ∆′(ω)
d lnω < 1, which from the structure of Eq. (D.3) is equivalent to [79]

J(ω)
2πω < 1. (D.4)

For our choice of an Ohmic spectral density, this translates to the condition that for
frequencies below a certain threshold, we satisfy αe−ω/ωc < 1. For α > 1, this cannot hold
true, therefore all tunneling is suppressed, i.e., the tunneling element ∆ is renormalized to
zero and the spin becomes completely localized. For α < 1, the above inequality holds
true, the tunneling element gets renormalized in this regime. This can be done by a
self-consistent approach from Eq. (D.3)

∆r = ∆ exp
(
−
∫ ∞
p∆r

dω
αe−ω/ωc

ω

)
, (D.5)

giving [64,79]

∆r = ∆
(
p∆
ωc

) α
1−α

∼ ∆
(

∆
ωc

) α
1−α

. (D.6)

In the last step, we neglected the constant p, which was essentially arbitrary. A careful
analysis, discussed in [79], shows that this is justified with an Ohmic spectral function
technically only for small α. Eq. (D.6) gives the expression for the energy scale ∆r

governing the dynamics in the regime α < 1 used in the main text in Eq. (1.57) (which is
valid strictly speaking only for small α).

D.2 Polaronic transformation

The Hamiltonian in Eq. (D.1), using a similar principle as above, can also be directly
transformed using the so-called polaronic transformation, which displaces the bosonic
modes at the level of the full Hamiltonian, so that the coupling is absorbed into the spin
part of the Hamiltonian. The transformation reads [79]

U = exp
(
−iσ

z

2 Ω
)

with Ω = i
∑
k

gk
ωk

(b†k − bk), (D.7)

transforming the Hamiltonian into

H̃ = −∆
2 e
−iΩσ+ − ∆

2 e
iΩσ− +

∑
k

ωkb
†
kbk. (D.8)
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Considering a situation of weak coupling, we can trace over the bath degrees of freedom
by using the Gaussian property of the fluctuations of the bath modes and calculate [263]

〈
e±iΩ

〉
= e−

1
2〈Ω2〉 = exp

(
−
∑
k

g2
k

2ω2
k

)
, (D.9)

and from here one can again use the adiabatic renormalization procedure to obtain the
renormalized tunneling element in the same form as in Eq. (D.3). The Hamiltonian for
the spin then reads

H̃spin = −∆r

2 σx. (D.10)



Appendix E

Bosonization of the XXZ chain

In this appendix, we show how to go from Eq. (4.26) to Eq. (4.28) from the analysis
in [216]. In fermionic language, we had written the Hamiltonian as

Ha = −2Jxy
∑
i

c†ici+1 + h.c. + Jz
∑
i

(2ni − 1)(2ni+1 − 1) + Uaf
2
∑
i

τ zi (2ni − 1). (E.1)

The Jordan-Wigner transformation (see Eq. (3.31)) maps between spin operators and
fermionic operators on a chain. We can identify the spin raising and lowering operators
with creation and annihilation fermion operators

c†i = s†ie
iπ
∑

j<i
nj . (E.2)

We can decompose the bosonic operator into a density and a phase [203,264]:

s†i = √ρieiθ̃i . (E.3)

If we only consider low energy excitations, we can linearize the spectrum around the Fermi
momenta and define left- and right-moving fermions according to the side of the spectrum
at which they arise [232]. This corresponds to the description of the free fermion model as
a Luttinger liquid [232,265]. Passing to the continuum limit and using the relations (E.2)
and (E.3), while changing the sum to an integral over an infinite chain, we can write for
the left- and right-moving fermions upon linearizing the spectrum [203,231]:

c†R/L(x) =
c†j,R/L√

a
≈ 1√

a
eiθ̃(x)e±iπ

∫ x
−∞ ρ(x)dx

. (E.4)

We then decompose the continuous density operator into a mean and fluctuations ρ(x) =
(ρ0 + ρ̃) with ρ0 = akF/π, and ρ̃ obeys the commutation relation [θ̃(x), ρ̃(y)] = iδ(x− y)
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between the density and the phase [203]. We can write

ρ(x) = ρ0 + ∂xφ̃(x)
π

, (E.5)

where we introduced the field φ(x) by ρ̃ = ∂xφ̃(x)/π. Then the above commutation relation
is achieved for [θ̃(x), φ̃(y)] = iπ2 sgn(x− y). Plugging the form of ρ̃ into Eqs. (E.4) gives,
upon accounting for the normalization imposed by Eq. (E.5),

c†R(x) = 1√
2πa

eiθ̃(x)eikF xeiφ̃, (E.6a)

c†L(x) = 1√
2πa

eiθ̃(x)e−ikF xe−iφ̃. (E.6b)

Multiplying the right-hand sides of the equations (E.6) by the respective Klein factors
UR/L where URUL = i gives Eqs. (4.27) [231]. The total density is then given by

ρ(x) = ρ0 + ∂xφ̃

π
= c†RcR + c†LcL + ei2kF xc†RcL + e−i2kF xc†LcR, (E.7)

and we can write the density fluctuations as

∂xφ̃

π
= lim

a→0
c†R(x+ a)cR(x) + c†L(x− a)cL(x).

For the hopping part of the initial Hamiltonian (E.1), we find in the continuum limit

H = −2Jxy
∫
dxc†(x)c(x+ a) + h.c.. (E.8)

Splitting into the right- and left-moving branches and taking the limit of a→ 0, we obtain
after an integration by parts the Hamiltonian in the Dirac-form,

H = iv0

∫
dx(c†R(x)∇cR(x)− c†L(x)∇cL(x)), (E.9)

with v0 = 4aJxy. The Hamiltonian in terms of the fields φ̃ and θ̃ reads

H = v0

2π

∫
dx((∂xθ̃)2 + (∂xφ̃)2). (E.10)

The interaction term in Eq. (E.1) takes the form 4Jz
∑
i

(
ni − 1

2

) (
ni+1 − 1

2

)
. As we

consider the system at half-filling, we can replace terms like ni − 1
2 directly by the density

fluctuations and then write the interaction term in the continuum limit and omitting the
rapidly oscillating parts as

a8Jz/π
2π

∫
dx
(
∂xφ̃

)2
,
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so that the interacting Hamiltonian can be written upon introducing the Luttinger
parameter K and renormalizing the velocity v as

Ha = v

2π

∫
dx

1
K

(∂xφ̃)2 +K(∂xθ̃)2, (E.11)

with v/a =
√

(4Jxy)2 + 32JzJxy/π and K =
√

4Jxy/(4Jxy + 8Jz/π).
Now, we study the disorder term Uaf

2
∑
j σ

z
j τ

z
j with a staggered configuration τ zj = (−1)j .

In the fermionic language this reads

Uaf
2
∑
j

(−1)j2nj,

where we neglected a constant. In the continuum limit, we write (−1)j → eiπx/a with
x = aj and thus obtain

Uaf
2a

∫
dxeiπ xa (c†LcL + c†RcR) + Uaf

2πa

∫
dx eiπ xa iei2kF xei2φ̃ + h.c.

The first integral can be neglected as it is oscillating rapidly. Since kF = π
2a and x = aj,

eiπ xa ei2kF x = (−1)2 = 1

and we can write the second integral as

−Uaf
πa

∫
dx sin

(
2φ̃
)
.

Then the full Hamiltonian reads

Ha = v

2π

∫
dx
( 1
K

(∂xφ̃)2 +K(∂xθ̃)2
)
− 1
π

∫
dx
Uaf
a

sin
(
2φ̃
)
. (E.12)

This corresponds to Eq. (4.28) in Chap. 4.
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comportement de cette phase topologique fraction-
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terprétation de ces effets en termes de fermions de
Majorana est discutée et permet d’envisager des ap-
plications en information quantique.
Les effets du désordre et de la physique de la localisa-
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peut être réalisé à partir d’atomes froids et qui, dans
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namically accessed topology’ of the spin. This thesis
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