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Résumé

Cette these intitulée "Modeling and simulating virtual terrains” a pour theme la création de contenu
numérique et la simulation scientifique, dans le cadre des terrains virtuels dans les scénes naturelles. Les
terrains sont composés de formes a différentes échelles (micro-échelle, meso-échelle, et macro-échelle),
qui sont le résultat de plusieurs processus physiques entrelacés opérant a différentes échelles temporelles
et spatiales. En informatique, ces formes sont habituellement représentées par des surfaces d’élévation,
mais les formes telles que les arches ou les grottes requierent une représentation volumique. Cependant,
les besoins grandissants de réalisme et de taille des mondes virtuels amenent de nouveaux défis que les
techniques et modeles actuels ne résolvent pas enticrement.

Cette these est séparée en deux parties. En premier lieu, nous observons que plusieurs formes de
terrains a I’échelle macro, telles que les déserts et les méandres de rivieres, ne peuvent pas étre modélisées
avec les techniques actuelles. Partant de cette observation, nous développons de nouvelles simulations
inspirées de la géomorphologie pour modéliser ces phénomenes sur les terrains virtuels. Nous nous
intéressons a la fois au réalisme de nos simulations et au contr6le utilisateur, qui est un aspect clé en
informatique graphique.

Dans la seconde partie, nous nous intéressons a la modélisation et la génération de phénomenes volu-
miques de terrains. Les modeles existants utilisent les voxels et ont un colit mémoire important, ce qui
empéche leur utilisation & grande échelle. A la place, nous proposons un nouveau modele s’appuyant sur
des fonctions de distance signées pour représenter les formes de terrain volumiques, comme les arches,
les surplombs et les grottes, avec un impact mémoire bien plus faible. Nous montrons comment cette
représentation est adaptée pour générer des formes de terrain volumiques a plusieurs échelles (micro-
échelle, meso-échelle, et macro-échelle).

Mots clefs : modeles de terrain, génération procédurale, simulations physiques, surfaces implicites






Abstract

This PhD, entitled "Modeling and simulating virtual terrains" is related to digital content creation and ge-
ological simulations, in the context of virtual terrains. Real terrains exhibit landforms of different scales
(namely microscale, mesoscale, and macroscale), formed by multiple interconnected physical processes
operating at various temporal and spatial scales. On a computer, landforms are usually represented by el-
evation models, but features such as arches and caves require a volumetric representation. The increasing
needs for realism and larger worlds bring new challenges that existing techniques do not fulfill.

This thesis is organized in two parts. First, we observe that several macroscale landforms, such as
desert landscapes made of sand dunes and meandering rivers, simply cannot be modeled by existing
techniques. Thus, we develop new simulations, inspired by research in geomorphology, to generate
these landforms. We particularly focus on the plausibility of our results and user control, which is a key
requirement in Computer Graphics.

In the second part, we address the modeling and generation of volumetric landforms in virtual terrains.
Existing models are often based on voxels and have a high memory impact, which forbids their use at
a large-scale. Instead, we develop a new model based on signed distance functions for representing
volumetric landforms, such as arches, overhangs and caves with a low memory footprint. We show that
this representation is adapted to generating volumetric landforms across a range of scales (microscale,
mesoscale, and macroscale).

Keywords: terrain models, procedural modeling, physical simulations, implicit surfaces
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Résumé long

Au cours des cinquante dernieres années, 1’informatique graphique est devenue un domaine crucial de
I'informatique grace a I’augmentation de la puissance de calcul, et en particulier au développement de
matériel plus puissant. Des algorithmes efficaces et des techniques d’apprentissage automatique ont
profondément changé plusieurs industries et domaines de recherche en permettant I’exploration et la
manipulation de mondes virtuels.

Les mondes virtuels sont composés d’une grande variété d’objets. Dans cette thése, nous abordons
la modélisation et la génération de paysages. Un paysage se compose de différentes parties, notamment
un terrain (avec des chalnes de montagnes, des plaines et des falaises), un écosystéme (avec des arbres,
des buissons et de I’herbe) et des fluides (des masses d’eau et des nuages). Les environnements naturels
sont une composante majeure de I’industrie du divertissement, car ils créent I’ambiance et contribuent
a donner le contexte d’une scene, par exemple dans les jeux vidéo ou les films. Ils sont devenus si
importants que certains films sont tournés entierement en studio avec les acteurs jouant devant un fond
vert, tandis que les paysages et les effets générés par ordinateur sont ajoutés en temps réel ou en post-
traitement pour créer le monde environnant. D’autre part, les sciences naturelles telles que la physique,
la biologie et la géologie font également largement appel a I’informatique, par exemple en développant
des modeles numériques pour simuler la formation des chaines de montagnes ou le comportement des
fluides. La possibilité d’étudier une version simplifiée de notre monde sur un ordinateur a une échelle
donnée permet de mieux comprendre les regles et les processus fondamentaux a son origine, et aide
également a construire des modeles prédictifs.

Dans cette theése, nous nous concentrons sur le terrain qui compose le paysage. Les terrains réels
sont constitués de différentes formes caractéristiques de terrain, comme un sommet de montagne, un
canyon profond avec une riviere, une falaise cotiere avec des surplombs, ou un désert avec des dunes de
sable. Les formes de terrain sont le résultat de processus physiques complexes, tels que 1’érosion (par
I’eau ou le vent), les mouvements des plaques tectoniques ou la glaciation. La compréhension de ces
processus est un domaine de recherche crucial en géomorphologie qui nécessite le développement de
modeles numériques dédiés. Dans I’industrie du divertissement, les terrains virtuels peuvent s’étendre
sur des milliers de kilometres et présenter diverses formes imaginées par des artistes ou générées par des
algorithmes. Nous identifions spécifiquement deux défis concernant les terrains virtuels : le besoin de
variété dans les formes de terrain et le besoin du passage a [’échelle, qui est actuellement une limitation
pour les formes de terrain volumiques.

Variété des reliefs. La grande majorité des techniques de génération de terrain se concentrent sur les
paysages montagneux. Les méthodes existantes s’appuient soit sur des primitives de bruit ou de bruit
fractal (Ebert et al. 1998; Génevaux et al. 2015), enrichies ensuite de caractéristiques d’érosion (§t’ ava
et al. 2008; Kristof ef al. 2009), soit sur des techniques de simulation inspirées de la géomorphologie
qui reproduisent directement 1’aspect dendritique des chaines de montagnes alpines (Cordonnier et al.
2016). Des techniques plus générales basées sur une synthése a partir d’exemples peuvent reproduire
un plus large éventail de reliefs, mais nécessitent des données précises (Zhou et al. 2007; Guérin et al.
2017; Zhao et al. 2019) qui peuvent ne pas étre facilement disponibles. Enfin, les approches de création
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interactives (Gain et al. 2009; Hnaidi et al. 2010; Guérin et al. 2022) permettent de reproduire des
caractéristiques variées telles que des canyons, des rivieres et des falaises, mais nécessitent une longue
séquence d’édition par I’utilisateur. Dans I’ensemble, ces méthodes ne sont pas adaptées a la génération
d’autres formes de terrain telles que les déserts, les rivieres et les glaciers.

Terrains a différentes échelles. Les terrains sont composés de formes de relief a des échelles tres dif-
férentes. La représentation standard, basée sur des modeles d’élévation, ne représente que la surface du
terrain et est particulicrement adaptée a la représentation de reliefs a grande échelle s’étendant sur des
dizaines, voir des centaines de kilometres. Néanmoins, cette représentation ne se préte pas a la modéli-
sation des caractéristiques volumiques telles que les arches, les surplombs et les réseaux de grottes, qui
nécessitent une représentation volumique ou hybride (Peytavie et al. 2009b; Becher et al. 2019). Cepen-
dant, ces modeles volumiques souffrent d’une sévere limitation : 1I’'impact mémoire élevé exclut leur
utilisation a grande échelle. Il existe donc un besoin pour une représentation qui permette de modéliser,
de générer et de créer des terrains virtuels avec des formes de terrain planaires et volumiques sur toute la
gamme d’échelles.

Contributions et plan de la these

Cette theése propose plusieurs contributions concernant la modélisation et la génération de terrains. Nous
commengons par une classification originale des méthodes de génération de terrains reposant sur 1’échelle
spatiale a laquelle elles operent et les formes de terrain qu’elles génerent (Chapter 2). Les caractéris-
tiques du terrain sont organisées en trois catégories : micro-échelle, méso-échelle et macro-échelle.
Cette classification nous aide a mieux comprendre les travaux antérieurs et permet d’identifier plusieurs
phénomenes négligés et leurs limites, principalement dans le domaine de la simulation de caractéris-
tiques macro-échelle et de la modélisation de formes volumiques, qui sont au cceur de nos contributions.

Simulations macro-échelles. Dans la premiere partie de cette thése, nous abordons la simulation de
phénomenes macro-échelles sur des terrains. Nous nous inspirons des classifications et des modeles de
la géomorphologie, et proposons de nouvelles solutions adaptées aux défis de I’informatique graphique.

Nous étudions tout d’abord les méandres de rivieres dans le Chapitre 3 et introduisons une nouvelle
méthode de simulation pour reproduire le comportement complexe des méandres qui évoluent dans le
temps. L’approche présentée, basée sur le calcul de la courbure, permet de générer des bras-mort, des
crevasses et des trajectoires déviées par des événements d’avulsion sur un large réseau fluvial. Nous
incorporons plusieurs niveaux de contrdle afin que I’utilisateur puisse prescrire des trajectoires, placer
ou bouger des points de controle, ou modifier la topographie du terrain en temps réel. Ce travail peut étre
intégré dans les logiciels de modélisation de terrain existants pour générer des réseaux de rivieres avec
des trajectoires de méandres réalistes.

Dans le Chapitre 4, nous abordons le probleme de la simulation des paysages désertiques. La méthode
présentée opere sur une représentation du terrain en couches et inclut la roche, le sable et la végétation,
qui sont stockés comme des surfaces d’élévation sur des grilles régulieres. Nous proposons une ap-
proximation procédurale du vent a la surface du terrain qui prend en compte les obstacles et les effets
d’accélération dus a I’altitude. Nous décrivons comment transporter le sable sur le terrain en simulant des
processus physiques, notamment la saltation, la reptation, I’avalanche et I’abrasion. Nous reproduisons
différents types de dunes, comme les dunes barchan et transverses, mais aussi les yardangs créés par
I’action abrasive du vent sur le substrat rocheux. Le systeme fournit un retour interactif qui permet a
I’utilisateur d’ajouter ou de retirer du sable, de modifier le régime de vent ou de modifier la densité de
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végétation. Cette recherche peut également étre intégrée dans des logiciels de modélisation de terrain,
avec pour but de générer des paysages désertiques.

Modélisation volumique de terrain. La deuxiéme partie de cette theése se concentre sur la modéli-
sation et la génération de terrains volumiques. Les modeles volumiques existants (voxels et piles de
matieres) sont coliteux en mémoire et ne peuvent pas étre utilisés pour représenter de grands terrains.
Au lieu de cela, nous développons un modele mathématique pour modéliser et générer des terrains
volumiques basés sur des fonctions de distance signées. Nous montrons que les surfaces implicites
constituent un cadre de modélisation expressif qui peut étre utilis€ pour la modélisation de terrains a
plusieurs échelles (microscale, mesoscale, et macroscale).

Dans le Chapitre 6, nous développons de nouvelles techniques pour générer de maniere procédurale
des formes de terrain volumiques a grande échelle telles que des arches, des surplombs cotiers et des
hoodoos, sous forme d’arrangements de primitives a squelette telles que des spheres et des courbes.
L’érosion est guidée par une fonction qui associe une valeur de résistance a chaque point de 1’espace.
Les formes volumiques lisses qui en résultent peuvent étre générées sur plusieurs kilometres de maniere
efficace grace a la nature compacte des fonctions de distance signées. Cependant, les formes de terrain
a grande échelle qui présentent une structure précise, comme les réseaux karstiques, sont fastidieuses
a générer a ’aide des techniques présentées, et les formes de terrain générées manquent également de
détails méso et micro-échelle, qui sont le sujet des chapitres suivants.

Dans le Chapitre 7, nous abordons la génération de réseaux karstiques composés de tunnels et de
grottes. Notre méthode repose sur un calcul de plus court chemin anisotrope qui prend en compte des
parametres géologiques (tels que les horizons, la perméabilité et les fractures), et est capable de générer
un graphe orienté. Nous reproduisons différents types de réseaux identifiés en géomorphologie, tels que
les réseaux rectilignes ou anastomosés. A partir de ce graphe, nous générons la géométrie des tunnels et
des grottes en utilisant des primitives et des opérateurs de distance signés optimisés.

Enfin, le Chapitre 8 s’attaque au probleme de la génération de formes de terrain volumiques détaillées
a l’aide de fonctions de distance signées. En identifiant les archétypes de distributions de fractures
en géomorphologie, nous sommes en mesure de générer de manicre procédurale différents types de
structures de blocs qui présentent des détails et des motifs méso et micro-échelle. Ces blocs, encodés de
maniere compacte sous forme de fonctions de distance signées, sont ensuite utilisés pour amplifier les
terrains générés dans les chapitres précédents.

Replicabilité de la recherche. La reproduction de résultats est essentielle pour faire progresser 1’état
de I’art dans tous les domaines de recherche. En informatique graphique, cela peut se faire en partageant
le code nécessaire a la reproduction des résultats présentés dans 1’article associé. Chaque chapitre de
cette these (a 'exception de Chapter 3, qui est toujours un travail en cours) a donné lieu a la publication
d’un code publique sur Github. Le code publié a été retravaillé de fagcon a minimiser les dépendances, et
est exécutable sur les systemes Windows et Linux. Dans la mesure du possible, nous avons également
soumis le dépot a I'initiative de réplicabilité.






Chapter 1

Introduction

During the past fifty years, Computer Graphics has emerged as a crucial domain of computer science
thanks to the increase in computational power, particularly the development of more powerful hardware.
Efficient algorithms and machine learning techniques have profoundly changed several industries and
research areas by enabling the exploration and manipulation of virtual worlds.

FIGURE 1.1: Virtual landscapes encompass a wide variety of features, such as a terrain (with cliffs,
mountain ranges), fluids (water bodies, clouds), an ecosystem (with trees, grass, and bushes), and urban
elements (roads, cities). Images from the video games Red dead redemption (left), and Death stranding
(right).

Virtual worlds are composed of and encompass a vast variety of objects. In this thesis, we address
the generation of natural landscapes. A landscape consists of different parts, including a terrain (with
mountain ranges, plains, and cliffs), an ecosystem (with trees, bushes, and grass), and fluids (water
bodies and clouds). Natural environments are a major component in the entertainment industry, as they
set the mood and help to give the context of a scene, for instance in video games or movies (Figure 1.1).
They have become so crucial that some movies are shot entirely in studio with actors playing in front
of a green screen, while computer-generated landscapes and effects are added in real-time or as a post-
processing step for creating the surrounding world. In contrast, natural sciences such as physics, biology,
and geology also greatly rely on computer science, for instance by developing numerical models for
simulating the formation of mountain ranges or the behavior of fluids. The ability to study a simplified
version of our world on a computer at a given scale allows for a better understanding of the rules and
fundamental processes at its origin, and also helps in building predictive models.

In this thesis, we focus on the relief of the terrain that composes the landscape. Real terrains are made
of different landforms or features, such as a high mountain peak, a deep canyon with a river, a coastal
cliff with overhangs, or a desert with sand dunes. Terrain landforms are the result of complex physical
processes, such as erosion (by water or wind), tectonic plate movements, or glaciation. Understanding
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these processes is a crucial area of research in geomorphology which requires the development of dedi-
cated numerical models. In the entertainment industry, virtual terrains may span thousands of kilometers
and may exhibit various shapes made by artists or generated by algorithms. We specifically identify two
challenges regarding virtual terrains: the need for variety in terrain landforms and the requirement for
scale, which is currently a limitation for volumetric landforms.

Variety of landforms. The vast majority of terrain generation techniques focus on mountainous land-
scapes. Existing methods either rely on Fractal noise or noise primitives (Ebert et al. 1998; Génevaux
et al. 2015), later enhanced with erosion landmarks (St ava et al. 2008; Kristof ez al. 2009), or simulation
techniques inspired by geomorphology that directly reproduce the dendritic aspect of alpine mountain
ranges (Cordonnier et al. 2016). More general techniques based on a synthesis from exemplars can re-
produce a wider range of landforms, but require precise elevation data (Zhou et al. 2007; Guérin et al.
2017; Zhao et al. 2019), which may not be readily available. Lastly, authoring approaches (Gain et al.
2009; Hnaidi et al. 2010; Guérin et al. 2022) can reproduce varied features such as canyons, rivers, and
cliffs, but require fine editing by the user. Overall, these methods are not suited for the generation of
other terrain landforms such as deserts, rivers, and glaciers.

Terrains across a range of scales. Terrains are composed of landforms with vastly different scales.
The standard representation, based on elevation models, represents only the surface of the terrain and is
particularly adapted for representing large-scale landforms spanning dozens of kilometers (Figure 1.2).
Nonetheless, it does not lend itself to modeling volumetric terrain features such as arches, overhangs,
and cave networks, which require a volumetric or hybrid representation (Peytavie ef al. 2009b; Becher
et al. 2019). However, these volumetric models suffer from a severe limitation: the high memory impact
precludes their use at a large-scale. There is thus a need for a representation that allows modeling,
generating, and authoring of virtual terrains with both planar and volumetric landforms across the entire
range of scales.

FIGURE 1.2: Planetary world engines are limited to elevation models and cannot properly represent
volumetric features. Images from the Outerra engine.

Contributions and outline

This thesis proposes several contributions concerning terrain modeling and generation. We start with a
new classification of terrain generation methods based on the spatial scale at which they operate and the
landforms that they generate (Chapter 2). Terrain features are organized in three categories: microscale,
mesoscale and macroscale landforms. This classification helps us to build a better understanding of
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previous works and allows us to identify several neglected phenomena and limitations, mainly in the
area of macroscale landform simulation and volumetric terrain modeling, which are the core of our
contributions.

Most results presented here have been published as articles in international journals (Paris et al. 2019b;
Paris et al. 2019a; Paris et al. 2020; Paris et al. 2021) (including a best paper award), as well as in
a national conference with a second best paper award (Paris et al. 2018). The research presented in
Chapter 3 is a work in progress and has not yet been published. Other works have been published during
this thesis through collaborations, but are not presented in this manuscript (Argudo et al. 2019; Argudo
et al. 2020; Galin et al. 2020). Additionally, videos for each chapter as well as interactive demos can be
found on this webpage: https://aparis69.github.io/public_html/publications.
html.

Macroscale simulations. In the first part of this thesis, we address the simulation of macroscale phe-
nomena on terrains. We take inspiration from classifications and models from geomorphology, and
propose new solutions adapted to the challenges of Computer Graphics.

We first study meandering rivers in Chapter 3 and introduce a new simulation for reproducing the
complex time-evolving behavior of meanders. The presented curvature-based approach allows gener-
ating oxbow lakes, crevasses and deviated trajectories by avulsion events over a large river network.
We incorporate several levels of control so that the user may prescribe trajectories, place control points,
or modify the terrain topography in real-time, and let the simulation adapt. This work may be easily
integrated in existing terrain modeling softwares for generating river networks with realistic meander
trajectories and patterns.

In Chapter 4, we tackle the problem of simulating desert landscapes. The presented method operates
on a layerfield representation with bedrock, sand, and vegetation stored as elevation models on regular
grids. We propose a procedural approximation of the wind at the surface of the terrain that takes into
account obstacles and acceleration effects due to altitude. We describe how to transport sand across the
terrain by simulating physical processes, including saltation, reptation, avalanching, and abrasion. We
accurately reproduce different types of dunes, such as barchan and transverse dunes, but also yardangs
created from the abrasive action of the wind over bare bedrock. The proposed framework provides
interactive feedback, which allows the user to add or remove sand, modify the wind regime, or place
vegetation. This research may also be integrated in modeling softwares to generate desert landscapes.

Volumetric terrain modeling. The second part of this thesis concentrates on volumetric terrain mod-
eling and generation. Existing volumetric models (voxels and layer stacks) are memory intensive and
cannot be used for representing large terrains. Instead, we develop a complete framework to model,
generate, and author volumetric terrains based on signed distance functions. We show that implicit sur-
faces are an expressive modeling framework that can be used for terrain modeling across multiple scales
(microscale, mesoscale, and macroscale).

In Chapter 6, we develop new techniques for procedurally generating large-scale volumetric landforms
such as arches, coastal overhangs and hoodoos, as arrangements of skeletal primitives such as spheres
and curves. The erosion is guided by a function that associates a resistance value to every point in
space. The resulting smooth volumetric landforms can be generated across several kilometers efficiently
due to the compact nature of signed distance functions. However, large-scale landforms that exhibit a
precise structure, such as karstic networks, are tedious to generate using the presented techniques, and the
generated landforms also lack mesoscale and microscale details, which is the topic of the next chapters.
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In Chapter 7, we address the generation of karstic networks made of tunnels and chambers. Our
method relies on an anisotropic shortest path computation that takes into account geological parameters
(such as inception horizons, permeability, and fractures), and is capable of generating a directed graph
that represents different types of networks identified in geomorphology, such as rectilinear or anastomotic
mazes. From this graph, we generate the geometry of tunnels and chambers using optimized signed
distance primitives and operators.

Finally, Chapter 8 tackles the problem of generating detailed volumetric terrain landforms using
signed distance functions. By identifying fracture distribution archetypes in geomorphology, we are
able to procedurally generate different types of block structures that exhibit mesoscale and microscale
details and patterns. These blocks, compactly encoded as signed distance functions, are then used to
amplify the terrains generated in previous chapters.

Research replicability. Replication of the latest research results is essential to advance the state of the
art in all research domains. In Computer Graphics, this may be done by sharing the code necessary to
reproduce the results shown in the associated paper. Every chapter (except for Chapter 3, which is still
a work in progress) has led to a public code release on Github. The released code has been reworked to
minimize dependencies, and is runnable on both Windows and Linux systems. Whenever possible, we
also submitted the repository to the Replicability Stamp initiative.
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Virtual terrains have been an active subject of research in the last decades, dating back to Musgrave
et al. 1989 for the first terrain generation and erosion algorithms. Since then, an active research direction
has been to generate terrains that exhibit realistic features, using a variety of algorithms and authoring
techniques, with various applications in the entertainment industry, geology and scientific simulations.

In this chapter, we present an overview of terrain models and explain their advantages and limitations
(Section 2.1). Particularly, we show how existing volumetric models are not adapted for representing
large virtual worlds with landforms of multiple scales. Then, we address terrain generation methods
(Section 2.2). These are usually classified into three categories: procedural techniques, physical simu-
lations and synthesis from examples (Galin et al. 2019). We depart from this classification and analyze
existing methods from a new perspective inspired by analysis made in geology, focusing on the spatial
and temporal scales of terrain landforms. Despite decades of research on terrain modeling, we show
that there is still no solution for generating certain terrain landforms, such as meandering rivers, cave
networks covering dozens of kilometers, or desert landscapes with dunes and yardangs.

2.1 Terrain models

There are several ways to represent a terrain on a computer. This choice mainly depends on the target
application (video games, scientific simulations), the type of landforms (mountain ranges, caves, hills),
and the scale. We divide terrain models in two main categories: elevation and volumetric representations.
Elevation models are the most popular representation, as they provide a sufficiently accurate approxima-
tion of a terrain while being compact in memory. However, they cannot represent volumetric landforms,
such as karstic networks, overhangs and arches, which are crucial scenic elements of virtual worlds. In
this section, we present the most popular models but do not aim at describing all existing terrain repre-
sentations. Particularly, we set aside hexagon and triangular fields (Dixon et al. 1994) and combinatorial
maps (Damiand et al. 2014; Crespin et al. 2014), and refer the reader to the associated papers for more
details on these models.

2.1.1 Elevation models

Planar models (or heightfields) are the most common representation for virtual terrains. They are char-
acterized by a function h : R?> — R computing the elevation z at every point in a domain ) € R?. The
domain 2 is usually a rectangle R (a,b) with a and b the opposite corners in the plane. The elevation
function h may be defined by a combination of analytic primitives or discrete elevation data (Figure 2.1).

7 z
A 4 Interpolated h(p)
h(p) \ e \
. . ; x x
Analytic elevation Discrete elevation

FIGURE 2.1: Heightfields can be represented either by an analytic function (e.g. from an aggregation of
primitives), or by discrete elevation data.
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FIGURE 2.2: The model from Génevaux et al. 2015 allows representing large-scale terrains with multiple
levels of detail, here going from the macroscale to the mesoscale. However, erosion landforms such as
gullies and ravines cannot be generated because of the procedural nature of the representation.

Discrete representations define the elevation h(p) as the interpolation of altitude at discrete points,
usually distributed on a regular grid (Figure 2.1, right). Bilinear interpolation is the fastest method,
with efficient implementation on graphics hardware for textures, but only provide C° continuity. On
the other hand, biquadratic (C'') and bicubic methods (C?) require more neighboring values (9 and 16
respectively), are slower to compute, but provide a smoother reconstruction of the surface.

A key advantage of discrete models is the ability to define altitude from Digital Elevation Model
(DEM) captured by remote sensing. In geology, this allows the analysis of real terrains, for extracting
characteristics or predicting the evolution of the topography through time. In the entertainment industry,
digital elevation models empower the creative process, where real and artificial terrains are combined
together to create convincing landscapes.

Discrete models, particularly those based on regular grids, lend themselves to physical simulations
(Musgrave et al. 1989; Cordonnier et al. 2017) as they provide a simple definition of the neighborhood
for each cell, which is often needed to transport material between cells. Alternative discretizations, such
as Triangular Irregular Networks (TIN), have also been used for simulations (Cordonnier et al. 2016) but
require explicit computations to find neighbors between cells. Discrete heightfields also lend themselves
to machine learning techniques, (Guérin et al. 2017; Zhao et al. 2019; Zhang et al. 2022) and by-example
synthesis (Zhou et al. 2007; Tasse et al. 2012; Gain et al. 2015; Argudo et al. 2017; Scott et al. 2021).

Function-based representations also referred to as proce-

dural models, define the elevation by a closed-form mathemat- Replace 7
ical expression. They were first introduced by Génevaux et al. - El d g

2015 for modeling large-scale terrains (Figure 2.2). The el- I /en\ Final terrain
evation function is defined by a construction tree of implicit

primitives and operators, taking inspiration from the Blob Tree  Riyer .
(Wyvill ef al. 1999). Let f : R? — R denote the evaluation Bumpy hills ~ Smooth hills
function of the construction tree (Figure 2.3), the surface H Figure 2.3: Hierarchical terrain

of the terrain is defined as the set of points (p, f(p)) in space 0del from Génevaux et al. 2015,
within a domain Q2 € R?:

" ={(p,f(p)) € R? p € Q}

Primitives are constructed by combining an elevation function » : R? — R and a weight function
a : R? — [0,1]. The elevation is usually defined as a combination of carefully-designed noise func-
tions, and the weight is a classical falloff function (Wyvill et al. 1999) that describes how primitives are
merged together within operators. The construction tree can be exploited to compute Lipschitz bounds
hierarchically, which in turn allows rendering the terrain directly with sphere tracing (Hart 1996).
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FIGURE 2.4: Cordonnier et al. 2017 use multiple material layers, such as sand, rocks, and vegetation to
generate complex virtual terrain models and simulate their evolution through time.

This representation is compact in memory and theoretically provides infinite precision. It also lends it-
self to compression and amplification, for instance by using a sparse representation based on a dictionary
of patches (Guérin ef al. 2016). However, the evaluation of i (p) may be computationally demanding,
and modeling realistic landforms requires a fine-tuning of noise-based primitives, which can be tedious.
Another crucial limitation of procedural models is that they cannot be used with simulations, as it is not
possible to transport material between different locations because of the implicit nature of the represen-
tation.

Multi-layer extensions for handling multiple material layers can be defined easily by using one height-
field (discrete or procedural) per material. This layer-field data structure can be constructed as a function
I : R? — R defined from multiple elevation functions h; as:

I(p) =ho+ Y _hi(p)
i=1

The term hg denotes the elevation of the bare bedrock, and h; the thickness of the different materials
such as sand, water or rocks. Layer-fields were first used by Musgrave et al. 1989 which modelled a
layer of sediments on top of the bedrock layer for simulating hydraulic erosion. Additional layers, such
as sand, rocks, and vegetation are also possible, at the expense of additional memory (Benes et al. 2001;
Génevaux et al. 2015; Cordonnier ef al. 2017). The ability to define multiple layers allows simulating a
wider range of effects, such as the combination of ecosystem and terrain simulation as demonstrated by
Cordonnier et al. 2017 (see Figure 2.4).

Conclusion. Elevation models are used extensively in video games, Geographic Information Systems
(GIS), and physical simulations, as the representation is compact in memory and can be used efficiently
with LOD techniques, therefore allowing the modeling of large-scale terrains. However, this representa-
tion forbids the modeling of volumetric features such as arches and overhangs. This limitation is partially
alleviated by placing assets often defined as triangle meshes (for instance in video games), or by using
displacement techniques (Gamito et al. 2001). Still, modeling truly volumetric landforms such as caves
and arches simply cannot be done with elevation models.

2.1.2 Volumetric models

Volumetric landforms, such as cave networks, overhangs, and arches, are crucial visual elements of
virtual terrains which cannot be captured by elevation models (Section 2.1.1). They are defined by
a function v : R® — N which computes the material index for every point in space. The simplest
representation uses 0 for air and 1 for bedrock, but other materials such as sand or different types of



2.1. Terrain models 21

Sand s 7:BOX B —1 1 Air

fi— Stones
¥

N
\

Bedrock

Voxels Layer stacks

FIGURE 2.5: Existing volumetric models include voxels (left) and layer stacks (right). In both cases, the
memory footprint is high, which limits the extent of the domain or the precision of the terrain.

bedrock can be defined. The function v can be constructed in different ways, for instance using voxels
or layer stacks (Figure 2.5).

2.1.2.1 Voxels

Voxels are a fully explicit representation where the terrain is stored in a three-dimensional grid (Fig-
ure 2.5, left). Each cell is assigned an integer value representing the associated material, such as bedrock,
sand, water, or air. They provide a convenient authoring framework to the user, with the ability to sculpt
the landscape by using dedicated brushes for adding or removing different materials, or by using con-
trol curves (see Figure 2.6 and Becher et al. 2019). As for discrete elevation models, voxels are well
suited for physical simulations, with applications to erosion (Beardall ef al. 2007; Jones et al. 2010). The
smooth surface of the terrain can be reconstructed by polygonizing the voxel field using Marching Cubes
(Wyvill et al. 1986; Lorensen et al. 1987).

FIGURE 2.6: Becher et al. 2019 use voxels and 3D feature curves to generate volumetric landforms such
as arches and fictional floating islands.

The main limitation of voxels is the O(n?®) memory cost, which makes the representation unsuited
for large and detailed landscapes. Compression techniques such as Sparse Voxel Octrees (SVO) (Laine
et al. 2010) only partially alleviate the problem, even when exploiting symmetry or treating the octree
as a directed acyclic graph (Kédmpe et al. 2013; Villanueva et al. 2017). Still, voxels remain a popular
model in the industry for authoring 3D models (in softwares such as MagicaVoxel) or generating complex
landscapes (in video games such as Minecraft).
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2.1.2.2 Hybrid models

Layer stacks, inspired by multi-layer heightfields, include air as a ma-
terial for representing volumetric terrains. They represent the terrain
as intervals of constant material stacked on top of each other (see Fig-
ure 2.5, right). A smooth representation f : R? — [—1,1] of the
terrain can be reconstructed by applying a convolution operator, de-
noted as @, between the discrete layer stacks v and a box filter &:

Vu(p) FIGURE 2.7: The Arches model
f(p)=2v@®k(p) -1 v®k(p) = Vs from Peytavie et al. 2009b.

With Vo the volume of the material intersecting the box, and Vg the volume of the convolution box
B (see Figure 2.5, right). Layer stacks belong to hybrid models, in between procedurally-defined func-
tions and discrete representations based on (adaptive) grids or triangular irregular networks. They have
been used in (Peytavie et al. 2009b; Peytavie et al. 2009a) for modeling landscapes featuring arches,
overhangs, and piles of rocks (Figure 2.7). However, the smooth reconstruction of the surface is compu-
tationally intensive because of the convolution operator, and the memory impact still forbids the use of
layer-stacks for large terrains.

Conclusion

The main restriction of existing volumetric models lies in the discrete nature of the representation. They
have a high memory requirement (scenes are usually limited to a 256 or 512 grid resolution), which limits
the precision and therefore the extents of the terrain. This makes existing volumetric models unsuited for
representing large-scale or detailed terrains, which is a key requirement for virtual worlds.

While the percentage of volumetric landforms in real terrains is rather small, they have a major impact
on the overall visual perception of the scene. Thus, there is a need for a sparse representation of volu-
metric features compatible with elevation models used for representing large-scale terrains. Interestingly,
procedural models created using a construction tree of closed-form expression primitives have been ap-
plied successfully with elevation terrains (Génevaux et al. 2015), but they have not yet been used in the
context of volumetric terrains. In Part II of this thesis, we present a procedural model for volumetric
terrains based on a construction tree of signed distance functions.

2.2 Classification of terrain generation methods

Terrain generation methods are usually classified in three categories: procedural methods, simulation
techniques, and example-based synthesis (Galin ef al. 2019). This classification builds on the under-
lying technical aspects of the methods. So-called procedural methods encompass phenomenological
approaches, i.e. techniques that directly reproduce the appearance of a terrain landform from observa-
tions. In contrast, simulation techniques approximate natural phenomena such as hydraulic, thermal or
aeolian erosion to simulate the evolution of the terrain throughout time. Finally, example-based methods
aim at generating terrains by combining different real world exemplars from a large dictionary. However,
as real terrains are the result of complex geomorphological processes, it is interesting to analyze terrain
generation techniques from a more geological perspective. Particularly, studying the spatial and temporal
scale of terrain landforms has been done for centuries by geologists and provide a better understanding
regarding how landforms emerge and evolve.
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Scale Size range Example of landforms

Microscale | 10cm-10m Sand ripples, rock arrangements, ventifacts
Mesoscale | 10m-1km Cliffs, arches, ravines and gullies
Macroscale | 1km-100km Sand dunes, river networks, cave networks
Megascale | 100km-10000km | Mountain ranges, continents

TABLE 2.1: Scale classification used in this thesis.

In this chapter, we take inspiration from geology and geomorphology and categorize terrain gen-
eration methods depending on the spatial scale at which they operate, and on the landforms they are
trying to reproduce. We distinguish four spatial scales: microscale (10cm-10m), mesoscale (10m-1km),
macroscale (1-100km) and megascale (100-10000km), as denoted in Table 2.1. Whenever possible, we
classify terrain landforms in groups. For instance, we do not consider a single mountain, but the entire
mountain ranges it belongs to, as a single landform. To determine the size, we consider the horizontal
extent of the terrain feature.

Figure 2.8 depicts such a classification for important landforms, each one annotated with the number
of research papers dealing with these terrain features. Recall that this figure is subjective and should
not be interpreted as strict classification. However, it is useful to emphasize global areas of interest in
terrain modeling from the Computer Graphics community. For instance, many papers are interested in
the generation of mountainous landscapes, possibly with erosion features for creating ravines and gullies,
while volumetric landforms such as arches and overhangs received less attention.

Generating microscale features such as sand ripples and details over the bedrock is often done using
noise, which has been thoroughly investigated (Perlin et al. 1989; Worley 1996; Lagae et al. 2009;
Tricard et al. 2019). Larger details of a few meters wide, such as piles of rocks and stones or arrangements
of interleaved objects such as branches or leaves, can be generated using specific techniques (Peytavie
et al. 2009a; Grosbellet et al. 2016; Guérin et al. 2016). For the mega-scale, dedicated methods operate
at continental or even planet-scale (Derzapf et al. 2011; Cortial et al. 2019; Cortial et al. 2020). We refer
the reader to (Galin et al. 2019; Wei et al. 2009; Dong et al. 2020) for more details on mega-scale terrain
generation methods and texture synthesis techniques.
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lOOOOyT | Glaciers (0) | ‘Continent-scale landforms (3)
‘ Canyons (1) ‘

1000y

V\ Caves (5)
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FIGURE 2.8: Landform classification based on their temporal and spatial scale, with numbers in paren-
thesis representing the amount of papers addressing the generation of these landforms in Computer
Graphics.
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In this thesis, we particularly focus on the mesoscale and the macroscale. The following sections
classify existing terrain generation methods depending the generated landforms and their associated spa-
tial scale. We often refer to terrain features by using their geological name, and refer the reader to
Appendix B for a visual depiction of terrain landforms.

2.3 Scale-agnostic methods

Many methods cannot be classified depending on their spatial scale, as they provide a framework or
a system that can generate landforms at different levels of detail. This category includes noise-based
methods, example-based techniques (including machine learning), and interactive systems that rely on
procedural brushes as well as sketching frameworks. Here, we review such methods and discuss their
limitations.

2.3.1 Noise-based techniques

The first terrain generation method was introduced by Musgrave et al. 1989 and defined the elevation
as a fractal sum of noises (Perlin er al. 1989; Ebert et al. 1998), also referred to as turbulence. Let
n : R? — [~1,1] denote a noise function with a frequency of 1, i.e. where n interpolates values or
gradients defined at every integer position, we define the turbulence ¢ as:

o—1
t(p) =Y _ an(pp:)
i=0

Where o denotes the number of octave in the fractal, a, refers to the amplitudes, and ¢; to the frequencies.
These two terms are defined as geometric series: a; = aop’ and ¢; = ¢ol’, where ag and g are the
base amplitude and frequency, [ € [0, 1] is the lacunarity, and p € [0, 1] denotes the persistence. The
persistence and lacunarity defines how the amplitude and frequency decrease in the successive octaves,
respectively. This definition of the turbulence, based on Perlin or Simplex noise (Perlin ef al. 1989),
allows creating smooth uniform landscapes, and subsequent works have been interested in generating
more variations. Parberry 2015 tunes Perlin noise to ensure an exponential distribution of the gradient,
with a view to fitting slope distributions to histograms observed on real terrains, but is still limited
regarding the generated features (Figure 2.9, right). Ridge noise was introduced to better represent sharp

FIGURE 2.9: Noise-based methods exhibit self-similar characteristics across their whole domain. There
is thus a need for improving the terrain by adding hydraulic erosion landmarks (Musgrave et al. 1989,
left. Image from Bohdan Bilous), or modulating the noise function to better reproduce slope distributions
of real terrains (Parberry 2015, right).
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crests and ridges, and is simply defined by using an absolute value 7(p) = 1 — |n(p)| (Ebert et al. 1998).
Another possibility for introducing more variation is through the use of multi-fractals. These are defined
by modifying the fractal sum with a function «, so that the amplitude at step k& + 1, denoted as a1,
should be weighted according to the value obtained at the previous octave:

ter1(P) = a(tr(p))arr1n(pyi) +te(P)  to(P) = aon(pPyo)

Using this formulation means that lower elevations at step k, denoted as tx(p), scale down higher fre-
quencies and leads to smooth valleys, whereas high values of ¢;(p) boost high frequencies to enhance
mountain peaks with smaller details. Finally, another possibility to generate noise with variations is by
applying deformations through the use of warping functions, usually made of rotations and translations,
which transforms the point p using a 2 X 2 rotation matrix or a two-dimensional translation vector. Proce-
dural noises are compact in memory (only the definition of the function must be stored), can be evaluated
on the fly, and can indeed be used to generate mountain-like landscapes at a certain scale. A step forward
in controlling the extent of terrain landforms was proposed by Génevaux et al. 2015, which uses compact
noise primitives for defining the elevation, and operators to combine them and construct the final terrain.

The main limitation of noise-based methods is the self-similarity of the generated pattern leading to
unrealistic terrains, which limits its use to a restricted domain. Noise is also completely scale-agnostic,
which is both an advantage as it can be used for generating textures, landscapes or other volumetric
effects, and a limitation as the generated features are not realistic from a geological point of view.

2.3.2 Faulting approaches

The faulting algorithm was introduced to generate fractal terrains (Mandelbrot 1983; Ebert et al. 1998).
The method proceeds by repeatedly generating random vertical faults ¢;, and displacing the points up-
wards or downwards on either side depending on their distance to the faults d(p, ¢;). More formally, let
g denote a smooth step function parameterized by a radius of influence R, the elevation of the terrain is
defined by summing the influence of the faults as:

hp) =Y filp)  fi(p) = aigod(p, i)
i=0

Where a; denotes the vertical displacement of the fault ¢; at step ¢. The faulting algorithm can be
applied to a sphere for generating planets (Fournier et al. 1982a). As with noised-based approaches,
several papers took interest in adding control over the process, for instance by controlling the elevation of
certain region in the domain (Kamal et al. 2007). Although the methods differ, the result is similar to sum
of fractal noise and suffer from the same limitations. Faulting approaches are also more computationally
intensive as they cannot be evaluated on the fly, as opposed to noise-based methods.

2.3.3 Subdivision schemes

Subdivision schemes generate a terrain iteratively by subdividing the
spatial data structure (usually a regular grid) to add more details.
The midpoint subdivision algorithm was introduced by Fournier et
al. 1982a; Fournier et al. 1982b, and recursively adds details by refin-
ing a grid and adding random displacements to the new points (Fig- FIGURE 2.10: Diamond-square
ure 2.10). Additional control is possible by constraining the subdi- subdivision algorithm  from
vision for generating river networks (Kelley et al. 1988; Derzapf et Galin et al. 2019.
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al. 2011), or crest features (Belhadj et al. 2005). Recently, subdivision schemes were adapted for the
real-time amplification of planetary terrains in Cortial et al. 2020. The method starts from an initial
low resolution map of the main zones of the planet (mountain ranges, deserts, seas), refines a spherical
mesh in real-time depending on the viewpoint of the camera, and finally assigns elevations according to
the low resolution map to create terrain landforms. The technique allows for a real-time exploration of
planetary-scale terrains up to a resolution of a few meters and generates varied terrain landforms. At the
exception of Cortial et al. 2020, subdivision schemes lack user-control over the generated features. Fur-
thermore, none of these methods can represent volumetric landforms, as subdivision schemes are based
on elevation models.

2.3.4 Example-based techniques

FIGURE 2.11: Terrain generated by stitching patches from real exemplars from Zhou et al. 2007. Given
a carefully crafted dictionary, the method can reproduce varied landforms such as canyons and mountain
ranges.

Apart from noise-based techniques, there are other methods that are scale-agnostic. Example-based
techniques are a powerful tool for generating realistic terrains by stitching real terrain patches (Brosz
et al. 2007; Zhou et al. 2007; Tasse et al. 2012; Gain et al. 2015) or patches (Guérin et al. 2016) together
(Figure 2.11). Machine learning methods (Guérin et al. 2017; Zhao et al. 2019; Zhang et al. 2022) learn
a correspondence between a user sketch map and scans of real terrains, and thus belong to this category
as well.

One limitation of example-based methods is that even though the generated terrain is built as a combi-
nation of real exemplars, there is no guarantee to get a realistic terrain in output. Particularly, the drainage
network of the final terrain might contain many pits (cells with no outgoing flow), which are relatively
rare from a geological point of view in real terrains. These methods are also heavily reliant on sourcing
high quality digital elevation models (DEMs) for constructing the exemplar or training database. Even
though it is theoretically possible to reproduce different archetypes of landforms using well-made dictio-
naries, researchers mostly concentrated their efforts on mountains and canyons, whereas other features
such as deserts, rivers, cliffs and hills have been neglected. These mesoscale landforms require precise
elevation data which may not be readily available, and using low resolution maps as exemplars does not
allow reproducing features such as the sharp crests of sand dunes or escarpments in cliffs.

2.3.5 Editing and sketching frameworks

There exist other papers that describe editing framework or sketching interfaces, with the vast majority
also focusing on alpine mountain generation (Carpentier ef al. 2009; Gain et al. 2009; Passos et al. 2013;
Tasse et al. 2014). A notable exception is the feature-curve framework from (Hnaidi et al. 2010), which is
capable of generating barchan dunes, canyons, and terrains with rivers enforced by the user. A diffusion
algorithm operating on a multigrid is used to reconstruct the surface of the terrain. The gradient-based
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FIGURE 2.12: Gradient-domain authoring (Guérin et al. 2022) offers powerful tools to the user, where
elevation (white) and gradient (yellow) constraints on points and along curves can be placed to create
different landforms such as peaks, table mountains, crevasses and canyons.

authoring framework presented by Guérin et al. 2022 exhibits similar capabilities and provides more
intuitive control to the user, such as cut-and-paste operations and sketching tools that supports both point
and curve constraints (Figure 2.12).

Conclusion

Scale-agnostic methods are useful for reproducing landforms at different scales (mainly at mesoscale
and macroscale), but cannot reproduce the entire variety of terrain landforms. Noise-based techniques
are limited to features of a certain scale, and do not contain any geological features such as erosion
landmarks. Editing and sketching frameworks provide an efficient authoring environment for the user,
but they cannot be used solely to create landscapes, as sketching an entire terrain from scratch is a tedious
and time-consuming task. Overall, scale-agnostic methods are a complementary tool for generating and
authoring virtual terrains but must be complemented with dedicated algorithms for the generation of
specific landforms such as erosion patterns, canyons or desert features.

2.4 Mesoscale landforms

We classity mesoscale terrain features in the spatial range of 10m to 1km. This includes landforms that
are usually created with elevation models such as gullies, ravines, and cliffs, but also the vast majority
of volumetric landforms, including arches, overhangs, and hoodoos. We list existing methods for repro-
ducing these terrain features below and also discuss the limitations of elevation models regarding the
representation of mesoscale cliffs.

2.4.1 Gullies, ravines and floodplains

Gullies and ravines are usually present on steep slopes of mountains and hills. They are characterized by
narrow passages that can span hundreds of meters in width and dozens of meters in depth. These land-
forms are the result of hydraulic erosion, where rainfall water progressively carved the erodible material
when running down the terrain slope. Gullies and ravines are complementary to sediment floodplains, as
the eroded material is transported downbhill by water and deposited on flat areas of the terrain.

These terrain features have been extensively studied in Computer Graphics since the seminal work
of Musgrave et al. 1989, which proposed the first model of hydraulic erosion (Figure 2.13, right). This
method mimics the behavior of erosion on a discrete elevation model using simple transport rules, where
sediment are carried by water running down the slope which progressively creates erosion landforms.
Roudier et al. 1993 extended this approach to account for multiple materials with different geological
properties to generate terrains with more variations. The main issue with these methods is that they do
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FIGURE 2.13: Gullies and ravines generation has been an active subject of research in terrain mod-
eling, with methods based on smooth particles hydrodynamics (Kristof et al. 2009, left), shallow-water
simulations (St ava et al. 2008, center) or grid-based hydraulic erosion (Jdké et al. 2011, right).

not work with any physical units, and the transport rules are relatively simple when compared to a real
fluid simulation. Thus, they belong to phenomenological approaches rather than accurate simulations
of hydraulic erosion, even when computing the water flow from a velocity field as done in Chiba et al.
1998.

More physically-based methods were then developed to simulate the behavior and erosion action of
water on a terrain, for instance using Navier-stokes equations (Neidhold et al. 2005; Benes et al. 2006).
Under the right initial conditions, these methods can theoretically reproduce varied terrain landforms,
including gullies and ravines but also waterfalls and small meanders. However, they are computationally
intensive and require a voxel representation, which limits their use to small domains. The shallow-water
model used by Benes 2007 is a simplification of the Navier-Stokes equations and is a fast and simple
method to simulate hydraulic erosion that can be efficiently implemented on graphics hardware (Mei
et al. 2007; Stava et al. 2008; JAko6 et al. 2011; Vanek et al. 2011). In practice, a shallow-water erosion
model is usually preferred to a full Navier-Stokes simulation, mainly for computational efficiency reasons
which allows its use on larger domains (Figure 2.13, center).

Alternative approaches represent the fluid using smooth particle hydrodynamics (SPH) (Kristof et al.
2009; Skorkovska et al. 2015). These methods can reproduce visually convincing erosion landforms, but
require hundreds of thousands of particles even for small terrains (Figure 2.13, left), thus they cannot be
used for generating gullies and ravines on large mountain ranges.

Screes and debris accumulation

Unstable cell

Independently of the underlying simulation method, hydraulic erosion
o >tan o,

is often coupled with material stabilization (also referred to as ther- o
mal weathering), which was first introduced by Musgrave et al. 1989 / ~ Sliding
and later formalized with the layer field representation by Benes et —AY

al. 2001. Thermal weathering is the physical process in which rocks |
expand and contract due to temperature changes, leading to granular —
material that are transported by water. The stabilization process is
based on the repose angle of the material, which is the steepest angle
to which it can be piled without slumping (Figure 2.14). This process
is particularly important in the case of sediments carried by water and
deposited on flat areas of the terrain, or in the case of sand dunes in desert landscapes. Using thermal
erosion, sediments are treated as a granular material that stacks progressively in a physically plausible
way.

FIGURE 2.14: Granular mate-
rial stabilization process.
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24.2 Cliffs

A cliff is a vertical bedrock landform, generally defined by a steep angle. They are formed by erosion
processes and can be found in numerous places such as coasts, mountains or along rivers. Cliffs are very
important landforms in terrain modeling, with applications in urban planing (where it is important to
understand the evolution of the cliff through time) and also in the entertainment industry (where cliffs are
used as a central part of the gameplay). Cliffs can have different visual appearances, exhibiting clear and
structured stratification, or a more uniform look depending on the properties of the underlying bedrock
material. Thus, they are often composed of multiple volumetric features, such as small overhangs or
visible strata of different sizes.

In practice, cliffs are usually represented with elevation models
(Section 2.1.1), even though the steep nature of these landforms
makes it challenging to represent with such structure due to the in-
sufficient precision on the vertical parts of the terrain. The method
described in Benes et al. 2005, which took interest in modeling ta-
ble mountains with mesas and slopes of sediments, is a clear example
of such limitation. Elevation models are well suited for representing
planar areas, gentle slopes, and even mountains that are not too steep,
but are limited when it comes to vertical parts (steep parts of mesas).
Furthermore, overhangs and structured cliff faces are not easy to rep-
resent with elevation models.

Warping the terrain horizontally as described in Gamito et al. 2001

FIGURE 2.15: A cliff with over-  can potentially solve this issue, and has been used to represent over-

hangs modeled in the Arches hangs near waterfalls in Emilien et al. 2015. However, the warping

system (Peytavie et al. 2009b).  strength must remain small enough to avoid non-manifold configu-

rations in the terrain, thus it can only represent small overhangs. To

fully capture the volumetric landforms of a cliff, one must resort to voxels (Ito et al. 2003) or layer

stacks (Peytavie et al. 2009b) (Figure 2.15). These methods suffer from current volumetric models lim-

itations, and are thus constrained to range-limited domains. Overall, capturing the complex microscale
and mesoscale volumetric landforms of cliffs is a difficult task which is still an open research question.

2.4.3 Arches and overhangs

Arches are one of the most scenic volumetric landforms in virtual
terrains. An arch (also called a bridge) is a mesoscale landform pos-
sibly spanning dozens of meters, commonly found near inland cliffs
and coasts. They are usually formed from narrow bedrock formations
with different materials, which are progressively eroded. An alcove
is slowly created due to softer bedrock, which finally leads to an arch
when it collapses on the ground. In the same category, we include
large overhangs of dozens of meters (not the small scale overhangs
found on cliff faces, discussed in Section 2.4.2) which are a common
feature in coastal cliffs, created by the physical action of repeating
waves hitting the cliff.

FIGURE 2.16: Arches modeled
Modeling such visually arresting landforms has attracted the atten-  py, Peyravie et al. 2009b.

tion of Computer Graphics researchers for a while. As these features
are volumetric at their core, they cannot be properly represented by elevation models, even when using
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warping (Gamito et al. 2001). Existing volumetric solutions are most often based on authoring frame-
works, and use feature curves (Becher et al. 2019), open-shape grammars (Dey et al. 2018), or sculpting
brushes (Peytavie et al. 2009b) to create such volumetric landforms (Figure 2.16).

Interestingly, the automatic generation (by using procedural methods or simulations) of arches and
overhangs have not been investigated, at the exception of Crespin ef al. 2014 which modeled 3D erosion
with generalized maps. However, the method is limited to small domains, operates under relatively sim-
ple initial conditions and remains computationally intensive even for small-scale shapes. In the second
part, we address the efficient modeling and procedural generation of arches and overhangs (Chapter 6).

2.4.4 Hoodoos

Earth pyramids (also called a Hoodoo, a Goblin, or a fairy
chimney) is a tall vertical spire of rock formed by erosion.
The alternating pattern of soft and hard bedrock layers leads to
columns with lots of small and large overhangs. Hoodoos are
particular terrain landforms that usually exhibit unique shapes
carved by wind and hydraulic erosion (many have the shape of
a mushroom) and sizes (from a few meters to dozens of meters).
FIGURE 2.17: Hoodoos generated by From a terrain modeling perspective, their very vertical aspect
Jones et al. 2010. makes them a challenging landform that requires a volumetric

model to be properly reproduced. Existing methods focus on
the generation of a single hoodoo by using spheroidal erosion (Beardall et al. 2007; Jones et al. 2010)
on a voxel model with different material properties to generate bedrock formation with diverse rounded
shapes (Figure 2.17). While the generated Hoodoos are visually convincing, the method requires a fine
voxel grid to capture the mesoscale and microscale details of the shape.

Another interesting aspect of hoodoos is that they are often found in large fields, for instance in Bryce
Canyon National Park, Utah. Modeling such a vertical landforms over large spatial zones is challenging
for current volumetric models, and to the best of our knowledge, there are no methods for generating
large fields of hoodoos in a virtual terrain, which is a problem we tackle in Chapter 6.

Conclusion

While there are numerous methods for generating mesoscale landforms on virtual terrains, there are
still open challenges. Particularly, steep landforms such as cliffs (Section 2.4.2) and volumetric features
such as arches and overhangs (Section 2.4.3) can only be properly reproduced using fully volumetric or
hybrid models, both of which have a high memory impact (Section 2.1.2). This limitation also forbids
the creation of large-scale volumetric landforms, such as overhangs along coastal cliffs, or fields of
hundreds of hoodoos. In Part II, we introduce a new model based on implicit surfaces that provides an
efficient representation of vertical areas of the terrain, which in turn allows generating detailed cliff faces,
overhangs, and arches over large spatial scales.

2.5 Macroscale landforms

Macroscale terrain features are classified in the spatial range of 1 — 100km. They include popular
landforms such as mountain ranges, rivers, and canyons usually represented by elevation models, but also
underground karstic networks made of tunnels and chambers, which require a volumetric representation.
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We demonstrate that the vast majority of techniques concentrate on the formation of mountain ranges
and that several important macroscale landforms have been neglected.

2.5.1 Mountain and hill ranges

A mountain is defined as a steep portion of terrain with a peak that is the higher elevation point. While
the difference between a hill and a mountain is largely subjective, hills are usually viewed as less steep
and not as tall as mountains, and exhibit rounder shapes overall. A mountain or hill range is simply
defined as a series of mountains or hills arranged together, usually following a line pattern. They are the
result of complex geological processes operating over large (millions or billions of years) time scales,
including tectonic forces, weathering, and glacial erosion.

FIGURE 2.18: Large-scale terrains with realistic mountain ranges generated with the stream power
simulation from Cordonnier et al. 2018a.

Mountain ranges have been a popular research subject in the past decades, as they are one of the
most popular terrain landforms. Until recently, the majority of methods for generating mountain ranges
were either based on noise or a combination of noise-based primitives (Musgrave et al. 1989; Génevaux
et al. 2015), or example-based synthesis techniques (Zhou et al. 2007; Tasse et al. 2012; Gain et al.
2015). We discussed these scale-agnostic methods in Section 2.3. Here, we detail geologically-based
approaches such as the work of Cordonnier ef al. 2016. They introduced the Stream Power equation to
the Computer Graphics community, which models the evolution of mountains as an equilibrium between
tectonic uplift (which grows mountains) and fluvial erosion (which carves erosion landmarks) using the
following equation:

IVh| =u—s"a™

Where u denotes the uplift, s is the slope, a is the drainage area, and n and m are exponents that depends
on the type of the terrain. This equation states that the rate of change of surface topography is controlled
by the balance between the uplift u and the fluvial erosion term s™ a™. Realistic mountain ranges with
dendritic patterns spanning hundreds of kilometers can be reproduced by this method. Subsequent work
(Cordonnier et al. 2018a) incorporates the effects of different geological strata and presents a convenient
authoring framework where users can move around faults in three dimensional space and see the result
interactively (see Figure 2.18).

However, even though the represented domain is larger than any other terrain generation methods,
these simulations are computationally intensive and thus limited in precision. Furthermore, as with other
simulation techniques, user-control is indirect through the sketching of the uplift map, and therefore
limited. Providing direct control over the location of ridges and valleys is still an open research question.
Another interesting topic would be to take into account other important geological processes such as
glacial erosion as done in Mieloszyk 2017.
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2.5.2 Canyons

A canyon is a path between two steep cliffs, possibly spanning hundreds of kilometers in length and
dozens of meters in depth. They are often also composed of multiple terraces (or plateau) which creates
an interesting and complicated landscape. Canyons are usually formed by the erosive action of a river
which follows the canyon trajectory. The different bedrock materials combined with erosion result in
microscale and mesoscale overhangs in the sides of the canyon. Canyons are also a popular terrain
landforms due to visual arresting occurrences such as the Grand Canyon in Arizona, or the Gorges de
I’ Ardeéche in France.

FIGURE 2.19: Canyons generated with the method from Carli et al. 2014. Representing the steep nature
of table mountains remains challenging when using elevation models.

As with cliffs, canyons are usually represented and generated with elevation models. The method
presented in Carli et al. 2014 focuses specifically on the generation of canyons from an initial fractal
terrain (Figure 2.19). The elevation is first clamped to create terraces at multiple altitudes, and mesas as
well as the river trajectory are then generated using a shortest path algorithm. The method greatly suffers
from the lack of precision of elevation models on steep areas of the terrain.

2.5.3 River networks

Rivers are among the most complex phenomena on earth and have been thoroughly studied by geologists
and hydrologists. A river can take numerous shapes, from a small and narrow stream near its source, to a
delta possibly spanning dozens of kilometers when connecting to the sea, while going through complex
meandering or braided systems in the floodplain. These different stages exist because of the differences
in flow, terrain topography and climate conditions along the path of the river.

. - Close to the river network is the notion of drainage area of a ter-

- / / / '\ rain. The drainage area is commonly used in geomorphology to char-
acterize real terrains, and is defined as the upstream area (also called
watershed) draining through a point p when following the gradient of
the terrain (see Figure 2.20 for a visual explanation). In other words,
it is a measure of how much water is flowing towards a given point
of the terrain. At the exception of lakes, pits (cells with no outgo-
ing flow) are considered very rare in real terrains. Thus, one way to
improve the realism of a virtual terrain is to ensure that it does not
contain any pit cells so that the flow is correctly directed towards the
borders of the domain. Having a hydrologically-correct drainage area
is important, for instance in the case of river detection where trajecto-
ries with the highest flows must be detected to compute the main river
channels, as done in Peytavie et al. 2019.

FIGURE 2.20: Drainage area of
a point and its highlighted wa-
tershed.
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Terrain slope control

River slope control

FIGURE 2.21: Génevaux et al. 2013 procedurally computes the entire river network, which is then
used to create the terrain that conforms to the specified hydrology. The smooth surface if the terrain is
reconstructed using a construction tree of procedural primitives merged together to define the elevation.

The notion of drainage area was first used in Computer Graphics by Kelley et al. 1988, which enforces
the precise trajectories of rivers in the generation process by providing an initial drainage system. Later
works from Génevaux et al. 2013 and Teoh 2009 generate the entire hierarchical drainage network,
represented as a geometric graph, over an input domain. After covering the entire domain with rivers,
the method of Génevaux et al. 2013 classifies the edges of the graph according to Rosgen classification
of rivers (Rosgen 1994). The surface of the terrain is finally reconstructed by using a construction tree of
primitives (Section 2.1.1) representing the riverbed and the surrounding mountains (Figure 2.21). These
methods are useful for generating a terrain that complies with hydrological constraints, but do not model
the evolution of the network throughout time. Also, some important river landforms such as deltas,
meandering and braided rivers are not reproduced. Meanders could be generated by placing carefully-
designed curvilinear primitives (as done in Peytavie et al. 2019), but the result would only be static and
would not reflect the complex and chaotic nature of the phenomena.

A dedicated method is required to model such complex river landforms. However, existing simu-
lations (Kristof er al. 2009; St'ava et al. 2008; Skorkovskd et al. 2019) are computationally intensive
and cannot be used to simulate the evolution of an entire river network covering hundreds of kilome-
ters. Thus, simulating the dynamic evolution of the different stages of rivers remains an open research
question. In Chapter 3, we address the problem of simulating meandering rivers over an entire network.

2.5.4 Karstic networks

A karstic system is the geological name for a cave network. Karsts are characterized by underground
networks composed of conduits and caves that have grown by the dissolution of the bedrock. Karstic sys-
tems exhibit a large variety of visually appealing and complicated mesoscale and microscale landforms
called speleothems, such as stalactites and stalagmites, draperies, columns and more. At a larger scale,
conduits vary in size from a few centimeters to several meters wide with diverse shapes (such as keyhole
or canyon tunnels), and can spread across dozens of kilometers under the surface.

Karsts cannot be modeled using elevation models and require a volumetric structure. There are a few
methods that focus on the microscale landforms found in caves, for instance using procedural techniques
for placing stalagmites and stalactites (Cui et al. 2011). Layer stacks have been used to create caves with
columns and tunnels by Peytavie et al. 2009b, but the global structure of the tunnel is reproduced solely
by authoring, which can be tedious (Figure 2.22). On the other hand, the generation of the large-scale
karstic network has been done using procedural L-system, as described in Mark et al. 2015. The resulting
trajectories are then carved in a voxel model, and the smooth surface of the cave is reconstructed using
polygonization techniques (Wyvill ef al. 1986; Lorensen ef al. 1987). This approach generates caves
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FIGURE 2.22: Cave made of tunnels, bridges, and rocks created by authoring with a layer-stack model
(Peytavie et al. 2009b).

with insufficient precision due to the underlying voxel grid and does not account for the geological
characteristics of the terrain.

Pytel et al. 2015 proposed a two-stage simulation pipeline for mod-
eling large-scale karstic networks. While they account for geological
parameters such as rock porosity, the resulting tunnels are defined as a
set of connected cubes in the underlying voxel model, and no solution
is provided regarding the synthesis of the detailed mesoscale geome-
try of the tunnels. Another geologically-based approach was proposed
by Franke et al. 2022, which simulates water flowing through a grid to
generate the trajectories of the karstic conduits. This method is able
to reproduce different archetypes of karstic networks, such as recti-
linear or anastomotic mazes (see Figure 2.23). However, important
geological factors such as inception horizons are not taken into ac-
count and no control is provided over the generation process. Finally,
the mesoscale geometry of the tunnels does not exhibit plausible shapes, as it is also simply generated
by polygonizing the voxel grid (Wyvill et al. 1986; Lorensen et al. 1987).

FIGURE 2.23: Rectilinear

karstic network generated by
Franke et al. 2022.

2.5.5 Deserts

Deserts are regions with low water supply. Depending on the amount of precipitation, they are classified
as hyper-arid, arid, or semi-arid. Deserts can span hundreds of kilometers and exhibit different landforms
such as sand dunes, yardangs and steep cliffs or canyons. As the water supply is usually low, aeolian
processes are central in the formation of desert landforms.

The vast majority of desert features have been neglected from the Computer Graphics community,
with only a few papers interested in simulating sand ripples (Onoue et al. 2000; Benes et al. 2004).
While both ripples and dunes are formed by the action of the wind, they are two different landforms
with vastly different scales which cannot be simulated with the same technique. Furthermore, landforms
such as yardangs and ventifacts cannot be modeled by these methods. Thus, generating convincing
macroscale desert scenery remains an active area of research.

Conclusion

Macroscale landforms in virtual terrains are becoming increasingly important because of the need to
model, simulate and author larger worlds. While there has been numerous works interested in generat-
ing mountain ranges (Section 2.5.1), other macroscale features such as river networks (Section 2.5.3),
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karstic systems (Section 2.5.4), and desert landscapes (Section 2.5.5), received less attention. These fea-
tures cannot be fully captured by existing methods and may require dedicated procedural or simulation
techniques. In the first part of thesis, we introduce new simulation methods inspired by geomorphology
for simulating desert scenery (Chapter 4), and meandering rivers (Chapter 3).

2.6 Conclusion

Terrain generation methods progressively evolved over time from procedural techniques to simulations,
mainly because of the increase in computational power which allowed the use of more complex models
elaborated by scientists. Even though procedural and phenomenological approaches provide great con-
trol to the user, they cannot always fully capture the complex dynamics of terrain landforms. Therefore,
they are often complemented with simulations. Over the last decade of research in terrain modeling, the
tendency has been to move towards more geologically-based techniques, mainly because of the ever in-
creasing need for realism which cannot be fulfilled without understanding how terrain landforms emerge.
Geologists and geomorphologists have been studying the underlying processes responsible for the for-
mation of terrain features, and such knowledge is a great source of inspiration for the field of Computer
Graphics.

We proposed a new classification of terrain generation methods based on the spatial scale at which
they operate and the landforms they are trying to reproduce. Considering the macroscale, the majority of
techniques address the generation of mountain ranges. Features such as sand dunes (and more generally
desert landforms) as well as meandering rivers, canyons and glaciers have been neglected, even though
they represent a non negligible percentage of earth landform. Chapter 3 and Chapter 4 address the simu-
lation of meandering rivers and deserts, which are highly dynamic phenomena that shape the landscapes
on a yearly basis, while spanning dozens of kilometers at the same time. We study existing numerical
models from Geomorphology and propose new techniques adapted to the needs of Computer Graphics
with direct control tools for artists.

Another crucial realization of our classification lies in volumetric terrain landforms, such as arches
and overhangs. These have been studied extensively, but as demonstrated in Section 2.1.2, existing
volumetric models (voxels and layer stacks) are limited by their memory requirement, which forbids
their use for large terrains. There is thus a need for a compact representation of volumetric features,
compatible with elevation models used for representing large-scale terrains. In Chapter 5, 6, 7 and 8,
we present a new procedural model for volumetric terrains based on signed distance functions. We
study volumetric landforms across the whole range of scales (macroscale, mesoscale and microscale)
and develop new primitives and operators suited for representing detailed terrain features.
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Abstract

Macroscale terrain landforms now occupy a central part of virtual terrains because of the increasing need
for larger worlds. The vast majority of existing techniques is focused on the generation of mountain
ranges, that are later enhanced by erosion techniques for creating mesoscale landforms such as gullies
and ravines. However, these methods cannot reproduce the large variety of macroscale terrain landforms,
such as glaciers, river networks with braided and meandering channels, and sand dunes spanning dozens
of kilometers. In the first part of thesis, we propose new simulation methods for generating these ne-
glected macroscale landforms in virtual terrains. We take inspiration from classifications and numerical
models from geomorphology, and propose techniques that offer both control and interactivity, which
remains challenging in Computer Graphics.

In Chapter 3, we investigate the generation of meandering river trajectories. Meanders are an impor-
tant landform that shape the terrain, modify the surrounding ecosystem, and highly influence decisions
in urban planning. Starting from an initial river network encoded as a directed graph, we simulate the
evolution of the trajectories of the different channels using a curvature-based approach. This allows
us to reproduce well-known phenomena identified in geomorphology, such as downstream migration of
bends, oxbow lake formation due to cutoffs, and avulsion events. We incorporate several levels of con-
trol, including the precise prescription of the river trajectory by the user and indirect control points and
curves.

In Chapter 4, we concentrate on the generation of desert landscapes. Deserts occupy a large percentage
of the surface of the earth and encompass a large variety of landforms, including different types of
sand dunes, yardangs, and cliffs. We develop a new method for simulating the different sand transport
processes, namely saltation, reptation, and avalanching, which are responsible for the formation of sand
dunes. We are able to reproduce various types of dunes, such as transverse, barchan, and nabkha, as well
as yardangs that are caused by abrasion. Our system provides interactive feedback, which allows the user
to add or remove sand, modify the wind regime or vegetation cover, while the simulation is running.
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3.1 Introduction

As outlined in Chapter 2, researchers have made considerable progress towards developing efficient
methods for synthetic terrain generation. In this context, procedural models, erosion simulations and
image-based synthesis have proved to be powerful tools. Nonetheless, existing methods often focus on
the creation of mountainous landforms, such as dendritic mountain ranges and erosion landmarks such as
gullies and ravines. In contrast, the generation of gentle sedimentary valleys with complex river networks
received less attention in Computer Graphics.

Modeling realistic and hydrologically consistent river networks on virtual terrains is a complex task.
It is usually accomplished in two steps: the river system is first generated using dedicated techniques, and
the relief of the terrain that conforms to the specified hydrology is then synthesized (Kelley et al. 1988;
Génevaux et al. 2013). Another method from Peytavie et al. 2019 consists of computing the river network
from an existing real or synthetic terrain, carving the trajectories in the bedrock, and finally generating
a plausible animated water surface according to the underlying relief of the riverbed. However, the
resulting rivers are static and their evolution through time is not taken into account. Numerous methods
exist for the realistic rendering and animation of water bodies (Jeschke et al. 2018; Peytavie et al. 2019;
Schreck et al. 2019), however the generation of river trajectories is still an open research question. The
challenge stems from the fact that rivers are highly dynamic objects with a lateral migration that can range
up to 25m per year, particularly in valleys where the topography is flat and the river exhibits meandering
patterns. To the best of our knowledge, there are no Computer Graphics methods for simulating the
complicated evolution of river trajectories, particularly meandering patterns.

Here, we introduce a new simulation method to reproduce the large-scale meandering behavior of
rivers. We use a curvature-based approach to deform the trajectories, taking into account environment
parameters such as the local slope, upstream water discharge, and control fields. We reproduce well-
known phenomena, including complex bend development, oxbow lake formation due to cutoffs and
avulsion events, leading to a terrain with realistic river trajectories. Finally, we derive a method for
computing abiotic parameters, useful for later determining the surrounding ecosystem on the terrain. We
provide several direct and indirect control tools: on top of modifying the topography of the terrain as
well as different control fields in real-time, the user can also prescribe the precise trajectories or place
specific river junction patterns to improve realism. The main contributions of this chapter include:

* A method for simulating the meandering evolution of a river channel through time, taking into
account curvature and environment parameters (Section 3.3).

* A generalization of the channel simulation to handle a river network encoded as a directed graph of
river channels, with the computation of junction points and collisions between different channels
(Section 3.4).

* Tools such as attractive and repulsive regions for controlling the simulation, and for modifying the
terrain or prescribing the trajectory of the different channels (Section 3.5).

Our method is compatible with other state of the art terrain modeling techniques, interactive, and can
thus be smoothly integrated in a production pipeline. Moreover, by recording simulation steps, we can
compute the abiotic parameters to generate vegetation cover onto the terrain (Section 3.6).
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3.2 Geomorphology background

Rivers are complex water bodies whose trajectories can take a wide variety of shapes, such as braided,
meandering, or anastomosed, depending on their location (Figure 3.1). Their shape results from differ-
ent physical processes, and their understanding remains an active research area in geology. An important
amount of work in geomorphology has been dedicated to studying the meandering stage of the river,
as meanders can migrate several meters per year (Figure 3.2). Interestingly, meandering patterns have
been observed both in turbiditic (underwater) and fluvial context, as the governing processes share some
fundamental similarities. In this chapter, we concentrate on the fluvial part of the river, but the presented
method could also be extended to the turbiditic context. The fundamental mechanism of meanders con-
sists of erosion on the outer bank of the river (also referred to as channel), and deposition on the inner
bank, which leads to a progressive lateral migration of the riverbed.

Fluvial context Systems
Abandoned @ Drainage
meander .

Main channel @ Braided

@ Meandering
@ Anastomosed

@ Deltaic

Turbidite context

FIGURE 3.1: Background on the geomorphology of rivers: our work is on meandering systems which
can be found in plains. Figure inspired from Parquer 2018.

Here, we briefly review important research from the area of geomorphology. Seminal work on mean-
dering rivers (Ikeda ef al. 1981; Howard et al. 1984) identified a non-linear relation between channel lat-
eral migration and the local and upstream curvature. They also propose the first algorithm to model neck
cutoff events, which are a key stabilization process in meandering systems. More recent works address
specific phenomena, such as lateral or downstream bend migration (Posamentier et al. 2003), channel
bend retro-migration (Nakajima et al. 2009), or avulsion (Pyrcz ef al. 2009; Rongier et al. 2017), which
is a sudden change of trajectory of the channel, where the old path is completely abandoned. Recent
work from (Sylvester et al. 2019) analyzed the time-evolving behavior of real meanders using precise
river elevation data. Their results suggest that lateral migration may follow a more simple linear relation
with local and upstream curvature.

While the majority of these methods simulate the planar evolution of the river trajectory, meanders
also modify the elevation of the surrounding terrain, also known as aggradation (or vertical migration),
which moves the channel upward and thus requires more complex simulations (Peakall er al. 2000;
Rongier et al. 2017). However, aggradation changes the elevation of the terrain at the microscale (in the
order of millimetres per year), and can thus be neglected in our context.

Meandering rivers have received less attention in Computer Graphics. A notable exception is the work
of Génevaux et al. 2013 who synthesize terrains conforming to a procedurally generated river network.
The initial low resolution network is obtained by filling an input region with a grammar-based process
and the trajectories of the high resolution rivers are amplified according to the Rosgen classification
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Single meander | Complex meanders with cutoffs

FIGURE 3.2: Examples of real meandering rivers. The left picture shows a meander constrained within
mountain ranges, and the right picture shows a more complex meandering pattern with oxbow lakes
occurring in a plain.

(Rosgen 1994) to procedurally generate meanders or even deltas. Still, river trajectories are approximated
by simple curves and only yield a first approximation of the complex time-evolving patterns that can be
observed in nature.

Existing works in geomorphology usually study the evolution of a single idealized channel through
time, which is a key limitation in our context where artists generally aim at producing complex networks.
Here, we present a method for simulating meandering rivers on a network spanning the entire terrain. We
simulate the evolution of the trajectory on each channel, taking into account local slope and user defined
constraints. Particularly, we concentrate on interactivity and user-control, while retaining the realism of
the simulation.

= (t;(p)/IIt:(P)ID*

t(t) = Pi+1(t) — pPi—1 ()

2
Pi+1(t)

pi-1(0)
Sampling points py(t)

p(u, t) along the
curve

FIGURE 3.3: A channel is defined as a set of equally-spaced control points py(t) along the trajectory
at a given time step t. Normals ny(t) and tangents ty(t) may also be computed. Points along the curve
p(u,t) are computed from their curvilinear abscissa u € [0, 1].

3.3 Simulation

At the heart of our model is the notion of a river channel, defined as a time-varying piecewise cubic spline
curve in the plane I' with n control points {py }, & € [0, n[. We note I'(¢) the channel curve at time step
t, and we refer to a point along the curve as p(u, t), with u € [0, 1] the curvilinear abscissa (Figure 3.3).
Channels also have an associated river width w and depth d constant along the trajectory (Figure 3.4),
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which is an approximation commonly done in geomorphology (Sylvester et al. 2019) that we discuss
in Section 3.6.2. These geomorphological parameters can be automatically computed from well known
power laws in geomorphology (Dunne 1978), which relates the drainage area to the width and depth of
the river channel. Channel points have exactly one upstream and one downstream neighbor, except for
the first and last points, which may be linked to other channels in the network (see Section 3.4).

The simulation for a given channel proceeds as follows. First, we compute channel migration (Sec-
tion 3.3.1) which moves the control points pj, of the channel laterally by taking into account local and
upstream curvature as well as environment conditions. Then, we simulate punctual events, such as cut-
offs (Section 3.3.3) and avulsions (Section 3.3.4), which are crucial processes in meandering systems that
can drastically modify the trajectory of the channel. We finally perform a resampling step (Section 3.3.5)
to ensure that points are equally spaced within a channel, so that the simulation remains stable. The
following sections explain each of those steps in details.

—— Sampling point py(t) |

Inflection

Width w
point ™,

< ry B
l Depth d
e
W N e\e“%\‘o

FIGURE 3.4: On top of the centerline, a channel is also characterized by its width w, its depth d. These
parameters are directly related to the wavelength \ of the meander bend, which is defined as the distance
between two inflection points.
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3.3.1 Simple channel migration

For a given channel, the migration process computes new positions for the control points of the river I'.
Every point p () at a given time step migrates towards the direction of the normal to the channel ny(t).
Let t;(t) denote the tangent of the curve t;(t) = pj.(t), we define the unit normal as the orthogonal
vector oriented toward the sign of the local curvature ny(t) = (ti(¢)/||tx(t)||)*. Let 6t the time step,
and p the migration rate function, points then migrate following the equation:

Pk(t + dt) = pr(t) + ni(t) p(px(t)) ot (3.1

The challenge stems from the computation of the migration rate ;.. The migration rate of a point along the
channel denotes its movement speed through time. It was found to be highly correlated to the curvature
of the river in several studies (Howard ef al. 1984). Put simply, high curvature points are linked to the
fastest moving part of the river.

Let 2/ and 2" (respectively v’ and 3”") denote the first and second derivatives along the x axis (respec-
tively along the y axis) of the curve. The local curvature ¢p(u, t) is defined as:
l'/(ua t) y//<u7 t) — y/(uv t) ml/(ua t)

(@'(u, )2 + 3/ (u, 1) 2)3/2

ér(u,t) = (3.2)

In our case, the channel is defined by a set of discrete points, thus derivatives are approximated using
central differences. The local migration rate 1 is then defined by scaling the curvature according to the
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w =200m

w = 100m

w = 50m

FIGURE 3.5: Comparison between meandering rivers of different widths (100 years simulation): the
meander wavelength is proportional to the river width w.

river width w, and k; the migration rate constant, set to 0.164m /day (Sylvester et al. 2019):
po(u,t) = w ky or(u,t) (3.3)

The linear scaling by the river width w implies that the frequency of meander bends is proportional to
the dimension of the river (width and depth), which has been identified and reported in multiple studies
in geomorphology (Leopold ez al. 1960; Williams 1986). Our simulation conforms to this observation,
as demonstrated in Figure 3.5 where the wavelength of meander bends increases proportionally to the
width of the channel.

'

Maximum 2 feet .
curvature \\/Of" Inflection point

iFlow

Maximum
curvature

FIGURE 3.6: Schematic view of the channel migration using the simple migration rate jio. Using this
Sformulation transforms the original curve I'(t) into the grey curve U'(t + 0t). In this case, the maximum
migration point corresponds to the maximum curvature point.

Using the local migration model transforms the original curve I'(¢) into a new curve I'(¢ 4 dt) with
increased bends (see Figure 3.6, blue and grey curves). In this case, the maximum curvature point corre-
sponds to the maximum migration point. Inflection points, i.e. such that ¢(u,t) = 0, correspond to the
intersection points between I'(¢) and I'(¢ 4 6¢). However, using only the location migration does not lead
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to realistic meandering patterns, as meanders are also influenced by upstream trajectories. Particularly,
high curvature upstream bends tend to increase the migration rate of a given location (Howard et al.
1984), which we explore in the next section.

3.3.2 Upstream curvature-based migration

r(t)

Maximum
curvature

Maximum
migration

iFlow

Maximum
curvature

Maximum
migration

FIGURE 3.7: The global migration rate p takes into account upstream curvature, which introduces a lag
between the point of maximum curvature and the point of maximum migration. The original curve I'(t)
(in blue) is thus transformed into a new curve I'y (t + dt) (in yellow). Recall that that T'(t + 0t) is the
curve computed using the simple migration rate (Section 3.3.1).

Several geomorphological studies have shown that a given point in the channel is influenced by the
upstream channel trajectory. This introduces a lag between the maximum curvature point and the maxi-
mum migration point, which in turn is responsible for the downstream migration of bends. Following the
model proposed (Sylvester et al. 2019), we take into account the upstream curvature to compute a more
accurate global migration rate . Let o denote the sinuosity of the channel, which is computed as the
ratio between the curvilinear length of the curve [ and the distance between the first and the last points

of the section:
¢=1

o =1/Ip(0.t) — p(L1)] 1= / IVp(C, 1)1d¢ (3.4)

The global migration rate along the curve is finally defined from the combination of the local migration
rate po and the integral of upstream migration rates:

(s t) = w po(u, t) + o~ 2/3 [7 /0 " polu—¢, t)k(@czcl [ /O N k<<>d<] k(O = e ¢ (35)

The variable ¢ denotes the upstream distance from the point p(u, t), and w, 7y are weighting parameters.
Multiplying by o implies that a meander with lots of bends will migrate faster. The kernel function k is
an exponentially decreasing weighting function. The different parameters for this equation are listed in
Table 3.1.

The term « is defined from a friction factor C; = 0.011 (Sylvester et al. 2019) and the river depth d
which is assumed to be uniform along the channel: o = 2C;/d. It defines a relation between the river
depth d and the influence of upstream points: a point in a deeper river is influenced by points further
away upstream.
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Parameter | Value Unit
ot 106 Days
~y 2.5 | Dimensionless
w —1 | Dimensionless

TABLE 3.1: Values for the different parameters of the simulation.

34y

40y =

Flow

FIGURE 3.8: Different steps of the meandering river simulation on a single channel. The latest trajectory
is shaded in light blue, while older paths are shaded in brown. Oxbow lakes due to cutoff events are in
dark blue.

The definition of the global migration rate ¢ in Equation 3.5 introduces a lag between the maximum
curvature point and the maximum migration point, transforming the original curve I'(¢) into a new curve
Iy (t + dt) (see Figure 3.7, blue and yellow curves). Using this formulation, we are able to reproduce a
well-known phenomena called downstream migration, where meander loops progressively move down-
stream as time passes (Figure 3.8). However, the dynamic of meandering rivers does not only depend on
the migration of the channel, but also on punctual events. In particular, cutoffs (Howard et al. 1984), the
presence of crevasses, and avulsions (Cojan et al. 2005) are known to play a key role in the evolution of
the river. We detail how we simulate these processes in the following sections.

3.3.3 Cutoff events

Oxbow Cutoffs (also called neck-cutoffs) occur when the channel starts to in-

lake tersect itself due to the high local curvature. When a cutoff occurs, the

(w,1) channel abandons its current trajectory, which becomes an oxbow lake
@ > 8 Cut  and continues onto the shorter path (see Figure 3.9). The oxbow lake

can remain partially filled with water or dry out depending on environ-

It + 61) ment conditi(?ns. Vegetation may grow in these locations due to the

re) water stored in the ground. Cutoffs events are a fundamental process
of meandering rivers as they regulate the formation of bends.

Cutoff . . . .
In our simulation, we trigger a cutoff event when the distance be-

tween two points within a channel is inferior to the channel width w
FIGURE 3.9:  Cutoff event (Howard et al. 1984). A new edge is inserted between these two points,

leading to the formation of an  an( the abandoned part of the meander is removed from the channel and
oxbow lake.



3.3. Simulation 49

saved in the simulation recorded data D. The cutoff process is depicted in Figure 3.10. An interesting
aspect of oxbow lakes is their influence on the surrounding landscape. Figure 3.11 shows the recording of
oxbow lakes through the simulation. The channel belt, which is defined as the embedding of all previous
channel trajectories, depends on the river width and local terrain topography. In Section 3.6, we exploit
the recorded data of oxbow lakes to compute abiotic parameters which can be used for determining a
vegetation cover on the terrain.

Self-intersection New path

FIGURE 3.10: Showcase of the formation of an oxbow lake where a meander starts to intersect itself,
leading to an abandoned channel.

Young 200 years 260 years - _ N S

Old

FIGURE 3.11: Recording of all oxbow lakes through the simulation, shaded from oldest (green) to
youngest (yellow). The union of all ancient trajectories form the meander belt.

3.3.4 Avulsion events
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FIGURE 3.12: We procedurally place sediment lobs at the location of crevasses (left), and stochastically
trigger avulsion events which modify the trajectory of the channel. Height amplitudes have been exag-
gerated to better emphasize the effect.
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Crevasses occur when water flow exceeds the channel capacity. They are characterized by large
sediment lobs that deposit progressively at the location of overflow. They usually occur at locations of
high curvature (Figure 3.13, left), but the exact formation process remains an active area of research in
geomorphology. We model crevasses stochastically in our simulation. At each step, we select channel
points pg(t) with a curvature ¢ above a given threshold ¢, = 0.1, and trigger the creation of a crevasse
based on a probability p..

Crevasse New

The location of crevasses provides us with information for adding procedu- % channel

ral details on the terrain. In Figure 3.12, we procedurally distribute sediments

at crevasses in a circular domain, and perform material stabilization (Mus-

grave et al. 1989) on the deposited material. Crevasses represent potential
o . . I'(t)

unstable points in the channel, and are known to be the starting point of avul-

sion, which drastically changes the river trajectory (Slingerland et al. 2004). I(t+6t)

—

Avulsions occur at the location of crevasses. As for crevasses, the exact Avulsion
triggering conditions of avulsions remain an active subject of research in ge-
ology. However, avulsions seem to be related to intense rain that causes a
sudden overflow in the channel. The upstream part of the channel remains
unchanged, whereas the downstream part is abandoned and a completely new path is formed (see Fig-
ure 3.13, right). Simulating avulsion is difficult, as carving a new trajectory while ensuring a correct
flow may not always be possible depending on the terrain topography. One solution would be to use an
anisotropic shortest path algorithm, but this would be computationally intensive. Other methods from
geomorphology rely on a L-system for computing the new path of the channel (Rongier et al. 2017).

FIGURE 3.13: Avulsion
process in a channel.

New path In our case, we aim at simulating local avulsions, i.e. new paths lim-

© %0 ited tot he considered channel and not interfering with other channels

a (a\ © ob in the river network. Thus, the new path must thus connect somewhere
a © downstream within the same channel. For every crevasse located at a

point a, an avulsion may be triggered with a probability p,. The end
point of the avulsion b is computed stochastically within the channel at a
downstream location. The new path between a and b is computed as fol-
lows. We first define the global avulsion direction d, computed as a ran-
dom unit direction within the cone at a and oriented toward the tangent
t(a), with an angle of « set to 45 degrees. Let p = a denote the starting
location of the new path, we compute the new position as p = p +d. At
each step, the direction d is linearly interpolated towards b, depending the distance between the points.
This process is repeated until the distance between p and b is inferior to the sampling size of the channel
(see Figure 3.14).

FIGURE 3.14: Starting from
a point a, we compute the
avulsion direction d and
march towards b.

Figure 3.15 shows the result of an avulsion triggered at the location of a crevasse on a single channel,
leading to a completely new path for the river. While this technique is fast and allows control through the
starting angle ¢, the created path may not respect hydrological constraints i.e. the path may not always
follow the steepest slope of the terrain. To solve this issue, we check at each step that the slope between
p and p is negative. If that is not the case, we carve the terrain to preserve a hydrologically consistent
network (if the difference is small), or abort the avulsion completely. Because meandering rivers occur
in plains, the gradient of the terrain remains small over the domain and it is usually possible to carve the
terrain with a limited amount of removed material and produce a hydrologically consistent channel.
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Crevasse

Abandoned path

FIGURE 3.15: An avulsion event. The crevasse becomes the starting point of a new path carved by the
channel.

3.3.5 Resampling

At time step ¢, the migration process (Section 3.3.1) moves the control points p;(t) of the channels
laterally based on the local and upstream curvature. In practice, this leads to unevenly spaced points
p;(t + 6t), which after several simulation steps may create instabilities. We thus perform a resampling
step to ensure the robustness of the simulation, which is done at the end of a simulation step after potential
cutoff and avulsion events.

p;(t) + 1) Piecewise cubic I'(t + dt)
0O~ —,

T Resampled points K

pi(t + dt) SO

Unevenly spaced points p;(t + dt) Piecewise cubic resampling

FIGURE 3.16: After channel migration (Section 3.3.1), control points may be unevenly spaced, which
is corrected by resampling the piecewise cubic curve I'(t + dt) passing through the displaced control
points.

We first compute the piecewise cubic spline curve I'(¢ + dt) passing through the control points p; (¢ +
dt) along with their tangents t(¢ + 6t). We then sample this curve at regular intervals, and use these
samples as the new control points of the channels py (¢t + dt) (Figure 3.16). We ensure that the first and
last point in the channel are preserved and kept unchanged by the process, which is crucial for managing
junctions as described in Section 3.4.1.

3.4 River network simulation

The previous section describes the meandering river simulation on a single river channel. However, in the
case of terrain modeling, artists usually want to create a river network with channels of different width
spanning the entire terrain. A river network at a time step ¢ is denoted as N (¢) and encompass a set of
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n channels {I';}, i € [0, n[. Recall that points py(¢) within a channel I'; have exactly one upstream and
downstream neighbors, except for the first and last points which may be connected to other channels in
the network. These connections are modeled as junction points (see Figure 3.17).

N3]
Ti(t)

Junction y;

O T (1) O

Network NV (t)

FIGURE 3.17: We define a river network N (t) as a set of n channels {I';}, i € [0,n[. Two channels
I'; and I'; may intersect and merge into a single channel Iy, downstream. We model such junction point
Vijk with procedurally-defined templates that allows precise control for the user.

Given an input terrain # defined by an elevation function h : R?> — R, we define the initial river
network A/(0), which may be provided by the user or computed automatically as described in Peytavie
et al. 2019 by calculating the drainage area a over the terrain, and applying a threshold value to extract
the cells with sufficient drainage that form the low resolution river network. The network simulation then
consists of two steps (Figure 3.18): we first perform channel migration (Section 3.3.1) on each channel
independently, and resolve collisions that may occur between the new trajectories (Section 3.4.2). Fi-
nally, junction points may be defined by the user using procedural templates that reproduce archetypes
identified in Geomorphology (Section 3.4.1).

J Network 7(0) J Final network v (5) |

Simulation

= | Junctions —
.2 ‘ Channel migration ‘

=

Terrain T +— g 8H > =

= é N ‘ Collisions ‘ /|
%5 A

[5)

Channel [}

FIGURE 3.18: Starting from an initial river network N'(0) automatically computed or provided by the
user, the network simulation is performed on each channel I'j, and collisions between channels are
finally resolved, leading to a network at time step N (t + 6t) exhibiting meandering patterns. Previous
trajectories are recorded in the simulation data D.

3.4.1 Junction models

Channels within the river graph are connected through junctions. Those specific connecting points are
defined when two upstream channels meet and merge into a new larger channel. Simulating the evolution
of junctions is a challenging topic of research and result from different physical processes (Guillén-
Ludeia et al. 2016). Geomorphologists identified that connection angle between different channels is
based on their respective flows. When the junction involves two channels with significantly different
water flows (thus, different widths w; and w;), the connection angle is close to perpendicular, whereas
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the junction of two channels of similar flows usually leads to a small connection angle (Hooshyar et al.
2017).

Different flow Similar flow

< F 4

FIGURE 3.19: We define procedural junction templates for modeling channels intersections (shown as
insets), with a near perpendicular angle for rivers with different flow values (left), and a small angle for
channels with similar flow values (right).

Following these observations, we adopt a procedural approach that allows control and robustness. Let
7i;k denote a junction between two channels I'; and I'; merging into a channel I'y. During the channel
simulation, we apply a linear falloff at the beginning and end parts of channels to avoid displacing these
junction points. This ensures that channel junctions remain untouched by the simulation, and allows
us to procedurally place channel junction templates based on the flows of the respective channels (see
Figure 3.19). These templates are parameterized and can be tuned by the user in a post-processing step.
Figure 3.20 shows the result of the network simulation on a 35km terrain with multiple channels where
junctions remain fixed during the simulation.

FIGURE 3.20: Generalizing the channel simulation to an entire river network allows generating complex
terrains. In plains, meandering patterns arise, while channels on steep slopes remains straight and follow
the gradient of the terrain.

3.4.2 Collision between sections

Junction templates and the migration falloff applied to the channel beginning and end parts prevents col-
lisions in the vicinity of junctions. Still, collisions between different channels may still occur because



54 Chapter 3. Simulating meandering rivers

of the high lateral migration that can be up to several meters a year. This may be solved by perform-
ing topological operations on the underlying graph of the network. We identify three cases: upstream
collision, downstream collision, and collisions between disconnected channels (Figure 3.21).

1y

Ip Ip I'p I I'p

FAQ fy 4§ I, " T4 B Iy

A
q q D
Ie q

Ic [ Ic § Ic
Upstream collision Downstream collision Disconnected collision

FIGURE 3.21: Example of three different cases that arise for collision detection.

Upstream and downstream collisions involve three distinct and already existing channels I'4, ['p,
I'c that are connected through a junction point q. For this type of collision, a new junction point q is
created at the intersection point between I'4 and I'p (upstream or downstream, respectively), and the
downstream portion of channel I'p is abandoned (see Figure 3.21, left and center). These cases are
relatively simple as they do not involve the creation of a new channel nor a redirection of the flow.

Disconnected collisions occur between two unconnected channels I' 4 and I' 5 in the network. A new
junction point q is created at the intersection point. Then, if channel I'4 (respectively I'p) has a greater
flow than channel I'p (respectively I" 4), we create a new channel I'~ with the trajectory of the down-
stream part of the channel I'4 (respectively I'p), and remove the part of the other channel from the
network.

After handling the changes in the topology of the network, we update the characteristics of the chan-
nels by recomputing their flow, and their corresponding width and depth which in turn affect the migra-
tion and can be observed by changing meandering sinuosities.

3.5 Controls

In our system, the user may specify and move the different control points of a channel manually, or
even remove certain channels entirely from the network. Additionally, we introduce several ways to
constrain the simulation by modifying the terrain topography (Section 3.5.1) or by prescribing attraction
or repulsive control regions (Section 3.5.2).

3.5.1 Terrain influence

Terrain topography has a strong influence on the development of meanders. In large plains, the channel is
almost completely free of constraints, leading to complex meandering systems. Areas with a steep slopes
prevent the development of meanders and lead to straight trajectories (transition zone), as reported by the
Rosgen classification (Rosgen 1994; Génevaux et al. 2013). In valleys, the channel may be meandering
but remains constrained by the surrounding mountains.
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FIGURE 3.22: Result of our simulation where the channel is constrained by the surrounding mountains
(right) and free in plains (left).

Meandering rivers tend to develop in low-gradient areas, as strong slopes forbid the lateral migration
of the channel. Recall that migration is defined by the equation py(t + 6t) = px(t) + ng(t) u(px(t)) ot
(see Section 3.3.1), where 1 denotes the migration rate of the point. To model the terrain influence on
migration, we define a modified migration rate fi, which takes into account the slope of the terrain defined
as the gradient of the elevation function s(p) = ||[VA(p)|:

fiu,t) = p(u,t) (g o sop(u,t)) (3.6)

The function g : R — [0, 1] is the smoothstep function, taking values of 0.0 above a threshold ¢5 =
0.15m specified by the user. Figure 3.22 shows a three-stage meandering systems. In the plain, the chan-
nel migrates freely and meanders as well as oxbow lakes develop. Slopes cancel the migration term and
therefore produce straight river trajectories in the transition zone. In valleys surrounded by mountains,
the channel exhibit constrained meandering patterns that sometimes stabilize during the simulation. In
our system, the user may modify the topography of the terrain interactively during the simulation and
see the channels adapt automatically.

3.5.2 Control regions

Combining a physically-based simulation and user-control is a crucial feature of our approach, and al-
lows for preserving the overall realism of the meanders while allowing creativity for artists. We take
inspiration from the road network generation method from Galin ef al. 2011 and developed two different
strategies for controlling the trajectories: feature points and control regions. Feature points are a direct
and straightforward approach for controlling the trajectory. The user may move and lock the position of
the control points py, or divide a given channel I'; into two connected sub channels. In contrast, control
regions operate indirectly and either influence the direction of the migration, or dampen the migration
rate, which is useful for handling junctions (see Section 3.4.1).

Control regions are defined as a scalar field ¢ : R? — R, which can be interactively modified by the
user using classical brush tools. By taking the gradient V¢(p) of this scalar field, we can easily define
attraction (where c¢(p) > 0) and repulsive (where ¢(p) < 0) constraints. We modify Equation 3.1 to
incorporate the control field gradient direction as:

Pr(t +0t) = pr(t) + pu(px(t)) (i (t) + Ve(p)) ot (3.7

Figure 3.23 shows the influence of attractive and repulsive regions on the simulation. While negative
areas are intuitive to control, we found that attraction constraints can be difficult to manipulate as they
tend to overconstrain the simulation, leading to unrealistic trajectories. We discuss this limitation in
Section 3.6.2.
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FIGURE 3.23: Control regions allow the user to constrain the simulation without directly moving the
control points of the channel, which may lead to unrealistic river trajectories.

3.5.3 Procedural generation from recorded data

As we simulate the evolution of the river network through time, we have access to the previous trajecto-
ries of all simulation steps stored in the recorded data D. We exploit these data to procedurally generate
sediment deposits and abiotic parameters (Figure 3.24) which are useful for generating a plausible vege-

tation and sediment cover.
5
F'g

‘ Sediments s(t)
(0 S

FIGURE 3.24: We procedurally generate abiotic parameter such as soil moisture as well as sediment
deposition map from the recorded simulation data D, which contains all previous trajectories of the
channels.

Abiotic parameters. such as soil moisture, temperature and sunlight exposure are key development
factors of ecosystems (Gain ef al. 2017). As the trajectory of meandering rivers evolve rapidly (in the
order of dozens of meters per year), they have a drastic impact on the surrounding ecosystem. Reproduc-
ing the complex dynamic between ecosystem and meanders would involve a joint simulation of the two
phenomena, which is computationally intensive, and is still an open question in geomorphology (Ielpi
et al. 2022). Instead, we compute soil moisture from the simulation recorded data D as a scalar field
m : R?2 — R, defined as the combination between the stream power field p : R2 — R (Cordonnier ef al.
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2016) and the sum of past moisture fields m; : R — R:
m(p) =p(P)+ Y_mi(p)  mi(p) = em (g0 d(p,N7)) (3.8)

The parameter €, € [0, 1] represents the moisture accumulated for each step and is set by the user,
while n is the amount of simulation steps considered in the computation. High values of n allows to take
into account more ancient trajectories in the computation, while n = 1 only consider the latest network
N (t). The function g is a classical falloff function, taking into account the distance to the nearest river
channel of the network d(p, \;) divided by its radius of influence R;. Such procedural approximation
of soil moisture is useful for generating a vegetation cover from the recorded data, as demonstrated in
Figure 3.25. Here, trees were distributed using a dart-throwing algorithm (Lagae et al. 2006a) with
soil moisture used as the probability function, leading to dense vegetated areas as the location of high
moisture zones.

Sediment deposition. is approximated in the same manner. For each simulation step, we accumulate
sediment deposition along the channel trajectories, and modulate the deposited quantity with a scaled
turbulence function ¢ : R? — [0, 1] to account the stochastic nature of the phenomena using following
this equation:

s(p) = Z si(p)  si(p) =es (god(p,N7)) t(p) (3.9)

The parameter €, € [0, 1] denotes the accumulated sediment quantity for each simulation step. Fig-
ure 3.25 shows the effect of accumulated sediments at the location of ancient oxbow lakes and along the
past channel trajectories.
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FIGURE 3.25: Computing abiotic parameters such as soil moisture and sediment cover allows for com-
plex layer field rendering that shows ancient trajectories and oxbow lakes, as well as vegetation on the
inner bank of the different channels.

3.6 Results and discussion

We implemented our method in C++. Experiments were performed on a desktop computer equipped
with Intel® Core i7, clocked at 4 GHz with 16GB of RAM, and an NVIDIA GTX 1080ti graphics card.
The output of our system was directly streamed into Vue XStream® to produce photo realistic landscapes
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(Figure 3.12, 3.19, 3.22, 3.25). Table 3.2 reports the statistics for different scenes shown throughout this
chapter. The simulation runs interactively even for large networks featuring hundreds of river channels.
Figure 3.22 is the most computationally intensive because of the many cutoff events (more than 500
hundreds in total, which is the highest of all scenes) that occurred during the simulation. This high
number of cutoff is due to the channel being constrained by the surrounding terrain.

The bottleneck is the visualization based on the rasterization of cubic Bézier curves, which becomes
computationally intensive beyond a few hundred river channels. Our prototype relies on Qt.6 QGraph-
icsScene class to render high resolution images of the river network, and could be replaced with another
system taking advantage of graphics hardware; however this development was beyond the scope of this
work.

Domain Simulation
Size #I' | Steps | ts (ms) | t. (s)
3.5 16 x 25 | 2521 | 350 7.6 2.7
3.8 10 x 10 | 403 130 0.6 0.8
3.23 10 x 10 | 323 160 0.6 1.0
3.22 35x20 | 1571 | 1134 12.5 14.2

Figure

TABLE 3.2: Statistics for different scenes: size in km X km, number of control points #1I', simulation
steps, time for single step ts (ms), and total simulation time t. (s).

3.6.1 Validation

As rivers are an active subject of research in geomorphology, different metrics exist to describe, compare,
and quantify meandering rivers. While we do not aim at an exhaustive comparison, we implemented
several metrics and compare the obtained values against real data. Particularly, we computed the meander
wavelength A and sinuosity o of the channels.

Figures AJw o
Figure 3.5 [200m] 8.4 1.9
Figure 3.5 [100m] 14.4 3.6
Figure 3.5 [50m] 14.2 3.8
Figure 3.8 10.8 24
Figure 3.23 9.2 1.9
Observed range [6.2,12] | > 1.5

TABLE 3.3: Geomorphological properties of different scenes: ratio \/w, sinuosity o. The last entry in
the table shows the range of values obtained for real rivers.

Meander wavelength )\ is defined as the spacing between two consecutive inflection points in the
channel (Reinfelds er al. 1998). Studies on real rivers have found the ratio between meander wavelength
and river width to be within [6.2, 12] (Leopold et al. 1960; Williams 1986). Our generated networks
show similar values (Table 3.3), except for the widths w = 100m and w = 50m of Figure 3.5, where
the ratios exceed the observed range. This can be easily explained by the fact that these channels were
obtained on a flat terrain topography which did not constrain their evolution. Thus, they exhibit highly
irregular trajectories which may not happen in real terrains, where multiple other factors influence their
migration.



3.7. Conclusion 59

We also compare our result regarding sinuosity. Recall that sinuosity o is defined as the ratio between
the curvilinear length of the curve and the distance between the first last points of the channel (Equa-
tion 3.4). Sinuosity is a useful metric for rivers, and a commonly accepted classification states that the
meandering stage of a river starts at ¢ > 1.5, which we obtain consistently with our method (Table 3.3).

3.6.2 Limitations

Our approach produces meandering river trajectories similar to the ones observed in geomorphology, but
does not come without limitations. First, we do not take into account the influence of the ecosystem on the
evolution of river, and only rely on a procedural approximation for computing abiotic parameters, such
as soil moisture and sediment deposition (Section 3.5.3). This is a typical tradeoff between interactivity
and an accurate simulation. Furthermore, the link between ecosystems and meanders remains unclear
in geomorphology and also depends on more global climate parameters (Ielpi et al. 2022). Second, we
simulate avulsion only locally within a given channel (Section 3.3.4). A more complex algorithm would
be needed to simulate global avulsions between different channels, by properly redirecting the flow.

Another limitation of our method is that we model a river channel with a constant width w and depth
d as it is often the case in geomorphology (Sylvester ef al. 2019), and do not take into account the
potential variations along the trajectory, as well as the asymetric profiles that real meandering channels
often exhibit. A typical solution to this problem would involve procedural primitives in the spirit of
Génevaux et al. 2015.

Finally, we describe several ways to control the output of the simulation in Section 3.5, for instance
using attractive and repulsive points. Intensively using these control tools may over constrain the simu-
lation and lead to unrealistic trajectories.

3.7 Conclusion

We introduced a new method for simulating the meandering evolution of rivers. By taking into account
local and upstream curvature, we are able to reproduce behavior of real rivers identified in geomor-
phology, such as bend migration, oxbow lake formation, and changes of trajectory due to avulsion. We
generalize this simulation to an entire river network, encoded as a directed graph, and show how to
resolve collisions and procedurally handle junction points between multiple channels. The presented
method conforms to observations made in geomorphology regarding statistical measures on the channel
trajectories.

This work opens several avenues for future research. A direct extension would be to incorporate the
two-way coupling between ecosystem and meander simulation, in the spirit of the interleaved simulation
introduced by Cordonnier et al. 2017. Another direction worth investigating is the simulation of other
macroscale landforms such as braided rivers and deltas. Generating such features require simulation
methods discussed in Chapter 9.
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4.1 Introduction

Hydraulic erosion attracted the most attention in the computer graphics community, focusing on Alpine
mountain ranges with specific features resulting from the action of water, such as dendritic river and ridge
networks, eroded mountain ranges with sedimentary valleys. In contrast, the impact of wind erosion over
terrains in hot and arid regions has seldom been addressed despite their significant earth coverage (about
1/3 of earth land surface) and scenic visual aspect. One notable exception is the influence of wind
over the growth of tree (Pirk et al. 2014) and snow simulation (Cordonnier et al. 2018b). Yet, desert
landscapes have not been studied.

Wind is an crucial erosion agent in hot deserts, where annual rainfall is low. In particular, hot desert
landscapes are characterized by distinctive landforms modeled by the action of wind, such as dunes of
different shapes and sizes, eroded table mountains, and bedrock sculpted by the abrasion of sand blown
by the wind. These phenomena are highly dynamic and can quickly change the landscape, moving entire
dunes sometimes up to 20m per year in some region of earth (El-Magd et al. 2013).
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FIGURE 4.1: Example of a desert landscape. The user defined the high-altitude wind regime, added
local turbulence, and finally placed sand at the center of the terrain. Our model automatically created a
mega barchan and a star-shaped dune. The turbulence also created asymmetric transverse dunes as well
as a linear dune.

This chapter presents an original framework simulating aeolian processes described in geomorphol-
ogy: namely saltation, reptation, and avalanching, which take place in the generation of many desert
features such as dunes created by the accumulation of sand, nabkha produced by the surrounding vege-
tation, and yardangs created by abrasion of the bedrock (Figure 4.1).

We model the terrain using a layered data structure combining bedrock, sand, and vegetation density.
Stochastic rules simulate how sand is transported by the wind and its interaction with bedrock and vege-
tation. Given a heightfield and time-varying high-altitude wind field, our method automatically computes
the surface wind taking into account the relief, simulates sand transport across the terrain, and performs
abrasion of the bedrock. The simulation runs at interactive rates and provides multiple levels of control:
at any time during the simulation the user may add or remove sand, change the wind regime or modify
the vegetation density and directly see the evolution of the system.

The main contributions outlined in this chapter are:
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* A procedural model for approximating the wind flow over the relief of the terrain with a multi-scale
warping.

* An interactive aeolian erosion simulation derived from algorithms in geomorphology, combining
a set of stochastic sand transportation rules operating on a layered terrain model.

* A controllable wind-based approach for authoring desert landscapes, providing a variety of direct
and indirect interactive control tools to the user.

After introducing the necessary geological knowledge to the reader (Section 4.2), we provide a high
level overview of the simulation pipeline (Section 4.3), and detail how to compute the surface wind from
the high-altitude wind regime (Section 4.4). We then explain how sand is transported across the terrain
by phenomena such as saltation, reptation, and abrasion (Section 4.5). We also show the potential of
such simulation as an input for terrain amplification (Section 4.6) and, finally, discuss implementation
details (Section 4.7), and show the results and limitations of our method (Section 4.8).

The work presented in this chapter was published in Paris et al. 2019b and received the Replicability
Stamp.

4.2 Geomorphology background

Deserts are regions with low water supply. Depending on the amount of precipitation, they are classified
as hyper-arid, arid, or semi-arid. Hyper-arid and arid deserts, which receive less than 250mm of rainfall
per year, represent almost 25% of the earth surface and have been extensively studied in geomorphology
(Huggett 2003). In this work, we focus exclusively on these two types, as they encompass interesting
and varied landforms.

Transverse

Yardangs

FIGURE 4.2: Photographs of real desert landscapes. Barchan and transverse dunes emerge from uni-
modal wind regime, while nabkha appear under the presence of vegetation. Yardangs are elongated
shapes in the bedrock that form due to the abrasive action of the wind. Sources available in Appendix B.
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Geomorphological phenomena. Deserts are composed of different kinds of landforms created by ae-
olian processes: wind eroding, transporting, and depositing materials. Wind erosion effects include de-
flation, which is the removal of loose, fine-grained particles due to turbulent wind; and abrasion, which
is the wearing down of the bedrock by the grinding action of sand. The transport and accumulation of
the sand lead to the formation of dunes. Figure 4.2 illustrates the variety of landforms in hot deserts.
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FIGURE 4.3: Different types of dunes in relation to the variability of wind direction and available sand
supply. Figure inspired from Livingstone et al. 1996.

The complexity and variability of wind direction play a key role in the formation of different dunes
(Figure 4.3): transverse and barchans dunes are formed from unimodal winds (i.e. wind blowing from
one major direction), whereas star dunes and network dunes featuring complicated patterns are known
to be shaped by more complex wind regimes with local turbulences and vortices, even though the exact
processes remain an active field of research. The relief of the terrain and the presence of vegetation also
influence sand transport, and thus the different types of dunes formed (Lancaster et al. 2013). Anchored
dunes such as nabkha are those created under the influence of vegetation (Baas 2002), as opposed to free
dunes such as transverse, barchan, and star-shaped. Wind erosion can also carve the bedrock, creating
elongated ridge-like formations called yardangs.

Prior work on dune simulation. Few computer graphics works have addressed the formation of sand
dunes. Existing methods either address the modeling of sand as a continuous fluid (Yan et al. 2016;
Daviet et al. 2016) or the modeling of sand ripples (Onoue et al. 2000; Benes et al. 2004). In contrast,
desertic landscapes and particularly sand dunes have received a lot of attention in physics and geomor-
phology.

Stochastic models (Werner 1995) have been proposed for simulating the transport of sand by the wind
and the formation of different types of dunes. Barchan and transverse dunes can be simulated efficiently
with a uniform and unidirectional wind flow under different sand supply conditions. This model was
improved by approximating the effect of wind acceleration on the windward side of dunes (Momiji et al.
2000), which produces more asymmetric dunes and allows to better simulate their movement throughout
time. The impact of vegetation on the shaping of sand dunes was studied in Baas 2002 by introducing an
additional layer representing vegetation density.

The simulation of more complex dunes such as star-shaped or network dunes remains challenging.
Sand accumulation results from the interaction between irregular wind fields and the terrain, and cap-
turing the dynamics of winds over a constantly evolving terrain remains a computationally intensive
problem. Therefore, although changes in the wind direction and speed strongly influence the type and
shape of dune formations, most existing techniques rely on 2D wind flow approximations and avoid
computationally intensive wind simulation. Narteau et al. 2009 developed a complex wind model to
represent complex effects such as transport, gravity and diffusion. This model was extended in Zhang
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et al. 2012 to reproduce star dunes, which are complex to create by simulations. Aeolian erosion is also
known to be responsible for the formation of yardangs created by abrasion. Despite several field studies
and wind tunnel experiments (Ward ef al. 1984), we are not aware of any numerical model capable of
creating yardangs.

In this work, we depart from complex physical simulations (Narteau er al. 2009) and prefer simpler
approaches that allow us to include user-control in the simulation process. We take inspiration from
Werner 1995 and rely on stochastic rules to transport the sand across the terrain. We simulate phenomena
such as saltation, reptation and avalanching while taking into account vegetation presence and bedrock
resistance and providing direct control to the user.

4.3 Simulation pipeline
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FIGURE 4.4: Synthetic overview of the simulation.

Terrain Representation. The layered terrain model, denoted as #, is a discrete regular grid of size
n x n cells. It represents a multi-layer ordered data-structure to represent different terrain materials and
plant density in every cell (Figure 4.4). The sand S layer represents the material thicknesses on top of
a bedrock layer B, which defines the base elevation. Plants are represented using a generic vegetation
density layer V which takes values in [0, 1] and represents vegetation cover. The resistance of the bedrock
p : R? — [0, 1] defines the resistance to erosion; regions with a high resistance to erosion (p = 1.0) are
eroded slower than low resistance ones (p = 0.0).

Wind and sand transport simulation. At the heart of our method is a sand transport algorithm based
on the computation of the wind at the surface of the terrain which takes into account the relief. At
every time step, we compute the evolution of terrain model H (¢ + At) according to the wind conditions
w(p, t). Figure 4.4 presents an overview of the simulation. Given an initial input layered representation
of the terrain and a high altitude wind field a, we compute a time varying wind field w over the surface
of the terrain (Section 4.4), which is used to compute the movement of sand.

The transport and collision of sand with the relief and vegetation form different types of dunes (Sec-
tion 4.5.1), and at the same time erode the terrain through abrasion (Section 4.5.2). The vegetation layer
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plays a role in the formation of anchored dunes such as nabkha, which only form around plants, and
greatly influences the shape of the dunes by preventing the sand from being blown by the wind. Since
the simulation is performed at a 1 — 10 m range per cell, we finally add procedural details to the sand
layer to account for small bumps around plants and sand ripples (Section 4.6). Similarly to Werner 1995,
the simulation is performed on a toric domain: the sand moved beyond one bound is transported to the
opposite bound, which preserves the overall volume of sand during the simulation. Note that the bedrock
layer has to be tileable so as to avoid artifacts caused by different elevations on opposite sides.

Control. The high altitude wind regime is defined by a wind rose that prescribes the wind direction
and speed distribution throughout time. At any time in the simulation, the user can change the high
altitude wind field a and edit the wind field at the surface of the terrain by adding local procedural wind
primitives (Section 4.4.4). Moreover, throughout the simulation, it is possible to add or remove sand,
sculpt the underlying bedrock, and modify the density of vegetation.

4.4 Surface wind computation
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FIGURE 4.5: Overview of the wind field computation.

We define the wind field over the surface of the terrain w : R? — R? by constructing a high-altitude
wind field, denoted as a and computed from a wind distribution (wind rose), and then warping it at
different scales according to the relief . We define the wind field w as:

w(p,t) = o(p,t)woal(t) +u(p,?)

The function w : R? — R? denotes a multi-scale warping taking into account the relief of the terrain at
different scales which deforms the wind field (Figure 4.5). The function o : R? — [0, 1] scales the speed
by computing the shadowing effects that are generated by small scale elevation features such as sand
dunes and small steep cliffs. Eventually, u : R? — R? is a user-control local wind field perturbation
which allows the user to edit the wind field w locally, for instance by adding swirls or turbulence. The
final resolution of the wind field w is n X n, which is the same as the other sand and bedrock layers.
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4.4.1 High-altitude wind field

The high altitude wind field a : R — R? is approximated as a time
Speed varying wind of uniform direction and speed over the terrain, since we

(m/s)  focused on relatively small domains (up to 10 x 10 km?).

15 . . o L
In our framework, users can either specify the variation of direction

10 4nd speed throughout time, or rely on generic wind regime models. Wind
5 regimes are specified by a wind rose that represents the distributions

of wind speeds and directions (Figure 4.6). At a given time step, the
0 distribution is sampled and a direction is chosen for the whole terrain.

FIGURE 4.6: Wind rose.

4.4.2 Warping

The high altitude wind field a is then warped according to the relief of the terrain at different scales.
We compute the smoothed elevation function of the terrain at different resolutions: let i a smoothing
radius, we define #; = H ® gR, as a convolution between the terrain H and the Gaussian kernel of radius
R;. We first account for Venturi effects, which accelerate wind at higher altitudes, according to the base
elevation:

v(p,t) = a(t) (14 kwH(p))

The term kyy is a scaling parameter, set to 5 x 1073 in our model. While wind is usually approximated
using a power law, this linear approximation lends itself for interactive purposes as it is efficient and
easily controllable.

We then change the direction of the wind according to the gradient of the surface of the terrain at
multiple scales. We define the wind at surface as a weighted sum:

1=n
w(p,t) = Z ciw; ov(p,t)
i=0

Wind Magnitude

FIGURE 4.7: Deformation of the constant high altitude wind field a to account for terrain obstacles in
‘H, leading to a surface wind field w.
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The term w; o v denotes the warping of v at scale < weighted by coefficient c;. The warping operator is
in turn defined as:

wiov(p,t) = (1—a)v(p,t) + akr VH(p)  a=|VHi(p)]

The term k7 is a deviation coefficient set by the user, and « the normalized slope of the smoothed terrain.
Vﬁf (p) denotes the orthogonal vector to the terrain gradient in the direction of v, thus v- V?T[f (p) > 0.
We used n = 2: convolution radii were set to 200 m and 50 m, with corresponding weights 0.8 and 0.2,
and deviation coefficients of 30.0 and 5.0 respectively. This allows us to redirect the wind with respect
to mountains and smaller cliffs or mesas (Figure 4.7).

4.4.3 Wind shadowing

Wind shadowing occurs in the lee side of terrain relief or vegetation, i.e. those areas where wind flow
has been slowed down sufficiently to suppress any further transport of sand. This complex phenomenon
is fundamental in the formation of all sand dunes (Baas 2002).

Our simulation conforms to experiments in geomorphology demon-

Wﬂ W q Shadowed cell strating that wind shgdowing tak'es place un.der a .15 degree.accessibil'ity

L angle. Therefore, wind shadowing at a point p is approximated using

p a dampening function o(p), computed as follows. Starting from p, we

march in the opposite direction of w(p,t) and check intersection with

the terrain (Figure 4.8). The maximum marching distance is a control

radius Rs set to 10 m, and the marching step is set to 0.5 m. We keep

the point q with the maximum elevation difference regarding p, and
compute the shadowing angle « as:

tana = (H(p) — H(a))/(Ilp —all)

Rg

FIGURE 4.8: Shadowing.

We finally compute shadowing o as the linear interpolation between 10 and 15 degrees from the angle
a, which will progressively suppress sand transport (see Figure 4.9).

Terrain

FIGURE 4.9: Shadowing map for a set of transverse and barchan dunes. Red indicates maximum shad-
owing with o = 1 (tana > 15 degrees) while blue means complete exposition to wind with o = 0
(tan o < 10 degrees).

Note that the computation of w is performed at every step of the simulation to account for the time-
varying high altitude wind field a, as well as the constant movement of dunes, which leads to different
warping and shadowing effects as the landscape evolves. While this update is computationally intensive,
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the multi-scale approach generates realistic sand transport effects by weighting obstacles accordingly to
their size: a small hill does not have the same impact on the wind direction as a mountain peak.

4.4.4 Control

The user-controlled perturbation field u : R? — R? is constructed by combining time varying procedural
wind primitives as proposed in Bridson et al. 2007. This approach provides fine user-control over the
simulation process and guarantees that u(p, ¢) should be divergence-free (i.e.that it represents an incom-
pressible fluid with no sources or sinks). The perturbation field provides the user with local control and
enables her to add eddies or turbulences at prescribed locations (see Figure 4.10), which are important
for some specific phenomena such as asymmetric transverse or star dunes (Section 4.8).

Uniform (/) Edited 2(7)

FIGURE 4.10: Comparison between a uniform (left) and a user-edited (right) wind field using a vortex
and a turbulence primitives. The latter produces more asymmetric dunes.

4.5 Sand simulation

i Cip
% Barchans O = Transverse

g» v— VClimbing dunes Nabkha

FIGURE 4.11: Our method generates different types of dunes: free dunes such as barchan and transverse
dunes (top row) form with uniform wind conditions, anchored dunes are influenced by their environment:
climbing dunes appear at the bottom of small cliffs, and nabkha are created near vegetation.
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The sand transport model involves three different sand movements: saltation, reptation and avalanch-
ing which are modelled as stochastic processes (Figure 4.12). The fundamental sand transport process
leading to the formation of dunes is saltation (Section 4.5.1).

Depending on its strength, wind can lift and carry sand along its direction, bouncing possibly multiple
times before being deposited at some other location. In turn, these bounces and depositions produced by
saltation can trigger reptation, also referred to as creep, which is the movement of sand grains to adjacent
positions upon impact by other sand grains. Finally, when the deposited sand creates a local slope greater
than the angle of repose threshold, avalanching events are triggered. Note that saltation moves sand in
wind direction, whereas reptation and avalanching may transport it in different directions.

Wind w Deposition .
1 Saltation Reptation

Sand lift Bounce . Avalanching

FIGURE 4.12: Processes involved in sand transport: saltation lifts sand in the air and transports it over
a few meters, possibly with multiple bounces. Deposition eventually occurs based on stochastic rules
involving the presence of sand, vegetation and wind shadowing. Reptation is triggered by the deposition
of sand at each bounce during saltation.

Wind also erodes the surface of the terrain by an aeolian abrasion process, which occurs whenever a
small amount of sand blown by the wind is transported over bare bedrock (Section 4.5.2).

4.5.1 Sand transport

For every cell C of the grid, we successively trigger a series of events according to the surface wind
w(p) at the location of the cell: starting with saltation, a small fixed amount of sand, often referred to as
slab in geomorphology (Werner 1995), is lifted and moved over the grid by successive saltation steps or
bounces, triggering in turn reptation events until sand is eventually deposited back to the ground, which
might trigger avalanching events.

Saltation. We approximate salfation as a stochastic event on a given cell C in three steps. First, lifting
removes a small amount of sand €g (set to 0.1m). Then, wind transports eg to a target cell denoted as N/
located at q = p + d o w(p, t) where d denotes the saltation distance function of the wind. The saltation
distance is linear to the intensity of the wind ||w(p,?)|| and transports the sand along its direction.
When this sand slab hits the ground, it can either bounce or be deposited on the ground according to a
probability 5. This probability depends on wind shadowing o(q), the presence of sand S(q,¢) and the
vegetation density V(q, t) of the target cell N:

B=o(q)+ fs(S(a,t) + fv(V(aq,1))

Note that we clamp the value of 3 in [0, 1]. The transfer functions fs and f) are defined as follows.
Following Werner 1995, we model fs as the step function fs(0) = 0.4 and fs(z) = 0.6 for x > 0. We
extent this equation by taking into account vegetation density per cell. The action of saltation is more
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intense in places where vegetation is sparser, since sand grains are unconsolidated. Therefore, we used a
linear decay: fy(z) = 1 — x for the vegetation density term.

a=30°0  a=45°

Lifting dampening Collision Steeper slopes

FIGURE 4.13: Vegetation limits sand lifting during saltation, decreases the probability of bouncing, and
prevents avalanching and reptation.

Reptation. is a process whereby sand grains collide with others during bounces in saltation, prompting
them to move in the slope direction. It is also, with avalanching, a process where sand grains can move
laterally to the wind direction.

We model reptation as a stochastic event that is triggered by the sand slabs bounces and depositions
during saltation transport. In reptation movements, a small amount of sand ey, is displaced to neighboring
positions depending on the slope. We transport sand to the n steepest neighbors of the current cell, and
distribute the quantity e (set to 0.1m in our simulation) to each neighbour proportionally to their steep-
ness. We empirically found that n = 2 was enough to account for the chaotic nature of this phenomenon;
adding more neighbors can lead to oscillations and visual artifacts. Vegetation also influences reptation
as it shields and retains sand from being moved by collision during bounces. We define the probability
Br of a reptation event as:

BR =1- V(qa t)

While saltation is the fundamental transport process in sand dunes, the importance of reptation is still an
open question in geomorphology. Cooke et al. 2006 states that the importance ratio between reptation
and saltation has been found to be 1 : 3, while Nickling 1978 found that reptation might only account
for less than 4% of sand grain movements. We found the importance of repration to be negligible as it
did not change the global dune shape and distribution, even when increasing the amount of neighbors n.

Avalanching occurs when the local slope s(p) of the sand is greater than a given threshold defined
by the repose angle: s(p) > tan« (Figure 4.14). Sand slides in the direction of the steepest slope
only, making avalanching a deterministic process as opposed to saltation and reptation. The avalanching
process participates to the formation of climbing dunes and talus on the leeward side of steep cliffs (see
Figure 4.11).

Unstable cell ¢ It is a fundamental stabilization process in sand simulations and ne-

s(p)>tan o glecting it would lead to large unrealistic piles of sand. When saltation

. has transported sand from one cell to another, we check stability on

Sliding both cells and trigger sand slides if necessary. We model this process

in the same way as the granular material stabilization process described

in Cordonnier et al. 2017 by checking stabilization on a per-cell basis,

propagating material to neighboring cells and triggering avalanching
events to those cells.

FIGURE 4.14: Sliding.
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Vegetation prevents avalanching by retaining sand (Figure 4.13). In
our model, vegetation density changes the angle of repose threshold value: we linearly interpolate be-
tween o« = 30° for bare sand and o« = 45° for sand covered by vegetation (V = 1).

Parameters Existing models in geomorphology are often scale-independent, which allows them to
reproduce different phenomena occurring at different scales, such as sand dunes and sand ripples. We
investigated several studies in geomorphology to determine the parameters of the simulation. In deserts,
sand grains are lifted by the wind and then transported over short distances. By setting a time step
At = 10 days and a maximum saltation distance of dy = 8 m (per iteration), an entire barchan dune
moves by ~ 25 meters in a year, which is consistent with observations made on barchan dunes (Groh
et al. 2008). Note that this parameter highly depends on the wind regime and the average sand supply
and is only valid in the context of arid deserts.

4.5.2 Bedrock abrasion

Abrasion is the erosion of bedrock by the wind, more precisely by sand hitting the surface and bouncing
off during saltation. Typical desert landforms such as yardangs and ventifacts present in the Gobi desert
are produced by the action of the wind, which carves the bedrock. In areas with low sand supply and
high wind speed, sand carried by the wind hits the bedrock, thus eroding the surface. Softer bedrock
erodes faster, which leads to the creation of characteristic landform as depicted in Figure 4.16.

We simulate bedrock abrasion during the saltation step, where sand
moves from one cell to another with possibly multiple bounces (Fig-
ure 4.15). If abounce occurs on a cell C with a low sand thickness value
(s(p) < 25cm), we trigger an abrasion event for this cell. The abrasion
process transforms a small amount € of bedrock into sand, which may
be transported by the wind in future saltation steps and may stabilize
according to the avalanching process. The eroded amount of material
€ is computed as a function of the wind speed, bedrock resistance and
vegetation density:

e =ka(1—p(p)) lw(p)| (1—V(p))

Abrasion

FIGURE 4.15: Abrasion.

Abrasion is more important as the speed of the surface wind w is high. The term (1 — p(p)) denotes
that abrasion is less intense as the bedrock is more resistant. Vegetation dampens abrasion and acts as a
shield, protecting the bedrock surface.

Abrasion may erode up to 4 millimeters of rock per year (Cooke et al. 2006) and therefore acts on
a larger time scale than saltation and reptation. The constant k,, experimentally set to 12.5, is a user-
defined factor used to accelerate the effects of abrasion in the simulation (At = 125 days in the case of
abrasion). As we only approximate abrasion, we do not take into account the angle between the wind
and the surface. A more complex model taking into account the curvature or the slope of the terrain may
lead to better and more realistic results.

One notable limitation of our simulation regarding yardangs is that they often exhibit more com-
plex volumetric landforms, which cannot be modeled on a 2D layered representation of the terrain. In
Chapter 6, we show how to overcome this limitation using fully volumetric method based on implicit
surfaces. Yardangs and ventifacts are modeled using arrangements of skeletal primitives which are later
eroded using a ballistic approach (see Figure 4.17).
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FIGURE 4.16: Generated yardangs with large time steps. Abrasion shapes the bedrock layer into lines
parallel to the major wind direction during saltation, depending on the bedrock resistance (defined as a
warped noise), showing the footprint of the wind.

Eroded side
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Yardangs

FIGURE 4.17: Volumetric yardangs generated using a ballistic approach, where volumetric spheres
progressively carved an implicit surface base model.

4.6 Amplification

Recall that we use a multi-layered representation of desert landscapes at a resolution of 1 — 10 m per grid
cell. Smaller details such as sand ripples or sand accumulation at the base of smaller obstacles, such as
plants, cannot be simulated. Thus, there is a need for an amplification step to increase the final resolution
of the terrain and add microscale details. We procedurally generate details as a post processing step: the
final sand elevation is defined as S = S +R + B where R and 53 denote the wind ripples and sand bumps
caused by small obstacles.

Sand ripples are smaller than dunes, with a width range of 1 — 20 cm. In our implementation, we
define the presence and shape of ripples as a function of the wind direction. We relate the ripple size
r linearly to the wind speed ||w]|. Asymmetrical ripples profiles are observed when the wind blows
in a single direction, whereas symmetrical ripples form when the wind blows in several directions (see
Figure 4.21 right). Parallel asymmetric ripples are generated and oriented orthogonally to the wind
direction u = w. We also weight the presence of ripples according to the wind shadowing effect of the
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‘ Vegetation bumps

FIGURE 4.18: Procedural sand bumps located around plants, defined as two blended point primitives.

relief of the sand dunes.

Small sand bumps that form near rocks and plants result from the collision of the wind-transported
sand and obstacles. Sand is accumulated on the windward side of obstacles, the sand relocation and wind-
ripples are diminished on the leeward side. We approximate those effects and procedurally generate sand
displacement according to the wind and sand fields w and s respectively (Figure 4.18).

4.7 Optimized implementation

The simulation has been implemented in C++ and is available at
https://github.com/aparis69/Desertscapes-Simulation

The provided code uses OpenMP for parallelization but relies on atomic operations, which are known to
be slow. While this remains interactive for scenes up to 1024 x 1024 resolution, larger domains cannot
be processed efficiently. In this section, we reformulate the sand transport algorithm to make it massively
parallel without requiring atomic operations. While we do not provide a complete GPU implementation,
the optimized version of the algorithm implemented on the CPU performs up to 4x faster than the
original implementation.

Processed\ x, T L |
cellC | v
< —> —_—
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v |
Scatter Gather

FIGURE 4.19: Comparison between the scattering and gathering models.

Grid-based simulations usually involves writing data to neighboring cells. A straightforward imple-
mentation is usually based on the scatter principle (Figure 4.19, left): when processing a given cell C,
the algorithm distributes a certain amount of material to its neighbors depending on the simulation con-
ditions. While easy to understand and simple to implement, this approach prevents an efficient parallel
implementation as multiple threads can be writing to the same cell, leading to a race condition.

Instead, the gather principle is usually preferred in a parallel context: instead of scattering to neigh-
boring cells, the algorithm checks the amount of material arriving on the current cell from its neighbors
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(Figure 4.19 right). Such parallel implementation provides considerable speed-up. The following sec-
tions explain how to apply the gather principle to saltation and avalanching.

4.7.1 Saltation

Recall that saltation is the main transport process leading to the formation of sand dunes. Sand is lifted
from a cell, transported on a maximum distance ds with possibly multiple bounces in between before
deposition eventually occurs on another downwind cell.

To apply the gather principle, we must compute the amount of sand arriving on a given cell C from its
upwind neighbors. The complete neighborhood A thus depends on the maximum saltation distance d.
The left side of Figure 4.20 shows N without taking into account wind regime. In practice, exploring
the complete neighborhood for every cell increases the overall complexity of the algorithm by an order
of magnitude.

Processed D ]\.{C
Cell € ~ e
\
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Complete Unimodal wind Complex wind
neighborhood HN. < #V, #N, = #N,

FIGURE 4.20: Complete neighborhood of a cell N¢ (left), pruned neighborhood Ne under unimodal
wind (center), and under complex wind regime (right).

The wind regime also has a crucial influence on a cell neighborhood: simplifications can be made by
pruning a large number of cells from which sand cannot be arriving, leading to a modified neighborhood
Ne (Figure 4.20, center). This pruning is completely dependent on the wind regime. The majority of cells
can be pruned under unimodal wind, leading to #./\70 < #N¢ (Figure 4.20, center). Under complex wind
regime with eddies and turbulences, sand can arrive from more directions, leading to #Ne = #N¢ in
the worst case scenario (see Figure 4.20 for a complex case). In practice, users tend to favour unimodal
or almost unimodal wind regime for modeling the main landforms, and only use more complex wind
regime at the end of the simulation scenario to add more diversity.

4.7.2 Avalanching and reptation

In essence, avalanching is very similar to the material stabilization described by Musgrave et al. 1989
and later by Cordonnier et al. 2017. The algorithm can be easily implemented in parallel: for a every
cell C, we need to check the amount of material arriving from its 8 direct neighbors. This stabilization
step can be performed independently after the saltation and reptation processes of the simulation.

While reptation is not the key process accounting for the formation of sand dunes, it is still interesting
to investigate its efficient parallel implementation. Reptation is heavily linked to saltation, as it is trig-
gered stochastically by a bounce during sand movements, and transports a certain amount of material to
the n lower steepest neighbors. By recording the number of bounce for every cell during a simulation
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step, reptation can be simulated independently after saltation, by checking the amount of material arriv-
ing from the 8 direct neighbors of a cell. In our experiments, this refined algorithm leads to a speedup
up to a factor between 2 and 4 compared to the original implementation, depending on the wind regime.
Moreover, this scheme should allow an efficient implementation on graphics-hardware, but it is beyond
the scope of this research and is left as future work.

4.8 Results and discussion

Experiments were performed on a desktop computer equipped with Intel® Core 7, clocked at 4 GHz
with 16GB of RAM. The output was streamed into Vue XStream® to produce photorealistic landscapes.
Table 4.1 reports the statistics for different landscapes shown throughout this chapter. The simulations
were performed with cells ranging from 1m to 10m in size. The yardang terrain (Figure 4.16) fea-
turing bedrock abrasion involved the computation of the wind w according to the varying bedrock at
every iteration, hence a higher iteration time. Recall that the code for the simulation is available at
https://github.com/aparis69/Desertscapes-Simulation.

Scene Figure Size Grid | Step | Time
Dunes 4111 05x05 | 512 | 0.12 36
Yardangs 4.16 1x1 512 | 0.53 | 371
Mountain | 4.1, 4.21 4 x4 1024 | 0.60 | 300

TABLE 4.1: Statistics for the scenes shown in this chapter. Terrain size (in km), grid discretization,
average time of a single simulation step (in seconds) and total time of the simulation (in seconds).

i =~ | Linear dune \ Mega Transverse dune

FIGURE 4.21: Linear dune formed by opposite wind directions, and closeup view of a mega transverse.

Our method is the first capable of generating a variety of desert landscapes. Figures 4.11 and 4.21
show the variety of sand dunes that can be achieved. Figures 4.1, 4.16 and 4.22 show complex interac-
tions between bedrock and sand with different wind regime conditions prescribed by the user. Figure 4.24
shows several time steps of an editing session and demonstrates the capabilities of our model regarding
interactive editing and fine tuning by an experienced user.

4.8.1 Control

The user can interactively change the sand supply at any cell, as well as vegetation density during the
simulation. Wind direction, which is the key element of aeolian landscapes, can also be changed at any
time. An interactive simulation is a necessary component for authoring: dunes emerge and disappear
quickly depending on the wind regime, making interactive visual feedback necessary to allow the user to
achieve her particular intent.
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FIGURE 4.22: Using high speed wind regime increasing linearly over time, we are able to produce
multi-scale dunes as found in nature.

A variety of control mechanisms and the resulting landscapes are showcased in Figure 4.24. Here,
the designer modeled an arid terrain covered with a shallow layer of sand, creating barchans dunes. She
then triggered abrasion which produced yardangs, which were then covered by adding more sand to
get transverse dunes. Nabkha were created by increasing vegetation density and complex star dunes by
playing with different wind regimes.

The user may also change the elevation of the bedrock layer to create features such as falling and
climbing dunes (see Figure 4.11).

FIGURE 4.23: Comparison of real (left) and synthesized (right) barchan dunes; no user interaction was
needed to create this terrain.

4.8.2 Validation

Figure 4.23 shows a comparison between real and synthesized barchan dunes. While the generated dunes
lacks sharp ridges at their top, we succeed in capturing the overall shape and placement of the dunes.
Moreover, we are able to recreate a large number of desert features: transverse, barchan, linear, climb-
ing and star dunes, as well as yardangs produced by abrasion (Figures 4.11, 4.16, 4.21 and 4.24). This
qualitatively validates the overall coherency of our simulation. We managed to reproduce complex phe-
nomena and results are consistent with observations and numerical simulations done in geomorphology
(Werner 1995; Baas 2002; Momiji et al. 2000).

A more complete quantitative validation is difficult: current available elevation data is not accurate
enough to capture detailed desert landforms. A comparison with dense and accurate real elevations
would be an interesting research direction worth investigating.




78 Chapter 4. Desertscape simulation

@ f e Barchans % . Abrasion @ : Transverse

o

&7 Eo - < — &

@% Nabkha @ Méga Barchan % Rk ’g

FIGURE 4.24: Snapshots of an interactive editing session. Starting with a bare bedrock covered by a
small amount of sand, barchans emerged because of the low sand supply and the uniform wind condi-
tions. The user then triggered abrasion which shaped yardangs parallel to the wind direction. Then,
sand was uniformly added over the entire terrain, which transformed barchans into transverse dunes.
Vegetation was later added on the right side, which yielded nabkha. Mega-barchans started to appear
after many iterations, as observed in nature. Finally, the user removed some sand to get a more uniform
sand layer, destroyed vegetation, and created large dome dunes by changing wind rose parameters.

4.8.3 Comparison with other techniques

To the best of our knowledge, our model is the first to capture such a wide variety of desert landforms.
Previously published methods either employ generic hydraulic or thermal erosion which primarily gen-
erate Alpine mountain ranges.

Previous works directly dealing with the saltation process (Onoue et al. 2000; Bene$ et al. 2004)
target the specific application of sand ripples at a much lower scale. Applying a simple scaling factor to
the results would not work as the phenomena are not linear. In contrast, our approach is more general
and thus achieves a wider range of desert features. Other specific works only apply to a limited range of
ventifacts such as Goblins (Beardall ef al. 2007; Jones et al. 2010) which also belong to the small scale
class of phenomena. In a sense, these works can be seen as complementary to ours, as they can be used
to amplify the generated landscapes with details.

Closer in spirit to our work is the method introduced by Cordonnier ef al. 2017 that combines (hy-
draulic, thermal and lightning) terrain erosion and ecosystem simulation in a unified framework. The
presented sand transport simulation extends this work and could be seamlessly integrated to it as it also
relies on the definition of stochastic events.

4.8.4 Limitations

Our model produces dune topography and landforms similar to the ones observed in geomorphology
but does not come without limitations. First, the simulation grid is currently limited to 1024 x 1024
resolution in order to maintain acceptable computation time and to allow for simultaneous interactive
editing and control. The simulation could be accelerated by carefully implementing the algorithm on
graphics hardware using the algorithm described in Section 4.7.
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Another limitation commonly accepted for all grid-based terrain erosion simulations is the lack of
precision. Sand dunes may have sharp features, such as crests or ridge lines, which are not captured by
the simulation even with high resolution grids. These sharp features are the result of more complex wind
processes, which we do not model. An efficient, artist-oriented solution consists of using the amplifica-
tion combined with procedural primitives in the spirit of Génevaux et al. 2015 to restore the sharpness
of the terrain. This was the essence of the amplification approach for modeling sand accumulation and
ripples (Section 4.6).

A wider range of effects observed in geomorphology could be incorporated. For instance, echo dunes
(Tsoar 1983) which form on the windward side of cliffs or escarpments, are separated from the scarp by
a sand-free region and are the product of the complex movement of wind, forming a fixed eddy between
the escarpment and the dune. Such dunes could be obtained by improving the procedural wind warping
and shadowing model with procedurally generated edits. Small scale user-controlled wind field currently
partially leverages this limitation.

4.9 Conclusion

We introduced a complete aeolian erosion and transport simulation to the field of computer graphics.
Derived from the high altitude wind is the fast approximation and computation of the surface wind, taking
into account relief shadowing at different scales, which is central to the simulation of sand transport.
In turn, saltation, reptation and avalanching processes are simulated in a consistent framework and
combined with bedrock erosion to simulate abrasion as well as vegetation shielding to create nabkha.

Our model is versatile and capable of generating all the different dune types as well as abrasion ef-
fects on the bedrock. However, obtaining a specific distribution of sand dunes from a simulation is a
challenging task, requiring many trial and errors, particularly for complex dune shapes. A direct exten-
sion to this work would be to incorporate a variety of complex wind scenarios to guide the simulation.
An even more noteworthy albeit challenging avenue of future research would be to learn the correlations
between the wind and the generated features in an inverse procedural way. Learning which parameters
of the simulation lead to some specific dunes distributions and shapes could lead to new insights on how
certain types of dunes form and evolve. We discuss such perspective in Chapter 9.
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Abstract

Truly three-dimensional landscape features are some of the most visually arresting and memorable el-
ements of real terrains. They are formed by different physical processes (including joint fracturing,
percolation, and stratified erosion), take a variety of forms (from steep-walled canyons to underground
cave complexes), and exhibit different scales (from mineral deposits, such as stalactites less than a meter
in diameter, to sea cliffs stretching for kilometers). Existing solutions in the literature do not permit the
modeling of these varied volumetric features efficiently. Here, we propose a complete framework for
modeling, generating and authoring volumetric terrains across a range of scale (macroscale, mesoscale,
and microscale). At the heart of our method is a novel representation for representing volumetric terrains
based on implicit surfaces and a construction tree paradigm that arranges primitives to create volumetric
landforms. This representation is compact in memory, amenable to modifications by the user, and can be
used as a basis for complex simulations and procedural algorithms.

Chapter 5 provides the necessary background on implicit modeling for understanding our latter contri-
butions. We focus on analytic signed distance fields and explain how to properly extract signed distance
bound primitives and operators.

In Chapter 6, we show how to generate large-scale volumetric landforms as arrangements of skeletal
primitives positioned using various techniques, including Poisson sampling, open shape grammars and
invasion percolation processes. We show that our method allows generating volumetric features such as
canyons, arches, hoodoos from a base 2D heightfield provided as input by the user.

In Chapter 7, we investigate the generation of geologically coherent karstic networks - a set of con-
nected tunnels deep under the terrain surface - through an anisotropic shortest path algorithm and ge-
ometric graph generation. Geological conditions such as inception horizons and fracture distributions
influence the trajectory of the tunnels and allows reproducing patterns observed in real karstic networks.
The mesoscale geometry of the network is modeled using specific implicit primitives and operators that
exhibit correct mathematical properties and reproduce identified archetypes from geomorphology.

Finally, Chapter 8 explains how to model detailed volumetric block structures for amplifying a smooth
input terrain. Tiles of blocks are first generated using a greedy fracturing algorithm based on a geomor-
phological classification, and finally replicated on vertical parts of the terrain. On top of the generation
of tiles with different geological characteristics, we introduce new primitives and operators allowing for
the modeling of mesoscale and microscale features in volumetric terrains.
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5.1 Introduction

Implicit surfaces are a powerful tool for modeling and animating shapes of arbitrary topology. They
provide a simple and consistent framework for geometric operations such as Boolean operations, blend-
ing, and warping. They are compact in memory and theoretically provide infinite precision. They have
been used for decades in numerous applications, including fluid animation (Stam et al. 2011; Desbrun
et al. 1995), modeling of molecular structures (Parulek et al. 2012), volumetric sculpting (Schmidt et al.
2006), and more. They recently regained popularity thanks to platforms such as ShaderToy, clay-based
modeling software (MagikaCSG, Clayxels, Adobe Substance Modeler), and for their use in machine
learning methods (Park ef al. 2019; Sitzmann et al. 2020).

We distinguish between two categories of implicit surfaces: discrete representations that store the
value of the function in a regular or an adaptive grid (Frisken et al. 2000), and procedural (or ana-
Iytic) models that directly encode the mathematical expression of the function from a list of primitives
organized in a construction tree (Wyvill ez al. 1999). Here, we focus on analytic representations and
investigate their use for volumetric terrain modeling. As opposed to (Peytavie et al. 2009b; Becher ef al.
2019), we generate a fully-implicit model of the terrain using a hierarchical structure inspired by the
Blob Tree (Wyvill et al. 1999). The compact memory aspect and expressiveness of the model are key
advantages that we leverage in the following chapters.

Note that visualizing implicit surfaces can be performed either directly using ray tracing approaches
(Kalra et al. 1989; Hart 1996) or indirectly using polygonization (Aradjo et al. 2015). A complete
description and analysis of those methods is beyond the scope of this thesis and will not be detailed here.
We focus on Lipschitz techniques, which provide a consistent background for computing ray-surface
intersection and other queries that will be used throughout the next chapters.

The first part of this chapter presents a general introduction to implicit surfaces and signed distance
functions (Section 5.2). The second part introduces the hierarchical tree structure used to define the field
function (Section 5.3), along with classical primitives (Section 5.4) and operators (Section 5.5) that we
use in the context of volumetric terrain modeling.

5.2 Fundamentals and notations

In this section we recall the definition of an implicit surface and review some of their properties under
simple hypotheses that provide the implicit model with efficient tools for queries, i.e. detecting whether
a region is inside, outside or straddling the surface, which provides us with efficient adaptive algorithms
for computing the intersection between the object and a ray.

5.2.1 Implicit surface

An implicit surface S is defined as the set of points in space p = (X,y,z)
for which a function f : R3 — R satisfies f(p) = 0: S= {p eR® f(p)= ()}

S={p e R’|f(p) =0}

We consider the set of points inside of S as p € R?, f(p) < 0 and outside /Op S
n

as p € R3, f(p) > 0 respectively. Additional queries such as the gradient
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V f is defined from the field function:

_(Of of of
Vip) = <(’3x’8y’8z>

It may be computed in closed-form or approximated numerically. Let € > 0, we have:

f(p+ex)— f(p —ex)
Vf(p) ~ % f(p+ey)— f(p—ey)
f(p+ez)— f(p—ez)

Computing the approximation of the gradient can be computationally intensive, as it requires six field
function evaluations. Therefore, gradient-based operators and algorithms need to limit the number of
gradient queries to perform efficiently. A less computationally intensive approximation requires only
four field function evaluation at the cost of a less accurate approximation:

f(p+ex)— f(p)
f(p+ey)— f(p)
f(p +ez) — f(p)

Using the convention f(p) < 0 inside the object, the normal n of the surface at p may be derived from
the gradient as:

™ | =

Vf(p) =

Vp €S, n(p) = Vf(p) = Hg;g;”

5.2.2 Lipschitz property

A function f is said to be Lipschitz over € if and only if there exists a positive constant A > 0 such that:

V(p,a) € 2 x Q,[f(p) — fla)| < Allp — 4|

The Lipschitz constant of f is the minimum value satisfying this equation.
Any value overestimating it is called a Lipschitz bound. A function with a
Lipschitz constant A is commonly called a A-Lipschitz function.

Let B(c,r) denote the sphere of center ¢ and radius r, the Lipschitz ex-
clusion criteria (Hart 1996) states that the intersection between the ball B and
the surface is empty, thus:

ol
vpeR® B(p,|f(p)|/NNS=0 A

Lipschitz conditions are fundamental to implicit surface processing as they provide surface exclusion
criteria (Kalra et al. 1989; Hart 1996) and monotonicity (Kalra et al. 1989), which are essential for
deriving guaranteed ray-surface intersection algorithms.
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5.2.3 Signed distance function

£(p) >0 5 Signed distance functions, commonly referred to as SDF, are a subset of
p €0 implicit surfaces, where the function computes a geometric distance to the
Q F(p) <0 ' object’s surface. Let d : R? — R denote the positive Euclidean distance to
e p €0 the surface S:
O/ d(p) = min||p —
7 q (p) = min|[p — |
S —

The signed Euclidean distance function f : R?> — R to the surface S of
an object O is defined as the positive Euclidean distance outside, negative
inside, and O on the surface:

d(p) ifp¢O
fp)=+<0 ifpeS

—d(p) otherwise.

A signed distance bound is formally defined as a lower bound function b : R3 — R such that:

vp € R, [b(p)| < |f ()|

The function b always provides a lower bound to the distance to the surface, thus it can be used as a safe
marching distance for intersection algorithms, such as sphere tracing (Hart 1996). It is possible to derive
a signed distance bound from any pseudo-distance function f through the use of one of its Lipschitz
bounds )\, by using f(p)/A as the field function. The Lipschitz constant of a C'* function f may be
defined as the upper norm of the gradient of the underlying function A = max ||V f||. In some cases
where f is C2, this can be achieved by finding the roots of the second derivative of f and plugging those
roots into f’.

Here, we aim at defining continuous 1-Lipschitz functions that are lower signed distance bounds to
the surface. We derive all Lipschitz constants in Appendix A.

5.3 Hierarchical model

Union

T

S J /Blend\ Spheres
' Twist Disc

Segments

FIGURE 5.1: A construction tree with primitives and operators defining a candlestick (after (Wyvill et al.
1999), see Figure 1.3 for inspiration).

We propose a hierarchical model for constructing the field function f as a signed distance field. Our
approach takes inspiration from the Blob Tree (Wyvill et al. 1999). Instead of combining compactly
supported primitives built with a falloff function combined with skeletal primitives, we aim at construct-
ing signed distance functions directly, with leaves of the tree defining a signed distance to the surface.
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A depth-first walk of such a tree is equivalent to a function evaluation for a point p. This data struc-
ture allows taking full advantage of the compact memory aspect of implicit surfaces, as it is possible to
define complex shapes with very few nodes (see Figure 5.1). As opposed to the Blob Tree, we encode
shapes as 1-Lipschitz continuous signed distance functions and adapt the operators accordingly. A simi-
lar construction tree operating with signed distance field primitive was introduced in Reiner et al. 2011,
however, few details are provided regarding the Lipschitz properties of the proposed distance functions.

5.4 Skeletal primitives

FIGURE 5.2: Skeletal primitives are useful for modeling volumetric features in virtual terrains. Segments
are useful for carving overhangs over large zones, while spheres can be used to model arches and adding
irregularities (Chapter 6).

A vast variety of skeletal primitives exist in the scope of the Blob Tree model, from simple points
or line segments (Wyvill et al. 1986), anisotropic distance primitives (Crespin et al. 1996), and curve
or volume based primitives such as cylinders, discs, cones or curves introduced in Barbier ef al. 2004,
which are useful for modeling and morphing more complex skeletal models. These primitives are defined
by the signed Euclidean distance to their skeleton, thus they are 1-Lipschitz by construction. Here we
briefly review some primitives that are commonly used in our system: simple sphere and box primitives
are used to carve volumetric terrain landforms such as arches, overhangs and hoodoos (Chapter 6), while
complex curves and segments are used for modeling karstic tunnels (Chapter 7).

5.4.1 Sphere

The simplest signed distance primitive is the sphere. Let ¢ denote the center
of the sphere and 7 its radius, the distance function is:

fe)=llp—cll-r

Spheres are often combined to create more complex shapes such as ven-
tifacts (Figure 5.3). In Chapter 6, we show how to carve overhangs and build
arches using arrangements of spheres, placed by an invasion-percolation
process (Figure 5.2).

FIGURE 5.3: Ventifact Instead of using the Euclidean distance ||p — c||, it is possible to use the
made with a smooth union  LP norm and generate a variety of shapes using f(p) = ||p—c||,. Recall that
of spheres. the L norm of a vector v is defined as ||v||, = (|z[? + |y[? + |2|P)/P. Let

Ap denote the Lipschitz constant of the L” norm, we define super-ellipsoid
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distance as:
fe)=Illp—clp/Ap—7

Using p > 2 preserves the Euclidean distance property (A, = 1), but this is no longer true for p < 2. In
this case, the Lipschitz constant is defined as A, = 31/p=1/2 (see Appendix A for demonstration).

5.4.2 Box

Boxes are essential primitives, particularly useful for defining the 1-Lipschitz signed distance function
for a heightfield within a finite domain (Figure 5.4 and Chapter 6), by using the intersection operator
(Section 5.5.1). Boxes are also used for generating complex shapes, such as Hoodoos and Goblins
(Chapter 6). Calculating the signed distance to a box skeleton can be tedious, as 9 different cases arise.
However, by exploiting planar symmetries, it is possible to define the function in a compact form. Let o
the origin, c the center of the box, h the half diagonal, we define f as:

f(p) = |[|max(q,0)|| + min(max(qs,qy,q:),0)  q=|p—c[—h

The definition of q involves the absolute value of the components of the vector p — c.

FIGURE 5.4: Intersection between a box and a heightfield for constructing a I-Lipschitz continuous
signed distance function.

5.4.3 Segment and curve

Carving overhangs or creating volumetric landforms over large zones may require thousands of spheres,
which in turn may be computationally intensive and with a high memory impact. In contrast, a sin-
gle segment or curve can cover a large zone efficiently (Figure 5.2). We often use segments to model
overhangs, and more complex curves to generate arches (Figure 5.5) and karstic tunnels (Chapter 7).

Noise

Segments Let a and b the two endpoints of the segment, u the nor-
malized direction, and [, = (p —a) - u, [, = (p — b) - u, the signed
distance is defined as:

Spheres

(P —a)l ifla <0

fp) =< ll(P-Db)l if I > 0
[[(p—a)]|— ((p—a)-u) otherwise.

FIGURE 5.5: Arch made from a
curve and spheres.
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Curves More complex curves with a higher degree of continuity allow generating landforms on curvi-
linear trajectories. We aim at computing the minimum distance from p to a parametric curve I' of
equation ¢ : u € [0,1] — R3:
d(p,T") = min [|p —c(u)]
u€l0,1]

Finding the minimum distance is equivalent to finding u € [0, 1] such that the derivative ||p — c(u)]| is
null, i.e. (p — c(u)) - ¢(u) = 0. If ¢ is a polynomial of degree n, then (p — c(u)) - ¢/(u) is of degree
2n — 1. For quadratic curves, we need to solve a cubic equation for which solutions can be computed
analytically. For cubic curves and above, we need to solve quintic, septic and polynomials of higher
degree, which can only be done using numerical techniques. One advantage of cubic curves lies in the
precise control of the trajectory, making them more intuitive for the user than quadratic curves. Thus, in
Chapter 7, we use cubic spline curves for controlling the exact path of karstic tunnels, and approximate
the trajectory using piecewise quadratic curves (Truong et al. 2020) that provide 10 — 20 faster distance
computation.

5.5 Binary operators

Binary operators include Boolean (union, intersection and difference) (Wyvill ef al. 1999) and smooth
Boolean operators (Barthe et al. 2001). In any case, these operators do not preserve the Euclidean
distance property: either the interior or the exterior distance is not exact, thus they represent signed
distance bounds. In the remainder of this section, we denote A and B two objects with their associated
signed distance functions a : R? — Rand b : R® — R.

5.5.1 Boolean operators

Boolean operators, i.e. union, intersection and difference, are com-
monly implemented as using min and max operations (Wyvill et al.
1999):

faup = min(a, b) fanp = max(a, b) fa—p = max(a, —b)

Alternative techniques have been proposed, in particular in the scope
of R-Functions (Pasko et al. 1995), where the union and intersection
were originally defined as:

FIGURE 5.6: Union operator
faup=(a+b+ m) for carving a karstic tunnel.

fane = (a+b—+Va?+1?)

The corresponding Lipschitz constant for those R-function operators is Ap = 2(A4 + Ap) (see Ap-
pendix A), thus in our context we would define the signed distance functions as faup/Ar and fanp/AR,
respectively. This more complex definition yields a C' scalar field f almost everywhere in space except
on the surface of A and B, i.e. over R? — (A U B). While we could have used them for modeling and
carving terrains, those operators are more computationally intensive. Moreover, we often need to use
smooth Boolean operators that do not produce sharp edges (Figure 5.6) between geometric primitives, as
presented in the next section.
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FIGURE 5.7: Smooth union operator between a box and a cone for modeling a hoodoo.

5.5.2 Smooth Boolean operators

In the Blob Tree model (Wyvill ef al. 1999), primitives are defined as the composition of a compactly-
supported falloff function ¢ and a distance function d: f(p) = god(p). The resulting scalar field allows
defining blending as trivially as f4+p = a + b. However, this does not generalize to signed distance
fields, as summing the two distances does not produce the desired effect. Smooth blending between
models has been an active research field, and many operators were defined particularly for Blobs (Wyvill
et al. 1999) and R-functions (Pasko ef al. 1995). Here we define smooth Boolean operations following
the definition of Pasko ef al. 1995 and later extended by Barthe et al. 2001. Let r denote the control
radius, we define the smoothing function k& : R x R — [0, 1] as:
Koy = {1 —lz—yl/r ifle—yl/r<1
0 otherwise.

Following this definition, we can define the smooth union U, smooth intersection N and smooth differ-
ence — operators as:

fAGB = min(aa b) - g(a, b) g(a, b) = rk‘(a, b)3/6
farp = max(a,b) + g(a, b)
fa=p = —min(—a,b) + g(a,b)

Smooth Boolean operators are particularly useful for modeling smooth volumetric landforms (Figure 5.7),
such as hoodoos progressively carved by the action of wind and water. They also regularize the gradient
of the function, leading to a C'! continuity on the subtree (Figure 5.8). Chapters 6 and 7 use the smooth
difference operator to carve overhangs and deep karstic tunnels in the terrain. In Chapter 8, we take
advantage of the C'* continuity of the smooth intersection to define detailed mesoscale block structures.
In Appendix A, we demonstrate that these smooth operators are 1-Lipschitz.

b

b—a=r
a

>
>

FIGURE 5.8: Smooth union between two functions a and b.
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5.6 Unary operators

Unary operators include space transformation, such as affine transfor-
mations or more complex warping (Barr 1984), displacement, round-
ing operators as well as replication. In the following sections, we refer
to the object as NV, with f its distance function.

5.6.1 Warping

Warping is a space deformation. It is characterized by a warping func-
tion w : R? — R3 that deforms space or a region of space of the sub
tree \V. As the definition of the surface is implicit, we need to define
the inverse transformation w™'. The general definition of a warping
node is thus:

FIGURE 5.9: Twisting in the
fu(p) = fro w_l(p) Blob Tree (Wyvill et al. 1999)

The resulting distance estimate is usually a signed distance bound to the surface. To guarantee the 1-
Lipschitz property, it is necessary to bound the gradient of the deformation V f -1, which involves the
computation of the inverse transpose of the 3 x 3 Jacobian matrix J of w™! (Kalra et al. 1989):

Viu) =@ - Vivow (p)

The Lipschitz constant of the warping node A\ -1 can then be bounded using the norm of the Jacobian
matrix and the Lipschitz constant of the underlying node \:

At I An

The Jacobian matrix is difficult to compute in the general case. Compact closed-form expressions exist
for tapering, twisting and bending (Barr 1984), and have been used in practice in the Blob Tree (Fig-
ure 5.9). Global warping is computationally demanding, and difficult to control for generating details.
We prefer either sculpting volumetric terrains with primitives, or using a novel gradient warping method
to generate microscale details over the surface of the terrain (Chapter 8).

5.6.2 Affine transformations

Affine transformations are a special case of warping. They include translation, rotation, and scaling. Let
t denote a translation vector, s a scaling factor, and R a 3 x 3 rotation matrix, the field functions for
affine transformations are defined as:

fre)=fvo—t)  fr@)=fvoR ' p) fs(p)=sxfvo(p/s)

Translations and rotations are 1-Lipschitz and thus conserve the Euclidean distance property. Defining a
1-Lipschitz function for a scaling with a factor s requires multiplying by 1/s, which is the norm of the
Jacobian matrix of transformation (Barr 1984), that can be easily expressed in this case. In Chapter 7,
we model tunnel primitives in canonical space, and position them using translations and rotations.
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5.6.3 Noise

Displacement is a common operator for adding details to an implicit surface
(Figure 5.10). Let ¢ : R? — R denote a fractional Brownian motion (also
referred to as turbulence), defined as a sum of scaled noise (Ebert et al.
1998), we define the field function as:

Spheres
+ Noise

fv(p) +t(p)

f(p) = oy

In this example, it is necessary to divide by the Lipschitz constant of the
FIGURE 5.10: Noise dis- operator (1 4+ )¢) to obtain a 1-Lipschitz function (see Appendix A for the
placement. derivation and Lipschitz constant computation). The main limitation of this

operator is that floating parts can appear due to the turbulence evaluated at
a point p. In Chapter 6, we show how to define detailed noised-based primitives without any floating
parts, by evaluating the noise on the surface of the underlying skeleton.

5.7 Conclusion

Implicit surfaces provide a powerful framework for modeling a variety of shapes using a compact math-
ematical expression. The construction tree formalism is useful as it provides a high level paradigm for
the user, who manipulates primitives and operators intuitively. However, it is necessary to ensure that the
primitives and operators are well defined to guarantee the convergence of intersection algorithms.

We defined 1-Lipschitz continuous signed distance functions that are lower signed distance bounds
to the surface. The Lipschitz property ensures that the surface exclusion criteria is correct, and allows
for a guaranteed convergence of intersection algorithms such as sphere tracing. In the next chapters, we
introduce a fully implicit surface framework for modeling, generating, and authoring volumetric terrains
across a range of scales. We show that signed distance functions are able to represent smooth and detailed
mesoscale and microscale volumetric terrain landforms efficiently.
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6.1 Introduction

The sheer variety of shapes and scales of volumetric landforms presents significant modeling challenges.
Despite the wide application of digital terrain in games, film, and simulation, and extensive research in
this domain, effectively representing and generating complex landforms such as caves and overhangs
remains an unsolved problem. The very reason for this is that existing techniques mostly address eleva-
tion terrains. As a consequence, steep areas, such as cliffs, are generally omitted, and overhangs simply
cannot be represented. Existing explicit representations are problematic as such structures are memory
consuming and, consequently, previous volumetric terrain approaches either address the generation of
small-scale isolated landforms (Ito et al. 2003; Beardall et al. 2007; Jones et al. 2010) or represent larger
landscapes at a limited sampling resolution (Peytavie et al. 2009b; Becher et al. 2017; Becher et al.
2019).

~ =
—~—|
Warp
= . —
Strata T Karst Network

FIGURE 6.1: From a 2D input heightfield, we automatically generate an implicit model for representing
the terrain, which is augmented with complex vol