
HAL Id: tel-04502530
https://theses.hal.science/tel-04502530

Submitted on 13 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modélisation et simulation de terrains virtuels
Axel Paris

To cite this version:
Axel Paris. Modélisation et simulation de terrains virtuels. Modeling and Simulation. Université
Claude Bernard - Lyon I, 2023. English. �NNT : 2023LYO10039�. �tel-04502530�

https://theses.hal.science/tel-04502530
https://hal.archives-ouvertes.fr

THESE de DOCTORAT DE
L’UNIVERSITE CLAUDE BERNARD LYON 1

Ecole Doctorale N° 512
Informatique et Mathématiques de Lyon

(InfoMaths)

Discipline : Informatique

Soutenue publiquement le 21/03/2023, par :
Axel Paris

Modeling and simulating virtual terrains

Devant le jury composé de :

Mme. CANI Marie-Paule Professeure des Universités CNRS, Ecole Polytechnique Rapporteuse

M. LÉVY Bruno Professeur des Universités Inria Nancy Grand-Est Rapporteur

Mme. COLLON Pauline Maîtresse de Conférences Université de Lorraine

Mme. HAHMANN Stefanie Professeure des Universités Université de Grenoble

Mme. CHAINE Raphaëlle Professeure des Universités Université Lyon 1

Examinatrice
Examinatrice
Présidente

M. BARTHE Loic Professeur des Universités Université de Toulouse Examinateur

M. GALIN Eric Professeur des Universités Université Lyon 1 Directeur de thèse

M. GUÉRIN Eric Maître de Conférences INSA Lyon Co-Directeur de thèse

Laboratoire LIRIS

Bâtiment Nautibus

Campus de la Doua

25 avenue Pierre de Coubertin

69622 Villeurbanne Cedex

École Doctorale InfoMaths

7, avenue Jean Capelle

69621 VILLEURBANNE Cedex

iii

Contents

1 Introduction 13

2 State of the art 17
2.1 Terrain models . 18

2.1.1 Elevation models . 18

2.1.2 Volumetric models . 20

2.2 Classification of terrain generation methods . 22

2.3 Scale-agnostic methods . 24

2.3.1 Noise-based techniques . 24

2.3.2 Faulting approaches . 25

2.3.3 Subdivision schemes . 25

2.3.4 Example-based techniques . 26

2.3.5 Editing and sketching frameworks . 26

2.4 Mesoscale landforms . 27

2.4.1 Gullies, ravines and floodplains . 27

2.4.2 Cliffs . 29

2.4.3 Arches and overhangs . 29

2.4.4 Hoodoos . 30

2.5 Macroscale landforms . 30

2.5.1 Mountain and hill ranges . 31

2.5.2 Canyons . 32

2.5.3 River networks . 32

2.5.4 Karstic networks . 33

2.5.5 Deserts . 34

2.6 Conclusion . 35

I Macroscale landform simulation 37

3 Simulating meandering rivers 41
3.1 Introduction . 42

3.2 Geomorphology background . 43

3.3 Simulation . 44

3.3.1 Simple channel migration . 45

3.3.2 Upstream curvature-based migration . 47

3.3.3 Cutoff events . 48

3.3.4 Avulsion events . 49

3.3.5 Resampling . 51

3.4 River network simulation . 51

3.4.1 Junction models . 52

3.4.2 Collision between sections . 53

iv Contents

3.5 Controls . 54

3.5.1 Terrain influence . 54

3.5.2 Control regions . 55

3.5.3 Procedural generation from recorded data . 56

3.6 Results and discussion . 57

3.6.1 Validation . 58

3.6.2 Limitations . 59

3.7 Conclusion . 59

4 Desertscape simulation 61
4.1 Introduction . 62

4.2 Geomorphology background . 63

4.3 Simulation pipeline . 65

4.4 Surface wind computation . 66

4.4.1 High-altitude wind field . 67

4.4.2 Warping . 67

4.4.3 Wind shadowing . 68

4.4.4 Control . 69

4.5 Sand simulation . 69

4.5.1 Sand transport . 70

4.5.2 Bedrock abrasion . 72

4.6 Amplification . 73

4.7 Optimized implementation . 74

4.7.1 Saltation . 75

4.7.2 Avalanching and reptation . 75

4.8 Results and discussion . 76

4.8.1 Control . 76

4.8.2 Validation . 77

4.8.3 Comparison with other techniques . 78

4.8.4 Limitations . 78

4.9 Conclusion . 79

II Volumetric terrains: from microscale to macroscale 81

5 Background on implicit modeling 85
5.1 Introduction . 86

5.2 Fundamentals and notations . 86

5.2.1 Implicit surface . 86

5.2.2 Lipschitz property . 87

5.2.3 Signed distance function . 88

5.3 Hierarchical model . 88

5.4 Skeletal primitives . 89

5.4.1 Sphere . 89

5.4.2 Box . 90

5.4.3 Segment and curve . 90

5.5 Binary operators . 91

5.5.1 Boolean operators . 91

5.5.2 Smooth Boolean operators . 92

Contents v

5.6 Unary operators . 93

5.6.1 Warping . 93

5.6.2 Affine transformations . 93

5.6.3 Noise . 94

5.7 Conclusion . 94

6 Large-scale volumetric landform generation 95
6.1 Introduction . 96

6.2 Overview . 97

6.2.1 Construction tree models . 97

6.2.2 Amplification workflow . 98

6.3 Geology model . 98

6.3.1 Turbulence-based primitives . 99

6.3.2 Plane primitives . 99

6.3.3 Fold and deformation operators . 100

6.3.4 Faulting operators . 100

6.4 Implicit terrain model . 101

6.4.1 Implicitization of elevation terrains . 101

6.4.2 Sculpting primitives . 102

6.4.3 Operators . 103

6.5 Landform generation . 104

6.5.1 Shallow procedural erosion . 104

6.5.2 Deep procedural erosion . 106

6.5.3 Hoodoos and Goblins . 108

6.6 Efficient polygonization . 109

6.7 Results and discussion . 111

6.7.1 Validation . 112

6.7.2 Control . 113

6.7.3 Performance . 113

6.7.4 Comparison with other techniques . 114

6.8 Conclusion . 115

7 Synthesizing geologically-coherent karstic networks 117
7.1 Introduction . 118

7.2 Geomorphology background . 119

7.3 Overview . 120

7.4 Tunnel path computation . 121

7.4.1 Sampling . 122

7.4.2 Geology-based cost functions . 123

7.5 Network generation . 125

7.5.1 Large-scale network . 125

7.5.2 Network amplification . 126

7.5.3 Classification strategy and parameter computation 127

7.6 Implicit cave modeling . 128

7.6.1 Mesoscale geometry of tunnels . 129

7.6.2 Volumetric terrain decoration . 131

7.7 Results . 132

7.7.1 Performance . 132

7.7.2 Control . 133

vi Contents

7.7.3 Comparison with real karstic networks . 134

7.7.4 Comparison with other techniques . 134

7.7.5 Limitations . 135

7.8 Conclusion . 135

8 Modeling rocky scenery using implicit blocks 137
8.1 Introduction . 138

8.2 Overview . 139

8.3 Block tile generation . 141

8.3.1 Fracturing . 141

8.3.2 Implicit block generation . 144

8.4 Terrain amplification . 146

8.5 Results . 147

8.5.1 Control . 148

8.5.2 Comparison with other methods . 148

8.5.3 Compatibility with other techniques . 149

8.5.4 Limitations . 150

8.6 Conclusion . 151

9 Conclusion 153

III Appendix 167

A Signed distance fields 169
A.1 Smooth union . 169

A.2 R-functions . 170

A.3 Heightfield . 170

A.4 Turbulence . 171

A.5 Noise displacement . 171

A.6 Perturbed skeletal primitives . 171

A.7 Lp norm primitives . 172

A.8 Sweep primitive . 173

B A visual dictionary of terrain landforms 175

Remerciements
Il me semble judicieux de commencer cette dernière section en remerciant les personnes les plus proches

de ce travail, et tout particulièrement mon directeur de thèse Éric Galin. Il est impossible d’énumérer

tout que j’ai appris à ton contact. Merci pour tes explications toujours claires sur d’innombrables sujets,

tes nombreux conseils et la passion contaminante avec laquelle tu fais de la recherche au quotidien. Je

tiens aussi à remercier Éric Guérin de m’avoir encadré durant cette thèse, toujours dans la bonne humeur,

et sans qui les travaux présentés ici ne seraient pas ce qu’ils sont. Merci également à Adrien Peytavie

qui a été mon premier contact avec le domaine des mondes virtuels (il y a.... presque 10 ans!) et Oscar

Argudo, pour leurs conseils et l’influence très positive qu’ils ont eu sur le chercheur que je suis devenu.

Je souhaite exprimer mes remerciements à Marie-Paule et Bruno, qui ont accepté de rapporter ma thèse,

ainsi que tous les membres de mon jury : Pauline, Loic, Stéfanie, et Raphaëlle. Pour toutes les relectures,

les vérifications d’anglais, et les conseils sur l’écriture, je remercie également Basile, Thomas, et Vincent,

qui ont finalement lu une bonne partie de ce manuscrit, voir son entièreté !

Lorsqu’il s’agit d’écrire ces lignes, il est difficile pour moi de ne pas penser à mes co-bureaux : Dr

Fraboni, Gabriel, Olivier, Lois, et Bastien, ainsi que les autres doctorants (et docteurs !) : Hugo, Bastien,

Simon, Guillaume, Yann, Antoine W, et Pierre. Merci pour les discussions scientifiques, les (nombreuses

?) sessions de soutien improvisées, les Jack Fire du vendredi, les moult parties de billard, les tusmos,

et la bonne humeur générale qui ont rendu ces années inoubliables. Vous allez me manquer ! Plus

globalement, je souhaite remercier tous les membres du LIRIS, doctorants, chercheurs, enseignants, que

j’ai pu croiser lors de ma thèse. J’en profite pour glisser un remerciement aux Parisiens : Alban, Marine,

Élie, et Chloé. J’espère pouvoir passer encore de nombreux moments avec vous !

Je suis souvent abasourdi du soutien que je reçois de mes ami(e)s exceptionnel(le)s dans ma vie, et

je réalise la chance que j’ai de vous avoir au quotidien. Je mets un point d’honneur à maximiser le

bonheur et le rire, et vous rendez cela si facile que cela en est presque ridicule. Vous avez tous rendu

cette expérience de thèse plus agréable. J’espère être aussi présent pour vous que vous l’êtes pour moi.

Merci à mes amis de WeekendAtBarneys, auquels j’ajoute ceux des Lapins, et quelques autres : An-

toine A, Elo, Thomas F, Laure, Nacim, TTeze, Jeanne, Ana, Juliette, Marie, Aleth, Ludwig III, Antoine

R, Arnaud, Agathe, Aurélien, et Cannelle, mon agente matrimonial et patissière favorite. Je tiens aussi

à remercier ma cheffe cuisto, conseillère avisée, et avocate en droit rural préférée : Maître Barbier, alias

Marie-Claire, sans laquelle je me serai nourri de MacDonald et de beurre de cacahuète pendant les 3

mois de rédaction. Mention tout à fait spéciale à l’aventure Newhead Studio, et à mes bros Vincent et

Thomas, qui me soutiennent aussi bien au plus haut qu’au plus bas depuis de nombreuses années.

Merci aux Copains Surfeurs (et f.u.n.s, bien entendu) : Basile, Martin, Elise, Marion, Antoine, Clara,

et Adrien. J’espère que nous arriverons toujours à nous retrouver autour de Cuba libre, de vacances au

soleil, et surtout de rire, et pas de VELOS. Bon, et un peu de Fall Guys et de potins aussi à l’occasion...

Merci au Zoo Alcoolisé : Lou, Cécile, Valentine, Giroud, Charly, Ludo, Laetitia, Alexandre, Florian,

Marion, et Pauline. Nos chemins se sont recroisés il y a finalement assez peu de temps, mais je ne compte

pas la quantité de bon moments passés avec vous depuis, que ce soit dans le Beaujolais, à l’autre bout de

la France, ou carrément sur un autre continent. A quand le prochain voyage ?

Enfin, un grand merci à ma famille : mes parents, ma mamy, et ma soeur, qui m’ont toujours soutenu

quelquesoit mes choix et qui continue de m’aider dans tout ce que j’entreprends avec bienveillance.

Résumé

Cette thèse intitulée "Modeling and simulating virtual terrains" a pour thème la création de contenu

numérique et la simulation scientifique, dans le cadre des terrains virtuels dans les scènes naturelles. Les

terrains sont composés de formes à différentes échelles (micro-échelle, meso-échelle, et macro-échelle),

qui sont le résultat de plusieurs processus physiques entrelacés opérant à différentes échelles temporelles

et spatiales. En informatique, ces formes sont habituellement représentées par des surfaces d’élévation,

mais les formes telles que les arches ou les grottes requièrent une représentation volumique. Cependant,

les besoins grandissants de réalisme et de taille des mondes virtuels amènent de nouveaux défis que les

techniques et modèles actuels ne résolvent pas entièrement.

Cette thèse est séparée en deux parties. En premier lieu, nous observons que plusieurs formes de

terrains à l’échelle macro, telles que les déserts et les méandres de rivières, ne peuvent pas être modélisées

avec les techniques actuelles. Partant de cette observation, nous développons de nouvelles simulations

inspirées de la géomorphologie pour modéliser ces phénomènes sur les terrains virtuels. Nous nous

intéressons à la fois au réalisme de nos simulations et au contrôle utilisateur, qui est un aspect clé en

informatique graphique.

Dans la seconde partie, nous nous intéressons à la modélisation et la génération de phénomènes volu-

miques de terrains. Les modèles existants utilisent les voxels et ont un coût mémoire important, ce qui

empêche leur utilisation à grande échelle. À la place, nous proposons un nouveau modèle s’appuyant sur

des fonctions de distance signées pour représenter les formes de terrain volumiques, comme les arches,

les surplombs et les grottes, avec un impact mémoire bien plus faible. Nous montrons comment cette

représentation est adaptée pour générer des formes de terrain volumiques à plusieurs échelles (micro-

échelle, meso-échelle, et macro-échelle).

Mots clefs : modèles de terrain, génération procédurale, simulations physiques, surfaces implicites

Abstract

This PhD, entitled "Modeling and simulating virtual terrains" is related to digital content creation and ge-

ological simulations, in the context of virtual terrains. Real terrains exhibit landforms of different scales

(namely microscale, mesoscale, and macroscale), formed by multiple interconnected physical processes

operating at various temporal and spatial scales. On a computer, landforms are usually represented by el-

evation models, but features such as arches and caves require a volumetric representation. The increasing

needs for realism and larger worlds bring new challenges that existing techniques do not fulfill.

This thesis is organized in two parts. First, we observe that several macroscale landforms, such as

desert landscapes made of sand dunes and meandering rivers, simply cannot be modeled by existing

techniques. Thus, we develop new simulations, inspired by research in geomorphology, to generate

these landforms. We particularly focus on the plausibility of our results and user control, which is a key

requirement in Computer Graphics.

In the second part, we address the modeling and generation of volumetric landforms in virtual terrains.

Existing models are often based on voxels and have a high memory impact, which forbids their use at

a large-scale. Instead, we develop a new model based on signed distance functions for representing

volumetric landforms, such as arches, overhangs and caves with a low memory footprint. We show that

this representation is adapted to generating volumetric landforms across a range of scales (microscale,

mesoscale, and macroscale).

Keywords: terrain models, procedural modeling, physical simulations, implicit surfaces

Publications
Synthesizing Geologically Coherent Cave Networks
Axel Paris, E. Guérin, A. Peytavie, P. Collon, E. Galin

Computer Graphics Forum, 2021, vol. 40, num. 7, p. 277-287

Presented at Pacific Graphics 2021 and JFIG 2021

Modelling Rocky Scenery with Implicit Blocks
Axel Paris, E. Guérin, A. Peytavie, J-M. Dischler, E. Galin

The Visual Computer, 2020, vol. 36, num. 10, p. 2251-2261

Best Paper Award
Presented at Computer Graphics International 2020 and JFIG 2020

Terrain Amplification With Implicit 3D Features
Axel Paris, E. Galin, A. Peytavie, E. Guérin, J. Gain

Transactions on Graphics, 2019, vol. 28, num. 5, p. 147:1–147:15

Presented at Siggraph Asia 2019

Desertscape Simulation
Axel Paris, E. Galin, A. Peytavie, E. Guérin

Computer Graphics Forum, 2019, vol. 38, num. 7, p. 47–55

Presented at Pacific Graphics 2019

Amplification de Terrains avec des Caractéristiques Implicites 3D
Axel Paris, E. Galin, A. Peytavie, E. Guérin, J. Gain

Journées Françaises d’Informatique Graphique, JFIG 2018

2nd Best Paper Award

Large-scale terrain authoring through interactive erosion simulation
H. Schott, Axel Paris, L. Fournier, E. Guérin, E. Galin

Accepted at Transactions on Graphics, 2023

Simulation, Modeling and Rendering of Glaciers
O. Argudo, E. Galin, A. Peytavie, Axel Paris, E. Guérin

Transactions on Graphics, 2020, vol. 39, num. 6, p. 177:1-177:14

Segment Tracing using Local Lipschitz Bounds
E. Galin, E. Guérin, Axel Paris, A. Peytavie

Computer Graphics Forum, 2020, vol. 39, num. 2, p. 545-554

Orometry-based Terrain Analysis and Synthesis
O. Argudo, E. Galin, A. Peytavie, Axel Paris, J. Gain, E. Guérin

Transactions on Graphics, 2019, vol. 38, num. 6, p. 199:1-199:12

Résumé long

Au cours des cinquante dernières années, l’informatique graphique est devenue un domaine crucial de

l’informatique grâce à l’augmentation de la puissance de calcul, et en particulier au développement de

matériel plus puissant. Des algorithmes efficaces et des techniques d’apprentissage automatique ont

profondément changé plusieurs industries et domaines de recherche en permettant l’exploration et la

manipulation de mondes virtuels.

Les mondes virtuels sont composés d’une grande variété d’objets. Dans cette thèse, nous abordons

la modélisation et la génération de paysages. Un paysage se compose de différentes parties, notamment

un terrain (avec des chaînes de montagnes, des plaines et des falaises), un écosystème (avec des arbres,

des buissons et de l’herbe) et des fluides (des masses d’eau et des nuages). Les environnements naturels

sont une composante majeure de l’industrie du divertissement, car ils créent l’ambiance et contribuent

à donner le contexte d’une scène, par exemple dans les jeux vidéo ou les films. Ils sont devenus si

importants que certains films sont tournés entièrement en studio avec les acteurs jouant devant un fond

vert, tandis que les paysages et les effets générés par ordinateur sont ajoutés en temps réel ou en post-

traitement pour créer le monde environnant. D’autre part, les sciences naturelles telles que la physique,

la biologie et la géologie font également largement appel à l’informatique, par exemple en développant

des modèles numériques pour simuler la formation des chaînes de montagnes ou le comportement des

fluides. La possibilité d’étudier une version simplifiée de notre monde sur un ordinateur à une échelle

donnée permet de mieux comprendre les règles et les processus fondamentaux à son origine, et aide

également à construire des modèles prédictifs.

Dans cette thèse, nous nous concentrons sur le terrain qui compose le paysage. Les terrains réels

sont constitués de différentes formes caractéristiques de terrain, comme un sommet de montagne, un

canyon profond avec une rivière, une falaise côtière avec des surplombs, ou un désert avec des dunes de

sable. Les formes de terrain sont le résultat de processus physiques complexes, tels que l’érosion (par

l’eau ou le vent), les mouvements des plaques tectoniques ou la glaciation. La compréhension de ces

processus est un domaine de recherche crucial en géomorphologie qui nécessite le développement de

modèles numériques dédiés. Dans l’industrie du divertissement, les terrains virtuels peuvent s’étendre

sur des milliers de kilomètres et présenter diverses formes imaginées par des artistes ou générées par des

algorithmes. Nous identifions spécifiquement deux défis concernant les terrains virtuels : le besoin de

variété dans les formes de terrain et le besoin du passage à l’échelle, qui est actuellement une limitation

pour les formes de terrain volumiques.

Variété des reliefs. La grande majorité des techniques de génération de terrain se concentrent sur les

paysages montagneux. Les méthodes existantes s’appuient soit sur des primitives de bruit ou de bruit

fractal (Ebert et al. 1998; Génevaux et al. 2015), enrichies ensuite de caractéristiques d’érosion (Št’ava

et al. 2008; Krištof et al. 2009), soit sur des techniques de simulation inspirées de la géomorphologie

qui reproduisent directement l’aspect dendritique des chaînes de montagnes alpines (Cordonnier et al.
2016). Des techniques plus générales basées sur une synthèse à partir d’exemples peuvent reproduire

un plus large éventail de reliefs, mais nécessitent des données précises (Zhou et al. 2007; Guérin et al.
2017; Zhao et al. 2019) qui peuvent ne pas être facilement disponibles. Enfin, les approches de création

10 Contents

interactives (Gain et al. 2009; Hnaidi et al. 2010; Guérin et al. 2022) permettent de reproduire des

caractéristiques variées telles que des canyons, des rivières et des falaises, mais nécessitent une longue

séquence d’édition par l’utilisateur. Dans l’ensemble, ces méthodes ne sont pas adaptées à la génération

d’autres formes de terrain telles que les déserts, les rivières et les glaciers.

Terrains à différentes échelles. Les terrains sont composés de formes de relief à des échelles très dif-

férentes. La représentation standard, basée sur des modèles d’élévation, ne représente que la surface du

terrain et est particulièrement adaptée à la représentation de reliefs à grande échelle s’étendant sur des

dizaines, voir des centaines de kilomètres. Néanmoins, cette représentation ne se prête pas à la modéli-

sation des caractéristiques volumiques telles que les arches, les surplombs et les réseaux de grottes, qui

nécessitent une représentation volumique ou hybride (Peytavie et al. 2009b; Becher et al. 2019). Cepen-

dant, ces modèles volumiques souffrent d’une sévère limitation : l’impact mémoire élevé exclut leur

utilisation à grande échelle. Il existe donc un besoin pour une représentation qui permette de modéliser,

de générer et de créer des terrains virtuels avec des formes de terrain planaires et volumiques sur toute la

gamme d’échelles.

Contributions et plan de la thèse

Cette thèse propose plusieurs contributions concernant la modélisation et la génération de terrains. Nous

commençons par une classification originale des méthodes de génération de terrains reposant sur l’échelle

spatiale à laquelle elles opèrent et les formes de terrain qu’elles génèrent (Chapter 2). Les caractéris-

tiques du terrain sont organisées en trois catégories : micro-échelle, méso-échelle et macro-échelle.

Cette classification nous aide à mieux comprendre les travaux antérieurs et permet d’identifier plusieurs

phénomènes négligés et leurs limites, principalement dans le domaine de la simulation de caractéris-
tiques macro-échelle et de la modélisation de formes volumiques, qui sont au cœur de nos contributions.

Simulations macro-échelles. Dans la première partie de cette thèse, nous abordons la simulation de

phénomènes macro-échelles sur des terrains. Nous nous inspirons des classifications et des modèles de

la géomorphologie, et proposons de nouvelles solutions adaptées aux défis de l’informatique graphique.

Nous étudions tout d’abord les méandres de rivières dans le Chapitre 3 et introduisons une nouvelle

méthode de simulation pour reproduire le comportement complexe des méandres qui évoluent dans le

temps. L’approche présentée, basée sur le calcul de la courbure, permet de générer des bras-mort, des

crevasses et des trajectoires déviées par des événements d’avulsion sur un large réseau fluvial. Nous

incorporons plusieurs niveaux de contrôle afin que l’utilisateur puisse prescrire des trajectoires, placer

ou bouger des points de contrôle, ou modifier la topographie du terrain en temps réel. Ce travail peut être

intégré dans les logiciels de modélisation de terrain existants pour générer des réseaux de rivières avec

des trajectoires de méandres réalistes.

Dans le Chapitre 4, nous abordons le problème de la simulation des paysages désertiques. La méthode

présentée opère sur une représentation du terrain en couches et inclut la roche, le sable et la végétation,

qui sont stockés comme des surfaces d’élévation sur des grilles régulières. Nous proposons une ap-

proximation procédurale du vent à la surface du terrain qui prend en compte les obstacles et les effets

d’accélération dus à l’altitude. Nous décrivons comment transporter le sable sur le terrain en simulant des

processus physiques, notamment la saltation, la reptation, l’avalanche et l’abrasion. Nous reproduisons

différents types de dunes, comme les dunes barchan et transverses, mais aussi les yardangs créés par

l’action abrasive du vent sur le substrat rocheux. Le système fournit un retour interactif qui permet à

l’utilisateur d’ajouter ou de retirer du sable, de modifier le régime de vent ou de modifier la densité de

Contents 11

végétation. Cette recherche peut également être intégrée dans des logiciels de modélisation de terrain,

avec pour but de générer des paysages désertiques.

Modélisation volumique de terrain. La deuxième partie de cette thèse se concentre sur la modéli-

sation et la génération de terrains volumiques. Les modèles volumiques existants (voxels et piles de

matières) sont coûteux en mémoire et ne peuvent pas être utilisés pour représenter de grands terrains.

Au lieu de cela, nous développons un modèle mathématique pour modéliser et générer des terrains

volumiques basés sur des fonctions de distance signées. Nous montrons que les surfaces implicites

constituent un cadre de modélisation expressif qui peut être utilisé pour la modélisation de terrains à

plusieurs échelles (microscale, mesoscale, et macroscale).

Dans le Chapitre 6, nous développons de nouvelles techniques pour générer de manière procédurale

des formes de terrain volumiques à grande échelle telles que des arches, des surplombs côtiers et des

hoodoos, sous forme d’arrangements de primitives à squelette telles que des sphères et des courbes.

L’érosion est guidée par une fonction qui associe une valeur de résistance à chaque point de l’espace.

Les formes volumiques lisses qui en résultent peuvent être générées sur plusieurs kilomètres de manière

efficace grâce à la nature compacte des fonctions de distance signées. Cependant, les formes de terrain

à grande échelle qui présentent une structure précise, comme les réseaux karstiques, sont fastidieuses

à générer à l’aide des techniques présentées, et les formes de terrain générées manquent également de

détails méso et micro-échelle, qui sont le sujet des chapitres suivants.

Dans le Chapitre 7, nous abordons la génération de réseaux karstiques composés de tunnels et de

grottes. Notre méthode repose sur un calcul de plus court chemin anisotrope qui prend en compte des

paramètres géologiques (tels que les horizons, la perméabilité et les fractures), et est capable de générer

un graphe orienté. Nous reproduisons différents types de réseaux identifiés en géomorphologie, tels que

les réseaux rectilignes ou anastomosés. À partir de ce graphe, nous générons la géométrie des tunnels et

des grottes en utilisant des primitives et des opérateurs de distance signés optimisés.

Enfin, le Chapitre 8 s’attaque au problème de la génération de formes de terrain volumiques détaillées

à l’aide de fonctions de distance signées. En identifiant les archétypes de distributions de fractures

en géomorphologie, nous sommes en mesure de générer de manière procédurale différents types de

structures de blocs qui présentent des détails et des motifs méso et micro-échelle. Ces blocs, encodés de

manière compacte sous forme de fonctions de distance signées, sont ensuite utilisés pour amplifier les

terrains générés dans les chapitres précédents.

Replicabilité de la recherche. La reproduction de résultats est essentielle pour faire progresser l’état

de l’art dans tous les domaines de recherche. En informatique graphique, cela peut se faire en partageant

le code nécessaire à la reproduction des résultats présentés dans l’article associé. Chaque chapitre de

cette thèse (à l’exception de Chapter 3, qui est toujours un travail en cours) a donné lieu à la publication

d’un code publique sur Github. Le code publié a été retravaillé de façon à minimiser les dépendances, et

est exécutable sur les systèmes Windows et Linux. Dans la mesure du possible, nous avons également

soumis le dépôt à l’initiative de réplicabilité.

1

Chapter 1

Introduction

During the past fifty years, Computer Graphics has emerged as a crucial domain of computer science

thanks to the increase in computational power, particularly the development of more powerful hardware.

Efficient algorithms and machine learning techniques have profoundly changed several industries and

research areas by enabling the exploration and manipulation of virtual worlds.

FIGURE 1.1: Virtual landscapes encompass a wide variety of features, such as a terrain (with cliffs,
mountain ranges), fluids (water bodies, clouds), an ecosystem (with trees, grass, and bushes), and urban
elements (roads, cities). Images from the video games Red dead redemption (left), and Death stranding
(right).

Virtual worlds are composed of and encompass a vast variety of objects. In this thesis, we address

the generation of natural landscapes. A landscape consists of different parts, including a terrain (with

mountain ranges, plains, and cliffs), an ecosystem (with trees, bushes, and grass), and fluids (water

bodies and clouds). Natural environments are a major component in the entertainment industry, as they

set the mood and help to give the context of a scene, for instance in video games or movies (Figure 1.1).

They have become so crucial that some movies are shot entirely in studio with actors playing in front

of a green screen, while computer-generated landscapes and effects are added in real-time or as a post-

processing step for creating the surrounding world. In contrast, natural sciences such as physics, biology,

and geology also greatly rely on computer science, for instance by developing numerical models for

simulating the formation of mountain ranges or the behavior of fluids. The ability to study a simplified

version of our world on a computer at a given scale allows for a better understanding of the rules and

fundamental processes at its origin, and also helps in building predictive models.

In this thesis, we focus on the relief of the terrain that composes the landscape. Real terrains are made

of different landforms or features, such as a high mountain peak, a deep canyon with a river, a coastal

cliff with overhangs, or a desert with sand dunes. Terrain landforms are the result of complex physical

processes, such as erosion (by water or wind), tectonic plate movements, or glaciation. Understanding

14

1

Chapter 1. Introduction

these processes is a crucial area of research in geomorphology which requires the development of dedi-

cated numerical models. In the entertainment industry, virtual terrains may span thousands of kilometers

and may exhibit various shapes made by artists or generated by algorithms. We specifically identify two

challenges regarding virtual terrains: the need for variety in terrain landforms and the requirement for

scale, which is currently a limitation for volumetric landforms.

Variety of landforms. The vast majority of terrain generation techniques focus on mountainous land-

scapes. Existing methods either rely on Fractal noise or noise primitives (Ebert et al. 1998; Génevaux

et al. 2015), later enhanced with erosion landmarks (Št’ava et al. 2008; Krištof et al. 2009), or simulation

techniques inspired by geomorphology that directly reproduce the dendritic aspect of alpine mountain

ranges (Cordonnier et al. 2016). More general techniques based on a synthesis from exemplars can re-

produce a wider range of landforms, but require precise elevation data (Zhou et al. 2007; Guérin et al.
2017; Zhao et al. 2019), which may not be readily available. Lastly, authoring approaches (Gain et al.
2009; Hnaidi et al. 2010; Guérin et al. 2022) can reproduce varied features such as canyons, rivers, and

cliffs, but require fine editing by the user. Overall, these methods are not suited for the generation of

other terrain landforms such as deserts, rivers, and glaciers.

Terrains across a range of scales. Terrains are composed of landforms with vastly different scales.

The standard representation, based on elevation models, represents only the surface of the terrain and is

particularly adapted for representing large-scale landforms spanning dozens of kilometers (Figure 1.2).

Nonetheless, it does not lend itself to modeling volumetric terrain features such as arches, overhangs,

and cave networks, which require a volumetric or hybrid representation (Peytavie et al. 2009b; Becher

et al. 2019). However, these volumetric models suffer from a severe limitation: the high memory impact

precludes their use at a large-scale. There is thus a need for a representation that allows modeling,

generating, and authoring of virtual terrains with both planar and volumetric landforms across the entire

range of scales.

FIGURE 1.2: Planetary world engines are limited to elevation models and cannot properly represent
volumetric features. Images from the Outerra engine.

Contributions and outline

This thesis proposes several contributions concerning terrain modeling and generation. We start with a

new classification of terrain generation methods based on the spatial scale at which they operate and the

landforms that they generate (Chapter 2). Terrain features are organized in three categories: microscale,

mesoscale and macroscale landforms. This classification helps us to build a better understanding of

Chapter 1. Introduction

1

15

previous works and allows us to identify several neglected phenomena and limitations, mainly in the

area of macroscale landform simulation and volumetric terrain modeling, which are the core of our

contributions.

Most results presented here have been published as articles in international journals (Paris et al. 2019b;

Paris et al. 2019a; Paris et al. 2020; Paris et al. 2021) (including a best paper award), as well as in

a national conference with a second best paper award (Paris et al. 2018). The research presented in

Chapter 3 is a work in progress and has not yet been published. Other works have been published during

this thesis through collaborations, but are not presented in this manuscript (Argudo et al. 2019; Argudo

et al. 2020; Galin et al. 2020). Additionally, videos for each chapter as well as interactive demos can be

found on this webpage: https://aparis69.github.io/public_html/publications.
html.

Macroscale simulations. In the first part of this thesis, we address the simulation of macroscale phe-

nomena on terrains. We take inspiration from classifications and models from geomorphology, and

propose new solutions adapted to the challenges of Computer Graphics.

We first study meandering rivers in Chapter 3 and introduce a new simulation for reproducing the

complex time-evolving behavior of meanders. The presented curvature-based approach allows gener-

ating oxbow lakes, crevasses and deviated trajectories by avulsion events over a large river network.

We incorporate several levels of control so that the user may prescribe trajectories, place control points,

or modify the terrain topography in real-time, and let the simulation adapt. This work may be easily

integrated in existing terrain modeling softwares for generating river networks with realistic meander

trajectories and patterns.

In Chapter 4, we tackle the problem of simulating desert landscapes. The presented method operates

on a layerfield representation with bedrock, sand, and vegetation stored as elevation models on regular

grids. We propose a procedural approximation of the wind at the surface of the terrain that takes into

account obstacles and acceleration effects due to altitude. We describe how to transport sand across the

terrain by simulating physical processes, including saltation, reptation, avalanching, and abrasion. We

accurately reproduce different types of dunes, such as barchan and transverse dunes, but also yardangs

created from the abrasive action of the wind over bare bedrock. The proposed framework provides

interactive feedback, which allows the user to add or remove sand, modify the wind regime, or place

vegetation. This research may also be integrated in modeling softwares to generate desert landscapes.

Volumetric terrain modeling. The second part of this thesis concentrates on volumetric terrain mod-

eling and generation. Existing volumetric models (voxels and layer stacks) are memory intensive and

cannot be used for representing large terrains. Instead, we develop a complete framework to model,

generate, and author volumetric terrains based on signed distance functions. We show that implicit sur-

faces are an expressive modeling framework that can be used for terrain modeling across multiple scales

(microscale, mesoscale, and macroscale).

In Chapter 6, we develop new techniques for procedurally generating large-scale volumetric landforms

such as arches, coastal overhangs and hoodoos, as arrangements of skeletal primitives such as spheres

and curves. The erosion is guided by a function that associates a resistance value to every point in

space. The resulting smooth volumetric landforms can be generated across several kilometers efficiently

due to the compact nature of signed distance functions. However, large-scale landforms that exhibit a

precise structure, such as karstic networks, are tedious to generate using the presented techniques, and the

generated landforms also lack mesoscale and microscale details, which is the topic of the next chapters.

16

1

Chapter 1. Introduction

In Chapter 7, we address the generation of karstic networks made of tunnels and chambers. Our

method relies on an anisotropic shortest path computation that takes into account geological parameters

(such as inception horizons, permeability, and fractures), and is capable of generating a directed graph

that represents different types of networks identified in geomorphology, such as rectilinear or anastomotic

mazes. From this graph, we generate the geometry of tunnels and chambers using optimized signed

distance primitives and operators.

Finally, Chapter 8 tackles the problem of generating detailed volumetric terrain landforms using

signed distance functions. By identifying fracture distribution archetypes in geomorphology, we are

able to procedurally generate different types of block structures that exhibit mesoscale and microscale

details and patterns. These blocks, compactly encoded as signed distance functions, are then used to

amplify the terrains generated in previous chapters.

Research replicability. Replication of the latest research results is essential to advance the state of the

art in all research domains. In Computer Graphics, this may be done by sharing the code necessary to

reproduce the results shown in the associated paper. Every chapter (except for Chapter 3, which is still

a work in progress) has led to a public code release on Github. The released code has been reworked to

minimize dependencies, and is runnable on both Windows and Linux systems. Whenever possible, we

also submitted the repository to the Replicability Stamp initiative.

2
Chapter 2

State of the art

Contents
2.1 Terrain models . 18

2.1.1 Elevation models . 18

2.1.2 Volumetric models . 20

2.2 Classification of terrain generation methods . 22
2.3 Scale-agnostic methods . 24

2.3.1 Noise-based techniques . 24

2.3.2 Faulting approaches . 25

2.3.3 Subdivision schemes . 25

2.3.4 Example-based techniques . 26

2.3.5 Editing and sketching frameworks . 26

2.4 Mesoscale landforms . 27
2.4.1 Gullies, ravines and floodplains . 27

2.4.2 Cliffs . 29

2.4.3 Arches and overhangs . 29

2.4.4 Hoodoos . 30

2.5 Macroscale landforms . 30
2.5.1 Mountain and hill ranges . 31

2.5.2 Canyons . 32

2.5.3 River networks . 32

2.5.4 Karstic networks . 33

2.5.5 Deserts . 34

2.6 Conclusion . 35

18

2

Chapter 2. State of the art

Virtual terrains have been an active subject of research in the last decades, dating back to Musgrave

et al. 1989 for the first terrain generation and erosion algorithms. Since then, an active research direction

has been to generate terrains that exhibit realistic features, using a variety of algorithms and authoring

techniques, with various applications in the entertainment industry, geology and scientific simulations.

In this chapter, we present an overview of terrain models and explain their advantages and limitations

(Section 2.1). Particularly, we show how existing volumetric models are not adapted for representing

large virtual worlds with landforms of multiple scales. Then, we address terrain generation methods
(Section 2.2). These are usually classified into three categories: procedural techniques, physical simu-

lations and synthesis from examples (Galin et al. 2019). We depart from this classification and analyze

existing methods from a new perspective inspired by analysis made in geology, focusing on the spatial

and temporal scales of terrain landforms. Despite decades of research on terrain modeling, we show

that there is still no solution for generating certain terrain landforms, such as meandering rivers, cave

networks covering dozens of kilometers, or desert landscapes with dunes and yardangs.

2.1 Terrain models

There are several ways to represent a terrain on a computer. This choice mainly depends on the target

application (video games, scientific simulations), the type of landforms (mountain ranges, caves, hills),

and the scale. We divide terrain models in two main categories: elevation and volumetric representations.

Elevation models are the most popular representation, as they provide a sufficiently accurate approxima-

tion of a terrain while being compact in memory. However, they cannot represent volumetric landforms,

such as karstic networks, overhangs and arches, which are crucial scenic elements of virtual worlds. In

this section, we present the most popular models but do not aim at describing all existing terrain repre-

sentations. Particularly, we set aside hexagon and triangular fields (Dixon et al. 1994) and combinatorial

maps (Damiand et al. 2014; Crespin et al. 2014), and refer the reader to the associated papers for more

details on these models.

2.1.1 Elevation models

Planar models (or heightfields) are the most common representation for virtual terrains. They are char-

acterized by a function h : R2 → R computing the elevation z at every point in a domain Ω ∈ R
2. The

domain Ω is usually a rectangle R(a,b) with a and b the opposite corners in the plane. The elevation

function h may be defined by a combination of analytic primitives or discrete elevation data (Figure 2.1).

ݔ

ݖ

ݔ

ݖ
ܘ ܘ

Analytic elevation Discrete elevation

ℎ(ܘ) Interpolated ℎ(ܘ)

FIGURE 2.1: Heightfields can be represented either by an analytic function (e.g. from an aggregation of
primitives), or by discrete elevation data.

2.1. Terrain models

2

19

Region Coast Mountain lake

km
10 50

km
2 10

km
0.5 2.5

FIGURE 2.2: The model from Génevaux et al. 2015 allows representing large-scale terrains with multiple
levels of detail, here going from the macroscale to the mesoscale. However, erosion landforms such as
gullies and ravines cannot be generated because of the procedural nature of the representation.

Discrete representations define the elevation h(p) as the interpolation of altitude at discrete points,

usually distributed on a regular grid (Figure 2.1, right). Bilinear interpolation is the fastest method,

with efficient implementation on graphics hardware for textures, but only provide C0 continuity. On

the other hand, biquadratic (C1) and bicubic methods (C2) require more neighboring values (9 and 16
respectively), are slower to compute, but provide a smoother reconstruction of the surface.

A key advantage of discrete models is the ability to define altitude from Digital Elevation Model

(DEM) captured by remote sensing. In geology, this allows the analysis of real terrains, for extracting

characteristics or predicting the evolution of the topography through time. In the entertainment industry,

digital elevation models empower the creative process, where real and artificial terrains are combined

together to create convincing landscapes.

Discrete models, particularly those based on regular grids, lend themselves to physical simulations

(Musgrave et al. 1989; Cordonnier et al. 2017) as they provide a simple definition of the neighborhood

for each cell, which is often needed to transport material between cells. Alternative discretizations, such

as Triangular Irregular Networks (TIN), have also been used for simulations (Cordonnier et al. 2016) but

require explicit computations to find neighbors between cells. Discrete heightfields also lend themselves

to machine learning techniques, (Guérin et al. 2017; Zhao et al. 2019; Zhang et al. 2022) and by-example

synthesis (Zhou et al. 2007; Tasse et al. 2012; Gain et al. 2015; Argudo et al. 2017; Scott et al. 2021).

River
Bumpy hills

Replace

Final terrain
Blend

Smooth hills

FIGURE 2.3: Hierarchical terrain
model from Génevaux et al. 2015.

Function-based representations also referred to as proce-

dural models, define the elevation by a closed-form mathemat-

ical expression. They were first introduced by Génevaux et al.
2015 for modeling large-scale terrains (Figure 2.2). The el-

evation function is defined by a construction tree of implicit

primitives and operators, taking inspiration from the Blob Tree

(Wyvill et al. 1999). Let f : R2 → R denote the evaluation

function of the construction tree (Figure 2.3), the surface H
of the terrain is defined as the set of points (p, f(p)) in space

within a domain Ω ∈ R
2:

H = {(p, f(p)) ∈ R
3,p ∈ Ω}

Primitives are constructed by combining an elevation function h : R
2 → R and a weight function

α : R2 → [0, 1]. The elevation is usually defined as a combination of carefully-designed noise func-

tions, and the weight is a classical falloff function (Wyvill et al. 1999) that describes how primitives are

merged together within operators. The construction tree can be exploited to compute Lipschitz bounds

hierarchically, which in turn allows rendering the terrain directly with sphere tracing (Hart 1996).

20

2

Chapter 2. State of the art

FIGURE 2.4: Cordonnier et al. 2017 use multiple material layers, such as sand, rocks, and vegetation to
generate complex virtual terrain models and simulate their evolution through time.

This representation is compact in memory and theoretically provides infinite precision. It also lends it-

self to compression and amplification, for instance by using a sparse representation based on a dictionary

of patches (Guérin et al. 2016). However, the evaluation of h(p) may be computationally demanding,

and modeling realistic landforms requires a fine-tuning of noise-based primitives, which can be tedious.

Another crucial limitation of procedural models is that they cannot be used with simulations, as it is not

possible to transport material between different locations because of the implicit nature of the represen-

tation.

Multi-layer extensions for handling multiple material layers can be defined easily by using one height-

field (discrete or procedural) per material. This layer-field data structure can be constructed as a function

l : R2 → R defined from multiple elevation functions hi as:

l(p) = h0 +
∑
i=1

hi(p)

The term h0 denotes the elevation of the bare bedrock, and hi the thickness of the different materials

such as sand, water or rocks. Layer-fields were first used by Musgrave et al. 1989 which modelled a

layer of sediments on top of the bedrock layer for simulating hydraulic erosion. Additional layers, such

as sand, rocks, and vegetation are also possible, at the expense of additional memory (Beneš et al. 2001;

Génevaux et al. 2015; Cordonnier et al. 2017). The ability to define multiple layers allows simulating a

wider range of effects, such as the combination of ecosystem and terrain simulation as demonstrated by

Cordonnier et al. 2017 (see Figure 2.4).

Conclusion. Elevation models are used extensively in video games, Geographic Information Systems

(GIS), and physical simulations, as the representation is compact in memory and can be used efficiently

with LOD techniques, therefore allowing the modeling of large-scale terrains. However, this representa-

tion forbids the modeling of volumetric features such as arches and overhangs. This limitation is partially

alleviated by placing assets often defined as triangle meshes (for instance in video games), or by using

displacement techniques (Gamito et al. 2001). Still, modeling truly volumetric landforms such as caves

and arches simply cannot be done with elevation models.

2.1.2 Volumetric models

Volumetric landforms, such as cave networks, overhangs, and arches, are crucial visual elements of

virtual terrains which cannot be captured by elevation models (Section 2.1.1). They are defined by

a function v : R
3 → N which computes the material index for every point in space. The simplest

representation uses 0 for air and 1 for bedrock, but other materials such as sand or different types of

2.1. Terrain models

2

21

Layer stacksVoxels

Bedrock

Sand
Stones

Air

p

Box B

VM

FIGURE 2.5: Existing volumetric models include voxels (left) and layer stacks (right). In both cases, the
memory footprint is high, which limits the extent of the domain or the precision of the terrain.

bedrock can be defined. The function v can be constructed in different ways, for instance using voxels

or layer stacks (Figure 2.5).

2.1.2.1 Voxels

Voxels are a fully explicit representation where the terrain is stored in a three-dimensional grid (Fig-

ure 2.5, left). Each cell is assigned an integer value representing the associated material, such as bedrock,

sand, water, or air. They provide a convenient authoring framework to the user, with the ability to sculpt

the landscape by using dedicated brushes for adding or removing different materials, or by using con-

trol curves (see Figure 2.6 and Becher et al. 2019). As for discrete elevation models, voxels are well

suited for physical simulations, with applications to erosion (Beardall et al. 2007; Jones et al. 2010). The

smooth surface of the terrain can be reconstructed by polygonizing the voxel field using Marching Cubes

(Wyvill et al. 1986; Lorensen et al. 1987).

FIGURE 2.6: Becher et al. 2019 use voxels and 3D feature curves to generate volumetric landforms such
as arches and fictional floating islands.

The main limitation of voxels is the O(n3) memory cost, which makes the representation unsuited

for large and detailed landscapes. Compression techniques such as Sparse Voxel Octrees (SVO) (Laine

et al. 2010) only partially alleviate the problem, even when exploiting symmetry or treating the octree

as a directed acyclic graph (Kämpe et al. 2013; Villanueva et al. 2017). Still, voxels remain a popular

model in the industry for authoring 3D models (in softwares such as MagicaVoxel) or generating complex

landscapes (in video games such as Minecraft).

22

2

Chapter 2. State of the art

2.1.2.2 Hybrid models

FIGURE 2.7: The Arches model
from Peytavie et al. 2009b.

Layer stacks, inspired by multi-layer heightfields, include air as a ma-

terial for representing volumetric terrains. They represent the terrain

as intervals of constant material stacked on top of each other (see Fig-

ure 2.5, right). A smooth representation f : R
3 → [−1, 1] of the

terrain can be reconstructed by applying a convolution operator, de-

noted as �, between the discrete layer stacks v and a box filter k:

f(p) = 2v � k(p)− 1 v � k(p) =
VM(p)

VB

With VM the volume of the material intersecting the box, and VB the volume of the convolution box

B (see Figure 2.5, right). Layer stacks belong to hybrid models, in between procedurally-defined func-

tions and discrete representations based on (adaptive) grids or triangular irregular networks. They have

been used in (Peytavie et al. 2009b; Peytavie et al. 2009a) for modeling landscapes featuring arches,

overhangs, and piles of rocks (Figure 2.7). However, the smooth reconstruction of the surface is compu-

tationally intensive because of the convolution operator, and the memory impact still forbids the use of

layer-stacks for large terrains.

Conclusion

The main restriction of existing volumetric models lies in the discrete nature of the representation. They

have a high memory requirement (scenes are usually limited to a 256 or 512 grid resolution), which limits

the precision and therefore the extents of the terrain. This makes existing volumetric models unsuited for

representing large-scale or detailed terrains, which is a key requirement for virtual worlds.

While the percentage of volumetric landforms in real terrains is rather small, they have a major impact

on the overall visual perception of the scene. Thus, there is a need for a sparse representation of volu-

metric features compatible with elevation models used for representing large-scale terrains. Interestingly,

procedural models created using a construction tree of closed-form expression primitives have been ap-

plied successfully with elevation terrains (Génevaux et al. 2015), but they have not yet been used in the

context of volumetric terrains. In Part II of this thesis, we present a procedural model for volumetric

terrains based on a construction tree of signed distance functions.

2.2 Classification of terrain generation methods

Terrain generation methods are usually classified in three categories: procedural methods, simulation

techniques, and example-based synthesis (Galin et al. 2019). This classification builds on the under-

lying technical aspects of the methods. So-called procedural methods encompass phenomenological

approaches, i.e. techniques that directly reproduce the appearance of a terrain landform from observa-

tions. In contrast, simulation techniques approximate natural phenomena such as hydraulic, thermal or

aeolian erosion to simulate the evolution of the terrain throughout time. Finally, example-based methods

aim at generating terrains by combining different real world exemplars from a large dictionary. However,

as real terrains are the result of complex geomorphological processes, it is interesting to analyze terrain

generation techniques from a more geological perspective. Particularly, studying the spatial and temporal

scale of terrain landforms has been done for centuries by geologists and provide a better understanding

regarding how landforms emerge and evolve.

2.2. Classification of terrain generation methods

2

23

Scale Size range Example of landforms

Microscale 10cm-10m Sand ripples, rock arrangements, ventifacts

Mesoscale 10m-1km Cliffs, arches, ravines and gullies

Macroscale 1km-100km Sand dunes, river networks, cave networks

Megascale 100km-10 000km Mountain ranges, continents

TABLE 2.1: Scale classification used in this thesis.

In this chapter, we take inspiration from geology and geomorphology and categorize terrain gen-

eration methods depending on the spatial scale at which they operate, and on the landforms they are

trying to reproduce. We distinguish four spatial scales: microscale (10cm-10m), mesoscale (10m-1km),

macroscale (1-100km) and megascale (100-10000km), as denoted in Table 2.1. Whenever possible, we

classify terrain landforms in groups. For instance, we do not consider a single mountain, but the entire

mountain ranges it belongs to, as a single landform. To determine the size, we consider the horizontal

extent of the terrain feature.

Figure 2.8 depicts such a classification for important landforms, each one annotated with the number

of research papers dealing with these terrain features. Recall that this figure is subjective and should

not be interpreted as strict classification. However, it is useful to emphasize global areas of interest in

terrain modeling from the Computer Graphics community. For instance, many papers are interested in

the generation of mountainous landscapes, possibly with erosion features for creating ravines and gullies,

while volumetric landforms such as arches and overhangs received less attention.

Generating microscale features such as sand ripples and details over the bedrock is often done using

noise, which has been thoroughly investigated (Perlin et al. 1989; Worley 1996; Lagae et al. 2009;

Tricard et al. 2019). Larger details of a few meters wide, such as piles of rocks and stones or arrangements

of interleaved objects such as branches or leaves, can be generated using specific techniques (Peytavie

et al. 2009a; Grosbellet et al. 2016; Guérin et al. 2016). For the mega-scale, dedicated methods operate

at continental or even planet-scale (Derzapf et al. 2011; Cortial et al. 2019; Cortial et al. 2020). We refer

the reader to (Galin et al. 2019; Wei et al. 2009; Dong et al. 2020) for more details on mega-scale terrain

generation methods and texture synthesis techniques.

10m 1km 100km 10000km10cm

100y

1000y

10000y

1y

Mountain ranges (4)

Continent-scale landforms (3)

Gullies & ravines (12)

Microscale Mesoscale MegascaleMacroscale

Arches & Overhangs (5)

Sand dunes (1)

Caves (5)

Ripples (1)

Cliffs (5)

Block structures (1)

Scale

Time

Ventifacts (0)

Hoodoos (2)

Canyons (1)
Glaciers (0)

Meandering
rivers (0)

FIGURE 2.8: Landform classification based on their temporal and spatial scale, with numbers in paren-
thesis representing the amount of papers addressing the generation of these landforms in Computer
Graphics.

24

2

Chapter 2. State of the art

In this thesis, we particularly focus on the mesoscale and the macroscale. The following sections

classify existing terrain generation methods depending the generated landforms and their associated spa-

tial scale. We often refer to terrain features by using their geological name, and refer the reader to

Appendix B for a visual depiction of terrain landforms.

2.3 Scale-agnostic methods

Many methods cannot be classified depending on their spatial scale, as they provide a framework or

a system that can generate landforms at different levels of detail. This category includes noise-based

methods, example-based techniques (including machine learning), and interactive systems that rely on

procedural brushes as well as sketching frameworks. Here, we review such methods and discuss their

limitations.

2.3.1 Noise-based techniques

The first terrain generation method was introduced by Musgrave et al. 1989 and defined the elevation

as a fractal sum of noises (Perlin et al. 1989; Ebert et al. 1998), also referred to as turbulence. Let

n : R2 → [−1, 1] denote a noise function with a frequency of 1, i.e. where n interpolates values or

gradients defined at every integer position, we define the turbulence t as:

t(p) =

o−1∑
i=0

ain(pϕi)

Where o denotes the number of octave in the fractal, ai refers to the amplitudes, and ϕi to the frequencies.

These two terms are defined as geometric series: ai = a0p
i and ϕi = φ0l

i, where a0 and ϕ0 are the

base amplitude and frequency, l ∈ [0, 1] is the lacunarity, and p ∈ [0, 1] denotes the persistence. The

persistence and lacunarity defines how the amplitude and frequency decrease in the successive octaves,

respectively. This definition of the turbulence, based on Perlin or Simplex noise (Perlin et al. 1989),

allows creating smooth uniform landscapes, and subsequent works have been interested in generating

more variations. Parberry 2015 tunes Perlin noise to ensure an exponential distribution of the gradient,

with a view to fitting slope distributions to histograms observed on real terrains, but is still limited

regarding the generated features (Figure 2.9, right). Ridge noise was introduced to better represent sharp

FIGURE 2.9: Noise-based methods exhibit self-similar characteristics across their whole domain. There
is thus a need for improving the terrain by adding hydraulic erosion landmarks (Musgrave et al. 1989,
left. Image from Bohdan Bilous), or modulating the noise function to better reproduce slope distributions
of real terrains (Parberry 2015, right).

2.3. Scale-agnostic methods

2

25

crests and ridges, and is simply defined by using an absolute value r(p) = 1−|n(p)| (Ebert et al. 1998).

Another possibility for introducing more variation is through the use of multi-fractals. These are defined

by modifying the fractal sum with a function α, so that the amplitude at step k + 1, denoted as ak+1,

should be weighted according to the value obtained at the previous octave:

tk+1(p) = α(tk(p))ak+1n(pϕi) + tk(p) t0(p) = a0n(pϕ0)

Using this formulation means that lower elevations at step k, denoted as tk(p), scale down higher fre-

quencies and leads to smooth valleys, whereas high values of tk(p) boost high frequencies to enhance

mountain peaks with smaller details. Finally, another possibility to generate noise with variations is by

applying deformations through the use of warping functions, usually made of rotations and translations,

which transforms the point p using a 2×2 rotation matrix or a two-dimensional translation vector. Proce-

dural noises are compact in memory (only the definition of the function must be stored), can be evaluated

on the fly, and can indeed be used to generate mountain-like landscapes at a certain scale. A step forward

in controlling the extent of terrain landforms was proposed by Génevaux et al. 2015, which uses compact

noise primitives for defining the elevation, and operators to combine them and construct the final terrain.

The main limitation of noise-based methods is the self-similarity of the generated pattern leading to

unrealistic terrains, which limits its use to a restricted domain. Noise is also completely scale-agnostic,

which is both an advantage as it can be used for generating textures, landscapes or other volumetric

effects, and a limitation as the generated features are not realistic from a geological point of view.

2.3.2 Faulting approaches

The faulting algorithm was introduced to generate fractal terrains (Mandelbrot 1983; Ebert et al. 1998).

The method proceeds by repeatedly generating random vertical faults φi, and displacing the points up-

wards or downwards on either side depending on their distance to the faults d(p, φi). More formally, let

g denote a smooth step function parameterized by a radius of influence R, the elevation of the terrain is

defined by summing the influence of the faults as:

h(p) =

n∑
i=0

fi(p) fi(p) = aig ◦ d(p, φi)

Where ai denotes the vertical displacement of the fault φi at step i. The faulting algorithm can be

applied to a sphere for generating planets (Fournier et al. 1982a). As with noised-based approaches,

several papers took interest in adding control over the process, for instance by controlling the elevation of

certain region in the domain (Kamal et al. 2007). Although the methods differ, the result is similar to sum

of fractal noise and suffer from the same limitations. Faulting approaches are also more computationally

intensive as they cannot be evaluated on the fly, as opposed to noise-based methods.

2.3.3 Subdivision schemes

FIGURE 2.10: Diamond-square
subdivision algorithm from
Galin et al. 2019.

Subdivision schemes generate a terrain iteratively by subdividing the

spatial data structure (usually a regular grid) to add more details.

The midpoint subdivision algorithm was introduced by Fournier et
al. 1982a; Fournier et al. 1982b, and recursively adds details by refin-

ing a grid and adding random displacements to the new points (Fig-

ure 2.10). Additional control is possible by constraining the subdi-

vision for generating river networks (Kelley et al. 1988; Derzapf et

26

2

Chapter 2. State of the art

al. 2011), or crest features (Belhadj et al. 2005). Recently, subdivision schemes were adapted for the

real-time amplification of planetary terrains in Cortial et al. 2020. The method starts from an initial

low resolution map of the main zones of the planet (mountain ranges, deserts, seas), refines a spherical

mesh in real-time depending on the viewpoint of the camera, and finally assigns elevations according to

the low resolution map to create terrain landforms. The technique allows for a real-time exploration of

planetary-scale terrains up to a resolution of a few meters and generates varied terrain landforms. At the

exception of Cortial et al. 2020, subdivision schemes lack user-control over the generated features. Fur-

thermore, none of these methods can represent volumetric landforms, as subdivision schemes are based

on elevation models.

2.3.4 Example-based techniques

FIGURE 2.11: Terrain generated by stitching patches from real exemplars from Zhou et al. 2007. Given
a carefully crafted dictionary, the method can reproduce varied landforms such as canyons and mountain
ranges.

Apart from noise-based techniques, there are other methods that are scale-agnostic. Example-based

techniques are a powerful tool for generating realistic terrains by stitching real terrain patches (Brosz

et al. 2007; Zhou et al. 2007; Tasse et al. 2012; Gain et al. 2015) or patches (Guérin et al. 2016) together

(Figure 2.11). Machine learning methods (Guérin et al. 2017; Zhao et al. 2019; Zhang et al. 2022) learn

a correspondence between a user sketch map and scans of real terrains, and thus belong to this category

as well.

One limitation of example-based methods is that even though the generated terrain is built as a combi-

nation of real exemplars, there is no guarantee to get a realistic terrain in output. Particularly, the drainage

network of the final terrain might contain many pits (cells with no outgoing flow), which are relatively

rare from a geological point of view in real terrains. These methods are also heavily reliant on sourcing

high quality digital elevation models (DEMs) for constructing the exemplar or training database. Even

though it is theoretically possible to reproduce different archetypes of landforms using well-made dictio-

naries, researchers mostly concentrated their efforts on mountains and canyons, whereas other features

such as deserts, rivers, cliffs and hills have been neglected. These mesoscale landforms require precise

elevation data which may not be readily available, and using low resolution maps as exemplars does not

allow reproducing features such as the sharp crests of sand dunes or escarpments in cliffs.

2.3.5 Editing and sketching frameworks

There exist other papers that describe editing framework or sketching interfaces, with the vast majority

also focusing on alpine mountain generation (Carpentier et al. 2009; Gain et al. 2009; Passos et al. 2013;

Tasse et al. 2014). A notable exception is the feature-curve framework from (Hnaidi et al. 2010), which is

capable of generating barchan dunes, canyons, and terrains with rivers enforced by the user. A diffusion

algorithm operating on a multigrid is used to reconstruct the surface of the terrain. The gradient-based

2.4. Mesoscale landforms

2

27

FIGURE 2.12: Gradient-domain authoring (Guérin et al. 2022) offers powerful tools to the user, where
elevation (white) and gradient (yellow) constraints on points and along curves can be placed to create
different landforms such as peaks, table mountains, crevasses and canyons.

authoring framework presented by Guérin et al. 2022 exhibits similar capabilities and provides more

intuitive control to the user, such as cut-and-paste operations and sketching tools that supports both point

and curve constraints (Figure 2.12).

Conclusion

Scale-agnostic methods are useful for reproducing landforms at different scales (mainly at mesoscale

and macroscale), but cannot reproduce the entire variety of terrain landforms. Noise-based techniques

are limited to features of a certain scale, and do not contain any geological features such as erosion

landmarks. Editing and sketching frameworks provide an efficient authoring environment for the user,

but they cannot be used solely to create landscapes, as sketching an entire terrain from scratch is a tedious

and time-consuming task. Overall, scale-agnostic methods are a complementary tool for generating and

authoring virtual terrains but must be complemented with dedicated algorithms for the generation of

specific landforms such as erosion patterns, canyons or desert features.

2.4 Mesoscale landforms

We classify mesoscale terrain features in the spatial range of 10m to 1km. This includes landforms that

are usually created with elevation models such as gullies, ravines, and cliffs, but also the vast majority

of volumetric landforms, including arches, overhangs, and hoodoos. We list existing methods for repro-

ducing these terrain features below and also discuss the limitations of elevation models regarding the

representation of mesoscale cliffs.

2.4.1 Gullies, ravines and floodplains

Gullies and ravines are usually present on steep slopes of mountains and hills. They are characterized by

narrow passages that can span hundreds of meters in width and dozens of meters in depth. These land-

forms are the result of hydraulic erosion, where rainfall water progressively carved the erodible material

when running down the terrain slope. Gullies and ravines are complementary to sediment floodplains, as

the eroded material is transported downhill by water and deposited on flat areas of the terrain.

These terrain features have been extensively studied in Computer Graphics since the seminal work

of Musgrave et al. 1989, which proposed the first model of hydraulic erosion (Figure 2.13, right). This

method mimics the behavior of erosion on a discrete elevation model using simple transport rules, where

sediment are carried by water running down the slope which progressively creates erosion landforms.

Roudier et al. 1993 extended this approach to account for multiple materials with different geological

properties to generate terrains with more variations. The main issue with these methods is that they do

28

2

Chapter 2. State of the art

FIGURE 2.13: Gullies and ravines generation has been an active subject of research in terrain mod-
eling, with methods based on smooth particles hydrodynamics (Krištof et al. 2009, left), shallow-water
simulations (Št’ava et al. 2008, center) or grid-based hydraulic erosion (Jákó et al. 2011, right).

not work with any physical units, and the transport rules are relatively simple when compared to a real

fluid simulation. Thus, they belong to phenomenological approaches rather than accurate simulations

of hydraulic erosion, even when computing the water flow from a velocity field as done in Chiba et al.
1998.

More physically-based methods were then developed to simulate the behavior and erosion action of

water on a terrain, for instance using Navier-stokes equations (Neidhold et al. 2005; Beneš et al. 2006).

Under the right initial conditions, these methods can theoretically reproduce varied terrain landforms,

including gullies and ravines but also waterfalls and small meanders. However, they are computationally

intensive and require a voxel representation, which limits their use to small domains. The shallow-water

model used by Benes 2007 is a simplification of the Navier-Stokes equations and is a fast and simple

method to simulate hydraulic erosion that can be efficiently implemented on graphics hardware (Mei

et al. 2007; Št’ava et al. 2008; Jákó et al. 2011; Vanek et al. 2011). In practice, a shallow-water erosion

model is usually preferred to a full Navier-Stokes simulation, mainly for computational efficiency reasons

which allows its use on larger domains (Figure 2.13, center).

Alternative approaches represent the fluid using smooth particle hydrodynamics (SPH) (Krištof et al.
2009; Skorkovská et al. 2015). These methods can reproduce visually convincing erosion landforms, but

require hundreds of thousands of particles even for small terrains (Figure 2.13, left), thus they cannot be

used for generating gullies and ravines on large mountain ranges.

Screes and debris accumulation

Unstable cell

Sliding
> tan

FIGURE 2.14: Granular mate-
rial stabilization process.

Independently of the underlying simulation method, hydraulic erosion

is often coupled with material stabilization (also referred to as ther-

mal weathering), which was first introduced by Musgrave et al. 1989

and later formalized with the layer field representation by Beneš et
al. 2001. Thermal weathering is the physical process in which rocks

expand and contract due to temperature changes, leading to granular

material that are transported by water. The stabilization process is

based on the repose angle of the material, which is the steepest angle

to which it can be piled without slumping (Figure 2.14). This process

is particularly important in the case of sediments carried by water and

deposited on flat areas of the terrain, or in the case of sand dunes in desert landscapes. Using thermal

erosion, sediments are treated as a granular material that stacks progressively in a physically plausible

way.

2.4. Mesoscale landforms

2

29

2.4.2 Cliffs

A cliff is a vertical bedrock landform, generally defined by a steep angle. They are formed by erosion

processes and can be found in numerous places such as coasts, mountains or along rivers. Cliffs are very

important landforms in terrain modeling, with applications in urban planing (where it is important to

understand the evolution of the cliff through time) and also in the entertainment industry (where cliffs are

used as a central part of the gameplay). Cliffs can have different visual appearances, exhibiting clear and

structured stratification, or a more uniform look depending on the properties of the underlying bedrock

material. Thus, they are often composed of multiple volumetric features, such as small overhangs or

visible strata of different sizes.

FIGURE 2.15: A cliff with over-
hangs modeled in the Arches
system (Peytavie et al. 2009b).

In practice, cliffs are usually represented with elevation models

(Section 2.1.1), even though the steep nature of these landforms

makes it challenging to represent with such structure due to the in-

sufficient precision on the vertical parts of the terrain. The method

described in Benes et al. 2005, which took interest in modeling ta-

ble mountains with mesas and slopes of sediments, is a clear example

of such limitation. Elevation models are well suited for representing

planar areas, gentle slopes, and even mountains that are not too steep,

but are limited when it comes to vertical parts (steep parts of mesas).

Furthermore, overhangs and structured cliff faces are not easy to rep-

resent with elevation models.

Warping the terrain horizontally as described in Gamito et al. 2001

can potentially solve this issue, and has been used to represent over-

hangs near waterfalls in Emilien et al. 2015. However, the warping

strength must remain small enough to avoid non-manifold configu-

rations in the terrain, thus it can only represent small overhangs. To

fully capture the volumetric landforms of a cliff, one must resort to voxels (Ito et al. 2003) or layer

stacks (Peytavie et al. 2009b) (Figure 2.15). These methods suffer from current volumetric models lim-

itations, and are thus constrained to range-limited domains. Overall, capturing the complex microscale

and mesoscale volumetric landforms of cliffs is a difficult task which is still an open research question.

2.4.3 Arches and overhangs

FIGURE 2.16: Arches modeled
by Peytavie et al. 2009b.

Arches are one of the most scenic volumetric landforms in virtual

terrains. An arch (also called a bridge) is a mesoscale landform pos-

sibly spanning dozens of meters, commonly found near inland cliffs

and coasts. They are usually formed from narrow bedrock formations

with different materials, which are progressively eroded. An alcove

is slowly created due to softer bedrock, which finally leads to an arch

when it collapses on the ground. In the same category, we include

large overhangs of dozens of meters (not the small scale overhangs

found on cliff faces, discussed in Section 2.4.2) which are a common

feature in coastal cliffs, created by the physical action of repeating

waves hitting the cliff.

Modeling such visually arresting landforms has attracted the atten-

tion of Computer Graphics researchers for a while. As these features

are volumetric at their core, they cannot be properly represented by elevation models, even when using

30

2

Chapter 2. State of the art

warping (Gamito et al. 2001). Existing volumetric solutions are most often based on authoring frame-

works, and use feature curves (Becher et al. 2019), open-shape grammars (Dey et al. 2018), or sculpting

brushes (Peytavie et al. 2009b) to create such volumetric landforms (Figure 2.16).

Interestingly, the automatic generation (by using procedural methods or simulations) of arches and

overhangs have not been investigated, at the exception of Crespin et al. 2014 which modeled 3D erosion

with generalized maps. However, the method is limited to small domains, operates under relatively sim-

ple initial conditions and remains computationally intensive even for small-scale shapes. In the second

part, we address the efficient modeling and procedural generation of arches and overhangs (Chapter 6).

2.4.4 Hoodoos

FIGURE 2.17: Hoodoos generated by
Jones et al. 2010.

Earth pyramids (also called a Hoodoo, a Goblin, or a fairy

chimney) is a tall vertical spire of rock formed by erosion.

The alternating pattern of soft and hard bedrock layers leads to

columns with lots of small and large overhangs. Hoodoos are

particular terrain landforms that usually exhibit unique shapes

carved by wind and hydraulic erosion (many have the shape of

a mushroom) and sizes (from a few meters to dozens of meters).

From a terrain modeling perspective, their very vertical aspect

makes them a challenging landform that requires a volumetric

model to be properly reproduced. Existing methods focus on

the generation of a single hoodoo by using spheroidal erosion (Beardall et al. 2007; Jones et al. 2010)

on a voxel model with different material properties to generate bedrock formation with diverse rounded

shapes (Figure 2.17). While the generated Hoodoos are visually convincing, the method requires a fine

voxel grid to capture the mesoscale and microscale details of the shape.

Another interesting aspect of hoodoos is that they are often found in large fields, for instance in Bryce

Canyon National Park, Utah. Modeling such a vertical landforms over large spatial zones is challenging

for current volumetric models, and to the best of our knowledge, there are no methods for generating

large fields of hoodoos in a virtual terrain, which is a problem we tackle in Chapter 6.

Conclusion

While there are numerous methods for generating mesoscale landforms on virtual terrains, there are

still open challenges. Particularly, steep landforms such as cliffs (Section 2.4.2) and volumetric features

such as arches and overhangs (Section 2.4.3) can only be properly reproduced using fully volumetric or

hybrid models, both of which have a high memory impact (Section 2.1.2). This limitation also forbids

the creation of large-scale volumetric landforms, such as overhangs along coastal cliffs, or fields of

hundreds of hoodoos. In Part II, we introduce a new model based on implicit surfaces that provides an

efficient representation of vertical areas of the terrain, which in turn allows generating detailed cliff faces,

overhangs, and arches over large spatial scales.

2.5 Macroscale landforms

Macroscale terrain features are classified in the spatial range of 1 − 100km. They include popular

landforms such as mountain ranges, rivers, and canyons usually represented by elevation models, but also

underground karstic networks made of tunnels and chambers, which require a volumetric representation.

2.5. Macroscale landforms

2

31

We demonstrate that the vast majority of techniques concentrate on the formation of mountain ranges

and that several important macroscale landforms have been neglected.

2.5.1 Mountain and hill ranges

A mountain is defined as a steep portion of terrain with a peak that is the higher elevation point. While

the difference between a hill and a mountain is largely subjective, hills are usually viewed as less steep

and not as tall as mountains, and exhibit rounder shapes overall. A mountain or hill range is simply

defined as a series of mountains or hills arranged together, usually following a line pattern. They are the

result of complex geological processes operating over large (millions or billions of years) time scales,

including tectonic forces, weathering, and glacial erosion.

FIGURE 2.18: Large-scale terrains with realistic mountain ranges generated with the stream power
simulation from Cordonnier et al. 2018a.

Mountain ranges have been a popular research subject in the past decades, as they are one of the

most popular terrain landforms. Until recently, the majority of methods for generating mountain ranges

were either based on noise or a combination of noise-based primitives (Musgrave et al. 1989; Génevaux

et al. 2015), or example-based synthesis techniques (Zhou et al. 2007; Tasse et al. 2012; Gain et al.
2015). We discussed these scale-agnostic methods in Section 2.3. Here, we detail geologically-based

approaches such as the work of Cordonnier et al. 2016. They introduced the Stream Power equation to

the Computer Graphics community, which models the evolution of mountains as an equilibrium between

tectonic uplift (which grows mountains) and fluvial erosion (which carves erosion landmarks) using the

following equation:

‖∇h‖ = u− sn am

Where u denotes the uplift, s is the slope, a is the drainage area, and n and m are exponents that depends

on the type of the terrain. This equation states that the rate of change of surface topography is controlled

by the balance between the uplift u and the fluvial erosion term sn am. Realistic mountain ranges with

dendritic patterns spanning hundreds of kilometers can be reproduced by this method. Subsequent work

(Cordonnier et al. 2018a) incorporates the effects of different geological strata and presents a convenient

authoring framework where users can move around faults in three dimensional space and see the result

interactively (see Figure 2.18).

However, even though the represented domain is larger than any other terrain generation methods,

these simulations are computationally intensive and thus limited in precision. Furthermore, as with other

simulation techniques, user-control is indirect through the sketching of the uplift map, and therefore

limited. Providing direct control over the location of ridges and valleys is still an open research question.

Another interesting topic would be to take into account other important geological processes such as

glacial erosion as done in Mieloszyk 2017.

32

2

Chapter 2. State of the art

2.5.2 Canyons

A canyon is a path between two steep cliffs, possibly spanning hundreds of kilometers in length and

dozens of meters in depth. They are often also composed of multiple terraces (or plateau) which creates

an interesting and complicated landscape. Canyons are usually formed by the erosive action of a river

which follows the canyon trajectory. The different bedrock materials combined with erosion result in

microscale and mesoscale overhangs in the sides of the canyon. Canyons are also a popular terrain

landforms due to visual arresting occurrences such as the Grand Canyon in Arizona, or the Gorges de

l’Ardèche in France.

FIGURE 2.19: Canyons generated with the method from Carli et al. 2014. Representing the steep nature
of table mountains remains challenging when using elevation models.

As with cliffs, canyons are usually represented and generated with elevation models. The method

presented in Carli et al. 2014 focuses specifically on the generation of canyons from an initial fractal

terrain (Figure 2.19). The elevation is first clamped to create terraces at multiple altitudes, and mesas as

well as the river trajectory are then generated using a shortest path algorithm. The method greatly suffers

from the lack of precision of elevation models on steep areas of the terrain.

2.5.3 River networks

Rivers are among the most complex phenomena on earth and have been thoroughly studied by geologists

and hydrologists. A river can take numerous shapes, from a small and narrow stream near its source, to a

delta possibly spanning dozens of kilometers when connecting to the sea, while going through complex

meandering or braided systems in the floodplain. These different stages exist because of the differences

in flow, terrain topography and climate conditions along the path of the river.

a(p)

p

FIGURE 2.20: Drainage area of
a point and its highlighted wa-
tershed.

Close to the river network is the notion of drainage area of a ter-

rain. The drainage area is commonly used in geomorphology to char-

acterize real terrains, and is defined as the upstream area (also called

watershed) draining through a point p when following the gradient of

the terrain (see Figure 2.20 for a visual explanation). In other words,

it is a measure of how much water is flowing towards a given point

of the terrain. At the exception of lakes, pits (cells with no outgo-

ing flow) are considered very rare in real terrains. Thus, one way to

improve the realism of a virtual terrain is to ensure that it does not

contain any pit cells so that the flow is correctly directed towards the

borders of the domain. Having a hydrologically-correct drainage area

is important, for instance in the case of river detection where trajecto-

ries with the highest flows must be detected to compute the main river

channels, as done in Peytavie et al. 2019.

2.5. Macroscale landforms

2

33

Terrain slope control

River slope control

FIGURE 2.21: Génevaux et al. 2013 procedurally computes the entire river network, which is then
used to create the terrain that conforms to the specified hydrology. The smooth surface if the terrain is
reconstructed using a construction tree of procedural primitives merged together to define the elevation.

The notion of drainage area was first used in Computer Graphics by Kelley et al. 1988, which enforces

the precise trajectories of rivers in the generation process by providing an initial drainage system. Later

works from Génevaux et al. 2013 and Teoh 2009 generate the entire hierarchical drainage network,

represented as a geometric graph, over an input domain. After covering the entire domain with rivers,

the method of Génevaux et al. 2013 classifies the edges of the graph according to Rosgen classification

of rivers (Rosgen 1994). The surface of the terrain is finally reconstructed by using a construction tree of

primitives (Section 2.1.1) representing the riverbed and the surrounding mountains (Figure 2.21). These

methods are useful for generating a terrain that complies with hydrological constraints, but do not model

the evolution of the network throughout time. Also, some important river landforms such as deltas,

meandering and braided rivers are not reproduced. Meanders could be generated by placing carefully-

designed curvilinear primitives (as done in Peytavie et al. 2019), but the result would only be static and

would not reflect the complex and chaotic nature of the phenomena.

A dedicated method is required to model such complex river landforms. However, existing simu-

lations (Krištof et al. 2009; Št’ava et al. 2008; Skorkovská et al. 2019) are computationally intensive

and cannot be used to simulate the evolution of an entire river network covering hundreds of kilome-

ters. Thus, simulating the dynamic evolution of the different stages of rivers remains an open research

question. In Chapter 3, we address the problem of simulating meandering rivers over an entire network.

2.5.4 Karstic networks

A karstic system is the geological name for a cave network. Karsts are characterized by underground

networks composed of conduits and caves that have grown by the dissolution of the bedrock. Karstic sys-

tems exhibit a large variety of visually appealing and complicated mesoscale and microscale landforms

called speleothems, such as stalactites and stalagmites, draperies, columns and more. At a larger scale,

conduits vary in size from a few centimeters to several meters wide with diverse shapes (such as keyhole
or canyon tunnels), and can spread across dozens of kilometers under the surface.

Karsts cannot be modeled using elevation models and require a volumetric structure. There are a few

methods that focus on the microscale landforms found in caves, for instance using procedural techniques

for placing stalagmites and stalactites (Cui et al. 2011). Layer stacks have been used to create caves with

columns and tunnels by Peytavie et al. 2009b, but the global structure of the tunnel is reproduced solely

by authoring, which can be tedious (Figure 2.22). On the other hand, the generation of the large-scale

karstic network has been done using procedural L-system, as described in Mark et al. 2015. The resulting

trajectories are then carved in a voxel model, and the smooth surface of the cave is reconstructed using

polygonization techniques (Wyvill et al. 1986; Lorensen et al. 1987). This approach generates caves

34

2

Chapter 2. State of the art

FIGURE 2.22: Cave made of tunnels, bridges, and rocks created by authoring with a layer-stack model
(Peytavie et al. 2009b).

with insufficient precision due to the underlying voxel grid and does not account for the geological

characteristics of the terrain.

FIGURE 2.23: Rectilinear
karstic network generated by
Franke et al. 2022.

Pytel et al. 2015 proposed a two-stage simulation pipeline for mod-

eling large-scale karstic networks. While they account for geological

parameters such as rock porosity, the resulting tunnels are defined as a

set of connected cubes in the underlying voxel model, and no solution

is provided regarding the synthesis of the detailed mesoscale geome-

try of the tunnels. Another geologically-based approach was proposed

by Franke et al. 2022, which simulates water flowing through a grid to

generate the trajectories of the karstic conduits. This method is able

to reproduce different archetypes of karstic networks, such as recti-

linear or anastomotic mazes (see Figure 2.23). However, important

geological factors such as inception horizons are not taken into ac-

count and no control is provided over the generation process. Finally,

the mesoscale geometry of the tunnels does not exhibit plausible shapes, as it is also simply generated

by polygonizing the voxel grid (Wyvill et al. 1986; Lorensen et al. 1987).

2.5.5 Deserts

Deserts are regions with low water supply. Depending on the amount of precipitation, they are classified

as hyper-arid, arid, or semi-arid. Deserts can span hundreds of kilometers and exhibit different landforms

such as sand dunes, yardangs and steep cliffs or canyons. As the water supply is usually low, aeolian

processes are central in the formation of desert landforms.

The vast majority of desert features have been neglected from the Computer Graphics community,

with only a few papers interested in simulating sand ripples (Onoue et al. 2000; Beneš et al. 2004).

While both ripples and dunes are formed by the action of the wind, they are two different landforms

with vastly different scales which cannot be simulated with the same technique. Furthermore, landforms

such as yardangs and ventifacts cannot be modeled by these methods. Thus, generating convincing

macroscale desert scenery remains an active area of research.

Conclusion

Macroscale landforms in virtual terrains are becoming increasingly important because of the need to

model, simulate and author larger worlds. While there has been numerous works interested in generat-

ing mountain ranges (Section 2.5.1), other macroscale features such as river networks (Section 2.5.3),

2.6. Conclusion 35

karstic systems (Section 2.5.4), and desert landscapes (Section 2.5.5), received less attention. These fea-

tures cannot be fully captured by existing methods and may require dedicated procedural or simulation

techniques. In the first part of thesis, we introduce new simulation methods inspired by geomorphology

for simulating desert scenery (Chapter 4), and meandering rivers (Chapter 3).

2.6 Conclusion

Terrain generation methods progressively evolved over time from procedural techniques to simulations,

mainly because of the increase in computational power which allowed the use of more complex models

elaborated by scientists. Even though procedural and phenomenological approaches provide great con-

trol to the user, they cannot always fully capture the complex dynamics of terrain landforms. Therefore,

they are often complemented with simulations. Over the last decade of research in terrain modeling, the

tendency has been to move towards more geologically-based techniques, mainly because of the ever in-

creasing need for realism which cannot be fulfilled without understanding how terrain landforms emerge.

Geologists and geomorphologists have been studying the underlying processes responsible for the for-

mation of terrain features, and such knowledge is a great source of inspiration for the field of Computer

Graphics.

We proposed a new classification of terrain generation methods based on the spatial scale at which

they operate and the landforms they are trying to reproduce. Considering the macroscale, the majority of

techniques address the generation of mountain ranges. Features such as sand dunes (and more generally

desert landforms) as well as meandering rivers, canyons and glaciers have been neglected, even though

they represent a non negligible percentage of earth landform. Chapter 3 and Chapter 4 address the simu-

lation of meandering rivers and deserts, which are highly dynamic phenomena that shape the landscapes

on a yearly basis, while spanning dozens of kilometers at the same time. We study existing numerical

models from Geomorphology and propose new techniques adapted to the needs of Computer Graphics

with direct control tools for artists.

Another crucial realization of our classification lies in volumetric terrain landforms, such as arches

and overhangs. These have been studied extensively, but as demonstrated in Section 2.1.2, existing

volumetric models (voxels and layer stacks) are limited by their memory requirement, which forbids

their use for large terrains. There is thus a need for a compact representation of volumetric features,

compatible with elevation models used for representing large-scale terrains. In Chapter 5, 6, 7 and 8,

we present a new procedural model for volumetric terrains based on signed distance functions. We

study volumetric landforms across the whole range of scales (macroscale, mesoscale and microscale)

and develop new primitives and operators suited for representing detailed terrain features.

Part I

Macroscale landform simulation

39

Abstract

Macroscale terrain landforms now occupy a central part of virtual terrains because of the increasing need

for larger worlds. The vast majority of existing techniques is focused on the generation of mountain

ranges, that are later enhanced by erosion techniques for creating mesoscale landforms such as gullies

and ravines. However, these methods cannot reproduce the large variety of macroscale terrain landforms,

such as glaciers, river networks with braided and meandering channels, and sand dunes spanning dozens

of kilometers. In the first part of thesis, we propose new simulation methods for generating these ne-

glected macroscale landforms in virtual terrains. We take inspiration from classifications and numerical

models from geomorphology, and propose techniques that offer both control and interactivity, which

remains challenging in Computer Graphics.

In Chapter 3, we investigate the generation of meandering river trajectories. Meanders are an impor-

tant landform that shape the terrain, modify the surrounding ecosystem, and highly influence decisions

in urban planning. Starting from an initial river network encoded as a directed graph, we simulate the

evolution of the trajectories of the different channels using a curvature-based approach. This allows

us to reproduce well-known phenomena identified in geomorphology, such as downstream migration of

bends, oxbow lake formation due to cutoffs, and avulsion events. We incorporate several levels of con-

trol, including the precise prescription of the river trajectory by the user and indirect control points and

curves.

In Chapter 4, we concentrate on the generation of desert landscapes. Deserts occupy a large percentage

of the surface of the earth and encompass a large variety of landforms, including different types of

sand dunes, yardangs, and cliffs. We develop a new method for simulating the different sand transport

processes, namely saltation, reptation, and avalanching, which are responsible for the formation of sand

dunes. We are able to reproduce various types of dunes, such as transverse, barchan, and nabkha, as well

as yardangs that are caused by abrasion. Our system provides interactive feedback, which allows the user

to add or remove sand, modify the wind regime or vegetation cover, while the simulation is running.

3

Chapter 3

Simulating meandering rivers

Contents
3.1 Introduction . 42
3.2 Geomorphology background . 43
3.3 Simulation . 44

3.3.1 Simple channel migration . 45

3.3.2 Upstream curvature-based migration . 47

3.3.3 Cutoff events . 48

3.3.4 Avulsion events . 49

3.3.5 Resampling . 51

3.4 River network simulation . 51
3.4.1 Junction models . 52

3.4.2 Collision between sections . 53

3.5 Controls . 54
3.5.1 Terrain influence . 54

3.5.2 Control regions . 55

3.5.3 Procedural generation from recorded data . 56

3.6 Results and discussion . 57
3.6.1 Validation . 58

3.6.2 Limitations . 59

3.7 Conclusion . 59

42

3

Chapter 3. Simulating meandering rivers

3.1 Introduction

As outlined in Chapter 2, researchers have made considerable progress towards developing efficient

methods for synthetic terrain generation. In this context, procedural models, erosion simulations and

image-based synthesis have proved to be powerful tools. Nonetheless, existing methods often focus on

the creation of mountainous landforms, such as dendritic mountain ranges and erosion landmarks such as

gullies and ravines. In contrast, the generation of gentle sedimentary valleys with complex river networks

received less attention in Computer Graphics.

Modeling realistic and hydrologically consistent river networks on virtual terrains is a complex task.

It is usually accomplished in two steps: the river system is first generated using dedicated techniques, and

the relief of the terrain that conforms to the specified hydrology is then synthesized (Kelley et al. 1988;

Génevaux et al. 2013). Another method from Peytavie et al. 2019 consists of computing the river network

from an existing real or synthetic terrain, carving the trajectories in the bedrock, and finally generating

a plausible animated water surface according to the underlying relief of the riverbed. However, the

resulting rivers are static and their evolution through time is not taken into account. Numerous methods

exist for the realistic rendering and animation of water bodies (Jeschke et al. 2018; Peytavie et al. 2019;

Schreck et al. 2019), however the generation of river trajectories is still an open research question. The

challenge stems from the fact that rivers are highly dynamic objects with a lateral migration that can range

up to 25m per year, particularly in valleys where the topography is flat and the river exhibits meandering
patterns. To the best of our knowledge, there are no Computer Graphics methods for simulating the

complicated evolution of river trajectories, particularly meandering patterns.

Here, we introduce a new simulation method to reproduce the large-scale meandering behavior of

rivers. We use a curvature-based approach to deform the trajectories, taking into account environment

parameters such as the local slope, upstream water discharge, and control fields. We reproduce well-

known phenomena, including complex bend development, oxbow lake formation due to cutoffs and

avulsion events, leading to a terrain with realistic river trajectories. Finally, we derive a method for

computing abiotic parameters, useful for later determining the surrounding ecosystem on the terrain. We

provide several direct and indirect control tools: on top of modifying the topography of the terrain as

well as different control fields in real-time, the user can also prescribe the precise trajectories or place

specific river junction patterns to improve realism. The main contributions of this chapter include:

• A method for simulating the meandering evolution of a river channel through time, taking into

account curvature and environment parameters (Section 3.3).

• A generalization of the channel simulation to handle a river network encoded as a directed graph of

river channels, with the computation of junction points and collisions between different channels

(Section 3.4).

• Tools such as attractive and repulsive regions for controlling the simulation, and for modifying the

terrain or prescribing the trajectory of the different channels (Section 3.5).

Our method is compatible with other state of the art terrain modeling techniques, interactive, and can

thus be smoothly integrated in a production pipeline. Moreover, by recording simulation steps, we can

compute the abiotic parameters to generate vegetation cover onto the terrain (Section 3.6).

3.2. Geomorphology background

3

43

3.2 Geomorphology background

Rivers are complex water bodies whose trajectories can take a wide variety of shapes, such as braided,

meandering, or anastomosed, depending on their location (Figure 3.1). Their shape results from differ-

ent physical processes, and their understanding remains an active research area in geology. An important

amount of work in geomorphology has been dedicated to studying the meandering stage of the river,

as meanders can migrate several meters per year (Figure 3.2). Interestingly, meandering patterns have

been observed both in turbiditic (underwater) and fluvial context, as the governing processes share some

fundamental similarities. In this chapter, we concentrate on the fluvial part of the river, but the presented

method could also be extended to the turbiditic context. The fundamental mechanism of meanders con-

sists of erosion on the outer bank of the river (also referred to as channel), and deposition on the inner

bank, which leads to a progressive lateral migration of the riverbed.

Meandering

Anastomosed

Deltaic

Main channel

Abandoned
meander

SystemsFluvial context

Turbidite context

Braided

Lobe 4

2

1

3

4

5

Drainage

2

1

3

5

FIGURE 3.1: Background on the geomorphology of rivers: our work is on meandering systems which
can be found in plains. Figure inspired from Parquer 2018.

Here, we briefly review important research from the area of geomorphology. Seminal work on mean-

dering rivers (Ikeda et al. 1981; Howard et al. 1984) identified a non-linear relation between channel lat-

eral migration and the local and upstream curvature. They also propose the first algorithm to model neck

cutoff events, which are a key stabilization process in meandering systems. More recent works address

specific phenomena, such as lateral or downstream bend migration (Posamentier et al. 2003), channel

bend retro-migration (Nakajima et al. 2009), or avulsion (Pyrcz et al. 2009; Rongier et al. 2017), which

is a sudden change of trajectory of the channel, where the old path is completely abandoned. Recent

work from (Sylvester et al. 2019) analyzed the time-evolving behavior of real meanders using precise

river elevation data. Their results suggest that lateral migration may follow a more simple linear relation

with local and upstream curvature.

While the majority of these methods simulate the planar evolution of the river trajectory, meanders

also modify the elevation of the surrounding terrain, also known as aggradation (or vertical migration),

which moves the channel upward and thus requires more complex simulations (Peakall et al. 2000;

Rongier et al. 2017). However, aggradation changes the elevation of the terrain at the microscale (in the

order of millimetres per year), and can thus be neglected in our context.

Meandering rivers have received less attention in Computer Graphics. A notable exception is the work

of Génevaux et al. 2013 who synthesize terrains conforming to a procedurally generated river network.

The initial low resolution network is obtained by filling an input region with a grammar-based process

and the trajectories of the high resolution rivers are amplified according to the Rosgen classification

44

3

Chapter 3. Simulating meandering rivers

Single meander Complex meanders with cutoffs

FIGURE 3.2: Examples of real meandering rivers. The left picture shows a meander constrained within
mountain ranges, and the right picture shows a more complex meandering pattern with oxbow lakes
occurring in a plain.

(Rosgen 1994) to procedurally generate meanders or even deltas. Still, river trajectories are approximated

by simple curves and only yield a first approximation of the complex time-evolving patterns that can be

observed in nature.

Existing works in geomorphology usually study the evolution of a single idealized channel through

time, which is a key limitation in our context where artists generally aim at producing complex networks.

Here, we present a method for simulating meandering rivers on a network spanning the entire terrain. We

simulate the evolution of the trajectory on each channel, taking into account local slope and user defined

constraints. Particularly, we concentrate on interactivity and user-control, while retaining the realism of

the simulation.

୧ିଵܘ ݐ ୧ାଵܘ ୧ܜݐ ݐ = ୧ାଵܘ ݐ − ୧ିଵܘ 2ݐ
Sampling points ܘ୩(ݐ)ݑ)ܘ, (ݐ along the

curve

୧ܘ ݐ
୧ܖ ݐ = ௜ܜ) ܘ / ௜ܜ ܘ)ୄ

FIGURE 3.3: A channel is defined as a set of equally-spaced control points pk(t) along the trajectory
at a given time step t. Normals nk(t) and tangents tk(t) may also be computed. Points along the curve
p(u, t) are computed from their curvilinear abscissa u ∈ [0, 1].

3.3 Simulation

At the heart of our model is the notion of a river channel, defined as a time-varying piecewise cubic spline

curve in the plane Γ with n control points {pk}, k ∈ [0, n[. We note Γ(t) the channel curve at time step

t, and we refer to a point along the curve as p(u, t), with u ∈ [0, 1] the curvilinear abscissa (Figure 3.3).

Channels also have an associated river width w and depth d constant along the trajectory (Figure 3.4),

3.3. Simulation

3

45

which is an approximation commonly done in geomorphology (Sylvester et al. 2019) that we discuss

in Section 3.6.2. These geomorphological parameters can be automatically computed from well known

power laws in geomorphology (Dunne 1978), which relates the drainage area to the width and depth of

the river channel. Channel points have exactly one upstream and one downstream neighbor, except for

the first and last points, which may be linked to other channels in the network (see Section 3.4).

The simulation for a given channel proceeds as follows. First, we compute channel migration (Sec-

tion 3.3.1) which moves the control points pk of the channel laterally by taking into account local and

upstream curvature as well as environment conditions. Then, we simulate punctual events, such as cut-
offs (Section 3.3.3) and avulsions (Section 3.3.4), which are crucial processes in meandering systems that

can drastically modify the trajectory of the channel. We finally perform a resampling step (Section 3.3.5)

to ensure that points are equally spaced within a channel, so that the simulation remains stable. The

following sections explain each of those steps in details.

Width w Sampling point ()
Inflection

point

Sampling
distance

Depth d

FIGURE 3.4: On top of the centerline, a channel is also characterized by its width w, its depth d. These
parameters are directly related to the wavelength λ of the meander bend, which is defined as the distance
between two inflection points.

3.3.1 Simple channel migration

For a given channel, the migration process computes new positions for the control points of the river Γ.

Every point pk(t) at a given time step migrates towards the direction of the normal to the channel nk(t).
Let tk(t) denote the tangent of the curve tk(t) = p′

k(t), we define the unit normal as the orthogonal

vector oriented toward the sign of the local curvature nk(t) = (tk(t)/‖tk(t)‖)⊥. Let δt the time step,

and μ the migration rate function, points then migrate following the equation:

pk(t+ δt) = pk(t) + nk(t) μ(pk(t)) δt (3.1)

The challenge stems from the computation of the migration rate μ. The migration rate of a point along the

channel denotes its movement speed through time. It was found to be highly correlated to the curvature

of the river in several studies (Howard et al. 1984). Put simply, high curvature points are linked to the

fastest moving part of the river.

Let x′ and x′′ (respectively y′ and y′′) denote the first and second derivatives along the x axis (respec-

tively along the y axis) of the curve. The local curvature φΓ(u, t) is defined as:

φΓ(u, t) =
x′(u, t) y′′(u, t)− y′(u, t)x′′(u, t)

(x′(u, t) 2 + y′(u, t) 2)3/2
(3.2)

In our case, the channel is defined by a set of discrete points, thus derivatives are approximated using

central differences. The local migration rate μ0 is then defined by scaling the curvature according to the

46

3

Chapter 3. Simulating meandering rivers

w = 200m

w = 100m

w = 50m

FIGURE 3.5: Comparison between meandering rivers of different widths (100 years simulation): the
meander wavelength is proportional to the river width w.

river width w, and k1 the migration rate constant, set to 0.164m/day (Sylvester et al. 2019):

μ0(u, t) = w k1 φΓ(u, t) (3.3)

The linear scaling by the river width w implies that the frequency of meander bends is proportional to

the dimension of the river (width and depth), which has been identified and reported in multiple studies

in geomorphology (Leopold et al. 1960; Williams 1986). Our simulation conforms to this observation,

as demonstrated in Figure 3.5 where the wavelength of meander bends increases proportionally to the

width of the channel.

Inflection point
Γ(t)

Maximum
curvature

Maximum
curvature

ΓΓݐ)ܩ + (ݐ݀
Flow

FIGURE 3.6: Schematic view of the channel migration using the simple migration rate μ0. Using this
formulation transforms the original curve Γ(t) into the grey curve ΓG(t+δt). In this case, the maximum
migration point corresponds to the maximum curvature point.

Using the local migration model transforms the original curve Γ(t) into a new curve Γ(t + δt) with

increased bends (see Figure 3.6, blue and grey curves). In this case, the maximum curvature point corre-

sponds to the maximum migration point. Inflection points, i.e. such that φ(u, t) = 0, correspond to the

intersection points between Γ(t) and Γ(t+δt). However, using only the location migration does not lead

3.3. Simulation

3

47

to realistic meandering patterns, as meanders are also influenced by upstream trajectories. Particularly,

high curvature upstream bends tend to increase the migration rate of a given location (Howard et al.
1984), which we explore in the next section.

3.3.2 Upstream curvature-based migration

LagLag

Γ(t)
Maximum
curvature

Maximum
migration

Maximum
curvature

Maximum
migrationΓΓܻ ݐ) + (ݐ݀

ΓΓݐ)ܩ + (ݐ݀
Flow

FIGURE 3.7: The global migration rate μ takes into account upstream curvature, which introduces a lag
between the point of maximum curvature and the point of maximum migration. The original curve Γ(t)
(in blue) is thus transformed into a new curve ΓY (t+ δt) (in yellow). Recall that that ΓG(t+ δt) is the
curve computed using the simple migration rate (Section 3.3.1).

Several geomorphological studies have shown that a given point in the channel is influenced by the

upstream channel trajectory. This introduces a lag between the maximum curvature point and the maxi-

mum migration point, which in turn is responsible for the downstream migration of bends. Following the

model proposed (Sylvester et al. 2019), we take into account the upstream curvature to compute a more

accurate global migration rate μ. Let σ denote the sinuosity of the channel, which is computed as the

ratio between the curvilinear length of the curve l and the distance between the first and the last points

of the section:

σ = l/‖p(0, t)− p(1, t)‖ l =

∫ ζ=1

ζ=0
‖∇p(ζ, t)‖dζ (3.4)

The global migration rate along the curve is finally defined from the combination of the local migration

rate μ0 and the integral of upstream migration rates:

μ(u, t) = ω μ0(u, t) + σ−2/3

[
γ

∫ ∞

0
μ0(u− ζ, t)k(ζ)dζ

][∫ ∞

0
k(ζ)dζ

]−1

k(ζ) = e−αζ (3.5)

The variable ζ denotes the upstream distance from the point p(u, t), and ω, γ are weighting parameters.

Multiplying by σ implies that a meander with lots of bends will migrate faster. The kernel function k is

an exponentially decreasing weighting function. The different parameters for this equation are listed in

Table 3.1.

The term α is defined from a friction factor Cf = 0.011 (Sylvester et al. 2019) and the river depth d
which is assumed to be uniform along the channel: α = 2Cf/d. It defines a relation between the river

depth d and the influence of upstream points: a point in a deeper river is influenced by points further

away upstream.

48

3

Chapter 3. Simulating meandering rivers

Parameter Value Unit

δt 106 Days

γ 2.5 Dimensionless

ω −1 Dimensionless

TABLE 3.1: Values for the different parameters of the simulation.

18y

30y

34y

40y

Flow

FIGURE 3.8: Different steps of the meandering river simulation on a single channel. The latest trajectory
is shaded in light blue, while older paths are shaded in brown. Oxbow lakes due to cutoff events are in
dark blue.

The definition of the global migration rate μ in Equation 3.5 introduces a lag between the maximum

curvature point and the maximum migration point, transforming the original curve Γ(t) into a new curve

ΓY (t+ δt) (see Figure 3.7, blue and yellow curves). Using this formulation, we are able to reproduce a

well-known phenomena called downstream migration, where meander loops progressively move down-

stream as time passes (Figure 3.8). However, the dynamic of meandering rivers does not only depend on

the migration of the channel, but also on punctual events. In particular, cutoffs (Howard et al. 1984), the

presence of crevasses, and avulsions (Cojan et al. 2005) are known to play a key role in the evolution of

the river. We detail how we simulate these processes in the following sections.

3.3.3 Cutoff events

Oxbow
lake

Cutoff

Cut

Γ(ݐ) Γ(ݐ + (ݐߜ
,ݑ)௞ܘ (ݐ

FIGURE 3.9: Cutoff event
leading to the formation of an
oxbow lake.

Cutoffs (also called neck-cutoffs) occur when the channel starts to in-

tersect itself due to the high local curvature. When a cutoff occurs, the

channel abandons its current trajectory, which becomes an oxbow lake

and continues onto the shorter path (see Figure 3.9). The oxbow lake

can remain partially filled with water or dry out depending on environ-

ment conditions. Vegetation may grow in these locations due to the

water stored in the ground. Cutoffs events are a fundamental process

of meandering rivers as they regulate the formation of bends.

In our simulation, we trigger a cutoff event when the distance be-

tween two points within a channel is inferior to the channel width w
(Howard et al. 1984). A new edge is inserted between these two points,

and the abandoned part of the meander is removed from the channel and

3.3. Simulation

3

49

saved in the simulation recorded data D. The cutoff process is depicted in Figure 3.10. An interesting

aspect of oxbow lakes is their influence on the surrounding landscape. Figure 3.11 shows the recording of

oxbow lakes through the simulation. The channel belt, which is defined as the embedding of all previous

channel trajectories, depends on the river width and local terrain topography. In Section 3.6, we exploit

the recorded data of oxbow lakes to compute abiotic parameters which can be used for determining a

vegetation cover on the terrain.

Self-intersection New path

Oxbow lake

FIGURE 3.10: Showcase of the formation of an oxbow lake where a meander starts to intersect itself,
leading to an abandoned channel.

Old

Young 200 years 260 years

FIGURE 3.11: Recording of all oxbow lakes through the simulation, shaded from oldest (green) to
youngest (yellow). The union of all ancient trajectories form the meander belt.

3.3.4 Avulsion events

Before avulsion

Crevasses

After avulsion

Abandoned
trajectory

New path

FIGURE 3.12: We procedurally place sediment lobs at the location of crevasses (left), and stochastically
trigger avulsion events which modify the trajectory of the channel. Height amplitudes have been exag-
gerated to better emphasize the effect.

50

3

Chapter 3. Simulating meandering rivers

Crevasses occur when water flow exceeds the channel capacity. They are characterized by large

sediment lobs that deposit progressively at the location of overflow. They usually occur at locations of

high curvature (Figure 3.13, left), but the exact formation process remains an active area of research in

geomorphology. We model crevasses stochastically in our simulation. At each step, we select channel

points pk(t) with a curvature φ above a given threshold tc = 0.1, and trigger the creation of a crevasse

based on a probability ρc.
Crevasse

Avulsion

New
channel

Γ(ݐ) Γ(ݐ + (ݐߜ
FIGURE 3.13: Avulsion
process in a channel.

The location of crevasses provides us with information for adding procedu-

ral details on the terrain. In Figure 3.12, we procedurally distribute sediments

at crevasses in a circular domain, and perform material stabilization (Mus-

grave et al. 1989) on the deposited material. Crevasses represent potential

unstable points in the channel, and are known to be the starting point of avul-

sion, which drastically changes the river trajectory (Slingerland et al. 2004).

Avulsions occur at the location of crevasses. As for crevasses, the exact

triggering conditions of avulsions remain an active subject of research in ge-

ology. However, avulsions seem to be related to intense rain that causes a

sudden overflow in the channel. The upstream part of the channel remains

unchanged, whereas the downstream part is abandoned and a completely new path is formed (see Fig-

ure 3.13, right). Simulating avulsion is difficult, as carving a new trajectory while ensuring a correct

flow may not always be possible depending on the terrain topography. One solution would be to use an

anisotropic shortest path algorithm, but this would be computationally intensive. Other methods from

geomorphology rely on a L-system for computing the new path of the channel (Rongier et al. 2017).

a

New path

bt(a)

FIGURE 3.14: Starting from
a point a, we compute the
avulsion direction d and
march towards b.

In our case, we aim at simulating local avulsions, i.e. new paths lim-

ited tot he considered channel and not interfering with other channels

in the river network. Thus, the new path must thus connect somewhere

downstream within the same channel. For every crevasse located at a

point a, an avulsion may be triggered with a probability ρa. The end

point of the avulsion b is computed stochastically within the channel at a

downstream location. The new path between a and b is computed as fol-

lows. We first define the global avulsion direction d, computed as a ran-

dom unit direction within the cone at a and oriented toward the tangent

t(a), with an angle of α set to 45 degrees. Let p = a denote the starting

location of the new path, we compute the new position as p̃ = p+d. At

each step, the direction d is linearly interpolated towards b, depending the distance between the points.

This process is repeated until the distance between p and b is inferior to the sampling size of the channel

(see Figure 3.14).

Figure 3.15 shows the result of an avulsion triggered at the location of a crevasse on a single channel,

leading to a completely new path for the river. While this technique is fast and allows control through the

starting angle φ, the created path may not respect hydrological constraints i.e. the path may not always

follow the steepest slope of the terrain. To solve this issue, we check at each step that the slope between

p and p̃ is negative. If that is not the case, we carve the terrain to preserve a hydrologically consistent

network (if the difference is small), or abort the avulsion completely. Because meandering rivers occur

in plains, the gradient of the terrain remains small over the domain and it is usually possible to carve the

terrain with a limited amount of removed material and produce a hydrologically consistent channel.

3.4. River network simulation

3

51

Crevasse

New path

Abandoned path

Avulsion

FIGURE 3.15: An avulsion event. The crevasse becomes the starting point of a new path carved by the
channel.

3.3.5 Resampling

At time step t, the migration process (Section 3.3.1) moves the control points pj(t) of the channels

laterally based on the local and upstream curvature. In practice, this leads to unevenly spaced points

pj(t + δt), which after several simulation steps may create instabilities. We thus perform a resampling

step to ensure the robustness of the simulation, which is done at the end of a simulation step after potential

cutoff and avulsion events.

Unevenly spaced points ܘ௝(ݐ + (ݐ݀ Piecewise cubic resampling

(ݐ)௝ܘ
௝ܘ ݐ + (ݐ)௝ߤ Piecewise cubic Γ(ݐ + (ݐ݀

Resampled pointsܘ௞(ݐ + (ݐ݀
FIGURE 3.16: After channel migration (Section 3.3.1), control points may be unevenly spaced, which
is corrected by resampling the piecewise cubic curve Γ(t + δt) passing through the displaced control
points.

We first compute the piecewise cubic spline curve Γ(t+ δt) passing through the control points pj(t+
δt) along with their tangents t(t + δt). We then sample this curve at regular intervals, and use these

samples as the new control points of the channels pk(t+ δt) (Figure 3.16). We ensure that the first and

last point in the channel are preserved and kept unchanged by the process, which is crucial for managing

junctions as described in Section 3.4.1.

3.4 River network simulation

The previous section describes the meandering river simulation on a single river channel. However, in the

case of terrain modeling, artists usually want to create a river network with channels of different width

spanning the entire terrain. A river network at a time step t is denoted as N (t) and encompass a set of

52

3

Chapter 3. Simulating meandering rivers

n channels {Γi}, i ∈ [0, n[. Recall that points pk(t) within a channel Γi have exactly one upstream and

downstream neighbors, except for the first and last points which may be connected to other channels in

the network. These connections are modeled as junction points (see Figure 3.17).

Γ௜(ݐ)
Junction ௜௝௞ߛ Γ௝(ݐ)

Network N (ݐ)
Γ௞(ݐ)

FIGURE 3.17: We define a river network N (t) as a set of n channels {Γi}, i ∈ [0, n[. Two channels
Γi and Γj may intersect and merge into a single channel Γk downstream. We model such junction point
γijk with procedurally-defined templates that allows precise control for the user.

Given an input terrain H defined by an elevation function h : R2 → R, we define the initial river

network N (0), which may be provided by the user or computed automatically as described in Peytavie

et al. 2019 by calculating the drainage area a over the terrain, and applying a threshold value to extract

the cells with sufficient drainage that form the low resolution river network. The network simulation then

consists of two steps (Figure 3.18): we first perform channel migration (Section 3.3.1) on each channel

independently, and resolve collisions that may occur between the new trajectories (Section 3.4.2). Fi-

nally, junction points may be defined by the user using procedural templates that reproduce archetypes

identified in Geomorphology (Section 3.4.1).

N
et

w
or

k
co

m
pu

ta
tio

n

Network N (0)

Terrain T

Channel Γ௝
Junctions

Simulation
Final network N (t)

Channel migration

Collisions

FIGURE 3.18: Starting from an initial river network N (0) automatically computed or provided by the
user, the network simulation is performed on each channel Γj , and collisions between channels are
finally resolved, leading to a network at time step N (t + δt) exhibiting meandering patterns. Previous
trajectories are recorded in the simulation data D.

3.4.1 Junction models

Channels within the river graph are connected through junctions. Those specific connecting points are

defined when two upstream channels meet and merge into a new larger channel. Simulating the evolution

of junctions is a challenging topic of research and result from different physical processes (Guillén-

Ludeña et al. 2016). Geomorphologists identified that connection angle between different channels is

based on their respective flows. When the junction involves two channels with significantly different

water flows (thus, different widths wi and wj), the connection angle is close to perpendicular, whereas

3.4. River network simulation

3

53

the junction of two channels of similar flows usually leads to a small connection angle (Hooshyar et al.
2017).

Different flow Similar flowar flo

FIGURE 3.19: We define procedural junction templates for modeling channels intersections (shown as
insets), with a near perpendicular angle for rivers with different flow values (left), and a small angle for
channels with similar flow values (right).

Following these observations, we adopt a procedural approach that allows control and robustness. Let

γijk denote a junction between two channels Γi and Γj merging into a channel Γk. During the channel

simulation, we apply a linear falloff at the beginning and end parts of channels to avoid displacing these

junction points. This ensures that channel junctions remain untouched by the simulation, and allows

us to procedurally place channel junction templates based on the flows of the respective channels (see

Figure 3.19). These templates are parameterized and can be tuned by the user in a post-processing step.

Figure 3.20 shows the result of the network simulation on a 35km terrain with multiple channels where

junctions remain fixed during the simulation.

N (0) N (100)km
7.5 15

km
7.5 15

FIGURE 3.20: Generalizing the channel simulation to an entire river network allows generating complex
terrains. In plains, meandering patterns arise, while channels on steep slopes remains straight and follow
the gradient of the terrain.

3.4.2 Collision between sections

Junction templates and the migration falloff applied to the channel beginning and end parts prevents col-

lisions in the vicinity of junctions. Still, collisions between different channels may still occur because

54

3

Chapter 3. Simulating meandering rivers

of the high lateral migration that can be up to several meters a year. This may be solved by perform-

ing topological operations on the underlying graph of the network. We identify three cases: upstream

collision, downstream collision, and collisions between disconnected channels (Figure 3.21).

Upstream collision Downstream collision Disconnected collision

q q ෥ܙ q

෥ܙΓ஺ Γ஻
Γ஼ Γ஼

Γ஻Γ஺ Γ஺
Γ஼

Γ஻ Γ஻Γ஺ Γ஺ Γ஻
Γ஼

Γ஻Γ஺
Γ஼

FIGURE 3.21: Example of three different cases that arise for collision detection.

Upstream and downstream collisions involve three distinct and already existing channels ΓA, ΓB ,

ΓC that are connected through a junction point q. For this type of collision, a new junction point q̃ is

created at the intersection point between ΓA and ΓB (upstream or downstream, respectively), and the

downstream portion of channel ΓB is abandoned (see Figure 3.21, left and center). These cases are

relatively simple as they do not involve the creation of a new channel nor a redirection of the flow.

Disconnected collisions occur between two unconnected channels ΓA and ΓB in the network. A new

junction point q is created at the intersection point. Then, if channel ΓA (respectively ΓB) has a greater

flow than channel ΓB (respectively ΓA), we create a new channel ΓC with the trajectory of the down-

stream part of the channel ΓA (respectively ΓB), and remove the part of the other channel from the

network.

After handling the changes in the topology of the network, we update the characteristics of the chan-

nels by recomputing their flow, and their corresponding width and depth which in turn affect the migra-

tion and can be observed by changing meandering sinuosities.

3.5 Controls

In our system, the user may specify and move the different control points of a channel manually, or

even remove certain channels entirely from the network. Additionally, we introduce several ways to

constrain the simulation by modifying the terrain topography (Section 3.5.1) or by prescribing attraction

or repulsive control regions (Section 3.5.2).

3.5.1 Terrain influence

Terrain topography has a strong influence on the development of meanders. In large plains, the channel is

almost completely free of constraints, leading to complex meandering systems. Areas with a steep slopes

prevent the development of meanders and lead to straight trajectories (transition zone), as reported by the

Rosgen classification (Rosgen 1994; Génevaux et al. 2013). In valleys, the channel may be meandering

but remains constrained by the surrounding mountains.

3.5. Controls

3

55

Free meanders Constrained meanders

Transition zone1

2

21m
250 500

FIGURE 3.22: Result of our simulation where the channel is constrained by the surrounding mountains
(right) and free in plains (left).

Meandering rivers tend to develop in low-gradient areas, as strong slopes forbid the lateral migration

of the channel. Recall that migration is defined by the equation pk(t+ δt) = pk(t) + nk(t) μ(pk(t)) δt
(see Section 3.3.1), where μ denotes the migration rate of the point. To model the terrain influence on

migration, we define a modified migration rate μ̃, which takes into account the slope of the terrain defined

as the gradient of the elevation function s(p) = ‖∇h(p)‖:

μ̃(u, t) = μ(u, t) (g ◦ s ◦ p(u, t)) (3.6)

The function g : R → [0, 1] is the smoothstep function, taking values of 0.0 above a threshold ts =
0.15m specified by the user. Figure 3.22 shows a three-stage meandering systems. In the plain, the chan-

nel migrates freely and meanders as well as oxbow lakes develop. Slopes cancel the migration term and

therefore produce straight river trajectories in the transition zone. In valleys surrounded by mountains,

the channel exhibit constrained meandering patterns that sometimes stabilize during the simulation. In

our system, the user may modify the topography of the terrain interactively during the simulation and

see the channels adapt automatically.

3.5.2 Control regions

Combining a physically-based simulation and user-control is a crucial feature of our approach, and al-

lows for preserving the overall realism of the meanders while allowing creativity for artists. We take

inspiration from the road network generation method from Galin et al. 2011 and developed two different

strategies for controlling the trajectories: feature points and control regions. Feature points are a direct

and straightforward approach for controlling the trajectory. The user may move and lock the position of

the control points pk or divide a given channel Γi into two connected sub channels. In contrast, control
regions operate indirectly and either influence the direction of the migration, or dampen the migration

rate, which is useful for handling junctions (see Section 3.4.1).

Control regions are defined as a scalar field c : R2 → R, which can be interactively modified by the

user using classical brush tools. By taking the gradient ∇c(p) of this scalar field, we can easily define

attraction (where c(p) > 0) and repulsive (where c(p) < 0) constraints. We modify Equation 3.1 to

incorporate the control field gradient direction as:

pk(t+ δt) = pk(t) + μ(pk(t)) (nk(t) +∇c(p)) δt (3.7)

Figure 3.23 shows the influence of attractive and repulsive regions on the simulation. While negative

areas are intuitive to control, we found that attraction constraints can be difficult to manipulate as they

tend to overconstrain the simulation, leading to unrealistic trajectories. We discuss this limitation in

Section 3.6.2.

56

3

Chapter 3. Simulating meandering rivers

Attractor
region

29y

49y

Repulsive region

FIGURE 3.23: Control regions allow the user to constrain the simulation without directly moving the
control points of the channel, which may lead to unrealistic river trajectories.

3.5.3 Procedural generation from recorded data

As we simulate the evolution of the river network through time, we have access to the previous trajecto-

ries of all simulation steps stored in the recorded data D. We exploit these data to procedurally generate

sediment deposits and abiotic parameters (Figure 3.24) which are useful for generating a plausible vege-

tation and sediment cover.

River networks N () Soil moisture m()
0 1

Sediments s()
0 1

FIGURE 3.24: We procedurally generate abiotic parameter such as soil moisture as well as sediment
deposition map from the recorded simulation data D, which contains all previous trajectories of the
channels.

Abiotic parameters. such as soil moisture, temperature and sunlight exposure are key development

factors of ecosystems (Gain et al. 2017). As the trajectory of meandering rivers evolve rapidly (in the

order of dozens of meters per year), they have a drastic impact on the surrounding ecosystem. Reproduc-

ing the complex dynamic between ecosystem and meanders would involve a joint simulation of the two

phenomena, which is computationally intensive, and is still an open question in geomorphology (Ielpi

et al. 2022). Instead, we compute soil moisture from the simulation recorded data D as a scalar field

m : R2 → R, defined as the combination between the stream power field p : R2 → R (Cordonnier et al.

3.6. Results and discussion

3

57

2016) and the sum of past moisture fields mi : R
2 → R:

m(p) = p(p) +

n∑
i=0

mi(p) mi(p) = εm (g ◦ d(p,N i)) (3.8)

The parameter εm ∈ [0, 1] represents the moisture accumulated for each step and is set by the user,

while n is the amount of simulation steps considered in the computation. High values of n allows to take

into account more ancient trajectories in the computation, while n = 1 only consider the latest network

N (t). The function g is a classical falloff function, taking into account the distance to the nearest river

channel of the network d(p,N i) divided by its radius of influence Ri. Such procedural approximation

of soil moisture is useful for generating a vegetation cover from the recorded data, as demonstrated in

Figure 3.25. Here, trees were distributed using a dart-throwing algorithm (Lagae et al. 2006a) with

soil moisture used as the probability function, leading to dense vegetated areas as the location of high

moisture zones.

Sediment deposition. is approximated in the same manner. For each simulation step, we accumulate

sediment deposition along the channel trajectories, and modulate the deposited quantity with a scaled

turbulence function t : R2 → [0, 1] to account the stochastic nature of the phenomena using following

this equation:

s(p) =

n∑
i=0

si(p) si(p) = εs (g ◦ d(p,N i)) t(p) (3.9)

The parameter εs ∈ [0, 1] denotes the accumulated sediment quantity for each simulation step. Fig-

ure 3.25 shows the effect of accumulated sediments at the location of ancient oxbow lakes and along the

past channel trajectories.

Deposited Sediments Vegetation
growth in high
moisture zones

Ancient
oxbow lake

FIGURE 3.25: Computing abiotic parameters such as soil moisture and sediment cover allows for com-
plex layer field rendering that shows ancient trajectories and oxbow lakes, as well as vegetation on the
inner bank of the different channels.

3.6 Results and discussion

We implemented our method in C++. Experiments were performed on a desktop computer equipped

with Intel® Core i7, clocked at 4GHz with 16GB of RAM, and an NVIDIA GTX 1080ti graphics card.

The output of our system was directly streamed into Vue XStream® to produce photo realistic landscapes

58

3

Chapter 3. Simulating meandering rivers

(Figure 3.12, 3.19, 3.22, 3.25). Table 3.2 reports the statistics for different scenes shown throughout this

chapter. The simulation runs interactively even for large networks featuring hundreds of river channels.

Figure 3.22 is the most computationally intensive because of the many cutoff events (more than 500
hundreds in total, which is the highest of all scenes) that occurred during the simulation. This high

number of cutoff is due to the channel being constrained by the surrounding terrain.

The bottleneck is the visualization based on the rasterization of cubic Bézier curves, which becomes

computationally intensive beyond a few hundred river channels. Our prototype relies on Qt.6 QGraph-
icsScene class to render high resolution images of the river network, and could be replaced with another

system taking advantage of graphics hardware; however this development was beyond the scope of this

work.

Figure
Domain Simulation

Size #Γ Steps ts (ms) tc (s)

3.5 16× 25 2 521 350 7.6 2.7
3.8 10× 10 403 130 0.6 0.8
3.23 10× 10 323 160 0.6 1.0
3.22 35× 20 1 571 1134 12.5 14.2

TABLE 3.2: Statistics for different scenes: size in km × km, number of control points #Γ, simulation
steps, time for single step ts (ms), and total simulation time tc (s).

3.6.1 Validation

As rivers are an active subject of research in geomorphology, different metrics exist to describe, compare,

and quantify meandering rivers. While we do not aim at an exhaustive comparison, we implemented

several metrics and compare the obtained values against real data. Particularly, we computed the meander

wavelength λ and sinuosity σ of the channels.

Figures λ/w σ

Figure 3.5 [200m] 8.4 1.9

Figure 3.5 [100m] 14.4 3.6

Figure 3.5 [50m] 14.2 3.8

Figure 3.8 10.8 2.4

Figure 3.23 9.2 1.9

Observed range [6.2, 12] > 1.5

TABLE 3.3: Geomorphological properties of different scenes: ratio λ/w, sinuosity σ. The last entry in
the table shows the range of values obtained for real rivers.

Meander wavelength λ is defined as the spacing between two consecutive inflection points in the

channel (Reinfelds et al. 1998). Studies on real rivers have found the ratio between meander wavelength

and river width to be within [6.2, 12] (Leopold et al. 1960; Williams 1986). Our generated networks

show similar values (Table 3.3), except for the widths w = 100m and w = 50m of Figure 3.5, where

the ratios exceed the observed range. This can be easily explained by the fact that these channels were

obtained on a flat terrain topography which did not constrain their evolution. Thus, they exhibit highly

irregular trajectories which may not happen in real terrains, where multiple other factors influence their

migration.

3.7. Conclusion

3

59

We also compare our result regarding sinuosity. Recall that sinuosity σ is defined as the ratio between

the curvilinear length of the curve and the distance between the first last points of the channel (Equa-

tion 3.4). Sinuosity is a useful metric for rivers, and a commonly accepted classification states that the

meandering stage of a river starts at σ > 1.5, which we obtain consistently with our method (Table 3.3).

3.6.2 Limitations

Our approach produces meandering river trajectories similar to the ones observed in geomorphology, but

does not come without limitations. First, we do not take into account the influence of the ecosystem on the

evolution of river, and only rely on a procedural approximation for computing abiotic parameters, such

as soil moisture and sediment deposition (Section 3.5.3). This is a typical tradeoff between interactivity

and an accurate simulation. Furthermore, the link between ecosystems and meanders remains unclear

in geomorphology and also depends on more global climate parameters (Ielpi et al. 2022). Second, we

simulate avulsion only locally within a given channel (Section 3.3.4). A more complex algorithm would

be needed to simulate global avulsions between different channels, by properly redirecting the flow.

Another limitation of our method is that we model a river channel with a constant width w and depth

d as it is often the case in geomorphology (Sylvester et al. 2019), and do not take into account the

potential variations along the trajectory, as well as the asymetric profiles that real meandering channels

often exhibit. A typical solution to this problem would involve procedural primitives in the spirit of

Génevaux et al. 2015.

Finally, we describe several ways to control the output of the simulation in Section 3.5, for instance

using attractive and repulsive points. Intensively using these control tools may over constrain the simu-

lation and lead to unrealistic trajectories.

3.7 Conclusion

We introduced a new method for simulating the meandering evolution of rivers. By taking into account

local and upstream curvature, we are able to reproduce behavior of real rivers identified in geomor-

phology, such as bend migration, oxbow lake formation, and changes of trajectory due to avulsion. We

generalize this simulation to an entire river network, encoded as a directed graph, and show how to

resolve collisions and procedurally handle junction points between multiple channels. The presented

method conforms to observations made in geomorphology regarding statistical measures on the channel

trajectories.

This work opens several avenues for future research. A direct extension would be to incorporate the

two-way coupling between ecosystem and meander simulation, in the spirit of the interleaved simulation

introduced by Cordonnier et al. 2017. Another direction worth investigating is the simulation of other

macroscale landforms such as braided rivers and deltas. Generating such features require simulation

methods discussed in Chapter 9.

4

Chapter 4

Desertscape simulation

Contents
4.1 Introduction . 62
4.2 Geomorphology background . 63
4.3 Simulation pipeline . 65
4.4 Surface wind computation . 66

4.4.1 High-altitude wind field . 67

4.4.2 Warping . 67

4.4.3 Wind shadowing . 68

4.4.4 Control . 69

4.5 Sand simulation . 69
4.5.1 Sand transport . 70

4.5.2 Bedrock abrasion . 72

4.6 Amplification . 73
4.7 Optimized implementation . 74

4.7.1 Saltation . 75

4.7.2 Avalanching and reptation . 75

4.8 Results and discussion . 76
4.8.1 Control . 76

4.8.2 Validation . 77

4.8.3 Comparison with other techniques . 78

4.8.4 Limitations . 78

4.9 Conclusion . 79

62

4

Chapter 4. Desertscape simulation

4.1 Introduction

Hydraulic erosion attracted the most attention in the computer graphics community, focusing on Alpine

mountain ranges with specific features resulting from the action of water, such as dendritic river and ridge

networks, eroded mountain ranges with sedimentary valleys. In contrast, the impact of wind erosion over

terrains in hot and arid regions has seldom been addressed despite their significant earth coverage (about

1/3 of earth land surface) and scenic visual aspect. One notable exception is the influence of wind

over the growth of tree (Pirk et al. 2014) and snow simulation (Cordonnier et al. 2018b). Yet, desert

landscapes have not been studied.

Wind is an crucial erosion agent in hot deserts, where annual rainfall is low. In particular, hot desert

landscapes are characterized by distinctive landforms modeled by the action of wind, such as dunes of

different shapes and sizes, eroded table mountains, and bedrock sculpted by the abrasion of sand blown

by the wind. These phenomena are highly dynamic and can quickly change the landscape, moving entire

dunes sometimes up to 20m per year in some region of earth (El-Magd et al. 2013).

Terrain

Wind

FIGURE 4.1: Example of a desert landscape. The user defined the high-altitude wind regime, added
local turbulence, and finally placed sand at the center of the terrain. Our model automatically created a
mega barchan and a star-shaped dune. The turbulence also created asymmetric transverse dunes as well
as a linear dune.

This chapter presents an original framework simulating aeolian processes described in geomorphol-

ogy: namely saltation, reptation, and avalanching, which take place in the generation of many desert

features such as dunes created by the accumulation of sand, nabkha produced by the surrounding vege-

tation, and yardangs created by abrasion of the bedrock (Figure 4.1).

We model the terrain using a layered data structure combining bedrock, sand, and vegetation density.

Stochastic rules simulate how sand is transported by the wind and its interaction with bedrock and vege-

tation. Given a heightfield and time-varying high-altitude wind field, our method automatically computes

the surface wind taking into account the relief, simulates sand transport across the terrain, and performs

abrasion of the bedrock. The simulation runs at interactive rates and provides multiple levels of control:

at any time during the simulation the user may add or remove sand, change the wind regime or modify

the vegetation density and directly see the evolution of the system.

The main contributions outlined in this chapter are:

4.2. Geomorphology background

4

63

• A procedural model for approximating the wind flow over the relief of the terrain with a multi-scale

warping.

• An interactive aeolian erosion simulation derived from algorithms in geomorphology, combining

a set of stochastic sand transportation rules operating on a layered terrain model.

• A controllable wind-based approach for authoring desert landscapes, providing a variety of direct

and indirect interactive control tools to the user.

After introducing the necessary geological knowledge to the reader (Section 4.2), we provide a high

level overview of the simulation pipeline (Section 4.3), and detail how to compute the surface wind from

the high-altitude wind regime (Section 4.4). We then explain how sand is transported across the terrain

by phenomena such as saltation, reptation, and abrasion (Section 4.5). We also show the potential of

such simulation as an input for terrain amplification (Section 4.6) and, finally, discuss implementation

details (Section 4.7), and show the results and limitations of our method (Section 4.8).

The work presented in this chapter was published in Paris et al. 2019b and received the Replicability

Stamp.

4.2 Geomorphology background

Deserts are regions with low water supply. Depending on the amount of precipitation, they are classified

as hyper-arid, arid, or semi-arid. Hyper-arid and arid deserts, which receive less than 250mm of rainfall

per year, represent almost 25% of the earth surface and have been extensively studied in geomorphology

(Huggett 2003). In this work, we focus exclusively on these two types, as they encompass interesting

and varied landforms.

Barchan Transverse

Yardangs Nabkha

FIGURE 4.2: Photographs of real desert landscapes. Barchan and transverse dunes emerge from uni-
modal wind regime, while nabkha appear under the presence of vegetation. Yardangs are elongated
shapes in the bedrock that form due to the abrasive action of the wind. Sources available in Appendix B.

64

4

Chapter 4. Desertscape simulation

Geomorphological phenomena. Deserts are composed of different kinds of landforms created by ae-

olian processes: wind eroding, transporting, and depositing materials. Wind erosion effects include de-

flation, which is the removal of loose, fine-grained particles due to turbulent wind; and abrasion, which

is the wearing down of the bedrock by the grinding action of sand. The transport and accumulation of

the sand lead to the formation of dunes. Figure 4.2 illustrates the variety of landforms in hot deserts.

BarchanSa
nd

 su
pp

ly

Wind direction variability
Unimodal

Transverse
dunes

Complex

Star
Dunes

Networks

Linear
Dunes

Linear Dunes

Barchan

Star DunesTransverse

Networks

FIGURE 4.3: Different types of dunes in relation to the variability of wind direction and available sand
supply. Figure inspired from Livingstone et al. 1996.

The complexity and variability of wind direction play a key role in the formation of different dunes

(Figure 4.3): transverse and barchans dunes are formed from unimodal winds (i.e. wind blowing from

one major direction), whereas star dunes and network dunes featuring complicated patterns are known

to be shaped by more complex wind regimes with local turbulences and vortices, even though the exact

processes remain an active field of research. The relief of the terrain and the presence of vegetation also

influence sand transport, and thus the different types of dunes formed (Lancaster et al. 2013). Anchored

dunes such as nabkha are those created under the influence of vegetation (Baas 2002), as opposed to free

dunes such as transverse, barchan, and star-shaped. Wind erosion can also carve the bedrock, creating

elongated ridge-like formations called yardangs.

Prior work on dune simulation. Few computer graphics works have addressed the formation of sand

dunes. Existing methods either address the modeling of sand as a continuous fluid (Yan et al. 2016;

Daviet et al. 2016) or the modeling of sand ripples (Onoue et al. 2000; Beneš et al. 2004). In contrast,

desertic landscapes and particularly sand dunes have received a lot of attention in physics and geomor-

phology.

Stochastic models (Werner 1995) have been proposed for simulating the transport of sand by the wind

and the formation of different types of dunes. Barchan and transverse dunes can be simulated efficiently

with a uniform and unidirectional wind flow under different sand supply conditions. This model was

improved by approximating the effect of wind acceleration on the windward side of dunes (Momiji et al.
2000), which produces more asymmetric dunes and allows to better simulate their movement throughout

time. The impact of vegetation on the shaping of sand dunes was studied in Baas 2002 by introducing an

additional layer representing vegetation density.

The simulation of more complex dunes such as star-shaped or network dunes remains challenging.

Sand accumulation results from the interaction between irregular wind fields and the terrain, and cap-

turing the dynamics of winds over a constantly evolving terrain remains a computationally intensive

problem. Therefore, although changes in the wind direction and speed strongly influence the type and

shape of dune formations, most existing techniques rely on 2D wind flow approximations and avoid

computationally intensive wind simulation. Narteau et al. 2009 developed a complex wind model to

represent complex effects such as transport, gravity and diffusion. This model was extended in Zhang

4.3. Simulation pipeline

4

65

et al. 2012 to reproduce star dunes, which are complex to create by simulations. Aeolian erosion is also

known to be responsible for the formation of yardangs created by abrasion. Despite several field studies

and wind tunnel experiments (Ward et al. 1984), we are not aware of any numerical model capable of

creating yardangs.

In this work, we depart from complex physical simulations (Narteau et al. 2009) and prefer simpler

approaches that allow us to include user-control in the simulation process. We take inspiration from

Werner 1995 and rely on stochastic rules to transport the sand across the terrain. We simulate phenomena

such as saltation, reptation and avalanching while taking into account vegetation presence and bedrock

resistance and providing direct control to the user.

4.3 Simulation pipeline

Layered Model

High altitude
wind field a(t)

Bedrock B

Sand S
Vegetation V

Sand movement:
saltation, reptation, avalanching

Aeolian erosion and abrasion

Wind surface
computation w(p, t)

Terrain and vegetation
editing

Si
m

ul
at

io
n

C
on

tro
l

Simulation

with resistance

FIGURE 4.4: Synthetic overview of the simulation.

Terrain Representation. The layered terrain model, denoted as H, is a discrete regular grid of size

n× n cells. It represents a multi-layer ordered data-structure to represent different terrain materials and

plant density in every cell (Figure 4.4). The sand S layer represents the material thicknesses on top of

a bedrock layer B, which defines the base elevation. Plants are represented using a generic vegetation

density layer V which takes values in [0, 1] and represents vegetation cover. The resistance of the bedrock

ρ : R2 → [0, 1] defines the resistance to erosion; regions with a high resistance to erosion (ρ = 1.0) are

eroded slower than low resistance ones (ρ = 0.0).

Wind and sand transport simulation. At the heart of our method is a sand transport algorithm based

on the computation of the wind at the surface of the terrain which takes into account the relief. At

every time step, we compute the evolution of terrain model H(t+Δt) according to the wind conditions

w(p, t). Figure 4.4 presents an overview of the simulation. Given an initial input layered representation

of the terrain and a high altitude wind field a, we compute a time varying wind field w over the surface

of the terrain (Section 4.4), which is used to compute the movement of sand.

The transport and collision of sand with the relief and vegetation form different types of dunes (Sec-

tion 4.5.1), and at the same time erode the terrain through abrasion (Section 4.5.2). The vegetation layer

66

4

Chapter 4. Desertscape simulation

plays a role in the formation of anchored dunes such as nabkha, which only form around plants, and

greatly influences the shape of the dunes by preventing the sand from being blown by the wind. Since

the simulation is performed at a 1 − 10m range per cell, we finally add procedural details to the sand

layer to account for small bumps around plants and sand ripples (Section 4.6). Similarly to Werner 1995,

the simulation is performed on a toric domain: the sand moved beyond one bound is transported to the

opposite bound, which preserves the overall volume of sand during the simulation. Note that the bedrock

layer has to be tileable so as to avoid artifacts caused by different elevations on opposite sides.

Control. The high altitude wind regime is defined by a wind rose that prescribes the wind direction

and speed distribution throughout time. At any time in the simulation, the user can change the high

altitude wind field a and edit the wind field at the surface of the terrain by adding local procedural wind

primitives (Section 4.4.4). Moreover, throughout the simulation, it is possible to add or remove sand,

sculpt the underlying bedrock, and modify the density of vegetation.

4.4 Surface wind computation

Surface wind field
w(p,t)

Sh
ad

ow
in

g

High altitude
wind field a(t)

W
ar

pi
ng

Wind shadow field
σ(p,t)

Wind rose

FIGURE 4.5: Overview of the wind field computation.

We define the wind field over the surface of the terrain w : R3 → R
2 by constructing a high-altitude

wind field, denoted as a and computed from a wind distribution (wind rose), and then warping it at

different scales according to the relief H. We define the wind field w as:

w(p, t) = σ(p, t)ω ◦ a(t) + u(p, t)

The function ω : R2 → R
2 denotes a multi-scale warping taking into account the relief of the terrain at

different scales which deforms the wind field (Figure 4.5). The function σ : R3 → [0, 1] scales the speed

by computing the shadowing effects that are generated by small scale elevation features such as sand

dunes and small steep cliffs. Eventually, u : R2 → R
2 is a user-control local wind field perturbation

which allows the user to edit the wind field w locally, for instance by adding swirls or turbulence. The

final resolution of the wind field w is n× n, which is the same as the other sand and bedrock layers.

4.4. Surface wind computation

4

67

4.4.1 High-altitude wind field

N

W E

S

Speed
(m/s)

0

5

10
15

FIGURE 4.6: Wind rose.

The high altitude wind field a : R → R
2 is approximated as a time

varying wind of uniform direction and speed over the terrain, since we

focused on relatively small domains (up to 10× 10 km2).

In our framework, users can either specify the variation of direction

and speed throughout time, or rely on generic wind regime models. Wind

regimes are specified by a wind rose that represents the distributions

of wind speeds and directions (Figure 4.6). At a given time step, the

distribution is sampled and a direction is chosen for the whole terrain.

4.4.2 Warping

The high altitude wind field a is then warped according to the relief of the terrain at different scales.

We compute the smoothed elevation function of the terrain at different resolutions: let R a smoothing

radius, we define H̃i = H�gRi as a convolution between the terrain H and the Gaussian kernel of radius

Ri. We first account for Venturi effects, which accelerate wind at higher altitudes, according to the base

elevation:

v(p, t) = a(t) (1 + kWH(p))

The term kW is a scaling parameter, set to 5 × 10−3 in our model. While wind is usually approximated

using a power law, this linear approximation lends itself for interactive purposes as it is efficient and

easily controllable.

We then change the direction of the wind according to the gradient of the surface of the terrain at

multiple scales. We define the wind at surface as a weighted sum:

w(p, t) =

i=n∑
i=0

ci ωi ◦ v(p, t)

a(t) w(t)

W
in

d
M

ag
ni

tu
de

h

FIGURE 4.7: Deformation of the constant high altitude wind field a to account for terrain obstacles in
H, leading to a surface wind field w.

68

4

Chapter 4. Desertscape simulation

The term ωi ◦ v denotes the warping of v at scale i weighted by coefficient ci. The warping operator is

in turn defined as:

ωi ◦ v(p, t) = (1− α)v(p, t) + αkT i∇H̃⊥
i (p) α = ‖∇H̃i(p)‖

The term kT i is a deviation coefficient set by the user, and α the normalized slope of the smoothed terrain.

∇H̃⊥
i (p) denotes the orthogonal vector to the terrain gradient in the direction of v, thus v·∇H̃⊥

i (p) > 0.

We used n = 2: convolution radii were set to 200m and 50m, with corresponding weights 0.8 and 0.2,

and deviation coefficients of 30.0 and 5.0 respectively. This allows us to redirect the wind with respect

to mountains and smaller cliffs or mesas (Figure 4.7).

4.4.3 Wind shadowing

Wind shadowing occurs in the lee side of terrain relief or vegetation, i.e. those areas where wind flow

has been slowed down sufficiently to suppress any further transport of sand. This complex phenomenon

is fundamental in the formation of all sand dunes (Baas 2002).

Shadowed cell

RS

p

Wind w q

FIGURE 4.8: Shadowing.

Our simulation conforms to experiments in geomorphology demon-

strating that wind shadowing takes place under a 15 degree accessibility

angle. Therefore, wind shadowing at a point p is approximated using

a dampening function σ(p), computed as follows. Starting from p, we

march in the opposite direction of w(p, t) and check intersection with

the terrain (Figure 4.8). The maximum marching distance is a control

radius Rs set to 10m, and the marching step is set to 0.5m. We keep

the point q with the maximum elevation difference regarding p, and

compute the shadowing angle α as:

tanα = (H(p)−H(q))/(‖p− q‖)

We finally compute shadowing σ as the linear interpolation between 10 and 15 degrees from the angle

α, which will progressively suppress sand transport (see Figure 4.9).

Terrain Shadows

1

0
FIGURE 4.9: Shadowing map for a set of transverse and barchan dunes. Red indicates maximum shad-
owing with σ = 1 (tanα > 15 degrees) while blue means complete exposition to wind with σ = 0
(tanα < 10 degrees).

Note that the computation of w is performed at every step of the simulation to account for the time-

varying high altitude wind field a, as well as the constant movement of dunes, which leads to different

warping and shadowing effects as the landscape evolves. While this update is computationally intensive,

4.5. Sand simulation

4

69

the multi-scale approach generates realistic sand transport effects by weighting obstacles accordingly to

their size: a small hill does not have the same impact on the wind direction as a mountain peak.

4.4.4 Control

The user-controlled perturbation field u : R3 → R
2 is constructed by combining time varying procedural

wind primitives as proposed in Bridson et al. 2007. This approach provides fine user-control over the

simulation process and guarantees that u(p, t) should be divergence-free (i.e.that it represents an incom-

pressible fluid with no sources or sinks). The perturbation field provides the user with local control and

enables her to add eddies or turbulences at prescribed locations (see Figure 4.10), which are important

for some specific phenomena such as asymmetric transverse or star dunes (Section 4.8).

Edited a(t)Uniform a(t)

FIGURE 4.10: Comparison between a uniform (left) and a user-edited (right) wind field using a vortex
and a turbulence primitives. The latter produces more asymmetric dunes.

4.5 Sand simulation

Barchans Transverse

Climbing dunes Nabkha

FIGURE 4.11: Our method generates different types of dunes: free dunes such as barchan and transverse
dunes (top row) form with uniform wind conditions; anchored dunes are influenced by their environment:
climbing dunes appear at the bottom of small cliffs, and nabkha are created near vegetation.

70

4

Chapter 4. Desertscape simulation

The sand transport model involves three different sand movements: saltation, reptation and avalanch-
ing which are modelled as stochastic processes (Figure 4.12). The fundamental sand transport process

leading to the formation of dunes is saltation (Section 4.5.1).

Depending on its strength, wind can lift and carry sand along its direction, bouncing possibly multiple

times before being deposited at some other location. In turn, these bounces and depositions produced by

saltation can trigger reptation, also referred to as creep, which is the movement of sand grains to adjacent

positions upon impact by other sand grains. Finally, when the deposited sand creates a local slope greater

than the angle of repose threshold, avalanching events are triggered. Note that saltation moves sand in

wind direction, whereas reptation and avalanching may transport it in different directions.

Wind w

Sand lift Bounce

Reptation
Deposition

Saltation
Avalanching

FIGURE 4.12: Processes involved in sand transport: saltation lifts sand in the air and transports it over
a few meters, possibly with multiple bounces. Deposition eventually occurs based on stochastic rules
involving the presence of sand, vegetation and wind shadowing. Reptation is triggered by the deposition
of sand at each bounce during saltation.

Wind also erodes the surface of the terrain by an aeolian abrasion process, which occurs whenever a

small amount of sand blown by the wind is transported over bare bedrock (Section 4.5.2).

4.5.1 Sand transport

For every cell C of the grid, we successively trigger a series of events according to the surface wind

w(p) at the location of the cell: starting with saltation, a small fixed amount of sand, often referred to as

slab in geomorphology (Werner 1995), is lifted and moved over the grid by successive saltation steps or

bounces, triggering in turn reptation events until sand is eventually deposited back to the ground, which

might trigger avalanching events.

Saltation. We approximate saltation as a stochastic event on a given cell C in three steps. First, lifting
removes a small amount of sand εS (set to 0.1m). Then, wind transports εS to a target cell denoted as N
located at q = p+ d ◦w(p, t) where d denotes the saltation distance function of the wind. The saltation

distance is linear to the intensity of the wind ‖w(p, t)‖ and transports the sand along its direction.

When this sand slab hits the ground, it can either bounce or be deposited on the ground according to a

probability β. This probability depends on wind shadowing σ(q), the presence of sand S(q, t) and the

vegetation density V(q, t) of the target cell N :

β = σ(q) + fS(S(q, t)) + fV(V(q, t))

Note that we clamp the value of β in [0, 1]. The transfer functions fS and fV are defined as follows.

Following Werner 1995, we model fS as the step function fS(0) = 0.4 and fS(x) = 0.6 for x > 0. We

extent this equation by taking into account vegetation density per cell. The action of saltation is more

4.5. Sand simulation

4

71

intense in places where vegetation is sparser, since sand grains are unconsolidated. Therefore, we used a

linear decay: fV(x) = 1− x for the vegetation density term.

Steeper slopes

= 45°
Wind w

CollisionLifting dampening

= 30°
No lifting

Lifting

FIGURE 4.13: Vegetation limits sand lifting during saltation, decreases the probability of bouncing, and
prevents avalanching and reptation.

Reptation. is a process whereby sand grains collide with others during bounces in saltation, prompting

them to move in the slope direction. It is also, with avalanching, a process where sand grains can move

laterally to the wind direction.

We model reptation as a stochastic event that is triggered by the sand slabs bounces and depositions

during saltation transport. In reptation movements, a small amount of sand εR is displaced to neighboring

positions depending on the slope. We transport sand to the n steepest neighbors of the current cell, and

distribute the quantity εR (set to 0.1m in our simulation) to each neighbour proportionally to their steep-

ness. We empirically found that n = 2 was enough to account for the chaotic nature of this phenomenon;

adding more neighbors can lead to oscillations and visual artifacts. Vegetation also influences reptation
as it shields and retains sand from being moved by collision during bounces. We define the probability

βR of a reptation event as:

βR = 1− V(q, t)
While saltation is the fundamental transport process in sand dunes, the importance of reptation is still an

open question in geomorphology. Cooke et al. 2006 states that the importance ratio between reptation
and saltation has been found to be 1 : 3, while Nickling 1978 found that reptation might only account

for less than 4% of sand grain movements. We found the importance of reptation to be negligible as it

did not change the global dune shape and distribution, even when increasing the amount of neighbors n.

Avalanching occurs when the local slope s(p) of the sand is greater than a given threshold defined

by the repose angle: s(p) > tanα (Figure 4.14). Sand slides in the direction of the steepest slope

only, making avalanching a deterministic process as opposed to saltation and reptation. The avalanching

process participates to the formation of climbing dunes and talus on the leeward side of steep cliffs (see

Figure 4.11).

Unstable cell C
s(p)>tan

Sliding

FIGURE 4.14: Sliding.

It is a fundamental stabilization process in sand simulations and ne-

glecting it would lead to large unrealistic piles of sand. When saltation
has transported sand from one cell to another, we check stability on

both cells and trigger sand slides if necessary. We model this process

in the same way as the granular material stabilization process described

in Cordonnier et al. 2017 by checking stabilization on a per-cell basis,

propagating material to neighboring cells and triggering avalanching

events to those cells.

72

4

Chapter 4. Desertscape simulation

Vegetation prevents avalanching by retaining sand (Figure 4.13). In

our model, vegetation density changes the angle of repose threshold value: we linearly interpolate be-

tween α = 30◦ for bare sand and α = 45◦ for sand covered by vegetation (V = 1).

Parameters Existing models in geomorphology are often scale-independent, which allows them to

reproduce different phenomena occurring at different scales, such as sand dunes and sand ripples. We

investigated several studies in geomorphology to determine the parameters of the simulation. In deserts,

sand grains are lifted by the wind and then transported over short distances. By setting a time step

Δt = 10 days and a maximum saltation distance of d0 = 8m (per iteration), an entire barchan dune

moves by ≈ 25 meters in a year, which is consistent with observations made on barchan dunes (Groh

et al. 2008). Note that this parameter highly depends on the wind regime and the average sand supply

and is only valid in the context of arid deserts.

4.5.2 Bedrock abrasion

Abrasion is the erosion of bedrock by the wind, more precisely by sand hitting the surface and bouncing

off during saltation. Typical desert landforms such as yardangs and ventifacts present in the Gobi desert

are produced by the action of the wind, which carves the bedrock. In areas with low sand supply and

high wind speed, sand carried by the wind hits the bedrock, thus eroding the surface. Softer bedrock

erodes faster, which leads to the creation of characteristic landform as depicted in Figure 4.16.

Abrasion

Wind w

Saltation

FIGURE 4.15: Abrasion.

We simulate bedrock abrasion during the saltation step, where sand

moves from one cell to another with possibly multiple bounces (Fig-

ure 4.15). If a bounce occurs on a cell C with a low sand thickness value

(s(p) < 25 cm), we trigger an abrasion event for this cell. The abrasion

process transforms a small amount ε of bedrock into sand, which may

be transported by the wind in future saltation steps and may stabilize

according to the avalanching process. The eroded amount of material

ε is computed as a function of the wind speed, bedrock resistance and

vegetation density:

ε = ka (1− ρ(p)) ‖w(p)‖ (1− V(p))

Abrasion is more important as the speed of the surface wind w is high. The term (1− ρ(p)) denotes

that abrasion is less intense as the bedrock is more resistant. Vegetation dampens abrasion and acts as a

shield, protecting the bedrock surface.

Abrasion may erode up to 4 millimeters of rock per year (Cooke et al. 2006) and therefore acts on

a larger time scale than saltation and reptation. The constant ka, experimentally set to 12.5, is a user-

defined factor used to accelerate the effects of abrasion in the simulation (Δt = 125 days in the case of

abrasion). As we only approximate abrasion, we do not take into account the angle between the wind

and the surface. A more complex model taking into account the curvature or the slope of the terrain may

lead to better and more realistic results.

One notable limitation of our simulation regarding yardangs is that they often exhibit more com-

plex volumetric landforms, which cannot be modeled on a 2D layered representation of the terrain. In

Chapter 6, we show how to overcome this limitation using fully volumetric method based on implicit

surfaces. Yardangs and ventifacts are modeled using arrangements of skeletal primitives which are later

eroded using a ballistic approach (see Figure 4.17).

4.6. Amplification

4

73

9500 years

3000 years

Close-up

Close-up

FIGURE 4.16: Generated yardangs with large time steps. Abrasion shapes the bedrock layer into lines
parallel to the major wind direction during saltation, depending on the bedrock resistance (defined as a
warped noise), showing the footprint of the wind.

Yardangs

Eroded side

Smooth side

FIGURE 4.17: Volumetric yardangs generated using a ballistic approach, where volumetric spheres
progressively carved an implicit surface base model.

4.6 Amplification

Recall that we use a multi-layered representation of desert landscapes at a resolution of 1−10m per grid

cell. Smaller details such as sand ripples or sand accumulation at the base of smaller obstacles, such as

plants, cannot be simulated. Thus, there is a need for an amplification step to increase the final resolution

of the terrain and add microscale details. We procedurally generate details as a post processing step: the

final sand elevation is defined as S̃ = S+R+B where R and B denote the wind ripples and sand bumps

caused by small obstacles.

Sand ripples are smaller than dunes, with a width range of 1 − 20 cm. In our implementation, we

define the presence and shape of ripples as a function of the wind direction. We relate the ripple size

r linearly to the wind speed ‖w‖. Asymmetrical ripples profiles are observed when the wind blows

in a single direction, whereas symmetrical ripples form when the wind blows in several directions (see

Figure 4.21 right). Parallel asymmetric ripples are generated and oriented orthogonally to the wind

direction u = w⊥. We also weight the presence of ripples according to the wind shadowing effect of the

74

4

Chapter 4. Desertscape simulation

Vegetation bumps

FIGURE 4.18: Procedural sand bumps located around plants, defined as two blended point primitives.

relief of the sand dunes.

Small sand bumps that form near rocks and plants result from the collision of the wind-transported

sand and obstacles. Sand is accumulated on the windward side of obstacles, the sand relocation and wind-

ripples are diminished on the leeward side. We approximate those effects and procedurally generate sand

displacement according to the wind and sand fields w and s respectively (Figure 4.18).

4.7 Optimized implementation

The simulation has been implemented in C++ and is available at

https://github.com/aparis69/Desertscapes-Simulation

The provided code uses OpenMP for parallelization but relies on atomic operations, which are known to

be slow. While this remains interactive for scenes up to 1024 × 1024 resolution, larger domains cannot

be processed efficiently. In this section, we reformulate the sand transport algorithm to make it massively

parallel without requiring atomic operations. While we do not provide a complete GPU implementation,

the optimized version of the algorithm implemented on the CPU performs up to 4× faster than the

original implementation.

Scatter Gather

Processed
cell C

FIGURE 4.19: Comparison between the scattering and gathering models.

Grid-based simulations usually involves writing data to neighboring cells. A straightforward imple-

mentation is usually based on the scatter principle (Figure 4.19, left): when processing a given cell C,

the algorithm distributes a certain amount of material to its neighbors depending on the simulation con-

ditions. While easy to understand and simple to implement, this approach prevents an efficient parallel

implementation as multiple threads can be writing to the same cell, leading to a race condition.

Instead, the gather principle is usually preferred in a parallel context: instead of scattering to neigh-

boring cells, the algorithm checks the amount of material arriving on the current cell from its neighbors

4.7. Optimized implementation

4

75

(Figure 4.19 right). Such parallel implementation provides considerable speed-up. The following sec-

tions explain how to apply the gather principle to saltation and avalanching.

4.7.1 Saltation

Recall that saltation is the main transport process leading to the formation of sand dunes. Sand is lifted

from a cell, transported on a maximum distance ds with possibly multiple bounces in between before

deposition eventually occurs on another downwind cell.

To apply the gather principle, we must compute the amount of sand arriving on a given cell C from its

upwind neighbors. The complete neighborhood NC thus depends on the maximum saltation distance ds.

The left side of Figure 4.20 shows NC without taking into account wind regime. In practice, exploring

the complete neighborhood for every cell increases the overall complexity of the algorithm by an order

of magnitude.

௖ࣨ෩ࣨ௖Processed
Cell C

Unimodal wind Complex windComplete
neighborhood # ෩ࣨ௖ < # ௖ࣨ # ෩ࣨ௖ ≅ # ௖ࣨ

݀௦

FIGURE 4.20: Complete neighborhood of a cell NC (left), pruned neighborhood ÑC under unimodal
wind (center), and under complex wind regime (right).

The wind regime also has a crucial influence on a cell neighborhood: simplifications can be made by

pruning a large number of cells from which sand cannot be arriving, leading to a modified neighborhood

ÑC (Figure 4.20, center). This pruning is completely dependent on the wind regime. The majority of cells

can be pruned under unimodal wind, leading to #ÑC < #NC (Figure 4.20, center). Under complex wind

regime with eddies and turbulences, sand can arrive from more directions, leading to #ÑC = #NC in

the worst case scenario (see Figure 4.20 for a complex case). In practice, users tend to favour unimodal

or almost unimodal wind regime for modeling the main landforms, and only use more complex wind

regime at the end of the simulation scenario to add more diversity.

4.7.2 Avalanching and reptation

In essence, avalanching is very similar to the material stabilization described by Musgrave et al. 1989

and later by Cordonnier et al. 2017. The algorithm can be easily implemented in parallel: for a every

cell C, we need to check the amount of material arriving from its 8 direct neighbors. This stabilization

step can be performed independently after the saltation and reptation processes of the simulation.

While reptation is not the key process accounting for the formation of sand dunes, it is still interesting

to investigate its efficient parallel implementation. Reptation is heavily linked to saltation, as it is trig-

gered stochastically by a bounce during sand movements, and transports a certain amount of material to

the n lower steepest neighbors. By recording the number of bounce for every cell during a simulation

76

4

Chapter 4. Desertscape simulation

step, reptation can be simulated independently after saltation, by checking the amount of material arriv-

ing from the 8 direct neighbors of a cell. In our experiments, this refined algorithm leads to a speedup

up to a factor between 2 and 4 compared to the original implementation, depending on the wind regime.

Moreover, this scheme should allow an efficient implementation on graphics-hardware, but it is beyond

the scope of this research and is left as future work.

4.8 Results and discussion

Experiments were performed on a desktop computer equipped with Intel® Core i7, clocked at 4GHz
with 16GB of RAM. The output was streamed into Vue XStream® to produce photorealistic landscapes.

Table 4.1 reports the statistics for different landscapes shown throughout this chapter. The simulations

were performed with cells ranging from 1m to 10m in size. The yardang terrain (Figure 4.16) fea-

turing bedrock abrasion involved the computation of the wind w according to the varying bedrock at

every iteration, hence a higher iteration time. Recall that the code for the simulation is available at

https://github.com/aparis69/Desertscapes-Simulation.

Scene Figure Size Grid Step Time

Dunes 4.11 0.5× 0.5 512 0.12 36

Yardangs 4.16 1× 1 512 0.53 371

Mountain 4.1, 4.21 4× 4 1024 0.60 300

TABLE 4.1: Statistics for the scenes shown in this chapter. Terrain size (in km), grid discretization,
average time of a single simulation step (in seconds) and total time of the simulation (in seconds).

Linear dune Mega Transverse dune

FIGURE 4.21: Linear dune formed by opposite wind directions, and closeup view of a mega transverse.

Our method is the first capable of generating a variety of desert landscapes. Figures 4.11 and 4.21

show the variety of sand dunes that can be achieved. Figures 4.1, 4.16 and 4.22 show complex interac-

tions between bedrock and sand with different wind regime conditions prescribed by the user. Figure 4.24

shows several time steps of an editing session and demonstrates the capabilities of our model regarding

interactive editing and fine tuning by an experienced user.

4.8.1 Control

The user can interactively change the sand supply at any cell, as well as vegetation density during the

simulation. Wind direction, which is the key element of aeolian landscapes, can also be changed at any

time. An interactive simulation is a necessary component for authoring: dunes emerge and disappear

quickly depending on the wind regime, making interactive visual feedback necessary to allow the user to

achieve her particular intent.

4.8. Results and discussion

4

77

2 years 6 years

FIGURE 4.22: Using high speed wind regime increasing linearly over time, we are able to produce
multi-scale dunes as found in nature.

A variety of control mechanisms and the resulting landscapes are showcased in Figure 4.24. Here,

the designer modeled an arid terrain covered with a shallow layer of sand, creating barchans dunes. She

then triggered abrasion which produced yardangs, which were then covered by adding more sand to

get transverse dunes. Nabkha were created by increasing vegetation density and complex star dunes by

playing with different wind regimes.

The user may also change the elevation of the bedrock layer to create features such as falling and

climbing dunes (see Figure 4.11).

Real Synthesized

FIGURE 4.23: Comparison of real (left) and synthesized (right) barchan dunes; no user interaction was
needed to create this terrain.

4.8.2 Validation

Figure 4.23 shows a comparison between real and synthesized barchan dunes. While the generated dunes

lacks sharp ridges at their top, we succeed in capturing the overall shape and placement of the dunes.

Moreover, we are able to recreate a large number of desert features: transverse, barchan, linear, climb-

ing and star dunes, as well as yardangs produced by abrasion (Figures 4.11, 4.16, 4.21 and 4.24). This

qualitatively validates the overall coherency of our simulation. We managed to reproduce complex phe-

nomena and results are consistent with observations and numerical simulations done in geomorphology

(Werner 1995; Baas 2002; Momiji et al. 2000).

A more complete quantitative validation is difficult: current available elevation data is not accurate

enough to capture detailed desert landforms. A comparison with dense and accurate real elevations

would be an interesting research direction worth investigating.

78

4

Chapter 4. Desertscape simulation

Barchans Abrasion Transverse

Nabkha Mega Barchan Star

FIGURE 4.24: Snapshots of an interactive editing session. Starting with a bare bedrock covered by a
small amount of sand, barchans emerged because of the low sand supply and the uniform wind condi-
tions. The user then triggered abrasion which shaped yardangs parallel to the wind direction. Then,
sand was uniformly added over the entire terrain, which transformed barchans into transverse dunes.
Vegetation was later added on the right side, which yielded nabkha. Mega-barchans started to appear
after many iterations, as observed in nature. Finally, the user removed some sand to get a more uniform
sand layer, destroyed vegetation, and created large dome dunes by changing wind rose parameters.

4.8.3 Comparison with other techniques

To the best of our knowledge, our model is the first to capture such a wide variety of desert landforms.

Previously published methods either employ generic hydraulic or thermal erosion which primarily gen-

erate Alpine mountain ranges.

Previous works directly dealing with the saltation process (Onoue et al. 2000; Beneš et al. 2004)

target the specific application of sand ripples at a much lower scale. Applying a simple scaling factor to

the results would not work as the phenomena are not linear. In contrast, our approach is more general

and thus achieves a wider range of desert features. Other specific works only apply to a limited range of

ventifacts such as Goblins (Beardall et al. 2007; Jones et al. 2010) which also belong to the small scale

class of phenomena. In a sense, these works can be seen as complementary to ours, as they can be used

to amplify the generated landscapes with details.

Closer in spirit to our work is the method introduced by Cordonnier et al. 2017 that combines (hy-

draulic, thermal and lightning) terrain erosion and ecosystem simulation in a unified framework. The

presented sand transport simulation extends this work and could be seamlessly integrated to it as it also

relies on the definition of stochastic events.

4.8.4 Limitations

Our model produces dune topography and landforms similar to the ones observed in geomorphology

but does not come without limitations. First, the simulation grid is currently limited to 1024 × 1024
resolution in order to maintain acceptable computation time and to allow for simultaneous interactive

editing and control. The simulation could be accelerated by carefully implementing the algorithm on

graphics hardware using the algorithm described in Section 4.7.

4.9. Conclusion

4

79

Another limitation commonly accepted for all grid-based terrain erosion simulations is the lack of

precision. Sand dunes may have sharp features, such as crests or ridge lines, which are not captured by

the simulation even with high resolution grids. These sharp features are the result of more complex wind

processes, which we do not model. An efficient, artist-oriented solution consists of using the amplifica-

tion combined with procedural primitives in the spirit of Génevaux et al. 2015 to restore the sharpness

of the terrain. This was the essence of the amplification approach for modeling sand accumulation and

ripples (Section 4.6).

A wider range of effects observed in geomorphology could be incorporated. For instance, echo dunes

(Tsoar 1983) which form on the windward side of cliffs or escarpments, are separated from the scarp by

a sand-free region and are the product of the complex movement of wind, forming a fixed eddy between

the escarpment and the dune. Such dunes could be obtained by improving the procedural wind warping

and shadowing model with procedurally generated edits. Small scale user-controlled wind field currently

partially leverages this limitation.

4.9 Conclusion

We introduced a complete aeolian erosion and transport simulation to the field of computer graphics.

Derived from the high altitude wind is the fast approximation and computation of the surface wind, taking

into account relief shadowing at different scales, which is central to the simulation of sand transport.

In turn, saltation, reptation and avalanching processes are simulated in a consistent framework and

combined with bedrock erosion to simulate abrasion as well as vegetation shielding to create nabkha.

Our model is versatile and capable of generating all the different dune types as well as abrasion ef-

fects on the bedrock. However, obtaining a specific distribution of sand dunes from a simulation is a

challenging task, requiring many trial and errors, particularly for complex dune shapes. A direct exten-

sion to this work would be to incorporate a variety of complex wind scenarios to guide the simulation.

An even more noteworthy albeit challenging avenue of future research would be to learn the correlations

between the wind and the generated features in an inverse procedural way. Learning which parameters

of the simulation lead to some specific dunes distributions and shapes could lead to new insights on how

certain types of dunes form and evolve. We discuss such perspective in Chapter 9.

Part II

Volumetric terrains: from microscale to
macroscale

83

Abstract

Truly three-dimensional landscape features are some of the most visually arresting and memorable el-

ements of real terrains. They are formed by different physical processes (including joint fracturing,

percolation, and stratified erosion), take a variety of forms (from steep-walled canyons to underground

cave complexes), and exhibit different scales (from mineral deposits, such as stalactites less than a meter

in diameter, to sea cliffs stretching for kilometers). Existing solutions in the literature do not permit the

modeling of these varied volumetric features efficiently. Here, we propose a complete framework for

modeling, generating and authoring volumetric terrains across a range of scale (macroscale, mesoscale,

and microscale). At the heart of our method is a novel representation for representing volumetric terrains

based on implicit surfaces and a construction tree paradigm that arranges primitives to create volumetric

landforms. This representation is compact in memory, amenable to modifications by the user, and can be

used as a basis for complex simulations and procedural algorithms.

Chapter 5 provides the necessary background on implicit modeling for understanding our latter contri-

butions. We focus on analytic signed distance fields and explain how to properly extract signed distance

bound primitives and operators.

In Chapter 6, we show how to generate large-scale volumetric landforms as arrangements of skeletal

primitives positioned using various techniques, including Poisson sampling, open shape grammars and

invasion percolation processes. We show that our method allows generating volumetric features such as

canyons, arches, hoodoos from a base 2D heightfield provided as input by the user.

In Chapter 7, we investigate the generation of geologically coherent karstic networks - a set of con-

nected tunnels deep under the terrain surface - through an anisotropic shortest path algorithm and ge-

ometric graph generation. Geological conditions such as inception horizons and fracture distributions

influence the trajectory of the tunnels and allows reproducing patterns observed in real karstic networks.

The mesoscale geometry of the network is modeled using specific implicit primitives and operators that

exhibit correct mathematical properties and reproduce identified archetypes from geomorphology.

Finally, Chapter 8 explains how to model detailed volumetric block structures for amplifying a smooth

input terrain. Tiles of blocks are first generated using a greedy fracturing algorithm based on a geomor-

phological classification, and finally replicated on vertical parts of the terrain. On top of the generation

of tiles with different geological characteristics, we introduce new primitives and operators allowing for

the modeling of mesoscale and microscale features in volumetric terrains.

5

Chapter 5

Background on implicit modeling

Contents
5.1 Introduction . 86
5.2 Fundamentals and notations . 86

5.2.1 Implicit surface . 86

5.2.2 Lipschitz property . 87

5.2.3 Signed distance function . 88

5.3 Hierarchical model . 88
5.4 Skeletal primitives . 89

5.4.1 Sphere . 89

5.4.2 Box . 90

5.4.3 Segment and curve . 90

5.5 Binary operators . 91
5.5.1 Boolean operators . 91

5.5.2 Smooth Boolean operators . 92

5.6 Unary operators . 93
5.6.1 Warping . 93

5.6.2 Affine transformations . 93

5.6.3 Noise . 94

5.7 Conclusion . 94

86

5

Chapter 5. Background on implicit modeling

5.1 Introduction

Implicit surfaces are a powerful tool for modeling and animating shapes of arbitrary topology. They

provide a simple and consistent framework for geometric operations such as Boolean operations, blend-

ing, and warping. They are compact in memory and theoretically provide infinite precision. They have

been used for decades in numerous applications, including fluid animation (Stam et al. 2011; Desbrun

et al. 1995), modeling of molecular structures (Parulek et al. 2012), volumetric sculpting (Schmidt et al.
2006), and more. They recently regained popularity thanks to platforms such as ShaderToy, clay-based

modeling software (MagikaCSG, Clayxels, Adobe Substance Modeler), and for their use in machine

learning methods (Park et al. 2019; Sitzmann et al. 2020).

We distinguish between two categories of implicit surfaces: discrete representations that store the

value of the function in a regular or an adaptive grid (Frisken et al. 2000), and procedural (or ana-

lytic) models that directly encode the mathematical expression of the function from a list of primitives

organized in a construction tree (Wyvill et al. 1999). Here, we focus on analytic representations and

investigate their use for volumetric terrain modeling. As opposed to (Peytavie et al. 2009b; Becher et al.
2019), we generate a fully-implicit model of the terrain using a hierarchical structure inspired by the

Blob Tree (Wyvill et al. 1999). The compact memory aspect and expressiveness of the model are key

advantages that we leverage in the following chapters.

Note that visualizing implicit surfaces can be performed either directly using ray tracing approaches

(Kalra et al. 1989; Hart 1996) or indirectly using polygonization (Araújo et al. 2015). A complete

description and analysis of those methods is beyond the scope of this thesis and will not be detailed here.

We focus on Lipschitz techniques, which provide a consistent background for computing ray-surface

intersection and other queries that will be used throughout the next chapters.

The first part of this chapter presents a general introduction to implicit surfaces and signed distance

functions (Section 5.2). The second part introduces the hierarchical tree structure used to define the field

function (Section 5.3), along with classical primitives (Section 5.4) and operators (Section 5.5) that we

use in the context of volumetric terrain modeling.

5.2 Fundamentals and notations

In this section we recall the definition of an implicit surface and review some of their properties under

simple hypotheses that provide the implicit model with efficient tools for queries, i.e. detecting whether

a region is inside, outside or straddling the surface, which provides us with efficient adaptive algorithms

for computing the intersection between the object and a ray.

5.2.1 Implicit surface

03 pRp f,

p
n

S

S
An implicit surface S is defined as the set of points in space p = (x,y, z)
for which a function f : R3 → R satisfies f(p) = 0:

S = {p ∈ R
3|f(p) = 0}

We consider the set of points inside of S as p ∈ R
3, f(p) < 0 and outside

as p ∈ R
3, f(p) > 0 respectively. Additional queries such as the gradient

5.2. Fundamentals and notations

5

87

∇f is defined from the field function:

∇f(p) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
It may be computed in closed-form or approximated numerically. Let ε > 0, we have:

∇f(p) ≈ 1

2ε

⎛⎜⎝f(p+ εx)− f(p− εx)

f(p+ εy)− f(p− εy)

f(p+ εz)− f(p− εz)

⎞⎟⎠
Computing the approximation of the gradient can be computationally intensive, as it requires six field

function evaluations. Therefore, gradient-based operators and algorithms need to limit the number of

gradient queries to perform efficiently. A less computationally intensive approximation requires only

four field function evaluation at the cost of a less accurate approximation:

∇f(p) ≈ 1

ε

⎛⎜⎝f(p+ εx)− f(p)

f(p+ εy)− f(p)

f(p+ εz)− f(p)

⎞⎟⎠
Using the convention f(p) < 0 inside the object, the normal n of the surface at p may be derived from

the gradient as:

∀p ∈ S, n(p) = ∇̂f(p) =
∇f(p)

‖∇f(p)‖

5.2.2 Lipschitz property

A function f is said to be Lipschitz over Ω if and only if there exists a positive constant λ > 0 such that:

∀(p,q) ∈ Ω× Ω, |f(p)− f(q)| ≤ λ‖p− q‖

p
=

r SBThe Lipschitz constant of f is the minimum value satisfying this equation.

Any value overestimating it is called a Lipschitz bound. A function with a

Lipschitz constant λ is commonly called a λ-Lipschitz function.

Let B(c, r) denote the sphere of center c and radius r, the Lipschitz ex-

clusion criteria (Hart 1996) states that the intersection between the ball B and

the surface is empty, thus:

∀p ∈ R
3 B(p, |f(p)|/λ) ∩ S = ∅

Lipschitz conditions are fundamental to implicit surface processing as they provide surface exclusion

criteria (Kalra et al. 1989; Hart 1996) and monotonicity (Kalra et al. 1989), which are essential for

deriving guaranteed ray-surface intersection algorithms.

88

5

Chapter 5. Background on implicit modeling

5.2.3 Signed distance function

O

S

ܘ ∉O ܘ ∈O
݂ ܘ > 0 ݂ ܘ < 0

Signed distance functions, commonly referred to as SDF, are a subset of

implicit surfaces, where the function computes a geometric distance to the

object’s surface. Let d : R3 → R denote the positive Euclidean distance to

the surface S:

d(p) = min
q∈S

||p− q||

The signed Euclidean distance function f : R3 → R to the surface S of

an object O is defined as the positive Euclidean distance outside, negative

inside, and 0 on the surface:

f(p) =

⎧⎪⎨⎪⎩
d(p) if p /∈ O
0 if p ∈ S
−d(p) otherwise.

A signed distance bound is formally defined as a lower bound function b : R3 → R such that:

∀p ∈ R
3, |b(p)| ≤ |f(p)|

The function b always provides a lower bound to the distance to the surface, thus it can be used as a safe

marching distance for intersection algorithms, such as sphere tracing (Hart 1996). It is possible to derive

a signed distance bound from any pseudo-distance function f through the use of one of its Lipschitz

bounds λ, by using f(p)/λ as the field function. The Lipschitz constant of a C1 function f may be

defined as the upper norm of the gradient of the underlying function λ = max ||∇f ||. In some cases

where f is C2, this can be achieved by finding the roots of the second derivative of f and plugging those

roots into f ′.

Here, we aim at defining continuous 1-Lipschitz functions that are lower signed distance bounds to

the surface. We derive all Lipschitz constants in Appendix A.

5.3 Hierarchical model

Twist

Segments

Blend

Disc

Spheres

Union

FIGURE 5.1: A construction tree with primitives and operators defining a candlestick (after (Wyvill et al.

1999), see Figure 1.3 for inspiration).

We propose a hierarchical model for constructing the field function f as a signed distance field. Our

approach takes inspiration from the Blob Tree (Wyvill et al. 1999). Instead of combining compactly

supported primitives built with a falloff function combined with skeletal primitives, we aim at construct-

ing signed distance functions directly, with leaves of the tree defining a signed distance to the surface.

5.4. Skeletal primitives

5

89

A depth-first walk of such a tree is equivalent to a function evaluation for a point p. This data struc-

ture allows taking full advantage of the compact memory aspect of implicit surfaces, as it is possible to

define complex shapes with very few nodes (see Figure 5.1). As opposed to the Blob Tree, we encode

shapes as 1-Lipschitz continuous signed distance functions and adapt the operators accordingly. A simi-

lar construction tree operating with signed distance field primitive was introduced in Reiner et al. 2011,

however, few details are provided regarding the Lipschitz properties of the proposed distance functions.

5.4 Skeletal primitives

Spheres

Spheres

Sea cliff Aven

Segment

FIGURE 5.2: Skeletal primitives are useful for modeling volumetric features in virtual terrains. Segments
are useful for carving overhangs over large zones, while spheres can be used to model arches and adding
irregularities (Chapter 6).

A vast variety of skeletal primitives exist in the scope of the Blob Tree model, from simple points

or line segments (Wyvill et al. 1986), anisotropic distance primitives (Crespin et al. 1996), and curve

or volume based primitives such as cylinders, discs, cones or curves introduced in Barbier et al. 2004,

which are useful for modeling and morphing more complex skeletal models. These primitives are defined

by the signed Euclidean distance to their skeleton, thus they are 1-Lipschitz by construction. Here we

briefly review some primitives that are commonly used in our system: simple sphere and box primitives

are used to carve volumetric terrain landforms such as arches, overhangs and hoodoos (Chapter 6), while

complex curves and segments are used for modeling karstic tunnels (Chapter 7).

5.4.1 Sphere

Spheres

FIGURE 5.3: Ventifact
made with a smooth union
of spheres.

The simplest signed distance primitive is the sphere. Let c denote the center

of the sphere and r its radius, the distance function is:

f(p) = ||p− c|| − r

Spheres are often combined to create more complex shapes such as ven-

tifacts (Figure 5.3). In Chapter 6, we show how to carve overhangs and build

arches using arrangements of spheres, placed by an invasion-percolation

process (Figure 5.2).

Instead of using the Euclidean distance ‖p − c‖, it is possible to use the

Lp norm and generate a variety of shapes using f(p) = ‖p−c‖p. Recall that

the Lp norm of a vector v is defined as ‖v‖p = (|x|p + |y|p + |z|p)1/p. Let

λp denote the Lipschitz constant of the Lp norm, we define super-ellipsoid

90

5

Chapter 5. Background on implicit modeling

distance as:

f(p) = ‖p− c‖p/λp − r

Using p ≥ 2 preserves the Euclidean distance property (λp = 1), but this is no longer true for p < 2. In

this case, the Lipschitz constant is defined as λp = 31/p−1/2 (see Appendix A for demonstration).

5.4.2 Box

Boxes are essential primitives, particularly useful for defining the 1-Lipschitz signed distance function

for a heightfield within a finite domain (Figure 5.4 and Chapter 6), by using the intersection operator

(Section 5.5.1). Boxes are also used for generating complex shapes, such as Hoodoos and Goblins

(Chapter 6). Calculating the signed distance to a box skeleton can be tedious, as 9 different cases arise.

However, by exploiting planar symmetries, it is possible to define the function in a compact form. Let o
the origin, c the center of the box, h the half diagonal, we define f as:

f(p) = ||max(q,o)||+min(max(qx,qy,qz), 0) q = |p− c| − h

The definition of q involves the absolute value of the components of the vector p− c.

Box Heightfield

஺݂∩஻
Box

FIGURE 5.4: Intersection between a box and a heightfield for constructing a 1-Lipschitz continuous
signed distance function.

5.4.3 Segment and curve

Carving overhangs or creating volumetric landforms over large zones may require thousands of spheres,

which in turn may be computationally intensive and with a high memory impact. In contrast, a sin-

gle segment or curve can cover a large zone efficiently (Figure 5.2). We often use segments to model

overhangs, and more complex curves to generate arches (Figure 5.5) and karstic tunnels (Chapter 7).

Spheres

Curve

Noise

FIGURE 5.5: Arch made from a
curve and spheres.

Segments Let a and b the two endpoints of the segment, u the nor-

malized direction, and la = (p− a) · u, lb = (p− b) · u, the signed

distance is defined as:

f(p) =

⎧⎪⎨⎪⎩
||(p− a)|| if la < 0

||(p− b)|| if lb > 0

||(p− a)|| − ((p− a) · u) otherwise.

5.5. Binary operators

5

91

Curves More complex curves with a higher degree of continuity allow generating landforms on curvi-

linear trajectories. We aim at computing the minimum distance from p to a parametric curve Γ of

equation c : u ∈ [0, 1] → R
3:

d(p,Γ) = min
u∈[0,1]

‖p− c(u)‖

Finding the minimum distance is equivalent to finding u ∈ [0, 1] such that the derivative ‖p − c(u)‖ is

null, i.e. (p − c(u)) · c′(u) = 0. If c is a polynomial of degree n, then (p − c(u)) · c′(u) is of degree

2n − 1. For quadratic curves, we need to solve a cubic equation for which solutions can be computed

analytically. For cubic curves and above, we need to solve quintic, septic and polynomials of higher

degree, which can only be done using numerical techniques. One advantage of cubic curves lies in the

precise control of the trajectory, making them more intuitive for the user than quadratic curves. Thus, in

Chapter 7, we use cubic spline curves for controlling the exact path of karstic tunnels, and approximate

the trajectory using piecewise quadratic curves (Truong et al. 2020) that provide 10− 20 faster distance

computation.

5.5 Binary operators

Binary operators include Boolean (union, intersection and difference) (Wyvill et al. 1999) and smooth

Boolean operators (Barthe et al. 2001). In any case, these operators do not preserve the Euclidean

distance property: either the interior or the exterior distance is not exact, thus they represent signed

distance bounds. In the remainder of this section, we denote A and B two objects with their associated

signed distance functions a : R3 → R and b : R3 → R.

5.5.1 Boolean operators

Sharp
union

FIGURE 5.6: Union operator
for carving a karstic tunnel.

Boolean operators, i.e. union, intersection and difference, are com-

monly implemented as using min and max operations (Wyvill et al.
1999):

fA∪B = min(a, b) fA∩B = max(a, b) fA−B = max(a,−b)

Alternative techniques have been proposed, in particular in the scope

of R-Functions (Pasko et al. 1995), where the union and intersection

were originally defined as:

fA∪B = (a+ b+
√

a2 + b2)

fA∩B = (a+ b−
√

a2 + b2)

The corresponding Lipschitz constant for those R-function operators is λR = 2(λA + λB) (see Ap-

pendix A), thus in our context we would define the signed distance functions as fA∪B/λR and fA∩B/λR,

respectively. This more complex definition yields a C1 scalar field f almost everywhere in space except

on the surface of A and B, i.e. over R3 − (A ∪ B). While we could have used them for modeling and

carving terrains, those operators are more computationally intensive. Moreover, we often need to use

smooth Boolean operators that do not produce sharp edges (Figure 5.6) between geometric primitives, as

presented in the next section.

92

5

Chapter 5. Background on implicit modeling

Box Cone

݂஺෥∪஻
FIGURE 5.7: Smooth union operator between a box and a cone for modeling a hoodoo.

5.5.2 Smooth Boolean operators

In the Blob Tree model (Wyvill et al. 1999), primitives are defined as the composition of a compactly-

supported falloff function g and a distance function d: f(p) = g ◦ d(p). The resulting scalar field allows

defining blending as trivially as fA+B = a + b. However, this does not generalize to signed distance

fields, as summing the two distances does not produce the desired effect. Smooth blending between

models has been an active research field, and many operators were defined particularly for Blobs (Wyvill

et al. 1999) and R-functions (Pasko et al. 1995). Here we define smooth Boolean operations following

the definition of Pasko et al. 1995 and later extended by Barthe et al. 2001. Let r denote the control

radius, we define the smoothing function k : R× R → [0, 1] as:

k(x, y) =

{
1− |x− y|/r if |x− y|/r < 1

0 otherwise.

Following this definition, we can define the smooth union ∪̃, smooth intersection ∩̃ and smooth differ-

ence −̃ operators as:

fA˜∪B = min(a, b)− g(a, b) g(a, b) = rk(a, b)3/6

fA˜∩B = max(a, b) + g(a, b)

fA˜−B = −min(−a, b) + g(a, b)

Smooth Boolean operators are particularly useful for modeling smooth volumetric landforms (Figure 5.7),

such as hoodoos progressively carved by the action of wind and water. They also regularize the gradient

of the function, leading to a C1 continuity on the subtree (Figure 5.8). Chapters 6 and 7 use the smooth

difference operator to carve overhangs and deep karstic tunnels in the terrain. In Chapter 8, we take

advantage of the C1 continuity of the smooth intersection to define detailed mesoscale block structures.

In Appendix A, we demonstrate that these smooth operators are 1-Lipschitz.

b

a
b a=r݂஺෥∪஻

FIGURE 5.8: Smooth union between two functions a and b.

5.6. Unary operators

5

93

5.6 Unary operators

FIGURE 5.9: Twisting in the
Blob Tree (Wyvill et al. 1999)

Unary operators include space transformation, such as affine transfor-

mations or more complex warping (Barr 1984), displacement, round-

ing operators as well as replication. In the following sections, we refer

to the object as N , with fN its distance function.

5.6.1 Warping

Warping is a space deformation. It is characterized by a warping func-

tion ω : R3 → R
3 that deforms space or a region of space of the sub

tree N . As the definition of the surface is implicit, we need to define

the inverse transformation ω−1. The general definition of a warping

node is thus:

fω(p) = fN ◦ ω−1(p)

The resulting distance estimate is usually a signed distance bound to the surface. To guarantee the 1-

Lipschitz property, it is necessary to bound the gradient of the deformation ∇fω−1 , which involves the

computation of the inverse transpose of the 3× 3 Jacobian matrix J of ω−1 (Kalra et al. 1989):

∇fω(p) = (J−1)t · ∇fN ◦ ω−1(p)

The Lipschitz constant of the warping node λω−1 can then be bounded using the norm of the Jacobian

matrix and the Lipschitz constant of the underlying node λN :

λω−1 ≤ ||J|| · λN

The Jacobian matrix is difficult to compute in the general case. Compact closed-form expressions exist

for tapering, twisting and bending (Barr 1984), and have been used in practice in the Blob Tree (Fig-

ure 5.9). Global warping is computationally demanding, and difficult to control for generating details.

We prefer either sculpting volumetric terrains with primitives, or using a novel gradient warping method

to generate microscale details over the surface of the terrain (Chapter 8).

5.6.2 Affine transformations

Affine transformations are a special case of warping. They include translation, rotation, and scaling. Let

t denote a translation vector, s a scaling factor, and R a 3 × 3 rotation matrix, the field functions for

affine transformations are defined as:

fT (p) = fN ◦ (p− t) fR(p) = fN ◦R−1(p) fS(p) = s× fN ◦ (p/s)

Translations and rotations are 1-Lipschitz and thus conserve the Euclidean distance property. Defining a

1-Lipschitz function for a scaling with a factor s requires multiplying by 1/s, which is the norm of the

Jacobian matrix of transformation (Barr 1984), that can be easily expressed in this case. In Chapter 7,

we model tunnel primitives in canonical space, and position them using translations and rotations.

94

5

Chapter 5. Background on implicit modeling

5.6.3 Noise

Spheres
+ Noise

heres
Noise

Spheres

FIGURE 5.10: Noise dis-
placement.

Displacement is a common operator for adding details to an implicit surface

(Figure 5.10). Let t : R3 → R denote a fractional Brownian motion (also

referred to as turbulence), defined as a sum of scaled noise (Ebert et al.
1998), we define the field function as:

f(p) =
fN (p) + t(p)

1 + λt

In this example, it is necessary to divide by the Lipschitz constant of the

operator (1 + λt) to obtain a 1-Lipschitz function (see Appendix A for the

derivation and Lipschitz constant computation). The main limitation of this

operator is that floating parts can appear due to the turbulence evaluated at

a point p. In Chapter 6, we show how to define detailed noised-based primitives without any floating

parts, by evaluating the noise on the surface of the underlying skeleton.

5.7 Conclusion

Implicit surfaces provide a powerful framework for modeling a variety of shapes using a compact math-

ematical expression. The construction tree formalism is useful as it provides a high level paradigm for

the user, who manipulates primitives and operators intuitively. However, it is necessary to ensure that the

primitives and operators are well defined to guarantee the convergence of intersection algorithms.

We defined 1-Lipschitz continuous signed distance functions that are lower signed distance bounds

to the surface. The Lipschitz property ensures that the surface exclusion criteria is correct, and allows

for a guaranteed convergence of intersection algorithms such as sphere tracing. In the next chapters, we

introduce a fully implicit surface framework for modeling, generating, and authoring volumetric terrains

across a range of scales. We show that signed distance functions are able to represent smooth and detailed

mesoscale and microscale volumetric terrain landforms efficiently.

6

Chapter 6

Large-scale volumetric landform
generation

Contents
6.1 Introduction . 96
6.2 Overview . 97

6.2.1 Construction tree models . 97

6.2.2 Amplification workflow . 98

6.3 Geology model . 98
6.3.1 Turbulence-based primitives . 99

6.3.2 Plane primitives . 99

6.3.3 Fold and deformation operators . 100

6.3.4 Faulting operators . 100

6.4 Implicit terrain model . 101
6.4.1 Implicitization of elevation terrains . 101

6.4.2 Sculpting primitives . 102

6.4.3 Operators . 103

6.5 Landform generation . 104
6.5.1 Shallow procedural erosion . 104

6.5.2 Deep procedural erosion . 106

6.5.3 Hoodoos and Goblins . 108

6.6 Efficient polygonization . 109
6.7 Results and discussion . 111

6.7.1 Validation . 112

6.7.2 Control . 113

6.7.3 Performance . 113

6.7.4 Comparison with other techniques . 114

6.8 Conclusion . 115

96

6

Chapter 6. Large-scale volumetric landform generation

6.1 Introduction

The sheer variety of shapes and scales of volumetric landforms presents significant modeling challenges.

Despite the wide application of digital terrain in games, film, and simulation, and extensive research in

this domain, effectively representing and generating complex landforms such as caves and overhangs

remains an unsolved problem. The very reason for this is that existing techniques mostly address eleva-

tion terrains. As a consequence, steep areas, such as cliffs, are generally omitted, and overhangs simply

cannot be represented. Existing explicit representations are problematic as such structures are memory

consuming and, consequently, previous volumetric terrain approaches either address the generation of

small-scale isolated landforms (Ito et al. 2003; Beardall et al. 2007; Jones et al. 2010) or represent larger

landscapes at a limited sampling resolution (Peytavie et al. 2009b; Becher et al. 2017; Becher et al.
2019).

Arches and caves Karst NetworkStrata

Warp Local

Fault Floating islands

FIGURE 6.1: From a 2D input heightfield, we automatically generate an implicit model for representing
the terrain, which is augmented with complex volumetric landform features such as caves, overhangs,
cliffs, arches or karsts. The model can also represent scenic fictional landscapes such as floating islands,
or giant rock spires.

The presented implicit model allows the automatic enhancement of terrains with complex volumetric

landforms and generates visually appealing, although sparse, geological shapes, which are nonetheless

essential for synthesizing dramatic and scenic landscapes. Furthermore, detail can be enhanced even

where overhangs are not strictly present, such as on steep slopes and vertical sections. This is warranted

because these often represent visually prominent landmarks.

At the heart of our method are various construction trees for combining implicit primitives that indi-

vidually represent the input terrain, landform shape modifiers and geological structure, and collectively

provide a full volumetric terrain. In this we are inspired by and extend the notion of construction tree for

defining implicit surfaces, as in the Blob Tree introduced by Wyvill et al. 1999, signed distance fields

La
nd

fo
rm

 g
en

er
at

io
n

Po
ly

go
ni

za
tio

n

Im
pl

ic
iti

za
tio

n

Carve

SphereStratify

Heightfield H

Intersection

PrismImplicit
Heightfield

Geology
primitives

and operators Cr
ea

tio
n

Blend

Curve

Intersection

BoxImplicit Field

Fault

SphereWarp

Construction tree T~
Strata

Im
pl

ic
it

te
rr

ai
n

T
G

eo
lo

gy
 G

Volumetric model Textured mesh M

FIGURE 6.2: Overview of our terrain amplification: Starting from a 2D heightfield H, we first perform
an implicitization process to create an implicit terrain model T suitable for 3D augmentation. At the
same time, a model of the underlying geology G is created by the user. Next, a landform generation pro-
cess converts T into an augmented construction tree T̃ with sparse volumetric features where required.
Efficient polygonization is then used to extract a final mesh.

6.2. Overview

6

97

(Reiner et al. 2011) and feature primitives (Génevaux et al. 2015). The pipeline imports an elevation

terrain and converts it into a coherent implicit surface (using signed distance functions), identifies fea-

ture locations, and as specified by the user applies different generation algorithms, such as grammar-like

production rules or erosion processes, to sculpt and augment the terrain with overhanging landforms.

Finally, the implicit representation is efficiently polygonized using a novel locally adaptative approach

that generates a final mesh amplified with terrain features.

More precisely, the main technical contributions of this chapter include:

• A procedural model for representing the underlying geology of a terrain (Section 6.3) and guiding

the generation processes (Section 6.5) in a memory-efficient fashion.

• A coherent implicit surface-based landform construction tree (Section 6.4) that supports the com-

pact encoding of terrains with local volumetric landforms, such as arches and overhanging cliffs.

• Efficient volumetric landform generators, which analyze the characteristics of the input terrain and

assemble primitives to emulate erosion processes, such as stream or sea erosion, or incorporate

specific landforms, such as Goblins (Section 6.5).

• An efficient implicit surface polygonization algorithm (Section 6.6) adapted to the sparse amplified

terrain data-structure.

• A coherent framework that supports both procedural landforms shaping processes and interactive

editing for the creation of complex terrains.

We first give a brief overview of the method (Section 6.2), and explain both geological and terrain

models built upon specific implicit primitives and operators (Section 6.3 and Section 6.4). Then, we

show how to generate various 3D landforms using different strategies (Section 6.5), and present an

efficient space pruning method to polygonize the generated implicit surface (Section 6.6). Finally, we

present results and discuss various aspects of our system regarding performance, realism and control

(Section 6.7).

The work presented in this chapter was published in Paris et al. 2018 and Paris et al. 2019a, and

received the Replicability Stamp.

6.2 Overview

This section provides an overview of the implicit construction trees that form the basis for the geology

and implicit terrain models central to our technique. This is followed by a presentation of the workflow

for generating volumetric terrain features (see Figure 6.2).

6.2.1 Construction tree models

Two structures are central to volumetric amplification of terrains: a geological model G for compactly

encoding the stratification characteristics of the bedrock, and an implicit terrain model T , which de-

fines the surface and captures complex volumetric landforms. Both are variants of hierarchical implicit

construction trees presented in Chapter 5.

In the case of geology, leaves in the construction tree are implicit skeletal primitives that define rock

resistance for every point in space. The nodes are either binary operators combining sub-trees or unary

98

6

Chapter 6. Large-scale volumetric landform generation

operators reproducing folds and faults using various forms of warping. The geology tree defines a re-

sistance function, denoted as ρ. The geology construction tree can be interpreted as a variant of the

Blob Tree model (Wyvill et al. 1999) extended with new primitives and operators suited for representing

geological features.

In the case of the terrain, the leaves are implicit shapes hierarchically combined to create specific

geomorphological features (e.g., hoodoos, caves, and tunnels) and ultimately merged with the overall

terrain using blending, carving and warping operators. While the original publication (Paris et al. 2019a)

presents a terrain model based on the BlobTree, we define the terrain field function f as a signed distance

field model (Reiner et al. 2011) to be consistent with the following chapters.

6.2.2 Amplification workflow

The stages of the amplification process are depicted in Figure 6.2. To begin with, we automatically

convert the representation from a 2D heightfield H, provided as input, to an implicit terrain model T
(Section 6.4). In this implicitization step care is taken to ensure that the implicit surface of T accurately

embeds the surface of the initial heightfield H. This is coupled with a geology construction tree G, which

defines bedrock resistance in the form of strata and fault lines.

This combined representation (Terrain and Geology) is amenable to various 3D modifications, such as

blending and carving. Specifically, we augment T with volumetric landforms encoded as sub-trees that

are attached to and hence modify the construction tree of the terrain T . Those landforms are generated at

the most interesting locations, where rock resistance ρ(p) is low. During an authoring session, the user

can choose from a library of geology and effect archetypes defined as pre-constructed or procedurally

generated construction trees. Alternatively, they can manually edit the geology construction tree G by

locally adjusting bedrock resistance, incorporating faults and folds, or re-weighting specific local erosion

effects (see Section 6.5).

Our framework incorporates multiple levels of user-control: the geology and the parameters of the

erosive agent (such as the sea level or the stream power) can be edited, the sampling process steered, and

new features added. We also provide real-time authoring tools in the form of volumetric brushes that can

be applied directly to the terrain.

Throughout this chapter, terrains and landforms are created procedurally by building on atomic func-

tions. We rely on simplex noise functions, denoted as n : R3 → [0, 1], and combine them into a fractal

Brownian motion function t, defined as a sum of scaled simplex noise n over o octaves:

t(p) =

o∑
k=1

1

2k
n(2k p).

6.3 Geology model

In nature, landforms, such as karsts, cliffs and overhangs, are controlled not only by geomorphological

processes, but also by the structure of the underlying geology. This includes the rock type of the different

strata, and deformations, such as folds and faults. These bedrock characteristics lead to differentiated

erosion rates, which can give rise to complex formations, such as arches and hoodoos.

The geological characteristics are defined as a procedural field function ρ : R3 → [0, 1] that character-

izes the strength with which the bedrock resists erosion at any point in space. The least and most resistant

6.3. Geology model

6

99

Turbulence

Fold

Strata

Blend

Fault

Blend

Strata

Folded strata

Warped Fault

Turbulence

FIGURE 6.3: An example of the hierarchical construction of a complex geological structure. Horizontal
strata representing rock layers at different consistency are folded by warping (on the right) and this is
separated off by a fault line from a turbulence function (on the left). Blend nodes combine the subtrees.

bedrock have resistance values of 0 and 1, respectively. Depending on requirements this function may

be locally continuous (in the case of folds and warps) or discontinuous (in the case of faults).

We implement the resistance function as a hierarchical construction tree (Figure 6.3), with internal

nodes that modify or combine resistance values spatially demarcated by the leaf node primitives. We

created several specific primitives and warping operators in order to effectively model bedrock strata.

The geological construction tree is used as a guide to the generation process (Section 6.5), as landform

primitives are placed at locations with minimum resistance in the scene.

6.3.1 Turbulence-based primitives

Turbulence primitives, based on Perlin noise (Perlin et al. 1989), are often used as a basis for more

complex geology trees. Let λ0 denotes the fundamental wavelength, the resistance is then defined as a

function of elevation:

ρ(p) = t(pz/λ0).

This creates a set of horizontal strata whose resistances are defined by the turbulence function t. Fig-

ure 6.3 showcases two kinds of turbulence primitives: noise on the left and a strata obtained from a

turbulence combined with a fold on the right. These primitives are often used as a basis for more com-

plex geological settings as they define a global stratification of the scene.

6.3.2 Plane primitives

Turbulence allows us to create stratified geological features easily but lack user-control. Thus, we

introduce plane primitives, defined by the distance from a plane, which acts as a central core (Fig-

ure 6.4 [Strata]). Let d denote the signed distance to the plane, g the falloff function and λ0 the funda-

mental wavelength, then the resistance is:

ρ(p) = g ◦ d(p) + t(p/λ0).

Some scaled turbulence t is added to the potential field to approximate irregularities, such as small

fractures and joints that reduce rock durability. In most terrains, the geology tree was first created by

blending multiple planes with a turbulence primitive. As in the BlobTree, blended resistance is defined

as the sum of the resistance of the sub-trees: ρA+B = ρA + ρB

100

6

Chapter 6. Large-scale volumetric landform generation

Strata Warp Local Fault0

1

FIGURE 6.4: Different forms of geology showcased on a simple cliff terrain: simple strata combined with
noise, folds produced by a warping operator, a local increase in bedrock resistance produced by spheres,
and a fault line. Pale colors map to more resistant and darker to less resistant bedrock, respectively.
Note that we applied a small erosion to the cliff to visually differentiate the strata.

In addition, we enhance user-control with skeletal primitives (spheres and curves blended with the

construction tree) that locally modify bedrock resistance (Figure 6.4 [Local]). These are particularly use-

ful for defining more resistant spatial regions that retard erosion and form promontories, or, in contrast,

less durable regions leading to caves or arches (Section 6.5).

6.3.3 Fold and deformation operators

Folds and deformations (see Figure 6.4 [Warp]) contribute vital realism to geological strata patterns.

They are defined as warping operators ω : R
3 → R

3 that deform space. Recall that, as in implicit

modeling, the modified field function of a warped sub-tree is defined as: f̃ = f ◦ ω−1, where ω−1(p) =
p+ δ(p) and δ denotes the displacement function.

In our system, random folds are introduced using a turbulence function t : R3 → R defined as a sum

of scaled noise functions as displacement: δ(p) = t(p/λ0), with λ0 being the fundamental wavelength

of the turbulence. Another useful deformation operator is tapering, which can be applied to locally

compress strata.

6.3.4 Faulting operators

Faults are generated by introducing discontinuities in the resistance function on the boundary of a given

domain. Let ΩF ⊂ R
3 be such a domain and ωF : R3 → R

3 an associated warping function. Given an

input resistance function ρ, faults are created along the boundary of the domain ∂F by warping ρ strictly

inside ΩF :

ρF (p) =

{
ρ ◦ ω−1

F (p) if p ∈ ΩF ,
ρ(p) otherwise.

Figure 6.4[Fault] shows an example of a fault created with a planar boundary and a translational warp;

this results in a discontinuity in the resistance function, which in turn yields sheared strata.

6.4. Implicit terrain model

6

101

6.4 Implicit terrain model

The terrain model T is based on the same underlying hierarchical construction tree as the geology model.

The difference is that primitives and their subtrees portray terrain landforms, such as hoodoos (Fig-

ure 6.5), rather than strata and bedrock resistance. Crucially, the model must be amenable to the vi-

sualization of the underlying surface, e.g using ray tracing or polygonization. To fill this requirement,

we associate a signed distance function f : R3 → R with T defining the signed distance to the terrain

surface. As explained in Chapter 5, the isosurface S of the terrain is then defined as the set of points

where the field function equals 0:

S = {p ∈ R
3, f(p) = 0}.

The value of f at a point p is computed by a depth-first traversal of the construction tree with evaluation

of the signed distance at each visited node.

Cones

Plane

Spheres

Blend

Blend

Warp

FIGURE 6.5: In this example the hoodoos were created by blending several perturbed spheres and cones,
and merging with the ground.

6.4.1 Implicitization of elevation terrains

p h(p) xyz

xy

H

z

FIGURE 6.6: Vertical
distance to a height-
field.

The heightfield representation h : R2 → R is not adapted to modeling volumet-

ric landforms; consequently, transforming input elevation terrains into an im-

plicit construction tree representation is a necessary precursor to any volumet-

ric operations. The challenge is to derive a signed distance bound f : R3 → R

from H, such that the resulting function is 1-Lipschitz. The Lipschitz property

is crucial for establishing surface exclusion criteria, with applications in ray

tracing and polygonization.

Simply using the vertical distance (Figure 6.6) to the terrain f(p) = pz −
h(pxy) yields an unbounded signed distance function. To create a signed dis-

tance bound from an elevation function, we need to divide by its Lipschitz con-

stant (Chapter 5, Section 5.2.2). Let λ denote the Lipschitz constant of h, the resulting signed distance

function associated with H is defined as:

fH(p) =
pz − h(pxy)√

1 + λ2

This equations guarantees that f is 1-Lipschitz, i.e., represents a signed distance bound to the surface of

the terrain (see Appendix A.3 for a complete derivation). In practice, users may use bounded H such as

heightfield computed from real elevation data. Thus, it is necessary to ensure that the distance is properly

defined outside the domain of the elevation function. Let P denotes the enclosing prism of the H and fP

102

6

Chapter 6. Large-scale volumetric landform generation

its corresponding signed distance function, we define the terrain field function as:

fT (p) = max(fH(p), fP(p))

Using an intersection operator ensure that the field function is continuous and 1-Lipschitz everywhere in

the domain (Figure 6.7).

H P T = max(H, P)
FIGURE 6.7: By using a prism P with an associated distance function fP , we define a volumetric terrain
primitive fT from a bounded heightfield H.

6.4.2 Sculpting primitives

We aim at augmenting an implicit terrain model T with sculpting primitives to create a range of volu-

metric features, such as arches and caves. We chose sculpting primitives as a subset of skeletal primitives

controlled by a geometric skeleton S and a radius r controlling the thickness. They are defined using

the Euclidean distance d(p,S) to the skeleton S , which makes their field function a well defined signed

distance function.

Smooth
union

Spheres

Terrain

CurvesSpheres

Smooth
difference

Smooth
union

FIGURE 6.8: We use spheres combined with the terrain using a union operator to create arches. Over-
hangs and karstic tunnels are created by using a difference operators.

Spheres and extrusion curves are helpful for delineating linear features, such as stratification and

overhangs made by erosion, but also for creating arches and deep karst structures, as described in Sec-

tion 6.5. One limitation of basing primitives on Euclidean distance is that it leads to smooth rounded

shapes, which do not match the irregularities inherent in rocky surfaces. There is thus a need for suit-

ably perturbed skeletal primitives. However, simply adding noise to f (i.e., placing a noise node at the

root of the construction tree) often introduces unwanted holes and disconnected surface components, and

removing such artefacts is computationally expensive (Gamito et al. 2008).

6.5. Landform generation

6

103

Vertex skeleton Curve skeletont ∘ c(p)ߨ p

r r
p
t(p)ߨ ∘ (p)ߨ

s(p)ߨ(p)
FIGURE 6.9: Skeletal primitives with anisotropic star-shaped noise displacement for point c and curve
Γ skeletons.

Rather, in the spirit of Crespin et al. 1996, we convert Euclidean distance into an anisotropic metric

by deforming the area of influence parameter r with a turbulence t(p). Let s : R3 → R
3 denote the

projection of p onto an arbitrary skeleton. We compute the normalized projection direction u(p):

u(p) =
p− s(p)

‖p− s(p)‖ .

The projection π(p) of p onto the boundary of the primitive is then defined as: π(p) = s(p) + r u(p).
Finally, the modified anisotropic distance to the skeleton is:

d̃(p) =
‖p− s(p)‖
r + t ◦ π(p) .

This method can be used to perturb the shape of any skeleton without artefacts, as illustrated in Figure 6.9

for the case of point-based and curve-based anisotropic star-shaped primitives. A 1-Lipschitz signed

distance bound can also be defined for these primitives (see Appendix A.6).

6.4.3 Operators

Operators are internal nodes that combine sub-trees and include Boolean and so called smooth Boolean

operators (Chapter 5, Section 5.3) to combine the landform construction trees with the base terrain.

Union, intersection and difference are helpful for creating sharp transitions between landforms, such as

the different strata of a Hoodoo. Smooth Boolean operators create rounded edges and are adapted for

creating a more gentle transition between landforms and the terrain, giving a more natural aspect to the

result. They are useful for carving deep overhangs on cliffs, and extending the terrain with arches.

While warping is a general useful tool in implicit modeling, we found carving volumetric landforms

using arrangements of thousands of skeletal primitives to be more efficient. Recall that a warping opera-

tor is defined over a subtree f as f̃(p) = f ◦ ω−1(p) with ω−1 : R3 → R
3. Applying a global warping

to the terrain may be computationally expensive. Furthermore, defining a signed distance bound for such

operator involves the derivation of the warping function, which may not be trivial to compute. Thus,

warping nodes may be more useful when used on a small sub region of space. Chapter 8 shows how to

define a local warping operator for adding microscale details to the surface of the terrain.

104

6

Chapter 6. Large-scale volumetric landform generation

Amplified Terrain

La
nd

fo
rm

 g
en

er
at

io
n

Ef
fe

ct
s

e(
(p

),
(p

))

Heightfield H

Geology G St
re

ss
 a

nd
 re

si
st

an
ce

Stress

Resistance

FIGURE 6.10: An overview of our landforms generation pipeline.

6.5 Landform generation

Volumetric landforms are the result of complex erosion processes involving the shape of the terrain, its

geology, and the action of environmental erosive agents. Simulating those phenomena would be com-

putationally intensive and would prevent interactive control. We thus avoid physically-based simulation

and instead propose a phenomenological approach that augments a 2D input terrain with 3D landforms

by using controllable and efficient procedural techniques.

Generally, landforms generation algorithms proceed in two phases (Figure 6.10). First, given an

input elevation terrain H and user-defined geology G, we compute the intensity of the erosion over the

terrain (as factors for stress and resistance) by taking into account terrain shape, geological structure and

environment conditions. Second, we generate a construction tree T̃ for the different features. Erosion

processes spawn spheres that are used to carve the terrain using difference operators. In contrast, Hoodoo

and Goblin generation accretes spheres and cones in an additive growth process using a union operator.

This method is capable of generating a variety of landforms, including as sea cliffs produced by

coastal erosion, overhangs caused by river stream erosion, or caves carved by water flowing into porous

rock.

6.5.1 Shallow procedural erosion

Shallow procedural erosion encompasses erosion processes that impact the terrain to a limited depth.

This is the case for sea and stream erosion that produce small overhangs and carved channels in the

bedrock. Following the general template for landform generation, we proceed in two steps: we first per-

form a Poisson-Sphere sampling in the erosion region to generate a set of points {pk}.

1

1

e()

0

FIGURE 6.12: Bilin-
ear interpolation ac-
cording to resistance ρ
and effect stress σ.

Then, at every point pk, we locate spheres derived from the erosion intensity at

that location e(pk).

The user may specify the bounds on the erosion region through bounding

volumes or an altitude range. The effect intensity e at a point is determined

by the geology G, the shape of the terrain H, and the erosion action. More

precisely, we define a parameterized function e : [0, 1]2 → [0, 1] that computes

erosion according to the resistance of the rock ρ and the effect stress σ (such as

sea elevation range, shown in Figure 6.10). We chose to define e as a bi-linear

interpolation of these quantities:

e(ρ, σ) = σ(1− ρ)(1− β) + σβ.

6.5. Landform generation

6

105

Cliffs Arches and caves OverhangsHeightfield

Effects

FIGURE 6.11: An example of sea cliffs produced by our system. Starting from an input synthetic 2D
heightfield and geology with horizontal strata, we incrementally applied 3 steps of sea erosion. Sea
action was limited to an 8-meter range either side of average sea level, leading to strong overhangs at
the base of the cliff. Less durable rock area was specified in the geology model, which automatically
generated the arch and sea cave. The effects inset shows the repartition of volumetric features on the
terrain from a top view perspective.

This obeys the constraint that e(ρ, 0) = 0, namely that there can be no erosion effect without the

rock being under stress. The parameter β controls the erosion intensity for the case where erosion is at

a maximum and the material is highly resistant, i.e., e(1, 1) = β. This accords with the intuition that

erosion will be stronger for less durable rock under high stress, whereas areas with little stress will not

be eroded at all.

The radius of spheres is proportional to the erosion energy computed as e(ρ(pk), σ(pk)). Note that

we discard samples with energy below a user-defined threshold, since the associated primitives would

have negligible influence.

(z)

z

0 1

Less
durable

Erosion primitivesResistance

(z)

z

0 1
Sea Erosion

No erosion Erosion
e((p), (p))z

p

FIGURE 6.13: Sea erosion impact e combines geology resistance ρ, sea erosion stress σ and accessibility
(not illustrated). Spheres are seeded over the surface with a radius derived from e(ρ(p), σ(pz)).

Sea cliffs and arches are formed by the erosive action of the sea on coastal geology (refer to Fig-

ure 6.11). Sample points pk are generated on the initial terrain around sea level (Figure 6.13). The

stress of sea waves is approximated by combining a falloff distance from sea level w with local coastal

accessibility α, as defined by Miller 1994:

σ(p) = w(p)α(p).

River canyons and gorges are the result of the erosive action of strong rivers in narrow confines, which

often creates scenic overhangs. One option for computing water impact is to run a fluid simulation on

the terrain and record the energy with which particles impact the canyon walls. This is a computationally

costly prospect, so we approximate this flow impact by computing the stream power of the heightfield

H (Cordonnier et al. 2016). Let A(p) denote the upstream area of a point p and s(p) the average slope,

106

6

Chapter 6. Large-scale volumetric landform generation

then:

σ(p) = A1/2(p) s(p)

Our implementation uses the multiple flow model of Freeman 1991 to calculate drainage area in a manner

that accounts for possibly divergent flow. Note that we apply a depression-filling algorithm (Barnes et
al. 2014) beforehand to circumvent the possibility of local sinks in H. We finally identify the riverbed

region as the points on the terrain whose σ is greater than a user-prescribed threshold. We also use a small

convolution to extend the influence of the riverbed to the banks, to account for the impact of flooding.

The erosion effect is again computed as e(ρ(p), σ(p)). Figure 6.14 shows a comparison between an

original 2D terrain and the result of the amplification process.

HeightfieldH Terrain T

FIGURE 6.14: A comparison between raw data (with a resolution of 1m per pixel) of The Mystery
Canyon in the Zion National Park, Utah, and the outcome of the amplification process. Volumetric
features occupy 20% of the terrain’s surface area.

6.5.2 Deep procedural erosion

Karst topography leads to caves and sinkholes through the dissolution of soluble rock, such as limestone

and gypsum. Below ground they encompass complex drainage systems and networks with underground

rivers and caves. On the surface, they are characterized by sinkholes and resurgence points.

We propose an original method for generating karsts, taking inspiration from the invasion percolation
simulation (Wilkinson et al. 1983). This is a simplified physical model that simulates the pore-by-pore

advancement of a fluid in a porous material when the flow is slow enough that viscosity effects can be

6.5. Landform generation

6

107

Low resistances = 0 s = 48 s = 97 s = 176

High resistance

FIGURE 6.15: Four steps in the generation of a cave system using a modified Invasion-Percolation
algorithm. Starting from three sinks in the 2D heightfield, invasion percolation progressively carves the
subsurface of the terrain by following the least resistant layers of bedrock. Poisson Sphere sampling
allows the creation of multiple tunnels.

neglected. Starting from a set of initial seed points, the algorithm updates a queue Q of candidates or-

dered by decreasing material resistance, and progressively advances in the direction of the least resistant

material, adding new candidates to the queue as the fluid percolates into the material.

Particle selection PropagationErosion

Q ={p ,p ,p } e((p), p)

p
Least

resistant p
p

Q ={p , p ,p ,p }0 1 2

p0 p2 1 0
2

p1 p2 p3
p4

p0

0 2 3 41 1

FIGURE 6.16: Overview of the modified invasion percolation algorithm: after selecting the candidate
point with least resistance ρ, the terrain is carved by generating with a sphere, and new candidate points
are added to the queue.

First, the queue of candidate points Q is initialized with the sinkholes of the input terrain. They can

be found automatically by computing the sinks, also referred to as the pits (Barnes et al. 2014), of the

drainage area, i.e. the cells in the grid for which all neighbours have a higher elevation. The user may

also freely add additional resurgence points or sinks in order to adjust the generated landforms.

While the queue Q has candidate points whose resistance is below a user-defined threshold, we per-

form the following steps (Figure 6.16): 1) Find the point pk in Q with the least resistance ρ(pk) and

remove it from Q; 2) Locally carve the bedrock with spheres; 3) Propagate percolation by finding new

points in the lower hemisphere at pk and add them to Q. These steps are repeated until Q is empty.

In the original invasion percolation algorithm, step 1) is deterministic, always de-queuing the point

with the least resistance. In our implementation, we slightly perturb the resistance by a random factor,

whose range ε is controlled by the user. We set ε ≈ 0.1 to allow for more randomness in the selection of

candidates, and, consequently, in the shape of the generated networks. The second step carves the terrain

only if the rock is sufficiently soft, specifically where ρ(pk) < ρ0, with ρ0 as a user-defined threshold.

We modify the radius of the primitive according to the erosion effect, taking into account the stress

and rock resistance e(ρ, σ) (see Section 6.5.1). The third step generates new erosion directions. Since

we approximate water infiltrating porous stone, we sample a set of random directions on an inverted

hemisphere to account for the fact that water flows downwards due to gravity. New samples are added to

the queue Q only if their Poisson sphere does not intersect other candidates in the queue.

Our experiments demonstrate that tunnels extend organically and consistently with the geology of the

terrain. Figure 6.15 illustrates this phenomenon: we used a set of parallel horizontal strata with some

turbulence to produce layered and connected tunnel structures. Figure 6.17 shows an example where

108

6

Chapter 6. Large-scale volumetric landform generation

Heightfield

Effects

FIGURE 6.17: This example showcases a complex topography with sinkholes, tunnels and caves formed
by our invasion percolation algorithm. The portion of terrain extends over 5.2 × 5.2km and the un-
derground network of tunnels covers 2% of the surface. 165 773 spheres were generated to create the
caves.

sinks were computed automatically on the plateau, leading to a complex set of tunnels emerging on the

cliff. While the generated networks conform to the geology of the terrain, important phenomena such

as fractures and inception horizons are currently neglected. Furthermore, user-control is only indirect

through the use of the geology tree (Section 6.3) and the placement of sink points. Chapter 7 shows how

to solve these limitations by generating karstic networks through an anisotropic shortest path method,

with a cost function built as a sum of multiple terms, each taking into account a different geological

parameter.

6.5.3 Hoodoos and Goblins

FIGURE 6.18: Examples of Hoodoos generated with different symbols and production rules.

Hoodoos are tall spires of rock that protrude from the base of arid basins and broken land. Their

height varies from a few meters to more than 40 meters and their formation is the result of both frost

wedging and rain.

A well-known location for Hoodoos is the Bryce Canyon National Park, but they can be found else-

where as well. Creating such features using a physically-based approach would require an unreasonable

number of erosion iterations. Therefore, we propose a procedural approach based on an open grammar

method, inspired by the grammars introduced in plant modeling (Měch et al. 1996). The two-step al-

gorithm is as follows: 1) We compute the probabilistic location of Hoodoos according to drainage area,

average slope and a prescribed user-mask; 2) We generate vertical Hoodoo shapes with an open gram-

mar, whose parameters are driven by the geology. The rules are based on the bedrock resistance function

ρ: less durable bedrock will produce shapes differently to more durable bedrock. Figure 6.18 shows

different types of Hoodoos produced by grammar rules.

6.6. Efficient polygonization

6

109

FIGURE 6.19: A more complex landscape constructed with multiple Hoodoo blocks.

A(p, s) B (p, s)
B(p, s) b(p, s) B(p + s z, s)
B(p, s) b(p, s) C(p + s z, s)
C(p, s) c(p, s) B(p + s z, s)
C(p, s) c(p, s)
C(p, s) d(p, s)

Box d Block b

Cone c

1
p (g(p))
1 p (g(p))
½ p (g(p))
½ p (g(p))
1 p (g(p))

Terminal SymbolsProduction rules Probabilities

B
C

C
C

B

FIGURE 6.20: Simplified production rules used in our open parameterized grammar to generate
Hoodoos and Goblins. We represent non-terminal symbols with capital letters and their correspond-
ing terminals in lowercase; A denotes the axiom of the grammar.

The probability of Hoodoo growth is computed according to the drainage area A and the local slope

s. Hoodoos are most likely to appear on talus or cliffs, which are characterized by a medium slope

and low drainage area. We compute the probability of Hoodoo growth by combining these criteria and

then perform Poisson-disk sampling to generate starting positions, which will be fed as axioms to the

grammar. Hoodoos are created by assembling multiple terminal symbols using an open parameterized

grammar method (see Figure 6.20). Our production rules are driven by the underlying geology, which

impacts not only the probability but also the parameters of terminal symbols. We adapt the symbol size

to the bedrock resistance ρ(p). All the production rules start from an axiom A. We also add rotations to

symbols to add variety to the generated shapes. Figure 6.19 shows a more complex terrain composed of

multiple Hoodoo blocks.

6.6 Efficient polygonization

Terrains are defined as implicit surfaces generated by evaluating a construction tree T . Although implicit

surface visualization can be achieved both directly using ray tracing, typically with interval arithmetic

(Mitchell 1990) or Lipschitz (Kalra et al. 1989; Hart 1996) techniques, and indirectly by first extracting

a mesh (Wyvill et al. 1986; Lorensen et al. 1987), doing so efficiently for highly-detailed terrains is

challenging. Fortunately, in the case of an amplified terrain the volumetric carving and sculpting elements

are bounded in extent and generally located on or below the input elevation terrain. This allows potential

field queries f(p) used for ray tracing and mesh extraction to be restricted to a spatial band, thereby

reducing the number of field function evaluations.

In our case, construction trees consist of thousands of complex skeletal primitives (Table 6.1). This

makes ray tracing techniques less convenient than polygonization in the context of interactive editing,

which is one advantage of our method. Therefore, we focus on polygonization techniques in this section.

110

6

Chapter 6. Large-scale volumetric landform generation

Effective GridExtended bounds z~Bounds z
FIGURE 6.21: A side-view summary of our polygonization algorithm: (1) We compute altitude bounds z̄
for each grid vertex by querying the construction tree; (2) these bounds are dilated to ensure continuity
in the output mesh, leading to extended bounds z̃, thereby (3) defining a minimal zone for cube traversal.

Note that while we frame subsequent presentation of our acceleration in terms of mesh extraction, the

benefits also apply to ray casting where empty space skipping can be exploited (Kruger et al. 2003). The

goal is to extract a C0 surface from the implicit construction tree, and take advantage of the localized

aspect of volumetric features.

It is useful to define a measure for the proportion of the domain occupied by volumetric features. Let

n(p) denote the number of primitives whose vertical projection onto the ground plane encompasses the

point p ∈ R
2. If the elevation has not been carved or sculpted and is determined solely by a heightfield

primitive then n(p) = 1, otherwise n(p) > 1. The ratio of 3D coverage with respect to the domain is

then defined as: a = Ã/A, where Ã denotes the area where n(p) > 1 and A is the domain area. As

Table 6.1 indicates for more extensive scenes (such as in Figures 6.11 and 6.17) this proportion tends to

be small.

The original Marching Cubes algorithm is a continuation method (Wyvill et al. 1986) that extracts

a mesh M from an implicit function f for values f(p) = T . In our case, this would entail, given an

input box B and a virtual grid G, querying the field function at every vertex pijk to extract the correct

triangle configuration for cells in the grid. Fortunately, we can optimize surface extraction by leveraging

the characteristics of the implicit construction tree in two ways:

1. Surface Bounds. We establish relatively tight bounds on the range of possible elevations and only

process cubes, and hence query the field function f(p), within this range.

2. Direct Elevation Extraction. In regions unaffected by carving or sculpting (where n(p) = 1) we

derive vertex positions directly from the elevation function and avoid costly bisection search for

f(p) = T .

Surface bounds. We prune the grid G to reduce the set of grid cells that require processing. Let

[aij , bij] denote an inclusive integer range representing the lower and upper elevation bounds for a given

2D vertex pij in the grid. To obtain these bounds we perform the following steps (see Figure 6.21):

1. The construction tree is queried to return elevation bounds z̄ = [aij , bij] for each vertex pij . This

requires the definition of an R
2 → Z

2 bounds function z̄ij = B(pij) that, for a given position,

walks the tree to evaluate bounds on primitives and combine them using internal operators. For

volumetric primitives, such as points and spheres, minimum and maximum altitude is based on

the associated bounding box. For a heightfield primitive h a unique elevation h(pij) is returned

leading to equal upper and lower bounds after conversion in grid space: aij = bij . Next, binary

operators such as carving or blending return the union of the bounds of their children z1 and z2:

z̄ij = ∪(z̄1, z̄2).

6.7. Results and discussion

6

111

2. To ensure C0 continuity in the final mesh, we perform a dilatation of z̄ in the 1-ring neighborhood

of each pij , leading to extended integer bounds z̃. Let Vij denote the 1-ring neighborhood of

pij , then the dilated bound is: z̃ij = ∪(x,y)∈Vij
z̄xy. Intuitively, the dilated bound at a grid vertex

represents the largest elevation range shared between itself and its neighbours.

The algorithm traverses (and selects triangle configurations for) the reduced subset of cells within the

bounds specified by z̃. This leads to a speedup up to 12, depending on the proportion of volumetric

features in the scene. Results and timings are reported in Table 6.1.

Direct elevation extraction. The intersection of a grid cell edge and the terrain surface is typically

computed using bisection or Newton-Rhapson root finding, with repeated calls to the field function f . In

2D regions, there is no need for such iterative approaches since the elevation can be directly computed as

h(pij). Therefore, we approximate vertices using linear interpolation, which provides sufficient accuracy

and results in a speedup ranging from 1.5 to 2.5. Table 6.1 reports statistics regarding visualization.

Particularly, it shows the considerable reduction in the computationally demanding field function calls

(#C vs. #C0) and consequent acceleration by up to a factor of 12 (t vs. t0).

The optimized version benefits from the localization of volumetric features. Thus the more widespread

the volumetric features are, the less comparatively efficient our approach becomes. This can be observed

in the Benagil scene (Figure 6.25), where the ratio a is atypically high and the speedup is only 1.8.

Thus, the improved version is most efficient in the context of realistic terrains with localized volumetric

features.

Arch Canyon GoblinsSea cliffs

FIGURE 6.22: Landforms generated on small terrains (500 × 500m2): a coastal cliff with three sea
erosion steps applied (left), a large arch forming a bridge (center-left), a canyon where river erosion has
sculpted deep overhangs (center-right) and Goblins placed along the banks of a river (right).

6.7 Results and discussion

We implemented our system in C++. Experiments were performed on a desktop computer equipped with

Intel® Core i7, clocked at 4GHz with 16GB of RAM, and an NVidia GTX 970 graphics card. The output

was streamed into Vue Xstream® to produce photorealistic landscapes with local volumetric features

(Figures 6.1, 6.11, 6.14, 6.17, 6.23, 6.24, 6.25). Figures 6.11 and 6.8 show coastal cliffs procedurally

eroded by sea, as well as complex features such as arches and caves created by interactive editing. The

code for generating the results is available at:

https://github.com/aparis69/Implicit-Volumetric-Terrains

Figures 6.17 and 6.15 depict procedural invasion-percolation simulations leading to the evolution of

caves and tunnels deep below the surface. Figure 6.19 and 6.20 show Hoodoos created with an open

shape grammar based on the geology G. Finally, Figure 6.23 demonstrates the capability of our frame-

work in creating and authoring fantastical terrains.

112

6

Chapter 6. Large-scale volumetric landform generation

FIGURE 6.23: The floating islands were created by combining implicitized heightfields; an erosion
operator was then added to the construction tree to produce a precise stratification, and we finally carved
some tunnels and caves into the bedrock of one island by applying the Invasion-Percolation algorithm.
Individual islands are between 300m and 600m wide and were placed manually in the scene, for a total
of 6mb in memory.

6.7.1 Validation

Validation is a challenging issue for procedural methods. Real terrain data, with overhangs, cliffs, arches

and karsts, are not readily available, making comparison difficult. Instead, we have included photo-

graphic images of real phenomena as a basis of comparison. It is difficult to quantify how closely results

match corresponding effects in nature and so we rely on visual inspection.

Figure 6.24 shows a side-by-side comparison between a real karst and a volumetric model, synthesized

with our method. The modified invasion percolation algorithm generates a network of caves and tunnels

that have a similar overall structure and appearance. Figure 6.25 illustrates another example in which the

user interactively sculpted a cave, inspired by a photograph of the Benagil Cave in Portugal. It required

10 minutes for an experienced user to author the scene from start to finish.

Pierced ground

Eroded cliff

FIGURE 6.24: A comparison between real (left) and synthetic karsts (right). From an initial 2D height-
field, we simulate water infiltrating soft strata and eroding the bedrock. In this example, the initial points
for invasion percolation were distributed on the cliff faces and in depressions on the plateau. Source
photographs available in Appendix B.

6.7. Results and discussion

6

113

6.7.2 Control

We tried to provide mechanisms for user-control over landform generation. First, a user can define the

regions to be amplified with erosion effects or landforms, by either directly painting a control region

onto the 2D input terrain or by marking out a spatial volume. Effects can also be fine-tuned by changing

their generative parameters. In contrast with most simulation-based methods, these parameters have a

direct and intuitive physical interpretation (for example, the height and base radius of the Hoodoos or the

maximum depth of sea erosion).

FIGURE 6.25: Comparison between a real (left) and synthetic cave (right) in Benagil, Portugal. The
terrain was made by an experienced user in less than 10 minutes using skeletal brushes (spheres and
curves) as sculpting tools. Source photograph available in Appendix B.

Interactive editing is also supported. A user can directly and interactively sculpt the terrain with

extruding or intruding skeletal primitives, or apply more complex brushes to form procedural arches and

caves (see accompanying video). Table 6.1 reports the number of editing clicks #E required to produce

the different figures: Figures 6.11 and 6.17 were edited in less than five minutes and after multiple

procedural erosion steps (Section 6.5). The user then placed spheres to better sculpt the arches and the

caves. Figures 6.14 and 6.19 were fully procedural. Figure 6.25 was entirely authored by an experienced

user who interactively hollowed out the cave and sculpted the arches with spheres and extrusion curves

to match the reference picture; the scene was completed in approximately 10 minutes. A key benefit of

our framework is that the implicit terrain model offers a single consistent global scene structure. The

user can seamlessly switch between manual authoring and procedural algorithms over as many cycles of

iterative refinement as required. Interactive visualization during editing is made possible by delimiting

the shaping tools and only repolygonizing over modified parts of the terrain.

6.7.3 Performance

Table 6.1 reports the following statistics for the landscapes portrayed in our results: the extent of the

input terrain (in [km2]), the number of construction tree nodes produced by volumetric augmentation,

the amount of memory required, the time required to generate the construction tree (which excludes

subsequent polygonization). We also report the amount of memory needed to model the same terrains

using the Arches model (Peytavie et al. 2009b).

Speed The amplification methods generate the construction tree representing complex landforms at a

precision of ≈ 1m in less than 7 seconds for terrains that extend over 5km2. Performance could be

improved by using the GPU, but it is beyond the scope of this work and is left as future work. Note that

such procedural methods are more time consuming when applied globally as opposed to locally during

an editing session, where effects are restricted to a smaller domain to ensure interactivity.

114

6

Chapter 6. Large-scale volumetric landform generation

Scene Size a #N TG #E Memory Meshing

Ours Arches Grid t t0 #C #C0
Sea (6.11) 6.02 0.01 51k 5.5 156 3.0 300 20002 × 33 13.3 91.5 9 210

Karst (6.17) 5.22 0.02 166k 6.2 43 9.9 140 15202 × 447 14.2 188.4 14 1000

Canyon (6.14) 1.12 0.20 137k 6.8 0 9.3 110 10002 × 546 32.6 159.0 30 569

Hoodoo (6.19) 0.352 0.05 56k 2.1 0 5.5 10.2 6502 × 245 2.9 15.8 4 111

Benagil (6.25) 0.42 0.35 13k - 551 1.3 2.1 5502 × 87 2.7 3.9 8 20

TABLE 6.1: Statistics for different amplified terrains: size [km2], percentage of 2D to 3D surface area
a, number of nodes in the construction tree #N in thousands, generation time TG [s], editing click
count done by the user #E , memory footprint of the construction tree excluding the base heightfield
[Mb], memory consumption [Mb] using the model of (Peytavie et al. 2009b), meshing grid resolution,
optimized and standard polygonization time t [s] and t0 [s], number of calls to f with our optimized
algorithm #C and with the standard algorithm #C0 (in millions). Benagil was entirely authored by an
experienced user using skeletal brushes in less than 10 minutes and therefore has no generation time.

Memory The hierarchical implicit construction tree is space efficient in modeling volumetric land-

forms. One important aspect of our approach is that primitives are only located where required. Thus,

most terrains have a low occupancy ratio a compared to their extent. Exceptions are the Zion Canyon

(Figure 6.14), which exhibits extensive overhangs resulting from hydraulic erosion, and the Benagil Cave

(Figure 6.25), which is a small scene dominated by a sea cave. The implicit representation and the use of

skeletal primitives enables us to represent local volumetric features with minimal information in memory.

To achieve the results depicted in Table 6.1 we developed an instancing system that effectively halves

the memory cost by avoiding replication of primitives.

Control We integrate user-control and authoring across multiple stages of the pipeline. Folds, faults

and different geological strata can be specified easily. The procedural generation algorithms are parame-

terized with a limited set of intuitive parameters. The user can also directly sculpt landforms by merging

the terrain with primitives or even subtrees. Moreover, we efficiently combine procedural generation and

authoring in a unified and coherent framework. This bridges the gap between editing and procedural

generation, and supports iterative cycles of interactive refinement.

Extensibility The presented hierarchical implicit construction tree embeds heightfield representations

at an extremely reduced cost, and allows us to augment elevation terrains with a wide range of volumetric

landforms. This extensibility is depicted in Figure 6.22, which shows the outcomes of a variety of

processes. As we shall see in Chapter 7 and 8, the implicit model can be extended with new primitives

and operators for representing mesoscale and microscale volumetric features. We also think that the

model is suited to physical simulation, but testing this is left as future work.

6.7.4 Comparison with other techniques

Our primitive-based implicit model allows the generation of a wide variety of landforms with a low

memory footprint. Such compactness is in contrast to other volumetric terrain models, such as Arches

(Peytavie et al. 2009b), which rely on voxels or material stacks. Table 6.1 compares the overall memory

footprint for several terrains and demonstrates that our method uses two orders of magnitude less memory

than material stacks, at the same precision. There are two main reasons for this: first, the hierarchical

6.8. Conclusion

6

115

construction tree is a parsimonious vector-based representation that generates at appropriate locations

the specific primitives required by a landform, and, second, we only rely on volumetric primitives where

needed, and resort to more memory efficient implicitized heightfield representations elsewhere.

6.8 Conclusion

We have introduced a novel method for augmenting heightfields with landforms, such as sea cliffs,

canyons with overhangs, network of caves and tunnels, Hoodoos and Goblins, and even floating islands,

which are essential scenic elements in synthetic environments. The compact hierarchical primitive-based

implicit representation captures 3D features over large terrains up to 5 km2 in extent with a memory

footprint of at most a few megabytes. Our system integrates user-control and authoring at different stages

of the pipeline, from definition of the different strata, folds and faults of the geology, to direct sculpting

of features. Crucially, the transition between editing and simulation is seamless, which supports iterative

cycles of interactive refinement.

One limitation of our system is the limited amount of user-control. While sculpting precise landforms

using skeletal brushes is incredibly efficient for the user, modeling large-scale structured landforms

such as cave networks using invasion percolation can be rather difficult to control. In Chapter 7, we

investigate the generation of realistic karstic networks with an emphasis on control and influence of

geological settings, thus solving some limitations of the method presented in this chapter.

We investigated the generation of smooth volumetric features. Detailed mesoscale and microscale scale

features, such as cracks in granite or thin seams of limestone, currently require seeding thousands of

sphere primitives using dedicated algorithms, with a concomitant increase in both memory and compu-

tation. Chapter 8 introduces a new method for generating such detailed structures in volumetric terrains

by introducing new implicit primitives and operators suited for this task.

7

Chapter 7

Synthesizing geologically-coherent karstic
networks

Contents
7.1 Introduction . 118
7.2 Geomorphology background . 119
7.3 Overview . 120
7.4 Tunnel path computation . 121

7.4.1 Sampling . 122

7.4.2 Geology-based cost functions . 123

7.5 Network generation . 125
7.5.1 Large-scale network . 125

7.5.2 Network amplification . 126

7.5.3 Classification strategy and parameter computation 127

7.6 Implicit cave modeling . 128
7.6.1 Mesoscale geometry of tunnels . 129

7.6.2 Volumetric terrain decoration . 131

7.7 Results . 132
7.7.1 Performance . 132

7.7.2 Control . 133

7.7.3 Comparison with real karstic networks . 134

7.7.4 Comparison with other techniques . 134

7.7.5 Limitations . 135

7.8 Conclusion . 135

118

7

Chapter 7. Synthesizing geologically-coherent karstic networks

7.1 Introduction

Karstic systems are underground networks composed of conduits and caves that have grown by the

dissolution of the host bedrock, generally limestone. They are characterized by complex underground

networks made of a variety of tunnels and breakout chambers with stalagmites and stalactites. Although

karstic landscapes cover around 12% of the planet’s continental surface (Hartmann et al. 2014), mod-

eling cave networks has not received much attention from the Computer Graphics community. Their

volumetric nature, combined with the winding paths of the network and complex geometry of the con-

duits make it a challenging problem. Recent volumetric modeling techniques (Peytavie et al. 2009b;

Becher et al. 2019) are not suited for large-scale karstic networks consistent with geological information

such as inception features or permeability.

Karstic
networks

z

TunnelShaft cave

FIGURE 7.1: Given an input relief, geological characteristics, and user-defined key points, we generate
complex karstic networks and the corresponding detailed geometric model.

The difficulties stem from the fact that karstic networks are formed by multiple, interconnected ge-

ological processes (rock fracturing, percolation) operating at different time scales (from a few years to

hundreds of thousands of years) and resulting from various geological settings (fracture distributions,

inception features) and hydrogeological time-varying conditions. Karstic networks can be interpreted

at multiple spatial scales: macroscale refers to the global topology of the network, whereas mesoscale

refers to the shape of the conduits.

We propose a geologically-based framework for modeling karstic networks (Figure 7.1), allowing for

user-control and the generation of realistic and detailed conduit shapes. Given an input relief, we auto-

matically compute a three-dimensional geometric graph connecting control points corresponding to sinks

(inlets), springs (outlets), and known passages inside the bedrock. The skeleton of the karstic network

is constructed by applying a gridless anisotropic shortest path taking into account geological parameters

such as the permeability contrasts of the bedrock, fracture orientations, and inception horizons (geologi-

cal surfaces particularly prone to karstification (Filipponi et al. 2009)). Around this skeleton, a detailed

volumetric geometry of the conduits is defined as a signed distance function. We extend the implicit

modeling framework introduced in Chapter 6 with sweeping primitives and specific warping operators

to represent the shape of the tunnels. Our framework provides multiple levels of control: the user may

define inlets, outlets, and waypoints as passages to constrain the construction of the karstic network,

prescribe the different volumetric geological parameters, and adjust the paths of the tunnels inside the

bedrock. As opposed to the Invasion-percolation approach presented in Chapter 6, this work aims at

bridging the gap between realism in Geomorphology and effective authoring in Computer Graphics. The

main contributions of this chapter are as follows:

• A geological framework for modeling karstic systems, taking into account known inlets, outlets,

and underground passages, as well as parameters such as inception horizons locations, fracture

orientations, and bedrock permeability contrasts.

7.2. Geomorphology background

7

119

• An implicit modeling approach with new primitives and operators organized in a construction tree

for creating the geometry and details of the caves around the simulated skeletons.

• An interactive authoring framework providing multiple direct controls to the user for tuning the

network as well as the final geometry of the cave.

• A detailed quantitative comparison of the generated networks with real karstic systems.

We first introduce the geological background to the reader (Section 7.1, Section 7.2) and present an

overview of the method (Section 7.3). The following sections explain the solution in details, including

shortest path computation (Section 7.4), generalization to a complete network (Section 7.5), and genera-

tion of the terrain geometry (Section 7.6). We finally compare results against real karstic networks and

discuss control as well as limitations (Section 7.7).

The work presented in this chapter was published in Paris et al. 2021 and received the Replicability

Stamp.

7.2 Geomorphology background

Karstic systems are underground networks of conduits and caves that have grown by the dissolution of the

host rocks, generally limestone. In epigenic systems, the most common and documented ones, meteoric

water penetrates the ground through diffuse infiltration or point sources of recharge. During this process,

the water progressively carves different tunnel shapes such as canyon, keyhole, or tube passages based

on various geological and physical conditions such as permeability, pressure, and water velocity.

Epikarst
Shaft

Water table W

Canyon
Keyhole

Breakout
chamber

Phreatic
zone

Vadose
zone

Tube

Soluble bed

Epikarst
zone

Inception
horizon L

FIGURE 7.2: Idealized cross-section through a complex underground cave network.

The water-table W position delimits the upper unsaturated zone (also called vadose) and the lower

saturated zone (also called phreatic). The phreatic zone is generally directly connected to a spring (or

the base-level), which constitutes the output of the karstic network. Note that some systems have several

connected outputs. In the vadose zone (above the phreatic level), the conduits develop preferentially

vertically along fractures, with canyon passages linking them along inception horizons (Figure 7.2).

When approaching the phreatic zone, the development becomes progressively more horizontal-dominant.

The conduits develop preferentially at or below the water-table in case of long-time steady-state base-

level (Jouves et al. 2017). If the water-table fluctuates highly with seasons, the networks develop more

in maze patterns. As the base-level can change over geological times, today networks can show several

levels of horizontal-dominant drains that witness the past water-table positions.

120

7

Chapter 7. Synthesizing geologically-coherent karstic networks

Curvilinear Angular SpongeworkAnastomotic
MazesBranchworks

Rectilinear

FIGURE 7.3: Top-view classification of archetypes of cave patterns as proposed by Palmer 2003.

Prior work on karst simulation. Karsts are an ongoing subject of research in Geomorphology and

Hydrology. We distinguish two categories of methods: the ones focusing on the network skeletons

(macroscale) and the ones that concentrate on the conduit shape geometry (mesoscale).

At the macroscale, karstic networks feature a variety of shapes. Palmer 2003 proposed a classifi-

cation of common patterns found in solutional caves, such as curvilinear and rectilinear branchworks,

anastomotic and angular mazes, spongework, or ramiform caves (Figure 7.3). Jouves et al. 2017 adapted

this classification to account for updated speleological observations, which includes the dimensions and

shape of caves. Considering skeletons of karstic networks, we identify the following properties: 1)

real systems range between elongated hierarchical branchwork and more anarchic anastomotic mazes;

2) the bedrock fracturing degree is linked to the alignments (rectilinear and curvilinear) of conduits; 3)

in the vadose zone (above the phreatic level), conduits have a vertical-dominant development. Several

approaches have been proposed to simulate these different types of cave networks based on geostatisti-

cal methods (Pardo-Iguzquiza et al. 2012; Viseur et al. 2014), anisotropic shortest paths (Borghi et al.
2012; Collon et al. 2012) or more recently percolation clusters (Hendrick et al. 2016). Most of these

techniques rely on a pre-defined grid, which considerably slows down the simulation when dealing with

large systems, and generates stair-step conduits due to aliasing when not aligned with the grid topology.

At the mesoscale, conduits often feature shape variations such as abrupt narrowing or enlargements,

which are known to play a fundamental role in fluid flows. With the generic Object-Distance Simulation

Method, Henrion et al. 2010 proposed to model conduit envelopes by combining an Euclidean distance

field around a skeleton with a random threshold. The resulting cross-sections are irregular at the mi-

croscale but globally cylindrical at the mesoscale. Rongier et al. 2014 described various shapes of karstic

conduits and built on previous works to account for perturbations along weakness planes such as frac-

tures, inception horizons, or faults, allowing one to generate a larger diversity of conduit shapes. Overall,

few works address the generation of the tunnel geometry because their reconstruction is currently lim-

ited by the field acquisition process: the captured data by speleologists is often sparse, incomplete, or

incorrect.

7.3 Overview

The geological constraints and key points P corresponding to sinks (inlets), springs (outlets), and known

passages inside the bedrock (waypoints) are at the heart of the proposed procedural approach (Figure 7.4).

We address the generation of a geometric graph connecting a set of key points P using a non-Euclidean

metric.

The user first provides an initial elevation terrain H and specifies the geological parameters such as

the active water-table W , inception horizons L, permeability π, and preferred conduit orientations which

are linked to fracturation. All these parameters may be interactively edited or chosen among a variety of

template presets. Then, the user may prescribe key points P and label geometric nodes: points may be

7.4. Tunnel path computation

7

121

Karstic Skeleton S

Key points P

Amplified skeleton S
G

eo
m

et
ric

 g
ra

ph

ge
ne

ra
tio

n

C
la

ss
ifi

ca
tio

n

A
m

pl
ifi

ca
tio

n

Volumetric model K

G
eo

m
et

ry
 s

yn
th

es
is

Terrain H

Tube

Sink

SpringWaypoint

Horizon L

Sampling points
Signed distance

function f

~

FIGURE 7.4: Given an input terrain H, geological parameters such as inception horizons L and control
key points P , we synthesize the skeleton of the karstic system S̃ using an anisotropic shortest path oper-
ating on an off-lattice geometric graph in R

3 combined with a γ–skeleton geometric graph construction.
We then convert the skeleton in a karstic volumetric terrain model K defined as a procedural signed
distance function obtained by combining implicit primitives with blending operators.

sinks (inlets), springs (outlets), or known passages inside the bedrock, and influence the karstic structure

generation. The user may also force points to be linked together, thus creating a path that will guide the

karstic structure.

From these inputs, the network generation proceeds in three steps (Figure 7.4). Starting from key

points and geological constraints, we first generate an off-lattice geometric graph connecting those key

points using an anisotropic shortest path algorithm based on a specific cost function (Section 7.4), taking

into account multiple geological parameters such as conduit orientations, horizons and bedrock perme-

ability. This geometric graph is then simplified using a γ-skeleton approach, leading to a large-scale

skeleton S of the karstic network (Section 7.5).

In a second step, tunnel paths are labeled into different categories according to their geometrical

and geomorphological parameters, and the network is finally amplified with small tunnels or mesoscale

dendritic structures to obtain an augmented skeleton S̃ representing the final network (Section 7.5.2 and

Section 7.5.3).

The third step consists of synthesizing the volumetric model K (Section 7.6). The mesoscale geometry

K of the karstic system is generated from S̃ by constructing a hierarchical primitive-based signed distance

function f : R
3 → R representing a signed distance bound to the surface. This approach extends

the construction tree presented in Chapter 6 with sweep primitives to synthesize the variety of conduit

shapes, and creates microscale details and irregularities of the bedrock using noise. The final carved

terrain model is directly obtained as the difference between the terrain H and the volumetric model of

the karstic system K.

7.4 Tunnel path computation

In this section we address the construction of a path ρ connecting two key points a and b in the bedrock.

The path should minimize the line integral over the path of a cost weighting function c(p, ṗ) representing

the characteristics of the bedrock at a given position p and in a given direction ṗ.

Let C denote the set of all continuous paths inside the bedrock H ⊂ R
3 from a to b that are piecewise

continuously differentiable, i.e., the set of paths ρ : [0, 1] → H, for which ρ(0) = a and ρ(1) = b. Let

χ : ρ → [0,∞(denote the function characterizing the cost of a path ρ ∈ C:

χ(ρ) =

∫ 1

0
c(p(t), ṗ(t)) dt

122

7

Chapter 7. Synthesizing geologically-coherent karstic networks

The continuous anisotropic shortest path problem consists of finding a path ρ∗ that minimizes the func-

tional χ(ρ):
ρ∗ = argmin

ρ∈C
χ(ρ)

The solution is approximated by adaptively sampling the bedrock H with a set of points Q. We define

the path as a set of segments connecting points, which converts the continuous shortest-path problem into

a discrete shortest-path problem on a finite geometric graph G whose edges store the approximation of

the line integral of the cost function c. We proceed in two steps. First, the bedrock is adaptively sampled

according to the geological characteristics, and samples are connected using a relative neighborhood

approach. Then, the cost function is evaluated over each edge of the graph. The discrete anisotropic

shortest path is finally directly computed using an A* algorithm.

7.4.1 Sampling

Sampling is a crucial step for approximating the continuous anisotropic shortest path problem. Uniform

grid sampling sustains two important limitations. First, it often produces regular axis-aligned patterns and

yields unrealistic large-scale networks. Moreover, it does not conform to the geological characteristics

of the bedrock unless utilizing a dense sampling, which dramatically increases computations. Increasing

the neighborhood distance between samples to introduce more directions and enhance the angle accuracy

between path segments (Galin et al. 2010) only partially alleviates the problem.

Horizon samples

Poisson samplesSink

Spring

Waypoint

Sampling process n-Nearest neighbors

FIGURE 7.5: The adaptive sampling of H allows the generated network to precisely follow features such
as inception horizons; empty remaining space is filled with a Poisson sphere distribution.

Instead, we adaptively sample the bedrock H according to its geological characteristics (Figure 7.5).

The set of points Q is initialized with key points P representing sinks (inlets), springs (outlets) and

interior points in the terrain. Samples are then procedurally-generated for every geological feature, such

as horizons, current water table W and permeability volumes (Section 7.4.2). By using an importance

function derived from the prescribed geological features, one can resort to importance sampling (Kahn

et al. 1953) with a dart-throwing approach as a generic sampling solution. However, this technique

can be slow depending on the extents of the domain and the desired sampling density. Instead, we use

a more sophisticated approach: each geological feature is sampled independently, and the remaining

empty space is finally filled with another distribution.

Horizons and water table are modeled as a function of altitude, which means that geological samples

are distributed at these elevations using a Poisson disk distributions (Cook 1986) with a small radius

r = 8m (Figure 7.6, left). Sometimes, precise topological data is available for the horizons, and the

chosen representation is a triangle mesh rather than an elevation surface (Collon et al. 2012). These can

be sampled efficiently using techniques such as constrained Poisson disk sampling (Corsini et al. 2012)

or Poisson disk sample elimination (Yuksel 2015).

7.4. Tunnel path computation

7

123

Inception horizon
samples Permeability samples Domain fillingPermeability samples

Permeability
sphereHorizon

FIGURE 7.6: Geological features such as inception horizons and permeability volumes are first sampled
using a Poisson disk or Poisson sphere distribution process with a small radius (left, center). The rest
of the domain is filled with samples from another distribution with a larger radius (right), leading to the
complete set of points Q. Connections between samples are shown in blue.

Permeability volumes are sampled using importance sampling combined with a Poisson sphere cri-

teria (Lagae et al. 2006a), using the same radius as for horizons and the water table. The importance

sampling algorithm allows to distribute more samples where permeability is high (Figure 7.6, center).

Empty space is finally filled with another Poisson sphere distribution (Lagae et al. 2006a), but with a

larger radius r = 16m (Figure 7.6, right). Independently of the sampling techniques, geological features

should be sampled more densely than empty space. This step ensures that the generated network accords

with the structures observed in real karstic systems.

The graph G is constructed as the nearest neighbor graph connecting n samples (in our experiments,

we used n = 32) to obtain sufficient angle accuracy between the directions of the edges of the graph

(see Figure 7.7). Using a smaller value for n reduces the memory footprint of the graph but can lead to

unrealistic or even unfeasible paths in practice.

n = 8 n = 16 n = 32

FIGURE 7.7: Influence of the neighborhood size n over the topology of te graph.

7.4.2 Geology-based cost functions

The cost function c defined as a weighted sum of different terms, each representing the influence of a

geological factor:

c(p) = wLcL(p) + wFcF (p) + wπcπ(p)

The user-editable weights (namely wL, wF and wπ) control the influence of the geological characteris-

tics, which include the inception horizons L, fracturing orientations F , and permeability of the bedrock

π, whose corresponding cost functions are denoted as cL, cF , and cπ respectively. In addition, the user

may prescribe specific paths to influence the generation by assigning a small cost to some of the edges of

the graph. The following paragraphs detail each of these term and show how it affects the computation

of a path.

124

7

Chapter 7. Synthesizing geologically-coherent karstic networks

No inception horizon One inception horizon L

L

FIGURE 7.8: Influence of an inception horizon on the karstic network: conduits tend to follow the
inception horizon elevation. The blue plane indicates the elevation of the horizon.

Horizons refer to the bedding surfaces that mark a particular change in the lithology of rocks. They

generally influence the karstification process as karstic systems tend to develop along particular inception
horizons (Filipponi et al. 2009). In monoclinal contexts where the underlying geology is organized into

multiple, almost parallel strata, they can be modeled as a function of altitude. The corresponding cost

function is defined as a function of the vertical distance to the nearest horizon d(p,L) = |pz − Lz|:

cL(p) = g(d(p,L)/r)

The smooth step function g(x) = 3x2 − 2x3, for x ∈ [0, 1], limits the influence of the horizon beyond a

distance r. Figure 7.8 shows the impact of an inception horizon over the generation process.

Fractures play an important part in the development of karstic systems. A fracture is a break of

continuity in the bedrock resulting from tectonics. They have different orientations, such as axis-aligned

or diagonal distributions (Palmstrom 2001).

No fracture Axis-aligned fractures Diagonal fractures

FIGURE 7.9: Influence of an axis-aligned (center) and diagonal (right) fracture orientation distribution
on the karstic network.

At the mesoscale, karstic conduits tend to follow local fracture plane orientations. At large-scale (a

few kilometers), fracture directions remain almost constant, therefore we represent every fracture as a

normalized direction nk representing the orthogonal vector to the fracture plane, and a weight wk. Let

F denote the set of fractures in the bedrock, we define the corresponding cost function cF as:

cF (p, ṗ) =
n∑

k=0

wk (1− (nk · ˆ̇p)2)

7.5. Network generation

7

125

The term ˆ̇p = ṗ/‖ṗ‖ represents the unit direction of the path at vertex p. Edges with a direction parallel

to a fracture plane have a smaller cost value than orthogonal ones and are therefore preferred as illustrated

in Figure 7.9.

Permeability is an important geological parameter as it expresses the capacity of a rock to let the fluids

circulate through its pores. Permeable bedrock lets more water flow, and is thus more prone to chemical

dissolution, i.e., karstification. We do not model directly this parameter, but a qualitative parameter

expressing a normalized relative resistance to flow passage (the inverse of permeability) using a function

π : R3 → [0, 1] defined at each point p. The least permeable rocks have thus the highest value 1, and the

most permeable rocks have the lowest value 0. The permeability cost is then defined as cπ(p) = π(p),
with π defined as a construction tree similar to the one described in Chapter 6 for the geology tree.

The leaves of the construction tree are skeletal primitives that define the local permeability; internal

nodes combine primitives to define the permeability function over the entire domain. Depending on

the requirements, different primitives and operators such as strata or faults can be used. Our system

implements sphere and strata primitives that provide control to the user. Figure 7.10 illustrates the

influence of permeability: the karstic network expands in the most permeable region determined by

two user-defined sphere primitives with a high permeability coefficient.

No Permeability Permeability

= 1

Permeable
region 0

FIGURE 7.10: Influence of permeability on the karstic network: conduits are generated in the most
permeable (π ≈ 0) regions.

7.5 Network generation

We generate the skeleton of the karstic system in two steps. First, we build a large-scale skeleton S by

computing the 3D γ-skeleton of the key points P . Then, we amplify the network by applying a stochastic

subdivision and generate ramifications to obtain a mesoscale skeleton S̃ .

7.5.1 Large-scale network

We address the generation of a geometric skeleton connecting the set of key-points P using a non-

Euclidean metric. The distance metric is directly drawn from the computation of the cost between two

points, and defined as d(a,b) = χ(ρ∗(a,b)). The method takes its inspiration from Galin et al. 2011,

with the difference that we operate on a volumetric domain and incorporate several types of key points

to constrain the graph generation.

We first compute the complete graph formed by the set of paths connecting P by applying multiple

anisotropic shortest path algorithms between all pairs of key points as described in Section 7.4. We

then prune the edges using an empty region criterion to create a proximity graph based on the metric d.

126

7

Chapter 7. Synthesizing geologically-coherent karstic networks

= 0.5 = 2

FIGURE 7.11: Influence of the parameter γ: lower values produce denser networks (key-points are
represented with a white circle).

Proximity graphs, also referred to as neighborhood graphs, are defined on a finite set of vertices such that

there exists an edge between any two vertices if they satisfy proximity conditions in the context of other

connections in the graph.

a b

Ω (a, b)∞
FIGURE 7.12: Geometric
representation of Ω∞.

To account for geological features and thus obtain a 3D karstic network,

we use a gamma skeleton formalism using this non-Euclidean metric d. Let

a and b two key points in P , and γ ∈]0,+∞(, the parameterized neighbor-

hood region of (a,b) is defined as:

Ωγ(a,b) = {p ∈ Ω, d(a,b)γ < d(a,p)γ + d(p,b)γ}

The neighborhood graph of P is created from this definition of the region

Ωγ(a,b) which is associated to candidate paths: (a,b) forms a path in the

graph if and only if Ωγ(a,b) ∩ P = ∅. More precisely, a path connecting

two key points a and b of distance d(a,b) is kept if and only if there is no

path connecting a to b passing through another key point k having d(a,k)γ + d(k,b)γ < d(a,b)γ .

When the value of γ decreases, the neighborhood region shrinks and fewer edges are pruned by the

process, which leads to denser skeletons. The parameter γ creates a variety of skeletons connecting the

points in P and provides a simple and global control to the user over the density of the karstic network

(Figure 7.11). Particularly, note that as γ → ∞, the generated graph is equivalent to the relative neighbor

graph (Figure 7.12), and using γ = 2 creates the same graph as the Gabriel graph created with a non-

Euclidean metric. Using γ = 0 would lead to the complete graph between all key points.

7.5.2 Network amplification

The amplification step generates a refined mesoscale skeleton featuring dendritic conduits and more

tortuous paths (Figure 7.13). We improve the large-scale skeleton into a mesoscale skeleton by adding

secondary branches and tributaries. We then refine the trajectories of the paths by adding stochastic

displacement.

The ramification process starts by distributing new key points randomly in the bounding box of S ,

inside the bedrock H, and connecting them to S using the procedure described in Section 7.4. Points

may be of two different types: interior or dead-end nodes. Interior nodes are not constrained regarding

their degree in the graph (they can be linked to an infinite number of paths), so they tend to increase

the overall complexity of the network, possibly leading to mazes. On the other end, dead-end points are

7.5. Network generation

7

127

Large scale skeleton S Mesoscale skeleton S~

FIGURE 7.13: Procedural amplification of a large-scale skeleton S with new tunnels into a refined
structure S̃ .

limited to a degree of 1 (only one path can be linked to these nodes) and tend to produce branchwork

structures (Figure 7.13). The number of new points distributed in the amplification process is controlled

by the user.

As real karstic systems exhibit tortuous trajectories, we finally refine edges using a stochastic midpoint

displacement parameterized by a tortuosity factor θ. In Geomorphology, tortuosity (also referred to as

sinuosity) has been proposed to characterize karsts (Collon et al. 2017), even if it is heavily dependent

on the data acquisition strategy. Consequently, we model tortuosity as a qualitative parameter expressing

the maximum displacement factor for the tunnels, ranging from a few centimeters (θ = 0) to 4 meters

(θ = 1).

7.5.3 Classification strategy and parameter computation

Tube

CanyonKeyhole
Bed

Distance to water table W

Ve
rti

ca
lit

y

Epikarst

Passage

Phreatic Vadose

Soluble bed

Tube Passage

Canyon
Keyhole

FIGURE 7.14: Classification of tunnel types according to their verticality and the distance to the water
table.

In order to construct the detailed geometry from the mesoscale skeleton S̃ (section 7.6), we compute

the type of tunnels for all the graph edges and their corresponding geometric parameters such as tunnel

diameters. Edges are labeled as keyhole, passage, epikarst, tube, canyon, bed, or chamber, depending

on the local geological characteristics. Current knowledge in Geomorphology does not allow the iden-

tification of precise criteria for the placement of tunnel types. Therefore, we propose a simple labeling

strategy (Figure 7.14) correlating the type to the distance to the current water table W and the verticality

of the trajectory. A notable advantage of this approach is that it can be adapted to account for a more

accurate classification as knowledge in Geomorphology evolves.

128

7

Chapter 7. Synthesizing geologically-coherent karstic networks

Vertical tunnels, such as shafts or pits, expose roughly circular shapes (tubular vertical shafts), whereas

horizontal tunnels reveal a variety of types such as canyon-shaped tunnels, keyhole-shaped (in vadose

zones), or soluble bed conduits (in phreatic zones). Epikarst tunnels are narrow vertical conduits that

start from the surface to reach the vadose zone before morphing into a different configuration. Breakout

chambers are large caves in the karst. They are created when a tunnel traverses a ghost rock zone – a

region where permeability is particularly high (cπ(p) ≈ 0) and where large collapses are more likely to

happen. Figure 7.15 shows an example of classification applied to a generated network.

Bed

Tube

Epikarst

Passage

Keyhole

Canyon

Ph
re

at
ic

Va
do

se

Water table

FIGURE 7.15: Classification of tunnel types on a generated network.

Concerning the equivalent radius of the karstic conduits, speleological observations do not allow to

identify any specific rule of size distribution. A recent statistical study performed on 49 real networks

was unable to show any hierarchy in size distribution, or relation with the relative position of the springs

(Frantz et al. 2021). With a variographic analysis, Frantz et al. 2021 identified a spatial correlation along

the networks, with empirical semi-variogram ranges ranging between 50 to 200m. This means that two

points along a conduit separated by a distance superior to that range have no correlation.

Epikarst tunnels typically have a fixed radius of 50 cm as they start from the surface and are usually

small. For other types, the radius is computed randomly in a 0.5 − 4.0m range. These values can be

adjusted by the user, or computed by more realistic heuristics as knowledge in Geomorphology evolves.

7.6 Implicit cave modeling

Union

Difference

Pits

Terrain H

ChasmChambers

Union

Tunnels

Pit

Tunnel

FIGURE 7.16: Synthetic representation of the construction tree of a chasm carved into an elevation
terrain.

The generation of the mesoscale geometry addresses two complementary challenges: creating the

walls of conduits, chambers, and pits that accord to the cross-sections observed in geology, and generat-

ing a sufficiently compact volumetric model allowing to represent karstic networks of a few kilometers

7.6. Implicit cave modeling

7

129

with a high level of detail.

Building on a hierarchical construction tree (Figure 7.16, Chapter 5.3), we define a signed distance

function f : R3 → R, taking positive values outside of the bedrock and negative values inside. We

ensure that the implicit surface is defined by a 1-Lipschitz lower signed distance bound to the surface.

We rely on the base terrain primitive presented in Chapter 6 Section 6.4.1, generate the geometry of the

karstic conduits (Section 7.6.1), and finally add breakout chambers, large pits, and small-scale geometric

details such as rock irregularities and stalactites (Section 7.6.2).

Cross-section C

p
c(u)a

b

Sweep primitive

Curve

(u)

C
Union of spheres

j

b

a

FIGURE 7.17: Two different strategies are used to model volumetric conduits, based on sinuosity: sweep
primitives or unions of spheres.

7.6.1 Mesoscale geometry of tunnels

Tunnels identified and referenced in geology have cross-sections that may have irregular and asymmetric

silhouettes with folds, thus there is a need for a general sweep primitive along a curvilinear trajectory.

Accelerated primitives introduced in Crespin et al. 1996 are limited to star-shaped cross-sections. The

swept volumes described in Sellán et al. 2021 could generate conduits, however the tunnels may result

from the interpolation of different cross-sections. Additionally, our approach creates a procedurally-

defined signed distance field, whereas Sellán et al. 2021 uses a discrete representation using a sparse

voxel grid.

However, defining a continuous signed distance function for a sweep object with cross-sections swept

along a curve Γ is not possible in the general case, particularly when the curve has a high curvature

because it creates C1 or even C0 discontinuities in the distance function. To solve this issue, we propose

a two-fold strategy for modeling volumetric conduits based on the sinuosity of the conduit. Sinuosity σ
is defined as the ratio between the length of the curve l and the distance between the first and last point

of the section:

σ =
l

||p(0)− p(1)||
Depending on the value of σ, we model tunnels either as sweep primitives, or as unions of spheres sam-

pled along the trajectory. This scheme guarantees that the resulting signed distance function is continuous

and 1-Lipschitz. Sweep primitives are compact in memory but are restricted to straight paths, whereas

unions of spheres are adapted to tortuous paths but are more memory consuming.

130

7

Chapter 7. Synthesizing geologically-coherent karstic networks

Canyon Tube PhreaticBed

FIGURE 7.18: Interior of a vadose cave with canyon, bed and tube tunnels, and a phreatic tunnel
partially overflowed with water.

In practice, a user-defined threshold T determines the path generation (see Figure 7.17). When σ < T ,

we approximate the trajectory as a straight sweep primitive. Tortuous path, with σ > T , are modelled

using unions of carefully placed spheres along the trajectories.

TubeCanyon

Keyhole Bed

FIGURE 7.19: Tunnels generated with sweep primitives.

Straight paths are defined by sweeping a closed piecewise quadratic curve C representing the cross-

section along a line segment ab. This representation is compact in memory, but the evaluation of the

distance is computationally intensive. The signed distance function to the cross-section is defined as

f(p, C) = d(p, C) δ(p, C), where d(p, C) denotes the (positive) Euclidean distance to C and δ(p, C)
is the sign function. The 3D distance is then derived from fC(p) according to the segment [a,b] (see

Appendix A.8). As the cross-section is extruded on a segment and not a curve, the resulting signed

distance function is 1-Lipschitz and continuous.

Tortuous paths are modelled using unions of spheres. First, we compute a Poisson sphere distribution

D = {Di} inside the bounding box of the curve Γ extended by a radius R. We then generate n inter-

polating cross-sections Cj along the curve at regular intervals taking into account the local frame of the

curve. Then, we select the Poisson spheres whose minimum distance to the cross sections is lower than

R/2 (Figure 7.17):

D̃ =
{
Di |

n
min
j=0

d(Di, Cj) < R/2
}

Using a small radius R ≈ 20 cm provides a good approximation of the extruded volume, at the expense

of memory. Typically, modeling a 10 meters long straight tunnel using a single sweep primitive takes

less than 1kb of memory, whereas the same tunnel modeled with thousands of spheres is ≈ 100 times

more expensive (see Figure 7.20).

7.6. Implicit cave modeling

7

131

2800 spheres 4000 spheres 5000 spheres

Holes

FIGURE 7.20: Tunnels generated with different amount of spheres. Using a small amount of spheres is
more compact in memory but can lead to unwanted bumps and defects in the approximation of the tunnel.

7.6.2 Volumetric terrain decoration

While tunnels are the main characteristic landforms of karstic networks, large-scale features such as

breakout chambers and chasms also have a large impact on the visual representation of the scene and

cannot be modeled using extruded profile primitive. Instead, in the spirit of the invasion-percolation

method (Chapter 6 Section 6.5), we detect the location of these features and use procedural arrangements

of skeletal primitives (Chapter 5 Section 5.4) to generate them. This approach guarantees a 1-Lipschitz

function and provides precise control to the user over the location and shape of the features.

Parameterized
cylinder

ݎ
ℎ

܋
Spheres

௘ݎ

ܘ௦ݎ

Large pit Stalactites

ℎ

FIGURE 7.21: We model punctual karstic features as arrangements of skeletal primitives, such as cylin-
ders (for pits and chambers) and spheres (for stalactites).

Breakout chambers and large pits are placed by the user using specific control points (see Sec-

tion 7.5) in the generated network. The geometry is modeled using arrangements of parameterized

cylinder primitives. Using piles of cylinders allows for reproducing stratification of different lengths

efficiently with very few primitives. Starting from an initial position p in the bedrock, we procedurally

generate primitives in contact with varying radii and slightly displaced centers (Figure 7.21, left) until

a target vertical size h is reached. The amount of variation of the different parameters is controlled by

the user. Optionally, a radial turbulence can be added to provide small-scale details without introducing

floating parts in the terrain. Cylinders are combined together in a single subtree using a union operator,

which allows conserving sharp transitions between the different strata (as opposed to the smooth union

operator). Finally, the terrain is carved with the pit (or chamber) subtree using a difference operator.

132

7

Chapter 7. Synthesizing geologically-coherent karstic networks

Stalactites and stalagmites are usually located on planar zones in caves. We detect feature locations

by sampling the terrain using Poisson sampling, and keep sufficiently planar positions verifying |∇f(p) ·
z| > T with T a user-defined threshold. The generation of the primitives follows a similar procedure

as chambers and pits, using sphere primitives. Starting from a position p, a sphere of varying radius is

generated. An initial and end radii rs and re control the size of the spheres in contact (Figure 7.21, right).

The procedure is repeated until the stalactite reaches a target vertical size h. Spheres are combined using

a smooth union operator, and finally blended with the terrain.

7.7 Results

We implemented the proposed method in C++. The karstic systems depicted in this chapter were gener-

ated on a desktop computer equipped with Intel® Core i7, clocked at 4GHz with 16GB of RAM, and

an Nvidia GTX 1080ti graphics card. The implicit surface representing the final terrain was polygo-

nized (Wyvill et al. 1986) and the resulting mesh directly streamed and procedurally textured into Vue

Xstream® to render the final images (Figure 7.1, 7.18, 7.16, 7.19). The code for synthesizing the karstic

systems is available at:

https://github.com/aparis69/Karst-Synthesis

The proposed implementation is capable of generating a variety of karstic networks as well as the

detailed geometry of the tunnels. Figure 7.22 shows complex networks generated according to different

geological parameters such as inception horizons, orientations and permeability of the bedrock. Fig-

ures 7.18 and 7.19 show the capabilities of the implicit modeling approach for synthesizing the detailed

geometry of the tunnels, capturing different shapes such as keyhole, canyon and bed tunnels.

7.7.1 Performance

The computation of the anisotropic shortest path combined with the three dimensional gamma skeleton

geometric graph construction completes in less than a second, which allows for interactive authoring

even for relatively large networks featuring thousands of nodes and dozens of key-points (Table 7.1).

The adaptive sampling and generation of the nearest neighbor graph between all sample points Q is

the most computationally intensive step and takes up to a few seconds in the most complex geological

configurations.

One significant advantage of the signed distance function construction tree is the reduced memory

footprint compared to hybrid (Peytavie et al. 2009b) and voxel-based models (Becher et al. 2019). The

tortuosity factor θ directly relates to the construction tree generation time: trajectories with a high coef-

ficient θ require instantiating a high number of spheres. Still, the generation of the construction tree is

completed in a few seconds in the worst case scenario (Table 7.1).

A typical editing session takes up to a few minutes: the user inserts points in the domain, sets the

weights of the cost function, adjusts geological parameters (such as fracture orientations and horizon

elevations), and triggers the computation of the network. During user interaction, visualization uses a

symbolic representation of the caves and tunnels. Those steps are repeated until the user is satisfied

with the generated network. The detailed geometry of the karstic network is finally computed for final

visualization and rendering.

7.7. Results

7

133

Rectilinear maze Elongated branchwork Looping cave
(Anastomotic maze) Superimposed network

Sakany
Cocalière

Foussoubie
Crossroads

FIGURE 7.22: A variety of computer-generated karstic networks compared to real networks.

Karstic system
Extent Topography Skeleton Geometry

Size L #Q #P #K TS θ γ #N #Sw #S M TG
Branchwork 0.4× 0.6× 0.1 2.3 25k 17 154 0.2 0.1 2.0 31k 59 16k 2.9 2.9

Looping cave 0.5× 0.7× 0.2 22.1 60k 47 668 0.5 0.5 0.8 67k 809 33k 7.4 7.5

Rectilinear 0.9× 1.1× 0.1 19.6 65k 26 830 0.5 0.4 0.8 30k 1076 14k 3.3 3.0

Superimposed 0.2× 0.7× 0.2 2.9 92k 17 209 0.9 0.1 2.0 43k 189 21k 4.7 5.2

TABLE 7.1: Karstic system extent [km3], skeleton length L in [km], number of point samples #Q, and
number of key points #P placed by the user, karstic skeleton node count #K, skeleton generation time
TS in [s], tortuosity factor θ given by the user, neighborhood parameter γ given by the user, number
of node in the construction tree #N , number of sweep (#Sw) and sphere (#S) primitives, memory
footprint M of the construction tree [Mb] and construction tree generation time [s].

7.7.2 Control

Our approach combines the placement of key points, the definition of geological features (inception hori-

zons, orientation distributions), the tuning of the cost function as well as setting the γ coefficient. These

parameters provide user-control and allow the reproduction of identified patterns found in real karstic

systems. Figure 7.22 shows synthesized networks compared to real ones displayed in insets. Typically,

rectilinear and anastomotic mazes are created by setting γ = 0.8 and tuning orientation distributions

(three axis-aligned directions for rectilinear, and 8 directions on the sphere for the looping cave). In con-

trast, an elongated branchwork results from the placement of a single sink and a spring. A superimposed

network results from two inception horizons and several amplification steps (3 in the depicted models)

adding dendritic tunnels to the network.

The proposed architecture allows the interactive authoring of complex karstic networks spanning over

several kilometers (see Figure 7.22). Labeled key points P not only control the location of sinks, springs,

or breakout chambers inside the bedrock but also allow the user to prescribe tunnel sub-paths that are

directly taken into account in the network generation and locally influence the structure of the skeleton.

The cost function may also be tuned with interactive visual feedback. The geological parameters and

control waypoints provide user-control over the density and structure of the resulting network. At the

mesoscale, sweep primitives allow for a detailed and varied reconstruction of the conduits (Figure 7.19).

A high tortuosity parameter θ significantly impacts the complexity of the construction tree by producing

tortuous trajectories as observed in real karstic systems. The looping cave example (Figure 7.22) was

generated with the highest tortuosity (θ = 0.5) with a memory consuming construction tree featuring

32 809 sphere primitives (see Section 7.6.1). In contrast, the elongated branchwork or superimposed

networks with θ = 0.1 have a reduced memory footprint.

134

7

Chapter 7. Synthesizing geologically-coherent karstic networks

7.7.3 Comparison with real karstic networks

Collon et al. 2017 presented and discussed a set of metrics to describe, compare and quantify karstic

networks. Among the 21 tested metrics, they recommend computing 6 of them to identify the geometry

and the topology of a network. The open-source Karstnet code implements them in Python and was used

to compute the metrics for the karstic networks presented in Figure 7.22 so as to compare them with a

dataset of 34 real caves (Collon et al. 2017). The code is available at:

https://github.com/karstnet/karstnet

Karstic system l HO k rk SPL CPD

Branchwork 96 0.9 2.0 −0.4 4.1 0.6

Looping cave 79 0.9 3.2 0.04 5.0 0.2

Rectilinear maze 121 0.6 3.0 0.0 5.6 0.1

Superimposed net 101 0.8 2.1 −0.3 4.9 0.4

Observed range
8 0.8 1.8 −0.6 2.3 0.0

331 1.0 2.6 −0.2 55.7 0.6

TABLE 7.2: Average branch length l [m], entropy of orientation HO, average vertex degree k, correla-
tion of vertex degrees rk, average shortest path length SPL, central point dominance CPD.

Table 7.2 reports statistics and compares to a range of values computed on a dataset of 34 real karstic

networks (Collon et al. 2017). The average branch length l and the entropy of orientation HO describe

the geometry of the network. The simulated networks show similar values to the karsts of the database,

except for the entropy of orientation HO of the rectilinear maze which is slightly lower than those of

studied networks. This is, however, not surprising as we voluntarily restricted the influence of fracture

orientation to generate this stereotyped network. In the available database, there was no 3D network with

such marked orientation. The data of the crossroads karst, presented in Figure 7.22, was only available

as a 2D map projection (Palmer 1991). Computing this metric on crossroads data yields HO = 0.46,

demonstrating that the value HO = 0.62 obtained on the rectilinear maze is acceptable for this kind of

network.

The computed values also remain consistent for the topological metrics. Average shortest path length

SPL and central point dominance CPD fall both into the observed range of values for all simulated

networks, as well as average vertex degree k and correlation of vertex degrees rk for the elongated
branchwork and superimposed networks. The maze-like networks looping cave and rectilinear maze
have k values slightly superior to what was observed. It is admittedly rare that real karstic networks have

such a high amount of crossing points where more than 3 conduits meet, and breakout chambers with

more than 4 conduits (and consequently node degree superior or equal to 4) are scarce. This is again

a consequence of our intent to generate stereotyped networks, which also explains the corresponding

rk � 0 while natural systems tend to be slightly disassortative.

7.7.4 Comparison with other techniques

Few methods for modeling complex karstic networks exist. The Arches model (Peytavie et al. 2009b)

requires manual editing for authoring terrains and does not automatically generate tunnels or caves.

While invasion-percolation (Chapter 6) can synthesize complex karstic structures, the user has no control

over the generated network and the resulting tunnels are carved using simple spheres or curves, leading

7.8. Conclusion

7

135

to unrealistic tunnel shapes. Voxel-based approaches (Pytel et al. 2015; Franke et al. 2022) analyze

parameters such as pressure and fractures, but those simulations are computationally intensive and do

not lend themselves to synthesizing large karstic networks. Our approach extends the grid-based method

of Galin et al. 2011 and proposes a grid-less technique that can adaptively sample three-dimensional

domains. In particular, the gridless shortest path solves geometric aliasing issues resulting in unrealistic

tunnel paths, which occur when using regular or adaptive grids. To the best of our knowledge, this is the

first controllable procedural method that captures the complex structure of karstic networks both at large

scale and mesoscale.

Considering the geometry of the tunnels, our two-fold strategy for modeling tunnels proves to be ver-

satile and exhibits good properties. Tunnels modeled with sweep primitives (or sampled cross-sections)

allows for representing a wide variety of tunnel shapes (see Figure 7.19). Compared to data-oriented

or hybrid models, the construction tree is compact in memory and efficient for modeling large karstic

networks.

7.7.5 Limitations

We rely on a simple strategy for the classification of tunnel types and parameters computation, as knowl-

edge in Geomorphology is sparse on this topic. However, the proposed framework provides effective

user-control and processing parts could be easily replaced with more accurate computations in the fu-

ture.

Although implicit surfaces allows modeling of the highly detailed geometry of karstic conduits, visu-

alization remains expensive as the signed distance function f is defined by a hierarchical combination of

thousands of nodes. Polygonizing a 1× 1× 0.4 km3 volume at 0.5m precision takes up to two minutes

for a dense complex karstic model featuring 30 000 nodes. The construction tree may be amenable to

simplification; primitives and operators could be further optimized and field function queries performed

in parallel using compute shaders on graphics hardware.

7.8 Conclusion

We have introduced a geologically-based framework for modeling karstic networks while retaining user-

control. Given an input terrain, our method computes a three-dimensional geometric graph connecting

key points corresponding to sinks (inlets), springs (outlets), and known passages inside the bedrock.

The paths connecting control points are constructed by using a gridless anisotropic shortest path taking

into account geological parameters such as the permeability of the bedrock, fracture orientations, and

inception features. The geometry of the conduits is finally constructed by a signed distance function

defined as a construction tree combining volumetric primitives. The synthesized karstic networks accord

with real data obtained from geological observations.

Our approach allows for modeling large scale karstic networks as well as their mesoscale geome-

try. Small scale details such as stalactites and stalagmites can be added by blending skeletal primitives

(Chapter 6), at the expense of a more complex construction tree. However, it still relies on noise-based

primitives for meso and microscale details, whereas real tunnels exhibit more complex structures which

require thousands of primitives. In the next chapter, we show how to efficiently model such landforms

by introducing new primitives and operators suited for this task, along with a procedural algorithm to

generate them.

8

Chapter 8

Modeling rocky scenery using implicit
blocks

Contents
8.1 Introduction . 138
8.2 Overview . 139
8.3 Block tile generation . 141

8.3.1 Fracturing . 141

8.3.2 Implicit block generation . 144

8.4 Terrain amplification . 146
8.5 Results . 147

8.5.1 Control . 148

8.5.2 Comparison with other methods . 148

8.5.3 Compatibility with other techniques . 149

8.5.4 Limitations . 150

8.6 Conclusion . 151

138

8

Chapter 8. Modeling rocky scenery using implicit blocks

8.1 Introduction

Three-dimensional and vertical landforms such as cliffs, steep-walled canyons, crags, promontories, or

overhangs are fundamental visual elements of scenic terrains. Despite the wide application of artifi-

cial terrains in the entertainment industry and in simulations, modeling truly volumetric landforms with

highly detailed rocky overhangs and cliffs with bare rock strata remains an unsolved problem.

Tabular

FIGURE 8.1: Given a low resolution input terrain T , which may be either an implicitized heightfield
(See Chapter 6, Section 6.4.1) or a volumetric representation, we generate fractured mesoscale blocks
featuring small-scale details inside a cubic tile, and replicates them realistically in the terrain according
to the geology of the different strata.

Challenge The vast majority of existing techniques addresses only heightfield terrains that do not al-

low for an accurate representation of vertical landforms. Even though recent advanced techniques for

modeling truly volumetric terrains have been proposed (Peytavie et al. 2009b; Becher et al. 2019), most

of them have a limited resolution. Hyper-textures (Perlin et al. 1989) can synthesize fractal mesoscale

and microscale details over the surface of an otherwise low-resolution terrain, however, the self-similar

appearance of the resulting bedrock, often corresponding to sandstone, lacks structure. Generating the

mesoscale block structures and small-scale patterns of bedrock that appear on bare rocky terrain and

the vertical walls of canyons, steep-walled cliffs or promontories, has received little attention. While

the method presented in Chapter 6 is capable of generating large-scale volumetric features such as deep

overhangs and arches, the results still lack mesoscale structure on the vertical parts of the terrain.

The challenge stems from the fact that the geometry of rocky surfaces results from different physical

processes (including fracturing, percolation, and erosion), depends on the materials involved (such as

limestone, dolomite, sandstone or basalt), and shows in a variety of forms (from regular hexagonal

prisms to seemingly chaotic polyhedral shapes) and scales (from a few decimeters to meters).

Contributions In this chapter, we extend the implicit surface modeling framework introduced in pre-

vious chapters with new primitives and operators capable of representing detailed mesoscale volumetric

features, such as vertical walls of rocky cliffs, crags or promontories. We also propose an amplification

method that enhances an otherwise smooth input terrain by automatically carving geomorphologically

consistent volumetric details over cliffs and overhangs. Our method consists in spawning fractures which

are used to generate blocks that will be visible on the vertical walls of cliffs (Figure 8.1). More precisely,

the main contributions are as follows:

• We present an original geologically-based fracturing process to generate realistic blocks of rock

separated by fractures tiling space.

8.2. Overview

8

139

• We introduce a novel gradient-based warping operator for adding surface details to implicit primi-

tives which allows us to carve small-scale rock patterns from synthetic or real images over blocks.

• We define a field function node compatible with any hierarchical implicit surface modeling frame-

work for replicating the field functions characterizing the blocks, therefore implicitly replicating

them over a volumetric terrain or a heightfield.

Altogether, we provide a unified implicit framework for the representation of mesoscale (≈ 1m) and

small-scale (≈ 1 cm) bedrock details allowing to reproduce complex bedrock patterns and shapes. This

approach provides multiple levels of control, allowing the user to author blocks and tune the placement

rules.

After an overview of our approach (Section 8.2), we detail how to compute block tiles for differ-

ent geological shapes (Section 8.3) and show how to amplify an input terrain with these created blocks

(Section 8.4). We finally discuss performance, limitations and compare with existing techniques (Sec-

tion 8.5).

The contributions presented in this chapter were published in Paris et al. 2020 and the code for repro-

ducing the results is available on Github.

8.2 Overview

Real terrains often feature complex rock formations in areas such as cliffs or caves. These landforms are

the result of complex, interconnected physical processes that include glacial erosion, catastrophic rock

collapses due to instability, or aeolian erosion. To avoid computationally intensive simulations, we pro-

pose a procedural approach to create block formations based on classifications used in geomorphology.

Polyhedral Equidimensional Prismatic

Tabular Rhombohedral Columnar

FIGURE 8.2: Categories of blocks identified in geomorphology corresponding to various fracture distri-
butions. Figure inspired from Palmstrom 2001.

This work comes from the observation that fractures in bedrock form blocks exhibiting a variety of

shapes of different sizes. Archetype structures such as prismatic, equidimensional or rhombohedral (Fig-

ure 8.2) have been identified in geomorphology (Palmstrom 2001; Dearman 1991). A fracture is a break

140

8

Chapter 8. Modeling rocky scenery using implicit blocks

of continuity in the body of rock whose origin is natural. It most frequently occurs as fracture sets that

are defined as a family of parallel, evenly spaced broken fractures that can be identified by analyzing

their orientations, spacing, and physical properties. Regular and periodic distributions of fractures re-

sult in regular columnar blocks, whereas distributions with three major orthogonal directions result in

equidimensional blocks; randomly distributed fractures produce polyhedral type.

2D Terrain T

Amplified 3D terrain T

Tile generation

Amplification

~

User control

Set of cubic tiles featuring blocksC

FIGURE 8.3: Overview of the algorithm: during a pre-processing step, we generate cubic tiles con-
taining blocks of distinct types according to different fracture distributions; then, given an initial low-
resolution heightfield, strata definition and control regions, we automatically generate an implicit model
defined as a field function replicating the blocks for creating mesoscale and small-scale details.

Fracturing the entire input terrain T would be computationally and memory intensive. Therefore, we

propose a procedural tiling method whose goal is to compute cubic tiles containing geologically correct

blocks that will be placed over the vertical parts of bare bedrock.

The overall terrain amplification process is composed of two steps (Figure 8.3). We first generate a

set of blocks Bi organized into a cubic tile denoted as C using a procedural fracturing approach based

on a geomorphological classification (Section 8.3). These blocks Bi are implicitly defined by scalar

functions bi : R
3 → R, which allows to obtain a volumetric representation of the mesoscale patterns and

small-scale details using a new gradient-based warping operator.

The second step consists in amplifying a smooth input terrain T by replicating blocks over the bare

vertical parts of the bedrock (Section 8.4). The input terrain can be either an elevation terrain such as a

heightfield, or a volumetric terrain model such as the ones produced by a construction tree (see Chapter 6

and Chapter 7). The new detailed volumetric terrain model T̃ is defined as an implicit surface whose

scalar field function f̃ is a construction tree combining the field function of the initial terrain f and the

scalar functions of the blocks bi.

The cubic tile C is virtually tiling R
3, and only the blocks Bi that straddle the vertical parts of the

terrain are replicated. To avoid explicit instantiation, we propose an original selective field function

replication operator inspired from Stolte 2002 that allows to virtually replicate the field functions bi of

the blocks only over the vertical parts of the input terrain.

8.3. Block tile generation

8

141

8.3 Block tile generation

The key process in the formation of blocks is fracturing. In geomorphology, fractures are represented

and simulated using discs that define the formation of blocks by breaking the continuity of the bedrock.

From this observation, we propose a procedural and controllable method to simulate the different

types of block formations as found in nature. We address the generation of blocks tiling space. In

the following section, we consider periodic tiling out of clarity, the generation of aperiodic tiling using

Wang Cubes (Culík 1996) or Corner Cubes (Lagae et al. 2006a; Peytavie et al. 2009a) is a direct technical

generalization of this work. Therefore, we address the generation of blocks in a cubic tile C of size s
(the implementation uses a cube with size s ≈ 20m). The algorithm proceeds in two steps as depicted

in Figure 8.4.

Fr
ac

tu
rin

g

B
lo

ck
 g

en
er

at
io

n

Clusters G
Fractures D

i Blocks B iCubic tile C

Points P

k
Bi

Field function b (p)i

Gip

FIGURE 8.4: Overview of the blocks generation pipeline inside a cubic tile C. We first compute a
nearest neighbor graph G over a set of sample points P inside the tile. Fracturing discs D remove edges
crossing fractures. We extract clusters Gi as the set of disconnected sub-graphs, and generate implicit
primitives Bi for each cluster. For the sake of clarity, the method is depicted in 2D and edges of G are
not represented.

Fracturing. Starting from an initial set of points P = {pk} sampling the cubic tile, we compute the

geometric nearest neighbor graph G over this set. A set of fractures D = {Di} where Di are discs is

then generated using procedural rules. These fractures cut edges from the graph, thus creating connected

sub-graphs called clusters and denoted as Gi that will finally form the blocks.

Implicit primitive generation. The low-resolution geometry of the blocks is defined as the convex

hull of the point sets for every cluster Gi. For every block, we define a scalar function bi that computes

a signed distance bound to the surface of the block. Its corresponding construction tree combines the

planes of the convex hull using a smooth intersection operator. The convex blocks are responsible for

the mesoscale details of the bare rock. We finally apply a new gradient-based warping operator for

generating the small-scale volumetric details.

8.3.1 Fracturing

The fracturing process starts by generating a set of sample points pk inside the cube, using a Poisson

sphere distribution. Experiments demonstrated that a regular sampling leads to aliasing with unnatural

axis-aligned fractured shapes.

142

8

Chapter 8. Modeling rocky scenery using implicit blocks

The Poisson radius r influences the size and shape of the blocks. Higher radius values yield tiles

with fewer points inside, which in turn leads to blocks with convex shapes made of fewer polygonal

faces after the fracturing process. For a cubic tile size of s ≈ 20m, we generate points with a Poisson

radius r ≈ 10 cm which leads to ≈ 14 000 points inside the tile. After fracturing, each individual block

contains between 80 and 150 sample points (see Table 8.1). We then compute the nearest neighbor graph

G connecting the set of points P using r as the neighboring distance threshold, i.e. an edge between

points pi and pj exists if ‖pi − pj‖ < r.

Fractures Di(ci, ri,ni) are defined as discs in space characterized by their centers ci, radii ri and

normal orientation ni. Geomorphological types are distinguished by the way fractures are distributed in

the cube, i.e. by the following parameters: number of fractures, average radius size, distribution of disc

centers, and relative orientations. Without loss of generality, discs centers ci are randomly generated in

the cube using a Poisson sphere sampling with an average radius of ≈ 2m. Both ri and ni distributions

are tuned according to the block type (see Figure 8.5).

The user may control the fracturing process either by tuning the disc distribution parameters, or by

placing specific fractures in the cubic tile, or by directly placing several authored blocks in the tile (see

Figure 8.6), and the system will adapt. It is also possible to increase the overall amount of fracture by

decreasing the Poisson radius of the fracture centers distribution. Other disc sampling strategies could be

used, however we found Poisson sampling practical for obtaining regular-pattern-free distributions with

a practical control over the disc centers spacing.

The following paragraphs explain the different fracture distributions, as described in Palmstrom 2001

and their control parameters.

Polyhedral Tabular

Equidimensional Rhombohedral

FIGURE 8.5: Different types of blocks generated with different disc distributions.

Equidimensional block type has three dominant sets of fractures, approximately orthogonal, with

occasional irregular fractures, giving almost cubic-shaped blocks. Prismatic blocks are similar in shape

but are formed under slightly more irregular fracture distributions. For these types, normals ni are

8.3. Block tile generation

8

143

determined using a random axis-aligned direction. Radii ri are randomly chosen in an interval given by

a user parameter. In our experiments, we set the radii to ≈ 5m.

Polyhedral type shows irregular small blocks without explicit arrangement into distinct sets. This type

requires more fractures due to the completely stochastic essence of the distribution, therefore we set the

radius of the fracture centers distribution to ≈ 1m and create more fractures.

Rhombohedral blocks have three (or more) dominant mutually oblique sets of fractures, giving oblique-

shaped blocks. The parameters are the same as for equidimensional blocks, but with tilted axis-aligned

directions to obtain diagonal orientations.

Tabular block type has one dominant set of parallel fractures orthogonal to a dominant axis direction,

for example bedding planes, with other non-persistent fractures; thickness of blocks is much lower than

length or width. Discs orthogonal to the dominant axis orthogonal have a large radius equal to the size s
of the cubic tile C, whereas the other discs parallel to the two orthogonal axes occur less frequently, and

have with small radii ri ≈ s/10.

Columnar type is composed of several (usually more than three) sets of continuous, parallel fractures.

The length is much greater than other dimensions.

Type #P #D #B #P i Time

Equidimensional 14 524 15 125 110 6.9

Rhombohedral 14 589 24 78 161 12.0

Polyhedral 14 532 44 100 140 25.4

Tabular 14 554 30 82 143 16.3

TABLE 8.1: Statistics for the generation tiles: number of points #P , number of fracture discs #D,
number of blocks #B, average number of points #P i inside a block Bi, and generation time (in seconds).

RhombohedralTabular

FIGURE 8.6: Example of user-control during the fracturing step: the user authored specific tabular
blocks (left), and rhombohedral blocks (right) inside an equidimensional block tile.

The next step consists in removing edges cut by a disc Di and then create clusters Gi of connected

nodes pk. This is performed by using a greedy algorithm: starting from a random point, aggregation

propagates through the graph until no more points can be connected. Formally, an edge pjpk is kept if it

144

8

Chapter 8. Modeling rocky scenery using implicit blocks

does not intersect any fracture:

∀Di ∈ D, Di ∩ pjpk = ∅

Finally, we check that all the points in a given cluster are visible to each other, i.e. that fractures

do not cut an edge connecting any pair of points in the cluster. This guarantees that clusters should not

spread around fracture discs, which would create blocks that do respect the constraints.

The complexity of the fracturing step depends on the number of fractures #D: a highly fractured

cube will require more intersection tests between edges of the graph and the discs. Table 8.1 reports

some statistics for the different types illustrated in Figure 8.5. Taken individually, blocks have relatively

simple shapes; a key aspect is the coherency of the generation process, which takes into account the

fracture distribution and creates blocks in contact.

8.3.2 Implicit block generation

Recall that we aim at generating an amplified terrain model T̃ as an implicit surface. We extend the

signed distance field representation introduced in Chapter 7 and 6 with new primitives and operators to

represent the mesoscale blocks along with their small-scale details. We create the 1-Lipschitz signed

distance function bi : R
3 → R from the previously computed clusters Gi as a construction tree defined as

the smooth-intersection of half-spaces forming a base convex shape, and then deformed using a gradient-

based warping operator (Figure 8.7).

Smooth intersection

Set of planes H

Gradient warping

Prismatic Tabular

FIGURE 8.7: Simplified hierarchical representation of blocks Bi: the base convex shape is defined as the
smooth intersection of a set of plane primitives H, and procedurally warped.

We first compute the convex hull of each cluster and extract a corresponding polygonal mesh Mi.

We compute the planes Hk = (ok,uk) associated to every polygon of Mi such that their normal uk

should be oriented towards the exterior of Mi. The corresponding scalar function of the convex base

ci is defined as the smooth intersection of the half-spaces functions hk associated to planes Hk. Every

half-space is defined by the signed distance to the plane hk(p) = (p−ok) ·uk. The final implicit convex

blocks Bi are finally defined as:

bi(p) = ci ◦ ω−1(p)

where ci(p) denotes the function associated to the block Bi, and ω−1 denotes a gradient-based warping

operator modeling small-scale details. Should the points of the cluster Gi be coplanar, or contain less

than 3 points, we define the base geometry as a thick polygon, line segment or point primitive.

Smooth convex base. Using a traditional intersection operator (Wyvill et al. 1999) defined as fA∩B =
max(fA, fB) creates gradient discontinuities (Figure 8.8) which prevents the use of gradient-based warp-

ing as the resulting field function would no longer be continuous. Therefore, we use the smooth inter-

section operator introduced in Barthe et al. 1998 over the n planes of the block Bi. Without loss of

8.3. Block tile generation

8

145

Continuous gradient

Smooth intersectionIntersection

f A ∩ B~

Gradient discontinuities

f A ∩ B

Planes H k

FIGURE 8.8: Smooth intersection generates a convex block shape with rounded edges and preserves the
continuity of the gradient ∇ci, therefore allowing a correct gradient-based warping.

generality, we consider the intersection in the case of two half-spaces A and B. The field function of the

smooth intersection A∩̃B is parameterized by a radius R and defined as:

fA˜∩B = max(fA, fB)−Rk(fA, fB)
3/6

k(fA, fB) = max(1− |fA − fB|/R, 0)

Higher values for R lead to smoother shapes, whereas smaller values preserve sharp features (we set

R = 25 cm). Since the smooth intersection operator is not associative, the order in which intersections

are performed may influence the final scalar field. In practice, the impact of the ordering is limited

and appears not to have any visual impact over the block shape. Different operators could also be used

(Gourmel et al. 2013), as long as they do not introduce gradient discontinuities. This operator provides

a C0 gradient for the convex primitive and is also 1-Lipschitz (see Appendix A.1 for a demonstration).

Surface details. Adding surface details to implicit surfaces is a challenging problem as implicit sur-

faces do not provide an explicit parameterization. Existing methods rely either on interactive authoring

(Sugihara et al. 2010) or require an explicit parameterization of the implicit surface (Zanni et al. 2012),

and do not lend themselves for generating the surface details of blocks. We introduce a new gradient-

based warping operator (Chapter 5 Section 5.6.1) for adding details to any implicit surfaces, taking inspi-

ration from tri-planar projection (Geiss 2008). This warping, applied for every block, does not require an

explicit parameterization of the surface, and introduces small-scale volumetric details as displacements

that enhance the model. Figure 8.9 shows the effect of warping with different relief functions d encoded

as images. The operator is defined as:

ω−1(p) = p+ δ(p)

Let ĝ(p) = ∇b(p)/‖∇b(p)‖ denote the normalized gradient. Let γi(p) : R3 → R
2 denote the pro-

jection of p on the i-th plane, namely xy, xz and yz. The function δ(p) : R3 → R
3 computes the

volumetric warping of p according to a displacement function d : R2 → R:

δ(p) = ĝ(p)

3∑
i=0

(αi ◦ ĝ(p)) · d ◦ γi(p)

The weighting function αi : R3 → R weights the contributions of the three displacements d ◦ γi(p)
according to the scalar product between the normalized gradient and the unit axis-aligned vectors ui:

αi(p) = |g(p) · ui|.

146

8

Chapter 8. Modeling rocky scenery using implicit blocks

FIGURE 8.9: Examples of gradient-based warping with different reliefs applied to a sphere primitive.

The function d : R2 → R computes the displacement distance and can be effectively defined either as

a procedurally defined turbulence, or from real displacement images. It is computed for every projection

of the point p, thus three times. Figure 8.10 shows the effect of gradient warping for the tabular type.

This gradient-method warping can be applied to other implicit surface models such as the Blob Tree

(Wyvill et al. 1999).

Blocks Warped Blocks

FIGURE 8.10: Tabular block tile without warping (left) and after gradient-based warping (right): this
new operator allows us to create highly detailed blocks without holes.

8.4 Terrain amplification

The amplification process aims at generating a modified terrain T̃ = T ∪ R defined as the union of T
and the replication R of some of the blocks Bi from the tile C over the bare vertical walls of the cliffs.

Let f denote the scalar field of the initial terrain model, the replication operator transforms f into an

amplified model f̃ .

Infinite replication of a scalar field bi over the entire space, first addressed in Stolte 2002, can be

obtained by directly computing bi with the modulo between the argument point p and the size s of the

tiling cube: bi(pmod s) with pmod s = p − s �p/s�. The challenge consists in computing the scalar

fields bi only for the blocks Bi that straddle the terrain at certain positions, therefore according to the

field function representing the terrain f . We employ a presence function e : R3 → {0, 1} to evaluate

whether a block should be replicated or not.

For every block Bi, we define a corresponding anchor point ai that will be used to evaluate its pres-

ence. Here we present the concept with only one anchor point per block out of clarity, but the method

8.5. Results

8

147

Tabular Equidimensional

FIGURE 8.11: A canyon amplified with equidimensional blocks located at the bottom of the canyon, and
tabular blocks placed on the higher parts of the cliff walls.

can be easily generalized for a set of anchor points. Recall that �p/s� denote the integer coordinates

of the virtual cell containing p. Blocks are selectively replicated by computing the presence e function

at the virtual anchor point in world space ai + s �p/s�. The replication operator is a function t which

defines its field function as the union of all block field function bi times their presence function ei.

t(p) = max
i

bi(pmod s) ei(ai + s �p/s�)

The final function f̃ of the terrain is defined as f̃ = max(f, t). More precisely, the evaluation of the

replication operator at a point p is performed as follows. We evaluate in which cell of the grid lies p,

using a modulo operation on the floating point coordinates of p. We compute the contribution of each

block function bi, virtually translated in the cell for the point p.

If the distance from p to a border of a cell is less than a given threshold we compute the contribution

in neighboring cells to account for blocks straddling C. Therefore, we compute the total contribution as

the union between blocks in the current cell and 2, 4 or 8 neighboring cells.

In the case of a set A = {ak} of several anchor points per individual block Bi, the presence function

ei computes the percentage of anchor points ak of Bi which satisfy geometric criteria. In our implemen-

tation, we replicate a block if more than half, i.e. #A/2, of the anchor points satisfy e(ak) = 1.

The presence function can be any combination of a variety of criteria; here we briefly review some

important ones that allow for the automatic placement of blocks over the vertical walls, and that provide

control by prescribing a geological strata definition as presented in Chapter 6.

We first define criteria based on the distance to the surface: a block can be replicated only if enough

anchor points ak are in a given distance range [va, vb] to the surface, i.e f(ak) ∈ [va, vb]. To only replicate

blocks on steep slopes and vertical walls, we compare the direction of the gradient with the up direction

uz; recall that g denotes the normalized gradient of the terrain, we set e(ak) = 1 if |g(p) · uz| < ε,

with ε the maximum slope parameter. Finally, we extend on the implicit geological function γ defined

in Chapter 6 and define different bedrock material at different location in the domain. Therefore, an

anchor point ak satisfies the replication criteria if the material γ(ak) corresponds to the material of the

underlying block Bi.

Note that the presence function is generic and can be easily extended to account for other criteria such

as the presence of a water level, trees and obstacles.

8.5 Results

We implemented the block generation and replication algorithms in C++ and all the terrains were gener-

ated on a desktop computer equipped with Intel® Core i7, clocked at 4GHz with 16GB of RAM. The

148

8

Chapter 8. Modeling rocky scenery using implicit blocks

implicit surface representing the amplified terrain was polygonized (Wyvill et al. 1986) and the resulting

mesh directly streamed into Vue Xstream® to produce the final images (Figures 8.5, 8.6, 8.9, 8.10, 8.11,

8.12, 8.13, 8.14). The code is available at:

https://github.com/aparis69/Rock-fracturing

Table 8.2 reports some statistics about the different scenes. Contrary to noise-based hyper-textures that

only require a few dozens of parameters, the implicit representation needs to store the hierarchical models

for the different blocks; the required amount of memory remains small (less than a megabyte).

Scene Figure Size #R Memory

Sea cliff 8.1, 8.14 100× 100 959 0.57

Canyon 8.11 100× 50 1041 0.54

Sea spire 8.3 150× 150 1680 0.53

TABLE 8.2: Statistics: size (in meters), number of replicated blocks #R, and amount of memory (in
megabytes) needed to store the field functions bi representing the blocks Bi in the cubic tiles C.

8.5.1 Control

Figure 8.5 shows a variety of types of blocks: different fractures distributions were prescribed (Sec-

tion 8.3) and lead to different shapes such as polyhedral, rhombohedral or tabular blocks. The user can

tune the parameters of different fractures within a tile, and our method automatically computes block

shapes that adapt to these constraints; it is also possible to sculpt specific blocks and let the system auto-

matically adapt and generate the remaining ones, as demonstrated by Figure 8.6, where the user placed

specific tabular or rhombohedral blocks at the desired locations in the tiles.

Figure 8.11 illustrates user-control over the block placement: an equidimensional bedrock strata was

defined by the user at the bottom of the cliff resulting in regular cliff walls. A second strata with tabular

type was prescribed above the previous one and tabular blocks were automatically added to account for

the specified material.

In practice, it takes a few iterations for the user to tune the placement rules of the different block tiles

for a specific scene; the main limitation remains the computationally intensive visualization of the final

implicit surface (see Section 8.5.4). Figure 8.11 also demonstrates the effectiveness of control based

on the computation of the gradient ∇f for detecting the vertical parts of the terrain: no blocks were

generated on the top of the plateau, thus keeping the ground flat where trees appear. Figure 8.14 shows

different styles of blocks applied to a sea cliff, completely changing the overall mesoscale geometry of

the final landscape.

Microscale details are defined by using the gradient-based warping operator combined with different

displacement maps as showcased in Figure 8.9. The relief function d can be painted by the user; proce-

durally defined by combining noise functions in construction tree of scalar primitives (Génevaux et al.
2015) or scanned from real rock surfaces.

8.5.2 Comparison with other methods

While the sum of scaled-noise functions (Ebert et al. 1998) can, in theory, produce an infinite amount

of details, the self-similar geometries resulting from the fractal process do not capture the characteristic

8.5. Results

8

149

structures and patterns observed on real terrains. Figure 8.12 shows a comparison of different methods

used to add details onto a sphere. Hyper-textures (Perlin et al. 1989; Ebert et al. 1998) may generate holes

and disconnected parts, star-shaped primitives with a radial turbulence (Chapter 6) avoids artifacts but

both methods lack geological structure. In contrast, fracturing generates geomorphologically consistent

blocks, and gradient-based warping allows for the generation of small-scale details captured from real

rocks. Hyper-textures (Perlin et al. 1989) could also be used to add small-scale details, however gradient-

based warping allows for better control over the displacement by using reliefs from real rocks.

Hyper texture Radial displacement Our method

FIGURE 8.12: Comparison of different methods used to add details onto an implicit sphere, with an
ambient shading (top) and a high resolution texture (bottom).

In terms of mesoscale details, implicit blocks improve existing volumetric terrain models. Global

warping operators (Gamito et al. 2001) do not provide sufficient accuracy to reproduce the complex

geometry of the vertical parts of the bedrock. Voxels and features curves-based approaches (Becher et
al. 2019) are limited by the grid resolution and generate smooth large-scale terrains.

While the system described in Chapter 6 can generate large scale landforms such as arches, over-

hangs, and simulate large scale erosion effects, the vertical surface of cliffs lacks geometrical patterns

and bedrock details. Although primitive-based implicit surfaces can theoretically reproduce small-scale

details, their modeling comes at the price of defining a huge number of small primitives in the construc-

tion tree, a memory-intensive process. In contrast, the memory-efficient tiling and replication function

implicitly tile space with a union of blocks to amplify and add details to cliffs.

In spirit, generating and replicating instances resembles the Ghost Tiling approach (Guérin et al.
2016), and the rock pile generation based on aperiodic tiling (Peytavie et al. 2009a) that instantiate rock

meshes. Our approach differs in the sense that blocks are defined as implicit primitives and virtually

replicated by using a specific operator combined with a presence function, which allows us to combine

them to produce a consistent volumetric model. Moreover, these methods would need to be improved to

account for fracture distributions to guarantee the replicability of certain block types.

8.5.3 Compatibility with other techniques

An important aspect of this work is that it is compatible with other terrain modeling techniques. The

primitives and operators extend the implicit surface model presented in previous chapters (Chapter 7 and

150

8

Chapter 8. Modeling rocky scenery using implicit blocks

Chapter 6) for modeling volumetric terrains. Terrains modeled using the hybrid layer-stack convolution-

surface framework described in Peytavie et al. 2009b can also be amplified with mesoscale details, as

demonstrated in Figure 8.13.

Arches Our method

FIGURE 8.13: Side by side comparison showing a canyon with smooth overhangs produced by the layer-
stack model, and the rocky amplified vertical-wall generated by blocks.

Finally, although we used implicit surfaces for modeling the complex mesoscale features of terrains,

the block generation algorithm (Section 8.3) can also produce a mesh representation Mk for every block

Bk in the tile. In this context, our method can be streamed in production environments using mesh

representations and is compatible with standard instantiation techniques such as the ones described in

Peytavie et al. 2009a or Guérin et al. 2016 to distribute block meshes over the vertical parts of the input

terrain.

8.5.4 Limitations

The block tile generation process (Section 8.3) can take up to 30s because of the many intersection tests

between segments (linking two points in the tile) and fractures discs. However, time was not spent on

optimizing this step of this pipeline, since it is done once in pre processing. A more significant limitation

is that block primitives can only model convex shapes. This could be resolved by developing primitives

more suited for non-convex shapes, but it is beyond the scope of this research and is left as future work.

Although implicit surfaces provide a powerful, sparse, and compact framework for generating com-

plex volumetric structures, their visualization remains computationally intensive. Particularly, the com-

putation of the field function bi for one single block Bi requires many half space distance computations,

combined with a warping operator: blocks could be optimized with a limited number of primitives to

reduce the overall number of field function queries.

Using a limited set of block tiles sometimes yields visible repetitions when applied to flat cliff walls

parallel to the tiling directions. Aperiodic tiling using Wang cubes (Culík 1996) or Corner Cubes (Lagae

et al. 2006b; Peytavie et al. 2009b) would reduce visible artifacts, yet at the price of a larger number of

pre-computed tiles and, therefore, a more memory demanding implementation. Finally, the procedural

fracturing tool only provides an indirect control over the distribution of fractures, and thus the shape

8.6. Conclusion

8

151

Tabular Equidimensional Rhombohedral

FIGURE 8.14: Different styles of blocks generated on a cliff and arches. From left to right, tabular block
style, equidimensional blocks and finally rhombohedral block style.

of the blocks: a better interactive material editing tool would allow the user to author a wider range of

shapes conforming to his intent.

8.6 Conclusion

We have introduced an implicit representation of blocks for automatically generating mesoscale and

microscale details on the vertical walls of rocky cliffs, crags, or promontories. The implicit surface

description allows generating realistic shapes enhanced with details organized into patterns and structures

as observed in geomorphology. We rely on the decomposition of a bedrock tile into blocks using a

fracturing approach based on classifications in geomorphology. Moreover, it is compatible with other

terrain modeling techniques: the block generation algorithm can additionally produce triangle meshes,

which in turn can be instantiated to enhance heightfields.

A direct extension of this work would consist of generalizing to different block types, particularly

prismatic and columnar configurations that require specific fractures distributions. Investigating the ap-

plication of a gradient-based warping operator for small scale details to other implicit surface models

would be another interesting research topic.

9

Chapter 9

Conclusion

We introduced several novel contributions to the field of terrain modeling and generation. Below, we

briefly summarize the key takeaways of our work, and finally conclude by outlining future research

perspectives.

Meanders DunesKarstic Networks

FIGURE 9.1: We introduced novel simulations inspired by geomorphology for reproducing complex
terrain landforms, such as meandering rivers with oxbow lakes, karstic networks with tunnels and cham-
bers, and desert landscapes made of sand dunes and yardangs. In each case, we took care of providing
efficient control tools and allowing for interactivity.

Geomorphological simulations. Even though methods exist for generating certain types of terrain

landforms, many macroscale features cannot be reproduced by existing techniques. These are only avail-

able through general authoring frameworks, which usually involve tedious editing from the user. In this

thesis, we introduced new geologically-inspired methods for reproducing complex terrain landforms,

such as meandering rivers (Chapter 3), desert landscapes (Chapter 4), and karstic networks (Chapter 7).

We developed direct and indirect authoring tools that can be used by artists for precisely controlling the

generated results (Figure 9.1). Our methods run at interactive framerates, which gives almost instant

visual feedback to the user while they adjust the parameters of the model.

One fundamental idea takes its inspiration from past and recent research in geomorphology. We advo-

cate that classifications, numerical models, and measurements on real terrains made by geomorphologists

and geologists can have numerous applications in Computer Graphics, where we aim at providing con-

trol and interactivity while remaining as realistic as possible. However, providing meaningful validation

techniques is a known issue for procedural and simulation methods, but it is required to ensure that the

models accurately reproduce natural phenomena. To tackle this issue, we borrowed ideas from models

in natural sciences and compared our results against real world data, for instance in Chapter 3 in the case

of meandering rivers, and Chapter 7 for karstic networks.

Volumetric terrain modeling. The vast majority of terrain landforms can be represented by elevation

models. However, volumetric features such as arches, overhangs, and karstic networks form distinctive

154

9

Chapter 9. Conclusion

elements of virtual terrains and have a considerable visual impact, but require a fully volumetric rep-

resentation. Existing volumetric models are memory-consuming, and are thus not compatible with the

ever increasing need for larger worlds. In contrast, we introduced a novel, memory-optimized model for

encoding volumetric landforms based on signed distance functions (Figure 9.2). We showed that this

representation is amenable to modifications by the user, can be used as a basis for complex generation

algorithms (such as invasion-percolation in Chapter 6 or greedy block tile generation in Chapter 8), and

allows the efficient modeling of large-scale terrains with sparse volumetric features. Representing local

volumetric landforms over large-scale terrains is a complex problem that previous models could not solve

efficiently, and we think that implicit surfaces provide a powerful framework suited for this task.

Large-scale overhangs Karstic network Detailed blocks

FIGURE 9.2: In the second part of this thesis, we developed a new model suited for representing volu-
metric landforms in large-scale terrains. This memory-efficient representation is based on a construc-
tion tree of implicit primitives and operators, encoded as 1-Lipschitz signed distance functions. We
showed that this model can be used with generation techniques, such as invasion-percolation algorithms,
geologically-based anisotropic shortest path, and greedy block tiles generation.

Research perspectives

Our work opens several interesting research directions that we think are worth investigating. Here, we

detail some ideas and propose research plans.

Data-driven volumetric landforms

Several chapters in this document present efficient models for representing volumetric terrains based on

implicit surfaces. The generated landforms are defined procedurally, either as arrangement of skeletal

primitives (Chapter 6), extruded profiles along segments (Chapter 7), or convex primitives enhanced with

gradient-based warping (Chapter 8). These procedural approaches are fast, easy to control for the user,

but the generated landforms may not capture certain characteristics of real terrain landforms. A possible

improvement would be to apply a more data-driven approach to the problem of volumetric features gen-

eration, in the spirit of example-based synthesis techniques traditionally performed on elevation models.

However, a large amount data would be needed for such method to work well. It would be interesting to

investigate the possibility of using real terrain model captured by LiDAR techniques, which are becom-

ing more popular and easier to obtain. These models may require a pre-processing step in order to be

used for synthesis. Thus, the first challenge stems from the construction of a dictionary of high-quality

clean examples. The second challenge lies in the synthesis algorithm that must be adapted to the vol-

umetric context. This may be done using traditional techniques such as Orthogonal Matching Pursuit

(OMP) (Guérin et al. 2016; Argudo et al. 2017), or another dedicated approach adapted for volumetric

landforms.

Chapter 9. Conclusion

9

155

Inverse procedural modeling

In Chapter 4, we introduced a novel simulation for generating desert landscapes with different types

of sand dunes and yardang features. Although we developed several authoring tools for the user, the

temporal evolution of the simulation makes it difficult to control. For instance, it is currently not possible

to prescribe a specific dune at a particular location in the scene. An interesting research perspective thus

lies in the inverse modeling problem, where we aim at determining the initial conditions and parameters

of the simulation required to obtain a specific scene in the output. This would allow users to provide a

low resolution sketch of their intent specifying the location and type of landforms, and let the simulation

output a result as close as possible to the sketch. To the best of our knowledge, this promising research

direction has not yet been investigated.

Inverse procedural modeling could also be applied to volumetric terrain landforms, and the implicit

model that we introduced in (Chapters 6, 7, and 8) are particularly suited for this task. Recent works

in machine learning have been interested in representing real geometric objects using signed distance

functions learned by a neural-network, either from a finite set of views using a NeRF (Mildenhall et
al. 2020) or from a point cloud with a SIREN network (Sitzmann et al. 2020). The latest work from

(Müller et al. 2022) shows that it is possible to train such networks and render the result in real-time,

even for complex shapes. Using such techniques might allow the integration of data from real terrains

seamlessly as new primitives in the signed distance field model, and would greatly improve the realism

of the generated landscapes.

Simulating macroscale terrain landforms

Braided rivers Coastline Delta

FIGURE 9.3: Braided rivers (from Greg O’Beirne), a coastline (from Lesbats Stephane), and a river
delta (from here).

We took inspiration from classifications and methods from geomorphology to present new simula-

tions for generating various macroscale terrain landforms, such as meandering rivers, deserts, or karstic

networks. In light of the discussion in Chapter 2, we observe that many other terrain landforms cannot

be modeled by existing techniques. For instance, braided rivers, coasts, and river deltas (Figure 9.3) have

never been investigated in Computer Graphics, and modeling these features would currently involve a

tedious authoring session by a user. We think that the simulation or procedural generation of these land-

forms is a promising avenue of future research that may further extend the scope of macroscale landform

generation in virtual terrains. As we did for a variety of landforms (such as Chapter 3 or Chapter 4),

one could take inspiration from models in geomorphology. For instance, cellular-models for reproducing

braided river trajectories (Murray et al. 1997; Thomas et al. 2002) may be adapted in the context of

terrain generation. Invasion-percolation models (Wilkinson et al. 1983) have been applied for simulating

the evolution of coastlines, and coupling such simulation with procedural primitives (Génevaux et al.
2015) to obtain a detailed terrain with beaches and cliffs may be possible.

156 Chapter 9. Conclusion

Modeling of mesoscale details and materials

Arch

FIGURE 9.4: Complex terrain
made of different materials and
mesoscale details. Picture from
Nigel Swales.

In this thesis, we developed new techniques for generating mesoscale

structures on virtual terrains (Chapter 8). However, we focused on the

modeling of arrangements of blocks often found on steep mountain

slopes and coastal cliffs, but mesoscale terrain landforms encompass a

much wider range of features. Small fractures, bedrock irregularities,

and details at the frontier between multiple materials (such as grass

and bedrock) in the range of 1cm− 1m are key features that particu-

larly contribute to the complex aesthetic of real terrains (Figure 9.4),

and cannot be fully captured by texture or geometry alone. The video

game and cinema industry currently relies on physically-based mate-

rials with roughness, normal, height, displacement, albedo, and spec-

ular maps to encode more information and represent more realistic and complex scenes. Still, these

materials are limited regarding the mesoscale range we identified, as they cannot encode complex geom-

etry. We think that the modeling of such mesoscale materials is a difficult problem that, if solved, would

greatly enhance the realism of virtual worlds.

Efficient rendering of signed distance functions

We proposed modeling objects using 1-Lipschitz signed distance functions by computing the global Lip-

schitz constant λ of the underlying node. The resulting field function is defined as f(p)/λ, which in turn

provides guarantees regarding the convergence of fundamental algorithms, such as sphere tracing (Hart

1996). Another approach would be to apply segment tracing introduced by Galin et al. 2020. The method

computes a local Lipschitz bound over a limited domain, such as the extent of a segment or a sphere, and

adapts the marching step using this tighter bound, leading to less field function evaluations. This method

is particularly efficient for rays passing close to the surface of the object at grazing angles (Figure 9.5).

The method has been applied to Blob Tree models (Wyvill et al. 1999), which use compactly-supported

primitives by combining the distance with a falloff function. In the case of signed distance fields, only

the distance function remains, so only the gradient bound of the node should be computed. The chal-

lenge now lies in the efficient computation of the gradient of primitives and operators, which may not be

trivial. Still, we think that applying segment tracing to signed distance functions may provide significant

speedups and is thus a promising research direction.

Object

Lo
ca

l
(e

)
G

lo
ba

l

0
10

24
51

2

f

FIGURE 9.5: Comparison between sphere tracing (Hart 1996) (top) and segment tracing (Galin et al.

2020) (bottom) regarding field function evaluations. Image from (Galin et al. 2020).

Bibliography

Araújo, B. R. de, Daniel S. Lopes, Pauline Jepp, Joaquim A. Jorge, and Brian Wyvill (2015). “A Survey

on Implicit Surface Polygonization”. In: ACM Comput. Surv. 47.4, 60:1–60:39. ISSN: 0360-0300.

Argudo, Oscar, Carlos Andujar, Antonio Chica, Eric Guérin, Julie Digne, Adrien Peytavie, and Eric

Galin (2017). “Coherent multi-layer landscape synthesis”. In: The Visual Computer 33.6, pp. 1005–

1015.

Argudo, Oscar, Eric Galin, Adrien Peytavie, Axel Paris, James Gain, and Eric Guérin (2019). “Orometry-

based Terrain Analysis and Synthesis”. In: ACM Transactions on Graphics (SIGGRAPH Asia 2019)
38.6, 199:1–199:12.

Argudo, Oscar, Eric Galin, Adrien Peytavie, Axel Paris, and Eric Guérin (2020). “Simulation, Modeling

and Authoring of Glaciers”. In: ACM Transactions on Graphics (SIGGRAPH Asia 2020) 39.6, 177:1–

177:14.

Baas, Andreas C.W. (2002). “Chaos, fractals and self-organization in coastal geomorphology: simulating

dune landscapes in vegetated environments”. In: Geomorphology, pp. 309 –328.

Barbier, Aurelien and Eric Galin (2004). “Fast Distance Computation Between a Point and Cylinders,

Cones, Line-Swept Spheres and Cone-Spheres”. In: Journal of Graphics Tools 9.2, pp. 11–19.

Barnes, Richard, Clarence Lehman, and David Mulla (2014). “Priority-flood: An Optimal Depression-

filling and Watershed-labeling Algorithm for Digital Elevation Models”. In: Computers & Geo-
sciences 62, pp. 117–127. ISSN: 0098-3004.

Barr, Alan H. (1984). “Global and Local Deformations of Solid Primitives”. In: SIGGRAPH Computer
Graphics 18.3, pp. 21–30. ISSN: 0097-8930.

Barthe, Loïc, Véronique Gaildrat, and Rene Caubet (2001). “Extrusion of 1D implicit profiles: Theory

and first application”. In: International Journal of Shape Modeling 7, pp. 179–198.

Barthe, Loïc, Véronique Gaildrat, and René. Caubet (Apr. 1998). “Combining Implicit Surfaces with soft

blending in a CSG tree”. In: CSG Conference Series, pp. 17–31.

Beardall, M., M. Farley, D. Ouderkirk, C. Reimschussel, J. Smith, M. Jones, and P. Egbert (2007). “Gob-

lins by Spheroidal Weathering”. In: Proceedings of Third Eurographics Conference on Natural Phe-
nomena, pp. 7–14.

Becher, Michael, Michael Krone, Guido Reina, and Thomas Ertl (2017). “Feature-based Volumetric

Terrain Generation”. In: Proceedings of the 21st ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games. I3D ’17, 10:1–10:9.

— (2019). “Feature-Based Volumetric Terrain Generation and Decoration”. In: IEEE Transactions on
Visualization and Computer Graphics 25.2, pp. 1283–1296.

Belhadj, Farès and Pierre Audibert (2005). “Modeling Landscapes with Ridges and Rivers: Bottom Up

Approach”. In: Proc. International Conference on Computer Graphics and Interactive Techniques in
Australasia and South East Asia. ACM, pp. 447–450.

Benes, B. and X. Arriaga (2005). “Table Mountains by Virtual Erosion”. In: Eurographics Workshop on
Natural Phenomena. The Eurographics Association.

Benes, Bedrich (2007). “Real-Time Erosion Using Shallow Water Simulation”. In: Workshop in Virtual
Reality Interactions and Physical Simulation "VRIPHYS" (2007). The Eurographics Association.

158 Bibliography

Beneš, Bedřich and Rafael Forsbach (2001). “Layered Data Representation for Visual Simulation of

Terrain Erosion”. In: Proc. Spring Conference on Computer Graphics, pp. 80–85.

Beneš, Bedřich and Toney Roa (2004). “Simulating Desert Scenery”. In: WSCG Proceedings of the 12-
th International Conference in Central Europe on Computer Graphics, Visualization and Computer
Vision, pp. 12–18.

Beneš, Bedřich, Václav Těšínský, Jan Hornyš, and Sanjiv K. Bhatia (2006). “Hydraulic erosion”. In:

Computer Animation and Virtual Worlds 17.2, pp. 99–108.

Borghi, Andrea, Philippe Renard, and Sandra Jenni (2012). “A pseudo-genetic stochastic model to gen-

erate karstic networks”. In: Journal of Hydrology 414-415, pp. 516–529.

Bridson, Robert, Jim Houriham, and Marcus Nordenstam (July 2007). “Curl-noise for procedural fluid

flow”. In: ACM Transactions on Graphics 26.3, 46:1–46:3.

Brosz, John, Faramarz F. Samavati, and Mario Costa Sousa (2007). “Terrain Synthesis By-Example”.

In: Advances in Computer Graphics and Computer Vision. Ed. by José Braz, Alpesh Ranchordas,

Helder Araújo, and Joaquim Jorge, pp. 58–77.

Carli, Daniel Michelon De, Cesar Tadeu Pozzer, Fernando Bevilacqua, and Victor Schetinger (2014).

“Procedural Generation of 3D Canyons”. In: 2014 27th SIBGRAPI Conference on Graphics, Patterns
and Images, pp. 103–110.

Carpentier, Giliam J. P. de and Rafael Bidarra (2009). “Interactive GPU-Based Procedural Heightfield

Brushes”. In: Proceedings of the 4th International Conference on Foundations of Digital Games,

pp. 55–62.

Chiba, Norishige, Kazunobu Muraoka, and K. Fujita (1998). “An erosion model based on velocity fields

for the visual simulation of mountain scenery”. In: The Journal of Visualization and Computer Ani-
mation 9.4, pp. 185–194.

Cojan, Isabelle, Olivier Fouché, Simon Lopéz, and Jacques Rivoirard (2005). “Process-based Reser-

voir Modelling in the Example of Meandering Channel”. In: Geostatistics Banff 2004. Ed. by Oy

Leuangthong and Clayton V. Deutsch. Springer Netherlands, pp. 611–619.

Collon, Pauline, David Bernasconi, Cécile Vuilleumier, and Philippe Renard (2017). “Statistical metrics

for the characterization of karst network geometry and topology”. In: Geomorphology 283, pp. 122

–142.

Collon, Pauline, Vincent Henrion, and Jeanne Pellerin (Nov. 2012). “An algorithm for 3D simulation of

branchwork karst networks using Horton parameters and A*: Application to a synthetic case”. In:

Geological Society of London – Special Publications 370 (1).

Cook, Robert L. (1986). “Stochastic Sampling in Computer Graphics”. In: ACM Transactions on Graph-
ics 5.1, pp. 51–72.

Cooke, R.U., A. Warren, and A.S. Goudie (2006). Desert Geomorphology.

Cordonnier, Guillaume, Jean Braun, Marie-Paule Cani, Bedrich Benes, Éric Galin, Adrien Peytavie, and

Éric Guérin (2016). “Large Scale Terrain Generation from Tectonic Uplift and Fluvial Erosion”. In:

Computer Graphics Forum 35.2, pp. 165–175.

Cordonnier, Guillaume, Marie-Paule Cani, Bedrich Benes, Jean Braun, and Eric Galin (2018a). “Sculpt-

ing Mountains: Interactive Terrain Modeling Based on Subsurface Geology”. In: IEEE Transactions
on Visualization and Computer Graphics 24.5, pp. 1756–1769.

Cordonnier, Guillaume, Pierre Ecormier, Eric Galin, James Gain, Bedrich Benes, and Marie-Paule Cani

(2018b). “Interactive Generation of Time-evolving, Snow-Covered Landscapes with Avalanches”.

In: Computer Graphics Forum 37.2, pp. 497–509.

Cordonnier, Guillaume, Eric Galin, James Gain, Bedrich Benes, Eric Guérin, Adrien Peytavie, and

Marie-Paule Cani (2017). “Authoring Landscapes by Combining Ecosystem and Terrain Erosion

Simulation”. In: ACM Transactions on Graphics 36.4.

Bibliography 159

Corsini, Massimiliano, Paolo Cignoni, and Roberto Scopigno (2012). “Efficient and Flexible Sampling

with Blue Noise Properties of Triangular Meshes”. In: IEEE Transactions on Visualization and Com-
puter Graphics 18.6, pp. 914–924.

Cortial, Yann, Eric Guérin, Adrien Peytavie, and Eric Galin (2020). “Real-Time Hyper-Amplification of

Planets”. In: The Visual Computer, pp. 2273–2284.

Cortial, Yann, Adrien Peytavie, Eric Galin, and Eric Guérin (2019). “Procedural Tectonic Planets”. In:

Computer Graphics Forum 38.2, pp. 1–11.

Crespin, Benoît, Carole Blanc, and Christophe Schlick (1996). “Implicit Sweep Objects”. In: Computer
Graphics Forum 15.3, pp. 165–174.

Crespin, Benoit, Richard Bézin, Xavier Skapin, Olivier Terraz, and Philippe Meseure (2014). “General-

ized maps for erosion and sedimentation simulation”. In: Computers & Graphics 45, pp. 1–16.

Cui, Juncheng, Yang-Wai Chow, and Minjie Zhang (2011). “Procedural generation of 3D cave models

with stalactites and stalagmites”. In: International Journal of Computer Science and Network Secu-
rity 11, pp. 94–101.

Culík, Karel (1996). “An aperiodic set of 13 Wang tiles.” In: Discrete Mathematics 160.1-3, pp. 245–

251.

Damiand, Guillaume and Pascal Lienhardt (2014). Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. A K Peters/CRC Press.

Daviet, Gilles and Florence Bertails-Descoubes (2016). “A Semi-Implicit Material Point Method for

the Continuum Simulation of Granular Materials”. In: ACM Transactions on Graphics 35.4, 102:1–

102:13.

Dearman, W.R. (1991). Engineering geological mapping. Butterworths advanced series in geotechnical

engineering. Butterworth-Heinemann.

Derzapf, Evgenij, Björn Ganster, Michael Guthe, and Reinhard Klein (2011). “River Networks for Instant

Procedural Planets”. In: Computer Graphics Forum 30.7, pp. 2031–2040.

Desbrun, Mathieu and Marie-Paule Gascuel (1995). “Animating Soft Substances with Implicit Surfaces”.

In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques,

pp. 287–290.

Dey, Rahul, Jason G. Doig, and Christos Gatzidis (2018). “Procedural feature generation for volumetric

terrains using voxel grammars”. In: Entertainment Computing 27, pp. 128–136.

Dixon, A. R., G. H. Kirby, and D. P. M. Wills (1994). “A Data Structure for Artificial Terrain Genera-

tion”. In: Computer Graphics Forum 13.1, pp. 37–48.

Dong, Junyu, Jun Liu, Kang Yao, Mike Chantler, Lin Qi, Hui Yu, and Muwei Jian (2020). “Survey of

Procedural Methods for Two-Dimensional Texture Generation”. In: Sensors 20.4.

Dunne, Thomas (1978). “Field studies of hillslope flow processes”. In: Hillslope hydrology, pp. 389–227.

Ebert, David S., Forest Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley (1998).

Texturing and Modeling: A Procedural Approach. 3rd. The Morgan Kaufmann Series in Computer

Graphics. Elsevier.

El-Magd, Islam H. Abou, Osman M. El Hassan, and Sayed M. Arafat (2013). “Quantification of Sand

Dune Movements in the South Western Part of Egypt, Using Remotely Sensed Data and GIS”. In:

Journal of Geographic Information System 5, pp. 498–508.

Emilien, Arnaud, Pierre Poulin, Marie-Paule Cani, and Ulysse Vimont (2015). “Interactive Procedural

Modelling of Coherent Waterfall Scenes”. In: Computer Graphics Forum 34.6, pp. 22–35.

Filipponi, Marco, Pierre-Yves Jeannin, and Laurent Tacher (2009). “Evidence of inception horizons in

karst conduit networks”. In: Geomorphology 106.1, pp. 86–99.

Fournier, Alain, Don Fussell, and Loren Carpenter (1982a). “Computer Rendering of Stochastic Mod-

els”. In: Commun. ACM 25.6, 371–384.

— (1982b). “Computer Rendering of Stochastic Models”. In: Commun. ACM 25.6, 371–384.

160 Bibliography

Franke, Kai and Heinrich Müller (2022). “Procedural generation of 3D karst caves with speleothems”.

In: Computers & Graphics 102, pp. 533–545.

Frantz, Yves, Pauline Collon, Philippe Renard, and Sophie Viseur (2021). “Analysis and stochastic simu-

lation of geometrical properties of conduits in karstic networks”. In: Geomorphology 377, p. 107480.

Freeman, T. Graham (1991). “Calculating catchment area with divergent flow based on a regular grid”.

In: Computer and Geoscience 17.

Frisken, Sarah F., Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones (2000). “Adaptively Sampled

Distance Fields: A General Representation of Shape for Computer Graphics”. In: Proceedings of
the 27th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH’00,

pp. 249–254. ISBN: 1-58113-208-5.

Gain, James, H. Long, Guillaume Cordonnier, and Marie-Paule Cani (2017). “EcoBrush: Interactive

Control of Visually Consistent Large-Scale Ecosystems”. In: Comput. Graph. Forum 36.2, pp. 63–

73.

Gain, James, Patrick Marais, and Wolfgang Strasser (2009). “Terrain sketching”. In: Proc. Symposium
on Interactive 3D Graphics and Games. Boston, USA: ACM, pp. 31–38.

Gain, James E., Bruce Merry, and Patrick Marais (2015). “Parallel, Realistic and Controllable Terrain

Synthesis”. In: Computer Graphics Forum 34.2, pp. 105–116.

Galin, Eric, Eric Guérin, Axel Paris, and Adrien Peytavie (2020). “Segment Tracing Using Local Lips-

chitz Bounds”. In: Computer Graphics Forum 39.2, pp. 545–554.

Galin, Eric, Eric Guérin, Adrien Peytavie, Guillaume Cordonnier, Marie-Paule Cani, Bedrich Benes,

and James Gain (2019). “A Review of Digital Terrain Modeling”. In: Computer Graphics Forum
(proceedings of Eurographics 2019 STAR) 38.2, pp. 553–577.

Galin, Eric, Adrien Peytavie, Eric Guérin, and Bedřich Beneš (2011). “Authoring Hierarchical Road

Networks”. In: Computer Graphics Forum 30.7, pp. 2021–2030.

Galin, Eric, Adrien Peytavie, Nicolas Maréchal, and Eric Guérin (2010). “Procedural Generation of

Roads”. In: Computer Graphics Forum. 2nd ser. 29, pp. 429–438.

Gamito, Manuel and Steve Maddock (2008). “Topological Correction of Hypertextured Implicit Surfaces

for Ray Casting”. In: The Visual Computer 24.6, pp. 397–409.

Gamito, Manuel N. and Kenton Forest Musgrave (2001). “Procedural landscapes with overhangs”. In:

Proc. of the Portuguese Computer Graphics Meeting. Lisbon, Portugal.

Geiss, Ryan (2008). “Generating Complex Procedural Terrains Using the GPU”. In: GPU Gems 3.

Addison-Wesley. Chap. 1, pp. 7–37.

Génevaux, Jean-David, Éric Galin, Éric Guérin, Adrien Peytavie, and Bedřich Beneš (2013). “Terrain

Generation Using Procedural Models Based on Hydrology”. In: ACM Transaction on Graphics 32.4,

143:1–143:13.

Génevaux, Jean-David, Eric Galin, Adrien Peytavie, Eric Guérin, Cyril Briquet, François Grosbellet, and

Bedrich Benes (2015). “Terrain Modelling from Feature Primitives”. In: Computer Graphics Forum
34.6, pp. 198–210. ISSN: 1467-8659.

Gourmel, Olivier, Loïc Barthe, Marie-Paule Cani, Brian Wyvill, Adrien Bernhardt, Mathias Paulin, and

Herbert Grasberger (2013). “A Gradient-Based Implicit Blend”. In: ACM Transactions on Graphics
32.2.

Groh, Christopher, Andreas Wierschem, Nuri Aksel, Ingo Rehberg, and Christof A Kruelle (2008).

“Barchan dunes in two dimensions: Experimental tests for minimal models”. In: Physical review.
E, Statistical, nonlinear, and soft matter physics 78.

Grosbellet, François, Adrien Peytavie, Eric Guérin, Eric Galin, Stéphane Mérillou, and Bedrich Benes

(2016). “Environmental Objects for Authoring Procedural Scenes”. In: Computer Graphics Forum
35.1, pp. 296–308.

Bibliography 161

Guérin, Eric, Julie Digne, Eric Galin, and Adrien Peytavie (2016). “Sparse representation of terrains for

procedural modeling”. In: Computer Graphics Forum (Proceedings of Eurographics) 35.2, pp. 177–

187.

Guérin, Eric, Julie Digne, Eric Galin, Adrien Peytavie, Christian Wolf, Bedrich Benes, and Benoit Mar-

tinez (2017). “Interactive Example-Based Terrain Authoring with Conditional Generative Adversar-

ial Networks”. In: ACM Transactions on Graphics (proceedings of Siggraph Asia 2017) 36.6, 228:1–

228:13.

Guérin, Eric, Eric Galin, François Grosbellet, Adrien Peytavie, and Jean-David Génevaux (2016). “Effi-

cient modeling of entangled details for natural scenes”. In: Computer Graphics Forum (Proceedings
of Pacific Graphics 2016) 35.7, pp. 257–267.

Guérin, Eric, Adrien Peytavie, Simon Masnou, Julie Digne, Basile Sauvage, James Gain, and Eric Galin

(2022). “Gradient Terrain Authoring”. In: Computer Graphics Forum 41.2, pp. 85–95.

Guillén-Ludeña, S., M.J. Franca, A.H. Cardoso, and A.J. Schleiss (2016). “Evolution of the hydromor-

phodynamics of mountain river confluences for varying discharge ratios and junction angles”. In:

Geomorphology 255, pp. 1–15.

Hart, John C. (1996). “Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit

Surfaces”. In: The Visual Computer 12.10, pp. 527–545.

Hartmann, A., N. Goldscheider, T. Wagener, J. Lange, and M. Weiler (2014). “Karst water resources in

a changing world: Review of hydrological modeling approaches”. In: Reviews of Geophysics 52.3,

pp. 218–242. ISSN: 87551209.

Hendrick, Martin and Philippe Renard (2016). “Subnetworks of Percolation Backbones to Model Karst

Systems Around Tulum, Mexico”. In: Frontiers in Physics 4, p. 43.

Henrion, Vincent, Guillaume Caumon, and Nicolas Cherpeau (2010). “ODSIM: An Object-Distance

Simulation method for Conditioning Complex Natural Structures”. In: Mathematical Geosciences
42.8, pp. 911–924.

Hnaidi, Houssam, Éric Guérin, Samir Akkouche, Adrien Peytavie, and Éric Galin (2010). “Feature based

terrain generation using diffusion equation”. In: Computer Graphics Forum 29.7, pp. 2179–2186.

Hooshyar, Milad, Arvind Singh, and Dingbao Wang (2017). “Hydrologic controls on junction angle of

river networks”. In: Water Resources Research 53.5, pp. 4073–4083.

Howard, Alan and Thomas Knutson (Nov. 1984). “Sufficient Conditions for River Meandering: A Sim-

ulation Approach”. In: Water Resources Research 20, pp. 1659–1667.

Huggett, R.J. (2003). Fundamentals of Geomorphology. Fundamentals of Geomorphology. Routledge.

ISBN: 9780415241465.

Ielpi, Alessandro, Mathieu Lapôtre, C. Boyce, and Martin Gibling (Jan. 2022). “The impact of vegetation

on meandering rivers”. In: Nature Reviews Earth & Environment 3, pp. 1–14.

Ikeda, Syunsuke, Gary Parker, and Kenji Sawai (1981). “Bend theory of river meanders. Part 1. Linear

development”. In: Journal of Fluid Mechanics 112, pp. 363–377.

Ito, Tomoya, Tadahiro Fujimoto, Kazunobu Muraoka, and Norishige Chiba (2003). “Modeling rocky

scenery taking into account joints”. In: Proceedings of Computer Graphics International. Tokyo,

Japan: IEEE, pp. 244–247.

Jeschke, Stefan, Tomáš Skřivan, Matthias Müller-Fischer, Nuttapong Chentanez, Miles Macklin, and

Chris Wojtan (2018). “Water Surface Wavelets”. In: ACM Trans. Graph. 37.4.

Jones, M., M. Farlay, M. Butler, and M. Beardall (2010). “Directable Weathering of Concave Rock using

Curvature Estimation”. In: IEEE Transactions on Visualization and Computer Graphic 16.1, pp. 81–

97.

Jouves, Johan, Sophie Viseur, Bruno Arfib, Cécile Baudement, Hubert Camus, Pauline Collon, and Yves

Guglielmi (2017). “Speleogenesis, geometry and topology of caves: a quantitative study of 3D karst

conduits”. In: Geomorphology 298, pp. 86–106.

162 Bibliography

Jákó, Balázs and Balázs Tóth (2011). “Fast Hydraulic and Thermal Erosion on GPU”. In: Eurographics
2011 - Short Papers. The Eurographics Association.

Kahn, Herman and Andy W. Marshall (1953). Methods of Reducing Sample Size in Monte Carlo Com-
putations. Santa Monica, CA: RAND Corporation.

Kalra, D. and A. H. Barr (1989). “Guaranteed Ray Intersections with Implicit Surfaces”. In: SIGGRAPH
Comput. Graph.

Kamal, K. Raiyan and Yusuf Sarwar Uddin (2007). “Parametrically Controlled Terrain Generation”. In:

Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques
in Australia and Southeast Asia. GRAPHITE ’07, pp. 17–23.

Kämpe, Viktor, Erik Sintorn, and Ulf Assarsson (2013). “High Resolution Sparse Voxel DAGs”. In: ACM
Transactions on Graphics 32.4, pp. 1–13.

Kelley, Alex D., Michael C. Malin, and Gregory M. Nielson (1988). “Terrain simulation using a model

of stream erosion”. In: Computer Graphics 22.4, pp. 263–268.

Krištof, Peter, Bedřich Beneš, Jaroslav Křivánek, and Ondřej Št’ava (2009). “Hydraulic Erosion Using

Smoothed Particle Hydrodynamics”. In: Computer Graphics Forum 28.2, pp. 219–228.

Kruger, J. and R. Westermann (2003). “Acceleration Techniques for GPU-based Volume Rendering”. In:

Proceedings of the 14th IEEE Visualization 2003 (VIS’03). IEEE Computer Society, pp. 287–292.

Lagae, A. and P. Dutré (2006a). “Poisson Sphere Distributions”. In: Vision, Modeling, and Visualization,

pp. 373–379.

Lagae, Ares and Philip Dutré (2006b). “An Alternative for Wang Tiles: Colored Edges versus Colored

Corners”. In: ACM Transactions on Graphics 25.4, pp. 1442–1459.

Lagae, Ares, Sylvain Lefebvre, George Drettakis, and Philip Dutré (2009). “Procedural Noise using

Sparse Gabor Convolution”. In: ACM Transactions on Graphics 28.3, pp. 54–64.

Laine, Samuli and Tero Karras (2010). “Efficient Sparse Voxel Octrees”. In: Proceedings of the 2010
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. Association for Computing

Machinery, pp. 55–63.

Lancaster, Nicholas, Andreas Baas, and Douglas Sherman (2013). “11.1 Aeolian Geomorphology: Intro-

duction”. In: Treatise on Geomorphology. Vol. 11. Elsevier Academic Press Inc, pp. 1–6.

Leopold, Luna B. and M. Gordon Wolman (1960). “River Meanders”. In: GSA Bulletin 71.6, pp. 769–

793.

Livingstone, Ian and Andrew Warren (1996). “Aeolian Geomorphology: An Introduction”. In: Aeolian
Geomorphology: An Introduction.

Lorensen, William E. and Harvey E. Cline (1987). “Marching Cubes: A High Resolution 3D Surface

Construction Algorithm”. In: SIGGRAPH Comput. Graph. 21.4, pp. 163–169.

Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: W. H. Freeman and Comp.

Mark, Benjamin, Tudor Berechet, Tobias Mahlmann, and Julian Togelius (2015). “Procedural Generation

of 3D Caves for Games on the GPU”. In: Foundations of Digital Games.

Mei, Xing, Philippe Decaudin, and Baogang Hu (2007). “Fast Hydraulic Erosion Simulation and Visu-

alization on GPU”. In: Pacific Graphics. IEEE, pp. 47–56.

Mieloszyk, Krzysztof (2017). “Terrain generation using glacial and tectonic models”. In: 25th Interna-
tional Conference on Computer Graphics, Visualization and Computer Vision 2017, pp. 1–7.

Mildenhall, Ben, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and

Ren Ng (2020). “NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis”. In:

Computer Vision – ECCV 2020, pp. 405–421.

Miller, Gavin (1994). “Efficient Algorithms for Local and Global Accessibility Shading”. In: Proceed-
ings of the 21st Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH’94.

ACM, pp. 319–326.

Mitchell, Don P. (1990). “Robust ray intersection with interval arithmetic”. In: Proceedings on Graphics
interface ’90, pp. 68–74.

Bibliography 163

Momiji, Hiroshi, Ricardo Carretero-Gonzalez, Steven Bishop, and Andrew Warren (2000). “Simulation

of the effect of wind speedup in the formation of transverse dune fields”. In: Earth Surface Processes
and Landforms 25.

Müller, Thomas, Alex Evans, Christoph Schied, and Alexander Keller (2022). “Instant Neural Graphics

Primitives with a Multiresolution Hash Encoding”. In: ACM Transactions on Graphics 41.4, 102:1–

102:15.

Murray, A. Brad and Chris Paola (1997). “Properties of a cellular braided-stream model”. In: Earth
Surface Processes and Landforms 22.11, pp. 1001–1025.

Musgrave, Forest Kenton, Craig E. Kolb, and Robert S. Mace (1989). “The synthesis and rendering of

eroded fractal terrains”. In: Computer Graphics 23.3, pp. 41–50.

Měch, Radomír and Przemyslaw Prusinkiewicz (1996). “Visual Models of Plants Interacting with Their

Environment”. In: SIGGRAPH’96. ACM, pp. 397–410. ISBN: 0-89791-746-4.

Nakajima, Takeshi, Jeffrey Peakall, William McCaffrey, Douglas Paton, and Philip Thompson (Nov.

2009). “Outer-Bank Bars: A New Intra-Channel Architectural Element within Sinuous Submarine

Slope Channels”. In: Journal of Sedimentary Research 79, pp. 872–886.

Narteau, C., D. Zhang, O. Rozier, and P. Claudin (2009). “Setting the length and time scales of a cellular

automaton dune model from the analysis of superimposed bed forms”. In: Journal of Geophysical
Research: Earth Surface 114.F3.

Neidhold, B., M. Wacker, and O. Deussen (2005). “Interactive physically based Fluid and Erosion Sim-

ulation”. In: Eurographics Workshop on Natural Phenomena.

Nickling, W. G. (1978). “Eolian sediment transport during dust storms: Slims River Valley, Yukon Terri-

tory”. In: Canadian Journal of Earth Sciences 15.7, pp. 1069–1084.

Onoue, Koichi and Tomoyuki Nishita (2000). “A method for modeling and rendering dunes with wind-

ripples”. In: Proceedings of the Pacific Conference on Computer Graphics and Applications. IEEE,

pp. 427–428.

Palmer, A.N. (1991). “Origin and morphology of limestone caves”. In: Geol. Soc. Am. Bulleetin 103,

pp. 1–21.

Palmer, Arthur (Jan. 2003). “Speleogenesis in carbonate rocks”. In: Speleogenesis and Evolution of Karst
Aquifers, p. 11.

Palmstrom, Arild (2001). “Measurement and characterization of rock mass jointing”. In: In-situ charac-
terization of rocks. Rotterdam, pp. 49–97.

Parberry, Ian (2015). “Modeling Real-World Terrain with Exponentially Distributed Noise”. In: Journal
of Computer Graphics Techniques (JCGT) 4.2, pp. 1–9.

Pardo-Iguzquiza, E.a, Peter A. Dowd, Xu Chaoshui, J. J. Duran-Valsero, Eulogio Pardo-Igúzquiza, Chaoshui

Xu, and Juan José Durán-Valsero (2012). “Stochastic simulation of karst conduit networks”. In: Ad-
vances in Water Resources 35, pp. 141–150. ISSN: 03091708.

Paris, Axel, Eric Galin, Adrien Peytavie, James Gain, and Eric Guérin (2018). “Amplification de Terrain

avec des caractéristiques implicites 3D”. In: JFIG.

Paris, Axel, Eric Galin, Adrien Peytavie, Eric Guérin, and James Gain (2019a). “Terrain Amplification

with Implicit 3D Features”. In: ACM Transactions on Graphics 38.5, 147:1–147:15.

Paris, Axel, Eric Guérin, Adrien Peytavie, Pauline Collon, and Eric Galin (2021). “Synthesizing Geolog-

ically Coherent Cave Networks”. In: Computer Graphics Forum 40.7, pp. 277–287.

Paris, Axel, Adrien Peytavie, Eric Guérin, Oscar Argudo, and Eric Galin (2019b). “Desertscape Simula-

tion”. In: Computer Graphics Forum 38.7, pp. 47–55.

Paris, Axel, Adrien Peytavie, Eric Guérin, Jean-Michel Dischler, and Eric Galin (2020). “Modeling

Rocky Scenery using Implicit Blocks”. In: The Visual Computer 36.10, pp. 2251–2261.

Park, Jeong Joon, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove (2019).

“DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

164 Bibliography

Parquer, Marion (2018). “Reverse-time modeling of channelized meandering systems from geological

observations”. PhD thesis. University of Lorraine.

Parulek, Julius and Ivan Viola (2012). “Implicit representation of molecular surfaces”. In: 2012 IEEE
Pacific Visualization Symposium, pp. 217–224.

Pasko, A., V. Adzhiev, A. Sourin, and V. Savchenko (1995). “Function representation in geometric mod-

eling: concepts, implementation and applications”. In: The Visual Computer 11.8, pp. 429–446. ISSN:

1432-2315.

Passos, Vladimir Alves dos and Takeo Igarashi (2013). “LandSketch: A First Person Point-of-View

Example-Based Terrain Modeling Approach”. In: Eurographics Workshop on Sketch-Based Inter-
faces and Modeling. ACM.

Peakall, J., Bridget Mccaffrey, and B. Kneller (2000). “A Process Model for the Evolution, Morphology,

and Architecture of Sinuous Submarine Channels”. In: Journal of Sedimentary Research 70, pp. 434–

448.

Perlin, K. and E. M. Hoffert (1989). “Hypertexture”. In: SIGGRAPH Computer Graphics 23.3, pp. 253–

262.

Peytavie, A., E. Galin, J. Grosjean, and S. Merillou (2009a). “Procedural Generation of Rock Piles using

Aperiodic Tiling”. In: Computer Graphics Forum 28.7, pp. 1801–1809.

Peytavie, Adrien, Thibault Dupont, Eric Guérin, Yann Cortial, Benes Benes, James Gain, and Eric Galin

(2019). “Procedural Riverscapes”. In: Computer Graphics Forum 38.7, pp. 35–46.

Peytavie, Adrien, Éric Galin, Stephane Mérillou, and Jérôme Grosjean (2009b). “Arches: A Framework

for modeling complex terrains”. In: Computer Graphics Forum 28.2, pp. 457–467.

Pirk, Sören, Till Niese, Torsten Hädrich, Bedrich Benes, and Oliver Deussen (2014). “Windy Trees:

Computing Stress Response for Developmental Tree Models”. In: ACM Transactions on Graphics
33.6, 204:1–204:11.

Posamentier, Henry W. and Venkatarathnan Kolla (2003). “Seismic Geomorphology and Stratigraphy of

Depositional Elements in Deep-Water Settings”. In: Journal of Sedimentary Research 73.3, pp. 367–

388.

Pyrcz, M.J., J.B. Boisvert, and C.V. Deutsch (2009). “ALLUVSIM: A program for event-based stochastic

modeling of fluvial depositional systems”. In: Computers and Geosciences 35.8, pp. 1671–1685.

Pytel, Alex and Stephen Mann (2015). “Procedural Modeling of Cave-like Channels”. In: Journal of
Computer Graphics Techniques 4.2, pp. 10–29.

Reiner, Tim, Gregor Mückl, and Carsten Dachsbacher (2011). “Interactive Modeling of Implicit Surfaces

Using a Direct Visualization Approach with Signed Distance Functions”. In: Computer & Graphics,
Proceedings of Shape Modeling International 35.3, pp. 596–603. ISSN: 0097-8493.

Reinfelds, Ivars and Paul Bishop (Jan. 1998). “Palaeohydrology, palaeodischarges and palaeochannel

dimensions: Research strategies for meandering alluvial rivers”. In: pp. 27–42.

Rongier, Guillaume, Pauline Collon, and Philippe Renard (2017). “A geostatistical approach to the sim-

ulation of stacked channels”. In: Marine and Petroleum Geology 82, pp. 318–335.

Rongier, Guillaume, Pauline Collon-Drouaillet, and Marco Filipponi (2014). “Simulation of 3D karst

conduits with an object-distance based method integrating geological knowledge”. In: Geomorphol-
ogy 217, pp. 152–164.

Rosgen, D. L. (1994). “A classification of natural rivers”. In: Catena 22, pp. 169–199.

Roudier, P., B. Peroche, and M. Perrin (1993). “Landscapes Synthesis Achieved through Erosion and

Deposition Process Simulation”. In: Computer Graphics Forum 12.3, pp. 375–383.

Schmidt, R., B. Wyvill, M. C. Sousa, and J. A. Jorge (2006). “ShapeShop: Sketch-Based Solid Modeling

with BlobTrees”. In: SIGGRAPH ’06.

Schreck, Camille, Christian Hafner, and Chris Wojtan (2019). “Fundamental Solutions for Water Wave

Animation”. In: ACM Trans. Graph. 38.4.

Bibliography 165

Scott, Joshua J. and Neil A. Dodgson. (2021). “Example-based terrain synthesis with pit removal”. In:

Computers and Graphics 99, pp. 43–53.

Sellán, Silvia, Noam Aigerman, and Alec Jacobson (2021). “Swept Volumes via Spacetime Numerical

Continuation”. In: ACM Transactions on Graphics 40.4, 55:1–11.

Sitzmann, Vincent, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein (2020).

“Implicit Neural Representations with Periodic Activation Functions”. In: Advances in Neural Infor-
mation Processing Systems. Vol. 33. Curran Associates, Inc., pp. 7462–7473.

Skorkovská, Věra, Ivana Kolingerová, and Bedrich Benes (2015). “Hydraulic Erosion Modeling on a

Triangular Mesh”. In: Surface Models for Geosciences. Springer International Publishing, pp. 237–

247.

Skorkovská, Vera, Ivana Kolingerová, and Petr Vanecek (2019). “A Unified Curvature-driven Approach

for Weathering and Hydraulic Erosion Simulation on Triangular Meshes”. In: VISIGRAPP.

Slingerland, R. and Norman Smith (Apr. 2004). “River avulsions and deposits”. In: Annual Review of
Earth and Planetary Sciences 32, pp. 257–285.

Stam, Jos and Ryan Schmidt (2011). “On the Velocity of an Implicit Surface”. In: ACM Transactions on
Graphics 30.3.

Stolte, Nilo (2002). “Infinite Implicit Replication: Case Study for Voxelizing and Representing Cyclical

Parametric Surfaces Implicitly.” In: Shape Modeling International’02, pp. 105–111.

Sugihara, Masamichi, Brian Wyvill, and Ryan Schmidt (2010). “WarpCurves: A tool for explicit manip-

ulation of implicit surfaces”. In: Computers & Graphics 34.3, pp. 282–291.

Št’ava, Ondřej, Bedřich Beneš, Matthew Brisbin, and Jaroslav Křivánek (2008). “Interactive Terrain

Modeling Using Hydraulic Erosion”. In: Proc. Symposium on Computer Animation, pp. 201–210.

Sylvester, Zoltán, Paul Durkin, and Jacob A. Covault (Feb. 2019). “High curvatures drive river meander-

ing”. In: Geology 47.3, pp. 263–266.

Tasse, Flora Ponjou, Arnaud Emilien, Marie-Paule Cani, Stefanie Hahmann, and Adrien Bernhardt

(2014). “First Person Sketch-based Terrain Editing”. In: Proceedings of Graphics Interface, pp. 217–

224.

Tasse, Flora Ponjou, James Gain, and Patrick Marais (2012). “Enhanced Texture-Based Terrain Synthesis

on Graphics Hardware”. In: Computer Graphics Forum 31.6, pp. 1959–1972.

Teoh, Soon Tee (2009). “RiverLand: An Efficient Procedural Modeling System for Creating Realistic-

Looking Terrains”. In: Proc. International Symposium on Advances in Visual Computing. Las Vegas,

USA: Springer, pp. 468–479.

Thomas, R. and A.P. Nicholas (2002). “Simulation of braided river flow using a new cellular routing

scheme”. In: Geomorphology 43.3, pp. 179–195.

Tricard, Thibault, Semyon Efremov, Cédric Zanni, Fabrice Neyret, Jonàs Martínez, and Sylvain Lefebvre

(July 2019). “Procedural Phasor Noise”. In: ACM Transactions on Graphics 38.4, Article No. 57:1–

13.

Truong, Nghia, Cem Yuksel, and Larry Seiler (2020). “Quadratic Approximation of Cubic Curves”. In:

Proc. ACM Comput. Graph. Interact. Tech. 3.2.

Tsoar, Haim (1983). “Wind Tunnel Modeling of Echo and Climbing Dunes”. In: Eolian Sediments and
Processes. Vol. 38. Elsevier, pp. 247–259.

Vanek, Juraj, Bedřich Beneš, Adam Herout, and Ondřej Št’ava (2011). “Large-Scale Physics-Based Ter-

rain Editing Using Adaptive Tiles on the GPU”. In: Computer Graphics and Applications 31.6,

pp. 35–44.

Villanueva, Alberto Jaspe, Fabio Marton, and Enrico Gobetti (2017). “Symmetry-aware Sparse Voxel

DAGs (SSVDAGs) for compression-domain tracing of high-resolution geometric scenes”. In: Jour-
nal of Computer Graphics Techniques (JCGT) 6.2, pp. 1–30.

166 Bibliography

Viseur, Sophie, Johan Jouves, Arnaud Fournillon, Bruno Arfib, and Yves Guglielmi (2014). “3D stochas-

tic simulation of caves : application to Saint-Sébastien case study (SE , France)”. In: Karstologia 64,

pp. 17–24.

Ward, A. W. and R. Greeley (1984). “Evolution of the Yardangs at Rogers Lake, California”. In: GSA
Bulletin 95, pp. 829 –837.

Wei, Li-Yi, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk (2009). “State of the Art in Example-based

Texture Synthesis”. In: Eurographics 2009 - State of the Art Reports, pp. 1–25.

Werner, B. T. (1995). “Eolian dunes: Computer simulations and attractor interpretation”. In: Geology.

Wilkinson, David and Jorge F Willemsen (1983). “Invasion percolation: a new form of percolation the-

ory”. In: Journal of Physics A: Math. Gen. 16, pp. 3365–3376.

Williams, Garnett P. (1986). “River meanders and channel size”. In: Journal of Hydrology 88.1, pp. 147–

164.

Worley, Steven (1996). “A Cellular Texture Basis Function”. In: SIGGRAPH ’96, pp. 291–294.

Wyvill, Brian, Andrew Guy, and Éric Galin (1999). “Extending the CSG Tree - Warping, Blending and

Boolean Operations in an Implicit Surface Modeling System”. In: Computer Graphics Forum 18.2,

pp. 149–158.

Wyvill, Geoff, Craig McPheeters, and Brian Wyvill (Aug. 1986). “Data Structure for Soft Objects”. In:

The Visual Computer - VC 2, pp. 227–234.

Yan, Xiao, Yun-Tao Jiang, Chen-Feng Li, Ralph R. Martin, and Shi-Min Hu (2016). “Multiphase SPH

Simulation for Interactive Fluids and Solids”. In: ACM Transactions on Graphics 35.4, 79:1–79:11.

Yuksel, Cem (2015). “Sample Elimination for Generating Poisson Disk Sample Sets”. In: Computer
Graphics Forum (Proceedings of EUROGRAPHICS 2015) 34.2, pp. 25–32. ISSN: 0167-7055.

Zanni, Cédric, Paul Bares, Ares Lagae, Maxime Quiblier, and Marie-Paule Cani (2012). “Geometric

Details on Skeleton-based Implicit Surfaces”. In: Eurographics Short Papers. Cagliari, Italy, pp. 49–

52.

Zhang, Deguo, Clement Narteau, Olivier Rozier, and Sylvain Courrech du Pont (2012). “Morphology

and dynamics of star dunes from numerical modelling”. In: Nature Geoscience 5, pp. 463–467.

Zhang, Jian, Chen Li, Peichi Zhou, Changbo Wang, Gaoqi He, and Hong Qin (2022). “Authoring multi-

style terrain with global-to-local control”. In: Graphical Models 119, p. 101122.

Zhao, Yiwei, Han Liu, Igor Borovikov, Ahmad Beirami, Maziar Sanjabi, and Kazi Zaman (2019).

“Multi-Theme Generative Adversarial Terrain Amplification”. In: ACM Transactions on Graphics
38.6, pp. 1–14.

Zhou, Howard, Jie Sun, Greg Turk, and James M. Rehg (2007). “Terrain Synthesis from Digital Elevation

Models”. In: Transactions on Visualization and Computer Graphics 13.4, pp. 834–848.

Part III

Appendix

Appendix A

Signed distance fields

In this section, we address the computation of Lipschitz constants (or bounds), denoted as λ, for prim-

itives and operators. This allows defining 1-Lipschitz signed distance functions, which in turn provides

guarantees regarding fundamental queries such as sphere tracing. Recall that it is possible to derive a

signed distance bound (Hart 1996) from any scalar function f through the use of its Lipschitz bound λ,

by using f(p)/λ as the field function.

A.1 Smooth union

We first aim at computing the Lipschitz constant of the smooth union operator. Let a, b denote two signed

distance functions R3 → R. Let d(a, b) = 1− |b− a|/r if |b− a| < r and 0 otherwise:

s(a, b) =

⎧⎨⎩
a if a− b ≤ r
b if b− a ≥ r
min(a, b)− k r d(a, b)3 otherwise

b

a
b a = r

s(a,b)

FIGURE A.1: Smooth union.

Consider the left and right derivatives around b− a = r, on the right s′(a, b) = a′ and on the left:

s′(a, b) = a′ + 3 k d2(a, b)(b′ − a′)

The second derivative writes:

s′′(a, b) = a′′ − 6 k d(a, b)(b′ − a′)2/r + 3 k d2(a, b)(b′′ − a′′)

Therefore both the left and right limits of s′ and s′′ when b− a → r are equal to a′ and a′′ respectively,

and thus s is C2 at this limit.

We also need to check differentiability when a = b. On the left where a < b, s′(a, b) = a′+3kd2(b′−
a′) and on the right for a > b, s′(a, b) = b′ + 3kd2(a′ − b′). If k = 1/6, as d → 0 both derivatives tend

to (a′ + b′)/2. Therefore, s is C1. Moreover, we can bound the derivative. Let α = d2/2; if a < b then

170 Appendix A. Signed distance fields

s′(a, b) = (1− α)b′ + αa′ and if a > b then s′(a, b) = (1− α)a′ + αb′, with d(a, b) < 1. Therefore s′

interpolates a′ and b′ and λ = max(λa, λb).

The limits for the second derivative s′′ are not the same. Therefore, the smooth union operator is only

C1. The same demonstration holds for the smooth intersection and difference operators.

A.2 R-functions

Here we consider the union operator introduced by Pasko et al. 1995 and we derive the Lipschitz of this

operator. The same demonstration holds for the intersection and difference operators. The union of two

signed distance functions a and b is defined as:

fa∪b = (a+ b+
√
a2 + b2)

The gradient can be written as:

∇fa∪b = ∇a(1 + a/
√

a2 + b2) +∇b(1 + b/
√

a2 + b2)

The terms a/
√
a2 + b2 and b/

√
a2 + b2 are bounded by 1, thus a simple Lipschitz bound can be derived

as:

λ = 2(λa + λb).

A.3 Heightfield

p h(p) xyz

xy

H

z

FIGURE A.2: Vertical
distance to a heightfield.

Let h : R
2 → R denote an elevation function, we aim at constructing a

signed distance bound fH from h. Let λ denote the Lipschitz constant of h,

which represents the maximum slope of the terrain, i.e. the upper bound of

the norm of the gradient ‖∇h‖. Then, the squared gradient of the vertical

signed distance function f(p) = pz − h(pxy) is:

‖∇f‖2 = 1 + (∂h/∂x)2 + (∂h/∂y)2

= 1 + ‖∇h‖2

Thus we have ‖∇f‖2 < 1 + λ2 and the bound ‖∇f‖ <
√
1 + λ2. Therefore, we define the 1-Lipschitz

signed distance function fH as:

fH(p) =
pz − h(pxy)√

1 + λ2

This equation guarantees that fH represents a signed distance bound to the surface of the terrain.

A.4. Turbulence 171

A.4 Turbulence

Let n : R3 → R denote a noise function (such as gradient or value noise), we define the turbulence

t : R3 → R as:

t(p) =

o∑
i=1

ain(p/si)

We denote o the octave count, and ai, si the amplitudes and scales at each octave, respectively. We aim

at computing the Lipschitz constant of t, thus we define its gradient:

∇t(p) =

o∑
i=1

ai
si
∇n(p/si)

Let λn the Lipschitz constant of the noise, we can bound the norm of ∇t as:

‖∇t‖ ≤ λn

o∑
i=1

ai
si

A.5 Noise displacement

Let f denote the 1-Lipschitz distance function for a subtree, we define the unary noise displacement

operator with associated distance function f̃ as:

f̃(p) = f(p) + t(p)

With t : R3 → R a turbulence. As f is 1-Lipschitz, a simple bound can be derived from the Lipschitz

constant λt of the turbulence (see Appendix A.4):

‖∇f̃‖ ≤ 1 + λt

A.6 Perturbed skeletal primitives

n ∘ (p)ߨ
c p (p)ߨ
R

FIGURE A.3: Per-
turbed sphere primi-
tive.

Volumetric skeletal primitives are based on the Euclidean distance function

e(p) to a skeleton such as a point or a curve, and a radius r. The signed distance

function is defined as:

f(p) = e(p)− r

In the case of perturbed noised-based skeletal primitives, we replace r by a

function r̃ : R3 → R which computes the modified radius from the projection

of π : R3 → R
3 on the skeleton and a noise:

r̃(p) = r + an(π(p)/l)

172 Appendix A. Signed distance fields

With n : R3 → R the noise function, a the amplitude, and l the wavelength. The perturbed distance

function f̃ = e(p)− r̃(p) computes an anisotropic distance, thus there is a need to compute its Lipschitz

constant λ to define a proper signed distance bound. Let us first compute the gradient of f̃ :

∇f̃(p) = ∇e(p)−∇r̃(p)

The norm of ∇e(p) is bounded by 1 (Euclidean distance). The gradient ∇r̃ involves the Jacobian matrix

Jπ of the π:

∇r̃(p) =
a

l
Jπ∇n(π(p)/l)

As demonstrated below, the norm of the Jacobian is bounded by 1 (‖Jπ‖ < 1), thus the bound of the

gradient is simply written as:

‖∇r̃‖ <
a

l
λn

Finally, we can compute the Lipschitz bound of f̃ :

λf̃ < 1 +
a

l
λn

As a corollary, we demonstrate that the Jacobian of the projection onto unit sphere has a norm bounded

by one. Let π : R3 − {0} → R
3 − {0} the projection on the unit sphere, i.e., π(p) = p̂ = p/‖p‖.

We want to compute the norm of the Jacobian ‖Jπ‖. Noting that ∂(x/
√

x2 + y2 + z2)/∂x = (y2 +
z2)/(x2 + y2 + z2)3/2 and ∂(y/

√
x2 + y2 + z2)/∂x = −xy/(x2 + y2 + z2)3/2, the Jacobian matrix is

defined as:

Jπ(x, y, z) =
1

(x2 + y2 + z2)3/2

⎛⎝y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

⎞⎠
The norm of a matrix A is defined as the square root of the spectral radius of A · AT . Since Jπ is

symmetric, then Jπ · Jπ
T = Jπ

2 is symmetric and all its eigenvalues are real, and the maximum of

‖A2u‖ will be achieved on the unit ball ‖u‖ = 1.

We need to find the maximum absolute eigenvalue of Jπ. The characteristic polynomial is:

−λ3 + 2λ2(x2 + y2 + z2)− λ(2x2y2 + 2x2z2 + y4 + x4 + 2y2z2 + z4)

Factoring λ, noting that the second and last terms are ‖u‖2 and ‖u‖4 respectively and since ‖u‖ = 1,

we have:

−λ(λ2 − 2λ+ 1) = −λ(λ− 1)2

Therefore 1 is the maximum root, and ‖Jπ‖ ≤ 1.

A.7 Lp norm primitives

Let p ≥ 1 and f : Rn → R defined as f(x) = ‖x‖p. From the triangle inequality and in finite space, we

have:

sup
x
=y

|‖x‖p − ‖y‖p|
‖x− y‖2

≤ sup
x
=y

‖x− y‖p
‖x− y‖2

= sup
x
=0

‖x‖p
‖x‖2

= sup
‖x‖2=1

‖x‖p

A.8. Sweep primitive 173

For p = 2 we get the Lipschitz bound 1. For p > 2, since |xi|p ≤ |xi|2, we deduce sup‖x‖2=1 ‖x‖p ≤ 1
thus the Lipschitz constant is also 1. For p < 2, by using Holder’s inequality:(|x0|p + ...+ |xn|p

n

)1/p

≤
(|x0|2 + ...+ |xn|2

n

)1/2

If ‖x‖2 = 1, then ‖x‖p ≤ n1/p−1/2 (equality obtained when ∀i ∈ [1, n], xi = 1/
√
n). In the case n = 3

(three dimensional space), the Lipschitz constant is 31/p−1/2. Thus, in conclusion:

If p ≥ 2, ‖∇‖x‖p‖ < 1 If p < 2, ‖∇‖x‖p‖ < n1/p−1/2

A.8 Sweep primitive

p

C d(p,C)

(p,C)=2

FIGURE A.4: Signed
distance to a contour
d(p, C).

A 3D sweep primitive is defined as a general contour in the xy plane, that is

then extruded along the z axis. The signed distance function to the contour

is defined as f(p, C) = d(p, C) δ(p, C), where d(p, C) denote the (positive)

Euclidean distance to C and δ(p, C) is the sign function. More precisely, δ
computes the number of intersections between a line Δ passing through p,

and C. The sign is finally computed depending on the parity of the number

of intersections:

δ(p, C) =
{
−1 if #Δ ∩ C odd

+1 otherwise.

The 3D distance for a sweep primitive is then derived from f(p, C) according to the segment ab. Let

u = (b− a)/‖b− a‖ the unit vector of the segment ab. Let l = (p− a) · u denote the distance of the

projection of p on the segment to a. The signed distance to the sweep primitive is defined as:

fS(p) =
√

s(p)2 + f(p, C)2 s(p) =

⎧⎪⎨⎪⎩
−l if l < 0

l − ‖b− a‖ if l > ‖b− a‖
0 otherwise.

As the contour is extruded on a segment and not a curve, the resulting signed distance function is 1-

Lipschitz and continuous.

Appendix B

A visual dictionary of terrain landforms

Overhang Sand ripples

River deltaArche

Dunes Alluvial fan

176 Appendix B. A visual dictionary of terrain landforms

Meandering rivers Breakout chamber

Gullies and ravines Canyon

Rocky cliffs Karsts (surface)

Mesa Hoodoos

Appendix B. A visual dictionary of terrain landforms 177

Ventifacts Ventifacts

Reg (rock desert) Yardangs

Fjord Columnar basalt

Overhangs Cliff with tabular strata

178 Appendix B. A visual dictionary of terrain landforms

Type Source

River delta https://www.hippopx.com/en/swamp-florida-wetland-river-delta-everglades-385029

Arche https://pxhere.com/fr/photo/411982

Alluvial fan https://www.britannica.com/science/mass-movement/images-videos#/media/1/368257/151702

Mesa https://commons.wikimedia.org/wiki/File:Parriott_Mesa_in_Utah.jpg

Hoodoos https://www.flickr.com/photos/daveynin/6067262009

Hoodoos https://www.flickr.com/photos/bryanto/2514816469

Rocky cliffs https://www.flickr.com/photos/jsjgeology/22841110277

Karsts (surface) https://fr-academic.com/dic.nsf/frwiki/909111

Gullies and ravines https://www.flickr.com/photos/banco_imagenes_geologicas/5015306871

Canyon https://commons.wikimedia.org/wiki/File:Canyon_midday.jpg

Meandering rivers https://www.flickr.com/photos/nasa2explore/23631659763

Breakout chambers https://pixnio.com/media/cave-limestone-rock-geology-exploration

Ventifacts https://commons.wikimedia.org/wiki/File:Arbol_de_Piedra.jpg

Reg (rock desert) https://www.flickr.com/photos/banco_imagenes_geologicas/5014123092

Yardangs https://commons.wikimedia.org/wiki/File:Kalout,_Dasht-e-Lut,_Iran,_21.09.2015_02.jpg

Fjord https://commons.wikimedia.org/wiki/File:Norwegian_Fjord.jpg

Barchan https://commons.wikimedia.org/wiki/File:Mesquite_Sand_Dunes.JPG

Transverse https://www.publicdomainpictures.net/en/view-image.php?image=386857

Nabkha https://fr.wikipedia.org/wiki/Nebka_%28dune%29

Benagil arch https://www.flickr.com/photos/142508741@N02/29930847296

TABLE B.1: Links to the source photographs of the different terrain landforms.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

