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GENERAL INTRODUCTION

Maintenance is a vital component that holds significant value in all areas of life, ranging
from personal health to material possessions such as cars, homes, or industrial equipment.
It encompasses the regular upkeep and care of something to prevent damage, breakdowns,
or even more significant problems. Overlooking maintenance can lead to costly repairs,
decrease in performance, or complete failure of the equipment. By regularly maintaining
something, one can ensure its longevity, safety, and optimal functioning. Maintenance also
helps to identify potential problems before they become critical, saving time, money, and
stress in the long run. Moreover, maintenance activities are also often required to meet
regulatory standards.

The importance of maintenance has led to significant research interest, with scholars
investigating various aspects of the practice. Research in this area has explored different
models, frameworks, and tools aimed at improving the efficiency and effectiveness of
maintenance activities. The increasing complexity of industrial machines and equipment
has also led to a more sophisticated approach to maintenance, with a focus on strategies
that, rather than correcting and minimizing the consequences of a failure (that, depending
on the application, can be particularly severe), allow to predict and prevent failures from
happening in the first place. To achieve this, it can be useful to subject the system under
study to condition monitoring and regular maintenance interventions.

Considering also that in many practical applications monitoring the state of the sys-
tem and/or performing a repair/replacement may require specially trained personnel or
special equipment, it might be needed to schedule maintenance interventions well in ad-
vance. Ideally, there would be a mathematical function that, given a certain system in
input, returns the exact time at which it will fail, so that maintenance activities will be
scheduled accordingly. In reality, this is of course not possible, but the closest thing to
this hypothetical function is a model that provides a prediction of the failure time of a
system, given all the information available on its state.

As a rule of thumb, if maintenance interventions are carried out regularly and fre-
quently, the risk of failure is vastly mitigated. However, each maintenance action may
entail lengthy interruptions of operation and frequent replacements, which may result in
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General introduction

a lower utilization of the equipment over its lifetime. This generates an underlying con-
trast in maintenance optimization, where the objective is, on the one hand, to intervene
on the equipment as little as possible and maximize its utilization, and on the other hand
keeping the risk of failure as low as possible.
The classical approach to formulate such a model resorts to lifetime distributions. A life-
time distribution is essentially a random variable that, to each given input (that is usually
time, or some other measure of operating lifetime, such as rotating cycles for a drilling
rig) associates the probability that the system under study will be in working order at
that input. This kind of models are usually calibrated with ad hoc estimation procedures
that generally take into account failure time data only. The specific distribution is then
chosen from a limited list of pre-packaged black-box models, with model selection being
performed via goodness of fit tests and possibly some physics-based considerations about
the aging characteristics of the system. However, relying on failure data only presents sev-
eral problems. Firstly, failure data are often scarce, as running equipment until failure can
be expensive and/or time consuming, particularly in the case of highly reliable systems.
Historical failure data can be useful in this case, but the records can often be inaccurate,
incomplete, and are likely to be significantly right-censored if preventive maintenance
actions are performed. Moreover, an approach based on lifetime models is not able to
capitalize on all pieces of information that might be available in a practical application,
such as degradation measurements.

To overcome these limitations, numerous alternative approaches have been proposed
in the literature. One avenue being explored is the integration of artificial intelligence (AI)
techniques, such as machine learning and deep learning. These approaches leverage the
analysis of large datasets to provide accurate diagnoses of system degradation and are
particularly adept at identifying subtle indications of potential failures ("weak signals").
However, one drawback of these methods is their limited predictive capability, which
diminishes their effectiveness in maintenance optimization. Moreover, training AI-based
approaches requires large amounts of data, which are not always easy to obtain.

Another avenue focuses on the use of stochastic processes. Indeed, a stochastic process,
differently than a lifetime distribution, for any given input not only returns the probability
of the system being in working order at that input, but also a random variable that
describes the distribution of its predicted degradation level. Its use allows, at the same
time:

— to formulate models that can incorporate the technological information available
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General introduction

on the degradation/failure causing mechanism (which can be converted in specific
features of the stochastic models),

— to use historical degradation data to calibrate the models and evaluate their fitting
abilities even without directly observing any failures, and

— to use degradation data collected in real time (via condition monitoring) to update
and implement condition-based maintenance strategies.

Objectives of the research activity

The main goal of this research activity is to (i) formulate stochastic degradation pro-
cesses that accurately model the degradation of the system under study and (ii) leverage
their use in ad-hoc developed maintenance strategies.
These models should perform accurate prediction of the failure time of the system, taking
into account as much uncertainty as possible and capitalizing on all available pieces of
information, while having a simple mathematical structure and effective estimation pro-
cedures. In fact, uncertainty on the estimation process and on the prediction abilities of
a model can be caused by several sources. Some can be endogenous (such as random-
ness of the environment, which induces differences in the evolution of the degradation of
nominally identical systems), some others can be exogenous (such as the presence of mea-
surement error). Accounting for these kind of uncertainties may lead to the loss of some
particularly convenient mathematical properties that can exacerbate not only modeling
and inferential problems, but also the use of well-established maintenance strategies. For
example, the presence of measurement error requires appropriate modeling solution and
very computational- and time-intensive estimation algorithms. Moreover, it prevents from
observing the true degradation state of the system, which complicates the use of several
maintenance strategies that rely on direct degradation measurements.

Therefore, attention will be focused on developing stochastic degradation processes
that can properly take into account all these sources of uncertainty. Secondly, advanced
maintenance strategies that exploit the use of these models should also be devised. Nev-
ertheless, the contribution of this manuscript with respect to the maintenance strategies
will not be limited at this latter aspect. Indeed, as already mentioned, one of the core
issues in maintenance optimization is the contrast between maximum utilization of the
system and managing the risk of unexpected breakdowns. In the very recent literature
some new maintenance paradigms, such as prescriptive maintenance, have been proposed
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as a new way of dealing with this issue. Prescriptive maintenance aims to develop an inte-
grated decision-making framework where all functionalities of a system (i.e., not only the
strictly maintenance-related aspects but also economic and operational considerations)
are taken into account simultaneously to achieve a more affordable global trade-off. Part
of the contribution of this research activity is consecrated to exploring this new research
avenue.

The rest of this manuscript is organized as follows:

— Chapter 1 is devoted to a general introduction of the study of maintenance. The
general concepts and definitions are laid out. The different types of maintenance
actions and strategy are introduced, along with some examples of rigorous perfor-
mance criteria that can be adopted to optimize said strategies;

— Chapter 2 focuses on the stochastic degradation processes adopted in this
manuscript. After a brief introduction of the mathematical background, the spe-
cific stochastic processes proposed and adopted in the remainder of the manuscript
are illustrated in detail. Moreover, several mathematical tools and numerical algo-
rithms, necessary to perform model calibration and predictions, are discussed;

— Chapter 3 presents two examples of application of a newly developed stochastic pro-
cess that is able to simultaneously account for several forms of uncertainty, showing
(in some experimental scenarios) its superiority to more classical approaches. This
chapter is based on the results published in Esposito, Mele, et al. (2022);

— Chapter 4 reports the results of a large misspecification study where the issue of
model selection between two stochastic degradation processes with similar charac-
teristics is analyzed, investigating also how measurement error impacts this issue.
This chapter is based on the results published in Castanier, Esposito, Giorgio, et
al. (2020), Esposito, Mele, et al. (2021b), and Esposito, Mele, et al. (2023b);

— Chapter 5 is devoted to presenting three new maintenance policies that take ad-
vantage of the new stochastic processes proposed in Chapter 2. Some example of
application of the new policies are developed. Moreover, the misspecification study
of Chapter 4 is expanded to investigate its effect on maintenance optimization. This
chapter is based on the results published in Esposito, Mele, et al. (2021a), Espos-
ito, Castanier, and Giorgio (2022b), Esposito, Mele, et al. (2023a), and Esposito,
Castanier, Giorgio, et al. (2022);

— In Chapter 6 the concept of prescriptive maintenance is tackled. After a brief dis-
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cussion about its definition, the proposition of two newly developed examples of
prescriptive maintenance strategies follows. This chapter is based on the results
published in Esposito, Castanier, and Giorgio (2022a) and Esposito, Castanier, and
Giorgio (2023);

— Chapter 7 deals with a preliminary application of prescriptive maintenance to the
case of a production system. This chapter is based on the results published in Espos-
ito, Castanier, and Giorgio (2022d) and Esposito, Castanier, and Giorgio (2022c).
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Chapter 1

INTRODUCTION TO MAINTENANCE

1.1 Introduction

According to the "Association Française de Normalisation" AFNOR (the french Stan-
dardization Association), maintenance is the "combination of all technical, administrative
and managerial actions during the life cycle of an item intended to retain it in, or restore
it to, a state in which it can perform the required function".

Within the industrial landscape, in the search for performance optimization and en-
hancing organizational competitiveness, the role of maintenance has transformed, expand-
ing to encompass all facets of a system’s operation, spanning equipment selection, design,
and performance monitoring. To execute maintenance effectively, a combination of tech-
nical prowess and organizational capabilities, including resource management and task
scheduling, is indispensable. The selection and implementation of a maintenance strat-
egy necessitates careful consideration of numerous factors, with a clear understanding
of the long-term implications on the overall performance of the system being of utmost
importance.

Moreover, maintenance is also a balancing act between two competing goals. On the
one hand, frequent interventions and an overall less aggressive utilization of the system
can reduce the occurrences of unexpected breakdowns, but can also entail frequent inter-
ruption of operations and lower exploitation of the system. On the other hand, infrequent
interventions and aggressive usage can extract more economic value from the system at
the expense of a higher probability of unexpected breakdowns.

In the remainder of this chapter, some general concepts regarding maintenance will be
laid out.
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Chapter 1 – Introduction to maintenance

1.2 General concepts

1.2.1 The state of the system and its failure

A key concept in maintenance is the definition of the state of the system under analysis
and what it means for it to fail. Both concepts are linked to the aptitude of a system to
accomplish a certain function (the intended mission) under certain operating conditions,
with satisfactory performances.
A system is in a working state when it is in a state that allows it to carry out the intended
mission. The new (also initial) state is a working state. If the system is in a degraded
state, but it is still able to complete the intended mission, than also that degraded state
is a working state.
The system is in a failed state when it can no longer complete the intended mission.
The failure of a system is the event of transitioning from a working state to a failed state.
The failure can be hard if the system transitions abruptly from the new state to a failed
state, or it can be soft if there exist some intermediate states between the new state and
the failed state.
Failure may be self-announcing, meaning that the transition from a working state to
the failed state is marked by some signal. For example, the failure of a lightbulb which
suddenly blows out and stops working can be envisaged as self-announcing. Alternatively,
failure can be not self-announcing (e.g., see Bautista, Castro, and Landesa (2022) and
Bismut, Pandey, and Straub (2022)) if no signals of its occurrence are given beforehand.
In this case, the only way to detect a failure is by means of an ad-hoc inspection revealing
the state of the system. This is often the case when failure is defined by the system being
deemed too degraded to continue functioning in a safe and effective manner. For instance,
a car tyre may be declared as failed and replaced when the treads have eroded more than a
preassigned value (that can be defined by the manufacturer or by some regulatory body).
This kind of failure is not self-announcing, because it is impossible to detect it unless the
thickness of the treads is specifically measured via an appropriate inspection method.

1.2.2 Maintenance actions

A maintenance action is an intervention that can be carried out on the system with
the intent of maintaining it. A clear distinction can be made between monitoring actions
and curative actions.

16



1.2. General concepts

Monitoring actions

A monitoring action, also referred to as inspection, is a maintenance action that has
the aim of assessing the state of the system.
Inspections can differ on several characteristics, such as their quality (perfect or imperfect)
and frequency (continuous or periodic).

An inspection is perfect when the information that it allows to obtain can be thought
of as representing exactly and without error the current state of the system. Conversely, it
is imperfect when the obtained information is affected by measurement error, or when the
state of the system cannot be directly observed and only partial information is available.
To properly account for the information gathered by means of an imperfect inspections,
appropriate tools must be put in place, such as a filtering procedure, or a model of the
system that integrates measurement error.

Inspections are continuous when information about the state of the system is available
at all times. While continuously inspecting a system may be useful to promptly detect
failures, the cost of such procedure can also be quite hefty. Moreover, dealing with a con-
tinuous stream of data is not a trivial task. If, on the other hand, monitoring information
is only available at some specified times, then inspections are periodic.

In addition, inspections can be destructive if performing one alters the state of the
system in some way, or non-destructive if they do not. Finally, if an inspection can be
carried out in a time length that is negligible with respect to the lifetime of the system,
it is said to be instantaneous.

Curative actions

A curative action is an action that has the goal of improving the state of the system.
Curative actions can be separated between replacement and repair. A repair is an inter-
vention on the system that improves its state without changing any other characteristic
(i.e., the behavior of the system is the same before and after the repair). Repairs can come
in different types:

— A total repair (also perfect repair) restores the system to the new state. This is also
called "As Good As New (AGAN)" state;

— A partial repair (also imperfect repair) restores the system to an intermediate state
between the failed one and the new one;

— A minimal repair is a partial repair where the system is restored to the working state
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Chapter 1 – Introduction to maintenance

it was in immediately before failing. This is also called "As Bad As Old (ABAO)"
state. Replacing only a small part of a complex system (for example, replacing a
faulty pipe on a car engine) could be assimilated to a minimal repair, if the impact
of this replacement is negligible onto the whole system’s reliability metrics, such as
the failure rate;

— A worse repair is a repair where the system post-repair is in a worse state than
pre-repair. This situation can arise when a poorly-executed repair is carried out
and the state of the system is not directly observable after the intervention (either
because it is not actually possible to obtain a measurement or because it is affected
by error).

A replacement is a curative action where the system is substituted by an equivalent system
that has the exact same performances and characteristics. This replacing system can be in
the new state or in some other degraded state. Depending on the particular application,
it is also possible that the replacing system is already in a failed state (replacing a flat
car tyre, only to discover that the spare one is flat as well, can be an example of this).
Replacements can be total (the entire system is replaced) or partial (only some part of it
is replaced).

1.2.3 Performance criterion

In order to effectively find the optimal trade-off between maintenance’s competing
goals, it is necessary to define a rigorous performance criterion. The optimal maintenance
strategy will then be the one that optimizes this criterion. In the literature, we can dis-
tinguish between three widely used criteria: economic, availability, and safety/reliability.

Economic criterion

The economic criterion is the most widely used. It is based on the notion that every
maintenance action performed on the system entails some direct and some indirect costs,
which the criterion should take into account. The evaluation of the cost of each mainte-
nance action is complex and dependent on various factors such as the type of maintenance
action (inspection, repair, replacement), its quality (perfect or imperfect), its duration,
and the state of the system at the time when the maintenance action is carried out (for
example, replacing a failed system is usually more expensive than replacing a system that
is still in a working state). Then, depending on the application, there might also be other
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costs involved, such as a logistic cost (that can include the cost of setting up maintenance
equipment, transporting maintenance crew on site, among others).

Finally, performing a maintenance action can also entail some indirect costs, such as
a lost production (in case operations need to be halted while maintenance is carried out),
or a missed opportunity cost (for example, replacing a system that is still in a working
state means wasting, by definition, at least some fraction of its operational life).

Availability criterion

If assessing the economic impact of a given maintenance action is particularly difficult,
it might be useful to resort to a different performance criterion, optimizing the availability.
According to the AFNOR, availability is "the ability of an item to be in a state to perform
a required function under given conditions at a given instant of time or during a given
time interval, assuming that the required external resources are provided."

Optimizing availability means minimizing the time that a system spends in a non-
operational condition, be it planned downtime (such as when the system is under main-
tenance) or unplanned downtime (such as when the system is in a failed state).

Safety/Reliability criterion

When tight safety regulations are put in place by some regulatory body (such as in
the aeronautics industry, or in the space launch industry), or when the consequences of
failure are catastrophic and avoidance of failure is of the utmost importance (such as
in the nuclear industry), it can be more fruitful to develop a maintenance strategy that
prioritizes safety. Primary focus would be, in this case, to optimize reliability, even if this
might come at a higher economic cost.

1.3 Types of maintenance policies

1.3.1 Corrective maintenance

Corrective Maintenance (CM) refers to the collection of maintenance actions carried
out when the system is already in a failed state (also reactive maintenance or run-to-failure
maintenance). CM is very easy to implement in practice, but, by its own definition, can-
not avoid failures. This means that the useful lifetime of the system is systematically
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exploited to the fullest, but also that failures will systematically happen. Since mainte-
nance activities are not pre-planned, there is no risk of over-maintaining (i.e., intervening
on the system too frequently). However, depending on the complexity on the curative
action to be implemented there might be long periods of time where the system is offline
awaiting maintenance actions to be carried out (for example waiting for spare parts to
be acquired), which results in high maintenance costs. Systematically observing failures
might also result in a higher risk of other nearby systems failing (for example, the failure
of a pump in a pumping station may put additional load on the other pumps and increase
the risk of them failing too). CM is best suited in practical applications where the conse-
quences of failure are very mild and/or replacing/repairing items is a relatively quick and
inexpensive process.

For example, household lightbulbs are commonly maintained adopting a corrective
approach and are usually replaced only when they go out. In this specific application, a
corrective approach can be convenient as the consequences of failure are very mild and
replacing a household lightbulb is a quick process that requires limited technical abilities.

1.3.2 Preventive maintenance

Preventive maintenance (PM) refers to the collection of maintenance actions taken on
a system that has not yet failed. The main advantage of PM is that the occurrences of
failure can be reduced. On the other hand, this also means that some portion of the useful
lifetime of the system will not be exploited.
When the consequences of failure are particularly severe, avoiding them might be an in-
teresting proposition. The safety of personnel, other equipment, and the environment can
be improved by reducing the number of observed failures. PM is built on the underlying
assumption that the failure of the system can somehow be predicted via some model of
its state, such as a lifetime distribution or a stochastic process.

The main difference between CM and PM is that the former is a reactive approach
while the latter is proactive. However, no proactive approach can prevent all failures.
Therefore, even in a nominally preventive strategy, some corrective maintenance actions
are to be expected. Maintenance can then become a matter of compromising between
frequent interventions (which allow to prevent failures, but can also be very expensive)
and maximizing equipment utilization (which can be more economically profitable, but
also incurs a higher risk of failure).

Preventive maintenance can be carried out in several ways. In increasing order of
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complexity, systematic, condition-based, and predictive.

Systematic maintenance

Systematic (also time-based or age-based) maintenance is an approach where mainte-
nance actions are performed based on a predetermined intervention calendar. This cal-
endar can be redacted in terms of time, age of the unit, or some other more appropriate
measure of the lifetime of the system, such as rotating cycles or items produced. Optimiz-
ing this kind of approach boils down to finding the optimal interval between successive
maintenance interventions.

Condition-based maintenance

An approach where maintenance interventions are determined based on some infor-
mation about the state of the system is called condition-based maintenance (CBM). This
information can be, for example, a measurement of degradation such as the wall thickness
of a corroding pipeline or the percentage loss luminescence of an LED light.
Obviously, a condition-monitoring scheme, with appropriate inspection procedures, must
be put in place. In addition, also a model of the state of the system that is able to ac-
commodate real-time state updates, such as a stochastic process-based model, should be
adopted. Condition-based approaches, under the right circumstances, can be very advan-
tageous from an economic point of view, albeit the implementation can be more complex
with respect to systematic maintenance.

Predictive maintenance

Building on condition-based maintenance, if the interventions can be dynamically
scheduled taking into account some prediction of the lifetime of the system, the approach
is called predictive maintenance.

1.4 Conclusions

The constant evolution of industrial maintenance, transitioning from a simple repair
of malfunctioning equipment to a proactive approach focused on anticipation and predic-
tion of failures, reflects a profound shift in how we approach the management of complex
systems. This evolution is driven by the desire to better control the operation of industrial
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systems, optimize resources, minimize unexpected downtime, and, most importantly, gain
competitiveness in an increasingly demanding global market.
One of the main challenges in this endeavor is uncertainty. Uncertainty in maintenance
manifest in various forms, such as data-related uncertainty, environmental-related uncer-
tainty, and model-related uncertainty. These uncertainties are often difficult to quantify
and effectively manage in practice.
It is worth to emphasize that, even in the presence of uncertainty, decisions must be made
to maintain the availability and reliability of industrial systems and that the potential
consequences of poor maintenance decisions can be significant, ranging from financial
costs to safety concerns.

Thus, to analyze and enhance the performance of maintenance strategies, it can be
useful to rely on stochastic models of the relevant system, capable of capturing its ran-
dom behavior and inherent uncertainty. However, developing and selecting appropriate
stochastic models is only the first step. Equally crucial is the need to develop relevant
decision rules (i.e., maintenance policies) that can be rigorously evaluated to ensure their
effectiveness and their ability to optimize maintenance performance.
In the following chapters, we will delve into detail on some stochastic processes that can be
used to model some sources of uncertainty (tackling the data-related and environmental-
related uncertainty), investigate the risk and consequences of potential errors in the model
selection process (tackling the model-related uncertainty), and then explore new policies
that can integrate the aforementioned processes within the framework of maintenance
optimization.
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Chapter 2

MATHEMATICAL FRAMEWORK FOR

PERTURBED STOCHASTIC PROCESSES

2.1 Introduction

As remarked in Chapter 1, a cornerstone of the success of the application of advanced
maintenance strategies is the idea that the failure of the system under analysis can be
predicted or estimated. Historically, this has been achieved by adopting lifetime distri-
butions that directly provide, for each instant of the operational life of the system, the
probability that failure will occur before or after this instant.

A more powerful and detailed approach can be obtained by adopting stochastic pro-
cesses. Under this approach, the probability of failure of the system is estimated by mod-
eling its degradation process. In this context, failure is usually defined by the first passage
time of the aforementioned degradation process to a preassigned threshold. It follows that
the successful implementation of this approach is based on the ability of the stochastic
process to accurately describe the degradation phenomenon under analysis.

A common drawback of the use of stochastic processes is the mathematical complexity
that can quickly arise. In fact, formulating and calibrating these models often relies on
computationally-heavy and time-intensive procedures that can easily run into convergence
problems.

A substantial amount of literature has been devoted to the study of the application
of stochastic processes in the field of degradation modeling and maintenance (see, for
example, the extensive review in Van Noortwijk (2009)). In the remainder of this chapter,
we will focus our attention on the particular stochastic processes that will be adopted
in the rest of the thesis, as well as the procedures developed and adopted to calibrate
the considered degradation models and perform failure-time predictions on the basis of
real-time data. In particular, Chapter 2.2 gives some general background on stochastic
processes, Chapter 2.3 introduces a gamma and a new inverse Gaussian processes that can
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both account for measurement error, and Chapter 2.4 presents a new gamma process that,
in addition to measurement error, also takes into account unit-to-unit variability. Then,
the different numerical algorithms adopted to calibrate and perform predictions with the
aforementioned processes are illustrated in Chapters 2.5, 2.6, 2.7, and 2.8: respectively,
the formulation of the likelihood function, the remaining useful life, the EM algorithm,
and the particle filter algorithm.

2.2 Background

Stochastic processes are a mathematical object extensively used to model a broad
variety of phenomena characterized by randomness and uncertainty. They find application
in numerous fields ranging from finance, physics, biology, and engineering. The term
"random function" is also used to refer to this objects.
A stochastic process {W (t); t ≥ 0} is defined as a collection of random variables indexed
by a parameter t ∈ T . The index t is often (but not necessarily, although it will be for the
rest of the manuscript) interpreted as time. The set T is called the index set of the process.
If the index set is a countable set, then the stochastic process is said to be a discrete-time
process, whereas if T is some interval of the real number line, then {W (t); t ≥ 0} is said
to be a continuous-time process. For any given value of the index t ∈ T,W (t) is a random
variable and is referred to as the state of the process at that time. The set of all possible
values that the state W (t) can assume is called the state space. If the state space is a
discrete (continuous) set, then {W (t); t ≥ 0} is called a discrete-state (continuous-state)
stochastic process.

Therefore, a stochastic process can be envisaged as a function that, to any time t ∈ T ,
associates a random variable that describes the state of the system under analysis at that
time.
An increment of a stochastic process is the amount by which it changes between two
time inputs. A realization is the function {w(y), y ≤ t} that describes the outcome (i.e.,
the observed trajectory, or observed path) of the process until time t, where y, t ∈ T . A
classical example of a discrete-time, discrete-state process would be the process describing
the earnings of a gambler that wins (loses) one when a fair coin is flipped heads (tails). In
this case, the index set would be the set of non-negative integers, with t being the number
of coin flips, whereas the state space would be the set of all rational numbers Z. The
state W (t) would describe the current (i.e., after t coin flips) gambler’s earnings. In the
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remainder of this manuscript, we will focus out attention on continuous-time, continuous-
state stochastic processes.

The function FW (t)(w) = P [W (t) ≤ w] is called the cumulative distribution function
of W (t), and the set {FW (t)(w), t ∈ T} is the collection of one-dimensional cumulative
distribution functions. The derivative of FW (t)(w), fW (t)(w), (if it exists) is called the
one-dimensional probability density function of W (t). Assigning the set {FW (t)(w), t ∈
T} does not suffice to completely define a stochastic process probabilistically. Indeed,
the joint (n-dimensional) distribution function of all the n-tuple of random variables
W (t1),W (t2), . . . ,W (tn), with n = 1, 2, . . . and t1 < t2 < . . . < tn is required. Denot-
ing by W (tn) the set W (tn) = {W (t1),W (t2), . . . ,W (tn)} and by wn the set wn =
{w1, w2, . . . , wn}, the joint (n-dimensional) distribution function can be expressed as:

FW (tn)(wn) = P

[
n⋂

i=1
W (ti) ≤ wi

]
(2.1)

The n-order derivative of Eq. (2.1):

fW (tn)(wn) = ∂

∂w1∂w2 . . . ∂wn

FW (t1),W (t2),...,W (tn)(w1, w2, . . . , wn) (2.2)

if it exists, is called the n-order probability density function of {W (t); t ≥ 0}.
The mean function of a stochastic process can be expressed as:

µW (t) = E{W (t)} =
∫

S
w · fW (t)(w) · dw (2.3)

where S is the state space, while its variance is:

σW (t) = E
{(
W (t) − µW (t)

)2
}

=
∫

S

(
w − µW (t)

)2
· fW (t)(w) · dw (2.4)

Eq. (2.2) can also be expressed in terms of conditional distributions as:

fW (tn)(wn) = fW (t1)(w1) · fW (t2)|W (t1)(w2|w1) · . . . · fW (tn)|W (tn−1)(wn|wn−1) (2.5)

Direct assignment of the distributions in Eq. (2.1) is often impossible in practice. Indeed,
it requires a very detailed knowledge of the underlying physical mechanisms that cause
the degradation process. Nevertheless, in many applications some simplifying assumption
make the task much easier, such as the Markov property, homogeneity, or independence
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of increments.

Markov property
The Markov property consists in assuming that the future evolution of the state of the
process only depends on its state at the current time. Formally, denoting the history up
to t Ht = {W (y), 0 ≤ y ≤ t} the Markov property consists in assuming that the state
W (t + ∆t) of the process at time t + ∆t depends on the past history only through the
value of its state at t.
In other words, a stochastic process is a Markov process if one can make prediction on
its future state based solely on its current state W (t) and discarding the past history
Ht− = {W (y), 0 ≤ y < t}.
The Markov property can also be expressed by this equality of probabilities:

P [W (t+ ∆t) ∈ S|Ht = ht] = P [W (t+ ∆t) ∈ S|Ht− = ht− ,W (t) = w]

= P [W (t+ ∆t) ∈ S|W (t) = w] (2.6)

where ht = {w(y), 0 ≤ y < t} is the realization of Ht and ht− = {w(y), 0 ≤ y < t} is the
realization of Ht− . Noting that Eq. (2.6) can also be expressed as:

fW (tn)|W (tn−1)(wn|wn−1) = fW (tn)|W (tn−1)(wn|wn−1),

under a Markov process, the joint pdf in Eq. (2.2) can be simplified to:

fW (tn)(wn) = fW (t1) · fW (t2)|W (t1)(w2|w1) · . . . · fW (tn−1)|W (tn−2)(wn−1|wn−2)×

× fW (tn)|W (tn−1)(wn|wn−1) (2.7)

Homogeneity
Let ∆W (t, t + ∆t) = W (t + ∆t) − W (t) denote the increment of a stochastic process.
Then, a Markov process is called homogeneous if the conditional pdf f∆W (t,t+∆t)|W (t)(δ|wt)
of the increment ∆W (t, t + ∆t) given W (t) = wt depends solely on the value of ∆t and
not on the specific value of t. This is equivalent to assuming that f∆W (t,t+∆t)|W (t)(δ|wt) =
fW (0,∆t)|W (t)(δ|wt). A process that does not satisfy this property is called non-homogeneous.

Independence of increments
A stochastic process has independent increments if the conditional distribution
f∆W (t,t+∆t)|W (t)(δ|wt) of the increment ∆W (t, t + ∆t) coincides with the unconditional
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one f∆W (t,t+∆t)(δ). If this property is satisfied, then the pdf in Eq. (2.2) simplifies to:

fW (tn)(wn) = fW (t1)(δ1) · f∆W (t1,t2)(δ2) · . . . · f∆W (tn−2,tn−1)(δn−1) · f∆W (tn−1,tn)(δn) (2.8)

Conceptually, this means that the distribution of the increment between time t and t+∆t
is not influenced by the value of the process at time t.

2.2.1 Definition of a perturbed stochastic process

In the experimental scenarios where measurements are collected via in-service, non-
destructive, or even indirect inspection methods, it is common to obtain measurements
which are contaminated by random errors. Consequently, adopting a degradation process
that is able to also take these errors into account may lead to better modeling performance.
In the literature, this situation is commonly tackled with a perturbed stochastic process,
denoted by {Z(t); t ≥ 0} and formulated as:

{Z(t) = W (t) + ε(t); t ≥ 0}, (2.9)

where {W (t); t ≥ 0} is the hidden (also actual, or true) degradation process and ε(t)
is a perturbing (also error) term, here intended as measurement error. To completely
define the stochastic process {Z(t); t ≥ 0} it is necessary to specify the hidden process
{W (t); t ≥ 0}, the perturbing term ε(t) and their mutual stochastic relationship.

In the overwhelming majority of the literature, the perturbing term is assumed to be
Gaussian-distributed and independent of the hidden degradation process (e.g., see Lu,
Pandey, and W.-C. Xie (2013), Le Son, Fouladirad, and Barros (2016), Bordes, Paroissin,
and Salami (2016), S. Hao, J. Yang, and Bérenguer (2019b), X. Chen et al. (2019), Kallen
and Van Noortwijk (2005), Whitmore (1995)), which usually leads to more easily mathe-
matically tractable formulations. Some other authors (Zhai and Ye (2017) have also exper-
imented with non-Gaussian based (but still independent of the hidden process) formula-
tions. However, in some applications it might be interesting to assume that measurement
error is stochastically dependent on the actual degradation. To this aim, Pulcini (2016)
modeled measurement error via a state-dependent Gaussian random variables. Similar so-
lutions are also used by Sun et al. (2021) and Oumouni and Schoefs (2021). Finally, some
non-Gaussian state-dependent formulations, such as in Giorgio, Mele, and Pulcini (2019)
have also been investigated.
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While considering non-Gaussian and/or state-dependent solutions can lead to more accu-
rate modeling, it also leads to increased mathematical complexity and the need for ad-hoc
model calibration algorithms.

In the remainder of this manuscript, the following (common) assumption will be made
regarding the relationship between ε(t) and W (t):

— for any n > 1, the measurement error ε(tj), givenW (tj), is conditionally independent
both of ε(tk) and W (tk) ∀k ̸= j (j, k = 1, . . . , n). Thus, equivalently, the perturbed
observation Z(tj) given W (tj) is conditionally independent both of Z(tk) and W (tk)
∀k ̸= j, (j, k = 1, . . . , n).

2.3 The perturbed gamma and the perturbed inverse
Gaussian processes

In this manuscript, the perturbed gamma and perturbed inverse Gaussian processes
are formulated as (see also Esposito, Mele, et al. (2023b)):

{Z(t) = W (t) + ε(t); t ≥ 0}. (2.10)

where:

(i) the hidden process might be either a gamma process or an inverse Gaussian one.
Both processes have independent increments and hence can be fully defined by an
initial condition (here W (0) = 0) and the probability density function (pdf) of its
generic increment ∆W (t, t + ∆t) = W (t + ∆t) − W (t). In the case of the gamma
process, the pdf of ∆W (t, t+ ∆t) can be expressed as:

f∆W (t,t+∆t)(δ) = δ∆η(t,t+∆t)−1

Γ[∆η(t, t+ ∆t)] · θ∆η(t,t+∆t) · e− δ
θ , δ ≥ 0, (2.11)

where Γ(y) =
∫∞

0 ua−1 ·e−udu is the complete gamma function, θ (θ > 0) is the scale
parameter, η(t) is a non-negative monotonic increasing function, here referred to as
the age function, and ∆η(t, t+ ∆t) = η(t+ ∆t) − η(t).
Whereas in the case of the inverse Gaussian process, the pdf of ∆W (t, t + ∆t) can
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be expressed by using the following special parameterization:

f∆W (t,t+∆t)(δ) = ∆η(t, t+ ∆t)√
2 · π · θ−1 · δ3

· e
(δ−θ·∆η(t,t+∆t))2

2·π·δ , δ ≥ 0, (2.12)

which can be easily obtained from the classical functional form of the pdf of the
increment of the inverse Gaussian process C.-Y. Peng (2015):

f∆W (t,t+∆t)(δ) =

√
ω · [∆Ω(t, t+ ∆t)]2

2πδ3 · e− ω·[δ−µ·∆Ω(t,t+∆t)]2

2µ2δ (2.13)

where Ω(t) is a non-negative monotonic increasing function, ∆Ω(t, t+ ∆t) = Ω(t+
∆t) − Ω(t), and µ and ω are positive valued parameters, by setting µ2/ω = θ and
µ · ∆Ω(t, t+ ∆t) = ∆η(t, t+ ∆t). The main advantage of adopting the special form
in Eq. (2.12) is that it allows the hidden gamma and the hidden inverse Gaussian
process to share the same parameters and the same functional form of the mean
V {W (t)} and variance V {Z(t)} functions. These latter functions can be formulated
as:

E{W (t)} = η(t) · θ (2.14)

V {W (t)} = η(t) · θ2 (2.15)

whereas under the classical parameterization of Eq. (2.13) the mean and vari-
ance functions of the hidden inverse Gaussian process would have been equal to
V {W (t)} = µ · ∆Ω(t, t+ ∆t) and V {W (t)} = [µ · ∆Ω(t, t+ ∆t)]3/ω, respectively.

From Eq. (2.11) the cumulative distribution function (cdf) of the increment
∆W (t, t+ ∆t) of the hidden gamma process is:

F∆W (t,t+∆t)(δ) =
γ
[
∆η(t, t+ ∆t), δ

θ

]
Γ[∆η(t, t+ ∆t)] , δ ≥ 0. (2.16)

where γ(·) is the lower incomplete gamma function. Similarly, from (2.12), under
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the hidden inverse Gaussian process the cdf can be expressed as:

F∆W (t,t+∆t)(δ) = Φ
[
δ − θ · ∆η(t, t+ ∆t)√

θ · δ

]

+ eθ·∆η(t,t+∆t) · Φ
[
−δ + θ · ∆η(t, t+ ∆t)√

θ · δ

]
(2.17)

where Φ(·) is the standard normal cdf.
To complete the definition of the hidden models it is necessary to provide the func-
tional form of the age function. In the remainder of this manuscript, the very flexible
and largely adopted power-law expression η(t) = (t/a)b is used.

(ii) To model the perturbing term ε(t), in this manuscript two options are considered:

1) following Giorgio, Mele, and Pulcini (2019), ε(t) is assumed to depend, in
stochastic sense, on the hidden degradation level W (t) and that, given W (t),
is conditionally distributed as an inverse gamma random variable whose pdf
can be expressed as:

fε(t)|W (t)(ε|w) = (α(w))β(w) · (ε+ w)−β(w)−1

Γ(β(w)) · e− α(w)
ε+w , ε ≥ −w (2.18)

where β(w) = φ · w2−ν + 2, φ > 0,−∞ < ν < ∞, and α(w) = (β(w) − 1) · w.
This modeling option ensures that the resulting perturbed measurement Z(t) =
W (t) + ε(t) is non-negative (indeed, this feature that the hidden gamma and
inverse Gaussian processes possess is preserved also in the perturbed mod-
els) and enables to model scenarios where the measurement error depends (in
stochastic sense) on the measured degradation level.
Under this setting, the conditional mean and variance of ε(t), given W (t) = w,
can be formulated as:

E{ε(t)|W (t) = w} = α(w)
β(w) − 1 − w = 0, (2.19)

V {ε(t)|W (t) = w} = (α(w))2

(β(w) − 1)2 · (β(w) − 2) = wν

φ
. (2.20)

Therefore, from Eq. (2.10) the observed perturbed measurement Z(t), given
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W (t) = w, has conditional pdf:

fZ(t)|W (t)(ε|w) = (α(w))β(w) · z−β(w)−1

Γ(β(w)) · e− α(w)
ε+w , z ≥ 0, (2.21)

conditional mean:

E{Z(t)|W (t) = w} = E{ε(t)|W (t) = w} + w = w, (2.22)

and conditional variance:

V {Z(t)|W (t) = w} = V {ε(t)|W (t) = w} = wν

φ
. (2.23)

2) inspired by Pulcini (2016), ε(t) is assumed to be Gaussian-distributed, with
zero mean and variance that depends on W (t). In this case, the conditional
pdf of ε(t) can be expressed as:

fε(t)|W (t)(ε|w) = 1√
2 · π · σ2(w)

· e− 1
2 · ε2

σ2(w) , −∞ < ε < +∞, (2.24)

where σ2(w) = wν/φ, φ > 0, and −∞ < ν < +∞.
Consequently, under option 2) ε(t), given W (t) = w, has the same conditional
mean and variance as under option 1):

E{ε(t)|W (t) = w} = 0, (2.25)

V {ε(t)|W (t) = w} = σ2(w) = wν

φ
. (2.26)

Hence, from Eq. (2.10) the observed perturbed measurement Z(t), given
W (t) = w, has conditional pdf:

fZ(t)|W (t)(z|w) = 1√
2 · π · σ2(w)

· e− 1
2 · (z−w)2

σ2(w) , −∞ < z < +∞, (2.27)

conditional mean:

E{Z(t)|W (t) = w} = E{ε(t)|W (t) = w} + w = w, (2.28)
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and conditional variance:

V {Z(t)|W (t) = w} = V {ε(t)|W (t) = w} = wν

φ
. (2.29)

This specific formulation has been chosen so that ε(t) and Z(t), given W (t) =
w, have the same conditional mean and variance that they have under option
1). A perturbed gamma process that adopts this modeling solution for the
perturbing term has been proposed in Pulcini (2016). Sun et al. (2021) adopted
it to formulate a perturbed inverse Gaussian process.

Under these assumptions, from Eqs. (2.14), (2.19), (2.22), (2.25), and (2.28), via the law
of total mean, the marginal means of ε(t) and Z(t), under all considered processes (i.e.,
under both hidden processes and under both error modeling options 1) and 2)), can be
expressed as:

E {ε(t)} = E {E{ε(t)|W (t)}} = E{0} = 0, (2.30)

and:
E {Z(t)} = E {E{Z(t)|W (t)}} = E {W (t)} = θ · η(t). (2.31)

Similarly, by using the law of total variance, from Eqs. (2.15), (2.20), (2.22), (2.23), (2.26),
(2.28), and (2.29), under both modeling option 1) and 2), the marginal variances of ε(t)
and Z(t) are equal to:

V {ε(t)} = V {E{ε(t)|W (t)}} + E{V {ε(t)|W (t)}} = V {0} + E{(W (t))ν}
φ

(2.32)

and:

V {Z(t)} = V {E{Z(t)|W (t)}} + E{V {Z(t)|W (t)}} = V {W (t)} + E{(W (t))ν}
φ

, (2.33)

where the fractal moment E{(W (t))ν} (in general) depends on the hidden process. In the
case of the gamma process it can be expressed as;

E{(W (t))ν} = θν · Γ(η(t) + ν)
Γ(η(t)) , (2.34)
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whereas in the case of the inverse Gaussian process it is given by this integral:

E{(W (t))ν} = η(t)√
2 · π · θ−1

·
∫ ∞

0
wν− 3

2 · e− [w−θ·η(t)]2
2·θ·w · dw (2.35)

that (in general) is not available in closed form. Nevertheless, in case ν = 0, 1, or 2,
V {ε(t)} and V {Z(t)} have simple expressions and do not depend on the hidden model.
Specifically, if ν = 0 it is, under both processes:

V {ε(t)} = 1
φ

and:
V {Z(t)} = θ2 · η(t) · 1

φ
.

Likewise, if ν = 1 it is:
V {ε(t)} = θ · η(t)

φ

and:
V {Z(t)} = θ2 · η(t) + θ · η(t)

φ
.

In addition, in this case the ratio between V {Z(t)} and V {W (t)} does not depend on t:

V {Z(t)}
V {W (t)} =

θ2 · η(t) + θ·η(t)
φ

θ2 · φ
= 1 + 1

θ · φ
. (2.36)

Again, by using similar arguments, if ν = 2, noting that under the considered special
parameterization the two hidden processes share the same mean and variance functions
(and hence second moment) it is:

E
{
(W (t))2

}
= θ2 · η(t) · (η(t) + 1)

and therefore:
V {ε(t)} = θ2 · η(t) · (η(t) + 1)

φ

and:
V {Z(t)} = θ2 ·

[
η(t) + η(t) · (η(t) + 1)

φ

]
.
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Under the current setup, it is also possible to express the distribution of FW (t1)(w1) con-
ditional to W (t2) = w2, where t1 and t2 be two generic reference times, with t1 < t2. In
fact, being:

FW (t1)|W (t2)(w1|w2) =
∫ w1

0
fW (t1)|W (t2)(w|w2) · dw

=
∫ w1

0

fW (t2)|W (t1)(w2|w) · fW (t1)(w)
fW (t2)(w2)

· dw

=
∫ w1

0

f∆W (t1,t2)|W (t1)(w2 − w|w) · fW (t1)(w)
fW (t2)(w2)

· dw

from Eqs. (2.11) and (2.12), under the gamma process it is:

FW (t1)|W (t2)(w1|w2) = B
(
w1

w2
; η(t1),∆η(t1, t2)

)
(2.37)

whereas under the inverse Gaussian it can be computed by numerically solving the inte-
gral:

FW (t1)|W (t2)(w1|w2)

=
∫ w1

0

∆η(t1, t2) · η(t1)
η(t1)

·

√√√√ θ

2 · π
·
[

w2

w1 · (w2 − w1)

]3

· e− θ·[w2·η(t1)−w1·η(t2)]2
2·w1·w2·(w2−w1) · dw. (2.38)

Finally, it is worth to remark that, under the considered settings:

— the perturbed process {Z(t); t ≥ 0} is non-Markovian.

— under error model 1), when ν = 0, despite the conditional mean and variance of
ε(t) not depending on W (t), ε(t) still stochastically depends on W (t) because its
support depends on it (indeed, from Eq. (2.21), it must be ε ≥ −w).

— under error model 2), when ν = 0, ε(t) is stochastically independent of W (t).
Hence, in this case, error model 2) reduces to the classical model adopted in the
bulk of existing literature on perturbed degradation modeling (see Lu, Pandey,
and W.-C. Xie (2013), Le Son, Fouladirad, and Barros (2016), Bordes, Paroissin,
and Salami (2016), S. Hao, J. Yang, and Bérenguer (2019a), S. Hao, J. Yang, and
Bérenguer (2019b), and X. Chen et al. (2019)).

34



2.4. The perturbed gamma process with random effect

2.4 The perturbed gamma process with random ef-
fect

The considered perturbed gamma process with random effect is formulated as (see
also Esposito, Mele, et al. (2022)):

{Z(t) = W (t) + ε(t); t ≥ 0} (2.39)

where:

(i) {W (t); t ≥ 0} is the non-homogeneous gamma process with random effect originally
suggested in Lawless and Crowder (2004). As in Giorgio, Mele, and Pulcini (2019),
given a unit randomly chosen from a heterogeneous population, its hidden degra-
dation process is described by a gamma process. Yet, Lawless and Crowder (2004)
assume that the rate parameter of the unit-specific gamma process varies randomly
from unit to unit.
Given the (unknown) value λ of the rate parameter Λ, the pdf of the degradation
increment ∆W (t, t+ ∆t) = W (t+ ∆t) −W (t) of a generic unit is expressed as:

f∆W (t,t+∆t)|Λ(δ|λ) = λ∆η(t,t+∆t) · δ∆η(t,t+∆t)−1

Γ (∆η(t, t+ ∆t)) · e−λ·δ, δ ≥ 0. (2.40)

The rate parameter Λ is assumed to have the gamma pdf:

gΛ(λ) = cd · λd−1

Γ(d) · e−c·λ, λ, c, d > 0 (2.41)

(ii) The perturbing term is modeled by adopting the inverse gamma random variable
presented in Eq. (2.18).
In addition, it is assumed that ε(t), given W (t) is conditionally independent on the
parameter Λ. Under this setup, the conditional mean of ε(t) is:

E{ε(t)|W (t) = w} = α(w)
β(w) − 1 − w = 0

and conditional variance equal to:

V {ε(t)|W (t) = w} = (α(w))2

(β(w) − 1)2 · (β(w) − 2) = wν

φ
.
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One of the main advantages of this model is that the hidden marginal process
{W (t); t ≥ 0} is still Markovian and that the conditional pdf of its increment can be
expressed in closed form. In fact, the conditional pdfs of ∆W (tl, tl + ∆t) and Λ, given
W (t1) = w1, . . . ,W (tl) = wl, can be expressed as in Eqs. (2.42)-(2.43), respectively:

f∆W (tl,tl+∆t)|W (t1),...,W (tl)(δ|w1, . . . , wl)

=
∫∞

0 f∆W (tl,tl+∆t)|Λ(δ|λ) ·∏l
j=1 F∆W (tj−1,tj)|Λ(wj − wj−1|λ) · gΛ(λ) · dλ∫∞

0
∏l

j=1 f∆W (tj−1,tj)|Λ(wj − wj−1|λ) · gΛ(λ) · dλ

=
∫∞

0 f∆W (tl,tl+∆t)|Λ(δ|λ) · fW (t1),...,W (tl)|Λ(w1, . . . , wl|λ) · gΛ(λ) · dλ
fW (t1),...,W (tl)(w1, . . . , wl)

(2.42)

=
∫∞

0 f∆W (tl,tl+∆t)|Λ(δ|λ) · gΛ|W (t1),...,W (tl) (λ|w1, . . . , wl) · fW (t1),...,W (tl)(w1, . . . , wl) · dλ
fW (t1),...,W (tl)(w1, . . . , wl)

=
∫ ∞

0
f∆W (tl,tl+∆t)|Λ(δ|λ) · gΛ|W (t1),...,W (tl) (λ|w1, . . . , wl) · dλ,

gΛ|W (t1),...,W (tl) (λ|w1, . . . , wl) =
∏l

j=1 f∆W (tj−1,tj)|Λ (wj − wj−1|λ) · gΛ(λ)∫∞
0
∏l

j=1 f∆W (tj−1,tj)|Λ (wj − wj−1|λ) · gΛ(λ) · dλ

=
∏l

j=1
λ

η(tj−1,tj)·(wj−wj−1)η(tj−1,tj)−1

Γ[η(tj−1,tj)] · e−λ·(wj−wj−1) · cd·λd−1

Γ(d) · e−c·λ

∫∞
0
∏l

j=1
λ

η(tj−1,tj)·(wj−wj−1)η(tj−1,tj)−1

Γ[η(tj−1,tj)] · e−λ·(wj−wj−1) · cd·λd−1

Γ(d) · e−c·λ · dλ

= λη(tl)+d−1 · e−(wl+c)·λ∫∞
0 λη(tl)+d−1 · e−(wl+c)·λ · dλ

= (c+ wl)η(tl)+d · λη(tl)+d−1 · e−(wl+c)·λ

Γ[η(tl) + d] , (2.43)

where t0 = w0 = 0, t1 < . . . < tl, and w1 < . . . < wl. Eq. (2.42) also shows
that ∆W (tl, tl + ∆t) depends on the history Ht = {W (t1), . . . ,W (tl)} only through
gΛ|W (t1),...,W (tl) (λ|w1, . . . , wl), which, in turn (as shown by Eq. (2.43)), depends on Ht

only through the value of W (tl). Therefore, it is clear that, given the value W (tl) of the
degradation at time tl, the distribution of the increment ∆W (tl, tl + ∆t) is conditionally
independent of the past history Ht− = {W (t1), . . . ,W (tl−1)}. It is worth noticing that
Eq. (2.43) also shows that, given W (tl) = wl, Λ is still conditionally gamma distributed,
with rate parameter wl + c and shape parameter η(tl) + d.
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Consequently, from Eqs. (2.40), (2.42), and (2.43), the conditional pdf of the increment
∆W (t, t+ ∆t), given W (t) = w, can be expressed as:

f∆W (t,t+∆t)|W (t)(δ|w) =
∫ ∞

0
f∆W (t,t+∆t)|Λ(δ|λ) · gΛ|W (t)(λ|w) · dλ

=
∫ ∞

0

λ∆η(t,t+∆t) · δ∆η(t,t+∆t)−1 · e−λδ

Γ [∆η(t, t+ ∆t)] · (w + c)η(t)+d · λη(t)+d−1 · e−(w+c)·λ

Γ [η(t) + d] · dλ

= (w + c)η(t)+d · δ∆η(t,t+∆t)−1

Γ[η(t)] · Γ[d] ·
∫ ∞

0
λη(t+∆t)+d−1 · e−(w+c)·λ · dλ

= 1
B [∆η(t, t+ ∆t), η(t) + d] · (w + c)η(t)+d · δ∆η(t,t+∆t)−1

(w + δ + c)η(t+∆t)+d
(2.44)

Then, from Eq. (2.44), the conditional cdf of ∆W (t, t + ∆t), given W (t) = w, can be
expressed as:

F∆W (t,t+∆t)|W (t)(δ|w) = B
[

δ

δ + w + c
; ∆η(t, t+ ∆t), η(t) + d

]
(2.45)

where:
B(y;α, β) = 1

B(α, β) ·
∫ y

0
uα−1 · (1 − u)β−1 · du (2.46)

is the regularized beta function and:

B(α, β) = Γ(α) · Γ(β)
Γ(α + β)

is the beta function.
Eq. (2.44), together with the initial condition (here W (0) = 0) and the functional form of
the age function (the power-law function η(t) = (t/a)b) fully specifies the hidden model
{W (t); t ≥ 0}. From Eqs. (2.44) and (2.45) it also follows that the conditional pdf and
cdf of ∆W (t, t+ ∆t), given W (t) = w, can be expressed as:

fW (t+∆t)|W (t)(δ + w|w) = 1
B [∆η(t, t+ ∆t), η(t) + d]

× (w + c)η(t)+d · [(w + δ) − w]∆η(t,t+∆t)−1

(w + δ + c)η(t+∆t)+d
(2.47)
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and:

FW (t+∆t)|W (t)(δ + w|w) = B
[

(δ + w) − w

(δ + w) + c
; ∆η(t, t+ ∆t), η(t) + d

]
. (2.48)

Finally, from Eq. (2.43), it results that {W (t); t ≥ 0} has marginal pdf:

fW (t)(w) = cd · wη(t)−1

B(η(t), d) · (w + c)η(t)+d
, w ≥ 0, (2.49)

marginal cdf:
FW (t)(w) = B

(
w

w + c
; η(t), d

)
, w ≥ 0, (2.50)

mean (that exists for d > 1):

E{W (t)} = c · η(t)
d− 1 , (2.51)

and variance (that exists for d > 2):

V {W (t)} = c2 · η(t) · [η(t) + d− 1]
(d− 1)2 · (d− 2) . (2.52)

Let t1 and t2 be two generic reference times, with t1 < t2. Under the current setup, it
is also possible to express in closed form the distribution of FW (t1)(w1) conditional to
W (t2) = w2. In fact, being

FW (t1)|W (t2)(w1|w2) =
∫ w1

0
fW (t1)|W (t2)(w|w2) · dw

=
∫ w1

0

fW (t2)|W (t1)(w2|w) · fW (t1)(w)
fW (t2)(w2)

· dw

=
∫ w1

0

f∆W (t1,t2)|W (t1)(w2 − w|w) · fW (t1)(w)
fW (t2)(w2)

· dw

38



2.4. The perturbed gamma process with random effect

from Eqs. (2.46), (2.47), and (2.49):

FW (t1)|W (t2)(w1|w2) =

=
∫ w1

0

(w+c)η(t1)+d·(w2−w)∆η(t1,t2)−1

B(∆η(t1,t2),η(t1)+d)·(w2+c)η(t2)+d · cd·wη(t1)−1

B(η(t1),d)·(w+c)η(t1)+d

cd·wη(t2)−1
2

B(η(t2),d)·(w2+c)η(t2)+d

· dw

= B(η(t2), d)
B(∆η(t1, t2), η(t1) + d) ·B(η(t1), d)

·
∫ w1

0

(w2 − w)∆η(t1,t2)−1 · wη(t1)−1

w
η(t2)−1
2

· dw

= 1
B(η(t1),∆η(t1, t2)

·
∫ w1

0

(
w

w2

)η(x)−1
·
(

1 − w

w2

)∆η(t1,t2)−1
· 1
w2

· dw

= 1
B(η(t1),∆η(t1, t2)

·
∫ w1/w2

0
yη(t1)−1 · (1 − y)∆η(t1,t2)−1 · dy

= B
(
w1

w2
; η(t1),∆η(t1, t2)

)
, (2.53)

Concerning the perturbed process, from Eqs. (2.40) and (2.21), by variable transforma-
tion, Z(t), given W (t) = w, is distributed as an inverse gamma random variable with
conditional pdf:

fZ(t)|W (t)(z|w) = (α(w))β(w) · zβ(w)−1

Γ (β(w)) · e− α(w)
z , z ≥ 0, (2.54)

conditional cdf:
FZ(t)|W (t)(z|w) = Γ (β(w), α(w)/z)

Γ (β(w)) , z ≥ 0, (2.55)

conditional mean:

E{Z(t)|W (t) = w} = E{ε(t)|W (t) = w} + w = w, (2.56)

and conditional variance:

V {Z(t)|W (t) = w} = V {ε(t)|W (t) = w} = wν

φ
, (2.57)

where Γ(·, ·) is the upper incomplete gamma function. The marginal distribution of Z(t)
is not available in closed form. However, from Eqs. (2.49), (2.54), and (2.55), the marginal
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pdf and cdf of Z(t) can be numerically computed via the following integrals:

fZ(t)(z) =
∫ ∞

0
fZ(t)|W (t)(z|w) · fW (t)(w) · dw

=
∫ ∞

0

(α(w))β(w) · zβ(w)−1 · e− α(w)
z

Γ (β(w)) · cd · wη(t)−1

B(η(t), d) · (w + c)η(t)+d
· dw, (2.58)

FZ(t)(z) =
∫ ∞

0
FZ(t)|W (t)(z|w) · fW (t)(w) · dw

=
∫ ∞

0

Γ (β(w), α(w)/z)
Γ (β(w)) · cd · wη(t)−1

B(η(t), d) · (w + c)η(t)+d
· dw. (2.59)

Moreover, from Eqs. (2.51), (2.52), (2.56), and (2.57), by using the laws of total expecta-
tion and total variance, the marginal mean of Z(t) (that exists for d > 1 can be expressed
as:

E{Z(t)} = E{E{Z(t)|W (t)}} = E{W (t)} = c · η(t)
d− 1 (2.60)

and its conditional variance:

V {Z(t)} = V {E{Z(t)|W (t)}} + E{V {Z(t)|W (t)}}

= V {W (t)} + E

{
(W (t))ν

φ

}
= c2 · η(t) · [η(t) + d− 1]

(d− 1)2 · (d− 2) + E{(W (t))ν}
φ

(2.61)

where the term E{(W (t))ν}, that exists for d > ν, is equal to:

E{(W (t))ν} = cν · Γ(d− ν)
Γ(d) · Γ(η(t) + ν)

Γ (η(t)) . (2.62)

Finally, it is worth to remark that, under the considered setup:

— the perturbed process {Z(t); t ≥ 0} is not a Markov process.

— the marginal hidden process {W (t); t ≥ 0} is age and state dependent. This feature
is also preserved in the particular case where the temporal variability of the unit-
specific paths is described by homogeneous gamma processes (see Giorgio and Pul-
cini (2018)). Indeed, the dependence on the state arises from the existence within
the population of units whose degradation rate evolve over time at diverse paces
(i.e., units with elevated degradation levels are anticipated to experience heightened
future deterioration, reflecting their inherent weakness). This distinction between
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weaker and stronger units hinges on the recognition and comprehension of this in-
terdependence.

2.5 Formulation of the likelihood function

Let us consider m identical units operating under homogeneous conditions and suppose
that the degradation level of the unit i (i = 1, ...,m) is measured at times ti,1, ..., ti,ni

,
and that measurements are contaminated by random errors. Finally, let us denote by
Zi,j = Z(ti,j) the perturbed degradation level of the unit i at the measurement time ti,j,
by zi,j its realization, and by ξ the vector of model parameters. Then, under these setting,
the likelihood function of the considered processes can be formulated as:

L(ξ; z) =
m∏

i=1

ni∏
j=1

fZi,j |Zi,j−1 (zi,j|zi,j−1) (2.63)

where z = {z1,n1 , . . . ,zm,nm} is the realization of the whole set of available noisy measure-
ments Z = {Z1,n1 , . . . ,Zm,nm}, Zi,j = {Zi,1, . . . , Zi,j} is the set of perturbed measure-
ments of the degradation state of the unit i collected up to time ti,j, zi,j = {zi,1, . . . , zi,j}
is the realization of Zi,j, ti,0 = 0, Zi,0 and zi,0 are the empty set, and fZi,1|Zi,0(zi,1|zi,0) =
fZi,1(zi,1).
Given that, under all considered processes, {Z(t); t ≥ 0} is not a Markov process, Eq.
(2.63) cannot be expressed in closed form and its computation is very demanding. Never-
theless, the needed pdfs can be efficiently computed, for any i = 1, . . . ,m and j = 1, . . . , ni,
by using the recursive equations:

fWi,j |Zi,j−1(wi,j|zi,j−1) =
∫ wi,j

0
f∆Wi,j |Wi,j−1(∆wi,j|wi,j−1)×

× fWi,j−1|Zi,j−1(wi,j−1|zi,j−1) · dwi,j−1 (2.64)

fZi,j |Zi,j−1(zi,j|zi,j−1) =
∫ ∞

0
fZi,j |Wi,j

(zi,j|wi,j) · fWi,j |Zi,j−1(wi,j|zi,j−1) · dwi,j (2.65)

fWi,j |Zi,j
(wi,j|zi,j) =

fZi,j |Wi,j
(zi,j|wi,j) · fWi,j |Zi,j−1(wi,j|zi,j−1)
fZi,j |Zi,j−1(zi,j|zi,j−1)

(2.66)

where Wi,j = W (ti,j) denotes the hidden (true) degradation level of the unit i at time ti,j,
∆Wi,j = ∆W (ti,j−1, ti,j) = Wi,j −Wi,j−1 is the hidden (true) degradation increment of the
unit i in the interval (ti,j−1, ti,j), wi,j is the realization of Wi,j, and ∆wi,j = wi,j − wi,j−1

is the realization of ∆Wi,j.
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In fact, Eq. (2.64) can be derived as:

fWi,j |Zi,j−1(wi,j|zi,j−1) =
∫ wi,j

0
fWi,j ,Wi,j−1|Zi,j−1(wi,j, wi,j−1|zi,j) · dwi,j−1

=
∫ wi,j

0
fWi,j |Wi,j−1,Zi,j−1(wi,j|wi,j−1, zi,j−1) · fWi,j−1|Zi,j−1(wi,j−1|zi,j−1) · dwi,j−1

=
∫ wi,j

0
fWi,j |Wi,j−1(wi,j|wi,j−1) · fWi,j−1|Zi,j−1(wi,j−1|zi,j−1) · dwi,j−1,

where the last equality is possible because {W (t); t ≥ 0} is Markovian and hence the
state Wi,j, given Wi,j−1, is conditionally independent on the perturbed measurements
Zi,j−1 collected up to and including time ti,j−1.
Eq. (2.65) can be derived as follows:

fZi,j |Zi,j−1(zi,j|zi,j−1) =
∫ ∞

0
fZi,j ,Wi,j |Zi,j

(zi,j, wi,j|zi,j) · dwi,j

=
∫ ∞

0
fZi,j |Wi,j ,Zi,j

(zi,j|wi,j, zi,j) · fWi,j |Zi,j−1(wi,j|zi,j−1) · dwi,j

=
∫ ∞

0
fZi,j |Wi,j

(zi,j|wi,j) · fWi,j |Zi,j−1(wi,j|zi,j−1) · dwi,j,

where the last equality holds due to the assumption laid out in Chapter 2.2.1. Similarly,
Eq. (2.66) can be obtained through the following chain of equalities:

fWi,j |Zi,j
(wi,j|zi,j) =

fZi,j ,Wi,j
(zi,j, wi,j)

fZi,j
(zi,j)

=
fZi,j ,Wi,j |Zi,j−1(zi,j, wi,j|zi,j−1) · fZi,j−1(zi,j−1)

fZi,j |Zi,j−1(zi,j|zi,j−1) · fZi,j−1(zi,j−1)

=
fZi,j ,Wi,j |Zi,j−1(zi,j, wi,j|zi,j−1)

fZi,j |Zi,j−1(zi,j|zi,j−1)

=
fZi,j |Wi,j ,Zi,j−1(zi,j|wi,j, zi,j−1) · fWi,j |Zi,j−1(wi,j|zi,j−1)

fZi,j |Zi,j−1(zi,j|zi,j−1)

=
fZi,j |Wi,j

(zi,j|wi,j) · fWi,j |Zi,j−1(wi,j|zi,j−1)
fZi,j |Zi,j−1(zi,j|zi,j−1)

Under the perturbed processes adopted in this manuscript, the likelihood function cannot
be computed in closed form. Indeed, it is computed numerically via the particle filter
described in Chapter 2.8, which takes advantage of Eqs. (2.64)-(2.66). The value of ξ that
maximizes (over the parameter space) the likelihood function 2.63 is by definition the
Maximum Likelihood (ML) estimate ξ̂ of ξ. However, the direct numerical maximization
of this function carries a particularly heavy computational burden and also poses serious
convergence issues. Therefore, in this manuscript the ML estimates of model parame-
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ters are retrieved by using the new expectation-maximization particle filter algorithm
described in Chapter 2.7 that massively alleviates these issues.

2.6 Cdf of RUL

A unit is assumed to fail when its true degradation level passes a preassigned failure
threshold wM . Hence, the lifetime X of the unit is defined as the first passage time of the
hidden degradation process to the threshold wM :

X = inf{x : W (x) > wM}.

Accordingly, its remaining useful life RUL(t) at time t is defined as:

RUL(t) = max{0, X − t}.

In this manuscript, it is assumed that:

— Failures are not self-announcing (Bautista, Castro, and Landesa (2022), Bismut,
Pandey, and Straub (2022)) and that a failed unit may continue to operate, albeit
with (possibly) reduced performance.

— Available measurements only consist of perturbed measurements.

Consequently, even conditional to the available data, it is not possible to assess with cer-
tainty whether a unit is failed or not. Under these assumptions, and given also that under
all considered perturbed processes, the hidden processes are all monotonic increasing, the
conditional cdf FRUL(t)|Z(t) (τ |z(t)) of the RUL(t) given Z(t) = z(t), is formulated as:

FRUL(t)|Z(t) (τ |z(t)) = P [RUL(t) ≤ τ |Z(t) = z(t)] = P [W (t+ τ) > wM |Z(t) = z(t)]

= 1−FW (t+τ)|Z(t)(wM |z(t)) = 1−
∫ wM

0
F∆W (t,t+τ)|W (t)(wM −w|w) ·fW (t)|Z(t)(w|z(t)) ·dw

(2.67)

where Z(t) = {Z(tj); j ≥ 1, tj ≤ t} denotes the set of measurements gathered up to and
included the time t and z(t) = {z(tj); j ≥ 1, tj ≤ t} is its realization.
Coherently with the previous assumptions, because measurement error is present and
failures are not self-announcing, it results FRUL(t)(0|z(t)) > 0. It is worth noticing that,
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if the set Z(t) contains l perturbed measurements, Eq. (2.67) is fully equivalent to

FRUL(t)|Z(t) (τ |z(t)) = P [RUL(tl) ≤ τ + t− tl|Z(tl) = z(tl)]

= P [W (t+ τ) > wM |Z(tl) = z(tl)] = 1 − FW (t+τ)|Z(tl)(wM |z(tl))

= 1 −
∫ wM

0
F∆W (t,t+τ)|W (tl)(wM − wl|wl) · fW (tl)|Z(tl)(w|z(tl)) · dwl (2.68)

where Z(tl) = {Z(t1), . . . , Z(tl)} is the set of perturbed measurements made on the
considered unit up to the time tl, z(tl) = {z1, . . . , zl} is its realization, tl is the epoch of the
lth measurements, and FW (t+τ)|W (tl)(·|wl) is the conditional cdf of the actual degradation
level at t + τ given W (tl) = wl. Hence, before the first measurement is taken (i.e., for
t < t1) Z(t) should be intended as the empty set so that, in this case, FW (t+τ)|Z(t)(wM |z(t))
coincides with FW (t+τ)(wM). From Eq. (2.67), given Z(t) = z(t), the conditional mean of
the RUL(t), here intended as the conditional mean E{RUL(t)|Z(t) = z(t)} and denoted
as MRUL (t|Z(t) = z(t)), can be computed as:

MRUL(t|Z(t) = z(t)) =
∫ ∞

0

(
1 − FRUL(t)|Z(t) (τ |z(t))

)
· dτ

=
∫ ∞

0
FW (t+τ)|Z(t) (wM |z(t)) · dτ. (2.69)

Unfortunately, under all the considered models, the cdf FW (t+τ)|Z(t)(wM |z(t)) is not avail-
able in closed form. Hence, both the cdf of RUL(t) in Eq. (2.67) and the related condi-
tional mean MRUL(t|Z(t) = z(t)) in Eq. (2.69) are computed by using the particle filter
algorithm illustrated in Chapter 2.8.

Further results which involve the lifetime X are derived here (these will be important
for the computations of maintenance costs in Chapter 5). Let fX|W (τ)(x|wτ ) denote the
conditional pdf of the lifetime X given W (τ) = wτ , where τ is a generic reference time,
and wτ is the true value of the degradation level at time τ . Then, it is possible to readily
obtain the conditional cdf of X given W (τ) = wτ , in the cases where wτ ≤ wM , as:

FX|W (τ)(x|wτ ) = P [X ≤ x|W (τ) = wτ ] = P [W (x) > wM |W (τ) = wτ ]

=

 0, wτ ≤ wM , x < τ

1 − F∆W (τ,x)|W (τ)(wM − wτ |wτ ), wτ ≤ wM , x ≥ τ
(2.70)

where the first equality can be explained by observing that, since (under all stochastic
processes considered in this manuscript) the process {W (t); t ≥ 0} is monotone increasing,
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the event {X ≤ x} is equivalent to the event {W (x) > wM}.
Differently, in the cases where wτ > wM the conditional cdf of X given W (τ) = wτ can
be expressed as:

FX|W (τ)(x|wτ ) = P [X ≤ x|W (τ) = wτ ] = P [W (x) > wM |W (τ) = wτ ]

=

 1 − FW (x)|W (τ)(wM |wτ ), wτ > wM , x ≤ τ

1, wτ > wM , x > τ.
(2.71)

Then, the conditional mean of X, given W (τ) = wτ , can be expressed as:

E{X|W (τ) = wτ } =
∫ τ

0
x · fX|W (τ)(x|wτ ) · dx

=
[
−x ·

(
1 − FX|W (τ)(x|wτ )

)]τ
0

+
∫ τ

0

(
1 − FX|W (τ)(x|wτ )

)
· dx

=
∫ τ

0

(
1 − FX|W (τ)(x|wτ )

)
· dx.

(2.72)

Finally, when wτ ≤ wM , given W (τ) = wτ , the conditional mean of the variable g(X)
defined by the following transformation:

g(X) =

 τ + ∆τ −X, X ≤ τ + ∆τ
0, X > τ + ∆τ

(2.73)

where ∆τ ≥ 0, can be computed as:

E{g(X)|W (τ) = wτ } =
∫ τ+∆τ

τ
(τ + ∆τ − x) · fX|W (τ)(x|wτ ) · dx

=
[
−(τ + ∆τ − x) ·

(
1 − FX|W (τ)(x|wτ )

)]τ+∆τ

τ
−
∫ τ+∆τ

τ

(
1 − FX|W (τ)(x|wτ )

)
· dx

= ∆τ −
∫ τ+∆τ

τ
F∆W (τ,x)|W (τ)(wM − wτ |wτ ) · dx.

(2.74)

2.7 The EM algorithm

The EM algorithm (Dempster, Laird, and Rubin (1977)) is a general approach broadly
adopted to iteratively compute the ML estimates in the presence of missing values and/or
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incomplete observations. It consists of a two-step sequence, an Expectation step (E-step)
and a Maximization step (M-step), iterated until a given convergence condition is attained.
To apply the procedure, it is necessary to select the values that one intends to treat as
"observed data" and the ones that should be intended as "missing data". At the (h+ 1)th
iteration, the E-step consists in evaluating the conditional mean Q(ξ|ξ(h)):

Q(ξ|ξ(h)) = E{l(ξ; Y mis,yava)|yava, ξ
(h)} (2.75)

of the complete log-likelihood l(ξ; Y mis,yava) (i.e., the logarithm of the likelihood formu-
lated considering all data, available and missing) with respect to the missing data Y mis

given the available data yava and the current tentative estimate of model parameters (i.e.,
the estimate of the parameter vector available after the hth iteration, denoted by ξ(h)).

The corresponding M-step consists in maximizing the function Q(ξ|ξ(h)) with respect
to ξ. The value of ξ that maximizes Q(ξ|ξ(h)) is, by definition, the new tentative estimate
ξ(h+1).
The convergence condition is satisfied when the absolute difference:

∣∣∣∣∣ ln(L(ξ(h); z))
ln(L(ξ(h+1); z))

− 1
∣∣∣∣∣ (2.76)

drops below a predetermined, fixed value. If the convergence condition is attained at the
hth iteration, then ξ(h+1) is assumed to be the ML estimate of the parameter vector ξ.
Otherwise, the search continues with another two-step sequence. At the first iteration,
the algorithm is initialized by assigning a tentative estimate, say ξ(0).

In this manuscript, we adopted the EM algorithm to compute ML estimates under the
three perturbed degradation processes presented above. In the following, the implemen-
tation of the EM will be particularized for the case of the perturbed gamma and inverse
Gaussian processes in Chapter 2.7.1, and for the case of the perturbed gamma process
with random effect in Chapter 2.7.2.

2.7.1 Perturbed gamma and inverse Gaussian processes

In the case of the perturbed gamma and inverse Gaussian processes, the realiza-
tions z = {z1, ...,zm} of the related perturbed measurements Z = {Z1, ...,Zm} (where
zi = {zi,1, ..., zi,ni

} is the realization of Zi = {Zi,1, ..., Zi,ni
}) will constitute the observed

data whereas the missing data consist in the (unknown) values w = {w1, ...,wm} of the
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(unobservable) true degradation levels W = {W 1, ...,W m} of the m units at the mea-
surement times, where wi = {wi,1, ..., wi,ni

} is the realization of W i = {Wi,1, ...,Wi,ni
}.

Therefore, Eq. (2.75) becomes:

Q(ξ|ξ(h)) = E{l(ξ; z,W )|Z = z, ξ(h)}

where the complete log-likelihood can be formulated as:

L(ξ; z,w) =
m∏

i=1

ni∏
j=1

fZi,j |Wi,j
(zi,j|wi,j) ·

m∏
i=1

ni∏
j=1

f∆Wi,j
(∆wi,j)

and the corresponding log-likelihood function as:

l(ξ; z,w) =
m∏

i=1

ni∏
j=1

ln
[
fZi,j |Wi,j

(zi,j|wi,j)
]

·
m∏

i=1

ni∏
j=1

ln
[
f∆Wi,j

(∆wi,j)
]
.

In the case of the considered processes, the benefit of the EM procedure mainly lie in the
M-step. Indeed, the conditional expectation Q(ξ|ξ(h)) = Q(a, b, θ, φ, ν|ξ(h)) splits into the
sum of the functions QH

(
a, b, θ|ξ(h)

)
and Qε

(
φ, ν|ξ(h)

)
, where:

QH

(
a, b, θ|ξ(h)

)
=

m∑
i=1

ni∑
j=1

E
{
ln
(
f∆Wi,j

(∆Wi,j)
) ∣∣∣Zi = zi, ξ

(h)
}
,

given ξ(h), depends only on the parameters of the hidden model, and Qε

(
φ, ν|ξ(h)

)

Qε

(
φ, ν|ξ(h)

)
=

m∑
i=1

ni∑
j=1

E
{
ln
(
fZi,j |Wi,j

(zi,j|Wi,j)
) ∣∣∣Zi = zi, ξ

(h)
}

depends only on the parameters of the perturbing term.
Obviously, the functional form of QH

(
a, b, θ|ξ(h)

)
and Qε

(
φ, ν|ξ(h)

)
also depends on the

model adopted to describe the error term and the hidden process, respectively.
In fact, when the error term is modeled by using the inverse gamma random variable
described in Eq. (2.18), Qε

(
φ, ν|ξ(h)

)
reduces to (for the sake of clarity, here the functions
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α(·) and β(·) are denoted as α(·, φ, ν) and β(·, φ, ν)):

Q1
ε

(
φ, ν|ξ(h)

)
= −

m∑
i=1

ni∑
j=1

E
{
α(Wi,j;φ, ν)|Zi = zi, ξ

(h)
}

zi,j

+
m∑

i=1

ni∑
j=1

E
{
β(Wi,j;φ, ν) · ln[α(Wi,j;φ, ν)]

∣∣∣Zi = zi, ξ
(h)
}

−
m∑

i=1

ni∑
j=1

E
{
β(Wi,j;φ, ν)

∣∣∣Zi = zi, ξ
(h)
}

· ln(zi,j)

−
m∑

i=1

ni∑
j=1

E
{
ln (Γ (β(Wi,j;φ, ν)))

∣∣∣Zi = zi, ξ
(h)
}
,

(2.77)

whereas, when the error term is modeled by using the Gaussian distribution in Eq. (2.24),
Qε

(
φ, ν|ξ(h)

)
reduces to:

Q2
ε

(
φ, ν|ξ(h)

)
= −nt

2 · ln(2π) + nt

2 · ln(φ) − ν

2 ·
m∑

i=1

ni∑
j=1

E
{
ln(Wi,j)

∣∣∣Zi = zi, ξ
(h)
}

− φ

2 ·
m∑

i=1

ni∑
j=1

E

(zi,j −Wi,j)2

W ν
i,j

∣∣∣∣∣∣Zi = zi, ξ
(h)

 (2.78)

where the superscripts 1 and 2 in Q1
ε

(
φ, ν|ξ(h)

)
and Q2

ε

(
φ, ν|ξ(h)

)
indicate the option

adopted to model the error term, in agreement with the symbols introduced in Chapter
2.3.

Similarly, from Eq. (2.11), under the gamma process, the function QH

(
a, b, θ|ξ(h)

)
reduces to:

QG
H

(
a, b, θ|ξ(h)

)
= −

∑m
i=1 E{Wi,ni

|Zi = zi, ξ
(h)}

θ

+
m∑

i=1

ni∑
j=1

[(
ti,j
a

)b

−
(
ti,j−1

a

)b
]

· E{ln(∆Wi,j)|Zi = zi, ξ
(h)}

− ln(θ) ·
m∑

i=1

(
ti,ni

a

)b

−
m∑

i=1

ni∑
j=1

ln
[
Γ
((

ti,j
a

)b

−
(
ti,j−1

a

)b
)]

,

(2.79)
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whereas, from Eq. (2.12), under the inverse Gaussian process QH

(
a, b, θ|ξ(h)

)
becomes:

QIG
H

(
a, b, θ|ξ(h)

)
= − nt

2 · ln(2 · π) + nt

2 · ln(θ) − nt · b · ln(a)

− 3
2 ·

m∑
i=1

ni∑
j=1

E{ln(∆Wi,j)|Zi = zi, ξ
(h)}

− 1
2 · θ

·
m∑

i=1
E{Wi,ni

|Zi = zi, ξ
(h)}

− θ

2 · a2·b ·
m∑

i=1

ni∑
j=1

E

(tbi,j − tbi,j−1)2

∆Wi,j

∣∣∣∣∣∣Zi = zi, ξ
(h)


+ 1
ab

·
m∑

i=1
tbi,ni

+
m∑

i=1

ni∑
j=1

ln(tbi,j − tbi,j−1).

(2.80)

where nt = ∑m
i=1 ni and the superscriptsG and IG inQG

H

(
a, b, θ|ξ(h)

)
andQIG

H

(
a, b, θ|ξ(h)

)
indicate that the hidden process used to compute QH

(
a, b, θ|ξ(h)

)
are the gamma and the

inverse Gaussian, respectively. In both Eqs. (2.79) and (2.80) the age function is modeled
as η(t) = (t/a)b.

For the sake of maximizing them in the M-step, the expressions in Eqs. (2.78), (2.79),
and (2.80) can be further simplified. Indeed, from Eq. (2.78), by solving with respect to
φ the equation:

∂Q2
ε

(
φ, ν|ξ(h)

)
∂φ

= 0

the explicit form:

φ̃(ν|ξ(h)) = nt∑m
i=1

∑ni
j=1 E

{
(zi,j−Wi,j)2

W ν
i,j

∣∣∣∣Zi = zi, ξ
(h)
} (2.81)

is obtained for the value φ̃(ν|ξ(h)) that maximizes Eq. (2.81) with respect to φ when ν is
set to the values indicated in the parentheses on the left side of the equation. By exploiting
this result, ν(h+1) can be obtained by numerically maximizing this 1-parameter function:

Q2
ε

(
φ, ν|ξ(h)

)
= −nt

2 · ln(2π) + nt

2 · ln(φ̃) − ν

2 ·
m∑

i=1

ni∑
j=1

E
{
ln(Wi,j)

∣∣∣Zi = zi, ξ
(h)
}

− nt

2 .

(2.82)

Then, φ(h+1) can be obtained from Eq. (2.81) by setting ν = ν(h+1).
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Similarly, from Eq. (2.79), by solving with respect to θ the equation:

∂QG
H

(
a, b, θ|ξ(h)

)
∂θ

= 0

the explicit form:

θ̃(a, b|ξ(h)) =
∑m

i=1 E
{
Wi,ni

|Zi = zi, ξ
(h)
}

∑m
i=1

(
ti,ni

a

)b (2.83)

is obtained for the value θ̃(a, b) that maximizes Eq. (2.83) with respect to θ when a and
b are set to the values indicated in the parentheses on the left side of the equation. By
exploiting this result, a(h+1) and b(h+1) (i.e., the components of ξ(h+1)) can be obtained by
numerically maximizing this two-parameter function:

QG
H(a, b|θ̃, ξ(h)) = −

m∑
i=1

ni∑
j=1

ln
[
Γ
((

ti,j
a

)b

−
(
ti,j−1

a

)b
)]

+
m∑

i=1

ni∑
j=1

[(
ti,j
a

)b

−
(
ti,j−1

a

)b
]

· E{ln(∆Wi,j)|Zi = zi, ξ
(h)}

+

1 + ln

∑m
i=1 E{Wi,ni

|Zi = zi, ξ
(h)}∑m

i=1

(
ti,ni

a

)b


 ·

m∑
i=1

(
ti,ni

a

)b

.

(2.84)

Then, θ(h+1) can be obtained from (2.83) by setting a = a(h+1) and b = b(h+1).

Conversely, in the case of the inverse Gaussian process, from Eq. (2.80), by solving
with respect to θ and a the system of equations:

∂QIG
H

(
a, b, θ|ξ(h)

)
∂θ

= 0

∂QIG
H

(
a, b, θ|ξ(h)

)
∂a

= 0
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the following explicit forms are obtained:

θ̃(b|ξ(h)) =

{∑m

i=1 E{Wi,ni
|Zi=zi,ξ

(h)}∑m

i=1 tb
i,ni

}2
·∑m

i=1
∑ni

j=1 E

{
(tb

i,j−tb
i,j−1)2

∆Wi,j

∣∣∣∣Zi = zi, ξ
(h)
}

nt

−
∑m

i=1 E{Wi,ni
|Z = z, ξ(h)}
nt

(2.85)

ã(b|ξ(h)) =
{∑m

i=1 E{Wi,ni
|Zi=zi,ξ

(h)}∑m

i=1 tb
i,ni

}
·∑m

i=1
∑ni

j=1 E

{
(tb

i,j−tb
i,j−1)2

∆Wi,j

∣∣∣∣Zi = zi, ξ
(h)
}

−∑m
i=1 t

b
i,ni

nt


1
b

(2.86)

for the values θ̃(b) and ã(b) of θ and a that (jointly) maximize QIG
H

(
a, b, θ|ξ(h)

)
when

the parameter b is set to the value reported in the parentheses. By exploiting these re-
sults, b(h+1) can be obtained by numerically maximizing the 1-parameter function that
is obtained by setting θ and a in Eq. (2.80) to θ̃(b) and ã(b) (the resulting function is
not reported here for the sake of readability). Then, θ(h+1) and a(h+1) can be obtained by
evaluating Eqs. (2.85) and (2.86) at b = b(h+1).
Therefore, when the error term is modeled according to the option 1), the M-step results
in maximizing (numerically) two 2-parameter functions in the case of the gamma process,
and one 2-parameter function and one 1-parameter function in the case of the inverse
Gaussian. Whereas, when the error term is modeled by using the option 2), the M-step
results in maximizing (numerically) one 2-parameter function and one 1-parameter func-
tion in the case of the gamma process, and two 1-parameter functions in the case of the
inverse Gaussian process.

2.7.2 The perturbed gamma process with random effects

In the case of the perturbed gamma process with random effects, the observed data
will still be the realizations z = {z1, ...,zm} of the related perturbed measurements Z =
{Z1, ...,Zm} (where zi = {zi,1, ..., zi,ni

} is the realization of Zi = {Zi,1, ..., Zi,ni
}), whereas

the missing data are the (unknown) values w = {w1, ...,wm} of the (unobservable) true
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degradation levels W = {W 1, ...,W m} together with the set of unknown true values
λ = {λ1, . . . , λm} of the random rate parameters Λ = {Λ1, . . . ,Λm} of the m units.
Therefore, Eq. (2.75) becomes:

Q(ξ|ξ(h)) = E{l(ξ; z,W )|Z = z, ξ(h)}

Therefore, considering also that, given W = w, Z is conditionally independent of Λ, the
complete likelihood (i.e., the one formulated considering all data, available and missing)
can be formulated as:

L(ξ; z,w,λ) =
m∏

i=1
fZi|W i

(zi|wi) · fW i|Λi
(wi|λi) · gΛi

(λi),

where:

fZi|W i
(zi|wi) =

ni∏
j=1

fZi,j |Wi,j
(zi,j|wi,j) =

ni∏
j=1

(α(wi,j))β(wi,j) · z−β(wi,j)−1
i,j

Γ(β(wi,j))
· e−

α(wi,j )
zi,j ,

fW i|Λi
(wi|λi) =

ni∏
j=1

f∆Wi,j |Λi
(∆wi,j|λi) =

ni∏
j=1

λ
∆η(ti,j−1,ti,j)
i · ∆w∆η(ti,j−1,ti,j)−1

i,j

Γ [∆η(ti,j−1, ti,j)]
· e−λi·∆wi,j ,

(2.87)
and:

gΛi
(λi) = cd · λd−1

i

Γ(d) · e−c·λi . (2.88)

Thus, the complete likelihood function can be expressed as:

L(ξ; z,w,λ) =

= cm·d

[Γ(d)]m · e−
∑m

i=1 λi·(wi,ni
+c) ·

m∏
i=1

λ
η(ti,ni

)+d−1
i ·

m∏
i=1

ni∏
j=1

∆w∆η(ti,j−1,ti,j)−1
i,j

Γ [∆η(ti,j−1, ti,j)]

×
m∏

i=1
fZi,j |Wi,j

(zi,j|wi,j) =
ni∏

j=1

(α(wi,j))β(wi,j) · z−β(wi,j)−1
i,j

Γ(β(wi,j))
· e−

α(wi,j )
zi,j (2.89)
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and the corresponding log-likelihood function can be written as:

l(ξ; z,w,λ) = m · d · ln(c) −m · ln[Γ(d)] −
m∑

i=1
λi · (wi,ni

+ c) +
m∑

i=1
[η(ti,ni

) + d− 1] · ln(λi)

+
m∑

i=1

ni∑
j=1

[∆η(ti,j−1, ti,j) − 1] · ln(∆wi,j) −
m∑

i=1

ni∑
j=1

ln(Γ [∆η(ti,j−1, ti,j)])

−
m∑

i=1

ni∑
j=1

α(wi,j)
zi,j

+
m∑

i=1

ni∑
j=1

β(wi,j) · ln(α(wi,j))

−
m∑

i=1

ni∑
j=1

[β(wi,j) + 1] · ln(zi,j) −
m∑

i=1

ni∑
j=1

ln [Γ(β(wi,j))] . (2.90)

Under the considered perturbed gamma process with random effect, the conditional
pdf of W given Z = z is not available in closed form. However, the conditional
pdf of Λ given W et Z = z is available in closed form. Indeed, considered that
Λ is conditionally independent of Z given W and that Λi is independent both of
W 1, . . . ,W i−1,W i+1, . . . ,W m and Λ1, . . . ,Λi−1,Λi+1, . . . ,Λm, and being:

gΛi|W i
(λi|wi) = fW i|Λi

(wi|λi) · gΛi
(λi)

fW i
(wi)

, (2.91)

with (from Eqs. (2.87) and (2.88)):

fW i|Λi
(w|λi) · gΛi

(λi) = λ
η(ti,ni

)+d−1
i · cd

Γ(d) · e−λi·(wi,ni
+c) ·

ni∏
j=1

∆w∆η(ti,j−1,ti,j)−1
i,j

Γ [∆η(ti,j−1, ti,j)]
(2.92)

and (from Eq. (2.44)):

fW i
(wi) =

ni∏
j=1

1
B [∆η(ti,j−1, ti,j), η(ti,j−1) + d] ·

(wi,j−1 + c)η(ti,j−1)+d · ∆w∆η(ti,j−1,ti,j)−1
i,j

(wi,j−1 + ∆wi,j + c)η(ti,j)+d

= cd · Γ[η(ti,ni
) + d]

(wi,ni
+ c)η(ti,ni

)+d · Γ(d)
·

ni∏
j=1

∆w∆η(ti,j−1,ti,j)−1
i,j

Γ [∆η(ti,j−1, ti,j)]
, (2.93)

it results:

gΛi|W i
(λi|wi) = gΛi|Wi,ni

(λi|wi,ni
) = (wi,ni

+ c)η(ti,ni
)+d · λη(ti,ni

)+d−1
i

Γ[η(ti,ni
) + d] · e−λi·(wi,ni

+c). (2.94)
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Consequently, the conditional pdf of Λ given W and Z = z is:

gΛ|Z,W (λ|z,w) =
m∏

i=1
gΛi|Wi,ni

(λi|wi,ni
)

=
m∏

i=1

(wi,ni
+ c)η(ti,ni

)+d · λη(ti,ni
)+d−1

i

Γ[η(ti,ni
) + d] · e−λi·(wi,ni

+c) (2.95)

and, in particular:

E{Λi|Z = z,W } = E{Λi|Wi,ni
} = η(ti,ni

) + d

Wi,ni
+ c

(2.96)

and:

E{ln(Λi)|Z = z,W } = E{ln(Λi)|Wi,ni
} = ψ[η(ti,ni

) + d] − ln(Wi,ni
+ c), (2.97)

where ψ(y) = d ln[Γ(x)]/dx = Γ′(x)/Γ(x) is the digamma function. By exploiting these
latter results, to perform the E-step it is firstly formulated the conditional mean of the
log-likelihood with respect to Λ given W and Z = z, E{l(ξ; z,W ,Λ)|Z = z,W , ξ(h)},
which can be expressed in closed form. Then, we obtain E{l(ξ; z,W ,Λ)|Z = z, ξ(h)} by
computing the conditional mean of E{l(ξ; z,W ,Λ)|Z = z,W , ξ(h)} with respect to W

given Z = z.

In fact, by the law of total expectation it is:

E{l(ξ; z,W ,Λ)|Z = z, ξ(h)} =

E{E{l(ξ; z,W ,Λ)|Z = z,W , ξ(h)}|Z = z, ξ(h)}. (2.98)

Under the proposed model, the expectation of E{l(ξ; z,W ,Λ)|Z = z,W , ξ(h)} with
respect to W given Z = z cannot be computed in closed form and is performed via the
particle filter described in Chapter 2.8.

The benefit of adopting the EM algorithm are most evident in the M-step, because the
conditional mean Q(ξ|ξ(h)) splits into the sum of the functions Qλ(c, d|ξ(h)), Qε(φ, ν|ξ(h)),
andQη(a, b|ξ(h)), which (given ξ(h)) depend only on the parameters (c, d), (φ, ν), and (a, b),
respectively. For the sake of clarity, here the age function is denoted as η(·; a, b), β(·) as
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β(·;φ, ν), and α(·) as α(·;φ, ν):

Qε

(
φ, ν

∣∣∣ξ(h)
)

= −
m∑

i=1

ni∑
j=1

E
{
α(Wi,j;φ, ν)|Zi = zi, ξ

(h)
}

zi,j

+
m∑

i=1

ni∑
j=1

E
{
β(Wi,j;φ, ν) · ln[α(Wi,j;φ, ν)]

∣∣∣Zi = zi, ξ
(h)
}

−
m∑

i=1

ni∑
j=1

E
{
β(Wi,j;φ, ν)

∣∣∣Zi = zi, ξ
(h)
}

· ln(zi,j)

−
m∑

i=1

ni∑
j=1

E
{
ln (Γ (β(Wi,j;φ, ν)))

∣∣∣Zi = zi, ξ
(h)
}
,

(2.99)

Qη

(
a, b

∣∣∣ξ(h)
)

=
m∑

i=1
η(ti,ni

; a, b) ·
{
ψ
[
η(ti,ni

; a(h), b(h)) + d(h)
]

− E
{
ln
(
Wi,ni

+ c(h)
∣∣∣Zi = zi, ξ

(h)
)}}

+
m∑

i=1

ni∑
j=1

[∆η(ti,j−1, ti,j − 1)] · E
{
ln(∆Wi,j|Zi = zi, ξ

(h))
}

−
m∑

i=1

ni∑
j=1

ln(Γ(∆η(ti,j−1, ti,j; a, b))), (2.100)

Qλ

(
c, d|ξ(h)

)
= m · d · ln(c) −m · ln(Γ(d))

−
m∑

i=1
E

η
(
ti,ni

; a(h), b(h)
)

+ d(h)

Wi,ni
+ c(h) · wi,ni

∣∣∣∣Zi = zi, ξ
(h)


+ (d− 1) ·

m∑
i=1

{
ψ
[
η(ti,ni

; a(h), b(h)) + d(h)
]

− E
{
ln
(
Wi,ni

+ c(h)
∣∣∣Zi = zi, ξ

(h)
)}}

− c ·
m∑

i=1
E

η
(
ti,ni

; a(h), b(h)
)

+ d(h)

Wi,ni
+ c(h)

∣∣∣∣∣∣Zi = zi, ξ
(h)

 , (2.101)

The maximization of Eq. (2.101) can be further simplified. Indeed, being:

∂

∂c
Qλ

(
c, d

∣∣∣ξ(h)
)

= m · d
c

−
m∑

i=1
E

η
(
ti,ni

; a(h), b(h)
)

+ d(h)

Wi,ni
+ c(h)

∣∣∣∣∣∣Zi = zi, ξ
(h)

 , (2.102)

equating this to 0 and solving with respect to c it is possible to express c as a function of
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d and ξ(h):
c̃(d|ξ(h)) = m · d

∑m
i=1 E

η(ti,ni
;a(h),b(h))+d(h)

Wi,ni
+c(h)

∣∣∣∣∣∣Zi = zi, ξ
(h)


. (2.103)

Hence, from Eq. (2.101), by replacing c with the expression on the right side of Eq. (2.103),
the following function of d and ξ(h) is obtained:

Q∗
λ

(
d|ξ(h)

)
=

m · d ·

ln(m · d) − ln
 m∑

i=1
E

η
(
ti,ni

; a(h), b(h)
)

+ d(h)

Wi,ni
+ c(h)

∣∣∣∣Zi = zi, ξ
(h)




−m · ln(Γ(d))

+ (d− 1) ·
m∑

i=1

{
ψ
[
η(ti,ni

; a(h), b(h)) + d(h)
]

− E
{
ln
(
Wi,ni

+ c(h)
∣∣∣Zi = zi, ξ

(h)
)}}

−
m∑

i=1
E

η
(
ti,ni

; a(h), b(h)
)

+ d(h)

Wi,ni
+ c(h)

∣∣∣∣∣∣Zi = zi, ξ
(h)

 , (2.104)

Therefore, denoting by d(h+1) the value of d that maximizes Eq. (2.104), the value c(h+1)

that, given d(h+1), maximizes Eq. (2.101) is readily obtained by evaluating Eq. (2.103) at
d = d(h+1).

2.8 The particle filter

In this manuscript, the particle filter algorithm (Doucet, Johansen, et al. (2009)) is
used to generate random samples from the (joint) conditional distribution of W given
Z = z. The data generated by using this procedure are then used to compute (empirically)
the likelihood function in Eq. (2.63), the distribution of the RUL, and the conditional ex-
pectations requested in the M-step of the EM algorithm described in Chapter 2.7.
The procedure described below allows to obtain N pseudorandom realizations of W i

given Zi = zi . Thus, to generate pseudorandom realizations of W i given Zi = zi it is
necessary to replicate its use for any i = 1, . . . ,m.
The method consists of a two-step sequence: a prediction step and an update step, that
is iterated ni times. To apply the procedure, it is necessary to assign a value to the pa-
rameter vector ξ.
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The particle filter is a very flexible approach that is able to handle all the perturbed pro-
cesses adopted in this manuscript with only minor changes. Specifically, the conditional
pdf of ∆W (ti,j−1, ti,j) given W (ti,j−1), in case the stochastic process under analysis is
the gamma process with random effect described in Chapter 2.4 is the pdf in Eq. (2.49),
whereas in the case of the gamma process and the inverse Gaussian process illustrated in
Chapter 2.3 (given that both have independent increments) coincides with the (uncondi-
tional) one in Eq. (2.11) or in Eq. (2.12), respectively.
Similarly, the conditional pdf fZi,j |Wi,j

(·|·) is the one in Eq. (2.21) if the model adopted
for the error term is the inverse gamma or the one in Eq. (2.24) if it is the Gaussian (i.e.,
option 1) or 2) using the notation introduced in Chapter 2.3).

— Step 1 (prediction step), jth iteration:
for any k = 1, . . . , N , generate a pseudorandom realization k∆wi,j of ∆W (ti,j−1, ti,j)
given W (ti,j−1) = j−1

kwi,j−1, where j−1
kwi,j−1 is the kth pseudorandom realization of

W (ti,j−1) given Zi,j−1 = zi,j−1 generated at the (j−1)th iteration of this algorithm.
Then, compute the term j−1

kwi,j = k∆wi,j + j−1
kwi,j−1 and append it to the particle

vector j−1
kwi,1, . . . ,

j−1
kwi,j−1 defined at the (j − 1)th iteration.

The output of this prediction step is a set of N vectors:

j−1
1wi,1, . . . ,

j−1
1wi,j−1,

j−1
1wi,j

...
j−1

Nwi,1, . . . ,
j−1

Nwi,j−1,
j−1

Nwi,j

that we will refer to as particles.

— Step 2 (update step), jth iteration:
for any k = 1, . . . , N , compute the importance weight of the kth particle as:

kqi,j =
fZi,j |Wi,j(zi,j | j−1

k
wi,j)∑N

k=1 fZi,j |Wi,j(zi,j | j−1
k

wi,j)
.
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Hence, resample the set of particles:

j−1
1wi,1, . . . ,

j−1
1wi,j−1,

j−1
1wi,j

...
j−1

Nwi,1, . . . ,
j−1

Nwi,j−1,
j−1

Nwi,j

according to their importance weights and rename the new particles (i.e., the vec-
tors) as:

j
1wi,1, . . . ,

j
1wi,j−1,

j
1wi,j

...
j

Nwi,1, . . . ,
j

Nwi,j−1,
j

Nwi,j.

For j = 1, to initialize the algorithm, in the first prediction step draw a pseudorandom
sample of size N from W (ti,1), denote its elements as 1wi,1, . . . ,Nwi,1 and define the
particles as:

0
1wi,1 = 1wi,1

...
0

Nwi,1 = Nwi,1.

The particle j−1
kwi,1, . . . ,

j−1
kwi,j−1,

j−1
kwi,j should be intended as a pseudorandom realiza-

tion of W i,j−1 given Zi,j−1 = zi,j−1, and j
kwi,1, . . . ,

j
kwi,j−1,

j
kwi,j should be intended as a

pseudorandom realization of W i,j given Zi,j = zi,j, where W i,j = {W (ti,1), . . . ,W (ti,j)},
Zi,j = {Z(ti,1), . . . , Z(ti,j)}, and zi,j = {z(ti,1), . . . , z(ti,j)} is the realization of Zi,j.
The conditional pdfs that are needed to compute the likelihood function in Eq. (2.63) can
be approximated as:

fZi,j |Zi,j−1(zi,j|zi,j−1) ∼=
∑N

k=1 fZi,j |Wi,j

(
zi,j| j−1

kwi,j

)
N

where j−1
kwi,j is the last component of the particle vector j−1

kwi,1, . . . ,
j−1

kwi,j−1,
j−1

kwi,j

generated at the jth prediction step. Likewise, for example, the conditional mean of a
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function g(W i) of W i given Zi = zi and ξ, can be computed as:

E{g(W i)|Zi = zi, ξ} ∼=
∑N

k=1 g (ni
kwi)

N

where ni
kwi is the particle ni

kwi,1, . . . ,
ni
kwi,j−1,

ni
kwi,j generated at the nith update step,

under a perturbed model whose parameter vector is set to ξ. Obviously, the quality of
these approximations improves with N .
This particle filter algorithm is also used to compute the ML estimate of the cdf of
RUL(t) FRUL(t)|Z(t) (τ |z(t)) (2.67) and the ML estimate of the MRUL(t) (2.69). In fact,
more specifically, by using the notations introduced in Chapter 2.6, if tl ≤ t < tl+1,
so that the set z(t) = {Z(tj); j ≥ z, tj ≤ t} contains l perturbed measurements of the
degradation level of a certain (selected) unit, given a pseudorandom sample of size N from
W (tl)|Z(t) = z(t), say l

1wl, . . . ,
l

Nwl, the ML estimate of the cdf FRUL(t)(τ |z(t)) (2.67) can
be computed as:

FRUL(t)(τ |z(t)) ∼= 1 −
∑N

k=1 FW (t+τ)|W (tl)(wM | l
kwl)

N
,

where both the parameters of the perturbed model used to generate the particles and the
parameters of the conditional cdf FW (t+τ)|W (tl)(·|·) are set to their ML estimates. Similarly,
the ML estimate of the MRUL(t) (2.69) is computed as:

MRUL(t) ∼=
∑N

k=1
∫∞

0 FW (t+τ)|W (tl)(wM | l
kwl) · dτ

N
=
∫ ∞

0

∑N
k=1 FW (t+τ)|W (tl)(wM | l

kwl)
N

· dτ,

where the integral is calculated numerically.

2.9 Conclusions

Stochastic processes can be a powerful tool for the successful implementation of ad-
vanced maintenance strategies. In this chapter, three stochastic process-based degradation
models have been introduced. Specifically, the perturbed gamma process (formulated as
in Giorgio, Mele, and Pulcini (2019)), and the new perturbed inverse Gaussian process
and perturbed gamma process with random effect. Given that all of these processes can
account for measurement error, ad-hoc formulations of the likelihood function and of the
remaining useful life, based on noisy data alone, have been provided.
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Obviously, the presence of measurement error complicates the already difficult en-
deavor of calibrating a degradation model. To address this issue, a new EM algorithm
(with the corresponding implementation for all considered processes) has been proposed.
All of these algorithm (i.e., formulating the likelihood, the remaining useful life, and using
the EM algorithm) rely on an effective filtering procedure for their successful implemen-
tation. To this end, the adopted implementation of the particle filter has been described.

In the following chapters, the effectiveness of these stochastic processes as degradation
models will be demonstrated. Moreover, maintenance policies that take advantage of their
use will be presented.
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Chapter 3

RELIABILITY APPLICATION OF THE NEW

GAMMA DEGRADATION PROCESS WITH

RANDOM EFFECT AND

STATE-DEPENDENT MEASUREMENT

ERROR

3.1 Introduction

The gamma process has shown its effectiveness in describing a wide range of degrada-
tion phenomena. It is commonly used when degradation progresses gradually over time
through small non-negative increments. However, it is widely acknowledged that the basic
form of the gamma process only accounts for the inherent variability associated with the
temporal progression of degradation in a specific unit, referred to as temporal variability.
In practical settings, degradation paths of technological units often exhibit other forms of
variability. For instance, degradation data collected through in-service and non-destructive
inspection methods are frequently affected by measurement errors, which hinder the ac-
curate observation of the actual degradation level. Additionally, even nominally identical
units may display degradation patterns that differ due to the influence of several factors,
both exogenous and endogenous, with values that can vary across units. In this chapter,
we focus on experimental situations where both measurement errors and unit-to-unit vari-
ability are present. Specifically, we consider the case where the heterogeneity between the
observed degradation paths of different units cannot be attributed to any specific cause.
This form of variability is generally known as random effect and is typically modeled
by assuming that one or more parameters of the underlying degradation process vary
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randomly from unit to unit.

In order to address the presence of measurement errors many perturbed degradation
models have been proposed in the literature. However, the existing gamma-based per-
turbed degradation models found in the literature are often not mathematically tractable.
Computationally intensive methods are required to both estimate model parameters from
perturbed data and perform predictions based on the observed data.

The main goal of this chapter is to illustrate the results of some examples of application
of the gamma-based perturbed degradation model presented in Chapter 2.4. Obviously,
perturbed models that incorporate random effects are inherently more complex than those
that only account for temporal variability. Therefore, it is crucial to strike a balance be-
tween model accuracy and computational complexity in order to facilitate their practical
use. Indeed, the driving idea of this chapter is to develop this extension without signifi-
cantly increasing the computational burden of the original model or imposing additional
restrictive constraints.
To describe the underlying degradation process in the new model, we adopt the math-
ematically tractable gamma process with random effect, initially introduced by Lawless
and Crowder (2004) which has proven to be flexible and effective in previous studies (e.g.,
see Xiao Wang (2008), Elsayed and Liao (2004), Tsai, Tseng, and Balakrishnan (2012),
Y.-J. Yang et al. (2014), and H. Hao, Su, C. Li, et al. (2015)). A key characteristic
of the proposed model, that is shared with the one suggested in Giorgio, Mele, and
Pulcini (2019), is that the model construction assumes that the measurement error is
stochastically dependent on the actual degradation level and that, given the actual degra-
dation level, it is conditionally distributed as a three-parameter inverse gamma random
variable. This particular setup, extensively discussed and justified in Giorgio, Mele, and
Pulcini (2019), distinguishes the proposed model from other perturbed degradation mod-
els found in the literature, which typically assume normally distributed errors and/or
treat them as statistically independent of the underlying degradation process (see Lu,
Pandey, and W.-C. Xie (2013), Kallen and Van Noortwijk (2005), Le Son, Fouladirad,
and Barros (2016), Bordes, Paroissin, and Salami (2016), Whitmore (1995), C.-Y. Peng
and Tseng (2009), R. Zhou, Gebraeel, and Serban (2012), Si et al. (2014), S. Hao, J. Yang,
and Bérenguer (2019a), S. Hao, J. Yang, and Bérenguer (2019b)).

To demonstrate the affordability of the proposed approach, two practical examples
are developed to showcase the effectiveness of the proposed model, based on perturbed
degradation measurements of carbon-film resistors (the first) and on fuel cell membranes
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(the second).
For the sake of clarity, the remainder of this chapter only reports the results of the

mentioned application examples. Indeed, the detailed mathematical description of the
model is presented in Chapter 2.4, the formulation of the likelihood function is discussed in
Chapter 2.5, the cumulative distribution function of the remaining useful life is presented
in Chapter 2.6, while the EM algorithm and the particle filter are presented in Chapters
2.7 and 2.8, respectively.

3.2 Applicative example I

In this section, the proposed model is applied to the degradation data of carbon-film
resistors tested at 173◦ , given in Meeker and Escobar (1998). These data consist of m = 10
degradation paths, each one with ni = 4 measurements, for a total of 40 measurements.
Measurement times are the same for all units (ti,j = tj, ∀i = 1, . . . ,m). The degradation
measures the percent increase in resistance (with respect to the initial value). When the
resistance of a resistor increases by more than 8% (i.e., the degradation level passes the
threshold value wM = 8) then it is declared as failed.
The data are reported in Table 3.1, and present a direct clue of the presence of measure-
ment error under the form of a negative increment (specifically, in the case of path #7).
This prevents from using a gamma process without measurement error, as well as any
other degradation process with intrinsically non-negative increments.
Moreover, the data also show empirical evidence of positive correlation between observed
increments (specifically, five out of six empirical estimates of the correlation coefficient
between increments are positive), which might suggest the presence of random effect.

The MLEs of the six parameters of the proposed perturbed process (here referred
to as model M1) are reported in the first column of Table 3.2, together with the cor-
responding value of the log-likelihood function and the value of the Akaike Information
Criterion (AIC) (see Akaike (1974)). For the sake of comparison, the second column of the
same table reports the MLEs of the parameters, the value of the log-likelihood function
at the MLEs of model parameter, and the value of the AIC index obtained under the
five-parameter perturbed (fixed effect) gamma process proposed in Giorgio, Mele, and
Pulcini (2019) (here referred to as model M2).

The values of the AIC index obtained under the competing models indicate that the
proposed gamma process with random effect (M1) fits the considered carbon-film data
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better than the (fixed effect) gamma model (M2). Actually, given that in the absence
of random effect model M1 reduces to model M2, as remarked in Giorgio, Guida, and
Pulcini (2018), model M2 can be considered as asymptotically nested into model M1.
Hence, the null hypothesis (H0), that the considered data follow the (simpler) model M2,
can also be (more formally) checked against the alternative hypothesis (H1) that they
follow model M1, by using the likelihood ratio test. The test statistic is defined as LR =
−2 · [ln(L̂0) − ln(L̂1)], where L̂0 and L̂1 denote the MLEs of the log-likelihood functions
obtained under models M2 and M1, respectively. The null hypothesis is rejected for large
values of LR. In the considered case, when H0 holds, the test statistic is approximately
distributed as a χ2 random variable with 1 degree of freedom. From Table 3.2, it results
LR = 20.52. Thus, by comparing the observed value 20.52 with the quantiles of the χ2

distribution with one degree of freedom, it is apparent that the null hypothesis can be
rejected at any plausible significance level.

Resistor
number

Measurement times (h)
452 1030 4341 8084

1 0.87 1.29 2.62 4.44
2 1.25 1.88 3.54 5.23
3 2.64 3.78 7.01 11.12
4 0.98 1.36 2.66 4.42
5 1.62 2.34 3.82 6.14
6 1.59 2.41 3.46 6.75
7 2.29 2.24 6.30 8.34
8 0.98 1.37 2.47 3.74
9 1.04 1.54 2.77 4.16
10 1.19 1.59 3.03 4.52

Table 3.1 – Degradation data of carbon-film resistors at 173◦.

Figure 3.1 shows the (perturbed) degradation paths of the considered carbon-film
resistors and the empirical estimates of the mean of the perturbed degradation process
at the measurement times together with the MLE of E {Z(t)} (i.e., the mean function of
the perturbed process evaluated at the MLEs of the model parameters). The same figure
shows the MLEs of the 0.90 probability bands of Z(t). Note that the MLE of E {Z(t)}
coincides with the MLE of E {W (t)} (see Eq. (2.60)).

Figure 3.2 shows the empirical estimates of the variance of Z(t) at the measurement
times and the MLEs of the variance of Z(t) and W (t) obtained under models M1 and
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Model
M1 M2

MLE
â 0.0636 2.78
b̂ 0.466 0.455
λ̂ / 0.136
ĉ 0.255 /
d̂ 11.1 /
φ̂ 542 842
ν̂ 3.52 4.07

AIC 36.02 44.27
ln
(
L
(
ξ̂, z

))
-24.01 -34.27

Table 3.2 – MLEs of the parameters, AIC index, and log-likelihood under models M1 and
M2.

M2.
Figures 3.1 and 3.2 show that model M1 fits the considered data satisfactorily. In fact,
both the MLEs of E {Z(t)} and V {Z(t)} obtained under model M1 are very close to
the corresponding empirical estimates. Likewise, the probability bands contain a fraction
of experimental points that is coherent with their nominal probability content (indeed,
by chance, it is 36/40 = 0.9). The figures also give evidence that model M1 outperforms
model M2 in terms of fitting ability, as it was already concluded by adopting the AIC
criterion and the likelihood ratio test.

In order to investigate the influence of the presence of random effect on the estimates of
the RUL(t), as well as to evaluate the effect of neglecting its presence, let us consider the
MLEs of the ccdf of the RUL (i.e., of the residual reliability function, the complementary
of the cdf in Eq. (2.67)) reported in Figure 3.3. The curves represented in the figure are
the MLEs of the ccdf of RUL(8084) of resistors #5, #7, and #8. These ccdf are computed
as in equation (2.67), by setting the model parameters at the corresponding MLEs. In
particular, from (2.67) and related comments, the ccdf of RUL(8084) of the resistor #i
can be denoted by F̄RUL(8084)|Zi,4(τ |zi,4) = 1 − FRUL(8084)|Zi,4(τ |zi,4).

The paths of the considered resistors are represented in Figure 3.4, where the solid
dots indicate the empirical estimates of the mean function at the measurement times.
From Figure 3.3, it is apparent that the MLE of the ccdf F̄RUL(8084)|Z7,4(τ |z7,4) obtained
under model M2 for the resistor #7, whose path (see Figure 3.4) is entirely above the
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Figure 3.1 – Observed degradation paths of the carbon-film resistors (empty dots con-
nected by thin solid lines), empirical estimate of E{Z(t)} at measurement times (solid
dots), MLEs of E{W (t)} = E{Z(t)} obtained under model M1 (solid line) and M2
(dashed line), and MLE of 0.90 probability bands of Z(t) obtained under model M1 (dot-
ted lines).

empirical mean, is much more optimistic than the corresponding estimate obtained under
(the more appropriate) model M1. In a specular way, it is also apparent that the MLE
of the ccdf F̄RUL(8084)|Z8,4(τ |z8,4) obtained under model M2 for resistor #8, whose path
is below the empirical mean, is much more pessimistic than the one obtained under (the
more appropriate) model M1. Indeed, the difference between the estimates provided by
models M1 and M2 for a given resistor increases with the distance existing between its
(observed) degradation path and the empirical mean. In fact, for example, Figure 3.3 also
shows that the MLEs of the ccdf F̄RUL(8084)|Z5,4(τ |z5,4) of the resistor #5 (see Figure 3.4)
obtained under models M1 and M2 are relatively close one to the other.

This behavior is confirmed by the MLEs of the MRUL(8084) of resistors reported in
Table 3.3, that are computed as in Eq. (2.69), by setting the model parameters at the
corresponding MLEs. In fact, from the table, it is apparent that the MLEs of the mean
remaining useful life obtained under model M2 are larger than those obtained under
model M1 in the case of resistors whose degradation progresses faster than the mean,
being smaller in the case of those whose degradation progresses slower. At the same time,
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Figure 3.2 – Empirical estimates of V {Z(t)} at measurement times (solid dots) together
with the MLEs of V {Z(t)} and V {W (t)} obtained under model M1 (bold and thin solid
lines) and M2 (bold and thin dotted lines).

Resistor #
1 2 3 4 5 6 7 8 9 10

M1 32,165 14,861 3.85 29,774 7,927 7,904 1,419 35,867 27,465 22,207
M2 19,698 14,613 2,815 19,537 11,909 11,535 6,672 2,209 19,719 17,858

Table 3.3 – MLEs of the MRUL of the carbon-film resistors evaluated under model M1
and M2 at t4 = 8084.

the difference between the estimates obtained under the considered models for a specified
resistor is relatively small if its degradation path is close to the mean. From the values
reported in Table 3.3, it is also apparent that the MRUL estimates obtained under model
M1 vary from resistor to resistor more than those obtained under model M2.

Indeed, the difference existing among the MLEs of MRUL (and/or among those of
the ccdf of RUL) obtained for different resistors under a given model, depends both on
the actual state of the resistors (i.e., on the gap existing between their true degradation
level and the threshold limit) and on the rapidity with which their degradation level is
expected to progress over future time. Under the considered perturbed models, all the
information available at time t4 about the current true degradation state of the resistor
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Figure 3.3 – MLEs of the conditional ccdf of RUL(8084) of carbon-film resistors #5, #7,
and #8 under models M1 (solid lines) and M2 (dashed lines), given the past perturbed
measurements available for each resistor at time t4 = 8084.

#i and its future degradation growth is contained in the conditional pdfs fW (t4)|Zi,4(w|zi,4)
and f∆W (t4,t4+∆t)|Zi,4(∆w|zi,4), respectively. Hence, to better understand how the presence
of random effect impacts on the MLEs of the mean and ccdf of the remaining useful life,
it is worth to see how it influences the MLEs of these pdfs. Figure 3.5 shows the MLEs
of the conditional pdfs fW (t4)|Z5,4(w|z5,4), fW (t4)|Z7,4(w|z7,4), and fW (t4)|Z8,4(w|z8,4) of the
degradation state of resistors #5, #7, and #8 at t4 = 8084, obtained under models M1
and M2. The figure shows that the MLEs of these pdfs obtained under the model M1 differ
(one from the others) more than those obtained under model M2. This result was expected
because the (fixed effect) model M2 is less prone than model M1 to tolerate differences
among the (hidden) degradation levels of the resistors. In fact, as it is shown in Figure 3.2,
the MLE of V {W (t)} obtained under model M2 is much smaller than the one obtained
under model M1. Furthermore, it also results that the pdfs estimated under model M2 are
more dispersed (in terms of coefficient of variation) than the corresponding ones obtained
under model M1. This latter result can be intuitively understood by considering that,
to explain the substantial difference existing between the empirical estimate of V {Z(t)}
and the MLE of V {W (t)} (see Figure 3.2), model M2 overestimates the variance of the
measurement error.
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Figure 3.4 – Degradation paths of resistors #5, #7, and #8 and empirical estimates of
E{W (t)} at the measurement times.

Figure 3.5 – MLEs of the conditional pdfs of the degradation state of the resistors #5,
#7, and #8 at t4 = 8084, given the perturbed measurements available at t4 obtained
under models M1 (solid lines) and M2 (dashed lines).
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Figure 3.6 – MLEs of the conditional pdfs of the degradation increments W (8084, 8084 +
4000) of the resistors #5, #7, and #8, obtained under models M1 (solid lines) and M2
(dashed line), given the perturbed measurements available at t4 = 8084.

Figure 3.6 shows the MLEs of the conditional pdfs f∆W (t4,t4+∆t)|Z5,4(∆w|z5,4),
f∆W (t4,t4+∆t)|Z7,4(∆w|z7,4), and f∆W (t4,t4+∆t)|Z8,4(∆w|z8,4) of the degradation increment
∆W (t4, t4 +∆t) of the resistors #5, #7, and #8, over the future time interval (t4, t4 +∆t),
where t4 = 8084 and (without loss of generality) ∆t = 4000. Note that, under model M2,
given that the hidden process has independent increments, the estimated pdfs of different
resistors (dashed line) coincide with each other.

The figure confirms that the increments predicted under model M1 are larger or smaller
with respect to those predicted under model M2 depending on the resistor. In fact, in the
presence of unit to unit variability, the degradation process of resistor #7, whose observed
path is above the empirical mean, is expected to progress faster than the degradation
process of resistor #8, whose path is below the mean. Furthermore, it is also worth to
note that the conditional pdf of the increment obtained for resistor #5 under the model
M2 is very similar to the one obtained for the same resistor under the model M1. In fact,
the path of the resistor #5 is close to the empirical mean.
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3.3 Applicative example 2

The second example is developed by applying the proposed model to the microcrack
growth data reported in Table 3.4. This dataset, given in Elsayed (2021), consists of
the microcrack propagation paths of 10 fuel cell membranes. Measurements are taken at
six different measurement times. The microcrack size is expressed in 10−6 in (inches).
The measurement unit of time is not specified. The membranes are considered failed
when the size of the microcrack exceeds the threshold 10, 000 × 10−6 in. By following
Elsayed (2021), we assume that the microcrack propagation is monotone increasing and
that data are affected by measurement error.

Fuel cell
membrane #

Measurement times (h)
5 10 15 20 25 30

1 200 647 1507 1190 1651 1980
2 270 605 933 2738 4091 2444
3 137 566 1641 2332 1518 1499
4 179 1508 1127 719 1630 1080
5 282 640 799 2585 1424 1570
6 147 873 831 2520 1730 3125
7 19 1308 744 677 1767 1090
8 322 952 846 1662 4724 5727
9 286 1669 755 490 2537 1779
10 137 799 917 1856 2485 1566

Table 3.4 – Microcrack growth of fuel cell membranes.

The MLEs of the parameters of the proposed model (M1) and for the perturbed gamma
model without random effect (M2) are reported in the first and second column of Table
3.5, respectively, together with the corresponding values of the log-likelihood function and
the values of the AIC index.

The values of the AIC index reported in Table 3.5 shows that in this case the Akaike
information criterion leads to prefer model M2. This conclusion is confirmed by the like-
lihood ratio test. In fact, from the results reported in the same table, it is easy to verify
that in this case the test statistic LR = −2 · [ln(L̂0) − ln(L̂1)], where L̂0 and L̂1 denote
the MLEs of the log-likelihood functions obtained under models M2 and M1, is equal to
0.49, a value that does not allow to reject the null hypothesis (that the considered data
follow model M2) at any plausible level of significance. Figures 3.7 and 3.8 make apparent
that both models M1 and M2 fit the considered data satisfactorily and also that, in this
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Model
M1 M2

MLE
â 1.27 1.32
b̂ 1.16 1.16
λ̂ / 67.3
ĉ 2274 /
d̂ 35.89 /
φ̂ 0.0509 0.0731
ν̂ 1.42 1.47

AIC 935.76 933.26
ln
(
L
(
ξ̂
))

-461.89 -461.63

Table 3.5 – MLEs of the parameters, AIC index, and log-likelihood under the considered
competing models.

case, their fitting abilities are comparable, confirming that model M1 provides a better
trade-off between fitting ability and model complexity than model M2, for these data.

From Figure 3.10 and Table 3.6, it is apparent that the MLEs of the ccdf and mean of
RUL(30) obtained under models M1 and M2 for membranes #1, #4, and #8 (see Figure
3.10) are much more similar to each other than the MLEs of the ccdf of RUL(8084) and
MRUL(8084) of resistors #5, #7, and #8 shown in Figure 3.3 and Table 3.3, respec-
tively. Indeed, the estimates obtained for the resistors vary both from unit to unit (given
the model) and from one model to the other (given the unit) much more than those ob-
tained for the membranes. Similarly, Figures 3.11 and 3.12 show that, in this case, also

Resistor #
1 2 3 4 5 6 7 8 9 10

M1 69.1 59.2 71.5 79.5 71.9 63.1 83.4 55.6 76.5 68.6
M2 68.9 66.8 69.4 71.6 69.8 67.7 73.0 65.1 70.8 68.9

Table 3.6 – MLEs of the MRUL of the fuel cell membranes evaluated under model M1
and M2 at t6 = 30.

the MLEs of the conditional pdfs fW (t6)|Z1,6(w|z1,6), fW (t6)|Z4,6(w|z4,6), fW (t6)|Z8,6(w|z8,6),
f∆W (t6,t6+∆t)|Z1,6(∆w|z1,6), f∆W (t6,t6+∆t)|Z4,6(∆w|z4,6), and f∆W (t6,t6+∆t)|Z8,6(∆w|z8,6), ob-
tained under model M1 and M2 are much more similar to each other than the correspond-
ing estimates represented in Figures 3.5 and 3.6.
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Figure 3.7 – Observed paths of fuel cell membranes (empty dots connected by thin
solid lines), empirical estimate of E{Z(t)} at measurement times (solid dots), MLEs
of E{W (t)} = E{Z(t)} obtained under model M1 (solid line) and M2 (dashed line), and
MLE of 0.90 probability bands of Z(t) obtained under model M1 (dotted lines).

Obviously, this result is also due to the circumstance that the paths of membranes
#1, #4, and #8 represented in Figure 10 are more similar (one to the others) than the
paths of resistors #5, #7, and #8, represented in Figure 3.4. On the other hand, as it is
apparent from Figure 3.9 in this application there are no paths that are completely above
or completely below the mean function. In fact, this is exactly the reason why according
to the Akaike information criterion and the likelihood ratio test, in this application, there
is not a significant presence of random effect.

3.4 Conclusions

In this chapter, the new degradation model described in Chapter 2.4, that accounts
for the joint presence of measurement error and random effect, has been applied. Under
this model, the degradation path of a specific unit is modeled as a gamma process. The
presence of random effect is accounted for by assuming that the rate parameter of the unit
specific gamma process varies randomly from unit to unit. In fact, the rate parameters of
different units are assumed to be (unobservable) realizations of independent and identi-
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Figure 3.8 – Empirical estimates of V {Z(t)} at measurement times (solid dots) together
with the MLEs of V {Z(t)} and V {W (t)} obtained under model M1 (bold and thin solid
lines) and M2 (bold and thin dotted lines).

cally distributed gamma random variables. Finally, to complete the model, it is assumed
that the measurement error depends on the hidden measured degradation level, and that,
given the actual degradation level, it is conditionally distributed as a three-parameter
inverse gamma random variable.

Under this setting, directly maximizing the likelihood function has proven to be a
challenging task (especially in terms of computational time) and therefore a procedure that
combines a particle filter and an expectation-maximization algorithm has been suggested,
that allows to solve this numerical issues. Moreover, a simple algorithm based on the same
particle filter has been also adopted to compute (perturbed measurement-based) estimates
of functions of the model parameters, such as the cumulative distribution function of
the remaining useful life and the conditional (perturbed measurement-based) probability
density functions of the true (hidden) degradation level. To demonstrate the affordability
of the proposed estimation procedure, two applicative examples have been developed on
the basis of two sets of degradation measurements of carbon-film resistors and fuel cell
membranes, respectively.

In the first example, the presence of a random effect was found to be statistically
significant, whereas in the second example it was not. The results obtained indicate that
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Figure 3.9 – Degradation paths of membranes #1, #4, and #8 and empirical estimates
of E{W (t)} at the measurement times.

the proposed model fits the first dataset significantly better than the perturbed gamma
process suggested in Giorgio, Mele, and Pulcini (2019). On the other hand, both models
adequately fit the second dataset, with the fixed effect model offering a better balance
between fitting ability and complexity. The fitting ability of the two competing models was
evaluated using the Akaike information criterion and likelihood ratio test. By comparing
the estimates of cumulative distribution function and mean of the remaining useful life
under the two models, we observed that while the estimates provided by the competing
models were quite similar for the second dataset, the fixed effect model yielded noticeably
poorer estimates than the proposed perturbed gamma model with random effect for the
first dataset.

These examples show that neglecting the presence of random effect in the cases where
it is significant can lead to significantly poorer prediction performances. In the context
of maintenance decision-making then, intuition would suggest that when random effect is
thought to be present, developing an ad-hoc maintenance strategy that directly takes it
into account can lead to better results. Some examples of such strategies will be illustrated
in Chapter 5.
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Figure 3.10 – MLEs of the conditional ccdf of RUL(30) of fuel cell membranes #1, #4,
and #8 under models M1 (solid lines) and M2 (dashed lines), given the past perturbed
measurements available for each resistor at time t6 = 30.

Figure 3.11 – MLEs of the conditional pdfs of the degradation state of the membranes
#1, #4, and #8at t6 = 30,obtained under models M1 (solid lines) and M2 (dashed lines).
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Figure 3.12 – MLEs of the conditional pdfs of the degradation increments W (30, 30+5) of
the membranes #5, #7, and #8, obtained under models M1 (solid lines) and M2 (dashed
line), given the perturbed measurements available at t4 = 8084.





Chapter 4

MISSPECIFICATION ANALYSIS OF

GAMMA- AND INVERSE GAUSSIAN-
BASED PERTURBED DEGRADATION

PROCESSES

4.1 Introduction

In the previous chapters, we tackled the problem of the joint presence of tempo-
ral variability, unit-to-unit variability and measurement errors, which can all be seen as
forms of aleatory uncertainty. In this chapter, we will focus our attention on what could
be seen as epistemic uncertainty. In fact, the goal of this chapter is to investigate the
misspecification issue of two stochastic processes that present very similar statistical fea-
tures, the gamma and inverse Gaussian process. Both are widely applied in engineering
and reliability, offering natural choices for modeling monotonic degradation phenomena
(e.g., see Abdel-Hameed (1975), Van Noortwijk (2009), Wu et al. (2018), Xiaofei Wang
et al. (2021), Wasan (1968), Xiao Wang and Xu (2010), Ye and N. Chen (2014), C.-Y.
Peng (2015), L. A. Rodríguez-Picón, A. P. Rodríguez-Picón, and Alvarado-Iniesta (2019),
Morita et al. (2021), Ye and M. Xie (2015), Kahle, Mercier, and Paroissin (2016)). Despite
not being fully equivalent, they are often treated as such.

This situation makes the model misspecification issue of gamma and inverse Gaussian
processes interesting and important. However, distinguishing between these models can
be challenging, especially in practical applications where only noisy data can be gathered
(as it often is when in-service and non-destructive inspections methods are implemented,
e.g., Lu, Pandey, and W.-C. Xie (2013)).
Indeed, when measurement error is present, it can hinder the direct evaluation of a model’s
ability to describe the underlying degradation process, crucial in reliability and mainte-
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nance applications. However, despite its importance, this misspecification problem has
received limited attention in the literature, particularly when addressing situations with
measurement errors. The basic issue (i.e., without measurement error) has been addressed
in Zhang and Revie (2016) and Tseng and Yao (2017), but, to the best of our knowledge, no
papers are available in the literature that tackle the misspecification issue in the presence
of measurement error.

To address this gap, we conducted a comprehensive Monte Carlo study focusing on
how the presence of measurement error impacts the misspecification issue of gamma and
inverse Gaussian processes. The study has been carried out considered as competing mod-
els the perturbed Gamma process proposed by Giorgio, Mele, and Pulcini (2019) and a
new perturbed inverse Gaussian process. Both competing models share the same model-
ing solution for the measurement error. Moreover, in order to facilitate the comparative
analysis, the inverse Gaussian process has been reparameterized such that the considered
competing models share the same parameters and the same functional forms of the mean
and variance functions.

As in Giorgio, Mele, and Pulcini (2019), the error term is supposed to depend (in
stochastic sense) on the hidden degradation level and, conditionally to the degradation
level, is modeled as a 3 parameter inverse gamma random variable. This modeling solution
distinguishes the considered models from other perturbed degradation models suggested
in the literature, where the error is modeled by using a Gaussian distribution and/or is
assumed to be stochastically independent of the hidden degradation process (e.g., Lu,
Pandey, and W.-C. Xie (2013), Le Son, Fouladirad, and Barros (2016), Bordes, Paroissin,
and Salami (2016), S. Hao, J. Yang, and Bérenguer (2019a), X. Chen et al. (2019)).
Moreover, it ensures that the perturbed measurement is non negative, a result that is not
guaranteed in the case where the error term is described by using the Gaussian model,
especially when the magnitude of the standard deviation of the error term is comparable
to that of the measured degradation level. Nonetheless, for the sake of generality, as an
alternative modeling solution, we have also examined the case where the error term is
modeled by using a Gaussian distribution. Also in this second case, by following Pul-
cini (2016), we have assumed that the measurement error depends in stochastic sense
on the measured degradation level. Yet, as a special case under the proposed model, we
have also considered the classical assumption where the error is independent of the hid-
den degradation process. For the sake of readability, the detailed formulation of these
processes is not illustrated in this Chapter, but is available in Chapter 2.3.
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Both the misspecification of a perturbed gamma process with a perturbed inverse
Gaussian one and the symmetric case of the misspecification of a perturbed inverse Gaus-
sian process with a perturbed gamma one are considered. Model parameters are estimated
from perturbed data by using the maximum likelihood (ML) method.
The fitting ability of the considered competing perturbed models is evaluated by using
the Akaike information criterion (AIC) (see, e.g., Akaike (1974)). The risk of incurring
in a misspecification is evaluated as percentage of times the AIC leads to select the
wrong model. The severity of a misspecification is evaluated in terms of its impact on
ML estimates of reliability and mean remaining useful life. The impact of the presence
of measurement error on risk and consequences of incurring in a misspecification is eval-
uated by comparing the obtained results with those obtained by carrying out the same
misspecification analysis in the absence of measurement errors.

Unfortunately, as it also occurs in the case of other gamma and inverse Gaussian based
perturbed degradation models, computing the likelihood functions, which are not available
in closed form, requires intensive numerical methods that, at the same time, increase
the computational burden and exacerbate convergence issues of numerical optimization
algorithms used to retrieve the ML estimates. Indeed, mainly due to numerical problems
and long computational times, the performance of ML estimators of parameters of the
gamma and inverse Gaussian based perturbed degradation processes, and/or functions
thereof, are typically investigated by using a relatively small number of synthetic datasets,
a situation that does not allow to obtain results characterized by an adequate degree of
accuracy.

In order to overcome this limitation, we suggest and adopt a new sequential Monte
Carlo Expectation Maximization (EM) algorithm, which allows to drastically simplify
the estimation task and (consequently) to find a better tradeoff between precision and
computational affordability of the Monte Carlo study (again for the sake of clarity, the
mathematical details about this procedure is not illustrated here but can be found in
Chapter 2.7). In fact, the use of this algorithm allows us to perform a Monte Carlo study
where each index of interest is evaluated on the basis of 2, 000 simulated datasets.
Nevertheless, the misspecification study is still a very time-consuming task, even when
using this new algorithm. This is mainly because to correctly apply the Akaike information
criterion a very accurate evaluation of the ML estimates of the 5-parameter log-likelihood
function is required. In the considered misspecification analysis, we observed that in about
6% of cases the likelihood function of the competing models differ only in the fourth
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significant figure and more rarely (in less than 1% of cases) only in the fifth significant
figure. Obtaining this accuracy demands (in the considered setup) a very high number of
particles (say, 500, 000 or more), which significantly affects the computational burden.

4.2 Misspecification analysis

We address two misspecification issues: namely, the misspecification of a perturbed
gamma process (PGP) with a perturbed inverse Gaussian process (PIGP) and the sym-
metric case of the misspecification of a PIGP with a PGP. To this aim, we have developed
a large Monte Carlo study where three realistic experimental scenarios are simulated by
using the setups described in Table 4.1. As already mentioned in Chapter 2.3, the age
function is modeled by using the widely adopted power law function η(t) = (t/a)b.

Setup a b θ φ ν

A 1.25 1 1.25 8 1
B 1 1 1 10 1
C 0.5 1 0.5 20 1

Table 4.1 – Setups A, B, and C used to generate the datasets.

In particular, this specific choice of the parameters φ and ν allows (see Eq. (2.36)) to
calibrate the error term so that the ratio between the variance of the perturbed and hidden
processes (i.e., V {Z(t)} /V {W (t)}) is time independent and equal to 1+1/(θ ·φ) = 1.10,
under all the considered setups. This means that the variance of the error term depends
on the magnitude of the measurement degradation level and that, due to the presence
of measurement errors, (∀t > 0) the variance of Z(t) is 10% higher than the variance of
W (t).
We have firstly investigated the case where the error term is modeled by using option
1). Under each setup, we have used the true model (i.e., either the PGP or the PIGP,
depending on the misspecification issue of concern) to generate Nt = 2000 synthetic
datasets. Each dataset consists of m = 6 degrading paths, which simulate the evolution of
the perturbed degradation levels of as many degrading units. Each path consists of ni = 6
perturbed measurements, taken at equally spaced inspection times (t1 = 1, t2 = 2, t3 = 3,
t4 = 4, t5 = 5, and t6 = 6, expressed in time units) that are the same for all the units
(that is: ti,j = tj = j, ∀ i, j , i = 1, . . . ,m and j = 1, . . . , 6). Together with each perturbed
measurement we also kept the value of the measured (hidden) degradation level, which is
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generated (as an intermediate result) by the algorithm that we have adopted to generate
the perturbed data. The true values of the hidden (i.e., measured) degradation levels are
used to perform comparative analyses.

Note that, under all the considered settings the hidden processes are homogeneous
(i.e., the parameter b is always set to 1). Hence, given that they also have independent in-
crements, and that measurement times are equally spaced, the hidden increments W (t1),
∆W (t1, t2), . . . ,∆W (t5, t6) (where W (t1) ≡ ∆W (t0, t1)) of any considered degradation
path are always independent and identically distributed. Moreover, as remarked in Chap-
ter 2.3, given the setup, the mean and variance of these increments do not depend on
the considered (i.e., either gamma or inverse Gaussian) hidden model. These convenient
settings allow to create, without loss of generality, a direct and easily interpretable link
between the risk of misspecification and the parameter a of the age function.

In fact, considered that, both in the case of the PGP and the PIGP, as ∆η(tj−1, tj)
increases, due to the central limit theorem, the increment ∆W (tj−1, tj) tends in distribu-
tion to a Gaussian random variable, it is reasonable to expect that, under the considered
settings, the similarity between the distributions of the mentioned increments, and con-
sequently the risk of incurring in a misspecification, increases with ∆η(tj−1, tj) and thus,
being ∆η(tj−1, tj) = a−1, decreases with a. Indeed, ∆η(tj−1, tj) is equal to 0.8 under the
setup A, to 1 under the setup B, and to 2 under the setup C. This situation is clearly
highlighted in Figure 4.1, where the solid lines (in red) are the pdfs of the mentioned in-
crements under the PGP and the dashed lines (in blue) are the corresponding pdfs under
the PIGP. From Figure 4.1 it is evident that the similarity between the two increments
increases moving from setup A to setup C.
In fact, the setups in Table 4.1 have been specially designed to simulate scenarios with
increasing (i.e., from A to C) risk of incurring in a model misspecification. The values of θ
have been calibrated so that the mean function of the PGP and PIGP (as well as the mean
function of the corresponding hidden models) is the same under all considered setups. The
variance of Z(t) and W (t), for any given t > 0, decreases moving from setup A to setup
C. Each dataset has been used to perform ML estimates of the parameters (a, b, θ, φ, ν) of
both the PGP and PIGP. Then, dataset by dataset, the AIC has been used to select the
model that provides the best fit for that dataset. A misspecification is assumed to occur
when the AIC leads to select the wrong model (that is, the PIGP in the case of a dataset
generated by using the PGP and the PGP in the case of a dataset generated by using the
PIGP). Under each considered setup, results obtained by performing these analyses have
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Figure 4.1 – Pdf of the increments ∆W (tj−1, tj) of the considered hidden competing
processes under the adopted setups.

been used to evaluate the percent risk of misspecification as:

rm% =
(
Nm

Nt

)
· 100. (4.1)

where Nm indicates the number of datasets where a misspecification occurred and Nt is
the total number of datasets (i.e., 2000) used to conduct the analyses. For the index rm

we have computed six values, three values from the datasets generated under the PGP
process and three from those generated under the PIGP, which provide (under each setup)
the risk of incurring in a misspecification of a PGP with a PIGP and the risk of incurring
in the misspecification of a PIGP with a PGP, respectively.
The consequences of incurring in a misspecification have been evaluated in terms of its
impact on the estimate of the remaining useful life measured by the root mean square
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error (RMSE) of the ML estimators of the MRUL(6) as:

RMSEM,d =

√√√√√ Nd∑
k=1

6∑
i=1

(
M̂RUL(6)M,k,i −MRUL(6)k,i

)
6 ·Nd

. (4.2)

where:

— The subscript d of RMSEM,d specifies which are the Nd datasets used to compute
the index. In particular, d = t indicates that RMSEM,d is calculated by using all
the Nt datasets, d = m indicates that it is calculated by using only the Nm datasets
that did not lead to a misspecification, and d = m indicates that it is calculated by
considering only the Nm datasets that led to a misspecification.

— The subscript M of RMSEM,d specifies which is the model used to estimate the
MRUL(6). In particular, M = PGP indicated that the estimates are obtained by
using the PGP while M = PIGP indicates that the estimates are obtained by using
the PIGP .

— MRUL(6)k,i is the true value of the MRUL of the unit whose degradation path,
up to t6 = 6, is described by the ith path (i = 1, . . . ,m) of the kth dataset (k =
1, . . . , Nd). In fact, MRUL(6)k,i is computed, path by path, under the true model
(i.e., the same model used to simulate the data) as:

MRUL(6)k,i = MRUL (t|W (6)k,i = w(6)k,i)

=
∫ ∞

0
FW (t+τ)|W (6)k,i

(D|W (6)k,i = w(6)k,i) · dτ

=
∫ ∞

0
F∆W (t,t+τ) (D − w(6)k,i) · dτ (4.3)

where F∆W (t,t+τ)(·) is either the (2.16) or the (2.17) depending on the true model
(i.e., PGP or PIGP, respectively), with parameters set to the values reported in
Table 4.1 (according to the considered setup), and w(6)k,i is the true (hidden) value
of the degradation level of the ith unit of the kth dataset at t6 = 6 (i.e., the true
value of W (6)k,i), which in this simulation study is known. From each dataset six
values of MRUL(6)k,i;

— M̂RUL(6)M,k,i is the ML estimate of the MRUL of the unit whose observed degra-
dation history, up to t6 = 6, is described by the ith perturbed path of the kth
dataset, here denoted as Z(6)k,i. M̂RUL(6)M,k,i is computed as in (2.69), by us-
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ing the model M (i.e., either M = PGP or M = PIGP ) with parameters set to
the corresponding ML estimates obtained, under the same model M , from the kth
dataset. In this case the distribution of the RUL used to compute the MRUL is con-
ditional to Z(6)k,i = z(6)k,i. This estimate depends on the dataset, on the model
M , and on the (whole) perturbed degradation path of the considered unit (note
that both the PGP and PIGP are non-Markovian). From each dataset are obtained
twelve values of M̂RUL(6)M,k,i six under the PGP and six under the PIGP. Hence,
M̂RUL(6)M,k,i differs from the true value MRUL(6)k,i because it is conditional to
the perturbed measurements instead than on the true (hidden) degradation level and
because model parameters are estimated. Moreover, it is worth to underline that,
when M̂RUL(6)M,k,i is computed by using the wrong model, the ML estimates of
model parameters are obtained by using the wrong model;

Next, we have repeated the same analyses by modeling the error term according to option
2).

Furthermore, under both the error models 1) and 2), we have also considered the case
where ν = 0. In this latter case, the simulated data used to conduct the Monte Carlo
study have been generated by using the setups described in Table 4.2, which differ from
those given in Table 4.1 for the parameters of the error term only. In particular, differently

Setup a b θ φ ν

A 1.25 1 1.25 8/3 0
B 1 1 1 10/3 0
C 0.5 1 0.5 20/3 0

Table 4.2 – Setups A, B, and Cused to generate the datasets when ν = 0.

than under the setups reported in Table 4.1, in this case the ratio between the variance of
the perturbed and hidden processes (i.e., V {Z(t)} /V {W (t)}) is not time independent.
In fact, under each setup (i.e., A, B, and C, respectively), here the value of the parameter
φ has been selected to set the variance of the error term (that is equal to V {ε(t)} = 1/φ)
to the value that V {ε(t)} assumes at t = 3, when φ and ν are those given in Table 4.1.
Note that, under the setups given in Table 4.1, V {ε(t)} increases linearly from t = 0,
where it is null, to t = 6, where it is equal to 6/φ. Thus, adopting the setups given in
Table 4.2 allows to set V {ε(t)} to the value that the same variance assumes in mean over
the time interval (0, 6) under the setups given in Table 4.1. Accordingly, under the setups
given in Table 4.2, given that V {ε(t)} does not depend on t, the ratio V {Z(t)} /V {W (t)}
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decreases at t increases.
It is worth to remark again that, under option 2) when ν = 0, the adopted modeling
solution reduces to the classical case where the error term is Gaussian distributed and
independent of the measured degradation level.
Here, for the convenience of the readers we report a scheme of the step-by-step procedure
we have used to evaluate the risk and consequences of model misspecification under a
given setup and a given true model:

1. Select the true model (i.e., either PGP or the PIGP with a given error model) and
a setup (i.e., either A, B, or C) from Table 4.1 or Table 4.2, depending on ν;

2. Repeat steps 3-6 Nt = 2000 times;

3. Under the true model, simulate a synthetic dataset. At this step the true hidden
degradation values, generated at an intermediate step of the simulation, are also
kept;

4. Use the EM algorithm and the particle filter described in Chapters 2.7 and 2.8
to compute the ML estimates of the parameters of both the PGP and the PIGP.
This step defines the “estimated processes” (i.e., the perturbed gamma and per-
turbed inverse Gaussian processes calibrated by using the ML estimates of model
parameters);

5. Use the AIC to select the best model. In case of incorrect diagnosis (i.e., if the
selected model is not the one used to generate the dataset) a misspecification is
assumed to have occurred;

6. Path by path (i.e., for any k = 1, 2, . . . , 2000 and i = 1, 2, . . . , 6) compute
MRUL(6)k,i under the model used to generate the data and the M̂RUL(6)M,k,i

both under the (estimated) PGP and the PIGP;

7. Use the results obtained by these 2000 iterations to compute the indices (4.1) and
(4.2).

For the sake of comparison, the same analysis has also been performed in the absence of
measurement errors (i.e., by assuming that measurements provide exact values of mea-
sured degradation levels). In this latter case the competing models are the gamma process
(GP) and the inverse Gaussian process (IGP) (i.e., the hidden processes) and the datasets
used to perform the Monte Carlo study have been generated under the hidden models
with parameters (i.e., a, b, and θ) set to the values given in Table 4.1 (which, as mentioned
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above, coincide with those given in Table 4.2). The results of the mentioned analyses are
reported in Chapters 4.2.1 and 4.2.2.

4.2.1 Risk of incurring in a misspecification

Table 4.3 reports the values of the percent risk of incurring in a misspecification both
when the true model is the PGP and when the true model is the PIGP (i.e., in the
symmetric case). The index rm(%) is evaluated as in Eq. (4.1). This Table refers to the
case where the error term is modeled by using option 1). The setups used to generate
the data are those given in Table 4.1. As mentioned above, Nt, Nm, and Nm indicate the
total number of datasets used to perform the analysis, the number of datasets that did
not lead to a misspecification, and the number of datasets that led to a misspecification,
respectively.
Tables 4.4 reports, by using the same notation, the results of the same analyses in the
absence of measurement errors. Table 4.3 shows that, under all setups, the risk of incurring

True process Setup Nt Nm Nm rm(%)

PGP
A 2000 1362 638 31.9
B 2000 1252 748 37.4
C 2000 1065 935 46.8

PIGP
A 2000 1484 516 25.8
B 2000 1470 530 26.5
C 2000 1368 632 31.6

Table 4.3 – Risk of misspecification when the error term is modeled by using option 1).

True process Setup Nt Nm Nm rm(%)

GP
A 2000 1888 112 5.6
B 2000 1806 194 9.7
C 2000 1541 459 22.9

IGP
A 2000 1843 157 7.85
B 2000 1814 186 9.30
C 2000 1665 335 16.7

Table 4.4 – Risk of misspecification in the absence of measurement error.

in a misspecification of a PGP with a PIGP is about 5 − 10% higher than the one of
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misspecifying a PIGP with a PGP. As expected, in both cases the risk increases moving
from setup A to setup C. In the worst-case scenario, represented by the setup C, the risk
of a wrong diagnosis when the true model is the PGP is close to 50%, whereas in case it
is the PIGP it is close to 30%.

Results reported in Table 4.3 also show that the risk of misspecification depends on
the setup more when the true model is the PGP than when the true model is the PIGP.
An intuitive explanation for this is that passing from the setup A to the setup C the
shape of the pdf of the increments of the hidden inverse Gaussian process depicted in
Figure 4.1 changes less than the shape of the pdf of the increments of the gamma process.
Moreover, it seems that, under every setup, when the true process is the PIGP, it is often
possible to find a PGP that fits the simulated data in an acceptable manner, while the
PIGP more rarely allows to adequately fit PGP data generated under the setups A and B,
where the increments W (t1), ∆W (t1, t2), . . . ,∆W (t5, t6) of the hidden process are gamma
distributed with shape parameter (i.e., ∆η(t1),∆η(t1, t2), . . . ,∆η(t5, t6)) smaller than 1.
In fact, from Figure 4.1, it is apparent that while the pdf of the increment of the gamma
process obtained under the setup C is relatively similar to the pdfs of the increment of the
inverse Gaussian process obtained under the setups A, B, and C, none of pdfs obtained
under the inverse Gaussian process is similar to the pdf of the increment of the gamma
process obtained under the setups A and B).
The comparison with the results reported in Table 4.4 shows that, under all the setups,
the presence of measurement errors increases the risk of incurring in a misspecification.
Table 4.4 also shows that in the absence of measurement errors the risk of misspecifying
a GP with an IGP is close to the one of misspecifying an IGP with a GP. Nonetheless, it
seems again that the risk of misspecifying an IGP with a GP depends on the setup less
than the risk of misspecifying GP with an IGP. Table 4.5 reports the value of the percent

True process Setup Nt Nm Nm rm(%)

PGP
A 2000 1376 624 31.2
B 2000 1256 744 37.2
C 2000 1067 933 46.7

PIGP
A 2000 1296 704 35.2
B 2000 1292 708 35.4
C 2000 1334 666 33.3

Table 4.5 – Risk of misspecification when the error term is modeled by using option 2).
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risk of incurring in a misspecification in the case the error term is modeled according to
option 2). The index rm(%) is evaluated as in Eq. (4.1). The setups used to generate the
data are again those given in Table 4.1.
Results reported in Tables 4.5 and 4.3 show that the risk of misspecifying a PGP with
a PIGP does not significantly depend on the option adopted to model the error term.
Moreover, they also show that, when the true model is the PIGP, results obtained by
adopting the error term 2) differ from, and are closer to each other than, those obtained
by adopting the error term 1). In fact, it seems that modeling the error term according
to option 2) increases the risk of misspecifying a PIGP with a PGP and reduces the
sensitivity of the mentioned risk on the setup. Indeed, somewhat surprisingly, Table 4.5
also shows that the risk of misspecifying a PIGP with a PGP under the setup C is very
close to (and even slightly smaller than) the corresponding risk computed under the setups
A and B. We have carefully checked and confirmed these latter results in various ways,
yet we do not have an intuitive explanation for them. In fact, we cannot exclude that
the value obtained for rm(%) under the setup C is smaller than those obtained under the
other setups only for a matter of numerical accuracy. Indeed, the log-likelihood functions
computed under the PIGP and PGP (i.e., those used to calculate the AIC index) in about
6% of cases differ only in the fourth significant figure and in less than 1% of cases only
in the fifth significant figure, which the (time-demanding) numerical procedure used to
compute the log-likelihood does not always allow to calculate in a sufficiently accurate
manner.
As we have already mentioned above, the error term 2) allows the perturbed measurement
to assume negative values, a result that in many applications can be unrealistic. About
this point, we note that, in the case of the datasets used to produce the results reported
in Table 4.5, when the true model is the PGP, we have obtained 989 out of 72, 000
negative perturbed measurements under Setup A, 607 out of 72, 000 negative perturbed
measurements under Setup B, and 69 out of 72, 000 negative perturbed measurements
under Setup C. While, when the true model is the PIGP, we have obtained 443 negative
perturbed measurements under Setup A, 227 under Setup B, and 17 under Setup C.

Finally, Tables 4.6 and 4.7 report the values of the percent risk of incurring in a
misspecification in the cases where the error term is modeled by using the setups reported
in Table 2 (i.e., in the case ν = 0). In particular, Table 4.6 refers to the cases where the
error term is modeled by using option 1), while Table 4.7 reports the results obtained by
using option 2).
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Here, in the case of the datasets used to produce the results reported in Table 4.7 we have

True process Setup Nt Nm Nm rm(%)

PGP
A 2000 1307 693 34.6
B 2000 1278 722 36.1
C 2000 1157 843 42.2

PIGP
A 2000 1459 541 27.1
B 2000 1439 561 28.1
C 2000 1326 674 33.7

Table 4.6 – Risk of misspecification when the error term is modeled by using option 1)
with ν = 0.

True process Setup Nt Nm Nm rm(%)

PGP
A 2000 1247 753 37.7
B 2000 1242 758 37.9
C 2000 1139 861 43.1

PIGP
A 2000 1216 784 39.2
B 2000 1195 805 40.3
C 2000 1185 815 40.7

Table 4.7 – Risk of misspecification when the true processes is the PGP and the error
term is modeled by using option 2) with ν = 0.

obtained 3390 negative perturbed measurements under Setup A, 2687 negative perturbed
measurements under Setup B, and 990 negative perturbed measurements under Setup C
when the true model is the PGP. Similarly, when the true model is the PIGP, we have
obtained 2643 negative perturbed measurements under Setup A, 2016 under Setup B, and
718 under Setup C.
In general, by comparing Tables 4.3 and 4.5 with Tables 4.6 and 4.7, it seems that, when
ν = 0 the risk of misspecifying a PGP with a PIGP is similar to the one computed when
ν = 1. Yet it also seems that, when ν = 0 the mentioned risk depends on the setup less
than when ν = 1, especially when the error term is modeled by using option 2). The same
effect is also observed when the true model is the PIGP. However, from the same tables,
it also seems that the risk of misspecifiying the PIGP with a PGP under the setups given
in Table 4.2 is higher than under those given in Table 4.1.

It should be emphasized that, strictly speaking, the results obtained by setting ν = 0
and ν = 1 are not entirely comparable to each other because, as mentioned before, while

91



Chapter 4 – Misspecification analysis of gamma- and inverse Gaussian- based perturbed
degradation processes

under the setups reported in Table 4.1 the variance of the error term, ε(t), is proportional
to the measured degradation level W (t) under the setups given in Table 4.2 the variance of
ε(t) does not depend on W (t). However, a possible intuitive explanation of the difference
existing between the results obtained when ν = 0 and when ν = 1 can be given by focusing
on the importance of the measurement obtained at the first measurement epoch. Indeed,
as shown in Figure 4.1, the shapes of the pdfs of the increments of the hidden gamma and
inverse Gaussian processes mainly differ in the left tail. The same figure also shows that
the difference diminishes as η(t) increases (i.e., moving from the setup A to the setup C).
For the same reasons the considered shapes become more and more similar as t increases,
because η(t) increases with t and both the gamma and the inverse Gaussian random
variables as η(t) increases tend in distribution to a Gaussian random variable (i.e., to
the same Gaussian random variable, because the considered competing hidden processes
have identical mean and variance functions). Based on this reasoning, it is reasonable to
expect that the first perturbed measurements are the most useful to identify the hidden
processes. Consequently, given that V {ε(t)} at t = 1 is larger when ν = 0 than when
ν = 1, it results that the perturbed measurements performed at t = 1 when ν = 0 are
less useful to identify the hidden model than the corresponding measurements performed
when ν = 1.

4.2.2 Consequences of incurring in a misspecification

Table 4.8 reports the value of the index RMSEM,d computed when the error term
is modeled according to option 1). To assess the prognostic abilities of the competing
models on a short, medium, and long timespan, we used three different values of the
threshold: namely, wM = 7.5, wM = 9, and wM = 12. For the sake of simplicity, this piece
of information is not included in the notation of the RMSE, but is directly provided in the
headings of the tables. The first column of Table 4.8 specifies which is the true model. The
second columns indicates the setup under which the RMSE is computed. Details about
these setups are given in Table 4.1. The third column specifies the model used to compute
M̂RUL(6)M,k,i, which is also the one used to obtain the MLEs of model parameters.
Finally, the fourth column specifies the datasets used to compute the index. With the
same notations as Tables 4.3-4.7, the subscripts t,m, and m indicate that the RMSE is
evaluated by using all the Nt datasets, only the Nm datasets where a misspecification
occurred, and only the Nm datasets where a misspecification did not occur, respectively.
So, for example, the values reported in the fourth row of Table 4.8 are the RMSEs of the
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ML estimator of MRUL(6), computed as in Eq. (2.69), for all the considered thresholds,
by using a PIGP with model parameters set to their ML estimates obtained from the
Nm datasets generated unter a PGP (calibrated according to the setup A) that led to a
misspecification. Tables 4.8 shows that the prognostic abilities of the considered competing
perturbed models are quite similar both when the true model is the PGP and when the
true model is the PIGP. In addition, as expected, obtained results also show that the
difference between the RMSEs obtained under the considered perturbed models decreases
moving from the setup A to the setup C. In fact, this is a direct consequence of the
circumstance that (as shown by Figure 4.1) passing from the setup A to the setup C the
difference between the hidden processes diminishes.

Table 4.9 reports the results obtained by performing the same analyses in the absence
of measurement errors. The comparison between the results reported in Table 4.8 and
those reported in Table 4.9 show how the presence of measurement errors impacts on
the estimation of the MRUL(6). In fact, it is evident that if by one side the presence of
measurement errors negatively affects the performances of the ML estimator of MRUL(6)
constructed under the right perturbed model (i.e., for example, by using the PGP when
the data are generated under a PGP), on the other side it also allows to mitigate the effect
of using the wrong model. This is especially clear if one compares the results obtained in
the first half of Table 4.8, where the true model is the PGP, whit those reported in the
first half of Table 4.9, where the true model is the GP. In fact, for example, while the
results reported in the fifth and sixth row of Table 4.9 (obtained under the setup A under
the right GP) differ by several orders of magnitude from the RMSEs reported in the sixth
row of the same table (obtained under the setup A, by using the wrong IGP), the RMSEs
reported in the fifth and sixth row of Table 4.8 (obtained under the right PGP and the
wrong PIGP, respectively) are very close to each others. A similar situation is highlighted
by the results reported in the eleventh and twelfth rows of the same tables (i.e., in the
case of the setup B).

Indeed, even more specifically, the results reported in Table 4.9 also show that, even in
the absence of measurement error, the use of a good model selection criterion (such as the
AIC) allows to greatly mitigate the consequences of adopting the wrong model. In fact,
the results reported in the third and fourth row of Table 4.9 show that the ML estimators
constructed under the wrong and right models in the case of the datasets, generated under
the setup A, that led to a misspecification (that is, those for which the AIC suggests the
use of the wrong model) behave in a very similar manner. This conclusion is further
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strengthened by the results reported in the first and second row of Table 4.9 (i.e., those
obtained by using the datasets for which the AIC leads to select the right model) which
as those reported in the fifth and sixth row of the same table, differ from each others by
several orders of magnitude. In other words, from the results obtained under the setup A,
when the true model is the GP (i.e., in the absence of measurement error) it appears that
the huge difference existing between the RMSEs computed on the basis of the estimates
of the MRUL obtained from all the datasets by using the right GP and the wrong IGP
(i.e., the difference existing between the results reported in the fifth row and in the sixth
row of Table 4.9) is due to the (poor) estimates of the MRUL obtained under the wrong
IGP from the datasets that do not cause a misspecification. The results reported in the
seventh, eighth, ninth, and tenth rows of Table 4.9 show that the same situation unfolds
also in the case of setup B.

It is also interesting to note that, as shown by the results reported in the second half of
Table 4.9, when the true model is the IGP the performances of the estimators constructed
under the GP and the IGP seem to have very similar performances, regardless of whether
a misspecification has occurred or not. As we have already remarked by commenting on
the results in Tables 4.3, even in the absence of measurement error, the differences existing
between the results obtained when the true process is the GP and when it is the IGP are
probably due to the circumstance that when the true process is the IGP, under all the
setups, it is possible to find a PGP that fits the simulated data in an acceptable manner,
whereas the IGP more rarely allows to adequately fit PGP data generated under the
setups A and B. In fact, as shown in Figure 4.1, while the gamma pdf can assume shapes
that are similar to those of all the inverse Gaussian pdf depicted in that figure, the inverse
Gaussian pdf cannot assume shapes just as similar to the gamma pdfs corresponding to
setups A and B.

Table 4.10 reports the values of the index RMSEM,d computed when the error term is
modeled according to option 2). The RMSEM,d computed in these cases are very similar
to those reported in Tables 4.8. That is, it seems that the shape of the distribution of the
error term does not significantly affect the properties of the ML estimator of the MRUL.
Finally, Tables 4.11 and 4.12 report the values of the index RMSEM,d computed when
ν = 0 and the error term is modeled according to option 1) and option 2), respectively.
The RMSEM,d computed in these cases are very similar to those reported in Tables 4.8
and 4.10. That is, it seems that also this specific feature of the distribution of the error
term (i.e., setting ν = 0 or ν = 1) does not significantly affect the properties of the ML
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estimator of the MRUL.

4.3 Conclusions

This chapter has investigated the risk and the consequences of the misspecification
of a perturbed gamma process with a perturbed inverse Gaussian one and the symmet-
rical misspecification problem of a perturbed inverse Gaussian process with a perturbed
gamma one. Two different models are used to describe the error term.
To facilitate the misspecification study, the (hidden) inverse Gaussian process is formu-
lated by using a new parameterization that allows the considered competing models to
share the same parameters and the same functional forms of mean and variance functions.

To conduct the analyses we have carried out a large Monte Carlo study where six
realistic experimental scenarios, characterized by different misspecification risk, are sim-
ulated by using as many model setups. A setup defines the true model, which is either
a perturbed gamma process or a perturbed inverse Gaussian process, depending on the
misspecification issue of concern. Hence, with six setups, two hidden models, and two
choices for the distribution of the error term, we have defined 24 true models, 12 per-
turbed gamma and 12 perturbed inverse Gaussian. Each true model has been used to
generate 2000 synthetic datasets, each one consisting of the degradation path of six units.
Together with each perturbed measurement we also kept the value of the measured (hid-
den) degradation level, which is generated at an intermediate step of the algorithm that
we have adopted to generate the perturbed data. The true values of the hidden degrada-
tion level are used in the analysis for comparative purposes. From each dataset, we have
estimated the parameters of both the competing perturbed processes by using the ML
method. Hence, path by path we have estimated the mean remaining useful life by using
the model estimated from the dataset which contains the considered path.

The ML estimation of the parameters of the competing perturbed models has been
performed by using a new expectation maximization particle filter algorithm. Dataset
by dataset the model selection is performed by using the Akaike information criterion. A
misspecification has been assumed to occur when the Akaike information criterion has led
to select the wrong model (i.e., for example, if it has led to select the perturbed gamma
process on a dataset that had been generated under the perturbed inverse Gaussian pro-
cess).
All the estimates have been used to compute the risk of incurring in a misspecification
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and to evaluate its effect on the ML estimates of the mean remaining useful life. Finally,
for the sake of comparison, the same study has also been repeated in the absence of mea-
surement errors (that is, by considering as competing models a gamma process and an
inverse Gaussian process).

Obtained results demonstrate that, when the error term is modeled by adopting op-
tion 1) (i.e., by using the 3-parameter inverse gamma distribution) the risk of incurring
in a misspecification (as expected) is significantly influenced by the value of the shape
parameter of the degradation increment of the hidden process (be it gamma or inverse
Gaussian) defined between successive measurement times. Furthermore, and more specifi-
cally, it also seems that the risk of misspecifying a PGP with a PIGP depends on the setup
more than the risk of misspecifying a PIGP with a PGP. In fact, while the PGP often
allows to fit PIGP data in an acceptable manner independently of the setup, the PIGP
more rarely allows to adequately fit PGP data generated under the setups A and B (i.e.,
cases where the increments of the hidden process between successive inspection epochs
are gamma distributed with shape parameter smaller than or equal to 1). The results
obtained by modeling the error term according to option 2) (i.e., by using a Gaussian
distribution) indicate that the shape of the error term does not significantly influence the
risk of misspecifying a PGP with a PIGP. Contrarily, it seems that modeling the error
term according to option 2) increases the risk of misspecifying a PIGP with a PGP and
reduces the sensitivity of the mentioned risk on the setup.
Finally, the results obtained by setting ν = 0 indicate that also this modeling option does
not significantly affect the risk of misspecifying a PGP with a PIGP. Yet, it also seems
that, when ν = 0 the mentioned risk depends on the setup less than when ν = 1, espe-
cially when the error term is modeled by using option 2). The same effect is also observed
when the true model is the PIGP. However, in this case, it also seems that when ν = 0
the risk of misspecifiying the PIGP with a PGP is higher than when ν = 1.

Obtained results also clearly show that the presence of measurement errors significantly
increases the risk of selecting the wrong model. Obviously, this result was expected, since
perturbed data do not allow to directly check whether the selected model is actually able
to adequately fit the real (hidden) degradation process, being only useful to check the
ability of the perturbed model to fit the perturbed measurements.
With respect to the consequences produced by a misspecification, obtained results show
that the maximum likelihood estimators of the (perturbed measurement-based) remaining
useful life constructed under the competing perturbed processes, irrespectively of the

96



4.3. Conclusions

model used to describe the error term, have very similar performances, regardless of
whether a misspecification has occurred.
Moreover, the comparison of the results obtained in the presence of measurement errors
with those obtained in its absence shows that if on one side the presence of measurement
errors negatively affects the performances of the maximum likelihood estimator of the
mean remaining useful life constructed under the right perturbed model, it also mitigates
(with respect to the case where measurement errors are absent) the consequences of using
the wrong model, especially when the true hidden process is the gamma. However, the
results obtained in the absence of measurement errors also show that, when the true
model is the gamma, even in experimental situations where the consequences of the use
of the wrong model could be extremely severe, adopting an appropriate model selection
procedure (such as the Akaike information criterion), allows to hugely mitigate the effect
of a misspecification.

Finally, it is worth remarking that the analysis performed in this chapter, while being
thorough and in-depth, is limited in its scope by only being focused on the consequences
of a misspecification in terms of the remaining useful life. Indeed, in practical applica-
tions, it could also be interesting to assess the effects of a potential misspecification on
maintenance costs. To this aim, in the next chapter (specifically, in Chapter 5.5), a second
misspecification study, focused on its impact on maintenance costs, will be presented.
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RMSEM,d

True process Setup M d wM = 7.5 wM = 9 wM = 12

PGP

A

PGP m 1.67 2.34 3.99
PIGP m 1.53 2.13 3.60
PGP m 1.89 2.64 4.44
PIGP m 1.94 2.69 4.46
PGP t 1.74 2.44 4.14
PIGP t 1.67 2.32 3.89

B

PGP m 1.38 1.92 3.21
PIGP m 1.32 1.84 3.09
PGP m 1.37 1.91 3.20
PIGP m 1.33 1.85 3.07
PGP t 1.38 1.92 3.20
PIGP t 1.32 1.84 3.08

C

PGP m 0.76 1.09 1.89
PIGP m 0.74 1.07 1.85
PGP m 0.78 1.12 1.92
PIGP m 0.78 1.11 1.91
PGP t 0.77 1.10 1.90
PIGP t 0.76 1.09 1.88

PIGP

A

PGP m 1.56 2.20 3.72
PIGP m 1.52 2.14 3.60
PGP m 1.54 2.17 3.64
PIGP m 1.38 1.91 3.14
PGP t 1.56 2.19 3.70
PIGP t 1.49 2.08 3.49

B

PGP m 1.26 1.77 2.98
PIGP m 1.21 1.69 2.83
PGP m 1.29 1.84 3.15
PIGP m 1.20 1.69 2.87
PGP t 1.27 1.79 3.03
PIGP t 1.21 1.69 2.84

C

PGP m 0.74 1.04 1.77
PIGP m 0.73 1.02 1.74
PGP m 0.77 1.10 1.90
PIGP m 0.75 1.06 1.83
PGP t 0.75 1.06 1.81
PIGP t 0.73 1.04 1.77

Table 4.8 – RMSEM,d of the ML estimators of MRUL(6) when the error term is modeled
by using option 1).



RMSEM,d

True process Setup M d wM = 7.5 wM = 9 wM = 12

GP

A

PGP m 1.24 1.79 3.08
PIGP m 4.01 · 1011 1.70 · 1012 1.70 · 1013

PGP m 0.94 1.36 2.34
PIGP m 2.03 2.75 4.38
PGP t 1.23 1.76 3.04
PIGP t 3.90 · 1011 1.66 · 1012 1.62 · 1013

B

PGP m 0.96 1.41 2.47
PIGP m 2.92 · 1014 2.10 · 1015 3.79 · 1016

PGP m 0.75 1.09 1.90
PIGP m 1.22 1.73 2.92
PGP t 0.94 1.39 2.43
PIGP t 2.77 · 1014 1.99 · 1015 3.60 · 1016

C

PGP m 0.51 0.81 1.53
PIGP m 1.63 2.54 4.98
PGP m 0.50 0.80 1.50
PIGP m 0.60 0.93 1.73
PGP t 0.51 0.81 1.53
PIGP t 1.46 2.28 4.45

IGP

A

PGP m 0.96 1.47 2.67
PIGP m 1.07 1.61 2.89
PGP m 0.81 1.21 2.12
PIGP m 0.85 1.25 2.17
PGP t 0.83 1.23 2.16
PIGP t 0.87 1.28 2.24

B

PGP m 0.71 1.12 2.08
PIGP m 0.73 1.13 2.08
PGP m 0.70 1.06 1.91
PIGP m 1.73 1.09 1.95
PGP t 0.70 1.07 1.93
PIGP t 0.73 1.10 1.96

C

PGP m 0.37 0.62 1.20
PIGP m 0.38 0.63 1.22
PGP m 0.43 0.69 1.32
PIGP m 0.43 0.69 1.30
PGP t 0.42 0.68 1.30
PIGP t 0.42 0.68 1.29

Table 4.9 – RMSEM,d of the ML estimators of MRUL(6) in the absence of measurement
error.



RMSEM,d

True process Setup M d wM = 7.5 wM = 9 wM = 12

PGP

A

PGP m 1.73 2.44 4.15
PIGP m 1.70 2.36 3.94
PGP m 2.04 2.85 4.81
PIGP m 2.02 2.79 4.64
PGP t 1.83 2.57 4.37
PIGP t 1.80 2.50 4.17

B

PGP m 1.33 1.85 3.12
PIGP m 1.29 1.80 3.02
PGP m 1.50 2.14 3.67
PIGP m 1.51 2.14 3.68
PGP t 1.39 1.96 3.33
PIGP t 1.37 1.93 3.28

C

PGP m 0.76 1.08 1.86
PIGP m 0.75 1.08 1.85
PGP m 0.75 1.06 1.82
PIGP m 0.75 1.07 1.84
PGP t 0.75 1.07 1.84
PIGP t 0.75 1.07 1.84

PIGP

A

PGP m 1.59 2.21 3.70
PIGP m 1.49 2.07 3.45
PGP m 1.51 2.14 3.69
PIGP m 1.46 2.05 3.50
PGP t 1.56 2.18 3.70
PIGP t 1.48 2.06 3.46

B

PGP m 1.27 1.78 2.99
PIGP m 1.18 1.64 2.74
PGP m 1.32 1.88 3.26
PIGP m 1.26 1.78 3.03
PGP t 1.29 1.82 3.08
PIGP t 1.21 1.69 2.84

C

PGP m 0.76 1.08 1.86
PIGP m 0.73 1.04 1.79
PGP m 0.77 1.10 1.92
PIGP m 0.74 1.06 1.83
PGP t 0.76 1.09 1.88
PIGP t 0.74 1.05 1.80

Table 4.10 – RMSEM,d of the ML estimators of MRUL(6) when the error term is modeled
by using option 2).



RMSEM,d

True process Setup M d wM = 7.5 wM = 9 wM = 12

PGP

A

PGP m 1.42 1.97 3.29
PIGP m 1.28 1.77 2.93
PGP m 1.64 2.31 3.95
PIGP m 1.71 2.42 4.17
PGP t 1.50 2.09 3.53
PIGP t 1.45 2.02 3.41

B

PGP m 1.27 1.80 3.07
PIGP m 1.16 1.64 2.81
PGP m 1.34 1.88 3.16
PIGP m 1.21 1.68 2.81
PGP t 1.30 1.83 3.10
PIGP t 1.18 1.66 2.81

C

PGP m 0.73 1.07 1.92
PIGP m 0.72 1.05 1.89
PGP m 0.74 1.07 1.89
PIGP m 0.73 1.07 1.88
PGP t 0.73 1.07 1.90
PIGP t 0.72 1.06 1.89

PIGP

A

PGP m 1.36 1.90 3.21
PIGP m 1.25 1.74 2.91
PGP m 1.83 2.64 4.61
PIGP m 1.61 2.31 3.99
PGP t 1.50 2.13 3.65
PIGP t 1.36 1.91 3.24

B

PGP m 1.11 1.56 2.66
PIGP m 1.04 1.45 2.46
PGP m 1.40 2.04 3.64
PIGP m 1.24 1.79 3.13
PGP t 1.20 1.71 2.97
PIGP t 1.10 1.56 2.67

C

PGP m 0.66 0.96 1.70
PIGP m 0.63 0.92 1.62
PGP m 0.72 1.07 1.94
PIGP m 0.69 1.02 1.82
PGP t 0.68 1.00 1.78
PIGP t 0.65 0.95 1.69

Table 4.11 – RMSEM,d of the ML estimators of MRUL(6) when the error term is modeled
by using option 1) with ν = 0.



RMSEM,d

Setup M d wM = 7.5 wM = 9 wM = 12

PGP

A

PGP m 1.76 2.48 4.23
PIGP m 1.77 2.46 4.14
PGP m 2.03 2.95 5.27
PIGP m 2.13 3.08 5.49
PGP t 1.87 2.67 4.65
PIGP t 1.91 2.71 4.70

B

PGP m 1.36 1.93 3.29
PIGP m 1.31 1.84 3.12
PGP m 1.39 1.99 3.49
PIGP m 1.38 1.98 3.46
PGP t 1.37 1.95 3.36
PIGP t 1.33 1.90 3.25

C

PGP m 0.71 1.03 1.82
PIGP m 0.69 1.02 1.79
PGP m 0.65 0.95 1.70
PIGP m 0.64 1.94 1.69
PGP t 0.68 1.00 1.77
PIGP t 0.67 0.98 1.75

PIGP

A

PGP m 1.59 2.24 3.85
PIGP m 1.47 2.08 3.55
PGP m 1.61 2.31 4.07
PIGP m 1.54 2.21 3.86
PGP t 1.59 2.27 3.94
PIGP t 1.50 2.13 3.67

B

PGP m 1.21 1.71 2.94
PIGP m 1.13 1.60 2.73
PGP m 1.33 1.92 3.39
PIGP m 1.26 1.82 3.20
PGP t 1.26 1.80 3.13
PIGP t 1.19 1.69 2.93

C

PGP m 0.68 0.99 1.79
PIGP m 0.66 0.96 1.73
PGP m 0.71 1.05 1.87
PIGP m 0.68 1.00 1.79
PGP t 0.69 1.02 1.82
PIGP t 0.67 0.98 1.75

Table 4.12 – RMSEM,d of the ML estimators of MRUL(6) when the error term is modeled
by using option 2) with ν = 0.



Chapter 5

PROPOSITION OF NEW MAINTENANCE

POLICIES IN THE PRESENCE OF RANDOM

EFFECT AND MEASUREMENT ERROR

5.1 Introduction

Maintenance activities for degrading units are typically scheduled by using either age-
based or condition-based strategies (e.g., see Ahmad and Kamaruddin (2012) and Alaswad
and Xiang (2017)). These approaches have typically the goal of optimizing some kind of
objective function, such as the long-run average maintenance cost rate (H. Wang, Pham,
et al. (2006), I. B. Gertsbakh (2000), Finkelstein, Shafiee, and Kotchap (2016), and Cha,
Finkelstein, and Levitin (2017)).

Condition-based maintenance (CBM) strategies generally offer benefits over age-
based maintenance (ABM) approaches, leading to reduced occurrence of failures and
extended utilization of units throughout their operational lifespan. Jonge, R. Teunter,
and Tinga (2017) provides an extensive discussion of the comparison between CBM and
ABM.

In this chapter, attention is focused on cases where the degradation phenomenon un-
der analysis can be modeled by a gamma process-based model. The performances of CBM
approaches applied to gamma deteriorating units has been extensively investigated in the
literature (reviews can be found in Van Noortwijk (2009) and Alaswad and Xiang (2017)).
A potential limitation of several strategies proposed in the literature (e.g., see Grall,
Bérenguer, and Dieulle (2002), Castanier, Bérenguer, and Grall (2003), Castanier, Grall,
and Bérenguer (2005), Fouladirad and Grall (2011), Huynh, Barros, et al. (2011), Cholette
et al. (2019)) is that it is usually assumed that inspections provide an exact measurement
of the degradation level. However, especially when the degradation level is measured via
in-service, non-destructive inspection methods (Lu, Pandey, and W.-C. Xie (2013)), the
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measurements are often contaminated by random errors that can undermine the perfor-
mances of CBM approaches. An example of a simple CBM policy for gamma deteriorating
units that takes into account the presence of measurement error can be found in Kallen
and Van Noortwijk (2005). More recently, some authors (Nguyen et al. (2019)) proposed
an approach where the quality of the inspection procedure itself is a design parameter
of the maintenance model. Similarly, S. Hao, J. Yang, and Bérenguer (2020) proposed a
gamma process-based CBM policy where a perfect and an imperfect inspection procedures
can be used in a combined manner.

An additional possible drawback found in numerous current CBM policies is their
implicit connection between preventive replacements and inspection intervals. In fact,
CBM policies often assume that such replacements are exclusively carried out during
scheduled inspection epochs (see Y. Wang and Pham (2013) and Huynh, Grall, and
Bérenguer (2019)). Nonetheless, considering the potentially hefty costs associated with
inspections, it can be reasonable to presume that maintenance strategies enabling the
avoidance of numerous inspections, especially when they are expected to give rise to fore-
gone decisions, could yield economic benefits (e.g., see Fauriat and Zio (2020), Yuan,
Higo, and Pandey (2021), and S. Kim, Choi, and N. H. Kim (2022)). Based on this gen-
eral idea, Huynh, Grall, and Bérenguer (2019) introduced a novel maintenance strategy
that separates decisions and scheduling for repairs/replacements and inspections, demon-
strating its potential advantages in terms of long-term average maintenance cost rate.
The degradation phenomenon, as described in their study, employs a standard homoge-
neous gamma process, which may pose limitations in practical applications. It is worth
noting that this idea has been explored both before and after the work of Huynh, Grall,
and Bérenguer (2019). Indeed, Crowder and Lawless (2007) had previously developed a
maintenance scheme that utilizes degradation measurements to determine whether an
immediate replacement is necessary or if scheduling a future replacement time is more
suitable. Their work also discusses, for illustrative purposes, a scenario involving a single
inspection in detail. Nonetheless, they also contemplate the option of enhancing the policy
by incorporating a second inspection at the planned replacement time instead of opting
for an automatic replacement. More recently, this general idea has also been exploited
by Finkelstein, Cha, and Levitin (2020), Cha, Finkelstein, and Levitin (2022), and Cha,
Finkelstein, and Levitin (2021), who proposed policies built on the stronger assumption
that only one inspection is allowed over a maintenance cycle (i.e., between two consec-
utive repairs/replacements) and that the future replacement time is a design parameter
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whose value is defined a priori, regardless of the measured degradation level. This partic-
ular maintenance approach is highly applicable to assets where continuous degradation
monitoring is unfeasible. Examples include buried pipelines within the oil and gas sector,
reformer tubes in ammonia plants, and drilling rigs (e.g., see Alaswad and Xiang (2017)).
These assets necessitate costly and specialized inspections that often disrupt operations
or require plant shutdowns for assessment.

With respect to the degradation modeling approaches, Crowder and Lawless (2007)
adopt the gamma process with random effect firstly presented in Lawless and Crow-
der (2004). In Finkelstein, Cha, and Levitin (2020) the degradation process is modeled
by using a non-homogeneous gamma process. In Cha, Finkelstein, and Levitin (2021) it
is described by using a transformed gamma process (Giorgio, Guida, and Pulcini (2015)),
whereas in Cha, Finkelstein, and Levitin (2022) it is considered the case of a mixed pop-
ulation composed of two different (i.e., strong and weak) gamma degrading items.

The main goal of this chapter is to illustrate three novel maintenance policies based
on the driving ideas highlighted in this discussion, in Chapters 5.2, 5.3, and 5.4. Inspired
by Finkelstein, Cha, and Levitin (2020), Cha, Finkelstein, and Levitin (2021), and Cha,
Finkelstein, and Levitin (2022), all three policies are built on the assumption that only
one inspection, performed at a predetermined time, is allowed during the life cycle of the
unit. The outcome of this inspection will then inform subsequent decision-making.
Another common element between the three proposed policies, which also constitutes
the main novelty with respect to Finkelstein, Cha, and Levitin (2020), Cha, Finkelstein,
and Levitin (2021), and Cha, Finkelstein, and Levitin (2022), is that they assume that
the degrading units under study are subjected to the joint presence of three forms of
variability: temporal variability, unit-to-unit variability (random effect), and measurement
error (see also Chapter 3.1). Indeed, a heterogeneous population of degrading units where
the observed degradation process can be described by the perturbed process with random
effect introduced in Chapter 2.4 and thoroughly discussed in Chapter 3 is considered.
Maintenance activities refer to a generic unit randomly selected from this population.

Yet another common element, which also differentiates the three proposed policies from
the aforementioned literature works, is that failures are assumed to be not self-announcing
(see Chapter 1.2.1 and Chapter 2.6 for a detailed description of a not self-announcing
failure behavior). Consequently, it is also assumed that failed units may continue operating
past their failure point. The time elapsing between the failure of a unit and its eventual
replacement is denoted as downtime, and additional costs due to reduced performance are
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incurred during this time.
Lastly, for the sake of readability, some more assumptions, common across all three policies
(and in the literature) are laid out here:

— inspections are instantaneous and non-destructive;

— any replacement (i.e., both corrective and preventive) restore the unit to an "as good
as new" state. Consequently, the time between two successive replacements defines
the cycle of a renewal process;

— the performance criterion adopted to optimize a policy is the long-run average
maintenance cost rate, computed by adopting the renewal-reward theorem (e.g.,
see Ross (1983)).

The core concept of these policies involves utilizing information gathered during the in-
spection to promptly detect and replace units that have already failed or are on the verge
of failure. Meanwhile, units with degradation levels comfortably below the failure thresh-
old will have their replacement deferred to a later time. It is rational to believe that,
particularly in scenarios where random effects is present, the inspection can differenti-
ate between weak (i.e., units whose degradation progresses faster) and strong (i.e., units
whose degradation progresses slower) units (see also Cha, Finkelstein, and Levitin (2022))
and schedule replacements accordingly.
Moreover, as remarked in Chapter 2.4, given that the adopted gamma process with ran-
dom effect is an age and state dependent process, the probability that a failure occurs
in a future time interval directly depends on the failure threshold, on the current degra-
dation level of the unit, and on its current age. This feature also differentiates the con-
sidered scenario from the case of other failure threshold models built by using the ba-
sic homogeneous gamma process (e.g., Grall, Bérenguer, and Dieulle (2002), Castanier,
Bérenguer, and Grall (2003), Castanier, Grall, and Bérenguer (2005), and Huynh, Grall,
and Bérenguer (2019)), where the same probability only depends on the gap existing be-
tween the current degradation level of the unit and the failure threshold.
Therefore, the proposed approaches have the potential to outperform traditional condition-
based and age-based policies by achieving a globally more advantageous trade-off among
the costs of inspections, corrective replacements, and preventive replacements.

In addition to the three aforementioned policies, in Chapter 5.5 the results of a mis-
specification study focused on its impacts on maintenance costs computed under one of
the proposed policies.
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5.2 A hybrid maintenance policy for a deteriorating
unit in the presence of random effect and mea-
surement error

5.2.1 Description of the policy

This policy (see also Esposito, Mele, et al. (2021a)) consists in performing a single
inspection at a predetermined time τ aimed at measuring the perturbed degradation level
of the unit, and in adopting a condition-based rule to decide whether to immediately
replace the unit or to delay its replacement of another predetermined interval of length
∆τ . In case of postponement, no further inspection will be carried out at time τ +∆τ and
the unit will be replaced no matter its state. Moreover, a second scenario, where a perfect
measurement instead of the perturbed one is carried out, is also considered. Table 5.1
summarizes the condition-based rule adopted in the first scenario, where zt denotes the
observed value of the perturbed degradation level Z(τ) measured at the inspection time
τ and LZ is a maintenance threshold level. Table 5.2, where wτ denotes the value of the
measured degradation level W (τ) and LW is a maintenance threshold level, reports the
same rule in the second scenario. Tables 5.3 and 5.4 summarize all possible experimental

Measurement at τ Decision
zτ > LZ Replacement at τ
zτ ≤ LZ Replacement at τ + ∆τ

Table 5.1 – Condition-based rule in the presence of measurement error.

Measurement at τ Decision
wτ > LW Replacement at τ
zτ ≤ LW Replacement at τ + ∆τ

Table 5.2 – Condition-based rule in the absence of measurement error.

scenarios and, for each one of them, report the maintenance actions to be taken and
the corresponding length of a maintenance cycle, in the presence and in the absence of
measurement error, respectively. In Tables 5.3 and 5.4 wτ+∆τ denotes the true value of the
degradation level W (τ + ∆τ) at time τ + ∆τ , wM is the failure threshold, and the length
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of the maintenance cycle is denoted as 1T (zτ , wτ ) (when measurement error is present)
and 2T (wτ ) (when it is not).

The vectors ξZ = {LZ , τ,∆τ} and ξW = {LW , τ,∆τ} represent the design parameters
in the case with and without measurement error, respectively. It is worth to remark that

1T (zτ , wτ ) (2T (wτ )) functionally depends on the design parameter vector ξZ (ξW ), despite
the adopted notation not highlighting it.

Experimental
scenario

Maintenance
action

Cycle length
1T (zτ , wτ )

zτ > LZ and wτ ≤ wM
Preventive

replacement at τ τ

zτ > LZ and wτ > wM
Corrective

replacement at τ τ

zτ ≤ LZ and wτ+∆τ ≤ wM
Preventive

replacement at τ + ∆τ τ + ∆τ

zτ ≤ LZ , wτ ≤ wM ,
and wτ+∆τ ≤ wM

Corrective
replacement at τ + ∆τ τ + ∆τ

zτ ≤ LZ , wτ > wM ,
and wτ+∆τ > wM

Corrective
replacement at τ + ∆τ τ + ∆τ

Table 5.3 – Possible scenarios and corresponding maintenance actions and cycle lengths
in the presence of measurement error.

5.2.2 The cost model

Maintenance costs are determined by assuming that the cost of a corrective replace-
ment is cc, the cost of a preventive replacement is cp, the cost of an inspection is ci,
and the logistic cost (which is incurred each time a maintenance action, be it a repair
or an inspection, is taken) is cl. Moreover, a downtime cost is considered, computed as
the product of a fixed cost rate cd and the time spent in a failed state (i.e., the time
elapsing between the possible failure of the unit and its (corrective) replacement). This
cost accounts for the loss of utility (i.e, reduced performances and/or loss of production)
resulting from operating the unit in a failed state.

Table 5.5 reports the maintenance cost 1C(zτ , wτ , X) associated to each maintenance
action described in Table 5.3, whereas Table 5.6 reports the maintenance cost 2C(wτ , X)
associated to the actions described in Table 5.4. In both tables, X denotes the lifetime
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Experimental
scenario

Maintenance
action

Cycle length
2T (wτ )

LW < wτ ≤ wM
Preventive

replacement at τ τ

wτ ≤ wM
Corrective

replacement at τ τ

wτ ≤ LW and wτ+∆τ ≤ wM
Preventive

replacement at τ + ∆τ τ + ∆τ

wτ ≤ LW and wτ+∆τ ≤ wM
Corrective

replacement at τ + ∆τ τ + ∆τ

Table 5.4 – Possible scenarios and corresponding maintenance actions and cycle lengths
in the absence of measurement error.

of the unit. Coherently with the assumption of not self-announcing failures, X is always
denoted with the capital letter (even when zτ of wτ are known), to remark that, even in
these special cases, the lifetime of the unit should be regarded as a random variable. Note
that, as 1T (zτ , wτ ) and 2T (wτ ), the cost functions 1C(zτ , wτ , X) and 2C(wτ , X) function-
ally depend on the vectors of design parameters ξZ and ξW . Yet again for simplicity, the
adopted notation does not explicitly indicate this dependency.

Experimental
scenario

Maintenance cost
1C(zτ , wτ , X)

zτ > LZ and wτ ≤ wM cl + ci + cp

zτ > LZ and wτ > wM cl + ci + cc + cd · (τ −X)
zτ ≤ LZ and wτ+∆τ ≤ wM 2 · cl + ci + cp

zτ ≤ LZ , wτ ≤ wM ,
and wτ+∆τ > wM

2 · cl + ci + cc + cd · (τ + ∆τ −X)

zτ ≤ LZ , wτ > wM ,
and wτ+∆τ > wM

2 · cl + ci + cc + cd · (τ + ∆τ −X)

Table 5.5 – Possible scenarios and corresponding maintenance cost in the presence of
measurement error.
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Experimental
scenario

Maintenance cost
2C(wτ , X)

LW < wτ ≤ wM cl + ci + cp

wτ > wM cl + ci + cc + cd · (τ −X)
wτ ≤ LW and wτ+∆τ ≤ wM 2 · cl + ci + cp

wτ ≤ LW and wτ+∆τ > wM 2 · cl + ci + cc + cd · (τ + ∆τ −X)

Table 5.6 – Possible scenarios and corresponding maintenance cost in the absence of
measurement error.

5.2.3 Formulation of the long-run average maintenance cost rate

In the presence of measurement error the long-run average maintenance cost rate
1C∞(ξZ) can be formulated as:

1C∞(ξZ) = E {1C(Z(τ),W (τ), X)}
E {1T (Z(τ),W (τ))} , (5.1)

where expectations have to be taken with respect to all the variables that are within
the square brackets. Note that, in this case, the adopted notation explicitly shows that
the long-run average maintenance cost rate depends on the design parameters vector.
Similarly, in the absence of measurement error the long-run average maintenance cost
rate 2C∞(ξW ) can be expressed as:

2C∞(ξW ) = E {2C(W (τ), X)}
E {2T (W (τ))} . (5.2)

The expected values in Eqs. (5.1) and (5.2) cannot be expressed in closed form. However,
they can be numerically computed via Eqs. (5.3)-(5.6). Deriving these formulas is rather
cumbersome, despite being conceptually simple. More details about their derivation can
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be found in Appendix A.

E{1C(Z(τ),W (τ), X)} = cl + ci + cp + [(cc − cp) + cd · τ ] · [1 − FW (τ)(wM)]

+ (cl + cd · ∆τ) ·
∫ ∞

0
FZ(τ)|W (τ)(LZ |wτ ) · fW (τ)(wτ ) · dwτ

+ (cc − cp) ·
∫ wM

0
[1 − F∆W (τ,τ+∆τ)|W (τ)(wM − wτ |wτ )]

× FZ(τ)|W (τ)(LZ |wτ ) · fW (τ)(wτ ) · dwτ

− cd ·
∫ ∞

wM

∫ τ

0
FW (x)|W (τ)(wM |wτ ) · fW (τ)(wτ ) · dx · dwτ

− cd ·
∫ wM

0

∫ τ+∆τ

τ
F∆W (τ,x)|W (τ)(wM − wτ |wτ ) · FZ(τ)|W (τ)(LZ |wτ ) · fW (τ)(wτ ) · dx · dwτ

(5.3)

E{1T (Z(τ),W (τ))} = τ + ∆τ ·
∫ ∞

0
FZ(τ)|W (τ)(LZ |wτ ) · fW (τ)(wτ ) · dwτ (5.4)

E{2C(W (τ), X)} = cl + ci + cp + (cl + cd · ∆τ) · FW (τ)(LW )

+ (cc − cp) ·
∫ LW

0

[
1 − F∆W (τ,τ+∆τ)|W (τ)(wM − wτ |wτ )

]
· fW (τ)(wτ ) · dwτ

+ [(cc − cp) + cd · τ ] · [1 − FW (τ)(wM)]

− cd ·
∫ ∞

wM

∫ τ

0
FW (x)|W (τ)(wM |wτ ) · fW (τ)(wτ ) · dx · dwτ

− cd ·
∫ LW

0

∫ τ+∆τ

τ
F∆W (τ,x)|W (τ)(wM − wτ |wτ ) · fW (τ)(wτ ) · dx · dwτ

(5.5)

E{2T (W (τ))} = τ + ∆τ · FW (τ)(LW ) (5.6)

where the expressions of the pdfs and cdfs included in these formulas are the ones given
in Chapter 2.4.

5.2.4 Sensitivity analysis and comparison

This section provides the results of a small sensitivity analysis and a (simple) demon-
strative example that shows how to select the best maintenance strategy when it is possi-
ble to choose between different (possibly imperfect) measurement procedures. Just to fix
the ideas, we have considered an hypothetical application of the proposed approach to a
pipeline subjected to corrosion. The unitary costs cl, ci, cp, and cc (expressed in mone-
tary units) and the downtime cost rate cd (expressed in monetary units/year) have been
set as in Table 5.7, by using as rough reference the values provided in Dey (2004). The
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values of the parameters used to calibrate the degradation process are given in Table 5.8.
The considered settings have been loosely inspired by those given in Mahmoodian and
Alani (2014) and Ellingwood and Mori (1993). Specifically, in this example, we assume
that the shape parameter of the age function of the gamma process is equal to 1, a value
that has been found appropriate for modeling the effect of corrosion. Nonetheless, based
on Ellingwood and Mori (1993), other values of the parameter b can be possibly used to
simulate degradation phenomena of different kinds (e.g., diffusion-controlled aging, rein-
forcement corrosion, etc.).
The pipelines are assumed to fail when their degradation level exceeds the threshold limit
wM = 35 mm. The optimal values L∗

Z , τ ∗, and ∆τ ∗ of the design parameters and the

cl ci cp cc cd

0.2 0.5 1 6 0.2

Table 5.7 – Parameters of the cost model.

a [years] b c [mm] d φ [mm−1] ν

5.88 1 2 4.7 1 1

Table 5.8 – Values used to calibrate the degradation process.

corresponding (minimum) long-run average maintenance cost rate 1C∞(ξ∗) determined by
using the proposed maintenance policy, in the presence of measurement error, are given
in Table 5.9. These values have been obtained by using Eqs. (5.1), (5.3), and (5.4).
Figure 5.1 shows the behavior of the long-run average maintenance cost rate 1C∞(ξ∗)

1C∞(ξ∗) τ ∗ ∆τ ∗ L∗
Z

0.0092 134 190 10.8

Table 5.9 – Optimal values of the design parameters and corresponding (minimum) long-
run average maintenance cost rate under the setup defined in Tables 5.7 and 5.8.

in the proximity of the optimum. The figure confirms that the vector ξ∗, whose values
are reported in Table 5.9, constitutes a minimum for 1C∞(ξ∗). Figure 5.2 displays the
percent contribution of corrective and downtime costs to the (minimim) long-run average
maintenance cost rate as a function of unitary corrective (cc) and preventive (cp) costs. As
cc and cp vary, the other parameters have been kept to the values given in Tables 5.7 and
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Figure 5.1 – Behavior of the long-run average maintenance cost rate as a function of τ
(panel A), ∆τ (panel B), and LZ (panel C), given the optimal values of the other decision
variables.

5.8. Results obtained in the absence of measurement error are qualitatevely analogous to
those reported in Table 5.9, Figure 5.1, and Figure 5.2, with obvious difference in the op-
timal values of design parameters ξ∗

Z = {τ ∗,∆τ ∗, L∗
W }, and long-run average maintenance

cost rate 2C∞(ξ∗
W ), that can be determined by using Eqs. (5.2), (5.5), and (5.6).

In fact, Figure 5.3 reports and compares the behavior of the (minimum) long-run av-
erage maintenance cost rate as a function of the inspection cost ci in the presence (solid
line) and in the absence (dashed line) of measurement error. For the sake of simplicity,
the curves depicted in Figure 5.3 have been obtained by assuming that while ci changes
the other parameters of the model are kept to the values given in Tables 5.7 and 5.8.
As expected, the figure shows that (under the considered setup) the presence of measure-
ment error increases the long-run average maintenance cost rate. Moreover, for example,
the same figure shows that under the considered setting, if (as assumed in Table 5.7) the
cost of the imperfect inspection is 0.5, resorting to a perfect measurement procedure (if
this option exists) is convenient only if the corresponding inspection cost is smaller than
0.76.
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Figure 5.2 – Percent contribution of corrective and downtime costs to the long-run average
maintenance cost rate as a function of cc and cp.

5.3 An adaptive hybrid maintenance policy for a
gamma deteriorating unit in the presence of ran-
dom effect

5.3.1 Description of the policy

We here suggest a new adaptive maintenance policy that generalizes the one proposed
in Chapter 5.2, by allowing for the use of unit-specific condition-based replacement times
(see also Esposito, Castanier, and Giorgio (2022b)). Indeed, here the future replacement
time is defined by using a multilevel control limit decision rule that shares some features
of the one adopted in Grall, Bérenguer, and Dieulle (2002).

Also in this case the policy is developed considering that a single inspection at a pre-
determined time τ is performed, and based on the outcome of this inspection a condition-
based rule is adopted to decide whether to immediately replace the unit or to postpone its
replacement to a later time τ+∆τ. Yet, differently than in Chapter 5.2, here the length of
the interval ∆τ will be determined based on the measured value of the degradation level at
τ . Moreover, here we focus our attention only on the simplified case where measurement
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Figure 5.3 – Percent contribution of corrective and downtime costs to the long-run average
maintenance cost rate as a function of cc and cp.

error is absent, although the proposed strategy can be adapted to also handle measure-
ment error without excessive additional difficulties. Anyhow, the degradation process of
the unit is still assumed to be modeled by the gamma process presented in Chapter 2.4,
but neglecting the presence of measurement error (it is worth remarking that, in this case,
this model reduces to the one firstly proposed by Lawless and Crowder (2004)).

Table 5.10 summarizes the adaptive condition-based rule, where
L1 < L2 < · · · < Lk ≤ wM and ∆τ1 > ∆τ2 > · · · > ∆τk.

Measurement at τ Decision
wτ > Lk Immediate replacement at τ

Lk−1 < wτ ≤ Lk Postpone replacement to τ + ∆τk

... ...
L1 < wτ ≤ L2 Postpone replacement to τ + ∆τ2

wτ ≤ L1 Postpone replacement to τ + ∆τ1

Table 5.10 – Condition-based rule in the presence of measurement error.

The variables τ , L1 < L2 < · · · < Lk and ∆τ1 > ∆τ2 > · · · > ∆τk
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are treated as design parameters, and the set of design parameters is denoted by
ξ = {τ, L1, . . . , Lk,∆τ1, . . . ,∆τk}. The performance of the policy improves as k increases.
On the other side, also the computational burden increases with k. To define the value of
k, the minimization procedure is repeated by using increasing values of k, up to keep a
satisfactory compromise between simplicity and effectiveness.

The optimal maintenance policy is defined as the one that (given the selected value of
k) minimizes the long-run average maintenance cost rate, computed by using the renewal
reward theorem. Note that this policy generalizes the one proposed in Chapter 5.2, which
is obtained as a special case of this when k = 1. Table 5.11, where wτ+∆τj

denotes the state

Experimental
scenario

Maintenance
action

Cycle length
T (wτ )

Lk < wτ ≤ wM
Preventive

replacement at τ τ

wτ > wM
Corrective

replacement at τ τ

Lk−1 < wτ ≤ Lk

and wτ+∆τk
≤ wM

Preventive
replacement at τ + ∆τk

τ + ∆τk

Lk−1 < wτ ≤ Lk

and wτ+∆τk
> wM

Corrective
replacement at τ + ∆τk

τ + ∆τk

... ... ...
wτ ≤ L1

and wτ+∆τ1 ≤ wM

Preventive
replacement at τ + ∆τ1

τ + ∆τ1

wτ ≤ Lk

and wτ+∆τ1 > wM

Corrective
replacement at τ + ∆τ1

τ + ∆τ1

Table 5.11 – Possible scenarios and corresponding maintenance actions and cycle lengths.

at τ + ∆τj and wM is the failure threshold, lists all the different experimental scenarios
and reports for each one of them the maintenance action to be taken and the length of the
maintenance cycle T (wτ ). Note that T (wτ ), despite the adopted notation not highlighting
it, depends on ξ.

Table 5.12 reports the maintenance cost C(wτ , X) for each possible scenario, as a
function of the measured degradation level wτ and of the unit lifetime X. In this table
the cost factors are denoted by using the same notation as in Chapter 5.2.

Note that, due to the assumption of not self-announcing failure, X cannot be directly
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Experimental
scenario

Maintenance cost
C(wτ , X)

Lk < wτ ≤ wM cl + ci + cp

wτ > wM cl + ci + cc + cd · (τ −X)
Lk−1 < wτ ≤ Lk

and wτ+∆τk
≤ wM

2 · cl + ci + cp

Lk−1 < wτ ≤ Lk

and wτ+∆τk
> wM

2 · cl + ci + cc + cd · (τ + ∆τk −X)

... ...
wτ ≤ L1 and
wτ+∆τ1 ≤ wM

2 · cl + ci + cp

wτ ≤ L1 and
wτ+∆τ1 > wM

2 · cl + cc + cc + cd · (τ + ∆τ1 −X)

Table 5.12 – Possible scenarios and corresponding maintenance costs.

observed. Hence, in the cost function, it should be intended as a random variable even
conditional to W (τ) = wτ (i.e., the state of the unit at the inspection time). To remark
this aspect, the lifetime is denoted by using the capital letter. It is also worth to note that,
as T (wτ ), the cost function C(wτ , X) also depends on ξ, although the adopted notation
does not explicitly indicate this dependency.

5.3.2 Formulation of long-run average maintenance cost rate

By the renewal-reward theorem (e.g., see Ross (1983)), the long-run average mainte-
nance cost rate C∞(ξ) can be formulated as:

C∞(ξ) = E{C(W (τ), X)}
E{T (W (τ))} (5.7)

where expectations have to be taken with respect to all the variables that are within the
parentheses. Note that, in this case, the adopted notation gives evidence that the long-run
average maintenance cost rate depends on the set of design parameters ξ.
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The expected value E{T (W (τ))} at the denominator of Eq. (5.7) can be computed as:

E{T (W (τ))} =
∫ ∞

0
T (wτ ) · fW (τ)(wτ ) · dwτ

=
k∑

j=1

∫ Lj

Lj−1
T (wτ ) · fW (τ)(wτ ) · dwτ +

∫ ∞

Lk

T (wτ ) · fW (τ)(wτ ) · dwτ

which, from Table 5.11, can be rewritten as:

E{T (W (τ))} =
k∑

j=1

∫ Lj

Lj−1
(τ + ∆τj) · fW (τ)(wτ ) · dwτ +

∫ ∞

Lk

τ · fW (τ)(wτ ) · dwτ

= τ +
k∑

j=1
∆τj · [FW (τ)(Lj) − FW (τ)(Lj−1)]. (5.8)

The expected value E{C(W (τ), X)} at the numerator of Eq. (5.7) can be computed as:

E{C(W (τ), X)}

=
∫ ∞

0

∫ ∞

0
C(wτ , x) · fX|W (τ)(x|wτ ) · fW (τ)(wτ ) · dx · dwτ

=
k∑

j=1

∫ Lj

Lj−1

∫ τ+∆τj

τ
C(wτ , x) · fX|W (τ)(x|wτ ) · fW (τ)(wτ ) · dx · dwτ

=
k∑

j=1

∫ Lj

Lj−1

∫ ∞

τ+∆τj

C(wτ , x) · fX|W (τ)(x|wτ ) · fW (τ)(wτ ) · dx · dwτ

+
∫ wM

Lk

∫ ∞

τ
C(wτ , x) · fX|W (τ)(x|wτ ) · fW (τ)(wτ ) · dx · dwτ

+
∫ ∞

wM

∫ τ

0
C(wτ , x) · fX|W (τ)(x|wτ ) · fW (τ)(wτ ) · dx · dwτ .
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From Table 5.12, after a few simple (yet cumbersome) manipulations, E{C(W (τ), X)}
becomes:

E{C(W (τ), X)} = cl + ci + cp + cl · FW (τ)(Lk) + (cc − cp + cd · τ) · [1 − FW (τ)(wM)]

+ cd ·
k∑

j=1
∆τj · [FW (τ)(Lj) − FW (τ)(Lj−1)]

+ (cc − cp) ·
k∑

j=1

∫ Lj

Lj−1

[
1 − F∆W (τ,τ+∆τj)|W (τ)(wM − wτ |wτ )

]
· fW (τ)(wτ ) · dwτ

− cd ·
k∑

j=1

∫ Lj

Lj−1

∫ τ+∆τj

τ
F∆W (τ,x)|W (τ)(wM − wτ |wτ ) · fW (τ)(wτ ) · dx · dwτ

− cd ·
∫ ∞

wM

∫ τ

0
FW (x)|W (τ)(wM |wτ ) · fW (τ)(wτ ) · dx · dwτ

(5.9)

where the expressions of fW (τ)(·), FW (τ)(·), F∆W (τ,τ+∆τj)|W (τ)(·|·), and FW (x)|W (τ)(·|·) are
the ones given in Chapter 2.4. Under the considered degradation model, both the expected
values in Eqs. (5.9) and (5.8) do not allow for a closed form solution, but can be easily
computed by using numerical procedures.

5.3.3 Example of application

In order to demonstrate the effectiveness and affordability of the proposed policy, we
consider an hypothetical application to the case of a corroding pipeline. Tables 5.13 and
5.14 report the values of the parameters used to calibrate the degradation process and
the cost model, respectively. As in Chapter 5.2, these values have been set by using as
rough reference the values provided by Mahmoodian and Alani (2014), Ellingwood and
Mori (1993), and Dey (2004). The pipelines are assumed to fail when their degradation
level exceeds the threshold limit wM = 35 mm. Let C∗

∞,k be the optimal long-run average

a [years] b c [mm] d

5.88 1 50 21.25

Table 5.13 – Values used to calibrate the degradation process.

maintenance cost rate computed, under the proposed policy, where the number of classes
has been set to k. Then, let PRD(k) denote the percent relative difference between C∗

∞,1
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cl ci cp cc cd

0.2 0.5 1 6 0.2

Table 5.14 – Parameters of the cost model.

and C∗
∞,k, defined as:

PRD(k) =
C∗

∞,1 − C∗
∞,k

C∗
∞,1

· 100. (5.10)

It is worth to remark again that, as mentioned before, when k = 1 the proposed policy
reduces to the one presented in Chapter 5.2. Hence, a positive value of the quantity in
Eq. (5.10) should be seen as the percent reduction in the optimal cost computed with k

classes compared with the optimal cost computed under the policy illustrated in Chapter
5.2.

k C∗
∞,k PRD(k)

1 0.03806 0 %
10 0.03653 4.017 %
25 0.03650 4.098 %

Table 5.15 – Values of C∗
∞,k and PRD(k) for k = 1, 10, 25.

Table 5.15 reports the values of C∗
∞,k and PRD(k) for k = 1, k = 10, and k = 25,

while Figure 5.4 depicts PRD(k) as a function of the number of classes k.
Obtained results show that the proposed policy outperforms the one presented in

Chapter 5.2. In fact, as k increases, C∗
∞,k and PRD(k) monotonically decreases and

increases, respectively, albeit less and less markedly, so that the values obtained when
k = 10 are very close to those obtained for larger values of k. The step function represented
(with the solid line) in Figure 5.5 shows the optimal value of ∆τ , denoted as ∆τ ∗, varies
as a function of the measured degradation level wτ . This function has been obtained by
setting k = 25. The dashed curve is the analog function obtained in the case k = 1.
Note that, for the sake of facilitating the comparison, in this latter case ∆τ ∗ has been
determined by solving a constrained minimization problem where the inspection time
τ is set to the value that is optimal for k = 25. These two figures clearly show the
effectiveness of the proposed approach and give clear evidence of how the replacement
times defined under the proposed adaptive maintenance policy could differ (depending on
the unit specific degradation measure) from those planned under the less flexible policy
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Figure 5.4 – Percent relative difference between the optimal cost computed under the
current policy and the one computed as in chapter 5.2.

suggested in Chapter 5.2. Let cC
∗
∞,k, dC

∗
∞,k, iC

∗
∞,k, lC

∗
∞,k, and pC

∗
∞,k be the contribution

to the optimal long-run average maintenance cost rate of corrective, downtime, inspection,
logistic, and preventive costs, respectively, when the number of classes is set to k (i.e., it
is C∗

∞,k = cC
∗
∞,k + dC

∗
∞,k + iC

∗
∞,k + lC

∗
∞,k + pC

∗
∞,k).

The bar chart in Figure 5.6 shows the values of the aforementioned contributions for the
case of k = 25 (in blue) and k = 1 (in red).

While the contribution of the considered terms to C∗
∞,k is very similar, it is clear that

the proposed generalized policy yields a smaller value for every cost factor, except for the
logistic cost. This can be explained by the fact that when k = 25, as depicted in Figure
5.4, the policy is more likely to reschedule the replacement than when k = 1, and hence
the last two scenarios of Table 5.12 (in which the logistic cost is sustained twice) are more
likely.
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Figure 5.5 – Optimal value ∆τ ∗ of ∆τ as a function of the degradation level at the
inspection wτ for k = 1 (in red) and k = 25 (in blue).

5.4 A hybrid maintenance policy for a deteriorating
unit in the presence of three forms of variability

5.4.1 Description of the policy

This policy (see also Esposito, Mele, et al. (2023a)) consists in performing a single
inspection at a predetermined inspection time τ aimed at measuring the perturbed degra-
dation level of the unit. Then, based on the outcome of this inspection, a condition-based
rule is used to decide on whether to immediately replace the unit, to postpone the replace-
ment to a later (also predetermined) time τ + ∆τ , where the unit will be systematically
replaced without any additional inspection, or to perform (at the same time τ) a second
inspection, this time aimed at measuring the true degradation level. In case the second in-
spection is performed, the decision on the replacement will be taken based on the outcome
of this perfect inspection.

Table 5.16, where zτ denotes the observed value of the perturbed degradation measure-
ment Z(τ) at the inspection time τ , wτ is the true value of the actual degradation level
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Figure 5.6 – Values of cC
∗
∞,k, dC

∗
∞,k, iC

∗
∞,k, lC

∗
∞,k, and pC

∗
∞,k obtained for k = 25 and

k = 1.

W (τ) at time τ , and Ll, Lu, and LW are (maintenance) threshold levels, summarizes the
condition-based rule adopted to make the decision. The key idea of this policy is to exploit

Measurement at τ
Perturbed Perfect Decision
zτ > Lu Replacement at τ

Ll < zτ ≤ Lu wτ > LW Replacement at τ
Ll < zτ ≤ Lu wτ ≤ LW Replacement at τ + ∆τ
zτ ≤ Ll Replacement at τ + ∆τ

Table 5.16 – Condition-based rule.

the information gathered via the perturbed inspection to timely identify and replaced the
units which are already failed or close to failing, while postponing the replacement of units
whose perturbed degradation level is safely below the threshold. In addition, in case it
is believed that measuring also the exact degradation level can help decision-making, the
perfect inspection can be additionally performed. Obviously, the presence of measurement
error and the possibility of adopting two different measurement procedures complicates
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decision-making. On the one hand, solely adopting the perturbed procedure saves main-
tenance costs, but on the other hand paying for the perfect inspection not only allows to
reveal the potential failure of the unit, but also allows for better-informed decision-making.

Table 5.17 summarizes all possible experimental scenarios and reports for each of
them the maintenance action to be taken and the resulting length of a maintenance cycle,
denoted by T (zτ , wτ ). In this table, wτ+∆τ indicates the true value of the degradation
level W (τ + ∆τ) at τ + ∆τ and wM the failure threshold.

Measurement at τ

Perturbed Perfect Lifetime Maintenance
action

Cycle length
T (zτ , wτ )

zτ > Lu X < τ Corrective at τ τ

zτ > Lu X ≥ τ Preventive at τ τ

Ll < zτ ≤ Lu wτ > wM X < τ Corrective at τ τ

Ll < zτ ≤ Lu LW < wτ ≤ wM Preventive at τ τ

Ll < zτ ≤ Lu wτ ≤ LW τ ≤ X < τ + ∆τ Corrective at
τ + ∆τ τ + ∆τ

Ll < zτ ≤ Lu wτ ≤ LW X ≥ τ + ∆τ Preventive at
τ + ∆τ τ + ∆τ

zτ < Ll X ≥ τ + ∆τ Preventive at
τ + ∆τ τ + ∆τ

zτ < Ll τ ≤ X < τ + ∆τ Corrective at
τ + ∆τ τ + ∆τ

zτ < Ll X < τ
Corrective at
τ + ∆τ τ + ∆τ

Table 5.17 – Maintenance actions and corresponding cycle lengths

The parameter τ , ∆τ , Ll, Lu, and LW should be intended as design parameters of
the considered policy. Hereinafter, the vector of design parameters will be denoted by
ξ = {τ,∆τ, Ll, Lu, LW }. The optimal value of ξ, which defines the optimal policy is
denoted as ξ∗ and should be set a priori with the aim of minimizing the long-run average
maintenance cost rate.

The cost model is summarized in Table 5.18 where the cost factors are denoted by using
the same notation as in the previous chapters (with the only exception of the inspection
cost that is not denoted by ci anymore, but by cz in the case of an imperfect inspection
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and by cw in the case of a perfect one). Finally, C(zτ , wτ , X) is the maintenance cost per
cycle formulated, scenario by scenario, for given values of the arguments zτ , wτ , and X.

Measurement at τ
Perturbed Perfect State at τ Lifetime Maintenance cost

zτ > Lu wτ > wM X < τ
cl + cz + cc

+cd · (τ −X)
zτ > Lu wτ ≤ wM cl + cz + cp

Ll < zτ ≤ Lu wτ > wM X < τ
cl + cz + cw + cc

+cd · (τ −X)
Ll < zτ ≤ Lu LW < wτ < wM cl + cz + cw + cp

Ll < zτ ≤ Lu wτ ≤ LW τ ≤ X < τ + ∆τ 2 · cl + cz + cw + cc

+cd · (τ + ∆τ −X)
Ll < zτ ≤ Lu wτ ≤ LW X ≥ τ + ∆τ 2 · cl + cz + cw + cp

zτ ≤ Ll X ≥ τ + ∆τ 2 · cl + cz + cp

zτ ≤ Ll wτ ≤ wM τ ≤ X < τ + ∆τ 2 · cl + cz + cc

+cd · (τ + ∆τ −X)

zτ ≤ Ll wτ > wM X < τ
2 · cl + cz + cc

+cd · (τ + ∆τ −X)

Table 5.18 – Maintenance costs

It is worth to emphasize that, coherently with the assumption of not self-announcing
failure, in Table 5.18 the lifetime X is always denoted with the capital letter to intend
that, even in the special case of zτ and wτ being known, X should be regarded as a
random variable. It is also worth to remark that, although T (zτ , wτ ) and C(zτ , wτ , X)
functionally depend on ξ, for economy of notation the adopted symbols do not highlight
this dependency.

5.4.2 Formulation of the long-run average maintenance cost rate

By using the renewal/reward theorem (e.g., see Ross (1983)), the long-run average
maintenance cost rate C∞(ξ) can be formulated as:

C∞(ξ) = E{C(Z(τ),W (τ), X)}
E{T (Z(τ),W (τ))} (5.11)
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where the expectations have been taken with respect to Z(τ), W (τ), and X. The expec-
tations in Eq. (5.11) do not allow for closed form expressions, but can be numerically
computed by using the (5.12) and (5.13), respectively.

E{C(Z(τ),W (τ), X)} = cl + cz + cp + (cc − cp + cd · τ) ·
[
1 − FW (τ)(wM)

]
+ cw ·

∫ ∞

0

[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
· fW (τ)(wτ ) · dwτ

+ (cl + cd · ∆τ) ·
∫ ∞

0
FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ

+ (cl + cd · ∆τ) ·
∫ LW

0

[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
· fW (τ)(wτ ) · dwτ

+ (cc − cp) ·
∫ LW

0

[
1 − F∆W (τ,τ+∆τ)|W (τ)(wM − wτ |wτ )

]
×
[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
· fW (τ)(wτ ) · dwτ

+ (cc − cp) ·
∫ wM

0

[
1 − F∆W (τ,τ+∆τ)|W (τ)(wM − wτ |wτ )

]
× FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ

− cd ·
∫ wM

0

∫ τ+∆τ

τ
F∆W (τ,x)|W (τ)(wM − wτ |wτ ) · FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ · dx

− cd ·
∫ LW

0

∫ τ+∆τ

τ
F∆W (τ,x)|W (τ)(wM − wτ |wτ )

×
[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
· fW (τ)(wτ ) · dwτ · dx

− cd ·
∫ ∞

wM

∫ τ

0
FW (x)|W (τ)(wM |wτ ) · fW (τ)(wτ ) · dwτ · dx,

(5.12)

E{T (Z(τ),W (τ))} = τ + ∆τ ·
∫ ∞

0
FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ

+ ∆τ ·
∫ LW

0

[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
· fW (τ)(wτ ) · dwτ . (5.13)

Details about the derivations of Eqs. (5.12) and (5.13) can be found in Appendix B.1

5.4.3 Application example

To demonstrate its effectiveness, we have applied the proposed policy to a real-world
inspired case of a corroding pipeline. Pipelines are often buried underground, offshore, or
in general in places that are difficult to access, so inspections are usually very costly and
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failures (e.g., the considered soft failure consisting in excess of corrosion) and/or small
leaks are difficult to detect unless specific inspections are performed.

The application has been developed by considering eight realistic experimental sce-
narios, which have been defined by adopting the setups described in Table 5.19. The
cost parameters reported in the table have been inspired by Dey (2004). Without loss
of generality, in this example, it is assumed that the unit-specific gamma processes are
homogeneous with age function η(t) = a · t, an assumption that was found to be appropri-
ate for modeling the effect of corrosion (e.g., see Ellingwood and Mori (1993)). However,
other modeling solutions can be adopted to describe degradation phenomena of different
kinds (e.g., aging, reinforcement corrosion, etc.) without serious additional difficulties.

The parameter φ has been calibrated to define two groups of experimental scenarios
where the measurement errors have different magnitude. Specifically, subscript 1 identifies
the scenarios where the measurement errors are moderate (in this case it is φ = 0.001)
while subscript 2 identifies those where the measurement errors are severe (in this case
it is φ = 0.005). The setups, such as A1 and A2, that are indicated by the same letter
with a different subscript only differ in the magnitude of the measurement errors. The
logistic cost cl is always equal to 0.2. The cost of the preventive replacement cp is always
equal to 2. The cost of the corrective replacement cc is always equal to 6. The values of
the other cost parameters vary according to the letter (i.e., A, B, C, D) used to identify
the setup. The units are considered failed when their degradation level exceeds the value
wM = 35 mm. The parameters of the hidden degradation process are set to the values

cl cz cw cp cc cd φ [mm−1]
Setup A1 0.2 0.2 1 2 6 0.6 0.01
Setup A2 0.005
Setup B1 0.2 0.2 0.8 2 6 0.6 0.01
Setup B2 0.005
Setup C1 0.2 0.2 0.4 2 6 0.6 0.01
Setup C2 0.005
Setup D1 0.2 0.8 1.2 2 6 0.1 0.01
Setup D2 0.005

Table 5.19 – Setups used to evaluate the performance of the proposed policy

reported in Table 5.20, which have been selected by using as rough reference those reported
in Mahmoodian and Alani (2014). Without loss of generality, the value of the parameter ν
is always set equal to 1. The results obtained by applying the suggested policy, hereinafter
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a [years] c [mm] d ν

0.17 5 2.125 1

Table 5.20 – Values of the parameters of the hidden degradation process.

indicated as P0, are compared to those obtained by adopting three alternative policies,
indicated by P1, P2, and P3. The policies P1 and P2 are defined by assuming that, at the
inspection time, only the perturbed and only the perfect measurement procedures can be
adopted, respectively. The policy P3 is a classical (pure) age-based maintenance policy,
which assumes that the unit is replaced at τ regardless of its state and without performing
any inspection. It is worth to remark that the policies P1, P2, and P3 can be obtained as
special cases from the policy P0 by imposing the following constraints:

— P1 (which uses only the imperfect measurement procedure) is obtained from P0 by
setting Ll = Lu;

— P2 (which uses only the perfect measurement procedure) is obtained from P0 by
setting Ll = 0, Lu = +∞, and cz = 0;

— P3 (which does not use any measurement procedure) is obtained from P0 by setting
Ll = Lu = 0 and cz = 0.

All the policies have been applied to determine, under each setup, the optimal set of design
parameters and the corresponding optimal long-run average maintenance cost rate.

Setup by setup, to compare the performances of the policy P0 with those of the policies
P1, P2, and P3 the percent relative difference PRD(k) (k = 1, 2, 3) has been evaluated:

PRD(k) =
kC∞(kξ∗) − kC∞(kξ∗)

kC∞(kξ∗)
· 100, (5.14)

where kC∞(kξ∗) denotes the long-run average maintenance cost rate obtained by adopt-
ing the policy Pk (k = 0, . . . , 3) and kξ∗ indicates the corresponding optimal set of
design parameters, being 0ξ = {0τ, 0∆τ , 0Ll,

0Lu,
0LW }, 1ξ = {1τ, 1∆τ , 1Ll = 1Lu},

2ξ = {2τ, 2∆τ , 2LW }, and 3ξ = {3τ}. Thus, kC∞(kξ∗) is the long-run average mainte-
nance cost rate given in Eq. (5.12), whereas the expressions for kC∞(kξ∗) under policies
P1, P2, and P3 are provided in Appendix B.2.

Table 5.21 reports the optimal long-run average maintenance cost rate and the cor-
responding optimal values of the design parameters obtained under all the considered
policies in the case of the setups A1 and A2. Tables 5.22, 5.23, and 5.24 report the same

128



5.4. A hybrid maintenance policy for a deteriorating unit in the presence of three forms of
variability

quantities in the cases of the setups B1 and B2, C1 and C2, and D1 and D2, respectively.
Obviously, the results obtained under the policies P2 and P3, which do not use the im-
perfect measurement procedure, are not affected by the magnitude of the measurement
errors. Thus, these results do not change passing from the left to the right side of the
mentioned tables. For similar reasons, the results obtained under the policy P1 do not
depend on cw, those obtained under the policy P2 do not depend on cz, and those obtained
under the policy P3 depend neither on cw nor on cz. Table 5.21 shows that, under the

Setup kC∞(kξ∗) PRD(k) kτ ∗ k∆τ ∗ kL∗
l

kL∗
u

kL∗
W

A1

P0 0.1005 22.2 43.9 3.76 7.81 10.3
P1 0.1022 1.62 % 21.0 39.6 5.02 5.02
P2 0.1062 5.58 % 24.6 48.7 10.5
P3 0.1276 26.9 % 32.0

A2

P0 0.1009 22.2 44.2 3.55 7.72 10.3
P1 0.1027 1.83 % 20.9 39.7 4.81 4.81
P2 0.1062 5.20 % 24.6 48.7 10.5
P3 0.1276 26.4 % 32.0

Table 5.21 – Optimal values of the design parameters, of the long-run average maintenance
cost rate, and of PRD(·) under all the considered policies in the case of setups A1 and
A2.

setups A1 and A2, the policy which yields the lowest long-run average maintenance cost
rate (i.e., the best policy) is P0. It also shows that, under these setups, P1 outperforms P2,
which in turn performs better than P3. In fact, for example, under the setup A1 the use
of the policies P1, P2, and P3, in place of the policy P0, leads to percent increases of the
long-run average maintenance cost rate equal to 1.62%, 5.58%, and 26.9%, respectively.

The setups B1 and B2 differ from A1 and A2 only for the value of cw, which is 0.8
instead of 1. Table 5.22 shows that under the setups B1 and B2 the policies P0 and P3 are
still the best and the worst one, respectively. On the other hand, due to the reduced value
of cw, which incentivizes the use of the perfect inspection, in these cases P2 outperforms
P1. In fact, for example, in the case of the setup B1, using the policies P1, P2, and P3,
instead of P0 produces a percent increase of the long-run average maintenance cost rate
equal to 2.94%, 2.77%, and 28.5%, respectively.

The setups C1 and C2 differ from the setups A1, B1 and A2, B2 in the value of cw only,
which is smaller than in the other mentioned cases. These setups reflect an experimental
scenario in which the perfect measurement procedure is only slightly more expensive than
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Setup kC∞(kξ∗) PRD(k) kτ ∗ k∆τ ∗ kL∗
l

kL∗
u

kL∗
W

B1

P0 0.0993 22.4 44.6 3.41 9.42 10.2
P1 0.1022 2.94 % 21.0 39.6 5.02 5.02
P2 0.1020 2.77 % 24.0 47.9 10.3
P3 0.1276 28.5 % 32.0

B2

P0 0.0996 22.4 44.8 3.23 9.35 10.2
P1 0.1027 3.22 % 20.9 39.7 4.81 4.81
P2 0.1020 2.47 % 24.6 47.9 10.3
P3 0.1276 26.4 % 32.0

Table 5.22 – Optimal values of the design parameters, of the long-run average maintenance
cost rate, and of PRD(·) under all the considered policies in the case of setups B1 and
B2.

Setup kC∞(kξ∗) PRD(k) kτ ∗ k∆τ ∗ kL∗
l

kL∗
u

kL∗
W

C1

P0 0.0954 22.5 45.1 2.68 16.85 10.0
P1 0.1022 7.09 % 21.0 39.6 5.02 5.02
P2 0.0934 -2.06 % 22.8 46.0 9.83
P3 0.1276 33.7 % 32.0

C2

P0 0.0956 22.5 45.2 2.55 17.0 9.96
P1 0.1027 7.54 % 20.9 39.7 4.81 4.81
P2 0.0934 -2.19 % 22.8 46.0 9.83
P3 0.1276 33.5 % 32.0

Table 5.23 – Optimal values of the design parameters, of the long-run average maintenance
cost rate, and of PRD(·) under all the considered policies in the case of setups C1 and C2.

the imperfect one. Table 5.23 shows that, under C1 and C2, the best policy is P2, which
uses the perfect measurement procedure only. The same table also shows that P0, which
allows for the optional use of the perfect measurement procedure, performs better than P1.
As in the cases of the setups A1, A2, B1, and B2, the policies P0, P1, and P2 outperform
the (pure) age-based policy P3. In fact, for example, under the setup C1 the use of P2 in
place of P0 leads to a percent reduction of the long-run average maintenance cost rate
equal to 2.06%, while P1 and P3 provide long-run average maintenance cost rates that are
7.09% and 33.7% higher than the one provided by P0. With respect to the other setups,
D1 and D2 depict scenarios characterized by higher inspection costs cw and cz and smaller
downtime cost rate cd. Table 5.24 shows that, under these setups, the best policy is P3,
followed by P2 and P0, which performs slightly better than P1.
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Setup kC∞(kξ∗) PRD(k) kτ ∗ k∆τ ∗ kL∗
l

kL∗
u

kL∗
W

D1

P0 0.0809 47.5 93.5 7.73 10.57 15.9
P1 0.0810 0.20 % 46.6 90.7 9.15 9.15
P2 0.0792 -2.06 % 44.5 92.1 15.2
P3 0.0772 -4.55 % 75.7

D2

P0 0.0812 48.0 94.3 7.33 10.3 16.0
P1 0.0813 0.23 % 47.0 90.9 8.86 8.86
P2 0.0792 -2.40 % 44.5 92.1 15.2
P3 0.0772 -4.87 % 75.7

Table 5.24 – Optimal values of the design parameters, of the long-run average maintenance
cost rate, and of PRD(·) under all the considered policies in the case of setups D1 and
D2.

The results obtained under these latter setups show that, when the inspection costs are
high with respect to other maintenance costs, performing inspections does not necessarily
give economic advantages in the long run. Tables 5.21-5.24 also show that the magnitude
of the measurement error (within the considered range) does not significantly influence the
discussed results. Hence, the comments provided above apply both when measurements
are moderately and severely perturbed. In fact, the value of φ only influences the long-
run average maintenance cost rate under the policies P0 and P1, which in general slightly
increases as φ decreases. Consequently, also the percent relative difference PRD(·) slightly
changes passing from the case where the error is moderate to the one when it is severe.

The severity of the measurement error can be expressed in terms of the ratio
V {Z(t)} /V {W (t)}. Unfortunately, both the variance of W (t) and Z(t) (see Eqs. (2.52)
and (2.61)), as well as V {Z(t)} /V {W (t)} depend on t. Hence, it is not possible to quan-
tify the ratio V {Z(t)} /V {W (t)} by a unique number. However, it can be useful to note
that, for example, in the case of the setup A1 at 0τ ∗ = 22.2 it is V {Z(0τ ∗)}/V {W (0τ ∗)} =
1.57 while under the setup A2 at 0τ ∗ = 22.2 it is V {Z(0τ ∗)}/V {W (0τ ∗)} = 2.15. Simi-
larly, under the setup D1 at 0τ ∗ = 47.5 it is V {Z(0τ ∗)}/V {W (0τ ∗)} = 1.30 while under
the setup D2 at 0τ ∗ = 48.0 it is V {Z(0τ ∗)}/V {W (0τ ∗)} = 1.61.

To deepen and better understand how the results provided by the considered policies
change with the setup, it is useful to investigate how the long-run average maintenance
cost rate kC∞(·) splits into the components k

cC∞(·), k
dC∞(·), k

lC∞(·), k
pC∞(·), k

wC∞(·), and
k
zC∞(·), that denote the contributions to kC∞(·) of corrective replacement, downtime,
logistic, preventive replacement, perfect inspection, and perturbed inspection costs, re-
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spectively. The expressions of these cost rates are given in Appendix B.3. Obviously, it is
kC∞(·) = k

cC∞(·)+k
dC∞(·)+k

lC∞(·)+k
pC∞(·)+ k

wC∞(·)+k
zC∞(·). Figure 5.7 and Figure 5.8

show how in the case of setups A1 and D1, respectively, the (minimum) long-run average
maintenance cost rate splits into the aforementioned contributions. The setup D1 differs
from the setup A1 for the values of cw, cz, and cd, which pass from 0.8, 0.2, and 0.6 under
setup A1 to 1.2, 0.8, and 0.1 under setup D1, respectively.

Figure 5.7 – Values of k
cC∞(·), k

dC∞(·), k
lC∞(·), k

pC∞(·), k
wC∞(·), and k

zC∞(·) under each of
the considered policies in the case of the setup A1.

From Figure 5.7 it is apparent that in the case of the setup A1 the main contribution,
under all the policies, is k

pC∞(·), followed by k
dC∞(·) and k

cC∞(·). This shows that, under
this setup, the maintenance cycle ends preferentially with a preventive replacement, hence
units are generally replaced when they are not yet failed. In fact, replacing failed units
implies not only a higher (compared to the preventive one) corrective replacement cost
but also a downtime cost that, depending on the setup, can be quite hefty.
Conversely, in the case of the setup D1, where the downtime cost rate cd is lower than
under the other setups, the consequences of failures are milder. Hence, the setup D1, com-
pared to the setup A1, leads all of the considered policies to incentivize more corrective
replacements, by increasing the probability of failure in the maintenance cycle. This sit-
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Figure 5.8 – Values of k
cC∞(·), k

dC∞(·), k
lC∞(·), k

pC∞(·), k
wC∞(·), and k

zC∞(·) under each of
the considered policies in the case of the setup D1.

uation is clearly shown in Figure 5.8, where it is apparent that (under all the considered
policies) the dominant contribution is now k

cC∞(·). Tables 5.21 and 5.24 show that this
result is primarily accomplished by lengthening the maintenance cycle. In fact, from these
tables, it is immediate to verify that the values of kτ ∗ and k∆τ ∗ obtained under the setup
D1 are all higher than the corresponding values obtained under the setup A1.

5.5 Impact on maintenance decision-making of mis-
specification of gamma with inverse Gaussian pro-
cess

Expanding on the analysis performed in Chapter 4, here we investigate how the mis-
specification issue of gamma and inverse Gaussian processes impacts on maintenance costs
(see also Esposito, Castanier, Giorgio, et al. (2022)). However, here we focus solely on the
consequences of the misspecification of a gamma process with an inverse Gaussian process
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(i.e., we consider neither measurement error nor the symmetric case of the misspecification
of an inverse Gaussian process with a gamma one). The processes adopted in this analysis
are still the ones presented in Chapter 2.3, though only the hidden processes should be
considered here. Maintenance costs are computed under the simple condition-based policy
presented in Chapter 5.2 (obviously, the case where measurement error is absent should
be considered).

Similarly to Chapter 4, to perform the analysis we have generated 3 sets of 1000
synthetic datasets under 3 different gamma degradation processes. As first step, dataset
by dataset, the gamma and inverse Gaussian models are fitted to data by means of ML
estimation. Hence, all the estimated processes are used to optimize the considered main-
tenance policy. A misspecification is assumed to occur if the Akaike information criterion
leads to prefer the inverse Gaussian process. The effect of a misspecification is evaluated
in terms of long-run average maintenance cost rate.

Neglecting the presence of measurement error hugely simplifies the estimation task.
Indeed, there is no need here for the EM algorithm and classical ML estimation can be
performed. Details about the formulation of the likelihood function under the considered
setup can be found in Chapter 5.5.1. Then, the results of the misspecification analysis are
illustrated in Chapter 5.5.2.

5.5.1 Maximum likelihood estimation of model parameters

Let us consider m identical units operating under homogeneous conditions, suppose
that the degradation level of the unit i (i = 1, ...,m) is measured at times ti,1, ..., ti,ni

,
and denote by Wi,j = W (ti,j) the degradation level of the unit i at the measurement time
ti,j, by wi,j its realization, and by ξ the vector of model parameters. Then, under these
setting, the likelihood function of the considered competing processes can be formulated
as:

L(ξ; w) =
m∏

i=1

ni∏
j=1

f∆Wi,j
(∆wi,j), (5.15)

where w = {w1,1, ..., w1,n1 , ..., wm,1, ..., wm,nm}, ti,0 = 0, wi,0 = 0, ∆Wi,j = Wi,j − Wi,j−1,
∆wi,j = wi,j −wi,j−1. Therefore, the log-likelihood function l(ξ; w) can be formulated as:

l(ξ; w) = ln[L(ξ; w)] =
m∑

i=1

ni∑
j=1

ln
[
f∆Wi,j

(∆wi,j)
]
. (5.16)
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The maximum likelihood estimate (MLE) of the parameter vector ξ̂ is the value of ξ that
maximizes l(ξ,w), given w. In the case of the considered gamma process, ξ = {a, b, θ}
and, from Eq. (2.11), the log-likelihood function in Eq. (5.16) can be expressed as:

l(ξ; w) = −
∑m

i=1 wi,ni

θ
+

m∑
i=1

ni∑
j=1

[(
ti,j
a

)b

−
(
ti,j−1

a

)b
]

· ln(∆wi,j)

− ln(θ) ·
m∑

i=1

(
ti,ni

a

)b

−
m∑

i=1

ni∑
j=1

ln
[
Γ
((

ti,j
a

)b

−
(
ti,j−1

a

)b
)]

.

(5.17)

Then, by solving with respect to θ the equation:

∂l(ξ; w)
∂θ

= ∂l(a, b, θ; w)
∂θ

= 0

the explicit form:
θ̃(a, b) =

∑m
i=1 wi,ni∑m

i=1

(
ti,ni

a

)b (5.18)

is obtained for the value θ̃(a, b) that maximizes the log-likelihood function (5.17) with
respect to θ when a and b are set to the values indicated in the parentheses. Exploiting
this result, the MLEs â and b̂ of a and b can be conveniently retrieved by numerically
maximizing, with respect to a and b, the two parameter profile log-likelihood lp(a, b; w)
that is obtained by replacing θ̃(a, b) to θ in the log-likelihood in Eq. (5.17). Once â and b̂
are available, the MLE θ̂ of θ can be readily computed from Eq. (5.18) as θ̂ = θ̃(â, b̂).

Whereas in the case of the inverse Gaussian process, from Eq. (2.12), the log-likelihood
function (5.16) becomes:

l(ξ; w) = −nt

2 · ln(2 · π) + nt

2 · ln(θ) − nt · b · ln(a) − 3
2 ·

m∑
i=1

ni∑
j=1

ln(∆wi,j)

− 1
2 · θ

·
m∑

i=1
wi,ni

− θ

2 · a2·b ·
m∑

i=1

ni∑
j=1

(
tbi,j − tbi,j−1

)2

∆wi,j

+ 1
ab

·
m∑

i=1
tbi,ni

+
m∑

i=1

ni∑
j=1

ln
(
tbi,j − tbi,j−1

)
,

(5.19)

where nt = ∑m
i=1 ni. Then, from Eq. (5.17), by solving with respect to θ and a the following
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system of equations: 
∂l(ξ;w)

∂θ
= ∂l(a,b,θ;w)

∂θ
= 0

∂l(ξ;w)
∂a

= ∂l(a,b,θ;w)
∂a

= 0

we get the explicit forms:

θ̃(b) =

(∑m

i=1 wi,ni∑m

i=1 tb
i,ni

)2
·∑m

i=1
∑ni

j=1
(tb

i,j−tb
i,j−1)2

∆wi,j
−∑m

i,j wi,ni

nt

, (5.20)

ã(b) =


∑m

i=1 wi,ni∑m

i=1 tb
i,ni

·∑m
i=1

∑ni
j=1

(tb
i,j−tb

i,j−1)2

∆wi,j
−∑m

i=1 t
b
i,ni

nt


1
b

(5.21)

for the values θ̃(b) and ã(b) of θ and a that (jointly) maximize the log-likelihood function
(5.19) when the parameter b is set to the value reported in the parentheses.
By using these results, the MLE b̂ of b can be conveniently retrieved by numerically
maximizing the one-parameter profile log-likelihood lp(b; w), that is obtained by replacing
θ̃(b) and ã(b) to θ and a in the log-likelihood (5.19). Once b̂ is available the MLEs θ̂ and
â of θ and a can be then readily obtained from Eqs. (5.20) and (5.21) as θ̂ = θ̃(b̂) and
â = ã(b̂).

5.5.2 Results of the misspecification analysis

The misspecification analysis has been developed by considering a real-world inspired
application where the degrading unit under study is a pipeline subjected to corrosion.
The degradation process of the pipeline is described by using three different (alternative)
gamma processes, hereinafter referred to as the true processes. The shape parameter b
of the age function η(t) = (t/a)b of the true processes is always assumed to be equal
to 1. The other parameters of the true gamma degradation processes (i.e., a and θ)
have been calibrated by using as rough reference the values provided in Mahmoodian
and Alani (2014). The complete description of the adopted setups (i.e., A, B, and C,
respectively) is provided in Table 5.25.

The true gamma processes have been used to generate 3 sets of Nt = 1000 synthetic
datasets (i.e., one for each setup). Each dataset consists of m = 6 degrading paths, which
simulate the evolution of the degradation levels of as many units. Each path consists of
ni = 6 measurements, taken at equally spaced inspection times (t1 = 30, t2 = 60, t3 = 90,

136



5.5. Impact on maintenance decision-making of misspecification of gamma with inverse
Gaussian process

Setup a [years] b θ [mm]
A 40 1 8
B 30 1 6
C 15 1 3

Table 5.25 – Setups A, B, and C used to generate the datasets.

t4 = 120, t5 = 150, and t6 = 180, expressed in time units) that are the same for all the
units (that is: ti,j = tj, ∀ i, j , i = 1, . . . ,m and j = 1, . . . , 6).

These datasets have been used to estimate, dataset by dataset, the parameters of the
gamma and inverse Gaussian processes via the maximum likelihood method described
in Chapter 5.5.1. Dataset by dataset, the misspecification is assumed to occur if the
Akaike information criterion (e.g., see Akaike (1974)) leads to prefer the (wrong) inverse
Gaussian process instead of the (right) gamma process. The results of the misspecification
analysis are reported in Table 5.26, where Nt is the total number of datasets used for the
analysis, Nm is the number of times a misspecification has occurred, Nm is the number
of times a misspecification has not occurred, and rm is the percent risk of incurring in a
misspecification, that is evaluated as:

rm% =
(
Nm

Nt

)
· 100.

These results give evidence that the risk of incurring in a misspecification increases

Setup Nt Nm Nm rm(%)
A 1000 945 55 5.5
B 1000 909 91 9.1
C 1000 868 232 23.2

Table 5.26 – Results of the misspecification analysis.

moving from the setup A to the setup C. Actually, as in Chapter 4, these setups have
been specially conceived with the aim of representing three possible experimental scenarios
that, while sharing the same mean function, are characterized by increasing risk (i.e., from
A to C) of incurring in a misspecification. For the sake of brevity, here we will not repeat
the explanation as to why this is the case (see Chapter 4.2.1 for more details).

The impact of a misspecification on the performances of the considered maintenance
policy is evaluated in terms of long-run average maintenance cost rate. The cost model is
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formulated by setting the unitary costs cc, cp, ci, and cl (expressed in monetary units) and
the downtime cost rate cd (expressed in monetary units/year) to the values given in Table
5.27, that have been loosely inspired to the values provided in Dey (2004). The pipelines
are assumed to fail when their degradation level exceeds the threshold limit wM = 35 mm.

cc cp ci cl cd

6 1 0.5 0.2 0.2

Table 5.27 – Parameters of the cost model

The effect of a misspecification is evaluated, dataset by dataset, by computing the
optimal value of the design parameter vector and the corresponding minimum long-run
average maintenance cost rate under each estimated model. Moreover, the same design
parameter vector (i.e., the one obtained under both the estimated models) is used to
compute the corresponding true long-run average maintenance cost rate, by using the
true gamma model. Finally, the true gamma model is used to determine the true optimal
value of the design parameters and the corresponding true minimum long-run average
maintenance cost rate. Obtained results have been used to compute the following indices:

MRD
(1)
M,d =

∑Nd
k=1

C∞(ζ̂
∗
M,k)−C∞(ζ∗)
C∞(ζ∗)

Nd

, (5.22)

SDRD
(1)
M,d =

√√√√√√∑Nd
k=1

[
C∞ (̂ζ

∗
M,k)−C∞(ζ∗)
C∞(ζ∗) −MRD

(1)
M,d

]2

Nd

, (5.23)

where:

— C∞(·) is the true value of the long-run average maintenance cost rate. This is com-
puted as in Eq. (5.2) by using the true gamma process);

— ζ∗ = (τ ∗,∆τ ∗, L∗) is the true optimal value of the vector of design parameters
ζ = (τ,∆τ, L) (i.e., the value of ζ that minimizes C∞(ζ));

— C∞(ζ∗) is the true minimum long-run average maintenance cost rate;

— Ĉ∞,M,k(·) is the long-run average maintenance cost rate computed by using the
model M with a, b, and θ set at their MLEs obtained (under the model M) from the
k-th dataset (the hat «ˆ» indicates that Ĉ∞,M,k(·) can be intended as an estimate
of C∞(·));
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— ζ̂
∗
M,k = (τ̂ ∗

M,k, ∆̂τ
∗
M,k, L̂

∗
M,k) is the value of ζ = (τ,∆τ, L) that minimizes Ĉ∞,M,k(ζ)

(the hat «ˆ» indicates that ζ̂
∗
M,k can be intended as an estimate of ζ∗);

— Ĉ∞,M,k(ζ̂∗
M,k) is the (estimated) minimum long-run average maintenance cost rate

computed by using the model M with a, b, and θ set at their MLE obtained (under
the model M) from the k-th dataset;

— C∞(ζ̂∗
M,k) is the true long-run average maintenance cost rate obtained by setting

ζ = ζ̂
∗
M,k (this cost is evaluated by using the true gamma process).

The subscript M on the left sides of Eqs. (5.22) and (5.23) serves to identify the model
used to compute ζ̂

∗
M,k, with M = GP standing for the gamma process and M = IGP

standing for the inverse Gaussian process. The subscript d indicates the datasets used
to compute the index. Specifically, d = t indicates that the index is computed by using
all the Nt datasets, d = m indicates that it is computed by using only the Nm datasets
that lead to a misspecification, and d = m indicates that it is computed by using only the
datasets that do not lead to a misspecification. The index (5.22) is the mean of the relative

MRD
(1)
M,d

M d Setup A Setup B Setup C

GP m 0.042 0.043 0.042
IGP m 0.43 0.20 0.046
GP m 0.043 0.039 0.046
IGP m 0.044 0.033 0.039
GP t 0.042 0.043 0.043
IGP t 0.41 0.18 0.044

Table 5.28 – Results of the study: index MRD
(1)
M,d.

difference [C∞(ζ̂∗
M,k)−C∞(ζ∗)]/C∞(ζ∗). Hence, for example, the value MRD

(1)
G,m = 0.043,

reported in the first row of Table 5.28 in the column relative to the setup B, indicates that
using the design parameter vector ζ̂

∗
G,k (i.e., the one determined by minimizing Ĉ∞,M,k(·))

in place of ζ∗ (i.e., the one determined by minimizing C∞(·)) results in a long-run average
maintenance cost rate that (in mean) is 4.3% higher than the true minimum long-run
average maintenance cost rate C∞(ζ∗). Thus, roughly speaking, this means that under
the setup B, using the estimated gamma process in place of the true one in the cases where
a misspecification has not occurred, causes (in mean) a 4.3% increase of the maintenance
cost. This difference, when M = GP , is only due to the circumstance that the MLEs of
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SDRD
(1)
M,d

M d Setup A Setup B Setup C

GP m 0.069 0.076 0.067
IGP m 0.92 0.59 0.045
GP m 0.058 0.061 0.074
IGP m 0.047 0.036 0.049
GP t 0.068 0.075 0.069
IGP t 0.90 0.57 0.046

Table 5.29 – Results of the study: index SDRD(1)
M ;d.

the model parameters do not coincide with the true values. Differently, when M = IGP

the cost increase depends both on the use of a wrong model and on the fact that its
parameters are estimated, with the aggravating circumstance that the estimates of the
parameters are obtained under the wrong model.

Table 5.28 shows that, under all the setups, the results obtained when M = IGP

and d = m are very similar to those obtained when M = GP and d = m. This means
that using the inverse Gaussian process in place of the true gamma one, when its use is
suggested by the AIC, determines a negligible effect on the long-run average maintenance
cost rate. On the other side, the results obtained when M = IGP and d = m give
clear evidence that using the inverse Gaussian model when the AIC leads to prefer the
gamma process can produce severe consequences, especially when the risk of incurring in
a misspecification is low (i.e., setup A).

The index (5.23) is the standard deviation of the relative difference [C∞(ζ̂∗
M,k) −

C∞(ζ∗)]/C∞(ζ∗). This index serves to understand how the considered relative difference
varies from dataset to dataset with respect to its mean value reported in Table 5.29. The
observed differences are due to the circumstance that the estimates of model parameters
(obviously) vary from dataset to dataset. Obtained results show that, in all the considered
cases, the (quadratic) mean of the difference between the values obtained from the generic
dataset and the mean reported in Table 5.28 is about 1.5 times greater than the mean.

Finally, the results of the Monte Carlo study have been also used to compute the
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indices:

MRD
(2)
M,d =

∑Nd
k=1

Ĉ∞,M,k (̂ζ
∗
M,k)−C∞ (̂ζ

∗
M,k)

C∞(ζ̂
∗
M,k)

Nd

, (5.24)

SDRD
(2)
M,d =

√√√√√√∑Nd
k=1

[
Ĉ∞,M,k(ζ̂

∗
M,k)−C∞ (̂ζ

∗
M,k)

C∞(ζ̂
∗
M,k)

−MRD
(2)
M,d

]2

Nd

, (5.25)

The results obtained for these indices are reported in Tables 5.30 and 5.31.
The indices (5.24) and (5.25) are the mean and the standard deviation of the relative

MRD
(2)
M,d

M d Setup A Setup B Setup C

GP m -0.0053 -0-056 -0.046
IGP m -0.0076 0.18 0.17
GP m -0.11 -0.074 -0.066
IGP m 0.12 0.14 0.066
GP t -0.056 -0.057 -0.050
IGP t -0.00079 0.17 0.15

Table 5.30 – Results of the study: index MRD
(2)
M,d.

SDRD
(2)
M,d

M d Setup A Setup B Setup C

GP m 0.25 0.23 0.17
IGP m 0.34 0.29 0.21
GP m 0.25 0.21 0.17
IGP m 0.24 0.24 0.19
GP t 0.25 0.23 0.17
IGP t 0.34 0.29 0.21

Table 5.31 – Results of the study: index SRDR(2)
M,d.

difference [Ĉ∞,M,k(ζ̂∗
M,k) − C∞(ζ̂∗

M,k)]/C∞(ζ̂∗
M,k). A positive (negative) value of the in-

dex MRD
(2)
M,d indicates that the estimates of the long-run average maintenance cost rate

Ĉ∞,M,k(ζ̂∗
M,k) assume (dataset by dataset) values that in mean are greater (smaller) than

the corresponding true long-run average maintenance cost rate C∞(ζ̂∗
M,k). More specif-
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ically, for example, the value MRD
(2)
G,m reported in the first row of Table 5.30, in the

column relative to the setup B, indicates that the long-run average maintenance cost rate
calculated under the estimated gamma process, in the cases where the misspecification
has not occurred, are in mean 5.6% smaller than the corresponding true values. It is inter-
esting to note that the use of the gamma process leads to underestimate the true long-run
average maintenance cost rate, while the inverse Gaussian process leads (in almost all
cases) to overestimate it. However, in all cases, the values obtained for the MRD

(2)
M,d are

rather small. The values of the index SDRD
(2)
Md

reported in Table 5.31 show how the
estimates of the relative difference [Ĉ∞,M,k(ζ̂∗

M,k) − C∞(ζ̂∗
M,k)]/C∞(ζ̂∗

M,k) obtained from
the considered Nd synthetic datasets fluctuate around the corresponding mean reported
in Table 5.31.

5.6 Conclusions

In this chapter, three new maintenance policies have been proposed for units whose
degradation path is affected by unit-to-unit variability in the form of random effect. The
proposed policies consists in performing, at a predefined epoch, an inspection aimed at
measuring the degradation level of the unit and in using the outcome of this measurement
to inform subsequent decision-making via a condition-based rule.

In Chapter 5.2 the basic decision-making scheme is presented, showing its effectiveness
and how measurement error impacts on maintenance costs. The policy there illustrated
takes advantage of the heterogeneity present in the population by using the inspection to
timely distinguish between weak and strong units. Indeed, the inspection can be envisaged
as a classifier, casting all units in a "weak" class (immediately replacing them) and a
"strong" class (postponing their replacement).

The adaptive policy presented in Chapter 5.3 takes the same general idea one step
further. In fact, whereas in case of the non-adaptive policy of Chapter 5.2 all units cast
into the "strong" class are replaced at the same time, in this case the replacement time
will be adaptively scheduled based on the measured degradation level at the inspection
time. Indeed, here the inspection classifies units into several "strong" classes, and to each
one of them assigns an ad-hoc replacement time. Obtained results show that, under the
considered setup, noticeable savings can be achieved by adopting this adaptive strategy
over the non-adaptive one.

On the other hand, the policy presented in Chapter 5.4 expands on the simple scheme
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of Chapter 5.2 by integrating different measurement procedure at the inspection time.
Indeed, in this case the measurement is initially performed by using an imperfect proce-
dure that provides a perturbed measurement of the true degradation level. Based on the
outcome of this first measurement procedure, a condition-based rule is then used to decide
whether to immediately replace the unit, to postpone its replacement to a (also prede-
fined) later time, or to use second perfect measurement procedure, which has an extra
cost. In this latter case, based on the outcome of this second measurement procedure it
is finally decided whether to immediately replace the unit or to postpone its replacement
to a predefined future time.
The key idea of the policy, in this case, is to use the perturbed inspection to timely
identify the units that are safely below the failure threshold and those that are close to
failure or even already failed, for which the maintenance decision is unambiguous. Then,
an additional (perfect) measurement can be performed to further assess the true state of
the remaining unit and inform further decision-making.
The performances of this latter policy have been compared with those of three alternative
policies obtained by assuming that only one (either the perturbed one or the perfect one,
respectively) or none of the considered measurement procedures is adopted. The com-
parative study has been developed by considering eight setups that differ in the values of
some of the cost parameters and/or in the magnitude of the measurement error. Obtained
results have shown that, depending on the relative values of the cost parameters, adopting
the more flexible scheme can be very advantageous.

Overall, comparing the three policies has shown that, when inspection costs are high,
restricting the policy to a single inspection can be a viable strategy. However, it has also
shown that, for some particular setting of the cost model (i.e., high inspection costs, low
consequences of undetected failure) even a single inspection is already superfluous.

Finally, this chapter also presented the results of a misspecification study investigating
the impact on maintenance costs of misspecifying a gamma process with an inverse Gaus-
sian process. As it was already observed in the larger misspecification study presenter in
Chapter 4, also in this case it seems that, in the experimental situations when the risk of
a wrong diagnosis is higher, its consequences are milder. Conversely, when the risk of a
misspecification is lower, the consequences can be severe. Nevertheless, if model selection
is performed by using an appropriate statistical criterion (such as the adopted AIC) then
the performances of the two models are very similar.

In this chapter, the proposed policies are built only considering inspections and re-
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placements are available maintenance actions. In the next chapter, we will prioritize main-
tenance actions that we will refer to as "prescriptive", in the sense that the scope of these
actions is not limited to the strictly maintenance domain, but tap also into the more
general operational and economical aspects of the system. In conjunction with the more
classical maintenance actions, the prescriptive actions might provide an overall better
coordinated response between economical profitability and maintenance cost control.
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Chapter 6

A NEW PARADIGM: PRESCRIPTIVE

MAINTENANCE

6.1 Introduction

The main role of maintenance planning in industrial applications is to guarantee reli-
able and safe functioning of equipment. However, given that it often entails disruption to
normal operations (for example, to perform in-depth inspections) it is typically perceived
as a time-intensive and costly task. As touched upon also in some previous chapters, this
situation often generates a conflict between the commercial incentive to maximum uti-
lization of equipment and ensuring its safe operation through regular maintenance.
On the other hand, maintenance is also an activity that could create opportunities for
improvement. In the search for maximum operational efficiency, modern maintenance
strategies such as prescriptive maintenance (PsM) have been proposed as a potentially
effective tool.

Indeed, a PsM framework does not see maintenance-related decisions and operational-
related decisions are separated and conflicting, but rather considers them as two sides of
the same coin (see Pinciroli, Baraldi, and Zio (2023)). Therefore, maintenance recommen-
dations (i.e., the prescriptions) should be defined by taking into account all functionalities
of a system (see Iung (2019)). These prescriptions go beyond describing what, when, and
how to perform maintenance, but also provide precise operative instructions on how to
adjust the system operating conditions to reach a desired outcome (see Longhitano et
al. (2021a)).
Although an increasing number or papers dealing with this new paradigm have been pre-
sented in the recent literature, a formal definition of PsM is still missing. To the best
of the author’s knowledge, the most serious attempt at a definition has been made by
Longhitano et al. (2021b). In that paper, the authors argue that a PsM approach should:

— use failure predictions, or data-driven degradation models, to quantitatively assess
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the best course of action;

— as Iung (2019) suggests, account for all functionalities of a system;

— adopt a detailed model of the system under study, which should capture the effects
of prescriptive actions;

— given that the prescriptions will also influence the future failure behavior of the
system, said model should also have a closed-loop structure and be able to integrate
real-time data to correct the course of action.

The same authors also propose an example of application of PsM in Longhitano et
al. (2021b) and Longhitano et al. (2021a), where they model the degradation of a critical
component, the brake pad, of a fleet of vehicles. The goal of their PsM solution is to
provide the best mission schedule for the fleet and decide maintenance dates, considering
the effect one has on the other. They aim to maximize the utilization of the component
while minimizing workshop visits (especially the extra ones with respect to the prear-
ranged calendar), assigning different missions to different vehicles in order to manage the
degradation of their brake pads.

The idea of using prescriptive actions to influence the degradation and the operating
lifetime, with the goal of conforming to a predetermined maintenance calendar, is a re-
curring theme in the PsM literature, also touched upon by other authors, such as Dirkes
et al. (2023). In this manuscript, we will also explore a similar scenario.

Drawing inspiration from modern prescriptive maintenance ideas, in this chapter we
propose two prescriptive policies inspired by the one presented in Chapter 5.2. In fact,
both policies assume that, due to its high cost, a single inspection can be performed
during the life cycle of the unit and use the information gathered by means of this in-
spection to decide, via a condition-based rule, whether to immediately replace the unit
or to postpone its replacement to a future time. The main difference with respect to the
policy of Chapter 5.2 is that, here, we suppose that it is possible to manipulate the usage
rate of the unit according to economic considerations. Moreover, we also assume that the
time at which maintenance operations can be carried out are supposed to be subjected
to significant constraints (for example, limited maintenance personnel availability, con-
tractual clauses, etc...). The driving idea behind these policies is to investigate whether
introducing another degree of freedom (in the form of adjusting the usage rate), in a
scenario where maintenance dates are constrained, can provide a better trade-off between
preventive replacement, corrective replacement, inspection, and operational costs.
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A change in the usage rate is supposed to affect both the future evolution of the degra-
dation and operational costs. Indeed, one of the main challenge of prescriptive maintenance
is accounting for and quantifying how prescriptive actions (such as manipulating the us-
age rate) impact the degradation of the unit, and even more developing a comprehensive
cost model that captures their effects on maintenance and operational costs.

The prescriptive policies presented in this chapter are developed based on the following
assumptions:

— a single degrading unit is considered;

— failure occurs when the degradation level of the unit passes an assigned threshold
wM ;

— failures are not self announcing and the unit keeps operating past its failure point,
but with reduced performance/additional costs;

— any replacement (i.e., both corrective and preventive) restores the unit to an "as
good as new" state. Therefore, the time elapsing between two successive replacement
times defines the cycle of a renewal process;

— at the start of each cycle the usage rate is set to u0, where umin ≤ u0 ≤ umax, umin

is the minimum usage rate, and umax is the maximum usage rate;

— it is possible to change the usage rate only at the inspection time.

The performance measure adopted to define the optimal policy is the long-run average
maintenance utility rate.

6.2 A prescriptive maintenance policy for a gamma
deteriorating unit

6.2.1 Description of the policy

This prescriptive maintenance policy (see also Esposito, Castanier, and Giorgio (2022a))
is developed starting from the simple decision scheme proposed in Chapter 5.2. In fact, it
consists in performing a single inspection at an age-based time τ and deciding whether to
immediately replace the unit or to postpone its replacement to time τ + ∆τ , by using a
condition-based rule. The main novelty with respect to the policy illustrated in Chapter
5.2 is that here the condition-based rule includes the possibility of adjusting the usage
rate of the unit.
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The policy suits particularly well the cases in which the time intervals between suc-
cessive inspections/replacements are subjected to constraints. In fact, for simplicity (yet
without loss of generality), the proposed maintenance policy is formulated by assuming
that times between successive inspections/replacements are constrained to be equal (i.e.,
it is assumed that ∆τ = τ).

The condition based rule adopted to take the decision at τ is summarized in Table 6.1,
where wτ is the measured degradation level at time τ , L (L ≤ wM) is the preventive main-
tenance threshold, and umin ≤ up ≤ umax. The components of the vector ξ = {τ, L, u0, up}

Measurement at τ Decision
wτ > L Replacement at τ
wτ ≤ L Replacement at 2τ , set usage rate to up

Table 6.1 – Condition-based rule adopted to decide the replacement time and the usage
rate.

should be intended as design parameters. The value of ξ that maximizes the long-run
average maintenance reward rate (and hence defines the optimal policy) is denoted by
ξ∗ = {τ ∗, L∗, u∗

0, u
∗
p}. Table 6.2, where w2τ is the degradation level at time 2τ , lists all the

possible scenarios, along with the corresponding maintenance actions to be taken and the
length of a maintenance cycle T (wτ ). It is worth to note that, although the notation does

Experimental
Scenario

Maintenance
action Cycle length T (wτ )

L < wτ ≤ wM
Preventive

replacement at τ τ

wτ > wM
Corrective

replacement at τ τ

wτ ≤ L, w2τ ≤ wM
Preventive

replacement at τ 2τ

wτ ≤ L, w2τ > wM
Corrective

replacement at τ 2τ

Table 6.2 – Possible scenarios and corresponding maintenance actions and cycle lengths.

not highlight it, T (wτ ) functionally depends on ξ.
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6.2.2 Degradation model

The gamma process {Y (t); t ≥ 0} is a monotonic increasing process with independent
and gamma distributed increments. Thus, given an initial condition (here Y (0) = 0), it is
fully defined by the (pdf) of its generic increment ∆Y (t1, t2), with t2 > t1 ≥ 0:

f∆Y (t1,t2)(δ) = δ∆η(t1,t2) − 1
θ∆η(t1,t2) · Γ (∆η(t1, t2))

· e− δ
θ

or by the corresponding cdf:

F∆Y (t1,t2)(δ) =
γ
(
∆η(t1, t2), δ

θ

)
Γ (∆η(t1, t2))

where θ (θ > 0) is the scale parameter, η(t) is a non-negative, monotone increasing
function (referred to as the age function), ∆η(t1, t2) = η(t2) − η(t1), Γ(·) is the complete
gamma function, and γ(·) is the lower incomplete gamma function. In this chapter, it
is assumed that, given the history of the usage rate ut = {u(y), 0 ≤ y ≤ t} up to and
including the time t, the degradation process {W (t); t ≥ 0;ut} of the generic unit can be
described by using a gamma process, whose increment ∆W (t, t+ dt) over the elementary
time interval (t, t+ dt) is gamma distributed with conditional pdf:

f∆W (t,t+dt)(δ;ut) = f∆W (t,t+dt) (δ;u(t)) = δη
′ (t;u(t))dt−1 · e− δ

θ

θη(t) · Γ (η′ (t;u(t)) dt) . (6.1)

Note that the pdf (6.1) also implies that given u(t):

— the degradation increment ∆W (t, t+ dt) is assumed to be independent of W (t) and
of the past history of the usage rate ut− = {u(y), 0 ≤ y < t};

— as in Tseng, Balakrishnan, and Tsai (2009), the pdf of ∆W (t, t+ dt) is assumed to
depend on u(t) only through the value of its shape parameter η′(t;u(t)) · dt (in fact,
the scale parameter θ is assumed to be independent of the usage rate).

The function η′(t;u(t)) must be positive and integrable with respect to t. In this chapter,
the power-law expression η

′(t;u(t)) = a (u(t)) · b · tb−1 is adopted.
Therefore, under the proposed maintenance policy, the degradation level W (t) at time

t, for any t ≤ τ and given u0 (i.e., at any time before the inspection, given the value of
the usage rate between t = 0 and t = τ), is distributed as a gamma random variable with
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pdf:

fW (t)(δ;u0) = δη(t;u0)−1

θη(t;u0) · Γ (η(t;u0))
· e− δ

θ (6.2)

and cdf:

FW (t)(δ;u0) =
γ
(
η(t;u0); δ

θ

)
Γ (η(t;u0))

(6.3)

where:
η(t;u0) =

∫ t

0
η

′(y;u(y)) · dy =
∫ t

0
a(u(y)) · b · yb−1 · dy = a(u0) · tb.

Similarly, the degradation increment ∆W (τ, t) for any t > τ and given up (i.e., at any
time after the inspection and given the value of the usage rate between t = τ and t = 2τ)
is gamma distributed with conditional pdf:

f∆W (τ,t)(δ;up) = δ∆η(τ,t;up)−1

θ∆η(τ,t;up) · Γ (∆η(τ, t;up)) · e− δ
θ (6.4)

and conditional cdf:

F∆W (τ,t)(δ;up) =
γ
(
∆η(τ, t;up); δ

θ

)
Γ (∆η(τ, t;up)) (6.5)

where:

∆η(τ, t;up) =
∫ t

τ
η

′(y;u(y)) · dy =
∫ t

τ
a(u(y)) · b · yb−1 · dy = a(up) · (tb − τ b).

The adopted notations give evidence that the pdfs fW (t)(δ;u0) and f∆W (τ,2τ)(δ;up) and
the cdfs FW (t)(δ;u0) and F∆W (τ,2τ)(δ;up) depend on the usage rate (i.e., on u0 and up,
according to the time window). Conversely, for the sake of notation simplicity, they do
not explicitly highlight that f∆W (τ,t)(δ;up) and F∆W (τ,t)(δ;up) are conditional distributions
(i.e., are formulated given ut).

Finally, it is not hard to verify that, under the same assumptions, for t ≤ τ , the
conditional cdf of W (t) given W (τ) can be expressed as:

FW (t)|W (τ)(wt|wτ ;u0) = B
(
wt

wτ

; η(t;u0),∆η(t, τ ;u0)
)

(6.6)

where ∆η(t, τ ;u0) = η(τ ;u0) − η(t;u0), and B(z;α, β) is the regularized beta function:

B(z;α, β) = Γ(α + β)
Γ(α) · Γ(β) ·

∫ z

0
xα−1 · (1 − x)β−1 · dx.
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6.2.3 The cost model and formulation of the long-run average
maintenance reward rate

Under the proposed policy, the cost model is developed considering the cost of a
preventive replacement cp, the cost of a corrective replacement cc (cc ≤ cp), the inspection
cost ci, which is incurred only when an ad hoc inspection is done, and the logistic cost
cl, which is incurred each time an inspection or a replacement (even in the absence of an
inspection) are performed.

The usage rate is assumed to impact the cost model through a reward term and
a penalty term. Specifically, we assume that the reward earned by operating the unit at
usage rate u can be computed as the product of a reward rate r(u) and the operating time
of the unit, while the penalty cost can be expressed as the product of a penalty rate cpen(u)
and the downtime of the unit (i.e., the time elapsing from the potential failure of the unit
until its eventual replacement). This penalty cost is sustained only in case of failure of the
unit and is supposed to capture the effect of the reduced performances/additional costs
resulting from operating the unit past its failure time.

Table 5.12 summarizes the utility U(wτ , X) for each possible scenario, as a function
of the degradation level wτ and the lifetime of the unit X. As T (wτ ), also U(wτ , X)
functionally depends on ξ, despite the adopted notation not highlighting it.

Experimental scenario Utility U(wτ , X)
L < wτ ≤ wM −cl − ci − cp + r(u0) · τ

wτ > wM
−cl − ci − cc + r(u0) · τ

−cpen(u0) · (τ −X)
wτ ≤ L, w2τ ≤ wM −2 · cl − ci − cp + r(u0) · τ + r(up) · τ

wτ ≤ L, w2τ > wM
−2 · cl − ci − cc + r(u0) · τ + r(up) · τ

−cpen(up) · (2τ −X)

Table 6.3 – Possible scenarios and corresponding utility.

By the renewal-reward theorem (see Ross (1983)), the long-run average maintenance
reward rate function U∞(ξ) is defined as:

U∞(ξ) = E{U(W (τ), X)}}
E{T (W (τ))} (6.7)

where expectations have to be taken with respect to all the variables that are within the
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parentheses.

The expected values in Eq. (6.7) can be computed via Eqs. (6.8)-(6.9).

E{U(W (τ), X)} =

=
∫ L

0

∫ 2τ

τ
U(wτ , x) · fX|W (τ)(x|wτ ;up) · fW (τ)(wτ ;u0) · dx · dwτ

+
∫ L

0

∫ ∞

2τ
U(wτ , x) · fX|W (τ)(x|wτ ;up) · fW (τ)(wτ ;u0) · dx · dwτ

+
∫ wM

L

∫ ∞

τ
U(wτ , x) · fX|W (τ)(x|wτ ;up) · fW (τ)(wτ ;u0) · dx · dwτ

+
∫ ∞

wM

∫ τ

0
U(wτ , x) · fX|W (τ)(x|wτ ;u0) · fW (τ)(wτ ;u0) · dx · dwτ

= −cl − ci − cp + r(u0) · τ + [r(up) − cpen(up)] · τ · FW (τ)(L;u0)

− cl · FW (τ)(L;u0) − [cc − cp + cpen(u0) · τ ] · [1 − FW (τ)(wM ;u0)]

− (cc − cp) ·
∫ L

0
[1 − F∆W (τ,2τ)(wM − wτ ;up)] · fW (τ)(wτ ;u0) · dwτ

+ cpen(up) ·
∫ L

0

∫ 2τ

τ
F∆W (τ,x)(wM − wτ ;up) · fW (τ)(wτ ;u0) · dx · dwτ

+ cpen(u0) ·
∫ ∞

wM

∫ τ

0
FW (x)|W (τ)(wM |wτ ;u0) · fW (τ)(wτ ;u0) · dx · dwτ

(6.8)

E{T (W (τ))} =
∫ L

0
T (wτ ) · fW (τ)(wτ ;u0) · dwτ +

∫ ∞

L
T (wτ ) · fW (τ)(wτ ;u0) · dwτ

= 2τ ·
∫ L

0
fW (τ)(wτ ;u0) · dwτ + τ ·

∫ ∞

L
fW (τ)(wτ ;u0) · dwτ = τ · [1 + FW (τ)(L;u0)] (6.9)

6.2.4 Example of application

We consider a hypothetical application of the proposed approach to a corroding
pipeline, assuming that it is possible to control flow velocity according to convenience.
In fact, pipelines are often buried underground, or offshore, and only periodic inspections
can be performed (Alaswad and Xiang (2017)). Moreover, it has been observed that flow
velocity can influence the rate of corrosion (Utanohara and Murase (2019), Yoneda et
al. (2016)). Following Utanohara and Murase (2019) and Yoneda et al. (2016), we assume
that the corrosion rate is affected by flow velocity via a power-law function. In particular,
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we suppose that it affects the scale parameter of the age function:

a(u) = a ·
(

u

umax

)d

.

In this preliminary analysis, without loss of generality, it is assumed that the reward rate
r(u) depends linearly on flow velocity:

r(u) = r · u

umax

and that the penalty cost rate is a fixed fraction of the reward rate:

cpen(u) = cpen · r(u), (6.10)

where umax is the maximum allowable flow velocity, and a, r, and cpen are the correspond-
ing maximum degradation rate, reward rate, and penalty cost rate, respectively (i.e.,
a = a(umax), r = r(umax), and cpen = cpen(umax)). Depending on the practical scenario
under study, cpen might be greater or smaller than r (that is, operating a failed unit may
incur in a penalty that is greater than the corresponding reward). In this case, we set
cpen = 0.8, to investigate the case where the penalty is relevant but does not exceed the
reward. The values of the parameters used to calibrate the degradation process have been
inspired by those provided in Mahmoodian and Alani (2014) and are reported in Table 6.4.
The same table also report the values of the unitary costs cc, cp, ci, cl, and cpen, inspired
by those found in Dey (2004). The pipelines are assumed to fail when their degradation
level exceeds the threshold wM = 35 mm. The maximum and minimum allowable usage
rates have been set to umax = 1 and umin = 0.

a [years] b θ [mm] cp cc ci cl cpen

0.17 1 2.35 1 6 0.5 0.2 0.8

Table 6.4 – Parameters used to calibrate the degradation process and the cost model.

Let P1 be the proposed policy. For the sake of investigating the effect of changing
the usage rate, we compare the performance of P1 with three special cases obtained by
considering the following constraints:

— P2: u0 = uM ;

— P3: up = u0;
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— P4: u0 = up = uM .

We consider four experimental scenarios that differ in the values of r and d, and are
summarized in Table 6.5. Table 6.6 reports the optimal values of the design parameters

Scenario d r

A 1.3 0.2
B 2.3 0.2
C 1.3 0.05
D 2.3 0.05

Table 6.5 – Considered setups.

and the corresponding optimal long-run average maintenance reward rate computed under
the four aforementioned policies, in the case of the scenario A. Tables 6.7, 6.8, and 6.9
report the same results obtained under the scenarios B, C, and D. Tables 6.6-6.9 give

τ ∗ L∗ u∗
0 u∗

p U∗
∞

P1 34.2 16.1 1 1 0.1636
P2 34.2 16.1 1 1 0.1636
P3 34.2 16.1 1 1 0.1636
P4 34.2 16.1 1 1 0.1636

Table 6.6 – Optimal values of the design parameters and corresponding long-run average
maintenance reward rate obtained under the scenario A.

τ ∗ L∗ u∗
0 u∗

p U∗
∞

P1 50.4 11.5 1 0.91 0.1643
P2 50.4 11.5 1 0.91 0.1643
P3 34.2 16.1 1 1 0.1636
P4 34.2 16.1 1 1 0.1636

Table 6.7 – Optimal values of the design parameters and corresponding long-run average
maintenance reward rate obtained under the scenario B.

evidence that, depending on the particular scenario, it is more or less advantageous to
adopt P1 instead of the less flexible P2, P3, and P4.

The effect of changing the usage rate is especially apparent in the case of the scenarios
C and D. In fact, for example, in the case of scenario D, P1 allows to obtain a long-run
average maintenance reward rate that is 22% greater than the one obtained under P3 and
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τ ∗ L∗ u∗
0 u∗

p U∗
∞

P1 52.6 15.2 1 0.65 2.027 · 10−2

P2 52.6 15.2 1 0.65 2.027 · 10−2

P3 35.2 16.4 1 1 1.432 · 10−2

P4 35.2 16.4 1 1 1.432 · 10−2

Table 6.8 – Optimal values of the design parameters and corresponding long-run average
maintenance reward rate obtained under the scenario C.

τ ∗ L∗ u∗
0 u∗

p U∗
∞

P1 61.2 16.2 0.95 0.71 2.355 · 10−2

P2 54.5 16.4 1 0.74 2.348 · 10−2

P3 83.7 16.4 0.68 0.68 1.924 · 10−2

P4 35.2 16.4 1 1 1.423 · 10−2

Table 6.9 – Optimal values of the design parameters and corresponding long-run average
maintenance reward rate obtained under the scenario D.

65% greater than the one obtained under P4, where P3 is the policy that does not allow for
the possibility of modifying the usage rate on the basis of the degradation measurement
performed at τ and P4 is the one that sets both u0 and up to the maximum allowable
value umax.

6.3 An adaptive prescriptive maintenance policy for
a gamma deteriorating unit

6.3.1 Description of the policy

This prescriptive policy (see also Esposito, Castanier, and Giorgio (2023)) extends the
one presented in Chapter 6.2. Also in this case the policy consists in performing a single
inspection at a predetermined inspection time τ whose outcome is a measurement of the
current degradation level of the unit (hereinafter denoted as wτ ). This measurement is
then used to decide, via a condition-based rule, whether to immediately replace the unit
or to postpone its replacement to time 2τ (no additional inspection will be performed
at 2τ). In case the replacement is postponed, if it is deemed economically convenient,
the usage rate for the remainder of the operating life of the unit can be changed within
predetermined limits, according to convenience, influencing both the future evolution of
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the degradation process and the operating costs.
The main novelty of this approach with respect to the one suggested in Chapter 6.2

is that, here, in case the replacement is postponed the new usage rate is determined
based on the adaptive rule described in Table 6.10, where L1 < L2 < · · · < Lk < wM ,
u1 > u2 > · · · > uk denote the usage rates that (based on wτ ) are used in the time interval
(τ, 2τ), and Lk is the preventive replacement threshold.

Measurement at τ Decision
wτ > Lk Replacement at τ

Lk−1 < wτ ≤ Lk Replacement at 2τ , set usage rate to uk
... ...

L1 < wτ ≤ L2 Replacement at 2τ , set usage rate to u2
wτ ≤ L1 Replacement at 2τ , set usage rate to u1

Table 6.10 – Adaptive condition-based rule adopted to perform decision-making.

At the beginning of the maintenance cycle the usage rate is set to u0 and its value is also
a design parameter which should should be set on the basis of economic considerations.
The components of the vector ξ = {L1, . . . , Lk, u0, u1, . . . , uk} should be intended as design
parameters. The value of ξ which maximizes the long-run average maintenance reward
rate and defines the optimal policy is denoted by ξ∗ = {L∗

1, . . . , L
∗
k, u

∗
0, u

∗
1, . . . , u

∗
k}.

The number of classes k should be envisaged as a "hyperparameter" that must be set
a priori with the aim of finding a satisfactory trade-off between performance of the policy
and computational burden, which both increase with k.

It is worth remarking that, when k = 1, the proposed policy coincides with the one
suggested in Chapter 6.2. Table 6.11, where w2τ is the degradation level at time 2τ , lists
all the possible scenarios along with the corresponding maintenance actions to be taken
and the length of a maintenance cycle T (wτ ). Note that, despite not highlighting it, T (wτ )
functionally depends on ξ.

6.3.2 The cost model and formulation of the long-run average
maintenance reward rate

The cost model is developed under the same assumptions (and notation) of Chapter
6.2. Table 6.12 lists, for each possible scenario, the corresponding utility U (wτ , X) as a
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Experimental
scenario

Maintenance
action Cycle length T (wτ )

Lk < wτ ≤ wM
Preventive

replacement at τ τ

wτ > wM
Corrective

replacement at τ τ

wτ ≤ Lk and w2τ ≤ wM
Preventive

replacement at 2τ 2τ

wτ ≤ Lk and w2τ > wM
Corrective

replacement at 2τ 2τ

Table 6.11 – Possible experimental scenarios and corresponding maintenance action and
cycle length.

function of the degradation level at the inspection time wτ and of the lifetime of the unit
X.

The long-run average maintenance reward rate U∞(ξ) is computed via the renewal-
reward theorem (see Ross (1983)) as:

U∞(ξ) = E{U(W (τ), X)}
{T (W (τ))} (6.11)

where expectations have to be taken with respect to both W (τ) and X. The optimal value
U∞(ξ∗) obtained when ξ = ξ∗ is denoted as U∗

∞.
The expected values in Eq. (6.11) are not available in closed form but can be computed
via Eqs. (6.12)-(6.13).

E{U(W (τ), X)} =

=
k∑

h=1

∫ Lh

Lh−1

∫ 2τ

τ
U(wτ , x) · fX|W (τ)(x|wτ ;uh) · fW (τ)(wτ ;u0) · dx · dwτ

+
k∑

h=1

∫ Lh

Lh−1
U(wτ , x) · fX|W (τ)(x|wτ ;uh) · fW (τ)(wτ ;u0) · dx · dwτ

+
∫ wM

Lk

∫ ∞

τ
U(wτ , x) · fX|W (τ)(x|wτ ;u0) · fW (τ)(wτ ;u0) · dx · ·dwτ

+
∫ ∞

wM

∫ τ

0
U(wτ , x) · fX|W (τ)(x|wτ ;u0) · fW (τ)(wτ ;u0) · dx · dwτ

= −cl − ci − cp − cl · FW (τ)(Lk;u0) + r(u0) · τ

− [cc − cp + cpen(u0) · τ ] ·
[
1 − FW (τ)(wM ;u0)

]
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Experimental
scenario Utility U(wτ , X)

Lk < wτ ≤ wM −2 · cl − ci − cp + r(u0) · τ

wτ > wM
−2 · cl − ci − cc + r(u0) · τ

−cpen(u0) · (τ −X)
Lk−1 < wτ ≤ Lk and w2τ ≤ wM −2 · cl − ci − cp + r(u0) · τ + r(uk) · τ

Lk−1 < wτ ≤ Lk and w2τ > wM
−2 · cl − ci − cc + r(u0) · τ + r(uk) · τ

−cpen(uk) · (2τ −X)
... ...

L1 < wτ ≤ L2 and w2τ ≤ wM −2 · cl − ci − cp + r(u0) · τ + r(u2) · τ

L1 < wτ ≤ L2 and w2τ > wM
−2 · cl − ci − cc + r(u0) · τ + r(u2) · τ

−cpen(u2) · (2τ −X)
wτ ≤ L1 and w2τ ≤ wM −2 · cl − ci − cp + r(u0) · τ + r(u1) · τ

wτ ≤ L1 and w2τ > wM
−2 · cl − ci − cc + r(u0) · τ + r(u1) · τ

−cpen(u1) · (2τ −X)

Table 6.12 – Possible scenarios and corresponding utility.

+ τ ·
k∑

h=1
[r(uh) − cpen(uh)] ·

[
FW (τ)(Lh;u0) − FW (τ)(Lh−1;u0)

]

− (cc − cp) ·
k∑

h=1

∫ Lh

Lh−1

[
1 − F∆W (τ,2τ)(wM − wτ ;uh)

]
· fW (τ)(wτ ;u0) · dwτ

+
k∑

h=1

∫ Lh

Lh−1

∫ 2τ

τ
cpen(uh) · F∆W (τ,x)(wM − wτ ;uh) · fW (τ)(wτ ;u0) · dx · dwτ

+ cpen(u0)
∫ ∞

wM

∫ τ

0
FW (x)|W (τ)(wM |wτ ;u0) · fW (τ)(wτ ;u0) · dx · dwτ (6.12)

E {T (W (τ))} =
k∑

h=1

∫ Lh

Lh−1
T (wτ ) · fW (τ)(wτ ;u0) · dwτ +

∫ ∞

Lk

T (wτ ) · fW (τ)(wτ ;u0) · dwτ

= 2τ ·
k∑

h=1

∫ Lh

Lh−1
fW (τ)(wτ ;u0) · dwτ + τ ·

∫ ∞

Lk

fW (τ)(wτ ;u0) · dwτ

= τ ·
[
1 + FW (τ)(Lk;u0)

]
(6.13)

Also under this policy, the degradation model is the gamma-based process described in
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Chapter 6.2.2, where the expressions of the pdfs and cdf included in Eqs. (6.12) and (6.13)
can be found.

6.3.3 Example of application

As in Chapter 6.2, the proposed adaptive policy is applied to a real-world inspired
case of corroding pipelines. Under the same notation, we have adopted the following
expressions for the age function, reward rate, and penalty cost rate:

a(u) = a ·
(

u

umax

)d

, (6.14)

r(u) = r · u

umax

, (6.15)

cpen(u) = cpen · r(u). (6.16)

The parameters of the degradation model and of the cost model are reported in Tables
6.13. The failure threshold wM has been set to 35 mm, while the maximum and minimum
allowable usage rates have been set to umax = 1 and umin = 0.

a [years] b θ [mm] d cp cc ci cl cpen r

0.24 1 2.35 2 1 6 0.5 0.2 0.8 0.12

Table 6.13 – Parameters used to calibrate the degradation process and the cost model.

For the sake of comparison, let P0(k) be the proposed policy and P1 be the special
case of P0(k) where k = 1 and u0 = u1. Essentially, P1 is a condition-based policy
where the usage rate is set a priori to a fixed value that does not change during the
maintenance cycle. Figure 6.1 depicts the optimal long-run average maintenance utility
rate as a function of the inspection time τ under P0(k) (for k = 1, 3, and 5) and under
P1. This figure shows that, under the considered setup, adopting the more flexible policy
P0(k) can provide noticeable improvements in the long-run average maintenance utility
rate. To understand how these performances are achieved, it is necessary to investigate
how P0(k) adaptively assigns the usage rate.

Figure 6.2 depicts the optimal values of the usage rates u assigned by the considered
policies in case τ = 35, as a function of wτ . Here, the preventive replacement threshold
Lk coincides with the smallest value of wτ where the assigned usage rate is 0. Figure
6.2 shows that, under policy P0, to a unit that is barely degraded at τ = 35 it will be
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Figure 6.1 – Optimal long-run average maintenance reward rate as a function of the
inspection time τ under the considered policies.

assigned a higher value of the usage rate, while to more degraded units it will be assigned
a progressively lower usage rate. Moreover, the same figure also shows that, due to the
lack of flexibility, policy P1 must be more conservative than P0(k). Indeed, under P0(k)
the preventive replacement threshold is higher than under P1, increasing the probability
that the replacement is postponed, which in turn prolongs the operating life of the unit.
As the number of classes k increases, this effect is further accentuated.

Let cU
∗
∞, iU

∗
∞, lU

∗
∞, pU

∗
∞, and penU

∗
∞ be the contributions to the optimal long-run

average maintenance reward rate U∗
∞ of corrective, inspection, logistic, preventive, and

penalty costs, respectively, and rU
∗
∞ be the contribution to U∗

∞ of the reward term (ob-
viously, it is cU

∗
∞ + pU

∗
∞ + lU

∗
∞ + iU

∗
∞ + penU

∗
∞ + rU

∗
∞ = U∗

∞. The bar chart in Figure
6.3 shows (in black) the values of these contributions under policy P1 and (in grey) un-
der policy P0(5) (i.e., P0 with k = 5). The same values are also reported in Table 6.14,
together with the total utility U∗

∞.
Figure 6.3 and Table 6.14 show that the reward earned under P1 is greater than the

one earned under P0(5) (i.e., the contribution of the reward term rU
∗
∞ is higher under

P1 than under P0(5)). However, this is compensated by the contributions of all the other
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Figure 6.2 – Optimal values of the usage rate in (τ, 2τ) as a function of wτ at τ = 35
under P0(k) (with k = 1, 3, and 5) and P1.

(negative) cost factors, which are all smaller than under P0(5). These results show that,
by adaptively assigning a usage rate tailored to the actual degradation level of the unit,
the policy P0(5) is able to prolong the useful life of the unit while carefully managing the
risk of failure.

6.4 Conclusions

In this chapter, two maintenance policy inspired by concepts of modern prescriptive
maintenance have been proposed. Similarly to the ones discussed in Chapter 5, these
policies rely on a single inspection performed at a predetermined time and, based on
the outcome of this inspection, adopt a condition-based decision-making rule. Yet, with
respect to the policies presented in Chapter 5, where the intervals between successive
maintenance actions could be set freely by the policy based on economic considerations,
here significant constraints regarding them are assumed to be in place, a situation that
is commonly encountered in practice. Indeed, the driving idea behind the two prescrip-

161



Chapter 6 – A new paradigm: prescriptive maintenance

Figure 6.3 – Values of cU
∗
∞, iU

∗
∞, lU

∗
∞, pU

∗
∞, rU

∗
∞, and penU

∗
∞

tive policies is that, especially in these cases where maintenance times are subjected to
constraints, introducing another degree of freedom in the form of adjusting the usage
rate can help in reaching a better global trade-off between inspection, replacement, and
operational costs.

Obviously, changing the usage rate of a unit has an impact both on the degradation
evolution and on operational costs. Therefore, a comprehensive cost model that can ac-
count for these effects should be developed. Indeed, this is currently one of the main
challenges of the implementation of prescriptive maintenance. In Chapter 6.2 the basic
decision-making scheme is presented. Similarly to the policy of Chapter 5.2, at the in-
spection time it is decided whether to immediately replace the unit or to postpone its
replacement and, if deemed economically convenient, change its usage rate.
Then, the adaptive policy presented in Chapter 6.3 expands on the aforementioned basic
scheme by assuming that, in case the replacement is postponed, an ad-hoc usage rate can
be assigned to different units based on the measured degradation level at the inspection
time.

Obtained results show that, depending on the relative values of parameters of the
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P0(5) P1

cU
∗
∞ −0.0068 −0.0076

iU
∗
∞ −0.0108 −0.0076

lU
∗
∞ −0.0057 −0.0076

pU
∗
∞ −0.0205 −0.0076

rU
∗
∞ −0.1144 −0.0076

penU
∗
∞ −5.49 · 10−4 −6.64 · 10−4

U∗
∞ −0.0068 −0.0076

Table 6.14 – Values of cU
∗
∞, iU

∗
∞, lU

∗
∞, pU

∗
∞, rU

∗
∞, penU

∗
∞, and U∗

∞ obtained under P1
and under P0(5).

degradation and cost model, adjusting the usage rate can be an economically advantageous
strategy. Indeed, comparing the performances of the proposed prescriptive policy with
simpler condition-based ones (obtained from the suggested policy by constraining the
usage rate), manipulating the usage rate seems to allow the prescriptive policy to prolong
and better exploit the operational life of the unit while carefully managing the risk of
failure.
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Chapter 7

A PRELIMINARY ANALYSIS OF A

PRESCRIPTIVE BLOCK REPLACEMENT

POLICY FOR A DEGRADING PRODUCTION

SYSTEM

7.1 Introduction

In industrial production processes, maintenance and production planning play a crucial
role in ensuring smooth operation of the system. Maintenance is responsible for oversee-
ing the reliability and availability of equipment, while production planning focuses on
maximizing the efficiency of the production process.

Even though the underlying goal for both is the maximization of production, their
requirements can often be conflicting with each other. Indeed, production planning prior-
itizes the maximization of output, which may lead to a push for increased utilization of
equipment, deferring or neglecting crucial maintenance actions, which might potentially
result in unexpected breakdowns and overall lower production efficiency. On the other
hand, maintenance is focused on ensuring the reliability and longevity of the equipment
regardless of production constraints, which may require frequent interruption of opera-
tions for inspections, repairs, and replacement, in order to minimize downtime due to
potential failures.

For these reasons, maintenance is typically considered a capacity-consuming activity
and often results in compromising between minimizing disruption to production while
guaranteeing reliable performance at the lowest cost (e.g., see Bajestani, Banjevic, and
Beck (2014), Hajej and Rezg (2020), Lai, Z. Chen, and Bidanda (2019), Nasr, Salameh,
and Moussawi-Haidar (2017)).

Taking advantage of the recent improvements in sensors and monitoring technologies,
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maintenance strategies that incorporate the real-time information about the state of the
equipment, such as Condition-Based Maintenance (CBM) have been extensively studied
in the literature (e.g., see Van Noortwijk (2009) and Alaswad and Xiang (2017)). Within
the context of production processes, Jafari and Makis (2015) developed a maintenance
policy where the production facility is regularly inspected and the decision about whether
to perform maintenance or to continue production is made based on the outcome of the
inspection. By using a semi-Markov decision process, the authors solve the problem of the
joint optimization of lot sizing and preventive maintenance and show that this approach
can be significantly advantageous with respect to the traditional age-based policy in terms
of long-run average maintenance cost rate.

The same authors also deal with a similar problem, but in the case of a partially
observable facility (using a hidden Markov process) in Jafari and Makis (2016b). They
extend the analysis also in the case of a two-unit system where the condition of most
expensive unit is monitored and only age information is available for the other one in Jafari
and Makis (2016a). Other papers studying the effects of CBM on production planning can
be found in H. Peng and Houtum (2016), Cheng, B. H. Zhou, and L. Li (2017), Cheng,
B. H. Zhou, and L. Li (2018), Khatab et al. (2019), and Zheng et al. (2021). From these
papers we can remark that the main advantage of CBM lies in the fact that maintenance
decisions can be taken on the basis on the degradation measures collected on the system
under analysis during its operating life.

Another interesting area of research is the study of how production decisions, specifi-
cally modifications in the production rate, impact on the risk of failure. In some papers,
such as Martinelli (2010), or Tan (2019), it is assumed that higher production rates entail
higher failure risks but have no permanent effect on the degradation of the system. Other
articles, such as Ruifeng and Subramaniam (2012), Ayed, Sofiene, and Nidhal (2012),
Cheng, B. H. Zhou, and L. Li (2016), Zied, Sofiene, and Nidhal (2011), and Majdouline
et al. (2022), assume that the degradation is dependent on the production rate, but do
not take into account direct condition monitoring (instead, they use other tools, such as,
for example, virtual age).

Some other authors have also considered the possibility of changing the production
rate of a system based on its real-time state with the aim of influencing its degradation
rate. Specifically, Broek, R. H. Teunter, Jonge, et al. (2020) analyze a single-unit produc-
tion system subjected to regular condition monitoring where the gathered degradation
measures are used to dynamically adjust the production rate with the aim of maximizing
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production revenues and minimizing maintenance costs. A similar analysis, but in the case
of a two-unit system with economic dependencies, is performed in Broek, R. H. Teunter,
De Jonge, et al. (2021b).
Broek, R. H. Teunter, De Jonge, et al. (2021a) compare the performances of condition-
based maintenance policies (i.e., policies where maintenance decisions are taken based
on the measurements) against those of condition-based production policies (i.e., policies
where production decisions are taken based on the measurements).
On the other hand, new maintenance paradigms, such as prescriptive maintenance, are
getting increased attention in the very recent literature (see also Chapter 6) as a poten-
tially useful tool to solve the conflict between maintenance and production planning.

In this chapter, we aim to apply concepts of modern prescriptive maintenance to
develop a prescriptive block replacement maintenance policy for a production system
undergoing stochastic degradation. The proposed policy consists in performing regular
inspections aimed at measuring the degradation level of the production system. Based on
the outcome of the inspections, it is decided whether to immediately replace the system
or to continue operation. If deemed economically convenient, the production rate can be
adjusted (either increased or decreased). Any change in the production rate should have
an effect both on the future evolution of the degradation of the system and on its operating
costs. Moreover, the policy must also take into account a production requirement, with
the global objective being to maximize production revenue while minimizing downtime.

It is worth to emphasize that, the fact that in a prescriptive maintenance context,
maintenance decisions and degradation influence each other generates serious mathemat-
ical complexity, both in the degradation modeling and (even more) in the optimization
process. This work should therefore be seen as exploratory in this domain.

7.2 Description of the policy

The proposed policy relies on the following assumptions:

— A single production system, producing one-type items is considered;

— The processing time (i.e., the time it takes for the production system to produce a
single item) is deterministic;

— The production horizon is divided in equally spaced Production Periods (PP) of
length τ ;

167



Chapter 7 – A preliminary analysis of a prescriptive block replacement policy for a degrading
production system

— Let Nk(τ) be the number of items produced in a PP of length τ . In each PP the
system is expected to meet a production requirement of Nk(τ) ≥ nτ items;

— The system is subjected to a gradual deterioration process that can be described
via a gamma-based process;

— Failure is defined by the first passage time of the degradation process to a fixed
threshold, say wM . When failure occurs, production is halted immediately, and the
system is inoperative until maintenance is performed;

— Both preventive and corrective replacements restore the system to an "as good as
new" state and are performed in negligible time.

Based on this assumptions, the policy can be seen as a combination of three decision rules:

— A block replacement rule: preventive and corrective replacements, as well as inspec-
tions, can only be performed at predefined, periodic inspection times. Specifically,
here it is supposed that inspections and replacements can only be performed at the
end of each PP;

— A condition-based rule: based on the outcome of the inspection, the preventive
and corrective replacement actions might be triggered. Specifically, if at the end
of the kth PP (k = 1, . . . ,∞), the inspection reveals that the system is failed it
is correctively replaced, whereas if the system is still in a working state but its
degradation level has already passed a preventive threshold, say L, it is deemed
too degraded and is preventively replaced. Otherwise, production continues in the
(k + 1)th PP;

— A prescriptive rule: it is possible, only once within each PP, to change the Production
Rate (PR) of the system. The PR can be either increased or decreased and can be
changed at any time within the PP, with the only constraint that it cannot be
changed while an item is being produced. However, it can be changed from its
nominal value (denoted by unom) after qk items are produced in the kth PP to a
new value (denoted by uk) which will be kept for the remainder of the PP. The PR
will be reset to the nominal value at the start of the next PP. The decision about
if, how, and when to change the PR during the kth PP will be taken based on the
degradation level measured at the end of the (k − 1)th PP. A change in the PR
will have an effect both on the future degradation evolution of the system and on
operating costs. In the following, a pair (q, u) will be referred to as a “prescriptive
decision”.
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Therefore, the decision parameters of the proposed policy are the preventive threshold L,
and the vectors uk and qk, where uk = {u1, u2, u3, . . .} and qk = {q1, q2, q3, . . .}.

7.3 The degradation process

The gamma process {Y (t); t ≥ 0} is a monotonic increasing process with independent
and gamma distributed increments. Hence, it can be completely defined by an initial
condition (here Y (0) = 0) and by either the probability density function (pdf) or the
cumulative distribution function (cdf) of its generic increment ∆Y (t, t + ∆t) = Y (t +
∆t) − Y (t), given by, respectively:

f∆Y (t,t+∆t)(y) = y∆η(t,t+∆t)−1

θ∆η(t,t+∆t) · Γ (∆η(t, t+ ∆t)) · e− y
θ (7.1)

and:
F∆Y (t,t+∆t)(y) = γ (∆η(t, t+ ∆t), y/θ)

Γ (∆η(t, t+ ∆t)) (7.2)

where θ (θ > 0) is the scale parameter, Γ(·) and γ(·) are the complete and lower incomplete
gamma functions, respectively, ∆η(t, t + ∆t) = η(t + ∆t) − η(t), and η(t) = a · tb is the
age function. For the sake of simplicity, yet without loss of generality, in this chapter we
assume that the considered gamma process is homogeneous (i.e., b = 1).

Following Tseng, Balakrishnan, and Tsai (2009), we assume that the PR influences
the degradation process only through the age function (i.e., the scale parameter θ is
independent of the PR). Specifically, we suppose that increasing the production rate will
reduce the processing time of an item (e.g., items will be produced faster), but at the
same time it also increases the mean degradation rate by increasing the parameter a of
the age function. Under these assumptions, a system producing one item at PR u will
sustain a degradation increment ∆W (0, δ(u)) that has the following pdf:

f∆W (0,δ(u))(∆w) = ∆wa(u)·δ(u)−1

θa(u)·δ(u) · Γ (a(u) · δ(u)) · e− ∆w
θ , (7.3)

where δ(u) is a monotonic decreasing function of u that measures the processing time of
one item at PR u, and a(u) is a monotonic increasing function of u that captures the
effect of the PR on the mean degradation rate.

Hereinafter, to highlight the influence of the prescriptive decisions on the degradation
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evolution of the system, the degradation increment within the kth PP will be denoted by
∆Wk(z) (where 0 < z < τ), whereas the cumulated degradation level after k PP will be
denoted by W (kτ ; qk,uk) (where qk = {qi, i = 1, . . . , k} and uk = {ui, i = 1, . . . , k} keep
track of the entire history of prescriptive decisions up to the kth PP). The pdf of ∆Wk(z)
can be expressed as:

f∆Wk(z)(∆w) = ∆wηk(z)−1

θηk(z) · Γ (ηk(z)) · e− ∆w
θ (7.4)

where:

ηk(z) =

 z · a(unom) z ≤ qk · δ(unom)
qk · δ(unom) · a(unom) + (z − qk · δ(unom)) · a(uk) z > qk · δ(unom)

, (7.5)

then, being W (kτ ; qk,uk) = ∑k
i=1 ∆Wi(τ), thanks to the reproductive property of the

gamma random variable, the pdf of W (kτ ; qk,uk) can be expressed as:

fW (kτ ;qk,uk)(wkτ ; qk,uk) = w
η(kτ ;qk,uk)−1
kτ

θη(kτ ;qk,uk) · Γ (η(kτ ; qk,uk)) · e− wkτ
θ (7.6)

and its cdf:
FW (kτ ;qk,uk)(wkτ ; qk,uk) = γ (η(kτ ; qk,uk), wkτ/θ)

Γ (η(kτ ; qk,uk)) (7.7)

where η(kτ ; qk,uk) = ∑k
i=1 ηk(τ) captures the effect of the entire history of prescriptive

decisions up to the kth PP.

Eqs. (7.4) and (7.5) give clear evidence of the fact that the degradation increment
within the kth PP only depends on the prescriptive decision made in the kth PP itself
(i.e., the pair (qk, uk)). Conversely, Eqs. (7.6) and (7.7) show that the degradation level
after k PPs is affected by the entire history of prescriptive decisions (qk,uk). As already
mentioned, the production system is assumed to fail when its degradation process passes
for the first time a fixed threshold wM . Given that inspections will be regularly performed
at the end of each PP, we can suppose that the degradation value at the end of the
(k − 1)th PP, w(k−1)τ , will always be known before starting the kth PP (note that this
also implies that a failed system would be systematically detected and will not start
production already failed). Consequently, we can express the "local" (i.e., measured in the
kth PP) lifetime Xk as:

Xk = inf{xk : ∆Wk(x) > wM − w(k−1)τ }. (7.8)
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That is, xk (0 < xk ≤ τ) is the first passage time, measured between 0 and τ , when the
degradation process exceeds the failure threshold in the kth PP (obviously, xk ̸= tau in
the sole PP when failure occurs). In this sense, the "calendar" (i.e., measured from the
start of the life cycle) lifetime will be:

X =
∞∑

k=1
Xk

7.4 Cost formulation

The cost model is developed by considering the cost of an inspection ci, the cost
of a preventive replacement cp, and the cost of a corrective replacement cc. Moreover,
we assume that a reward rn is earned for each item produced in the kth PP until the
production requirement nτ is met. Any additional item produced in the same period
beyond the requirement yields a reward rs < rn (due to storage costs, for example).
Conversely, if the requirement is not met and fewer than nτ items will be produced, then
a penalty cost clp for each non-produced item is incurred.
The reward earned in the kth PP, scenario by scenario, is summarized in Table 7.1, where
wkτ is the degradation level of the system at the kth inspection (i.e., at the end of the
kth PP), and Nk is the number of items produced in the kth PP.

Measured degradation level Nk Reward Rk(wkτ , xk)
wkτ > wM Nk ≥ nτ nτ · rn + (Nk − nτ ) · rs − cc

wkτ > wM Nk < nτ Nk(τ) · rn − (nτ −Nk) · clp − cc

L < wkτ ≤ wM Nk ≥ nτ nτ · rn + (Nk − nτ ) · rs − cp

L < wkτ ≤ wM Nk < nτ Nk · rn − (nτ −Nk) · clp − cp

wkτ ≤ L Nk ≥ nτ nτ · rn + (Nk − nτ ) · rs

wkτ ≤ L Nk < nτ Nk · rn − (nτ −Nk) · clp

Table 7.1 – Reward earned in the kth PP.

The number of produced items Nk(τ) in the kth PP can be computed as:

Nk =

 xk/δ(unom) xk < qk · δ(unom)
qk + (xk − qk · δ(unom))/δ(uk) xk ≥ qk · δ(unom)

. (7.9)

From Eq. (7.9) it is clear that, given the prescriptive decision in the kth interval (qk, uk)
the only other relevant quantity to compute Nk is the value of the local lifetime xk.
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The adopted performance measure is the long-run average maintenance reward rate, for-
mulated via the renewal/reward theorem (e.g., see Ross (1983)):

R∞(L, q,u) = E {∑∞
k=0 Rk(wkτ , xk)}
MTBR

, (7.10)

where MTBR is the mean time between two replacements (i.e., the length of the main-
tenance cycle) given by:

MTBR = τ ·
∞∑

k=0
P (W (kτ ; qk,uk) < L) = τ ·

∞∑
k=0

FW (kτ ;qk,uk)(L). (7.11)

The optimal values of L, q, and u, which define the optimal policy, are the values L∗, q∗,
and u∗ that maximize Eq. (7.10). The corresponding optimal long-run average mainte-
nance reward rate is denoted by R∗

∞.
For simplicity of notation, Eq. (7.10) does not highlight that both the expected reward

per cycle (at the numerator) and the MTBR depend on the design variables L, q, and
u. Conversely, it gives evidence that the expected reward explicitly depends on the whole
sequence of measured degradation values at the end of every PP (i.e., wkτ ∀k = 1, . . . ,∞).
This, combined with the fact that (in general) the production horizon is infinite, and that
the maintenance decision taken in each PP will influence the degradation level at its end,
which in turn influences the prescriptive decisions in the following PPs, leads to complexity
in determining the optimal values q∗ and u∗ over an infinite horizon. Here, the long-run
average maintenance reward rate is computed by means of Monte Carlo simulations. It is
worth to remark that the considered degradation process is still Markovian and therefore
only the degradation level at the start of a PP is relevant to decide if, when and how to
change the PR during the PP.

7.5 Application example

We here illustrate an example of application of the proposed policy. The values of the
parameters of the degradation model and of the cost model are reported in Table 7.2.
For the sake of simplicity, we assume that the production rate can be selected from a
set of three values: the nominal value unom, the maximum value umax (that represents an
accelerated PR) and the minimum value umin (which represents a reduced PR). Table 7.3
reports the values of δ(u) and a(u) for the considered production rates. Let Pol be the
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wM θ τ rn rs clp cc cp nτ

10 0.2 100 5 3 4 2000 500 90

Table 7.2 – Values of the parameter of the degradation model and of the cost model.

umin unom umax

δ(u) 0.6 1 1.4
a(u) 1.2 1 0.6

Table 7.3 – Effect of the production rate on δ(u) and a(u).

proposed policy. Then, let Pol(unom), Pol(umin), and Pol(umax) be the special cases of
Pol where the PR is constrained to u = unom, u = umin, and u = umax, respectively. Table
7.4 reports the results obtained by optimizing all of the considered policies. It is worth
to remark that the parameter L here is not optimized, but it is set to L = 8.5. Obtained

Policy MTBR E{Nk} per cycle R∗
∞

Pol 564 166.67 5.50
Pol(umin) 754 89.95 3.76
Pol(unom) 668 99.05 3.49
Pol(umax) 575 164.24 5.30

Table 7.4 – MTBR, expected number of produced items per cycle, and long-run average
maintenance reward rate under all of the considered policies.

results show that the more flexible Pol provides the best performance in terms of long-
run average maintenance reward rate. Table 7.5 shows the optimal sequence of decisions
on a randomly selected cycle (this is obtained by means of Monte Carlo simulation),
under policy Pol. We can observe that, during the first 5 PPs, when the degradation is
relatively low, the optimal decision is to set the PR to umax for the entire PP. Then,
when the degradation level gets closer to the preventive threshold, in the 6th period,
the optimal decision shifts to slowing down the PR after having produced q6 = 65 items
(note that, even with the slowdown, in this PP the production target is still attained, as
N6 = 90 = nτ ).
Subsequently, in the 7th PP, when the measured degradation at its start (i.e., w6τ = 8.39)
is only slightly smaller than the preventive threshold (i.e.,L = 8.5), the PR is slowed
down relatively quickly, after only q7 = 10 items. In this period only N7 = 74 items are
produced, which yields a gross reward of N7 · rn = 370. After accounting for the penalty
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(nτ −N7) · clp = 64 and the cost of a preventive replacement cp = 500, this period yields
a (negative) reward R7 = −194.
Therefore, we can conclude that, in this particular cycle, Pol opted to accelerate the PR
as much as possible at the start, then slow down in the 6th PP (while still respecting the
production target) so that the preventive replacement can be deferred to the 7th PP. In
this latter period, production is slowed down considerably to minimize the probability of
failure. This shows that, in this example, the prescriptive policy Pol is able to prolong
the operational lifetime of the system while still managing the probability of failure.

PP (k) w(k−1)τ uk qk Nk Rk

1 0 umax 0 166 678
2 1.5 umax 0 166 678
3 3.06 umax 0 166 678
4 4.91 umax 0 166 678
5 5.59 umax 0 166 678
6 7.88 umin 65 90 450
7 8.39 umin 10 74 -194

Table 7.5 – A one-cycle production example ending with a preventive replacement.

For the sake of understanding how Pol achieves this performances, let us now focus on
a single PP, with an initial degradation level relatively close to the threshold. Indeed, as
observed in Table 7.5, it is in these cases that we can expect the policy to carefully manip-
ulate the PR. Moreover, since the considered degradation process is state-independent, it
will behave in the same way regardless of the initial degradation level. To perform this
analysis, we conducted two constrained optimization problems, under policy Pol, where
the prescriptive decision is constrained to (umax, q) and (umin, q), respectively. In other
words, we will analyze the evolution of a single prescriptive decision, in a single PP, as a
function of the measured degradation level at the start of the interval.

Figure 7.1 reports the result of this analysis, in red for the case of an acceleration and
in blue for the case of a deceleration. Specifically, the x-axis reports the degradation level
at the start of the PP, denoted by w, whereas the y-axis reports the value of q (i.e., the
number of items produced before a change in the PR).
Figure 7.1 shows that, until w = 7.8, it is more convenient to accelerate the PR right
away. As w increases further, an acceleration becomes less and less advantageous, and
after w = 8.1 the acceleration is relegated to the end of the PP (let us remind that in
this specific example the optimization is constrained, hence the acceleration is forced even
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Figure 7.1 – Evolution of the optimal number of produced items before an acceleration
(red line) or a deceleration (blue line) of the PR as a function of the initial degradation.

though it may not be the overall optimal decision).
Figure 7.1 also shows that, until a value of w = 7.9, it is only convenient to slow down the
PR after 65 items have been produced. We can suspect that the specific value of 65 has
been selected because, under the considered setup, producing 65 items at the nominal PR
and subsequently decelerating guarantees that Nk = nτ = 90 items will be produced in
the PP, hence respecting the production target. Then, as w increases further, it is more
convenient to decelerate earlier and earlier.

7.6 Conclusions

The question of the integration of maintenance in the production planning process re-
mains a largely open subject. Due to its inherent random behavior, maintenance strategies
are often optimized by using long-term average criterion, which can usually lead to very
conservative recommendations that are sometimes difficult to accept from the operational
point of view.
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In this chapter, we carried out a preliminary analysis of the use of prescriptive mainte-
nance on a simplified production problem. To this aim, we proposed a maintenance policy
that can be seen as a combination of three decision rule: an age-based rule (i.e., main-
tenance interventions can be carried out only at regular and predetermined intervals),
a condition-based rule (i.e., replacements are triggered by direct degradation measure-
ments), and a prescriptive rule (i.e., the production rate can be adjusted based on the
gathered measurements and economic considerations).

The rationale behind this policy is that manipulating the production rate can offer
more flexibility and simultaneously maximize production while managing the probability
of unexpected failures.
Despite the simplifying assumptions we made, the fact that prescriptive decisions influence
the future evolution of the degradation, and vice versa, quickly gives rise to mathemat-
ical complexity in optimizing the considered strategy. Nevertheless, we can retain from
this chapter that a prescriptive policy might be an effective approach to maintaining a
production system.
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GENERAL CONCLUSIONS

In this manuscript, we embarked on a journey to unravel the complexities of degrada-
tion modeling and maintenance optimization, seeking to address practical challenges in
this field. In this concluding chapter, we aim to summarize this research journey, synthe-
size its main contributions, and provide some ideas about future perspectives.

The main contributions of this PhD program have been oriented along two main axes:
(i) studying, developing, proposing, and comparing stochastic processes that can be used
to model the evolution of the degradation of real systems, and (ii) developing maintenance
strategies that can take advantage of the use of these degradation models.

With respect to the first axis, attention has been focused on developing stochastic
processes that can account for different sources of variability. Specifically, a new per-
turbed gamma degradation process that can simultaneously take into account temporal
variability, unit-to-unit variability and measurement error has been proposed. As it is
commonly observed in the literature, introducing more model complexity often leads to
mathematically intractable solutions, especially when it comes to calibrate a model and
perform predictions with it. To overcome this issues, a new expectation-maximization
(EM) algorithm, which also takes advantage of a particle filter, has been developed that
allows to efficiently estimate model parameters. The same particle filter is then used also
to perform predictions.

The same EM algorithm has then also been used to carry out a large misspecification
study, investigating the model selection issue of perturbed gamma and perturbed inverse
Gaussian degradation models. In fact, these two models exhibit very similar characteristics
and are often treated as equal to each other. Due mainly to the long computational times
involved in the parameter estimation procedures, the misspecification studies presented
in the current literature have always been limited to a relatively small number of datasets
(which hinders the generalizability of the results) and have not considered the impacts
of measurement error. By taking advantage of the aforementioned EM algorithm, we
managed to reduce the computational times enough so that a large study, considering
different measurement error distribution and involving several thousands of estimations
could be carried out.
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Then, a small exploratory extension of the misspecification study has also been carried out
to evaluate its impact on maintenance costs, a matter that has seldom received attention
in the literature.
Obtained results have shown that, in the absence of measurement error, the consequences
of using a wrong model selection can be severe, both in terms of remaining useful lifetime
and of maintenance costs. On the other hand, if by one side the presence of measurement
error massively complicates the estimation procedure, it also seems to equally reduce the
consequences of a wrong diagnosis. However, regardless of the presence of measurement
error, if model selection is performed by adopting a rigorous statistical criterion, then the
performances of the considered models are quite similar.

With respect to the second axis, focus has mainly been directed to developing condition-
based maintenance policies that can exploit the newly developed perturbed gamma pro-
cess with random effects. Indeed, we proposed three maintenance policies based on the
assumption that a single inspection can be performed during the life cycle of the system
under study, with the core issue being how to better exploit the information gathered at
a single time point in the presence of a heterogeneous population. After proposing a basic
decision-making scheme, we investigated how an adaptive rule and considering inspections
of different quality can influence the performance of the policy.
The comparative analysis carried out showed that, when inspection costs are high, a pol-
icy based on a single inspection can be a fruitful strategy. Moreover, in some particular
scenarios where inspection costs and the consequences of an undetected failure are par-
ticularly high and mild, respectively, it can even be more economically advantageous to
resort to simpler purely systematic maintenance approaches.

The same basic maintenance decision-making scheme, with the restriction on the num-
ber of inspections, has also been extended by integrating elements from modern pre-
scriptive maintenance. Prescriptive maintenance is a new concept that has been gaining
increased attention from researcher in the field of maintenance optimization. By simulta-
neously considering all aspects of a system in a holistic framework, including commercial
and operational aspects, prescriptive maintenance might help alleviate the structural con-
flict in maintenance optimization between maximum commercial utilization of a system
and ensuring its safe operation.
Specifically, we investigated how, in an experimental scenario where maintenance interven-
tions cannot be scheduled according to convenience, adding one more degree of freedom
(in the form of manipulating the usage rate of the system, or the production rate of a
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production system) affects maintenance and operational costs.

Perspectives

Based on the insights gathered during this research journey, we believe that this ac-
tivity opens these research directions:

— all of the stochastic processes adopted in this manuscript assume a monotonic in-
creasing degradation rate function (here intended as the derivative of the mean
function), as it is also commonly done in most of the literature (e.g., see Abdel-
Hameed (1975), Whitmore (1995), Kahle, Mercier, and Paroissin (2016)). However,
real-world degradation processes often exhibit bathtub-shaped, three-phases behav-
ior (I. Gertsbakh and Kordonskiy (1969)), corresponding to a S-shaped degradation
rate function: an accommodation phase, a steady-state phase, and a degenerative
phase. Models with monotonic increasing degradation rate can only account for two
of these three phases, but a degradation process that can model all three phases
might provide better prognostic performances. We already took some preliminary
steps in this direction (this has not been detailed in the manuscript). Specifically, in
Piscopo et al. (2023), we proposed a gamma-based process built around a bathtub-
shaped degradation rate which also integrates random effect and measurement er-
ror. The main potential of this new model is its ability to perform accurate lifetime
prediction based on early data alone (i.e., predict the degradation behavior in the
second and third phase by only observing data from the first phase). This latter fea-
ture can have interesting properties in maintenance optimization: indeed, in some
applications different phases may need different actions to be performed (e.g., see
El Hajj et al. (2023));

— Both policies presented in Chapter 6 investigate how to manipulate the usage rate
in an experimental scenario where maintenance intervention dates are subjected to
constraints, in the case of a single unit. With the same reasoning, it is easy to imagine
how, in a scenario with multiple units working together (such as a pumping station
with several pumps), adjusting some usage rate-like measure (such as the volume
of water being pumped by a specific pump) can be used to control the probability
of failure and synchronize the optimal maintenance dates of all units to a common
calendar in a block maintenance scheme. This idea, also known as “load sharing”
is not a new concept in the maintenance literature (e.g., see Broek, R. H. Teunter,
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De Jonge, et al. (2021b)) and has also received some attention in the prescriptive
literature (e.g., see Longhitano et al. (2021a)). A scheme like this would of course
introduce strong dependency between the degradation processes of the considered
units, increasing the complexity of the required modeling solution;

— Again with respect to the prescriptive policies, one of the cornerstones of their
conception is the fact that inspections are supposed to be very expensive due to
difficulty in accessing the equipment and/or requiring interruption of service and
specialized maintenance personnel. Similarly, it is also supposed that carrying out
any other maintenance action (such as a replacement, regardless of whether an
inspection is performed) entails a logistic cost. However, a prescriptive action, such
as changing the usage rate, is much less invasive than other action and might not
even require on-site personnel to be performed. Similarly, sensors producing cheap
low quality measurements can be installed and remotely operated. In this scenario,
we can imagine an extension of the decision-making scheme proposed in Chapter
6 where, in between the already scheduled maintenance times, some low-quality
measurements can be carried out, which would then inform a potential adjustment
in the usage rate, if deemed convenient.
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Appendix A

Eq. (5.3) can be derived as follows:

E {1C(Z(τ),W (τ), X)}

=
∫ ∞

0

∫ ∞

0

∫ ∞

0 1C(zτ , wτ , X)

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

=
∫ wM

0

∫ LZ

0

∫ τ+∆τ

τ
1C(zτ , wτ , X)

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

=
∫ wM

0

∫ LZ

0

∫ ∞

τ+∆τ
1C(zτ , wτ , X)

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

=
∫ ∞

wM

∫ LZ

0

∫ τ

0 1C(zτ , wτ , X)

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

=
∫ wM

0

∫ ∞

LZ

∫ ∞

τ
1C(zτ , wτ , X)

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

=
∫ ∞

WM

∫ ∞

LZ

∫ τ

0 1C(zτ , wτ , X)

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx
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Each of these five integrals represents one of the scenarios in Table 5.3. Thus, substituting
from the same Table:

E {1C(Z(τ),W (τ), X)}

=
∫ wM

0

∫ LZ

0

∫ τ+∆τ

τ
[2 · cl + ci + cc + cd · (τ + ∆τ − x)]

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ wM

0

∫ LZ

0

∫ ∞

τ+∆τ
(2 · cl + ci + cp)

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ ∞

wM

∫ LZ

0

∫ τ

0
[2 · cl + ci + cc + cd · (τ + ∆τ − x)]

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ wM

0

∫ ∞

LZ

∫ ∞

τ
(cl + ci + cp)

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ ∞

wM

∫ ∞

LZ

∫ τ

0
[cl + ci + cc + cd · (τ − x)]

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

= cl + ci + cp + cl ·
∫ ∞

0

∫ LZ

0
fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dzτ · dwτ

+ (cc − cp) ·
∫ wM

0

∫ LZ

0

∫ τ+∆τ

τ
fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dx · dzτ · dwτ

+ cd ·
∫ wM

0

∫ LZ

0

[∫ τ+∆τ

τ
(τ + ∆τ − x) · fX|W (τ)(x|wτ ) · dx

]
× fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dzτ · dwτ

+ cd ·
∫ ∞

wM

∫ LZ

0

[
τ + ∆τ −

∫ τ

0
x · fX|W (τ)(x|wτ ) · dx

]
× ·fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dzτ · dwτ

+ cd ·
∫ ∞

wM

∫ ∞

LZ

[
τ −

∫ τ

0
x · fX|W (τ)(x|wτ ) · dx

]
× ·fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dzτ · dwτ

Which, by using results given in Chapters 2.4 and 2.6, and after a few additional ma-
nipulations, provides the expression in Eq. (5.3). Eqs. (5.4)-(5.6) can be derived using a
similar approach.
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Appendix B

B.1

Eq. (5.12) can be derived starting as follows:

E{C(Z(τ),W (τ), X)}

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
C(zτ , wτ , x) · fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

=
∫ wM

0

∫ ∞

Lu

∫ ∞

τ
C(zτ , wτ , x) · fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ ∞

wM

∫ ∞

Lu

∫ τ

0
C(zτ , wτ , x) · fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ LW

0

∫ Lu

Ll

∫ τ+∆τ

τ
C(zτ , wτ , x) · fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ LW

0

∫ Lu

Ll

∫ ∞

τ+∆τ
C(zτ , wτ , x) · fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ wM

LW

∫ Lu

Ll

∫ ∞

τ
C(zτ , wτ , x) · fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ ∞

wM

∫ Lu

Ll

∫ τ

0
C(zτ , wτ , x) · fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ wM

0

∫ Ll

0

∫ τ+∆τ

τ
C(zτ , wτ , x) · fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ wM

0

∫ Ll

0

∫ ∞

τ+∆τ
C(zτ , wτ , x) · fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ ∞

wM

∫ Ll

0

∫ τ

0
C(zτ , wτ , x) · fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

(B.1)
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Hence, from Eq. (B.1), replacing C(zτ , wτ , x) (integral by integral) with the appropriate
expression specified in Table 5.18, Eq. (B.2) is readily obtained:

E{C(Z(τ),W (τ), X)}

=
∫ wM

0

∫ ∞

Lu

∫ ∞

τ
(cl + cz + cp)

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ ∞

wM

∫ ∞

Lu

∫ τ

0
[cl + ci + cc + cd · (τ − x)]

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ LW

0

∫ Lu

Ll

∫ τ+∆τ

τ
[2 · cl + cz + cw + cc + cd · (τ + ∆τ − x)]

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ LW

0

∫ Lu

Ll

∫ ∞

τ+∆τ
(2 · cl + cz + cw + cp)

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ wM

LW

∫ Lu

Ll

∫ ∞

τ
(cl + cz + cw + cp)

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ ∞

wM

∫ Lu

Ll

∫ τ

0
[cl + cz + cw + cc + cd · (τ − x)]

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ wM

0

∫ Ll

0

∫ τ+∆τ

τ
[2 · cl + cz + cc + cd · (τ + ∆τ − x)]

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ wM

0

∫ Ll

0

∫ ∞

τ+∆τ
(2 · cl + ci + cp)

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

+
∫ ∞

wM

∫ Ll

0

∫ τ

0
[2 · cl + cz + cc + cd · (τ + ∆τ − x)]

× fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

(B.2)
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where:

∫ wM

0

∫ ∞

Lu

∫ ∞

τ
(cl + cz + cp) · fX|W (τ)(x|wτ ) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ · dx

=
∫ wM

0

∫ ∞

Lu

(cl + cz + cp) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ

and:

∫ wM

LW

∫ Lu

Ll

∫ ∞

τ
(cl +cz +cw +cp) ·fX|W (τ)(x|wτ ) ·fZ(τ)|W (τ)(zτ |wτ ) ·fW (τ)(wτ ) ·dwτ ·dzτ ·dx

=
∫ wM

LW

∫ Lu

Ll

(cl + cz + cw + cp) · fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ

Eq. (B.2) can be then rewritten as:

E{C(Z(τ),W (τ), X)}

= cl + cz + cp + cw · [FZ(τ)(Lu) − FZ(τ)(Ll)] + (cc + cp + cd · τ) · [1 − FW (τ)(wM)]

+ cl · FZ(τ)(Ll) + cl ·
∫ LW

0

[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
· fW (τ)(wτ ) · dwτ

+ (cc − cp) ·
∫ LW

0

∫ τ+∆τ

τ

[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
× fX|W (τ)(x|wτ ) · fW (τ)(wτ ) · dwτ · dx

+ (cc − cp) ·
∫ wM

0

∫ τ+∆τ

τ
fX|W (τ)(x|wτ ) · FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ · dx

+ cd · ∆τ ·
∫ ∞

wM

FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ

+ cd ·
∫ wM

0

∫ τ+∆τ

τ
·fX|W (τ)(x|wτ ) · FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ · dx

+ cd ·
∫ LW

0

[∫ τ+∆τ

τ
(τ + ∆τ − x) · fX|W (τ)(x|wτ ) · dx

]
×
[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
· fW (τ)(wτ ) · dwτ

− cd ·
∫ ∞

wM

∫ τ

0
x · fX|W (τ)(x|wτ ) · fW (τ)(wτ ) · dwτ · dx

(B.3)

Hence, from Eq. (B.3), by exploiting the results given in Eqs. (2.70), (2.72), and (2.74),
the expression in Eq. (5.12) is obtained.
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Eq. (5.13) can be more easily derived by following the scheme given in Table 5.17:

E{T (Z(τ),W (τ))} = τ · [1 − FZ(τ)(Lu)] + (τ + ∆τ) · FZ(τ)(Ll)

+ τ ·
∫ ∞

LW

∫ Lu

Ll

fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ

+ (τ + ∆τ) ·
∫ LW

0

∫ Lu

Ll

fZ(τ)|W (τ)(zτ |wτ ) · fW (τ)(wτ ) · dwτ · dzτ

= τ + ∆τ · FZ(τ)(Ll)

+ ∆τ ·
∫ LW

0

[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
· fW (τ)(wτ ) · dwτ

(B.4)

B.2

Under the policy Pk (k = 1, 2, 3) the long-run average maintenance cost rate is com-
puted as:

kC∞(kξ∗) =
E
{

kC(Z(τ),W (τ), X)
}

E
{

kT (Z(τ),W (τ))
}

where E
{

kC(Z(τ),W (τ), X)
}

and E
{

kT (Z(τ),W (τ))
}

are obtained as special cases from
Eqs. (5.12) and (5.13), respectively, by imposing the constraint relative to policy Pk. Thus,
in the case of policy P1, by imposing the constraint Ll = Lu, Eq. (5.12) simplifies to:

E
{

1C(Z(τ),W (τ), X)
}

= cl + cz + cp + (cc − cp + cd · τ) ·
[
1 − FW (τ)(wM)

]
+ (cl + cd · ∆τ) ·

∫ ∞

0
FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ

+ (cc − cp) ·
∫ wM

0

[
1 − F∆W (τ,τ+∆τ)|W (τ)(wM − wτ |wτ )

]
× FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ

− cd ·
∫ wM

0

∫ τ+∆τ

τ
F∆W (τ,x)|W (τ)(wM − wτ |wτ ) · FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ · dx

− cd ·
∫ ∞

wM

∫ τ

0
FW (x)|W (τ)(wM |wτ ) · fW (τ)(wτ ) · dwτ · dx,

(B.5)

and Eq. (5.13) reduces to:

E
{

1T (Z(τ),W (τ))
}

= τ + ∆τ ·
∫ ∞

0
FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ . (B.6)

186



Similarly, in the case of policy P2, by imposing Ll = 0, Lu = +∞, and cz = 0, it is:

E
{

2C(Z(τ),W (τ), X)
}

= cl + cw + cp + (cc − cp + cd · τ) ·
[
1 − FW (τ)(wM)

]
+ (cl + cd · ∆τ) ·

∫ LW

0
fW (τ)(wτ ) · dwτ

+ (cc − cp) ·
∫ LW

0

[
1 − F∆W (τ,τ+∆τ)|W (τ)(wM − wτ |wτ )

]
· fW (τ)(wτ ) · dwτ

− cd ·
∫ LW

0

∫ τ+∆τ

τ
F∆W (τ,x)|W (τ)(wM − wτ |wτ ) · fW (τ)(wτ ) · dwτ · dx

− cd ·
∫ ∞

wM

∫ τ

0
FW (x)|W (τ)(wM |wτ ) · fW (τ)(wτ ) · dwτ · dx,

(B.7)

E
{

2T (Z(τ),W (τ))
}

= τ + ∆τ ·
∫ ∞

0
fW (τ)(wτ ) · dwτ . (B.8)

Finally, in che case of policy P3, by imposing Ll = Lu = 0, and cz = 0 it results:

E
{

3C(Z(τ),W (τ), X)
}

= cl + cp + (cc − cp + cd · τ) ·
[
1 − FW (τ)(wM)

]
− cd ·

∫ ∞

wM

∫ τ

0
FW (x)|W (τ)(wM |wτ ) · fW (τ)(wτ ) · dwτ · dx,

(B.9)

E
{

3T (Z(τ),W (τ))
}

= τ. (B.10)

B.3

The long-run average maintenance cost rate kC∞(·) can be intended as the sum of the
contributions of corrective replacement costs, preventive replacement costs, perturbed
inspection costs, perfect inspection costs, logistic costs, and downtime costs. These con-
tributions can be expressed as:

k
cC∞(·) =

k
cC(·)

E
{

kT (Z(τ),W (τ))
} , . . . k

zC∞(·) =
k
zC(·)

E
{

kT (Z(τ),W (τ))
} ,
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where E
{

kT (Z(τ),W (τ))
}

is the expected length of a maintenance cycle under policy Pk

and the numerators, from Eq. (5.12), can be expressed as:

k
cC(·) = cc ·

[
1 − FW (τ)(wM)

]
+ cc ·

∫ LW

0

[
1 − F∆W (τ,τ+∆τ)|W (τ)(wM − wτ |wτ )

]
×
[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
· fW (τ)(wτ ) · dwτ

+ cc ·
∫ wM

0

[
1 − F∆W (τ,τ+∆τ)|W (τ)(wM − wτ |wτ )

]
× FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ

(B.11)

k
dC(·) = cd · τ ·

[
1 − FW (τ)(wM)

]
+ cd · ∆τ ·

∫ ∞

0
FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ

+ cd · ∆τ ·
∫ LW

0

[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
· fW (τ)(wτ ) · dwτ

− cd ·
∫ wM

0

∫ τ+∆τ

τ
F∆W (τ,x)|W (τ)(wM − wτ |wτ )

× FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ · dx

− cd ·
∫ LW

0

∫ τ+∆τ

τ
F∆W (τ,x)|W (τ)(wM − wτ |wτ )

×
[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
· fW (τ)(wτ ) · dwτ · dx

− cd ·
∫ ∞

wM

∫ τ

0
FW (x)|W (τ)(wM |wτ ) · fW (τ)(wτ ) · dwτ · dx,

(B.12)

k
pC(·) = cp − cp ·

∫ LW

0

[
1 − F∆W (τ,τ+∆τ)|W (τ)(wM − wτ |wτ )

]
×
[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
· fW (τ)(wτ ) · dwτ

− cp ·
∫ wM

0

[
1 − F∆W (τ,τ+∆τ)|W (τ)(wM − wτ |wτ )

]
× FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ

(B.13)

k
pC(·) = cl + cl ·

∫ ∞

0
FZ(τ)|W (τ)(Ll|wτ ) · fW (τ)(wτ ) · dwτ

+ cl ·
∫ LW

0

[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
· fW (τ)(wτ ) · dwτ

(B.14)

k
wC(·) = cw ·

∫ ∞

0

[
FZ(τ)|W (τ)(Lu|wτ ) − FZ(τ)|W (τ)(Ll|wτ )

]
· fW (τ)(wτ ) · dwτ (B.15)

k
zC(·) = cz. (B.16)
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As remarked in Chapter 5.4.3, under P1 it is Ll = lu (hence it results 1
wC(·) = 0), under

P2 it is Ll = 0, Lu = +∞, and cz = 0 (hence it results 2
zC(·) = 0, and under P3 it is

Ll = Lu = 0 and cz = cw = 0 (hence it results 3
wC(·) = 3

zC(·) = 0).
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Titre : Extension du processus gamma et son application en maintenance prescriptive et condi-
tionnelle

Mot clés : processus gamma, erreur de mesure, effect random, maintenance prescriptive,

maintenance conditionnelle

Résumé : La maintenance est cruciale dans
divers aspects de la vie, car elle permet d’évi-
ter des dommages coûteux et de garantir un
fonctionnement optimal. La recherche acade-
mique s’efforce d’améliorer l’efficacité de la
maintenance, en particulier dans les systèmes
complexes. Les modèles traditionnels s’ap-
puient sur des distributions de durée de vie,
mais celles-ci peuvent être limitées par la ra-
reté ou l’imprécision des données relatives
aux défaillances. Des approches alternatives
basées sur des processus stochastiques pro-
mettent de surmonter ces limitations. Les pro-
cessus stochastiques offrent des avantages

tels que l’intégration d’informations technolo-
giques et l’utilisation de données de dégrada-
tion historiques et en temps réel. Cette ac-
tivité de recherche vise à proposer des mo-
dèles de dégradation stochastiques précis et
à les appliquer à des stratégies de mainte-
nance développées ad hoc, en tenant compte
d’incertitudes telles que les aléas environne-
mentaux et les erreurs de mesure. En outre,
elle se penche sur des paradigmes émergents
tels que la maintenance prescriptive, qui équi-
libre l’utilisation du système et le risque pour
une approche holistique de l’optimisation de
la maintenance.

Title: Extension of the gamma process and its application in prescriptive and condition-based
maintenance under imperfect degradation information.

Keywords: gamma process, measurement error, random effect, prescriptive maintenance,

condition-based maintenance

Abstract: Maintenance is crucial in various
aspects of life, preventing costly damage and
ensuring optimal function. Academic research
has strived to enhance maintenance effi-
ciency, especially in complex systems. Tra-
ditional models rely on lifetime distributions,
but these can be limited by scarce or in-
accurate failure data. Alternative approaches
based on stochastic processes promise to
overcome these limitations. Stochastic pro-
cesses offer advantages like integrating tech-

nological information and utilizing historical
and real-time degradation data. This research
activity aims to propose accurate stochastic
degradation models and apply them to ad-
hoc developed maintenance strategies, con-
sidering uncertainties like environmental ran-
domness and measurement errors. Addition-
ally, it delves into emerging paradigms like pre-
scriptive maintenance, which balances system
utilization and risk for a holistic approach to
maintenance optimization.
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