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Introduction 

Thanks to the advent of alternating current and transformers, the shift from reciprocating engines 

to steam turbines, the low prices of fuel, the regulations and strategic policies, and the ease of 

overseeing and control, etc. electricity production in centralized power plants was favored since 

the 20th century. Then, in the late 20th, several drawbacks related to centralized power generation 

emerged such as the limitation in thermal efficiency of steam turbines, the high transmission and 

distribution losses, the high investments in transmission and distribution networks, the single point 

of failure, cascading outages, and the cyber and physical attacks. Due to all these downsides, the 

distributed generation approach was advanced as an alternative or supplement to centralized power 

generation.     

 

Another setback of centralized power generation is that predominant electricity central power 

plants are of fossil fuel origins (coal, oil, and natural gas). Fossil fuels are being depleted and are 

the main producers of carbon dioxide emissions and other greenhouse gases, the principal cause 

of global climate change and the earth's temperature rise.  A substantial increase in global carbon 

dioxide emissions from fossil fuels was noted with 6 billion tons of CO2 emissions in 1950, and 

34.81 billion tons in 2020. This sharp rise in CO2 emissions and greenhouse gases during the last 

70 years, is strongly related to and initiated the increasing rate of the average temperature per 

decade. The earth's global average surface temperature has roughly increased one degree Celsius 

since the preindustrial era (1880-1900). As a result of the increase in the global earth's average 

temperature, many other aspects of the global climate are changing. Several kinds of research 

documented changes in surface, atmospheric, and oceanic temperatures; melting glaciers; 

diminishing snow cover; shrinking sea ice; rising sea levels; ocean acidification; increasing 

atmospheric water vapor; and increasing heat waves and cold spells.  

To alleviate this critical risk and impact, nearly 200 nations committed to holding the average earth 

temperature to well below 2 degrees Celsius in the 2015 Paris Climate Agreement. This is being 

realized by setting net-zero emissions targets for countries that have pledged to achieve this target 

in future years. Lately, in November 2021, countries participating in major UN climate talks 

(COP26) in Glasgow, Scotland, are announcing more ambitious plans for slashing their emissions 

for the next decade. the European Union (EU), setting a binding target to achieve climate neutrality 

by 2050, has further raised its 2030 climate ambition beyond the target agreed upon in 2018, 

committing to cutting greenhouse gas emissions by at least 55% by 2030 under the so-called “Fit 

for 55” package. All these plans and pledges of decarbonization essentially require a massive 

integration of renewable energy sources to shift the electricity generation mix and engender a large 

reduction in fossil fuel energy generation. Hence, the worldwide rapid expansion of renewable 

energy sources which are being integrated with different sizes and power scales ranging from a 

few KWs to GWs, contributed to the diversion from the centralized generation approach to the 

distributed one. 
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On the other hand, at the beginning of the 21st century and with the proliferation of distributed 

generation and renewable energy sources, the microgrid concept was proposed as a group of 

interconnected sources and loads that act as a single controllable entity to the grid. A microgrid 

can include several distributed energy resources (DERs) such as traditional pollutant ones, 

renewable energy sources, energy storage systems (ESSs), and a variety of loads. All these DERs 

are interconnected by local converters to a common bus that can be of AC or DC type. The 

common bus type defines whether the microgrid is of AC or DC type. Thanks to their maturity 

and standardization, AC microgrids prevailed and first captivated the attention of researchers more 

than DC microgrids.  Since the last decade, high penetration of DC-type sources, ESS, and loads 

has been remarked. The expansion of RESs of which several are of a DC nature such as solar 

panels raised concern about power stability and availability due to the intermittent and 

unpredictable nature of RESs. The existence of a backup (ESS) is mandatory in such applications 

to secure an uninterruptible power supply for the microgrid. From here, increasing integration and 

reliance on (ESS)s such as batteries, and fuel cells which are of a DC nature is noted in microgrid 

applications. Moreover, owing to the advancement of power electronic devices, the number of DC-

type loads such as laptops, phone devices, telecom equipment, etc. is surging. Due to all these 

grounds, and others such as the ease of control of DC systems, etc. DC microgrids have gained 

increased interest from researchers during the last decade. In this context, this thesis targets the 

power control and the energy management of a DC microgrid configuration consisting of RESs, 

traditional pollutant sources, loads, and an ESS.  

   

Following the control objectives and the dynamic of targeted variables, the control of a DC 

microgrid is subdivided into three hierarchical levels. Known as the three-level hierarchical 

control, it is commonly investigated in the literature, especially the primary control level of which 

droop control is one of the most used techniques that ensures proper load sharing and common DC 

bus voltage stabilization. On the secondary level, decentralized coordination functions exist, e.g., 

local adaptive calculation of virtual resistances in which the robustness and stability of the primary 

control level are enhanced. The primary and secondary control levels target fast electrical variables 

to secure the stable operation of the DC microgrid and ensure robust power control. As redundant 

research can be found on these two control levels, lately, the tertiary control level is captivating 

the attention of researchers to achieve advanced energy management functionalities under the so-

called “smart” control.    

   

At the tertiary control level, optimization problems are formulated to attain one or several 

objectives. Following the objectives, the DC microgrid planning problem can be divided into three 

main categories: the optimal power generation mix selection and sizing, the optimal siting 

problem, and the optimal operation scheduling. In this thesis, the optimal operation scheduling, 

also known as the optimal energy management system (EMS) of a DC microgrid over a 24-hour 

time horizon is addressed to reach three distinct optimization goals. The optimization objectives 

were selected based on current international energy policies and targets for reducing carbon 
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dioxide emissions and saving energy by minimizing the losses in operating devices. Hence, the 

three main objectives of the optimal EMS are the minimization of the total operating cost of the 

DC microgrid, the reduction of pollutant gas emissions, and the improvement of converters’ 

efficiency by minimizing converters’ losses.  

 

Accordingly, the work targeted by this thesis concerns a multisource DC microgrid combining 

RESs (photovoltaic, wind) and carbon energy via a Diesel Generator (DG), all connected to a 

distribution network and benefiting from an energy storage system. The prime objective is to meet 

consumer demand while favoring renewable energies and minimizing the cost of energy used 

while considering the operation and maintenance (O&M) costs of all operating units. For this, the 

efficiency of all devices is considered as well as the cost of purchased and sold energy from/to the 

grid. The DC microgrid configuration is depicted in the figure below. 

 

 
  

The thesis manuscript consists of five chapters: 

 

− Chapter 1: Review of energy management and optimization techniques applied to DC 

microgrids.  

− Chapter 2: Modeling of the 24-hour DC Microgrid.  

− Chapter 3: DC Microgrid Offline Optimization.  

− Chapter 4: DC Microgrid Online Optimization.  

− Chapter 5: Conclusion and Perspectives. 
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In Chapter 1, the shift from centralized energy generation to the distributed approach is first 

reviewed in detail. Then, the proliferation of the microgrid concept, especially DC ones along with 

the application of three-level hierarchical control are presented. Relevant research works on the 

tertiary control level are revealed as the thesis targets the optimal energy management of the DC 

microgrid. To ensure advanced EMS functionalities and attain predefined objectives, optimization 

problems are formulated and solved using metaheuristic or deterministic techniques. The 

commonly used metaheuristic and deterministic offline optimization techniques are stated. In 

addition to the offline optimization achieved the day ahead for the next 24 hours, an online 

optimization stage is suggested in the scope of this thesis to update the optimal references due to 

the existent mismatches between predicted and actual data. Thereby, the predominant online 

optimization techniques such as the receding horizon control are presented, and finally the main 

outcomes of the thesis are stated at the end of this chapter.  

 

The modeling of the 24-hour DC microgrid is addressed in Chapter 2. First, the adopted 

configuration, the sizing, and the general EMS strategy of the DC microgrid are presented. The 

microgrid studied in this thesis is a low-voltage DC microgrid (LVDC) for residential loads with 

a common DC bus voltage reference of 800V. It consists of a PV array and a wind turbine as RESs, 

a backup diesel generator (DG) as a traditional pollutant source, a lithium-ion battery as ESS, and 

residential-type loads. Besides, the DC microgrid can operate in grid-connected as well as islanded 

modes following the EMS strategy of operation. Having set optimization goals over 24 hours, the 

hurdle of modeling the overall DC microgrid over the whole time horizon on a computer with 

limited CPU and memory is confronted. In most existing research works, simplified models of 

sources in steady state are adopted, and primary and secondary control levels of converters such 

as the MPPT are omitted to make the modeling of the 24-hour DC microgrid a viable solution. 

Though this simplified modeling strategy yields decent results, it induces computing errors of 

generated power, existing losses, etc. which are rarely addressed in the literature. In this chapter, 

the 24-hour modeling problem is confronted from a new perspective. First, the proposed approach 

presents a detailed model of each unit, converter, and corresponding strategy of control apart. 

Then, new averaging techniques are advanced to create the best trade-off between model precision, 

complexity, and simulation speed. The accuracy of each new averaging technique in reducing the 

model complexity and maintaining accurate modeling is verified through the comparison with the 

detailed models. The same approach is adopted to model operating units, converters, secondary 

control level techniques such as the MPPT, and the losses in operating converters. Finally, the 

assembled 24-hour DC microgrid model is validated through a comparison with the overall 

detailed model in two identical 15-minute simulations. Therefore, the 24-hour DC microgrid 

model is adopted in the next chapter to formulate the optimization problem.  

 

The offline optimization accomplished the day ahead is detailed in Chapter 3. To mimic a real 

scenario, real profile data of solar irradiance, wind speed, ambient temperature, residential load 
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profile, and electricity pool prices are applied to winter and summer day case studies. Based on 

the predicted data for the next day, the offline optimization problem outputs the optimal power 

references of dispatchable sources for the next 24 hours. An optimization problem is formulated 

by setting a unique objective function to minimize. To include the three predefined optimization 

goals in one objective function, they are established as distinct cost functions expressed in $. Thus, 

the total objective function is formulated as a weighted sum of the three cost functions and 

expressed in $. Besides its mathematical necessity to yield a homogeneous objective function 

equation, the representation of the three cost functions in $ leads to a unified total energy bill. The 

obtained energy bill consists of the operating cost of the DC microgrid and penalty costs due to 

the emitted toxic gas and losses in operating converters. The first cost function to minimize consists 

of the operation cost of the overall DC microgrid in $, It includes the (O&M) cost of RESs, (DG), 

and ESS, and the cost of purchased/sold energy from/to the grid. However, to add pollutant gas 

emissions and converters’ losses cost functions to the total objective function, respectively, the 

pollutant energy produced by the (DG) and the energy loss in converters over the whole time 

horizon are computed in (𝐾𝑊ℎ). Next, penalty coefficients expressed in ($/𝐾𝑊ℎ) are assigned to 

each of the cost functions. By this, the obtained total objective function to minimize is expressed 

in $ and corresponds to the total energy bill over the control time horizon (i.e. 24 hours).  

In addition, several constraints that delimit the minimum and maximum admissible power 

references of the utility grid, battery, and (DG) are added. Moreover, to secure a safe operation of 

the ESS, constraints on the minimum and maximum, initial, and last state of charge are added. As 

the formulated optimization problem includes several nonlinear and nonsmooth functions and is 

time-variant, the search for a global minimum requires the application of specific algorithms. 

Among several algorithms, dynamic programming (DP) and genetic algorithm (GA) are applied 

as deterministic and metaheuristic algorithms, respectively. The two algorithms are compared in 

terms of optimal solution finding, convergence speed, and sampling period selection. On the other 

hand, the preference criterion between the fixed optimization goals is tackled through a detailed 

analysis of the weights’ selection.   

    

Chapter 4 addresses the addition of an online optimization stage that updates the offline optimal 

power references of dispatchable sources due to existent uncertainties between predicted and 

actual data inputs. The data inputs consist of the electricity pool prices, the RESs generated power, 

and load demand over the 24-hour time horizon. These uncertainties create mismatches between 

the predicted and actual generated/consumed power which deteriorates the power balance equation 

in the DC microgrid and incurs deviations in the common DC bus voltage. In the absence of any 

online optimization correction part, the utility grid converter mostly operates as the slack bus for 

the corrective actions needed to compensate for the uncertainties in renewable resources and the 

load demand. The main goal of the online optimization stage is to find an improved solution for 

the new power mix in the DC microgrid compared to the above. This permits the re-establishment 

of the power balance conveniently to the optimization goals.  Like offline optimization, a unified 

total objective function is established and expressed in $. The total objective function consists of 
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the sum of the operation, toxic gas emissions, and converters’ losses cost functions. Hence, the 

online optimization stage always tends to reduce the total energy bill in $. Unlike the offline 

optimization problem which finds the set of optimal power references over the whole time horizon, 

the online optimization stage performs local optimizations at each intra-sample period and is time-

invariant.  

To prove the effectiveness and viability of the proposed online optimization stage, several 

simulation tests are conducted in which predicted input signals are modified differently to generate 

actual input signals with variable margins of error. The robustness of the online optimization stage 

is assessed according to the margin of error between predicted and actual data inputs. For all tested 

scenarios, a comparison between the obtained total energy bill with and without the online 

optimization stage is conducted and the resulting profits, in $, are revealed.  

 

Finally, Chapter 5 concludes the manuscript and states the main outcomes of this thesis and future 

perspectives. Lastly, we take note that all obtained results are from simulation tests performed on 

MATLAB/Simulink software and have not been validated experimentally. Experimental 

validation can constitute a key work to accomplish in the future.     
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Chapter 1 :  Review of Energy Management and Optimization 

Techniques Applied to DC Microgrids 

 

1.1 The advent of centralized energy generation and related drawbacks 

Since the 20th century, electricity has been produced in centralized power plants and delivered to 

customers through power transmission lines. This centralized approach was established due to 

several factors: the advent of alternating current and transformers made energy production in a 

remote central unit and transmission to consumers over long distances a viable and reliable 

solution. By adopting an AC-type transmission, the arising problem of voltage drop related to DC-

type transmission and Edison’s earlier innovation was overcome, and then electricity was enabled 

to flow for hundreds of miles without a significant loss in voltage magnitude. The shift from 

reciprocating engines, in earlier utilities, to steam turbines unleashed the centralization of power 

production. Steam turbines were more energy efficient, smaller, quieter, unchallenging to scale up, 

and less proportional in materials investment if a higher power was produced compared to the 

reciprocating engines. Hence, the adoption of steam turbines has applied to the concept of 

economies of scale in which larger units can produce more electricity at lower unit costs. Low 

prices of fuel that can be burned remotely far from city centers were another motif to endorse the 

centralized energy production approach. The reliability of one plant was improved by connecting 

multiple power plants by transmission lines which empowered the network growth and provided 

better service reliability than any single generator. In parallel, regulations favored the centralized 

power production technique, this was reflected in the historical strategic policies drivers to produce 

power in a centralized large-scale plant and supply it to consumers through electricity transmission 

and distribution three-phase systems. By this, the overseeing and control of the utility grid and 

market were facilitated [1].   

      

However, in the late 20th century, steam turbines began to realize thermal efficiency limits (40% 

of thermal efficiency could theoretically be achieved but problems appeared with the high-

temperature operation causing an increase in maintenance costs and thus, a decrease in reliability. 

Practically, a maximum of 35% energy efficiency is reached in such an application [2]). Other 

drawbacks related to centralized generation are the transmission and distribution costs which 

consist of line losses, unaccounted-for electricity, and conversion losses. The highest cost is 

achieved by small customers talking electricity from the end distribution network at low voltage. 

As shown in Fig.1.1, world transmission and distribution losses’ percentages remain practically 

unchanged between (1990-2014) with values above 8%. Lower losses were recorded in the EU 

and China during the same period meanwhile, overall curves don’t present a steep drop in losses 

[3]. Though a reduction of  2% in transmission and distribution losses was accomplished in the 

U.S. between 1990 and 2020 as shown in Fig.1.1, the total losses are still high at 207 billion kWh 

out of a net generation of 3930 billion kWh in 2020 [4].  
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Rural electrification with centralized generation is an additional drawback and a real challenge due 

to the extended capital to be spent to connect remote areas of small consumption with overhead.  

 

Fig.1.1 Transmission and distribution losses in the World, EU, U.S., and China. 

Sources: - https://www.eia.gov/electricity/state/unitedstates/ 

   - Electric power transmission and distribution losses (% of output) | Data (worldbank.org) 

 

lines over long distances which might be uneconomical. In turn, the transmission and distribution 

losses are magnified because of the long-distance coverage. This results in a deferral of rural 

electrification projects. Based on the World Bank Global Electrification Database [5], 17.3 % of 

the world's rural population still have no access to electricity in 2020. It can be seen in Fig.1.2 that 

most rural populations in African countries have world lower rates of access to electricity (below 

28%, with the lowest rate of 1% in the Democratic Republic of Congo). In this regard, the World 

Bank approved, in May 2017, a grant of $118 million and a credit of $27 million for the electricity 

access and services expansion project in the Democratic Republic of Congo. The undergoing 

project provides new and improved electricity service to about two million people. As mentioned 

in the report, the number of hours of available electricity per day that customers receive in the 

project intervention areas has increased from 4 hours/day in 2017 to 6 hours in 2022 and will reach 

16 hours in October 2023 [6]. in [7], a study was conducted on how the centralized grid system 

impacts the rural economy of Nigeria which has a large geographical size. The study proves the 

inadequacy of the centralized grid in rural electrification and recommends a decentralized 

electricity structure with an emphasis on mini-grids and a priority on localized generation.       

Besides, in a centralized generation, high investments in transmission and distribution networks 

are required to cover consumers’ increasing need for electricity with highly reliable service. The 
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International Energy Agency (IEA) estimates the annual spending on the electricity distribution 

system by major U.S. utilities at $57.4 billion in 2019, 6% more than in 2018 and 64% more than  

 

Fig.1.2 Access to electricity, rural is the percentage of the rural population with access to electricity in 

2020. 

Source: World Bank Global Electrification Database from "Tracking SDG 7: The Energy Progress Report" 

led jointly by the custodian agencies: the International Energy Agency (IEA), the International Renewable 

Energy Agency (IRENA), the United Nations Statistics Division (UNSD), the World Bank and the World 

Health Organization (WHO). 

 

in 2000 as seen in Fig.1.3. The total amount is divided into $31.4 billion for capital investment as 

utilities worked to replace, modernize, and expand existing infrastructure, $14.6 billion for 

operations and maintenance (O&M), and $11.5 billion for customer expenses. Most of the $31.4 

billion of capital investment, is spent on overhead and underground power lines. Distribution lines 

are added, and expanded, aging equipment is replaced, and operation and maintenance are 

modernized. Since most of the increased distribution spending does not directly target the end 

users, distribution spending outpaces the growth in both the number of electric customers and in 

retail electricity sales as seen in Fig.1.4 [8]. The deployment of distributed generation can help to 

bypass the increased investment in transmission and distribution networks since they are at most 

in proximity to load centers, unlike large central generation units.    
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Fig.1.3 Annual major U.S utility spending on electric distribution (2000-2019) 

Source: Graph created by EIA, based on data from Federal Energy Regulatory Commission (FERC) 

Financial Reports, as accessed by Ventyx Velocity Suite 

Furthermore, centralized generation has manifested energy security problems such as grid outages 

during severe weather events. Projections indicate that the world is very likely to experience 

greater weather-related disruptions due to climate change. A recent example of a power outage 

was due to a cold spell that occurred in February 2021 in Texas, where large parts of the state were 

left without electricity for many days [9]. According to the U.S. Energy Information 

Administration, U.S. electricity customers have experienced just over eight hours of electric power 

interruptions in 2020, the most since 2013. As shown in Fig.1.5, six out of eight hours of power 

interruptions, in 2020, were caused by major events related to severe weather and natural 

conditions including snowstorms, wildfires, and hurricanes.  

 

 

Fig.1.4 U.S. electric distribution spending, customers, and retail electricity sales (2000-2019). 

Source: Graph created by EIA, based on data from Annual Electric Power Industry Report; Federal Energy 

Regulatory Commission (FERC) Financial Reports, as accessed by Ventyx Velocity Suite 

https://www.eia.gov/electricity/data/eia861/
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Fig.1.5 Average duration of total annual electric power interruptions, U.S. (2013-2020). 

Source: U.S. Energy Information Administration, Annual Electric Power Industry Report 

 

The impact of severe weather events on electric power interruptions can be deduced from the 

number of interrupts in 2020 as a function of the total duration of annual interruptions by the U.S. 

state (Fig.1.6): Louisiana, Oklahoma, Connecticut, and Alabama the states with the most time of 

interrupted power in 2020, knowing that 14 hurricanes and 11 major storms were experienced in 

the U.S in 2020. Noticeably, Louisiana experienced an active storm season, including Hurricane 

Laura. Same for Alabama which was hit by several hurricanes. Tropical storm Isaias affected 

Connecticut and left about 750,000 customers without electric power for over a week. Thus, these 

long interruptions were directly caused by major weather events[8].  In their report, the President’s 

Council of Economic Advisers and the U.S. Department of Energy’s Office of Electricity Delivery 

and Energy Reliability estimated the annual cost of power outages caused by severe weather 

between 2003 and 2012 in the U.S. from $18 billion to $33 billion[10]. Urgently, the grid resilience 

concern is addressed, and distributed generators are advanced as complements to the traditional 

centralized grid with a high potential to increase grid reliability and resiliency[11]. 

 

While most of the energy sources used to generate electricity in central power plants are of fossil 

fuel origins (coal, oil, and natural gas) or nuclear power, there is a critical hitch due to the depletion 

of these energy sources. Fig.1.7 represents the share of electricity production from fossil fuels in 

2021, the map shows that world most countries rely on fossil fuels to produce electricity with an 

average percentage of 61.42%. South Africa, Australia, China, and the U.S. have the highest 

percentages of fossil fuel use: 86.42%, 70.94%, 65.9%, and 61.1% respectively, meanwhile other 

European countries such as France, Sweden, Iceland, and Norway have lower rates below 20%. 

However in 2021, France and Sweden relied more on nuclear power as an energy source to produce 

electricity with a share of electricity production of 69.33%, and 31.24% respectively[12]. 

https://www.eia.gov/electricity/data/eia861/
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Fig.1.6 Average total annual electric power interruption duration and frequency per customer, by U.S. 

state (2020). 

Source: U.S. Energy Information Administration, Annual Electric Power Industry Report 

 

According to the BP Statistical Review of World Energy, the years of fossil fuel reserves left 

accounted for in 2020 are 139 years for coal, 54 years for oil, 49 years for gas, and 70 years for 

uranium[13], [14]. 

 

Besides their depletion, fossil fuel reserves are not equitably distributed over the world’s 

continents giving rise to a disparity in extraction, sales, and consumption potentials. For instance, 

50% of world natural gas reserves are uniquely located in three countries (Russia: 37.39 trillion 

m3, Iran: 32.1 trillion m3, and Qatar: 24.67 trillion m3) respectively account for 19.88%,17.07%, 

and 13.12% of the world’s total gas reserves. Likewise, two-thirds of the world’s coal reserves are 

sited in four countries: the U.S., Russia, Australia, and China respectively account for 23.26%, 

15.16%, 14.04%, and 13.38% of the world’s total coal reserves[15]. As a result, these countries, 

as main producers, and exporters of fossil fuel sources, monopolize the reserves and so, arguably 

control the prices, and the access to electricity of importing countries. The latest example is the 

rising European energy crisis under the Russian gas cut-off to the European Union.  Under a worst-

case scenario, European ministers predict that electricity could have to be rationed for up to six 

million homes in 2023’s winter, mostly at peaks in the morning and evening. As well, the shortage 

in gas supply to Europe drastically impacts energy prices and household utility bills which are 

skyrocketing[16], [17]. As distributed energy sources can accommodate a larger range of fuel than 

a centralized generation, they are proposed as alternatives to central power plants to diversify away 

from coal, fuel, natural gas, and nuclear fuel, and ensure sufficient and affordable power electricity 

to customers[18].  

 

https://www.eia.gov/electricity/data/eia861/
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Fig.1.7 Share of electricity production from fossil fuels, 2021. 

                                                                                                                                                  

Source:  Our World in Data based on BP Statistical Review of World Energy (2022); Our World in Data 

based on Ember's Global Electricity Review (2022); Our World in Data based on Ember's European 

Electricity Review (2022), OurWorldInData.org/energy • CC BY. 

 

1.2 Distributed energy sources as alternatives to centralized energy generation  

As detailed in the first section, several technical drawbacks posed by central energy generation, in 

terms of grid resiliency, security, reliability, efficiency, etc., expedited the diversion from the 

centralized generation approach to the distributed one. Hence, distributed energy sources are 

advanced as alternatives and back-ups to the traditional grid capable of overcoming its main 

downsides and offering ancillary services. 

 

On the other hand, climate change and the need to integrate clean energy sources were instrumental 

drivers and catalysts to distributed energy sources. The earth's global average surface temperature 

has roughly increased one degree Celsius since the preindustrial era (1880-1900). According to 

the National Oceanic and Atmospheric Administration's (NOAA’s) 2021 annual climate report, 

the combined land and ocean temperature has increased at an average rate of 0.08 degrees Celsius 

per decade since 1880 however, this rate of increase has outstripped the double since 1981 (0.18 

degrees Celsius). Moreover, based on NOAA’s temperature data, 2021 was the sixth’s-warmest 

year on record for the globe with a temperature of 0.84°C above the 20th-century average, and the 

years 2013–2021 all rank among the ten warmest years on record. As a result of the increase in the 

global earth's average temperature, many other aspects of the global climate are changing. Several 

https://ourworldindata.org/energy
http://creativecommons.org/licenses/by/4.0/deed.en_US
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kinds of research documented changes in surface, atmospheric, and oceanic temperatures; melting 

glaciers; diminishing snow cover; shrinking sea ice; rising sea levels; ocean acidification; and 

increasing atmospheric water vapor[19]. Carbon dioxide emissions and other greenhouse gases 

have been the dominant cause of recorded warming since the mid-20th century. In the majority, 

these emissions come from burned fossil fuels. A substantial increase in global carbon dioxide 

emissions from fossil fuels was noted with 6 billion tons of CO2 emissions in 1950, and 34.81 

billion tons in 2020[29]. The sharp rise in CO2 emissions during the last 70 years, is strongly 

related to and initiated the increasing rate of the average temperature per decade. Referring to the 

Climate Analysis Indicators Tool (CAIT) of Climate Data Explorer via Climate Watch, the sector 

that produces the highest CO2 emissions is the electricity and heat sector with 15.76 billion tons 

for 2019 followed by the transportation sector with 8.22 billion tons. Fig.1.8 shows the world map 

of greenhouse gases emitted per unit of electricity produced, measured in grams of CO₂-

equivalents per kilowatt-hour of electricity. Comparing Fig.1.7 to Fig.1.8, it can be inferred that 

countries with high shares of electricity production from fossil fuels have a higher carbon intensity 

of electricity such as the U.S., China, Russia, India, Saudi-Arabia, etc. To alleviate this critical risk 

and impact, nearly 200 nations committed to holding the average earth temperature to well below 

2 degrees Celsius in the 2015 Paris Climate Agreement. This is being realized by setting net-zero 

emissions targets for countries.  

 

 

Fig.1.8 Carbon intensity of electricity for 2021. 

 

Source: Ember Climate (from various sources including the European Environment Agency and EIA) 

OurWorldInData.org/energy • CC BY 

 

https://ourworldindata.org/energy
http://creativecommons.org/licenses/by/4.0/deed.en_US
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that have pledged to achieve this target in future years. Lately, in November 2021, countries 

participating in major UN climate talks (COP26) in Glasgow, Scotland, are announcing more 

ambitious plans for slashing their emissions for the next decade. In this context, The G20 Energy 

and Climate Ministerial’s Communiqué emphasized the importance of clean distributed energy 

resources (DERs) for addressing decarbonization and climate change. According to the IEA, about 

179 GW of distributed solar was added globally from 2017 to 2020[21]. In their short-term energy 

outlook, IEA forecasts a rise in U.S. electricity generation from renewable energy sources (RESs) 

such as solar and wind, and a reduction in generation from fossil fuel-fired power plants over the 

next two years as seen in Fig.1.9. A forecast share of generation for the U.S. solar and wind (RES)s 

grows from 13% in 2021 to 17% in 2023. Additionally, it’s shown in Fig.1.9 that the rapid 

expansion of renewable energy resources over the past years yielded a significant shift in the U.S. 

electricity generation mix. This shift will engender a large reduction in fossil fuel energy 

generation, and then a major step toward decarbonization.  

 

Meanwhile, the European Union (EU), setting a binding target to achieve climate neutrality by 

2050, has further raised its 2030 climate ambition beyond the target agreed upon in 2018, 

committing to cutting greenhouse gas emissions by at least 55% by 2030 under the so-called “Fit 

for 55” package. “Fit for 55” is a set of proposals to revise, and update EU legislation, and bring 

it in line with the 2030 goal.  

 

 

 

Fig.1.9 Annual U.S. short-term energy outlook for electric sector generation by energy source (2012-

2023). 

Source: U.S. Energy Information Administration, Short-Term Energy Outlook, January 2022 

 

https://www.eia.gov/outlooks/steo/
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Fig.1.10 Primary energy production of EU28 (1970-2020). 

Source: Enerdata, 2022 

 

Besides energy efficiency and taxation, EU emissions trading system, CO2 emissions standards 

for cars and vans, carbon border adjustment mechanism, social climate fund, refuel EU aviation 

and fuel EU maritime, alternative fuels infrastructure, efforts sharing regulation, land use, and 

forestry legislations, the EU plans to boost the share of renewable energy of the total energy mix 

to 40% by 2030 (double 2020’s share of 22,1%) [22]. 

The EU's shift towards (RESs) took place progressively throughout the years as shown in Fig.1.10, 

where 90% of energy production was from fossil fuels at the beginning of 1970th, remained at 63% 

in 2000, and only represented 35% of the EU energy production in 2020. However, for the first 

time in 2020, (RESs) share of the total energy mix surpassed that of fossil fuel by 2% (37% share 

of the EU primary energy mix)[23].  

 

1.3 Microgrid concept and advantages of DC over AC microgrids   

As a definition, the grid architecture that manages the integration of several distributed energy 

sources of different types, the electricity generation, and the load demand, in sub-sections of the 

grid, and can be isolated from the larger grid and provide critical services in case of any grid 

failure, is called a “microgrid”[24]. The microgrid term was originally proposed at the beginning 

of the 21st century and is found in the literature with many other definitions and functional 

classification schemes. Another detailed and intelligible definition proposed by the Microgrid 

Exchange Group, an ad hoc group of research and deployment experts to the U.S. Department of 

Energy reads as follows: ‘‘A microgrid is a group of interconnected loads and distributed energy 

resources within clearly defined electrical boundaries that acts as a single controllable entity to the 

grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-
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connected or island mode [25].” As seen from the definition, there are no specifications for the 

size of the distributed energy sources nor the type of technologies that should be applied. Thus, a 

microgrid can include (DERs) of utility-scale delivering power ranging from MW to GW (e.g. the 

35-MW microgrid project in Gonzales, California, built by Concentric power, which delivers 14.5 

MW-AC of solar, 10 MW/27.5 MWh of battery energy storage system (ESS), and 10 MW of 

flexible thermal generation[26]) as well as small-scale (DER)s, known as “behind the meter”, 

located at houses, industries, or businesses providing electrical power of tens and hundreds of 

KWs.   

Since microgrids are advanced as supplements or alternatives to the centralized traditional grid, 

the main challenges addressed in earlier applications, were the seamless transition between grid-

connected and islanded modes, energy management, active and reactive power, voltage, and 

frequency control, etc. Hence, enhancing the reliability, controllability, and minimizing the 

operational costs of the microgrid were the prime concerns of research programs rather than, the 

reduction of greenhouse gas emissions, and energy losses [24]. While all microgrids share similar 

challenges on a macro level, the control and functionality of each depend, essentially, on the type 

of voltage in the point of common coupling (PCC) of connection from which AC, DC, and hybrid 

AC-DC microgrid’s connection types can be distinguished. In an AC, DC-type microgrid, (DERs) 

are interconnected, through converters, respectively to a common AC, and DC bus meanwhile, 

both types of buses exist in a hybrid AC-DC microgrid connection[27]. Thanks to the 

predominance of AC-type power electricity transmission, and the maturity of AC-standardized 

technology, most of the research was centered on AC microgrids that prevail and captivated the 

attention more than DC microgrids. Studies focused on voltage and frequency regulation, active 

and reactive power control, energy management strategy, seamless connection between grid-

connected and islanded modes, uninterruptible supply for critical loads, the capability of black 

start in case of grid failure, etc.[28]. However lately, the relative merits of AC and DC microgrids 

are again vulnerable to controversy, and DC-type microgrids are regaining an increased interest in 

the research field and are advanced in several applications over their AC counterparts[29]. There 

are several grounds for the shift from AC to DC-type microgrids which can be summarized as 

follows:  

 

• The proliferation of renewable energy sources including photovoltaic generation, that are 

inherently DC supplies, eased the connection of these resources to a DC bus rather than an 

AC bus which requires at least one DC-to-AC conversion stage (in many applications an 

AC-to-DC back again conversion is required) inducing higher conversion losses ranging 

from 5% to 15% of power generation depending on the number of conversion stages[30], 

[31].    

• Energy storage systems (ESSs) such as batteries and fuel cells are DC by nature, which 

poses the same hurdle of conversion losses and efficiency if these units are connected to 

an AC bus. In this context, the direct connection of the battery stack to a common DC bus 

has been historically a popular structure for practical applications due to the high 
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capacitance of the battery stack that assures the dynamic stability of the system[32]. 

However, connecting the battery stack to the common DC bus through a bidirectional DC-

to-DC converter is a widely used configuration that increases the flexibility and 

controllability of the system with limited conversion losses (a DC-to-DC conversion stage 

results in 2% losses of generated power)[33].  

• The increasing number of DC-type loads such as electric vehicles (EVs) which can act as 

loads as well as power sources with the grid under the well-known vehicle-to-grid (V2G) 

and grid-to-vehicle (G2V) applications, portable electronic devices such as laptops, 

computers, phone devices, etc., home appliances such LED lighting, routers, chargers[34]. 

Energy efficiency is highly increased when these DC-type loads are directly coupled to the 

common DC bus voltage with a minimal number of energy conversions. In [35], Bosh 

developed a DC microgrid, compared it to a traditional AC microgrid, and found that the 

DC system is 6 to 8 % more efficient than the AC one due to the reduced energy conversion 

stages. 

• The ease of control of a DC microgrid in which the regulation of the common DC bus 

voltage is the main control priority. Issues of synchronization, harmonic distortion, reactive 

power flow, frequency regulation, and power quality, that exist in AC systems are all 

alleviated[36].     

 

Yet, AC transmission systems still have many merits over DC ones, especially, the ease of voltage 

transformation with which voltage can be elevated, transmitted over long distances, and then 

lowered again near end users. Another advantage of AC systems is the maturity of circuit 

protection which benefits from periodic zero voltage crossing to extinguish naturally a fault current 

within the half cycle after tripping whereas, existent fuses and circuit breakers of DC systems 

inherently introduce large time constants and time delays before activation and trip the current 

from its steady-state value. While tripping, the arc occurrence presents a dangerous condition from 

the safety point of view, shortens circuit breakers' lifetime, and increases maintenance costs[37]. 

Finally, DC microgrids lack standardization as they are still considered emergent technologies. 

Several organizations are reviewing and developing practical standards for DC microgrids such as 

European standard ETSI EN 300 132-3-1 which discusses the low-voltage dc systems[38], and 

IEEE standards for DC microgrids[39]. Knowing this rapid advancement and expansion, DC 

microgrids have become vital subjects in the research field that will shape the future of small 

(DER) systems. This can justify the study of a DC microgrid in the context of this thesis. The 

applied DC microgrid consists of a PV and WT as RESs, a (DG) as a traditional pollutant source, 

a residential-type load, and an energy storage system that enables energy management and control. 

The DC microgrid can operate in an islanded or grid-connected mode which offers an additional 

degree of freedom to manage the energy mix in the system following predefined control objectives.         
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1.4 Control and energy management techniques in DC microgrids 

1.4.1 Three-level hierarchical control 
 

In a DC microgrid, the prime control priority is the regulation of the common DC bus voltage to 

which (DERs) are connected through local converters. To achieve this, one of the most applied 

techniques is droop control which ensures the common DC bus voltage stabilization and power 

sharing among existing sources without digital communication links (DCLs)[40]. In its 

conventional form, droop control degrades the current-sharing accuracy and lacks robust voltage 

regulation. As a result, improved versions of droop control were proposed in the literature such as 

virtual-resistance-based droop, adaptive droop control, mode adaptive droop, and intelligent 

techniques-based droop to overcome the drawbacks of the basic droop technique[41]. However, 

to achieve additional control functionalities and global management objectives, a hierarchical 

control approach is adopted. Traditionally proposed to control AC microgrids, the three-level 

hierarchical control is applied to control and manage the power flow in DC microgrids with a 

difference in the control approach and controlled variables. Fig.1.11 illustrates the hierarchical 

control in a DC microgrid.  

The primary level consists of current, voltage, droop control, and source-dependent functions, e.g., 

maximum power point tracking (MPPT) for photovoltaic modules and wind turbines[42], [43], or 

state of charge (SOC) estimation for ESS[44].  

 

Fig.1.11 Hierarchical control of a DC microgrid. 
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On the secondary level, decentralized coordination functions exist such as local adaptive 

calculation of virtual resistances in which the robustness and stability of the primary control level 

are enhanced [45], [46]. Another function is the DC bus signaling (DBS) method which uses the 

DC bus voltage level as an information carrier to control power and switch between different 

operating modes[47]. A third decentralized function at the secondary level is the Power Line 

Signaling (PLS) method in which the units inject sinusoidal signals of specific frequency into the 

common DC bus voltage to communicate with each other and manage ESS and RESs[48]. Hence, 

secondary control is applied to enhance primary control level methods and manage the operating 

modes of the microgrid.  

However, at a global microgrid level, the tertiary control level achieves advanced energy 

management functions such as the optimization of the DC microgrid performance by reducing the 

operation and maintenance costs, the carbon emissions, improving the battery lifetime, converters’ 

efficiency, etc. Other functionalities can be included such as fuel and electricity prices, weather 

predictions… At this level, a digital communication-based coordinated control is required to 

monitor and manage all operating units[49].  

Besides the difference in functionalities in each of the three levels of hierarchical control, the 

objectives to be achieved are from different time scales[50]. Correspondingly, the primary and 

secondary levels have the highest control speed as they take charge of current, frequency, voltage, 

and power factor regulations. Oppositely, the tertiary control level has a slower dynamic as it 

targets slower variables. While the primary control level is installed locally at each converter, 

secondary and tertiary control levels can be implemented in a centralized, decentralized, or 

distributed fashion[51]. They are classified based on the digital communication links (DCLs) 

which only exist in the centralized and distributed approach and are used as data carriers between 

all operating controllers. The sole difference between both approaches is that a central control 

(CC) unit collects, processes, and sends back data to all operating units in the centralized control, 

although (CC) doesn’t exist in a distributed control and units only communicate with their 

neighbors to make decisions[52]. The centralized approach offers higher monitoring over the 

whole system and facilitates the function of global regulation and optimization. However, it 

requires extensive communication infrastructure which leads to an increased cost and lower 

reliability. Moreover, the system can be abruptly stopped because of a single-point failure in the 

(CC) or (DCL)s. On the other hand, a distributed control strategy offers better reliability and 

expandability of the system but sacrifices the overall system security because of lack of robust 

centralized supervision. Moreover, a consensus algorithm, also named multi-agent system, is 

needed to perform the decision making and a much challenging control is required to achieve a 

global optimization goal[53].     
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1.4.2 Tertiary control level to achieve smart energy management in DC 

microgrids 

 

As the safe operation of DC microgrid in all modes, stable, and robust performance in response to 

transients and disturbances are substantial prerequisites, most of the research addressed first the 

primary and secondary control levels to ensure microgrid voltage regulation, load-sharing, stable 

and reliable performance, power management, and seamless transition between different operation 

modes [54]–[59]. Lately, the tertiary control level is gaining an increased interest in achieving 

energy management and optimization functionalities on a global microgrid level as the 

environmental, energy efficiency, and operation and maintenance (O&M) cost minimization 

aspects are becoming prime concerns of the world energy policies[60]. Hence, several objectives 

can be accomplished simultaneously, by formulating an optimization problem and solving it using 

deterministic, heuristic, or metaheuristic methods such as simulated annealing (SA)[61], genetic 

algorithm (GA) [62], particle swarm optimization (PSO) [63], pattern search (PS)[64], polar bear 

optimization (PBO)[65], etc. The selection of the optimization method is instrumental in finding 

the optimal solution, it is hinged on several factors as the type of microgrid planning problem to 

be addressed, the number of objectives to be achieved, and the constraints to be considered[66]. 

The application of different optimization methods and the pros and cons of each are detailed in the 

next section. Once found, the optimal solutions are applied to the power control of operating 

converters as optimal power references in the outer loop, while the primary and secondary control 

levels are executed in inner loops with faster dynamics.  

As previously stated, the tertiary control level can be applied either in a centralized or distributed 

manner. Several works in the literature have investigated tertiary control functionalities in a 

centralized or distributed control strategy. Due to the diversity of control objectives and the wide 

range of their time scales, it is practically complex to represent and cover the entire hierarchical 

control in one research study and mathematical model, especially if targeted objectives of the 

tertiary control level span over long periods e.g., days, weeks, months, or years. This major 

difference between control levels made most researchers set apart the primary and secondary 

control levels from the third one either by centering their studies on the first two levels or by 

targeting the tertiary control level using simplified static models in steady-state. By this, variables 

of primary and secondary control levels with fast dynamics are excluded from the model to reduce 

complexity, and inner control loops are considered as established. Thence, the tertiary control level 

is investigated apart in most scopes of works, global management functionalities are accomplished 

through optimization problems and are validated without a direct referral to the hierarchical 

control. However, one can find in the literature several studies that execute tertiary control level 

functionalities such as multi-objective optimization in the scope of the hierarchical control and 

matches between optimality and synchrony in one framework[67]. It is frequently found in 

distributed control strategies with consensus algorithms and adaptive droop-based optimization 

problems. For instance, in [67] a distributed controller is proposed to simultaneously optimize the 

power-sharing among sources of an islanded DC microgrid and stabilize the common DC bus 
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voltage. An economic dispatch problem is solved to minimize the total generation cost and 

consensus protocols on incremental costs of DC resources are applied and networked on a 

communication graph. A distributed control methodology for both distributed feeder current 

balancing and power loss reduction is introduced in[68]. It modifies the weighted and constrained 

consensus control to include multi-objective optimization. The results are verified with an 

adequate selection of the weight coefficient. In [60], an optimization method is implemented on 

the tertiary control level. An optimization problem is formulated to minimize converters’ losses 

and solved using (GA) which outputs optimal virtual resistances (VRs) to local controllers. The 

adaptive (VR) technique is applied at the primary level. A distributed control is selected based on 

a consensus algorithm in each local agent to obtain global information. Two consensus algorithms 

running in parallel are proposed in [69] to solve the economic power dispatch with transmission 

line losses and generator constraints. The first one is used to reach a consensus on the Lagrange 

multiplier, while the second one estimates the power mismatch in the system. Droop control-based 

techniques were introduced in [70]–[72] to optimize defined objectives. In [70], a tertiary-level 

optimization control is implemented, and (GA) is used to search the global efficiency optimum by 

minimizing the losses of operating converters. (VRs) are set as decision variables for adjusting the 

output power from converters and so improving their efficiencies. A similar approach is adopted 

in [71] to minimize the total operation cost by considering the real-time pricing in DC microgrids. 

All generation resources are modeled in terms of operation cost and (GA) is selected as a heuristic 

method to solve the optimization problem.  

1.5 - Optimal sizing and optimal power scheduling of a DC Microgrid  

On the other hand, the literature addresses predominantly the tertiary control level as a single entity 

and research topic, apart from the hierarchical control. In this context, the DC microgrid planning 

problem can be divided into three main categories according to Carlos Gamarra and Josep M. 

Guerrero[66]: power generation mix selection and sizing, siting problem, and operation 

scheduling. However, problems that address the optimal sizing and the optimal power scheduling 

of a DC microgrid are frequently found[73], [74]. Both approaches were largely investigated by 

researchers, optimization problems are formulated and solved using several optimization 

techniques.  

1.5.1 - Optimal sizing of a DC Microgrid  
 

Though the optimal sizing of a DC microgrid is out of the scope of this work, we start by citing 

some interesting examples found in the literature. In [75], a hybrid Particle Swarm Optimization - 

Grey Wolf Optimizer  (PSO-GWO) technique is implemented to optimize the planning of a 

microgrid taking a case of three locations in the Indian state of Bihar. The microgrid consists of 

solar, wind, and bio-generator energy generation units, diesel generators, and a battery for energy 

storage. Cost of Electricity (COE) and Deficiency of Power Supply Probability (DPSP) factors are 

integrated into the objective function with a bound of Renewable Factor (RF). To prove the 
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effectiveness of the proposed hybrid algorithm, it is compared with other various algorithms. A 

multi-objective optimization algorithm is proposed in [76] to optimally size a DC microgrid 

including solar PV, wind generation units, and an energy storage system. Two criteria are taken 

into consideration in the decision-making: the total cost per year including the initial cost and 

(O&M) cost of each of the operating units and the availability of energy. Two objective functions, 

corresponding to each of the two criteria, are formulated and a Non-dominated Sorting Genetic 

Algorithm II (NSGA -II) is adopted as a search method to find a Pareto frontier of the solution. In 

[63] a (PSO) algorithm is applied to calculate the optimal sizing of a grid-connected DC microgrid. 

The on-grid price and the operating status of the grid-connected converter are considered in the 

objective functions and constraints on the battery state of charge (SOC), loss of power supply 

probability, and renewable energy efficiency are included. The optimal sizing targets the lowest 

annualized capital cost and (O&M) cost. Another optimization study is performed in [77] to 

optimally size rural applications in India. Two economic elements, the total Net Present Cost 

(NPC) and the Levelized Cost Of Energy (LCOE) are considered in the optimization problem 

along with constraints on grid power supply availability. Finally, multi-objective design 

optimization of a microgrid is developed in [78]. The microgrid consists of PV, wind, diesel, 

hydrogen, and battery systems. Three different goals are set for the optimal sizing (i.e., minimizing 

the Net Present Cost (NPC) of the system, the pollutant Emissions (E), and the Unmet Load (UL)), 

and established in three different objective functions. The Multi-Objective Evolutionary 

Algorithm (MOEA) and the (GA) are run in parallel as evolutionary algorithms to solve the 

optimization problem and return a set of non-dominated solutions.       

1.5.2 -Optimal scheduling of a DC Microgrid  
 

As previously stated, the optimal sizing of the DC microgrid is out of the scope of this thesis whose 

main target is the optimal power management of an existing DC microgrid configuration with a 

predefined power capacity and generation limits. Accordingly, this section highlights in detail the 

research work achieved in the optimal energy management of DC microgrids as well as the applied 

optimization techniques. One can identify two optimization approaches in the search for optimal 

energy management: offline and online optimization. Based on the microgrid configuration and 

the optimization target, the offline optimization approach relies on predicted data such as the 

ambient temperature, solar irradiance, wind speed, etc. to guess power generation profiles of RESs, 

economic data such as the energy market price, and load demand over a defined time horizon (i.e., 

mainly for 24 hours). These predicted profiles serve as input variables to the optimization problem. 

Mostly, system equations are discretized with a selected sampling time, and constraints and 

objective functions are evaluated at each sampling period. An optimization technique is applied to 

find the minimum total cost function which corresponds to the sum of the objective function at 

each time step over the whole-time horizon. The problem outputs the optimal power references of 

dispatchable units as a set of vectors to be applied in the next 24 hours.  
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1.6 - Offline optimization based on heuristic, metaheuristic, and deterministic 

methods  

1.6.1 - Heuristic and metaheuristic methods 
 

Heuristic and metaheuristic optimization techniques are commonly used in the energy 

management system (EMS) of microgrids[27]. Heuristic optimization methods are proposed as 

alternatives to classic optimization techniques as they are designed to find an optimum solution 

among a large set of feasible solutions with less computational effort[79]. Besides heuristic, 

metaheuristic methods are applied to find an optimum solution from a discrete search space, they 

can combine two heuristic methods to solve the optimization problem. As stated in [66], 

metaheuristic optimization methods can be classified into three main categories:  

• Trajectory metaheuristics: Modify and improve one single candidate during the search 

process and output a single optimized solution. Examples of this category are Simulated 

Annealing (SA), Tabu search (TS), Variable Neighborhood Search (VNS), etc.      

• Population-based metaheuristics: Modify and improve a population of solutions during a 

prefixed number of iterations and output a population of solutions when the stopping 

criterion is fulfilled. GA and PSO are the most popular algorithms in this category.  

• Bio-inspired metaheuristics are based on the principles and inspiration of the biological 

evolution of nature for solving optimization problems. Examples of this category are Grey 

Wolf Optimization (GWO), Butterfly Particle Swarm Optimization (BPSO), Whale 

Optimization Algorithm (WOA), etc.           

GA, PSO, SA, and game theory methods were recursively applied to find optimal solutions in 

microgrid power scheduling problems [80]–[82]. A multi-objective PSO (MOPSO) technique is 

presented in [83] to minimize the operation cost of a microgrid, fluctuation in generated power, 

uncertainty in power demand, and change in utility grid market prices. The microgrid consists of 

PV, wind, fuel cells, and battery units. A single combined weighted objective function is applied 

to aggregate all defined objectives. The (MOPSO) algorithm is validated through experimental 

results and compared to other metaheuristic techniques such as the GA and bee colony. In [62], a 

GA-based multi-objective optimization method is proposed to optimally control the power flow in 

a microgrid. Economic and environmental costs are chosen as objective functions. A nonlinear 

constrained multi-objective optimization problem is formulated in [84] to determine the optimal 

operation operating strategy of a microgrid. A game theory method is selected to achieve two 

objectives: minimizing the (O&M) cost and reducing the emissions of NOx, SO2, and CO2. 

Another bio-inspired optimization technique, the vaccine-AIS, is adopted in [85] to take care of 

microgrid load dispatch and network reconfiguration. Despite their capability of solving multi-

objective optimization problems for the whole-time horizon, heuristic and metaheuristic 

optimization methods are time-consuming in problems with a high number of decision variables 
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and do not guarantee the global optimal solution since the obtained results highly depend on initial 

guesses.  

1.6.2 - Deterministic methods 

 

Besides metaheuristic methods, several deterministic optimization techniques are proposed such 

as non-linear programming (NLP) methods (e.g., Sequential Quadratic programming (SQP), 

mixed-integer nonlinear programming (MINLP), etc.). For instance,  SQP and mesh adaptive 

direct search methods are applied in [86] to solve a nonsmoothed optimization problem. The cost 

function includes the costs of emissions, the start-up cost, and the (O&M) costs to optimally 

schedule the operation of a microgrid. In [87], a DC microgrid comprised of a PV, fuel cell, 

microturbine, diesel generator, and ESS units is optimally dispatched. Two objectives are set: the 

reduction of the generation cost and the emissions. To solve the problem which includes nonlinear 

equations and integer variables, a (MIMLP) algorithm, the branch and reduced optimization 

navigator (BARON), is selected and tested in a multi-objective scenario.        

Having the same starting point and algorithm parametrization, these algorithms lead to a single 

result and are generally based on gradient-descent methods that gradually improve an initial 

solution. These methods are faster than heuristic ones but can converge into local minimums 

because they tackle solutions in a concentrated space of research. Therefore, they favor the 

exploitation of known solutions (intensification) over the exploration of the field of study 

(diversification)[88].  

Besides, there are deterministic techniques that require a certain modification of the problem 

structure such as dynamic programming (DP), linear programming (LP), mixed integer linear 

programming (MILP), etc. For instance, the problem is divided into successive discrete states to 

find the global optimum in a DP algorithm. At each calculation step, the algorithm considers all 

meshed decision variables and calculates the least costly transitions according to a criterion to 

optimize[89]. The DP is applied in [90] to optimally schedule a grid-connected microgrid 

integrating solar PV and ESS. The total cost function corresponds to the sum of the operation cost 

of each operating unit including the grid. DP algorithm is applied in this thesis as a deterministic 

optimization method along with other metaheuristic optimization techniques. The optimization of 

the DC microgrid and the applied algorithms are detailed in Chapter 3. Yet, if the cost functions 

and constraints can be expressed in linear expressions as a function of optimization variables, the 

LP method can be selected to find the global optimum of the problem. Dual Simplex and interior 

point are the most commonly used algorithms to solve LP optimization problems[91]. In addition, 

integer and binary variables can be added to the linear problem to further express a logic status in 

the microgrid (e.g., turn on/off a diesel generator, connect/disconnect the microgrid to/from the 

grid, etc.). In such cases, the optimization problem is formulated as a MILP problem, and the 

Branch and Bound algorithm is adopted to find the optimal solution[91]. A MILP optimization 

problem is formulated in [92] to optimally schedule the power in a microgrid. The optimization 

aims to minimize operating costs and promote self-consumption. The objective function is written 
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as a function of regular variables and a binary one named “status” which indicates whether ESSs 

work in a grid-interactive mode. The main drawback of LP and MILP is that they cannot include 

any nonlinear behavior of the system in the problem formulation.         

1.7 - Online optimization techniques 

The above-stated techniques are offline optimization methods that find a global optimum for the 

whole-time horizon based on generation, load profiles, and pool price predictions. However, 

prediction errors in RESs, load power, and pool price always exist and lead to a suboptimal solution 

if the optimal power references set by the offline optimizer are not updated through ongoing online 

optimization. The principle online optimization techniques are cited in this paragraph.   

Model Predictive Control (MPC), also known as Receding Horizon Control (RHC)[93], the based 

optimization approach is one of several online optimization techniques that is gaining increased 

interest and is widely applied in the EMS of microgrids.  

A general definition of MPC is “a set of control approaches that take full advantage of the system 

model under specific constraints to gain the control signals or commands through minimizing 

predefined cost functions or objective targets[93]”. Another definition of the MPC optimization 

technique is proposed in [94]: “MPC is an optimal control method that converts an infinite long 

open-loop optimization into a limited long closed loop at each sample time using the receding 

horizon strategy and considering the dynamic performance of the system, the control objectives, 

and the constraints”.  

Fig.1.12 shows a basic simplified diagram example of an MPC method in which  

𝑋 = [𝑃𝑔𝑟𝑖𝑑, 𝑃𝐸𝑆𝑆] are the problem variables and outputs, 𝑆𝑂𝐶(𝑡𝑘) is a state variable calculated 

from the discrete state equation : 𝑆𝑂𝐶(𝑡𝑘+1) =  𝑓(𝑆𝑂𝐶(𝑡𝑘), 𝑃𝐸𝑆𝑆(𝑡𝑘)), 𝐽𝑡(𝑋)  is the total cost 

function to minimize, and 𝑔(𝑋) is the constraint of the problem. As seen, at each sampling step a 

selected optimization algorithm is executed for the whole-time horizon [𝑡𝑘 = 𝑡0, 𝑡𝑘+𝑁].  

For each possible transition between the 𝑆𝑂𝐶 state variable, and over the whole-time horizon, 

constraint and cost function equations are evaluated to find the best route. Finally, the trajectory 

that complies with predefined constraints and corresponds to the minimum total cost function is 

retained. Only the optimal schedule of  𝑡1 time interval is applied, the time horizon moves forward 

by one time interval, and the optimization algorithm is executed again for the whole new time 

horizon [𝑡1, 𝑡𝑘+𝑁+1] and so forth. The MPC-based optimization approach was applied in [95] to 

find the ideal power scheduling of a microgrid consisting of solar, ESS, loads, and utility grid by 

minimizing the total energy cost of the entire system. 
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Fig.1.12 A basic simplified diagram example of an MPC-based optimization technique. 

 

The continuous state space of the controlled model is discretized, and a graph-search algorithm is 

adopted. The proposed model uses a 24-hour prediction horizon and a 15-minute control horizon, 

it is compared to four optimization methods GA, PSO, QP, and SQP to prove its effectiveness. In 

[96], an MPC strategy is applied in a DC microgrid including RESs, a DG, and an ESS to minimize 

the operational cost. The optimization problem is formulated as a (MILP) and solved for a 48-hour 

time horizon with a sampling step of 15 minutes for the rolling horizon. Wind and solar energy 

forecasting models and neural networks for two-day-ahead electric consumption forecasting are 

also designed with updated data. To prove the viability of the proposed EMS MPC-based 

approach, it was compared to the traditional optimization method. An abundant number of MPC-

based optimization technique articles are found in the literature, for further information and 

examples one can refer to [93].  

 

Therefore, the MPC-based optimization technique with a rolling horizon made possible the real-

time management of energy and so, the compensation of mismatches between predicted RESs, 

load profiles, and energy market prices and real values. Yet, if existent mismatches occur with 

faster dynamics than the sliding window of the receding horizon, the grid operates as a slack bus 

for the corrective action needed to compensate for the uncertainties. This solution may not be 
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optimal especially, at high pool prices. Moreover, reducing the sampling step of the receding 

horizon would require high computational servers to rapidly solve the optimization problem at 

each sampling step then, the cost of the system increases. To overcome this obstacle, many authors 

have included an additional internal optimization stage to the standard MPC technique or a 

feedback correction loop with faster dynamic to further reduce any mismatches between predicted 

and real-time data. In [97], an MPC-based economic scheduling problem of a DC microgrid is 

formulated. Two solvers are applied: the first named (E-solver) solves the economic scheduling 

problem formulated as a MILP for a 24-hour time horizon and a sampling step of 15 minutes for 

the rolling horizon. The second named (L-solver) solves the transmission loss problem formulated 

as an NLP and is executed at each one-minute interval. By this, the L-solver improves the model 

accuracy by adding the transmission losses, minimizing them, and assuring fast real-time control. 

A two-level optimization algorithm is proposed in [98] to minimize the total operating cost of the 

microgrid and the pollutant gas emissions. The optimization problem is formulated as a MILP 

framework and the MPC rolling horizon is established to schedule the operation for a 24-hour time 

horizon with a time step of 15 minutes. A feedback intrasample correction part is introduced to 

adjust the output of the units and balance the difference between the forecast values and the actual 

values at each one-minute intrasample. The feedback correction was expressed as a new 

optimization problem that minimizes the prediction error while taking into consideration only the 

present state of the system.  

Several authors have included an online correction stage to the offline day-ahead optimization 

problem without applying the receding horizon strategy and yielded in turn efficient results. For 

example, supervisory control is applied in [92] to compensate for mismatches between scheduled 

values and real ones. The day-ahead optimization problem is formulated as a MILP to minimize 

the operating cost and maximize self-consumption with a sampling step of one hour. The 

supervisory control consists of two fuzzy interference systems with integral action. In [88], a 

tolerance band method is proposed as an online correction part to compensate for errors between 

predicted and real scheduled power references. The tolerance band online regulation approach is 

expressed as a new optimization problem and solved using SQP.  

 

1.8 - Applied optimization strategy and main outcomes of this thesis    

Research works on microgrid optimization are peaking since the last decade where a total of 1394 

papers related to microgrid optimization have been published between (2014-2021) according to 

[99]. Besides, the fastest growth rate in journal publications addressing microgrid optimization 

was in 2017 with a growth rate of 30.64%. Among journals on microgrid optimization, the most 

cited one is “ A Model Predictive Control Approach to Microgrid Operation Optimization”, with 

a total of 345 citations [99]. As seen, recent research works are focused on the tertiary control level 

of DC microgrids especially, the optimal energy scheduling of DC microgrids. More specifically, 

the MPC-based optimization approach with the receding horizon is predominantly applied, and 2) 

the comparison between different optimization algorithms, in terms of complexity, convergence 
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speed, global versus local optimum finding, single versus multi-objective achievement, algorithms 

hybridization, etc., is in turn frequently addressed.  

 

Considering the foregoing, this thesis tackles the problem of DC microgrid optimization from a 

different perspective. While most optimization approaches prioritize the optimization techniques 

and their results at the expense of the model precision, this thesis emphasizes the modeling 

accuracy of a DC microgrid without compromising the multi-objective optimization part. It 

considers three major modeling drawbacks that are rarely treated in the literature but highly 

influence the results of the optimization problem and the EMS: 

 

1. Elimination of primary and secondary control level techniques such as MPPT control: 

Since the MPPT technique is seated at a higher level than the optimization control level, it 

is not considered in most of the studies, and instead simplified mathematical expressions 

are used [81], [98] [73] to express the outputted power of PV and wind turbine energy 

sources when formulating the optimization problem. These simplified expressions induce 

output power prediction errors that directly influence the decision-making of the optimizer. 

To handle this hurdle, modeling strategies are proposed in this thesis to include the MPPT 

control to the RESs without applying a detailed electrical model. 

2. Complexity reduction by omitting nonlinear behavior and prominent variables from the 

system: The nonlinear behavior of many sources is frequently omitted by applying 

linearized expressions in the problem formulation either to reduce the problem complexity, 

increase the solver speed, or formulate the optimization problem as a MILP (a decent 

example is the adoption of the linear state space model of the battery in [95], [98], [100]). 

This linearized version implies that the voltage of the battery is always constant whereas, 

it has an exponential characteristic that largely impacts the real computed power. A precise 

battery model is established in Chapter 2, and the temperature effect is included in the 

model as an additional variable that highly affects the performance of the storage system.  

3. Model simplification of power electronic devices by applying constant converters’ 

efficiencies: In most research, the converters' efficiencies are not addressed or considered 

constant for all operating converters regardless of their types or the transited power [88], 

[101]. A major outcome of this thesis is the precise modeling of converters’ losses based 

on their types (DC/DC, AC/DC), the selection of switching frequency, and the modulation 

technique. This accurate model is applied to the optimization problem in which the 

minimization of converters’ losses is one of the predefined objectives.  

 

Besides the minimization of converters’ losses, the minimization of the total operating cost of the 

DC microgrid, and the reduction of the pollutant gas emissions are the main objectives of the 

optimization problem. Several constraints are introduced to guarantee the safe operation of the 

battery and emulate a real test scenario. Based on the load, solar irradiance, wind speed, 

temperature, and electricity purchase price input data that are partially known through predicted 
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profiles, two optimizations are accomplished. The first denoted offline optimization is 

accomplished the day ahead based on the predicted profiles and outputs the optimal power 

references of dispatchable sources for the next 24 hours. A second online optimization stage is 

added to update the optimal power references due to the mismatches between predicted and actual 

profiles.     

 

In addition to this first chapter which represents the state of the art in the DC microgrid control 

and management, the manuscript includes four additional chapters. Chapter 2 introduces the DC 

microgrid configuration, size, and 24-hour modeling strategy. The 24-hour model is derived from 

two mathematical models: the average and the instantaneous microgrid models which are set out 

in Chapter 2. The offline optimization problem for the day ahead is formulated and solved in 

Chapter 3. However, the online optimization stage which consists of a feedback correction part is 

applied and detailed in Chapter 4. Finally, chapter 5 concludes the thesis.            

 

1.9 -Conclusion  

After a predominantly century of centralized energy generation, the distributed generation 

approach is taking the lead due to several motives such as the ease of rural electrification, the 

reduction of transmission and distribution losses, and maintenance costs, the higher immunity 

against energy security problems, cyber and physical attacks, cascading outages, etc. Besides 

technical catalysts, natural phenomena such as the depletion of fossil fuel, which are the main 

origin of energy generation in centralized power plants, climate change, and the urgent need to 

integrate RESs were decisive grounds to endorse a distributed generation strategy.  

 

With the proliferation of distributed generation and renewable energy sources, the microgrid 

concept was proposed at the beginning of the 21st century as a group of interconnected sources and 

loads that act as a single controllable entity to the grid. Thanks to their maturity and 

standardization, AC microgrids first prevailed and captivated the attention more than DC 

microgrids. Since the last decade, DC microgrids have regained an increased interest in the 

research field and are advanced in several applications over their AC counterparts due to the surge 

in integrated RESs from which several are of DC nature such as solar panels, the DC-nature of 

most of the ESSs such as batteries, and fuel-cells making the connection to a common DC bus 

more efficient than an AC one, the increasing number of DC-type loads, and the ease of control of 

a DC microgrid.  

 

Thereupon, a DC microgrid configuration consisting of RESs, traditional pollutant sources, loads, 

and an ESS is studied in the context of this thesis. To control a DC microgrid, the three-level 

hierarchical control is applied of which droop control is one of the most used techniques on the 

primary control level that ensures proper load sharing and common DC bus voltage stabilization. 

Having redundant research on the primary and secondary control levels, lately, the tertiary control 
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level has been increasingly investigated. At this level, the energy management system of the DC 

microgrid is addressed by formulating an optimization problem with predefined objectives, and 

constraints. The optimization problem is solved using metaheuristic or deterministic techniques. 

Besides offline optimization, online optimization methods are proposed in the literature to 

compensate for any mismatch between predicted and real data.  

 

The MPC, or receding horizon control, is predominantly used as an online optimization technique 

that yields good results if the sliding window of the receding horizon is fast enough to compensate 

for all mismatches between predicted and real data. This requires high-performing servers or 

simplified mathematical models in the formulation of the optimization problem.  

 

In this thesis, the optimization problem is tackled from another perspective which is the accurate 

modeling of a multi-objective optimization problem. Precise dynamic models, nonlinear behavior, 

and MPPT techniques are added to the optimization problem and shown how highly they affect 

the optimization results. Three objectives are selected based on the actual international energy 

policies: the minimization of the total operating cost, the reduction of pollutant gas emissions, and 

the improvement of converters’ efficiency by minimizing converters’ losses. The secure operation 

of the battery and limits on purchased/sold energy from/to the grid are considered. The 

optimization problem is solved using metaheuristic and deterministic techniques, and an online 

optimization stage is added to further refresh outputted optimal power references.         
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Chapter 2 : Modeling of the 24-hour DC Microgrid  

 

2.1 Introduction 

In this chapter, the configuration, sizing, and modeling of the 24-hour DC microgrid are set out. 

The 24-hour modeling of the DC microgrid constitutes a major challenge to address as all the 

simulations are performed on a standard core i7 computer processor (2630QM CPU @ 2.00GHz) 

with an 8.00 Gb installed RAM. In the absence of any high-performant server with a high processor 

and installed memory capabilities, the modeling of a detailed 24-hour DC microgrid model that 

includes fast dynamics, transient states, switching devices, and current and voltage loops is 

practically impossible. The main barrier to surmount when modeling a 24-hour DC microgrid on 

a standard PC is the limited memory and CPU performance. The inclusion of all dynamic 

phenomena with fast variables imposes a small calculation step size of the simulation. As all 

system equations are evaluated at each calculation step size, the duration of the simulation is highly 

affected by the selection of the calculation step size. Smaller calculation step sizes induce slower 

simulations and vice-versa[102]. Moreover, the complexity of the problem and memory usage rise 

with the increasing number of variables and equations to solve at each calculation step size. 

Therefore, simulating the detailed DC microgrid model with all fast dynamics over a 24-hour 

simulation will result in an extensive duration of the simulation. Besides, it incurs an excessive 

usage of the computer CPU and memory which leads inevitably to full capacity attainment and so 

an unresponsive program behavior and a blocked simulation. 

To overcome this obstacle, most of the researchers that work on standard computers apply when 

formulating the optimization problem, a much simpler DC microgrid model that relies on 

simplified mathematical equations relating the generated DER power to natural variables such the 

solar irradiance, temperature, wind speed, etc.[81], [98] [102]. However, electrical variables with 

fast dynamics such as the current, frequency, and voltage are excluded from the model and 

considered as established[99]. Though this approach is instrumental in facilitating the solution of 

the optimization problem and remains upheld as the targeted control horizon and objectives of the 

optimization problem are much slower than electrical variables, it might induce sub-optimal results 

when applying the EMS on a real DC microgrid. Power computing errors result from the difference 

between the applied simplified model which doesn’t accurately emulate the real characteristics of 

operating units and the real microgrid model. This issue is rarely addressed in the literature because 

of the existent segregation between the optimal control and the modeling of a DC microgrid.  

In this context, this chapter addresses this problem and proposes several mathematical techniques 

to overcome the 24-hour modeling hurdle. It presents several averaging techniques, look-up tables, 

and curve-fitting methods to reach an intelligible trade-off between model accuracy and simulation 

speed to make the 24-hour model a feasible matter[102]. The trade-off is reached by omitting 

irrelevant fast variables and phenomena from the model which enables the increase of the 
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calculation step size while maintaining the essential ones that impact the accurate power 

calculation of all sources. 

  

Two main objectives are accomplished through the applied modeling strategy. All operating 

sources, especially the RES which are the main energy source contributors to the DC microgrid, 

are precisely modeled. This results in accurate power-computed values that serve as data inputs to 

the optimization controller presented in the next chapter. In turn, the results of the optimization 

problem are directly affected by the precision of the collected data. Hence, by providing precise 

power value inputs to the optimization problem, the obtained results wouldn’t present any 

mismatches when applied to a real DC microgrid model. Second, all variables that are subject to 

constraints in the optimization problem or are directly targeted in the optimization goals are 

maintained and represented in the model. Consequently, the proposed 24-hour model represents 

the closest emulation of DC microgrid characteristics that can be achieved on a standard computer 

CPU and memory. 

 

Next in each section of this chapter, the energy conversion chain of each unit is presented 

separately. The mathematical model of each source, the converter type, and the control strategy 

are detailed. Finally, the 24-hour model of the whole assembled DC microgrid is presented through 

a simulation test that validates all advanced modeling techniques in this chapter.    

2.2 Configuration, energy management problem formulation, and sizing of the 

DC microgrid  

2.2.1 DC microgrid configuration  
 

The applied configuration is shown in Fig.2.1. It consists of a PV array and a wind turbine as RESs, 

a diesel generator (DG) as a traditional pollutant source, an ESS consisting of a lithium-ion battery, 

a residential-type load, and the microgrid can operate in islanded or in grid-connected mode. The 

selected topology is a single-bus topology, commonly used in DC microgrid applications[103], in 

which all units are connected to the common DC bus through local converters. Each operating 

unit, its proper converter type, and control technique are detailed separately in this chapter. As a 

general EMS strategy, the PV and WT are always functioning in MPPT mode since they generate 

clean energy, and one has an interest in continuously extracting the maximum available power. 

This management strategy of RESs is mostly found in DC microgrids' optimal EMS[81], [83], 

[99]. Then, the output power of RESs is non-dispatchable and is applied as input to the offline 

optimization problem in addition to the load power profile. The dispatchable sources which are 

the battery, the (DG), and the grid represent the decision variables of the optimization problem. 

Once solved, the offline optimization problem set the power references of the battery, the DG, and 

utility grid converters denoted respectively 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓, 𝑃𝐷𝐺_𝑟𝑒𝑓, and 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓, for the next 24 hours. 

As seen in Fig.2.1, arrows are used to indicate the power flow direction in the microgrid. Single 
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arrows indicate a unidirectional power flow such the ones of the PV, WT, and DG which operate 

invariably as sources so, the arrow’s direction is outward. The generated power of these sources 

passes through unidirectional local converters to reach the common DC bus. Same for the DC 

residential load which always receives the required power through its unidirectional local 

converter and so the arrow’s direction is inward. Since the power flow in the PV, WT, DG, and 

load is unidirectional the power signs 𝑃𝑃𝑉, 𝑃𝑊𝑇, 𝑃𝐷𝐺 , and 𝑃𝑙𝑜𝑎𝑑 are conventionally greater or equal 

to zero. Contrarily, a double arrow is used to indicate the bidirectional power flow in the battery, 

and the grid converters.  

 

Fig.2.1 DC microgrid applied configuration. 

If the battery is in charge mode, the power transits from the common DC bus to the battery and 

vice-versa in discharge mode. As convention, 𝑃𝑏𝑎𝑡𝑡 > 0  when the battery is discharging and 

𝑃𝑏𝑎𝑡𝑡 < 0  when it is charging. This convention is widely used in the literature [104]. Similarly, if 

the power is purchased from the grid, conventionally, 𝑃𝑔𝑟𝑖𝑑 > 0 while, if it is sold to the grid 

𝑃𝑔𝑟𝑖𝑑 < 0.  

2.2.2 Energy management problem formulation  
 

As stated before, the optimal sizing of DC microgrid units is out of the scope of this thesis without 

overlooking its crucial impact on the decision-making of the optimal EMS. Accordingly, the size 

of each operating unit in the microgrid will directly impact the amount of delivered/absorbed 
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power and so the goal, frequency, and continuity of interventions of all operating units. Hence, the 

problem should be positioned in a way that establishes a sort of competitiveness between the 

operating units on the predefined optimization goals. Otherwise, the solution to the optimization 

problem may become trivial or unfeasible[73]. From here, the problem should be defined as 

follows: In a DC microgrid, a specific load demand should be covered over 24 hours by existing 

energy sources consisting of RESs, DG, utility grid, and battery with the object of reducing the 

total O&M cost of the microgrid, the pollutant gas emissions, and the overall losses of converters. 

The highest priority in feeding the load demand is attributed to the RESs as they produce clean 

energy at near zero cost per kWh. Yet, if the load demand surpasses the RESs generation the DG, 

the ESS, and the utility grid take charge of covering the unmet load. To further identify the general 

EMS strategy of the microgrid, Fig.2.2 shows a brief flow chart of possible encountered scenarios. 

First, as defined above, the main objective is to cover the load demand so, that available RES 

power (𝑃𝑅𝐸𝑆𝑠) is evaluated and compared to the load power (𝑃𝑙𝑜𝑎𝑑), two possible cases come 

across. 

1. 𝑃𝑙𝑜𝑎𝑑  < 𝑃𝑅𝐸𝑆𝑠 : the generated power exceeds the load demand then, all the load is fed by 

RESs, and the remaining power is entirely sold to the grid if the battery is fully charged (the 

negative grid power (𝑃𝑔𝑟𝑖𝑑 < 0) implies that the power is sold to the grid). Yet, if the battery 

is not fully charged, the exceeding RES power can be utilized to either charge the battery 

and sell the remaining power to the grid simultaneously or accomplish uniquely one of the 

two operations (this can be expressed as 𝑃𝑔𝑟𝑖𝑑 ≤ 0 and 𝑃𝑏𝑎𝑡𝑡 ≤ 0). The decision-making in 

such a case is assigned to the optimizer which outputs the battery and grid power references 

(𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 and 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓). The DG is always turned off in this scenario.  

2. 𝑃𝑙𝑜𝑎𝑑  > 𝑃𝑅𝐸𝑆𝑠 : the generated power is less than the load demand then, RES generated power 

is insufficient to meet the total load demand. The unmet load should be covered by existing 

DERs based on the optimizer's decision. Two subsections are identified depending on the 

battery’s state of charge. If the battery is fully discharged, the utility grid and the DG may 

intervene simultaneously or separately to essentially feed the unmet load and potentially 

charge the empty battery if the optimizer requests that (this subsection is expressed as 

𝑃𝑔𝑟𝑖𝑑 ≥ 0, 𝑃𝐷𝐺 ≥ 0, and 𝑃𝑏𝑎𝑡𝑡 ≤ 0 ). However, if the battery is not fully discharged, it may 

be in charge or discharge mode based on the optimizer's preference. If in discharge mode, 

the battery may intervene solely to cover the unmet load or contribute fractionally to the 

power mix with the utility grid and/or the DG (this can be expressed as 𝑃𝑏𝑎𝑡𝑡 ≥ 0).  

As seen from the general EMS strategy, several scenarios can be encountered, and here lies the 

instrumental significance of the optimization process in finding the best combination of operating 

DERs that meets the load demand regarding the predefined constraints and objectives. 

Once the EMS strategy, the possible scenarios, and the objectives of the optimization are defined, 

the sizing hurdle of the DC microgrid is overcome.  
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Fig.2.2 Flow chart of the general EMS strategy. 

Yet, particular attention should be paid when sizing the microgrid to prevent any oversize or 

undersize of DERs that impact tremendously the EMS strategy and the solution of the optimization 

problem. For instance, a load demand that always exceeds the RES production implies a high 

reliance on the grid and the DG to directly feed the load, a restricted role of the battery, and an 

abstraction of the scenario of excessive energy production. While, if RESs are oversized this may 

restrict the role of the grid, the DG, and the battery. The same impacts result oppositely if the load 

is oversized or undersized. Besides, an oversized ESS will automatically release the constraints on 

the battery whose SOC remains high. In that case, the role of the DG is canceled which may 

intervene when the load demand exceeds RES production, the battery is discharged, and the pool 

prices are high. Contrarily, lower and higher bounds of the battery’s state of charge are quickly 

reachable in an undersized ESS which may incur excessive usage of the battery, increased daily 

number cycle of the battery, and so a shortened battery lifetime[105]. The DG size has a minor 

impact on the EMS strategy when compared to the RESs, battery, and load since it operates as a 

backup energy source at high pool prices. Lower and higher Bounds of DG-produced power and 

purchased/ sold power from/ to the grid are fixed when formulating the optimization problem in 

the next chapter.  

2.2.3 Sizing of the DC microgrid 

 

As for this study, a low-voltage DC microgrid (LVDC) application for residential load is adopted 

with a rated power of 50 kW, and a common DC bus voltage of 800 V. Based on IEEE standards 

1709-2010, the recommended DC bus voltage shouldn’t exceed 1.5 kV for LVDC 
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microgrids[106]. Similar demonstration projects are found worldwide for LVDC microgrids, for 

instance, the FREEDM project in Raleigh, USA proposed in 2011 to a factory for DC lighting, and 

DC building load with a rated power of 100 kW and a 400 V DC bus voltage[107]. Another project 

is the Office building of Nanjing Guochen Co., Ltd. Located in Nanjing, China, proposed in 2018 

for an EV charging pile, lighting, and DC appliances of an office, with a rated power of 74 kW 

and a 600 V common DC bus rated voltage[108]. A third demonstration project is the Suzhou 

Tongli integrated energy service center in Suzhou, China suggested in 2018 for lighting, and air 

conditioning load with a rated power of 300 kW and three different DC bus voltage levels of 

750/540/220 V[108]. Further applications for LVDC microgrids can be found in [109]. In this 

thesis, the selected load is a cluster of small DC-type residential loads then, a DC/DC buck 

converter is required to decrease the voltage from 800 V to a safer lower level as shown in Fig.2.1. 

According to IEC 60038 [110] and IEC 61140 [111], LVDC voltage level can be divided into two 

ranges, including the range from 120 V to 1.5 kV, and the range bellow 120 V. The 120 V voltage 

level is defined by IEC as the upper boundary of extra low-voltage, which is a low risk under dry 

conditions [112], [113]. Meanwhile, the voltage level of a low-voltage DC distribution network 

should not exceed 400 V [114]. As a result, the 120 V voltage level can be used as a DC distribution 

network for the cluster of DC residential loads. Given that the precise modeling of the cluster of 

DC residential loads is out of the scope of this work, a simplified model through a standard unified 

residential load profile is applied. As a result, the DC residential load and its corresponding DC/DC 

converter appear as a single entity throughout the load profile.    

Table 2.1 summarizes the size of each DER of the microgrid. As seen, the PV array and WT have 

almost nearby rated powers of 50 𝐾𝑊, knowing that they won’t practically operate simultaneously 

and continuously at their maximum rated power. The DG generates 55 𝐾𝑊 as nominal power with 

a 50 Hz nominal frequency and the rated power of the utility grid is 100 𝐾𝑉𝐴 with a 50 Hz nominal 

frequency. Concerning the battery capacity, a minimum of 3 to 4 hours of battery backup should 

be provided for the load in the presence of the backup diesel generator which can be automatically 

turned on in case of a full discharge of the battery. This ratio (3 to 4 hours) of battery backup is 

found in IEEE standards for traditional telecommunication sites[115] and represents a reasonable 

selection for the ESS capacity in residential applications, where other DERs are capable of 

intervening to feed the unmet load. The battery is generally sized under constant load during a 

predefined period then, an average constant load of 30 𝐾𝑊 is chosen and a ratio of 4.16 hours is 

obtained by dividing the battery-rated energy (𝑊𝑏𝑎𝑡𝑡_𝑟 = battery rated capacity (Ah) × battery 

rated voltage (V) = 250 × 500 = 125 𝐾𝑊ℎ) over the constant load value (30 𝐾𝑊). We take note 

that this ratio only represents an estimation criterion that helps size the battery meanwhile, the 

actual value of backup hours might differ as the full capacity of the battery cannot be exploited 

due to the boundaries on the state of charge and the discharged power won’t remain constant over 

the discharging hours. By this, a typical LVDC microgrid application with a tangible and realistic 

sizing approach is applied and can be controlled optimally based on predefined objectives. 
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Common DC bus, rated voltage 800 𝑉 
Wind turbine maximum rated power and efficiency (%) 55 𝐾𝑊- 92.8% 

PV array maximum rated power 50 𝐾𝑊 
(DG) rated parameters Power (KW) frequency (Hz) 55 𝐾𝑊 - 50 𝐻𝑧 

Utility grid-rated parameters Power (VA) - frequency (Hz) 100 𝐾𝑉𝐴 - 50 𝐻𝑧 

Battery-rated capacity and voltage 500 𝐴ℎ – 250 𝑉 

 

Table 2.1 Sizing of DC microgrid principal units. 

2.3 Instantaneous and 24-hour DC microgrid modeling 

Once a new EMS strategy for DC microgrids is proposed by researchers, it is usually validated 

through experimentation on a real DC microgrid or through a Hardware-in-the-loop (HIL) 

verification in which the real dynamic characteristic of a DC microgrid is emulated[83], [92], [98]. 

In this thesis, a theoretical study on an offline multi-objective optimization of a DC microgrid 

followed by an online optimization stage is addressed. Certainly, the experimental and the (HIL) 

validation of the EMS strategy on a real DC microgrid or a real-time simulator would be interesting 

meanwhile, the two options weren’t available during the accomplishment of the thesis. Thus, apart 

from the offline and online EMS strategy, a 24-hour DC microgrid model is developed. The 

effectiveness and viability of the EMS are validated through the 24-hour DC microgrid model. For 

this study, MATLAB/Simulink was selected as an engineering software tool to model and optimize 

the DC microgrid. Three modeling approaches were applied in MATLAB/Simulink to yield the 

24-hour DC microgrid assembled model: 

 

1) The detailed microgrid model is built in the Simscape library of Simulink using the specialized 

power systems from the electrical toolbox. Simscape library was chosen for the detailed 

modeling as it represents all microgrid units with accurate mathematical models including all 

electrical and mechanical equations and transients in the system. Besides, the Simscape model 

reveals real physical connections between DERs, converters, and loads. The high accuracy of 

this model imposes a reduced calculation step size and so a slowed simulation, an extensive 

computational burden, and memory usage. Accordingly, this model can only be run for a 

several-second simulation on a standard computer. However, being the most accurate, the 

detailed model serves as a reference model for the proposed averaging ones to assess their 

precision.  

2) The 24-hour DC microgrid is uniquely built on Simulink as all electrical and mechanical 

equations of the system are reestablished and new simplified modeling techniques are 

advanced. These assumptions mainly target the calculation step size of the simulation model 

that is increased without compromising the model's accuracy.  

3) The script format, including .m files and MATLAB functions, is utilized to add several 

averaging and curve-fitting techniques and to formulate the offline and online optimization 

EMSs that are presented in the next chapters.  
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As a result, the overall assembled 24-hour DC microgrid model is built using Simulink and the 

script format consisting of .m files and MATLAB function files. A simulation test of the obtained 

24-hour model is revealed at the end of this chapter. Finally, we take note that the developed model 

isn’t advanced as an alternative to the HIL real-time simulators which remain the most accurate 

emulators of any system characteristics convenient for long and real-time simulations. Next, the 

detailed model of each source along with its converter and strategy of control are presented first 

as reference models then, the simplifying strategies are advanced, and newly obtained models are 

compared to the detailed ones in terms of precision and simulation speed.  

    

2.4 PV energy conversion chain 

As depicted in Fig.2.3, the PV array conversion chain consists of a PV array block connected to 

the common DC bus through a DC/DC boost converter which functions in MPPT mode to extract 

maximum available power. The boost is controlled throughout firing pulses denoted 𝑢.  

 

2.4.1 PV array  
 

To model the PV array, the “PV Array” “SimScape” library block is selected. The block models 

an array built of strings of modules connected in parallel, each string consisting of modules 

connected in series[116]. The block has two input parameters as seen in Fig.2.3: the irradiance 

denoted 𝑆  expressed in (𝑊 𝑚2⁄ ), and the cell temperature denoted 𝑇  expressed in (°C). The 

electrical circuit of the PV array includes a light-generated current source denoted 𝐼𝐿𝑖𝑔ℎ𝑡, a diode 

denoted 𝑑, a series and a shunt resistance denoted respectively 𝑅𝑠 and 𝑅𝑠ℎexpressed in (Ω), as 

shown in Fig.2.4. The P-V characteristic is defined by equations (II.1) and (II.2): 

𝑃𝑃𝑉 = 𝐼𝑃𝑉 × 𝑉𝑃𝑉                                                                           (II.1)         

𝑃𝑃𝑉 = 𝑉𝑃𝑉 × 𝐼𝐿𝑖𝑔ℎ𝑡 − 𝑉𝑃𝑉 × 𝐼𝑑 − 𝑉𝑃𝑉 × 𝐼𝑠ℎ                                         (II.2) 

Where 𝐼𝑃𝑉 , 𝐼𝐿𝑖𝑔ℎ𝑡, 𝐼𝑑, 𝐼𝑠ℎ, and 𝑉𝑃𝑉  are respectively: PV current (A), light generated current(A), 

diode current (A), shunt resistance current (A), and PV voltage (V). The diode current and the 

light-generated current are expressed as follows:  

𝐼𝑑 = 𝐼0 [𝑒𝑥𝑝 (
𝑉𝑑 

𝑉𝑇
) − 1] = 𝐼0 [𝑒𝑥𝑝 (

𝑉𝑃𝑉+𝑅𝑠.𝐼𝑃𝑉 

𝑉𝑇
) − 1]                                                                (II.3) 

𝐼𝐿𝑖𝑔ℎ𝑡 = (
𝑆 

𝑆𝑟𝑒𝑓
) × [𝐼𝐿𝑖𝑔ℎ𝑡_𝑟𝑒𝑓 + 𝛼𝑖𝑠𝑐(𝑇𝐾 − 𝑇𝑟𝑒𝑓_𝐾)]                                                                    (II.4) 

Where  𝐼0, 𝑉𝑑, 𝑉𝑇 , 𝑆𝑟𝑒𝑓 , 𝐼𝐿𝑖𝑔ℎ𝑡_𝑟𝑒𝑓, 𝛼𝑖𝑠𝑐 , 𝑇𝐾  and 𝑇𝑟𝑒𝑓_𝐾 are respectively: diode saturation current 

(A), diode voltage (V), diode temperature voltage of the array (V), reference irradiance at standard 

test conditions (STC)s ( 1000𝑊 𝑚2⁄ ), reference light-generated current (A), temperature 

coefficient of short-circuit current (𝐴 °𝐶⁄ ) , cell temperature in Kelvin (𝑇𝐾 = 𝑇 + 273.15 ), 
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reference temperature at (STC)s in Kelvin (25°𝐶  →298.15 K). All module data and numeric 

values of parameters are found in Appendix A.1.  

This model representation of the PV array is the most accurate as it computes the output power as 

a function of the electrical components 𝑉𝑃𝑉  and 𝐼𝑃𝑉 : 𝑃𝑃𝑉 =  𝑓(𝑉𝑃𝑉, 𝐼𝑃𝑉). As the mathematical 

equations of the PV array (II.1, II.2, II.3, and II.4) do not include fast variables requiring any 

restriction of the calculation step size, the same model is kept for the 24-hour simulation.   

 

Fig.2.3 PV array conversion chain. 

 

Fig.2.4 PV array electrical circuit. 

2.4.2 DC/DC boost converter 

2.4.2.1 Detailed model 

 

The electrical circuit of the DC/DC boost detailed model is represented in Fig.2.5. This model is 

the most accurate as it includes the real electrical components (switching device, diode, filtering 

inductor, and capacitor). IGBT switches are chosen as switching devices for all operating 

converters as they highly comply with such applications and offer a reasonable trade-off between 

switching speed and maximum admissible power[117]. The IGBT is controlled by firing pulses, 

denoted 𝑢 (Fig.2.3), with a fixed switching frequency 𝑓𝑠𝑤_𝑃𝑉 = 20 𝐾𝐻𝑧. The selected switching 
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frequency lies within the standard range of IGBT operating frequencies[117], [118]. As seen in 

Fig.2.5, the PV array model of Fig.2.4 is represented by a variable current source that should be 

connected to the DC/DC boost inductor considered, in turn, as a current source in 

Simscape/Simulink. To enable the connection of the PV current source with the DC/DC boost, and 

to access the PV voltage 𝑉𝑃𝑉, a capacitor 𝐶𝑖𝑛 is placed in parallel to the PV array block as seen in 

Fig.2.5. By applying Kirchhoff’s current law, the equation bellow is stated, and 𝑉𝑃𝑉  can be 

obtained by integrating it:  

𝐶𝑖𝑛.
𝑑𝑉𝑃𝑉

𝑑𝑡
= 𝐼𝑃𝑉 − 𝐼𝐿                                                                                                                (II.5) 

To derive the boost equations the binary variable 𝑢 (i.e., the firing pulses variable) is introduced 

which is equal to zero if the IGBT is OFF and one otherwise. Based on the electrical circuit of 

Fig.2.5, the boost equations can be expressed as follows: 

{
 

 𝑉𝑃𝑉 = 𝑅𝐿 . 𝐼𝐿 + 𝐿.
𝑑𝐼𝐿

𝑑𝑡
+ (1 − 𝑢). 𝑉𝐵𝑈𝑆

𝐼𝐷 = (1 − 𝑢). 𝐼𝐿

(1 − 𝑢). 𝐼𝐿 = 𝐶𝑏𝑢𝑠.
𝑑𝑉𝐵𝑈𝑆

𝑑𝑡
+ 𝐼𝑜𝑢𝑡

                                                                                     (II.6) 

Where 𝑅𝐿 , 𝐼𝐿 , 𝐿, 𝑢, 𝑉𝐵𝑈𝑆 , 𝑢, 𝐼𝐷 , 𝐶𝑏𝑢𝑠 , and 𝐼𝑜𝑢𝑡  are respectively the inductor resistance (Ω), the 

inductor current (A), the filtering inductor (H), the firing pulses, the common DC voltage (V), the 

diode current (A), the common DC bus capacitor (F), and the output current (A).       

 

Fig.2.5 Electrical circuit of the DC/DC boost converter (detailed model). 

 

2.4.2.2 Average model: 

Based on the Nyquist-Shannon sampling theorem, which states:” to accurately reproduce a pure 

sinewave measurement or sample, the rate must be at least twice its frequency[119]”, the maximum 

allowable step size of simulation can be determined. By evaluating the equations of the detailed 

boost model, one can identify that the highest frequency limiting the step size of the simulation is 

the switching frequency (𝑓𝑠𝑤𝑃𝑉 = 20 𝐾𝐻𝑧). To simulate the detailed model, and by applying the 
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Nyquist-Shannon theorem, a maximum allowable calculation step size of: 𝑇𝑠𝑡𝑒𝑝_𝑑𝑒𝑡 =
1

2×𝑓𝑠𝑤𝑃𝑉
=

2.5 × 10−5 s is required, otherwise erroneous results may be obtained. Additionally, to get well-

shaped curves of current, voltage, and power, the required ratio between the step size and the 

switching period has to be at least equal to 1/100 [120], [121]. Consequently, the calculation step 

size cannot exceed in this case 𝑇𝑠𝑡𝑒𝑝_𝑑𝑒𝑡 =
1

100×𝑓𝑠𝑤_𝑃𝑉
= 5 × 10−7 s = 0.5 𝜇𝑠. As the switching 

characteristic with the real switches devices has the fastest dynamic in the system and is not 

targeted as an optimization objective in the EMS strategy, it can be considered as established. 

Thence, the real switches can be omitted, and the converter can be directly controlled by the duty 

cycle instead of the firing pulses. This model representation is known as the average converter 

model[122], [123]. The electrical circuit of the DC/DC boost average model is shown in Fig.2.6, 

it includes a controlled voltage source denoted 𝑉𝐿 and controlled current source denoted 𝐼𝑃𝑉_𝑜𝑢𝑡. 

From Fig.2.6, the equations of the average model can be expressed as follows: 

  

{
 
 

 
 

𝑉𝐿 = (1 − 𝐷𝑃𝑉). 𝑉𝐵𝑈𝑆

𝑉𝑃𝑉 = 𝑅𝐿 . 𝐼𝐿 + 𝐿.
𝑑𝐼𝐿

𝑑𝑡
+ 𝑉𝐿

𝐼𝑃𝑉_𝑜𝑢𝑡 =
𝐼𝐿.𝑉𝐿

𝑉𝐵𝑈𝑆

𝐼𝑃𝑉_𝑜𝑢𝑡 = 𝐶𝑜𝑢𝑡.
𝑑𝑉𝐵𝑈𝑆

𝑑𝑡
+ 𝐼𝑜𝑢𝑡

                                                                                                 (II.7)                          

 

Fig.2.6 Electrical circuit of the DC/DC boost converter (average model). 

Where 𝑉𝐿, 𝐷𝑃𝑉, 𝐼𝑃𝑉_𝑜𝑢𝑡 are respectively the converter-controlled voltage source (V), the duty cycle 

ratio of the PV, and the converter-controlled current source (A). To validate this model, it is 

compared to the detailed one in a simulation test. Both converters’ models are simulated for one 

second using the same solver and the following parameters: 

𝑅𝐿 = 5 𝑚Ω, 𝐿 = 5 𝑚𝐻, 𝐶𝑖𝑛 = 6 𝑚𝐹, 𝐶𝑜𝑢𝑡 = 0.1 𝑚𝐹, and a simple load consisting of a resistor, 

connected in parallel to 𝐶𝑜𝑢𝑡, is applied with the value 𝑅 = 25 Ω. A constant PV current source is 

selected: 𝐼𝑃𝑉 = 64 𝐴 and the following duty cycle ratio function is applied: 

{
 𝐷𝑃𝑉 = 0.5          0𝑠 ≤ 𝑡 < 0.5𝑠
𝐷𝑃𝑉 = 0.6          0.5𝑠 ≤ 𝑡 < 1𝑠
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Fig.2.7 DC bus voltage of the DC/DC boost in the detailed and average model representations (on the left 

side: the whole curves over the full-time simulation, on the right side: a zoom over the transient state) 

 

Fig.2.8 Inductor current of the DC/DC boost in the detailed and average model representations (on the left 

side: the whole curves over the full-time simulation, on the right side: a zoom over the transient state). 

The step size calculation of the detailed model is set to: 𝑇𝑠𝑡𝑒𝑝_𝑑𝑒𝑡 = 0.5 𝜇𝑠 as the switching 

frequency of the IGBT is set to: 𝑓𝑠𝑤_𝑃𝑉 = 20 𝐾𝐻𝑧. A step size calculation of the average model 

equal to 𝑇𝑠𝑡𝑒𝑝_𝑎𝑣 = 50 𝜇𝑠 is chosen. The obtained simulation results are depicted in Fig.2.7 and 

Fig.2.8 in which the inductor current 𝐼𝐿 and the DC bus voltage 𝑉𝐵𝑈𝑆 are shown. It can be seen 

how accurately the average model curves follow the detailed model ones in transient and steady 

state. By applying the average model, the new calculation step size can increase at least 100 times 

compared to the detailed model (𝑇𝑠𝑡𝑒𝑝_𝑎𝑣𝑟 ≥ 100. 𝑇𝑠𝑡𝑒𝑝_𝑑𝑒𝑡). This assumption highly reduces the 

duration of the simulation as the calculation step size is increased, and the complexity of the model 

is reduced without compromising the accuracy of the model which always includes the dynamics 

of the electrical components. We take note that the above-selected values of 𝑅𝐿, 𝐿, and 𝐶𝑖𝑛 are 

applied to the PV conversion chain for the rest of this thesis study, whereas the values of 𝐶𝑜𝑢𝑡 and 

𝑅 were utilized only for the comparison between the detailed and average converters’ models.    
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2.4.2.3 DC/DC boost losses: 

 

Though power electronic devices are rapidly developing, and converters’ efficiencies are 

unceasingly increasing, the reduction of converters’ power losses plays a key role in the overall 

system efficiency improvement. By optimizing the converters’ efficiency, the operating cost of the 

DC microgrid is reduced as well and the energy consumption decreases on a macro-level which 

complies with international energy policies[23]. While most DC microgrid applications neglect 

the converters’ losses by considering a unit conversion ratio equivalent to 100% efficiency, others 

include the converters’ efficiency in their models as a constant ratio by referring to figures 

provided by converters’ manufacturers[88], [98]. In general, DC/DC conversion stages have 

higher efficiencies ranging between 98% and 99.7% compared to DC/AC conversion stages with 

a range between 95% and 97%[124]. In this study, converters’ losses are modeled and added to 

the average model presented in Fig.2.6. The first losses that were already included in the DC/DC 

boost average model are the inductor copper losses which are modeled by a resistor, denoted 𝑅𝐿, 

placed in series with the inductor 𝐿 . The second source of power loss in a converter is the 

conduction loss caused by semiconductor device forward voltage drops. The forward voltage drops 

in the diode and the IGBT can be modeled by a voltage source, denoted respectively 𝑉𝐷0 and 

𝑉𝐼𝐺𝐵𝑇0, in series with an on-resistance denoted respectively 𝑅𝐷 and 𝑅𝐼𝐺𝐵𝑇[125]. Then, the IGBT 

and diode voltage sources and on-resistances are placed on the inductor branch side as seen in 

Fig.2.9. By referring to [125], 𝑉𝐷0, 𝑉𝐼𝐺𝐵𝑇0, 𝑅𝐷, and 𝑅𝐼𝐺𝐵𝑇 can be expressed as follows:  

{
 
 

 
 𝑉𝐷0 = (1 − 𝐷𝑃𝑉). 𝑉𝑓0
𝑉𝐼𝐺𝐵𝑇0 = 𝐷𝑃𝑉. 𝑉𝐼𝐺𝐵𝑇_𝐶𝐸0
𝑅𝐷 = (1 − 𝐷𝑃𝑉). 𝑅𝐷_𝑓
𝑅𝐼𝐺𝐵𝑇 = 𝐷𝑃𝑉 . 𝑅𝐼𝐺𝐵𝑇_𝑜𝑛

                (II.8) 

where 𝐷𝑃𝑉 , 𝑉𝑓0 , 𝑉𝐼𝐺𝐵𝑇_𝐶𝐸0 , 𝑅𝐷_𝑓 , and 𝑅𝐼𝐺𝐵𝑇_𝑜𝑛  are respectively the duty cycle ratio of the 

converter, the diode forward voltage source (V), the IGBT forward voltage source (V), the diode 

forward resistance (Ω), and the IGBT on-resistance (Ω). All these parameters are defined based 

on the selection of each component and by referring to the manufacturer's datasheet. The detailed 

calculation of conduction loss parameters of the DC/DC boost can be found in Appendix B.1.   

The last major source of losses in any converter is switching losses. These losses occur during the 

turn-on and turn-off transitions of semiconductor devices that require times of tens of nanoseconds 

to microseconds. Although these switching times are short, the resulting power-switching loss is 

significant[125]. Many techniques are proposed in the literature to model the switching losses. For 

instance, in [122], two terms corresponding to the change of the average voltage and current across 

the electronic switch due to the switching transients are introduced and added to the usual duty 

cycle ratio. Accordingly, the DC/DC boost converter equations are modified, and the included 

switching losses are revealed. Meanwhile, a simpler method, to estimate the switching losses, is 

proposed in [126], and is adopted in this study. The method introduces an equivalent resistance 
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that can dissipate the same heat as that produced by the switching loss. The switching losses 

equivalent resistance denoted 𝑅𝑠𝑤, is placed in series with the inductor branch and the conduction 

losses’ equivalent model as seen in Fig.2.9.  

  

 

Fig.2.9 Electrical circuit of the DC/DC boost converter including the conduction and switching losses. 

 

To compute the switching losses, the approximations of IGBT voltage 𝑉𝐶𝐸 , and current 𝐼𝐶  

waveforms are represented during the switching transition phases in Fig.2.10 (a) This switching 

losses calculation method is named the transition power loss method and is widely applied in the 

literature[126], [127]. As seen in Fig.2.10 (a), a linear approximation of the IGBT current and 

voltage waveforms is applied, and the below equations are derived during turn-on time (𝑡𝑜𝑛_𝐼𝐺𝐵𝑇):   

 

{
𝑉𝐶𝐸 = −

𝑉𝐶𝐸_𝑚𝑎𝑥

𝑡𝑜𝑛_𝐼𝐺𝐵𝑇
𝑡 + 𝑉𝐶𝐸_𝑚𝑎𝑥

𝐼𝐶 =
𝐼𝐶_𝑚𝑎𝑥

𝑡𝑜𝑛_𝐼𝐺𝐵𝑇
𝑡

                                                                                                   (II.9) 

Where 𝑉𝐶𝐸_𝑚𝑎𝑥, 𝑡𝑜𝑛_𝐼𝐺𝐵𝑇, and 𝐼𝐶_𝑚𝑎𝑥 are respectively the maximum switch voltage (V), the turn-

on delay time (s), and the maximum switch current (A). 

Using equations (II.9), the power loss in the turn-on interval can be written as: 

   

𝑃𝐶𝐸_𝑡−𝑜𝑛 = 𝑉𝐶𝐸 . 𝐼𝐶 = −
𝑉𝐶𝐸_𝑚𝑎𝑥𝐼𝐶_𝑚𝑎𝑥

𝑡𝑜𝑛_𝐼𝐺𝐵𝑇
2 𝑡2 +

𝑉𝐶𝐸_𝑚𝑎𝑥𝐼𝐶_𝑚𝑎𝑥

𝑡𝑜𝑛_𝐼𝐺𝐵𝑇
𝑡                                                      (II.10) 

The time-averaged power loss in the IGBT in the turn-on interval is obtained by integrating 

equation (II.10) over the switching period 𝑇𝑠𝑤, which yields:  

 

𝑃𝐶𝐸_𝑡−𝑜𝑛= 
1

𝑇𝑠𝑤
∫ 𝑉𝐶𝐸 . 𝐼𝐶 . 𝑑𝑡
𝑡𝑜𝑛_𝐼𝐺𝐵𝑇
0

=
𝑓𝑠𝑤 .  𝑉𝐶𝐸_𝑚𝑎𝑥 .  𝐼𝐶_𝑚𝑎𝑥 .  𝑡𝑜𝑛_𝐼𝐺𝐵𝑇

6
                                           (II.11) 

Following the same calculation steps, the time-averaged power loss in the IGBT in the turn-off 

interval can be expressed as follows:  

 

𝑃𝐶𝐸_𝑡−𝑜𝑓𝑓= 
1

𝑇𝑠𝑤
∫ 𝑉𝐶𝐸 . 𝐼𝐶 . 𝑑𝑡
𝑡𝑜𝑓𝑓_𝐼𝐺𝐵𝑇
0

=
𝑓𝑠𝑤 .  𝑉𝐶𝐸_𝑚𝑎𝑥 .  𝐼𝐶_𝑚𝑎𝑥 .  𝑡𝑜𝑓𝑓_𝐼𝐺𝐵𝑇

6
                                       (II.12) 
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Where 𝑡𝑜𝑓𝑓_𝐼𝐺𝐵𝑇 is the turn-off delay time (s). 

Thus, the total average power loss in the IGBT during the switching transitions is:  

 

 𝑃𝐶𝐸 = 𝑃𝐶𝐸_𝑡−𝑜𝑛 + 𝑃𝐶𝐸_𝑡−𝑜𝑓𝑓 =
𝑓𝑠𝑤 .  𝑉𝐶𝐸_𝑚𝑎𝑥 .  𝐼𝐶_𝑚𝑎𝑥

6
(𝑡𝑜𝑛_𝐼𝐺𝐵𝑇 + 𝑡𝑜𝑓𝑓_𝐼𝐺𝐵𝑇)                            (II.13) 

A last included source of switching power loss in the DC/DC boost is the turn-off losses of the 

power diode. The main cause of this power loss is the reverse recovery current of the diode which 

is normally accompanied by a large reverse voltage and can lead to substantially enhanced power 

loss at high switching frequencies[127]. As seen in Fig.2.10 (b), a segment approximation of the 

diode reverse recovery current and voltage figuring in several studies[127]–[129] is adopted. 

Hence, the diode current 𝐼𝐷  and voltage 𝑉𝐷  equations during the reverse recovery period are 

represented as follows:  

 

{
𝑉𝐷 = −

𝑉𝑅_𝐷

𝑡𝑓_𝐷
𝑡

𝐼𝐷 =
𝐼𝑅𝑀_𝐷

𝑡𝑓_𝐷
𝑡 − 𝐼𝑅𝑀_𝐷

                                                                                                              (II.14) 

                                                                                                

Where 𝑉𝑅_𝐷 , 𝐼𝑅𝑀_𝐷 , and  𝑡𝑓_𝐷   are respectively the peak reverse voltage (V), the peak reverse 

recovery current (A), and the time interval required by the reverse recovery current to fall from its 

negative value (−𝐼𝑅𝑀_𝐷) back to zero (s).    

By following the same calculation steps of equations (II.9), (II.10), and (II.11), the average reverse 

recovery power loss in the diode during the turn-off transitions, and over the switching period 𝑇𝑠𝑤 

is:  

 

 𝑃𝑟𝑟_𝐷 =
𝑓𝑠𝑤 .  𝑉𝑅_𝐷 .  𝐼𝑅𝑀_𝐷

6
. 𝑡𝑓_𝐷                                                                                                  (II.15) 

Thus, the total time-averaged switching power loss in the DC/DC boost can be expressed as:  

 

𝑃𝑠𝑤_𝑏𝑜𝑜𝑠𝑡 = 𝑃𝐶𝐸 + 𝑃𝑟𝑟_𝐷 

                =
𝑓𝑠𝑤_𝑃𝑉

6
× [𝑉𝐶𝐸_𝑚𝑎𝑥 . 𝐼𝑐_𝑚𝑎𝑥 . (𝑡𝑜𝑛_𝐼𝐺𝐵𝑇 + 𝑡𝑜𝑓𝑓_𝐼𝐺𝐵𝑇) + (𝑉𝑅𝐷 . 𝐼𝑅𝑀𝐷

. 𝑡𝑓𝐷)]                 (II.16) 

Since the switching-loss resistance (𝑟𝑠𝑤) is placed at the PV source side of the converter in series 

with the inductor, as seen in Fig.2.9, the time-averaged switching power loss can be written as: 

 𝑃𝑠𝑤_𝑏𝑜𝑜𝑠𝑡 = 𝑟𝑠𝑤𝐼𝐿_𝑅𝑀𝑆
2 ≈ 𝑟𝑠𝑤𝐼𝐿

2                                                                                               (II.17) 

Where 𝐼𝐿_𝑅𝑀𝑆 is the inductor's current RMS value (A). This assumption is valid since the DC/DC 

boost is always operating in continuous conduction mode (CCM) where 𝐼𝐿_𝑅𝑀𝑆 ≈ 𝐼𝐿 . By 

equalizing equations (II.16) and (II.17), the time-average switching power loss can be expressed 

as:  
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𝑟𝑠𝑤 =
𝑓𝑠𝑤_𝑃𝑉

6𝐼𝐿
2 × [𝑉𝐶𝐸_𝑚𝑎𝑥 . 𝐼𝑐_𝑚𝑎𝑥 . (𝑡𝑜𝑛_𝐼𝐺𝐵𝑇 + 𝑡𝑜𝑓𝑓_𝐼𝐺𝐵𝑇) + (𝑉𝑅_𝐷 . 𝐼𝑅𝑀_𝐷 . 𝑡𝑓_𝐷)]                       (II.18)               

By referring to the detailed model of the DC/DC boost (Fig.2.5), when the IGBT is turned off, 

𝑉𝐶𝐸_𝑚𝑎𝑥=𝑉𝐵𝑈𝑆, and when it is on 𝐼𝑐_𝑚𝑎𝑥=𝐼𝐿. Similarly, the diode forward current (𝐼𝐹) is equal to 𝐼𝐿 

when the diode conducts, and when it is blocked 𝑉𝐷 = −𝑉𝑅_𝐷 ≈ −𝑉𝐵𝑈𝑆. Thus, equation (II.18) can 

be written as: 

𝑟𝑠𝑤 =
𝑓𝑠𝑤_𝑃𝑉.𝑉𝐵𝑈𝑆

6.𝐼𝐿
× (𝑡𝑜𝑛_𝐼𝐺𝐵𝑇 + 𝑡𝑜𝑓𝑓_𝐼𝐺𝐵𝑇 +

𝐼𝑅𝑀_𝐷.  𝑡𝑓_𝐷

𝐼𝐿
)                                                         (II.19) 

Appendix B.2 can be invoked for detailed information on parameter values and the method applied 

to find the peak reverse recovery current (𝐼𝑅𝑀_𝐷).  

Using the adapted electrical circuit of Fig.2.9 which includes the conduction and switching losses, 

the total losses in the DC/DC boost (𝑃𝑏𝑜𝑜𝑠𝑡_𝑙𝑜𝑠𝑠𝑒𝑠) can be represented as a function of the PV array 

current 𝐼𝑃𝑉, the duty cycle ratio 𝐷𝑃𝑉 of the converter, and the DC bus voltage 𝑉𝐵𝑈𝑆.  

 

 

(a)                                                                                          (b) 

Fig.2.10 Approximation of (a) IGBT voltage and current, (b) diode reverse recovery current and 

voltage during the switching time interval. 

In normal operating conditions 𝑉𝐵𝑈𝑆  = 800 𝑉  is always constant and 𝐼𝑃𝑉  is a function of the 

irradiance 𝑆 and the cell temperature 𝑇 inputs (equations (II.2) and (II.4)). To simplify the analysis 

and the representation of the total losses, fixed irradiance, and temperature are selected to plot the 

losses curve as a function of the duty cycle ratio (𝑃𝑏𝑜𝑜𝑠𝑡_𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑓(𝐷𝑃𝑉)). Fig.2.11 (a) and (b) 

show the PV array characteristics under fixed irradiance and temperature conditions: 𝑆 =

1000 𝑊/𝑚2 and  𝑇 = 25°𝐶. The chosen PV module manufacturer and the corresponding module 

data can be found in Appendix A.1. As seen, the PV array voltage minimum value 𝑉𝑃𝑉_𝑚𝑖𝑛 is null 

and corresponds to the short-circuit state, whereas the maximum value corresponds to the open-
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circuit state 𝑉𝑃𝑉_𝑚𝑎𝑥 = 511.8 𝑉. Fig.2.11 (c) represents 𝑉𝑃𝑉 as a function of 𝐷𝑃𝑉, it can be seen 

that 𝑉𝑃𝑉 =𝑓(𝐷𝑃𝑉) is a decreasing linear function since 𝑉𝑃𝑉 and 𝐷𝑃𝑉 are inversely proportional:    

- 𝑉𝑃𝑉_𝑚𝑎𝑥 = 511.8 𝑉 corresponds to 𝐷𝑃𝑉_𝑚𝑖𝑛 = 0.362.  

- 𝑉𝑃𝑉_𝑚𝑖𝑛 = 8.2 𝑉 corresponds to 𝐷𝑃𝑉_𝑚𝑎𝑥 = 1. 

  

Fig.2.11 PV array characteristics (𝑆 = 1000 𝑊/𝑚2, 𝑇 = 25°𝐶)  (a) 𝐼𝑃𝑉 = 𝑓(𝑉𝑃𝑉), (b) 𝑃𝑃𝑉 = 𝑓(𝑉𝑃𝑉), 
and (c) 𝑉𝑃𝑉 = 𝑓(𝐷𝑃𝑉). 

Finally, the total losses, the conduction losses, and the switching losses are plotted in Fig.2.12 as 

functions of 𝑉𝑃𝑉. The boost converter’s efficiency denoted 𝜂𝑏𝑜𝑜𝑠𝑡, can be expressed as follows:  

 𝜂𝑏𝑜𝑜𝑠𝑡(%) = 100 (1 −
𝑃𝑏𝑜𝑜𝑠𝑡_𝑙𝑜𝑜𝑠𝑒𝑠

𝑃𝑃𝑉
) = 100 (1 −

𝑃𝑏𝑜𝑜𝑠𝑡_𝑙𝑜𝑜𝑠𝑒𝑠

𝐼𝑃𝑉𝑉𝑃𝑉
)                         (II.20)                                                      

𝜂𝑏𝑜𝑜𝑠𝑡 = 𝑓(𝑉𝑃𝑉) is represented in Fig.2.13. 

The obtained results show that: 

• The total losses increase gradually with the voltage and reach a maximum of 1015 W at 

𝑉𝑃𝑉 = 364.23 𝑉, then decrease sharply for 𝑉𝑃𝑉 ∈ [450, 511.8 ]. 

• The total losses correspond to the sum of the conduction and switching losses. The 

switching losses represent around 75% of the total losses. 

• Though increasing when 𝑉𝑃𝑉 increases, the total losses remain low and relatively constant 

compared to 𝑃𝑃𝑉 which rises gradually to reach its maximum as seen in Fig.2.11 (b). As a 

result, the term 𝑃𝑏𝑜𝑜𝑠𝑡_𝑙𝑜𝑜𝑠𝑒𝑠  over 𝑃𝑃𝑉  figuring in equation (II.20) decreases when  𝑉𝑃𝑉 

increases and so 𝜂𝑏𝑜𝑜𝑠𝑡  increases. Hence, the boost’s efficiency increases with the PV 

voltage and reaches 98% at MPPT corresponding to 𝑉𝑃𝑉_𝑀𝑃𝑃𝑇 = 437.4 𝑉 (appendix A.1)      
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We take note that all obtained results correspond to a fixed irradiance of 1000 𝑊/𝑚2 and cell 

temperature 𝑇 = 25°𝐶. For each irradiance and temperature corresponds to different losses and 

efficiency curves.     

 

Fig.2.12 The total losses, the conduction losses, and the switching losses as functions of 𝑉𝑃𝑉. 

 

Fig.2.13 Boost converter efficiency in (%) as a function of 𝑉𝑃𝑉. 

2.4.3 DC/DC boost control strategy 

As previously stated, the DC/DC boost is continuously operating in MPPT mode to extract the 

maximum available solar power. Several MPPT techniques are found in the literature and can be 

divided into two main categories: conventional and soft-computing algorithms[130]. Among the 

ZOOM 
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conventional techniques, we cite the perturb and observe (P&O), the incremental conductance, the 

fractional short-circuit current (FSCC), the fractional open-circuit voltage (FOCV), etc. Yet, fuzzy 

logic control (FLC), artificial neural network (ANN), genetic algorithm (GA), and other 

optimization-based algorithms are the main soft-computing MPPT techniques[131]. As the 

analysis of each of the existing techniques is out of the scope of this thesis, incremental 

conductance, mostly applied in the literature, is selected as a conventional MPPT technique for 

this study [132]. Further information on MPPT techniques can be found in [130], [131].  

 

Fig.2.14 𝑃𝑃𝑉 = 𝑓(𝑉𝑃𝑉 , 𝑆) characteristic for a constant temperature (𝑇 = 25°𝐶). 

 

Fig.2.15 𝑃𝑃𝑉 = 𝑓(𝑉𝑃𝑉 , 𝑇) characteristic for a constant irradiance (𝑆 = 1000 𝑊/𝑚2). 
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The incremental conductance MPPT technique is detailed in Appendix A.2. The incremental 

conductance and the above-cited techniques require small calculation step sizes to yield accurate 

results corresponding to the maximum available power. In our case, the step size named the sliding 

time window of the MPPT control is 𝑇𝑀𝑃𝑃𝑇 = 0.2 𝑚𝑠 (appendix A.2). Higher values of 𝑇𝑀𝑃𝑃𝑇 

speed up the simulation but leads to mistaken values. 

The 𝑃𝑃𝑉 = 𝑓(𝑉𝑃𝑉) characteristic is plotted for each irradiance and temperature combination input, 

and then the maximum power is found and stored in a look-up table. Fig.2.14  and Fig.2.15 show 

respectively the PV output power as a function of the PV voltage and irradiance for a constant 

temperature 𝑇 = 25°𝐶, (𝑃𝑃𝑉 = 𝑓(𝑉𝑃𝑉, 𝑆)𝑇=25°𝐶), and the PV output power as a function of the PV 

voltage and temperature for a constant irradiance 𝑆 = 1000 𝑊/𝑚2 , ( 𝑃𝑃𝑉 =

𝑓(𝑉𝑃𝑉, 𝑇)𝑆=1000 𝑊/𝑚2 ). As shown in Fig.2.14, the PV output power is proportional to the 

irradiance and the highest power curve corresponds to the highest irradiance value of 𝑆 =

1000 𝑊/𝑚2. Contrarily, the efficiency of the PV array drops with the temperature as the highest 

power curve is obtained for the lowest temperature 𝑇 = 0°𝐶, and the lowest power curve for the 

highest plotted temperature 𝑇 = 60°𝐶 (Fig.2.15). To fill the MPPT lookup table, the irradiance 

and temperature data are sampled with a 0.5 𝑊/𝑚2 and 0.5 °𝐶 step sizes and all corresponding 

maximum PV power values are stored in a matrix. As seen in Fig.2.16, the MPPT lookup table 

block has the irradiance S (𝑊 𝑚2⁄ ) and the cell temperature 𝑇(°𝐶) as inputs and the reference 

MPPT voltage as output. 

The reference MPPT voltage is compared to the actual PV voltage and the resulting error is 

minimized through a P.I. regulator (the system is speeded up 3 times, then 𝑘𝑚𝑝𝑝𝑡 = 3 ). The 

regulator output is added to the initial duty cycle ratio (𝐷𝑃𝑉_𝑖𝑛𝑖𝑡 = 0.5) to form the duty cycle 

(𝐷𝑃𝑉) of the DC/DC boost converter.   

 

Fig.2.16 Block diagram of the lookup table MPPT control. 

To validate the proposed MPPT technique, it is compared to the incremental conductance MPPT 

technique in a simulation test. Variable temperature and irradiation inputs are applied, and the 

results are shown in Fig.2.17. The incremental conductance simulation is run with a calculation 

step size 𝑇𝑠𝑡𝑒𝑝_𝐼𝐶 =
𝑇𝑀𝑃𝑃𝑇

100
= 2 𝜇𝑠, whereas the lookup table method is run with a calculation step 

size 𝑇𝑠𝑡𝑒𝑝_𝐿𝑇 = 𝑇𝑀𝑃𝑃𝑇 = 200𝜇𝑠. Both, incremental conductance, and lookup table methods yield 

the same power curves in transient as well as in steady state (the power curve corresponding to the 

incremental conductance is denoted 𝑃𝑖𝑛𝑠𝑡, and the one corresponding to the lookup table is denoted 

𝑃24ℎ).  
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Fig.2.17 Comparison between the proposed lookup table and incremental conductance MPPT techniques. 

Based on the duty cycle ratio plots, the MPPT proposed look-up table keeps a good accuracy 

(Maximum error of 3.4% in the duty cycle ratio and 0.2% in the power curve) compared to 

incremental conductance. Furthermore, the simulation speed is highly increased as the calculation 

step size ratio between the incremental conductance and lookup table technique is 

𝑇𝑠𝑡𝑒𝑝_𝐿𝑇 𝑇𝑠𝑡𝑒𝑝_𝐼𝐶 = 100⁄ .  

2.5 Wind turbine energy conversion chain 

The wind turbine energy conversion chain is represented in Fig.2.18. It consists of a wind turbine 

model, a pitch angle controller, a permanent magnet synchronous machine (PMSM), and a 3𝜙 

rectifier to convert the AC output power to DC. The 3𝜙 rectifier is continuously functioning in 

MPPT mode to extract the maximum available wind power.  

2.5.1 Wind turbine model 

 

The wind turbine block model in MATLAB/Simulink is applied to express the wind power 

characteristics. The output power of the turbine is given by the following equation: 

𝑃𝑤𝑖𝑛𝑑_𝑚 = 𝑐𝑝(𝜆, 𝛽)
𝜌𝐴

2
𝜈𝑤𝑖𝑛𝑑
3                                                                                                    (II.21) 
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Where 𝑃𝑤𝑖𝑛𝑑_𝑚, 𝑐𝑝, 𝜌, 𝐴, 𝜈𝑤𝑖𝑛𝑑, 𝜆, and 𝛽 are respectively the wind mechanical output power (W), 

the performance coefficient of the turbine, the air density (𝐾𝑔 𝑚3⁄ ), the turbine-swept area (𝑚2), 

the wind speed (𝑚 𝑠⁄ ), the tip speed ratio of the rotor blade tip speed to wind speed, and the blade 

pitch angle (degree). Equation (II.21) can be normalized, this yields the below equation in 𝑝. 𝑢: 

𝑃𝑤𝑖𝑛𝑑_𝑚_𝑝𝑢 = 𝑘𝑤𝑖𝑛𝑑_𝑝. 𝑐𝑝_𝑝𝑢𝜈𝑤𝑖𝑛𝑑_𝑝𝑢
3          (II.22) 

where, 𝑃𝑤𝑖𝑛𝑑_𝑚_𝑝𝑢 , 𝑐𝑝_𝑝𝑢 , 𝑣𝑤𝑖𝑛𝑑_𝑝𝑢 , and  𝑘𝑤𝑖𝑛𝑑_𝑝  are respectively the wind mechanical output 

power in 𝑝. 𝑢 for particular values of 𝜌 and 𝐴, the performance coefficient in 𝑝. 𝑢 of the maximum 

value of 𝑐𝑝, the wind speed in 𝑝. 𝑢 of the base wind speed, and the power gain for 𝑐𝑝_𝑝𝑢 = 1, and 

𝑣𝑤𝑖𝑛𝑑_𝑝𝑢 = 1. The MATLAB block uses a generic equation to model the performance coefficient 

of the turbine 𝑐𝑝, based on the modeling turbine characteristics of [133]. 𝑐𝑝(𝜆, 𝛽) is expressed as 

follows: 

𝑐𝑝(𝜆, 𝛽) = 𝑐1(𝑐2 𝜆𝑖⁄ − 𝑐3𝛽 − 𝑐4)𝑒
−𝑐5 𝜆𝑖⁄ + 𝑐6𝜆                               (II.23) 

With:  
1

𝜆𝑖
=

1

𝜆+0.08𝛽
−

0.035

𝛽3+1
 

𝑐1 = 0.5176, 𝑐2 = 116, 𝑐3 = 0.4, 𝑐4 = 5, 𝑐5 = 21, and 𝑐6 = 0.0068.  

The maximum value of 𝑐𝑝 (𝑐𝑝_𝑚𝑎𝑥 = 0.48) is obtained for 𝛽 = 0°, and 𝜆 = 8.1.This value of 𝜆 is 

defined as the nominal value 𝜆𝑛𝑜𝑚. 

As seen in Fig.2.18, the wind turbine model block has as input the wind speed (𝑚 𝑠⁄ ), the generator 

speed (𝑤𝑟) in 𝑝. 𝑢 , and the regulated pitch angle (𝛽 in degrees) and outputs the mechanical torque 

𝑇𝑚  (𝑝. 𝑢 ) applied to the generator shaft. The tip speed ratio 𝜆 is computed in 𝑝. 𝑢 of 𝜆𝑛𝑜𝑚  as 

follows:  

 

Fig.2.18 Wind turbine energy conversion chain. 
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𝜆 =
𝑤𝑟 𝑤𝑟_𝑏𝑎𝑠𝑒⁄

𝑣𝑤𝑖𝑛𝑑 𝑣𝑤𝑖𝑛𝑑_𝑏𝑎𝑠𝑒⁄
𝜆𝑛𝑜𝑚                                                                                                         (II.24) 

Where, 𝑤𝑟_𝑏𝑎𝑠𝑒, and 𝑣𝑤𝑖𝑛𝑑_𝑏𝑎𝑠𝑒 are respectively the base rotational speed ( 𝑝. 𝑢 of base generator 

speed equal to 1 𝑝. 𝑢 in this case), and the base wind speed (equal to 12 𝑚 𝑠⁄  in this case). Using 

equation (II.22), 𝑐𝑝  is calculated in 𝑝. 𝑢  of 𝑐𝑝_𝑚𝑎𝑥 , then the mechanical output power of the 

turbine, 𝑃𝑤𝑖𝑛𝑑_𝑚_𝑝𝑢 , is computed in 𝑝. 𝑢 . To obtain the real mechanical output power in 𝑝. 𝑢 , 

𝑃𝑤𝑖𝑛𝑑_𝑚_𝑝𝑢 is multiplied by the coefficient factor 𝑘𝑤_𝑝𝑢: 

𝑘𝑤_𝑝𝑢 =
𝑃𝑤𝑖𝑛𝑑_𝑏𝑎𝑠𝑒_𝑝𝑢𝑃𝑤𝑖𝑛𝑑_𝑚_𝑛

𝑃𝑃𝑀𝑆𝑀_𝑏𝑎𝑠𝑒
                              (II.25) 

Where, 𝑃𝑤𝑖𝑛𝑑_𝑏𝑎𝑠𝑒_𝑝𝑢 , 𝑃𝑤𝑖𝑛𝑑_𝑚_𝑛 , and 𝑃𝑃𝑀𝑆𝑀_𝑏𝑎𝑠𝑒  are respectively the maximum power at base 

wind speed in 𝑝. 𝑢  of nominal mechanical power (equal to 0.9 𝑝. 𝑢  in this case), the nominal 

mechanical output power (W), and the base power of the electrical generator (W). In this case, 

𝑃𝑤𝑖𝑛𝑑_𝑚_𝑛 = 𝑃𝑃𝑀𝑆𝑀_𝑏𝑎𝑠𝑒 = 55 𝐾𝑊 .  As a result, the maximum available wind power at 

𝑣𝑤𝑖𝑛𝑑_𝑏𝑎𝑠𝑒 = 12 𝑚/𝑠 is 𝑃𝑤𝑖𝑛𝑑_𝑚_𝑝𝑢 = 0.9𝑃𝑤𝑖𝑛𝑑_𝑚_𝑛 = 49.5 𝐾𝑊. Finally, the mechanical torque 

𝑇𝑚 (𝑝. 𝑢) is obtained by dividing 𝑃𝑤𝑖𝑛𝑑_𝑚_𝑝𝑢(𝑝. 𝑢) by 𝑤𝑟 (𝑝. 𝑢). Fig.2.19 represents the turbine 

power characteristics in 𝑝. 𝑢 of nominal mechanical power as a function of the turbine speed in 

𝑝. 𝑢 of the turbine speed for different wind speeds. As seen, each curve, corresponding to a specific 

wind speed, has a point of maximum output power. Moreover, the maximum power at base speed 

𝑣𝑤𝑖𝑛𝑑_𝑏𝑎𝑠𝑒 = 12 𝑚/𝑠 and for 𝛽 = 0° corresponds to 𝑃𝑤𝑖𝑛𝑑_𝑚_𝑝𝑢 = 0.9 𝑝. 𝑢, and  𝑤𝑟 = 1 𝑝. 𝑢 as 

mentioned above. By applying an MPPT technique to control the 3𝜙 rectifier, each maximum 

power point corresponding to a specific wind speed value is pinpointed which enables the WT to 

continuously produce the maximum available wind power.   

 

Fig.2.19 Turbine power characteristics as a function of the turbine speed for different wind speeds. 
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2.5.1.1 Pitch angle controller: 

 

The pitch angle controller block controls the blade pitch angle 𝛽 to limit the generator speed 𝑤𝑟 

(𝑝. 𝑢) to the base rotational speed 𝑤𝑟_𝑏𝑎𝑠𝑒 (𝑝. 𝑢). The control diagram of the pitch angle controller 

is shown in Fig.2.20. The actual generator speed is compared to the base one and the error is 

regulated by a proportional gain (𝑘𝛽 = 500), then the output pitch angle 𝛽 is limited between 

minimum and maximum admissible values (𝛽𝑚𝑖𝑛 = 0, 𝛽𝑚𝑎𝑥 = 45°). Additionally, a rising and 

falling slew rate of 𝛽 equal to 2° is set.  

 

Fig.2.20 Simulink Block diagram of the pitch angle controller. 

2.5.2 Permanent magnet synchronous machine 

 

To model the generator, a permanent magnet synchronous machine (PMSM) is selected. The 

PMSM is generally popular in newer smaller-scale turbine types (utility-scale turbines home in 

size from 50 to 750 KW[132]) since it offers a variety of advantages such as reliability, compact 

size, loss reduction, higher power density, and optimal efficiency[134]. Though applied in the 

simulation model, the detailed electrical and mechanical equations of the PMSM are not revealed 

in the manuscript in order not to add technical content that is far from the thesis objective but can 

be reviewed in detail in[135].  

Hence, in the rest, the PMSM is seen as a power conversion black box that converts mechanical 

power into electrical power without addressing the machine's internal electrical and mechanical 

variables. The PMSM block built in Simulink has as inputs the mechanical torque 𝑇𝑚, and the 

three-phase voltages across the stator windings  𝑉𝑎𝑏𝑐. The outputs of the PMSM bloc are the rotor 

mechanical rotational speed 𝑤𝑟  in (𝑟𝑎𝑑/𝑠), the rotor mechanical angle 𝜃𝑟  in (𝑟𝑎𝑑), the three 

phases’ currents flowing in the stator windings 𝐼𝑎𝑏𝑐, and the electromechanical torque 𝑇𝑒 in (𝑁.𝑚). 

The PMSM parameters and manufacturer’s datasheet can be found in Appendix C. Thus, the 

modeling of the PMSM aims to retrieve the actual efficiency of the electrical generator at each 

wind speed value, and then the actual value of the generated electrical power. As a result, the 

generated wind electrical power is expressed as follows: 

𝑃𝑤𝑖𝑛𝑑_𝑒𝑙𝑒𝑐 = 𝜂𝑃𝑀𝑆𝑀𝑃𝑤𝑖𝑛𝑑_𝑚                                (II.26) 

Where, 𝑃𝑤𝑖𝑛𝑑_𝑒𝑙𝑒𝑐, 𝜂𝑃𝑀𝑆𝑀, and 𝑃𝑤𝑖𝑛𝑑_𝑚 are respectively the generated wind electrical power (W), 

the PMSM efficiency, and the wind mechanical output power (W). The efficiency curve of the 
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PMSM is shown later in Fig 2.31 after presenting the whole conversion chain and the control 

strategy of the 3𝜙 rectifiers. 

2.5.3 3𝝓 Rectifier 

2.5.3.1 Detailed model            

 

Fig.2.21 shows the detailed electrical circuit of the 3𝜙s rectifier. The equivalent circuit for the 

stator windings of the PMSM consists of a three-phase wye connection. Each phase consists of a 

voltage source in series with the equivalent resistance of each stator winding 𝑅𝑠, and the stator 

self-inductance per phase 𝐿𝑠. As seen, this model is the most accurate as it includes the IGBT/diode 

pairs controlled by firing pulses produced by a PWM generator. To model the firing pulses, binary 

variables 𝑢1 , 𝑢2 , and 𝑢3  are introduced, and control respectively the switches 𝑆1 , 𝑆2 , and 𝑆3 . 

𝑢𝑖=1,2,3 is equal to 1 when the corresponding switch is closed and 0 otherwise. Knowing that two 

switches of the same arm (𝑆𝑖=1,2.3 and 𝑆𝑖=1,2,3
′ ) cannot be closed simultaneously, their operating 

state should be complementary. Accordingly, the firing pulses of the switches 𝑆1
′ , 𝑆2

′ , and 𝑆3
′  are 

respectively  𝑢1̅̅ ̅,  𝑢2̅̅ ̅, and 𝑢3̅̅ ̅, where 𝑢̅𝑖=1,2,3 = 1 − 𝑢𝑖=1,2,3.  

 

Fig.2.21 Electrical circuit of the 3𝜙s rectifier (detailed model). 

 

Then, 𝑉𝐴𝑀, 𝑉𝐵𝑀, and 𝑉𝐶𝑀 can be computed as follows: 

{

𝑉𝐴𝑀 = 𝑢1𝑉𝐵𝑈𝑆
𝑉𝐵𝑀 = 𝑢2𝑉𝐵𝑈𝑆
𝑉𝐶𝑀 = 𝑢3𝑉𝐵𝑈𝑆

                                   (II.27)                                                                                 
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Applying Kirchhoff's voltage low to the electrical circuit in Fig.2.21, the below equations are 

retrieved:  

{
 
 

 
 𝑉𝑎 = 𝑅𝑠𝑖𝑎 + 𝐿𝑠

𝑑𝑖𝑎

𝑑𝑡
+ 𝑉𝐴𝑀 + 𝑉𝑀𝑁

𝑉𝑏 = 𝑅𝑠𝑖𝑏 + 𝐿𝑠
𝑑𝑖𝑏

𝑑𝑡
+ 𝑉𝐵𝑀 + 𝑉𝑀𝑁

𝑉𝑐 = 𝑅𝑠𝑖𝑐 + 𝐿𝑠
𝑑𝑖𝑐

𝑑𝑡
+ 𝑉𝐶𝑀 + 𝑉𝑀𝑁

                                                                                         (II.28) 

The PMSM electrical model is considered a three-phase balanced system, then: 

 𝑉𝑎 + 𝑉𝑏 + 𝑉𝑐 = 0, 𝐿𝑠
𝑑𝑖𝑎

𝑑𝑡
+ 𝐿𝑠

𝑑𝑖𝑏

𝑑𝑡
+ 𝐿𝑠

𝑑𝑖𝑐

𝑑𝑡
= 0, and 𝑅𝑠𝑖𝑎 + 𝑅𝑠𝑖𝑏 + 𝑅𝑠𝑖𝑐 = 0 

Thus, 𝑉𝐴𝑀 + 𝑉𝐵𝑀 + 𝑉𝐶𝑀 + 3𝑉𝑀𝑁 = 0 then, 

𝑉𝑀𝑁 = −
𝑉𝐵𝑈𝑆

3
(𝑢1 + 𝑢2 + 𝑢3)                                                                                                 (II.29)   

Having,  

{
𝑉𝐴𝑁 = 𝑉𝐴𝑀 + 𝑉𝑀𝑁
𝑉𝐵𝑁 = 𝑉𝐵𝑀 + 𝑉𝑀𝑁
𝑉𝐶𝑁 = 𝑉𝐶𝑀 + 𝑉𝑀𝑁

                            (II.30) 

Finally, the 3𝜙s rectifier voltages’ equations can be expressed as functions of 𝑢1, 𝑢2 ,𝑢3 , and 

𝑉𝐵𝑈𝑆 as follows: 

[
𝑉𝐴𝑁
𝑉𝐵𝑁
𝑉𝐶𝑁

] =
𝑉𝐵𝑈𝑆

3
[
2 −1 −1
−1 2 −1
−1 −1 2

] [

𝑢1
𝑢2
𝑢3
]                          (II.31) 

And the DC-current 𝑖𝐷𝐶 is expressed as a function of the three-phase currents 𝑖𝑎, 𝑖𝑏, 𝑖𝑐, 𝑢1, 𝑢2, and 

𝑢3 as follows:  

𝑖𝐷𝐶 = 2𝑢1𝑖𝑎 + 2𝑢2𝑖𝑏 + 2𝑢3𝑖𝑐                                                                                                 (II.32) 

2.5.3.2 Average model     

Though the detailed model of the 3𝜙s rectifier is the most accurate, it presents the same hurdle as 

the detailed DC/DC boost converter model in terms of the limitation of calculation step size. For 

instance, if the same switching frequency of the DC/DC boost is selected for the IGBTs of the 3𝜙s 

rectifier (𝑓𝑠𝑤_𝑊𝑇 = 𝑓𝑠𝑤_𝑃𝑉 = 20 𝐾𝐻), the maximum allowable calculation step size is 𝑇𝑠𝑡𝑒𝑝_𝑑𝑒𝑡 =

0.5 𝜇𝑠. To further increase the simulation speed, reduce the model complexity, and maintain a 

decent accuracy, an average model of the 3𝜙s rectifier is applied in which the real IGBT switching 

devices are omitted, and controlled voltage and current sources are utilized instead. By this, the 

3𝜙s rectifier can be directly controlled through the voltage references 𝑉𝑎𝑏𝑐_𝑟𝑒𝑓 (Fig.2.18) with no 

need for the PWM block.  
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The electrical circuit of the average model of the 3𝜙s rectifier is shown in Fig.2.22. As seen, on 

the AC side each switching device is replaced by a controlled voltage source, having a rhombus 

shape with a positive and negative sign inside. The imposed voltages are denoted 𝑉 𝑆𝑖=1,2,3  and 

𝑉𝑆𝑖=1,2,3
′ . A diode is connected in series with each controlled voltage current. The diodes at the top 

of the three arms of the rectifier, denoted 𝐷𝑆𝑖=1,2,3, allow only the flow of the positive part of the 

alternating currents 𝑖𝑎, 𝑖𝑏, and 𝑖𝑐. Meanwhile, the bottom diodes, denoted  𝐷𝑆𝑖=1,2,3
′  circulates the 

negative part of the three phases alternating currents. This also can be deduced by applying 

Kirchhoff’s current law to the first arm as an example: 𝑖𝑎 = 𝑖𝑆1 − 𝑖𝑆1′ .          

On the DC side, three controlled current sources are placed and have a rhombus shape with an 

arrow inside to define the directions of circulating currents. The imposed currents are denoted 

𝑖 𝐷𝐶𝑖=1,2,3.The equations of the detailed model are all valid and used to compute the instant values 

of the controlled voltages and currents’ sources. Only, the firing pulses  𝑢𝑖=1,2,3 are replaced by 

𝛼𝑎_𝑟𝑒𝑓, 𝛼𝑏_𝑟𝑒𝑓, and 𝛼𝑐_𝑟𝑒𝑓, where 𝛼𝑎_𝑟𝑒𝑓, 𝛼𝑏_𝑟𝑒𝑓, and 𝛼𝑐_𝑟𝑒𝑓 are expressed as : 

{

𝛼𝑎_𝑟𝑒𝑓 = 0.5(1 + 𝑉𝑎_𝑟𝑒𝑓)

𝛼𝑏_𝑟𝑒𝑓 = 0.5(1 + 𝑉𝑏_𝑟𝑒𝑓)

𝛼𝑐_𝑟𝑒𝑓 = 0.5(1 + 𝑉𝑐_𝑟𝑒𝑓)

                         (II.33) 

𝑉𝑎_𝑟𝑒𝑓 , 𝑉𝑎_𝑟𝑒𝑓 , and 𝑉𝑐_𝑟𝑒𝑓  are the voltage references in 𝑝. 𝑢  of the PMSM stator base voltage 

outputted from the 𝑉𝑎𝑏𝑐_𝑟𝑒𝑓 generator block (Fig.2.18). 

Using equation (II.27) and Kirchhoff's voltage law:    

{

𝑉 𝑆1 = −𝑉𝑆1′ = 𝑉𝐴𝑀 = 𝛼𝑎_𝑟𝑒𝑓𝑉𝐵𝑈𝑆
𝑉 𝑆2 = −𝑉𝑆2′ = 𝑉𝐵𝑀 = 𝛼𝑏_𝑟𝑒𝑓𝑉𝐵𝑈𝑆
𝑉 𝑆3 = −𝑉𝑆3′ = 𝑉𝐶𝑀 = 𝛼𝑐_𝑟𝑒𝑓𝑉𝐵𝑈𝑆

                                                                                         (II.34) 

Hence, the 3𝜙s rectifier voltages’ equations can be expressed as functions of 𝑉 𝑆1 , 𝑉 𝑆2 ,𝑉 𝑆3as 

follows: 

[
𝑉𝐴𝑁
𝑉𝐵𝑁
𝑉𝐶𝑁

] =
1

3
[
2 −1 −1
−1 2 −1
−1 −1 2

] [

𝑉 𝑆1
𝑉 𝑆2
𝑉 𝑆3

]                                                                                            (II.35) 

The output DC-current is the sum of the three controlled current sources:                                   

𝑖𝐷𝐶 = 𝑖 𝐷𝐶1 + 𝑖 𝐷𝐶2 + 𝑖 𝐷𝐶3                                                                                                        (II.36)         

To compute 𝑖 𝐷𝐶1, 𝑖 𝐷𝐶2, and 𝑖 𝐷𝐶3, the law of power conservation is applied, these yields: 
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Fig.2.22 Electrical circuit of the 3𝜙s rectifier (average model). 

{

𝑖 𝐷𝐶1 = −𝑉𝑠1𝑖𝑎/𝑉𝐵𝑈𝑆
𝑖 𝐷𝐶2 = −𝑉𝑠2𝑖𝑏/𝑉𝐵𝑈𝑆
𝑖 𝐷𝐶3 = −𝑉𝑠3𝑖𝑐/𝑉𝐵𝑈𝑆

                                                                                                              (II.37)                

Applying the average model, the switching function is removed, and the new calculation step size 

can increase at least 100 times compared to the detailed model (𝑇𝑠𝑡𝑒𝑝_𝑎𝑣𝑟 ≥ 100. 𝑇𝑠𝑡𝑒𝑝_𝑑𝑒𝑡), same 

as the DC/DC boost converter simulation. However, additional variables limit the increase of 

calculation step size when modeling all AC nature sources of the DC microgrid (i.e., the WT, the 

DG, and the utility grid in this case). The limitation comes from the sinusoidal waveforms of the 

three-phase electrical components 𝑉𝑎𝑏𝑐, and 𝑖𝑎𝑏𝑐. As stated in the DC/DC boost average model, 

the required ratio between the calculation step size and any periodic signal with a defined period 

must be at least equal to 1/100 to precisely represent this signal and obtain flawless results. 

Applying this strategy to the three-phase sinusoidal currents and voltages which have a rated 

frequency: 𝑓𝑛 = 100 𝐻𝑧 (Appendix C), and so a rated period: 𝑇𝑛 = 10 𝑚𝑠, the calculation step 

size cannot exceed 100 𝜇𝑠  to accurately represent the sinewave forms. Moreover, at higher 

operating frequencies smaller calculation step sizes are required.  

Hence, the calculation step size is limited by the period of the sinewave signals:  𝑇𝑠𝑡𝑒𝑝_𝑎𝑣𝑟 ≤

100𝑇𝑠𝑖𝑛𝑒𝑤𝑎𝑣𝑒. Given that a variable step solver is selected in Simulink to simulate the microgrid, 

the maximum calculation step size is limited to 𝑇𝑠𝑡𝑒𝑝_𝑎𝑣𝑟_𝑚𝑎𝑥 = 100𝑇𝑠𝑖𝑛𝑒𝑤𝑎𝑣𝑒 which always slows 

down the simulation and obstructs the 24-hour modeling goal on a standard computer.  
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Therefore, a third assumption method is applied to further simplify the model and increase the 

calculation step size.  

2.5.3.3 Phasor model    

The last averaging technique applied to the wind turbine conversion chain is the phasor modeling 

technique. The phasor notation transforms the real part of a sinusoidal function from the time 

domain into the complex number domain, also called the frequency domain. Fig.2.23 shows the 

three-phase voltages of a balanced system in the time and phasor domain: 

Time domain:{

𝑉𝑎(𝑡) = 𝑉𝑛√2 sin(𝑤𝑛𝑡)

𝑉𝑏(𝑡) = 𝑉𝑛√2 sin(𝑤𝑛𝑡 − 120°)

𝑉𝑐(𝑡) = 𝑉𝑛√2sin (𝑤𝑛𝑡 + 120°)      

→ Phasor domain: {

𝑉𝑎 = 𝑉𝑛√2𝑒
𝑗0   

𝑉𝑏 = 𝑉𝑛√2𝑒
−120°𝑗

    𝑉𝑐 = 𝑉𝑛√2𝑒
+120𝑗      

 

Where, 𝑤𝑛 is the electrical nominal pulsation (𝑤𝑛 = 2𝜋𝑓𝑛 in 𝑟𝑎𝑑/𝑠). 

The phasor solution is applied to study the electromechanical oscillations of power systems 

consisting of large generators and motors and the transient stability of machines. Besides, it can 

be implemented in any linear circuit where the main interest is only the changes in magnitude and 

phases in all voltages and currents when switches are closed or open[136]. The only drawback of 

the phasor notation is that it gives the solution only at a particular frequency while the remaining 

harmonics of the signal cannot be spotted. Accordingly, the phasor notation offers an adequate 

solution in this case study since: 

 

 

Fig.2.23 Three-phase voltages representation in the time domain (on the right) and phasor domain (on the 

left). 
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1. The electromechanical oscillations and transient stability of the PMSM are always 

modeled, then the power efficiency curve of the PMSM remains accurately represented.  

2. The instantaneous changes in magnitude and phases in all voltages and currents are 

revealed, thus the precise calculation of the generated electrical/mechanical power, and 

converter losses are still valid.      

3. The representation of the whole frequency spectrum of the sinusoidal electrical 

components is irrelevant as none of the predefined objectives in this study target the 

harmonics of the electrical signals.  

Applying the phasor domain to the WT conversion chain represented in Fig.2.19, the WT model 

block and the pitch angle controller are unchanged. Meanwhile, instead of all (𝑎𝑏𝑐)→ 

(𝛼𝛽)→(𝑑𝑞) transformations and their inverses, the rotation operator 𝑎 is introduced to compute 

the positive sequence component from which the (𝑑𝑞 ) are retrieved. Then, the following 

transformations are applied : (𝑋𝑎𝑏𝑐)→ 𝑋1→(𝑋𝑑, 𝑋𝑞) and  (𝑋𝑑, 𝑋𝑞)→ 𝑋1→(𝑋𝑎𝑏𝑐) where, 𝑋𝑎𝑏𝑐, 𝑋1, 

𝑋𝑑 , and 𝑋𝑞  are respectively the complex three-phase components, the positive sequence 

component, the 𝑑 −axis, and the 𝑞 −axis components.  

The rotation operator 𝑎 is defined as: 𝑎 = 𝑒𝑗
2𝜋

3 , and 1 + 𝑎 + 𝑎2 = 0    

𝑋1 is computed from the 𝑋𝑎𝑏𝑐 components using the equation below (𝑋 could be a three-phase 

current or voltage):    

𝑋1 =
1

3
(𝑋𝑎 + 𝑎𝑋𝑏 + 𝑎

2𝑋𝑐)                                                                                                     (II.38) 

Then, the (𝑑𝑞) components can be retrieved from the positive sequence component and correspond 

to real and imaginary parts of 𝑋1 : 𝑋1 = 𝑋𝑑 + 𝑗𝑋𝑞  

The inverse transformation from the positive sequence component to the (𝑎𝑏𝑐) complex domain 

is performed as follows: 

{

𝑋𝑎 = 𝑋1
𝑋𝑏 = 𝑎

2𝑋1
𝑋𝑐 = 𝑎𝑋1

                              (II.39) 

Therefore, the phasor domain keeps an accurate representation of all variables in the (𝑑𝑞) frame. 

Knowing that the PMSM electromechanical model is established in the (𝑑𝑞) frame[135], the 

PMSM block isn’t affected by the phasor representation and is kept the same as the detailed model. 

Same for the MPPT control which is performed in the (𝑑𝑞) frame, all the control strategy and 

blocks are kept impact. The MPPT control is detailed in the next section. Yet, a simpler model of 

the 3𝜙 rectifier, compared to the average one, is applied. Since the sinusoidal representation of the 

three-phase voltages and currents isn’t explicit in the phasor domain, the average model of Fig.2.22 

can be modified to a much simpler model. In the control of the detailed and average circuit models, 

the three-phase sinusoidal voltage references are generated in the 𝑉𝑎𝑏𝑐_𝑟𝑒𝑓  generator block 
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(Fig.2.18), instead a complex (𝑑𝑞) voltage reference is generated to control the converter in the 

generator block of the phasor domain: 𝑉𝑐𝑡𝑟𝑙_𝑑𝑞_𝑟𝑒𝑓 = 𝑉𝑐𝑡𝑟𝑙_𝑑_𝑟𝑒𝑓 + 𝑗𝑉𝑐𝑡𝑟𝑙_𝑞_𝑟𝑒𝑓 . Then, equation 

(II.33), and (II.34) of the average model can be merged in the following updated equation: 

𝑉1_3𝜙_𝑟𝑒𝑐 =
𝑉𝑐𝑡𝑟𝑙_𝑑𝑞_𝑟𝑒𝑓𝑉𝐵𝑈𝑆

2
                                                                                                       (II.40) 

Where, 𝑉1_3𝜙_𝑟𝑒𝑐 is the positive sequence component of the 3𝜙 rectifier voltage.   

 

Fig.2.24 Block diagram of the complex (𝑑𝑞) and positive sequence power control. 

 

Finally, the 3𝜙 rectifier complex voltages can be expressed as functions of V1_3ϕ_rec and 𝑎 in the 

phasor domain as follows: 

 𝑉𝑎𝑏𝑐 = {

𝑉𝑎 = 𝑉1_3𝜙_𝑟𝑒𝑐

𝑉𝑏 = 𝑎2𝑉1_3𝜙_𝑟𝑒𝑐
𝑉𝑐 = 𝑎𝑉1_3𝜙_𝑟𝑒𝑐

                                                                                                      (II.41) 

The detailed block diagram of the complex (𝑑𝑞) and positive sequence power control is shown in 

Fig.2.24.  

2.5.3.4 Simulation test of the detailed, average, and phasor models 

To prove the viability of the phasor solution, it is compared to the average, and the detailed model 

under the same conditions and using the same parameters. In the three models, the PMSM is 

modeled by a three-phase balanced system in a wye connection. Each phase consists of a voltage 

source in series with a resistance 𝑅𝑠 and an inductance 𝐿𝑠 same as Fig.2.21 and 2.22 (𝑅𝑠 and 𝐿𝑠 

are given in Appendix C). A load consisting of a simple resistance 𝑅𝑙𝑜𝑎𝑑  is applied, and a capacitor 

denoted 𝐶𝑜𝑢𝑡 = 0.1 𝑚𝐹 is connected in parallel to 𝑅𝑙𝑜𝑎𝑑 on the DC side. For the three models, the 

(𝑑𝑞) control strategy represented in Fig.2.24 is applied. As prementioned, the block diagrams of 

the instantaneous and average (𝑑𝑞) control strategies differ from the phasor one in the generation 
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of the three-phase voltage references. In the phasor domain, the positive sequence voltage 

reference is generated, and complex three-phase voltage references (𝑉̅𝑎𝑏𝑐) are applied. However, 

in the instantaneous and average models, a block that generates the three-phase sinusoidal 

waveform voltage references is required instead. Besides, a three-phase PWM generator block is 

added in the instantaneous model to control the real switching devices through firing pulses. As a 

principle, the active power is controlled through the 𝑑-axis component, and the reactive power 

through the 𝑞-axis. For the active power reference, three steps are imposed on the 𝑑-axis:   

𝑃𝑟𝑒𝑓 = {
20𝐾𝑊               𝑡 < 1𝑠
30𝐾𝑊    1𝑠 ≤ 𝑡 < 2𝑠
10𝐾𝑊              𝑡 ≥ 2𝑠

                           (II.42) 

However, 𝑄𝑟𝑒𝑓 is always set to zero to absorb zero reactive power. The three models are simulated 

for 3 seconds each. P.I. controllers are utilized in the three simulations to control the 𝑑 and 𝑞-axis 

current components. The same P.I. is applied to control 𝑑 and 𝑞-axis in the three simulations and 

has the following expression: 𝑅𝑊𝑇(𝑝) = 𝑘𝑝_𝑊𝑇
𝑘𝑖_𝑊𝑇 𝑝+1

𝑘𝑖_𝑊𝑇 𝑝
 where, 𝑘𝑝_𝑊𝑇  and 𝑘𝑖_𝑊𝑇 , are 

respectively the proportional and the integral parameters of the regulator, and 𝑝 is the Laplace 

operator. All the parameters are listed in Table 2.2. Fig.2.25, 2.26, and 2.27 show the obtained 

results. The active and reactive powers are shown in Fig.2.25. As seen, the active power (Fig.2.25 

(a)) follows its reference in the three models, and the phasor curve accurately represents the active 

power in transient and steady states. The same results are obtained for the reactive power (Fig.2.25 

(b)) which always follows its reference and is equal to zero in the three models. The current phase 

𝑖𝑎 is shown in Fig.2.26 (a) and (b). The current magnitude (black line) and the phase shift (golden 

yellow line) are plotted in the phasor simulation meanwhile, the sinusoidal waveforms appear in 

the detailed and average models. The waveforms of the detailed model (blue line) are thicker than 

the average ones (red line) because of the existence of the switching frequency in the detailed 

rectifier model. Fig.2.26 (b) shows that all variations in current magnitude including the steepest 

ones resulting from a step change in the power reference are accurately tracked in the phasor 

representation. Same for the phase voltage 𝑉𝐴𝑁, plotted in Fig.2.27 (a), the full sinewave forms 

are observed in the detailed and the average models, while the phasor model is represented by the 

magnitude (black line) that is always equal to 𝑉𝐴𝑁_𝑚𝑎𝑥 = √2𝑉𝑛, and the phase shift is null (golden 

yellow line) as the system is a three-phase balanced one. 

Hence, the precise calculation of active and reactive power is always maintained when adopting 

the phasor approach. Finally, the DC bus voltage represented in Fig.2.27 (b), varies conveniently 

with the active and reactive power references as the (𝑑𝑞) current components are used to control 

the active and reactive power in the circuit and not to stabilize the DC bus voltage. The three 

models have the same DC bus voltage curves in all operating states, then the phasor representation 

maintains the accuracy in modeling the electrical AC and DC components. To highlight the 

significance of the phasor model, Table 2.3 summarizes the simulation duration and the 

calculation step size of each of the three models. The calculation step size highly increases when 
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applying the phasor approach where an average value of 𝑇𝑠𝑡𝑒𝑝_𝑃ℎ = 17.8 𝑚𝑠 is obtained. This 

corresponds to a ratio of 356 of 𝑇𝑠𝑡𝑒𝑝_𝑃ℎ to 𝑇𝑠𝑡𝑒𝑝_𝑎𝑣𝑟 and 35600 of 𝑇𝑠𝑡𝑒𝑝_𝑃ℎ to 𝑇𝑠𝑡𝑒𝑝_𝑑𝑒𝑡. 

Nominal voltage (phase to neutral) (𝑉) 𝑉𝑛 = 206.7 𝑉 

Operating frequency (𝐻𝑧) 𝑓𝑛 = 100 𝐻𝑧 

Switching frequency (detailed model) (𝐻𝑧) 𝑓𝑠𝑤 = 20 𝐾𝐻𝑧 

Load resistance (Ω) 𝑅𝑙𝑜𝑎𝑑 = 50 Ω 

P.I regulators parameters (all models) 𝑘𝑝_𝑊𝑇 = 32, 𝑘𝑖_𝑊𝑇 = 0.0032 

 

Table 2.2 Parameters of the three models. 

  

      Fig.2.25 (a) Active, and (b) reactive power curves of the three models. 

 

Fig.2.26 (a) current waveforms of 𝑖𝑎(𝑡) in the detailed and average models, the magnitude, and phase 

shift of 𝑖𝑎 in the phasor model  (b) A zoom of 𝑖𝑎 curves of  the three models (1.96𝑠 ≤ 𝑡 ≤ 2.04𝑠). 
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Fig.2.27 (a) A zoom on the phase to neutral voltage 𝑉𝐴𝑁 waveforms of the detailed and average models, 

the magnitude, and phase-shift of 𝑉𝐴𝑁 in the phasor model (1.78𝑠 ≤ 𝑡 ≤ 1.83𝑠), (b) common DC bus 

voltage (𝑉𝐵𝑈𝑆) of the detailed, average, and phasor models. 

 

The high increase in calculation step size and the reduction in system complexity result in a faster 

simulation of the phasor model (the simulation speed ratio of the average to the phasor model is 

26 and 880 of the detailed to the phasor model).  As a result, the phasor notation can reduce the 

model complexity by omitting the time domain representation of all sinusoidal electrical 

components and increasing the calculation step size while maintaining accurate modeling of the 

WT conversion chain. Next, the phasor domain is applied to all operating AC units including the 

utility grid and the DG.   

Model 
Duration of the three 

seconds simulation 
calculation step size 

Detailed 7 min 20 s 0.5 𝜇𝑠 
Average 13 s 50 𝜇𝑠 

Phasor 0.5 𝑠 17.8 𝑚𝑠 
 

Table 2.3 Comparison of simulation duration and calculation step size in the detailed, average, and phasor 

models. 

2.5.3.5 Conduction and switching losses 

 

To retrieve the efficiency of the 3𝜙 rectifier, the converter losses should be evaluated and added 

to the proposed rectifier model. Knowing that the conduction and the switching losses account for 

a major part of the existing losses, they are investigated in detail in this study while other sources 

of power loss are neglected. First, the switching losses are modeled based on the expression 

proposed in [137] as follows: 

 

𝑃𝑠𝑤_3𝜙_𝑟𝑒𝑐 =
6

𝜋
𝑓𝑠𝑤(𝐸𝑜𝑛_𝐼𝐺𝐵𝑇 + 𝐸𝑜𝑓𝑓_𝐼𝐺𝐵𝑇 + 𝐸𝑜𝑓𝑓_𝑑𝑖𝑜𝑑𝑒)

𝑉𝐵𝑈𝑆

𝑉𝑟𝑒𝑓
.
𝑖̂𝑙

𝑖𝑟𝑒𝑓
                                          (II.43) 
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Where, 

 

− 𝑓𝑠𝑤 is the switching frequency in 𝐻𝑧 (𝑓𝑠𝑤 = 20 𝐾𝐻𝑧) 

− 𝐸𝑜𝑛_𝐼𝐺𝐵𝑇, 𝐸𝑜𝑓𝑓_𝐼𝐺𝐵𝑇, 𝐸𝑜𝑓𝑓_𝑑𝑖𝑜𝑑𝑒 are respectively the turn-on and turn-off energy losses of 

the IGBT, and the turn-off energy losses of the diode due to the reverse recovery charge 

current (𝑚𝐽) (Appendix C) 

− 𝑉𝐵𝑈𝑆 is the DC bus voltage in (𝑉) (𝑉𝐵𝑈𝑆 = 800 𝑉) 

− 𝑖̂𝑙 is the peak value of the AC load sinusoidal current (in this case, îl corresponds to the 𝑑-

axis current component 𝑖𝑑 of the phasor model as 𝑖𝑞 = 0) 

− 𝑉𝑟𝑒𝑓 and 𝑖𝑟𝑒𝑓 are respectively the voltage and current references under which the switching 

losses are given (Appendix C) 

 

Unlike the switching losses, the conduction losses are directly dependent on the modulation 

function such as the sinusoidal PWM, suboptimal space vector, etc.[138]. In this study, the selected 

modulation function is the sine triangular PWM. Accordingly, the conduction losses of a single 

IGBT and a single diode are expressed as follows[139]: 

 

{
𝑃𝑐𝑜𝑛𝑑_𝐼𝐺𝐵𝑇 =

𝑉𝐶𝐸,0𝑖̂𝑙

2𝜋
(1 +

𝑀𝜋

4
) +

𝑟𝐶𝐸𝑖̂𝑙
2

2𝜋
(
𝜋

4
+
2𝑀

3
)

𝑃𝑐𝑜𝑛𝑑_𝑑𝑖𝑜𝑑𝑒 =
𝑉𝐹,0𝑖̂𝑙

2𝜋
(1 −

𝑀𝜋

4
) +

𝑟𝐹𝑖̂𝑙
2

2𝜋
(
𝜋

4
−
2𝑀

3
)

                      (II.44) 

Where, 𝑃𝑐𝑜𝑛𝑑_𝐼𝐺𝐵𝑇, 𝑃𝑐𝑜𝑛𝑑_𝑑𝑖𝑜𝑑𝑒, 𝑉𝐶𝐸,0, 𝑟𝐶𝐸, 𝑉𝐹,0, 𝑟𝐹, and 𝑀 are respectively the conduction losses 

of a single IGBT (𝑊), the conduction losses of one diode (𝑊), the IGBT’s threshold voltage (𝑉), 

the IGBT’s differential resistance (Ω), the diode’s threshold voltage (𝑉), the diode’s differential 

resistance (Ω), and the modulation index.        

Hence, the total conduction losses can be deduced from equation (II.44) as the sum of 𝑃𝑐𝑜𝑛𝑑_𝐼𝐺𝐵𝑇 

and 𝑃𝑐𝑜𝑛𝑑_𝑑𝑖𝑜𝑑𝑒 times the number of total IGBTs and diodes of the rectifier: 

 

𝑃𝑐𝑜𝑛𝑑_3𝜙_𝑟𝑒𝑐 = 6(𝑃𝑐𝑜𝑛𝑑_𝐼𝐺𝐵𝑇 + 𝑃𝑐𝑜𝑛𝑑_𝑑𝑖𝑜𝑑𝑒)                                                                           (II.45) 

Finally, the total power losses in the 3𝜙 rectifier can be expressed as follows:  

𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑟𝑒𝑐 = 𝑃𝑠𝑤_3𝜙_𝑟𝑒𝑐 + 𝑃𝑐𝑜𝑛𝑑_3𝜙_𝑟𝑒𝑐                                          (II.46) 

Next, the conduction, the switching, and the total losses are plotted as functions of the input 

variables which are 𝑀, îl, and VBUS: 

- As the WT and PV are continuously functioning in MPPT mode, the remaining converters 

of the DC microgrid take charge of stabilizing the common DC bus voltage then, 𝑉𝐵𝑈𝑆 is 

considered constant equal to its reference value 𝑉𝐵𝑈𝑆 = 800𝑉.  

- The modulation index 𝑀 imposes the three-phase voltages of the PMSM (𝑉𝑎𝑏𝑐), then the 

(𝑑𝑞) axes components in the phasor domain: 𝑉𝑑𝑞 
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-  The peak value of the AC sinusoidal current 𝑖̂𝑙 corresponds to 𝑖𝑑 in the phasor domain as 

𝑖𝑞 is set to zero.  

Yet, the input electrical power of the 3𝜙  rectifier corresponds to the electrical active power 

generated by the PMSM (𝑃𝑃𝑀𝑆𝑀) and is computed as a function of 𝑉𝑑𝑞 and 𝑖𝑑𝑞 as follows: 

 

𝑃𝑒𝑙𝑒𝑐_3𝜙_𝑟𝑒𝑐 = 𝑃𝑃𝑀𝑆𝑀 =
3

2
(𝑉𝑑𝑖𝑑 + 𝑉𝑞𝑖𝑞)                                                                                 (II.47) 

Thus, the losses can be simply represented as a function of 𝑃𝑒𝑙𝑒𝑐_3𝜙_𝑟𝑒𝑐  instead of 𝑀  and îl . 

Referring to Fig.2.19, the maximum wind mechanical power at base speed is 𝑃𝑤𝑖𝑛𝑑_𝑚 =

0.9𝑃𝑃𝑀𝑆𝑀_𝑏𝑎𝑠𝑒 = 49.5 𝐾𝑊 , and the nominal efficiency of the PMSM is  𝜂𝑛,𝐺 = 92.85 % 

(Appendix C). Hence, the maximum generated electrical power is 𝑃𝑒𝑙𝑒𝑐_3𝜙_𝑟𝑒𝑐_𝑚𝑎𝑥 =

0.9285𝑃𝑤𝑖𝑛𝑑_𝑚 = 45.96 𝐾𝑊 . Fig.2.28 (a) shows the conduction, switching, and total losses 

curves as a function of 𝑃𝑒𝑙𝑒𝑐_3𝜙_𝑟𝑒𝑐. It is seen that around 80% of the total losses account for the 

switching losses. In addition, the 3𝜙 rectifier power efficiency, 𝜂3𝜙𝑟𝑒𝑐 , is expressed as:  

 

𝜂3𝜙_𝑟𝑒𝑐 = 1 −
𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑟𝑒𝑐

𝑃𝑒𝑙𝑒𝑐_3𝜙_𝑟𝑒𝑐
                                                                                                       (II.48) 

𝜂3𝜙_𝑟𝑒𝑐 = 𝑓(𝑃𝑒𝑙𝑒𝑐_3𝜙_𝑟𝑒𝑐) curve is depicted in Fig.2.28 (b). It shows that the converter’s efficiency 

increases with the input power and reaches a maximum of 𝜂3𝜙_𝑟𝑒𝑐 = 97.3% at  𝑃𝑒𝑙𝑒𝑐_3𝜙_𝑟𝑒𝑐_𝑚𝑎𝑥. 

 

                                       (a)                                                                              (b)         

 
Fig.2.28  (a) 3𝜙 rectifier losses as a function of the input electrical power, (b) efficiency of the 3𝜙 

rectifier losses as a function of the input electrical power. 
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2.5.3.6 3𝝓 rectifier control strategy 

  

To continuously extract the maximum available wind power, an MPPT technique is applied as a 

control strategy of the 3𝜙 rectifier. Among several MPPT techniques found in the literature such 

as the tip speed ratio control, the optimal torque control, the power signal feedback control, the 

perturb and observe control, etc. the optimal torque control is applied in this study. For further 

information on the MPPT techniques, it can be referred to [42]. The block diagram of the (WT) 

(𝑑𝑞) frame control with the optimal torque technique in the phasor domain is represented in 

Fig.2.29. The branch colored in light blue corresponds to the optimal torque MPPT technique and 

is detailed in Appendix C. Fig.2.30 shows the MPPT characteristic in a blue dashed line as a 

function of the turbine speed for different wind speed values. 

 

 
Fig.2.29 Block diagram of the (WT) (𝑑𝑞) frame control in the phasor domain. 

 
Fig.2.30 MPPT characteristic for different wind speed values. 
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To test the validity of the proposed MPPT, the wind conversion chain is simulated under variable 

wind speeds. The mechanical wind power 𝑃𝑤𝑖𝑛𝑑_𝑚 is plotted as a function of the wind speed in p.u 

of the nominal wind speed in Fig.2.31. The obtained curve (solid blue line) is the same as that 

plotted of the MPPT characteristic in Fig.2.30 and the six different operating zones are identified 

(Appendix C). Besides, the electrical power generated by the PMSM denoted 𝑃𝑤𝑖𝑛𝑑_𝑒𝑙𝑒𝑐 (dashed 

red line), and the outputted power from the 3𝜙  rectifier denoted 𝑃𝑤𝑖𝑛𝑑_3𝜙_𝑜𝑢𝑡 (black line),are 

represented in the same plot of  𝑃𝑤𝑖𝑛𝑑_𝑚. The cumulative losses resulting from the conversion of 

the mechanical power to electrical across the PMSM and the conversion of the AC power to DC 

through the 3𝜙 rectifier are tangibly identified in Fig.2.31. 

This can be seen by 𝑃𝑤𝑖𝑛𝑑_𝑒𝑙𝑒𝑐 curve plotted bellow  𝑃𝑤𝑖𝑛𝑑_𝑚 curve, same for  𝑃𝑤𝑖𝑛𝑑_3𝜙_𝑜𝑢𝑡 curve 

which is situated below 𝑃𝑤𝑖𝑛𝑑_𝑒𝑙𝑒𝑐  curve. At last, the power efficiency of the PMSM, 

𝜂𝑃𝑀𝑆𝑀 (eq.II.26), is plotted in (%) as a function of the wind mechanical power in Fig.2.32. By this, 

the 3𝜙  rectifier output power can be computed for each wind speed input correspondingly:  

𝑃𝑤𝑖𝑛𝑑_3𝜙_𝑜𝑢𝑡 = 𝜂𝑃𝑀𝑆𝑀𝜂3𝜙_𝑟𝑒𝑐𝑃𝑤𝑖𝑛𝑑_𝑚                                                                                     (II.49) 

 

 

Fig.2.31 The mechanical and electrical wind power, and the 3𝜙 rectifier power output as functions of the 

wind speed. 
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Fig.2.32 The PMSM power efficiency in (%) as a function of the mechanical wind power. 

2.6 Diesel generator and utility-grid energy conversion chains 

The (DG) and the utility grid are additional AC sources that are connected to the common DC bus 

voltage of the DC microgrid. Their connection to the microgrid, the amount of generated power 

from the DG, and the purchased/ sold power from/to the utility grid are subject to the decision of 

the optimizer controller detailed in the next chapter. Hence, the power references of the (DG) and 

the utility grid are imposed by the optimization problem: 𝑃𝐷𝐺_𝑟𝑒𝑓  and 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓. The detailed study 

and analysis of each component from the energy conversion chain of the (DG) and utility grid are 

out of the scope of this thesis. In other words, the (DG) and the utility grid are regarded as potential 

AC sources or loads that interact with the DC microgrid and can generate or absorb an 

instantaneous amount of power set by the optimization problem. Accordingly, all phenomena such 

as the thermal/mechanical, the mechanical/electrical energy conversions in the combustion engine 

of the (DG), the power line losses, the voltage drop, the harmonic distortions in the utility grid, 

etc. are not detailed in this thesis. Although, to include the (DG) and the utility grid units in the 

24-hour DC microgrid simulation model, the averaging techniques applied to the (WT) conversion 

chain were included as follows:  

- Three-phase sources: As the (DG), and the utility grid are of AC type, they were simply 

modeled by a three-phase voltage source forming a direct balanced system, in series with 

a resistance, and an inductor. The system was modeled in the phasor domain detailed in 

the previous section. 

- 3𝜙 rectifiers: The (DG) and the utility grid are connected to the common DC bus through 

a 3𝜙 rectifier that is modeled similarly to the (WT) rectifier. For the utility grid, the same 

converter operates as a rectifier when the power is purchased from the grid and as an 

inverter when the power is sold to the grid. 
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- (𝑑𝑞) frame control in the phasor domain: To control the 3𝜙 rectifiers of the (DG) and the 

utility grid, the (𝑑𝑞) control technique applied to the (WT) rectifier is adopted (Fig.2.24). 

The active power is controlled through the 𝑑 -axis current component, 𝑃𝐷𝐺_𝑟𝑒𝑓   and 

𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 are the 𝑑-axis active power references. However, the 𝑞-axis reference of both 

rectifiers is always set to zero to absorb zero reactive power. 

- IGBTs, diodes selection, and loss modeling: By referring to Table 2.1 at the beginning 

of Chapter 2, the rated power of the (DG) is equal to the one of the (WT) 𝑃𝐷𝐺_𝑟 =

𝑃𝑊𝑇_𝑟 = 55𝐾𝑊. As to the utility grid, the maximum allowable purchased/sold power is 

set in the next chapter to 𝑃𝑔𝑟𝑖𝑑_𝑚𝑎𝑥 = 60 𝐾𝑊. Hence, the power rates of the (DG) and 

utility grid 3𝜙 rectifiers are the same as the (WT). Besides, the same switches and diodes 

can be selected as:  

1) For the (DG), the alternator has the same rated power as the (WT) PMSM, and then 

the (DG) outputted voltage and current are in the same range as the (WT).  

2) for the utility grid, having a standard voltage rating of 380-400V- 3𝜙 (RMS phase to 

phase), this leads to a maximum grid current of 𝐼𝑔𝑟𝑖𝑑_𝑚𝑎𝑥 ≈ ± 90𝐴.  

As a result, and without loss of generality, the same 3𝜙 Rectifier of the (WT) can be 

selected for the (DG) and the utility grid, and the conduction and switching losses are 

always computed following the same approach of the (WT). Next, the modeled losses of 

the (DG) and utility grid 3𝜙 Rectifiers will account for the total converters losses to be 

minimized as one of the optimization goals.     

2.7 ESS conversion chain 

The proposed DC microgrid includes an energy storage system consisting of a lithium-ion battery. 

The  lithium-ion  battery  has  several  merits  over  Nickel  Metal  Hybrid (Ni-MH) and lead-acid  

 

Fig.2.33 ESS conversion chain. 
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batteries in terms of higher energy density (75-200 𝑊ℎ/𝐾𝑔 ), low self-discharge (1%/day), 

absence of memory effect, better power output, better cycle-life, and higher coulomb efficiency 

(~98%)[140], [141]. Besides lithium-ion batteries which are the most used in electrical vehicles 

(EVs) are replaced when their capacity reaches 80% of the original value. These used EV batteries 

are largely applied in residential applications as ESSs which offer a better life span, and a shorter 

payback time for residential use[142]. For the above-mentioned reasons, the selected ESS is a 

lithium-ion battery with a rated capacity of 500 𝐴ℎ, and a rated voltage of 250 𝑉. The ESS energy 

conversion chain is shown in Fig.2.33. It consists of a lithium-ion battery connected to the common 

DC bus through a bidirectional DC/DC converter. 

2.7.1 Lithium-ion battery model 

 

Several microgrid optimization studies that include an ESS consisting of a battery adopt a linear 

state space model of the battery [95], [98], [100]. A discrete version representing the battery State 

of Charge (SOC) at the instant (𝑘 + 1) as a function of the SOC, the battery charge and discharge 

power at the instant (𝑘) is utilized. The expression is the following:     

𝑆𝑂𝐶(𝑘 + 1) = 𝑆𝑂𝐶(𝑘) +
𝜂𝑐ℎ𝑃𝑐ℎ(𝑘)𝑇𝑠

𝐸𝑏𝑎𝑡𝑡
+
𝜂𝑑𝑖𝑠𝑃𝑑𝑖𝑠(𝑘)𝑇𝑠

𝐸𝑏𝑎𝑡𝑡
                                                               (II.50) 

Where 𝜂𝑐ℎ , 𝜂𝑑𝑖𝑠 , 𝐸𝑏𝑎𝑡𝑡 , 𝑃𝑐ℎ(𝑘) , 𝑃𝑑𝑖𝑠(𝑘) , and 𝑇𝑠  are respectively the charge efficiency, the 

discharge efficiency, the maximum battery energy (𝑊ℎ), the battery charging power (𝑊), the 

battery discharging power (𝑊), and the sampling period (𝑠). In this mathematical representation, 

the maximum battery energy is given as a constant and can be expressed as: 

 𝐸𝑏𝑎𝑡𝑡 = 𝑄𝑏𝑎𝑡𝑡𝑉𝑏𝑎𝑡𝑡               (II.51) 

Where, 𝑄𝑏𝑎𝑡𝑡  and 𝑉𝑏𝑎𝑡𝑡  are respectively the maximum battery capacity (𝐴ℎ ) and the battery 

voltage (𝑉). Standardly, the maximum battery capacity is a constant given by the manufacturer, 

then the battery voltage is considered constant and equal to its nominal value regardless of the 

battery SOC. The problem lies in this assumption as the battery voltage has a nonlinear 

characteristic that largely depends on the SOC value [143]. Thus, the consideration of a constant 

battery voltage leads to inexact SOC deduction which impacts the whole results of the optimization 

problem. Hence, a precise model of the lithium-ion battery dynamics proposed by Tremblay and 

adopted in Simulink is applied[143]. The model represents accurately the battery voltage dynamics 

including all nonlinear zones. The applied battery voltage curve is represented as a function of the 

SOC (%) in Fig.2.34. Three different sections are identified: 

1. The first section represents the exponential voltage drop when the battery is fully charged. 

2. The second section represents the nominal area where the battery voltage is approximately 

equal to its nominal value. This section ends when the voltage drops below the battery's 

nominal voltage. 
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3. The third section represents the total discharge of the battery when the voltage drops 

rapidly. 

 

Fig.2.34 The battery voltage discharge curve as a function of the SOC at 0.43𝐶 (217.4 𝐴). 

Hence, the detailed battery model proposed by Tremblay and represented in MATLAB/Simulink 

in the “generic battery model” block is applied. Besides the detailed modeling of the battery 

dynamics, another crucial factor that substantially impacts the battery performance and is rarely 

addressed in optimization problems is the temperature effect.     

Nowadays, lithium-ion batteries are widely favored as ESS in DC microgrid applications 

worldwide. Moreover, increasing areas around the world are witnessing high differences in 

temperature seasonally and even daily due to climate change. Therefore, the temperature effect is 

included in Tremblay’s standard equations, and the thermal impact on the battery’s performance 

is assessed. Based on[144] [145], the battery’s charge and discharge equations become the 

following: 

Discharge model (𝐼𝑏𝑎𝑡𝑡 > 0): 

{
𝑓1(𝑖𝑡, 𝐼𝑏𝑎𝑡𝑡

∗ , 𝐼𝑏𝑎𝑡𝑡 , 𝑇, 𝑇𝑎) = 𝐸0(𝑇) − 𝐾(𝑇).
𝑄(𝑇𝑎)

𝑄(𝑇𝑎)−𝑖𝑡
(𝐼𝑏𝑎𝑡𝑡
∗ + 𝑖𝑡) + 𝐴𝑒−𝐵.𝑖𝑡

𝑉𝑏𝑎𝑡𝑡(𝑇) = 𝑓1(𝑖𝑡, 𝐼𝑏𝑎𝑡𝑡
∗ , 𝐼𝑏𝑎𝑡𝑡, 𝑇, 𝑇𝑎) − 𝑅(𝑇). 𝐼𝑏𝑎𝑡𝑡

                             (II.52) 

Charge model (𝐼𝑏𝑎𝑡𝑡 < 0): 

{
𝑓1(𝑖𝑡, 𝐼𝑏𝑎𝑡𝑡

∗ , 𝐼𝑏𝑎𝑡𝑡 , 𝑇, 𝑇𝑎) = 𝐸0(𝑇) − 𝐾(𝑇).
𝑄(𝑇𝑎)

𝑖𝑡+0.1𝑄(𝑇𝑎)
𝐼𝑏𝑎𝑡𝑡
∗ − 𝐾(𝑇).

𝑄(𝑇𝑎)

𝑄(𝑇𝑎)−𝑖𝑡
𝑖𝑡 + 𝐴𝑒−𝐵.𝑖𝑡

𝑉𝑏𝑎𝑡𝑡(𝑇) = 𝑓1(𝑖𝑡, 𝐼𝑏𝑎𝑡𝑡
∗ , 𝐼𝑏𝑎𝑡𝑡, 𝑇, 𝑇𝑎) − 𝑅(𝑇). 𝐼𝑏𝑎𝑡𝑡

      (II.53) 

Where,  

- 𝑖𝑡 is the extracted capacity, in 𝐴ℎ.  

- 𝐼𝑏𝑎𝑡𝑡
∗  is the low-frequency current dynamics, in 𝐴. 

- 𝐼𝑏𝑎𝑡𝑡 is the battery current, in 𝐴. 

- 𝑇 is the cell temperature, in 𝐾.  
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- 𝑇𝑎 is the ambient temperature, in 𝐾. 

- 𝐸0(𝑇) is the constant voltage expressed as a function of the cell temperature, in 𝑉.   

- 𝐾(𝑇) is the polarization resistance expressed as a function of the cell temperature, in Ω. 

- 𝑄(𝑇𝑎) is the maximum battery capacity expressed as a function of the ambient temperature, 

in 𝐴ℎ.     

- 𝐴 is the exponential voltage, in 𝑉. 

- 𝐵 is the exponential capacity, in 𝐴ℎ−1. 

- 𝑅(𝑇) is the internal resistance expressed as a function of the cell temperature, in Ω.   

As 𝐼𝑏𝑎𝑡𝑡
∗  is the low-frequency current dynamics, it is modeled by a first-order low-pass filter and 

can be expressed as a function of  𝐼𝑏𝑎𝑡𝑡 as follows: 

𝐼𝑏𝑎𝑡𝑡
∗ =

𝐼𝑏𝑎𝑡𝑡

𝜏𝑏𝑎𝑡𝑡𝑝+1
                         (II.54) 

Where,  𝜏𝑏𝑎𝑡𝑡 , and 𝑝 are respectively the time constant of the low-pass filter, and the transfer 

function object. 

The 𝑆𝑂𝐶 of the battery is calculated as: 

𝑆𝑂𝐶 = 100 (1 −
1

𝑄(𝑇𝑎)
∫ 𝐼𝑏𝑎𝑡𝑡
𝑡

0
(𝑡)𝑑𝑡)                                                                                     (II.55) 

The expressions of 𝐸0(𝑇), 𝐾(𝑇), 𝑄(𝑇𝑎), 𝑅(𝑇), 𝑇, and additional battery parameters can be found 

in Appendix D.   

To validate the battery dynamic model, the battery discharge characteristics are plotted for 

different constant discharge currents at 25°C and for different different temperatures at a constant 

current 1𝐶 (500𝐴).  

   

Fig.2.35 (a) Battery voltage discharge characteristic for different constant discharge currents at 25°C, (b) 

voltage discharge characteristic at a constant current of 1𝐶 (500𝐴) for variable temperatures. 
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Fig.2.35 (a) shows the battery voltage discharge characteristic as a function of the capacity (Ah) 

for 0.5𝐶, 1𝐶, 2𝐶, and 5𝐶 constant discharge currents. The obtained curves show that the battery 

voltage curve is highly impacted by the discharge current. The nominal area in which the battery 

voltage is practically equal to its nominal value narrows when the discharge current increases (the 

steepest curve is the 5𝐶  discharge curve in gold color). Fig.2.35 (b) shows the results of the 

discharge characteristic with a constant current of 1𝐶 (500𝐴) for variable temperatures. 

The maximum battery capacity decreases when the temperature drops and loses respectively 4% 

and 7% at 0°𝐶 and −20°𝐶 from its nominal value at 25°𝐶. The nominal area of the voltage curve 

is negligibly impacted by the temperature effect at high battery SOCs (𝑆𝑂𝐶 > 30%), whereas for 

lower SOCs the battery voltage drops faster at low temperatures. 

2.7.2 Bidirectional DC/DC converter 
 

Bidirectional DC/DC converters are widely applied to connect ESSs of a DC nature to a common 

DC bus to assure voltage matching. These converters are predominantly found in new energy 

electric vehicles, they assure the power conversion between newly equipped hybrid ESSs such as 

the fuel-cell, batteries, supercapacitors, and the vehicle bus[146]. Existing in several isolated and 

non-isolated topologies, a basic non-isolated bidirectional DC/DC boost topology is applied in this 

study. The electrical circuit of the bidirectional DC/DC converter is shown in Fig.2.36. Operating 

in continuous mode, the converter functions separately in two different modes: 

- Boost mode: The boost mode is enabled when the battery is in discharge mode (𝐼𝑏𝑎𝑡𝑡 > 0). 

The switch 𝑠𝑤1 is active and  𝑠𝑤2 is inactive. The diode of the 𝑠𝑤2, denoted 𝐷𝑠𝑤2, allows 

the current flow to the common DC bus when 𝑠𝑤1 is off. In this operating mode, the 

voltage is stepped up from around 𝑉𝑏𝑎𝑡𝑡_𝑛 = 250𝑉 to  𝑉𝐵𝑈𝑆 = 800𝑉. 

- Buck mode: The buck mode is enabled when the battery is in charge mode (𝐼𝑏𝑎𝑡𝑡 < 0). The 

switch 𝑠𝑤2 is active and  𝑠𝑤1 is inactive. The diode of the 𝑠𝑤1, denoted 𝐷𝑠𝑤1, allows the 

current flow of 𝐼𝑏𝑎𝑡𝑡 when 𝑠𝑤2 is off. In this operating mode, the voltage is stepped down 

from 𝑉𝐵𝑈𝑆 = 800𝑉 to around 𝑉𝑏𝑎𝑡𝑡_𝑛 = 250𝑉.     

The IGBTs 𝑠𝑤1 and 𝑠𝑤2 are controlled by firing pulses, denoted respectively 𝑢1 and 𝑢2 with a 

fixed switching frequency 𝑓𝑠𝑤_𝑏𝑎𝑡𝑡 = 20 𝐾𝐻𝑧 . In boost mode 𝐼𝑏𝑎𝑡𝑡 > 0 , the mathematical 

equations of the converter are the following:  

{
 

 𝑉𝑏𝑎𝑡𝑡 = (𝑅𝑏𝑎𝑡𝑡 + 𝑅𝐿_𝑏𝑎𝑡𝑡)𝐼𝑏𝑎𝑡𝑡 + 𝐿𝑏𝑎𝑡𝑡.
𝑑𝐼𝑏𝑎𝑡𝑡

𝑑𝑡
+ (1 − 𝑢1). 𝑉𝐵𝑈𝑆

𝐼𝐷𝑠𝑤2 = (1 − 𝑢1). 𝐼𝑏𝑎𝑡𝑡

(1 − 𝑢1). 𝐼𝑏𝑎𝑡𝑡 = 𝐶𝑜𝑢𝑡.
𝑑𝑉𝐵𝑈𝑆

𝑑𝑡
+ 𝐼𝑜𝑢𝑡

                                          (II.56) 

Where, 𝑅𝑏𝑎𝑡𝑡, 𝑅𝐿_𝑏𝑎𝑡𝑡, 𝐿𝑏𝑎𝑡𝑡, and  𝐼𝐷𝑠𝑤2 are respectively the battery's internal constant resistance 

(𝑅batt = 𝑅|𝑇𝑟𝑒𝑓) (Ω), the inductor resistance (Ω), the filtering inductor (H), and the current flowing 

in the diode of 𝑠𝑤2 (A).  
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Fig.2.36 Electrical circuit of the bidirectional DC/DC converter (detailed model). 

By always setting 𝑢2 = 𝑢̅1 = 1 − 𝑢1, and taking into account that 𝐼batt and  𝐼𝑜𝑢𝑡 have opposite 

signs in the buck mode operation, it can be seen that the bidirectional DC/DC converter keeps the 

same equations of the boost mode (II.56) in the buck mode. The buck equations are then expressed 

as:  

{
 

 𝑉𝑏𝑎𝑡𝑡 = −(𝑅𝑏𝑎𝑡𝑡 + 𝑅𝐿_𝑏𝑎𝑡𝑡)𝐼𝑏𝑎𝑡𝑡_𝑏𝑢𝑐𝑘 − 𝐿𝑏𝑎𝑡𝑡.
𝑑𝐼𝑏𝑎𝑡𝑡_𝑏𝑢𝑐𝑘

𝑑𝑡
+ 𝑢2. 𝑉𝐵𝑈𝑆

𝐼𝑠𝑤2 = 𝑢2. 𝐼𝑏𝑎𝑡𝑡_𝑏𝑢𝑐𝑘

−𝑢2. 𝐼𝑏𝑎𝑡𝑡_𝑏𝑢𝑐𝑘 = 𝐶𝑜𝑢𝑡.
𝑑𝑉𝐵𝑈𝑆

𝑑𝑡
− 𝐼𝑜𝑢𝑡_𝑏𝑢𝑐𝑘

                                   (II.57)       

Where, 𝐼𝑏𝑎𝑡𝑡_𝑏𝑢𝑐𝑘 = −𝐼𝑏𝑎𝑡𝑡, 𝐼𝑜𝑢𝑡_𝑏𝑢𝑐𝑘 = −𝐼𝑜𝑢𝑡, and 𝐼𝑠𝑤2 = −𝐼Dsw2 . As a result, if 𝑢2 = 𝑢̅1 = 1 −

𝑢1 is always imposed by the PWM pulses generator of the control loop, and the opposite signs of 

currents are considered in the mathematical modeling, the bidirectional DC/DC converter can be 

simply modeled by the DC/DC boost equations (II.56). Consequently, the same approach of 

averaging technique and losses modeling of the DC/DC boost is applied to the bidirectional 

DC/DC converter. Omitting the switching devices and introducing the controlled current and 

voltage sources to derive the average model, the same electrical circuit of the DC/DC boost average 

model of Fig.2.6 is obtained. The resulting converter equations are the same as the ones obtained 

in (II.7), and the bidirectional DC/DC converter is directly controlled by the duty cycle ratio, 

denoted 𝐷𝑏𝑎𝑡𝑡, instead of the firing pulses 𝑢1 and 𝑢2. As for the switching and the conduction 

losses, the same modeling strategy is put in. This leads to the same electrical circuit of Fig.2.9 with 

the same expression of the switching losses as only one switch and one diode are active during a 

switching period in the boost as well in buck mode (𝑠𝑤1 & 𝐷𝑠𝑤2 in boost mode, and 𝑠𝑤2 & 𝐷𝑠𝑤1 

in buck mode). Hence, the switching-loss resistance (𝑟𝑠𝑤) can be expressed similarly to equation 

(II.19) as: 

𝑟𝑠𝑤 =
𝑓𝑠𝑤_𝑏𝑎𝑡𝑡.𝑉𝐵𝑈𝑆

6.𝐼𝑏𝑎𝑡𝑡
× (𝑡𝑜𝑛_𝐼𝐺𝐵𝑇 + 𝑡𝑜𝑓𝑓_𝐼𝐺𝐵𝑇 +

𝐼𝑅𝑀_𝐷.  𝑡𝑓_𝐷

𝐼𝑏𝑎𝑡𝑡
)                                                       (II.58)                                                       
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However, as detailed before, variable voltage sources and on-resistances are utilized to model the 

conduction losses. These voltage sources and on-resistances are expressed as functions of the duty 

cycle ratio (equation II.8). Knowing that in both modes, the on-resistances and equivalent voltage 

sources are placed on the inductor branch side (𝐿𝑏𝑎𝑡𝑡) same as in Fig.2.9. The equivalent on-

resistances and voltage sources have different expressions in boost and buck modes. In boost 

mode, they are expressed as: 

{
 
 

 
 𝑉𝐷0_𝑠𝑤2 = (1 − 𝐷𝑏𝑎𝑡𝑡). 𝑉𝑓0_𝑠𝑤2

𝑉0_𝑠𝑤1 = 𝐷𝑏𝑎𝑡𝑡. 𝑉𝐶𝐸0_𝑠𝑤1
𝑅𝐷_𝑠𝑤2 = (1 − 𝐷𝑏𝑎𝑡𝑡). 𝑅𝐷_𝑓_𝑠𝑤2

𝑅𝑠𝑤1 = 𝐷𝑏𝑎𝑡𝑡 . 𝑅𝑜𝑛_𝑠𝑤1

                                                                                (II.59) 

Where, 

- 𝑉𝐷0_𝑠𝑤2 is the conduction loss equivalent voltage source of 𝐷𝑠𝑤2 , in (V).  

- 𝑉𝑓0_𝑠𝑤2 is the 𝐷𝑠𝑤2 forward voltage source, in (V).  

- 𝑉0_𝑠𝑤1 is the conduction loss equivalent voltage source of 𝑠𝑤1, in (V). 

- 𝑉𝐶𝐸0_𝑠𝑤1 is the 𝑠𝑤1 forward voltage source, in (V).  

- 𝑅𝐷_𝑠𝑤2 is the conduction loss equivalent resistance of 𝐷𝑠𝑤2 , in (Ω). 

- 𝑅𝐷_𝑓_𝑠𝑤2 is the  𝐷𝑠𝑤2  forward resistance, in (Ω). 

- 𝑅𝑠𝑤1is the conduction loss equivalent resistance of 𝑠𝑤1, in (Ω). 

- 𝑅𝑜𝑛_𝑠𝑤1 is the 𝑠𝑤1 on-resistance, in (Ω). 

If the same switch from the same manufacturer is selected for 𝑠𝑤1 and 𝑠𝑤2, the equivalent on-

resistances and voltage sources in buck mode are expressed as:  

{
 
 

 
 𝑉𝐷0_𝑠𝑤1 = 𝐷𝑏𝑎𝑡𝑡. 𝑉𝑓0_𝑠𝑤2
𝑉0_𝑠𝑤2 = (1 − 𝐷𝑏𝑎𝑡𝑡). 𝑉𝐶𝐸0_𝑠𝑤1
𝑅𝐷_𝑠𝑤1 = 𝐷𝑏𝑎𝑡𝑡 . 𝑅𝐷_𝑓_𝑠𝑤2

𝑅𝑠𝑤2 = (1 − 𝐷𝑏𝑎𝑡𝑡). 𝑅𝑜𝑛_𝑠𝑤1

                                                                                          (II.60)      

 Where,  

- 𝑉𝐷0_𝑠𝑤1 is the conduction loss equivalent voltage source of 𝐷𝑠𝑤1 , in (V).  

- 𝑉0_𝑠𝑤2 is the conduction loss equivalent voltage source of 𝑠𝑤2, in (V). 

- 𝑅𝐷_𝑠𝑤1 is the conduction loss equivalent resistance of 𝐷𝑠𝑤1 , in (Ω). 

- 𝑅𝑠𝑤2 is the conduction loss equivalent resistance of 𝑠𝑤2, in (Ω). 

It can be referred to Appendix D.2 for detailed information on parameter values. The losses in the 

DC/DC bidirectional converter are represented as functions of the charged/discharged battery 

power in Fig.2.37 (a) and (b). The maximum charged/discharged battery power is fixed at  0.434C 

( 𝐼𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 = ±217𝐴 ) which yields: 𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 = 𝐼𝑏𝑎𝑡𝑡_𝑚𝑎𝑥𝑉𝑏𝑎𝑡𝑡_𝑛 = ±217 × 250 =

±54250 𝑊. The conduction, the switching, and the total losses for the boost and buck modes are 
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represented respectively in Fig.2.37 (a) and (b). As seen, the total losses in both operating modes 

are proportional to the charged/discharged battery power and are almost equal. The switching 

losses account for around 60% of the total losses in the two operating modes.   

Fig.2.38 shows the efficiencies of the two operating modes as a function of the charged/discharged 

battery power.   

                                           (a)                                                                                       (b) 

  

Fig.2.37 (a) Bidirectional DC/DC converter total losses, conduction, and switching losses in boost 

operating mode (b) in buck operating mode. 

 

Fig.2.38 Bidirectional DC/DC converter power efficiencies curves in boost and buck operating modes. 
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Both efficiencies’ curves slightly drop with the increase of charged/discharged power, and the 

boost curve shows a larger variation margin than the buck curve. However, in both operating 

modes, the efficiency almost stays constant at 98% for the whole power charge/discharge interval.   

2.8 Simulation test of the 24-hour assembled DC microgrid 

2.8.1 Applied EMS strategy 

 

In this section, the 24-hour assembled DC microgrid model is validated through simulation tests 

with variable input profiles. A simple EMS strategy that allows the share of all energy sources to 

the overall power mix is applied. The applied EMS strategy assures two prior objectives, the 

fulfillment of the load demand and the stabilization of the common DC bus voltage at each instant 

of the overall 24-hour horizon. Moreover, it guarantees the battery's proper operation and prevents 

its excess discharge and overcharge by limiting the battery state of charge (𝑆𝑂𝐶) within minimum 

and maximum admissible values[102]. The flow chart of the applied EMS strategy is depicted in 

Fig.2.39. As a principle, the RESs are continuously operating in MPPT mode to extract the 

maximum available power and the applied MPPT techniques are the ones detailed in sections 2.4.3 

and 2.5.3.6. The RES and load power profiles are known for the whole time horizon and the 

battery, (DG), and grid are the dispatchable sources whose power references are imposed by the 

EMS. Two cases can be differentiated following the difference between the load demand and the 

generated RES power that is evaluated at each calculation step size.  

If the generated power exceeds the load demand, then the 𝑆𝑂𝐶 variable is evaluated, and one of 

the two operating modes is selected: 

 

Mode 1 (𝑆𝑂𝐶 <𝑆𝑂𝐶𝑚𝑎𝑥): The battery stabilizes the DC bus voltage by charging the surplus of 

unused power, the (DG) and the grid aren’t connected to the microgrid which is operating in 

islanded mode. 

Mode 2 (𝑆𝑂𝐶 ≥𝑆𝑂𝐶𝑚𝑎𝑥): The battery has already reached its higher admissible energy charging 

threshold, so it switches to a floating mode (𝐼𝑏𝑎𝑡𝑡 = 0), and the surplus of unused power is sold to 

the grid. By this, the battery 𝑆𝑂𝐶 is fixed on its maximum threshold and the grid converter takes 

charge of stabilizing the DC bus voltage. 

On the other hand, if the load consumption is higher than power production then, the 𝑆𝑂𝐶 variable 

is compared to its minimum threshold, and one of three operating modes is selected:  

Mode 3 (𝑆𝑂𝐶 >𝑆𝑂𝐶𝑚𝑖𝑛 ): The battery stabilizes the DC bus voltage by discharging and supplying 

the load with the unavailable needed power. The (DG) and gird are disconnected from the 

microgrid which is operating in islanded mode. 

(𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑖𝑛 ): The power deficit can either be covered by the (DG) or the utility grid as the 

battery operates in a floating mode (𝐼𝑏𝑎𝑡𝑡 = 0). Standardly, DGs operate in a margin of around 

25% to 100% of their nominal power[98].  
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Fig.2.39 Flow chart of proposed EMS strategy. 

 

As a result, the existing power deficit is compared to the minimum and maximum admissible (DG) 

power generation limits and two operation modes can be encountered: 

Mode 4: The required power value is within the admissible power limits of the (DG). Thus, the 

(DG) is turned on, connected to the microgrid, and generates the remaining unavailable power to 

cover the load demand. By this, the (DG) rectifier stabilizes the common DC bus voltage. 

However, none of the power deficit is purchased from the grid.   

Mode 5: The power deficit value is not within the (DG) allowable power operating range. 

Therefore, the required power is uniquely purchased from the utility grid and the (DG) is turned 

off. By this, the utility grid converter takes charge of stabilizing the DC bus voltage and the 

microgrid operates in grid-connected mode.  

Finally, the same control steps are restarted again at each calculation step size. As the applied EMS 

strategy does not consider or include any of the optimization goals in the decision-making, it is not 

advanced as an optimal one. Instead, it is only adopted to test the viability of the overall 24-hour 

DC microgrid model. However, the application of an optimal EMS with predefined objectives and 

constraints requires the formulation of an optimization problem that is detailed in the next chapter.     
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2.8.2 EMS control parameters and 24-hour variable input profiles    

 

The control strategies of the RESs operating in MPPT mode and corresponding regulators’ 

parameters were detailed in sections 2.4.3 and 2.5.3.6 so, they are not recalled in this paragraph. 

Moreover, the active and reactive power of the (DG) and utility grid are imposed through the (𝑑𝑞) 

frame control represented in the phasor domain (Fig.2.24). The active power is imposed through 

the 𝑑 −axis component while the reactive power is always set to zero through the 𝑞 −axis 

component to absorb zero reactive power. The error between (𝑑𝑞) axes components and their 

corresponding references are minimized by P.I. regulators for both (DG) and utility grid.   

For the (DG), the same P.I. is applied to control 𝑑 and 𝑞-axis components and has the following 

expression: 𝑅𝐷𝐺(𝑝) = 𝑘𝑝_𝐷𝐺 .
𝑘𝑖_𝐷𝐺.𝑝+1

𝑘𝑖_𝐷𝐺.𝑝
 where, 𝑘𝑝_𝐷𝐺  and 𝑘𝑖_𝐷𝐺 , are respectively the proportional 

and the integral parameters of the (DG) regulator, and 𝑝 is the Laplace operator. The same for the 

utility grid regulators which have the following expression: 𝑅𝑔𝑟𝑖𝑑(𝑝) = 𝑘𝑝_𝑔𝑟𝑖𝑑.
𝑘𝑖_𝑔𝑟𝑖𝑑 .𝑝+1

𝑘𝑖_𝑔𝑟𝑖𝑑.𝑝
 where, 

𝑘𝑝_𝑔𝑟𝑖𝑑  and 𝑘𝑖_𝑔𝑟𝑖𝑑 , are respectively the proportional and the integral parameters of the grid 

regulator. The parameters of the applied regulators of the (DG) and utility grid are all listed in 

Table 2.4.  

 

Following the proposed EMS strategy, a voltage and current cascaded loop regulation technique 

is adopted to control the bidirectional DC/DC converter of the battery. The block diagram of the 

cascaded control loop is depicted in Fig.2.40. As seen, P.I. regulators are adopted to regulate the 

common DC bus voltage (𝑉𝐵𝑈𝑆) and the battery current (𝐼𝑏𝑎𝑡𝑡), respectively. 𝑘𝑝𝑣_𝑏𝑎𝑡𝑡, 𝑘𝑝𝑐_𝑏𝑎𝑡𝑡, 

𝑘𝑖𝑣_𝑏𝑎𝑡𝑡, and 𝑘𝑖𝑐_𝑏𝑎𝑡𝑡 are respectively the proportional and the integral parameters of the DC bus 

voltage and battery current regulators. All these regulators' parameters can be found in Table 2.4.  

A PWM generator block is required in the instantaneous model to control the real switching 

devices through the firing pulses, 𝑢1 and 𝑢2 (Fig.2.36 and equations II.56 and II.57). As stated 

before, the PWM generator block is omitted in the 24-hour DC microgrid model, and the 

bidirectional DC/DC converter average model is directly controlled by the duty cycle ratio, 𝐷𝑏𝑎𝑡𝑡. 

All P.I. regulators of all operating units are equipped with wind-up systems. Finally, we take note 

that the battery-cascaded loop control is only applied for the above proposed EMS strategy to 

validate the 24-hour DC microgrid model. Consequently, in the upcoming chapters, the adopted 

control block diagram of the bidirectional DC/DC converter of the battery is the one represented 

in Fig.2.33.        

 

Fig.2.40 Battery-cascaded loop control. 
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Common DC bus 

voltage  

Rated voltage: 800𝑉 

Allowable voltage continuous deviation: ±10% ↔ 80 𝑉 

Allowable voltage fluctuation: ±5% ↔ 40 𝑉 

 

Lithium-ion Battery 

𝑆𝑂𝐶𝑚𝑖𝑛 = 20% - 𝑆𝑂𝐶𝑚𝑎𝑥 = 90% 

Initial state of charge: 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 = 70% 

𝑘𝑝𝑣_𝑏𝑎𝑡𝑡 = 3.14 × 10−4 𝑘𝑖𝑣_𝑏𝑎𝑡𝑡 = 0.0628 

𝑘𝑝𝑐_𝑏𝑎𝑡𝑡 = 6.2832 𝑘𝑖𝑐_𝑏𝑎𝑡𝑡 = 1.25 × 104 

(DG) 
𝑃𝐷𝐺_𝑚𝑖𝑛 = 13.75 𝐾𝑊 - 𝑃𝐷𝐺_𝑚𝑎𝑥 = 55 𝐾𝑊 

𝑘𝑝_𝐷𝐺 = 8.68 𝑘𝑖_𝐷𝐺 = 1.82 × 104 

Utility-grid 𝑘𝑝_𝑔𝑟𝑖𝑑 = 9.93 𝑘𝑖_𝑔𝑟𝑖𝑑 = 3.12 × 104 

 

Table 2.4 EMS and regulators control parameters. 

Next, variable input profiles are applied when simulating the 24-hour DC microgrid model. The 

applied inputs consisting of variable irradiance (𝑊 𝑚2⁄ ), air temperature (°C), wind turbine speed 

(𝑚 𝑠⁄ ), and residential load demand (𝑊) 24-hour profiles are represented in Fig.2.41 (a), (b), (c), 

and (d), respectively. The shown variable profiles are not extracted from a real database and are 

only adopted to validate the 24-hour DC microgrid model under variable input profiles.  

 

Fig.2.41 Variable Input profiles: (a) Irradiance (𝑊/𝑚2), (b) Temperature (°C), (c) Wind speed (𝑚/𝑠), 
and (d) residential load demand (𝑊). 
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Yet, the shape and dynamics of all profile curves are realistic. For instance, the irradiance profile 

has a bell shape (Fig.2.41 (a)) with a peak at noon and null values at night. The residential load 

profile has two peaks corresponding to the surges in load demand in the morning and the evening 

(Fig.2.41 (d)). Finally, we take note that a real reference location point for the DC microgrid and 

real discrete profile inputs collected from specific databases are introduced in the next chapter to 

emulate a real case study. 

2.8.3 Simulation tests 

Test 1: 

To validate the 24-hour DC microgrid model, two simulation tests are conducted. In the first, the 

24-hour DC microgrid model is simulated separately with the variable input profiles of Fig.2.41. 

The simulation results over the 24 hours are shown respectively in Fig.2.42, 2.43, and 2.44. The 

power flow of all operating units is represented in Fig.2.42. As seen, (RESs) generated power 

curves have the same form as their input profiles. The PV is operating in MPPT mode and reaches 

its maximum power generation: 𝑃𝑃𝑉_𝑚𝑎𝑥= 49.4 𝐾𝑊 corresponding to 𝑆 = 1000 𝑊 𝑚2⁄  value at 

12:30 P.M. (light green curve). However, for the WT, the maximum wind power is reached at 

𝑉𝑤𝑖𝑛𝑑 = 12 𝑚/𝑠 corresponding to (0.9 × 𝑃𝑤𝑖𝑛𝑑_𝑚_𝑛 = 49.5 𝐾𝑊). In turn, the wind turbine pitch 

controller intervenes when the wind speed exceeds 12.12 𝑚⁄𝑠 to limit the generated power to its 

allowable maximum rate 𝑃𝑤𝑖𝑛𝑑_𝑚_𝑛 = 55 𝐾𝑊. Thus, for higher wind speed values the wind power 

is limited at 𝑃𝑤𝑖𝑛𝑑_𝑚_𝑛  (dashed red cuve). Yet, the power of dispatchable sources is defined 

following the proposed EMS strategy.  

 

Fig.2.42 Power flow of all operating units of the 24-hour DC microgrid model in (W). 
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Fig.2.43 (a) Losses in all operating converters in (W) and (b) Common DC bus voltage in (V). 

 

Fig.2.44 (a) Battery’s voltage (V) and (b) SOC (%). 

The operating modes stated above can be identified in the power flow plot. For instance, the (DG) 

(dashed gold curve) generates power within its allowable limits when there is a power deficit in 

the microgrid, and the battery is entirely discharged (operating mode 4: between 7:00 and 8:00 

A.M.). The utility grid is connected to the microgrid (long dash-dotted magenta curve) when the 

battery is entirely discharged, and the power deficit is outside the (DG) allowable boundaries 

(operating mode 5: between 8:00 and 9:00 A.M.). Besides, the power excess between 12:00 and 

5:00 P.M. is sold to the utility grid when the battery is charged totally (operating mode 2). The 

losses in all operating converters are shown in Fig.2.43 (a). All losses’ curves have the same shape 
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as their corresponding input power as they are proportional. Losses of the WT energy conversion 

chain are the highest as they include in addition to the converter losses the PMSM losses (dotted 

blue curve) which are the highest among all converters’ losses. The common DC bus voltage is 

depicted in Fig.2.43 (b), it is stabilized on its referenced value and does not exceed its allowable 

limits in transient and steady state. Hence, a seamless transition between different operating modes 

is stated. Finally, Fig.2.44 shows the battery's voltage and state of charge. Battery SOC curve 

(Fig.2.44 (b)) shows convenient results in terms of modes transition, battery stability, and safe 

operation. Practically, the battery operates within the predefined admissible 𝑆𝑂𝐶 boundaries 20% 

≤ 𝑆𝑂𝐶 ≤ 90%. Furthermore, in Fig.2.44 (a), a maximum variation of 16 𝑉 in the battery voltage is 

noted (between 273 𝑉 and 289 𝑉 ) which highlights the necessity of including the nonlinear zones 

of the battery voltage in the dynamic model. 

 

Test 2:  

 

In the second simulation test, the accuracy of the 24-hour DC microgrid model is assessed. For 

that, the detailed DC microgrid model built on Simscape and the 24-hour proposed model are both 

simulated over 15 minutes. The selection of the simulation time for both models is chiefly 

restricted by the detailed model which cannot be simulated over 24 hours as stated at the beginning 

of this chapter. As a solution, the same variable input profiles of test 1 are applied in this test but 

with a much faster dynamic. A ratio of simulation time reduction equal to 100 is chosen.  

By this, the same input profile curves of Fig.2.41 are applied in this test over 864 seconds which 

accounts for one-hundredth of the 24 hours (i.e., 86400  seconds). Considering the increased 

dynamic of the system the above-proposed EMS strategy is no longer applicable in this test. 

Instead, the (DG) and utility grid power references are set equal to the power curves obtained in 

Fig.2.42 (long dash-dotted magenta and dashed gold curves). However, the battery always 

stabilizes the common DC bus voltage in this test. As a result, the dynamic of all variables is 

increased 100 times which constitutes an even worse-case scenario to test the accuracy of the 24-

hour model compared to the detailed one.  

 

Fig.2.45 Obtained PV (a) power and (b) boost-losses of the detailed and 24-hour models. 
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The results of each energy source for both models are shown separately. In all figures, the detailed 

and 24-hour model plots correspond to the blue and dashed-red curves, respectively. The results 

of the PV energy conversion chain are represented in Fig.2.45. As seen, the power and losses in 

the boost converter curves are perfectly merged. A maximum error of 5.3 % is noted between the 

two models at low irradiance values (lower than 320 𝑊/𝑚2), whereas the error drops to 0.4% at 

the maximum irradiance value (𝑆 = 1000 𝑊/𝑚2).  

Fig.2.46 shows the results of the WT energy conversion chain. The mechanical and electrical 

power curves are merged for both models. The mechanical power curves are slightly higher than 

the electrical ones because of the losses in the PMSM. The (𝑑𝑞) axes' current components for both 

models are the same. The 𝑑- component has the same shape as the wind power curve since the 

MPPT technique is applied on the 𝑑-axis, while the 𝑞 component is always null for both models  

 

Fig.2.46 WT (a) mechanical power, (b) electrical power, (c) (𝑑𝑞) current components, (d) phase A current, 

(e)  phase A to neutral voltage, and (f) losses in PMSM and 3Φ rectifier of the detailed and 24-hour models. 
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to absorb zero reactive power. Fig.2.46 (d) and (e) show the phase A current and the phase A to 

neutral voltage, respectively. As seen, the plotted magnitude of 𝑖𝑎 and 𝑉𝐴𝑁 of the 24-hour model 

accurately follow the plots of 𝑖𝑎  and 𝑉𝐴𝑁  of the detailed model. Hence, the phasor approach 

accurately tracks the real magnitudes of the alternating current and voltage in transient and steady 

states which maintain the precise power computing. Fig.2.46 (f) represents the losses in the PMSM 

and the 3Φ rectifier. The curves of both models have the same shape with a maximum error of 

5.8% at 600 s. 

Fig.2.47 shows the results of the (DG) energy conversion chain. The power, (𝑑𝑞 ) current 

components, and losses in the 3Φ  rectifier for both models are merged which validates the 

accuracy of the 24-hour model in computing the power in transient and steady states. A maximum 

error of 1% is noted between 𝑃𝐷𝐺  curves and 3% between the losses of the two models. The results 

of the utility grid energy conversion chain are depicted in Fig.4.48. The 24-hour model curves 

accurately follow the detailed model ones in transient and steady states. Similarly, the (𝑑𝑞) axes' 

current components curves are merged in the two models. The 𝑑- axis current curve has the same 

shape as the power curve since the grid power reference is set through the 𝑑-axis, while the 𝑞- axis 

is null to absorb zero reactive power.  Besides, Fig.4.48 (d) and (e) shows how the phasor approach 

tracks the real current magnitude during the whole simulation. 

Fig.2.49 shows the results of the lithium-ion battery which stabilizes the common DC bus voltage. 

Fig.2.49 (a) shows the power curves of the two models that are merged. The same for the battery 

voltage curves which are the same in both models.  

 

Fig.2.47 DG (a) power, (b) (𝑑𝑞) axes current components, (c) losses in 3Φ rectifier, and (d)  phase A to 

neutral voltage of the detailed and 24-hour models. 
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Fig.2.49 (c) shows the losses in the bidirectional DC/DC converter which have the same curve 

shapes in the two models and are proportional to the battery charged/discharged power. The 𝑆𝑂𝐶 

curves of the two models are represented in Fig.2.49 (d) and are the same. A maximum variation 

of 1% in the battery’s 𝑆𝑂𝐶 is noted as the simulation time is reduced to 864 seconds (𝑆𝑂𝐶 varies 

between 69.2%  and 70.2% ). Though the limited variation in the battery’s 𝑆𝑂𝐶 , the battery 

voltage plots in Fig.2.49 (b) show a maximum variation of 5𝑉 (between 281V and 286𝑉) which 

highlights the necessity of including the nonlinear zones of the battery voltage in both models.  

 

   

 

Fig.2.48 Utility grid (a) power, (b) (𝑑𝑞) current components, (c) losses in 3Φ converter, (d) Phase A 

current, and (e) Zoom on phase A current of the detailed and 24-hour models. 
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Fig.2.49 (e) represents the common DC bus voltage of the models which are stabilized on their 

referenced value (800 𝑉) and do not exceed the allowable limits in transient and steady states. The 

detailed model shows additional fluctuations in 𝑉𝐵𝑈𝑆 as the switching devices of operating 

converters exist. Meanwhile, these fluctuations disappear in the 24-hour model as the switching 

devices are omitted. The cell temperature curves are shown in Fig.2.49 (f), the two curves are 

merged and present a maximum variation of  1.25 ℃ during the simulation. The cell temperature 

varies slowly compared to the ambient one as the battery thermal time constant is equal to 1800 𝑠 

(Appendix D). 

 

  

 

Fig.2.49 Battery (a) power, (b) voltage, (c) losses in the bidirectional DC/DC converter, (d) SOC, (e) 

common DC bus voltage, and (f) cell temperature of the detailed and 24-hour models. 
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Finally, we take note that a fixed-step solver is selected to simulate the DC microgrid detailed 

model with a calculation step size equal to 1 𝜇𝑠, while the 24-hour model is simulated with a 

variable-step solver with an average step size of 8.3 𝑚𝑠 . Hence, the calculation step size is 

increased 8300 times when moving from the detailed to the 24-hour model which made the 

modeling of the DC microgrid over 24 hours a viable solution.  

2.9 Conclusion 

In this chapter, the configuration and sizing of the DC microgrid were presented. The hurdle of 

24-hour modeling was confronted as the simulations were conducted on a standard computer with 

limited CPU performance and memory. To overcome this problem, new averaging techniques 

were advanced for each operating unit at different energy conversion levels. A trade-off between 

model precision, complexity, and simulation speed was created. For instance, in all operating units, 

average converter models were applied in which the switching devices were omitted to increase 

the calculation step size of the simulation. To prove the viability of the average model, it is 

compared to the detailed one in terms of accuracy and calculation step size. The obtained results 

show that increasing the calculation step size highly speeds up the simulation while maintaining 

accurate voltage and current modeling in transient and steady states.  

For all AC operating sources, the phasor domain was proposed to express the electrical sinusoidal 

components in the complex number domain. To validate the phasor mathematical representation, 

it is compared to the detailed time domain model in which the real sinusoidal waveforms appear 

and the switching devices of the 3𝜙 rectifier are included. The obtained results show that this 

representation reduces the complexity of the problem, largely increases the calculation step size of 

the simulation, and keeps good accuracy as the magnitudes of all electrical components are 

accurately tracked in the phasor domain.   

On the other hand, as the minimization of the converters’ losses is one of the predefined 

optimization goals, the conduction and the switching losses which are the major source of losses 

in all operating converters were accurately modeled, and the power efficiency curves of all 

converters were deduced. Besides, a precise model of a lithium-ion battery including the 

temperature effect was presented. This model represents the nonlinear characteristic of the battery 

voltage considered constant in most optimization problems which may lead to erroneous power 

and SOC computed values. 

Finally, two simulation tests were conducted to test the viability of the proposed 24-hour model. 

In the first test, the assembled model is simulated over 24 hours by applying a proposed EMS 

strategy and variable input profiles. By this, the 24-hour modeling aspect is proven. However, the 

second test validates the accuracy of the assembled model and compares it to a detailed one over 

two identical 15-minute simulations. The obtained results show that the 24-hour model maintains 

accurate modeling and power calculation and ensures a remarkable increase in the calculation step 

size with a ratio of 8300. The 24-hour DC microgrid model is adopted in the next chapters and a 

new optimal EMS strategy with optimization goals is advanced.       



 
 

102 
 

Chapter 3 : DC Microgrid Offline Optimization  

 

3.1 Introduction  

In this chapter, the offline optimization problem is formulated. Real data over 24 hours of 

electricity pool prices, residential load profile, solar irradiation, ambient temperature, and wind 

speed are applied to the DC microgrid to simulate a real case scenario study. To test the 

performance of the DC microgrid under extremely different weather conditions, two different 

scenarios corresponding to a winter and a summer day are simulated. First, the total cost functions 

for the two operating days in the absence of an ESS and a (DG) are computed, and then the EMS 

is applied to the overall DC microgrid including all units. Three distinct objectives of the EMS are 

set, the first is the minimization of the total operating cost of dispatchable sources comprising the 

utility grid, the (DG), and the ESS, the reduction of toxic gas emissions produced by the (DG), and 

the minimization of losses in operating converters of dispatchable sources.  

An optimization problem is formulated to attain the objectives which are all included in one unified 

weighted objective function expressed in $. Three different weight coefficients are assigned to 

each of the predefined optimization goals. The representation of each optimization goal as three 

distinct cost functions in $ leads to a unified total energy bill. The first cost function to minimize 

consists of the operation cost of the overall DC microgrid in $. It includes the (O&M) cost of RESs, 

(DG), and ESS, and the cost of purchased/sold energy from/to the grid following the pool prices. 

The second cost function corresponds to the pollutant gas emissions. It is established as a penalty 

function, in $, proportional to the total pollutant energy produced by the (DG). Similarly, the last 

cost function of converters’ losses is introduced as an additional penalty function, in $, 

proportional to the total energy loss in converters. By this, the total energy bill consists of the total 

(O&M) cost of the DC microgrid and two penalty factors related to the emitted toxic gas and losses 

in operating converters.    

Besides, several constraints are defined to emulate a realistic scenario and to guarantee the safe 

operation of existing units. To solve the optimization problem two different algorithms are applied 

in this chapter, the first is a step-by-step deterministic technique named Dynamic Programming 

(DP) and the second is a metaheuristic method named Genetic Algorithm (GA). Based on different 

mathematical strategies, (DP) and (GA) require different problem shaping to yield viable results. 

Thus, the mathematical problem structure of each of the applied algorithms is represented in detail.   

Two main outcomes are obtained in this chapter, the first is the validity of the proposed algorithms 

in finding a feasible solution to the EMS-posed problem and the second is the effectiveness of the 

sole weighted objective function in achieving a multi-objective optimization. To further validate 

the obtained results, a comparison between both algorithms in terms of convergence speed and 

ability to find a global minimum solution is conducted at the end of this chapter.   
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3.2 Inclusion of input data and converters’ losses in the DC microgrid 

configuration  

Having set optimization objectives for the DC microgrid over a 24-hour time horizon, real data 

inputs are collected and applied to emulate a practical scenario and real-case study. For this 

purpose, the location of the proposed DC microgrid was chosen on a reference point proposed by 

the WindFinder application. In this case, the reference point is Toulouse-Blagnac Airport (France) 

for which wind statistics are available throughout the day. 

We take note that this site was chosen arbitrarily and exclusively to have real and practical data 

and does not reflect any theoretical study for a future project. Meteorological data such as the 

ambient temperature and the wind speed, solar irradiance, electricity pool price, and residential 

load profiles are applied for two days with extremely different weather conditions. A winter 

working day on 18/02/2021 and another summer working day on 16/07/2021 are chosen as the 

two days for the case study. The wind speed data are extracted from the WindFinder 

application[147]. The electricity pool prices which are the prices established on the electricity 

market by the stock exchange EPEX on the day (D) for the next day (D+1) are collected from the 

rte-France site [148]. The residential load profile data are extracted from the ENEDIS open data 

source[149], which consists of an anticipated dynamic profile of a residential load provided the 

day (D) for the next day (D+1). Lastly, the irradiance and ambient temperature data are extracted 

from the Solcast website [150]. All collected data are free to access and are available with different 

sampling periods.  

To obtain a unified data format, a unified sampling period of 10 minutes, denoted 𝑇𝑠, was selected 

for all input data. The 10-minute sampling period represents a reasonable trade-off that takes into 

consideration the dynamics of all natural phenomena occurring during the 24-hour simulation 

study, and the optimization goals. Higher sampling periods won’t offer a decent observation of all 

fast changes in load and/or sources’ profiles which leads to unmatched optimization results. 

Meanwhile, smaller sampling periods may be impractical and irrelevant taking into consideration 

the slow dynamics of natural phenomena such as the variations of wind speed, temperature, and 

irradiation [151]. Besides, as the fixed management goals don’t target fast disturbances or 

instantaneous faults that may occur in the system, the selection of a smaller sampling period 

appears inappropriate.  

Hence, the sampled data inputs, and the losses in operating converters can be added to the initial 

DC microgrid configuration represented in Chapter 2, Fig.2.1. The final configuration is depicted 

in Fig.3.1 in which the 24-hour profiles of the sampled inputs are shown. 𝑣𝑤𝑖𝑛𝑑 , 𝑆, 𝑇𝑎 , 𝑃𝑙𝑜𝑎𝑑 , and 

𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟

 are respectively the wind speed in (𝑚/𝑠), the irradiance in (𝑊 𝑚2⁄ ), the ambient temperature 

in  (°𝐶), the residential load profile in (𝑊), and the electricity purchase price in (ȼ/𝐾𝑊ℎ) for the 

whole time horizon (i.e. 24 hours). Therefore, the inputs of the optimization problem can be 
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regrouped in a unique matrix denoted 𝑀𝑖𝑛_𝑜𝑝𝑡 :   𝑀𝑖𝑛_𝑜𝑝𝑡 = [𝑣𝑤𝑖𝑛𝑑     𝑆       𝑇𝑎      𝑃𝑙𝑜𝑎𝑑      𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟

 ], 

where 𝑀𝑖𝑛_𝑜𝑝𝑡 is a (5 × 𝑁) matrix.         

𝑁 is the number of total steps for the whole-time horizon and is computed as follows: 

𝑁 =
𝑇𝑖𝑚𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 (𝑖𝑛  ℎ𝑜𝑢𝑟𝑠)

𝑇𝑠  (𝑖𝑛 ℎ𝑜𝑢𝑟𝑠)
= 24 × 6 = 144                                                                           (III.1)                                       

Hence, the size of 𝑀𝑖𝑛_𝑜𝑝𝑡  is (5 × 144).  

The degree of freedom in the system, in other words, the decision variables of the optimization 

problem are defined based on the number of units that can be controlled. In this case, as the RESs 

are continuously operating in MPPT mode and the load profile is imposed by the consumers, they 

both cannot be considered as decision variables and serve as inputs to the optimization problem. 

However, the remaining units that can be controlled through the optimization process are the ESS, 

the DG, and the utility grid. Then, the fixed decision variables of the optimization problem are: 

𝑃𝑏𝑎𝑡𝑡 , 𝑃𝐷𝐺 , and 𝑃𝑔𝑟𝑖𝑑 , and the output references can be regrouped in a unique matrix denoted 

𝑀𝑜𝑢𝑡_𝑜𝑝𝑡 ,  𝑀𝑜𝑢𝑡_𝑜𝑝𝑡 = [𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓   𝑃𝐷𝐺_𝑟𝑒𝑓   𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 ] . As 𝑀𝑜𝑢𝑡_𝑜𝑝𝑡  includes all the optimal 

reference outputs for the whole-time horizon, it has a size of (3 × 144). We take note that the 

offline optimization is carried out a day before the day targeted by the study. Knowing that all the 

optimal output references are based on predicted data, an online optimization process is followed 

the next day to adapt the optimal power references in case of any mismatches between predicted 

and actual data (see Fig.3.1).  

3.2.1 Losses inclusion 
 

As seen in Fig.3.1, the losses in converters are considered by adding the subscript “bus” to the 

initially generated/consumed power. By this, the bellow expressions are retrieved: 

{
 
 

 
 

𝑃𝑃𝑉 = 𝑃𝑃𝑉_𝑏𝑢𝑠 + 𝑃𝑏𝑜𝑜𝑠𝑡_𝑙𝑜𝑜𝑠𝑒𝑠
𝑃𝑤𝑖𝑛𝑑 = 𝑃𝑤𝑖𝑛𝑑_𝑏𝑢𝑠 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑊𝑇_𝑟𝑒𝑐 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑃𝑀𝑆𝑀

𝑃𝑔𝑟𝑖𝑑 = 𝑃𝑔𝑟𝑖𝑑_𝑏𝑢𝑠 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑔𝑟𝑖𝑑_𝑐𝑜𝑛𝑣
𝑃𝐷𝐺 = 𝑃𝐷𝐺_𝑏𝑢𝑠 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝐷𝐺_𝑟𝑒𝑐

𝑃𝑏𝑎𝑡𝑡 = 𝑃𝑏𝑎𝑡𝑡_𝑏𝑢𝑠 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑏𝑖𝑑𝑖𝑟𝑒𝑐_𝑐𝑜𝑛𝑣

                                                         (III.2) 

Where,  

- 𝑃𝑏𝑜𝑜𝑠𝑡_𝑙𝑜𝑜𝑠𝑒𝑠 are the losses in the DC/DC boost of the PV, in (𝑊). 

- 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑊𝑇_𝑟𝑒𝑐  and 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑃𝑀𝑆𝑀  are respectively the losses in the 3𝜙 rectifier and the 

PMSM of the (WT), in (𝑊).  

- 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑔𝑟𝑖𝑑_𝑐𝑜𝑛𝑣 are the losses in the 3𝜙 grid converter, in (𝑊).  

- 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝐷𝐺_𝑟𝑒𝑐 are the losses in the 3𝜙 (DG) rectifier, in (𝑊). 

- 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑏𝑖𝑑𝑖𝑟𝑒𝑐_𝑐𝑜𝑛𝑣 are the losses in the bidirectional DC/DC converter of the battery, in 

(𝑊).  
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All converters’ losses are computed based on the expressions detailed in Chapter 2. Besides, as 

previously mentioned in Chapter 2, the load and its corresponding converter are regarded as a 

single entity. Thus, the overall load is simply modeled by the load profile, and so the losses in its 

converter are not considered in this study.  

We take note that the power loss expressions of all converters are always positive. Particular 

attention should be given to the 3𝜙 grid converter and the battery’s bidirectional DC/DC converter 

as they are bidirectional converters.  

For the battery, in charge and discharge modes, 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑏𝑖𝑑𝑖𝑟𝑒𝑐_𝑐𝑜𝑛𝑣  is always positive and 

computed based on equation (III.1): 

- In discharge mode (𝑃𝑏𝑎𝑡𝑡 > 0 & 𝑃𝑏𝑎𝑡𝑡_𝑏𝑢𝑠 > 0) : 𝑃𝑏𝑎𝑡𝑡_𝑏𝑢𝑠 = 𝑃𝑏𝑎𝑡𝑡 − 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑏𝑖𝑑𝑖𝑟𝑒𝑐_𝑐𝑜𝑛𝑣 

then, 𝑃𝑏𝑎𝑡𝑡_𝑏𝑢𝑠 < 𝑃𝑏𝑎𝑡𝑡. This implies that only a part of the battery's total discharged power 

reaches the common DC bus, and the rest is dissipated in the converter functioning in 

boost mode.  

- In charge mode (𝑃𝑏𝑎𝑡𝑡 < 0  & 𝑃𝑏𝑎𝑡𝑡_𝑏𝑢𝑠 < 0 ) : 𝑃𝑏𝑎𝑡𝑡_𝑏𝑢𝑠 = 𝑃𝑏𝑎𝑡𝑡 − 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑏𝑖𝑑𝑖𝑟𝑒𝑐_𝑐𝑜𝑛𝑣 

then, |𝑃𝑏𝑎𝑡𝑡_𝑏𝑢𝑠| > |𝑃𝑏𝑎𝑡𝑡|. This implies that only a part of the battery’s power on the 

common DC bus side reaches the battery to charge it and the rest is dissipated in the 

converter functioning in buck mode.  

 

Fig.3.1 DC microgrid configuration. 
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The same strategy is applied to the 3𝜙 grid converter. 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑔𝑟𝑖𝑑_𝑐𝑜𝑛𝑣 is always positive in 

both rectifier and inverter operating modes. 𝑃𝑔𝑟𝑖𝑑 and  𝑃𝑔𝑟𝑖𝑑_𝑏𝑢𝑠 are positive when the power is 

purchased from the utility grid and then, the converter operates in rectifier mode. 𝑃𝑔𝑟𝑖𝑑  and  

𝑃𝑔𝑟𝑖𝑑_𝑏𝑢𝑠 are negative when the power is sold to the utility grid and then, the converter operates in 

inverter mode. 

3.2.2 Winter and summer days scenario 

 

The input data for the two days case study are represented in this paragraph. Fig.3.2(a) and (b) 

show the wind speed, 𝑣𝑤𝑖𝑛𝑑_𝑝𝑢 (red dashed curve), in (𝑝. 𝑢) of the wind base speed (𝑣𝑤𝑖𝑛𝑑_𝑏𝑎𝑠𝑒 =

12 𝑚/𝑠), the solar irradiance, 𝑆𝑝.𝑢 (blue solid curve), in (𝑝. 𝑢) of the reference irradiance at (STC) 

(𝑆𝑟𝑒𝑓 = 1000𝑊 𝑚2⁄ ), and the ambient temperature, 𝑇𝑎 (green solid curve), in (°C) for the winter 

and summer days. The winter day is represented in Fig.3.2 (a) (the left plot) and the summer day 

in Fig.3.2 (b) (the right plot). The PV and wind-generated power profiles on the winter and the 

summer days are respectively represented in Fig.3. 3 (a) and (b). PV and wind power are 

represented respectively in red solid and green dash-dotted lines. 𝑃𝑃𝑉_𝑏𝑢𝑠, plotted in black-dashed 

line, corresponds to the losses in the DC/DC boost subtracted from the 𝑃𝑃𝑉. 𝑃𝑤𝑖𝑛𝑑_𝑏𝑢𝑠, plotted in 

purple solid line, corresponds to the sum of the losses in the PMSM and the 3𝜙 rectifier subtsracted 

from 𝑃𝑤𝑖𝑛𝑑. As seen in Fig.3.3 (a) and (b) the (WT) operates at low efficiency as low wind speed 

profiles are recorded on the two days of the case study (fig.3.2 (a) and (b)).  

  

                                   (a)                                                                              (b) 

Fig.3.2 (a) Wind speed, irradiance, and temperature profiles of the winter day (18/02/2021), (b) of the 

summer day (16/07/2021). 
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However, the efficiency of the DC/DC boost of the PV system is higher than the AC rectifier, this 

results in closer curves of 𝑃𝑃𝑉 and 𝑃𝑃𝑉_𝑏𝑢𝑠 (dashed black and solid red lines) in both winter and 

summer days. Almost 97% boost efficiency is recorded at peak hours production in the two 

operating days. Fig.3.4 shows the electricity pool price, the residential load, and the total net RESs 

generated power profiles on the winter day (Fig.3.4 (a)) and the summer day (Fig.3.4 (b)). 

The residential load profile in the black solid line has two peaks, the first in the morning and the 

second in the evening which genuinely represents the residential consumption pace on winter and 

summer working weekdays. By referring to Fig.3.4 (b), the summer load profile curve is slightly 

shifted to the right as the day hours increase during the summer, and the sun sets later which keeps 

people active for late hours. The RES production is plotted in a red dashed line in Fig.3.4 (a) and 

(b), the losses in converters and PMSM for the (WT) are then taken into consideration in the plots. 

Finally, the electricity pool price is plotted in a green solid line and has a similar curve shape as 

that of the residential load profile. This can be simply justified by the fact that an increase in 

electricity demand leads to a surge in its price in the market. Unlike the electricity purchase price, 

denoted 𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟

, which varies following the plots of Fig.3.4 (a) and (b), the electricity sell price is 

considered constant for the two operating days and equal to (𝛿𝑔𝑟𝑖𝑑
𝑠𝑜𝑙𝑑 = 6.8 ȼ/𝐾𝑊ℎ).  

 

(a)                                                                                (b)                                                               

Fig.3.3 (a) The PV and wind-generated power on the winter day (18/02/2021), (b) on the summer day 

(16/07/2021). 
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3.3 The total cost function in the absence of the ESS and the DG 

In this paragraph, the total cost function of the two tested days is evaluated without applying any 

optimization strategy and in the absence of the ESS and the (DG). In such a scenario, only two 

operating states are identified: 

1. 𝑃𝑙𝑜𝑎𝑑 > 𝑃𝑃𝑉_𝑏𝑢𝑠 + 𝑃𝑤𝑖𝑛𝑑_𝑏𝑢𝑠 : in this case, the load demand exceeds the RESs generated 

power then, the remaining unmet load power is purchased from the utility grid and 𝑃𝑔𝑟𝑖𝑑 

equals 𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑃𝑉_𝑏𝑢𝑠 − 𝑃𝑤𝑖𝑛𝑑_𝑏𝑢𝑠 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑔𝑟𝑖𝑑_𝑐𝑜𝑛𝑣 > 0.  

2. 𝑃𝑙𝑜𝑎𝑑 < 𝑃𝑃𝑉_𝑏𝑢𝑠 + 𝑃𝑤𝑖𝑛𝑑_𝑏𝑢𝑠, in this case, the produced power from the RESs exceeds the 

load demand. The surplus of power is sold to the utility grid and 𝑃𝑔𝑟𝑖𝑑 equals  𝑃𝑙𝑜𝑎𝑑 −

𝑃𝑃𝑉𝑏𝑢𝑠 − 𝑃𝑤𝑖𝑛𝑑𝑏𝑢𝑠 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑔𝑟𝑖𝑑_𝑐𝑜𝑛𝑣 < 0.  

As all inputs are discretized with a sampling period 𝑇𝑠, the total cost function corresponds to the 

discrete sum of the cost computed at each sampling time, 𝑘, over the whole time horizon. The total 

cost function over the 24-hour time horizon, denoted 𝐽𝑡𝑜𝑡, can be expressed in $ as follows: 

 𝐽𝑡𝑜𝑡 = 𝐽𝑜𝑐                                                                                                                                 (III.3) 

 

 

                                        (a)                                                                              (b) 

Fig.3.4 (a) The residential load, the RESs power profiles, and the electricity pool price on the winter day 

(18/02/2021), (b) on the summer day (16/07/2021). 
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Where, 𝐽𝑜𝑐 is the operating cost function over the 24-hour time horizon. 𝐽𝑜𝑐 is expressed in $ as 

follows: 

 𝐽𝑜𝑐 = 𝐽𝑅𝐸𝑆𝑠 + 𝐽𝑔𝑟𝑖𝑑                                                                                                                  (III.4) 

Where, 𝐽𝑅𝐸𝑆𝑠  and 𝐽𝑔𝑟𝑖𝑑  are respectively the RESs and the utility grid cost functions. 𝐽𝑅𝐸𝑆𝑠  is 

computed in $ and expressed as follows: 

 𝐽𝑅𝐸𝑆𝑠 = 𝐽𝑃𝑉
𝑂&𝑀 + 𝐽𝑊𝑇

𝑂&𝑀                                                                                                              (III.5) 

Where, 𝐽𝑃𝑉
𝑂&𝑀 and 𝐽𝑊𝑇

𝑂&𝑀 are respectively the operation and maintenance cost (O&M) costs of the 

PV and the WT in $. 𝐽𝑃𝑉
𝑂&𝑀 and 𝐽𝑊𝑇

𝑂&𝑀 are calculated as follows: 

𝐽𝑃𝑉
𝑂&𝑀 = ∑ 𝛿𝑃𝑉

𝑂&𝑀. 𝑃𝑃𝑉(𝑘). 𝑇𝑠

𝑁−1

𝑘=0

   

                         (III.6) 

𝐽𝑊𝑇
𝑂&𝑀 = ∑ 𝛿𝑊𝑇

𝑂&𝑀. 𝑃𝑊𝑇(𝑘). 𝑇𝑠

𝑁−1

𝑘=0

 

                                                                                                                                                  (III.7) 

where  𝛿𝑃𝑉
𝑂&𝑀  and 𝛿𝑊𝑇

𝑂&𝑀  are respectively the (O&M) costs per 𝐾𝑊ℎ  of the PV, and the WT 

(𝛿𝑃𝑉
𝑂&𝑀 = 0.0024 $/𝐾𝑊ℎ, and 𝛿𝑊𝑇

𝑂&𝑀 = 0.0098 $/𝐾𝑊ℎ). 

The utility grid cost function can be expressed as the difference between the purchased energy 

from the utility grid and the sold energy to the utility grid over the 24-hour time horizon. 

𝐽𝑔𝑟𝑖𝑑 = ∑ (𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟 . 𝑃𝑝𝑢𝑟(𝑘) − 𝛿𝑔𝑟𝑖𝑑

𝑠𝑜𝑙𝑑. 𝑃𝑠𝑜𝑙𝑑(𝑘)) . 𝑇𝑠              

𝑁−1

𝑘=0

 

                                                                                                                                                  (III.8) 

𝑃𝑝𝑢𝑟(𝑘) and 𝑃𝑠𝑜𝑙𝑑(𝑘) are respectively the purchased electricity power at time 𝑘 , and the sold 

electricity power at time 𝑘. 𝑃𝑝𝑢𝑟(𝑘) and 𝑃𝑠𝑜𝑙𝑑(𝑘) are expressed as functions of the grid power 

𝑃𝑔𝑟𝑖𝑑(𝑘) at time 𝑘 as follows:  

𝑃𝑝𝑢𝑟(𝑘) = 𝑃𝑔𝑟𝑖𝑑(𝑘).max(sign(𝑃𝑔𝑟𝑖𝑑(𝑘)),0)                                                                          (III.9) 

𝑃𝑠𝑜𝑙𝑑(𝑘) = 𝑃𝑔𝑟𝑖𝑑(𝑘).min(sign(𝑃𝑔𝑟𝑖𝑑(𝑘)),0)                                                                        (III.10) 

The functions max, min, and sign are introduced in equations III.9 and III.10 to impose a 

unidirectionality constraint of 𝑃𝑔𝑟𝑖𝑑(𝑘). In other terms, the utility grid power cannot be purchased 

and sold at the same time 𝑘. 

When 𝑃𝑔𝑟𝑖𝑑(𝑘) is positive 𝑃𝑝𝑢𝑟(𝑘) is equal to 𝑃𝑔𝑟𝑖𝑑(𝑘) and  𝑃𝑠𝑜𝑙𝑑(𝑘) is null whereas,  𝑃𝑝𝑢𝑟(𝑘) is 

set to zero and 𝑃𝑠𝑜𝑙𝑑(𝑘) is equal to −𝑃𝑔𝑟𝑖𝑑(𝑘) when 𝑃𝑔𝑟𝑖𝑑(𝑘) is negative.  
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The obtained results for the two operating days are summarized in Table 3.1 As seen the summer 

day has a lower total cost function compared to the winter day. As the produced solar energy 

increases during the summer, this results in a minor reliance on the utility grid to cover the load 

demand and then limited purchased energy from the utility grid (summer day: 𝐽𝑔𝑟𝑖𝑑 = 116.67  $ < 

winter day:𝐽𝑔𝑟𝑖𝑑 = 179  $). The RESs cost function is slightly higher on the winter day as it is 

predominantly affected by the wind turbine-produced energy (equations III.6 and III.7) which is 

higher on the winter day ( 𝐸𝑤𝑖𝑛𝑑 = 190.55 𝐾𝑊ℎ  in winter versus 𝐸𝑤𝑖𝑛𝑑 = 58.32 𝐾𝑊ℎ  in 

summer). These results are obtained in the absence of the lithium-ion battery and the (DG). 

 

Winter day (18/02/2021) Summer day (16/07/2021) 

𝐽𝑔𝑟𝑖𝑑 = 179  $ 𝐽𝑔𝑟𝑖𝑑 = 116.67  $ 

𝐽𝑅𝐸𝑆𝑠 = 2.25 $ 𝐽𝑅𝐸𝑆𝑠 = 1.3 $ 

𝐽𝑡𝑜𝑡 = 181.25 $ 𝐽𝑡𝑜𝑡 = 118 $ 
 

Table 3.1 Cost functions for the two operating days in the absence of ESS and (DG). 

3.4 Optimization objectives, cost function, and constraints  

The applied microgrid configuration is that of Fig.3.1 in which all operating units are managed 

optimally to feed the load while maintaining a stable voltage of the common DC bus. This is 

considered a primary goal of the EMS that should be accomplished consistently. However, on a 

higher management level, the coexistence of multi-sources and ESS in one DC microgrid offers a 

high degree of freedom on how the load power can be shared between operating sources.  To 

ensure a smart EMS, an optimization problem is formulated with predefined objectives, cost 

function, and constraints and solved using deterministic or metaheuristic algorithms. Referring to 

the literature and the research work on multi-objective optimization of microgrids such as in [86], 

[87], [90], and following the actual international energy policies, three objectives are set : 

1. The minimization of the total operating cost of the DC microgrid. By setting this objective, 

several outcomes are derived, mainly the minimization of the electricity bill, the 

enhancement of energy self-sufficiency of the DC microgrid, and the reduction of the 

O&M costs of the ESS and the DG.  

2. The reduction of pollutant gas emissions. This objective exclusively targets the (DG) as a 

unique traditional pollutant source in the DC microgrid producing toxic gases that are the 

main cause of air pollution and greenhouse gases.  

3. The minimization of converters’ losses. This optimization objective is rarely addressed in 

the literature as the detailed modeling of losses in converters requires direct access to its 

current and voltage components as seen in Chapter 2. Knowing that the current and voltage 

variables are sited in the primary and secondary control levels, unlike most optimization 

variables that are located at higher management levels, the losses are usually considered 

constant or neglected. Contrarily, the losses in the lithium-ion battery, the utility grid, and 
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the (DG) converters are accurately computed, included in the optimization problem, and 

minimized.       

Once the optimization objectives are set, the optimization problem is formulated. There are several 

ways to formulate the optimization problem, one is to assign independent objective functions for 

each of the predefined optimization goals such as in [78], [152], and minimize them by finding 

Pareto sets. Another simple way is to scalarize the set of objectives into a single objective function 

by multiplying each objective by a fixed weight. This method is known as the weighted sum 

method and is widely used in the literature [83], [98]. Besides the reduction of the complexity of 

the problem, it offers the user the possibility of objectives’ preference through the selected weights. 

Therefore, the total cost function denoted 𝐽𝑡𝑜𝑡, expressed in equation (III.3), can now be computed 

in $ as the sum of the weighted cost functions of the operating cost, the pollutant gas emissions, 

and the converters’ losses. This yields the following expression: 

𝐽𝑡𝑜𝑡 = 𝜁𝑜𝑐𝐽𝑜𝑐 + 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 + 𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠𝐽𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠                                               (III.11) 

Where, 𝐽𝑡𝑜𝑡, 𝐽𝑜𝑐, 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠, 𝐽𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠, ζ𝑜𝑐, ζ𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠, and ζ𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠 are respectively the total 

cost function in $, the operation cost function in $, the pollutant gas emissions cost function in $, 

the converters losses cost function in $, the operation cost weight, the pollutant gas emissions 

weigh, and the converters losses weight. 

3.4.1 Operating cost function  

 

The operating cost function is the sum of the (RES)s cost function, the power grid cost function, 

the battery storage cost function, and the diesel generator cost function. Hence, two terms related 

to the battery and the DG are added to equation III.4 which becomes: 

𝐽𝑜𝑐 = 𝐽𝑅𝐸𝑆𝑠 + 𝐽𝑔𝑟𝑖𝑑 + 𝐽𝑏𝑎𝑡𝑡 + 𝐽𝐷𝐺                            (III.12)  

Where, 𝐽𝑏𝑎𝑡𝑡 , 𝐽𝐷𝐺  are respectively the battery and the DG cost functions. 𝐽𝑅𝐸𝑆𝑠  and 𝐽𝑔𝑟𝑖𝑑 

expressions are the ones of equations (III.5 till III.10) detailed above.  

3.4.1.1 Battery cost function  

The battery lifetime is represented as the number of charge and discharge cycles. Hence, to 

quantify the storage operating cost, one way is to divide the battery capital cost per 𝐾𝑊ℎ over the 

number of cycles to obtain the battery operating cost per cycle. In addition, the battery degradation 

issue is added to the operating cost function [100]. 𝐽𝑏𝑎𝑡t is expressed as follows: 

                       𝐽𝑏𝑎𝑡𝑡 = ∑ (
𝐶𝐶

2. 𝐶𝑦𝑐𝑙𝑒𝑠
. 𝑃𝑏𝑎𝑡𝑡(𝑘). 𝑇𝑠 + 𝛿𝑑𝑒𝑔. 𝑃𝑏𝑎𝑡𝑡

2 (𝑘). 𝑇𝑠)

𝑁−1

𝑘=0

                                      

(III.13) 

where 𝐶𝐶, 𝐶𝑦𝑐𝑙𝑒𝑠, 𝑃𝑏𝑎𝑡𝑡(𝑘), δ𝑑𝑒𝑔 are respectively the battery capital cost per 𝐾𝑊ℎ (𝐶𝐶=135.38 

$/𝐾𝑊ℎ), number of life cycles (𝐶𝑦𝑐𝑙𝑒𝑠=1000 for a depth of discharge 𝐷𝑜𝐷 =80%), the battery 

power at time 𝑘, and the degradation cost (δ𝑑𝑒𝑔=10−9 $/𝑊2ℎ).  
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3.4.1.2 Diesel generator cost function  

The (DG) total cost function 𝐽𝐷𝐺  consists of the fuel consumption cost function 𝐽𝐷𝐺
𝑓𝑢𝑒𝑙

, the start-up 

cost function 𝐽𝐷𝐺
𝑆𝑈, and the maintenance cost function 𝐽𝐷𝐺

𝑀 . It can be expressed as follows: 

𝐽𝐷𝐺 = 𝐽𝐷𝐺
𝑓𝑢𝑒𝑙

+ 𝐽𝐷𝐺
𝑆𝑈 + 𝐽𝐷𝐺

𝑀                                                                                                          (III.14) 

A piecewise approximation of the fuel consumption, proposed in[96], is applied. The piecewise 

linearized fuel consumption function is shown in Fig.3.5. For more details on the approximation 

method, it can be referred to[96]. Thus, the fuel consumption cost can be expressed as: 

𝐽𝐷𝐺
𝑓𝑢𝑒𝑙

= ∑ 𝜆𝑓𝑢𝑒𝑙 . 𝐹(𝑘). 𝑇𝑠 

𝑁−1

𝑘=0

 

 (III.15) 

where 𝜆𝑓𝑢𝑒𝑙, 𝐹(𝑘) are respectively the price of diesel per liter (𝜆𝑓𝑢𝑒𝑙 = 1.05 $/𝐿), and the fuel 

consumption in 𝐿/ℎ. Knowing 𝑃𝐷𝐺(𝑘), 𝐹(𝑘) is determined based on the plotted curve in Fig.3.5. 

The constant parameters are defined in Table 3.2 The start-up cost function 𝐽𝐷𝐺
𝑆𝑈 corresponds to the 

fuel consumed during the start-up phase before any power production. The start-up cost is the cost 

per start-up (𝜉𝑆𝑈 = 0.011 $) times the number of start-ups over the time horizon. This can be 

calculated as: 

𝐽𝐷𝐺
𝑆𝑈 = 𝜉𝑆𝑈. ∑ 𝜎𝐷𝐺

𝑂𝑁(𝑘) 

𝑁−1

𝑘=0

 

(III.16) 

Where, 𝜎𝐷𝐺
𝑂𝑁(𝑘) is a binary variable that equals one if the (DG) is turned on at time 𝑘 and zero 

otherwise. 𝜎𝐷𝐺
𝑂𝑁(𝑘) is defined as: 

𝜎𝐷𝐺
𝑂𝑁(𝑘) = max (sign(𝑃𝐷𝐺(𝑘 + 1)) − sign(𝑃𝐷𝐺(𝑘)), 0)                           (III.17) 

Finally, the maintenance cost depends on the operation time of the (DG). It can be calculated as 

the maintenance cost per hour (𝜒𝑀 = 0.03 $/ℎ) times the total operating hours of the (DG): 

𝐽𝐷𝐺
𝑀 = 𝜒𝑀 . ∑ sign(𝑃𝐷𝐺(𝑘)). 𝑇𝑠

𝑁−1

𝑘=0

 

(III.18) 
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Fig.3.5 Piecewise approximation of the (DG) fuel consumption function. 

3.4.2 Pollutant gas emissions cost function 
 

Fossil fuel consumption produces toxic gases such 𝑁𝑂𝑥, 𝐶𝑂2, 𝐶𝑂, and 𝑆𝑂2. These gas emissions 

are the main source of air pollution and greenhouse gases. The pollution aspect can be considered 

by introducing the quantity of emitted toxic gases in a (DG) application, (𝛼)  expressed in 

(𝑔/𝐾𝑊ℎ), and the expenses related to environmental damages resulting from the pollutant gas 

emissions, (𝜇) expressed in ($/𝐾𝑔)[73]. All parameters’ values are listed in Table 3.2. Thereby, 

the pollutant gas emissions cost function can be represented as: 

{
 

 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝛽𝑒𝑚𝑖𝑠𝑠. ∑ 𝑃𝐷𝐺(𝑘). 𝑇𝑠

𝑁−1

𝑘=0

𝛽𝑒𝑚𝑖𝑠𝑠 = 10−3(𝛼𝑁𝑂𝑥 .𝜇𝑁𝑂𝑥+𝛼𝐶𝑂2 .𝜇𝐶𝑂2+𝛼𝐶𝑂 .𝜇𝐶𝑂+𝛼𝑆𝑂2 .𝜇𝑆𝑂2)

     

            (III.19) 

3.4.3 Converters' losses cost function 

 

Penalty coefficients for the battery, (DG), and utility grid converters’ losses are introduced and 

expressed in ($ 𝐾𝑊ℎ⁄ ). The converters' losses cost function can be expressed as follows:  

𝐽𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠 = ∑ (𝛿𝑏𝑎𝑡𝑡
𝑙𝑜𝑠𝑠 . 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑏𝑖𝑑𝑖𝑟𝑒𝑐_𝑐𝑜𝑛𝑣(𝑘) + 𝛿𝐷𝐺

𝑙𝑜𝑠𝑠. 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝐷𝐺_𝑟𝑒𝑐(𝑘)

𝑁−1

𝑘=0

+ 𝛿𝑔𝑟𝑖𝑑
𝑙𝑜𝑠𝑠 . 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑔𝑟𝑖𝑑_𝑐𝑜𝑛𝑣(𝑘)) . 𝑇𝑠               

(III.20) 



 
 

114 
 

Where, 𝛿𝑏𝑎𝑡𝑡
𝑙𝑜𝑠𝑠 , 𝛿𝐷𝐺

𝑙𝑜𝑠𝑠, and 𝛿𝑔𝑟𝑖𝑑
𝑙𝑜𝑠𝑠  are respectively the penalty coefficients for converters’ losses of the 

battery, the (DG), and the utility grid. As seen, the losses in the DC/DC boost of the PV, and the 

3ϕ rectifier of the (WT) aren’t included in equation (III.20) and so, cannot be minimized. Since 

the PV and (WT) are non-dispatchable sources and continuously operate in MPPT mode, their 

generated power is imposed by the MPPT and so are the resulting converters’ losses. As a result, 

the losses in the DC/DC boost of the PV and the 3ϕ rectifier of the (WT) can only be included to 

obtain an accurate model but cannot be controlled. The penalty coefficients for converters’ losses 

are found in Table 3.2.  

3.4.4 Problem constraints 
 

In any applied EMS, the optimal solution is usually subject to several constraints such as lower 

and upper bounds of the decision variables, equality, and inequality equations, etc. In this study, 

several constraints are imposed to emulate a realistic and practical microgrid scenario. In this 

paragraph, all the constraints of each microgrid unit are detailed separately. 

 

 

3.4.4.1 Power balance constraint 

 

To maintain a stable DC microgrid performance, the load demand should be covered unceasingly 

by existing sources for the whole operating time horizon. Adding this constraint, the stabilization 

of the common DC bus voltage is automatically secured. Thus, at each sampling time 𝑘, the 

generated power should be equal to the demanded one. This is known as the power balance 

equation which can be expressed as: 

𝑃𝑃𝑉(𝑘) + 𝑃𝑤𝑖𝑛𝑑(𝑘)+𝑃𝑏𝑎𝑡𝑡(𝑘)+ 𝑃𝑔𝑟𝑖𝑑(𝑘)+ 𝑃𝐷𝐺(𝑘) = 𝑃𝑙𝑜𝑎𝑑(𝑘) + ∑𝑃𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠(𝑘)               

(III.21) 

With,  

∑𝑃𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠 (𝑘) = 𝑃𝑏𝑜𝑜𝑠𝑡_𝑙𝑜𝑠𝑠𝑒𝑠(𝑘) + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑊𝑇_𝑟𝑒𝑐(𝑘) + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑃𝑀𝑆𝑀(𝑘) +

𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑏𝑖𝑑𝑖𝑟𝑒𝑐_𝑐𝑜𝑛𝑣 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑔𝑟𝑖𝑑_𝑐𝑜𝑛𝑣(𝑘) + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝐷𝐺_𝑐𝑜𝑛𝑣(𝑘)                            (III.22)                

3.4.4.2 Utility grid constraints 

 

Lower and upper bounds are fixed to limit the purchased/sold power from/to the utility grid. This 

can be represented as:     

𝑃𝑔𝑟𝑖𝑑_𝑚𝑖𝑛 ≤ 𝑃𝑔𝑟𝑖𝑑(𝑘) ≤ 𝑃𝑔𝑟𝑖𝑑_𝑚𝑎𝑥             (III.23)           

Where, 𝑃𝑔𝑟𝑖𝑑_𝑚𝑖𝑛, and 𝑃𝑔𝑟𝑖𝑑_𝑚𝑎𝑥 are respectively the maximum allowable power to be sold to the 

utility grid and to be purchased from the utility grid. These parameters are found in Table 3.2.   
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3.4.4.3 Lithium-ion battery constraints 

 

As ESS, the lithium-ion battery has an instrumental role in the DC microgrid especially in case of 

deficit or excess in energy production. Therefore, the safe operation of the battery must be 

guaranteed to extend its lifetime and optimize its performance. This can be acquired through the 

constraints that are defined. First, the battery power is restricted in terms of maximum 

charged/discharged power:  

𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛 ≤ 𝑃𝑏𝑎𝑡𝑡(𝑘) ≤ 𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥                      (III.24)      

Where, 𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛, and 𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 are respectively the maximum allowable power to be charged and 

discharged into/from the battery. The maximum allowable charge/discharge is fixed at 0.43𝐶 

(217.4 𝐴).    

Second, the battery-safe operation is ensured by limiting its state of charge (𝑆𝑂𝐶) within allowable 

limits. The allowable limits, defined in Table 3.2, are based on similar microgrid applications that 

include lithium-ion batteries [88], [153]. The 𝑆𝑂𝐶 constraint is then expressed as follows: 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑘) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥                           (III.25) 

Lastly, the battery's initial state at the time (𝑘 = 0) should be retrieved at the end of the time 

horizon  (𝑘 = 𝑁) to further standardize and optimize the battery performance:  

𝑆𝑂𝐶(𝑘 = 0) = 𝑆𝑂𝐶(𝑁)                                                                                                        (III.26)                  

3.4.4.4 (DG) constraints  

 

For proper and efficient operation, (DG) manufacturers define an output power range for 

generators. Then, when turned on, the (DG) operation is limited by lower and upper bounds (in 

this paper a range between 25%-100% of the rated power is applied)[98]. This can be expressed 

as: 

𝑠𝑖𝑔𝑛(𝑃𝐷𝐺(𝑘)). 𝑃𝐷𝐺_𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺(𝑘) ≤ 𝑠𝑖𝑔𝑛(𝑃𝐷𝐺(𝑘)). 𝑃𝐷𝐺_𝑚𝑎𝑥                 (III.27) 

The function sign () is introduced since the DG power is null when it is turned off and between the 

allowable limits when it is turned on.  

Besides, and following the predefined objectives, the (DG), as a backup pollutant source, intercepts 

directly to feed the load in case of an energy deficit, and/or to charge the battery. Hence, at each 

time 𝑘 none of (DG)’s produced power should be sold to the utility grid. By this, the (DG) main 

functionality is secured. This can be expressed as: 

𝑃𝐷𝐺(𝑘) ≤ 𝑠𝑖𝑔𝑛(𝑃𝐷𝐺(𝑘)). (𝑃𝑙𝑜𝑎𝑑(𝑘) − 𝑃𝑃𝑉(𝑘) − 𝑃𝑊𝑇(𝑘) + 𝑃𝑏𝑎𝑡𝑡(𝑘))                                (III.28)                                                                         
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3.5 Implementation of optimization approaches  

Several techniques can be used to solve the optimization problem. In this thesis, two techniques were 

applied: Dynamic Programming (DP) and Genetic Algorithm (GA).  

(DP) is a deterministic technique that requires a certain modification of the problem structure to 

find the optimal solution and is based on the principle of Bellman[154]. In (DP), the problem is 

divided into successive discrete states to find the global optimum. At each calculation step, the 

algorithm considers all meshed decision variables and calculates the least costly transitions 

according to a criterion to optimize[89]. The total cost function corresponds to the sum of the 

operation cost of each operating unit for each sampled period. The DP was successfully applied in 

similar optimal scheduling problems of microgrids including several sources and ESS and yielded 

improved results in comparison to other optimization algorithms [88], [90].  

(GA) is the second metaheuristic optimization method that is applied to solve the optimization 

problem. Unlike (DP), which is considered a “step-by-step” optimization algorithm, (GA) is an 

evolutionary search algorithm that is based on an analogy with the theory of the natural evolution 

of species. (GA) considers the problem with a set of (𝑁 × Number of decision variables = 3𝑁) 

variables for the overall time horizon planning. It has as a starting point a population composed of 

a set of distributed solutions (or individuals) randomly in the search space. This method is by 

nature stochastic so that two successive runs don’t necessarily lead to the same result as different 

final populations can be obtained. (GA) was applied in [155] and [152] to manage and schedule 

the generation and consumption in a microgrid to minimize the operating cost and greenhouse gas 

emissions.     

Battery SOC limits 
𝑆𝑂𝐶𝑚𝑖𝑛 = 20% - 𝑆𝑂𝐶𝑚𝑎𝑥 = 90% 

𝑆𝑂𝐶(1) = 50% 

(DG) fuel consumption function parameters: 

 𝑃 (𝐾𝑊) and 𝐶 (𝐿/ℎ) 

𝑃1_𝑚𝑖𝑛 = 13.75, 𝑃2_𝑚𝑖𝑛 = 25.5 

𝑃3_𝑚𝑖𝑛 = 37.6, 𝑃3_𝑚𝑎𝑥 = 55 

𝐶1 = 6.4, 𝐶2 = 11.41, 𝐶3 = 15 

Utility grid power upper and lower limits (𝐾𝑊) 
𝑃𝑔𝑟𝑖𝑑_𝑚𝑖𝑛 = −30 

𝑃𝑔𝑟𝑖𝑑_𝑚𝑎𝑥 = 60 

Battery power upper and lower limits (𝐾𝑊) 
𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛 = −54.25 
𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 = 54.25 

(DG) upper and lower limits when turned on (𝐾𝑊) 
𝑃𝐷𝐺_𝑚𝑖𝑛 = 13.75 

𝑃𝐷𝐺_𝑚𝑎𝑥 = 55 

Emissions parameters  

Emission levels (𝑔/𝐾𝑊ℎ) 
𝛼𝐶𝑂2 = 232.037,  𝛼𝑁𝑂𝑥 = 4.331 

𝛼𝐶𝑂 = 2.32,  𝛼𝑆𝑂2 = 0.464 

Cost ($/𝐾𝑔) 
𝜇𝐶𝑂2 = 0.0012,  𝜇𝑁𝑂𝑥 = 0.27 

𝜇𝐶𝑂 = 0.022,  𝜇𝑆𝑂2 = 0.12 

Penalty coefficients for converters’ losses  𝛿𝑏𝑎𝑡𝑡
𝑙𝑜𝑠𝑠 = 𝛿𝐷𝐺

𝑙𝑜𝑠𝑠 = 𝛿𝑔𝑟𝑖𝑑
𝑙𝑜𝑠𝑠 = 1.14 $/𝐾𝑊ℎ 

 

Table 3.2 Optimization parameters. 
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The application of two different methods serves primarily as a means of comparison for validation 

of the obtained results. On the other hand, by choosing these two methods, the problem is tackled 

from two different approaches. In the first, the (DP) discretizes the decision variables and evaluates 

each possible transition to find the optimal route by reconstructing a trajectory vector from the last 

to the initial state, while the second is an evolutionary algorithm that considers the overall problem 

variables on the whole time horizon and produces successive generations to find the optimal 

solution.  

 

3.5.1 Dynamic programming 

3.5.1.1 Problem formatting 

 

In (DP), the problem is seen as a succession in time of discrete states of the system. The outputs 

of the optimization problem are [𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓   𝑃𝐷𝐺_𝑟𝑒𝑓   𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 ] . Referring to the problem 

constraints, the actual number of decision variables is two, while the third variable can be deduced 

from the power balance constraint (equation (III.21)). Hence, any two out of the three power 

reference outputs: 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓, 𝑃𝐷𝐺_𝑟𝑒𝑓, and 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 can be selected as decision variables for the DP 

algorithm. 𝑃𝐷𝐺_𝑟𝑒𝑓 and 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 are selected as decision variables for the optimization problem. 

As (DP) is a step-by-step discrete algorithm, it is applied to discretized state equation systems. In 

the current problem, the battery 𝑆𝑂𝐶 is considered as a state variable of the system as it can be 

expressed in discretized form as: 

 

𝑆𝑂𝐶(𝑘 + 1) = 𝑓𝑏𝑎𝑡𝑡(𝑆𝑂𝐶(𝑘), 𝑃𝑏𝑎𝑡𝑡(𝑘))                  (III.29) 

Where, 𝑆𝑂𝐶(𝑘 + 1), 𝑆𝑂𝐶(𝑘), 𝑃𝑏𝑎𝑡𝑡(𝑘), and f𝑏𝑎𝑡𝑡 are respectively the battery’s 𝑆𝑂𝐶 at time 𝑘 +

1, the battery’s 𝑆𝑂𝐶 at time 𝑘, the battery’s power at time 𝑘, and the battery-discretized dynamic 

model. Equation (III.29) is called the state equation of the system for which  𝑆𝑂𝐶 is the state 

variable, and 𝑃𝑏𝑎𝑡𝑡  is the decision variable. The battery-discretized dynamic model and the 

mathematical expression of f𝑏𝑎𝑡𝑡 are detailed in Appendix E. The total cost function and the 

constraints over the whole-time horizon are the same ones represented by equations (III.11) to 

(III.28). 

3.5.1.2 Mesh of decision variables and state equation 

 

In (DP), each of the selected decision variables {𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓, 𝑃𝐷𝐺_𝑟𝑒𝑓} is meshed. Having linked the 

battery’s 𝑆𝑂𝐶 to the charged/discharged power 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 through equation (III.29),  𝑆𝑂𝐶 can be 

selected instead of 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 along with 𝑃𝐷𝐺_𝑟𝑒𝑓 as meshed variables without loss of generality. 

Thus, {𝑆𝑂𝐶, 𝑃𝐷𝐺_𝑟𝑒𝑓} meshed variables are characterized by a time step Δt over the planning 

horizon and are discretized following a sampling step denoted Δ𝑆𝑂𝐶 and Δ𝑃𝐷𝐺 respectively for 
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𝑆𝑂𝐶 and 𝑃𝐷𝐺_𝑟𝑒𝑓. Fig 3.6 (a) and (b) represent the meshed decision variables 𝑆𝑂𝐶 (Fig 3.6 (a)) 

and 𝑃𝐷𝐺_𝑟𝑒𝑓 (Fig 3.6 (b)).  

 
                                  (a)                                                                           (b) 

Fig.3.6 Discretization of the decision variables to states characterized by a time step 𝛥𝑡: (a) 𝑆𝑂𝐶 

discretized with a sampling step Δ𝑆𝑂𝐶 and (b) 𝑃𝐷𝐺_𝑟𝑒𝑓 discretized with a sampling step Δ𝑃𝐷𝐺. 

Each decision variable is discretized at each time step Δ𝑡 with a fixed sampling step. For instance, 

in Fig.3.6 (a) and (b), and only for illustration purposes, Δ𝑆𝑂𝐶 is fixed at 1% and Δ𝑃𝐷𝐺 to 1 𝐾𝑊. 

The  𝑆𝑂𝐶 constraints, expressed in equations (III.26) and (III.25), are considered in Fig.3.6 (a). 

Only one 𝑆𝑂𝐶 value is attainable at the beginning and the end of the planning horizon and the 𝑆𝑂𝐶 

variable is discretized between its minimum and maximum admissible values, respectively 

𝑆𝑂𝐶𝑚𝑖𝑛 = 20% and 𝑆𝑂𝐶𝑚𝑎𝑥 = 90%. 

Same to 𝑃𝐷𝐺_𝑟𝑒𝑓, represented in Fig.3.6 (b), when the (DG) is turned on it can exclusively operate 

between a minimum and a maximum admissible value, denoted respectively 𝑃𝐷𝐺_𝑚𝑖𝑛 and 𝑃𝐷𝐺_𝑚𝑎𝑥. 

𝑃𝐷𝐺_𝑟𝑒𝑓 values that lie in the range of [0, 𝑃𝐷𝐺_𝑚𝑖𝑛] aren’t discretized as they belong to the restricted 

zone in light blue (constraint represented by equation (III.27)). To choose the time step 𝛥𝑡 over 

the planning horizon and the sampling steps 𝛥𝑆𝑂𝐶 and 𝛥𝑃𝐷𝐺  several factors should be considered. 

Knowing that all data inputs have the same sampling period 𝑇𝑠 = 1 6⁄  hour, the minimum time 

step for the DP algorithm, 𝛥𝑡𝑚𝑖𝑛  is limited by 𝑇𝑠 . Selecting values for 𝛥𝑡 lower than 𝑇𝑠  would 

irrelevantly slow down the algorithm as all inputs remain constants for a whole sampling period. 

On the other hand, higher values than 𝑇𝑠 speeds up the algorithm but ends up with a suboptimal 

solution as several troughs and peaks of load demand or production may not be identified by the 

optimization problem which has a slower dynamic than the real system. Thereupon, 𝛥𝑡 is fixed at 

𝑇𝑠 = 1 6⁄  h and the time-space is divided into 𝑁 points characterizing 𝑁 stages of evaluation of 

the optimization algorithm. As 𝛥𝑡 = 𝑇𝑠, 𝑁 is always expressed following equation (III.1) and is 

equal to 144. 

In turn, a trade-off is achieved when selecting 𝛥𝑆𝑂𝐶  and 𝛥𝑃𝐷𝐺 as extra-small values add 

insignificant states to test when searching for the optimal solution which slows down the algorithm. 

Contrarily, though high values of 𝛥𝑆𝑂𝐶  and 𝛥𝑃𝐷𝐺 speeds up the algorithm, it reduces the 
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resolution of the decision variables which impacts the optimal solution. After several trials with 

different 𝛥𝑆𝑂𝐶 and 𝛥𝑃𝐷𝐺  values, the best trade-off is found for a 𝛥𝑆𝑂𝐶 = 0.25 % and 𝛥𝑃𝐷𝐺 =

0.1𝑃𝐷𝐺_𝑚𝑎𝑥 = 550𝑊. Hence, the 𝑆𝑂𝐶 state space is divided into 𝑀 + 1 points separated by the 

fixed sampling step 𝛥𝑆𝑂𝐶 = 0.25%. 𝑀 is calculated as follows: 

𝑀 =
𝑆𝑂𝐶𝑚𝑎𝑥−𝑆𝑂𝐶𝑚𝑖𝑛

𝛥𝑆𝑂𝐶
=

90−20

0.25
= 280                                 (III.30) 

By this,  𝑆𝑂𝐶(𝑡) ≈ 𝑆𝑂𝐶𝑚𝑖𝑛 + 𝑗 . 𝛥𝑆𝑂𝐶                    for 𝑗 = 0, … ,𝑀                               (III.31)   

Hence, the 𝑃𝐷𝐺_𝑟𝑒𝑓 state space is divided into 𝑍 + 1 points separated by the fixed sampling step 

𝛥𝑃𝐷𝐺  = 550 𝑊. 𝑍 is calculated as follows: 

𝑍 =
𝑃𝐷𝐺_𝑚𝑎𝑥−𝑃𝐷𝐺_𝑚𝑖𝑛

𝛥𝑃𝐷𝐺
=

55−13.75

550×10−3
= 75                                                            (III.32)                                       

𝑃𝐷𝐺_𝑟𝑒𝑓(𝑡) ≈ 𝑃𝐷𝐺_𝑚𝑖𝑛 +  ℓ. 𝛥𝑃𝐷𝐺                               for ℓ = 0,… , 𝑍                                    (III.33) 

Fig.3.7 (a) highlights two admissible control strategies denoted 𝜋  (red arrows) and 𝜋′ (purple 

arrows). These two control strategies drive the battery 𝑆𝑂𝐶 from the initial state 𝑆𝑂𝐶(1) = 50 to  

 

(a) 



 
 

120 
 

 

(b) 

Fig.3.7 (a) Example of two admissible control strategies 𝜋 and 𝜋′ in the SOC state space (b) Example of 

two admissible control strategies 𝜋 and 𝜋′ in the 𝑃𝐷𝐺_𝑟𝑒𝑓 state space. 

the final state 𝑆𝑂𝐶(𝑁) = 50  through different admissible trajectories. The same strategies of 

control 𝜋 and 𝜋′ correspond to two different 𝑃𝐷𝐺_𝑟𝑒𝑓 trajectories depicted in Fig.3.7 (b). The main 

objective of the (DP) algorithm is to find the optimal sequence or control strategy to retrieve the 

optimal SOC and 𝑃𝐷𝐺_𝑟𝑒𝑓 states trajectories. The evolution of the 𝑆𝑂𝐶 from a state 𝑆𝑂𝐶𝑗1 at time 

𝑘 to the state 𝑆𝑂𝐶𝑗2 at time 𝑘 + 1 corresponds to a value of the decision variable 𝑃𝑏𝑎𝑡𝑡
𝑗1,𝑗2 expressed 

following the battery discrete function 𝑓𝑏𝑎𝑡𝑡 (Appendix E) : 

𝑃𝑏𝑎𝑡𝑡
𝑗1,𝑗2(𝑘) = 𝑄(𝑇𝑎). 𝑉𝑏𝑎𝑡𝑡

𝑗1,𝑗2 (
𝑆𝑂𝐶𝑗1−𝑆𝑂𝐶𝑗2

𝛥𝑡
)                                                      (III.34) 

Where, 𝑉𝑏𝑎𝑡𝑡
𝑗1,𝑗2 and Q(𝑇a) are respectively the battery voltage corresponding to the transition from 

𝑆𝑂𝐶𝑗1  at time 𝑘 to the state 𝑆𝑂𝐶𝑗2  at time 𝑘 + 1 (Volts), and the battery maximum capacity at 

ambient temperature (𝐴ℎ). 

In turn, each state 𝑃𝑏𝑎𝑡𝑡
𝑗1 ,𝑗2 corresponds to a set of (𝑍 + 2) 𝑃𝐷𝐺_𝑟𝑒𝑓 maximum possible states. After 

evaluating all constraints that include 𝑃𝐷𝐺_𝑟𝑒𝑓 variable, the number of 𝑃𝐷𝐺_𝑟𝑒𝑓 admissible states 

may vary from one, corresponding to a turned-off (DG) state (𝑃𝐷𝐺_𝑟𝑒𝑓 = 0), to 𝑍 + 2 for which 

the turned-off state and the whole interval [𝑃𝐷𝐺_𝑚𝑖𝑛 , 𝑃𝐷𝐺_𝑚𝑎𝑥] are admissible. 
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Hence, the approach followed when applying the (DP) algorithm consists of finding the optimal 

evolution sequence of: 

1. the battery’s SOC between the initial and the final instants of the whole-time interval. From 

this sequence, the optimal charged/discharged battery power at each instant 𝑘 is computed 

following equation (III.34). 

2. The (DG) reference power between the initial and the final instants of the whole-time 

interval. The whole sequence should comply with all predefined constraints.  

3.5.1.3 Algorithm implementation: 

 

The implementation of the (DP) algorithm is initiated by creating a cost matrix 𝐑 ∈  𝑅(𝑀+1)×𝑁. 

The filling of this matrix is done recursively starting from 𝑘 = 𝑁  and returning until 𝑘 = 1 

following Bellman’s principle detailed in Appendix E.2. Each element (𝑗, 𝑘)  of this matrix 

represents the optimal cost to go from  𝑆𝑂𝐶(𝑗) state at time 𝑘 to the final state 𝑆𝑂𝐶(𝑗𝑁) at time 𝑁. 

Formally: 

𝑹 (𝑗𝑁, 𝑁) = 0                                                                   (III. 35) 

𝑹 (𝑗, 𝑘) = 𝑚𝑖𝑛
𝑗,𝑗′

 (𝑹(𝑗′, 𝑘 + 1) + 𝛾𝑡𝑜𝑡(𝑘, 𝑗, 𝑗
′, 𝑙𝑜𝑝𝑡))           for 𝑘 = 𝑁 − 1,… ,1                     (III.36) 

Where, 𝛾tot(𝑘, 𝑗, 𝑗
′, lopt) represents the total cost of transition from the state 𝑆𝑂𝐶𝑗  at time 𝑘 to 

𝑆𝑂𝐶𝑗′  at time 𝑘 + 1  for optimal (DG) operating state. lopt  is the index of the optimal (DG) 

operating state. It is equal to: 

𝑙𝑜𝑝𝑡 = {
−1      𝑖𝑓 (𝐷𝐺) 𝑖𝑠 𝑡𝑢𝑟𝑛𝑒𝑑 − 𝑜𝑓𝑓 

ℓ        𝑖𝑓 (𝐷𝐺) 𝑖𝑠 𝑡𝑢𝑟𝑛𝑒𝑑 − 𝑜𝑛
                 (III. 37) 

𝛾tot(𝑘, 𝑗, 𝑗
′, lopt) is expressed as: 

𝛾tot(𝑘, 𝑗, 𝑗
′, lopt) = min

j,j′
 (𝛾tot(k, j, j

′, −1), 𝛾tot(k, j, j
′, ℓ1), 𝛾tot(k, j, j

′, ℓ2),… , 𝛾tot(k, j, j
′, ℓ)) 

(III.38) 

Where, 𝛾tot(k, j, j
′, ℓ) is the total cost of transition from the state 𝑆𝑂𝐶𝑗 at time 𝑘 to 𝑆𝑂𝐶𝑗′ at time 

𝑘 + 1 for a (DG) operating state index ℓ. Having the index ℓ, 𝑃𝐷𝐺_𝑟𝑒𝑓’s corresponding value is 

retrieved through equation (III.33). The maximum number of (DG) admissible states is 𝑍 + 2. 

Finally, 𝛾tot(k, j, j
′, ℓ) can be expressed similarly to the cost expressions from equation (III.11) to 

equation (III.20) except that summation over the whole time horizon is omitted in the (DP) cost 

equations and the symbol "𝛾" is adopted to express each cost function instead of the symbol "𝐽”. 

Hence, the new modified (DP) cost functions are:  
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{

𝑃𝑏𝑎𝑡𝑡
𝑗.𝑗′
(𝑘) = 𝑄(𝑇𝑎). 𝑉𝑏𝑎𝑡𝑡

𝑗.𝑗′
(
𝑆𝑂𝐶𝑗−𝑆𝑂𝐶𝑗′

𝛥𝑡
)

𝑃𝐷𝐺(𝑘) = {
0                                                     𝑖𝑓  𝑡𝑢𝑟𝑛𝑒𝑑 − 𝑜𝑓𝑓
𝑃𝐷𝐺_𝑚𝑖𝑛 +  ℓ. 𝛥𝑃𝐷𝐺                    𝑖𝑓  𝑡𝑢𝑟𝑛𝑒𝑑 − 𝑜𝑛

                                                 

(III.39) 

 

𝛾𝑡𝑜𝑡(𝑘, 𝑗, 𝑗
′, ℓ) = 𝜁𝑜𝑐𝛾𝑜𝑐(𝑘, 𝑗, 𝑗

′, ℓ) + 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝛾𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠(𝑘, 𝑗, 𝑗
′, ℓ) +

𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠𝛾𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠(𝑘, 𝑗, 𝑗
′, ℓ)                                                                                           (III.40) 

𝛾𝑜𝑐(𝑘, 𝑗, 𝑗
′, ℓ) = 𝛾𝑔𝑟𝑖𝑑(𝑘, 𝑗, 𝑗

′, ℓ) + 𝛾𝑏𝑎𝑡𝑡(𝑘, 𝑗, 𝑗
′, ℓ) + 𝛾𝐷𝐺(𝑘, 𝑗, 𝑗

′, ℓ)                                    (III.41) 

𝛾𝑔𝑟𝑖𝑑(𝑘, 𝑗, 𝑗
′, ℓ) = (𝛿𝑔𝑟𝑖𝑑

𝑝𝑢𝑟 . 𝑃𝑝𝑢𝑟(𝑘) − 𝛿𝑔𝑟𝑖𝑑
𝑠𝑜𝑙𝑑 . 𝑃𝑠𝑜𝑙𝑑(𝑘)) . 𝛥𝑡                                                     (III.42) 

𝛾𝑏𝑎𝑡𝑡(𝑘, 𝑗, 𝑗
′, ℓ) =

𝐶𝐶

2.𝐶𝑦𝑐𝑙𝑒𝑠
. 𝑃𝑏𝑎𝑡𝑡

𝑗.𝑗′ (𝑘). 𝛥𝑡 + 𝛿𝑑𝑒𝑔. 𝑃𝑏𝑎𝑡𝑡
𝑗.𝑗′
(𝑘). 𝛥𝑡                                                 (III.43)    

{
 
 

 
 𝛾𝐷𝐺(𝑘, 𝑗, 𝑗

′, ℓ) = 𝛾𝐷𝐺
𝑓𝑢𝑒𝑙(𝑘, 𝑗, 𝑗′, ℓ) + 𝛾𝐷𝐺

𝑆𝑈(𝑘, 𝑗, 𝑗′, ℓ) + 𝛾𝐷𝐺
𝑀 (𝑘, 𝑗, 𝑗′, ℓ)

𝛾𝐷𝐺
𝑓𝑢𝑒𝑙(𝑘, 𝑗, 𝑗′, ℓ) = 𝜆𝑓𝑢𝑒𝑙 . 𝐹(𝑘). 𝛥𝑡                                                                   

𝛾𝐷𝐺
𝑆𝑈(𝑘, 𝑗, 𝑗′, ℓ) = 𝜉𝑆𝑈. 𝜎𝐷𝐺

𝑂𝑁(𝑘)                                                                     

𝛾𝐷𝐺
𝑀 (𝑘, 𝑗, 𝑗′, ℓ) = 𝜒𝑀. 𝑠𝑖𝑔𝑛(𝑃𝐷𝐺(𝑘)). 𝛥𝑡                                                     

                     (III.44) 

𝛾𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠(𝑘, 𝑗, 𝑗
′, ℓ) = 𝛽𝑒𝑚𝑖𝑠𝑠. 𝑃𝐷𝐺(𝑘). 𝛥𝑡                                             (III.45) 

𝛾𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠(𝑘, 𝑗, 𝑗
′, ℓ) = (𝛿𝑏𝑎𝑡𝑡

𝑙𝑜𝑠𝑠 . 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑏𝑖𝑑𝑖𝑟𝑒𝑐_𝑐𝑜𝑛𝑣(𝑘) + 𝛿𝐷𝐺
𝑙𝑜𝑠𝑠. 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝐷𝐺_𝑟𝑒𝑐(𝑘) +

𝛿𝑔𝑟𝑖𝑑
𝑙𝑜𝑠𝑠 . 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑔𝑟𝑖𝑑_𝑐𝑜𝑛𝑣(𝑘)) . 𝛥𝑡                                                                 (III.46) 

We take note that:  

• The RESs operating cost isn’t included in the (DP) equations since their generated power 

serves as input to the optimization problem and not as a decision variable. Hence, the RESs 

operating cost is always calculated apart following equations (III.5) and (III.6). 

• All constraints presented in equations (III.21) to (III.28) are kept the same when applying 

the (DP) algorithm as they all target the system at a specific time 𝑘 and not for the whole 

time horizon.  

• To compute the utility-grid power and the converter losses at time 𝑘, equations (III.2) and 

(III.21) are utilized.  

The element 𝑹 (𝑗0, 1), of the matrix 𝑹, which corresponds to the initial state of charge, contains 

the value of the total optimal cost to move from the initial state of charge 𝑆𝑂𝐶𝑗0 at time 𝑘 = 0 to 

𝑆𝑂𝐶𝑗𝑁 at time 𝑘 = 𝑁. Besides, 𝑹 is a sparse matrix as the elements corresponding to inadmissible 

SOC levels are not taken into consideration. In parallel with the construction of the cost matrix, 

two matrices with the same dimension denoted 𝐒𝑆𝑂𝐶 and 𝐒𝑃𝐷𝐺_𝑟𝑒𝑓  are used to store respectively:  

1. the index of the optimal found SOC state of the next step.  
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2. the index of the optimal 𝑃𝐷𝐺_𝑟𝑒𝑓(𝑘)  of the current step for the corresponding 𝑆𝑂𝐶 

transition 𝑆𝑂𝐶𝑗 to 𝑆𝑂𝐶𝑗′.   

An element 𝐒𝑆𝑂𝐶(𝑗, 𝑘) contains the index, 𝑗′, of the next step which corresponds to the optimal 

path starting from state 𝑆𝑂𝐶(𝑗) at time 𝑘  towards the end of the cycle. However, an element 

𝐒𝑃𝐷𝐺_𝑟𝑒𝑓(𝑗, 𝑘) contains the index 𝑙𝑜𝑝𝑡_𝑘 of the current step at time 𝑘 for the corresponding 𝑆𝑂𝐶 

transition 𝑆𝑂𝐶𝑗 to 𝑆𝑂𝐶𝑗′.  

Finally, once the matrices 𝐒𝑆𝑂𝐶 and 𝐒𝑃𝐷𝐺_𝑟𝑒𝑓 are filled, an optimal path vector denoted 𝐓 is built 

and corresponds to the minimum cost over the whole-time horizon.  

𝐓, which length is 𝑁, is expressed as follows: 

𝑻(1) = 𝑆𝑂𝐶(𝑗0)                                                                                        (III.47) 

𝑻(𝑘) = 𝑺𝑆𝑂𝐶  (𝑻(𝑘 − 1), 𝑘 − 1),                      for 𝑘 = 2,… , 𝑁                                           (III.48) 

The diagram in Fig.3.8 illustrates the method followed to implement the (DP) algorithm on a 

representative example with a limited number of points.   

3.5.1.4 Simulation results : 

 

To prove the viability of the DP algorithm in solving a multi-objective optimization problem, 

several simulation tests are conducted. First, as mentioned before, the preference between each of 

the three optimization goals is accessed through the corresponding weights in the total cost 

function of the equation (III.11). The three weights  𝜁𝑜𝑐 , 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 , and 𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠  are real 

positive values ∈ [0,1]. First, weights equal to unity are set 𝜁𝑜𝑐 = 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠 = 1 to 

examine the effectiveness of the DP in finding a feasible solution to the proposed problem 

conveniently to all imposed constraints. The simulation plot results for the two tested days are 

revealed in Figures 3.9, 3.10, 3.11, and 3.12. The share of the energy mix and the corresponding 

operating costs on the winter and the summer days are respectively summarized in Table 3.3 and 

Table 3.4.  

The results of the winter day are shown in the left plots (Fig.3.9 (a), 3.10 (a), 3.11 (a), and 3.12 

(a)), and the ones of the summer day in the right plots (Fig.3.9 (b), 3.10 (b), 3.11 (b), and 3.12 (b)). 

For both days, the (DP) algorithm converges and presents effective results by finding a feasible 

solution for the proposed problem. As seen in Fig.3.9 (a) and (b), the unmet load power is 

purchased from the utility grid at low pool prices (between 0:00 A.M and 6:00 A.M), while the 

battery and the (DG) intervene to cover the load demand at high pool prices (during the evening 

load peak). Besides, when turned on, the (DG) average produced power is always close to its 

maximum value. Hence, a low deficit in power production is covered by the battery operating in 

discharge mode and/or the utility grid. On the other hand, when the power deficit is high the EMS 

prioritizes the (DG) over the battery and the utility grid to provide the required power. All low and 
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upper power bounds of the (DG), the battery, and the utility grid aren’t exceeded for the whole 

time horizon of the two tested days. 

The battery’s 𝑆𝑂𝐶  optimal trajectory on the winter and the summer days are respectively 

represented in Fig.3.10 (a) and (b). The 𝑆𝑂𝐶 curves of the two days lie between the minimum and 

maximum admissible values and the 𝑆𝑂𝐶s initial states at the beginning of the time horizon are 

equal to the 𝑆𝑂𝐶s at the end of the day 𝑆𝑂𝐶(𝑘 = 0) = 𝑆𝑂𝐶(𝑘 = 𝑁) = 50%, conveniently to the 

constraint imposed in equation (III.26). Moreover, the compliance with the 𝑆𝑂𝐶  constraint of 

equation (III.26) can be verified through the battery’s total charged and discharged energy in 

Tables 3.3 and 3.4 where both quantities are almost equal for the two tested days: 𝐸𝑑𝑖𝑠_𝑏𝑎𝑡𝑡 ≈

𝐸𝑐ℎ_𝑏𝑎𝑡𝑡. Hence, the initial state of the ESS is retrieved at the end of the day which verifies equation 

(III.26). The toxic gas emissions on the winter and the summer days are respectively represented 

in Fig.3.11 (a) and (b) and show higher values on the winter day. The total cumulative mass of 

emitted toxic gas on the winter day is almost five times greater than the summer day. The same 

ratio can be retrieved when evaluating the total amount of produced (DG) energy on winter and 

summer days. Referring to Table 3.3 and Table 3.4, 𝐸𝐷𝐺 = 187.64 𝐾𝑊ℎ for the winter day and 

36.4 𝐾𝑊ℎ for the summer day. 

Therefore, the ratio between the produced energy on the winter and summer days is 𝐸𝐷𝐺𝑤/𝐸𝐷𝐺𝑠 =

5.15. Lastly, the 𝐶𝑂2 emissions account for 97% of the total toxic gas emissions and the rest is 

divided between 𝑁𝑂𝑥, 𝑆𝑂2, and 𝐶𝑂 emissions. 
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Fig.3.8 Illustrative diagram of the applied DP algorithm. 
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                                         (a)                                                                                     (b) 

 

Fig.3.9 Optimal (DG), battery, and grid power references on (a) the winter day and (b) the summer day. 

                                         (a)                                                                                     (b) 

 

Fig.3.10 Battery’s 𝑆𝑂𝐶 optimal trajectories on (a) the winter day and (b) the summer day. 
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                                         (a)                                                                                     (b) 

 

Fig.3.11 Toxic gas emissions on (a) the winter day and (b) the summer day. 

                                         (a)                                                                                     (b) 

 

Fig.3.12 Losses in (DG), battery, and grid converters on (a) the winter day and (b) the summer day. 

 

Fig.3.12 (a) and (b) show the losses of dispatchable converters, which are the (DG) 3𝜙 rectifier, 

the utility grid 3𝜙 converter, and the bidirectional DC/DC converter of the battery, respectively on 

the winter and the summer days. The losses in each converter are proportional to the power 

transiting from/to its corresponding unit. Referring to Tables 3.3 and 3.4, the total energy loss in 

dispatchable converters is higher on the winter day (𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣 = 16.88 𝐾𝑊ℎ) comparing to the 

summer day (𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣 = 11.58 𝐾𝑊ℎ) as a higher energy mix is provided from dispatchable 

ZOOM 

ZOOM 



 
 

128 
 

sources on the winter day compared to the summer day. The total energy mix of dispatchable 

sources denoted 𝐸𝑡𝑜𝑡_𝑑𝑖𝑠𝑝 , is expressed as: 

𝐸𝑡𝑜𝑡_𝑑𝑖𝑠𝑝 = 𝐸𝑝𝑢𝑟 + 𝐸𝑠𝑜𝑙𝑑 + 𝐸𝑑𝑖𝑠_𝑏𝑎𝑡𝑡 + 𝐸𝑐ℎ_𝑏𝑎𝑡𝑡 + 𝐸𝐷𝐺                  (III.49) 

Referring to Tables 3.3 and 3.4, on the winter day 𝐸𝑡𝑜𝑡_𝑑𝑖𝑠𝑝 = 534.53 𝐾𝑊ℎ , and on the summer 

day 𝐸𝑡𝑜𝑡_𝑑𝑖𝑠𝑝 = 373 𝐾𝑊ℎ. Thus, the higher reliance on dispatchable sources during the winter 

day results in higher losses in the corresponding converters compared to the summer day. 

Finally, a profit of 29 $ is achieved on the winter day when comparing the total operating cost 

(𝐽𝑜𝑐 = 152.29 $) with the one obtained when the ESS and the (DG) aren’t included in the DC 

microgrid (𝐽𝑜𝑐 = 181.25 $). This profit accounts for 16 % of the 181.25 $ operating cost.  For the 

summer day, the made profit is 18.5 $ as the actual total operating cost is (𝐽𝑜𝑐 = 99.51 $), while 

the one with no ESS and (DG) (𝐽𝑜𝑐 = 118 $). This profit accounts for 15.66 % of the 118 $ 

operating cost. 

Winter day (18/02/2021) 

Load consumption  

and  

RESs production 

- Total load energy consumption: 𝐸𝑙𝑜𝑎𝑑 = 679.11 𝐾𝑊ℎ 

- Total PV effective generated energy: 𝐸𝑃𝑉_𝑏𝑢𝑠 = 152.01 𝐾𝑊ℎ   

- Total WT effective generated energy: 𝐸𝑊𝑇_𝑏𝑢𝑠 = 156.9 𝐾𝑊ℎ  

- Total RESs effective generated energy: 𝐸𝑃𝑉_𝑏𝑢𝑠 + 𝐸𝑊𝑇_𝑏𝑢𝑠 = 308.91 𝐾𝑊ℎ 

RESs cost function: 𝐽𝑅𝐸𝑆𝑠 = 2.25 $ 

Utility grid 

- Total purchased energy: 𝐸𝑝𝑢𝑟 = 200.62 𝐾𝑊ℎ   

- Total sold energy: 𝐸𝑠𝑜𝑙𝑑 = 0.77 𝐾𝑊ℎ  

Utility grid cost function: 𝐽𝑔𝑟𝑖𝑑 = 73.89  $ 

Battery 

- Total discharged energy: 𝐸𝑑𝑖𝑠_𝑏𝑎𝑡𝑡 = 72.96 𝐾𝑊ℎ   

- Total charged energy: 𝐸𝑐ℎ_𝑏𝑎𝑡𝑡 = 72.55 𝐾𝑊ℎ  

Battery cost function: 𝐽𝑏𝑎𝑡𝑡 = 12.62 $ 

(DG) 

- Total operating time: 4 hours 20 minutes  

- Total number of start-ups: 2 

- Total diesel consumption: 59.63 Liters  

- Total emitted toxic gas: 44. 9 𝐾𝑔 (from which 97% accounts for 𝐶𝑂2) 

- Total generated energy: 𝐸𝐷𝐺 = 187.64 𝐾𝑊ℎ 

(DG) cost function: 𝐽𝐷𝐺 = 63.53 $ 

Losses in dispatchable 

converters 
Total energy loss in dispatchable converters:  𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣 = 16.88 𝐾𝑊ℎ 

CPU time 5 minutes 14 seconds 
Total operating cost 

function 
𝐽𝑜𝑐 = 152.29 $ 

 

Table 3.3 Summary of share of the energy mix and corresponding operating costs on the winter day 

(18/02/2021). 
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Summer day (16/07/2021) 

Load consumption  

and  

RESs production 

- Total load energy consumption: 𝐸𝑙𝑜𝑎𝑑 = 604.17 𝐾𝑊ℎ 

- Total PV effective generated energy: 𝐸𝑃𝑉_𝑏𝑢𝑠 = 292.94 𝐾𝑊ℎ   

- Total WT effective generated energy: 𝐸𝑊𝑇_𝑏𝑢𝑠 = 47.56 𝐾𝑊ℎ  

- Total RESs effective generated energy: 𝐸𝑃𝑉_𝑏𝑢𝑠 + 𝐸𝑊𝑇_𝑏𝑢𝑠 = 340.51 𝐾𝑊ℎ 

RESs cost function: 𝐽𝑅𝐸𝑆𝑠 = 1.3 $ 

Utility grid 

- Total purchased energy: 𝐸𝑝𝑢𝑟 = 240.13 𝐾𝑊ℎ   

- Total sold energy: 𝐸𝑠𝑜𝑙𝑑 = 1.18 𝐾𝑊ℎ  

Utility grid cost function: 𝐽𝑔𝑟𝑖𝑑 = 79.29  $ 

Battery 

- Total discharged energy: 𝐸𝑑𝑖𝑠_𝑏𝑎𝑡𝑡 = 47.61 𝐾𝑊ℎ   

- Total charged energy: 𝐸𝑐ℎ_𝑏𝑎𝑡𝑡 = 47.74 𝐾𝑊ℎ  

Battery cost function: 𝐽𝑏𝑎𝑡𝑡 = 7.44 $ 

 

(DG) 

- Total operating time: 40 minutes  

- Total number of start-ups: 1 

- Total diesel consumption: 10.72 Liters  

- Total emitted toxic gas: 8.7 𝐾𝑔 (from which 97% accounts for 𝐶𝑂2) 

- Total generated energy: 𝐸𝐷𝐺 = 36.4 𝐾𝑊ℎ 

(DG) cost function: 𝐽𝐷𝐺 = 11.48 $ 

Losses in dispatchable 

converters 
Total energy loss in dispatchable converters: 𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣 = 11.58 𝐾𝑊ℎ 

CPU time 4 minutes 25 seconds 
Total operating cost 

function 
𝐽𝑜𝑐 = 99.51 $ 

 

Table 3.4 Summary of share of the energy mix and corresponding operating costs on the summer day 

(16/07/2021). 

3.5.2 Preference between optimization objectives 
 

The minimization of the total operating cost, the toxic gas emissions, and the losses in operating 

converters are fixed as three distinct optimization objectives. To prioritize any of the defined 

objectives over the remaining ones, a higher weight should be assigned in the main objective 

function to the corresponding objective. As prementioned, the corresponding weights  𝜁𝑜𝑐 , 

𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 , and 𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠  are real positive values ∈  [0,1] . Though the three objectives are 

expressed distinctly through their proper weights in the main objective function, this doesn’t mean 

that they are practically disassociated. In other words, the achievement of any of the three 

objectives may foster or restrict the attainment of the remaining ones. Therefore, the impact of 

achieving one objective on the remaining ones should be studied apart to conveniently find the 

best weight combination for a specific goal.  
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Consequently, a Pareto of solutions exists based on the user’s preferences and goals priorities. For 

instance, the user may select only a prime objective with no preferences between the remaining 

objectives, or beside the main priority goal which is assigned the highest weight out of the three, 

the user may set a second priority goal, etc.    

For this, several simulation tests are conducted on the winter day, taken as a case study, in which 

one weight is set to one and the two remaining are varied to assess the impact of each of the 

variable weights on the total operating cost function 𝐽𝑜𝑐, the (DG) total produced energy 𝐸𝐷𝐺, and 

the total energy loss in dispatchable converters  𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣 over the 24-hour time horizon. The three 

variables  𝐽𝑜𝑐, 𝐸𝐷𝐺, and 𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣 are selected as each of them represents one of the three defined 

goals. By evaluating these three variables with different weight values, the impact of the weight’s 

selection on the attainment of defined goals is revealed.  

 

 

 

Fig.3.13 (a) 𝐸𝐷𝐺, (b) 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣, and (c) 𝐽𝑜𝑐 as functions of 𝜁𝑜𝑐 and 𝜁𝑐𝑜𝑛𝑣−𝑙𝑜𝑠𝑠𝑒𝑠 for 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1. 
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The sampling step of variable weights is 0.1 then in each test, each of the three variables 𝐽𝑜𝑐,  𝐸𝐷𝐺, 

and 𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣 corresponds to an (11 × 11) matrix. To quantify all possible sets of solutions, a 

representation of variables 𝐸𝐷𝐺 , 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣, and 𝐽𝑜𝑐  in per unit (𝑝. 𝑢.) of their maximum range 

values is required. 𝐸𝐷𝐺, 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣, and 𝐽𝑜𝑐 are respectively expressed in (𝑝. 𝑢.) as follows: 

{
 
 

 
 𝐸𝐷𝐺_𝑝.𝑢 =         

𝐸𝐷𝐺−𝐸𝐷𝐺_𝑚𝑖𝑛

𝐸𝐷𝐺_𝑚𝑎𝑥−𝐸𝐷𝐺_𝑚𝑖𝑛

𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣_𝑝.𝑢 =
𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣−𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣_𝑚𝑖𝑛

𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣_𝑚𝑎𝑥−𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣_𝑚𝑖𝑛

𝐽𝑜𝑐_𝑝.𝑢 =           
𝐽𝑜𝑐−𝐽𝑜𝑐_𝑚𝑖𝑛

𝐽𝑜𝑐_𝑚𝑎𝑥−𝐽𝑜𝑐_𝑚𝑖𝑛

                         (III.50) 

Where all 𝑚𝑖𝑛 and 𝑚𝑎𝑥 subscripts correspond respectively to the minimum and maximum values 

of 𝐸𝐷𝐺 , 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣 , and 𝐽𝑜𝑐 plotted curves for each test. By this, the three variables are now 

represented in 𝑝. 𝑢. and by applying the "minimum" function to any of the variables, the optimal 

weights combination is retrieved. In the first test, the emissions weight, 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 is fixed at one, 

𝜁𝑜𝑐 and 𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠 are variables. The plot results are depicted in Fig.3.13 (a), (b), and (c). All 

possible solutions based on user preferences are detailed in Table 3.5.  

𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1 

Goals preferences Optimal weights 
Applied 

formula 
Obtained Results 

- Prime goal: reduction 

of toxic gas emissions 

𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1 

𝜁𝑜𝑐 = 0 

∀ 𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠 ∈ [0,1] 

min (𝐸𝐷𝐺_𝑝.𝑢) 
𝐸𝐷𝐺 = 0 𝐾𝑊ℎ 

𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣(𝐾𝑊ℎ) ∈ [13.41 , 17.85] 

𝐽𝑜𝑐($) ∈ [157.7 , 180.25] 

- Prime goal: reduction 

of toxic gas emissions 

- Second goal: reduction 

of losses in converters  

𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1 

𝜁𝑜𝑐 = 0 

∀ 𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠
∈ [0.1,1] 

min (𝐸𝐷𝐺_𝑝.𝑢 

+𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣_𝑝.𝑢) 

𝐸𝐷𝐺 = 0 𝐾𝑊ℎ 

𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣 = 13.41 𝐾𝑊ℎ 

𝐽𝑜𝑐 = 157.7 $ 

- Prime goal: reduction 

of toxic gas emissions 

- Second goal: reduction 

of operating cost  

𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1 

𝜁𝑜𝑐 = 0 

∀ 𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠
∈ [0.1,1] 

min (𝐸𝐷𝐺_𝑝.𝑢 

+𝐽𝑜𝑐_𝑝.𝑢) 

𝐸𝐷𝐺 = 0 𝐾𝑊ℎ 

𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣 = 13.41 𝐾𝑊ℎ 

𝐽𝑜𝑐 = 157.7 $ 

- Prime goal: reduction 

of emissions 

- Equal preferences 

between the reduction 

of the operating cost 

and losses in converters  

𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1 

𝜁𝑜𝑐 = 0 

∀ 𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠
∈ [0.1,1] 

min (𝐸𝐷𝐺_𝑝.𝑢
+ 𝐽𝑜𝑐_𝑝.𝑢

+ 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣_𝑝.𝑢) 

𝐸𝐷𝐺 = 0 𝐾𝑊ℎ 

𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣 = 13.41 𝐾𝑊ℎ 

𝐽𝑜𝑐 = 157.7 $ 

 

Table 3.5 Optimal weights and corresponding results for 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1 and different goals preferences.  
 



 
 

132 
 

For example, if the user selects in addition to the prime goal which is the reduction of toxic gas 

emission, a second goal priority corresponding to the minimization of the total operating cost, the 

matrices of   𝐸𝐷𝐺_𝑝.𝑢 and 𝐽𝑜𝑐_𝑝.𝑢 are added and the minimum of the obtained matrix corresponds to 

the best weights combination. It can be seen from Table.3.5 that the optimal weights for all goals’ 

preferences cases are 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1, 𝜁𝑜𝑐 = 0, and ∀ 𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠 ∈ [0.1,1] giving the following 

results 𝐸𝐷𝐺 = 0 𝐾𝑊ℎ  (𝐸𝐷𝐺_𝑝.𝑢 = 0 𝑝. 𝑢 ), 𝐽𝑜𝑐 = 157.7$  (𝐽𝑜𝑐_𝑝.𝑢 = 0.21 𝑝. 𝑢 ), and 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣 =

13.41 𝐾𝑊ℎ (𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣_𝑝.𝑢 = 0 𝑝. 𝑢). 

In the second test, the operating cost weight, 𝜁𝑜𝑐  is fixed at one, 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠  and 𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠  are 

variables. The 𝑝. 𝑢. variables are computed following equation (III.50) based on the new maximum 

and minimum values obtained from the new matrices 𝐸𝐷𝐺, 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣, and 𝐽𝑜𝑐 . The plot results 

are depicted in Fig.3.14 (a), (b), and (c).  

 

 

Fig.3.14 (a) 𝐸𝐷𝐺, (b) 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣, and (c) 𝐽𝑜𝑐 as functions of 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 and 𝜁𝑐𝑜𝑛𝑣−𝑙𝑜𝑠𝑠𝑒𝑠 for 𝜁𝑜𝑐 = 1. 



 
 

133 
 

In this case, 𝜁𝑜𝑐 = 1, one optimal weights’ combination solution is found for all possible goals’ 

preferences. The optimal weights are 𝜁𝑜𝑐 = 1, ∀ 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ∈ [0.2,1], and 𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠 = 0.8 and 

yields the following results : 𝐽𝑜𝑐 = 152.3 $  (𝐽𝑜𝑐_𝑝.𝑢 = 0 𝑝. 𝑢), 𝐸𝐷𝐺 = 191.86 𝐾𝑊ℎ  (𝐸𝐷𝐺_𝑝.𝑢 =

0.017 𝑝. 𝑢), and 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣 = 17.66 𝐾𝑊ℎ (𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣_𝑝.𝑢 = 0.32 𝑝. 𝑢).  

In the last test, the losses in converters' weight, 𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠 is fixed at one, 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 and 𝜁𝑜𝑐 are 

variables. The plot results are depicted in Fig.3.15 (a), (b), and (c). Here two different optimal 

weights combination are obtained depending on the goals preferences: 1) If the reduction of 

converters losses is the only prime goal, 2) the reduction of converters losses is the prime goal and 

the reduction of toxic gas emissions is the second preferred goal, and 3) if there are equal 

preferences between the reduction of toxic gas emissions and operating cost as second goals one 

optimal weights’ combination is obtained and equal to:  𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠 = 1 , 𝜁𝑜𝑐 = 0 , and 

∀ 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ∈ [0,1]. 

 

  

Fig.3.15 (a) 𝐸𝐷𝐺, (b) 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣, and (c) 𝐽𝑜𝑐 as functions of 𝜁𝑜𝑐 and 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 for 𝜁𝑐𝑜𝑛𝑣−𝑙𝑜𝑠𝑠𝑒𝑠 = 1. 
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This weights’ combination yields the following results, 𝐽𝑜𝑐 = 157.7 $  ( 𝐽𝑜𝑐_𝑝.𝑢 = 0.94 𝑝. 𝑢 ), 

𝐸𝐷𝐺 = 0 𝐾𝑊ℎ  ( 𝐸𝐷𝐺_𝑝.𝑢 = 0 𝑝. 𝑢 ), and 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣 = 13.41 𝐾𝑊ℎ  ( 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣_𝑝.𝑢 = 0 𝑝. 𝑢 ). 

However, if the minimization of the operating cost is set as a second goal after the reduction of 

losses in converters the optimal weights’ combination is :  𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠 = 1 , 𝜁𝑜𝑐 = 0.4 , and 

∀ 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ∈ [0.4,1] . This yields the following results: 𝐽𝑜𝑐 = 153.04 $  ( 𝐽𝑜𝑐_𝑝.𝑢 = 0.12 𝑝. 𝑢 ), 

𝐸𝐷𝐺 = 137.41 𝐾𝑊ℎ  ( 𝐸𝐷𝐺_𝑝.𝑢 = 0.72 𝑝. 𝑢 ), and 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣 = 15.46 𝐾𝑊ℎ  ( 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣_𝑝.𝑢 =

0.59 𝑝. 𝑢). 

Finally, to highlight the impact of weights’ selection in achieving each of the three optimization 

goals, the maximum and minimum values of 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣, 𝐸𝐷𝐺, and 𝐽𝑜𝑐 obtained out of the three 

tests are summarized in Table 3.6. The corresponding weights’ combinations of each minimum 

and maximum value are stated. As seen from the results, the attainment of any of the three goals 

is tremendously impacted by the selection of the three weights and not only by the one assigned to 

the desired goal. Hence, if any preference between the proposed goals is intended, the construction 

of 𝐸𝐷𝐺 , 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣 , and 𝐽𝑜𝑐  matrices presented in this section and the optimal weights selection 

method should be conducted. The weights selection process should precede the application of 

offline optimization. Meanwhile, if there aren’t any preferences between the defined goals, all 

weights are set to one.   

 Minimum  Corresponding weights Maximum Corresponding weights 

𝐸𝐷𝐺 0 𝐾𝑊ℎ 

 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1 

∀ 𝜁𝑙𝑜𝑠𝑠𝑒𝑠_𝑐𝑜𝑛𝑣 ∈ [0,1] 
 𝜁𝑜𝑐 = 0 

251.83 𝐾𝑊ℎ 

 𝜁𝑜𝑐 = 1 

 ∀ 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ∈ [0,1] 
𝜁𝑙𝑜𝑠𝑠𝑒𝑠_𝑐𝑜𝑛𝑣 = 0 

 𝜁𝑙𝑜𝑠𝑠𝑒𝑠_𝑐𝑜𝑛𝑣 = 1 

∀ 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ∈ [0,1] 
 𝜁𝑜𝑐 = 0 

𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣 13.41 𝐾𝑊ℎ 

 𝜁𝑙𝑜𝑠𝑠𝑒𝑠_𝑐𝑜𝑛𝑣 = 1 

∀ 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ∈ [0,1] 
 𝜁𝑜𝑐 = 0 

19.3 𝐾𝑊ℎ 

𝜁𝑙𝑜𝑠𝑠𝑒𝑠_𝑐𝑜𝑛𝑣 = 0 

 𝜁𝑜𝑐 = 1 

 ∀ 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ∈ [0,1] 
 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1 

∀ 𝜁𝑙𝑜𝑠𝑠𝑒𝑠_𝑐𝑜𝑛𝑣 ∈ [0.1,1] 
 𝜁𝑜𝑐 = 0 

𝜁𝑙𝑜𝑠𝑠𝑒𝑠_𝑐𝑜𝑛𝑣 = 0 

 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1 

 ∀ 𝜁𝑜𝑐 ∈ [0.6,1] 

𝐽𝑜𝑐 152.3 $ 

 𝜁𝑜𝑐 = 1 

∀ 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ∈ [0.2,1] 
 𝜁𝑙𝑜𝑠𝑠𝑒𝑠_𝑐𝑜𝑛𝑣 = 0.8 

180.25 $ 

 𝜁𝑜𝑐 = 0 

 𝜁𝑙𝑜𝑠𝑠𝑒𝑠_𝑐𝑜𝑛𝑣 = 0 

 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1 

 

Table 3.6 The minimum and maximum 𝐸𝐷𝐺 , 𝐸𝑙𝑜𝑠𝑠−𝑐𝑜𝑛𝑣, and 𝐽𝑜𝑐 obtained results with the corresponding 

weights’ combination. 
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3.5.3 Genetic algorithm  
 

The second method applied to solve the optimization problem is an evolutionary algorithm based 

on the Genetic Algorithm (GA). The application of the (GA) highlights the following elements: 

1. A principle of coding the population element. This step associates each of the points of the 

state space to a data structure. It is generally placed after the mathematical modeling phase 

of the addressed problem. The quality of coded data conditions the success of the (GA). 

2. A mechanism for generating the initial population. This mechanism must be able to 

produce a non-homogeneous population of individuals that will serve as a basis for future 

generations. The selection of the initial population is instrumental as it can speed up or 

slow down the convergence to the global optimum. 

3. A function to optimize, or an objective function, returns a value ∈ ℝ+ named fitness or 

individual assessment function. 

4. Operators for diversification of the population over generations and exploration of the state 

space. The crossover operator recomposes the genes of individuals existing in the 

population, the mutation operator aims to guarantee the exploration of space of state. 

5. Sizing parameters: population size, number of total generations, stopping criteria, 

probability of application of crossover, mutation operators, etc.  

 

The general principle of operation of the (GA) algorithm is shown in Fig.3.16. We start by 

generating a random population of individuals. To move from a generation 𝑘 to a generation 𝑘 +

1, the following steps are repeated for all elements of the population 𝑘. Each individual of the 

current population is given a score by computing its fitness value. These values are called the raw 

fitness scores. Then, the raw fitness scores are scaled to convert them into a more usable range of 

values. These scaled values are called expectation values. Based on their expectations, some 

members are selected as parents, and other individuals of the generation 𝑘 that have lower fitness 

are chosen as Elite. These Elites are passed automatically to the next generation without being 

reevaluated during the reproduction phase. Meanwhile, the selected parents produce children either 

by making random changes to a single parent – mutation – or by combining the vector entries of a 

pair of parents – crossover. The obtained children are evaluated again and the ones with lower 

fitness values are selected for the next generation 𝑘 + 1. Finally, the current population is replaced 

with children to form the next generation. 

The algorithm generally stops as soon as one of the following conditions is met: the number of 

generations reaches the maximum predefined value, the amount of running time reaches a prefixed 

value in seconds, the value of the fitness function for the best point in the current population is less 

than or equal to fitness limit, the objective function is no more improving during a predefined 

interval of time in seconds.  
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3.5.3.1 Implementation of the (GA)  

 

To implement the (GA), the "ga " function in MATLAB is applied. This function finds a minimum 

of an objective function using the (GA). The syntax of the "ga" function is the following:  

𝑥 = 𝑔𝑎 (𝑓𝑢𝑛, 𝑛𝑣𝑎𝑟𝑠, 𝐴, 𝑏, 𝐴𝑒𝑞 , 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏, 𝑛𝑜𝑛𝑙𝑐𝑜𝑛)                                 (III.51) 

Where,  

- 𝑥 is the local minimum solution. 

- 𝑓𝑢𝑛 is the objective function.  

- 𝑛𝑣𝑎𝑟𝑠 is the dimension of the problem or the number of design variables.    

- 𝐴 and 𝑏 form the linear inequalities in the problem, ga evaluates the matrix product 

 𝐴. 𝑥 ≤ 𝑏. 

- 𝐴𝑒𝑞  and 𝑏𝑒𝑞  form the linear equalities in the problem, ga evaluates the matrix product 

𝐴𝑒𝑞 . 𝑥 = 𝑏𝑒𝑞. 

 

 

Fig.3.16 General structure of the (GA). 
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- 𝑙𝑏 and 𝑢𝑏 are respectively the lower and upper bounds on the design variables so that the 

solution is found in the range 𝑙𝑏 ≤  𝑥 ≤  𝑢𝑏. 

- 𝑁𝑜𝑛𝑙𝑐𝑜𝑛  is a function corresponding to the nonlinear constraints in the problem. It 

accepts 𝑥  and returns vectors 𝐶  and 𝐶𝑒𝑞 , representing the nonlinear inequalities and 

equalities respectively. ga minimizes the function such that 𝐶(𝑥) ≤  0 and 𝐶𝑒𝑞(𝑥) = 0.   

The flow chart showing the main steps of this algorithm is given in Fig.3.17.  According to the 

operating principle of the algorithm, an initial population consisting of a number 𝑁𝑝𝑜𝑝  of 

individuals is created, each of these individuals forming a specific combination of tuning 

parameters to be optimized. At each step of the algorithm, the total cost function for the whole-

time horizon, 𝐽𝑡𝑜𝑡, is computed to find the fitness value of each individual. Moreover, all applied 

constraints are verified for each individual in the population. The next step is to select specific 

individuals to whom crossover and mutation operations are applied. The new individuals created 

in this stage are again evaluated to retain the best individuals or the individuals who adapted best 

to the imposed criterion. These individuals form the population of the next generation that 

undergoes the same process as its antecedent. The algorithm stops if the chosen stopping criteria 

are satisfied.  

 

Fig.3.17 (GA) operation flow chart. 
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The genetic algorithm presents standard functions which are the initial population generation 

function, "CreationFcn " , the selection operators of the best individuals, "SelectionFcn " , of 

crossing between individuals, " CrossoverFcn "  and mutation of an individual's genes, 

"MutationFcn". The choice of each function must be made as well as parameters or specific options 

for each of these functions. In this study, the standard operators given by default by the (GA) 

toolbox are applied. 

Without revealing the operation details of these functions which can be consulted in the user 

manual, we simply present the functions chosen and their setting parameters in Table 3.7. 

Additional parameters for adjusting the functions of the genetic algorithm are given in Table 3.8. 

Indeed, the population size 𝑁𝑝𝑜𝑝 is set by default to 200 as the number of variables in the problem 

is higher than 5. The number of Elite children to be directly transferred to the next generation is 

specified through the "Elitecount" option parameter. In this case, the "Elitecount" is set to 10 then, 

10 out of the 200 individuals of each population with the best fitness values automatically survive 

to the next generation. On the other hand, the  "CrossoverFraction" set to 0.8 in this case, indicates 

that 80% of the remaining individuals after the selection of Elite children are chosen to undergo 

the necessary crossings. This implies that 152 individuals in our case are creating by crossing, 

while the rest of the population, 38 in this case, will therefore undergo a mutation in their genes to 

be transmitted to the next generation.  

 

Operator type Selected function Description 

CreationFcn gacreationuniform 
Generation function of the 

initial population 

SelectionFcn selectionstochunif Selection function 

CrossoverFcn crossoverscattered Crossover function 

MutationFcn mutationadaptfeasible Mutation function 

 

Table 3.7 (GA) Standard operators. 

 

Parameter Fixed value Description 

𝑁𝑝𝑜𝑝 200 
Number of individuals  

per population 

Elitecount 10 
Number of Elite individuals to 

survive to the next generation  

CrossoverFraction 0.8 
Fraction of the population 

created by crossing 

 

Table 3.8 Parameters for setting the (GA) functions. 
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3.5.3.2 Coding of individuals  

 

Each individual in (GA) is represented by a chromosome. A chromosome is formed from a 

sequence of genes of a certain alphabet. This could be composed of binary digits, real numbers, 

integers, symbols, matrices, etc. In this case study, the chromosome consists of the decision 

variables [𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓  𝑃𝐷𝐺_𝑟𝑒𝑓  𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓]. Unlike the (DP) in which the number of decision variables 

can be reduced to two, the formulation of the problem using (GA) gets more complicated if only 

two variables are chosen. Hence, the three power references are included as decision variables, 

and the battery’s 𝑆𝑂𝐶 reference is selected instead of the battery’s power reference along with the 

(DG) and the grid power references. The battery’s SOC is always represented in discretized state 

form (equation III.29). Besides, the (AG) tries to find a minimum of the objective function over 

the whole-time horizon then, the chromosome should include the power references of the three 

decision variables over the 24-hours. As a result, the actual number of variables of the optimization 

problem, using (GA), is equal to the number of decision variables times the number of total steps 

for the whole time horizon, 𝑁. In the (DP) algorithm a sampling period 𝑇𝑠 = 1/6 hour was selected 

and yielded 𝑁 = 144 , if an equal 𝑇𝑠  is selected for the (GA) case, the number of variables 

increases to 𝑛𝑣𝑎𝑟𝑠 = 3 × 144 = 432. Such a high number of variables makes the mission of 

finding a global minimum extremely harsh and prolonged as well as reduces the convergence 

probability of the algorithm. Though the resolution of the optimal power samples will be reduced, 

the only practical and decent solution is to increase the sampling time to one hour at least and thus 

reduce 𝑁 to 24 and 𝑛𝑣𝑎𝑟𝑠  to 3 × 24 = 72.  

 

 

Fig.3.18 Parameters to be optimized forming a chromosome or an individual. 
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Therefore, a chromosome or an individual consists of 72 genes as seen in Fig.3.18. Referring to 

equation (III.29), The battery’s power at the time 𝑘 is a function of the 𝑆𝑂𝐶 at time 𝑘 and 𝑘 + 1 

then, the first battery’s power reference corresponding to (𝑘 = 0) is a function of 𝑆𝑂𝐶(0) and 

𝑆𝑂𝐶(1). Similarly, the last battery power reference corresponding to (𝑘 = 23) is a function of 

𝑆𝑂𝐶(23) and 𝑆𝑂𝐶(24). As the battery’s 𝑆𝑂𝐶 is replacing 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 as decision variable in the 

optimization problem, the 𝑆𝑂𝐶 vector should include 𝑁 + 1 elements from (𝑘 = 0) to 𝑆𝑂𝐶(𝑘 =

𝑁 = 24) to be able to  build 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 vector consisting of 𝑁 elements. To simplify the formulation 

of the problem and by referring to equation (III.26),  𝑆𝑂𝐶(0) = 50% then, it can be  

entered as a constant. By this, the 𝑆𝑂𝐶 vector consists of 24 elements of which the first is 𝑆𝑂𝐶(1) 

and the last is 𝑆𝑂𝐶(24) . On the other hand, the power reference vectors 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓  and 

𝑃𝐷𝐺_𝑟𝑒𝑓 consist of 24 elements or genes corresponding to the samples from the beginning of the 

24-hour time horizon ((𝑘 = 0) till the end (𝑘 = 𝑁 − 1 = 23). A population made up of 𝑁𝑝𝑜𝑝 of 

individuals is then created and evolves from one generation to another by adapting to an evolution 

criterion. 

The objective function denoted 𝑓𝑢𝑛, is the same as presented in equation (III.11) expressed as 

follows: 

𝑓𝑢𝑛 = 𝐽𝑡𝑜𝑡 = 𝜁𝑜𝑐𝐽𝑜𝑐 + 𝜁𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 + 𝜁𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠𝐽𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠                          (III.52) 

𝐽𝑜𝑐, 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠, and  𝐽𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠 expressions are the ones figuring in equations (III.12) to (III.20). 

The remaining parameters of the ga function: 𝐴, 𝑏, 𝐴𝑒𝑞 , 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏, and 𝑛𝑜𝑛𝑙𝑐𝑜𝑛 can be found in 

Appendix F. 

 

3.5.3.3 Simulation results 

 

To test the viability of the (GA) in finding a feasible solution to the optimization problem, it is 

applied to the two operating days. All weights are set to unity in both simulations, and obtained 

results are shown in Figures 3.19 and 3.20. The results of the winter day are shown in the left plots 

(Fig.3.19 (a) and 3.20 (a)) and the ones of the summer day in the right plots (Fig.3.19 (b), 3.18 

(b)). The obtained results show that (GA) converges for the two tested days and finds a feasible 

solution to the proposed optimization problem while respecting all fixed constraints. As general 

EMS and referring to Fig.3.19 (a) and (b), the (GA) algorithm follows a similar strategy to (DP). 

Needed load energy is purchased from the utility grid at low pool prices while it is covered by the 

battery and the (DG) at high pool prices.  

Besides, the 𝑆𝑂𝐶 curves of the two days, represented in Fig.3.20 (a) and (b), lie between the 

minimum and maximum admissible values. The 𝑆𝑂𝐶s initial states at the beginning of the day are 

retrieved at the end of the day 𝑆𝑂𝐶(𝑘 = 0) = 𝑆𝑂𝐶(𝑘 = 𝑁) = 50% then, the battery’s constraints 

are respected.  
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(a)                                                                                     (b) 

  

Fig.3.19 (GA) results of optimal (DG), battery, and grid power references on (a) the winter day and (b) 

the summer day. 

                                         (a)                                                                                     (b) 

  

Fig.3.20 (GA) results of optimal trajectories of the battery’s 𝑆𝑂𝐶 on (a) the winter day and (b) the 

summer day. 

Same for the (DG) and the utility-grid power curves which range between the lower and upper 

bounds. 
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The share of the energy mix and the corresponding operating costs on the winter and summer days 

are found in Table 3.9. Comparing, the (GA) results in Table 3.9 to the (DP) ones in Tables 3.3 

and 3.4, the total operating costs values for the two days are too close meanwhile the shares of 

each source in the overall energy mix present slight differences especially on the summer day. 

Finally, to carry out a fair comparison between (DP) and (GA) algorithms, the same sampling 

period 𝑇𝑠 should be selected. Knowing that diving the one-hour sampling period by 𝑥, increases 

the numbers of variables of (GA) to 72  times 𝑥  and so the convergence time increases 

exponentially, a better-adapted solution is to rerun the (DP) using a sampling 𝑇𝑠 = 1 hour equal to 

that of (GA). By this, the two algorithms can be fairly compared. The results of the comparison 

between (DP) and (GA) are summarized in Table 3.10. As seen, the (DP) algorithm converges 

much faster than the (GA), (DP) is 16 times faster than the (GA) for the winter test day and 25.5 

times for the summer day. For the reduction of toxic gas emissions goal, the (GA) performs better 

than the (DP) and this can be seen through the emitted toxic gas and the operating cost of the (DG) 

which are lower on both days when applying the (GA) algorithm. On the other hand, the (DP) 

shows better results than (GA) regarding the reduction of converters losses on the winter and 

summer days.  

(GA) results Winter day (18/02/2021) Summer day (16/07/2021) 

RESs  
𝐸𝑃𝑉 + 𝐸𝑊𝑇 = 351.7 𝐾𝑊ℎ 𝐸𝑃𝑉 + 𝐸𝑊𝑇 = 361.58 𝐾𝑊ℎ 

𝐽𝑅𝐸𝑆𝑠 = 2.28 $ 𝐽𝑅𝐸𝑆𝑠 = 1.31 $ 

Utility grid  

𝐸𝑝𝑢𝑟 = 200 𝐾𝑊ℎ   

𝐸𝑠𝑜𝑙𝑑 = 0 𝐾𝑊ℎ 

𝐸𝑝𝑢𝑟 = 224.27 𝐾𝑊ℎ   

𝐸𝑠𝑜𝑙𝑑 = 4.61 𝐾𝑊ℎ 

𝐽𝑔𝑟𝑖𝑑 = 73.77  $ 𝐽𝑔𝑟𝑖𝑑 = 73.53  $ 

Battery  

𝐸𝑑𝑖𝑠_𝑏𝑎𝑡𝑡 = 83.33 𝐾𝑊ℎ 

𝐸𝑐ℎ_𝑏𝑎𝑡𝑡 = 83.83 𝐾𝑊ℎ 

𝐸𝑑𝑖𝑠_𝑏𝑎𝑡𝑡 = 57.25 𝐾𝑊ℎ 

𝐸𝑐ℎ_𝑏𝑎𝑡𝑡 = 57.34 𝐾𝑊ℎ 

𝐽𝑏𝑎𝑡𝑡 = 14.54 $ 𝐽𝑏𝑎𝑡𝑡 = 9 $ 

DG 

Operating hours: 4 hours  

Start-ups: 2 times 

Diesel consumption: 57.15 Liters 

Emitted toxic gas: 44.1 𝐾𝑔 

𝐸𝐷𝐺 = 184.44 𝐾𝑊ℎ 

Operating hours: 1 hour  

Start-ups: 1 time 

Diesel consumption: 16.05 Liters 

Emitted toxic gas: 13 𝐾𝑔 

𝐸𝐷𝐺 = 54.24 𝐾𝑊ℎ 

𝐽𝐷𝐺 = 61.18 $ 𝐽𝐷𝐺 = 17.19 $ 

Losses in dispatchable 

converters 
𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣 = 17.44 𝐾𝑊ℎ 𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣 = 12.52 𝐾𝑊ℎ 

Total operating cost 

function 
𝐽𝑜𝑐 = 151.77 $ 𝐽𝑜𝑐 = 101.03 $ 

 

Table 3.9 (GA) summary results of the share of the energy mix and corresponding operating costs on the 

winter and summer days. 
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However, there are no intelligible preferences between the two algorithms regarding the total 

operating costs which are too close for the two operating days. A slightly lower operating cost is 

obtained in the winter while using the (GA) (difference of 0.12 $), whereas the (DP) shows a better 

result on the summer day (difference of 0.87 $).   

As a result, both algorithms converge and find feasible solutions for the optimization problem with 

a similar EMS strategy. Each of the applied algorithms slightly performed better than the other in 

one out of the two objectives: the minimization of toxic gas emissions and losses in dispatchable 

converters.  Yet, the total operating costs are almost equal for the two algorithms which further 

validates that the minimum found is a global minimum for the optimization problem. Finally, as 

both algorithms showed similar performance, two additional criteria may favor the (DP) over the 

(GA) and are the required CPU time for convergence and the sampling time of variables. 

Following these criteria, (DP) algorithm is selected as an offline optimization technique and its 

results are applied in the next chapter. 

 

 Winter day (18/02/2021) Summer day (16/07/2021) 

CPU time 
DP 12 minutes 28 seconds 8 minutes 40 seconds 

GA 3 hours 12 minutes 45 seconds 3 hours 32 minutes 29 seconds 

Emitted toxic gas 
DP 47.9 𝐾𝑔 13.2 𝐾𝑔 

GA 44.1 𝐾𝑔 13 𝐾𝑔 

𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣 
DP 16.9 𝐾𝑊ℎ 12.10 𝐾𝑊ℎ 

GA 17.44 𝐾𝑊ℎ 12.52 𝐾𝑊ℎ 

𝐽𝑅𝐸𝑆𝑠 
DP 2.28 $ 1.31 $ 

GA 2.28 $ 1.31 $ 

𝐽𝑔𝑟𝑖𝑑  
DP 67.12  $ 71.99  $ 

GA 73.77  $ 73.53  $ 

𝐽𝑏𝑎𝑡𝑡  
DP 13.17 $ 9.62 $ 

GA 14.54 $ 9 $ 

𝐽𝐷𝐺  
DP 69.32 $ 17.24 $ 

GA 61.18 $ 17.19 $ 

𝐽𝑜𝑐 
DP 151.89 $ 100.16 $ 

GA 151.77 $ 101.03 $ 

 

Table 3.10 Comparison between (DP) and (GA). 
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3.6 Conclusion  

In this chapter, an offline optimization problem was formulated to ensure the optimal power 

planning of the DC microgrid for a 24-hour time horizon operation. For this, real profile data of 

solar irradiance, wind speed, ambient temperature, residential load profile, and electricity pool 

prices were applied on winter and summer days as a case study. The EMS targets three main 

objectives: the minimization of the total operating cost, the reduction of the toxic gas emissions 

produced by the (DG), and the minimization of losses in dispatchable converters. To attain these 

objectives, a unique weighted objective function is applied with three weights corresponding to 

each of the predefined objectives. Several constraints are introduced to emulate a real DC 

microgrid scenario consisting of lower and upper power bounds for operating units, minimum and 

maximum admissible SOC values to guarantee a safe operation of the ESS, etc. To solve the 

optimization problem, among several algorithms, two were represented and applied.  

 

First, a deterministic algorithm called dynamic programming is applied and yields effective results. 

The algorithm presents fast convergence and finds a feasible solution to the optimization problem 

while respecting all defined constraints. A second metaheuristic algorithm, named the genetic 

algorithm was applied to further validate the effectiveness of (DP) obtained results. In turn, (GA) 

converges and finds a feasible solution to the proposed problem. A comparison between the two 

algorithms is conducted and the main outcomes are: 

• (GA) and (DP) find close solutions for the two operating days and follow a similar EMS 

to optimally plan the DC microgrid sources with a slight difference in the power 

management of the utility grid and the (DG). Compared to (DP), (GA) relies less on the 

(DG) and more on the utility grid to cover the unmet load for the two tested days. (GA) 

slightly outperforms (DP) on the winter day and vice-versa. Then, no clear preference 

between the two algorithms can be made by assessing the results. However, using the 

two algorithms yield close results which verify that the found solution is a global 

minimum to the optimization problem.  

• Two main criteria favor (DP) over (GA). The extremely higher convergence time of  

(GA) compared to (DP), a ratio of convergence time : 𝐺𝐴𝐶𝑇 𝐷𝑃𝐶𝑇⁄ = 15.44 for the 

winter day, and  24.54 for the summer day are obtained. The second criterion is the 

selection of the sampling period which is restricted for (GA) to 𝑇𝑠 = 1 hour in our case. 

Dividing 𝑇𝑠 by 𝑛𝑠 where 𝑛𝑠 ∈ ℤ
+ increases the number of variables from 72 for 𝑇𝑠 = 1 

hour to 72𝑛𝑠 for 𝑇𝑠 = 1/𝑛𝑠 hour. As the convergence time increases exponentially with 

the number of variables as well as the feasible solution becomes harder to find, the 

sampling time is limited to one hour in the (GA) case. However, (DP) is run with a 

sampling period of 𝑇𝑠 = 1/6  hour and presents a viable solution with a limited 

convergence time. Hence, (DP) algorithm solves the optimization problem with a higher 

time resolution.  
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All obtained results are validated with equal weights, set to one, in the unified objective function. 

Hence, there are no preferences between predefined goals. Yet, if any of the three optimization 

goals are prioritized, the impact of weights’ selection should be treated apart. For this, the weights 

selection problem is addressed in case of any preferences between the predefined objectives. A 

weights selection method is proposed to optimally find the best weights combination based on the 

goals’ preferences. The obtained results show the impact of weights’ selection on the targeted 

objectives.     

 

Finally, though the offline optimization problem finds the optimal power references of the DC 

microgrid for the next 24 hours, this technique remains unable to adapt to any mismatches between 

predictions and real profile data. As a result, an online optimization stage is added in the next 

chapter and operates as a regulator to optimally adapt the power references.      
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Chapter 4 : DC Microgrid Online Optimization  

 
4.1 Introduction  

The offline optimization of the DC microgrid addressed in Chapter 3, outputs the optimal power 

references of the dispatchable sources consisting of the utility grid, ESS, and the (DG) for the next 

24 hours. The inputs of the offline optimization problem consist of forecasted data for the next day 

that may be inaccurate. Thus, differences between forecasted and actual data will inevitably exist 

which leads to a suboptimal solution if the offline optimal power references are applied without 

any update. As a result, and based on the actual input data, an online optimization process is 

required to continuously retrieve the new optimal power references. Different online optimization 

strategies can be found in the literature from which Model Predictive Control (MPC), also known 

as Receding Horizon Control (RHC), fuzzy logic rules-based, feedback correction, etc. are the 

commonly used techniques.  

 

As a concept, (MPC) carries out a first optimization for the whole-time horizon using any 

deterministic or metaheuristic optimization algorithm, then finds the best route for the decision 

variables corresponding to the minimum total cost function.  Only the optimal schedule of the first-

time interval is applied, the time horizon moves forward by one-time interval, and the optimization 

algorithm is executed again for the whole new time horizon and so forth. The (MPC) based 

optimization approach was successfully applied in [95], and [96] to optimally schedule microgrids 

including several DERs and ESS and showed effective results in response to mismatches between 

predicted and actual data. A sampling step for the rolling horizon of 15 minutes is selected in both 

studies with a 24-hour prediction horizon in [95], and 48 hours in [96]. Among the latest 

publications on online optimization techniques, the MPC- based optimization technique with a 

receding horizon is the most found [99].  

 

In [104], a fuzzy logic rules-based online optimization technique is applied in a hybrid fuel cell 

vehicle to optimally ensure the required traction power while minimizing the hydrogen 

consumption of the fuel cell. The state of charge of the fuel cell and the required traction power 

are two input variables and the output variable is the power supplied by the fuel cell. The inference 

rules, the number, and the type of membership functions are specified based on the defined 

optimization objective. A genetic algorithm is applied to an offline profile over the whole-time 

horizon to optimally locate the characteristic points of the membership functions. MPC and fuzzy 

logic-based online optimization techniques were largely investigated for optimal power 

dispatching problems and are not applied in this thesis. 

 

Unlike MPC and fuzzy logic-based methods which are considered stand-alone online optimization 

techniques, other online optimization strategies are added as an adaptive correction part to the 
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offline optimization problem. In such strategies, the optimal power references generated by the 

offline optimization problem are updated each intrasample period through an online optimization 

process. This allows the system to retrieve the optimal solution following the occurring 

mismatches between real and predicted inputs. In [88], an offline optimization is achieved the day 

ahead for a 24-hour time horizon to optimally dispatch power in a microgrid. An online 

optimization stage is added to the offline optimization problem. The online optimization problem 

is formulated as an SQP to optimally find the new power references for the ESS and the utility 

grid following an excess or deficit of power in the microgrid. As the offline optimization objectives 

are not included in the online optimization stage, tolerance bands, based on the offline power 

references, are introduced to limit the online decision variables and maintain the same trajectory 

pace of the offline optimization. In  [98], a feedback online optimization correction part is added 

to an MPC to adjust the output of the units to balance the difference between the forecasted and 

actual values at each intra-time sample. The time step of the MPC optimization is 15 minutes while 

the intra-time sample of the online optimization is one minute. The adopted objectives and 

constraints for the online optimization problem are the same as those of the offline optimization 

with adequate shaping of equations.  

In this chapter, an adaptive online optimization stage is applied to update the offline power 

references due to the occurring mismatches between predicted and actual data. The obtained results 

are validated through several simulation tests and compared with the offline optimization results 

to prove the effectiveness and viability of the online optimization stage.  

 

4.2 Online optimization stage  

The offline and online optimization block diagrams are depicted in Fig.4.1. As detailed in Chapter 

3, the offline optimization is applied the day ahead for the next 24 hours. Besides, the offline 

optimization has a 24-hour time horizon with a sampling period 𝑇𝑠 = 1/6 hour. It outputs the 

optimal power references of dispatchable sources which are 𝑃𝐷𝐺_𝑟𝑒𝑓, 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓, and 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 for 

the next 24 hours. In offline optimization, the time domain is discretized at each 𝑇𝑠 = 1/6 hour 

into (𝑁 = 144) total number of steps for the whole-time horizon. Any optimal power reference at 

time 𝑘  is denoted 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 (𝑘) ,  𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 (𝑘), and 𝑃𝐷𝐺_𝑟𝑒𝑓 (𝑘) with 𝑘 = 1, 2, … , 𝑁 . As stated 

before, these optimal power references are computed based on predicted input data denoted : 

𝑣𝑤𝑖𝑛𝑑_𝑝𝑟𝑒𝑑 , 𝑆𝑝𝑟𝑒𝑑 , 𝑇𝑎_𝑝𝑟𝑒𝑑 , 𝑃𝑙𝑜𝑎𝑑_𝑝𝑟𝑒𝑑 , and 𝛿𝑔𝑟𝑖𝑑_𝑝𝑟𝑒𝑑
𝑝𝑢𝑟

 which correspond respectively to the 

predicted wind speed in (𝑚/𝑠), the predicted solar irradiance in (𝑊 𝑚2⁄ ), the predicted ambient 

temperature in  (°𝐶), the predicted residential load profile in (𝑊), and the electricity purchased 

price in (ȼ/𝐾𝑊ℎ) for the whole time horizon (i.e. 24 hours).  

The predictions' accuracy, mathematical modeling, and correlation with actual data are separate 

study subjects, investigated independently in the literature, and are out of the scope of this thesis. 

Without loss of generality, a random deviation is added to the predicted data to simulate the 

mismatches between predicted and actual data. The sign and span of the deviation between the 
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Fig.4.1 Block diagram of the applied offline and online optimization stages. 

predicted and actual produced/consumed energy and purchased electricity prices are detailed in 

the simulation tests section. Therefore, in all that follows, there will always be mismatches between 

predicted and actual input data. As seen in Fig.4.1, the online optimization stage takes as inputs 

the offline power references and actual measured data each minute. The actual input data at the 

time 𝑘∗are denoted : 𝑣𝑤𝑖𝑛𝑑_𝑟𝑒𝑎𝑙 (𝑘
∗), 𝑆𝑟𝑒𝑎𝑙 (𝑘

∗), 𝑇𝑎_𝑟𝑒𝑎𝑙(𝑘
∗), 𝑃𝑙𝑜𝑎𝑑_𝑟𝑒𝑎𝑙(𝑘

∗), and 𝛿𝑔𝑟𝑖𝑑_𝑟𝑒𝑎𝑙
𝑝𝑢𝑟 (𝑘∗). 

The online optimization stage is ten times faster than the offline optimization references, then each 

sampling period 𝑇𝑠 = 1/6  hour is discretized in turn into several intrasample periods (𝑇𝑖𝑠 =

1/60 hour). The total number of intrasample periods in each sampling period equals  (𝑇𝑠/ 𝑇𝑖𝑠) =

10. As a result, the total number of intrasample steps for the whole time horizon is denoted 𝑁∗ and 

is expressed as follows:    

 

𝑁∗ = 𝑁 × 10 = 1440                (IV.1) 

Thus, the optimal online power references are denoted 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗), 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘

∗), 

and 𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗) with 𝑘∗ = 1, 2, … ,𝑁∗. 

 

4.2.1 The online optimization stage target 

 

In the absence of any online optimization stage, the offline optimized power references are applied 

without any update. Thus, existent mismatches between actual and predicted data result in an 

inequality in the microgrid power balance equation. The power imbalance leads to a deviation in 

the common DC bus voltage causing an unstabilized operation of the DC microgrid. To overcome 

this hurdle, one of the operating converters of dispatchable sources always takes charge of 



 
 

149 
 

stabilizing the common DC bus voltage[156]. Thus, the selected converter compensates for the 

occurring power mismatches. Applications with no active online optimization controller, usually 

adopt the utility grid as a slack bus for the corrective action needed to compensate for the 

uncertainties[157]. However, this solution may not be optimal especially, at high pool prices. 

Besides, for time intervals where the actual pool prices are lower than the predicted ones, the 

optimal solution may be to purchase additional energy from the grid and rely less on the ESS or 

the (DG). As seen, several scenarios can be encountered in which always selecting the utility grid 

to compensate for the power mismatches doesn’t lead to the optimal solution.  

 

From the above, the online optimization stage should find a feasible solution following the same 

predefined offline objectives and system constraints. Applying the online correction part, all 

dispatchable sources can intervene in the new power mix through their updated reference values.  

The obtained solution must restore the power balance equality in case of a power imbalance and 

modify the power references of dispatchable sources conveniently to the actual electricity pool 

prices. Hence, the mission of online optimization can only be accomplished if it provides improved 

results over those that would be obtained in the case of offline optimization.     

 

On the other hand, unlike offline optimization which finds the optimal path for the whole-time 

horizon, the online optimization correction stage is applied for one intrasample period 𝑇𝑖𝑠 as seen 

in Fig.4.1. Although online optimization is run 𝑁∗ times at the end of the time horizon and finds  

𝑁∗ optimal solutions corresponding to each intrasample, the obtained results do not correspond to 

the new optimal solution for the actual whole-time horizon.  

As a result, the online optimization stage is not advanced as an alternative to offline optimization 

and must not rebuild the optimal path for the whole-time horizon. Besides, the 𝑆𝑂𝐶  online 

trajectory should always maintain a close path and shape to the proposed offline optimal one. 

Otherwise, offline optimization will permanently offer the optimal solution for the whole-time 

horizon despite the existent mismatches.  Therefore, the online optimization stage performs local 

optimizations at each intrasample to improve the obtained results at the end of the time horizon 

while maintaining the general optimal path built by offline optimization. All cited criteria and 

objectives are included when formulating the online optimization problem in the next paragraph. 

 

4.3 Online optimization algorithm 

 

The flow chart of the proposed online optimization controller is represented in Fig.4.1. As seen in 

the flow chart, the online optimization variables are the changes in  𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 ,  𝑆𝑂𝐶𝑟𝑒𝑓 , and 

𝑃𝐷𝐺_𝑟𝑒𝑓  over one intrasample period denoted respectively Δ𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 , Δ𝑆𝑂𝐶𝑟𝑒𝑓 , and Δ𝑃𝐷𝐺_𝑟𝑒𝑓 . 

Thus, if the online optimization variables are stored in one vector named Δ𝑥 then, Δ𝑥 ( 𝑘∗), at a 

given time 𝑘∗, corresponds to the vector [Δ𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓(𝑘
∗)    Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘

∗)     Δ𝑃𝐷𝐺_𝑟𝑒𝑓(𝑘
∗)]. 
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Fig.4.2 Flow chart of the proposed online optimization controller. 
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For the first sampling period 𝑇𝑠 , corresponding to 𝑘 = 1, and the first intrasample period 𝑇𝑖𝑠 

corresponding to 𝑘∗ = 1, the lower and upper bounds of online variables respectively 𝑙𝑏(𝑘∗) and 

and 𝑢𝑏(𝑘∗), are fixed based on the offline optimization references 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 (1),  𝑆𝑂𝐶𝑟𝑒𝑓 (1), and 

𝑃𝐷𝐺_𝑟𝑒𝑓 (1) as follows: 

 

{
𝑙𝑏 ( 𝑘∗ = 1) = [𝑃𝑔𝑟𝑖𝑑_𝑚𝑖𝑛 − 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 (1)    𝑆𝑂𝐶𝑚𝑖𝑛 − 𝑆𝑂𝐶𝑟𝑒𝑓 (1)    − 𝑃𝐷𝐺_𝑟𝑒𝑓 (1)]

𝑢𝑏 ( 𝑘∗ = 1) = [𝑃𝑔𝑟𝑖𝑑_𝑚𝑎𝑥 − 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 (1)    𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑟𝑒𝑓 (1)     𝑃𝐷𝐺_𝑚𝑎𝑥 − 𝑃𝐷𝐺_𝑟𝑒𝑓 (1)]
  

(IV.2) 

𝑚𝑖𝑛  and 𝑚𝑎𝑥  subscripts denote respectively the minimum and maximum admissible values 

represented in Chapter 3.     

Besides, 𝑃𝑔𝑟𝑖𝑑(𝑘
∗ = 1) , 𝑃𝑏𝑎𝑡𝑡(𝑘

∗ = 1) , 𝑃𝐷𝐺(𝑘
∗ = 1)  are respectively set to 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 (1) ,  

𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 (1) , and 𝑃𝐷𝐺_𝑟𝑒𝑓  (1) . At any given time 𝑘∗ , the outputted online optimal power 

references are expressed as follows: 

 

{

𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗)  = 𝑃𝑔𝑟𝑖𝑑 (𝑘

∗) + 𝛥𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 (𝑘
∗)

𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗)   = 𝑃𝑏𝑎𝑡𝑡  (𝑘

∗) + 𝛥𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 (𝑘
∗)

𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) = 𝑃𝐷𝐺  (𝑘

∗) + 𝛥𝑃𝐷𝐺_𝑟𝑒𝑓 (𝑘
∗)

                   (IV.3) 

In the next step, the actual data inputs are read and applied as inputs to the online optimization 

problem. Furthermore, they are utilized to compute the potential grid power value that would be 

obtained if no online optimization stage is applied, and the grid converter only compensates for all 

existing power mismatches. This grid power value at the time 𝑘∗, denoted 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘
∗), 

is utilized  along with the remaining offline optimization power references: 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 (𝑘) and 

𝑃𝐷𝐺_𝑟𝑒𝑓 (𝑘)  to compute the total cost function in the absence of the online optimization stage at 

the time 𝑘∗ denoted 𝐽𝑡𝑜𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘
∗). The total cost function is affected by the subscript "offline" 

to designate the case in which the offline optimized power references are applied without an online 

optimization stage. In turn, 𝐽𝑡𝑜𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘
∗) is applied as input to the online optimization problem 

which computes the online total cost function at the time 𝑘∗ , denoted 𝐽𝑡𝑜𝑡_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) , and 

minimizes the difference between the two functions as follows: 

 

𝑚𝑖𝑛
𝛥𝑥(𝑘∗)

(𝐽𝑡𝑜𝑡_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) − 𝐽𝑡𝑜𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘

∗))                             (IV.4) 

The offline and online cost functions and constraints’ expressions are detailed in the next 

paragraph.   

 

Once the online optimization problem is solved, the optimal online outputs at the time 𝑘∗ which 

are  [Δ𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓(𝑘
∗)    Δ𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘

∗)     Δ𝑃𝐷𝐺_𝑟𝑒𝑓(𝑘
∗)]  are retrieved. Then, the optimal online 
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power references 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗), 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒  (𝑘

∗), and 𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) are computed 

using the expressions of equation (IV.3).   

 

Then  𝑘∗is compared to 10𝑘 which indicates the next sampling step as 𝑇𝑠 = 10. 𝑇𝑖𝑠. As long as 

this condition is not fulfilled, the algorithm sets the lower and upper bounds of online variables for 

the next intrasample step 𝑘∗ + 1 , denoted Δ𝑥(𝑘∗ + 1) = [Δ𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓(𝑘
∗ + 1)    Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘

∗ +

1)     Δ𝑃𝐷𝐺_𝑟𝑒𝑓(𝑘
∗ + 1)]  based on the current optimal online power references: 

𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗), 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘

∗), and 𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) as follows:  

  

{
𝑙𝑏 ( 𝑘∗ + 1) = [𝑃𝑔𝑟𝑖𝑑_𝑚𝑖𝑛 − 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘

∗)   𝑆𝑂𝐶𝑚𝑖𝑛 − 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒  (𝑘
∗)   − 𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒  (𝑘

∗)]

𝑢𝑏 ( 𝑘∗ + 1) = [𝑃𝑔𝑟𝑖𝑑_𝑚𝑎𝑥 − 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗)    𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒  (𝑘

∗)     𝑃𝐷𝐺_𝑚𝑎𝑥 − 𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒  (𝑘
∗)]

 

 

(IV.5) 

Where 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗), is the real online 𝑆𝑂𝐶 value at the time 𝑘∗. 

In addition, 𝑃𝑔𝑟𝑖𝑑(𝑘
∗ + 1), 𝑃𝑏𝑎𝑡𝑡(𝑘

∗ + 1), 𝑃𝐷𝐺(𝑘
∗ + 1), corresponding to the next step 𝑘∗ + 1, 

are respectively set to 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗),  𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 (𝑘), and 𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘

∗). 

Once 𝑘∗  reaches 10𝑘 , 𝑃𝑔𝑟𝑖𝑑(𝑘
∗ + 1) , 𝑃𝑏𝑎𝑡𝑡(𝑘

∗ + 1) , 𝑃𝐷𝐺(𝑘
∗ + 1)  change respectively to 

𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗),  𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 (𝑘 + 1), and 𝑃𝐷𝐺_𝑟𝑒𝑓 (𝑘 + 1). Meanwhile, the lower and upper 

bounds of online variables for the next intrasample step are always set based on the latest online 

power references 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) , 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒  (𝑘

∗) , and 𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒  (𝑘
∗)  following 

equation (IV.5). These steps are all repeated until 𝑘 reaches 𝑁 which corresponds to the end of the 

24-hour time horizon and the algorithm is terminated.  

 

 
Fig.4.3 Illustrative example of PDG_ref_online (k

∗) for the first and second sampling steps. 



 
 

153 
 

Figures 4.3 and 4.4 show an illustrative example of the proposed online optimization stage for the 

first and second sampling steps corresponding to 𝑘 = 1 and 2 along with the intrasample steps 

𝑘∗ = 1, 2, … ,12. Fig. 4.3 shows an admissible trajectory of 𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) in which the online 

variable 𝛥𝑃𝐷𝐺_𝑟𝑒𝑓, the lower and upper bounds respectively denoted 𝑙𝑏𝐷𝐺 and 𝑢𝑏𝐷𝐺, are defined 

following the flow chart in Fig.4.2. The trajectory curve of 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (k
∗) can be plotted 

following the same strategy as the illustrative example of 𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (k
∗). A slight difference 

is noted at each first intrasample step of a new sampling period where 𝑃𝐷𝐺(𝑘
∗ + 1) =

𝑃𝐷𝐺_𝑟𝑒𝑓 (𝑘 + 1) whereas, 𝑃𝑔𝑟𝑖𝑑 (k
∗ + 1) = 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (k

∗).  

Fig.4.4 shows an illustrative example of an admissible trajectory of 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒  (𝑘
∗). As seen, 

𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (k
∗)  differs from 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (k

∗)  and 𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (k
∗)  in the expression 

which always equals : 

 

𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) = 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘) + 𝛥𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 (𝑘

∗)                                                           (IV.6) 

 

with k∗ = 1 + 10. (𝑘 − 1), 2 + 10. (𝑘 − 1),… , 10 + 10 (𝑘 − 1)          for  𝑘 = 1, 2, . . ., 𝑁 

Same for the lower and upper bounds of Δ𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 (𝑘
∗) which equal respectively Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛 −

𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘)  and Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 − 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘) . Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛  and Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥  are respectively the 

minimum and maximum allowable variations in the battery reference power.  

 

 
Fig.4.4 Illustrative example of 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (k

∗) for the first and second sampling steps. 

4.3.1 GS algorithm  

 

To solve the online optimization problem, an algorithm is selected based on two fundamental 

criteria: the convergence speed and the potential of finding a global minimum. In a real-time 

simulation, the optimization algorithm which is run in parallel to the DC microgrid simulation 
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should converge and output the optimal power references before the next intrasample time step. 

Besides, all obtained solutions should correspond to global and not local minima. Referring to the 

MATLAB Global Optimization Toolbox, several solvers are proposed to search for global 

solutions to problems that contain multiple maxima or minima. Among all proposed solvers, the 

Global Search (GS) algorithm yielded the fastest and most optimized results. As a concept, the GS 

algorithm starts a local solver (such as 𝑓𝑚𝑖𝑛𝑐𝑜𝑛) from multiple start points to sample multiple 

basins of attraction and search for a global minimum. Next, the selected local solver and the GS 

algorithm's general concept are detailed.  

 

4.3.1.1 Local solver selection 

 

To successfully run the GS algorithm, a local solver should be selected before starting the 

algorithm. By referring to the MATLAB Global Optimization Toolbox, the 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 solver is 

suggested as a local solver when running a GS optimization problem.  As a definition, 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 

is a nonlinear programming solver that finds a local minimum of a constrained nonlinear 

multivariable function. The optimization problem is specified by the following: 

 

𝑚𝑖𝑛
𝑥
𝑓(𝑥) such that 

{
 
 

 
 

   𝑐(𝑥) ≤ 0
𝑐𝑒𝑞(𝑥) = 0
    𝐴. 𝑥 ≤ 𝑏

     𝐴𝑒𝑞 . 𝑥 = 𝑏𝑒𝑞
     𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

             (IV.7) 

Where,  

- 𝑓(𝑥) is the function to minimize, named the objective function.  

- 𝑐(𝑥) is the nonlinear inequality constraints’ function that returns a scalar. 

- 𝑐𝑒𝑞(𝑥) is the nonlinear equality constraints’ function that returns a scalar. 

- 𝐴 and 𝑏 are respectively the matrix and vector of the linear inequality equations. 

- 𝐴𝑒𝑞 and 𝑏𝑒𝑞 are respectively the matrix and vector of the linear equality equations. 

- 𝑙𝑏 and 𝑢𝑏 are respectively the lower and upper bounds on the design variables in the vector 

𝑥. 

 

4.3.1.2 Objective function 

 

The objective function, named the total cost function, 𝐽𝑡𝑜𝑡, in Chapter 3, was the weighted sum of 

the  operation cost function 𝐽𝑜𝑐 , the pollutant gas emissions cost function 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 , and the 

converters’ losses cost function 𝐽𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠. Each of  𝐽𝑜𝑐, 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠, and 𝐽𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠 corresponds 

to a distinct optimization goal. The preference between the three optimization goals was 

investigated in detail in the previous chapter through the combination of different weight 

selections. As the main purpose of this chapter is the representation of an online optimization stage 
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that updates the offline optimized power references due to the mismatches between predicted and 

actual data, weights of 𝐽𝑜𝑐 , 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 , and 𝐽𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠  are all set to one ( ζ𝑜𝑐 = ζ𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠= 

ζ𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠=1). Hence, there are no preferences between the optimization goals during the online 

optimization process. Besides, as seen in Chapter 3, the accomplishment of the minimization of 

the operation cost goal automatically favors the minimization of the converter’s losses and vice-

versa as the two goals are reconcilable. Thus, and to further simplify the formulation of the online 

optimization problem, the minimization of converters losses’ goal is not considered in the 

objective function in this chapter. Yet, if the online optimization yields improved results of the 

operation cost compared to the offline ones, this will automatically improve the results of the 

converter's losses. This reasoning will be validated in the simulation results section.  

By this, the newly applied total cost function only includes the operation cost and the pollutant gas 

emissions cost functions. An offline and online total cost functions, denoted respectively 

𝐽𝑡𝑜𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘
∗)  and 𝐽𝑡𝑜𝑡_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘

∗)   and expressed in ($), are established following equations 

(IV.8) and (IV.9):   

 

𝐽𝑡𝑜𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘
∗) = 𝐽𝑜𝑐_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘

∗) + 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘
∗)                                                     (IV.8) 

𝐽𝑡𝑜𝑡_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) = 𝐽𝑜𝑐_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘

∗) + 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗)                                              (IV.9) 

Where, 𝐽𝑜𝑐_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘
∗) , 𝐽𝑜𝑐_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘

∗) , 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘
∗) , and 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘

∗)  are 

respectively the offline and online operation costs at the time 𝑘∗ expressed in ($) and the offline 

and online pollutant gas emissions costs at the time 𝑘∗, expressed in ($). 

As the main purpose of the online optimization stage is to improve the offline obtained results, the 

objective function, 𝑓(𝑥) to minimize, is established as the difference between the online and the 

offline cost functions as expressed in equation (IV.4). Then,  𝑓(𝑥) is expressed as follows: 

 

𝑓(𝑥) = 𝐽𝑡𝑜𝑡_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) − 𝐽𝑡𝑜𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘

∗) = 𝛥𝐽𝑜𝑐(𝑘
∗) + 𝛥𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠(𝑘

∗)                           (IV.10) 

Where, Δ𝐽𝑜𝑐(𝑘
∗) and Δ𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (𝑘

∗) are respectively the resulting difference between the online 

and offline operation costs and the difference between the online and offline pollutant gas 

emissions costs at the time 𝑘∗, expressed in ($). 

Δ𝐽𝑜𝑐(𝑘
∗) and Δ𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠(𝑘

∗) are expressed as follows: 

 

{
𝛥𝐽𝑜𝑐(𝑘

∗) = 𝐽𝑜𝑐_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗) − 𝐽𝑜𝑐_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘

∗)

             𝛥𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠(𝑘
∗) =  𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘

∗) − 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘
∗)

           (IV.11)                                                               

Same as Chapter 3, 𝐽𝑜𝑐_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗) is expressed as the sum of the power grid cost function at the 

time 𝑘∗, 𝐽𝑔𝑟𝑖𝑑_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗), the battery storage cost function at the time 𝑘∗, 𝐽𝑏𝑎𝑡𝑡_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘

∗), and the 

diesel generator cost function at the time 𝑘∗, 𝐽𝐷𝐺_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗). The same for  𝐽𝑜𝑐_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘

∗) which 

is expressed as the sum of 𝐽𝑔𝑟𝑖𝑑_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘
∗), 𝐽𝑏𝑎𝑡𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘

∗), and 𝐽𝐷𝐺_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘
∗).  

𝐽𝑜𝑐_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗) and 𝐽𝑜𝑐_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘

∗) are represented in equations (IV.5) and (IV.6). 
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𝐽𝑜𝑐_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗) = 𝐽𝑔𝑟𝑖𝑑_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘

∗) + 𝐽𝑏𝑎𝑡𝑡_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗) + 𝐽𝐷𝐺_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘

∗)                          (IV.12)      

𝐽𝑜𝑐_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘
∗) = 𝐽𝑔𝑟𝑖𝑑_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘

∗) + 𝐽𝑏𝑎𝑡𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘
∗) + 𝐽𝐷𝐺_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘

∗)                            (IV.13)        

The offline and online power grid cost functions at the time 𝑘∗are expressed as follows: 

 𝐽𝑔𝑟𝑖𝑑_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘
∗) = (𝛿𝑔𝑟𝑖𝑑_𝑟𝑒𝑎𝑙

𝑝𝑢𝑟 (𝑘∗),𝑚𝑎𝑥(0 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘
∗)) +

𝛿𝑔𝑟𝑖𝑑
𝑠𝑜𝑙𝑑 , 𝑚𝑖𝑛(0 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘

∗))) , 𝑇𝑠                                                                                      (IV.14) 

𝐽𝑔𝑟𝑖𝑑_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗) = (𝛿𝑔𝑟𝑖𝑑_𝑟𝑒𝑎𝑙

𝑝𝑢𝑟 (𝑘∗),𝑚𝑎𝑥 (0 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗)) + 𝛿𝑔𝑟𝑖𝑑

𝑠𝑜𝑙𝑑 , 𝑚𝑖𝑛 (0 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒  (𝑘
∗))) , 𝑇𝑠                                                                                      

(IV.15) 

Where 𝛿𝑔𝑟𝑖𝑑_𝑟𝑒𝑎𝑙
𝑝𝑢𝑟 (𝑘∗)  and 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘

∗)  are respectively the electricity real purchased 

price at the time  𝑘∗in (ȼ/KWh) and the grid power reference at the time  𝑘∗in (𝑊) that is obtained 

when no online optimization stage is applied and the utility grid converter compensates for all 

power mismatches. 

 

At any intrasample step time 𝑘∗ , 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒  (𝑘
∗)  is computed using equation (IV.3). 

However, 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘
∗) can be retrieved by solving the following equation:  

𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘
∗) = 𝑃𝑙𝑜𝑎𝑑_𝑟𝑒𝑎𝑙 (𝑘

∗) − 𝑃𝑃𝑉𝑟𝑒𝑎𝑙  (𝑘
∗) − 𝑃𝑤𝑖𝑛𝑑𝑟𝑒𝑎𝑙  (𝑘

∗) + 𝑃𝑏𝑎𝑡𝑡𝑟𝑒𝑓  (𝑘) −

𝑃𝐷𝐺𝑟𝑒𝑓(𝑘) − ∑𝑃𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘
∗)                   (IV.16) 

∑𝑃𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘
∗) = 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑏𝑖𝑑𝑖𝑟𝑒𝑐_𝑐𝑜𝑛𝑣 (𝑘) + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝐷𝐺_𝑐𝑜𝑛𝑣(𝑘) + 𝑃𝑏𝑜𝑜𝑠𝑡_𝑙𝑜𝑠𝑠𝑒𝑠(𝑘

∗) +

𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑔𝑟𝑖𝑑_𝑐𝑜𝑛𝑣(𝑘
∗) + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑊𝑇_𝑟𝑒𝑐(𝑘

∗)           (IV.17) 

with 𝑘∗ = 1 + 10. (𝑘 − 1), 2 + 10. (𝑘 − 1),… , 10 + 10 (𝑘 − 1)          for  𝑘 = 1, 2, . . ., 𝑁 

 

Where,  

- 𝑃𝑙𝑜𝑎𝑑_𝑟𝑒𝑎𝑙 (𝑘
∗), is the real load consumption at the time 𝑘∗. 

- 𝑃𝑃𝑉_𝑟𝑒𝑎𝑙 (𝑘
∗), is the real PV-generated power at the time 𝑘∗. 

- 𝑃𝑤𝑖𝑛𝑑_𝑟𝑒𝑎𝑙 (𝑘
∗), is the real wind-generated power at the time 𝑘∗. 

- 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 (𝑘), is the offline battery reference power at the time 𝑘. 

- 𝑃𝐷𝐺_𝑟𝑒𝑓(𝑘), is the offline (DG) reference power at the time 𝑘. 

- ∑𝑃𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠_offline(𝑘
∗) , are the total losses in all operating converters if no online 

optimization stage is applied at the time 𝑘∗. 

- 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑏𝑖𝑑𝑖𝑟𝑒𝑐_𝑐𝑜𝑛𝑣 (𝑘), are the losses in the battery converter at the time 𝑘. 

- 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝐷𝐺_𝑐𝑜𝑛𝑣(𝑘), are the losses in the (DG) converter at the time 𝑘. 

- 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑊𝑇_𝑟𝑒𝑐 , are the losses in the (WT) 3𝜙 rectifier at the time 𝑘∗. 

- 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑔𝑟𝑖𝑑_𝑐𝑜𝑛𝑣(𝑘
∗), are the losses in the grid converter if no online optimization stage 

is applied at the time 𝑘∗. 
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- 𝑃𝑏𝑜𝑜𝑠𝑡_𝑙𝑜𝑠𝑠𝑒𝑠(𝑘
∗), are the losses in the PV converter at the time 𝑘∗. 

 

As seen in Chapter 2, 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑔𝑟𝑖𝑑_𝑐𝑜𝑛𝑣(𝑘
∗)  is a function of 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘

∗)  then, 

𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘
∗) is the only unknown variable of the equation. Besides, as equations (IV.16) 

and (IV.17) denote the power balance equation of the system without the online optimization stage, 

the battery and (DG) power references and corresponding converters’ losses are all the same for 

all intrasample periods (𝑇𝑖𝑠 ) comprising in a sampling period 𝑇𝑠 . As stated before, after 10 

intrasample steps, all read offline input data moves one period forward from the time 𝑘 to 𝑘 + 1.  

To solve equation (IV.9), the syntax "solve" in MATLAB is applied to find 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘
∗). 

 

The expressions of the battery online and offline cost functions are the same as equation (III.13) 

in Chapter 3. The only difference is that they are computed for one intrasample period and not for 

the whole time horizon as in Chapter 3. They are expressed as follows: 

 

𝐽𝑏𝑎𝑡𝑡_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗) = (

𝐶𝐶

2.𝐶𝑦𝑐𝑙𝑒𝑠
. 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘

∗) + 𝛿𝑑𝑒𝑔. 𝑃(𝑘
∗)𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒
2 )𝑇𝑖𝑠              (IV.18) 

𝐽𝑏𝑎𝑡𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑘
∗) = (

𝐶𝐶

2,𝐶𝑦𝑐𝑙𝑒𝑠
, 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘) + 𝛿𝑑𝑒𝑔, 𝑃(𝑘)𝑏𝑎𝑡𝑡_𝑟𝑒𝑓

2 )𝑇𝑖𝑠                                    (IV.19) 

𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗) is computed following the bellow equation: 

𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗) = 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘) + 𝛥𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘

∗)                                                           (IV.20) 

With  𝑘∗ = 1 + 10. (𝑘 − 1), 2 + 10. (𝑘 − 1),… , 10 + 10 (𝑘 − 1)          for        𝑘 = 1, 2, . . ., 𝑁 

Δ𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘
∗) at the time 𝑘∗can be found through the online variable Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘

∗) using the 

bellow expression: 

 

𝛥𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘
∗) = −

𝑄(𝑇𝑎),𝑉𝑏𝑎𝑡𝑡(𝑘
∗)

𝑇𝑖𝑠
𝛥𝑆𝑂𝐶𝑟𝑒𝑓(𝑘

∗)                        (IV.21) 

Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘
∗) is the change in the battery’s 𝑆𝑂𝐶  over one intrasample period. It is expressed as 

follows: 

𝛥𝑆𝑂𝐶𝑟𝑒𝑓(𝑘
∗) = 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘

∗ + 1) − 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗)                                                      (IV.22)                                                               

The calculation of 𝑄(𝑇𝑎) and 𝑉𝑏𝑎𝑡𝑡(𝑘
∗) is detailed in Appendix E. 

 

The (DG) online and offline cost functions at the time 𝑘∗, 𝐽𝐷𝐺_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) and 𝐽𝐷𝐺_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 (𝑘

∗),  

consist of the fuel consumption cost function at the time 𝑘∗, 𝐽𝐷𝐺
𝑓𝑢𝑒𝑙(𝑘∗), expressed as follows: 

 

𝐽𝐷𝐺
𝑓𝑢𝑒𝑙(𝑘∗) = 𝜆𝑓𝑢𝑒𝑙, 𝐹(𝑘

∗), 𝑇𝑖𝑠                                                                                                  (IV.23) 
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Knowing 𝐹(𝑘∗)  is a function of 𝑃𝐷𝐺_𝑟𝑒𝑓(𝑘)  for the offline optimization and a function of 

𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗) for the online optimization process. To obtain 𝐹(𝑘∗), we refer to the plotted 

curve of Fig.3.5. 𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗) is calculated using equation (IV.3). 

 

The start-up cost function and the maintenance cost functions of the (DG) are not included in the 

online optimization feedback as they account for a minor cost from the (DG) total operating cost 

as well as they were considered in the day ahead offline optimization.   

Finally, as the pollutant gas emissions cost function is a linear equation (equation (III.19)), the 

resulting difference between the online and offline pollutant gas emissions costs at the time 𝑘∗ can 

be directly expressed as: 

 

𝛥𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠(𝑘
∗) =  𝛽𝑒𝑚𝑖𝑠𝑠, (𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘

∗) − 𝑃𝐷𝐺_𝑟𝑒𝑓 (𝑘)), 𝑇𝑖𝑠                                     (IV.24) 

With  𝑘∗ = 1 + 10. (𝑘 − 1), 2 + 10. (𝑘 − 1),… , 10 + 10 (𝑘 − 1)          for        𝑘 = 1, 2, . . ., 𝑁 

4.3.1.3 Lower and upper bounds (𝒍𝒃 & 𝒖𝒃)  

 

The lower and upper bounds, respectively 𝑙𝑏(𝑘∗)  and 𝑢𝑏(𝑘∗)  of the online variables 

[Δ𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓(𝑘
∗)  Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘

∗) Δ𝑃𝐷𝐺_𝑟𝑒𝑓(𝑘
∗)], at any given time 𝑘∗ are defined following the flow 

chart of Fig.4.2 and equations (IV.2) and (IV.5). 

4.3.1.4 Constraints 

 

In the online optimization stage, all equality and inequality constraints which are shown in Chapter 

3 are defined as nonlinear constraints. Hence, the linear equality and inequality constraint matrices 

𝐴𝑒𝑞 and 𝐴 equal empty matrices (𝐴𝑒𝑞 = [], 𝐴 = []) and their corresponding vectors, respectively  

𝑏𝑒𝑞 and 𝑏, equal empty vectors (𝑏𝑒𝑞 = [], 𝑏 = []). Therefore, 𝑐(𝑥) ≤ 0 and 𝑐𝑒𝑞(𝑥) = 0 functions 

are utilized to define respectively all inequality and equality constraints. In this case, 𝑐(𝑥) and 

𝑐𝑒𝑞(𝑥)  consist each of an array of functions represented as follows: 

 

𝑐(𝑥) = [

𝑐1(𝑥);

𝑐2(𝑥);
… ;

𝑐𝑛_𝑖𝑐(𝑥);

]          and            𝑐𝑒𝑞(𝑥) = [

𝑐𝑒𝑞1(𝑥);

𝑐𝑒𝑞2(𝑥);
… ;

𝑐𝑒𝑞𝑛_𝑒𝑐(𝑥);

]      (IV.25) 

 

Where, 𝑐1(𝑥), 𝑐2(𝑥), 𝑐𝑛_𝑐(𝑥), 𝑐𝑒𝑞1(𝑥), 𝑐𝑒𝑞2(𝑥), and  𝑐𝑒𝑞𝑛_𝑐(𝑥) are respectively the inequality 

and equality constraints functions. 𝑛_𝑖𝑐 and 𝑛_𝑒𝑐 are respectively the total numbers of inequality 

and equality constraints.  
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In our case, two inequality functions are needed to express the two constraints on the (DG) that 

were presented in Chapter 3 by equations (III.27) and (III.28). The two constraints are expressed 

as follows: 

𝑐1(𝑥(𝑘
∗)) = 𝑃𝐷𝐺_𝑚𝑖𝑛. 𝑠𝑖𝑔𝑛 (𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘

∗)) − 𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗)                    (IV.26) 

𝑐2(𝑥(𝑘
∗)) = −𝑠𝑖𝑔𝑛 (𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘

∗)) , 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗)                            (IV.27)               

One equality function is required to express the power balance equation represented in Chapter 3 

by equations (III.21) and (III.22). The equality constraint is expressed as follows: 

 

𝑐𝑒𝑞1(𝑥(𝑘
∗)) = 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘

∗) + 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒  (𝑘
∗) + 𝑃𝐷𝐺_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘

∗) −

∑𝑃𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗) − 𝑃𝑙𝑜𝑎𝑑_𝑟𝑒𝑎𝑙 (𝑘

∗) + 𝑃𝑃𝑉_𝑟𝑒𝑎𝑙 (𝑘
∗) + 𝑃𝑤𝑖𝑛𝑑_𝑟𝑒𝑎𝑙 (𝑘

∗)                     (IV.28)   

 

∑𝑃𝑐𝑜𝑛𝑣_𝑙𝑜𝑠𝑠𝑒𝑠_𝑜𝑛𝑙𝑖𝑛𝑒(𝑘
∗) = 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑏𝑖𝑑𝑖𝑟𝑒𝑐_𝑐𝑜𝑛𝑣 (𝑘

∗) + 𝑃𝑏𝑜𝑜𝑠𝑡_𝑙𝑜𝑠𝑠𝑒𝑠(𝑘
∗) +

𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝐷𝐺_𝑐𝑜𝑛𝑣(𝑘
∗) + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑊𝑇_𝑟𝑒𝑐(𝑘

∗) + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑔𝑟𝑖𝑑_𝑐𝑜𝑛𝑣(𝑘
∗)                           (IV.29)  

 

An additional constraint should be added on Δ𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘
∗) to restrict the changes in the battery-

charged/discharged power at each intrasample time 𝑘∗ . In normal operating conditions, 

Δ𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘
∗) should range between a minimum and a maximum value, denoted respectively 

Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛 and Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥. The normal operating conditions correspond to an admissible battery 

𝑆𝑂𝐶  at a given time 𝑘∗ , 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) , within the minimum and maximum thresholds, 

respectively 𝑆𝑂𝐶𝑚𝑖𝑛 and 𝑆𝑂𝐶𝑚𝑎𝑥. 

 

To verify if 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) lies within the admissible limits, we refer to the lower and upper 

bounds of Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘
∗) variable, denoted respectively  𝑙𝑏Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘

∗) and 𝑢𝑏Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘
∗). At a 

given time 𝑘∗, 𝑙𝑏Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘
∗) and 𝑢𝑏Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘

∗) are expressed as follows: 

 

{
𝑙𝑏𝛥𝑆𝑂𝐶𝑟𝑒𝑓(𝑘

∗) = 𝑆𝑂𝐶𝑚𝑖𝑛 − 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗)

𝑢𝑏𝛥𝑆𝑂𝐶𝑟𝑒𝑓(𝑘
∗) = 𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘

∗)
                           (IV.30) 

Hence, If 𝑙𝑏Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘
∗) < 0 and 𝑢𝑏Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘

∗) > 0, then  𝑆𝑂𝐶𝑚𝑖𝑛 < 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) < 𝑆𝑂𝐶𝑚𝑎𝑥 

and the ESS can contribute either by charging/discharging to the power mix of the DC microgrid.  

In this operating condition, named "normal_ESS",  an additional inequality constraint function is 

added to limit Δ𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘
∗) within Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛 and Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 . The constraint is expressed as 

follows:  

                                                                   

𝑐3(𝑥(𝑘
∗)) = |𝛥𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘

∗)| − 𝛥𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥                                                                        (IV.31) 
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We take note that Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛  and Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥  are respectively the minimum and maximum 

admissible changes in the battery power and have negative and positive constant values. In the 

rest, we consider equal magnitudes of Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛  and Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 . Then, Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 =

|Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛|. 

On the other hand, If 𝑙𝑏Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘
∗) ≥ 0 or 𝑢𝑏Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘

∗) ≤ 0, then 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗) has reached 

one of the allowable thresholds, 𝑆𝑂𝐶𝑚𝑖𝑛 or 𝑆𝑂𝐶𝑚𝑎𝑥. In this operating condition, four subcases 

arise following the value of 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓_𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗)  which equals  𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘) + 𝛥𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘

∗)  

(equation (IV.20)). The four subcases are the following:                                                         

1. 𝑙𝑏Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘
∗) ≥ 0 & 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘) + 𝛥𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘

∗) > 0: the battery has reached 𝑆𝑂𝐶𝑚𝑖𝑛 

and the proposed solution requires discharging power from the battery. To guarantee the 

safe operation of the ESS, this request is denied and the battery switches to a floating mode 

in which 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘) + 𝛥𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘
∗) = 0 to maintain 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘

∗) at 𝑆𝑂𝐶𝑚𝑖𝑛. In this 

operating condition, named "low_limit_ESS", 𝑐3(𝑥(𝑘
∗)) is not included as a constraint and 

substituted instead with an equality constraint, 𝑐𝑒𝑞2(𝑥(𝑘
∗)), expressed as follows: 

      𝑐𝑒𝑞2(𝑥(𝑘
∗)) = 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘) + 𝛥𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘

∗)                                                         (IV.32) 

2. 𝑙𝑏Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘
∗) ≥ 0 & 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘) + 𝛥𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘

∗) ≤ 0: the battery has reached 𝑆𝑂𝐶𝑚𝑖𝑛 

and the proposed solution requires charging power in the battery. In this condition, named 

"low_limit_charge_ESS”, there is no need to activate the floating mode and the system 

constraints are the same as in the "normal_ESS" condition. 

 

3. 𝑢𝑏Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘
∗) ≤ 0 & 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘) + 𝛥𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘

∗) < 0: the battery has reached 𝑆𝑂𝐶𝑚𝑎𝑥 

and the proposed solution requires charging power in the battery. To guarantee the safe 

operation of the ESS, this request is denied and the battery switches to a floating mode in 

which 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘) + 𝛥𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘
∗) = 0  to maintain 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘

∗)  at 𝑆𝑂𝐶𝑚𝑎𝑥 . This 

operating condition is named "high_limit_ESS" and has the same system constraints as the 

"low_limit_ESS" condition. 

 

4. 𝑢𝑏Δ𝑆𝑂𝐶𝑟𝑒𝑓(𝑘
∗) ≤ 0 & 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘) + 𝛥𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑘

∗) ≥ 0: the battery has reached 𝑆𝑂𝐶𝑚𝑎𝑥 

and the proposed solution requires discharging power from the battery. In this condition, 

named "high_limit_discharge_ESS”, there is no need to activate the floating mode and the 

system constraints are the same as in the "normal_ESS" condition. 

 

Finally, included in Chapter 3 by equation (III.26), the constraint of retrievement of the battery’s 

𝑆𝑂𝐶 initial state (𝑘 = 0) at the end of the time horizon (𝑘 = 𝑁) is not retained in this chapter. By 

this, the battery’s online state at the end of the time horizon, 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒 (𝑘
∗ = 𝑁∗), can have any 
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random value between  𝑆𝑂𝐶𝑚𝑖𝑛  and 𝑆𝑂𝐶𝑚𝑎𝑥 . All system constraints based on the defined 

operating conditions of the ESS are summarized in Table 4.1. 

Operating condition Inequality constraints: 𝑐(𝑥(𝑘∗)) 
Equality constraints:  

𝑐𝑒𝑞(𝑥(𝑘∗)) 

normal_ESS [𝑐1(𝑥(𝑘
∗)); 𝑐2(𝑥(𝑘

∗)); 𝑐3(𝑥(𝑘
∗))] 𝑐𝑒𝑞1(𝑥(𝑘

∗)) 

low_limit_ESS [𝑐1(𝑥(𝑘
∗)); 𝑐2(𝑥(𝑘

∗))] [𝑐𝑒𝑞1(𝑥(𝑘
∗)); 𝑐𝑒𝑞2(𝑥(𝑘

∗))] 

high_limit_ESS [𝑐1(𝑥(𝑘
∗)); 𝑐2(𝑥(𝑘

∗))] [𝑐𝑒𝑞1(𝑥(𝑘
∗)); 𝑐𝑒𝑞2(𝑥(𝑘

∗))] 

low_limit_charge_ESS [𝑐1(𝑥(𝑘
∗)); 𝑐2(𝑥(𝑘

∗)); 𝑐3(𝑥(𝑘
∗))] 𝑐𝑒𝑞1(𝑥(𝑘

∗)) 

high_limit_discharge_ESS [𝑐1(𝑥(𝑘
∗)); 𝑐2(𝑥(𝑘

∗)); 𝑐3(𝑥(𝑘
∗))] 𝑐𝑒𝑞1(𝑥(𝑘

∗)) 

 

Table 4.1 Corresponding inequality and equality constraints of all operating conditions. 

 

4.3.1.5 GS algorithm  

 

This section advances a brief description of the main steps performed by the GS algorithm when 

it is run along with corresponding Matlab functions and parameters. For a detailed description of 

the GS algorithm, it can be referred to [158]. First, to run the GS algorithm through Matlab, a GS 

object containing several properties is created using the command "GlobalSearch". If the object is 

named gs, then the syntax:  gs =  GlobalSearch creates gs, a GlobalSearch solver with its 

properties set to the defaults. The main properties of the GS are detailed as the main steps 

performed by the algorithm are cited.  

 

Second, GS requires a local solver that will be started from multiple start points. In this case, the 

chosen solver is  " fmincon " and it can be added as a local solver for the GS algorithm by creating 

an optimization problem structure using the command:  "CreateOptimProblem". The command 

has the following syntax:  problem =  CreateOptimProblem ('solverName', 'ParameterName', 

ParameterValue,…). In our case, the syntax is the following: 

 

problem = CreateOptimProblem ('fmincon', 'x0', 𝑥0, 'objective', 𝑓(𝑥), 'Aineq', 𝐴, 'bineq', 𝑏, 'Aeq', 

𝐴𝑒𝑞, 'beq', 𝑏𝑒𝑞, 'lb', 𝑙𝑏, 'ub', 𝑢𝑏, 'nonlcon', [ 𝑐(𝑥), 𝑐𝑒𝑞(𝑥)]).   

  

Where,  

 

- 'x0', is the starting point from which fmincon is run. In this case, it is a starting vector with 

the same structure and dimension as the online variable Δ𝑥 which is an array of 3 variables 

[Δ𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓    Δ𝑆𝑂𝐶𝑟𝑒𝑓     Δ𝑃𝐷𝐺_𝑟𝑒𝑓].  The starting vector is denoted 𝑥0 and is set as follows: 

 

𝑥0 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑(𝑠𝑖𝑧𝑒(𝑙𝑏)), (𝑢𝑏 − 𝑙𝑏)                        (IV.33) 
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The command "𝑟𝑎𝑛𝑑" is used to generate a random vector with the same size as the lower 

bound vector. As fmincon solver is run 𝑁∗ times from the start to the end of the time 

horizon, we may have the interest to run each time the solver from a different starting vector 

which favors the exploitation of all possible solutions and the finding of a global minimum.  

- 'objective', is the objective function to minimize, it is  𝑓(𝑥) in this case (equation (IV.10)). 

- 'Aineq', 'bineq', 'Aeq', and 'beq', are respectively the linear inequality matrix and 

corresponding vector, and the equality matrix and corresponding vector. They are 

respectively equal to 𝐴, 𝑏, 𝐴𝑒𝑞, and 𝑏𝑒𝑞. 

-  'lb' and 'ub', are respectively the lower and upper bounds and are equal to 𝑙𝑏 and 𝑢𝑏 

(equations (IV.2) and (IV.5)). 

- 'nonlcon', are the nonlinear inequality and equality constraints and are equal in this case to 

the two arrays [𝑐(𝑥), 𝑐𝑒𝑞(𝑥)].   

 

Finally, several parameters and functions of the local solver fmincon must be set appropriately to 

the formulated problem to correctly run the solver. These parameters have default values set by 

Matlab and can be modified in the optimization options. Among several parameters, we cite the 

fundamental ones that were selected in this case study and yielded optimal results in terms of 

solution feasibility, accuracy, and convergence time.    

The first parameter is the Algorithm, in which the optimization algorithm is chosen. In our case, 

we select the default algorithm “interior-point” recommended by Matlab as it handles large, 

sparse problems, as well as small dense problems. Besides, the maximum number of allowed 

function evaluations is modified from 3,000 (default value) to 100,000 through the parameter 

MaxFunctionEvaluations. The maximum number of allowed iterations is set to its default value 

equal to 1,000 using the parameter MaxIterations. The rest of the parameters are kept at their 

default values and can be reviewed in detail in the Matlab Help Center. The applied parameters, 

values, and descriptions are summarized in Table 4.2.  

 

Parameter Value Description 

Algorithm Interior-point 
Selection of optimization 

algorithm  

MaxFunctionEvaluations 1,000,000 
Maximum number of function 

evaluations allowed 

MaxIterations 1,000 
Maximum number of allowed 

iterations 

 

Table 4.2 Parameters for setting the fmincon solver. 

Once the local solver is selected, the GS algorithm can run to find the optimal solution to the 

proposed problem. The function "run" is utilized to initiate the GS which performs several steps 
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at each intrasample period. Before citing the main steps, we define the fundamental functions and 

parameters that are used by the GS algorithm when running.  

- Score: a function, denoted 𝑠𝑐 , consisting of the sum of the objective function value, 

denoted 𝑓, at a point and a multiple of the sum of the constraint violations, denoted 𝑀𝑐𝑣. 

So, a feasible point has a score equal to its objective function value. The multiple for 

constraint violations is initially 𝑀𝑐𝑣 = 1000. GS updates the multiple during the run. 

- NumTrialPoints: a parameter that indicates the number of potential start points, specified 

as a positive integer.  

- NumStageOnePoints: a parameter that indicates the number of Stage 1 points, specified as 

a positive integer. 

- localSolverThreshold: a parameter that is initially equal to the smaller of the two objective 

function values at the solution points. The solution points are the fmincon solutions starting 

from 𝑥0  and the Stage 1 start point, 𝑥𝑠1 . When running the algorithm, the 

localSolverThreshold value varies depending on several conditions that are detailed in the 

main steps below. 

- Counters: there are two sets of counters associated with the algorithm. Each counter is the 

number of consecutive trial points that:  

o lie within a basin of attraction. This counter is denoted 𝑐𝑏 and there is one counter for 

each basin. For instance, the counter of the basin corresponding to the solution 𝑥0𝑒, is 

denoted 𝑐𝑏_𝑥0𝑒 . 

o have a score function greater than localSolverThreshold. This counter is denoted  𝑐𝑡ℎ. 

All counters are initially set to zero. 

- GlobalOptimSolution: an object that contains information on a local minimum, including 

location, objective function value, and start point or points that lead to the minimum. GS 

generates a vector of GlobalOptimSolution objects. The vector is ordered by objective 

function value, from lowest (best) to highest (worst). GS combines solutions that coincide 

with previously found solutions within tolerances. 

- 𝑋𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒: a parameter that indicates the tolerance on distance for considering solutions 

equal, specified as a nonnegative scalar.  

-  𝐹𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 : a parameter that indicates the tolerance on function values for considering 

solutions equal, specified as a nonnegative scalar. Solvers consider two solutions identical 

if they are within 𝑋𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 relative distance from each other and have objective function 

values within 𝐹𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 relative difference from each other. If both conditions are not met, 

solvers report the solutions as distinct. 

- MaxWaitCycle: a parameter, specified as a positive integer. When 𝑐𝑏 and 𝑐𝑡ℎ reach this 

parameter value, the basin radius of the corresponding solution point and the 

localSolverThreshold are modified following the steps mentioned in the branch “react to 

large counter values” in the main steps performed by GS below. 
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- BasinRadiusFactor: a basin radius decrease factor, specified as a scalar from 0 to 1. A basin 

radius decreases after MaxWaitCycle consecutive start points are within the basin. 

- PenaltyThresholdFactor: a parameter of increase in the penalty threshold, specified as a 

positive scalar. 

 
Fig.4.5 Flow chart of the main steps performed by the GS when running. 

  

The main steps performed by the GS when running are represented in Fig.4.2 and detailed as 

follows:  

1. Run fmincon from 𝑥0: GS runs fmincon from the starting point 𝑥0. If the run converges, 

GS records the starting point, 𝑥0, and end point, 𝑥0𝑒, for an initial estimate of the radius of 

a basin of attraction. Besides, it records the final objective function value, 𝑓0𝑒, for use in 

the score function, 𝑠𝑐0𝑒 = 𝑓0𝑒 +𝑀𝑐𝑣_0𝑒. 

2. Generate trial Points: GS uses the scatter search algorithm, which can be reviewed in detail 

in [159], to generate a set of NumTrialPoints. These trial points are generated within the 

defined lower and upper bounds (𝒍𝒃 & 𝒖𝒃 )  and are not symmetric about the origin. All 

these trials are potential start points. 

3. Obtain Stage 1 Start Point, Run: GS evaluates the score function of a set of 

NumStageOnePoints trial points. Normally, NumStageOnePoints is a fraction of 

NumTrialPoints. In default settings, NumStageOnePoints  = 0.2 × NumTrialPoints. GS 

then takes the point with the best score, 𝑥𝑠1, and runs fmincon from that point and get the 

end point, 𝑥𝑠1𝑒. It removes the set of NumStageOnePoints trial points from its list of points 

to examine. 

4. Initialize Basins, Counters, Threshold: GS heuristic assumption is that basins of attraction 

are spherical. The initial estimate of basins of attraction for the solution point of 𝑥0 , 

https://localhost:31518/static/help/gads/how-globalsearch-and-multistart-work.html?snc=PY1LHL&searchsource=mw&container=jshelpbrowser#bsds5sl
https://localhost:31518/static/help/gads/how-globalsearch-and-multistart-work.html?snc=PY1LHL&searchsource=mw&container=jshelpbrowser#bsc9ege-1
https://localhost:31518/static/help/gads/how-globalsearch-and-multistart-work.html?snc=PY1LHL&searchsource=mw&container=jshelpbrowser#bsds5rn
https://localhost:31518/static/help/gads/how-globalsearch-and-multistart-work.html?snc=PY1LHL&searchsource=mw&container=jshelpbrowser#bsds511
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𝑥0𝑒 , and the solution point from Stage 1 𝑥𝑠1, 𝑥𝑠1𝑒 , are spheres centered at the solution 

points. The radius of each sphere is the distance from the initial point to the solution point. 

These estimated basins can overlap. Fig.4.3 shows an illustrative example of a two-

dimensional variable plotted in the space as a function of the objective function. The 

illustrative example includes 3 spherical basins of attraction for the solution points, 𝑥0𝑒, 

𝑥𝑠1𝑒, and a third solution point denoted 𝑥𝑝𝑒. 

 

 

Fig.4.6 An illustrative example of a two-dimensional variable curve plotted in the space as a function of 

the objective function, showing the basins of attraction and GS-generated trial points. 

 

5. Begin Main Loop: GS repeatedly examines a remaining trial point from the list, continually 

monitors the time, and stops the search if elapsed time exceeds MaxTime seconds. In this 

https://localhost:31518/static/help/gads/how-globalsearch-and-multistart-work.html?snc=PY1LHL&searchsource=mw&container=jshelpbrowser#bsds7l2
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case, MaxTime seconds is set to infinity then, the algorithm only stops after running out of 

trial points. The examination of a point consists of the following steps: 

• Examine Stage 2 Trial Point to see if fmincon runs: call the trial point 𝑥𝑝 and run fmincon 

from 𝑥𝑝 if the following conditions hold:   

1) 𝑥𝑝 is not in any existing basin. The criterion for every basin 𝑖 is: 

|𝑥𝑝 − 𝐶(𝑖)|  > DistanceThresholdFactor × 𝑟𝑎𝑑𝑖𝑢𝑠(𝑖).           

Where 𝐶(𝑖), DistanceThresholdFactor, and 𝑟𝑎𝑑𝑖𝑢𝑠 are respectively the center of a 

basin (i.e. 𝑥0𝑒 for the basin of 𝑥0 point, 𝑥𝑠1𝑒 for the basin of 𝑥𝑠1 point, etc. ), a GS 

optimization option with a default value of 0.75 and an estimated radius value that 

is updated in the Update Basin Radius and Threshold and React to Large Counter 

Values. 

2) 𝑠𝑐𝑝 < localSolverThreshold. 

            A trial point 𝑥𝑝 that verifies the above-mentioned criteria is shown in Fig.4.6.  

• When fmincon runs :  

1) Reset counters: Set all 𝑐𝑏 and 𝑐𝑡ℎ counters to zero.  

2) Update solution set: If fmincon runs starting from 𝑥𝑝 , it can converge. In that 

case, GS updates the vector of GlobalOptimSolution objects. Call the solution 

point 𝑥𝑝𝑒  and the objective function value 𝑓𝑝 . There are two cases: 

o For every other solution point 𝑥𝑞𝑒 with an objective function value 𝑓𝑞, 

    |𝑥𝑞𝑒  −  𝑥𝑝𝑒|  >  𝑋𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒  ×  max(1, |𝑥𝑝𝑒|) 

     or 

     |𝑓𝑞  −  𝑓𝑝|  >  𝐹𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ×  max(1, |𝑓𝑝|)  

In this case, GS creates a new element in the vector of the GlobalOptimSolution 

objects. 

o For some other solution point 𝑥𝑞𝑒  with an objective function value 𝑓𝑞, 

    |𝑥𝑞𝑒  −  𝑥𝑝𝑒|  ≤  𝑋𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒  ×  max(1, |𝑥𝑝𝑒|) 

and 

|𝑓𝑞  −  𝑓𝑝|  ≤  𝐹𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ×  max(1, |𝑓𝑝|)  

In this case, GS regards 𝑥𝑝𝑒  as equivalent to 𝑥𝑞𝑒 . GS algorithm modifies 

the GlobalOptimSolution of 𝑥𝑞𝑒  by adding 𝑥𝑝  to the cell array of the already 

existing points. 

3) Update 𝑐𝑏_𝑥𝑝𝑒  and 𝑐𝑡ℎ  : if the current fmincon run converges, set the  

localSolverThreshold to the score value at the start point 𝑥𝑝, localSolverThreshold 

https://localhost:31518/static/help/gads/how-globalsearch-and-multistart-work.html?snc=PY1LHL&searchsource=mw&container=jshelpbrowser#bsds7nj-1
https://localhost:31518/static/help/gads/how-globalsearch-and-multistart-work.html#bsg4qo9
https://localhost:31518/static/help/gads/how-globalsearch-and-multistart-work.html#bsg4qqj
https://localhost:31518/static/help/gads/how-globalsearch-and-multistart-work.html#bsg4qqj
https://localhost:31518/static/help/gads/how-globalsearch-and-multistart-work.html?snc=PY1LHL&searchsource=mw&container=jshelpbrowser#bse8n1b
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= 𝑠𝑐𝑝, and set the basin radius for 𝑥𝑝𝑒 equal to the maximum of the existing radius 

(if any) and the distance between 𝑥𝑝 and 𝑥𝑝𝑒. 

• When fmincon does not run:  

1) Update counters: Increment 𝑐𝑏 for every basin containing  𝑥𝑝 and reset the 

counter of every other basin to zero. Increment 𝑐𝑡ℎ if 𝑠𝑐𝑝 ≥ localSolverThreshold 

and reset it otherwise.  

2) React to large counter values: For each basin with 𝑐𝑏  equal to MaxWaitCycle, 

multiply the basin radius by 1 – BasinRadiusFactor. Reset 𝑐𝑏 to zero.  

If 𝑐𝑡ℎ equals MaxWaitCycle, increase the localSolverthreshold: 

Set a new localSolverThreshold equal to: 

localSolverThreshold + PenaltyThresholdFactor× (1 + |localSolverThreshold|) 

And, reset 𝑐𝑡ℎ to zero. 

 

6. Create GlobalOptimSolution: After running out of trial points, GS creates a vector 

of GlobalOptimSolution objects and orders the vector by objective function value, from lowest 

(best) to highest (worst). This concludes the algorithm. 

Finally, the values of all applied parameters are summarized in Table 4.3. 

 

Parameter Value Parameter Value 

NumTrialPoints 1,000 PenaltyThresholdFactor 0.2 

BasinRadiusFactor 0.2 𝐹𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 10−6 

MaxWaitCycle 20 𝑋𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 10−6 

NumStageOnePoints 200 MaxTime infinity 

 

Table 4.3 Applied parameters of the GS algorithm. 

4.4 Simulation tests 

 

To prove the viability and effectiveness of the proposed online optimization stage, several 

simulations with different scenarios are conducted on the two test days that were presented in 

Chapter 3. Based on the offline predicted input vectors : 𝛿𝑔𝑟𝑖𝑑_𝑝𝑟𝑒𝑑
𝑝𝑢𝑟 (𝑘) and 𝑃𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑(𝑘) with 𝑘 =

1, 2, … ,𝑁 , new vectors corresponding to the actual data, 𝛿𝑔𝑟𝑖𝑑_𝑎𝑐𝑡𝑢𝑎𝑙
𝑝𝑢𝑟 (𝑘∗) and 𝑃𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙(𝑘

∗) 

with 𝑘∗ = 1, 2, … , 𝑁∗, are created to mimic the mismatches between predicted and actual data 

inputs. 

  

https://localhost:31518/static/help/gads/how-globalsearch-and-multistart-work.html?snc=PY1LHL&searchsource=mw&container=jshelpbrowser#bsds7nu-2
https://localhost:31518/static/help/gads/how-globalsearch-and-multistart-work.html?snc=PY1LHL&searchsource=mw&container=jshelpbrowser#bse8t9n
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− 𝛿𝑔𝑟𝑖𝑑_𝑝𝑟𝑒𝑑
𝑝𝑢𝑟

(𝑘)  and 𝛿𝑔𝑟𝑖𝑑_𝑎𝑐𝑡𝑢𝑎𝑙
𝑝𝑢𝑟

(𝑘∗)  are respectively the electricity predicted and actual 

purchased price in (ȼ/𝐾𝑊ℎ). 

− 𝑃𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑(𝑘)  and 𝑃𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙(𝑘
∗) are respectively the predicted and the actual power 

difference between the load demand and RESs generated power. 𝑃𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑(𝑘)  and 

𝑃𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙(𝑘
∗) are expressed as follows: 

 

𝑃𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑(𝑘) =  𝑃𝑙𝑜𝑎𝑑_𝑝𝑟𝑒𝑑(𝑘) − 𝑃𝑅𝐸𝑆𝑠_𝑏𝑢𝑠_𝑝𝑟𝑒𝑑(𝑘)                                                 (IV.34) 

𝑃𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙(𝑘
∗) = 𝑃𝑙𝑜𝑎𝑑_𝑎𝑐𝑡𝑢𝑎𝑙(𝑘

∗) − 𝑃𝑅𝐸𝑆𝑠_𝑏𝑢𝑠_𝑎𝑐𝑡𝑢𝑎𝑙(𝑘
∗)          (IV.35) 

Where, 𝑃𝑙𝑜𝑎𝑑_𝑝𝑟𝑒𝑑(𝑘) , Pload_actual(𝑘
∗) , 𝑃𝑅𝐸𝑆𝑠_𝑏𝑢𝑠_𝑝𝑟𝑒𝑑(𝑘) , and PRESs_bus_actual(𝑘

∗)   are 

respectively the predicted/actual load demand and the predicted/actual RESs generated 

power taking into consideration the losses in RESs’ converters. 

                                                                                                   

All optimization parameters are the same as in Chapter 3 and can be found in Table 3.2. The 

minimum and maximum admissible changes in the battery power Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛 and Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 are 

key factors that influence tremendously the results of the online optimization stage. Directly linked 

to the nominal capacity of the battery, high values of Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛 and Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 leads to extensive 

usage of the ESS and then, a suboptimal solution meanwhile, extra low values lead to results that 

approximate the offline optimization ones. Therefore, after several trials and errors, the dedication 

of a one-sixth ratio out of the nominal storage capacity for the online optimization stage over the 

whole 24 hours yielded the best results. Knowing that 70% of the total storage capacity is usable, 

this corresponds to an energy of 87.5 𝐾𝑊ℎ, one-sixth of this energy equals 14.6 𝐾𝑊ℎ for the 

whole time horizon. Then, for one hour the admissible charged/discharged energy approximately 

equals 600 𝑊ℎ . As a result, Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛  and Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥  are set as follows: Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 =

|Δ𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛| = 600 𝑊.  

 

Three different tests are performed to validate the proposed online optimization stage: 

 

Simulation test 1: this simulation test is performed to prove the effectiveness of the online 

optimization stage in finding an improved solution, compared to the offline strategy, in response 

to the fast dynamic variation in 𝛿𝑔𝑟𝑖𝑑_𝑎𝑐𝑡𝑢𝑎𝑙
𝑝𝑢𝑟

  and 𝑃𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙 inputs. Thus, in this test the mean 

values of the actual input vectors, 𝛿𝑔𝑟𝑖𝑑_𝑎𝑐𝑡𝑢𝑎𝑙
𝑝𝑢𝑟

  and 𝑃𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙 , are kept the same as the predicted 

ones : 𝛿𝑔𝑟𝑖𝑑_𝑝𝑟𝑒𝑑
𝑝𝑢𝑟

  and 𝑃𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑 and additional fast disturbances are added to the actual inputs. To 

generate random signals with zero mean value and faster dynamics than the predicted data, white 

Gaussian noise (WGN) signals are added to the offline predicted signals. The introduced (WGN) 

signals are vectors consisting of 𝑁∗ random values.   
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Fig.4.7 Predicted and actual data inputs 𝑃𝑑𝑖𝑓𝑓 and 𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟

 on the winter day (18/02/2021). 

 
 

Fig.4.8 Predicted and actual data inputs 𝑃𝑑𝑖𝑓𝑓 and 𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟

 on the summer day (16/07/2021). 

 

For the two tested days, the power of the (WGN) added to 𝑃𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑 is approximately 58 dB and 

the one added to  𝛿𝑔𝑟𝑖𝑑_𝑝𝑟𝑒𝑑
𝑝𝑢𝑟

 is approximately 0.6 dB. The obtained predicted and actual inputs for 
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the winter and summer days are respectively shown in Figures 4.4 and 4.5. As seen in Fig.4.7 and 

4.8, the added (WGN) signals appear in the actual inputs’ curves (curves plotted in blue).  

  
(a)                                                                                       (b) 

                    
                                                (c)                                                                                       (d) 

 

Fig.4.9 Winter Day (18/02/2021) results of (a) the grid power, (b) (DG) power, (c) battery power, and (d) 

the battery’s SOC with and without online optimization stage. 
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Finally, the predicted and actual total energy differences on the winter and summer days are the 

same (for the winter day : 𝐸𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑 = 𝐸𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙 = 370 𝐾𝑊ℎ  and for the summer day: 

𝐸𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑 = 𝐸𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙 = 263 𝐾𝑊ℎ). 

The obtained results on the winter and summer days are shown respectively in Fig.4.6 (a), (b), (c), 

and (d), and Fig.4.7 (a), (b), (c), and (d).  

  

(a)                                                                                       (b) 

  
                                                (c)                                                                                       (d) 

Fig.4.10 Summer Day (16/07/2021) results of (a) the grid power, (b) (DG) power, (c) battery power, and 

(d) the battery’s SOC with and without online optimization stage. 
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As a general strategy and as seen from the obtained curves, the online optimization stage uses the 

allowable variation in the battery power, Δ𝑃𝑏𝑎𝑡𝑡, to rely more on the ESS and less on the utility 

grid and the (DG) over the time horizon. This can be justified by the fact that the average price of 

a Kilowatt-hour purchased from the grid or generated by the (DG) is always higher than the one 

provided by the battery. Meanwhile, as Δ𝑃𝑏𝑎𝑡𝑡  is limited to ± 600 𝑊, 𝑃𝑔𝑟𝑖𝑑_𝑜𝑛𝑙𝑖𝑛𝑒 , 𝑃𝐷𝐺_𝑜𝑛𝑙𝑖𝑛𝑒 , 

and 𝑃𝑏𝑎𝑡𝑡_𝑜𝑛𝑙𝑖𝑛𝑒  curves obtained with online optimization on the two tested days (curves in the 

blue line of Fig.4.9 (a), (b), (c) and Fig.4.10 (a), (b), (c)) always maintain a close path to the offline 

optimization. The increasing reliance on the battery can be seen from the online and offline 𝑆𝑂𝐶 

curves in Fig. 4.9 (d) and 4.10 (d). 𝑆𝑂𝐶𝑜𝑛𝑙𝑖𝑛𝑒 curves on the winter and summer days are below 

their corresponding 𝑆𝑂𝐶𝑜𝑓𝑓𝑙𝑖𝑛𝑒 curves. Finally, the battery’s 𝑆𝑂𝐶s with online optimization at the 

end of the winter and summer days are no longer equal to the initial state 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 = 50 (𝑆𝑂𝐶𝑒𝑛𝑑 =

48.25% at the end of the winter and  𝑆𝑂𝐶𝑒𝑛𝑑 = 39.5% at the end of the summer day). 

 

Table 4.4 and Table 4.5 summarize the results of the winter and summer days respectively. We 

note that the results with no online optimization stage are found under the heading offline 

optimization as in this case, the EMS only relies on the achieved day ahead offline optimization. 

By comparing the results, the online optimization stage brings a profit in the total operating cost 

of 0.53 $ on the winter day and a profit of 3.68 $ on the summer day. The higher profit on the 

summer day is justified by the availability of the ESS energy which can be further exploited in 

summer than in winter. As seen in Fig.4.9 (d), the minimum admissible 𝑆𝑂𝐶 value, 𝑆𝑂𝐶𝑚𝑖𝑛, is 

reached for the winter day which restricts the solution of the online optimization problem. On the 

other hand, the storage is further utilized in the summer with no restriction on the lower 𝑆𝑂𝐶 

bound, Fig. 4.10 (d). The (DG) produced energy is approximately the same in the online and offline 

optimization as the price of Killowatt-hour is the same as the predicted one and the reduction of 

toxic gas emissions goal is always included in the objective function. Finally, though not included 

as a goal in the objective function in this Chapter, the losses in dispatchable converters are slightly 

reduced (losses reduction of 0.18 𝐾𝑊ℎ (i.e., 1%) on the winter day and 0.19 (i.e., 1.6%) on the 

summer day) when applying the online optimization. Thanks to the reduction of the operating cost 

achieved by the online optimization, the converter's losses are automatically decreased as the two 

optimization goals are reconcilable. 

Simulation test 2:  this simulation test is carried out to prove the viability and effectiveness of the 

proposed online optimization stage in finding an improved solution compared to the offline 

optimized results in response to a shift of the overall predicted data input signals. Based on the 

results of simulation test 1, the winter day represents a worst-case scenario for the online 

optimization stage to yield improved results compared to the summer day. This is due to the 

extensive usage of the ESS in the winter which reaches the minimum admissible 𝑆𝑂𝐶  limit. 

Therefore, and in order not to weigh down the content with duplicated results, the winter day is 

exclusively applied as a case study and its results suffice to prove the viability of the online 

optimization stage.     
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Winter day (18/02/2021) 

Online optimization Offline optimization 

Initial and final SOC values  𝑆𝑂𝐶𝑖𝑛𝑖𝑡 = 50  - 𝑆𝑂𝐶𝑒𝑛𝑑 = 48.25   𝑆𝑂𝐶𝑖𝑛𝑖𝑡 = 50  - 𝑆𝑂𝐶𝑒𝑛𝑑 = 50   

Total energy difference: 

𝐸𝑑𝑖𝑓𝑓 = 𝐸𝑙𝑜𝑎𝑑 − 𝐸𝑅𝐸𝑆𝑠_𝑏𝑢𝑠 
370.17 𝐾𝑊ℎ 370.17 𝐾𝑊ℎ 

Utility grid 

𝐸𝑝𝑢𝑟_𝑜𝑛𝑙𝑖𝑛𝑒 = 199.2 𝐾𝑊ℎ  

𝐸𝑠𝑜𝑙𝑑_𝑜𝑛𝑙𝑖𝑛𝑒 = 1.74 𝐾𝑊ℎ  

𝐸𝑝𝑢𝑟_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 201.7 𝐾𝑊ℎ   

𝐸𝑠𝑜𝑙𝑑_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 1.57 𝐾𝑊ℎ  

𝐽𝑔𝑟𝑖𝑑_𝑜𝑛𝑙𝑖𝑛𝑒 = 74.02  $ 𝐽𝑔𝑟𝑖𝑑_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 74.4  $ 

Battery 

𝐸𝑑𝑖𝑠_𝑏𝑎𝑡𝑡_𝑜𝑛𝑙𝑖𝑛𝑒 = 71.93 𝐾𝑊ℎ 

𝐸𝑐ℎ_𝑏𝑎𝑡𝑡_𝑜𝑛𝑙𝑖𝑛𝑒 = 69.56 𝐾𝑊ℎ 

𝐸𝑑𝑖𝑠_𝑏𝑎𝑡𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 72.55 𝐾𝑊ℎ 

𝐸𝑐ℎ_𝑏𝑎𝑡𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 72.96 𝐾𝑊ℎ 

𝐽𝑏𝑎𝑡𝑡_𝑜𝑛𝑙𝑖𝑛𝑒 = 12.16  $ 𝐽𝑏𝑎𝑡𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 12.62  $ 

(DG) 

𝐸𝐷𝐺_𝑜𝑛𝑙𝑖𝑛𝑒 = 187.34 𝐾𝑊ℎ 

Total emitted toxic gas: 44.8 𝐾𝑔 

𝐸𝐷𝐺_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 187.64 𝐾𝑊ℎ 

Total emitted toxic gas: 44.9 𝐾𝑔 

𝐽𝐷𝐺_𝑜𝑛𝑙𝑖𝑛𝑒 = 63.99 $ 𝐽𝐷𝐺_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 63.68 $ 

Losses in dispatchable converters 𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣_𝑜𝑛𝑙𝑖𝑛𝑒 = 17.00 𝐾𝑊ℎ 𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 17.18 𝐾𝑊ℎ 

Total operating cost function  𝐽𝑜𝑐_𝑜𝑛𝑙𝑖𝑛𝑒 = 150.17 $ 𝐽𝑜𝑐_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 150.7 $ 

 

Table 4.4 Summary of the obtained results with and without the online optimization stage on the winter 

day (18/02/2021). 

 
Summer day (16/07/2021) 

Online optimization Offline optimization 

Initial and final SOC values  𝑆𝑂𝐶𝑖𝑛𝑖𝑡 = 50  - 𝑆𝑂𝐶𝑒𝑛𝑑 = 39.7   𝑆𝑂𝐶𝑖𝑛𝑖𝑡 = 50  - 𝑆𝑂𝐶𝑒𝑛𝑑 = 50   

Total energy difference: 

𝐸𝑑𝑖𝑓𝑓 = 𝐸𝑙𝑜𝑎𝑑 − 𝐸𝑅𝐸𝑆𝑠_𝑏𝑢𝑠 
263.54 𝐾𝑊ℎ 263.54 𝐾𝑊ℎ 

Utility grid 

𝐸𝑝𝑢𝑟_𝑜𝑛𝑙𝑖𝑛𝑒 = 228.72 𝐾𝑊ℎ  

𝐸𝑠𝑜𝑙𝑑_𝑜𝑛𝑙𝑖𝑛𝑒 = 3.43 𝐾𝑊ℎ  

𝐸𝑝𝑢𝑟_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 240.98 𝐾𝑊ℎ   

𝐸𝑠𝑜𝑙𝑑_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 1.79 𝐾𝑊ℎ  

𝐽𝑔𝑟𝑖𝑑_𝑜𝑛𝑙𝑖𝑛𝑒 = 75.33  $ 𝐽𝑔𝑟𝑖𝑑_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 79.52  $ 

Battery 

𝐸𝑑𝑖𝑠_𝑏𝑎𝑡𝑡_𝑜𝑛𝑙𝑖𝑛𝑒 = 58.4 𝐾𝑊ℎ 

𝐸𝑐ℎ_𝑏𝑎𝑡𝑡_𝑜𝑛𝑙𝑖𝑛𝑒 = 44.55 𝐾𝑊ℎ 

𝐸𝑑𝑖𝑠_𝑏𝑎𝑡𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 47.61 𝐾𝑊ℎ 

𝐸𝑐ℎ_𝑏𝑎𝑡𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 47.74 𝐾𝑊ℎ 

𝐽𝑏𝑎𝑡𝑡_𝑜𝑛𝑙𝑖𝑛𝑒 = 7.97  $ 𝐽𝑏𝑎𝑡𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 7.44  $ 

(DG) 

𝐸𝐷𝐺_𝑜𝑛𝑙𝑖𝑛𝑒 = 36.11 𝐾𝑊ℎ 

Total emitted toxic gas: 8.64 𝐾𝑔 

𝐸𝐷𝐺_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 36.39 𝐾𝑊ℎ 

Total emitted toxic gas: 8.7 𝐾𝑔 

𝐽𝐷𝐺_𝑜𝑛𝑙𝑖𝑛𝑒 = 11.43 $ 𝐽𝐷𝐺_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 11.45 $ 

Losses in dispatchable converters 𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣_𝑜𝑛𝑙𝑖𝑛𝑒 = 11.72 𝐾𝑊ℎ 𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 11.91 𝐾𝑊ℎ 

Total operating cost function  𝐽𝑜𝑐_𝑜𝑛𝑙𝑖𝑛𝑒 =  94.73 $ 𝐽𝑜𝑐_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 98.41 $ 

 

Table 4.5 Summary of the obtained results with and without the online optimization stage on the summer 

day (16/07/2021). 
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Fig.4.11 Predicted electricity pool price and applied actual scenarios of simulation test 2. 

 

The predicted data input signals 𝛿𝑔𝑟𝑖𝑑_𝑝𝑟𝑒𝑑
𝑝𝑢𝑟

  and 𝑃𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑  of the winter day are modified in 

conformity with Fig.4.11 and Fig.4.12. Fig.4.11, shows the curves of the predicted pool price 

𝛿𝑔𝑟𝑖𝑑_𝑝𝑟𝑒𝑑
𝑝𝑢𝑟

  (blue marked line) which has a mean value of 40.4 ¢/𝐾𝑊ℎ and two tested actual pool 

price curves, 𝛿𝑔𝑟𝑖𝑑_𝑎𝑐𝑡𝑢𝑎𝑙
𝑝𝑢𝑟

. The first one in the dash-dot red line corresponds to a mean price higher 

than the predicted one with a mean value of 42.4 ¢/𝐾𝑊ℎ and the second curve in the solid green 

line corresponds to a 𝛿𝑔𝑟𝑖𝑑_𝑎𝑐𝑡𝑢𝑎𝑙 
𝑝𝑢𝑟

 lower than the predicted one with a mean value of 38.4 ¢/𝐾𝑊ℎ. 

For 𝑃𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑, the overall predicted curve is shifted up and down to simulate all possible scenarios. 

As seen in Fig.4.12, the plotted curves correspond to different mismatches in the total energy 

difference over the whole time horizon. The curves of 𝑃𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙  in solid marked black and solid 

magenta lines correspond to a higher total energy difference than the predicted one (the dash-dot 

blue line curve). 𝑃𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙  in solid marked black line corresponds to 𝐸𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙 = 390 𝐾𝑊ℎ 

(i.e. 20 𝐾𝑊ℎ greater than 𝐸𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑 = 370 𝐾𝑊ℎ ) and the one in the solid magenta line 

corresponds to  𝐸𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙 = 410 𝐾𝑊ℎ (i.e. 40 𝐾𝑊ℎ greater than  𝐸𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑).  Similarly, the 

curves of 𝑃𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙  in dashed red and solid green lines correspond to a lower total energy 

difference than the predicted one. 𝑃𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙  in solid green line corresponds to 𝐸𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙 =

350 𝐾𝑊ℎ  (i.e. 20 𝐾𝑊ℎ lower than 𝐸𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑 = 370 𝐾𝑊ℎ ) and the one in the dashed line 

corresponds to  𝐸𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙 = 330 𝐾𝑊ℎ (i.e. 40 𝐾𝑊ℎ lower than  𝐸𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑). 

Hence, the solid magenta and dashed red lines’ curves represent, respectively, the biggest positive 

and negative margins of error between the predicted and actual power difference. 
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Fig.4.12 Predicted total energy difference and applied actual scenarios of simulation test 2. 

 

Finally, we take note that the added WGN signals in simulation test 1 are always kept in 

simulation test 2 but weren’t plotted in Fig.4.11, and 4.12 to intelligibly show all curve shapes 

together.  

  

 𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟 (¢/𝐾𝑊ℎ)   

   

𝐸𝑑𝑖𝑓𝑓(𝐾𝑊ℎ) 
𝛿𝑔𝑟𝑖𝑑_𝑎𝑐𝑡𝑢𝑎𝑙
𝑝𝑢𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 38.4   𝛿𝑔𝑟𝑖𝑑_𝑝𝑟𝑒𝑑

𝑝𝑢𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 40.4  𝛿𝑔𝑟𝑖𝑑_𝑎𝑐𝑡𝑢𝑎𝑙
𝑝𝑢𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 42.4  

𝐸𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙 = 330    1 2 3 

𝐸𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙 = 350  4 5 6 

𝐸𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑 = 370  7 8 9 

𝐸𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙 = 390  10 11 12 

𝐸𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙 = 410  13 14 15 

 

Table 4.6 All possible scenarios of simulation test 2 

 

All possible scenarios’ combinations of simulation test 2 are regrouped in Table 4.6. The 

scenarios are numbered from 1 to 15. The obtained results of all scenarios are detailed in Table 

4.7. The "Δ" symbol corresponds to the difference between the online and offline variables (Δ𝑋 =

𝑋𝑜𝑛𝑙𝑖𝑛𝑒 − 𝑋𝑜𝑓𝑓𝑙𝑖𝑛𝑒 ). Consequently, negative values of  Δ𝑋 denote that the online optimization 

outperforms the offline optimization for the corresponding variable "𝑋" and vice    
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Scenario Δ𝑀𝑔𝑎𝑠(𝐾𝑔) Δ𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣(𝑊ℎ) Δ𝐽𝑔𝑟𝑖𝑑  ($) Δ𝐽𝑏𝑎𝑡𝑡 ($) Δ𝐽𝐷𝐺($) Δ𝐽𝑂𝐶($) 

1 −3.06 −616 2.66 −0.45 −3.36 −1.15 

2 −1.82 −606 0.33 −0.45 −1.01 −1.13 

3 −1.63 −605 −0.07 −0.45 −0.65 −1.17 

4 −2.39 −346 2.99 −0.44 −3.13 −0.58 

5 −0.94 −333 0.28 −0.45 −0.35 −0.52 

6 −0.74 −333 −0.19 −0.44 0.06 −0.57 

7 −1.77 −199 2.79 −0.45 −2.92 −0.58 

8 −0.07 −180 −0.39 −0.46 0.31 −0.54 

9 0.16 −179 −0.91 −0.46 0.77 −0.6 

10 −1.24 −185 1.9 −0.45 −2.73 −1.28 

11 0.7 −169 −1.82 −0.45 0.95 −1.32 

12 1.57 −160 −3.55 −0.47 2.69 −1.33 

13 −0.93 −192 1.41 −0.48 −2.6 −1.67 

14 1.24 −176 −2.85 −0.46 1.51 −1.8 

15 2.18 −170 −4.9 −0.46 3.37 −1.99 

 

Table 4.7 Results of the ten applied scenarios of simulation test 2. 

 

versa. 𝑀𝑔𝑎𝑠 denotes the total mass of emitted toxic gas in 𝐾𝑔. 

 

Based on the figures provided in Table 4.8, the online optimization stage finds an improved 

solution over offline optimization in all applied scenarios. This can be seen through the negative 

values of Δ𝐽𝑂𝐶 in all scenarios. As the operating cost of the DC microgrid is always lower when 

adding the online optimization stage, the same result is obtained for the losses in dispatchable 

converters which decrease by adding the online optimization stage as Δ𝐸𝑙𝑜𝑠𝑠_𝑐𝑜𝑛𝑣 is negative in all 

tested scenarios. To further analyze the impact of the online optimization stage, Fig.4.8 shows the 

absolute value of  Δ𝐽𝑂𝐶  as a function of 𝐸𝑑𝑖𝑓𝑓 for the different 𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟𝑐ℎ

 mean values. As seen in 

Fig.4.13, the gain in the total operation cost increases as the margin of error between the predicted 

and actual data inputs increases and vice versa. The lowest gain, Δ𝐽𝑂𝐶 = −0.54 $, is obtained in 

scenario 8 corresponding to equal actual and predicted data inputs. The highest gain,  Δ𝐽𝑂𝐶 =

−1.99 $ , is obtained in scenario 15 corresponding to actual data inputs  

𝛿𝑔𝑟𝑖𝑑_𝑎𝑐𝑡𝑢𝑎𝑙
𝑝𝑢𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 42.4 ¢/𝐾𝑊ℎ  and 𝐸𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙 = 410 𝐾𝑊ℎ that are the furthest from the 

predictions. Therefore, the further the actual data inputs deviate from the predictions, the more the 

online optimization yields improved results compared to the offline approach. Contrarily, when 

the actual data are closer to the forecasted ones the online optimization stage delivers results that 

approximate the offline optimization which always provides the optimal solution.  

Fig.4.14 shows the difference in the total emitted toxic gas (𝑘𝑔) over the obtained total emitted 

toxic gas without the online optimization stage (i.e., 44.9 𝐾𝑔) in percentage as a function of 𝐸𝑑𝑖𝑓𝑓 

for different 𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟𝑐ℎ

 mean values. 
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Fig.4.13 Absolute value of  Δ𝐽𝑂𝐶  as a function of 𝐸𝑑𝑖𝑓𝑓 for different 𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟𝑐ℎ

 mean values. 

 

Fig.4.14 Δ𝑀𝑔𝑎𝑠 (%) as a function of 𝐸𝑑𝑖𝑓𝑓 for different 𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟𝑐ℎ

 mean values. 

 

Referring to Fig.4.14, the online optimization stage relies less on the (DG) compared to the offline 

approach when the energy difference is lower than the predicted one (i.e., 𝐸𝑑𝑖𝑓𝑓 = 330 −

350 𝐾𝑊ℎ) as the actual load demand is lower than the predicted one. This can be deduced from 

the negative values of Δ𝑀𝑔𝑎𝑠 (%). Similarly, the reliance on the (DG) in the total energy mix of 

the DC microgrid decreases as the actual electricity pool price decreases in comparison with the 

predicted one (solid blue line curve). In such a case, to compensate for subtracted (DG) energy 



 
 

178 
 

from the total energy mix and to reestablish the power balance equation, the online EMS purchases 

additional energy from the utility grid.  

 

This result can be verified in Fig.4.15 (a) which represents the difference in purchased energy from 

the utility grid, 𝛥𝐸𝑝𝑢𝑟, over the total offline purchased energy, 𝐸𝑝𝑢𝑟_𝑜𝑓𝑓𝑙𝑖𝑛𝑒, in (%), as a function 

of 𝐸𝑑𝑖𝑓𝑓 for different 𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟𝑐ℎ

 mean values.  

 

                                      (a)                                                                                      (b) 

 

 

                                      (c)                                                                                      (d) 

 

Fig.4.15 (a) 𝛥𝐸𝑝𝑢𝑟 (%), (b) 𝛥𝐸𝑠𝑜𝑙𝑑 (𝐾𝑊ℎ), (c) 𝛥𝐸𝑑𝑖𝑠_𝑏𝑎𝑡𝑡 (%), and (d) 𝛥𝐸𝑐ℎ_𝑏𝑎𝑡𝑡 (%)  as a function of 

𝐸𝑑𝑖𝑓𝑓 for different 𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟𝑐ℎ

 mean values. 
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The plotted curves show that additional energy is purchased from the utility grid by the online 

EMS when the electricity pool price is lower than the predictions. This can be seen by the positive 

values of 𝛥𝐸𝑝𝑢𝑟 (%) (solid blue line curve). Contrarily, when the electricity pool price and the 

energy difference are higher than the predictions (i.e. scenarios 12 and 15) or when the electricity 

pool price is equal to the predictions and the energy difference is higher than the predictions (i.e. 

scenarios 11 and 14), (dash-dot red line and dash black line curves of Fig.4.15 (a)), the online 

EMS  purchases lower energy from the grid compared to the offline optimization and relies more 

on the (DG) in the total energy mix.  

Additional energy from the (DG) is produced compared to the offline optimization and this can be 

seen by the positive values of Δ𝑀𝑔𝑎𝑠 (%) (dash-dot red line and dash black line curves of Fig.4.14). 

In such a case, though the offline optimization produces less toxic gas emissions, the online EMS 

always maintains limited amounts of additional toxic gas production that don’t surpass 5% of the 

offline total emitted amount. Toxic gas emissions are always limited in the online EMS as the 

corresponding objective of emissions reduction is included in the objective function to minimize 

by equation (IV.24). 

Fig.4.15 (b) shows the difference in the energy sold to the utility grid, 𝛥𝐸𝑠𝑜𝑙𝑑, in (𝐾𝑊ℎ). The three 

curves plotted corresponding to the different 𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟𝑐ℎ

 mean values are merged which means energy 

sold to the grid is independent of the electricity purchase price which turns out to be logical. 

However, 𝐸𝑑𝑖𝑓𝑓 values highly impact the energy sold to the grid and so 𝛥𝐸𝑠𝑜𝑙𝑑. When the energy 

difference is lower than the predicted one (i.e., 𝐸𝑑𝑖𝑓𝑓 = 330 − 350 𝐾𝑊ℎ), the online EMS sells 

less energy to the utility grid than the offline approach. This can be seen by negative values of  

𝛥𝐸𝑠𝑜𝑙𝑑 . Meanwhile, for 𝐸𝑑𝑖𝑓𝑓_𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐸𝑑𝑖𝑓𝑓_𝑝𝑟𝑒𝑑 = 370 𝐾𝑊ℎ, the online EMS sells the same 

amount to the utility as the offline approach (𝛥𝐸𝑠𝑜𝑙𝑑 approximates zero). For higher values than 

the predicted one (i.e. 𝐸𝑑𝑖𝑓𝑓 = 390 − 410 𝐾𝑊ℎ), both 𝐸𝑠𝑜𝑙𝑑_𝑜𝑛𝑙𝑖𝑛𝑒 and  𝐸𝑠𝑜𝑙𝑑_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 tend to zero 

which results in a 𝛥𝐸𝑠𝑜𝑙𝑑 equal to zero.   

 

Finally, Fig.4.15 (c) and (b) show respectively the difference in discharged/charged energy 

from/into the battery, 𝛥𝐸𝑑𝑖𝑠_𝑏𝑎𝑡𝑡 and 𝛥𝐸𝑐ℎ_𝑏𝑎𝑡𝑡, over the total offline discharged/charged energy, 

𝐸𝑑𝑖𝑠_𝑏𝑎𝑡𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 72.55 𝐾𝑊ℎ and 𝐸𝑐ℎ_𝑏𝑎𝑡𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 72.96 𝐾𝑊ℎ , in (%), as functions of 𝐸𝑑𝑖𝑓𝑓 

for different 𝛿𝑔𝑟𝑖𝑑
𝑝𝑢𝑟𝑐ℎ

 mean values. From Fig.4.15 (c), the amount of energy discharged from the 

battery when applying the online EMS is almost the same as in the offline case. A slightly higher 

amount of discharged energy in the offline case is noted and does not surpass 1% of the total 

discharged energy. Fig.4.15 (d) shows that almost 4.7% less energy is charged into the battery 

when applying the online EMS compared to the offline approach. The three curves are merged as 

the online EMS always uses the full amount of admissible energy to the extent possible (As set in 

the constraints, ±600 𝑊ℎ are admissible each charging/discharging hour. On this day, the battery 

was charged for a total of 5 hours and 40 minutes. During these 5 hours and 40 minutes, the online 

EMS can charge 5.67 × −600 = −3.4 𝐾𝑊ℎ less energy into the battery compared to the offline 

approach. Dividing the −3.4 𝐾𝑊ℎ over 𝐸𝑐ℎ_𝑏𝑎𝑡𝑡_𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 72.96 𝐾𝑊ℎ, this yields the −4.66% 
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obtained in Fig.4.15 (d)). Finally, the mismatch between the total charged and discharged energy 

into/from the battery when applying the online EMS can be justified by the relaxation of the 

constraint on the last 𝑆𝑂𝐶 value, 𝑆𝑂𝐶(𝑘 = 𝑁), which can have different values than the battery’s 

initial state 𝑆𝑂𝐶(𝑘 = 0). In all scenarios, 𝑆𝑂𝐶(𝑘 = 𝑁) ≈ 48.2 % which is less than 𝑆𝑂𝐶(𝑘 =

0) = 50 % . This release from the last 𝑆𝑂𝐶  constraint allowed the online EMS to make an 

additional profit in the operating cost. 

 

4.5 Conclusion  

In this chapter, the online optimization of the DC microgrid is presented. An online optimization 

stage is added to update the offline optimized power references of dispatchable sources due to the 

uncertainties in the RES-generated power, load demand, and electricity pool price. Unlike most 

applications that rely on one operating converter to compensate for uncertainties, a new approach 

is proposed in which the power references of all dispatchable sources are updated to optimally 

respond to the occurring mismatches.    

 

The proposed online optimization stage is not advanced as an alternative to offline optimization. 

Instead, it is applied each intrasample period, 𝑇𝑖𝑠 = 1 minute, to accomplish corrective action to 

the offline optimized power references which have a sampling period of 𝑇𝑠 = 10 minutes. Hence, 

online EMS, which has a faster dynamic than offline optimization performs a local time-invariant 

optimization at each intrasample period and only outputs the new optimal power references for the 

next step. To solve the online optimization problem, (GS) algorithm was selected due to its high 

convergence speed and potential to find a global minimum. As the (GS) algorithm requires the 

selection of a local solver which is started from multiple start points to sample multiple basins of 

attraction and search for a global minimum, 𝑓𝑚𝑖𝑛𝑐𝑜𝑛  solver is chosen as it fits best our 

optimization problem. The optimization problem is formulated conveniently to the 

𝑓𝑚𝑖𝑛𝑐𝑜𝑛 format with the same optimization objectives and constraints as in Chapter 3.   

 

To prove the viability and effectiveness of the proposed online optimization stage, two simulation 

tests are conducted in which two operating modes, with and without the online optimization stage, 

are compared. The simulation tests yielded three main outcomes: 

 

1. The online EMS showed an improved solution compared to the offline approach in response 

to fast dynamics and disturbances in the actual data inputs. This can be justified by the intra-

sampling period of the online optimization stage which is ten times faster than the offline 

optimization and so, has a better response to fast disturbances in the input signals. Hence, 

online EMS increases the control time resolution of the overall system.  

 

2. The size of the ESS plays an instrumental role in the online optimization stage which 

always uses all the allowable charged/discharged energy into/from the battery to rely 
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more on the ESS and less on the utility grid and the (DG) over the time horizon. This can 

be justified by the fact that the average price of a Kilowatt-hour purchased from the grid 

or generated by the (DG) is always higher than the one provided by the battery. A higher 

profit is obtained on the summer day (3.68 $) compared to the winter day (0.53$) as 

further ESS energy is available and can be exploited in summer than in winter. 

 

3. The online EMS showed improved results over the offline approach of total operating 

cost in 15 different scenarios of simulation test 2. These scenarios simulate different 

positive and negative margins of error between predicted and actual data inputs. As a 

result, the further the actual input profiles are close to the predicted ones, the less gain is 

achieved by the online optimization stage. In this case, the online EMS approximates the 

offline optimization results which provides the optimal solution. Contrarily, the furthest 

the actual data inputs are from the predictions, the higher gain in the total operating cost 

is achieved by the online EMS compared to the offline approach.  
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Chapter 5 : Conclusion and Perspectives  

 

Following the transition from a centralized monopolized energy generation approach to a 

distributed one at the end of the 20th century and the advent of the microgrid concept, especially 

DC microgrids during the last decade, new research works are witnessing an increased interest in 

the control and power management of DC microgrids. To control a DC microgrid, researchers 

adopted the traditional hierarchical control strategy inherited from AC grids. Consisting of three 

distinct control levels, the primary and secondary control levels in a DC microgrid differ from the 

AC ones in terms of control objectives. A much simpler control on the primary control level in a 

DC microgrid is required in which the prime concerns are the stabilization of the common DC bus 

voltage and the proper power sharing among operating DERs. The secondary control level is 

usually adopted to improve the primary control level results and apply source-dependent functions 

such as the MPPT. As the primary and secondary control levels were extensively investigated in 

the literature, researchers are lately diverting their attention to the tertiary control level. At this 

control level, with much slower dynamics compared to the primary and secondary levels, advanced 

energy management functionalities can be achieved over long time horizons. 

 

On the other hand, a surge in awareness is noted concerning global climate change and the resulting 

critical risks. As carbon dioxide emissions and other greenhouse gases are the principal cause of 

the earth's temperature rise and climate change, most nations are setting net-zero emissions targets 

and pledges to slash their emissions for the next decade. To reach their decarbonization target, 

countries are placing roadmaps based on the further proliferation of RESs, the rationalizing of 

energy usage, and the improvement of the overall electrical system efficiency. Technically, these 

energy policies and targets are being integrated into the EMS of microgrids under the so-called 

“smart” control systems on the tertiary control level by transforming the defined objectives into 

an optimization problem.   

 

From here and based on the above-mentioned actualities in DC microgrids and worldwide energy 

management policies, this thesis proposes an energy management strategy of a DC microgrid over 

a 24-hour time horizon to achieve multi-objective optimization. The DC microgrid consists of 

several DERs including RESs such as the PV array and WT, a (DG) as a traditional pollutant 

source, an ESS consisting of a lithium-ion battery, and a residential DC-type load. The DC 

microgrid can operate in grid-connected as well as in islanded mode. Three main objectives of the 

EMS are defined: the minimization of the total operating cost of the DC microgrid, the reduction 

of the toxic gas emissions produced by the (DG), and the minimization of converters’ losses of 

dispatchable sources. This thesis presents three main contributions on different levels. Firstly, at 

the modeling level, precise modeling of the DC microgrid is proposed, and new averaging 

mathematical techniques are advanced. These techniques ensure the best trade-off between model 

accuracy, complexity, and simulation speed. The second contribution is the achievement of a 
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multi-objective optimization by finding a Pareto solution through convenient weights’ selection. 

Finally, the last contribution is the integration of an online optimization stage that updates the 

offline optimized power references due to existent mismatches between predicted and actual data 

inputs. Next, each of the three contributions is detailed separately following each chapter of the 

thesis.   

 

First from the modeling perspective, as seen from the targeted objectives and the time horizon, the 

thesis work is located at the tertiary level of hierarchical control. At this control level, the targeted 

variables of the system are much slower than the primary and secondary control levels. This makes 

the inclusion of all system variables in one model over a 24-hour time horizon a complicated matter 

on a standard computer with limited CPU performance and memory. To overcome this hurdle and 

by taking advantage of the wide span in time constants of variables, researchers usually adopt 

simplified mathematical models to formulate the optimization problem. These simplified models 

represent the operating sources in steady-state and do not depend on fast electrical variables such 

as the current and voltage. Instead, the applied mathematical equations only include slow variables 

such as temperature, wind speed, solar irradiance, etc. to compute the power of the corresponding 

energy source. By omitting the electrical variables from the model, the primary and secondary 

control levels are automatically excluded and considered as already established. Though yielding 

decent results, this modeling approach incurs power computing errors that won’t appear unless the 

EMS control is tested experimentally on a real DC microgrid. In such cases, one of the operating 

converters takes charge of compensating for the resulting power computing errors which may lead 

to a suboptimal solution if the power mismatches are large. As a result, this approach favors the 

model's simplicity over its accuracy. 

  

Chapter 2 presents a new approach to modeling the DC microgrid in which a trade-off between 

model precision, complexity, and simulation speed was created. Though all simulations are 

conducted on a standard core-i7 @ 2 GHz computer with 8 GB installed RAM, the advanced 

averaging techniques made possible the 24-hour modeling while maintaining an accurate 

calculation of energy sources’ power. First, each energy source along with its proper converter 

was modeled, the detailed model includes the mathematical modeling of the energy source itself, 

the converter, the control including the primary and secondary level hierarchical control, and the 

common DC bus. Though the detailed model is the most accurate and serves as a benchmark for 

precision, it does not work for long-time simulations as in this case. Mainly, this is due to the high 

complexity of the model and reduced calculation step size. Hence, the main target of advancing 

averaging techniques is increasing the calculation step size which automatically reduces the model 

complexity and simulation time while maintaining a decent accuracy.  

At the DC units modeling level (i.e., the PV array and the lithium-ion battery), the detailed models 

that include the current and voltage electrical variables to compute the output power were 

maintained as they don’t limit the calculation step size. For AC units (i.e., the WT, the utility grid, 

and the (DG)), the problem does not show up on the unit modeling level but in the sinusoidal 
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waveforms of the electrical variables. As known, the electrical variables of AC systems are 

periodic and require a small calculation step size to yield proper power calculation. As a solution, 

the phasor domain was advanced to express the electrical sinusoidal components in the complex 

number domain. By this, all AC electrical variables are transformed from the time domain into the 

complex number domain and explicit in the form of magnitude and phase shift. This transformation 

toward the phasor domain increases the calculation step size 356 times and the simulation speed 

880 times compared to the detailed model while maintaining accurate computing of source power.  

At the converter modeling level, average modeling of all operating AC and DC converters was 

proposed to increase the calculation step size of models. The switching devices of all converters 

operate at high switching frequencies of the order of tens of KHz. The switching phenomenon 

automatically limits the calculation step size to one-hundredth of the switching frequency and 

slows down the simulation speed. As our control objective does not target this phenomenon by 

itself, it can be removed. This is what the average modeling makes by omitting the switching 

devices and replacing them with controllable voltage and current sources. This assumption 

increases the calculation step size 100 times compared to the most detailed model and maintains 

a decent mathematical model of the converter that includes the duty cycle ratio. As the passive 

component of converters, electrical variables, and duty cycle ratio are always included in the 

average model, the conduction and the switching losses which are the major sources of losses in 

all operating converters were accurately modeled. The precise power efficiency curves of all 

converters were deduced and can then be included when formulating the optimization problem to 

achieve the minimization of converters' losses goal. 

On the converters’ control level, the primary and secondary control levels were maintained for all 

operating converters. A detailed study was conducted on RESs that always operate in MPPT mode 

as MPPT techniques highly impact the calculation of outputted power. In this context, a new MPPT 

table search technique was proposed for the PV array as traditional ones require small calculation 

step sizes. As a result, the proposed modeling strategy provided the best tradeoff between model 

precision, complexity, and simulation speed. Only variables and phenomena that limit the 

calculation step size and do not impact the precise calculation of power sources were neglected.            

 

The second contribution of this thesis is the achievement of multi-objective optimization. To reach 

the three predefined objectives of the EMS, an optimization problem is formulated in Chapter 3. 

The optimization problem outputs the optimal power references of dispatchable sources for the 

next 24 hours. As the PV array and the WT are always operating in MPPT mode to continuously 

extract the maximum available clean energy, the optimal EMS has three remaining degrees of 

freedom. These degrees of freedom are the power references of the battery, the (DG), and the 

utility grid. Hence, by setting the power references of these three units for the next 24 hours, the 

EMS optimally controls the power flow in the DC microgrid. The models of the PV and (WT) 

power sources that were derived in Chapter 2 serve as inputs for the optimization problem. Besides, 

as presented in Chapter 2, the detailed battery model which includes the exponential zone of the 

battery’s voltage and accurately computes the battery’s state of charge (𝑆𝑂𝐶) is adopted in Chapter 



 
 

185 
 

3. The complexity of the formulated optimization problem lies at the variables’ level of which the 

power references of the (DG) and utility grid are time-invariant, whereas the battery’s 𝑆𝑂𝐶 is time 

variant. Being a fundamental parameter that affects the battery’s power over the entire control 

range, the battery’s 𝑆𝑂𝐶 discrete equation was included in the optimization problem to correctly 

guess the 𝑆𝑂𝐶 and set the battery power reference over the whole time horizon.  

 

Among several methods, the unique weighted objective function method is applied. Distinct 

weights that vary from zero to one were assigned to the three predefined optimization goals. The 

objective function, expressed in $, consists of the weighted sum of the total operation cost, the 

toxic gas emissions cost, and the converters’ losses cost functions expressed all in $. To compute 

all these cost functions, several mathematical equations that relate the optimization variables (i.e. 

the optimal power references of dispatchable sources) to the operation and maintenance costs of 

operating units, the total mass of emitted toxic gas, the fuel price, and the converters’ losses penalty 

factor were included. By this, a total energy bill, in $, is obtained at the end of each day consisting 

of the total cost of purchased/sold energy from/to the grid, the (O&M)  cost of all operating units, 

and the penalty cost related to the toxic gas emissions and the losses in operating converters. On 

the one hand, expressing all cost functions in dollars and including them in one objective function 

offers a mathematical solution to enable the preference criterion between the three optimization 

goals. On the other hand, it provides a unified energy bill at the end of each day that can be 

intelligible on the consumer side.     

 

Besides, to emulate a real DC microgrid scenario, upper and lower bounds for decision variables 

were added as well as several constraints. For instance, constraints on the minimum and maximum 

admissible 𝑆𝑂𝐶 values, the final 𝑆𝑂𝐶 value that should retrieve the battery’s initial state, etc. were 

introduced to guarantee a safe operation of the ESS and all operating units. Applying all these 

equations resulted in a time-variant optimization problem with nonlinear and non-smooth 

constraints and objective function. To solve the formulated optimization problem, two algorithms 

were represented and applied. A first deterministic algorithm called dynamic programming (DP) 

and a second metaheuristic algorithm called the genetic algorithm (GA) were applied to further 

prove that the found solution is a global minimum. Both algorithms converged and yielded close 

results with a preference for the (DP) which solved the problem in an extremely lower convergence 

time and higher time resolution compared to the (GA). The convergence time ratios for the winter 

and summer days are respectively: 𝐺𝐴𝐶𝑇 𝐷𝑃𝐶𝑇⁄ = 15.44 and  24.54. For the time resolution, (DP) 

is run with a sampling period of 𝑇𝑠 = 1/6 hour meanwhile, the sampling period of (GA) is limited 

to 𝑇𝑠 = 1 hour since the number of optimization variables increases exponentially as the sampling 

period decreases.  

Next, the preference criterion between the three defined goals was assessed by varying the 

corresponding weight of each objective in the unified objective function. As a result, a Pareto of 

all possible optimal solutions with corresponding weight variation intervals was deduced for the 

tested winter day. Besides, although the three optimization goals are expressed distinctly in the 



 
 

186 
 

main objective function, the achievement of any of them fosters or restricts the attainment of the 

remaining ones. Thus, the results showed that the accomplishment of the minimization of the total 

operation cost goal automatically favors the minimization of the converter’s losses and vice-versa 

as the two goals are reconcilable. However, the minimization of the toxic gas emissions goal 

contradicts the minimization of total operating cost and converters’ losses goals. Here lies the 

importance of the defined Pareto of solutions following the user preference for goal achievement. 

Consequently, the Pareto solution analysis is instrumental and must precede the offline 

optimization process.  

Chapter 4 highlights a third contribution of this thesis, the inclusion of an online optimization stage 

that updates the offline optimized power references. The uncertainties in the RES-generated 

power, load demand, and electricity pool price are the main causes of mismatches between 

predictions and actual data inputs. To compensate for these mismatches, one of the operating 

converters, mostly the utility grid converter, takes charge of stabilizing the common DC bus 

voltage and reestablishing the power balance in the DC microgrid. Though this preponderant 

approach ensures a stable operation of the microgrid regardless of the occurring mismatches, it 

may engender a suboptimal solution far from the offline proposed one. For this, a new online 

control strategy is advanced in which an online optimization stage is added to update the power 

references of all dispatchable sources. By this, all dispatchable sources share the corrective actions 

needed to compensate for the uncertainties and not only one of the operating converters. The new 

power share of each dispatchable source is defined according to the formulated online optimization 

problem.   

Setting the same three optimization goals of offline optimization, the online optimization stage is 

not advanced as an alternative to the offline one and does not rebuild the optimal path over the 

whole-time horizon. Instead, the online EMS, which is ten times faster than the offline output 

power references, carries out a local optimization for each one-minute intrasample period. At each 

intrasample period, it assures the corrective action by outputting the updated optimal power 

references for one next-time step. The online optimization problem was formulated appropriately 

for the selected local solver of the main algorithm which is Global Search (GS). The chosen local 

solver is 𝑓𝑚𝑖𝑛𝑐𝑜𝑛. To simplify the mathematical expressions of the problem, all weights in the 

objective function are set to one so that there are no preferences between the three goals at this 

stage. Besides, as the minimization of the total operation cost and the converter’s losses are 

reconcilable objectives, the latter objective wasn’t included in the objective function. Knowing 

that, if the above-stated hypothesis is correct, any reduction in the total operating cost should 

automatically result in a reduction of converters’ losses. Furthermore, the constraint on the last 

battery’s 𝑆𝑂𝐶 is released.    

The effectiveness and viability of the proposed online optimization stage were proved in two 

different simulation tests. The first simulation test assesses the response of the system in the 

presence and absence of the online EMS toward fast dynamics and disturbances in the actual data 

inputs. To simulate the fast disturbances in the actual data inputs, white Gaussian noises (WGN)s 

are added to the predicted input signals. The obtained results show that the online EMS yields 
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better results than the offline approach in this simulation test as it has a higher time resolution. 

Hence, the first benefit of online EMS is its robustness in responding to fast disturbances in the 

input signals compared to the offline approach. The second simulation test simulates several 

scenarios in which positive and negative margins of error between predicted and actual data inputs 

are created. The online EMS showed improved results of the total operating cost in all applied 

scenarios compared to the offline approach. Besides, lower converters’ loss values were noted in 

all scenarios which validated the hypothesis of reconcilable objectives. For toxic gas emissions, 

depending on each case scenario the online EMS produces less or further toxic gas. In case of 

additional emitted toxic gas, the amount remained limited (i.e., a maximum 5% additional amount 

of emitted toxic gas in the worst-case scenario) as the corresponding optimization goal is included 

in the objective function to minimize.  

 

Finally, it is worth mentioning that the size of the ESS plays a significant role in online EMS-

obtained results. Referring to all simulation tests, the well-defined amount of extra storage energy 

allocated to the online EMS was entirely used in all simulations and scenarios to ensure a profit in 

the total operating cost at the end of the 24 hours. This extensive reliance on the ESS can be 

justified by the low average price of a kilowatt-hour discharged from the battery compared to the 

one purchased from the utility grid or produced by the (DG). As a result, the further the battery is 

exploited during the day the less the profit from the online EMS is at the end of the time horizon. 

This can be seen by the higher profit obtained on the summer day (3.68 $) compared to the winter 

day (0.53$) as further ESS energy is available and can be exploited in summer than in winter.  

The future work may include four different perspectives that can be followed and developed: 

• The first is the experimental validation of all the simulation results. A real implementation 

of the proposed offline and online EMS on a real DC microgrid with the same configuration 

is essential so that the project does not remain theoretical. This can be achieved through a 

Hardware In the Loop (HIL) simulation such as OPAL-RT systems which enables the 

assessment for several days.  

• The second aspect is the integration of an additional type of ESS such as the 

supercapacitors that respond to rapid and high peaks of power demand while the battery 

takes charge of supplying the permanent energy demand. The attribution of the fast power 

discharge/charge to the supercapacitor and the slow power discharge/charge to the lithium-

ion battery must be reflected in the formulation of the new optimization problem.  

• Third, the load was not considered a dispatchable unit when formulating the optimization 

problem in this thesis. However, the load can provide an additional degree of freedom if 

added to optimally manage the energy of the DC microgrid. This can be achieved by the 

load-shedding and the deferrable/ undeferrable load strategy. The load shedding offers an 

additional economical solution when the consumption surpasses the RES production, and 

the battery is entirely discharged.  
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• Finally, in the last chapter to model the mismatches between the predicted and actual data 

inputs, we have added white Gaussian noises to the predicted input signals and shifted them 

up and down to create non-zero average variations. Yet, the prediction model can be 

improved by integrating Artificial Intelligence (AI) which offers a better solution to fit 

reality. AI makes it possible to better integrate changes in production and consumption 

through data fusion, big data, etc.  
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Appendix A 

A.1 PV module data   

SunPower SPR -415E-WHT-D is selected as a module out of several PV module manufacturers 

around the world proposed through the MATLAB/Simulink library:  

 

Fig.a.1 SunPower SPR -415E-WHT-D module data. 

- The PV maximum outputted power can be computed by multiplying the module maximum 

power by the number of parallels and series strings: 

     𝑃𝑃𝑉_𝑚𝑎𝑥 = 414.801 × 20 × 6 = 49 776 𝑊 ≈ 50 𝐾𝑊. 

- The reference irradiance and cell temperature under standard test conditions (STC)s are 

respectively equal to: 𝑆𝑟𝑒𝑓 = 1000 𝑊 𝑚2⁄ and 𝑇𝑟𝑒𝑓_K = 25°𝐶 = 298.15 𝐾   

- The reference light-generated current: 𝐼𝐿_𝑟𝑒𝑓 = 6.0978 𝐴 as seen in Fig.a.1.  

- The temperature coefficient of short-circuit current (𝐼𝑆𝐶) in (𝐴 °𝐶⁄ ) is equal to the temperature 

coefficient of  𝐼𝑆𝐶  (% °𝐶⁄ ) multiplied by the short-circuit current (𝐼𝑆𝐶): 

𝛼𝑖𝑠𝑐 =
0.030706

100
× 6.09 = 1.87 × 10−3  𝐴 °𝐶⁄ .  

- The diode current of the PV array (𝐼𝑑) is expressed as a function of the diode voltage (𝑉𝑑), the 

diode saturation current (𝐼0), and the diode temperature voltage (𝑉𝑇):  

𝐼𝑑 = 𝐼0 [𝑒𝑥𝑝 (
𝑉𝑑 

𝑉𝑇
) − 1]                                                                                                         (A.1) 

Referring to fig.2.4 (chapter 2), 𝑉𝑑 can be expressed as: 𝑉𝑑 = 𝑉𝑃𝑉 + 𝑅𝑠. 𝐼𝑃𝑉 
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𝐼0 and 𝑉𝑇 are expressed as functions of the input variable 𝑇K (the cell temperature in Kelvin) 

• 𝐼0 = 𝑓(𝑇𝐾) = 𝐼0_𝑟𝑒𝑓 × (
𝑇𝐾

𝑇𝑟𝑒𝑓_𝐾
)
3

× 𝑒𝑥𝑝 [(
𝐸𝑔_𝑟𝑒𝑓 

𝐾1×𝑇𝑟𝑒𝑓_𝐾
) − (

𝐸𝑔 

𝐾1×𝑇𝐾
)]                                (A.2) 

where:  

𝐼0_𝑟𝑒𝑓 is the diode reference saturation current = 7.169810−13𝐴 

𝐸𝑔_𝑟𝑒𝑓 is the reference material bandgap energy = 1.12 𝑒𝑉 (for silicon)  

𝐾1 is the Boltzmann constant = 8.618 × 10−5  𝑒𝑉 𝐾⁄ . 

𝐸𝑔 is the material bandgap energy, and is computed as follows:  

• 𝐸𝑔 = 𝐸𝑔_𝑟𝑒𝑓 × [1 + 𝑑𝐸𝑔𝑑𝑇 × (𝑇𝐾 − 𝑇𝑟𝑒𝑓_𝐾)]                                                             (A.3) 

     𝑑𝐸𝑔𝑑𝑇 is a coefficient for silicon [160]  = −0.0002677 

• 𝑉𝑇 = 𝑓(𝑇𝐾) = 𝑉𝑇_𝑟𝑒𝑓 × 𝑁𝑠𝑒𝑟 ×
𝑇𝐾

𝑇𝑟𝑒𝑓_𝐾
                                                                         (A.4) 

where: 

𝑁𝑠𝑒𝑟  is the number of the series-connected modules per string= 6.    

𝑉𝑇_𝑟𝑒𝑓 is computed as follows:  𝑉𝑇_𝑟𝑒𝑓 =
𝐾×𝑇𝑟𝑒𝑓_K

𝑞
× 𝑛𝐼 × 𝑁𝑐𝑒𝑙𝑙                             (A.5) 

               where: 

𝐾 is the Boltzmann constant = 1.3806 × 10−23  𝐽 𝐾⁄ . 

𝑞 is the electron charge =1.6022 × 10−19 𝐶. 

𝑛𝐼 is the diode ideality factor (a number close to 1) = 0.87223 for this module. 

𝑁𝑐𝑒𝑙𝑙 is the number of cells connected in series in a module = 128. 

A.2 Incremental conductance MPPT technique 

This method uses two current and voltage sensors to measure the PV array voltage and current. 

As a concept, the maximum-power point corresponds to a 
𝑑𝑃𝑃𝑉

𝑑𝑉𝑃𝑉
= 0 (having 𝑃𝑃𝑉 = 𝐼𝑃𝑉 × 𝑉𝑃𝑉):  

𝑑𝑃𝑃𝑉 =
𝜕𝑃𝑃𝑉

𝜕𝐼𝑃𝑉
𝑑𝐼𝑃𝑉 +

𝜕𝑃𝑃𝑉

𝜕𝑉𝑃𝑉
𝑑𝑉𝑃𝑉 = 𝑉𝑃𝑉. 𝑑𝐼𝑃𝑉 + 𝐼𝑃𝑉. 𝑑𝑉𝑃𝑉 → 

𝑑𝑃𝑃𝑉

𝑑𝑉𝑃𝑉
= 𝑉𝑃𝑉.

𝑑𝐼𝑃𝑉

𝑑𝑉𝑃𝑉
+ 𝐼𝑃𝑉 = 0                 

Which yields the following expression:    
𝑑𝐼𝑃𝑉

𝑑𝑉𝑃𝑉
+

𝐼𝑃𝑉

𝑉𝑃𝑉
= 0                                                       (A.6) 

At each MPPT control sliding window time, the expression of (A.6) is computed, and the resulting 

error is minimized to continuously track the maximum available power. In the Simscape library of 

Simulink, the incremental conductance method can be implemented as a single block in which the 

PWM switching frequency (𝑓𝑠𝑤_𝑃𝑉), the sliding time window of the MPPT control (𝑇𝑀𝑃𝑃𝑇), and 

the initial duty cycle (𝐷𝑖𝑛𝑖𝑡) are the parameters to be defined. The block has as inputs the PV array 
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current and voltage and the firing pulses (𝑢) as output [121]. Inside the block, two Fourier analysis 

blocks are applied to 𝐼𝑃𝑉 and 𝑉𝑃𝑉 to get the fundamental components of ripples measured with a 

sliding time window 𝑇𝑀𝑃𝑃𝑇. The Fourier blocks output  𝑑𝐼𝑃𝑉 and 𝑑𝑉𝑃𝑉. Besides, the mean values 

of  𝐼𝑃𝑉 and 𝑉𝑃𝑉 are computed and utilized to form the (A.6) expression which can be written as: 

                                                         
𝑑𝐼𝑃𝑉

𝑑𝑉𝑃𝑉
+

𝐼𝑃𝑉_𝑚𝑒𝑎𝑛

𝑉𝑃𝑉_𝑚𝑒𝑎𝑛
                                                                 (A.7) 

Where, 𝐼𝑃𝑉_𝑚𝑒𝑎𝑛 , and 𝑉𝑃𝑉_𝑚𝑒𝑎𝑛  are respectively the mean values of the PV array current and 

voltage over the sliding time window (𝑇𝑀𝑃𝑃𝑇). A PI regulator minimizes the resulting error from 

(A.7) expression with a default proportional gain of 5. The regulator outputs the duty cycle 

correction Δ𝐷 to be added to the initial duty cycle 𝐷𝑖𝑛𝑖𝑡. Finally, (Δ𝐷 + 𝐷𝑖𝑛𝑖𝑡) is connected to the 

PWM generator to generate the firing pulses that control the IGBT with the specified switching 

frequency. For this study, the parameters' values are: 𝐷𝑖𝑛𝑖𝑡 = 0.5, 𝑓𝑠𝑤_𝑃𝑉 = 20 𝐾𝐻𝑧, and 𝑇𝑚𝑝𝑝𝑡 =

0.2 𝑚𝑠.  
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Appendix B 

B.1 DC/DC boost components’ selection and parameters calculation for 

conduction losses 

B.1.1 Diode selection  
 

To select the DC/DC boost diode, the maximum continuous DC forward current and the maximum 

peak reverse voltage should be evaluated: 

• The maximum peak reverse voltage that the diode withstands in this application is equal to 

the DC bus voltage:  𝑉𝑅𝑀 = 𝑉𝐵𝑈𝑆 = 800 𝑉.  

• The maximum continuous DC forward current is equal to the maximum inductor current 

since the conduction equivalent resistor is placed in series with the inductor 𝐿: 𝐼𝐷_𝑓_𝑚𝑎𝑥 ≈

𝐼𝐿_𝑚𝑎𝑥 . By referring to Fig.a.1, the PV maximum rated power is 𝑃𝑃𝑉_𝑚𝑎𝑥 ≈ 50 𝐾𝑊  

corresponding to a maximum PV current: 𝐼𝑃𝑉_𝑚𝑎𝑥 = current at the maximum power point 

of a module × number of parallel strings = 5.69 × 20 = 114 𝐴.        

The Infineon semiconductor manufacturer is chosen for the diode and IGBT real sizing. The 

“DD400S45KL3_B5 “diode is selected with the below maximum rated values:  

- 𝑉𝑅𝑅𝑀 = 4500 𝑉 ,              𝑉𝑅𝑅𝑀 : the repetitive peak reverse voltage  

- 𝐼𝐹 = 400 𝐴 ,                     𝐼𝐹       : the continuous DC forward current   

As seen the maximum rated values outstrip the above-computed ones (𝑉𝑅𝑀 and 𝐼𝐷_𝑓_𝑚𝑎𝑥) which 

guarantees a safe operation with an additional range for the safety factor.  

𝑉𝑓0  and 𝑅𝐷_𝑓  values can be extracted from the 𝐼𝑓 = 𝑓(𝑉𝑓)  characteristic found in the 

manufacturer’s datasheet and represented in Fig. b. (a). A tangent line to the curve of 𝑇𝑣𝑗 = 25°𝐶, 

at the maximum DC forward current rated value (𝐼𝐹 = 400 𝐴), is drawn (red dashed line). The 

point of intersection of the tangent with the x-axis corresponds to the diode forward voltage source 

(V), and the inverse of the tangent’s slope corresponds to the diode forward resistance (Ω). By 

referring to Fig.b.1 (a), 𝑉𝑓0 = 1.65 𝑉 and 𝑅𝐷_𝑓 = 2.1 𝑚Ω are retrieved.   

B.1.2 IGBT selection  
 

The same approach of the diode selection is applied to size the IGBT and find the conduction loss 

parameters (𝑉𝐼𝐺𝐵𝑇_𝐶𝐸0  and 𝑅𝐼𝐺𝐵𝑇_𝑜𝑛 ). The maximum continuous DC collector current and the 

maximum collector-emitter voltage should be evaluated: 

- The maximum collector-emitter voltage is retrieved when the IGBT is blocked:   

𝑉𝐶𝐸 = 𝑉𝐵𝑈𝑆 = 800 𝑉 
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- The maximum continuous DC collector current is retrieved when the IGBT is ON and is 

equal to the maximum inductor current 𝐼𝐿_𝑚𝑎𝑥: 𝐼𝐼𝐺𝐵𝑇_𝑜𝑛_𝑚𝑎𝑥 ≈ 𝐼𝐿_𝑚𝑎𝑥 = 114 𝐴.    

The “FZ400R12KE4 “IGBT is selected, from Infineon manufacturer, with the below maximum 

rated values:  

- 𝑉𝐶𝐸𝑆 = 1200 𝑉 ,              𝑉𝐶𝐸𝑆      : the collector-emitter voltage  

- 𝐼𝑐 𝑛𝑜𝑚 = 400 𝐴 ,              𝐼𝑐 𝑛𝑜𝑚   : the continuous DC collector current   

 

                                            (a)                                                                                 (b) 

Fig.b.1 (a)  𝐼𝑓 = 𝑓(𝑉𝑓), and (b) 𝐼𝑐 = 𝑓(𝑉𝐶𝐸)  characteristics from the Infineon datasheets. 

Same to the diode selection criteria, the safe operation of the IGBT is guaranteed with an additional 

range for the safety factor.  

𝑉𝐼𝐺𝐵𝑇_𝐶𝐸0  and 𝑅𝐼𝐺𝐵𝑇_𝑜𝑛  values are extracted from the 𝐼𝑐 = 𝑓(𝑉𝐶𝐸)  characteristic found in the 

manufacturer’s datasheet and represented in Fig.b.1 (b). By drawing the tangent to the black curve 

and applying the same method of diode selection, the following values are obtained:  

𝑉𝐼𝐺𝐵𝑇_𝐶𝐸0 = 0.9 𝑉 and 𝑅𝐼𝐺𝐵𝑇_𝑜𝑛 = 2.1 𝑚Ω.  

B.2 DC/DC boost parameters calculation for switching losses 

B.2.1 IGBT parameters 

 

Referring to the manufacturer’s datasheet, the turn-on and turn-off delay time (s) are provided  
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for a collector-current 𝐼𝐶 = 400 𝐴, and collector-emitter voltage 𝑉𝐶𝐸 = 600 𝑉 : 

𝑡𝑜𝑛_𝐼𝐺𝐵𝑇 = 0.24 𝜇𝑠 

𝑡𝑜𝑓𝑓_𝐼𝐺𝐵𝑇 = 0.61 𝜇𝑠 

B.2.2 Calculation of 𝒕𝒇_𝑫 and 𝑰𝑹𝑴_𝑫 

 

The manufacturer doesn’t provide 𝑡𝑓_𝐷, then it should be computed using the diode parameters 

provided in the datasheet:  

- The peak reverse recovery current: 𝐼𝑅𝑀_𝑑𝑠 = 500 𝐴  

- The recovered charge: 𝑄𝑟 = 390 𝜇𝐶   

- The reverse recovery energy: 𝐸𝑟𝑒𝑐 = 590 𝑚𝐽 

 

These parameters are provided under the below test conditions:  

- 𝐼𝐹 = 400 𝐴 

- 𝑑𝐼𝐹 𝑑𝑡⁄ = 1650 𝐴/𝜇𝑠 

- 𝑉𝑅 = 2800 𝑉 

 

To compute 𝑡𝑓_𝐷, the softness factor “𝑠” is computed based on the below formula[128] : 

 𝑠 =
𝑡𝑓_𝐷

𝑡𝑠_𝐷
=

𝑄𝑟

0.5𝐼𝑅𝑀_𝑑𝑠
2 𝑑𝐼𝐹

𝑑𝑡
⁄

− 1 = 4.148                                                                                        (B.1) 

𝑡𝑠_𝐷 : the time required by the diode current to fall from zero and reach its peak reverse recovery 

value (fig. b.2(b)).  

Referring to fig.b.2(b), the reverse recovery time 𝑡𝑟𝑟_𝐷 can be computed as follows:  

𝑡𝑟𝑟_𝐷 = 𝑡𝑠_𝐷 + 𝑡𝑓_𝐷 =
2.𝑄𝑟

𝐼𝑅𝑀_𝑑𝑠
= 1.56 𝜇𝑠                                                          (B.2) 

Thus,  𝑡𝑓_𝐷 = 𝑡𝑟𝑟_𝐷 (
𝑠

𝑠+1
) = 0.8057𝑡𝑟𝑟_𝐷 = 1.26 𝜇𝑠.  

𝐸𝑟𝑒𝑐 can be expressed as follows: 

𝐸𝑟𝑒𝑐 = 𝑘𝐸𝑉𝑅𝑄𝑟 (
𝑠

𝑠+1
)                         (B.3) 

𝑘𝐸 : a constant depending on both the characteristics of the diode and the commutation circuit. 

Using equation (B.3), we find 𝑘𝐸 = 0.6706.    

To determine 𝐼𝑅𝑀_𝐷 which is directly affected by the value of the forward current 𝐼𝐹, we refer to 

the datasheet curve showing the reverse recovery energy 𝐸𝑟𝑒𝑐  as a function of 𝐼𝐹  as seen in 

Fig.b.2(a). The manufacturer provides the reverse recovery energy as a function of the forward 
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voltage at a 125°C condition (black curve). As the detailed curve of 𝐸𝑟𝑒𝑐 is not provided at 25°C, 

and only one value is provided for 𝐼𝐹 = 400 𝐴 at T=25°C, the ratio of  𝐸𝑟𝑒𝑐  between the two 

temperature conditions is computed for 𝐼𝐹 = 400 𝐴: 

𝐸𝑟𝑒𝑐_125°
𝐸𝑟𝑒𝑐_25°

)
𝐼𝐹=400 𝐴

=
1200

590
≈ 2 

To draw 𝐸𝑟𝑒𝑐 waveform (indigo curve) at T=25°C, the same ratio is considered for all 𝐼𝐹 values. 

When the diode conducts, the forward current 𝐼𝐹 is almost equal to the inductor current 𝐼𝐿(𝐼𝐹 ≈

𝐼𝐿). Finally, MATLAB basic fitting tool is used to obtain 𝐸𝑟𝑒𝑐 = 𝑓(𝐼𝐹) equation. A fourth-degree 

polynomial fit gives a best-fitting result with a coefficient of determination 𝑅2 = 0.9997. 

 
(a)                                                                        (b) 

Fig.b.2 (a) diode switching losses 𝐸𝑟𝑒𝑐 = 𝐹(𝐼𝐹), (b) approximation of the reverse recovery current and 

reverse voltage. 

The obtained equation is: 

𝐸𝑟𝑒𝑐 = (−4.31 × 10
−8) 𝐼𝐹

4 + (4.51 × 10−5) 𝐼𝐹
3 − 0.018 𝐼𝐹

2 + 4.15 𝐼𝐹 + 0.65                     (B.4) 

Hence, 𝐸𝑟𝑒𝑐 is calculated using equation (B.4), and by using equations (B.1), (B.2), and (B.3),  

𝐼𝑅𝑀_𝐷 is expressed as a function of 𝐸𝑟𝑒𝑐 : 

𝐼𝑅𝑀_𝐷 = 𝑓(𝐸𝑟𝑒𝑐) = √
2𝐸𝑟𝑒𝑐(𝑑𝐼𝐹 𝑑𝑡⁄ )

𝑠 𝑘𝐸 𝑉𝑅
                      (B.5) 
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Appendix C 

C.1 PMSM parameters   

A PMSM made by the German manufacturer VEM is chosen. The PMSM has the following data: 

− Rated output power: 𝑃𝑛 = 55 𝐾𝑊   

− Nominal speed: 𝑁𝑛 = 3000 𝑟𝑝𝑚 

− Nominal torque : 𝑇𝑛 = 175 𝑁𝑚 

− Rated frequency: 𝑓𝑛 = 100 𝐻𝑧 

− Number of pole pairs: 𝑝 = 2 

− Stator nominal phase-to-phase voltage: 𝑈𝑛 = 358 𝑉 

− Stator nominal phase-to-neutral voltage: 𝑉𝑛 = 206.7 𝑉 

− Stator base voltage:  𝑉𝑠_𝑏𝑎𝑠𝑒 = 𝑉𝑛√2 = 292.3 𝑉 

− Nominal current: 𝐼𝑛 = 95 𝐴 

− Nominal efficiency for motor operation: 𝜂𝑛,𝑚 = 93.2 % 

− Nominal efficiency for generator operation: 𝜂𝑛,𝐺 = 92.85 % 

− Power factor:  𝑃𝐹 = 1 

− Motor inertia:  𝐽 = 0.264 𝐾𝑔𝑚2 

− Stator d-axis inductance: 𝐿𝑑 = 0.3445 𝑚𝐻  

− Stator q-axis inductance: 𝐿𝑞 = 0.3445 𝑚𝐻  

− Stator self-inductance per phase: 𝐿𝑠 = 0.153 𝑚𝐻  

− The equivalent resistance of each stator winding: 𝑅𝑠 = 4.325 𝑚Ω 

− Permanent magnet flux linkage: 𝜓𝑚 = 0.46392 𝑉. 𝑠 

− Viscous damping: 𝐹 = 0,0386 𝑁𝑚, 𝑠 

C.2 3𝝓 rectifier IGBTs and diodes selection, and parameters calculation for 

conduction and switching losses    

To select the IGBTs and the diodes of the 3𝜙 rectifier, the maximum continuous collector current 

and the maximum collector-emitter voltage of the IGBT should be evaluated. As each diode is 

placed in parallel to one IGBT:    

- the maximum continuous forward current in the diode is equal to the maximum continuous 

collector current of the IGBT.  

- the maximum peak reverse voltage of the diode is equal to the maximum collector-emitter 

voltage of the IGBT.  

- The maximum collector-emitter voltage is retrieved when the IGBT is blocked:   

𝑉𝐶𝐸 = 𝑉𝐵𝑈𝑆 = 800 𝑉 
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- The maximum continuous DC collector current is retrieved when the IGBT is ON and is 

equal to the maximum sinusoidal phase current îl of the PMSM (PMSM parameters): îl =

√2𝐼𝑛 = 134.35 𝐴.    

The “FS300R12OE4 “IGBT module is selected, from Infineon manufacturer. The module consists 

of 6 IGBTs connected to an anti-parallel diode each. The rated values of each IGBT and diode are 

extracted from the manufacturer's datasheet. The IGBT-rated values are:    

- 𝑉𝐶𝐸𝑆 = 1200 𝑉 ,        𝑉𝐶𝐸𝑆       : the collector-emitter voltage  

- 𝐼𝑐 𝑛𝑜𝑚 = 300 𝐴 ,        𝐼𝑐 𝑛𝑜𝑚     : the continuous DC collector current 

- Vref = 600𝑉,             𝑉𝑟𝑒𝑓         : the voltage reference of the given switching losses  

- iref = 300𝐴,              𝑖𝑟𝑒𝑓          : the current reference of the given switching losses  

- Eon_IGBT = 19 𝑚𝐽,     Eon_IGBT : turn-on energy loss per pulse  

- Eoff_IGBT = 24.5 𝑚𝐽, 𝐸𝑜𝑓𝑓_𝐼𝐺𝐵𝑇: turn-off energy loss per pulse 

The diode-rated values are:    

- 𝑉𝑅𝑅𝑀 = 1200 𝑉 ,         𝑉𝑅𝑅𝑀        : the repetitive peak reverse voltage 

- 𝐼𝐹 = 300 𝐴 ,                𝐼𝐹              : the continuous DC forward current   

- Vref = 600𝑉,               𝑉𝑟𝑒𝑓           : the voltage reference of the given switching losses  

- iref = 300𝐴,                𝑖𝑟𝑒𝑓           : the current reference of the given switching losses  

- 𝐸𝑜𝑓𝑓_𝑑𝑖𝑜𝑑𝑒 = 12.5 𝑚𝐽, 𝐸𝑜𝑓𝑓_𝑑𝑖𝑜𝑑𝑒 : the reverse recovery energy  

 

To find 𝑉𝐶𝐸,0, 𝑟𝐶𝐸, 𝑉𝐹,0, 𝑟𝐹, applied to compute the conduction losses in the IGBT and diode, we 

refer to the characteristics provided by the manufacturer’s datasheet. Fig.c.1 (a) and (b) show 

respectively the characteristics of 𝐼𝑐 = 𝑓(𝑉𝐶𝐸) and 𝐼𝑓 = 𝑓(𝑉𝑓). By drawing the tangents (dashed 

red line ) to the black curves 𝐼𝑐 = 𝑓(𝑉𝐶𝐸) and 𝐼𝑓 = 𝑓(𝑉𝑓) at an operating temperature of 𝑇𝑣𝑗 =

25 °𝐶 and applying the same method of the DC/DC boost cited in Appendix B, the following 

values are obtained: 

- 𝑉𝐶𝐸,0 = 0.88 𝑉       and      𝑟𝐶𝐸 = 2.9 𝑚Ω. 

- 𝑉𝐹,0   = 1.0941 𝑉   and      𝑟𝐹  = 1.9 𝑚Ω. 

C.3 Optimal torque MPPT technique  

Referring to [42], the tip speed ratio, 𝜆, can be expressed as the ratio of the linear speed of the 

blade tips, 𝜈𝑤𝑖𝑛𝑑, to the rotational speed of the wind turbine 𝑤𝑟 by:  

 

𝜆 =
𝜔𝑟𝑅

𝜈𝑤𝑖𝑛𝑑
                                                                                                                                    (C.1) 

where 𝑅 is the blade length (m) and the turbine-swept area is 𝐴 = 𝜋𝑅2. Thus, equation (II.21) 

can be rewritten as follows: 
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Fig.c.1 (a)  𝐼𝑓 = 𝑓(𝑉𝑓), and (b) 𝐼𝑐 = 𝑓(𝑉𝐶𝐸)  characteristics from the Infineon datasheets. 

𝑃𝑤𝑖𝑛𝑑_𝑚 = 𝑐𝑝(𝜆, 𝛽)
𝜌𝜋𝑅5

2𝜆3
𝜔𝑟
3                                                                                                      (C.2) 

To extract the maximum available power from the wind turbine, the rotor of the PMSM should 

always run at 𝑐𝑝 = 𝑐𝑝_𝑚𝑎𝑥  corresponding to the value of 𝜆 = 𝜆𝑛𝑜𝑚 . Hence, the following 

expression is obtained:  

𝑃𝑤𝑖𝑛𝑑_𝑚_𝑜𝑝𝑡 =
1

2
𝜌𝜋𝑅5

𝑐𝑝_𝑚𝑎𝑥

𝜆𝑛𝑜𝑚
3 𝜔𝑟

3 = 𝑘𝑜𝑝𝑡𝜔𝑟
3                                                                               (C.3)                                                                                            

where 𝑘𝑜𝑝𝑡 =
1

2
𝜌𝜋𝑅5

𝑐𝑝_𝑚𝑎𝑥

𝜆𝑛𝑜𝑚
3   is constant.  

The block diagram of the optimal torque MPPT method is shown in Fig. c.2. As seen, 𝑃𝑤𝑖𝑛𝑑_𝑚_𝑜𝑝𝑡 

is calculated using equation (C.3) (denoted 𝑃𝑚𝑒𝑐_𝑟𝑒𝑓  in Fig. c.2). Then the mechanical losses, 

𝑃𝑚_𝑃𝑀𝑆𝑀 , and the ohmic losses, 𝑃𝐽_𝑃𝑀𝑆𝑀 ,  of the PMSM are computed and subtracted from 

𝑃𝑚𝑒𝑐_𝑟𝑒𝑓  to generate the electrical reference 𝑃𝑒𝑙𝑒𝑐_𝑟𝑒𝑓. Then, 𝑃𝑒𝑙𝑒𝑐_𝑟𝑒𝑓 is compared to the actual 

electrical power, computed in the (𝑑𝑞) frame, and the resulting error is minimized by a P.I. 

controller. The regulator outputs the 𝑑-axis current reference (𝑖𝑑_𝑟𝑒𝑓), while 𝑖𝑞_𝑟𝑒𝑓 is always set to 

zero to obtain zero reactive power in the electrical circuit. The regulator parameters are 𝐾𝑖_𝑝𝑟 = 1 

and 𝑇𝑖_𝑝𝑟 = 100. Finally, Fig. c.3 shows the MPPT characteristic in which the turbine output 

power (in 𝑝. 𝑢. of the nominal mechanical power) is plotted as a function of the wind speed (in 

𝑝. 𝑢. of the rated wind speed). Six different zones of operation can be identified: 
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Zone 1: 0 ≤ 𝜈𝑤𝑖𝑛𝑑 < 𝑉𝑐𝑖_𝑝𝑢. The wind speed is less than the cut-in speed 𝑉𝑐𝑖_𝑝𝑢 = 0.44 𝑝. 𝑢. ↔

𝑉𝑐𝑖 = 5.28 𝑚/𝑠. In this zone,  𝑃𝑤𝑖𝑛𝑑_𝑚_𝑝𝑢 = 0. 

 

Zone 2: 𝑉𝑐𝑖_𝑝𝑢  ≤ 𝜈𝑤𝑖𝑛𝑑 < 𝑏. This zone precedes the MPPT zone, it starts at 𝜈𝑤𝑖𝑛𝑑 = 𝑉𝑐𝑖_𝑝𝑢 and 

ends at 𝜈𝑤𝑖𝑛𝑑 = 𝑏 = 0.45 𝑝. 𝑢 (5.4 𝑚/𝑠). 𝑃𝑤𝑖𝑛𝑑_𝑚_𝑝𝑢 is linear in this zone and reaches 0.08 𝑝. 𝑢. 

at its end. 

 

Zone 3: 𝑏 ≤ 𝜈𝑤𝑖𝑛𝑑 < 𝑐. It is the MPPT zone in which the optimal torque MPPT technique is 

applied. It starts  at 𝜈𝑤𝑖𝑛𝑑 = 𝑏 = 0.45 𝑝. 𝑢  and ends at 𝜈𝑤𝑖𝑛𝑑 = 𝑐 = 1 𝑝. 𝑢 (12 𝑚/𝑠 ) where 

𝑃𝑤𝑖𝑛𝑑_𝑚_𝑝𝑢 = 0.9 𝑝. 𝑢. ↔ 𝑃𝑤𝑖𝑛𝑑_𝑚 = 0.9 × 55 = 49.5 𝐾𝑊. 

 

Zone 4: 𝑐 ≤ 𝜈𝑤𝑖𝑛𝑑 < 𝑑. This zone follows the MPPT zone, it starts at 𝜈𝑤𝑖𝑛𝑑 = 𝑐 and ends at 

𝜈𝑤𝑖𝑛𝑑 = 𝑑 = 1.01 𝑝. 𝑢. (12.12 𝑚/𝑠). 𝑃𝑤𝑖𝑛𝑑_𝑚_𝑝𝑢 is linear in this zone and reaches at its end 1 𝑝. 𝑢. 

↔ 𝑃𝑤𝑖𝑛𝑑_𝑚 = 55 𝐾𝑊. 

 

Zone 5: 𝑑 ≤ 𝜈𝑤𝑖𝑛𝑑 < 𝑉𝑐𝑜_𝑝𝑢. In this zone, the wind power is constant and equal to its maximum 

𝑃𝑤𝑖𝑛𝑑_𝑚_𝑝𝑢 = 1 ↔ 𝑃𝑤𝑖𝑛𝑑_𝑚 = 55 𝐾𝑊. It ends when the wind speed reaches the cut-out speed 

𝑉𝑐𝑜_𝑝𝑢.  

 

Zone 6: 𝜈𝑤𝑖𝑛𝑑 ≥ 𝑉𝑐𝑜_𝑝𝑢. This zone is attained when the wind speed reaches the cut-out speed 

𝑉𝑐𝑜_𝑝𝑢 = 2 𝑝. 𝑢.  ↔ 𝑉𝑐𝑜 = 24 𝑚/𝑠 .The wind power is null (𝑃𝑤𝑖𝑛𝑑_𝑚_𝑝𝑢 = 0 ) to prevent the 

destruction of the turbine.  

 

 
 

Fig.c.2 The block diagram of optimal torque control MPPT method. 
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Fig.c.3 MPPT characteristic curve as a function of the wind speed ( 𝑝. 𝑢. of rated wind speed). 
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Appendix D 

D.1 Battery thermal expressions and parameters   

𝐸0(𝑇) , 𝐾(𝑇), 𝑄(𝑇𝑎) , and 𝑅(𝑇)  can be expressed as functions of the cell temperature as the 

following: 

- 𝐸0(𝑇) = 𝐸0|𝑇𝑟𝑒𝑓 +
𝜕𝐸

𝜕𝑇
(𝑇 − 𝑇𝑟𝑒𝑓)                                                                                 (D.1) 

- 𝐾(𝑇) = 𝐾|𝑇𝑟𝑒𝑓 + 𝑒𝑥𝑝 (𝛼 (
1

𝑇
−

1

𝑇𝑟𝑒𝑓
))                                                                          (D.2) 

- 𝑄(𝑇𝑎) = 𝑄|𝑇𝑟𝑒𝑓 +
𝛥𝑄

𝛥𝑇
(𝑇𝑎 − 𝑇𝑟𝑒𝑓)                                                                                 (D.3) 

- 𝑅(𝑇) = 𝑅|𝑇𝑟𝑒𝑓 + 𝑒𝑥𝑝(𝛽 (
1

𝑇
−

1

𝑇𝑟𝑒𝑓
))                                 (D.4) 

Where,  

- 𝑇𝑟𝑒𝑓 is the nominal ambient temperature, in 𝐾.  

- 𝐸0|𝑇𝑟𝑒𝑓   is the constant voltage at 𝑇𝑟𝑒𝑓, in 𝑉. 

- 
𝜕𝐸

𝜕𝑇
 is the reversible voltage temperature coefficient, in 𝑉/𝐾. 

- 𝐾|𝑇𝑟𝑒𝑓 is the polarization constant at 𝑇𝑟𝑒𝑓, in 𝑉/𝐴ℎ. 

- 𝛼 is the Arrhenius rate constant for polarization resistance. 

- 𝑄|𝑇𝑟𝑒𝑓 is the maximum battery capacity constant at 𝑇𝑟𝑒𝑓, in 𝐴ℎ. 

- 
Δ𝑄

Δ𝑇
 is the maximum capacity temperature coefficient, in 𝐴ℎ/𝐾. 

- 𝑅|𝑇𝑟𝑒𝑓 is the internal resistance constant at 𝑇𝑟𝑒𝑓, in Ω.  

- 𝛽 is the Arrhenius rate constant for internal resistance. 

The cell temperature 𝑇, at any given time, 𝑡, is expressed as: 

𝑇(𝑡) = 𝐿−1 (
𝑃𝑙𝑜𝑠𝑠𝑅𝑡ℎ+𝑇𝑎

1+(𝑡𝑐_𝑡ℎ)𝑝
)                            (D.5) 

Where,  

𝑅𝑡ℎ is the thermal resistance, cell to ambient (°𝐶/𝑊). 

𝑡𝑐_𝑡ℎ is the thermal time constant, cell to ambient (𝑠). 

𝑃𝑙𝑜𝑠𝑠 is the overall heat generated (𝑊) during the charge/discharge process and is expressed as 

follows:  

𝑃𝑙𝑜𝑠𝑠 = (𝐸0(𝑇) − 𝑉𝑏𝑎𝑡𝑡(𝑇))𝐼𝑏𝑎𝑡𝑡 +
𝜕𝐸

𝜕𝑇
𝐼𝑏𝑎𝑡𝑡𝑇                                                                            (D.6)            
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To determine the battery parameters, one can refer to the manufacturer’s datasheet or apply the 

automatic discharge parameter determination in MATLAB. This option is found in the battery 

block of the Simscape library in which MATLAB/Simulink determines all the battery parameters 

from the discharge characteristics based on the battery's rated capacity and nominal voltage. This 

option is selected for this study and the below battery parameters are extracted: 

Parameter Value Parameter Value 

𝐴  7.47 𝑉 𝑄|𝑇𝑟𝑒𝑓 517 𝐴. ℎ 

𝐵  0.122 𝐴. ℎ−1 𝐾|𝑇𝑟𝑒𝑓 0.0045 𝑉/𝐴ℎ 

𝑇𝑟𝑒𝑓 298.15 𝐾 𝐸0|𝑇𝑟𝑒𝑓  283.95 𝑉 

𝑅|𝑇𝑟𝑒𝑓 5 𝑚Ω 𝛽 1 

𝛼 1.000043 
𝜕𝐸

𝜕𝑇
 1 × 10−6 𝑉/𝐾 

Δ𝑄

Δ𝑇
 0.8 𝐴ℎ/𝐾 𝑅𝑡ℎ 0.0012 °𝐶/𝑊 

𝑡𝑐_𝑡ℎ 1800 𝑠 𝜏𝑏𝑎𝑡𝑡 10 𝑠 

 

Table.D.1 Lithium-ion battery parameters extracted from MATLAB/Simulink. 

D.2 Bidirectional DC/DC converter parameters  

By analyzing the detailed electrical circuit of the bidirectional DC/DC converter (Fig.2.36), it can 

be seen that:  

− the maximum continuous forward current in the 𝐷𝑠𝑤1and 𝐷𝑠𝑤2 is equal to the maximum 

continuous collector current of 𝑠𝑤1 and 𝑠𝑤2.    

− the maximum peak reverse voltage of 𝐷𝑠𝑤1 and 𝐷𝑠𝑤2 is equal to the maximum collector-

emitter voltage of the 𝑠𝑤1 and 𝑠𝑤2.    

 

- The maximum collector-emitter voltage is retrieved when 𝑠𝑤1(boost mode) or 𝑠𝑤2 (buck 

mode) is blocked:   

𝑉𝐶𝐸 = 𝑉𝑅𝑀 = 𝑉𝐵𝑈𝑆 = 800 𝑉 

- The maximum continuous DC collector current is retrieved when 𝑠𝑤1(boost mode) or 

𝑠𝑤2 (buck mode) is ON and is equal to the maximum allowable discharge/charge current 

from/in the battery. Having a nominal battery capacity of   500 𝐴ℎ, a maximum allowable 

charge/ discharge current of 0.434C is fixed, then 𝐼𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 = ±217 𝐴. 

𝐼𝐼𝐺𝐵𝑇_𝑜𝑛_𝑚𝑎𝑥 = 𝐼𝐷_𝐹_𝑚𝑎𝑥 = 217 𝐴 

As they withstand the same reverse voltage and forward current, 𝑠𝑤1 and 𝑠𝑤2 are identical.  
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𝑠𝑤1  and 𝑠𝑤2  switches are chosen from the Infineon semiconductor manufacturer. The 

“FF600R12ME7_B11 “module is selected. It consists of two identical IGBTs in parallel with two 

identical diodes. The maximum rated values of the IGBT and parallel diode are the following:   

- 𝑉𝐶𝐸𝑆 = 1200 𝑉 ,              𝑉𝐶𝐸𝑆      : the collector-emitter voltage  

- 𝐼𝑐 𝑛𝑜𝑚 = 600 𝐴 ,              𝐼𝑐 𝑛𝑜𝑚   : the continuous DC collector current   

- 𝑉𝑅𝑅𝑀 = 1200 𝑉 ,             𝑉𝑅𝑅𝑀     : the repetitive peak reverse voltage  

- 𝐼𝐹 = 600 𝐴 ,                     𝐼𝐹         : the continuous DC forward current   

The turn-on and turn-off delay time (s) are provided for a collector-current 𝐼𝐶 = 600 𝐴 , and 

collector-emitter voltage 𝑉𝐶𝐸 = 600 𝑉 : 

- 𝑡𝑜𝑛_𝐼𝐺𝐵𝑇 = 0.25 𝜇𝑠 

- 𝑡𝑜𝑓𝑓_𝐼𝐺𝐵𝑇 = 0.420 𝜇𝑠 

 

Based on 𝐼𝑓 = 𝑓(𝑉𝑓) , and 𝐼𝑐 = 𝑓(𝑉𝐶𝐸)  characteristics from the Infineon datasheets, 𝑉𝑓0_𝑠𝑤1 , 

𝑉𝐶𝐸0_𝑠𝑤1, 𝑅𝐷_𝑓_𝑠𝑤1, and 𝑅𝑜𝑛_𝑠𝑤1 are identified following the same approach as Appendices B and 

C. The following values are obtained: 

- 𝑉𝑓0_𝑠𝑤1 = 1.225 𝑉  

- 𝑉𝐶𝐸0_𝑠𝑤1 = 0.8864 𝑉  

- 𝑅𝐷_𝑓_𝑠𝑤1 = 0.958 𝑚Ω  

- 𝑅𝑜𝑛_𝑠𝑤1 = 1.022 𝑚Ω  

The provided diode parameters are:  

- The peak reverse recovery current: 𝐼𝑅𝑀_𝑑𝑠 = 400 𝐴  

- The recovered charge: 𝑄𝑟 = 38 𝜇𝐶   

- The reverse recovery energy: 𝐸𝑟𝑒𝑐 = 19 𝑚𝐽 
These parameters are provided under the below test conditions:  

- 𝐼𝐹 = 600 𝐴 

- 𝑑𝐼𝐹 𝑑𝑡⁄ = 7800 𝐴/𝜇𝑠 
- 𝑉𝑅 = 600 𝑉 

Using the given parameters and the same equations of Appendix B.2.2, 𝑡𝑓_𝐷 = 0.139 𝜇𝑠.  

To define 𝐼𝑅𝑀_𝐷, 𝐸𝑟𝑒𝑐 is expressed as a function of  𝐼𝐹 by adopting the same method as in Appendix 

B.2.2. The expression of 𝐸𝑟𝑒𝑐 = 𝑓( 𝐼𝐹) is the following:  

𝐸𝑟𝑒𝑐 = (−3.9 × 10
−12) 𝐼𝐹

4 + (1.4 × 10−8) 𝐼𝐹
3 − (2.78 × 10−5) 𝐼𝐹

2 + 0.038 𝐼𝐹 + 3.978        (D.7)  

Once 𝐸𝑟𝑒𝑐 is defined using equation (D.7),  𝐼𝑅𝑀_𝐷 can be found using equation (B.5): 

𝐼𝑅𝑀_𝐷 = 𝑓(𝐸𝑟𝑒𝑐) = √
2𝐸𝑟𝑒𝑐(𝑑𝐼𝐹 𝑑𝑡⁄ )

𝑠 𝑘𝐸 𝑉𝑅
     

With  𝑘𝐸 = 1 and 𝑠 = 2.705. 
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Appendix E 

E.1 Battery-discretized dynamic model 

The battery dynamic model is represented in the continuous state in Chapter 2 (equations II.52, 

II.53, and II.54). To apply the optimization solvers such as the (DP) and (GA) in Chapter 3, a 

discretized version of the battery dynamic model is required as the battery 𝑆𝑂𝐶  evolves as a 

function of the  𝑃𝑏𝑎𝑡𝑡 and the time. Hence, the discretized version of the lithium-ion battery in 

which the 𝑆𝑂𝐶 at time 𝑘 + 1 can be expressed as a function of the 𝑆𝑂𝐶 at time 𝑘 , the battery 

charged/discharged power at time 𝑘, and the battery voltage at time 𝑘 is: 

𝑆𝑂𝐶(𝑘 + 1) = 𝑆𝑂𝐶(𝑘) −
𝑃𝑑𝑖𝑠(𝑘).𝑇𝑠

𝑄(𝑇𝑎).𝑉𝑏𝑎𝑡𝑡(𝑘)
−

𝑃𝑐ℎ(𝑘).𝑇𝑠

𝑄(𝑇𝑎).𝑉𝑏𝑎𝑡𝑡(𝑘)
                        (E.1) 

Where, 𝑃𝑐ℎ(𝑘), 𝑃𝑑𝑖𝑠(𝑘), 𝑇𝑠 , 𝑉𝑏𝑎𝑡𝑡(𝑘), and Q(𝑇a) are respectively the battery-charged power at 

time 𝑘 in (𝑊), the battery-discharged power at time 𝑘 in (𝑊), the sampling period (hours), the 

battery voltage at time 𝑘 in Volts, and the battery maximum capacity at ambient temperature (𝐴ℎ). 

The applied algorithm is shown in Algorithm E.1. As seen in discharge mode, 𝑃𝑑𝑖𝑠(𝑘) equals 

𝑃𝑏𝑎𝑡𝑡(𝑘) > 0 and 𝑃𝑐ℎ(𝑘) is set to zero, then 𝑆𝑂𝐶(𝑘 + 1) < 𝑆𝑂𝐶(𝑘). However, in charge mode, 

𝑃𝑐ℎ(𝑘) equals 𝑃𝑏𝑎𝑡𝑡(𝑘) < 0 and 𝑃𝑑𝑖𝑠(𝑘) is set to zero, then 𝑆𝑂𝐶(𝑘 + 1) > 𝑆𝑂𝐶(𝑘). Applying the 

discrete equation format (E.1), 𝑆𝑂𝐶  is considered the state of the system and 𝑃𝑏𝑎𝑡𝑡(𝑘) is the 

decision variable. 
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E.2 Dynamic programming principle 

The basic model to treat through (DP) should have two main aspects[154]:  

- The dynamic of the system is described in the form of a discretized dynamic equation (such 

as equation E.1). 

- The cost function is additive as a function of time. 

The discretized equation (E.1) can be represented in canonical form as the following:   

𝑥(𝑘 + 1) = 𝑓𝑘(𝑥(𝑘), 𝑢(𝑘)),                        𝑘 = 0,1, … ,𝑁 − 1       (E.2) 

Wehre, 𝑥(𝑘), 𝑘, 𝑢(𝑘), 𝑁, and 𝑓𝑘 are respectively the state of the system, the decision variable, the 

discrete-time index, the number of total steps for the whole time horizon, and the function 

describing the dynamic of the system.  

The cost function is additive in the sense that the cost calculated at time 𝑘 , and denoted 

𝛾𝑘(𝑥(𝑘), 𝑢(𝑘)) accumulates over time. The total cost, denoted ℜ, is given by: 

ℜ = 𝛾𝑁(𝑥(𝑁)) + ∑ 𝛾𝑘(𝑥(𝑘), 𝑢(𝑘))

𝑁−1

𝑘=0

 

(E.3)                     

Where 𝛾𝑁(𝑥(𝑁)), is the terminal cost applied at the end of the process.  

A control strategy 𝜋 = {𝜇0, 𝜇1, … , 𝜇𝑁−1} is defined by linking each step 𝑘 of the applied control 

to the state of the system:   

𝑢(𝑘) = 𝜇𝑘(𝑥(𝑘))             (E.4) 

Given an initial state 𝑥(0) and an admissible control strategy 𝜋 = {𝜇0, 𝜇1, … , 𝜇𝑁−1}, then for a 

given cost function 𝛾𝑘, from 𝑘 = 0  to 𝑁, the total cost of the strategy is defined by the following 

equation: 

ℜ𝜋(𝑥(0)) = 𝛾𝑁(𝑥(𝑁)) + ∑ 𝛾𝑘(𝑥(𝑘), 𝑢(𝑘))

𝑁−1

𝑘=0

 

(E.5) 

The optimal control strategy, 𝜋∗, is the one that minimizes this cost:  

ℜ𝜋∗(𝑥(0)) = 𝑚𝑖𝑛
𝜋
ℜ𝜋((𝑥(0)))                                             (E.6) 

We can consider this cost as a function which, for each initial state 𝑥(0), links the optimal cost 

value ℜ𝜋∗(𝑥(0)). This function is called the optimal cost function.  

(DP) is based on the principle of the maximum or the principle of Bellman. The principle can be 

stated as follows:   
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Let 𝜋∗ = {𝜇0
∗ , 𝜇1

∗, … , 𝜇𝑁−1
∗ } be an optimal control strategy for the considered problem. Suppose 

that when 𝜋∗ is used, the state 𝑥(𝑖) is reached at time 𝑖. By considering the subproblem for which, 

from state 𝑥(𝑖) at time 𝑖, the cost from 𝑖 till 𝑁 to minimize is expressed as follows:  

ℜ = 𝛾𝑁(𝑥(𝑁)) + ∑ 𝛾𝑘(𝑥(𝑘), 𝑢(𝑘))

𝑁−1

𝑘=𝑖

 

(E.7) 

Then, the truncated control strategy 𝜋∗ = {𝜇𝑖
∗, 𝜇𝑖+1

∗ , … , 𝜇𝑁−1
∗ }  is optimal for this subproblem.                                     

From this principle, we can formulate that for each initial state 𝑥(0), the optimal cost ℜ∗(𝑥(0)) 

of the considered problem is equal to the value of ℜ0(𝑥(0)) given by the following recurrent 

algorithm: 

ℜ𝑁 = 𝛾𝑁(𝑥(𝑁))             (E.8) 

ℜ𝑘(𝑥(𝑘)) = 𝑚𝑖𝑛
𝑢𝑘

(𝛾𝑘(𝑥(𝑘), 𝑢(𝑘)) + ℜ𝑘+1 (𝑓𝑘(𝑥(𝑘), 𝑢(𝑘))))       for 𝑘 = 𝑁 − 1,… ,0        (E.9)  
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Appendix F 

F.1 Parameters of the " ga " function  

The problem constraints represented in equations (III.21) to (III.28) are included in the "ga" 

function parameters  𝐴, 𝑏, 𝐴𝑒𝑞 , 𝑏𝑒𝑞 , 𝑙𝑏, 𝑢𝑏, and 𝑛𝑜𝑛𝑙𝑐𝑜𝑛 as follows: 

- There are no linear inequalities in the problem, then 𝐴 and 𝑏 that correspond to the linear 

inequalities’ parameters equal empty vectors, 𝐴 = [ ] and 𝐵 = [ ]. 

- One linear equality is included and corresponds to the last 𝑆𝑂𝐶 value which should be 

equal to the initial state, 𝑆𝑂𝐶(𝑁) = 50%. To include this constraint, 𝐴𝑒𝑞 and 𝑏𝑒𝑞 that form 

the linear equalities in "ga" are utilized. Given that the (GA) evaluates the matrix product 

𝐴𝑒𝑞 . 𝑥 = 𝑏𝑒𝑞. If 𝑁𝑙𝑖𝑛_𝑒𝑞𝑢 is the number of linear equalities then,  𝐴𝑒𝑞 is a (𝑁𝑙𝑖𝑛_𝑒𝑞𝑢 × 72) 

matrix and 𝑏𝑒𝑞 is a (𝑁𝑙𝑖𝑛_𝑒𝑞𝑢 × 1) vector. In our case, we have one linear equality then, 𝐴𝑒𝑞 

is a (1 × 72) vector and 𝑏𝑒𝑞 is a  (1 × 1) vector.  𝐴𝑒𝑞(1, 72) = 1 and 𝑏𝑒𝑞 = 50.  

- To set the lower and upper bounds on decision variables the 𝑙𝑏 and 𝑢𝑏 vectors are utilized.  

𝑙𝑏 and 𝑢𝑏 form two (1 × 72) vectors including respectively the lower and upper bounds of 

𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓, 𝑃𝐷𝐺_𝑟𝑒𝑓, and 𝑆𝑂𝐶. They are expressed as follows: 

 

𝑙𝑏 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑃𝑔𝑟𝑖𝑑_𝑚𝑖𝑛

0
𝑆𝑂𝐶𝑚𝑖𝑛
𝑃𝑔𝑟𝑖𝑑_𝑚𝑖𝑛

0
𝑆𝑂𝐶𝑚𝑖𝑛
…
…
…

𝑃𝑔𝑟𝑖𝑑_𝑚𝑖𝑛
0

𝑆𝑂𝐶𝑚𝑖𝑛 ]
 
 
 
 
 
 
 
 
 
 
 
 

                         𝑢𝑏 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑃𝑔𝑟𝑖𝑑_𝑚𝑎𝑥
𝑃𝐷𝐺_𝑚𝑎𝑥
𝑆𝑂𝐶𝑚𝑎𝑥
𝑃𝑔𝑟𝑖𝑑_𝑚𝑎𝑥
𝑃𝐷𝐺_𝑚𝑎𝑥
𝑆𝑂𝐶𝑚𝑎𝑥
…
…
…

𝑃𝑔𝑟𝑖𝑑_𝑚𝑎𝑥
𝑃𝐷𝐺_𝑚𝑎𝑥
𝑆𝑂𝐶𝑚𝑎𝑥 ]

 
 
 
 
 
 
 
 
 
 
 
 

                                                 (F.1) 

 

By this, a feasible solution is always found in the range of 𝑙𝑏 ≤  𝑥 ≤  𝑢𝑏. 

- The remaining constraints are included as nonlinear constraints through the "𝑁𝑜𝑛𝑙𝑐𝑜𝑛" 

function. 𝑁𝑜𝑛𝑙𝑐𝑜𝑛  accepts 𝑥  and returns vectors 𝐶  and 𝐶𝑒𝑞 , representing the nonlinear 

inequalities and equalities respectively. ga minimizes the function such 

that 𝐶(𝑥) ≤  0  and 𝐶𝑒𝑞(𝑥) = 0 . Each time the 𝑁𝑜𝑛𝑙𝑐𝑜𝑛  function is called, 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 , 

𝑃𝐷𝐺_𝑟𝑒𝑓, and 𝑆𝑂𝐶  reference vectors are extracted from the individual vector 𝑥, and the 

𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 vector is retrieved from the  𝑆𝑂𝐶 vector following the equation (E.1). By dividing 

the individual vector 𝑥 into the subvectors 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓, 𝑃𝐷𝐺_𝑟𝑒𝑓, and 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓, 𝐶 and 𝐶𝑒𝑞 can 
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now be expressed more comprehensibly as functions of these three vectors. Besides, the 

converters’ loss vectors can now be computed based on 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓, 𝑃𝐷𝐺_𝑟𝑒𝑓, and 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 

vectors. The losses in grid, (DG), and battery converters vectors are respectively denoted 

𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑔𝑟𝑖𝑑_𝑐𝑜𝑛𝑣, 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝐷𝐺_𝑟𝑒𝑐, and 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑏𝑖𝑑𝑖𝑟𝑒𝑐_𝑐𝑜𝑛𝑣. Thus, 𝐶𝑒𝑞 and 𝐶 expressions 

are respectively the following: 

𝐶𝑒𝑞 = 𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑅𝐸𝑆𝑠_𝑏𝑢𝑠 − 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓 − 𝑃𝐷𝐺_𝑟𝑒𝑓 − 𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝑔𝑟𝑖𝑑_𝑐𝑜𝑛𝑣 +

𝑃𝑙𝑜𝑠𝑠𝑒𝑠_3𝜙_𝐷𝐺_𝑟𝑒𝑐 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠_𝑏𝑖𝑑𝑖𝑟𝑒𝑐_𝑐𝑜𝑛𝑣                                                                         (F.2) 

 

𝐶 = [

𝑃𝐷𝐺_𝑚𝑖𝑛. 𝑠𝑖𝑔𝑛(𝑃𝐷𝐺_𝑟𝑒𝑓) − 𝑃𝐷𝐺_𝑟𝑒𝑓 ;

−𝑠𝑖𝑔𝑛(𝑃𝐷𝐺_𝑟𝑒𝑓). 𝑃𝑔𝑟𝑖𝑑_𝑟𝑒𝑓;

|𝑃𝑏𝑎𝑡𝑡_𝑟𝑒𝑓| − 𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥;

]                            (F.3)              

Where, 𝑃𝐷𝐺_𝑚𝑖𝑛 and 𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 are respectively the (DG) minimum admissible operating 

power (𝑊) and the maximum allowable power to be discharged from the battery (𝑊). All 

variables are vectors of dimension (24 × 1), then 𝐶𝑒𝑞  is a (24 × 1) vector and C is a 

(24 × 3) matrix.  
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