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Introduction

Thanks to the advent of alternating current and transformers, the shift from reciprocating engines
to steam turbines, the low prices of fuel, the regulations and strategic policies, and the ease of
overseeing and control, etc. electricity production in centralized power plants was favored since
the 20" century. Then, in the late 20™, several drawbacks related to centralized power generation
emerged such as the limitation in thermal efficiency of steam turbines, the high transmission and
distribution losses, the high investments in transmission and distribution networks, the single point
of failure, cascading outages, and the cyber and physical attacks. Due to all these downsides, the
distributed generation approach was advanced as an alternative or supplement to centralized power
generation.

Another setback of centralized power generation is that predominant electricity central power
plants are of fossil fuel origins (coal, oil, and natural gas). Fossil fuels are being depleted and are
the main producers of carbon dioxide emissions and other greenhouse gases, the principal cause
of global climate change and the earth's temperature rise. A substantial increase in global carbon
dioxide emissions from fossil fuels was noted with 6 billion tons of CO2 emissions in 1950, and
34.81 billion tons in 2020. This sharp rise in CO2 emissions and greenhouse gases during the last
70 years, is strongly related to and initiated the increasing rate of the average temperature per
decade. The earth's global average surface temperature has roughly increased one degree Celsius
since the preindustrial era (1880-1900). As a result of the increase in the global earth's average
temperature, many other aspects of the global climate are changing. Several kinds of research
documented changes in surface, atmospheric, and oceanic temperatures; melting glaciers;
diminishing snow cover; shrinking sea ice; rising sea levels; ocean acidification; increasing
atmospheric water vapor; and increasing heat waves and cold spells.

To alleviate this critical risk and impact, nearly 200 nations committed to holding the average earth
temperature to well below 2 degrees Celsius in the 2015 Paris Climate Agreement. This is being
realized by setting net-zero emissions targets for countries that have pledged to achieve this target
in future years. Lately, in November 2021, countries participating in major UN climate talks
(COP26) in Glasgow, Scotland, are announcing more ambitious plans for slashing their emissions
for the next decade. the European Union (EU), setting a binding target to achieve climate neutrality
by 2050, has further raised its 2030 climate ambition beyond the target agreed upon in 2018,
committing to cutting greenhouse gas emissions by at least 55% by 2030 under the so-called “Fit
for 55” package. All these plans and pledges of decarbonization essentially require a massive
integration of renewable energy sources to shift the electricity generation mix and engender a large
reduction in fossil fuel energy generation. Hence, the worldwide rapid expansion of renewable
energy sources which are being integrated with different sizes and power scales ranging from a
few KWs to GWs, contributed to the diversion from the centralized generation approach to the
distributed one.

12



On the other hand, at the beginning of the 21% century and with the proliferation of distributed
generation and renewable energy sources, the microgrid concept was proposed as a group of
interconnected sources and loads that act as a single controllable entity to the grid. A microgrid
can include several distributed energy resources (DERS) such as traditional pollutant ones,
renewable energy sources, energy storage systems (ESSs), and a variety of loads. All these DERs
are interconnected by local converters to a common bus that can be of AC or DC type. The
common bus type defines whether the microgrid is of AC or DC type. Thanks to their maturity
and standardization, AC microgrids prevailed and first captivated the attention of researchers more
than DC microgrids. Since the last decade, high penetration of DC-type sources, ESS, and loads
has been remarked. The expansion of RESs of which several are of a DC nature such as solar
panels raised concern about power stability and availability due to the intermittent and
unpredictable nature of RESs. The existence of a backup (ESS) is mandatory in such applications
to secure an uninterruptible power supply for the microgrid. From here, increasing integration and
reliance on (ESS)s such as batteries, and fuel cells which are of a DC nature is noted in microgrid
applications. Moreover, owing to the advancement of power electronic devices, the number of DC-
type loads such as laptops, phone devices, telecom equipment, etc. is surging. Due to all these
grounds, and others such as the ease of control of DC systems, etc. DC microgrids have gained
increased interest from researchers during the last decade. In this context, this thesis targets the
power control and the energy management of a DC microgrid configuration consisting of RESs,
traditional pollutant sources, loads, and an ESS.

Following the control objectives and the dynamic of targeted variables, the control of a DC
microgrid is subdivided into three hierarchical levels. Known as the three-level hierarchical
control, it is commonly investigated in the literature, especially the primary control level of which
droop control is one of the most used techniques that ensures proper load sharing and common DC
bus voltage stabilization. On the secondary level, decentralized coordination functions exist, e.g.,
local adaptive calculation of virtual resistances in which the robustness and stability of the primary
control level are enhanced. The primary and secondary control levels target fast electrical variables
to secure the stable operation of the DC microgrid and ensure robust power control. As redundant
research can be found on these two control levels, lately, the tertiary control level is captivating
the attention of researchers to achieve advanced energy management functionalities under the so-
called “smart” control.

At the tertiary control level, optimization problems are formulated to attain one or several
objectives. Following the objectives, the DC microgrid planning problem can be divided into three
main categories: the optimal power generation mix selection and sizing, the optimal siting
problem, and the optimal operation scheduling. In this thesis, the optimal operation scheduling,
also known as the optimal energy management system (EMS) of a DC microgrid over a 24-hour
time horizon is addressed to reach three distinct optimization goals. The optimization objectives
were selected based on current international energy policies and targets for reducing carbon
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dioxide emissions and saving energy by minimizing the losses in operating devices. Hence, the
three main objectives of the optimal EMS are the minimization of the total operating cost of the
DC microgrid, the reduction of pollutant gas emissions, and the improvement of converters’
efficiency by minimizing converters’ losses.

Accordingly, the work targeted by this thesis concerns a multisource DC microgrid combining
RESs (photovoltaic, wind) and carbon energy via a Diesel Generator (DG), all connected to a
distribution network and benefiting from an energy storage system. The prime objective is to meet
consumer demand while favoring renewable energies and minimizing the cost of energy used
while considering the operation and maintenance (O&M) costs of all operating units. For this, the
efficiency of all devices is considered as well as the cost of purchased and sold energy from/to the
grid. The DC microgrid configuration is depicted in the figure below.
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The thesis manuscript consists of five chapters:

— Chapter 1: Review of energy management and optimization techniques applied to DC
microgrids.

— Chapter 2: Modeling of the 24-hour DC Microgrid.

— Chapter 3: DC Microgrid Offline Optimization.

— Chapter 4: DC Microgrid Online Optimization.

— Chapter 5: Conclusion and Perspectives.
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In Chapter 1, the shift from centralized energy generation to the distributed approach is first
reviewed in detail. Then, the proliferation of the microgrid concept, especially DC ones along with
the application of three-level hierarchical control are presented. Relevant research works on the
tertiary control level are revealed as the thesis targets the optimal energy management of the DC
microgrid. To ensure advanced EMS functionalities and attain predefined objectives, optimization
problems are formulated and solved using metaheuristic or deterministic techniques. The
commonly used metaheuristic and deterministic offline optimization techniques are stated. In
addition to the offline optimization achieved the day ahead for the next 24 hours, an online
optimization stage is suggested in the scope of this thesis to update the optimal references due to
the existent mismatches between predicted and actual data. Thereby, the predominant online
optimization techniques such as the receding horizon control are presented, and finally the main
outcomes of the thesis are stated at the end of this chapter.

The modeling of the 24-hour DC microgrid is addressed in Chapter 2. First, the adopted
configuration, the sizing, and the general EMS strategy of the DC microgrid are presented. The
microgrid studied in this thesis is a low-voltage DC microgrid (LVDC) for residential loads with
a common DC bus voltage reference of 800V. It consists of a PV array and a wind turbine as RESS,
a backup diesel generator (DG) as a traditional pollutant source, a lithium-ion battery as ESS, and
residential-type loads. Besides, the DC microgrid can operate in grid-connected as well as islanded
modes following the EMS strategy of operation. Having set optimization goals over 24 hours, the
hurdle of modeling the overall DC microgrid over the whole time horizon on a computer with
limited CPU and memory is confronted. In most existing research works, simplified models of
sources in steady state are adopted, and primary and secondary control levels of converters such
as the MPPT are omitted to make the modeling of the 24-hour DC microgrid a viable solution.
Though this simplified modeling strategy yields decent results, it induces computing errors of
generated power, existing losses, etc. which are rarely addressed in the literature. In this chapter,
the 24-hour modeling problem is confronted from a new perspective. First, the proposed approach
presents a detailed model of each unit, converter, and corresponding strategy of control apart.
Then, new averaging techniques are advanced to create the best trade-off between model precision,
complexity, and simulation speed. The accuracy of each new averaging technique in reducing the
model complexity and maintaining accurate modeling is verified through the comparison with the
detailed models. The same approach is adopted to model operating units, converters, secondary
control level techniques such as the MPPT, and the losses in operating converters. Finally, the
assembled 24-hour DC microgrid model is validated through a comparison with the overall
detailed model in two identical 15-minute simulations. Therefore, the 24-hour DC microgrid
model is adopted in the next chapter to formulate the optimization problem.

The offline optimization accomplished the day ahead is detailed in Chapter 3. To mimic a real
scenario, real profile data of solar irradiance, wind speed, ambient temperature, residential load
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profile, and electricity pool prices are applied to winter and summer day case studies. Based on
the predicted data for the next day, the offline optimization problem outputs the optimal power
references of dispatchable sources for the next 24 hours. An optimization problem is formulated
by setting a unique objective function to minimize. To include the three predefined optimization
goals in one objective function, they are established as distinct cost functions expressed in $. Thus,
the total objective function is formulated as a weighted sum of the three cost functions and
expressed in $. Besides its mathematical necessity to yield a homogeneous objective function
equation, the representation of the three cost functions in $ leads to a unified total energy bill. The
obtained energy bill consists of the operating cost of the DC microgrid and penalty costs due to
the emitted toxic gas and losses in operating converters. The first cost function to minimize consists
of the operation cost of the overall DC microgrid in $, It includes the (O&M) cost of RESs, (DG),
and ESS, and the cost of purchased/sold energy from/to the grid. However, to add pollutant gas
emissions and converters’ losses cost functions to the total objective function, respectively, the
pollutant energy produced by the (DG) and the energy loss in converters over the whole time
horizon are computed in (KW h). Next, penalty coefficients expressed in ($/KWh) are assigned to
each of the cost functions. By this, the obtained total objective function to minimize is expressed
in $ and corresponds to the total energy bill over the control time horizon (i.e. 24 hours).

In addition, several constraints that delimit the minimum and maximum admissible power
references of the utility grid, battery, and (DG) are added. Moreover, to secure a safe operation of
the ESS, constraints on the minimum and maximum, initial, and last state of charge are added. As
the formulated optimization problem includes several nonlinear and nonsmooth functions and is
time-variant, the search for a global minimum requires the application of specific algorithms.
Among several algorithms, dynamic programming (DP) and genetic algorithm (GA) are applied
as deterministic and metaheuristic algorithms, respectively. The two algorithms are compared in
terms of optimal solution finding, convergence speed, and sampling period selection. On the other
hand, the preference criterion between the fixed optimization goals is tackled through a detailed
analysis of the weights’ selection.

Chapter 4 addresses the addition of an online optimization stage that updates the offline optimal
power references of dispatchable sources due to existent uncertainties between predicted and
actual data inputs. The data inputs consist of the electricity pool prices, the RESs generated power,
and load demand over the 24-hour time horizon. These uncertainties create mismatches between
the predicted and actual generated/consumed power which deteriorates the power balance equation
in the DC microgrid and incurs deviations in the common DC bus voltage. In the absence of any
online optimization correction part, the utility grid converter mostly operates as the slack bus for
the corrective actions needed to compensate for the uncertainties in renewable resources and the
load demand. The main goal of the online optimization stage is to find an improved solution for
the new power mix in the DC microgrid compared to the above. This permits the re-establishment
of the power balance conveniently to the optimization goals. Like offline optimization, a unified
total objective function is established and expressed in $. The total objective function consists of
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the sum of the operation, toxic gas emissions, and converters’ losses cost functions. Hence, the
online optimization stage always tends to reduce the total energy bill in $. Unlike the offline
optimization problem which finds the set of optimal power references over the whole time horizon,
the online optimization stage performs local optimizations at each intra-sample period and is time-
invariant.

To prove the effectiveness and viability of the proposed online optimization stage, several
simulation tests are conducted in which predicted input signals are modified differently to generate
actual input signals with variable margins of error. The robustness of the online optimization stage
is assessed according to the margin of error between predicted and actual data inputs. For all tested
scenarios, a comparison between the obtained total energy bill with and without the online
optimization stage is conducted and the resulting profits, in $, are revealed.

Finally, Chapter 5 concludes the manuscript and states the main outcomes of this thesis and future
perspectives. Lastly, we take note that all obtained results are from simulation tests performed on
MATLAB/Simulink software and have not been validated experimentally. Experimental
validation can constitute a key work to accomplish in the future.
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Chapter 1 : Review of Energy Management and Optimization
Techniques Applied to DC Microgrids

1.1 The advent of centralized energy generation and related drawbacks

Since the 20™ century, electricity has been produced in centralized power plants and delivered to
customers through power transmission lines. This centralized approach was established due to
several factors: the advent of alternating current and transformers made energy production in a
remote central unit and transmission to consumers over long distances a viable and reliable
solution. By adopting an AC-type transmission, the arising problem of voltage drop related to DC-
type transmission and Edison’s earlier innovation was overcome, and then electricity was enabled
to flow for hundreds of miles without a significant loss in voltage magnitude. The shift from
reciprocating engines, in earlier utilities, to steam turbines unleashed the centralization of power
production. Steam turbines were more energy efficient, smaller, quieter, unchallenging to scale up,
and less proportional in materials investment if a higher power was produced compared to the
reciprocating engines. Hence, the adoption of steam turbines has applied to the concept of
economies of scale in which larger units can produce more electricity at lower unit costs. Low
prices of fuel that can be burned remotely far from city centers were another motif to endorse the
centralized energy production approach. The reliability of one plant was improved by connecting
multiple power plants by transmission lines which empowered the network growth and provided
better service reliability than any single generator. In parallel, regulations favored the centralized
power production technique, this was reflected in the historical strategic policies drivers to produce
power in a centralized large-scale plant and supply it to consumers through electricity transmission
and distribution three-phase systems. By this, the overseeing and control of the utility grid and
market were facilitated [1].

However, in the late 20" century, steam turbines began to realize thermal efficiency limits (40%
of thermal efficiency could theoretically be achieved but problems appeared with the high-
temperature operation causing an increase in maintenance costs and thus, a decrease in reliability.
Practically, a maximum of 35% energy efficiency is reached in such an application [2]). Other
drawbacks related to centralized generation are the transmission and distribution costs which
consist of line losses, unaccounted-for electricity, and conversion losses. The highest cost is
achieved by small customers talking electricity from the end distribution network at low voltage.
As shown in Fig.1.1, world transmission and distribution losses’ percentages remain practically
unchanged between (1990-2014) with values above 8%. Lower losses were recorded in the EU
and China during the same period meanwhile, overall curves don’t present a steep drop in losses
[3]. Though a reduction of 2% in transmission and distribution losses was accomplished in the
U.S. between 1990 and 2020 as shown in Fig.1.1, the total losses are still high at 207 billion kWh
out of a net generation of 3930 billion kWh in 2020 [4].
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Rural electrification with centralized generation is an additional drawback and a real challenge due
to the extended capital to be spent to connect remote areas of small consumption with overhead.
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Fig.1.1 Transmission and distribution losses in the World, EU, U.S., and China.

Sources: - https://www.eia.gov/electricity/state/unitedstates/

- Electric power transmission and distribution losses (% of output) | Data (worldbank.org)

lines over long distances which might be uneconomical. In turn, the transmission and distribution
losses are magnified because of the long-distance coverage. This results in a deferral of rural
electrification projects. Based on the World Bank Global Electrification Database [5], 17.3 % of
the world's rural population still have no access to electricity in 2020. It can be seen in Fig.1.2 that
most rural populations in African countries have world lower rates of access to electricity (below
28%, with the lowest rate of 1% in the Democratic Republic of Congo). In this regard, the World
Bank approved, in May 2017, a grant of $118 million and a credit of $27 million for the electricity
access and services expansion project in the Democratic Republic of Congo. The undergoing
project provides new and improved electricity service to about two million people. As mentioned
in the report, the number of hours of available electricity per day that customers receive in the
project intervention areas has increased from 4 hours/day in 2017 to 6 hours in 2022 and will reach
16 hours in October 2023 [6]. in [7], a study was conducted on how the centralized grid system
impacts the rural economy of Nigeria which has a large geographical size. The study proves the
inadequacy of the centralized grid in rural electrification and recommends a decentralized
electricity structure with an emphasis on mini-grids and a priority on localized generation.

Besides, in a centralized generation, high investments in transmission and distribution networks
are required to cover consumers’ increasing need for electricity with highly reliable service. The
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International Energy Agency (IEA) estimates the annual spending on the electricity distribution
system by major U.S. utilities at $57.4 billion in 2019, 6% more than in 2018 and 64% more than
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Fig.1.2 Access to electricity, rural is the percentage of the rural population with access to electricity in
2020.

Source: World Bank Global Electrification Database from "Tracking SDG 7: The Energy Progress Report"
led jointly by the custodian agencies: the International Energy Agency (IEA), the International Renewable
Energy Agency (IRENA), the United Nations Statistics Division (UNSD), the World Bank and the World
Health Organization (WHO).

in 2000 as seen in Fig.1.3. The total amount is divided into $31.4 billion for capital investment as
utilities worked to replace, modernize, and expand existing infrastructure, $14.6 billion for
operations and maintenance (O&M), and $11.5 billion for customer expenses. Most of the $31.4
billion of capital investment, is spent on overhead and underground power lines. Distribution lines
are added, and expanded, aging equipment is replaced, and operation and maintenance are
modernized. Since most of the increased distribution spending does not directly target the end
users, distribution spending outpaces the growth in both the number of electric customers and in
retail electricity sales as seen in Fig.1.4 [8]. The deployment of distributed generation can help to
bypass the increased investment in transmission and distribution networks since they are at most
in proximity to load centers, unlike large central generation units.
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Annual major U.S. utility spending on electric distribution (2000-2019)

PN
hillion 2019 dollars cla
560
capital
340 investment

$20 customer
expenses
operations and
maintenance
50

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Fig.1.3 Annual major U.S utility spending on electric distribution (2000-2019)

Source: Graph created by EIA, based on data from Federal Energy Regulatory Commission (FERC)
Financial Reports, as accessed by Ventyx Velocity Suite

Furthermore, centralized generation has manifested energy security problems such as grid outages
during severe weather events. Projections indicate that the world is very likely to experience
greater weather-related disruptions due to climate change. A recent example of a power outage
was due to a cold spell that occurred in February 2021 in Texas, where large parts of the state were
left without electricity for many days [9]. According to the U.S. Energy Information
Administration, U.S. electricity customers have experienced just over eight hours of electric power
interruptions in 2020, the most since 2013. As shown in Fig.1.5, six out of eight hours of power
interruptions, in 2020, were caused by major events related to severe weather and natural
conditions including snowstorms, wildfires, and hurricanes.
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Fig.1.4 U.S. electric distribution spending, customers, and retail electricity sales (2000-2019).

Source: Graph created by EIA, based on data from Annual Electric Power Industry Report; Federal Energy
Regulatory Commission (FERC) Financial Reports, as accessed by Ventyx Velocity Suite
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Fig.1.5 Average duration of total annual electric power interruptions, U.S. (2013-2020).

Source: U.S. Energy Information Administration, Annual Electric Power Industry Report

The impact of severe weather events on electric power interruptions can be deduced from the
number of interrupts in 2020 as a function of the total duration of annual interruptions by the U.S.
state (Fig.1.6): Louisiana, Oklahoma, Connecticut, and Alabama the states with the most time of
interrupted power in 2020, knowing that 14 hurricanes and 11 major storms were experienced in
the U.S in 2020. Noticeably, Louisiana experienced an active storm season, including Hurricane
Laura. Same for Alabama which was hit by several hurricanes. Tropical storm lIsaias affected
Connecticut and left about 750,000 customers without electric power for over a week. Thus, these
long interruptions were directly caused by major weather events[8]. In their report, the President’s
Council of Economic Advisers and the U.S. Department of Energy’s Office of Electricity Delivery
and Energy Reliability estimated the annual cost of power outages caused by severe weather
between 2003 and 2012 in the U.S. from $18 billion to $33 billion[10]. Urgently, the grid resilience
concern is addressed, and distributed generators are advanced as complements to the traditional
centralized grid with a high potential to increase grid reliability and resiliency[11].

While most of the energy sources used to generate electricity in central power plants are of fossil
fuel origins (coal, oil, and natural gas) or nuclear power, there is a critical hitch due to the depletion
of these energy sources. Fig.1.7 represents the share of electricity production from fossil fuels in
2021, the map shows that world most countries rely on fossil fuels to produce electricity with an
average percentage of 61.42%. South Africa, Australia, China, and the U.S. have the highest
percentages of fossil fuel use: 86.42%, 70.94%, 65.9%, and 61.1% respectively, meanwhile other
European countries such as France, Sweden, Iceland, and Norway have lower rates below 20%.
However in 2021, France and Sweden relied more on nuclear power as an energy source to produce
electricity with a share of electricity production of 69.33%, and 31.24% respectively[12].
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Fig.1.6 Average total annual electric power interruption duration and frequency per customer, by U.S.
state (2020).

Source: U.S. Energy Information Administration, Annual Electric Power Industry Report

According to the BP Statistical Review of World Energy, the years of fossil fuel reserves left
accounted for in 2020 are 139 years for coal, 54 years for oil, 49 years for gas, and 70 years for
uranium[13], [14].

Besides their depletion, fossil fuel reserves are not equitably distributed over the world’s
continents giving rise to a disparity in extraction, sales, and consumption potentials. For instance,
50% of world natural gas reserves are uniquely located in three countries (Russia: 37.39 trillion
m?3, Iran: 32.1 trillion m3, and Qatar: 24.67 trillion m3) respectively account for 19.88%,17.07%,
and 13.12% of the world’s total gas reserves. Likewise, two-thirds of the world’s coal reserves are
sited in four countries: the U.S., Russia, Australia, and China respectively account for 23.26%,
15.16%, 14.04%, and 13.38% of the world’s total coal reserves[15]. As a result, these countries,
as main producers, and exporters of fossil fuel sources, monopolize the reserves and so, arguably
control the prices, and the access to electricity of importing countries. The latest example is the
rising European energy crisis under the Russian gas cut-off to the European Union. Under a worst-
case scenario, European ministers predict that electricity could have to be rationed for up to six
million homes in 2023’s winter, mostly at peaks in the morning and evening. As well, the shortage
in gas supply to Europe drastically impacts energy prices and household utility bills which are
skyrocketing[16], [17]. As distributed energy sources can accommodate a larger range of fuel than
a centralized generation, they are proposed as alternatives to central power plants to diversify away
from coal, fuel, natural gas, and nuclear fuel, and ensure sufficient and affordable power electricity
to customers[18].
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Fig.1.7 Share of electricity production from fossil fuels, 2021.

Source: Our World in Data based on BP Statistical Review of World Energy (2022); Our World in Data
based on Ember's Global Electricity Review (2022); Our World in Data based on Ember's European
Electricity Review (2022), OurWorldInData.org/energy « CC BY.

1.2 Distributed energy sources as alternatives to centralized energy generation

As detailed in the first section, several technical drawbacks posed by central energy generation, in
terms of grid resiliency, security, reliability, efficiency, etc., expedited the diversion from the
centralized generation approach to the distributed one. Hence, distributed energy sources are
advanced as alternatives and back-ups to the traditional grid capable of overcoming its main
downsides and offering ancillary services.

On the other hand, climate change and the need to integrate clean energy sources were instrumental
drivers and catalysts to distributed energy sources. The earth's global average surface temperature
has roughly increased one degree Celsius since the preindustrial era (1880-1900). According to
the National Oceanic and Atmospheric Administration's (NOAA’s) 2021 annual climate report,
the combined land and ocean temperature has increased at an average rate of 0.08 degrees Celsius
per decade since 1880 however, this rate of increase has outstripped the double since 1981 (0.18
degrees Celsius). Moreover, based on NOAA’s temperature data, 2021 was the sixth’s-warmest
year on record for the globe with a temperature of 0.84°C above the 20th-century average, and the
years 2013-2021 all rank among the ten warmest years on record. As a result of the increase in the
global earth's average temperature, many other aspects of the global climate are changing. Several
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kinds of research documented changes in surface, atmospheric, and oceanic temperatures; melting
glaciers; diminishing snow cover; shrinking sea ice; rising sea levels; ocean acidification; and
increasing atmospheric water vapor[19]. Carbon dioxide emissions and other greenhouse gases
have been the dominant cause of recorded warming since the mid-20" century. In the majority,
these emissions come from burned fossil fuels. A substantial increase in global carbon dioxide
emissions from fossil fuels was noted with 6 billion tons of CO2 emissions in 1950, and 34.81
billion tons in 2020[29]. The sharp rise in CO2 emissions during the last 70 years, is strongly
related to and initiated the increasing rate of the average temperature per decade. Referring to the
Climate Analysis Indicators Tool (CAIT) of Climate Data Explorer via Climate Watch, the sector
that produces the highest CO2 emissions is the electricity and heat sector with 15.76 billion tons
for 2019 followed by the transportation sector with 8.22 billion tons. Fig.1.8 shows the world map
of greenhouse gases emitted per unit of electricity produced, measured in grams of CO.-
equivalents per kilowatt-hour of electricity. Comparing Fig.1.7 to Fig.1.8, it can be inferred that
countries with high shares of electricity production from fossil fuels have a higher carbon intensity
of electricity such as the U.S., China, Russia, India, Saudi-Arabia, etc. To alleviate this critical risk
and impact, nearly 200 nations committed to holding the average earth temperature to well below
2 degrees Celsius in the 2015 Paris Climate Agreement. This is being realized by setting net-zero
emissions targets for countries.

0gCO2e 20 gCO2e 100 gCO:e 500 gCO:e
No data 10 gCO:e 50 gCO:e 200 gCO0:e

Fig.1.8 Carbon intensity of electricity for 2021.

Source: Ember Climate (from various sources including the European Environment Agency and EIA)
OurWorldInData.org/energy « CC BY
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that have pledged to achieve this target in future years. Lately, in November 2021, countries
participating in major UN climate talks (COP26) in Glasgow, Scotland, are announcing more
ambitious plans for slashing their emissions for the next decade. In this context, The G20 Energy
and Climate Ministerial’s Communiqué emphasized the importance of clean distributed energy
resources (DERs) for addressing decarbonization and climate change. According to the IEA, about
179 GW of distributed solar was added globally from 2017 to 2020[21]. In their short-term energy
outlook, IEA forecasts a rise in U.S. electricity generation from renewable energy sources (RESS)
such as solar and wind, and a reduction in generation from fossil fuel-fired power plants over the
next two years as seen in Fig.1.9. A forecast share of generation for the U.S. solar and wind (RES)s
grows from 13% in 2021 to 17% in 2023. Additionally, it’s shown in Fig.1.9 that the rapid
expansion of renewable energy resources over the past years yielded a significant shift in the U.S.
electricity generation mix. This shift will engender a large reduction in fossil fuel energy
generation, and then a major step toward decarbonization.

Meanwhile, the European Union (EU), setting a binding target to achieve climate neutrality by
2050, has further raised its 2030 climate ambition beyond the target agreed upon in 2018,
committing to cutting greenhouse gas emissions by at least 55% by 2030 under the so-called “Fit
for 55” package. “Fit for 55” is a set of proposals to revise, and update EU legislation, and bring
it in line with the 2030 goal.

Annual U.5. electric power sector generation by energy source (2012-2023)
billion kilowatthours L share of total generation T
4500 orecast A%, forec
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3,500 35% ’_\
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Fig.1.9 Annual U.S. short-term energy outlook for electric sector generation by energy source (2012-
2023).

Source: U.S. Energy Information Administration, Short-Term Energy Outlook, January 2022
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Fig.1.10 Primary energy production of EU28 (1970-2020).

Source: Enerdata, 2022

Besides energy efficiency and taxation, EU emissions trading system, CO2 emissions standards
for cars and vans, carbon border adjustment mechanism, social climate fund, refuel EU aviation
and fuel EU maritime, alternative fuels infrastructure, efforts sharing regulation, land use, and
forestry legislations, the EU plans to boost the share of renewable energy of the total energy mix
to 40% by 2030 (double 2020’s share of 22,1%) [22].

The EU's shift towards (RESSs) took place progressively throughout the years as shown in Fig.1.10,
where 90% of energy production was from fossil fuels at the beginning of 1970", remained at 63%
in 2000, and only represented 35% of the EU energy production in 2020. However, for the first
time in 2020, (RESSs) share of the total energy mix surpassed that of fossil fuel by 2% (37% share
of the EU primary energy mix)[23].

1.3 Microgrid concept and advantages of DC over AC microgrids

As a definition, the grid architecture that manages the integration of several distributed energy
sources of different types, the electricity generation, and the load demand, in sub-sections of the
grid, and can be isolated from the larger grid and provide critical services in case of any grid
failure, is called a “microgrid”’[24]. The microgrid term was originally proposed at the beginning
of the 21% century and is found in the literature with many other definitions and functional
classification schemes. Another detailed and intelligible definition proposed by the Microgrid
Exchange Group, an ad hoc group of research and deployment experts to the U.S. Department of
Energy reads as follows: ‘A microgrid is a group of interconnected loads and distributed energy
resources within clearly defined electrical boundaries that acts as a single controllable entity to the
grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-
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connected or island mode [25].” As seen from the definition, there are no specifications for the
size of the distributed energy sources nor the type of technologies that should be applied. Thus, a
microgrid can include (DERS) of utility-scale delivering power ranging from MW to GW (e.g. the
35-MW microgrid project in Gonzales, California, built by Concentric power, which delivers 14.5
MW-AC of solar, 10 MW/27.5 MWh of battery energy storage system (ESS), and 10 MW of
flexible thermal generation[26]) as well as small-scale (DER)s, known as “behind the meter”,
located at houses, industries, or businesses providing electrical power of tens and hundreds of
KWs.

Since microgrids are advanced as supplements or alternatives to the centralized traditional grid,
the main challenges addressed in earlier applications, were the seamless transition between grid-
connected and islanded modes, energy management, active and reactive power, voltage, and
frequency control, etc. Hence, enhancing the reliability, controllability, and minimizing the
operational costs of the microgrid were the prime concerns of research programs rather than, the
reduction of greenhouse gas emissions, and energy losses [24]. While all microgrids share similar
challenges on a macro level, the control and functionality of each depend, essentially, on the type
of voltage in the point of common coupling (PCC) of connection from which AC, DC, and hybrid
AC-DC microgrid’s connection types can be distinguished. In an AC, DC-type microgrid, (DERS)
are interconnected, through converters, respectively to a common AC, and DC bus meanwhile,
both types of buses exist in a hybrid AC-DC microgrid connection[27]. Thanks to the
predominance of AC-type power electricity transmission, and the maturity of AC-standardized
technology, most of the research was centered on AC microgrids that prevail and captivated the
attention more than DC microgrids. Studies focused on voltage and frequency regulation, active
and reactive power control, energy management strategy, seamless connection between grid-
connected and islanded modes, uninterruptible supply for critical loads, the capability of black
start in case of grid failure, etc.[28]. However lately, the relative merits of AC and DC microgrids
are again vulnerable to controversy, and DC-type microgrids are regaining an increased interest in
the research field and are advanced in several applications over their AC counterparts[29]. There
are several grounds for the shift from AC to DC-type microgrids which can be summarized as
follows:

e The proliferation of renewable energy sources including photovoltaic generation, that are
inherently DC supplies, eased the connection of these resources to a DC bus rather than an
AC bus which requires at least one DC-to-AC conversion stage (in many applications an
AC-to-DC back again conversion is required) inducing higher conversion losses ranging
from 5% to 15% of power generation depending on the number of conversion stages[30],
[31].

e Energy storage systems (ESSs) such as batteries and fuel cells are DC by nature, which
poses the same hurdle of conversion losses and efficiency if these units are connected to
an AC bus. In this context, the direct connection of the battery stack to a common DC bus
has been historically a popular structure for practical applications due to the high
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capacitance of the battery stack that assures the dynamic stability of the system[32].
However, connecting the battery stack to the common DC bus through a bidirectional DC-
to-DC converter is a widely used configuration that increases the flexibility and
controllability of the system with limited conversion losses (a DC-to-DC conversion stage
results in 2% losses of generated power)[33].

e The increasing number of DC-type loads such as electric vehicles (EVs) which can act as
loads as well as power sources with the grid under the well-known vehicle-to-grid (V2G)
and grid-to-vehicle (G2V) applications, portable electronic devices such as laptops,
computers, phone devices, etc., home appliances such LED lighting, routers, chargers[34].
Energy efficiency is highly increased when these DC-type loads are directly coupled to the
common DC bus voltage with a minimal number of energy conversions. In [35], Bosh
developed a DC microgrid, compared it to a traditional AC microgrid, and found that the
DC system is 6 to 8 % more efficient than the AC one due to the reduced energy conversion
stages.

e The ease of control of a DC microgrid in which the regulation of the common DC bus
voltage is the main control priority. Issues of synchronization, harmonic distortion, reactive
power flow, frequency regulation, and power quality, that exist in AC systems are all
alleviated[36].

Yet, AC transmission systems still have many merits over DC ones, especially, the ease of voltage
transformation with which voltage can be elevated, transmitted over long distances, and then
lowered again near end users. Another advantage of AC systems is the maturity of circuit
protection which benefits from periodic zero voltage crossing to extinguish naturally a fault current
within the half cycle after tripping whereas, existent fuses and circuit breakers of DC systems
inherently introduce large time constants and time delays before activation and trip the current
from its steady-state value. While tripping, the arc occurrence presents a dangerous condition from
the safety point of view, shortens circuit breakers' lifetime, and increases maintenance costs[37].
Finally, DC microgrids lack standardization as they are still considered emergent technologies.
Several organizations are reviewing and developing practical standards for DC microgrids such as
European standard ETSI EN 300 132-3-1 which discusses the low-voltage dc systems[38], and
IEEE standards for DC microgrids[39]. Knowing this rapid advancement and expansion, DC
microgrids have become vital subjects in the research field that will shape the future of small
(DER) systems. This can justify the study of a DC microgrid in the context of this thesis. The
applied DC microgrid consists of a PV and WT as RESs, a (DG) as a traditional pollutant source,
a residential-type load, and an energy storage system that enables energy management and control.
The DC microgrid can operate in an islanded or grid-connected mode which offers an additional
degree of freedom to manage the energy mix in the system following predefined control objectives.
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1.4 Control and energy management technigues in DC microgrids

1.4.1 Three-level hierarchical control

In a DC microgrid, the prime control priority is the regulation of the common DC bus voltage to
which (DERs) are connected through local converters. To achieve this, one of the most applied
techniques is droop control which ensures the common DC bus voltage stabilization and power
sharing among existing sources without digital communication links (DCLSs)[40]. In its
conventional form, droop control degrades the current-sharing accuracy and lacks robust voltage
regulation. As a result, improved versions of droop control were proposed in the literature such as
virtual-resistance-based droop, adaptive droop control, mode adaptive droop, and intelligent
techniques-based droop to overcome the drawbacks of the basic droop technique[41]. However,
to achieve additional control functionalities and global management objectives, a hierarchical
control approach is adopted. Traditionally proposed to control AC microgrids, the three-level
hierarchical control is applied to control and manage the power flow in DC microgrids with a
difference in the control approach and controlled variables. Fig.1.11 illustrates the hierarchical
control in a DC microgrid.

The primary level consists of current, voltage, droop control, and source-dependent functions, e.g.,
maximum power point tracking (MPPT) for photovoltaic modules and wind turbines[42], [43], or
state of charge (SOC) estimation for ESS[44].

Local Control
functions:
1)Current, voltage, and
droop for each unit

2) source-dependent functions: MPPT

for (PV) modules and wind turbines, or
a (SOC) estimation for ESSs

[ Primary level >

Decentralized coordination functions:
such as local adaptive calculation of VRs, distributed DC bus
signaling (DBS), or power line signaling (PLS)
Control objectives: management of microgrid modes, enhancing
stability, robustness of first level methods, efficiency improvement

Tertiary Global microgrid level

Digital communication-based coordinated control
Control objectives: achieve advanced energy management functions such economical
aspect (fuel prices, peak hours, costs analysis,...) , weather forecast, emissions reduction

| Secondary level >

Fig.1.11 Hierarchical control of a DC microgrid.
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On the secondary level, decentralized coordination functions exist such as local adaptive
calculation of virtual resistances in which the robustness and stability of the primary control level
are enhanced [45], [46]. Another function is the DC bus signaling (DBS) method which uses the
DC bus voltage level as an information carrier to control power and switch between different
operating modes[47]. A third decentralized function at the secondary level is the Power Line
Signaling (PLS) method in which the units inject sinusoidal signals of specific frequency into the
common DC bus voltage to communicate with each other and manage ESS and RESs[48]. Hence,
secondary control is applied to enhance primary control level methods and manage the operating
modes of the microgrid.

However, at a global microgrid level, the tertiary control level achieves advanced energy
management functions such as the optimization of the DC microgrid performance by reducing the
operation and maintenance costs, the carbon emissions, improving the battery lifetime, converters’
efficiency, etc. Other functionalities can be included such as fuel and electricity prices, weather
predictions... At this level, a digital communication-based coordinated control is required to
monitor and manage all operating units[49].

Besides the difference in functionalities in each of the three levels of hierarchical control, the
objectives to be achieved are from different time scales[50]. Correspondingly, the primary and
secondary levels have the highest control speed as they take charge of current, frequency, voltage,
and power factor regulations. Oppositely, the tertiary control level has a slower dynamic as it
targets slower variables. While the primary control level is installed locally at each converter,
secondary and tertiary control levels can be implemented in a centralized, decentralized, or
distributed fashion[51]. They are classified based on the digital communication links (DCLS)
which only exist in the centralized and distributed approach and are used as data carriers between
all operating controllers. The sole difference between both approaches is that a central control
(CC) unit collects, processes, and sends back data to all operating units in the centralized control,
although (CC) doesn’t exist in a distributed control and units only communicate with their
neighbors to make decisions[52]. The centralized approach offers higher monitoring over the
whole system and facilitates the function of global regulation and optimization. However, it
requires extensive communication infrastructure which leads to an increased cost and lower
reliability. Moreover, the system can be abruptly stopped because of a single-point failure in the
(CC) or (DCL)s. On the other hand, a distributed control strategy offers better reliability and
expandability of the system but sacrifices the overall system security because of lack of robust
centralized supervision. Moreover, a consensus algorithm, also named multi-agent system, is
needed to perform the decision making and a much challenging control is required to achieve a
global optimization goal[53].
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1.4.2 Tertiary control level to achieve smart energy management in DC
microgrids

As the safe operation of DC microgrid in all modes, stable, and robust performance in response to
transients and disturbances are substantial prerequisites, most of the research addressed first the
primary and secondary control levels to ensure microgrid voltage regulation, load-sharing, stable
and reliable performance, power management, and seamless transition between different operation
modes [54]-[59]. Lately, the tertiary control level is gaining an increased interest in achieving
energy management and optimization functionalities on a global microgrid level as the
environmental, energy efficiency, and operation and maintenance (O&M) cost minimization
aspects are becoming prime concerns of the world energy policies[60]. Hence, several objectives
can be accomplished simultaneously, by formulating an optimization problem and solving it using
deterministic, heuristic, or metaheuristic methods such as simulated annealing (SA)[61], genetic
algorithm (GA) [62], particle swarm optimization (PSO) [63], pattern search (PS)[64], polar bear
optimization (PBO)[65], etc. The selection of the optimization method is instrumental in finding
the optimal solution, it is hinged on several factors as the type of microgrid planning problem to
be addressed, the number of objectives to be achieved, and the constraints to be considered[66].
The application of different optimization methods and the pros and cons of each are detailed in the
next section. Once found, the optimal solutions are applied to the power control of operating
converters as optimal power references in the outer loop, while the primary and secondary control
levels are executed in inner loops with faster dynamics.

As previously stated, the tertiary control level can be applied either in a centralized or distributed
manner. Several works in the literature have investigated tertiary control functionalities in a
centralized or distributed control strategy. Due to the diversity of control objectives and the wide
range of their time scales, it is practically complex to represent and cover the entire hierarchical
control in one research study and mathematical model, especially if targeted objectives of the
tertiary control level span over long periods e.g., days, weeks, months, or years. This major
difference between control levels made most researchers set apart the primary and secondary
control levels from the third one either by centering their studies on the first two levels or by
targeting the tertiary control level using simplified static models in steady-state. By this, variables
of primary and secondary control levels with fast dynamics are excluded from the model to reduce
complexity, and inner control loops are considered as established. Thence, the tertiary control level
is investigated apart in most scopes of works, global management functionalities are accomplished
through optimization problems and are validated without a direct referral to the hierarchical
control. However, one can find in the literature several studies that execute tertiary control level
functionalities such as multi-objective optimization in the scope of the hierarchical control and
matches between optimality and synchrony in one framework[67]. It is frequently found in
distributed control strategies with consensus algorithms and adaptive droop-based optimization
problems. For instance, in [67] a distributed controller is proposed to simultaneously optimize the
power-sharing among sources of an islanded DC microgrid and stabilize the common DC bus
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voltage. An economic dispatch problem is solved to minimize the total generation cost and
consensus protocols on incremental costs of DC resources are applied and networked on a
communication graph. A distributed control methodology for both distributed feeder current
balancing and power loss reduction is introduced in[68]. It modifies the weighted and constrained
consensus control to include multi-objective optimization. The results are verified with an
adequate selection of the weight coefficient. In [60], an optimization method is implemented on
the tertiary control level. An optimization problem is formulated to minimize converters’ losses
and solved using (GA) which outputs optimal virtual resistances (VRs) to local controllers. The
adaptive (VR) technique is applied at the primary level. A distributed control is selected based on
a consensus algorithm in each local agent to obtain global information. Two consensus algorithms
running in parallel are proposed in [69] to solve the economic power dispatch with transmission
line losses and generator constraints. The first one is used to reach a consensus on the Lagrange
multiplier, while the second one estimates the power mismatch in the system. Droop control-based
techniques were introduced in [70]-[72] to optimize defined objectives. In [70], a tertiary-level
optimization control is implemented, and (GA) is used to search the global efficiency optimum by
minimizing the losses of operating converters. (VRS) are set as decision variables for adjusting the
output power from converters and so improving their efficiencies. A similar approach is adopted
in [71] to minimize the total operation cost by considering the real-time pricing in DC microgrids.
All generation resources are modeled in terms of operation cost and (GA) is selected as a heuristic
method to solve the optimization problem.

1.5 - Optimal sizing and optimal power scheduling of a DC Microgrid

On the other hand, the literature addresses predominantly the tertiary control level as a single entity
and research topic, apart from the hierarchical control. In this context, the DC microgrid planning
problem can be divided into three main categories according to Carlos Gamarra and Josep M.
Guerrero[66]: power generation mix selection and sizing, siting problem, and operation
scheduling. However, problems that address the optimal sizing and the optimal power scheduling
of a DC microgrid are frequently found[73], [74]. Both approaches were largely investigated by
researchers, optimization problems are formulated and solved using several optimization
techniques.

1.5.1 - Optimal sizing of a DC Microgrid

Though the optimal sizing of a DC microgrid is out of the scope of this work, we start by citing
some interesting examples found in the literature. In [75], a hybrid Particle Swarm Optimization -
Grey Wolf Optimizer (PSO-GWO) technique is implemented to optimize the planning of a
microgrid taking a case of three locations in the Indian state of Bihar. The microgrid consists of
solar, wind, and bio-generator energy generation units, diesel generators, and a battery for energy
storage. Cost of Electricity (COE) and Deficiency of Power Supply Probability (DPSP) factors are
integrated into the objective function with a bound of Renewable Factor (RF). To prove the
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effectiveness of the proposed hybrid algorithm, it is compared with other various algorithms. A
multi-objective optimization algorithm is proposed in [76] to optimally size a DC microgrid
including solar PV, wind generation units, and an energy storage system. Two criteria are taken
into consideration in the decision-making: the total cost per year including the initial cost and
(O&M) cost of each of the operating units and the availability of energy. Two objective functions,
corresponding to each of the two criteria, are formulated and a Non-dominated Sorting Genetic
Algorithm Il (NSGA -I1) is adopted as a search method to find a Pareto frontier of the solution. In
[63] a (PSO) algorithm is applied to calculate the optimal sizing of a grid-connected DC microgrid.
The on-grid price and the operating status of the grid-connected converter are considered in the
objective functions and constraints on the battery state of charge (SOC), loss of power supply
probability, and renewable energy efficiency are included. The optimal sizing targets the lowest
annualized capital cost and (O&M) cost. Another optimization study is performed in [77] to
optimally size rural applications in India. Two economic elements, the total Net Present Cost
(NPC) and the Levelized Cost Of Energy (LCOE) are considered in the optimization problem
along with constraints on grid power supply availability. Finally, multi-objective design
optimization of a microgrid is developed in [78]. The microgrid consists of PV, wind, diesel,
hydrogen, and battery systems. Three different goals are set for the optimal sizing (i.e., minimizing
the Net Present Cost (NPC) of the system, the pollutant Emissions (E), and the Unmet Load (UL)),
and established in three different objective functions. The Multi-Objective Evolutionary
Algorithm (MOEA) and the (GA) are run in parallel as evolutionary algorithms to solve the
optimization problem and return a set of non-dominated solutions.

1.5.2 -Optimal scheduling of a DC Microgrid

As previously stated, the optimal sizing of the DC microgrid is out of the scope of this thesis whose
main target is the optimal power management of an existing DC microgrid configuration with a
predefined power capacity and generation limits. Accordingly, this section highlights in detail the
research work achieved in the optimal energy management of DC microgrids as well as the applied
optimization techniques. One can identify two optimization approaches in the search for optimal
energy management: offline and online optimization. Based on the microgrid configuration and
the optimization target, the offline optimization approach relies on predicted data such as the
ambient temperature, solar irradiance, wind speed, etc. to guess power generation profiles of RESs,
economic data such as the energy market price, and load demand over a defined time horizon (i.e.,
mainly for 24 hours). These predicted profiles serve as input variables to the optimization problem.
Mostly, system equations are discretized with a selected sampling time, and constraints and
objective functions are evaluated at each sampling period. An optimization technique is applied to
find the minimum total cost function which corresponds to the sum of the objective function at
each time step over the whole-time horizon. The problem outputs the optimal power references of
dispatchable units as a set of vectors to be applied in the next 24 hours.
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1.6 - Offline optimization based on heuristic, metaheuristic, and deterministic
methods

1.6.1 - Heuristic and metaheuristic methods

Heuristic and metaheuristic optimization techniques are commonly used in the energy
management system (EMS) of microgrids[27]. Heuristic optimization methods are proposed as
alternatives to classic optimization techniques as they are designed to find an optimum solution
among a large set of feasible solutions with less computational effort[79]. Besides heuristic,
metaheuristic methods are applied to find an optimum solution from a discrete search space, they
can combine two heuristic methods to solve the optimization problem. As stated in [66],
metaheuristic optimization methods can be classified into three main categories:

e Trajectory metaheuristics: Modify and improve one single candidate during the search
process and output a single optimized solution. Examples of this category are Simulated
Annealing (SA), Tabu search (TS), Variable Neighborhood Search (VNS), etc.

e Population-based metaheuristics: Modify and improve a population of solutions during a
prefixed number of iterations and output a population of solutions when the stopping
criterion is fulfilled. GA and PSO are the most popular algorithms in this category.

e Bio-inspired metaheuristics are based on the principles and inspiration of the biological
evolution of nature for solving optimization problems. Examples of this category are Grey
Wolf Optimization (GWO), Butterfly Particle Swarm Optimization (BPSO), Whale
Optimization Algorithm (WOA), etc.

GA, PSO, SA, and game theory methods were recursively applied to find optimal solutions in
microgrid power scheduling problems [80]-[82]. A multi-objective PSO (MOPSO) technique is
presented in [83] to minimize the operation cost of a microgrid, fluctuation in generated power,
uncertainty in power demand, and change in utility grid market prices. The microgrid consists of
PV, wind, fuel cells, and battery units. A single combined weighted objective function is applied
to aggregate all defined objectives. The (MOPSO) algorithm is validated through experimental
results and compared to other metaheuristic techniques such as the GA and bee colony. In [62], a
GA-based multi-objective optimization method is proposed to optimally control the power flow in
a microgrid. Economic and environmental costs are chosen as objective functions. A nonlinear
constrained multi-objective optimization problem is formulated in [84] to determine the optimal
operation operating strategy of a microgrid. A game theory method is selected to achieve two
objectives: minimizing the (O&M) cost and reducing the emissions of NOx, SO2, and COz2.
Another bio-inspired optimization technique, the vaccine-AlS, is adopted in [85] to take care of
microgrid load dispatch and network reconfiguration. Despite their capability of solving multi-
objective optimization problems for the whole-time horizon, heuristic and metaheuristic
optimization methods are time-consuming in problems with a high number of decision variables
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and do not guarantee the global optimal solution since the obtained results highly depend on initial
guesses.

1.6.2 - Deterministic methods

Besides metaheuristic methods, several deterministic optimization techniques are proposed such
as non-linear programming (NLP) methods (e.g., Sequential Quadratic programming (SQP),
mixed-integer nonlinear programming (MINLP), etc.). For instance, SQP and mesh adaptive
direct search methods are applied in [86] to solve a nonsmoothed optimization problem. The cost
function includes the costs of emissions, the start-up cost, and the (O&M) costs to optimally
schedule the operation of a microgrid. In [87], a DC microgrid comprised of a PV, fuel cell,
microturbine, diesel generator, and ESS units is optimally dispatched. Two objectives are set: the
reduction of the generation cost and the emissions. To solve the problem which includes nonlinear
equations and integer variables, a (MIMLP) algorithm, the branch and reduced optimization
navigator (BARON), is selected and tested in a multi-objective scenario.

Having the same starting point and algorithm parametrization, these algorithms lead to a single
result and are generally based on gradient-descent methods that gradually improve an initial
solution. These methods are faster than heuristic ones but can converge into local minimums
because they tackle solutions in a concentrated space of research. Therefore, they favor the
exploitation of known solutions (intensification) over the exploration of the field of study
(diversification)[88].

Besides, there are deterministic techniques that require a certain modification of the problem
structure such as dynamic programming (DP), linear programming (LP), mixed integer linear
programming (MILP), etc. For instance, the problem is divided into successive discrete states to
find the global optimum in a DP algorithm. At each calculation step, the algorithm considers all
meshed decision variables and calculates the least costly transitions according to a criterion to
optimize[89]. The DP is applied in [90] to optimally schedule a grid-connected microgrid
integrating solar PV and ESS. The total cost function corresponds to the sum of the operation cost
of each operating unit including the grid. DP algorithm is applied in this thesis as a deterministic
optimization method along with other metaheuristic optimization techniques. The optimization of
the DC microgrid and the applied algorithms are detailed in Chapter 3. Yet, if the cost functions
and constraints can be expressed in linear expressions as a function of optimization variables, the
LP method can be selected to find the global optimum of the problem. Dual Simplex and interior
point are the most commonly used algorithms to solve LP optimization problems[91]. In addition,
integer and binary variables can be added to the linear problem to further express a logic status in
the microgrid (e.g., turn on/off a diesel generator, connect/disconnect the microgrid to/from the
grid, etc.). In such cases, the optimization problem is formulated as a MILP problem, and the
Branch and Bound algorithm is adopted to find the optimal solution[91]. A MILP optimization
problem is formulated in [92] to optimally schedule the power in a microgrid. The optimization
aims to minimize operating costs and promote self-consumption. The objective function is written
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as a function of regular variables and a binary one named “status” which indicates whether ESSs
work in a grid-interactive mode. The main drawback of LP and MILP is that they cannot include
any nonlinear behavior of the system in the problem formulation.

1.7 - Online optimization technigues

The above-stated techniques are offline optimization methods that find a global optimum for the
whole-time horizon based on generation, load profiles, and pool price predictions. However,
prediction errors in RESs, load power, and pool price always exist and lead to a suboptimal solution
if the optimal power references set by the offline optimizer are not updated through ongoing online
optimization. The principle online optimization techniques are cited in this paragraph.

Model Predictive Control (MPC), also known as Receding Horizon Control (RHC)[93], the based
optimization approach is one of several online optimization techniques that is gaining increased
interest and is widely applied in the EMS of microgrids.

A general definition of MPC is “a set of control approaches that take full advantage of the system
model under specific constraints to gain the control signals or commands through minimizing
predefined cost functions or objective targets[93] . Another definition of the MPC optimization
technique is proposed in [94]: “MPC is an optimal control method that converts an infinite long
open-loop optimization into a limited long closed loop at each sample time using the receding
horizon strategy and considering the dynamic performance of the system, the control objectives,
and the constraints .

Fig.1.12 shows a basic simplified diagram example of an MPC method in which
X = [Pyria, Ppss] are the problem variables and outputs, SOC(t) is a state variable calculated
from the discrete state equation : SOC(ty,+1) = f(SOC(ty), Pess(ty)), J:(X) is the total cost
function to minimize, and g(X) is the constraint of the problem. As seen, at each sampling step a
selected optimization algorithm is executed for the whole-time horizon [t, = t, txin]-

For each possible transition between the SOC state variable, and over the whole-time horizon,
constraint and cost function equations are evaluated to find the best route. Finally, the trajectory
that complies with predefined constraints and corresponds to the minimum total cost function is
retained. Only the optimal schedule of t; time interval is applied, the time horizon moves forward
by one time interval, and the optimization algorithm is executed again for the whole new time
horizon [tq, tx+n+1] @nd so forth. The MPC-based optimization approach was applied in [95] to
find the ideal power scheduling of a microgrid consisting of solar, ESS, loads, and utility grid by
minimizing the total energy cost of the entire system.
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Fig.1.12 A basic simplified diagram example of an MPC-based optimization technique.

The continuous state space of the controlled model is discretized, and a graph-search algorithm is
adopted. The proposed model uses a 24-hour prediction horizon and a 15-minute control horizon,
it is compared to four optimization methods GA, PSO, QP, and SQP to prove its effectiveness. In
[96], an MPC strategy is applied in a DC microgrid including RESs, a DG, and an ESS to minimize
the operational cost. The optimization problem is formulated as a (MILP) and solved for a 48-hour
time horizon with a sampling step of 15 minutes for the rolling horizon. Wind and solar energy
forecasting models and neural networks for two-day-ahead electric consumption forecasting are
also designed with updated data. To prove the viability of the proposed EMS MPC-based
approach, it was compared to the traditional optimization method. An abundant number of MPC-
based optimization technique articles are found in the literature, for further information and
examples one can refer to [93].

Therefore, the MPC-based optimization technique with a rolling horizon made possible the real-
time management of energy and so, the compensation of mismatches between predicted RESs,
load profiles, and energy market prices and real values. Yet, if existent mismatches occur with
faster dynamics than the sliding window of the receding horizon, the grid operates as a slack bus
for the corrective action needed to compensate for the uncertainties. This solution may not be
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optimal especially, at high pool prices. Moreover, reducing the sampling step of the receding
horizon would require high computational servers to rapidly solve the optimization problem at
each sampling step then, the cost of the system increases. To overcome this obstacle, many authors
have included an additional internal optimization stage to the standard MPC technique or a
feedback correction loop with faster dynamic to further reduce any mismatches between predicted
and real-time data. In [97], an MPC-based economic scheduling problem of a DC microgrid is
formulated. Two solvers are applied: the first named (E-solver) solves the economic scheduling
problem formulated as a MILP for a 24-hour time horizon and a sampling step of 15 minutes for
the rolling horizon. The second named (L-solver) solves the transmission loss problem formulated
as an NLP and is executed at each one-minute interval. By this, the L-solver improves the model
accuracy by adding the transmission losses, minimizing them, and assuring fast real-time control.
A two-level optimization algorithm is proposed in [98] to minimize the total operating cost of the
microgrid and the pollutant gas emissions. The optimization problem is formulated as a MILP
framework and the MPC rolling horizon is established to schedule the operation for a 24-hour time
horizon with a time step of 15 minutes. A feedback intrasample correction part is introduced to
adjust the output of the units and balance the difference between the forecast values and the actual
values at each one-minute intrasample. The feedback correction was expressed as a new
optimization problem that minimizes the prediction error while taking into consideration only the
present state of the system.

Several authors have included an online correction stage to the offline day-ahead optimization
problem without applying the receding horizon strategy and yielded in turn efficient results. For
example, supervisory control is applied in [92] to compensate for mismatches between scheduled
values and real ones. The day-ahead optimization problem is formulated as a MILP to minimize
the operating cost and maximize self-consumption with a sampling step of one hour. The
supervisory control consists of two fuzzy interference systems with integral action. In [88], a
tolerance band method is proposed as an online correction part to compensate for errors between
predicted and real scheduled power references. The tolerance band online regulation approach is
expressed as a new optimization problem and solved using SQP.

1.8 - Applied optimization strateqy and main outcomes of this thesis

Research works on microgrid optimization are peaking since the last decade where a total of 1394
papers related to microgrid optimization have been published between (2014-2021) according to
[99]. Besides, the fastest growth rate in journal publications addressing microgrid optimization
was in 2017 with a growth rate of 30.64%. Among journals on microgrid optimization, the most
cited one is “ A Model Predictive Control Approach to Microgrid Operation Optimization”, with
a total of 345 citations [99]. As seen, recent research works are focused on the tertiary control level
of DC microgrids especially, the optimal energy scheduling of DC microgrids. More specifically,
the MPC-based optimization approach with the receding horizon is predominantly applied, and 2)
the comparison between different optimization algorithms, in terms of complexity, convergence
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speed, global versus local optimum finding, single versus multi-objective achievement, algorithms
hybridization, etc., is in turn frequently addressed.

Considering the foregoing, this thesis tackles the problem of DC microgrid optimization from a
different perspective. While most optimization approaches prioritize the optimization techniques
and their results at the expense of the model precision, this thesis emphasizes the modeling
accuracy of a DC microgrid without compromising the multi-objective optimization part. It
considers three major modeling drawbacks that are rarely treated in the literature but highly
influence the results of the optimization problem and the EMS:

1. Elimination of primary and secondary control level techniques such as MPPT control:
Since the MPPT technique is seated at a higher level than the optimization control level, it
is not considered in most of the studies, and instead simplified mathematical expressions
are used [81], [98] [73] to express the outputted power of PV and wind turbine energy
sources when formulating the optimization problem. These simplified expressions induce
output power prediction errors that directly influence the decision-making of the optimizer.
To handle this hurdle, modeling strategies are proposed in this thesis to include the MPPT
control to the RESs without applying a detailed electrical model.

2. Complexity reduction by omitting nonlinear behavior and prominent variables from the
system: The nonlinear behavior of many sources is frequently omitted by applying
linearized expressions in the problem formulation either to reduce the problem complexity,
increase the solver speed, or formulate the optimization problem as a MILP (a decent
example is the adoption of the linear state space model of the battery in [95], [98], [100]).
This linearized version implies that the voltage of the battery is always constant whereas,
it has an exponential characteristic that largely impacts the real computed power. A precise
battery model is established in Chapter 2, and the temperature effect is included in the
model as an additional variable that highly affects the performance of the storage system.

3. Model simplification of power electronic devices by applying constant converters’
efficiencies: In most research, the converters' efficiencies are not addressed or considered
constant for all operating converters regardless of their types or the transited power [88],
[101]. A major outcome of this thesis is the precise modeling of converters’ losses based
on their types (DC/DC, AC/DC), the selection of switching frequency, and the modulation
technique. This accurate model is applied to the optimization problem in which the
minimization of converters’ losses is one of the predefined objectives.

Besides the minimization of converters’ losses, the minimization of the total operating cost of the
DC microgrid, and the reduction of the pollutant gas emissions are the main objectives of the
optimization problem. Several constraints are introduced to guarantee the safe operation of the
battery and emulate a real test scenario. Based on the load, solar irradiance, wind speed,
temperature, and electricity purchase price input data that are partially known through predicted
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profiles, two optimizations are accomplished. The first denoted offline optimization is
accomplished the day ahead based on the predicted profiles and outputs the optimal power
references of dispatchable sources for the next 24 hours. A second online optimization stage is
added to update the optimal power references due to the mismatches between predicted and actual
profiles.

In addition to this first chapter which represents the state of the art in the DC microgrid control
and management, the manuscript includes four additional chapters. Chapter 2 introduces the DC
microgrid configuration, size, and 24-hour modeling strategy. The 24-hour model is derived from
two mathematical models: the average and the instantaneous microgrid models which are set out
in Chapter 2. The offline optimization problem for the day ahead is formulated and solved in
Chapter 3. However, the online optimization stage which consists of a feedback correction part is
applied and detailed in Chapter 4. Finally, chapter 5 concludes the thesis.

1.9 -Conclusion

After a predominantly century of centralized energy generation, the distributed generation
approach is taking the lead due to several motives such as the ease of rural electrification, the
reduction of transmission and distribution losses, and maintenance costs, the higher immunity
against energy security problems, cyber and physical attacks, cascading outages, etc. Besides
technical catalysts, natural phenomena such as the depletion of fossil fuel, which are the main
origin of energy generation in centralized power plants, climate change, and the urgent need to
integrate RESs were decisive grounds to endorse a distributed generation strategy.

With the proliferation of distributed generation and renewable energy sources, the microgrid
concept was proposed at the beginning of the 21% century as a group of interconnected sources and
loads that act as a single controllable entity to the grid. Thanks to their maturity and
standardization, AC microgrids first prevailed and captivated the attention more than DC
microgrids. Since the last decade, DC microgrids have regained an increased interest in the
research field and are advanced in several applications over their AC counterparts due to the surge
in integrated RESs from which several are of DC nature such as solar panels, the DC-nature of
most of the ESSs such as batteries, and fuel-cells making the connection to a common DC bus
more efficient than an AC one, the increasing number of DC-type loads, and the ease of control of
a DC microgrid.

Thereupon, a DC microgrid configuration consisting of RESs, traditional pollutant sources, loads,
and an ESS is studied in the context of this thesis. To control a DC microgrid, the three-level
hierarchical control is applied of which droop control is one of the most used techniques on the
primary control level that ensures proper load sharing and common DC bus voltage stabilization.
Having redundant research on the primary and secondary control levels, lately, the tertiary control
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level has been increasingly investigated. At this level, the energy management system of the DC
microgrid is addressed by formulating an optimization problem with predefined objectives, and
constraints. The optimization problem is solved using metaheuristic or deterministic techniques.
Besides offline optimization, online optimization methods are proposed in the literature to
compensate for any mismatch between predicted and real data.

The MPC, or receding horizon control, is predominantly used as an online optimization technique
that yields good results if the sliding window of the receding horizon is fast enough to compensate
for all mismatches between predicted and real data. This requires high-performing servers or
simplified mathematical models in the formulation of the optimization problem.

In this thesis, the optimization problem is tackled from another perspective which is the accurate
modeling of a multi-objective optimization problem. Precise dynamic models, nonlinear behavior,
and MPPT techniques are added to the optimization problem and shown how highly they affect
the optimization results. Three objectives are selected based on the actual international energy
policies: the minimization of the total operating cost, the reduction of pollutant gas emissions, and
the improvement of converters’ efficiency by minimizing converters’ losses. The secure operation
of the battery and limits on purchased/sold energy from/to the grid are considered. The
optimization problem is solved using metaheuristic and deterministic techniques, and an online
optimization stage is added to further refresh outputted optimal power references.
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Chapter 2 : Modeling of the 24-hour DC Microgrid

2.1 Introduction

In this chapter, the configuration, sizing, and modeling of the 24-hour DC microgrid are set out.
The 24-hour modeling of the DC microgrid constitutes a major challenge to address as all the
simulations are performed on a standard core i7 computer processor (2630QM CPU @ 2.00GHz)
with an 8.00 Gb installed RAM. In the absence of any high-performant server with a high processor
and installed memory capabilities, the modeling of a detailed 24-hour DC microgrid model that
includes fast dynamics, transient states, switching devices, and current and voltage loops is
practically impossible. The main barrier to surmount when modeling a 24-hour DC microgrid on
a standard PC is the limited memory and CPU performance. The inclusion of all dynamic
phenomena with fast variables imposes a small calculation step size of the simulation. As all
system equations are evaluated at each calculation step size, the duration of the simulation is highly
affected by the selection of the calculation step size. Smaller calculation step sizes induce slower
simulations and vice-versa[102]. Moreover, the complexity of the problem and memory usage rise
with the increasing number of variables and equations to solve at each calculation step size.
Therefore, simulating the detailed DC microgrid model with all fast dynamics over a 24-hour
simulation will result in an extensive duration of the simulation. Besides, it incurs an excessive
usage of the computer CPU and memory which leads inevitably to full capacity attainment and so
an unresponsive program behavior and a blocked simulation.

To overcome this obstacle, most of the researchers that work on standard computers apply when
formulating the optimization problem, a much simpler DC microgrid model that relies on
simplified mathematical equations relating the generated DER power to natural variables such the
solar irradiance, temperature, wind speed, etc.[81], [98] [102]. However, electrical variables with
fast dynamics such as the current, frequency, and voltage are excluded from the model and
considered as established[99]. Though this approach is instrumental in facilitating the solution of
the optimization problem and remains upheld as the targeted control horizon and objectives of the
optimization problem are much slower than electrical variables, it might induce sub-optimal results
when applying the EMS on a real DC microgrid. Power computing errors result from the difference
between the applied simplified model which doesn’t accurately emulate the real characteristics of
operating units and the real microgrid model. This issue is rarely addressed in the literature because
of the existent segregation between the optimal control and the modeling of a DC microgrid.

In this context, this chapter addresses this problem and proposes several mathematical techniques
to overcome the 24-hour modeling hurdle. It presents several averaging techniques, look-up tables,
and curve-fitting methods to reach an intelligible trade-off between model accuracy and simulation
speed to make the 24-hour model a feasible matter[102]. The trade-off is reached by omitting
irrelevant fast variables and phenomena from the model which enables the increase of the
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calculation step size while maintaining the essential ones that impact the accurate power
calculation of all sources.

Two main objectives are accomplished through the applied modeling strategy. All operating
sources, especially the RES which are the main energy source contributors to the DC microgrid,
are precisely modeled. This results in accurate power-computed values that serve as data inputs to
the optimization controller presented in the next chapter. In turn, the results of the optimization
problem are directly affected by the precision of the collected data. Hence, by providing precise
power value inputs to the optimization problem, the obtained results wouldn’t present any
mismatches when applied to a real DC microgrid model. Second, all variables that are subject to
constraints in the optimization problem or are directly targeted in the optimization goals are
maintained and represented in the model. Consequently, the proposed 24-hour model represents
the closest emulation of DC microgrid characteristics that can be achieved on a standard computer
CPU and memory.

Next in each section of this chapter, the energy conversion chain of each unit is presented
separately. The mathematical model of each source, the converter type, and the control strategy
are detailed. Finally, the 24-hour model of the whole assembled DC microgrid is presented through
a simulation test that validates all advanced modeling techniques in this chapter.

2.2 Configuration, energy management problem formulation, and sizing of the
DC microgrid

2.2.1 DC microgrid configuration

The applied configuration is shown in Fig.2.1. It consists of a PV array and a wind turbine as RESs,
a diesel generator (DG) as a traditional pollutant source, an ESS consisting of a lithium-ion battery,
a residential-type load, and the microgrid can operate in islanded or in grid-connected mode. The
selected topology is a single-bus topology, commonly used in DC microgrid applications[103], in
which all units are connected to the common DC bus through local converters. Each operating
unit, its proper converter type, and control technique are detailed separately in this chapter. As a
general EMS strategy, the PV and WT are always functioning in MPPT mode since they generate
clean energy, and one has an interest in continuously extracting the maximum available power.
This management strategy of RESs is mostly found in DC microgrids' optimal EMS[81], [83],
[99]. Then, the output power of RESs is non-dispatchable and is applied as input to the offline
optimization problem in addition to the load power profile. The dispatchable sources which are
the battery, the (DG), and the grid represent the decision variables of the optimization problem.
Once solved, the offline optimization problem set the power references of the battery, the DG, and
utility grid converters denoted respectively Pyoit refs Ppg refr @ Pyrig rer, fOr the next 24 hours.

As seen in Fig.2.1, arrows are used to indicate the power flow direction in the microgrid. Single
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arrows indicate a unidirectional power flow such the ones of the PV, WT, and DG which operate
invariably as sources so, the arrow’s direction is outward. The generated power of these sources
passes through unidirectional local converters to reach the common DC bus. Same for the DC
residential load which always receives the required power through its unidirectional local
converter and so the arrow’s direction is inward. Since the power flow in the PV, WT, DG, and
load is unidirectional the power signs Ppy, Pyr, Ppe, and P4 are conventionally greater or equal
to zero. Contrarily, a double arrow is used to indicate the bidirectional power flow in the battery,
and the grid converters.
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Fig.2.1 DC microgrid applied configuration.

If the battery is in charge mode, the power transits from the common DC bus to the battery and
vice-versa in discharge mode. As convention, Py,;; > 0 when the battery is discharging and
Pyaee < 0 when it is charging. This convention is widely used in the literature [104]. Similarly, if
the power is purchased from the grid, conventionally, Py,;; > 0 while, if it is sold to the grid

Pyria < 0.

2.2.2 Energy management problem formulation

As stated before, the optimal sizing of DC microgrid units is out of the scope of this thesis without
overlooking its crucial impact on the decision-making of the optimal EMS. Accordingly, the size
of each operating unit in the microgrid will directly impact the amount of delivered/absorbed
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power and so the goal, frequency, and continuity of interventions of all operating units. Hence, the
problem should be positioned in a way that establishes a sort of competitiveness between the
operating units on the predefined optimization goals. Otherwise, the solution to the optimization
problem may become trivial or unfeasible[73]. From here, the problem should be defined as
follows: In a DC microgrid, a specific load demand should be covered over 24 hours by existing
energy sources consisting of RESs, DG, utility grid, and battery with the object of reducing the
total O&M cost of the microgrid, the pollutant gas emissions, and the overall losses of converters.
The highest priority in feeding the load demand is attributed to the RESs as they produce clean
energy at near zero cost per kWh. Yet, if the load demand surpasses the RESs generation the DG,
the ESS, and the utility grid take charge of covering the unmet load. To further identify the general
EMS strategy of the microgrid, Fig.2.2 shows a brief flow chart of possible encountered scenarios.
First, as defined above, the main objective is to cover the load demand so, that available RES
power (Pggss) IS evaluated and compared to the load power (P;,q4), two possible cases come
across.

1. Pyyaaq < Prgss - the generated power exceeds the load demand then, all the load is fed by
RESs, and the remaining power is entirely sold to the grid if the battery is fully charged (the
negative grid power (Pg,;q < 0) implies that the power is sold to the grid). Yet, if the battery
is not fully charged, the exceeding RES power can be utilized to either charge the battery
and sell the remaining power to the grid simultaneously or accomplish uniquely one of the
two operations (this can be expressed as Py, < 0 and Ppq.; < 0). The decision-making in
such a case is assigned to the optimizer which outputs the battery and grid power references
(Pgria_rer and Pyger rer). The DG is always turned off in this scenario.

2. Piyaa > Press - the generated power is less than the load demand then, RES generated power
is insufficient to meet the total load demand. The unmet load should be covered by existing
DERs based on the optimizer's decision. Two subsections are identified depending on the
battery’s state of charge. If the battery is fully discharged, the utility grid and the DG may
intervene simultaneously or separately to essentially feed the unmet load and potentially
charge the empty battery if the optimizer requests that (this subsection is expressed as

Pgria = 0, Ppg = 0, and P,q. < 0). However, if the battery is not fully discharged, it may

be in charge or discharge mode based on the optimizer's preference. If in discharge mode,

the battery may intervene solely to cover the unmet load or contribute fractionally to the

power mix with the utility grid and/or the DG (this can be expressed as Ppq¢+ = 0).

As seen from the general EMS strategy, several scenarios can be encountered, and here lies the
instrumental significance of the optimization process in finding the best combination of operating
DERs that meets the load demand regarding the predefined constraints and objectives.

Once the EMS strategy, the possible scenarios, and the objectives of the optimization are defined,
the sizing hurdle of the DC microgrid is overcome.
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Fig.2.2 Flow chart of the general EMS strategy.

Yet, particular attention should be paid when sizing the microgrid to prevent any oversize or
undersize of DERs that impact tremendously the EMS strategy and the solution of the optimization
problem. For instance, a load demand that always exceeds the RES production implies a high
reliance on the grid and the DG to directly feed the load, a restricted role of the battery, and an
abstraction of the scenario of excessive energy production. While, if RESs are oversized this may
restrict the role of the grid, the DG, and the battery. The same impacts result oppositely if the load
is oversized or undersized. Besides, an oversized ESS will automatically release the constraints on
the battery whose SOC remains high. In that case, the role of the DG is canceled which may
intervene when the load demand exceeds RES production, the battery is discharged, and the pool
prices are high. Contrarily, lower and higher bounds of the battery’s state of charge are quickly
reachable in an undersized ESS which may incur excessive usage of the battery, increased daily
number cycle of the battery, and so a shortened battery lifetime[105]. The DG size has a minor
impact on the EMS strategy when compared to the RESs, battery, and load since it operates as a
backup energy source at high pool prices. Lower and higher Bounds of DG-produced power and
purchased/ sold power from/ to the grid are fixed when formulating the optimization problem in
the next chapter.

2.2.3 Sizing of the DC microgrid

As for this study, a low-voltage DC microgrid (LVDC) application for residential load is adopted
with a rated power of 50 kW, and a common DC bus voltage of 800 V. Based on IEEE standards
1709-2010, the recommended DC bus voltage shouldn’t exceed 1.5 kV for LVDC
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microgrids[106]. Similar demonstration projects are found worldwide for LVDC microgrids, for
instance, the FREEDM project in Raleigh, USA proposed in 2011 to a factory for DC lighting, and
DC building load with a rated power of 100 kW and a 400 V DC bus voltage[107]. Another project
is the Office building of Nanjing Guochen Co., Ltd. Located in Nanjing, China, proposed in 2018
for an EV charging pile, lighting, and DC appliances of an office, with a rated power of 74 kW
and a 600 V common DC bus rated voltage[108]. A third demonstration project is the Suzhou
Tongli integrated energy service center in Suzhou, China suggested in 2018 for lighting, and air
conditioning load with a rated power of 300 kW and three different DC bus voltage levels of
750/540/220 V[108]. Further applications for LVDC microgrids can be found in [109]. In this
thesis, the selected load is a cluster of small DC-type residential loads then, a DC/DC buck
converter is required to decrease the voltage from 800 V to a safer lower level as shown in Fig.2.1.
According to IEC 60038 [110] and IEC 61140 [111], LVDC voltage level can be divided into two
ranges, including the range from 120 V to 1.5 kV, and the range bellow 120 V. The 120 V voltage
level is defined by IEC as the upper boundary of extra low-voltage, which is a low risk under dry
conditions [112], [113]. Meanwhile, the voltage level of a low-voltage DC distribution network
should not exceed 400 V [114]. As aresult, the 120 V voltage level can be used as a DC distribution
network for the cluster of DC residential loads. Given that the precise modeling of the cluster of
DC residential loads is out of the scope of this work, a simplified model through a standard unified
residential load profile is applied. As a result, the DC residential load and its corresponding DC/DC
converter appear as a single entity throughout the load profile.

Table 2.1 summarizes the size of each DER of the microgrid. As seen, the PV array and WT have
almost nearby rated powers of 50 KW, knowing that they won’t practically operate simultaneously
and continuously at their maximum rated power. The DG generates 55 KW as nominal power with
a 50 Hz nominal frequency and the rated power of the utility grid is 100 KV A with a 50 Hz nominal
frequency. Concerning the battery capacity, a minimum of 3 to 4 hours of battery backup should
be provided for the load in the presence of the backup diesel generator which can be automatically
turned on in case of a full discharge of the battery. This ratio (3 to 4 hours) of battery backup is
found in IEEE standards for traditional telecommunication sites[115] and represents a reasonable
selection for the ESS capacity in residential applications, where other DERs are capable of
intervening to feed the unmet load. The battery is generally sized under constant load during a
predefined period then, an average constant load of 30 KWW is chosen and a ratio of 4.16 hours is
obtained by dividing the battery-rated energy (Wpq.: » = battery rated capacity (Ah) x battery
rated voltage (V) = 250 x 500 = 125 KWh) over the constant load value (30 KW). We take note
that this ratio only represents an estimation criterion that helps size the battery meanwhile, the
actual value of backup hours might differ as the full capacity of the battery cannot be exploited
due to the boundaries on the state of charge and the discharged power won’t remain constant over
the discharging hours. By this, a typical LVDC microgrid application with a tangible and realistic
sizing approach is applied and can be controlled optimally based on predefined objectives.
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Common DC bus, rated voltage 800V
Wind turbine maximum rated power and efficiency (%) 55 KW-92.8%
PV array maximum rated power 50 KW
(DG) rated parameters Power (KW) frequency (Hz) 55 KW -50 Hz
Utility grid-rated parameters | Power (VA) - frequency (Hz) | 100 KVA -50 Hz

Battery-rated capacity and voltage 500 Ah - 250V

Table 2.1 Sizing of DC microgrid principal units.
2.3 Instantaneous and 24-hour DC microgrid modeling

Once a new EMS strategy for DC microgrids is proposed by researchers, it is usually validated
through experimentation on a real DC microgrid or through a Hardware-in-the-loop (HIL)
verification in which the real dynamic characteristic of a DC microgrid is emulated[83], [92], [98].
In this thesis, a theoretical study on an offline multi-objective optimization of a DC microgrid
followed by an online optimization stage is addressed. Certainly, the experimental and the (HIL)
validation of the EMS strategy on a real DC microgrid or a real-time simulator would be interesting
meanwhile, the two options weren’t available during the accomplishment of the thesis. Thus, apart
from the offline and online EMS strategy, a 24-hour DC microgrid model is developed. The
effectiveness and viability of the EMS are validated through the 24-hour DC microgrid model. For
this study, MATLAB/Simulink was selected as an engineering software tool to model and optimize
the DC microgrid. Three modeling approaches were applied in MATLAB/Simulink to yield the
24-hour DC microgrid assembled model:

1) The detailed microgrid model is built in the Simscape library of Simulink using the specialized
power systems from the electrical toolbox. Simscape library was chosen for the detailed
modeling as it represents all microgrid units with accurate mathematical models including all
electrical and mechanical equations and transients in the system. Besides, the Simscape model
reveals real physical connections between DERs, converters, and loads. The high accuracy of
this model imposes a reduced calculation step size and so a slowed simulation, an extensive
computational burden, and memory usage. Accordingly, this model can only be run for a
several-second simulation on a standard computer. However, being the most accurate, the
detailed model serves as a reference model for the proposed averaging ones to assess their
precision.

2) The 24-hour DC microgrid is uniquely built on Simulink as all electrical and mechanical
equations of the system are reestablished and new simplified modeling techniques are
advanced. These assumptions mainly target the calculation step size of the simulation model
that is increased without compromising the model's accuracy.

3) The script format, including .m files and MATLAB functions, is utilized to add several
averaging and curve-fitting techniques and to formulate the offline and online optimization
EMSs that are presented in the next chapters.
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As a result, the overall assembled 24-hour DC microgrid model is built using Simulink and the
script format consisting of .m files and MATLAB function files. A simulation test of the obtained
24-hour model is revealed at the end of this chapter. Finally, we take note that the developed model
isn’t advanced as an alternative to the HIL real-time simulators which remain the most accurate
emulators of any system characteristics convenient for long and real-time simulations. Next, the
detailed model of each source along with its converter and strategy of control are presented first
as reference models then, the simplifying strategies are advanced, and newly obtained models are
compared to the detailed ones in terms of precision and simulation speed.

2.4 PV enerqgy conversion chain

As depicted in Fig.2.3, the PV array conversion chain consists of a PV array block connected to
the common DC bus through a DC/DC boost converter which functions in MPPT mode to extract
maximum available power. The boost is controlled throughout firing pulses denoted wu.

2.4.1 PV array

To model the PV array, the “PV Array” “SimScape” library block is selected. The block models
an array built of strings of modules connected in parallel, each string consisting of modules
connected in series[116]. The block has two input parameters as seen in Fig.2.3: the irradiance
denoted S expressed in (W /m?), and the cell temperature denoted T expressed in (°C). The
electrical circuit of the PV array includes a light-generated current source denoted /4y, a diode
denoted d, a series and a shunt resistance denoted respectively R, and Rg,expressed in (Q), as
shown in Fig.2.4. The P-V characteristic is defined by equations (11.1) and (I1.2):

Ppy = Ipy X Vpy (1.1)

Ppy = Vpy X Iignt — Vpy X Ig — Vpy X Igp (11.2)

Where Ipy, ILigne 1a, Isn, and Vpy are respectively: PV current (A), light generated current(A),

diode current (A), shunt resistance current (A), and PV voltage (V). The diode current and the
light-generated current are expressed as follows:

Iy =1, [exp (%) - 1] = I [exp (W) - 1] (1.3)
ILight = (Sf_ef) X [ILight_ref + aisc(TK - Tref_K)] (“-4)

Where Iy, Vg, Vr, SrefiILight refs @i, Tk and Ty.r i are respectively: diode saturation current
(A), diode voltage (V), diode temperature voltage of the array (V), reference irradiance at standard
test conditions (STC)s (1000 W /m?), reference light-generated current (A), temperature
coefficient of short-circuit current (A/°C), cell temperature in Kelvin (Tx =T + 273.15),
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reference temperature at (STC)s in Kelvin (25°C - 298.15 K). All module data and numeric
values of parameters are found in Appendix A.1.

This model representation of the PV array is the most accurate as it computes the output power as
a function of the electrical components Vpy, and Ipy: Ppy = f(Vpy, Ipy). As the mathematical
equations of the PV array (I1.1, 11.2, 11.3, and 11.4) do not include fast variables requiring any
restriction of the calculation step size, the same model is kept for the 24-hour simulation.

Common
PV Array DC/DC boost DC bus

Block (detailed model)

Ipy [e—

' TVPV

>

u
Ipy —»[ MPPT VmppT PI D PWM
Vpy T. technique Regulator generator

Fig.2.3 PV array conversion chain.

Irradiance (W /m?)

=
Temperature (°C) |:'>

Ipy
A A A — _I_
Jl‘rsh i Rs *
Ligne Idi SZ Rsn Vpy
9

Fig.2.4 PV array electrical circuit.
2.4.2 DC/DC boost converter

2.4.2.1 Detailed model

The electrical circuit of the DC/DC boost detailed model is represented in Fig.2.5. This model is
the most accurate as it includes the real electrical components (switching device, diode, filtering
inductor, and capacitor). IGBT switches are chosen as switching devices for all operating
converters as they highly comply with such applications and offer a reasonable trade-off between
switching speed and maximum admissible power[117]. The IGBT is controlled by firing pulses,
denoted u (Fig.2.3), with a fixed switching frequency f,, py = 20 KHz. The selected switching
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frequency lies within the standard range of IGBT operating frequencies[117], [118]. As seen in
Fig.2.5, the PV array model of Fig.2.4 is represented by a variable current source that should be
connected to the DC/DC boost inductor considered, in turn, as a current source in
Simscape/Simulink. To enable the connection of the PV current source with the DC/DC boost, and
to access the PV voltage Vpy,, a capacitor C;, is placed in parallel to the PV array block as seen in
Fig.2.5. By applying Kirchhoff’s current law, the equation bellow is stated, and Vp, can be
obtained by integrating it:

dVpy

Cin-——
n dt

= Iy — 1, (11.5)

To derive the boost equations the binary variable u (i.e., the firing pulses variable) is introduced
which is equal to zero if the IGBT is OFF and one otherwise. Based on the electrical circuit of
Fig.2.5, the boost equations can be expressed as follows:

VPV = RL'IL + L%"‘ (1 - u).VBUS

ID - (1_u).IL (II.G)
av
1-w.l, = Cbus-% + lout
Where R, I, L, u, Vgys, u, Ip, Cpys, and I,,; are respectively the inductor resistance (Q), the

inductor current (A), the filtering inductor (H), the firing pulses, the common DC voltage (V), the
diode current (A), the common DC bus capacitor (F), and the output current (A).

IPV RL L IL ID IOE'L
— I~
. —> WA/~ T ] "
I
swl Vp
A
VPV IPV :: Cin g _| Tvsw Cbus:: VBUS

Fig.2.5 Electrical circuit of the DC/DC boost converter (detailed model).

2.4.2.2 Average model:

Based on the Nyquist-Shannon sampling theorem, which states:” to accurately reproduce a pure
sinewave measurement or sample, the rate must be at least twice its frequency[119]”, the maximum
allowable step size of simulation can be determined. By evaluating the equations of the detailed
boost model, one can identify that the highest frequency limiting the step size of the simulation is
the switching frequency (f;,,, = 20 KHz). To simulate the detailed model, and by applying the
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1
2Xfswpy -
2.5 x 1075 s is required, otherwise erroneous results may be obtained. Additionally, to get well-
shaped curves of current, voltage, and power, the required ratio between the step size and the
switching period has to be at least equal to 1/100 [120], [121]. Consequently, the calculation step

size cannot exceed in this case Tstep ger = ﬁ =5x%x 1077 s= 0.5 us. As the switching
- sw_PV

characteristic with the real switches devices has the fastest dynamic in the system and is not
targeted as an optimization objective in the EMS strategy, it can be considered as established.
Thence, the real switches can be omitted, and the converter can be directly controlled by the duty
cycle instead of the firing pulses. This model representation is known as the average converter
model[122], [123]. The electrical circuit of the DC/DC boost average model is shown in Fig.2.6,
it includes a controlled voltage source denoted 1, and controlled current source denoted Ipy oy
From Fig.2.6, the equations of the average model can be expressed as follows:

( Vi = (1 = Dpy).Vpys

Nyquist-Shannon theorem, a maximum allowable calculation step size of: Tsep, geor =

VPV = RL'IL +L%+VL

, v (1.7)
PV_out — v
BUS
_ dVpuys
IPV_out - Cout- dt + Iout
IPV RL L IL IPV_out Iout
—» —» —» —»
A A
Vey | Ipv — v, ¢ T |Veus
out

Fig.2.6 Electrical circuit of the DC/DC boost converter (average model).

Where V,, Dpy, Ipy oy are respectively the converter-controlled voltage source (V), the duty cycle
ratio of the PV, and the converter-controlled current source (A). To validate this model, it is
compared to the detailed one in a simulation test. Both converters’ models are simulated for one
second using the same solver and the following parameters:

R, =5mQ, L =5mH, C;, = 6 mF, C,; = 0.1 mF, and a simple load consisting of a resistor,
connected in parallel to C,,;, is applied with the value R = 25 Q. A constant PV current source is
selected: Ip, = 64 A and the following duty cycle ratio function is applied:

{DPV = 05 OS S t < 055
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Fig.2.7 DC bus voltage of the DC/DC boost in the detailed and average model representations (on the left
side: the whole curves over the full-time simulation, on the right side: a zoom over the transient state)
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Fig.2.8 Inductor current of the DC/DC boost in the detailed and average model representations (on the left
side: the whole curves over the full-time simulation, on the right side: a zoom over the transient state).
The step size calculation of the detailed model is set to: Tg,p qor = 0.5 us as the switching
frequency of the IGBT is set to: f;,, py = 20 KHz. A step size calculation of the average model
equal to Ts¢ep g = 50 ps is chosen. The obtained simulation results are depicted in Fig.2.7 and
Fig.2.8 in which the inductor current I, and the DC bus voltage Vg are shown. It can be seen
how accurately the average model curves follow the detailed model ones in transient and steady
state. By applying the average model, the new calculation step size can increase at least 100 times
compared to the detailed model (Ts¢ep qur = 100. Tgtep gee). This assumption highly reduces the
duration of the simulation as the calculation step size is increased, and the complexity of the model
is reduced without compromising the accuracy of the model which always includes the dynamics
of the electrical components. We take note that the above-selected values of R;, L, and C;,, are
applied to the PV conversion chain for the rest of this thesis study, whereas the values of C,,; and

R were utilized only for the comparison between the detailed and average converters’ models.
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2.4.2.3 DC/DC boost losses:

Though power electronic devices are rapidly developing, and converters’ efficiencies are
unceasingly increasing, the reduction of converters’ power losses plays a key role in the overall
system efficiency improvement. By optimizing the converters’ efficiency, the operating cost of the
DC microgrid is reduced as well and the energy consumption decreases on a macro-level which
complies with international energy policies[23]. While most DC microgrid applications neglect
the converters’ losses by considering a unit conversion ratio equivalent to 100% efficiency, others
include the converters’ efficiency in their models as a constant ratio by referring to figures
provided by converters’ manufacturers[88], [98]. In general, DC/DC conversion stages have
higher efficiencies ranging between 98% and 99.7% compared to DC/AC conversion stages with
a range between 95% and 97%[124]. In this study, converters’ losses are modeled and added to
the average model presented in Fig.2.6. The first losses that were already included in the DC/DC
boost average model are the inductor copper losses which are modeled by a resistor, denoted R, ,
placed in series with the inductor L. The second source of power loss in a converter is the
conduction loss caused by semiconductor device forward voltage drops. The forward voltage drops
in the diode and the IGBT can be modeled by a voltage source, denoted respectively V,, and
Viesro, IN Series with an on-resistance denoted respectively R, and R;;gr[125]. Then, the IGBT
and diode voltage sources and on-resistances are placed on the inductor branch side as seen in
Fig.2.9. By referring to [125], Vo, Vigero, Rp, and R;¢gr can be expressed as follows:

Vpo = (1- DPV)- Vfo
Vigero = Dpv-Viger_cEo (11.8)
Rp = (1- DPV)-RD_f .
Rigr = Dpy- Rigar on

where Dpy, Vo, Viger cro» Rp s, and Rigpr on are respectively the duty cycle ratio of the
converter, the diode forward voltage source (V), the IGBT forward voltage source (V), the diode
forward resistance (), and the IGBT on-resistance (€2). All these parameters are defined based
on the selection of each component and by referring to the manufacturer's datasheet. The detailed
calculation of conduction loss parameters of the DC/DC boost can be found in Appendix B.1.

The last major source of losses in any converter is switching losses. These losses occur during the
turn-on and turn-off transitions of semiconductor devices that require times of tens of nanoseconds
to microseconds. Although these switching times are short, the resulting power-switching loss is
significant[125]. Many techniques are proposed in the literature to model the switching losses. For
instance, in [122], two terms corresponding to the change of the average voltage and current across
the electronic switch due to the switching transients are introduced and added to the usual duty
cycle ratio. Accordingly, the DC/DC boost converter equations are modified, and the included
switching losses are revealed. Meanwhile, a simpler method, to estimate the switching losses, is
proposed in [126], and is adopted in this study. The method introduces an equivalent resistance
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that can dissipate the same heat as that produced by the switching loss. The switching losses
equivalent resistance denoted R,,, is placed in series with the inductor branch and the conduction
losses’ equivalent model as seen in Fig.2.9.

% V
IPV RL L R IL R, P Ricar [GBTO IPV_OL'I Iout

—  AMTIW—0 M—@—vw—@— —= ==,

1 ¥ S
Vey | Ipy —_Ci, Vv, <_> <‘D C,—— Vpus

Fig.2.9 Electrical circuit of the DC/DC boost converter including the conduction and switching losses.

To compute the switching losses, the approximations of IGBT voltage V.z, and current I,
waveforms are represented during the switching transition phases in Fig.2.10 (a) This switching
losses calculation method is named the transition power loss method and is widely applied in the
literature[126], [127]. As seen in Fig.2.10 (a), a linear approximation of the IGBT current and
voltage waveforms is applied, and the below equations are derived during turn-on time (t,, ;cpr):

Vep = — SCEmax ;4

t VCE_max
on_IGBT

(11.9)

IC max
le = ton__IGBT t
Where Vg maxs ton 1gaT, and I¢ mq, are respectively the maximum switch voltage (V), the turn-
on delay time (s), and the maximum switch current (A).
Using equations (11.9), the power loss in the turn-on interval can be written as:

vV E 1 V E 1
CE_max!C_max tZ + CE_max’C_max t (”10)

PCE_t—on =Veg-Ic = 2 ¢
on_IGBT on_IGBT

The time-averaged power loss in the IGBT in the turn-on interval is obtained by integrating
equation (11.10) over the switching period Ts,,, which yields:

_ 1 rtonIGBT _ Jfsw- VcE max - Ic.max- ton IGBT
PCE_t—on‘afo Veg I . dt = S (1.11)

Following the same calculation steps, the time-averaged power loss in the IGBT in the turn-off
interval can be expressed as follows:

_ 1 toff_IGBT _ fsw. VcE max - Ic.max - toff_IGBT
PCE_t_Off_afO VCE'IC'dt —_ 6 (“12)
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Where t, 55 16pr IS the turn-off delay time (s).

Thus, the total average power loss in the IGBT during the switching transitions is:

_ fsw- VCE_max- IC_max

Peg = Pcg t-on + Peg_t—off = p (ton_icer + tofs_ier) (11.13)

A last included source of switching power loss in the DC/DC boost is the turn-off losses of the
power diode. The main cause of this power loss is the reverse recovery current of the diode which
is normally accompanied by a large reverse voltage and can lead to substantially enhanced power
loss at high switching frequencies[127]. As seen in Fig.2.10 (b), a segment approximation of the
diode reverse recovery current and voltage figuring in several studies[127]-[129] is adopted.
Hence, the diode current I, and voltage V,, equations during the reverse recovery period are
represented as follows:

Vp = —RD¢
D o

, : (11.14)

Ip =2t —Ipy p
tf_D =

Where Vg p, Irm p, and tf p are respectively the peak reverse voltage (V), the peak reverse
recovery current (A), and the time interval required by the reverse recovery current to fall from its
negative value (—Igy p) back to zero (s).

By following the same calculation steps of equations (11.9), (11.10), and (I1.11), the average reverse
recovery power loss in the diode during the turn-off transitions, and over the switching period Ty,
is:

Pryp =L TRORMD 4, (11.15)

Thus, the total time-averaged switching power loss in the DC/DC boost can be expressed as:

Psw_boost = Pcg + PTT_D

fSW
= T_PV X [VCE_max- Ic_max- (ton_IGBT + toff_IGBT) + (VRD- IRMD- th)] (“-16)

Since the switching-loss resistance (r5,,) is placed at the PV source side of the converter in series
with the inductor, as seen in Fig.2.9, the time-averaged switching power loss can be written as:

Psw_boost = TSWIIZ._RMS ~ %WII? (“-17)
Where I}, rys is the inductor's current RMS value (A). This assumption is valid since the DC/DC
boost is always operating in continuous conduction mode (CCM) where I} pys = I, . By

equalizing equations (11.16) and (I1.17), the time-average switching power loss can be expressed
as:
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_ fsw_PV

Tsw = o2 X [Vee_max- e max- (Conicer + tosficer) + (Vep-Irm p-tr p)] (11.18)

By referring to the detailed model of the DC/DC boost (Fig.2.5), when the IGBT is turned off,
Ve max=Vpus, and when it is on I, ,,q,=1;. Similarly, the diode forward current (I) is equal to I,
when the diode conducts, and when it is blocked V, = —Vi , ® —Vpys. Thus, equation (11.18) can
be written as:

Vv
— fsw_pvVBUS X (t

IrM D- tf_
ol on_1Gr + tofr iger + L) (11.19)

T
sw 1L

Appendix B.2 can be invoked for detailed information on parameter values and the method applied
to find the peak reverse recovery current (Igy p).

Using the adapted electrical circuit of Fig.2.9 which includes the conduction and switching losses,
the total losses in the DC/DC boost (Ppeost 10sses) Can be represented as a function of the PV array
current Ipy, the duty cycle ratio Dpy, of the converter, and the DC bus voltage Vgys.

4 Vp Ipa

\ A=

VCE_max

_IRM_D

<+ <>
ton 16BT torf 1GBT
(@ (b)

Fig.2.10 Approximation of (a) IGBT voltage and current, (b) diode reverse recovery current and
voltage during the switching time interval.
In normal operating conditions Vs = 800 V is always constant and I, is a function of the
irradiance S and the cell temperature T inputs (equations (11.2) and (11.4)). To simplify the analysis
and the representation of the total losses, fixed irradiance, and temperature are selected to plot the
losses curve as a function of the duty cycle ratio (Pyoost 10sses = f (DPpy)). Fig.2.11 (a) and (b)
show the PV array characteristics under fixed irradiance and temperature conditions: S =
1000 W/m? and T = 25°C. The chosen PV module manufacturer and the corresponding module
data can be found in Appendix A.1. As seen, the PV array voltage minimum value Vpy ;5 is null
and corresponds to the short-circuit state, whereas the maximum value corresponds to the open-
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circuit state Vpy mqr = 511.8 V. Fig.2.11 () represents Vpy as a function of Dpy, it can be seen
that Vo, =f (Dpy) Is a decreasing linear function since Vpy, and Dpy, are inversely proportional:

- Vpy max = 511.8 V corresponds to Dpy ynin, = 0.362.
- Vpy min = 8.2V corresponds t0 Dpy max = 1.
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Fig.2.11 PV array characteristics (S = 1000 W /m?, T = 25°C) (@) Ipy = f (Vpy), (0) Poy = f (Vpy),
and () Vpy = f(Dpy).
Finally, the total losses, the conduction losses, and the switching losses are plotted in Fig.2.12 as
functions of Vpy,. The boost converter’s efficiency denoted 71,,,s:, Can be expressed as follows:
nboost(%) — 100 (1 _ Pboo;t_looses) — 100 (1 _ Pboost_looses) (“20)

PV IpyVpy

Nvoost = f (Vpy) 1S represented in Fig.2.13.

The obtained results show that:

e The total losses increase gradually with the voltage and reach a maximum of 1015 W at
Vpy = 364.23 V, then decrease sharply for V,, € [450, 511.8].

e The total losses correspond to the sum of the conduction and switching losses. The
switching losses represent around 75% of the total losses.

e Though increasing when Vpy, increases, the total losses remain low and relatively constant
compared to Ppy; Which rises gradually to reach its maximum as seen in Fig.2.11 (b). As a
result, the term Ppy0st 100ses OVEr Ppy figuring in equation (11.20) decreases when Vpy,
increases and SO 7,05 INCreases. Hence, the boost’s efficiency increases with the PV
voltage and reaches 98% at MPPT corresponding to Vpy yppr = 437.4 V (appendix A.1)
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We take note that all obtained results correspond to a fixed irradiance of 1000 W /m? and cell
temperature T = 25°C. For each irradiance and temperature corresponds to different losses and
efficiency curves.
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Fig.2.12 The total losses, the conduction losses, and the switching losses as functions of Vpy,.
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Fig.2.13 Boost converter efficiency in (%) as a function of Vpy,.

2.4.3 DC/DC boost control strategy

As previously stated, the DC/DC boost is continuously operating in MPPT mode to extract the
maximum available solar power. Several MPPT techniques are found in the literature and can be
divided into two main categories: conventional and soft-computing algorithms[130]. Among the
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conventional techniques, we cite the perturb and observe (P&O), the incremental conductance, the
fractional short-circuit current (FSCC), the fractional open-circuit voltage (FOCV), etc. Yet, fuzzy
logic control (FLC), artificial neural network (ANN), genetic algorithm (GA), and other
optimization-based algorithms are the main soft-computing MPPT techniques[131]. As the
analysis of each of the existing techniques is out of the scope of this thesis, incremental
conductance, mostly applied in the literature, is selected as a conventional MPPT technique for
this study [132]. Further information on MPPT techniques can be found in [130], [131].
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Fig.2.14 Pp, = f(Vpy, S) characteristic for a constant temperature (T = 25°C).
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Fig.2.15 Ppy = f(Vpy, T) characteristic for a constant irradiance (S = 1000 W /m?).
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The incremental conductance MPPT technique is detailed in Appendix A.2. The incremental
conductance and the above-cited techniques require small calculation step sizes to yield accurate
results corresponding to the maximum available power. In our case, the step size named the sliding
time window of the MPPT control is Typpr = 0.2 ms (appendix A.2). Higher values of Typpr
speed up the simulation but leads to mistaken values.

The Py, = f(Vpy) characteristic is plotted for each irradiance and temperature combination input,
and then the maximum power is found and stored in a look-up table. Fig.2.14 and Fig.2.15 show
respectively the PV output power as a function of the PV voltage and irradiance for a constant
temperature T = 25°C, (Ppy = f (Vpy, S)r=25°¢), and the PV output power as a function of the PV
voltage and temperature for a constant irradiance S = 1000 W /m? , ( Ppy =
f Vv, T)s=1000 w/m? )- AS shown in Fig.2.14, the PV output power is proportional to the
irradiance and the highest power curve corresponds to the highest irradiance value of S =
1000 W /m?. Contrarily, the efficiency of the PV array drops with the temperature as the highest
power curve is obtained for the lowest temperature T = 0°C, and the lowest power curve for the
highest plotted temperature T = 60°C (Fig.2.15). To fill the MPPT lookup table, the irradiance
and temperature data are sampled with a 0.5 W /m? and 0.5 °C step sizes and all corresponding
maximum PV power values are stored in a matrix. As seen in Fig.2.16, the MPPT lookup table
block has the irradiance S (W /m?) and the cell temperature T(°C) as inputs and the reference
MPPT voltage as output.

The reference MPPT voltage is compared to the actual PV voltage and the resulting error is
minimized through a P.I. regulator (the system is speeded up 3 times, then ky,,,, =3 ). The
regulator output is added to the initial duty cycle ratio (Dpy ;n;; = 0.5) to form the duty cycle
(Dpy) of the DC/DC boost converter.

S (W/mz )—., MPPT Vey mppt_ref »
i lookup — "\t W)
TCeC) — ) "

table

ADpy ™\ Dpy
-/ g
Vey Dpv,mitT

Fig.2.16 Block diagram of the lookup table MPPT control.

vl

To validate the proposed MPPT technique, it is compared to the incremental conductance MPPT
technique in a simulation test. Variable temperature and irradiation inputs are applied, and the

results are shown in Fig.2.17. The incremental conductance simulation is run with a calculation

TmppPT
100

Size Tstep 17 = Tuppr = 200us. Both, incremental conductance, and lookup table methods yield

the same power curves in transient as well as in steady state (the power curve corresponding to the
incremental conductance is denoted Py, and the one corresponding to the lookup table is denoted

Py4p).

step size Tseep 1c = = 2 us, whereas the lookup table method is run with a calculation step
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Fig.2.17 Comparison between the proposed lookup table and incremental conductance MPPT techniques.
Based on the duty cycle ratio plots, the MPPT proposed look-up table keeps a good accuracy
(Maximum error of 3.4% in the duty cycle ratio and 0.2% in the power curve) compared to
incremental conductance. Furthermore, the simulation speed is highly increased as the calculation
step size ratio between the incremental conductance and lookup table technique is

Tstep_LT/Tstep_IC = 100.

2.5 Wind turbine energy conversion chain

The wind turbine energy conversion chain is represented in Fig.2.18. It consists of a wind turbine
model, a pitch angle controller, a permanent magnet synchronous machine (PMSM), and a 3¢
rectifier to convert the AC output power to DC. The 3¢ rectifier is continuously functioning in
MPPT mode to extract the maximum available wind power.

2.5.1 Wind turbine model

The wind turbine block model in MATLAB/Simulink is applied to express the wind power
characteristics. The output power of the turbine is given by the following equation:

A
Pwind_m =Cp X pB) p?v\?vind (11.21)
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Where Pying m» Cp: Pr Ay Vwing, A, and B are respectively the wind mechanical output power (W),

the performance coefficient of the turbine, the air density (Kg/m?3), the turbine-swept area (m?),
the wind speed (m/s), the tip speed ratio of the rotor blade tip speed to wind speed, and the blade
pitch angle (degree). Equation (11.21) can be normalized, this yields the below equation in p. u:

(11.22)

— 3
P wind_m_pu — kwind_p- Cp_puvwind_pu

where, Pying m pur Cp pur Ywind pu, aNd kying p, are respectively the wind mechanical output
power in p.u for particular values of p and A, the performance coefficient in p. u of the maximum
value of c,, the wind speed in p. u of the base wind speed, and the power gain for ¢, ,,,, = 1, and
Vwina pu = 1. The MATLAB block uses a generic equation to model the performance coefficient
of the turbine c,, based on the modeling turbine characteristics of [133]. ¢, (4, B) is expressed as
follows:

¢y (4, B) = c1(ca/ A — 3B — ca)e™ M + coA (11.23)

. 1 1 0.035
With: = = —
t A;  A+0.0838 B3+1

¢, = 05176, ¢, = 116, c5 = 0.4, c, = 5, c5 = 21, and ¢, = 0.0068.

The maximum value of ¢, (¢, max = 0.48) is obtained for § = 0°,and A = 8.1.This value of 1 is
defined as the nominal value A,,,,,.

As seen in Fig.2.18, the wind turbine model block has as input the wind speed (m/s), the generator
speed (w,.) in p.u , and the regulated pitch angle (8 in degrees) and outputs the mechanical torque
T, (p.u) applied to the generator shaft. The tip speed ratio A is computed in p.u of A,,,,, @S
follows:

Common
2 DC bus
Wind Turbine 30 Rectifier
Model (Detailed model)
lq
Wind Speed (m/s) E> > ~y
Y Ib Van”t’
W,. E> >
S '/
7 Pitch Angle E> LC b"/i: ——
r Controller | p Von ,t, [
u
lab .
v‘:lbcc :: Optimal torque lag ref ( ) PI  |Vagrer| Vaverer V,.ef= PWM
w, —»{ MPPT (PQ) control O regulators Generator Generator
ldq

Fig.2.18 Wind turbine energy conversion chain.
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A= Wr/Wr_base 2

Vwind/Vwind_base
Where, Wy pase, aNd vying pase are respectively the base rotational speed ( p.u of base generator
speed equal to 1 p.u in this case), and the base wind speed (equal to 12 m/s in this case). Using
equation (11.22), c, is calculated in p.u of ¢, 4, then the mechanical output power of the
turbine, Pying m pu, 1S COMputed in p.u. To obtain the real mechanical output power in p.u,
Pyina m_pu 1S multiplied by the coefficient factor k,, .,

nom (11.24)

_ Pwind_base_pupwind_m_n (“ 25)

kW u -
-p PPMSM_base

Where, Pying base pur Pwing m n» @A Ppysy pase are respectively the maximum power at base
wind speed in p.u of nominal mechanical power (equal to 0.9 p.u in this case), the nominal
mechanical output power (W), and the base power of the electrical generator (W). In this case,
Pyina mn = Ppmsm pase = 55 KW . As a result, the maximum available wind power at
Vwind base = 12 M/S 1S Pyina m pu = 0.9Pying m n = 49.5 KW. Finally, the mechanical torque
T (p.u) is obtained by dividing Py,ing m pu(p-u) by w,. (p.u). Fig.2.19 represents the turbine
power characteristics in p.u of nominal mechanical power as a function of the turbine speed in
p.u of the turbine speed for different wind speeds. As seen, each curve, corresponding to a specific
wind speed, has a point of maximum output power. Moreover, the maximum power at base speed
Vwind base = 12 m/s and for g = 0° corresponds t0 P,ing m pu = 0.9 p.u, and w, = 1p.u as
mentioned above. By applying an MPPT technique to control the 3¢ rectifier, each maximum
power point corresponding to a specific wind speed value is pinpointed which enables the WT to
continuously produce the maximum available wind power.

Turbine Power Characteristics (Pitch angle beta = 0 deg)
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Fig.2.19 Turbine power characteristics as a function of the turbine speed for different wind speeds.
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2.5.1.1 Pitch angle controller:

The pitch angle controller block controls the blade pitch angle 8 to limit the generator speed w,
(p. u) to the base rotational speed w;. 450 (p.u). The control diagram of the pitch angle controller
is shown in Fig.2.20. The actual generator speed is compared to the base one and the error is
regulated by a proportional gain (kg = 500), then the output pitch angle g is limited between
minimum and maximum admissible values (Bmin = 0, Bmax = 45°). Additionally, a rising and
falling slew rate of 8 equal to 2° is set.

@ a D

0-fax Rate limiter

wy-(p. u)

Wr_base (p' u)

Fig.2.20 Simulink Block diagram of the pitch angle controller.
2.5.2 Permanent magnet synchronous machine

To model the generator, a permanent magnet synchronous machine (PMSM) is selected. The
PMSM is generally popular in newer smaller-scale turbine types (utility-scale turbines home in
size from 50 to 750 KW/[132]) since it offers a variety of advantages such as reliability, compact
size, loss reduction, higher power density, and optimal efficiency[134]. Though applied in the
simulation model, the detailed electrical and mechanical equations of the PMSM are not revealed
in the manuscript in order not to add technical content that is far from the thesis objective but can
be reviewed in detail in[135].

Hence, in the rest, the PMSM is seen as a power conversion black box that converts mechanical
power into electrical power without addressing the machine's internal electrical and mechanical
variables. The PMSM block built in Simulink has as inputs the mechanical torque T,,, and the
three-phase voltages across the stator windings V.. The outputs of the PMSM bloc are the rotor
mechanical rotational speed w,. in (rad/s), the rotor mechanical angle 6, in (rad), the three
phases’ currents flowing in the stator windings I, and the electromechanical torque T, in (N.m).
The PMSM parameters and manufacturer’s datasheet can be found in Appendix C. Thus, the
modeling of the PMSM aims to retrieve the actual efficiency of the electrical generator at each
wind speed value, and then the actual value of the generated electrical power. As a result, the
generated wind electrical power is expressed as follows:

Pwind_elec = UPMSMPwind_m (I |-26)

Where, Py ina etec) Npmsm, and Pying . are respectively the generated wind electrical power (W),
the PMSM efficiency, and the wind mechanical output power (W). The efficiency curve of the
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PMSM is shown later in Fig 2.31 after presenting the whole conversion chain and the control
strategy of the 3¢ rectifiers.

2.5.3 3¢ Rectifier
2.5.3.1 Detailed model

Fig.2.21 shows the detailed electrical circuit of the 3¢s rectifier. The equivalent circuit for the
stator windings of the PMSM consists of a three-phase wye connection. Each phase consists of a
voltage source in series with the equivalent resistance of each stator winding Ry, and the stator
self-inductance per phase L. As seen, this model is the most accurate as it includes the IGBT/diode
pairs controlled by firing pulses produced by a PWM generator. To model the firing pulses, binary
variables u;, u,, and u; are introduced, and control respectively the switches S;, S,, and S;.
U;=1 2,3 IS equal to 1 when the corresponding switch is closed and 0 otherwise. Knowing that two
switches of the same arm (S;=1,3 and S;_, , ;) cannot be closed simultaneously, their operating
state should be complementary. Accordingly, the firing pulses of the switches S;, S5, and S5 are
respectively uy, u;, and uz, where ;1,3 = 1 — Uj=1 2 3.

Ipc
S, S, S5 -
v, L — lvgl — — .
: iq
Vi 9 A
—» R L |
Ny VA0 ————p Cour ——| Vaus
le
V - A
—*C Ry L ¢
— — —
s S5 S5
M

Fig.2.21 Electrical circuit of the 3¢s rectifier (detailed model).

Then, Vau, Veu, and Ve, can be computed as follows:
Vam = u1Vpys
Vem = uzVpys (Nn.27)
Vem = usVpys
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Applying Kirchhoff's voltage low to the electrical circuit in Fig.2.21, the below equations are
retrieved:

Va = Ryiq + Ls =% + Vs + Vi
Vy = Rip + L =2 + Vgy + Vigy (11.28)

Ve = Rqic + Ls 25 + Vou + Vaaw
The PMSM electrical model is considered a three-phase balanced system, then:

di di di . . .
d—§+Lsd—f+ Ls—7 = 0,and R, + Rsip + Rsic = 0

V,+V, +V, =0, L,
ThUS, VAM + VBM + VCM + 3VMN =0 then,

VBus
3

VMN = (u1 + U, + u3) (“29)

Having,

Ven = Vam + Vun (11.30)

{VAN = Vam + Vun
Ven = Vem + Vun

Finally, the 3¢s rectifier voltages’ equations can be expressed as functions of u,,u,,us, and
Vgus as follows:

VAN v 2 -1 171U
Ven|=-251-1 2 -—1||u (11.31)
Ven -1 -1 2 ]llus

And the DC-current ip is expressed as a function of the three-phase currents i,, i, i., Uy, u,, and
u as follows:

iDC = Zulia + Zuzib + 2u3ic (“32)
2.5.3.2 Average model

Though the detailed model of the 3¢s rectifier is the most accurate, it presents the same hurdle as
the detailed DC/DC boost converter model in terms of the limitation of calculation step size. For
instance, if the same switching frequency of the DC/DC boost is selected for the IGBTs of the 3¢s
rectifier (fow wr = fow pv = 20 KH), the maximum allowable calculation step size is Tgep ger =
0.5 us. To further increase the simulation speed, reduce the model complexity, and maintain a
decent accuracy, an average model of the 3¢s rectifier is applied in which the real IGBT switching
devices are omitted, and controlled voltage and current sources are utilized instead. By this, the
3¢s rectifier can be directly controlled through the voltage references V. rer (Fig.2.18) with no
need for the PWM block.
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The electrical circuit of the average model of the 3¢s rectifier is shown in Fig.2.22. As seen, on
the AC side each switching device is replaced by a controlled voltage source, having a rhombus
shape with a positive and negative sign inside. The imposed voltages are denoted Vs,_, , and

Vg

1=1,2

A diode is connected in series with each controlled voltage current. The diodes at the top
of the three arms of the rectifier, denoted Ds,__ , ., allow only the flow of the positive part of the
alternating currents i,, i, and i.. Meanwhile, the bottom diodes, denoted DS{=123 circulates the

negative part of the three phases alternating currents. This also can be deduced by applying
Kirchhoff’s current law to the first arm as an example: i, = i5, — Lgr.

On the DC side, three controlled current sources are placed and have a rhombus shape with an
arrow inside to define the directions of circulating currents. The imposed currents are denoted
i e, ,4- 1 NE equations of the detailed model are all valid and used to compute the instant values
of the controlled voltages and currents’ sources. Only, the firing pulses u;-1 , 3 are replaced by
A refs Ap refr AN ¢ rop, WNEIE Qg rof, Ap rer, AN @ e p are expressed as :

Aa ref = 0.5(1 + Va_ref)

ap ref = 0.5(1 + Vp_rer) (11.33)
Ac ref = 0.5(1+ Vc_ref)

Varers Varer, and V. . are the voltage references in p.u of the PMSM stator base voltage
outputted from the V,,;,. ..., generator block (Fig.2.18).

Using equation (11.27) and Kirchhoff's voltage law:

Vs, = —VS{ = Vam = @a_refVaus
Vs, = Vs = Vpu = @p refVpus (11.34)
Vs, = —Vsé =Vem = ®c refVaus

Hence, the 3¢s rectifier voltages’ equations can be expressed as functions of Vg , Vs, Vg, as
follows:

Van 1 —1 —1 V51
Ven =5 Vsz (11.35)

Ven

The output DC-current is the sum of the three controlled current sources:

iDC = iDC1 + iDCZ + iDCg (“36)

To compute i p¢,, i pc,, and i p¢,, the law of power conservation is applied, these yields:
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Fig.2.22 Electrical circuit of the 3¢s rectifier (average model).
iDC1 = _Vslia/VBUS
ipc, = —Vs,in/Vgus (1.37)
ipc, = —Vsyic/Vpus

Applying the average model, the switching function is removed, and the new calculation step size
can increase at least 100 times compared to the detailed model (Tstep qvr = 100. Tstep ger), SAME
as the DC/DC boost converter simulation. However, additional variables limit the increase of
calculation step size when modeling all AC nature sources of the DC microgrid (i.e., the WT, the
DG, and the utility grid in this case). The limitation comes from the sinusoidal waveforms of the
three-phase electrical components V., and i,.. As stated in the DC/DC boost average model,
the required ratio between the calculation step size and any periodic signal with a defined period
must be at least equal to 1/100 to precisely represent this signal and obtain flawless results.
Applying this strategy to the three-phase sinusoidal currents and voltages which have a rated
frequency: f,, = 100 Hz (Appendix C), and so a rated period: T,, = 10 ms, the calculation step
size cannot exceed 100 us to accurately represent the sinewave forms. Moreover, at higher
operating frequencies smaller calculation step sizes are required.

Hence, the calculation step size is limited by the period of the sinewave signals: Tgep qpr <
100Tginewave- Given that a variable step solver is selected in Simulink to simulate the microgrid,
the maximum calculation step size is limited t0 Tstep gur max = 100Tsinewave Which always slows

down the simulation and obstructs the 24-hour modeling goal on a standard computer.

70



Therefore, a third assumption method is applied to further simplify the model and increase the
calculation step size.

2.5.3.3 Phasor model

The last averaging technique applied to the wind turbine conversion chain is the phasor modeling
technique. The phasor notation transforms the real part of a sinusoidal function from the time
domain into the complex number domain, also called the frequency domain. Fig.2.23 shows the
three-phase voltages of a balanced system in the time and phasor domain:

V,(t) = V,\/2sin(w,t) V, = V,A\2e/°
Time domain:{ Vv, (t) = V,,v/2 sin(w,,t — 120°) = Phasor domain:{ V, = V,,\/2e~120°J
V.(t) = V,\/2sin (w,,t + 120°) V, = V,\Ze+120i

Where, w,, is the electrical nominal pulsation (w,, = 2rf,, in rad/s).

The phasor solution is applied to study the electromechanical oscillations of power systems
consisting of large generators and motors and the transient stability of machines. Besides, it can
be implemented in any linear circuit where the main interest is only the changes in magnitude and
phases in all voltages and currents when switches are closed or open[136]. The only drawback of
the phasor notation is that it gives the solution only at a particular frequency while the remaining
harmonics of the signal cannot be spotted. Accordingly, the phasor notation offers an adequate
solution in this case study since:

90°
Va Vb Vo 120° 60°
vav | MOS
150° 30°
——
— v
ﬂ C
8 >
g 0 0 A\
~ a
> 180° > 0
—>
\%
b
2V 210° 330°
0 120 180 240 360 450 540 630 720 240° 300°
P (deg) 270°

Fig.2.23 Three-phase voltages representation in the time domain (on the right) and phasor domain (on the
left).
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1. The electromechanical oscillations and transient stability of the PMSM are always
modeled, then the power efficiency curve of the PMSM remains accurately represented.

2. The instantaneous changes in magnitude and phases in all voltages and currents are
revealed, thus the precise calculation of the generated electrical/mechanical power, and
converter losses are still valid.

3. The representation of the whole frequency spectrum of the sinusoidal electrical
components is irrelevant as none of the predefined objectives in this study target the
harmonics of the electrical signals.

Applying the phasor domain to the WT conversion chain represented in Fig.2.19, the WT model
block and the pitch angle controller are unchanged. Meanwhile, instead of all (abc) >
(aB)—>(dq) transformations and their inverses, the rotation operator a is introduced to compute
the positive sequence component from which the (dq) are retrieved. Then, the following
transformations are applied : (Xqpc)2 X12(Xq, Xg) and (X4, X4)2> X1 2 (Xapc) Where, Xqpe, X1,
X4, and X, are respectively the complex three-phase components, the positive sequence
component, the d —axis, and the g —axis components.

L2TC
The rotation operator a is defined as: a = e’3,and 1+ a+a? =0

X, is computed from the X,;,. components using the equation below (X could be a three-phase
current or voltage):

X1 =5 (Xq + aX, + a?X,) (11.38)

Then, the (dq) components can be retrieved from the positive sequence component and correspond
to real and imaginary parts of X, : X; = X4 + jX,

The inverse transformation from the positive sequence component to the (abc) complex domain
is performed as follows:

Xa = Xl
Xb = a2X1 (“39)
XC = aXl

Therefore, the phasor domain keeps an accurate representation of all variables in the (dq) frame.
Knowing that the PMSM electromechanical model is established in the (dq) frame[135], the
PMSM block isn’t affected by the phasor representation and is kept the same as the detailed model.
Same for the MPPT control which is performed in the (dq) frame, all the control strategy and
blocks are kept impact. The MPPT control is detailed in the next section. Yet, a simpler model of
the 3¢ rectifier, compared to the average one, is applied. Since the sinusoidal representation of the
three-phase voltages and currents isn’t explicit in the phasor domain, the average model of Fig.2.22
can be modified to a much simpler model. In the control of the detailed and average circuit models,
the three-phase sinusoidal voltage references are generated in the V. .. generator block
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(Fig.2.18), instead a complex (dq) voltage reference is generated to control the converter in the
generator block of the phasor domain: Ve ag rer = Vetria res +JVetri g rep- Then, equation
(11.33), and (11.34) of the average model can be merged in the following updated equation:

_ VetridgrefVBuUs
V1_3¢)_rec - 2 (I |-40)

Where, V; 34 rec IS the positive sequence component of the 3¢ rectifier voltage.

w -
; r=» P.1 Generation of
Tabe —P Complez (abe) 44 p| Current ;egulators | the complex (dq)
to (dq) L 14 converter control
. Svystem Liniearization dg
lg rer ) voltage references
iq_l“ef'
Iabc w,-
T ? V. . Vctri dgq_re
P abe Positive sequence| Vi 34 rec Generation of the | g -aaref
PMSM - to complex 3¢ rectifier positive
«— (abc) sequence voltage [#—— Veus
Tin

Fig.2.24 Block diagram of the complex (dq) and positive sequence power control.

Finally, the 3¢ rectifier complex voltages can be expressed as functions of V; 34 e and a in the
phasor domain as follows:

Vo= V1_3¢_rec
Vabe =4V = a2V1_3¢_rec (11.41)
Vo= aVl_3¢_rec

The detailed block diagram of the complex (dq) and positive sequence power control is shown in
Fig.2.24.

2.5.3.4 Simulation test of the detailed. average. and phasor models

To prove the viability of the phasor solution, it is compared to the average, and the detailed model
under the same conditions and using the same parameters. In the three models, the PMSM is
modeled by a three-phase balanced system in a wye connection. Each phase consists of a voltage
source in series with a resistance R, and an inductance Ly same as Fig.2.21 and 2.22 (R and Ly
are given in Appendix C). A load consisting of a simple resistance R;,,4 IS applied, and a capacitor
denoted C,,; = 0.1 mF is connected in parallel to R;,,4 on the DC side. For the three models, the
(dq) control strategy represented in Fig.2.24 is applied. As prementioned, the block diagrams of
the instantaneous and average (dq) control strategies differ from the phasor one in the generation
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of the three-phase voltage references. In the phasor domain, the positive sequence voltage
reference is generated, and complex three-phase voltage references (V) are applied. However,
in the instantaneous and average models, a block that generates the three-phase sinusoidal
waveform voltage references is required instead. Besides, a three-phase PWM generator block is
added in the instantaneous model to control the real switching devices through firing pulses. As a
principle, the active power is controlled through the d-axis component, and the reactive power
through the g-axis. For the active power reference, three steps are imposed on the d-axis:

20KW t<l1s
Pref =y30KW 1s <t <2s (1.42)
10KW t>2s

However, Q... is always set to zero to absorb zero reactive power. The three models are simulated

for 3 seconds each. P.1. controllers are utilized in the three simulations to control the d and g-axis

current components. The same P.1. is applied to control d and g-axis in the three simulations and

: P _ ki wr p+1
has the following expression: RWT(p)_k”-WTm where, k, wr and k; yr , are

respectively the proportional and the integral parameters of the regulator, and p is the Laplace
operator. All the parameters are listed in Table 2.2. Fig.2.25, 2.26, and 2.27 show the obtained
results. The active and reactive powers are shown in Fig.2.25. As seen, the active power (Fig.2.25
(a)) follows its reference in the three models, and the phasor curve accurately represents the active
power in transient and steady states. The same results are obtained for the reactive power (Fig.2.25
(b)) which always follows its reference and is equal to zero in the three models. The current phase
i, 1sshown in Fig.2.26 (a) and (b). The current magnitude (black line) and the phase shift (golden
yellow line) are plotted in the phasor simulation meanwhile, the sinusoidal waveforms appear in
the detailed and average models. The waveforms of the detailed model (blue line) are thicker than
the average ones (red line) because of the existence of the switching frequency in the detailed
rectifier model. Fig.2.26 (b) shows that all variations in current magnitude including the steepest
ones resulting from a step change in the power reference are accurately tracked in the phasor
representation. Same for the phase voltage V,y, plotted in Fig.2.27 (a), the full sinewave forms
are observed in the detailed and the average models, while the phasor model is represented by the

magnitude (black line) that is always equal to Vy max = V2V, and the phase shift is null (golden
yellow line) as the system is a three-phase balanced one.

Hence, the precise calculation of active and reactive power is always maintained when adopting
the phasor approach. Finally, the DC bus voltage represented in Fig.2.27 (b), varies conveniently
with the active and reactive power references as the (dq) current components are used to control
the active and reactive power in the circuit and not to stabilize the DC bus voltage. The three
models have the same DC bus voltage curves in all operating states, then the phasor representation
maintains the accuracy in modeling the electrical AC and DC components. To highlight the
significance of the phasor model, Table 2.3 summarizes the simulation duration and the
calculation step size of each of the three models. The calculation step size highly increases when

74



applying the phasor approach where an average value of T, p, = 17.8 ms is obtained. This
corresponds to a ratio of 356 of Ty, pp 10 Tstep qur ANd 35600 Of Trep pp 10 Tsrep get-

Nominal voltage (phase to neutral) (/) V, = 206.7V
Operating frequency (Hz) fn =100 Hz
Switching frequency (detailed model) (Hz) few = 20 KHz
Load resistance (€2) Ripaa =50 Q

P.I regulators parameters (all models) ky wr = 32, ki wr = 0.0032

Table 2.2 Parameters of the three models.
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Fig.2.25 (a) Active, and (b) reactive power curves of the three models.
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Fig.2.26 (a) current waveforms of i, (t) in the detailed and average models, the magnitude, and phase
shift of i, in the phasor model (b) A zoom of i, curves of the three models (1.96s < t < 2.04s).
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Fig.2.27 (a) A zoom on the phase to neutral voltage V,, waveforms of the detailed and average models,
the magnitude, and phase-shift of V,, in the phasor model (1.78s < t < 1.83s), (b) common DC bus
voltage (Vgys) of the detailed, average, and phasor models.

The high increase in calculation step size and the reduction in system complexity result in a faster
simulation of the phasor model (the simulation speed ratio of the average to the phasor model is
26 and 880 of the detailed to the phasor model). As a result, the phasor notation can reduce the
model complexity by omitting the time domain representation of all sinusoidal electrical
components and increasing the calculation step size while maintaining accurate modeling of the
WT conversion chain. Next, the phasor domain is applied to all operating AC units including the
utility grid and the DG.

Duration of the three . ]
Model : : calculation step size
seconds simulation
Detailed 7min 20 s 0.5 us
Average 13s 50 us
Phasor 05s 17.8 ms

Table 2.3 Comparison of simulation duration and calculation step size in the detailed, average, and phasor
models.

2.5.3.5 Conduction and switching losses

To retrieve the efficiency of the 3¢ rectifier, the converter losses should be evaluated and added
to the proposed rectifier model. Knowing that the conduction and the switching losses account for
a major part of the existing losses, they are investigated in detail in this study while other sources
of power loss are neglected. First, the switching losses are modeled based on the expression
proposed in [137] as follows:

6 v i
Psw_3¢_rec = ;fsw(Eon_IGBT + Eoff_IGBT + Eoff_diode) #:];-i (“-43)
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Where,

—  few IS the switching frequency in Hz (f;,, = 20 KHz)

~— Eonicer Eopr i6eT: Eoff aioae are respectively the turn-on and turn-off energy losses of
the IGBT, and the turn-off energy losses of the diode due to the reverse recovery charge
current (mJ) (Appendix C)

— Vgys is the DC bus voltage in (V) (Vgys = 800 1)

— 1, is the peak value of the AC load sinusoidal current (in this case, 1; corresponds to the d-
axis current component iy of the phasor model as i, = 0)

— Vrwer and i, are respectively the voltage and current references under which the switching
losses are given (Appendix C)

Unlike the switching losses, the conduction losses are directly dependent on the modulation
function such as the sinusoidal PWM, suboptimal space vector, etc.[138]. In this study, the selected
modulation function is the sine triangular PWM. Accordingly, the conduction losses of a single
IGBT and a single diode are expressed as follows[139]:

Vceoll Mm TCEilZ b4 2M
P = Ychoh (4 | M) | TeeW (T M
cond_IGBT o 4 or \4 3

VEoll Mr reif (M 2M
P . = - C 1 ) [ IR [ —
cond_diode . 4 or \4 3

(11.44)

Where, Pcona 1687 Peond dioder VcE,0s Tces Vi o, T, @nd M are respectively the conduction losses
of asingle IGBT (W), the conduction losses of one diode (W), the IGBT’s threshold voltage (V),
the IGBT’s differential resistance (€2), the diode’s threshold voltage (V), the diode’s differential
resistance (€2), and the modulation index.

Hence, the total conduction losses can be deduced from equation (11.44) as the sum of P.,pq4 1657
and Pzong aioge times the number of total IGBTs and diodes of the rectifier:

Pcond_3¢_rec = 6(Pcond_IGBT + Pcond_diode) (I |-45)

Finally, the total power losses in the 3¢ rectifier can be expressed as follows:
Plosses_3¢_rec = Psw_3¢_rec + Pcond_3¢_rec (l |-46)

Next, the conduction, the switching, and the total losses are plotted as functions of the input
variables which are M, 1}, and Vgys:

- Asthe WT and PV are continuously functioning in MPPT mode, the remaining converters
of the DC microgrid take charge of stabilizing the common DC bus voltage then, Vg is
considered constant equal to its reference value Vg, = 800V,

- The modulation index M imposes the three-phase voltages of the PMSM (V,;.), then the
(dq) axes components in the phasor domain: V4,
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Losses (W)

- The peak value of the AC sinusoidal current £, corresponds to i, in the phasor domain as
Iq Is set to zero.

Yet, the input electrical power of the 3¢ rectifier corresponds to the electrical active power
generated by the PMSM (Ppsp) and is computed as a function of V, and iy, as follows:

3 . .
Pelec_3¢)_rec = Ppysy = 3 (Vaiqg + Vqlq) (11.47)

Thus, the losses can be simply represented as a function of P,j.¢ 3¢ rec instead of M and 1;.
Referring to Fig.2.19, the maximum wind mechanical power at base speed is Pying m =
0.9Pppsm pase = 49.5 KW, and the nominal efficiency of the PMSM is 1n,,; =92.85%
(Appendix C). Hence, the maximum generated electrical power is Peiec 3¢ rec max =
0.9285Pyinqg m = 45.96 KW. Fig.2.28 (a) shows the conduction, switching, and total losses
curves as a function of P,jec 3¢ rec- It is seen that around 80% of the total losses account for the
switching losses. In addition, the 3¢ rectifier power efficiency, 15, ., is expressed as:

POSSES rec
Magrec = 1 — brec (11.48)

Pelec_3¢_rec

N3¢ rec = f (Petec 3¢ rec) CUrve is depicted in Fig.2.28 (b). It shows that the converter’s efficiency
increases with the input power and reaches a maximum of 1134 rec = 97.3% at Pejec 3¢ rec max-

(a) (b)
1400 T T T T T T T T
Total losses

Conduction losses

Switching losses

1200

1000

800

600

400

200

94 Il 1 1 1 1 1 1 L 1
0.5 1 1.5 2 25 3 3.5 4 4.5 0.5 1 1.5 2 25 3 35 4 45

P3grec W) x10* Paorec W) x10*
Fig.2.28 (a) 3¢ rectifier losses as a function of the input electrical power, (b) efficiency of the 3¢
rectifier losses as a function of the input electrical power.
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2.5.3.6 3¢ rectifier control strateqy

To continuously extract the maximum available wind power, an MPPT technique is applied as a
control strategy of the 3¢ rectifier. Among several MPPT techniques found in the literature such
as the tip speed ratio control, the optimal torque control, the power signal feedback control, the
perturb and observe control, etc. the optimal torque control is applied in this study. For further
information on the MPPT techniques, it can be referred to [42]. The block diagram of the (WT)
(dq) frame control with the optimal torque technique in the phasor domain is represented in
Fig.2.29. The branch colored in light blue corresponds to the optimal torque MPPT technique and
is detailed in Appendix C. Fig.2.30 shows the MPPT characteristic in a blue dashed line as a
function of the turbine speed for different wind speed values.

Iabc —p

Complex (abc)

to (dq)

Wy
lag —p

MPPT

Wy —p

Ldq P.I Generation of
.| Current Regulators the complex (dq)
& . v converter control
System Liniearization| "dgq
. - voltage references
Optimal Torque Pe:ec_ref
Pelec
I‘]Tbc (.Ur
t 7 . Veert aq re
" abe Positive sequence| Vi 3¢ rec Generation of the |4
pmsm | to complex  [® 3¢ rectifier positive .
«— T, (abc) sequence voltage [#—— "BUS

Fig.2.29 Block diagram of the (WT) (dq) frame control in the phasor domain.
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Fig.2.30 MPPT characteristic for different wind speed values.
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To test the validity of the proposed MPPT, the wind conversion chain is simulated under variable
wind speeds. The mechanical wind power P,,;,4 1, is plotted as a function of the wind speed in p.u
of the nominal wind speed in Fig.2.31. The obtained curve (solid blue line) is the same as that
plotted of the MPPT characteristic in Fig.2.30 and the six different operating zones are identified
(Appendix C). Besides, the electrical power generated by the PMSM denoted Pypg erec (dashed
red line), and the outputted power from the 3¢ rectifier denoted P,,inq 34 oue (black line),are
represented in the same plot of P,,;,4 . The cumulative losses resulting from the conversion of
the mechanical power to electrical across the PMSM and the conversion of the AC power to DC
through the 3¢ rectifier are tangibly identified in Fig.2.31.

This can be seen by P,ing erec CUrve plotted bellow P,inq  cUrve, same for Pying 3¢ oue CUrve
which is situated below P4 erec Curve. At last, the power efficiency of the PMSM,
nemsm (€0.11.26), is plotted in (%) as a function of the wind mechanical power in Fig.2.32. By this,
the 3¢ rectifier output power can be computed for each wind speed input correspondingly:

Pwind_3¢_out = nPMSMn3¢_recPwind_m (11.49)

0.8 -

Power (pu of nominal mechanical power)

1

1 1 1 1

0 0.2 0.4 06 0.8 1 1.2 1.4 1.6 1.8 2
Wind Speed (pu of nominal wind speed)

0

Fig.2.31 The mechanical and electrical wind power, and the 3¢ rectifier power output as functions of the
wind speed.

80



94 1

I 1 | | | | | | | 1

05 1 15 2 25 3 35 4 45 5 55
(W) x10%

wind-m
Fig.2.32 The PMSM power efficiency in (%) as a function of the mechanical wind power.

2.6 Diesel generator and utility-grid energy conversion chains

The (DG) and the utility grid are additional AC sources that are connected to the common DC bus
voltage of the DC microgrid. Their connection to the microgrid, the amount of generated power
from the DG, and the purchased/ sold power from/to the utility grid are subject to the decision of
the optimizer controller detailed in the next chapter. Hence, the power references of the (DG) and
the utility grid are imposed by the optimization problem: Pp¢ .r and Py,iq yer. The detailed study
and analysis of each component from the energy conversion chain of the (DG) and utility grid are
out of the scope of this thesis. In other words, the (DG) and the utility grid are regarded as potential
AC sources or loads that interact with the DC microgrid and can generate or absorb an
instantaneous amount of power set by the optimization problem. Accordingly, all phenomena such
as the thermal/mechanical, the mechanical/electrical energy conversions in the combustion engine
of the (DG), the power line losses, the voltage drop, the harmonic distortions in the utility grid,
etc. are not detailed in this thesis. Although, to include the (DG) and the utility grid units in the
24-hour DC microgrid simulation model, the averaging techniques applied to the (WT) conversion
chain were included as follows:

- Three-phase sources: As the (DG), and the utility grid are of AC type, they were simply
modeled by a three-phase voltage source forming a direct balanced system, in series with
a resistance, and an inductor. The system was modeled in the phasor domain detailed in
the previous section.

- 3¢ rectifiers: The (DG) and the utility grid are connected to the common DC bus through
a 3¢ rectifier that is modeled similarly to the (WT) rectifier. For the utility grid, the same
converter operates as a rectifier when the power is purchased from the grid and as an
inverter when the power is sold to the grid.
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- (dq) frame control in the phasor domain: To control the 3¢ rectifiers of the (DG) and the
utility grid, the (dq) control technique applied to the (WT) rectifier is adopted (Fig.2.24).
The active power is controlled through the d-axis current component, Pp; . and

Pyria rer are the d-axis active power references. However, the g-axis reference of both
rectifiers is always set to zero to absorb zero reactive power.

- IGBTs, diodes selection, and loss modeling: By referring to Table 2.1 at the beginning
of Chapter 2, the rated power of the (DG) is equal to the one of the (WT) Pps » =
Pyr = 55KW. As to the utility grid, the maximum allowable purchased/sold power is
set in the next chapter t0 Py,iq max = 60 KW. Hence, the power rates of the (DG) and
utility grid 3¢ rectifiers are the same as the (WT). Besides, the same switches and diodes
can be selected as:

1) For the (DG), the alternator has the same rated power as the (WT) PMSM, and then
the (DG) outputted voltage and current are in the same range as the (WT).

2) for the utility grid, having a standard voltage rating of 380-400V- 3¢ (RMS phase to
phase), this leads to a maximum grid current of Iy, max = + 90A.

As a result, and without loss of generality, the same 3¢ Rectifier of the (WT) can be
selected for the (DG) and the utility grid, and the conduction and switching losses are
always computed following the same approach of the (WT). Next, the modeled losses of
the (DG) and utility grid 3¢ Rectifiers will account for the total converters losses to be
minimized as one of the optimization goals.

2.7 ESS conversion chain

The proposed DC microgrid includes an energy storage system consisting of a lithium-ion battery.
The lithium-ion battery has several merits over Nickel Metal Hybrid (Ni-MH) and lead-acid

N Bidirectional DC/DC ~ COmmon
Lithium-ion Battery Converter DC bus
Block (detailed model)
Temperature (°C)
Vbatt
A
u.lT Uy
Pbatt_opt_ref I D
—»| X batt_ref PI bart [ PWM
Vbatt ———»| + regulator " | Generator

Ibatt

Fig.2.33 ESS conversion chain.
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batteries in terms of higher energy density (75-200 Wh/Kg), low self-discharge (1%/day),
absence of memory effect, better power output, better cycle-life, and higher coulomb efficiency
(~98%)[140], [141]. Besides lithium-ion batteries which are the most used in electrical vehicles
(EVs) are replaced when their capacity reaches 80% of the original value. These used EV batteries
are largely applied in residential applications as ESSs which offer a better life span, and a shorter
payback time for residential use[142]. For the above-mentioned reasons, the selected ESS is a
lithium-ion battery with a rated capacity of 500 Ah, and a rated voltage of 250 V. The ESS energy
conversion chain is shown in Fig.2.33. It consists of a lithium-ion battery connected to the common
DC bus through a bidirectional DC/DC converter.

2.7.1 Lithium-ion battery model

Several microgrid optimization studies that include an ESS consisting of a battery adopt a linear
state space model of the battery [95], [98], [100]. A discrete version representing the battery State
of Charge (SOC) at the instant (k + 1) as a function of the SOC, the battery charge and discharge
power at the instant (k) is utilized. The expression is the following:

SOC(k + 1) — SOC(k) + nchgch(k)TS + ndiSPdis(k)Ts (“50)

batt Epatt

Where ncn, Nais» Epare» Pen(k), Pais(k), and T, are respectively the charge efficiency, the
discharge efficiency, the maximum battery energy (Wh), the battery charging power (W), the
battery discharging power (W), and the sampling period (s). In this mathematical representation,
the maximum battery energy is given as a constant and can be expressed as:

Epatt = QbattVpart (11.52)

Where, Q4 and Vi, are respectively the maximum battery capacity (Ah) and the battery
voltage (V). Standardly, the maximum battery capacity is a constant given by the manufacturer,
then the battery voltage is considered constant and equal to its nominal value regardless of the
battery SOC. The problem lies in this assumption as the battery voltage has a nonlinear
characteristic that largely depends on the SOC value [143]. Thus, the consideration of a constant
battery voltage leads to inexact SOC deduction which impacts the whole results of the optimization
problem. Hence, a precise model of the lithium-ion battery dynamics proposed by Tremblay and
adopted in Simulink is applied[143]. The model represents accurately the battery voltage dynamics
including all nonlinear zones. The applied battery voltage curve is represented as a function of the
SOC (%) in Fig.2.34. Three different sections are identified:

1. The first section represents the exponential voltage drop when the battery is fully charged.

2. The second section represents the nominal area where the battery voltage is approximately
equal to its nominal value. This section ends when the voltage drops below the battery's
nominal voltage.

83



3. The third section represents the total discharge of the battery when the voltage drops

rapidly.
T T T T T
300 - Discharge curve | _|
[ INominal area
280 \ [ TExponential area | -
> 260 i
S 240 | |
>
220 |
200 -
180 \ | I ! T
100 80 60 40 20 0

SOC (%)

Fig.2.34 The battery voltage discharge curve as a function of the SOC at 0.43C (217.4 A).

Hence, the detailed battery model proposed by Tremblay and represented in MATLAB/Simulink
in the “generic battery model” block is applied. Besides the detailed modeling of the battery
dynamics, another crucial factor that substantially impacts the battery performance and is rarely
addressed in optimization problems is the temperature effect.

Nowadays, lithium-ion batteries are widely favored as ESS in DC microgrid applications
worldwide. Moreover, increasing areas around the world are witnessing high differences in
temperature seasonally and even daily due to climate change. Therefore, the temperature effect is
included in Tremblay’s standard equations, and the thermal impact on the battery’s performance
is assessed. Based on[144] [145], the battery’s charge and discharge equations become the
following:

Discharge model (1,4 > 0):

. * Q(Ta) * . —B.i
Vbatt(T) = fl(it' Igatt' Ibatt' T: Ta) - R(T)- Ibatt
Charge model (Iyq¢: < 0):
. * Q(T ) * Q(T ) . —B.i
{fl(lt' Lyates Ipare: T, Tg) = Eo(T) — K(T)-mlbatt - K(T)-W)a_it it + Ae™BH (11.53)
Vpatt (T) = f1(it, Ipgees Ipaees T Ta) — R(T). Ipqee

Where,

- it is the extracted capacity, in Ah.

- Ipqee 1S the low-frequency current dynamics, in A.
- Ipqet 1S the battery current, in A.

- T isthe cell temperature, in K.
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Voart V)

- T, is the ambient temperature, in K.

- Ey(T) is the constant voltage expressed as a function of the cell temperature, in V.

- K(T) is the polarization resistance expressed as a function of the cell temperature, in Q.

- Q(T,) isthe maximum battery capacity expressed as a function of the ambient temperature,
in Ah.

- Alisthe exponential voltage, in V.

- B is the exponential capacity, in Ah™1.

- R(T) is the internal resistance expressed as a function of the cell temperature, in Q.

As I ;¢ 1S the low-frequency current dynamics, it is modeled by a first-order low-pass filter and
can be expressed as a function of I, as follows:

Laee = —224— (11.54)

TpattP+1

Where, 7,4, and p are respectively the time constant of the low-pass filter, and the transfer
function object.

The SOC of the battery is calculated as:

S0C =100 (1 - ﬁf; Ipaee (£)dt) (11.55)

The expressions of E,(T), K(T), Q(T,), R(T), T, and additional battery parameters can be found
in Appendix D.

To validate the battery dynamic model, the battery discharge characteristics are plotted for
different constant discharge currents at 25°C and for different different temperatures at a constant
current 1C (5004).

a b
300 p T T (2) T T 300 T - (b)
280 N—
250 f
260 t
200
S 240
150 = 220
\
0.5C (250 A) \ >-Q 200
100 1C (500 A) | 25°C
— ——-2C (1000 A) 170 | 0°C
50 | 5C (2500 A) T 160 |- ——--20°C
0 : : : : 140 ' ' : :
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Fig.2.35 (a) Battery voltage discharge characteristic for different constant discharge currents at 25°C, (b)
voltage discharge characteristic at a constant current of 1C (5004) for variable temperatures.
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Fig.2.35 (a) shows the battery voltage discharge characteristic as a function of the capacity (Ah)
for 0.5C, 1C, 2C, and 5C constant discharge currents. The obtained curves show that the battery
voltage curve is highly impacted by the discharge current. The nominal area in which the battery
voltage is practically equal to its nominal value narrows when the discharge current increases (the
steepest curve is the 5C discharge curve in gold color). Fig.2.35 (b) shows the results of the
discharge characteristic with a constant current of 1C (5004) for variable temperatures.

The maximum battery capacity decreases when the temperature drops and loses respectively 4%
and 7% at 0°C and —20°C from its nominal value at 25°C. The nominal area of the voltage curve
is negligibly impacted by the temperature effect at high battery SOCs (SOC > 30%), whereas for
lower SOCs the battery voltage drops faster at low temperatures.

2.7.2 Bidirectional DC/DC converter

Bidirectional DC/DC converters are widely applied to connect ESSs of a DC nature to a common
DC bus to assure voltage matching. These converters are predominantly found in new energy
electric vehicles, they assure the power conversion between newly equipped hybrid ESSs such as
the fuel-cell, batteries, supercapacitors, and the vehicle bus[146]. Existing in several isolated and
non-isolated topologies, a basic non-isolated bidirectional DC/DC boost topology is applied in this
study. The electrical circuit of the bidirectional DC/DC converter is shown in Fig.2.36. Operating
in continuous mode, the converter functions separately in two different modes:

- Boost mode: The boost mode is enabled when the battery is in discharge mode (Iq¢¢ > 0).
The switch sw1 is active and sw2 is inactive. The diode of the sw2, denoted Dy, ,, allows
the current flow to the common DC bus when sw1 is off. In this operating mode, the
voltage is stepped up from around V4. , = 250V to Vpys = 800V.

- Buck mode: The buck mode is enabled when the battery is in charge mode (Ipq4:: < 0). The
switch sw2 is active and sw1 is inactive. The diode of the sw1, denoted D, allows the
current flow of I, when sw2 is off. In this operating mode, the voltage is stepped down
from Vgys = 800V to around Vy,qp , = 250V.

The IGBTs sw1 and sw2 are controlled by firing pulses, denoted respectively u; and u, with a
fixed switching frequency f5,, paee = 20 KHz . In boost mode I, > 0, the mathematical
equations of the converter are the following:

dl
Voatt = (Rpaee + RL_batt)Ibatt + Lpatt- Z?tt + (1 - u1)- Veus
Ip,,, = (1 —uy). Ipgee (11.56)

av
(1 - ul)- Ipate = Cout-% + Loyt

Where, Ryaeer Ry pater Lbate, and I , are respectively the battery's internal constant resistance
(Rbatt = Rlr,, f) (), the inductor resistance (), the filtering inductor (H), and the current flowing
in the diode of sw2 (A).
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Fig.2.36 Electrical circuit of the bidirectional DC/DC converter (detailed model).

By always setting u, = 2; = 1 — u4, and taking into account that I, and 1,,; have opposite
signs in the buck mode operation, it can be seen that the bidirectional DC/DC converter keeps the
same equations of the boost mode (11.56) in the buck mode. The buck equations are then expressed
as:

dl batt_buck

(Voare = —(Rpare + Ry, pate)Ibatt buck — Lbatt- a + uy. Vpys
Iswz = Uz Ipatt buck (1.57)
_ dVpys
_uz-lbatt_buck - Cout- dt - Iout_buck
Where, Iyatt puck = —Ipacer Tout_buck = —lous» aNd Igyp = —Ip_ . Asaresult, ifu, =u; =1 —

u, is always imposed by the PWM pulses generator of the control loop, and the opposite signs of
currents are considered in the mathematical modeling, the bidirectional DC/DC converter can be
simply modeled by the DC/DC boost equations (I11.56). Consequently, the same approach of
averaging technique and losses modeling of the DC/DC boost is applied to the bidirectional
DC/DC converter. Omitting the switching devices and introducing the controlled current and
voltage sources to derive the average model, the same electrical circuit of the DC/DC boost average
model of Fig.2.6 is obtained. The resulting converter equations are the same as the ones obtained
in (11.7), and the bidirectional DC/DC converter is directly controlled by the duty cycle ratio,
denoted Dy, instead of the firing pulses u; and u,. As for the switching and the conduction
losses, the same modeling strategy is put in. This leads to the same electrical circuit of Fig.2.9 with
the same expression of the switching losses as only one switch and one diode are active during a
switching period in the boost as well in buck mode (sw1 & D;,,, in boost mode, and sw2 & D,
in buck mode). Hence, the switching-loss resistance (r,,) can be expressed similarly to equation
(11.19) as:

_ fswobatt-VBUS IRM_D- tf D
Tow="7"— X (ton_IGBT +tofriger +— —— (11.58)
6-1batt Ibatt

87



However, as detailed before, variable voltage sources and on-resistances are utilized to model the
conduction losses. These voltage sources and on-resistances are expressed as functions of the duty
cycle ratio (equation I1.8). Knowing that in both modes, the on-resistances and equivalent voltage
sources are placed on the inductor branch side (Lpq::) Same as in Fig.2.9. The equivalent on-
resistances and voltage sources have different expressions in boost and buck modes. In boost
mode, they are expressed as:

(VDO_SWZ =(1- Dbatt)- VfO_st
Vo_sw1 = Dpate- Vero_sw1 (11.59)
RD_SWZ = (1 - Dbatt)- RD_f_st .
Rsw1 = Dpate- Ron_sw1

Where,

- Vpo sw2 IS the conduction loss equivalent voltage source of Dy, , in (V).
- Vro_sw2 Is the Dg,,, forward voltage source, in (V).

- Vo sw1 Is the conduction loss equivalent voltage source of sw1, in (V).

- Vcgo swa 18 the sw1 forward voltage source, in (V).

- Rp sw2 Is the conduction loss equivalent resistance of Dy, , in (Q).

- Rp f swp isthe Dy, forward resistance, in (Q2).

- Rg,41s the conduction loss equivalent resistance of swi, in (Q).

- Ry swi IS the swl on-resistance, in (£2).

If the same switch from the same manufacturer is selected for sw1 and sw2, the equivalent on-
resistances and voltage sources in buck mode are expressed as:

VDO_swl = Dpqte- VfO_st
VO_SWZ = (1 — Dpgee)- VCEO_swl (11.60)
RD_SWl = Dpatt- RD_f_st '
Rewr, = (1 — Dbatt)-Ron_swl

Where,

- Vpo swa IS the conduction loss equivalent voltage source of Dy, , in (V).

- Vg sw2 is the conduction loss equivalent voltage source of sw2, in (V).
Rp w1 IS the conduction loss equivalent resistance of Dgy,q , in ().

- Ry, Is the conduction loss equivalent resistance of sw2, in (Q).

It can be referred to Appendix D.2 for detailed information on parameter values. The losses in the
DC/DC bidirectional converter are represented as functions of the charged/discharged battery
power in Fig.2.37 (a) and (b). The maximum charged/discharged battery power is fixed at 0.434C
( Ibatt_max = 12174 ) which yields: Pbatt_max = Ibatt_maxVbatt_n = +217 X 250 =
+54250 W. The conduction, the switching, and the total losses for the boost and buck modes are
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Losses (

=}

represented respectively in Fig.2.37 (a) and (b). As seen, the total losses in both operating modes
are proportional to the charged/discharged battery power and are almost equal. The switching
losses account for around 60% of the total losses in the two operating modes.

Fig.2.38 shows the efficiencies of the two operating modes as a function of the charged/discharged
battery power.
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Fig.2.37 (a) Bidirectional DC/DC converter total losses, conduction, and switching losses in boost
operating mode (b) in buck operating mode.

98.5 T T T T

77Boost
98.4

MBuck

98.3

98.2

n (%)

98.1

98

97.9

978 1 L 1 1 1 1 1 1 1 1
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Poat W) x10*

Fig.2.38 Bidirectional DC/DC converter power efficiencies curves in boost and buck operating modes.
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Both efficiencies’ curves slightly drop with the increase of charged/discharged power, and the
boost curve shows a larger variation margin than the buck curve. However, in both operating
modes, the efficiency almost stays constant at 98% for the whole power charge/discharge interval.

2.8 Simulation test of the 24-hour assembled DC microgrid

2.8.1 Applied EMS strategy

In this section, the 24-hour assembled DC microgrid model is validated through simulation tests
with variable input profiles. A simple EMS strategy that allows the share of all energy sources to
the overall power mix is applied. The applied EMS strategy assures two prior objectives, the
fulfillment of the load demand and the stabilization of the common DC bus voltage at each instant
of the overall 24-hour horizon. Moreover, it guarantees the battery's proper operation and prevents
its excess discharge and overcharge by limiting the battery state of charge (SOC) within minimum
and maximum admissible values[102]. The flow chart of the applied EMS strategy is depicted in
Fig.2.39. As a principle, the RESs are continuously operating in MPPT mode to extract the
maximum available power and the applied MPPT techniques are the ones detailed in sections 2.4.3
and 2.5.3.6. The RES and load power profiles are known for the whole time horizon and the
battery, (DG), and grid are the dispatchable sources whose power references are imposed by the
EMS. Two cases can be differentiated following the difference between the load demand and the
generated RES power that is evaluated at each calculation step size.

If the generated power exceeds the load demand, then the SOC variable is evaluated, and one of
the two operating modes is selected:

Mode 1 (SOC <S0C,,,,): The battery stabilizes the DC bus voltage by charging the surplus of
unused power, the (DG) and the grid aren’t connected to the microgrid which is operating in
islanded mode.

Mode 2 (SOC >S0C,,.): The battery has already reached its higher admissible energy charging
threshold, so it switches to a floating mode (7, = 0), and the surplus of unused power is sold to
the grid. By this, the battery SOC is fixed on its maximum threshold and the grid converter takes
charge of stabilizing the DC bus voltage.

On the other hand, if the load consumption is higher than power production then, the SOC variable
is compared to its minimum threshold, and one of three operating modes is selected:

Mode 3 (SOC >S0C,,,;» ): The battery stabilizes the DC bus voltage by discharging and supplying
the load with the unavailable needed power. The (DG) and gird are disconnected from the
microgrid which is operating in islanded mode.

(SO0C <50Cin ): The power deficit can either be covered by the (DG) or the utility grid as the
battery operates in a floating mode (I,,;; = 0). Standardly, DGs operate in a margin of around
25% to 100% of their nominal power[98].
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Fig.2.39 Flow chart of proposed EMS strategy.

As aresult, the existing power deficit is compared to the minimum and maximum admissible (DG)
power generation limits and two operation modes can be encountered:

Mode 4: The required power value is within the admissible power limits of the (DG). Thus, the
(DG) is turned on, connected to the microgrid, and generates the remaining unavailable power to
cover the load demand. By this, the (DG) rectifier stabilizes the common DC bus voltage.
However, none of the power deficit is purchased from the grid.

Mode 5: The power deficit value is not within the (DG) allowable power operating range.
Therefore, the required power is uniquely purchased from the utility grid and the (DG) is turned
off. By this, the utility grid converter takes charge of stabilizing the DC bus voltage and the
microgrid operates in grid-connected mode.

Finally, the same control steps are restarted again at each calculation step size. As the applied EMS
strategy does not consider or include any of the optimization goals in the decision-making, it is not
advanced as an optimal one. Instead, it is only adopted to test the viability of the overall 24-hour
DC microgrid model. However, the application of an optimal EMS with predefined objectives and
constraints requires the formulation of an optimization problem that is detailed in the next chapter.
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2.8.2 EMS control parameters and 24-hour variable input profiles

The control strategies of the RESs operating in MPPT mode and corresponding regulators’
parameters were detailed in sections 2.4.3 and 2.5.3.6 so, they are not recalled in this paragraph.
Moreover, the active and reactive power of the (DG) and utility grid are imposed through the (dq)
frame control represented in the phasor domain (Fig.2.24). The active power is imposed through
the d —axis component while the reactive power is always set to zero through the g —axis
component to absorb zero reactive power. The error between (dq) axes components and their
corresponding references are minimized by P.l. regulators for both (DG) and utility grid.

For the (DG), the same P.I. is applied to control d and g-axis components and has the following
ki_DG'p+1
ki pGp
and the integral parameters of the (DG) regulator, and p is the Laplace operator. The same for the
ki gria .p+1
ki gria-p
ky gria and k; griq, are respectively the proportional and the integral parameters of the grid

regulator. The parameters of the applied regulators of the (DG) and utility grid are all listed in
Table 2.4.

expression: Rpg(p) = ky pe- where, k,, pc and k; p;, are respectively the proportional

utility grid regulators which have the following expression: Rg;.iq(p) = kp_gria- where,

Following the proposed EMS strategy, a voltage and current cascaded loop regulation technique
is adopted to control the bidirectional DC/DC converter of the battery. The block diagram of the
cascaded control loop is depicted in Fig.2.40. As seen, P.l. regulators are adopted to regulate the
common DC bus voltage (Vgys) and the battery current (I,4.), respectively. kpy, pacer Kpc pates
kiy pate, and ki pqee are respectively the proportional and the integral parameters of the DC bus
voltage and battery current regulators. All these regulators' parameters can be found in Table 2.4.
A PWM generator block is required in the instantaneous model to control the real switching
devices through the firing pulses, u; and u, (Fig.2.36 and equations 11.56 and 11.57). As stated
before, the PWM generator block is omitted in the 24-hour DC microgrid model, and the
bidirectional DC/DC converter average model is directly controlled by the duty cycle ratio, D, ;.
All P.1. regulators of all operating units are equipped with wind-up systems. Finally, we take note
that the battery-cascaded loop control is only applied for the above proposed EMS strategy to
validate the 24-hour DC microgrid model. Consequently, in the upcoming chapters, the adopted
control block diagram of the bidirectional DC/DC converter of the battery is the one represented

in Fig.2.33.
Vaus Ipatt
VBU'\' " k (kiv_batr- 4 +1 ) k kic_bart-p +1 ) PWM ——» Ug
S_re cbhatt\—————— |—p [ Pt —— » o
propet kiv_batr-p 1r.lm.tt_rz—zf' pebatt kic_batr-p Dyate Generator —» Uz

Voltage Regulator Current Regulator
Fig.2.40 Battery-cascaded loop control.
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Rated voltage: 800V
Comr\?c())l?ag)f bus Allowable voltage continuous deviation: +10% < 80 V
Allowable voltage fluctuation: +5% < 40V

SOC,pin = 20% - SOCp0r = 90%
Initial state of charge: SOC;i: = 70%

Lithium-ion Battery Kpy pate = 3.14 x 107* kiy pace = 0.0628
kpc pare = 6.2832 kic paee = 1.25 X 10*
(0G) Ppg min = 13.75 KW - Ppg pmax = 55 KW
ky, pc = 8.68 ki pg = 1.82 x 10*
Utlllty-grld kp_grid =993 ki_grid =3.12 x 10*

Table 2.4 EMS and regulators control parameters.

Next, variable input profiles are applied when simulating the 24-hour DC microgrid model. The
applied inputs consisting of variable irradiance (W /m?), air temperature (°C), wind turbine speed
(m/s), and residential load demand (W) 24-hour profiles are represented in Fig.2.41 (a), (b), (c),
and (d), respectively. The shown variable profiles are not extracted from a real database and are
only adopted to validate the 24-hour DC microgrid model under variable input profiles.
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Fig.2.41 Variable Input profiles: (a) Irradiance (W /m?), (b) Temperature (°C), (c) Wind speed (m/s),
and (d) residential load demand (W).
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Yet, the shape and dynamics of all profile curves are realistic. For instance, the irradiance profile
has a bell shape (Fig.2.41 (a)) with a peak at noon and null values at night. The residential load
profile has two peaks corresponding to the surges in load demand in the morning and the evening
(Fig.2.41 (d)). Finally, we take note that a real reference location point for the DC microgrid and
real discrete profile inputs collected from specific databases are introduced in the next chapter to
emulate a real case study.

2.8.3 Simulation tests
Test 1:

To validate the 24-hour DC microgrid model, two simulation tests are conducted. In the first, the
24-hour DC microgrid model is simulated separately with the variable input profiles of Fig.2.41.
The simulation results over the 24 hours are shown respectively in Fig.2.42, 2.43, and 2.44. The
power flow of all operating units is represented in Fig.2.42. As seen, (RESs) generated power
curves have the same form as their input profiles. The PV is operating in MPPT mode and reaches
its maximum power generation: Ppy ma,= 49.4 KW corresponding to S = 1000 W /m? value at
12:30 P.M. (light green curve). However, for the WT, the maximum wind power is reached at
Vwina = 12 m/s corresponding to (0.9 X Pying m n = 49.5 KW). In turn, the wind turbine pitch
controller intervenes when the wind speed exceeds 12.12 m/s to limit the generated power to its
allowable maximum rate Py;ng m n = 55 KW. Thus, for higher wind speed values the wind power
is limited at P,,;,q m » (dashed red cuve). Yet, the power of dispatchable sources is defined
following the proposed EMS strategy.

><104 ’ PV ~ Twind T batt DG ~ grid load
T

7

Power (W)

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hours)

Fig.2.42 Power flow of all operating units of the 24-hour DC microgrid model in (W).
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Fig.2.43 (a) Losses in all operating converters in (W) and (b) Common DC bus voltage in (V).
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Fig.2.44 (a) Battery’s voltage (V) and (b) SOC (%).
The operating modes stated above can be identified in the power flow plot. For instance, the (DG)
(dashed gold curve) generates power within its allowable limits when there is a power deficit in
the microgrid, and the battery is entirely discharged (operating mode 4: between 7:00 and 8:00
A.M.). The utility grid is connected to the microgrid (long dash-dotted magenta curve) when the
battery is entirely discharged, and the power deficit is outside the (DG) allowable boundaries
(operating mode 5: between 8:00 and 9:00 A.M.). Besides, the power excess between 12:00 and
5:00 P.M. is sold to the utility grid when the battery is charged totally (operating mode 2). The
losses in all operating converters are shown in Fig.2.43 (a). All losses’ curves have the same shape
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as their corresponding input power as they are proportional. Losses of the WT energy conversion
chain are the highest as they include in addition to the converter losses the PMSM losses (dotted
blue curve) which are the highest among all converters’ losses. The common DC bus voltage is
depicted in Fig.2.43 (b), it is stabilized on its referenced value and does not exceed its allowable
limits in transient and steady state. Hence, a seamless transition between different operating modes
is stated. Finally, Fig.2.44 shows the battery's voltage and state of charge. Battery SOC curve
(Fig.2.44 (b)) shows convenient results in terms of modes transition, battery stability, and safe
operation. Practically, the battery operates within the predefined admissible SOC boundaries 20%
< S0C <90%. Furthermore, in Fig.2.44 (a), a maximum variation of 16 V in the battery voltage is
noted (between 273 VV and 289 V') which highlights the necessity of including the nonlinear zones
of the battery voltage in the dynamic model.

Test 2:

In the second simulation test, the accuracy of the 24-hour DC microgrid model is assessed. For
that, the detailed DC microgrid model built on Simscape and the 24-hour proposed model are both
simulated over 15 minutes. The selection of the simulation time for both models is chiefly
restricted by the detailed model which cannot be simulated over 24 hours as stated at the beginning
of this chapter. As a solution, the same variable input profiles of test 1 are applied in this test but
with a much faster dynamic. A ratio of simulation time reduction equal to 100 is chosen.

By this, the same input profile curves of Fig.2.41 are applied in this test over 864 seconds which
accounts for one-hundredth of the 24 hours (i.e., 86400 seconds). Considering the increased
dynamic of the system the above-proposed EMS strategy is no longer applicable in this test.
Instead, the (DG) and utility grid power references are set equal to the power curves obtained in
Fig.2.42 (long dash-dotted magenta and dashed gold curves). However, the battery always
stabilizes the common DC bus voltage in this test. As a result, the dynamic of all variables is
increased 100 times which constitutes an even worse-case scenario to test the accuracy of the 24-
hour model compared to the detailed one.
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Fig.2.45 Obtained PV (a) power and (b) boost-losses of the detailed and 24-hour models.
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The results of each energy source for both models are shown separately. In all figures, the detailed
and 24-hour model plots correspond to the blue and dashed-red curves, respectively. The results
of the PV energy conversion chain are represented in Fig.2.45. As seen, the power and losses in
the boost converter curves are perfectly merged. A maximum error of 5.3 % is noted between the
two models at low irradiance values (lower than 320 W /m?), whereas the error drops to 0.4% at
the maximum irradiance value (S = 1000 W /m?).

Fig.2.46 shows the results of the WT energy conversion chain. The mechanical and electrical
power curves are merged for both models. The mechanical power curves are slightly higher than
the electrical ones because of the losses in the PMSM. The (dq) axes' current components for both
models are the same. The d- component has the same shape as the wind power curve since the
MPPT technique is applied on the d-axis, while the g component is always null for both models
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Fig.2.46 WT (a) mechanical power, (b) electrical power, (c) (dq) current components, (d) phase A current,
(e) phase A to neutral voltage, and () losses in PMSM and 3® rectifier of the detailed and 24-hour models.
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to absorb zero reactive power. Fig.2.46 (d) and (e) show the phase A current and the phase A to
neutral voltage, respectively. As seen, the plotted magnitude of i, and V4, of the 24-hour model
accurately follow the plots of i, and V,y of the detailed model. Hence, the phasor approach
accurately tracks the real magnitudes of the alternating current and voltage in transient and steady
states which maintain the precise power computing. Fig.2.46 (f) represents the losses in the PMSM
and the 3® rectifier. The curves of both models have the same shape with a maximum error of
5.8% at 600 s.

Fig.2.47 shows the results of the (DG) energy conversion chain. The power, (dq) current
components, and losses in the 3® rectifier for both models are merged which validates the
accuracy of the 24-hour model in computing the power in transient and steady states. A maximum
error of 1% is noted between P curves and 3% between the losses of the two models. The results
of the utility grid energy conversion chain are depicted in Fig.4.48. The 24-hour model curves
accurately follow the detailed model ones in transient and steady states. Similarly, the (dq) axes'
current components curves are merged in the two models. The d- axis current curve has the same
shape as the power curve since the grid power reference is set through the d-axis, while the g- axis
is null to absorb zero reactive power. Besides, Fig.4.48 (d) and (e) shows how the phasor approach
tracks the real current magnitude during the whole simulation.

Fig.2.49 shows the results of the lithium-ion battery which stabilizes the common DC bus voltage.
Fig.2.49 (a) shows the power curves of the two models that are merged. The same for the battery
voltage curves which are the same in both models.

4 a b
3.5 <10 (2) I ) B
3 Detailed | | 70 i
T~ 'd-Detailed | |
25 = = = *24-hour | | 60 1 e
— - 50 d=24-hour |
s 2 1 < 4p = '3-Detailed | |
g 1.5 _‘g 30 === '.q-24-hour 1
o
1
0.5
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 60O 700 800
Time (s) Time (s) Detailed
c d = = = =24 hour
© 400 (@
— 800 - i
Detailed 300
E 600 = == *24-hour | | 200
& < 100
& <
4 400 z 0
cz = -100
% 200 : 200
=]
o -300

-400

0 100 200 300 400 500 600 700 800
Time (s) Time (s)

0 100 200 300 400 500 600 700 800

Fig.2.47 DG (a) power, (b) (dq) axes current components, (c) losses in 3® rectifier, and (d) phase A to
neutral voltage of the detailed and 24-hour models.
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Fig.2.49 (c) shows the losses in the bidirectional DC/DC converter which have the same curve
shapes in the two models and are proportional to the battery charged/discharged power. The SOC
curves of the two models are represented in Fig.2.49 (d) and are the same. A maximum variation
of 1% in the battery’s SOC is noted as the simulation time is reduced to 864 seconds (SOC varies
between 69.2% and 70.2%). Though the limited variation in the battery’s SOC, the battery
voltage plots in Fig.2.49 (b) show a maximum variation of 5V (between 281V and 286V) which
highlights the necessity of including the nonlinear zones of the battery voltage in both models.

y a b
2 =10 ; . .( ) . . . ; 50 . .( ) .
1 \ ‘ \
0 0
—~ \J N
2 17 1
T 27 -50 i4-Detailed ||
-3t i )
g-Detailed
4t Detailed | 1 -100 _— i i
5l — — — . 24-hour | .d-24-hour
Iq-24-hour
-6 e -150 e
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Time (s) Time (s)
(©) (d)
. 500 T T I 100 | Detailed |
s '\ 75 = = = :24-hour
Z2 0 50 |
c
8 ~ 25|
he)
5 -500 f 0
=3 -25¢1
@ 50|
[ Detailed -
2 -1000 | 1
§ — — — - 24-hour -75
D._ -100
-1500 e —
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Time (s) Time (s)
(e Detailed
100 = = = :24-hour
75
50
2 25 B
~ OF
-® 25}
-50
-75
-100
499.94 500 500.06 500.12
Time (s)

Fig.2.48 Utility grid (a) power, (b) (dgq) current components, (c) losses in 3® converter, (d) Phase A
current, and (e) Zoom on phase A current of the detailed and 24-hour models.

99



(Appendix D).
5 x10% (a) 286
4+
3 -
2 -
—~ 1t
S of
=-1F
32
o 3}
:g Detailed
6t — — — - 24-hour
1 1 1 1 1 1 1 1 280
0 100 200 300 400 500 600 700 800
Time (s)
1000
§i 750 1
z 500r
S 250+
(9]
= 0f
b,
a 250
%]
§ -500
3 | Detailed
o 750 — — — - 24-hour
-1000 IO ——
0 100 200 300 400 500 600 700 800
Time (s)
€
840 : . : ﬂ ) : . . .
830 Detailed
820 - = — = *24-hour | |
S 810 15
g 800 W o
ST 790 1=
780 1
770
760 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

Fig.2.49 (e) represents the common DC bus voltage of the models which are stabilized on their
referenced value (800 V) and do not exceed the allowable limits in transient and steady states. The
detailed model shows additional fluctuations in Vzygas the switching devices of operating
converters exist. Meanwhile, these fluctuations disappear in the 24-hour model as the switching
devices are omitted. The cell temperature curves are shown in Fig.2.49 (f), the two curves are
merged and present a maximum variation of 1.25 °C during the simulation. The cell temperature
varies slowly compared to the ambient one as the battery thermal time constant is equal to 1800 s
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Fig.2.49 Battery (a) power, (b) voltage, (c) losses in the bidirectional DC/DC converter, (d) SOC, (e)
common DC bus voltage, and (f) cell temperature of the detailed and 24-hour models.

100



Finally, we take note that a fixed-step solver is selected to simulate the DC microgrid detailed
model with a calculation step size equal to 1 us, while the 24-hour model is simulated with a
variable-step solver with an average step size of 8.3 ms. Hence, the calculation step size is
increased 8300 times when moving from the detailed to the 24-hour model which made the
modeling of the DC microgrid over 24 hours a viable solution.

2.9 Conclusion

In this chapter, the configuration and sizing of the DC microgrid were presented. The hurdle of
24-hour modeling was confronted as the simulations were conducted on a standard computer with
limited CPU performance and memory. To overcome this problem, new averaging techniques
were advanced for each operating unit at different energy conversion levels. A trade-off between
model precision, complexity, and simulation speed was created. For instance, in all operating units,
average converter models were applied in which the switching devices were omitted to increase
the calculation step size of the simulation. To prove the viability of the average model, it is
compared to the detailed one in terms of accuracy and calculation step size. The obtained results
show that increasing the calculation step size highly speeds up the simulation while maintaining
accurate voltage and current modeling in transient and steady states.

For all AC operating sources, the phasor domain was proposed to express the electrical sinusoidal
components in the complex number domain. To validate the phasor mathematical representation,
it is compared to the detailed time domain model in which the real sinusoidal waveforms appear
and the switching devices of the 3¢ rectifier are included. The obtained results show that this
representation reduces the complexity of the problem, largely increases the calculation step size of
the simulation, and keeps good accuracy as the magnitudes of all electrical components are
accurately tracked in the phasor domain.

On the other hand, as the minimization of the converters’ losses is one of the predefined
optimization goals, the conduction and the switching losses which are the major source of losses
in all operating converters were accurately modeled, and the power efficiency curves of all
converters were deduced. Besides, a precise model of a lithium-ion battery including the
temperature effect was presented. This model represents the nonlinear characteristic of the battery
voltage considered constant in most optimization problems which may lead to erroneous power
and SOC computed values.

Finally, two simulation tests were conducted to test the viability of the proposed 24-hour model.
In the first test, the assembled model is simulated over 24 hours by applying a proposed EMS
strategy and variable input profiles. By this, the 24-hour modeling aspect is proven. However, the
second test validates the accuracy of the assembled model and compares it to a detailed one over
two identical 15-minute simulations. The obtained results show that the 24-hour model maintains
accurate modeling and power calculation and ensures a remarkable increase in the calculation step
size with a ratio of 8300. The 24-hour DC microgrid model is adopted in the next chapters and a
new optimal EMS strategy with optimization goals is advanced.
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Chapter 3 : DC Microgrid Offline Optimization

3.1 Introduction

In this chapter, the offline optimization problem is formulated. Real data over 24 hours of
electricity pool prices, residential load profile, solar irradiation, ambient temperature, and wind
speed are applied to the DC microgrid to simulate a real case scenario study. To test the
performance of the DC microgrid under extremely different weather conditions, two different
scenarios corresponding to a winter and a summer day are simulated. First, the total cost functions
for the two operating days in the absence of an ESS and a (DG) are computed, and then the EMS
is applied to the overall DC microgrid including all units. Three distinct objectives of the EMS are
set, the first is the minimization of the total operating cost of dispatchable sources comprising the
utility grid, the (DG), and the ESS, the reduction of toxic gas emissions produced by the (DG), and
the minimization of losses in operating converters of dispatchable sources.

An optimization problem is formulated to attain the objectives which are all included in one unified
weighted objective function expressed in $. Three different weight coefficients are assigned to
each of the predefined optimization goals. The representation of each optimization goal as three
distinct cost functions in $ leads to a unified total energy bill. The first cost function to minimize
consists of the operation cost of the overall DC microgrid in $. It includes the (O&M) cost of RESS,
(DG), and ESS, and the cost of purchased/sold energy from/to the grid following the pool prices.
The second cost function corresponds to the pollutant gas emissions. It is established as a penalty
function, in $, proportional to the total pollutant energy produced by the (DG). Similarly, the last
cost function of converters’ losses is introduced as an additional penalty function, in $,
proportional to the total energy loss in converters. By this, the total energy bill consists of the total
(O&M) cost of the DC microgrid and two penalty factors related to the emitted toxic gas and losses
in operating converters.

Besides, several constraints are defined to emulate a realistic scenario and to guarantee the safe
operation of existing units. To solve the optimization problem two different algorithms are applied
in this chapter, the first is a step-by-step deterministic technique named Dynamic Programming
(DP) and the second is a metaheuristic method named Genetic Algorithm (GA). Based on different
mathematical strategies, (DP) and (GA) require different problem shaping to yield viable results.
Thus, the mathematical problem structure of each of the applied algorithms is represented in detail.

Two main outcomes are obtained in this chapter, the first is the validity of the proposed algorithms
in finding a feasible solution to the EMS-posed problem and the second is the effectiveness of the
sole weighted objective function in achieving a multi-objective optimization. To further validate
the obtained results, a comparison between both algorithms in terms of convergence speed and
ability to find a global minimum solution is conducted at the end of this chapter.
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3.2 Inclusion of input data and converters’ losses in the DC microgrid
configuration

Having set optimization objectives for the DC microgrid over a 24-hour time horizon, real data
inputs are collected and applied to emulate a practical scenario and real-case study. For this
purpose, the location of the proposed DC microgrid was chosen on a reference point proposed by
the WindFinder application. In this case, the reference point is Toulouse-Blagnac Airport (France)
for which wind statistics are available throughout the day.

We take note that this site was chosen arbitrarily and exclusively to have real and practical data
and does not reflect any theoretical study for a future project. Meteorological data such as the
ambient temperature and the wind speed, solar irradiance, electricity pool price, and residential
load profiles are applied for two days with extremely different weather conditions. A winter
working day on 18/02/2021 and another summer working day on 16/07/2021 are chosen as the
two days for the case study. The wind speed data are extracted from the WindFinder
application[147]. The electricity pool prices which are the prices established on the electricity
market by the stock exchange EPEX on the day (D) for the next day (D+1) are collected from the
rte-France site [148]. The residential load profile data are extracted from the ENEDIS open data
source[149], which consists of an anticipated dynamic profile of a residential load provided the
day (D) for the next day (D+1). Lastly, the irradiance and ambient temperature data are extracted
from the Solcast website [150]. All collected data are free to access and are available with different
sampling periods.

To obtain a unified data format, a unified sampling period of 10 minutes, denoted T, was selected
for all input data. The 10-minute sampling period represents a reasonable trade-off that takes into
consideration the dynamics of all natural phenomena occurring during the 24-hour simulation
study, and the optimization goals. Higher sampling periods won’t offer a decent observation of all
fast changes in load and/or sources’ profiles which leads to unmatched optimization results.
Meanwhile, smaller sampling periods may be impractical and irrelevant taking into consideration
the slow dynamics of natural phenomena such as the variations of wind speed, temperature, and
irradiation [151]. Besides, as the fixed management goals don’t target fast disturbances or
instantaneous faults that may occur in the system, the selection of a smaller sampling period
appears inappropriate.

Hence, the sampled data inputs, and the losses in operating converters can be added to the initial
DC microgrid configuration represented in Chapter 2, Fig.2.1. The final configuration is depicted
in Fig.3.1 in which the 24-hour profiles of the sampled inputs are shown. v,ina, S: Ty s Proaa » @nd
65;‘1.:1 are respectively the wind speed in (m/s), the irradiance in (W /m?), the ambient temperature
in (°C), the residential load profile in (W), and the electricity purchase price in (¢/KW h) for the
whole time horizon (i.e. 24 hours). Therefore, the inputs of the optimization problem can be
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regrouped in a unique matrix denoted My opr © Min opt = [Vwina S Ta  Pioaa  Spria |

where My, op¢ is @ (5 X N) matrix.

N is the number of total steps for the whole-time horizon and is computed as follows:

N = Time horizon (in hours) — 24 % 6= 144 (|||_1)

Ts (in hours)

Hence, the size of M;;, o, is (5 X 144).

The degree of freedom in the system, in other words, the decision variables of the optimization
problem are defined based on the number of units that can be controlled. In this case, as the RESs
are continuously operating in MPPT mode and the load profile is imposed by the consumers, they
both cannot be considered as decision variables and serve as inputs to the optimization problem.
However, the remaining units that can be controlled through the optimization process are the ESS,
the DG, and the utility grid. Then, the fixed decision variables of the optimization problem are:
Pyate, Ppg, and Py,iq, and the output references can be regrouped in a unique matrix denoted
Mout_optl Mout_opt = [Pbatt_ref PDG_ref Pgrid_ref]- As Mout_opt includes all the Optimal
reference outputs for the whole-time horizon, it has a size of (3 x 144). We take note that the
offline optimization is carried out a day before the day targeted by the study. Knowing that all the
optimal output references are based on predicted data, an online optimization process is followed
the next day to adapt the optimal power references in case of any mismatches between predicted
and actual data (see Fig.3.1).

3.2.1 Losses inclusion

As seen in Fig.3.1, the losses in converters are considered by adding the subscript “bus” to the
initially generated/consumed power. By this, the bellow expressions are retrieved:

Ppy = Ppy_pus + Phoost_looses
Pwind = Pwind_bus + Plosses_3¢_WT_rec + Plosses_PMSM
Pgrid = Pgrid_bus + Plosses_3¢_grid_conv (| I |.2)
Ppg = PDG_bus + Plosses_3¢_DG_rec
Pbatt = Pbatt_bus + Plosses_bidirec_conv
Where,

- Ppoost 100ses are the losses in the DC/DC boost of the PV, in (W).

- Piosses 3¢ wr rec aNd Pogses pusy are respectively the losses in the 3¢ rectifier and the
PMSM of the (WT), in (W).

- Piosses 3¢_grid_conv are the losses in the 3¢ grid converter, in (W).

- Piosses 3¢_pc_rec are the losses in the 3¢ (DG) rectifier, in (W).

- Piosses pidirec cony are the losses in the bidirectional DC/DC converter of the battery, in
w).
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All converters’ losses are computed based on the expressions detailed in Chapter 2. Besides, as
previously mentioned in Chapter 2, the load and its corresponding converter are regarded as a
single entity. Thus, the overall load is simply modeled by the load profile, and so the losses in its
converter are not considered in this study.

We take note that the power loss expressions of all converters are always positive. Particular
attention should be given to the 3¢ grid converter and the battery’s bidirectional DC/DC converter
as they are bidirectional converters.

For the battery, in charge and discharge modes, Pjysses pigirec cony 1S @lways positive and
computed based on equation (I11.1):

- In diSCharge mode (Pbatt >0& Pbatt_bus > 0) : Pbatt_bus = Pbatt - Plosses_bidirec_conv
then, Pyare pus < Ppaee- This implies that only a part of the battery's total discharged power
reaches the common DC bus, and the rest is dissipated in the converter functioning in
boost mode.

- In charge mode (Pbatt <0 & Pbatt_bus < O) : Pbatt_bus = Pbatt - Plosses_bidirec_conv
then, |Pbatt_bus| > |Pyqee|. This implies that only a part of the battery’s power on the

common DC bus side reaches the battery to charge it and the rest is dissipated in the
converter functioning in buck mode.

MPPT =+ MPEy - — PG rer
i — ¢ p— ‘ p— Pgrid,ref
|
PPV,bus Pwind,bus PDG,bus Pgr’id, bus -—* N
- | evsssesses }\‘:‘ .
— — - — D ~ > ‘}V]‘
Pbatt,bus D Pgrid
Pbattjef_.p L T I e 1
—_— DC power - — Pyatt rer P, grid_ref Ppg_ref
A N A
—— AC power Ppace tl Proaa | ———_—
) 5 |
Common DC bus @- B I Offline optimization: |
my "
: L% ; = I I
b [L e ' I
= e e e e e e - - J
A A A A A

Vwind S Ta Plaad 5‘5:12

24-hour profiles data
with 10-minute samples

Fig.3.1 DC microgrid configuration.
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The same strategy is applied to the 3¢ grid converter. Piysses 3¢ gria_conv IS always positive in
both rectifier and inverter operating modes. Py,iq and Py,iq pys are positive when the power is
purchased from the utility grid and then, the converter operates in rectifier mode. Py, and

P

g

inverter mode.

3.2.2 Winter and summer days scenario

rid_bus are negative when the power is sold to the utility grid and then, the converter operates in

The input data for the two days case study are represented in this paragraph. Fig.3.2(a) and (b)
show the wind speed, vy,inq py (red dashed curve), in (p.u) of the wind base speed (vy,ing pase =
12 m/s), the solar irradiance, S, ,, (blue solid curve), in (p. u) of the reference irradiance at (STC)
(Srey = 1000 W /m?), and the ambient temperature, T, (green solid curve), in (°C) for the winter
and summer days. The winter day is represented in Fig.3.2 (a) (the left plot) and the summer day
in Fig.3.2 (b) (the right plot). The PV and wind-generated power profiles on the winter and the
summer days are respectively represented in Fig.3. 3 (a) and (b). PV and wind power are
represented respectively in red solid and green dash-dotted lines. Ppy 5,5, plotted in black-dashed
line, corresponds to the losses in the DC/DC boost subtracted from the Ppy. Pying pus. Plotted in
purple solid line, corresponds to the sum of the losses in the PMSM and the 3¢ rectifier subtsracted
from P,,;iq- AS seen in Fig.3.3 (a) and (b) the (WT) operates at low efficiency as low wind speed
profiles are recorded on the two days of the case study (fig.3.2 (a) and (b)).
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Fig.3.2 (a) Wind speed, irradiance, and temperature profiles of the winter day (18/02/2021), (b) of the

summer day (16/07/2021).
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However, the efficiency of the DC/DC boost of the PV system is higher than the AC rectifier, this
results in closer curves of Pp, and Ppy 5,5 (dashed black and solid red lines) in both winter and
summer days. Almost 97% boost efficiency is recorded at peak hours production in the two
operating days. Fig.3.4 shows the electricity pool price, the residential load, and the total net RESs
generated power profiles on the winter day (Fig.3.4 (a)) and the summer day (Fig.3.4 (b)).

The residential load profile in the black solid line has two peaks, the first in the morning and the
second in the evening which genuinely represents the residential consumption pace on winter and
summer working weekdays. By referring to Fig.3.4 (b), the summer load profile curve is slightly
shifted to the right as the day hours increase during the summer, and the sun sets later which keeps
people active for late hours. The RES production is plotted in a red dashed line in Fig.3.4 (a) and
(b), the losses in converters and PMSM for the (WT) are then taken into consideration in the plots.
Finally, the electricity pool price is plotted in a green solid line and has a similar curve shape as
that of the residential load profile. This can be simply justified by the fact that an increase in
electricity demand leads to a surge in its price in the market. Unlike the electricity purchase price,

denoted 6522, which varies following the plots of Fig.3.4 (a) and (b), the electricity sell price is

considered constant for the two operating days and equal to (652}3 = 6.8 ¢/KWh).
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Fig.3.3 (a) The PV and wind-generated power on the winter day (18/02/2021), (b) on the summer day
(16/07/2021).
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P (W)

3.3 The total cost function in the absence of the ESS and the DG

In this paragraph, the total cost function of the two tested days is evaluated without applying any
optimization strategy and in the absence of the ESS and the (DG). In such a scenario, only two
operating states are identified:

1. Pyaa > Ppy pus + Puwina bus : 1N this case, the load demand exceeds the RESs generated
power then, the remaining unmet load power is purchased from the utility grid and Py,
equals Pload - PPV_bus

- Pwind_bus + Plosses_3¢>_grid_conv > 0.
Pioaa < Ppy pus + Pywina bus, In this case, the produced power from the RESs exceeds the

load demand. The surplus of power is sold to the utility grid and P,,;4 equals Pj,qq —

PPVbuS - Pwindbus + Plosses_3¢_grid_conv <0.

As all inputs are discretized with a sampling period T, the total cost function corresponds to the
discrete sum of the cost computed at each sampling time, k, over the whole time horizon. The total
cost function over the 24-hour time horizon, denoted J,,., can be expressed in $ as follows:

Jtot = Joc
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Fig.3.4 (a) The residential load, the RESs power profiles, and the electricity pool price on the winter day
(18/02/2021), (b) on the summer day (16/07/2021).
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Where, J,. is the operating cost function over the 24-hour time horizon. J,. is expressed in $ as
follows:

Joc = Jress + Jgria (1.4)
Where, Jress and /44 are respectively the RESs and the utility grid cost functions. Jrggs is
computed in $ and expressed as follows:

Jress = Jov™ + Tt (111.5)

Where, J83" and J9%M are respectively the operation and maintenance cost (O&M) costs of the
PV and the WT in $. JO%M and J3%M are calculated as follows:

g = Z 08 Py (K.,

(111.6)

O&M z 60&M PWT(k)Ts

(11.7)

where S9%M and 5§3%M are respectively the (O&M) costs per KWh of the PV, and the WT
(659%™ = 0.0024 $/KWh, and 535 = 0.0098 $/KWh).
The utility grid cost function can be expressed as the difference between the purchased energy
from the utility grid and the sold energy to the utility grid over the 24-hour time horizon.
N-1
]grid = z (6522 pur(k) 5211((11 Psold (k))-Ts
k=0

(111.8)

P, (k) and Py, 4 (k) are respectively the purchased electricity power at time k, and the sold
electricity power at time k. P,,,-(k) and Ps,,4 (k) are expressed as functions of the grid power
Py.iq(k) at time k as follows:

pur(k) grld(k) maX(SIgn( grld(k))'o) (|||,9)
Pso1a(k) = Pgrid (k). min(Sign(Pgrid (k)),()) (111.10)
The functions max, min, and sign are introduced in equations 111.9 and 111.10 to impose a
unidirectionality constraint of Py, ;4 (k). In other terms, the utility grid power cannot be purchased
and sold at the same time k.
When Pg..;q (k) is positive By, (k) is equal to Py,;q(k) and Ps,4(k) is null whereas, B, (k) is
set to zero and P4 (k) is equal to —Pg,.;4 (k) when Py,4(k) is negative.
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The obtained results for the two operating days are summarized in Table 3.1 As seen the summer
day has a lower total cost function compared to the winter day. As the produced solar energy
increases during the summer, this results in a minor reliance on the utility grid to cover the load
demand and then limited purchased energy from the utility grid (summer day: /4 = 116.67 $ <
winter day:/4iq = 179 $). The RESs cost function is slightly higher on the winter day as it is
predominantly affected by the wind turbine-produced energy (equations 111.6 and I11.7) which is
higher on the winter day (E,.q = 190.55 KWh in winter versus E,;,q = 58.32 KWh in
summer). These results are obtained in the absence of the lithium-ion battery and the (DG).

Winter day (18/02/2021) Summer day (16/07/2021)
Jgria =179 $ Jgria = 116.67 $
Jress = 2.25 8% Jress = 1.3 8
Jror = 181.25% Jior = 118 $

Table 3.1 Cost functions for the two operating days in the absence of ESS and (DG).
3.4 Optimization objectives, cost function, and constraints

The applied microgrid configuration is that of Fig.3.1 in which all operating units are managed
optimally to feed the load while maintaining a stable voltage of the common DC bus. This is
considered a primary goal of the EMS that should be accomplished consistently. However, on a
higher management level, the coexistence of multi-sources and ESS in one DC microgrid offers a
high degree of freedom on how the load power can be shared between operating sources. To
ensure a smart EMS, an optimization problem is formulated with predefined objectives, cost
function, and constraints and solved using deterministic or metaheuristic algorithms. Referring to
the literature and the research work on multi-objective optimization of microgrids such as in [86],
[87], [90], and following the actual international energy policies, three objectives are set :

1. The minimization of the total operating cost of the DC microgrid. By setting this objective,
several outcomes are derived, mainly the minimization of the electricity bill, the
enhancement of energy self-sufficiency of the DC microgrid, and the reduction of the
O&M costs of the ESS and the DG.

2. The reduction of pollutant gas emissions. This objective exclusively targets the (DG) as a
unique traditional pollutant source in the DC microgrid producing toxic gases that are the
main cause of air pollution and greenhouse gases.

3. The minimization of converters’ losses. This optimization objective is rarely addressed in
the literature as the detailed modeling of losses in converters requires direct access to its
current and voltage components as seen in Chapter 2. Knowing that the current and voltage
variables are sited in the primary and secondary control levels, unlike most optimization
variables that are located at higher management levels, the losses are usually considered
constant or neglected. Contrarily, the losses in the lithium-ion battery, the utility grid, and
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the (DG) converters are accurately computed, included in the optimization problem, and
minimized.

Once the optimization objectives are set, the optimization problem is formulated. There are several
ways to formulate the optimization problem, one is to assign independent objective functions for
each of the predefined optimization goals such as in [78], [152], and minimize them by finding
Pareto sets. Another simple way is to scalarize the set of objectives into a single objective function
by multiplying each objective by a fixed weight. This method is known as the weighted sum
method and is widely used in the literature [83], [98]. Besides the reduction of the complexity of
the problem, it offers the user the possibility of objectives’ preference through the selected weights.
Therefore, the total cost function denoted /., expressed in equation (I11.3), can now be computed
in $ as the sum of the weighted cost functions of the operating cost, the pollutant gas emissions,
and the converters’ losses. This yields the following expression:

]tot = (oc]oc + (emissions]emissions + (conv_losses]conv_losses (“I-ll)

Where! ]totl ]oa ]emission51 ]conv_lossem Zom Zemissionsa and Zconv_losses are respECtiVEIy the total
cost function in $, the operation cost function in $, the pollutant gas emissions cost function in $,
the converters losses cost function in $, the operation cost weight, the pollutant gas emissions
weigh, and the converters losses weight.

3.4.1 Operating cost function

The operating cost function is the sum of the (RES)s cost function, the power grid cost function,
the battery storage cost function, and the diesel generator cost function. Hence, two terms related
to the battery and the DG are added to equation I111.4 which becomes:

Joc = JrEss +]grid + Jvatt + Jpe (111.12)
Where, Jpaee . Jpc are respectively the battery and the DG cost functions. Jrgss and Jgrig
expressions are the ones of equations (111.5 till 111.10) detailed above.

3.4.1.1 Battery cost function
The battery lifetime is represented as the number of charge and discharge cycles. Hence, to

quantify the storage operating cost, one way is to divide the battery capital cost per KW h over the
number of cycles to obtain the battery operating cost per cycle. In addition, the battery degradation
issue is added to the operating cost function [100]. 4+ iS expressed as follows:

N-1
cc
Jbatt = Z (W-Pbatt(’f)-Ts + 5deg-P§att(k)-Ts)
k=0

(111.13)

where CC, Cycles, Ppqrr(k), 8404 are respectively the battery capital cost per KWh (CC=135.38
$/KWh), number of life cycles (Cycles=1000 for a depth of discharge DoD =80%), the battery
power at time k, and the degradation cost (8,189210‘9 $/W2h).
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3.4.1.2 Diesel generator cost function
The (DG) total cost function J, consists of the fuel consumption cost function jggel, the start-up
cost function J52, and the maintenance cost function JJ%. It can be expressed as follows:

Joe = Jhe + 35U + I8 (111.14)

A piecewise approximation of the fuel consumption, proposed in[96], is applied. The piecewise
linearized fuel consumption function is shown in Fig.3.5. For more details on the approximation
method, it can be referred to[96]. Thus, the fuel consumption cost can be expressed as:

fuel Z Afuel F(k) T

(111.15)

where A1, F (k) are respectively the price of diesel per liter (A¢,¢; = 1.05$/L), and the fuel
consumption in L/h. Knowing Pp (k), F (k) is determined based on the plotted curve in Fig.3.5.
The constant parameters are defined in Table 3.2 The start-up cost function J52 corresponds to the
fuel consumed during the start-up phase before any power production. The start-up cost is the cost
per start-up (ésy = 0.011 $) times the number of start-ups over the time horizon. This can be
calculated as:

N-1

DG = $su- Z O-DG & (k)

k=0
(111.16)
Where, a5 (k) is a binary variable that equals one if the (DG) is turned on at time k and zero
otherwise. o2 (k) is defined as:
a3 (k) = max (sign(Ppg(k + 1)) — sign(Pps(k)), 0) (.17

Finally, the maintenance cost depends on the operation time of the (DG). It can be calculated as
the maintenance cost per hour (x, = 0.03 $/h) times the total operating hours of the (DG):

N-1

I8 = - ) sign(Pog ().,

k=0

(1.18)
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Fig.3.5 Piecewise approximation of the (DG) fuel consumption function.

3.4.2 Pollutant gas emissions cost function

Fossil fuel consumption produces toxic gases such NO,, CO,, CO, and SO,. These gas emissions
are the main source of air pollution and greenhouse gases. The pollution aspect can be considered
by introducing the quantity of emitted toxic gases in a (DG) application, («) expressed in
(g/KWHh), and the expenses related to environmental damages resulting from the pollutant gas
emissions, (u) expressed in ($/Kg)[73]. All parameters’ values are listed in Table 3.2. Thereby,
the pollutant gas emissions cost function can be represented as:

N-1
Jemissions = Pemiss- Z Ppe (k) T
k=0

Bemiss = 10_3(“N0x-l11vox+acoz-ﬂc02+aco-lico +a502-lisoz)
(111.19)

4.3 Converters' losses cost function

Penalty coefficients for the battery, (DG), and utility grid converters’ losses are introduced and
expressed in ($/KWh). The converters' losses cost function can be expressed as follows:

=

-1

— loss loss
]conv_losses - (6batt' Plosses_bidirec_conv (k) + 6DG -Plosses_3¢_DG_rec (k)
0

+ 651)‘52 Plosses_3¢_grid_conv (k)) . Ts

=
I

(11.20)
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Where, 61955, 61055, and 55‘;?2 are respectively the penalty coefficients for converters’ losses of the

battery, the (DG), and the utility grid. As seen, the losses in the DC/DC boost of the PV, and the
3¢ rectifier of the (WT) aren’t included in equation (II1.20) and so, cannot be minimized. Since
the PV and (WT) are non-dispatchable sources and continuously operate in MPPT mode, their
generated power is imposed by the MPPT and so are the resulting converters’ losses. As a result,
the losses in the DC/DC boost of the PV and the 3¢ rectifier of the (WT) can only be included to
obtain an accurate model but cannot be controlled. The penalty coefficients for converters’ losses
are found in Table 3.2.

3.4.4 Problem constraints

In any applied EMS, the optimal solution is usually subject to several constraints such as lower
and upper bounds of the decision variables, equality, and inequality equations, etc. In this study,
several constraints are imposed to emulate a realistic and practical microgrid scenario. In this
paragraph, all the constraints of each microgrid unit are detailed separately.

3.4.4.1 Power balance constraint

To maintain a stable DC microgrid performance, the load demand should be covered unceasingly
by existing sources for the whole operating time horizon. Adding this constraint, the stabilization
of the common DC bus voltage is automatically secured. Thus, at each sampling time k, the
generated power should be equal to the demanded one. This is known as the power balance
equation which can be expressed as:

PPV(k) + Pwind (k)+Pbatt(k)+ Pgrid (k)+ PDG (k) = Pload (k) + Z Pconv_losses(k)
(111.21)

With,

Z Pconv_losses (k) = Pboost_losses (k) + Plosses_3q§_WT_rec (k) + Plosses_PMSM (k) +

Plosses_bidirec_conv + Plosses_3¢_grid_conv (k) + Plosses_3¢_DG_conv (k) (I I |-22)

3.4.4.2 Utility grid constraints
Lower and upper bounds are fixed to limit the purchased/sold power from/to the utility grid. This

can be represented as:

Pgrid_min < Pgrl’d (k) < Pgrid_max (|||.23)

Where, Pyria min, aNd Pyrig max are respectively the maximum allowable power to be sold to the
utility grid and to be purchased from the utility grid. These parameters are found in Table 3.2.
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3.4.4.3 Lithium-ion battery constraints

As ESS, the lithium-ion battery has an instrumental role in the DC microgrid especially in case of
deficit or excess in energy production. Therefore, the safe operation of the battery must be
guaranteed to extend its lifetime and optimize its performance. This can be acquired through the
constraints that are defined. First, the battery power is restricted in terms of maximum
charged/discharged power:

Pbatt_min < Pbatt(k) < Pbatt_max (“I-24)

Where, Ppatt min, @Nd Pyaee mayx are respectively the maximum allowable power to be charged and
discharged into/from the battery. The maximum allowable charge/discharge is fixed at 0.43C
(217.4 A).

Second, the battery-safe operation is ensured by limiting its state of charge (SOC) within allowable
limits. The allowable limits, defined in Table 3.2, are based on similar microgrid applications that
include lithium-ion batteries [88], [153]. The SOC constraint is then expressed as follows:

SOCpmin < SOC (k) < SOCyax (111.25)

Lastly, the battery's initial state at the time (k = 0) should be retrieved at the end of the time
horizon (k = N) to further standardize and optimize the battery performance:

S0C(k =0) =SOC(N) (111.26)
3.4.4.4 (DG) constraints

For proper and efficient operation, (DG) manufacturers define an output power range for
generators. Then, when turned on, the (DG) operation is limited by lower and upper bounds (in
this paper a range between 25%-100% of the rated power is applied)[98]. This can be expressed
as:

sign(Ppg (k). Pog_min < Ppg (k) < sign(Ppg(K)). Ppg_max (11.27)

The function sign () is introduced since the DG power is null when it is turned off and between the
allowable limits when it is turned on.

Besides, and following the predefined objectives, the (DG), as a backup pollutant source, intercepts
directly to feed the load in case of an energy deficit, and/or to charge the battery. Hence, at each
time k none of (DG)’s produced power should be sold to the utility grid. By this, the (DG) main
functionality is secured. This can be expressed as:

Ppe(k) < Sign(PDG (k)) (Proaa (k) — Ppy (k) — Pyr (k) + Ppgee (k) (111.28)
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3.5 Implementation of optimization approaches

Several techniques can be used to solve the optimization problem. In this thesis, two techniques were
applied: Dynamic Programming (DP) and Genetic Algorithm (GA).

(DP) is a deterministic technique that requires a certain modification of the problem structure to
find the optimal solution and is based on the principle of Bellman[154]. In (DP), the problem is
divided into successive discrete states to find the global optimum. At each calculation step, the
algorithm considers all meshed decision variables and calculates the least costly transitions
according to a criterion to optimize[89]. The total cost function corresponds to the sum of the
operation cost of each operating unit for each sampled period. The DP was successfully applied in
similar optimal scheduling problems of microgrids including several sources and ESS and yielded
improved results in comparison to other optimization algorithms [88], [90].

(GA) is the second metaheuristic optimization method that is applied to solve the optimization
problem. Unlike (DP), which is considered a “step-by-step” optimization algorithm, (GA) is an
evolutionary search algorithm that is based on an analogy with the theory of the natural evolution
of species. (GA) considers the problem with a set of (N x Number of decision variables = 3N)
variables for the overall time horizon planning. It has as a starting point a population composed of
a set of distributed solutions (or individuals) randomly in the search space. This method is by
nature stochastic so that two successive runs don’t necessarily lead to the same result as different
final populations can be obtained. (GA) was applied in [155] and [152] to manage and schedule
the generation and consumption in a microgrid to minimize the operating cost and greenhouse gas
emissions.

SOChin = 20% - SOChax = 90%
S0C(1) =50%
P min = 13.75, Py jpin = 25.5
P; min = 37.6, P3 jpax = 55
C;=64,C,=11.41,C; =15

Battery SOC limits

(DG) fuel consumption function parameters:
P (KW)and C (L/h)

Utility grid power upper and lower limits (KW) I}g”d—mm :—_6300
arid max —

Pyatt min = —54.25
Phatt max = 54.25
PDG_min = 1375
Ppg_max = 55
acoz = 232037, a’Nox = 4.331
Aeo = 232, aSOZ = 0.464
:u'COZ = 00012, :uNOx = 0.27

Hco = 0022, :uSOZ =0.12

Penalty coefficients for converters’ losses Spos = OpES = 6l9% = 1.14 $/KWh

Battery power upper and lower limits (KW)

(DG) upper and lower limits when turned on (KWW/)

Emission levels (g/KWh)

Emissions parameters
Cost ($/Kg)

Table 3.2 Optimization parameters.
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The application of two different methods serves primarily as a means of comparison for validation
of the obtained results. On the other hand, by choosing these two methods, the problem is tackled
from two different approaches. In the first, the (DP) discretizes the decision variables and evaluates
each possible transition to find the optimal route by reconstructing a trajectory vector from the last
to the initial state, while the second is an evolutionary algorithm that considers the overall problem
variables on the whole time horizon and produces successive generations to find the optimal
solution.

3.5.1 Dynamic programming

3.5.1.1 Problem formatting

In (DP), the problem is seen as a succession in time of discrete states of the system. The outputs
of the optimization problem are [Pbatt_ref PpG ref Pgrid_ref] . Referring to the problem
constraints, the actual number of decision variables is two, while the third variable can be deduced
from the power balance constraint (equation (111.21)). Hence, any two out of the three power
reference outputs: Ppqrr refs Pog ref» N Pgriq rer Can be selected as decision variables for the DP
algorithm. Ppg o and Ppq o5 are selected as decision variables for the optimization problem.
As (DP) is a step-by-step discrete algorithm, it is applied to discretized state equation systems. In
the current problem, the battery SOC is considered as a state variable of the system as it can be
expressed in discretized form as:

SOC(k + 1) = foare(SOC(k), Ppaee (K)) (111.29)

Where, SOC(k + 1), SOC(k), Pyt (k), and f, 4 are respectively the battery’s SOC at time k +
1, the battery’s SOC at time k, the battery’s power at time k, and the battery-discretized dynamic
model. Equation (I11.29) is called the state equation of the system for which SOC is the state
variable, and Py, IS the decision variable. The battery-discretized dynamic model and the
mathematical expression of f;,;; are detailed in Appendix E. The total cost function and the
constraints over the whole-time horizon are the same ones represented by equations (111.11) to
(111.28).

3.5.1.2 Mesh of decision variables and state equation

In (DP), each of the selected decision variables {Pbatt_ref,PDg_ref} is meshed. Having linked the
battery’s SOC to the charged/discharged power Ppq;: rof through equation (I11.29), SOC can be
selected instead of Ppgr e along with Ppg . @s meshed variables without loss of generality.
Thus, {SOC, PDG_ref} meshed variables are characterized by a time step At over the planning
horizon and are discretized following a sampling step denoted ASOC and AP, respectively for
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SOC and Ppg .. Fig 3.6 (a) and (b) represent the meshed decision variables SOC (Fig 3.6 (a))
and Ppg rer (Fig 3.6 (b)).

SOC(%) PDG_ref(KW)
A

SOCingz - .. """"" .. IASOC
..... o--—-—--—-n

----------- 0/ol0
---------- oo

| —t >
0 f 24h—2i‘-1‘ 24fl—ﬂf 24}1 t(hours 0 A 2at 24n-2At 24h — At t(hours)

SOCin ==

®
O
.

0

(a) (b)
Fig.3.6 Discretization of the decision variables to states characterized by a time step At: (a) SOC
discretized with a sampling step ASOC and (b) Ppg ¢ discretized with a sampling step APp;.

Each decision variable is discretized at each time step At with a fixed sampling step. For instance,
in Fig.3.6 (a) and (b), and only for illustration purposes, ASOC is fixed at 1% and APp; to 1 KW.
The SOC constraints, expressed in equations (111.26) and (111.25), are considered in Fig.3.6 (a).
Only one SOC value is attainable at the beginning and the end of the planning horizon and the SOC
variable is discretized between its minimum and maximum admissible values, respectively
SO0Cmin = 20% and SOCyp0x = 90%.

Same t0 Ppg ref, represented in Fig.3.6 (b), when the (DG) is turned on it can exclusively operate
between a minimum and a maximum admissible value, denoted respectively Ppg min and Ppg max-
Ppg rer Values that lie in the range of [0, Ppg nin ] aren’t discretized as they belong to the restricted
zone in light blue (constraint represented by equation (111.27)). To choose the time step At over
the planning horizon and the sampling steps ASOC and APp; several factors should be considered.
Knowing that all data inputs have the same sampling period T, = 1/6 hour, the minimum time
step for the DP algorithm, At,,;,, is limited by T,. Selecting values for At lower than T, would
irrelevantly slow down the algorithm as all inputs remain constants for a whole sampling period.
On the other hand, higher values than T, speeds up the algorithm but ends up with a suboptimal
solution as several troughs and peaks of load demand or production may not be identified by the
optimization problem which has a slower dynamic than the real system. Thereupon, At is fixed at
T, = 1/6 h and the time-space is divided into N points characterizing N stages of evaluation of
the optimization algorithm. As At = T, N is always expressed following equation (111.1) and is
equal to 144.

In turn, a trade-off is achieved when selecting ASOC and APy as extra-small values add
insignificant states to test when searching for the optimal solution which slows down the algorithm.
Contrarily, though high values of ASOC and APy speeds up the algorithm, it reduces the
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resolution of the decision variables which impacts the optimal solution. After several trials with
different ASOC and APy values, the best trade-off is found for a ASOC = 0.25 % and APy, =
0.1Ppg max = 550W. Hence, the SOC state space is divided into M + 1 points separated by the
fixed sampling step ASOC = 0.25%. M is calculated as follows:

SOCmax—SOCpmin _ 90—20

= = 280 (111.30)
ASOC 0.25

By this, SOC(t) ~ SOCpyn + j . ASOC forj=0,...M (111.31)

M =

Hence, the Ppg ¢ State space is divided into Z + 1 points separated by the fixed sampling step
AP,; =550 W. Z is calculated as follows:

7 = PpG_max—PpG min — 55_13'7_5 =75 (|||32)
APpg 550%x103
Ppg ref(t) = Ppg_min + €. 4Ppg for£=0,..,Z (111.33)

Fig.3.7 (a) highlights two admissible control strategies denoted 7 (red arrows) and 7" (purple
arrows). These two control strategies drive the battery SOC from the initial state SOC(1) = 50 to

S0C(%)

SOC o

S0Cin =

Ll 4

(@)
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Fig.3.7 (a) Example of two admissible control strategies = and 7’ in the SOC state space (b) Example of
two admissible control strategies r and 7z in the Ppg ... State space.

the final state SOC(N) = 50 through different admissible trajectories. The same strategies of
control 7 and 7" correspond to two different Pp ... trajectories depicted in Fig.3.7 (b). The main
objective of the (DP) algorithm is to find the optimal sequence or control strategy to retrieve the
optimal SOC and Pp ,.f States trajectories. The evolution of the SOC from a state SOC;, at time
k to the state SOC;, at time k + 1 corresponds to a value of the decision variable Pb’;'t’f expressed
following the battery discrete function f;,:+ (Appendix E) :

Pl () = Q(TL). Vgl (=) (111.34)

Where, Vb{;;’f and Q(T,) are respectively the battery voltage corresponding to the transition from
S0C;, at time k to the state SOC;, at time k + 1 (Volts), and the battery maximum capacity at
ambient temperature (Ah).

In turn, each state ij;;’f corresponds to a set of (Z + 2) Ppg .y maximum possible states. After
evaluating all constraints that include Ppg .5 variable, the number of Py .., admissible states
may vary from one, corresponding to a turned-off (DG) state (Pps oy = 0), to Z + 2 for which
the turned-off state and the whole interval [Ppg min » Pp max] @re admissible.
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Hence, the approach followed when applying the (DP) algorithm consists of finding the optimal
evolution sequence of:

1. the battery’s SOC between the initial and the final instants of the whole-time interval. From
this sequence, the optimal charged/discharged battery power at each instant k is computed
following equation (111.34).

2. The (DG) reference power between the initial and the final instants of the whole-time
interval. The whole sequence should comply with all predefined constraints.

3.5.1.3 Algorithm implementation:

The implementation of the (DP) algorithm is initiated by creating a cost matrix R € RM+D*N,
The filling of this matrix is done recursively starting from k = N and returning until k = 1
following Bellman’s principle detailed in Appendix E.2. Each element (j, k) of this matrix
represents the optimal cost to go from SOC (j) state at time k to the final state SOC(j) at time N.
Formally:

R(jy,N)=0 (111. 35)
R, k)=min (RG" k+ 1)+ Vot (ko J,J' Lope)) fork=N-1,..,1 (111.36)
1!

Where, yiot(k, j,j's lopt) represents the total cost of transition from the state SOC; at time k to
S0C;, at time k + 1 for optimal (DG) operating state. 1, is the index of the optimal (DG)
operating state. It is equal to:

lopt -

{—1 if (DG) is turned — of f (11, 37)

' if (DG) isturned —on
Yiot(k, j, ' lopt) 1S expressed as:

ytot(k,j,j,, lopt) = nljljiln (Ytot(k: j: j’! _1): Vtot(k. j: j,’ 'gl)ﬂ Vtot(k, j’j,’ '€2)l ey ytot(kﬂ j’j,’ ‘3))

(111.38)

Where, vt (k, j,j’, £) is the total cost of transition from the state SOC; at time k to SOC;, at time
k + 1 for a (DG) operating state index €. Having the index ¢, Ppg yef’s corresponding value is
retrieved through equation (111.33). The maximum number of (DG) admissible states is Z + 2.
Finally, v.t(K,j,j’, £) can be expressed similarly to the cost expressions from equation (111.11) to
equation (111.20) except that summation over the whole time horizon is omitted in the (DP) cost
equations and the symbol "y" is adopted to express each cost function instead of the symbol "J”.
Hence, the new modified (DP) cost functions are:
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g’ i.ir (SOC;—SOCj,
P (k) = Q(Ta)'Vb]a]tt( ]At : )

b (k) — 0 if turned — of f
pe (k) = { PpG min + £.4Ppg if turned —on
(111.39)

Vtot(krj'j’r f) = (ocyoc (k,j,j’, f) + (emissions)/emissions (k'j'j,' {)) +

(conv_lossesyconv_losses (k,j,]", ‘B) (l I |.40)

Yoc(k:J, 7' 4) = Yaria(ko j,J', €) + Vaee (K, J, ' €) + ¥pe (. J, ', £) (111.41)

Vgrid(krj'j,r {)) = (65115;1 Ppur(k) - 6951(311(611 Psold (k)) LAt (|“42)
..y cc i jr ijr

Voace (e j,J' ) = 5o P (k). At + Sgeg. Py (). At (111.43)

( Yoo jij', ©) = v2ect(k,j,j', ) + vl (k, j,j', €) + vy (e, j, ', )
yIE ke, j, i, €) = Apyer. F(K). At

U . on (1.44)
Yoe (1, j", ) = &sy-apg (k)
Vo6 (K, jij's ) = xu. sign(Ppg (k). At
Vemissions(k;j'j’: f) = .Bemiss- PDG (k) At (I I |-45)
Vconv_losses(k'jjjl' f) = (6113?15tst- Plosses_bidirec_conv (k) + 63)655- Plosses_3q§_DG_rec(k) +
6511%2 Plosses_3¢grid_conv(k)) At (“I-46)

We take note that:

e The RESs operating cost isn’t included in the (DP) equations since their generated power
serves as input to the optimization problem and not as a decision variable. Hence, the RESs
operating cost is always calculated apart following equations (111.5) and (111.6).

e All constraints presented in equations (111.21) to (111.28) are kept the same when applying
the (DP) algorithm as they all target the system at a specific time k and not for the whole
time horizon.

e To compute the utility-grid power and the converter losses at time k, equations (111.2) and
(111.21) are utilized.

The element R (j,, 1), of the matrix R, which corresponds to the initial state of charge, contains
the value of the total optimal cost to move from the initial state of charge SOC;, at time k = 0 to
S0C;, attime k = N. Besides, R is a sparse matrix as the elements corresponding to inadmissible
SOC levels are not taken into consideration. In parallel with the construction of the cost matrix,
two matrices with the same dimension denoted SS°¢ and SPpé-ref are used to store respectively:

1. the index of the optimal found SOC state of the next step.
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2. the index of the optimal Py ,.r(k) of the current step for the corresponding SOC
transition SOC; to SOC;,.

An element SS9€(j, k) contains the index, j', of the next step which corresponds to the optimal
path starting from state SOC(j) at time k towards the end of the cycle. However, an element
SPparef (j, k) contains the index [, , of the current step at time k for the corresponding SOC
transition SOC; to SOC;,.

Finally, once the matrices SS°¢ and SPpé.ref are filled, an optimal path vector denoted T is built
and corresponds to the minimum cost over the whole-time horizon.

T, which length is N, is expressed as follows:
T(1) = S0C(j,) (11.47)
T(k) = S5°C (T(k — 1),k — 1), fork=2,..,N (111.48)

The diagram in Fig.3.8 illustrates the method followed to implement the (DP) algorithm on a
representative example with a limited number of points.

3.5.1.4 Simulation results :

To prove the viability of the DP algorithm in solving a multi-objective optimization problem,
several simulation tests are conducted. First, as mentioned before, the preference between each of
the three optimization goals is accessed through the corresponding weights in the total cost
function of the equation (I11.11). The three weights {,¢, {emissionss aNd {cony tosses are real
positive values € [0,1]. First, weights equal to unity are set {,c = {emissions = {conv tosses = 1 10
examine the effectiveness of the DP in finding a feasible solution to the proposed problem
conveniently to all imposed constraints. The simulation plot results for the two tested days are
revealed in Figures 3.9, 3.10, 3.11, and 3.12. The share of the energy mix and the corresponding
operating costs on the winter and the summer days are respectively summarized in Table 3.3 and
Table 3.4.

The results of the winter day are shown in the left plots (Fig.3.9 (a), 3.10 (a), 3.11 (a), and 3.12
(a)), and the ones of the summer day in the right plots (Fig.3.9 (b), 3.10 (b), 3.11 (b), and 3.12 (b)).
For both days, the (DP) algorithm converges and presents effective results by finding a feasible
solution for the proposed problem. As seen in Fig.3.9 (a) and (b), the unmet load power is
purchased from the utility grid at low pool prices (between 0:00 A.M and 6:00 A.M), while the
battery and the (DG) intervene to cover the load demand at high pool prices (during the evening
load peak). Besides, when turned on, the (DG) average produced power is always close to its
maximum value. Hence, a low deficit in power production is covered by the battery operating in
discharge mode and/or the utility grid. On the other hand, when the power deficit is high the EMS
prioritizes the (DG) over the battery and the utility grid to provide the required power. All low and
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upper power bounds of the (DG), the battery, and the utility grid aren’t exceeded for the whole
time horizon of the two tested days.

The battery’s SOC optimal trajectory on the winter and the summer days are respectively
represented in Fig.3.10 (a) and (b). The SOC curves of the two days lie between the minimum and
maximum admissible values and the SOCs initial states at the beginning of the time horizon are
equal to the SOCs at the end of the day SOC(k = 0) = SOC(k = N) = 50%, conveniently to the
constraint imposed in equation (I111.26). Moreover, the compliance with the SOC constraint of
equation (111.26) can be verified through the battery’s total charged and discharged energy in
Tables 3.3 and 3.4 where both quantities are almost equal for the two tested days: E4;s paee =
E.n_paee- Hence, the initial state of the ESS is retrieved at the end of the day which verifies equation
(111.26). The toxic gas emissions on the winter and the summer days are respectively represented
in Fig.3.11 (a) and (b) and show higher values on the winter day. The total cumulative mass of
emitted toxic gas on the winter day is almost five times greater than the summer day. The same
ratio can be retrieved when evaluating the total amount of produced (DG) energy on winter and
summer days. Referring to Table 3.3 and Table 3.4, E,; = 187.64 KW h for the winter day and
36.4 KW h for the summer day.

Therefore, the ratio between the produced energy on the winter and summer days is Epg, /Epg, =

5.15. Lastly, the CO, emissions account for 97% of the total toxic gas emissions and the rest is
divided between NO,., SO,, and CO emissions.
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Fig.3.8 Illustrative diagram of the applied DP algorithm.
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Fig.3.9 Optimal (DG), battery, and grid power references on (a) the winter day and (b) the summer day.
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Fig.3.10 Battery’s SOC optimal trajectories on (a) the winter day and (b) the summer day.
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Fig.3.11 Toxic gas emissions on (a) the winter day and (b) the summer day.
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Fig.3.12 Losses in (DG), battery, and grid converters on (a) the winter day and (b) the summer day.

Fig.3.12 (a) and (b) show the losses of dispatchable converters, which are the (DG) 3¢ rectifier,
the utility grid 3¢p converter, and the bidirectional DC/DC converter of the battery, respectively on
the winter and the summer days. The losses in each converter are proportional to the power
transiting from/to its corresponding unit. Referring to Tables 3.3 and 3.4, the total energy loss in
dispatchable converters is higher on the winter day (Ejoss cony = 16.88 KWh) comparing to the
summer day (Ejpss cony = 11.58 KWh) as a higher energy mix is provided from dispatchable
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sources on the winter day compared to the summer day. The total energy mix of dispatchable
sources denoted Ey;y; gisp , IS Xpressed as:

Etot_disp = Epur + Esoia + Eais patt + Ech_pate + Epg (111.49)

Referring to Tables 3.3 and 3.4, on the winter day E;y; 4isp = 534.53 KWh , and on the summer
day E¢or aisp = 373 KWh. Thus, the higher reliance on dispatchable sources during the winter
day results in higher losses in the corresponding converters compared to the summer day.

Finally, a profit of 29 $ is achieved on the winter day when comparing the total operating cost
(Joc = 152.29 $) with the one obtained when the ESS and the (DG) aren’t included in the DC
microgrid (J,. = 181.25 $). This profit accounts for 16 % of the 181.25 $ operating cost. For the
summer day, the made profit is 18.5 $ as the actual total operating cost is (J,. = 99.51 $), while
the one with no ESS and (DG) (J,. = 118 $). This profit accounts for 15.66 % of the 118 $
operating cost.

Winter day (18/02/2021)

- Total load energy consumption: E; .4 = 679.11 KWh
Load consumption | - Total PV effective generated energy: Epy p,s = 152.01 KWh
and - Total WT effective generated energy: Eyr p,s = 156.9 KWh
RESs production | - Total RESs effective generated energy: Epy pus + Ewr pus = 308.91 KWh

RESs cost function: Jggss = 2.25 $

- Total purchased energy: Ey,,, = 200.62 KWh
Utility grid - Total sold energy: Egp;q = 0.77 KWh

Utility grid cost function: /.4 = 73.89 §$

- Total discharged energy: Egis pare = 72.96 KWh
Battery - Total charged energy: E¢p paee = 72.55 KWh

Battery cost function: J,,; = 12.62 $

- Total operating time: 4 hours 20 minutes

- Total number of start-ups: 2

- Total diesel consumption: 59.63 Liters

- Total emitted toxic gas: 44.9 Kg (from which 97% accounts for CO,)
- Total generated energy: Ep; = 187.64 KWh

(DG)

(DG) cost function: J,; = 63.53 $

Losses in dispatchable

converters Total energy loss in dispatchable converters: Ejyss cony = 16.88 KWh

CPU time 5 minutes 14 seconds

Total operating cost 0
function Joc = 152.29 %

Table 3.3 Summary of share of the energy mix and corresponding operating costs on the winter day
(18/02/2021).
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Summer day (16/07/2021)

- Total load energy consumption: E;,,q = 604.17 KWh
Load consumption | - Total PV effective generated energy: Epy pys = 292.94 KWh
and - Total WT effective generated energy: Eyyr pys = 47.56 KWh
RESs production | - Total RESs effective generated energy: Epy pus + Ewr pus = 340.51 KWh
RESs cost function: Jggss = 1.3 $

- Total purchased energy: Ey,,, = 240.13 KWh
Utility grid - Total sold energy: Eo;q = 1.18 KWh
Utility grid cost function: /;,;4 = 79.29 $

- Total discharged energy: E4is paee = 47.61 KWh
- Total charged energy: Ep paee = 47.74 KWh

Battery .
Battery cost function: J, . = 7.44 $
- Total operating time: 40 minutes
- Total number of start-ups: 1
- Total diesel consumption: 10.72 Liters
(DG) P

- Total emitted toxic gas: 8.7 Kg (from which 97% accounts for CO,)
- Total generated energy: Ep; = 36.4 KWh
(DG) cost function: J,; = 11.48 $

Losses in dispatchable

converters Total energy loss in dispatchable converters: Ej,ss cony = 11.58 KWh

CPU time 4 minutes 25 seconds

Total operating cost
function

Table 3.4 Summary of share of the energy mix and corresponding operating costs on the summer day
(16/07/2021).

3.5.2 Preference between optimization objectives

The minimization of the total operating cost, the toxic gas emissions, and the losses in operating
converters are fixed as three distinct optimization objectives. To prioritize any of the defined
objectives over the remaining ones, a higher weight should be assigned in the main objective
function to the corresponding objective. As prementioned, the corresponding weights (.,
Cemissions » aNd {eony 10sses are real positive values € [0,1]. Though the three objectives are
expressed distinctly through their proper weights in the main objective function, this doesn’t mean
that they are practically disassociated. In other words, the achievement of any of the three
objectives may foster or restrict the attainment of the remaining ones. Therefore, the impact of
achieving one objective on the remaining ones should be studied apart to conveniently find the
best weight combination for a specific goal.
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(K\Wh)

loss-conv

L

Consequently, a Pareto of solutions exists based on the user’s preferences and goals priorities. For
instance, the user may select only a prime objective with no preferences between the remaining
objectives, or beside the main priority goal which is assigned the highest weight out of the three,
the user may set a second priority goal, etc.

For this, several simulation tests are conducted on the winter day, taken as a case study, in which
one weight is set to one and the two remaining are varied to assess the impact of each of the
variable weights on the total operating cost function J,., the (DG) total produced energy E, and
the total energy loss in dispatchable converters Ej,gs cony OVEr the 24-hour time horizon. The three
variables /., Epg, and Ej,ss cony are selected as each of them represents one of the three defined
goals. By evaluating these three variables with different weight values, the impact of the weight’s
selection on the attainment of defined goals is revealed.

(a)

0.6

0.4 0.2

conv-losses

20

0.8
08 0.4

Ccorwr-\osses

0.2

Ccnrw-\osses

Fig-3-13 (a) EDGi (b) Eloss—conva and (C) ]oc as functions of Zoc and (conv—losses for (emissions =1
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The sampling step of variable weights is 0.1 then in each test, each of the three variables J,., Ep¢,
and Ej,ss cony COrresponds to an (11 x 11) matrix. To quantify all possible sets of solutions, a
representation of variables Epg, Ejpss—conv, aNd J,c in per unit (p.u.) of their maximum range
values is required. Ep¢, Ejoss—conv, @Nd J, are respectively expressed in (p. u.) as follows:

E _ Epg _EDG_min
D u -
Gp EDG_max_EDG_min

Eloss—conv _Eloss—conv_min

Eloss—conv_p.u -

(111.50)

Eloss—conv_max _Eloss—conv_min

_ ]OC_]oc_min
]oc_p.u =

]oc_max _]oc_min

Where all min and max subscripts correspond respectively to the minimum and maximum values
of Epg, Eipss—conw, and J,. plotted curves for each test. By this, the three variables are now
represented in p.u. and by applying the "minimum" function to any of the variables, the optimal
weights combination is retrieved. In the first test, the emissions weight, {omissions 1S fixed at one,
Coc aNd {oony 10sses are variables. The plot results are depicted in Fig.3.13 (a), (b), and (c). All
possible solutions based on user preferences are detailed in Table 3.5.

Cemissions = 1

: . Applied i
Goals preferences Optimal weights PP Obtained Results
formula
. . ssions = 1 =
- Prime goal: reduction Semissions . Epc = 0 KWh
Of tOXiC gas emissions (oc =0 min (EDG_p.u) Eloss—conv(KWh) € [13'4’1 4 17'85]
v (conv_losses € [0'1] ]oc($) € [157-7 ) 180-25]
- Prime goal: reduction Comissions = 1
: o i . Epc =0 KWh
of toxic gas emissions {oc=0 min (Epg pu
_ ) Eloss—cony = 13.41 KWh
- Second goal: reduction V Cconv_tosses +Elo55-conv_pu) J..=157.7%
of losses in converters €[0.1,1] >
- Prime goal: reduction {omissions = 1
ftoxi o " 0 (E Epc = 0 KWh
of toxic gas emissions Coc=0 min (Epg pu
_ _ Eloss—cony = 13.41 KWh
- Second goal: reduction V' Cconv_losses +ocpa) Jo.=157.7%
of operating cost €[0.1,1] OC
- Prime goal: reduction
of emissions {emissions = 1 min (Epg_pa Ey. = 0 KWh
- Equal preferences (e =0 +] E — 13.41 KWh
between the reduction V Leonv. tosses N bf”"” ) l"”_]“’m’__157'7 s
of the operating cost € [0.1,1] loss—conv p.u o '
and losses in converters

Table 3.5 Optimal weights and corresponding results for {,issions = 1 and different goals preferences.
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loss-conv

For example, if the user selects in addition to the prime goal which is the reduction of toxic gas
emission, a second goal priority corresponding to the minimization of the total operating cost, the
matrices of Epg 5,4, and Joc p, are added and the minimum of the obtained matrix corresponds to
the best weights combination. It can be seen from Table.3.5 that the optimal weights for all goals’
preferences cases are {omissions = 1, $oc = 0, and V {cony 10sses € [0.1,1] giving the following
results Epg = 0 KWh (Epg pu = 0p-1u), Joc = 157.7$ (Joc pu = 0.21 p.u), and Ejgss—cony =
13.41 KWh (Ejos5-conv pu = 0 p.u).

In the second test, the operating cost weight, {,. is fixed at one, {emissions AN {cony 10sses are
variables. The p.u. variables are computed following equation (111.50) based on the new maximum
and minimum values obtained from the new matrices Ep¢, Ejoss—conv, aNd Jo . The plot results
are depicted in Fig.3.14 (a), (b), and (c).
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loss-conv

In this case, {,. = 1, one optimal weights’ combination solution is found for all possible goals’
preferences. The optimal weights are {,. = 1, V {gmissions € [0.2,1], and {zony 10sses = 0.8 and
yields the following results : J,. = 152.3$ (Joc pu = 0p.u), Epg = 191.86 KWh (Epg py =
0.017 p.u), and Ejps5—cony = 17.66 KWh (Ejs5—conv pu = 0.32 p.u).

In the last test, the losses in converters' weight, {cony 1osses 1S fixed at one, {emissions @and {,¢ are
variables. The plot results are depicted in Fig.3.15 (a), (b), and (c). Here two different optimal
weights combination are obtained depending on the goals preferences: 1) If the reduction of
converters losses is the only prime goal, 2) the reduction of converters losses is the prime goal and
the reduction of toxic gas emissions is the second preferred goal, and 3) if there are equal
preferences between the reduction of toxic gas emissions and operating cost as second goals one
optimal weights’ combination is obtained and equal to: {iony 1osses = 1, o =0, and

v(emissions € [0'1]-
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200
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50 4
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Fi9315 (a) EDG’ (b) ElOSS—COTlTJ’ and (C) ]OC as funCtlons Of (OC and (emissions for (COTL'V—[OSSES = 1

133



This weights’ combination yields the following results, Joc = 157.7$ (Joc pu = 0.94p.u),
Epc = 0KWh ( Epg pu =0p.u ), and Ejpss—cony = 13.41 KWh ( Eioss—convpu = 0p.u ):
However, if the minimization of the operating cost is set as a second goal after the reduction of
losses in converters the optimal weights’ combination iS : {cony josses = 1, {oc = 0.4, and
V {emissions € [0.4,1]. This yields the following results: J,. = 153.04 $ (Joc py = 0.12 p.u),
Epg = 13741 KWh ( Epg pu = 0.72p.u), and Elpss_cony = 1546 KWh ( Ejoss—convpu =
0.59 p.u).

Finally, to highlight the impact of weights’ selection in achieving each of the three optimization
goals, the maximum and minimum values of E;yss—conv» Epg, and J,. obtained out of the three
tests are summarized in Table 3.6. The corresponding weights’ combinations of each minimum
and maximum value are stated. As seen from the results, the attainment of any of the three goals
is tremendously impacted by the selection of the three weights and not only by the one assigned to
the desired goal. Hence, if any preference between the proposed goals is intended, the construction
of Epg, Ejoss—conv, @nd J,. matrices presented in this section and the optimal weights selection
method should be conducted. The weights selection process should precede the application of
offline optimization. Meanwhile, if there aren’t any preferences between the defined goals, all
weights are set to one.

Minimum | Corresponding weights | Maximum | Corresponding weights
Cemissions = 1
v {losses_conv € [0,1] ( =1
$oc =0 oc
Epc 0KWh 251.83 KWh V {omissions € [0,1]
Closses_conv = 1 4 =0
V(emissions € [0,1] tossescon
$oc =0
{losses_conv =1 {losses_conv =0
V {emissions € [0,1] foc =1
Eioss—cony | 1341 KWh Soc =0 193 KWh | — Semissions € [0.1]
Cemissions = 1 {losses_conv =0
v Zlosses_conv € [0'1'1] (emissions =1
(e =0 v, €[0.61]
Coc =1 Coc =0
joc 152.3 $ v zemissions € [0'2'1] Zlosses_conv =0
(losses_conv = 0.8 Cemissions = 1

Table 3.6 The minimum and maximum Ep¢, Ejoss—conw, @Nd J,. Obtained results with the corresponding

weights’ combination.
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3.5.3 Genetic algorithm

The second method applied to solve the optimization problem is an evolutionary algorithm based
on the Genetic Algorithm (GA). The application of the (GA) highlights the following elements:

1. A principle of coding the population element. This step associates each of the points of the
state space to a data structure. It is generally placed after the mathematical modeling phase
of the addressed problem. The quality of coded data conditions the success of the (GA).

2. A mechanism for generating the initial population. This mechanism must be able to
produce a non-homogeneous population of individuals that will serve as a basis for future
generations. The selection of the initial population is instrumental as it can speed up or
slow down the convergence to the global optimum.

3. A function to optimize, or an objective function, returns a value € R* named fitness or
individual assessment function.

4. Operators for diversification of the population over generations and exploration of the state
space. The crossover operator recomposes the genes of individuals existing in the
population, the mutation operator aims to guarantee the exploration of space of state.

5. Sizing parameters: population size, number of total generations, stopping criteria,
probability of application of crossover, mutation operators, etc.

The general principle of operation of the (GA) algorithm is shown in Fig.3.16. We start by
generating a random population of individuals. To move from a generation k to a generation k +
1, the following steps are repeated for all elements of the population k. Each individual of the
current population is given a score by computing its fitness value. These values are called the raw
fitness scores. Then, the raw fitness scores are scaled to convert them into a more usable range of
values. These scaled values are called expectation values. Based on their expectations, some
members are selected as parents, and other individuals of the generation k that have lower fitness
are chosen as Elite. These Elites are passed automatically to the next generation without being
reevaluated during the reproduction phase. Meanwhile, the selected parents produce children either
by making random changes to a single parent — mutation — or by combining the vector entries of a
pair of parents — crossover. The obtained children are evaluated again and the ones with lower
fitness values are selected for the next generation k + 1. Finally, the current population is replaced
with children to form the next generation.

The algorithm generally stops as soon as one of the following conditions is met: the number of
generations reaches the maximum predefined value, the amount of running time reaches a prefixed
value in seconds, the value of the fitness function for the best point in the current population is less
than or equal to fitness limit, the objective function is no more improving during a predefined
interval of time in seconds.
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3.5.3.1 Implementation of the (GA)

To implement the (GA), the "ga " function in MATLAB is applied. This function finds a minimum
of an objective function using the (GA). The syntax of the "ga" function is the following:

x = ga (fun,nvars, A, b, Aeq, beq, Ib, ub, nonlcon) (111.51)
Where,

- x is the local minimum solution.
- fun is the objective function.
- nwvars is the dimension of the problem or the number of design variables.
- A and b form the linear inequalities in the problem, ga evaluates the matrix product
A.x <b.
- Aeq and b,, form the linear equalities in the problem, ga evaluates the matrix product

Agq-X = begq.

Population
Generation k

Computing fitness values

Scale raw fitness scores

Select parents and
Elite children

| L | |
Mutation Crossover

Replace the current population with
v children to from the next generation

Generation k + 1

Fig.3.16 General structure of the (GA).
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- b and ub are respectively the lower and upper bounds on the design variables so that the
solution is found in the range Ib < x < ub.

- Nonlcon is a function corresponding to the nonlinear constraints in the problem. It
accepts x and returns vectors C and C,,, representing the nonlinear inequalities and

equalities respectively. ga minimizes the function such that C(x) < 0 and C.4(x) = 0.

The flow chart showing the main steps of this algorithm is given in Fig.3.17. According to the
operating principle of the algorithm, an initial population consisting of a number N,,, of
individuals is created, each of these individuals forming a specific combination of tuning
parameters to be optimized. At each step of the algorithm, the total cost function for the whole-
time horizon, J;,¢, iIs computed to find the fitness value of each individual. Moreover, all applied
constraints are verified for each individual in the population. The next step is to select specific
individuals to whom crossover and mutation operations are applied. The new individuals created
in this stage are again evaluated to retain the best individuals or the individuals who adapted best
to the imposed criterion. These individuals form the population of the next generation that
undergoes the same process as its antecedent. The algorithm stops if the chosen stopping criteria
are satisfied.

Random Generation
of the initial population

Evaluation of each individual

Selection of individuals

Application of mutation
and crossover operators

A 4

Selection of
Elite children

A 4

Evaluation of
created individuals

A 4

| Creation of a new population |

Stop conditions
satisfied?

Fig.3.17 (GA) operation flow chart.

Choice of the
best individual
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The genetic algorithm presents standard functions which are the initial population generation
function, "CreationFcn", the selection operators of the best individuals, " SelectionFcn"”, of
crossing between individuals, " CrossoverFcn " and mutation of an individual's genes,
"MutationFcn". The choice of each function must be made as well as parameters or specific options
for each of these functions. In this study, the standard operators given by default by the (GA)
toolbox are applied.

Without revealing the operation details of these functions which can be consulted in the user
manual, we simply present the functions chosen and their setting parameters in Table 3.7.
Additional parameters for adjusting the functions of the genetic algorithm are given in Table 3.8.
Indeed, the population size N, is set by default to 200 as the number of variables in the problem
is higher than 5. The number of Elite children to be directly transferred to the next generation is
specified through the "Elitecount” option parameter. In this case, the "Elitecount" is set to 10 then,
10 out of the 200 individuals of each population with the best fitness values automatically survive
to the next generation. On the other hand, the "CrossoverFraction” set to 0.8 in this case, indicates
that 80% of the remaining individuals after the selection of Elite children are chosen to undergo
the necessary crossings. This implies that 152 individuals in our case are creating by crossing,
while the rest of the population, 38 in this case, will therefore undergo a mutation in their genes to
be transmitted to the next generation.

Operator type Selected function Description
: . . Generation function of the
CreationFcn gacreationuniform L :
initial population
SelectionFcn selectionstochunif Selection function
CrossoverFcn crossoverscattered Crossover function
MutationFcn mutationadaptfeasible Mutation function

Table 3.7 (GA) Standard operators.

Parameter Fixed value Description

Number of individuals
per population
Number of Elite individuals to
survive to the next generation
Fraction of the population
created by crossing

Nyop 200

Elitecount 10

CrossoverFraction 0.8

Table 3.8 Parameters for setting the (GA) functions.
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3.5.3.2 Coding of individuals

Each individual in (GA) is represented by a chromosome. A chromosome is formed from a
sequence of genes of a certain alphabet. This could be composed of binary digits, real numbers,
integers, symbols, matrices, etc. In this case study, the chromosome consists of the decision
variables [Pyrig rer Poc res Poate rer|- Unlike the (DP) in which the number of decision variables
can be reduced to two, the formulation of the problem using (GA) gets more complicated if only
two variables are chosen. Hence, the three power references are included as decision variables,
and the battery’s SOC reference is selected instead of the battery’s power reference along with the
(DG) and the grid power references. The battery’s SOC is always represented in discretized state
form (equation 111.29). Besides, the (AG) tries to find a minimum of the objective function over
the whole-time horizon then, the chromosome should include the power references of the three
decision variables over the 24-hours. As a result, the actual number of variables of the optimization
problem, using (GA), is equal to the number of decision variables times the number of total steps
for the whole time horizon, N. In the (DP) algorithm a sampling period T, = 1/6 hour was selected
and yielded N = 144, if an equal Ty is selected for the (GA) case, the number of variables
increases to nvars = 3 X 144 = 432. Such a high number of variables makes the mission of
finding a global minimum extremely harsh and prolonged as well as reduces the convergence
probability of the algorithm. Though the resolution of the optimal power samples will be reduced,
the only practical and decent solution is to increase the sampling time to one hour at least and thus
reduce N to 24 and nvars t0 3 X 24 = 72.

Individual or
chromosome

1| Pgrid ope(0)
2 | Pgies opt(0)
3| soc(1)

4 Pgrid,apt(l)
5 | Paies opt(1)
6

50C(2)

70 Pgrid_npt (23)

71 Pdiesﬁapt(ZB)
72| SOC(24)

Fig.3.18 Parameters to be optimized forming a chromosome or an individual.
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Therefore, a chromosome or an individual consists of 72 genes as seen in Fig.3.18. Referring to
equation (I11.29), The battery’s power at the time k is a function of the SOC at time k and k + 1
then, the first battery’s power reference corresponding to (k = 0) is a function of SOC(0) and
S0C(1). Similarly, the last battery power reference corresponding to (k = 23) is a function of
S0C(23) and SOC(24). As the battery’s SOC is replacing Ppq¢ ro¢ as decision variable in the
optimization problem, the SOC vector should include N + 1 elements from (k = 0) to SOC(k =
N = 24) tobeable to build Ppq¢ o Vector consisting of N elements. To simplify the formulation
of the problem and by referring to equation (111.26), SOC(0) = 50% then, it can be

entered as a constant. By this, the SOC vector consists of 24 elements of which the first is SOC (1)
and the last is SOC(24). On the other hand, the power reference vectors Py,iq rof and
Ppe rer CONsist of 24 elements or genes corresponding to the samples from the beginning of the
24-hour time horizon ((k = 0) till the end (k = N — 1 = 23). A population made up of N, of
individuals is then created and evolves from one generation to another by adapting to an evolution
criterion.

The objective function denoted fun, is the same as presented in equation (111.11) expressed as
follows:

fun = ]tot = (oc]oc + (emissions]emissions + (conv_losses]conv_losses (“I-52)

Joc: Jemissions» AN Jeonw 10sses €XPressions are the ones figuring in equations (111.12) to (111.20).
The remaining parameters of the ga function: A, b, A4, beg, Ib, ub, and nonlcon can be found in
Appendix F.

3.5.3.3 Simulation results

To test the viability of the (GA) in finding a feasible solution to the optimization problem, it is
applied to the two operating days. All weights are set to unity in both simulations, and obtained
results are shown in Figures 3.19 and 3.20. The results of the winter day are shown in the left plots
(Fig.3.19 (a) and 3.20 (a)) and the ones of the summer day in the right plots (Fig.3.19 (b), 3.18
(b)). The obtained results show that (GA) converges for the two tested days and finds a feasible
solution to the proposed optimization problem while respecting all fixed constraints. As general
EMS and referring to Fig.3.19 (a) and (b), the (GA) algorithm follows a similar strategy to (DP).
Needed load energy is purchased from the utility grid at low pool prices while it is covered by the
battery and the (DG) at high pool prices.

Besides, the SOC curves of the two days, represented in Fig.3.20 (a) and (b), lie between the
minimum and maximum admissible values. The SOCs initial states at the beginning of the day are
retrieved at the end of the day SOC(k = 0) = SOC(k = N) = 50% then, the battery’s constraints
are respected.
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Fig.3.19 (GA) results of optimal (DG), battery, and grid power references on (a) the winter day and (b)
the summer day.
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Fig.3.20 (GA) results of optimal trajectories of the battery’s SOC on (a) the winter day and (b) the
summer day.

Same for the (DG) and the utility-grid power curves which range between the lower and upper
bounds.
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The share of the energy mix and the corresponding operating costs on the winter and summer days
are found in Table 3.9. Comparing, the (GA) results in Table 3.9 to the (DP) ones in Tables 3.3
and 3.4, the total operating costs values for the two days are too close meanwhile the shares of
each source in the overall energy mix present slight differences especially on the summer day.
Finally, to carry out a fair comparison between (DP) and (GA) algorithms, the same sampling
period T, should be selected. Knowing that diving the one-hour sampling period by x, increases
the numbers of variables of (GA) to 72 times x and so the convergence time increases
exponentially, a better-adapted solution is to rerun the (DP) using a sampling Ty = 1 hour equal to
that of (GA). By this, the two algorithms can be fairly compared. The results of the comparison
between (DP) and (GA) are summarized in Table 3.10. As seen, the (DP) algorithm converges
much faster than the (GA), (DP) is 16 times faster than the (GA) for the winter test day and 25.5
times for the summer day. For the reduction of toxic gas emissions goal, the (GA) performs better
than the (DP) and this can be seen through the emitted toxic gas and the operating cost of the (DG)
which are lower on both days when applying the (GA) algorithm. On the other hand, the (DP)
shows better results than (GA) regarding the reduction of converters losses on the winter and

summer days.

(GA) results

Winter day (18/02/2021)

Summer day (16/07/2021)

Emitted toxic gas: 44.1 Kg

RESs
Jress = 2.28'$ JrEss = 1.31 %
Epyr = 200 KWh Epyr = 224.27 KWh
Utility grid Esora = 0 KWh Esorqa = 4.61 KWh
Jgria = 73.77 $ Jgria = 73.53 $
Egis pate = 83.33 KWh Egis pate = 57.25 KWh
Battery Ech pate = 83.83 KWh Ech pate = 57.34 KWh
Joare = 14.54 $ Joare =99
Operating hours: 4 hours Operating hours: 1 hour
Start-ups: 2 times Start-ups: 1 time
DG Diesel consumption: 57.15 Liters | Diesel consumption: 16.05 Liters

Emitted toxic gas: 13 Kg

.]DG = 6118 $

]DG = 1719 $

Losses in dispatchable
converters

Eioss cony = 17.44 KWh

Ejoss cony = 12.52 KWh

Total operating cost
function

Joe = 151.77 $

Joe = 101.03 $

Table 3.9 (GA) summary results of the share of the energy mix and corresponding operating costs on the

winter and summer days.
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However, there are no intelligible preferences between the two algorithms regarding the total
operating costs which are too close for the two operating days. A slightly lower operating cost is
obtained in the winter while using the (GA) (difference of 0.12 $), whereas the (DP) shows a better
result on the summer day (difference of 0.87 $).

As aresult, both algorithms converge and find feasible solutions for the optimization problem with
a similar EMS strategy. Each of the applied algorithms slightly performed better than the other in
one out of the two objectives: the minimization of toxic gas emissions and losses in dispatchable
converters. Yet, the total operating costs are almost equal for the two algorithms which further
validates that the minimum found is a global minimum for the optimization problem. Finally, as
both algorithms showed similar performance, two additional criteria may favor the (DP) over the
(GA) and are the required CPU time for convergence and the sampling time of variables.
Following these criteria, (DP) algorithm is selected as an offline optimization technique and its
results are applied in the next chapter.

Winter day (18/02/2021) Summer day (16/07/2021)
CPU fi DP 12 minutes 28 seconds 8 minutes 40 seconds
time GA | 3 hours 12 minutes 45 seconds 3 hours 32 minutes 29 seconds
Emitted toxic gas bP 479 Kg 13.2Kg
GA 441 Kg 13 Kg
E DP 16.9 KWh 12.10 KWh
loss.conv GA 17.44 KWh 12.52 KWh
DP 2.28 % 1.319%
Jress GA 2.28'$ 1.31$
DP 67.12 $ 71.99 $
Jgria GA 73.77 $ 73.53 $
DP 13.17 $ 9.62 %
Jbart GA 14.54 $ 9%
DP 69.32 % 17.24 $
Jpg GA 61.18 $ 17.19 %
DP 151.89 $ 100.16 $
Joc GA 151.77 $ 101.03 $

Table 3.10 Comparison between (DP) and (GA).
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3.6 Conclusion

In this chapter, an offline optimization problem was formulated to ensure the optimal power
planning of the DC microgrid for a 24-hour time horizon operation. For this, real profile data of
solar irradiance, wind speed, ambient temperature, residential load profile, and electricity pool
prices were applied on winter and summer days as a case study. The EMS targets three main
objectives: the minimization of the total operating cost, the reduction of the toxic gas emissions
produced by the (DG), and the minimization of losses in dispatchable converters. To attain these
objectives, a unique weighted objective function is applied with three weights corresponding to
each of the predefined objectives. Several constraints are introduced to emulate a real DC
microgrid scenario consisting of lower and upper power bounds for operating units, minimum and
maximum admissible SOC values to guarantee a safe operation of the ESS, etc. To solve the
optimization problem, among several algorithms, two were represented and applied.

First, a deterministic algorithm called dynamic programming is applied and yields effective results.
The algorithm presents fast convergence and finds a feasible solution to the optimization problem
while respecting all defined constraints. A second metaheuristic algorithm, named the genetic
algorithm was applied to further validate the effectiveness of (DP) obtained results. In turn, (GA)
converges and finds a feasible solution to the proposed problem. A comparison between the two
algorithms is conducted and the main outcomes are:

e (GA) and (DP) find close solutions for the two operating days and follow a similar EMS
to optimally plan the DC microgrid sources with a slight difference in the power
management of the utility grid and the (DG). Compared to (DP), (GA) relies less on the
(DG) and more on the utility grid to cover the unmet load for the two tested days. (GA)
slightly outperforms (DP) on the winter day and vice-versa. Then, no clear preference
between the two algorithms can be made by assessing the results. However, using the
two algorithms yield close results which verify that the found solution is a global
minimum to the optimization problem.

e Two main criteria favor (DP) over (GA). The extremely higher convergence time of
(GA) compared to (DP), a ratio of convergence time : GA.r/DPgr = 15.44 for the
winter day, and 24.54 for the summer day are obtained. The second criterion is the
selection of the sampling period which is restricted for (GA) to Ty = 1 hour in our case.
Dividing T, by n, where n, € Z* increases the number of variables from 72 for T, = 1
hour to 72n, for Ty, = 1/ng hour. As the convergence time increases exponentially with
the number of variables as well as the feasible solution becomes harder to find, the
sampling time is limited to one hour in the (GA) case. However, (DP) is run with a
sampling period of T, = 1/6 hour and presents a viable solution with a limited
convergence time. Hence, (DP) algorithm solves the optimization problem with a higher
time resolution.
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All obtained results are validated with equal weights, set to one, in the unified objective function.
Hence, there are no preferences between predefined goals. Yet, if any of the three optimization
goals are prioritized, the impact of weights’ selection should be treated apart. For this, the weights
selection problem is addressed in case of any preferences between the predefined objectives. A
weights selection method is proposed to optimally find the best weights combination based on the
goals’ preferences. The obtained results show the impact of weights’ selection on the targeted
objectives.

Finally, though the offline optimization problem finds the optimal power references of the DC
microgrid for the next 24 hours, this technique remains unable to adapt to any mismatches between
predictions and real profile data. As a result, an online optimization stage is added in the next
chapter and operates as a regulator to optimally adapt the power references.
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Chapter 4 : DC Microgrid Online Optimization

4.1 Introduction

The offline optimization of the DC microgrid addressed in Chapter 3, outputs the optimal power
references of the dispatchable sources consisting of the utility grid, ESS, and the (DG) for the next
24 hours. The inputs of the offline optimization problem consist of forecasted data for the next day
that may be inaccurate. Thus, differences between forecasted and actual data will inevitably exist
which leads to a suboptimal solution if the offline optimal power references are applied without
any update. As a result, and based on the actual input data, an online optimization process is
required to continuously retrieve the new optimal power references. Different online optimization
strategies can be found in the literature from which Model Predictive Control (MPC), also known
as Receding Horizon Control (RHC), fuzzy logic rules-based, feedback correction, etc. are the
commonly used techniques.

As a concept, (MPC) carries out a first optimization for the whole-time horizon using any
deterministic or metaheuristic optimization algorithm, then finds the best route for the decision
variables corresponding to the minimum total cost function. Only the optimal schedule of the first-
time interval is applied, the time horizon moves forward by one-time interval, and the optimization
algorithm is executed again for the whole new time horizon and so forth. The (MPC) based
optimization approach was successfully applied in [95], and [96] to optimally schedule microgrids
including several DERs and ESS and showed effective results in response to mismatches between
predicted and actual data. A sampling step for the rolling horizon of 15 minutes is selected in both
studies with a 24-hour prediction horizon in [95], and 48 hours in [96]. Among the latest
publications on online optimization techniques, the MPC- based optimization technique with a
receding horizon is the most found [99].

In [104], a fuzzy logic rules-based online optimization technique is applied in a hybrid fuel cell
vehicle to optimally ensure the required traction power while minimizing the hydrogen
consumption of the fuel cell. The state of charge of the fuel cell and the required traction power
are two input variables and the output variable is the power supplied by the fuel cell. The inference
rules, the number, and the type of membership functions are specified based on the defined
optimization objective. A genetic algorithm is applied to an offline profile over the whole-time
horizon to optimally locate the characteristic points of the membership functions. MPC and fuzzy
logic-based online optimization techniques were largely investigated for optimal power
dispatching problems and are not applied in this thesis.

Unlike MPC and fuzzy logic-based methods which are considered stand-alone online optimization
techniques, other online optimization strategies are added as an adaptive correction part to the

146



offline optimization problem. In such strategies, the optimal power references generated by the
offline optimization problem are updated each intrasample period through an online optimization
process. This allows the system to retrieve the optimal solution following the occurring
mismatches between real and predicted inputs. In [88], an offline optimization is achieved the day
ahead for a 24-hour time horizon to optimally dispatch power in a microgrid. An online
optimization stage is added to the offline optimization problem. The online optimization problem
is formulated as an SQP to optimally find the new power references for the ESS and the utility
grid following an excess or deficit of power in the microgrid. As the offline optimization objectives
are not included in the online optimization stage, tolerance bands, based on the offline power
references, are introduced to limit the online decision variables and maintain the same trajectory
pace of the offline optimization. In [98], a feedback online optimization correction part is added
to an MPC to adjust the output of the units to balance the difference between the forecasted and
actual values at each intra-time sample. The time step of the MPC optimization is 15 minutes while
the intra-time sample of the online optimization is one minute. The adopted objectives and
constraints for the online optimization problem are the same as those of the offline optimization
with adequate shaping of equations.

In this chapter, an adaptive online optimization stage is applied to update the offline power
references due to the occurring mismatches between predicted and actual data. The obtained results
are validated through several simulation tests and compared with the offline optimization results
to prove the effectiveness and viability of the online optimization stage.

4.2 Online optimization stage

The offline and online optimization block diagrams are depicted in Fig.4.1. As detailed in Chapter
3, the offline optimization is applied the day ahead for the next 24 hours. Besides, the offline
optimization has a 24-hour time horizon with a sampling period Ty = 1/6 hour. It outputs the
optimal power references of dispatchable sources which are Ppg ref, Pgria refs aNd Ppgrr rer fOF
the next 24 hours. In offline optimization, the time domain is discretized at each T; = 1/6 hour
into (N = 144) total number of steps for the whole-time horizon. Any optimal power reference at
time k is denoted Py,ig rer (k), Ppart rer (K), and Ppg rof (k) with k =1,2,...,N. As stated
before, these optimal power references are computed based on predicted input data denoted :
Vwind_pred s Spred s Tapred s Proad_prea, and 8500 o, which correspond respectively to the

predicted wind speed in (m/s), the predicted solar irradiance in (W /m?), the predicted ambient
temperature in (°C), the predicted residential load profile in (W), and the electricity purchased
price in (¢/KW h) for the whole time horizon (i.e. 24 hours).

The predictions' accuracy, mathematical modeling, and correlation with actual data are separate
study subjects, investigated independently in the literature, and are out of the scope of this thesis.
Without loss of generality, a random deviation is added to the predicted data to simulate the
mismatches between predicted and actual data. The sign and span of the deviation between the
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Fig.4.1 Block diagram of the applied offline and online optimization stages.

predicted and actual produced/consumed energy and purchased electricity prices are detailed in
the simulation tests section. Therefore, in all that follows, there will always be mismatches between
predicted and actual input data. As seen in Fig.4.1, the online optimization stage takes as inputs
the offline power references and actual measured data each minute. The actual input data at the
time k*are denoted : Vwind_real (k*)1 Sreal (k*)1 Ta_real(k*)a Pload_real(k*)a and 65Z;_real(k*)'
The online optimization stage is ten times faster than the offline optimization references, then each
sampling period T, = 1/6 hour is discretized in turn into several intrasample periods (T;s =
1/60 hour). The total number of intrasample periods in each sampling period equals (Ts/ Tis) =
10. As a result, the total number of intrasample steps for the whole time horizon is denoted N* and
is expressed as follows:

N* =N x 10 = 1440 (IV.1)

Thus, the optimal online power references are denoted Pyyiq ref ontine (k™) Poatt ref ontine (K™),
and Ppg ref ontine (k™) With k* = 1,2, ..., N™,

4.2.1 The online optimization stage target

In the absence of any online optimization stage, the offline optimized power references are applied
without any update. Thus, existent mismatches between actual and predicted data result in an
inequality in the microgrid power balance equation. The power imbalance leads to a deviation in
the common DC bus voltage causing an unstabilized operation of the DC microgrid. To overcome
this hurdle, one of the operating converters of dispatchable sources always takes charge of
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stabilizing the common DC bus voltage[156]. Thus, the selected converter compensates for the
occurring power mismatches. Applications with no active online optimization controller, usually
adopt the utility grid as a slack bus for the corrective action needed to compensate for the
uncertainties[157]. However, this solution may not be optimal especially, at high pool prices.
Besides, for time intervals where the actual pool prices are lower than the predicted ones, the
optimal solution may be to purchase additional energy from the grid and rely less on the ESS or
the (DG). As seen, several scenarios can be encountered in which always selecting the utility grid
to compensate for the power mismatches doesn’t lead to the optimal solution.

From the above, the online optimization stage should find a feasible solution following the same
predefined offline objectives and system constraints. Applying the online correction part, all
dispatchable sources can intervene in the new power mix through their updated reference values.
The obtained solution must restore the power balance equality in case of a power imbalance and
modify the power references of dispatchable sources conveniently to the actual electricity pool
prices. Hence, the mission of online optimization can only be accomplished if it provides improved
results over those that would be obtained in the case of offline optimization.

On the other hand, unlike offline optimization which finds the optimal path for the whole-time
horizon, the online optimization correction stage is applied for one intrasample period T;, as seen
in Fig.4.1. Although online optimization is run N* times at the end of the time horizon and finds
N optimal solutions corresponding to each intrasample, the obtained results do not correspond to
the new optimal solution for the actual whole-time horizon.

As a result, the online optimization stage is not advanced as an alternative to offline optimization
and must not rebuild the optimal path for the whole-time horizon. Besides, the SOC online
trajectory should always maintain a close path and shape to the proposed offline optimal one.
Otherwise, offline optimization will permanently offer the optimal solution for the whole-time
horizon despite the existent mismatches. Therefore, the online optimization stage performs local
optimizations at each intrasample to improve the obtained results at the end of the time horizon
while maintaining the general optimal path built by offline optimization. All cited criteria and
objectives are included when formulating the online optimization problem in the next paragraph.

4.3 Online optimization algorithm

The flow chart of the proposed online optimization controller is represented in Fig.4.1. As seen in
the flow chart, the online optimization variables are the changes in Pyiq yef » SOCer, and
Ppg ey OVEr one intrasample period denoted respectively APy,iq yer, ASOC,cr, and APpg -
Thus, if the online optimization variables are stored in one vector named Ax then, Ax ( k*), at a
given time k*, corresponds to the vector [AP,ig rer (k™) ASOCrer (k™)  APpg rer(k¥)].
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Fig.4.2 Flow chart of the proposed online optimization controller.
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For the first sampling period T, corresponding to k = 1, and the first intrasample period T
corresponding to k* = 1, the lower and upper bounds of online variables respectively (b(k*) and
and ub(k™), are fixed based on the offline optimization references Py, ;4 ref (1), SOC,cr (1), and
Ppg rer (1) as follows:

{ b (k* = 1) = [Pyria min = Pgriarer (1) SOCpin = SOCrer (1) = Ppg rer (1)]
ub (k*=1) = [Pgrid_max - Pgrid_ref (1) SOCpax — SOCref (D PpG max — PDG_ref (1)]
(IV.2)

min and max subscripts denote respectively the minimum and maximum admissible values
represented in Chapter 3.

Besides, Pyriq(k™ = 1), Ppare(k* =1), Ppg(k* = 1) are respectively set to Py,ig rer (1),
Pyate rer (1), and Ppg rof (1). At any given time k*, the outputted online optimal power
references are expressed as follows:

Pgrid_ref_online (k*) = Pgrid (k*) + Apgrid_ref (k*)
Pbatt_ref_online (k*) = Pbatt (k*) + APbatt_ref (k*) (|V.3)
PDG_ref_online (k™) = Ppg (k7) + APDG_ref (k*)

In the next step, the actual data inputs are read and applied as inputs to the online optimization
problem. Furthermore, they are utilized to compute the potential grid power value that would be
obtained if no online optimization stage is applied, and the grid converter only compensates for all
existing power mismatches. This grid power value at the time k*, denoted Py,iq rer offiine (K*),
is utilized along with the remaining offline optimization power references: Pyqs; e (k) and
Ppe rer (k) to compute the total cost function in the absence of the online optimization stage at
the time k™ denoted J;o¢ ofr1ine (k™). The total cost function is affected by the subscript "offline"
to designate the case in which the offline optimized power references are applied without an online
optimization stage. In turn, J.o¢ off1ine (k™) is applied as input to the online optimization problem
which computes the online total cost function at the time k™, denoted Jio; oniine (kK*), and
minimizes the difference between the two functions as follows:

A@'Z})Utot_online (k*) _]tot_offline (k*)) (IV-4)

The offline and online cost functions and constraints’ expressions are detailed in the next
paragraph.

Once the online optimization problem is solved, the optimal online outputs at the time k* which
are  [APyrig ref (k™)  APpaer rep(k™)  APpg rep(k™)] are retrieved. Then, the optimal online
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power references Pgrid_ref_online (k*), Pbatt_ref_online (k*)’ and PDG_ref_online (k*) are CompUted
using the expressions of equation (1V.3).

Then k*is compared to 10k which indicates the next sampling step as T; = 10.T;. As long as
this condition is not fulfilled, the algorithm sets the lower and upper bounds of online variables for
the next intrasample step k* + 1, denoted Ax(k* + 1) = [APgrid_ref(k* +1) ASOC,.f(k™ +
1) APpg rer(k™ + 1)] based on the -current optimal online power references:

Pgrid_ref_online (k*)1 Pbatt_ref_online (k*), and PDG_ref_online (k*) as follows:

{ b (k* + 1) = [Pgrid_min — Pgrid_ref_online (k*) SOCmin - SOConline (k*) - PDG_ref_online (k*)]
ub (k* + 1) = [Pgrid_max - Pgrid_ref_online (k*) SOCmax - SOConline (k*) PDG_max - PDG_ref_online (k*)]

(IV.5)
Where SOCyn1ine (k*), is the real online SOC value at the time k™.

In addition, Py.jq(k™ + 1), Ppaee (kK™ + 1), Ppg (k™ + 1), corresponding to the next step k* + 1,
are respectively set to Pgrid_ref_online (k*), Pbatt_ref (k), and PDG_ref_online (k*)

Once k* reaches 10k, Pgiq(k™+ 1), Ppgre(k™+ 1), Ppg(k™+ 1) change respectively to
Pyria ref ontine (K*)s Ppart rey (k+ 1), and Ppg o (k + 1). Meanwhile, the lower and upper
bounds of online variables for the next intrasample step are always set based on the latest online
power references Pgrid_ref_online (k*)1 Pbatt_ref_online (k*)’ and PDG_ref_online (k*) fOIIOWing
equation (IV.5). These steps are all repeated until k reaches N which corresponds to the end of the
24-hour time horizon and the algorithm is terminated.

“PDG_Tef_Oﬂli?lé? (k*)

PDGfmax T s 4
L b Jubpe(k =10)
AP pg ref(k” = 1I) i‘_..— UbDG(k - 3)E : 1 1 | | 1
T : ; !
o | AP G rep(k™ = 4)
PDG_)'Ef_anfine (k"=1) | ] ! I
PDG_r'ef(kzl)V_—_';——_';—‘I'—' ———E'———————:—
i b ' i i ]
: | l {bpg(k; =3) ! b
0 —_— : ,
k=1 2 3 4 5 6 7 8 9 10 11 12 t(k”)
I I
i=1 k=2
< T >

Fig.4.3 lllustrative example of Ppg ref ontine (k™) for the first and second sampling steps.
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Figures 4.3 and 4.4 show an illustrative example of the proposed online optimization stage for the
first and second sampling steps corresponding to k = 1 and 2 along with the intrasample steps
k* =1,2,..,12. Fig. 4.3 shows an admissible trajectory of Pps r¢f oniine (k™) in which the online
variable 4Py f, the lower and upper bounds respectively denoted lbp; and ubp, are defined
following the flow chart in Fig.4.2. The trajectory curve of Pyrig rer oniine (k™) can be plotted
following the same strategy as the illustrative example of Ppg ref oniine (k™). A slight difference
is noted at each first intrasample step of a new sampling period where Ppq(k* +1) =
Pp rer (k + 1) whereas, Pyrig (K* + 1) = Pyrig ref ontine (K.

Fig.4.4 shows an illustrative example of an admissible trajectory of Pyqst ref oniine (k™). As seen,
Pbatt_ref_online (k*) differs from Pgrid_ref_online (k*) and PDG_ref_online (k*) in the EXpI'ESSiOFI
which always equals :

Pbatt_ref_online (k*) = Pbatt_ref (k) + APbatt_ref (k*) (IV-G)

withk*=14+10.(k—1), 2+ 10.(k—1),..,10+ 10 (k — 1) for k=1,2,.., N
Same for the lower and upper bounds of APy rof (k™) Which equal respectively APy qer min —
Pbatt_ref(k) and APbatt_ma;vc - Pbatt_ref (k) . APbatt_min and APbatt_ma;vc are respectively the
minimum and maximum allowable variations in the battery reference power.
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Fig.4.4 llustrative example of Pyait rer oniine (k™) for the first and second sampling steps.

4.3.1 GS algorithm

To solve the online optimization problem, an algorithm is selected based on two fundamental
criteria: the convergence speed and the potential of finding a global minimum. In a real-time
simulation, the optimization algorithm which is run in parallel to the DC microgrid simulation
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should converge and output the optimal power references before the next intrasample time step.
Besides, all obtained solutions should correspond to global and not local minima. Referring to the
MATLAB Global Optimization Toolbox, several solvers are proposed to search for global
solutions to problems that contain multiple maxima or minima. Among all proposed solvers, the
Global Search (GS) algorithm yielded the fastest and most optimized results. As a concept, the GS
algorithm starts a local solver (such as fmincon) from multiple start points to sample multiple
basins of attraction and search for a global minimum. Next, the selected local solver and the GS
algorithm’s general concept are detailed.

4.3.1.1 Local solver selection

To successfully run the GS algorithm, a local solver should be selected before starting the
algorithm. By referring to the MATLAB Global Optimization Toolbox, the fmincon solver is
suggested as a local solver when running a GS optimization problem. As a definition, fmincon
is a nonlinear programming solver that finds a local minimum of a constrained nonlinear
multivariable function. The optimization problem is specified by the following:

( cx)<0
| ceq(x) =0
min f(x) such that Ax<b (Iv.7)
X
Agq. X = beg
Ib<x<ub

Where,

- f(x) is the function to minimize, named the objective function.

- ¢(x) is the nonlinear inequality constraints’ function that returns a scalar.

- ceq(x) is the nonlinear equality constraints’ function that returns a scalar.

- A and b are respectively the matrix and vector of the linear inequality equations.

- Aeq and b, are respectively the matrix and vector of the linear equality equations.

- b and ub are respectively the lower and upper bounds on the design variables in the vector
X.

4.3.1.2 Objective function

The objective function, named the total cost function, J;,¢, in Chapter 3, was the weighted sum of
the operation cost function J,., the pollutant gas emissions cost function J.,issions,» and the
converters’ losses cost function J.ony 10sses- EACh of Joc, Jemissions: @Nd Jeonw 10sses COrresponds
to a distinct optimization goal. The preference between the three optimization goals was
investigated in detail in the previous chapter through the combination of different weight
selections. As the main purpose of this chapter is the representation of an online optimization stage
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that updates the offline optimized power references due to the mismatches between predicted and
actual data: Weights of ]oca ]emission51 and ]conv_losses are all set to one ((oc: Zemissions:
Cconv 10sses=1). Hence, there are no preferences between the optimization goals during the online
optimization process. Besides, as seen in Chapter 3, the accomplishment of the minimization of
the operation cost goal automatically favors the minimization of the converter’s losses and vice-
versa as the two goals are reconcilable. Thus, and to further simplify the formulation of the online
optimization problem, the minimization of converters losses’ goal is not considered in the
objective function in this chapter. Yet, if the online optimization yields improved results of the
operation cost compared to the offline ones, this will automatically improve the results of the
converter's losses. This reasoning will be validated in the simulation results section.

By this, the newly applied total cost function only includes the operation cost and the pollutant gas
emissions cost functions. An offline and online total cost functions, denoted respectively
Jeot offiine (k™) and Jeor oniine (k™) and expressed in ($), are established following equations
(IVv.8) and (1V.9):

]tot_offline (k*) = ]oc_offline (k*) + ]emissions_offline (k*) (IV-8)
]tot_online (k*) = ]oc_online (k*) + ]emissions_online (k*) (|V.9)

Where, ]oc_offline (k*) J ]oc_online (k*) J ]emissions_offline (k*) , and ]emissions_online (k*) are
respectively the offline and online operation costs at the time k* expressed in ($) and the offline
and online pollutant gas emissions costs at the time k*, expressed in ($).

As the main purpose of the online optimization stage is to improve the offline obtained results, the
objective function, f(x) to minimize, is established as the difference between the online and the
offline cost functions as expressed in equation (IV.4). Then, f(x) is expressed as follows:

f(x) = ]tot_online (k*) _]tot_offline (k*) = A]oc(k*) + A]emissions(k*) (|V.10)

Where, AJ,.(k™) and AJomissions (k™) are respectively the resulting difference between the online
and offline operation costs and the difference between the online and offline pollutant gas
emissions costs at the time k*, expressed in ($).

AJ o (k™) and AJomissions (k™) are expressed as follows:

{ Aoc (k™) = Joc_ontine (k™) = Joc_of frine (k™) (IV.11)

A]emissions (k *) = ]emissions_online (k*) - ]emissions_offline (k *)

Same as Chapter 3, J,¢ oniine (k™) is expressed as the sum of the power grid cost function at the
time k™, Jgria oniine (k™), the battery storage cost function at the time k*, Jpatr oniine (K*), and the
diesel generator cost function at the time k*, /pg oniine (k™). The same for J, o¢f1ine (k™) Which

is expressed as the sum of ]grid_offline (k*), ]batt_offline (k*), and ]DG_offline (k*)

Joc ontine (k™) and Joc o ¢r1ime (k™) are represented in equations (IV.5) and (1V.6).
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]oc_online (k*) = ]grid_online (k*) + ]batt_online (k*) + ]DG_online (k*) (|V.12)
Joc offline(K™) = Jgria of fiine(K™) + Ipatt of frine(K™) + JpG offiine (K*) (IV.13)

The offline and online power grid cost functions at the time k*are expressed as follows:

]grid_offline(k*) = (8‘52‘219(11(]{*): max(O Pgrid_ref_offline (k*)) +
Sgsffle,min(o Pgrid_ref_offline (k*))) , Ts (|V14)

]grid_online (k*) = <6gfitijeal (k*),max (0 Pgrid_ref_online (k*)) + 5‘5%3' min (0 Pgrid_ref_online (k*))) ) Ts
(1V.15)

Where 8777 0qi (k™) and Pyria ref offiine (k™) are respectively the electricity real purchased

price at the time k*in (¢/KWh) and the grid power reference at the time k*in (W) that is obtained
when no online optimization stage is applied and the utility grid converter compensates for all
power mismatches.

At any intrasample step time k™, Pyrig ref oniine (k™) is computed using equation (IV.3).
However, Py iq rer of frine (k™) €an be retrieved by solving the following equation:

Pgrid_ref_offline (k*) = Pload_real (k*) - PPVreal (k*) - Pwindreal (k*) + Pbattref (k) -
PDGTef (k) - 2 Pconv_losses_offline (k*) (IV-16)

Z Pconv_losses_offline (k*) = Plosses_bidirec_conv (k) + Plosses_3¢_DG_conv (k) + Pboost_losses (k*) +
Plosses_3¢_grid_conv (k*) + Plosses_3¢_WT_rec (k*) (lV-17)

withk* =1+ 10.(k— 1), 2+ 10.(k—1),..,10 + 10 (k — 1) for k=1,2,.., N

Where,
- Pioaa rear (k7), is the real load consumption at the time k*.
- Ppy reaq (k7), is the real PV-generated power at the time k.
- Pyind rea (k7), is the real wind-generated power at the time k*.
- Ppare rer (k), is the offline battery reference power at the time k.
- Ppg res(k), is the offline (DG) reference power at the time k.
- X Peonv tosses offline (k™) , are the total losses in all operating converters if no online
optimization stage is applied at the time k*.
- Piysses bidirec conv (k). are the losses in the battery converter at the time k.
- Piosses 3¢_p6_conv(k), are the losses in the (DG) converter at the time k.
- Piosses 3¢ wr rec » are the losses in the (WT) 3¢ rectifier at the time k™.

- Piosses 3¢ _gria_conv(kK™), are the losses in the grid converter if no online optimization stage
is applied at the time k*.
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- Pyoost 10sses(K™), are the losses in the PV converter at the time k™.

As seen in Chapter 2, Pyysses 3¢ gria_conv(k™) 1s @ function of Pyriq rer orfiine (k) then,
Pyria ref offiime (k) is the only unknown variable of the equation. Besides, as equations (1V.16)
and (1V.17) denote the power balance equation of the system without the online optimization stage,
the battery and (DG) power references and corresponding converters’ losses are all the same for
all intrasample periods (T;s) comprising in a sampling period T,. As stated before, after 10
intrasample steps, all read offline input data moves one period forward from the time k to k + 1.
To solve equation (1V.9), the syntax "solve” in MATLAB is applied to find Py,iq rer offiine (k*).

The expressions of the battery online and offline cost functions are the same as equation (111.13)
in Chapter 3. The only difference is that they are computed for one intrasample period and not for
the whole time horizon as in Chapter 3. They are expressed as follows:

* cc * *

]batt_online(k ) = (W-Pbatt_ref_online(k ) + 6deg-P(k )iatt_ref_online) Ti (IV-18)
* cc 2

Jvatt of fline(K™) = (m Pyatt rep (k) + 5deg;P(k)batt_ref) Tis (IV.19)

Pyatt ref ontine (k™) is computed following the bellow equation:
Pbatt_ref_online (k*) = Pbatt_ref (k) + APbatt_ref (k*) (lV-ZO)
With k*=1+10.(k—1), 2+10.(k—1),..,10+ 10 (k — 1) for k=12,.., N
APpyqee rep (k™) at the time k*can be found through the online variable ASOC, (k™) using the
bellow expression:

* Ta 'V a k* *
APpart rer(K*) = — %45 OCrer(k7) (IV.21)

ASOC,f (k™) is the change in the battery’s SOC over one intrasample period. It is expressed as
follows:

ASOCref(k*) = S0Coniine (k™ + 1) — SOCopiine (k™) (IV.22)
The calculation of Q(T,) and V4. (k™) is detailed in Appendix E.

The (DG) online and offline cost functions at the time k*, /g oniine (k™) and Jpg o frine (K™),

consist of the fuel consumption cost function at the time k*, ],’;Zel(k*), expressed as follows:

J365 () = Apuer, F(K), Ty (IV.23)
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Knowing F (k™) is a function of Pps .r(k) for the offline optimization and a function of
Ppé ref ontine (k™) for the online optimization process. To obtain F(k*), we refer to the plotted
curve of Fig.3.5. Ppg rer oniine (k™) is calculated using equation (1V.3).

The start-up cost function and the maintenance cost functions of the (DG) are not included in the
online optimization feedback as they account for a minor cost from the (DG) total operating cost
as well as they were considered in the day ahead offline optimization.

Finally, as the pollutant gas emissions cost function is a linear equation (equation (111.19)), the
resulting difference between the online and offline pollutant gas emissions costs at the time k* can
be directly expressed as:

A]emissions(k*) = Bemiss: (PDG_ref_onlL'ne (k*) - PDG_ref (k)), Tis (IV-24)
With k* =1+10.(k—1), 2+ 10.(k—1),..,10+ 10 (k — 1) for k=12,.., N

4.3.1.3 Lower and upper bounds (Ib & ub)

The lower and upper bounds, respectively lb(k*) and ub(k*) of the online variables
[APyriq ref (k™) ASOC,cr(k™) APpg rer(k™)], at any given time k™ are defined following the flow
chart of Fig.4.2 and equations (IV.2) and (IV.5).

4.3.1.4 Constraints

In the online optimization stage, all equality and inequality constraints which are shown in Chapter
3 are defined as nonlinear constraints. Hence, the linear equality and inequality constraint matrices
A.q and A equal empty matrices (4.4 = [], A = []) and their corresponding vectors, respectively
beq and b, equal empty vectors (b, = [], b = []). Therefore, c(x) < 0 and ceq(x) = 0 functions
are utilized to define respectively all inequality and equality constraints. In this case, c(x) and
ceq(x) consist each of an array of functions represented as follows:

c; (x); ceq(x);
c(x) = CZf_x;)‘ and ceq(x) = | _2_(;"); (IV.25)
Cn_ic (x); Ceqn ec (x);

Where, ¢;(x), c;(x), ¢, ((x), ceq,(x), ceq,(x), and ceq, .(x) are respectively the inequality
and equality constraints functions. n_ic and n_ec are respectively the total numbers of inequality
and equality constraints.
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In our case, two inequality functions are needed to express the two constraints on the (DG) that
were presented in Chapter 3 by equations (111.27) and (111.28). The two constraints are expressed
as follows:

€1 (x(k*)) = PDG_min- Sign (PDG_ref_online (k*)) - PDG_ref_online (k*) (IV-ZG)

C (X(k*)) = _Sign (PDG_ref_online (k*)) ’ Pgrid_ref_online (k*) (IV-27)

One equality function is required to express the power balance equation represented in Chapter 3
by equations (111.21) and (111.22). The equality constraint is expressed as follows:

ceqs (x(k*)) = Pgrid_ref_online (k*) + Pbatt_ref_online (k*) + PDG_ref_online (k*) -
Z Pconv_losses_online (k*) - Pload_real (k*) + PPV_real (k*) + Pwind_real (k*) (IV-28)

Z Pconv_losses_online (k*) = Plosses_bidirec_conv (k*) + Pboost_losses(k*) +
Plosses_Bd)_DG_conv (k*) + Plosses_3¢_WT_rec (k*) + Plosses_3¢_grid_conv (k*) (IV-29)

An additional constraint should be added on APy,q ror (k™) to restrict the changes in the battery-
charged/discharged power at each intrasample time k*. In normal operating conditions,
APpqe rep (k™) should range between a minimum and a maximum value, denoted respectively
APygtt min @Nd APpger max- The normal operating conditions correspond to an admissible battery
SOC at a given time k*, SOC,nine (k™) , within the minimum and maximum thresholds,
respectively SOC,,in and SOCy, -

To verify if SOC,,ime (k™) lies within the admissible limits, we refer to the lower and upper
bounds of ASOC,..r(k*) variable, denoted respectively leSOCTef(k*) and ubASOCTef(k*). At a

given time k*, leSOCTef(k*) and ubASOCTef(k*) are expressed as follows:
{ leSOCref(k*) = S0Chnin — SOConiine (k") (IV30)
UbASOCTef(k*) = 50Chax — SO0Coniine (k") .

Hence, If leSOCref(k*) < 0 and ubASOCref(k*) > 0, then SOCin < SOConiine (k™) < SOChax

and the ESS can contribute either by charging/discharging to the power mix of the DC microgrid.
In this operating condition, named "normal_ESS", an additional inequality constraint function is
added to limit APpg¢r rer (k™) Within APpges mmin @aNd APpgte max. The constraint is expressed as
follows:

C3 (X(k*)) = |Apbatt_ref(k*) - APbatt_max (IV-31)
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We take note that APpger min and APpger may are respectively the minimum and maximum
admissible changes in the battery power and have negative and positive constant values. In the
rest, we consider equal magnitudes of APpger min aNd APugtt max - Then, APyt max =

|APbatt_min |

On the other hand, If leSOCTef(k*) >0or ubASOCTef(k*) < 0, then SOC,p;ine (k™) has reached
one of the allowable thresholds, SOC,,;,, or SOCp,4x- In this operating condition, four subcases
arise following the value of Pygit ref ontine (k) Which equals  Puger rep (k) + APpart rep (k™)
(equation (1V.20)). The four subcases are the following:

1.

lbasoc,, f(k*) > 0 & Ppgtt rer (k) + APygee rep (k™) > 0: the battery has reached SOCy,;y,

and the proposed solution requires discharging power from the battery. To guarantee the
safe operation of the ESS, this request is denied and the battery switches to a floating mode
inwhich Pygir rer(K) + APparr rep (k™) = 0 to maintain SOCypime (k™) at SOCp,. In this
operating condition, named "low_limit_ESS", c4 (x(k*)) is not included as a constraint and
substituted instead with an equality constraint, ceq, (x(k*)), expressed as follows:

ceqz(x(k")) = Poate rer (k) + APyqtr rer (k) (IV.32)

lbasoc,, f(k*) = 0 & Pygrr ref (k) + APpgre rep (k™) < 0: the battery has reached SOCpy;p,
and the proposed solution requires charging power in the battery. In this condition, named
"low_limit_charge ESS”, there is no need to activate the floating mode and the system
constraints are the same as in the "normal_ESS" condition.

ubssoc,, f(k*) < 0 & Pyarr ref (k) + APpgre rep (k™) < 0: the battery has reached SOG4
and the proposed solution requires charging power in the battery. To guarantee the safe
operation of the ESS, this request is denied and the battery switches to a floating mode in
which Pyger rer(k) + APpgrt ver (k™) = 0 to maintain SOCypyine (k™) at SOCyq, . This
operating condition is named "high_limit_ESS" and has the same system constraints as the
"low_limit_ESS" condition.

Ubpsoc,or (k™) < 0 & Pyatt rep (k) + APpare rep (k™) = 0: the battery has reached SOCpnqy
and the proposed solution requires discharging power from the battery. In this condition,
named "high_limit _discharge ESS”, there is no need to activate the floating mode and the
system constraints are the same as in the "normal_ESS" condition.

Finally, included in Chapter 3 by equation (II1.26), the constraint of retrievement of the battery’s
SOC initial state (k = 0) at the end of the time horizon (k = N) is not retained in this chapter. By
this, the battery’s online state at the end of the time horizon, SOC,p;ine (k* = N*), can have any
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random value between SOC,,;, and SOC,,,,. All system constraints based on the defined
operating conditions of the ESS are summarized in Table 4.1.

) » ) _ Equality constraints:
Operating condition Inequality constraints: c(x(k*)) ceq(x(k)
normal_ESS [e1 (x(k)); c2(x(k™)); c3(x (k)] ceqi (x(k™))
low_limit_ESS [cl (x(k™)); c, (x(k*))] [ceq1 (x(k™)); ceqs (x(k*))]
high_limit_ESS [e1(x(k)); 2 (x(k™))] [ceqy (x(k)); ceqy(x(k™))]
low_limit_charge ESS [cl (x(k™)); co(x(k); 3 (x(k*))] ceq, (x(k™))
high_limit_discharge_ESS | [c1(x(k*)); c2(x(k™)); c3(x (k)] ceqi (x(k™))

Table 4.1 Corresponding inequality and equality constraints of all operating conditions.

4.3.1.5 GS algorithm

This section advances a brief description of the main steps performed by the GS algorithm when
it is run along with corresponding Matlab functions and parameters. For a detailed description of
the GS algorithm, it can be referred to [158]. First, to run the GS algorithm through Matlab, a GS
object containing several properties is created using the command "GlobalSearch”. If the object is
named gs, then the syntax: gs = GlobalSearch creates gs, a GlobalSearch solver with its
properties set to the defaults. The main properties of the GS are detailed as the main steps
performed by the algorithm are cited.

Second, GS requires a local solver that will be started from multiple start points. In this case, the
chosen solver is " fmincon " and it can be added as a local solver for the GS algorithm by creating
an optimization problem structure using the command: "CreateOptimProblem". The command
has the following syntax: problem = CreateOptimProblem (‘solverName', 'ParameterName’,
ParameterValue,...). In our case, the syntax is the following:

problem = CreateOptimProblem (‘fmincon’, 'x0', x,, 'objective’, f (x), 'Aineq’, 4, 'bineq’, b, 'Aeq’,
Agq. 'EQ', beg, 'I0', Ib, 'ub', ub, 'nonlcon’, [ c(x), ceq(x)]).

Where,
- 'x0', is the starting point from which fmincon is run. In this case, it is a starting vector with

the same structure and dimension as the online variable Ax which is an array of 3 variables
[APgn-d_re 5 ASOCrer APpg re f]. The starting vector is denoted x, and is set as follows:

xo = b + rand(size(lb)), (ub — Ib) (IV.33)
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The command "rand" is used to generate a random vector with the same size as the lower
bound vector. As fmincon solver is run N* times from the start to the end of the time
horizon, we may have the interest to run each time the solver from a different starting vector
which favors the exploitation of all possible solutions and the finding of a global minimum.

- 'objective’, is the objective function to minimize, itis f(x) in this case (equation (1V.10)).

- 'Aineq’, 'bineq’, 'Aeq’, and 'beq', are respectively the linear inequality matrix and
corresponding vector, and the equality matrix and corresponding vector. They are
respectively equal to A4, b, A.q, and b,g.

- 'lIb' and 'ub’, are respectively the lower and upper bounds and are equal to Ib and ub
(equations (1V.2) and (1V.5)).

- 'nonlcon’, are the nonlinear inequality and equality constraints and are equal in this case to
the two arrays [c(x), ceq(x)].

Finally, several parameters and functions of the local solver fmincon must be set appropriately to
the formulated problem to correctly run the solver. These parameters have default values set by
Matlab and can be modified in the optimization options. Among several parameters, we cite the
fundamental ones that were selected in this case study and yielded optimal results in terms of
solution feasibility, accuracy, and convergence time.

The first parameter is the Algorithm, in which the optimization algorithm is chosen. In our case,
we select the default algorithm “interior-point” recommended by Matlab as it handles large,
sparse problems, as well as small dense problems. Besides, the maximum number of allowed
function evaluations is modified from 3,000 (default value) to 100,000 through the parameter
MaxFunctionEvaluations. The maximum number of allowed iterations is set to its default value
equal to 1,000 using the parameter MaxIterations. The rest of the parameters are kept at their
default values and can be reviewed in detail in the Matlab Help Center. The applied parameters,
values, and descriptions are summarized in Table 4.2.

Parameter Value Description

Selection of optimization

Algorithm Interior-poin .
gorit terior-point algorithm
MaxFunctionEvaluations 1,000,000 Maximum nl_meer of function
evaluations allowed
) Maximum number of allowed
MaxIterations 1,000

iterations

Table 4.2 Parameters for setting the fmincon solver.

Once the local solver is selected, the GS algorithm can run to find the optimal solution to the
proposed problem. The function "run" is utilized to initiate the GS which performs several steps
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at each intrasample period. Before citing the main steps, we define the fundamental functions and
parameters that are used by the GS algorithm when running.

Score: a function, denoted sc, consisting of the sum of the objective function value,

denoted f, at a point and a multiple of the sum of the constraint violations, denoted M.,,.

So, a feasible point has a score equal to its objective function value. The multiple for

constraint violations is initially M, = 1000. GS updates the multiple during the run.

NumTrialPoints: a parameter that indicates the number of potential start points, specified

as a positive integer.

NumStageOnePoints: a parameter that indicates the number of Stage 1 points, specified as

a positive integer.

localSolverThreshold: a parameter that is initially equal to the smaller of the two objective

function values at the solution points. The solution points are the fmincon solutions starting

from x, and the Stage 1 start point, x5; . When running the algorithm, the

localSolverThreshold value varies depending on several conditions that are detailed in the

main steps below.

Counters: there are two sets of counters associated with the algorithm. Each counter is the

number of consecutive trial points that:

o lie within a basin of attraction. This counter is denoted c;, and there is one counter for
each basin. For instance, the counter of the basin corresponding to the solution x,,, is
denoted ¢y, 4, -

o have a score function greater than localSolverThreshold. This counter is denoted c;p,.
All counters are initially set to zero.

GlobalOptimSolution: an object that contains information on a local minimum, including
location, objective function value, and start point or points that lead to the minimum. GS
generates a vector of GlobalOptimSolution objects. The vector is ordered by objective
function value, from lowest (best) to highest (worst). GS combines solutions that coincide
with previously found solutions within tolerances.

Xioterance: @ parameter that indicates the tolerance on distance for considering solutions
equal, specified as a nonnegative scalar.

Fiolerance. @ parameter that indicates the tolerance on function values for considering
solutions equal, specified as a nonnegative scalar. Solvers consider two solutions identical
if they are within X;,;.rance relative distance from each other and have objective function
values within Fy,rance relative difference from each other. If both conditions are not met,
solvers report the solutions as distinct.

MaxWaitCycle: a parameter, specified as a positive integer. When ¢, and c;, reach this
parameter value, the basin radius of the corresponding solution point and the
localSolverThreshold are modified following the steps mentioned in the branch “react to
large counter values” in the main steps performed by GS below.
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- BasinRadiusFactor: a basin radius decrease factor, specified as a scalar from 0 to 1. A basin
radius decreases after MaxWaitCycle consecutive start points are within the basin.

- PenaltyThresholdFactor: a parameter of increase in the penalty threshold, specified as a
positive scalar.

Run fmincon from x;

A J

Generate trial points (Potential start points)
using scatter search algorithm

v

Stage 1 : Run best start point among the first
NumStageOnePoints trial points

v

Stage 2 : Loop through remaining trial points,
run fmincon if point satisfies basin, score,
constraints filters

Fig.4.5 Flow chart of the main steps performed by the GS when running.

The main steps performed by the GS when running are represented in Fig.4.2 and detailed as
follows:

1. Run fmincon from x,: GS runs fmincon from the starting point x,. If the run converges,
GS records the starting point, x,, and end point, x,,, for an initial estimate of the radius of
a basin of attraction. Besides, it records the final objective function value, f;,, for use in
the score function, scoe = foe + Mcy ge-

2. Generate trial Points: GS uses the scatter search algorithm, which can be reviewed in detail
in [159], to generate a set of NumTrialPoints. These trial points are generated within the
defined lower and upper bounds (Ib & ub) and are not symmetric about the origin. All
these trials are potential start points.

3. Obtain Stage 1 Start Point, Run: GS evaluates the score function of a set of
NumStageOnePoints trial points. Normally, NumStageOnePoints is a fraction of
NumTrialPoints. In default settings, NumStageOnePoints = 0.2 X NumTrialPoints. GS
then takes the point with the best score, x;, and runs fmincon from that point and get the
end point, x4, .. It removes the set of NumStageOnePoints trial points from its list of points
to examine.

4. Initialize Basins, Counters, Threshold: GS heuristic assumption is that basins of attraction
are spherical. The initial estimate of basins of attraction for the solution point of x,,
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Xoe, and the solution point from Stage 1 x4, X510, are spheres centered at the solution
points. The radius of each sphere is the distance from the initial point to the solution point.
These estimated basins can overlap. Fig.4.3 shows an illustrative example of a two-
dimensional variable plotted in the space as a function of the objective function. The
illustrative example includes 3 spherical basins of attraction for the solution points, x,,,
Xs1e, and a third solution point denoted x,,.

s J®)

/ : Area of admissible points within Ib and ub boundaries

X X :Tnal points generated by the scatter search algorithm

X : Selected Stage 1 points
¥ :Remaining trial points that were not selected in Stage 1 points

9 : Spherical Basin of attraction

nnn: Centers of basins of attraction
o oo : End pomt solutions of an fmincon runs from starting points

Fig.4.6 An illustrative example of a two-dimensional variable curve plotted in the space as a function of
the objective function, showing the basins of attraction and GS-generated trial points.

5. Begin Main Loop: GS repeatedly examines a remaining trial point from the list, continually
monitors the time, and stops the search if elapsed time exceeds MaxTime seconds. In this
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case, MaxTime seconds is set to infinity then, the algorithm only stops after running out of
trial points. The examination of a point consists of the following steps:

e Examine Stage 2 Trial Point to see if fmincon runs: call the trial point x,, and run fmincon
from x,, if the following conditions hold:

1) x, is not in any existing basin. The criterion for every basin i is:
|x, — C(i)| > DistanceThresholdFactor x radius(i).

Where C (i), DistanceThresholdFactor, and radius are respectively the center of a
basin (i.e. x,, for the basin of x, point, x4, for the basin of x¢; point, etc. ), a GS
optimization option with a default value of 0.75 and an estimated radius value that
is updated in the Update Basin Radius and Threshold and React to Large Counter
Values.

2) scy, < localSolverThreshold.

A trial point x,, that verifies the above-mentioned criteria is shown in Fig.4.6.

e When fmincon runs :
1) Reset counters: Set all ¢;, and c;;, counters to zero.

2) Update solution set: If fmincon runs starting from x,, it can converge. In that
case, GS updates the vector of GlobalOptimSolution objects. Call the solution
point x,,. and the objective function value f, . There are two cases:

o For every other solution point x,, with an objective function value f;,
|Xge — Xpel > Xtoterance X max(l, |Xpel)
or
Ifa = fol > Froterance X max(l,|fy,|)

In this case, GS creates a new element in the vector of the GlobalOptimSolution
objects.

o For some other solution point x,, with an objective function value f,
|Xge — Xpel = Xtoterance X max(l, |Xpel)
and
Ifa = fol = Froterance X max(1,|f,|)
In this case, GS regards x,. as equivalent to x, . GS algorithm modifies
the GlobalOptimSolution of x,, by adding x, to the cell array of the already
existing points.
3) Update Chxye ANA Cyp if the current fmincon run converges, set the
localSolverThreshold to the score value at the start point x,,, localSolverThreshold
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= sc,, and set the basin radius for x,, equal to the maximum of the existing radius
(if any) and the distance between x, and x,,,.
e When fmincon does not run:

1) Update counters: Increment ¢, for every basin containing x, and reset the
counter of every other basin to zero. Increment c,, if sc,, > localSolverThreshold
and reset it otherwise.

2) React to large counter values: For each basin with ¢, equal to MaxWaitCycle,
multiply the basin radius by 1 — BasinRadiusFactor. Reset ¢, to zero.

If c;, equals MaxWaitCycle, increase the localSolverthreshold:
Set a new localSolverThreshold equal to:

localSolverThreshold + PenaltyThresholdFactorx (1 + |localSolverThreshold|)

And, reset c;, to zero.

6. Create GlobalOptimSolution: After running out of trial points, GS creates a vector
of GlobalOptimSolution objects and orders the vector by objective function value, from lowest
(best) to highest (worst). This concludes the algorithm.

Finally, the values of all applied parameters are summarized in Table 4.3.

Parameter Value Parameter Value
NumTrialPoints 1,000 Penalty ThresholdFactor 0.2
BasinRadiusFactor 0.2 Frolerance 10°°

MaxWaitCycle 20 Xtolerance 107°
NumStageOnePoints 200 MaxTime infinity

Table 4.3 Applied parameters of the GS algorithm.
4.4 Simulation tests

To prove the viability and effectiveness of the proposed online optimization stage, several
simulations with different scenarios are conducted on the two test days that were presented in

Chapter 3. Based on the offline predicted input vectors : &7 (k) and Pyf s preq (k) with k =

1,2,..., N, new vectors corresponding to the actual data, §°*" (k") and Pyirr aceuar (k™)

grid_actua
withk* =1,2,...,N*, are created to mimic the mismatches between predicted and actual data
inputs.
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Spria prea(k) and 8570 o 1qi (™) are respectively the electricity predicted and actual

purchased price in (¢/KWh).

—  Puiff prea(k) and Pyirr qcruar (k™) are respectively the predicted and the actual power
difference between the load demand and RESs generated power. Py;fs preqa(k) and
Paiff actuar (k™) are expressed as follows:

Pdiff_pred(k) = Pload_pred (k) - PRESs_bus_pred (k) (IV-34)
Pdiff_actual(k*) = Pload_actual (k*) - PRESs_bus_actual (k*) (IV-35)

Where, Pload_pred(k)v Pload_actual(k*)v PRESs_bus_pred(k)’ and PRESs_bus_actual(k*) are
respectively the predicted/actual load demand and the predicted/actual RESs generated
power taking into consideration the losses in RESs’ converters.

All optimization parameters are the same as in Chapter 3 and can be found in Table 3.2. The
minimum and maximum admissible changes in the battery power APy gt min @Nd APpger mayx are
key factors that influence tremendously the results of the online optimization stage. Directly linked
to the nominal capacity of the battery, high values of APyt 1min aNd APpger max l€ads to extensive
usage of the ESS and then, a suboptimal solution meanwhile, extra low values lead to results that
approximate the offline optimization ones. Therefore, after several trials and errors, the dedication
of a one-sixth ratio out of the nominal storage capacity for the online optimization stage over the
whole 24 hours yielded the best results. Knowing that 70% of the total storage capacity is usable,
this corresponds to an energy of 87.5 KWh, one-sixth of this energy equals 14.6 KWh for the
whole time horizon. Then, for one hour the admissible charged/discharged energy approximately
equals 600 Wh. As a result, APpaer min aNd APpger mayx are set as follows: APpuet max =

|APy gt min| = 600 W,
Three different tests are performed to validate the proposed online optimization stage:

Simulation test 1: this simulation test is performed to prove the effectiveness of the online
optimization stage in finding an improved solution, compared to the offline strategy, in response

to the fast dynamic variation in 637 ;e @1 Paifs_actuqr iNPUtS. Thus, in this test the mean

values of the actual input vectors, S%ZMWM and Pgirf actuar » are kept the same as the predicted

ones: 875 srea @ Pyiff preq and additional fast disturbances are added to the actual inputs. To

generate random signals with zero mean value and faster dynamics than the predicted data, white
Gaussian noise (WGN) signals are added to the offline predicted signals. The introduced (WGN)
signals are vectors consisting of N* random values.
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gr

For the two tested days, the power of the (WGN) added to Pg;¢f preq IS approximately 58 dB and

the one added to &7, ., is approximately 0.6 dB. The obtained predicted and actual inputs for
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the winter and summer days are respectively shown in Figures 4.4 and 4.5. As seen in Fig.4.7 and
4.8, the added (WGN) signals appear in the actual inputs’ curves (curves plotted in blue).

4 4
3 X10r T T T T T T T T T T 6 ><10| T T T T T T T T T T
F)grid-online "M
25 F)grid-mffline b PDG-onIine
ST P . ]
DG-offline
4 L .
1 2
o 3 A
2
]l ©°
o
2 L .
| 1F ]
_0-5 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hours) Time (hours)
(a) (b)
4
3 ><10 T T T T T T T T T T T 100
T 7 batt-online P+r————————————
P batt-offiine SOC
2_ . max
80 r
70 r
1 - -
__ 60F
=
0 4 o 50
]
(7]
40
T | 30+
20
2t |
10
_3 1 1 1 1 1 1 1 1 1 1 1L 0 1 1 1 1 1 il 1 1 1 1 1
0O 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hours) Time (hours)
(©) (d)

Fig.4.9 Winter Day (18/02/2021) results of (a) the grid power, (b) (DG) power, (c) battery power, and (d)
the battery’s SOC with and without online optimization stage.
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Finally, the predicted and actual total energy differences on the winter and summer days are the
same (for the winter day : Egiff prea = Eaiff actua = 370 KWh and for the summer day:
Eairf prea = Eaiff actua = 263 KWh).
The obtained results on the winter and summer days are shown respectively in Fig.4.6 (a), (b), (c),
and (d), and Fig.4.7 (a), (b), (c), and (d).
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Fig.4.10 Summer Day (16/07/2021) results of (a) the grid power, (b) (DG) power, (c) battery power, and
(d) the battery’s SOC with and without online optimization stage.
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As a general strategy and as seen from the obtained curves, the online optimization stage uses the
allowable variation in the battery power, AP, ,;¢, to rely more on the ESS and less on the utility
grid and the (DG) over the time horizon. This can be justified by the fact that the average price of
a Kilowatt-hour purchased from the grid or generated by the (DG) is always higher than the one
provided by the battery. Meanwhile, as APy 4, is limited to + 600 W, Pyrig oniine » Pp_oniine -
and Ppgaer oniine CUrves obtained with online optimization on the two tested days (curves in the
blue line of Fig.4.9 (a), (b), (c) and Fig.4.10 (a), (b), (c)) always maintain a close path to the offline
optimization. The increasing reliance on the battery can be seen from the online and offline SOC
curves in Fig. 4.9 (d) and 4.10 (d). SOC,piine Curves on the winter and summer days are below
their corresponding SOC s fyine curves. Finally, the battery’s SOCs with online optimization at the

end of the winter and summer days are no longer equal to the initial state SOC;,,;; = 50 (SOC,opngq =
48.25% at the end of the winter and SOC,,,q4 = 39.5% at the end of the summer day).

Table 4.4 and Table 4.5 summarize the results of the winter and summer days respectively. We
note that the results with no online optimization stage are found under the heading offline
optimization as in this case, the EMS only relies on the achieved day ahead offline optimization.
By comparing the results, the online optimization stage brings a profit in the total operating cost
of 0.53 $ on the winter day and a profit of 3.68 $ on the summer day. The higher profit on the
summer day is justified by the availability of the ESS energy which can be further exploited in
summer than in winter. As seen in Fig.4.9 (d), the minimum admissible SOC value, SOC,,;, iS
reached for the winter day which restricts the solution of the online optimization problem. On the
other hand, the storage is further utilized in the summer with no restriction on the lower SOC
bound, Fig. 4.10 (d). The (DG) produced energy is approximately the same in the online and offline
optimization as the price of Killowatt-hour is the same as the predicted one and the reduction of
toxic gas emissions goal is always included in the objective function. Finally, though not included
as a goal in the objective function in this Chapter, the losses in dispatchable converters are slightly
reduced (losses reduction of 0.18 KWh (i.e., 1%) on the winter day and 0.19 (i.e., 1.6%) on the
summer day) when applying the online optimization. Thanks to the reduction of the operating cost
achieved by the online optimization, the converter's losses are automatically decreased as the two
optimization goals are reconcilable.

Simulation test 2: this simulation test is carried out to prove the viability and effectiveness of the
proposed online optimization stage in finding an improved solution compared to the offline
optimized results in response to a shift of the overall predicted data input signals. Based on the
results of simulation test 1, the winter day represents a worst-case scenario for the online
optimization stage to yield improved results compared to the summer day. This is due to the
extensive usage of the ESS in the winter which reaches the minimum admissible SOC limit.
Therefore, and in order not to weigh down the content with duplicated results, the winter day is
exclusively applied as a case study and its results suffice to prove the viability of the online
optimization stage.
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Winter day (18/02/2021)

Online optimization

Offline optimization

Initial and final SOC values

SOCipir =50 -S0Copng = 48.25

SO0Cinit =50 -SO0Cepng = 50

Total energy difference:
Eqirr = Eioaa — ErEss bus

370.17 KWh

370.17 KWh

Utility grid

Epur_online =199.2 KWh

Esold_online =174 KWh

Epur_offline =201.7 KWh
Esold_offline = 1.57 KWh

i ie e A0 2

]grid_offline =744 %

Battery

Edis_batt_online =7193 KWh
Ech_batt_online = 69.56 KWh

Edis_batt_offline = 72.55KWh
Ech_batt_offline =72.96 KWh

]batt_online =12.16 $

]batt_offline =12.62 $

(DG)

Total emitted toxic gas: 44.8 Kg

EDG_online = 187.34 KWh

Total emitted toxic gas: 44.9 Kg

EpG offiine = 187.64 KWh

]DG_online =63.99 %

]DG_offline =63.68%

Losses in dispatchable converters

Eloss_conv_online =17.00 KWh

Eoss_conv_offiine = 17.18 KWh

Total operating cost function

]oc_online =150.17 $

]oc_offline =150.7 $

Table 4.4 Summary of the obtained results with and without the online optimization stage on the winter

day (18/02/2021).

Summer day (16/07/2021)

Online optimization

Offline optimization

Initial and final SOC values

SO0Cipie = 50 -SO0Cgpq = 39.7

SOCinit =50 -S0Ceng = 50

Total energy difference:
Eairr = Eloaa — ErEess bus

263.54 KWh

263.54 KWh

Utility grid

Epur_online = 228.72 KWh
Esold_online = 3.43 KWh

Epu‘r_offline = 24098 KWh
Esota_offline = 1.79 KWh

]gTid_online =7533 $

]grid_offline =7952 %

Battery

Edis_batt_online = 584 KWh
ECh_batt_online = 44,55 KWh

Egis patt offiine = 47.61 KWh
Ech_batt_offline =47.74 KWh

]batt_online =797 $

Jvatt_of fline = 744 $

(DG)

EpG ontine = 36.11 KWh
Total emitted toxic gas: 8.64 Kg

EDG_offline = 36.39 KWh
[Total emitted toxic gas: 8.7 Kg

]DG_online =11.43%

]DG_offline =1145$

Losses in dispatchable converters

Eloss_conv_online =11.72 KWh

Eloss_conv_offline = 1191 KWh

Total operating cost function

]oc_online = 94.73 §

]oc_offline =98.41 $

Table 4.5 Summary of the obtained results with and without the online optimization stage on the summer

day (16/07/2021).
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Fig.4.11 Predicted electricity pool price and applied actual scenarios of simulation test 2.

The predicted data input signals &7 .q and Pairr preq OF the winter day are modified in

conformity with Fig.4.11 and Fig.4.12. Fig.4.11, shows the curves of the predicted pool price

8oria prea (blue marked line) which has a mean value of 40.4 ¢/KWh and two tested actual pool

price curves, 827 qcruar- The first one in the dash-dot red line corresponds to a mean price higher
than the predicted one with a mean value of 42.4 ¢/KW h and the second curve in the solid green

line corresponds t0 a 87 4cruq 10Wer than the predicted one with a mean value of 38.4 ¢/KWh.
For Pyifs prea the overall predicted curve is shifted up and down to simulate all possible scenarios.
As seen in Fig.4.12, the plotted curves correspond to different mismatches in the total energy

difference over the whole time horizon. The curves of Py;ff qctuqr in Solid marked black and solid

magenta lines correspond to a higher total energy difference than the predicted one (the dash-dot
blue line curve). Py;rs gcruar N SOlid marked black line corresponds t0 Egirr qcruar = 390 KWh

(i.e. 20 KWh greater than Egirr preq = 370 KWh) and the one in the solid magenta line
corresponds t0 Egirr qcruar = 410 KWh (i.e. 40 KWh greater than Egirr preq). Similarly, the
curves of Pyirs gerua N dashed red and solid green lines correspond to a lower total energy
difference than the predicted one. Pg;¢s geruar IN SOlid green line corresponds t0 Egirf geruar =
350 KWh (i.e. 20 KWh lower than Egi¢f preq = 370 KWh) and the one in the dashed line
corresponds to Eg;ff actuar = 330 KWh (i.e. 40 KWh lower than Egifr prea)-

Hence, the solid magenta and dashed red lines’ curves represent, respectively, the biggest positive
and negative margins of error between the predicted and actual power difference.
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Fig.4.12 Predicted total energy difference and applied actual scenarios of simulation test 2.

Finally, we take note that the added WGN signals in simulation test 1 are always kept in
simulation test 2 but weren’t plotted in Fig.4.11, and 4.12 to intelligibly show all curve shapes
together.

Soria(¢/KWH)
Ediff (KWh) ngrc.i_actual = 384 65Z;_pred = 40.4 ngz_actual =42.4
Eaiff actuar = 330 1 2 3
Eaiff actuar = 350 4 5 6
Ediff_pred = 370 7 8 9
Ediff_actual =390 10 11 12
Ediff_actual =410 13 14 15

Table 4.6 All possible scenarios of simulation test 2

All possible scenarios’ combinations of simulation test 2 are regrouped in Table 4.6. The
scenarios are numbered from 1 to 15. The obtained results of all scenarios are detailed in Table
4.7. The "A" symbol corresponds to the difference between the online and offline variables (AX =
Xontine — Xoffuine)- Consequently, negative values of AX denote that the online optimization
outperforms the offline optimization for the corresponding variable "X" and vice
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Scenario AIVIgas (Kg) AEloss_conv(VVh) A]grid ($) A]batt: ($) A]DG ($) A]OC ($)
1 —-3.06 —616 2.66 —0.45 —3.36 -1.15
2 —1.82 —606 0.33 —0.45 —-1.01 —-1.13
3 —1.63 —605 —0.07 —0.45 —0.65 —-1.17
4 —2.39 —346 2.99 —0.44 —3.13 —0.58
5 —0.94 —333 0.28 —0.45 —0.35 —0.52
6 —-0.74 —333 —0.19 —0.44 0.06 —0.57
7 —-1.77 —-199 2.79 —0.45 —2.92 —0.58
8 —0.07 —180 —-0.39 —0.46 0.31 —-0.54
9 0.16 —-179 —-0.91 —0.46 0.77 —-0.6
10 —1.24 —185 1.9 —0.45 —2.73 —1.28
11 0.7 —-169 —1.82 —0.45 0.95 —-1.32
12 1.57 —-160 —3.55 —0.47 2.69 —1.33
13 —-0.93 —-192 1.41 —0.48 —2.6 —-1.67
14 1.24 —-176 —2.85 —0.46 1.51 -1.8
15 2.18 —-170 —-4.9 —0.46 3.37 —-1.99

Table 4.7 Results of the ten applied scenarios of simulation test 2.

versa. Mg, denotes the total mass of emitted toxic gas in K g.

Based on the figures provided in Table 4.8, the online optimization stage finds an improved
solution over offline optimization in all applied scenarios. This can be seen through the negative
values of AJ, in all scenarios. As the operating cost of the DC microgrid is always lower when
adding the online optimization stage, the same result is obtained for the losses in dispatchable
converters which decrease by adding the online optimization stage as AE}ss cony 1S N€gative in all
tested scenarios. To further analyze the impact of the online optimization stage, Fig.4.8 shows the

absolute value of AJoc as a function of Eg;zp for the different 577" mean values. As seen in
Fig.4.13, the gain in the total operation cost increases as the margin of error between the predicted
and actual data inputs increases and vice versa. The lowest gain, AJ,. = —0.54 $, is obtained in

scenario 8 corresponding to equal actual and predicted data inputs. The highest gain, Ajyc =

—-199% , is obtained in scenario 15 corresponding to actual data inputs
S actuar = 424 ¢/KWh and Egirs acruar = 410 KWh that are the furthest from the

predictions. Therefore, the further the actual data inputs deviate from the predictions, the more the
online optimization yields improved results compared to the offline approach. Contrarily, when
the actual data are closer to the forecasted ones the online optimization stage delivers results that
approximate the offline optimization which always provides the optimal solution.

Fig.4.14 shows the difference in the total emitted toxic gas (kg) over the obtained total emitted
toxic gas without the online optimization stage (i.e., 44.9 Kg) in percentage as a function of Ey; ¢ ¢

for different 577" mean values.

176



T T T

mean(ég‘r’iLCh)=38.4 ¢/KWh e
Ve
1.8 1 - mean(sP1i")=40.4 ¢/KWh L7
s, ke
16k - mean(ég:’ig’h)=42.4 ¢/KWh R
. "

04 | | |
330 350 370 390 410
E g (KWV)

Fig.4.13 Absolute value of AJy¢ as a function of Eg;; ¢ for different 6522”‘ mean values.

6 T T T

mean(ég§;°h)=38.4 ¢/KWh -
————— mean(ég‘r‘ifh)=4o.4 ¢/KWh -

— — — -mean(sPU"")=42.4 ¢/KWh -7 e

2 grid g

s
.-
-

-8 L 1 |
330 350 370 390 410

E . (KWh)

diff (

Fig.4.14 AM s (%) as a function of Ey;¢f for different 65%2“ mean values.
Referring to Fig.4.14, the online optimization stage relies less on the (DG) compared to the offline
approach when the energy difference is lower than the predicted one (i.e., Eg;rf = 330 —
350 KWh) as the actual load demand is lower than the predicted one. This can be deduced from
the negative values of AM,s (%). Similarly, the reliance on the (DG) in the total energy mix of

the DC microgrid decreases as the actual electricity pool price decreases in comparison with the
predicted one (solid blue line curve). In such a case, to compensate for subtracted (DG) energy
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from the total energy mix and to reestablish the power balance equation, the online EMS purchases
additional energy from the utility grid.

This result can be verified in Fig.4.15 (a) which represents the difference in purchased energy from

the utility grid, AE,,,., over the total offline purchased energy, Epyr of fiine, in (%), as a function
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The plotted curves show that additional energy is purchased from the utility grid by the online
EMS when the electricity pool price is lower than the predictions. This can be seen by the positive
values of AE,,,,- (%) (solid blue line curve). Contrarily, when the electricity pool price and the
energy difference are higher than the predictions (i.e. scenarios 12 and 15) or when the electricity
pool price is equal to the predictions and the energy difference is higher than the predictions (i.e.
scenarios 11 and 14), (dash-dot red line and dash black line curves of Fig.4.15 (a)), the online
EMS purchases lower energy from the grid compared to the offline optimization and relies more
on the (DG) in the total energy mix.

Additional energy from the (DG) is produced compared to the offline optimization and this can be
seen by the positive values of AM, (%) (dash-dot red line and dash black line curves of Fig.4.14).
In such a case, though the offline optimization produces less toxic gas emissions, the online EMS
always maintains limited amounts of additional toxic gas production that don’t surpass 5% of the
offline total emitted amount. Toxic gas emissions are always limited in the online EMS as the
corresponding objective of emissions reduction is included in the objective function to minimize
by equation (1V.24).

Fig.4.15 (b) shows the difference in the energy sold to the utility grid, 4E,,;4, in (KW h). The three

curves plotted corresponding to the different 6%26’1
sold to the grid is independent of the electricity purchase price which turns out to be logical.
However, E,;¢¢ values highly impact the energy sold to the grid and so 4E,;4. When the energy
difference is lower than the predicted one (i.e., Eg;rr = 330 — 350 KWh), the online EMS sells
less energy to the utility grid than the offline approach. This can be seen by negative values of
AEq14. Meanwhile, for Egirf geruat = Eaifr prea = 370 KWh, the online EMS sells the same
amount to the utility as the offline approach (4E,;4 approximates zero). For higher values than
the predicted one (i.e. Eg;rr = 390 — 410 KWh), both Eq14 oniine aNd Ego1q of f1ine teNd to zero

which results in a 4E,;4 equal to zero.

mean values are merged which means energy

Finally, Fig.4.15 (c) and (b) show respectively the difference in discharged/charged energy
from/into the battery, AE ;s paee and AE.p, pqre, OVer the total offline discharged/charged energy,

Egis batt offline = 72.55 KWh and Ecp patt offiine = 72.96 KWh , in (%), as functions of E ;¢ ¢

6purch

for different gria  mean values. From Fig.4.15 (c), the amount of energy discharged from the

battery when applying the online EMS is almost the same as in the offline case. A slightly higher
amount of discharged energy in the offline case is noted and does not surpass 1% of the total
discharged energy. Fig.4.15 (d) shows that almost 4.7% less energy is charged into the battery
when applying the online EMS compared to the offline approach. The three curves are merged as
the online EMS always uses the full amount of admissible energy to the extent possible (As set in
the constraints, 600 W h are admissible each charging/discharging hour. On this day, the battery
was charged for a total of 5 hours and 40 minutes. During these 5 hours and 40 minutes, the online
EMS can charge 5.67 x —600 = —3.4 KWh less energy into the battery compared to the offline
approach. Dividing the —3.4 KWh over Ecp patt offiine = 72.96 KWh, this yields the —4.66%
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obtained in Fig.4.15 (d)). Finally, the mismatch between the total charged and discharged energy
into/from the battery when applying the online EMS can be justified by the relaxation of the
constraint on the last SOC value, SOC(k = N), which can have different values than the battery’s
initial state SOC(k = 0). In all scenarios, SOC(k = N) ~ 48.2 % which is less than SOC(k =
0) =50%. This release from the last SOC constraint allowed the online EMS to make an
additional profit in the operating cost.

4.5 Conclusion

In this chapter, the online optimization of the DC microgrid is presented. An online optimization
stage is added to update the offline optimized power references of dispatchable sources due to the
uncertainties in the RES-generated power, load demand, and electricity pool price. Unlike most
applications that rely on one operating converter to compensate for uncertainties, a new approach
is proposed in which the power references of all dispatchable sources are updated to optimally
respond to the occurring mismatches.

The proposed online optimization stage is not advanced as an alternative to offline optimization.
Instead, it is applied each intrasample period, T;; = 1 minute, to accomplish corrective action to
the offline optimized power references which have a sampling period of T; = 10 minutes. Hence,
online EMS, which has a faster dynamic than offline optimization performs a local time-invariant
optimization at each intrasample period and only outputs the new optimal power references for the
next step. To solve the online optimization problem, (GS) algorithm was selected due to its high
convergence speed and potential to find a global minimum. As the (GS) algorithm requires the
selection of a local solver which is started from multiple start points to sample multiple basins of
attraction and search for a global minimum, fmincon solver is chosen as it fits best our
optimization problem. The optimization problem is formulated conveniently to the
fmincon format with the same optimization objectives and constraints as in Chapter 3.

To prove the viability and effectiveness of the proposed online optimization stage, two simulation
tests are conducted in which two operating modes, with and without the online optimization stage,
are compared. The simulation tests yielded three main outcomes:

1. The online EMS showed an improved solution compared to the offline approach in response
to fast dynamics and disturbances in the actual data inputs. This can be justified by the intra-
sampling period of the online optimization stage which is ten times faster than the offline
optimization and so, has a better response to fast disturbances in the input signals. Hence,
online EMS increases the control time resolution of the overall system.

2. The size of the ESS plays an instrumental role in the online optimization stage which
always uses all the allowable charged/discharged energy into/from the battery to rely
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more on the ESS and less on the utility grid and the (DG) over the time horizon. This can
be justified by the fact that the average price of a Kilowatt-hour purchased from the grid
or generated by the (DG) is always higher than the one provided by the battery. A higher
profit is obtained on the summer day (3.68 $) compared to the winter day (0.53%) as
further ESS energy is available and can be exploited in summer than in winter.

. The online EMS showed improved results over the offline approach of total operating
cost in 15 different scenarios of simulation test 2. These scenarios simulate different
positive and negative margins of error between predicted and actual data inputs. As a
result, the further the actual input profiles are close to the predicted ones, the less gain is
achieved by the online optimization stage. In this case, the online EMS approximates the
offline optimization results which provides the optimal solution. Contrarily, the furthest
the actual data inputs are from the predictions, the higher gain in the total operating cost
is achieved by the online EMS compared to the offline approach.
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Chapter 5 : Conclusion and Perspectives

Following the transition from a centralized monopolized energy generation approach to a
distributed one at the end of the 20™ century and the advent of the microgrid concept, especially
DC microgrids during the last decade, new research works are witnessing an increased interest in
the control and power management of DC microgrids. To control a DC microgrid, researchers
adopted the traditional hierarchical control strategy inherited from AC grids. Consisting of three
distinct control levels, the primary and secondary control levels in a DC microgrid differ from the
AC ones in terms of control objectives. A much simpler control on the primary control level in a
DC microgrid is required in which the prime concerns are the stabilization of the common DC bus
voltage and the proper power sharing among operating DERs. The secondary control level is
usually adopted to improve the primary control level results and apply source-dependent functions
such as the MPPT. As the primary and secondary control levels were extensively investigated in
the literature, researchers are lately diverting their attention to the tertiary control level. At this
control level, with much slower dynamics compared to the primary and secondary levels, advanced
energy management functionalities can be achieved over long time horizons.

On the other hand, a surge in awareness is noted concerning global climate change and the resulting
critical risks. As carbon dioxide emissions and other greenhouse gases are the principal cause of
the earth's temperature rise and climate change, most nations are setting net-zero emissions targets
and pledges to slash their emissions for the next decade. To reach their decarbonization target,
countries are placing roadmaps based on the further proliferation of RESs, the rationalizing of
energy usage, and the improvement of the overall electrical system efficiency. Technically, these
energy policies and targets are being integrated into the EMS of microgrids under the so-called
“smart” control systems on the tertiary control level by transforming the defined objectives into
an optimization problem.

From here and based on the above-mentioned actualities in DC microgrids and worldwide energy
management policies, this thesis proposes an energy management strategy of a DC microgrid over
a 24-hour time horizon to achieve multi-objective optimization. The DC microgrid consists of
several DERs including RESs such as the PV array and WT, a (DG) as a traditional pollutant
source, an ESS consisting of a lithium-ion battery, and a residential DC-type load. The DC
microgrid can operate in grid-connected as well as in islanded mode. Three main objectives of the
EMS are defined: the minimization of the total operating cost of the DC microgrid, the reduction
of the toxic gas emissions produced by the (DG), and the minimization of converters’ losses of
dispatchable sources. This thesis presents three main contributions on different levels. Firstly, at
the modeling level, precise modeling of the DC microgrid is proposed, and new averaging
mathematical techniques are advanced. These techniques ensure the best trade-off between model
accuracy, complexity, and simulation speed. The second contribution is the achievement of a
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multi-objective optimization by finding a Pareto solution through convenient weights’ selection.
Finally, the last contribution is the integration of an online optimization stage that updates the
offline optimized power references due to existent mismatches between predicted and actual data
inputs. Next, each of the three contributions is detailed separately following each chapter of the
thesis.

First from the modeling perspective, as seen from the targeted objectives and the time horizon, the
thesis work is located at the tertiary level of hierarchical control. At this control level, the targeted
variables of the system are much slower than the primary and secondary control levels. This makes
the inclusion of all system variables in one model over a 24-hour time horizon a complicated matter
on a standard computer with limited CPU performance and memory. To overcome this hurdle and
by taking advantage of the wide span in time constants of variables, researchers usually adopt
simplified mathematical models to formulate the optimization problem. These simplified models
represent the operating sources in steady-state and do not depend on fast electrical variables such
as the current and voltage. Instead, the applied mathematical equations only include slow variables
such as temperature, wind speed, solar irradiance, etc. to compute the power of the corresponding
energy source. By omitting the electrical variables from the model, the primary and secondary
control levels are automatically excluded and considered as already established. Though yielding
decent results, this modeling approach incurs power computing errors that won’t appear unless the
EMS control is tested experimentally on a real DC microgrid. In such cases, one of the operating
converters takes charge of compensating for the resulting power computing errors which may lead
to a suboptimal solution if the power mismatches are large. As a result, this approach favors the
model's simplicity over its accuracy.

Chapter 2 presents a new approach to modeling the DC microgrid in which a trade-off between
model precision, complexity, and simulation speed was created. Though all simulations are
conducted on a standard core-i7 @ 2 GHz computer with 8 GB installed RAM, the advanced
averaging techniques made possible the 24-hour modeling while maintaining an accurate
calculation of energy sources’ power. First, each energy source along with its proper converter
was modeled, the detailed model includes the mathematical modeling of the energy source itself,
the converter, the control including the primary and secondary level hierarchical control, and the
common DC bus. Though the detailed model is the most accurate and serves as a benchmark for
precision, it does not work for long-time simulations as in this case. Mainly, this is due to the high
complexity of the model and reduced calculation step size. Hence, the main target of advancing
averaging techniques is increasing the calculation step size which automatically reduces the model
complexity and simulation time while maintaining a decent accuracy.

At the DC units modeling level (i.e., the PV array and the lithium-ion battery), the detailed models
that include the current and voltage electrical variables to compute the output power were
maintained as they don’t limit the calculation step size. For AC units (i.e., the WT, the utility grid,
and the (DG)), the problem does not show up on the unit modeling level but in the sinusoidal
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waveforms of the electrical variables. As known, the electrical variables of AC systems are
periodic and require a small calculation step size to yield proper power calculation. As a solution,
the phasor domain was advanced to express the electrical sinusoidal components in the complex
number domain. By this, all AC electrical variables are transformed from the time domain into the
complex number domain and explicit in the form of magnitude and phase shift. This transformation
toward the phasor domain increases the calculation step size 356 times and the simulation speed
880 times compared to the detailed model while maintaining accurate computing of source power.
At the converter modeling level, average modeling of all operating AC and DC converters was
proposed to increase the calculation step size of models. The switching devices of all converters
operate at high switching frequencies of the order of tens of KHz. The switching phenomenon
automatically limits the calculation step size to one-hundredth of the switching frequency and
slows down the simulation speed. As our control objective does not target this phenomenon by
itself, it can be removed. This is what the average modeling makes by omitting the switching
devices and replacing them with controllable voltage and current sources. This assumption
increases the calculation step size 100 times compared to the most detailed model and maintains
a decent mathematical model of the converter that includes the duty cycle ratio. As the passive
component of converters, electrical variables, and duty cycle ratio are always included in the
average model, the conduction and the switching losses which are the major sources of losses in
all operating converters were accurately modeled. The precise power efficiency curves of all
converters were deduced and can then be included when formulating the optimization problem to
achieve the minimization of converters' losses goal.

On the converters’ control level, the primary and secondary control levels were maintained for all
operating converters. A detailed study was conducted on RESs that always operate in MPPT mode
as MPPT techniques highly impact the calculation of outputted power. In this context, a new MPPT
table search technique was proposed for the PV array as traditional ones require small calculation
step sizes. As a result, the proposed modeling strategy provided the best tradeoff between model
precision, complexity, and simulation speed. Only variables and phenomena that limit the
calculation step size and do not impact the precise calculation of power sources were neglected.

The second contribution of this thesis is the achievement of multi-objective optimization. To reach
the three predefined objectives of the EMS, an optimization problem is formulated in Chapter 3.
The optimization problem outputs the optimal power references of dispatchable sources for the
next 24 hours. As the PV array and the WT are always operating in MPPT mode to continuously
extract the maximum available clean energy, the optimal EMS has three remaining degrees of
freedom. These degrees of freedom are the power references of the battery, the (DG), and the
utility grid. Hence, by setting the power references of these three units for the next 24 hours, the
EMS optimally controls the power flow in the DC microgrid. The models of the PV and (WT)
power sources that were derived in Chapter 2 serve as inputs for the optimization problem. Besides,
as presented in Chapter 2, the detailed battery model which includes the exponential zone of the
battery’s voltage and accurately computes the battery’s state of charge (SOC) is adopted in Chapter
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3. The complexity of the formulated optimization problem lies at the variables’ level of which the
power references of the (DG) and utility grid are time-invariant, whereas the battery’s SOC is time
variant. Being a fundamental parameter that affects the battery’s power over the entire control
range, the battery’s SOC discrete equation was included in the optimization problem to correctly
guess the SOC and set the battery power reference over the whole time horizon.

Among several methods, the unique weighted objective function method is applied. Distinct
weights that vary from zero to one were assigned to the three predefined optimization goals. The
objective function, expressed in $, consists of the weighted sum of the total operation cost, the
toxic gas emissions cost, and the converters’ losses cost functions expressed all in $. To compute
all these cost functions, several mathematical equations that relate the optimization variables (i.e.
the optimal power references of dispatchable sources) to the operation and maintenance costs of
operating units, the total mass of emitted toxic gas, the fuel price, and the converters’ losses penalty
factor were included. By this, a total energy bill, in $, is obtained at the end of each day consisting
of the total cost of purchased/sold energy from/to the grid, the (O&M) cost of all operating units,
and the penalty cost related to the toxic gas emissions and the losses in operating converters. On
the one hand, expressing all cost functions in dollars and including them in one objective function
offers a mathematical solution to enable the preference criterion between the three optimization
goals. On the other hand, it provides a unified energy bill at the end of each day that can be
intelligible on the consumer side.

Besides, to emulate a real DC microgrid scenario, upper and lower bounds for decision variables
were added as well as several constraints. For instance, constraints on the minimum and maximum
admissible SOC values, the final SOC value that should retrieve the battery’s initial state, etc. were
introduced to guarantee a safe operation of the ESS and all operating units. Applying all these
equations resulted in a time-variant optimization problem with nonlinear and non-smooth
constraints and objective function. To solve the formulated optimization problem, two algorithms
were represented and applied. A first deterministic algorithm called dynamic programming (DP)
and a second metaheuristic algorithm called the genetic algorithm (GA) were applied to further
prove that the found solution is a global minimum. Both algorithms converged and yielded close
results with a preference for the (DP) which solved the problem in an extremely lower convergence
time and higher time resolution compared to the (GA). The convergence time ratios for the winter
and summer days are respectively: GA.r/DPqr = 15.44 and 24.54. For the time resolution, (DP)
is run with a sampling period of T; = 1/6 hour meanwhile, the sampling period of (GA) is limited
to Ty = 1 hour since the number of optimization variables increases exponentially as the sampling
period decreases.

Next, the preference criterion between the three defined goals was assessed by varying the
corresponding weight of each objective in the unified objective function. As a result, a Pareto of
all possible optimal solutions with corresponding weight variation intervals was deduced for the
tested winter day. Besides, although the three optimization goals are expressed distinctly in the
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main objective function, the achievement of any of them fosters or restricts the attainment of the
remaining ones. Thus, the results showed that the accomplishment of the minimization of the total
operation cost goal automatically favors the minimization of the converter’s losses and vice-versa
as the two goals are reconcilable. However, the minimization of the toxic gas emissions goal
contradicts the minimization of total operating cost and converters’ losses goals. Here lies the
importance of the defined Pareto of solutions following the user preference for goal achievement.
Consequently, the Pareto solution analysis is instrumental and must precede the offline
optimization process.

Chapter 4 highlights a third contribution of this thesis, the inclusion of an online optimization stage
that updates the offline optimized power references. The uncertainties in the RES-generated
power, load demand, and electricity pool price are the main causes of mismatches between
predictions and actual data inputs. To compensate for these mismatches, one of the operating
converters, mostly the utility grid converter, takes charge of stabilizing the common DC bus
voltage and reestablishing the power balance in the DC microgrid. Though this preponderant
approach ensures a stable operation of the microgrid regardless of the occurring mismatches, it
may engender a suboptimal solution far from the offline proposed one. For this, a new online
control strategy is advanced in which an online optimization stage is added to update the power
references of all dispatchable sources. By this, all dispatchable sources share the corrective actions
needed to compensate for the uncertainties and not only one of the operating converters. The new
power share of each dispatchable source is defined according to the formulated online optimization
problem.

Setting the same three optimization goals of offline optimization, the online optimization stage is
not advanced as an alternative to the offline one and does not rebuild the optimal path over the
whole-time horizon. Instead, the online EMS, which is ten times faster than the offline output
power references, carries out a local optimization for each one-minute intrasample period. At each
intrasample period, it assures the corrective action by outputting the updated optimal power
references for one next-time step. The online optimization problem was formulated appropriately
for the selected local solver of the main algorithm which is Global Search (GS). The chosen local
solver is fmincon. To simplify the mathematical expressions of the problem, all weights in the
objective function are set to one so that there are no preferences between the three goals at this
stage. Besides, as the minimization of the total operation cost and the converter’s losses are
reconcilable objectives, the latter objective wasn’t included in the objective function. Knowing
that, if the above-stated hypothesis is correct, any reduction in the total operating cost should
automatically result in a reduction of converters’ losses. Furthermore, the constraint on the last
battery’s SOC is released.

The effectiveness and viability of the proposed online optimization stage were proved in two
different simulation tests. The first simulation test assesses the response of the system in the
presence and absence of the online EMS toward fast dynamics and disturbances in the actual data
inputs. To simulate the fast disturbances in the actual data inputs, white Gaussian noises (WGN)s
are added to the predicted input signals. The obtained results show that the online EMS vyields
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better results than the offline approach in this simulation test as it has a higher time resolution.
Hence, the first benefit of online EMS s its robustness in responding to fast disturbances in the
input signals compared to the offline approach. The second simulation test simulates several
scenarios in which positive and negative margins of error between predicted and actual data inputs
are created. The online EMS showed improved results of the total operating cost in all applied
scenarios compared to the offline approach. Besides, lower converters’ loss values were noted in
all scenarios which validated the hypothesis of reconcilable objectives. For toxic gas emissions,
depending on each case scenario the online EMS produces less or further toxic gas. In case of
additional emitted toxic gas, the amount remained limited (i.e., a maximum 5% additional amount
of emitted toxic gas in the worst-case scenario) as the corresponding optimization goal is included
in the objective function to minimize.

Finally, it is worth mentioning that the size of the ESS plays a significant role in online EMS-
obtained results. Referring to all simulation tests, the well-defined amount of extra storage energy
allocated to the online EMS was entirely used in all simulations and scenarios to ensure a profit in
the total operating cost at the end of the 24 hours. This extensive reliance on the ESS can be
justified by the low average price of a kilowatt-hour discharged from the battery compared to the
one purchased from the utility grid or produced by the (DG). As a result, the further the battery is
exploited during the day the less the profit from the online EMS is at the end of the time horizon.
This can be seen by the higher profit obtained on the summer day (3.68 $) compared to the winter
day (0.53%) as further ESS energy is available and can be exploited in summer than in winter.

The future work may include four different perspectives that can be followed and developed:

e The first is the experimental validation of all the simulation results. A real implementation
of the proposed offline and online EMS on a real DC microgrid with the same configuration
is essential so that the project does not remain theoretical. This can be achieved through a
Hardware In the Loop (HIL) simulation such as OPAL-RT systems which enables the
assessment for several days.

e The second aspect is the integration of an additional type of ESS such as the
supercapacitors that respond to rapid and high peaks of power demand while the battery
takes charge of supplying the permanent energy demand. The attribution of the fast power
discharge/charge to the supercapacitor and the slow power discharge/charge to the lithium-
ion battery must be reflected in the formulation of the new optimization problem.

e Third, the load was not considered a dispatchable unit when formulating the optimization
problem in this thesis. However, the load can provide an additional degree of freedom if
added to optimally manage the energy of the DC microgrid. This can be achieved by the
load-shedding and the deferrable/ undeferrable load strategy. The load shedding offers an
additional economical solution when the consumption surpasses the RES production, and
the battery is entirely discharged.
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Finally, in the last chapter to model the mismatches between the predicted and actual data
inputs, we have added white Gaussian noises to the predicted input signals and shifted them
up and down to create non-zero average variations. Yet, the prediction model can be
improved by integrating Artificial Intelligence (Al) which offers a better solution to fit
reality. Al makes it possible to better integrate changes in production and consumption
through data fusion, big data, etc.
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A.1 PV module data

Appendix A

SunPower SPR -415E-WHT-D is selected as a module out of several PV module manufacturers
around the world proposed through the MATLAB/Simulink library:

Parameters  Advanced
Array data

Parallel strings |20

Series-connected modules per string |6

Module data

Module: SunPower SPR-415E-WHT-D

Maximum Power (W) 414.801

Cells per module (Ncell) 128

Open circuit voltage Voc (V) 85.3

Short-circuit current Isc (A) 6.09

Voltage at maximum power point Vmp (V) 72.9
Current at maximum power point Imp (A) 5.69
Temperature coefficient of Voc (%/deg.C) -0.229
Temperature coefficient of Isc (%/deg.C) 0.030706

Display I-V and P-V characteristics of ...
array @ 1000 W/m2 & specified temperatures

T_cell (deg. C) |[4525 ]

Plot

Model parameters

Light-generated current IL (A) 6.0978

Diode saturation current I0 (A) 7.1698e-13

Diode ideality factor 0.87223

Shunt resistance Rsh (chms) 419.7781

Series resistance Rs (ohms) 0.53711

Fig.a.1 SunPower SPR -415E-WHT-D module data.

The PV maximum outputted power can be computed by multiplying the module maximum
power by the number of parallels and series strings:

Poy max = 414.801 X 20 X 6 = 49 776 W ~ 50 KW.

The reference irradiance and cell temperature under standard test conditions (STC)s are
respectively equal to: S, = 1000 W /m?and T.r x = 25°C = 298.15 K
The reference light-generated current: I, ,..r = 6.0978 A as seen in Fig.a.1.
The temperature coefficient of short-circuit current (I5.) in (4/°C) is equal to the temperature

coefficient of Is- (%/°C) multiplied by the short-circuit current (I5.):

@, = 222 X 6.09 = 1.87 X 1072 A/°C.

The diode current of the PV array (1) is expressed as a function of the diode voltage (V,), the
diode saturation current (1), and the diode temperature voltage (V;):

Vv
I, =1, [exp (V—‘;) — 1] (A1)
Referring to fig.2.4 (chapter 2), V; can be expressed as: V; = Vpy + R. Ipy
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I, and V. are expressed as functions of the input variable Tk (the cell temperature in Kelvin)

o Iy = FT = e x (F2) x enp [ ) - ()| (A2)

Tref k KiXTrer K K1XTk
where:

Iy rey is the diode reference saturation current = 7.169810~°A
E, e is the reference material bandgap energy = 1.12 eV (for silicon)

K, is the Boltzmann constant = 8.618 x 1075 eV /K.
E, is the material bandgap energy, and is computed as follows:

o E;=Ey of X |14+ dE;dT X (Tx — Tres 1)) (A.3)

dE4dT is a coefficient for silicon [160] = —0.0002677

T
o V= f(TK) = VT_ref X Nger X ﬁ (A.4)
where:
N, is the number of the series-connected modules per string= 6.
Vr res is computed as follows: Vi ,..p = % x nl X Ncell (A.5)

where:

K is the Boltzmann constant = 1.3806 x 10723 J /K.

q is the electron charge =1.6022 x 10719 C.

nl is the diode ideality factor (a number close to 1) = 0.87223 for this module.
Ncell is the number of cells connected in series in a module = 128.

A.2 Incremental conductance MPPT technique

This method uses two current and voltage sensors to measure the PV array voltage and current.

dvpy

As a concept, the maximum-power point corresponds to a = 0 (having Ppy = Ipy X Vpy):

oP oP dpP dl
dPPV = T:::dlpv -+ ﬁdVPV = VPV'dIPV + IPV'dVPV 9 Tiz = pr.ﬁ + IPV = 0
Which yields the following expression: Z2“ 4+ eV — (A.6)
dvpy  Vpy

At each MPPT control sliding window time, the expression of (A.6) is computed, and the resulting
error is minimized to continuously track the maximum available power. In the Simscape library of
Simulink, the incremental conductance method can be implemented as a single block in which the
PWM switching frequency (fsy py), the sliding time window of the MPPT control (Typpr), and
the initial duty cycle (D;,;;) are the parameters to be defined. The block has as inputs the PV array
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current and voltage and the firing pulses (u) as output [121]. Inside the block, two Fourier analysis
blocks are applied to Ip, and Vpy, to get the fundamental components of ripples measured with a
sliding time window T),;ppy. The Fourier blocks output dlp, and dVpy. Besides, the mean values
of Ipy and Vpy, are computed and utilized to form the (A.6) expression which can be written as:

dlpy | 1pv mean

avpy + Vpv_mean (A7)
Where, Ipy mean, and Vpy 1meqn are respectively the mean values of the PV array current and
voltage over the sliding time window (Typpr). A Pl regulator minimizes the resulting error from
(A.7) expression with a default proportional gain of 5. The regulator outputs the duty cycle
correction AD to be added to the initial duty cycle D;,;;. Finally, (AD + D;,;;) is connected to the
PWM generator to generate the firing pulses that control the IGBT with the specified switching
frequency. For this study, the parameters' values are: Di,;c = 0.5, f5,, py = 20 KHz, and Ty, =
0.2 ms.
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Appendix B

B.1 DC/DC boost components’ selection and parameters calculation for
conduction losses

B.1.1 Diode selection

To select the DC/DC boost diode, the maximum continuous DC forward current and the maximum
peak reverse voltage should be evaluated:

e The maximum peak reverse voltage that the diode withstands in this application is equal to
the DC bus voltage: Vgy = Vgys = 800 V.

e The maximum continuous DC forward current is equal to the maximum inductor current
since the conduction equivalent resistor is placed in series with the inductor L: I ¢ ey =
I, max - By referring to Fig.a.1, the PV maximum rated power iS Ppy max = 50 KW
corresponding to a maximum PV current: Ipy 4, = current at the maximum power point
of a module x number of parallel strings = 5.69 x 20 = 114 A.

The Infineon semiconductor manufacturer is chosen for the diode and IGBT real sizing. The
“DD400S45KL3_B5 “diode is selected with the below maximum rated values:

- Vgrm = 4500V, Vrru - the repetitive peak reverse voltage
- Iz =4004, Ig : the continuous DC forward current

As seen the maximum rated values outstrip the above-computed ones (Vgy and Ip ¢ pmqy) Which
guarantees a safe operation with an additional range for the safety factor.

Vro and Rp ¢ values can be extracted from the I = f (V) characteristic found in the
manufacturer’s datasheet and represented in Fig. b. (a). A tangent line to the curve of T;,; = 25°C,
at the maximum DC forward current rated value (I = 400 A), is drawn (red dashed line). The
point of intersection of the tangent with the x-axis corresponds to the diode forward voltage source
(V), and the inverse of the tangent’s slope corresponds to the diode forward resistance (£2). By
referring to Fig.b.1 (), Vo = 1.65V and Ry, = 2.1 mQ) are retrieved.

B.1.2 IGBT selection

The same approach of the diode selection is applied to size the IGBT and find the conduction loss
parameters (Vigpr cro and Rigpr on). The maximum continuous DC collector current and the
maximum collector-emitter voltage should be evaluated:

- The maximum collector-emitter voltage is retrieved when the IGBT is blocked:
VCE = VBUS = 800 V
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- The maximum continuous DC collector current is retrieved when the IGBT is ON and is
equal to the maximum inductor current I} ,,qx: I168T on max = Ii max = 114 A.

The “FZ400R12KE4 “IGBT is selected, from Infineon manufacturer, with the below maximum
rated values:

- Vegs =1200V, Vegs - the collector-emitter voltage
Icnom = 400 A, I. nom  the continuous DC collector current
800 T i 7 800 I I
- Tazze / —— Ty=25C v
Ty = 125°C | . Tj: 155C ,’l
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Fig.b.1(a) Ir = f(Vy), and (b) I, = f(V¢g) characteristics from the Infineon datasheets.

Same to the diode selection criteria, the safe operation of the IGBT is guaranteed with an additional
range for the safety factor.

Viger cro @nd Rygpr on Values are extracted from the I, = f(Vg) characteristic found in the
manufacturer’s datasheet and represented in Fig.b.1 (b). By drawing the tangent to the black curve
and applying the same method of diode selection, the following values are obtained:

VIGBT_CEO =09V and RIGBT_OTL = 2.1 mqQ.

B.2 DC/DC boost parameters calculation for switching losses

B.2.1 IGBT parameters

Referring to the manufacturer’s datasheet, the turn-on and turn-off delay time (s) are provided
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for a collector-current I, = 400 A, and collector-emitter voltage V. = 600 V :

tonicer = 0.24 s
torricr = 0.61 us

B.2.2 Calculation of ¢, , and Ipy p

The manufacturer doesn’t provide t p, then it should be computed using the diode parameters
provided in the datasheet:

- The peak reverse recovery current: Iy, 45 = 500 A4
- The recovered charge: Q,, = 390 uC
- The reverse recovery energy: E,... = 590 mJ

These parameters are provided under the below test conditions:

= IF - 4‘00 A
- dlg/dt = 1650 A/us
- Vp=2800V

To compute tf p, the softness factor “s” is computed based on the below formula[128] :

s=Ll= % 1=4148 (B.1)

tsp 0'51}2?M dS/ dt

ts p - the time required by the diode current to fall from zero and reach its peak reverse recovery
value (fig. b.2(b)).

Referring to fig.b.2(b), the reverse recovery time t,,. , can be computed as follows:

2.Qr
RM_ds

trrp =tsptirp= 7 = 1.56 us (B.2)

Thus, & p = trr p (Hil) = 0.8057¢,, p = 1.26 us.
E,.. can be expressed as follows:

Erec = kgVrQr (L) (B.3)

s+1
ky : a constant depending on both the characteristics of the diode and the commutation circuit.
Using equation (B.3), we find k; = 0.6706.

To determine Iy, p Which is directly affected by the value of the forward current I, we refer to
the datasheet curve showing the reverse recovery energy E,.. as a function of I as seen in
Fig.b.2(a). The manufacturer provides the reverse recovery energy as a function of the forward
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voltage at a 125°C condition (black curve). As the detailed curve of E,... is not provided at 25°C,
and only one value is provided for I = 400 A at T=25°C, the ratio of E,.. between the two
temperature conditions is computed for I = 400 A:

Erec_125°> _ 1200 -
Ip=400 A

Erec_25° B 590 -

To draw E,... waveform (indigo curve) at T=25°C, the same ratio is considered for all I values.
When the diode conducts, the forward current I is almost equal to the inductor current I, (Ir =
1.,). Finally, MATLAB basic fitting tool is used to obtain E,... = f(Iz) equation. A fourth-degree
polynomial fit gives a best-fitting result with a coefficient of determination R? = 0.9997.

1600
//"'
1400 I I I /_/ A Vp Ipa
1200
Ip
1000
t

£ 800 g
w

600 - -

/ —lrup
400
200
0 _ _
0 100 200 300 400 500 600 700 800
(a) (b)
Fig.b.2 (a) diode switching losses E,.. = F(Ir), (b) approximation of the reverse recovery current and
reverse voltage.
The obtained equation is:
Eree = (—4.31x1078) I} + (4.51 x 1075) I3 — 0.018 12 + 4.15 I + 0.65 (B.4)

Hence, E,... is calculated using equation (B.4), and by using equations (B.1), (B.2), and (B.3),
Iy p is expressed as a function of E,.. :

,ZErec dIp/dt
IRM_D = f(Erec) = # (B-S)
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Appendix C

C.1 PMSM parameters

A PMSM made by the German manufacturer VEM is chosen. The PMSM has the following data:

Rated output power: B, = 55 KW

Nominal speed: N,, = 3000 rpm ' Q;_{/
Nominal torque : T, = 175 Nm I
Rated frequency: f,, = 100 Hz

Number of pole pairs: p = 2

Stator nominal phase-to-phase voltage: U,, = 358 V
Stator nominal phase-to-neutral voltage: V;, = 206.7 V
Stator base voltage: Vi pase = VpV2 = 292.3V
Nominal current: I,, = 95 A

Nominal efficiency for motor operation: n,,,, = 93.2 %
Nominal efficiency for generator operation: n,, = 92.85 %
Power factor: PF =1

Motor inertia: | = 0.264 Kgm?

Stator d-axis inductance: L; = 0.3445 mH

Stator g-axis inductance: L, = 0.3445 mH

Stator self-inductance per phase: Ly = 0.153 mH

The equivalent resistance of each stator winding: R, = 4.325 mQ
Permanent magnet flux linkage: ¥,,, = 0.46392 V.s

Viscous damping: F = 0,0386 Nm, s

C.2 3¢ rectifier IGBTs and diodes selection, and parameters calculation for

conduction and switching losses

To select the IGBTSs and the diodes of the 3¢ rectifier, the maximum continuous collector current
and the maximum collector-emitter voltage of the IGBT should be evaluated. As each diode is
placed in parallel to one IGBT:

the maximum continuous forward current in the diode is equal to the maximum continuous
collector current of the IGBT.
the maximum peak reverse voltage of the diode is equal to the maximum collector-emitter
voltage of the IGBT.
The maximum collector-emitter voltage is retrieved when the IGBT is blocked:

Veg = Vgys = 800V
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- The maximum continuous DC collector current is retrieved when the IGBT is ON and is
equal to the maximum sinusoidal phase current 1, of the PMSM (PMSM parameters): 1, =

V2I, = 134.35 A.

The “FS300R120E4 “IGBT module is selected, from Infineon manufacturer. The module consists
of 6 IGBTs connected to an anti-parallel diode each. The rated values of each IGBT and diode are
extracted from the manufacturer's datasheet. The IGBT-rated values are:

- Vegs =1200V, Vegs : the collector-emitter voltage

- I pom = 3004, I nom - the continuous DC collector current

- Vs = 600V, Vrer : the voltage reference of the given switching losses
- iper = 3004, lref : the current reference of the given switching losses

- Eoniger = 19mJ, Egy gt : turn-on energy loss per pulse
- EotrigeT = 24.5m], Eyff 1gpr: turn-off energy loss per pulse

The diode-rated values are:

- Vgrm = 1200V, Verm : the repetitive peak reverse voltage

- I =3004, Iz : the continuous DC forward current

- Ve = 600V, Vier : the voltage reference of the given switching losses
- iper = 3004, lref : the current reference of the given switching losses

- Eoff gioae = 12.5mJ, Eo¢f gioae - the reverse recovery energy

To find Vg o, 7cg, Vr o, 7r, applied to compute the conduction losses in the IGBT and diode, we
refer to the characteristics provided by the manufacturer’s datasheet. Fig.c.1 (a) and (b) show
respectively the characteristics of I, = f(V¢g) and Ir = f(V;). By drawing the tangents (dashed
red line ) to the black curves I, = f(V¢g) and I, = f(V) at an operating temperature of T,,; =
25 °C and applying the same method of the DC/DC boost cited in Appendix B, the following
values are obtained:

VCE,O = 088 V and TCE = 29 m.Q.
- Vi =1.0941V and 1 =1.9mQ.

C.3 Optimal torgue MPPT technique

Referring to [42], the tip speed ratio, A, can be expressed as the ratio of the linear speed of the
blade tips, vi,ina, t0 the rotational speed of the wind turbine w,. by:

)= (C.1)

Ywind

where R is the blade length (m) and the turbine-swept area is A = wR?. Thus, equation (11.21)
can be rewritten as follows:
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Fig.c.1(a) Ir = f(Vf), and (b) I, = f(V¢g) characteristics from the Infineon datasheets.
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Pwind_m - Cp (/1 :8) 213 r (C-Z)

To extract the maximum available power from the wind turbine, the rotor of the PMSM should
always run at ¢, = ¢, mq, COrresponding to the value of A = 4,,,. Hence, the following
expression is obtained:

5% max 3 _ 3
Pwind _m_opt — an /113wm Wy = koptwr (C3)
where ko, = an5 Zemax s constant.
Anom

The block diagram of the optimal torque MPPT method is shown in Fig. ¢.2. As seen, Py,ing m opt
is calculated using equation (C.3) (denoted Py, ef in Fig. c.2). Then the mechanical losses,
Py pusym, and the ohmic losses, P; pysy, Of the PMSM are computed and subtracted from
Prec rey 10 generate the electrical reference Pejec re. Then, Pyjec ror IS cCOmpared to the actual
electrical power, computed in the (dq) frame, and the resulting error is minimized by a P.I.
controller. The regulator outputs the d-axis current reference (i; ,.5), While i, .5 is always set to
zero to obtain zero reactive power in the electrical circuit. The regulator parameters are K; ,,, = 1
and T; ,,» = 100. Finally, Fig. c.3 shows the MPPT characteristic in which the turbine output
power (in p.u. of the nominal mechanical power) is plotted as a function of the wind speed (in
p. u. of the rated wind speed). Six different zones of operation can be identified:
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Zone 1: 0 < vying < Vi pu- The wind speed is less than the cut-in speed V; ,,,, = 0.44 p.u. ©
Vei = 5.28m/s. Inthis zone, Pying m pu = 0.

Zone 2: Vi pu < Vwina < b. This zone precedes the MPPT zone, it starts at v,,;nq = Ve py and
ends at vying = b = 0.45 p.u (5.4 m/s). Pyina m_py 1S lin€ar in this zone and reaches 0.08 p. u.
at its end.

Zone 3: b < Vyina < c. It is the MPPT zone in which the optimal torque MPPT technique is
applied. It starts at v,,;,q = b = 0.45p.u and ends at vy,jng =c=1p.u (12 m/s) where
Pwind_m_pu =0.9 p-u. < Pwind_m = 0.9 x 55 =495 KW.

Zone 4: ¢ < Vyina < d. This zone follows the MPPT zone, it starts at v,,;,4 = ¢ and ends at
Vwinga = d = 1.01 p.u. (12.12m/s). Pyina m_pu 1S linear in this zone and reaches at itsend 1 p. u.
d Pwind_m =55 KW.

Zone 5: d < Vying < Vzo py. In this zone, the wind power is constant and equal to its maximum
Pyina mpu = 1 © Pyina m = 55 KW. It ends when the wind speed reaches the cut-out speed

Vco_pu-

Zone 6: Vying = Ve pu- This zone is attained when the wind speed reaches the cut-out speed
Veopu = 2p.u. ©V,, =24m/s . The wind power is null (Pying m py = 0) to prevent the
destruction of the turbine.

1 ) id_ref
Ti_pr-lﬂ

o (14

iq_ref

P pmsm + Py pmsm
T A

W, idq ‘

PMSM

Vagq

Fig.c.2 The block diagram of optimal torque control MPPT method.
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Appendix D

D.1 Battery thermal expressions and parameters

Eo(T), K(T), Q(T,), and R(T) can be expressed as functions of the cell temperature as the
following:

- Eo(T) = Eolr,,, + 22 (T = Trey) (D.1)

- K@) =Klr,,, +exp (a (% - T:gf)) (D.2)

- QT = Qlryy, + 52 (Ta — Trer) (D3)

- R(T) =Rlr,,, +exp <B (% - T:ef)> (D.4)
Where,

Tyef is the nominal ambient temperature, in K.
- EolTref is the constant voltage at Ty..¢, in V.

z—i is the reversible voltage temperature coefficient, in V /K.
KlTref is the polarization constant at T, in V /Ah.

«a is the Arrhenius rate constant for polarization resistance.
Qlr,, ; is the maximum battery capacity constant at T, in Ah.

i—g is the maximum capacity temperature coefficient, in Ah/K.
Rlr,, ; is the internal resistance constant at Ty ¢, in Q.
B is the Arrhenius rate constant for internal resistance.

The cell temperature T, at any given time, t, is expressed as:

—7-1 PiossRtn+Ta
1o =17 (e ©9
Where,

R, is the thermal resistance, cell to ambient (°C/W).

tc ¢n IS the thermal time constant, cell to ambient (s).

P,,ss IS the overall heat generated (W) during the charge/discharge process and is expressed as
follows:

0E
Pioss = (EO(T) = Vbate (T)) Ipaee + a_TIbattT (D-G)
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To determine the battery parameters, one can refer to the manufacturer’s datasheet or apply the
automatic discharge parameter determination in MATLAB. This option is found in the battery
block of the Simscape library in which MATLAB/Simulink determines all the battery parameters
from the discharge characteristics based on the battery's rated capacity and nominal voltage. This

option is selected for this study and the below battery parameters are extracted:

Parameter Value Parameter Value
A 7.47V Qlr,ef 517 A.h
B 0.122 A.h™! Klr, ., 0.0045 V /Ah
Tref 298.15 K Eolr,. 283.95V
Rz, 5mQ B 1
E
a 1.000043 o9F 1x107°V/K
aT
AQ
— 0.8 Ah/K R 0.0012 °C/W
AT
te th 1800 s Thatt 10s

Table.D.1 Lithium-ion battery parameters extracted from MATLAB/Simulink.
D.2 Bidirectional DC/DC converter parameters

By analyzing the detailed electrical circuit of the bidirectional DC/DC converter (Fig.2.36), it can
be seen that:

— the maximum continuous forward current in the D, ,and D,,, is equal to the maximum
continuous collector current of sw1 and sw2.

— the maximum peak reverse voltage of D,,,; and D,,, is equal to the maximum collector-
emitter voltage of the sw1 and sw2.

- The maximum collector-emitter voltage is retrieved when sw1(boost mode) or sw2 (buck
mode) is blocked:
Vee = Vam = Vpys = 800V
- The maximum continuous DC collector current is retrieved when sw1(boost mode) or
sw2 (buck mode) is ON and is equal to the maximum allowable discharge/charge current
from/in the battery. Having a nominal battery capacity of 500 Ah, a maximum allowable
charge/ discharge current of 0.434C is fixed, then I q¢¢ max = £217 A.

Li6BT on_max = Ip_F -max = 217 A

As they withstand the same reverse voltage and forward current, sw1 and sw2 are identical.
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swl and sw2 switches are chosen from the Infineon semiconductor manufacturer. The
“FF600R12ME7_B11 “module is selected. It consists of two identical IGBTSs in parallel with two
identical diodes. The maximum rated values of the IGBT and parallel diode are the following:

- Vegs =1200V, Veps - the collector-emitter voltage

- I.pom = 6004, I. nom - the continuous DC collector current
- Vgrm = 1200V, Vrrm - the repetitive peak reverse voltage
- Ip=6004, Ip : the continuous DC forward current

The turn-on and turn-off delay time (s) are provided for a collector-current I = 600 A, and
collector-emitter voltage Vo = 600V :

tonicer = 0.25 s
tOff_IGBT = 0.420 US

Based on I = f(V;), and I. = f(V¢g) characteristics from the Infineon datasheets, Vi su1
Veeo swir Rp_f sw1, @nd Ryp o1 are identified following the same approach as Appendices B and
C. The following values are obtained:

- Voswr = 1.225V

- Vego swi = 0.8864 V

- Rp fsw1 = 0.958 mQ

- Ron sw1 = 1.022mQ

The provided diode parameters are:

- The peak reverse recovery current: Iy 4 = 400 A
- The recovered charge: Q,, = 38 uC
- The reverse recovery energy: E,.. = 19 mJ
These parameters are provided under the below test conditions:

- Ip = 6004
- dlz/dt = 7800 A/us
- Ve=600V

Using the given parameters and the same equations of Appendix B.2.2, tf , = 0.139 us.

Todefine Iry p, Erec isexpressed as a function of I by adopting the same method as in Appendix
B.2.2. The expression of E,... = f( Ir) is the following:

Eroe = (=39%x10"2) £ + (1.4 x 1078) I3 — (2.78 x 1075) I2 + 0.038 [ + 3.978  (D.7)
Once E,.. is defined using equation (D.7), Iz p can be found using equation (B.5):

,ZErec dIp/dt
IRM_D = f(Erec) = #

With kg = 1 and s = 2.705.
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Appendix E

E.1 Battery-discretized dynamic model

The battery dynamic model is represented in the continuous state in Chapter 2 (equations 11.52,
11.53, and 11.54). To apply the optimization solvers such as the (DP) and (GA) in Chapter 3, a
discretized version of the battery dynamic model is required as the battery SOC evolves as a
function of the P,,;; and the time. Hence, the discretized version of the lithium-ion battery in
which the SOC at time k + 1 can be expressed as a function of the SOC at time k , the battery
charged/discharged power at time k, and the battery voltage at time k is:

_ _ Pdis(k)-Ts _ Pch(k)-Ts
SOC(k +1) = SOC(k) Q(Ta)Vpatt (k)  Q(Tq)Vpatt (k) (ED)

Where, P, (k), Pyis(k), Ts, Vet (k), and Q(T,) are respectively the battery-charged power at
time k in (W), the battery-discharged power at time k in (W), the sampling period (hours), the
battery voltage at time k in Volts, and the battery maximum capacity at ambient temperature (Ah).
The applied algorithm is shown in Algorithm E.1. As seen in discharge mode, P;;(k) equals
Pyae(k) > 0and P, (k) is set to zero, then SOC(k + 1) < SOC (k). However, in charge mode,
P., (k) equals Py, (k) < 0 and Py;s (k) is set to zero, then SOC(k + 1) > SOC (k). Applying the
discrete equation format (E.1), SOC is considered the state of the system and P, (k) is the
decision variable.

Algorithm E.1 : Battery-discretized dynamic model

[SOC(k + l)vaatt(k + 1)! lt(k + 1)] = fbatt(SOC(k), Pbatt(k)r vbatt(k)J lt(k), Ta (k))

1- Computing T(k) out of T,(k) % computing cell temperature out of the ambient temperature
. Phare(k
2- ipare(k) = Phar) ; % battery current in A
Vpatt(k) :

3- Computing i, (k) from ipqe: (k) % low frequency current dynamics in A
4- it(k + 1) = it(k) + ipgee (k). Ts; % extracted capacity in Ah
5- if (ipaee(k) > 0) % testing charge/discharge mode
6- P, (k) =0;
7- Pyis (k) = Pbatt(k)i
8- Computing V4. (k + 1) following equation (I1.52):

Vbatt(k + 1) = fdis(it(k + l)r i?)att(k)J ibatt(k)JT(k)fTa(k)) - Rbatt (T(k)) ibatt(k)i
0- else
10- Pais(k) = 0;
11- Pch(k) = Pbatt(k)i
12- Computing Vy,;+(k + 1) following equation (I1.53):

% setting discharge mode

% setting charge mode

Vbatt(k + 1) = fch(it(k + l)r i?)att(k)r ibatt(k)fT(k):Ta(k)) - Rbatt (T(k)) ibatt(k);
13- end
14- Computing SOC(k + 1) using equation (E.1)
15- end
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E.2 Dynamic programming principle

The basic model to treat through (DP) should have two main aspects[154]:

- The dynamic of the system is described in the form of a discretized dynamic equation (such
as equation E.1).
- The cost function is additive as a function of time.

The discretized equation (E.1) can be represented in canonical form as the following:

x(k + 1) = f, (x(k), u(k)), k=01,.,N—1 (E.2)

Wehre, x(k), k, u(k), N, and f;, are respectively the state of the system, the decision variable, the
discrete-time index, the number of total steps for the whole time horizon, and the function
describing the dynamic of the system.

The cost function is additive in the sense that the cost calculated at time k, and denoted
v (x(k),u(k)) accumulates over time. The total cost, denoted R, is given by:

% =y (xW) + ) v, u(k)
k=0

(E.3)
Where yy (x(N)), is the terminal cost applied at the end of the process.

A control strategy © = {uo, i1, ---, Un—1} 1S defined by linking each step k of the applied control
to the state of the system:

u(k) = e (x(k)) (E.4)

Given an initial state x(0) and an admissible control strategy m = {uo, i, --., Un—1}, then for a
given cost function y,, from k = 0 to N, the total cost of the strategy is defined by the following
equation:

N-1
R ((0)) = 7y (XD + )y (e, ()
k=0

(E.5)
The optimal control strategy, ™, is the one that minimizes this cost:
R (x(0)) = min R, ((x(0))) (E.6)

We can consider this cost as a function which, for each initial state x(0), links the optimal cost
value R+ (x(0)). This function is called the optimal cost function.

(DP) is based on the principle of the maximum or the principle of Bellman. The principle can be
stated as follows:
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Let t* = {ug, 43, .-, Un—1} be an optimal control strategy for the considered problem. Suppose
that when 7t* is used, the state x(i) is reached at time i. By considering the subproblem for which,
from state x (i) at time i, the cost from i till N to minimize is expressed as follows:

% =y (V) + ) i eI, u(k))
k=i

(E.7)

Then, the truncated control strategy ©* = {u;, i1, -, Un—1} 1S optimal for this subproblem.
From this principle, we can formulate that for each initial state x(0), the optimal cost iR*(x(O))
of the considered problem is equal to the value of ERO(x(O)) given by the following recurrent
algorithm:

Ry = VN(X(N)) (E.8)

Rie(x(k)) = min (yk(x(k),u(k)) + Riers (fe (x(k),u(k)))) fork=N—1,..,0 (E.9)
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Appendix F

F.1 Parameters of the " ga " function

The problem constraints represented in equations (I11.21) to (111.28) are included in the "ga"
function parameters A, b, Agq, beg, Ib, ub, and nonlcon as follows:

There are no linear inequalities in the problem, then A and b that correspond to the linear
inequalities’ parameters equal empty vectors, A =[] and B = [ ].

One linear equality is included and corresponds to the last SOC value which should be
equal to the initial state, SOC(N) = 50%. To include this constraint, A., and b, that form
the linear equalities in "ga" are utilized. Given that the (GA) evaluates the matrix product
Aeq-X = beg. If Njjn_equ 1S the number of linear equalities then, A, is @ (Njin_equ X 72)
matrix and b is a (Nyin_eqy X 1) Vector. In our case, we have one linear equality then, A,
isa (1 x 72) vector and b, isa (1 X 1) vector. A.,(1,72) = 1 and b., = 50.

To set the lower and upper bounds on decision variables the [b and ub vectors are utilized.
b and ub form two (1 x 72) vectors including respectively the lower and upper bounds of

Pyria refr Ppg ref, and SOC. They are expressed as follows:

P grid_min] [Pyrid max]
0 PDG_max
SOCpmin SO0Cmax
Pgrid_min Pgrid_max
0 PpG_max
b — | SOCmin ub = | S0Cmax (F.1)
Pgrid_min Pgrid_max
0 PDG_max
| SOC i, [ SOC 0y |

By this, a feasible solution is always found in the range of b < x < ub.

The remaining constraints are included as nonlinear constraints through the "Nonlcon"
function. Nonlcon accepts x and returns vectors C and C,,, representing the nonlinear
inequalities and equalities respectively. ga minimizes the function such
that C(x) < 0 and C.4(x) = 0. Each time the Nonlcon function is called, Pyrig ref,

Ppe ref» and SOC reference vectors are extracted from the individual vector x, and the
Pyatt rer Vector is retrieved from the SOC vector following the equation (E.1). By dividing
the individual vector x into the subvectors Py,ig rer, Ppg refr @Nd Ppatt rep, C aNd Cpq Can
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now be expressed more comprehensibly as functions of these three vectors. Besides, the
converters’ loss vectors can now be computed based on Pyrig ref, Ppg refr N0 Pygir ref

vectors. The losses in grid, (DG), and battery converters vectors are respectively denoted

Plosses_3¢_grid_convv Plosses_3¢>_DG_rer and Plosses_bidirec_conv- ThUS, Ceq and C EXDFESSiOHS
are respectively the following:

Ceq = Pload - PRESs_bus grid_ref — PDG_ref - Pbatt_ref + Plosses_3¢_grid_conv +

Plosses_3¢_DG_rec + Plosses_bidirec_conv (F-Z)

Ppg_min- SIgGN(Ppg_rer) = Ppg ref ;
C = _Sign(PDG_ref)- Pyrida refs (F.3)
|Pbatt_ref| — Pyott maxs
Where, Ppg min aNd Pyt max are respectively the (DG) minimum admissible operating

power (W) and the maximum allowable power to be discharged from the battery (). All
variables are vectors of dimension (24 x 1), then C,, is a (24 X 1) vector and C is a

(24 x 3) matrix.
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