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Pablo BARTOLUCCI Co-Directeur de thèseProfesseur, Henri Mondor, Université Paris-Est Créteil
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Abstract

Sickle cell disease is a rare, chronic and potentially fatal inherited disor-
der affecting red blood cells. In particular, acute chest syndrome (ACS)
is a feared complication due to its association with increased mortality in
hospitalized patients. To reduce this mortality, biomarker variables are
examined on a patient’s arrival in the emergency department, followed by
a statistical prediction if the syndrome will occur. When making these sta-
tistical predictions, the use of conventional statistical methods or machine
learning algorithms often leads to problems such as over-fitting and high
variability. This is due to the detection of acute chest syndrome (ACS) be-
ing a typical example of an imbalanced classification problem. Our main
objective is to find syndrome cases which represent a subset within the set
of patients.

The concept of imbalanced datasets is key in this context. A binary
dataset is considered imbalanced when there is a significant disparity be-
tween the occurrences of the minority class (in our case, the occurrence of
ACS) and the majority class (patients unaffected by ACS). Traditional ma-
chine learning techniques are generally designed under the assumption of
balanced datasets. Consequently, their application to imbalanced datasets
often produces non-optimal performance and introduces biases. Due to
these challenges, a high number of methods, called imbalanced methods,
have been designed and implemented.

Nonetheless, our investigation unveiled the absence of an established
framework to systematically compare distinct imbalanced methods. Fur-
thermore, we will demonstrate that despite the profusion of methodologies,
none of them yields an enhancement in the acute chest syndrome (ACS)
detection. In response, a structured pipeline has been formulated to sys-
tematically assess and compare diverse imbalanced methods. Simultane-
ously, recognizing the inherent limitations of existing methodologies, an
innovative approach using mathematical morphology with watershed ap-
proaches was proposed. The idea of combining mathematical morphology
and more specifically watersheds is based on the fact that the detection
of small objects in an image has been explored more deeply than the de-
tection of small classes in a digital dataset. This concept is also based
on the progressive correlation established between watersheds applied to
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images and their application in classification. Consequently, we designed
three distinct algorithms based on watershed graph theory and hierarchi-
cal principles. The first algorithm is rooted in the traditional oversampling
approach, while the second algorithm adopts a method centered on learn-
ing based metric optimization. Finally, the third algorithm introduces an
algorithm-level built on watershed hierarchies, specifically designed to
reduce dependence on the dataset’s structure.

The findings highlight the efficacy of watershed-based imbalanced clas-
sification algorithms in improving the detection of acute chest syndrome
(ACS). These algorithms effectively address concerns related to overfit-
ting and variability, translating to better reproducibility. For instance, the
proposed watershed-based oversampling technique, called WSSMOTE, re-
duced overfitting from 13.3% to 1.2%. Moreover, the applicability of these
algorithms can be extended to real-world classification problems. In cer-
tain cases, these algorithms led to improvements in performance metrics.
For example, the accuracy of some real-world predictions was notably
enhanced through the application of the watershed optimization metric
learning method. This underlines the practical benefits and adaptability
of the proposed watershed-based algorithms.

Keywords Watershed Transformations, Imbalanced Dataset, Framework
development, Oversampling methods, Metric Learning methods, Hierarchy
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Résumé Long

Le syndrome thoracique aigu (STA) constitue une complication sévère
et mortelle de la drépanocytose, se manifestant environ 2,5 jours après
l’admission hospitalière du patient. Bien que de nombreuses études aient
été précédemment menées pour quantifier, comprendre et analyser ce syn-
drome, aucune n’avait jusqu’alors tenté d’anticiper l’apparition de ce phéno-
mène dès l’arrivée des patients aux services d’urgence. Une nouvelle étude
prospective novatrice, dénommée PRESEV, a donc été initiée, se com-
posant de deux volets distincts, PRESEV1 et PRESEV2, visant à examiner
le STA et à prédire son apparition au moyen de biomarqueurs. La première
phase, PRESEV1, a été conduite exclusivement au sein de l’hôpital Mon-
dor, tandis que PRESEV2 s’est déroulée dans divers centres médicaux à
travers le monde. Ces études se fixent deux objectifs majeurs: tout d’abord,
anticiper avec une forte valeur prédictive négative (VPN) les patients en-
clins au développement du STA, dans le but d’améliorer leur traitement et
de réduire les taux de mortalité; simultanément, prévoir avec une valeur
prédictive positive (VPP) élevée les patients peu susceptibles de développer
un STA, pour améliorer l’attribution des ressources hospitalières et garan-
tir, si nécessaire, un suivi à domicile.

Lors d’une première analyse, l’ensemble de données PRESEV1 a été
soumis aux méthodes habituelles d’apprentissage automatique, produisant
des résultats prometteurs. Cependant, lors de l’application de ces mêmes
modèles à l’ensemble de données PRESEV2, des problèmes de forte vari-
abilité et de surajustement sont survenus. Ces deux problèmes majeurs
trouvent leur origine dans le déséquilibre marqué entre les classes au sein
de PRESEV. En effet, à l’arrivée des patients aux urgences, seulement en-
viron 20% d’entre eux développeront un STA. Ainsi, la base de données
PRESEV présente deux classes déséquilibrées : une classe composée des
patients présentant un STA (représentant 20% de la base de données) et
une autre classe regroupant les patients qui n’évolueront pas vers un STA
(représentant 80% des patients). Ce déséquilibre est une problématique
récurrente dans de nombreuses applications, au-delà de la base de données
que nous étudions, telles que la prédiction de maladies rares ou de fraudes
bancaires. Pour contrer ces disparités de classe, d’innombrables approches,
telles que le suréchantillonnage et l’utilisation d’algorithmes sensibles aux
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Résumé Long

coûts, ont été développées au fil du temps.

Patients développant un STA 
(20%)

Patients ne développant pas de 
STA (80%)

Figure 1: Illustration du déséquilibre lié à l’apparition ou non de STA au sein de la base
de données PRESEV.

Cependant, l’application de ces méthodes de rééquilibrage se révèle com-
plexe. En effet, la recherche de la méthode conduisant aux résultats op-
timaux s’avère ardue en raison de l’absence d’une bibliothèque centralisée
regroupant les divers codes relatifs aux méthodes, ou d’une approche nor-
malisée. De plus, ce défi est amplifié par l’absence de facteur directeur
permettant d’opter pour une méthode plutôt qu’une autre. Par exemple,
les rapports de déséquilibre et le nombre de caractéristiques ne suffisent pas
à choisir une méthode de réequilibrage plutot qu’une autre. C’est pourquoi
nous avons élaboré un pipeline, appelé ImbPip, visant à comparer plusieurs
méthodes. Cette démarche garantit une reproductibilité ainsi que des com-
paraisons plus fiables, ce qui facilite l’analyse à la fois des scores et de la
variabilité des méthodes. Ce pipeline a démontré son efficacité lors de
tests sur diverses bases de données. Cependant, au cours de mes années de
thèse, un pipeline similaire a été développé et rendu public. C’est donc ce
dernier, dénommé “smote variant”, qui sera adopté et modifié lors de nos
travaux futurs.

En utilisant ce pipeline, nous avons évalué différentes méthodes de
réequilibrage sur notre ensemble de données PRESEV. Il est devenu évident
qu’aucune stratégie n’était en mesure d’améliorer à la fois les scores de
VPP et de VPN tout en réduisant la variabilité. Cette problématique nous
a poussés à explorer d’autres approches, ce qui a abouti à l’intégration
de concepts issus de la segmentation d’images en tant que stratégie de
rééquilibrage. Plus spécifiquement, nous avons exploré l’application de
l’algorithme de ligne de partage des eaux, initialement conçu pour détecter
des objets dans des images, en tant que méthode de réequilibrage pour les
ensembles de données numériques déséquilibrés. L’algorithme de ligne de
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Résumé Long

partage des eaux, bien qu’initialement conçu pour le traitement d’images,
s’est révélé prometteur lorsqu’il a été directement appliqué à des ensembles
de données présentant des déséquilibres. Cette transition a été facilitée par
la nature adaptable de son algorithme basé sur la construction de graphes.
Cette adaptation a conduit à la création de WSSMOTE, une méthode
de suréchantillonnage basée sur l’algorithme de partage des eaux. Les
résultats obtenus avec WSSMOTE sur l’ensemble de données PRESEV se
sont avérés prometteurs. En effet, WSSMOTE a permis de réduire la vari-
abilité de 13,3% à 1,2%, tout en maintenant des scores de VPP et de VPN
stables et bons. De plus, WSSMOTE a également démontré sa capacité à
améliorer les prédictions sur d’autres ensembles de données déséquilibrés
provenant du monde réel. Cependant, il est crucial de souligner que, tout
comme les autres méthodes de suréchantillonnage, WSSMOTE n’offre pas
une solution universelle, car elle n’a pas conduit à une amélioration des
prédictions pour tous les ensembles de données étudiés.

Figure 2: Analyse comparative des scores de moyenne géométrique obtenus sur diverses
bases de données provenant de cas concrets. On observe que WSSMOTE contribue à
l’amélioration des prédictions dans certains scénarios, mais cette amélioration n’est pas
généralisable.

Dans ce contexte et suite au succès que nous avons rencontré avec notre
approche WSSMOTE, nous avons entrepris une exploration dans le do-
maine des méthodes d’apprentissage de métrique, en particulier celles qui
reposent sur des problèmes d’optimisation. En utilisant la théorie des
graphes ainsi qu’un algorithme de descente de gradient, ces approches
basées sur la transformation des poids des arêtes d’un graphe et la posi-
tion des points de données ont permis d’optimiser la projection des données.
Cette optimisation a pour but de créer des regroupements plus cohérents,
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facilitant ainsi l’application de méthodes de suréchantillonnage et de clas-
sification. Bien que les méthodes WML et WMLI que nous avons mises
en œuvre aient montré leur efficacité sur divers ensembles de données
déséquilibrées, les résultats sur l’ensemble PRESEV n’ont pas enregistré
d’améliorations.

En prenant conscience des limites des méthodes existantes, qui se con-
centrent uniquement sur la disposition relative des points entre eux, notre
attention s’est tournée vers une modification directe de la hiérarchie de
l’algorithme de ligne de partage des eaux. Bien que plusieurs approches
aient été testées, comme la modification de la hiérarchie via l’élévation ou la
propagation de marqueurs, aucune n’a abouti à des résultats convaincants.
Ceci pourrait être attribué à la simplicité de la méthodologie. Cependant,
l’idée de modifier directement l’algorithme de ligne de partage des eaux et
la combinaison de méthode d’imagerie dans le cadre de problemes de clas-
sification numérique de données déséquilibrées demeure intéressante pour
de futures explorations.
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Introduction & Outline

Sickle cell disease is a rare, chronic and potentially fatal hereditary disease
affecting red blood cells. It was first identified in the early 20th century
by James Herrick [10], a Chicago physician. Today, it is the most preva-
lent monogenic disease in the world, and has been recognized as a public
health priority by several organizations such as the World Health Organiza-
tion, the United Nations and UNESCO. Consequently, developing a global
strategy to understand this disease is of paramount importance. Indeed,
understanding the sickle cell disease and its complications will improve the
diagnosis and the treatment of affected patients. Under specific conditions,
the hemoglobin of SCD patients presents a unique polymerization behavior
within red blood cells, resulting in their typical sickle-shaped appearance.
These altered cells are difficult to deform and can obstruct blood capillar-
ies [6]. This leads to vaso-occlusive crises (VOC), extremely painful events
that mainly affect the bones. These crises account for a significant propor-
tion of emergency room visits and subsequent hospitalizations [1]. Acute
chest syndrome (ACS) appears to be the most feared complication and
the leading cause of mortality in patients hospitalized with VOC [7, 5, 8].
Usually occurring around 2.5 days after a VOC crisis, ACS affects around
17% of patients hospitalized for VOC [12].

In order to effectively identify ACS and administer appropriate treat-
ment to patients, a dataset consisting of patient biomarkers has been gen-
erated. This dataset has been then analyzed using conventional statistical
and machine learning techniques. However, the results obtained are sub-
ject to significant over-fitting and variability. These issues occur due to
the particular characteristics of this dataset. In fact, the dataset in ques-
tion is composed of two distinct groups: the first includes a majority of
patients who do not develop ACS, while the second represents a minority
of patients who do develop ACS. Consequently, when traditional machine
learning methods are employed to predict the occurrence of ACS, issues of
over-fitting and variability stand out.

This study is a typical example of an imbalanced classification problem.
One can define a majority class, here patients without ACS, against a mi-
nority class, here patients with ACS. More theorically, a binary dataset is
considered imbalanced if there is a significant disproportion between the
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Introduction & Outline

minority class and the majority one. The concept of imbalanced datasets
is of major importance, as conventional machine learning methods often
give poor results and introduce biases when confronted with imbalanced
datasets. This can be attributed to the fact that machine learning algo-
rithms, such as support vector machines or nearest neighbors, are generally
designed for classification problems involving balanced datasets. In this
case, both classes are uniformly represented and, consequently, treated
with equal importance. Specific techniques have been developed to im-
prove prediction accuracy and reduce variabilities associated with imbal-
anced classification problems. These methods, called imbalanced methods,
have been widely discussed and described in various papers, such as [9, 2,
4]. In brief, the imbalanced methods can be categorized into three distinct
groups:

• Cost-Sensitive Learning: This category is usually used for tasks
like feature selection. In the context of imbalanced datasets, it serves
to accentuate the minority class. This can be accomplished by assign-
ing weights to the minority data either during the preprocessing part
or directly at the algorithmic level.

• Data Level / Sampling Methods: Data sampling constitutes a
preprocessing step. It involves either generating new data points from
the minority class or reducing data points from the majority class.
This category represents the most widely adopted methods to deal
with imbalanced dataset.

• Algorithmic Methods: Algorithmic methods maintain the integrity
of the original dataset while modifying the behavior of the classifier.
This approach ensures that the data distribution is preserved, even
though it necessitates a comprehensive understanding of the classifier
mechanics. A range of traditional algorithms, such as support vector
machines, decision trees, and nearest neighbors, have been adapted to
address this aspect.

Despite recent developments in the imbalanced field, two problems re-
main unresolved. The first difficulty has been discussed in depth and is
illustrated by articles such as [3]. The main idea is that no existing method
for dealing with imbalanced data appears to be a universal silver bullet. In
other words, each set of imbalanced data requires a specific approach, and
this approach cannot be determined purely on the basis of factors such as
the number of features, samples... The second problem concerns the lack
of a methodological framework or pipeline to guide users in choosing an
appropriate approach for dealing with imbalanced datasets. Essentially,
there is a lack of search grids or methodologies to systematically compare
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several imbalance methods. The study of ACS in patients with sickle cell
disease is a pertinent example of both challenges. Existing imbalanced
methods are proving inadequate for the dataset in question, leading to
poor results. Furthermore, the absence of a standardized pipeline makes
systematic exploration of alternative methods extremely difficult. These
issues underline the complexity of dealing with imbalanced datasets, and
emphasize the need for appropriate approaches and a systematic framework
for imbalanced method comparison and selection.

To address the last challenge, we have designed an open-source pipeline
that facilitates the comparison of various imbalanced methods and identi-
fies the optimal one. Additionally, to find a suitable imbalanced method
for the classification problem associated with the detection of ACS for
SCD patients, we have forged a connection between digital data and image
fields. Specifically, we have recognized the parallels between the task of ob-
ject detection in computer vision and the imbalanced problem. In object
detection, a small subset of pixels represents the object, constituting the
minority class, while the pixels depicting the background form the majority
class. This perspective has led us to explore the potential of computer vi-
sion techniques and more specifically of mathematical morphology (MM).
MM is a field developed by G. Matheron and J. Serra in 1964 [11]. It
is a non-linear approach used for image analysis, incorporating geometric
principles, topology, lattice theory, and mathematical functions. Within
the domain of mathematical morphology, a specific technique known as
watersheds holds an important place. Watersheds are employed for object
detection in images and also find applications in image segmentation. Over
time, the capabilities of watershed methods have expanded beyond image
analysis. This evolution has led to the development of algorithms and con-
nections that extend the utility of watersheds from image analysis to the
processing of digital data.

The thesis is structured into seven chapters contributing to the devel-
opment of an open-source pipeline, investigating imbalanced datasets, ex-
ploring the watershed concept, and designing three algorithms centered
around watershed techniques to enhance the detection of ACS. The fol-
lowing structure is employed for the next chapters. Chapter 1 explores
the task of identifying acute chest syndrome (ACS) in patients with sickle
cell disease, chapter 2 discusses the challenges of processing imbalanced
data for ACS detection, chapter 3 presents the development of the ImbPip
pipeline for selecting appropriate imbalanced methods, chapter 4 examines
the use of image detection techniques, in particular the watershed method,
to improve ACS detection, chapter 5 presents the new WSSMOTE over-
sampling method and the successful results obtained in detecting ACS,
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chapter 6 looks at metric learning theory and chapter 7 presents ultrametric
optimization algorithms, while the appendices describe some exploration
of algorithms using watershed hierarchy methodology for imbalanced data.

Chapter 1 Acute Chest Syndrome Detection in Sickle Cell Patients: Ex-
ploring Literature and Challenges
In this chapter, we focus on the challenging task of identifying ACS in
people with sickle cell disease (SCD). The first steps are to investigate
the nature of sickle cell disease itself, unravel its intricacies and un-
derstand the mechanisms underlying the emergence of ACS. Next, we
will set off on a statistical exploration of the Predictive Severity Study
(PRESEV) dataset. This dataset comprises biomarkers data from a
wide-ranging survey of patients with SCD, focusing on those admit-
ted to the emergency department. Our analysis method includes a
detailed examination of previous results obtained using standard ma-
chine learning methods. Results reflect over-fitting and variability due
to the imbalanced criteria of the dataset.

Chapter 2 Imbalanced Classification Challenge: A Review of the Liter-
ature
Given that ACS detection illustrates a classic imbalanced classifica-
tion problem, our goal is to understand the multi-faceted challenges
involved in working with imbalanced data. In parallel, an understand-
ing of the relevant metrics to be employed becomes essential. Our ex-
ploration extends to a retrospective analysis of the methods designed
over time to address imbalanced data challenges. In this context, one
point stands out: the absence of a framework for comparing different
imbalance methods. This absence increases the complexity of finding
the best imbalance method to use for ACS detection.

Chapter 3 ImbPip: A Pipeline for Comparing Imbalanced Methods
With the aim of identifying the most appropriate imbalanced method
to tackle the ACS detection classification challenge, we have designed,
developed, and implemented a robust pipeline. This pipeline is de-
signed to adapt to any imbalanced dataset and any metrics, finally de-
livering the optimal imbalanced method along with its associated pa-
rameters and results. Validation of our pipeline was achieved through
testing on real-world imbalanced datasets. Subsequently, we will ap-
ply this pipeline to the PRESEV dataset and observe that none of
the imbalanced methods tested improve ACS detection in sickle cell
patients. It should be noted that the initial version of the pipeline fo-
cuses only on sampling methods, which are the most commonly used
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by scientists to address real-world challenges. Other methods will be
incorporated into the pipeline later, in Chapter 6.

Chapter 4 Bridging Image Detection and Imbalanced Classification: Ex-
ploring the Watershed Theory
As existing imbalanced methods do not improve ACS detection, we
study the interaction between image detection and imbalanced dataset
predictions. Over time, numerous methods have emerged for detect-
ing small details or objects in images, as well as for refining object
segmentation. This bridges the gap between object detection and im-
balanced datasets, as the challenges as both share similar challenges.
The watershed method is one of the main techniques for image seg-
mentation and object detection. Watersheds are part of the theory
of mathematical morphology and are based on the principle of hy-
drology when basins and hills are filled with water. The watershed
has been developed for image segmentation, particularly in fields such
as medical imaging and computer vision. In addition, we discuss its
use in graph theory and data analysis for tasks such as clustering
and classification. The final section of this chapter includes a com-
parative analysis of the watershed method and other semi-supervised
approaches on imbalanced real-world datasets. While watersheds as
semi-supervised methods can improve some predictions, the watershed
method performs best when used as an unsupervised technique, as a
clustering method.

Chapter 5 WSSMOTE: a Novel Oversampling Method
Our study shows that watershed-based clustering methods perform
well compared to traditional clustering techniques when dealing with
imbalanced data. The potential benefit of these methods as a pre-
processing step to balance our dataset and subsequently improve pre-
dictive results becomes obvious. So, we designed a new oversampling
approach, called Watershed-based Synthetic Minority Over-sampling
Technique (WSSMOTE). To validate its effectiveness, we carried out
tests on various randomly selected imbalanced datasets. Encourag-
ingly, we observed significant improvements, particularly in the nega-
tive and positive predictive values. More importantly, these improve-
ments were reflected in our analysis of the PRESEV dataset, further
highlighting the potential of the WSSMOTE approach to improve
ACS detection outcomes in sickle cell patients.

Chapter 6 Exploring Metric Learning Theory & Application to Imbal-
anced Datasets
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In some cases, the complex nature of imbalanced data prevents usual
supervised machine learning algorithms and oversampling methods
from working to their full potential. In response to this problem,
metric learning methods offer a possible solution. These methods aim
to reshape the feature space, improving the separation of data points
based on their respective labels, ultimately facilitating more efficient
processing. With this in mind, we conducted a thorough review of
the existing literature on different metric learning methods, exploring
their applications in balanced and imbalanced cases. To extend our
understanding, we adapted the method comparison pipeline, allowing
us to directly compare these metric learning approaches with other
existing oversampling methods.

Chapter 7 WML: an Ultrametric Learning Method for Imbalanced Datasets
Driven by the success of WSSMOTE and the positive impact of met-
ric learning, we have developed two ultrametric-based optimization
algorithms, called WML and WMLI. These algorithms take advan-
tage of the properties of graphs to improve results without the need
for synthetic data points. We show that while both methods improve
predictions in some cases, such as oversampling methods, there is no
perfect data-level preprocessing method.

Appendices Watershed Hierarchy & Marker Propagation for Imbalanced
Data
Both optimization algorithms avoid creating artificial data points.
However, they are still pre-processing techniques based on the in-
trinsic structure of the data. Like other pre-processing methods, they
also face limitations in terms of reproducibility across all datasets.
With this in mind, our research led us to design an algorithm rooted
directly in watershed methodology, designed to meet the challenge of
imbalanced data. To this end, we focused on the hierarchical aspect of
watersheds and more precisely on marker propagation in the hierarchy.
Note that this chapter is an opening.
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Chapter 1

Acute Chest Syndrome Detection in
Sickle Cell Patients: Exploring
Literature and Challenges

Sickle cell disease is a serious genetic disorder characterized by an average
life expectancy of around 40 years. Its prevalence is increasing worldwide,
with particularly high rates in African countries, making it an urgent public
health problem. The study of the effects and underlying causes of this
disease is now of crucial importance. Numerous prospective studies have
been conducted, including two on a particularly fatal syndrome associated
with the disease called Acute Chest Syndrome (ACS). This chapter will
give an overview of this syndrome’s consequences. It will also outline an
analysis of two related datasets, present initial results and explained the
next challenges.

1.1 Sickle Cell Disease & Acute Chest Syndrome (ACS)

Sickle cell disease (SCD) stands as the most prevalent monogenetic dis-
order. Diagnosis of this disease necessitates patients to be homozygous,
denoting that both alleles of the specific gene must carry mutations. This
implies that individuals with sickle cell disease inherit the genetic alter-
ation from both parents. In other terms, possessing a single mutated allele
does not lead to sickle cell disease; but instead, it provides an advantage in
combatting malaria (cf. article [10]). Due to the primary function of the
affected gene, regions where malaria is endemic, like sub-Saharan Africa,
the Middle East, and the Mediterranean, are more susceptible to sickle cell
disease prevalence. However, historical factors such as the slave trade and
contemporary population migrations have diffused the disease across the
globe. This geographical distribution of SCD prevalence is illustrated in
Figure 1.1. Consequently, the count of sickle cell patients is rising, posing
a significant public health challenge for future generations. Presently, SCD
accounts for over 300,000 annual births, with this number expected to rise.
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In order to manage this problem effectively, we first need to understand its
biological complexities.

Figure 1.1: Geographical distribution of patients with sickle cell disease. Figure extracted
from the French sickle cell disease prevention website. The legend indicates the number
of newborns with sickle cell disease in 2015.

SCD is a genetic disorder caused by a mutation in the gene located on
chromosome 11 that encodes for hemoglobin [14]. This genetic mutation
results in an abnormal variant of beta-globin, a protein expressed by red
blood cells (RBCs), particularly by reticulocytes. Reticulocytes are imma-
ture RBCs that eventually mature into erythrocytes, the oxygen-carrying
cells in the bloodstream. However, due to the mutation, erythrocytes as-
sume an abnormal form. Under conditions of low oxygen levels, these
abnormal RBCs change shape and exhibit altered physical characteris-
tics. They transition from their typical flexible biconcave structure to a
rigid elongated one. This distortion is initially temporary and reversible,
but with repeated occurrences, it becomes persistent. In addition, despite
SCD originating from a single genetic mutation, the consequences stem-
ming from these altered RBCs are diverse and variable [8]. One of the
consequences is that the lifespan of the abnormal RBCs is considerably
shortened, leading to a shortage of RBCs in the bloodstream and eventu-
ally causing anemia. A second one is that due to their sickle shape, these
RBCs can obstruct small blood vessels, initiating vaso-occlusion which re-
sults in intense pain and even organ dysfunction. Additional complica-
tions may arise, encompassing inflammation, increased blood coagulation,
heightened platelet activation, and more. The schematic in Diagram 1.2
succinctly outlines the interactions between genetic mutations and the re-
sulting phenotypic alterations.
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Figure 1.2: Summary of sickle cell disease. The yellow boxes correspond to the genetic
steps, the red to the phenotypic ones and the purple to the consequences.

The interactions among these complications are not yet fully under-
stood. As detailed in the article [12], individuals with SCD might dis-
play elevated levels of C-reactive protein (CRP) along with various other
markers of inflammation. Consequently, diagnosing their condition can
be exceptionally challenging. However, advances have been made through
studies of sickle cell disease populations. In particular, since the inaugural
Jamaican sickle-cell cohort study in 1973, progress has been made. This is
demonstrated by the increase in life expectancy, as shown in the article [9].
Life expectancy has risen from childhood to an estimated median survival
of 45-48 years in Western countries.

Nevertheless, while interventions like oxygenation and transfusion can
offer assistance, the sole substantial treatment is hydroxyurea. Unfortu-
nately, hydroxyurea is costly and is only limited to privileged individuals
in a small range of countries. In addition, pressure on public health ser-
vices further complicates the provision of care for patients with sickle cell
disease. As highlighted in the article [10], a way to improve management
and achieve more precise treatments lies in improved prediction of SCD
patients and the factors underlying their mortality. For instance, a pre-
dominant reason for hospitalization among SCD patients is vaso-occlusive
crisis (VOC), while acute chest syndrome (ACS) emerges as the primary
cause of death during these hospital stays. A comprehensive study of
over 3,700 patients, explained in article [9], looked at mortality rates in
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ACS patients following a VOC crisis. This study found that over 33% of
patients succumbed to ACS-related complications. The considerable pro-
portion of ACS-related deaths is explained in article [1], by the fact that
ACS typically manifests around 2.5 days after admission for VOC. Thus,
because of premature discharge, patients often return for re-admission at
the peak of the ACS episode, reducing the efficacy of treatment. The study
describes in article [13] points out that if patients could be identified ear-
lier and receive prompt treatment involving transfusion, bronchodilators,
and aggressive interventions, their chances of recovery would significantly
improve. Therefore, by predicting the likelihood that a patient will expe-
rience an episode of ACS, the total number of ACS-related deaths could
potentially be reduced. It is in this context that the Predictive Severity
Study (PRESEV) was conceived.

1.2 Predictive Severity Study (PRESEV)

In the article by P. Bartolucci et al. [2], a comprehensive review was con-
ducted to analyze the distinctions between patients with vaso-occlusive cri-
sis (VOC) who are likely to develop acute chest syndrome (ACS) and those
who are not. This survey, known as the Predictive Severity Study (PRE-
SEV), has two main objectives. The initial goal is to identify biomarkers
that play a role in the progression of ACS. The study aims to identify
specific biological indicators involved in the development of acute chest
syndrome. The secondary objective revolves around the construction of a
predictive scoring system. This scoring mechanism is designed to assess
the risk of ACS occurrence when a patient is admitted to the hospital with
a vaso-occlusive crisis. The ultimate aim is to create a tool capable of
anticipating the occurrence of ACS on the basis of certain predetermined
criteria.

1.2.1 Study Presentation

The PRESEV dataset consists of two distinct prospective phases. The
initial phase, called PRESEV1 [2], was conducted at Henri Mondor Hos-
pital in Créteil, France. On the other hand, called PRESEV2 [7], is an
international prospective study that includes patients from both African
and European regions. Both phases of the study exclusively involve adult
patients who are afflicted by severe vaso-occlusive crisis (VOC). Severity
in this context is defined as the presence of pain or sensibility affecting at
least one area of the body, which is not adequately controlled by grade II
analgesics and necessitates the use of opioids. The main objective of the
PRESEV study is to investigate and understand the correlation of biomark-
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ers on the development of acute chest syndrome (ACS). By examining these
biomarkers, the study aims to establish a predictive model for the occur-
rence of ACS. This predictive model is intended to classify patients into
distinct risk categories: low, moderate and high. Patients considered to
be at low risk could benefit from a short hospital stay or even outpatient
follow-up. On the other hand, patients identified as high risk could be re-
ferred to specialized centers where intensified ACS prevention protocols are
available. As a result, prediction of ACS could potentially lead to reduced
unecessary hospital stays, lower mortality rates and improved patient care
and support through more targeted interventions.

1.2.2 Data Exploration

A thorough understanding of the dataset is a crucial initial step before
proceeding with modeling or analysis. A good understanding of the dataset
enables you to identify patterns, characteristics and potential challenges
associated with the data.

• PRESEV1 Dataset

– This dataset is composed a total of 244 patients.
– Among these, 203 patients did not experience an episode of acute

chest syndrome (ACS), whereas 41 patients developed an ACS
episode. Hence, approximately 16.8% of the patients within the
PRESEV1 study group developed an ACS.

– The data collection for this study was conducted at Henri Mondor
Hospital in Créteil, France.

– The study investigates a range of biomarkers, including: Oxygen
saturation (SatOx), Respiratory frequency (RF), Systolic blood
pressure (Syst), Diastolic blood pressure (Diast), Temperature,
Hemoglobin levels (Hem), Reticulocyte count (Ret), Leukocyte
count (Leuc), Platelet count (Platelets), Alanine transaminase
(ALAT), Aspartate transaminase (ASAT), Lactate dehydrogenase
(LDH), Bilirubin concentration (BiliC), Total bilirubin concentra-
tion (BiliT), C-reactive protein (CRP), Urea levels (Uree), Pain
etc.

• PRESEV2 Dataset

– This dataset is composed a total of 393 patients.
– Among these, 317 patients did not experience an episode of acute

chest syndrome (ACS), whereas 76 patients developed an ACS
episode. Hence, approximately 17.7% of the patients within the
PRESEV1 study group developed an ACS.
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– The data collection for this study was conducted in multiple cen-
ters, including Mali, Henri Mondor Hospital, Tenon Hospital,
Louis Mourrier Hospital, Avicenne Hospital, Rouen Hospital, Georges-
Pompidou Hospital, Togo, Belgium, Versailles Hospital, Saint De-
nis Hospital, and England.

– The study investigates a range of biomarkers, including: Oxygen
saturation (SatOx), Respiratory frequency (RF), Systolic blood
pressure (Syst), Diastolic blood pressure (Diast), Temperature,
Hemoglobin levels (Hem), Reticulocyte count (Ret), Leukocyte
count (Leuc), Platelet count (Platelets), Alanine transaminase
(ALAT), Aspartate transaminase (ASAT), Lactate dehydrogenase
(LDH), Bilirubin concentration (BiliC), Total bilirubin concentra-
tion (BiliT), C-reactive protein (CRP), Urea levels (Uree) etc.

The number of patients recruited are summarized in Table 1.1. The
categorical pain score (CPS) is the only categorical feature. It is defined
using Figure 1.3.

Number of patients Number of patients
without secondary ACS

Number of patients
with secondary ACS

PRESEV1 244 203 41
PRESEV2 393 317 76

Table 1.1: Number of patients and features for PRESEV1 and PRESEV2 studies

Figure 1.3: Definition of categorical pain score (CPS), figure from article [2].

By analyzing the information in the table 1.1, it becomes clear that there
is a notable disparity between the number of patients who have developed
ACS and those who have not. On average, only about 20 out of 100 pa-
tients experienced an episode of ACS. As a result, the PRESEV datasets
show an imbalanced distribution. In addition, an important observation is
that the biomarkers studied are not consistent across the two datasets and
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are quite numerous. A preliminary analysis exploring statistical distinc-
tions between patients who have developed ACS and those who have not
is therefore required. This exploration aims to identify biomarkers that
have a significant correlation with the development of ACS. In addition, it
is crucial to recognize that the LDH requires normalization due to its de-
pendence on the referral center. Prior to any further analysis, the dataset
was cleaned and the LDH feature normalized to ensure data consistency
and validity.

1.2.3 Statistical Analysis

After cleaning and normalizing the dataset, a statistical analysis was per-
formed. Given the imbalanced nature of the PRESEV dataset, the direct
use of complex methods such as principal component analysis (PCA) may
be problematic. Consequently, histograms and boxplots were employed to
visualize and compare the distributions between patients who developed
secondary ACS and those who did not. The outcomes of this analysis are
illustrated in figures 1.4,1.5, 1.6, and 1.7. To generate these histograms, we
use the Struges rules to define the number of classes. We denote ACS as the
population of patients who developed secondary ACS and no-ACS as the
patients without ACS. At first sight, we notice a difference in distribution
between ACS and no-ACS patients on the following features:

• For the PRESEV1 study: ALAT, ASAT, Bili C, Bili T, CPS,
CRP, LDH, Leuc, Ret and Urea.

• For the PRESEV2 study: ASAT, CPS, LDH, FR and Ret.

While data visualization is a first step, it is not a definitive method
to draw conclusions. To improve the reliability of the interpretation, we
have supplemented our statistical analysis with hypothesis-testing meth-
ods, namely the Wilcoxon-Mann-Whitney test [4] and Student’s t-test.
These two tests compare two independent populations and are intended
to provide a more rigorous examination of potential differences. In the
Wilcoxon-Mann-Whitney test, the null hypothesis (H0) asserts that the
two distributions being compared are equal. Conversely, in Student’s t-
test, the null hypothesis (H0) claims that the two means being compared
are equal, assuming a normal distribution. To make sense of these tests,
the p-values obtained have been compiled in: table 1.2 for the PRESEV1
study and table 1.3 for the PRESEV2 study. A p-value of less than 0.05
means that the null hypothesis can be rejected. This conclusion implies
that there are statistically significant differences in the distributions or
means of characteristics between ACS and non-ACS patients. This rig-
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Figure 1.4: Histograms obtained using PRESEV1 dataset.

orous approach allows us to understand more concretely the role of these
features in distinguishing between the two groups of patients.

Feature SatOx FR Syst Diast Hem VGM TCMH Ret Leuc Neut Platelets ALAT ASAT LDH Bili T Bili C CRP Urea Creat CPS
p value

Wilcoxon-Mann-Whitney test 0.142 0.05 0.89 0.70 0.02 0.80 0.63 0.005 0.01 0.04 0.55 0.21 0.03 0.004 0.08 0.009 0.57 0.10 0.41 0.89

p value
Student test 0.02 0.20 0.80 0.60 0.03 0.99 0.68 0.003 0.008 0.07 0.66 0.53 0.003 0.005 0.17 0.003 0.38 0.19 0.35 0.80

Table 1.2: P values obtained for PRESEV1 Dataset.

Feature Hem Ret Leuc CPS Syst Diast SatOx FR Platelets LDH Urea Creat ASAT ALAT BiliT BiliC CRP
p value

Wilcoxon-Mann-Whitney test 0.25 0.09 0.005 0.0004 0.52 0.49 0.14 0.16 0.13 0.003 0.003 0.43 0.03 0.46 0.75 0.29 0.01

p value
Student 0.26 0.08 0.48 0.007 0.82 0.52 0.18 0.12 0.30 0.02 0.02 0.68 0.38 0.76 0.44 0.48 0.003

Table 1.3: P values obtained for PRESEV2 Dataset.

The generated p-values indeed emphasize the significance of various
biomarkers in distinguishing between ACS and no-ACS patients. In PRE-
SEV1, markers like Ret, Leuc, Neut, ASAT, LDH, Bili C, CPS, and SatOx
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Figure 1.5: Boxplots obtained using PRESEV1 dataset.

hold notable importance. Similarly, in PRESEV2, Ret, Leuc, ASAT, LDH,
Urea, CRP, and CPS stand out as influential markers. Combining the in-
sights from both tables reveals that the following markers are potentially
impactful in predicting the development of ACS: Leuc, Ret, CPS, LDH,
CRP, Urea, and ASAT. In addition, since sickle cell disease originates from
a genetic alteration of chromosome 11, which codes for hemoglobin, the
hemoglobin (Hem) characteristic should also play an essential role.

With these key features identified, the next step is to build a predic-
tive scoring system based on clinical and biological markers. This scoring
score system aims to predict the probability of a patient developing ACS,
thereby contributing to more accurate risk evaluation and patient manage-
ment. The development of this predictive score could make a significant
contribution to improving care and outcomes for patients with sickle cell
disease.
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Figure 1.6: Histograms obtained using PRESEV2 dataset.

1.3 Detection of ACS: A Typical Imbalanced Classi-
fication Problem

As we discussed earlier, the main objective of the PRESEV study is to
predict the likelihood of a low or high risk of developing ACS. By creating a
scoring system, patients can be classified accordingly - those considered low
risk can be remotely monitored or given a short hospital stay, while those
classified as high risk can be referred to specialized centers where improved
preventive ACS protocols are available. Thus, the key objective of this
classification challenge is to minimize prediction errors for ACS patients
while maximizing prediction for non-ACS patients. Essentially, the aim is
to achieve the highest possible negative predictive value (NPV) and the
highest positive predictive value (PPV). Given the crucial importance of
identifying ACS cases, a strict standard has been set for NPV, with an
error rate of 5% being the acceptable limit. In other words, a satisfactory
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Figure 1.7: Histograms obtained using PRESEV2 dataset.

NPV is one that exceeds 95%. This highlights the importance of reducing
false negatives to ensure effective identification and treatment of patients
at risk of ACS.

1.3.1 Analyzing Previous Results

In previous studies PRESEV1 [2] and PRESEV2 [7], a score was generated
using the PRESEV1 data as training set and PRESEV2 dataset as testing
one. In addition, article [2] selected four bio-markers (CPS, Leuc, Ret and
Hem) and a score method has been developed through a logistic regression
method. This scoring method can be summarized as follows:

• RBC ≤ 216: 0 point
RBC > 216: 6 points

• CPS = 0 or 1: 0 point
CPS = 2: 4 points
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CPS = 3: 6 points

• Leukocytes ≤ 11: 0 point
Leukocytes > 11: 3 points

• Haemoglobin > 9: 0 point
Haemoglobin ≤ 9: 1 point

Consequently, the use of this scoring method developed in the articles [2]
and [7] produced the resulting negative predictive value (NPV) and positive
predictive value (PPV) results presented in table 1.4.

PPV (%) NPV (%)
PRESEV1 44,7 98,9
PRESEV2 27,6 95,8

Table 1.4: PPV and NPV obtained by the method developed in articles [2, 7]

The results of PRESEV2 serve to confirm the findings of PRESEV1.
Nevertheless, there is significant variability in the positive predictive value
(PPV) between PRESEV1 and PRESEV2, amounting to approximately
38%. This variance can be attributed to two main factors. Firstly, PRE-
SEV1 constitutes a mono-center study, resulting in homogeneity within
the dataset. In contrast, PRESEV2 is a multi-center study, leading to a
more heterogeneous dataset. This difference in data origin contributes to
the observed variability in the PPV. Additionally, during the statistical
analysis phase, it became apparent that ACS occurrences were relatively
infrequent, only happening around 20 times out of 100 instances. This
imbalance in occurrence rates between ACS and non-ACS cases introduces
an asymmetry in the number of samples within each class. The fact that
our database is imbalanced is of major importance, as this can have a sig-
nificant impact on the performance and reliability of predictive models.
It is essential to address this imbalance and adopt appropriate strategies
to ensure fair representation of both classes in order to obtain accurate
predictions and meaningful information.

1.3.2 Transforming PRESEV into a Classification Problem

To introduce strategies for handling imbalanced datasets, the initial step is
to transform the PRESEV study into a conventional classification problem.
The initial step involves transitioning the PRESEV classification challenge
into a machine learning one. To accomplish this, a series of actions must be
undertaken. Given that the dataset has support cleaning procedures, the
next action is to reduce the number of features. Dimensionality reduction
techniques appear to be the optimal approach for this task. However, due
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to the imbalanced nature of our PRESEV dataset, conventional techniques
such as principal component analysis (PCA) or autoencoders may not yield
significant results. These techniques tend to give priority to the majority
class, often neglecting the minority class, resulting in biased feature im-
portance. For this reason, a more time-intensive approach was adopted,
involving the exhaustive testing of all feature combinations. In addition,
it was decided to merge the PRESEV1 and PRESEV2 datasets, creating
a unified dataset called PRESEVC. To ensure a comprehensive valuation,
test and training parts were randomly generated. Importantly, particular
attention was paid to the equal representation of minority and majority
data points in both parts. This approach was employed to reduce the im-
pact of class imbalance and promote a more equitable training and testing
process.

In order to reproduce the results presented in the previous section,
and in papers [2, 7], we executed standard machine learning methods.
More specifically, we used methods such as random forest [3], adaboost [5],
MLP [6], SVM [11] and logistic regression [15]. The evaluation process
was conducted using a cross-validation methodology to ensure robust and
unbiased results. By combining the NPV and PPV values obtained from
various feature combinations, we obtain an aggregate table presented in
table 1.5.

Features ML method NPV PPV
Ret, Leuc, Hem, ASAT, LDH, Bili C, CPS, Urea, CRP AdaBoost 32.1 ± 30 84 ± 1.3

Ret, Leuc, Hem, ASAT, LDH, Bili C, CPS, Urea KNN 37 ± 29 84 ± 2
Ret, Leuc, Hem, ASAT, LDH, Bili C, CPS, CRP RF 29.23 ± 18.4 85.4 ± 4.1
Ret, Leuc, Hem, ASAT, LDH, Bili C, Urea, CRP RF 33.3 ± 29.7 83.5 ±2.2
Ret, Leuc, Hem, ASAT, LDH, CPS, Urea, CRP AdaBoost 45.7 ± 30.9 84.5 ± 1.6
Ret, Leuc, Hem, ASAT, Bili C, CPS, Urea, CRP RF 37.3 ± 28.3 85.1 ± 2.6
Ret, Leuc, Hem, ASAT, Bili C, CPS, Urea, CRP RF 37.3 ± 28.3 85.1 ± 2.6
Ret, Leuc, Hem, LDH, Bili C, CPS, Urea, CRP AdaBoost 33.9 ± 29.3 84.4 ± 3.3

Ret, Leuc, Hem, ASAT, LDH, CPS, Urea KNN 32.5 ± 28.9 83.3 ± 1.9
Ret, Leuc, Hem, ASAT, CPS, Urea, CRP AdaBoost 44.6 ± 30.6 85.1 ± 1.5

... ... ... ...

Table 1.5: NPV and PPV values on the testing part obtained using different feature
selections.

This table shows that the most effective feature combination is Hem,
Ret, Leuc, LDH, Urea and CRP. However, the results obtained are not
as outstanding as expected, which could be explained by the imbalanced
nature of the PRESEV dataset. In response, a modification was introduced
the code. The prediction outputs were transformed into a probabilistic
format. Different thresholds were applied to adapt the predictions. This
technique produced results that are presented in table 1.6. These results
are close to those obtained in previous studies [2, 7]. Nevertheless, it
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should be noted that the PPV value decreased and that a certain degree of
variance in results was observed between the training and testing phases
(over-fitting variance), as well as between repeated experiments (cross-
validation variance). Both these variations could be due to a lack of data,
or attributed to the fact that PRESEV is an imbalanced classification
problem and not a classic classification one.

PRESEVC PPV NPV
Train 24.5 ± 3.9 94.1 ± 3.9
Test 26.1 ± 0.7 100 ± 0

Table 1.6: NPV and PPV value obtained using AdaBoost, probabilities output and feature
selection (Hem, Ret, Leuc, LDH, Urea and CRP).

1.4 Conclusion

Sickle cell disease is of major concern, its prevalence being continuously on
the rise. By predicting whether a patient suffering a vaso-occlusive crisis
(VOC) will develop an acute chest syndrome (ACS), it becomes possible
to reduce prolonged hospital stays and adapt treatments to individual pa-
tients, thereby reducing the total number of deaths. Initial predictions were
made in papers [2] and [7], and then reproduced in this chapter using con-
ventional machine learning techniques. However, these results presented a
degree of variability, mainly due to the imbalanced nature of the dataset.
There is an imbalance between the class of patients suffering from ACS and
the class of patients who will not suffer from ACS. PRESEV therefore has
the typical characteristics of an imbalanced dataset, requiring the applica-
tion of imbalanced methods for accurate ACS detection. Thus, the next
chapter will provide an overview of the challenges associated with solving
an imbalanced classification problem. It will look at the complexities posed
by imbalanced class distributions and explore candidate methods that can
be exploited to tackle this problem.
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Chapter 2

Imbalanced Classification Challenge:
A Review of the Literature

An imbalanced binary dataset is defined by a significant disparity between
the number of data points belonging to each class. In other words, it is
defined by a clear distinction between a dominant majority class and a less
represented minority class. A typical visual example [11] of an imbalanced
binary dataset is the chessboard one, figure 2.1a. In an ideal balance word,
the chessboard dataset adopts the configuration shown in figure2.1b, in
which the two classes - the blue and yellow ones - comprise an equal number
of 500 data points each. However, the scenario changes in an imbalanced
context, illustrated in figure 2.1c, where the chessboard data takes on a
different appearance. In this case, the majority class (blue) comprises
500 data points, while the minority class (yellow) comprises just 100 data
points. This visualization effectively highlights the challenge of separating
minority and majority classes in an imbalanced context.
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(a) Chessboard composed of
blue and yellow squares.
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(b) Chessboard in the balanced
world.
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(c) Chessboard in the imbal-
anced world.

Figure 2.1: Example of a chessboard through balanced and imbalanced world. Blue
triangles belong to blue squares and represent the majority class, while yellow circles
belong to yellow squares and represent the minority class.

As part of an experiment, we decided to predict classes in two dis-
tinct situations: one with a balanced dataset and the other with an imbal-
anced dataset. Our experimental process involved randomly partitioning
the dataset into training and test subsets. We then used a standard ran-
dom forest classifier to make predictions and to evaluate the error rates.
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The results are shown in Figure 2.2. Notably, in the balanced scenario, the
error rate averaged 5%, while in the imbalanced scenario it reached 10%,
more than double the error rate of the balanced scenario.
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(a) Prediction using Random Forest Clas-
sifier on balanced chessboard
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(b) Prediction using Random Forest Clas-
sifier on imbalanced chessboard

Figure 2.2: Prediction using a random forest classifier on the chessboard example. The
blue triangles represent the majority class in the training part, the yellow circles represent
the minority class in the training part, while the crosses belong to the testing part. Green
crosses represent testing data points correctly predicted, while red crosses represent testing
data points incorrectly predicted.

Consequently, our concerns have been validated, meaning that a loss of
predictive accuracy accompanies the presence of imbalanced data. Clearly,
imbalanced class distribution has a significant impact on predictive per-
formance. This chapter explores in depth the complexities associated with
imbalanced classification and the strategies proposed to effectively address
these challenges.

2.1 Description of Imbalanced Data

Imbalanced datasets are a common phenomenon in a variety of fields, in-
cluding medical disease diagnosis, fraud detection and image recognition.
A remarkable resource known as KEEL [1] serves as a repository dedicated
to the cataloging of datasets covering several domains. Table 2.1 shows a
selection of imbalanced datasets from various fields.

Abalone19 [26] Page-blocks0 Paw Pima [27] Segment0 [14] Vehicle1 Vowel0 [13] Wisconsin Yeast1 Haberman Glass1 Ecoli1 [38] Subcl35

Area Biology Class Text Artificial
Data Diabetes Image

Segmentation Transport Deterding Breast
Cancer Biology Breast

Cancer Glass Proteins Artificial
Data

Number of
features 8 10 2 8 19 18 13 9 8 3 9 7 2

Number of
samples 4174 5472 600 768 2308 846 988 683 1484 306 214 336 800

Number of
minority

data points
538 559 100 268 329 217 90 239 37 81 6 77 100

IR 12.9 8.79 5 1.87 6.02 2.9 9.11 34.97 2.46 2.78 35.46 22.94 7

Table 2.1: Description of Imbalanced Datasets selected from the KEEL repository [1].

In this first section, we explore the concept of imbalanced datasets. We
explain in detail what constitutes an imbalanced dataset, elucidating the
challenges it presents.
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2.1.1 Imbalanced Data Challenges

Imbalanced datasets are characterized by a predominant majority class, a
measurable aspect that can be evaluated using an imbalance ratio intro-
duced in article [28]:

IR = number of minority data points
number of majority data points .

This imbalance ratio is used as a measure to capture the degree of
disparity between minority and majority classes. A low ratio means that
the dataset has a significant imbalance, while a high ratio indicates that the
dataset is more evenly distributed. However, it is important to note that
while the imbalance ratio provides insight into the structure of the dataset,
it doesn’t intrinsically determine the complexity of predictive tasks. This
point is explored in the article [41], which explains that datasets with the
same imbalance ratio can produce different results. The predictability of
imbalanced classification problems depends on a complex set of parameters,
including the imbalance ratio itself, the number of features, the sample
size and the inherent characteristics of the data. However, it should be
recognized that the challenges introduced by majority class dominance can
lead to certain generalized errors.

As explained in the article [18], the exploration of imbalanced classifica-
tion problems takes place in two distinct scenarios. The first scenario arises
when the two classes can be separated distinctly using linear methods. As
a result, the transformation of an imbalanced classification problem into a
balanced one is particularly easy to solve directly. In contrast, the second
scenario arises when linear separation between the classes is impossible. As
a result, the classification problem becomes more complex, leading to three
main challenges described in Figure 2.3 and explained in the book [11].

(a) Disjunctions (b) Outliers (c) Overlapping

Figure 2.3: The three main issues that can occur when the data is imbalanced. The
blue circles represent the majority dataset while the red triangles represent the minority
dataset.

The first challenge, called “disjunction”, is illustrated in Figure 2.3a.
In a balanced context, red triangles tend to connect to neighboring red
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triangles, improving the ease with which they can be classified. However,
this cohesion diminishes in an imbalanced context, allowing red triangles to
become isolated, thus causing disjunctions. This first challenge introduces
further complexity into the classification process.

The second challenge concerns “outliers”, described in figure 2.3b. This
circumstance causes classification algorithms to perceive certain data points
as noisy, a misconception due to the sparsity of data within the minority
class. Consequently, this problem constrains the application of statistical
techniques such as feature selection, increasing the complexities associated
with dealing with imbalanced data.

The third main challenge, known as “overlap”, is illustrated in Fig-
ure 2.3c. It materializes when the two classes are closely imbricated, mak-
ing the delimitation of a decision boundary particularly complex. Strongly
influenced by the weight of the majority class, this boundary is skewed in
favor of the majority class rather than the minority class, highlighting the
complexity of the segregation between the two classes.

The trio of challenges described above, which predominate in imbal-
anced datasets, push conventional classification methods to prioritize the
majority class, often to the detriment of the minority class. Consequently,
using standard scoring measures to rank and compare classifications can
lead to misinterpretations, as these measures focus primarily on the per-
formance of the majority class.

2.1.2 Scores and Metrics

The two typical scores used for balanced classification are accuracy and
error rate. They are defined using the notion of confusion matrix, ex-
plained in table 2.2.

Actual
Positive Negative

Predicted Positive TP FP
Negative FN TN

Table 2.2: Confusion Matrix

Accuracy (Acc) is computed using the formula:

Acc = TP + TN

TP + TN + FN + FP

where TP represents true positives, TN stands for true negatives, FN
denotes false negatives, and FP corresponds to false positives. Simultane-
ously, the error rate can be determined as error = 1 − Acc. In the context
of a balanced dataset, where both classes have the same importance, these
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metrics work well. However, when it comes to imbalanced datasets, where
class weights differ significantly, using these metrics can lead to erroneous
interpretations. In particular, in imbalanced scenarios, the number of pre-
dicted minority data points is often outweighed by the number of predicted
majority data points. This asymmetry can mask the models’ effectiveness
in identifying and correctly classifying the minority class. Consequently,
when comparing several imbalanced classification results, relying only on
Acc and error can give misleading results. For more accurate evaluations,
it is recommended to use other measures that take into account the com-
plexities of imbalanced datasets. These measures include :

• Precision = Positive Predictive Value PPV = TP
TP+FP , evaluation of

the number of correct predicted minority data points over all the data
points predicted as minority.

• Recall = Sensitivity = TP
TP+FN , evaluation of the number of predicted

minority data points over all the minority data points.

• F1 score = 2 ∗ Precision∗Recall
Precision+Recall , analysis prediction done over the minor-

ity class.

• AUC Score = FP
FP+TN , to evaluate the impact of the classifier.

• GMean =
√

TP
TP+FN ∗ TN

TN+FP allows to balance the evaluation between
minority and majority data points. The GMean score can be low even
if the majority class is well predicted.

• Balanced Accuracy = Precision+Recall
2 , looks like accuracy but takes into

account the imbalanced criteria.

By way of illustration, let’s compare the predictions generated from two
distinct datasets, as shown in 2.1. The results of this comparison have been
compiled in Table 2.3. Noticeable disparities in scores appear between the
balanced and imbalanced chessboard datasets.

Error Rate Precision Recall F1 score GMean Balanced Accuracy
Imbalanced
ChessBoard 10.8 100 35 51.8 59.2 67.5

Balanced
ChessBoard 7.5 94.7 90 92.3 92.5 92.4

Table 2.3: Scores obtained using random forest clasiffier for the prediction of the balanced
chessboard 2.2a and the imbalanced chessboard 2.2b.

For example, measures such as F1 score, geometric mean (GMean),
balanced precision and recall perform significantly better on the balanced
chessboard dataset. This difference highlights the significant impact of
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class imbalance, which adversely influences prediction results. Clearly, the
choice of evaluation metric is of key significance when evaluating imbal-
anced classifications, as it will support the analysis and understanding of
the main associated challenges. It is therefore imperative to carefully select
an appropriate evaluation metric that takes into account the challenges of
imbalanced classifications. By doing so, it is possible to gain a true un-
derstanding of the difficulties posed by class imbalances, and to accurately
assess the performance of predictive models in this context.

In addition, the results presented in Table 2.3 highlights a notable dis-
tinction between performance measures derived from imbalanced and bal-
anced datasets. As we have seen, conventional machine learning algo-
rithms, such as the random forest algorithm, are intrinsically designed for
situations in which the datasets are balanced. Thus, in order to improve
results, specialized techniques designed to handle imbalanced datasets have
been developed. These techniques, often referred to as “imbalanced meth-
ods”, emerged in response to the challenges related to imbalanced class
distributions.

2.2 Imbalanced Methods

Imbalanced methods can be categorized into three groups: data sampling,
algorithm modification, and cost-sensitive learning. This section will pro-
vide a comprehensive overview of these three groups, investigating into
their distinct approaches and methodologies.

2.2.1 Data Level / Sampling Method

The data sampling strategy aims to modify the training set to obtain a
balanced distribution. There are two basic approaches to this strategy:
undersampling and oversampling. Undersampling involves reducing the
size of the majority class by removing certain data points. However, in
cases where the dataset is already limited, the application of undersam-
pling methods may not be possible. Consequently, oversampling, which
involves introducing new data points into the minority class, appears to be
the most common and practical imbalanced method. In practice, a large
range of over a hundred sampling methods has been developed to meet this
challenge. Here, we present a concise overview of some of these methods:

Undersampling methods – Undersampling methods aim to reduce
class imbalance by reducing the number of data points of the majority
class in the original dataset. The fundamental approach is to randomly
select and remove instances of the majority class. This simple technique
is known as ”random subsampling”. However, it should be noted that the
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blind removal of data points risks unintentionally removing precious infor-
mation, which could complicate classification tasks. To avoid these issues,
several other methods based on different concepts have been developed.
The following list is not exhaustive.

• Undersampling method based on neighborhood:
– Tomek Links (TL) [34]: This method is based on removing data

points from the majority class through the notion of “Tomek
Links”. A set of two data points is defined as “Tomek” if they
both belong to the majority class and if there is no other major-
ity data point closer to each of them.

– One Sided Selection (OSS) [5]: OSS is a mixed method of the TL
one and the Condensed Nearest Neighbour Rule (US-CNN) [16]
method. In fact, by applying TL followed by US-CNN, OSS se-
lects and keeps only the majority data points next to the minority
data points, i.e. next to the border. The TL method is used to
delete noisy majority data points, i.e. far from the others whereas
the US-CNN method works as follow. It first randomly selects a
partition of majority data points and concatenates it with all other
minority data points. We call this selection E. Then the method
checks the remaining majority data points one by one by applying
a one nearest neighbour method on E. If the data point is well
ranked, it will be deleted. If not, i.e. if the data point is close to
the boundary, it will be added to the partition E.

• Undersampling method based on clustering:
– ClusterOSS [3]: Based on one-sided selection (OSS) [5] and clus-

tering method, ClusterOSS removes majority data points accross
different regions. The first step is to cluster the majority data
points, using the kmeans [19] algorithm. Then, the OSS method
is applied using clusters centres as the first partition, i.e. as E. At
the end the TL method is applied to remove the last noisy data
points.

• Undersampling method based on weight and probabilities:
– Weighted Sampling [2]: By assuming that data points of different

classes closed to each other are likely to be misclassified, this
method is based on a probability classifier which selects the data
points far from the boundary. The first step is to calculate a
weight for all majority data points based on their distance from
the minority data points. The user then defines a ratio and selects
only those majority data points with a weight greater than this
ratio.
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Oversampling methods – Oversampling methods aim to reduce class
imbalance by increasing the number of data points of the minority class in
the dataset. To achieve this, new instances are generated on the basis of ex-
isting instances of the minority class. The simplest oversampling technique
is to randomly select and duplicate existing data points. However, direct
copying of identical instances can introduce noise and potentially disrupt
classification accuracy. In addition, this method can alter the distribution
of the data. To avoid these issues, several other methods based on different
concepts have been developed. The following list is not exhaustive.

• Ordinary sampling and interpolation concept:
– SMOTE [7]: It is the most popular oversampling method and

many methods are based on it. The SMOTE algorithm can be
decomposed into 3 steps. The first one is to construct the list of
the k nearest neighbors of each minority data point. In a second
time, n added minority points are randomly chosen and for each
minority data point x1 picked, a random nearest neighbor x2 of
x1 is chosen. The last step consists in building a new data point
x between x1 and x2 with a linear interpolation:

x = x1 + α(x2 − x1) (2.1)

where α is a scalar uniformly sampled in [0, 1].
• Selection based on significance, data distribution, density, or relation-

ships between data points:
– ProWSyn [4]: For each minority data point, ProWSyn defines a

proximity level. This proximity level assesses the relationship and
distance between the minority and majority points. This score
is then normalised and considered as a weight. Minority points
located at the borders, i.e. close to majority points, will have
a higher weight than those far from the borders. The minority
points are then selected in proportion to their weight, and a linear
interpolation (2.1) is used to create a new point x.

• By defining the space where minority data points can be generated,
based on the data distribution and empty spaces. For example, by
using clustering:

– Geometric SMOTE [8]: Geometric SMOTE is a generalization of
SMOTE with the objective of reducing the number of minority
data points generated in the majority areas. Thus, geometric
SMOTE defines an elliptical area around the minority data points
and, by deformation and truncation, secures the area where the
new data points are generated.
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– DBSMOTE [6]: DBSMOTE relies on the DBSCAN algorithm [31]
to construct minority class clusters. This pre-clustering is used to
estimate a local distribution of the data and to find the boundaries
between the classes. Then, new minority data points are added
using the equation (2.1) in the clusters.

One of the main challenges associated with data sampling techniques is
the potential alteration of the data distribution. In some cases, the appli-
cation of these techniques can also lead to an increase in the number of
noisy data points. These effects can have an impact on the overall integrity
of the dataset and, consequently, on the quality of the classification results.
To address these concerns and ensure the preservation of the fundamen-
tal distribution and quality of the data, adaptations have been made to
standard machine learning algorithms. These modifications are designed
to enable these algorithms to operate more efficiently in the context of
imbalanced data.

2.2.2 Algorithmic Methods

The development and implementation of algorithmic methods to solve im-
balanced classification problems is a particularly complex enterprise. It
requires a deep understanding of the algorithm’s limitations in handling
these type of datasets. These limitations may come from various aspects
of the algorithm’s theoretical foundations. In this section, we examine
modifications to the Support Vector Machine (SVM) algorithm to improve
its performance in imbalanced classification scenarios. So, first we need to
deeply understand the theory of usual Support Vector Machine algorithm.

The fundamental objective of the support vector machine (SVM) is to
determine a decision boundary, commonly known as a hyperplane. This
boundary can be linear or adapted to be non-linear through the use of a
projection kernel, in order to efficiently separating distinct classes within
a dataset, as shown in Figure 2.4.

Hyperplan

Support Vectors

Figure 2.4: Representation of a usual Support Vector Machine (SVM) algorithm. The
red circles represent the class A whereas the blue triangles represent the class B.
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The concept of a non-linear decision boundary can be represented using
a mapping function, denoted as w · ϕ(x) + b = 0, where w signifies weights
and b denotes biases. Given that most datasets are not linearly separable,
this leads to the formulation of an optimization problem as follows:

min
1

2w · w + C
l∑

i=1
ξi

 subject to ∀i=1,..,l∀ξi≥0 yi(w · ϕ(xi) + b) ≥ 1 − ξi

Of notable importance for modifying the SVM algorithm is the ∑l
i=1 ξi

term. This term corresponds to the penalty factor, reflecting how many
training instances might fall on the incorrect side of the decision boundary.
This problem is transformed into a more solvable quadratic programming
issue:

max
αi

 l∑
i=1

αi − 1
2

l∑
i=1

l∑
j=1

αiαjyiyjϕ(xi)ϕ(xj)


subject to ∀i=1,...,l∀0≤αi≤Cyiαi = 0

However, solving this expression by finding the mapping function ϕ

can be really complex. To facilitate the solution, the mapping function is
transformed into a kernel function, K(xi, xj) = ϕ(xi)ϕ(xj). As a result,
the SVM equation can be expressed as:

f(x) = sign(w · ϕ(x) + b) = sign
 l∑

i=1
αiyiK(xi, x) + b


By examining these equations, three main challenges arise when SVM

is applied to imbalanced datasets:

1. Misclassification Cost (Parameter C) - The parameter C repre-
sents the misclassification cost and serves as a penalty for errors in the
training set. This cost is uniform for both classes, which means that
errors in the minority class are penalized equally as those in the ma-
jority class. Consequently, the resulting hyperplane is biased towards
the minority class due to the penalty on its errors.

2. Number of Support Vectors (Parameter αi): The significance
of the parameter αi, which denotes the number of support vectors,
is more pronounced for the majority class compared to the minority
class. This imbalance in support vectors can affect the SVM’s gen-
eralization capacity towards the minority class, potentially leading to
reduced performance.

3. Data Density Influence on Decision Function: The decision
function’s behavior is linked to the data point density. In the case
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of imbalanced datasets, the limited number of minority class data
points translates to insufficient data density in regions where the clas-
sification boundary should ideally be estimated, leadning to reduce
performance.

To reduce the impact of these three challenges, SVM algorithms have
been adapted and modified. Three notable modifications of SVM have
been identified and listed in articles [11, 15]:

1. The first modification can be called kernel modifications. These mod-
ifications lead to different algorithms described in articles [36, 39, 35,
. . . ]. Modifying the kernel function returns to modify the decision
boundary and the margin. These modifications can be done before
training the algorithm by weighting the data points belonging to their
classes. But these modifications can also be done by scaling the ker-
nel function based on a enlarging transformation on both sides of the
decision boundary in a independant weights (cf. article [25]).

2. The second modification listed in book [11] is a modification of SVM
by weighting training instances according to their importance. This
method is very popular and is used in many different ways in other
common machine learning methods. The first way to influence the
instances is to weight the regularisation parameter according to the
instance as described in the following equation (cf. article [37]):

min(1
2w.w +

l∑
i=1

Ciξi)

subject to ∀i=1,..,l∀ξi≥0 yi(w.ϕ(xi) + b) ≥ 1 − Ciξi

A second way to modify the weight of SVM is to assign a different
level of importance to each training instance by associating them to
a fuzzy membership function such as in the following equation:

min(1
2w.w + C

l∑
i=1

fiξi)

subject to ∀i=1,..,l∀ξi≥0 yi(w.ϕ(xi) + b) ≥ 1 − ξi

This membership function fi was developed in the articles [24, 23].
fi is associated to each instance and its defined through a decaying
function returning values in [0, 1]. The aim of this function is to
calibrate the margin and bring it closer to the majority data points.

3. The last modification can be performed through active learning. In
fact, by selecting a balanced subset of the dataset, applying a standard
SVM method and repeating the experiment, the SVM will be able
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to deal better with imbalanced classification problem. The selection
of balanced training subset can be done through different mecanisms
such as by selecting only the minority data points far from the decision
boundary or closed to the minority data points. A example of active
learning SVM is explained in article [32].

All the modifications discussed above can also be applied to other ma-
chine learning algorithms, such as decision trees and ensemble methods
like boosting. In particular, decision tree algorithms have been modified
for imbalanced datasets, as explained in article [22]. In addition, ensemble
methods, including boosting techniques, have been adapted to deal with
class imbalance, as shown in articles such as [20, 10]. These modifica-
tions often involve the introduction of weights or functions to rebalance
the learning process in favor of data points from minority classes.

However, it is important to recognize that while algorithm modification
techniques have potential advantages for handling imbalanced data, they
may be less flexible than sampling methods.

2.2.3 Cost-Sensitive Learning

Cost-sensitive learning (CSL) methods involve the integration of weights
directly into machine learning algorithms, during the final stages. CSL
is a category of algorithmic modifications. These weights are assigned to
instances or classes according to their relative importance. While CSL
methods are often used for feature selection to improve balanced classifica-
tion problems, they can also be extended to deal with imbalances between
classes. By adjusting the weights associated with different classes, CSL
methods aim to improve predictions of imbalanced classifications. CSL
techniques have been applied to a variety of algorithms, including Sup-
port Vector Machines (SVMs) [21], Decision Trees [33, 9], Nearest Neigh-
bors [29], Neural Networks [40], and Metric Learning [12]. We will focused
more in the Metric Learning theory and methods in Chapter 6. CSL is
still under development especially for neural network algorithms.

2.3 Conclusion

Imbalanced datasets are a major challenge, leading to the emergence of
new predictive methods and scores. “Imbalanced” methods can be split
into three distinct categories: Data sampling, algorithm modification and
cost-sensitive learning. Over the years, this has led to the development
of over a hundred methods, including direct modifications to data points,
modifications to conventional algorithms, the use of weights, probabilities
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and so on. Nevertheless, it’s important to recognize that, despite the ex-
tensive variety of these methods, none is a silver bullet. As explained and
confirmed in numerous articles [30, 17], there is no single solution for imbal-
anced datasets. The main challenge is to determine the most appropriate
method for a specific imbalanced dataset. In pursuit of this objective, we
have designed and implemented a complete pipeline
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Chapter 3

ImbPip: A Pipeline for Comparing
Imbalanced Methods

As demonstrated in the previous chapter, predictions made on imbalanced
datasets using conventional machine learning methods are often biased.
Consequently, various methods have been designed to improve predictive
results, such as data sampling or cost-sensitive learning methods. However,
in the real world, when users are looking to predict a specific imbalanced
dataset, this process often involves manual, time-consuming comparisons
of multiple algorithms to find the perfect one. In contrast, for balanced
datasets, pipelines established in different libraries, such as “sklearn” or
“keras”, simplify the task of comparing ML models. This convenience
is not extended to imbalanced datasets, where users are often limited to
trying only the best-known methods, such as SMOTE [9], DBSMOTE [7],
or GSMOTE [13]. As a result, prediction for imbalanced classification is
often far from optimal. Recognizing this gap, we set out to develop a model
comparison pipeline specifically designed for “imbalanced” methods. The
aim is to create an accessible and efficient framework that enables users to
navigate the complexities of imbalanced datasets with the same ease and
efficiency that balanced datasets benefit from established libraries

3.1 Pipeline Implementation

Our pipeline is designed to identify the most efficient imbalanced classi-
fication method, adapted to a specific imbalanced classification problem.
To do this, the pipeline takes into account two key elements: an imbal-
anced dataset and a designated scoring metric. Since strategies for binary
and multiple-output datasets diverge, our pipeline focuses only on binary
datasets. In addition, in its current state, the pipeline incorporates the
score metrics described in section 2.1.2. If users wish to explore other
scoring measures, they must implement them manually before running the
pipeline.
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The results of our pipeline consists of the name of the selected imbal-
ance method that gives the best results and the corresponding parame-
ters. In this first version of the pipeline, we have deliberately limited our
scope to data sampling methods. These methods are widely recognised
and available. It is important to note that effective use of these methods
requires them to be combined with standard machine learning algorithms.
Therefore, our pipeline will systematically evaluate and compare various
combinations of data sampling methods and machine learning algorithms.

The first and most important criterion of our pipeline is the focus on
reproducibility. To this end, our pipeline is open source and designed to
be extensible, allowing the integration of various other imbalanced meth-
ods. The basis of reproducibility in our pipeline is based on cross-validation
techniques. By splitting the dataset into multiple training and test subsets,
we are able to quantify variability. Ultimately, this allows us to identify the
method with the lowest variability, indicating its reliability and robustness.
In the context of imbalanced method comparisons, the notions of reliabil-
ity and variability are of great importance. Many of these methods are
closely linked to the distribution of training data points, and this link can
sometimes lead to problems such as over-fitting. Careful consideration of
reliability and variability can minimize these concerns.

In line with our dedication to open source, the source code for our
pipeline is available on GitHub https://github.com/yamnao/ImbPip. This
facilitates access and encourages peer review, helping to improve the qual-
ity and reliability of the pipeline. We have named our pipeline ’ImbPip’
and its conceptual framework is succinctly represented in the diagram in
Figure 3.1.

Reproducible and Open 
Source Pipeline

Imbalance 
DataSets

Score adapted to 
an imbalance 

dataset

Combination of an 
oversampling method and 

a usual ML classifier 
giving the highest score 

with the lowest variability.

Figure 3.1: Outline of the ImbPip Pipeline.

Previous studies such as those described in the papers [22, 30] have
focused on imbalanced method comparisons; these comparisons typically
produce rankings without considering method parameters and variability.
In contrast, our pipeline is designed to offer users a complete perspective
by providing both method parameters and variability scores. Our main ob-
jective is to establish a reliable and reproducible pipeline. To do this, the
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initial stage of the pipeline involves a meticulous examination of the vari-
abilities. We have adopted a strategy of randomly segmenting the supplied
dataset into 10 folds. In addition, we gave priority to the transparency of
the code. To this end, we have stored these 10 folds, allowing users to
faithfully reproduce our results. Also, by using these stored files, users
can easily incorporate new scoring metrics. This allows the generation
of results using different metrics without having to repeat all the experi-
ments. This approach not only saves time, but also minimises the risk of
introducing bias.

Our second priority for ImbPip is to compare results between several
sampling methods. Thus, we selected the following 20 data sampling
methods: Assembled SMOTE [34], CCR [24], Cluster SMOTE [11], Con-
densedNearestNeighbors [16], Cure SMOTE [27], DBSMOTE [7], DE Over-
sampling [10], EditedNearestNeighbours [18], GSMOTE [13], Instance-
HardnessThreshold, KMeans SMOTE [20], Lee [26], NearMiss [28], Poly-
nomFit SMOTE [15], OneSidedSelection [3], ProWSyn [2], SMOBD [8],
SMOTE [9], SMOTE IPF [31], TomekLinks [32] and SMOTE-TomekLinks [4]
. We chose all these methods because they are the most known or have the
best ranking according to article [22]. We coded these methods using ex-
isting pseudo-codes. Nevertheless, to allow future users to add others data
sampling methods, we implemented each method with a specific skeleton.
As data sampling need to be used in combination with ML classifiers, we
also picked 5 ML classifiers: SVM [33], RandomForest [6], KNearestNeigh-
bors[12], AdaBoost [14] and MLPClassifier [19].

In brief, using the input data described above, we have exploited the
potential of data sampling methods to predict the outcomes of a given
imbalanced dataset. The essence of this process is to identify the most
effective combination of these techniques. To do this, we systematically
explore different combinations of parameters. Given the potential explosion
in the number of parameters to be taken into account, we have imposed a
constraint of a maximum of 30 feasible parameter combinations. The final
step in our pipeline is to present the results in an understandable format.
To do this, we opted for a tabular representation. Each row of the table
corresponds to a selected imbalance score, and each column offers different
information:

• Best data sampling method employed,
• Parameters associated with the chosen sampling method,
• Optimal ML classifier employed,
• Parameters of the selected ML classifier.
To offer a more intuitive understanding of these steps, we present the

pseudo-code of the algorithm depicted in the Pseudo-code 1 below:
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Algorithm 1: Pseudo-code of ImbPip
Data:

• Name D: DataSet Name
• Sampling List: list of sampling methods
• Classifiers List: list of classifier algorithms
• Scores List: list of scores under studied

/* Step 1: Data Splitting */
1 folds: split data into 10 folds(Name D);

/* Step 2: Data Sampling and ML Classifier */
2 best combination: None;
3 best score: 0;
4 results: init dictionary;
5 for S strat in Sampling List do
6 S Params: Get Parameters Combination for S Strat;
7 for S P in S Params do
8 Sampling Data: Generate sampling data using S P and S Strat on the 10

folds files;
9 for C Strat in Classifiers List do

10 for train, test, train labels, test labels in Sampling Data do
11 result: evaluate combination(train, test, train labels, test labels,

C Strat, Scores List);
12 if result ≥ best score then
13 best score = result;
14 best combination = (C Strat, S strat, S P);

/* Step 3: Present Results in Table */
Result: results, each row corresponds to a score and columns are completing

with Mean score, sampling method, sampling method parameters,
classifier method, classifier method parameters.

3.2 Applications

Having completed the design and development of our ImbPip pipeline, the
next phase is to perform tests on different imbalanced datasets. To this
end, we have selected five distinct imbalanced datasets, as illustrated in the
table 2.1. The selected datasets are as follows: Paw, Vehicle1, Haberman,
Ecoli1 and Subcl35. Then, we will try our pipeline on the detection of
ACS.

3.2.1 Results on real-world datasets

The typical result from our ImbPip pipeline is shown in table 3.1. How-
ever, for the purpose of clarity and simplicity, we have grouped the results
obtained from the other datasets into a unified table 3.2. To ensure the
precision of our pipeline in generating optimal method combinations, we
systematically report all scores obtained by the 20 data sampling meth-
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ods. By manually comparing these results with the best results identified
by ImbPip, we can confidently state that our pipeline does indeed gener-
ate the expected results. In addition, we have supported the performance
of our pipeline by presenting results consistent with those elucidated in
previous studies [17, 5].

score Sampling Method Sampling Parameters Method Classifier Method Classifier Parameters Method

precision 68,9 Cluster SMOTE
n neighbors:5

n clusters:200
KNN

leaf size:30
metric: minkowski

n neighbors: 5

recall 100 Assembled SMOTE

proportion:2
n neighbors:3

pop:2
thres:0.3

SVM C:1

f1 54,1 ProWSyn

proportion:0,5
k neighbors:3

L:3
theta:0,8

RF max depth:5
min s leaf:1

auc 100 Assembled SMOTE

proportion:2
n neighbors:3

pop:2
thres:0.3

SVM C:1

gmean 82,7 Assembled SMOTE

proportion:2
n neighbors:5

pop:2
thres:0.3

RF max depth:5
min s leaf:1

npv 100 Polynom Fit SMOTE nb add:2
interpolation:mesh RF max depth:5

min s leaf:1

Table 3.1: Table obtained using ImbPip pipeline on Subcl35 dataset for 6 scores: precision,
recall, f1, auc, gmean and npv.

precision recall f1 auc gmean npv
(sampling, classifier) OSS, KNN Assembled, SVM Lee, KNN Assembled, SVM Smote IPF, KNN Polynomfit, AdaBoostPaw mean score 72,8 100 58,1 100 83,1 100
(sampling, classifier) Cluster SMOTE, KNN Assembled, SVM ProWSyn, RF Assembled, SVM Assembled, RF Polynomfit, RFSubcl35 mean score 68,9 100 54,1 100 82,7 100
(sampling, classifier) OSS, KNN CCR, SVM SMOTE IPF, MLP CCR, SVM Smote IPF, MLP SMOBD, SVMVehicle1 mean score 66,3 100 56,7 99,8 71,7 93,8
(sampling, classifier) kMeans SMOTE, SVM Assembled, MLP Assembled, SVM Assembled, MLP GSMOTE, AdaBoost GSMOTE, KNNHarberman mean score 50 100 42,3 100 51,2 79,5
(sampling, classifier) DBSMOTE, MLP SMOBD, MLP Cure SMOTE, SVM Cure SMOTE, RF Cure SMOTE, SVM SMOBD, MLPEcoli1 mean score 88,3 100 79,1 67,8 85,9 99,2

Table 3.2: Summarize of results obtained using the ImpPip on 5 imbalanced datsets.

It is clear that no single data sampling method provides a silver bullet
solution. In this context, the ImbPip pipeline becomes a valuable tool
to help users identify the most appropriate prediction method for a given
imbalanced classification problem. Its ability to systematically evaluate
and determine the best combinations between different techniques makes
it an essential tool for dealing with imbalanced datasets.

3.2.2 Results on PRESEV dataset

We have extended the tests in our pipeline to address the PRESEV classifi-
cation challenge. As discussed in the previous chapter, the task of detecting
ACS using the PRESEV dataset is an imbalanced classification problem,
and conventional machine learning methods tend to overfit and have large
variability. To address this, we exploited our ImpBib pipeline to identify
the best imbalanced methods capable of improving the highest positive
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predictive value (PPV) and negative predictive value (NPV) scores. The
results of this ranking procedure are presented in Table 3.3.

Oversampling Classifier PPV NPV
Gaussian SMOTE [25] SVM 52 ± 27.7 83.7 ± 2.5

ROSE [29] SVM 48.7 ± 24.1 85.1 ± 3.1
SMOBD [8] SVM 48.3 ± 22.8 83.6 ± 2.4

Table 3.3: Ranking of oversampling methods for PRESEVC dataset on PPV and NPV
values.

After this classification phase, we applied a methodology similar to that
described in the previous chapter 1.The predictions of the dual machine
learning algorithm were transformed into probability estimates. Summaris-
ing these results in the table 3.4, we noted a reduction in overfitting and
cross variability, associated with an increase in NPV. However, it is worth
noting that the PPV value decreased slightly compared to the figures re-
ported in the articles [1, 21] and in table 1.4.

Gaussian SMOTE PPV NPV
Train 24.6 ± 4.2 96.9 ± 2.9
Test 23.6 ± 3.5 96.5 ± 0.8

Table 3.4: PPV and NPV values obtained using Gaussian SMOTE [25] oversampling
method on PRESEVC dataset.

3.3 Conclusion

As the results section shows, our ImbPip pipeline proved to be highly
reproducible and flexible, capable of efficiently predicting a range of im-
balanced classification problems. Its user-friendly nature makes it easy
to implement, and the ability to add new data sampling methods rein-
forces its adaptability. Indeed, this version of the pipeline marks a signif-
icant advance previous pipeline such as the one edescribed in article [22],
which focused primarily on classification and ranking of sampling methods.
ImbPip’s focus on considering method variability sets it apart, offering not
only a general comparison, but also a reproducible result adapted to each
dataset.

However, G. Kovács had also evolved his pipeline [22]. The new version
published in 2022 seemed to echo the functionalities of the initial version
of our ImbPip pipeline. Given this evolution and the availability of the
new version of the Kovács pipeline, we decided not to continue with new
versions of ImbPip. In addition, we have chosen to use this new pipeline
called, smote variants, and explained in the article [23] to generate future
results.
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It is interesting to note that regardless of the pipeline used (ImbPip or
smote variants), the results obtained on PRESEV are not convincing. If
the variability of the results has been reduced, it is clear that the PPV
score has also decreased. The application of various imbalanced methods
did not provide significant results for the PRESEV dataset. Given this
situation, our next objective is to develop new methods that are better
adapted to the complexities of the PRESEV dataset. Thus, our next goal
is to create methods that are fine-tuned to the complexities of the PRESEV
dataset, with the dual aim of improving the PPV score and maintaining
low over-fitting and cross-variability. To this end, we have linked one image
segmentation technique known as the watersheds to the challenges associ-
ated with imbalanced datasets.
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Chapter 4

Bridging Image Detection
Segmentation and Imbalanced
Classification: Exploring the
Watershed Theory

Many methods developed to deal with imbalanced datasets have mainly
been based on conventional clustering and machine learning techniques,
such as K-Means [11]. These methods often treat imbalanced data as nu-
merical entities, where connections between data points are determined
purely by the values of their features. However, it is possible to incorpo-
rate additional features, such as data point connectivity and spatial rela-
tionships, to improve these approaches. By taking spatial localization into
account, we can potentially improve oversampling methods and better cap-
ture the intrinsic structure of the data. In addition, recent advances have
explored the integration of graph-based methodologies, as shown in various
articles [22, 23], to address the challenges posed by classification problems.
The idea of using this type of approach for imbalanced datasets therefore
came to mind. Moreover, the notion of a graph is particularly related to
images, since an image can be interpreted as a structured graph. This link
has led to the study of image-based techniques, particularly in the field
of computer vision, where complex pattern detection techniques - such as
object identification - have been widely developed.

For example, the following ideas could be developed:

• Data augmentation: We can enrich our training dataset with data
augmentation. This involves creating synthetic samples using image
segmentation masks, applying various transformations such as rota-
tions, scaling, cropping and introducing noise. This not only balances
the dataset, but also introduces a larger number of diverse samples,
improving model generalization.

• Feature extraction or region-based features: Hierarchical seg-
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mentation methods identify distinct regions in images. Feature extrac-
tion from these segmented regions can be used directly in algorithmic
approaches, or even to complete the dataset with artificially created
data points.

The field of mathematical morphology (MM) [18] brings together trans-
formation, graph theory and hierarchies. Within the framework of math-
ematical morphology, one of the best-known techniques is the watershed
transformation. In the following section, we look at the different types of
watershed transformation and explore their potential efficacy in dealing
with imbalanced datasets. Combining aspects of transformation, graph
theory and hierarchy in MM opens the way to innovative solutions that
could be beneficial.

4.1 Exploring the Literature of Watershed Transfor-
mations

4.1.1 From Watersheds for Images...

Image segmentation, a concept explained in Meyer’s segmentation work [14],
involves the task of partitioning an image into distinct regions, each with
no overlap, while ensuring that each region is characterized by a uniform
attribute. For example, each region may correspond to a specific color in
the image. To achieve this partitioning, the image is treated as if it rep-
resented a topographic surface. In the context of grayscale images, lighter
tones correspond to the highest points of the virtual “landscape”, while
darker tones represent the lowest altitudes. The lowest regions, similar
to the valleys in this landscape, are identified as regional minima. This
is where the watershed transformation principle, often referred to as the
flooding principle, comes into operation (developed in article [1]). The
process proceeds as follows:

1. Identifying regional minima: the initial step is to identify regional
minima, i.e. the lowest points or valleys on the topographic surface
(image).

2. Flooding process: Imagine that the topographic surface (image) is
submerged in water, with the water level climbing uniformly. Water
begins to penetrate through regional minima, leading to the emergence
of “floods” from different valleys.

3. Flood confluence management: As the flood progresses, it can
happen that several floods join together, resulting in confluences. To
avoid this problem, fictitious barriers or ”dams” are built between the
merging floods.
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4. Watershed Functions: When the flooding phase ends, only the con-
structed dams (barriers) remain as visible entities on the submerged
surface. These dams correspond to what is known as a watershed
function. Each watershed, like a dam, designates a catchment area,
i.e. a distinct region of the image.

In conclusion, watershed transformation revolves around the concept of
submerging the image and observing the natural formation of dams, which
in turn delimit different regions. As each watershed symbolizes a distinct
area, the application of watershed functions effectively segments the image
into these distinct regions.

This technique can also be used for object detection. In this scenario,
users must first annotate the image by placing object markers and back-
ground markers. Then, openings will be created in the marked regions
corresponding to the objects. In simpler terms, the regions identified as
objects by the markers will serve as minimum regions. As a result, barriers
will be erected between the background and the objects. Figure 4.1 illus-
trates watershed transformations applied to object detection. In this case,
the flooding principle is applied to a free image (accessible via the GitHub
repository /bnsreenu/python_for_microscopists). The aim here is to
identify cell boundaries using cell nuclei as markers.

(a) Original Image. Cells with nucleus. (b) Nucleus markers and cells boundaries.

Figure 4.1: Cell boundaries obtained using watershed transformations after marking each
cell with its nucleus (color marks).

The flooding principle and its corresponding algorithm are the best
known and most widely used. Nevertheless, watershed transformations
can also be seen through the principle of water drop [6]. Both algorithms
have certain similarities, but they use distinct approaches to understanding
and implementing watershed transformation. Fundamentally, the flooding
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principle as explained previously is based on the idea of “flooding” an im-
age whereas the drop of water principle is based on the visualization of
how drops of water flow down a topographic landscape (defined by using
for example a gradient map) and form basins.

Nevertheless, both principles were first and foremost used for images.
The image is perceived in its discrete digital manifestation - a matrix com-
posed of picture elements, commonly referred to as pixels. Each pixel
corresponds to color or grayscale information. Consequently, an image can
be visualized as an edge-weighted graph (G, W), where the vertices of G
correspond to pixels, the edges represent connections between pixels and
the weights of the edges W symbolize dissimilarities between pixels. Fig-
ure 4.2 shows an image represented as an edge-weighted graph. In this
representation, a minimum region is a set of interconnected pixels sur-
rounded by pixels with significantly higher values. In other words, it is
a group of vertices surrounded by edges whose weight is higher than that
of the edges linked to the interconnected vertices. The edges between two
zones of influence correspond to the watershed function and they separate
two different regions.

(a) Original Grey-Scale Image (b) Image in its digital form
with grey-scale values.

(c) Graph obtained using the
digital form.

Figure 4.2: Representation of a greyscale image in its original form and in its digital form.
The resulting graph is an adjacency graph where the vertices correspond to the pixels.
The weight of the edges is calculated as the difference between the greyscale values.

4.1.2 To Watersheds for Classification

The drop of water principle enables watershed transformations to be de-
rived through the use of edge-weighted graphs [21, 7]. This principle serves
as a link between different types of datasets, between images and digital
data. Specifically, for images, vertices are on a 2D pixel grid and edges
correspond to a graph with 4 or 8 adjacencies, depending on neighborhood
connections. For digital data, vertices correspond to data points and edges
represent the relationships between these points, generally based on adja-
cency. In both cases, edge weights are closely linked to vertex attributes,
such as color for images or Euclidean distance between data points for dig-
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ital data. Thus, assuming that the digital graph is interconnected, the ap-
plication of the watershed transformation remains consistent and uniform
in both cases: images and digital data. This consistency is important,
as the watershed transformation, often used for segmentation, can also be
exploited for clustering. Therefore, two distinct watershed transformation-
based techniques have been designed to address the challenges of clustering
in digital dataset: Watershed Cuts [6] and Iterated Watershed [19].

The principle of drop of water allows to obtain watershed transforma-
tions by using edge-weighted graphs [21, 7]. S graph can be constructed
on images and digital data, this principle buids a bridge between these
different types of datasets. In fact, for an image, vertices correspond to
a 2D pixel grid and edges to a graph with 4 or 8 adjacencies. Whereas
in the case of digital data, vertices correspond to data points and edges
to relationship between data points, for example if the data points are
neighbours. In both cases, the weight of the edges is related to the criteria
of the vertices, e.g. the colour in the case of the image or the Euclidean
distance between the data points in the case of the digital data. However,
assuming that the digital graph is connected, the watershed transforma-
tion can be applied in exactly the same way in both cases. In addition,
as watershed transformations is used to perform segmentation, it can be
used to perform clustering. Thus, two methods based on watershed trans-
formations have been developed to resolve clustering problems: Watershed
Cuts [6] and Iterated Watershed [19]. Similarly, watershed transformations
find application in solving classification problems. In this context, the aim
is to predict the class to which a new, unlabeled object belongs, based
on a given collection of labeled objects. This algorithm has been named
”Semi-Supervised Watershed” [2]. The following paragraphs explain the
watershed, iterated watershed and semi-supervised watershed sections in
greater detail.

4.1.2.1 Watershed Cuts

The Watershed Cuts algorithm is build on the water drop principle. For
a better understanding, we’ll look at its principles using pseudocode and
visual support as described in the article [6]. Essentially, the Watershed
Cuts algorithm is based on the concept of flow within an edge-weighted
graph. To illustrate this process, let’s take a simplified example using
a graph of 2 nearest neighbors (Figure 4.3). Each edge of this graph is
weighted by the Euclidean distances between points, figure 4.3a. We follow
a first drop on a descending path, until a minimum edge is found (yellow
arrows in figure 4.3b). If this minimum does not belong to any cluster, as
in figure 4.3b, all vertices belonging to this path are marked with the same
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labels. We then repeat this operation until all vertices belong to a cluster,
as in figure 4.3c.
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(c) Step 3

Figure 4.3: Obtaining two clusters using the Watershed Cut technique from an edge
weighted graph of 2 nearest neighbors. The numbers on the edges represent the distance
between two vertices, i.e., between two data points.

The algorithm’s pseudo-code gives a better understanding of how it
works, highlighting the importance of the “flow” aspect. In particular,
most of the algorithm revolves around the concept of flow defined through
the edge-weighted graph. A “flow” can be represented by the steepest path
from one graph node to another, using the lowest weighted value on the
different edges. This concept is related to the water drop principle, with
each water drop flowing towards lower altitudes. The pseudo code of the
algorithm is described in article [5] and can be summarized as follows:
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Algorithm 2: Watershed Cut
Data: An edge-weighted graph G ;
Result: A clustering partitioning of the data points

1 for Each node in the graph do
2 Define the node as unlabelled ;
3 for Each unlabelled node in the graph x do
4 Find a flow such that x is a top of the flow;
5 Return -1 or the label of the flow;
6 if -1 is returned then
7 All the data points containing in this flow are labelled with a

novel label;
8 else
9 All the data points containing in the flow are labelled with

the label of the flow ;

4.1.2.2 Iterated Watershed

Watershed-based clustering is not limited to the Watershed Cuts approach.
Another method known as Iterated Watersheds [19] also exploits watershed
transformations for clustering. Although very similar to the K-Means [11]
technique, the Iterated Watersheds method differs in its emphasis on pre-
serving connectivity between data points. K-Means clustering and the
iterated watershed algorithm share a two-stage structure and even the
same input parameter: “k”, which designates the desired number of clus-
ters. Here’s where the distinction comes in: both methodologies start with
what’s known as the maximization step. In this stage, each data point
is assigned to one of the “k” centers. In the K-Means method, a point
is connected to the nearest center as a function of distance. In contrast,
the iterated watershed algorithm operates on a path-based approach. A
data point is connected to a center only if there is a minimum path con-
necting the two (the data point and the center) according to a designated
function, often a distance function. Iterated Watershed incorporates the
IFT [8] algorithm to perform this connectivity-maximization step. This
distinctive approach enables Iterated Watersheds to take connectivity into
account. Having completed the maximization step, which results in a par-
tition of data points, the second step - known as the expectation step -
follows. In this phase, new centers are calculated for each cluster formed
by the partition. This process results in the creation of ”k” new centers.
The maximization and expectation steps are then iteratively repeated until
convergence is achieved.
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To visually illustrate of K-Means and iterated clustering algorithms,
figure 4.4 presents a side-by-side illustration of their application on a toy
example. This comparison highlights the differences and results achieved
by both techniques.
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(a) Toy example: two circles.
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(b) Clusters obtained using
KMeans.
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(c) Clusters obtained using It-
erated Watershed.

Figure 4.4: Clusters obtained on a toy example using two clustering methods: KMeans
and Iterated Watershed.

4.1.2.3 Watershed for Semi-Supervised Classification

Watershed-based methodologies can also be extended to semi-supervised
classification. Figure 4.5 illustrates the Watershed Semi-Supervised algo-
rithm’s application on a balanced chessboard dataset 2.1b.
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(a) Balanced ChessBoard.
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(b) Predictions on a balanced chessboard using Wa-
tershed for Semi-Supervised Classification algorithm.

Figure 4.5: Prediction using Watershed Semi-Supervised algorithm on the chessboard
example. The blue triangles represent the majority class in the training part, the yellow
circles represent the minority class in the training part, while the crosses belong to the
testing part. The green crosses represent correctly predicted test data points, while the
red crosses represent incorrectly predicted test data points.

The algorithm developed in the paper [2] is based on the principle of
the Support Vector Machine (SVM) [15]. As explained in Figure 2.4 in
Chapter 2, the objective of the SVM is to partition the data space into
areas containing data points of the same class. To achieve this, the SVM
algorithm seeks to define a hyperplane that maximizes the distance from
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support vectors while optimizing prediction accuracy, avoiding instances
lying on the wrong side of the hyperplane. This challenge is referred to as
maximum margin partitioning. Notably, the paper [2] establishes that the
Morph Median partition, defined by a watershed algorithm, consistently
maximizes the maximum margin partition. The main difference between
SVMs and semi-supervised watersheds lies in connectivity due to the use
of graphs.

Watershed for Semi-Classification operates through an edge-weighted
graph, where data points must be labeled with classes or as “none” if
they don’t belong to any class. This approach is rooted in the Minimum
Spanning Forest Watershed algorithm (from the article [6]). The pseudo-
code, detailed in the paper [2], outlines the following steps (Algorithm 3):

Algorithm 3: Semi-Supervised Watershed
Data: An edge-weighted graph G, with labelled seeds S.
Result: A clustering of the graph nodes

1 Sort the graph vertices by using theirs weights ;
2 for Each sorted vertex (ex, ey) in the graph do
3 if both ex and ey are labelled then
4 pass;
5 else
6 Assign the same label to ex and ey;

This algorithm merges labeled and unlabeled data points, enabling a
maximum-margin partition to be defined. The article [2] establishes a di-
rect link between watershed algorithms and SVM algorithms, highlighting
the efficiency of the Watershed Semi-Supervised algorithm.

4.2 Watershed & Hierarchies

Most of the watershed transformation methods have been developed in
the domain of graphs and edge weights. Consequently, adapting these
algorithms to imbalanced classification algorithms requires modifications
centered on Euclidean distance, spatial location and connectivity consid-
erations. However, the watershed transformation framework introduces
another point of view thanks to its link with hierarchies. This perspec-
tive opens the way for experimenting with various distance functions, for
example ultrametric distances, and exploring the concatenation of regions
through hierarchical structures.
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4.2.1 Ultrametric Distance

4.2.1.1 Definition of Graph and Minimum Spanning Tree

A graph is noted G = (V,E), where V is a finite set and E is a set of pairs
of distinct elements of V, i.e., E ⊆ {{x, y} ⊆ V |x ̸= y}. Each element of
V is called a vertex (of G), and each element of E is called an edge (of G).
A sequence π = (x0, ..., xn) of elements of a set X is a path (in X) from
x0 to xn if xi−1, xi is an edge of G for any i ∈ {1, ..., n}. In addition, if
w is a map from the edge set of G to the set R of real numbers, then the
pair (G,w) is called an (edge) weighted graph, show figure 4.2.If (G,w) is
a weighted graph, for any edge u of G, the value w(u) is called the weight
of u (for w).

A hierarchy is denoted H and can be represented using an edge-weighted
graph. Each node in the graph represents a leaf in the hierarchy and the
edges between the nodes represent the level of the hierarchy. An example
of a graph and hierarchy is shown in Figure 4.6.
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Figure 4.6: Example of edge-weighted graph using euclidean distance and one of its
tree/hierarchy/dendrogram.

One particular hierarchy is called a Minimum Spanning Tree (MST) and
as been presented in article [9]. An MST is hierarchy also call a tree that
spans or covers all the nodes in the original graph while minimizing the
total edge weight. Due to its definition one key property of the MST is its
connectivity. In fact, the MST connects all vertices of the original graph,
ensuring that there is a path between any pair of nodes within the tree. The
other main property of an MST is to minimize the sum of the edge weights.
Each edge in the hierarchy is assigned a weight, and the sum of these
weights is as small as possible while still ensuring connectivity. Several
algorithms can be used to construct a MST. Two well-known methods are
Prim’s algorithm [16] and Kruskal’s algorithm [13].

4.2.1.2 Definition of Ultrametric and Ultrametric fitting

Every edge-weighted graph has a MST and, therefore, every edge-weighted
graph can be considered as a hierarchy or tree [5]. In addition, in arti-
cle [12], a distance called ultrametric distance has been introduced. The
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ultrametric distance is a function d : V ∗ V → R where the triangle in-
equality is replaced by the ultrametric one: (∀(x, y, z) ∈ V 3), d(x, y) ≤
max d(x, z), d(z, y). But, the key concept in the construction of ultra-
metric distances is the two-way relationship between ultrametric distances
and hierarchical structures. Ultrametric distances can be used to construct
hierarchical representations and, conversely, hierarchical structures can be
expressed by ultrametric distances. Given a set of data points and their ul-
trametric distances, you can build a hierarchy. The process usually begins
by creating a cluster for each data point. The clusters are then succes-
sively merged on the basis of the ultrametric distances between them. As
distances increase, clusters are merged at higher levels in the hierarchy.
Conversely, given a hierarchical structure, you can calculate ultrametric
distances that capture the hierarchical relationships within the data. To
do this, you start with the hierarchy and define the ultrametric distance
between two data points as the height at which their respective clusters
merge in the hierarchy. Figure 4.7 shows the ultrametric distances and an
MST.
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Figure 4.7: Example of tree and its ultrametric distances, inspired from article [3]

By employing the ultrametric distance, an optimization problem known
as ultrametric fitting can be formulated. In fact, as explained in article [3],
the computation of a subdominant ultrametric leads to the establishment
of a constrained optimization problem. The foundation of the subdominant
ultrametric relies on a min/max operator, as the ultrametric distance can
also be defined as [3]:

∀(x, y) ∈ V 2, du(x, y) = min
P∈Pxy

max
e∈P

w(e) (4.1)

where Pxy denotes the set of all paths between the vertices x and y of G.
By formulating a loss function, we can address this optimization problem

and consequently identify the most suitable ultrametric distance for a given
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dataset and thus used this ultrametric fitting method as a clustering one
or a classification one.

4.2.2 Watershed Hierarchies

Exploring the notion of ultrametric fitting brought the fact that any graph
can be considered as a hierarchy. In the previous case, we mentioned
MSTs, but there are many other hierarchies such as partition hierarchies
or minimum hierarchies. The article [4] links and explains these different
hierarchies. One of them is called watershed hierarchies and extend the
concept of watershed transformations by incorporating hierarchical struc-
tures. In a traditional watershed transformation, regions are partitioned
based on gradients or euclidean distance. However, these methods might
oversimplify complex structures and fail to capture some detail. Water-
shed hierarchies overcome this limitation by taking into account weighted
markers where the importance of a marker can be given by extinction val-
ues [20] such as the dynamics [10]. Extinction value of an object or region
indicates the level at which it is merged with another region during the
hierarchy construction process. Essentially, it represents the difference in
attributes or characteristics that initiates the merging of two adjacent re-
gions. Where as the dynamics measure a contrast. The dynamic of a path
is the difference in altitude between the points of the highest and lowest
altitude of this path.

Thus the hierarchical watershed extends the concept by considering sev-
eral levels of flooding. For example, instead of stopping the flooding process
at a single level, it continues to flood the image at different levels of inten-
sity by using the information implied by markers. The idea of modifying
the hierarchy using a marker associated with the data is particularly inter-
esting, especially in cases where the data is imbalanced. Specific markers
can be strategically defined to solve the problem of imbalance. For ex-
ample, in the image field, where small objects are disproportionate to the
background, markers can be used to prioritise the segmentation of these
objects. In doing so, the hierarchical watershed can ensure that objects are
correctly delineated, even if they are smaller than the background. This
approach could be used by directly modifying the watershed algorithm to
better handle imbalanced datasets.

4.3 Watershed and Imbalanced Dataset

After exploring the existing literature on watershed transformations and
recognizing their potential for dealing with imbalanced data, we are go-
ing to analyze how these algorithms can positively contribute to solving
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imbalanced classification problems. As we have seen in previous sections,
existing imbalanced methods, often involve clustering and classification
techniques. Therefore, our focus will be on evaluating the efficiency of
watershed-based methods in this context. Specifically, we will examine the
potential of semi-supervised watershed, watershed cut and iterated water-
shed methods. By studying these approaches, we aim to determine their
applicability and benefits in improving classification results for imbalanced
dataset.

4.3.1 Semi-Supervised Watershed for Imbalanced Data

To begin our investigation, we launched a comparative study between usual
machine learning methods and the semi-supervised Watershed algorithm.
We focused on evaluating their performance on randomly selected imbal-
anced datasets. In particular, we created a set of six imbalanced datasets,
as shown in table 2.1. The main objective was to evaluate the predic-
tion scores generated by different classifiers in this context. The classifiers
studied included Random Forest, Support Vector Machine (SVM), Ad-
aboost, k-Nearest Neighbors (KNN) and the Semi-Supervised Watershed
algorithm. Given the imbalanced nature of the datasets, our evaluation fo-
cused on the performance measures described in chapter 2, which include
precision, recall, F1 score, AUC, geometric mean (G-mean) and negative
predictive value (NPV). Using a 10-fold cross-validation strategy, we di-
vided the datasets into training and test sets, the latter representing 25%
of the dataset. The results of this comparative analysis are presented in
Figures 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6. These figures illustrate the perfor-
mance of each classifier across the different evaluation metrics.

Precision Paw Pima Segment0 Vowel0 Yeast1 Glass1
RF 60,1 ± 6,6 55,6 ± 4,8 97,9 ± 1,3 96,96 ± 4,1 73,1 ±20,3 71,5 ± 10,5

SVC 63,7 ± 25 64,6 ± 9,7 97,8 ± 1,7 94,3 ± 3,2 75,3 ± 13,2 69,8 ± 12,7
KNN 63,9 ± 12,7 57 ± 5,8 91,5 ± 1,9 87,5 ± 6,1 65,3± 12,8 66 ± 12,5

AdaBoost 60,2 ± 6,6 55,6 ± 4,8 97,9 ± 1,3 96,6 ± 4,1 73,1 ± 20,3 71,5 ± 10,5
Semi-Supervised

Watershed 55,4 ± 8,4 40,7 ± 5,7 66,2 ± 4,0 91,5 ± 3,6 48,2 ± 8,4 43,2 ± 19,6

Table 4.1: Precision scores obtained for comparing Semi-Supervised Watershed with usual
Machine Learning methods on Imbalanced datasets. Highlight in blue the best score
obtained for a given dataset.
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Recall Paw Pima Segment0 Vowel0 Yeast1 Glass1
RF 42,4 ± 9,7 48,5 ± 4,8 88,9 ± 3,2 92,5 ± 4,0 30,8 ± 13,8 44,7 ± 12,3

SVM 20,4 ± 10,3 36,6 ± 4 88,8 ± 4,7 94,2 ± 4,5 37,7 ± 7,3 34,2 ± 6,8
KNN 34,4 ± 9,0 43 ± 5,4 80,9 ± 5,2 92,9 ± 4,9 32,3 ± 4,6 50,0 ± 9,2

AdaBoost 26,0 ± 9 36,9 ± 5 90,1 ± 2 89,8 ± 4,5 40 ± 11,3 41,1 ± 11
Semi-Supervised

Watershed 48 ± 7,8 38,4 ± 5,7 81,2 ± 5,3 98,2 ± 2,2 48,5 ± 9,1 60 ± 11,8

Table 4.2: Recall scores obtained for comparing Semi-Supervised Watershed with usual
Machine Learning methods on Imbalanced datasets. Highlight in blue the best score
obtained for a given dataset.

F1 Paw Pima Segment0 Vowel0 Yeast1 Glass1
RF 49 ± 7,2 51,6 ± 3,7 93,1 ± 1,8 94,4 ± 2,8 41,6 ± 15 53,6 ± 8,8

SVM 29,5 ± 12,5 46,1 ± 2,3 93 ± 2,3 94,2 ± 2,4 49,5 ± 7 45 ± 5,4
KNN 43,7 ± 7,9 48,7 ± 4,2 85,7 ± 2,8 90 ± 3,9 42,5 ± 4,7 55,4 ± 5,8

AdaBoost 31,2 ± 9,3 44,8 ± 4,6 92,1 ± 1,5 92,7 ± 3,3 46,2 ± 8,4 48,9 ± 7,2
Semi-Supervised

Watershed 50,8±5,6 39,4 ± 5,4 72,8 ± 3,8 94,7 ± 2,3 47,8 ± 7,2 47,6 ± 8,2

Table 4.3: F1 scores obtained for comparing Semi-Supervised Watershed with usual Ma-
chine Learning methods on Imbalanced datasets. Highlight in blue the best score obtained
for a given dataset.

AUC Paw Pima Segment0 Vowel0 Yeast1 Glass1
RF 4,1 ± 1,4 21 ± 4,3 0,3 ± 0,2 0,4 ± 0,4 1,3 ± 1,4 10,6 ± 5

SVM 1,5 ±1,6 11,8 ± 5,6 0,3 ± 0,3 0,6 ± 0,3 1,5 ± 1 9,1 ± 5,5
KNN 3,0 ±1,5 17,8 ± 4,3 1,3 ± 0,3 1,4 ± 0,7 2,2 ± 1,5 16,6 ± 11,7

AdaBoost 5,4 ± 1,7 14,6 ± 4,6 0,9 ± 0,2 0,4 ± 0,4 3,4 ± 1,5 13,4 ± 9,8
Semi-Supervised

Watershed 5,8 ± 1,9 30,1 ± 4,5 6,9 ± 1,2 0,9 ± 0,4 5,9 ± 1,8 52 ± 20,6

Table 4.4: AUC scores obtained for comparing Semi-Supervised Watershed with usual
Machine Learning methods on Imbalanced datasets. Highlight in blue the best score
obtained for a given dataset.

Gmean Paw Pima Segment0 Vowel0 Yeast1 Glass1
RF 63,3 ± 7,2 61,8 ± 2,9 94,1 ± 1,7 96 ± 2,1 53,4 ± 13,2 62,5 ± 7,4

SVM 41,7 ± 16 56,6 ± 1,9 94 ± 2,4 96,8 ± 2,3 60,7 ± 5,6 55,4 ± 4,5
KNN 57,2 ± 7,3 59,3 ± 3,4 89,3 ± 2,8 95,7 ± 2,5 56,1 ± 3,9 63,8 ± 4,6

AdaBoost 48,7 ± 8,9 55,9 ± 3,8 94,5 ± 1,1 94,5 ± 2,4 61,5 ± 8,4 58,7 ± 5,8
Semi-Supervised

Watershed 67 ± 5,3 51,6 ± 4,6 86,9 ± 2,9 98,6 ± 1,1 67,2 ± 6,4 51,9 ± 8,5

Table 4.5: GMean scores obtained for comparing Semi-Supervised Watershed with usual
Machine Learning methods on Imbalanced datasets. Highlight in blue the best score
obtained for a given dataset.
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NPV Paw Pima Segment0 Vowel0 Yeast1 Glass1
RF 92,1 ± 1,2 74,1 ± 1,7 98,2 ± 0,2 99,2 ± 0,4 92,9 ± 1,3 75,2 ± 3,7

SVM 89,7 ± 1,1 72,2 ± 0,8 98,2 ± 0,7 99,4 ± 0,4 93,5 ± 0,7 71,8 ± 1,7
KNN 91,2 ± 1,1 72,9 ± 1,9 96,9 ± 0,8 99,3 ± 0,85 93 ± 0,4 75,5 ± 2,5

AdaBoost 90 ± 1,1 71,6 ± 1,6 98,4 ± 0,3 99,0 ± 0,4 93,7 ± 1,1 73,2 ± 2,5
Semi-Supervised

Watershed 92,1 ± 1,2 74,1 ± 1,7 98,2 ± 0,5 99,2 ± 0,4 92,9 ± 1,3 75,2 ± 3,7

Table 4.6: NPV scores obtained for comparing Semi-Supervised Watershed with usual
Machine Learning methods on Imbalanced datasets. Highlight in blue the best score
obtained for a given dataset.

Our analysis reveals a remarkable observation: the semi-supervised Wa-
tershed algorithm improves prediction performance for specific evaluation
metrics. In particular, we consistently note that the AUC score tends to be
higher for the semi-supervised Watershed algorithm than for other conven-
tional machine learning methods. While it is important to recognize that
the semi-supervised Watershed algorithm is not perfect, these results sug-
gest that the incorporation of connectivity information can indeed improve
prediction results on imbalanced dataset. The semi-supervised watershed
algorithm appears to be a good candidate for algorithm modification and
cost-sensitive learning methods. Nevertheless, with regard to imbalanced
data, it should be noted that the most common techniques for addressing
such imbalances often involve sampling methods. Given that watershed
methods can also be applied to clustering tasks, it is of interest to inves-
tigate the behavior of Watershed Cuts and Iterated Watershed algorithms
in the context of imbalanced data. In fact, those methods could then be
used to find minority data clusters in a unsupervised manner and then
used to generate new data points by taking care of the data distribution.
The motivation for this exploration lies in the potential transformation of
these algorithms into oversampling algorithms.

4.3.2 Watershed Cuts and Iterated Watershed for Imbalanced
Data

We perform a comparative analysis of the Watershed Cuts and Iterated
Watershed methods with the clustering methods commonly used in over-
sampling techniques: KMeans [11] and DBSCAN [17]. To facilitate this
examination, we use the same set of 6 imbalanced datasets as before. The
aim is to compare the prediction performance of these clustering methods.
Given that clustering approaches operate in an unsupervised manner, we
establish a procedure for generating predictions using these methods. This
procedure consists of two steps. First, we apply clustering to the training
and testing part. Next, we assume that all data points in the same clus-
ter belong to the same class. This allows us to assign labels to unlabeled
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data points, i.e. test data points, on the basis of the majority label within
the cluster to which they belong. By employing this methodology, we can
effectively compare the various clustering techniques. The results of this
comparative analysis are presented in tables 4.7, 4.8, 4.9, 4.10, 4.11
and 4.12. These tables summarize the prediction scores of each method
according to different evaluation metrics.

Precision Paw Pima Segment0 Vowel0 Yeast1 Glass1
Kmeans 63,7 ± 16,5 43,2 ± 5,2 84,2 ± 3,9 87,7 ± 10,1 49,5 ± 11,5 48,3 ± 7,6

DBSCAN 26,6 ± 7 38,1 ± 3,6 41,3 ± 6,5 50,9 ± 14,3 53,2 ± 26,5 59,5 ± 13,7
Watershed Cuts 34 ± 4,2 54,5 ± 17 75 ± 1,4 68,4 ± 9,8 42,8 ± 11,4 61 ± 37,3

Iterated Watershed 40,8 ± 10,5 42,1 ± 1,2 83,1 ± 3,8 33,1 ± 5 36,4 ± 15,2 42,7 ± 7,1

Table 4.7: Precision scores obtained for comparing Watershed Cuts and Iterated Water-
shed with usual clustering methods on Imbalanced datasets. Highlight in blue the best
score obtained for a given dataset.

Recall Paw Pima Segment0 Vowel0 Yeast1 Glass1
Kmeans 42,8 ± 7,6 44,8 ± 0 73,2 ± 1,2 71,7 ± 10,1 43,1 ± 11,5 46,3 ± 8,4

DBSCAN 29,2 ± 6,2 26,1 ± 3,7 23,2 ± 3,7 33,6 ± 6,8 14,6 ± 6,4 31,1 ± 9,8
Watershed Cuts 58,0 ± 7,8 6,0 ± 1,5 87,2 ± 7,9 89,9 ± 7,6 43,1 ± 9,9 6,3 ± 4,6

Iterated Watershed 44,0 ± 10,0 46,3 ± 6 60,4 ± 4,3 71,8 ± 10,6 25,4 ± 13,8 39,5 ± 12,1

Table 4.8: Recall scores obtained for comparing Watershed Cuts and Iterated Watershed
with usual clustering methods on Imbalanced datasets. Highlight in blue the best score
obtained for a given dataset.

F1 Paw Pima Segment0 Vowel0 Yeast1 Glass1
Kmeans 50,2 ± 7,5 43,8 ± 2,7 78,2 ± 1 78,1 ± 7,3 45,5 ± 10,2 47 ± 7,6

DBSCAN 27,6 ± 6,3 30,6 ± 1,4 29,7 ± 4,7 39,5 ± 6,8 21,9 ± 8,8 40 ± 11
Watershed Cuts 42,5 ± 3,9 10,8 ± 2,8 80,4 ± 2,6 77,3 ± 7,9 42,7 ± 10,1 10,9 ± 7,3

Iterated Watershed 41,8 ± 9 43,9 ± 3,3 69,9 ± 4,2 45,2 ± 6,6 29,4 ± 13,9 40,6 ± 9,6

Table 4.9: F1 scores obtained for comparing Watershed Cuts and Iterated Watershed
with usual clustering methods on Imbalanced datasets. Highlight in blue the best score
obtained for a given dataset.

AUC Paw Pima Segment0 Vowel0 Yeast1 Glass1
Kmeans 6 ± 2,6 32,4 ± 6,8 2,3 ± 0,7 1,2 ± 1,1 5,0 ± 1,7 27,1 ± 6,3

DBSCAN 16 ± 1,1 23,6 ± 6,8 5,5 ± 0,6 3,7 ± 2 1,7 ± 1,5 12 ± 6,5
Watershed Cuts 14,3 ± 0,6 2,8 ± 1,2 4,8 ± 0,8 4,4 ± 1,8 6,5 ± 1,8 2,6 ± 2,7

Iterated Watershed 7,7 ± 0,9 34 ± 2,8 2 ± 0,4 14,8 ± 2 4,3 ± 1,3 37,7 ± 9,9

Table 4.10: AUC scores obtained for comparing Watershed Cuts and Iterated Watershed
with usual clustering methods on Imbalanced datasets. Highlight in blue the best score
obtained for a given dataset.
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Gmean Paw Pima Segment0 Vowel0 Yeast1 Glass1
Kmeans 63,8 ± 5,5 54,9 ± 2,8 84,5 ± 0,4 84 ± 6 63,4 ± 8,8 56,4 ± 6,8

DBSCAN 50,4 ± 5,7 44,4 ± 1,2 46,7 ± 3,9 56,6 ± 5,6 35,6 ± 12,9 54 ± 7,1
Watershed Cuts 69,4 ± 4 23,9 ± 3,2 91 ± 3,8 92,6 ± 4,2 63 ± 8 16 ± 13,9

Iterated Watershed 62,6 ± 7,4 55,1 ± 2,4 76,9 ± 2,9 78,0 ± 6,3 45,8 ± 18 47,4 ± 6,4

Table 4.11: GMean scores obtained for comparing Watershed Cuts and Iterated Water-
shed with usual clustering methods on Imbalanced datasets. Highlight in blue the best
score obtained for a given dataset.

NPV Paw Pima Segment0 Vowel0 Yeast1 Glass1
Kmeans 92,2 ± 1 69,4 ± 2,1 95,6 ± 0,2 97,2 ± 1 93,9 ± 1,2 71,2 ± 4,2

DBSCAN 89,7 ± 1 65,8 ± 0,9 88,1 ± 0,6 93,5 ± 0,6 91,3 ± 0,5 71,2 ± 2,8
Watershed Cuts 93,3 ± 1 65,9 ± 0,6 97,8 ± 1,3 98,9 ± 0,8 93,8 ± 1,1 65,1 ± 0,9

Iterated Watershed 91,9 ± 1,4 69,7 ± 1,5 93,7 ± 0,7 96,8 ± 1,2 92,2 ± 1,3 64,9 ± 3,6

Table 4.12: NPV scores obtained for comparing Watershed Cuts and Iterated Watershed
with usual clustering methods on Imbalanced datasets. Highlight in blue the best score
obtained for a given dataset.

We find that the Watershed Cuts method improves predictions for some
specific scores. For example, most of the time, for recall or NPV scores,
the Watershed Cuts method scores higher than the other usual clustering
methods. However, the iterated watershed method has less impact. Ex-
cept in special cases, the results of the iterated watershed method can be
compared with those of KMeans. We therefore decided to consider only
Watershed Cuts as an interesting method for developing a new oversam-
pling method. In addition, we decided to compare the clusters obtained
by the Watershed Cuts method with those obtained by the KMeans and
DBSCAN methods. In fact, we want to understand whether, apart from
connectivity aspects, there are other differences between these clustering
methods. To do this, we visualized the clusters obtained by the Watershed
Cuts, KMeans and DBSCAN methods on 2D datasets. For example, we
obtained the figure 4.8 on chessboard examples 2.1. In this and all other
visualizations, we observe that Watershed Cuts builds very small clusters
compared to those obtained with KMeans and DBSCAN. Another impor-
tant thing to note is that the Watershed Cuts parameter, the number of
neighbor in the graph, has no influence on the shape of the clusters. This
makes the watershed clusters very stable compared to those obtained with
the DBSCSAN or KMeans methods.

4.4 Conclusion

Exploring the various aspects that watershed transformations can incar-
nate seems to present significant utility when it comes to predicting im-
balanced data and potentially helping in the detection of ACS in SCD
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(a) Watershed Cuts
Clustering: n nei:10

(b) DBSCAN Clustering:
eps:0.05, min s:5

(c) KMeans Clustering:
nb clust:50

Figure 4.8: Imbalanced Chessboard clustered by different methods: Watershed Cuts,
DBSCAN and KMeans. Crosses correspond to majority data points, whereas circles
correspond to minority ones.

patients. The flexibility of watershed methods becomes evident as they
can function both as oversampling techniques, using Watershed Cut, but
also as an algorithmic level thanks to the hierarchies. Furthermore, our
analysis has demonstrated that Watershed Cut is an effective strategy for
dealing with imbalanced datasets. This is attributed not only to the dis-
tinct shape of the clusters it generates, but also to the favorable prediction
scores it obtains directly on datasets compared to other clustering meth-
ods. With this in mind, we first focus on designing a new oversampling
method called WSSMOTE, based on the principle of Watershed Cuts.
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Chapter 5

WSSMOTE: a Novel Oversampling
Method

The Watershed Cuts method appears to be a promising way of dealing with
imbalanced datasets, due to its distinctive cluster shapes and favorable per-
formance directly on the datasets compared to other clustering methods.
Given that oversampling methods are the most widely used approaches
for dealing with imbalanced datasets, and that they have produced abun-
dant results, we opted for a novel oversampling strategy. We developed
a new oversampling method called “WSSMOTE”, based on the principles
of Watershed Cuts. In this chapter, we will look at the details of the al-
gorithm’s implementation and its implications for the detection of ACS.
We will explain in detail how the WSSMOTE method was developed and
integrated into the pipeline. In addition, we will discuss the effects and
tangible results that the WSSMOTE method has had on improving the
PPV and performance of ACS detection.

5.1 Algorithm Implementation

Our novel method called WSSMOTE is an oversampling method rooted
in the watershed clustering algorithm. Using results derived from other
oversampling methods, WSSMOTE has devised two distinct strategies.
The first approach takes advantage of the watershed clustering algorithm’s
ability to generate compact, data-driven micro-clusters. This precision in
defining micro-clusters limits the production of minority class data points
within majority clusters. By contrast, the second strategy draws on the
results presented in the article [5]. This article suggests that clustering-
based oversampling methods are more efficient when they incorporate ex-
tended clusters. These larger clusters facilitate the addition of new data
points at significant distances from each other. Consequently, formulating
a methodology for merging clusters into larger clusters, often referred to
as “super-clusters”, is a key task. Both strategies are explained in more
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detail:

• Watershed Clustering Strategy: Watershed clustering strategy:
This strategy was developed in response to the challenges described
in Figure 2.3, particularly with regard to the problems of disjunction
(Figure 2.3a) and overlap (Figure 2.3c). In datasets where fidelity
to the data distribution is essential, it is imperative to define small
clusters. This ensures that minority data points are not added at too
large a distance, preventing their generation within majority clusters.
To achieve this, we use watershed clustering to define compact regions,
and then generate data points within these regions. Building on the
polynomial fit interpolation instances demonstrated by Gazzah in ar-
ticle [3], two schemes for incorporating minority data points emerge.
The first is to use two random data points from the clusters (“mesh”
option). The second involves using the average data points from the
clusters plus another random data point from the same cluster (“star”
option). These options produce distinct distributions of the final data.

• Super-Cluster Strategy: As explained for the first strategy, it has
been observed that the clusters formed by the watershed algorithm
are generally small, which can lead to insufficient information in some
scenarios. Take the example of figure 2.3b, where each of the three red
triangles on the left is treated as a separate group according to the wa-
tershed algorithm. Consequently, applying the watershed clustering
strategy results in three isolated groups, which amounts to duplicat-
ing the red triangles without enriching the information. In contrast,
another approach is to merge these three groups into a single one be-
fore generating new minority data points. This approach improves the
capture of crucial information and, consequently, future predictions, a
notion also formulated in the work of Kovacs, in article [5]. This idea
motivated the development of the super-cluster strategy. The proce-
dure consists of initiating cluster generation via watershed clustering,
followed by the construction of a region adjacency graph (RAG). In
the RAG, each vertex represents a cluster and the edges signify the
connections between clusters, weighted by Euclidean distances. Clus-
ters are then concatenated with their k-nearest neighbors, based on
this global information. This aggregation results in larger clusters
that preserve the fundamental distribution of the data. The final step
is to add data points to the clusters using the “mesh” option.

The WSSMOTE algorithm can be accessed through its GitHub reposi-
tory available at the following URL: https://github.com/yamnao/WSSMOTE.
For a detailed understanding of the algorithm’s pseudocode, please refer
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to Algorithm 4. It is important to note that the clusters generated by the
watershed algorithm exclusively involve minority data points (line 2, algo-
rithm 4). In fact, according to the literature [1, 2] and various experiments,
the use of exclusively minority data points to build clusters yields better
results than the combination of minority and majority data points. To
visually illustrate the application of WSSMOTE on imbalanced datasets,
please refer to figures 5.1 and 5.2. These figures provide visualizations of
both strategies of the effects of WSSMOTE on datasets.

Algorithm 4: WSSMOTE
Data:

• imbalanced data D and its labels L
• nb add: percentage of data points to be added
• strategy choice: choice between ’star’, ’mesh’, ’concat k’
• k: parameter k, number of concatenate clusters

1 nb to add: (nb min data pts - nb maj data pts)*nb add ;
2 graph, edge weights: Generate the KNN graph on minority data points;
3 Clusters: Watershed Clustering(graph, edge weights) ;
4 if strategy choice == ’star’ then
5 for C in Clusters do
6 X mean: Calculate the mean of all the data pts in C ;
7 D C: Select random data points in C;
8 Generate new data points between D C and X mean equidistantly ;

9 if strategy choice == ’mesh’ then
10 for C in Clusters do
11 D C: Select random data points in C;
12 Generate new data points between two D C data points ;

13 if strategy choice == ’concat k’ then
14 ClustersConcat: Concatenate Clusters using Region Adjacency Graph and

parameter k;
15 for C’ in ClustersConcat do
16 D’ C: Select random data points in C’;
17 Generate new data points between two D’ C data points ;

Result: Data D’, labels L’

80



CHAPTER 5.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) ChessBoard without
oversampling
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(b) ChessBoard with
WSSMOTE oversampling:

parameter “mesh”
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WSSMOTE oversampling:

parameter “concat 5”

Figure 5.1: Application of WSSMOTE on ChessBoard dataset. Blue triangles correspond
to majority data points, yellow circles to minority ones and red crosses to data points
added by WSSMOTE method.
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(a) Paw without oversampling
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(c) Paw with WSSMOTE
oversampling: “concat 5”

Figure 5.2: Application of WSSMOTE on Paw dataset. Blue triangles correspond to
majority data points, yellow circles to minority ones and red crosses to data points added
by WSSMOTE method.

5.2 Results

Having described and implemented our watershed oversampling approach,
the next step is to perform tests and comparative analysis with existing
oversampling methods, based on the algorithm and methodology described
in Chapter 3. More specifically, we integrate WSSMOTE into the exist-
ing smote variants pipeline. This integration guarantees a consistent eval-
uation framework. It should be noted that this pipeline uses standard
semi-supervised methods such as SVM (with kernal and linear strategy),
RandomForest, KNearestNeighbors, AdaBoost and MLPClassifier in com-
bination with the tested sampling methods. These semi-supervised meth-
ods have been rigorously tested with a range of parameters, using a grid
search approach. There are two key aspects to our testing: firstly, an ex-
amination of WSSMOTE’s performance in detecting ACS and, secondly,
an evaluation on randomly selected datasets.
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5.2.1 Results on PRESEV Dataset

We begin by testing WSSMOTE for the prediction of acute chest syndrome
(ACS) in patients with sickle cell disease. This testing is carried out using
the PRESEVC dataset and our main objective, as outlined in the previous
chapter 1, is the maximization of the negative predictive value (NPV)
score, and of the positive predictive value (PPV) score.

The results, classified according to their NPV score, are summarized in
table 5.1. These results are based on the comparison of four distinct ma-
chine learning methods, each associated with different oversampling tech-
niques. Thus, as shown in Table 5.1, the most optimal combinations
for the PRESEVC dataset involve combining WSSMOTE with the linear
support vector machine (SVM) classifier.

Ranking Oversampling Classifier
1 WSSMOTE SVM
2 Gaussian SMOTE SVM
3 ROSE SVM

Table 5.1: Combinations of oversampling and machine learning classifiers that provide the
best NPV scores in ACS prediction. These results are obtained using the smote variants
pipeline [6].

In order to provide a global perspective, we compare the results obtained
using the combination of WSSMOTE and SVM with the results obtained
in previous evaluations using basic machine learning methods. In addition,
we join these results with those obtained by integrating Gaussian SMOTE
with the SVM classifier. The full results are presented in table 5.2.

Prediction Method PRESEVC PPV (%) NPV (%)

SVM Train 35,9 ± 25.8 99,4 ± 1.6
Test 22.6 ± 15.8 95.8 ± 2

Gaussian SMOTE + SVM Train 23.1 ± 1.1 96.5 ± 0.8
Test 24.6 ± 4.2 96.9 ± 2.9

WSSMOTE + SVM Train 27.7 ± 1.9 96.6 ± 0.4
Test 28.9 ± 3.1 96.6 ± 2.5

Table 5.2: PPV and NPV scores obtained on PRESEVC using WSSMOTE and compar-
ison with previsous results.

Analysis of the results clearly demonstrates the improvement brought
about by the WSSMOTE method. In particular, the PPV score shows a
4.5% improvement over the results obtained with the Gaussian SMOTE
method. This improvement is significant. In addition, the implementation
of WSSMOTE significantly reduces overfitting. For the PPV score, over-
fitting falls from 13.3% to just 1.2%, while for the NPV score, it falls from
3.6% to 0.1%. This reduction in overfitting demonstrates the effectiveness
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of WSSMOTE to fit the data distribution. WSSMOTE’s influence also ex-
tends to cross-validation variability. Before oversampling, cross-validation
variability was around 20.8%. After the application of WSSMOTE, this
variability is considerably reduced, to just 2.5%. This underlines the sta-
bility and reliability of the WSSMOTE method. In summary, the use of
WSSMOTE undeniably improves the prediction accuracy of ACS in pa-
tients with sickle cell disease. This translates into better identification of
high-risk patients, facilitating more targeted monitoring and care. In ad-
dition, the method enables low-risk patients to be identified with greater
accuracy, which may lead to shorter hospital stays. It should be noted
that the improved predictive accuracy and reduced variability achieved by
WSSMOTE also engenders a high level of confidence in the reproducibility
of the method. This raises the prospect of potential application to future
patients, reinforcing the overall benefits of the approach.

5.2.2 Results on Randomly Selected Dataset

Encouraged by the promising results obtained in the PRESEV study, we
are extending our research to other imbalanced datasets in order to carry
out a comprehensive comparison of prediction performance. To this end, we
are using the smote variant pipeline, evaluating the results of four separate
machine learning methods and 50 oversampling techniques, each with 20
potential parameter combinations. The cumulative results are presented
in table 5.3, where WSSMOTE’s ranking is side by side with the other 50
oversampling methods. This ranking is based on the different scores studied
for each imbalanced dataset. This evaluation offers a clear perspective on
the effectiveness of WSSMOTE in various scenarios.

accuracy
rank

sensitivity
rank

specificity
rank

ppv
rank

npv
rank

gacc
rank

f1
rank

auc
rank

yeast1 48 1 50 49 1 16 38 10
ecoli1 34 1 47 46 1 10 16 8

harbeman 27 2 43 24 1 6 11 6
wisconsin 11 3 33 32 4 8 8 12
vehicle1 25 2 46 46 1 19 13 1
glass1 22 2 45 44 2 6 10 11

subcl35 20 29 14 6 26 3 27 5

Table 5.3: Comparison of WSSMOTE with 50 other oversampling methods using the
smote pipeline. Each number corresponds to the rank of WSSMOTE for a specific score
and an imbalanced dataset. The best rank is 1, the worst is 50.

In addition, we undertake a parallel analysis involving others oversam-
pling methods such as Gaussian SMOTE method [7]. The results of this
comparative evaluation for Gaussian SMOTE, given each score and each
imbalanced dataset, are summarized in table 5.4. This comparative anal-
ysis highlights the performance of Gaussian SMOTE compared to all over-
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sampling methods. These detailed tables provide a complete picture, facil-
itating an informed understanding of how WSSMOTE perform against a
range of oversampling methods in various datasets and scoring measures.

accuracy
rank

sensibility
rank

specificity
rank

ppv
rank

npv
rank

gacc
rank

f1
rank

auc
rank

yeast1 8 2 9 6 2 43 42 9
ecoli1 3 2 3 2 2 17 5 3

haberman 37 1 7 3 41 12 10 7
wisconsin 42 30 19 27 33 35 42 2
vehicle1 43 1 3 2 33 42 42 47
glass1 31 2 1 14 44 42 42 37

subcl35 2 1 37 8 4 39 2 15

Table 5.4: Comparison of Gaussian SMOTE with 50 other oversampling methods using
the smote pipeline. Each number corresponds to the rank of Gaussian SMOTE for a
specific score and an imbalanced dataset. The best rank is 1, the worst is 50.

In particular, the results presented highlight the beneficial impact of
the WSSMOTE method, which consistently improves NPV and sensitivity
scores in the majority of the various imbalanced datasets examined. This
performance trend positions WSSMOTE as a valuable method, capable
of solving classification challenges. However, it is important to recognize
a fundamental principle recognized in the literature, articulated in vari-
ous articles such as those referenced in [8, 4]. There is no universal silver
bullet in the field of oversampling methods, and this also applies to WSS-
MOTE. Comparative analysis reveals that Gaussian SMOTE sometimes
outperforms WSSMOTE, illustrating the variability in the efficacy of over-
sampling methods in different contexts. This suggests that the selection of
an appropriate oversampling method should be guided by the specific char-
acteristics of the dataset and the objectives of the classification problem.
Although WSSMOTE offers performance improvements that are admirable
in many cases, it is prudent to recognize that no single method can uni-
versally dominate all scenarios.

5.3 Conclusion

This new oversampling method, WSSMOTE, has demonstrated its ability
to improve the detection of ACS in patients with sickle cell disease (SCD).
The marked improvement, with a PPV increase of around 4% compared
to other oversampling methods, represents a significant advance towards
the accurate identification of ACS patients, thus improving the quality of
patient care and hospital management. Moreover, WSSMOTE’s influence
also reduce the overfitting from 13.3% to just 1.2% which is promising for
the reproducibility and reliability of future studies.

More generally, the applicability of WSSMOTE is not limited to ACS
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prediction. Its effectiveness extends to various imbalanced classification
challenges. However, it is essential to stress that, like all oversampling
methods, WSSMOTE is not a universal silver bullet. The effectiveness
of any oversampling method, including WSSMOTE, depends on the com-
plexity and unique characteristics of the imbalanced dataset in question.
While oversampling strives to mimic the structure of the dataset, imbal-
anced datasets can present immense variations.

However, the incorporation of connectivity considerations, illustrated
by WSSMOTE, appears to be a powerful strategy in the field of imbal-
anced data processing. In addition, the PPV of ACS prediction can be
further improved, as it is higher with the use of the usual SVM. For this
reason, we are considering a new algorithm that focuses on connectivity
considerations, distancing itself from oversampling methods.
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Chapter 6

Exploring Metric Learning Theory &
Application to Imbalanced Datasets

The fundamental objective of metric learning, also known as distance met-
ric learning, involves learning a distance metric that brings data points
with identical labels closer together, while moving those with different la-
bels further apart, as shown in figure 6.1. In other words, metric learning
techniques aim to identify a space in which data points belonging to dis-
tinct classes are clearly separated. Many existing prediction methods are
rooted in the principles of metric learning, covering techniques such as
clustering approaches like KMeans [8], dimension reduction methods like
principal component analysis (PCA) [14], and supervised techniques like
support vector machines [10]. In this section, we focus on metric learning
techniques designed for supervised classification problem, with particular
emphasis on those designed to handle imbalanced datasets. We also in-
clude these metric learning methods into the smote variants pipeline in
order to perform a complete comparisons between metric learning meth-
ods and oversampling ones.

Initial Feature Space Optimised Feature space

Figure 6.1: Impact of the metric learning method on the feature space.

6.1 Metric Learning for Balanced Dataset

To understand how a metric learning algorithm works, it is essential to
understand what a metric space is.
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Metric Space – A metric space [4] is a set of data points whose ele-
ments are linked by a distance.

Definition 1 (Metric) Let M a set. d is defined as a metric, also called
distance, if:

• d : M ∗ M → R is a function,
• ∀ x ∈ M, d(x, x) = 0
• ∀ x,y ∈ M, and x ̸=y, d(x, y) > 0,
• ∀ x,y ∈ M, d(x, y) = d(y, x)
• ∀ x, y, z ∈ M, d(x, z) ≤ d(x, y) + d(y, z) triangle inequality

The most familiar example of a metric space is the 2D Euclidean space.
In this space, M is equal to R2, so that its elements X1 and X2 can be
decomposed into X1 = (x1, y1) and X2 = (x2, y2). The associated distance
is the Euclidean distance, defined as

d((x1, x2), (y1, y2)) =
√

(x2 − x1)2 + (y2 − y1)2

To arrive at an optimal metric space, it is necessary to address an opti-
mization problem that has been incorporated into a metric learning algo-
rithm. It’s important to note that throughout this chapter, we’ll maintain
the assumption of a fixed number of features, allowing the space to be
modified only through the distance function. We will now describe some
of these optimization problem in metric learning:

• Large Margin Nearest Neighbor (LMNN) [13] – LMNN is a
known metric learning algorithm and is based on the Mahalanobis
distance [9].

Definition 2 (Mahalanobis Distance) Let A ∈ Rdxdbe a positive
semi definite matrix and d the dimension of the set. Thus, A and can
be decomposed as A = LT L with L ∈ Rr∗d and r the rank of A.
The Mahalanobis distance between two data points xi, xj in Rd is
defined as DA(xi, xj) = (xi − xj)T A(xi − xj)

The Mahalanobis distance is a generalization of the Euclidean dis-
tance. The goal of the LMNN algorithm is to separate the different
classes. In other words, LMNN wants to move data points of the
same class closer together and data points of different classes further
apart. For this purpose, two functions have been defined: lpush and
lpull. The aim of the first is to move two neighbouring data points of
different classes away from each other, while the second moves two
neighbouring data points closer together, as shown in figure 6.2.
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margin

pushpull

Figure 6.2: Illustration of push and pull functions developed in the LMNN algorithm.

Thus, the optimization problem is formulated as follow:

min
A≥0

F (A) = 1
n2 [(1 − µ)lpull + µlpush]

lpull =
∑

(i,j)∈N

||A(xi − xj)||2

lpush =
∑

(i,j)∈N

[
∑
z

(1 − yi,j)[1 + ||A(xi − xj)||2 − ||A(xi − xz)||2]+

where:

µ = a parameter tuned by cross validation
n = number of samples
z+ = max(0, z)
yi,j = 1 if x i and x j from the same class, else 0
N = two neighbouring data points
x = data point

By optimizing the matrix A, we can improve distance metrics, creating
class separation and therefore improving predictive results.

• Information Theoric Metric Learning (ITML) [3] – ITML is
also a metric learning algorithm based on the Mahalanobis distance.
The objective of ITML is to stay “closer” to a predefined matrix. For
this purpose, the algorithm is designed through the relative entropy,
which is used to measure the distance between two Mahalanobis func-
tions A0 and A.

KL(p(x, A0)||p(x, A)) =
∫

p(x, A0) log p(x, A0)
p(x, A) dx
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Thus the ITML goal is to minimize this entropy with two constraints:
dA(xi, xj) ≤ u with xi and xj two data points from the same class

dA(xi, xj) ≥ u with xi and xj two data points from the different classes

This optimisation problem can be solved using matrix methods and
is most often presented as follows:

KL(p(x, A0)||p(x, A)) = trace(AA−1
0 ) − logdet(AA−1) − n

where: n = number of samples
ITML aims to improve the performance of machine learning algo-
rithms by adapting the distance metric to the specific problem. It can
be particularly useful in cases where data distributions are complex or
traditional distance metrics fail to effectively capture the underlying
relationships between data. The ITML algorithm is faster than the
LMNN algorithm and a really powerful technique, but it may also
require careful parameter tuning.

• Geometric Mean Metric Learning (GMML) [15] – GMML is
also a metric learning algorithm. GMML aims to find a metric that
focuses on the geometric properties of the data distribution, making it
well suited to tasks such as classification, clustering and search. The
central idea of GMML is to learn a transformation of the original fea-
ture space that maximizes the geometric mean of pairwise distances
between similar instances while minimizing the geometric mean of
pairwise distances between dissimilar instances. GMML is to some
extent based on the LMNN and ITLMN algorithms. In fact, in both
methods, the “push” and “pull” loss functions are performed sym-
metrically. On the contrary, in GMML, the aim is to treat the two
functions differently by solving the following optimization problem:

min
A≥0

F (A) = trace(A
∑

(xi − xj)T (xi − xj))+

trace(A−1 ∑
(xi − xj)T (xi − xj))

GMML’s geometric mean objective addresses the limitations of the
traditional Euclidean distance, particularly when dealing with imbal-
anced classes or non-linear data distributions. By focusing on the
geometric properties of the data, GMML aims to create a measure
that better reflects the structure of the data.

These three methods (LMNN, GMML and ITML) are accessible in
Python via the website provided: http://contrib.scikit-learn.org/
metric-learn/. These implementations use a gradient descent algorithm
to address their respective optimization problems, as detailed in article [11].
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6.2 Metric Learning for Imbalanced Datasets

LMNN, ITML and GMML are generally applied to balanced datasets,
as their original formulations may not deal effectively with imbalanced
datasets, leading to bias against minority classes. Aware of this limitation,
researchers have developed alternative algorithms to improve the perfor-
mance of these methods on imbalanced datasets. Many of these approaches
involve incorporating class-specific weights directly into the loss function.

For example, an algorithm proposed in the article [5] is based on the
ITML algorithm. This approach deals with imbalanced datasets by intro-
ducing class-specific weights that influence the learning process. Similarly,
another algorithm presented in the article [7] extends the LMNN method.
This method is known as IML. The IML algorithm modifies the standard
LMNN approach by considering each class individually and assigning dif-
ferent weights to them. The objective is to prevent bias towards majority
classes and improve the performance of the algorithm on imbalanced data.
The loss function of the IML algorithm can be described as follows:

min
A≥0

F (A) = min
A≥0

µ
∑

(xi,xj)∈Sim+
l1(A, xi, xj)

+ (1 − µ)
∑

(xi,xj)∈Sim−
l1(A, xi, xj)

+ λ
∑

(xi,xj)∈Dis+
l2(A, xi, xj)

+ (1 − λ)
∑

(xi,xj)∈Dis−
l2(A, xi, xj)

where:

Sim+ = two data points from the majority class
Sim− = two data points from the minority class
Dis+ = the first on from the majority and the second from the minority
Dis− = the first one from the minority and the second from the majority
l1(A, xi, xj) = [dA(xi, xj) − 1]+
l2(A, xi, xj) = [1 + m − dA(xi, xj)]+
m = margin
µ = tuning parameter to define
λ = tuning parameter to define

By incorporating class-specific weights and refining the loss function,
algorithms such as IML aim to reduce the challenges posed by imbalanced
datasets in metric learning. These modifications enable methods to better
adapt to data distribution and improve performance, particularly for tasks
involving imbalanced classes.
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In addition, other metric learning algorithms adapted to imbalanced
datasets have been developed without modifying class weights. A notable
example is the iterative metric learning method (ITML) proposed in arti-
cle [12]. This method takes a different approach to the challenges of im-
balanced data while employing the LMNN algorithm. The ITML method
focuses on small regions of the dataset that contain an approximately equal
number of minority and majority data points. This strategy aims to ensure
that the learning process is not biased in favor of one class due to imbal-
anced proportions. The approach involves several iterative steps, and at
each stage a subset of the data is selected on the basis of this criterion
of equal class representation. The ITML algorithm can be described as
follows:

1. Select Balanced Subsets: At each iteration, subsets of the dataset
are chosen to maintain a balanced representation of minority and ma-
jority classes.

2. Apply LMNN: The LMNN algorithm is then applied to each of these
balanced subsets.

3. Iterative Refinement: The algorithm repeats the above steps itera-
tively, updating the distance metric with each iteration. This process
allows the distance metric to converge towards a representation that
better suits the imbalanced data.

By focusing on balanced subsets and repeatedly applying the LMNN
algorithm, the ITML method aims to adapt the distance metric to imbal-
anced data.

6.3 Metric Learning & Oversampling Comparisons

IML [7] shows promising results, but it should be noted that none of the
above-mentioned algorithms have been compared with each other on ran-
domly selected imbalanced real-world datasets. Furthermore, they have not
been thoroughly compared or integrated with oversampling methods. To
fill this gap, we decided to incorporate these metric learning algorithms into
the smote variant pipeline. The aim of this integration is to comprehen-
sively evaluate the performance of these algorithms against each other and
against existing oversampling techniques. The combination of metric learn-
ing algorithms and oversampling methods, as part of the smote variant
pipeline, aims to explore the potential of these algorithms to improve the
performance of real-world datasets.

To achieve this, we undertook a series of modifications to the exist-
ing pipeline. A new class has been introduced, called “MetricLearning”,
which serves as a framework for the integration of diverse metric learn-
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ing methods. The main objective is to enable the integration of met-
ric learning methods that can adapt and transform both the training
and testing parts of the dataset. By exploiting the resources of libraries
such as http://contrib.scikit-learn.org/metric-learn/ and https:
//github.com/LeoGautheron, we have successfully implemented four met-
ric learning algorithms: GMML [15], LMNN [13], IML [7], and ITML [3].

As part of our pipeline changes, the basic structure of the smote pipeline
has been modified. In particular, the “evaluation” part of the algorithm
has undergone changes to accommodate these updates, as highlighted by
the pseudo-code 5. It’s important to note that the most difficult aspect lies
not in the direct modifications to the code, but in designing an effective
strategy for storing the results and parallelizing the code while incorpo-
rating the newly added metric learning methods. To facilitate testing,
we have introduced “empty” oversampling and metric learning methods.
This allows us to run tests without metric learning and/or oversampling
methods.

To fully evaluate the impact of metric learning methods on imbalanced
datasets, we started our investigation using the “No SMOTE” oversam-
pling method, which essentially corresponds to no oversampling at all. This
approach facilitates a direct comparison between machine learning meth-
ods improved by metric learning and their unmodified equivalents, whitout
metric learning. The results of this initial comparison are presented in ta-
ble 6.1, and are based on the imbalanced datasets mentioned earlier in
chapter 2. The evaluation is carried out using various scoring measures, as
described in chapter 2. Machine learning methods considered for this com-
parison include SVM [10], KNN [2], RF [1] and AdaBoost [6]. The main
objective here is to evaluate how the integration of metric learning tech-
niques influences the performance of these machine learning algorithms on
imbalanced datasets. These results lay the foundations for understanding
the potential benefits that metric learning can offer to improve classifica-
tion results in imbalanced classification problem.
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Algorithm 5: Modified version of the main part of smote variants for metric
learning methods

Data:
• imbalanced data D and its labels L
• l classifier: list of usual machine learning classifier
• l oversampler: list of oversampling methods
• l oversampler params: list of parameters for each oversampling method
• l metric learning: list of metric learning methods
• l metric learning params: list of parameters for each metric learning

method

1 Creation of folds using D and L;
/* Sampling part */

2 for each fold do
3 for each metric learning method do
4 for each parameters corresponding to the metric learning

method do
5 fold over: Apply metric learning method with the corresponding

parameter on the fold dataset;
6 for each oversampling method do
7 for each parameters corresponding to the oversampling method do
8 fold over: Apply oversampling method with the corresponding

parameter to the fold over dataset;
9 Save the new folding in the right place with the paramater and the

oversampling used;

/* Evaluation part */
10 for each fold over do
11 for each classifier do
12 scores: Compile score using the selected classifier;
13 Save scores in the right place with all the information corresponding;

14 Modify the scores obtained into an organized table;
Result: Table containing all results
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ecoli1 glass1 haberman paw subcl35 vowel0 wisconsin
Acc IML GMML GMML Without ITML Without Without
Sens LMNN Without GMML ITML Without Without Without
Spec Without ITML Without Without GMML Without IML
PPV Without ITML GMML Without ITML Without IML
NPV Without Without IML ITML Without Without ITML
GAcc Without ITML GMML ITML Without Without Without

F1 IML IML GMML ITML Without Without Without
AUC IML IML IML IML Without Without Without

Table 6.1: Comparison of data classification by combining metric learning methods with
standard machine learning methods or using only standard machine learning methods
(corresponding to “Without”).

Analysis of the table 6.1 highlights the potential effectiveness of using
metric learning approaches to improve prediction performance on imbal-
anced datasets in isolation. As expected, the IML approach outperforms
LMNN when applied to imbalanced datasets, but, surprisingly, does not
consistently outperform GMML or ITML - methods originally designed
for balanced datasets. In addition, using metric learning alone does not
produce entirely convincing results. In order to address this issue in a com-
plete way, we carried out a multi-stage comparison involving three types
of combinations:

• Metric Learning and Usual Machine Learning Methods: This
combines metric learning techniques with conventional machine learn-
ing methods.

• Oversampling and Usual Machine Learning Methods: This
combines oversampling methods with conventional machine learning
methods.

• Metric Learning, Oversampling and Usual Machine Learning
Methods: This combination incorporates both metric learning and
oversampling techniques with conventional machine learning methods.

The results, presented in table 6.2, reveal that the most promising com-
binations for effectively predicting imbalanced datasets are the latter two
options: using oversampling techniques in tandem with metric learning or
conventional machine learning methods. In addition, it should be noted
that our WSSMOTE method performs well, particularly when combined
with the IML metric learning approach, or when used in combination with
conventional machine learning methods.
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paw pima vehicle1
Metric Learning Oversampling Metric Learning Oversampling Metric Learning Oversampling

Acc GMML Gazzah Without WSSMOTE GMML distance SMOTE
Sens IML WSSMOTE Without Gazzah Without CCR
Spec GMML AUC Without WSSMOTE Without WSSMOTE
PPV Without Without Without WSSMOTE Without WSSMOTE
NPV IML WSSMOTE Without ROSE Without Gaussian SMOTE
Gacc IML WSSMOTE ITML SMOTE OUT Without WSSMOTE

F1 GMML Gazzah Without Gaussian SMOTE GMML distance SMOTE
AUC ITML AHC Without WSSMOTE LMNN polynom fit SMOTE

vowel0 ecoli1 presev
Metric Learning Oversampling Metric Learning Oversampling Metric Learning Oversampling

Acc Without polynom fit SMOTE Without SMOTE Cosine ITML CCR
Sens Without Gazzah Without polynom fit SMOTE IML WSSMOTE
Spec Without polynom fit SMOTE ITML WSSMOTE LMNN CCR
PPV ITML WSSMOTE ITML WSSMOTE ITML Without
NPV Without polynom fit SMOTE Without polynom fit SMOTE Without WSSMOTE
Gacc Without polynom fit SMOTE Without Gazzah ITML CBSO

F1 Without polynom fit SMOTE Without SMOTE Cosine ITML CBSO
AUC Without polynom fit SMOTE ITML SMOTE TomekLinks ITML Gazzah

Table 6.2: Comparison of data classification using different combinations: metric learning
alone, oversampling alone, or oversampling and metric learning.

6.4 Conclusions

The performance improvement resulting from the combination of metric
learning methods and oversampling techniques is apparent. However, it
should be noted that this improvement is not uniformly consistent, and
there are cases where none of the metric learning methods tested proves
efficient. This variability could be due to the difficulties associated with
defining appropriate metric learning parameters, a task that often involves
exhaustive exploration of multiple combinations. Another factor could be
the uniform basis of the metric learning methods tested, which are all based
on the Mahalanobis distance, a generalization of the Euclidean distance.

Given the encouraging results of the WSSMOTE approach, which is
based on a connectivity criterion, we set out to develop a new metric
learning method centered on ultrametric distance. This alternative dis-
tance metric introduces a connectivity-based criterion that can offer new
capabilities for dealing with class imbalance and improving classification
performance.
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WML: an Ultrametric Learning
Method for Imbalanced Data

Our novel oversampling method called WSSMOTE, based on watershed
transformation principles, has not only demonstrated its potential for im-
proving PRESEV predictions, but also its efficacy in a range of real-world
classification problems. These results highlight the potential and useful-
ness of integrating connectivity considerations when dealing with imbal-
anced datasets. In addition, our analysis has highlighted the limitations of
conventional oversampling methods. These methods, which aim to balance
the distribution of classes, often introduce biases and fail to generate the
diversity needed to bridge information gaps between classes. To overcome
these difficulties, another approach is to partition classes into coherent
clusters by applying metric learning methods. As we highlighted in the
previous chapter, metric learning can improve predictive performance of
imbalanced datasets. Building on the promising results obtained with wa-
tershed transformations, we decided to exlore the field of metric learning
using a graph-based approach. To this end, we present the formulation of
a graph optimization method and subject it to an evaluation in the context
of real-world imbalanced classification problems.

7.1 Algorithm Implementation

Our objective is to adapt the ultrametric fitting algorithm, accessible at
https://github.com/PerretB/ultrametric-fitting, to the classifica-
tion of imbalanced datasets. Our aim is to develop a novel algorithm ca-
pable of fitting and transforming both the training and testing part of the
dataset. In this way, our optimization problem must modify the dataset
and not only the graph as it was done previously, article [2]. A visual rep-
resentation of the desired optimization problem is provided in Figure 7.1.

The initial step is to convert our dataset into a k-nearest neighbor graph.
This graph serves as the basis for defining vertex pairs. Specifically, each
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edge of the graph connects two data points: one as a source and the other
as a target. We then assign a Euclidean distance to each of these edges.
This distance assignment confers weights on the graph, enabling us to ex-
ploit its minimal spanning tree (MST) for the computation of ultrametric
distances. We then use a simple neural network and a designated loss func-
tion to navigate an optimization problem, using the concept of ultrametric
subdominance. In addition, as the graph weights are computed by linear
operations, backtracking is performed using a standard gradient descent
algorithm [4]. Consequently, our algorithm aims to improve classification
performance by adapting the ultrametric fitting methodology to the do-
main of imbalanced datasets.

Data
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Figure 7.1: Schematic of ultrametric optimization problem for imbalanced dataset classi-
fication.

To formulate the optimization problem for predicting imbalanced datasets,
we need to define an appropriate loss function. We have devigned two loss
functions inspired by LMNN [5] and the push/pull theory. Let A and B
denote the two classes, l represent the labels of the data points, and C be
a constant. The first loss function is defined as follows:

L1 =
∑

(x,y)∈E/
l(x)=A,l(y)=A

du(x, y) +
∑

(x,y)∈E/
l(x)=B,l(y)=B

du(x, y) −
∑

(x,y)∈E/
l(x)=A,l(y)=B

(du(x, y) − C)

To incorporate the imbalanced criteria, a second loss function is defined as
follows. Here, nbA represents the number of edges where both the source
and the target belong to class A, nbB is the number of edges of class B,
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and nbT is the total number of edges.

L2 = nbA

nbT

∑
(x,y)∈E/

l(x)=A,l(y)=A

du(x, y) + nbB

nbT

∑
(x,y)∈E/

l(x)=B,l(y)=B

du(x, y)+

nbT − (nbA + nbB)
nbT

∑
(x,y)∈E/

l(x)=B,l(y)=B

(du(x, y) − C)

With these loss functions in place, we implemented the optimization al-
gorithm, incorporating it into the smote variants pipeline. The algorithm,
named WML for the loss function L1 and WMLI for the loss function L2,
follows the same structure as other algorithms in the pipeline i.e. with an
fitting function for the training part and a transformation function for the
testing and training parts. The pseudocode for the WML algorithm is pre-
sented in Algorithm 6. The WMLI algorithm is similar, with a modification
in the loss function.

Using a neural network can be very complex, especially when it comes
to defining the number of layers, non-linear functions and parameters. We
tried different combinations, parameters and layers, and found that the one
that gave the best results most of the time was a simple neural network
with a single layer. It is this simple neural network that we have used in
the following results and visualizations.

7.2 Results

7.2.1 Tests and Visualization

To validate our optimization algorithm, which aims to separate data points
of different classes, we conducted tests on small 2D datasets that were man-
ually created. The results of these tests are depicted in Figures 7.2, 7.3,
and 7.4. We observe successful separation of the two classes in all cases.
However, it is important to note that certain parameters, such as the num-
ber of epochs and the descent coefficient for the gradient descent algorithm,
along with the number of neighbors used to build the graph, greatly im-
pact the outcomes on these small datasets. Moreover, in these small-scale
examples, we might not be able to discern a significant difference between
WML and WMLI, even when dealing with imbalanced datasets.
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Algorithm 6: Fitting part of the WML algorithm
Data:

• Train Data: imbalanced data train and
• L: training labels
• lr: learning rate
• epochs: number of epochs
• knn: number of nearest neighbor

1 Model: Define is a neural network model. Example: single linear layer with a
PReLU activation function.;

2 for t ∈ epochs do
3 Graph: Define the knn graph using the training data points and knn

parameter;
4 S, T: Train[sources], Train[targets];
5 distances: ∑

i∈nb features (Si − Ti)2;
6 M: Calculates an ultrametric distance from a given graph and daistances. It

uses hierarchical clustering to determine the ultrametric distances.;
7 Make pairs: Generates groups and pairs of edges based on graph connectivity

and class labels. It identifies edges connecting two instances from the
minority class, two instances from the majority class, and instances from
both classes. ;

8 Loss: Calculates a loss value based on ultrametric distances and the identified
groups and pairs. It computes distances between hierarchical clusters for the
different edge groups and uses these distances to calculate the loss.;

9 Train Data: Backward the loss function using gradient descent algorithm;
Result: Train Data
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(a) Initial Example 1 (b) Example 1 With WML

(c) Loss Function Example 1 With WML (d) Example 1 With WMLI

(e) Loss Function Example 1 With
WMLI

Figure 7.2: First small balanced example of class separation using the WML and WMLI
algorithms. The blue data points represents the class A and red ones the class B.

(a) Initial Example 2 (b) Example 2 With WML (c) Example 2 With WMLI

Figure 7.3: Second small balanced example of class separation using the WML and WMLI
algorithms. The blue data points represents the class A, the red ones the class B and the
green the testing data points, i.e. unlabelled ones.
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(a) Initial Example 3 (b) Example 3 With WML (c) Example 3 With WMLI

Figure 7.4: First small imbalanced example of class separation using the WML and WMLI
algorithms. The blue data points represents the class A, the red ones the class B and the
green the testing data points, i.e. unlabelled ones.

Having observed promising results in our tests on small datasets, we
proceeded to integrate both the WML and WMLI algorithms into the
smote variants pipeline. This integration will allow us to gain a better
understanding of the impact of WML and WMLI on imbalanced datasets
and their efficiency in improving classification results.

7.2.2 Performance of WML and WMLI on Random Imbalanced
Datasets

In our evaluation, we first conducted a comparison between the WML
and WMLI algorithms against other metric learning methods (GMML,
ITML, LMNN, and IML) as well as traditional machine learning methods
(SVM, RF, KNN, and AdaBoost). The tests were performed on imbalanced
datasets, aiming to identify the most efficient metric learning method in
terms of different scoring metrics. The summarized results of this compar-
ison can be found in Table 7.1.

Ecoli1 glass1 haberman paw subcl35 vowel0 wisconsin
Acc IML WMLI GMML Without ITML Without Without
Sens LMNN Without WML ITML Without Without Without
Spec Without ITML Without WMLI GMML Without IML
PPV Without ITML GMML Without ITML Without IML
NPV Without WMLI IML ITML Without Without ITML
Gacc Without ITML GMML ITML Without Without Without

F1 IML WMLI GMML ITML Without Without Without
AUC IML WMLI WMLI IML Without Without WML

Table 7.1: Comparison of data classification by combining WML or WMLI and others
metric learning methods with usual machine learning methods or using only standard
machine learning methods (corresponding to “Without”).

The results obtained indicate that WML and WMLI contribute posi-
tively to the prediction performance of imbalanced datasets, even without
the use of oversampling methods. However, as with oversampling tech-
niques, it is clear that no metric learning method is a silver bullet. In some
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cases, none of the metric learning methods offers significant improvements
and, in these cases, traditional machine learning methods remain the best
choice for predicting imbalanced datasets. This reinforces the importance
of considering different approaches and experimentation to determine the
most appropriate strategy for a given dataset and problem.

7.2.3 Performance of WML and WMLI in Combination with
Oversampling on Random Imbalanced Datasets

Then, as the previous section shows that the combination of oversampling
and metric learning improves prediction results, we decided to compare the
combination of WML and WMLI with oversampling methods. In fact, us-
ing WML or WMLI alone gives mixed results, so perhaps combining with
oversampling methods could help. At this point, we encountered an impor-
tant issue in our algorithm while generating graphs from the dataset using
the k-nearest neighbors (knn) method provided by the “sklearn.neighbors”
library. This knn method uses distances to determine neighboring data
points. However, a problem arises when two data points are extremely
close, i.e., when their distance is less than 10−5. In such cases, the al-
gorithm treats them as identical and excludes one of them from being a
neighbor. Although this might not be a major problem on its own, it be-
comes significant in our context. Since our goal is to bring data points
closer together during optimization, some data points become very close
or nearly identical. As a result, many data points are treated as duplicates
by the algorithm, leading to an unconnected graph. This issue prevents us
from generating minimum spanning trees (MSTs) and subsequently defin-
ing ultrametric distances.

To address this problem, we introduced a regularization term in the
distance calculation between two data points. In the previous version, we
calculated the distance between the source (S) and target (T) of an edge
using the formula:

d =
∑

i∈nb features
(Si − Ti)2

By adding a “regularization” term, the distance becomes:

d =
∑

i∈nb features
(Si − Ti)2 + 10−4

After introducing the regularization term to address the issue with ex-
tremely close data points, we conducted tests on imbalanced datasets to
evaluate the performance of our methods. The results of the best combi-
nations achieved on two imbalanced datasets are summarized in Table 7.2.
Similar results and conclusions were observed for the other datasets as well.
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presev vehicle1
Combination
(ML + Over) Value Combination

(ML + Over) Value

Acc polynom fit + WML 82,5 ± 1,1 Cure SMOTE + IML 74,7 ± 1
Sens WSSMOTE + IML 100 ± 0 Random SMOTE + IML 99,7 ± 0,7
Spec Without + ITML 82,3 ± 1,1 WSSMOTE + WMLI 100 ± 0
PPV polynom fit + WML 40,8 ± 3,8 polynom fit + WML 89,0 ± 2
NPV Selected SMOTE + WML 96,8 ± 4,4 ROSE + WML 48,9 ± 23
Gacc polynom fit + WML 65,5 ± 5,9 polynom fit + WML 66 ± 3,2

F1 SPY + WML 0,8 ± 0,2 Random SMOTE + IML 85,4 ± 0,3
AUC polynom fit + WML 73,2 ± 4,8 polynom fit + WML 73,2 ± 3,9

Table 7.2: Comparison of imbalanced data predictions using different combinations: met-
ric learning alone, oversampling alone, or oversampling and metric learning.

Based on the results, several important conclusions can be made from
the experiments:

• Impact of WML and WMLI: WML and WMLI demonstrate their
effectiveness in improving predictions on imbalanced datasets. How-
ever, it is crucial to note that, similar to other oversampling and metric
learning methods, no single method is optimal across all classification
problems. The effectiveness of these methods varies depending on the
specific evaluation metrics and the characteristics of the imbalanced
datasets being considered.

• Complexity and Parameter Sensitivity: The complexity of the
WML and WMLI algorithms is notable, and their performance is heav-
ily reliant on various parameters, including graph construction, near-
est neighbor selection, and gradient descent settings. These parame-
ters are interconnected and can greatly impact the results. Moreover,
due to memory limitations, not all possible parameter combinations
can be exhaustively tested.

• High Variability: The comparison between Tables 7.1 and 7.2 high-
lights the high variability in this type of preprocessing method. The
choice of the most suitable preprocessing strategy for a particular im-
balanced dataset is not straightforward and can be laborious. The
optimal method might vary even within the same dataset, underscor-
ing the need for careful experimentation and parameter tuning.

In short, although WML and WMLI demonstrate the potential to im-
prove imbalanced predictions by taking advantage of connectivity, their
efficiency depends on the specifics of the dataset, the evaluation measures
chosen and the configuration of their parameters. This variability under-
lines the importance of conducting thorough experiments and considering
multiple pre-processing strategies when dealing with imbalanced datasets.
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7.2.4 Performance of WML and WMLI in PRESEV

However, since our primary dataset is PRESEV and we have observed that
WML has the potential to improve predictions, we applied the techniques
discussed in Chapter 1 to calculate results for PPV and NPV scores. The
obtained results are presented in Table 7.3.

Prediction Method PRESEVC PPV (%) NPV (%)

SVM Train 35,9 ± 25.8 99,4 ± 1.6
Test 22.6 ± 15.8 95.8 ± 2

WSSMOTE + SVM Train 27.7 ± 1.9 96.6 ± 0.4
Test 28.9 ± 3.1 96.6 ± 2.5

WML +
Selected SMOTE + SVM

Train 21,5 ± 2,1 95,5 ± 1,5
Test 21,4 ± 4,4 95,4 ± 4,5

Table 7.3: PPV and NPV scores obtained for the PRESEV dataset using WML method.

These findings indicate that while the WML method seems to enhance
NPV and PPV scores individually, it is unable to simultaneously improve
both NPV and PPV.

7.3 Conclusions

We have successfully integrated watershed transformations into metric
learning methods via the WML and WMLI algorithms. However, while
the combination of metric learning and oversampling can be advantageous
in specific cases, it is important to note that there is no unique solution.
This conclusion, which has been established for oversampling methods (cf.
article [3]), can now be extended to various preprocessing techniques. Al-
though preprocessing methods are largely used to address the challenges
of imbalanced prediction, it might be worth considering the development
of algorithms that work directly on imbalanced datasets without requir-
ing any preliminary modifications. While one option might be to create
a neural network algorithm based on watershed transformation, similar to
the approach in the article [1], this could cause problems in cases of small
datasets with limited features and samples, as the PRESEV one. Overfit-
ting could become a significant problem in such cases. For this reason, we
investigate various other hierarchical algorithms designed to deal directly
with imbalanced datasets, which can be found in the appendix section.
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Conclusions & Perspectives

Acute Chest syndrome (ACS) is a severe and lethal complication of sickle
cell disease, often occurring around 2.5 days after the patient is admit-
ted to hospital. The two-part PRESEV study - PRESEV1 and PRESEV2
- aimed to investigate ACS and its prediction using biomarkers in emer-
gency department patients. The main aims of these datasets were twofold:
firstly, to predict patients likely to develop ACS with a high negative pre-
dictive value (NPV) in order to improve treatment and reduce the number
of deaths; at the same time, to predict patients unlikely to develop ACS
with a high positive predictive value (PPV) in order to improve the allo-
cation of hospital resources and ensure possible follow-up at home. This
dual approach aims to improve both patient care and the efficient use of
healthcare resources.

At first, the PRESEV1 dataset was subjected to standard machine learn-
ing methods, which produced promising results. However, when these mod-
els were applied to the PRESEV2 dataset, problems of high variability and
over-fitting emerged. The root cause was the significant class imbalance
within PRESEV, which only included around 20% of ACS patients. To
address these class imbalances, thousands of approaches, including over-
sampling and cost-sensitive algorithms, have been devised over time. These
techniques aim to remedy the imbalanced in class distribution such as by
increasing the representation of the minority class (oversampling) or by
assigning different costs to the different classes (cost-sensitive learning).

Nevertheless, determining the optimal method has proven to be a chal-
lenging task, largely due to the lack of a comprehensive library or stan-
dardised approach. This dilemma is further exacerbated by the absence
of identifiable models to guide method selection. For example, the im-
balance ratios and the number of characteristics do not help to select
the best imbalanced method. In response to this complex problem, the
ImbPip pipeline was designed to provide integration of multiple methods,
promoting systematic reproducibility and facilitating methodological com-
parisons. However, while I was working on these methodologies, a similar
pipeline known as “smote variant” was developed at the same time and
subsequently published. In future, we intend to use the latter pipeline,
smote variant, in our future projects. This decision is based on its proven
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effectiveness and reliability in addressing the challenge of class imbalance
in datasets such as PRESEV2, with the ultimate aim of improving the
robustness and accuracy of predictive models in our future research initia-
tives.

By applying a range of imbalance strategies to the PRESEV dataset
using this last framework, it became clear that no single strategy improved
PPV and NPV scores while reducing variability. This challenge prompted
us to explore other approaches, which led to the integration of image seg-
mentation concepts, in particular the watershed algorithm. The watershed
algorithm, designed to detect patterns among larger backgrounds, showed
promise when directly applied to imbalanced datasets. This inspired the
development of WSSMOTE, an oversampling method based on the wa-
tershed algorithm. WSSMOTE has been significantly successful in the
PRESEV dataset and on other real-world imbalanced dataset. Indeed,
WSSMOTE significantly reduced the variability of overfitting from 13.3%
when using the standard machine learning method to just 1.2%, while
maintaining a high PPV value of almost 28%. In contrast, the standard
oversampling method also reduced overfitting, but resulted in a drop in
PPV to around 24%.

However, the application of WSSMOTE to other imbalanced datasets
shows that the method is not a magic solution, as it faces similar problems
to those encountered by existing imbalanced datasets. Nevertheless, the
success of the watershed has encouraged the exploration of metric learn-
ing methods, particularly those based on optimization problems. Using
graph theory, these approaches aim to optimize data projection for more
robust clustering. We therefore designed two separate methods, WML and
WMLI, based on different loss functions and a link between data points,
graphs and ultrametric distances. Although we successfully demonstrated
the effectiveness of the WML and WMLI methods on a wide range of im-
balanced datasets, it should be noted that these methods did not provide
any improvements in the case of the PRESEV dataset.

A significant limitation emerged from the dependence on graph struc-
tures, which are at the heart of the watershed algorithm. Exploring more
advanced graph modeling could enhance the impact and predictive power
of the watershed. Unfortunately, the relatively small size of our dataset
application (only around 600 samples and 5 features) and the nature of
the neural-network-based graph transformations limited this exploration,
as over-fitting is highly probable.

In addition, by recognizing the limitations of existing methods, atten-
tion was to explore direct modifications of watershed (cf. Appendinx 9),in
particular by going beyond the notion of a graph and tackling the notion
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of a hierarchy. Several approaches were tested, such as modifying the hier-
archy by elevation or marker propagation. But none produced convincing
results, perhaps due to the simplicity of the methodology. However, the
notion of modifying the watershed algorithm in place remained promising.

Another perspective is to exploit watershed algorithms directly, given
their proven success with balanced datasets. By combining active learning
and ensemble methods in a hierarchical framework, improvements could
be made. This approach needs further investigation to ensure its viability.

In summary, the PRESEV study aimed to address the challenges posed
by acute chest syndrome (ACS) in patients with sickle cell disease through
the use of biomarkers and predictive modelling. The main objectives were
to improve patient care by predicting the development of ACS with a high
negative predictive value (NPV) and to optimise resource allocation with
a high positive predictive value (PPV). Initially, the PRESEV1 dataset
showed promise with standard machine learning methods, but when ap-
plied to PRESEV2, problems of high variability and overfitting emerged
due to a large imbalance between classes. Despite thousands of methods
developed to tackle this imbalanced problem, the selection of the opti-
mal method remained difficult due to the lack of a standardised approach.
The ImbPip pipeline was created to integrate several methods. While
our watershed-based oversampling method, WSSMOTE, significantly im-
proved overfitting and maintained a high PPV in the PRESEV dataset, it
is not a universal solution for all imbalanced datasets.

This encouraged the exploration of metric learning methods based on
optimisation problems, leading to the development of WML and WMLI.
However, these methods did not provide any improvements in the PRESEV
dataset, highlighting the need for an in-place algorithm that does not take
into account the distribution of the data. Efforts to modify the catchment
hierarchy directly have not produced convincing results, perhaps due to
the simplicity of the methodology. However, the concept of modifying
the watershed algorithm remains promising. Another avenue to explore
is to exploit watershed algorithms directly, possibly through active and
ensemble learning methods in a hierarchical framework.

In conclusion, the study of ACS in the PRESEV dataset and class im-
balance have been punctuated by challenges and promising discoveries,
indicating the ongoing need for innovative approaches and further research
to improve predictive models for imbalanced datasets, as they have the
potential to be really useful in the real world, for example for patient care
in the future.
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Watershed Hierarchy & Marker
Propagation for Imbalanced Data

Even if preprocessing methods are commonly used to deal with imbal-
anced datasets, they present several issues and are highly dependent on
the distribution of the dataset. As we demonstrated earlier in chapter 5
and 7, despite our WSSMOTE algorithm showing promising results on
the PRESEV dataset, it could not be successfully extended to other im-
balanced datasets. To create a more universally applicable solution for
different imbalanced datasets, we opted for the development of algorithm
modifications.

Initially, we envisaged creating this algorithm directly on the graph,
following the approach adopted for the two algorithms previously imple-
mented. However, modifying the graph edges remains to adjusting the
weights of the graph’s edges.The concept of a “muddy watershed”, where
minima related to minority data points are reached faster than those re-
lated to majority data, seemed intriguing. However, after practical ex-
ploration, this idea proved to be closely aligned with the metric learning
algorithm we had already developed. Essentially, changing speed is equiv-
alent to changing distances.

Another idea was to explore the use of neural networks, as shown in
the article [1]. Nevertheless, the size of our studied dataset (PRESEV)
remained small, making this approach subject to overfitting. Consequently,
we turned to our latest idea, by interpreterping a graph as a hierarchy. We
decided to manipulate this hierarchy, with a specific focus on the concept
of marker propagation. This chapter will focus into the development of
this idea and the corresponding algorithm.

Concept Development & Algorithm Implementation

Our main objective is to design an in-place algorithm that not only exploits
the data distribution, but also incorporates more information beyond the
simple dependence on nearest neighbors and thus on the simple use of
graph edge weights. To achieve this goal, we first considered using the
concept of watershed hierarchy. A first understanding of this concept was
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developed in section 4.2.
Before jumping into idea development, it is essential to recognize a fun-

damental distinction from other machine learning methods. This distinc-
tion results from the hierarchical, graph-oriented nature of our approach,
which leads to a unique characteristic: the connection between the train-
ing (labeled data points) and testing (unlabeled data points) parts. Unlike
conventional approaches, where training and predicting can be separate
processes, in our context they are inseparably linked. The construction of
the graph or hierarchy requires the simultaneous performance of the fitting
and predicting tasks, as the graph and thus the hierarchy are build on the
training and the testing data points, The primary graph or the primary
hierarchy is build using all the data points.

Initial Approach: Watershed Hierarchy for Imbalanced Data

The initial approach we thought about is centered on the observation that
data points belonging to the minority class often tend to be far apart due to
their sparsity. Therefore, clustering techniques such as the watershed cuts
algorithm are likely to create small groups strongly influenced by nearest
neighbors and distances between data points. To address this problem, we
have thought about designing a strategy that involves increasing the size
of these clusters. In doing so, we aim to amplify the impact of minority
data points both on the clusters themselves and on unlabeled data points,
a visual representation of which is given in figure 5.

(a) Hypothetical Clustering
obtained via Watershed Methods

(b) Hypothetical Refinement Clustering
obtained via Watershed and Markers

Figure 5: Illustration of hypothetical clustering results using the watershed method. The
purpose of this visual representation is to highlight that by using markers and fine-tuning
the clusters, the influence of minority data points can be amplified, leading to a potential
improvement in predictions. Red triangles represent minority data points, while blue
circles represent majority data points. Rectangles reprensent the different clusters.

This concept of reinforcing the influence of selected clusters is similar
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to the notion of watershed hierarchy by attribute. Similarly, in scenarios
where the watershed algorithm is used for image segmentation, the re-
sulting segmentation can sometimes be too complex. Using attributes or
markers allows us to focus on specific regions or aspects, resulting in more
meaningful and larger segmentation results, as illustrated in article [3].

A prototype of the algorithm we are exploring involves the following
steps:

1. Graph Construction: Construction of an edge-weighted graph us-
ing labeled training data points and unlabeled test data points.

2. Hierarchy and ultrametric distance: Build a hierarchy and cal-
culate ultrametric distance using graph structure and edge weights.

3. Marker generation: Generate markers based on the specific char-
acteristics of data points. For example, in the figure bellows, markers
are defined according to class proportions. Data points of the minor-
ity class are assigned markers (rmin) calculated as the ratio between
the number of data points of the minority class in the training data
and the total number of training data points. Whereas, data points of
the majority class are assigned markers (rmaj) calculated as 1 − rmin.
For unlabeled data points, the marker is determined as the average of
the markers among neighboring data points in the hierarchy.

4. Marker propagation and ultrametric updating: propagate these
markers into the hierarchy, using the attribute-based watershed hierar-
chy algorithm available in Higra(cf. https://higra.readthedocs.
io).

5. Update graph edge weights and predictions: use the gener-
ated ultrametric distances as new graph edge weights. These updated
weights will serve as the basis for the application of the watershed
cuts algorithm or watershed for semi-supervised one.

However, when we tested this algorithm on small datasets, we discovered
that the problem we had initially identified was not the main challenge (cf.
figure 6). Indeed, because unlabeled data points are already incorporated
into the graph and hierarchy, modifying refinement using attributes may
not produce significant changes, especially when unlabeled data points are
already in a majority cluster. It is not always possible to modify the
hierarchy. Changes impact more importantly the regions closest to the
roots of the hierarchy rather than the leaves.
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Figure 6: A hypothetical simulation demonstrating the limitations of watershed hierar-
chies by attribute when dealing with unlabeled data points at a lower level of the hierarchy.
In this context, the majority class is represented by blue circles, minority data points by
red triangles and unlabeled data points by orange squares. The dotted line triangles
represent a fictive minority data points - and the lack of information introduced by the
imbalanced structure of the data. The weights of the graph’s edges are determined by
Euclidean distances, while the markers are derived from the labels assigned to the data
points.

Despite this limitation, the concept of using markers in the hierarchy
remains attractive, as it allows the inclusion of more diverse information
than simple Euclidean distances between data points. This observation
inspired the development of another idea based on marker propagation.

Rectified Approach: Marker Propagation for Imbalanced Data

When developing WSSMOTE and WML, we focused on nearest neighbors
and distance-based considerations. However, we recognized the potential
value of incorporating additional information such as point density and
class distribution. Introducing attributes, or markers, into the hierarchy
allowed us to explore these dimensions. In addition, this marker propaga-
tion approach means that we no longer depend exclusively on supervised
clustering algorithms such as Watershed Cuts, but can instead build an
in-place algorithm fully rooted in the structure of the hierarchy.
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To illustrate the central concept of the algorithm we have formulated,
we can consider a simple example as in Figure 7. We have chosen the
most elementary form of marker - a label: 1 for the minority class, 0 for
the majority class and -1 for unlabeled points. Using an average label
propagation function, we expand these labels from leaves to roots and vice
versa.The first expansion mirrors the accumulator principle used in the
watershed hierarchy with attribute, disseminating information and creating
a marker through the hierarchy. The second expansion, however, is key. It
extends the prediction to not only be defined by the immediate region of
the point, but also by the surrounding regions. This expansion recognizes
that a point’s labeling is influenced not only by its own region, but also by
neighboring regions. Consequently, the pink results in the figure indicate
probabilities that can be used for predictions.
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(b) Results with Watershed Cuts
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(c) Results with Marker Propagation

Figure 7: A hypothetical simulation to illustrate the idea of marker propagation. In this
context, the majority class is represented by blue circles, minority data points by red
triangles and unlabeled data points by orange squares (which need to be predicted as a
minority data points). The dotted line triangles represent a fictive minority data points
- and the lack of information introduced by the imbalanced structure of the data. The
weights of the graph’s edges are determined by Euclidean distances, while the markers are
derived from the labels assigned to the data points. Figure 7b shows that using Watershed
Cuts, the unlabeled orange data point will wrongly be predicted as a majority data points.
Where as the propagation marker method in Figure 7c considered the unlabeled data point
as minority one.

The key idea is to propagate markers through the hierarchy, consid-
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ering both upward and downward directions, and calculate probabilistic
values for class prediction based on these markers. By propagating mark-
ers through the hierarchical structure of data points, taking into account
both their immediate neighbors and their surrounding regions, the algo-
rithm aims to create a more complete understanding of the relationships
and influences between data points. This approach calculates probabilistic
values that can be used for class prediction, taking into account not only
the point’s own attributes, but also the attributes of neighboring points.
Instead, it exploits the hierarchical structure and additional information
provided by markers to create a more nuanced and accurate prediction
mechanism that incorporates both local and global contextual information.

Let’s denote M as a marker. Below is the pseudocode representation of
our algorithm (Algo. 7):

Algorithm 7: Marker Propagation
Data:

• H: hierarchy obtained using the complete set of data points
• M: markers

1 for Each leaves do
2 Assign its marker;
3 for Leaves to Root do

/* This step ensures that marker information is
spread upwards in the hierarchy. */

4 Propagate the M using a label propagation function;
5 for Root to Leaves do

/* This step extends the marker information back down
the hierarchy. */

6 Propagate the M using a label propagation function;
Result: Probabily output
Note that the M marker must actually produce probabilistic values be-

tween 0 and 1 to guarantee point class prediction at the end.

Results & Discussion

We have conducted a series of experiments to evaluate the performance of
our algorithm on various small 2D datasets that are visually interpretable
(Figures 8, 9 and 10). To comprehensively evaluate its impact, we used
different types of markers. These markers were derived either from labels,
similar to the initial example on which our algorithm was built, or based
on point density, which takes into account factors such as distance and the
number of neighboring points. Our evaluation consisted in comparing the
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results generated by our algorithm with those produced by the Watershed
Cuts method. The results were interesting: in some scenarios, our algo-
rithm improved prediction accuracy. However, this trend was not constant
in all cases, resulting in a mixed performance.

(a) Real Cases (b) Predictions using Water-
shed Cut

(c) Predictions using Marker
Propagation

Figure 8: Comparison between Watershed Cuts and Marker Propagation Algorithm in a
Imbalanced Dataset - First Example. In green unlabeled data points. An improvement
of the prediction can be noticed by the use of Marker Propagation Algorithm.

(a) Real Cases (b) Predictions using Water-
shed Cut

(c) Predictions using Marker
Propagation

Figure 9: Comparison between Watershed Cuts and Marker Propagation Algorithm in a
Imbalanced Dataset - Second Example. In green unlabeled data points. Both methods
gives the same results.

(a) Real Cases (b) Predictions using Water-
shed Cut

(c) Predictions using Marker
Propagation

Figure 10: Comparison between Watershed Cuts and Marker Propagation Algorithm in
a Imbalanced Dataset - Paw Example. In green unlabeled data points. An improvement
of the prediction can be noticed by the use of Marker Propagation Algorithm, but only
in the majority class.
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The variability in performance could probably be attributed to the rel-
atively simplistic way in which our algorithm propagates markers through
the data. To remedy this, we explored the possibility of refining regions by
combining marker propagation and watershed hierarchy based on attribute.
Unfortunately, this combination failed to deliver consistent improvements.

Thus, even if, the concept behind our algorithm is encouraging, there
is still considerable potential for improvement. In particular, the imple-
mentation of a more complex probabilistic propagation and probabilistic
process, inspired by the principles outlined in the article [2], could lead to
better results.

In addition, we recognized that our current algorithm is limited by the
use of a single marker. This limitation could potentially be avoided by
adopting an ensemble-based approach, where multiple markers are used
in combination to create a more comprehensive and nuanced prediction
mechanism.
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