
HAL Id: tel-04503266
https://theses.hal.science/tel-04503266v1

Submitted on 13 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the algorithmic complexity of two player zero-sum
games of finite duration with imperfect information

Soumyajit Paul

To cite this version:
Soumyajit Paul. On the algorithmic complexity of two player zero-sum games of finite duration with
imperfect information. Computational Complexity [cs.CC]. Université de Bordeaux, 2023. English.
�NNT : 2023BORD0419�. �tel-04503266�

https://theses.hal.science/tel-04503266v1
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE
POUR OBTENIR LE GRADE DE

DOCTEUR DE L’UNIVERSITÉ DE

BORDEAUX

ECOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUE

SPÉCIALITÉ : INFORMATIQUE

Par Soumyajit PAUL

On the algorithmic complexity of two player
zero-sum games of �nite duration with imperfect

information

Sous la direction de Olivier LY

et de Hugo GIMBERT

et de B. Srivathsan

Soutenue le 12 Décembre 2023 devant un jury composé de

M. Olivier LY Full professor LaBRI, Université de Bordeaux Directeur
M. Hugo GIMBERT Chargé de recherche CNRS, LaBRI, Université de Bordeaux Codirecteur
M. B. Srivathsan Associate professor CMI, India Codirecteur
M. Mickael RANDOUR Professor Université de Mons Rapporteur
M. Laurent DOYEN Chargé de recherche LMF, ENS Paris-Saclay Rapporteur
M. Nathanaël FIJALKOW Chargé de recherche CNRS, LaBRI, Université de Bordeaux Examinateur
Mme Nathalie BERTRAND Directrice de recherche INRIA, IRISA, Université de Rennes 1 Présidente et Examinatrice

Sur la complexité des jeux à somme nulle à deux joueurs de durée �nie

avec information imparfaite

Résumé : Dans cette thèse, nous étudions la complexité du calcul des stratégies
optimales dans les jeux à somme nulle à deux joueurs avec une information impar-
faite. Dans les jeux à information imparfaite, les joueurs n’ont qu’une connaissance
partielle de leur position dans le jeu. Cela rend la tâche de calcul des stratégies
optimales di�cile, en particulier lorsque les joueurs oublient les informations
précédemment acquises. Pour mieux justi�er cette di�culté, nous considérons des
jeux à somme nulle à deux joueurs avec des informations imparfaites modélisées
sous la forme extensive et nous présentons plusieurs nouveaux résultats de com-
plexité sur le calcul de la valeur maxmin pour di�érentes classes d’informations
imparfaites. Pour les bornes inférieures, nous considérons des problèmes tels que
le problème de la somme de la racine carrée ainsi que des classes de complexité
qui impliquent le calcul sur les réels, plus précisément la théorie existentielle des
réels (ETR) et d’autres fragments de la théorie du premier ordre des réels (FOT(R)).
En revanche, nous identi�ons une nouvelle classe de jeux à mémoire imparfaite
pour lesquels les stratégies optimales peuvent être calculées e�cacement. Dans le
but d’étudier théoriquement les enchères au bridge, nous proposons également un
nouveau modèle d’étude des enchères au bridge. Nous faisons quelques observa-
tions initiales pour la classe des jeux de bridge à 2 joueurs avec une seule couleur
sur ce modèle et nous traçons la voie pour des recherches futures.
Mots-clés : théorie des jeux, jeux à somme nulle, information imparfaite, com-
plexité, Bridge

On the algorithmic complexity of two player zero-sum games of �nite

duration with imperfect information

Abstract: In this thesis we study the complexity of computing optimal strategies in
two player zero-sum games with imperfect information. In games with Imperfect
information players only have partial knowledge about their position in the game.
This makes the task of computing optimal strategies hard especially when players
forget previously gained information. To further substantiate this hardness we
consider two player zero-sum games with imperfect information modeled in the
extensive form and provide several new complexity results on computing maxmin
value for various classes of imperfect information. For lower bound results we
consider problems such as the Square-root sum problem and also complexity
classes which involve computation over reals, more precisely Existential Theory
of Reals (ETR) and other fragments of the First Order Theory of Reals (FOT(R)).
On a positive note we identify a new class of imperfect recall games for which
the optimal strategies can be computed e�ciently. Towards the goal of studying
Bridge Bidding theoretically we also provide a new model for studying Bridge
Bidding. We make some initial observations for the class of 2 player Bridge games
with single suit on this model and lay down the path for future investigations.
Keywords: game theory, zero-sum game, imperfect information, complexity,
Bridge

Unité de recherche

Laboratoire Bordelais de Recherche en Informatique, CNRS UMR 5800
Universit´e de Bordeaux, 33405 Bordeaux, France

Acknowledgements

This thesis, in spite of bearing an individual’s name as the author, would not have
come into existence without the in�uence that several individuals had in di�erent
stages of my life.

Starting with my thesis advisors : thank you Hugo for providing me this rich
opportunity pursue PhD at LaBRI and giving me all the time and support I needed
during my PhD. The con�dence that you bestowed in me during di�cult times
as well as while taking di�cult decisions had a big positive impact on me. I have
learnt a lot from your way of tackling problems and also your outlook on research
in general. Next, my advisor from CMI, Srivathsan, without whom this PhD would
have been almost impossible. Since the very �rst course taught by you (Timed
automata) in BSc at CMI followed by MSc thesis guidance and then continuing to
PhD guidance as well, you have been my guide in my academic journey in every
sense of the word. No amount of words would be su�cient in this regard to express
my gratitude for you playing this important role in my life. I still remember the
time when we started exploring problems in game theory and I certainly hope
to continue working with you on such interesting problems in the future. And
�nally thanks to Olivier for agreeing to be my thesis supervisor. You were always
there to help me promptly whenever I needed any assistance.

I would like to thank Mickael and Laurent for accepting to be reviewers and
undertaking the painful task of going though the manuscript in details. I would
also like to thank Nathalie and Nathanaël for agreeing to be part of the jury. All of
your comments on the manuscript as well engaging questions during the defense
were quite helpful.

I would like to thank Kristo� for the few but insightful discussions we had in
person as well as online. Thank you for helping in �nding a �x for a error in one
of the proofs.

I would like to thank Pascal for giving me advice from time to time which were
extremely helpful.

I can’t thank enough my PhD support team, my friends from CMI: Govind,
Sougata and Sayan for entertaining my shenanigans from time to time and being
there in the most di�cult of times. Thank you for making this journey a bit less
hard and providing moral and technical support whenever necessary.

I can’t forget my constants from CMI : Aneek, Sayantan, Prantar, Debsuvra,
Ash Da, Shreejit, Ritwik and Prantik. I’m fortunate to have you in my life.

Having spent more than 6 years at CMI, I have shared so many wonderful
memories with so many wonderful people: Adwitee Di, Rajit, Ranadeep, Suman,
Pranjal, Ritam, Rajarshi, Anirban, Abhisek, Debraj, Utsab, Sarjick Da, Sayantan
Sen, Aneesh, Manu, Shanmugapriya, Debangshu Da just to name a few.

My stay in France during PhD can be divided into two chapters : Bordeaux
and Paris.

I was lucky to have people in Bordeaux from LaBRI as well as outside LaBRI
who made my stay at Bordeaux quite memorable. Kanka da(I’ll greatly miss our
deep discussions on any topic under the sun), Raj(I’ll miss your energetic company)
Somen Da, Bisu Da (I’ll miss your house parties), Mallika Di, Debam, Tydiane,
Varun, Kylian, Karim 1, Karim 2, Trang, Rupayan, Sourav Da, Shomreeta Di.

J’ai également eu la chance d’avoir des amis à Tauzin : Paul (c’est quand la
prochaine soirée ?), Hélène, Nanor, Gaby, Emma. Bien que j’aie vécu à Bordeaux,
Emma est la seule personne originaire de cette ville que je connaisse. Merci de
m’avoir appris pas mal de chose sur la culture française et d’avoir été là dans les
moments di�ciles.

Merci également à Antonio, Baran, Klara, Marco, Margaux et autres camarades
du cours de français pour votre merveilleuse compagnie.

Relocating to a di�erent city in the middle of PhD can be challenging but my
stay in Paris turned out to be quite pleasant only due to the friends I made there.
Avinandan, Abhisek, Aymeric, Farzad, Essaie, Enrique, Daniel and others, thank
you for making my short stay at IRIF memorable.

I would like to thank Olivier for often giving me helpful advice. I would like to
thank Florian and Mahsa, I greatly enjoyed working with you. Thanks to Mahsa
for being so supportive and providing me guidance whenever necessary.

J’ai la chance d’avoir rencontré Haïfa (nos sorties spontanées me manqueront),
Rym (j’ai hâte de visiter la Tunisie avec vous), Greg et Lucrèce dans cette grande
ville, qui sont devenus mes proches assez vite. You along with Kanka da, Ranadeep,
Raj, Mrinal da, Arnab, Charles made my life at Paris so much enjoyable.

I would like to thank Bala and Ahad for kindly providing me shelter during
my �rst month in France when I was still searching for a house. I would like to
thank Pranjal for the spontaneous discussions we often have that habe helped me
understand a topic much better.

I cannot possibly forget my school and childhood friends with whom I spend
wonderful time every time I return home: Baidya, Ritu, Kushal, Partha, Utpal,
Abanti, Suki, Utsab, Pranay, Buru, Ayan, Arpan, Souro and Tejaswini.

I would also like to thank my close relatives, my pisis, mamas and mashis who
had taken care of me whenever needed.

I also owe gratitude to my tutors from school time: Mishra aunty, Pankaj sir
and Pushpendu sir who helped in keeping alive my interest in mathematics.

Finally, I would like to thank my Maa, Baba and Bhai for always supporting me
and understanding my choices however di�cult it be for them. It’s only because
of my parents, that I was fortunate enough to have the privilege of pursuing my
own path in this world �lled with underprivileged people.

I sincerely apologize if I’ve missed someone.

Résumé de la thèse

Les jeux à information imparfaite

Résoudre des jeux à durée �nie est un problème central dans le domaine de
l’intelligence arti�cielle. L’objectif principal de la recherche dans ce domaine
est de construire une IA capable de surpasser les experts humains dans un jeu
particulier. Les jeux à information parfaite, dans lesquels les joueurs ont une
connaissance complète de l’état du jeu à chaque étape, ont naturellement été la
première étape de ce dé�. Échecs et go sont des exemples populaires dans cette
catégorie, qui ont été au centre de la recherche sur l’IA pendant longtemps. Bien
que les jeux à information parfaite puissent être résolus e�cacement dans la taille
de l’arbre de jeu en utilisant des idées de Zermelo [Zer13], en pratique, la principale
di�culté dans le développement de bots pour ces jeux est due à l’énorme taille
de l’espace d’états [Sha50]. Le tout premier succès aux échecs a eu lieu en 1996
lorsqu’une IA nommée Deep Blue, développée par IBM, a battu le champion du
monde d’échecs Gary Kasparov [IBM02]. Des réussites similaires ont été réalisées
récemment avec AlphaGo [SHMG16] de DeepMinds qui a battu le champion de
Go, Lee Sedol en 2016 et ensuite AlphaZero [SHSA18] qui est une amélioration
d’AlphaGo capable de jouer aux échecs et au go. Avec des réussites importantes
dans plusieurs jeux à information parfaite, le prochain dé� était les jeux à informa-
tion imparfaite tels que le Poker et le Bridge. L’information imparfaite dans ces
jeux provient du fait qu’un joueur n’a pas connaissance de la distribution des cartes
aux autres joueurs. Résoudre les grands jeux à information imparfaite s’est avéré
beaucoup plus di�cile que les jeux à information parfaite. En ce qui concerne
les jeux spéci�ques, ce n’est que très récemment que les bots de poker, Libratus
[BS17], DeepStack [MSBL17] et Pluribus [BS19] ont été en mesure de battre les
champions humains, dans certaines con�gurations de jeu. Le développement de
bots pour di�érents jeux avec des informations imparfaites et la démonstration
de garanties théoriques est toujours un domaine de recherche actif en théorie des
jeux.

La motivation principale de cette thèse est d’étudier la complexité des jeux à
information imparfaite. Le bridge est une classe spéci�que de jeux multi-joueurs
à information imparfaite appelés jeux d’équipe, où deux équipes de joueurs ont
des intérêts opposés, où les joueurs d’une même équipe ont les mêmes gains,
mais où les joueurs ne peuvent pas communiquer librement, même au sein d’une
même équipe. Dans les jeux à information imparfaite, les joueurs ont une mémoire
parfaite si, à tout moment du jeu, ils peuvent se souvenir de toutes leurs actions
précédentes.

La classe des jeux à somme nulle à deux joueurs où les joueurs ont une mémoire
parfaite se résout e�cacement à l’aide de la programmation linéaire [KM92].
En revanche, lorsque les joueurs ont une mémoire imparfaite, cela devient plus
di�cile [KM92][CBHL18]. Bien que dans Bridge chaque joueur individuel ait une
mémoire parfaite, le jeu n’est pas un jeu à deux joueurs mais un jeu à quatre joueurs.
Il est intéressant de noter que la suppression de l’hypothèse de mémoire parfaite
dans les jeux à somme nulle à deux joueurs su�t à englober les jeux d’équipe
comme le bridge : le manque de communication entre les joueurs pour l’échange
de leurs informations privées peut être modélisé par une mémoire imparfaite. Les
jeux à mémoire imparfaite peuvent également être utilisés pour abstraire les grands
jeux à mémoire parfaite et obtenir des améliorations de calcul signi�catives de
manière empirique [SL01][GS07][KS14][BS15][ČLB20]. Dans cette thèse, nous
nous intéressons à la complexité de résoudre ces genres de jeux, en particulier les
jeux avec rapperl imparfait.

La complexité du problème maxmin

Dans le cadre de la théorie des jeux, la valeur maxmin est un concept fondamental
pour analyser les jeux. Le gain à la �n du jeu dépend de la façon dont les joueurs
ont choisi leurs stratégies. Dans un jeu à deux joueurs avec les joueurs Max et
Min, lorsque Max joue la stratégie σ et Min joue la stratégie τ , le gain gagné par
Max est noté E[σ, τ], et le gain maxmin est :

max
σ

min
τ

E(σ, τ)

où σ et τ sont les stratégies de Max et Min respectivement. Le gain maxmin est le
meilleur gain possible pour Max si Min choisit sa stratégie après avoir observé la
stratégie choisie par Max. Plusieurs algorithmes ont été proposés pour calculer le
gain maxmin de manière exacte ou approximative pour plusieurs classes de jeux
de forme extensive [BML93] [KM92] [Ste96] [ZJBP07] [CBL17]. La question de la
complexité se pose naturellement pour comprendre la faisabilité de ces algorithmes
en général.

Le problème de décision correspondant est le suivant : étant donné un jeu à
deux joueurs à somme nulle et à information imparfaite G sous forme extensive, la
valeur maxmin de G sur les stratégies randomisées est-elle non-négative ? Étant
un problème de décision fondamental, sa complexité est bien étudiée [KM92]
[Ste96][HMS07][BP17] . Koller et Meggido ont montré dans leur travail classique
que le problème maxmin peut être résolu en temps polynomial lorsque les joueurs
ont une mémoire parfaite [KM92]. Ils ont montré qu’en supprimant l’hypothèse
de mémoire parfaite, pour les jeux généraux de forme extensive, le problème

de décision maxmin devient NP-di�cile. Suite à ces travaux, la complexité du
problème de décision maxmin a été étudiée pour les jeux à mémoire imparfaite
[HMS07][BP17].

Contribution de cette thèse

Nouvelles bornes de complexité

Dans cette thèse, nous présentons une image plus précise de la complexité du
problème de décision maxmin pour les jeux avec des joueurs ayant une mémoire
imparfaite. Aucune borne inférieure pour ce problème n’était connue pour la
classe spéci�que de mémoire imparfaite appelée jeux à des joueurs distraits (ab-
sentminded). Nous donnons des nouvelles bornes de complexité pour les jeux de
cette catégorie Pour des bornes inférieures concernant les joueurs distraits, nous
utilisons des classes de complexité issues de fragments de Théorie des réels du

premier ordre (FOT(R)), tels que ∃R, ∀R et ∃∀R.
Toutes ces classes de complexité ∃R, ∀R et ∃∀R se retrouvent dans PSPACE

[Can88][BPR06]. La complexité des jeux relatifs à la classe ∃R a déjà été étudiée,
particulièrement pour les problèmes de décision liés au calcul de l’équilibre [GMVY15]
[SS17] [BM16][BM21][BH22a][BH22b]. Pour les jeux à joueurs non distraits, nous
montrons que le problème est co-NP-di�cile même dans le cas où le joueur Max
est un joueur trivial et que Min est pas distrait. Nous montrons également des
bornes inférieures relatives au problème du Sqare-Root-Sum . Le problème
de décision "Sqare-Root-Sum " est le suivant : Étant donné k entiers positifs
a1, . . . , ak et un autre entier positif n, est-ce que

∑
i

√
ai ≥ n ?

Ce problème apparaît souvent lors de l’étude de la complexité des problèmes
numériques, comme indiqué dans [EY05]. Des études sur la complexité des jeux
utilisent le problème Sqare-Root-Sum comme borne inférieure [EY10] [HMS10].
Dans notre cas, ce problème trouve sa place parce qu’il a été démontré que pour
les stratégies optimales maxmin, les probabilités irrationnelles sont indispensables.
Pour les jeux où Max a une mémoire A-loss et Min une mémoire parfaite, nous
montrons que le problème du maxmin est Sqare-Root-Sum-di�cile. Cela résout
la question ouverte posée dans [CBHL18]. Comme on estime que le problème
Sqare-Root-Sum n’est pas dans NP, la borne inférieure Sqare-Root-Sum et
la borne inférieure co-NP renforcent l’idée que le problème maxmin n’est pas dans
NP.

Nouvelle classe de mémoire imparfaite résoluble e�cacement

En revanche, nous identi�ons une classe de jeux à joueurs non distraits appelés
A-loss recall shu�e pour lesquels il est possible d’utiliser le programme linéaire
pour calculer le gain optimal e�cacement. Un joueur a une mémoire A-loss recall
shu�e lorsque l’historique de ses actions peut être réorganisé de manière à obtenir
une mémoire de A-loss. Nous démontrons que les jeux avec une mémoire A-loss
recall shu�e équivalents à un jeu avec une mémoire A-loss de taille linéaire. Cette
classe élargit la classe des jeux précédemment connus pour être résolus en temps
polynomial. Grâce à cela, nous pouvons calculer la valeur maxmin en temps
polynomials dans le cas où Max a une mémoire parfaite et Min a une mémoire
A-loss recall shu�e.

Nous fournissons également une généralisation de cette classe appelée A-loss

recall span. Nous prouvons que tout jeu à joueurs non distraits est équivalent à un
jeu avec une mémoire A-loss recall, sous réserve que la taille du jeu de mémoire
A-loss recall puisse augmenter de manière exponentielle dans le pire des cas. Nous
obtenons ainsi un algorithme permettant de calculer la valeur optimale d’un jeu à
un seul joueur en un temps polynomial dans la taille de son plus petit jeu équivalent
de mémoire A-loss . De la même manière que pour le jeu A-loss recall shu�e, nous
étendons cette technique au cas des jeux à deux joueurs où Max a une mémoire
parfaite.

Étude des enchères au bridge

Dans le cadre de la longue tradition de développement de bots pour les jeux dans la
recherche sur l’IA et la théorie des jeux, le bridge en fait partie [Gin99][Gin01](voir
[Bet21] pour une étude récente). Le bridge est un jeu d’équipe à 4 joueurs (2 dans
chaque équipe) avec une information imparfaite qui consiste en deux phases : la
phase d’enchères et la phase de jeu. Le bridge est l’un des jeux pour lesquels il reste
peu de succès contre les experts humains par rapport à d’autres jeux populaires
tels que les échecs, le Go, etc. Ce n’est que très récemment, en 2022, que le bot de
bridge de Nukkai a battu 8 champions de bridge dans une version limitée du jeu,
sans enchères. Les programmes actuels utilisent l’évaluations double mort (où l’on
suppose que l’information est parfaite) pour évaluer la phase de jeu. Cependant,
la recherche actuelle sur le bridge est privée d’une analyse théorique de la phase
d’enchères ainsi que de la di�culté de calculer de bonnes stratégies d’enchères.

Dans cette thèse, nous proposons un modèle pour étudier les enchères au
bridge et nous présentons quelques résultats préliminaires sur le calcul de la valeur
maxmin dans ce modèle. Bien que le bridge soit un jeu d’équipe à 4 joueurs,
nous nous concentrons tout d’abord sur une version plus simple de ce modèle.

Nous considérons la version à somme nulle du jeu pour deux joueurs où les cartes
ne peuvent avoir qu’une seule couleur (au lieu de 4). Nous imposons plusieurs
contraintes aux stratégies telles que (i) les stratégies non-randomisées et (ii) les
stratégies de surenchère limitée : les stratégies où les joueurs ne peuvent pas
enchérir au-delà d’un certain seuil. Nous étudions quels types de stratégies sont
su�sants pour assurer l’optimalité de maxmin.

Nous construisons des exemples où ces classes restreintes de stratégies ne sont
pas assez puissantes stratégiquement pour garantir le maxmin. Nous montrons
également que la complexité du calcul de la valeur maxmin dépend du nombre
de surenchères nécessaires à un joueur pour obtenir l’optimalité maxmin. Nous
fournissons une borne sur le nombre de surenchères nécessaires pour l’optimalité
maxmin en fonction des croyances des joueurs.

Contents

1 Introduction 1

1.1 Our contribution . 7
1.1.1 Complexity bounds . 7
1.1.2 New tractable class of imperfect recall 8
1.1.3 Study of Bridge Bidding 9

1.2 Organization of Thesis . 10

2 Preliminaries: Extensive Form Games 11

2.1 Extensive-form games with imperfect information 12
2.2 Three kinds of strategies . 14
2.3 Expected Payo� . 15
2.4 Best Response and Maxmin Value 16

2.4.1 Best response to a strategy 16
2.4.2 Maxmin value . 17

2.5 Histories and Recalls . 18
2.6 Recalls and equivalence of strategies 21
2.7 Computation of maxmin value . 23

2.7.1 Linear program for computing maxmin value 23

3 Complexity of solving imperfect recall games 29

3.1 Maxmin Decision Problem . 30
3.1.1 Known Complexity Results 31

3.2 Our complexity results . 32
3.2.1 First Order Theory of Reals 32
3.2.2 Complexity classes ∃R,∀R and ∃∀R 33
3.2.3 Sqrt-Sum Problem . 34

i

CONTENTS ii

3.2.4 New Complexity Picture 35
3.3 Path to reduction . 36

3.3.1 Payo� polynomial . 38
3.4 Proof of complexity: Games with absentminded

players . 41
3.4.1 One player games . 41
3.4.2 Two player games . 43

3.5 Proof of complexity: Games without absentmindedness 47
3.6 Conclusion . 52

4 Simplifying non-absentminded games 53

4.1 Complexity Picture . 54
4.1.1 Our contribution . 58

4.2 Why A-loss recall shu�e? Simpli�cation via sequences 60
4.2.1 Strategic equivalence of games 60

4.3 Finding A-loss recall shu�es . 69
4.4 Generalizing A-loss recall shu�e: A-loss recall span 75

4.4.1 Finding minimal A-loss recall span 80
4.5 A word on perfect recall spans and shu�es 90
4.6 Simpli�cation via payo� polynomials 92

4.6.1 Turning some games into games with perfect-recall 94
4.6.2 Turning any game into games with A-loss recall 100

4.7 Discussion . 100
4.7.1 Applications in multi-linear optimization 100

4.8 Conclusion . 101

5 Bridge bidding game 102

5.1 A crash course on Bridge . 103
5.1.1 Why study Bridge Bidding? 104

5.2 Bridge Bidding Model . 105
5.2.1 Double Dummy Analysis of Bridge Hands 105
5.2.2 General Bridge Bidding Model 105
5.2.3 Computing Maxmin strategy: Implications 108

5.3 Studying Restrictions . 108
5.3.1 Restriction on Strategies 109
5.3.2 Computing maxmin value over pure strategies 110
5.3.3 Belief and maxmin strategies 111
5.3.4 Non-optimality of non-overbidding strategies 115
5.3.5 Non-optimality of pure strategies 117

5.4 Conclusion . 119

CONTENTS ii

6 Conclusion 120

Appendix A Why binary decision games are enough? 131

Chapter 1
Introduction

In 2018, in a professional football match in the FA Women’s super league, referee
David McNamara just moments before the pre-game toss, �nds out that he forgot
to carry a coin [BBC18]. In order to not waste time running and fetching a coin, he
proceeds with a quick and classic solution that we have all known since childhood:
a game of rock, paper, scissors between the two captains. Unfortunately this
act gets him banned from refereeing activities for a few matches. The FA might
consider tossing a coin to be fairer than a game of rock, paper, scissors but it is
arguably one of the most widespread ways to settle ties playfully. But why is
rock, paper, scissors so popularly considered as a fair way to settle ties? Besides
being a super simple game it is considered fair because both the players play

simultaneously. In classical game theory this can be modeled in the strategic or
normal form as in Fig. 1.1. The Captains choose a row and a column simultaneously
and the matrix entry corresponding to their choices decides the winner: 1 signi�es
Captain 1 wins, -1 signi�es Captain 2 wins and 0 signi�es a draw.

At �rst instance playing simultaneously might seem to be the crux of this
game. But in fact this game can be played in turns as well all while keeping intact
the spirit of the game. Captain 1 writes down her choice on a piece of paper, folds

Captain 2
R P S

Captain 1
R 0 -1 1
P 1 0 -1
S -1 1 0

Figure 1.1: Rock, Paper and Scissor in the normal form

1

CHAPTER 1. INTRODUCTION 2

it and gives it to the referee. Captain 2 doesn’t see what Captain 1 wrote. Next,
Captain 2 writes her choice in another piece of paper and gives it to the referee1.
The referee compares the two choices and declares the winner or a tie. The order
in which Captain 1 or 2 submitted their choice is of no importance here. The
only thing that matters is that the players do not observe each other’s move before
making their own move. This sequential version can be accurately captured in
the extensive-form game model as in Fig. 1.2 which illustrates a di�erent game. In
fact any game in strategic form can be modeled in this manner. The arena in an
extensive-form game is a tree consisting of three kinds of nodes: triangles, circles
and squares corresponding to players Chance, Maximizer (Max) and Minimizer
(Min), respectively. The Chance player models probabilistic moves. At nodes
corresponding to Maximizer and Minimizer, the respective player makes a choice
of the next action. The lack of knowledge about the other player’s actions is
encoded in the dotted lines at the two-players’ nodes. It signi�es that these states
are indistinguishable to her. Extensive-form games are a classical way to model
turn-based sequential games [Osb09]. In this thesis we are concerned with �nite

duration games with imperfect information modeled in the extensive-form. In the
grand scheme of things our study belongs to the larger �eld called game theory.

0

c

2

d

a

2

c

0

d

b

1
3

0

e

2

f

a

0

e

2

f

b

2
3

r

u1 u2

u3 u4 u5 u6

l1 l2 l3 l4 l5 l6 l7 l8

o1

o2 o3

Figure 1.2: Two player game in extensive-form

Game theory is the study of the interaction between several agents in an
environment where agents have their own objectives. Modern-day applications
of this �eld are ubiquitous starting from economics, market research, warfare,
politics to building robots, AI and veri�cation of automated systems just to name
a few.

One of the earliest notable works in game theory was by Zermelo, who proved
the determinacy of chess [Zer13]. But the advent of game theory as a �eld is often
attributed to Von Neumann for his famous minimax theorem in [Neu28] as well as
for his subsequent work with Morgenstern which resulted into one of the classic

1Captain 2 does not need to fold her paper, since the game ends after her move

CHAPTER 1. INTRODUCTION 3

books in game theory [NM47]. Many also believe that the �eld in its modern form
would not have existed without Nash’s famous theorem on the existence of Nash
Equilibrium [Nas50]. Following Nash’s seminal work, game theory has been a
continuously growing �eld with numerous new models being studied and the
emergence of new sub-�elds. Our interest lies mostly in the computational aspects
of game theory and their computational complexity.

Although from a pure computational viewpoint, there is no dearth of inspiring
problems in game theory, our study has more speci�c applications to the advance-
ment of Arti�cial Intelligence. Computation in �nite-duration games is a central
problem in AI. The primary goal of research in this �eld is to build AI that can
outperform human experts in a particular game.

Games with perfect information where players have complete knowledge of
the state of the game at any stage were naturally the �rst step for this challenge.
Chess and Go are popular examples in this class which have been the focus of AI
research for a long time. Although games with perfect information can be solved

e�ciently in the size of the game tree using ideas from Zermelo’s work [Zer13],
in practice, the major di�culty in developing bots for these games is due to the
huge size of the state space [Sha50]. The very �rst success in Chess came in 1996
when an AI named Deep Blue, developed by IBM, beat world chess champion Gary
Kasparov [IBM02]. Similar feats have been achieved recently with DeepMinds’s
AlphaGo [SHMG16] that beat Go champion, Lee Sedol in 2016 and later Alp-
haZero [SHSA18] which is an improvement of AlphaGo that can play both Chess
and Go. With a considerable amount of success in several perfect information
games, the next challenge was games with imperfect information such as Poker
and Bridge. The imperfect information in these games arises from the fact that
a player doesn’t have knowledge about the hand of cards dealt to other players.
Solving large imperfect information games has turned out to be much more di�cult
than perfect information games. In regards to speci�c games, only very recently
Poker bots, Libratus [BS17], DeepStack [MSBL17] and Pluribus [BS19] has been
able to beat Poker champions in some categories of Poker. Developing bots for
various games with imperfect information and proving theoretical guarantees is
still an active area of research in game theory.

The primary motivation of this thesis is to look into the complexity of games
with imperfect information. Bridge is a speci�c class of multi-player imperfect
information games called team games, where two teams of players have opposite
interests, players of the same team have the same payo�s, but players cannot
freely communicate, even inside the same team. In games with imperfect infor-
mation players have perfect recall if at any stage of the game they can recall all
their previous actions in the play so far. The class of two-player zero-sum game
where players have perfect recall can be e�ciently solved using linear program-

CHAPTER 1. INTRODUCTION 4

ming [KM92]. On the other hand, when players have imperfect recall this becomes
harder [KM92][CBHL18]. Although in Bridge each individual player has perfect re-
call, instead of two-player game it is a four player game. Interestingly, dropping the
perfect recall assumption in zero-sum two-player games is enough to encompass
team games like Bridge: the lack of communication between the players about their
private information can be modeled with imperfect recall. Games with imperfect
recall can also be used to abstract large perfect recall games and obtain signi�cant
computational improvements empirically [SL01][GS07][KS14][BS15][ČLB20]. In
this thesis, we address the complexity of solving games particularly for this class
of imperfect information games.

Maxmin Computation

In game theory it is generally assumed that in a game, players are rational agents. In
other words, players can reason about the outcomes of their own decisions and act
accordingly. Several suitable concepts for games have been studied that capture the
notion of rationality of players [Osb09][Aum74]. One such fundamental solution
concept in two-player games is the maxmin payo�. Maxmin payo� comes into
play in games where the incentive of each player is to maximize the payo� she
receives at the end. The payo� at the end of the game depends on how players
chose their actions. The choice of actions is based on a rule, also called a strategy.
In a two-player game with players Max and Min, when Max plays strategy σ and
Min plays strategy τ , the payo� earned by Max is denoted as E[σ, τ], and is given
by the quantity:

max
σ

min
τ

E(σ, τ)

where σ and τ are strategies of Max and Min respectively. The maxmin payo� is
the best possible payo� to Max given Min chooses her strategy after observing
the strategy chosen by Max. This is of course with the assumption that Min plays
antagonistically against Max i.e. Min wants to reduce Max’s gains as much as
possible. A strategy of Max that attains the maxmin value is called a maxmin

strategy. By choosing moves according to a maxmin strategy, Max can always
assure a payo� which is equal to the maxmin value.

In general in a game it is possible that two players do not always play antago-
nistically. However this is the case in zero-sum games which are fully competitive
games. One can interpret this games as Min having to pay the payo� amount to
Max. When Min plays strategy τ and Max plays strategy σ, Min pays the �nal
payo� E[σ, τ] to Max at the end. Hence the objective of Max is to maximize the
payo�, whereas that of Min is to minimize the payo�. Zero-sum games are the �rst
point of study for any model of multiplayer games and have a rich theory [Osb09].

CHAPTER 1. INTRODUCTION 5

In this thesis we will restrict ourselves to the domain of two-player zero-sum games

in extensive-form with imperfect information.
As illustrated in Fig. 1.2 extensive-form representation encapsulates turn-based

games with the aid of trees where each tree node encodes a state of the game.
The game tree unfolds from the start state or root node to the terminal states
or leaves depending on the players’ decision at their nodes. Some nodes in the
game belong to neither players and represent nature or chance events. Since
players have imperfect information, at each node the players receive a signal or
observation which encodes their knowledge of the game-play up to that point. For
two nodes with the same observations, intrinsically the player cannot distinguish
one from another when they reach either of them. Extensive-form model presents
the opportunity to the players to play strategies where decisions can be made
locally after each observation as the game progresses.

A strategy where players randomize from the available actions after each
observation is called a behavioral strategy. The special kind of behavioral strategy
where players chose every action deterministically is called a pure strategy. Behav-
ioral strategies are quite practical, adaptable and capture very well the sequential
decision making process true to the nature of extensive-form model as opposed to
mixed strategies.

Mixed strategies are strategies where players instead of choosing locally, ran-
domize globally over the set of pure strategies before the game starts. Since the
number of pure strategies can be exponential in the size of the game, a mixed
strategy can possibly have exponential support. On the other hand, the size of the
support of a behavioral strategy is always small since it is bounded by the number
of actions in the game. Besides, as pointed out in [PR97], mixed strategies can
potentially provide more information to the player than intended in the rules of
the game. This issue never comes up in a behavioral strategy. So in this thesis we
are particularly interested in the maxmin computation over behavioral strategies.

Several algorithms have been proposed than can compute the maxmin value ei-
ther exactly or approximately for various classes of extensive-form games [BML93]
[KM92] [Ste96] [ZJBP07] [CBL17]. The question of complexity comes up naturally
to understand the feasibility of these algorithms in general. We are interested in
the complexity of the decision problem concerning computation of the maxmin
value.

Complexity

Towards the goal of studying the computational complexity of computing the
maxmin value of a game we consider the following decision problem.
Decision Problem 1.1 (Two Player). Given a two-player zero-sum imperfect

CHAPTER 1. INTRODUCTION 6

information game G in extensive-form, is the maxmin value of G over behavioral
strategies non-negative?

Being a fundamental decision problem, the complexity of this problem is well
studied [KM92][Ste96][HMS07][BP17] . Koller and Meggido showed in their classic
work that the maxmin decision problem can be solved in PTIME when players
have a kind of memory called perfect recall [KM92].

A player has perfect recall when at all instances in the game she never forgets
the sequence of actions that she has played previously. In this case they formulated
the problem as a linear program by successfully encoding the space of behavioral
strategies of a perfect recall player into a linear system called realization plan. This
was reformulated by Von Stengel using sequence form representation [Ste96]. In
[KM92], the authors also initiated the complexity theoretic study of the general
maxmin problem. They showed that by lifting the perfect recall assumption, for
general extensive-form games the maxmin decision problem becomes NP-hard.
In addition to that they dismiss the possibility of using a maxmin strategy as a
short certi�cate for membership in NP by constructing games where irrational
probabilities are necessary in a maxmin strategy.

An important component of maxmin computation is the best response com-
putation which is the optimal strategy of Min (Max) against a �xed strategy of
Max (Min). This problem can be rephrased as �nding the optimal value and the
optimal strategy in a one-player game. Hence we also consider the corresponding
decision problem for one-player.

Decision Problem 1.2 (One player). Given a one-player imperfect information
gameG in extensive-form, is the maximum value inG over all behavioral strategies
non-negative?

When the player is not absentminded, the one-player decision problem is
known to be NP-complete [BML93]. Absentmindedness is a class of imperfect
recall most notably discussed in [PR97] with the absentminded driver example.
A player is absentminded if at any moment on observing a signal, she cannot
remember if she has observed that exact same signal before. In other words it is
possible that she observes the same signal at two nodes lying on the same path
from root to a leaf.

When the player is not absentminded, the inclusion of the one-player problem
in NP owes to the fact that pure strategies are su�cient for achieving optimality
in such games. This is not the case when players are absentminded. In the maxmin
computation using linear program for two-player case with perfect recall, implicitly
there is an e�cient sub-routine of best response computation. It follows that the
problem is in P for a perfect recall player. It turns out the best response computation

CHAPTER 1. INTRODUCTION 7

sub-routine can be extended e�ciently to a sub-class of non-absentminded games
that subsumes perfect recall called A-loss recall [KK95] [Kli02].

A player has A-loss recall (action-loss recall) when any loss of her information
about her own actions can be traced back to a point in the past where she forgets
what action she played after observing some signal. In other words, she either
(i) never forgets her actions (i.e. has perfect recall) or (ii) she remembers her
action up to some point after which she could have potentially played one among
several possible actions. In Poker if a player suddenly forgets the initial cards dealt
to her, she doesn’t have A-loss recall because she forgot a ‘piece of information’
that she had gained even before she started playing. It can be shown that when
a player with A-loss recall plays a �xed strategy, she can deduce her exact past
history of actions. As a consequence of the fact that best response sub-routine for
A-loss recall is PTIME, the maxmin computation for perfect recall vs A-loss recall
is also in PTIME [BP17]. However it was also shown in [CBHL18] that as soon as
Max has A-loss recall this problem is NP-hard even when Min has perfect recall.
As for games with absentmindedness, for the one-player case it was shown that
strategies with irrational probabilities might be necessary for achieving optimality
[HMS07]. Essentially the hardness of the maxmin decision problem can arise from
the kind of memory recall of either of the player Max or Min.

Complexity theoretic study of decision problems arsing from games has been
carried out on several occasions before. Majority of them concerns computa-
tion of Nash equilibrium [CD06][DGP09][DGP09][HMS10] [EY10] [GMVY15]
[SS17] [BM16][BM21][BH22a][BH22b]. Another line of research in the complex-
ity of games is related to �nding winning strategies in various combinatorial

games (see [Dem01] for a survey).

1.1 Our contribution

1.1.1 Complexity bounds

In this thesis we present a clearer picture of the complexity of the maxmin decision
problem for games with players having imperfect recall. No lower bounds for this
problem were known to exist for the speci�c case when players are absentminded.

We give complexity bounds both for absentminded and non-absentminded
games.

For our lower-bound results involving absentminded players we use complexity
classes arising from fragments of First Order Theory of Reals (FOT(R)) namely
∃R, ∀R and ∃∀R.

CHAPTER 1. INTRODUCTION 8

∃R and ∀R
A formula in FOT(R) is a logical statement containing Boolean connectives ∨, ∧,
¬ and quanti�ers ∃, ∀ over the signature (0, 1,+, ∗,≤, <,=). We can consider it
to be a �rst order logic formula in which each atomic term is a polynomial equation
or inequation, for instance ∃x1, x2∀y(0 ≤ y ≤ 1)→ (4x1y + 5x2

2y + 3x3
1x2 > 4)

(where integers have been used freely since they can be eliminated without a
signi�cant blow-up in the size of the formula [SS17], and the implication operator
→ with the usual meaning). The complexity class ∃R is the set of problems which
have a polynomial-time many-one reduction to a sentence of the form ∃XΦ(X)
whereX is a tuple of real variables, Φ(X) is a quanti�er free formula in the theory
of reals. Similarly, the complexity classes ∀R and ∃∀R stand for the problems
that reduce to formulae of the form ∀XΦ(X) and ∃X∀Y Φ(X,Y) where X,Y
are tuples of variables.

All these complexity classes ∃R, ∀R and ∃∀R are known to be contained in
PSPACE [Can88]([BPR06] see Remark 13.11). Complexity of games with respect
to the class ∃R has been studied before particularly for decision problems related
to equilibrium computation [GMVY15] [SS17] [BM16][BM21][BH22a][BH22b].

For non-absentminded games we show co-NP hardness even for the case when
Max player is a trivial or dummy player and Min is non-absentminded. We also
show lower bound with respect to the Sqare-Root-Sum problem.

Sqare-Root-Sum

The Sqare-Root-Sum decision problem is the following: Given k positive integers
a1, . . . , ak and another positive integer n, is

∑
i

√
ai ≥ n?

This problem often arises while studying complexity of numerical problems
and was �rst put forward in [EY05]. There have been studies in game complexity
that use the Sqare-Root-Sum problem as a lower bound [EY10] [HMS10]. In our
case this problem �nds its place because it has been shown that in maxmin optimal
strategies, irrational probabilities are necessary[KM92]. For games where Max
has A-loss recall and Min has perfect recall we show that the maxmin problem is
Sqare-Root-Sum-hard. This settles the open question asked in [CBHL18]. Since
the Sqare-Root-Sum problem is not believed to be in NP, the Sqare-Root-
Sum lower bound and the co-NP lower bound puts more weight on the belief that
the maxmin problem is not in NP.

1.1.2 New tractable class of imperfect recall

On a positive note we identify a class of one-player non-absentminded games
called A-loss recall shu�e for which it is possible to use the linear program to
compute optimal payo� in PTIME. A player has A-loss recall shu�e, when the

CHAPTER 1. INTRODUCTION 9

action histories of this player can be rearranged in order to achieve A-loss recall.
We demonstrate that games with A-loss recall shu�e are equivalent to an A-loss
recall game of linear size. This class extends the class of games previously known
to be solvable in PTIME. Using this we can compute the maxmin value in PTIME
for the case when Max has perfect recall and Min has A-loss recall shu�e.

We also provide a generalization of this class called A-loss recall span. An
A-loss recall span of a non-absentminded game is a game with A-loss recall over
the same set of actions that is equivalent to the actual game. We prove that any
non absentminded game is equivalent to a game with A-loss recall with the caveat
that the size of the A-loss recall game may blow up exponentially in the worst
case. As a consequence, we obtain an algorithm to compute the optimal value in a
one-player games in time polynomially bounded in size of its smallest equivalent
A-loss recall game. Similar to A-loss recall shu�e, we extend this technique to the
two-player case where Max has perfect recall.

Study of equivalence of games in extensive-form has been done before
([Osb09] see Section 11.2), but that equivalence was based on similar strategic situ-
ations in the games. Our notion of equivalence comes purely from a computational
perspective since the �nal playo� plays a major role in it.

1.1.3 Study of Bridge Bidding

In the long tradition of building bots for games in AI and game theory research,
Bridge is no exception [Gin99][Gin01](see [Bet21] for a recent survey). Bridge is
a 4 player team game (2 in each team) with imperfect information which consists
of two phases: bidding phase and playing phase. Bridge is one of the games
without considerable success in beating human experts as compared to other
popular games such as Chess, Go, etc. Only very recently in 2022 the Bridge
bot of Nukkai beat 8 bridge champions in a restricted version of bridge with no
bidding involved [Gua22]. Current programs use the Double Dummy Analysis

(where perfect information is assumed) for evaluating the playing phase. However,
current research in Bridge is deprived of a theoretical analysis of the bidding phase
as well as the hardness of computing good bidding strategies.

In this thesis we propose a model to study Bridge bidding and report some
preliminary results on the computation of the maxmin value in this model. Even
though Bridge is a team game with 4 players, as a �rst step we focus on a simpler
version of this model. We consider the two-player zero-sum version of the game
where cards can only have a single suit (as opposed to 4). We place various
restrictions on the strategies such as (i) pure strategies and (ii) bounded overbidding

strategies : strategies where players cannot bid more than a �xed number of times.
We investigate what kind of strategies are su�cient for maxmin optimality.

CHAPTER 1. INTRODUCTION 10

We construct examples where these restricted classes of strategies are not
strategically powerful enough to guarantee the maxmin. We also show that the
complexity of computing maxmin value depends on the number of overbids neces-
sary for a player for maxmin optimality. We provide a bound on the number of
bids necessary for maxmin optimality with respect to the beliefs of the players.

1.2 Organization of Thesis

The rest of the thesis is organized into �ve chapters.
In Chapter 2 we discuss preliminaries on extensive-form games where we

formally de�ne the game model and related terminologies.
In Chapter 3 we present the state-of-the-art on the complexity of the maxmin

decision problem and then dive into our complexity results.
In Chapter 4 we present our results on transformation of games into equivalent

A-loss recall games and its implications.
In Chapter 5 we present our Bridge Bidding model and discuss some prelimi-

nary results on the maxmin problem in this model.
In Chapter 6 we summarize our contributions and state some future directions

of research.
We begin each chapter with a short overview of the chapter content and in

each of the Chapters 3,4 and 5 we end the chapter with a conclusion where we
provide a quick recap, raise relevant open questions and touch upon future research
directions.

Chapter 2
Preliminaries: Extensive Form
Games

In this chapter, we present extensive-form games and various relevant notions.
First, we de�ne two-player zero-sum extensive-form games of �nite duration with
imperfect information. Then we talk about di�erent kinds of strategies and the
notion of payo�s under these strategies. In games with imperfect information,
a player might forget information during the course of the game which induces
di�erent kinds of memory recalls on players. We de�ne these recalls and discuss
equivalences between di�erent kinds of strategies. We de�ne the primary concept
of this thesis, the maxmin value of a game and �nally end by recalling the linear
program to compute the maxmin value for a class of games.

Contents

2.1 Extensive-form games with imperfect information . . . 12

2.2 Three kinds of strategies 14

2.3 Expected Payo� . 15

2.4 Best Response and Maxmin Value 16

2.4.1 Best response to a strategy 16
2.4.2 Maxmin value . 17

2.5 Histories and Recalls . 18

2.6 Recalls and equivalence of strategies 21

2.7 Computation of maxmin value 23

2.7.1 Linear program for computing maxmin value 23

11

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 12

2.1 Extensive-form games with imperfect information

An extensive-form game has a directed tree structure which is de�ned as follows:

De�nition 1 (Directed Tree). A directed tree is a �nite directed rooted graph given
by a tuple T = (V,L,E, r) where

• V is the set of nodes

• E ⊆ V × V is the set of directed edges such that the underlying undirected
graph (V,E) is a tree.

• r ∈ V is the unique node with no predecessor, called the root of T i.e.
∀(u, v) ∈ E, v 6= r and ∀v ∈ V \ {r} ∃u, (u, v) ∈ E.

• L is the set of nodes with no successor, called the leaves of T .
(u, v) ∈ E =⇒ u 6∈ L

Since the underlying graph is a tree, ∀v ∈ V \ {r} there is a unique path from
the node r to v. We denote the sequence of vertices on this path as PathTo(v).
For a node v and another node u on PathTo(v), Path(u, v) is the sequence of
vertices on the path from u to v. Path(u, u) is the trivial empty path with only
node u. We write u→ v if (u, v) ∈ E.

Now we de�ne two-player zero-sum extensive-form games with imperfect
information played by players Max and Min.

De�nition 2 (Two-player zero-sum extensive-form games). A two-player zero-
sum extensive-form game with imperfect information with a set of players N =
{Max,Min} and with a special agent Chance is given by a tuple
(T , A, {Vi}i∈N∪{Chance}, {Ai}i∈N∪{Chance}, δC , δA, {Oi,Obsi}i∈N ,U) where

• T = (V,L,E, r) is a directed tree and {Vi}i∈N∪{Chance} is a partition of V .
Nodes in VChance are called chance nodes while other nodes are called control

nodes.

• Oi is the set of observations of player i and Obsi : Vi → Oi maps every
node of player i to an observation.

• A is the set of actions partitioned as (Ai)i∈N∪{Chance}.

• δA : E → A is the transition label function which labels each edge u→ v
with an action a ∈ A, in which case we write u a−→ v. Actions on edges
out of u ∈ Vi belong to Ai. No two outgoing edges from the same control
node are labeled with the same action. For every node u, we denote the set

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 13

of actions in u by Act(u) = {a ∈ A | u a−→ v for some v ∈ V }. Also, for
every observation o ∈ Oi, all nodes with observation o have the same set of
actions which we denote by Act(o).

• δC : E ∩ (VChance × V)→ [0, 1] associates a transition probability to every
edge (u, v) such that u is a chance node. The transition probabilities are
rational and they sum up to 1 from a given chance node.

• The payo� function U : L 7→ R associates to each leaf of T a rational
number called the terminal payo�.

Example 2.1. Fig. 2.1 is a representation of a game in extensive-form. Max, Min,
and Chance nodes are denoted by circle, square, and triangle nodes respectively.
Black circular nodes represent the leaf nodes and the value next to them denotes
the terminal payo�s. In this example, VMax = {u1, u2}, VMin = {u3, u4, u5, u6},
VChance = {r} and L = {l1, l2, l3, l4, l5, l6, l7, l8}. U(li) = 2 for i ∈ {2, 3, 6, 8}
and 0 otherwise.

Any two nodes of the same player connected by a dotted line signify that
the player has the same observation at these two nodes. Edges out of control
nodes are labeled by the actions of the controlling player. In the example OMax =
{o1} and OMin = {o2, o3}. ObsMax(u1) = ObsMax(u2) = o1, ObsMin(u3) =
ObsMin(u4) = o2 and ObsMin(u5) = ObsMin(u6) = o3. Notice that nodes having
the same observation have the same set of labels on outgoing edges. Edges out of
chance nodes are labeled by corresponding probabilities assigned by the function
δC . δC(r → u1) = 1

3 and δC(r → u2) = 2
3 .

0

c

2

d

a

2

c

0

d

b

1
3

0

e

2

f

a

0

e

2

f

b

2
3

r

u1 u2

u3 u4 u5 u6

l1 l2 l3 l4 l5 l6 l7 l8

o1

o2 o3

Figure 2.1: Two player game in extensive-form

A �nite extensive-form game is the representation of a turn-based game with
a �nite number of states. Each node of the tree represents a state of the game. To
start the game a pebble is placed on the root node r representing the start state.
When the pebble is in a particular node it moves to a successor node depending on

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 14

the type of its current node. At a chance node, the successor is chosen according
to the probability distribution δC . At a control node, the successor is chosen by
the player controlling the node according to a strategy.

When the pebble is in some control node v, the controlling player i’s knowledge
about the position of the pebble (hence the situation in the game) is encoded by
the observation Obsi(v). So when player i observes o ∈ Oi, she knows that the
pebble is in one of the nodes in Obs−1

i (o), the set of nodes with observation o, but
doesn’t know in which one exactly. The sets Obs−1

i (o) are called information sets

of player i. An extensive-form game with perfect information is a special situation
where every player observes the node itself. This essentially means for every i
and o ∈ Oi, |Obs−1

i (o)| = 1. For some observation o when Obs−1
i (o) = {u} we

often abuse the notation and use u as the observation instead of o.
When the pebble reaches a leaf node t ∈ L player Min has to pay to player

Max the payo� U(t). The two-players have opposite goals: player Max wants to
maximize this payo� whereas player Min wants to minimize it.

Next, we will see how players play according to a strategy.

2.2 Three kinds of strategies

A strategy is a policy or a rule utilized by a player to decide the successor whenever
the game is in a control state. Strategies can be classi�ed based on whether they
are deterministic or randomized.

De�nition 3 (Behavioral strategy). A behavioral strategy σ for player i ∈ {Max,Min}
is a function σ : Oi 7→ ∆(Ai) which maps every observation o to a probability
distribution over Act(o). When player i has observation o, she plays an action
a ∈ Act(o) with probability σ(o)(a), also denoted σ(o, a). For every node u
controlled by i, we write σ(u, a) for the probability σ(Obsi(u), a).

De�nition 4 (Pure Strategy). A pure strategy σ is a behavioral strategy that plays
every action with probability either 0 or 1. We identify every action a with the
Dirac distribution on a, and σ(o) denotes the action played in observation o.

Let Σi be the set of all pure strategies of player i.

De�nition 5 (Mixed Strategy). A mixed strategy α is a distribution over Σ. For
ρ ∈ Σ, α(ρ) is the probability of playing ρ.

A strategy pro�le in a game is a pair of strategies (σ, τ) where σ is a strategy
of player Max and τ is a strategy of player Min.

A pure strategy can be seen as a special case of both behavioral or mixed
strategies. On the other hand in general there is no such relation between mixed

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 15

and behavioral strategies. However, we will see later that these two kinds of
strategies are in fact equivalent for a player with a kind of memory called perfect
recall [Kuh53]. Moreover, for a larger class of memory recall when a player is not
absentminded it turns out that every behavioral strategy is equivalent to a mixed
strategy.

Next, we will see what is the payo� obtained when two-players play certain
strategies.

2.3 Expected Payo�

According to the semantics when the game reaches a leaf node t, Min pays the
terminal payo� U(t) toMax. The chance nodes and the randomization in strategies
induce a probability distribution of reaching the leaves from the root, hence we
deal with expected payo�s. However, this probability computation depends on the
kind of strategy involved. The probability of reaching a leaf can be decomposed
into the contributions of players’ individual strategies as well as the chance nodes.

For any node w ∈ V , let

PChance(w) =
∏

u∈VChance, u→v∈PathTo(w)

δC(u→ v)

denote the product of probabilities along the edges controlled by Chance in
PathTo(w).

For a behavioral strategy σ of player i, let P iσ(w) given by

P iσ(w) =
∏

u∈Vi, u
a−→v∈PathTo(w)

σ(u, a)

denote the product of probabilities assigned by σ at nodes in Vi to edges on
PathTo(w).

For a mixed strategy α of player i

P iα(w) =
∑

ρ∈Σi|PathTo(w) is realizable under ρ

α(ρ)

Finally the probability of reaching w under a strategy pro�le (σ, τ) is given by

Pσ,τ (w) = PChance(w)Pσ(w)MaxPτ (w)Min

The expected payo� denoted by E(σ, τ) under a strategy pro�le σ, τ is given by

E(σ, τ) =
∑
t∈L
Pσ,τ (t)U(t).

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 16

Whenever the player is clear from the context, for the sake of brevity, we write
Pσ(w) instead of P iσ(w). Further, when σ is also clear from the context, we write
P(w).

Example 2.2. In Fig. 2.1, consider the behavioral strategy of Max σ given by
1
2a+ 1

2b and the mixed strategy of Min τ given by 1
2{c, f}+ 1

2{d, f}.
For terminal node l8, PChance(l8) = 2

3 ,P
Max
σ (l8) = 1

2 ,P
Min
τ (l8) = 1, there-

fore Pσ,τ (l8) = 1
3 . Again for terminal node l3, PChance(l3) = 1

3 ,P
Max
σ (l3) =

1
2 ,P

Min
τ (l3) = 1

2 , therefore Pσ,τ (l3) = 1
12 . With similar computation for other

terminal nodes, it can be seen that E(σ, τ) = 5
3 .

The objective of Max is to maximize the expected payo� whereas that of Min
is to minimize it. So each player has an incentive to play according to a strategy
aligning with this objective. In the next section, we will see the notions of best
response and maxmin value that capture the optimal behavior of a rational player.

2.4 Best Response and Maxmin Value

In this thesis, we study the optimal behavior of players over the space of behavioral
strategies. In fact it can be argued that the choice of behavioral strategies is more
natural than mixed strategies. This is because, as observed by Kuhn in [Kuh53]
mixed strategies can sometimes contradict the amount of information revealed
by some observation, i.e. they may provide more information to a player than
dictated by an observation. For example, in Fig. 2.2b when Max plays the mixed
strategy 1

2{a, c}+ 1
2{b, d}, when Max observes o1 she is supposed to forget which

action she played previously. But Max can e�ectively infer her last action from
her strategy since {a, c} and {b, d} are perfectly correlated in the mixed strategy.
On the other hand, in behavioral strategy randomizations are done locally and
independently at every observation.

Besides, mixed strategy representation can possibly need exponential size
support whereas the size of the support of a behavioral strategy is the same as the
number of distinct actions of the player.

Also, recall that pure strategies are a sub-class of behavioral strategies.

2.4.1 Best response to a strategy

In a game G, �x a strategy σ of Max. The best response value of Min against
σ is the minimum payo� to Max over all strategies of Min when Max plays σ.
Formally:

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 17

De�nition 6 (Best response). The best response value of Min to strategy σ of
Max, denoted by BRMin(σ) is de�ned as:

BRMin(σ) = inf
τ
E(σ, τ)

Similarly the best response value of Max against a strategy τ of Min can be de�ned
as follows.

BRMax(τ) = sup
σ

E(σ, τ)

Best response computation as a one-player game

In a two-player game G, �xing a strategy τ of Min produces a one-player game
Gτ with only Max player. The control nodes of Min in G act as chance nodes in
Gτ and the chance edge probabilities out of these nodes are given by τ . The value
BRMax(τ) can be interpreted as the optimal payo� obtained by Max in the game
Gτ . As a result, very often the problem of �nding the best response against a
behavioral strategy is reformulated as computing the optimal payo� in one-player
games.

A strategy that attains the best response payo� is called a best response strategy.

2.4.2 Maxmin value

The maxmin value of a game is the optimal payo� to Max when she reveals her
strategy ex-ante to Min. E�ectively Max maximizes the payo� assuming Min
responds with her best-response strategy.

De�nition 7. The maxmin value is de�ned as:

MaxMinbeh(G) = sup
σ

BRMin(σ) = sup
σ

inf
τ
E(σ, τ)

where σ and τ are behavioral strategies1 of Max and Min respectively.

The maxmin value is the greatest value Max can always be assured of achieving
irrespective of how Min plays. Since the space of strategies as well the set of all
possible payo�s are compact sets, and limit points of a compact set lie inside the
set, there exists at least one strategy of Max which provides the supremum value.
Hence the sup and inf in the de�nition can very well be replaced by max and min
giving us MaxMinbeh(G) = max

σ
min
τ

E(σ, τ).

1Maxmin value can also be de�ned similarly over pure and mixed strategies by modifying the
space of strategies considered in the de�nition

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 18

A maxmin strategy of Max is a strategy that gives the maxmin payo� given by
arg max

σ
BRMin(σ).

The e�ciency with which one can compute the best response and maxmin
value in a game depends on the memory of players. In the next section, we will
see the notion of history and di�erent kinds of recalls of players.

2.5 Histories and Recalls

A node v ∈ V is reached by the unique PathTo(v) from the root. The history at v
of a player is the sequence of observations and the actions played by the player
on this path. Chance nodes and chance edges are not taken into account in the
history of a node.

De�nition 8 (Histories). For a vertexw ∈ V the history atw denoted by hist(w) is
the sequence of actions awhere u a−→ v is an edge on PathTo(w) with u /∈ VChance.
For a player i the history of i at w denoted by histi(w) is the sequence of player i’s
actions on PathTo(w) which is the sub-sequence of hist(w) restricted to actions
from Ai.

For the root node r, hist(r) = ε is the empty history. Let H denote the set
of all histories and Hi be the set of all histories of player i. For an observation
o ∈ Oi let H(o) = {hist(u) | Obsi(u) = o} be the set of histories of all nodes
with observation o. Hi(o) is de�ned similarly with respect toHi.

For any player i, there may be multiple nodes with di�erent observations that
have the same history h ∈ Hi. For a history h, let Ohi = {o ∈ Oi | h ∈ H(o)} be
the set of all observations of player i in which there exists a node with history h.

WhenHi(o) has multiple histories, at a node v with Obsi(v) = o the player
doesn’t remember which history she traversed to reach v. Hence the player loses
information. So at a control node v ∈ Vi, the observation Obsi(v) encodes the
information that player i possesses at the point the game reaches node v. For two
nodes u and v in Vi with the same observation, comparing histi(u) and histi(v)
reveals the loss or retention of previously withheld information at the respective
nodes. To capture this we have di�erent notions of recall.

A player has perfect recall when she retains all her past observations and
doesn’t undergo any loss of information.

De�nition 9 (Perfect recall). Player i is said to have perfect recall if for every
u, v ∈ Vi, if Obsi(u) = Obsi(v) then histi(u) = histi(v). Otherwise, the player is
said to have imperfect recall.

Example 2.3. In Fig. 2.2a, Max has perfect recall.

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 19

0

e

2

f

c

2

e

0

f

d

a

0

g

2

h

c

0

g

2

h

d

b

r

u1 u2

u3 u4 u5 u6

o1

o2 o3

(a) Max with perfect recall

1

c

0

d

a

0

c

1

d

b

r

u1 u2
o1

(b) Max without perfect recall but A-loss re-
call

1

c

2

g

0

h

d

a

0

g

2

h

e

1

f

b

r

u1 u2

u3 u4

o1

(c) Max without A-loss recall

0

a

1

b

a

0

b

r

u1 o1

(d) Max with absentmindedness

Figure 2.2: Di�erent kinds of recall possible for Max

For a player with perfect recall, every vertex in an information set has the
same history with respect to that player. E�ectively player i has perfect recall i�
∀o ∈ Oi |Hi(o)| = 1. It is to be noted that perfect recall still doesn’t mean perfect
information. Max doesn’t have perfect information in Fig. 2.2a. Perfect recall talks
about remembering past observations whereas a player with perfect information
not only retains information but also observes the exact node at every turn.

Next, we will see a class of imperfect recall called absentmindedness [PR97].

De�nition 10 (Absentminded). Player i is said to have absentmindedness if there
are two distinct nodes u, v ∈ Vi with Obsi(u) = Obsi(v) such that u lies in the
unique path from root to v i.e. histi(u) is a proper pre�x of histi(v) (player i at
node u with Obsi(u) = o cannot recall if she has observed o before, i.e. passed
via a node with observation o before.) .

Example 2.4. In Fig. 2.2d Max is absentminded since she observes o1 both at r
and u1. Notice that Max can never reach the leaf with payo� 1 by playing a pure
strategy since she is forced to choose the same action at both r and u1.

Remark 2.1. Absentmindedness is even stronger than saying that a player forgets
the length of her own action history. In fact, a non-absentminded player can still
forget how many actions she has played. For example, from Fig. 2.2c imagine a
game with the same underlying game tree, but with nodes u1 and u4 having the

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 20

same observation. Max would be non-absentminded in this new game. But Max
forgets the length of her history. Because if Max could count the number of actions
she played, she could have distinguished between u1 and u4.

Next, we see a special class of games with imperfect recall called A-loss recall.
In this kind of recall any loss of information can be traced back to a point in the
game from where the player chose distinct actions.

De�nition 11 (A-loss recall). Player i has A-loss recall if for every u, v ∈ Vi with
Obsi(u) = Obsi(v) either histi(u) = histi(v) or histi(u) is of the form sas1 and
histi(v) of the form sbs2 where a, b ∈ Act(o) for some o ∈ Oi with a 6= b.

A player with A-loss recall does not necessarily have perfect recall, but when
she �xes a pure strategy σ, she regains her perfect recall in the following sense: for
every observation o ∈ Oi, all plays consistent with σ and ending with observation
o have the same history with respect to i. This is because σ either plays a or b at o
and hence both the nodes u and v are not reachable by playing σ. In other words,
in an A-loss recall game, a player using a certain pure strategy can infer from her
current observation the history of the node she is in.

Example 2.5. In Fig. 2.2b Max has A-loss recall since histMax(u1) = a and
histMax(u2) = b. At o1 Max can reach exactly one node between u1 or u2 via a
pure strategy. On the other hand in Fig. 2.2cMax doesn’t have A-loss recall since
at o1, histMax(u3) = d and histMax(u4) = e. So if Max plays the pure strategy
{d, e, g} and observes o1, she cannot exactly tell which action between d and e
she played previously.

︷ ︸︸ ︷︷ ︸︸ ︷
Perfect
Recall

Absentminded

︸ ︷︷ ︸
Imperfect Recall

Non-Absentminded
A-loss Recall

Decreasing degree of recall

Figure 2.3: Relation between di�erent recalls

Relation between recalls

The relation between di�erent kinds of recalls is depicted in Fig. 2.3 as a spectrum.
As we go from left to right the recall of the player weakens in some sense. The

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 21

diagram represents the set of all extensive-form games with imperfect information.
Perfect Recall is a special class of A-loss recall. Both A-loss recall and perfect recall
are sub-classes of non-absentminded games. Absentminded games are a special
class of imperfect recall games.

Next, we see the hierarchy between strategies in the light of di�erent recalls.

2.6 Recalls and equivalence of strategies

De�nition 12. Two strategies σ1 and σ2 of Max are said to be equivalent if for
all strategies τ of Min, E(σ1, τ) = E(σ2, τ). Similarly for Min, two strategies τ1

and τ2 are equivalent if for all strategies σ of Max, E(σ, τ1) = E(σ, τ2).

Essentially two strategies σ1 and σ2 of Max are equivalent if her payo� doesn’t
change by switching from one to the other against a �xed strategy of Min.

Equivalence of two strategies in extensive-form games can also be characterized
using the probability distribution induced on the leaf nodes based on the following
observation from ([KM96] Lemma 2.5).

Proposition 2.2. [KM96] Two strategies σ1 and σ2 of Max (Min) are equivalent

i� ∀t ∈ L, PMax
σ1

(t) = PMax
σ2

(t).

Equivalent strategies induce an equivalence relation over the space of all
strategies. Hence for optimality Max (Min) can choose any strategy from an
equivalent class of strategies.

Depending on the type of recall it is possible that for every strategy of one
class, there is an equivalent strategy of another class. This can create a hierarchy
between di�erent kinds of strategies with respect to optimality. When a player is
not absentminded mixed strategies are as expressive as behavioral strategies, i.e.,
for every behavioral strategy there is an equivalent mixed strategy.

Proposition 2.3. [Kuh53] In a game G if player i is not absentminded, for every
behavioral strategy β of i, i has an equivalent mixed strategy σ.

So when a player is not absentminded, strategically, mixed strategies are at
least as good as behavioral strategies. But the size of a mixed strategy can possibly
be exponential in the size of the game tree due to a large support size. This can be
costly for computations over the whole space of mixed strategies. Even though
Koller have shown in [KM96] that every mixed strategy is equivalent to a mixed
strategy over a small support2 but with a possible blowup in the bit complexities of

2The small supports of equivalent mixed strategies of two di�erent mixed strategies might be
distinct.

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 22

the probabilities. On the other hand, the size of behavioral strategies is polynomial
in the size of the tree assuming the assigned probabilities are also polynomially
bounded.

The natural question to ask is if behavioral strategies are also as expressive as
mixed strategies. For non-absentminded games, the answer is no as demonstrated
in the following example.

Example 2.6. In Fig. 2.2b for the mixed strategy σ given by 1
2{a, c}+ 1

2{b, d} of
Max there is no equivalent behavioral strategy. This is because σ induces non-zero
probabilities at the terminal nodes at the end of paths ac and bd and zero to the
others. On the other hand for any behavioral strategy to imitate this, it has to
play all actions with non-zero probability. But any behavioral strategy of this kind
would end up inducing a non-zero probability to the leaf at ad as opposed to zero
induced by σ.

However, this changes when the player has perfect recall.

Theorem 2.4. [Kuh53] In a game G if player i has perfect recall, then for every

mixed strategy σ of player i there exists a behavioral strategy β of player i such that

σ and β are equivalent.

Our primary concern in this thesis is optimality, i.e. computing maxmin
optimal strategies for two-player games and optimal strategies in one-player games
(best response computation). Hence the natural question to ask is: what kind of
strategies are su�cient for optimality? We will see that for one-player games or
equivalently for best response computation, when the player is non-absentminded
pure strategies are su�cient for optimality.

Lemma 2.5. In a one-player game G without absentmindedness the optimal
payo� can be achieved by a pure strategy.

Proof. From Proposition 2.3 it follows that in games without absentmindedness,
every behavioral strategy has an equivalent mixed strategy. Hence the optimal
payo� can be achieved by a mixed strategy. Now from de�nition, a mixed strategy
is a convex combination of the pure strategies in its support. And hence the payo�
is also a convex combination of the payo� with respect to each pure strategy in
the support. Hence there must exist a pure strategy in the support which gives at
least the optimal payo�.

However, when the player is absentminded, pure strategies are no longer
su�cient. We see this in the following example.

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 23

Example 2.7. In Fig. 2.2d no pure strategy can reach the leaf with payo� 1, hence
0 is the maximum payo� obtained by pure strategies. Whereas the behavioral
strategy 1

2a+ 1
2b gives a payo� 1

2 which is the optimal payo�.

To summarize, when Min is not absentminded, and Max plays a behavioral
strategy σ, Min has a pure best response against σ. On the other hand, when a
player is absentminded it is possible that behavioral strategies are required to
obtain optimal payo�.
Remark 2.6. It is possible that in two-player games, mixed strategies provide better
maxmin payo� than behavioral strategies, but we will not discuss such cases since
in this thesis we concern ourselves with optimality under behavioral strategies.

2.7 Computation of maxmin value

In this thesis, we primarily focus on the computation of the maxmin value and
the maxmin strategy in a game G when both players play behavioral strategies.
When Max has perfect recall and Min has A-loss recall the maxmin value as well
as a maxmin strategy can be computed in PTIME by encoding the problem into
a small linear program. The initial linear programming formulation was due to
Koller and Megiddo [KM92] and later by Von Stengel [Ste96]. This program was
further extended to the class where Min has A-loss recall. For completeness, we
revisit this linear program.

2.7.1 Linear program for computing maxmin value

In this section, we revisit the linear program for computing the maxmin value
when Max has perfect recall and Min has A-loss recall.

The linear program is composed of two building blocks. The �rst block involves
the best response computation for Min using local optimality constraints. This
can be equivalently perceived as computing the optimal strategy in a one-player
game. And the second block is a convex polytope3 called realization plan de�ned
by linear constraints which represents the space of all the behavioral strategies
of Max with perfect recall. The values in this polytope encode the probabilities
of realizing di�erent histories under a behavioral strategy of Max. We analyze
each of the building blocks separately and later recombine them for the �nal linear
program.

First, we look at the best response computation for Min. For this, we consider
one-player games with Min player having A-loss recall where the goal of Min is to

3A polytope in n-dimension is a subset of Rn described by a set of linear inequation, each
inequation de�ning a half-space

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 24

minimize the expected payo�. From Lemma 2.5 we know that in one-player games
with A-loss recall the optimal strategy can be obtained by a pure strategy. Roughly
speaking the payo� under a pure strategy τ can be computed in terms of local
values assigned by τ to a set of nodes with the same action history. Obtaining
the optimal strategy involves computing the optimal values for these local values.
Since Min has A-loss recall, every node in these local sets is reached by the same
sequence of actions under τ . A single local variable is attached to each of these
sets, hence the number of required local value variables is bounded linearly in the
size of the game.

Value equations for computing payo� under a strategy

Lemma 2.7. Let G be a one-player game Min game without absentmindedness
and let Min play the pure strategy τ . Then the expected payo� E(τ) to Min on
playing τ in G is given by the value valε(τ) satisfying the following equations:

valh(τ) =
∑

o∈Oh
Min

valh,o(τ) +
∑

{t∈L|histMin(t)=h}

PChance(t)U(t) ∀h ∈ HMin

(2.1)
valh,o(τ) = valhτ(o)(τ) ∀o ∈ OMin, h ∈ HMin(o) (2.2)

Proof. We will show that for an h ∈ HMin, valh(τ) is the expected payo� under
the condition that Min plays a strategy that suggests all actions conforming to
the history h and after that from that point onwards she plays following τ 4. And
valo,h(τ) is the same except that immediately after history h she reaches some
node with observation o and then onwards she plays according to τ . Then for the
empty history ε, valε(τ) is the expected payo� E(τ).

We will show this by backward induction on the length of h. When h is the
longest, i.e. the only nodes with history h are the leaf nodes and OhMin = ∅, this
statement is true since the payo� is given by

∑
{t∈L|histMin(t)=h}

PChance(t)U(t) =

valh(τ). Now for any other history h, h is possibly the history of several leaf
nodes and also the path with history h passes through observations inOhMin. Hence
valh(τ) can be split as written in Eq. (2.1). Finally, for all nodes with history h and
observation o, the game continues along τ(o), and hence the constraint in Eq. (2.2)
is justi�ed. This completes the proof.

4The history h is not necessarily consistent with strategy τ .

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 25

LP for best response computation in A-loss recall

The previous lemma demonstrates the bottom-up manner in which the ex-
pected payo� can be computed in a one-player game when the strategy is �xed.
Based on this, the following linear program computes the optimal payo� in a
one-player game with A-loss recall.

max vε

vh =
∑

o∈Oh
Min

vh,o +
∑

{t∈L|histMin(t)=h}

PChance(t)U(t) ∀h ∈ HMin (2.3)

vh,o ≤ vha ∀o ∈ OMin, h ∈ HMin(o), a ∈ Act(o) (2.4)

An optimal solution to the above system of equations {v∗} satis�es

v∗h,o = min
a∈Act(o)

v∗ha ∀ o ∈ OMin, h ∈ HMin(o)

Lemma2.8. Let τ∗ be the pure strategy given by ∀o ∈ OMin, τ∗(o) = arg min
a∈Act(o)

v∗
ĥa

where ĥ = arg min
h′∈HMin(o)

v∗o,h′ . Then E(τ∗) = v∗ε .

Proof. We �rst observe that for all histories h consistent with τ∗, we have v∗h =
valh(τ∗) and v∗h,o = valh,o(τ

∗). Hence, such histories will satisfy the constraints
in Lemma 2.7. Since histories not conforming to τ∗ are never reached, leaves with
those histories do not contribute to the payo�. As a result E(τ∗) = valε(τ

∗).

Lemma 2.9. v∗ε is the optimal expected payo� of Min and τ∗ is an optimal strategy
of Min.

Proof. We will actually show that for any strategy τ , for a history h ∈ HMin, it
holds that v∗h ≤ valh(τ), and also for any o ∈ OhMin, it holds that v∗h,o ≤ valh,o(τ).
Since valε(τ) is the expected payo� under τ and we have v∗ε = E(τ∗) it will follow
that v∗ε is the optimal expected payo� and τ∗ is an optimal strategy.

The proof goes by backward induction on the length of h. Observe that for a
�xed history h, for all strategies of Min, the term∑
{t∈L|histMin(t)=h}

PChance(t)U(t) is the same. Hence when OhMin = ∅, the statement

is trivially true since in this case v∗ =
∑

{t∈L|histMin(t)=h}
PChance(t)U(t) = valh(τ).

Now let for some h, the statement be true for all h′ ∈ HMin longer than h.

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 26

For o ∈ OhMin, from the constraints we have v∗h,o ≤ v∗hτ(o). And from induction
hypothesis, we have v∗hτ(o) ≤ valhτ(o)(τ). Hence it follows that v∗h,o ≤ v∗hτ(o) ≤
valhτ(o)(τ) = valh,o(τ). This completes the proof.

Remark 2.10. When a player doesn’t have A-loss recall, Lemma 2.9 doesn’t hold.
For example in Fig. 2.2c, if we make the Min node a chance node with uniform
distribution, then this becomes a one-player Max game without A-loss recall. The
constraints in the L.P. change accordingly. For the optimal solution, we have
v∗d,o1

= v∗dg = 1 and v∗e,o1
= v∗eh = 1 which makes v∗ε,u1

= v∗d , v∗ε,u2
= v∗e and

v∗ε = v∗ε,u1
+ v∗ε,u2

. But this is never possible since this requires Max to play both
g and h after observation o1. Essentially the optimal solution doesn’t take into
account the fact that once nodes with observation o1 are reached via both histories
d and e simultaneously, in a strategy both histories should continue along the same
action from o1. In games with A-loss recall this problem never arises since two
distinct histories with the same observation are never reachable simultaneously.

Realization plan polytope

As we have seen earlier, for a behavioral strategy σ computing the expected
payo� involves the set of values Pσ(t) for leaf nodes. Hence expressing these
values for a certain behavioral strategy is fundamental in maxmin computation. In
general, it can be challenging to represent them with linear constraints. When the
player has perfect recall Koller, Megiddo and Von-Stengel demonstrated a set of
linear constraints that exactly captures these values generated by some behavioral
strategy. These constraints de�ne a convex bounded polytope. This is called the
realization plan polytope.

For any two nodes u and v with hist(u) = hist(v) and for a behavioral strategy
σ of player i we always have Pσ(u) = Pσ(v). So for the sake of convenience we
write Pσ(h) for some h ∈ Hi.

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 27

Linear Program for Perfect recall vs A-loss recall

max vε

vh =
∑

o∈Oh
Min

vh,o +
∑

{t∈L|histMin(t)=h}

xhPChance(t)U(t) ∀h ∈ HMin (2.5)

vh,o ≤ vha ∀o ∈ OMin, h ∈ HMin(o), a ∈ Act(o) (2.6)
xε = 1 (2.7)

xh =
∑

a∈Act(o)

xha ∀h ∈ HMax, o ∈ OhMax (2.8)

0 ≤xh ≤ 1 ∀h ∈ HMax (2.9)

Lemma 2.11. For any valuation of {x} satisfying the constraints Eq. (2.7)-Eq. (2.9)
there is a strategy σx such that xh = Pσx(h). Also, for any strategy σ, if we set
xh = Pσ(h) then this system will satisfy these constraints.

Proof. First, we will prove the second statement. For any strategy σ, Pσ(ε) =
1 since the empty history is always realized. For any h and o ∈ OhMax, we
have

∑
a∈Act(o)

Pσ(ha) =
∑

a∈Act(o)

Pσ(h)σ(o, a) = Pσ(h)
∑

a∈Act(o)

σ(o, a) = Pσ(h).

Hence the second statement is true.
Now for the �rst statement, given a valuation {x} satisfying the given equation,

we build σx as follows: For all o ∈ OMax, since Max has perfect recall, |HMax(o)| =
1. Let that particular history be h. σx is given by: σx(o, a) = xha

xh
. From the

constraints, it follows that this is a valid behavioral strategy. Now we will show by
induction that xh = Pσx(h) for all h. This is trivially true for h = ε. Let it be true
for h. Then for o ∈ OhMax, and a ∈ Act(o), xha = xhσx(o, a) = Pσx(h)σx(o, a) =
Pσx(ha). This completes the proof.

Theorem 2.12. [KM92][Ste96][KK95][Kli02] The LP computes MaxMinbeh(G)
whenMax has perfect recall andMin when A-loss recall.

Proof. From Lemma 2.11 we know that a valuation {x}, gives a behavioral strategy
σx of Max. Hence �xing σx gives a one-player Min game where we can treat the
Max nodes as chance nodes. And in this game, we have the new probability of
reaching a leaf t with history h given by Pσx(h)PChance(t) where Pσx = xh.
Hence from Lemma 2.9 it follows that vε ≤ BRMin(σx). Now since this is true
for any valuation {x} and this encompasses all behavioral strategies of Max, the
linear program is essentially max

{x}
BRMin(σx) which is essentially the maxmin

value.

CHAPTER 2. PRELIMINARIES: EXTENSIVE FORM GAMES 28

Remark 2.13. Lemma 2.11 doesn’t hold when Max doesn’t have perfect recall. We
can have valuations {x} satisfying the constraints which do not correspond to
reaching probabilities for any behavioral strategy. For example in Fig. 2.2b , let
xε = 1, xa = xb = 1

2 , xac = xad = 1
4 , xbc = 1

6 and xbd = 1
3 These values satisfy

the constraints but do not correspond to a behavioral strategy because the histories
a and b extend to di�erent probabilities for c and d individually. Hence in the
case of A-loss recall the space of valuations satisfying the constraints is strictly
larger than the set of reachable probability valuations arising out of behavioral
strategies. This does not happen in perfect recall, because for any observation
there is a unique history ending there.

Chapter 3
Complexity of solving imperfect
recall games

In this chapter, we present our results on the complexity of the maxmin decision
problem both for one-player and two-player games. When players are absent-
minded we give lower bounds with respect to complexity classes associated to
fragments of First Order Theory of Reals namely ∃R, ∀R and ∃∀R. For one-player
games with absentmindedness, we show that the payo� maximization problem
is ∃R-complete. On the other hand for the maxmin decision problem in two-
player games with absentmindedness, we demonstrate both ∃R-hardness and
∀R-hardness along with ∃∀R upper bound. For the maxmin problem on games
without absentmindedness, we show lower bounds with respect to the Sqrt-Sum
problem and co-NP. We conclude with open questions and future directions on
the complexity front.

Contents

3.1 Maxmin Decision Problem 30

3.1.1 Known Complexity Results 31
3.2 Our complexity results 32

3.2.1 First Order Theory of Reals 32
3.2.2 Complexity classes ∃R,∀R and ∃∀R 33
3.2.3 Sqrt-Sum Problem . 34
3.2.4 New Complexity Picture 35

3.3 Path to reduction . 36

3.3.1 Payo� polynomial . 38

29

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 30

3.4 Proof of complexity: Games with absentminded

players . 41

3.4.1 One player games . 41
3.4.2 Two player games . 43

3.5 Proof of complexity: Games without absentmindedness 47

3.6 Conclusion . 52

Computing the maxmin value in two-player zero-sum games is a fundamental
computational problem. The complexity theoretic aspect of the maxmin decision
problem is quite well studied [KM92][Ste96][HMS07][BP17]. We are concerned
with computations over behavioral strategies. We present a �ner picture of the
complexity of the maxmin decision problem.

For studying complexity we need to de�ne the size of a game given in extensive-
form.

De�nition 13. (Size of a game) The size of a game G in extensive-form denoted
by |G| is the sum of the bit-lengths of all the chance probabilities and the terminal
payo�s in G1.

Next, we de�ne the maxmin decision problem for behavioral strategies.

3.1 Maxmin Decision Problem

The maxmin decision problem is the following:

Decision Problem 3.1. (MaxMinBeh≥0)
Given a two-player game G, is MaxMinbeh(G) ≥ 0?

Remark 3.1. The general version of this problem which appears in previous studies
[KM92][BP17] asks if MaxMinbeh ≥ λ for λ ∈ Q. However, the general form can
be reduced to the case with λ = 0. For a game G, this can be done by introducing
a chance node at the root and branching out with probability 1

2 to G and another
trivial game(leaf node) with payo� −λ.

Also, in the speci�c case when G is a one-player game with Max as the sole
player, the decision problem simpli�es into asking if MaxBeh≥0 .

Decision Problem 3.2. (MaxBeh≥0)
Given a one-player game G, is Maxbeh(G) ≥ 0?

1This de�nition is justi�ed since the number of leaves in a tree with each internal node having at
least two children is at least twice the number of non-leaf nodes. Also, the number of observations
is at most the number of internal nodes.

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 31

Recall ofMax Complexity

A-loss recall PTIME [KM92][KK95][Kli02]
Non-absentminded NP-Complete [KM92]

Figure 3.1: Previous complexity of Maxbeh ≥ 0

We will also make use of the strict version of this problem which is the follow-
ing.

Decision Problem 3.3. (MaxBeh>0)
Given a one-player game G, is Maxbeh(G) > 0?

Since these decision problems have been studied before, we will review what
was known about the complexity of these problems prior to our work.

3.1.1 Known Complexity Results

First, we will review what is known about the one-player decision problem and
then continue to the two-player version.

Recall that we observed in Example 2.7, when Max is absentminded, pure
strategies are not enough to ensure optimal payo�. We also saw in Lemma 2.5
that in the case of non-absentminded player, pure strategies are su�cient for
this purpose. This leads us to the following two complexity results known for
one-player games.

Firstly in Lemma 2.9 we saw that the optimal payo� in one-player A-loss recall
games can be computed e�ciently by a linear program.

Theorem 3.2. [KM92][KK95][Kli02] The decision problem MaxBeh≥0 is in P when

Max has A-loss recall.

And secondly, su�ciency of pure strategies for optimality places it in NP. In
addition, it was also shown in [KM92] that MaxBeh≥0 is NP-hard.

Theorem 3.3. [KM92] The decision problem MaxBeh≥0 is NP-complete whenMax
is not absentminded.

Since pure strategies are not su�cient in games with absentmindedness, for
general one-player games no speci�c complexity results were known that was an
improvement over the NP-hard lower bound coming from non-absentminded case.
The previously known complexity results for one-player games are summarized
in Fig. 3.1.

Now we move on to previously known complexity results for two-player
games.

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 32

Recall of Max Recall ofMin Complexity

Perfect Recall A-loss recall PTIME [KM92][Ste96][KK95][Kli02]
A-loss Recall Perfect Recall NP-hard [CBHL18]

Figure 3.2: Previous complexity of MaxMinBeh≥0

Again from the linear program in Section 2.7.1, we know that the case when
Max has perfect recall and Min has A-loss recall can be solved in P.

Theorem 3.4. [KM92][Ste96][KK95][Kli02] WhenMax has perfect recall andMin
has A-loss recall the decision problems MaxMinBeh≥0 is in P.

But the problem becomes hard when Max no longer has perfect recall. In fact,
it is hard even when Max has A-loss recall and Min has perfect recall.

Theorem 3.5. [CBHL18] The problem MaxMinBeh≥0 is NP-hard even when Max
has A-loss recall and Min has perfect recall.

And similar to the one-player case, this lower bound carries forward to the
general case as well where players can have absentmindedness. No better bounds
were known for the general case. The previously known complexity results for
two-player games can be summarized in Fig. 3.2.

Now that we have stated what was known prior to our work, we will provide
a snapshot of our complexity results.

3.2 Our complexity results

For dealing with games with absentmindedness we consider complexity classes
associated to fragments of First Order of Theory of Reals. We de�ne these classes
and then state our contribution to the complexity picture.

3.2.1 First Order Theory of Reals

We consider the language of �rst order formulas over equalities and inequalities
over Q whose validity is interpreted over R.

De�nition 14. FOT(R) is the set of all true �rst order formulas with connectives
∨,∧,¬ and quanti�ers ∃, ∀ over polynomials over the signature (0, 1,+, ∗,≤, <
,=) and variables interpreted over R2.

2Even though the signature is over 0 and 1, they can be used to encode any rational number
e�ciently (see page 6 in [SS22])

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 33

Example 3.1. Φ = ∃x∀y (y− x > 0) is a �rst order formula. However, Φ is false
and hence doesn’t belong to FOT(R). On the other hand, the �rst order formula
Ψ = ∀y∃x (y − x > 0) is valid and hence it lies in FOT(R).

3.2.2 Complexity classes ∃R,∀R and ∃∀R

Here we focus on the fragment which contains formulas with only existential
quanti�ers. Existential Theory of Reals(ETR) is the set of all true formulas in
FOT(R) of the form ∃x1 . . . ∃xnF (x1 . . . xn) where F is a quanti�er-free formula.

Example 3.2. The fact that the polynomial x2 − 5x + 6 has two distinct real
solutions can be expressed by the existential formula ∃y∃z (y2−5y+6 = 0)∧ (z2−
5z + 6 = 0) ∧ (y < z). Hence this formula lies in ETR. On the other hand, since
the polynomial x2 + 1 has no root in R, the existential formula ∃x (x2 + 1 = 0)
is not in ETR.

For associating complexity class to ETR, the natural decision problem of decid-
ing the membership of an existential formula in ETR is considered.

Decision Problem 3.4. (etr)
Given an existential formula ∃x1 . . . ∃xnF (x1 . . . xn), is it true?

De�nition 15. (∃R)[Sch10] The complexity class ∃R is the set of all decision
problems that has a many-one polynomial time reduction to etr 3 .

The complexity classes ∀R and ∃∀R are de�ned similarly.

Decision Problem 3.5. (utr)
Given a universal �rst order formula ∀y1 . . . ∀ymF (y1 . . . ym) where F is quanti-
�er free, is it true?

Decision Problem 3.6. (eutr)
Given a �rst order formula ∃x1 . . . ∃xn∀y1 . . . ∀ym
F (x1 . . . xn, y1 . . . ym) where F is quanti�er free, is it true?

De�nition 16. (∀R)[Sch10] The complexity class ∀R is the set of all decision
problems that has a many-one polynomial time reduction to utr.

De�nition 17. (∃∀R) The complexity class ∃∀R is the set of all decision problems
that has a many-one polynomial time reduction to eutr.

3ETR is the theory, etr is the decision problem, ∃R is the complexity class

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 34

Size of a formula

Any polynomial in a formula is given in its fully expanded form. A polynomial
over n variables x1, . . . , xn with total degree d is given in expanded form as∑
di|d1+···+dn≤d

ad1,...,dnx
d1 . . . xdn where ad1,...,dn is the coe�cient of xd1 . . . xdn .

The size of a polynomial with n variables and total degree d is the sum of the
bit-lengths of the coe�cients ad1,...,dn .

The size of a formula is de�ned as the sum of the size of all the polynomials in
it.

Some lower bounds and upper bounds are known about these classes but the
exact complexity status is still open.

Theorem 3.6. [Sch10][Can88] ∃R contains NP and ∀R contains co-NP.

Theorem 3.7. [Can88] [BPR06] The classes ∃R, ∀R and ∃∀R are contained in

PSPACE
4

Max
Min Non-existent Perfect Recall A-loss

Recall
N.A.M General

Non-existent co-NP-hard, co-NPco-NPco-NP ∀R-hard, ∀R∀R∀R
(Corollary 3.31) (Theorem 3.25)

Perfect Recall PTIMEPTIMEPTIME [KM92] [CBHL18]
PTIMEPTIMEPTIME NP-hard Sqrt-Sum-hardA-loss Recall [CBHL18] [CBHL18] (Theorem 3.28)

NP-hard, NPNPNPN.A.M [KM92]
∃R-hard ∃R∃R∃R ∃∀R∃∀R∃∀RGeneral (Theorem 3.18) (Theorem 3.20) (Theorem 3.25)

Figure 3.3: Complexity of MaxMinBeh≥0

For games without absentmindedness, we use another decision problem known
as the Sqrt-Sum problem which we de�ne next.

3.2.3 Sqrt-Sum Problem

Decision Problem 3.7 (Sqrt-Sum). Given k positive integers a1, . . . , ak and
another positive integer n, is

∑
i

√
ai ≤ n ?

A decision problem D is said to be Sqrt-Sum-hard, if there is polynomial time
many-one reduction from Sqrt-Sum to D.

Theorem 3.8. [ABKM09] The Sqrt-Sum problem is in the 4th level of the counting

hierarchy which is in PSPACE.

4In fact any complexity class de�ned similarly with bounded number of quanti�ers is in PSPACE.
This is not stated explicitly but discussed in Remark 13.11 in [BPR06]

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 35

Remark 3.9. There is another version of the Sqrt-Sum problem studied where given
m positive integers a1, . . . , am and n positive integers b1, . . . , bn, is

∑
i

√
ai ≥∑

i

√
bi. Although the version we stated reduces to this version, it is still unknown

whether reduction in the other direction is also possible.

3.2.4 New Complexity Picture

Now that we have de�ned the relevant complexity classes we present our results
in a compact manner in the table in Fig. 3.3. The complexity of MaxMinBeh≥0 de-
pends on the individual memory recalls of Max and Min which can be found in the
corresponding cell in Fig. 3.3. The case corresponding to non-existent instances
of either player indicates one-player games(except when both are non-existent).
When Min is non-existent it is a one-player game with only Max player, i.e. com-
plexity of MaxBeh≥0 . And When Max is non-existent the complexity in the table
corresponds to the complexity of MaxMinBeh≥0 but with only Min player(or a
dummy Max player with no in�uence on outcome). A lower-bound (i.e. hardness)
for MaxMinBeh≥0 for a pair of memory recall of Max and Min in a cell in Fig. 3.3
carries forward inductively to all the cells to its right and below. Similarly, an
upper bound (in bold font) for MaxMinBeh≥0 holds inductively to all cells to
the left and above of a cell. So essentially �xing a memory recall of Max, the
complexity of MaxMinBeh≥0 potentially increases with a decrease in memory
recall of Min(towards the right). And �xing the memory recall of Min, the com-
plexity of MaxMinBeh≥0 potentially increases with the decrease in memory recall
of Max(downwards). Hence we can observe the general trend that the weaker
memory of players makes the computation of the maxmin value harder.

Our contributions to the complexity picture are indicated by the corresponding
theorems, which we will state and prove later in this chapter. For games with
absentmindedness (and consequently the general case), we show ∃R-completeness
for the one-player case and for the two-player case where Min has A-loss recall.
We also show that MaxMinBeh≥0 is ∀R-hard for the one-player absentminded
case with a Min player. These lower bounds naturally extend to the two-player
case, making the general case both ∃R-hard and ∀R-hard. We also show ∃∀R
upper-bound for the general case.

For the case where players are not absentminded, the question of whether
MaxMinBeh≥0 is Sqrt-Sum-hard was posed in [CBHL18]. We settle this question
by showing that it is in fact Sqrt-Sum-hard. We also show that the one-player
non-absentminded case with only Min player is co-NP-complete. The lower
bound naturally extends to the 2-player non-absentminded case. These two new
lower bounds for the non-absentminded case further reinforce the belief that
MaxMinBeh≥0 for this case is not in NP.

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 36

Next, we will see how we obtain our complexity results. We mention the
relevant complete problems in the next section and the main technique that we
used for these reductions.

3.3 Path to reduction

In this section, we mention the complete problem for the class ∃R that we use for
our reduction. In the founding works on the class ∃R, several complete problems
were introduced in [SS17]. We make use of a certain complete problem that
involves checking if a system of quadratic equations has a common real root. The
complete decision problem for the class ∃R that we are concerned with is the
following:

Decision Problem 3.8 (QUAD).
Given a system of quadratic equations {Qi(X)}i∈[s] over X = {x1, . . . , xn}, do
they have a common root in Rn?

This problem was shown to be ∃R-complete [SS17].

Theorem 3.10. [SS17] QUAD is ∃R-complete.

The decision problem QUAD asks for the existence of a root over the whole Rn.
However in order to use this complete problem for reducing to a target problem
one might need some suitable bound on the roots.

Let Bn(0, 1) = {(x1, . . . , xn) |
∑

i x
2
i < 1} be the unit ball around 0. It was

shown in [Sch13] that QUAD remains ∃R-complete even with the given promise
that whenever a root exists for the system of equations, one can also �nd a root in
Bn(0, 1). For our purpose, we will need the roots to lie in the unit hypercube of
dimension n given byHn = [0, 1]n. This is because we will see later that the space
of behavioral strategies can be represented as a point in Hn. In fact we will use
another intermediate problem where the roots are promised to exist in a speci�c
subset of Hn namely the corner simplex.

Let ∆c
n = {(x1, . . . , xn) | ∀i ∈ [n] xi >= 0 ∧

∑
i xi ≤ 1} be the standard

corner n-simplex. Since for any (x1, . . . , xn) ∈ ∆c
n, we have ∀i, 0 ≤ xi ≤ 1, it

follows that ∆c
n ⊆ Hn. Using similar techniques from [Sch13] for the Bn(0, 1)

case it was proved in [Han19] that the complexity of QUAD remains the same
when the promise set is ∆c

n.

Theorem 3.11. [Han19] It is ∃R-complete to decide if a system of quadratic equa-

tions {Qi(X)}i∈[s] has a common root even with the given promise that if the system

has a common root, they also have a common root in ∆c
n.

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 37

We modify the problem QUAD by asking for the existence of a root in Hn.

Decision Problem 3.9 (QUAD-H).
Given a system of quadratic equations {Qi(X)}i∈[s] over X = {x1, . . . , xn},
do they have a common root in Hn?

Using Theorem 3.11 we show that QUAD-H is ∃R-complete as well.

Corollary 3.12. QUAD-H is ∃R-complete.

Proof. Firstly this problem is in ∃R because the existence of solution can be ex-
pressed by the existential formula ∃x1 . . . xn(∧i∈[s]Qi(x1 . . . xn) = 0)∧(∧j∈[n]0 ≤
xj ≤ 1).

For the hardness, we make use of Theorem 3.11 and reduce the problem of
deciding existence of real roots of a system to deciding existence of root inHn. We
take a system of quadratic equations {Qi(X)}i∈[s] which comes with the promise
that if they have a common root they have one in ∆c

n. We claim that this system
has a common real root if and only i� it has a common root inHn. For the forward
direction, if the system has a common root, it has one in ∆c

n and since ∆c
n ⊆ Hn,

it follows that the root lies in Hn as well. For the other direction, if the system
has a common root in Hn, we have a root of the system. As a result, the initial
decision problem is reduced to checking the existence of a root in Hnof the same
system of equations. Hence QUAD-H is ∃R-complete.

As we have established that QUAD-H is ∃R-complete, next we see how the
system of polynomials and the set Hn are linked to games. We will express a
behavioral strategy as a set of variables taking values over Hn. Computing the
expected payo� in terms of these variables will generate a payo� polynomial. Then
we will formulate the optimization problem for games as a root �nding problem
for a suitable system of equations using these polynomials.

So �rst we construct the link between polynomials and extensive-form game
payo�s. In fact we only need to consider games where at every stage players have
exactly two choices.

De�nition 18 (Binary decision game). An extensive-form game is called a binary

decision game if ∀i ∈ {Max,Min}, ∀o ∈ Oi |Act(o)| = 2.

For simpli�cation of notation, in a binary decision game at some observation
set, we use the notation {a, ā} for its actions. We often denote the actions at o ∈ O
by ao and āo. 5. Binary decision games simplify representing behavioral strategies
because, for every observation o, the probability of playing ao determines the

5ā is not an operation on action a. Rather the actions are named a and ā.

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 38

probability of playing āo. So for every observation o, one variable su�ces for a
symbolic representation of a strategy. Next, we see the payo� polynomial generated
by a game.

3.3.1 Payo� polynomial

De�nition 19. The payo� polynomial fG(X) of a game G is a polynomial over
X = {xo}o∈O given by the expected payo� when players play their respective
behavioral strategies where for each o, ao is played with probability xo and āo is
played with probability 1− xo.

A valuation of the set of variables X over H|O| gives a behavioral strategy
pro�le of the players and the payo� polynomial f : H|O| 7→ R evaluates to the
expected payo� under this strategy pro�le.

When X is understood from context we abuse notation and use fG for the
payo� polynomial of G.

Example 3.3. In Fig. 3.4, Act(o1) = {a, ā} and Act(o2) = {b, b̄} respectively.
Let x = xo1 be the probability of playing the action a after observing o1. Hence ā
is played with probability 1− x. Similarly let y = xo2 be probability of playing
action b. b̄ is played with probability 1− y. The expected payo� in this game is
the payo� polynomial of this game which is given by
1
4

(
12x2 + 0.x(1 − x) + 0.(1 − x) + 20xy + 0.x(1 − y) + 0.(1 − x) − 32y2 +

0.y(1− y) + 0.(1− y)− 4
)

= 3x2 + 5xy − 8y2 − 1.

12

a

0

ā

a

0

ā

1
4

20

b

0

b̄

a

0

ā

1
4

−32

b

0

b̄

b

0

b̄

1
4

−4

1
4

u1

u2

u3

v1 v2

v3
o1

o2

Figure 3.4: Game with payo� polynomial 3x2 + 5xy − 8y2 − 1

For computing the maxmin value of a binary decision game G using its payo�
polynomial we make the following natural observation.

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 39

Maxmin value using payo� polynomial

Let X = {x1 . . . xn} and Y = {y1 . . . ym}. Let G be a binary decision game with
|OMax| = n and |OMin| = m. f(X,Y) be the payo� polynomial over X ∪ Y with
variables in X and Y associated to observation of Max and Min respectively.
Then

MaxMinbeh(G) = max
X∈Hn

min
Y ∈Hm

f(X,Y)

.

Remark 3.13. Recall that an extensive-form has an underlying unlabelled game
tree. The payo� polynomial is not associated to the unlabelled game tree but
to the game after actions are labeled. The actions could be labeled di�erently
on the same game tree to obtain a di�erent payo� polynomial. For example in
Fig. 3.5 both the games have the same underlying game tree but the action labels
are di�erent. The only di�erence is the labels b and b̄ have been swapped in the
game on the right. With xo1 = x and xo2 = y, the game on the left has payo�
polynomial 3xy− x− y+ 1 whereas the game on the right has payo� polynomial
2x+ y − 3xy. However, since this is a swap of actions at the same observation,
the second polynomial can be obtained from the �rst by substituting y with 1− y.

2

b

0

b̄

a

0

ā

0

a

0

b

1

b̄

ā

o1

o2

(a) Game with payo� polynomial
3xy − x− y + 1

2

b̄

0

b

a

0

ā

0

a

0

b̄

1

b

ā

o1

o2

(b) Game with payo� polynomial
2x+ y − 3xy

Figure 3.5: Two games with same game tree but di�erent labels di�erent payo�
polynomial

So to every binary decision game G we can naturally associate a payo� poly-
nomial fG. But what about the other direction? If we start with a polynomial
f , can we �nd a game G such that fG is f? The answer is yes as we show in
Theorem 3.14 which will be the crux of our reductions.

Theorem 3.14. Given a polynomial f(X1, X2) over two disjoint sets of variables
X1 and X2, there exists a binary decision game Gf with the following properties.

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 40

• The set of observations OMax of playerMax is in correspondence with the set

of variables X1 given by OMax = {ox}x∈X1 . The same holds for observations

of player Min: OMin = {ox}x∈X2 .

• The payo� polynomial of G when player play action aox with probability x is

f(X1, X2).

Proof. Given a polynomial f the game Gf is constructed as follows. Let |X1 ∪
X2| = n. Suppose f(X1, X2) has k monomial terms µ1, ..., µk over X1 ∪ X2

i,e,f(X1, X2) =
∑

i ciµi where ci is coe�cient of µi. The root node r of Gf is
a Chance node with k outgoing edges. For each term µi in f(X1, X2), there is
a node si and there is a transition from r to each si with probability 1

k . For a
constant term µl, sl is just a leaf node. The height of each si is equal to the total
degree Di of µi. Let µi =

∏
j
x
di,j
j where di,j is the degree of variable xj in µi and∑

di,j
= Di. In the sub-tree under si there is a path from si to a terminal node

ti of length Di given by s1
i . . . s

di,1
i . . . sji . . . s

di,j
i . . . sni . . . s

di,n
i ti where si = s1

i .
Essentially there are di,j nodes on this path for each xj in µi. Each of these nodes
on the path has two outgoing edges of which the edge not leading to ti goes to a
terminal node with utility 0. In the terminal node ti the utility is equal to kci where
ci is the coe�cient of µi. Nodes sji assigned due to variable xj ∈ X1 are controlled
by Max whereas those assigned for variables in X2 are controlled by Min. All
the nodes sji assigned due to the same variable xj have the same observation oxj .
For all nodes with observations oxj on PathTo(si, ti) for each i, the action from
these nodes are labelled axj and the other action leading to utility 0 is labelled āxj .
The set of all observations is {ox}x∈X1∪X1 . Gf is indeed a binary game. Now the
payo� polynomial of this game is comprised only of the product of the variables
on the path to ti’s since all the other utilities are 0. Given that the utility at ti is
ci thus payo� polynomial of this game is exactly f(X1, X2). Finally, since each
leaf in the game tree represent a monomial in the polynomial with the coe�cient
as its payo� (including the 0 coe�cient of the absent monomials) the size of the
game is linear in the size of f .

Corollary 3.15. Given a polynomial f(X1, X2), the game Gf can be constructed
in PTIME and its size is polynomially bounded in the size of f .

Proof. This statement follows from the construction described in the proof of The-
orem 3.14. The construction takes PTIME and the size of the game is also polyno-
mially bounded.

Example 3.4. In Fig. 3.4 the game Gf constructed from f(x, y) = 3x2 + 5xy −
8y2−1 using the procedure described in the proof of Theorem 3.14 is demonstrated.

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 41

4

a

0

ā

a

0

ā

1
4

4

b

0

b̄

a

0

ā

1
4

−4

b

0

b̄

b

0

b̄

1
4

8

1
4

u1

u2

u3

v1 v2

v3
o1

o2

3

a

2

ā

a

1

b

2

b̄

ā

r

u1 u2
o1 o2

Figure 3.6: Di�erent games with same payo� polynomial

Remark 3.16. Given a polynomial f(X1, X2) the construction in the proof of
Theorem 3.14 gives one speci�c game. However, this is not necessarily the only
game with the same payo� polynomial. For example consider the polynomial
f(x, y) = x2 + xy − y + 2. Following the construction would yield the game on
the left of Fig. 3.6. On the other hand, the game on the right is a di�erent game
with the same payo� polynomial.

Now we are ready to discuss how we get to our complexity results.

3.4 Proof of complexity: Games with absentminded

players

First, we will prove complexity bounds for one-player games. The lower bound
results for the one-player case will naturally carry forward as lower bounds to
the two-player case. This is because one-player games can be thought of as trivial
two-player games just with a dummy second player.

3.4.1 One player games

For general one-player games, when Max is absentminded it follows from Theo-
rem 3.3 that MaxBeh≥0 is NP-hard. However, the exact complexity of the problem
depends on the precision required in describing an optimal behavioral strategy. It
was shown via an example in [HMS07] that in absentminded one-player games,
Max needs a behavioral strategy with irrational probabilities for optimality. This
dismisses the possibility of using optimal strategies as short witnesses for inclusion
in NP. Going one step further, we give a further generalization of this. It turns
out that there is a class of games where not only does the optimal behavioral
strategy of Max require irrational probabilities, but the optimal payo� to Max is

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 42

also irrational. We show that for positive integers n and k, there are one-player
games with optimal value n

1
k .

Proposition 3.17. For positive integers n, k ∈ Z+, there exists a game Hn,k

where every optimal behavioral strategy of Max requires irrational probabilities
and the optimal payo� to Max is n

1
k .

Proof. Let fn,k = nx(k+1)−nkxk+1

k be a univariate polynomial in x. Consider the
game Hn,k = Gfn,k

constructed according to Theorem 3.14. It can be shown
that for x ∈ [0, 1], the maximum value of fn,k is attained at x = n

1−k
k and the

maximum value is n
1
k . This proves that the optimal payo� of the game Hn,k is n

1
k

1.

Proposition 3.17 gives an insight into the range of values required in an optimal
strategy or the optimal payo�.

Next, we show ∃R-completeness of the one-player case.

Theorem 3.18. The problem MaxBeh≥0 is ∃R-complete.

Proof. The inclusion in ∃R can be shown by encoding a behavioral strategy in a
game with absentmindedness with the help of variables and constraints. The set of
variables is X = {xa}a∈AMax

. For X to represent a behavioral strategy, the set of
constraints C(X) are : ∀a ∈ AMax, 0 ≤ xa ≤ 1 and ∀o ∈ OMax,

∑
a∈Act(o)

xa = 1.

Under these constraints the expected payo� is a polynomial6 F (X) overX with as
many terms as the number of observations. Finally, with the aid of these constraints
MaxBeh≥0 can be expressed as an existential formula as follows:

∃X,C(X) ∧ (F (X) ≥ 0)

.
For hardness, we use the fact that QUAD-H is ∃R-complete from Corollary 3.12.

We will reduce QUAD-H to MaxBeh≥0 .
Given a quadratic system {Qi(X)}i∈[s], observe that Z ∈ Hn is a solution

to the system i� −
∑

iQi(Z)2 ≥ 0. For F (X) = −
∑

iQi(X)2 using Theo-
rem 3.14 we can construct the game GF with payo� polynomial F (X) in polyno-
mial time. Any point v ∈ Hn gives a behavioral strategy in GF and F (v) is the
expected payo� under this strategy. It follows that the system of equations has a
common root in Hn i� MaxBeh≥0 in the game GF . This completes the proof.

1Construction of Gn,k is not polynomial in n and k. However, this becomes the case when k is
constant.

6We don’t deal with payo� polynomials here as explained in Remark 3.19

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 43

Recall of Max Complexity

A-loss recall P [KK95][Kli02]
Non-absentminded NP-Complete [KM92]

General ∃R-complete (Theorem 3.18)

Figure 3.7: Complexity of Maxbeh ≥ 0

The complexity for one-player games is summarized in Fig. 3.7
Remark 3.19. In the ∃R upper bound proof in Theorem 3.18, note that we don’t
use the payo� polynomials which we used earlier in Theorem 3.14. This is because
of two reasons. Firstly, we de�ned payo� polynomials only for binary decision
games and not for general games to get rid of the constraints. Secondly, the payo�
polynomial of a binary decision game in its expanded form can have exponentially
many terms in the size of the game. This cannot be avoided even when the game
tree is labeled di�erently. To see why, consider a general gameG of depth n with a
similar underlying structure as in the games in Fig. 3.5. The leftmost and rightmost
extreme leaves are both at depth n. Each of them has a payo� of 1 and all the other
leaves have a payo� of 0. Each level with a di�erent depth has its own observation.
Now no matter how we label the game tree with ai and āi for i ∈ [n], at least one
of the paths to the two extreme leaves will have n/2 labels of the type āi. Hence
this path will contribute to the product at least n/2 terms of the form (1 − xi).
But expanding this will generate 2o(n) terms in the payo� polynomial whereas the
size of the game is O(n).

3.4.2 Two player games

For the two-player case, lower bounds for the one-player version apply to the
two-player version as well. As a result, the problem MaxMinBeh≥0 is ∃R-hard. As
shown in [KK95][Kli02] we know that when Min has A-loss recall the best response
can be expressed as a linear program. We use the same linear program and the
encoding of behavioral strategies in Theorem 3.18 to show that MaxMinBeh≥0 is
∃R-complete when Min has A-loss recall.

Theorem 3.20. When player 2 has A-loss recall, the problem MaxMinBeh≥0 is

∃R-complete.

Proof. The ∃R-hardness follows from Theorem 3.18.
For the upper bound, we formulate this problem as a mathematical program

based on the same principle as in the linear program in Section 2.7.1. We replace
the realization polytope there by the encoding of behavioral strategies of Max

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 44

as done in Theorem 3.18. We keep intact the best response computation for Min
using value equations as in Lemma 2.9, where P(t) for a leaf node t is now a
polynomial over X . The maxmin value is given by the optimal value achieved by
this mathematical program. MaxMinBeh≥0 is reduced to an existential formula
by expressing the existence of values of X which gives an optimal value of at least
0 as an etr formula. Hence MaxMinBeh≥0 is in ∃R.

For the general case, we will show that this problem is also ∀R-hard. Since
∃R and ∀R are not believed to be strictly contained in one another, this is a good
indication that the general problem is not in ∃R. For this, we need some tools from
algebraic geometry namely semi-algebraic sets and some relevant results from
[SS17]. We brie�y review semi-algebraic sets and then state the results we use.

De�nition 20. A set S ⊆ Rn is called a semi-algebraic set if there exists a
quanti�er free boolean formula Φ(X) over the signature (0, 1,+, ∗,≤, <,=),
such that S = {X ∈ Rn|Φ(X)}.

For a quanti�er boolean formula Φ, let SΦ = {X ∈ Rn|Φ(X)}. Let the
complexity of a formula Φ [SS17] be the number of bits used to represent Φ. The
complexity of a semi-algebraic set S is the complexity of a formula Φ with the
shortest representation such that S = SΦ.

For two vectors X,Y ∈ Rn, with Xi, Yi as ith co-ordinates, the Euclidean
distance between X and Y is given by ‖X − Y ‖ =

√∑
i∈[n](Xi − Yi)2. The

distance between two sets S1 and S2 is de�ned as dist(S1, S2) = inf
X∈S1,Y ∈S2

‖X−

Y ‖ .
The main result on semi-algebraic sets that we are concerned with is the

distance between two semi-algebraic sets. For example, when two compact semi-
algebraic sets are disjoint, it is a standard result that there is a positive distance
between them. Our primary interest lies in a lower bound on this distance in terms
of the complexity of the sets. In [JPT13] a lower bound is derived in terms of other
parameters. In [SS17] an explicit lower bound is derived in terms of the complexity
of the semi-algebraic sets stated as follows.

Theorem 3.21. [SS17] S1 and S2 be two semi-algebraic sets in Rn both with

complexity at most L ≥ 5n such that S1 ∩ S2 = ∅ and dist(S1, S2) > 0. Then

dist(S1, S2) ≥ 2−2L+5
.

We will use this result to show that whenever the optimal payo� in a one-
player game is negative, it is well below a negative constant derived from the game
itself.

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 45

Lemma 3.22. For all one-player game G, if Maxbeh(G) < 0, then ∃δG > 0 such
that Maxbeh(G) < −δG

Proof. The proof uses similar techniques as in [SS17]. Let g(X) be the polynomial
expressing the expected payo� in the game G when the behavioral strategy is
given by the variables X . De�ne two sets S1 := {(z,X)|z = g(X), X ∈ Hn}
and S2 := {(0, X)|X ∈ Hn}. From de�nition, it follows that S1 and S2 are
semi-algebraic sets. When Maxbeh(G) < 0, g(X) always attains negative values,
and hence S1 and S2 do not intersect. Since both S1, S2 are compact we have
dist(S1, S2) > 0. Theorem 3.21 ensures that dist(S1, S2) > 2−2L+5 where L is
the complexity of S1 and S2.

Now for any twoX,Y ∈ Hn we have ‖(g(X), X)−(0, Y)‖ ≥ |g(X)|. Hence,
we have

dist(S1, S2) = inf
X,Y ∈Hn

‖(g(X), X)−(0, Y)‖ = inf
X∈Hn

|g(X)| = −Maxbeh(G).

As a result it follows that for δG = 2−2L+5 , we have Maxbeh(G) < −δG.

The last lemma tells us that for any game G, there is a δG ∈ R+ such that
Maxbeh(G) cannot lie in the interval [−δG, 0). Also, this δG can be expressed in
terms of the complexity of semi-algebraic sets obtained using the payo� polynomial
of G.

Next, we will show that the strict version of the one-player problem is ∃R-hard.

Theorem 3.23. MaxBeh>0 is ∃R-hard.

Proof. We reduce MaxBeh≥0 to MaxBeh>0 , by reducing the problem of checking
if Maxbeh(G) ≥ 0 to checking if Maxbeh(G′) > 0 for some constructed game
G′. From G we construct in polynomial time a game G′ whose optimal payo� is
Maxbeh(G) + εG such that 0 < εG < δG where δG is derived from Lemma 3.22.
It follows that Maxbeh(G) ≥ 0 if and only if Maxbeh(G) + εG > 0.

We now describe the construction ofG′. We use the sameL as used in the proof
of Lemma 3.22. Recall that δG = 2−2L+5 . Let t = L+5 and letY = {y0, y1, . . . , yt}
be a set of variables. For i ∈ {0, . . . , t − 1}, let Fi(Y) := 2yi − y2

i+1 and let
Ft(Y) := 2yt− 1

4 . LetP (Y) := −
∑

i F
2
i (Y) andQ(Y) :=

∏
i y

2
i . LetGP andGQ

be the corresponding game. Let G1 be a game constructed from G by multiplying
at each leaf node of G, the payo� by a factor of 3. G′ is the game as follows: Its
root node is a Chance node with edges to three children each with probability
1
3 . To the �rst child, we attach the game G1, to the second child, the game GP
and to the third child we attach the game GQ. Information sets in GP and GQ
follow the structure imposed by the variables, whereas information sets in G1 are
independent from the rest of the game. We set εG = 1

3(maxY ∈Ht+1 P (Y)+Q(Y)).
Since scaling all payo� in a game by a positive factor, scales the maxmin value by

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 46

the same factor we have Maxbeh(G1) = 3 Maxbeh(G). Hence it will follow that
Maxbeh(G′) = Maxbeh(G) + εG.

Now we will show that 0 < εG < δG.
Setting yt = 1/8 and each yi to y2

i+1/2 for i ∈ [0, . . . , t−1] we have P (Y) = 0
and Q(Y) > 0. Hence εG > 0.

Let yt+1 = 1/2 be a constant. Ft(Y) can be rewritten as 2yt − y2
t+1. Now

consider any valuation of Y in Ht+1. If for some i ∈ [0, . . . , t], yi − y2
i+1 ≥ 0,

then we have Fi(Y) = yi + (yi − y2
i+1) ≥ yi. This implies P (Y) ≤ −y2

i . Since
Q(Y) ≤ y2

i , in this case P (y) +Q(Y) ≤ 0 < δG.
Otherwise for the case when ∀i ∈ [0, . . . , t], yi < y2

i+1, we claim that y0 <

(1
2)2t . We have y0 < y2

1 and inductively we can show that ∀k > 0, y0 < y2k

k .
Hence more particularly, we have have y0 < (yt)

2t but since yt < y2
t+1 < 1/2 it

follows that y0 < 2−2t = δG. This implies Q(Y) < δG. And since P (Y) ≤ 0, in
this case as well we have P (Y) +Q(Y) < δG.

This means P (Y) +Q(Y) assumes at least one positive value and all values
are strictly less than δG. Hence 0 < εG < δG. This completes the proof.

Before proving the �nal result we will use few auxiliary decision problems.

Decision Problem 3.10. (MinBeh<0) In a one-player game with only Min player,
is the minimum payo� achievable by Min strictly negative ?

We also use the complement decision problem of MinBeh<0 .

Decision Problem 3.11. (MinBeh≥0) In a one-player game with Min player, is
the minimum payo� achievable by Min non-negative ?7

MinBeh≥0 is a special case of MaxMinBeh≥0 when there is no Max player (
or a dummy Max player with no in�uence on the game outcome).

Lemma 3.24. The decision problems MaxBeh>0 and MinBeh<0 are polynomial
time reducible to each other.

Proof. For a one-player gameGwith only Max player, let Ḡ be the one-player Min
game with the same game tree as G, where all Max nodes in G are now Min nodes
and the terminal payo�s are multiplied by a factor of −1. Since a strategy of Max
in G is a strategy of Min in Ḡ, it can be shown that Maxbeh(G) = −Minbeh(Ḡ).
Hence it follows that Maxbeh(G) > 0 ⇐⇒ −Minbeh(Ḡ) < 0. Since starting
from any one-player game with Min player, we can similarly construct the corre-
sponding Max game, it follows that MaxBeh>0 and MinBeh<0 can be reduced to
each other in polynomial time.

7This problem doesn’t ask if Min can achieve a non-negative payo�, rather if the minimal payo�
is non-negative.

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 47

Theorem 3.25. The decision problemMaxMinBeh≥0 is in ∃∀R and is both ∃R-hard
and ∀R-hard.

Proof. We will just show the ∀R-hardness since we have already shown ∃R-
hardness for one-player case in Theorem 3.18. It follows from Lemma 3.24 that
since MaxBeh>0 is ∃R-hard, MinBeh<0 is ∃R-hard as well. Hence the complement
problem of MinBeh<0 which is MinBeh≥0 is ∀R-hard. But since MinBeh≥0 is a
special case of MaxMinBeh≥0 , it follows that MaxMinBeh≥0 is ∀R-hard.

Corollary 3.26. The decision problem MaxMinBeh≥0 is ∀R-complete for the
single player game with only Min player.

Proof. The ∀R upper-bound follows from the fact that the complement problem of
MinBeh≥0 is MinBeh<0 , which can be reduced to MaxBeh>0 . MaxBeh>0 is in
∃R since an instance of this problem can be expressed as an existential formula.

Next, we move on to games with non-absentminded players. Since the com-
plexity for one-payer games in this case is settled, we consider only the two-player
case.

3.5 Proof of complexity: Games without absentmind-

edness

For one-player games, the complexity picture is already complete as can be seen in
Fig. 3.7. So we consider the maxmin problem for 2 players with non-absentminded
players. For a game G with non-absentminded players, the payo� polynomial
fG is of a special kind: they are multilinear. A polynomial is called multilinear

if, in every term of the polynomial, the degree of a variable is at most 1. Payo�
polynomials in games without absentmindedness are multi-linear since every
observation appears not more than once on any path from root to a leaf. This is
not the case for absentminded games in general8. Also, the ∃R-complete problems
involving polynomials such as QUAD involves non-multilinear polynomials. To
the best of our knowledge no suitable ∃R-complete problems involving multilinear
polynomials are known so far. Hence the proof doesn’t quite extend to non-
absentminded games.

The maxmin problem for non-absentminded games was known to be NP-
hard [KM92] even when Max has A-loss recall and Min has perfect recall [BP17].
However it was already demonstrated in [KM92] that in such games Max might

8It is possible that non-linear terms lead to zero payo� or cancel each other

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 48

(n− 1)2

c

0

c̄

b

0

c

0

c̄

b̄

a

0

c

0

c̄

b

0

c

(n−1)2

n

c̄

b̄

ā

1
2

−(n+ 1)

1
2

Figure 3.8: Game G−√n

require irrational probabilities to achieve maxmin payo�.9 This was also shown to
be true for games with A-loss recall [CBL17]. This points towards the di�culty
of demonstrating membership of this problem in NP, since optimal behavioral
strategies cannot be used as short certi�cates. We substantiate this doubt further
by showing that the maxmin problem is Sqrt-Sum-hard as well as co-NP-hard.
The Sqrt-Sum lower bound holds even for games when Max has A-loss recall and
Min has perfect recall. To show this we construct a general class of games where
the maxmin payo� is irrational numbers10. More precisely for each n ∈ N we
construct a game G−√n with maxmin payo� −

√
n.

Before constructing G−√n we review some facts on the maxmin value of
games.

Fact 1:If G is a game with maxmin value v, and G′ be a game with the same
underlying game tree as G but with the payo�s scaled by a positive number k,
then the maxmin value of G′ is vk.

Fact 2 : Let G1 . . . Gm be m games with maxmin values v1 . . . vm respectively.
G′ be a new game with a chance node r as root node and m transitions out of it
each leading to Gi probability 1

m . Also, no pair of nodes u and v with u in Gi and
v from Gj for i 6= j have the same observation. Then the maxmin value of G′ is∑

i vi
m .

Lemma 3.27. For every n ∈ N , one can construct in PTIME a gameG−√n whose
maxmin value is −

√
n. The size of this game is polynomially bounded in log n.

9In contrast to absentminded games, in one-player non-absentminded games Max always has
pure optimal strategy. So the question of irrational probabilities doesn’t arise for one-player case.

10We have constructed such games before in Proposition 3.17 but those were games with absent-
mindedness

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 49

Proof. We construct the game G−√n in three steps. In the �rst step a game G1

is constructed whose maxmin value is n(n+1−2
√
n)

(n−1)2 . By scaling the payo�s of G1

with the positive number (n−1)2

n another game G2 is constructed with maxmin
value n+ 1− 2

√
n. Then we take a trivial game (a terminal node) t with utility

−(n + 1) and �nally construct G−√n by taking a root vertex r as chance node
and transitions with 1/2 probability from r to G2 and t.

We now describe the construction of the game G1 and why it has maxmin
value n(n+1−2

√
n)

(n−1)2 . Fig. 3.8 depicts the whole game G−√n and the left sub-tree

with payo�s scaled by (n−1)2

n depicts the game G1. G1 is a binary decision game.
Its’ game tree has 7 non-terminal nodes and 8 leaf nodes with payo�s. At the root
node sε, there are 2 actions a and ā, playing which the game moves to s0 or s1.
Then again at si the action b and b̄ are available playing which the game can go
to s0,0, s0,1, s1,0 or s1,1. And �nally again playing action c or c̄ the game can go
to the leaf statesa{ti,j,k|i, j, k ∈ {0, 1}}. The nodes sε, s0 and s1 belongs to Max
whereas the nodes si,j for i, j ∈ {0, 1} belongs to Min. At sε Max observes oa
and at s0 and s1 she observes the same observation ob. Min observes the same
observation oc at nodes s0,0, s0,1, s1,0 and s1,1. The utility at t0,0,0 is n and the
utlity at t1,1,1 is 1. The utility at all other leaf nodes is 0.

Now we compute the maxmin value of G in terms of n. Since G1 is a binary
decision game, the maxmin value of G1 is well expressed by its payo� polynomial.
The payo� polynomial of G1 is nxyz + (1 − x)(1 − y)(1 − z) where x, y, z
corresponds to oa, ob, oc respectively.

Hence the maxmin value is given by

max
x,y∈[0,1]

min
z∈[0,1]

nxyz + (1− x)(1− y)(1− z)

Since Min is not absentminded, for every strategy (x, y) ∈ H2 of Max, Min has a
pure response with z ∈ {0, 1}. Hence the maxmin is given by:

max
x,y∈[0,1]

min(nxy, (1− x)(1− y))

It turns out this value is attained when nxy = (1− x)(1− y). We use this to get
rid of y and �nally, the maxmin reduces to:

max
x∈[0,1]

nx(1− x)

1 + (n− 1)x

It can be veri�ed that the maximum of this expression in the domain [0, 1] is
attained at x =

√
n−1
n−1 . After evaluation we get MaxMinbeh(G1) = n(n+1−2

√
n)

(n−1)2

as intended, at x = y =
√
n−1
n−1 . This completes the construction of G1.

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 50

As described earlier, using this we can construct the game G−√n as in Fig. 3.8.
The game has a constant number of leaf nodes and the terminal payo�s are all

polynomially bounded in log n. Hence this game has size O(poly(log(n)).

Theorem 3.28. The problem MaxMinBeh≥0 is Sqrt-Sum-hard . This holds even

whenMax has A-loss recall andMin has perfect recall.

Proof. From the positive integers a1, ..., ak and n which are the inputs to the
Sqrt-Sum problem, we construct the following game Ĝ. At the root, there is a
chance node r̂. From r̂ there is a transition with probability 1

m+1 to each of the
games G−√ai (as constructed in Lemma 3.27) and also a trivial game with payo�
p. Now Max can guarantee a payo� 0 in Ĝ i�

∑m
i=1

√
ai ≤ p.

Since in each of G−√n, Max has A-loss recall and Min has perfect recall, the
same holds in Ĝ. Hence it is Sqrt-Sum-hard to decide the problem even when
Max has A-loss recall and Min has perfect recall.

Next, we will show co-NP hardness of the problem MaxMinBeh≥0 . For this,
similar to the absentminded case we will make use of the one-player problem
MaxBeh>0 . We know that the one-player problem MaxBeh≥0 without absent-
mindedness is NP-complete [KM92]. We will show that the strict the version of
this problem is NP-complete as well. We use the same reduction from a 3-SAT
formula Φ to a game instance GΦ of MaxBeh≥0 as used in [KM92]. It was shown
there that Φ is satis�able i� Maxbeh(GΦ) ≥ 0. For the same game, with the aid of
a minute observation, we will show that Φ is satis�able i� Maxbeh(GΦ) > λ for a
constant λ depending on Φ. This approach is very similar in �avor to Lemma 3.22
used for the absentminded case.

Theorem 3.29. The decision problem MaxBeh>0 is NP-complete. This holds even

whenMax is non-absentminded.

Proof. Since we are concerned with one-player games, we know from Lemma 2.5
that there exists a pure optimal strategy for Max. Hence this optimal strategy is a
short witness for true instances of MaxBeh>0 and this proves the membership of
MaxBeh>0 in NP.

Now for the NP-hardness, we reduce 3-SAT to MaxBeh>0 . Given a 3-SAT
formula Φ with n clauses Ci for i ∈ [n] over a set of m boolean variables X =
{x1, . . . , xm}, a one-player Max gameGΦ is constructed as follows: The root node
r is a chance node from which there are n transitions each leading with probability
1/n to Max player node ui for i ∈ [n] corresponding to each clause Ci. At each
ui is rooted a sub-game, a binary tree of depth 3 (one level for each variable in

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 51

Ci), where at each level Max chooses a valuation for each variable. Formally for a
clause Ci = (y1 ∨ y2 ∨ y3) with yi ∈ X , ui = vCi

y1
, with actions (y1, 0) and (y1, 1)

leading to vCi,y1=b
y2 for b ∈ {0, 1} respectively. The tree is extended in the same

fashion with y2 in the next level and then y3 in the �nal level leading to leaf nodes.
The leaf node tCi,y1=b1,y2=b2,y3=b3 for bi ∈ {0, 1} has payo� 0 if b1 ∨ b2 ∨ b3 is true,
otherwise the payo� is −1. For any variable xj ∈ X , all the nodes of the form
v
Ck,...
xj have the same observation oxj and this is to ensure that Max chooses the

same valuation for xj in every clause.
For the game, GΦ, we will show that Maxbeh(GΦ) + 1/n > 0 i� the formula

is satis�able. Assuming we have shown this, we can construct a new game G′Φ,
with a chance node at the root node with two equiprobable actions, one leading to
GΦ and another leading to a trivial leaf node with payo� 1/n. In this new game
Maxbeh(G′Φ) > 0 i� Φ is satis�able. The size of G′Φ is polynomial since n is the
number of clauses and n can be written using log(n) bits. As a result, this will
prove that MaxBeh>0 is NP-hard.

Now we will proceed to show Maxbeh(GΦ) + 1/n > 0 i� Φ is satis�able Since
we know that there is always a pure optimal strategy we will only deal with pure
strategies. Any assignment of boolean values 0 or 1 to variables xi gives a pure
strategy in the game and vice versa. When Φ is satis�able, it follows from the
construction that for each clause Ci the sub-game at ui bags a payo� of 0 which
proves the backward direction.

For the forward direction, if the formula Φ is not satis�able, then for any
assignment of values, at least one clause bags a payo�−1 contributing−1/n (1/n
from chance probability) to the total payo�. So even assuming that all the other
clauses bags the maximum possible payo� of 0, the total payo� cannot exceed
−1/n. Hence Φ is not satis�able implies Maxbeh(GΦ) ≤ −1/n. This completes
the proof.

Corollary 3.30. MinBeh≥0 is co-NP complete. This holds even when Min is
non-absentminded.
Proof. It follows from Lemma 3.24 that MinBeh<0 reduces to MaxBeh>0 in PTIME.
Hence MinBeh≥0 , the complement problem of MinBeh<0 is co-NP-complete.

Corollary 3.31. MaxMinBeh≥0 is co-NP hard. This holds even when Max is
non-existent or has trivial moves and Min is non-absentminded.
Proof. Since MinBeh≥0 is a special case of MaxMinBeh≥0 , the problem MaxMin-
Beh≥0 is co-NP hard.

The complexity of MaxMinBeh≥0 for two-players can be summarized by the
table in Fig. 3.9.

CHAPTER 3. COMPLEXITY OF SOLVING IMPERFECT RECALL GAMES 52

Recall of Max Recall ofMin Complexity

Perfect Recall A-loss recall P [KM92] [KK95][Kli02]

A-loss Recall Non-absentminded NP-hard [BP17], Sqrt-Sum-hard (Theorem 3.28),
co-NP-hard (Corollary 3.31), ∃R (Theorem 3.20)

General A-loss recall ∃R-Complete (Theorem 3.20)
General General ∃R-hard, ∀R-hard, ∃∀R (Theorem 3.18) (Theorem 3.25)

Figure 3.9: Complexity of MaxMinBeh≥0

3.6 Conclusion

In this chapter, we provided several new complexity bounds for the maxmin
problem both for the two-player case and one-player case. The complexity results
are summarized in Fig. 3.3.

Even though we settle the complexity of the one-player case for the known
classes of recalls, the exact complexity of the two-player case remains open.

Open Question 3.6.1

Is MaxMinBeh≥0 ∃∀R-hard ?

Also, for the non-absentminded, there is a bigger gap between the lower and
the upper bounds. The ∃∀R upper-bound comes from the general case. Since for
the case with trivial Max player against non-absentminded Min, we show co-NP
hardness, we think the next natural class to investigate would be Max with perfect
recall against non-absentminded Min player.

The linear program in Section 2.7.1 can be extended to the case when Max has
perfect recall and Min is non-absentminded as suggested in [CBHL18] but with an
exponential blowup in the number of constraints for best response computation.
Unlike for the case with A-loss recall where Max needs irrational probabilities in
a maxmin optimal behavioral strategy, Max with perfect recall will always have
such a strategy with rational probabilities. But it is still unclear if Max can avoid
exponential blow-up in the probabilities for optimal payo�. In case this can be
done, the problem can be shown to lie in Σ2.

Open Question 3.6.2

When Max has perfect recall and Min is non-absentminded is MaxMin-
Beh≥0 in Σ2 ?

Also, with the co-NP hardness lower bound, it would also be interesting to
check if for non-absentminded games, MaxMinBeh≥0 is Σ2 hard.

Chapter 4
Simplifying non-absentminded
games

In this chapter we identify a new class of one-player non-absentminded games
called games with A-loss recall shu�e. This class is an extension of the class of
A-loss recall games. We know that one player A-loss recall games can be solved in
PTIME. We also know that in two player games when Max has perfect recall and
Min has A-loss recall, the maxmin value can be computed in PTIME as well. In this
chapter we show that any game of this larger class can be solved by simplifying it
into an A-loss recall game of same size which we call an A-loss recall shu�e. As a
result one player games of this class can be solved in PTIME. As a consequence
we also obtain a polynomial time algorithm for computing the maxmin value in
two player games where Max has perfect recall and Min has A-loss recall shu�e.
However unlike A-loss recall and perfect recall, given a game it is not immediate
to check from the de�nition if a player has A-loss recall shu�e. We also provide
an e�cient procedure to identify games with A-loss recall shu�e.

We also generalize the notion of A-loss recall shu�e to A-loss recall span and
show that all games have an A-loss recall span. Games not having A-loss recall
shu�e can be solved by simplifying them to an A-loss recall game but with possible
blowup in size which we call an A-loss recall span. We give an algorithm to compute
the size of the smallest A-loss recall span but with exponential worst-case runtime.
Using the size of the smallest A-loss recall span as a parameter we provide an
algorithm for computing maxmin value. We also give games for which the smallest
A-loss recall span is exponential in the original game size. We show that the
decision problem related to computing smallest A-loss recall span is in NP.

We also discuss limitations of using the same idea of span for perfect recall

53

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 54

and show that it doesn’t work similarly. Finally we discuss another heuristic of
game simpli�cation using the payo� polynomial. We show how to build a perfect
recall game from a class of payo� polynomials and give a characterization of such
games. We also demonstrate a side application of this in multi-linear optimization.

Contents

4.1 Complexity Picture . 54

4.1.1 Our contribution . 58
4.2 Why A-loss recall shu�le? Simpli�cation via sequences 60

4.2.1 Strategic equivalence of games 60
4.3 Finding A-loss recall shu�les 69

4.4 Generalizing A-loss recall shu�le: A-loss recall span . . 75

4.4.1 Finding minimal A-loss recall span 80
4.5 A word on perfect recall spans and shu�les 90

4.6 Simpli�cation via payo� polynomials 92

4.6.1 Turning some games into games with perfect-recall . . 94
4.6.2 Turning any game into games with A-loss recall 100

4.7 Discussion . 100

4.7.1 Applications in multi-linear optimization 100
4.8 Conclusion . 101

In this chapter we take up the task of simplifying games with non-absentminded
players via game equivalence. For establishing this equivalence we re-examine
extensive form games in their sequence form representation and use payo� poly-
nomials associated to them. In Chapter 3 we provided complexity bounds for
the maxmin decision problem for both one player and two player cases, which
pointed to the di�culty of computing optimal strategies for some classes of games.
Here we further re�ne the complexity picture but towards a positive direction. We
identify a new fragment of non-absentminded games called Aloss recall shu�e, for
which the optimal payo� and the optimal strategy in the one player version can
be computed in PTIME. We will brie�y recall the complexity picture from the last
chapter and give a preview of our results to appear in this chapter.

4.1 Complexity Picture

The complexity of the maxmin decision problems that we have seen so far can
be summarized in a compact manner in Fig. 4.1. Recall that the complexity lower

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 55

bounds (hardness) carry forward recursively to the right and downwards in the
table with decreasing degree of recall of either players, whereas complexity upper-
bounds (in bold text) carry forward to the left and upwards.

Max
Min Non-existent Perfect Recall A-loss

Recall
N.A.M General

Non-existent co-NP-hard, co-NPco-NPco-NP ∀R-hard, ∀R∀R∀R

Perfect Recall PTIMEPTIMEPTIME
PTIMEPTIMEPTIME NP-hard Sqrt-Sum-hardA-loss Recall

NP-hard, NPNPNPN.A.M

∃R-hard ∃R∃R∃R ∃∀R∃∀R∃∀RGeneral

Figure 4.1: Complexity of MaxMinBeh≥0 so far

Next we will state the contribution of the current chapter to this complexity
picture. For this we will de�ne the class A-loss recall shu�e. The class A-loss recall
shu�e heavily depends on the terminal sequences of a game and the interplay
between them. Hence we will review a well-known representation of extensive
form games called sequence form [Ste96].

Sequence Form

In the sequence form representation, instead of a game tree, the game is de�ned
by the set of all terminal histories. Each terminal history comes with a utility
augmented with the chance probability to follow this history.

Recall that a binary decision game is a game where at every node there are
two actions, i.e. for every observation o ∈ O, Act(o) = 2. In this chapter we will
restrict our discussion to binary decision games. We will see later in Appendix A
why it is enough to consider binary decision games for our purpose. As stated
earlier we also restrict our discussion to non-absentminded games.

Let AMax and AMin be the set of actions of Max and Min respectively. Recall
that in binary decision games we use the notation a and ā for denoting two actions
at the same node. In this chapter we will always assume that for two actions of
the form a and ā, there is some unique observation o such that Act(o) = {a, ā}.
Let A = AMax ∪ AMin be the set of all actions and let A∗ be the set of all �nite
sequences over A. For action a ∈ A and a sequence of actions s ∈ A∗, let a ∈ s
signify that action a is present in sequence s. Since we deal with non-absentminded
games we consider sequences s over A such that

1. Any action in A appears at most once in s

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 56

2. s doesn’t contain both a and ā for any a

For A′ ⊆ A, let Seq(A′) be the set of sequences over A′ satisfying these two
conditions. A sequence set S over A′ is a subset of Seq(A′). The set of terminal
histories of G form a sequence set over the set of actions.

However if we start from an action setA, an arbitrary sequence setS ⊆ Seq(A)
doesn’t necessarily correspond to some extensive form game. For example for
A = {a, ā, b, b̄}, the sequence set S = {ab, āb̄} does not correspond to any
extensive form game with action set A. This is because, if we assume that there is
a corresponding extensive form game, then after history a, at a node where action
b is played, the action b̄ is also present leading to some other leaf with distinct
terminal history. But this history is not present in S. We call sequence sets that
correspond to an extensive form game, a rulebook.

In an extensive form game G with set of terminal nodes L, letHL = {hist(t) |
t ∈ L} be the set of all terminal histories of G.

De�nition 21 (Rulebook). A sequence set S ⊆ Seq(A) is called a rulebook, if
there is a game G with action set A such that S = HL.

Now we can represent a game in sequence form by starting with a rulebook and
assigning utilities augmented with chance probabilities to every action sequence
in the rulebook.

De�nition 22 (Sequence form). A game G in extensive form is represented in
the sequence form given as (S,Λ) where S = HL is a rulebook and Λ : S 7→ Q is
the augmented payo� function given by Λ(s) =

∑
t|hist(t)=s

U(t)PChance(t).

Example 4.1. In Fig. 4.2 both the games have the same sequence form repre-
sentation. The rulebook is given by S = {ab, ab̄, āb, āb̄, ac, ac̄, āc, āc̄} and the
augmented payo�s Λ is given by {ab : 2

3 , ab̄ : 1
3 , āb : 2

3 , āb̄ : 1
3 , ac : 0, ac̄ :

4
3 , āc : 4

3 , āc̄ : 2
3}. For the sequence ab, Λ(ab) = 2

3 since in the game in Fig. 4.2a
this is 1

3 .2 and in the game in Fig. 4.2b this is 1
2 .

4
3 .

Remark 4.1. We don’t take into account the chance nodes and edges out of them
in the sequence form representation. Rather the product of chance probabilities
PChance(t) at a leaf node t is absorbed into the augmented payo� Λ(t). This doesn’t
necessarily give a unique game but with respect to sequence form representation
it gives a class of games which will be su�cient for our purpose. This is exactly
the case for the two games with same sequence form in Fig. 4.2. So essentially by
a slight abuse of notation by (S,Λ) we denote a set of games. We will see later in
Proposition 4.9 how to construct an extensive form game from a rulebook. In fact
that construction will give the game on the right in Fig. 4.2.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 57

2

b

1
b̄

a

2

b

1
b̄

ā

1
3

0

c

2

c̄

a

2

c

1

c̄

ā

2
3

(a)

4
3

b

2
3

b̄

1
2

0

c

8
3

c̄

1
2

a

4
3

b

2
3

b̄

1
2

8
3

c

4
3

c̄

1
2

ā

(b)

Figure 4.2: Sequence Form: Both the games above have the same sequence form
with rulebook S = {ab, ab̄, āb, āb̄, ac, ac̄, āc, āc̄}

Recalls in Sequence Form

We will rede�ne A-loss recall and perfect recall with respect to sequence form.
We will not restrict ourselves to rulebooks and de�ne these recalls for arbitrary
sequence sets.

For a sequence s ∈ A, let sMax be the sequence restricted to actions from
AMax. For S ⊆ Seq(A), SMax = {sMax | s ∈ S} be the set of sequences in
S restricted to actions in AMax. For actions a and b let (a + b) denote the set
{a, b}. For sequences s1, s2 and actions a, b ∈ A, let s1(a + b)s2 denote the set
{s1as2, s1bs2}. In general, for sequence sets S1, S2 and actions a, b ∈ A, let
S1(a+ b)S2 = {s1as2 | s1 ∈ S1, s2 ∈ S2} ∪ {s1bs2 | s1 ∈ S1, s2 ∈ S2}.

Let sMin and SMin be de�ned similarly. We give de�nitions with respect to
player Max, but they can be extended to Min in a similar manner.

De�nition 23. (Perfect Recall in sequence form)
Let S ⊆ Seq(A) be a sequence set and s1, s2 be two sequences in Seq(AMax).

We say s1 is perfect recall equivalent to s2, denoted by s1 ∼P s2 if ∀s′1, s′2 ∈
Seq(AMax) and a, ā ∈ AMax such that s1 ∈ s′1(a + ā)Seq(AMax) and s2 ∈
s′2(a+ ā)Seq(AMax), we have s′1 = s′2.

SMax is said to have perfect recall if ∀s1, s2 ∈ S, s1 ∼P s2.

De�nition 24. (A-loss recall in sequence form)
Let S ⊆ Seq(A) be a sequence set and s1, s2 be two sequences in Seq(AMax).

We say s1 is A-loss recall equivalent to s2, denoted by s1 ∼A s2 if
∀s′1, s′2 ∈ Seq(AMax) and a, ā ∈ AMax such that s1 ∈ s′1(a + ā)Seq(AMax)

and s2 ∈ s′2(a+ ā)Seq(AMax) at least of one of the following is true:
(i) s′1 = s′2
(ii) ∃ s′ ∈ Seq(AMax), b, b̄ ∈ AMax, such that s′1 = s′b1s

′′
1 and s′2 = s′b2s

′′
2 for

some s′′1, s′′2 ∈ Seq(AMax) and bi ∈ {b, b̄} with b1 6= b2.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 58

SMax is said to have A-loss recall if ∀s1, s2 ∈ S, s1 ∼A s2.

Observe that from the �rst condition in the above de�nition it follows that
A-loss recall equivalence implies perfect recall equivalence.

Example 4.2. Let S1 = {abc, ab̄}, S2 = {abc, āc}, S3 = {ba, ca} be sequence
sets over AMax = {a, ā, b, b̄, c, c̄}. S1 has perfect recall but S2 doesn’t. On the
other hand S2 has A-loss recall but S3 doesn’t.

It can be veri�ed that the above de�nitions of recalls are equivalent to their
corresponding de�nitions in the extensive form.

Proposition 4.2. Let G be a game in extensive form and (S,Λ) be representation
of G in the sequence form. Then Max (Min) has A-loss recall (perfect recall) in G
i� SMax (SMin) has A-loss recall (perfect recall).

4.1.1 Our contribution

First we de�ne A-loss recall shu�e and then give a preview of our primary contri-
bution in this chapter to the complexity picture.

For an action set A and a sequence of actions s = a1 . . . an with ai ∈ A, a
permutation s† of s is a sequence over A given by s† = ρ(a1) . . . ρ(an) where
ρ : {a1 . . . an} 7→ {a1 . . . an} is a bijective function.

De�nition 25 (Shu�e). Given two sets S, S′ ⊆ Seq (AMax), S and S′ are called
shu�es of each other, if for every s ∈ S, there exists s′ ∈ S′ such that s′ is a
permutation of s and vice versa.

De�nition 26 (A-loss recall shu�e). A sequence set S ⊆ Seq (AMax) is said to
have A-loss recall shu�e if there exists S† ⊆ Seq (AMax) such that S† is a shu�e
of S and S† has A-loss recall. S† is called an A-loss recall shu�e of S.

In a game G = (S,Λ) in sequence form with rulebook S, Max is said to have
A-loss recall shu�e if SMax has an A-loss recall shu�e S†.

Example 4.3. In Fig. 4.3 the game on the left has the sequence set
S = {ba, bā, b̄a, b̄ā, ca, cā, c̄a, c̄ā} and doesn’t have A-loss recall. This is because
the sequences ba and ca are not A-loss recall equivalent. However this game has
A-loss recall shu�e and the evidence to this is the game on the right. The game on
the right has sequence set S′ = {ab, ab̄, āb, , āb̄, ac, ac̄, āc, āc̄} which has A-loss
recall. S′ is a shu�e of S since for any sequence in S, a permutation of that
sequence is present in S′.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 59

1

a

3

ā

b

2

a

1

ā

b̄

0

a

1

ā

c

2

a

2

ā

c̄

(a) Max without A-loss recall but
with A-loss recall shu�e

1

b

2

b̄

a

3

b

1

b̄

ā

0

c

2

c̄

a

1

c

2

c̄

ā

(b) Max with A-loss recall

Figure 4.3: A-loss recall shu�e

Max
Min Non-existent Perfect Recall A-loss Recall ALR Shu�e N.A.M General

Non-existent co-NP-hard, co-NPco-NPco-NP ∀R-hard, ∀R∀R∀R

Perfect Recall PTIMEPTIMEPTIME
PTIMEPTIMEPTIME NP-hard Sqrt-Sum-hardA-loss Recall

NP-hard, NPNPNPN.A.M

∃R-hard ∃R∃R∃R ∃∀R∃∀R∃∀RGeneral

Figure 4.4: Complexity of MaxMinBeh≥0 w.r.t A-loss recall(ALR) shu�e

In a game if Max has A-loss recall, then she also has A-loss recall shu�e.
Hence the class of games where Max has A-loss recall shu�e subsumes the class
of games where Max has A-loss recall. Also, we will see later that sometimes
Max can be non-absentminded but still not have A-loss recall shu�e. This implies
A-loss recall shu�e is a strict extension of A-loss recall and a strict sub-class of
non-absentmindedness.

Our �ner complexity analysis in terms of A-loss recall shu�e is given in Fig. 4.4.
Our primary contribution consists of extending all complexity bounds from

the class A-loss recall to A-loss recall shu�e. For the class of one-player Max
games with A-loss recall shu�e the maxmin decision problem i.e. MaxBeh≥0 is
now in PTIME. For two player games when Max has perfect recall and Min has
A-loss recall shu�e the maxmin decision problem can be solved in PTIME.

To view this in the light of degree of recall, A-loss recall shu�e may appear to
have less degree of recall compared to just A-loss recall but in terms computation
it doesn’t make much di�erence.

We also provide a generalization of the class A-loss recall called A-loss recall
span.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 60

4.2 Why A-loss recall shu�le? Simpli�cation via se-

quences

In this section we will see that having A-loss recall shu�e can simplify computation
of the maxmin value. To show this, we �rst de�ne a notion of strategic equivalence
between games.

4.2.1 Strategic equivalence of games

Let Si(G) be the set of all behavioral strategies of player i in the game G.

De�nition 27 (Game Equivalence). Two games G and G′ given in extensive form
are said to be strategically equivalent denoted byG ∼ G′ if for each player i there is
a bijective function φi : Si(G)→ Si(G′) such that ∀ σMax ∈ SMax, ∀ σMin ∈ SMin

E[σMax, σMin] = E[φMax(σMax), φMin(σMin)]

Strategic equivalence can be used as a tool for simplifying games. When a game
G has an equivalent simpler game G′, with the aid of an e�ciently computable
bijective mapping φ, computing optimal strategies in G′ would be enough to
solve G. In essence maxmin strategies of one game can be mapped to that of the
equivalent game.

Proposition 4.3. If for two game G and G′ we have G ∼ G′ which is witnessed
by the maps φi : Si(G)→ Si(G′) ∀i ∈ {Max,Min} then the following statements
are true:

• MaxMinbeh(G) = MaxMinbeh(G′).

• σ is a maxmin strategy in G i� φMax(σ) is a maxmin strategy in G′

Proof. The proof simply follows from the de�nition of strategic equivalence.

Remark 4.4. Since we are concerned with computation over behavioral strategies
we restrict ourselves to strategic equivalence with respect to behavioral strategies.

Recall that to each binary decision game with action set A, we associate a
payo� polynomial which is formed from the probability variables assigned to each
action. When the variables associated to actions are not explicitly mentioned, for
an action a we assign the variable xa and for ā we assign the variable 1 − xa.
Sometimes we use x̄ to denote 1− x.

We observe that payo� polynomials can actually determine game equivalence.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 61

Proposition 4.5. LetG andG′ be two binary decision games with the same action
set A. If the payo� polynomials fG(X,Y) and f ′G(X,Y) are equal then G ∼ G′.
Proof. Consider the function φi which maps a strategy σ in G to a strategy σ′ in
G′ where for every o ∈ Oi, a ∈ Act(o), σ(o, a) = σ′(o, a). Since the payo� of
a game is given by evaluating the payo� polynomial, we have E[σMax, σMin] =
E[φMax(σMax), φMin(σMin)]. Hence G ∼ G′.

Example 4.4. In Fig. 4.3 associating the variables x, y and z to actions a, b and c
respectively, we obtain the polynomial f(x, y, z) = xy− xz + 2x+ y− z + 5 for
both the games. Hence these two games are equivalent.
Remark 4.6. The converse of Proposition 4.5 doesn’t hold in general. Two equiva-
lent games G and G′ over the same action set A can have di�erent payo� polyno-
mials. Recall that in Remark 3.13 we saw two games in Fig. 3.5 with same action
set but di�erent payo� polynomials. Since the labels b and b̄ are swapped, these
two games are still equivalent.

The payo� polynomial of a game can be seen as a linear combination over
individual terms induced at each leaf. The individual terms depend on the terminal
histories, hence we de�ne these terms for individual sequences of actions.
De�nition 28 (Leaf monomial). For a sequence set S ⊆ Seq(A) and a sequence
s ∈ S, the monomial µ(s) is the product of all variables assigned to actions in s.
For a set S, let µ(S) = {µ(s) | s ∈ S} be the set of leaf monomials of sequences
in S.

Note that from de�nition, for the empty sequence ε, µ(ε) = 1.
In an extensive form game, for a leaf node t we will often abuse notation by using
µ(t) in order to denote µ(hist(t)). The payo� polynomial can then be expressed
as
∑
t∈T
PChance(t)U(t)µ(t) which in the sequence form translates to

∑
s∈S

Λ(s)µ(s).

Example 4.5. In Fig. 4.3 if we assign the variables x, y and z to actions a, b and c
in either of the games, the bottom left-most leaf has monomial xy whereas the
bottom right-most leaf has monomial x̄z̄. Even though the sequences at these
leaves are distinct in the two games, the corresponding monomials at a leaf are
the same.

Now we will see what A-loss recall shu�e implies for binary decision games.
We �rst de�ne the size of a game in sequence form.
De�nition 29 (Size of a game in sequence form). The size of a game G = (S,Λ)
in sequence form denoted by |G| is the sum of the bit-lengths of Λ(s) of all s in
S1.

1This de�nition is the same as that of extensive form.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 62

We deal with arbitrary sequence sets that do not necessarily come from any
extensive form game. So we will also de�ne the size of sequence sets.

De�nition 30 (Size of sequence set). The size of a sequence set S, denoted by |S|,
is the number of sequences in S.2

Theorem 4.7. Let G be a one-player game where Max has A-loss recall shu�e.

Then G has an equivalent game G′ of size O(|G||A|) whereMax has A-loss recall.
As a consequence, the optimal value in G can be computed in PTIME.

Theorem 4.8. Let G be a two player game whereMax has perfect recall andMin
has A-loss recall shu�e. ThenG has an equivalent game G′ of size O(|G||A|) where
Max has perfect recall and Min has A-loss recall. As a consequence, the maxmin

value in G can be computed in PTIME.

We will shortly prove the above two theorems. Since maxmin computation in
one-player games is a special case of maxmin computation in two-player games, it
follows that Theorem 4.8 implies Theorem 4.7. We will still prove the two theorems
separately. We will construct the equivalent game G′ in both the cases provided
we have the A-loss recall shu�e. Note that any sequence set is not a rulebook and
hence an A-loss recall shu�e is not a priori a rulebook either. We will �rst see
how to get a rulebook from any sequence set via a characterization of rulebooks.
Since our construction of the game G′ uses the rulebook, we will then see how to
construct an extensive form game from a rulebook.

We observe a property of rulebooks called completeness and then show that
this condition is su�cient for a sequence set to be a rulebook.

De�nition 31 (Complete set). A set of sequences S ⊆ Seq(A) is called complete
if for every sequence of the form sas′ ∈ S where s, s′ ∈ Seq(A) and a ∈ A, there
exists a sequence sās′′ ∈ S for some s′′ ∈ Seq(A).

From de�nition a rulebook is already complete. In an extensive form game, at a
node v with some history s, all actions in Act(Obs(v)) at v lead to some terminal
history.

Example 4.6. The sequence set S1 = {a, āb, āb̄} is a complete set. On the other
hand the set S2 = {ab, āb̄} is not complete since for the pre�x a, the sequence
ab ∈ S2 but no sequence exists in S2 starting with ab̄.

Proposition 4.9 (Rulebook to Game). A set of sequences S ⊆ Seq(A) is a rule-
book i� S is complete.

2The length of sequences in S also matters in the descriptive size of S but since the length of a
sequence is at most |A| we ignore this |A| factor in the de�nition of size without much loss in the
complexity.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 63

Proof. Consider a sequence sas′ in a rulebook S. For some vertex v, hist(v) = s
and let Act(v) = {a, ā}. Hence the action ā from v will lead to some leaf l such
that hist(l) = sās′′ for some s′′. Hence a rulebook is complete.

For the other direction, let S ⊆ Seq(A) be a sequence set which is complete.
We will construct an extensive form game GS with HL = S. Since this is a
property of the sequence set, we will only give the game tree without the utility
function. Any assignment of utility to leaves will give a complete extensive form
game corresponding to the sequence set S.

First we construct the game tree with actions labelled from A. The actions will
determine the observations of a node, i.e. any node with action a and ā out of it
will have observation oa.

We do this inductively on the size of S. When S = {ε}, the corresponding
game GS is the trivial game with a single leaf node. Now let’s assume for all
complete set S of size m, it holds that S is the rulebook of game GS . Consider a
complete set S of size m + 1. Let AS = {a ∈ A | as′ ∈ S} and for a ∈ AS let
Sa = {s′ | as′ ∈ S}. Note that since S is complete a ∈ AS if and only if ā ∈ AS .
Also, it can be seen that for each a ∈ AS , Sa and Sā are complete sets with size
≤ m. By induction hypothesis for each of these one can construct corresponding
games GSa and GSā . Now there are two cases, either |AS | = 2 or |AS | > 2.

Case 1: When |AS | = 2 i,e. AS = {a, ā}, we construct the gameGS as follows.
At the root node we have a player node v with two action a and ā leading to GSa

and GSā respectively.
Case 2: When |AS | > 2 then AS = {b1, b̄1 . . . bk, b̄k}. In this case we have at

the root a chance node c with k outgoing edges each with probability 1/k. ∀bi
there is an edge from c to a node vi. From vi there are actions bi and b̄i leading to
GSbi

and GSb̄i
respectively.

The control of a node v as well as the observation is determined the action
labels out of v. This completes the construction of the game.

Corollary 4.10. Given a game G = (S,Λ) in its sequence form, a game G in
extensive form with sequence set S can be constructed in PTIME.

Proof. Given S we construct the complete game tree following the procedure
described in proof of Proposition 4.9. All that is left to do is to assign the utility
to leaves. For any leaf t, the utility is Λ(t) factored by the product of the chance
probabilities in the constructed game.

Remark 4.11. If a sequence set S over A = AMax ∪AMin is complete then using
the arguments in the proof of Proposition 4.9 we can show that SMax and SMin are
also complete sets over AMax and AMin respectively. The converse is however not

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 64

true. Take for example the sequence set S = {ab, āb̄} over AMax = {a, ā} and
AMin = {b, b̄}. S is not complete since it contains no sequence starting with ab̄.

We saw how to construct a game in extensive form from a rulebook. Now
what about the case when a sequence set is not complete. Can we start from
an incomplete sequence set and extend it to a rulebook without blowing up the
size of the �nal sequence set by too much? It turns out this can be achieved
simply by extending S with the addition of only a single action to every sequence
contradicting completeness. We call this set the closure.

De�nition 32 (Closure of a set of sequences). For a sequence set S ⊆ Seq(A) the
closure of S denoted by cl(S) is de�ned as cl(S) = S∪{sā | sas′ ∈ S, sāA∗∩S =
∅} ∪ {sa | sās′ ∈ S, saA∗ ∩ S = ∅}

Observe that when S1 = {a} and S2 = {ā} for some a, ā ∈ A, cl(S1) =
cl(S2) = {a, ā} = (a+ ā). For a and ā we will often use the notation cl(a) and
cl(ā) to denote (a+ ā).

Example 4.7. For the incomplete set S = {ab, b̄}, the closure is given by cl(S) =
{ab, ā, ab̄, b, b̄}.

Lemma 4.12. For a set S ⊆ Seq(A), cl(S) is complete and |cl(S)| is O(|A||S|).

Proof. The completeness of cl(S) follows from the de�nition of closure.
Since for every s ∈ S we are adding at most |s| sequence in cl(S) it follows

that |cl(S)| ≤ |A||S|. Hence size of cl(S) is O(|A||S|).

Another important thing to check is if properties like A-loss recall or perfect
recall are preserved under the closure. For this we list out certain properties with
respect to preservation of recall properties.

Lemma 4.13. Let S ⊆ Seq(AMax) be a sequence set of Max and for sas′ ∈ S, let
S′ = S ∪ {sā}. Then the following is true:

1. S has A-loss recall =⇒ S′ has A-loss recall.

2. S has perfect recall =⇒ S′ has perfect recall.

Proof. For the �rst part, since S has A-loss recall, then for S′ to not have A-loss
recall, there must exist some s0 ∈ S such that s0 6∼A sā. Observe that∼A is closed
under pre�xes. That is any proper pre�x of s0 and sas′ are A-loss compatible.
This means s0 ∼A sa. Hence s0 ∼A s(a+ ā), more particularly s0 ∼A sā which
is a contradiction. Hence S′ has A-loss recall.

Since ∼P is also closed under pre�xes the same holds for perfect recall.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 65

Corollary 4.14. If a set S ⊆ Seq(AMax) has A-loss (perfect) recall, so does cl(S).

Proof. The closure cl(S) is the addition of sequences of the form sā to S. Since
A-loss (perfect) recall is preserved after every addition according to Lemma 4.13,
this follows.

Now we are ready to prove Theorem 4.7.

Proof of Theorem 4.7. Let G = (S,Λ) be a one player game where S has an A-loss
recall shu�e S†. Let S′ = cl(S†). We will give the equivalent game G′ = (S′,Λ′)
by de�ning the augmented utility function Λ′. For every newly added sequence
in the closure the utility is 0 i.e., for s ∈ S′ \ S†, Λ′(s) = 0. And for sequences
already in S† we set the utility to be same as its permutation in S i.e., for s† ∈ S†,
Λ′(s†) = Λ(s) where s† is the permutation of s.

From Lemma 4.12 it follows that S′ is a rulebook of size at most |A||S|. Also
Corollary 4.14 tells us that S′ has A-loss recall. We just need to show G and G′ are
equivalent. Observe that for a sequence s and its permutation s†, µ(s) = µ(s†).
Hence µ(S) = µ(S†). The payo� polynomial of G′ is f ′G =

∑
s∈S′

Λ′(s)µ(s) =∑
s∈S

Λ(s)µ(s) = fG. This is because Λ′(s) = 0 for newly added sequences. Since

the payo� polynomial ofG andG′ are the same, it follows from Proposition 4.5 that
G and G′ are equivalent. Now since |S′| = |A||S| and Λ′ assigns 0 to sequences
in S′ \ S†, we have |G′| ≤ |G|+ |S′ \ S†| which is O(|G||A|). This completes the
proof.

For example in Fig. 4.3 the game on the left doesn’t have A-loss recall. However
the game on the right is an equivalent game with A-loss recall.
Remark 4.15. By careful analysis, the size of the equivalent gameG′ in Theorem 4.7
can be improved to |G|. This is because we show later in Lemma 4.27 that A-loss
recall shu�es of complete sets are also complete. Hence for the A-loss recall shu�e
S† of S, we will have cl(S†) = S† and this will essentially make S′ \ S† = ∅ in
the proof.

Stitch

De�nition 33. Given action setsAMax andAMin, and a relationR ⊆ Seq(AMax)×
Seq(AMin), Stitch(R) ⊆ Seq(AMax ∪AMin) is de�ned as
Stitch(R) = {s1s2|(s1, s2) ∈ R}.

For a sequence s, let sMax and sMin be sub-sequences of s restricted to AMax

and AMin respectively.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 66

Lemma 4.16. LetG = (S,Λ) be a two player game with rulebook S and letRs =
{(sMax, sMin) | s ∈ S}. Let G′ = (S′,Λ′) be a game with S′ = cl(Stitch(RS))
and Λ′ as follows:

Λ′(s1s2) = Λ(s) when s1 = sMax, s2 = sMin

= 0 s1s2 6∈ Stitch(Rs)

Then G is equivalent to G′.

Proof. For any sequence s ∈ S, the sequence sMaxsMin ∈ S′ and
µ(s) = µ(sMaxsMin). Also for any sequence s 6∈ Stitch(Rs), Λ′(s′) = 0. Hence
using similar arguments to the proof of Theorem 4.7, it follows that G and G′ have
the same payo� polynomial. This completes the proof.

Lemma 4.16 tells us that any two player game in the extensive form is equivalent
to another game where all actions of Max precede all actions of Min.

Now we will prove Theorem 4.8.

Proof of Theorem 4.8. LetG = (S,Λ) be a two player game whereSMax has perfect
recall and SMin has A-loss recall shu�e S†Min. LetR = {(sMax, s

†
Min)|s ∈ S, s†Min ∈

S†Min is permutation of sMin} and let S′ = cl(Stitch(R)).
Let G = (S′,Λ′) be a game where Λ′ is de�ned as follows: For s ∈ S′ \

Stitch(R), Λ′(s) = 0 and for s′ ∈ Stitch(R), Λ′(s′) = Λ(s) where s′ is the
permutation of s. Using similar arguments to the proof of Lemma 4.16, it can
be shown that G and G′ have the same payo� polynomial. Hence G and G′ are
equivalent. Also from Lemma 4.12 it follows that since we S′ has at most |S||A|
sequences, |G′| is O(|G||A|).

Now we just need to show that S′Max has perfect recall and S′Min has A-loss
recall. Since all actions of Max precede all actions of Min in every sequence s,
observe that S′Max is essentially cl(SMax). And since SMax has perfect recall, it
follows from Corollary 4.14 that S′Max also has perfect recall.

Now for Min, S′Min is formed by adding at each step, sequences of the form sā

to S†Min, for some sas′ in S†Min. Hence it follows from Lemma 4.13 that S′Min has
A-loss recall.

Given a game without prior knowledge about the recalls of players, it can
be e�ciently veri�ed if a certain player has perfect recall or A-loss recall. We
can do this by verifying pairwise compatibility of every pair of sequences by an
end to end string comparison. However for A-loss recall shu�e, the de�nition
doesn’t immediately provide a similar algorithm. A �rst approach would be to
�nd permutations of sequences that are pairwise compatible. However any pair

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 67

of A-loss recall incompatible sequences can always be shu�ed to turn them A-
loss recall compatible, but making one pair compatible might make another pair
incompatible.

Example 4.8. Let S = {ab, bc, ca}. For the rulebook cl(S) to be have A-loss
recall, its subset S needs to have A-loss recall shu�e as well. Now in any shu�e of
S that has A-loss, the sequences ab and bc must be present in the form ba and bc.
But then the sequence ca cannot be permuted to make it A-loss recall compatible
with ba. Hence S, and consequently cl(S) cannot have A-loss recall shu�es.

Now when we use the arguments described in Example 4.8 to see if a set has
A-loss recall shu�e, in the process of turning a particular incompatible pair into
compatible forms can possibly o�er lots of permutations of the pairs to choose
from. We will list out exactly the set of possible compatible forms for a pair.

For a sequence s ∈ S, let Act(s) ⊆ A be the set of all actions that appear in s.

Lemma 4.17. Let S ⊆ Seq(AMax) be a sequence set and s1, s2 be two sequences
inS. Let com = Act(s1)∩Act(s2) be the set of all common actions in s1 and s2, for
i, j ∈ {1, 2} and i 6= j, let co-actsi = (Act(si)∩ cl(Act(sj))) \ com be the set of
all the actions in si which has a co-action in sj and restsi = Act(si)\cl(Act(sj))
be all the other actions in si. Let s′1 and s′2 be permutations of s1 and s2 respectively,
such that s′1 ∼A s′2. Then s′1 and s′2 must satisfy the following:

• If co-actsi = ∅, then s′1 = sw1 and s′2 = sw2 where Act(s) = com and
Act(wi) = restsi

• If co-actsi 6= ∅, then s′1 = sa1w1 and s′2 = sa2w2 where Act(s) ⊆
com, ai ∈ co-actsi , cl(ai) = {a1, a2} and Act(wi) = (com \ Act(s)) ∪
(co-actsi \ {ai}) ∪ restsi

Proof. Notice that co-acts1 = ∅ i� co-acts2 = ∅. In this case, for s1 ∼A s2 to
hold, s1 and s2 must satisfy the �rst condition in De�nition 24 and hence this
follows. Now when co-actsi are non-empty, s1 and s2 can satisfy either of the
conditions for ∼A. In both the cases, this satis�es the de�nition.

Hence starting from a sequence set, in order for the whole set to have an A-loss
recall shu�e, every pair of sequences induces some constraints on each of the
sequences in the shu�ed form. It is needless to say that checking all possible
combinations of permutations of pairs of sequences to check which one works
for the whole set is a costly procedure. So our next step is to identify sequence
sets with A-loss recall shu�e e�ciently. From Theorem 4.7 and Theorem 4.8 we
can deduce that for identifying A-loss recall shu�es it is su�cient to work with

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 68

sequence sets of one player. So given a sequence set S over action set A, we have
two objectives: First we want to detect if S has an A-loss recall shu�e. Next if S
has an A-loss recall shu�e then we want to compute the A-loss recall shu�e so
that we can build the equivalent game. In the next section we will provide one
single algorithm that will achieve both these goals e�ciently.

0

c

0

c̄

a

-2

d

3
d̄

ā

1
2

1

d

-1
d̄

b

0

c

0

c̄

b̄

1
2

(a)

0

a

-2

ā

1
2

1

b

0
b̄

1
2

d

0

a

3

ā

1
2

-1

b

0
b̄

1
2

d̄

(b)

Figure 4.5: A-loss recall shu�e using sequences with non-zero payo�

Remark 4.18. Given a rulebook, in order to �nd A-loss recall shu�es and construct
the equivalent game, we considered all sequences from the rulebook. This can be
slightly optimized by taking sequences only with non-zero utility in the original
sequence form. For example in Fig. 4.5 the rulebook of the game on the left doesn’t
have A-loss recall shu�e. This is because from Lemma 4.17 it follows that the pair
ad and bd has the form da and db in the shu�e, and ac and b̄c̄ has the form ca
and c̄b̄. But then da 6∼A ca. However if we take only the sequences with non-zero
Λ values, then the resulting set has an A-loss recall shu�e. The closure of this
shu�e gives us the game on the right on using the construction in Proposition 4.9.
Note that in the game on the left, Max has an incentive to go to the zero payo�
leaves since there are negative payo�s in the middle part. However they can be
avoided for computational purposes.

Remark 4.19. In regards to the last remark, for an arbitrary sequence set S and its
closure cl(S), we can deduce that if cl(S) has an A-loss recall shu�e then S also
has an A-loss recall shu�e, since S ⊆ cl(S). But the other direction is not true in
general. For example, if S = {ba, ca} then {ab, ac} is an A-loss recall shu�e of S.
But the closure cl(S) = {b̄, ba, bā, c̄, ca, cā} has no A-loss recall shu�e. This is
because, again from Lemma 4.17, ba and ca must be in the form ab and ac in the
shu�e. But then b̄ 6∼A ab.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 69

4.3 Finding A-loss recall shu�les

In this section we study properties of sequence sets for which an A-loss recall
shu�e exists and devise an algorithm to identify such sets and eventually �nd the
shu�e. Since we are working with one player sequence sets, we will only consider
sequence sets S over A = AMax.

First we set up some notations that we will use for the rest of this chapter.
Recall that for s ∈ S, Act(s) is the set of all actions in s. For S ⊆ Seq(A)
and a ∈ A, let Sa = {s ∈ S | a ∈ Act(s)}, Sā = {s ∈ S | ā ∈ Act(s)},
S 6a = S \ (Sa ∪ Sā). For a set S, let Act(S) = {a | a ∈ Act(s) for some s ∈ S}.
For a sequence s and A′ ⊆ A, let s[A′] be the sequence s with only the actions
restricted to A′ and let S[A′] = {s[A′] | s ∈ S}. Let s[\A′] = s[A \A′]. S[\A′] is
de�ned similarly. We use the notation s[\a] and S[\a] when A′ = {a}. Also for
a ∈ A let aS = {as | s ∈ S}.

How do sequence sets with A-loss recall look like?

Before �nding A-loss recall shu�es of sequence sets, we will have some insight
about the structure of sets with A-loss recall. First we will de�ne the notion of
connected sets that will be useful in breaking down the problem of �nding A-loss
recall shu�e into smaller instances.

De�nition 34 (Connectedness). For two sequences s1 and s2 from Seq(A), s1

and s2 are said to be connected if cl(Act(s1)) ∩ cl(Act(s2)) 6= ∅.
For sequence sets S1 and S2, S1 and S2 are said to be connected if there exist

s1 ∈ S1 and s2 ∈ S2 such that s1 and s2 are connected.
A sequence set S is called connected if for all disjoint partitions S1, S2 of S,

i.e., S = S1] S2, S1 and S2 are connected.

Lemma 4.20. A sequence set S can be uniquely decomposed into disjoint sets
{Si} such that each Si is connected.

Proof. Consider an undirected graph where the vertices are sequences from S and
there is an edge between two nodes, if the corresponding sequences are connected.
Then the connected components of this graph give the desired decomposition.

Each set Si in the decomposition is called a connected component of S.

Example 4.9. The set S = {ab, b, b̄c, ac, dē, ef} is a disconnected set whose
connected components are S1 = {ab, b, b̄c, ac} and S2 = {dē, ef}. cl(Act(S1))∩
cl(Act(S2)) are disjoint. S2 is connected since dē and ef are connected. S1 is
connected because ab, b̄c, ac are all mutually connected and b is connected to both
ab and b̄c.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 70

Equipped with the notion of connectedness, there is now a simpler interpre-
tation of the relation ∼A. For two sequences s1 and s2, when s1 ∼A s2, either
(s1, s2) = (ss′1, ss

′
2) with s′1 and s′2 being disconnected or (s1, s2) = (sas′1, sās

′
2)

for some a, ā ∈ A.
Now we will state some simple observations on the A-loss recall compatibility

of two sequences.

Lemma 4.21. Let s1 and s2 be two sequences in Seq(A). Then the following
statements are true.

1. For any a, ā ∈ A such that Act({s1, s2}) ∩ cl(a) = ∅, it holds that as1 ∼A
ās2.

2. If s1 ∼A s2 and for some a, ā ∈ A, Act({s1, s2})∩ cl(a) = ∅, then as1 ∼A
as2 and ās1 ∼A ās2

3. If s1 ∼A s2 such that a ∈ Act(s1) and a ∈ Act(s2) then s1[\a] ∼A s2[\a].

4. If s1 ∼A s2 such that a ∈ Act(s1) and cl(a)∩Act(s2) = ∅, then s1[\a] ∼A
s2.

Proof. The �rst statement follows from the de�nition of∼A. The second statement
is true since adding common pre�xes doesn’t interfere with the rest of the sequence
for A-loss recall compatibility.

For the third statement, since s1 ∼A s2, either (s1, s2) = (ss′1, ss
′
2) with

s′1 and s′2 being disconnected or (s1, s2) = (sbs′1, sb̄s
′
2) for some b ∈ A. In the

�rst case a can only be present in s and deletion of a preserves the form, hence
preserving A-loss recall compatibility. In the second case a can be in s or both in
s′1 and s′2. In either case deletion of a still preserves the form and consequently
A-loss recall compatibility. Hence in both case s1[\a] ∼ s2[\a].

For the fourth statement, again either (s1, s2) = (ss′1, ss
′
2) with s′1 and s′2 being

disconnected or (s1, s2) = (sbs′1, sb̄s
′
2) for some b ∈ A. Since cl(a) ∩Act(s2) =

∅, it follows that a ∈ s′1. Hence removing a preserves the structure for ∼A
compatibility.

Proposition 4.22. Let S ⊆ Seq(A) be a sequence set with A-loss recall. Then
the following statements are true:

1. If S is connected, then S = aS1] āS2 for some a ∈ A where each of S1

and S2 has A-loss recall.

2. If S is disconnected and let S =]iSi be the decomposition of S into disjoint
connected components, then each Si has A-loss recall.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 71

Proof. Since any subset of a set with A-loss recall also has A-loss recall, the second
statement follows. We will now prove the �rst statement.

Let s = as′ be a sequence in S. Consider the sets Sa and Sā. Now from
the de�nition of ∼A, we cannot have a sequence of the form s′′as′′′ in Sa with
non-empty s′′, since then as′ 6∼A s′′as′′′. Hence all sequences in Sa start with a
and let Sa = aS1. Similar statement holds for ā and Sā. Let Sā = āS2. For any
as1, as2 ∈ Sa, we have as1 ∼A as2. From Lemma 4.21 it follows that s1 ∼A s2.
Hence S1 has A-loss recall. By similar argument S2 also has A-loss recall. Now
if S 6a = ∅, we are done. Suppose this is not true. Then since S is connected,
(Sa ∪ Sā) and S6a are connected. Then w.l.o.g. there is a sequence s0 = as′0 and
another sequence s3 = s′3bs

′′
3 in S with b 6∈ cl(a) but b ∈ cl(Act(s′0). But then

from de�nition of ∼A it follows that s0 6∼A s3 which contradicts the fact that S
has A-loss recall. Hence S 6a = ∅. Therefore S = aS1] āS2 and each of S1 and S2

has A-loss recall.

Proposition 4.22 gives a recursive characterization of sequences sets with A-
loss recall. Now we will exploit this recursive structure to characterize sequence
sets with A-loss recall shu�e and compute it.

Finding A-loss recall shu�les

We start with an arbitrary sequence set S ⊆ Seq(A) and our goal is to check if S
has an A-loss recall shu�e.

Firstly we see that, looking for A-loss recall shu�e of a sequence set can be
decomposed in �nding A-loss recall shu�e of each connected component.

Proposition 4.23. LetS be a disconnected set andS =]iSi be the decomposition
of S into disjoint connected components. Then S has an A-loss recall shu�e i�
each connected component Si has an A-loss recall shu�e.

Proof. For the forward direction let S+ be an A-loss recall shu�e of S. For each
s ∈ S, let s+ be the permutation of s in S+. For Si, let S+

i = {s+ | s ∈ Si}.
For any two disconnected sequences s1 and s2, s+

1 and s+
2 are also disconnected.

Hence {S+
i } is the decomposition of S+ into connected components. It follows

from Proposition 4.22 that each S+
i had A-loss recall. Hence for each i, S+

i is an
A-loss recall shu�e of S+

i . This proves the statement.
For the other direction let S+

i be an A-loss recall shu�e of each connected
component Si of S. Let S+ = ∪iS+

i . We claim that S+ is an A-loss recall shu�e
of S. For s ∈ S, s ∈ Si for some i. Let s+ be the permutation of s in S+

i . Hence
every sequence s has a permutation in S+. Now for s1, s2 ∈ S+

i it is already true
that s1 ∼A s2. If s1 ∈ S+

i and s2 ∈ S+
j for distinct i and j, we know that s1 and

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 72

s2 are disconnected. Hence s1 ∼A s2 in this case as well. Hence S+ has A-loss
recall and it is an A-loss recall shu�e of S. This completes the proof.

Corollary 4.24. For a set S, let S+
i be an A-loss recall shu�e of each connected

component Si of S. Then S+ = ∪iS+
i is an A-loss recall shu�e of S.

Now we will see a recursive condition for a connected sequence set to have an
A-loss recall shu�e.

Proposition 4.25. Let S be a connected set.

1. S has an A-loss recall shu�e =⇒ ∃a, ā ∈ A such that S 6a = ∅

2. Suppose ∃a, ā ∈ A such that S6a = ∅ . Then S has an A-loss recall shu�e i�
both Sa[\a] and Sā[\ā] have A-loss recall shu�es.

Proof.

(1)
Let S+ be an A-loss recall shu�e of S. S+ is also connected. It follows from

Proposition 4.22 that for some a and ā, S = aS1] āS2 where each of S1 and S2

has A-loss recall. For action a, ā it follows that S6a = ∅.
(2)

We �rst prove the backward direction. Let S1 and S2 be A-loss recall shu�es
of Sa[\a] and Sā[\ā] respectively. Let S+ = aS1] āS2. We claim that S+ is an
A-loss recall shu�e of S. First we show that S+ is a shu�e of S. Since S1 is
a shu�e of Sa[\a], it follows that aS1 is a shu�e of Sa. Similarly āS2 is also a
shu�e of Sā. Hence S+ is indeed a shu�e of S.

Now we will show that S+ has A-loss recall. For any two sequences as1, as2 ∈
aS1, since s1 ∼A s2, it follows from Lemma 4.21 that as1 ∼ as2. Hence aS1

has A-loss recall. By similar arguments āS2 has A-loss recall as well. Also since
aS1 ∩ āS2 = ∅, it follows that S+ is an A-loss shu�e of S.

Now for the forward direction let S+ be an A-loss recall shu�e of S. We have
S+ = S+

a] S+
ā . We observe that S+

a and S+
ā are A-loss recall shu�es of Sa and

Sā respectively. Consider the sets S+
a [\a] and S+

ā [\ā]. We claim that these are
A-loss recall shu�es of Sa[\a] and Sā[\ā] respectively. We observe that S+

a [\a]
is a shu�e of Sa[\a]. It remains to show that this set has A-loss recall. Let s1

and s2 be any two sequences in S+
a [\a]. There exists s′1 and s′2 in S+

a such that
s1 = s′1[\a] and s2 = s′2[\a]. S+

a has A-loss recall and hence s′1 ∼A s′2. It follows
from Lemma 4.21 that s1 ∼A s2. Hence S+

a [\a] has A-loss recall shu�e. Similarly
it can be shown that S+

ā [\ā] also has A-loss recall. Hence S+
a [\a] and S+

ā [\ā]
are A-loss recall shu�es of Sa[\a] and Sā[\ā] respectively. This completes the
proof.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 73

Corollary 4.26. Let S be a connected set with S6a = ∅ for some a, ā ∈ A. Let
S1 and S2 be A-loss recall shu�es of Sa[\a] and Sā[\ā] respectively. Then S+ =
aS1 ∪ āS2 is an A-loss recall shu�e of S.

Proposition 4.25 tells us how to �nd A-loss recall shu�e of connected sets.
The �rst statement provides a necessary condition for a connected sequence set
S to have A-loss recall shu�e. It says that one must be able to �nd a, ā such
that S6a = ∅. Once we have found any such a, ā, the second statement gives us a
necessary and su�cient condition. The only way S can have A-loss recall shu�e is
when each of the sets Sa[\a] and Sā[\ā] has A-loss recall shu�es. Hence they are
recursively checked for A-loss recall shu�es. Furthermore, if there are multiple
actions a satisfying S 6a = ∅, it does not matter in which order we pick them for
the recursive call.

Example 4.10. In Fig. 4.5, the game in Fig. 4.5a has sequence set
S = {ac, ac̄, ād, ād̄, bd, bd̄, b̄c, b̄c̄} which doesn’t have A-loss recall shu�e. This is
because this set is connected but it fails the �rst condition in Proposition 4.25. On
the other hand, if we take the sub-set of S, S′ = {ād, ād̄, bd, bd̄} which doesn’t
have A-loss recall, we can �nd the A-loss recall shu�e {dā, d̄ā, db, d̄b} from which
we can construct the game in Fig. 4.5b.

Using Proposition 4.23 and Proposition 4.25 we can also deduce a nice property
of A-loss recall shu�es of complete sets.

Lemma 4.27. Let S ⊆ AMax be a complete sequence set and let S† be an A-loss
recall shu�e of S. Then S† is also a complete set.

Proof. We show this by induction on the size of AMax. This is trivial for the
case when AMax is of the form {a, ā}. Now suppose the statement is true when
|AMax| = 2k. Let |AMax| = 2k + 2. If S is disconnected with connected compo-
nents Si, then each of Si is complete since cl(Si) ∩ cl(Sj) = ∅ for i 6= j. And
since number of actions in each component is strictly less, by induction hypothesis
and application of Proposition 4.23 each of the shu�es S†i are also complete. This
implies S is complete.

Now in the case when S is connected, since S has A-loss recall, we know from
Proposition 4.25 that for some a, ā, S† = aS1] āS2 where S1 and S2 are A-loss
recall shu�es of Sa[\a] and Sā[\ā] respectively. For our purpose, it is su�cient to
show that each of the sets Sa[\a] and Sā[\ā] are complete. This is because from
induction hypothesis S1 and S2 would also be complete and for any complete set
S′ and any action a′, a′S′ is also a complete set. Suppose Sa[\a] is not complete.
Then for some sequence sbs′ ∈ Sa[\a], Sa[\a] has no sequence of the form sb̄s′′.
Also some sequence s0 ∈ S, sbs′ = s0[\a]. In s0, a exists either before b or after

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 74

b. a cannot be after b since then from completeness of S, there is a sequence of
form sb̄s′′′ ∈ S and sb̄s′′′[\a] ∈ Sa[\a]. The other possibility is a is before b in s0,
i.e s0 = s1as2bs

′. But in this case some s1as2b̄s
′′′ exists in S which would imply

sb̄s′′′ ∈ Sa[\a] which is a contradiction. Hence Sa[\a] is also complete. Similarly
we can show that Sā[\ā] is also complete. This completes the proof.

Based on our observations so far we provide an algorithm to check if a set S
has A-loss recall shu�e. The algorithm returns the shu�e if S has an A-loss recall
shu�e and returns -1 otherwise.

Algorithm 1 Compute A-loss recall shu�e
1: Input : S
2: function A-loss Recall Shuffle(S)
3: if S is connected then

4: if ∃a such that S 6a = ∅ then
5: S1 ← A-loss Recall Shuffle(Sa[\a])
6: S2 ← A-loss Recall Shuffle(Sā[\ā])
7: S+ ← aS1 ∪ āS2

8: return S+

9: else

10: return -1 (A-loss recall shu�e not possible)
11: else

12: S =]Si where each Si is connected
13: S+ = ∪A-loss Recall Shuffle(Si)
14: return S+

We use the previous propositions to establish the correctness and running time
of Algorithm 1.

Theorem 4.28. Given a set sequence set S the function A-loss Recall Shuffle in

Algorithm 1 runs in polynomial time constructing an A-loss recall shu�e of S if there

exists one or otherwise returns −1.

Proof. For correctness, �rst when S is disconnected following Proposition 4.23,
the function A-loss Recall Shuffle is called recursively on each connected
component in Line 13 applying Corollary 4.24. When S is connected based on
Proposition 4.25, if an action a satisfying the condition is not found in Line 4
then A-loss recall shu�e doesn’t exist as returned in Line 10. If such an action
a is found, then again based on Proposition 4.25 and Corollary 4.26 the function

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 75

A-loss Recall Shuffle is called upon Sa[\a] and Sā[\ā] recursively in Line 5 and
6 respectively.

For the running time analysis, observe that recursive calls in Lines 5 and 6 as
well as in Line 13 are called on disjoint non-overlapping subsets. Finding connected
component of a set takes linear time using graph. Checking the condition in Line 4
also takes linear time. Hence Algorithm 1 runs in linear time in the input size.

Algorithm 1 can be used to solve a two player game given Max has perfect
recall and Min has A-loss recall shu�e following Theorem 4.8. Recall that the
operation Stitch de�ned in De�nition 33 produces a sequence set overA following
Lemma 4.16.

Algorithm 2 Simplify Game with shu�e
1: Input : G in extensive form where Max has perfect recall
2: (S,Λ)← G in sequence form
3: S1 ← SMax

4: S2 ← SMin

5: if A-loss Recall Shuffle(S2) returns −1 then

6: No simpli�cation of G possible with shu�es
7: return G
8: else

9: S+
2 ← A-loss Recall Shuffle(S2)

10: R = {(sMax, s
+
Min)|s ∈ S}

11: S′ ← cl(Stitch(R))
12: G′ ← (S′,Λ′) in sequence form
13: return G′

Now it is possible that a sequence set S doesn’t have an A-loss recall shu�e.
So to deal with any sequence set in general we generalize the notion of A-loss
recall shu�e to A-loss recall span and devise an algorithm to compute them.

4.4 GeneralizingA-loss recall shu�le: A-loss recall span

In this section we will generalize the notion of A-loss recall shu�e. The key
observation in this process is that in the case of A-loss recall shu�es, the games G
and G′ become equivalent via payo� polynomials because the set of monomials
generated by the two games are the same. But actually in order to have the same
payo� polynomial, the exact same set of monomials is not required. Any set of
monomials that can linearly combine and generate the other payo� polynomial is

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 76

su�cient. In fact any set of monomials that can generate each monomial in the
other set su�ces. For this we will see the notion of spanning sets and later A-loss
recall Span.

We de�ne spanning sets over the action set AMax of player Max.

De�nition 35 (Spanning sets). For two sequence sets S, S′ ⊆ Seq(AMax), S is
said to span S′ denoted by S′ E S, if for each sequence s′ in S′, µ(s′) can be
expressed as a linear combination of monomials of sequences in S. In other words,
S′ E S i� ∀s′ ∈ S′, µ(s′) =

∑
s∈S

ks
′
s µ(s) where ks′s ∈ R.

For sets S, S′ such that S′ E S, the span matrix of S′ w.r.t. S denoted by
MS′

S is a |S′| × |S|matrix indexed by {(s′, s)}s′∈S′, s∈S , where the entry at (s′, s)
denoted byMS′

S [s′,s] = ks
′
s .

Example 4.11. Over the set of actions A = {a, ā, b, b̄}, the sequence set S =
{ab, ab̄, āb, āb̄} spans the sequence set S′ = {ā, b, ba}. This is because xaxb is
already present in µ(S), xb = xaxb + (1 − xa)xb and (1 − xa) = (1 − xa)xb +
(1− xa)(1− xb). The span matrixMS′

S is the following:

ab ab̄ āb āb̄[]ā 0 0 1 1

b 1 0 1 0
ba 1 0 0 0

Now we are ready to de�ne A-loss recall span.

De�nition 36 (A-loss recall Span). For a sequence set S ⊆ Seq(AMax), an A-loss
recall span S† of S is a sequence set such that S† has A-loss recall and S E S†.

In Example 4.11, S is an A-loss recall span of S′ since S has A-loss recall.
Observe that S′ doesn’t have an A-loss recall shu�e.

It is needless to say that A-loss recall shu�e is a special kind of A-loss recall
span where µ(S) = µ(S′). We saw earlier that for an arbitrary sequence set,
an A-loss recall shu�e does not always exist. However it turns out that every
sequence set always has an A-loss recall span. The caveat here is that the size of
the A-loss recall span is not guaranteed to be polynomially bounded in the size of
the initial sequence set. So the following task is to �nd small A-loss recall spans of
a set. First we will see how to generate an A-loss recall span of any set. And then
we will see how to optimize the size of A-loss recall spans.

Since we deal with sequence sets of single player, once again we assume that
A = AMax.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 77

Theorem 4.29. Let S ⊆ Seq(A) be a sequence set, then there exists a sequence set

S† such that S† is an A-loss recall span of S.

Proof. Given a sequence set S we need to �nd a set S† such that S E S† and S†
has A-loss recall. We will directly construct the set S†.

Fix any ordering a1, ā1, . . . , an, ān of the actions in A. For a subset Z =
{i1, . . . , ik} ⊆ [n] with |Z| = k, let SZ = (ai1 + āi1) . . . (aik + āik) be the set of
all sequences of length k over action AZ =

⋃
ij

cl(aij), and each of them following

the ordering of actions.
We claim that S† = S[n] is an A-loss recall span of S.
By induction on the length of sequences using Lemma 4.21 it can be shown that

for any Z ⊆ [n], SZ has A-loss recall. We need to show that µ(S†) can generate
any monomial in µ(S)3.

First we make a simple observation. For any Z ⊆ [n] it can be veri�ed that∑
s∈SZ

µ(s) = 1.

Now for any sequence s ∈ Seq(A), we claim that the following is true:

µ(s) =
∑

s′∈S†,Act(s)⊆Act(s′)

µ(s′)

This is because if cl(s) = AZ for suitable Z ⊆ [n], then

∑
s′∈S†,Act(s)⊆Act(s′)

µ(s′) = µ(s)
∑

s′′∈S[n]\Z

µ(s′′) = µ(s)

Hence in the spanning matrix MS
S†

, the entry MS
S† [s,s′]

= 1 if Act(s) ⊆
Act(s′), otherwise it is 0. Hence S† is an A-loss recall span of S.

Example 4.12. In Fig. 4.6a the gameG doesn’t have A-loss recall. S = {a, b, c, abc}
is the set of sequences with non-zero payo�, since sequences with zero payo�
doesn’t contribute to the �nal payo�, it is su�cient to �nd an A-loss recall span of
S.
S† = {abc, abc̄, ab̄c, ab̄c̄, āb̄c̄, ābc̄, āb̄c, āb̄c̄} is the A-loss recall span of S obtained
using the construction in Theorem 4.29. The span matrixMS

S†
is obtained in this

process is given in Fig. 4.6b.
3In fact it can be shown that µ(S†) is a basis of the vector space of all multi-linear polynomials

over {xai} with R as the underlying �eld

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 78

1

c

0

c̄

1

b

0
b̄

1

c

0

c̄

b

0
b̄

a

0

ā

1

a

0

ā

(a)

abc abc̄ ab̄c ab̄c̄ ābc ābc̄ āb̄c āb̄c̄


a 1 1 1 1 0 0 0 0
b 1 1 0 0 1 1 0 0
c 1 0 1 0 1 0 1 0
abc 1 0 0 0 0 0 0 0

(b)

4
c

2
c̄

b

2
c

1
c̄

b̄

a

2
c

1
c̄

b

1
c

0
c̄

b̄

ā

(c)

Figure 4.6: The game G in Fig. 4.6a doesn’t have A-loss recall and S =
{a, b, c, abc} is the set of sequences with non-zero payo�s. The matrix in
Fig. 4.6b is the span matrix MS

S†
correspnding to the A-loss recall span S† =

{abc, abc̄, ab̄c, ab̄c̄, āb̄c̄, ābc̄, āb̄c, āb̄c̄} obtained in Theorem 4.29 for set S. The
game in Fig. 4.6c is a game G′ which is equivalent to G constructed usingMS

S†

A game G′ which is equivalent to G with sequence set S† constructed from
MS

S†
following Theorem 4.29 is given in Fig. 4.6c.

Now that we have established every sequence set has an A-loss recall span,
similar to A-loss recall shu�e we will see how to generate equivalent games using
spans. We will generalize the assignment of payo�s that we did in the case of
A-loss recall shu�e. Starting from a game G = (S,Λ) and an A-loss recall shu�e
S† of S we gave the equivalent game G′ = (S†,Λ′). Λ′ assigned an augmented
utility to s equal to that given to its permutation by Λ. Now given a span we will
assign utility as a linear combination of monomials that generate it.

Theorem 4.30. Let G = (S,Λ) be a one-player game with S ⊆ Seq(A) and let

S† be an A-loss recall span of S. Then there exists a game G′ = (S′,Λ′) with A-loss

recall such that G ∼ G′ and |S′| = O(|A||S†|).

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 79

Proof. Given S†, an A-loss recall span of S, let S′ = cl(S†) be the rulebook given
by the closure of S†. It follows from Corollary 4.14 and the de�nition of A-loss
recall span that S E S′ and S′ has A-loss recall. Any game with S′ as rulebook
will have A-loss recall by de�nition. Given G = (S,Λ) we will construct the
payo� function Λ′ in order to give the equivalent game G′ = (S′,Λ′). Now since
S E S′, for every s ∈ S we have µ(s) =

∑
s′∈S′

kss′µ(s′). Then the payo� function

Λ′ over S′ is given by:

Λ′(s′) =
∑
s∈S

kss′Λ(s)

Now for equivalence we will show that they have the same payo� polynomial.
The payo� polynomial in G′ is given by

∑
s′∈S′

µ(s′)Λ′(s′) =
∑
s′∈S′

µ(s′)
∑
s∈S

kss′Λ(s)

=
∑
s′∈S′

∑
s∈S

kss′µ(s)Λ(s)

=
∑
s∈S

∑
s′∈S′

kss′µ(s)Λ(s)

=
∑
s∈S

Λ(s)
∑
s′∈S′

kss′µ(s′)

=
∑
s∈S

µ(s)Λ(s)

This is the payo� polynomial of G and hence G ∼ G′.
Also it follows from Lemma 4.12 that |S′| = O(|A||S†|). This completes the

proof.

Remark 4.31. We don’t consider the size of the game G′, because we will see later
in Lemma 4.41 that for our purposes this adds only an extra polynomial factor to
the size S′.

Theorem 4.32. Let G = (S,Λ) be a two player game whereMax has perfect recall

and let S†Min be an A-loss recall span of SMin. Then there is a game G′ = (S′,Λ′)

with |S′| = O(|G||S†Min||A|) where Max has perfect recall, Min has A-loss recall

and G ∼ G′.

Proof. Let G = (S,Λ) be a two player game where SMax has perfect recall and
SMin has A-loss recall span S†Min.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 80

For a sequence s, let sMax and sMin be sub-sequences of s restricted to AMax

and AMin respectively. Let S′′ = SMaxS
†
Min = {s1s2|s1 ∈ SMax, s2 ∈ S†Min} and

let S′ = cl(S′′) be the closure of S′′.
Since S†Min spans SMin for every s ∈ S we have µ(sMin) =

∑
s′∈S†Min

ksMin
s′ µ(s′).

Let G′ = (S′,Λ′) be a game where Λ′ is de�ned as follows: For s ∈ S, s′ ∈ S†Min,
Λ′(sMaxs

′) = ksMin
s′ Λ(s) and for s′′ ∈ S′ \ S′′, Λ′(s′′) = 0.

Using similar arguments as in the proof of Theorem 4.30, it can be shown that
G and G′ has the same game polynomial. Hence G and G′ are equivalent and |S′|
is O(|G||S†Min||A|).

Now we just need to show that S′Max has perfect recall and S′Min has A-loss
recall. Since all actions of Max precede all actions of Min in every sequence s,
observe that S′Max is essentially cl(SMax). And since SMax has perfect recall, it
follows from Corollary 4.14 that S′Max also has perfect recall.

Now for Min, S′Min is formed by adding at each step sequences of the form sā

to S†Min, for some sas′ in S†Min. Hence it follows from Lemma 4.13 that S′Min has
A-loss recall.

Theorem 4.32 tells us that any game G where Max has perfect recall and
Min is non-absentminded, one can �nd an equivalent game G′ where Max has
perfect recall and Min has A-loss recall. Now the A-loss recall span used to prove
Theorem 4.29 is exponential in the size of the initial sequence set. This naturally
leads to the question: what is the smallest size of such an A-loss recall span.
Essentially given a sequence set S we want to �nd the minimal size S† such that
S E S† and S† has A-loss recall.
Remark 4.33. The size of the game S′ in Theorem 4.32 can be improved by replacing
|G||S†Min| with the number of non-zero entries in the span matrixMSMin

S†Min

. This

can be achieved as follows: S′′ = {sMaxs
′|s ∈ S, s′ ∈ S†Min, k

sMin
s′ 6= 0} and

S′ = cl(S′′). This doesn’t a�ect the way Λ′ is de�ned since all the redundant
sequences are no longer present. This might signi�cantly improve the size of G′
in the case whenMSMin

S†Min

is a sparse matrix even though S†Min is large.

4.4.1 Finding minimal A-loss recall span

For a sequence set S, the optimal A-loss recall span of S need not be an A-loss
recall shu�e. In this section we provide an exact algorithm to compute the optimal
A-loss recall span. For this we make some key observations borrowing insights
from the algorithm for �nding A-loss recall shu�e.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 81

Firstly, in similar �avor to Proposition 4.23 for A-loss recall shu�es, we show
that it is su�cient to �nd optimal A-loss recall spans of each connected component
of a sequence set. To show this, �rst we note that to span a sequence set S we
don’t require actions out of cl(Act(S)).

For x ∈ X and some b ∈ R, let f [x := b] be the resulting polynomial by
substituting x with b in f .

Lemma 4.34. Let S be a sequence set, and S† an optimal A-loss recall span of S.
Then Act(S†) ⊆ cl(Act(S)).

Proof. Suppose this is not true and let a ∈ A\cl(A′) such that cl(a)∩Act(S†) 6= ∅.
Consider the sets S†a, S†ā and S†6a that partition S†.
Pick any s ∈ S and consider the polynomial f = µ(s). f doesn’t contain the

variable xa.
Since S† spans S, we have f =

∑
s′∈S†

cs′µ(s′) = xaP + x̄aQ + R where

xaP =
∑
s′∈S†a

cs′µ(s′), x̄aQ =
∑
s′∈S†ā

cs′µ(s′) and R =
∑
s′∈S†6a

cs′µ(s′). Each of P ,Q

and R are independent of xa. Hence we have f [xa := 0] = f = Q + R and
f [xa := 1] = f = P +R.

Also since S† has A-loss recall, it follows from Lemma 4.21 that each of the sets
S†a[\a]∪ S†6a and S†ā[\ā]∪ S†6a has A-loss recall. Hence each of the sets, S†a[\a]∪ S†6a
and S†ā[\ā] ∪ S†6a are A-loss recall spans of S. But then if at least one of S†a or S†ā
is non-empty, this gives an A-loss recall span strictly smaller than S†. This is a
contradiction and hence Act(S†) ⊆ cl(A′).

Next we will see that, in order to �nd optimal A-loss recall span of a set S, it
is enough to �nd optimal spans of each connected component.

Proposition 4.35. For a sequence set S, let S =]iSi be a decomposition of S
into disjoint connected sets. For each i, let S†i be an optimal A-recall span of Si.
Then S† = ∪iS†i is an optimal A-loss recall span of S

Proof. Since, eachSi is spanned byS†i , it follows thatS† spansS. From Lemma 4.34
it also follows that for any distinct i and j, S†i and S†j are disconnected.

Lets assume that there is an A-loss recall span S′ of S such that |S′| < |S†| =∑
i
|S†i |. For each i, let S′i be a minimal subset of S′ that spans Si. Since S′i is

minimal, from Lemma 4.34 it follows that Act(S′i) ⊆ cl(Act(Si). This implies
S′i∩S′j = ∅ for any two distinct i and j. But then since |S′| =

∑
i
|S′i|, it must hold

that for some i we have |S′i| < |S
†
i |. But this contradicts the optimality of S†i .

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 82

Using Proposition 4.35 we can break down the problem of �nding optimal A-
loss recall span of a set to its connected components. We make a small observation
about the optimal A-loss recall span of a connected set.

Lemma 4.36. Let S be a connected sequence set and S† be an optimal A-loss
recall span of S. Then S† = aS1] āS2 for some a, ā, S1, S2.

Proof. Given a connected sequence set S, any optimal A-loss recall span S† of S
is also connected. This is because if one could �nd a partition S† = S†1] S

†
2, such

that S†1 and S†2 are disconnected, then the subsets of S individually spanned by
these two sets would be disconnected as well.

Since an A-loss recall span is a set with A-loss recall, it follows from Propo-
sition 4.22 that an optimal A-loss recall span of a connected set would have the
form aS1] āS2 for some a.

So for �nding optimal span of connected sets we need to �nd some a and ā
that can lead every sequence of an optimal A-loss recall span. For this we can �x
some a, ā and then �nd the smallest optimal A-loss recall span that starts with
either of these. We notice some optimal sub-structure in this method.

Proposition 4.37. Let S be a connected sequence set and let a ∈ Act(S). Let
S†1 and S†2 be some optimal A-loss recall spans of Sa[\a] ∪ S 6a and Sā[\ā] ∪ S6a
respectively. Then S† = aS†1 ∪ āS

†
2 is an A-loss recall span of S.

Furthermore, any A-loss recall span of S with all sequences starting with a or
ā has size at least |S†|.

Proof. First, we show that S† is an A-loss recall span of S. Since each of S†1 and
S†2 has A-loss recall, it follows from Lemma 4.21 that S† also has A-loss recall.
Now since S†1 spans Sa[\a], it follows that aS†1 spans Sa. Similarly, aS†2 spans
Sā. Finally, since each of S†1 and S†2 spans S6a, for any sequence s ∈ S 6a, we have
µ(s) =

∑
s′1∈S

†
1

cs′1µ(s′1) and also µ(s) =
∑

s′2∈S
†
2

cs′2µ(s′2). As a result we have µ(s) =

xa
∑

s′1∈S
†
1

cs′1µ(s′1) + (1− xa)
∑

s′2∈S
†
2

cs′2µ(s′2) =
∑

s′1∈S
†
1

cs′1µ(as′1) +
∑

s′2∈S
†
2

cs′2µ(ās′2).

It follows that S† spans S 6a as well. Hence, S† is indeed an A-loss recall span of S.
Now for the second part, let us assume that S has an A-loss recall span S′,

with all sequences starting with a and ā such that |S′| < |S†|.
Consider the sets S′a and S′ā that partition S′.
For any s ∈ S, the polynomial f = µ(s) can be written as follows: f =

xaP + x̄aQ where xaP =
∑
s′∈S′a

cs′µ(s′) and x̄aQ =
∑
s′∈S′ā

cs′µ(s′).

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 83

When s ∈ Sa, since µ(s) contains xa, we have f [xa := 0] = Q = 0. This
implies f = xaP . Again when s ∈ S6a, we have f [xa := 1] = P = f . In either of
these cases, s[\a] is spanned by S′a[\a]. Hence the set Sa[\a] ∪ S6a is spanned by
S′a[\a].

Also since S′a has A-loss recall it follows from Lemma 4.21 that S′a[\a] also
has A-loss recall. This implies that S′a[\a] is an A-loss recall span of Sa[\a] ∪ S6a.
By similar arguments it can be shown that S′ā[\ā] is an A-loss recall span of
Sā[\ā] ∪ S6a.

Now since |S′a[\a]|+ |S′ā[\ā]| = |S′| < |S†| ≤ |S†1|+ |S
†
2|, either |S′a[\a]| <

|S†1| or |S′ā[\ā]| < |S†2|. But this contradicts the optimality of either S†1or S†2.
Hence |S′| ≥ |S†|.

Proposition 4.37 gives us a way to �nd the optimal A-loss recall span of a
connected set once we �x a leading action of a span. We can try all possible leading
actions and check which one gives an optimal A-loss recall span. However there
are cases, where we can correctly guess the leading action of an optimal span
immediately without the need to try all possibilities. This is the case when for
some action a, ā, S6a = ∅.

Proposition 4.38. Let S be a connected sequence set such that for some a, S6a = ∅.
Let S†1 and S†2 be some optimal A-loss recall spans of Sa[\a] and Sā[\ā] respectively.
Then S† = aS†1 ∪ āS

†
2 is an optimal A-loss recall span of S.

Proof. We will show that there is an optimal A-loss recall span of S in which each
sequence starts with a or ā. Then it follows from Proposition 4.37 that S† is an
optimal A-loss recall span of S.

Let A′ = cl(Act(S)). We prove by induction on the size of A′ ⊆ A.
For A′ = {a, ā}, the statement is trivially true. Suppose the statement is true

for any A′ ⊆ A with |A′| = 2k for k < m. Now let S0 be a connected sequence
set overA′ with |A′| = 2m and let S†0 be an optimal A-loss recall span of S0. Since
S0 is connected, it follows from Lemma 4.36 for some b ∈ A′ all sequences in
an optimal A-loss recall span of S0 begins with an action in cl(b). Now applying
Proposition 4.37 let S†0 be an optimal A-loss recall span of S0 of the form bS1 + b̄S2

such that S1, S2 are optimal A-loss recall spans of Sb[\b] ∪ S6b and Sb̄[\b̄] ∪ S 6b
respectively. If b = a we are done.

Otherwise since every sequence in each of Sb[\b] ∪ S 6b and Sb̄[\b̄] ∪ S 6b has a
or ā in it, from induction hypothesis we can assume that all sequences in S1 and
S2 start with a or ā. So all sequences in S†0 starts with one of ba, bā, b̄a or b̄ā. Now
by applying Lemma 4.21 it follows that each of S†0 a[\a] and S†0 ā[\ā] has A-loss
recall respectively. Again applying Lemma 4.21, it follows each of aS†0 a[\a] and

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 84

āS†0 ā[\ā] has A-loss recall respectively. Finally again applying Lemma 4.21 one
last time it follows that aS†0 a[\a] ∪ āS†0 ā[\ā] has A-loss recall. This set is just a
shu�e of S†0 and hence it is the desired the A-loss recall span of S0. This completes
the proof.

Exponential size optimal A-loss recall span

We will provide a class of sequence sets for which the optimal A-loss recall span is
of exponential size ignoring some polynomial factors.

Proposition 4.39. For every n > 0, there exists a sequence set Sn ⊆ Seq(An)
with |An| = 2n and |Sn| = O(n2) such that the size of an optimal A-loss recall
span of Sn is O(2n).

Proof. For n > 0, letAn = cl({a1, . . . , an}) and let Sn = {ε, a1, . . . , an}∪{aiaj |
i < j}. Since µ(Sn) is symmetric w.r.t. all ai, w.l.o.g we can assume that it has an
optimal A-loss recall span starting with an. It follows from Proposition 4.37 that if
S′ and S′′ are optimal A-loss recall spans of San [\an] ∪ S6an and Sān [\ān] ∪ S6an
respectively, then anS′ ∪ ānS′′ is an optimal A-loss recall span of S. Now we
have S6an = {ε, a1, . . . , an−1} ∪ {aiaj | i < j < n} = Sn−1. As a result both
San [\an] ∪ S6an and Sān [\ān] ∪ S 6an are essentially Sn−1.

Let Tn be the size of an optimal A-loss recall span of Sn. From previous
arguments we have the recurrence T (n) = 2T (n− 1). Hence we have T (n) =
O(2n).

Now we provide a recursive algorithm to compute an optimal A-loss recall
span.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 85

Algorithm 3 Compute optimal A-loss recall spanning set
Input : S

1: if S = {ε} then
2: S′ ← {ε}
3: M′ ← Empty matrix with row-column co-ordinates S, S′
4: M′[ε,ε] = 1

5: return (S′,M′)
6: else

7: if S is connected then

8: if ∃a such that S 6a = ∅ then
9: (S1,M1)← A-loss Recall Span(Sa[\a])

10: (S2,M2)← A-loss Recall Span(Sā[\ā])
11: S′ ← aS1 ∪ āS2

12: M′ ← Empty matrix with row-column co-ordinates S, S′
13: for s ∈ S, s′ ∈ S′ do
14: if s ∈ Sa, s′ ∈ aS1 then

15: M′[s,s′] =M1 [s[\a],s′[\a]]

16: else if s ∈ Sā, s′ ∈ āS2 then

17: M′[s,s′] =M2 [s[\ā],s′[\ā]]

18: elseM′[s,s′] = 0

19: return (S′,M′)
20: else

21: for a ∈ Act(S) do
22: (Sa1 ,Ma

1)← A-loss Recall Span(S 6a ∪ Sa[\a])
23: (Sa2 ,Ma

2)← A-loss Recall Span(S 6a ∪ Sā[\ā])

24: a = argmina min
a∈Act(S)

|Sa1 |+ |Sa2 |

25: S′ ← aSa1 ∪ āSa2
26: M′ ← Empty matrix with row-column co-ordinates S, S′
27: for s ∈ S, s′ ∈ S′ do
28: if s ∈ Sa ∪ S6a, s′ ∈ aSa1 then

29: M′[s,s′] =Ma
1 [s[\a],s′[\a]]

30: else if s ∈ Sā ∪ S6a, s′ ∈ āSa2 then

31: M′[s,s′] =Ma
2 [s[\ā],s′[\ā]]

32: elseM′[s,s′] = 0

33: return (S′,M′)
34: else

35: S =]Si where each Si is connected
36: (S′i,Mi)← A-loss Recall Span(Si)
37: M′ ← Empty matrix with row-column co-ordinates S, S′
38: S′ ← ∪S′i
39: for s ∈ S, s′ ∈ S′ do
40: if s ∈ Si, s′ ∈ S′i then
41: M′[s,s′] =Mi[s,s′]

42: elseM′[s,s′] = 0

43: return (S′,M′)

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 86

Theorem 4.40. The function A-loss Recall Span in Algorithm 3 on input S returns

an optimal A-loss recall span S† of S and the corresponding span matrixMS
S†
.

Proof. The trivial case where only ε is present in the set is taken care of in line 1
returning the one-dimensional identity matrix as the span matrix.

When S is disconnected, from Proposition 4.23 it follows that the computation
can be decomposed into computing smallest A-loss recall spans of each connected
component. In line 35, the algorithm �nds the optimal A-loss recall span and
corresponding span matrix of individual connected components. The �nal A-loss
recall span is the union of all individual A-loss recall spans. Since two distinct
connected components are disconnected, it follows from Lemma 4.34 that their
optimal A-loss recall spans are also disconnected. Hence in the �nal span matrix,
the values corresponding to a component Si only concerns the sequences with
actions in Act(Si) and doesn’t touch other blocks in the matrix. This is why
for s ∈ Si, s

′ ∈ S′i we do M′[s,s′] = Mi[s,s′] and for two distinct connected
components Si and Sj , and for sequences si ∈ Si and sj ∈ S′j ,M′[si,sj] = 0.

Now when S is connected and for some a, cl(a) has intersection with all
sequences, it follows from Proposition 4.38 there is an optimal A-loss recall in
which all sequences start with actions from cl(a). This case is taken care in line 8
by recursively calling the function. The value of span matrix for the part Sa and
Sā are �lled independently.

The only case remaining is when S is connected but S 6a is non-empty for every
a. From Lemma 4.36 it follows that the A-loss recall span must start with actions
from cl(a) for some a. It also follows that the size of such an A-loss recall span
would be |Sa1 |+ |Sa2 |. The algorithm iterates over all actions to pick the action with
minimum size A-loss recall span in line 24. Following Proposition 4.37, for each a
as a possible candidate, it computes the optimal A-loss recall span starting with
cl(a) recursively. Once the actions a is found in this process, the �nal spanning
set in constructed as in Proposition 4.37. In the �nal span matrix, for a sequence
s ∈ S 6a, two position are �lled inM′ since to span it we need terms from both
Sa1 and Sa2 . Otherwise for terms in either of Sa or Sā only one position inM′
corresponding to sequence from either of Sa1 or Sa2 is �lled.

Now we will see the worst possible size of a game constructed from an optimal
A-loss recall span in terms of the size of the original game.

Lemma 4.41. Let G = (S,Λ) be a one-player Max game and let G′ = (S′,Λ′) be
the equivalent game to G with S = cl(S†) where S† is an optimal A-loss recall
span of S. Then |G′| = O(|S†| logK) where K =

∑
s∈S

Λ(s).

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 87

Proof. It follows from Algorithm 3 that the span matrix only contains 0 or 1 entries.
It also follows that S† is a complete set. Hence following the construction of G′ in
Theorem 4.30, the Λ′ value of any s′ ∈ S′ can be at most K =

∑
s∈S

Λ(s). Hence

|G′| is at most |S†| logK .

We know that the size of a game G = (S,Λ) is
∑
s∈S

log Λ(s). Lemma 4.41

justi�es the approach of �nding the optimal A-loss recall span and constructing
the equivalent A-loss recall game since it just leaves out a polynomial factor in the
size of the original game.

Worst Case Runtime Example

We will now show a class of sequence sets for which Algorithm 3 takes exponential
time to terminate.

Proposition 4.42. For every n > 0, there exists a sequence set Sn ⊆ Seq(An)
with |An| = 2n, |Sn| = O(n) such that Sn has an optimal A-loss recall span of
size O(n2) but Algorithm 3 takes exponential time to �nd an optimal A-loss recall
span of Sn.

Proof. Consider the action set An = {a1, ā1, . . . , an, ān}.
Let Sn = {ε, a1, . . . , an, a1 . . . an} over An. First we show that this has an

A-loss recall span of size O(n2).
Since µ(Sn) is symmetric with respect to all ai, there is an optimal A-loss

recall span of Sn starting with each ai. Let S†n be an optimal A-loss recall span
of Sn starting with an. It follows from Proposition 4.37 that if S′ and S′′ are
optimal A-loss recall spans of San [\an] ∪ S 6an and Sān [\ān] ∪ S 6an respectively,
then anS′ ∪ ānS′′ is an optimal A-loss recall span of S.

Now we have San [\an]∪S6an = Sn−1 and Sān [\ān]∪S 6an = {ε, a1, . . . , an−1}.
The set Sān [\ān]∪ S6an already has A-loss recall and hence it is the optimal A-loss
recall span of itself, i.e. |S′′| = n.

Let T (n) be the the size of the A-loss recall span of Sn. It follows that Tn
follows the recursion T (n) = T (n− 1) +O(n). Solving this gives T (n) = O(n2).

However the function A-loss Recall Span in Algorithm 3 takes exponential
time to �nd the optimal A-loss recall span. This is because since the set is symmetric,
it explores recursively each of the n! sequences of ai’s to �nd the minimal span of
Sn.

Example 4.13. The game G in Fig. 4.7a doesn’t have A-loss recall and S =
{a, b, c, abc} is the set of sequences with non-zero payo�s.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 88

1

c

0

c̄

1

b

0
b̄

1

c

0

c̄

b

0
b̄

a

0

ā

1

a

0

ā

(a)

a āb āc abc abc̄ ab̄c


a 1 0 0 0 0 0
b 0 1 0 1 1 0
c 0 0 1 1 0 1

abc 0 0 0 1 0 0

(b)

3

c

1

c̄

b

1

c

0

c̄

b̄

a

1

b

0
b̄

ā

1
a

1

c

0

c̄

ā

(c)

Figure 4.7: The gameG in Fig. 4.7a doesn’t have A-loss recall and S = {a, b, c, abc}
is the set of sequences with non-zero payo�s. S† = {a, āb, āc, abc, abc̄, ab̄c} is an
optimal A-loss recall span of S and the matrix in Fig. 4.7b is the span matrixMS

S†
.

The game in Fig. 4.7c is a game G′ which is equivalent to G constructed using
MS

S†

S† = {a, āb, āc, abc, abc̄, ab̄c} is an optimal A-loss recall span of S obtained using
Algorithm 3 and the matrix in Fig. 4.7b is the corresponding span matrixMS

S†
.

The game in Fig. 4.7c is a game G′ which is equivalent to G constructed using
MS

S†
. Any leaf with payo� zero in the G′ is a sequence that was added in the

closure.

Decision Problem 4.1 (A-Loss Span). Given a sequence set S ⊆ Seq(AMax) and
a positive integer k, does there exist a sequence set S′ ⊆ Seq(AMax) such that S′
is an A-loss recall span of S and |S′| ≤ k ?

We will show that this decision problem is in NP. For that we will use a kind
of well-structured set.

De�nition 37 (Strongly branching set). The trivial set S = {ε} is a strongly
branching set. S ⊆ Seq(A) is a strongly branching set if there exists a, ā ∈ A
such that there is a partition of S = aS1] āS2 such that (i) aS1 and āS2 are
non-empty (ii) S1 and S2 are each strongly branching sets.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 89

Lemma 4.43. Let S be a sequence set with A-loss recall. Then
∑
s∈S

µ(s) = 1 i� S

is a strongly branching set.

Proof. First we will prove the backward direction4 by induction on the number
of actions. When S = {ε} recall that µ(ε) = 1. Now for any non-trivial strongly
branching set S, from de�nition we have S = aS1] āS2 where each of S1 and S2

are strongly branching. We have
∑
s∈S

µ(s) = xa(
∑
s∈S1

µ(s)) + (1− xa)(
∑
s∈S2

µ(s)).

By induction hypothesis the statement holds for S1 and S2 and hence this equals
1. Hence this extends to S as well.

For the the forward direction we will again use induction on the number of
actions. The statement is true when A = ∅. Now suppose S be a sequence set
over non-trivial action set.

For any set S′, if
∑
s∈S′

µ(s) is a constant value then this value is at least 1 due

to the fact that any µ(s) has either no constant terms or 1 in its full expansion. If
S has at least two connected components S1 and S2, since µ(S1) and µ(S2) have
no variable in common,

∑
s∈S

µ(s) would become strictly more than 1. Hence we

can conclude that S must be connected.
Since S is connected and has A-loss recall, from Proposition 4.22 it follows

that S = aS1] āS2 where each of S1 and S2 has A-loss recall. Let Zi =
∑
s∈Si

.

Then we have
∑
s∈S

µ(s) = xaZ + (1 − xa)Z ′ = 1, which implies each of Z and

Z ′ must equal 1. Hence by induction hypothesis each of S1 and S2 are strongly
branching sets. As a result S is also a strongly branching set.

Proposition 4.44. The decision problem A-Loss Span is in NP.

Proof. To prove this we will use an optimal A-loss recall span S† of S and the
span matrixMS

S†
as a short certi�cate. If there exists an A-loss recall span S′ of

size at most k, we observe thatMS
S†

is of size at most k|S| which is polynomially
bounded in k and |S|.

Now we need to provide an e�cient algorithm to verify that S† has A-loss
recall and S† indeed spans S. The �rst requirement can be veri�ed in polynomial
time by checking if for every pair of sequences s1, s2 ∈ S†, it holds that s1 ∼A s2.
For the second objective, we make some observations on the span matrix. Observe
that it follows from Algorithm 3 thatMS

S†
only has 0 and 1 as entries. So for

4Observe that any strongly branching set always has A-loss recall. A-loss recall assumption is
redundant in this case

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 90

every sequence s ∈ S we have to check if µ(s) equals sum of all µ(s′) such that
MS

S† [s,s′]
= 1. Now verifying this via full expansion might produce exponentially

many terms. Instead we will exploit the structure of the spanning sequences. Let
Supp(s) ⊆ S† be de�ned as Supp(s) = {s′|MS

S† [s,s′]
= 1}.

From the construction of Supp(s) in Algorithm 3 it follows that Act(s) ⊆
Act(s′) for every s′ ∈ Supp(s). Hence for every s′ ∈ Supp(s), µ(s′) = µ(s)µ(s′′)
for some s′′. Let S′ = Supp(s)[\Act(s)] be the sequences in Supp(s) removing
all actions from s. We just need to check if the

∑
s∈S′

µ(s) = 1. Since Supp(s) has

A-loss recall, by repeated application of Lemma 4.21 it follows that S′ also has
A-loss recall. Now from Lemma 4.43 we need to check if S′ is strongly branching.
Checking if a set is strongly branching can be done recursively in PTIME. This
completes the proof.

4.5 A word on perfect recall spans and shu�les

So far we have seen A-loss recall shu�es and A-loss recall spans of sequence sets.
Similar question on sequence sets can be asked with respect to perfect recall as
well. In this section we address these questions.

First as we did for A-loss recall, we observe some properties of sequence sets
with perfect recall.

Structure of sets with perfect recall

Proposition 4.45. Let S be a sequence set over A with perfect recall. Then the
following statements are true:

1. If S is connected, then S = aS1] āS2 for some a ∈ A such that S1 and S2

are not connected and each of S1 and S2 has perfect recall.

2. If S =]iSi be a decomposition of S into disjoint connected components
then, each Si has perfect recall

Proof. Since any subset of a set with perfect recall also has perfect recall, the
second statement follows.

Now we prove the �rst statement. Without loss of generality let s = as′

be a sequence in S for some a ∈ A. Consider the sets Sa, Sā and S6a. Since
S is connected Act(Sa ∪ Sā) ∩ Act(S 6a) 6= ∅. But this violates perfect recall
when S 6a 6= ∅ since sequences in S6a do not start with a or ā. Also we have
Act(Sa[\a])∩Act(Sā[\ā]) = ∅ because otherwise this also violates perfect recall.
Finally similar to Lemma 4.21 it can be shown that aS′ has perfect recall implies
S′ also has perfect recall. Hence S1 and S2 also have perfect recall.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 91

We saw in Theorem 4.29 that any sequence set S has an A-loss recall span.
The natural question with respect to perfect recall is : does every sequence set has
a perfect recall span?

Also in the case of A-loss recall, we saw that shu�es are special cases of spans
and there exists sequence sets (Example 4.8) with no A-loss recall shu�e. We �rst
examine if spans are more powerful than shu�es in the case of perfect recall. It
turns out that perfect recall spans are no move advantageous than perfect recall
shu�es.

Proposition 4.46. For a sequence set S, if S has a perfect recall span, then S also
has a perfect recall shu�e.

Proof. We prove a stronger statement. We show that any optimal perfect recall
span S† of S is in fact a perfect recall shu�e of S. For s ∈ S, let Ss ⊆ S† be a
minimal subset that spans {s}, i.e., no proper subset S′′ of Ss generates s. We
have µ(s) =

∑
s′∈Ss

cs′µ(s′). Let f = µ(s). For any action a ∈ Act(s), we have

f [xa := 0] = 0. Hence xa is a factor of each µ(s′). Consequently µ(s) is a factor
of each µ(s′). Now suppose for some s′ ∈ Ss and b ∈ Act(s′), b 6∈ Act(s). Then
f [xb := 0] is still µ(s) but µ(s′)[xb := 0] = 0. But then µ(s) can be written as
combination of monomials of terms in S \ {s′} which contradicts the minimality
of Ss. Hence no sequence has actions outside Act(s). From minimality of Ss, this
implies Ss = {s†} where s† is a permutation of s. Since S† is optimal it follows
that it is a shu�e of S. This completes the proof.

Hence the question of existence of perfect recall span of an arbitrary sequence
set boils down to asking existence of just perfect recall shu�e. But we have
already seen example of sequence sets with no A-loss recall shu�es (Example 4.8).
Since perfect recall shu�es are also A-loss recall shu�e, it follows that there exist
sequence sets with no perfect recall shu�e (or span).

In fact we will further strengthen this statement. We will show that any
one-player rulebook with imperfect recall cannot have a perfect recall shu�e.

Proposition 4.47. S be a rulebook over A without perfect recall. Then S cannot
have a perfect recall shu�e.

Proof. Since S doesn’t have perfect recall, there exist s1, s2 ∈ S with s1 6∼P s2.
W.L.O.G. we can say that for some a ∈ Act(S), s1 = s′1as

′′
1, s2 = s′2as

′′
2 and there

exist another action b ∈ Act(s′1) such that b 6∈ Act(s′2). Since S is complete, one
can also �nd a sequence s3 = s′1ās

′′
3 in S.

Let S† be a perfect recall shu�e of S and let s†1 be the permutation of s1 present
in S†. By using the same reasoning as Lemma 4.17 it follows from the de�nition

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 92

of perfect recall that any two sequences in S† are of the form ss0 and ss′0 where
cl(Act(s0)) ∩ cl(Act(s′0)) = ∅.

Now there can be two cases.
Case 1: b 6∈ Act(s2)
In this case, enforced by perfect recall constraints between s1 and s2, a must

precede b in s†1. On the other hand for similar constraints between s1 and s3, b
precedes a in s1 which is a contradiction. Hence S cannot have a perfect recall
shu�e in this case.

Case 2: b ∈ Act(s2)
In this case, since b 6∈ s′2, it must be that b ∈ s′′2 , i.e. s2 = s′2aw2bw

′′
2 . Since

S is complete one can �nd s4 = s′2aw2b̄w4. Again enforced by perfect recall
constraints between s1 and s4, a must precede b in s†1. And for the same reason,
for s1 and s3, b precedes a in s1. Hence for this case also S cannot have a perfect
recall shu�e.

Proposition 4.47 tells us we cannot use perfect recall shu�es to simplify games
from their sequence sets. However as seen for A-loss in Remark 4.18, this doesn’t
rule out completely the possibility of using perfect recall shu�es as a heuristic.
Since sequences with zero payo� doesn’t contribute to the payo� polynomial, one
can work only with the sequences with non-zero payo� and end up with a perfect
recall shu�e of this subset. In essence, this is a way to get rid of the sequences in
the rulebook that makes it impossible to have a perfect recall shu�e.

In the next section we will see how to simplify games by directly using the
payo� polynomial.

4.6 Simpli�cation via payo� polynomials

So far in order to simplify the structure of a game we worked with sequence sets
because the sequence set generates the set of leaf monomials that linearly combine
to give the payo� polynomial. We didn’t take into account the payo� attached to
each sequence. So it can be seen as simpli�cation of the game at a structural level.

In this section, we will start directly from the payo� polynomial and work our
way towards �nding the structure of a possible game with this payo� polynomial.
A polynomial can be the payo� polynomial of a game with perfect recall and at the
same time of a game with imperfect recall. We see this in the following example.

Example 4.14. Consider the game G = (S,Λ) in Fig. 4.8a with sequence set
S = {ca, cā, c̄, ba, bā, b̄} and Λ = {ca : 2, cā : 1, c̄ : 1, ba : 1, bā : 3, b̄ : 3}. S
doesn’t have A-loss recall. Also, S is connected and it follows from Proposition 4.25

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 93

4

a

2

ā

c

2

c̄

1
2

2

a

6

ā

b

6
b̄

1
2

(a)

4

c

0

c̄

1
2

-8

b

0
b̄

1
2

a

0

ā

1
2

8

1
2

(b)

Figure 4.8: Two games for the same polynomial xaxc − 2xaxb + 4

that S does not have an A-loss recall shu�e either. The payo� polynomial of G
is xaxc − 2xbxa + 4. It is also the payo� polynomial of a perfect recall game G′
which is given in Fig. 4.8b.

If we take the sequence set S in Example 4.14 and apply Algorithm 3, it follows
from Proposition 4.47 that we would never end up with a sequence set with perfect
recall. However, the payo� polynomial xaxc − 2xbxa + 4 reveals more about the
game and one can construct an equivalent perfect recall game.

Now while working with payo� polynomials, a possible approach might be to
take the set of individual monomials in the polynomial (ignoring the payo�s), and
work with the corresponding sequence set for simpli�cation. But this approach
fails in general as this sequence set obtained from the monomials might not have
perfect recall shu�e. This is possible even when the monomials linearly combine
to form the payo� polynomial of a game with perfect recall. We see this in the
following example.

Example 4.15. Consider the polynomial f = xa + 2xb − 2xaxb and its’ set of
monomials {xa, xaxb, xb}. The corresponding sequence set is {a, ab, b} and it
does not have perfect recall shu�e. However the polynomial f = xa + 2xb −
2xaxb comes from a perfect recall game. This is because f can be rewritten as
xa+2(1−xa)xb and one can see that this is generated by the sequence set {a, āb}
that has perfect recall.

In Example 4.15, it is not evident from the expanded form of a polynomial,
whether it comes from a game with perfect recall. Our goal will be to characterize
polynomials that arise from one-player perfect recall games.

In this section we will only work with one-player games. Also since here we
are concerned only with non-absentminded games, the payo� polynomials will

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 94

be multi-linear and here we will only deal with such polynomials. It is possible
that in the process of simplifying polynomials, we will require to compute the full
expansion of polynomials. For this reason this method might not give an e�cient
procedure since the expanded form can possibly have exponentially many terms.
However this opens the path for �nding heuristics for game simpli�cation.

4.6.1 Turning some games into games with perfect-recall

In this section we will give a characterization of all polynomials that come from
one-player games with perfect recall.

Recall that x̄ denotes 1− x. For a polynomial g let var(g) denote the set of
all variables in g. For a polynomial written in the expanded form, a term is a
monomial along with its’ co-e�cient. For a single term t in a polynomial, var(t)
is de�ned similarly.
De�nition 38 (x-decomposition). Given a polynomial f(X) over X and x ∈ X ,
anx-decomposition of f is a re-writing of f in the formxf0(X0)+x̄f1(X1)+f2(X2)
such that x /∈ X0 ∪X1 ∪X2.

An x-decomposition of f given by xf0(X0) + x̄f1(X1) + f2(X2) is said to be
disconnected if X0, X1 and X2 are mutually disjoint.
Example 4.16. For f = 3xy + 2xz − 2z + 1, x(3y + z) − x̄(z) + (2 − z) is
an x-decomposition of f which is not disconnected due to z. On the other hand
x(3y)− x̄(2z) + 1 is a disconnected x-decomposition of f .

Canonical x-decomposition

For a polynomial f over X , we will provide a canonical x-decomposition of f
with respect to some x ∈ X . In the expanded form, f can be uniquely written as
Ax+B, where Ax is the sum of all the terms in f containing x and B is the sum
of all the terms not containing x.

Let f1 be the sum of all terms t inB such that−t is also a term inA. Let f0 = A+f1

and f2 = B − f1.
Then we have A = f0 − f1, B = f2 + f1 and hence f = Ax + B =

xf0 + x̄f1 + f2.

Claim : xf0 + x̄f1 + f2 is an x-decomposition of f .

Proof. x 6∈ var(B), hence x 6∈ var(f1). Since x 6∈ var(A), it follows that x 6∈
var(f0). Finally, since var(f2) ⊆ var(B), x 6∈ var(f2). Hence xf0 + x̄f1 + f2 is
an x-decomposition of f .

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 95

The x-decomposition xf0 + x̄f1 + f2 obtained in this manner is a canonical
x-decomposition of f .

In Example 4.16 the canonical x-decomposition of f is x(3y)− x̄(2z) + 1.

Next we will de�ne recursively a class of polynomials called perfect recall

polynomials without mentioning games.
A trivial polynomial is a constant polynomial without any variables.

De�nition 39 (Perfect recall polynomials). Every trivial polynomial is a perfect
recall polynomial. A polynomial f over variable setX is a perfect recall polynomial
if there exists an x ∈ X and an x-decomposition xf0(X0) + x̄f1(X1) + f2(X2) of
f such that (1) it is disconnected and (2) each fi(Xi) is a perfect recall polynomial.

Recall that for x ∈ X and some b ∈ R, f [x := b] is the resulting polynomial
by substituting x with b in f . For x, y ∈ X and b ∈ {0, 1}, x is said to cancel y in
f with b if y vanishes in f [x := b].

De�nition 40 (Polynomial Cancellation Graph). A polynomial cancellation graph
(PCG) of a polynomial f over variable set X denoted by Γf is a directed weighted
graph over vertex set X , where there is an edge (x, y) with weight b ∈ {0, 1} i� x
cancels y with b. 5

Example 4.17. The polynomial cancellation graph of the polynomial
f = 2xaxbxcxd + xaxbxe − xaxbxcxe is given in Fig. 4.9a and that of g =
xaxb + xaxc − 2xaxbxc is given in Fig. 4.9c.

Now we will see equivalent characterization of payo� polynomials of perfect
recall games in terms of perfect recall polynomials and polynomial cancellation
graph.

Theorem 4.48. The following statements are equivalent.

1. f(X) is a perfect recall polynomial

2. There is a one-player game G in extensive form whereMax has perfect recall
such that f(X) is the payo� polynomial of G.

3. For any x, y ∈ X such that xy is present in some monomial in the expanded

form of f(X), Γf has a weighted edge between x and y in at least one direction.

5PCG has similarity with information set forest used in [KM92] for analyzing structure of
observations in games with perfect recall. Essentially each variable comes from an observation and
PCG is the construction of that forest from the payo� polynomial.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 96

xa xb

xc

xd xe

0

0
0 0

0 10 0

0 0

(a) Γf for the polynomial f =
2xaxbxcxd + xaxbxe − xaxbxcxe

2

d

0
d̄

c

1

e

0

ē

c̄

b

0

b̄

a

0

ā

(b) A perfect recall game with payo�
polynomial f = 2xaxbxcxd +xaxbxe−
xaxbxcxe

xa

xb xc

0 0

(c) Γg for the polynomial g = xaxb +
xaxc − 2xaxbxc

0

c

1

c̄

b

1

c

0

c̄

b̄

a

0

ā

(d) A game without perfect recall for the
polynomial g = xaxb +xaxc−2xaxbxc

Figure 4.9: Polynomial Cancellation Graph of polynomials and corresponding
games

Before proceeding to prove this theorem we will prove some lemmas.

Lemma 4.49. Let f(X) be a multi-linear polynomial with x, y ∈ X . Then x
cannot cancel y with both 0 and 1 in f .

Proof. f can be uniquely written as yf1 + f2, where yf1 is the sum of all the terms
in f containing y and f2 sum of those not containing y. Suppose x cancels y with
both 0 and 1. We know that for a polynomial g, g[x := b] = 0 i� (x− b) is a factor
of g. Hence both x and 1−x are factors of f1. But then f1 is no longer multi-linear
which contradicts the fact that f is multi-linear. This completes the proof.

Lemma 4.50.

Let xf0(X0) + x̄f1(X1) + f2(X2) be an x-decomposition of f . Then this decom-
position is disconnected i� for b ∈ {0, 1}, Xb = {y | x cancels y with b in f}.

Proof. Suppose xf0(X0) + x̄f1(X1) + f2(X2) is disconnected. Then Xi’s are
mutually disjoint. Hence with b, x cancels exactly the set variables Xb.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 97

Now for the other direction consider an x-decomposition xf0(X0)+x̄f1(X1)+
f2(X2) (which is not necessarily disconnected to start o� with) such that Xb =
{y | x cancels y with b in f}. Using Lemma 4.49 it follows that X0 ∩X1 = ∅. We
know that x /∈ X2 by de�nition of the x-decomposition. If some y ∈ X0∩X2 then
x cannot cancel y since y ∈ X1. This shows that X0 ∩X2 = ∅. Similar argument
also shows that X1 ∩X2 = ∅. Hence the decomposition is disconnected.

Proof of Theorem 4.48.

(1) =⇒ (2)
We construct the game by induction on the number of variables. For a trivial
polynomial c the game is a trivial game with a leaf node with payo� c.

Now consider a perfect recall polynomial with multiple variables. Consider
the x-decomposition xf0(X0) + x̄f1(X1) + f2(X2) which witnesses the perfect
recall. Each Xi has fewer variables since x is not present. By induction, there are
perfect recall games G0, G1, G2 whose payo�s are given by f0, f1, f2 respectively.
Construct game G with the root being a Chance node with two transitions each
with probability 1

2 . To the right child attach the game G2. The left child is a
control node with left child being game G0 and the right child being G1. This
node corresponds to variable x, with the left action corresponding to x and right
to x̄. Finally multiply all payo�s at the leaves with 2. The payo� of this game is
given by xf0(X0) + x̄f1(X1) + f2(X2). Since the decomposition is disconnected,
the constructed game also has perfect recall. In fact this construction gives us a
perfect information game.

(2) =⇒ (3)
G be a one-player game with perfect recall whose payo� polynomial is f(X).
Consider two variables x and y which appear together in f . W.L.O.G there must
exist two nodes u and v in G such that u ∈ PathTo(v) and Obs(u) = ox and
Obs(v) = oy . But since G has perfect recall, for any w with Obs(w) = ox, the left
subtree and right subtree has no observation in common. Hence all nodes with
observation oy is completely in some sub-tree. Hence in f , if oy is in sub-tree x
then x appears with all y terms and x cancels y with 0 in f . For the other case x̄
appears with all y terms and x cancels y with 1 in f . Hence the edge (x, y) exists
in Γf with the value it cancels y.

(3) =⇒ (1)
We prove by induction on the number of variables. The statement is true for trivial
polynomials. Suppose this statement be true for all polynomials over a set of k
variables. Now let f be a polynomial over k + 1 variables.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 98

Consider the SCC-decomposition of Γf and let x be a vertex in the source com-
ponent of the SCC decomposition. We will give a disconnected x-decomposition
xf0(X0) + x̄f1(X1) + f2(X2) of f such that each of Γf0 ,Γf1 and Γf2 satisfy the
condition. Then from induction hypothesis it will follow that each fi is a per-
fect recall polynomial and consequently this will prove that f is a perfect recall
polynomial.

Now for b ∈ {0, 1}, let Xb = {y | x cancels y with b in f} and let X2 be the
set of all variables x doesn’t cancel. X2 is disjoint from X1 ∪X2. Also it follows
from Lemma 4.49 that X0 ∩ X1 = ∅. Hence X0, X1 and X2 are all mutually
disjoint. Also X0 ∪X1 ∪X2 = X \ {x}.

Let xf0 + x̄f1 + f2 be the canonical x-decomposition of f with respect to
x as described in Section 4.6.1. For some y ∈ X1, since x cancels y with 1, x̄
must be a factor of sum of all the terms containing y. Hence it follows from
the construction of f1 that y ∈ var(f2). Consequently we have X1 ⊆ var(f2)
and var(f0) ∩ X1 = ∅. Also for any z ∈ X0, x is a factor of sum of all the
terms containing z. Hence z 6∈ var(f1) and z ∈ var(f0). So X0 ⊆ var(f0) and
var(f1) ∩X0 = ∅.

Now for some w ∈ X2, suppose w ∈ var(f0). This means a term has the
factor xw and from hypothesis, one of them should cancel the other. x doesn’t
cancel w then w must cancel x. But this is a contradiction since x is from the
source component of SCC6. Hence X2 ∩ var(f0) = ∅. By similar argument for
f1, we have var(f1) ∩X2 = ∅. Hence X2 ⊆ var(f2). But since X0, X1 and X2

forms a partition of X \ {x} we have var(fi) = Xi. From Lemma 4.50 it follows
that xf0 + x̄f1 + f2 is a disconnected x-decomposition of f .

Now for two variables y, z ∈ Xi, if yz is present in some term, y cancels z with b
in f i� y cancels z with b in fi. So Γfi is just the graph Γf restricted to variables
in Xi. Hence if yz is present in some term fi, there is an edge between y and z in
Γfi . From our induction hypothesis, this implies that each of fi is a perfect recall
polynomial. Hence xf0 + x̄f1 + f2 is a disconnected x-decomposition of f where
each of fi are perfect recall polynomials. Therefore it follows from de�nition of
perfect recall polynomial that f is a perfect recall polynomial.

Example 4.18. The PCG Γg of the polynomial g = xaxb + xaxc − 2xaxbxc is
given in Fig. 4.9c. xb and xc is present in a term but there is no edge between them
in Γg . Hence g is not a perfect recall polynomial and consequently cannot have
a corresponding perfect recall game. An imperfect recall game for g is given in
Fig. 4.9d.

6In fact since cancellation is a transitive relation between variables, it can be veri�ed that each
SCC component is a directed complete graph.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 99

The PCG Γf of the polynomial f = 2xaxbxcxd + xaxbxe− xaxbxcxe is given
in Fig. 4.9a. For every pair of variables present in some term in f , there is an
edge between them. Hence f is a perfect recall polynomial and a corresponding
perfect recall game (in fact perfect information) is given in Fig. 4.9b. xa lies in the
source component of the SCC-decomposition of Γf , hence the xa decomposition,
xa(2xbxcxd + xbxe − xbxcxe) is disconnected. On the other hand, for xc which
is not in the source component, the xc decomposition, xc(2xaxbxd) + x̄c(xaxbxe)
is not disconnected.

Next we will use Theorem 4.48 to give an algorithm to detect perfect recall
polynomials and construct a corresponding perfect recall game.

Theorem 4.51.

1. Given a polynomial f in its expanded form, it can be decided in time polynomial

in the size of f whether f is a perfect recall polynomial.

2. Given a perfect recall polynomial f , a perfect recall one-player game G with

payo� f can be constructed in time polynomial in the size of f .

Proof. (1)
Given a polynomial f , the PCG Γf of f can be constructed in PTIME. Using
Theorem 4.48, we check for every pair of variables x and y, if whenever xy is
present in the expanded form of f , there is an edge between them in Γf . If we
encounter some x, y for which this is not true, then f is not a perfect recall
polynomial. Otherwise we can declare that f is a perfect recall polynomial. This
whole process can be done in PTIME.

(2)
Given a perfect recall polynomial, we will construct the game recursively using
the schema in the proof (1) =⇒ (2) of Theorem 4.48. For this we need to �nd an x
such that a disconnected x-decomposition of f can be found bearing witness to
perfect recall of f . Again from the part (3) =⇒ (2) of Theorem 4.48, we see that
for any x in the source component of the SCC-decomposition of Γf the canonical
x-decomposition of f is such an x-decomposition of f . Also we need to compute
PCG only once, since PCG of the polynomial restricted to variables Y ⊆ X , is
exactly Γf restricted to variables Y . Hence this algorithm runs in PTIME.

Remark 4.52. There is one major drawback of simplifying games using our methods
via polynomials as opposed to simpli�cation via sequences. Starting from a game
without perfect recall, this method cannot always be used e�ciently to compute
an equivalent perfect recall game. This is because the initial polynomial need not
be in its expanded form and expanding it might produce exponentially many terms
in the size of the input game in the process of simpli�cation.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 100

4.6.2 Turning any game into games with A-loss recall

Unlike perfect recall, any multi-linear polynomial can come from a game with
A-loss recall. This is not surprising since Theorem 4.29 tells that any sequence set
has an A-loss recall span.

Theorem 4.53. For every polynomial f(x), there is a game G with A-loss recall

such that f is the payo� polynomial of G.

Proof. Consider the rulebook of S of a f -game. It follows from Theorem 4.29 that
there is rulebook Ŝ such that Ŝ has A-loss recall and S E Ŝ. Hence the statement
follows.

Here naturally the question arises, what is the size of the smallest A-loss recall
game with payo� polynomial f . We leave this question as future research work.

4.7 Discussion

We will see an application of perfect recall polynomials in multi-linear optimization.

4.7.1 Applications in multi-linear optimization

De�nition 41 (Multi-linear optimization decision problem). The multi-linear
optimization decision problem is given a multi-linear polynomial f over variable
set X = {x1, . . . , xn} and λ ∈ R, is there a valuation v over [0, 1]n such that
f(v) ≥ λ?

Theorem 4.54. [KM92] The optimum of a multi-linear polynomial over Hn is at-

tained at a vertex and the multi-linear optimization decision problem is NP-complete.

Theorem 4.55. The multi-linear optimization problem can be decided in P for

perfect recall polynomials.

Proof. Given a polynomial f , following Theorem 4.48 a perfect information game
can be constructed in PTIME which can be solved e�ciently.

Remark 4.56. For polynomials that are not perfect recall, the problem can be solved
in polynomial time in the size of the smallest A-loss recall game. We don’t address
this question in this thesis.

CHAPTER 4. SIMPLIFYING NON-ABSENTMINDED GAMES 101

4.8 Conclusion

We show some nuances in the complexity of the maxmin problem for the class
of games where Max has perfect recall and Min is non-absentminded. We show
that every such game can be reduced to a game where Max has perfect recall and
Min has A-loss recall. The size of the perfect recall component i.e. number of Max
nodes remains the same whereas the size of the A-loss Min component, which
is essentially the size of the A-loss Recall Span depends on the Min component
in the original game. We identify new classes of games for which the size of the
A-loss Recall span is the same as that of the original Min component, which we
call A-loss shu�e. Since we know perfect vs A-loss games can be solved e�ciently,
we use this to provide an algorithm for solving perfect recall vs A-loss shu�e in
PTIME.

For the general perfect recall vs non-absentminded case, this method gives us
an algorithm to solve the maxmin problem in the size of the smallest A-loss recall
span of the Min component. We take up the problem of �nding the smallest A-loss
recall span of a sequence set and give an exact algorithm to compute it. We show
that the related decision problem is NP. This raises the following open question.

Open Question 4.8.1

Is the decision problem A-Loss Span NP-hard ?

Moving on to payo� polynomials, we gave a characterization of games whose
payo� polynomial comes from games with perfect recall. Although it is still not
quite clear if it is possible to use this method for solving games e�ciently, this
provides a better understanding of multi-linear polynomials arising from games
with perfect recall.

In this regard, an interesting question to ask would be: Given a multi-linear
polynomial, what is the size of the smallest A-loss recall game with this polynomial
as its payo� polynomial?

Chapter 5
Bridge bidding game

In this chapter, we present some preliminary results of our study of the Bidding
phase of the popular card game, Bridge. We start by quickly recalling the rules
of Bridge and then introduce a suitable model for studying bridge bidding which
is based on the Double Dummy evaluation of Bridge hands. With the goal of
understanding maxmin computation in bridge bidding, we look into a special
version of Bridge: the two-player zero-sum version where cards can have only a
single suit (instead of the usual 4). To discuss various aspects of the model, we
keep switching between two representations: the extensive-form representation
and the much more succinct Par Table representation.

We study the maxmin problem with respect to various restrictions on strategies
such as (i) pure strategies and (ii) bounded overbidding strategies : strategies
where players cannot bid more than a �xed number of times. We demonstrate with
examples that these restricted classes of strategies are not optimal in general for
achieving the maxmin value. We also show that the complexity of computing the
maxmin value depends on the number of overbids necessary for maxmin optimality.
To complement this we give a bound on the number of bids necessary for maxmin
optimality with respect to the beliefs of players.

Contents

5.1 A crash course on Bridge 103

5.1.1 Why study Bridge Bidding? 104
5.2 Bridge Bidding Model . 105

5.2.1 Double Dummy Analysis of Bridge Hands 105
5.2.2 General Bridge Bidding Model 105
5.2.3 Computing Maxmin strategy: Implications 108

102

CHAPTER 5. BRIDGE BIDDING GAME 103

5.3 Studying Restrictions . 108

5.3.1 Restriction on Strategies 109
5.3.2 Computing maxmin value over pure strategies 110
5.3.3 Belief and maxmin strategies 111
5.3.4 Non-optimality of non-overbidding strategies 115
5.3.5 Non-optimality of pure strategies 117

5.4 Conclusion . 119

Bridge is a card game with imperfect information which is played in two phases:
the bidding phase and the trick taking phase. It is played between 2 teams each
with 2 players traditionally named {N,S} and {E,W}. Ideally rational players
can remember their actions and observe the action of other players throughout
the game. Hence we assume that each player has perfect recall. Most modern day
Bridge programs use the Double Dummy evaluation of bridge hands. The double
dummy evaluation of a hand evaluates the maximum number of tricks a player
can take, when the game is played assuming all players have perfect information.
The trick taking phase has already been studied also from a complexity theoretic
point of view [BJS13] [BS16]. However to the best of our knowledge no game
theoretical study of the Bidding phase of Bridge has been conducted. Our primary
goal is to study the Bidding phase with a simple model.

5.1 A crash course on Bridge

Bridge, commonly known as Contract Bridge is a trick taking card game played
between two teams with two players in each team [WBF]. Conventionally, the
players are called N,S,E,W where N and S play in one team, and E,W play
another. Typically the game is played in several rounds with each round of the
game consisting of two phases: the bidding phase and the trick taking phase. At the
beginning of each round each player is privately dealt a hand of 13 cards from a
deck of 52 cards. Each card has two features: a suit from {♣,♦,♥,♠} and a rank
from the ordered set {2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K,A}.

In the bidding phase, based on their private hands the players bid in turns in
order to win a suitable contract for the team. A bid consists of choosing a number
from {1, 2, 3, 4, 5, 6, 7} and a suit (or No Trump) from {♣,♦,♥,♠, NT} in the
order as shown in Fig. 5.1 with 1♣ being the smallest. In each turn a player can
either overbid the last bid or pass. The bidding terminates when one but every
other player passes. The player who made the last bid before the terminal sequence

CHAPTER 5. BRIDGE BIDDING GAME 104

Figure 5.1: Bridge Bidding Order (Source : Funbridge)

of passes wins the contract for her team. The contract of the round is equal to
the number in her bid. The player from this team who initiated bidding with the
suit of the contract is called the declarer and the other player is called dummy.
After the bidding is done, the dummy player reveals her hand to everyone and
the declarer plays both her and her partner’s turn in the next phase.1 In the trick
taking phase the goal of each team is to win as many tricks possible among the
13 possible tricks with suit of the contract as the trump. At the end of the trick
taking phase each team is awarded points based on the number of tricks they have
won. The declarer’s team need to make at least 5 tricks more than her contract in
order to gain positive points. If they fail, they are penalized with negative points.
In essence the declaring team plays to gain positive points and the defending team
plays to prevent that.

5.1.1 Why study Bridge Bidding?

Developing intelligent programs that can play Bridge has been a challenge in
the AI community for a long time starting from Ginsberg’s GIB [Gin99][Gin01]
to JackBridge[Jac], WBridge5 [WBr] along with it’s recent improved version
[VCTT17]. In World Computer Bridge Championship [WCB], Bridge programs
developed by di�erent teams have been competing against each other annually
since 1996. It has been observed that, the bots do quite well in the trick taking
phase of Bridge. On the other hand, the main challenge seems to arise from the
bidding phase. Ginsberg himself has remarked on his program GIB ‘...the weakest
part of GIB’s game is bidding’ [Gin01]. Research has already been carried out
to improve implementations of the bidding phase most notably using learning
algorithms [AM06][YHL18][TZWW18][RQA19][GJT19]. However, understanding
the theoretical complexity of bridge bidding as a separate imperfect information
game in itself is yet to be explored. This is our primary motivation to dissect the
Bridge game and study only the Bidding phase using a suitable model.

1In Bridge, dummy refers to placing hands face-up, i.e. revealing one’s complete hand.

www.funbridge.com.

CHAPTER 5. BRIDGE BIDDING GAME 105

5.2 Bridge Bidding Model

We introduce our model to study a restricted version of the bidding phase based
on the Double Dummy Evaluation of all initial Bridge hands. Before de�ning our
model we provide a quick review of Double Dummy Analysis.

5.2.1 Double Dummy Analysis of Bridge Hands

Double Dummy Bridge is a variant of Bridge played with perfect information. This
game follows the usual Bridge rules except that every player observes each others’
cards. Since this is a perfect information game, for a given dealing of hands there
is an optimal strategy for the team and this strategy can be computed by backward
induction following Zermelo’s ideas [Zer13]. The double dummy evaluation of
a bridge hand is the optimal number of tricks possible to win starting from a
player with a given trump suit. Double Dummy Analysis (DDA) is used heavily for
evaluating how a bridge bot performs in the playing phase. Since the state space of
Bridge is huge, backward induction on the game tree is practically infeasible. More
e�cient algorithms using better search techniques called partition search have
been devised in [Gin01] with later improvements in [Bel17]. An implementation
can be found here [Han].

The DDA evaluation of a hand is often called the par score or par contract of the
hand. A par table of Bridge is a table consisting of all possible Bridge hands along
with their par score. Ideally if a Bridge bot had access to the whole par table at
once, it could evaluate a bridge hand before the bidding phase and bid accordingly.
In other words, given the par table a Bridge bot could devise an optimal strategy
to bid for a given hand. This is the cornerstone of our Bridge Bidding Model. We
devise our model assuming we have access to a par table and we wish to compute
optimal strategies for bidding in this model.

Now we are ready to de�ne our Bridge Bidding model.

5.2.2 General Bridge Bidding Model

In our initial study of bridge bidding we will consider a simpler version of Bridge:
the two player zero-sum version with a single suit. However we will de�ne a
generalized Bridge Bidding model here and later see how our simpler version is a
special case of this model.

A Bridge Bidding Game abbreviated as BBG is de�ned as follows:

De�nition 42. (Bridge Bidding Game)
A Bridge Bidding Game BBGm(r, t, {Hi}, δ,Θ) is a team zero-sum game played
between two teams T1 and T2 each containing m players.

CHAPTER 5. BRIDGE BIDDING GAME 106

• m is the number of players in each team. For m = 2, T1 = {N,S}, T2 =
{E,W} and for m = 1, T1 = {N}, T2 = {E}.

• t is the number of trump suits and r is rank of the highest bid. The set of
all possible bids is [r]× [t] ordered by the usual dictionary order: (ri, ti) <
(rj , tj) i� ri < rj or (ri = rj and ti < tj). There is also a special bid called
pass which we denote by 0.

• Hi is the set of all possible secrets (hands) player i can receive. H = HN ×
HE ×HS ×HW is the set of all deals of hands and (hN , hE , hS , hW) ∈ H
is a deal of hands to each player where player i gets secret hi.

• δ ∈ ∆(
∏
iHi) is a distribution over the set of all possible deals

• For each i ∈ T1 ∪ T2, Θi : H × [t] 7→ [r] ∪ {0} is the par function of player
i. For a player i ∈ T1 ∪ T2, Θi gives the maximum number of tricks i can
take with suit s ∈ [t] as the trump suit in an optimal play under perfect
information corresponding to a deal of hands (hN , hE , hS , hW) ∈ H . The
payo� is decided by the par function which we describe next in the game
play. Θ is used to denote the collection of the functions Θi.

Gameplay and payo�

The game proceeds as follows: Player i receive secret hi according to the distribu-
tion δ. Players bid in turn by choosing a bid from ([r]× [t]) ∪ {0} starting with
N and going in the order N,E, S,W,N, . . . (N,E,N, . . . for m = 1). A player’s
bid can either be 0 or a bid strictly greater the last non-zero bid (bids not equal to
0). The play ends in two ways: i) Passed Out (P.O.): All players start with 0 bid
and the game ends in one round. ii) There are consecutive 3 passes (1 pass in the
case m = 1). In this case if (rlast, tlast) is the last non-zero bid, rlast is called the
contract of this play. If a player from Ti played the bid (rlast, tlast), then the �rst
player in Ti to play a bid of the form (r′, tlast) is called the declarer. The payo� at
the end is decided by the function ΘD where D is the declarer. If the game ended
in P.O. both teams get payo� 0. Otherwise if D is the declarer from team TD,
TD gets payo� rlast i� rlast ≤ ΘD(h) and −(rlast −ΘD(h)) otherwise. Being a
zero-sum game the other team gets negative of what TD gets.

Contract Bridge Bidding in our model

In Contract Bridge, r is 7 and the bidding goes from (1,♣) to (7, NT) with the
order between trump suits being ♣ < ♦ < ♥ < ♠ < NT . Hence Bridge Bidding
in contract bridge, is exactly the game given by BBG2(7, 5, {Hi}, δ,Θ) where
hi ⊂ [13] × [4], such that in any deal, |hi| = 13 for all i and hi ∩ hj = ∅. δ is

CHAPTER 5. BRIDGE BIDDING GAME 107

u, x (1
4) u, y (1

4) v, x (1
4) v, y (1

4)
ΘN 0 0 0 2
ΘE 0 1 1 2

Figure 5.2: A Bridge Bidding Game

the uniform distribution over all deals and Θ is the par function given by Double
Dummy Analysis of bridge deals.
Remark 5.1. The payo� function in our model is proportional to the number of
tricks won or the penalty due to failure in making the contract. In real Bridge, the
scoring rule is more involved which may depend on players doubling, redoubling,
etc and other conventions which we don’t take into account in our simpli�ed
model. Our model can be adapted to any scoring rule based on plays by modifying
the payo� function studied in the respective setting.

2 player bridge bidding with one suit

In our initial study we will consider the two player version with unique trump suit
and no restrictions on hi. More precisely we will consider the version
BBG1(r, 1, {Hi}, δ,Θ) with player N and E, H = HN ×HE and since t = 1,
we have Θ : H × {N,E} 7→ [r] ∪ {0}. So according to the rules of general game,
whenever N starts with a non-zero bid, the game terminates when some player
bids 0. The other player becomes the declarer.

A Bridge Bidding Game can be represented completely by par table giving the
values of Θi and the distribution δ. We often use the term par table instead of Θ.

Example 5.1. Fig. 5.2 demonstrates a Bridge Bidding Game with HN = {u, v},
HE = {x, y}, t = 1 and r = 2. δ is the uniform distribution over HN × HE .
When N receives v and E receives x, then the bid sequence (1, 0) gives payo� −1
to N and 1 to E. On the other hand when N receives v and E receives y, for the
bid sequence (0, 1, 2, 3, 0), N receives 1 and E gets −1.

Remark 5.2. There exists a two-player variant of Bridge called Double Dummy
Bridge where one player from each team reveals their hands at the beginning of
the game. The two player Bridge Bidding Game can be interpreted as the bidding
phase of this variant. For the two player version the par values are known to be
computable in PTIME [Wäs05][BJS13]. Another di�erence is, in Double Dummy
Bridge the initial dealing distribution is not independent whereas we consider all
kinds of distributions.

CHAPTER 5. BRIDGE BIDDING GAME 108

5.2.3 Computing Maxmin strategy: Implications

Let ΘBridge be the par table in Contract Bridge.
LetBBGBridge = BBG2(7, 5, {Hi}, δ,ΘBridge) denote the Bridge Bidding Game
for Contract Bridge. The maxmin strategy in BBGBridge would be the optimal
strategy for playing the bidding phase in Bridge. In this regard, a study of the
maxmin problem on the general Bridge Bidding model would provide insights into
the computational di�culty of getting close to such a strategy. In order to have an
initial idea, we initiate the study on restrictions of the general bidding model. This
might bear two kinds of results. Firstly e�ciently computing maxmin strategies in
the restricted model would give insights to computing maxmin strategies in the
generalized model. And secondly proving lower bounds in the restricted model
would demonstrate the hardness of the general computational problem. In our
initial study we show some preliminary results with respect to computing the
optimal strategy which we discuss in the next section.

5.3 Studying Restrictions

Two-player Bridge Bidding Game with Single Suit

As preliminary work we will restrict our study to a fragment of the BBG model
where there are two players N and E and 1 suit. In our usual notation this means
the game BBG1(r, 1, {Hi}, δ,Θ). Simplifying the notation for 1-suit, we will
denote these games by BBG(r, {Hi}, δ,Θ).

Next we review the representation of strategies in Bridge Bidding. Let G be
given by BBG(r, {Hi}, δ,Θ).

Bid Sequence

A bid sequence is a sequence of legal bids played by N and E from the start of the
game. A bid sequence that doesn’t denote the end of play is called a non-terminating

bid sequence. Otherwise it is a terminating bid sequence.
Let Seq be the set of all possible non-terminating bid sequences in G. Essen-

tially Seq is the set of all monotonically increasing sequences on {0} ∪ [r].
SeqN (SeqE respectively) be the set of all non-terminating sequences where

N (E respectively) has to make the next bid. Equivalently SeqN contains all non-
terminating sequences of even length and SeqE contains the ones with odd length.

Remark 5.3. We don’t refer to bid sequences as histories because here we are
just concerned with the bid number and not from which state it was played. For
example, in some bidding game let’s say after two sequences 12 and 13, the bid

CHAPTER 5. BRIDGE BIDDING GAME 109

4 is a possible action for N . But in the extensive-form game, 12 and 13 lead to
two nodes with distinct observations of N and hence the action 4 just doesn’t
re�ect the observation of the state from which it was played. Strictly speaking the
actions 4 from the two are not exactly the same action in these cases.

For a sequence s ∈ Seq, let slast be the last bid in s. Note that for any non-empty
sequence s ∈ Seq, s0 is a terminating sequence. The only non-terminating bid
sequence ending with 0 is s = slast = 0 i.e. when N initiate bidding with 0.

Strategy

A behavioral strategy σ of playerN is given by σ(HN×SeqN)→ ∆({0}∪ [r+1])
such that σ(hN , s) ∈ ∆({0, slast + 1, . . . , r + 1}). A strategy τ of E is de�ned
similarly. As usual, a pure strategy is a behavioral strategy where σ maps only to
Dirac distributions.

A pair of secrets (hN , hE) and a strategy pro�le (σ, τ) determines a play which
results in a terminating sequence.

Remark 5.4. Notice that in the strategies in bidding, the bids are bounded by r+ 1.
This is because even if we allow bids of arbitrary size, no rational player has an
incentive to make a bid strictly greater than r+1. This is a consequence of the fact
that the payo�s are designed to penalize players for bidding beyond the strength
of their hands.

5.3.1 Restriction on Strategies

First we will discuss the size of a bidding game in di�erent representations.

Size in par table representation : The complexity of representing Bridge Bid-
ding using par table is the total complexity of representing Θ and δ. Since there are
|HN ||HE | values in Θ, each value bounded by r, the size of representing in this
form is O(|HN ||HE | log r) + Size(δ) where Size(δ) is the sum of complexities
of probabilities in δ.

However when expressed in the extensive-form, the size becomes exponential.
Size in extensive-form: The size in the extensive-form is mainly decided by
the number of leaf nodes in this representation. Since players observe every
action in bidding game. each pair of secrets (hN , hE) contributes to as many leaf
Nodes as the the number of terminating sequences. The set of all terminating
sequence is {s0 | s ∈ Seq}. Since r + 1 is the maximum bid possible we restrict
all sequences in Seq to contain bids at most r + 1. A non-terminating sequence is

CHAPTER 5. BRIDGE BIDDING GAME 110

an increasing sequence over {0} ∪ [r + 1] and hence |Seq| = O(2r+2). Also the
payo�s lie between −(r + 1) and r + 1. Hence the the size in the extensive-form
is O(|HN ||HE |2r log r) + Size(δ) where Size(δ) is the size of probabilities in δ.

5.3.2 Computing maxmin value over pure strategies

In this section we consider the maxmin decision problem over pure strategies in
the extensive form representation.

Decision Problem 5.1 (BBGMaxminPure ≥ λ). Given a BBG G and λ ∈ Q
is the maxmin value of N over pure strategies at least λ ?

Maxmin computation by enumerating strategies

The maxmin computation problem for games in extensive-form over pure strategies
even when players have perfect recall is NP-complete [BML93]. Hence one way
to �nd the maxmin would be to enumerate over all pure strategies of N . A best
response of E to a strategy of N can be computed in PTIME in the size of the
game tree. Hence the size of the game tree is important here, both for having an
estimate of the pure strategies of N and also for best response computation of E.

The size in extensive-form is K = O(|HN ||HE |2r log r). Hence the number
of pure strategies of N can be bounded by O(2K).

However in maxmin computation by enumeration we consider the whole game
tree. We ignored the possibility that for maxmin optimality N might not need to
play more than a �xed number of times against any strategy of E. Next we will
discuss this kind of strategies.

Bounded overbidding

An overbidding is a non-zero bid played by a player after a non-empty bid sequence
. We seek a bound on the number of timesN needs to overbid in a maxmin strategy.
We quantify this by de�ning overbidding number of a strategy of N and classify
strategies accordingly.
Remark 5.5. Note that in our de�nition we don’t call the very �rst bid of N as a
overbid, because it doesn’t outbid a previous bid. On the contrary the very �rst
bid of E if that is a non-zero bid, it counts as an over bid of E since it overbids the
last bid of N .

De�nition 43 (Overbidding number).
The overbidding number of a strategy σ of N is the maximum number of times N
overbids in any play conforming to σ.

The overbidding number of a strategy τ of E is de�ned similarly.

CHAPTER 5. BRIDGE BIDDING GAME 111

De�nition 44 (k-overbidding strategy). A strategy with overbidding number k is
called a k-overbidding strategy.

We use the term non-overbidding strategy to denote a 0-overbidding strategy.
Note that a non-overbidding strategy of E is one where E always passes.

While representing strategies we interchangeably use − and 0 for denoting a
pass move.

Example 5.2. In the Bridge Bidding Game in Fig. 5.2 a non-overbidding strategy
of N is {a : {ε : 0, 01 : −, 02 : −, 03 : −}, b : {ε : 2, 23 : −}}. On the other
hand the strategy {a : {ε : 0, 01 : −, 02 : −, 03 : −}, b : {ε : 0, 01 : 2, 0123 :
−, 02 : 3, 03 : −}} is 1-overbidding strategy since for the sequence 02, N plays a
non-zero bid and then passes.

Size of extensive-form for k-overbidding strategies

WhenN overbids k times, we no longer need to deal with the whole extensive-form
game tree since a play will always end after k bids ofE. Hence we will �nd the size
of this smaller game tree. It is enough to �nd the number of sequences possible.
The sequences will be of length at most 2k. Hence the number of sequences

can be given by
2k∑
i=1

(
r
i

)
which is O(r + 1)2k. As the result the size of the tree is

O(|HN ||HE |r2k).

Maxmin computation over pure non-overbidding strategies

Now for computing maxmin by enumeration, we don’t need to consider the whole
game tree. The number of non-overbidding strategies of N is given by (r+ 2)|HN |.
Fixing such a strategy E computes her best response on a tree of size at most
O(|HE ||HN |r2)

Hence for the class of non-overbidding strategies ofN we obtain the following.

Proposition 5.6. In a gameBBG(r, {Hi}) the maxmin over pure non-overbidding
strategies can be computed in time O(|HN ||HE |r2(r + 2)|HN |).

So we have a good incentive to get some hold on the overbidding number of a
maxmin strategy. For this we observe how N ’s strategy evolves with the belief of
E which we de�ne next.

5.3.3 Belief and maxmin strategies

In maxmin computation as usual we assume that N declares her strategy ex-ante
to E. Before the game starts, E can make no informed guess about the secret

CHAPTER 5. BRIDGE BIDDING GAME 112

received by N . But having complete knowledge about N ’s strategy and observing
N ’s moves, E can re�ne her guess about N ’s private secrets as the play proceeds
gradually. To quantify E’s guess about N ’s secrets, we will involve a well known
concept in game theory called beliefs.

For a bid sequence s, let si be the ith bid in s and s�i be the pre�x of s up to
si inclusive. Recall that slast is the last bid in s. Also recall that a bid sequence s is
said to be consistent with strategy σ if ∀ pre�x s�i ∈ SeqN of s, σ(s�i) = si+1.
Now we will de�ne the belief of E after a bid sequence s when E knows that N
plays strategy σ.

For a set A, let 2A denote the power set of A.

De�nition 45 (Belief). Given a pure strategy σ of N in ΣN and a sequence
s ∈ Seq consistent with σ, the belief of E after sequence s under strategy σ of N
denoted by BE(σ, s) is given by function BE : ΣN × Seq 7→ 2HN de�ned as:

BE(σ, s) = {hN ∈ HN | σ(hN , s�i) = si+1 ∀ i such that s�i ∈ SeqN}

In essence belief BE(σ, s) of E is the set of private secrets of N which are consis-
tent with the sequence s under the strategy σ of N . In other words it is the set of
possible secrets N could have received based on E’s observation. It follows from
de�nition that the initial belief BE(σ, ε) = HN , i.e. intially E considers every
secret of N to be a possible secret. E has complete knowledge of σ, hence the
belief of E re�nes gradually as the play progresses.

Remark 5.7. The belief can also be de�ned as a distribution over the set of possible
secrets but since we are concerned only with pure strategies e�ectively we de�ne
it is as the set of all possible secrets that N could have received with a non-zero
probability.

Example 5.3. Let BBG be a game with HN = {u, v, x, y}, r = 4 and any arbi-
trary HE ,Θ and δ. Consider the strategy σ = {u : {ε : 1, (1, 2) : 3, (1, b) :
− ∀b ∈ {3, 4, 5}, (1, 2, 3, 4) : 5, }, v : {ε : 1, (1, 2) : 3, (1, b) : − ∀b ∈
{3, 4, 5}, (1, 2, 3, 4) : 0, }, x : {ε : 2, (2, b) : − ∀b ∈ {3, 4, 5}}, y : {ε : 2, (2, b) :
− ∀b ∈ {3, 4, 5}}}.

For σ, the initial belief of E before the game starts is B(σ, ε) = {u, v, x, y}.
After N ’s �rst bid E’s belief re�nes. B(σ, 1) = {u, v} and B(σ, 2) = {x, y}. So if
E observes bid 1 she can deduce from σ thatN has been dealt either u or v. On the
other hand if she observes 2 she knows N has been dealt either x or y. When N
plays 1 andE plays 2,N plays 3 for both u and v givingB(σ, (1, 2, 3)) = {u, v}. So
after bid sequence (1, 2, 3),E still can’t di�erentiate between the two secrets. Next

CHAPTER 5. BRIDGE BIDDING GAME 113

whenE plays 4,N plays 5 for u and passes for v. Hence B(σ, (1, 2, 3, 4, 5)) = {u}.
This indicates that after observing the bid sequence (1, 2, 3, 4, 5),E can tell exactly
what secret N was dealt in the beginning.

Next we see how beliefs of E can in�uence N ’s overbidding in a pure maxmin
strategy.

For s ∈ S and b ∈ [r + 1], let sb be the sequence obtained by playing bid b
after s.

De�nition 46 (Belief non-overbidding strategy). A strategy σ of N is called
belief non-overbidding if ∀s ∈ SeqE consistent with σ and ∀ b with slast < b ≤
r + 1, ∃hN ∈ BE(σ, s) such that σ(hN , sb) = 0.

In a belief non-overbidding strategy, after any bid of E, N passes for at least
one of the secrets in the belief.

Example 5.4. Consider the strategy discussed in Example 5.3 given by σ =
{u : {ε : 1, (1, 2) : 3, (1, b) : − ∀b ∈ {3, 4, 5}, (1, 2, 3, 4) : 5, }, v : {ε :
1, (1, 2) : 3, (1, b) : − ∀b ∈ {3, 4, 5}, (1, 2, 3, 4) : 0, }, x : {ε : 2, (2, b) : − ∀b ∈
{3, 4, 5}}, y : {ε : 2, (2, b) : − ∀b ∈ {3, 4, 5}}}. σ is not belief non-overbidding
because for 1 ∈ SeqE , B(σ, 1) = {u, v} but when E plays 2, N plays 3 for both u
and v.

On the other hand, let σ1 be a strategy ofN by a minor modi�cation of σ where
she passes for secret v on seeing E’s bid 2. σ1 = {u : {ε : 1, (1, 2) : 3, (1, b) :
− ∀b ∈ {3, 4, 5}, (1, 2, 3, 4) : 5, }, v : {ε : 1, (1, b) : − ∀b ∈ {2, 3, 4, 5}}, x : {ε :
2, (2, b) : − ∀b ∈ {3, 4, 5}}, y : {ε : 2, (2, b) : − ∀b ∈ {3, 4, 5}}}. σ1 is a belief
non-overbidding strategy.

Proposition 5.8 (Belief non-overbidding maxmin strategy). In a bidding game G,
N has a maxmin strategy which is belief non-overbidding.

Proof. Let σ be a pure maxmin strategy of N which is not belief non-overbidding.
We will iteratively modify σ to eventually end up with a belief non-overbidding
strategy. Since σ is not belief non-overbidding then for some s ∈ SeqE consistent
with σ for some b > slast it holds that ∀hN ∈ B(σ, s), σ(hN , sb) 6= 0. Let
s = s0slast.

At each iteration we modify σ to a new strategy σ′ de�ned as follows.

σ′(hN , s0�i) = σ(hN , s0�i) ∀hN ∈ B(σ, s),∀i < |s0|, s0�i ∈ SeqN
σ′(hN , s0) = σ(hN , sb) ∀hN ∈ B(σ, s)

σ′(hN , s0s
′) = σ(hN , sbs

′) ∀hN ∈ B(σ, s),∀s′, sbs′ ∈ SeqN
σ′(hN , s

′′) = σ(hN , s
′′) ∀hN 6∈ B(σ, s)

CHAPTER 5. BRIDGE BIDDING GAME 114

Essentially for every hN ∈ B(σ, s), σ′ imitates σ till s0 and then skips one bid
of each player(total two) and continues imitating σ onwards. For any other hN , σ′
behaves same as σ. We claim that the best response payo� against σ′ is no less
than the maxmin value, i.e. the best response payo� against σ.

This is because if τ ′ is a best response strategy of E against σ′ with E(σ′, τ ′)
strictly less than maxmin value, then E can force the same outcome against τ by
playing b after sequence s and then imitate τ ′. Hence σ′ is also a maxmin strategy.

So the violation of the lemma for σ is due to sequence s and bid b. By construc-
tion of σ′, the sequence s is no longer consistent with σ′, and hence it cannot be a
witness for the lemma violation. If there is a violating witness in σ′, we continue
by making the same modi�cation.

To prove termination of these iterations, for a strategy σ consider the value∑
ohN (σ) where ohN (σ) is the number of times N over-bids for secret hN in

σ. This value strictly decreases for strategies obtained in each iteration. Hence
eventually we will end up with a maxmin strategy that is belief non-overbidding.

Remark 5.9. In the proof of Proposition 5.8, we could modify the strategy σ to σ′
without losing payo� because after b, N plays non-zero bid. We cannot update a
strategy when N passes for some secret after b, because this would change the
outcome of the terminating play and hence might a�ect the payo�. In Example 5.3
if we follow the proof, the strategy σ can be modi�ed for the secrets u and v
(keeping unchanged x and y) as follows: {u : {ε : 3, (3, 5) : −, (3, 4) : 5}, v :
{ε : 3, (3, b) : − ∀b ∈ {4, 5}}. N wouldn’t lose anything with this new strategy
since any outcome forced by E against this strategy can also be simulated by E
against the old strategy. On the other hand if N had modi�ed it for u and v to :
{u : {ε : 5}, v : {ε : −}, this doesn’t entail the same outcome on v since now the
last non-zero bid is no longer 3.

Proposition 5.8 throws some light on the required number of overbiddings
for a maxmin optimal strategy. It gives a bound on the number of overbiddings
necessary.

Corollary 5.10. N has a maxmin strategy with overbidding number |HN |.

Proof. The size of the beliefs of E strictly decreases after every bid of E. Hence N
will only need to bid until E’s belief is non-empty. Since the initial belief is HN ,
the bound follows.

Corollary 5.11. When N gets the trivial hand i.e. |HN | = 1, N has a non-
overbidding maxmin strategy.

CHAPTER 5. BRIDGE BIDDING GAME 115

The above corollary can also be interpreted as follows: When N reveals both
her strategy and her secrets to E, then N has no incentive to overbid in a maxmin
strategy. However in general, for maxmin optimality it turns out that non-over
bidding strategies are not su�cient.

5.3.4 Non-optimality of non-overbidding strategies

In this section we will demonstrate with an example that non-overbidding strate-
gies are not optimal for obtaining maxmin value over pure strategies.

For proving this, we need some small lemmas. From Corollary 5.11 we know
that when |HN | = 1, N has a maxmin strategy which is non-overbidding. We will
show that for general games, the maxmin over non-overbidding strategies can be
computed by individually computing maxmin for restricted games corresponding
to individual secrets of N .

For a game G = BBG(r, {Hi}, δ,Θ), and H ′i ⊆ Hi, let G[H′N ,H
′
E] be the

game BBG(r, {H ′i}, δ′,Θ′) where Θ′ is the projection of Θ on H ′i’s and δ′ is the
restriction of δ to H ′i and normalized, i.e. δ′(hN , hE) = δ(hN ,hE)∑

h1∈H′N,h2∈H′E

δ(h1,h2)

We will �rst see that the task of computing the best response strategy of E
can be broken down based on the �rst bid of N .

Lemma 5.12. In a bidding game G, let σ be a strategy of N . For some �rst bid b
played by N in σ, let Gb = G[B(σ,b),HE] and let τb be the best response strategy
of E to σ restricted to Gb in the game Gb. Then the strategy τ of E given by
τ(hE , bs) = τb(hE , bs) is a best response strategy of E to σ in G.

Proof. Any strategy of E in response to σ is a function of the �rst bid b of N
and E’s secret hE . Since on observing the �rst bid b of N , E can infer the set of
secrets B(σ, b), E playing after observing b is equivalent to E playing in the game
Gb. Hence a global best response of E can be built from the local best response
strategies in the games Gb’s as stated.

Since we can compute the best response by breaking down the game, next we
will see how to compute the best response of a trivial game.

Lemma 5.13. Let G be a trivial bidding game, with HN = {hN}, HE = {hE}
and ΘN (hN , hE) = qN ,ΘE(hN , hE) = qE . When N plays the opening bid b,
then the payo� toN whenE plays her best response strategy, denoted byBRE(b)

CHAPTER 5. BRIDGE BIDDING GAME 116

is given by:

BRE(b) = −qE when b < qE

= −(b− qN) else when b > qN

= b else when b ∈ [qE , qN] ∧ qE = 0

= b+ 1− qE else when b ∈ [qE , qN] ∧ qE 6= 0

Proof. This follows from the de�nition of the payo� function in a bridge bidding
game. Whenever b < qE , E will bid qE . Otherwise when b > qN , E will pass.
Otherwise when qE = 0,E will also pass. The only case left is when, qE ≤ b ≤ qN ,
and qE 6= 0. In this case E will always bid b + 1 because passing will give N a
payo� of b, but we have b ≥ b+ 1− qE when qE > 0.

Now we will demonstrate the existence of games where overbidding is neces-
sary for optimal payo�.

Proposition 5.14. There exists a bidding game where N cannot achieve the
maxmin value over pure strategies by playing non-overbidding strategies.

Proof. Consider the game given by the par table in Fig. 5.2.
We claim that the maxmin value of this game over pure strategies is −1

4 and
this value can be achieved only by some overbidding strategy of N . First we will
show that, the maxmin value over non-over bidding strategies is−1

2 . Observe that
any best response strategy of E to a non-overbidding strategy is a 1-overbidding
strategy of E.

Now consider any non-overbidding strategy σ ofN . There can be two possible
cases:
Case 1: σ(u, ε) = σ(v, ε). In this case, for any �rst bid b played by N , B(σ, b) =
{u, v}. N can play one of the bids from 0, 1 or 2. When N plays 0, E’s best
response strategy {x : {0 : −}, y : {0 : 1} gives a payo� −1

2 to N . When N plays
1. E’s best response strategy {x : {1 : −}, y : {1 : 2} gives payo� −3

4 to N . And
when N plays 2, E’s best response strategy {x : {2 : −}, y : {2 : −} gives payo�
−1 to N . Hence in this case N cannot gain more than −1

2 .

Case 2: σ(u, ε) 6= σ(v, ε). In this case, the belief sets are singletons and hence it
follows from Lemma 5.12 that it is enough to compute best response in the trivial
sub-games. For this we will use Lemma 5.13. From Lemma 5.13 we deduce that for
the sub-game G[{v},HE], the maxmin value of N is −1

2 when N opens with bid 2.
Similarly the maxmin value in the game G[{u},HE] is −1

2 when N opens her bid
with 0 or 1. Hence in this case N cannot obtain more than −1

2 .

CHAPTER 5. BRIDGE BIDDING GAME 117

Now we will give a maxmin strategy giving maxmin value of −1
4 . Consider

the strategy of N , σ = {u : {ε : 0, 01 : −, 02 : −, 03 : −}, v : {ε : 0, 01 : 2, 0123 :
−, 02 : 3, 03 : −}}. This is an overbidding strategy since for secret v, N overbids
for histories 01 and 02. Since N opens her bid with 0 for both her secrets, E has
no knowledge about N ’s secret after N ’s �rst bid. N only overbids on seeing bid
1 from E. So in the case when E’s strategy is not starting with 1 for either of her
secrets, N passes. This is same as N playing a non-overbidding strategy with �rst
bid 0 and E’s strategy restricted to not playing 1. In this restricted setting E’s
best response is {x : {0 : −}, y : {0 : 2} which gives N a payo� of −1

4 .
Now over the set of strategies of E where she plays 1, for x, E should play 1

since for (u, x) she gets a big payo�. And for y, she can play 0 since playing 1, the
gain she makes at (u, y) is nulli�ed by the loss at (v, y). Hence a best response
strategy of E is {x : {0 : 1, 012 : −}, y : {0 : −, }} with payo� −1

4 to N .
Hence the maxmin value over pure strategies is−1

4 achieved by a non-overbidding
strategy. In fact it can be shown that−1

4 is the value of the games with pure optimal
strategies exists for both N and E.

Next we will demonstrate via an example that for maxmin optimality in bidding
games, pure strategies are less powerful than behavioral strategies.

5.3.5 Non-optimality of pure strategies

So far we have only considered pure strategies. The next natural question that
arises here is: are pure strategies su�cient for maxmin optimality? We will prove
by providing arguments based on an example that pure strategies are not su�cient
for this purpose.

Θ
h1 (1

4) h2 (3
4)

N 1 1
E 0 2

Figure 5.3: Pure strategy not su�cient for maxmin optimality of N

Example 5.5. In the bidding game given in Fig. 5.3, N has two secrets whereas
E doesn’t have any secret (or trivial secret). N has the same par value which is
1 for both her secrets. On the other hand E has par values less than 1 and more
than 1 for the two secrets respectively.

Now in a pure strategy played by N , if N reveals her secret by playing distinct
opening bids for two secrets, then E can play the best response corresponding to

CHAPTER 5. BRIDGE BIDDING GAME 118

each secret. In this case following Lemma 5.12 and Lemma 5.13 N ’s best strategy
is {h1 : {ε : 1, 12 : −, 13 : −}, h2 : {ε : 2, 23 : −}} where E’s best response is to
pass. This gives N a payo� of −1

2 . On the other hand, when N doesn’t reveal her
secret, she opens her bid with the same bid. Now in this case when N bids 2, E
passes. But when N bids 0 or 1, E follows up with 2. Even though this incurs a
loss to E on h1, since the probability of seeing h2 is three times that of h1, for E
the gain at h2 heavily compensates for the loss at h1. These strategies give N a
payo� of −1.

HoweverN can do better with behavioral strategies. WhenN plays 1 determin-
istically for both secretsE plays 2 because her gain for h2 outweighs her loss at h1.
But ifN can play 1 with some non-zero probability for both secrets so that with the
�nal distributionE’s loss at h1 gets more weight than gain at h2, then this can give
a better payo� to N . This is exactly the case when N plays the behavioral strategy
{h1 : {ε : 1, 12 : −, 13 : −}}, h2 : {ε : (1

9)1 + (8
9)2), 12 : −, 13 : −, 23 : −}}.

Here when E sees the bid 1 of N , whatever bid she plays, the �nal weight on
E’s payo� at h2 is 3

4 .
1
9 = 1

12 compared to 1
4 at h1. The best E can do as response

to 1 is playing 2 or 0 and either of them gives N 1
3 . On the other hand when N

plays 2, E knows for sure the secret is h2 and for her best response strategy of
passing gives N −2

3 . As a result the �nal payo� to N turns out to be −1
3 which is

an improvement over −1
2 obtained from deterministic strategy. We can conclude

that behavioral strategies gives better maxmin value than pure strategies.
In fact it can be further shown that for this game the minmax value over

deterministic strategy is −1
4 and the value of the game is −1

3 which is achieved by
a pair of behavioral strategy.

Hence we have the following proposition.

Proposition 5.15. There exist bidding games where the maxmin value over pure
strategies is strictly less than maxmin value over behavioral strategies. In fact
there exist such games where E has trivial secrets.

Remark 5.16. From Fig. 5.3 we can construct another bidding game with uniform
distribution of secrets of N that also requires behavioral strategy for maxmin
optimality. This can be done by splitting the distribution of h2 into three distinct
secrets and copying the par values of h2. In this new game, if N plays as if she
cannot distinguish between these new secrets, then she gains nothing more or less
from the original game. On the other hand she also gains nothing more by playing
di�erently for these secrets, since the par values are the same.

Code

A preliminary implementation of the bridge bidding model in Python along

CHAPTER 5. BRIDGE BIDDING GAME 119

with few classic algorithms for computing maxmin value over pure strategies
as well as behavioral strategies tailored to our model can be found on https:

//github.com/paulsse/bridge-bidding-game.

5.4 Conclusion

We initiated the study of Bridge bidding on a simple version of our model and
investigated the su�ciency of restricted strategies for maxmin optimality. We
showed with examples that none of the restricted strategies are su�cient.

Several questions remain unanswered in our preliminary study which we
consider for carrying forward this work.

• What is the minimum number of times N needs to overbid for maxmin
optimality ?

• What is the complexity of the maxmin problem in the par-table representa-
tion? Using extensive-form, we have an EXPTIME upper bound. But can we
do better by cleverly iterating over belief non-overbidding strategies as a
consequence of Proposition 5.8?

Hence the following decision problems arise naturally.

Decision Problem 5.2 (Maxmin-Bid≥). Given a game G and λ ∈ Q, is the
maxmin value of N at least λ ?

Decision Problem 5.3 (Maxmin≥-k-overBid). Given a game G and λ ∈ Q is the
maxmin value obtained by a k-overbidding strategy at-least λ?

Decision Problem 5.4 (Overbid-Opt). Given a game G and k > 0, can N attain
the maxmin value by playing a k-overbidding strategy?

In the future we wish to investigate the complexity of these problems both in
the extensive-form and par-table representations.

https://github.com/paulsse/bridge-bidding-game
https://github.com/paulsse/bridge-bidding-game

Chapter 6
Conclusion

In this chapter, �rst we a provide a summary of our contribution in this thesis and
then discuss possible directions to proceed in future.

Our Contribution

Our main contribution in this thesis lies in providing a �ner picture of the complex-
ity of the maxmin decision problem in imperfect information games in extensive-
form. For one player games in general, we showed ∃R-completeness of the maxi-
mum value decision problem. The hardness heavily depends on the absentminded
property of the player. For two player games when Max is absentminded the lower
bound result carries forward automatically. When player Max is absentminded
and Min has A-loss recall, we show ∃R-completeness. In the general case where
both players can be absentminded we show both ∃R-hardness and ∀R-hardness.
We also observe ∃∀R upper bound of the maxmin problem.

On the other hand for two player games when players are not absentminded
we show Sqare-Root-Sum-hardness. In fact we show this for the sub-class of
games where Max has A-loss recall and Min has perfect recall. We also show
co-NP-hardness for this problem even for the case when Max is a trivial player
and Min in non-absentminded.

In the proofs of our complexity results we work with the payo� polynomial of
a game when players play behavioral strategies. Computing the maxmin value of
a game reduces to optimizing the payo� polynomial of a game.

Making further use of payo� polynomials we give a notion of game equivalence
by observing that two games with di�erent structure can have the same payo�
polynomial. As a result solving one would result in solving the other. Based on this
we give a class of games called games with A-loss recall shu�e which has same

120

CHAPTER 6. CONCLUSION 121

payo� polynomial to that of an A-loss recall game of same size. Using the linear
program to solve one player games with A-loss recall we provide an algorithm
to detect games with A-loss recall shu�e and also compute the optimal value in
PTIME. Hence we provide a new class of imperfect recall which strictly extends
the class of A-loss recall and which can solved in PTIME. Using this we also show
that in games where Max has perfect recall and Min has A-loss recall shu�e, the
maxmin problem can be solved in PTIME.

Generalizing this approach with payo� polynomial we in fact show that any
non-absentminded game can have an equivalent A-loss recall game but possibly
of exponential size. We call this A-loss recall span and present A-loss recall shu�e
as a special class of A-loss recall span. We also give an exact algorithm to compute
the minimal A-loss recall span but with possibly exponential worst case running
time.

Also given a polynomial we give an algorithm to check if there exists a perfect
recall game generating this polynomial as payo�. We characterize such polyno-
mials and also construct the perfect recall game. As a small side application we
show that the optimization problem over the class of multi-linear perfect recall
polynomial is solvable in PTIME which is NP-complete in general.

Finally we present our preliminary work on Bridge Bidding. We motivate the
study of Bridge Bidding and introduce a general Bridge Bidding model to study
the bidding phase. We show that solving maxmin problem the naive way can
take exponential time in our representation. We show that it is possible that N
doesn’t need to bid many times for maxmin optimality which we capture with
overbidding number. We show that when N declares his strategy to E, she has no
incentive to play a strategy which doesn’t change the belief of E. We use this to
give a bound on the overbidding strategies. We also show that pure strategies and
non-overbidding strategies are not enough for maxmin optimality.

Future Directions

Complexity

For maxmin decision problem we were not able to fully settle the complexity of
the problem in general. Complexity classes corresponding to fragments of ∃∀R
has been studied [DLNO21] for establishing the complexity of numerical decision
problem. We believe that the general maxmin problem is complete for one of
these classes. Another popular decision problem in these kinds of games is the
existence of Nash Equilibrium in a two player game. It would be worth exploring
if our techniques extend to this problem and produce any kind of lower bound. In
general this problem has ∃∀R upper bound and only NP-hardness is known so far.

CHAPTER 6. CONCLUSION 122

Although we have shown that some games can have possibly exponential size
A-loss recall span, we don’t quite understand what structure in games causes this
blow-up. It would be interesting to know the exact origin of the complexity of
solving one player games in the view of A-loss recall spans.

Another challenge is to give better algorithms for computing the optimal A-loss
recall span and also give the exact complexity of computing the smallest A-loss
recall span.

Bridge

We presented a preliminary version of our ongoing work and there are lots of things
to explore with respect to our Bridge Bidding model. The �rst task is to provide the
complexity of the maxmin problem for 2 players, 4 players and also other Bridge
speci�c parameters both in extensive form and par-table representation.

The �nal goal would be to implement our Bridge Bidding model and compute
near optimal strategies over it. A possible direction could be using Monte-Carlo
methods to work with a subset of hands and then compare the outcomes with
existing Bridge Bidding bot. Hopefully these investigations would slowly take us
towards bridging the gap between Bridge bots and human Bridge experts.

Bibliography

[ABKM09] Eric Allender et al. “On the Complexity of Numerical Analysis”. In:
SIAM J. Comput. 38.5 (2009), pp. 1987–2006.

[AM06] Asaf Amit and Shaul Markovitch. “Learning to bid in bridge”. In:
Mach. Learn. 63.3 (2006), pp. 287–327. doi: 10.1007/s10994-006-
6225-2. url: https://doi.org/10.1007/s10994-006-6225-2.

[Aum74] Robert J. Aumann. “Subjectivity and correlation in randomized
strategies”. In: Journal of Mathematical Economics 1.1 (1974), pp. 67–
96. issn: 0304-4068. doi: https://doi.org/10.1016/0304-
4068(74)90037- 8. url: https://www.sciencedirect.com/
science/article/pii/0304406874900378.

[BBC18] BBC.DavidMcNamara: Referee banned for rock, paper, scissors kick-o�

to appeal. Accessed: 2022-09-2. 2018. url: https://web.archive.
org/web/20221215151119/https://www.bbc.com/sport/

football/46250404.
[Bel17] P. Beling. “Partition Search Revisited”. In: IEEE Transactions on Com-

putational Intelligence and AI in Games 9.01 (Jan. 2017), pp. 76–87.
issn: 1943-0698. doi: 10.1109/TCIAIG.2015.2505240.

[Bet21] Paul Bethe. “Advances in computer bridge: techniques for a partial-
information, communication-based game”. In: 2021.

[BH22a] Marie Louisa Tølbøll Berthelsen and Kristo�er Arnsfelt Hansen.
“On the Computational Complexity of Decision Problems About
Multi-Player Nash Equilibria”. In: 66.3 (June 2022), pp. 519–545. issn:
1432-4350. doi: 10.1007/s00224- 022- 10080- 1. url: https:
//doi.org/10.1007/s00224-022-10080-1.

123

https://doi.org/10.1007/s10994-006-6225-2
https://doi.org/10.1007/s10994-006-6225-2
https://doi.org/10.1007/s10994-006-6225-2
https://doi.org/https://doi.org/10.1016/0304-4068(74)90037-8
https://doi.org/https://doi.org/10.1016/0304-4068(74)90037-8
https://www.sciencedirect.com/science/article/pii/0304406874900378
https://www.sciencedirect.com/science/article/pii/0304406874900378
https://web.archive.org/web/20221215151119/https://www.bbc.com/sport/football/46250404
https://web.archive.org/web/20221215151119/https://www.bbc.com/sport/football/46250404
https://web.archive.org/web/20221215151119/https://www.bbc.com/sport/football/46250404
https://doi.org/10.1109/TCIAIG.2015.2505240
https://doi.org/10.1007/s00224-022-10080-1
https://doi.org/10.1007/s00224-022-10080-1
https://doi.org/10.1007/s00224-022-10080-1

BIBLIOGRAPHY 124

[BH22b] Manon Blanc and Kristo�er Arnsfelt Hansen. “Computational Com-
plexity of Multi-player Evolutionarily Stable Strategies”. In: Com-

puter Science Symposium in Russia. 2022.
[BJS13] Édouard Bonnet, Florian Jamain, and Abdallah Sa�dine. “On the

Complexity of Trick-Taking Card Games”. In: Proceedings of the
Twenty-Third International Joint Conference on Arti�cial Intelligence.
IJCAI ’13. Beijing, China: AAAI Press, 2013, pp. 482–488. isbn:
9781577356332.

[BM16] Vittorio Bilò and Marios Mavronicolas. “A Catalog of ∃R-Complete
Decision Problems About Nash Equilibria in Multi-Player Games”. In:
33rd Symposium on Theoretical Aspects of Computer Science, STACS

2016, February 17-20, 2016, Orléans, France. Ed. by Nicolas Ollinger
and Heribert Vollmer. Vol. 47. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016, 17:1–17:13.

[BM21] Vittorio Bilò and Marios Mavronicolas. “∃R-complete Decision Prob-
lems about (Symmetric) Nash Equilibria in (Symmetric) Multi-player
Games”. In: ACM Trans. Economics and Comput. 9.3 (2021), 14:1–
14:25. doi: 10.1145/3456758. url: https://doi.org/10.1145/
3456758.

[BML93] Jean R. S. Blair, David Mutchler, and Cheng Liu. “Games with Im-
perfect Information”. In: 1993.

[BP17] Karel Horák Branislav Bosanský Jiri Cermak and Michal Pechoucek.
“Computing Maxmin Strategies in Extensive-form Zero-sum Games
with Imperfect Recall”. In: Proceedings of the Ninth International Con-
ference on Agents and Arti�cial Intelligence. ICAART’17. SciTePress,
2017, pp. 63–74.

[BPR06] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms

in Real Algebraic Geometry (Algorithms and Computation in Mathe-

matics). Berlin, Heidelberg: Springer-Verlag, 2006.
[BS15] Noam Brown and Tuomas Sandholm. “Simultaneous Abstraction

and Equilibrium Finding in Games”. In: International Joint Conference
on Arti�cial Intelligence. 2015.

[BS16] Édouard Bonnet and Abdallah Sa�dine. “The Importance of Rank
in Trick-Taking Card Games”. In: 2016.

https://doi.org/10.1145/3456758
https://doi.org/10.1145/3456758
https://doi.org/10.1145/3456758

BIBLIOGRAPHY 125

[BS17] Noam Brown and Tuomas Sandholm. “Libratus: The Superhuman AI
for No-Limit Poker”. In: Proceedings of the Twenty-Sixth International
Joint Conference on Arti�cial Intelligence, IJCAI-17. 2017, pp. 5226–
5228. doi: 10.24963/ijcai.2017/772. url: https://doi.org/
10.24963/ijcai.2017/772.

[BS19] Noam Brown and Tuomas Sandholm. “Superhuman AI for mul-
tiplayer poker”. In: Science 365.6456 (2019), pp. 885–890. doi: 10.
1126/science.aay2400. url: https://www.science.org/doi/
abs/10.1126/science.aay2400.

[Can88] John Canny. “Some Algebraic and Geometric Computations in PSPACE”.
In: Proceedings of the Twentieth Annual ACM Symposium on Theory

of Computing. STOC ’88. New York, USA: ACM, 1988, pp. 460–467.
[CBHL18] Jirıé Cermák et al. “Approximating maxmin strategies in imper-

fect recall games using A-loss recall property”. In: Int. J. Approx.
Reasoning 93 (2018), pp. 290–326.

[CBL17] Jiri Cermak, Branislav Bosanský, and Viliam Lisý. “An Algorithm
for Constructing and Solving Imperfect Recall Abstractions of Large
Extensive-Form Games”. In: Proceedings of the Twenty-Sixth Interna-

tional Joint Conference on Arti�cial Intelligence. IJCAI’17. Melbourne,
Australia: ijcai.org, 2017, pp. 936–942.

[CD06] Xi Chen and Xiaotie Deng. “Settling the Complexity of Two-Player
Nash Equilibrium”. In: 2006 47th Annual IEEE Symposium on Foun-

dations of Computer Science (FOCS’06). 2006, pp. 261–272. doi: 10.
1109/FOCS.2006.69.

[ČLB20] Jiří Čermák, Viliam Lisý, and Branislav Bošanský. “Automated con-
struction of bounded-loss imperfect-recall abstractions in extensive-
form games”. In: Arti�cial Intelligence 282 (2020), p. 103248. issn:
0004-3702. doi: https://doi.org/10.1016/j.artint.2020.
103248. url: https : / / www . sciencedirect . com / science /
article/pii/S0004370220300126.

[Dem01] Erik D. Demaine. “Playing Games with Algorithms: Algorithmic
Combinatorial Game Theory”. In: Proceedings of the 26th Interna-

tional Symposium on Mathematical Foundations of Computer Science.
MFCS ’01. Berlin, Heidelberg: Springer-Verlag, 2001, pp. 18–32. isbn:
3540424962.

https://doi.org/10.24963/ijcai.2017/772
https://doi.org/10.24963/ijcai.2017/772
https://doi.org/10.24963/ijcai.2017/772
https://doi.org/10.1126/science.aay2400
https://doi.org/10.1126/science.aay2400
https://www.science.org/doi/abs/10.1126/science.aay2400
https://www.science.org/doi/abs/10.1126/science.aay2400
https://doi.org/10.1109/FOCS.2006.69
https://doi.org/10.1109/FOCS.2006.69
https://doi.org/https://doi.org/10.1016/j.artint.2020.103248
https://doi.org/https://doi.org/10.1016/j.artint.2020.103248
https://www.sciencedirect.com/science/article/pii/S0004370220300126
https://www.sciencedirect.com/science/article/pii/S0004370220300126

BIBLIOGRAPHY 126

[DGP09] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Pa-
padimitriou. “The Complexity of Computing a Nash Equilibrium”.
In: SIAM Journal on Computing 39.1 (2009), pp. 195–259. doi: 10.
1137/070699652.

[DLNO21] Julian D’Costa et al. “On the Complexity of the Escape Problem
for Linear Dynamical Systems over Compact Semialgebraic Sets”.
In: 46th International Symposium on Mathematical Foundations of

Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia.
Ed. by Filippo Bonchi and Simon J. Puglisi. Vol. 202. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 33:1–33:21. doi:
10.4230/LIPIcs.MFCS.2021.33. url: https://doi.org/10.
4230/LIPIcs.MFCS.2021.33.

[EY05] Kousha Etessami and Mihalis Yannakakis. “Recursive Markov Deci-
sion Processes and Recursive Stochastic Games”. In: Proceedings of
the Thirty Second International Conference on Automata, Languages

and Programming. ICALP’05. Berlin, Heidelberg: Springer-Verlag,
2005, pp. 891–903.

[EY10] Kousha Etessami and Mihalis Yannakakis. “On the Complexity of
Nash Equilibria and Other Fixed Points”. In: SIAM J. Comput. 39.6
(2010), pp. 2531–2597.

[Gin01] Matthew L. Ginsberg. “GIB: Imperfect Information in a Computa-
tionally Challenging Game”. In: 14.1 (2001). issn: 1076-9757.

[Gin99] Matthew L. Ginsberg. “GIB: Steps Toward an Expert-Level Bridge-
Playing Program”. In: International Joint Conference on Arti�cial

Intelligence. 1999.
[GJT19] Qucheng Gong, Yu Jiang, and Yuandong Tian. “Simple is Better:

Training an End-to-end Contract Bridge Bidding Agent without
Human Knowledge”. In: 2019.

[GMVY15] Jugal Garg et al. “ETR-Completeness for Decision Versions of Multi-
player (Symmetric) Nash Equilibria”. In: Automata, Languages, and

Programming - 42nd International Colloquium, ICALP 2015, Kyoto,

Japan, July 6-10, 2015, Proceedings, Part I. Ed. by Magnús M. Halldórs-
son et al. Vol. 9134. Lecture Notes in Computer Science. Springer,
2015, pp. 554–566.

[GS07] Andrew Gilpin and Tuomas Sandholm. “Lossless Abstraction of
Imperfect Information Games”. In: 54.5 (2007). issn: 0004-5411. url:
https://doi.org/10.1145/1284320.1284324.

https://doi.org/10.1137/070699652
https://doi.org/10.1137/070699652
https://doi.org/10.4230/LIPIcs.MFCS.2021.33
https://doi.org/10.4230/LIPIcs.MFCS.2021.33
https://doi.org/10.4230/LIPIcs.MFCS.2021.33
https://doi.org/10.1145/1284320.1284324

BIBLIOGRAPHY 127

[Gua22] The Guardian. Arti�cial intelligence beats eight world champions at

bridge. 2022. url: https://www.theguardian.com/technology/
2022 / mar / 29 / artificial - intelligence - beats - eight -

world-champions-at-bridge.
[Han] Bo Hangkund. url: https://privat.bahnhof.se/wb758135/

bridge/index.html.
[Han19] Kristo�er Arnsfelt Hansen. “The Real Computational Complexity of

Minmax Value and Equilibrium Re�nements in Multi-player Games”.
In: Theory Comput. Syst. 63.7 (2019), pp. 1554–1571. doi: 10.1007/
s00224-018-9887-9. url: https://doi.org/10.1007/s00224-
018-9887-9.

[HMS07] Kristo�er Hansen, Peter Miltersen, and Troels Sørensen. “Finding
Equilibria in Games of No Chance”. In: July 2007, pp. 274–284. isbn:
978-3-540-73544-1. doi: 10.1007/978-3-540-73545-8_28.

[HMS10] Kristo�er Arnsfelt Hansen, Peter Bro Miltersen, and Troels Bjerre
Sørensen. “The Computational Complexity of Trembling Hand Per-
fection and Other Equilibrium Re�nements”. In: Proceedings of the
Third International Conference onAlgorithmic Game Theory. SAGT’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 198–209.

[IBM02] IBM. “Deep Blue”. In: Arti�cial Intelligence 134.1 (2002), pp. 57–83.
issn: 0004-3702.

[Jac] JackBridge. JackBridge. url: http : / / www . jackbridge . com /
eindex.htm.

[JPT13] Gabriela Jeronimo, Daniel Perrucci, and Elias P. Tsigaridas. “On the
Minimum of a Polynomial Function on a Basic Closed Semialgebraic
Set and Applications”. In: SIAM J. Optim. 23.1 (2013), pp. 241–255.
doi: 10.1137/110857751. url: https://doi.org/10.1137/
110857751.

[KK95] Mamoru Kaneko and J Jude Kline. “Behavior strategies, mixed strate-
gies and perfect recall”. In: International Journal of Game Theory 24
(1995), pp. 127–145.

[Kli02] J Jude Kline. “Minimum memory for equivalence between ex ante
optimality and time-consistency”. In: Games and Economic Behavior

38.2 (2002), pp. 278–305.
[KM92] Daphne Koller and Nimrod Megiddo. “The complexity of two-person

zero-sum games in extensive-form”. In: Games and Economic Behav-

ior 4.4 (1992), pp. 528–552. issn: 0899-8256.

https://www.theguardian.com/technology/2022/mar/29/artificial-intelligence-beats-eight-world-champions-at-bridge
https://www.theguardian.com/technology/2022/mar/29/artificial-intelligence-beats-eight-world-champions-at-bridge
https://www.theguardian.com/technology/2022/mar/29/artificial-intelligence-beats-eight-world-champions-at-bridge
https://privat.bahnhof.se/wb758135/bridge/index.html
https://privat.bahnhof.se/wb758135/bridge/index.html
https://doi.org/10.1007/s00224-018-9887-9
https://doi.org/10.1007/s00224-018-9887-9
https://doi.org/10.1007/s00224-018-9887-9
https://doi.org/10.1007/s00224-018-9887-9
https://doi.org/10.1007/978-3-540-73545-8_28
http://www.jackbridge.com/eindex.htm
http://www.jackbridge.com/eindex.htm
https://doi.org/10.1137/110857751
https://doi.org/10.1137/110857751
https://doi.org/10.1137/110857751

BIBLIOGRAPHY 128

[KM96] Daphne Koller and Nimrod Megiddo. “Finding mixed strategies with
small supports in extensive-form games”. In: International Journal
of Game Theory 25 (1996), pp. 73–92.

[KS14] Christian Kroer and Tuomas Sandholm. “Extensive-Form Game Ab-
straction with Bounds”. In: New York, NY, USA: Association for
Computing Machinery, 2014. isbn: 9781450325653. doi: 10.1145/
2600057.2602905. url: https://doi.org/10.1145/2600057.
2602905.

[Kuh53] H. W. Kuhn. Extensive games and the problem of information. Ed. by
H. W. Kuhn and A. W. Tucker. Princeton, NJ: Princeton University
Press, 1953. Chap. 2, pp. 193–216.

[MSBL17] Matej Moravčík et al. “DeepStack: Expert-level arti�cial intelligence
in heads-up no-limit poker”. In: Science 356.6337 (2017), pp. 508–513.
doi: 10.1126/science.aam6960.

[Nas50] John F. Nash. “Equilibrium Points in N-Person Games.” In: Pro-
ceedings of the National Academy of Sciences of the United States of

America 36 1 (1950), pp. 48–9.
[Neu28] J. von Neumann. “Zur Theorie der Gesellschaftsspiele”. In: Math-

ematische Annalen 100 (1928), pp. 295–320. url: http://eudml.
org/doc/159291.

[NM47] J. von Neumann and O. Morgenstern. Theory of games and economic

behavior. Princeton University Press, 1947.
[Osb09] Martin J. Osborne. Introduction to Game Theory: International Edition.

OUP Catalogue 9780195322484. Oxford University Press, 2009. isbn:
ARRAY(0x58a8d690). url: https://ideas.repec.org/b/oxp/
obooks/9780195322484.html.

[PR97] Michele Piccione and Ariel Rubinstein. “On the Interpretation of De-
cision Problems with Imperfect Recall”. In: Games and Economic

Behavior 20.1 (1997), pp. 3–24. issn: 0899-8256. doi: https : / /
doi . org / 10 . 1006 / game . 1997 . 0536. url: https : / / www .
sciencedirect.com/science/article/pii/S0899825697905364.

[RQA19] Jiang Rong, Tao Qin, and Bo An. “Competitive Bridge Bidding with
Deep Neural Networks”. In: Proceedings of the Eighteenth Interna-

tional Conference on Autonomous Agents and MultiAgent Systems.
AAMAS’19. International Foundation for Autonomous Agents and
Multiagent Systems, 2019, pp. 16–24.

https://doi.org/10.1145/2600057.2602905
https://doi.org/10.1145/2600057.2602905
https://doi.org/10.1145/2600057.2602905
https://doi.org/10.1145/2600057.2602905
https://doi.org/10.1126/science.aam6960
http://eudml.org/doc/159291
http://eudml.org/doc/159291
https://ideas.repec.org/b/oxp/obooks/9780195322484.html
https://ideas.repec.org/b/oxp/obooks/9780195322484.html
https://doi.org/https://doi.org/10.1006/game.1997.0536
https://doi.org/https://doi.org/10.1006/game.1997.0536
https://www.sciencedirect.com/science/article/pii/S0899825697905364
https://www.sciencedirect.com/science/article/pii/S0899825697905364

BIBLIOGRAPHY 129

[Sch10] Marcus Schaefer. “Complexity of Some Geometric and Topological
Problems”. In: Graph Drawing. Ed. by David Eppstein and Emden
R. Gansner. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 334–344. isbn: 978-3-642-11805-0.

[Sch13] Marcus Schaefer. “Realizability of Graphs and Linkages”. In: Thirty
Essays on Geometric Graph Theory. New York, NY: Springer New
York, 2013, pp. 461–482.

[Sha50] Claude E. Shannon. “XXII. Programming a computer for playing
chess”. In: The London, Edinburgh, and Dublin Philosophical Magazine

and Journal of Science 41.314 (1950), pp. 256–275. doi: 10.1080/
14786445008521796.

[SHMG16] David Silver et al. “Mastering the Game of Go with Deep Neural
Networks and Tree Search”. In: 529 (2016).

[SHSA18] David Silver et al. “A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play”. In: Science
362.6419 (2018), pp. 1140–1144. doi: 10.1126/science.aar6404.
url: https://www.science.org/doi/abs/10.1126/science.
aar6404.

[SL01] Jiefu Shi and Michael L. Littman. “Abstraction Methods for Game
Theoretic Poker”. In: Computers and Games. Ed. by Tony Marsland
and Ian Frank. 2001.

[SS17] Marcus Schaefer and Daniel Stefankovic. “Fixed Points, Nash Equi-
libria, and the Existential Theory of the Reals”. In: Theory Comput.

Syst. 60.2 (2017), pp. 172–193.
[SS22] Marcus Schaefer and Daniel Stefankovic. “Beyond the Existential

Theory of the Reals”. In:CoRR abs/2210.00571 (2022). doi: 10.48550/
arXiv.2210.00571. arXiv: 2210.00571. url: https://doi.org/
10.48550/arXiv.2210.00571.

[Ste96] Bernhard von Stengel. “E�cient Computation of Behavior Strate-
gies”. In: Games and Economic Behavior 14.2 (1996), pp. 220–246.
issn: 0899-8256.

[TZWW18] Zheng Tian et al. “Learning Multi-agent Implicit Communication
Through Actions: A Case Study in Contract Bridge, a Collaborative
Imperfect-Information Game”. In: ArXiv abs/1810.04444 (2018).

https://doi.org/10.1080/14786445008521796
https://doi.org/10.1080/14786445008521796
https://doi.org/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://doi.org/10.48550/arXiv.2210.00571
https://doi.org/10.48550/arXiv.2210.00571
https://arxiv.org/abs/2210.00571
https://doi.org/10.48550/arXiv.2210.00571
https://doi.org/10.48550/arXiv.2210.00571

BIBLIOGRAPHY 130

[VCTT17] Veronique Ventos et al. “Boosting a Bridge Arti�cial Intelligence”.
In: 2017 IEEE 29th International Conference on Tools with Arti�cial

Intelligence (ICTAI). 2017, pp. 1280–1287. doi: 10.1109/ICTAI.
2017.00193.

[Wäs05] Johan Wästlund. “Two-Person Symmetric Whist”. In: The Electronic
Journal of Combinatorics 12.R44 (2005).

[WBF] WBF. LawsofDuplicateBridge. url: http://www.worldbridge.
org/wp-content/uploads/2020/02/2017LawsofDuplicateBridge-

gender_neutral_1.pdf.
[WBr] WBridge5. WBridge5. url: http://www.wbridge5.com/.
[WCB] WCBC.World Computer Bridge Championship. url: https://bridgebotchampionship.

com.
[YHL18] Chih-Kuan Yeh, Cheng-Yu Hsieh, and Hsuan-Tien Lin. “Automatic

Bridge Bidding Using Deep Reinforcement Learning”. In: IEEE Trans-
actions on Games 10.4 (2018), pp. 365–377. doi: 10.1109/TG.2018.
2866036.

[Zer13] Ernst Zermelo. Uber eine Anwendung der Mengenlehre auf die Theorie

des Schachspiels. InProceedings of the Fifth International Congress of

Mathematicians II. 1913.
[ZJBP07] Martin Zinkevich et al. “Regret Minimization in Games with In-

complete Information”. In: NIPS’07. Vancouver, British Columbia,
Canada: Curran Associates Inc., 2007. isbn: 9781605603520.

https://doi.org/10.1109/ICTAI.2017.00193
https://doi.org/10.1109/ICTAI.2017.00193
http://www.worldbridge.org/wp-content/uploads/2020/02/2017LawsofDuplicateBridge-gender_neutral_1.pdf
http://www.worldbridge.org/wp-content/uploads/2020/02/2017LawsofDuplicateBridge-gender_neutral_1.pdf
http://www.worldbridge.org/wp-content/uploads/2020/02/2017LawsofDuplicateBridge-gender_neutral_1.pdf
http://www.wbridge5.com/
https://bridgebotchampionship.com
https://bridgebotchampionship.com
https://doi.org/10.1109/TG.2018.2866036
https://doi.org/10.1109/TG.2018.2866036

Appendix A
Why binary decision games are
enough?

In Chapter 4, we discussed simpli�cation of games in extensive form using binary
decision games. Here we will show that working with binary decision games
doesn’t take away any generality with respect to our analysis of games in sequence
form. We brie�y extend the vocabulary of concepts for binary decision games to
general games and then prove our claims.

Extension to general games

Let G be a two-player game in extensive form. Let AMax and AMin be the set of
actions of Max and Min in G respectively and A = AMax ∪AMin be the set of all
actions. Recall that O is the set of all observations in G. Then A =]o∈O Act(o)
is a partition of A.

For two actions a1 and a2 in A, a1 and a2 are called co-actions if ∃o ∈ O
such that a1, a2 ∈ Act(o). Let Part(A) be the set of all Act(o), i.e. Part(A) =
{Act(o) | o ∈ O} and we call this the co-action partition of A. In the speci�c case
of binary decision games, each set in Part(A) has size 2. We denote actions from
a node with observation o and k actions out it by Act(o) = {ao1 . . . aok}. For any
aoi , cl(a

o
i) = Act(o).

Seq(A) = {s ∈ A∗ | ∀a ∈ A, a appears at most once in s and a ∈ s =⇒
Act(s) has no co-action of a}. We consider sequences only from Seq(A).

The closure of S, cl(S) = S ∪ {sa′ | sas′ ∈ S, a′ is a co-action of a, sa′A∗ ∩
S = ∅}

Recall that two sequences s1 and s2 are called connected when cl(Act(s1)) ∩

131

APPENDIX A. WHY BINARY DECISION GAMES ARE ENOUGH? 132

cl(Act(s2)) 6= ∅.
We also recall the de�nition of A-loss recall compatibility of sequences using

connectedness. For two sequences s1 and s2, s1 ∼A s2, when either (s1, s2) =
(ss′1, ss

′
2) with s′1 and s′2 being disconnected or (s1, s2) = (sa1s

′
1, sa2s

′
2) where

a1 and a2 are co-actions. A set S has A-loss recall when every pair of sequences
are A-loss recall compatible.

A behavioral strategy is given by attaching to action ai the variable xai that
can take values from [0, 1] such that for any ai ∈ A,

∑
aj∈cl(ai)

xaj = 1. These

constraints are the strategy constraints. The payo� polynomial is a polynomial
over variables in xai .

The de�nition of leaf monomials remains the same.
For two sequence sets S1 and S2, S1 spans S2, i.e. S1 E S2, if for each s ∈ S,

there exists kss′ ∈ R for each s′ ∈ S2, such that µ(s) −
∑
s′∈S2

kss′ = 0 under the

strategy constraints. Under this de�nition of span, A-loss spans are de�ned as
usual.

A gameG in extensive form gives a sequence set S. Conversely using the same
construction used in Proposition 4.9, given a sequence set S over A and co-action
partition Part(A) one can construct a corresponding game.

So for discussing results on games in extensive form we will interchangeably
use its sequence form.

For converting a sequence set over general action set to sequence set over
binary actions, we will show that we can �nd an equivalent sequence set which
uses at least one action less than it had before. By repeated application of this, we
will get to a binary decision game.

Lemma A.1. (Action elimination lemma) Let A = AMax ∪ AMin along with co-
action partition Part(A). For some a1 ∈ AMax, let cl(a1) = {a1,ak} with
k > 2. Let A′Max = AMax ∪ {ā1} and A′ = A′Max ∪AMin with co-action partition,
Part(A′) = (Part(A) \ {cl(a1)}) ∪ {{a1, ā1}, cl(a1) \ {a1}}.

For a sequence set S over A, let Brancha1(S) be the sequence set over A′
constructed from S by replacing every occurrence of ai for i ∈ {2, . . . , k} in every
sequence in S by ā1ai

1. Then the following statements are true.

1. S is complete =⇒ Brancha1(S) is complete.

2. SMax has perfect recall. =⇒ Brancha1(SMax) has perfect recall.

3. SMax has A-loss recall. =⇒ Brancha1(SMax) has A-loss recall.
1Essentially in the game, this groups the decision of choosing one of the actions a2, . . . , ak into

ā1 and delays their choice in the next observation after choosing ā1.

APPENDIX A. WHY BINARY DECISION GAMES ARE ENOUGH? 133

4. S†Max is an A-loss recall shu�e of S =⇒ Brancha1(S†Max) is an A-loss
recall shu�e of Brancha1(S).

5. If S†Max is an A-loss recall span of SMax =⇒ Brancha1(S†Max) is an A-loss
recall span of Brancha1(SMax)

Proof. (1) Suppose Brancha1(S) is not complete. Then for some sas′ ∈ Brancha1(S),
there is some a′ ∈ cl(a) such that Brancha1(S) has no sequence of form sa′s′′. It
must be that Act(sas′) ∩ cl(a1) 6= ∅, since sequences in Brancha1(S) ∩ S over
A \ cl(a1) do not contradict completeness. a cannot be a1 or ā1 since for any
sa1s

′ there is sā1s
′′ and vice versa. Then the only possibility is a ∈ {a2, . . . , ak}.

But since k > 2 for any sā1ais
′ in Sb, we have another sā1ajs

′′ ∈ Sb. Hence
Brancha1(S) is also complete.

(3) We will prove the case for A-loss recall. The proof of (2) is similar. We can
that assume a1 ∈ AMax. Suppose for s1, s2 ∈ S′Max, s1 6∼A s2. Then at least one of
s1 and s2 is of the form sā1ais

′ since these are new additions in Brancha1(SMax).
W.L.O.G, let that one be s1. Now either s2 = s0ā1aj1s

′′ or s2 doesn’t contain ā1.
But then, in the latter case s2 6∼A s0ajs

′′ which is a contradiction. And in the �rst
case sais′ 6∼ s0ajs

′′ which is also a contradiction since both of these are sequences
form SMax. Hence Brancha1(SMax) has to have A-loss recall.

(5) We will prove the case for A-loss recall span and the proof of (4) will follow
similarly.

Let xa and ya be the variables associated to some action a in A and A′ re-
spectively. For A we have the strategy constraint

∑
i∈[k] xai = 1, For A′ we

have the constraints ya1 + yā1 = 1 and
∑

1<j≤k yj = 1. Hence we have
ya1 +

∑
1<j≤k yā1yj = 1. But since every leaf monomial in µ(S′Max) contain-

ing yā1 also contains a yaj for some j > 1, one can obtain leaf monomials of SMax

by replacing every occurrence of yā1yj for j > 1 by xaj and any other ya by xa.
As a result the set of polynomials generated by µ(SMax) and µ(S′Max) are identical
under this substitution. Hence Brancha1(S†Max) also spans Brancha1(SMax).

Now we convert any game into an equivalent binary decision game, preserving
the same conditions we saw in Lemma A.1.

Proposition A.2 (Binary decision game). Let G = (S,Λ) be a game in sequence
form with non-absentminded players. Then there exists a binary decision game
G′ = (S′,Λ′) with G ∼ G′ and |G| = |G′| that can be constructed in PTIME such
that

1. Max (Min) has A-loss (perfect) recall in G =⇒ Max (Min) has A-loss
(perfect) recall in G′.

APPENDIX A. WHY BINARY DECISION GAMES ARE ENOUGH? 134

2. Max (Min) has A-loss recall shu�e in G =⇒ Max has A-loss recall shu�e
in G′.

3. If SMax has an A-loss recall span, then S′Max has an A-loss recall span of the
same size.

Proof. First we will construct the game G′ and then prove the three properties. If
G = (S,Λ) is already a binary decision game, G′ is just G. Otherwise, we run an
iterative process generating a new game at each step until we get a binary decision.
If A is the action set of S, there is set in Part(A) with size more than 2. Let a
be an action in this set. Then our new A is A ∪ {ā} and new S is Brancha(S).
And the new Λ doesn’t change, since we don’t add or remove any sequence. We
do this until all sets in Part(A) has size 2. Since the value

∑
B| B∈Part(A),|B|>2

|B|

strictly decreases at each iteration, this process is bound to stop and we end up
with a binary decision game G′ = (S′,Λ′). Now since Λ′ has the same payo�s
as Λ it follows that |G| = |G′|. To see that G and G′ are equivalent, we will
show this after every iteration. Let for a1 ∈ A with cl(a1 = {a1, . . . , ak}, G′
is formed by taking S′ = Brancha1 . Then to a behavioral strategy of player i,
βi we associate the strategy β′i whereβ′i(a1) = β(a1), β′i(ā1) = 1 − β(a1) and
∀ai ∈ cl(a), i > 1, b′i(ai) = (1 − β(a1))β(ai). Since the new strategies induce
the same probability distribution on sequences, this shows that G ∼ G′.

Now we will prove the three properties.
(1) This follows by applying inductively Lemma A.1 at every step of iteration.
(2) Again, this follows by applying inductively Lemma A.1.
(3) This also follows from repeated application of Lemma A.1.

Since reducing to binary decision games doesn’t a�ect the size of an optimal
A-loss recall span, we lose nothing by working with binary decision games. A
strategy in the binary decision games can be mapped back to the corresponding
strategy in the original game.

APPENDIX A. WHY BINARY DECISION GAMES ARE ENOUGH? 135

	Introduction
	Our contribution
	Complexity bounds
	New tractable class of imperfect recall
	Study of Bridge Bidding

	Organization of Thesis

	Preliminaries: Extensive Form Games
	Extensive-form games with imperfect information
	Three kinds of strategies
	Expected Payoff
	Best Response and Maxmin Value
	Best response to a strategy
	Maxmin value

	Histories and Recalls
	Recalls and equivalence of strategies
	Computation of maxmin value
	Linear program for computing maxmin value

	Complexity of solving imperfect recall games
	Maxmin Decision Problem
	Known Complexity Results

	Our complexity results
	First Order Theory of Reals
	Complexity classes R, R and R
	Sqrt-Sum Problem
	New Complexity Picture

	Path to reduction
	Payoff polynomial

	Proof of complexity: Games with absentminded players
	One player games
	Two player games

	Proof of complexity: Games without absentmindedness
	Conclusion

	Simplifying non-absentminded games
	Complexity Picture
	Our contribution

	Why A-loss recall shuffle? Simplification via sequences
	Strategic equivalence of games

	Finding A-loss recall shuffles
	Generalizing A-loss recall shuffle: A-loss recall span
	Finding minimal A-loss recall span

	A word on perfect recall spans and shuffles
	Simplification via payoff polynomials
	Turning some games into games with perfect-recall
	Turning any game into games with A-loss recall

	Discussion
	Applications in multi-linear optimization

	Conclusion

	Bridge bidding game
	A crash course on Bridge
	Why study Bridge Bidding?

	Bridge Bidding Model
	Double Dummy Analysis of Bridge Hands
	General Bridge Bidding Model
	Computing Maxmin strategy: Implications

	Studying Restrictions
	Restriction on Strategies
	Computing maxmin value over pure strategies
	Belief and maxmin strategies
	Non-optimality of non-overbidding strategies
	Non-optimality of pure strategies

	Conclusion

	Conclusion
	Appendix Why binary decision games are enough?

