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Preface

In the Human Evolutionary Genetics Unit of Institut Pasteur, I worked in a diverse environment.
The multidisciplinary nature of the team�marrying population genetics methods with functional
genomics approaches�is re�ected in the variety of questions adressed by my thesis project. Why do
healthy humans respond di�erently to infection by the same virus? How does the immune response
vary across populations and cell types? What is the role of genetics in this variability? Where do
the genetic predictors of immune variability come from?

Hoping to channel this complexity, I wrote this manuscript in three Parts. First, I introduce the
main concepts underlying my contributions to the �eld of population single-cell genomics. Second,
I present said contributions in their published state, along with a few lines describing the context
in which they were produced. Finally, I discuss how my work relates to other pieces of knowledge
published in the �eld, as well as some perspectives on possible future developments.

Human genetics and single-cell genomics. Genetic diversity is the unifying concept of this
multidimensional project; each Chapter in the �rst Part spans a question around it. Chapter 1 is
centered on how information on human genetic diversity is used to map the genetic bases of complex
traits, with a particular focus on disease phenotypes. I start with an introduction to some of the
main data bases of human genetic diversity of the 21st century�built in the wake of the Human
Genome Project�that are essential for most genomic analysis tasks today. In particular, I then
focus on how these resources are used to map the genetic bases of complex traits genome-wide, and
how molecular endophenotypes can easen causal inference of genetic e�ects on phenotype. Finally, I
discuss how single-cell assays of molecular endophenotypes across di�erent layers of gene expression
regulation are helpful to disentangle the context-dependency of these e�ects, and thus maximize
the chance to detect bona �de causal links between genotype and phenotype.

Archaic introgression and modern immune responses. Next, Chapter 2 explores how extant
human genetic diversity can inform on the impact of ancient events in the shared human evolutionary
history that shaped present-day immune responses. I begin with a high-level overview of the early
evolution of the ancestors of anatomically modern humans, including their expansion out of Africa,
and their interactions with `archaic' human forms in Eurasia. I then review some of the main
methods used to detect archaic genetic material in modern human genomes, as well as pieces of
evidence that show these exchanges helped modern humans adapt to new pathogenic environments
during the colonization of Eurasia, Oceania and The Americas. Finally, I focus on the role of
viral pathogens as drivers of human evolution, and argue the importance of characterizing the
evolutionary forces that shaped the genetic architecture of infectious disease risk in order to better
defend against future viral outbreaks.

Healthy variability and inborn errors of immunity. Finally, Chapter 3 expands beyond the
realm of healthy human genetic diversity and into inborn errors of immunity. I start with a brief
presentation of the innate immune response to viruses in the peripheral blood, from the point of
view of gene regulatory networks wired to sense pathogens and mount an appropriate transcriptional
response. Next, I go over the genetic and nongenetic drivers of immune response variability across
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healthy individuals and in the context of viral infection, before moving on to the case of individuals
with genetic de�ciencies of antiviral immunity. In this last Section, I review how the study of
errors of antiviral immunity in rare individuals can yield insights into the predictors of variability
in infectious disease risk, including common immunological factors with potential population-level
impacts on disease susceptibility and the response to vaccination.

My intention is to introduce all of these concepts and ideas in a way that re�ects my own
intuition of the underlying biology. Although I aimed to be as extensive as possible, so as to place
each method employed in Aquino et al. (2023) in its rightful context, I do not pretend to provide a
comprehensive review of the genomicist's toolkit. For that, I strongly recommend the `Handbook
of statistical genomics' by Balding et al. (2019).

Given the context in which my project started in early 2020, all of my discussion is strongly
in�uenced by the coronavirus outbreak of 2019 and its associated disease. In fact, the whole project
itself was shaped by the pandemic, the need for a comprehensive assessment of the drivers of immune
variability in the response to viral infection, and the unprecented amounts of data and resources
pooled to answer this need.

All in all, my work is inscribed within the larger paradigm of precision medicine. With the ad-
vancement of technology and human knowledge, a medicine tailored to each individual, their innate
and acquired features and their environment, is within reach. This implies a strong evolutionary
understanding of the genetic bases of disease risk, and of the relative contributions of genetic and
nongenetic predictors of its variability across individuals.
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Introduction

The long shared history of humans and viruses. Diseases caused by pathogenic microbes
have been a leading cause of mortality for hundreds of thousands of years of human evolution
(Casanova and Abel, 2005). In particular, viruses are known to have played an especially important
role in shaping the genetic basis of present-day human immune responses (Enard et al., 2016). As
increased human activity accelerates the rate of viral spillover (Jones et al., 2013), characterizing
the relative contributions of the genetic, immunological, environmental and microbial predictors
of immune variability (Casanova and Abel, 2013), as well as the impact of evolutionary forces on
the genetic architecture of infectious disease risk (Quintana-Murci, 2019; Sella and Barton, 2019) is
fundamental to better prepare against future outbreaks.

The extent of human immune variability in the response to viruses was strikingly illustrated
by the ongoing `coronavirus disease 2019' (COVID-19) pandemic, sparked by the 2019 outbreak
of a novel coronavirus strain inducing severe acute respiratory syndrome (SARS-CoV-2). Indeed,
infection by SARS-CoV-2 is characterized by a wide range of possible outcomes, from asymptomatic
cases, to COVID-19 patients requiring intensive care, and even death. Although recent estimates
place the rate of life-threatening COVID-19 at 2% to 4% of patients and the SARS-CoV-2 infection
fatality ratio at around 0.5% to 1% of cases d (O'Driscoll et al., 2021; Bollyky et al., 2022), the
World Health Organization (2020a) estimates that nearly 7 million lives have been lost to the
disease, re�ecting the prevalence of silent SARS-CoV-2 infection: Sah et al. (2021) estimated the
rate of asymptomatic cases at around 35% through the meta-analysis of over 350 studies.

In fact, di�erences in COVID-19 susceptibility might explain the velocity of the global spread
of SARS-CoV-2. During the �rst year of the pandemic, over 80 million people were reportedly
infected by SARS-CoV-2, despite widespread travel restrictions and social distancing measures.
In contrast, basic epidemiological interventions were su�cient to contain the �rst SARS-CoV-1
outbreak after 8 months, limiting the death toll to approximately 8 thousand lives in 2002. Given
that both coronaviruses feature similar aerosol and surface stabilities (van Doremalen et al., 2020),
the di�erences in transmission of SARS-CoV-1 and 2 could be explained by the latter's highly
infectious presymptomatic phase and high rate of asymptomatic cases (He et al., 2020). Hence, it
is paramount to disentangle the genetic, immunological and environmental predictors of variability
in the response to SARS-CoV-2, so as to more accurately describe variability in COVID-19 courses
across healthy individuals and populations worldwide.

Several large-scale genome-wide association studies have contributed to map the common genetic
predictors of susceptibility to SARS-CoV-2 infection and severe COVID-19 forms. In particular,
the COVID-19 Host Genetics Initiative (2020, 2021, 2022, 2023) has greatly participated to this
endeavour by proposing uni�ed de�nitions for susceptibility and severity, as well as concentrating
e�orts and resources from research institutes world-wide. These and other studies (Ellinghaus et al.,
2020; Pairo-Castineira et al., 2021; Shelton et al., 2021; Kousathanas et al., 2022; Horowitz et al.,
2022) have unveiled several immune-relevant genomic regions associated to higher COVID-19 risk

d . For reference, the global case fatality ratio of tuberculosis�the largest infectious killer prior to the COVID-19
pandemic�was estimated at 14% in 2019 by the World Health Organization (2019).
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(Shelton et al., 2021; Kousathanas et al., 2022), but also variants that protect against severe forms
of the disease (Ellinghaus et al., 2020). Yet, assessing the e�ects on immune phenotypes that link
these genetic factors to disease risk requires complementary functional genomic data.

In particular, transcriptomic data are commonly used to establish intermediate links between
genotype and gene expression endophenotypes, which can help interpret the genetic association with
an organismal phenotype (Lappalainen et al., 2013) like COVID-19 risk. For instance, Kousathanas
et al. (2022) show evidence of genetic e�ects on COVID-19 severity that are mediated by genetically
controlled changes in the expression of the CCR9 chemokine locus, located in the genomic region
most strongly associated to the risk of severe COVID-19 (Ellinghaus et al., 2020). However, while
such results may point to real causal associations between genotype and phenotype, their biological
relevance must be assessed with caution, as measured genetic e�ects on immune phenotypes are
known to be strongly dependent on the nature (Barreiro et al., 2012) and length (Kim-Hellmuth
et al., 2017) of stimulation, as well as cell-type identity (Kim-Hellmuth et al., 2020).

From this view, assays that allow to characterize the transcriptome at single-cell resolution are
particularly useful to disentangle the context-dependency of genetic e�ects. Yet, although several
single-cell transcriptomic studies of the response to SARS-CoV-2 have provided valuable insights
into the ætiology of COVID-19 (Lee et al., 2020; Wilk et al., 2020; Ren et al., 2021; Stephenson et al.,
2021), a systematic assessment of the e�ects of common genetic variants on the response to SARS-
CoV-2 across immune cell types and human populations�likely to improve the interpretability of
the wealth of genome-wide associations revealed by the COVID-19 Host Genetics Initiative (2020,
2021, 2022, 2023) and others�was lacking. Hence, we at the Human Evolutionary Genetics Unit
of Institut Pasteur set out to characterize the boundaries of natural variability in the immune
response to SARS-CoV-2 across healthy and diverse individuals, map its genetic basis, and describe
the evolutionary forces that shaped it (Aquino et al., 2023).

Our evolutionary perspective is essential because demographic events in human evolutionary
history, as well as events of adaptation driven by natural selection are known to have shaped the
genetic architectures of complex traits�such as COVID-19 risk�across human populations world-
wide (Sella and Barton, 2019; Uricchio, 2020). Speci�cally, while recent population expansions can
lead to private variants with large e�ects on phenotype in di�erent populations (Lohmueller, 2014),
negative selection on large-e�ect deleterious variants could explain why the bulk of complex trait
heritability is distributed across many variants with small e�ects (O'Connor et al., 2019). Hence,
approaches that are agnostic to these evolutionary processes are ill-equipped to explain disparities
in heritable COVID-19 risks across populations (Shelton et al., 2021).

Moreover, it has been shown that some of the genetic variants associated to COVID-19 severity
were introduced into the genomes of anatomically modern humans following admixture with archaic
hominin forms, and have been brought to high frequencies in di�erent human populations by natural
selection. For example, Zeberg and Pääbo (2020, 2021) show that the haplotype spanning the CCR9
locus associated to COVID-19 severity is of Neandertal origin, while another Neandertal haplotype
spanning the OAS1-3 locus in around 30% of Eurasian genomes has been shown to be associated
to a 22% reduction in the risk of severe forms in COVID-19 patients (Ellinghaus et al., 2020), as
well as to harbor variants displaying strong signals of selection (Sams et al., 2016).

More generally, viruses have been singled out as drivers of human adaptation to changing local
environments (Enard et al., 2016; Souilmi et al., 2021), including via such events of adaptive archaic
introgression (Enard and Petrov, 2018, 2020). These results highlight the pervasiveness of pathogen-
related selective pressures during human evolutionary history, and how they have contributed to
shape present-day human genetic diversity (Barreiro and Quintana-Murci, 2010; Quintana-Murci,
2019; Rotival and Quintana-Murci, 2020). Together, the impact of evolutionary forces on the genetic
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architectures of complex disease, the evidence of Neandertal in�uences on modern human adaptation
and the role of viruses as drivers of natural selection, support the relevance of evolutionary genetics
approaches in the dissection of genetic e�ects on COVID-19 susceptibility and severity.

Yet, common genetic variation only explains a fraction of the inter-individual variability in
COVID-19 risks. Indeed, since relatively early on in the pandemic, it was shown that male sex
(Takahashi et al., 2020) and advanced age (O'Driscoll et al., 2021) were the largest predictors
of severe COVID-19 forms. Remarkably, these studies also highlighted links between these host
intrinsic factors and di�erences in the proportions of speci�c immune cell types, that could in
turn explain variation in disease courses. For instance, Takahashi et al. (2020) associated severe
COVID-19 risk to poor CD8+ T cell responses in biological males, but high myeloid cytokine
plasma concentrations in females. Notably, it was later shown that changes in immune cell type
proportions could also translate the e�ects of extrinsic environmental exposures linked to COVID-19
risk. For example, latent infection by cytomegalovirus (CMV) is associated to increased frequencies
of cytotoxic CD8+ T cell subsets (Patin et al., 2018), as well as to the risk of severe COVID-19
forms, even in patients under 60 years old (Weber et al., 2022).

These results underline a more general trend in immune responses to SARS-CoV-2. Namely,
while e�cient cytotoxic immune responses protect against severe COVID-19, exacerbated myeloid
activity can steer the course of the disease towards critical forms. In particular, severe COVID-19
has been associated to changes in cytotoxic lymphoid T and natural killer (NK) cell compartments,
as well as T and NK cell exhaustion (Diao et al., 2020; Xu et al., 2020; Wilk et al., 2020; Stephenson
et al., 2021; Lee et al., 2020). On the other hand, changes in the monocyte compartment can trigger
in�ammatory cytokine `storms' that characterize dysregulated immune responses in the plasma of
severe COVID-19 patients (Ren et al., 2021; Stephenson et al., 2021).

The current literature suggests that the exacerbated in�ammatory features of severe COVID-19
cases stem from problems in the interferon-mediated regulation of the response to SARS-CoV-2, due
to changes in cellular composition (Lee et al., 2020; Wilk et al., 2020; Ren et al., 2021; Stephenson
et al., 2021), but also to the joint impact of low-e�ect common variants genome-wide (COVID-
19 Host Genetics Initiative, 2020, 2021, 2022, 2023). Moreover, the study of rare and strongly
deleterious inborn errors of interferon immunity (Ciancanelli et al., 2015; Hernández et al., 2018;
Lim et al., 2019; Zhang et al., 2020) and their auto-immune phenocopies (Bastard et al., 2020,
2021a,b) has also shed light on the biology of COVID-19 risk disparities (Zhang et al., 2022), in
particular through the discovery interferon-neutralizing auto-antibodies that phenocopy the inborn
de�ciency, but are much more prevalent in the general population, can explain up to 20% of life-
threatening COVID-19 cases among the elderly, but also variable responses to vaccination (Bastard
et al., 2020, 2021a,b). Hence, even though inborn errors of immunity are rare by de�nition, their
study o�ers major opportunities to dissect the gene regulatory networks underlying disease traits,
which can lead to insights with population-level impacts (Casanova and Abel, 2022).

In summary, the data generated in response to the COVID-19 pandemic present unparalleled
opportunities to learn about the host intrinsic and extrinsic predictors of immune variability in
the response to viruses in health and disease. These insights have been used to inform and adapt
publich health policy during the ongoing pandemic (O'Driscoll et al., 2021), but they should also
be leveraged towards the establishment of a precision medicine�tailored to each population and
its environment�in preparation for the pandemics to come (Jones et al., 2013). Towards this goal,
systematic assessments of the respective contributions of the environmental and genetic predictors
of immune variability across human populations and immune cell types are essential, and should
be performed through the lens of evolutionary genetics (Quintana-Murci, 2019) to account for the
impact of evolutionary forces on the genetic architecture of complex diseases.
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Part I

State of the art



1 Human genetics and single-cell genomics

‘The most significant thing about the nucleic acids is that we don’t know what they do’

– James Watson, according to Francis Crick (1958)

2



1.1 From individual genomes to the human pangenome

The 20th century was marked by several milestone discoveries in genetics that ultimately led to
the �rst observation of the sequence of the human genome. This series of discoveries was sparked
by the identi�cation of chromosomes and DNA as the respective cellular and molecular media of
genetic information. On this basis, the elucidation of DNA's double-helix structure provided further
insights into the biological mechanisms behind heredity, thus spurring several successful e�orts to
ascertain genomic sequences throughout the tree of life. Yet, the length and complexity of the
human genome precluded its sequencing. Even then, in the pre-genomic era of the 20th century,
it was clear that establishing a complete human genome sequence would require a collective and
concerted e�ort of unprecented magnitude in the life sciences. However, the potential bene�ts to be
drawn from a completely sequenced human genome were also abundantly clear. Hence, the Human
Genome Project (HGP) was formally launched in October 1990.

The turn of the 21st century saw the culmination of the HGP. For over a decade, hundreds of
researchers across the world toiled towards a common goal: assembling a sequence of the nuclear
human genome. The �rst draft of the assembly was published in 2001 (International Human Genome
Sequencing Consortium, 2001; Venter et al., 2001). Two years later�and precisely two decades
ago�the draft was augmented to reach 99.99% accuracy across 99% of euchromatic bases a , yielding
the �rst human genome sequence (International Human Genome Sequencing Consortium, 2004).

1.1.1 Features and limitations of a composite human genome reference

The completion of the HGP catalyzed our understanding of the mechanisms behind the �ow of
genetic information (International Human Genome Sequencing Consortium, 2001). Among other
key insights, it provided the �rst concrete observations of the distribution of coding genomic features,
as well as regulatory ones (e.g., CpG islands). It also enabled the �rst measures of genomic quan-
tities such as mutation and recombination rates, and allowed researchers to conduct genome-wide
comparative and phylogenetic studies between humans and other species with sequenced genomes.

One important characteristic of this assembly is that it does not represent the genome of a given
individual. Instead, it is a mosaic sequence pieced together from fragments of the genomes of several
individuals (International Human Genome Sequencing Consortium, 2001; Venter et al., 2001). As
such, it provided one of the �rst comprehensive assessments of genetic variation in humans, with
around 1.4 million detected single nucleotide polymorphisms (SNPs) (International Human Genome
Sequencing Consortium, 2001).

All in all, the HGP revolutionized the study of human genetics and paved the way towards
genome-wide studies in humans. For example, it helped the identi�cation of disease genes and drug
targets by combining the in silico and in vitro screening of relevant candidates. Thus, access to a
complete human genome sequence reduced the time to pinpoint putative causal genetic loci from
years (i.e., with genetic positional cloning) to months (International Human Genome Sequencing
Consortium, 2001).

1.1.2 Assessing human genetic diversity with next-generation sequencing methods

Following the �nal release of the HGP's reference genome, the International HapMap Consortium
set out to build a `haplotype map' of the human genome, leveraging genetic data from over two
hundred individuals originating from four di�erent populations (International HapMap Consortium,
2005). The HapMap Consortium used array-based methods to infer genotypes at a given set of
polymorphic loci, thus providing an extension to the HGP's reference by focusing on sequences

a. Excluding regions of heterochromatin at all centromeres, acrocentric chromosome arms, the distal half of
chromosome Y and secondary constrictions immediately adjacent to centromeres.
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that vary across individuals. These results allowed to con�rm the generality of many observations
made on the human genome assembly, such as the distribution of `hotspots' of recombination, and
provided a basis for approaches that bypass resequencing by leveraging linkage disequilibrium (LD)
patterns�that is, genotype associations between variant loci�to impute information. However,
the authors also concluded that whole-genome sequencing (WGS) remained nonetheless critical to
gain a �ner view of LD structure in the human genome, as well as to identify rare and structural
variation across individuals and populations (International HapMap Consortium, 2005).

Box 1 | Evolution of sequencing costs through the years. The entire �eld
of genomics relies on our ability to sequence nucleic acid polymers such as DNA and
RNA. Hence, the development of methods to address novel questions through genomics
is tightly linked to the evolution of sequencing performance. As faster and cheaper
sequencing technologies appear, new genomics methods become accessible.

As shown by the black line in the Figure below, the decrease in sequencing costs over
the last two decades has been more than exponential. According to the National Human
Genome Research Institute (NHGRI) (Wetterstrand, 2022), sequencing a megabase of
DNA cost around �ve thousand dollars near the time of the initial release from the
International Human Genome Sequencing Consortium (2001). In 2008, the NHGRI's
sequencing centers shifted from Sanger sequencing to next-generation sequencing (NGS)
technologies, leading to a steep drop in sequencing costs. As newer NGS options
appeared, cost decreases accelerated, until around 2015 when they plateaued at their
present value of approximately a cent of a dollar per megabase of DNA.
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The red dots in the Figure show the number of published research pieces applying
single-cell RNA-sequencing (scRNA-seq; � 1.3.1, page 26) and reported in PubMed
each year, showcasing how the drop in sequencing costs transformed genomics research
by enabling the development of novel assays (Tang et al., 2009).

The advent of next-generation sequencing (NGS) methods�pioneered by 454 Life Sciences' pyro-
sequencing platforms, followed by Illumina's solutions�enabled large-scale e�orts aiming to build
cohorts of sequenced genomes from di�erent human populations world-wide (Box 1). In this context,
the 2010 study by the 1000 Genomes (1KG) Project Consortium (1000 Genomes Project Consortium
et al., 2010) is specially important, as it underlined the �rst large-scale e�ort to characterize human
genetic variation through WGS. After this pilot study, the following installment of the 1KG Project
resulted in a description of human genetic variation from over 2.5 thousand donors sampled across
26 populations world-wide (1000 Genomes Project Consortium et al., 2015). Since then, the cohort
has been expanded with the addition of nearly 700 related donors (Byrska-Bishop et al., 2022).
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Extensive catalogs of human genetic diversity like the 1KG Project are essential for dissecting the
genetic and nongenetic drivers of phenotypic variation across individuals from di�erent ancestries.
Yet, some researchers have raised concerns about potential reductionism entailing from the use
of such cohorts (Mathieson and Scally, 2020; Coop, 2022). Humans rarely live in discrete and
perennial clusters, and the set of factors that link individuals through ancestry within these groups
are highly complex. It has long been established that the lion's share of human genetic diversity
lies within these groups, with between-population di�erences explaining only as much as 15% of
genetic variation (Lewontin, 1972). In the context of genetic modelling, `genetic populations' become
approximations; as in any statistical modelling framework, approximations are bound to lead to bias.
Thus, some of these authors argue for precise�albeit not concise�labeling of human groups with
di�erent genetic, environmental and social backgrounds, so as to avoid confounded comparisons.
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Figure 1.1 | Principal components (PC) analysis of genotypes from diverse cohorts. The square points
represent the genotypes of 160 individuals of Central African (AFB) or West European (EUB) descent from the
EvoImmunoPop cohort (Quach et al., 2016), as well as an additional 71 individuals of East Asian descent (ASH)
(Aquino et al., 2023). The circular colored points represent the genotypes of individuals in each of the `Yoruba
in Ibadan' (YRI), `Utah residents with Northern and Western European ancestry from the CEPH (Centre d'Étude
du Polymorphisme Humain) collection' (CEU) and `Han Chinese South, China` (CHS) panels of the 1000 Genomes
Project Consortium's cohort. The circular gray points represent the genotypes of individuals in all other panels.

For illustration, Figure 1.1 shows the two dimensions that maximize genetic distances between
around 3 thousand donors of di�erent ancestries, as determined by principal components analysis
(PCA) of genotyping data across over 370 thousand SNP loci. Most of these genotypes, represented
by circular points, belong to individuals from the latest release of the 1KG Project Consortium's
reference panels. The square points show the genotypes of individuals of Central African (AFB),
West European (EUB) or East Asian (ASH) descent from two unrelated cohorts. Because they
appear genetically closer to individuals from the `Yoruba in Ibadan' (YRI) group than to any other
panel, it is tempting to assign AFB individuals an `African ancestry' label. However, it would be
wrong to assume that the YRI panel alone can stand as a comprehensive representation of human
diversity in Africa. Thus, according to Coop (2022), such statements about `genetic ancestry groups'
should be replaced with factual descriptions of observed genetic similarity. In the present example,
AFB individuals would be more accurately described as being `most genetically similar, according
to Euclidean distances on the �rst two principal components of available genotyping data, to the
individuals in the YRI panel from the 1KG Project Consortium's cohort'.
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All in all, the partitioning of human genetic diversity is a non-trivial issue, and still the subject
of lively discussion. When using `genetic population' constructs for the purposes of study design,
researchers should favor preciseness over conciseness in their descriptions of these groups. Given
the societal undertones that are often attached to scienti�c studies of population di�erences, precise
descriptions of the comparisons being carried out are essential to limit the mainstream spread of
misinformation. Furthermore, a fair assessment of the generality of the �ndings of such studies is
only possible if comparisons are well characterized.

Another related problem that limits the generality of observations from these catalogs of genetic
diversity is that virtually all published genome-wide analyses in humans are based on a single
reference. Over the years since its �rst publication, the human reference genome has been updated
to newer versions. Yet, two limitations remain. First, a substantial portion of the reference is still not
sequenced: 6.7% of the primary chromosome sca�olds in the Genome Reference Consortium's (GRC)
most recent release of the human genome, GRCh38.p14 (Liao et al., 2023). Second, even though
it was partly pieced together from the genomes of di�erent individuals, the composite sequence
produced by the HGP paints an incomplete picture of human genetic variation. Because of the
relationships that link genetic variants to one another�expressed through LD�a true depiction of
human genetic diversity requires integrating information from several genomes.

To tackle the �rst of these challenges, the Telomere-to-Telomere (T2T) Consortium leveraged
novel long-read NGS methods to sequence all molecules in the human nuclear genome from one end
to the other, resulting in a gapless assembly of all autosomes and the X gonosome (Nurk et al., 2022).
The T2T-CHM13 haplotype is the most extensive reference of the human genome ever generated,
and an absolutely remarkable achievement in the history of human genetics. By �lling-in missing
and simulated sequences in the prior references, T2T-CHM13 lifts the veil on these complex genomic
regions, enabling their study and uncovering previously unknown genetic polymorphisms. However,
even this comprehensive resource is unable to accurately represent human genetic diversity.

In fact, no individual genome sequence can appropriately capture this variability. Both the
GRCh38 and the T2T-CHM13 references are characterized by the slanted representation of partic-
ular human groups with respect to the frequency with which they occur world-wide. Speci�cally,
while European-origin individuals make up around 16% of the global population, well over 90% of
the sequences in T2T-CHM13 have a predicted European origin (Nurk et al., 2022). This slant
translates a systemic bias in human genomics: as of 2018, 52% of studies seeking the genetic basis
of complex traits, including diseases, were performed in European populations. Overall, 78% of
donors recruited for these studies were of European descent (Sirugo et al., 2019).

European-based references are likely to bias discovery towards genetic variants that are frequent
in European genomes, or whose e�ects appear in a European background. Yet, there is no guarantee
as to the generalizability of these results to other populations that live in di�erent environments.
Furthermore, such studies are underpowered to �nd loci with small e�ects in Europeans, but that
may considerably impact phenotype in other genetic and environmental backgrounds. Hence, the
use of individual genome references induces biases both scienti�cal and ethical. These studies output
angled results, and they do not bene�t all individuals equally.

Addressing these biases requires a new paradigm in human genomics: one which entails an
overhaul of the topology of the reference itself. Namely, while a reference genome is a linear
sequence of nucleotide monomers, a so-called `pangenome' is a graph that integrates information
from multiple genomes into a unique reference.

In pangenome graphs, nodes are sub-sequences of nucleotides and edges show the possible ways in
which these components can be concatenated to compose an entire genome. The di�erent haplotypes
underlying the pangenome can be recovered by `walking along' the graph. Thus, the pangenome
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becomes an apt framework to express complex genomic variation. In fact, pangenomes have been
used for decades to represent the genetic diversity in prokaryotic clades, and to distinguish sequences
that are shared by all or most individuals from those that are private to some.

E�orts to build the pangenomes of species with longer and more intricate genomes have only
recently become feasible, owing in part to the advent of long-read NGS methods such as those
used by the T2T Consortium. These long reads are especially useful to resolve complex assemblies,
covering regions rich in repeated sequences, for example. Recently, the �rst eukaryotic pangenomes
were built for major crop species, such as soybean, wheat and corn; the construction of pangenomes
to help the breeding of domestic animals and cattle is also being explored.

1.1.3 Features and limitations of a fully representative human pangenome

Earlier this year, the Human Pangenome Reference Consortium (HPRC) o�cially released a �rst
draft of the human pangenome, composed of fully-phased haplotypes from 47 genetically diverse
individuals (Liao et al., 2023). Among other �ndings, this new reference provides a more complete
view of structural variants (i.e., insertion/deletion events longer that 51 base pairs) and copy-
number variants, two types of genomic variation that are notoriously hard to capture with short-
read sequencing methods. In particular, the HPRC reports that 71% of copy-number-variant genes
with respect to the GRCh38 reference were private to a single haplotype (Liao et al., 2023). This
illustrates well the relevance of a reference that integrates information from multiple genomes.

Moreover, the advantages of the human pangenome are not limited to structural and copy-
number variant detection. After aligning the short-read WGS data from the extended 1KG Project
Consortium's cohort (Byrska-Bishop et al., 2022) to their reference, Liao et al. (2023) were able to
detect over 60 thousand new variants in each sample. Importantly, some of these novel variants
were found in medically relevant, but previously unresolved, genomic regions. Thus, the human
pangenome opens new genomic windows in which to look for disease-associated loci and putative
therapeutic targets. Furthermore, it is also likely to have a substantial positive impact on transcrip-
tomic studies, by improving mRNA-derived read mapping in these previously unresolved windows.

The HPRC aims to increase the number of genomes in their reference up to 350 by next year.
Although the potential bene�ts of this new framework of reference have been very clearly outlined
by Liao et al. (2023), and have borne fruit in other species, they have yet to be translated into
practical human genetics research. As is the case with most paradigm shifts, incorporating the
human pangenome into everyday practice will require many satellite changes to well-established
work�ows and analytical pipelines. For example, although there is a growing consensus around
pangenome graphs, the �eld is not yet entirely set on the best way to visualize this new reference.
More generally, almost all aspects of human pangenome construction, analysis and representation
are active research areas (Sirén and Paten, 2022; Hickey et al., 2023; Garrison et al., 2023). Some
authors believe that a full transition will not be complete before a decade (Eisenstein, 2023).

1.2 Genome-wide associations and causal e�ect inference

The HGP revealed the complexity of the human genomic landscape and provided a reference on
which to locate genetic elements. Yet, actually mapping the positions of loci associated to traits of
interest requires associating particular expressions of phenotype to combinations of genotype. In this
context, catalogs of human genetic variation�such as the HapMap Consortium's genotyping data,
the 1KG Project Consortium's WGS data or the human pangenome�are very useful to dissect
the sources of phenotypic variability across individuals. Today, the diversity captured by these
resources is widely availed of to establish statistical links between genotype and disease-associated
traits through genome-wide association studies (GWASs).
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1.2.1 Genome-wide association studies to link genotype and disease traits

Previous to the appeareance of GWASs, genome-wide approaches to identify variants associated
to disease susceptibility were mainly limited to family-based linkage mapping or candidate gene
studies. These methods seek genetic regions that are linked to disease traits within pedigrees more
often than would be expected by chance, and that are thus likely to contain causal variants of the
disease (Hirschhorn and Daly, 2005). However, while linkage mapping is powerful to detect genetic
associations with monogenic `Mendelian' disorders (Gusella et al., 1983; White et al., 1985), it gen-
erally falls short when used to search for variants associated to complex diseases. For example, while
linkage mapping successfully revealed variants in the NOD2 locus associated to the susceptibility to
Crohn's disease (i.e., a component of in�ammatory bowel disease, IBD) (Hugot et al., 2001; Ogura
et al., 2001), it was later estimated that these variants jointly explain but a fraction of the excess
risk of IBD relative to siblings, suggesting unidenti�ed genetic factors (Daly and Rioux, 2004).
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Figure 1.2 | The genetic architecture of Mendelian and complex diseases. The `common disease/common
variant' (CD/CV) hypothesis predicts that the genetic component of most frequent diseases is made up of relatively
common low-e�ect genetic variants. Genome-wide association studies (GWASs) are most useful to identify these
variants. In contrast, linkage mapping and candidate gene studies are most useful to �nd relatively rare albeit highly
penetrant disease-associated variants. Yet, variants identi�ed by both of these approaches are unable to completely
account for the heritability of most diseases. A part of this `missing heritability' may be explained by rare variants not
included in most commercial genotyping arrays, by an over-estimation of trait heritability due to gene-by-environment
interactions in twin studies, or by types of variants that are under-represented in current catalogs of genetic variation,
such as structural variants. Adapted from Manolio et al. (2009).

The loss of power of linkage mapping in complex contexts can be explained by di�erences in
the genetic architectures of monogenic and complex diseases. Genetic variants behind Mendelian
diseases are by de�nition highly penetrant and often rare, likely due to natural selection purging
them from the population. Thus, Mendelian-disease-causing variants are expected to be tightly
linked with disease status within each family. In contrast, diseases with complex architectures can
be explained by several genetic and nongenetic factors. Although the joint e�ect of these genetic
factors on phenotype can be substantial, each individual variant is expected to have a marginally
low e�ect. Thus, even though these variants are associated to disease traits, they can be relatively
common in the population.
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To illustrate the di�erences between the genetic architectures of complex and Mendelian diseases,
Figure 1.2 shows a simpli�ed schematic representation of the relationship between population allele
frequencies and the magnitude of allele e�ects on disease traits. Together, the frequency and e�ect
size of a risk allele determine its contribution to the total heritability (Appendix A, page 190) of a
disease trait (Appendix D, page 205) (� 2.3.3, page 50). In this context, Figure 1.2 also illustrates the
`common disease/common variant' (CD/CV) hypothesis, which posits that most frequent disorders
are at least partly due to the joint impact of many low-e�ect genetic variants found in over 1 to
5% of individuals in a population; although deleterious, these alleles would have risen to such high
frequencies following the rapid expansion of humans from small founder populations around 15 to
18 thousand years ago (Reich and Lander, 2001).

On the basis of the CD/CV hypothesis, and owing to the development of dense genotyping
arrays and of resources of human genetic diversity like the HapMap Consortium's, GWASs emerged
as powerful tools to �nd the genetic determinants of complex diseases.

1.2.2 Statistical models behind genotype-phenotype-association testing

In their most basic implementation, GWASs are performed using linear models of the form

Y = αY + βYiGi + ε, (1.1)

where Y is a vector of quantitative trait values across individuals, vector Gi encodes genotypes at
polymorphic locus i along the genome, αY is an intercept, βYi captures the e�ect of genotype on
phenotype and ε is a term for independent and identically distributed noise. The signi�cance of the
genotype-phenotype association is tested under the null hypothesis H0 : βYi = 0. Rejection of the
null pinpoints variant i as a quantitative trait locus (QTL) at family-wise type I error rate α.
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Figure 1.3 | Additive, dominant and recessive models of genotype-phenotype association. The dots
show values of phenotype Y for di�erent levels of genotype Gi, encoding the number of alternative alleles found at
locus i in each individual, for three models that re�ect di�erent functional relationships between the alternative and
reference alleles. The lines connect the mean values of Y conditional on Gi in each model. Under the additive model,
αY is equal to the mean of Y across homozygotes for the reference allele, and βYi is equal to the increase in Y for each
copy of the alternative allele.

The encoding of genotypes in Gi depends on the functional relationship between the alleles at
putative QTL i. Most commonly, an additive model is used in which βYi captures the change in
Y for each copy of the alternative allele. Alternatively, dominant or recessive models can be used.
Figure 1.3 illustrates these di�erent models using a simulated set of observations of phenotype Y

across 60 individuals homogeneously strati�ed across levels of genotype Gi.
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1.2.3 Features and limitations of genome-wide association studies

The �rst GWAS ever published used a case-control study design to screen for genetic variants
associated to age-related macular degeneration (AMD) in a cohort of 96 cases and 50 controls (Klein
et al., 2005). Ironically, although the GWAS approach was devised to �nd frequent variants with
small e�ects on phenotype, Klein et al. (2005) identi�ed several large-e�ect and common variants
associated to AMD that are not predicted by the CD/CV hypothesis (Fig. 1.2).

Picking up on this budding trend, the Wellcome Trust Case Control Consortium (WTCCC) used
a cohort of approximately 14 thousand cases and 3 thousand controls to identify genetic variants
associated to the susceptibility to seven major common diseases, including IBD, type I and type II
diabetes (The Wellcome Trust Case Control Consortium, 2007), and bipolar disorder. By working
with thousands of cases and controls, and across di�erent diseases, the authors of the WTCCC
aimed to provide a general framework of recommendations for performing GWASs. In line with the
CD/CV hypothesis, this landmark study identi�ed several novel associations between each disease
and common moderate-e�ect variants (i.e., study-wide minor allele frequency over 1%).

Missing heritability. Since then, thousands of GWASs have identi�ed hundreds of thousands
of associations between genetic variants and diverse traits. Yet, the e�ect sizes of most of these
variants on disease risk are limited�with estimated odds-ratios (OR) between 1.2 and 1.5�and they
cannot fully explain the segregation patterns of the corresponding diseases in pedigrees b (Manolio
et al., 2009). Taken together, these observations point to missing components of complex disease
heritability that elude detection by GWASs or linkage mapping studies (Fig. 1.2).

One possible explanation of the `missing heritability' conundrum is an over-estimation of trait
heritability due to unadjusted gene-by-environment interactions in family-based studies. The height
phenotype has been of historical interest in this context (Appendix A, page 190). Although the
genetic component of height has been acknowledged for well over a century (Galton, 1886), interest
in the environmental predictors of adult height is only relatively recent (Jelenkovic et al., 2016).
Importantly, neglecting the e�ect of a shared environment on variation in height�or any other
heritable trait�among relatives can in�ate the estimated heritability of the trait.

Another potential source of heritability may be missed through the unmeasured e�ect of rare
variants�with a population minor allele frequency (MAF) below 1%�that are not included in the
design of most genotyping arrays commonly used in GWASs. Indeed, owing to the LD structure
of the human genome, and depending on each particular population, most SNP-related common
(MAF > 5%) haplotypes can be characterized by genotyping approximately 500 thousand variants
(International HapMap Consortium, 2005). Hence, most commercial arrays are limited to these sets
of `tag' SNPs, which do not include rare variants. Importantly, however, rare variants not detected
by these methods could have substantial e�ects on disease risk and at least partially explain missing
heritability. In this context, the advent of NGS methods (Box 1) enabled WGS e�orts such as those
led by the 1KG Project Consortium, to capture rare genetic variability.

Structural variants represent another possible source of heritability that is currently neglected.
As mentioned previously, this type of variation is known to be under-represented in the reference
genomes currently used by the community, but advances such as the T2T-CHM13 haplotype and
the human pangenome, that leverage long-read NGS methods and are able to capture this diversity,
are closing the gap. Recently, long-read NGS methods were used by Ebert et al. (2021) from the
Human Genome Structural Variation Consortium (HGSVC) to assemble haplotypes from diverse
individuals and detected over 100 thousand new structural variants.

b. Except for some particularly well-studied traits, like height, for which saturated maps of common genetic
variants that contribute to heritability have been built using heritability estimation methods (Yang et al., 2010,
2011) able to leverage genetic information across millions of unrelated individuals (Yengo et al., 2018, 2022).
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The human pangenome will also allow to tackle another possible explanation of missing heritabil-
ity: the biased representation of some human populations in genetic data bases. Indeed, while most
GWASs performed to date have used cohorts of mainly European ancestry, it is known that individ-
uals of African ancestry carry the largest share of human genetic diversity. Thus, it is expected that
including such under-represented groups with diverse genetic backgrounds will better our grasp on
human genetic diversity. In fact, using WGS data from over 400 individuals from di�erent African
ethnic groups, Choudhury et al. (2020) uncovered millions of novel genetic variants. Importantly,
all of these nominally healthy individuals carried at least one variant anotated as `pathogenic' in
the National Center for Biotechnology Information's ClinVar data base, highlighting how genetic
e�ects observed in a predominantly European cohort may not translate to other populations.
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Figure 1.4 | Quantile-quantile plots to visualize genomic in�ation of positive association tests. The x

and y axes respectively show a measure of the expected and observed statistical signi�cance of associations between a
phenotype and the genotype at variant loci genome-wide. The dashed line is the subspace in which these two metrics
are equal. Early deviations from this line re�ect genomic in�ation of positive associations.

Multiple-testing burden. Modern GWASs involve tests for association between a phenotype
and upwards of hundreds of thousands of variant loci. Therefore, multiple-test correction of raw
association p-values is essential. Most often, the general Bonferroni correction is used to control
the family-wise type I error rate α. Assuming that the human genome carries around 1 million
independent haplotypes, the widely accepted `genome-wide signi�cance' threshold for GWASs in
humans is set to 5 · 10−8 for an initial α = 0.05. However, this may lead to an overly conservative
correction if the independence assumption does not hold (Risch and Merikangas, 1996).

A complementary method to control the rate of false positive associations is provided by the
genomic in�ation factor λ (Devlin and Roeder, 1999). Brie�y, λ quanti�es the ratio between the
median strength of the observed genotype-phenotype associations and the median strength expected
if all variant loci were unlinked. Therefore, a strongly positive λ re�ects bias induced by confounding
factors such as genotype associations omitted in the model.

Population strati�cation. Although Equation (1.1) is very useful to estimate expected mean
values of phenotype in a population, conditional on disease-status and genotype, other di�erences
between these cases and controls might confound the association if left unaccounted for in the model.
Thus, the basic linear model is often complemented with a matrix Z of covariates and associated
vector γ of coe�cients that capture the e�ects of known confounders,

Y = αY + βYiGi + ZTγ+ ε. (1.2)
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Commonly adjusted-for covariates include age and sex, as well as metrics of genetic similarity
between individuals. Indeed, population strati�cation within the cohorts of cases and controls may
also lead to spurious associations between genotype and phenotype.

For example, if population strati�cation exists such that populations A and B are respectively
over-represented among cases and controls, then frequent variants in population A may falsely
appear as associated to disease risk. In this context, principal component coordinates such as those
shown in Figure 1.1 are frequently used as a proxy for genetic distance between individuals to
account for population strati�cation in the model.

Because unadjusted population strati�cation creates arti�cial associations between genotype and
phenotype, it also leads to genomic in�ation. Using genome-wide association results simulated under
varying degrees of population strati�cation, Figure 1.4 illustrates how so-called `quantile-quantile'
or `Q-Q' plots that relate the observed and expected statistical signi�cance of the associations are
useful tools to visualize genomic in�ation.

Phenotype de�nition. Mapping QTLs as per Equation (1.2) requires encoding the trait of
interest as a quantitative variable Y . For some phenotypes, such as measures of disease risk, this is
relatively straightforward. Other phenotypes, however, need to be transformed or approximated in
order to �t the GWAS framework; the �nal de�nition of the trait can translate prior beliefs from
the authors into biases of the study.

For example, in their attempt to map the genetics of same-sex sexual behavior, Ganna et al.
(2019) labelled as `non-heterosexual' all participants who had ever had a same-sex partner. Yet,
reducing this complex social behavior�and with it, the spectrum of human sexuality�down to a
binary variable is likely to yield a biased answer to the original question. Indeed, such a simple
criterion can confound associations by grouping together individuals with widely di�erent sexual
behaviors�including predominantly heterosexual ones.

Correlation-causation phallacy. When mapping the genetic basis of a trait through GWAS,
the hope is to �nd causal links between genotype and phenotype. Under the CD/CV hypothesis,
many common genetic variants with small marginal e�ects are expected to participate to variation
in a given complex trait. Although the impact of each single variant is weak, their joint e�ect
on phenotype can be substantial. From this point of view, the polygenic risk score (PRS) has
been proposed as a tool to summarize these e�ects into a single composite metric of the genetic
contribution to complex phenotypic variation (Wray et al., 2007).

For example, schizophrenia is a complex and severe psychiatric disorder with a largely known
genetic component; its heritability has been estimated at up to 80% based on twin studies (Cardno
and Gottesman, 2000; Sullivan et al., 2003). The �rst GWAS on schizophrenia was published in 2009,
using a cohort of over 3 thousand cases and more than 3 thousand controls of European ancestry
(The International Schizophrenia Consortium, 2009). This landmark study uncovered thousands of
associations genome-wide, albeit with very few strong e�ects. The authors then proposed di�erent
PRSs for the innate risk of developing schizophrenia, as linear combinations of several tens of
thousands of SNPs weighted by their estimated impact on disease. Although the authors' rationale
was sound�pooling information across many variants to overcome limited power to detect small
e�ects�their metric was only able to explain around 3% of variation in case status in their sample.

Around that time, advances in NGS methods spurred a decrease in sequencing costs (Box 1) that
ultimately enabled larger studies with increased power to detect small e�ects (Zheutlin and Ross,
2018). In 2014, a schizophrenia GWAS used a cohort of around 150 thousand mostly European
donors to derive a new PRS explaining around 7% of variance in case status (Pantelis et al., 2014).
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Yet, even though increasingly larger data sets can improve the predictive power of PRSs for
complex traits, cryptic population strati�cation can complicate the establishment of causal links
between genotype and phenotype. For instance, Curtis (2018) found stark population di�erences
in the schizophrenia PRS proposed by Pantelis et al. (2014), using multi-ancestry genotyping data
from the HapMap Consortium (International HapMap 3 Consortium et al., 2010). Interestingly,
the average di�erence in PRS between HapMap Europeans and Africans was around ten-fold larger
than the mean di�erence between European schizophrenia cases and controls, suggesting that the
PRS may be picking up on ancestry-related correlations, possibly because it was derived from a
mainly European cohort.
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Figure 1.5 | Conditional independence between phenotype and index genotypes. In a genome-wide
association study (GWAS), an association between a phenotype Y and the genotype GI at an index single nucleotide
polymorphism (SNP) locus may appear, even when there is no real causal relationship between the two, through the
unmeasured e�ect of a causal SNP GC that is associated to GI through linkage disequilibrium (LD). On the left-hand
side graph, the solid line represents the association between phenotype and index SNP estimated by GWAS; the
dashed lines show the associations masked to the study when GC is not known. The right-hand side scatter plot
shows 200 observations across the three variables simulated under a model in which Y and GI are independent, but
both are linked to GC. The grey dots on the GIY, GCY and GCGI planes show the joint distribution of observations
along the corresponding pair of variables. The regression line of Y on GI is shown in black; the equation is shown under
the left-hand side graph. The regression lines of Y on GI, conditional on GC, are shown in red; the corresponding
equations are shown under the left-hand side graph.

The interpretation of GWAS results is also complicated by confounding genotype correlations.
Because of LD, GWAS hits highlight haplotypes�not particular SNPs�as putatively causal of
phenotype di�erences. The highlighted haplotype may well carry one or more bona �de causal
variants, but these might not include the `index' SNP that tags the haplotype. Yet, the causal variant
may act as a confounder, and create a statistical association between phenotype and genotype at
the `tag' SNP, even if the two are conditionally independent.

For example, Figure 1.5 illustrates a fairly simple case of confounded association between an
index SNP GI and a phenotype Y, created by the e�ect of a real causal variant GC in LD with GI,
and using simulated data across 200 observations of the three variables with covariance matrix

GI GC Y 1 0.8 0 GI

0.8 1 0.6 GC

0 0.6 1 Y

. (1.3)
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The graph on the left shows the relationships between these three variables. The black solid line
indicates the e�ect estimated in a GWAS; the dashed lines indicate latent e�ects. Interestingly,
although Y was explicitly simulated to be independent of GI, βYi is signi�cantly larger than zero
(Student's two-sided t-test p = 1.5×10−7). The slope is shown on the GIY plane of the scatter plot
on the right. The unmeasured causal e�ect of GC on Y�which arti�cially links GI to Y through the
LD between GC and GI�appears on the GCY plane. When GC is revealed to the model, and the
strength of the association between GI and Y is estimated conditional on the genotype at GC, these
coe�cients become indistinguishable from zero at a type I error rate of 5% (Student's two-sided
t-test p > 0.13). The corresponding regression lines are shown in red on the scatter plot.

Box 2 | Genotype, endophenotype and phenotype. The ultimate goal of a
genome-wide association study (GWAS) is to map the genetic basis of a complex trait.
Yet, causal inference from GWAS results is complicated by several factors, including
their associative nature, as well as linkage disequilibrium (LD) between nearby SNPs.

In a GWAS, quantitative trait loci (QTLs) are mapped by regressing the value Y

of the focal phenotype on the genotype G at each tested variant locus, as per Equation
(1.2). Thus, QTL results are associative; they do not imply any causality between G

and Y. Furthermore, true causal links may be obscured by LD in the region.
Whenever changes in phenotype Y can be explained by genetically-controlled changes

in a gene expression trait X, functional data can be used to improve the interpretabil-
ity of GWAS results. In this context, variants associated to the endophenotype X are
`expression' (e) QTLs. A genetic variant that is a QTL of phenotype Y and an eQTL
of endophenotype X becomes a likely causal candidate.
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Crick's dogma directs the general �ow of organic matter and genetic information
downstream from DNA (Crick, 1970). On this basis, the association between the
genotype G, the gene expression endophenotype X and the focal phenotype Y can take
three forms, illustrated in the Figure above.

Each topology is associated to a type of pleiotropy. If phenotype and endophenotype
are independent, but an association appears through the confounding e�ect of genotype
G acting on both traits, the variant displays horizontal pleiotropy. Otherwise, vertical
pleiotropy arises when a genetically-controlled change in one trait triggers a change in
the other. When changes in the expression endophenotype mediate the genetic e�ects
on phenotype, forward causality can be inferred by merging GWAS and eQTL data.
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All in all, Figure 1.5 illustrates why even when the variables in Equation (1.2) are properly
de�ned, population strati�cation is aptly adjusted for, and the false positive rate is controlled, a
signi�cant correlation between genotype and phenotype does not necessarily imply that the tested
variant has any causal e�ect.

The limitations outlined above, including the confounding e�ects of nearby SNPs, weaken the
power of the GWAS approach to identify causal variants underlying complex traits. As human
groups with di�erent genetic backgrounds are characterized by distinct LD patterns, building more
diverse cohorts can improve the resolution of the mapping and the interpretability of GWAS results.
That is, associations identi�ed in genomes from di�erent populations can be intersected so as to
trim putatively causal haplotypes and zero in on the bona �de causal variant.

More generally, genetic `�ne-mapping' methods are used to disentangle the confounding patterns
of LD between nearby SNPs, so as to �nd causal variants�assuming at least one exists�in a genomic
region associated to a trait (Schaid et al., 2018). Several approaches to �ne-mapping are available,
but the common basic idea is to prioritize SNPs based (i) on the strength of their association with
the trait and (ii) on the strength of the LD they share with the top-associated `peak' SNP. Thus,
the signal in a genomic region can be re�ned into linked SNP sets, each acting independently on a
trait. These components can then be ornamented with functional information�such as annotations
from data bases or gene expression data�to infer which variants are more likely to be causal.

Adding functional data on `intermediate' endophenotypes associated to genetics and to the focal
phenotype can also help infer causal genetic e�ects (Lappalainen et al., 2013). Even though GWAS
loci linked to disease are over-represented among coding sequences�relative to their frequency in
genotyping arrays�the fact remains that only a minor fraction of them fall on readily interpretable
regions: relatively soon after the GWAS boom, Hindor� et al. (2009) estimated that more than 80%
of SNP QTLs discovered across over 150 studies were located in intergenic or intronic regions of the
genome. Moreover, common disease-associated variants have been reported to be concentrated in
regions that regulate gene expression (Maurano et al., 2012). In this context, gene expression (e)
QTLs are commonly used as an aid to the interpretation of GWAS results (Box 2).

1.2.4 Molecular endophenotypes to aid quantitative trait locus interpretation

The heritability of gene expression in humans has long been established using twin models
(Powell et al., 2012; Grundberg et al., 2012; Wright et al., 2014), other family-based approaches
(Dixon et al., 2007) and population-based methods among unrelated individuals (Price et al., 2011;
Lloyd-Jones et al., 2017) (Appendix A, page 190). For instance, Wright et al. (2014) leveraged
the patterns of genetic similarity among 13 hundred pairs of monozygotic and dizygotic twins to
estimate a mean narrow-sense heritability of around 14% across more than 18 thousand transcripts
expressed in peripheral blood, and mapped close to 7 thousand independent eQTLs.
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Figure 1.6 | The central dogma of molecular biology. Francis Crick's early interpretation of the �ow of genetic
information from DNA to protein involved a `general' stream present in all cells, which could be complemented by
`special' tributaries in particular contexts. The transfer of information from DNA to (messenger) RNA is called
`transcription'; information is then transferred from RNA to protein through `translation'. Solid and dashed arrows
represent general and special transfers, respectively. Adapted from Crick (1970).
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In fact, genetic e�ects on gene expression are expected under Crick's central dogma of molecular
biology (Crick, 1958, 1970). In its barest meaning, the dogma is a directed graph of the general
�ow of matter and information from DNA to messenger (m) RNA through transcription, and from
mRNA to protein through translation, as illustrated in Figure 1.6. It follows that changes in one
node or edge of the graph can a�ect the transfer of information to other nodes downstream from
it. For instance, variation in the DNA sequence of a gene promoter can change the rate at which
mRNA molecules are transcribed by modifying the a�nity of a transcription factor (TF) for the
altered nucleotide motif. In turn, this may lead to inter-individual di�erences in the concentration
of the protein encoded by that gene.

From this molecular perspective, an eQTL is a genetic variant associated to the abundance
of mRNA molecules transcribed from an `eGene' in a cell or tissue. Depending on their position
relative to their target eGene, eQTLs are divided in two classes. In general, proximal eQTLs found
on the same chromosome and within a megabase of the transcriptional start site (TSS) of their
eGene are termed `cis-eQTLs'. Distal eQTLs found outside this window�possibly even on another
DNA molecule than the eGene�are called `trans-eQTLs'.

Alternative splicing is another genetically-controlled feature of transcription that is often used as
an endophenotype to improve the interpretability of GWAS QTLs. From this perspective, splicing
(s) QTLs are genetic variants associated to alternative exon usage during the maturation of mRNA
from `sGenes'. The same classi�cation criteria based on the position of eQTLs apply to sQTLs.
Together, eQTLs and sQTLs are items of a longer list of molecular (mol) QTLs. Other examples
of molQTLs include methylation (me), protein (p) and chromatin accessibility (ca) QTLs.

Mapping eQTLs is relatively straightforward, using linear models analogous to Equation (1.2),

X = αX + βXiGi + ZTγ+ ε, (1.4)

where X contains values of the gene expression endophenotype, αX is equal to the mean of X

across homozygotes for the reference allele, βXi captures the e�ect of putative eQTL i on the
endophenotype, γ captures the e�ects of the covariates in Z, and ε is independent and normally
distributed noise. In contrast, sQTL mapping needs resolving isoform-speci�c expression, and is
complicated by inherent correlations in mRNA isoform levels: higher usage of an exon set implies
lower expression of other isoforms (Garrido-Martín et al., 2021; Yamaguchi et al., 2022).

Lessons learned from atlases of tissue-speci�c gene expression regulation

Early estimates of the heritability of gene expression revealed a variable impact of genetics across
tissues (Price et al., 2011; Powell et al., 2012; Grundberg et al., 2012). For instance, Price et al.
(2011) estimated that cis regulation could explain 37% of heritability of gene expression in blood,
versus only 24% in adipose tissue. While these studies helped grasp the genetic bases of endophe-
notypes underlying complex traits, their span was limited to easily accessible tissues like blood and
skin. In order to overcome this limitation, and fully exploit the wealth of knowledge produced by
GWASs, the National Institutes of Health (NIH) conceived the Genotype-Tissue Expression (GTEx)
project (Lonsdale et al., 2013).

One of the main motivators behind the GTEx project was to build a data resource in order to
facilitate the study of gene expression and genetic variation across human tissues. Over the years
since its conception, the repository has been updated several times (The GTEx Consortium, 2015,
2017, 2020). The latest release of the GTEx atlas extends across over 49 tissues sampled post-
mortem from 838 individuals, and is an established reference in the human genomics community.
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Molecular QTL e�ects are pervasive. Estimates from the current version of the GTEx atlas
testify to the widespread impact of genetics on transcription (The GTEx Consortium, 2020). Across
all tissues, 95% and 67% of protein-coding genes are respectively eGenes and sGenes of at least one
variant; non-eGenes in a given tissue are enriched in genes not expressed in that context.

Focusing on genetic e�ects on mRNA abundance, 43% of the common variants (MAF ⩾ 1%)
catalogued in GTEx are cis-eQTLs in at least one tissue. In line with previous reports (Yang et al.,
2017), there is an overlap between the genetic bases of short and long-range regulation of gene
expression in GTEx: the top trans-eQTLs discovered in each tissue are around six times more likely
to also be cis-eQTLs, relative to variants that are not trans-eQTLs. Furthermore, between 20% to
80% of trans-eGene e�ects are mediated by cis-eQTLs across several tissues.

GWAS QTLs are enriched in eQTLs. These results also emphasize the utility of mapping
eQTLs in the quest for the genetic basis of complex traits (The GTEx Consortium, 2020). While
a cis-eQTL was discovered in 43% of variants tested for association with gene expression, this
percentage increased to 63% of associations in the GWAS catalog curated by the National Human
Genome Research Institute (NHGRI) and the European Bioinformatics Institute (EBI) (Sollis et al.,
2023), yielding a 1.46-fold enrichment (FE) for cis-eQTLs among QTLs. Interestingly, trans-eQTLs
were more clearly over-represented in the NHGRI-EBI GWAS catalog, with a 6.97-FE.

Prior work from the GTEx Consortium and others had already highlighted a link between
eQTLs and GWAS loci in disease-relevant contexts (Dimas et al., 2009; Westra et al., 2013; The
GTEx Consortium, 2015). For instance, Westra et al. (2013) show that the rs4917014 variant linked
to systematic lupus erythematosus (SLE) in the NHGRI-EBI GWAS catalog is a trans-eQTL of
multiple biomarkers of SLE, such as C1QB, that encodes a protein of the complement system.

GWAS QTL e�ects are weaker than eQTL e�ects. Francis Crick advocated the role of
proteins as the functional units behind complex biological phenomena (Crick, 1958). In line with
the central dogma (Fig. 1.6), genetic variants that cause variation in complex traits act through
changes in protein activity, whether they lead to missense or nonsense changes in the aminoacid
chain, changes in codon usage or changes in protein abundance. However, the layers of post-
transcriptional regulation bu�er protein activities against variation downstream from transcription.
Hence, eQTL e�ect sizes are expected to be larger than those of GWAS QTL e�ects (Battle et al.,
2015). In line with this expectation, eGene expression was at least doubled by the alternative allele
of 22% of cis-eQTLs in average across all tissues (The GTEx Consortium, 2020). In contrast, most
GWAS variants yield a small increase in relative risk of at most 1.5-fold (Manolio et al., 2009).

In fact, Mostafavi et al. (2022) suggest that GWAS and eQTL mapping studies are biased to
detect di�erent types of variants: while GWAS QTLs are involved in complex regulatory schemes
and have measurable e�ects on organismal traits, eQTLs are associated to simpler regulation of
gene expression, albeit with stronger e�ects.

Molecular QTLs are enriched in functional genomic elements. The data in GTEx become
all the more powerful when compounded with annotations from the `Encyclopedia of DNA elements`
(ENCODE; Appendix B, page 193). In fact, both eQTLs and sQTLs are enriched in functional
genomic elements. Notably, while sQTLs are enriched almost exclusively among transcribed regions,
eQTLs are also over-represented among annotated co-transcriptional regulators in noncoding regions
(The GTEx Consortium, 2020). In particular, while cis-sQTLs are most strongly enriched among
splice sites (FE ≈ 256), cis-eQTLs are mainly found in untranslated regions (UTRs) and promoter
sequences c (FE ≈ 4). Similar to previous observations, there is little overlap between cis-eQTL
and cis-sQTL e�ects in GTEx (Lappalainen et al., 2013; Li et al., 2016).

c. Cis-eQTLs also show FE ≈ 32 among splice sites, but these ultimately amount to very few variants.
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In contrast to short-range regulators of gene expression, trans-eQTLs appear over-represented
among annotations linked to pre-transcriptional and post-transcriptional regulatory steps. For
instance, they show a 4-FE in motifs for the CCCTC-binding factor (CTCF) that creates bundles
of closed chromatin by tethering to far-apart loci in DNA (Appendix B, page 193).

Overall, the collaborative resources output by the GTEx and ENCODE Consortia enable an
integrative description of the impact of variation at functional genomic elements on gene expression.
For example, the rs9896202 SNP�reported as a cis-eQTL of CBX8 in lung tissue�lies just a few
base pairs upstream of its eGene. Interestingly, this locus is annotated in ENCODE as a binding
motif for TF EGR1. These data, added to the cross-tissue correlation (Spearman's ρ = −0.69)
observed between the expression of CBX8 and EGR1, suggest that the cis-eQTL e�ect of rs9896202
could re�ect a disruption of the binding motif for EGR1 (The GTEx Consortium, 2020).

The proximal genetic control of gene expression is characterized by two general properties that
re�ect the biased representation of cis-eQTLs among certain functional genomic elements. First,
regulation is often extremely local: most cis-eQTLs are found within�or close to�the body of
the corresponding eGene. Second, short-range control is mostly private: while some eGenes are
regulated by several cis-eQTLs, these are a minority. Both of these observations are illustrated
in Figure 1.7, using experimental data from cis-eQTLs mapped in a 100-kilobase window around
genes expressed in resting myeloid cells from human peripheral blood.
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Figure 1.7 | Quantitative genomic features of cis-expression quantitative trait loci. Both histograms
illustrate genomic features of the genetic basis of gene expression, using cis-expression quantitative trait loci (eQTLs)
discovered (|βX| ⩾ 0.2, Benjamini-Hochberg-adjusted Student's two-sided t-test p < 0.01) in a 100-kilobase region
around genes expressed in resting monocytes as an example (Aquino et al., 2023). The plot on the left concerns
the absolute number of target (i.e., eGenes) associated to each cis-eQTL. The plot on the right focuses on the
number of the base pairs separating cis-eQTLs from the body of each eGene. Red bars show results for genome-wide
signi�cant cis-eQTLs in resting monocytes; blue bars show results for the same variants, but mapped on permuted
gene expression data, thus re�ecting spurious associations.

In contrast, trans-eQTLs are often associated to the expression of multiple genes spread far and
wide across the genome. One way in which a trans-eQTL can arise is by changing the recognition
of nucleotide motifs by proteins. On the one hand, these changes can a�ect DNA loci associated to
pre-transcriptional regulation of gene expression. For example, variation at CTCF binding sites can
create trans-eQTLs (The GTEx Consortium, 2020; Võsa et al., 2021) by bringing chromatin seg-
ments on di�erent chromosomes into contact (Delaneau et al., 2019). On the other hand, variation
in sequences that encode TF DNA-binding domains�or proteins that regulate TF activity, like cell
signalling receptors and kinases�can also a�ect the expression of genes spread far apart across the
genome, but acting in the same transcriptional program wired in a gene regulatory network (GRN;
� 3.1.2, page 57).
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For instance, Quach et al. (2016) report the rs5743618 missense variant in the locus of Toll-like
receptor (TLR) 1, that a�ects the expression of over 400 genes in myeloid cells stimulated with a
synthetic mimic of bacterial lipopeptides. TLR1 is an immune cell surface receptor that recognizes
patterns associated to bacterial and fungal pathogens; its activation triggers GRNs essential for
the antibacterial response. Accordingly, the targets of the rs5743618 trans-eQTL are enriched in
genes involved in the response to bacterial infection, including mediators of in�ammation such as
CCL5 and IL10. Further attesting to the biological relevance of these results, rs5743618 appears
associated to immune-related disorders like allergies and asthma in the NHGRI-EBI GWAS catalog.

These observations, added to the insights garnered from the GTEx and ENCODE resources,
highlight the importance of considering both coding and noncoding regions when assessing the
genetic bases of complex diseases (Hindor� et al., 2009; The GTEx Consortium, 2020; ENCODE
Project Consortium, 2020). Mapping eQTLs in regulatory regions is paramount in order to gain
a mechanistic understanding that bridges the gap between the measured GWAS QTL and the
observed phenotype (Cookson et al., 2009).

1.2.5 Inferring causal links between genotype and phenotype

Considering regulatory associations becomes particularly important when the likely causal gene
underlying a GWAS trait is located far away from the eQTL that controls its expression. The
pitfalls of this scenario are especially well illustrated by the associations at the `fat mass and obesity
associated' (FTO) locus. Shortly after the dawn of the GWAS era, several studies of body mass
index (BMI) and obesity-related disorders reported links with variants in the introns of the FTO
gene (Dina et al., 2007; Frayling et al., 2007; Scuteri et al., 2007). Yet, in spite of the reproducible
associations, no study at the time was able to establish a functional link between increased BMI
and the FTO protein (Klöting et al., 2008; Grunnet et al., 2009).

Several years later, Smemo et al. (2014) proposed that the functional link between obesity and
FTO could actually be mediated by the Iroquois homeobox protein 3 (IRX3) TF. First, the authors
reported direct contact between the intronic stretch of FTO associated to obesity and the promoter
of IRX3 in the human genome, suggesting that the former could act as a regulatory factor of
the latter. Accordingly, the obesity-related variants in FTO were then discovered as eQTLs of
IRX3 in human brain tissue. Supporting a functional link between BMI and the activity of IRX3
in the brain, weight losses were recorded in transgenic mice with de�cient Irx3 expression in the
hypothalamus. Together, these data suggest that FTO is a regulator of IRX3, which would then
be the true predictor of polygenic obesity.

Although the exact molecular mechanisms and cellular contexts in which FTO and/or IRX3 can
a�ect BMI are still not fully understood, recent work points towards a role for macrophage-expressed
IRX3 in metabolic in�ammation leading to obesity (Yao et al., 2021).

All in all, the FTO/IRX3 association is a good example of how functional data can often help
disentangle the e�ect of variants in non-coding regions. Figure 1.8 illustrates this in a schematical
way, using QTL and eQTL data simulated across 30 observations. Although the strongest QTL
signal lies in the body of gene B, and may thus appear as a tempting causal agent, the true simulated
QTL locus i is located in a noncoding stretch of DNA between genes A and B. In this context,
adding gene expression data simpli�es the picture in two ways. First, it indicates that the strongest
QTL signal actually has no e�ect on the transcription of gene B, while in turn the true causal locus
i is the strongest eQTL of eGene B. Second, expression data indicates that gene A is not a target
of this variant. Hence, endophenotype data can help gain a better understanding of the molecular
mechanisms behind the QTL association, as well as narrow down the list of candidate genes to
study (Umans et al., 2021).
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Figure 1.8 | Re�ning genome-wide associations with expression traits. Genome-wide association studies
(GWASs) are commonly used to map quantitative trait loci (QTLs) associated to disease risk (Y) by comparing
the genotype (Gi) at a given locus i across cohorts of cases and controls. Due to linkage disequilibrium and/or
cryptic confounders, several associations may be found in a given genomic window, even though there is a single
causal variant. Furthermore, the intepretation of GWAS results is complicated when hits fall on non-coding regions.
Mapping expressed quantitative trait loci (eQTLs) may help interpret GWAS results and re�ne the list of putative
causal variants by highlighting those that are also associated to gene expression (X). In this example, although the
strongest QTL association falls on the body of gene B, the true causal QTL i lies in a noncoding region between genes
A and B. Adding expression data clears the picture up by highlighting locus i as the strongest eQTL for gene B, but
not for gene A. Upward and downward pointing triangles quantify the strength of the QTL and eQTL associations,
respectively. The black line represents the association at putative QTL i; the red and blue lines give the slope of the
putative eQTLs for genes A and B, respectively. Adapted from Umans et al. (2021).

Figure 1.8 also illustrates a case of `colocalization', where a variant displays horizontal pleiotropy
through simultaneous association with two traits (Box 2). In this case, the QTL of trait Y is also
an eQTL of the gene expression endophenotype X. Importantly, colocalization assumes no causal
link between X and Y, only a shared ætiology to changes in both.

Several approaches to colocalization analyses have been described in recent years (Nica et al.,
2010; Hormozdiari et al., 2014; Giambartolomei et al., 2014; Zhu et al., 2016; Ongen et al., 2017; Wen
et al., 2017). In particular, Giambartolomei et al. (2014) devised a Bayesian method to quantify the
posterior probability of colocalization for two traits X and Y from summary association statistics.
Brie�y, the method iteratively tests �ve hypotheses for each assayed genetic variant. The �rst one
(H0) is that there is no association between the variant and either trait. The second and third
hypotheses (H1, H2) posit that the variant is associated to trait X but not Y and vice versa. The
fourth hypothesis (H3) is that genetic associations exist for both traits, but they are mediated by
di�erent variants d . Finally, the �fth hypothesis (H4) is that the same variant is associated to both
traits. Thus, a high posterior probability for H4 (PPH4) is good evidence for colocalization.

When applied in the context of QTL and molQTL mapping�where trait Y is the focal phenotype
and trait X is a molecular endophenotype�colocalization analyses can provide strong evidence for
regulatory genetic e�ects on phenotype (Fig. 1.8). For example, the rs9896202 cis-eQTL linked to
expression of CBX8�a biomarker of tumorigenesis�is a presumed disruptor of EGR1 binding that
shares a PPH4 of 68% with breast cancer risk (The GTEx Consortium, 2020; Shi et al., 2021).

d . Rejection of this hypothesis does not exclude cases where two variants in perfect LD are linked to each trait.

Page 20 Š Bioinformatics and systems biology Yann Aquino Š Human Evolutionary Genetics



More generally, researchers from the GTEx Consortium assessed colocalization between proximal
molQTLs and over 5 thousand GWAS loci spanning 87 complex traits (The GTEx Consortium,
2020). While 23% of these QTLs colocalize with cis-sQTLs, this proportion rises up to 43% for
cis-eQTLs, further emphasizing the overlap between the genetic bases of complex traits and gene
expression, and the relevance of molQTL mapping when seeking the former (Cookson et al., 2009).

Yet, even convincing evidence of colocalization between a QTL and an eQTL is insu�cient to
sustain claims of regulatory causality. That is, colocalization methods are unable to distinguish
cases of horizontal pleiotropy, where traits X and Y are not directly related but share a common
genetic ætiology, from cases of vertical pleiotropy, where the e�ect of genotype on trait Y is mediated
by trait X (Box 2). Only in the latter case can regulatory causal e�ects be inferred.

The transcriptome-wide association study (TWAS) framework has recently been proposed as an
approach to infer vertical pleiotropy between genotype, phenotype and an expression endophenotype
(Gamazon et al., 2015; Park et al., 2017; Barbeira et al., 2018). Although several TWAS methods
exist, the common basic principle is to impute genetically regulated expression (GReX) values
for each assayed gene based on reference genotyping and transcriptome data sets, and then test
whether imputed gene expression values are signi�cantly associated to genetic variation and the
focal phenotype in the cohort of interest.

In the TWAS implementation by Gamazon et al. (2015)�for a given GWAS trait Y and an
expression endophenotype X, and for each gene g in the transcriptome�the method starts by
training an elastic net regression model to estimate the e�ect on the expression of g of genetic
variants in a �xed-width window around it. The model is of the form

X = αX +GTβX + ZTγ+ ε, (1.5)

where X is the expression of gene g across n individuals in the reference transcriptome data set, αX

is an intercept, Gn×m encodes the reference genotypes of m variants around gene g, βX captures
the respective contributions of these variants on X, γ captures the e�ects of the covariates in Z and
ε is independent and normally distributed noise. Then, access to a full GWAS data set is required
to impute GReX values XR from the estimated weights βX and the observed genotypes GR in the
cohort of interest,

XR = αXR +GRT
βX. (1.6)

Finally, the extent to which genetically controlled changes in the expression of gene g can explain
the GWAS trait is measured by correlating XR and Y (Gamazon et al., 2015).

More recently, Barbeira et al. (2018) developed a version of this method able to leverage GWAS
and eQTL-mapping summary statistics, bypassing the need for complete data sets. For a given gene
g, the association between XR and Y is approximated as a weighted sum W of a `QTL' component
of GWAS Z-scores for the set of m variants around g, scaled by an `eQTL' component representing
their contribution to variance in the expression of g,

W ≈
m∑
i=1

eQTL︷ ︸︸ ︷
βXi

σ̂i

σ̂g

β̂Yi

se
(
β̂Yi

)
︸ ︷︷ ︸

QTL

, (1.7)

where βXi is the weight of variant i on the prediction of the expression of gene g, σ̂i and σ̂g are
the respective estimated variances of the genetic variant and the predicted expression of g, and β̂Yi

and se
(
β̂Yi

)
are the e�ect size estimated by the GWAS for variant i and its standard error.
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The colocalization and TWAS approaches are complementary; when properly combined, they
can yield �ne mechanistic insights into the processes underlying GWAS discoveries. For instance,
the latest GTEx release reports the rs1775555 SNP as a cis-eQTL of GATA3 and a trans-eQTL of
MSTN. GATA3 encodes a TF involved in many aspects of immune regulation and MSTN encodes a
secreted ligand of transforming growth factor (TGF) β, a major immune cytokine (Wan, 2014; Wang
et al., 2018). Both associations colocalize in �broblasts with a PPH4 over 99%, and TWAS results
suggest (p = 2.1 × 10−22) that the trans-eQTL e�ect of rs1775555 on MSTN is mediated by its
cis-eQTL e�ect on GATA3 (The GTEx Consortium, 2020). Interestingly, both genetic associations
colocalize with a PPH4 over 97% with multiple immune traits, such as asthma and eczema.

More broadly, around 90% of gene-trait associations with strong evidence of colocalization also
show signi�cant TWAS results, in median across the more than 5 thousand GWAS loci considered
in that work (The GTEx Consortium, 2020). However, caution must be taken when interpreting the
signi�cance of TWAS results for eGenes with few eQTLs. The sum W in Equation (1.7) is maximal
when (i) the strongest eQTLs are also the strongest QTLs, and if (ii) the direction of eQTL and
QTL e�ects are consistent with mediation by gene expression. Indeed, if there is no association
between eQTL e�ects on g and QTL e�ects on Y, the signs in Equation (1.7) are expected to
cancel out, leading to a lower overall W value for the gene-trait association. If several variants are
associated to the expression of gene g, such coordinated e�ects on gene expression and the GWAS
trait may be robust evidence for genetic e�ects on phenotype mediated by gene expression changes.
However, if the expression of g is controlled by only one variant, a signi�cant gene-trait association
may result from spurious association between the eQTL and QTL e�ects.

1.2.6 Conditioning on context-dependency to improve mapping

Given the pervasiveness of genetic e�ects on phenotype, it is paramount to disentangle the
regulatory associations to disease in the human genome. The incomplete overlap between QTLs and
eQTLs could at least partially be due to a lack of power to map these variants. Yet, even though
the most recent GTEx atlas more than doubled the number of samples relative to its previous
installment, yielding more powerful studies to discover molQTLs and their targets, the proportion
of eQTLs that colocalize with disease risk increased only modestly (The GTEx Consortium, 2017,
2020). Hence, a purely incremental approach does not appear as a viable line of action towards this
goal (Umans et al., 2021; Mostafavi et al., 2022) (� 2.3.3, page 50).

Other technical factors that could explain missing QTL and eQTL links include batch e�ects,
confounding factors like population strati�cation (� 1.2.3, page 10), and the so-called `winner's
curse': a general statistical e�ect that can explain lack of replicability in GWAS settings. Brie�y, the
curse appears when the measured association of the peak SNP in a discovery cohort is stochastically
stronger than its ground-truth value. Due to this randomness, it is unlikely that the same association
will again be the strongest in another cohort (Bigdeli et al., 2016).

Di�erences in biological context can also explain why some regulatory associations are missed.
For instance, some links between genetics and gene expression are only revealed after a certain
stimulus (Barreiro et al., 2012). Such `response' (r) eQTLs di�er from standard eQTLs in the sense
that they are not associated to absolute mRNA abundances, but to the change in transcript counts
following stimulation. This type of conditional genetic e�ect is widespread in actors of the immune
system (Kim-Hellmuth et al., 2017; Zhernakova et al., 2017). For example, Figure 1.9 shows a reQTL
associated to a change in the expression of MMP1, but speci�cally after stimulation by `severe acute
respiratory syndrome' coronavirus 2 (SARS-CoV-2; COV) (βCOVXi = 1.47, p = 2 × 10−16), and not
by the in�uenza A virus (IAV) (βIAVXi = 0.04, p = 0.4). Interestingly, the matrix metalloproteinase
1 product of MMP1 has been pointed out as a marker of the severity of the `coronavirus disease
2019' (COVID-19) triggered by SARS-CoV-2 infection (Syed et al., 2021).
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Figure 1.9 | A stimulus-dependent response expression quantitative trait locus. The y axis shows the
relative abundance (i.e., counts per million) of mRNA molecules transcribed from the matrix metalloproteinase 1
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Adapted from Aquino et al. (2023).

Moreover, regulatory activity in response to a stimulus can be largely dependent on the period
of stimulation. For instance, across 417 reQTLs mapped in monocytes exposed to three di�erent
stimuli and assayed at two time points, Kim-Hellmuth et al. (2017) estimate that while 13% to
51% were stimulation-speci�c at a given time point, 32% to 64% were speci�c to a given period of
stimulation, suggesting a highly dynamic genetic control of immune gene expression.

The impact of genetics on molecular endophenotypes may also be conditioned by tissue-dependent
regulation. Humans are knit from a multitude of di�erent tissues, each with di�erent structural
and functional properties. Although the heritability of gene expression across these systems varies,
the functions carried by each tissue at least partially depend on speci�c GRNs (Price et al., 2011;
Powell et al., 2012; Grundberg et al., 2012; The GTEx Consortium, 2017, 2020; Yao et al., 2020).

Here again, the GTEx atlas provides an optimal setting to assess the tissue-dependency of
genetic e�ects on molecular endophenotypes (The GTEx Consortium, 2020). Overall, the correlation
patterns of proximal and distal eQTLs, as well as cis-sQTLs, recapitulate the known patterns of
similarity between the 49 tissues in GTEx. Interestingly, while genetic control across seemingly
di�erent tissues, such as breast and uterine tissue, appears relatively similar (Spearman's ρ > 0.8),
the blood is an outlier with distinct regulation patterns. Focusing on the variants themselves,
proximal control of expression and splicing is either very speci�c or widely shared across tissues:
the majority of cis-eQTLs and cis-sQTLs are either detected in 5 GTEx tissues or less, or found in
more than 45 of them. In turn, over 70% of trans-eGenes are detected in 5 tissues or less.

In summary, studies that seek links between genotype, endophenotype and phenotype need to
assay relevant contexts in which regulation is active. Active regulation may require prior stimulation
(Barreiro et al., 2012; Fairfax et al., 2014; Kim-Hellmuth et al., 2017) (Fig. 1.9), but it may also vary
across tissues. Indeed, it has been shown that tissues that are clearly linked to a given trait�such
as liver tissue for cholesterol levels or brain tissue for the risk of Alzheimer's disease�are enriched
in high expression levels of eGenes, as well as strong e�ects of corresponding cis-eQTLs, that also
colocalize with the trait-associated GWAS loci in the relevant tissue (The GTEx Consortium, 2020).

Tissues are themselves composed of many di�erent types of cells embedded in an extra-cellular
matrix. Each subset of cells ful�lls a particular role, such that complex tissular functions arise from
the coordinated action of di�erent cell types. Hence, eQTLs mapped through bulk measurements
of mRNA abundance capture a mixture of heterogeneous GRNs that obscures cell-type speci�c
regulatory mechanisms in each tissue, thereby limiting the functional interpretability of association
results (van der Wijst et al., 2018a; Kim-Hellmuth et al., 2020).
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Box 3 | Evolution of single-cell sequencing before 2020. The �eld of single-
cell sequencing was born from the development of next-generation methods for high-
throughput sequencing of nucleic acids. Tang et al. (2009) were the �rst to describe
a method for sequencing complementary (c) DNA retro-transcribed from the mRNA
molecules contained in a single cell (mRNA-Seq). A year later, the same group showed
that their method could be used to characterize cell-resolved transcriptomes across
around ten cells in parallel (Tang et al., 2010). From this princeps work, further
developments in sequencing technologies enabled the characterization of ever larger
mixtures of single cells.

The Figure below, adapted from Kharchenko (2021), highlights recent developments
that led to order-of-magnitude jumps in single-cell sequencing capacities. A more
comprehensive description of earlier developments is provided by Svensson et al. (2018).

Islam et al. (2011) proposed a method for single-cell tagged reverse transcription fol-
lowed by sequencing (STRT-Seq) and used it to map the transcriptome of around a hun-
dred single cells. In contrast to mRNA-Seq, that was based on sequencing by oligonu-
cleotide ligation and detection (SOLiD), STRT-Seq leveraged Illumina's sequencing-
by-synthesis solution, yielding a greater throughput. A couple of years later, Jaitin
et al. (2014) also leveraged Illumina sequencing to analyse around 5 thousand cells
using massively parallel single-cell RNA-sequecing (MARS-seq).

The next jump in cell sample size came with the introduction of CytoSeq, a plate-
based approach using microwell arrays and combinatorial indexing beads, capable of
assaying several thousands of single cells (Fan et al., 2015). That same year, Ma-
cosko et al. (2015) described the �rst droplet-based single-cell RNA-sequencing method
(Drop-Seq), increasing throughput to just shy of 50 thousand cells.
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In 2017, 10x Genomics commercialized droplet-based sequencing through their
Chromium Controller, and showed that their product could be used to reliably map
the transcriptome of millions of cells (Zheng et al., 2017). Today, 10x Genomics' solu-
tions are among the most popular single-cell sequencing technologies. Although other
frameworks are available that can yield higher cell counts at a lower cost through
combinatorial designs, they are not used as widely yet (Cao et al., 2019).
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In fact, an eQTL allele can have opposing e�ects on the expression of the same eGene in di�erent
cell types. For example, in line with previous reports by Fairfax et al. (2012), Yazar et al. (2022)
associate the rs4987360-G allele to a decrease in the expression of SELL in classical monocytes,
but an increase in SELL mRNA abundance in naïve B cells. The SELL gene encodes the homing
receptor CD62L, essential for immune cell tra�cking between the blood and the lymph nodes.
Through rs4987360, the innate and adaptive branches of the immune system (� 3.1, page 55) can
then weigh in on the overall expression levels of CD62L to ensure proper leukocyte recirculation: a
key feature of the system.

One way to skirt this heterogeneity is by sorting cells beforehand, so as to measure mRNA
abundance in puri�ed cell types (Barreiro et al., 2012; Fairfax et al., 2012, 2014; Nédélec et al., 2016;
Quach et al., 2016; Ishigaki et al., 2017). Alternatively, computational methods that deconvolve cell
type mixtures based on bulk expression data have also been proposed (Venet et al., 2001; Westra
et al., 2015; Aran et al., 2017). Using one of these deconvolution methods, researchers from the
GTEx Consortium recorded a strong correlation between the measures of pairwise similarity based
on tissue cellular composition and proximal regulation of gene expression (Aran et al., 2017; The
GTEx Consortium, 2020). This suggests that the cross-tissue correlations in gene regulatory activity
described in GTEx could arise simply from tissues sharing similar cell type proportions, not from
the activation of common GRNs.

In silico cell-type deconvolution also revealed widespread of cellular composition variability
across GTEx samples (The GTEx Consortium, 2020). Researchers leveraged this variability to
map cell-type interaction (i) proximal molQTLs in seven tissues including liver, skin and whole
blood. This revealed over a thousand neutrophil-speci�c ieQTLs in whole blood, a fraction of which
had not been detected in bulk analyses.

Kim-Hellmuth et al. (2020) further generalized cell type deconvolution across 35 GTEx tissues,
and mapped ieQTL and isQTL variants a�ecting the expression of over 3 thousand protein-coding
genes in a cell-type dependent manner. Interestingly, eGenes of eQTLs found in a single tissue
are enriched ieQTL targets, relative to eGenes shared across more than one tissue, suggesting that
ieQTLs participate to the tissue-speci�city of gene expression regulation. This is in line with cross-
tissue patterns of genetic control of expression emerging from similarities in cellular composition.

Similar to standard eQTLs, ieQTLs show a 1.3-FE in GWAS loci, in median across the 87
previously considered traits (Kim-Hellmuth et al., 2020; The GTEx Consortium, 2020). For over
a third of the 1,370 eGenes that showed signs of proximal genetic control by a GWAS locus, only
the cell-type resolved ieQTL�not the �ne-mapped standard eQTL�showed strong evidence of
colocalization (PPH4 > 0.5) with the GWAS trait. Overall, these results highlight the importance
of considering cell-type speci�c regulation when mapping the genetic bases of complex traits, and
emphasize the need for population-level QTL mapping studies at single-cell scale in this endeavour
(Kim-Hellmuth et al., 2020) .

1.3 Genomic features at single-cell resolution

In vitro cell-sorting technologies and in silico deconvolution methods are useful to map the
genetic bases of complex traits at cell-type resolution (Venet et al., 2001; Barreiro et al., 2012;
Fairfax et al., 2012, 2014; Lee et al., 2014; Çal�³kan et al., 2015; Westra et al., 2015; Nédélec
et al., 2016; Quach et al., 2016; Aran et al., 2017; Ishigaki et al., 2017; Kim-Hellmuth et al., 2017,
2020; Piasecka et al., 2018; Schmiedel et al., 2018; Ye et al., 2018). However, these approaches
are respectively limited by the availability of markers to tag speci�c cell types and their ability to
capture rare subsets in bulk expression data (van der Wijst et al., 2018a).
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1.3.1 Quanti�cation of transcript abundance at single-cell scale

The development of NGS technologies revolutionized many aspects of biology (Box 1). In
particular, it spurred the development of methods to characterize transcript abundances at single-
cell resolution directly from a mixture of cells. Tang et al. (2009) �rst described single-cell RNA-
sequencing (scRNA-seq) of transcripts contained in a developing mouse blastomere. The authors
repurposed a previously described method for ampli�cation of complementary (c) DNA, that they
characterized through sequencing by oligonucleotide ligation and detection (Shendure et al., 2005;
Kurimoto et al., 2006, 2007).

Where previous microarray-based transcriptomic technologies required micrograms of tissue
sample, this new method allowed to capture a larger portion of the transcriptome�over 5 thousand
more genes�from a single cell (Tang et al., 2009). In the following decade, several other single-cell
sequencing approaches were developed to assay increasing numbers of single cells (Box 3).

Most modern scRNA-seq work�ows apply droplet-based methods that use micro�uidic networks
to encapsulate single cells in an oil emulsion (Heumos et al., 2023). Each nanoliter-volume drop in
the emulsion should contain a cell, a support carrying copies of a nucleotide `barcode' sequence that
identi�es the droplet, and all the reagents needed to transform the mRNA molecules it contains
into sequenceable cDNA fragments. After retro-transcription and ligation of the barcodes to the
resulting cDNA molecules, the emulsion is broken up to create a pooled cDNA sequencing library.
Each sequenced read in the library can then be retraced back in silico to the droplet whence it came
thanks to its barcode (Macosko et al., 2015; Zheng et al., 2017). Before pooling, each transcript is
also assigned a unique molecular identi�er (UMI), so as to limit the impact of biased cDNA synthesis
and polymerase chain reaction ampli�cation during library preparation (Islam et al., 2014).

After barcode demultiplexing, the set of reads coming from each droplet is aligned to a common
reference so as to characterize expressed genomic features. This information is then summarized
in a feature-barcode matrix (FBM) that contains the number of UMIs assigned to each mapped
transcript counted in each droplet in the assay. The FBM is the starting point of most pipelines for
pre-processing of raw scRNA-seq data.

Yet, the analysis of scRNA-seq data is a rapidly evolving domain. By analyzing trends in the
`scRNA-tools' data base (Zappia et al., 2018), Zappia and Theis (2021) recorded a supralinear
increase in the number of catalogued methods since 2016. As of 2021, over a thousand tools were
available for di�erent aspects of scRNA-seq data analysis. For example, there are more than a
hundred di�erent ways to normalize scRNA-seq count data. This re�ects the striking breadth of
biological questions that single-cell transcriptomics can address, but it also shows that many aspects
of scRNA-seq data analysis are still under active development.

Although there is still much debate around many common analysis tasks�such as the relevance
of nonlinear dimensionality reduction for visualization�there is also growing consensus in the single-
cell genomics community for some of the central aspects of scRNA-seq data analysis. Recently,
Heumos et al. (2023) reviewed these processing and analysis steps in detail, providing a consolidated
set of expert recommendations in single-cell data analysis across multiple modalities today. In the
end, the best suited tool for each job often ultimately depends on the data themselves.

Single-cell assumptions and barcode �ltering steps

In principle, scRNA-seq reads associated to a valid barcode should originate from an oil droplet
containing a single live cell (Macosko et al., 2015; Zheng et al., 2017). Violating this assumption
is likely to bias or blur results from downstream analysis tasks (Heumos et al., 2023). Hence,
quality control (QC) steps that �lter barcodes associated to empty droplets or low-quality cells, and
`doublet' detection methods that remove barcodes associated to more than one cell are essential.
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Most scRNA-seq data analysis pipelines use three core QC metrics: the number of mapped
reads and the number of genes detected in each barcode, as well as the fraction of reads that map
to the mitochondrial genome. The �rst two metrics give an indication of the amount of information
carried by each barcode; less informative barcodes with low read counts and/or mapped features
will only burden analyses and lead to noisier results. The third metric is often used to �lter out
dying or low-quality cells. All in all, it is important to consider all three metrics jointly and to
interpret their distributions in light of the biology of the assayed cells. For instance, muscle cells
can be associated to several thousands of reads with a relatively high mitochondrial fraction due to
a highly metabolically active state (Mercer et al., 2011; Kuppe et al., 2021).

Several doublet detection methods have been described for single-cell sequencing data so far
(Kang et al., 2018; Germain et al., 2021; Xi and Li, 2021; Neavin et al., 2022). Because doublet
barcodes are expected to share de�ning features�such as a higher number of mapped reads�that
distinguish them from `singlets', many of these methods work by simulating transcriptional pro�les
from arti�cial doublets and comparing them to those of observed barcodes. In single-cell assays of
tissues composed of widely di�erent cell types with well described markers, heterotypic doublets
that mix together distinct cell types can also be detected through aberrant expression of markers.

In single-cell eQTL mapping studies that use pooled designs, homotypic doublets of cells from
di�erent individuals are particularly dangerous, as they can lead to confounded genotype e�ects.
Kang et al. (2018) propose a suite of tools that use genetic variation across individuals to disentangle
singlets from doublets based the genetic variants detected from scRNA-seq data. These methods
can thus be used to demultiplex pooled samples and trace barcoded cells back to each donor.

Yet, these genotype-based demultiplexing methods are unable to detect doublets of cells coming
from the same individual. Such `cryptic' doublets can be found by approaches that use the patterns
of transcriptional similarity between singlets and doublets. A genetic singlet that clusters together
with doublets is more likely to be a doublet. Because each approach uses and provides di�erent
sources of information, it is recommended to base doublet �ltering decisions on the results from
several methods at once (Heumos et al., 2023).

A statistical description of transcript counts in single cells

The �ltered FBM is an array of whole numbers A ∈ Wm×n. Each matrix item Agc gives
the number of unique molecules from transcript g ∈ {1, · · · ,m} counted in cell c ∈ {1, · · · , n}.
Importantly, because mRNA capture and cDNA synthesis are imperfect, Agc represents a fraction
of the true total number of transcript g molecules contained in cell c. Thus, scRNA-seq data are
compositional in nature (Quinn et al., 2018).

That is, the observed count for a given transcript g is a function

Agc = f (Tgc) (1.8)

of the true underlying mRNA abundance Tgc in cell h, where f translates variation due to mRNA
capture e�ciency, ampli�cation bias, and other technical confounders like sequencing depth across
transcripts and cells (Stegle et al., 2015; Lun et al., 2016b).

This also means that the `library size', or the sum of transcript counts assigned to barcode c,

Lc =

m∑
i=1

A·c, (1.9)

is an artifact of the underlying mRNA abundance in the live cell that constrains the observed
abundances Agc as proportions of an arbitrary sum (Quinn et al., 2018). Because library size
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depends on technical factors, absolute di�erences in abundance Agc are not informative, but relative
abundances normalized for Lc are. The simplest approach would be to simply divide Agc by Lc,
but this does not resolve the compositional character of transcriptome data (Quinn et al., 2018).

Several methods have been proposed to tackle this problem in bulk RNA-seq data. Robinson and
Oshlack (2010) �rst described the `trimmed mean of M-values' as an e�ectively normalized metric
for di�erential expression (DE) RNA-seq analyses. Their method uses a trimmed and weighted
mean modeled from a subset of transcripts�assuming that most transcripts are not DE between
samples�as a library `size factor' to normalize the data. Along the same lines, Anders and Huber
(2010) proposed normalizing the data against a gene expression median estimated across transcripts.
Both of these methods work well for bulk RNA-seq data, but the sparsity of the FBM complicates
their application to scRNA-seq data (Box 4).
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Figure 1.10 | Absolute and relative di�erences in gene expression. Probability density function (PDF) of
200 raw and log-transformed simulated expression values for two genes, before and after stimulation. Dashed lines
show non-stimulated gene expression. Transcript abundances were modeled as purely Poissonian processes.

The shifted logarithm transformation is a popular choice for scRNA-seq data normalization.
Lun et al. (2016a) describe a `log-normalization' that computes relative transcript abundances as

Xgc = log
(

Agc

h (Lc)
+ s

)
, (1.10)

where h is a function that sums library sizes across cells with similar count depths and deconvolves
the pooled values into cell-speci�c size factors, and s > 0 is a `pseudocount' that ensures the
transformation is de�ned for Agc ⩾ 0. Aggregating library sizes across multiple cells helps dampen
the problematic e�ects of low and null values (Lun et al., 2016a).

The log-transformation itself has other added bene�ts. First, it translates absolute transcript
count di�erences into log-fold changes in gene expression. That is, changes in gene expression are
interpreted relative to the overall expression level of each gene. For instance, Figure 1.10 illustrates a
simulated scenario in which two genes A and B show a two-fold increase in bulk expression following
a given stimulation. In the upper panel, expression is given in terms of `counts per million' (CPM),
a linear transformation of the data that rescales raw counts by a factor of 10−6. Although the
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magnitude of DE of both genes is the same, the absolute di�erence in the expression of the highly
expressed gene B dominates the DE signal of lowly expressed gene A. Considering log-fold changes
reveals the similar patterns of DE between both genes, as shown in the lower panel.

The log-transformation is also useful because it brings the distribution of transformed UMI
counts closer to a Gaussian, and thus closer to the assumptions made by several downstream methods
involving statistical inference through classical linear models. However, this is not the case when
null expression values are frequent. For example, Figure 1.11 shows the distribution of CPM values
before and after log-transformation for the CSTH gene in CD14+ monocytes. Due to the prevalence
of zeroes in the FBM (Box 4), both distributions feature a spike at zero. Several methods have been
proposed to correct this bimodality through statistical modeling (Fan et al., 2016a; Stuart et al.,
2019), but a simpler approach is to �lter out very lowly expressed genes beforehand, so as to reduce
the sparsity of the FBM and bring the distribution of log-transformed expression closer to normal.
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Figure 1.11 | Log-normalization and normality. Probability density function (PDF) of raw and log-transformed
count-per-million expression values of CSTH in single CD14+ monocytes. Adapted from Kharchenko (2021), using
a single-cell RNA-sequencing data set of around 10 thousand peripheral blood mononuclear cells sampled from a
healthy donor, made available by 10x Genomics.

In this sense, the log-transformation also has variance-stabilizing properties. That is, taking the
logarithm modi�es the distribution of gene expression values such that its mean and variance are less
related e . Variance stabilization is critical for scRNA-seq data, as they are characterized by a clear
mean-variance relationship that can confound downstream analyses; yet, log-normalization is not
su�cient to eliminate it f . Using a reference scRNA-seq data set of around 10 thousand peripheral
mononuclear blood cells made available by 10x Genomics, Figure 1.12 illustrates how genes with
the highest log-normalized expression values also display the largest variance in expression.

e. Brie�y, if gene expression values X follow a negative binomial distribution with mean µ and overdispersion ϕ

(Appendix B, page 193; Box 4), the mean-variance relationship will be quadratic V [X] = µ + ϕµ2 (Ahlmann-Eltze
and Huber, 2023). The log-transformation changes the multiplicative variation into additive expression noise.

f . Although Ahlmann-Eltze and Huber (2023) argue that log-transformation followed by principal components
analysis is at least as e�ective as other more sophisticated scRNA-seq data pre-processing approaches.
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Figure 1.12 | Mean and variance of single-cell gene expression data. Single-cell RNA-sequencing data are
characterized by a clear mean-variance relationship, through which genes with the highest expression levels are also
the most variable. This expression variance has a biological and a technical component. Assuming that the technical
component is Poisson-distributed, the expected technical noise can be modeled given mean expression values observed
genome-wide. At each expression level, genes with a variance above this expectation�shown by the dashed line in
the left panel�are considered biologically meaningful. `Highly variable genes' with the largest residual biological
variance components are shown in red in both panels. For example, S100A9 is marker used to disnguish myeloid cells
from other immune subsets. Adapted from Kharchenko (2021), using a single-cell RNA-sequencing data set of around
10 thousand peripheral blood mononuclear cells sampled from a healthy donor, made available by 10x Genomics.

Other methods are thus needed to correct the mean-variance relationship in scRNA-seq data,
by decomposing it into its biological and technical components. In the absence of biological drivers
of gene expression variation, the number k out of N randomly sampled transcripts that maps to
a given gene g follows a binomial distribution parameterized B

(
N, k

N

)
. As N grows to in�nity,

B
(
N, k

N

)
tends to a Poisson P(k). Thus, if the proportion of reads coming from gene g is constant

across cells, the the number of transcripts sampled at random from a large number of transcripts
that belong to g is expected to be Poissonian.

Hence, Lun et al. (2016b) propose to dissect the biological and technical components of gene
expression variation by simulating Poisson-distributed data�assuming technical noise is close to
Poissonian�given observed gene expression mean values, to derive the mean-variance trend expected
in the absence of biological variation. Excess variance in gene expression relative to this null
expectation is assigned to biological component of gene expression variance. Genes with the largest
biological variance components are tagged as interesting `highly variable genes' (HVGs; Fig. 1.12).

E�cient variance stabilization and HVG selection are paramount for downstream analyses. The
latest single-cell transcriptomic technologies can produce UMI counts for millions of cells across
thousands of genes in a single experimental run (Box 3). Hence, most modern scRNA-seq data sets
live in enormously multidimensional spaces. For computations to remain tractable, it is necessary
to reduce the dimensionality of FBMs. Filtering HVGs is one way to accomplish this, removing
features that carry mostly technical noise, or very little biological information, from the matrix.

Linear algebra methods like principal components analysis (PCA) and non-negative matrix
factorization (NMF) are also commonly used to reduce the dimensionality of scRNA-seq data into
a smaller set of linear combinations of expressed features that best summarize the covariances in
the data (Shao and Höfer, 2017; Zhu et al., 2017). The need for dimensionality reduction highlights
the importance of variance stabilization. For instance, if the mean-variance relationship remains,
PCA will be driven by predominantly technical variation across highly variable genes, overlooking
global correlation patterns across genes with lower expression levels (Fig. 1.10) (Svensson, 2020).
Performing PCA on a set of biologically relevant HVGs makes it more likely that observations are
projected on a subspace of the FBM de�ned by interesting and informative transcripts.
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Size-factor-based methods make up one of two large families of approaches to scRNA-seq data
normalization (Vallejos et al., 2015; Lun et al., 2016a). The other is composed of methods based on
probabilistic models of transcript counts (Kharchenko et al., 2014; Grün et al., 2014; Hafemeister
and Satija, 2019). For example, Hafemeister and Satija (2019) propose using Pearson residuals from
a negative-binomial (NB; Box 4) generalized linear model (GLM) of UMI counts as normalized gene
expression values. More precisely, they model the number of UMIs assigned to transcript g across
all cells with a GLM with NB-distributed error and log-link function,

log (E [Ag·]) = α+ βAg log10 (L) , (1.11)

where L is the vector of library sizes across all cells. To avoid over�tting the model to the expression
pro�le of each gene, model parameters are regularized through kernel regression across genes using a
Gaussian kernel. Pearson residuals are then computed from observed expression values Agc, given
the values expected under the regularized NB model. The authors convincingly show that their
method accounts for the e�ect of count depth Lc on the measured expression of each gene across a
wide range of expression levels. In contrast, by using a one-size-�ts-all correction factor across all
transcripts expressed in each cell, log-normalization does not e�ciently adjust the e�ect of count
depth on the measured expression of highly active genes.

Box 4 | The sparsity of single-cell transcriptomic data. Gene expression is
a naturally stochastic process (Novick and Weiner, 1957; Ko et al., 1990; Raj and
van Oudenaarden, 2008; Eldar and Elowitz, 2010; Weidemann et al., 2023). Owing
to this biological noise, but also to technical factors like ine�cient transcript capture
from the small stock of mRNA molecules present in each single cell, single-cell RNA-
sequencing (scRNA-seq) data are characterized by a low signal-to-noise ratio relative
to bulk RNA-seq. Collectively, these factors contribute to `dropout' events, in which a
gene that is robustly expressed in some cells is not detected in another subset of similar
cells (Kharchenko et al., 2014). Due to the prevalence of these false null values, zeroes
in scRNA-seq data are considered non-informative.

Stochastic gene expression is generally modeled with a `negative binomial' (NB)
distribution resulting from a mixture of Gamma and Poisson processes (Appendix B,
page 193). Brie�y, the NB distribution di�ers from a Poisson in that its dispersion
di�ers from its mean µ, allowing for an additional overdispersion parameter ϕ. If ϕ is
allowed to vary across genes, most zeroes in biological data can be explained under the
NB (Svensson, 2020).

In their description of single-cell di�erential expression, Kharchenko et al. (2014)
were the �rst to explicitly account for an excess of null values in scRNA-seq data
through a mixture of an NB `signal' component in which detected transcript abundance
correlates with its true underlying abundance, and a Poisson `dropout' component in
which the signal is not detected. Since then, other probabilistic models for `zero-
in�ated' scRNA-seq data have been proposed (Pierson and Yau, 2015; Finak et al.,
2015; Risso et al., 2018).

However, recent work suggests that the prevalence of null values in droplet-based
scRNA-seq data is accurately modeled by the NB distribution alone and is as expected
from count data, such that `zero-in�ation' is likely to arise from biological variability
(Vieth et al., 2017; Svensson, 2020).
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As is often the case in scRNA-seq data analysis tasks, the best choice of normalization method
depends on features of the input data, as well as on the intended downstream analyses. For instance,
while log-normalization has been suggested to improve the performance of dimensionality reduction
(Booeshaghi et al., 2022), Pearson residuals lead to selection of HVGs with a greater biological
variance component (Lause et al., 2021). However, the method described by Hafemeister and Satija
(2019) becomes intractable on data sets of over a million cells. Ahlmann-Eltze and Huber (2023)
argue that log-transformation followed by principal components analysis is generally at least as
e�ective as other more sophisticated approaches.

Batch e�ect correction and data set integration

The recent exponential increase in the capacity of scRNA-seq to assay single cells (Box 3)
sparked large scale e�orts to extensively characterize single-cell transcriptomic variation across
human tissues and individuals (Regev et al., 2017; van der Wijst et al., 2020; Tabula Sapiens
Consortium, 2022). Drawing biological insight from such valuable compendia requires merging
information from di�erent data sets�across distinct experimental settings, cohorts, tissues and
conditions�to eliminate technical noise while preserving biologically meaningful variability. Where
normalization methods focus on dampening the e�ects of technical confounders�chie�y cell count
depth�within a data set, batch correction is concerned with technical variation between data sets.

Here again, the diversity of proposed batch-correction methods is wide, ranging from methods
that leverage linear models (Butler et al., 2018; Korsunsky et al., 2019; Hie et al., 2019) to deep
learning approaches (Lopez et al., 2018; Lotfollahi et al., 2019; Xu et al., 2021). While complex
correction tasks often require the latter machine learning tools, linear-embedding models perform
well on simpler tasks (Luecken et al., 2022; Heumos et al., 2023).

In particular, the linear method described by Korsunsky et al. (2019) is the top choice when
batch structure is known and clear. Given raw PC coordinates and a set of batch variables, the tool
progressively learns�through iterations of clustering and projection�a linear function speci�c to
each cell, and outputs a set of adjusted PC-like dimensions such that cells project into clusters of
mixed batch levels. These batch-corrected dimensions can then be used as input for clustering or for
nonlinear embedding methods, such as uniform manifold approximation and projection (UMAP)
(McInnes et al., 2018) or t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten and
Hinton, 2008).

Recent years have also seen an explosion in single-cell assays of genomic features other than
gene expression. For instance, single-cell assays for transposase-accessible chromatin sequencing
(scATAC-seq) (Buenrostro et al., 2015), cellular indexing of transcriptome and epitopes by sequenc-
ing (CITE-seq) (Stoeckius et al., 2017) and single-cell reduced-representation bisul�te sequencing
(scRRBS) for methylome analyses (Guo et al., 2013) were all introduced within the last decade.
Layering di�erent sources of information from the genome of a single cell can lead to �ner biological
insight (Argelaguet et al., 2021) (� III, page 137). Yet, although some methods like CITE-seq can
produce more than one data modality from the same experiment, di�erent modalities are most often
assayed independently. Hence, tools are needed to integrate these data sets together.

Single-cell transcriptomic data sets are commonly represented as graphs in which each cell is
connected to its k-nearest neighbors on the gene expression manifold (Islam et al., 2011). The graph
representation provides numerous computational advantages (Kharchenko, 2021). For example,
UMAP and t-SNE rely on it to approximate the underlying gene expression space. Although both
methods can produce visually attractive summaries of complex data sets, their intepretatibility
remains shallow. Most implementations of the algorithms carry a signi�cant stochastic component,
and both methods can produce distorted approximations that do not accurately represent the gene
expression manifold (Chari and Pachter, 2023).
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Nearest-neighbor graph representations are also useful for integration tasks, when paired mea-
surements are available between data sets. For example, Hao et al. (2021) used a weighted nearest-
neighbor approach to project peripheral blood mononuclear cell barcodes from di�erent assays
of chromatin accessibility, gene expression and surface protein expression on a common reduced-
dimension space. By transferring information across modalities, the authors were then able to
extensively characterize the innate immune response to vaccination against the human immunode�-
ciency virus. When paired observations are not available, other methods using arti�cial intelligence
can be used (Gayoso et al., 2021; Cao and Gao, 2022; Ashuach et al., 2023).

1.3.2 Mapping molecular quantitative trait loci in single cells

As previously mentioned, the eQTL framework appears as a viable solution to interpret GWAS
results because most genome-wide associations fall in non-coding regions with regulatory potential
(Hindor� et al., 2009; Maurano et al., 2012) (� 1.2.4, page 15). Furthermore, it has been shown
that genes around GWAS loci are more likely to be eGenes, and that the most signi�cant GWAS
hits are more likely to also be eQTLs (Nicolae et al., 2010). It is thus common to assume that
most GWAS hits can be explained through genetically controlled changes in transcript abundances.
Yet, across di�erent studies, only between 5% and 40% of GWAS QTLs colocalize with eQTLs
(Giambartolomei et al., 2014, 2018; Hormozdiari et al., 2016; Chun et al., 2017).

Connally et al. (2022) argue that while failure to colocalize is not enough to dismiss the mediator
potential of transcriptional variability, most GWAS hits are actually explained by genetic variants
that regulate the expression of nearby genes, but whose e�ects cannot be captured by classical bulk
eQTL studies. The authors instead point to a `missing regulation' layer that could be recovered
through more detailed models of context-dependent gene regulation (� 1.2.6, page 22).

A prime example of such extended models of gene regulation is showcased in recent work by
Oelen et al. (2022), who mapped cell-type and stimulus-dependent eQTLs in human peripheral blood
mononuclear cells (PBMCs; � 3.1.1, page 55) exposed to Mycobacterium tuberculosis, Pseudomonas
aeruginosa or Candida albicans for di�erent periods. Overall, their results re�ect the widespread
impact of cellular and environmental context on the genetic control of the transcriptional responses
to pathogens. In particular, this genetic control is primarily impacted by cell-type-dependent factors,
rather than by di�erences across stimuli or time points.

To tease apart the downstream e�ects of these di�erent layers of regulation, Oelen et al. (2022)
leveraged their scRNA-seq data set to build gene `co-expression' (coe) networks in each context
(van der Wijst et al., 2018b; van Dam et al., 2018), and mapped coeQTLs that a�ect how eGene
expression levels correlate across cells (van der Wijst et al., 2018a; Li et al., 2023). In other words,
Oelen et al. (2022) used genetically-controlled transcriptional relationships to approximate the gene
regulatory networks (GRNs; � 3.1.2, page 57) underlying the response to stimulation by particular
pathogens in distinct PBMC types. For instance, the authors highlight the rs12230244 coeQTL
of CLEC12A�a gene that encodes a C-type lectin-like receptor important for the regulation of
in�ammatory responses. Pathway analysis of the set of genes co-expressed with CLEC12A in each
condition revealed an enrichment in genes regulated by interferon (IFN) at the early time point.
Additionally, the set of genes for which the rs12230244-T allele was associated to a more positive
co-expression relationship are enriched in binding sites for IFN regulatory factors (IRFs). Together,
these results suggest a GRN in which stimulation by pathogens triggers an IRF-mediated IFN
response, which leads to increased IRF activation and subsequent ISG induction. In this context,
co-expression loss could be explained by the rs12230244-C allele disrupting an IRF binding site
in regulatory regions of CLEC12A in the response to infection. The biological relevance of this
locus is highlighted by the interaction between CLEC12A expression, a PRS for SLE�a disease
characterized by increased IFN activity�and the genotype at rs12230244 (Oelen et al., 2022).
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The coeQTL framework is especially interesting because it allows to reliably infer the chain
of regulatory events underlying complex traits in speci�c contexts using data from relatively few
individuals and conditions (van Dam et al., 2018; Li et al., 2023). However, Oelen et al. (2022) also
note that coeQTL mapping does not enable causal inference of genetic e�ects (� 1.2.5, page 19),
and highlight the importance of integrating scRNA-seq data sets with other modalities of single-cell
data to improve the interpretability of genome-wide associations with complex traits by mapping
the genetic bases of molecular endophenotypes other than gene expression (Argelaguet et al., 2021).

Previous studies in bulk have shown how assays of di�erent layers of gene expression regulation
can be integrated in synergy to reach deeper insight. For instance, by coupling eQTL and caQTL
mapping in human macrophages exposed to IFN-γ and/or Salmonella enterica, Alasoo et al. (2018)
revealed pervasive regulatory `priming' of genetically controlled transcriptional immune responses
to stimulation. In over half of all colocalized caQTL-reQTL pairs in each condition, the caQTL was
already detected in resting cells. In contrast, only around 10% to 25% of response caQTLs in each
condition colocalized with a resting eQTL. Hence, integrating di�erent modalities of gene expression
regulation data allows to track the �ow of genetic information from genotype to phenotype.

More recently, Aygün et al. (2023) mapped eQTLs and caQTLs in developing human brain
cells and tested di�erent models of causality (Box 2) between chromatin accessibility and gene
expression, in order to map the genetic factors underlying complex neurological traits. In neuronal
progenitors, the expression of 168 genes was signi�cantly mediated by genetically-controlled changes
in chromatin accessibility. In particular, the indel rs10717382 SNP was shown to regulate the
expression of SLC26A7 through its e�ect on the accessibility of an upstream locus by modifying the
binding a�nity of transcriptional repressor NKX2-2. Notably, the eQTL signal at rs10717382 also
colocalized with the GWAS signal at the rs57117164 SNP linked to structural variation in a brain
region associated to emotional recognition. Thus, these results suggest a causal path through which
genetic regulation of SLC26A7 in di�erentiating neurons could explain inter-individual di�erences
in brain structure, underlying the risk of emotional disorders.

All in all, the key to retrieving the `missing regulation' brought up by Connally et al. (2022)
is likely to lie in multimodal single-cell data. Yet, although several methods exist to characterize
molecular endophenotypes other than gene expression at single-cell resolution (Guo et al., 2013;
Buenrostro et al., 2015; Stoeckius et al., 2017), the repertoire of single-cell molQTL mapping studies
is only slowly diversifying (Benaglio et al., 2023). In fact, there is still not a single piece of published
work coupling single-cell molQTL mapping across more than one modality (Cuomo et al., 2023).

Next-generation single-cell expression quantitative trait locus mapping methods

Most single-cell eQTL mapping frameworks applied to date proceed in three steps. First, single-
cell transcriptional pro�les are clustered on the basis of nearest-neighbor graphs that approximate
the underlying highly multidimensional gene expression manifold. The clusters are then annotated
on the basis of DE marker genes, or using automated annotation approaches (Clarke et al., 2021).
Finally, UMI counts are aggregated�most often as a sum or average�into `pseudobulk' values by
cell type and donor to create context-speci�c vectors of expression X for each gene, that can be
plugged into models like Equation (1.4) for downstream analysis steps.

Pseudobulking brings scRNA-seq data closer to the assumptions of such linear models: there is a
single observation per sample and context, and the phenotype is close to normally distributed across
samples (Cuomo et al., 2023). Figure 1.13 illustrates this using pseudobulk and single-cell MMP1

expression data from the same set of SARS-CoV-2-stimulated myeloid cells. While the distribution
of bulk expression values is approximately Gaussian, single cell expression values are discrete in
nature and thus better modelled using zero-in�ated Poisson or negative binomial distributions (Box
4; Appendix B, page 193).
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While pseudobulk measurements dampen the noisiness, sparsity and discrete nature of scRNA-
seq data (Box 4), they also create other challenges. For instance, the uncertainty around each
pseudobulk estimate depends on the number of cells in the aggregate, which can vary widely be-
tween contexts and donors, although this problem can be easily countered by �ltering out samples
with a cell count below a given threshold. The aggregation also limits the eQTL mapping to the
variants that are associated to changes in average gene expression values across cells from di�erent
individuals. Yet, `dispersion' eQTLs associated to instability in cell-to-cell gene expression�but
not necessarily mean changes�may also explain disease (Sarkar et al., 2019; Cuomo et al., 2023).
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Figure 1.13 | Single-cell and pseudobulk gene expression. Probability mass function (PMF) of log-
transformed pseudobulk and single-cell MMP1 expression values in the same set of SARS-CoV-2 stimulated myeloid
cells (Aquino et al., 2023). For the single-cell expression values, unique molecular identi�er (UMI) counts were log-
normalized following the method proposed by Lun et al. (2016a).

Finally, it has also been suggested that pseudobulk eQTL mapping altogether defeats the purpose
of scRNA-seq by obscuring the heterogeneity contained within clusters of cells and by discretizing
naturally continuous processes (Cuomo et al., 2023). Although the concept of bona �de single-cell
eQTL mapping is not recent (Wills et al., 2013), a new generation of methods is emerging that
holds the promise to more fully exploit the diversity of cell states captured by single-cell genomic
data (Nathan et al., 2022; Cuomo et al., 2022).

For instance, by enabling the mapping of sceQTLs along continuous trajectories, these novel
methods may uncover dynamic genetic regulation mechanisms arising during activation of immune
cells by pathogens, or interferon-mediated signalling in disease contexts. For example, through
pseudobulk eQTL mapping in PBMCs from SLE patients and healthy controls, Perez et al. (2022)
revealed dynamic genetic regulation of SLFN5 expression, conditional on type I IFN activation�a
hallmark of SLE�across eight immune cell types. Applied in a context like this, next-generation
sceQTL mapping could potentially reveal other disease-relevant cell states, by characterizing the
dynamic genetic regulation of gene expression at greater resolution.

However promising, these new approaches are currently limited by modeling considerations and
computational tractability (Cuomo et al., 2023). For example, the assumption of independent
observations in linear modelling (Eq. (1.4)) is violated by the nested structure of cell-level and
individual-level observations, and more complex models are needed to account for these e�ects.
Although pseudobulk approaches remain essential for several tasks in single-cell genomics, as the
body of theoretical work (Nathan et al., 2022; Cuomo et al., 2022) and computational capabilities
grow (Gewirtz et al., 2022), it is likely that the �eld will shift towards next-generation scmolQTL
mapping methods to fully exploit single-cell genomic data and characterize the genetic bases of
complex traits at unprecedented resolution.
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2 Archaic introgression and modern immune responses

‘People who carry this Neandertal risk variant for COVID-19 have a reduced risk

of becoming infected with HIV’

– Svante Pääbo, during his Nobel Prize lecture (2022)

36



2.1 Anatomically modern humans and our sister species

Genome-wide association studies of complex phenotypes and molecular endophenotypes have
proven useful to unveil gene regulatory networks underlying human disease (� 1.2, page 7). Yet,
these methods can only paint a static picture of immune diversity among extant humans. To fully
understand how immune response di�erences emerged during human evolution, it is essential to
characterize the evolutionary forces that shaped present-day human genetic diversity, and how these
forces have acted on regulatory loci controlling the immune response (Barreiro and Quintana-Murci,
2010; Fan et al., 2016b; Nielsen et al., 2017; Quintana-Murci, 2019). In the words of Theodosius
Dobzhansky (1973), `Nothing in biology makes sense except in the light of evolution'.

2.1.1 Genetic and archæological evidence of human origins in Africa

Charles Darwin (1871) was among the �rst to propose an African origin of humans, based on
evolutionary relationships inferred between anatomically modern humans (AMHs) and great apes
endemic to Africa (Huxley, 1863). Since then, excerpts from the East African fossil record have shed
more light on the evolution of the genus Homo (Leakey and Leakey, 1978; Wood, 1991; Bromage
et al., 1995; Kimbel et al., 1997). Among the best-described early exponents of the genus, Homo
habilis and Homo erectus are thought to have roamed the African continent around two million to
two hundred thousand years ago (Spoor et al., 2007; Herries et al., 2020). Relative to their common
Australopithecus ancestor, both species had larger cranial capacities and modern limb proportions,
although the features of Homo erectus were markedly closer to AMH features.

Another interesting feature of Homo erectus fossils is their distribution across the globe. In
fact, the �rst Homo erectus specimens were unearthed in Asia, sparking a debate about the true
geographical origin of the species (Delson, 1985; Wood, 1991; Walker and Leakey, 1993; Gabunia
et al., 2001). The common view today is that Homo erectus appeared in Africa and then expanded
into Eurasia, where it evolved into other species of Homo (Asfaw et al., 2016).

The mode of descent linking AMHs to Homo erectus has been another subject of intense debate.
The model of multiregional evolution (MRE) proposed that AMH populations evolved independently
from the separate groups of Homo erectus that spread into Eurasia, sharing limited gene �ow
(Wolpo� et al., 1984). In contrast, the `Out-of-Africa' (OOA) hypothesis draws upon evidence for a
much more recent African common ancestor of AMHs that expanded later and replaced non-African
populations of archaic hominins (Box 5) (Lewin, 1987). The MRE model was mainly supported
by archæological data re�ecting a continuity in the fossil records, which was at odds with the
replacement predicted by the OOA model. However, archæological data alone could not inform on
whether the continuity was also genetic or solely due to cultural di�usion.

Later into the 20th century, genetic studies of mitochondrial (mt) DNA provided strong support
for the OOA hypothesis. The maternally inherited mtDNA molecule is an interesting tool because
its sequence is relatively short and it evolves rapidly, allowing genealogical inference even among
closely related populations (Brown et al., 1979; Giles et al., 1980). In particular, through analyses
of mtDNA sequences from 147 diverse individuals, Cann et al. (1987) concluded to the presence of a
common ancestor of all AMH mtDNA in Africa around 200 thousand years ago. A few years later,
Quintana-Murci et al. (1999) leveraged analyses of mtDNA to propose a coastal exit route from
East Africa into the Arabian Peninsula. However, mtDNA also left several unanswered questions
about the origins of AMHs and their dispersal out of Africa (Nielsen et al., 2017). Because mtDNA
is not recombinant, the whole molecule is akin to a single genetic variant. Hence, phylogenetic trees
drawn from mtDNA sequences are blind to the bulk of genomic signatures of human evolution. Here
again, the development of genotyping and sequencing tools was key to address these questions by
unlocking genome-wide assessments of variation across populations (Box 1, page 4).
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The theory of isolation-by-distance and the `stepping stone' model of population structure both
predict an increase in genetic di�erentiation between populations located further apart (Malécot,
1948; Kimura and Weiss, 1964). Ramachandran et al. (2005) showed these expected patterns across
populations world-wide, through the analysis of over 700 variant loci across more than a thousand
individuals in the Human Genome Diversity Project-Centre d'Étude du Polymorphisme Humain
(HGDP-CEPH) cohort (Cann et al., 2002; Rosenberg et al., 2002). The authors then proposed a
model for human expansion out of Africa as a series of `founder e�ects' originating from a single
starting point in East Africa. Each founder e�ect is equivalent to a population bottleneck, during
which only a subset of the population of migrants�and thus only a subset of the alleles segregating
in the population�move on to colonize other locations. In line with this model, Ramachandran
et al. (2005) also reported a decay in genetic diversity proportional to the geographical distance
separating each population from Addis Ababa, Ethiopia.

Jakobsson et al. (2008) later described increased levels of linkage disequilibrium (LD) in non-
African populations world-wide, proportional to their geographical distance from Africa, in line with
the model proposed by Ramachandran et al. (2005). However, recent work provides strong evidence
against the assumption of a single African AMH origin (Ragsdale et al., 2023), in line with previous
reports of complex ancestral population structure in Africa (Tishko� et al., 2009).

Box 5 | Hominids and hominins. The term `hominid' designates the set of all
extant and extinct great apes, including gorillas, chimpanzees and humans. `Hominins'
are the subset of hominids that descend from the last common ancestor of chimpanzees
and humans, including species with `archaic' features relative to anatomically modern
humans. Today, Homo sapiens is the only extant human species, but fossil records
harbor a wide diversity of archaic hominins, including Neanderthal and Denisova.

The complexity of ancestral human population structure is re�ected in the African fossil record.
Recently, several skull and mandible fragments bearing AMH cranial and facial features were dis-
covered at the Jebel Ihroud site in Morocco (Hublin et al., 2017). Dated at around 300 thousand
years ago, the Jebel Ihroud fossils are the oldest human remains discovered to date. Before Jebel
Ihroud, human remains with AMH features had been unearthed at the Herto and Omo Kibish
sites�respectively dated to around 160 and 200 thousand years ago�in Ethiopia (White et al.,
2003; McDougall et al., 2005). Taken together, these pieces of fossil evidence support the OOA
hypothesis of AMH origin, and highlight the complex pan-African evolutionary history of humans.

2.1.2 Retracing the recent modern human expansion out of Africa

Although the studies led by Ramachandran et al. (2005) and Jakobsson et al. (2008) revealed
genomic signatures predicted by the OOA model, the genetic and fossil evidence available at the
time did not su�ce to resolve many features of the human expansion into Eurasia, Oceania and The
Americas. For instance, while Mirazón Lahr and Foley (1994) proposed multiple dispersal routes,
White et al. (2003) proposed a single exit path through Ethiopia, based on their fossil discoveries in
the Herto site. The timing of these events was also contended, with estimates ranging from around
40 up to 170 thousand years ago (Groucutt et al., 2015).

In 2016, a trilogy of genetic studies on nearly 800 high-quality genomes�from geographically
diverse and typically understudied populations�provided novel insights of the peopling of Eurasia
and Oceania (Malaspinas et al., 2016; Mallick et al., 2016; Pagani et al., 2016). Interestingly, the
three studies reached di�erent conclusions. In line with multiple waves of dispersal from Africa,
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Pagani et al. (2016) stated an early migration into Australasia around 120 thousand years ago,
followed by other dispersals. The two other studies concluded to a single exit event followed by
di�erent branchings. As previously proposed by Rasmussen et al. (2011), Malaspinas et al. (2016)
proposed a separation between the colonizers of mainland Eurasia and Australasia. In contrast,
Mallick et al. (2016) suggested a separation between West and East Eurasians, who then went on to
people Oceania. In line with the reports by Malaspinas et al. (2016), Choin et al. (2021) estimated
the separation between the ancestors of Eurasians and those of Papua New Guineans to around 58
thousand years ago.

All in all, there is still much to learn about AMH origins. Even though decades of research
have produced archæological and genomic results predicted by the OOA hypothesis (Quintana-
Murci et al., 1999; White et al., 2003; Ramachandran et al., 2005; Jakobsson et al., 2008; Hublin
et al., 2017; Malaspinas et al., 2016), much uncertainty remains around the �ner details of early
human evolution. The broad model accepted today is that humans with anatomically modern
features appeared in Africa around 300 thousand years ago, and that the most signi�cant successful
migration out of the continent happened around 60 thousand years ago.

2.1.3 Encounters with other human species in Eurasia

It is also widely accepted that Homo sapiens was not the �rst human species to venture out
of Africa. Fossil and bone evidence reveals the diversity of non-African human species that likely
descended from the previous Homo erectus expansions included in the OOA model (King, 1864;
Schoetensack, 1908; Bermúdez de Castro et al., 1997; Krause et al., 2010). When AMHs arrived,
Eurasia was already inhabited by at least two groups of archaic hominins: Neandertals to the west
(Stringer and Hublin, 1999; Krause et al., 2007) and Denisovans to the east (Krause et al., 2010).

The type Neandertal specimen was unearthed in the eponymous valley in Germany in 1856
(King, 1864). In 1997, a team of researchers led by Swedish geneticist Svante Pääbo�pioneers in
the �eld of palæogenetics, or the study of `ancient' DNA�sequenced segments of mtDNA found
on that specimen (Krings et al., 1997). They estimated the divergence time between the AMH
and Neandertal mitochondrial lineages to around 550 to 690 thousand years ago. A decade later,
Pääbo's group published a complete sequence of the Neandertal mitochondrial genome, and re�ned
the divergence time estimation to around 660 thousand years ago (Green et al., 2008). Shortly after,
the same group drew the �rst draft of a complete Neandertal nuclear genome from three individuals
found in Vindija Cave, Croatia (Green et al., 2010).

Because human nuclear genomes are mosaics of recombining DNA segments, the genome-wide
comparisons led by Green et al. (2010) shed much more light on the evolutionary relationships
linking AMHs to Neandertals, relative to previous single-marker analyses of mtDNA. In particular,
the authors pointed out genetic variants present at high frequencies across present-day AMHs but
absent in Neandertals, which showed signals suggestive of natural selection and could thus have
been important in early human evolution. For instance, a negatively selected variant in the locus of
RUNX2 could contribute to di�erences in bone structure between Neandertals and AMHs (Green
et al., 2010). On a more fundamental level, Green et al. (2010) also showed proof-of-concept for
the study of full archaic hominin genomes sequenced from ancient DNA contained in bones old of
several hundred thousand years.

Since 2010, three Neandertal (Prüfer et al., 2014, 2017; Mafessoni et al., 2020) and one Denisovan
(Meyer et al., 2012) high-quality genome sequences have been obtained (Box 6). All but one of
these genomes have been sequenced from bones found in caves of the Altai mountain range. The
Denisova Cave has been particularly fruitful: Denisova 3 is the type specimen of the Denisovan
group (Reich et al., 2010; Krause et al., 2010; Meyer et al., 2012), Denisova 5 provided the DNA
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for the �rst Neandertal high-quality genome sequence (Prüfer et al., 2014)�often referred to as the
`Altai' Neandertal�and Denisova 11 was shown to descend directly from interbreeding between a
Neandertal female and a Denisovan male (Slon et al., 2018).

More recently, Mafessoni et al. (2020) obtained a high-quality genome sequence from Neandertal
bones found in the Chagyrskaya Cave in the Altai region. Among other interesting results, the
authors report that their Chagyrskaya 8 individual lived in a population related to the Neandertal
mother of Denisova 11.

Box 6 |High-quality archaic hominin genomes. As the ancestors of anatomically
modern humans (AMHs) expanded out of Africa, they met populations of Neandertals
and Denisovans that had inhabited Eurasia for hundreds of thousands of years. Recent
advances in genomics have enabled the high-coverage sequencing of three Neandertal
(Prüfer et al., 2014, 2017; Mafessoni et al., 2020) and one Denisovan (Meyer et al.,
2012) genomes. The Figure below gives a schematic representation of the evolutionary
relationships between these individuals and AMHs. The split times between AMHs
and archaic hominins (Nielsen et al., 2017), and within archaic hominin individuals
(Mafessoni et al., 2020) are rounded estimates expressed in `thousands of years ago'
(kya). The clustering of leaves in the tree re�ects the true patterns of genetic similarity
estimated between these individuals, but the branch lengths are not to scale.
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Vindija 33.19 belongs to a female Neandertal who lived around 50 kya (Prüfer et al.,
2017). It is the most commonly used Neandertal reference genome in studies of archaic
introgression. Relative to the older Denisova 5 Neandertal (Prüfer et al., 2014), Vindija
33.19 shares more alleles with non-African AMHs (Prüfer et al., 2017). Furthermore,
almost all Neandertal segments carried by AMH genomes are closer to Vindija 33.19
than to Denisova 5 (Prüfer et al., 2017).

Overall, by comparing ancient and modern DNA sequences, palæogenomic studies furnished key
insights into the relationships among Neandertals and Denisovans, but also anatomically modern
humans and their closest evolutionary relatives. In particular, they provided strong evidence to
support previous claims of interbreeding between these groups, resulting in the `archaic introgression'
of segments of DNA from Neandertals and Denisovans into the genomes of anatomically modern
humans (Rotival and Quintana-Murci, 2020).
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2.2 Signals of archaic introgression across genomic and geographical regions

Neanderthals appear in the fossil record from approximately 400 thousand years ago (Stringer
and Hublin, 1999; Hublin, 2009; Meyer et al., 2016) to around 40 thousand years ago (Finlayson
et al., 2006; Higham et al., 2014), ranging from England and Spain (Stringer and Hublin, 1999;
Arsuaga et al., 2014) to Central Asia (Krause et al., 2007) and as far south as the Middle East
(Valladas et al., 1987). The geographical and temporal overlap between the distributions of AMHs
and Neandertals raises the possibility of interbreeding between the two species.

Early contentions against AMH-Neandertal admixture were based on anatomical (Bräuer et al.,
2006; Bailey et al., 2009) and genetic (Currat and Exco�er, 2004) observations. In particular, it
was advanced that Neandertals could not have contributed to the genetic make-up of AMHs because
variation in Neandertal mtDNA was not included in the pool of present-day human genetic diversity
(Krings et al., 1997; Serre et al., 2004; Orlando et al., 2006).

These views were challenged by the �rst genome-wide analysis of Neandertal nuclear DNA.
Namely, Green et al. (2010) estimated around 2% of Neandertal ancestry in the genomes of Eurasian
AMHs, who shared more alleles with Neandertal than AMHs from sub-Saharan Africa, suggesting
at least one interbreeding event in the non-African AMH lineage. Sankararaman et al. (2012) then
suggested admixture between Neandertal and AMHs to have taken place somewhere in the Middle
East around 47 to 65 thousand years ago, based on archæological evidence and analyses of LD
in present-day AMH populations. A few years later, fossil evidence from Manot Cave in Israel
con�rmed that AMHs were in the right place at the right time to interbreed with Neandertal,
around 50 to 60 thousand years ago (Hershkovitz et al., 2015).

More recently, human remains from Pe³tera cu Oase in Romania have revealed direct links
between Neandertals and AMHs (Fu et al., 2015). Namely, the Oase 1 mandible was shown to
have belonged to an individual with a direct Neandertal ancestor four to six generations before
them. Also, genome-wide analyses from the remains of three individuals found in Bacho Kiro Cave,
Bulgaria, revealed recent contributions from Neandertal ancestors six to seven generations in the
past (Hajdinjak et al., 2021).

The picture that emerges from these and other results reviewed elsewhere (Lalueza-Fox, 2021)
is one of assimilation of archaic hominin groups into populations of modern humans. When they
expanded out of Africa, AMHs encountered Neandertal and Denisovan populations spread across
the Eurasian continent, with whom they admixed. These species of archaic hominins went extinct
shortly after the arrival of anatomically modern humans, but their legacy remains in the genomes
of present-day humans. Importantly, these archaic genetic variants are not inert: through e�ects on
the regulation of gene expression (Silvert et al., 2019), they contribute to the phenotypic diversity
across present-day humans, including immune di�erences in the response to pathogens (Deschamps
et al., 2016; Sams et al., 2016; Quach et al., 2016; Zeberg and Pääbo, 2020, 2021).

2.2.1 Detecting events of archaic introgression in modern human genomes

The initial assessment of Neandertal contribution to modern non-African genomes by Green
et al. (2010) based on the draft Neandertal genome sequence was later re�ned on the basis of the
high-coverage Neandertal genome obtained from Denisova 5 (Box 6). Prüfer et al. (2014) estimated
the proportion of Neandertal ancestry in modern genomes to vary between 1.48% and 1.96% in
Europeans, and from 1.64% to 2.14% in East Asians and Native Americans. Prüfer et al. (2017)
then showed that virtually all the Neandertal-origin nucleotide sequences found in modern genomes
were closer to the high-coverage Vindija 33.19 genome sequence than to Denisova 5. Based on this
new reference, the proportion of Neandertal ancestry in modern genomes was estimated between
1.8% and 2.4% in Western Eurasia, and 2.3% to 2.6% in East Asia (Prüfer et al., 2017).
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Although the status of Denisovans as a separate species of hominin is still debated, studies
of Denisovan and Neandertal genetic diversity suggest independent population histories for these
two groups of archaic hominins (Reich et al., 2010; Meyer et al., 2012). These studies and others
have also highlighted di�erences in the Denisovan contribution to present-day human genomes.
Although there are signs of gene �ow from Denisovans into AMH populations in South and East
Asia (Skoglund and Jakobsson, 2011; Qin and Stoneking, 2015; Vernot et al., 2016; Browning et al.,
2018), the highest proportions of Denisovan ancestry are found in Oceania (Malaspinas et al., 2016;
Choin et al., 2021), reaching up to 5% in some populations (Reich et al., 2010).

The varying patterns of archaic ancestry across modern populations world-wide may inform
on the number of `pulses' of gene �ow from Neandertals and Denisovans into AMH genomes. For
example, Browning et al. (2018) explain the higher rates of Denisovan introgression in the genomes
of East Asians relative to South Asians through two separate pulses of archaic gene �ow. The
authors suggest a �rst event of introgression into the genome of the common ancestor of South
and East Asian populations, followed by another pulse after the separation of the South and East
Asian lineages. The �rst Denisovan component�found in modern South and East Asian genomes�
appears to have descended from a population distantly related to the Altai Denisovans (Box 6). By
contrast, the second Denisovan component is speci�c to East Asian genomes and shows strong
genetical similarity with Denisova 3 (Browning et al., 2018).

Even though Denisova 3 is the only reference genome available to date, Browning et al. (2018)
were able to �nd the South Asian Denisovan component using an S∗-statistic that does not rely
on an archaic reference genome. In general, S∗-statistics rely on the expectation that (i) the time
to the most recent common ancestor (TMRCA) between archaic introgressed and non-introgressed
haplotypes in a modern genome is longer than the TMRCA between non-introgressed haplotypes,
and that (ii) due to the relatively recent timing of archaic admixture, introgressed segments are
less likely to be broken down by recombination, relative to older sequences that have remained
polymorphic over long time periods due to incomplete lineage sorting (ILS). Thus, archaic variants
stand out in long divergent haplotypes bound by strong LD; assuming that AMHs and archaic
hominins interbred around 60 thousand years ago, the expected length of archaic segments is around
50 kilobases (Browning et al., 2018).

S∗-statistics are designed to capture the set of variants in LD within a �xed-width�generally
50-kilobases wide�sliding genomic window that maximizes a pairwise scoring function of genotype
distances. In the �rst implementation by Vernot and Akey (2014), variants j and j+ 1 are scored

S(j, j+ 1) =


−∞, d(j, j+ 1) > 5,
−104, d(j, j+ 1) ∈ {1, · · · , 5},
5000+ bp(j, j+ 1), d(j, j+ 1) = 0,
0, j = max(J),

(2.1)

where bp(j, j+ 1) is the number of base pairs separating the two variant loci and

d(j, j+ 1) =
∑
i

|GT(i, j) −GT(i, j+ 1)|, (2.2)

measures the distance between their genotypes in individual i, and GT(i, ·) = {0, 1, 2}. For each
subset J of the whole set of putative archaic introgressed variants Vi in a given genomic window in
individual i, the value of the statistic is then computed as

S(J) =

max(J)−1∑
j=1

S(j, j+ 1). (2.3)
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Finally, the value of S∗ in the genomic region for individual i is assigned as the maximum value
obtained across all subsets J in Vi,

S∗i = max
J∈Vi

S(J). (2.4)

Although useful, this scoring function scales poorly; Vernot and Akey (2014) applied it iteratively
on subsets of twenty individuals (Balding et al., 2019).

Browning et al. (2018) implemented a new scoring function that follows the same basic principle,
but allows to take local mutation and recombination rates into account and scales better over
larger sample sizes (Balding et al., 2019). The statistical signi�cance of high S ′ values is assessed
against a null S ′ distribution obtained through simulations of demographic models with no archaic
interbreeding. Hence, the error rates of S ′-statistic tests depend on the availability of well-calibrated
demographic models, as well as precise estimates of mutation and recombination rates. Computing
S ′ also requires de�ning a `target' population in which putative archaic segments segregate and
a `reference' population�usually an African reference panel�expected not to have interbred with
archaic hominins. The reference population is useful to prevent confounded introgression signals
due to ILS of a variant shared between the target and the reference populations.

Using their implementation of the S∗-statistic, Browning et al. (2018) detected around 1.4 gi-
gabases of archaic introgressed DNA segments across 19 panels in the 1000 Genomes Project (1000
Genomes Project Consortium et al., 2015) (� 1.1.2, page 3). Across individuals in each panel,
Puerto Ricans had the lowest proportion of archaic ancestry, at around 0.80%, and Han Chinese
the highest, at around 1.23% (Browning et al., 2018).
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Figure 2.1 | Conditional random �elds to detect archaic introgression. The schematic phylogenetic tree
on the left illustrates the expectations shared by methods to detect archaic introgression. First, the time to the
most recent common ancestor (TMRCA) between archaic introgressed and non-introgressed haplotypes in a modern
genome should be longer than the TMRCA between two non-introgressed haplotypes. Second, these methods rely
on the presence of a `reference' population for which admixture with archaic hominins is not expected. The right
panel shows a simpli�ed conditional random �eld (CRF) model that aims to infer the `archaic' or `modern' hidden
state of three variants S1, S2 and S3, from observed states that are `consistent' (C) or `inconsistent' (N) with archaic
introgression on the basis of derived allele frequencies in the archaic, target and reference populations. Horizontal
lines represent `transition' functions that capture linkage disequilibrium (LD) between SNPs; vertical and diagonal
lines are `emission' functions that capture the relationships between states. Adapted from Balding et al. (2019).
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Besides summary S∗-statistics, the other large family of methods to detect archaic introgression
is composed of formal probabilistic models that explicitly use information from archaic genomes.
For instance, Sankararaman et al. (2014) suggested using a conditional random �eld (CRF) model
to infer the hidden `archaic' or `modern' state of single nucleotide polymorphisms (SNPs) along the
genome, by comparing the states observed in a target (T), reference (R) and archaic (A) popula-
tion. Brie�y, the state of a SNP is de�ned as `consistent' (C) or `inconsistent' (N) with archaic
introgression depending on the derived allele frequencies f· in these populations. If

fT − fR = 1 ∩ |fA − fT | < 1, (2.5)

the allele is ancestral in the test population, absent from the reference and present in the archaic
genome; its state is consistent with archaic introgression. In contrast, if

0 < fR < 1 ∩ |fA − fT | = 1, (2.6)

the allele is present in the reference population, and either absent from the target or absent from
the archaic population; its state is inconsistent with archaic introgression (Balding et al., 2019).

As illustrated in Figure 2.1, CRF models involve two types of functions. The horizontal lines
in the graph represent the `transition' functions used to capture LD between SNPs. The vertical
and diagonal lines represent `emission' functions that capture relationships between observed and
hidden states. In contrast to hidden Markov models (Prüfer et al., 2014), inference of each hidden
state in CRF models is not based solely on the current observed SNP state, but also depends on
states observed before and after in the sequence (Balding et al., 2019).

Sankararaman et al. (2016) applied the CRF framework using di�erent emission functions to
(i) model the allelic patterns at each SNP and to (ii) recover signals of Neandertal and Denisovan
ancestries across multiple SNPs (Balding et al., 2019). Across 257 high-quality genomes from the
Simons Genome Diversity Project (Mallick et al., 2016), they detected a total of 257 megabases
of Denisovan-origin DNA in Oceanian populations and 673 megabases of Neandertal-origin DNA
in non-African populations. Interestingly, Sankararaman et al. (2016) also found that introgressed
segments from Denisovans into Oceanian genomes were on average longer than those introgressed
from Neandertal, suggesting that these populations interbred with Denisovans more recently in evo-
lutionary history. More recently, Choin et al. (2021) shed light on the complex genetic interactions
between Oceanians and highly structured groups of archaic hominins, leveraging both CRF models
and the S∗-statistic implementation from Browning et al. (2018).

Regarding gene �ow from Neandertals into non-Africans, there are still many open questions.
Since the earliest estimates of archaic ancestry, modern East Asian genomes have been attributed
a higher Neandertal proportion relative to Europeans (Prüfer et al., 2014, 2017). More recently,
Browning et al. (2018) estimated Neandertal ancestry to be around 30% higher in East Asian panels
from the 1000 Genomes Project, relative to Europeans. The di�erence could be explained through a
single admixture pulse in the ancestor of Europeans and East Asians around 40 to 50 thousand years
ago (Sankararaman et al., 2012; Hershkovitz et al., 2015; Moorjani et al., 2016), followed by dilution
of Neandertal ancestry in Europeans through subsequent migration of unadmixed individuals out
of Africa (Browning et al., 2018). However, it could also be that the purge of Neandertal alleles
from East Asian genomes through natural selection was less e�cient due to smaller population sizes
(Keinan et al., 2007; Sankararaman et al., 2014) or longer generation times (Coll Macià et al., 2021).

Other authors have proposed more complex histories of Neandertal-AMH admixture outside
Africa, using models that incorporate multiple pulses of archaic introgression (Vernot et al., 2016;
Villanea and Schraiber, 2019). In particular, Villanea and Schraiber (2019) state that dilution of
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Neandertal ancestry in European AMH populations by in�ux of non-admixed individuals is not
su�cient to explain its current distribution in Eurasia, and propose a model in which an initial
pulse of Neandertal genomic material was supplemented by other admixture events. In line with
previous reports supporting small e�ective sizes across Neandertal populations (Prüfer et al., 2014;
Castellano et al., 2014), Villanea and Schraiber (2019) further suggest that the Neandertals that
admixed with AMHs were closely related and lived in a restricted geographical region; the present-
day di�erences in Neandertal-ancestry proportions across Eurasian populations would re�ect the
length of time during which their ancestors lived in that region, in contact with Neandertals. Yet,
Villanea and Schraiber (2019) also state that their model cannot explain why East Asian genomes
in particular have such a high Neandertal contribution.

Recently, Iasi et al. (2021) suggested that simple-pulse models such as used by Sankararaman
et al. (2012) and Moorjani et al. (2016) are not adapted to date admixture with Neandertals because
they assume that gene �ow happened in a narrow time frame. Furthermore, whereas the di�erent
Denisovan genetic components in present-day human genomes helped infer multiple gene �ow pulses
from Denisovans (Browning et al., 2018; Choin et al., 2021), multiple-pulse Neandertal admixture
inference is complicated because practically all Neandertal segments in modern genomes are most
similar to Vindija 33.19 (Prüfer et al., 2017) (Box 6). In this context, Iasi et al. (2021) propose
an extended pulse model of Neandertal admixture, and report that modern genome data from the
1000 Genomes Project (1000 Genomes Project Consortium et al., 2015) is compatible with gene �ow
spread over hundreds of generations and centered around 49 thousand years ago. The authors also
discuss the importance of collecting more ancient DNA data from Neandertals living around the
time of admixture to re�ne the time frame of gene �ow into modern human genomes, and ascertain
the number of pulses and their length.

2.2.2 Archaic introgression and the adaption to new environments

Whether it descends from Neandertals or Denisovans, archaic ancestry is generally deleterious
in modern genomic backgrounds (Harris and Nielsen, 2016; Juric et al., 2016; Petr et al., 2019;
Rotival and Quintana-Murci, 2020). For instance, Simonti et al. (2016) report robust associations
between the risk of depression and Neandertal-origin variants picked up genome-wide by S∗-statistic
tests. While some argue that deleteriousness could arise from epistatic interactions between archaic
and modern genetic variants (Sankararaman et al., 2014, 2016), others suggest that deleterious
variants could have survived in Neandertal genomes because of ine�cient natural selection (Harris
and Nielsen, 2016) due to low e�ective population sizes (Prüfer et al., 2014; Castellano et al., 2014)
(Appendix C, page 199).

In any case, the non-uniform distribution of Neandertal and Denisovan-origin segments in
modern genomes suggests that archaic introgressed DNA evolved under strong purifying selection
(Sankararaman et al., 2014, 2016; Vernot et al., 2016). Through simulations, Harris and Nielsen
(2016) estimated that�if deleterious mutations have an additive e�ect on �tness�strong selection
against Neandertal-AMH hybrids could bring the Neandertal admixture proportion from 10% to
between 2% and 3% in just around 20 generations, at which point all AMH individuals would have
a similar fraction of archaic ancestry, only at di�erent genomic loci.

Using CRF models, Sankararaman et al. (2016) uncovered 18 regions longer than 10 megabases
and with a Neandertal ancestry proportion below 0.001 in non-African genomes, and 63 such regions
depleted in Denisovan ancestry in the genomes of present-day Oceanians. Overall, these archaic
ancestry `deserts' were found preferentially in conserved and gene-enriched regions of the modern
human genome, consistent with a role for negative selection purifying the genome from archaic
variants with a deleterious e�ect on phenotype (� 2.1, page 37).
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However, there is also overwhelming evidence for archaic variants that were preserved in the
genomes of AMHs�and even sometimes brought to relatively high frequencies�by natural selection,
owing to their bene�cial e�ects on phenotype (Sankararaman et al., 2014, 2016; Sams et al., 2016;
Quach et al., 2016; Gittelman et al., 2016; Racimo et al., 2017; Browning et al., 2018; Rotival and
Quintana-Murci, 2020; Zeberg and Pääbo, 2021).

According to early estimates from samples of African, Eurasian and Oceanian populations, only
around 20% of high-frequency archaic haplotypes�that is, falling beyond the 99th percentile of the
empirical allele frequency distribution�contain protein-coding variants, suggesting that most func-
tional archaic variants were selected for their regulatory e�ects on gene expression (Gittelman et al.,
2016). For example, Sams et al. (2016) revealed robust signals of positive selection on a Neandertal
haplotype spanning the OAS1-3 locus�coding for 2'-5' oligoadenylate synthetase (OAS) sensors of
viral nucleic acids�in the genomes of non-Africans (Mendez et al., 2013), and bearing expression
quantitative trait loci (eQTLs; � 1.2.4, page 15) for OAS1, OAS2 and OAS3, as well as splicing
QTLs for OAS1 and OAS2. The authors also highlight the rs10774671 splice variant of OAS1,
which is common in African and non-African genomes, but found almost strictly in Neandertal-like
haplotypes in non-Africans, suggesting that this variant could have been reintroduced into AMH
genomes by archaic introgression following its loss during the OOA migration (Sams et al., 2016).

Namely, Sams et al. (2016) describe a likely case of adaptive archaic introgression, through which
admixture with archaic hominins helped AMHs recover a part of genetic diversity lost through the
OOA bottleneck, and adapt to new environmental pressures during their expansion from Africa
(Fan et al., 2016b; Gittelman et al., 2016; Racimo et al., 2017).

Other known examples of adaptive archaic introgression include Neandertal variants that a�ect
skin pigmentation (Dannemann and Kelso, 2017), hair structure (Sankararaman et al., 2014) and
lipid metabolism (Racimo et al., 2017), but also immune functions through genes like CCR9, CXCR6
(Gittelman et al., 2016; Browning et al., 2018), TLR1 (Deschamps et al., 2016; Dannemann et al.,
2016), and the aforementioned OAS1-3 (Mendez et al., 2013; Sams et al., 2016). In turn, variants
introgressed from Denisovans seem to primarily a�ect immune traits, through genes like OAS1

(Mendez et al., 2012), STAT2, IRF4 and TNFAIP3 (Browning et al., 2018; Choin et al., 2021).

2.3 Viral pathogens as drivers of human evolution

Beyond their contribution to adaptive introgression, pathogens have played a pervasive role
in human evolution (Barreiro and Quintana-Murci, 2010; Quintana-Murci and Clark, 2013; Fan
et al., 2016b). In particular, selective pressures imposed by pathogenes have contributed to shape
present day human genetic diversity through adaptive allele frequency changes at immune-related
loci (Haldane, 1949; Karlsson et al., 2014; Quintana-Murci, 2019) (Appendix C, page 199).

Depending on whether alleles are advantageous or detrimental for a particular phenotype, two
types of directional natural selection are de�ned. While negative selection tends to decrease the
frequency of deleterious alleles, alleles that enable a better adaption to the local environment will
tend to increase in frequency under positive selection. Several evolutionary models of positive
selection exist, including classic selective `sweeps' in which a novel and markedly advantageous allele
takes over the population, selection on `standing' pre-existing variation that becomes advantageous
after a change in the environment, and polygenic adaptation through the joint e�ect of several loci.

2.3.1 Evolutionary relevance of human interactions with viruses

In general, genes that accomplish essential functions do not tolerate variation well�as any
variant that inactivates the gene will lead to a stark loss in �tness�and thus evolve under strong
negative selection (Quintana-Murci, 2019). Interestingly, Deschamps et al. (2016) showed that genes
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involved in innate immunity (� 3.1, page 55) evolve under stronger negative selection relative to
randomly sampled protein-coding genes. Several essential mediators of antiviral immunity have also
been shown to evolve under strong purifying selection, including TLR3, TLR7, TLR8 and TLR9

(Barreiro et al., 2009), STAT1 (Deschamps et al., 2016) and interferon γ (Manry et al., 2011).
Likewise, Enard et al. (2016) report that human proteins that physically interact with viruses

also evolve under stronger purifying selection relative to those that do not interact with viruses,
further emphasizing the importance of interactions with viral pathogens during human evolution.
Remarkably, the authors show that even virus-interacting proteins (VIPs) with no clear antiviral
role, but which are involved in core cellular functions like transcription, are enriched in strong
signals of adaptation. Overall, using genomic data from over 20 mammal species, Enard et al.
(2016) estimate that around 30% of adaptive amino acid changes in the deeply conserved human
proteome are due to viral pressures, highlighting viruses as major drivers of human adaptation.

Enard and Petrov (2020) further conforted this view through analyses of modern genomes from
26 panels from the 1000 Genomes Project (1000 Genomes Project Consortium et al., 2015) (�
1.1.2, page 3). In particular, the approximately 45 hundred VIP loci in the human genome appear
to be strongly enriched in signals of selective sweeps across these diverse populations (Box 7).
Furthermore, the authors specify that these recent sweeps seem to have been driven preferentially
by interactions with RNA viruses, but not DNA viruses.

This is especially interesting because RNA viruses have been implicated in most of the ma-
jor known zoonoses in recent human history, including the West African Ebola virus epidemic of
2013, the 1981 human immunode�ciency virus (HIV) outbreak, as well as in�uenza A virus (IAV)
pandemics (Kreuder Johnson et al., 2015; Geoghegan et al., 2017), and zoonotic diseases account
for more than 60% of human infectious diseases (Taylor et al., 2001). In contrast, the majority
of DNA viral pathogens would have spilled over to humans deeper in human evolutionary history
(Geoghegan et al., 2017), and are generally less virulent today.

Taken together, these results pinpoint RNA viruses as major drivers of human adaptation (Enard
et al., 2016; Enard and Petrov, 2018, 2020), and emphasize the relevance of evolutionary genetics
approaches to study natural selection in understanding immune trait di�erences across present-day
human populations (Barreiro and Quintana-Murci, 2010; Quintana-Murci, 2019).

2.3.2 Detecting evolutionary events of human adaption to respiratory viruses

The importance of these questions was most recently highlighted by the ongoing `coronavirus
disease 2019' (COVID-19) pandemic. COVID-19 characterizes symptomatic infection by a novel
strain of coronavirus�a family of RNA viruses�triggering a `severe acute respiratory syndrome'
(SARS-CoV-2). Recent analyses point to several likely SARS-CoV-2 spill-over events in a section
of the Huanan Seafood Wholesale Market dealing with live wild animals (Pekar et al., 2022).

The most recent estimates from the World Health Organization place the global COVID-19
death toll at nearly 7 million lives (World Health Organization, 2020a). Yet, the risk of severe
and potentially lethal COVID-19 forms is not uniformly distributed across human populations. For
instance, even when cultural and socio-economic factors are duly accounted for, African-American
individuals in the United States are almost twice as likely to require hospitalization following a
positive COVID-19 test, relative to European-Americans (Shelton et al., 2021). These and other
results reviewed elsewhere (� 3.2.2, page 62) highlight a role for genetic predictors of population
di�erences in COVID-19 risk (COVID-19 Host Genetics Initiative, 2020, 2021, 2022, 2023).

It is also known that some of these genetic factors came into AMH genomes through archaic
introgression. For instance, Zeberg and Pääbo (2020) report that the strongest genetic association
with COVID-19 hospitalization risk known to date (Ellinghaus et al., 2020; Kousathanas et al., 2022)
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is driven by a Neandertal haplotype around 50 kilobases in length and overlapping immune-relevant
genes like the aforementioned CCR9 and CXCR6. This haplotype is present in the genomes of
around 50% of South Asians and around 16% of Europeans a , and is associated to a 1.6 odds-ratio
of requiring hospitalization relative to healthy controls (Zeberg and Pääbo, 2020).

Zeberg and Pääbo (2021) also describe a 75-kilobase Neandertal haplotype in the OAS1-3 cluster
previously highlighted by Mendez et al. (2013) and Sams et al. (2016), that is present in around 30%
of Eurasian genomes and is associated to a 22% reduction in risk of developing severe COVID-19
forms relative to reported COVID-19 cases.

Although a systematic evaluation of the impacts of archaic introgression and natural selection
on population disparities in COVID-19 risk was lacking at the time (Aquino et al., 2023), previous
studies of VIP loci had already revealed the widespread role of Neandertal introgression in AMH
adaptation to viral pressures outside Africa (Enard and Petrov, 2018, 2020).

The poison-antidote model of adaptive archaic introgression

Enard and Petrov (2018) report an enrichment of VIP loci in long and frequent Neandertal
segments identi�ed in Eurasian genomes by Sankararaman et al. (2014), as well as in previously
identi�ed targets of adaptive archaic introgression (Gittelman et al., 2016; Racimo et al., 2017;
Jagoda et al., 2018), relative to non-VIP loci. Interestingly, the enrichment is even stronger when
focusing on RNA-VIPs in the genomes of Europeans. Out of the 11 RNA viruses considered by
Enard and Petrov (2018), IAV and HIV had the highest counts of identi�ed VIP loci�1,500 and
1,171 respectively. These loci showed strong enrichments in frequent and long archaic introgressed
segments in European genomes, particularly when considering virus-speci�c loci in genomic regions
with high recombination rates, consistent with the model of adaptive archaic introgression.

Box 7 | Virus-interacting proteins in the genetics toolkit. Virus-interacting
protein (VIP) loci are useful tools to study human adaptation to past viral pressures.
Of the 5,291 VIP loci considered in Souilmi et al. (2021), 36% are `high-con�dence'
hits ascertained through manual curation of the virology literature that report low-
throughput molecular interaction methods, such as yeast two-hybrid assays (Enard
et al., 2016; Enard and Petrov, 2018). The remaining 64% of VIP loci were identi�ed
using high-throughput assays, including mass-spectrometry-based methods.

VIP loci are enriched in natural selection targets, re�ected in their lower average
rate of nonsynonymous mutations relative to non-VIP loci (Enard et al., 2016). They
are also enriched in regions of the genome dense in coding, regulatory and conserved
elements (Enard and Petrov, 2018). In line with their evolutionary constraint (Luisi
et al., 2015), VIPs are involved in central hubs of protein-protein interactions more
often than non-VIPs (Dyer et al., 2008; Halehalli and Nagarajaram, 2015), re�ecting
their functional relevance. Yet, it has also been shown that under positive directional
selection, VIP loci support molecular evolution rates up to three times higher than
non-VIP loci (Uricchio et al., 2019). Finally, because phylogenetically close viruses
interact with similar sets of host proteins, present-day VIP data can be used to infer
interactions between human ancestors and ancient viruses (Enard et al., 2016).

a. The archaic rs35044562-A haplotype has a frequency of f = 0.081 in the `Utah residents with Northern and
Western European ancestry' (CEU) reference panel of the 1000 Genomes Project Consortium (Byrska-Bishop et al.,
2022), and is thus expected to be carried by f2 + 2f(1− f) = 15.5% of individuals with similar ancestry.
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Enard and Petrov (2018) place these observations in line with a `poison-antidote' model in which
interactions between Neandertal and AMHs led to an exchange of pathogens between the two human
species, but also to gene �ow through which each group received genetic factors adaptively selected
to withstand infection by those pathogens. Following introgression, the advantageous Neandertal
haplotypes swept over AMH genomes, driven by positive directional selection. Overall, Enard and
Petrov (2018) estimate that around 30% of all long and frequent�100-kilobase or longer and present
in at least 15% of the population�Neandertal introgressed segments in Eurasian genomes may have
been positively selected soon after admixture.

In a general sense, the poison-antidote model of Neandertal-AMH admixture provides a uni�ed
framework to explain how archaic introgression can accelerate human adaptation to viral pressures,
encompassing previously described instances of adaptive archaic introgression at immune-relevant
loci (Sams et al., 2016; Deschamps et al., 2016; Quach et al., 2016). From another viewpoint, it also
emphasizes the role of the viral pathogens themselves as drivers of archaic introgression and human
adaptation through VIP loci (Enard and Petrov, 2018, 2020).

Remnants of an ancient coronavirus epidemic in anatomically modern human genomes

In the context of the COVID-19 pandemic, Souilmi et al. (2021) applied the VIP framework (Box
7) to retrace speci�c events of adaptation to coronaviruses in the evolutionary histories of human
populations world-wide. More speci�cally, the authors focused evolutionary genetics approaches on
the subset of 420 coronavirus (CoV) VIP loci in the genomes of hundreds of diverse individuals
across the 26 panels of the 1000 Genomes Project (1000 Genomes Project Consortium et al., 2015).
Over 300 of these CoV-VIPs were shown to interact with SARS-CoV-2 by mass-spectrometry assays
(Gordon et al., 2020), including its main entry receptor: the angiotensin-converting enzyme (ACE)
2 (Zhou et al., 2020a). The remaining proteins are reported interactants of other coronaviruses
linked to previous respiratory syndrome epidemics, such as the previous severe acute respiratory
syndrome epidemic of 2002 (SARS-CoV-1) and the 2012 outbreak in the Middle East (MERS-CoV).

Using haplotype-based methods (Appendix C, page 199), Souilmi et al. (2021) found strong
enrichments in signals of selective sweeps at CoV-VIP loci, but only in the genomes of East Asian
populations. Remarkably, the enrichment was found to be private to coronaviruses when compared
to VIPs for 17 other viruses. Based on these observations, the authors suggest that adaptation
could have been driven by hypothetical past epidemics caused by ancient coronaviruses�or related
viruses that interact similarly with host proteins�pressuring the ancestors of modern East Asians.

To test this hypothesis, Souilmi et al. (2021) dated the putative adaptation events using novel
methods enabling the approximation of full-likelihood models to detect natural selection (Speidel
et al., 2019; Stern et al., 2019), based on ancestral recombination graphs (Appendix C, page 199).
The authors report 42 CoV-VIPs that could have become the targets of natural selection between
21 and 27 thousand years ago. Relative to randomly sampled genes matched for statistical evidence
of selective sweeps, the clustering of CoV-VIP selection events in this particular period is very
unlikely due to chance (peak signi�cance p = 1.1 × 10−4). Thus, these results are in line with the
emergence of a coronavirus-related viral pressure in East Asia around 25 thousand years ago. This
time frame is particularly interesting, because it coincides with the appeareance of the ancestor
of the Sarbecovirus�a subgenre of β-coronavirus that contains SARS-CoV-1 and 2�around 23
thousand years ago (Ghafari et al., 2021).

In support of the biological relevance of these results, 50% of the 42 putatively selected CoV-
VIPs are implicated in biological pathways related to viral infection, versus 29% for the whole set
of 420 CoV-VIPs in the human proteome. Furthermore, some of these loci have been associated
to inter-individual di�erences in COVID-19 susceptibility and severity, and others include known
molecular targets of drugs against COVID-19 (Souilmi et al., 2021).
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2.3.3 Human evolutionary history and precision medicine

The COVID-19 pandemic has placed evolutionary genetics in the limelight as a framework to
understand di�erences in infectious disease risk between modern-day individuals. All humans alive
today descend from the survivors of past environmental pressures that contributed to shape human
genetic diversity into its present state. Hence, modern human genomes can be exploited through
evolutionary genetics approaches to shed light on the genetic architecture of complex disease traits,
and thus inform on current diease risk disparities across populations world-wide (Barreiro and
Quintana-Murci, 2010; Quintana-Murci, 2019; Sella and Barton, 2019).

Evolutionary genetics and the genome-wide association study framework

In fact, evolutionary genetics theory is intimately related to the genome-wide association study
(GWAS) framework (� 1.2, page 7) used to map the genetic bases of complex traits, including
disease risk (Sella and Barton, 2019). Brie�y, because the contribution of any genetic variant to the
heritability of a trait is determined by its e�ect on the trait�measurable through a GWAS�and
the frequency of the e�ect allele, a full interpretation of GWAS results implies characterizing the
evolutionary forces that shaped current allele frequency patterns (Appendix D, page 205). Indeed,
there is evidence that past demographic and natural selection events in human evolutionary history
have shaped the genetic architecture of common diseases in ways that a�ect GWAS success rates,
as well as the proportion of trait heritability explained by these studies (Uricchio, 2020).

In this context, several hypotheses have been proposed to explain the part of `missing heritability'
(� 1.2.3, page 10) between family-based study and GWAS estimates (Manolio et al., 2009), including
overestimation of heritability by the former (Zuk et al., 2012; Ruby et al., 2018), lack of GWAS power
to detect the low e�ects of the multitude of variants simultaneously a�ecting highly polygenic traits b

(Yang et al., 2011) and a signi�cant contribution of rare variation with large e�ects to complex trait
heritability (Marouli et al., 2017).

Importantly, each of these hypotheses implies a statement about the evolution of complex traits
(Uricchio, 2020). First, an overestimation of trait heritability by family-based genetic association
studies may be symptomatic of incorrect assumptions in the model of additive genetic inheritance,
whereby the distribution of a trait in a population could evolve through interactions between alleles
and/or with their environment (Jelenkovic et al., 2016). Second, high polygenicity suggests a
large mutational target of genomic predictors of complex traits, in line with the `in�nitesimal'
model of polygenic inheritance proposed by Fisher (1918) (Appendix A, page 190), and the more
recent `omnigenic' hypothesis (Boyle et al., 2017). Third, the biased contribution of rare variants
to heritability may re�ect recent episodes of population expansion followed by negative selection
purifying the genome from large-e�ect deleterious variants (Lohmueller, 2014).

Through simulations under various population genetics models, Lohmueller (2014) shows that
recent population expansions (Keinan and Clark, 2012; Gao and Keinan, 2014) can lead to higher
proportions of rare nonsynonymous SNPs�relative to non-expanded populations�with potentially
deleterious e�ects. Moreover, if the impact of these mutations on reproductive �tness correlates
with their e�ect on complex traits, the part of additive genetic variance in the trait explained by
rare variation, as well as the number of variants that contribute to the trait, will also be greater in
expanded populations; yet, the corresponding decrease in per-site heritability will lower the power
to detect these contributions through a GWAS (Lohmueller, 2014). Thus, even if the heritability
of a given trait is constant across populations, the power to detect its additive genetic component
may vary depending on the recent demographic history of each population, which should be taken
into account in GWAS designs (Lohmueller, 2014; Mathieson, 2021).

b. Although saturated maps of polygenic traits (Yengo et al., 2022) have been built using more recent approaches
(Yang et al., 2010, 2011) to estimate heritability across millions of unrelated individuals (Appendix A, page 190).
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In line with past work by John B. S. Haldane (1937) on the e�ect of variation on �tness,
Lohmueller (2014) also reports that alleles that appear in the population during the simulated
expansion have a lower mean e�ect on phenotype, relative to alleles that appeared in non-expanded
populations during the same time frame, consistent with a role for negative selection purifying the
genome from strongly deleterious alleles. Importantly, by purging variants with large e�ects and
sizeable contributions to the heritability of a given trait, negative selection may lead to increased
polygenicity for that trait (O'Connor et al., 2019). The idea is that negative selection reduces the
contribution to heritability of large-e�ect variants by decreasing their frequency (Appendix D, page
205), but weak-e�ect variants that escape negative selection are allowed to become common in the
population (Eyre-Walker, 2010; Shi et al., 2016; Zeng et al., 2018). Thus, a large number of such
variants with individually weak e�ects on phenotype will be required to reach similar heritability.
O'Connor et al. (2019) refer to this phenomenon as the `�attening' of the heritability signal.

Phenotype
Core genes
Peripheral genes

Figure 2.2 | A schematic of the model of omnigenic inheritance. The model of omnigenic inheritance
assumes that the gene regulatory network (GRN) underlying a given trait is su�ciently interconnected so that all
genes expressed in a given context are susceptible to regulate each other (Boyle et al., 2017; Liu et al., 2019). The
omnigenic GRN is composed of several layers of genes: while `core' genes a�ect the phenotype directly, the indirect
e�ect of `peripheral' genes must be mediated by other genes, potentially located in other peripheral layers. The solid
lines in this toy example highlight the causal path between a peripheral gene and the phenotype. The dashed line
shows the relationship as seen through the lens of a genome-wide association study. Adapted from Liu et al. (2019).

One suprising feature of polygenic disease traits is that the weak-e�ect variants that jointly
explain most heritability do not seem to cluster around genes involved in pathways that are likely
biologically relevant for the trait (Boyle et al., 2017). In fact, the contribution of each chromosome
to trait heritability seems to be roughly proportional to its length (Visscher et al., 2006; Shi et al.,
2016), consistent with a uniform distribution of polygenic trait predictors along the genome (Boyle
et al., 2017). For instance, Loh et al. (2015) estimate that more than 70% of megabase-length
genomic windows contribute to the heritability of schizophrenia, a very highly polygenic trait (Shi
et al., 2016). Together, these results highlight the need for a new classi�cation of the genetic
predictors of disease traits that goes beyond plausibly relevant biological pathways.

Assuming that the gene regulatory network (GRN; � 3.1.2, page 57) underlying each complex
trait is su�ciently dense so that all genes expressed in a given context regulate each other, the
omnigenic model of inheritance proposes an alternative clustering of trait-associated genes and
variants, based on their contributions to trait heritability rather than by biological pathways (Boyle
et al., 2017). In its original formulation, the omnigenic model is represented as a GRN with multiple
layers. Where the expression of genes in the `core' layer directly a�ects the expected value of the
trait in a population, the indirect e�ect of `peripheral' genes on phenotype is mediated through
regulation of core genes (Boyle et al., 2017; Liu et al., 2019).
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For illustration, Figure 2.2 shows a schematic of the omnigenic model, highlighting the causal
path between a gene in the outermost peripheral layer and variation in a phenotype. Figure 2.2
only highlights a single path, but the idea is that the expression of core genes can be a�ected�ever
so minutely�by a large number of peripheral genes, which have a joint substantial e�ect on the
distribution of the trait in the population (Liu et al., 2019). These individual peripheral e�ects
can impact gene regulatory functions like transcription, protein degradation and post-translational
modi�cations. Importantly, in contrast to `sensory' GRNs�such as the one presented in Figure 3.2
(� 3.1.2, page 57)�the regulatory role of extracellular receptors is neglected in the omnigenic GRN,
so that receptor-encoding genes can also be classi�ed as core genes (Liu et al., 2019).

This new classi�cation has been shown to easen interpretation of GWAS hits around core genes
of polygenic traits for which the underlying biology is well characterized (Sinnott-Armstrong et al.,
2021). Yet, because few genes are expected to a�ect phenotype directly, the omnigenic model
predicts that the overall heritability explained by core variants will be limited, and most of the
variability in any particular trait will be explained by peripheral genes with regulatory function
(Boyle et al., 2017). This is in line with the prevalence of GWAS hits in non-coding regions of the
genome (Hindor� et al., 2009) and the large overlap between non-coding GWAS hits and regions of
active chromatin (Maurano et al., 2012; Sella and Barton, 2019).

Remarkably, the omnigenic framework also provides insights into the limited overlap observed
between GWAS QTL and eQTL variants. While some authors have suggested that the missing link
between GWAS and eQTL mapping may reside in the context-speci�city (� 1.2.6, page 22) of eQTL
e�ects (Barreiro et al., 2012; Fairfax et al., 2012, 2014; Lee et al., 2014; Çal�³kan et al., 2015; Westra
et al., 2015; Nédélec et al., 2016; Quach et al., 2016; Aran et al., 2017; Ishigaki et al., 2017; Kim-
Hellmuth et al., 2017, 2020; Piasecka et al., 2018; Schmiedel et al., 2018; Ye et al., 2018; Fairfax
et al., 2014; Umans et al., 2021; Yazar et al., 2022), others have shown that the contribution of
currently mapped context-speci�c eQTLs remains modest (Connally et al., 2022). Mostafavi et al.
(2022) propose a complementary explanation for this `missing regulation' by showing that GWAS
hits often fall near transcription factor genes, genes with complex regulatory landscapes�and thus
expected to make a signi�cant contribution to heritability in the omnigenic framework�and genes
under strong selective constraints, while eQTLs are predominantly found near promoters of genes
with simpler regulatory schemes that do not seem to be under selection. That is, GWAS QTL
and eQTL mapping studies would be fundamentally biased towards discovering di�erent types of
variants�those with discernible functional e�ects on organismal traits in the former case, and those
that signi�cantly a�ect gene expression in the latter�largely due to the e�ects of natural selection
on the genetic architecture of complex traits (O'Connor et al., 2019; Mostafavi et al., 2022).

Altogether, these and other results reviewed elsewhere (Sella and Barton, 2019; Uricchio, 2020)
highlight the importance of evolutionary genetics approaches in understanding the current genetic
architecture of polygenic traits, as well as the variability in GWAS success rates across complex
diseases and human populations. These insights are key to achieve accurate and powerful GWAS
designs in the quest to establish a precision medicine, as population-speci�c genetic architectures
limit the ability to predict disease risk across populations world-wide (Martin et al., 2017, 2019).

Evolutionary genetics, polygenic risk scores and precision medicine

Precision medicine is an emerging paradigm in healthcare that seeks to tailor prevention and
treatment strategies to the innate and acquired features of each individual through the integration
of genetic, environmental and lifestyle data. A major point of interest in this framework is to
develop scores able to predict disease risk across individuals and populations based solely on genetic
information (Khera et al., 2018). Brie�y, the standard polygenic risk score (PRS) for a given complex
disease is a linear combination of the genotypes at independent GWAS loci associated to the disease
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in a population, weighted by the strength of the genotype-phenotype link measured by the GWAS
(Choi et al., 2020). Hence, if a PRS is applied to a `target' population that is genetically distant
from the `training' population in which the GWAS was performed, di�erences in LD structure and
allele frequency distributions can a�ect the translability of the estimates, and generally decrease
the accuracy of the PRS (Martin et al., 2017, 2019). These considerations are especially important
given the Eurocentrism of current human genomics research (Sirugo et al., 2019) (� 1.1.1, page 3).

Using population genetics models of di�erent demographic and adaptive scenarios, Durvasula
and Lohmueller (2021) show how private evolutionary histories can create population di�erences in
the genetic architecture of complex traits, which ultimately lead to PRS accuracy losses proportional
to the genetic distance between populations. Across 37 complex traits in the United Kingdom
Biobank (UKB) (Ollier et al., 2005), the authors estimate that European-speci�c variants contribute
up to around 80% of the heritability of traits associated to mutations�across a wide range of minor
allele frequencies�with deleterious e�ects on �tness (Lohmueller, 2014), suggesting that for some
traits, PRS accuracy losses may stem from low sharing of causal variants across populations.

To further characterize the low PRS transferability, Mathieson (2021) proposes an extension
of the omnigenic model (Fig. 2.2) that includes environmental factors as nodes in the network.
In this case, the ultimate e�ect of a peripheral gene on phenotype is the result of its interactions
with other genetic variants in a given environment. Importantly, while the wiring of the omnigenic
network underlying a complex trait is likely to vary across individuals and populations, the GWAS
framework is blind to this complexity (Fig. 2.2). This is not a problem when a GWAS is performed
on individuals from the same population�with little genetic and environmental substructure�such
that node values are drawn from the same distribution and the expected e�ect of the variant is
the same (Mathieson, 2021). However, comparison of genetic e�ects across populations may be
confounded by changes in the peripheral layers of the network, even if the direct e�ect of the core
genes on the phenotype is the same (Mathieson, 2021). Hence, the `omni-environmental' model may
explain why, while many GWAS loci replicate across populations, e�ect sizes do not correlate well.

For instance, through genome-wide analyses of over a hundred traits across 179 thousand donors
of East Asian origin from the BioBank Japan (BBJ) Project (Nagai et al., 2017), Sakaue et al.
(2021) replicated the direction of over 90% of 2,305 associations reported in UKB, although the
Pearson's correlation coe�cient across all e�ect size estimates was only r = 0.11. These and other
results reviewed by Mathieson (2021) suggest that, alongside population di�erences in LD and allele
frequency patterns, variability in genetic e�ect sizes�potentially driven by variation in genetic and
environmental interactions in the omnigenic network�can indeed explain low PRS transferability.

These predictions of the extended omnigenic model carry important implications for future
PRS applications (Mathieson, 2021). Speci�cally, if the variability across populations of estimated
genetic e�ect sizes linked to a complex trait is predominantly driven by underlying di�erences
in the omni-environmental network�rather than by population di�erences in LD structure and
allele frequencies�this will limit the e�cacy of statistical approaches that aim to improve PRS
transferability through �ne-mapping (Weissbrod et al., 2022) or incorporation of local ancestry
(Wang et al., 2023a). While integration of data from the target population in the training set can
yield `multi-ethnic' PRSs that translate better (Márquez-Luna et al., 2017) when the confounding
interactions are genetic, variation in environmental factors across populations sets an upper bound
on PRS transferability (Mathieson, 2021). For some traits and in some contexts, the only way
to produce an accurate PRS could be to train it on data from the target population, or from a
genetically close population in a similar environment (Mathieson, 2021). Thus, in the pursuit of a
precision medicine that is accessible to all, it is essential to consider the evolutionary forces that
shape the genetic architectures of complex diseases across human populations world-wide, as well
as to diversify data bases of genetic associations to disease (Zhou et al., 2022; Wang et al., 2023b).
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3 Healthy variability and inborn errors of immunity

‘No man is an island, entire of itself;

every man is a piece of the continent,

a part of the main’

– John Donne, while battling the presumably infectious disease that claimed his life (1624)
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3.1 The �rst hours of the immune response to viruses

Any assessment of variability requires (i) observing a variable metric and (ii) de�ning the entities
across which this metric �uctuates. In the study of variation in human immune responses to viral
infection, both of these conditions are ful�lled by core features of the immune system. Indeed,
the capacity of the human immune system to respond to infection implies the de�nition of each
individual as a discrete and cohesive unit, distinct from the pathogen that triggers the response.
That is, the response to infection is controlled by the cellular and molecular components of the
immune system, which are also paramount in de�ning biological individuality: in distinguishing
`Self' from `Not-self` (Burnet, 1969; Pradeu and Carosella, 2006).

The di�erent responses mounted by the immune system to protect Self from Not-self have been
historically divided in two classes (Owen et al., 2013). On the one hand, `innate' immunity comprises
the physical boundaries of the organism, as well as elements that provide short-term and non-speci�c
protection. Its deep conservation�from drosophila to humans�attests to its essentiality (Ho�mann
et al., 1999). On the other hand, `adaptive' immunity is aquired through repeated encounters with
pathogens; the immune system learns to provide long-term and speci�c protection against them.
Although the distinction is not as clear-cut in truth�for example, innate immune elements can
control adaptive immunity (Janeway, 1989)�this schematic view of immunity remains useful when
dealing with the complexity of the human immune system.

Because innate immunity is `the �rst line of defense' against infection, and less dependent on
the nature of a given stimulus than its adaptive counterpart, it appears as the more appropriate
aspect of immunity to focus studies of inter-individual and population immune variation on.

The innate boundaries of Self are organized in multiple layers�both at the macroscopical and
microscopical scales�to confer protection from a wide range of external and internal agents. From
an anatomical point of view, the �rst barriers to infection by external agents are the epitheliæ
and mucosæ (e.g., nasal and intestinal) that cover the bodily surfaces in direct contact with the
environment. Behind the frontline, a wide variety of immune cells patrol the blood and the tissues
to maintain homeostasis (Owen et al., 2013).

3.1.1 Peripheral blood mononuclear cell responses to viral stimulation

Hematopoiesis yields a very heterogeneous set of immune cell types from a common stem cell
state. The �rst step in this process of di�erentiation separates the myeloid and lymphoid lineages
of immune cells (Owen et al., 2013). The myeloid lineage is mainly divided into granulocytes and
phagocytes, such as the various monocyte, macrophage and dendritic cell (DC) subsets. Lymphoid
cells include B, CD4+ T and CD8+ T lymphocyte populations, as well as natural killer (NK) cells.
While the activity of adaptive cells depends on the activity of the RAG1-RAG2 recombinase, innate
cells do not undergo somatic recombination (Patin et al., 2018)

Myeloid cells are most commonly linked to innate immunity because they are the most apt to
detect incoming pathogens, and coordinate an appropriate response from lymphoid cells and other
myeloid cell types (Shi and Pamer, 2011). From this perspective, the architecture of the innate
immune response follows a two-tier schematic of myeloid sensors and lymphoid e�ectors.

Although particular types of immune cells can have very speci�c functions�such as the role
of eosinophil granulocytes in combatting parasitic worms�the coordinated action of multiple cell
types is a key feature of an e�ective immune response. Hence, e�cient cell-cell communication
is paramount. In general, cells in close proximity to each other�for example, battling pathogens
in the same focus of infection�can interact via juxtacrine signalling through membrane-bound
ligands and receptors. For cells that are further apart, small and soluble cytokine proteins mediate
paracrine signalling. In fact, cytokines can even establish long-range endocrine signalling between
cells in di�erent anatomical structures via the blood.
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For instance, interferons (IFNs) are cytokines of major relevance in infectious disease. Since their
discovery almost 70 years ago, many types of IFNs have been described (Isaacs and Lindenmann,
1957; Borden et al., 2007). Among these, the type I IFN-α and IFN-β are master coordinators
of the immune response against viruses, through induction of the expression of IFN-stimulated
genes (ISGs). In turn, ISG products participate to combat the pathogen by interfering with viral
replication, enhancing the activity of myeloid and lymphoid subsets, and recruiting immune cells
from the circulation into the focus of infection (McNab et al., 2015; Bourdon et al., 2020).

In this context, blood plays a crucial role in transporting immune cells and molecules through
the body. In fact, because it is also a readily accessible tissue, studies of human immunity often
rely on samples of peripheral blood. In particular, peripheral blood mononuclear cells (PBMCs)
are widely used to model the immune response. PBMC types include major lymphoid populations
of B, CD4+ T, CD8+ T and NK cells, but also monocytes and DCs.

−5

0

5

CXCL8 IL1B

Myeloid cells B cells

IRF7 OAS3IFITM3

CD4+ T cells

−5 0 5
−5

0

5

CD8+ T cells

−5 0 5

NK cells

In�ammatory
IFN-stimulated

lo
g 2

F
C
(C

O
V
/N

S)

log2 FC(IAV/NS)

Figure 3.1 | Peripheral blood mononuclear cell responses to viral stimulation. The x and y axes respec-
tively show the log2-fold-change (FC) in gene expression after six hours of stimulation by in�uenza A virus (IAV) or
SARS-CoV-2 (COV), relative to the non-stimulated (NS) condition, for genes of hallmark in�ammatory or interferon
(IFN)-stimulated antiviral pathways, acros �ve types of peripheral blood mononuclear cells (Aquino et al., 2023).
Genes not annotated to these pathways are not shown, as well as genes whose change in expression was below the
minimum e�ect size of interest (|log2 FC| ⩽ 0.5) or not signi�cantly di�erent from zero at a 1% false-discovery rate
(Student's two-sided t-test adjusted p > 0.01) .

Importantly, although the PBMC subset does not entirely capture the diversity of immune
populations in whole blood, it contains all the actors required for a complete transcriptional immune
response. For example, Figure 3.1 shows the log2-fold change in gene expression following six hours of
stimulation by `severe acute respiratory syndrome' coronavirus 2 (SARS-CoV-2; COV) or in�uenza
A virus (IAV) in �ve types of PBMCs, for genes associated to canonical in�ammatory and IFN-
stimulated responses. Notably, while the ISG response to both viruses is highly correlated across
all cell types, myeloid cells display a SARS-CoV-2-speci�c component driven by the expression of
well-known pro-in�ammatory cytokines like interleukin (IL)-1β and IL-8, respectively encoded by
IL1B and CXCL8. This is especially interesting because both cytokines have been pointed out as
biomarkers of the severity of the `coronavirus disease 19' (COVID-19) triggered by SARS-CoV-2
infection (Lee et al., 2020; Li et al., 2021). Hence, the in vitro PBMC model is able to capture
the transcriptional immune responses to both viruses (Lee et al., 2020), including complex features
such as the myeloid in�ammatory response to SARS-CoV-2 described in vivo.
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3.1.2 Gene regulatory networks of the immune response

When the barriers of Self are breached, invading microbes are sensed by cells�monocytes,
granulocytes and DCs, but also epithelial cells�bearing pattern-recognition receptors (PRRs) that
bind pathogen-associated molecular patterns (PAMPs), as well as damage-associated molecular
patterns (DAMPs) on debris (Owen et al., 2013). Di�erent PRRs are found in di�erent cellular
compartments, where they recognize di�erent motifs. For example, Toll-like receptors (TLRs) 1
and 6 ornament the cell membrane, where they recognize bacterial and fungal PAMPs. In contrast,
TLR3 and TLR8 are found in endosomes, where they are most likely to encounter PAMPs linked
to intra-cellular pathogens, like viral nucleic acids (Takeda et al., 2003).

Upon binding of a PAMP or DAMP, PRR activation sparks cytoplasmic signalling cascades that
transmit and amplify the external signal in order to mount an appropriate response by regulating
protein activity. Information is transduced from one protein to the next through post-translational
modi�cations catalyzed by enzymes. For instance, in protein phosphorylation�the most common
post-translational modi�cation in eukaryotes�protein kinases use adenosine triphosphate (ATP) as
a substrate to covalently bind a phosphate group to particular aminoacid residues. The transfer of
chemical energy primes the phosphorylated protein into a di�erent `active' or `inactive' form.
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Figure 3.2 | Two tiers of immune gene regulatory networks. Monocytes can sense viral single-stranded
RNA through endosomal Toll-like receptor (TLR) 8. Upon detection of the viral stimulus (S), TLR8 changes into
an active conformation, able to recruit adaptor (A) protein MyD88. This sparks a cascade of phosphorylation events
that results in the activation of several transcription factors (TFs). Among them, interferon regulatory factor (IRF)
7 induces the expression of several antiviral genes (X), including those that encode type I interferon (IFN) α and
β. IRF7 induces expression through recruitment of the transcriptional machinery to the proximity of its targets, by
binding particular transcription factor binding site (TFBS) nucleotide motifs. The IFN-α and IFN-β secreted by
monocytes can then signal other cells to activate gene regulatory networks (GRNs), to induce expression of interferon-
stimulated genes like OAS3, for example. ATP, adenosine triphosphate; ADP, adenosine diphosphate.

Signalling cascades can also a�ect protein activity by regulating gene expression through the
action of one or more trans-regulatory factors (TRFs). In general, TRFs play on the probability that
the transcriptional machinery is recruited around a cis-regulatory element (CRE) locus at which
they bind DNA (Appendix B, page 193). In particular, transcription factors (TFs) recognize and
tether to speci�c TF binding site (TFBS) nucleotide motifs. TFBSs may be found on promoter
sequences directly upstream of transcription start sites, but they may also lay several kilobases
away from the genes whose expression they regulate. These distal loci are commonly referred to as
`enhancers' of transcription. Promoters and enhancers are other examples of CREs.
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Relationships between TFs and genes are not private: a single TF can regulate the expression
of several genes and vice versa. The upshot of this regulatory promiscuity is that TF activity can
integrate complex signals from the environment into the wiring of gene regulatory networks (GRNs)
to ellicit nuanced cellular responses. Through the binding of TFBSs in the promoters or enhancers of
several di�erent genes, a relatively small set of TFs can activate intricate gene expression programs
in response to changes in the environment of the cell, such as the appereance of a pathogen.

The archetypal GRN is composed of an environmental input S that is detected by a receptor
R which, through the action of one or more adaptor proteins A, triggers a cytoplasmic signalling
cascade ending with the activation of a TF that regulates the output of one or more targets X. For
example, Figure 3.2 illustrates a simpli�ed GRN of the myeloid response to viral single-stranded
RNA. Upon sensing of viral single-stranded RNA in the endosomes, TLR8 sparks a series of phos-
phorylation events that ultimately results in the activation of several major immune-relevant TFs,
including interferon regulatory factor (IRF) 7. Phosphorylated IRF7 is translocated into the nucleus
where it regulates the rate of expression of type I IFNs and pro-in�ammatory cytokines. In turn,
these secreted mediators can go on to activate GRNs in other cells, for example resulting in the
induction of ISGs like IFITM3, OAS3, or IRF7 itself (Schneider et al., 2014).

In fact, the correlation patterns observed in Figure 3.1 are in line with a tiered architecture of the
innate immune response to viruses. High correlations between the in�ammatory and ISG responses
to both viruses in lymphoid cell types (Pearson's r > 0.96, p < 2.2 × 10−16) could result from
these cells reacting to IFN molecules in the medium rather than to the viral particles themselves.
In contrast, monocytes and DCs are better suited to detect the viruses, which could explain the
heterogeneity of viral responses in myeloid cells (Pearson's r = 0.64, p < 2.2× 10−16).

The impact of genetic variation in gene regulatory networks

All GRN interactions between CREs and TRFs involve chemical reactions. The rates at which
these reactions occur depend on the concentrations of the interacting partners, as well as on the
a�nity between them, which itself depends on their physico-chemical properties. For example, the
probability that a TF tethers to a TFBS motif depends on the properties of the aminoacid sequence
in the DNA-binding domain of the TF. This sequence is itself encoded in the gene that produces
the TF. Thus, genetic variation at the TFBS CRE, but also in the trans-regulatory element (TRE)
that encodes the TF, can lead to variability in the expression of genes targeted by these regulators
of transcription (Flynn et al., 2022) (Appendix B, page 193).

Genetically-controlled di�erences in gene expression can be detected through the mapping of
expression quantitative trait loci (eQTLs). As previously mentioned (� 1.2.4, page 15), two types
of eQTLs are distinguished depending on the number of base pairs separating each variant from
its target `eGene'. On the one hand, cis-eQTLs are associated to the expression of genes within a
megabase-width window around them, on the same chromosome. On the other hand, trans-eQTLs
regulate the expression of eGenes further away, possibly on another chromosome.

From this view, while variants of TFBS motifs in promoter sequences can yield cis-eQTL signals,
a trans-eQTL associated to the expression of multiple genes in a coordinated program may arise
from genetic variation in a TF gene, or in other TREs encoding upstream actors of GRNs. For
example, Piasecka et al. (2018) report the rs4833095 trans-eQTL in the TLR1/6/10 locus as a
master regulator of the expression of over a hundred genes�including in�ammatory cytokines IL1B,
IL6 and IL12B�in whole blood, following stimulation by Escherichia coli.

Genetic variants associated to immune di�erences between individuals provide the substrate for
natural selection to adapt immune transcriptional programs to pathogen-related pressures (Quintana-
Murci, 2019) (� 2.3, page 46). For example, Barreiro et al. (2009) revealed signatures of selection
at most of the known TLR loci in the human genome. The authors highlight the essentiality to
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host defense of intracellular sensors of nucleic acids�TLR3, TLR7, TLR8 and TLR9�that evolved
under the strongest purifying selection. In contrast, cell-surface-bound TLR1, TLR2, TLR4, TLR5,
TLR6 and TLR10 display more relaxed selective constraints, probably re�ecting the overlap in their
respective sensor roles (Takeda et al., 2003; Quintana-Murci, 2019).

Importantly, the redundancy in surface TLR roles creates opportunities for natural selection:
Barreiro et al. (2009) also report signals of positive selection at the TLR1/6/10 locus known to
harbor master regulators of immune responses (Quach et al., 2016; Piasecka et al., 2018), but only
in the genomes of non-Africans. This illustrates how past local adaptation to pathogens contributed
to shape the patterns of modern human genetic diversity across the globe (Appendix C, page 199).

3.2 Predictors of immune variability across healthy individuals

The role of pathogens (Fumagalli et al., 2011), and viruses in particular (Enard and Petrov,
2018, 2020), as drivers of human adaptation through natural selection is strongly supported by
a large body of literature (Barreiro and Quintana-Murci, 2010; Karlsson et al., 2014; Fan et al.,
2016b; Quintana-Murci, 2019) (� 2.3, page 46). In this context, recent studies of human immune
variability have focused on the genetic basis of transcriptional variability in the response to viral
infection (Nédélec et al., 2016; Quach et al., 2016; Randolph et al., 2021). In particular, Randolph
et al. (2021) used single-cell RNA-sequencing (scRNA-seq; �1.3.1, page 26) on PBMCs sampled
from 90 individuals of African and European descent and exposed IAV for 6 hours, revealing a
wide network of cell-type speci�c genetic ancestry e�ects on the early immune response. Overall,
the authors estimate that across all genes di�erentially expressed between African and European-
descent individuals, and that show evidence of local genetic control, cis-eQTLs explain over 50% of
the variance in expression di�erences associated to genetic ancestry.

However, Randolph et al. (2021) also point out that only around half of the genes with genetic-
ancestry-associated expression levels show evidence of local genetic control, suggesting that other
predictors of population gene expression di�erences�including unmapped cis-eQTLs, trans-eQTLs
and environmental factors�covary with genetic ancestry and impact innate immune parameters.

3.2.1 Genetic and nongenetic drivers of natural immune variability

Combining DNA genotyping with �ow cytometry in whole blood samples from a cohort of a
thousand individuals (Thomas et al., 2015) strati�ed across biological sex and age groups spanning
�ve decades of life�from 20 to 70 years old�Patin et al. (2018) identi�ed smoking, age, sex and
latent infection with cytomegalovirus (CMV; Box 8) as the main non-genetic drivers in immune
parameters across nominally healthy individuals.

Focusing on non-genetic intrinsic factors, Patin et al. (2018) report an increase in the proportion
of CD16+ monocytes with age, which might contribute to the establishment of low-grade, chronic
and sterile in�ammatory states associated to ageing (Franceschi et al., 2018). The authors also
report a decrease in the proportions of naïve CD4+ and CD8+ T cells, which respectively fall at
a rate of 1.6% and 3.6% per year. Regardless of age, female sex is associated to lower counts of
activated NK cells, but a higher number of `mucosal-associated invariant' T (MAIT) cells. Finally,
CMV seropositivity was associated to a 12.5-fold increase in CD4+ `e�ector memory re-expressing
CD45RA' (EMRA) T cells, and a 4.6-fold increase of CD8+ EMRA T cells (Patin et al., 2018).

Out of 39 lifestyle and demographic variables�including past infections and vaccinations, as
well as educational attainment�smoking status was the only non-genetic extrinsic factor signi�-
cantly associated to changes in immune parameters (Patin et al., 2018). Namely, active smoking
was associated to an approximately 40% increase in active and memory regulatory T cell (Treg)
proportions, as well as a decrease in the number of NK and other innate lymphoid cell subsets, γδ
T cells and MAIT cells.
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Patin et al. (2018) also performed genome-wide association studies (GWASs; � 1.2, page 7) of
166 cell-type speci�c immune phenotypes across over 5 million single nucleotide polymorphisms
(SNPs) genotyped for all individuals in the cohort, to �nd the common genetic basis of natural
immune variability. At a conservative genome-wide signi�cance threshold of p < 10−10, the authors
identi�ed 14 independent QTLs associated to 42 traits, including measurements of 36 immune
protein markers. Around 80% of these measurements were associated to protein (p) QTLs within
50 kilobases of the gene encoding the corresponding protein. Interestingly, 5 out of the 9 pQTLs
were also mapped as eQTLs of nearby genes, including cases in which the same QTL was associated
to the abundance of mRNA and protein product of a given gene. For example, the rs2223286 SNP
that is annotated in the Genotype-Tissue Expression atlas (The GTEx Consortium, 2015, 2017,
2020) as an eQTL for the Selectin L (SELL) gene in whole blood (p = 3.2× 10−9) was detected as
a pQTL of CD62L in eosinophil granulocytes (p = 1.6× 10−35) by Patin et al. (2018).

Remarkably, 80% of genome-wide associations with immunophenotypes were detected in innate
immune cells�including monocytes, DCs and NK cells�while only 47% of all traits where measured
in innate cells. Moreover, 33% of the genetic associations with immunophenotypes of adaptive cells
were found in naïve B and T subsets, while these cells represent less than 10% of the total adaptive
compartment (Patin et al., 2018). To systematically assess the contributions of genetic and non-
genetic factors to innate and adaptive immunophenotype variance, Patin et al. (2018) used linear
models including age, sex, CMV serostatus, smoking status and all signi�cant QTLs of each trait.
Across all immune traits, the proportion of variance explained by genetics is 66% larger for innate
immunophenotypes relative to adaptive ones. In contrast, non-genetic factors explain a fraction of
innate immune trait variance that is 46% smaller than for adaptive immunophenotypes.

Taken together, these results suggest that the parameters of innate immune cells and naïve
adaptive subsets are preferentially genetically controlled, while mature and memory adaptive cell
states are more dependent on the non-genetic and environmental factors included in life history
of each individual (Patin et al., 2018). Among non-genetic factors, smoking status showed the
strongest di�erence in predictive potential of innate and adaptive immune traits, followed by age,
CMV serostatus and sex (Patin et al., 2018).

Sex biases on the genetic regulation of gene expression

Working on the same cohort (Thomas et al., 2015), Piasecka et al. (2018) set out to characterize
the e�ects of age, sex, immune cell composition and genetics on the expression of 560 immune
genes in response to various microbial pathogens, including Escherichia coli and Staphylococcus

aureus bacteria, Candida albicans fungi and a live strain of IAV. Overall, the authors found that
while age and sex had widespread albeit moderate e�ects on the transcriptional immune response,
eQTL e�ects were stronger but targeted speci�c gene sets. Yet, across all stimulation conditions, the
respective contributions of age, sex and genetics were dwarved by the impact of cellular composition,
as measured by the global proportion of leukocytes in whole blood (Piasecka et al., 2018).

For instance, cis-eQTLs explained an average 10.3% of variance in the expression of 132 immune
genes in response to IAV, whereas sex and age a�ected the expression of all 560 immune genes each,
but only explained around 1% and 2% of expression variance, respectively. Leukocyte proportions
also a�ected the expression of all tested genes, explaining around 16% of expression variance.

Interestingly, although age and sex both drive variation in immune cell proportions across healthy
individuals (Patin et al., 2018), and cellular composition can impact immune gene expression read-
outs (Perez et al., 2022), Piasecka et al. (2018) report that age and sex directly impacted the
expression of 85% and 76% of genes tested at the basal state, respectively. For some of these genes,
direct age and sex-e�ects were coupled to expression changes mediated by cellular composition. For
example, and age-relate decrease in CD8+ T cell proportions mediated expression changes on 44%
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of immune genes indirectly a�ected by age. Likewise, indirect sex-e�ects mediated by a decrease
in the proportion of CD4+ T cells in males impacted the expression of 26% of genes indirectly
a�ected by sex, while a decrease in CD14+ monocyte proportions in females mediated changes in
the expression of 21% immune genes under indirect sex-e�ects.

Finally, although interactions between age, sex and genetics have been described in the context
of complex human diseases (Yao et al., 2014), Piasecka et al. (2018) report very limited evidence
of such conditional eQTL e�ects, suggesting that the genetic control of genes involved in immune-
related pathways is somewhat independent of age and sex.

To decipher the biology behind sex-related di�erences in gene expression and regulation across
human tissues, Oliva et al. (2020) used the latest data release from the Genotype-Tissue Expression
(GTEx; � 1.2.4, page 16) Consortium (The GTEx Consortium, 2020). Overall, the authors report
widespread transcriptional di�erences between sexes�a�ecting around 13 thousand genes or 37%
of the human transcriptome across tissues�albeit with small e�ects, with a median fold-change of
1.04. Furthermore, sex-e�ects on gene expression were found to be strongly dependent on tissue, as
18% of sex-biased genes were only so in one tissue, suggesting tissue-speci�c regulation mechanisms
(Oliva et al., 2020). Nonetheless, for 76% of sex-biased genes in more than one tissue, the e�ects of
sex on gene expression were largely consistent across tissues.

In line with these and previous observations (The GTEx Consortium, 2020), sex-biased genetic
regulation of gene expression was estimated as strongly tissue-speci�c. Out of the 369 sex-biased cis-
eQTLs associated to the expression of 366 eGenes, 70% were speci�c to breast tissue, and only one
variant was detected in two tissues�rs41309559 on the X chromosome, associated to the expression
of ASB9 in skeletal (p = 6.2× 10−4) and cardiac (p = 4.9× 10−6) muscle.

Remarkably, the 261 sex-biased eQTLs in breast tissue were enriched for cell-type interacting
cis-eQTLs (Kim-Hellmuth et al., 2020) whose e�ects are conditioned by the proportions of di�erent
cell types (� 1.2.6, page 22). In particular, 42% of sex-biased eQTL signals�including the strongest
unadjusted signal�were lost when adjusting the models for estimated epithelial cell abundances
in the breast (Oliva et al., 2020). Moreover, mediation analyses revealed that 23% of sex-biased
eQTL e�ects were signi�cantly mediated by the abundance of epithelial cells. Taken together, these
results suggest that a large fraction of sex-e�ects on the genetic regulation of gene expression could
be explained by cell-type speci�c eQTLs in cells found at di�erent frequencies across sexes (Oliva
et al., 2020), once more highlighting the importance of high-resolution context de�nition in eQTL
mapping studies (� 1.2.6, page 22).

Age biases on the genetic regulation of gene expression

Yamamoto et al. (2022) also used GTEx data (The GTEx Consortium, 2020) to assess the
impacts of aging on the genetic regulation of gene expression across human tissues. In line with
previous observations (Viñuela et al., 2018; Balliu et al., 2019), the authors observed a general loss
in eQTL predictive power across tissues with age, which they associated to increased variability in
gene expression among older individuals. Gene expression heterogeneity associated to aging could
in turn be explained by the stronger cumulative impact of environmental and lifestyle factors, as
well as by relaxed selective constraints on the variance of gene expression (Medawar, 1946, 1952).

In line with these observations, the narrow-sense heritability (h2; Appendix A, page 190) of
gene expression�estimated as the contribution to genetically regulated expression variance (Eq.
(1.6), page 21) of SNPs around each gene�generally decreases with age (Yamamoto et al., 2022).
However, Yamamoto et al. (2022) also found age-e�ects on gene expression regulation to be strongly
tissue-dependent. While the average h2 of gene expression varied from 2.9% to 5.7% across tissues,
the proportion of gene expression variance explained by age was as low as 0.04% in the pancreas,
and as high as 7.9% in whole blood in average across expressed genes.
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3.2.2 Genetic and nongenetic drivers of immune variability in response to viruses

Through their contributions to the natural variation of immune parameters, age and sex, but also
genetic and environmental factors can explain variability in host immune responses to pathogens
(Patin et al., 2018; Piasecka et al., 2018; Randolph et al., 2021). In particular, pathogenic viruses
have been shown to ellicit especially heterogeneous responses (Piasecka et al., 2018), in addition to
having been strong drivers of adaptation during human evolutionary history (� 2.3, page 46).

The extent of human immune variability in the response to viruses was strikingly illustrated
by the ongoing `coronavirus disease 2019' (COVID-19) pandemic, sparked by the 2019 outbreak
of a novel coronavirus strain inducing severe acute respiratory syndrome (SARS-CoV-2). In just
under three years, SARS-CoV-2 infection and COVID-19-related complications claimed the lives
of around six million people world-wide (Wang et al., 2022); yet, SARS-CoV-2 infection is also
characterized by a high rate of asymptomatic infection at approximately 35% of cases (Sah et al.,
2021). Moreover, COVID-19 courses and outcomes are highly variable, ranging from light cold-like
symptoms to death (O'Driscoll et al., 2021; Pei et al., 2021).

Age and sex were clearly identi�ed as the strongest predictors of variability in COVID-19 courses
relatively early on during the pandemic (Takahashi et al., 2020; O'Driscoll et al., 2021). Through
analyses of genetic and lifestyle data across over a million individuals from diverse ancestries, Shelton
et al. (2021) estimated that the odds of testing positive for SARS-CoV-2 infection were 1.2 times
higher for self-reported male participants relative to females. Moreover, males were also found to
be more likely to require hospitalization (χ2-test p = 4.3× 10−8). Irrespective of self-reported sex,
hospitalization rates also increased steadily from around 4% in individuals below the age of 30, to
around 30% in individuals over 80 years old (Shelton et al., 2021). In general, although the risk of
death following infection by SARS-CoV-2 is always higher in males than in females, the magnitude
of this di�erence increases with age (O'Driscoll et al., 2021).

Interestingly, it was shown that some of these e�ects on COVID-19 risk were mediated by changes
in immune cell proportions. For example, Takahashi et al. (2020) report that while lymphoid T cells
and non-classical monocytes are more strongly induced in biological females and males respectively,
high myeloid cytokine plasma levels are associated to COVID-19 severity exclusively in females, and
poor CD8+ T cell responses are likely to lead to severe COVID-19 in males only. Notably, while
older male COVID-19 patients showed lower activated CD8+ T cell proportions relative to younger
male cases, this relationship with age was not observed in females.

Changes in cellular composition associated to COVID-19 risk are also interesting because they
can mediate e�ects from the environment. As previously mentioned (� 3.2.1, page 59), and in line
with previous observations in the NK cell compartment (Gumá et al., 2004), Patin et al. (2018)
describe an increase in CD8+ EMRA T cells in CMV-seropositive individuals (Box 8). In line with
these observations, infection by CMV has recently been linked to worsening COVID-19 symptoms
in younger patients under 60 years old, and in the absence of co-morbidities (Weber et al., 2022).

Other host intrinsic factors were also quickly associated to higher COVID-19 risks. Using a
multivariate logistic regression model of the probability of hospitalization among SARS-CoV-2-
infected individuals�including age, sex, mean household income, educational attainment, body
mass index (BMI), ancestry and various comorbidities as covariates�Shelton et al. (2021) identi�ed
obesity as the most signi�cant predictor of COVID-19-related hospitalization risk; regardless of age
and sex, individuals with a BMI over 30 are twice as likely to require hospitalization relative to
other cases. The authors also estimated that African-Americans were 82% more likely to require
hospitalization following a positive SARS-CoV-2 test relative to European-Americans, suggesting a
genetic basis to COVID-19 risk disparities, although between-group di�erences in vaccination rates
could also contribute to this picture.
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Through genome-wide association studies (GWASs; � 1.2, page 7) of COVID-19 diagnosis and
severity phenotypes (Box 9), Shelton et al. (2021) strengthened the basis of evidence for previously
reported links (Ellinghaus et al., 2020; Zhao et al., 2021) between COVID-19 risk and the ABO
blood group�especially relevant given the implication of dysregulated blood clotting (Levi et al.,
2020) in severe COVID-19 forms�as well as a gene-rich region in chromosome 3 (Ellinghaus et al.,
2020) spanning immune-relevant genes like XCR1 and SLC6A20, but also CCR9 and CXCR6 that
have been proposed as targets of archaic adaptive introgression (� 2.2.2, page 45)

Box 8 | Cytomegalovirus seropositivity across populations. Cytomegalovirus
(CMV) is a herpesvirus associated to lifelong latent infection in humans (Cannon et al.,
2010). CMV seroprevalence tends to be higher in females than in males, and to increase
with age. Another remarkable feature of CMV infection rates is that their geographical
distribution is associated to by-country income levels: mean CMV seroprevalence is
higher in developing countries in Africa, Asia and South America, than in relatively
developed countries of Northern and Western Europe (Cannon et al., 2010).
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The Figure shows CMV serologies ascertained via enzyme-linked immunosorbent
assays for 209 individuals of Central African (AFB, n = 78), West European (EUB,
n = 80) or East Asian (ASH, n = 51) origin (Aquino et al., 2023). Standard units of
anti-CMV immunoglobulin (Ig) G abundances are shown. The dashed line represents
the detection threshold used to identify seropositive donors. Observations above this
threshold are shown in higher opacity; seroprevalence estimates in each group are shown
in parentheses.

Although CMV infection was long thought to have no discernible consequences on
human health, recent studies have linked it to several cardiovascular problems and
worse prognoses following viral infection (Weber et al., 2022).

As members of the COVID-19 Host Genetics Initiative (2020, 2021, 2022, 2023), Kousathanas
et al. (2022) used whole-genome sequencing data across over 7 thousand critically ill COVID-19
patients�presenting acute lung injury and respiratory failure�and more than 48 thousand controls
(Box 9, `A2' analysis type) of diverse origins to perform a GWAS of COVID-19 severity.
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The work by Kousathanas et al. (2022) is especially valuable because the authors followed up
on the genome-wide associations with several statistical and functional genomic approaches to infer
causal links between genotype and severe COVID-19 risk (� 1.2, page 7). For instance, the authors
used Bayesian statistical �ne-mapping (Wang et al., 2020) to re�ne the associations in the 3p21.31
gene cluster (Ellinghaus et al., 2020; Shelton et al., 2021) as two independent signals falling on
the 5' untranslated region of SLC6A20, as well as on introns of LZTFL1 and non-coding regions
downstream of it.

Box 9 | `Coronavirus disease 2019' phenotype de�nitions. The heterogeneity
in `coronavirus disease 2019' (COVID-19) outcomes highlights the need for accurately
de�ning focal phenotypes (� 1.2.3, page 12) when conducting genome-wide associa-
tion studies of COVID-19 susceptibility and severity. Indeed, even nuanced di�erences
across phenotype de�nitions can lead to apparently con�icting results or false associa-
tions (Roberts et al., 2022).

For example, Shelton et al. (2021) de�ne one `diagnosis' phenotype between cases
that reported a positive COVID-19 test and controls that tested negative, and four
`severity' phenotypes between increasingly dire COVID-19 cases�from hospitalization
to respiratory support�and controls that did not report a COVID-19 diagnosis. The
authors justify these de�nitions stating that data collection took place early in the
pandemic, when most of the general population was likely still unexposed to the virus.

Su�cient reporting Severity degree
Subtype Self Physician Laboratory Hospital ICU or death Control

A2 □ □ § § § Non-case
B1 □ □ § § □ Non-hospitalized
B2 □ □ § § □ Non-case
C2 § § § □ □ Non-case

The COVID-19 Host Genetics Initiative (2020, 2021, 2022, 2023) proposes another
set of consolidated phenotypes. The Table above summarizes the four main types of
analyses used today. Brie�y, analysis type `A2' concerns very severe COVID-19 cases
con�rmed by laboratory tests and requiring hospitalization in an intensive care unit
(ICU) or leading to death, compared to all individuals who are not cases. In contrast,
analysis subtype `B2' focuses on less severe cases that require hospitalization but not
admission into an ICU, compared to the general population, or to controls that did not
require hospitalization in the 21 days following a positive test, for subtype `B1'. Finally,
analysis type `C2' considers COVID-19 cases con�rmed by a laboratory or physician,
or self-reported in a questionnaire, compared to the general population.

Using eQTL data from the GTEx Consortium (The GTEx Consortium, 2020), Kousathanas
et al. (2022) then performed transcriptome-wide association studies (� 1.2.5, page 19) in whole
blood and lung tissue. Among other interesting hits, genetic e�ects on COVID-19 severity were
signi�cantly mediated by increased expression of CCR9 in whole blood, and increased expression
of MUC1�encoding a component of the mucus lining airway epitheliæ�in both blood and lung
tissue. Moreover, high colocalization probabilities (PPH4) were estimated between COVID-19 risk
loci and GETx eQTLs around these genes: rs73064425 for CCR9 in blood (PPH4 > 0.8), and
rs41264915 for MUC1 in blood (PPH4 > 0.8) and the lung (PPH4 > 0.5) (� 1.2.5, page 19).
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Kousathanas et al. (2022) also unveiled new associations between COVID-19 severity and the
genotype at immune-relevant loci, including mediators of IFN signalling like IFNA10, IFNAR2,
TYK2, IL10RB and PLSCR1, as well as genes involved in the di�erentiation of lymphoid and
myeloid cells (� 3.1.1, page 55), such as BCL11A, TAC4 and CSF2. Remarkably, CSF2 encodes
the granulocyte-macrophage colony stimulating factor (GM-CSF), which has been proposed as a
candidate therapeutic target against COVID-19 (Lang et al., 2020).

The latest installment of the COVID-19 Host Genetics Initiative (2023) provides a comprehensive
summary of the known genetic bases of COVID-19 susceptibility and severity, and how they a�ect
di�erent actors of the cellular immune responses to SARS-CoV-2. Across two severity and one
susceptibility phenotypes (Box 9, analysis types `A2', `B2' and `C2'), 51 independent loci reached
genome-wide signi�cance and were annotated to a gene based on distance or functional scores.
Out of these, 15 genes were linked to biological pathways involved in viral entry into cells, mucus
production by epithelial cells and type I IFN signalling (COVID-19 Host Genetics Initiative, 2023).

For example, variants around the loci encoding the ACE2 (rs190509934, p = 1.5 × 10−18) and
SLC6A20 (rs73062389, p = 1.3 × 10−102) receptors�both important mediators of SARS-CoV-2
entry�are associated to COVID-19 susceptibility. Moreover, the rs9305744 variant of TMPRSS2,
which encodes a type II transmembrane serine protease needed for the cleavage of Spike proteins
prior to SARS-CoV-2 entry, is associated to COVID-19 severity (p < 2.5× 10−7).

Regarding IFN-mediated immunity, variants associated to COVID-19 severity were found near
the loci of TYK2 (rs34536443, p < 1.7×10−21) and JAK1 (rs11208552, p < 2.2×10−9). Downstream
in the GRN, the rs10066378 SNP near the IRF1 TF locus was also associated to disease severity
(p = 2.7 × 10−9), as were variants near the locus of IFN-α (rs28368148, p < 7.1 × 10−7) and its
receptor IFNAR2 (rs78143111, p < 2.8 × 10−16). Finally, the rs10774679 SNP near the OAS1-3

ISG locus is also associated to COVID-19 severity (p < 7.9 × 10−11), is an eQTL of OAS1, OAS2
and OAS3 in GTEx data (p < 6.7× 10−12), and is carried by a haplotype likely introgressed from
Neandertal into modern human genomes (Zeberg and Pääbo, 2021).

All in all, these results highlight genetic COVID-19 risk factors predominantly strewn along the
GRN (� 3.1.2, page 57) of type I IFN signalling, as well as the repercussion of adaptation events in
shared human evolutionary history that shaped present-day genetic diversity (� 2, page 36). Yet,
they do not provide a comprehensive view of how these impacts vary across human populations and
immune cell types (Aquino et al., 2023).

The hallmarks of severe viral infection and the importance of interferons

The relevance of type I IFN responses was also highlighted by single-cell studies (Lee et al., 2020;
Wilk et al., 2020; Ren et al., 2021; Stephenson et al., 2021) of the transcriptional immune response
to SARS-CoV-2 (� 1.3, page 25). In particular, Lee et al. (2020) compared the transcriptional
pro�les of PBMCs sampled from patients with mild or severe COVID-19, or patients hospitalized
following infection by IAV, allowing derivation of characteristic features of responses to SARS-CoV-
2�relative to another respiratory RNA virus�at cell-type resolution.

Across all PBMC types, cells from COVID-19 patients expressed stronger in�ammatory tran-
scriptional programs�mainly driven by tumor necrosis factor (TNF) and IL-1β�relative to cells
from patients with severe in�uenza (Lee et al., 2020). In�ammation was further exacerbated in
patients with severe COVID-19 due to a dysregulated type I IFN response emanating from the
monocyte compartment, that was not observed in mild COVID-19 cases (Lee et al., 2020).

The biological relevance of these results is supported by bulk transcriptomic observations on
lung tissue from deceased COVID-19 patients (Blanco-Melo et al., 2020). Speci�cally, the lung
transcriptional signatures of lethal COVID-19 cases were enriched in genes upregulated by type I
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IFN-signalling and TNF/IL-1β-driven in�ammation (Lee et al., 2020). Moreover, genes upregulated
by monocytes from severe relative to mild COVID-19 cases were enriched in genes di�erentially
expressed in lethal COVID-19 and healthy lung biopsies (Blanco-Melo et al., 2020; Lee et al., 2020).

The picture that emerges from these and other studies (Hadjadj et al., 2020; Ren et al., 2021;
Stephenson et al., 2021) is that early dysregulation of type I IFN signalling upon infection by
SARS-CoV-2 can propagate along the GRNs of the immune response, resulting in lower viral clear-
ance and unhinged in�ammatory reactions involving TNF, IL-1β, IL-6 and IL-8, among other
cytokines. These so-called cytokine `storms' are mainly mediated by myeloid cells, and lead to
tissular in�ltration of immune cells and production of more in�ammatory mediators. Ultimately,
this auto-amplifying process leads to lung tissue damage and COVID-19 pneumonia.

Such immune dysregulation can be explained through intrinsic (Takahashi et al., 2020; O'Driscoll
et al., 2021), environmental (Patin et al., 2018; Weber et al., 2022) and lifestyle factors (Patin
et al., 2018) that can alter immune cellular composition, as well as by common genetic variation
(Ellinghaus et al., 2020; COVID-19 Host Genetics Initiative, 2020, 2021, 2022, 2023; Shelton et al.,
2021; Kousathanas et al., 2022).

Importantly, rare and Mendelian inborn errors of immunity (IEIs), as well as their immune-
mediated phenocopies, have also been associated to higher COVID-19 risks (Zhang et al., 2020;
Bastard et al., 2020). Through comparison of 13 genes involved in TLR3-dependent induction or
IRF7-dependent ampli�cation (Fig. 3.2) of type I IFN signalling�two pathways known to harbor
IEI risk factors of severe in�uenza�across over 600 COVID-19 patients with severe pneumonia and
more than 500 individuals with asymptomatic SARS-CoV-2 infection or mild COVID-19 symptoms,
Zhang et al. (2020) identi�ed 24 IEIs at 8 loci�TLR3, TICAM1, UNC93B1, TBK1, IRF3, IRF7,
IFNAR1 and IFNAR2�in 23 severe COVID-19 patients aged 17 to 77 years.

Remarkably, Zhang et al. (2020) also report an absence of type I and type III IFN production
in plasmacytoid dendritic cells (pDCs)�an immune subset known for its ability to rapidly secrete
great quantities of IFN-α upon viral infection (Siegal et al., 1999; Cella et al., 1999)�from an
IRF7-de�cient patient exposed to SARS-CoV-2 in vitro. In line with this observation, IFN-α was
undetectable in the serum of 10 out of the 23 severe COVID-19 patients carrying IEIs, including
5 IRF7-de�cient individuals (Zhang et al., 2020). Together, these results highlight the clinical
relevance of type I IFNs and IFN-producing cell types like pDCs in the context of COVID-19.

Further emphasizing the importance of type I IFNs, Bastard et al. (2020) found neutralizing
immunoglobulin G auto-antibodies targeting IFN-α and/or IFN-ω in the sera of 101 out of 987
patients with severe COVID-19 pneumonia, but only in 4 out of 1,227 healthy individuals sampled
before the pandemic. Notably, while the 101 severe COVID-19 cases varied widely in age�from
25 to 87 years old�more than half were over 65 years old. Also, 94% of these individuals were
male, representing a signi�cantly larger fraction than males among life-threatening COVID-19 cases
without auto-antibodies (75%, Fisher's exact p = 2.5× 10−16).

The authors associate the presence of anti-IFN-α2 auto-antibodies in the serum to an inability
to block SARS-CoV-2 replication in vitro, and show that auto-antibodies were already present in
the sera from two of the COVID-19 patients sampled pre-pandemic, suggesting that auto-antibodies
are a cause of critical COVID-19 rather than a consequence (Bastard et al., 2020).

Importantly, no auto-antibodies were detected in the 23 severe COVID-19 patients described
by Zhang et al. (2020), suggesting that although IEIs of type I IFN signalling and auto-antibodies
against type I IFNs have similar e�ects on the immune response to SARS-CoV-2, they act through
di�erent and independent pathways. Together, these two risk factors jointly explain up to 20% of
life-threatening cases of COVID-19 pneumonia in patients over 70 years old (Bastard et al., 2020,
2021a; Zhang et al., 2020; Casanova and Abel, 2022).

Page 66 Š Bioinformatics and systems biology Yann Aquino Š Human Evolutionary Genetics



3.3 Genetic susceptibility to infectious diseases and the infection enigma

Infectious pathogens have been major drivers of adaptation throughout human evolutionary
history (� 2.3, page 46). It is estimated that for approximately 200 thousand years, and up until the
late 19th century, around half of human children under the age of 15 years died to infection-induced
fever (Casanova and Abel, 2005). In 19th-century England, and outside of any major epidemics,
infectious diseases were the reported cause of around 60% of deaths (Casanova and Abel, 2005).
Today, with modern hygiene practices, vaccines and drugs, widely lethal infectious diseases�such as
tuberculosis, the acquired immunode�ciency syndrome or COVID-19�have become the exception
rather than the rule (Casanova and Abel, 2021, 2022).

Yet, in rare cases even generally harmless pathogens can cause life-threatening disease in young
individuals with few risk factors (Ciancanelli et al., 2015; Hernández et al., 2018; Lim et al., 2019).
By contrast, some individuals are known to display persistent lifelong resistance to infection by even
the deadliest of pathogens (Cobat et al., 2009). Casanova and Abel (2013, 2020) call this re�ection
of human immune variability the `infection enigma'.

3.3.1 Synthetic theory of immune variability in infectious disease

Casanova and Abel (2013) propose a synthesis of four theories to explain the widespread immune
variability revealed by infectious diseases. First, the germ theory of infectious diseases�championed
by Louis Pasteur (1862) and Robert Koch (1882), among others�attributes immune variability to
the microbial pathogens themselves. In contrast, the ecological theory considers variation due to
other environmental factors, excluding the causal infectious agent itself, but potentially including
co-infection by other pathogens and remnants of immune responses against previously encountered
pathogens (Sun and Metzger, 2008). Third, the immunological theory focuses on somatic variation
acquired through adaptive responses. Finally, the genetic theory looks for inborn predictors of innate
and adaptive immunity encoded in the DNA (Casanova and Abel, 2005). In the synthetic theory
of infectious disease, all of these host-extrinsic and intrinsic factors�microbial, environmental,
immunological and genetic�interact together, giving rise to a wide range of clinical phenotypes.
The relevance of jointly considering the di�erent predictors of infectious disease risk has most
recently been emphasized by the COVID-19 pandemic.

The microbial component of COVID-19 is re�ected in the variable pathogenicity observed across
di�erent SARS-CoV-2 variants of concern (VOCs; Box 10). Indeed, since the reporting of the �rst
VOC eight months into the pandemic, all subsequent VOCs from the B.1 SARS-CoV-2 lineage
have been associated to increased hospitalization rates following infection�relative to the ancestral
Wuhan-1 lineage�likely due to mutations in the Spike viral entry protein (Tegally et al., 2021; Funk
et al., 2021; Markov et al., 2023). Although the currently circulating `Omicron' VOC is associated
to decreased hospitalization rates relative to the previous `Delta' one, it seems to be linked to higher
susceptibility to infection, as Omicron reinfection rates are much higher (Volz et al., 2021).

Besides virus-centric factors, changes in host immune cellular composition�particularly in the
myeloid and cytotoxic lymphoid compartments�have been associated to increased risks of life-
threatening disease (Diao et al., 2020; Lee et al., 2020; Xu et al., 2020; Wilk et al., 2020; Ren
et al., 2021; Stephenson et al., 2021). Interestingly, the variability in abundance of some of these
immune subsets, such as terminally di�erentiated CD8+ EMRA T cells, has been associated to latent
infection by CMV (Box 8) (Patin et al., 2018), which has recently been associated to COVID-19
severity in relatively young patients below 60 years old. Together, these results re�ect the ecological
and immunological components of COVID-19 risk, whereby previous infection by another virus
alters immune parameters in a way that predisposes to severe outcomes of SARS-CoV-2 infection.
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From a genetic perspective, common and rare genetic variants have been associated to inter-
individual di�erences in COVID-19 susceptibility and severity (� 3.2.2, page 62). In this context,
the study of immune responses in di�erent IEI contexts has proven its worth in unveiling biological
mechanisms underlying variation in infectious disease risks (Casanova and Abel, 2021, 2022; Zhang
et al., 2022). A clear illustration of this potential is given by the discovery of an IRF7 de�ciency in
a severe in�uenza patient (Ciancanelli et al., 2015), which led to the identi�cation of other genetic
risk factors of severe IAV infection (Hernández et al., 2018; Lim et al., 2019), as well as genetic
and auto-immune predictors of a substantial part of variability in COVID-19 severity (Zhang et al.,
2020; Bastard et al., 2020, 2021a) (� 3.2.2, page 62).

Box 10 | Coronavirus variants of concern. In the context of the `coronavirus
disease 2019' (COVID-19) pandemic triggered by the 2019 `severe acute respiratory
syndrome' coronavirus 2 (SARS-CoV-2) outbreak, the World Health Organization
(WHO)�together with other international health institutions�keeps track of emerg-
ing SARS-CoV-2 `variants of concern' (VOCs) for global health. In the terms of the
WHO, a VOC is a SARS-CoV-2 variant with `genetic changes that are predicted or
known to a�ect virus characteristics' an their impact on human health, has had `a
growth advantage over other circulating variants in more than one WHO region' and
entails a `detrimental change in clinical disease severity', a�ects `the ability of health
systems to provide care to patients' or causes a `signi�cant decrease in the e�ectiveness
of available vaccines' (World Health Organization, 2020b).

All former and currently circulating VOCs belong to the B.1 SARS-CoV-2 lineage
characterized by an aspartate (D) to glycine (G) substitution in the 614th aminoacid
of the Spike protein (D614G), relative to the ancestral Wuhan-1 lineage. The D614G
mutation alone is associated to increased transmissibility, higher viral load and lower
patient age, but its e�ects on infection severity are uncertain (Volz et al., 2021). How-
ever, VOCs carrying D614G alongside other mutations that do increase virulence can
lead to increased hospitalization rates (Markov et al., 2023). For instance, the `Alpha`
VOC (B.1.1.7) identi�ed in the United Kingdom in September 2020, and responsible
for the second major wave of COVID-19 cases, carried 16 Spike mutations other than
D614G (Funk et al., 2021). Later, the `Delta' VOC (B.1.617.2) identi�ed in India in
October 2020 sparked the third major wave of the pandemic. The currently circulating
`Omicron' VOC lineages (BA.1, BA.2, BA.3, BA.4, BA.5) carry over 30 Spike muta-
tions and are associated to lower hospitalization rates than Delta, but much higher
reinfection rates (Pulliam et al., 2022).

Interestingly, the mirroring between factors of inborn susceptibility to severe IAV and SARS-
CoV-2 infection suggest a shared basis of genetic susceptibility to viral infection, and highlight
the relevance of comparing SARS-CoV-2 to other respiratory viruses to derive speci�c patterns of
COVID-19 severity. In support of this view, Figure 3.3 shows response (r) eQTL e�ects (� 1.2.6,
page 22) estimated in PBMCs exposed to SARS-CoV-2 (COV) or IAV for six hours. While most
reQTLs have a similar e�ect on gene expression in lymphoid responses to both viruses, myeloid cells
show much more heterogeneous genetic control. In particular, the strongest SARS-CoV-2 reQTL
(βCOVXi = 1.47, p = 2 × 10−16; βIAVXi = 0.04, p = 0.4) a�ects the expression of MMP1�encoding
matrix metalloproteinase 1 (Syed et al., 2021), a marker of COVID-19 severity�and is speci�c to
the response to SARS-CoV-2 in myeloid cells (Fig. 1.9, page 23).
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Figure 3.3 | Shared genetic basis of transcritional response to respiratory viruses. Comparison of response
expression quantitative trait locus (reQTL) e�ect sizes (βXi) between peripheral blood mononuclear cells (PBMCs)
stimulated with `severe acute respiratory syndrome' coronavirus 2 (SARS-CoV-2; COV) or the in�uenza A virus
(IAV). Each dot represents a speci�c reQTL e�ect, colored according to the PBMC type in which it was estimated.
Adapted from Aquino et al. (2023).

Comparing the responses to SARS-CoV-2 and IAV in the context of IEIs can also highlight the
relative importance of speci�c cell types in the response to one virus or the other. For example, while
pDCs have been shown to be essential for the IRF7 and TLR7-mediated (Zhang et al., 2020; Asano
et al., 2021) production of critical type I IFNs in the reponse to SARS-CoV-2, the pDC response
from UNC93B1-de�cient individuals�insensitive to TLR7 stimulation�infected by seasonal IAV
seems to be una�ected (Ciancanelli et al., 2015).

3.3.2 Inborn errors of immunity and precision medicine

In summary, the wealth of immunological and clinical data generated in response to the COVID-
19 pandemic has propelled multiple e�orts to understand the various predictors of human immune
variability in the response to viruses. In this setting, data from IEI patients has provided very
valuable insights into the pathogenicity of SARS-CoV-2 infection. In particular, the identi�cation
of IEIs of IFN-mediated immunity ultimately led to the discovery of auto-immune predictors of up
to 20% of life-threatening COVID-19 cases (Zhang et al., 2020; Bastard et al., 2020, 2021a). In
hindsight, it is likely that other IEIs will be discovered in the 80% of severe cases not currently
explained by genetic de�ciencies or its immunological counterparts (Zhang et al., 2022). Moreover,
given the evidence for a common genetic basis of susceptibility to severe viral infection (Fig. 3.3),
these �ndings will also likely be relevant for other diseases (Casanova and Abel, 2021).

The discovery of anti-IFN auto-antibodies in a COVID-19 context�and in light of the synthetic
theory of infectious diseases�also illustrates how studying rare IEI genetic determinants of life-
threatening disease at the individual level can unveil more common immunological predictors of
severe disease courses with potential population-level impacts. Within a sample of over 30 thousand
individuals, Bastard et al. (2021a) estimated the proportion of neutralizing auto-antibodies against
IFN-α and/or IFN-ω in the general population at around 1.1% in individuals below 70 years old,
4.4% in individuals between 70 and 79 years old and 7.1% in individuals between 80 and 85 years
old. The increase in prevalence with age suggests an acquired environmental component in the
ætiology of anti-IFN auto-antibodies, potentially including previous infections by other viruses or
previous immune-related disorders (Panem et al., 1982; Bello-Rivero et al., 2004; Gupta et al., 2016).
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Together, these results highlight the importance of testing for anti-IFN auto-antibodies, particularly
in the sera of elderly individuals or patients with immune disorders, as their presence has several
direct clinical implications, including severe infectious disease courses and adverse reactions to
vaccination (Bastard et al., 2021a,b).

In this sense, the synthetic theory of infectious diseases proposed by Casanova and Abel (2013)
is inscribed in the larger paradigm of precision medicine. Any accurate prediction of disease risk
requires a comprehensive assessment of the predictors of immune response variability�including its
microbial, environmental, genetic and nongenetic components�and in light of potential evolutionary
determinants (Dobzhansky, 1973; Quintana-Murci, 2019) (� 2.3.3, page 50). Such descriptions are
essential for the development of a medicine adapted to the great human diversity, and able to
e�ciently counter current and future pathogenic threats (Jones et al., 2013).
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Single-cell and bulk RNA-sequencing reveal di�erences in

monocyte susceptibility to in�uenza A virus infection

between Africans and Europeans

Immune variability from a myeloid perspective. The outcome of viral infection varies widely
across human individuals. This variability has been the subject of long-standing interest at the
Human Evolutionary Genetics (HEG) Unit of Institut Pasteur, Paris. In particular, HEG-ites focus
on the environmental, genetic and evolutionary drivers of population immune response variation.

In this context, Quach et al. (2016) used RNA-sequencing (RNA-seq) data to characterize the
myeloid transcriptional immune response to a series of stimuli�including a live in�uenza A virus
(IAV) strain�across 200 healthy donors of African (AFB, n = 100) and European (EUB, n = 100)
self-reported ancestry from the EvoImmunoPop (EIP) cohort. With this landmark study, the HEG
group greatly contributed to consolidate the notion that adaptive archaic introgression could explain
present-day population di�erences in the response to viral challenge, speci�cally through changes
in the expression of immune-relevant genes in myeloid cells (� 2, page 36).

Myeloid cells are both sensors and e�ectors of the immune system; their action is paramount for
an e�ective response to pathogens (� 3.1, page 55). Moreover, monocytes are particularly important
for the antiviral response, owing to their capacity to both produce type I interferons (IFNs), and
respond to them via the expression of IFN-stimulated genes (ISGs). Hence, monocytes are a relevant
model in which to study inter-individual variability in the peripheral innate immune response to
viruses (� 3.2, page 59).

The complexity of the circulating monocyte subset can be decomposed along the expression
gradient of two cluster of di�erentiation (CD) markers. Upon infection, classical CD14++CD16−,
intermediate CD14++CD16+ and non-classical CD14+CD16++ monocytes are recruited from the
blood into the tissular focus of infection, where they participate to combat the invading pathogen.
Each of these subtypes of monocytes has its own set of features and is associated to di�erent roles.

To account for the cellular heterogeneity in the monocyte lineage in our description of the
myeloid drivers of immune variation, we performed single-cell (sc) RNA-seq (� 1.3, page 25) on
primary monocytes from four AFB and four EUB donors of the EIP cohort, stimulated ex vivo with
IAV, and chosen among extremely low or high responders identi�ed in Quach et al. (2016). Because
of monocytes' pivotal role as immune sensors, we focused on the early dynamics of the response,
recovering samples at 0, 2, 4, 6 and 8 hours post-stimulation.

We �rst used the scRNA-seq data to de�ne the di�erent circulating monocyte subsets and assess
their susceptibility to productive infection by IAV. On this basis, we de�ned subsets of groups of
`unexposed', `bystander' and `infected' CD16− or CD16− cells in order to re�ne the characterization
of transcriptional states in each sample. We were thus able to explain di�erences in basal activation
across samples through variation in the proportion of monocytes susceptible to infection. Finally,
we used these results, as well as �ow cytometry data from Quach et al. (2016), to hypothesize about
myeloid drivers of population variation in immune responses to viral infection.
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There is considerable inter-individual and inter-population variability in response to viruses.
The potential of monocytes to elicit type-I interferon responses has attracted attention to
their role in viral infections. Here, we use single-cell RNA-sequencing to characterize the
role of cellular heterogeneity in human variation of monocyte responses to influenza A virus
(IAV) exposure. We show widespread inter-individual variability in the percentage of IAV-
infected monocytes. Notably, individuals with high cellular susceptibility to IAV are
characterized by a lower activation at basal state of an IRF/STAT-induced
transcriptional network, which includes antiviral genes such as IFITM3, MX1 and OAS3.
Upon IAV challenge, we find that cells escaping viral infection display increased mRNA
expression of type-I interferon stimulated genes and decreased expression of ribosomal
genes, relative to both infected cells and those never exposed to IAV. We also uncover a
stronger resistance of CD16+ monocytes to IAV infection, together with CD16+-specific
mRNA expression of IL6 and TNF in response to IAV. Finally, using flow cytometry and
bulk RNA-sequencing across 200 individuals of African and European ancestry, we
observe a higher number of CD16+ monocytes and lower susceptibility to IAV infection
among monocytes from individuals of African-descent. Based on these data, we
hypothesize that higher basal monocyte activation, driven by environmental factors
and/or weak-effect genetic variants, underlies the lower cellular susceptibility to IAV
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infection of individuals of African ancestry relative to those of European ancestry. Further
studies are now required to investigate how such cellular differences in IAV susceptibility
translate into population differences in clinical outcomes and susceptibility to
severe influenza.

Keywords: Monocytes, single-cell ‘omics, transcriptomics, ancestry, population, influenza virus

INTRODUCTION

Respiratory viruses with pandemic potential pose enormous
health and economic impacts on the human population. In the
last century, we have witnessed outbreaks of several coronaviruses,
including SARS-CoV-2, SARS-CoV-1 and MERS, and a number
of avian and swine influenza A viruses (IAV). A particularly
harrowing and shared feature of these pandemics are the sudden
deaths of otherwise healthy individuals (1). A hyperinflammatory
state characterized by high levels of inflammatory cytokines, often
referred to as a ‘cytokine storm’ (2, 3), has emerged as a hallmark
of these severe viral infections. While still controversial, there is
increasing evidence to suggest that the mononuclear phagocyte
system is an important immunological determinant of this
phenotype (4–6). Upon viral infection, sentinel cells such as
lung-resident macrophages trigger complex signaling cascades
that recruit leukocytes to the site of infection, among them
monocytes. These infiltrating monocytes differentiate into
monocyte-derived dendritic cells or macrophages, enabling viral
clearance through the induction of the adaptive response, and help
replenish the pool of tissue-resident alveolar macrophages (4, 7).

In humans, circulating monocytes are divided into classical
(~80%), intermediate (~15%), and nonclassical (~5%) subsets,
based on surface receptor expression of the cluster-determinant
antigens CD14 and CD16 (8). While nonclassical monocytes
(CD14+CD16++) are long-lived and ‘patrol’ healthy tissues
through long-range crawling on the endothelium, classical
(CD14++CD16-) and intermediate (CD14++CD16+) monocytes
are recruited to the lung in response to viral infection, where they
secrete inflammatory cytokines and chemokines, as well as type I
interferons (IFNs) (7, 9–11). In most individuals, recruited cells
help clear infection despite being susceptible to infection
themselves (12, 13); yet, in some individuals, a dysfunctional
immune response occurs resulting in widespread lung
inflammation. Whether monocyte subsets behave differently
upon viral exposure, and how direct viral sensing and exposure
to secreted cytokines shape monocyte activation and
differentiation are not well understood.

Variation in blood composition and cellular proportions have
been shown to be one of the main factors underlying
transcriptional variation in immune genes across individuals
(14), with these proportions being influenced by both genetic
and non-heritable factors (15–17). Recently, we characterized the
genetic architecture of transcriptional responses of primary
monocytes from 200 individuals of African and European
ancestry to ex vivo challenge with viral stimuli (18). In this
model, where we were able to control for viral determinants of
disease (i.e. dose and strain), we reported marked inter- and intra-

population differences in transcriptional responses to IAV. While
our analyses revealed numerous cis-expression quantitative trait
loci (18), genetic variants could only account for a small fraction of
expression variation, in line with other studies (14, 19).

Here, we implemented single-cell RNA-sequencing (scRNA-
seq) on human primary monocytes exposed to IAV to investigate
(i) the effects of direct viral infection versus activation by
exposure to secreted cytokines, (ii) the subset-specific
responses of monocytes to viral challenge, and (iii) the extent
of inter-individual and between-population variation in the
proportions of monocyte subsets and the degree of monocyte
susceptibility to IAV infection. Our study reveals a profound
reprogramming of monocyte transcriptomes upon viral infection
and shows a proinflammatory role of CD16+ monocytes
following IAV challenge. Furthermore, it highlights that
African-ancestry individuals are characterized by both a higher
frequency of CD16+ monocytes and a generally lower
susceptibility of their monocytes to IAV infection. Based on
these results, we propose that population differences in the
composition of circulating monocytes and their susceptibility
to infection may contribute to the higher severity of IAV
infections reported among African-ancestry individuals.

RESULTS

Using scRNA-Seq to Investigate Cellular
Heterogeneity
To investigate the role of cellular heterogeneity in driving
immune variability across individuals, we performed a time-
course experiment where we monitored the CD14+ fraction of
peripheral blood mononuclear cells (PBMCs) from eight donors,
both in the presence and absence of viral challenge. To maximize
inter-individual variability, we chose individuals from two
distinct ancestries whose cells demonstrated extreme responses
to viral stimuli in a previous bulk RNA-seq experiment (18).
Droplet-based scRNA-seq was performed on monocytes from all
eight donors immediately before infection initiation (T0), as well
as at 2 (T2), 4 (T4), 6 (T6), and 8 (T8) hours post challenge with
A/USSR/90/1977(H1N1) at a multiplicity of infection (MOI)
equal to 1 (IAV-challenged) and mock infection (non-infected).
To mitigate batch effects, we pooled IAV-challenged and non-
infected cells from distinct donors in each library, assigning cells
to their condition in silico via genetic barcoding (20). After
stringent quality control where we removed low-quality, dying,
and contaminants of the CD14+ monocyte isolation, our final
dataset contained 88,559 high-quality cells, among which we
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predicted >99% monocyte purity at T0 (Figure 1A;
Supplementary Figures 1 and 2). At later time points, a
substantial fraction of non-infected cells (up to 70% at T8)
were predicted to be macrophage-like, indicating monocyte
differentiation over the course of the experiment. For clarity,
we refer to cells as monocytes at T0 and as monocyte-derived
cells from T2-T8.

Stable FCGR3A Expression Distinguishes
Monocyte Subsets Over Time
We next sought to characterize each cell by its mRNA expression
of the canonical monocyte markers, CD14 and CD16, given that
much of the structure in our data was associated with FCGR3A
(aka CD16) mRNA expression. In droplet-based scRNA-seq,
encapsulation of ambient mRNAs emanating from dying cells
can occur during library preparation leading to spurious mRNA
detection (21). We thus used a statistical framework to test
whether CD14 and CD16 were expressed at a level significantly
higher than expected when accounting for potential
contamination from the ambient pool (Methods). Despite
having been positively selected for the CD14 antigen, only
32.4% of monocytes significantly expressed CD14 at T0; this
percentage further decreased at later time points and remained

<15% across all time points and conditions (average 6.4% s.d.:
5.0%, Supplementary Figures 3A–C). On the other hand, 12.1%
of monocytes significantly expressed FCGR3A (CD16) (referred
to as CD16+) at T0, this marker proving much more stable across
conditions and time points (9.3% of CD16+ cells on average, s.d.:
1.8%, Figure 1B and Supplementary Figures 3D–F). While we
deciphered classical, intermediate, and nonclassical monocytes
subsets at T0 (Supplementary Note 1; Supplementary Figure 4
and Supplementary Data 1), we focus on the simpler distinction
of CD16- and CD16+ subsets given that positive-selection for
monocytes does not capture the entire nonclassical population
and that we were unable to distinguish the intermediate and
nonclassical subsets after T0.

Functional Features of Monocyte Subsets
Are Conserved Upon Manipulation
To assess how transcriptional profiles of CD16- and CD16+

monocytes and their derived-cells differ, we focused on the 5,681
genes expressed with a normalized log2 count > 0.1 in at least one
condition, time point, and subset (Supplementary Data 2A). We
found that the log2 fold change (log2FC) in gene expression
between CD16+/- subsets remained relatively stable over the
course of the experiment (Pearson r between time points >0.42

A B D

E

C

FIGURE 1 | Single-cell RNA-sequencing of 88,559 monocytes and their derived cells. (A) Post-QC tSNE colored by unsupervised graph-based clusters. (B) Post-
QC tSNE colored by FCGR3A (CD16) log2 normalized counts (top), or percentage of viral mRNAs (bottom). (C) Determination of the maximum contamination fraction
by ambient RNA. The number of non-infected cells deemed to significantly express IAV transcripts (presumed false positives) versus the number of IAV-challenged
cells deemed to significantly express IAV transcripts across a range of maximum contamination fractions from 1-50% (color bar). Dotted grey line is drawn at 1% on
the x-axis. A maximum contamination fraction of 10% results in 1% of non-infected cells being classified as infected (false positive proxy), and half of IAV-challenged
cells showing evidence of viral transcription. (D) Distribution of counts of viral origin across all donors, from T2 to T8. Cells are shown separately for non-infected (top)
and IAV-challenged (bottom) conditions. Fill color reflects the cell state assignments. Note that the threshold used to define infected cells is dependent on the
number of viral mRNAs in the ambient pool, and varies across libraries. (E) Post-QC tSNE stratified by time point. For each time point, cells are colored according to
their CD16+/- status (see key) and their assigned cell state (same as depicted in D). For each condition and time point, stacked bar charts below the tSNE represent
the relative proportions of the various cell states and subsets. IAV, Influenza A virus; NI, non-infected; tSNE, t-distributed Stochastic Neighbor Embedding.
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and >0.52 for the non-infected and IAV-challenged conditions
respectively, p-values<2.2x10-16; Supplementary Figure 5A),
and differentially expressed genes between CD16+/- subsets
were largely the same across conditions (Pearson r = 0.92, p-
value < 2.2x10-16; Supplementary Figure 5B). We thus searched
for genes that were consistently differentially expressed between
CD16+ and CD16- cells across all time points (including T0),
conditions, and donors. We identified 266 genes over-expressed
(log2FC>0.2, FDR<1%) in CD16+ cells relative to CD16- cells, and
389 genes that showed the opposite pattern, and performed a
GO-term enrichment analysis on these genes (Supplementary
Data 2B). Consistent with previous reports (22–24), CD16-

subsets were characterized by high expression of several
proinflammatory S100 Calcium Binding Proteins (S100A12,
S100A9, and S100A8), contributing to a sizable GO-term
enrichment in the defense response to fungus pathway
(GO:0050832: OR=41.3, FDR=4.9x10-4), while CD16+ subsets
were characterized by high expression of Fc-gamma receptor
signaling pathway genes (GO:0038096: OR=8.7, FDR=6.2x10-6).
Notably, CD16+ subsets over-expressed several type I IFN
stimulated genes (ISGs) relative to CD16- subsets (e.g.
GO:0071357: OR=5.3, FDR=2.6x10-3), including the well-
known viral restriction factors IFITM3 and OAS1. Collectively,
these results demonstrate CD16 is a reliable marker at the mRNA
level and that CD16+/- monocyte subsets maintain functional
differences upon manipulation.

scRNA-Seq Highlights Heterogeneity in
Monocyte Susceptibility and Viral
Transcription
Using the presence of IAV transcripts as a proxy for infection
(Figure 1B), we next sought to distinguish cells that were
successfully infected from those that were not. Among
monocyte-derived cells that were exposed to IAV, we found that
50.3% expressed IAV transcripts above ambient levels when
allowing up to 10% of mRNAs to come from the ambient pool.
In contrast, less than 1% of non-infected cells showed evidence of
viral transcription, supporting the validity of the threshold used to
detect IAV expressing cells (Figure 1C). We deemed cells with
statistical evidence for expression of IAV transcripts from the
IAV-challenged condition as ‘infected’, while the remaining cells
from this condition were considered as ‘bystanders’, as these
either did not come into contact with the virus or were able to
fully repress viral mRNA transcription. When comparing the
percentage of infected cells between subsets, we noticed that
CD16+ cells were slightly less likely to be infected than CD16-

cells (42.3% sd: 4.0% for CD16+ relative to 49.4% sd: 5.4% for
CD16-, generalized linear model with CD16+/- status, donor,
and time point as covariates, p-value=0.006), possibly related
to the higher expression of ISGs observed in this subset
(Supplementary Data 2A, B). We further confirmed
experimentally that intermediate and nonclassical (CD16++)
monocytes display increased resistance to IAV challenge
by monitoring intracellular IAV nucleoprotein by flow
cytometry in PBMCs challenged with another H1N1 strain
(Supplementary Figure 6).

We observed that the proportions of viral mRNAs among
infected cells were bimodally distributed and largely varied
between the clusters identified in our unsupervised analysis
(Figure 1D). We used a Gaussian mixture model to locate the
two modes of the distribution and further sub-classify infected
cells into those with lower IAV mRNA levels (<1-6%) and those
with higher IAV mRNA levels (6-83%); while viral mRNA levels
are dictated by both the rate of transcription and degradation, for
simplicity we refer to these infected cell states as ‘low IAV-
transcribers’ and ‘high IAV-transcribers’, respectively. The
proportions of infected cells among individuals remained
largely unchanged over the course of the experiment; however,
high IAV-transcribers were virtually absent at 2h (<2% of
infected cells), peaked to ~36% of IAV-infected cells at 4h, and
decreased to 8.5% by 8h, suggesting that high-IAV transcribers
represent a transient state of IAV-infection preceding IAV-
induced apoptosis (Figure 1E). These results reveal profound
heterogeneity in monocyte susceptibility and subsequent viral
transcription upon IAV challenge.

Interplay of Cytokine and Ribosome
Networks Drive Cell States Upon Infection
To characterize host transcriptional responses over time, we
next subsampled each subset (CD16-/CD16+), cell state
(unexposed, bystander, infected), and time point in our
scRNA-seq data to a uniform number of cells to avoid biases
emanating from differences in sample sizes. Limited by the
number of CD16+ high IAV-transcribing cells, we randomly
sampled 100 cells from each subgroup, while ensuring
representation of all donors. We then focused on the 6,669
host genes with average log2 normalized count >0.1 in at
least one subgroup (Supplementary Data 3A). Overall, CD16-

and CD16+ subsets behaved similarly upon stimulation with
changes in gene expression between cell states being
strongly correlated among subsets (Pearson r=0.83-0.95,
p-values<2.2x10-16; Supplementary Figure 7). GO term
enrichment analyses of shared responses (FDR<1% &
log2FC>0.2 in same direction in both subsets) uncovered several
functional categories interacting to shape the activation state of
cells (Figure 2A; Supplementary Data 3B). Both bystander and
infected cells showed increased mRNA expression of genes
involved in antigen processing and presentation via class I MHC
(GO:0019885, OR=53.7, FDR=2.0x10-6) and ISGs (GO:0034340,
OR=14.8, FDR=3.3x10-20). Yet, bystander cells showed increased
mRNA expression of ISGs and defense response to virus pathways
relative to infected cells (GO:0034340, OR=13.4, FDR=4.4x10-7;
GO:0051607, OR=9.0, FDR=2.1x10-7), while infected cells
displayed higher mRNA expression of mitochondrial
(GO:0005743, OR=4.7, FDR=3.3x10-3) and ribosomal genes
(GO:0005840, OR=117, FDR=1.0x10-78). Notably, type-I IFN
genes themselves tended to be preferentially expressed by
infected cells (e.g. log2 normalized count at 6h for IFNB1 ~0.12/
0.29 in CD16- and CD16+ subsets, respectively, vs <0.01 for
bystander cells of both subsets), although this difference was
only barely significant in our setting (FDR=0.03), likely due to
the highly transient nature of IFN expression.
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Among infected cells, ribosomal genes showed higher activity
among high IAV-transcribing cells relative to low IAV-
transcribing cells (Figure 2B, comparison only made at T4 due
to sample size constraints, e.g. GO:0019083, OR=137,
FDR=6.1x10-65). This observation is consistent with the notion
that the expression of viral proteins is dependent on cellular
ribosomes, with recent data suggesting that IAVs do not induce a
global shut-off of cellular translation but rather a reshaping of the
translation landscape (25–27). Likewise, among bystander cells,
numerous ribosomal genes were downregulated at later time
points relative to unexposed cells (Figures 2A, C; GO:0019083,
OR=5.3, FDR=4.2x10-6), suggesting that repression of ribosomal
subunits plays an active role in limiting viral replication.

Collectively, these results suggest that expression of ISGs and
ribosomal genes interact to shape cell states upon IAV challenge.

Increased IRF and STAT Activity Drives
Stronger Antiviral Response
Despite qualitatively similar responses to infection between
CD16-/CD16+ subsets (Supplementary Figure 7), we
hypothesized that subtle differences in the intensity of such
responses might contribute to the increased resistance of CD16+

cells to infection. We thus performed an interaction test on the
subsampled scRNA-seq data, and searched for genes for which
transcriptional response upon IAV challenge differed between
CD16- and CD16+ subsets in either infected and/or bystander

A B
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FIGURE 2 | Gradient of mRNA expression from ribosomal and IFN-stimulated genes separates bystander and infected cells. (A) Transcriptional responses of cells
upon IAV challenge (T2-T8) highlight the interplay between IFN-stimulated (GO:0034340), ribosomal (GO:0005840), and mitochondrial (GO:0005743) genes. The
log2FC change in gene expression between unexposed and bystander cells is plotted on the x-axis, while the log2FC change in gene expression between unexposed and
infected cells is plotted on the y-axis. Values are plotted based on a meta-analysis across time points and subsets, of a subsampled dataset with balanced representation of
all donors. (B) The interplay between IFN-stimulated (GO:0034340), ribosomal (GO:0005840), and mitochondrial (GO:0005743) genes among cells exposed to IAV. The
log2FC change in gene expression between low IAV-transcribing infected and bystander cells is plotted on the x-axis, while the log2FC change in gene expression between
low IAV-transcribing infected and high IAV-transcribing infected cells is plotted on the y-axis. Values are plotted based on a meta-analysis across monocyte subsets at T4.
(C) mRNA expression levels of representative IFN-stimulated (MX1) and ribosomal (RPL34) genes across the subsampled dataset. Colors reflect the cell state and subset
assignment depicted in Figures 1D, E. IFN, Interferon; FC, fold change.
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cells (Supplementary Figures 7A, B; Supplementary Data 3A).
At FDR≤1%, we identified a total of 335 such genes, of which 98
differed between subsets only in bystander cells, 144 only in
infected cells, and 93 in both. Hierarchical clustering highlighted
eight major patterns of transcriptional responses (modules) among
the 335 genes, several of which were associated with specific
biological functions (Figure 3A; Supplementary Data 3C, D).
Notably, module 1 (green) was enriched for genes in the antiviral
response pathway (GO:0051607, OR=23.2, FDR=5.43×10-7) and
displayed a stronger response in infected CD16+ cells relative to
CD16- infected cells. Of additional interest was the transient
CD16+-specific transcription of the inflammatory cytokine genes
IL6 and TNF, following viral challenge (Figure 3B). We also found
that several genes involved in the regulation and production of IL-
6 and TNFa were over-expressed in CD16+ subsets at all time
points and conditions (Supplementary Data 2B), but only see
active transcription of the cytokines upon viral exposure. These
results reveal the strong antiviral and inflammatory potential of
CD16+ relative to CD16- monocytes in response to viral
infection (28).

We next sought to characterize the regulatory architecture
underlying the 335 genes whose transcriptional response to IAV
challenge differed between monocyte subsets. Using SCENIC
(29), we identified 113 high-confidence gene regulatory
networks, or ‘regulons’, which were active in non-infected and/
or IAV-challenged cells, each composed of a transcription factor
(TF) and a set of predicted targets (genes). We used these 113
regulons to search for an enrichment/depletion of TF targets
among the eight modules of genes displaying subset-specific
response to infection (Supplementary Data 3E). Among
modules associated with an increased expression in cells

exposed to IAV (modules 1-5), we observed a widespread
over-representation of targets of IFN regulatory factors (IRFs)
and signal transducing and activators of transcription (STATs)
(Figure 3C), reinforcing the central role of the IFN response
upon IAV challenge. Interestingly, several of these factors
displayed subset-specific activity themselves in response to IAV
(IRF1/2/7 and STAT1/2/3, FDR<1%), mirroring the expression
patterns of module 1 (Pearson r>0.92). These results collectively
highlight a CD16+-specific inflammatory response upon IAV
challenge and suggest stronger activation of IRF and STAT
transcription factors as a driver of the increased antiviral
response observed in CD16+ cells upon IAV infection.

Basal Activation Differences Correlate
With Monocyte Susceptibility
To explore the degree of inter-individual variation upon viral
challenge, we next quantified IAV transcripts in the monocyte-
derived cells of each individual, and created pseudo-bulk
estimates by averaging the percent of viral mRNAs per-cell
across all cells from each donor at each time point
(Figure 4A). While viral mRNAs peaked at the same time for
all individuals, we observed extensive variation in the levels of
viral mRNAs and percentages of infected cells across individuals
(Figure 4B). To identify specific genes that might underlie
infection potential, we focused on the 4,589 genes that were
expressed at >0.1 log2 normalized counts in at least one canonical
monocyte subset at T0. We identified a total of 3,131 genes that
differed among our eight donors in either classical, intermediate,
and/or nonclassical monocyte subsets (Kruskal-Wallis Rank
Test, FDR=1%; Supplementary Data 4A). Within each subset,
focusing on genes that significantly differed between donors, we

A B C

FIGURE 3 | IRFs and STATs have a central role in the subset-specific responses to IAV infection. (A) Heatmap of scaled gene expression from 335 genes displaying a
subset-specific response to infection challenge. Genes are grouped into 8 modules based on hierarchical clustering of their expression patterns. Representative genes
from each module are labelled. (B) Mean expression over time of IL6 and TNF, across the different monocyte subsets and cell states. (C) Network of transcription factors
(round nodes) associated with each gene expression module (square nodes). Transcription factor nodes are colored according to the number of modules they are
associated with. Black lines represent enrichments of the module in TF targets, while red lines represent depletions.
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searched for those for which mean expression at basal state was
correlated with the percentage of infected cells at T4 among our
eight donors. Despite our limited sample size, we found that
cellular susceptibility was strongly correlated with basal
expression of the well-known host viral restriction factor
IFITM3. Although it reached significance only in nonclassical
monocytes (FDR~1%), the association remained strong in other
subsets (p-value< 4.1×10-4; Figure 4C).

We next relaxed our search to all genes for which basal
expression showed nominal correlation (p-value<0.01) with the
percentage of infected cells at T4. Depending on the monocyte
subset, between 3.6 to 8.3% of genes matched these criteria,
resulting in a set of 118 genes displaying correlation with
monocyte susceptibility in at least one subset. These 118 genes
were collectively enriched for several related biological processes
such as defense response to virus (GO:0051607, OR=15.3,
FDR=9.2×10-19) and ISGs (GO:0034340, OR=19.6 FDR=8.4×10-
15) (Supplementary Data 4B). Among genes contributing to this
enrichment, we found additional antiviral genes such as OAS3,
and MX1, as well as the critical TF, IRF7, involved in the severity
of IAV-infection both in mice and humans (30–32). Finally,
overlap with the TF targets identified by SCENIC revealed
strong enrichments of several IRFs and STATs among the 118
genes, including IRF7, as well as STAT1, STAT2 and IRF9 that
form the tripartite IFN-stimulated gene factor 3 (ISGF3)
(Figure 4D; Supplementary Data 4C). Together, our results
provide evidence that the basal mRNA expression of genes
related to IFN-induced and antiviral responses are indicative of
the proportion of cells that will become infected in the first cycle of
IAV infection.

African-Ancestry Monocytes Are More
Resistant to Infection
Lastly, we wondered how our findings of inter-individual
variation might extrapolate to the population level. In a
previous study (18), we challenged the primary monocytes
from 200 Belgian individuals of African (AFB) and European
(EUB) ancestry with the same IAV strain and MOI used in the
present study, and performed bulk RNA-seq at 6 hours post
infection (hpi). While basal (T0) expression profiles were not
collected, flow cytometry labelling of CD14 and CD16 was
performed on the CD14+-selected monocytes for the majority
of donors. Interestingly, AFB individuals had higher proportions
of CD16+ cells than EUB individuals (Figure 5A; Supplementary
Figure 8). In light of our findings that CD16+ cells are more
resistant to IAV infection, we hypothesized that this might
translate to lower infection rates among AFB monocytes
relative to EUB monocytes.

To test this hypothesis, we mapped the bulk RNA-seq profiles
collected 6hpi challenge with IAV for the 200 individuals to a
combined human-IAV reference. Excluding 1 sample with low
quality RNAs, we found that 0.02-13.5% of RNA-seq reads from
each sample were of viral origin (Figure 5B). Reassuringly, these
percentages correlated with IAV mRNA levels estimated from
the single-cell experiment across all time points for the eight
donors used in the present study (Pearson r>0.84, p-
values<8.9×10-3), with the strongest correlation being observed
at the peak of viral transcription (T4) (Pearson r=0.97, p-
value=5.1×10-5). These observations indicate that ex vivo
cellular susceptibility is highly reproducible among individuals,
even across different experimental protocols and technologies.

A B DC

FIGURE 4 | Basal IRF/STAT-induced transcriptional network underlies inter-individual differences in monocyte susceptibility and IAV levels. (A) Pseudo-bulk
estimates of the percentage of counts of viral origin in IAV-challenged condition (T2-T8). Donors are colored based on the rank of these pseudo-bulk estimates at the
peak of viral transcription, T4, from that with highest observed viral mRNA level (D1) to that of the lowest (D8). (B) Proportions of cell states from the IAV-challenged
condition at T2, T4, T6, and T8, in the eight donors. X-axis is ordered by decreasing viral mRNA levels found at T4 (D1-D8). (C) Log normalized expression values of
IFITM3 across all cells, stratified by canonical monocyte subsets, and separated by donor. Colors reflect the different donors depicted in (A) For each donor and
monocyte subset, the violin plots show the full distribution of IFITM3 expression across individual cells and boxplots highlight the median and interquartile range.
(D) Enrichment of SCENIC-predicted targets among the 118 genes whose basal expression at T0 correlates with the percentage of infected cells at later time points
(odds ratio and 95% confidence interval). Red line designates an odds ratio equal to 1. Only TFs significantly enriched among the 118 candidate genes are shown
(FDR < 0.05). CL, classical; INT, intermediate; NC, nonclassical.
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Among the 199 bulk profiles, AFB and EUB samples presented
overlapping but significantly shifted distributions of total IAV-
mapping reads (Figure 5B, 4.9% vs. 6.8% of reads, respectively,
Wilcoxon p-value=5.3×10-8), and of each of the 10 primary viral
transcripts (Figure 5C, Wilcoxon p-values<5.5×10-4).

Using the transcriptional profiles obtained from the scRNA-
seq data at T6, we estimated the proportion of reads coming from
each inferred cell state in these bulk RNA-seq profiles
(Figures 5D, E; Supplementary Note 2 and Supplementary
Figure 9A). We found that, on average, AFB monocytes were
more resistant to IAV infection than EUB monocytes (39.2% vs.

48.9% infected, respectively, Wilcoxon p-value=5.3×10-10).
Differences in the estimated percentage of infected cells alone
explained 63% of the inter-individual variability in viral mRNA
levels (Figure 5F), and was sufficient to account for the observed
difference in viral mRNA levels between AFB and EUB
individuals (p-value=0.16 after adjusting on infected cells,
compared to p-value=5.3×10-8 without adjustment).
Nonetheless, variation in the percentage of high/low IAV-
transcribers among infected cells accounted for an additional
19% of variance in viral mRNA expression (Supplementary
Note 2 and Supplementary Figure 9B). Finally, the ratio of
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FIGURE 5 | African-ancestry individuals display increased number of CD16+ cells and lower susceptibility to IAV infection. (A) Variation in the number of classical
(CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++) monocytes across African- and European- ancestry individuals following CD14+

selection from PBMCs (nAFB = 89, nEUB = 85). Colors reflect population (AFB in red and EUB in blue). All three subsets are significantly different between populations
(p-value<0.01). (B) Inter- and intra-population variation in the percentage of RNA-seq reads mapping to the IAV genome (nAFB = 100, nEUB = 99). Colors reflect
population (AFB in red and EUB in blue). The percentage of RNA-seq reads mapping to the IAV genome is significantly higher in European-ancestry individuals
relative to African-ancestry individuals (p-value = 5.3×10-8). Donors used in the scRNA-seq experiment (nAFB = 4, nEUB = 4) are designated with enlarged black
squares. (C) Inter- and intra-population variation in viral mRNA expression at 6hpi (nAFB = 100, nEUB = 99). Expression levels for each of the 10 primary transcripts of
IAV are plotted. Colors reflect population (AFB in red and EUB in blue). All IAV transcripts are significantly higher in European-ancestry individuals on average (p-
value<0.001). (D) Estimated distribution of the percentage of cells from each cell state in the bulk RNA-seq data (nAFB = 100, nEUB = 99). Fill colors reflect cell state
assignments, while outlines of boxplots reflect population (AFB in red and EUB in blue). (E) Distribution of the percentage of high IAV-transcribers among infected
cells, stratified by population. One individual with no infected cell was excluded (nAFB = 99, nEUB = 99). (F) Percentage of RNA-seq reads of viral origin as a function
of the estimated proportion of infected cells (nAFB = 100, nEUB = 99), colored by population (AFB in red and EUB in blue). (A, C) Outlier points are not displayed.
AFB, African-ancestry individuals from Belgium; EUB, European-ancestry individuals from Belgium; TPM, transcripts per million; IAV, influenza A virus; MFI, mean
fluorescent intensity; CL, classical; INT, intermediate; NC, nonclassical. *p-value < 0.01; **p-value < 0.001; ***p-value < 0.0001.
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CD16+/CD16- cells negatively correlated with the percentage of
infected cells, albeit weakly (-0.27, p-value=0.0165 adjusted on
population). Altogether, these results show that population
differences in viral mRNA levels are primarily driven by the
overall proportion of cells that will ultimately become infected,
with only a fraction of the differences being attributable to the
different proportions of CD16+/- subsets observed in individuals
of African and European ancestry.

DISCUSSION AND HYPOTHESIS

We performed scRNA-seq on primary monocytes, before and
after ex vivo IAV challenge, to assess transcriptional differences
between monocytes infected by IAV (i.e. infected) versus those
activated only by exposure to secreted cytokines (i.e. bystanders),
and to identify subset-specific responses of monocytes to viral
challenge. We found that bystander cells display increased
mRNA expression of ISGs relative to infected cells; yet, we
additionally observed both an induction of ribosomal gene
mRNA expression in IAV-transcribing cells and a down
regulation of these genes in bystander cells at later time points.
While the former is likely induced by the virus to enhance
mRNA translation (33), the repression of ribosomal expression
observed in bystander cells may reflect a host mechanism to
contain infection by shutting down the translational machinery
of neighboring cells, and we speculate that this may hold true
across other cells types and constitute a general cellular defense
mechanism against viral infections. Interestingly, the interplay of
ribosomal and ISG expression also distinguished infected cells
into two distinct states (high and low IAV-transcribers),
providing an explanation for the high cell-to-cell variation in
IAV replication observed among circulating monocytes, which
has also been documented in other cell types and during natural
infection (34–41). Notably, type-I IFN genes themselves tended
to be preferentially expressed by infected cells in a highly
transient manner, suggesting a potential role of monocyte
infection in the triggering of the type I IFN response among
bystander cells.

While these patterns were generally shared across CD16- and
CD16+ subsets, we found CD16+ cells to be slightly more
resistant to infection. This is likely attributable to their higher
absolute expression of some ISGs relative to CD16- cells
(independent of viral exposure), as well as their more robust
upregulation of antiviral genes upon IAV challenge, which we
found to be driven by stronger activity of IRF transcription
factors. Interestingly, CD16+ cells displayed transient mRNA
expression of IL6 and TNF upon viral exposure (both infected
and bystander cells), two cytokines that have been
widely implicated in cytokine storms (5). Collectively, these
findings highlight the opposing roles of ISG and ribosomal
gene mRNA expression on viral transcription, and reveal the
stronger antiviral and pro-inflammatory potential of CD16+

monocyte subsets.
At the population level, we found that the ratio of CD16+/

CD16- at basal state was predictive of the percentage of

monocytes that were susceptible to IAV infection, and
observed that African-ancestry individuals, from our sample,
harbored more CD16+ monocytes on average than European-
ancestry individuals residing in the same city (Ghent, Belgium),
consistent with previous observations (42). Independently of
monocyte subset proportions, we identified that individuals
presenting lower monocyte susceptibility to IAV had a higher
basal activation of an IRF/STAT-driven antiviral program. These
findings suggest that the fate of a monocyte hinges upon its basal
activation state, and that the infection potential differs both
within an individuals’ monocyte population, in part based on
the differentiation status of the cell (i.e. CD16-positivity), but also
between individuals, where a CD16- cell from one individual
may have a higher antiviral state than a CD16+ cell from
another individual.

Our finding of a decreased ability of IAV to infect and
replicate in monocytes from individuals of African-ancestry
was recently replicated in an independent cohort of American
individuals with varying levels of African and European ancestry
whose PBMCs were challenged with the 2009 pandemic H1N1
strain (43). While the cause of these population differences
remains to be determined, we did not find evidence that
strong-effect genetic factors, nor evidence of past exposure to
H1N1, could explain such an association with the viral
replication phenotype. Nevertheless, the observed inter- and
intra-population differences are noteworthy in and of
themselves, and may reflect the influence of both weak-effect
genetic loci, and non-heritable factors, such as stress, nutrition or
lifestyle, on transcriptional variation of immune genes (14, 15).
Future studies are needed to determine if such population
differences hold true across other cell types, such as lung
epithelial cells.

Given our finding that CD16+ subsets are the main drivers of
inflammatory cytokine gene expression such as IL6 and TNF,
and that African-ancestry individuals harbor a larger fraction of
these subsets, it is tangible to conceive that monocyte subset
composition prior to infection may influence disease outcome. A
lower percentage of infected monocytes could also contribute to
a faster disease progression, as we find that infected monocytes
continue to express antigen-presenting genes. Thus, a higher
number of infected cells could lead to a stronger activation of the
adaptive immune system. In support of these hypotheses,
patients with severe influenza and COVID-19 harbor higher
proportions of intermediate monocytes in peripheral blood than
patients with mild disease (44, 45), and African Americans are
more often hospitalized than other self-defined ethnic groups by
both influenza (46, 47) and COVID-19 (48, 49), even when
adjusting for age and various social factors such as poverty and
vaccination status. In light of these observations, we hypothesize
that the higher percentage of CD16+ monocyte observed among
African-ancestry individuals may, in conjunction with a stronger
basal activation of their monocytes, contribute to poor infectious
outcomes. Further studies are now needed to formally establish
the clinical relevance of monocyte heterogeneity in the context of
viral infections, IAV in particular, and determine its potential use
as a biomarker.
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LIMITATIONS OF STUDY

In this Hypothesis and Theory article, we analyze single-cell
transcriptional heterogeneity of circulating monocytes before
and after ex vivo IAV challenge, and propose that differences
in basal monocyte activation underlie population disparities in
cellular susceptibility to IAV. We acknowledge that our study is
based on positively-selected monocytes isolated from PBMCs,
and that infection of this cell population in vivo would be
expected to take place in the lung, after an initial infection has
been established. Future studies should investigate how these
findings translate to other cell populations - including lung
epithelial cells and resident monocyte and macrophage
populations - and whether they influence clinical outcomes.
This could be achieved, for instance, by using single cell
techniques to measure how nasal epithelial cells from healthy
patients of various ancestries differ in their expression of viral
RNAs and proteins upon IAV challenge. Additionally, sputum
extract could be collected from mild and severe influenza
patients of both ancestries, to compare the single cell
transcriptome of lung epithelial cells and resident macrophage
populations, both across ancestries and in relation with disease
severity. Another caveat of the study is the lack of detailed
lifestyle observations in the cohort used, precluding us from
examining in further detail the influence of non-genetic factors.
Further studies are now needed to evaluate how non-genetic
factors, such as social status, chronic stress levels (and the
induced physiological response), previous exposures to
pathogens or even the microbiome, could contribute to shape
basal monocyte activation and prime the innate immune
response to viral infections.

METHODS

Experimental Model and Subjects
All indiv iduals from this s tudy were part of the
EVOIMMUNOPOP cohort, which has been previously described
(18). Human blood was obtained from healthy volunteers who gave
informed consent, and the PBMC fraction was isolated and frozen.
In brief, 200 healthy male donors living in Belgium of self-reported
African descent (AFB) or European descent (EUB) were recruited.
Inclusion was restricted to nominally healthy individuals between
19 and 50 years of age at the time of sample collection. The
majority of our African-descent individuals originated from West
Central Africa, with >90% of our sample being born in either
Cameroon or Congo. Serological testing was performed for all
donors to exclude those with serological signs of past or ongoing
infection with human immunodeficiency virus (HIV), hepatitis B
virus (HBV) or hepatitis C virus (HCV).

Single-Cell Analyses and RNA-Sequencing
For eight selected donors [4 individuals from each ancestry,
selected from extremes of the first principal component of gene
expression in our previous study of monocyte response to IAV
challenge (18)], 100×106 PBMCs were thawed, washed twice and

resuspended in complete medium: pre-warmed RPMI-1640
Glutamax medium, supplemented with 10% FCS and 1%
penicillin/streptomycin (Cat#15140-122, Life Technologies).
Monocytes were then positively selected with magnetic CD14
microbeads, according to the manufacturer’s instructions
(Cat#130-050-201, Miltenyi Biotec). The number of monocytes
was determined with the Countless2 automated cell counter
system (Cat#AMQAX1000, ThermoFisher Scientific) in the
presence of trypan blue. For each donor, monocytes were
seeded at 0.5×106 monocytes per well on 24-well NUNC plates
in 500 µL of complete media and allowed to rest for one hour at
37°C under 5% CO2. Five-hundred microliters of complete
media (non-infected) or A/USSR/90/1977(H1N1) at a
concentration of 1×106 pfu/mL in complete media (IAV-
challenged, MOI=1) were added to each sample. Following one
hour of staging at 4°C, plates were centrifuged at 1300 rpm for 10
minutes at 4°C, media was removed by pipette, and each well was
washed with 1mL complete media. The spin was repeated, media
removed by pipette, and samples were resuspended in 1mL pre-
warmed complete media before being transferred to an incubator
at 37°C under 5% CO2 to initiate infection (T0).

At each time point (T0, T2, T4, T6, and T8), samples were
mixed by pipetting and transferred to Eppendorf tubes. Wells
were washed with 300uL of PBS + 0.04% BSA and transferred to
the same tubes. Collection tubes were centrifuged at 1300 rpm
for 10 minutes, media was removed and replaced with 1mL
PBS + 0.04% BSA and an aliquot of 10µL was taken to count each
sample on a Countless2 automated cell counter system, before
repeating the centrifugations. Individual samples were adjusted
to 2×106 live cells/mL.

Samples were multiplexed for running on the 10X Chromium
(Cat#120223 & 1000074, 10X Genomics) by mixing equal
proportions from 6-8 samples in a manner that balanced
conditions and allowed us to assess for batch effects across
lanes (Supplementary Table 1). Multiplexed samples were
counted with the Countless2 automated cell counter system
and adjusted to target recovery of 10,000 cells per reaction of
the Chromium Single Cell 3’ Reagent Kits v3 (Cat#1000092 &
1000078, 10X Genomics) assuming a recovery rate of 50%. GEM
Generation & Barcoding, Post GEM-RT Cleanup & cDNA
Amplification, and 3’ Gene Expression Library Construction
were performed as per manufacturer’s instructions (50). All 13
libraries were mixed prior to sequencing across 13 different lanes
from an Illumina HiSeq X (28bp barcode + 91bp insert – target
400 M reads pairs per lane), leading to a total of 5.3 billon reads.

Sample Genotyping
Genotyping data [accession EGAS00001001895] were obtained
for all 200 individuals from the EvoImmunoPop cohort based on
both Illumina HumanOmni5-Quad BeadChips and whole-
exome sequencing with the Nextera Rapid Capture Expanded
Exome kit (18). The 3,782,260 SNPs obtained after stringent
quality control were then used for imputation, based on the 1,000
Genomes Project imputation reference panel (Phase 1 v3.2010/
11/23) (51), leading to a final set of 19,619,457 high-quality
SNPs, of which 7,766,248 SNPs had a MAF ≥5% in our cohort.
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Processing of scRNA-Seq Data
Basic pre-processing of the sequencing data was performed with
CellRanger v3.0.2 (52), including the mkfastq, count, and aggr
commands. Default parameters and our combined human-IAV
reference were used, and batch correction was disabled in the
aggr command. Cell-containing droplets (n=132,130) were
traced back to individual donors using two independent
methods, Demuxlet and SoupOrCell, which capitalize on
genetic variation in the sequencing reads (20, 53). Barcodes
with ambiguous and/or non-concordant calls between the two
programs were used to establish suitable QC metrics. We found
that barcodes deemed as doublets (i.e. the droplet contained two
or more cells originating from different donors) were more likely
to be nearest-neighbors in a knn-graph with other doublets than
assigned singlets. We used this feature to identify droplets
presumed to contain two or more cells originating from the
same donor; barcodes with > 5 doublets as nearest-neighbors
were excluded from further analysis (Supplementary
Figures 1A, B). Additionally, droplets containing low-quality
cells (i.e. damaged, dying) were excluded using the following
thresholds: <1500 total counts, <500 genes, or >50%
mitochondrial gene content (Supplementary Figure 1C). This
QC resulted in 96,386 single cells.

Transcriptomes (i.e. counts) were adjusted for the presence of
ambient RNA with SoupX, (https://github.com/constantAmateur/
SoupX, accessed November 28, 2019) (21), using estimated
contamination fractions (per 10X library) from SoupOrCell
(53). SoupX-adjusted counts were normalized using pool-based
size factors followed by deconvolution as implemented in the
scran R package (54). Feature selection was performed by
(i) constructing a mean-variance trend in the log-counts and
retaining genes found to exhibit more variation than expected
assuming Poisson-distributed technical noise, as implemented in
the makeTechTrend and TrendVar functions from package scran
(54), and (ii) selecting genes expressed in at least 25 cells
(n=22,603). The first 10 PCs of the data were retained for data
visualization and clustering analyses. Graph-based clustering was
performed by building the shared nearest-neighbor graph with the
buildSNNGraph function from scran (54) using a series of k
values, and cell clusters were defined with the igraph Walktrap
algorithm (55). Similar clustering results were obtained based on
the knn-graphs generated using k=25, 50, 75, and 100, and k=25
was used for all downstream analyses (Supplementary
Figure 2A). Cell types were predicted using SingleR and the
built-in BlueprintEncodeData reference (56). Based on the
clustering and cell-type predictions, we removed cells belonging
to clusters associated with lymphoid cell types or low QC metrics
from downstream analyses (Supplementary Figures 2B, C).

Accounting for Ambient RNA
Contamination in scRNA-Seq Data and
Assigning Cell States
Droplet-based scRNA-seq methods capture ambient mRNAs
present in the cell suspension in addition to cell specific
mRNAs. To estimate which cells in our experiment were
genuinely expressing mRNAs for CD14, FCGR3A (CD16), and

those originating from the virus, we implemented a two-step
strategy utilizing the estimateNonExpressionCells function of the
SoupX package (21). This function estimates whether each cell
contains significantly more counts of a provided gene-set than
would be expected under a Poisson model, given the estimated
ambient RNA from its library of origin and the maximum
contamination fraction. First, we used the viral genes to estimate
the true maximum contamination fraction, based on the
assumption that cells from the non-infected state should only
contain viral reads from ambient mRNA captured in their
droplets. To do so, we modified the estimateNonExpressionCells
function to return p-values, and performed the test on each of our
13 libraries with a range of maximum contamination values from
1-50% (step of 1%) using the viral genes. We then computed FDR
adjusted p-values for each maximum contamination value on the
88,559 high-quality, single monocytes. The number of non-
simulated cells deemed to significantly express IAV transcripts
(FDR<0.01) was used as a proxy for false positives. In examining
the relationship between this number and the number of IAV-
challenged cells found to significantly express viral transcripts at
FDR<0.01 (Figure 1C), we found that a maximum contamination
fraction of 10% resulted in a 1% false positive rate (defined as the
percentage of non-infected cells from T2-T8 that were deemed to
significantly express IAV transcripts). This parameter value was
then used to correct for contamination from ambient for all genes
considered (CD14, FCGR3A and IAV transcripts).

Assigning Cell States and Investigating
Sources of Variability in IAV Levels
We used a maximum contamination fraction of 10% to
test for significant expression of IAV transcripts in each
cell (Figures 1C–E). IAV-challenged cells that contained a
significant amount of IAV transcripts were considered as
infected, while the others were deemed bystanders. To
distinguish low from high IAV-transcribing cells, a Gaussian
mixture model was fitted to the total percentage of viral mRNAs
per cell across all infected cells, using the normalmixEM function
from mixtools R package with k=2 (57). Each cell was assigned to
the cluster with the highest posterior probability, and the cluster
of cells with higher IAV content was annotated as high
IAV-transcribing.

Characterizing Monocyte Subsets and
Transcriptional Profiles From
scRNA-Seq Data
Principal components analysis of 6,601 cells at T0 was used to
order monocytes along a differentiation axis separating CD14+

cells from CD16+ cells. We then computed the average
percentage of classical and nonclassical monocytes obtained by
flow cytometry across the eight donors, weighting each
individual by the number of high-quality cells in the scRNA-
seq data at T0. Based on these percentages (87.1% for classical
and 7.6% for nonclassical), we annotated the monocytes on each
side of the differentiation axis as classical and nonclassical,
respectively, with the remaining 5.3% of monocytes being
annotated as intermediates. Validity of our approach was
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confirmed by correlating the proportion of monocytes assigned
to each subset across the eight donors, with the percentage of
classical, intermediate and nonclassical monocytes estimated by
flow cytometry.

Differential expression between subsets was assessed for the
4,859 genes expressed at a normalized log2 count > 0.1 in any of
the 3 subsets. Specifically, Wilcoxon rank tests were
implemented in the scran package (54), using the findMarkers
function and blocking on donor. We considered genes to be
differentially expressed (DE) between monocyte subsets when
gene expression was significant at an FDR≤1% and log2FC>0.2.
The 848 genes that differed between classical (CL) and
nonclassical (NC) monocyte subsets were classified according
to their behavior in intermediate monocytes (INT). They were
either deemed ‘similar to classical’ (DE between INT and NC, but
not between INT and CL), ‘similar to nonclassical’ (DE between
INT and CL, but not between INT and NC), or ‘intermediate’ (all
other cases).

At later time points, comparisons between CD16+ and CD16-

monocytes subsets were done based on 5,681 genes expressed with
a normalized log2 count > 0.1 on average in either subset, in at least
one condition and time point. For each subset, log2 fold change in
gene expression relative to T0 were correlated across times points.
Differential expression between CD16+ and CD16- cells was
assessed with findMarkers (54), based on Wilcoxon rank tests
and blocking on donors, time points and condition. Again, an
FDR≤1% and log2FC>0.2 were required to define differentially
expressed genes. To assess how CD16+/- status alters the infection
of monocytes by IAV, we used logistic regression to model
bystander/infected status as a function of CD16+/- status, while
adjusting on donor, and time point (as factors).

Characterizing Subset-Specific
Responses to IAV Challenge
To allow comparison between responses of CD16+ and CD16-

monocytes, 100 cells were subsampled from each subset and cell
state, and at each time point. When subsampling, we ensured
balanced representation of all donors across each monocyte
subset and cell state, by using sampling weights that were
inversely proportional to each donor representation in the
original dataset. After sampling, a total of 6,669 genes with
normalized log2 counts >0.1 on average in at least one group
(cell-state x subset x time point) was selected for further analyses.
For each monocyte subset, differences in expression between cell
states (unexposed, bystander, infected) as well as between high-
and low-IAV transcribing infected cells were performed using
the findMarkers function from the scran package (54) and
blocked on time point. For each comparison, genes were
considered to be differentially expressed between cell states
when gene expression was significant at an FDR=1%
(Wilcoxon rank tests) and the log2 fold change was > 0.2. In
addition, for each comparison between cell states, we tested for
differences in response between subsets using a linear model of
the form:

Expri ∼ Statei + subseti + Statei · subseti (1)

where Expri is the expression of the gene being tested in cell i,
Statei is an indicator variable that distinguishes the two cell states
being compared (e.g. unexposed and bystander), and subseti is an
indicator variable that reflects the CD16+/- status of cell i. The 335
genes with significant interactions at a 1% FDR (for unexposed-
bystander and unexposed-infected comparisons) were clustered
using the hclust R function with method ‘Ward.D2’.
DynamicTreeCut algorithm (58) was used to identify eight
major patterns of response to IAV.

Transcription Factor Enrichment Analyses
To estimate Transcription Factor (TF) activity and define TF-
targets relationships, we ran the R SCENIC pipeline (29) on the
expression matrix (pre-normalization) on a random subsample
of 4800 cells (100 cells from each donor at each time point and
each condition, pre-exclusion of dying and contaminant cells)
with default parameters. For each gene, motif-enrichment was
considered for either cis-regulatory regions located <10kb from
the TSS (distal regulatory elements), or between 500 bp upstream
and 100 bp downstream of the promoter (proximal regulatory
elements). To do so, motif-enrichment scores for all human
genes (hg38 build, refseq_r80), were retrieved from https://
resources.aertslab.org/cistarget and used as input for the
Rcistarget package (29).

Sets of high-confidence targets for the 113 TFs whose activity
could be quantified by SCENIC were then extracted and used for
enrichment analysis. For each gene module, TF enrichment was
assessed using a Fisher’s exact test with the 6,669 expressed genes
as background (Supplementary Data 3). Resulting p-values were
adjusted using a global Benjamini-Hochberg correction for all
eight modules and 113 TFs.

For each TF, with its targets enriched among one of the eight
modules, TF activity inferred by SCENIC was used to test for
subset-specific activity using a linear model of the form:

TFi ∼ Statei + subseti + Statei · subseti (2)

where TFi is the activity of the TF being tested in cell i, Statei is an
indicator variable that distinguishes the two cell states being
compared (e.g. unexposed and bystander), and subseti is an
indicator variable that reflects the CD16+/- status of cell i.
Average TF activity was then computed for each cell state,
subset and time point, and correlated with gene expression of
the associated module, to assess the link between TF activation
and the TF-target enriched modules.

Association of the Outcome of IAV
Infection With Basal Gene Expression
For each of the three monocyte subsets detected at basal state, a
Kruskall-wallis test was used to search for genes whose
expression levels significantly differ across donors. Within each
monocyte subset, we then computed the average expression of
each gene for all eight donors and correlated it with the
percentage of infected cells at 4hpi. Genes that differed in
expression between donors (FDR≤1%), and passed a nominal
p-value threshold of 0.01 for association with IAV levels in any of
the 3 subsets, were selected for downstream enrichment analyses.
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For genes nominally correlated with viral mRNA levels, TF
enrichment was assessed as previously using a Fisher’s exact
test with all 4,859 genes expressed at T0 as background
(Supplementary Data 4), and Benjamini-Hochberg correction
for all 113 TFs was applied.

Gene Ontology Enrichment Analyses
All Gene Ontology (GO) enrichment analyses were performed
with the GOSeq package using default settings (59). Background
gene sets consisted of all genes that had average log-normalized
expression values > 0.1 in at least one of the groupings being
examined, and are described in the text. Only enrichments
significant at FDR≤5% are reported.

Pseudo-Bulk Estimates From
scRNA-Seq Data
Pseudo bulk estimates of IAV mRNA levels were computed by
measuring, for each donor and time point, the mean percentage
of reads of viral origin across all cells from the sample. At each
time point, we then used a Pearson’s correlation test to compare
pseudo-bulk estimates for the 8 donors with IAV mRNA levels
obtained in bulk data at 6hpi.

Monocyte Subset Characterization of
EVOIMMUNOPOP Samples via Flow
Cytometry
For 174 of the 200 EVOIMMUNOPOP donors, proportions of
classical, intermediate and nonclassical monocytes were
determined based on a fraction of 105 CD14+ positively-
selected monocytes, stained according to the manufacturer’s
instructions, with fluorescent APC-conjugated anti-CD14 and
PE-conjugated anti-CD16 antibodies (Cat#130-091-243 and Cat
#130-091-245, respectively, Miltenyi Biotec). Samples were then
analyzed on a MACSQuant Analyzer 10 benchtop flow
cytometer (Miltenyi Biotec).

Quantification of Canonical Monocyte
Subsets in EVOIMMUNOPOP Samples
FlowJo v10.6.1 software (60) was used with the gating strategy
depicted in Supplementary Figure 8 to quantify monocyte
subsets for 174 EVOIMMUNOPOP donors. Population-level
differences in proportion of canonical monocyte subsets were
assessed using Wilcoxon Rank tests. Correlation of the ratio of
CD16+ to CD16- cells with IAV mRNA levels was assessed using
a linear model of the form

IAV ∼ ratio + Pop, (3)

where ‘IAV’ are IAV mRNA levels, ‘ratio’ is the percentage of
CD16+ monocytes (nonclassical+intermediates) divided by the
percentage of CD16- monocytes (classical), and ‘Pop’ is and
indicator variable separating AFB from EUB individuals.

Analysis of Bulk RNA-Seq Profiles From
the EVOIMMUNOPOP Cohort
A combined human-IAV reference was generated by
concatenation of the primary human genome assembly

(GRCh38) with the 8 segments of the human influenza A
virus (IAV) A/USSR/90/1977(H1N1) genome (accession
numbers CY010372-CY010379). Comprehensive human gene
annotation was obtained from GENCODE (release 27) and
merged with the 12 known transcripts of A/USSR/90/1977
(H1N1). RNA-seq reads (FASTQs) for all 970 samples that
passed quality control in our previous study (18) [accession
EGAS00001001895] were mapped to the combined reference
with the STAR aligner (v.2.5.0a) (61) and assessed for quality
with QualiMap ‘bamqc’ and ‘rnaseq’ (62, 63). Expression of
viral mRNAs was measured as the percentage of uniquely-
mapped reads aligning to the IAV genome. Reassuringly, the
mean percentage of RNA-seq reads among samples from the
IAV-challenged condition was 5.86% versus <0.01% in the
other four conditions. Comparison of the percentage of IAV
reads between populations was done using a Wilcoxon rank
test. StringTie (v.1.3.3) (64) was used to quantify expression
levels in transcripts per million mapped reads (TPM) for each
annotated transcript. Gene expression data were filtered to
remove genes with little evidence of activation (mean zTPM
score < -3) (65) in any of the 5 conditions, and their quality was
checked by principal component analysis (PCA). As GC
content, 5′/3′ bias, date of the experiment and library batch
were previously determined to be the strongest confounding
factors on transcript expression (18), we corrected the data for
these factors. First, we adjusted the data for GC content and 5′/
3′ bias using linear models. Then, we imputed missing values by
k-nearest neighbor imputation and adjusted for experiment
date and library batch by sequentially running ComBat (66) for
each batch effect, with condition and population as covariates.
After batch effect correction, only IAV-stimulated samples were
kept for downstream analyses.

Cell States Deconvolution From
Bulk RNA Sequencing
To assess the percentage of total transcripts that originate from
each cell state across the 199 IAV-challenged samples, we pooled
cells from T6 into 3 groups, based on their assigned cell-state
(bystander, infected: high and low IAV-transcribing) and to
which we added a 4th group containing all singlets that were
either (i) assigned to cluster numbers 3, 8, 10, and 11 (dying cells)
or (ii) discarded based on their high mitochondrial content or
low read counts (dead cells). We then estimated pseudo-bulk
profiles for each group by summing UMIs across all cells and
computing the number of UMIs associated to each gene per
million of sequenced UMIs. TPM profiles obtained from bulk
data were then normalized to improve comparison with pseudo-
bulk. Specifically, we first computed a global pseudo-bulk profile
of the entire single cell dataset as the average of the pseudo bulk
profiles from the 4 cell states (bystander, infected: high and low
IAV-transcribing, or dying/dead), weighted by the percentage of
UMIs they contribute to the overall pool of cells. To account for
the difference in how gene expression is quantified between the
two methods (3’ end counts for scRNA-seq and full-length gene
coverage for bulk RNA-seq), we computed for each gene i a
normalization factor si given by
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si = log (TPMi) − log (PBi) (4)

where PBi is the number of UMI per million for gene i in the
global pseudo-bulk profile, and TPMi is the average expression of
the gene i in the 199 IAV-stimulated samples from the bulk
RNA-seq data. For each gene, si was then subtracted from the log
transformed TPM to yield normalized TPM profiles. We next
applied DeconRNAseq (67) to the normalized log TPM profiles
from all individuals, using the log-transformed pseudo bulk
profiles from the 4 cell states as a basis for deconvolution.
Quality of the deconvolution was assessed using leave-one-out
cross validation, based on the eight individuals for whom we had
scRNA-seq data. Specifically, for each of these eight individuals,
bulk mRNAs were decomposed using pseudo-bulk profiles
recomputed based on the seven other individuals. The
resulting proportions were then compared with the percentage
of UMIs that originate in each cell-state in the scRNA-seq to
assess the quality of the deconvolution. Excluding IAV genes
from bulk transcriptomic profiles prior to preforming the
deconvolution had virtually no impact on the estimated
proportions (Pearson r > 0.98 with proportions estimated
without excluding IAV genes), confirming that our estimates
were not driven by IAV expression alone. Comparisons between
populations were performed using Wilcoxon rank tests.

The effect of the percentage of infected cells and percentage of
high IAV-transcribing cells among infected cells on the total IAV
mRNA levels were assessed by modelling

IAV ∼ INF + POP (5)

And

IAV ∼ HI + POP (6)

where IAV are the IAV mRNA levels across the 199 bulk mRNA
samples, INF and HI are respectively the percentage of infected
cells and the percentage of high IAV-transcribing cells among
infected cells that we estimated from the deconvolution, and POP
is a factor variable reflecting the population (EUB or AFB). The
fraction h of population differences attributable to difference in
rate of infection was estimating by comparing model (5) with
model (7) below

IAV ∼ POP (7)

and computing h = 100� (1 − b5
b7
), where bi is the effect of

population on IAV levels in model (i). To assess how the
contribution of the percentage of high IAV transcribing cells to
total IAV mRNA levels differed between populations, we used a
linear model of the form

IAV ∼ HI + POP +HI :POP (8)

and tested for significant effect of the interaction term HI : POP
on IAV mRNA levels.

Flow Cytometry Analysis of Monocyte
Susceptibility to IAV Infection
Frozen PBMCs from 8 individuals included in the
EVOIMMUNOPOP cohort were thawed and allowed to rest

overnight at 37°C, 5% CO2 in 25cm2
flasks. Cells were then

seeded at 2×106/ml in untreated 96-well plates in RPMI-1640
GlutaMAX supplemented with 10% FCS in the presence of A/PR/
8/34 (H1N1) (Charles River Laboratories) at a MOI=1 or media
alone for 6h at 37°C, 5% CO2. At the end of the incubation, cells
were washed in FACS buffer (1X PBS supplemented with 2% FCS
and 1mM EDTA) and stained with the LIVE/DEAD fixable violet
dead cell stain kit (Cat#L34955, Life Technologies) and human Fc
block for 15 min at 4°C, protected from light. Cells were then
washed and stained with a mix of 6 surface antibodies for 20 min
at 4°C, protected from light (anti-human CD19 BV510
Cat#562947, CD3 APC Cat#561811, CD16 PerCp-Cy5.5
Cat#560717, CD69 PE-Cy7 Cat#557745 from BD Biosciences,
anti-human CD14 Cat#301806 from Biolegend, anti-human
CD56 APC-Vio770 Cat#130-114-739 from Miltenyi Biotech).
After centrifugation at 300g for 5 min, cells were incubated with
the Fixation/Permeabilization solution from the Cytofix/
Cytoperm kit (BD Biosciences) for 15min at 4°C, followed by
intracellular staining with FITC conjugated anti-NP (Cat#MA1-
7322, ThermoFisher Scientific) in BD Perm/Wash buffer (1X) for
30min at 4°C. Cells were washed and acquired using a
MACSQuant (Miltenyi Biotec), and data were analyzed
with FlowJo v10 with the gating strategy depicted in
Supplementary Figure 6A.
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Dissecting human population variation in single-cell

responses to SARS-CoV-2

Environmental and genetic drivers of immune variability. The year 2019 was marked by
the outbreak of a novel coronavirus strain responsible of severe acute respiratory syndrome (SARS-
CoV-2) in humans. The ensuing `coronavirus disease 2019' (COVID-19) pandemic highlighted the
importance of dissecting the variability of outcomes to viral infection (� 3.2.2, page 62).

Advanced age and male sex quicky appeared as the two main predictors of severe COVID-19 risk
(Takahashi et al., 2020; O'Driscoll et al., 2021), which was also linked to changes in immunological
parameters (Lee et al., 2020; Bastard et al., 2020; Hadjadj et al., 2020), as well as genetic variation
(Shelton et al., 2021; Kousathanas et al., 2022). Together, these factors may explain why COVID-
19 risks are not uniformly distributed across individuals and populations with di�erent genetic and
environmental backgrounds.

From an evolutionary point of view, there is increasing evidence to suggest that viral pathogens
have exerted one of the strongest selective pressures on our genomes (Enard and Petrov, 2018). For
example, strong genetic adaptation starting around 25 thousand years ago�in coincidence with the
appereance in East Asia of the parental clade of coronaviruses�appears to have targeted multiple
genes encoding proteins that interact with coronaviruses, such as ACE2, in East Asian populations
only (Souilmi et al., 2021) (� 2.3, page 46).

Furthermore, segments introgressed from Neandertal into Europeans and overlapping immune
relevant genes, such as OAS1 and CCR9, have been associated to both an increased and a decreased
risk of severe COVID-19 (Zeberg and Pääbo, 2020, 2021). Yet, prior to this study we did not know
how these events a�ected our immune responses to SARS-CoV-2 (� 2, page 36) , nor how these
responses vary across human populations (� 3.2, page 59) and immune cell types (� 3.1, page 55).

To address these questions, we at the HEG Unit proceeded in four steps. First, we sought to
de�ne the boundaries of natural variability in the immune response to viral infection by performing
scRNA-seq on peripheral blood mononuclear cells (PBMCs) from over 200 healthy donors across
three human groups with di�erent genetic and environmental backgrounds (i.e., n = 80 AFB and
n = 80 EUB from the EIP cohort, plus n = 62 other donors of East Asian origin), stimulated
with either SARS-CoV-2 or IAV. Next, we tested for associations between gene expression variation
and genetic variability, through the mapping of expressed quantitative trait loci (eQTLs; � 1.2.4,
page 15), to delineate the genetic bases of transcriptional response variability in a cell type-speci�c
manner. Third, we tested these eQTLs for signals of natural selection and Neanderthal introgression
to assess their evolutionary origins. Finally, we assessed the overlap between these genetic factors
and the variants that have been associated to COVID-19 risk genome-wide (� 1.2.1, page 8).

Overall, we provide an extensive assessment of genetic, nongenetic and evolutionary predictors
of variability in immune responses to viral infection across healthy individuals and populations,
including plausible causal links between genotype, gene expression endophenotypes and COVID-19
phenotypes at cell-type resolution.
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Dissecting human population variation in 
single-cell responses to SARS-CoV-2

    
Yann Aquino1,2,27, Aurélie Bisiaux1,27, Zhi Li1,27, Mary O’Neill1,27, Javier Mendoza-Revilla1, 
Sarah Hélène Merkling3, Gaspard Kerner1, Milena Hasan4, Valentina Libri4, Vincent Bondet5, 
Nikaïa Smith5, Camille de Cevins6, Mickaël Ménager6,7, Francesca Luca8,9,10, Roger Pique-Regi8,9, 
Giovanna Barba-Spaeth11, Stefano Pietropaoli11, Olivier Schwartz12, Geert Leroux-Roels13, 
Cheuk-Kwong Lee14, Kathy Leung15,16, Joseph T. Wu15,16, Malik Peiris17,18,19, Roberto Bruzzone18,19, 
Laurent Abel20,21,22, Jean-Laurent Casanova20,21,22,23,24, Sophie A. Valkenburg18,25, 
Darragh Duffy5,19, Etienne Patin1, Maxime Rotival1,28 ✉ & Lluis Quintana-Murci1,26,28 ✉

Humans display substantial interindividual clinical variability after SARS-CoV-2 
infection1–3, the genetic and immunological basis of which has begun to be 
deciphered4. However, the extent and drivers of population differences in immune 
responses to SARS-CoV-2 remain unclear. Here we report single-cell RNA-sequencing 
data for peripheral blood mononuclear cells—from 222 healthy donors of diverse 
ancestries—that were stimulated with SARS-CoV-2 or influenza A virus. We show that 
SARS-CoV-2 induces weaker, but more heterogeneous, interferon-stimulated gene 
activity compared with influenza A virus, and a unique pro-inflammatory signature  
in myeloid cells. Transcriptional responses to viruses display marked population 
differences, primarily driven by changes in cell abundance including increased 
lymphoid differentiation associated with latent cytomegalovirus infection. Expression 
quantitative trait loci and mediation analyses reveal a broad effect of cell composition 
on population disparities in immune responses, with genetic variants exerting  
a strong effect on specific loci. Furthermore, we show that natural selection has 
increased population differences in immune responses, particularly for variants 
associated with SARS-CoV-2 response in East Asians, and document the cellular and 
molecular mechanisms by which Neanderthal introgression has altered immune 
functions, such as the response of myeloid cells to viruses. Finally, colocalization and 
transcriptome-wide association analyses reveal an overlap between the genetic basis 
of immune responses to SARS-CoV-2 and COVID-19 severity, providing insights into 
the factors contributing to current disparities in COVID-19 risk.

A notable feature of the COVID-19 pandemic is the substantial clini-
cal variation among individuals infected with SARS-CoV-2, ranging 
from asymptomatic infection to fatal disease1–3. Risk factors include 
advanced age1 as well as male sex5, comorbidities6 and host genetics4,7,8. 
Furthermore, variation in innate immunity9–11—including inborn errors 
or neutralizing auto-antibodies against type I interferons12–14—contri-
bute to variation in clinical outcome, and epidemiological and genetic 
data suggest differences between populations6,7,15,16. This, together with 
reports of ancestry-related differences in transcriptional responses 
to immune challenges17–19, calls for investigations of the magnitude 
and drivers of variation in immune responses to SARS-CoV-2 across 
populations worldwide.

Pathogen-imposed selection pressures have been paramount dur-
ing human evolution20. Human adaptation to RNA viruses, through 
selective sweeps or archaic admixture, has been identified as a source 
of population genetic differentiation18,21,22 and adaptation signals have 
been reported at coronavirus-interacting proteins in East Asians23,24. 

There is also evidence for links between archaic introgression and 
immunity25, with Neanderthal haplotypes associated with COVID-19 
severity26,27. However, the effects of natural selection and archaic admix-
ture on immune responses to SARS-CoV-2 remain to be investigated.

We addressed these questions by exposing peripheral blood mono-
nuclear cells (PBMCs) from individuals of Central African, West  
European and East Asian descent to SARS-CoV-2 and, for comparison, 
to influenza A virus (IAV). By combining single-cell RNA-sequencing 
(scRNA-seq) with quantitative and population genetics approaches, 
we delineate environmental and genetic drivers of population differ-
ences in immune responses to SARS-CoV-2.

Single-cell responses to RNA viruses
We characterized transcriptional responses to SARS-CoV-2 and IAV by 
performing scRNA-seq analysis of PBMCs from 222 SARS-CoV-2-naive 
donors originating from three geographical locations (Central Africa, 

https://doi.org/10.1038/s41586-023-06422-9

Received: 10 November 2022

Accepted: 11 July 2023

Published online: xx xx xxxx

Open access

 Check for updates

A list of affiliations appears at the end of the paper.



2 | Nature | www.nature.com

Article

n = 80 male; West Europe, n = 80 male; East Asia, n = 36 female and 
26 male) and with different genetic ancestries (Supplementary Fig. 1 
and Supplementary Table 1). PBMCs were treated for 6 h (Supple-
mentary Note 1, Supplementary Fig. 2 and Supplementary Table 2) 
with a mock-control (non-stimulated), SARS-CoV-2 (ancestral strain, 
BetaCoV/France/GE1973/2020) or IAV (H1N1/PR/8/1934). We cap-
tured over 1 million high-quality single-cell transcriptomes (Fig. 1a, 
Supplementary Fig. 3 and Supplementary Table 3a). By combining 
transcriptome-based clusters with cellular indexing of transcriptomes 
and epitopes by sequencing (CITE-seq; Methods), we defined 22 cell 
types across myeloid, B, CD4+ T, CD8+ T and natural killer (NK) immune 
lineages (Fig. 1b, Supplementary Fig. 4 and Supplementary Table 3b–d). 
After virus exposure, most cell types showed moderate changes in 
abundance, with the strongest changes observed in the myeloid line-
age after IAV treatment (Supplementary Note 2 and Supplementary 
Table 3e).

After adjusting for technical factors (Methods and Supplementary 
Fig. 5), we found that lineage identity was the main driver of gene expres-
sion variation (around 32%), followed by virus exposure (around 27%) 
(Fig. 1b,c). Both viruses induced a strong transcriptional response, 
with 2,914 genes upregulated (false-discovery rate (FDR) < 0.01, 
log2[FC] > 0.5; out of 12,655 with detectable expression; Supplemen-
tary Table 3f). These responses were highly correlated across lineages 
and featured a strong induction of interferon-stimulated genes (ISGs) 
(Extended Data Fig. 1a). However, myeloid responses were markedly 
heterogeneous, with SARS-CoV-2 inducing a transcriptional network 
enriched in inflammatory-response genes (Gene Ontology (GO): 
0006954; fold-enrichment (FE) = 3.4, FDR < 4.9 × 10−8; Supplemen-
tary Table 3g). For example, IL1A, IL1B and CXCL8 were highly and 
specifically upregulated in response to SARS-CoV-2 (log2[FC] > 2.8, 
FDR < 2.3 × 10−36), consistent with in vitro and in vivo studies28,29.

To assess interindividual variability in the response to viruses, we 
summarized each individual’s response as a function of their mean 
ISG expression (Supplementary Table 3h). SARS-CoV-2 induced more 
variable ISG activity than IAV across lineages30, with myeloid cells dis-
playing the strongest differences (Levene test, P < 6.2 × 10−6; Extended 
Data Fig. 1b). We determined the contributions of the various inter-
ferons (IFNs) to variation of ISG activity using single-molecule arrays 
(SIMOA) to quantify the levels of secreted IFNα, IFNβ and IFNγ. In the 
SARS-CoV-2 condition, IFNα accounted for up to 57% of ISG variabil-
ity (Extended Data Fig. 2a,b), consistent with its determinant role in 
COVID-19 pathogenesis13. IFNA1-21 transcripts were mostly produced 
by infected CD14+ monocytes and plasmacytoid dendritic cells (pDCs) 
after IAV stimulation, whereas pDCs were the only important source 
of IFNA1-21 after SARS-CoV-2 stimulation (that is, producing 88% of 
transcripts; Extended Data Fig. 2c). IFNA1-21 expression by pDCs was 
weaker after stimulation with SARS-CoV-2 (log2[FC] = 6.4 versus 12.5 
for IAV, Wilcoxon’s rank-sum test, P = 1.2 × 10−16). Nevertheless, pat-
terns of interindividual variability for ISG activity were notably simi-
lar after virus treatment (r = 0.60, Pearson’s P < 1.2 × 10−22; Extended 
Data Fig. 2d), indicating that the IFN-driven response is largely shared 
between SARS-CoV-2 and IAV.

Cellular heterogeneity across populations
We assessed how immune responses differ across populations by com-
paring male individuals of African and European ancestries, who were 
sampled in a single recruitment effort thereby mitigating potential 
batch effects (Methods). As East Asian donors were recruited indepen-
dently and present distinct demographic characteristics (Supplemen-
tary Table 1), they were excluded from cross-population comparisons. 
Focusing on cellular proportions, we detected marked population 
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differences in lineage composition, particularly for NK cells (Fig. 2a 
and Supplementary Table 4a). A subset identified as memory-like NK 
cells31 constituted 55.2% of the NK compartment in African-descent 
individuals, but only 12.2% in Europeans (Wilcoxon’s rank-sum test, 
P < 1.3 × 10−18; Extended Data Fig. 3a,b and Supplementary Fig. 6). African 
donors also presented higher proportions of CD16+ monocytes32 and 
memory lymphocyte subsets, such as memory B cells, effector CD4+ 
T cells and effector memory re-expressing CD45RA (EMRA) CD8+ T cells 
(Wilcoxon’s rank-sum test, P < 4.7 × 10−3).

Across lineages, we found 3,389 genes displaying population differ-
ences in expression in the basal state (popDEGs; FDR < 0.01, |log2[fold 
change (FC)]| > 0.2) and 898 and 652 displaying differential responses 
between populations (popDRGs; FDR < 0.01, |log2[FC]| > 0.2) after 
stimulation with SARS-CoV-2 and IAV, respectively (Fig. 2b and Sup-
plementary Table 4b,c). popDRGs included key immunity regulators, 
such as the IFN-responsive GBP7 and the gene coding for the mac-
rophage inflammatory protein MIP-3, CCL23, both of which were more 
strongly upregulated in Europeans (Fig. 2c). The GBP7 response was 
common to both viruses and all lineages (log2[FC] > 0.88, Student’s 
t-test, adjusted P (Padj) < 1.4 × 10−3), but that of CCL23 was specific to 
SARS-CoV-2-stimulated myeloid cells (log2[FC] = 0.72, Student’s t-test, 

Padj = 5.3 × 10−4). We estimated that population differences in cellular  
composition accounted for 15–47% of popDEGs and for 7–46% of  
popDRGs, with the strongest impact on NK cells (Fig. 2b,d and Extended 
Data Fig. 3c). Variation in cellular composition mediated pathway-level 
differences in response to viral stimulation between populations (Sup-
plementary Table 4d). For example, in virus-stimulated NK cells, genes 
involved in the promotion of cell migration, such as CSF1 or CXCL10, 
were more strongly induced in Europeans (normalized enrichment 
score > 1.5, gene set enrichment analysis, Padj < 0.009). However, the 
loss of this signal after adjustment for cellular composition (Fig. 2e) 
indicates that fine-scale cellular heterogeneity drives population dif-
ferences in immune responses to SARS-CoV-2.

Repercussions of CMV infection
We next investigated the sources of population differences in cellular 
composition. We found no strong genetic effects on cellular propor-
tions (Supplementary Note 3 and Supplementary Table 4e), suggesting 
a predominantly environmental origin to such population differences. 
As latent cytomegalovirus (CMV) infection alters cellular propor-
tions33–35 and its prevalence varies across populations36, we determined 
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the CMV+/− serostatus of the samples. All but one of the African-descent 
individuals were CMV+ (99%), versus 31% of Europeans, and CMV+ was 
associated with higher proportions of memory-like NK and CD8+ EMRA 
T cells in Europeans (Fig. 2f and Extended Data Fig. 3d). Using mediation 
analysis, we estimated that CMV serostatus accounts for up to 73% of the 
differences in the proportion of these cell types between Africans and 
Europeans; these differences substantially impact the transcriptional 
response to SARS-CoV-2 (Supplementary Table 4f,g, Supplementary 
Notes 4 and 5 and Supplementary Fig. 7). However, other than its effects 
on cellular composition, CMV+ had a limited direct effect on SARS-CoV-2 
responses, with only one gene presenting significant expression dif-
ferences in response to this virus (ERICH3 in CD8+ T cells, log2FC = 1.7, 
FDR = 0.007; Supplementary Table 4h). These findings highlight how 
differing environmental exposures, such as CMV infection, may lead 
to population differences in the responses to SARS-CoV-2 through 
changes in the lymphoid composition.

Genetic basis of the leukocyte response
To assess the effects of human genetic variants on transcriptional varia-
tion, we mapped expression quantitative trait loci (eQTLs) jointly in all 
three populations, focusing on cis-regulatory variants. At an FDR of 1%, 
we identified 1,866–4,323 independent eQTLs per lineage, affecting 
5,198 genes (Fig. 3a and Supplementary Table 5a). Among the 9,150 
eQTLs detected, 11% were ancestry specific (n = 973; Supplementary 
Note 6), underscoring the importance of including diverse ancestries 
in genomics research. Increasing the resolution to 22 cell types revealed 
an additional 3,603 eQTLs (Extended Data Fig. 4a,b and Supplementary 
Table 5b). We found that 79% of eQTLs were replicated (P < 0.01) in at 
least three cell types, but only 22% were common to all lineages. In total, 
812 eQTLs were cell-type-specific, around 45% of which were detected 
in myeloid cells (Extended Data Fig. 4b), including a pDC-specific eQTL 
(rs114273142) at MIR155HG—hosting a micro RNA that promotes sensitiv-
ity to type I IFNs37 (Extended Data Fig. 4c and Supplementary Note 7). 
Broadly, eQTL effect sizes were more correlated across ontogenetically 
related cell types (mean correlation within and between lineages of 
r = 0.60 and 0.47, Wilcoxon’s rank-sum test, P = 6.2 × 10−6; Extended 
Data Fig. 4d).

Focusing on variants that altered responses to viral stimuli (reQTLs), 
we identified 1,505 reQTLs affecting 1,213 genes (Supplementary 
Table 5c,d). Supporting the replicability of the results, our IAV reQTLs 
are enriched in genes that are reported to contain IAV-specific eQTLs19 
(OR > 3.2, Fisher’s exact test, P < 9.4 × 10−4), with more than 98% of 
replicated eQTLs affecting expression in the same direction (Supple-
mentary Note 8, Supplementary Fig. 8 and Supplementary Table 5e). 
The correlation of reQTL effect sizes across ontogenetically related 
cell types was weaker than for eQTLs (r = 0.36 and 0.50, respectively, 
Wilcoxon’s rank-sum test, P < 5.6 × 10−13; Extended Data Fig. 4d). Fur-
thermore, the proportion of virus-dependent reQTLs differed across 
cell types. In lymphoid cells, only 7.7% of reQTLs differed in effect size 
between viruses (interaction P < 0.01; Fig. 3b,c), whereas 49% of myeloid 
reQTLs were virus dependent (interaction P < 0.01), with 46 and 185 
reQTLs displaying specific, stronger effects after SARS-CoV-2 and IAV 
stimulation, respectively. The strongest SARS-CoV-2 reQTL (rs534191, 
Student’s t-test, P = 1.96 × 10−16 (SARS-CoV-2) and P = 0.05 (IAV); Fig. 3d) 
was identified in myeloid cells at MMP1, encoding a biomarker of  
COVID-19 severity38. These analyses reveal that the effects of virus- 
induced reQTLs are cell-type dependent and highlight the virus speci-
ficity of the genetic basis of the myeloid response.

Ancestry effects on immune responses
To evaluate the contribution of genetic variation to population differ-
ences in immune responses, we focused on popDEGs and popDRGs. We 
found that 11–24% of the genes expressed in each lineage had at least one 

eQTL, but this proportion increased up to 56% and 60% for popDEGs  
and popDRGs that were not explained by cellular heterogeneity, 
respectively (Fisher’s exact test, P < 1.4 × 10−6; Fig. 3e and Extended Data  
Fig. 5a). The popDEGs and popDRGs displaying the largest population 
differences were more likely to be under genetic control and associated 
with large-effect (r)eQTLs (Extended Data Fig. 5b–d). We used media-
tion analysis to assess, for each gene, immune lineage and virus, the frac-
tion of population differences explained by genetics (that is, the most 
significant eQTL) or cellular heterogeneity (Supplementary Table 6 and 
Supplementary Note 9). Cellular composition had a broad effect on 
population differences in gene expression and viral responses (explain-
ing 16–62% of differences per lineage and virus, with the strongest effect 
in NK cells), whereas genetics had a weaker effect (explaining 13–35% 
of population differences; Fig. 3f and Extended Data Fig. 5e). However, 
genetics had strong effects on a gene subset (141–433 genes per line-
age) for which they accounted for 32–58% of population differences. 
For example, 81–100% of the differences in GBP7 expression between 
Africans and Europeans were explained by a single variant displaying 
strong population differentiation (rs1142888, derived allele frequency 
(DAF) = 0.13 and 0.53 in Africans and Europeans, respectively, fixation 
index (FST) = 0.26, |βeQTL| > 1.7 across lineages after stimulation). Thus, 
population variation in immune responses is driven largely by cellular 
heterogeneity, but genetic variants with marked allele frequency vari-
ation contribute to population differences at specific loci.

Natural selection and SARS-CoV-2 responses
To investigate the contribution of natural selection to population dif-
ferences in immune responses, we first searched for overlaps between 
(r)eQTLs and genome-wide signals of local adaptation, measured by 
the population branch statistic (PBS)39. We identified 1,616 eQTLs 
(1,215 genes) and 180 reQTLs (166 genes) displaying strong popula-
tion differentiation (empirical P < 0.01), 90 of which were ancestry 
specific (Supplementary Table 7a and Supplementary Note 6). Among 
genes harbouring putatively adaptive (r)eQTLs, we found key players  
in IFN-mediated antiviral immunity, such as DHX58 and TRIM14 in 
Africans, ISG20, IFIT5, BST2 and IFITM2-3 in Europeans, and IFI44L and 
IFITM2 in East Asians.

We then used CLUES40 to identify rapid changes in (r)eQTL frequency 
over the last 2,000 generations (that is, 56,000 years) in each popula-
tion (Supplementary Fig. 9 and Supplementary Table 7b). We found sig-
nals of rapid adaptation (maximum |Z| > 3) targeting the same (IFITM2, 
IFIT5) or different (ISG20, IFITM3, TRIM14) eQTLs at highly differentiated 
genes, suggesting repeated adaptations targeting IFN-mediated anti-
viral immunity (Supplementary Note 10, Supplementary Table 7c and 
Supplementary Fig. 10). We determined whether selection had altered 
gene expression in specific cell types or in response to SARS-CoV-2 or 
IAV by testing for increased population differentiation (PBS) at (r)eQTLs 
within each cell type, relative to random single-nucleotide polymor-
phisms (SNPs) matched for allele frequency, linkage disequilibrium (LD) 
and distance to the nearest gene. In the basal state, eQTLs were more 
strongly differentiated in Europeans, the strongest signal observed for 
γδ T cells (Extended Data Fig. 6a). Among popDEGs for which genetics  
mediates more than 50% of the differences between Africans and  
Europeans, 34% presented signals of rapid adaptation in Europeans 
(versus 21% in Africans, Fisher’s exact test, P = 7.7 × 10−6). For example,  
population differences at GBP7 have been driven by a frequency 
increase, over the last 782–1,272 generations, of the rs1142888-G allele 
in Europeans (maximum |Z| > 4.3, Extended Data Fig. 6b).

Focusing on responses to viruses, SARS-CoV-2 reQTLs displayed 
increased population differentiation in East Asians (FE = 1.24, one-sided 
resampling, P < 2 × 10−4; Extended Data Fig. 6c) and were enriched in 
East-Asian-specific variants (OR > 4.2, Fisher’s exact test, P < 2.3 × 10−6; 
Supplementary Note 6 and Supplementary Table 7d). Furthermore, 
among SARS-CoV-2-specific reQTLs, 28 reQTLs (5.3%) displayed 
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signals of adaptation in East Asians starting 770–970 generations ago 
(around 25,000 years)—a timeframe associated with genetic adapta-
tion at SARS-CoV-2-interacting proteins23 (OR relative to other popu-
lations = 2.6, Fisher’s exact test, P = 7.3 × 10−4; Fig. 4a and Extended 
Data Fig. 7a–c). An example is the immune mediator LILRB1, which 
has a SARS-CoV-2-specific reQTL (rs4806787) in pDCs (Extended Data 
Fig. 7d). However, the selection events making the largest contribution 
to the differentiation of SARS-CoV-2 responses in East Asia (top 5% PBS) 
began before this period (more than 970 generations ago, OR = 1.94, 
Fisher’s exact test, P = 0.019; Fig. 4b). For example, the rs1028396-T 
allele (80% frequency in East Asia versus 16–25% elsewhere), associated 
with a weaker response of SIRPA to SARS-CoV-2 in CD14+ monocytes, 

presents a selection signal beginning more than 45,000 years ago 
(Fig. 4b and Extended Data Fig. 7e). SIRPα inhibits infection by endo-
cytic viruses, including SARS-CoV-241. These results suggest recurrent 
genetic adaptation targeting antiviral immunity over the last 50,000 
years, contributing to present-day population differences in immune 
responses to SARS-CoV-2.

Neanderthal heritage on immune functions
We investigated the effects of Neanderthal introgression on immune 
responses to viruses by defining 100,345 ‘archaic’ variants (aSNPs) 
and testing for biased eQTL representation among aSNPs relative to 
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random, matched SNPs (Methods). We found that archaic haplotypes 
were 1.4–1.5 times more likely to alter gene expression in the basal 
state (one-sided permutation test, P = 3 × 10−4) and after stimulation 
with SARS-CoV-2 or IAV (one-sided permutation test, P = 9 × 10−4 and 
3 × 10−3, respectively) in Europeans, and this trend was only marginally 
significant in East Asians after viral stimulation (FE > 1.2, one-sided 
permutation test, P < 2 × 10−2; Extended Data Fig. 8a and Supplemen-
tary Table 8a–c). Enrichment was strongest in SARS-CoV-2-stimulated 
CD16+ monocytes from Europeans, suggesting that archaic haplo-
types altering myeloid responses have been preferentially retained in 
their genomes. Archaic haplotypes with eQTLs are generally present 
at higher frequencies compared with archaic haplotypes without eQTLs 
(Δf(introgressed allele) >3.2%, Student’s t-test, Padj < 8 × 10−3; Extended 
Data Fig. 8b and Supplementary Table 8d,e), even after adjustment for 
minor allele frequency (MAF) to ensure similar power for eQTL detec-
tion, supporting the adaptive nature of Neanderthal regulatory alleles.

To characterize the functional consequences of archaic introgression 
at the cell-type level, we focused on introgressed eQTLs for which the 
archaic allele was found at its highest frequency in Eurasians (that is, 5% 
most frequent). These included known adaptively introgressed variants 
at OAS1-3 or PNMA1 in Europeans and TLR1, FANCA or IL10RA in East 
Asians18,42–46, for which we delineated the cellular and molecular effects 

(Extended Data Figs. 8c and 9a and Supplementary Table 8f). Yet, we 
identified previously unreported signals of Neanderthal introgression 
affecting immunity phenotypes. For example, an introgressed reQTL 
(rs58964929-A, 38% of Europeans versus 22% of East Asians) decreases 
UBE2F responses to SARS-CoV-2 and IAV in monocytes (Extended Data 
Fig. 9b). UBE2F is involved in neddylation, a post-translational modifi-
cation that is required for the nuclear translocation of IRF7 by myeloid 
cells after RNA virus infection and, therefore, for the induction of type 
I IFN responses47. Likewise, an introgressed eQTL (rs11119346-T, 43% in 
East Asians versus less than 3% in Europeans) downregulates TRAF3IP3—
a negative regulator of the cytosolic RNA-induced IFN response48—
in IAV-infected monocytes, thereby favouring IFN release after viral 
infection (Extended Data Fig. 9c,d). We also identified a 35.5 kb Nean-
derthal haplotype reaching 61% frequency in East Asians (versus 24% 
in Europeans, tagged by rs9520848-C allele) that is associated with 
higher basal expression of the cytokine gene TNFSF13B by MAIT cells 
(Extended Data Fig. 9e,f). Collectively, these results reveal how archaic 
introgression has altered immune functions in present-day Eurasians 
at the molecular and cellular level.

Contribution of eQTLs to COVID-19 risk
We investigated the contributions of genetic variants altering responses 
to SARS-CoV-2 ex vivo to COVID-19 risk in vivo by determining whether 
(r)eQTLs were more strongly associated with COVID-19 GWAS hits8 
than random, matched SNPs (Methods). We observed an enrichment in 
eQTLs at loci associated with susceptibility (reported cases) and sever-
ity (hospitalized or critical cases) (FE = 4.1 and FE > 3.8, respectively, 
one-sided resampling, P < 10−4), and a specific enrichment in reQTLs at 
severity loci (FE > 3.7, one-sided resampling, P < 3 × 10−3; Fig. 5a). This 
trend was observed across most cell lineages (Extended Data Fig. 10a). 
Colocalization analyses identified 40 genes at which there was a high 
probability of (r)eQTL colocalization with COVID-19 hits (posterior 
probability that both traits are linked to the same SNP (PPH4 ) > 0.8) and 
transcriptome-wide association studies (TWASs) linked predicted gene 
expression with COVID-19 risk for 30 of these genes (FDRTWAS < 0.01; 
Supplementary Table 9a). These included direct regulators of innate 
immunity, such as IFNAR2 in non-stimulated CD4+ T cells, IRF1 in 
non-stimulated NK and CD8+ T cells, OAS1 in lymphoid cells stimu-
lated with SARS-CoV-2 and IAV, and OAS3 in SARS-CoV-2-exposed CD16+ 
monocytes (Fig. 5b and Extended Data Fig. 10b,c). These results support 
a contribution of immunity-related (r)eQTLs to COVID-19 risk.

Focusing on the evolutionary factors affecting COVID-19 risk, we 
identified 20 eQTLs that (1) colocalized with COVID-19 hits (PPH4 > 0.8) 
and (2) presented positive selection signals (top 1% PBS, n = 13 eQTLs) 
or evidence of archaic introgression (n = 7 eQTLs), 14 of which regulate 
genes of which the expression is correlated with COVID-19 susceptibility 
and/or severity (FDRTWAS < 0.01) (Fig. 6). For example, two variants in 
high LD at DR1 (rs569414 and rs1559828, r2 > 0.73) displayed extremely 
high levels of population differentiation, probably due to selection 
outside Africa (DAF = 0.13 in Africa versus higher than 0.62 in Eurasia; 
Extended Data Fig. 10d). DR1 suppresses type I IFN responses49 and 
the selected alleles, which decrease COVID-19 severity, reduce DR1 
expression in most immune cells (Fig. 6). Likewise, an approximately 
39 kb Neanderthal haplotype, spanning the MUC20 locus in Eurasians, 
contains the rs2177336-T allele that increases MUC20 expression in 
SARS-CoV-2-stimulated cells, particularly for CD4+ T cells, and decreases 
COVID-19 susceptibility (Fig. 6). Together, these results reveal how 
past selection or Neanderthal introgression have impacted immune 
responses that contribute to present-day disparities in COVID-19 risk.

Discussion
Here we show that cell type composition is a major driver of population 
differences in immune responses to SARS-CoV-2. The higher proportions 
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Fig. 6 | Adaptation and archaic introgression at COVID-19-associated (r)
eQTLs. a–d, Features of (r)eQTLs colocalizing with COVID-19 risk loci 
(PPH4 > 0.8) and presenting either strong population differentiation (top 1% PBS 
genome-wide) or evidence of Neanderthal introgression. a, Effects of the target 
allele on gene expression across immune lineages and stimulation conditions. 
b, Clinical and functional annotations of associated genes. c, Present-day 
population frequencies of the target allele. d, The effects of the target allele on 
COVID-19 risk (infection, hospitalization and critical state), colocalization 
probability and the lineage and condition in which gene expression most likely 
affects COVID-19 risk as detected by transcriptome-wide association (TWA) 
analyses. For expression or COVID-19 associations, the arrows indicate 
increases/decreases in expression or disease risk with each copy of the target 
allele, and the opacity reflects the strength of association (two-sided Student’s 

t-test −log10[P]). For the TWA analysis, the arrows indicate the effect of an 
increase in gene expression on the risk of COVID-19. In a and d, the arrow colours 
indicate stimulation conditions (non-stimulated (grey), SARS-CoV-2-stimulated 
(red), IAV-stimulated (blue)) and the background colour indicates the lineage 
(myeloid (pink), B (purple), CD4+ T (blue), CD8+ T (green), NK (light green)).  
For each eQTL, the target allele is defined as (1) the derived allele for highly 
differentiated eQTLs or (2) the allele that segregates with the archaic haplotype 
for introgressed eQTLs. When the ancestral state is unknown, the minor allele  
is used as a proxy for the derived allele. Note that, in some cases (for example, 
OAS1), the introgressed allele can be present in Africa, which is attributed to  
the reintroduction in Eurasia of an ancient allele by Neanderthals46. C, critical;  
H, hospitalized; R, reported.
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of memory cells in lymphoid lineages from individuals of African 
descent, along with their association with CMV infection, highlight 
how previous environmental exposures can contribute to population 
disparities in cellular activation states. Neglecting socioenvironmental 
factors that covary with ancestry may therefore inflate the estimated 
effects of genetic ancestry on phenotypic variation. One such factor is 
CMV, affecting leukocyte responses to SARS-CoV-2, but the impact of 
other exposures on population variation in immune responses remains 
to be determined. Common genetic variants can also contribute to 
immune response variation, but their effects primarily apply to a subset 
of genes showing strong population differentiation. This is illustrated 
by the rs1142888-G allele, which accounts for the greater than 2.8-fold 
higher levels of GBP7 expression in response to viral stimulation in  
Europeans compared with in Africans. The higher frequency of this 
allele in Europe probably results from selection occurring 21,900–
35,600 years ago. GBP7 facilitates IAV replication by suppressing innate 
immunity50, but also regulates host defence to intracellular bacteria 
such as Listeria monocytogenes and Mycobacterium tuberculosis51, 
providing a plausible mechanism for positive selection at this locus.

This study also shows that natural selection and Neanderthal intro-
gression contributed to differentiate present-day immune responses to 
SARS-CoV-2. We found traces of selection targeting SARS-CoV-2-specific 
reQTLs around 25,000 years ago in the ancestors of East Asians, coin-
ciding with the proposed timing of an epidemic that affected the evo-
lution of host coronavirus-interacting proteins23,24. However, there is 
little overlap between alleles selected during this period and variants 
underlying COVID-19 risk, suggesting changes in the genetic basis of 
infectious diseases over time, possibly due to the evolution of viruses 
themselves. Nevertheless, we identified cases (for example, DR1, 
OAS1-3, TOMM7, MUC20) in which selection or archaic introgression 
contributed to changes in both SARS-CoV-2 immune responses and 
COVID-19 outcome. Studies based on ancestry-aware polygenic risk 
scores from cross-population GWAS will be required to establish a 
formal link between past adaptation and present-day population dif-
ferences in COVID-19 risk.

Finally, the genetic dissection of variation in transcriptional 
responses to SARS-CoV-2 provides mechanistic insights into the effects 
of alleles that are associated with COVID-19 risk. Variants of IRF1, IFNAR2 
and DR1 associated with lower COVID-19 severity increase type I IFN 
signalling in lymphoid cells by upregulating IRF1 and IFNAR2 or down-
regulating DR1, attesting to the importance of efficient IFN signalling 
for a favourable clinical outcome4,12–14. Another example is MUC20, at 
which we identified a Neanderthal-introgressed eQTL that increases 
MUC20 expression in SARS-CoV-2-stimulated CD4+ T cells and decreases 
COVID-19 susceptibility. Given the role of mucins in forming a barrier 
against infection in the respiratory tract, the high MUC20 expression 
in ciliated epithelial cells from the bronchus52 and the detection of the 
MUC20 eQTL in pulmonary tissue (Supplementary Note 11), we suggest 
that the greater resistance to infection conferred by the Neanderthal 
haplotype may result from a similar effect on MUC20 expression in 
the respiratory tract.

We note two main limitations of our results. First, our samples mostly 
originate from male individuals, so the impact of sex on immune vari-
ation was not addressed. Sex has a widespread yet moderate effect on 
both transcriptional responses to microbial threats53 and the genetic 
regulation of gene expression54, supporting the transferability of our 
main conclusions. Nonetheless, examining sex-balanced cohorts will 
enable the characterization of possible sex-specific differences at 
the population scale. Second, given the sample sizes and cell counts 
needed to accurately define population variation in immune activity, we 
focused on a single system (PBMCs) and selected viral strains. Although 
PBMCs constitute a valuable model to characterize peripheral immune 
activation by SARS-CoV-29,10, they provide an incomplete representation 
of the pulmonary epithelium—the primary infection site for respiratory 
viruses. However, we found that 38% of the eQTLs identified in this 

study are also detected in lung tissue55, rising to 72% for eQTLs shared 
across immune lineages (Supplementary Note 11 and Supplementary 
Table 9b). Further studies are needed to examine the transferability 
of our findings to other cell types and to investigate how diverse viral 
strains affect the dynamics of host responses to SARS-CoV-2.

Overall, our results highlight the value of single-cell approaches in 
capturing the full diversity of peripheral immune responses to RNA 
viruses, particularly SARS-CoV-2, and provide insights into environ-
mental, genetic and evolutionary drivers of immune response variation 
across individuals and populations.
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Methods

Sample collection
The individuals of self-reported African (AFB) and European (EUB) 
descent studied are part of the EVOIMMUNOPOP cohort18. In brief, 
390 healthy male donors (188 AFB and 202 EUB) were recruited between 
2012 and 2013 in Ghent (Belgium), thus, before the COVID-19 pandemic. 
Blood was obtained from the healthy volunteers, and the PBMC fraction 
was isolated and frozen. Inclusion in the current study was restricted 
to 80 nominally healthy individuals of each ancestry, aged between 19 
and 50 years at the time of sample collection. Donors of African descent 
originated from West Central Africa, with >90% being born in either 
Cameroon or the Democratic Republic of Congo. For this study, 71 addi-
tional individuals of East Asian descent (ASH) were included, of whom 62 
were retained after quality control (see the ‘scRNA-seq library prepara-
tion and data processing’ section). ASH individuals were recruited at the 
School of Public Health, University of Hong Kong, and were included in a 
community-based sero-epidemiological COVID-19 study (research pro-
tocol number JTW 2020.02). Inclusion for the study described here was 
restricted to nominally healthy ASH individuals (30 men and 41 women) 
aged between 19 and 65 years of age and seronegative for SARS-CoV-2. 
Samples were collected at the Red Cross Blood Transfusion Service 
(Hong Kong) where the PBMC fraction was isolated and frozen. Target 
sample sizes were determined to ensure >80% power for the detection 
of eQTLs with R2 higher than 0.2, at a P < 5 × 10−9 threshold.

In this study, we refer to individuals of Central African (AFB), West 
European (EUB) and East Asian (ASH) ancestries to describe individuals 
who are genetically similar (that is, lowest FST values) to populations 
from West-Central Africa, Western Europe and East Asia, using the 
1000 Genomes (1KG) Project56 data as a reference (Supplementary 
Fig. 1a). Notably, the AFB, EUB and ASH samples present no evidence 
of recent genetic admixture with populations originating from another 
continent, besides two AFB donors who respectively present 22% of 
Near Eastern- and 25% of European-ancestries. Such a moderate level 
of admixture in fewer than 1% of individuals is unlikely to have any  
significant impact on the results presented.

All of the samples were collected after written informed consent 
was obtained from the donors, and the study was approved by the 
ethics committee of Ghent University (B670201214647), the Insti-
tutional Review Board of the University of Hong Kong (UW 20-132), 
and the relevant French authorities (CPP, CCITRS and CNIL). This 
study was also monitored by the Ethics Board of Institut Pasteur 
(EVOIMMUNOPOP-281297).

Genome-wide DNA genotyping
The AFB and EUB individuals were previously genotyped at 4,301,332 
SNPs, using the Omni5 Quad BeadChip (Illumina) with processing as 
previously described18. The additional 71 ASH donors were genotyped 
separately at 4,327,108 SNPs using the Infinium Omni5-4 v.1.2 BeadChip 
(Illumina). We updated SNP identifiers based on Illumina annotation files 
(https://support.illumina.com/content/dam/illumina-support/docu-
ments/downloads/productfiles/humanomni5-4/v1-2/infinium-omni5-
4-v1-2-a1-b144-rsids.zip) and called the genotypes of all ASH individuals 
jointly on GenomeStudio (v.2011.1; https://www.illumina.com/tech-
niques/microarrays/array-data-analysis-experimental-design/genom-
estudio.html). We then removed SNPs with (1) no ‘rs’ identifiers or with 
no assigned chromosome or genomic position (n = 14,637); (2) dupli-
cated identifiers (n = 5,059); or (3) a call rate of <95% (n = 10,622). We 
then used the 1KG Project Phase 3 data56 as a reference for merging 
the ASH genotyping data with that of AFB and EUB individuals and 
detecting SNPs misaligned between the three genotype datasets. Before 
merging, we removed SNPs that (1) were absent from either the Omni5 
or 1KG datasets (n = 469,535); (2) were transversions (n = 138,410);  
(3) had incompatible alleles between datasets, before and after allele 
flipping (n = 1,250); and (4) had allele frequency differences of more 

than 20% between the AFB and Luhya from Webuye, Kenya (LWK) and 
Yoruba from Ibadan, Nigeria (YRI), or between the EUB and Utah resi-
dents with Northern and Western European ancestries (CEU) and British 
individuals from England and Scotland (GBR), or between the ASH and 
Southern Han Chinese (CHS) (n = 777). Once the data had been merged, 
we performed principal component analysis (PCA) using PLINK (v.1.9)57 
and ensured that the three study populations (that is, AFB, EUB and 
ASH) overlapped with the corresponding 1KG populations, to exclude 
batch effects between genotyping platforms (Supplementary Fig. 1a). 
The final genotyping dataset included 3,723,840 SNPs.

Haplotype phasing and imputation
After merging genotypes from AFB, EUB and ASH donors, we filtered 
genotypes for duplicates with bcftools norm --rm-dup all (v.1.16)58 
and lifted all genotypes over to the human genome assembly GRCh38 
with GATK’s (v.4.1.2.0) LiftoverVcf using the RECOVER_SWAPPED_ALT_
REF=TRUE option59. We then filtered out duplicated variants again 
before phasing genotypes with SHAPEIT4 (v.4.2.1)60 and imputing 
missing variants with Beagle5.1 (v.18May20.d20)61, treating each 
chromosome separately. For both phasing and imputation, we used 
the genotypes of 2,504 unrelated individuals from the 1KG Project 
Phase 3 data as a reference (downloaded from http://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/release/20130502 and lifted over to GRCh38) and 
downloaded genetic maps from the GitHub pages of the associated 
software (that is, SHAPEIT4 for phasing and Beagle5.1 for imputation). 
A third round of duplicate filtering was performed after phasing and 
before imputation using Beagle5.1 (v.18May20.d20)61. Phasing was 
performed using the setting --pbwt-depth=8 and imputation was 
performed assuming an effective population size (Ne) of 20,000. The 
quality of imputation was assessed by cross-validation; specifically, we 
performed 100 independent rounds of imputation excluding 1% of the 
variants and compared the imputed allelic dosage with the observed 
genotypes for these variants (Supplementary Fig. 1b,c). The results 
obtained confirmed that imputation quality was satisfactory, with 
98% of common variants (that is, MAF > 5%) having an r2 > 0.8 for the 
correlation between observed and imputed genotypes (>95% con-
cordance for 96% of common variants). After imputation, variants 
with a MAF < 1% or with a low predicted quality of imputation (that is, 
DR2 < 0.9) were excluded, yielding a final dataset of 13,691,029 SNPs 
for downstream analyses.

Viruses used in this study
To evaluate population differences in the immune responses to 
SARS-CoV-2, we chose the viral strain that circulated in France at 
the time of our experiments (Autumn 2020). This reference strain  
(BetaCoV/France/GE1973/2020) was supplied by the National Reference 
Centre for Respiratory Viruses hosted by Institut Pasteur and headed 
by S. van der Werf. The human sample from which the strain was iso-
lated was provided by L. Andreoletti from the Robert Debré Hospital. 
To characterize the distinctive features of SARS-CoV-2 responses, we 
included in our study the IAV as a reference comparison of another 
respiratory RNA virus. Specifically, we chose the PR8 strain (IAV, PR/8, 
H1N1/1934) based on our previous experience with this virus, its avail-
ability in the laboratory and its ability to trigger IFN responses in healthy 
human donors53,62. The PR8 strain used was purchased from Charles 
River Laboratories (3X051116) and provided in ready-to-use aliquots 
that were stored at −80 °C.

SARS-CoV-2 stock production
To produce SARS-CoV-2, we used African green monkey kidney Vero 
E6 cells that were tested for mycoplasma contamination and main-
tained at 37 °C in 5% CO2 in Dulbecco’s minimum essential medium 
(DMEM) (Sigma-Aldrich) supplemented with 10% fetal bovine serum 
(FBS, Dutscher) and 1% penicillin–streptomycin (Gibco, Thermo Fisher 
Scientific). Vero E6 cells were plated at 80% confluence in 150 cm2 flasks 



and infected with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.01 
in DMEM supplemented with 2% FBS and 1% penicillin–streptomycin. 
After 1 h, the inoculum was removed and replaced with DMEM supple-
mented with 10% FBS and 1% penicillin–streptomycin, and cells were 
incubated for 72 h at 37 °C in 5% CO2. The cell culture supernatant was 
collected and centrifuged for 10 min at 3,000 rpm to remove cellular 
debris, and polyethylene glycol (PEG; PEG8000, Sigma-Aldrich) precipi-
tation was performed to concentrate the viral suspension. In brief, 1 l of 
viral stock was incubated with 250 ml of 40% PEG solution (that is, 8% 
PEG final) overnight at 4 °C. The suspension was centrifuged at 10,000g 
for 30 min at 4 °C and the resulting pellet was resuspended in 100 ml of 
RPMI medium (Gibco, Thermo Fisher Scientific) supplemented with 10% 
FBS (hereafter R10) and viral aliquots were stored at −80 °C. SARS-CoV-2 
viral titres were determined using a focus-forming unit assay as previ-
ously described63. In brief, Vero E6 cells were plated in a 96-well plate 
with 2 × 104 cells per well. The cellular monolayer was infected with 
serial dilutions (1:10) of viral stock and overlaid with a semi-solid 1.5% 
carboxymethylcellulose (Sigma-Aldrich) and 1× MEM medium for 36 h at 
37 °C. Cells were then fixed with 4% paraformaldehyde (Sigma-Aldrich), 
and permeabilized with 1× phosphate-buffered saline, 0.5% Triton 
X-100 (Sigma-Aldrich). Infectious foci were stained with a human 
anti-SARS-CoV-2 spike antibody (H2-162, Hugo Mouquet’s laboratory, 
Institut Pasteur) and the corresponding HRP-conjugated secondary anti-
body (Sigma-Aldrich). Foci were stained using a 3,3′-diaminobenzidine 
staining solution (DAB, Sigma-Aldrich) and counted using the BioSpot 
suite of the C.T.L. ImmunoSpot S6 Image Analyzer.

In vitro peripheral blood mononuclear cell stimulation
We performed scRNA-seq analysis of SARS-CoV-2-, IAV- and mock- 
stimulated (referred to as the non-stimulated condition) PBMCs from 
healthy donors (80 AFB, 80 EUB and 71 ASH) in 16 experimental runs. 
We first performed a kinetic experiment (run 1) on samples from 4 AFB 
and 4 EUB individuals stimulated for 0, 6 and 24 h to validate our in vitro 
model across different timepoints (Supplementary Note 1, Supplemen-
tary Fig. 2 and Supplementary Table 2). The 6 h timepoint was identi-
fied as the optimal timepoint for the analysis (Supplementary Note 1). 
We then processed the rest of the cohort, over runs 2 to 15. Finally, we 
reprocessed some samples (run 16) to assess the technical variability 
in our setting and to increase in silico cell counts (see the ‘scRNA-seq 
library preparation and data processing’ section). Ancestry-related 
batch effects were minimized by scheduling sample processing to 
ensure a balanced distribution of AFB, EUB and ASH donors within 
each run.  Donors used for feach run were randomly selected within 
each population.

For each run, cryopreserved PBMCs were thawed in a 37 °C water 
bath, transferred to 25 ml of R10 medium (that is, RPMI 1640 supple-
mented with 10% heat-inactivated FBS) at 37 °C, and centrifuged at 300g 
for 10 min at room temperature. Cells were counted, resuspended 
at 2 × 106 cells per ml in warm R10 in 25 cm2 flasks, and rested over-
night (that is, 14 h) at 37 °C. The next morning, PBMCs were washed 
and resuspended at a density of 3.3 × 106 cells per ml in R10; 120 µl 
of a suspension containing 4 × 105 cells from each sample was then 
plated in a 96-well untreated plate (Greiner Bio-One) for each of the 
three sets of stimulation conditions. We added 80 µl of either R10 
(non-stimulated), SARS-CoV-2 or IAV stock (corresponding to 4 × 105 
focus-forming units diluted in R10) to the cells, so as to achieve a mul-
tiplicity of infection (MOI) of 1 and an optimal PBMC concentration of 
2 × 106 cells per ml. Cells were incubated at 37 °C for 0, 6 or 24 h for the 
kinetic experiment (run 1), and for 6 h for all subsequent runs (runs 2 
to 16), in a biosafety level 3 (BSL-3) facility at Institut Pasteur, Paris. The 
plates were then centrifuged at 300g for 10 min and supernatants were 
stored at −20 °C until use (see ‘Supernatant cytokine assays’ section). 
All of the samples from the same run were resuspended in Dulbecco’s 
phosphate-buffered saline (Gibco), supplemented with 0.04% bovine 
serum albumin (BSA, Miltenyi Biotec), and multiplexed in eight pools 

according to a pre-established study design (Supplementary Fig. 3a 
and Supplementary Table 3a). The cells from each pool were counted 
using the Cell Countess II automated cell counter (Thermo Fisher  
Scientific) and the cell density was adjusted to 1,000 viable cells per µl 
of 0.04% BSA in phosphate-buffered saline. When performing stimula-
tions, researchers were blinded to the genotype and environmental 
exposures of the individual.

scRNA-seq library preparation and data processing
We generated scRNA-seq cDNA libraries using the Chromium Control-
ler (10x Genomics) according to the manufacturer’s instructions for 
the Chromium Single Cell 3′ Library and Gel Bead Kits (v.3.1). Library 
quality and concentration were assessed using the Agilent 2100 Bio-
analyzer and a Qubit fluorometer (Thermo Fisher Scientific). The final 
products were processed for high-throughput sequencing on a HiSeqX 
platform (Illumina).

Paired-end sequencing reads from each of the 133 scRNA-seq cDNA 
libraries (13 libraries from the kinetic experiment and 120 from the 
population-level study) were independently mapped onto the concat-
enated human (GRCh38), SARS-CoV-2 (hCoV-19/France/GE1973/2020) 
and IAV (A/Puerto Rico/8/1934(H1N1)) genome sequences using the 
STARsolo aligner (v.2.7.8a)64 (Supplementary Fig. 3b). We obtained a 
mean of 10,785 cell-containing droplets per library, and each droplet 
was assigned to its sample of origin with Demuxlet (v.0.1)65, based on 
the genotyping data available for each individual. Singlet/doublet calls 
were compared with the output of Freemuxlet (v.0.1)65 to ensure good 
agreement (Supplementary Fig. 3c–e). We loaded feature-barcode 
matrices for all cell-containing droplets identified as singlets by Demux-
let in each scRNA-seq library onto a SingleCellExperiment (v.1.14.1) 
object66. Data from barcodes associated with low-quality or dying cells 
were removed with a hard threshold-based filtering strategy based 
on three metrics: cells with fewer than 1,500 total unique molecular 
identifier (UMI) counts, 500 detected features or a mitochondrial gene 
content exceeding 20% were removed from each sequencing library 
(Supplementary Fig. 3f). We also discarded samples from nine ASH 
donors from whom fewer than 500 cells were obtained in at least one 
condition (Supplementary Fig. 3g).

We then log-normalized raw UMI counts with a unit pseudocount 
and library size factors (that is, the number of reads associated with 
each barcode) were calculated with quickClusters and computeSum-
Factors from the scran package (v.1.20.1)67. We then calculated the 
mean and variance of log-transformed counts for each gene and broke 
the variance down into a biological and a technical component with 
the fitTrendPoisson and modelGeneVarByPoisson functions of scran. 
This approach assumes that technical noise is Poisson-distributed 
and simulates Poisson-distributed data to derive the mean-variance 
relationship expected in the absence of biological variation. Excess 
variance relative to the null hypothesis is considered to correspond 
to the biological variance. We retained only those genes for which the 
biological variance component was positive with an FDR below 1%. We 
used this filtered feature set and the technical variance component 
modelled from the data to run PCA with denoisePCA from scran, thus 
discarding later components more likely to capture technical noise. 
Doublets (that is, barcodes assigned to cells from different individuals 
captured in the same droplet) are likely to be in close neighbourhoods 
when projected onto a subspace of the data of lower dimensionality. 
We therefore used a k-nearest neighbours approach to discard cryptic 
doublets (that is, barcodes associated to different cells from the same 
individual captured in the same droplet). Barcodes identified as singlets 
by Demuxlet but having over 5 out of 25 doublet nearest neighbours in 
the PCA space were reassigned as doublets and excluded from further 
analyses (Supplementary Fig. 3h).

After data preprocessing, we performed a second round of UMI count 
normalization, feature selection and dimensionality reduction on the 
cleaned data to avoid bias due to the presence of low-quality cells and 



Article
cryptic doublets. Differences in sequencing depth were equalized 
between batches (that is, sequencing libraries) using multiBatchNorm 
from batchelor (v.1.8.1) to scale library size factors according to the 
ratio of mean counts between batches68 (Supplementary Fig. 3i). We 
accounted for the different mean-variance trends in each batch, by 
applying modelGeneVarByPoisson separately for each sequencing 
library, and then combining the results for all batches with combi-
neVar from scran67. We then bound all 133 separate preprocessed 
feature-barcode matrices into a single merged SingleCellExperiment 
object, log-normalized UMI counts according to the scaled size fac-
tors and selected genes with mean log-expression values over 0.01 or 
a biological variance compartment exceeding 0.001 (Supplementary 
Fig. 3j). On the basis of this set of highly variable genes and the variance 
decomposition, we then performed PCA on the whole dataset using 
denoisePCA, and then used Harmony (v.0.1.0) on the PCs to adjust for 
library effects69.

Clustering and cell type assignment
We performed cluster-based cell type identification in each stimula-
tion condition, according to a four-step procedure. We first performed 
low-resolution (res. parameter = 0.8) shared nearest-neighbour 
graph-based (k = 25) clustering using FindClusters from Seurat (v.4.1.1) 
with assignment to one of three meta-clusters (that is, myeloid, B lym-
phoid and T/NK lymphoid) on the basis of the transcriptional profiles 
of the cells for canonical markers (for example, CD3E-F, CD14, FCGR3A, 
MS4A1) (Supplementary Fig. 4a,b). We next performed a second round 
of clustering at higher resolution (res. parameter = 3) within each 
meta-cluster and stimulation condition (Supplementary Fig. 4c). We 
systematically tested for differential expression between each cluster 
and the other clusters of the same meta-cluster and stimulation condi-
tion. This made it possible to define unbiased markers (|log2FC| ≠ 0, 
FDR < 0.01) for each cluster (Supplementary Fig. 4d). We then used 
these expression profiles of these genes to assign each cluster manu-
ally to one of 22 different cell types (Supplementary Fig. 4e), which, for 
some analyses, were collapsed into five major immune lineages. This 
step was performed in parallel by three investigators to consolidate 
consensus assignments. We also used cellular indexing of transcrip-
tomes and epitopes by sequencing (CITE-seq) data, generated for a 
subset of cells (2% of the whole dataset), to validate our assignments 
and redefine clusters presenting ambiguous transcriptional profiles 
(for example, memory-like NK cells; Supplementary Fig. 4f).

By calling cell types from high-resolution, homogeneous clusters, 
assigned independently for each lineage and stimulation condition 
(that is, non-stimulated, SARS-CoV-2, and IAV), we were able to preserve 
much of the diversity in our dataset, while avoiding potential confound-
ing effects due to the stimulation conditions. However, some clusters 
were characterized by markers associated with different cell types. 
Most of these clusters corresponded to mixtures of similar cell types 
(for example, the expression of CD3E, CD8A, NKG7 and CD16 suggested 
a mixture of cytotoxic CD8+ T and NK cells) and were consistent with 
the known cell hierarchy. Other, less frequent clusters expressed a com-
bination of markers usually associated with lineages originating from 
different progenitors (for example, CD3E and CD19, associated with T 
and B lymphocytes, respectively). These clusters were considered to 
be incoherent and were discarded. In the fourth and final step of our 
procedure, we used linear discriminant analysis to resolve within each 
condition the mixtures that were consistent with the established cell 
hierarchy, to obtain a final cell assignment (Supplementary Fig. 4g,h). 
For clusters of mixed identity AB, we built a training dataset from 10,000 
observations sampled from the set of cells called as A or B, preserving 
the corresponding frequencies of these cells in the whole dataset. We 
then used a model trained on these data to predict the specific cellular 
identities within the mixed cluster.

Cell abundance from each immune lineage/cell type was compared 
between non-stimulated and SARS-CoV-2-/IAV-stimulated conditions, 

using Wilcoxon’s signed-rank test matching on the individual. FDR 
was calculated across all conditions and lineages with the Benjamini–
Hochberg procedure (p.adjust function with the ‘fdr’ method). Viral 
stimulation had a moderate effect on the estimated cell proportions 
and, although significant differences were detected, the total number 
of cells per cell type was generally consistent across conditions (Sup-
plementary Note 2 and Supplementary Table 3e).

Cellular indexing of transcriptomes and epitopes by sequencing
To confirm the identity of specific cell types expressing ambiguous 
markers at the RNA level, during the last experimental run (run 16), 
half the cells from each experimental condition were used to per-
form CITE-seq, according to the manufacturer’s instructions (10x 
Genomics). PBMCs were washed, resuspended in chilled 1% BSA in 
phosphate-buffered saline and incubated with human TruStain FcX 
blocking solution (BioLegend) for 10 min at 4 °C. Cells were then stained 
with a cocktail of TotalSeq-B antibodies (BioLegend) previously centri-
fuged at 14,000g for 10 min (Supplementary Table 3b). The cells were 
incubated for 30 min at 4 °C in the dark and were then washed three 
times. Cell density was then adjusted to 1,000 viable cells per µl in 1% 
BSA in phosphate-buffered saline. We generated scRNA-seq libraries 
and cell protein libraries (L131–L134) with the Chromium Single Cell 
3′ Reagent Kit (v.3.1), using the Feature Barcoding technology for Cell 
Surface Proteins (10x Genomics).

Supernatant cytokine assays
Before protein analysis, sample supernatants were treated in the BSL-3 
facility to inactivate the viruses, according to a published protocol for 
SARS-CoV70, which we validated for SARS-CoV-2. In brief, all of the sam-
ples were treated with 1% (v/v) Triton X-100 (Sigma-Aldrich) for 2 h at 
room temperature, which effectively inactivated both SARS-CoV-2 and 
IAV. The protein concentration was then determined with a commercial 
Luminex multi-analyte assay (Biotechne, R&D Systems) and the SIMOA 
Homebrew assay (Quanterix). For the Luminex assay, we used the XL 
Performance Kit according to the manufacturer’s instructions, and pro-
teins were determined using the Bioplex 200 (Bio-Rad) system. Further-
more, IFNα, IFNγ (duplex) and IFNβ (single-plex) protein concentrations 
were quantified in SIMOA digital ELISA tests developed as Quanterix 
Homebrews according to the manufacturer’s instructions (https://
portal.quanterix.com/). The SIMOA IFNα assay was developed with 
two autoantibodies specific for IFNα isolated and cloned (Evitria) from 
two patients with autoimmune polyglandular syndrome type 1 (also 
known as autoimmune polyendocrinopathy-candidiasis-ectodermal 
dystrophy)71 and covered by patent application WO2013/098419. 
These antibodies can be used for the quantification of all IFNα sub-
types with a similar sensitivity. The 8H1 antibody clone was used to 
coat paramagnetic beads at a concentration of 0.3 mg ml−1 for use as a 
capture antibody. The 12H5 antibody was biotinylated (biotin/antibody 
ratio = 30:1) and used as the detector antibody, at a concentration of 
0.3 µg ml−1. The SBG enzyme for detection was used at a concentration 
of 150 pM. Recombinant IFNα17/αI (PBL Assay Science) was used as 
calibrator. For the IFNγ assay, the MD-1 antibody clone (BioLegend) was 
used to coat paramagnetic beads at a concentration of 0.3 mg ml−1 for 
use as a capture antibody. The MAB285 antibody clone (R&D Systems) 
was biotinylated (biotin/antibody ratio = 40:1) and used as the detec-
tor antibody at a concentration of 0.3 µg ml−1. The SBG enzyme used 
for detection was used at a concentration of 150 pM. Recombinant 
IFNγ protein (PBL Assay Science) was used as a calibrator. For the IFNβ 
assay, the 710322-9 IgG1, kappa, mouse monoclonal antibody (PBL 
Assay Science) was used to coat paramagnetic beads at a concentra-
tion of 0.3 mg ml−1, for use as a capture antibody. The 710323-9 IgG1 
kappa mouse monoclonal antibody was biotinylated (biotin/antibody 
ratio = 40:1) and used as the detector antibody at a concentration of 
1 µg ml−1. The SBG enzyme for detection was used at a concentration 
of 50 pM. Recombinant IFNβ protein (PBL Assay Science) was used 



as a calibrator. The limit of detection of these assays was 0.8 fg ml−1 
for IFNα, 20 fg ml−1 for IFNγ and 0.2 pg ml−1 for IFNβ, considering the 
dilution factor of 10.

Flow cytometry
Frozen PBMCs from three AFB (CMV+) and six EUB (three CMV+, 
three CMV-) donors were thawed and allowed to rest overnight, as 
previously described. For each donor, 106 cells were resuspended in 
phosphate-buffered saline supplemented with 2% FBS and incubated 
with human Fc blocking solution (BD Biosciences) for 10 min at 4 °C. 
Cells were then stained with the following antibodies for 30 min at 
4 °C: CD3 VioGreen (BW264/56, Miltenyi Biotec), CD14 V500 (M5E2, BD 
Biosciences), CD57 Pacific Blue (HNK-1, BioLegend), NKp46 PE (9E2/
NKp46, BD Biosciences), CD16 PerCP-Cy5.5 (3G8, BD Biosciences), CD56 
APC-Vio770 (REA196, Miltenyi Biotec), NKG2A FITC (REA110, Miltenyi 
Biotec) and NKG2C APC (REA205, Miltenyi Biotec). The cells were then 
washed and acquired on the MACSQuant cytometer (Miltenyi Biotec), 
and the data were analysed using FlowJo (v.10.7.1)72.

Quantification of batch effects and replicability
Once all the samples had been processed, we used the kBET metric 
(v.0.99.6)73 to assess the intensity of batch effects and to quantify the 
relative effects of technical and biological variation on cell clustering. 
This made it possible to confirm that the variation across libraries, and 
across experimental runs, remained limited relative to the variation 
across individuals or across conditions (Supplementary Fig. 5a). We 
used technical replicates to assess the replicability of our observations 
across independent stimulations. Agreement was good between the cell 
proportions and the ISG activity scores inferred across independent 
runs (r > 0.82, P < 7.6 × 10−13) (Supplementary Fig. 5b,c).

Pseudobulk estimation, normalization and batch correction
Individual variation in gene expression was quantified at two resolu-
tions: five major immune lineages and 22 cell types. We aggregated 
raw UMI counts from all high-quality single-cell transcriptomes 
(n = 1,047,824) into bulk expression estimates by summing gene 
expression values across all cells assigned to the same lineage/cell 
type and sample (that is, individual and stimulation conditions) using 
the aggregateAcrossCells function of scuttle (v.1.2.1)74. We then nor-
malized the raw aggregated UMI counts by library size, generating 
3,330 lineage-wise (222 donors × 3 sets of conditions × 5 lineages) 
and 14,652 cell type-wise (666 samples × 22 cell types) pseudobulk 
counts-per-million (CPM) values, for all genes in our dataset. CPM  
values were then log2-transformed, with an offset of 1 to prevent non- 
finite values and to stabilize variation for weakly expressed genes. 
Genes with a mean CPM < 1 across all conditions and lineages/cell types 
were considered to be non-expressed and were discarded from further 
analyses, leading to a final set of 12,667 genes at the lineage level (12,672 
genes when increasing granularity to 22 cell types), including 12 viral 
transcripts. To quantify the experimental variation induced by the 
experimental run, library preparation and sequencing, and to remove 
unwanted batch effects, we first used the lmer function of the lme4 
package (v.1.1-27.1)75 to fit a linear model of the following form in each 
stimulation condition and for each lineage/cell type:

α εlog(1 + CPM ) = + IID + LIB + RUN + FLOW + (1)i i i i i i

where CPMi is the gene expression in sample i (that is, one replicate of 
a given individual and set of experimental conditions); α is the intercept; 

 σIID (0, )i IND
2N  captures the effect of the corresponding individual on 

gene expression; N σLIB (0, )i LIB
2  captures the effect of 10x Genomics 

library preparation; N σRUN (0, )i RUN
2  captures the effect of the experi-

mental run; N σFLOW (0, )i Flowcell
2  captures the effect of the sequenc-

ing flow cell; and εi captures residual variation between samples.  
We then subtracted the estimated value of the library, experimental 

run and flow cell effects (as provided by the ranef function) from the 
transformed CPMs of each sample, to obtain batch-corrected CPM 
values. Finally, we averaged the batch-corrected CPM values obtained 
across different replicates for the same individual and set of stimulation 
conditions, to obtain final estimates of gene expression.

For each cell type and stimulation condition, an inverse-normal 
rank-transformation was applied to the log2[CPM] of each gene, before 
testing for differences in gene expression between populations and 
mapping eQTL. Within each lineage and set of stimulation condi-
tions, we ranked, for each gene, the pseudobulk expression values 
of all individuals, assigning ranks at random for ties, and replaced 
each observation with the corresponding quantile from a normal 
distribution with the same mean and s.d. as the original expression 
data. This inverse-normal rank-transformation rendered downstream 
analyses robust to zero-inflation in the data and outlier values, while 
maintaining the rank-transformed values on the same scale as the 
original data.

Variance explained by lineage identity and viral exposure
We used CAR scores76 to quantify the fraction of gene expression vari-
ance that is explained by variation across immune lineages and stimu-
lation conditions. First, we built per-gene linear models regressing 
pseudobulk expression levels on two sets of dummy variables, encoding 
both lineage identity and stimulation condition. Specifically, we used 
a model of the form:

∑ ∑ ∑α β I γ I εExpr = + + + (2)ils
l

l
l s

ls ils
=2

5

{lineage=l}
=2

5

=2,3
{lineage=l and stim=s}

Where Exprils is the log-transformed expression of the target gene for 
donor i, in lineage l and in the condition of stimulation s; α is the inter-
cept measuring the mean expression of the reference lineage (CD4+ 
T cells) in the non-stimulated state; βl are parameters that capture the 
mean difference (log-fold change) in expression between lineage l 
and the reference lineage; I is an indicator variable equal to 1 when the 
subscript condition is met, and 0 otherwise; γls are parameters that 
capture the mean log-fold change in expression of lineage l in response 
to stimulus s; and εils are normally distributed residuals. We then ran 
the carscore function from care R package (v.1.1.11)76 on each model, 
setting λ = 0 (that is, no shrinkage), to obtain the CAR score associated 
with each parameter. In brief, care decorrelates a set of predictors using 
a Mahalanobis whitening transformation and computes CAR scores as 
marginal correlations between these decorrelated predictors and the 
response variable. This enables direct estimation of the contribution 
of each predictor to the variance of the response variable as the square 
of its CAR score. The variance explained by cellular identity (lineage) 
and stimulation is then computed as:

∑ ∑ ∑β γVar = CAR( ) and Var = CAR( ) (3)
l
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ISG activity calculation
ISGs strongly respond to both viruses across all lineages/cell types. 
We therefore evaluated each donor’s ISG expression level in the basal 
state or after stimulation with either SARS-CoV-2 or IAV by construct-
ing an ISG activity score. For the human genes in our filtered gene set 
(n = 12,655), we defined as ISGs (n = 174) those genes included in the 
union of GSEA’s hallmark (https://www.gsea-msigdb.org/gsea/msigdb/
genesets.jsp?collection=H) IFNα response and IFNγ response gene 
sets, but excluded those from the inflammatory response set. We then 
used AddModuleScore from Seurat (v.4.1.1)77 to measure ISG activity 
as the mean pseudobulk expression level of ISGs in each sample minus 
the mean expression for one hundred randomly selected non-ISGs 
matched for mean magnitude of expression. In all analyses, ISG activity 
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scores were adjusted for cell mortality of the sample by fitting a model 
of the form:

α β β εISG = + Population + CellMortality + (4)i p i m i i

and subtracting the effect of cell mortality from the raw ISG scores. In 
this model, ISGi denotes the ISG activity score of individual i; α is the 
intercept, Populationi and CellMortalityi are variables reflecting the 
donor’s population and the cell mortality of the sample; βp and βm are 
parameters capturing the effect of the population and cell mortality on 
ISG activity; and εi are normally distributed residuals. The difference 
in variance of ISG activity between SARS-CoV-2 and IAV was assessed 
using Levene’s test. For comparisons with SIMOA-estimated IFN levels, 
the carscore function from the care R package76 was used to model ISG 
activity as a function of levels of IFNα, IFNβ and IFNγ, adjusting for 
population, age, sex and cell mortality. The percentage of ISG variance 
attributable to each IFN (α, β, or γ) was estimated as the square of the 
resulting CAR scores.

Testing for differences in lineage/cell type abundance between 
populations
We compared immune cell abundance between donors of African and 
European ancestries by contrasting the average number and percentage 
of cells assigned to each lineage/cell type between donors from both 
populations. To assess the statistical significance of population dif-
ferences in cell type frequency, we first corrected cellular frequencies 
for the confounding effects of age, cell mortality and total number of 
cells in each sample (that is, donor × condition) using a linear model 
of the form

(5)
α β β

β β ε

CellularFrequency = + Population + Age

+ CellMortality + NCells +
cis p i a i

m i c is i

and subtracting the effect of these three covariates from the raw cell 
frequencies. In this model, CellularFrequencycis denotes the frequency/
number of the lineage/cell type c under consideration in individual i 
and condition s; α is the intercept; Populationi, Agei, CellMortalityi and 
NCellsis are variables reflecting the donor’s age and population, the 
cell mortality of the sample and the total number of cells recovered 
in condition s; βp, βa, βm and βc are parameters capturing the effect of 
these covariates on cellular composition; and εi are normally distributed 
residuals. The adjusted cell frequencies were then compared between 
populations using Wilcoxon’s rank-sum tests.

Mapping the genetic determinants of immune cell composition
We performed genome-wide association studies of the proportions of 
each immune lineage/cell type in the different stimulation conditions. 
In brief, we used PLINK (v.1.9)78 to estimate at each locus the additive 
effect of each copy of the alternate allele on two quantitative traits:  
(1) the number of cells of each lineage relative to total number of cells 
in the sample and (2) the number of cells of each cell type relative to 
the lineage under consideration. In total, we performed 79 GWASs: 
one for each of the 27 immune classes (5 lineages and 22 cell types), 
in each of the 3 experimental conditions (except for the IAV-infected 
CD14+ monocytes, which are only present in the IAV condition). In each 
GWAS, we modelled cell type frequencies across individuals as

(6)
α β β β β

β β ε

CellularFrequency = + SNP + Population + Sex + Age

+ CellMortality + NCells +
cis i p i s i a i

m i c is i

where the CellularFrequencycis is the rank-transformed percentage 
of lineage/cell type c in the sample (that is, among cells from donor i 
in condition s); SNPi is the number of alternative alleles of donor i for 
the target SNP; Populationi, Sexi and Agei are variables reflecting the 
donor’s characteristics (population of origin, genetic sex and age); 

CellMortalityi and NCellsis are variables reflecting technical parameters 
(respectively, the percentage of dead cells after thawing the cryopre-
served PBMCs and the count of high-quality cells in the sample); β, βp, 
βs, βa, βm and βc are parameters capturing the effect of these variables 
on cellular composition; and εi are normally distributed residuals. 
For each SNP, we used Bonferroni correction to adjust for the number 
cell types and the condition tested and considered Padj < 5 × 10−8 as 
genome-wide significant. Winner’s curse-adjusted Z-score and R2 were 
computed using FDR inverse quantile transformation79.

Effect of CMV infection on cell composition
We determined the CMV serostatus of AFB (n = 78), EUB (n = 80) and 
ASH (n = 49) donors with a human anti-IgG CMV ELISA kit (Abcam) on 
plasma samples, according to the manufacturer’s instructions. We 
assessed the contribution of CMV infection to differences in cellular 
composition between Africans and Europeans using mediation analysis. 
Specifically, we used the mediate function of the mediation package 
of R (v.4.5.0)80 to model the frequency of each cell type, as a function 
of population, CMV serostatus and covariates :

α β δ I Z εCellularFrequency = + CMV + + ⋅ + (7)i i i i
T

i
EUB γ

γα δ I Zlogit(Prob(CMV = 1)) = ′ + ′ + ⋅ ′ (8)i i i
TEUB

where CellularFrequencyi corresponds to the basal state frequency of 
the cell type under consideration; α and α′ are two intercepts; β is the 
effect of the CMV serostatus (CMVi) on cellular proportions; δ and δ′ 
are the (direct) effect of population (captured through the indicator 
variable Ii

EUB) on cell type frequency and CMV serostatus; γ and γ′ cap-
ture the confounding effect of covariates (that is, age and cell mortal-
ity) on both gene expression and CMV serostatus; and εi are normally 
distributed residuals. Under this model, we implicitly assumed that 
the effect of CMV serostatus is the same across populations. Although 
this assumption cannot be tested due to the lack of CMV− individuals 
in the African group, we used an interaction test to evaluate whether 
the effect of CMV serostatus on cell composition is similar between 
European and East Asian donors (Supplementary Note 4 and Supple-
mentary Fig. 7). To do so, we defined the following model, with the 
same notations as before

γα β δ I θ I Z εCellularFrequency = + CMV + + CMV + ⋅ + (9)i i i i i i
T

i
ASH ASH

and performed a Student’s t-test for the null hypothesis that the effect 
of CMV is the same in Europeans and East Asians (H θ: = 00 ).

Modelling population effects on the variation of gene expression
To estimate population effects on gene expression while mitigating any 
potential batch effect relating to sample processing, we first focused 
exclusively on AFB and EUB individuals, as all these individuals were 
recruited during the same sampling campaign and their PBMCs were 
processed at the same time, with the same experimental procedure18. 
For each immune lineage, cell type, stimulation condition and gene, 
we then built a separate linear model of the form:

α β I Z εExpr = + + ⋅ + (10)i r i i
T

i
EUB γ

where Expri is the rank-transformed gene expression (log-normalized 
CPM) for individual i in the lineage/cell type and condition under con-
sideration; Ii

EUB is an indicator variable equal to 1 for European-ancestries 
individuals and 0 otherwise; and Zi represents the set of core covariates 
of the sample that includes the individual’s age and cellular mortality 
(that is, the proportion of dying cells in each thawed vial, as a proxy of 
sample quality). Moreover, εi are the normally distributed residuals and 
α,βr,γ are the fitted parameters of the models. In particular, α is the inter-
cept, βr indicates the log2-transformed fold change difference in 



expression between individuals of European and African ancestries, and 
γ captures the effects of the set of core covariates on gene expression.

We reasoned that differences in the variance of gene expression 
between populations might inflate the number of false positives. We 
therefore used the vcovHC function of sandwich (v.2.5-1)81 with the 
Type=‘HC3’ option to compute sandwich estimators of variance that 
are robust to residual heteroskedasticity. We estimated the βr coeffi-
cients and their standard error with the coeftest function of lmtest 
(v.0.9-40)82. The FDR was calculated across all conditions and lineages 
using the Benjamini–Hochberg procedure (p.adjust function with the 
‘fdr’ method). Genes with an FDR < 1% and |βr| > 0.2 were considered to 
be differentially expressed between populations (that is, ‘raw’ pop-
DEGs). We adjusted for cellular composition within each lineage L by 
introducing into model (10) a set of variables F( )j j L⋅ ∈  encoding the fre-
quency in the PBMC fraction of each cell type j comprising the lineage 
(for example, naive, effector and regulatory subsets of CD4+ T cells).

∑α β I Z δ F εExpr = ′ + + ⋅ + + (11)i a i i
T

j L j j i i
EUB

∈ ,γ′

The notation is as above, with α,βa,γ′ the fitted parameters of 
the model. In this model, δj is the effect on gene expression of a 1% 
increase in cell type j and βa indicates the cell composition-adjusted 
log2-transformed fold change in the difference in expression between 
AFB and EUB individuals. The significance of βa was calculated as 
described above, with a sandwich estimator of variance and the coeft-
est function. FDR was calculated across all conditions and lineages 
to yield a set of “cell-composition-adjusted” popDEGs. We assessed 
the impact of cellular composition on differences in gene expression 
between populations, by defining Student’s t-test statistic TΔβ as follows:

̂ ̂
̂ ̂

̂ ̂
̂ ̂ ̂ ̂T

β β

β β

β β

s s ρs s
=

−

Var( − )
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−

+ − 2
(12)β

a r

a r

a r

a r a r
∆ 2 2

where βr
  and βa

  are the raw and cell-composition-adjusted differences 
in expression between populations; sr and sa are the estimated stand-
ard error of βr

  and βa, respectively; and ρ is the observed correlation 
in permuted data between the βr and βa

  statistics. Under the null hypoth-
esis that population differences are not affected by cellular composi-
tion, TΔβ should follow an approximate Gaussian distribution with  
mean 0 and variance 1, enabling the definition of a P value PΔβ. We then 
considered the set of raw popDEGs that (1) were not significant after 
adjustment (FDR > 1% or |βa| < 0.2) and (2) displayed significant differ-
ences between the raw and adjusted effect sizes (|TΔβ| > 1.96) imputable 
to the effect of cellular composition.

For the assessment of population differences in response to viral 
stimuli (that is, popDRGs), we used the same approach, but with the 
replacement of log-normalized counts with the log-fold change differ-
ence in expression between the stimulation conditions for each of the 
two viruses and non-stimulated conditions.

Pathway enrichment analyses
We performed functional assessments of the effects of cellular compo-
sition variability on differences in gene expression between donors in 
the basal state and in response to each virus, using the fgsea R package 
(v.1.18.1)83 and the default options. This made it possible to perform 
a gene set enrichment analysis with population differences in each 
lineage ranked by the magnitude of the effect of ancestry on the expres-
sion or response of the gene before (βr) and after (βa) adjustment for 
differences in cellular composition.

Fine mapping of eQTL
For eQTL mapping, we used variants with MAF > 5% in at least one 
of the three populations considered, resulting in a set of 10,711,657 
SNPs, of which 4,164,060 were located <100 kb from a gene. We used 
MatrixEQTL (v.2.3)84 to map eQTLs in a 100 kb region around each 

gene and obtain estimates of eQTL effect sizes and their standard 
error. eQTL mapping was performed separately for each immune 
lineage/cell type and condition, based on rank-transformed gene 
expression values. eQTL analyses were performed adjusting for 
population, age, chromosomal sex, cell composition (within each 
lineage), as well as cell mortality and total number of cells in the 
sample, and a data-driven number of surrogate variables included 
to capture unknown confounders and remove unwanted variability. 
Specifically, for each immune lineage/cell type and condition, sur-
rogate variables were obtained using the sva function from the sva R 
package (v.3.40.0)85 with option method=‛two-steps’, providing all 
other covariates as known confounders (mod argument). The number 
of surrogate variables to use in each lineage/cell type and condition 
was determined automatically based on the results from num.sv func-
tion with method=‛be’85.

For each gene, immune lineage/cell type and stimulation condition, 
Z-values (that is, the effect size of each eQTL divided by the standard 
error of effect size) were then calculated, and the fine mapping of eQTLs 
was performed using SuSiE (v.0.11.42)86 (susie_rss function of the 
susieR R package), with a default value of up to 10 independent eQTLs 
per gene. Imputed genotype dosages were extracted in a 100 kb window 
around each gene and regressed against the population of origin (that 
is, AFB, EUB or ASH). Genes with fewer than 50 SNPs in the selected 
window were discarded from the analysis. Pairwise correlations 
between the population-adjusted dosages were then assessed, to define 
the genotype correlation matrix to be used for the fine mapping of 
eQTLs. In rare cases (<0.1% of tested gene × condition combinations), 
the susie_rss function did not converge, even when the number of 
iterations was increased to >106. These runs were therefore discarded, 
and the associated eQTLs were assigned a null Z-score during FDR com-
putation (see below). For each eQTL, the index SNP was defined as the 
SNP with the highest posterior inclusion probability (that is, the α 
parameter in the output of SuSiE) for that eQTL, and the 95% credible 
interval was obtained as the minimal set of SNPs S such that αs > 0.01 
for all s S∈  and α∑ > 0.95s S s∈ . Only eQTLs with a log-Bayes factor 
(lbf) > 3 were considered for further analyses.

For each lineage and set of stimulation conditions, each eQTL iden-
tified by SuSiE was assigned an eQTL evidence score, defined as the 
absolute Z-value of association between the eQTL index SNP and the 
associated gene. We then used a pooled permutation strategy to define 
the genome-wide number of significant eQTLs (that is, eQTL × gene 
combinations) expected under the null hypothesis, for different 
thresholds of the eQTL evidence score. We repeated the eQTL mapping 
procedure on the dataset after randomly permuting genotype labels 
within each population. We then counted, for each possible evidence 
score threshold T, the number of eQTLs identified in the observed 
and permuted data. Finally, we retained as a significance threshold 
the lowest threshold giving several significant eQTLs in the permuted 
data (false positives) of less than 1% the number of eQTLs identified in 
the observed data (false positives + true positives).

Aggregation of eQTLs across cell types and stimulation 
conditions
The eQTL index SNP may differ between cellular states (immune line-
age/cell type and stimulation condition), even in the presence of a 
single causal variant. It is therefore necessary to aggregate eQTLs to 
ensure that the same locus is tagged by a single variant across cellu-
lar states. To this end, we applied the following procedure, for each 
gene: (1) let Cg be the set of cellular states where a significant eQTL 
was detected for gene g, and Sg be the associated list of eQTLs (that is, 
cellular state × index SNP). We aim to define a minimal set of SNPs, Mg, 
that overlaps the 95% credible intervals of all significant eQTLs in Sg. 
(2) For each SNP s in a 100-kb window around each gene, compute the 
expected number of cellular states in which the SNP has a causal effect 
on gene expression E[Nc(s)] as:
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∑E N s[ ( )] = PP (13)c
j C

sj
∈ g

where PPsj is the posterior probability that SNP s has a causal effect on 
the expression of gene g in the cellular state j (cell type × condition). 
(3) Find the SNP s that maximizes E[Nc(s)], and add it to Mg. (4) Remove 
from Sg all eQTLs for which the 95% credible interval contains SNP s.  
(5) Repeat steps 1–3 until Sg is empty.

At the end of this procedure, Mg  provides the list of independent 
eQTL index SNPs (referred to as eSNPs) for gene g, for which we 
extracted summary statistics across all cellular states.

Mapping of response eQTLs
For the mapping of response eQTLs (reQTLs), we repeated the same 
procedure as for the mapping of eQTLs, using the rank-transformed 
log2-fold change as input rather than gene expression. This included 
reQTL mapping using MatrixEQTL84, fine mapping with SuSiE86, 
permutation-based FDR computation, and aggregation of reQTL 
across immune lineages, cell types and stimulation conditions. Sur-
rogate variables were computed directly from log2-transformed fold 
changes. For IAV-infected monocytes (detected only in the IAV condi-
tion), fold changes were computed relative to CD14+ monocytes in the 
non-stimulated condition. This produced a list of independent reQTL 
index SNPs M′, like that obtained for eQTLs, for which we extract sum-
mary statistics across all cellular states.

Sharing of eQTLs across cell types and stimulation conditions
After extracting the set M of independent eSNPs across all genes, we 
defined cell-type-specific eQTLs as eQTLs significant genome-wide in a 
single cell type. We accounted for the possibility that some eQTLs may 
be missed in specific cell types due to a lack of power by introducing 
a second definition of eQTL sharing based on nominal P values. Spe-
cifically, we considered an eQTL to be cell type-specific at a nominal 
significance if, and only if, it was significant genome-wide in a single 
cell type and its nominal P value of association was greater than 0.01 in 
all other cell types. For each pair of cell types, the correlation of eQTL 
effect sizes was calculated on the set of all eQTLs passing the nominal 
significance criterion (Student’s t-test, P < 0.01) in at least one of the 
two cell types. To understand how the effect of genetics on immune 
response varies between SARS-CoV-2 and IAV, we defined an interac-
tion statistic that enabled us to test for differences in reQTL effect size 
between the two viruses. Specifically, within each immune lineage/cell 
type, we defined:
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When the reQTL effect size is identical between the two viruses, we 
expect Tint to be normally distributed around 0 with variance 1, allow-
ing to derive an interaction P value. We therefore defined as virus- 
dependent reQTLs those with a nominal interaction P < 0.01 and as 
virus-specific reQTLs those that passed a nominal P value threshold of 
0.01 in only one of the two stimulation conditions.

Comparison of eQTLs and eGenes across studies
To assess the replicability of the eQTLs detected in our study, we 
compared the eGenes that we identified with those reported in three 
single-cell studies of resting and stimulated PBMCs19,87,88. For each study, 
we first reassigned each reported cell type to one of the five major 
lineages that we identified. We then retrieved, for each lineage/condi-
tion, the union of all genes with a reported eQTL in at least one of the 
cell types associated to that lineage, using the following thresholds:  
ref. 87, P < 10−5; ref. 88, FDR < 0.05; ref. 19, lfsr < 0.1. The resulting 
gene sets were considered as eGenes for each lineage/condition. 

Enrichments of eQTLs in previously identified eGenes were tested 
for each study and lineage separately, using a Fisher’s exact test to 
assess whether genes reported to contain an eQTL in a given lineage 
were more likely to present an eQTL in the same lineage in our study. 
For each comparison, we used as background sets all genes tested for 
eQTLs in both studies. When the set of tested genes was not reported 
in the study, as reported previously87, we used the union of eQTL genes 
across all cell types, as a proxy for the set of tested genes. For reQTLs, 
we compared, for each lineage, genes with a reQTL after IAV stimula-
tion in our study with genes with an eQTL at lfsr < 0.1 specifically after 
IAV stimulation (but not in non-stimulated cells) in ref. 19. Finally, we 
compared the direction of effect at shared eQTLs between our study 
(FDR < 0.01) and that of ref. 19 (lfsr < 0.1), focusing on the eQTL index 
SNP reported by the latter and assessing the percentage of eQTLs with 
concordant direction of effect in our data.

To assess the extent to which our findings in PBMCs replicate in the 
lung, we downloaded Genotype-Tissue Expression (GTEx) lung eQTL 
data55 from the eQTL catalogue (uniformly processed summary statis-
tics; http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/sumstats/GTEx/
ge/GTEx_ge_lung.all.tsv.gz). We next considered the index SNP from 
each eQTL, focusing on the subset of genes with median TPM > 10 in 
the lung and eQTLs with MAF > 5% in the GTEx dataset. We considered 
any eQTL with (1) P < 0.01 in the lung and (2) the same effect direction 
between lung and the lineage/cell type/condition in which it is the most 
significant in our study as replicated. As a comparison, we evaluated the 
amount of eQTLs that would be replicated when selecting SNPs at ran-
dom, matching for MAF in GTEx (bins of 5%) and the distance between 
the eQTL index SNPs and the nearest gene (that is, bins of 0–1, 1–5, 5–10, 
10–20, 20–50 and 50–100 kb), and computed the fold-enrichment 
in replicated eQTLs as the ratio between the observed and expected 
number of replicated eQTLs.

Mediation analyses
For all popDEGs and popDRGs, we evaluated the proportion of the 
difference in expression or response to viral stimulation between 
populations attributable to either genetic factors (that is, eQTLs) or 
cellular composition, using the mediate function of the mediation R 
package (v.4.5.0)80. Mediation analysis made it possible to separate the 
differences in expression/response between populations that were 
mediated by genetics (that is, differences in allele frequency of a given 
eQTL between populations, ζg), or cellular composition (that is, differ-
ence in cell type proportions between populations, ζc) from those 
occurring independently of the eQTL/cell type considered (independ-
ent or direct effect δ). It was then possible to estimate the respective 
proportion of population differences mediated by genetics τg and cel-
lular composition τc as τ =c

ζ
ζ ζ δ+ +

c

c g
 and τ =g

ζ

ζ ζ δ+ +
g

g c
, with ζ ζ δ+ +c g  cor-

responding to the total differences in expression/response between 
populations. For each popDEG and popDRG, we focused on either (1) 
the most strongly associated SNP in a 100 kb window around the gene, 
regardless of the presence or absence of a significant (r)eQTL, or  
(2) the cell type differing most strongly between populations in each  
lineage (that is, CD16+ monocytes in the myeloid lineage, κ-light-chain-
expressing memory cells in the B cell lineage, effector cells in CD4+ 
T cell lineage, CD8+ EMRA cells in the CD8+ T cell lineage and memory 
cells in the NK cell lineage). For each popDEG and potential mediator 
M (that is, eQTL SNP or cell subtype proportion), we then ran mediate 
with the following models:

γα β M δ I Z εExpr = + + + ⋅ + (15)i i i i
T

i
EUB

M α δ I Z ε= ′ + ′ + ⋅ + ′ (16)i i i
T

i
EUB γ′

where Expri corresponds to normalized expression values in the cell 
type/condition under consideration; α and α′ are two intercepts; β is 



the effect of the mediator Mi on gene expression; δ and δ′ are the 
(direct) effect of population (captured through the indicator variable 
Ii

EUB) on gene expression and on the mediator; γ and γ′ capture the 
confounding effect of covariates (that is, age and cell mortality) on 
both gene expression and the mediator; and εi and ε′i are normally 
distributed residuals. For popDRGs, we used the same approach, 
replacing normalized gene expression values with the log2-transformed 
fold change in gene expression between the stimulated and unstimu-
lated states.

Detection of signals of natural selection
We avoided SNP ascertainment bias by performing natural selection 
analyses with high-coverage sequencing data from the 1KG Project89. 
We downloaded the GRCh38 phased genotype files from the New York 
Genome Center FTP server and calculated the pairwise FST (ref. 90) 
between our three study populations (AFB, EUB or ASH) and all 1KG 
populations to identify the 1KG populations that were the most geneti-
cally similar to our study populations. All selection and introgression 
analyses (see the ‘Archaic introgression analyses’ section) were based on 
the Yoruba from Ibadan, Nigeria (YRI), Utah residents with Northern and 
Western European ancestries (CEU) and Southern Han Chinese (CHS) 
populations, as these 1KG populations had the lowest FST values with 
our three study groups. We filtered the data to include only autosomal 
biallelic SNPs and insertions/deletions (indels), and removed sites that 
were invariant (that is, monomorphic) across the three populations. 
We identified loci presenting signals of positive selection (local adap-
tation) with the PBS39, based on the Reynold’s FST estimator90 between 
pairs of populations. PBS values were calculated for the YRI, CEU, and 
CHS populations separately, with the other two populations used as 
the control and outgroup. For each population, genome-wide PBS 
values were then ranked, and variants with PBS values within the top 
1% were considered to be putative targets of selection. For annotation 
of the selected eQTLs, the ancestral and derived states at each site 
were inferred from six-way EPO multiple alignments for six primate 
species (available from http://ftp.ensembl.org/pub/release-71/emf/
ensembl-compara/epo_6_primate/), and the effect size was reported 
for the derived allele. For sites without an ancestral/derived state in 
the EPO alignment, the effect of the allele with the lowest frequency 
worldwide was reported.

We assessed the extent to which different sets of eQTLs displayed 
signals of local adaptation in permutation-based enrichment analyses. 
For each population, we compared the mean PBS values at (r)eQTLs for 
each set of cell type/stimulation condition with the mean PBS values 
obtained for 10,000 sets of randomly resampled sites. Resampled 
sites were matched with eQTLs for MAF (mean MAF across the three 
populations, bins of 0.01), LD scores (quintiles) and distance to the 
nearest gene (bins of 0–1, 1–5, 10–20, 20–50 and >100 kb). For each 
population and set of eQTLs, we defined the fold-enrichment (FE) in 
positive selection as the ratio of observed/expected values for mean 
PBS and extracted the mean and 95% confidence interval of this ratio 
across all resamplings. One-sided resampling P values were calculated 
as the number of resamplings with a FE > 1 divided by the total number 
of resamplings. Resampling P values were then adjusted for multiple 
testing by the Benjamini–Hochberg method.

Detecting and dating episodes of local adaptation
We inferred the frequency trajectories of all eQTLs and reQTLs during 
the past 2,000 generations (that is, 56,000 years before the present, 
with a generation time of 28 years), systematically by using CLUES 
(commit no. 7371b86, 27 May 2021)40. We first used Relate (v.1.1.8)91 
on each population separately to reconstruct tree-like ancestral 
recombination graphs (ARGs) around each SNP in the genome and 
to estimate effective population sizes across time on the basis of the 
rate of coalescence events over the inferred ARGs. Using CLUES40, we 
then estimated at each eQTL or reQTL, the most likely allele frequency 

trajectories for each sampled ARG and averaged these trajectories 
across all possible ARGs.

We then analysed changes in inferred allele frequencies over time 
to identify selection events characterized by a rapid change in allele 
frequency (Supplementary Fig. 9a). We considered the posterior mean 
of allele frequency at each generation and smoothed the inferred allele 
frequency trajectories by loess regression (with span = 0.1) to ensure 
progressive changes in allele frequency over time and to minimize the 
artifacts induced by the inference process. Finally, for each variant 
and in each population, we calculated the change in allele frequency f 
at each generation as the difference in the smoothed allele frequency 
between two consecutive generations:
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Under an assumption of neutrality, the count of a particular allele at 
generation t + 1 is the result of a Bernoulli trial parameterized B N f( , ), 
where N is the size of the haploid population. The variance of allele 
frequencies at generation t + 1 is therefore greater for alleles present 
at higher frequencies in generation t,
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We adjusted for this by scaling the change in allele frequency ̇f  by a 
normalizing factor dependent on the allele frequency at generation t, 
such that the variance of the normalized change in allele frequency ġ  
was the same across all variants,
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Finally, at each generation, we divided the normalized change in 
allele frequency ġ  by its s.d. across all eQTLs and reQTLs, to calculate 
a Z-score for detecting alleles for which the normalized change in allele 
frequency exceeded genome-wide expectations,
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For each variant and generation, we then considered an absolute 
Z-score > 3 to constitute evidence of selection and we inferred the onset 
of selection of a variant as the first generation in which |Z| > 3.

Simulations, power and type I error estimates
We assessed the ability of our approach to detect (and date) events of 
natural selection correctly from the trajectories of allele frequencies 
by using simulations with SLiM (v.4.0.1)92 under various selection sce-
narios. Simulations were performed under a Wright–Fisher model for 
a single mutation occurring around 5,000 generations ago, at a fre-
quency varying from f = Nmin

1  to f = 1 − Nmax
1  in steps of 1%, where N is 

the simulated population size. We allowed population size to vary over 
time according to published estimates91 for the YRI, CEU and CHS 
populations (Supplementary Fig. 9b). We then performed simulations 
both under an assumption of neutrality (1,000 simulations for each 
starting frequency) and assuming a 200-generation-long episode of 
selection (100 simulations for each starting frequency and selection 
scenario). Selection episodes were simulated with an onset of selection 
1,000, 2,000, 3,000 or 4,000 generations ago, and with a selection 
coefficient ranging from 0.01 to 0.05 (Supplementary Fig. 9c). We 
saved computation time by performing a tenfold scaling in line with 
SLiM recommendations. For each selected scenario and variant, simu-
lated allele frequencies were retrieved every ten generations, and 
smoothed using loess regression with a span of 0.1. We then calculated 
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normalized differences in smoothed allele frequencies for each simu-
lated variant and scaled these differences at each generation, on the 
basis of their s.d. among neutral variants, to obtain Z-scores. For each 
selection scenario, we focused on the centre of the selection interval 
and determined the type I error and power for various thresholds of 
absolute Z-scores varying from 0 to 6. We found that a threshold of 3 
yielded both a low type I error (<0.2% false positives) and a satisfactory 
power for detecting selection events (Supplementary Fig. 9c). Finally, 
at each generation, we estimated the percentage of simulations, under 
an assumption of neutrality or a particular selection scenario, for which 
the absolute Z-score exceeded a threshold of 3. We found that signifi-
cant Z-scores were equally rare at each generation under the assump-
tion of neutrality, but that selected variants presented a clear and 
localized enrichment in significant Z-scores for intervals in which we 
simulated selection (Supplementary Fig. 9d).

Archaic introgression analyses
For the definition of regions of the modern human genome of archaic 
ancestry (Neanderthal or Denisovan), we downloaded the VCFs from 
the high-coverage Neanderthal Vindija93 and Denisovan Altai94 genomes 
(human genome assembly GRCh37; http://cdna.eva.mpg.de/neander-
tal/Vindija/) and applied the corresponding genome masks (FilterBed 
files). We then removed sites within segmental duplications and lifted 
over the genomic coordinates to the GRCh38 assembly with CrossMap 
(v.0.6.3)95. We used two statistics to identify introgressed regions in 
the CEU and CHS populations: (1) conditional random fields (CRF)96,97, 
which uses reference archaic and outgroup genomes to identify intro-
gressed haplotypes; and (2) the S′ method98, which identifies stretches 
of probably introgressed alleles without requiring the definition of an 
archaic reference genome.

For CRF-based calling, we phased the data with SHAPEIT4 (v.4.2.1)60, 
using the recommended parameters for sequence data, and focused 
on biallelic SNPs for which the ancestral/derived state was unam-
biguously defined. We then performed two independent runs of CRF 
to detect haplotypes inherited from Neanderthal or Denisova. For 
Neanderthal-introgressed haplotypes, we used the Vindija Neanderthal 
genome as the archaic reference and YRI individuals merged with the 
Altai Denisovan genome as the outgroup. For Denisovan-introgressed 
haplotypes, we used the Altai Denisovan genome as the archaic 
reference panel and YRI individuals merged with the Vindija Nean-
derthal genome as the outgroup. The results from the two inde-
pendent CRF runs were analysed jointly, and we retained alleles with 
a marginal posterior probability PNeanderthal ≥ 0.9 and PDenisova < 0.5 as 
Neanderthal-introgressed haplotypes and those containing alleles 
with PDenisova ≥ 0.9 and PNeanderthal < 0.5 as Denisovan-introgressed haplo-
types. For the S′-based calling of introgressed regions, we considered 
all biallelic SNPs with an allele frequency of <1% in the YRI population 
to be Eurasian-specific alleles. We then ran the Sprime (v.07Dec18.5e2; 
https://github.com/browning-lab/sprime) separately for the CEU and 
CHS populations to identify and score putatively introgressed regions 
containing a high density of Eurasian-specific alleles. Putatively intro-
gressed regions with a S′ score of >150,000 were considered to be intro-
gressed. This cut-off score has been shown to provide a good trade-off 
between power and accuracy based on simulations of introgression 
under realistic demographic scenarios98. For both calling methods 
(that is, CRF and S′), we used the recombination map from the 1KG 
Project Phase 3 data release56.

After the calling of introgressed regions throughout the genome for 
each population, we defined SNPs of putative archaic origin (archaic 
SNPs, aSNPs) as those (1) located in an introgressed region defined 
by either the CRF or S′ method; (2) with one of their alleles being rare 
or absent (MAF < 1%) in the YRI population, but present in the Vindija 
Neanderthal or Denisovan Altai genomes; and (3) in high LD (r2 > 0.8) 
with at least two other aSNPs and, to exclude incomplete lineage sort-
ing, comprising an LD block of >10 kb. This yielded a set of 100,345 

high-confidence aSNPs (Supplementary Table 8a). We further catego-
rized aSNPs as of Neanderthal origin, Denisovan origin or shared origin 
according to their presence/absence in the Vindija Neanderthal and 
Denisovan Altai genomes. Finally, we considered any site that was in 
high LD with at least one aSNP in the same population in which intro-
gression was detected to be introgressed, and classified introgressed 
haplotypes as of Neanderthal origin, Denisovan origin or shared origin 
according to the most frequent origin of aSNPs in the haplotype. For 
introgressed SNPs, we defined the introgressed allele as (1) the allele 
rare or absent from individuals of African ancestries if the SNP was 
an aSNP; and (2) for non-aSNPs, the allele most frequently segregat-
ing with the introgressed allele of linked aSNPs. In each population, 
introgressed alleles with a frequency in the top 1% for introgressed 
alleles genome-wide were considered to present evidence of adaptive 
introgression.

The enrichment of introgressed haplotypes in eQTLs or reQTLs 
was assessed separately for each population (CEU and CHS), first by 
stimulation condition and then by cell type within each condition. 
To avoid biases related to an increased power for the detection of 
eQTLs that segregate at higher frequencies in European genomes, 
(that is, nEUB = 80 and nASH = 62), we considered a set of n = 10,276 eQTLs 
mapped on a downsampled dataset composed of the same number of 
individuals from each population (EUB and ASH) within each cell type 
and condition. This downsampled set of eQTLs was highly concordant 
with the original eQTL mapping (that is, >95% sharing at the lineage 
level). Within each cell type/stimulation condition, we considered 
the set of all (r)eQTLs for which the index SNP displayed at least a 
marginal association (Student’s t-test, P < 0.01) with gene expression. 
For each population and (r)eQTL set, we then grouped (r)eQTLs in 
high LD (r2 > 0.8), retaining a single representative per group, and 
counted the total number of (r)eQTLs for which the index SNP was 
in LD (r2 > 0.8) with an aSNP (that is, introgressed eQTLs). We then 
used PLINK (v.1.9) --indep-pairwise (with a 500 kb window, 1 kb step, 
an r2 threshold of 0.8, and a MAF > 5%)57 to define tag-SNPs for each 
population, and we determined the expected number of introgressed 
SNPs by resampling tag-SNPs at random with the same distribution 
for MAF, LD scores and distance to the nearest gene. We performed 
10,000 resamplings for each (r)eQTL set and population. One-sided 
resampling-based P values were calculated as the frequency at which 
the number of introgressed SNPs among resampled SNPs exceeded 
the number of introgressed SNPs among (r)eQTLs. Resampling-based 
P values were then adjusted for multiple testing using the Benjamini–
Hochberg method.

We searched for signals of adaptive introgression by determining 
whether introgressed haplotypes that altered gene expression were 
introgressed at a higher frequency than introgressed haplotypes with 
no effect on gene expression. For each stimulation cell type/condi-
tion, we focused on the set of introgressed eQTLs segregating with a 
MAF > 5% in each population (retaining a single representative per LD 
group) and compared the frequency of the introgressed allele with 
that of introgressed tag-SNPs genome-wide. We modelled r(Freq), the 
(rank-transformed) frequency of introgressed tag-SNPs according 
to the presence/absence of a linked eQTL (IeQTL), and the mean MAF of 
the SNP across the three populations (giving a higher power for eQTL 
detection).

r α β I γ≈ + + MAF (21)(Freq) eQTL

where IeQTL is an indicator variable equal to 1 if the SNP is in LD with an 
eQTL (r2 > 0.8) and 0 otherwise; MAF  is the mean MAF calculated sep-
arately for each population; α is the intercept of the model; β measures 
the difference in rank r(Freq) between eQTLs and non eQTLs; and γ is a 
nuisance parameter capturing the relationship between MAF and r(Freq). 
Under this model, the difference in frequency between eQTLs and 
non-eQTLs can be tested directly in a Student’s t-test with β: = 00H .



Enrichment in COVID-19-associated loci and colocalization 
analyses
We downloaded summary statistics from the COVID-19 Host Genetics 
Initiative (release 7: https://www.covid19hg.org/results/r7)8 for three 
GWASs: (1) A2—very severe respiratory cases of confirmed COVID-19 
versus the general population; (2) B2—hospitalized COVID-19 cases 
versus the general population; (3) C2—confirmed COVID-19 cases 
versus the general population. We assessed the enrichment in eQTLs 
and reQTLs of COVID-19 susceptibility/severity loci by considering, 
for each eQTL/reQTL, the A2, B2 or C2 P values of the index SNP and 
calculating the percentage of eQTLs/reQTLs with a significant GWAS P 
value of 10−4. This percentage was then compared to that obtained for 
the resampled set of SNPs, matched for distance to the nearest gene 
(bins of 0–1, 1–5, 5–10, 10–20, 20–50 and 50–100 kb) and MAF (1% MAF 
bins). We performed 10,000 resamplings for each set of eQTLs/reQTLs 
tested. The use of different P-value thresholds for COVID-19-associated 
hits (10−3 to 10−5) yielded similar results. Note that, despite the strong 
overlap (OR > 200, Fisher’s test, P = 4.2 × 10−40) between loci associ-
ated with susceptibility (C2) and severity (A2 or B2)8, 81 out of 105  
COVID-19 associated eQTLs (at nominal P < 10−4) are associated specifi-
cally with either susceptibility (n = 19) or severity (n = 62), supporting  
the relevance of considering these traits separately in our analysis.

To identify specific eQTLs/reQTLs colocalized with GWAS hits, we 
first considered all (r)eQTLs for which the index SNPs were located 
within 100 kb of a SNP associated with COVID-19 susceptibility/severity 
(P < 10−5). For each immune lineage/cell type, and condition for which 
the eQTL/reQTL reached genome-wide significance, we next extracted 
all SNPs in a 500 kb window around the index SNP for which summary 
statistics were available for both the eQTLs/reQTLs and COVID-19 GWAS 
phenotypes (A2, B2 and C2) and performed a colocalization test using 
the coloc.signals function of the coloc (v.5.1.0) R package. We set a prior 
probability for colocalization p12 of 10−5 (that is, the recommended 
default value). Any pair of (r)eQTL/COVID-19 phenotypes with a poste-
rior probability for colocalization PPH4 > 0.8 was considered to display 
significant colocalization.

Transcriptome-wide association tests
Using the summary statistics from the COVID-19 Host Genetics Initia-
tive8, we applied the S-PrediXcan framework (v.0.6.11)99 to leverage 
our genotype-expression dataset and identify associations between 
genotypes and COVID-19 traits that could be mediated by the regula-
tion of gene expression. These analyses were conducted separately in 
each of the 5 lineages or 22 cell types and the 3 experimental conditions 
of our setting.

To perform these transcriptome-wide association tests (across the 
12,655 human genes of our final dataset), we proceeded in two steps. 
First, we used the pseudobulk gene expression levels detected in each 
cell type/lineage and condition, together with the associated geno-
types, from each of the 222 donors to build reference transcriptome 
datasets. We then trained elastic net regression models on these ref-
erences to estimate the effect on gene expression of each SNP within 
a 100 kb window around each gene. These models were of the form:

α X Z εExpr = + ⋅ + ⋅ + (22)ij ij
T

j i
T

iw γ

where Exprij is the rank-transformed expression (log-normalized CPM) 
of gene j for individual i in the lineage/cell type and condition under 
consideration; α is an intercept; Xij are the genotypes of common vari-
ants in a 100 kb window around gene j; Zi represents the set of core 
covariates of the sample that includes the individual’s age and popula-
tion of origin, the cellular mortality of the sample and the frequency in 
the PBMC fraction of each cell type k comprising the lineage. Moreover, 
wj and γ are parameter vectors capturing the effect of genotypes and 
covariates, and the εi are normally distributed residuals.

We followed the S-PrediXcan pipeline99 using the regression  
coefficients wj as weights to predict the association between the  
genetically controlled expression (GReX) of each gene j (given by 

wwα XGReX = + ⋅ij ij
T

j) and the trait of interest. Specifically, we combined 
these weights with SNP covariances calculated from our data to approx-
imate Z-scores of association with COVID-19-trait as
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where the Z j
TWA  statistic measures the association between gene j’s 

GReX and each of the three COVID-19 traits; wlj is the weight of SNP l in 
the prediction of gene j’s expression, σl  and σj  are, respectively, the 
estimated variances of the SNP and the predicted gene expression, and 
βl
 and βs.e.( )l

  are the effect size estimated by each GWAS for SNP l and 
its standard error, respectively.

Statistical analyses
Unless explicitly specified, all statistical tests are two-sided and based 
on measurements from independent samples.

Inclusion and ethics
The current research project builds on samples collected in Ghent 
(Belgium) and Hong-Kong SAR (China) and has been conducted in 
collaboration with local researchers. Roles and responsibilities were 
agreed among collaborators ahead of the research. Research conducted 
in this study is relevant to local participants and has been reviewed by 
local ethics committees (committee of Ghent University, Belgium, 
B670201214647; Institutional Review Board of the University of Hong 
Kong, UW 20-132), and the relevant French authorities (CPP, CCITRS 
and CNIL). This study was also monitored by the Ethics Board of Institut 
Pasteur (EVOIMMUNOPOP-281297). All manipulations of live viruses 
were performed in a high-security BSL-3 environment.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The scRNA-seq data generated and analysed in this study have been 
deposited in the Institut Pasteur data repository, OWEY, which is 
available online (https://doi.org/10.48802/owey.e4qn-9190). The 
genome-wide genotyping data generated or used in this study have 
been deposited in OWEY and can be accessed online (https://doi.
org/10.48802/owey.pyk2-5w22). In accordance with the General 
Data Protection Regulation (GDPR) in force in the European Union, 
the aforementioned data can be accessed only from the institutional 
data repository after authorization by the relevant Data Access Com-
mittee (DAC). The DAC ensures that data access and use is authorized 
for academic research relating to the variability of the human immune 
response, as defined in the informed consent signed by research par-
ticipants. COVID-19 GWAS summary statistics used in the present study 
can be downloaded from https://www.covid19hg.org/results/r7. Human 
(1000G data, low (phase 3) and high (NYGC) coverage), archaic (Vindija 
and Denisova) and ancestral (EPO6) genomes used can be retrieved 
from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502 
(1000G phase 3), https://www.internationalgenome.org/data-portal/
data-collection/30x-grch38 (1000G high coverage), http://cdna.eva.
mpg.de/neandertal/Vindija/ (archaic) and http://ftp.ensembl.org/
pub/release-71/emf/ensembl-compara/epo_6_primate/ (EPO6). Uni-
formly processed summary statistics from GTEx lung tissue were down-
loaded from http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/sumstats/ 
(GTEx/lung/ge/all: study_id: QTS000015, dataset_id: QTD000271, file: 
QTD000271.all.tsv.gz). Source data are provided with this paper.



Inborn errors of OAS�RNase L in SARS-CoV-2�related

multisystem in�ammatory syndrome in children

Pathological drivers of immune variability. The widespread variability in COVID-19 courses
is a clear illustration of the `infection enigma' coined by Casanova and Abel (2013, 2020): while
SARS-CoV-2 infection is generally asymptomatic, it can lead to lethal pneumonia in some cases.
Previous work from Casanova and Abel's groups at The Rockefeller University and Institut Imagine
revealed inborn errors of immunity (IEIs) and auto-antibodies targeting type I IFN signalling, which
can jointly explain up to 20% of severe COVID-19 pneumonia cases in patients over 70 years old
(Zhang et al., 2020; Bastard et al., 2020, 2021a) (� 3.3, page 67).

In this context, Lee et al. (2022) hypothesized that IEIs could also contribute to some cases
of multisystem in�ammatory syndrome in children (MIS-C), another severe phenotype related
to SARS-CoV-2 infection featuring generalized in�ammation across various organs. Importantly,
though exacerbated monocyte activation and clonal expansion of some T cell subsets are key features
of MIS-C, the cellular and molecular causes of this syndrome were still unknown at the time.

Through whole-genome or whole-exome sequencing of 558 COVID-19 patients with MIS-C,
Lee et al. (2022) found IEIs in the 2'-5'-oligoadenylate synthetase (OAS)-RNase L pathway in �ve
children between 4 months and 14 years old. OAS1, OAS2 andOAS3 are ISGs that encode sensors of
viral nucleic acids, and are thus key players of the IFN-mediated antiviral response. Upon sensing of
viral doubled-stranded RNA, the OAS enzymes produce 2'-5'-linked oligoadenylates, which activate
the RNase L enzyme that catalyzes RNA degradation.

After functionally validating the OAS-RNase L loss-of-functions in these patients, Lee et al.
(2022) identi�ed myeloid cells as the highest transcribers of OAS1, OAS2 and OAS3 and RNASEL

using bulk transcriptomics, and characterized exaggerated in�ammatory cytokine responses to
double-stranded RNA in monocyte and macrophage cell lines with OAS-RNase L knock-outs.

To fully characterize the innate response to a live virus strain across multiple immune cell
types at single-cell resolution, I performed scRNA-seq on PBMC samples from four OAS-RNase-
L-de�cient MIS-C patients and from healthy controls, exposed to SARS-CoV-2 or non-infectious
medium for six hours. Overall, I detected a widespread e�ect of OAS-RNase L de�ciency on the
transcriptional response to SARS-CoV-2 across all PBMC types�signi�cantly a�ecting the response
of around 48% to 94% of di�erentially expressed genes in each cell type�with myeloid cells being
the most a�ected. Remarkably, myeloid responses to SARS-CoV-2 included a private in�ammatory
component driven by IL1B and CCL3, and were signi�cantly stronger in cells from MIS-C patients.
These di�erences were functionally translated into stronger in�ammatory responses, tumor necrosis
factor production and IFN production, as well as stronger IFN-mediated responses, respectively in
OAS-RNase-L-de�cient myeloid and CD4+ T cells.

Together, these results support a role for exaggerated myeloid-driven in�ammation�owing to
a dysregulation of in�ammatory cytokine production due to impaired RNase L activity�in the
pathogenesis of MIS-C in children with inborn OAS-RNase L de�ciencies (� 3.3.1, page 67).
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Inborn errors of OAS–RNase L in SARS-CoV-2–related
multisystem inflammatory syndrome in children
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Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows
benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated
children with MIS-C. The cytosolic double-stranded RNA (dsRNA)–sensing OAS1 and OAS2 generate
2′-5′-linked oligoadenylates (2-5A) that activate the single-stranded RNA–degrading ribonuclease L
(RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce
excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not
RNase L–deficient cells. Cytokine production in RNase L–deficient cells is impaired by MDA5 or RIG-I
deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS–
RNase L deficiencies in these patients unleash the production of SARS-CoV-2–triggered, MAVS-mediated
inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.

I
nterindividual clinical variability in the
course of primary infection with severe
acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is immense in unvaccinated
individuals (1–4). We have shown that in-

born errors of type I interferon (IFN) immu-
nity and their phenocopies—autoantibodies
against type I IFNs—collectively underlie at
least 15% of cases of critical COVID-19 pneu-
monia in unvaccinated patients (5–9). Com-
mon genetic variants act as more modest risk
factors (10–13). Children were initially thought
to be rarely affected by COVID-19, as only 0.001
to 0.005% of infected children had critical pneu-
monia (2).However, another severe SARS-CoV-2–
related phenotype, multisystem inflammatory
syndrome in children (MIS-C), occurs predom-
inantly in children, typically 4 weeks after
infection (14–16). Its prevalence is estimated at

∼1 per 10,000 infected children (17–19). Chil-
dren with MIS-C do not suffer from hypox-
emic pneumonia and typically display no
detectable viral infection of the upper respi-
ratory tract at disease onset. However, most
MIS-C cases test positive for anti–SARS-CoV-2
antibodies, and almost all cases have a history
of exposure to SARS-CoV-2 (17, 20). Initial re-
ports of MIS-C described it as an atypical form
of Kawasaki disease (KD) (16, 21–25), as its
clinical features include fever, rash, abdominal
pain, myocarditis, lymphadenopathy, coronary
aneurysm, and elevated biological markers of
acute inflammation.
The elevatedmarkers frequently detected in

MIS-C patients suggest that inflammation oc-
curs in various organs (21, 22, 26–36). These
markers include surrogates of cardiovascular
endothelial injury [e.g., troponin and B-type

natriuretic peptide (BNP)] and gastrointesti-
nal epithelial injury [e.g., lipopolysaccharide
(LPS)–binding protein (LBP) and soluble
CD14] (36). Various leukocyte subsets are also
affected. Sustained monocyte activation has
been consistently reported as a key immuno-
logical feature of MIS-C, with high levels of
proinflammatory markers, including ferritin,
interleukin-1 receptor antagonist (IL-1RA), IL-6,
IL-10, IL-18, monocyte chemoattractant pro-
tein 1 (MCP1, or CCL2), and tumor necrosis
factor (TNF) (21, 22, 26–36). In addition, the
levels of biomarkers related to type II IFN
(IFN-g) signaling, which are not necessarily
specific to monocyte activation, often increase
during the early phase of disease (22, 31–36).
An immunological phenotype specific to MIS-C,
observed in ~75% of patients, is the polyclonal
expansion of CD4+ and CD8+ T cells bearing the
Vb21.3 segment (32, 34, 36–38). In this multi-
tude of molecular, cellular, and clinical ab-
normalities, the root cause of MIS-C remains
unknown (39). We hypothesized that mono-
genic inborn errors of immunity (IEIs) to SARS-
CoV-2 may underlie MIS-C in some children and
that the identification of these inborn errors may
clarify the molecular, cellular, and immuno-
logical basis of disease (15, 40).

Results
Identification of homozygous rare predicted
loss-of-function variants of OAS1 or RNASEL in
two MIS-C patients

We performedwhole-exome or whole-genome
sequencing for 558 patients with MIS-C from
the international COVIDHumanGenetic Effort
(CHGE) cohort (https://www.covidhge.com/)
(fig. S1). We first searched for homozygous or
hemizygous rare predicted loss-of-function
(pLOF) variants with a high degree of confi-
dence in human genes with a gene damage
index of <13.83 (41). We then restricted the list
to genes involved in host response to viruses
(Gene Ontology term “response to virus,”
GO:0009615). We identified two unrelated
patients homozygous for stop-gain variants, of
OAS1 in one patient (P1, p.R47*) and RNASEL
in the other (P5, p.E265*) (Fig. 1A, fig. S2A, and
Table 1). OAS1 (2′-5′-oligoadenylate synthe-
tase 1) is one of the four members of the OAS
family (OAS1, OAS2, OAS3, and the catalyt-
ically inactive OASL). These proteins are type I
IFN–inducible cytosolic proteins that produce
2′-5′-linked oligoadenylates (2-5A) upon bind-
ing to double-strandedRNA (dsRNA). The 2-5A,
in turn, induce the dimerization and activation
of the latent endoribonuclease RNase L, which
degrades single-stranded RNA (ssRNA) of viral
or human origin (42, 43). No homozygous var-
iants fulfilling these criteria were identified
in any of the 1288 subjects with asymptomatic
or mild SARS-CoV-2 infection (SARS-CoV-2–
infected controls) in the CHGE database (fig.
S1). MIS-C patients therefore display significant
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enrichment (P = 0.013) in homozygous pLOF
variants of the OAS1 and RNASEL genes, sug-
gesting that these loci are probably relevant
to MIS-C pathogenesis. Moreover, although
OAS1, OAS2, OAS3, andRNase L are expressed
in various cell types inmice and humans, their
levels are particularly high in myeloid cells,
including monocytes and macrophages (44–46).
Thus, autosomal recessive (AR) deficiencies of
the OAS–RNase L pathway may underlie MIS-
C by impairing the restriction of viral repli-
cation and/or enhancing the virus-triggered
inflammatory response in monocytes, macro-
phages, dendritic cells, or other cell types.

Identification of biallelic rare experimentally
deleterious variants of OAS1, OAS2, or RNASEL
in five MIS-C patients

OAS1,OAS2,OAS3, andRNASELhave consensus
negative selection (CoNeS) scores for negative
selection of 2.25, 0.79, 1.46, and 0.66, respectively,
consistent with findings for known monogenic
IEIs with an AR mode of inheritance (47). We
therefore extended our search to all homozy-
gous or potential compound-heterozygous non-
synonymous or essential splicing site variants

with a minor allele frequency (MAF) of <0.01
at these four loci in our MIS-C cohort. We
identified a total of 12 unrelated patients and
16 different variants ofOAS1,OAS2,OAS3, and
RNASEL (Table 1). To study the expression and
function of these 16 variants in vitro, we first
analyzed RNase L–mediated ribosomal RNA
(rRNA) degradation after the cotransfection of
RNase L–deficient HeLa M cells with the cor-
responding OAS1, OAS2, OAS3, or RNASEL
cDNAs (48–51) (Fig. 1, B to D, and fig. S2, B
and C). The p.R47* OAS1 (homozygous in P1)
mutant protein was not produced and was LOF
(Fig. 1B and fig. S2D). The three mutant OAS2
proteins detected (p.R535Q, p.Q258L, and
p.V290I) were produced in normal amounts,
but p.R535Q (homozygous in P2 and P3) had
minimal activity, and p.Q258L and p.V290I
(both found in P4) had lower levels of activity
than the wild-type (WT) protein (Fig. 1, A and
C). All the OAS3 variants were produced in
normal amounts, and all but one (p.R932Q,
found in the heterozygous state in one pa-
tient) of these variants had normal levels of
activity (fig. S2C). The RNASEL p.E265* var-
iant (homozygous in P5) was expressed as a

truncated protein and was LOF (Fig. 1D and fig.
S2E), whereas the p.I264V variant was neutral
in expression and function (Fig. 1D). We also
quantified the function of the OAS1 and OAS2
mutants in a fluorescence resonance energy
transfer (FRET) assay, which confirmed that
P1’s OAS1 variant was LOF and that the OAS2
variants of P2, P3, and P4 were hypomorphic
(21 to 43%, 32 to 76%, and36 to 75%ofWTOAS2
activity for p.Q258L, p.V290I, and p.R535Q, re-
spectively) (Fig. 1, E and F). Thus, we identified
five unrelated MIS-C patients homozygous or
compound heterozygous for rare and deleteri-
ous alleles of three of the four genes control-
ling the OAS–RNase L pathway (Fig. 1A and fig.
S2A). The patients’ genotypeswere confirmedby
Sanger sequencing and familial segregation.
Their clinical and immunological features were
consistent with those previously reported for
otherMIS-C patients (21, 22, 26–36, 52) (Fig. 1, G
to I, and Table 2).

Enrichment in homozygous deleterious OAS1,
OAS2, and RNASEL variants in MIS-C patients

We found no homozygous rare (MAF < 0.01)
deleterious variants of the three genes in the
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Fig. 1. Biallelic OAS1, OAS2, and RNASEL variants in patients with MIS-C.
(A) Family pedigrees with allele segregation. Mutant, “MT” in red; wild-type,
“WT” in black. (B to D) Functional assays for WT and mutant OAS1 (B), OAS2
(C), and RNase L (D). Variants for which homozygotes or compound
heterozygotes were present in our MIS-C cohort were tested. (Upper panels)
RNase L–mediated cleavage of rRNA in a cell-free system based on transfected
HeLa M cells. (Lower panels) Immunoblots of the indicated proteins. EV, empty
vector. Arrows indicate degraded rRNA species. OAS2 variants (C) were tested
under two different sets of conditions (see methods). The results shown in (B) to
(D) are representative of three independent experiments. (E and F) FRET assay

of 2-5A synthesized in response to poly(I:C) stimulation by WT and MT OAS1
(E) or OAS2 (F). RFU, relative fluorescence units. The data shown are the means
± SEM of six biological replicates. Statistical analysis was performed as
described in the methods. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
(G) Concentrations of various cytokines in plasma samples from OAS–RNase L–
deficient patients during MIS-C (P1, P2, and P5); comparison with those
of healthy controls (HC), pediatric (pC-19) or adult COVID-19 pneumonia (aC-19)
patients, typical Kawasaki disease patients (KD), other MIS-C patients with no
known genetic etiology (MIS-C), and patients with toxic shock syndrome (TSS).
(H) PCA of gene expression quantified by whole-blood bulk RNA-seq for P1 and
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1288 SARS-CoV-2–infected controls or in a
control cohort of 334 patients under the age
of 21 years with asymptomatic or mild infec-
tion or COVID-19 pneumonia (fig. S1). Thus,
there was a significant enrichment in such
homozygotes among MIS-C patients relative
to infected controls (P = 0.001) or controls un-
der 21 years old (P = 0.046), suggesting that AR
deficiencies of three genes of the OAS–RNase L
pathway (OAS1, OAS2, and RNASEL) specifi-
cally underlie MIS-C. We further assessed the
probability of AR deficiencies of these three
gene products being causal for MIS-C by eval-
uating the expression and function of all non-
synonymous variants of OAS1, OAS2, and
RNASEL for which homozygotes were reported
in the Genome Aggregation Database (gnomAD,
v2.1.1 and v3.1.1, 28 variants in total) in our
RNase L–mediated rRNA degradation assay
(fig. S2, F to H, and table S1). In total, 13 OAS1,
OAS2, or RNASEL variants were deleterious
and present in the homozygous state in 19 in-
dividuals in the gnomAD database (Fig. 1, J to
L). The estimated cumulative frequency of
homozygous carriers of LOF variants at the
three loci was ~0.00013 [95% confidence in-
terval (CI): 7.2 × 10−5 to 20 × 10−5] in the gen-
eral population. The rarity of AR OAS–RNase L
deficiencies in the general population is there-
fore consistent with that of MIS-C. Moreover,

the enrichment in these deficiencies observed
in MIS-C patients relative to the individuals in-
cluded in gnomAD was highly significant (P =
2 × 10−6). These findings suggest that AR defi-
ciencies of OAS1, OAS2, and RNase L are ge-
netic etiologies of MIS-C.

The expression pattern for the OAS–RNase L
pathway implicates mononuclear phagocytes

We studied the basal expression ofOAS1,OAS2,
OAS3, and RNASEL in cells from different tis-
sues. Consistent with data from public data-
bases (44), our in-house human cell RNA
sequencing (RNA-seq) and reverse transcription–
quantitative polymerase chain reaction (RT-
qPCR) data showed that myeloid blood cells
had higher basal mRNA levels for the four
genes than did the tissue-resident cells tested
(Fig. 2, A and B). In all cell types studied, both
type I and type II IFN treatments up-regulated
the levels ofmRNA forOAS1,OAS2, andOAS3,
whereas the levels ofRNASELmRNAwere not
influenced by these IFNs (fig. S3A). Previous
studies reported a relationship between cell
type–dependent activation of the OAS–RNase L
pathway and basal levels of expression in mice
(45, 46). MIS-C occurs 3 to 6weeks after SARS-
CoV-2 infection, but the virus and/or viral
proteins may still be detectable in nonrespira-
tory tissues, such as the intestine or heart, at

disease onset in some patients (32, 34, 37). In
addition, CD4+ and CD8+ T cells carrying Vb21.3
expand, which implies a superantigen-like viral
driver of MIS-C (32, 34, 36–38) and suggests
that the virus or its antigens persist. Thus, AR
deficiencies of the OAS–RNase L pathwaymay
underlie MIS-C by impairing SARS-CoV-2 re-
striction and/or enhancing virus-triggered in-
flammatory responses inmonocytes and other
mononuclear phagocytes.

OAS–RNase L deficiencies have no impact
on SARS-CoV-2 replication in A549 epithelial
cells and fibroblasts

Previous studies have shown that the overpro-
duction of exogenous OAS1 can result in the
restriction of SARS-CoV-2 replication in A549
lung epithelial cells in the absence of exoge-
nous type I IFN (53, 54). However, the five
OAS–RNase L–deficient patients had MIS-C
without pneumonia. We assessed SARS-CoV-2
replication in A549 cells rendered permis-
sive to SARS-CoV-2 by the stable expression
of angiotensin-converting enzyme 2 (ACE2) and
transmembrane protease serine 2 (TMPRSS2),
which facilitates viral entry. Knockout (KO)
of OAS1 or OAS2 did not increase the propor-
tion of SARS-CoV-2–infected cells at 24 or
48 hours relative to that for the parental WT
A549 cells, regardless of the presence or absence
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Table 1. Homozygous or potentially compound-heterozygous rare nonsynonymous variants of the OAS and RNASEL genes in MIS-C patients.
Homozygous or potentially compound-heterozygous nonsynonymous variants with a minor allele frequency (MAF) < 0.01 (gnomAD) found in our cohort of
MIS-C patients. CADD_Phred, combined annotation-dependent depletion Phred score; Exp function, experimental function of each variant as tested in the
RNase L–dependent rRNA degradation assay (OAS1, OAS2, RNase L) and FRET assay (OAS1, OAS2); Hom, homozygous; Het, heterozygous.

Gene Nucleotide change Amino acid change Zygosity MAF (gnomAD) CADD_Phred Exp function

OAS1 c.139C>T p.Arg47* (R47*) Hom 0.00017327 36 LOF
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OAS2 c.1604G>A p.Arg535Gln (R535Q) Hom 0.00028695 13.58 Hypomorph
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OAS2 c.773A>T p.Gln258Leu (Q258L) Het – 3.888 Hypomorph
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OAS2 c.868G>A p.Val290Ile (V290I) Het 0.0005153 5.585 Hypomorph
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OAS3 c.145G>A p.Ala49Thr (A49T) Het 0.00243639 9.48 Isomorph
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OAS3 c.1475G>A p.Arg492His (R492H) Het 0.0054987 9.95 Isomorph
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OAS3 c.1703G>A p.Arg568Lys (R568K) Het 0.00104951 0.472 Isomorph
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OAS3 c.2795G>A p.Arg932Gln (R932Q) Het 0.0094 23.2 LOF
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OAS3 c.3089A>G p.Gln1030Arg (Q1030R) Het – 23.9 Isomorph
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OAS3 c.1586A>G p.Gln529Arg (Q529R) Het 0.00000401 5.85 Isomorph
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OAS3 c.792C>A p.His264Gln (H264Q) Het 0.001001261 0.924 Isomorph
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OAS3 c.442C>T p.Pro148Ser (P148S) Het 0.000036 22.9 Isomorph
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OAS3 c.3259G>A p.Val1087Met (V1087M) Het 0.003936537 22.5 Isomorph
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

RNASEL c.790A>G p.Ile264Val (I264V) Hom 0.00000401 6.597 Isomorph
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

RNASEL c.793G>T p.Glu265* (E265*)† Hom 0.0031 33 LOF
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

RNASEL c.175G>A p.Gly59Ser (G59S)† Hom 0.0031 22.9 Isomorph
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

†RNASEL variants p.E265* and p.G59S were in complete linkage disequilibrium (https://www.internationalgenome.org), forming a haplotype.

P2 during MIS-C relative to pediatric controls (pCtrls), previously published
MIS-C patients, and a pediatric patient with mild COVID-19 (pC-19). (I) Relative
levels of TRBV 11-2 (encoding Vb21.3) RNA in blood samples from P1, P2, and P5
during MIS-C, relative to other MIS-C patients, adults with mild or severe COVID-19
(mild aC-19, sev aC-19), and healthy controls. (J to L) CADD-MAF graph of OAS1

(J), OAS2 (K), and RNASEL (L) variants for which homozygotes are reported in
gnomAD and/or found in our MIS-C cohort. Single-letter abbreviations for the amino
acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His;
I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val;
W, Trp; and Y, Tyr.
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of exogenous IFN-a2b (Fig. 2, C and D, and fig.
S3B). Only RNase L KO cells resulted in amild
increase in susceptibility to SARS-CoV-2 rela-
tive to WT cells in the absence of IFN-a2b,
consistent with previous findings (55). We also
used patient-specific SV40-transduced human
dermal fibroblasts (SV40-fibroblasts) stably
expressing ACE2 as a surrogate cell type for
studying the impact of OAS–RNase L deficien-
cies on tissue-resident cell-intrinsic defenses
against SARS-CoV-2 (5). Consistent with the
lack of pneumonia in these patients, no increase
in SARS-CoV-2 susceptibility was observed in
any of the fibroblasts withOAS1 (fromP1),OAS2
(P3 and P4), orRNASEL (P5)mutations up to 72

hours after infection in the presence or absence
of exogenous IFN-a2b, despite the complete loss
of expression of OAS1 or RNase L in the cells of
P1 and P5, respectively (Fig. 2, E and F). This
contrasted with the increased susceptibility
reported for fibroblasts from a patient with AR
complete IFNAR1 deficiency (56) and critical
COVID-19 pneumonia.

OAS–RNase L deficiencies have no
impact on SARS-CoV-2 replication
in THP-1 cells

Only abortive SARS-CoV-2 infection has been
reported in human mononuclear phagocytes,
includingmonocytes andmacrophages, which

express very little to no ACE2 (57–59). However,
basalOas andRnasel expression levels have pre-
viously been correlated with murine coronavirus
or vesicular stomatitis virus (VSV) restriction
in mouse macrophages (60). We tested the hy-
pothesis that deficiencies of OAS–RNase L
might result in productive SARS-CoV-2 infec-
tion in mononuclear phagocytes by assessing
the replication of SARS-CoV-2. UnlikeWTA549
cells stably transducedwithACE2 andTMPRSS2,
in which SARS-CoV-2 can be detected 24 hours
after infection, no SARS-CoV-2 was detected
in THP-1–derived macrophages (61), whether
parental orwith aKOofOAS1,OAS2, orRNase L
(Fig. 2, G and H, and fig. S3C). Thus, no myeloid
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Table 2. Demographic and clinical information for MIS-C patients biallelic for deleterious variants of the OAS–RNase L pathway. IEI, inborn error of
immunity; SCV2, SARS-CoV-2; IVIG, intravenous immunoglobulins; ND, not determined; CRP, C-reactive protein; sCD25, soluble IL-2Ra.

Patient P1 P2 P3 P4 P5

IEI (inheritance mode) OAS1 (AR) OAS2 (AR) OAS2 (AR) OAS2 (AR) RNASEL (AR)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Age at MIS-C diagnosis 3 months 3 years 14 years 9 years 4 years
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Sex Male Male Female Female Female
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Ethnicity Filipino Spanish Turkish Turkish French Canadian
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Resident country Spain Spain Turkey Turkey Canada
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

SCV2 virology Nasal swab PCR (−);
blood PCR (−);

blood anti-SCV2 IgG (+);
blood antigen N (−)

Nasal swab PCR (−);
blood PCR (−);

blood anti-SCV2 IgG (+);
blood antigen N (−)

Nasal swab PCR (−);
blood PCR (ND);

blood total
anti-SCV2 (+);

blood antigen N (ND)

Nasal swab PCR (−);
blood PCR (ND);

blood anti-SCV2 IgM
and IgG (+);

blood antigen N (ND)

Nasal swab PCR (−);
blood PCR (−);
blood anti-SCV2

IgG (+);
blood antigen

N (−)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Hemogram Normal Normal Normal Normal Normal
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Increased markers
of multiorgan
inflammation

CRP, ferritin, pro-BNP,
GM-CSF, IL-1RA,

MCP1, sCD25, IL-18, TNF

CRP, ferritin,
pro-BNP, MCP1,
sCD25, IL-1RA,
IL-18, TNF

CRP, ferritin, troponin Ferritin, troponin,
pro-BNP

sCD25

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TRBV 11-2 expansion (−) (−) ND ND (+)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Clinical presentation Kawasaki-like disease:
fever, gastrointestinal

symptoms,
hepatosplenomegaly,
aseptic meningitis with
neurological symptoms
(irritability), peripheral

edema, lymphadenopathy,
bilateral coronary

aneurysm
(Z score +8, +8.7),

possible cerebral arterial
aneurysm

Kawasaki disease:
fever, rash, bilateral

eyelid edema
and erythema,

conjunctival hyperemia

Kawasaki-like disease:
fever, rash, bilateral

nonpurulent conjunctivitis,
strawberry tongue,

abdominal pain, vomiting,
dyspnea, mild mitral
insufficiency. One and
a half months prior,
the patient had fever,
headache, and sore
throat when her

mother had COVID-19.
The patient developed

oligoarticular
juvenile idiopathic
arthritis 5 months

after MIS-C.

Fever, vomiting,
coughing,

myocarditis, left
ventricular

failure, pulmonary
edema with
paracardiac
infiltration,

polyneuropathy

Kawasaki disease:
fever, rash,

erythema and
edema of the feet,
anterior uveitis,

cervical
lymphadenopathy

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Treatment IVIG, aspirin, corticosteroids,
anticoagulation therapy

IVIG, aspirin IVIG,
methylprednisolone,

heparin

IVIG, pulse steroid,
anakinra, mechanical

ventilation

IVIG

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Outcome Recovery Recovery Recovery, but with
persistent arthralgia

in both knees
1.5 years after MIS-C

Recovery Recovery

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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Fig. 2. Expression pattern of the OAS–RNase L pathway genes and their role in
SARS-CoV-2 restriction. (A and B) Relative OAS1, OAS2, OAS3, and RNASEL mRNA
levels measured by bulk RNA-seq (A) or RT-qPCR (B), in various cell types. hPSC,
human pluripotent stem cell; ClassMonocytes, classical monocytes; NClassMonocytes,
nonclassical monocytes; MDM, monocyte-derived macrophages; MDDC, monocyte-
derived dendritic cells; Log2RC, log2 read count. (C and D) Immunoblot of the
indicated proteins (C) and immunofluorescence (IF) of SARS-CoV-2 nucleocapsid (N)
protein (D) in A549+ACE2/TMPRSS2 cells with and without knockout (KO) of OAS1,
OAS2, or RNase L. IF analysis for N protein was performed 24 hours after infection
with various dilutions of SARS-CoV-2. Dilution factors of 1/4,

1/2, and 1 correspond to
MOI values of 0.0002, 0.0005, and 0.001, respectively. GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; NI, noninfected. (E and F) Immunoblot of the indicated
proteins (E) and IF analysis for the SARS-CoV-2 N protein (F) in SV40-fibroblasts

+ACE2 from healthy controls (Ctrl1 and Ctrl2), patients with OAS-RNASEL mutations
(P1, P3, P4, and P5), and a previously reported patient with complete IFNAR1
deficiency (IFNAR1−/−). IF analysis for N protein was performed at various time points
after infection at a MOI of 0.08. (G and H) Immunoblot of the indicated proteins (G)
and IF analysis for the SARS-CoV-2 N protein (H) in THP-1 cells with and without KO of
OAS1, OAS2, or RNase L. IF analyses for N protein were performed in PMA-primed
THP-1 cells 24 hours after infection with various dilutions of SARS-CoV-2. Dilution
factors of 1/4,

1/2, and 1 correspond to MOI values of 0.012, 0.025, and 0.05,
respectively. WT A549+ACE2/TMPRSS2 cells were included as a positive control for
SARS-CoV-2 infection. The data points are means ± SEM from three [(D) and (F)] or
means from two [(B) and (H)] independent experiments with three to six technical
replicates per experiment. Statistical analyses were performed as described in the
methods. ns, not significant; *P < 0.05, **P < 0.01.
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SARS-CoV-2 replication was detected in the
presence or absence of deficiencies of the OAS–
RNase L pathway, at least in this cellular model
of mononuclear phagocytes (60).

OAS–RNase L deficiencies result in an
exaggerated inflammatory response
to intracellular dsRNA in THP-1 cells

Sustained monocyte activation has repeatedly
been reported to be a key immunological fea-
ture of MIS-C (22, 31–36). We studied the im-
pact of OAS–RNase L deficiencies on cellular
responses to intracellular (cytosolic) or extra-
cellular (endosomal) stimulation with dsRNA
in THP-1 cells. Consistent with a previous study
(62), THP-1 cells and THP-1–derived macro-
phages with a KO for OAS1, OAS2, or RNase L
displayed enhanced activation, as demonstrated
by their higher levels of IFN-l1, IFN-b, IL-1b,
IL-6,CXCL9,CXCL10, andTNFsecretion24hours
after stimulation with various doses of intra-
cellular polyinosinic:polycytidylic acid [poly(I:C)]
(Fig. 3A and fig. S4A), as well as higher mRNA
induction for IL6 and CXCL9 8 hours after
stimulation (fig. S4, B and C). Cell viability was
similar to that of WT THP-1 cells after intra-
cellular poly(I:C) stimulation (fig. S4D). Small
hairpin RNA–mediated knockdown (KDn) of
the expression ofOAS1, OAS2, and RNASEL in
THP-1 cells confirmed these findings (fig. S4E).
The transduction of THP-1 cells with a KO of
the corresponding gene with the WT cDNA of
OAS1, OAS2, or RNASEL, respectively, resulted
in cytokine secretion levels similar to those
observed in parental cells, whereas transduc-
tion with mutant cDNAs corresponding to the
patients’ variants had no such effect (OAS1
variant of P1 and RNASEL variant of P5) or a
lesser effect (OAS2 variants of P2, P3, and P4)
(Fig. 3B and fig. S5, A to C). Thus, OAS–RNase
L deficiencies result in exaggerated inflamma-
tory responses to intracellular dsRNA stimu-
lation in THP-1 cells. Enhanced responsesmay
also occur in the mononuclear phagocytes of
our patients, underlying MIS-C.

The inflammatory response to intracellular
dsRNA in THP-1 cells is MAVS dependent

Intracellular dsRNA is known to stimulate
the RIG-I/MDA5–MAVS pathway (RIG-I, ret-
inoic acid–inducible gene I;MDA5,melanoma
differentiation-associated protein 5; MAVS,
mitochondrial antiviral-signaling protein), in-
ducing type I IFNs and other cytokines in var-
ious cell types (63), in addition to the OAS–
RNase L pathway (42, 64). Indeed, unlike WT
THP-1 cells, MAVS KO THP-1 cells did not re-
spond to intracellular poly(I:C) stimulation,
and RNASEL gene KDn did not result in en-
hanced activation (Fig. 3C and fig. S5, D and
E), confirming that the response to poly(I:C)
is dependent on MAVS-mediated signaling in
these cells. The enhancement of the intracel-
lular poly(I:C) response after RNASEL KDn

was partially attenuated in RIG-I orMDA5KO
THP-1 cells (Fig. 3C and fig. S5, D and E), sug-
gesting that both dsRNA sensors may be
involved. Another dsRNA agonist that spe-
cifically activates RIG-I, 5′ triphosphate double-
strandedRNA (5′ppp-dsRNA), induced enhanced
responses in RNase L KO THP-1 cells similar
to those seen with poly(I:C) (Fig. 3D). By con-
trast, the activation of other sensing pathways,
including the extracellular ssRNA-sensing
toll-like receptor 7 (TLR7) and TLR8 pathways
(R848), the TLR4 pathway (LPS), and the in-
tracellular DNA agonist-sensing DAI path-
way (ISD), resulted in responses in RNase L
KO or KDn THP-1 cells that were similar to
those of the parental WT cells (Fig. 3D and
fig. S5F). Thus, the exaggerated inflamma-
tory responses to cytosolic dsRNAobserved in
THP-1 cells deficient for OAS–RNase L appear
to require RIG-I/MDA5 sensing and MAVS
activation.

Activation of the OAS–RNase L pathway
can suppress inflammatory responses
in THP-1 cells

Intracellular dsRNA stimulates both the RIG-I/
MDA5–MAVS and OAS–RNase L pathways
(42, 63, 64).We therefore investigatedwhether
the dsRNA-sensingMAVS-dependent signaling
pathway was itself hyperactivated as a result
of OAS–RNase L deficiency. After intracellular
poly(I:C) stimulation, interferon regulatory
factor 3 (IRF3) and nuclear factor kB (NF-kB)
phosphorylation levels were similar in RNase
L KO and WT THP-1 cells (Fig. 3E). Thus, the
molecular mechanisms by which OAS–RNase
L deficiency results in an exaggerated inflam-
matory response appears to involve an impair-
ment of RNase L activation resulting in a lack of
host RNA transcriptional and/or translational
inhibition (65–68), rather than a hyperactivation
of the MAVS-dependent pathways. Consistent
with this hypothesis, treatmentwith exogenous
2-5A, which is normally generated by OASs
upon dsRNA sensing and activates RNase L
(42, 43), rescued the inflammatory phenotype
in OAS1 KO THP-1 cells after intracellular
poly(I:C) stimulation (Fig. 3F). By contrast, de-
phosphorylated 2-5A, which is unable to activ-
ate RNase L (69, 70), had no such effect (fig.
S5G). Moreover, exogenous 2-5A treatment de-
creased the response to TLR7/8 activation in
WT THP-1 cells (Fig. 3G). Treatment with 2-5A
had a much weaker effect or even no suppres-
sive effect in RNase L KDn or KO THP-1 cells
(Fig. 3F and fig. S5, G and H). Thus, the exag-
gerated inflammatory response in OAS–RNase
L–deficientmononuclear cells appears to result
from the activation of the MAVS-dependent
pathway (but not of other nucleic acid–sensing
pathways) and an impairment of RNase L activ-
ation by OAS1- or OAS2-derived 2-5A after
dsRNA sensing. This imbalance creates a pheno-
type that is probably a consequence of an im-

pairment of the posttranscriptional activities
of RNase L (65–68).

OAS–RNase L deficiencies result in an
exaggerated inflammatory response
to SARS-CoV-2 in THP-1 cells

We investigated whether OAS–RNase L defi-
ciencies resulted in exaggerated inflamma-
tory responses to SARS-CoV-2 inmononuclear
phagocytes. Bulk RNA-seq on THP-1 cells with
KO of OAS1, OAS2, or RNase L stimulated with
intracellular poly(I:C) or SARS-CoV-2 revealed
transcriptomic profiles different from those
of the parental cells (Fig. 4, A and B, and fig.
S6A). Gene set enrichment analysis (GSEA)
against Hallmark gene sets (71) revealed an
enrichment in genes relating to inflamma-
tory responses and IFN-g signaling in OAS–
RNase L–deficient cells, showing that these
cells displayed an exacerbated inflammatory
response not only to synthetic dsRNA but also
to SARS-CoV-2 (Fig. 4, C and D). Moreover,
RNase L KO THP-1 cells had higher levels of
IL-6 and CXCL10 secretion thanWT cells when
coculturedwith SARS-CoV-2–infectedVero cells,
which support SARS-CoV-2 replication (72, 73)
(Fig. 4E and fig. S6, B and C). Bulk RNA-seq
further confirmed this observation at the tran-
scriptome level (Fig. 4F and fig. S6D), reveal-
ing an enrichment in the expression of genes
relating to inflammatory responses and IFN-a
signaling in RNase L KO cells relative to WT
cells (Fig. 4G). In addition, transfection with
total RNA from SARS-CoV-2–infected Vero
cells, but not from uninfected Vero cells, also
induced enhanced responses in RNase L KO
THP-1 cells relative to parental WT cells, with
an enrichment in genes relating to inflamma-
tory responses and IFN-g signaling (Fig. 4H
and fig. S6E). These findings suggest that OAS–
RNase L deficiency results in excessive inflam-
matory responses in mononuclear phagocytes
following both abortive SARS-CoV-2 infection
and coculture with SARS-CoV-2–replicating
cell types. This is likely due to defective activa-
tion of the OAS-RNase L pathway following
the engulfment of the virus or infection-related
by-products, leading to the release of dsRNA
into the cytosol (73).

OAS–RNase L deficiencies result in an enhanced
inflammatory response to intracellular dsRNA
in primary mononuclear cells

We then studied the impact of OAS–RNase L
deficiencies on the response to intracellular
poly(I:C) stimulation in human peripheral
blood mononuclear cells (PBMCs). Routine
blood cell counts and immunotyping for the
five patients revealed no significant abnor-
malities in blood leukocyte subsets, a result
confirmed by deep immunophenotyping by
mass cytometry [cytometry by time of flight
(CyTOF)] (fig. S7A and table S2). After intra-
cellular poly(I:C) stimulation, PBMCs from
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Fig. 3. Exaggerated inflammatory responses of OAS–RNase L-deficient THP-1 cells.
(A) Concentrations of various cytokines in the supernatant of OAS1 KO, OAS2 KO,
RNase L KO, or parental THP-1 cells (upper panels) or PMA-primed THP-1 cells (lower
panels) treated as indicated for 24 hours. (B) IFN-l1 and IL-6 concentrations in the
supernatant of RNase L KO THP-1 cells transduced with the WT or P5’s variant RNASEL
cDNA, or empty vector (EV), and treated as indicated for 24 hours. On the right, RNase L
protein levels, as assessed by immunoblotting. NT, not transfected. (C) IFN-l1 and
IL-6 concentrations in the supernatant of parental, RIG-I KO, MDA5 KO, or MAVS KO
THP-1 cells with or without (WT sh-ctrl) RNase L knockdown (KDn), treated as indicated
for 24 hours. (D) IFN-l1 and IFN-b concentrations in the supernatant of parental or
RNase L KO THP-1 cells, treated as indicated for 24 hours. (E) Immunoblot of

phosphorylated P65 and IRF3 in parental and RNase L KO THP-1 cells treated as indicated.
The results shown are representative of two independent experiments. (F) IFN-l1 and
IL-6 concentrations in the supernatant of parental, OAS1 KO, or RNase L KO THP-1 cells
treated as indicated for 24 hours. (G) IFN-l1 and IL-6 concentrations in WT THP-1 cells
treated as indicated for 24 hours. In (A) to (D), (F), and (G), the data points are means ±
SEM from three to five independent experiments with one to two technical replicates per
experiment. Statistical analysis was performed as described in the methods. ns, not
significant; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. NS, nonstimulated; Lipo,
lipofectamine only; poly(I:C), extracellularly added poly(I:C); poly(I:C)+Lipo, intracellular
poly(I:C) in the presence of lipofectamine; 2-5A+Lipo, intracellular 2-5A in the presence of
lipofectamine; 2-5A+poly(I:C)+Lipo, intracellular poly(I:C) in addition to intracellular 2-5A.
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Fig. 4. Exaggerated inflammatory responses to SARS-CoV-2 of OAS–RNase
L–deficient THP-1 cells. (A and B) PCA of RNA-seq–quantified gene expression
for OAS1 KO, OAS2 KO, RNase L KO, and parental (WT) THP-1 cells left
nonstimulated (NS), treated as indicated for 2 or 8 hours (A), or stimulated with
SARS-CoV-2 (SCV2) at a MOI of 0.01 for 8 hours (B). (C and D) Differential
expression analysis (DEA) and gene set enrichment analysis (GSEA) for genes
induced by 8 hours of intracellular poly(I:C) stimulation (C) or by 8 hours of
SCV2 stimulation (D). The OAS1 KO, OAS2 KO, and RNase L KO THP-1 cells were
compared with parental (WT) THP-1 cells. Volcano plots show immune system–

related pathways. NES, normalized enrichment score. Heatmaps show gene
expression for the “IFN-g response” (C) or “inflammatory response” (D)
Hallmark gene sets. (E) IL-6 and CXCL10 concentrations in the supernatant of
parental or RNase L KO THP-1 cells treated as indicated for 24 hours. The data

points are means ± SEM from three independent experiments with three
technical replicates per experiment. Statistical analysis was performed as
described in the methods. *P < 0.05. (F) PCA of RNA-seq–quantified gene
expression, for RNase L KO and parental THP-1 cells cocultured with Vero cells
with or without SCV2 infection for 24 hours (left) or transfected for 8 hours with
RNA from Vero cells with or without SCV2-infection (right). (G and H) DEA and
GSEA for genes induced in RNase L KO THP-1 cells, compared with parental
THP-1 cells after 24 hours of coculture with SCV2-infected or mock-infected Vero
cells (G), or after 8 hours of transfection with RNA from SCV2-infected or mock-
infected Vero cells (H). Volcano plots show immune system–related pathways.
Heatmaps show gene expression for the indicated Hallmark gene sets. Heatmaps
represent Z-score–scaled log2 read counts per million. NS, nonstimulated; Lipo,
lipofectamine; SCV2, SARS-CoV-2.
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P2 (OAS2 deficient), P3 (OAS2 deficient), and
P5 (RNase L deficient) secreted larger amounts
of the inflammatory cytokines studied than
cells from healthy controls (Fig. 5A and fig.
S7B). This enhanced inflammatory response
to intracellular poly(I:C) stimulation was mono-
cyte dependent, as the depletion of monocytes
from the PBMCs of healthy controls strongly
decreased this response (fig. S7C). Moreover,
the shRNA-mediated KDn of OAS1, OAS2, or
RNASEL in monocyte-derived dendritic cells
(MDDCs) from healthy controls resulted in
an enhanced inflammatory response to intra-
cellular poly(I:C) stimulation, as shown by
the higher levels of inflammatory cytokines,
including IFN-l1, IL-6, TNF, and IL-12, than
were observed with WT parental cells (Fig.
5B). Thus, deficiencies of the OAS–RNase L
pathway also result in exaggerated inflamma-
tory responses to intracellular dsRNA stimu-
lation in primary mononuclear phagocytes, or
at least in monocytes and MDDCs.

Enhanced myeloid cell activation by SARS-CoV-2
in patient PBMCs

We studied the impact of OAS–RNase L defi-
ciencies on the responses of the various PBMC
populations to SARS-CoV-2 by performing
single-cell RNA sequencing (scRNA-seq) on
PBMCs from P1 (OAS1), P2 (OAS2), P3 (OAS2),
and P5 (RNase L) and comparing the results
with those for healthy controls. Regardless of
genotype, 6 hours of stimulation with SARS-
CoV-2 induceda strong immune response across
all five major immune cell types including
myeloid, B, CD4+ T, CD8+ T, and natural killer
(NK) cells (Fig. 5C), with 1301 unique differ-
entially expressed genes (DEGs) (data S1). OAS–
RNase L deficiency significantly changed the
response of 48 to 94% of the DEGs in each
lineage, with myeloid cells being the most af-
fected. Cellular responses were generally stron-
ger in the OAS–RNase L–deficient patients and
were essentially limited to the IFN-a and IFN-g
response pathways. Myeloid cell responses were
characterized by a distinct proinflammatory
component, such as IL1B and CCL3, that was
stronger in OAS–RNase L–deficient cells (Fig.
5D and data S2). We then calculated pseudo-
bulk estimates by cell type. Consistent with
the single-cell observations, genes strongly
up-regulated by SARS-CoV-2 in OAS–RNase L–
deficient myeloid cells were enriched in types I
and II IFN signature genes and TNF signature
genes, whereas those strongly up-regulated in
CD4+ T cells were enriched in type I IFN sig-
nature genes (Fig. 5E). Thus, there is an exag-
gerated inflammatory response to intracellular
dsRNA or extracellular SARS-CoV-2 stimulation
in primary monocytes and other mononuclear
phagocytes with deficiencies of the OAS–RNase
L pathway cultured alone or with other PBMC
populations. This provides a plausible patho-
genic mechanism for MIS-C, in which this

condition is driven by the exacerbated activa-
tion of mononuclear phagocytes. This hypoth-
esis is also supported by scRNA-seq on PBMCs
from P5 (RNase L deficient) collected during
MIS-C and the convalescence period. Enhanced
expression levels were observed for IFN-a,
IFN-g, or TNF signature genes in monocytes,
myeloid dendritic cells (mDCs), B lympho-
cytes, plasmacytoid dendritic cells (pDCs),
and activated T cells of P5 relative to healthy
pediatric controls (Fig. 5, F and G, and fig.
S8, A to D). Quantitatively inferred cell–cell
communications (74) revealed that MIS-C in
the RNase L–deficient patient was probably
driven by a signal from hyperactivated mono-
cytes and mDCs directed at CD8+ ab T cells
(Fig. 5, H and I, and fig. S8, E to G). This situa-
tion differs from that observed in patients
with COVID-19 pneumonia without MIS-C
but is similar to reports for previously de-
scribed MIS-C patients (fig. S9) (33, 34, 36),
identifying exaggerated myeloid cell activa-
tion due to OAS–RNase L deficiency as the
core driver of the immunological and clinical
phenotypes of MIS-C in our patients.

Discussion

We report AR deficiencies of OAS1, OAS2, and
RNase L as genetic etiologies of MIS-C in five
unrelated children, corresponding to ∼1% of
the international cohort of patients studied.
OAS–RNase L–deficient monocytic cell lines,
monocyte-derived dendritic cells modeling pa-
tient genotypes, and primary monocytes from
patients displayed excessive inflammatory re-
sponses to intracellular dsRNA, SARS-CoV-2,
SARS-CoV-2–infected cells, and their RNA,
providing a plausible mechanism for MIS-C.
In these patients, MIS-C may result primar-
ily from an excessive response of monocytes
and other mononuclear phagocytes to SARS-
CoV-2 dsRNA intermediates or by-products,
followed by the presentation of a viral super-
antigen to T cells, resulting in the activation
and expansion of Vb21.3+ CD4+ andCD8+T cells.
Themolecular basis of the exacerbated inflam-
matory response to SARS-CoV-2 due to OAS–
RNase L deficiency in mononuclear phagocytes
involves an impairment of the activation of
RNase L by the dsRNA-sensing molecules OAS1
and OAS2, probably resulting in defective post-
transcriptional RNase L activity (67, 68) and
the unchecked RIG-I/MDA5–MAVS–mediated
production of inflammatory cytokines. Alter-
native molecular mechanisms cannot be ex-
cluded (64, 75). The SARS-CoV-2–related RNA
products that trigger phagocyte activation, the
viral superantigen(s) that activate T cells, and
the human leukocyte antigen (HLA) restric-
tion elements all remain to be discovered. Our
findings also do not exclude the possibility
that AR OAS–RNase L deficiency additionally
affects antiviral responses in cells of other tis-
sues injured duringMIS-C, such as cardiomyo-

cytes, enterocytes, and endothelial cells. The
role of this pathway in T cells themselves merits
further investigation. MIS-C in other patients
may result from IEIs that may or may not be
related to the OAS–RNase L pathway. Our find-
ings also suggest that other forms of Kawasaki
disease may be caused by other virus-specific
IEIs in other patients (15).
The notion that the OAS–RNase L pathway

is essential for antiviral immunity in mono-
nuclear phagocytic cells was first proposed
nearly 40 years ago (60). Intriguingly, the
OAS–RNase L pathway is apparently dispens-
able for protective immunity to SARS-CoV-2 in
the respiratory tract. None of the five MIS-C
patients had a pulmonary phenotype, and no
viral replication was detectable in the upper
respiratory tract of any of the five children at
the onset of MIS-C. Nevertheless, genome-
wide association studies have suggested that
common variants in the vicinity ofOAS1may
be weakly associated with COVID-19 severity
(10, 11, 53, 76–79). Our finding that the human
OAS–RNase L pathway is crucial for regulation
of the mononuclear phagocyte response to
SARS-CoV-2, but not for SARS-CoV-2 restriction
in the respiratory tract, suggests that the main
protective action of this pathway is mediated by
the control of phagocyte-driven systemic inflam-
mation at a later stage of disease rather than
viral restriction in the respiratory tract early on.
These findings are also consistent with the dis-
covery of germline gain-of-function OAS1 mu-
tations in humans with an autoinflammatory
syndrome involving myeloid cells (80, 81).
The five patients, now aged 1 to 15 years, are

normally resistant to diseases caused by other
common viruses. Since the discovery of the
OAS–RNase L pathway in the 1970s (65, 82, 83),
this pathway has been one of the most inten-
sively studied type I IFN–inducible pathways
(42, 84). Biochemically, the three OASs have
different subcellular distributions and differ-
ent dsRNA optima for activation, they synthe-
size 2-5A of different lengths (42, 85), and they
appear to have antiviral activity against differ-
ent viruses (86–88). The only well-established
function of 2-5A is the activation of RNase L
(66), and any of the three OASs appears to be
sufficient for the biochemical activation of
RNase L in human cells in vitro. RNase L has
been shown to have antiviral activity against
certain viruses (dengue virus and Sindbis virus),
but not others (Zika virus), in murine and hu-
man cells in vitro (85, 89). In vivo RNase L
deficiency in mice drives susceptibility to var-
ious viruses (e.g., encephalomyocarditis virus,
coxsackievirus B4, murine coronavirus, etc.)
(45, 85). Our data suggest that human OAS1,
OAS2, and RNase L are each essential for the
correct regulation of immunity to SARS-CoV-2
but are otherwise largely redundant in natural
conditions of infection. It is also clear that the
RNase L–dependent functions of OAS1 and
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OAS2 are crucial for the regulation of immunity
to SARS-CoV-2 within the same cells, as the ge-
netic deficiency of any of these three compo-
nents results in the same immunological and
clinical phenotype, namely MIS-C.

Materials and methods
Patients
We enrolled an international cohort of 558
MIS-C patients (aged 3 months to 19 years,
60.4% boys and 39.6% girls) originating from

Europe, Africa, Asia, and America and living
in 16 different countries. All patients met the
WHO diagnostic criteria for MIS-C (52). We
focus here on five of these patients (P1 to
P5). Written informed consent was obtained
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Fig. 5. Exaggerated myeloid
cell activation in response
to SARS-CoV-2 underlies
MIS-C. (A) Concentrations of
cytokines in the supernatant
of PBMCs from OAS–RNase
L–deficient patients (grouped
in the pink violin zone) and
three healthy pediatric
and two healthy adult
controls (Ctrls; gray violin
zone). The data points are
means of biological dupli-
cates. (B) Fold-increase in
the concentrations of cyto-
kines in the supernatant
of MDDCs with KDn of OAS1,
OAS2, or RNase L, or trans-
duced with control shRNA
(WT sh-ctrl). The fold-change
is expressed relative to the
values for poly(I:C)+lipo-
stimulated WT sh-ctrl cells.
Data shown are means ± SEM
from three independent
experiments, with one to two
technical replicates per
experiment. For (A) and (B),
statistical analysis was per-
formed as described in the
methods. NS, nonstimulated.
ns, not significant; *P < 0.05,
**P < 0.01, ***P < 0.001.
(C to E) scRNA-seq of
PBMCs from OAS–RNase L–
deficient patients (OAS–
RNase L-MT) or healthy
controls after 6 hours of
incubation with SARS-CoV-2
(SCV2) or mock infection
(NS). (C) Uniform manifold
approximation and projection
(UMAP) of single PBMC
transcriptomes. (D) Cell
type–specific transcriptional
responses. Genes passing the
FDR < 0.01 and |log2FC| >
0.5 thresholds are shown. (E)
GSEA of SCV2-induced genes
across immune-related Hall-
mark gene sets. PBMCs from
three patients with type I
IFN pathway deficiency are
controls for defective type I
IFN responses. Gray zone highlights the expected enrichment scores under the null hypothesis (95% CI calculated over 100 randomized genes). (F to I) scRNA-seq of PBMCs
from P5 and from healthy controls. A published dataset for pediatric patients with acute SARS-CoV-2 infection (pC-19) and MIS-C was also integrated. (F) UMAP of clustering
analysis. (G) Pseudobulk differential expression analysis with GSEA. P5 (convalescent phase) was compared with local pediatric controls (pCtrls). Immune-related pathways
are shown. [(H) and (I)] Intercellular communication analysis with CellChat. (H) Incoming signal strength and (I) the number of interactions for representative cell subsets.
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in the country of residence of each patient, in
accordance with local regulations and with
institutional review board (IRB) approval. Ex-
periments were conducted in the United States
and in France, in accordance with local reg-
ulations and with the approval of the IRB of
the Rockefeller University and the Institut
National de la Santé et de la RechercheMédicale,
respectively. Approval was obtained from the
French Ethics Committee (Comité de Pro-
tection des Personnes), the French National
Agency for Medicine and Health Product
Safety, the Institut National de la Santé et de
la Recherche Médicale in Paris, France (pro-
tocol no. C10-13), and the Rockefeller Univer-
sity Institutional Review Board in New York,
USA (protocol no. JCA-0700). For patients se-
quenced by National Institute of Allergy and
Infectious Diseases (NIAID) through the Amer-
ican Genome Center (TAGC) other than the
five patients described in this paper, written
informed consent was obtained in the coun-
try of residence of each patient, in accordance
with local regulations and with IRB approval:
Ethics Committee of the Fondazione IRCCS
Policlinico San Matteo, Pavia, Italy (protocol
20200037677); Comitato Etico Interaziendale
A.O.U. Città della Salute e della Scienza di Torino,
Turin, Italy (protocol 00282/2020); and IRB
at Children’s Hospital of Philadelphia (proto-
col 18-014863).
The five patients with MIS-C and AR defici-

encies of the OAS–RNase L pathway—two boys
and three girls—ranged in age from 3 months
to 14 years at the time of diagnosis and all
fulfilled the WHO criteria for MIS-C (Table 2)
(52). They originated from the Philippines
(P1), Spain (P2), Turkey (P3 and P4), and
Canada (of French descent) (P5) and lived in
Spain, Turkey, and Canada. P1 (OAS1mutation)
(29), P3 (OAS2), and P4 (OAS2) had a severe
course of MIS-C, with coronary aneurysm,
myocarditis, and polyneuropathy, respective-
ly. P2 (OAS2) and P5 (RNASEL) had a milder
course of MIS-C, with a typical Kawasaki dis-
ease presentation. None of these patients
presented any clinical or radiological evidence
of pneumonia. Cytokine profiling of serum
obtained from P1, P2, and P5 during MIS-C
revealed high levels of IFN-g, soluble CD25,
IL-18, IL-1RA, andMCP1 (CCL2) (Fig. 1G), con-
sistent with previously published immune
profiles of MIS-C and in contrast to those for
pulmonary COVID-19 (21). Bulk mRNA se-
quencing (RNA-seq) ofwhole-bloodRNA from
P1 and P2 collected during the MIS-C phase
revealed transcriptomic signatures clearly dif-
ferent from those of healthy controls and a
pediatric case of acute COVID-19 pneumo-
nia, but similar to those of previously reported
MIS-C patients (Fig. 1H) (33). T cell receptor
Vb repertoire analysis confirmed the expan-
sion of TRBV 11-2 (encoding Vb21.3) in one
of the three MIS-C–phase samples available

(P5, with AR RNase L deficiency) (Fig. 1I). The
clinical and immunological features of the five
patients were, therefore, consistent with those
previously reported for other MIS-C patients
(21, 22, 26–36).

Whole-exome, whole-genome,
and Sanger sequencing

Genomic DNA was extracted fromwhole blood.
Whole-exome sequencing (WES) or whole-
genome sequencing (WGS) was performed at
several sequencing centers, including the Ge-
nomics Core Facility of the Imagine Institute
(Paris, France), the Yale Center for Genome
Analysis (USA), the New York Genome Cen-
ter (NY, USA), the American Genome Center
(TAGC, Uniformed Services University of the
Health Sciences, Bethesda, USA), and the Ge-
nomics Division–Institute of Technology and
Renewable Energies (ITER) of the Canarian
Health System sequencing hub (Canary Is-
lands, Spain). More technical details are pro-
vided in the supplementary materials. For
the Sanger sequencing of OAS1, OAS2, and
RNASEL variants, the relevant regions of OAS1,
OAS2, and RNASEL were amplified by PCR,
purified by ultracentrifugation through Sephadex
G-50 Superfine resin (Amersham-Pharmacia-
Biotech), and sequenced with the Big Dye Ter-
minator Cycle SequencingKit on anABI Prism
3700 apparatus (Applied Biosystems).

Whole-exome sequencing data analysis

We performed an enrichment analysis focus-
ing on the three candidate genes in our cohort
of 558 MIS-C patients and 1288 children and
adults with asymptomatic or paucisympto-
matic SARS-CoV-2 infection (controls). We
considered variants that were predicted to
be loss-of-function or missense, with a highest
population MAF < 0.01, not included in seg-
mental duplication regions (gnomAD v2.1.1).
We considered genes corresponding to theGene
Ontology term “response to virus” (GO:0009615),
with a gene damage index of <13.83 (41), cor-
responding to the 90% least-damaged genes.
We searched for all homozygous variants in
MIS-C patients, SARS-CoV-2–infected controls,
and the gnomAD database. We compared the
proportions of patients and controls carrying
experimentally confirmed deleterious homozy-
gous variants by means of a logistic regression
model, accounting for the ethnic heterogene-
ity of the cohorts by including the first five
principal components of the principal compo-
nents analysis (PCA), and for data heteroge-
neity (WGS and WES with various kits and
calling processes) by including the two first
PCs of a PCA on individual sequence-quality
parameters, as previously described (9). The
PCA for ethnic heterogeneity was performed
with PLINK (v1.9) onWES andWGS data, with
the 1000 Genomes Project phase 3 public data-
base as a reference, using >15,000 exonic var-

iants with a MAF > 0.01 and a call rate > 0.99.
The PCA for data heterogeneity was performed
with the R FactoMineR package and the follow-
ing individual sequence quality parameters cal-
culated with bcftools stats: number of alleles,
number of ALT alleles, number of heterozygous
variants, Ts/Tv ratio, number of indels, mean
depth of coverage, number of singletons, and
number of missing genotypes. We also com-
pared the frequency of experimentally con-
firmed deleterious homozygous variants of the
three genes between our MIS-C cohort and
gnomAD using Fisher’s exact test.

Cell culture

Primary cultures of human fibroblasts were
established from skin biopsy specimens from
patients or healthy controls. They were trans-
formed with an SV40 vector, as previously
described (56), to create immortalized SV40-
fibroblast cell lines. SV40-fibroblasts, human
embryonic kidney 293T (HEK293T) cells, and
A549 cells were cultured in Dulbecco’s modi-
fied essential medium (DMEM; GIBCO) with
10% fetal bovine serum (FBS) (GIBCO). THP-1
cells were cultured in RPMI 1640 medium
(GIBCO) with 10% FBS. For the generation of
phorbol-12-myristate-13-acetate (PMA)–primed
THP-1–derived macrophages, THP-1 cells were
incubated with 50 ng/ml of PMA for 48 hours
then left without PMA overnight before stim-
ulation. PBMCs were cultured in RPMI 1640
medium (GIBCO) with 10% FBS. For intra-
cellular poly(I:C) or SARS-CoV-2 stimulation of
the PBMCs, blood samples were obtained from
the OAS–RNase L–deficient patients 2 months
to 1 year after acute-phase MIS-C and from
five healthy controls with (two pediatric con-
trols and one adult control) or without (one
pediatric control and one adult control) prior
asymptomatic or mild SARS-CoV-2 infection
∼6 months before sample collection. For the
differentiation of monocyte-derived dendritic
cells, monocytes were isolated from PBMCs
with the Pan Monocyte Isolation kit (Miltenyi
Biotec) and cultured with 50 ng/ml of recom-
binant human granulocyte-macrophage col-
ony-stimulating factor (GM-CSF; PeproTech)
and 20 ng/ml of recombinant human IL-13
(PeproTech) for 7 days before cell stimulation
experiments.

Plasmids

For overexpression studies in HEK293T cells,
WT cDNAs forOAS1 andRNASEL in a pCMV6
backbone were purchased from Origene. For
rRNAdegradationassays,humanOAS1 (GenBank
accession no. BC071981.1), OAS2 (GenBank ac-
cession no. BC049215.1), OAS3 (GenBank ac-
cession no. BC113746), andRNASEL (GenBank
accession no. L10381.1) cDNAs were inserted
into p3X-FLAG-CMV-10 (Sigma) as previously
described (75, 88). Patient-specific variants
or variants from the gnomAD database were
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generated by site-directed mutagenesis PCR
with the Super Pfx DNA Polymerase (CWbio).
For stable lentivirus-mediated transduction
with ACE2 and RNASEL, cDNAs for WT and
patient-specific ACE2 or RNASEL variants
were inserted into pTRIP-SFFV-CD271-P2A, a
modified pTRIP-SFFV-mtagBFP-2A (Addgene
102585) in which mtagBFP is replaced with
CD271, with InFusion (Takara Bio), according
to the manufacturer’s instructions. We used
the XhoI and BamHI restriction sites. For sta-
ble lentivirus-mediated transduction with OAS1
and OAS2, cDNAs for WT and patient-specific
OAS1 or OAS2 variants were inserted into a
modified pSCRPSY vector (KT368137.1) with a
PaqCI cutting site expressing blue fluorescent
protein (BFP). The PaqCI site was used for
cDNA insertion with InFusion. We checked
the entire sequences of theOAS1,OAS2,OAS3,
and RNASEL cDNAs in the plasmids by Sanger
sequencing.

Cell-free system assays of OAS and
RNase L activity

Assays for OAS and RNase L activity were per-
formed with a modified cell-free system assay
based on HeLa M cells (49, 50). The HeLa M
cells were cultured in DMEM with 10% FBS,
and their identity was confirmed by the pres-
ence of short tandem repeat loci with a 94.12%
match to HeLa cells (ATCC CCL2, Genetica,
Burlington, NC). We previously reported that
HeLaM cells have no RNase L expression (51).
Cells were plated in 24-well dishes (6 × 104

cells per well) with empty vector (p3X-FLAG-
CMV-10) or vector containingWT ormutant hu-
man OAS1 (GenBank accession no. BC071981.1),
OAS2 (GenBank accession no. BC049215.1),OAS3
(GenBank accession no. BC113746), or RNASEL
(GenBank accession no. L10381.1) cDNAs. HeLa
M cells were cotransfected with cDNAs in the
presence of Lipofectamine 2000 for 20 hours.
Conditions were optimized for each type of
enzyme assayed. RNase L assays were per-
formed on cells cotransfected with 300 ng of
WT or mutant RNASEL cDNA and 100 ng of
WT OAS3 cDNA. OAS1 assays were performed
with 300 ng of OAS1 cDNA and 100 ng of
RNASEL cDNA. OAS2 assays were performed
with 300ng (condition 1) or 600ng (condition 2)
of OAS2 cDNA and 100 ng of RNASEL cDNA,
andOAS3 assayswere performedwith 300ng of
OAS3 cDNA and 100 ng of RNASEL cDNA. The
lysis-activation-reaction (LAR) buffer contained
0.1% (by volume)Nonidet P-40, 50mMTris-HCl
pH7.5, 0.15MNaCl, 2mMEDTA, 10mMMgCl2,
2 mM ATP, 400 U/ml of RNaseOUT (Thermo
Fisher Scientific), and 2.5 mg/ml of poly(I):
poly(C) (Millipore catalog no. 528906). LAR
buffer (75 ml) was added to eachwell of cells on
ice and the contents of the wells were then
transferred to tubes on ice. The lysates were
then incubated at 30°C for 30 min, except in
OAS2 assays, for which lysates were incubated

at 37°C (condition 1) or 30°C (condition 2) for
40 and 50 min, respectively. Total RNA was
isolated with RLT buffer supplemented with
guanidinium isothiocyanate and the EZ-10
Spin Columns Total RNA Minipreps Super
kit (BIO BASIC). RNAwas separated on RNA
chips with an Agilent Bioanalyzer 2000, from
which images andRNAintegritynumbers (RINs)
were obtained. For immunoblots, aliquots of
the lysates (10 mg of protein) were separated by
SDS–polyacrylamide gel electrophoresis (SDS-
PAGE) in a 7% acrylamide gel. Immunoblots
wereprobedwith amonoclonal antibody against
the Flag epitope or b-actin (Sigma-Aldrich).

FRET-based OAS enzyme assays

FRET assays of the amount of 2-5A synthesized
by WT and mutant isoforms of OAS1 or OAS2
were performed with lysates of transfected HeLa
M cells (90). Cells were plated in 24-well dishes
(6 × 104 cells per well), cultured for 24 hours
and transfected for 20hourswith Lipofectamine
2000 transfection reagent (Thermo Fisher Sci-
entific) and 0.5 mg empty vector (p3X-FLAG-
CMV-10), or 500 ng of vector containingWT or
mutant OAS1 or OAS2. Cells werewashedwith
cold PBS and then lysed with 100 ml of LAR
buffer [containing ATP and poly(I:C)] per well
on ice. The lysates were transferred to tubes on
ice and incubated at 30°C for 50 min before
heating at 95°C for 10 min (to stop the reac-
tion and denature proteins) and vortexing
twice. The lysates were centrifuged at 12,000g
for 10 min. The supernatants were then collected
and diluted 10-fold in H2O. Diluted samples
(2 ml) were added to 45 ml of cleavage buffer
(25 mMTris-HCl,pH7.4,0.1MKCl, 10mMMgCl2,
50 mMATPpH7.4, and 7mM b-mercaptoethanol)
containing 40 nM RNase L and 135 nM FRET
probe in 96-well plates. The probe used was a
36-nucleotide synthetic oligoribonucleotide
probe with multiple RNase L cleavage sites, a
fluorophore (6-FAM or 6-carboxyfluorescein)
at the 5′ terminus, and the black hole quencher-1
(BHQ1) at the 3′ terminus (IDT, Inc.) (90). FRET
assays were performed at room temperature,
every 5 min, for 30 min. Fluorescence was
measured in relative fluorescence units (RFU),
with excitation at 485 nm and emission at
535 nm, with a Varioskan LUX multimode
microplate reader and Skanit version 6.0.1 soft-
ware (Thermo Fisher Scientific). There were
six biological replicates for each treatment
group. Standard curves were plotted in tripli-
cate with 0.1 to 30 nM ppp5′A2′p5′A2′p5′A
(trimer 2-5A) synthesized with isolated OAS1
and purified by high-performance liquid chro-
matography (HPLC) (70).

Cytokine quantification in plasma samples

Cytokine quantification in plasma samples
was performed as previously described (32).
Briefly, whole blood was sampled into EDTA
tubes. The plasma concentrations of IFN-g,

IL-1RA, IL-10, IL-18, IL-6, MCP-1, soluble CD25,
and TNF were then determined with Simpleplex
technology and an ELLA instrument (Protein
Simple) according to the manufacturer’s in-
structions. Plasma IFN-a concentrations were
determined with a single-molecule array (Simoa)
on an HD-1 Analyzer (Quanterix) with a com-
mercial kit for IFN-a2 quantification (Quanterix).
Blood samples from P1, P2, and P5 were ob-
tained on days 7, 4, and 9 after symptom onset,
respectively.

TRBV 11-2 relative expression levels

Whole blood was collected into PAXgene (BD
Biosciences) or Tempus (Thermo Fisher Sci-
entific) blood RNA tubes or EDTA tubes. RNA
was extracted with the corresponding RNA ex-
traction kits or with the Maxwell 16 LEV Blood
RNA kit and a Maxwell extractor (Promega)
and quantified by spectrometry (Nanovue).
For P5, RNA was extracted from sorted T cells
with the RNeasy Plus microkit (Qiagen). Rela-
tive expression levels were determined for
TRBV 11-2 with nCounter analysis technology
(NanoString Technologies), by calculating TRBV
11-2 mRNA levels relative to other TRBV mRNA
levels and normalizing against themedian value
for the healthy volunteer group. Blood samples
from P1, P2, and P5were obtained on days 7, 4,
and 9 after symptom onset, respectively.

Immunoblots

Total protein extracts were prepared by lysing
cells in NP40 lysis buffer (150 mMNaCl, 50 mM
Tris pH 8.0, and 1.0% NP40) supplemented
with cOmplete Protease Inhibitor cocktail
(Roche, Mannheim, Germany). Equal amounts
of protein from each sample were subjected
to SDS-PAGE, and the proteins were blotted
onto polyvinylidene difluoride membranes (Bio-
Rad). The membranes were then probed with
the desired primary antibody followed by the
appropriate secondary antibody. Primary anti-
bodies against the following targets were used:
Flag tag (Sigma-Aldrich, cat: F1804), human OAS1
(Cell Signaling, cat: 14498), OAS2 (Proteintech,
cat: 19279-1-AP), RNase L (Cell Signaling, cat:
27281), RIG-I (Cell Signaling, cat: 3743), MDA5
(Cell Signaling, cat: 5321), MAVS (Cell Signaling,
cat: 3993), phospho-IRF3 (Cell Signaling, cat:
4947), total IRF3 (Cell Signaling, cat: 11904),
phospho-p65 (Cell Signaling, cat: 3033), and
total p65 (Santa Cruz, cat: sc-372). Membranes
were probed with a horseradish peroxidase
(HRP)–conjugated antibody against GAPDH
(Proteintech, cat: HRP-60004), as a protein load-
ing control. Antibody binding was detected by
enhanced chemiluminescence (Thermo Fisher
Scientific).

RT-qPCR

Total RNAwas extracted from THP-1 cells and
various other cell types with the Quick-RNA
MicroPrep kit (Zymo Research). RNA was
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reverse-transcribed with random hexamers
and the Superscript III first-strand cDNA
synthesis system (Invitrogen). Quantitative
real-time PCR was then performed with the
TaqMan universal PCR master mix (Applied
Biosystems). For gene expression assays, TaqMan
probes for OAS1, OAS2, OAS3, RNASEL, IL6,
and CXCL9 were used (Thermo Fisher Sci-
entific). We used b-glucuronidase (GUSB) for
normalization (Applied Biosystems). The results
were analyzed with the DCt or DDCt method.
For SARS-CoV-2 genomic RNA quantification,
RNA was extracted from 3 × 105 THP-1 cells
infected with SARS-CoV-2 for 24 hours. Cells
were washed three times with PBS and lysed
for RNA extraction. Equal amounts of total
RNA were reverse-transcribed with random
hexamers and the Superscript III first-strand
cDNA synthesis kit (Invitrogen). Equal amounts
of cDNA were used for the qPCR reaction. Pri-
mers and probes for the N gene (N2 region), the
RNA-dependent RNA polymerase (RdRP) gene,
and their respective standardswere purchased
from IDT technologies. All qPCR reactions were
analyzed with the QuantStudio 3 system.

Gene knockout

OAS1 knockout THP-1 cells and the parental
WT cells were kindly provided by W.-B. Lee
(62). The THP-1 cells with knockouts for RIG-I,
MDA5, and MAVS were purchased from
Invivogen. A549 KO cells were kindly pro-
vided by S. Weiss (55). For the generation of
OAS2 and RNase L KO THP-1 cells, a set of
three single-guide RNAs for OAS2 or RNA-
SEL (Synthego) were combined with True-
Cut Cas9 protein v2 (Invitrogen) and used for
the nucleofection of the cells with Cell Line
Nucleofection kit V (Lonza) and AMAXA
Nucleofector 2b (Lonza), according to the manu-
facturer’s instructions. The cells were cultured
for several days and then plated at clonal den-
sity in 96-well plates and amplified. Genomic
DNA was extracted from multiple clones, and
genomic regions of ∼450 bp around the OAS2
or RNASEL single guide RNAs were subjected
to Sanger sequencing. The absence of the pro-
tein was confirmed by immunoblotting. The
loss of RNase L activity in RNase L KO THP-1
cells was confirmed in an rRNA degradation
assay. The sequences of the guide RNAs for
OAS2 and RNase L knockouts were 5′-AGCU-
GAGAGCAAUGGGAAAU-3′, 5′-UCAGACACU-
GAUCGACGAGA-3′, and 5′-UGCACCAGGGG-
GAACUGUUC-3′ (OAS2); and 5′-GCAGUGGA-
GAAGAAGCACUU-3′, 5′-GCAGGUGGCAUUUA-
CCGUCA-3′, and 5′-UUUGACCUUACCAUACA-
CAG-3′ (RNASEL). The sequencing primers
were 5′-CAGTTTCAGTTTCCTGGCTCTGG-3′
and 5′-GCACATAATAGGCACCCAGCAC-3′ for
OAS2 and 5′-CTCTGTTGCCAGAGAATCCCAAT-
TTAC-3′, 5′-CAATCGCTGCGAGGATAAAAGG-3′,
5′-GAGCGTGAAGCTGCTGAAAC-3′, and 5′-TG-
TACTGGCTCCACGTTTG-3′ for RNASEL.

Gene knockdown
The shRNA-mediated silencing experiments
were performed with GIPZ (Horizon Discovery)
lentiviral vectors encoding microRNA-adapted
shRNAs targeting the open reading frame of
OAS1 (catalog nos. 200201641 and 200293786),
OAS2 (200260991 and 200255637), andRNASEL
(200226261 and 200226578), or a nonsilencing
control shRNA (RHS4346). Lentiviral particles
encoding shRNA were generated by the tran-
sient transfection of HEK293T cells with lenti-
viral GIPZ vectors and a mixture of packaging
plasmids with X-tremeGENE 9 transfection re-
agent, used according to the manufacturer’s
instructions. Briefly, HEK293T cells at 80 to
90% confluence in a six-well plate were trans-
fected with 1.5 mg of the lentiviral vector GIPZ,
1mgof thepackagingplasmid (psPAX2,Addgene),
and 0.5 mg of the envelope plasmid (pMD2G,
Addgene). The medium was changed the fol-
lowing day, and the virus-containing superna-
tant was collected 48 hours after transfection,
passed through a filter with 0.45-mm pores,
and used directly for cell transduction or stored
at −80°C.
For the transduction of THP-1 cells, the cells

were incubated with supernatants contain-
ing the lentiviral particles. The medium was
replacedwith freshmedium the following day,
and puromycin was added 3 days after trans-
duction, to a final concentration of 2 mg/ml.
Protein production was analyzed by immuno-
blotting after 4 days of selection. All the exper-
iments were performed between days 7 and 14
after transduction.
For shRNA-mediated knockdown experi-

ments in primary monocyte-derived dendritic
cells (MDDCs), a high transduction efficiency
(>60% GFP+ cells) was achieved by cotrans-
duction with shRNA-encoding lentiviral par-
ticles and virion-like particles (VLPs) carrying
the SIV viral protein Vpx (VLP-Vpx). Vpx sup-
presses the SAMHD1-mediated restriction of
lentiviral reverse transcription in myeloid
cells. VLP-Vpx were produced by transfecting
HEK293T cells with 1.5 mg of the packaging
vector SIV3+ (derived from SIVmac251) and
0.5 mg of the envelope plasmid pMD2G with
XtremeGENE9. Monocytes were isolated from
PBMCs from healthy donors by negative se-
lection with the Pan Monocyte Isolation Kit
(Miltenyi Biotec). Freshly purified monocytes
were transduced with shRNA-encoding lenti-
viral particles and VLP-Vpx in the presence of
protamine (8 mg/ml). Transduced cells were
allowed to differentiate into MDDCs in the
presence of recombinant human GM-CSF
(10 ng/ml) and IL-4 (25 ng/ml) for 5 days.

Lentiviral transduction

HEK293T cells were dispensed into a six-well
plate at a density of 8 × 105 cells per well. The
next day, cells were transfected with pCMV-
VSV-G (0.2 mg), pHXB2-env (0.2 mg; NIH-AIDS

Reagent Program; 1069), psPAX2 (1mg; Addgene
plasmid no. 12260), and either pTRIP-SFFV-
CD271-P2A empty vector or encoding the protein
of interest (1.6mg) in Opti-MEM (Gibco; 300ml)
containing X-tremeGENE 9 (Sigma Aldrich; 10ml),
according to the manufacturer’s instructions.
After 6 hours, the medium was replaced with
3ml of fresh culture medium, and the cells
were incubated for a further 24hours for lenti-
viral particle production. The viral supernatant
was collected and passed through a syringe
filter with 0.2-mm pores (Pall) to remove debris.
Protamine sulfate (Sigma; 10mg/ml) was added
to the supernatant, which was then used imme-
diately or stored at −80°C until use.
For the transduction of THP-1 cells with

OAS1, OAS2, or RNASEL, the corresponding
gene KO THP-1 cells were dispensed into a
12-well plate at a density of 1 × 106 cells per
well, in 500 ml of culture medium per well. Viral
supernatant was then added (500 ml per well)
the next day. For the transduction of SV40-
fibroblasts with ACE2, healthy control or
patient-specific SV40-fibroblasts were used
to seed six-well plates at a density of 5 × 105

cells per well. Viral supernatant was added
(500 ml per well) the next day. The cells were
then incubated for a further 48 hours at 37°C.
Transduction efficiency was evaluated by sur-
face staining for CD271 (Miltenyi Biotec) for the
pTRIP vector, or by flow cytometry to evaluate
BFP expression levels for the pSCRPSY vector.
MACS column separation was performed with
selection beads for CD271-positive cells (Miltenyi
Biotec) if the proportion of CD271-positive cells
was <80%. Cells transduced with the pSCRPSY
vector were selected with puromycin or by flow
cytometry. Protein production was subsequently
validated by immunoblotting.

SARS-CoV-2 infection

The SARS-CoV-2NYC isolatewas obtained from
the saliva of a deidentified patient on 28 July
2020. The sequence of the virus is publicly
available (GenBank OM345241). The virus
isolate was initially amplified in Caco-2 cells
(passage 1, or P#1 stock). For the generation
of P#2 and P#3 working stocks, Caco-2 cells
were infected with the P#1 and P#2 viruses,
respectively, at amultiplicity of infection (MOI)
of 0.05 plaque-forming units (PFU)/cell and
incubated for 6 and 7 days, respectively, at 37°C.
The virus-containing supernatant was then
harvested, clarified by centrifugation (3000g
for 10 min), and filtered through a disposable
vacuum filter system with 0.22-mm pores. The
P#3 stock used in this study had a titer of 3.4 ×
106 PFU/ml determined on Vero E6 cells with
a 1% methylcellulose overlay, as previously
described (72).
A549 + ACE2/TMPSS2 cells, human SV40-

fibroblasts + ACE2, or THP-1 cells were used
to seed 96-well plates at a density of 1.5 × 104

cells per well, 4 × 103 cells per well, and 1 × 105
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cells per well, respectively, in the presence
or absence of IFN-a2b at a concentration
of 1000 IU/ml. The cells were infected with
SARS-CoV-2 24 hours later by directly adding
10 ml of virus stock at various dilutions to the
wells (final volume: 110 ml). Cells were in-
fected for 24, 48, or 72 hours. The cells were
fixed with neutral buffered formalin at a final
concentration of 10% and stained for SARS-
CoV-2 with an anti-N antibody (catalog no.
GTX135357; GeneTex). An Alexa Fluor 488- or
Alexa Fluor 647-conjugated secondary anti-
body (Invitrogen) was used. Plates were imaged
with an ImageXpress micro XL and analyzed
with MetaXpress (Molecular Devices).

Cell stimulation

THP-1 cells were used to coat a 96-well plate
at a density of 1 × 105 cells per 100 ml of cul-
ture medium. For stimulations of PBMCs and
MDDCs, we used 1 × 105 cells and 5 × 105 cells
per 100 ml of culture medium, respectively.
The cells were stimulated with the indicated
stimulus at the specified concentrations, with
or without lipofectamine 2000 (Invitrogen),
according to the manufacturer’s instructions.
Poly(I:C), 5′ppp-dsRNA, 5′ppp-dsRNA control,
ISD, ISD control, R848, CPG-ODN2006, and
LPS were purchased from Invivogen. For ex-
ogenous 2′5′-linked oligoadenylate (2-5A) or
dephosphorylated 2-5A, we used 20 mM of 2-
5A for transfection in the presence of lipofect-
amine simultaneously with the other stimuli
[poly(I:C), R848, or LPS]. Dephosphorylated
2-5A (A2′p5′A2′p5′A) was prepared by treat-
ing 2-5A with shrimp alkaline phosphatase
(SAP) (Thermo Fisher Science) to remove the
5′-triphosphoryl group from 2-5A, rendering
it unable to activate RNase L (69, 70). The
dephosphorylation reaction mixture contained
5 mM 2-5A incubated with five units of SAP at
37°C for 1 hour, according to the manufac-
turer’s protocol. Samples were denatured by
incubation at 95°C for 5 min. Supernatants
containing dephosphorylated 2′,5′-A3 were
removed after centrifugation at 18,000g for
15 min at 4°C. Dephosphorylated 2-5A was
then validated by HPLC and FRET assays for
RNase L activity. After cell stimulation, the
cells or supernatants were harvested, and their
cytokine mRNA and protein levels were as-
sessed by RT-qPCR and with a multiplex bead
assay (BioLegend), respectively.

Detection of secreted cytokines in a
multiplex bead assay

The harvested supernatants of stimulated
THP-1 cells, PBMCs, and other types of cells
were prepared and used for the LEGENDplex
multiplex bead assay (BioLegend), according
to the manufacturer’s instructions. Samples
were analyzed by flow cytometry on an Attune
NxT flow cytometer, according to the man-
ufacturer’s instructions. Data were analyzed

with LEGENDplex Cloud-based Data Analy-
sis Software.

Luciferase assay

THP-1 cells expressing an ISRE-lucia luciferase
reporter gene were purchased from Invivogen
(THP1-Dual). Cells were stimulated according
to the conditions specified above. The super-
natant was collected and used for the luciferase
assay in accordance with the manufacturer’s
instructions.

Coculture of THP-1 and SARS-CoV-2–infected cells

Vero cells were plated in a six-well plate and
infected at a MOI of 0.05 (as determined by
plaque assay on Vero E6 cells) for a total of
48 hours. The supernatant of the infected cells
was carefully removed, and the infected cells
were then transferred to fresh THP-1 culture me-
dium. A fixed volume of the resulting cell sus-
pension was then dispensed onto WT or RNase
L KO THP-1 cells plated in a 96-well plate at a
density of 1 × 105 cells in 100 ml. THP-1 cells
stimulated with SARS-CoV-2 only were stimu-
lated in parallel for 24 hours. THP-1 cells were
stimulated for a total of 24 hours before collec-
tion of the supernatant for cytokine determi-
nations and cells for total RNA extraction.

Transfection of THP-1 cells with RNA from
SARS-CoV-2–infected cells

Total RNA was extracted from mock-infected
Vero cells or Vero cells infected with SARS-
CoV-2 at a MOI of 0.05 for a total of 72 hours.
THP-1 cells were transfected with 2 mg/ml of
total RNA extract for 8 hours. THP-1 cells
were then collected for total RNA extraction.

Deep immunophenotyping by mass
cytometry (CyTOF)

CyTOF was performed on whole blood with the
MaxparDirect ImmuneProfilingAssay (Fluidigm),
according to the manufacturer’s instructions,
as previously described (7). Cells were frozen
at −80°C after overnight staining to eliminate
dead cells, and acquisitionwas performed on a
Heliosmachine (Fluidigm). The antibodies used
for staining are listed in table S3. All the samples
were processedwithin 24hours of sampling.Data
analysis was performed with OMIQ software.

Bulk RNA sequencing (RNA-seq)

Total RNA was extracted from THP-1 cells or
sorted blood cell populations. Cells were left
untreated or were stimulated with poly(I:C) in
the presence of lipofectamine or infected with
SARS-CoV-2. RNAwas extractedwith theQuick-
RNA MicroPrep kit (Zymo Research) or the
RNeasy Micro Kit (Qiagen) and treated with
DNase I (Zymo Research and Qiagen) to re-
move residual genomic DNA. RNA-seq libra-
rieswere preparedwith the IlluminaRiboZero
TruSeq Stranded Total RNA Library Prep Kit
(Illumina) and sequenced on the Illumina

NovaSeq platform in the 100 nucleotide, paired-
end configuration. Each librarywas sequenced
twice.
The RNA-seq FASTQ files were first inspected

with fastqc to ensure that the raw data were
of high quality. The sequencing reads of each
FASTQ filewere then alignedwith theGENCODE
human reference genome GRCh37.p13 with
STAR aligner v2.6 and the alignment quality
of each BAM file was evaluated with RSeQC.
Reads were quantified with featureCounts
v1.6.0 to generate gene-level feature counts
from the read alignment, based on GENCODE
GRCh37.p13 gene annotation. The gene-level
feature counts were then normalized and log2-
transformed with DESeq2, to obtain gene ex-
pression values for all genes and all samples.
Differential gene expression analyses were
conducted by contrasting the intracellular
poly(I:C)-stimulated samples or the SARS-
CoV-2–infected samples with the nonstimulated
samples. For each gene expression analysis, we
performed trimmed mean of M values (TMM)
normalization and gene-wise generalized linear
model regression by edgeR, and the genes dis-
playing significant differential expression were
selected according to the following criteria:
FDR ≤ 0.05 and |log2(FoldChange)| ≥ 1. Differ-
ential gene expression was plotted as a heat-
map with ComplexHeatmap, and genes and
samples were clustered according to complete
linkage and the Euclidean distances of gene
expression values. GSEA was conducted with
the fgsea package, by projecting the ranking of
fold-change in expression onto the Hallmark
gene sets (71).

Single-cell RNA sequencing of PBMCs

We performed scRNA-seq on SARS-CoV-2–
and mock-stimulated PBMCs sampled from
four individuals with inborn errors of the
OAS–RNaseL pathway (P1 with OAS1 deficien-
cy, P2 and P3 with OAS2 deficiency, P5 with
RNase L deficiency), three individuals with
inborn errors of type I IFN immunity, and
eight healthy donors—one pediatric control
and one adult control with a history of past
asymptomatic SARS-CoV-2 infection, and
two pediatric controls and four adult controls
with no history of prior SARS-CoV-2 infec-
tion. The cryopreserved PBMCs were thawed,
stimulated, and processed for scRNA-seq.
Across all samples, we captured 46,157 high-
quality single-cell transcriptomes that were
classified into five major immune cell lineages:
myeloid, B, CD4+ T, CD8+ T, and NK cells. The
data were then analyzed as described in detail
in the supplementary materials.
We also performed scRNA-seq on cryopre-

served PBMCs from P5 (RNase L–deficient,
aged 4 years) sampled during the acute (9 days
after MIS-C onset) and convalescent (~1 month
after onset) phases, together with cells from
one healthy adult and two pediatric controls.
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We compared the data obtained with a pre-
viously published dataset for patients with
pediatric acute SARS-CoV-2 infection or MIS-C
(33). Clustering analysis showed lower levels of
monocytes and type 1 and type 2 conventional
dendritic cells (cDCs) in these patients and an
expansion of the activated T cell population
strongly expressing MKI67 (Fig. 5F and fig. S8,
A and B). Other subsets were largely unaffected.
Pseudobulk differential expression analysis was
performed at the single-cell level for monocytes,
mDCs, B lymphocytes, plasmacytoid dendritic
cells (pDCs), and activated T cells. Bulk RNA-
seq was performed on sorted nonclassical
monocytes and pDCs to further confirm the
scRNA-seq findings. We also quantitatively
inferred cell–cell communications with Cell-
Chat (74) to identify the signal-outgoing and
the signal-receiving cell subsets. The data gen-
erated during this study were analyzed in
an integrative manner with historical controls
from the laboratory (one pediatric and seven
adult controls), publicly available control PBMC
datasets downloaded from the 10X Genomics
web portal (https://support.10xgenomics.com/
single-cell-gene-expression/datasets), and a
previously published dataset for patients with
acute SARS-CoV-2 infection and MIS-C (GEO
accession: GSE167029), as described in detail
in the supplementary materials. In addition,
two other previously published sets of scRNA-
seq data for pediatric healthy controls and chil-
dren with acute SARS-CoV-2 infection or MIS-C
(GSE166489) (91) were used for an independent
cohort analysis.

Statistical analysis

For experiments performed in vitro, quantita-
tive data were obtained for cells carrying the
different mutations and control cells, or cells
treated with different stimuli, from at least
three biological replicates. For each biological
replicate, up to six technical replicates were per-
formed and averaged for downstream analysis.
Cytokine determinations were log-transformed
after subtracting the limit of detection for the
experiment concerned. Mean quantitative val-
ues were compared between cells carrying
the various mutations and control cells or
cells treated with different stimuli in unequal-
variance t tests. Where relevant, statistical test
results are indicated in the corresponding
figures (ns, not significant; *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001).
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Part III

Discussion and perspectives



As a graduate student of Institut Pasteur's Human Evolutionary Genetics (HEG) Unit, I was
directly involved in three single-cell genomics projects aimed at disentangling variability in the
antiviral immune response across healthy individuals, or patients with inborn errors of immunity
a�ecting the response to viruses. Across these projects, I collaborated with a diverse array of
researchers�from virologists and evolutionary geneticists to clinicians�both at the bench and on
the computational side. After three years of work, all of these collaborations have bore their fruit,
strengthening our understanding of the bases of human immune variability in health and disease.

Myeloid cellular predictors of the susceptibility to viral infection

During my �rst months in the team, I contributed to the work led by Mary O'Neill et al. (2021),
assessing the cellular determinants of susceptibility to infection by the in�uenza A virus (IAV) in
myeloid cells. This is a milestone in the HEG Unit because it represents the �rst application of
single-cell RNA-sequencing (scRNA-seq) by the team. While the experiments had already been
performed when I joined the Unit in January 2020, I contributed to setting up and testing the
scRNA-seq data analysis pipelines that were used in this study, and that have served as a basis of
reference for subsequent `single-cell' work (Lee et al., 2022; Aquino et al., 2023).

Through analyses of scRNA-seq data, we characterized the response of monocyte subsets to IAV
infection over time and linked di�erences in monocyte infection rates to variability in the induction
of interferon (IFN responses: infection escapees feature higher IFN-stimulated gene (ISG) expression
relative to infected cells. We showed that low IAV-transcribers can be identi�ed early after infection
and display higher basal ISG expression, leading us to hypothesize a role for basal ISG activation in
driving inter-individual variation in myeloid susceptibility to IAV infection. Finally, we used these
results to characterize the drivers of population variation of myeloid responses to viral infection and
highlight di�erences in cellular susceptibility to IAV infection between individuals of African and
European origin, in line with reports by Randolph et al. (2021).

Although we did not have a large enough sample to make reasonably powered population-level
inferences in O'Neill et al. (2021), the suggestion that population di�erences in susceptibility to
viral infection could be driven by variation in the basal proportion of myeloid cells amenable to
infection is especially interesting. Knowing that individuals of African origin tend to have higher
proportions of CD16+ monocytes (Quach et al., 2016), the biological relevance of this hypothesis
was emphasized by epidemiological and clinical data collected during the `coronavirus disease 2019'
(COVID-19) pandemic, linking African ancestry to increased COVID-19 severity (Shelton et al.,
2021), and COVID-19 severity to increased CD16+ monocyte proportions (Zhou et al., 2020b).

Natural variability of single-cell transcriptional immune responses to viruses

As the COVID-19 pandemic kicked into high gear over the year 2020, I and other colleagues
from the HEG Unit led a collaborative e�ort�spread across several research institutes worldwide,
but centered around Institut Pasteur's biosafety level 3 facilities and our team's growing expertise in
single-cell genomics�to dissentangle the genetic, nongenetic and evolutionary drivers of variability
in the susceptibility to and the severity of `severe acute respiratory syndrome' coronavirus 2 (SARS-
CoV-2) infection. Namely, Aquino et al. (2023) represents the �rst systematic assessment of the
genetic and nongenetic basis of immune variability in the response to SARS-CoV-2 across humans
populations at single-cell resolution. For instance, while Randolph et al. (2021) had previously
revealed ancestry-related di�erences in single peripheral blood mononuclear cell (PBMC) transcrip-
tional responses to viral infection across African-American and European-American healthy donors,
the authors focused on IAV as an infectious model. Also, other studies of transcriptional immune
responses had identi�ed hallmarks of SARS-CoV-2 responses, including impaired IFN induction
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(Hadjadj et al., 2020) and an exacerbated myeloid in�ammatory component (Leon et al., 2022),
but were not performed at single-cell resolution. Finally, while previous single-cell studies in severe
COVID-19 contexts had characterized transcriptional responses across several PBMC types at high
resolution (Wilk et al., 2020) and compared the responses to SARS-CoV-2 and IAV (Lee et al.,
2020), their relatively small samples precluded population-level inferences.

Availing of our large sample size, we dissected the respective contributions of cellular composition
and genetic factors to population variation in transcriptional immune responses to SARS-CoV-2 and
IAV across over 20 immune cell types sampled from diverse and healthy individuals. Importantly, we
found that variation in relative immune cell abundances explains most gene expression di�erences
between human populations, while genetic e�ects are generally stronger albeit limited to targeted
gene subsets in each cell type.

Di�erences in cellular composition can also explain di�ering COVID-19 courses. For instance,
previous single-cell descriptions of transcriptional immune responses in the peripheral blood of
COVID-19 patients have linked severe outcomes of SARS-CoV-2 infection to an increased abundance
of `exhausted' natural killer (NK) cells expressing LAG3, PDCD1 and HAVCR2 (Wilk et al., 2020).
We show that variation between individuals of African and European ancestry in the abundance of
memory-like NK cells (Ram et al., 2018) with similar transcriptional pro�les can be largely explained
by latent infection by cytomegalovirus (CMV), which has been recently pointed out as a marker of
COVID-19 severity, even in relatively young individuals (Weber et al., 2022).

These results suggest that di�erences in immune cell composition could partially explain the
reported disparities in severe COVID-19 risk between individuals of African and European ancestry
(Shelton et al., 2021) by mediating di�erential exposure to CMV in Central Africa and West Europe;
these people respond to viral infection di�erently because they live in di�erent places and are exposed
to di�erent pathogens. More generally, our results also highlight the relevance of scRNA-seq to
accurately characterize cell type composition, which serves as a useful proxy to model di�erential
environmental exposures in population-level studies of immune variation.

Yet, it is certain that genetic variation also plays a role in severe COVID-19 risk disparities
worldwide, as attested by the wealth of genome-wide association results produced through several
large collaborative e�orts spurred by the pandemic (COVID-19 Host Genetics Initiative, 2020, 2021,
2022, 2023; Ellinghaus et al., 2020; Pairo-Castineira et al., 2021; Shelton et al., 2021; Kousathanas
et al., 2022; Horowitz et al., 2022). Through context-speci�c colocalization and transcriptome-
wide association tests, our work builds on this knowledge base to inform on the likely cell type
and condition in which this genetic control takes place, thus inching towards causal inference of
genetic e�ects on COVID-19 susceptibility and severity. For example, we show data suggesting that
the e�ect of the likely Neandertal-origin rs10774679 quantitative trait locus (QTL) on COVID-19
hospitalization risk could be mediated by its e�ect on the expression of OAS3 in CD16+ monocytes
exposed to SARS-CoV-2.

Another distinctive feature of our approach is the use of evolutionary genetics methods to retrace
the evolutionary history of the QTLs associated to gene expression (e) or changes in expression in
response (r) to viral stimulation. More speci�cally, we tested eQTL and reQTL variants for patterns
of allele frequency di�erentiation�either across human populations or through time�that could
result from natural selection, as well as for evidence of introgression from archaic hominin genomes.

Assessing the antiviral response as a substrate for natural selection, our most remarkable �nding
is perhaps the fact that selection has preferentially a�ected reQTL variants that control the reponse
to SARS-CoV-2, but not IAV, speci�cally in genomes of East Asian descent. Motivated by previous
reports (Souilmi et al., 2021) of local adaptation to coronavirus-related pressures in East Asia around
25 thousand years ago�in coincidence with the appeareance of the ancestors of SARS-CoV-2 in

Sorbonne Université Š Institut Pasteur December 15th 2023 Š Page 133



the region�we built on our results by estimating the time frame within the last 56 thousand
years during which allele frequencies at these loci changed more rapidly than expected by chance.
Mirroring the reports by Souilmi et al. (2021), we found that rapid allele frequency changes at
SARS-CoV-2-speci�c reQTLs between 21 to 27 thousand years ago were 2.6 times more likely to
have happened in East Asian genomes, relative to Central African and West European genomes.

We also found striking evidence supporting a widespread e�ect of archaic introgression on gene
expression in the genomes of Eurasians, where Neandertal haplotypes are up to 1.5 times more likely
to harbor eQTLs compared to random matched variants, and regulatory Neandertal haplotypes are
more frequent than archaic introgressed segments without eQTLs. Furthermore, we report novel
signals of archaic introgression, including the rs58964929 reQTL of UBE2F�which encodes an
important protein for the nuclear translocation of IFN regulatory factor (IRF) 7 in myeloid cells
stimulated with RNA viruses�in CD14+ monocytes exposed to SARS-CoV-2 and IAV.

Overall, the results in Aquino et al. (2023) draw a panorama of genetic factors with complex
evolutionary histories that contribute to present-day disparities in COVID-19 risk through their
e�ects on gene expression across di�erent immune cell types. However, in line with our results
from O'Neill et al. (2021), we also emphasize the role of cellular composition di�erences�which
can mediate the e�ects of di�erent environmental exposures, like latent viral infection�on human
population di�erences in the transcriptional immune response to viruses among healthy individuals.

Inborn errors of immunity to map the genetic basis of susceptibility to infection

Natural immune variability across healthy individuals and populations is only one side of a
larger picture. As extensively discussed by Casanova and Abel (2005, 2013, 2020, 2021, 2022), data
from patients carrying inborn errors of immunity (IEIs) are useful to gain insight into the so-called
`infection enigma', whereby some individuals can resist infection by even the deadliest pathogens
while others are especially susceptible to severe infection by generally innocuous microbes.

In the context of the COVID-19 pandemic, and through collaborations with Casanova and Abel's
research groups at Institut Imagine and The Rockefeller University in New York, I assessed the
impact of IEIs in the 2'-5'-oligoadenylate synthetase (OAS)-RNase L pathway�a major component
of the IFN-mediated antiviral immune response�on multisystem in�ammatory syndrome in children
(MIS-C), a severe phenotype associated to SARS-CoV-2 infection.

Knowing that inborn errors of IFN-mediated immunity explain increased susceptibility to severe
infection by IAV (Ciancanelli et al., 2015; Hernández et al., 2018; Lim et al., 2019) and SARS-CoV-2
(Zhang et al., 2020, 2022), Lee et al. (2022) screened MIS-C patients in search of IEIs and found
several de�ciencies touching di�erent levels of the OAS-RNase L pathway. Aware of the HEG Unit's
expertise in single-cell genomics and our ability to work with live SARS-CoV-2, the authors then
reached out to us in order to dig further into the cellular and molecular determinants of immune-
mediated MIS-C in OAS-RNase-L-de�cient children.

Through analyses of scRNA-seq data from PBMCs sampled from four pediatric MIS-C patients
and stimulated with SARS-CoV-2, I identi�ed a clear in�ammatory signature emanating from OAS-
RNase-L-de�cient myeloid cells, and associated to stronger induction of tumor necrosis factor and
IFN-mediated responses by other cell types�such as CD4+ T cells�downstream in the peripheral
blood immune gene regulatory network.

Together with the results from other transcriptomic and biochemical assays presented in Lee
et al. (2022), my �ndings contribute to re�ning the ætiology of MIS-C by supporting a role for
exacerbated myeloid in�ammatory responses to SARS-CoV-2 in the generalized in�ammatory state
observed in these patients. The myeloid responses have downstream e�ects on the expansion of
particular subsets of CD4+ and CD8+ T cells, as well as upregulation of lymphoid IFN responses,
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which also participate to the maintenance of in�ammation. More speci�cally, we propose that
myeloid-driven in�ammation stems from a dysregulation of RNase-L-mediated post-transcriptional
control of in�ammatory cytokines (Malathi et al., 2005; Burke et al., 2019), although others have
associated RNase L to production of interleukin (IL) 1β by the NOD-like-receptor-P3 (NLRP3)
in�ammasome in mice (Chakrabarti et al., 2015).

Interestingly, and in contrast to other IFN IEIs (Ciancanelli et al., 2015; Hernández et al., 2018;
Lim et al., 2019; Zhang et al., 2020, 2022), none of the OAS-RNase-L-de�cient MIS-C patients seem
particularly sensitive to severe outcomes of infection by SARS-CoV-2 or other respiratory viruses.
Yet, several common variants in the OAS1-3 locus have been associated to di�erences in severe
COVID-19 risk (Pairo-Castineira et al., 2021; Zeberg and Pääbo, 2021). For example, through
colocalization and Mendelian randomization methods applied to protein (p) QTL data from the
COVID-19 Host Genetics Initiative (2020), Zhou et al. (2021) linked the Neandertal adaptive OAS1
splice variant rs10774671 described by Sams et al. (2016) to reduced risks of severe COVID-19 in
individuals of European descent. In Aquino et al. (2023), we suggest that the protective e�ect of
the rs10774671-G allele is mediated by its e�ect on OAS1 expression in lymphoid cells.

Taken together, these results suggest that the e�ects of genetic variation in the OAS-RNase
L pathway are mainly mediated by the establishment of systemic in�ammation by immune cells,
rather than by an e�ect on SARS-CoV-2 replication in the lung at earlier stages of infection, in
line with recent reports of myeloid-driven auto-in�ammatory syndromes in patients with OAS1

mutations (Magg et al., 2021).

Key takeaways. My work in O'Neill et al. (2021), Lee et al. (2022) and Aquino et al. (2023)
showcases the utility of single-cell genomics methods to dissect context-speci�c genetic e�ects on
antiviral immunity in healthy and IEI backgrounds in an evolutionary framework. From the bulk of
what I learned working in the HEG Unit, I consider three messages to be of particular importance.

The �rst observation is that a substantial portion of di�erences in the transcriptional immune
response to viral infection across Africans and Europeans is driven by variation in immune cellular
composition, and not by innate di�erences between the two human groups. This is most clearly
presented in Aquino et al. (2023), where we were able to go a step further, and link variation in
the memory-like NK subset�showing the starkest frequency di�erences�to increased exposure to
CMV in Africa, but it was already suggested by observations in the myeloid compartment since the
work we did in O'Neill et al. (2021).

The second observation is the similarity in the genetic bases of the transcriptional responses
to IAV and SARS-CoV-2 that we uncovered in Aquino et al. (2023). On the one hand, I �nd
this particularly interesting because it suggests the existence of a set of common gene regulatory
networks underlying the innate immune response to respiratory RNA viruses. On the other, this
gives me hope that the bulk of what we have learned about the predictors of severe COVID-19 risk
will translate well to other viral infectious diseases.

The third observation is that across human groups with di�erent genetic and environmental
backgrounds, natural selection seems to have targeted di�erent di�erent components of the genetic
basis of the antiviral response, so as to reach local adaptive equilibria between strong antiviral
immunity and controlled responses to infection, rather than directional selection favoring increased
or decreased antiviral immunity in speci�c human populations.

Altogether, my work re�ects the importance of thinking about the causality of the genetic
predictors of human immune variability from an evolutionary perspective, as natural selection and
archaic introgression have both contributed to present-day variation in human immune responses,
but also because evolution has shaped the genetic architecture of complex traits, including infectious
disease risks (Sella and Barton, 2019; Uricchio, 2020).
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Multimodal single-cell genomics across multiple layers of gene expression regulation

Besides the knowledge we produced, another major contribution from the work in Aquino et al.
(2023) is the high-quality multimodal single-cell transcriptomic data set�combining scRNA-seq
with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) for a subset of
cells�we produced across over a million single immune cells.

In our hands, CITE-seq data was particularly useful to disentangle NK and CD8+ T cell subsets
with highly similar, highly cytotoxic e�ector pro�les. Speci�cally, assigning the `NK' identity from
scRNA-seq data alone was troublesome because�at the transcriptional level�putative NK cells
expressed several subunits of CD3, a canonical marker of T lymphocytes. Adding CITE-seq data
for surface immune protein markers enabled us to distinguish NK cells from CD8+ T along another
dimension. As shown in Figure 4.4, while both cell types express similar levels of CD3E messenger
(m) RNA, median antibody-derived tags (ADT) against the CD3 protein are close to null in NK
cells and much higher in CD8+ T cells, consistent with their known marker protein pro�les.
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Figure 4.4 | Cell-type classi�cation with multimodal single-cell data. Single-cell RNA-sequencing data can
be coupled to other data modalities to easen cell-type identi�cation. The x and y axes respectively show mRNA
abundances for CD3E and antibody-derived tag (ADT) abundances for CD3�a canonical marker of T cells�across a
thousand single cells identi�ed as natural killer (NK) or CD8+ T cells. While CD3E messenger (m) RNA abundance
alone does not su�ce to resolve cell identity, the two groups can be distinguished along the CD3 ADT dimension.
Adapted from Aquino et al. (2023).

We used CITE-seq ad hoc to reinforce cell-type characterization in Aquino et al. (2023), but
work from other authors has shown the potential of CITE-seq measurements to derive complex
insights behind severe COVID-19 risk. As previously mentioned, up to 20% of life-threatening
COVID-19 cases in older patients (Casanova and Abel, 2022) can be explained by inborn errors
of IFN-mediated immunity (Zhang et al., 2020, 2022) or corresponding auto-immune phenocopies
due to auto-antibodies targeting type I IFNs (Bastard et al., 2020, 2021a). In this context, van der
Wijst et al. (2021) used CITE-seq to retrace the dynamic e�ects of anti-IFN-α2 auto-antibodies
on PBMC responses from COVID-19 patients across two weeks of hospitalization. In line with
other observations (Wilk et al., 2020; Ren et al., 2021; Stephenson et al., 2021), the authors report
an increased abundance of CD14+ monocytes and plasmablasts, and a decreased abundance of
cytotoxic immune subsets, in the blood of critical COVID-19 cases (van der Wijst et al., 2021).
Interestingly, the changes in CD14+ monocyte and CD8+ T cell abundance were even more stark in
critical COVID-19 patients carrying anti-IFN-α2 auto-antibodies. van der Wijst et al. (2021) also
report a progressive increase in CD14+ and CD16+ monocyte frequencies in COVID-19 patients
since the date of onset of symptoms, as well as the date of hospitalization.
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At the transcriptional level, van der Wijst et al. (2021) associated COVID-19 severity and the
presence of anti-IFN-α2 auto-antibodies to impaired IFN responses. Speci�cally, in the myeloid
compartment of critical COVID-19 patients, IFN-stimulated gene (ISG) expression was lower than
in less severe COVID-19 cases on the day of hospitalization, and remained low throughout the
two-week record. Moreover, plasmacytoid dendritic cells from critical COVID-19 patients with
auto-antibodies expressed lower ISG levels, as compared to critical cases without auto-antibodies.

Availing of the other dimension of CITE-seq, van der Wijst et al. (2021) then linked impaired ISG
responses to changes in surface protein expression in PBMCs. In particular, the authors highlight
the increased expression of leukocyte-associated immunoglobulin-like receptor (LAIR) 1 on the
surface of CD14+ monocytes from COVID-19 patients with lower ISG expression. Remarkably,
auto-antibodies against LAIR1 have been reported in the plasma of patients with severe COVID-
19, but not moderate or light cases (Wang et al., 2021). Hence, through analyses of multimodal
single-cell genomics data, van der Wijst et al. (2021) point to a novel surface protein biomarker of
severe COVID-19 associated to impaired transcriptional IFN responses in speci�c immune cell types,
which could actually play a role in disease progression, as attested by the presence of anti-LAIR1
auto-antibodies in severe cases (Wang et al., 2021).

CITE-seq and scRNA-seq are only two of the many methods available in the single-cell ge-
nomics toolkit (Heumos et al., 2023). As single-cell library preparation (Rosenberg et al., 2018) and
sequencing costs continue to drop, higher multimodality and throughputs will become accessible,
leading to larger data sets across more layers of gene expression regulation. By �lling in the blanks
between genotype and phenotype, these new methods will enable more robust causal inference of
genetic e�ects (Heumos et al., 2023; Cuomo et al., 2023).

Latent regulatory predictors of immune variation

Where CITE-seq and scRNA-seq respectively assay gene expression at the protein and tran-
script level, single-cell assays for transposase-accessible-chromatin sequencing (scATAC-seq) allow
to pro�le open chromatin regions (OCRs) in single nuclei (Buenrostro et al., 2015). Chromatin
accessibility data are an especially useful tool to unravel the complex context-dependent regulatory
grammar of gene expression. First, accessibility at any given OCR results from the integration of
complex genetic (Degner et al., 2012; Benaglio et al., 2023) and epigenetic (Kundaje et al., 2015)
signals�such as histone marks and DNA methylation�which can translate e�ects from environ-
mental exposures (Bergstedt et al., 2022). Second, OCRs in di�erent human tissues contain di�erent
sets of active cis-regulatory genomic elements like promoters, enhancers and transcription factor
(TF) binding site (TFBS) motifs (ENCODE Project Consortium, 2012, 2020; Zhang et al., 2021),
re�ecting the tissue-speci�city of gene expression regulation (Kim-Hellmuth et al., 2017). Finally,
because chromatin accessibility is a necessary condition for transcription, coupling scATAC-seq and
scRNA-seq data is clearly relevant from a biological standpoint.

Context-dependent chromatin accessibility data also come in handy to interpret genome-wide
associations between genotype and disease phenotypes. Across over 5 thousand single nucleotide
polymoprhism (SNP) loci in noncoding genomic regions associated to more than 6 hundred disease
traits, Maurano et al. (2012) report that around 77% of genome-wide signi�cant associations fall in
an OCR or are correlated to accessibility in that region. Moreover, Degner et al. (2012) estimate that
55% of strong eQTLs mapped across 70 human cell lines (Pickrell et al., 2010) are also associated
to chromatin accessibility at nearby OCRs. Together, these results reveal a wide overlap between
the genetic bases of gene expression regulation at di�erent levels along Crick's dogma, and highlight
the relevance of pairing caQTL and eQTL mapping to improve the interpretation of genome-wide
association results.

Sorbonne Université Š Institut Pasteur December 15th 2023 Š Page 137



The pervasiveness of caQTLs along the human genome (Degner et al., 2012; Maurano et al.,
2012) may re�ect variation in epigenetic mark patterns�such as histone-tail modi�cations or DNA
methylation�across human individuals (Waszak et al., 2015; Bergstedt et al., 2022) and populations
(Carja et al., 2017; Husquin et al., 2018), which correlate with di�erential OCR accessibility and
changes in gene expression (Luo et al., 2018). In particular, Husquin et al. (2018) estimate that
around 70% of population DNA methylation di�erences in monocytes sampled from 156 healthy
individuals of African and European origin can be explained by genetic variation around CpG sites.
Interestingly, the authors also linked di�erences in DNA methylation to di�erences in the expression
of 230 genes in response to Toll-like receptor activation or stimulation by a live IAV strain (Quach
et al., 2016). Moreover, Alasoo et al. (2018) have shown direct links between genetically controlled
chromatin accessibility variation and the magnitude of the transcriptional response to Salmonella

enterica bacteria in human myeloid cells. Together, these results suggest a role for genetically
controlled OCR accessibility variation in population di�erences in infectious disease risk.

There is yet to be a published assessment of the contribution of caQTLs to disease risk dispar-
ities across human populations and immune cell types (Benaglio et al., 2023). However, Aracena
et al. (2022) show that a fraction of population di�erences in the myeloid transcriptional response to
IAV infection between individuals of African and European ancestry (Quach et al., 2016; Randolph
et al., 2021) can be explained by an epigenetic basis made of factors that a�ect chromatin accessi-
bility. More speci�cally, the authors performed bulk eQTL, caQTL, histone-mark (hm) QTL and
DNA-methylation (me) QTL mapping on monocyte-derived macrophages sampled from 35 healthy
individuals, before and after 24 hours of exposure to IAV.

Relative to eQTLs, chromatin QTLs were most strongly enriched in population-di�erential traits,
in line with a stronger genetic control of population di�erences in gene expression regulation, rather
than gene expression itself. Aracena et al. (2022) also report higher chromatin accessibility around
genes involved in in�ammatory pathways in African-origin macrophages, that could explain why
antiviral immune responses from African-origin individuals tend to display a stronger in�ammatory
component (Quach et al., 2016). Interestingly, most of these signals were lost when regressing out
the e�ects of the strongest QTLs, suggesting an important genetic contribution to the observed
population di�erences. Overall, the observations by Aracena et al. (2022) re�ect the need for a
systematic evaluation of the latent regulatory predictors of immune variation across human popu-
lations and immune cell types. To this end, we performed scATAC-seq on non-stimulated PBMC
samples from the cohort of Central African (AFB), West European (EUB) and East Asian (ASH)
healthy donors reported in Aquino et al. (2023).

Focusing �rst on AFB and EUB individuals sampled during the same recruitment event (Quach
et al., 2016), we recovered over 200 thousand high-quality chromatin accessibility pro�les across
21 di�erent PBMC types. As shown in Figure 4.5, the estimates of cellular composition in each
population�evaluated as the relative contribution of each immune cell type to the make-up of
its corresponding lineage�taken from scATAC-seq data are highly similar to those reported in
Aquino et al. (2023) from scRNA-seq data (Pearson's r = 0.98, p < 2.2 × 10−16). In line with our
hypothesis of latent regulatory predictors underlying population di�erences in the transcriptional
immune response to viruses, this suggests that the immune cellular components that explain most
immune gene expression di�erences between healthy individuals of African and European descent
also have distinct chromatin accessibility pro�les, which can translate di�erences in environmental
exposures. For example, population di�erences in memory-like NK cell abundances can be largely
explained by latent cytomegalovirus (CMV) infection (Aquino et al., 2023). With the scATAC-
seq data, we will be able to dig deeper into these di�erences, so as to add new context-dependent
regulatory nodes to the putative causal chain linking exposure to CMV and COVID-19 severity.
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Figure 4.5 | Cellular composition inference from single-cell data. For each of �ve major immune lineages,
each dot shows the proportion of the lineage made up by each of the cell types it contains, estimated from single-
cell RNA-sequencing (scRNA-seq) or single-cell assays for transposase-accessible-chromatin sequencing (scATAC-seq)
data, in median across peripheral blood mononuclear cells sampled from 80 individuals of Central African (AFB) or
80 individuals West European (EUB) origin (Aquino et al., 2023). Each dot represents a cell type, but is colored
according to the lineage it belongs to. The population from which each estimate was made is shown by di�erent dot
shapes. The largest cellular composition di�erence between AFB and EUB is highlighted.

These scATAC-seq data will also allow us to look for the genetic determinants of gene expression
regulation di�erences that may also underlie current disparities in COVID-19 risk. The single-cell
resolution of our methods is of particular importance here, as it has been shown that besides genetic,
immune cellular composition is the largest driver of inter-individual epigenetic marks associated to
chromatin accessibility, such as DNA methylation (Bergstedt et al., 2022).

Across all di�erent immune cell types, we mapped 104,775 unique caQTLs nominally associated
(Student's t-test p < 10−5) to the accessibility at 29,934 OCRs. Out of all unique OCRs under
putative genetic control, 67.6% are annotated as `distal' intergenic or intronic regions, 21.9% fall on
annotated promoter regions and 10.5% fall on exons, in line with what is expected from a typical
ATAC-seq experiment (Yan et al., 2020). For example, the rs11080327-A allele is associated to
increased chromatin accessibility in B cells (p = 5.6×10−8) at an OCR in the �rst intron of SLFN5
annotated as a TFBS for STAT1 (ENCODE Project Consortium, 2020), and is remarkable because
SLFN5 is a well-known ISG involved in antiviral responses, and rs11080327-A has been associated
to stronger SLFN5 expression in response to type I IFN (Perez et al., 2022) and IAV (Schott et al.,
2022) in B cells. In particular, we also associated rs11080327-A to a stronger SLFN5 response in B
cells exposed to SARS-CoV-2 and IAV (p < 9.9× 10−12) in Aquino et al. (2023).

Although preliminary, these observations highlight the relevance of our caQTL mapping, as well
as the relevance of coupling scATAC-seq and scRNA-seq data from paired samples to disentangle
the genetic basis of inter-individual variability in the genetic basis of the antiviral immune response.
Knowing the genetic variants associated to putative regulatory activity in di�erent immune cell types
and human populations, we will be able to test them for signals of archaic introgression and natural
selection, so as to retrace their evolutionary history and impact on molecular endophenotypes.

Molecular QTL mapping studies are useful to infer causal links between genotype and phenotype;
yet, they can only paint a static portrait of these associations based on extant human diversity. In
contrast, the environmental factors�including pathogens, diet and cultural practices�that shape
human genetic diversity are dynamic. Temporal shifts in selective pressures can lead to evolutionary
`mismatch', when a previously advantageous allele becomes deleterious following a change in the
environment. Evolutionary insights are useful to reconcile such cases of apparent maladaptation.
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Figure 4.6 | Timing natural selection signals from allele frequency trajectories. The top panel shows
allele frequency trajectories of two quantitative trait loci (QTLs)�rs4806787 and rs1028396�respectively a�ecting the
expression (e) of LILRB1 in plasmacytoid dendritic cells and SIRPA in CD14+ monocytes in response (r) to `severe
acute respiratory syndrome' coronavirus 2, inferred across the past 2 thousand generations using data from the `Han
Chinese South' (CHS) reference panel from the 1000 Genomes Project Consortium (Byrska-Bishop et al., 2022). The
panel below shows per-generation changes of derived allele frequencies, normalized for allele frequency. The third
panel shows Z-scores calculated as the normalized derivative, scaled at each generation by the standard deviation of
derivatives across all eQTLs. Periods of selection are estimated as the range, in generations, over which the rate of
change in the frequency of each allele deviates signi�cantly from expectations under the hypothesis of neutrality (i.e.,
|Z| > 3|). Across the �rst three panels, the corresponding allele frequency trajectories, �rst derivatives and Z-scores
for �ve random SNPs sampled from the set of all (r)eQTLs detected in this study are shown in gray. The purple
transparent intervals indicate the inferred timing of onset of selection at the two highlighted loci. The bottom-most
panel shows e�ective population sizes estimated by Speidel et al. (2019) using data from the CHS, `Yoruba in Ibadan'
(YRI) and `Utah residents with Northern and Western European ancestry' (CEU) reference panels. Adapted from
Aquino et al. (2023).
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Detection of natural selection signals from inferred allele frequency trajectories

An example of pleiotropic trade-o� is illustrated by the G1 and G2 variants of the gene encoding
apolipoprotein L-1 (APOL1 ). Alleles of both variants have been associated to chronic kidney
disorders in present-day African American individuals (Genovese et al., 2010). Yet, G1 is found at
high frequencies in African genomes�borne by 38% of the individuals in the `Yoruba in Ibadan'
panel of the 1000 Genomes Project Consortium (1000 Genomes Project Consortium et al., 2010),
but absent from European, Japanese or Chinese panels (Genovese et al., 2010). Consistent with
this stark population di�erentiation, haplotype-based methods support the hypothesis that G1 rose
to high frequency in Africa through positive selection (Genovese et al., 2010).

Both G1 and G2 confer protection against infection by Trypanosoma brucei rhodesiense�the
parasite reponsible for `African sleeping sickness'�providing a likely target for natural selection
to increase the frequency of G1 in genomes of African descent (Genovese et al., 2010). However,
its advantageous, protective e�ect against sleeping sickness is lost for African Americans that live
outside the endemic range of the causal parasite. Taken together, these results emphasize the
importance of considering the genetic make-up of each individual in the context of their local
environment, and in light of their evolutionary roots.
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Figure 4.7 | Observed allele frequency trajectories through ancient genomes. For the three variants in
immune-relevant loci, each dot shows the frequency f of the derived allele estimated from the set of ancient DNA
samples available in each of �ve time transects spanning from 8.5 thousand years ago (kya) to the present. Con�dence

intervals were computed as f± 1.96 ·
√

f(1−f)
n(t)

, where n(t) is the number of samples at each epoch. Neolithic period,

8.5 to 5 kya, n = 729; Bronze Age, 5 to 2.5 kya, n = 893; Iron Age, 2.5 to 1.25 kya, n = 319; Middle Ages, 1.25 to
0.75 kya, n = 435. Adapted from Kerner et al. (2023b).

In Aquino et al. (2023), we used two di�erent methods to detect signatures of natural selection.
On the one hand, we used a summary population branch statistic (PBS) that captures extreme
patterns of allele frequency di�erentiation (Yi et al., 2010) between reference African, European
and East Asian panels from the 1000 Genomes Project Consortium (Byrska-Bishop et al., 2022).
On the other, we used a method to approximate the full likelihood that selection acted on a given
variant, based on hidden allele frequency trajectories inferred from ancestral recombination graphs
of genetic variation in each reference panel (Stern et al., 2019; Speidel et al., 2019).

From the inferred allele frequency trajectories at each (r)eQTL, we de�ned periods of time
in the last 2 thousand generations�that is, 56 thousand years�during which allele frequencies
changed more rapidly than expected under random genetic drift using an intuitive and highly scal-
able approach. Brie�y, we considered the posterior mean f(t) of allele frequency at each generation
t�smoothed by loess regression to ensure progressive changes and minimize artifacts induced from
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the inference process�and computed its �rst derivative as


f(t) =
df

dt
(t) = f(t+ 1) − f(t) (4.1)

to get the rate of allele frequency change across generations. Under neutrality, allele frequencies
follow a binomial distribution parameterized B(N, f), where N is the size of the haploid population
(Appendix C, page 199). The variance of allele frequency changes across generations is thus a
function of the frequency of the allele at each generation,

V
[

f
]
=

f(1− f)

N
. (4.2)

To account for this, we scaled the allele frequency derivative 
f(t) by a function of allele frequency,
such that the variance of normalized allele frequency di�erences,


g =

f√

f(1− f)
(4.3)

was the same across all variants. Finally, to avoid confounding e�ects from generalized frequency
changes across several alleles due to evolutionary forces other than natural selection, we computed
a Z-score of generation-wise allele frequency change as

Z =

g

σ̂ ( 
g)
, (4.4)

where σ̂ ( 
g) is the estimated standard deviation of scaled and normalized allele frequency changes.
We infer rapid changes in allele frequency for each variant and generation where the absolute Z-score
is greater than 3. This process is illustrated in Figure 4.6.

Using random SARS-CoV-2 reQTLs, Figure 4.6 shows that normalizing the derivative of the
allele frequency trajectory and scaling it as a Z-score aptly adjusts the rate of allele frequency change
to account for periods during which allele frequencies varied more widely, possibly under the e�ect
of other evolutionary forces like changes in e�ective population sizes. However, it also showcases
a limitation of our method: if allele frequencies evolve at a near-constant rate, it is only able to
estimate the onset of natural selection, not the full length of the episode of adaptation. Furthermore,
our inference of natural selection can only be as good as the reconstruction of the allele frequency
trajectory. Through simulated evolutionary scenarios across di�erent times of onset of selection and
selection co�cients, we showed that the heuristic |Z| > 3 threshold yields a reasonably powered
method to detect events of local adaptation (Aquino et al., 2023). For instance, the probability to
detect an episode of selection starting around a thousand generations ago with selection coe�cient
s = 0.05 is over 0.9.

With this new method, we detected rapid changes in allele frequencies concentrated around 25
thousand years ago at 245 SARS-CoV-2-speci�c reQTLs, and speci�cally in genomes of East Asian
descent, in line with previous reports by Souilmi et al. (2021) of an ancient coronavirus-related
epidemic driving local adaptation at virus-interacting protein (VIP) loci in East Asia around the
same time frame. Yet, we also found that adaptation events in the top 5% PBS values�that is,
contributing the most to present-day allele frequency di�erentiation patterns�in East Asia started
over 27 thousand years ago (Aquino et al., 2023). Among even more extreme outliers in the top
1% PBS values, we report three variants that are associated to the risk of COVID-19 through their
e�ects on expression at two coronavirus VIP loci�RAB2A and TMED5�in di�erent PBMC types.
In a context of accelerated viral spillover (Jones et al., 2013), these signals of past adaptation can
highlight candidates for treatment or prevention of viral diseases (Souilmi et al., 2021).
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Detection of natural selection signals from observed allele frequency trajectories

Both the PBS (Yi et al., 2010) and the approximate full likelihood (Stern et al., 2019) methods
infer signals of natural selection from extant human genetic diversity. While their foundations are
grounded on a solid basis of evolutionary genetics theory�built by Fisher (1918), Haldane (1937,
1949), Wright (1965), Gri�ths and Marjoram (1996, 1997), Krone and Neuhauser (1997), Coop and
Gri�ths (2004), and many others reviewed by Hartl and Clark (2018)�these methods are blind to
the true evolution of allele frequencies across time.

Recently, the advent of next-generation DNA sequencing methods and the improvement of
techniques to extract DNA from fossilized remains have enabled a new framework to retrace allele
frequency trajectories through direct observations from `ancient' DNA (Kerner et al., 2023a). For
instance, Kerner et al. (2023b) used 2,376 ancient and 503 modern human genomes to characterize
episodes of local adaptation to pathogenic pressures in Europe during the last 10 thousand years,
since the Neolithic period and through the Bronze, Iron and Middle Ages, up until today.

From the pool of ancient DNA samples available in each time transect, the authors estimated
derived-allele frequencies at over a million SNPs, and used these observed allele frequency trajecto-
ries to infer the strength and the time of onset of selection at each SNP. Kerner et al. (2023b) then
de�ned 89 non-consecutive loci that concentrated the strongest signals of selection, and found these
candidate targets of natural selection to be enriched in genes with immune-relevant functions.

Kerner et al. (2023b) report that most episodes of directional selection at these 89 loci started
after the beginning of the Bronze Age: a period characterized by population expansions in Eu-
rope. Larger populations are associated to more e�cient natural selection, and may also result
in stronger pathogenic pressures due to increased promiscuity and mobility, which can potentiate
epidemic outbreaks (Kerner et al., 2023b). Notably, the authors also link these adaptive changes in
allele frequency to a decreased polygenic risk to infectious diseases, but an increased risk to autoim-
mune and in�ammatory diseases among present-day humans. For example, Figure 4.7 shows allele
frequency trajectories estimated by Kerner et al. (2023b) at three immune-relevant loci, including
TLR1/6/10 and OAS1-3, that were targeted by positive selection after the Bronze Age.

Altogether, the work by Kerner et al. (2023b) emphasizes the usefulness of ancient DNA in
the framework of evolutionary medicine, to better understand human evolutionary adaptation to
di�erent contexts and environments (Marciniak and Perry, 2017; Perry, 2021), and thus draw a
more accurate picture of the genetic bases of modern complex diseases (Kerner et al., 2023a).

Yet, ancient DNA is not without limitations. For instance, although some ancient DNA samples
have been sequenced using unbiased `shotgun sequencing' methods, around 70% of available ancient
genome-wide data have been produced using the same array (Mathieson et al., 2015), which is
biased towards certain types of sequences (Ávila-Arcos et al., 2023). Also, ancient DNA only allows
to look as far back as there are available samples. To date, 9,695 DNA samples older than 500
years have been published, but 98% are younger than 10 thousand years (Kerner et al., 2023a).
Another important limitation imposed by the availability of ancient DNA is that almost 60% of
samples available today come from remains found on the European continent (Kerner et al., 2023a;
Ávila-Arcos et al., 2023). This is in part due to the better conservation of DNA in temperate
climates�relative to African or South American regions, which jointly contribute less than 5% of
ancient DNA samples�but it also re�ects a more general trend in human genomics research (Sirugo
et al., 2019). Namely, while individuals of European descent represent only a minor fraction of the
global human population, they are grossly over-represented in ancient (Kerner et al., 2023a) and
modern (Sirugo et al., 2019) DNA data bases. This has important ethical implications (Popejoy
and Fullerton, 2016), but it also limits the generality of inferences drawn from these data.
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Omnigenic and diverse data bases of genetic susceptibility to disease

In particular, the lack of diversity in current genetic data bases limits the capacity of a polygenic
risk score (PRS) to predict complex disease risks across human populations. Brie�y, the standard
PRS is a metric in the precision medicine toolkit that estimates individual-speci�c risks of devel-
oping a disease trait, as a linear combination of genome-wide association study (GWAS) e�ect size
estimates, weighted by the genotype of each individual. However, if the discovery cohort on which
the GWAS is performed is genetically distant from the target cohort on which the PRS is applied,
di�erences in the structure of linkage disequilibrium and allele frequency distributions can a�ect
the translability of the estimates, and generally decrease PRS accuracy (Martin et al., 2017, 2019).
Therefore, the current European focus of human genomics research limits these approaches.

In this context, several statistical approaches have been proposed to improve PRS transferability.
In fact, even a relatively modest diversi�cation of discovery cohorts through `multi-ancestry' GWASs
on diverse groups of individuals, or meta-analysis of `single-ancestry' GWAS results across di�erent
populations, has been shown to improve PRS accuracy across populations (Ruan et al., 2022; Wang
et al., 2023a). Another interesting perspective is the development of weighted PRS approaches that
leverage recently admixed populations�whom are often neglected by genetic studies�to consider
the e�ects of di�erent local ancestries while maintaining relatively homogeneous environmental
exposures (Wang et al., 2023a). However, for traits for which most of the population variation
in GWAS estimates is driven by environmental factors, the only solution to obtain an accurate
PRS is to perform the GWAS directly on the target population, or one with very close genetic and
environmental backgrounds (Mathieson, 2021).

Overall, the development of a precision medicine able to tailor healthcare to the genetic and
nongenetic determinants of disease risk in each individual relies on the establishment of data bases
and `biobanks' that accurately represent human diversity. For example, Sohail et al. (2023) from the
Centro de Ciencias Genómicas de la Universidad Nacional Autónoma de México just published the
Mexican Biobank (MXB) of genome-wide genotypes and complex phenotypes�including metabolic
and socioeconomic traits�across more than 6 thousand individuals from di�erent cultural regions
in Mexico. Across several metabolic traits including blood glucose and cholesterol levels, the authors
show that dividing the data set into `training' and `testing' partitions�to perform a GWAS and
test the associated PRS, respectively�yields more accurate predictions, compared to those obtained
from a PRS derived from a United Kingdom Biobank (UKB) GWAS data set, despite the much
lower sample size (Sohail et al., 2023). However, Sohail et al. (2023) also highlight the need to build
larger samples, so as to make more accurate predictions.

Another obstacle in the way to a widely translatable PRS for certain complex traits is the
diversity of phenotype de�nitions. Brie�y, computing a PRS on merged GWAS results from studies
with di�erent trait de�nitions is likely to yield a score underpowered to predict either de�nition
well. In this context, the Global Biobank Meta-analysis Initiative (GBMI) (Zhou et al., 2022) is
a powerful network of international collaboration and data sharing across 23 biobanks�including
UKB but not MXB yet�across the globe, that aims to improve overall PRS accuracy by diversifying
the resources used in human genomics research and building larger samples, as well as setting uni�ed
de�nitions for GWAS phenotypes and covariates (Wang et al., 2023b).

Besides the GBMI, other world-class organizations have recognized the need to diversify data
bases in the establishment of a precision medicine. Speci�cally, through its expertise in single-cell
genomics and its continued e�orts to include understudied human groups in their work, the HEG
Unit is part of the Chan-Zuckerberg Initiative to generate an African-ancestry immune cell atlas
at single-cell resolution, in order to tackle the paucity of data across ethnically diverse groups of
African individuals and assess immune gene regulation in more diverse contexts.
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In particular, the contribution of the HEG Unit to the African Immune Cell Atlas Project
is centered around using scRNA-seq and scATAC-seq data to characterize the environmentally
driven epigenetic variation behind immune di�erences between individuals of African origin with a
similar genetic background, but living in very distinct rural and urban settings. Deciphering how
the environment can a�ect the genetic regulation of chromatin accessibility and transcription in
an immune context is essential towards an improved understanding of the parameters that drive
immune variability across healthy individuals worldwide, and how the risk for infectious and non-
infectious diseases is transmitted across generations.

Gene-by-environment interactions are a central component of the model of `omni-environmental'
inheritance proposed by Mathieson (2021) as an extension to the original omnigenic model (Boyle
et al., 2017; Liu et al., 2019). In this network, environmental and genetic factors interact with each
other extensively to form the basis of a complex trait, but the GWAS framework is blind to these
interactions, and can only measure the overall e�ect of observed genotypes on observed phenotypes
(Boyle et al., 2017; Liu et al., 2019). Molecular QTL mapping has improved the capacity for causal
inference by shedding light on some regulatory nodes and edges in the network. However, the
e�ectiveness of these methods to uncover the genetic bases of complex diseases is limited by their
focus on common genetic variation, the `�attening' of heritability signals across weak-e�ect variants
by negative selection against strongly deleterious variants (O'Connor et al., 2019), the large sample
sizes required to detect these weak e�ects and the context-dependency of gene expression regulation,
among other factors reviewed by Umans et al. (2021).

Large language models of genomic data and nucleotide transformers

Following recent technological and algorithmical developments, arti�cial intelligence (AI) has
quickly emerged as a promising tool to disentangle the complexity of omni-environmental networks
and map the nodes and edges leading from measurable genotypes to observable phenotypes (Dias
and Torkamani, 2019). More speci�cally, `deep learning' (DL) methods di�er from classical `machine
learning' AI algorithms in that they do not need human feedback to adapt their learning. That is,
DL algorithms are self-learning systems able to extract patterns from highly complex data structures
across upwards of millions of data points, which makes them especially interesting for the analysis
of complex genomic and clinical data (Dias and Torkamani, 2019; Topol, 2023).

The �rst successful attempts to predict gene expression from mammalian genomic sequences used
convolutional neural network (CNN) architectures to infer regulatory activity based on chromatin
mark data, and then predict the e�ect of genetic variants on expression (Zhou et al., 2018; Kelley
et al., 2018; Kelley, 2020; Agarwal and Shendure, 2020) (Appendix E, page 206). While these
methods set a new state of the art in the application of DL algorithms to genomic data, they
were limited by the local scope of convolutional �lters, which only allowed to consider regulatory
interactions within 20 to 40 kilobases; yet, regulatory interactions between enhancers and repressors
of gene expression are known to span far greater distances (Gasperini et al., 2020; Avsec et al., 2021).

In this context, Avsec et al. (2021) developed a new DL model mixing CNN layers with com-
ponents of the `transformer' architecture (Appendix E, page 206). Brie�y, transformers are a class
of DL models used to process large sequential input data�such as natural language text (Vaswani
et al., 2017; Brown et al., 2020) but also DNA sequences (Ji et al., 2021)�and predict an output
sequence. Relative to previous recurrent neural network (RNN) architectures that analyse sequence
data in a step-wise manner, transformers are imbued with additional `attention' mechanisms that
allow them to process arbitrarily long sequences by learning which components of the input are
really informative�regardless of their position in the sequence, and without having to process the
entire sequence beforehand�and should be attended to, so as to accurately predict the output
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(Vaswani et al., 2017). For example, this allows to predict the activity at a transcription start
site based on the sequence-inferred activity of enhancers downstream and upstream in the genomic
sequence (Avsec et al., 2021).

Avsec et al. (2021) report that their transformer can capture regulatory interactions between
genes and context-dependent regulatory elements up to 100 kilobases apart in human and mouse
genomes, and use this information to predict tissue-speci�c gene expression with higher accuracy
than CNN-based methods. Furthermore, the authors show that the model gives more attention
to experimentally validated enhancers, suggesting that transformer attention levels can be used
to prioritize gene-enhancer pairs at least as well as other state-of-the-art methods (Fulco et al.,
2019; Avsec et al., 2021). The transformer was also shown to provide more accurate eQTL e�ect
predictions�relative to a CNN-based DL model (Kelley, 2020)�across 47 out of 48 tissues from the
Genotype-Tissue Expression Consortium (The GTEx Consortium, 2020), for high-con�dence �ne-
mapped variants (Wang et al., 2020) in regions with simple LD patterns (Avsec et al., 2021). Hence,
the transformer is a useful tool for predicting regulatory activity and the e�ect of noncoding variants
on gene expression: two key tasks towards disentangling omni-environmental network e�ects.

However, it has more recently been argued that, while the transformer trained by Avsec et al.
(2021) can predict the impact of short-range regulatory regions on gene expression well, it struggles
with the impact of long-range enhancers (Karollus et al., 2023). That is, although its receptive �eld
spans up to 200 kilobases, the transformer underestimates the e�ect of distal regulatory elements,
and its predictions are driven by stronger proximal e�ects less than 100 kilobases away. This may
re�ect the underlying biology, but it also may be due to the model arti�cially down-weighting
noisier distal e�ects, or to its inability to account for the tridimensional chromatin conformations
that bring distant genomic elements into contact (Avsec et al., 2021; Karollus et al., 2023). In line
with previous trends in natural language processing (Vaswani et al., 2017; Kaplan et al., 2020; Rae
et al., 2021), Karollus et al. (2023) suggest that the improvement in prediction accuracy described by
Avsec et al. (2021) could be solely due to the sheer increase in estimated parameter counts relative
to previous DL models, rather than the larger receptive �eld of their transformer. Karollus et al.
(2023) also propose that training the model on chromatin-contact data and/or gene expression and
epigenetic data across multiple cell types and species could help build a transformer that is actually
able to exploit a large receptive �eld.

From a similar perspective, Dalla-Torre et al. (2023) propose a collection of transformers�
ranging in size from 50 million to 2.5 billion parameters�and trained on over 3 thousand human
genome sequences and 850 genomes from other species, ranging from bacteria to mammals. In line
with the suggestions by Karollus et al. (2023), the authors report that�at a constant parameter
count�increased intra-species and inter-species variability increases prediction accuracy. Interest-
ingly, training on genomic data from several species also increases prediction accuracy of models
applied to human data, suggesting that the algorithm learned to pick up on conserved and impor-
tant functional sequences during training (Dalla-Torre et al., 2023). Dalla-Torre et al. (2023) also
validate the suggestion that increasing parameter counts leads to improved accuracy on biological
data, but show that their models can be �ne-tuned to a subset of parameters allowing to maintain
similar performance at a fraction of the computational cost. Yet, although these models have a
larger attention span than previous transformers (Ji et al., 2021), at 12 kilobases it is still much
smaller than the one proposed by Avsec et al. (2021).

All in all, nucleotide transformers have proven their worth in predicting functional regulatory
activity along the human genome and the context-dependent e�ects of this regulation on gene
expression (Ji et al., 2021; Avsec et al., 2021; Dalla-Torre et al., 2023). However, their capacity to
accurately predict individual-speci�c molecular endophenotypes from DNA sequence data alone is
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currently limited (Karollus et al., 2023) by the di�culty of simultaneously estimating the impact of
long-range and short-range regulatory activity (Nguyen et al., 2023). With growing technological
improvements and availability of multimodal data sets, it is likely that more DL models will be
developed and applied towards dissecting the genetic and environmental interactions underlying
complex traits (Boyle et al., 2017; Liu et al., 2019; Mathieson, 2021; Dalla-Torre et al., 2023).

Yet, both arti�cial and organic intelligence have a role to play in this endeavour. Although
performing GWAS and molecular QTL mapping studies ad in�nitum is not a viable approach to
uncover all regulatory interactions (Umans et al., 2021; Mostafavi et al., 2022), these frameworks
have provided several key insights into the general structure of the omni-environmental networks
underlying complex disease traits (Dimas et al., 2009; Westra et al., 2013; van der Wijst et al.,
2018b, 2020; The GTEx Consortium, 2020; COVID-19 Host Genetics Initiative, 2023), and how
their genetic architecture has been shaped by evolution (Lohmueller, 2014; O'Connor et al., 2019;
Sella and Barton, 2019; Uricchio, 2020). As the �eld of DL genomics develops, the data produced
with these tools can be used to train stronger models able to predict genotype-phenotype e�ects
more accurately (Karollus et al., 2023). More importantly, these insights will continue to be essential
for scientists to interpret the biological relevance of the machine's predictions.
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Appendix



A The partitioning of phenotypic variance

Decomposing the innate and acquired contributors of phenotypic variation is a central theme of
genetics. Because it is an easily accessible, albeit complex phenotype, much work has focused on
the `nature versus nurture' of human height. In fact, the �eld of quantitative genetics bloomed from
studies of height at the turn of the 20th century. Interestingly, advances in this domain were tightly
linked to the development of core concepts in modern statistics, such as regression and variance.
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Figure A.1 | The �rst graphically explicit bivariate relationship. Francis Galton produced the �rst known
scatter plot showing an explicit relationship between two variables. The scattered numbers show the joint distribution
of deviations in the heights of o�spring and their parents from a reference value of 68 1

4
inches. The concentric ellipsoids

show the isodensity contours at three magnitudes of height deviation. The solid lines are the major and minor axes
of the ellipsoids and correspond to the principal components of the data. The tangent lines of the middle ellipsoid
are shown by the dotted lines. The dashed lines link the center of the data to the tangential points of the ellipsoids.
Adapted from Galton (1886).

In 1885, during his presidential address to the Anthropological Section of the British Association,
Francis Galton produced data showing that a part of variation in height across individuals could
be explained by di�erences in the height of their parents (Galton, 1886; Jelenkovic et al., 2016).
These data were presented in the form of the �rst ever scatter plot showing an explicit relationship
between two variables, as illustrated in Figure A.1.

Geometrical insights from this graph laid the bases for the development of correlation and
regression by Galton and others (Galton, 1889; Pearson, 1895; Lee Rodgers and Nicewander, 1988).
Based on Galton's theorization of the `co-relation' between two variables, Karl Pearson developed
the mathematical formula for his eponymous `product-moment correlation coe�cient'. Several years
later, Pearson and Lee (1903) built on Galton's data to show height correlations among relatives,
strengthening the evidence for a genetic basis of height.
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In 1918, Ronald Fisher formalized the statistical principles behind modern quantitative genetics
by showing that Mendelian inheritance could lead to continuous variation in quantitative traits
(Fisher, 1918). In particular, Fisher estimated the `heritability' of height as a measure of the
proportion of phenotypic variation attributable to genetics, and showed that continuous variation
in height could be explained through the joint e�ect of many loci, in line with his `in�nitesimal'
model of polygenic inheritance.

Fisher (1918) modeled the value of continuous quantitative trait z in an individual as the sum
of a genotypic component G and an environmental component E,

Y = G+ E. (A.1)

In this context, G can be viewed as the average phenotypic value Y summarized over all possible
environments an individual is likely to cross. Because each diploid parent transmits a haploid
genome down to their o�spring, only a fraction of valueG is e�ectively transmitted. Fisher called this
subcomponent the `additive' genetic value A. In contrast, the `non-additive' genetic subcomponent
D contains the e�ects of other alleles within loci (e.g., dominance) and between loci (i.e., epistasis).

From Equation (A.1), and overlooking complex epistatic e�ects, the phenotypic value of an
individual can be expressed as a linear combination of genetic and environmental components,

Y = αY + (A+D) + E, (A.2)

where αY is the mean phenotypic value across all individuals in the population. Then, the expected
phenotypic value of an individual across a universe of environments can be calculated from the
respective maternal and paternal additive genetic values A♀ and A♂,

E [Y] = αY +
A♀ +A♂

2
. (A.3)

The ideas introduced by Fisher (1918) were seminal in quantitative genetics, but they also
preluded his own advances in statistics. In particular, Fisher (1918) de�ned the `variance' of a
random variable as the square σ2 of its standard deviation.

Because additive genetic e�ects A are average e�ects estimated from the regression of phenotype
Z on genotype, they are by construction independent from other e�ects in the model. Hence, the
variance of the phenotypic value of an invidual is the sum of the variances of its components,

σ2Y = σ2A + σ2D + σ2E. (A.4)

Such partitioning of variance foreshadowed Fisher's development of the analysis of variance (ANOVA).

Fisher's variance decomposition is also basal to his de�nition of heritability. From this view,
broad-sense heritability H2 is de�ned as the ratio between the variance of the genetic component
of phenotype�which may include dominance and epistatic e�ects�in an individual over the total
variance of the phenotype,

H2 =
σ2A + σ2D

σ2Y
. (A.5)

In contrast, narrow-sense heritability h2 considers only the part of phenotypic variance explained
by the additive genetic component,

h2 =
σ2A
σ2Y

. (A.6)
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Heritability is a central concept of quantitative and evolutionary genetics. For instance, the
non-null heritability of a trait is an essential condition for directional selection. Even if individuals
with a particular value of the trait perform better than the rest within a generation, if its genetic
basis is negligeable or if it is not passed to the next generation, selection will not target the trait.

Narrow-sense heritability was traditionally estimated by so-called `twin-studies' that leverage the
ressemblance between genetically identical monozygotic twin pairs on the one hand, and on the other
dizygotic twin pairs that share half of their alleles identical-by-descent (IBD) in expectation. For
example, MacGregor et al. (2006) estimated the narrow-sense heritability of height at approximately
80% using a cohort of over 800 monozygotic and dizygotic twin pairs, respectively.

The proportion of alleles shared IBD by parents and their o�spring can also be leveraged to
estimate trait heritability. For example, Mook-Kanamori et al. (2012) used parent-o�spring trios to
estimate the heritability of body height�using femur length as a proxy�during fetal life and child-
hood. Interestingly, the authors estimated increased heritability from mid-pregnancy to infancy.

More recent methods allow to estimate heritability from population-level genotyping data. In
particular, the `genome-based restricted maximum likelihood' (GREML) tool in the `genome-wide
complex trait analysis' (GCTA) kit is a statistical model that can estimate the narrow-sense her-
itability of a trait given genotypes at a set of single nucleotide polymorphism (SNP) loci (Yang
et al., 2010, 2011). Using an early version of this method, Yang et al. (2010) found that around
300 thousand common SNP variants�with a minor allele frequency (MAF) of at least 1%�could
explain between 40% to 50% of height variation among around 4 thousand unrelated individuals.
The authors reasoned that the de�cit relative to the h2 ≈ 0.8 estimated by family-based studies
could be explained by incomplete linkage disequilibrium between the SNPs considered in the study
and true causal SNPs associated to height.

The following years saw several attempts to bridge this gap, with ever increasing sample sizes,
culminating in a genome-wide association study of height across over 5 million donors of diverse
ancestries (Lango Allen et al., 2010; Wood et al., 2014; Yengo et al., 2018, 2022). With as many
individuals, Yengo et al. (2022) managed to build a saturated map of common genetic variants
(MAF ⩾ 1%) associated with human height. The authors report that only 12,111 SNPs�grouped
in around 7 thousand distinct genomic windows covering 21% of the human genome�are enough
to explain almost all common SNP-based heritability in Europeans.
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B The encyclopædia of genomic and epigenomic elements

Ontogeny describes the process through which multicellular organisms develop from single cells.
Multicellular organisms are complex systems of organs knit from di�erent tissues composed of
coordinated subsets of cells specialized to accomplish particular functions. The genome in each
original single cell contains all the information needed to build all the cell types and tissues in the
fully developed organism. Thus, the lack of correlation between eukaryotic genome sizes and the
number of tissues composing each organism was deemed paradoxical by some (Thomas, 1971).
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Figure B.1 | Organism complexity and genome size. Range of recorded genome sizes, expressed in number
of base pairs, across di�erent clades of the phylogenetic tree of life. Some species are highlighted to illustrate that
organism complexity�at least as measured by the number of di�erent cell types and tissues�does not depend directly
on genome size. Animal genome sizes recovered from Gregory (2002); Plant, fungal and bacterial genomes recovered
from Leitch et al. (2019).

Figure B.1 shows the range of recorded genome sizes�expressed in numbers of base pairs in
the DNA sequence�for various clades across the phylogenetic tree. Although there is no concrete
measure of multidimensional biological complexity, it could be argued that the human body is much
more complex than that of krill, based on the number of di�erent cell types and tissues that compose
each organism. Yet, the genome of krill�a centimeter-long crustacean�is around ten-fold larger
than the human genome. Perhaps more convincingly, there is a two-fold di�erence in the length of
the haploid genomes of the common onion and of chives, two arguably very similar species.

The `C-value' paradox coined by Thomas (1971) can be explained by regulatory DNA sequences.
It is now known that only around 1% to 2% of the human genome is composed of protein-coding
genes (ENCODE Project Consortium, 2020). Most of the functional sequences in the human genome
have a regulatory role, controlling the rate at which di�erent proteins are expressed in di�erent
contexts, thus allowing cells bearing the same genome to adapt to changing environments and
di�erentiate into distinct cell types.
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In the wake of the Human Genome Project (� 1.1, page 3), the `Encyclopedia of DNA elements'
(ENCODE) Consortium set out to annotate the newly minted human genome sequence, so as to
more fully exploit the information contained within, including in regulatory DNA (International
Human Genome Sequencing Consortium, 2004; Feingold et al., 2004).

After a pilot study focusing on approximately 1% of the genome, the second phase of the
ENCODE Project leveraged next-generation sequencing (Box 1, page 4) methods to inventorize
functional DNA elements genome-wide (ENCODE Project Consortium, 2007, 2012). ENCODE 2
uncovered novel functional sequences, such as DNA methylation motifs, in previously uncharted
stretches of non-coding DNA. In total, the authors assigned a regulatory role to around 80% of
the human genome. In 2020, the ENCODE Consortium published an expanded version of the
encyclopædia compiling results from thousands of di�erent assays of DNA and RNA features across
hundreds of independent human tissue and cell samples (ENCODE Project Consortium, 2020).

The ENCODE Project revealed a very hetegeneous set of cis-regulatory elements (CREs) in
human regulatory DNA, including gene promoters, `enhancers' of transcription, transcription factor
(TF) binding sites (TFBSs) and DNA methylation sites. The unifying feature that binds these
regulators together is that they a�ect the probability that the transcriptional machinery binds DNA
through changes in chromatin conformation. Hence, candidate (c) CREs are commonly detected
using assays of chromatin accessibility. In particular, sensitivity to DNase I�an enzyme that `cuts'
naked DNA�is commonly used to �nd cCREs (ENCODE Project Consortium, 2020).

DNase I hypersensitive sites (DHSs) are then annotated based on data from other assays of
DNA and RNA features to classify cCREs (ENCODE Project Consortium, 2020). For instance,
chromatin immunoprecipitation followed by sequencing (ChIP-seq) is used to �nd TFBS motifs,
as well as motifs bound by the CCCTC-binding factor (CTCF), a transcriptional repressor that
creates bundles of closed chromatin. ChIP-seq is also used to characterize histone marks associated
to chromatin accessibility, such as trimethylation of histone 3 on lysine 4 (H3K4me3) or acetylation
of histone 3 on lysine 27 (H3K27ac). Assays for transposase-accessible chromatin followed by
sequencing (ATAC-seq) also enable the de�nition of `peaks' of open chromatin. Other assays are
used to map RNA-binding protein motifs and transcription start sites (TSSs), as well as characterize
levels of gene expression and DNA methylation.

The `ground-level' annotations de�ned by all these di�erent assays are then integrated to classify
cCREs and de�ne chromatin states (ENCODE Project Consortium, 2020). ENCODE distinguishes
eight di�erent types of active cCREs depending on whether they are bound by CTCF or ornamented
with particular histone marks. For example, `cCREs with promoter-like signatures' (cCRE-PLSs)
are DHSs found within 200 base pairs of a TSS and displaying a high signal of H3K4me3. In contrast,
`cCREs with enhancer-like signatures' (cCRE-ELSs) have low H3K4me3 scores when found within
200 base pairs of a TSS, but they are characterized by a marked H3K27ac signature. cCRE-ELSs
found within 2 kilobases of a TSS are tagged as `proximal' (cCRE-pELSs); the rest are called `distal'
(cCRE-dELSs).

Not all regulatory elements of transcription are written in the DNA sequence. Histone marks
like H3K4me3 and H3K27ac are examples of `epigenetic' factors able to carry information across
cell generations somewhat independently of DNA sequence. The transfer of epigenetic informa-
tion during mitosis is key for cells to di�erentiate into distinct subsets with minutely specialized
functions, even though they carry the same genome. The `epigenome' of a cell is composed of
all the structural and functional addenda�such as histone marks, but also chromatin regulators
and noncoding RNAs�that supplement genetic information. Characterizing the human epigenome
across di�erent tissues is thus essential to fully understand the impacts of genotype on phenotype
in disease-relevant contexts.
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In 2008, the National Institutes of Health (NIH) started the Roadmap Epigenomics Program
with the aim to map epigenome references across human tissues and cell lines (Bernstein et al.,
2010). Seven years later, the Roadmap Epigenomics published over 100 novel epigenomes char-
acterized across �ve core histone marks associated with promoters, enhancers, transcribed regions
and heterochromatin regions, as well as levels of chromatin accessibility, DNA methylation and gene
expression (Kundaje et al., 2015). Today, the data produced by Roadmap Epigenomics is hosted
by the ENCODE Consortium, along with their own genomic and epigenomic references.

Transcription factor
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Transcription factor Histone mark

CTCF

Figure B.2 | The regulatory grammar of gene expression. Mechanisms of transcriptional gene expression
regulation play on the probability that the transcriptional machinery binds DNA near coding sequences. In general,
chromatin accessibility is regulated by trans-regulatory factors (TRFs) that recognize cis-regulatory elements (CREs)
on the chromatin or directly in the DNA sequence. For example, CTCF is a TRF that a�ects transcription by creating
loops of chromatin through recognition of CCCTC-motif CREs on DNA. Genetic variation around CREs or trans-
regulatory elements (TREs) that encode TRFs can give rise to expression quantitative trait loci.

The genomic and epigenomic elements strewn along DNA de�ne the regulatory grammar of
gene expression regulation. Through interactions with trans-regulatory factors (TRFs), these CREs
control chromatin accessibility to adapt transcription to changes in the cellular environment. Some
CRE-TRF interactions are schematically illustrated in Figure B.2. For example, CTCF is a protein
TRF that a�ects transcription by looping chromatin�in coordinated action with other protein
partners�at CCCTC-motif CREs that it recognizes in the DNA sequence (Nanni et al., 2020).

Figure B.2 also illustrates how genetic variation at or around CREs and TREs can give rise to
expression quantitative trait loci (eQTLs; � 1.2.4, page 15). In fact, Degner et al. (2012) report that
around 16% of QTLs associated to chromatin accessibility at DHSs in human lymphoblastoid cells
are also classi�ed as eQTLs in the same model. Conversely, up to 55% of eQTLs mapped in these
cell lines are also DHS QTLs. Furthermore, Maurano et al. (2012) estimate that around 77% of
GWAS SNPs in non-coding regions fall in or are correlated with DHS loci. Together, these results
emphasize the impact of gene expression regulation on complex traits.
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At the scale of the tissue, gene expression regulation through CRE-TRF interactions appears as
a deterministic process. The binding of a TRF on a CRE alters chromatin accessibility in such a
way that the transcription rates of the regulated genes are changed. Yet, at the cellular scale, gene
expression is an intrinsically stochastic process, owing to the small numbers of molecules involved in
CRE-TRF interactions. In a diploid cell, each particular CRE locus is present in at most two copies;
whether a TRF di�uses close enough to recognize and bind a CRE depends on random Brownian
motion (Novick and Weiner, 1957; Ko et al., 1990; Raj and van Oudenaarden, 2008).

When the number of available molecules becomes limiting for chemical reaction, the infrequency
of interactions introduces random variation into the process. This stochasticity is masked in bulk
studies of gene expression, thanks to the statistics of large numbers that average out the noise.
However, at the single-cell level, protein expression can vary randomly even among genetically
identical cells in experimentally controlled environments (Ko et al., 1990).

Eukaryotic gene expression noise can be conceptually divided in three components (Eldar and
Elowitz, 2010). The �rst component of noise involves co-transcriptional mechanisms that a�ect
messenger (m) RNA production. Importantly, not all genes are equally noisy. While some genes
experience a constitutive low level of noise, other genes are under higher noise regimes.

One of the contributing factors to higher noise is transcriptional `bursting'. The rate at which
mRNA is transcribed from these genes is not uniform; transcription rates alternate between `On'
and `O�' states dictated by CRE activity (Raj et al., 2006). During these bursts, multiple mRNA
molecules are transcribed from active genes, and then translated into protein. In contrast, the
promoters of low-noise regime genes do not toggle between `On' and `O�' states.

The second component of gene expression noise involves molecular mechanisms downstream from
transcription. For example, slow nuclear export of mature mRNA may bu�er random �uctuations in
transcription (Battich et al., 2015). Likewise, protein accumulation in the cytoplasm�protein life-
times usually last longer than the period between transcriptional bursts�may average out variation
due to bursty expression (Eldar and Elowitz, 2010). In contrast, complex pathways of mRNA decay
that alternate between translation and degradation-competent states lay introduce more random
variation in mRNA concentrations (Hansen et al., 2018).

Finally, expression noise can propagate among genes involved in the same gene regulatory net-
work (GRN; � 3.1.2, page 57). For instance, randomness in the expression of a TF can introduce
noisy variation in the expression of its target genes (Eldar and Elowitz, 2010). Relative to the
`intrinsic' noise introduced during transcription, the `extrinsic' noise that propagates along GRNs
can a�ect multiple genes at once.

The simplest model of intrinstic transcriptional noise represents constitutive gene expression as
a Poissonian process (Raj and van Oudenaarden, 2008). The abundance m of transcripts from a
given gene is modelled as a birth-death process described by synthesis and degradation rates µ and
γ, respectively. The expected number of mRNA copies is the ratio of synthesis to degration, and
equal to the Poisson rate parameter λ,

µ

γ
= λ = E[m] = V[m]. (B.1)

This model assumes constant and independent birth-death rates µ and γ. If the transcript is very
abundant, its rate of change with time can be approximated as a deterministic process (Munsky
et al., 2012), with a �rst-order di�erential equation

dm

dt
= µ− λm, m ≫ 1. (B.2)

When m is not particularly large, Equation (B.2) must be rewritten in a probabilistic framework.
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From Equation (B.2), the probability of producing one copy during a short time interval dt is equal
to µdt, and the probability of degrading one transcript is equal to γmdt.

For the reformulation to be valid, there must be an equilibrium state in which the probability
of seeing m copies of a transcript and producing another one is equal to the probability of seeing
m+ 1 copies and having one degrade. Hence,

P(m)µ = P(m+ 1)γ (m+ 1) (B.3)

for any m, which is only possible if m follows a Poisson distribution (Munsky et al., 2012).

While the Poisson approximation describes the expression of less noisy genes well, it is not a
good �t for expression data from genes that experience bursty transcription (Zenklusen et al., 2008;
Weidemann et al., 2023). To incorporate more complex gene expression regulation schemes, more
complex probabilistic models are needed. In particular, the two-state model of bursty transcription
introduces two other parameters, kOn and kO�, that represent the rates at which promoter activity
transitions from an inactive to an active state and vice versa (Munsky et al., 2012).

Conceptually, promoter activity is used as a proxy of chromatin accessibility (Fig. B.2). The
transition rate parameters kOn and kO� are used to model the probability of the promoter being in
the `On' state as a Beta-distributed variable,

P(On) ∼ B
(
k̂On, k̂O�

)
,

k̂On =
kOn

γ
,

k̂O� =
kO�

γ
.

(B.4)

When genes are transcribed in short but intense bursts, k̂O� is much larger than k̂On and much
greater than one, and the distribution of P(On) converges to a Gamma

P(On) ∼ G
(
k̂On, k̂O�

)
, k̂O� ≫ k̂On ≫ 1. (B.5)

Thus, under a bursty transcriptional regime, the otherwise constant expected number of mRNA
copies in a cell becomes a random variable

m ∼ NB
(
λ; k̂On, k̂O�

)
(B.6)

distributed according to a Gamma-Poisson mixture (Raj et al., 2006). Another name for this
mixture is the `negative binomial' distribution.

The probability P(On) integrates information from upstream regulators of transcription, such
as DNA methylation, histone marks and pioneer TFs. By modifying chromatin accessibility, these
factors can adapt the size and frequency of transcriptional bursts in response to changes in the
cellular environment, like hormones, cytokines or pathogens (Raj and van Oudenaarden, 2008). As
mentioned previously, this variation can propagate further along the GRN and introduce extrinsic
noise into the expression of downstream genes, possibly in other cells (Eldar and Elowitz, 2010).

For example, Figure B.3 illustrates a simulated case in which transcripts from gene g are syn-
thesized ten times faster than they are degraded. Although µ

γ = 10 mRNA molecules are expected
in each cell, the real observed number of transcript copies also depends on the chromatin context
in which gene g lies. This information is integrated into the model through the Gamma-distributed
probability that its promoter toggles into the `On' state. In contexts where chromatin around gene
g is more likely to be open, P(On) is higher and so is the expected number of transcripts.
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Figure B.3 | Two-state model of gene expression regulation. Gene expression is a stochastic process. For
some genes, the uncertainty around the expected number m of transcripts, given constant and uncorrelated mRNA
synthesis and degradation rates, is well described as a Poisson process. For other genes with more complex regulation
schemes, the two-state model of expression regulation introduces a variable that captures the probability P(On)
that the gene promoter is active. Thus, observed transcript counts are distributed as negative binomial random
variables. In this example, two instances of P(On) were simulated as Gamma processes to model promoter activity in
an open chromatin context and a closed chromatin context. Basal gene expression noise was modeled with a Poisson
rate parameter λ = 10. Simulated gene expression values are distributed as a Gamma-Poisson mixture�otherwise
known as the `negative binomial' distribution�with P(On) equal to the maximum density estimate in each chromatin
context, given by the dashed lines.

Importantly, noise can be a feature of gene expression rather than a bug (Eldar and Elowitz,
2010). Indeed, gene expression noise can be used to coordinate transcriptional responses in large
GRNs (Cai et al., 2008; van Dam et al., 2018) and can provide a substrate for adaptation by enlarging
the range of phenotypes that result from a given genotype (Thattai and van Oudenaarden, 2004).
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C The local adaptation to environmental pressures

Evolution manifests itself through changes in allele frequencies through time. In this context, the
Wright-Fisher model describes allele frequency changes across non-overlapping generations, under
the simplest mode of genetic inheritance in a panmictic population of N individuals evolving under
neutrality (Kimura, 1968) and in the absence of mutation (Fisher, 1930; Wright, 1931). If locus g
has two alleles A and a, and Xt is the number of A alleles in the population at generation t, the
model is a discrete-time Markov chain that describes the evolution of Xt across generations.

At each generation t, the pool of alleles for generation t+1 is randomly sampled with replacement
as a binomial process. The transition matrix of the Markov chain contains the probabilities (Pt)ij
that Xt changes from i copies to j copies after a generation. The items (Pt)ij are given by the
probability mass function of the binomial distribution,

(Pt)ij =

(
2N
j

) (
i

2N

)j (
1−

i

2N

)2N−j

. (C.1)

That is, the number Xt+1 of A copies at the next generation, knowing that there are Xt = i copies
in the present generation, follows a binomial distribution with size 2N and success probability equal
to the frequency fA(t) of A at generation t,

(Xt+1|Xt = i) ∼ B (2N, fA(t)) , fA(t) =
i

2N
. (C.2)

From the law of total expectation and the properties of the binomial distribution,

E [X] = E [E [X|Y]] , E [X ∼ B(n, p)] = np, (C.3)

the expected state of the Markov chain Xt at any point in time is equal to the initial number of A
copies in the �rst generation,

E [Xt+1] = E [E [Xt+1|Xt]] = E
[
2N

i

2N

]
= E [i] = E [Xt] = · · · = 2NfA(0). (C.4)

Then, if the di�erence in A allele frequency from generation t to generation t+ 1 is

∆fA = fA(t+ 1) − fA(t) =
j

2N
−

i

2N
=

Xt+1

2N
−

Xt

2N
, (C.5)

from the properties of the binomial distribution,

E [∆fA] = 0 (C.6)

and

V [∆fA] =

Xt

2N

(
1− Xt

2N

)
N

(C.7)
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While Equation (C.6) re�ects neutrality, Equation (C.7) shows that signi�cant allele frequency
variation will only happen over time scales of N generations; yet, if the population is small, allele
frequencies can drastically change through random `drift', even though they are not expected to
under the model. The probability that an allele is �xed or lost from the population also depends on
its initial frequency. Figure C.1 illustrates these key features of the neutral Wright-Fisher model.
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Figure C.1 | The neutral Wright-Fisher model. The neutral Wright-Fisher model describes the evolution of
allele frequencies Xt

2N
across non-overlapping generations in a population of size N as a random binomial process. Two

key features of the model are that allele frequencies are not expected to change from one generation to the next, but
signi�cant allele frequency changes can happen randomly, even over a relatively short periods, if N is small. In each
panel, the lines show the frequencies of ten independent alleles evolving under the neutral Wright-Fisher model for
100 generations in a population of size N and from a initial frequency X0

2N
.

The biological assumptions of the neutral Wright-Fisher model are in fact not very realistic. For
instance, the probability of mating is not uniformly distributed across all possible pairs of individuals
in most real diploid populations. Also, the sampling of alleles at each generation is not entirely
random, due to the linkage disequilibrium (LD) in human genomes. Furthermore, evolutionary
forces like mutation, demographic events and natural selection can make allele frequencies deviate
from what is expected under this model.
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Natural selection arises when inter-individual di�erences in �tness�phenotype di�erences that
alter survival probability or reproductive success�are at least partially driven by heritable genetic
factors (Balding et al., 2019). If locus g is such a factor, the trajectory of allele A (Fig. C.1) will
depend on the relative �tnesses of the genotypes AA, Aa and Aa. If the �tnesses associated to
alleles A and a are ηA and ηa, respectively, the relative genotype �tnesses can be expressed as
η2A : ηAηa : η2a, or as their associated selection coe�cients saa = 1− η2a = 0, sAa = 1− ηAηa and
sAA = 1−η2A, if η

2
a = 1. The frequency trajectory of the selected allele A can then be traced using

E [fA(t+ 1)|fA = fA(t)] = fA
1+ sAa(1− fA) + sAAfA

1+ 2sAafA(1− fA) + sAAf2A
̸= fA(0), (C.8)

and is not expected to be equal to the starting allele frequency, as in the neutral Wright-Fisher
model in Equation (C.4). Natural selection can thus drive the stable adaption of populations to
changes in their local environment.

Hence, uncovering the genomic signatures of selection is key to understanding di�erences in
phenotype across populations. Although emerging approaches and growing data sets allow to draw
observed allele frequency trajectories using ancient DNA (Kerner et al., 2023a), most commonly
used methods to detect natural selection use present-day human genetic diversity to infer changes
in allele frequency. Some of these methods use summary statistics to pick up on alterations of the
site frequency spectrum (SFS) (Tajima, 1989; Fu and Li, 1993; Fay and Wu, 2000), characteris-
tic haplotype structures (Sabeti et al., 2002) or patterns of population di�erentiation (Lewontin
and Krakauer, 1973; Yi et al., 2010), while others are based on probability models and likelihood
functions (Kim and Stephan, 2002; Nielsen et al., 2005; Stern et al., 2019).

Yet, the amount of stochasticity surrounding allele frequency trajectories in the human genome
makes computation of full-likelihood models intractable. In particular, because the human genome is
recombinant, several chromosomal lineages are possible given a unique sample of allele frequencies at
any variant locus. That is, each recombination event uncouples the ancestry of a DNA segment from
the ancestry of the individual that carries it, spreading it over two di�erent chromosomal lineages.
The ancestry of a recombinant DNA segment cannot be described with a tree topology anymore,
it must be described as an ancestral recombination graph (ARG) that integrates all the possible
di�erent trees resulting from recombination (Gri�ths and Marjoram, 1996, 1997). For example,
Figure C.2 illustrates the joint ARG inferred from a sample of six chromosomal lineages with four
recorded recombination events. Depending on where cross-overs happen, di�erent genealogies arise.

Using full-likelihood models to detect natural selection is implies considering all possible marginal
trees embedded in an ARG conditional on a given allele frequency trajectory, which makes analytical
solutions of these models computationally intractable (Coop and Gri�ths, 2004).

To skirt this limitation, Kim and Stephan (2002) developed a method that leverages the ARG
framework to test the statistical signi�cance of skews in the SFS and local reductions of variations
predicted by the `genetic hitchhiking' theory of selective sweeps. Brie�y, the authors propose a
likelihood ratio test to compare models without selection (H0 : s = 0) to models with selective
sweeps of di�erent magnitude at various genomic loci. The overall likelihood of each model is
calculated as a composite of individual likelihood functions computed at each position in the tested
sequence. Since then, several other authors have proposed extended versions of composite likelihood
methods (Nielsen et al., 2005; Zhu and Bustamante, 2005; Vy and Kim, 2015).

More recently, Speidel et al. (2019) developed a scalable method to reconstruct ARGs around
single nucleotide polymorphisms (SNPs) genome-wide, which enables more powerful analyses of
natural selection by providing a computationally tractable algorithm to infer population sizes, split
times and mutation rates using thousands of samples.
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Figure C.2 | The ancestral recombination graph. An ancestral recombination graph (ARG) that integrates
all possible ancestry topologies in a DNA segment with four random recombination events. The blue horizontal
rectangle represents a stretch of chromosome. Four crossing-overs, resulting from recombination events and shown
as red crosses, were simulated randomly along the length of the chromosomal segment. The �ve marginal trees
embedded in the ARG are shown below; each one is associated to its corresponding segment of recombinant DNA.
Adapted from Balding et al. (2019), Chapter 5.
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Brie�y, the method takes phased haplotype information across SNPs and individuals�as well as
a map that speci�es recombination rates along the human genome, and the sequence of a reference
human ancestor genome to de�ne ancestral and derived allele states�and outputs the series of
marginal trees embedded in the ARG inferred at each SNP position, given a �xed mutation rate
and e�ective population size (Speidel et al., 2019).
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Figure C.3 | Marginal trees in the ancestral recombination graph. Marginal trees around the rs11645448
SNP embedded in the ancestral recombination graph (ARG) inferred using Relate (Speidel et al., 2019) on genotype
data from 98 individuals in the `Utah residents with Northern and Western European ancestry' (CEU) panel of
the 1000 Genomes Project Consortium (Byrska-Bishop et al., 2022) and 105 individuals in the `Han Chinese South'
(CHS) panel, with a �xed mutation rate µ = 1.25 × 10−8 and e�ective population size Ne = 3 × 104. Each leaf in
each tree represents a haplotype. The branches carrying the derived allele at this variant are shown in red.

For example, Figure C.3 shows marginal trees around the rs11645448 SNP embedded in ARGs
inferred using phased genotyping data from a European and an East Asian panel from the 1000
Genomes Project Consortium (Byrska-Bishop et al., 2022). Interestingly, rs11645448 has been
pointed out as an expression quantitative trait locus (eQTL; � 1.2.4, page 15) of NOD2 in CD16+

monocytes exposed to `severe acute respiratory syndrome' coronavirus (SARS-CoV) 2 (Aquino et al.,
2023). In Figure C.3, the red branches in each tree indicate the lineages carrying the derived A
allele at SNP rs11645448. Remarkably, this allele seems to have rapidly expanded, but only in the
genomes of East Asians, suggesting an episode of local adaptation.
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Figure C.4 | Allele frequency trajectories inferred from ancestral recombination graphs. Frequency
trajectories of the derived allele at the rs11645448 expression quantitative trait locus of NOD2 in Africa and Eurasia
across the last 56,000 years, or 2,000 generations with a 28-year generation time. The `Yoruba in Ibadan' (YRI), `Utah
residents with Northern and Western European ancestry' (CEU) and `Han Chinese South' (CHS) reference panels
from the 1000 Genomes Project Consortium (Byrska-Bishop et al., 2022) were used as proxies of genetic diversity in
Africa, Europe and East Asia, respectively. Adapted from Aquino et al. (2023).
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Importantly, because the method proposed by Speidel et al. (2019) integrates information on
e�ective population size variation through inferred coalescence rates, the trees in Figure C.3 are
calibrated against the e�ects of evolutionary demographic processes�such as so-called population
`bottlenecks' and expansions�that can confound signals of natural selection in the SFS.

These genealogies can then be used as input for other evolutionary genetics analyses. For
instance, Stern et al. (2019) propose a method based on ARGs inferred from modern genetic data
to approximate the full likelihood that selection acts on a given variant locus, and simultaneously
infer the frequency trajectories of its alleles. Given marginal trees sampled from the ARG around
the site of interest, the algorithm then runs a hidden Markov model on each tree to infer hidden
allele frequency states based on coalescence rates observed at discrete points in time. The transition
probabilities of allele frequencies depend on the selection coe�cient s (Eq. C.8), which is ultimately
the parameter of interest. By marginalizing out the latent allele frequency trajectory, the probability
of each local tree�represented by the vector C containing the number of ancestral and derived
lineages at each epoch�conditional on the selection coe�cient can be recovered as

P(C|s) =
∑
x∈χ

P(C|fA = x)P(fA = x|s) (C.9)

where χ is the space of all possible trajectories. The full likelihood function of s at this locus is
then approximated through importance sampling over all local trees (Stern et al., 2019).

Figure C.4 plots trajectory frequencies for the putatively adaptive rs11645448-A allele (Fig.
C.3) across the last 56 thousand years in Africa, Europe and East Asia, inferred using the method
developed by Stern et al. (2019) and based on local genealogies modeled using the method by Speidel
et al. (2019). In line with what is shown in Figure C.3, the rs11645448-A allele appears to have
rapidly increased in frequency over the last 40 to 15 thousand years in the genomes of East Asians,
but not in European genomes, nor in Africa.
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D The evolutionary forces behind heritability

The genome-wide association study (GWAS) framework is a powerful tool to map the genetic
bases of complex traits (� 1.2, page 7). Its foundations are deeply rooted in evolutionary genetics
theory (Reich and Lander, 2001; Sella and Barton, 2019). For instance, the validity of the GWAS
approach in disease contexts relies on the truth of the `common disease/common variant' (CD/CV)
hypothesis that the genetic basis of most common diseases is composed of several low-e�ect variants
carried by 1 to 5% of individuals in the population (Fig. 1.2, page 8). From an evolutionary
genetics perspective, Reich and Lander (2001) provide support for the CD/CV hypothesis�as well
as a plausible explanation for the pervasiveness of frequent disease-associated alleles�through a
relatively simple demographic model incorporating a rapid expansion from founder populations
around 15 to 18 thousand years ago.

In a sense, GWAS results express how the heritability of a trait is distributed along the genome
(Sella and Barton, 2019) (Appendix A, page 190). Assuming additive genetic e�ects on trait Y,

Y = αY + βYiGi + ε, (D.1)

the contribution of any given locus i to the total heritability of Y depends (i) on the e�ect βYi of
the genotype Gi at locus i on the trait and (ii) on the frequency fi of the e�ect allele,

V [Y ] = 0+ β2YiV [Gi] + V [ε]

= 2β2Yi · fi (1− fi) + σ2,
(D.2)

where V [Gi] = fi (1− fi) is given by the binomial sampling of alleles in the population from the
previous generation (Appendix C, page 199) and V [ε] = σ2 is given by the properties of the classical
linear model in Equation (D.1).

If Y is a polygenic trait, its narrow-sense heritability is given by the ratio between the sum of
additive genetic components across all L independent variants that contribute to variability in Y,
and the total variance of Y,

h2 =

L∑
i=1

2β2Yi · fi (1− fi)

V [Y ]
=

L∑
i=1

R2i , (D.3)

where R2i is the coe�cient of determination of locus i. Under the additive in�nitesimal model
(Fisher, 1918; Barton et al., 2017), L is assumed to be very large and each βYi accordingly weak.

Importantly, the relationship between function and heritability re�ected in GWAS results must
be interpreted in light of the evolutionary forces that shaped allele frequencies fi into their current
states, and thus a�ect the contribution of each locus to heritability (Sella and Barton, 2019).
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E The transformer architecture and genomic data

In the era of big data, there is a great interest in developing arti�cial intelligence (AI) methods
that can be trained to detect intricate patterns in complex data sets�including genomic (Dias and
Torkamani, 2019) and clinical ones (Topol, 2023)�so as to derive insights and predict outcomes.
In this context, `deep learning' (DL) methods di�er from classical `machine learning' approaches in
that their learning process requires no explicit human intervention (Ng, 2021a,b,c,d,e).

From a very broad perspective, DL algorithms draw increasingly derived features from raw data
through stacked `neural network' (NN) layers. Each node in the NN is a linear combination of
inputs from nodes in the previous layer; the goal of the DL algorithm is to optimize these functions
so as to minimize the overall prediction error of the model during training. In AI terms�and in
analogy to a biological, organic NN�each `neuron' in an arti�cial NN layer is a linear combination
of the `activation' values of neurons in the previous layer. Thus, the model learns the optimal set of
weights for each neuron that minimize the cost of error given training input and output data, and
are likely to yield the most accurate predictions when it is applied to other data sets. The depth of
the learning process depends on the number of layers in the NN: a DL model is characterized by a
large number of `hidden' NN layers.

For illustration, Figure E.1 shows a shallow two-layer feedforward NN (FNN) with a single
hidden layer. In this densely connected neural network, each neuron in layer l takes all inputs
from the previous layer, and outputs an activation that is passed on as input to the neurons in the
following layer. For instance, the activation of the second neuron in the hidden layer of the NN in
Figure E.1 is computed as

a
[1](i)
2 = g

(
z
[1](i)
2

)
= g

(
w

[1]
2

T
a[0](i) + b

[1]
2

)
, (E.1)

where a[0](i) is the vector of activations of the input layer, w[1]
2

is the weight parameter vector and
b
[1]
2 is the bias parameter associated to this neuron, and g is an `activation function' that transforms

the linear combination z
[1](i)
2 into the activation a

[1](i)
2 .

More generally, in an L-layer FNN trained across m input-output examples, the jl-th neuron of
layer l in training example i is computed as

a
[1](i)
jl = g

(
z
[l](i)
jl

)
= g

(
w

[1]
jl

T
a[l−1](i) + b

[1]
jl

)
, (E.2)

where jl = {1, · · · , n[l]}, n[l] is the number of neurons in layer l, l = {1, · · · , L} and i = {1, · · · ,m}.
In practice though, neuron activations are not computed serially one-by-one: all of these vectors
can be stacked together into matrices, so that the activation of a layer�across n[l] neurons and m

training examples�is computed in parallel as

A[l] = g
(
Z[l]

)
= g

(
W[l]A[l−1] + b[l]

)
. (E.3)

where W[l] ∈ Rn[l]×n[l−1]
, A[l−1] ∈ Rn[l−1]×m and b[l] ∈ Rn[l]×1 (Fig. E.1).
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Figure E.1 | A shallow feedforward neural network. A feedforward neural net is a directed acyclic graph
that links input data to output data through a series of interconnected layers of neurons. Each neuron in layer
l and training example i outputs an activation a[l](i) that is used as input by neurons in layer l + 1. Thus, the
activations A[l+1] result from the linear combination Z[l+1] of activations A[l], transformed by activation function g.
The estimation of the model given each set of input data is equal to the activation of the output layer.

The choice of the activation function g depends on the task at hand. For instance, if the FNN
in Figure E.1 was used to solve a binary classi�cation problem, a sigmoid activation would be
appropriate to estimate the probability that example i belongs to the focal class,

a[2](i) = g
(
z[2](i)

)
=

1
1+ e−z[2](i)

=
1

1+ e−w[2]Ta[1](i)+b[2]
= ŷ(i). (E.4)

Each neuron in the FNN would be equivalent to a logistic regression unit, which takes inputs from
the previous layers and outputs a probability. The overall output of the FNN for training example
i, a[2](i) = ŷ(i), would be the estimated probability that it belongs to the focal class. This can
then be compared to the actual label of training example i, so as to compute a `cost function' of
the parameters of the FNN. As previously mentioned, the goal during training is to �nd the set
of weight and bias parameters�across all neurons and training examples�that minimize the cost
function, through rounds of `forward' and `backward' progagation along the network.
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Figure E.2 | Training a feedforward neural network. Feedforward neural networks can be trained to recognize
hand-written digits. The top panel shows �ve training examples of labeled digits encoded as 28 × 28 matrices of
grayscale pixel values. The middel panel then focuses on a trained network with two hidden layers. The matrix is
unfolded into a vector of length 28×28 = 784 that is used as input data a[0](5). The weight matrix associated to each
pair of successive layer is shown below. The bottom panel focuses on two regions of the training example to illustrate
how weights can be tuned during training to detect particular metafeatures in the input data, and integrate them to
predict the correct outcome.
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More generally, the sigmoid is an example of `ridge' activation functions that transform a linear
combination of inputs into a nonlinear activation. Other examples include the recti�ed linear unit
(ReLU), the Heaviside and the hyperbolic tangent functions. The common property that makes
them useful in an NN context is that they allow to introduce nonlinearities into the data as it
progresses along the NN, so that each layer is able to extract increasingly complex features as
compositions of simpler features detected in previous layers. This is meant to be analogous to
how in a biological NN, the activation of some neurons induces the activation of another subset
of neurons, integrating information to ultimately mount a coordinated response. In this context,
training an NN comes down to downweighting the combinations of neuron activations that lead to
incorrect outcomes given labeled input data (Sanderson, 2020).

For illustration, Figure E.2 shows an example of a shallow FNN with two hidden layers used to
recognize hand-written digits. Each digit is encoded as a 28×28 matrix of grayscale pixel values. A
commonly held view is that while di�erent neurons in the �rst layer of the network may learn�by
assigning the appropriate weights to the corresponding pixels in the input data�to recognize pixel
patterns associated to vertical edges and loops, these insights could then be used by the second layer
of neurons to learn that the digit `6' is composed of a loop with a vertical edge on top. Although
this does not accurately re�ect the function of an FNN, the basic intuition is true: the network
learns to derive feature combinations from the input data through successive layers of abstraction.

In reality, no particular neuron in the network has any prede�ned function or role: neurons
acquire their `tasks' during training. The performance of each neuron in accomplishing its task
depends on a set of weight and bias parameters. If neurons perform their tasks well, the FNN
will tend to have a parameter set that minimizes the cost function during training. For example,
a neuron well-trained to detect vertical edges in a particular region of the matrix may acquire
positive weights associated to pixels in the region of interest, but negative weights at the bounds of
the region, such that its weighted sum will be maximal if there is a vertical edge, but will decrease
if there are also pixels associated to a horizontal edge, for example (Fig. E.2). In turn, the bias
parameter is useful to control the rate at which neurons �re. For example, it can be set such
that neurons that cover regions of high pixel density, but where the distribution of pixels is rather
homogeneous and noninformative, do not �re as often.

This simple and speci�c example illustrates the general mechanism behind more complex DL
algorithms. The wheels and cogs of an NN are made from core linear algebra tools coupled to
nonlinear activation functions, so that the algorithm is able to capture nonlinear relationships and
patterns in the data by estimating weight and bias parameters associated to neural activation. The
real `learning' happens through rounds of forward and backward propagation along the NN, that
progressively update parameters from their randomly initialized values to the values that minimize
the prediction error of the algorithm. The simple FNN can be ornamented with other network motifs
to quicken the learning process or prevent model over�tting, but this general principle remains valid.

Other NN architectures exist apart from the FNN, that are useful for other tasks. In particular,
the convolutional (C) NN is especially useful for image processing, while the recurrent (R) NN is
mostly used for natural language processing (NLP) applications. Brie�y, the CNN is a special type
of FNN architecture characterized by the presence of `convolutional' and `pooling' hidden layers. As
illustrated in Figure E.3, the basic idea is that�through successive convolution and pooling�these
layers learn to reduce the dimensionality of complex input data to its most informative features,
which can then be presented in a fully-connected layer. Brie�y, convolutional layers scan the input
data�or the ouput of previous convolutions�step-wise with a convolution �lter or `kernel' that
extracts informative features, which are then aggregated in the pooling layers, so as to reduce the
number of parameters to estimate.
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Figure E.3 | A schematic convolutional neural network. Convolutional neural networks are a type of feed-
forward neural networks characterized by the presence of `convolutional' and `pooling' layers. The basic idea is that,
across these layers, the network learns to detect the most informative features of multidimensional data, so as to
reduce its dimensionality into a shorter vector, that is used as input for a classical fully-connected layer. During
convolution, the input is scanned step-wise by a convolutional �lter, or `kernel', of a given size to produce each ouput
of the convolutional layer. During pooling, input values are passed to an aggregating function�like the sum or the
average�so as to reduce the dimensionality of the input.

Relative to a non-convolutional FNN (Fig. E.2), this framework allows to handle highly multidi-
mensional data more e�ciently, by �rst learning its most informative features, and then using these
as inputs to a fully-connected FNN (Fig. E.3). This is also the basis for `encoder-decoder' type
architectures that analyse the input data through convolutions to produce an lower-dimensional
encoding, that is then decoded through transposed convolution to produce an output of same di-
mension as the input, but driven by its most informative features. For instance, encoder-decoder
architectures are commonly used to denoise low-resolution images into higher resolution.

Encoder-decoder network motifs are also commonly used within RNN architectures in sequence-
to-sequence NLP tasks, like neural machine translation. As illustrated in Figure E.4, the RNN
architecture di�ers from the FNN and CNN in that it is cyclic, as any neuron can take its own
output as input, which makes them especially appropriate to process variable-length sequence data.
More precisely, an RNN is built as instances of the same recurrent neural motif progressing through
moments of a sequence, rather than as a stack of layers of neurons (Figs. E.2 and E.3).

In its most simple implementation, the basic recurrent unit (BRU) accomplishes two successive
operations. First, the activation at moment t is computed as a linear combination of the input
x<t> to the BRU and its previous activation a<t−1>,

a<t> = ga
(
waaa

<t−1> +waxx
<t> + ba

)
, (E.5)

where ga is an activation function, waa is the vector of activation weights that determine how each
of the activations in the previous instance a�ects the activation of the current instance, wax is the
vector of input weights that connects the elements of the input to the corresponding activation in
the current instance, and ba is the activation bias parameter. Second, the hidden activation state
is used to compute the output of the BRU,

ŷ<t> = gy
(
wyaa

<t> + by

)
, (E.6)

where gy is an output function, and wya and by are output weight and bias parameters, respec-
tively. Importantly, because the BRU is always the same, all the input, activation and output
parameters are constant: the activation of BRU at the t-th moment depends only on the input
sequence and the previous activation.

Page 210 Š Bioinformatics and systems biology Yann Aquino Š Human Evolutionary Genetics



Although the BRU can be ornamented with `memory' and `gating' functions to add functionality
to the RNN, the general principle illustrated in Equations (E.5), (E.6) and Figure E.4 remains the
same. In an encoder-decoder setup with an RNN, the whole input sequence must be fed into the
encoder part of the network to produce a hidden activation state, which serves as the `context'
used by the decoder to produce the output sequence. However, one major drawback of naive RNN
encoder-decoder architectures is that the context is strongly in�uenced by the last units of the input
sequence, while the context of the �rst units is diluted. This limitation can be adressed by adding
`attention' modules that preserve the local context of each part of the input.
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ŷ<t>

a<t>

Basic recurrent unit

w
a
x

w
y
a

Encoder

Context

Decoder

a<0> a<1> a<2> a<Tx> a<Tx+1> a<Tx+2> a<Ty>

y<1> y<2> y<Ty>

y<1> y<Ty−1>x<1> x<2> x<Tx>

· · · · · ·

E E E

Figure E.4 | An encoder-decoder recurrent neural network architecture. Recurrent neural network (RNN)
architectures are very di�erent from convolutional and non-convolutional feedforward neural networks. Instead of
being built as superposed layers of neurons, an RNN is represented as the progression of a unique recurrent motif
through moments of a sequence. While the inputs x<t>, activations a<t> and outputs ŷ<t> of the recurrent unit
depend on the moment of the sequence, the weight and bias parameters are always the same. The RNN is commonly
used in encoder-decoder type architectures, where the input sequence is encoded as a hidden embedding of informative
features, which is fed to the decoder portion of the network, and used as `context' to produce the output sequence.
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In particular, `transformers' are a class of NN architecture imbued with attention mechanisms
that have greatly increased in popularity in recent years. In contrast to the RNN topology, trans-
formers are able to process the entire input at once, and learn to focus only on its informative
components. Thus, they can in theory be used to process arbitrarily lengthy input sequences.

Remarkably, transformers also leverage encoder-decoder layers. Each encoder layer consists of
two major components: a self-attention mechanism and an FNN. The self-attention mechanism
accepts input encodings from the previous encoder layer and weights their relevance to each other
to generate output encodings. The FNN then further processes each output encoding individually.
These output encodings are then passed to the next encoder layer as its input, as well as to the
decoder layers. Importantly: the encoder is bidirectional: attention can be placed on components
of the sequence before and after the current unit.

Each decoder layer consists of three major components: a self-attention mechanism, an attention
mechanism over the encodings, and an FNN. Thus, the decoder functions in a similar fashion to
the encoder, but with an additional attention mechanism which draws relevant information from
the encodings generated by the encoders. This mechanism can also be called the encoder-decoder
attention.
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