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Abstract

The understanding of high temperature superconductors based on Cu oxides could be
improved by finding possible oxide analogues with different transition metals. In that regard
Ni oxide superconductors were proposed to be promising candidates to better understand the
origin of the high temperature superconductivity in the cuprates. In the following manuscript,
we present a first-principles study of the physics of the superconducting nickel oxides discovered
in 2019 based on Density Functional Theory. From our study we reveal that the undoped
infinite layer RNiO2 compounds present an antiferromagnetic metallic phase at low tempera-
ture. A strong Hund’s coupling that dominates over the crystal field explains the coexistence
between antiferromagnetism and metallic behavior. Regarding the doping phase diagram, we
propose understanding the normal state of these superconducting compounds, starting from
an insulating nickel oxide phase R2NiO4 instead of the metallic RNiO2 phase. This allows us
to find a charge-ordering instability in the doping phase diagram when the Ni cations present
a 1.5+ oxidation state. We explore this charge ordering and show that it is a consequence of
an electronic instability that produces a double local environment of Ni+ and Ni2+ cations,
which is accompanied by a breathing distortion of the NiO4 complexes Boc. From this point, we
further study this charge ordering instability revealing that decreasing the Ni oxidation state
quenches the instability and it disappears in the vicinity of the reported superconducting region.
We then build a superconducting model based on the Boc phonon modes which can reproduce
quantitatively well the superconducting critical temperature dome accounting for the metallic
but non-superconducting region in the doping phase diagram. Furthermore, we discuss the
importance of the crystal structure when designing new superconducting compounds and how
these nickel-based superconductors relate to other superconducting compounds. Finally, we
extend the model to other compounds such as the ruthenates, explaining their superconducting
properties as bulk and nanofilm materials.

La compréhension de l’origine de la supraconductivité haute température est entravée par
l’absence de matériaux analogues aux cuprates. Bien que proposée depuis longtemps dans les
oxydes de nickel de formule générale Rn+1NinO2n+2, matériaux isoélectronique aux cuprates, la
supraconductivité n’a été observée qu’en 2019 mais les mécanismes mis en jeu reste à déterminer.
Dans cette thèse, nous présentons une étude des oxydes de nickel supraconducteurs à partir
de simulations de premiers principes basées sur la théorie fonctionnelle de la densité. Nous
révélons que les composés RNiO2 à couche infinie non dopés présentent une phase métallique
antiferromagnétique à basse température. Un fort couplage de Hund qui domine le champ
cristallin explique la coexistence entre l’antiferromagnétisme et le comportement métallique. En
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étudiant le diagramme de phase en fonction de n, nous identifions un ordre de charge entre
des Ni1+ et Ni2+ pour n = 2. Il est la conséquence d’une instabilité électronique du degré
d’oxydation 1.5+ des Ni qui préfère dismuter vers les degrés 1+ et 2+ qui sont plus stables,
produisant une distorsion Boc des complexes NiO4 pour accomoder les différents charges. À
partir de ce point, le dopage en électron supprime progressivement l’ordre de charge et il disparait
à proximité de la région supraconductrice observée expérimentalent. Nous construisons alors
un modèle supraconducteur basé sur les modes de phonons Boc reproduisant quantitativement
le dôme de température critique supraconductrice en fonction du dopage. Nous discutons en
outre de l’importance de la structure cristalline lors de la conception de nouveaux composés
supraconducteurs et de la relation entre ces supraconducteurs à base de nickel et d’autres
composés supraconducteurs. Enfin, nous étendons le modèle à d’autres composés tels que les
ruthénates, expliquant leurs propriétés supraconductrices en tant que matériaux massifs et
nanofilms.
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Chapter 1

Introduction

The results and works covered in this thesis were carried mainly in the theoretical team of
the thin films group of the Laboratoire de Crystalographie et Sciences Matériaux (CRISMAT)
in Caen, as a joint collaboration with the experimental team of Unité Mixte de Physique
CNRS/Thales (UMPhy) in Paris. This thesis aims to understand the superconductivity in the
nickel-based superconductors recently discovered in 2019. The main interest in these particular
compounds is due to the possible similarity with the Cu-based superconductors, which are
arguably up-to-date, the most important family of high-temperature superconductors. Nonethe-
less, the superconductivity of Cu-based compounds is not fully understood. Thus, finding
possible analogs and comprehending their nature could unlock the design of high-temperature
superconductors.

This chapter contains the main concepts and state-of-the-art of the thesis topic, namely
superconductivity and nickel-based superconductors. The first section involves a general
introduction to superconductivity and the main theories to explain it. The second section
introduces the main results regarding the family of compounds that we are interested in.
Introducing the oxides and ABO3 perovskite compounds, then the RNiO3 perovskite nickelates,
and finally explain the main experimental results on superconducting nickelates.

1.1 Superconductivity

Superconductivity is one of the most interesting properties of matter exhibited by several
materials. This property is characterized by zero electrical resistance and the expulsion of the
magnetic field flux from the material’s interior. In other words, a superconducting compound is
a perfect conductor and diamagnet simultaneously. It was discovered in 1911 by Dutch physicist
Heike Kamerlingh Onnes, who studied the conducting properties of pure metals, finding that at
Tc = 4.2 K, the mercury resistance drops to zero. These works were later acknowledged by the
Swedish Academy of Science with the Nobel Prize in 1913, and in the coming decades, several
compounds were also found to be superconductors. More than twenty years after its discovery,
Walther Meissner and Robert Ochsenfeld found that superconductors were perfect diamagnets
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since they expelled applied magnetic fields. This phenomenon was later called the Meissner effect.

Although this property of matter was discovered more than a century ago, the origin is
still much debated and not completely unified for all compounds. In particular, the biggest
challenge comes when understanding its origin in high-temperature superconductors, with a
record temperature at ambient conditions of Tc = 133 K in HgBa2Ca2Cu3O1+x [1]. The fact
that it is possible to obtain a superconductor above the boiling point of liquid nitrogen has very
important implications. First, the superconductors allow to obtain very strong magnetic fields,
and they are widely used in nuclear magnetic resonance machines in hospitals for diagnosis
purposes. Second, these superconducting magnets are also used for levitation purposes in
transport such as high-speed trains where the friction of the vehicle is minimized improving
considerably the energy consumption. Lastly and perhaps the most important reason why
high-temperature superconductors are so interesting is the fact that they allow to transport
electrical energy with negligible losses. Thus, obtaining a room-temperature superconductor
would potentially solve many of the energy consumption problems that we face nowadays. In
the coming sections, the main theories to explain superconductivity are described in detail.

1.1.1 London phenomenological theory

Soon after the discovery of superconductivity, the first phenomenological theory for the
superconducting state appeared. It was developed by the two brothers Fritz and Heinz London,
introducing the constitutive equation of the superconducting state

∂Js

∂t
= nse

2

m
E. (1.1)

where Js is the superconducting current density, t represents the time variable, E is the electric
field, ns is a phenomenological constant usually associated with the density of superconducting
carriers known as superfluid density and m the mass of these carriers (all vector quantities in
this thesis are in bold). By taking the curl on equation (1.1) and recalling the Faraday law of
Maxwell’s equations

∇ × E = −∂B
∂t

(1.2)

we can obtain the second London equation

∂

∂t
(∇ × Js) = −nse

2

m

∂B
∂t

(1.3)

We now integrate over time on both sides and we arrive to

∇ × Js = −nse
2

m
B. (1.4)

Here we must note that the integration constant is set to zero to account for the absence of a
magnetic field inside the superconductor (note that this is not true if we would be dealing just
with a perfect conductor). We can then take the curl of the expression (1.4) and make use of
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Ampere’s law
∇ × B = µ0J (1.5)

and Gauss’s law for magnetism
∇ · B = 0 (1.6)

to obtain an equation for the magnetic field in the superconductor

∇2B = 1
λ2

L

B (1.7)

where λ2
L = m

µ0nse2 , is called the London penetration depth. This equation produces solutions of
the form

B ∼ 1
4πr exp

(
− r

λL

)
(1.8)

where r is the radial spherical coordinate. These types of solutions are able to account for
the extinction of the magnetic field inside a superconductor since we have a strongly decaying
function with the distance (see Figure 1.1).

r

B

f(r) = e−r

r

g(r) = 1
r

Fig. 1.1 Representation of two functions for the magnetic field B as a function of the radial
coordinate r. The first f(r) = e−r

r
(in blue) and the second g(r) = 1

r
(in red).

In spite of the success of the theory in describing certain aspects of the superconductors, we
note that it is constructed ad hoc to match the experimental observations and it does not explain
where the superconducting current density Js originates from or how does the superconducting
transition occur.

1.1.2 Ginzburg-Landau Theory

The next step in understanding superconductors was made in 1950, by Lev Landau and Vitaly
Ginzburg when they applied the Landau theory of phase transitions to the superconducting
state, postulating that the order parameter in the superconducting state could be a complex
order parameter Ψ = |Ψ|eiθ such that |Ψ|2 is the local density, in a similar fashion as in the
Schrödinger equation. In that regard, the free energy of the system can be expressed as

F = Fn + α|Ψ|2 + β

4 |Ψ|4 + 1
2m∗ |(−iℏ∇ − e∗A)Ψ|2 + |B|2

2µ0
(1.9)
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where α and β are parameters, m∗ and e∗ are the effective mass and charge of the superconducting
carriers respectively that can be taken as phenomenological parameters, Fn is the free energy in
the normal state, and A is the magnetic vector potential, such that ∇ × A = B. We obtain the
Ginzburg-Landau equations by minimizing the free energy with respect to the order parameter.

αΨ + β|Ψ|2Ψ + 1
2m∗ (−iℏ∇ − e∗A)2Ψ = 0 (1.10)

This first equation depicted in (1.10) is a condition for the stability of the system. If we consider
that the system does not present currents or fluctuations, we are left with the usual polynomial
expansion of the Landau theory.

αΨ + β|Ψ|2Ψ = 0 =⇒ |Ψ|2 = −α

β
(1.11)

The solution to this can be viewed as the behavior of order parameter |Ψ|2 deep inside the bulk
of the superconductor. We will then rename it |Ψ∞|2 for clarity reasons. To get further insight
into the behavior of (1.10) we can consider the case in one dimension in the absence of fields
obtaining

αΨ + β|Ψ|2Ψ − ℏ2

2m∗∂
2
xΨ = 0 (1.12)

considering real solutions of Ψ, we obtain

Ψ =
√

|α|
β

tanh
(

x√
2ξ

)
= |Ψ∞| tanh

(
x√
2ξ

)
(1.13)

where ξ =
√

ℏ2

2m∗|α| is called the Ginzburg-Landau coherence length, which shows that the
perturbations from the bulk state |Ψ∞|, would decay with a characteristic length ξ. The second
equation that we obtain by minimizing the free energy is

Js = 1
µ0

∇ × B = − iℏe∗

2m∗ (Ψ∗∇Ψ − Ψ∇Ψ∗) − e∗2

2m∗ |Ψ|2A (1.14)

where we have used the gauge condition ∇ · A = 0. We can effectively see that by taking the
curl of the equation we arrive at a familiar equation of the London theory

∇ × Js = −e∗2

m∗ |Ψ|2∇ × A = −e∗2n∗
s

m∗ B. (1.15)

Thus it becomes evident that from the Ginzburg-Landau theory, we can effectively recover the
London equations for the magnetic field. From both (1.10) and (1.15) equations, we can see
that we obtain two characteristic lengths, the London penetration depth λL and the coherence
length ξ, and we can define a new quantity κ = λL

ξ
which has no dimensions and it helps to

distinguish two types of superconductors. Those superconductors with κ < 1√
2 are called type-I

superconductors, where it is easy to see that in this case the bulk of the superconductor |Ψ∞|
would not be affected by the magnetic field. In contrast, those superconductors where κ > 1√

2
are called type-II superconductors, where the magnetic field can penetrate enough to perturb
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the bulk |Ψ∞| of the superconductor. In this second case, the magnetic flux can be trapped
leading to pinning centers of flux depending on the applied magnetic field. We will not elaborate
more on this topic and for further explanations, we refer to Ref. [2]. Hence it becomes clear
that the Ginzburg-Landau theory can account for the different phenomena that occur in the
superconducting phase rather accurately. However, the theory does not give a microscopic
explanation for the phenomena.

1.1.3 The BCS theory of Superconductivity

Despite the success of the Ginzburg-Landau theory in describing the superconducting state
and accounting for the London equations, the microscopic origin of the superconductivity
remained elusive. It was finally in 1957 that a microscopic theory was developed by John
Bardeen, Leon N. Cooper, and Robert Schrieffer named BCS theory for its developers, who
obtained the physics Nobel Prize for it.

Cooper pairs

The modern interpretation of the superfluid density is that electronic quasiparticles are
formed in the material, and they are responsible for the superconducting properties. In particu-
lar, the most widely accepted interpretation is that these quasiparticles are formed by pairs of
electrons called Cooper pairs. A Cooper pair is formed by two electrons attracting each other
through an effective interaction which produces a bound state (see Figure 1.2). This interaction

e-
e-

e-
e-

mediator

p’

p p-q

p’+q

q

e- e-

Cooper pair

b)a)

Fig. 1.2 Picture of (a) one Cooper pair formed by two electrons, and (b) Feynman diagram of
the effective electron-electron interaction.

is generally mediated by other particles or quasiparticles depending on the specific theory and
in particular, in the Bardeen-Cooper-Schrieffer (BCS) theory the interaction is mediated by
phonons (in the original work it involves only acoustic phonons) producing an effective attractive
interaction between the electrons.
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The effective interacting Hamiltonian

In order to understand the origin of the attractive interaction, we consider the Hamiltonian
of a free electron system

Hfree =
∑

k

ℏ2k2

2me

c†
kck =

∑
k
εkc

†
kck (1.16)

where k = |k| is the modulus of the electron wave vector, me is the mass of the electron, εk is
the electron energy and c†

k (ck) are the creation (annihilation) spinorial electronic operators.
Then we introduce different terms of interaction. The first interaction that we can have is
the Coulomb interaction. The Hamiltonian Hel−el of the Coulomb interaction VC(r) can be
expressed as

Hel−el =
∑
k,k′

∑
q
VC(q)c†

k+qc
†
k′−qckck′ (1.17)

where VC(q) is the Fourier transform of the Coulomb interaction characterized by the carried
momentum ℏq defined as:

VC(q) =
∫
VC(r)e−iqrdr (1.18)

If we consider a point-like source, it can be shown that VC(q) takes the form of

VC(q) = 1
4πϵ0

e2

q2 (1.19)

with q = |q|. This would represent the bare Coulomb interaction. However, there is a
finite screening of the repulsive interaction in a metallic system. Thus, the effective Coulomb
interaction would be

VC(q) = 1
4πϵ0

e2

q2 + κ2
s

(1.20)

where κ−1
s is the screening length, and it would take the following form in real space:

VC(r) = 1
4πϵ0

e2

r
exp(−κsr) (1.21)

which is a potential with a shorter repulsive range. Nonetheless, we still need an attractive
interaction between the electrons. For that reason, the next ingredient that we consider is the
ions. More in particular, we are interested in the oscillations of the ions around the equilibrium
position in the harmonic regime which are represented by the phonons. The phonon Hamiltonian
can be modeled with two terms in the harmonic approximation. The first one accounts for the
free phonon field with b†

q,ν (bq,ν) creation (annihilation) operators for a given vibration mode of
branch ν, wave vector q and dispersion relation Ωq,ν

Hph =
∑
q,ν

ℏΩq,ν

(
b†

q,νbq,ν + 1
2

)
(1.22)

The second term models the interaction of phonons with the electrons

Hel−ph =
∑

k

∑
q,ν

gq,νc
†
k+qck

(
b†

q,ν + bq,ν

)
(1.23)
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with an interaction strength gq,ν . Now it can be shown that by applying the appropriate
unitary transformation we can eliminate the second Hamiltonian with phonons coupled to
electrons. The result is that the phonon Hamiltonian Hph is completely separable from the
electronic Hamiltonian, allowing to deal only with the electronic part of a new effective electronic
Hamiltonian Heff defined as:

Heff = Hfree + Hel−el + H1 + H2 (1.24)

where we have a renormalization of the onsite energy εk

H1 =
∑

k

∑
q,ν

|gq,ν |2 ℏΩq,ν

(εk − εk−q)2 − (ℏΩq,ν)2 c
†
kck (1.25)

and an effective electron-electron interaction

H2 =
∑
k,k′

∑
q,ν

|gq,ν |2 ℏΩq,ν

(εk′ − εk′−q)2 − (ℏΩq,ν)2 c
†
k+qc

†
k′−qck′ck (1.26)

From the second term, we can see that if |εk′ − εk′−q| < ℏΩq,ν the effective electron-electron
interaction would become attractive instead of repulsive. This is a good starting point, but
it is not enough. We must show that this attractive interaction dominates over the repulsive
Coulomb interaction. The great success of the theory was to show that effectively, the ground
state of a free electron gas is unstable toward the superconducting state no matter how weak the
attractive interaction is. This implies that pairs of electrons can form a bound state called Cooper
pair and the binding energy would increase when the electron-phonon interaction becomes
stronger. We will not elaborate more on this topic; we refer to Refs. [2–4] for further clarifications.

If we now gather all the terms involving the electronic operators after this transformation,
we can arrive at an effective electronic Hamiltonian of the form

Heff = Hfree + Hel−el + H1 + H2 =
∑

k
ξkc

†
kck +

∑
k,k′

∑
q
Ṽk,k′c†

k+qc
†
k′−qck′ck (1.27)

here ξk is the renormalized onsite energy including terms from Hfree and H1, and Ṽk,k′ is the
effective electron electron interaction that includes terms from Hel−el and H2. However, from
this effective Hamiltonian, we still face challenges in diagonalizing it and resolving the spectra.

The mean-field approximation

The usual procedure to solve the Hamiltonian in equation (1.27) is what is called the
mean-field approximation in which we expand the product of two operators O and O′ as follows

OO′ ≃ O⟨O′⟩ +O′⟨O⟩ − ⟨O⟩⟨O′⟩ (1.28)

In addition, we must point out that in the BCS theory, the dominant interaction would be
between electrons of opposite momentum (ℏk = −ℏk′) since all electrons in the Fermi surface
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are able to contribute to this process. Additionally, the center of mass of the interacting pair
has zero momentum meaning that there is no extra kinetic energy required. Thus the effective
Hamiltonian becomes

Heff =
∑

k
ξkc

†
kck +

∑
k,k′

Ṽk,k′c†
kc

†
−kc−k′ck′ (1.29)

By applying the mean-field approximation, we can rewrite the Hamiltonian as follows

HBCS =
∑

k
ξkc

†
kck −

∑
k

∆∗
kc−kck −

∑
k

∆kc
†
kc

†
−k + U0 (1.30)

where U0 is a constant term and ∆k is commonly known as the gap function defined as

∆k = −
∑
k′
Ṽk,k′⟨c−k′ck′⟩ (1.31)

and it follows that ∆∗
k is

∆∗
k = −

∑
k′
Ṽk,k′⟨c†

k′c
†
−k′⟩. (1.32)

From here the usual and most simple procedure is to use a unitary transformation to obtain a
diagonalized Hamiltonian by changing the basis of our creation and annihilation operators as
follows γk

γ†
k

 =
u∗

k −vk

v∗
k uk

ck

c†
k

 (1.33)

and unitarity enforces that
|uk|2 + |vk|2 = 1. (1.34)

This is commonly known as the Bogoliubov transformation and γk are Fermionic operators.
Rewriting the Hamiltonian in terms of these operators is a lengthy process, and we refer the
reader to Refs. [4–6] for a complete development of the equations. Nonetheless, it leads to the
following condition if we want the Hamiltonian to be diagonal in the basis of γk operators

vk

uk
=

√
ξ2

k + |∆k|2

∆∗
k

(1.35)

By making use of the unitarity condition, we obtain finally

|uk|2 = 1
2

1 + ξk√
ξ2

k + |∆k|2

 (1.36)

and

|vk|2 = 1
2

1 − ξ2
k√

ξ2
k + |∆k|2

 . (1.37)
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This enables us to obtain the diagonalized Hamiltonian

H =
∑

k
Ekγ

†
kγk + E0 (1.38)

where Ek is defined as
Ek =

√
ξ2

k + |∆k|2 (1.39)

and E0 is a constant energy term defined as

E0 =
∑

k

(
ξk − Ek + ∆k⟨c†

kc
†
−k⟩

)
. (1.40)

Here we have made the assumption of time-reversal symmetry to be conserved which implies
that ξk = ξ−k and |∆k| = |∆−k|. From the definition of Ek it is easy to understand why ∆k

is called the gap function, since even at the Fermi level where ξk = 0, the superconducting
excitations would require a minimum energy of |∆k|, or in other words, the energy spectrum is
gapped. Thus, in order to obtain these quasi-particles, we need to give an energy of at least
2|∆k| to the system. As we can note the fermionic quasi-particles γ†

k are a linear combination of
electrons c†

k and holes ck and are commonly known as Bogoliubons.

Although we have successfully obtained a basis that diagonalizes the Hamiltonian, the energy
spectra is not completely resolved since we still need to determine the gap ∆k. In that regard,
we rewrite in the new basis and obtain

∆k = −
∑
k′
Vk,k′u∗

k′vk′

(
⟨γ−k′γ†

−k′⟩ − ⟨γ†
k′γk′⟩

)
= −

∑
k′
Vk,k′u∗

k′vk′ (1 − 2nk′) (1.41)

where nk′ is the number operator and we have used the fact that ⟨γ−k′γk′⟩ = ⟨γ†
k′γ

†
−k′⟩ = 0. Since

γ†
k′ are fermionic particles, the number operator will be given by the Fermi-Dirac distribution

nk′ = 1
eβEk′ + 1 (1.42)

With help of the definition of uk′ and vk′ , we can obtain that

u∗
k′vk′ = ∆k′

2
√
ξ2

k′ + |∆k′ |2
= ∆k′

2Ek′
(1.43)

By substituting this result in the gap equation, we obtain:

∆k = −
∑
k′

Vk,k′∆k′

2Ek′
tanh

(
βEk′

2

)
(1.44)

The weak coupling isotropic approximation

Now at this point, the classical BCS derivation assumes an isotropic potential V0 within a
small shell of energy ℏωc with characteristic phonon frequency ωc (the original work takes the
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Debye frequency for the cut-off energy) around the Fermi energy so that

Vk,k′ =

 −V0 if |ξk′| ≤ ℏωc

0 if |ξk′| > ℏωc

(1.45)

and consequently ∆k = ∆ is also momentum independent. Substituting these terms in equation
(1.44) we are left with the well-known result

1 = V0
∑

k′≤kF

1
2Ek′

tanh
(
βEk′

2

)
. (1.46)

This is called the s-wave solution of the gap equation since the superconducting gap is propor-
tional to the Y00 spherical harmonic. From this point, we can then pass to the continuum by
changing the sum with an integral

1 = V0

∫ ℏωc

−ℏωc

N(ε) 1
2E tanh

(
βE

2

)
dε. (1.47)

where ε is the energy of the electrons, and N(ε) is the density of states. Now since εF ≫ ℏωc

with εF being the Fermi energy, we can take the value of the density of state at the Fermi level
N(εF ) out of the integral obtaining

1
V0N(εF ) =

∫ ℏωc

0

dε√
ε2 + ∆2

tanh
(√

ε2 + ∆2

2kBT

)
. (1.48)

At this point, we can consider two interesting cases. The first one is when T → 0 for which the
hyperbolic tangent in the previous expression would tend to the unity and we would have

1
V0N(εF ) =

∫ ℏωc

0

dε√
ε2 + ∆2

0

= sinh−1
(
ℏωc

∆0

)
(1.49)

We can note that typically the superconducting gap ∆0 at 0 K is much larger than the cutoff
energy and as a result, we can take approximately

1
V0N(εF ) = log

(
2ℏωc

∆0

)
(1.50)

from which we obtain
∆0 = 2ℏωc exp

(
−1

N(εF )V0

)
. (1.51)

This result, reveals that the system will be a superconductor regardless of how small the
interaction strength is at 0 K, further showing that the free electron gas is unstable with respect
to an attractive interaction.

The other interesting limit to consider is the temperature Tc for which the superconducting
gap vanishes ∆(Tc) = 0, or in other words the transition temperature. In this case, the integral
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becomes
1

V0N(εF ) =
∫ ℏωc

0

dε

ε
tanh

(
ε

2kBTc

)
=
∫ ℏωc

2kBTc

0

tanh(x)
x

dx. (1.52)

This integral in general has no primitive, but we can use the fact that ℏωc

2kBTc
≫ 1 and integrate

by parts obtaining

∫ ℏωc
2kBTc

0

tanh(x)
x

dx ≈ (tanh(x) log(x))
ℏωc

2kBTc

0 −
∫ ∞

0

log(x)
cosh2(x)

≈ log
(

2eγEℏωc

πkBTc

)
(1.53)

where γE ≈ 0.577 is the Euler-Mascheroni constant. From this result, we can obtain that the
critical temperature Tc is given by

Tc = 2eγE

π

ℏωc

kB

exp
(

−1
N(εF )V0

)
≈ 1.14ℏωc

kB

exp
(−1
λ

)
(1.54)

where here we denote by λ = V0N(εF ) the electron-phonon coupling, although it is also known
as the mass renormalization parameter. We can combine the results for the gap ∆0 and the
critical temperature Tc and obtain the famous relation

∆0

Tc

≈ 1.76. (1.55)

This is what is called the weak coupling limit of the BCS theory.

Beyond the isotropic pairing

One could ask however what is the validity of these results regarding the pairing symmetry,
since we have assumed an isotropic pairing. However, the general electron-phonon interaction
would depend on both momenta of the electron ℏk and the mediating phonon ℏq. Thus we can
decompose the interacting potential Vk,k′ as follows:

Vk,k′ =
∞∑

l=0
(2l + 1)V l

k,k′Pm
l (k · k′) (1.56)

where V l
k,k′ is the interaction strength for the pairing channel with angular momentum l and

Pm
l (k · k′) are Legendre polynomials defined in terms of the spherical harmonics Y m

l (k) as
follows:

Pm
l (k · k′) = 4π

2l + 1

l∑
m=−l

Y m
l (k)Y m

l (k′)∗. (1.57)

The physical meaning of such complex pairing interaction is the fact that the Cooper pairs can
carry some angular momentum l even if they are in a spin singlet state S = 0. Consequently, the
gap function can be expanded as well in terms of different contributions with angular momentum
l. By substituting the expansion of Vk,k′ into our previous definition of ∆k we can obtain

∆k = −
∞∑

l=0

∑
k′

(2l + 1)V l
k,k′Pm

l (k · k′)⟨c−k′ck′⟩ (1.58)
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which can be expressed as
∆k =

∞∑
l=0

∆l
k (1.59)

where each ∆l
k is the gap function for a given angular momentum l. In this way, we already

allow to have any possible combinations of pairing symmetries without the loss of generality.
The existence of several pairing symmetries in our gap function implies that there will be several
critical temperatures T l

c , which, except in very rare cases will not be equivalent. Thus in order
to get the transition temperature from metallic to superconducting, we can consider only one of
the pairing symmetries of the channel l. In that regard, we can note that for a given gap with
angular momentum l, we can express it as follows

∆l
k = ∆(T )

l∑
m=−l

ηmY
m

l (k). (1.60)

Where ∆(T ) is the gap dependence of the temperature and ηm are constants. In that regard,
we can recover the previous gap equation but now for angular momentum l

∆l
k = −

∑
k′

(2l + 1)V l
k,k′Pm

l (k · k′)∆l
k′

tanh
(

βEk′
2

)
2Ek′

(1.61)

which we can expand in terms of the spherical harmonics

∆l
k = −

∑
k′

l∑
m=−l

4πV l
k,k′Y m

l (k)Y m
l (k′)∗∆(T )

l∑
m′=−l

ηm′Y m′

l (k′)
tanh

(
βEk′

2

)
2Ek′

(1.62)

Here, we must note that when summing over all the k′ only terms with m = m′ will give a
non-zero value since the spherical harmonics are orthogonal to each other upon integrating the
k′ variable. Thus, the important terms are

∆l
k = −4π∆(T )

l∑
m=−l

ηmY
m

l (k)
∑
k′
V l

k,k′|Y m
l (k′)|2

tanh
(

βEk′
2

)
2Ek′

(1.63)

At this point, we can proceed as before where we will take V l
k,k′ to be a constant for a characteristic

energy range ℏωl
c

V l
k,k′ =

 −V l
0 if |ξk′ | ≤ ℏωl

c

0 if |ξk′ | > ℏωl
c

(1.64)

and by substituting we obtain

∆l
k = 4π∆(T )V l

0

l∑
m=−l

ηmY
m

l (k)
∑
k′

|Y m
l (k′)|2

tanh
(

βEk′
2

)
2Ek′

(1.65)
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Now at T = Tc, we compare the expressions for ∆l
k in (1.60) and (1.65) and obtain the following

condition

1 = 4πV l
0
∑
k′

|Y m
l (k′)|2

tanh
(

βεk′
2

)
2εk′

(1.66)

for which we can recover the BCS-type solution for the critical temperature with a characteristic
energy scale ℏωl

c

kBTc ≈ 1.14ℏωl
c exp

(
−1

V l
0N(εF )

)
(1.67)

This result indicates that as a first approximation, we can disregard the symmetry of the
superconducting gap as long as we can account well for the energy scale ℏωl

c and the interacting
potential V l

0 . This however does not hold true in the case of calculating the gap at T = 0, and
as a consequence, the gap relation is not the same as in the simple s-wave case. We will not
elaborate more on this topic; for a more detailed discussion, we refer to Refs. [7–9].

The effective electron-electron interaction

As we mentioned before, apart from the attractive electron-phonon interaction, the Coulomb
repulsion is still present in spite of being screened in a metal. Thus the effective electron-electron
interaction would present both a repulsive and attractive part. We can consider then that for
a given band characterized by a bandwidth W > ξk centered at ξk = 0 and nearly constant
density of states N(εF ), we can have the effective electron-electron interaction Ṽk,k′ as repulsive
and attractive part V el−el

k,k′ and V el−ph
k,k′ and define the interaction potential

N(εF )Ṽk,k′ = N(εF )V e−e
k,k′ +N(εF )V el−ph

k,k′ =



N(εF )V el−el =

µ
∗ > 0 if |ξk| ≤ W

0 if |ξk| > W

N(εF )V el−ph =

−λ < 0 if |ξk| ≤ ℏωc

0 if |ξk| > ℏωc

(1.68)
with µ∗ being the effective Coulomb repulsion coupling constant

µ∗ = µc

1 + µc log
(

W
ℏωc

) . (1.69)

where µc is the bare Coulomb repulsion coupling constant. If we use this potential to solve the
gap equation for the critical temperature, we can obtain

kBTc = 1.14ℏωc exp
(

− 1
λ− µ∗

)
(1.70)

Thus, we can see that a transition to the superconducting phase exists as long as λ > µ∗.
The importance of this effect is to account for the renormalized Coulomb interaction µ∗ that
produces a retardation effect of the electron-phonon interaction which is much expected since
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the polarization of the lattice due to interaction with an electron will persist for bigger time
scales than the characteristic time scales of the electron (ℏ/εF ≪ ω−1

c ).

The critical temperature equation at strong coupling

The equation for the critical temperature can be improved by including the full retardation
effects in the equations of the superconducting instability by means of the Eliashberg-formulation
in the strong coupling limit

kBTc = ℏωc

1.2 exp
(

− 1.04(1 + λ)
λ− µ∗(1 + 0.62λ)

)
. (1.71)

This more advanced formula is called the Mc. Millan-Allens equation and takes also into account
a renormalization of the quasi-particle spectra given by the (1+λ) term in the numerator. Apart
from these simple effects, there are several other details that can affect the critical transition
temperature, like for example (i) the existence of magnetic and non-magnetic impurities, (ii)
considering a density of states N(εF ) with a finite bandwidth W , and (iii) anharmonicities of
the phonon spectra among others.

1.1.4 Alternatives to the BCS theory

Nonetheless, there are other theories beyond the phonon BCS approach that deal with
other types of interactions, such as magnetic excitations like magnons, paramagnons, or spin
density waves to name some. These types of theories would follow a similar procedure as the
phonon-mediated scheme but with a different type of bosonic quasiparticle which would lead to
different types of symmetries for the superconducting mechanism. In particular, in the Cu based
superconductors, a quite popular theory where antiferromagnetic excitations with in-plane wave
vectors QAFM = (±π

a
,±π

a
) producing a nesting on the Fermi surface (see Figure 1.3.a). This

interaction is a quantum effect where the exchange and superexchange interaction between the
electrons would be responsible for the pairing. Thus, the gap equation would become

∆k = −
∑
k′

V AFM
k,k′ ∆k′

2Ek′
tanh

(
βEk′

2

)
(1.72)

where V AFM
k,k′ is the interacting potential from antiferromagnetic exchange. Unlike in the BCS

theory, the interacting potential could be strictly positive V AFM
k,k′ > 0 and still produce pairing.

The key idea is in the nesting vectors QAFM and the sign of the gap function ∆k. In order
to illustrate this we can consider a gap function that presents the following wave vector k
dependence:

∆k = ∆(T )(cos kxa− cos kya) (1.73)

where kx and ky are the x and y components of the wave vector k. This particular pairing
symmetry is known as the d-wave pairing and more concisely the dx2−y2 pairing symmetry. As
one can notice in Figure 1.3.b, the gap function would take positive and negative values in the
Fermi surface. Thus, if the nesting vector QAFM connects two regions with different signs in the
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a) b)

Fig. 1.3 Typical Fermi surface of the Cu-based superconductors (a) the nesting vector QAFM =
(±π

a
,±π

a
) connecting two regions of the Fermi surface, and (b) the positive and negative regions

of the superconducting gap ∆k with a sign + and − respectively and the dashed lines represent
the nodal lines of the gap function.

Fermi surface, then we would have an attractive interaction. This would imply that although
the interacting potential V AFM

k,k′ is positive, if k′ = k + QAFM the interaction produces attraction
between the electrons. One particular feature of this interaction is that it produces nodal lines
in the gap when |kx| = |ky| since the gap function would be exactly zero ∆k = 0 at these points.
We would not elaborate more on this topic since it would only add extra complexity to some
aspects of the interaction and would not add much insight into the overall superconducting
mechanism. In that regard, we now proceed to give a general introduction to the compounds
that we are particularly interested in this thesis.

1.2 Oxide compounds

The oxide family of compounds is one of the biggest and most interesting family of materials
found in nature. In particular, the abundance of oxides on Earth’s crust is so big that the first ten
most abundant compounds on it are all oxides, making up to 99.72% of the total crust material.
This is mainly caused by the high reactivity of O with other elements and the high abundance
of O in the atmosphere since it is its second most abundant component. Interestingly, the oxide
family of compounds presents almost all phenomena in solid-state physics, making it a very
versatile family to study. In addition, one of the greatest interests in oxides nowadays is the fact
that they are at the core of modern electronic devices due to their multi-functional properties.
In this thesis, we are more interested in the perovskite oxide family and related compounds,
which by themselves host almost all the properties exhibited by the oxide compounds including
their multi-functionality.
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1.2.1 Perovskite oxides

The perovskites are ternary compounds formed generally by two metal species A and B
cations, and one anion X which is often oxygen O, although other anions such as fluorine F
are also common. These compounds are named after the mineralogist Lev Perovski who found
and described the crystal structure of CaTiO3. In the ideal case, the perovskites adopt a cubic
Pm3̄m structure, where the A cations sit on the corners of the cube, the X anions are placed at
the center of the faces of the cube producing an octahedron, and the B cation sits at the center of
the octahedron, with a general composition formula ABX3 (see Figure.1.4). The most common

Fig. 1.4 Cubic perovskite crystal structure ABX3.

and widely studied type of perovskite materials are the perovskite oxides that in their simplest
structure present a composition formula ABO3. These compounds belong to a wider class of
materials called Ruddlesden-Popper phases characterized by the following chemical formula
An+1BnO3n+1 and an integer number n. The structure of the Ruddlesden-Popper compounds
involves groups of n ABO3 layers stacked along the z axis separated by a AO slab, where the
ABO3 perovskites are the limiting phase n = ∞ of these compounds (see Figure 1.5). The

x

y

z

An+1BnO3n+1
series

n=1

n=2

n=3 n=∞

Increasing n

A

B

O

AO slab

n ABO3 layers

Fig. 1.5 Structure of the Ruddlesden-Popper compounds An+1BnO3n+1.

perovskite oxide materials are very versatile in terms of composition, allowing them to host
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almost any cation in both the B and A sites of the structure. Depending on the orbital filling
and the cation size mismatch, the perovskites can show several features and properties such
as octahedral rotations, ferroelectricity, magnetism, charge and orbital orderings, or supercon-
ductivity to name a few. Furthermore, these compounds are characterized by strong couplings
between their structural, electronic, and magnetic degrees of freedom. Hence, these materials
are multifunctional since acting on one parameter may tune another one. One of the most
famous examples of such couplings are the multiferroic materials that present a magnetoelectric
coupling in which, an electric field E can tune the magnetization M, and vice versa with a
magnetic field H and the electric polarization P. A paradigmatic example of such compounds is
the case of BiFeO3 hosting a rich phase diagram that depends on the different lattice mismatch
[10].

Although we mention that the ideal ABO3 case presents a cubic structure, there are not as
many cases that present this highly symmetric configuration, since several lattice distortions
are prone to appear and move the atoms from their original positions. This was widely studied
by Victor Goldschmidt [11], who developed a classification based on one parameter t called
tolerance factor, considering the atoms as hard spheres defined as

t = rA + rO√
2(rB + rO)

(1.74)

where rj represents the atomic radius of the A, B, and O ions. When this parameter is bigger
or smaller than 1, the cation A would be too large or small to have a highly symmetric cubic
structure, and as a consequence, several lattice distortions will appear. The usual tilt patterns
are the oxygen cage octahedral rotations such as a−a−c0, a0a0c+, a0a0c−, a−a−a−, and a−a−c+

in Glazer’s notation [12] giving rise to different crystalline structures. The most common tilt
pattern is the a−a−c+ that produces a structure with Pbnm symmetry.

One of the most interesting features of the ABO3 perovskites is evidenced when we place
a transition metal on the B site cation. This produces different d shell configurations on the
transition metal and depending on the orbital filling of the d shell one may find very different
properties as we mentioned before. In general, these compounds with non-empty d shells show
a metallic paramagnetic (PM) phase at high temperatures, and then they present a magneti-
cally ordered phase at low temperatures. One may naively expect that for all temperatures,
the conducting properties would generally show a metallic character. However, many of the
transition metal perovskite oxides present a metal-insulator transition (MIT) when the tempera-
ture is lowered. This metal-insulator transition is generally caused by four main mechanisms [13].

The first mechanism is to consider the octahedral crystal field ∆CF that is induced on
the d manifold, which produces a lifting of the degeneracy of the orbitals into groups of
3t2g := {dxy, dxz, dyz} and 2eg := {dx2−y2 , dz2} degenerate orbitals (see Figure 1.6). It follows
that in materials where the t2g energy levels are half filled, while the eg levels are completely
empty, one can expect an insulator instead of a metal. This would correspond to compounds
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Fig. 1.6 Crystal field splitting ∆CF of the d orbital in a O6 octahedral environment.

with for example a d3 configuration such as CaMnO3. The other ingredient that one may
consider is Hund’s coupling JH since in the case of being bigger than the crystal field JH > ∆CF

it produces a splitting between the two spin channels on each cation (see Figure 1.7). Similarly
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3 t2g

ΔCF ΔCF
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Fig. 1.7 Crystal field splitting ∆CF of the d orbital in a O6 octahedral environment with a strong
Hund’s coupling JH splitting the two spin channels completely.

to the previous case, it follows that if both t2g and eg levels are filled only in one spin channel, a
gap would open. This situation would correspond to cases with a d5 configuration such as LaFeO3.

The second mechanism involves compounds with for instance a d1 or d4 electronic config-
uration. In such cases, the octahedral crystal field mechanism is not sufficient to explain the
MIT since for a perfect cubic environment, the eg or t2g levels will be partly filled. However, the
existence of octahedral rotations and tilt patterns can further change the crystal field, induce
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certain orbital orderings and level splitting, and effectively recover the previous situation where
the energy levels are filled without degeneracies on each spin channel. This would be the case of
YTiO3 or LaMnO3. We can note that this mechanism is strongly dependent on the amplitude of
the tilt pattern and the hybridization with the O environment. Examples of compounds where
there is no gap opening are SrVO3 or CaVO3 where there is either no tilt pattern or weak octa-
hedral rotations, respectively. The two last mechanisms essentially involve electronic instabilities.

The third mechanism involves compounds where the energy levels are not completely filled
in one spin channel for instance with a d2 shell for the 3t2g orbitals. Under these circumstances,
the system would be Jahn-Teller active, and the Jahn-Teller effect (JTE) would be responsible
for lifting the degeneracy of the t2g orbitals through the Jahn-Teller distortion (JTD). Then the
JTD can produce an orbital ordering and a double local environment on the transition metal
cations. Examples of compounds showing such behavior are LaVO3 or KCrF3. We must note
that the JTE is purely electronic in origin and the distortion pattern as well as the orbital
ordering (OO) is a consequence of it.

The fourth and last gaping mechanism in perovskite oxides is related to the formal oxidation
state (FOS) on the transition metal. It is well known that elements such as Ti, V, Fe, or Ni
present several oxidation states and can accommodate different orbital fillings of their 3d shells.
However, in some cases such as in CaFeO3 [14], BaBiO3 [15], or the nickelates, the system
presents a breathing oxygen complex distortion Boc that produces a double local environment
on the B cations in the ABO3 perovskites. This is a consequence of unstable FOS on the B
cation such as Fe4+ in CaFeO3 or Ni3+ in the nickelates, that prefers to produce two different
FOS on the B cation. In the case of CaFeO3 it produces a charge ordering (CO) of Fe5+ and
Fe3+ cations producing a net energy gain. This mechanism as in the case of the JTD is purely
electronic in its origin and the Boc distortion is a consequence of it. In the case of the nickelates,
we can find it in the rare earth nickel oxides RNiO3 that we discuss in greater detail in the next
section.

1.2.2 Perovskite-based nickel oxides

The interest in this series of compounds is due to the proximity of Ni to Cu in the periodic
table, and a similar formal oxidation state (FOS) as the famous Cu-based oxide superconductors.
In fact, the analogy between the two systems was proposed for the first time in 1999 by Anisimov
and coauthors, suggesting that nickel oxides could host superconductivity [16], and lately similar
claims were made for superlattice structures [17]. The main family of perovskite-based nickel
oxides is usually described in terms of a broader chemical formula Rn+1NinO3n+1 characterized
by an integer number n. This family of compounds is the already mentioned RP phase in the
previous section (see Figure 1.11), with the A cation being a rare-earth R and the B cation being
Ni. Unfortunately, most of the possible chemical compositions are in general not easy to synthe-
size, and most of the efforts and studies focus either on a few of the first members of the series or
on the limiting member n = ∞ corresponding to a simple perovskite RNiO3. This last member
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phase is the most studied type of compound of the series since it is relatively simple to obtain
and grow with precision. We now mainly focus on the perovskite RNiO3 phase diagram for illus-
tration purposes, although broadly speaking, similar features are found in the other RP members.

These nickelates present an effective Ni3+(3d7) open shell configuration which would suggest
at least an unpaired electron on each Ni cation. Thus paramagnetism (PM), antiferromagnetism
(AFM), or ferromagnetism (FM) is much expected. In particular, these nickelates are PM metals
in the high-temperature phase, and then at low temperature, they present a phase transition
to an AFM order as it is depicted in Figure 1.8, with the exception of LaNiO3 that remains
a PM metal for all temperatures. From the point of view of the tolerance ratio, all of these

Fig. 1.8 Experimental phase diagram of RNiO3 compounds as a function of the tolerance factor
t and the Ni-O-Ni angle for different rare-earth species. Squares and circles represent the MIT
temperature (TMIT) and the Neel tempeerature (TN). Adapted from Refs. [18–22].

compounds present t < 1 being the biggest LaNiO3 with tLaNiO3 = 0.94. As we mentioned
before, a tolerance ratio t < 1 implies that the perfect ABO3 cubic structure would present
some distortions and tilt patterns. In particular, all RNiO3 compounds except LaNiO3 present
an orthorhombic Pbnm crystal symmetry at high temperatures (see Figure 1.8), characterized
by a a−a−c+ distortion pattern in Glazer’s notation [12]. The tilt pattern involves two different
distortions: the a−a−c0 which corresponds to out-of-plane anti-phase rotations of the octahedra
(see Figure 1.9.a), and the a0a0c+ rotation which involves in-phase in-plane rotations of the
octahedra (see Figure 1.9.b). However, at low temperatures, all the RNiO3 compounds except
LaNiO3 present a monoclinic P21/n symmetry, characterized by the appearance of the breathing
distortion of the octahedral complexes Boc (see Figures 1.9.c and 1.8 for the distortion and the
structure phase diagram, respectively). In the case of LaNiO3 the crystal structure presents
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Fig. 1.9 The different tilt patters found in RNiO3 compounds, (a) the out-of-plane anti-phase
rotations a−a−c0, (b) the in-plane in-phase rotations a0a0c+, (c) the breathing distortion Boc,
and (d) the in-plane anti-phase rotations a0a0a−.

a R3̄c symmetry at all temperatures with a a−a−a− distortion pattern. The tilt pattern is
characterized by a combination of the already mentioned a−a−c0 rotations, and in addition,
there are in-plane anti-phase rotations a0a0a− (see Figure 1.9.d).

The most interesting feature of these nickelates is that all of them except LaNiO3 present a
MIT at low temperatures accompanied by the structural transition from the orthorhombic Pbnm
structure to the monoclinic P21/n structure. In the case of LaNiO3 the system remains metallic
at all temperatures with the Pbnm structure. This is quite interesting since the appearance of
the Boc mode is what triggers the MIT and the structural transition. Interestingly, for most of
the series, the MIT occurs at a higher temperature than the PM to AFM transition (this is
TN < TMIT) [23]. Only for the case of PrNiO3 and NdNiO3 the Neel temperature correspond with
the MIT temperature (TN = TMIT). This shows that effectively the MIT is not strictly related
to the AFM order in these materials since there is a PM insulating phase for most of the phase
diagram (see Figure.1.8). As we mentioned in the previous section, the Boc mode is associated
with an unstable FOS, in this case, Ni3+ cations, prefer to dismutate into a Ni2+ and a Ni4+ FOS
ultimately resulting in a charge ordering (CO) producing a rock salt pattern of the octahedra [24].

Additionally, the appearance of the Boc mode is assisted by lattice mode couplings between
the octahedral rotations. As discussed in Ref. [25] the a−a−c+ distortion is coupled to the Boc

mode and produces a renormalization of the effective frequency ωeff since the energy depends
on the amplitude of the modes as follows:

E ≈ (α + δ1Q
2
M + δ2Q

2
R)Q2

Boc + · · · ≈ 1
2MOω

2
effQ

2
Boc + . . . (1.75)
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where α, δ1 and δ2 are constants, QR, QM and QBoc are the distortion amplitudes for the a−a−c0,
a0a0c+ and Boc modes, respectively, and MO is the mass of the oxygen atom. Thus, at a finite
amplitude of the octahedral rotations, the effective frequency becomes negative and produces a
double well potential assisting the transition (see Figure 1.10). As we mentioned, the origin of

Fig. 1.10 Potential energy surface of YNiO3 associated with the Boc mode in the presence of a
finite percentage amplitude of the a−a−c+ distortion. Adapted from Ref. [25].

the MIT is the Boc mode, and although it is assisted by the octahedral rotations for most of the
compounds, for the end members PrNiO3 and NdNiO3 the tilting pattern would not have a big
enough amplitude to induce a MIT in the PM phase. Nonetheless, this does not prevent the
MIT from occurring since at low enough temperatures the transition occurs at the same time as
the PM to AFM transition. This significant difference between the PM phase of PrNiO3 and
NdNiO3, and the rest of the insulating members of the RNiO3 compounds can be understood
as a matter of band compacities. As discussed in Ref. [26] the magnetic order directly affects
the band compacities of the bands involved in the conduction, which has a direct effect on
the localization of the electrons on Ni cations since AFM interactions induce a more localized
electronic structure. Hence, without an important tilt pattern on PrNiO3 and NdNiO3, the
AFM order assists the electronic instability and the Boc mode appears.

Nonetheless, several theoretical and experimental studies have shown that the MIT transition
temperature TMIT can be tuned either by controlling the amplitude of the tilt pattern [27], or
by doping the RNiO3 compounds [28, 29]. Moreover, at sufficient doping concentrations of a
given cation A with different FOS than the rare-earth, the R1−xAxNiO3 compounds can become
metallic at all temperatures by hole or electron doping [30]. These features are also shared by
the RP compounds, where compounds on the first member of the series (n = 1) with chemical
formula R2NiO4 are found insulating in general. Then increasing the number of RNiO3 layers n
would induce an effective hole doping of the system since the Ni valency would increase, and
at a high enough number n, the Rn+1NinO3n+1 compounds show metallic behavior instead of
insulating. This highlights that the conducting properties of the RP series are similar and the



1.2 Oxide compounds 23

effective Ni valence would be more important than the precise geometry. Additionally, the rare
earth RP compounds are highly sensitive to external stimuli such as strain, and as a consequence,
the behavior of bulk and thin films can be qualitatively different showing metallicity instead of
a CO insulating phase [31].

1.2.3 Layered nickel oxides

Tightly related to the perovskite nickelates, we have another family of compounds: the
layered nickelates. This set of compounds presents a similar structure as the perovskite case,
but the two oxygens at the apex of the octahedra have been removed, producing a fundamental
building block of NiO2 planes sandwiched in between rare-earth planes. Most of these compounds
are obtained through a topotactic reduction with either CaH2, NaH, or some other reducing
agent that can remove the O from the RO planes of a perovskite parent structure [32–37]. After
chemical reduction, most of these materials can be represented with the following chemical
formula R2n+2NinO2n, where the limiting member RNiO2 (n = ∞) is called infinite layer phase
(see Figure 1.11) In practice, the synthesis process of these compounds is quite challenging; only
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Fig. 1.11 Crystal structure of the reduced Ruddlesden-Popper series (RRP) with chemical
formula Rn+1NinO2n+2, for different members of the series.

a few have been synthesized.

The first member of the series (n = 1) with chemical formula R2NiO4 has been synthesized
with several cations (R = La, Pr, and Nd) presenting insulating behavior [38–41]. This insulating
behavior is accompanied by a tendency to form an antiferromagnetic spin stripe-ordered phase
of Ni2+ cations in a high spin state S = 1 [38]. In addition, hole doping the system either by Sr
substitution on the rare-earth site has been shown to produce a charge-stripe ordered phase
with a breathing distortion of the in-plane oxygen square [40, 41]. From the electronic structure
point of view, this compound has been discussed theoretically to present a d − d gap with a
finite contribution of O p states suggesting more Mott-like character [42] in contrast with the
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clear charge-transfer regime in the cuprate case [43–46].

The next member of the series (n = 2) has also been synthesized for some cases (R = La
and Nd) with a chemical formula R3Ni2O6. These compounds also present a highly insulating
phase with Mott-like character [47–50] . Some studies suggest that the insulating phase can
potentially be suppressed and obtain a metallic compound once the lattice parameters are
changed by either mechanical or chemical pressure [48, 50]. Regarding the magnetic structure,
these compounds present antiferromagnetic behavior [51] and a stripe-ordered phase but with a
double local environment of Ni+ and Ni2+ stripes as depicted in Figure 1.12.a [47, 49]. This
means that apart from the spin stripe ordering there is a charge stripe order. Additionally, we
can note that the Ni2+ cations, in this case, are in an S = 0 low spin configuration, suggesting
an enhancement of the crystal field ∆CF with respect to Hund’s coupling JH when compared to
the n = 1 case.

Ni2+

Ni+

Ni2+ Ni+

a) b)
n=2

Charge ordering 
(CO)

n=3

Fig. 1.12 Charge ordering patterns of Ni+ and Ni2+ cations for (a) the case of R3Ni2O6 (n = 2)
compounds, and (b) R4Ni3O8 (n = 3).

Higher members of the reduced RP series (RRP) have also been synthesized although they do
not present such a strong insulating behavior. We can see that in the n = 3 case with chemical
formula R4Ni3O8, the compounds remain metallic for most of the temperatures and only at
low temperatures below 150 K a MIT can be observed in the case of the La cation [52–54]
while in the case of Pr, the compound is metallic [55, 56]. This difference may originate from
a pressure effect since the Pr cation is smaller than La and can change the lattice parameter
suppressing the insulating phase [57]. The origin of this MIT is also the presence of a spin and
charge-ordered phase of Ni+ and low spin Ni2+ cations (see Figure 1.12.b). The nature of this
ordering has been evidenced in the case of La as a phase transition at Tc = 105 K [52, 54, 58]
which can be suppressed by Pr substitution at the La site for higher contents than x = 0.4 [57].
This insulating behavior is also present in the case of Nd although there are no signatures of
phase transition in the heat capacity [59–61]. Nonetheless, there are experimental signatures of a
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charge-ordered phase although it might be dynamical [61]. From the point of view of magnetism,
there are reports pointing to a strong AFM in-plane exchange from Ni sites [52, 62] but with a
short-range character, since the AFM magnetic ordering is only confirmed in the La case while
in the case of Pr and Nd a PM, behavior is reported [56, 61]. The electronic character of these
compounds seems to indicate a mixture between Mott and charge transfer behavior [63, 64]
with Ni d states being dominant at the Fermi level but hybridization with O p is present.

Apart from the n = 3 case, only two other higher-order members have been synthesized up
to date: the n = 5 and n = ∞ cases. However, these members present a phase transition to the
superconducting state, and as a consequence, they will be discussed in greater detail in the next
section.

1.2.4 Superconducting Nickel oxides

As we have mentioned before, superconductivity in these layered nickelates has been proposed
long ago [65], but the experimental realization was only achieved recently in 2019 in the infinite
layer phase Nd1−xSrxNiO2 with x = 0.2 as thin-films grown on a SrTiO3 substrate [66]. The
synthesis of these compounds involves a topotactic reduction of the parent perovskite RNiO3

phase which originally was with CaH2. The resistivity measurements on the original samples

Fig. 1.13 Resistivity curves of NdNiO2 (in red) and Nd0.8Sr0.2NiO2 (in blue). Adapted from [66].

depicted in Figure 1.13 showed clearly that the undoped NdNiO2 nickelate was not supercon-
ducting with a small resistivity upturn at low temperatures. This behavior is in contrast with
the hole-doped Nd0.8Sr0.2NiO2 sample showing a superconducting transition at around Tc = 15
K. This important difference highlights the crucial need to dope the material when obtaining a
superconducting compound.

Soon after, several investigations led to the discovery of superconductivity in IL compounds
with different rare earths such as La or Pr instead of Nd [67, 68], different doping concentration
x [68–71], and different doping cations such as Ca instead of Sr [72]. Gathering the available
data of the critical temperature as a function of the 3d electron count on Ni sites, a narrow
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region of doping centered at a 3d8.8 electron count (x = 0.2) is identified for the emergence of
SC (see Figure 1.14). Finally but not less important a recent study has revealed the existence
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Fig. 1.14 Critical temperature Tc of the different superconducting nickelates as a function of the
electron count. Experimental critical temperatures Tc are taken from Ref. [68–74]. Blue and
red arrows indicate electron and hole doping the extremes of the phase diagrams respectively.

of superconductivity in Nd6Ni5O12 [73] in thin films with a SrTiO3 substrate. This compound
is the n = 5 case of the RRP series and presents a Ni1.2+ effective valence, in a similar way as
the original compound Nd0.8Sr0.2NiO2 for the infinite layer case n = ∞. The superconducting
transition also seems similar to the infinite layer phase, opening the question of whether it is
possible to dope other members of the series and obtain a superconductor.

Bulk or thin films and role of the substrate

All the synthesized superconducting nickelates share the similarity that they are obtained
in thin films grown on a substrate. In that regard, investigations on bulk materials were carried
out, but they did not obtain a superconducting transition [75, 76], suggesting that the origin
of superconductivity in this compound might be a finite size effect, or even coming from the
interface between the substrate and the thin film. In the early days of the discovery of the
SC on these nickelates, the substrate was only SrTiO3 which led to different studies on the
interface of these compounds. In that regard, early propositions of a polar discontinuity between
the two materials were made [77], but recent studies on the interface of these nickelates have
shown that such polar discontinuity is absent since a small diffusion of the Nd cations into
the substrate prevents such scenario [78]. Additionally, several studies have recently reported
superconducting samples using (La0.18Sr0.82)(Al0.59Ta0.41)O3 (LSAT) as a substrate [74, 79],
which is not an incipient ferroelectric like SrTiO3. Thus, these results indicate that the origin of
the superconductivity is not in the substrate but in the nickelates, being an intrinsic property.



1.2 Oxide compounds 27

Although the specific substrate does not seem to be crucial to obtain superconducting
samples, only thin film samples show superconductivity. Nonetheless, the thickness of the super-
conducting samples has been pushed up to 40 nm [80]. It is true that this is not direct evidence
of bulk superconductivity. However, it strongly suggest it since 40 nm would correspond to more
than 100 unit cells along the z-axis of these nickelates. The absence of superconductivity in bulk
samples could be understood as a result of the difficult reduction process and the lack of control
of H intercalation [81], O stoichiometry [82], homogeneous reduction of the samples, and crys-
tallinity of the parent perovskite structure although this point will be later discussed in chapter 4.

From the point of view of the nature of the superconducting phase transition, several studies
have investigated this issue by applying an external stimulus and observing the different changes
in the superconducting state. In that regard, some studies have reported an enhancement
of the critical temperature using LSAT instead of SrTiO3 as a substrate, suggesting that
compressive strain can enhance the critical temperature [79, 74]. This is also supported by
pressure experiments with a SrTiO3 substrate showing a monotonic enhancement of the critical
temperature by applying pressure [83]. Nonetheless, all the synthesized IL nickelates present
a perfectly layered P4/mmm structure in both SC and non SC regime. Thus the role of the
lattice distortions, strain or whether other cations can produce a SC transition is not clarified
and it will be subject of study in chapter 4 of this thesis from a theoretical point of view.

Role of the 4f electrons

From a chronological point of view, the SC samples that were synthesized at the beginning
involved only Pr and Nd cations. These early results lead to the hypothesis that the 4f electrons
may play an important role in the SC samples [84] and several authors incorporate them in their
effective theoretical models to describe the normal state electronic properties [85, 86]. In that
regard, we explore in chapter 4 how important are these 4f states in the conducting properties.
Nonetheless, this hypothesis has nowadays been abandoned due to the experimental realization
of La-based samples [68] which strongly suggest that the 4f electrons play a marginal role if
any in the superconducting nickelates.

Normal state electronic properties and magnetism

Besides these results, many questions remain unanswered and the connection or equivalence
with the Cu-based superconductors is still not clear. One important difference is the fact that
the undoped samples in the case of the cuprates are strong antiferromagnetic charge-transfer
insulators, that become superconductors upon hole doping [44, 45], while undoped nickelates
(RNiO2 case) present a metallic or semimetallic behavior and they seem to be closer to the Mott
regime than the charge transfer of the cuprates. Several spectroscopic studies have shown that
the O p states seem to be 2 eV below the Fermi level besides some hybridization with the Ni
and the conduction is given by Ni and rare-earth d states [64, 87–90] (see Figure 1.15).
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Fig. 1.15 Comparison of the electronic structure of IL cuprates and nickelates. Adapted from
[87].

The magnetism, however, seems close to the cuprate case since the in-plane magnetic ex-
change is antiferromagnetic for nearest neighbors J ∼ 60 meV which is one-half of the cuprate
case [91, 92]. From the theoretical point of view, several reports point to an antiferromagnetic
ground state [93–95] but experimentally no long-range magnetic order has been found [33, 37].
There is however evidence of antiferromagnetic interactions with some authors pointing to an
antiferromagnetic glassy behavior [96, 97]. In addition, studies of the excitation spectra have
revealed the existence of magnons and spin-density waves supporting an AFM ground state [91].
This short-range AFM ground state seems to be also present in the doped case where several
studies have also revealed antiferromagnetic excitations [98, 99]. Additionally, studies on the
exchange bias and magnetic circular dichroism of the SC nickelate film with a ferromagnetic film
suggest an antiferromagnetic order even in the superconducting region [80]. This coexistence is
also supported by other authors using muon spectroscopy [100]. However other studies using
139La substitution have revealed through nuclear magnetic resonance experiments that bulk
samples do not present a magnetic phase transition, suggesting a paramagnetic behavior [101].
Thus up to date the ground state magnetic structure is still not experimentally resolved with
the existing literature pointing to a PM or short-ranged AFM ordering.

Superconducting state and pairing symmetry

When studying superconductors, a typical measurement is to apply a magnetic field which
can give information about the pairing symmetry and the nature of the Cooper pairs. In that
regard, recent studies on the susceptibility have revealed that effectively the superconducting
samples present perfect diamagnetism regardless of the thickness [102]. This result confirms that
there is a superconducting transition in the system and also suggests that the superconductivity
on these nickelates is a bulk property. However, measuring the susceptibility is not the only
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important parameter to measure when a magnetic field is applied, for instance, measuring the
critical field upon which the superconducting transition is suppressed is also insightful. Although
early reports showed an isotropic critical field on Nd samples suggesting that it is Pauli limited
[103], other experiments seem to contradict these results, pointing to an anisotropic critical
field although agreeing on the Pauli limited upper critical field [104, 105]. However recent
studies have also suggested the existence of a Pauli limit violation in the coercive field[106, 107].
Unfortunately, its origin is still much debated but several studies suggest an unconventional
pairing mechanism.

In what concerns the paring symmetry, early studies on single particle tunneling spectrum
found evidence of two different superconducting gaps suggesting a d + s pairing symmetry
with a major contribution from the d channel [108]. However, a recent study has put the
tunneling results into question since they show that the measured gap does not vanish once the
critical temperature is surpassed. In that regard, they suggest a Coulomb blockade originating
from nanodomains in the surface of the film as the source of these gaps [109]. Despite these
contradicting results, there are other methods to prove the pairing symmetry of the supercon-
ductor. Among them, we can clearly point to studies of the London penetration depth λL and
superfluid density as important probes to reveal the superconducting pairing symmetry. In
that regard, some studies have revealed an anisotropic pairing suggesting a nodal pairing [110],
although lately it was shown to be node-less [111]. The results of these studies point to several
candidates from s-wave pairing, which can be isotropic or anisotropic depending on the rare
earth, node-less d+ s pairing, or multigap s+ s′ symmetry. Other early studies based on the
original raw data of Ref. [66] have suggested that a simple s-wave pairing is actually compatible
and the easiest explanation [112]. In addition, a recent global analysis of all the existing data
on the superfluid density and the London penetration depth has shown that a simple s-wave
phonon-mediated mechanism can properly explain these experiments [113]. Nonetheless, the
author also points to a lack of homogeneity of the samples which ultimately can lead to different
interpretations on the pairing symmetry [113]. These results are also supported by optical
studies of the superconducting samples, revealing that both d-wave and s-wave pairing symmetry
are possible, and suggesting that these superconductors would be type-II superconductors in the
dirty limit, where the Drude scattering rate is bigger than the superconducting gap ℏ

τ
> 2∆ [114].

Superconducting pairing mediators

Nonetheless, the pairing mediator is still not well established where some theoretical DFT
studies seem to discard a phonon-mediated mechanism [115, 116], and propositions of spin wave
mediated mechanism have been made in a similar fashion to the cuprates [117–119]. In what
concerns the excitation spectra of the infinite layer phase, the existence of spin waves has been
shown in these compounds [91, 92], although they do not seem to be able to account for the Tc

enhancement [92]. Other excitations have been reported such as charge density waves (CDW)
even in the undoped case with a (1/3,0) in-plane propagation vector although by doping the
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CDW peak is not clear anymore [120, 121, 98]. This type of modulation has been also proposed
to be able to account for the C4 and C2 rotational symmetry breaking in the superconducting
state [122], although up to date there is no clear picture of it since other studies suggest that a
contribution of the 4f states of the rare earth can also produce these anisotropies [106].

In that regard, several authors try to understand the physics of the undoped RNiO2 phase
and explore how hole doping (h+ in Figure 1.14) affects the electronic structure. Although
this is a valid approach, theoretical calculations show that these compounds are metallic, and
experimentally they are generally found metallic or semi-metallic with a small upturn of the
resistivity at low temperatures [66, 67, 123]. The mentioned upturn does not resemble however a
metal-insulator transition since the resistivity does not increase at least one order of magnitude
(see Figure 1.13 for NdNiO2), but rather an impurity scattering scenario such as the Kondo
effect or weak localization [86]. In addition, some magnetic fluctuations are found [92, 91] with
some theoretical studies suggesting non-collinear magnetism [94, 124]. These results suggest
that the metallic phase of the RNiO2 compounds is complex, albeit without clarifying how hole
doping these unusual metallic systems would improve the conducting properties and produce a
superconducting transition.

1.3 Scope of the thesis

As it is evident from the previous section, there are many questions about these nickelates
that are not completely resolved. Thus, in this thesis we aim to explore these compounds from
a theoretical point of view from first principles.

In particular we will address the following questions: What is the role of the lattice distor-
tions? How does the cation size and the substrate affect the electronic properties? How strong
are the magnetic interactions? Who is responsible for the main magnetic interactions Ni cations
or the rare earths? What are the normal state electronic properties? How should we understand
the role of the doping in the superconductivity? What are the main instabilities and how do
they relate to the superconducting transition? What are the mediators of the superconducting
pairing? Is the electron count the only important factor to consider when designing new super-
conductors? Are these compounds a real analogue to the Cu-based superconductors?

We proceed in chapter 2 to explain the main theoretical tools that we use to answer these
questions, most notably Density Functional Theory, and in chapter 3 we assess the reliability
and limitations of some of the first principles methods that we employ in this study. Once we
are aware of the reliability of the methods, we proceed to study the layered nickelates. Guided
by the absence of different synthesized rare-earth cations, we explore in general the rest of
the undoped rare earth compounds in chapter 4. In particular, we explore in greater detail
the structure depending on the R cation, the substrate and epitaxial strain induced, and H
intercalation on these compounds. Additionally we prove the magnetic ground state and how
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strongly the 4f electrons may interact with the environment. Then we further investigate the
electronic properties of the undoped compounds and how they are affected by the magnetism
and the lattice. Once we understand the general properties of the undoped RNiO2 compounds,
we proceed to study the doping phase diagram in chapter 5 where we aim to explain the
main experimental results and the origin of the superconductivity developing a model. In
chapter 6 we further explore the applicability of the model and what other aspects are worth
considering when designing new superconducting compounds, concluding with a comparison
with other superconducting compounds. Finally in chapter 7 we aim to extend the identified
superconducting model and apply it to related compounds, further discussing the applicability
and other details that may affect the superconducting transition in general.





Chapter 2

Methods

In this chapter we present the theoretical background and methods that are used in this
thesis. The main tool of this thesis is Density Functional Theory (DFT), a technique awarded
with a Nobel prize in 1998, which is used to solve the electronic problem in a solid. In this
chapter, the basics behind the technique are introduced without covering all details of DFT and
its practical implementation since it can cover an entire book. We also present the theoretical
aspects behind Landau’s theory of phase transitions and its applications in studying structural
transitions. Finally, the practical implementation of phonon-mediated superconductivity is
presented as well as its particular implementation with DFT.

2.1 The electronic many body problem

In general, if we are interested in the steady state of an electronic system where the energy
does not change in time, the many-body atomic Hamiltonian containing N electrons and Na

ions can be expressed as

H = −
N∑
j

ℏ2

2me

∇2
j −

Na∑
J

ℏ2

2MJ

∇2
J −

Na,N∑
J,j

ZJe
2

4πϵ0|RJ − rj|
+
∑
i,j
i>j

e2

4πϵ0|ri − rj|
+
∑
I,J
I>J

ZIZJe
2

4πϵ0|RI − RJ |

(2.1)
where me is the mass of the j-th electrons with position vector rj, and MJ are the masses of
the J-th nuclei with ZJ atomic number and position vector RJ . Within the Born-Oppenheimer
approximation, we can disentangle the movement of the cores from the electrons and we can
separate the Hamiltonian in two terms, the electronic part Helec and the nuclear part Hcore

H = Helec + Hcores (2.2)

where the nuclear part is:

Hcores = −
Na∑
J

ℏ2

2MJ

∇2
J +

∑
I,J
I>J

ZIZJe
2

4πϵ0|RI − RJ |
(2.3)
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and the electronic part is:

Helec = −
∑

i

ℏ2

2me

∇2
i −

∑
I,i

ZIe
2

4πϵ0|RI − ri|
+
∑
i,j
i>j

e2

4πϵ0|ri − rj|
= T + Vext + U (2.4)

in which we can identify three main terms: the kinetic energy T , the electron-electron repulsion
U , and the attraction to the cores Vext commonly known as the external potential. This is
also known as the adiabatic approximation which is usually good when dealing with solids and
low-density liquids, gases, or molecules where the movements of the cores are supposed to be
much slower than the movement of the electrons. Thus, one may consider to solve equation
(2.5) considering only the electronic Hamiltonian

Helec |Ψ⟩ = E |Ψ⟩ (2.5)

where E is the energy of the system and |Ψ⟩ = |Ψ(r1, ..., rN , σ1, ..., σN)⟩ is the many-body wave
function of N electrons with spin σ in the Hilbert space of R3N ⊗SN , where S is the spin Hilbert
space. The most general solution to the many-body Schrodinger equation can be obtained with
the many-body Green’s function G.

Ψ =
∫
R3N ⊗SN

GV dµ (2.6)

where V represents all the terms that contribute to the potential energy in the Hamiltonian (In
this specific case V = U + Vext) and µ is the Lebesgue measure. In fact, obtaining the solution
of equation (2.5) is always possible for any Hamiltonian H that is a linear differential operator.

2.2 Density Functional Theory

In order to solve the many-body electronic problem, we consider using Density Functional
Theory (DFT), which is one of the main tools in condensed matter physics to study solids and
molecules. The main advantage of the technique is to avoid the computation of the many-body
wave function Ψ, which presents 3N degrees of freedom plus the spin. Instead, the framework
relies on calculating the electronic density, which presents only 3 spatial degrees of freedom
plus the spin, making it immensely cheaper to use than solving the Schrodinger equation directly.

In that regard, instead of solving the electronic part of equation (2.5) directly using the
wave function. One can use the electronic density which can be defined as

ρ(r, σ) = N
∫
R3N−3⊗SN−1

Ψ∗(r1, ..., rN , σ1, ..., σN)Ψ(r1, ..., rN , σ1, ..., σN)dµ (2.7)

It is quite straightforward to see that a given ρ determines the number of electrons in the system
N . The interesting part of DFT is that for a given Hamiltonian with interacting potential V , the
electron density ρ uniquely defines the potential V , which is known as the first Hohenberg-Kohn
theorem [125]. The proof of this is quite simple. One considers two different Hamiltonians H
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and H′ with the same ground state densities ρ but different wave functions Ψ and Ψ′. The
ground state energy E0 of H then verifies

E0 = ⟨Ψ| H |Ψ⟩ ≤ ⟨Ψ′| H |Ψ′⟩ (2.8)

Then if the ground state of the two Hamiltonians is different we can state that

E0 < ⟨Ψ′| H |Ψ′⟩ = ⟨Ψ′| H′ |Ψ′⟩ + ⟨Ψ′| H − H′ |Ψ′⟩ (2.9)

which can be simplified as

E0 < E ′
0 −

∫
R3⊗S

ρ(r, σ)(V − V ′)dµ (2.10)

where E0 and E ′
0 are the ground state energies of H and H′, respectively, and V and V ′ are the

potentials that uniquely defines each Hamiltonian. It is also straightforward to identify that

E ′
0 < E0 −

∫
R3⊗S

ρ(r, σ)(V ′ − V )dµ (2.11)

If we add both (2.10) and (2.11) equations, we reach a contradiction since we obtain that
E0 + E ′

0 < E ′
0 + E0. This means that V and V ′ are the same as long as they have the same

ground state density ρ. This is quite convenient since we know that for an interacting system, a
Hamiltonian H is uniquely defined by its potential V , and for a given Hamiltonian H we can
obtain a unique solution Ψ as long as the Hamiltonian is a linear differential operator from
equation (2.6). Now since ρ determines V as it is given by combining the two inequalities (2.10)
and (2.11), and V determines Ψ as it is expressed in (2.6), then it follows that Ψ is determined
by ρ, or in other words, the many-body wave function is a functional of the density Ψ = Ψ[ρ].
As a consequence, one is also able to express the energy as a functional of the density

E[ρ] = ⟨Ψ[ρ]| Helec |Ψ[ρ]⟩
⟨Ψ[ρ]|Ψ[ρ]⟩ (2.12)

and assuming a normalized Ψ we get

E[ρ] = ⟨Ψ[ρ]| Helec |Ψ[ρ]⟩ . (2.13)

the different contributions to the total energy can be separated as follows

E[ρ] = T [ρ] + U [ρ] + Vext[ρ] = F [ρ] + Vext[ρ] (2.14)

where F [ρ] is called the universal functional since it is not material specific. The functional of
the external potential can be expressed as

Vext[ρ] =
∫
R3⊗S

ρ(r, σ)Vextdµ. (2.15)
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From this point, one can obtain the ground state energy by minimizing the energy functional with
respect to the density using variational calculus. This is known as the second Hohenberg-Kohn
theorem. The proof is also quite simple to state. One consider again a Hamiltonian H with a
density ρ and an energy functional E[ρ] such that

⟨Ψ[ρ]| H |Ψ[ρ]⟩ = E[ρ] < ⟨Ψ′[ρ′]| H |Ψ′[ρ′]⟩ = E[ρ′] (2.16)

since ρ′ is a different density then it follows that E[ρ] is lower in energy than E[ρ′] and so by
minimizing E we can obtain the ground state energy. The corollary of this theorem is that
by means of variational calculus, we can obtain the true ground state just by minimizing the
energy functional E[ρ]. These two theorems show that we get the same information concerning
the ground state energy and properties related to the energy from Ψ, which is a 3N dimensional
object plus the spin, than from ρ that has only 3 dimensions plus the spin. This means that it
is much more appealing to work with ρ than with Ψ in terms of computational resources.

2.2.1 Kohn-Sham DFT

Although the two Hohenberg-Kohn theorems allow to reformulate the many-body problem in
terms of the electronic density, DFT would have remained dormant since obtaining the density
is not an easy task and in general the F [ρ] energy functional is unknown. Here is where the
Kohn-Sham scheme comes into place and what in practice gave DFT real predictive power [126].
In order to alleviate the notation and avoid extra technical details, we drop the spin degree of
freedom to illustrate the ideas behind the Kohn-Sham scheme. Nonetheless, the same ideas
apply when the spin degree of freedom is introduced. One considers that the many-body wave
function can be expressed as the antysimmetrized product of single-particle wave functions ϕi

(the Slater determinant of single-particle wave functions)

Ψ =
√
N !A[ϕ1ϕ2 . . . ϕN ] (2.17)

were A is the antisymmetrizing operator. This is known as the Kohn-Sham ansatz. One can
then express the density as follows

ρ(r) =
N∑

i=1
|ϕi(r)|2 (2.18)

Under this assumption, we make use of an auxiliary problem of single independent particles and
we can express the energy functional in the following manner

E[ρ] = Ts[ρ] + EH [ρ] + Exc[ρ] +
∫
Vext(r)ρ(r)dr (2.19)

were Ts is the non-interacting kinetic energy that can be expressed as

Ts[ρ] = − ℏ2

2me

N∑
i=1

⟨ϕi| ∇2
i |ϕi⟩ = − ℏ2

2me

N∑
i=1

|∇ϕi|2 (2.20)



2.2 Density Functional Theory 37

then we define the classical Coulomb interaction as the Hartree energy term EH

EH [ρ] = 1
2
e2

4πϵ0

∫∫ ρ(r)ρ(r′)
|r − r′|

drdr′ (2.21)

and now the next term will take into account all extra effects that the two previous terms are not
accounting. This term is commonly known as the exchange and correlation energy functional
Exc and is defined as

Exc[ρ] = T [ρ] + U [ρ] − Ts[ρ] − EH [ρ] = (T [ρ] − Ts[ρ]) + (U [ρ] − EH [ρ]) (2.22)

it is easy to see that the exchange and correlation functional would account for corrections in
both the kinetic and potential energy. From this point we can now minimize the energy with
respect to the density obtaining the following Euler-Lagrange equation

µ̃ = Veff (r) + δTs[ρ]
δρ(r) (2.23)

where µ̃ is a Lagrange multiplier (also known as the chemical potential) that ensures the
constraint ∫

ρ(r)dr = N (2.24)

and Veff (r) is the Kohn-Sham effective potential defined by

Veff (r) = Vext(r) + VH(r) + Vxc(r) (2.25)

Here VH is the Hartree potential defined as

VH(r) = δEH [ρ]
δρ(r) = e2

4πϵ0

∫ ρ(r′)
|r − r′|

dr′ (2.26)

and Vxc is the exhchange-correlation potential defined as

Vxc(r) = δExc[ρ]
δρ(r) (2.27)

We must note that we do not have an explicit formula for most of the terms in the exchange
and correlation functional. However, we can use an indirect approach to obtain the real density
using the chain rule so that

µ̃− Veff (r) = δTs[ρ]
δϕi

δϕi

δρ(r) (2.28)

which defines a set of N one-electron equations[
− ℏ2

2me

∇2 + Veff (r)
]
ϕi = εiϕi (2.29)

where εi are the Lagrange multiplier identified as the Kohn-Sham energies. We can realize that
this is the same as solving N Schrodinger equations for non-interacting electrons. From this
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point, we can obtain a self-consistent equation by first introducing a guess density ρ in (2.25),
then the density defines the effective potential Veff , and then from the potential we obtain the
single particle wave function ϕi by solving (2.29), which defines the new density ρ as it is stated
in (2.18).

2.2.2 Density functionals

Now we have mentioned that we have a term in the effective potential called exchange-
correlation potential, that depends only on the exchange-correlation energy functional (2.27).
One can express this energy term as two separate contributions

Exc[ρ] = Ec[ρ] + Ex[ρ]. (2.30)

The first term is the correlation energy Ec and the second is the exchange energy Ex. The
correlation energy accounts for the collective behavior of the electrons in the material screening
and decreasing the Coulomb repulsion, while the exchange energy often called Pauli energy
accounts for the fermionic behavior of the electrons producing that the electrons with similar
spin stay far from each other respecting the Pauli principle. As we can note the correlation
energy becomes more important for electrons with opposite spins since the exchange energy
do not push them away from each other.The exact expression of these two terms is completely
unknown and must be approximated.

Local Density Approximation

The first and most famous approximation is the Local Density Approximation (LDA) which
assumes that the interaction between electrons will be weak and short-ranged so that only the
local electrons will play an important role. Under these assumptions, the kinetic energy is
evaluated in the so-called Thomas-Fermi approximation as the expectation value of the kinetic
energy of a homogeneous electron gas

Ts[ρ] = CF

∫
ρ(r) 5

3dr (2.31)

where CF = 3
10(3π2) 2

3 . In LDA, the exchange energy can be computed as

Ex[ρ] =
∫
ρ(r)εx[ρ]dr = Cx

∫
ρ(r) 4

3dr (2.32)

with Cx = 3
4( 3

π
) 1

3 and εx[ρ] = Cxρ
1
3 the exchange energy density. The last term would be the

correlation energy which can be expressed in terms of the correlation energy density εc as

Ec[ρ] =
∫
ρ(r)εc[ρ]dr (2.33)

Unfortunately, there is no closed analytical expression for this terms. Only two expressions are
known for the homogeneous electron gas (HEG) at high and low-density limits. In the case
of high density, we have that the correlation energy density for the unpolarized case can be
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computed by
εc = A log(rs) +B + rs (C log(rs) +D) + . . . (2.34)

and in the low-density limit, we have

εc = 1
2

(
a0

rs

+ a1

r
3/2
s

+ a2

r2
s

+ . . .

)
(2.35)

where A,B,C,D, a0, a1, a2 are constant terms and rs is a dimensionless parameter that is related
to the electron density as follows

4
3πr

3
s = 1

ρ
(2.36)

In practice, the correlation energy is interpolated from Quantum Monte-Carlo methods, where
the most used parametrization of the correlation energy is given by Vosko et al, [127] and
Pardew and Zunger [128].

Generalized Gradient Approximation and beyond

Despite its success, the local density has the propensity to over bind the system. Nonetheless,
the exchange and correlation energy functionals can be better improved by means of the gradient
expansion, in what is known as the Generalized Gradient Approximation (GGA) [129, 130], in
which the energy functionals will now depend on the gradient of the electron density |∇ρ|.

EGGA
xc [ρ] =

∫
ρ(r)εxc[ρ, |∇ρ|]dr (2.37)

This approach improves the exchange and correlation description of the system with respect to
LDA, although it is well known that not every aspect is improved since in general it produces
underbinding as opposed to the overbinding of LDA. Popular examples of these types of
exchange-correlation functionals are the Perdew Burke Ernzerhof (PBE) [131], Perdew Wang
(PW91) [132] and Becke Lee Yang Perdew (BLYP) [133–135]. From this point, there are other
improvements, such as meta-GGA functionals that include the Laplacian of the density ∇2ρ.

Emeta−GGA
xc [ρ] =

∫
ρ(r)εxc[ρ, |∇ρ|,∇2ρ]dr (2.38)

In some cases, they are also semi-local functionals since they introduce a dependence on the
kinetic energy density τ of the occupied Kohn-Sham eigenstates that is computed as

τ = ℏ2

2m

occ∑
i

|∇ϕi(r)|2 (2.39)

The nonlocality comes from the dependence on the occupied Kohn-Sham eigenfunctions ϕi

since they are nonlocal objects of the density. These types of corrections would account mainly
for a correction in the kinetic energy, or in other words, would improve the description of the
correlation term of the energy. In this case, the exchange and correlation energy is expressed as

Emeta−GGA
xc [ρ] =

∫
ρ(r)εxc[ρ, |∇ρ|, τ ]dr (2.40)
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Examples of these types of functionals are the Tao Pardew Staroverov Scuseria (TPSS) [136]
and the Strongly Constrained and Appropriately Normed (SCAN) [137].

So far, most of these functionals are still not able to properly account for the exchange and
correlation phenomena delocalizing the electronic density too much. This produces delocalization
errors that lead to underestimating the band gap in insulators and, in some cases, predicting
metallic systems instead of insulating. This is especially the case of highly localized states like
3d or 4f electrons. The main origin of this is the fact that the EH energy includes the electron
density of all the electrons, and as a result when the VH potential is acting on each electron,
each electron would interact partly with its own potential, producing a self-interaction. This is
not a flaw of the theory since, in principle, the self-interaction part of the VH potential should be
canceled by the Vxc potential. It is actually a problem of implementation since the Exc energy
term has to be approximated.

Hybrid functionals

However, a different approach can be used. One can recall that in Hartree Fock (HF) theory,
the energy of the systems includes both Coulomb and Exchange energy terms and they present
closed analytical forms. The main drawback is the absence of correlations. Nonetheless, this
means that we can design a functional that includes elements from both pure DFT and HF
theory, obtaining a DFT+HF functional so that is able to better cancel the VH potential, and
reduce the self interaction errors. This is the essence of the so-called hybrid functionals that
include a fraction of HF exact exchange expressed as

EHF
x = −e2

2
∑
i,j

∫∫ ϕ∗
i (r)ϕ∗

j(r′)ϕj(r)ϕi(r′)
4πϵ0|r − r′|

drdr′ (2.41)

Then, we can construct the energy functional as a combination of DFT and HF contributions
as follows

Ehyb
xc = aELDA

x + bEGGA
x + cEHF

x + dELDA
c + (1 − d)EGGA

c (2.42)

where a, b, c, d are constants ranging between 0 and 1. The actual parametrization usually is
fitted to match experiments or theoretical results of higher methods. Famous examples of such
functionals are the Becke (1 parameter) Wu Cohen (B1WC) [138] with the particular choice of
a = d = 0, b = 1 − c and c = 0.16 using the PW91 GGA functional, and the Becke (3 parameter)
Lee Yang Pardew (B3LYP) [139] with the particular choice of a = 1 − c− b, c = 0.2, b = 0.72
and d = 0.81 using the BLYP GGA functional. These types of functionals are called global
hybrids since the correction on the exchange energy is made for all ranges. In contrast with these
functionals, we can mention the range-separated hybrid functionals where the exact exchange is
only introduced as a correction in the short-range regime, while leaving the long-range exchange
DFT energy uncorrected. In practice, this implies partitioning the electron-electron interaction
kernel as follows

1
|r − r′|

=
ξSR

µ (|r − r′|)
|r − r′|

+
1 − ξSR

µ (|r − r′|)
|r − r′|

=
ξSR

µ (|r − r′|)
|r − r′|

+
ξLR

µ (|r − r′|)
|r − r′|

(2.43)
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here ξSR
µ is a smooth range separation function which is commonly chosen to be an error function

ξSR
µ = erf(µ|r−r′|), or an exponential ξSR

µ = e−µ|r−r′|, where µ is the range separation parameter
that determine the considered short and long range length scales. In this way, the functional
is constructed by considering the HF exact exchange with the short-range kernel while the
long-range part is left untouched. A popular way to construct the functional is given by

Ehyb
xc = αEHF,SR

x (µ) + (1 − α)EGGA,SR
x (µ) + EGGA,LR

x (µ) + EGGA
c (2.44)

with 0 ≤ α ≤ 1. As we can note, the range separation is only applied to the exchange part and
the correlation energy term is left untouched. The success of these hybrid functionals is the fact
that they start to predict rather accurate results, while not being as expensive as usual quantum
chemistry methods such as the coupled cluster expansion, or the configuration interaction
methods. In particular, in this thesis, we will be using in some cases the range-separated hybrid
functional of Heyd Scuseira Ernzerhof of 2006, known as HSE06 [140] with α = 1

4 and µ = 0.2.
The choice of this functional is made by the fact that is in general well suited for solids and in
particular rare earth oxides.

DFT+U scheme

Apart from introducing some exact Hartree Fock exchange to our DFT functional, there is
another way to improve the exchange-correlation description, which is to introduce an onsite
potential U acting on a subset of orbitals, in order to improve the electron localization reducing
the self interaction errors. This approach is known as the DFT+U approach [141], in which in
its simplest formulation, the energy can be computed as

EDFT+U = EDFT + U

2
∑
σi,I

nI
i,σ

(
nI

i,σ − 1
)

(2.45)

where, nI
i,σ is the occupation number of an electron i with a given angular momentum, with

spin σ at the ion I. The inclusion of this term ensures that the minimum energy is achieved
at integer electron occupation numbers nI

i,σ preventing delocalization. This type of corrections
accounts for the electronic correlations that can be important for transition metal elements
and rare-earths, where the electronic structure is more localized. This type of approach is very
popular since we may achieve a similar accuracy as employing a hybrid functional but with a
more modest computational cost using a functional within LDA or GGA approximation. The
drawback is that the U potential is a free parameter and it has to be carefully selected for each
specific case.

2.2.3 Spin polarized DFT

The discussion that we made in the previous sections did not involve explicitly the spin
degree of freedom. In that regard, we elaborate a bit on the difference in the previous results
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when the spin degree of freedom is introduced without giving too many details.

In what concerns to the Hohenberg and Kohn theorems essentially they remain the same
with a small difference. Instead of using the density ρ, it can be decomposed into spin up and
spin down densities

ρ(r) = N
∫
R3N−3⊗SN

Ψ∗(r1, ..., rN , σ1, ..., σN)Ψ(r1, ..., rN , σ1, ..., σN)dµ = ρα(r) + ρβ(r) (2.46)

where ρα(r) = ρ(r, ↑) and ρβ(r) = ρ(r, ↓) are the spin up and down densities, respectively. Then
the energy minimization can be made with respect to ρα and ρβ in the same spirit as previously
discussed.

Regarding the practical implementation in the Kohn-Sham scheme, the main difference is
that the many body wave function is constructed with single particle spin wave functions ϕi,σ,
and since we minimize with respect to ρα and ρβ we will have two sets of equations to solve. In
practice, this procedure involves selecting a total scalar magnetization M defined by

M =
∫
R3

(ρα(r) − ρβ(r))dµ (2.47)

and then minimizing the energy keeping that total magnetization state. In what concerns to
the DFT functionals, most of them follow the approach proposed by the Local Spin Density
approximation (LSDA) [127], which consists on separating the density into two different terms
for up and down spin electrons

Exc[ρ] =
∫
εxc[ρα, ρβ,∇ρα,∇ρβ, . . . ]dµ (2.48)

and then express the energy functional as in (2.48) with a separate dependence on the up
or down density, where εxc is the exchange and correlation energy density. Finally one may
wonder what happens if the spin texture of our material would not be colinear but actually
present different spin orientations. In such cases, instead of dealing with the density ρ or the
two densities ρα and ρβ or alternatively the total density ρ and scalar the magnetization M , we
would need to use the density matrix ραβ defined as

ρκν = ⟨κ|Ψ⟩ ⟨Ψ|ν⟩ (2.49)

where ⟨Ψ| is now a spinor ⟨Ψ| = (⟨Ψα| , ⟨Ψβ|) and ⟨ν| , ⟨κ| can be ⟨α| or ⟨β| the spin up and
down eigenstates, respectively. This can be formulated alternatively as

ραβ = ρI + m · σ (2.50)



2.2 Density Functional Theory 43

where σ = (σx, σy, σz) is a vector with the Pauli spin matrices σµ, and m = (mx,my,my) is the
magnetization density vector whose components are defined as

mx = ⟨α|Ψ⟩ ⟨Ψ|β⟩ + ⟨α|Ψ⟩ ⟨Ψ|β⟩
my = i(⟨β|Ψ⟩ ⟨Ψ|α⟩ − ⟨α|Ψ⟩ ⟨Ψ|β⟩)
mz = ⟨α|Ψ⟩ ⟨Ψ|α⟩ − ⟨β|Ψ⟩ ⟨Ψ|β⟩

(2.51)

However the non-colinear DFT is much more costly in terms of computational resources than
the colinear case and in many cases the colinear approach is sufficient to capture the trends in
the structure, magnetism and electronic properties of compounds.

2.2.4 Basis set

As we mentioned, the Kohn-Sham approach requires obtaining N single-particle wave functions
for which we do not have a closed analytical form. For that reason, we can recall that each of
the single-particle wave functions can be expanded in any orthonormal basis {|χα⟩} this is

|ϕi⟩ =
∑

α

⟨χα|ϕi⟩ |χα⟩ =
∑

α

fαi |χα⟩ (2.52)

where fαi are the expansion coefficients.

Plane wave basis set

One of the possible choices of basis set especially well suited for solids is the plane wave
basis set. This choice exploits the fact that any periodic function can be expressed as a Fourier
series, where each of the single-particle wave functions can computed in the following manner

|ϕi⟩ =
∑

q
ci,q

1√
Ω
eiqr =

∑
q
ci,q |q⟩ (2.53)

Here ci,q are the expansion coefficients, Ω is the volume of the system and |q⟩ are the plane
waves basis functions characterized by the wave vector q. One can easily notice that this basis
has the particularity that each of the basis functions is an eigenstate of the momentum operator
q̂. Thus allowing us to work directly on the reciprocal space and compute the energy spectra in
the first Brillouin zone. In this way, we can express the basis functions as

χG
k = 1√

Ω
ei(k+G)r (2.54)

with k being the electron momentum in the first Brillouin zone and G is a reciprocal lattice
vector. One must note however that making this choice of basis implies an infinite number of
basis functions, and in practice, we must define a cut-off of these expansions by |k + G| < Gmax

which defines as well the maximum kinetic energy, since Tk+G ∼ |k + G|2. The strong point of
the choice of this basis is that we can increase the accuracy of our description by just increasing
a single parameter Gmax, and it is easy to obtain the matrix elements of the different observables.
The weakness of this is that upon increasing the energy cut-off, the basis set increases rapidly,
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and the number of plane waves required to describe the density fluctuations accurately can be
beyond the available computational resources. For that reason, it is usually required to consider
the core electrons as an effective potential and explicitly treat only a small amount of the outer
electrons. This is known as the pseudopotential approach and is quite successful in reducing the
computational resources required for the calculations.

Gaussian basis set

However, we can make a different choice of basis so that it is finite and consequently the
computation time can be greatly improved. A classical choice is to use localized orbitals such as
Gaussian-type orbitals (GTO) which can be described by

χGT O = N r2le−αr2
Y m

l (θ, φ) (2.55)

where N is a normalization constant, Y m
l (θ, ϕ) are the spherical harmonics and α is a fitting

parameter to account for the width of the Gaussian. The choice of this basis presents several
advantages, especially since the basis increases almost linearly with the size of the system and
as a consequence is not as computationally expensive. The main weakness is that is not a
complete basis set and as a consequence, the basis functions are introduced ad hoc and there is
no guarantee of improvement upon increasing the basis set.

The two options of basis sets present its strengths and weaknesses where the GTO approach
would be better for insulators since one could expect a localized electronic structure, while for
metals the plane wave approach would be more suitable since a more delocalized structure is
expected. In this thesis, we will mainly use the Vienna ab initio simulation package (VASP)
[142–144] which is a plane wave code with projector augmented wave (PAW) pseudopotential
basis set [145] and so if not stated otherwise we will be dealing with this approach. One must
note however that we have used in some cases the code CRYSTAL which uses the method of
linear combination of atomic orbitals (LCAO) in particular using GTO. The reason behind using
a different type of code and basis set is the fact that when a hybrid functional is needed to obtain
accurate results, using plane waves as a basis set is very expensive in terms of computational
resources since the explicit evaluation of the exchange integrals requires to calculate the single-
particle wave functions at each step and even with pseudopotentials it is still too demanding in
some cases. This however is not the case for Gaussian-type orbitals since the exchange integral
does not increase especially the computational cost.

2.2.5 Wannier Functions

One of the well-known theorems in solid-state physics is Bloch’s theorem which states that
the eignestates of the Schrodinger equation in a periodic potential V (r + R) = V (r), where R
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is a lattice vector, can be expressed as

|Ψn,k(r)⟩ = |un,k(r)⟩ eikr (2.56)

where un,k is a periodic function with the periodicity of the lattice, and k is the wave vector.
Now as we said before, any of these eigenstates can be expanded in a complete basis set, and
one of particular interest is the one given by the Fourier transform of these eigenstates, where
the basis functions are known as wannier functions wn.

|wn⟩ = 1
ΩBZ

∫
BZ

|Ψn,k(r)⟩ e−ikRdk (2.57)

where ΩBZ is the volume of the first Brillouin Zone. One could in fact consider several bands n
and obtain a wannier function as follows

|wm⟩ = 1
ΩBZ

∫
BZ

∑
n

Um,n(k) |Ψn,k(r)⟩ e−ikRdk (2.58)

where Um,n is an arbitrary unitary matrix. However, this introduces a degree of arbitrariness
since there is no unique unitary transformation. A common choice for these types of functions is
to be localized and as a result, a strategy is to take the unitary transformation that minimizes
a spread function Ω. One of the most popular definitions of this is to minimize the spatial
variance defined as follows

Ω =
∑
m

(
⟨wm| r2 |wm⟩ − ⟨wm| r |wm⟩2

)
=
∑
m

(
⟨r2⟩m − ⟨r⟩2

m

)
(2.59)

This particular choice of wannier functions are called maximally localized wannier functions
(MLWF)[146, 147]. One of the advantages of the wannier functions is that it can be used to
calculate properties related to the electronic structure on coarser k grids than those obtained by
our DFT simulations. For instance, obtaining the density of states in a metal which is defined as

ρ(ε) = 1
Ω
∑

k
δ(ε− εk) (2.60)

can be a very difficult task to obtain directly from our DFT calculations since it requires
to evaluate the energy for a very coarse grid of k points, and hence an immense amount of
computational resources. In contrast, we could obtain the projected density of states by means
of the Wannier functions (WF) since

ρ(εm) =
∑
n,k

| ⟨wm|ψn, k⟩ |2δ(ε− εn,k) =
∑
n,k

|Um,n(k)|2δ(ε− εn,k) (2.61)

From this point it might seem as if we would not have gained much, but the power behind
the scheme is to use interpolation techniques over the band structure so that we can calculate
the energy on much more k-points. This is known as Wannier interpolation and it allows to
increase the grid by several orders of magnitude with a modest computational cost. In the
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present work, we have employed the WANNIER90 package [148] mainly for constructing MLWF
and obtaining accurate values for the density of states.

2.2.6 Paramagnetism with DFT

In many cases, the system that we study does not present a long-range magnetic order, while
it can develop a finite magnetization M without hysteresis when a magnetic field H is applied.
In these particular cases, the system is called paramagnetic (PM). Modeling PM in solids with
DFT is quite challenging since for bulk solids DFT uses periodic boundary conditions while a
PM compound does not present periodicity on the local magnetic moments µi. Nonetheless, we
can aim to model a PM with an antiferromagnetic arrangement in a finite supercell but with a
random distribution of the local magnetic moments µi. This representation converges to the
real PM phase in the limit of an infinitely large supercell. Thus increasing the supercell size will
always improve the results.

However, this method is not widely used in the literature, and instead of a random spin
PM, several authors directly use a non-spin polarized solution (NM) to model PM. This is
nothing but a good practice since it neglects the spin degree of freedom in the simulations even
though the system presents local magnetic moments. In order to illustrate the limitations of
this approach, we can compare the formulation of LDA and LSDA approximation to DFT. As
we discussed previously, in LDA, the exchange energy density has the following dependence on
the density

εLDA
x [ρ] = Cxρ

1/3 (2.62)

while in the LSDA, there are two quantities that the exchange energy depends on, the total
density ρ(r) = ρα(r) + ρβ(r) and the spin polarization ζ defined as

ζ = ρα(r) − ρβ(r)
ρα(r) + ρβ(r) (2.63)

Now the exchange energy density in the LSDA can be written as

εLSDA
x [ρ, ζ] = −1

2Cxρ
1/3[(1 + ζ)1/3 + (1 − ζ)1/3] (2.64)

It is easy to see that if the system has closed shells with all electrons paired, both formulations
are equivalent, since

ρα(r) = ρβ(r), ∀ r ∈ R3 (2.65)

and we have that LDA and LSDA produce the same exchange functional. This situation would
correspond to diamagnetic systems (DM). However, this is the only point in common since if
there are unpaired electrons, the equivalence in Eq.(2.65) does not hold, since it requires local
symmetry in the spin densities and if there are unpaired electrons in the atoms, by definition
the spin densities cannot be equivalent locally in the atoms. In fact, for a PM arrangement, the
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condition that the system must obey is a global symmetry that can be expressed as∫
(ρα(r) − ρβ(r)) dr = 0 (2.66)

This means LSDA and LDA would not have the same exchange energy. One can also note in
Eq.(2.67) that the correlation energy is different between LDA and LSDA, since by construction,
the correlation energy in LSDA introduces a correction to the case of ζ = 0 (which is the
correlation energy on LDA εc[ρ, 0] = εLDA

c [ρ]).

εLSDA
c [ρ, ζ] = εc[ρ, 0] + ∆εc[ρ, ζ] (2.67)

Both results show that the exchange and correlation phenomena of a DM system is not equivalent
in general to a PM system. Thus it becomes quite evident that using the NM approximation is
not appropriate to model PM systems and should be used only in DM system or in non-magnetic
compounds. In contrast when modeling PM system the spin degree of freedom is crucial to
include at any level of description of the exchange and correlation phenomena. One approach to
model the PM phase is to increase the size of the supercell used in the calculations and produce
a random distribution of spins with equal population on each spin channel (see Figure 2.1).

x
y

z

Fig. 2.1 Sketch of the distribution of the magnetic moments in a PM arrangement.

In order to do so, we use the Alloy Theoretic Automatic Toolkit (ATAT) [149] which allows
to create a random distribution of two different cations through the Special Quasirandom
Structure method (SQS) [150]. Here, the two types of cations would not belong to two different
atomic species but to the up and down spin configurations. Thus, by asking for a distribution of
two types of atoms on the same sites with equal populations, one is able to obtain a finite-size
approximation to the PM state that asymptotically converges to the real PM phase. This
approach was successfully applied to oxide compounds [13, 151], allowing us to capture the
trends in metallic and insulating behavior in the PM state.
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2.2.7 Models of magnetism and DFT

Although the structure of the system is one of the most important features to study in a
given material, magnetic interactions usually play a very important role in understanding the
low-energy physics of different materials. One of the most simple and widely used models of
magnetism is the Heisenberg model which presents the following Hamiltonian

HHeis =
∑
i,j

Ji,jSiSj (2.68)

where Ji,j is the exchange constant and Si, Sj are the spins involved in the interaction. Now we
can note that this simple Hamiltonian expresses the contribution of the magnetic texture of the
system to the total energy. This is quite interesting since from DFT we can evaluate rather
easily the total energy of the system in a given magnetic configuration. This means that we
could in principle evaluate the exchange constants from DFT by calculating different magnetic
textures in different supercells. For instance, for a system with two atoms with the same spin
|Si| = |Sj|, the Hamiltonian would be

H = Ji,jSiSj (2.69)

If both spins are parallel to each other in the same direction, then we have that the total energy
of the system would be

EFM
DFT = E0 + JS2 (2.70)

where E0 is the energy independent of the magnetic arrangement. However, if the spins present
opposite directions, then the total energy is

EAFM
DFT = E0 − JS2 (2.71)

we can now subtract (2.71) from (2.70) and obtain

∆E = EFM
DFT − EAFM

DFT = 2JS2 (2.72)

which allows us to determine both the magnitude and the sign of the exchange constant, with
J > 0 (J < 0) being antiferromagnetic (ferromagnetic) coupling. This Hamiltonian can be
further improved by adding different terms that would add complexity to the interactions of the
system but in essence, the method to obtain the coupling constants would be equivalent. For
further insights about magnetic Hamiltonians and how to model magnetic systems, we refer to
Ref. [152].

2.3 Landau Theory of Phase Transitions

The Landau Theory of phase transitions is a phenomenological theory that can be applied
in general to any physical system that presents a change in the number of symmetries between
the two phases involved in the phase transition. Although there are other theories like the
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Renormalization Group (RG) or the finite size scaling theory, that can capture better the physical
phenomena than the Landau theory, it remains a rather powerful tool to use when studying
second and first-order phase transitions, being able to capture the essential characteristics of
them. The key ingredients are that the free energy of a system F is an analytic function and
obeys the symmetries of the Hamiltonian. If this holds true, then it is possible to expand the
Free energy in a Taylor series of the order parameter η

F [η] = F0 + a1η + a2η
2 + a3η

3 + a4η
4 + . . . (2.73)

Depending on the symmetries of the system there could be cases where the Hamiltonian is
invariant under a sign change of the order parameter η. This means that the free energy would
be an even function F [η] = F [−η] and only even powers in the expansion will be considered

F [η] = F0 + a2η
2 + a4η

4 + . . . (2.74)

An example of this could be a magnetic system where the order parameter is the magnetization
M, or a Ferroelectric system where the order parameter would be the polarization P. In general,
this would depend on the specific conditions of the system whether there are odd or only even
terms in the expansion. The key to describing these transitions is the fact the expectation
value of the order parameter is equal to zero in one of the phases, while it develops a non-zero
value in the other phase (see Figure 2.2). This is completely general but we will be particularly

η

F [η]

η0

phase A η = 0

phase B η > 0

Fig. 2.2 Picture of the free energy F for two phases A and B (red and blue line, respectively)
with an order parameter η.

interested in describing the structural transitions of materials. One can study the structural
phase transitions of the materials realizing that when there is a structural transition due to the
appearance of certain lattice distortions, some of the spatial symmetries of the previous phase
have been broken. In that regard, we can see a change in the symmetry of the system between
the two phases. The question here is how do we establish the order parameter and what is the
Hamiltonian that can account for it?

Since we are dealing with structural phase transitions, the main parameter to study will
be the position of the atoms R, which of course at finite temperature will oscillate around the
equilibrium position R0. Thus the hamiltonian that is suitable to study these transitions is the
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vibrational hamiltonian which can be expressed as

Hvib =
∑

J

P 2
J

2MJ

+ VN(RJ) (2.75)

where PJ is the momentum of the atom J , MJ its mass, RJ the position and VN(RJ) is the
potential which can be expressed as

VN(RJ) = 1
2

3∑
µ,ν=1

kµν(RJ)µ(RJ)ν + 1
6

3∑
µ,ν,σ=1

kµνσ(RJ)µ(RJ)ν(RJ)σ + . . . (2.76)

where (RJ)µ is the µ component of the position RJ , and kµν or kµνσ are the parameters of
the expansion. Thus the free energy should have an order parameter η that depends on the
positions of the atoms RJ and is able to incorporate the symmetries involved in the transition.
One of the most natural ways to incorporate this is to use group theory and the group-subgroup
relations between the two phases.

Lets us consider then that the crystals of the high and low symmetry phases are characterized
by the space groups H and L respectively. If there is a group-subgroup relation L ⊂ H where L
is a subgroup of H, we can then express the total displacement of the atoms ∆(R) as the linear
combination of the basis functions fµ(R) of an n-dimensional representation Γ of the parent
group H.

∆(R) =
n∑

µ=1
ηµfµ(R) (2.77)

Then the coefficients ηµ are the components of an n-dimensional vector η which will be called
the order parameter [153]. The representation Γ will be a reducible representation containing
all the irreducible representations of the symmetry operations h ∈ H and we can express it as
the direct sum of all the irreducible representations of the symmetry operations D(h)

Γ = D(h1) ⊕D(h2) ⊕ · · · ⊕D(hN) (2.78)

Now the basis functions fµ(R) will be the basis functions of an irreducible representation D(h),
allowing us to associate the different lattice distortions with a given symmetry h ∈ H. Then
the components of the order parameter ηµ, can be identified as the amplitude of these lattice
distortions with that given symmetry. To obtain these amplitudes, we will use the software
AMPLIMODES implemented in the Bilbao Crystallographic Server which automatically imple-
ments an algorithm to obtain the different components of the order parameter η. The details
about the implementation can be obtained from the following references [154, 155].

Once we know the order parameter η we are only left with the task of obtaining the free
energy expansion. The most general expansion of the free energy would be

F = F0 +
∑

µ

aµηµ +
∑
µ,ν

aµνηµην +
∑
µνσ

aµνσηµηνησ + . . . (2.79)
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with aµ, aµν and aµνσ are the expansion parameters, and we include all possible couplings
between the different components of the order parameter η. As we mentioned before, depending
on the symmetries of the system, some of the coefficients in the free energy expansion would be
zero since the free energy will respect those symmetries. Thus in our case, the symmetries h
associated with the components ηµ of the order parameter must be respected by all the terms
in the Taylor expansion of the free energy. Applying a symmetry operation over η, this is hη
corresponds to the application of the irreducible representation D(h) over the vector η resulting
in a vector η′ = Dη

η
′

µ =
n∑

ν=1
Dµνην (2.80)

Then to get the Taylor polynomial Tp of degree p of our free energy F that respects a given
symmetry operation, we must satisfy the condition Tp(Dη) = Tp(η) since our free energy will also
respect F [Dη] = F [η]. In order to generate the different terms that respect all the symmetries,
we use the software INVARIANTS [156] implemented in the package ISOTROPY [157]. In this
way, we can study the origin of the phase transitions and associate them to a given term in
the free energy expansion as well as studying the possible couplings between different lattice
distortions.

2.4 Superconductivity

As mentioned before in the first sections of chapter 1, the superconducting state is charac-
terized by the appearance of an attractive interaction between the electrons that overcomes
the Coulomb repulsion. Usually, the simplest mediators that come into place are phonons.
As a consequence, the key quantity to calculate is the electron-phonon coupling constant λ.
We have presented in the previous chapter the BCS theory which accounts for only acoustic
phonons as mediators. However, this can be generalized and we can evaluate the electron-phonon
interactions for all types of phonons and for all phonon wave vectors q where the total interaction
will be

λ =
∑

q
λq (2.81)

where λq is the electron-phonon coupling for a given wave vector q. Within the Midgal
approximation, this quantity can be evaluated as

λ = 2
N(εF )Nq

∑
k,q,ν

|Mν
k,k+q|2

ωq,ν

δ(εk − εk+q − ωq,ν)f(εk) − f(εk−q)
εk − εk−q

(2.82)

where N(εF ) is the density of states at the Fermi level per spin, Nq is the number of q points,
ωq,ν is the phonon energy for a given q point of branch ν, Mν

k,k+q is the electron-phonon matrix
element, and f(εk) is the Fermi-Dirac occupation function. One now may assume that the
energy range where the pairing occurs is close to the Fermi level so that we can take the last
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term as the derivative of the occupation number around the Fermi level εF

λ = 2
N(εF )Nq

∑
k,q,ν

|Mν
k,k+q|2

ωq,ν

δ(εk − εk+q − ωq,ν)δ(εk − εF ) (2.83)

This is known as the double delta approximation. Now we can assume that the density of
states does not change much above and below the Fermi energy and we can then substitute the
δ(εF − εk) by the total density of states at the Fermi level N(εF ) obtaining

λ = 2N(εF )
Nq

∑
k,q,ν

|Mν
k,k+q|2

ωq,ν

(2.84)

The electron-phonon matrix element can be evaluated with

Mν
k,k+q =

∑
j

(
ℏ2

2Mjωq,ν

) 1
2
〈

Ψn,k

∣∣∣∣∣ϵν
q,j · ∂V

KS

∂uν
q,j

∣∣∣∣∣Ψm,k′

〉
(2.85)

where Mj is the mass of the moving atom, ϵν
q,j is the j-th component of the polarization vector,

and V KS is the Kohn-Sham potential. If we substitute (2.85) into (2.84)

λ = 2N(εF )
Nq

∑
k,q,ν

ℏ2

2ω2
q,ν

∣∣∣∣∣∣
∑

j

1√
Mj

〈
Ψn,k

∣∣∣∣∣ϵν
q,j · ∂V

KS

∂uν
q,j

∣∣∣∣∣Ψm,k′

〉∣∣∣∣∣∣
2

(2.86)

At this point, we can try to evaluate the expectation value inside (2.86) with a frozen phonon
approach. The idea is the following. If we consider the Kohn-Sham potential with a given
distortion of the j-th atom uν

q,j, we can Taylor expand the Kohn-Sham potential

V KS(uj) ≈ V KS(0) + ∂V KS

∂uν
q,j

· uν
q,j (2.87)

rearranging terms, we obtain that

V KS(uj) − V KS(0) ≈ ∂V KS

∂uν
q,j

· uν
q,j (2.88)

and normalizing by the amplitude of the distortion

V KS(uj) − V KS(0)
|uν

q,j|
≈ ∂V KS

∂uν
q,j

· ϵν
q,j (2.89)

where ϵν
q,j is the j-th component of the polarization vector ϵν

q of the given phonon mode. Now if
we recall from the introduction to DFT, a given Hamiltonian is uniquely defined by the potential
and so we can write (2.89) as

∂V KS

∂uν
q,j

· ϵν
q,j = 1

|uν
q,j|

(
H − H0

)
(2.90)
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where H0 is the Hamiltonian with the undistorted Kohn-Sham potential. If we take the
expectation value〈

Ψn,k

∣∣∣∣∣ϵν
q,j · ∂V

KS

∂uν
q,j

∣∣∣∣∣Ψm,k′

〉
= 1

|uν
q,j|

〈
Ψn,k

∣∣∣(H − H0
)∣∣∣Ψm,k′

〉
= εk+q − εk

|uν
q,j|

= Dν
j,k+q,k (2.91)

we can obtain an expression in terms of the Kohn-Sham eigenvalues which is known as the
reduced electron-phonon matrix element (REPME) denoted by Dν

j,k+q,k. The change in the
eigenvalues can be evaluated directly from the band structure close to the Fermi level with and
without a given lattice distortion of phonon mode (q, ν). Figure 2.3 shows a practical example

MgB2

Frozen phonon

MgB2 MgB2 +QE2g

Fig. 2.3 Electronic band structure of MgB2. (a) bare band structure, and (b) band structure
with the E2g phonon mode frozen in the compound adapted from [158].

of such implementation on MgB2 with the E2g phonon mode, which is the main phonon mode
contributing to the superconductivity in this compound. As we notice in Figure 2.3 the energy
shifts are in the whole band dispersion. This allows evaluating directly how each phonon mode
affects the electron depending on its momentum k. After introducing this result back into
(2.86), one obtains

λ = 2N(εF )
Nq

∑
k,q,ν

ℏ2

2ω2
q,ν

∣∣∣∣∣∣
∑

j

1√
Mj

εk+q − εk

|uν
q,j|

∣∣∣∣∣∣
2

(2.92)

This equation then allows us to obtain the electron-phonon coupling as a function of the energy
shifts in the band dispersion once a given distortion is introduced. Once we have obtained the
electron-phonon coupling constant, we can aim to calculate the critical temperature. One of the
most reliable formulas to estimate the critical temperature is the one derived by Mc. Millan,
Allens, and Dynes which we presented in the introduction

kBTc = ℏωc

1.2 exp
(

− 1.04(1 + λ)
λ− µ∗(1 + 0.62λ)

)
. (2.93)
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In particular, in this approximation, the characteristic energy scale ωc is called ωlog which can
be approximated by the following formula for a finite number of phonon frequencies

ωlog =
(

n∏
i

ωi

) 1
n

(2.94)

which can be seen as the geometric average of the frequencies ωi. Once we evaluate this quantity,
we can then estimate the critical temperature, where we can take typical values for the screened
Coulomb interaction µ∗ = 0.1 − 0.2 [159–161] and give a rough estimate. We note however that
it is possible to evaluate this quantity ab initio. However, this is a complex calculation and it
was not used in this thesis.



Chapter 3

The self-interaction problem in RBO3
perovskites and related compounds

Although DFT is an exact theory of the ground state, the exact energy functional is yet
unknown. As a result, the reliability of the theoretical predictions on the properties of different
systems is strongly dependent on the functional that is used to model them. Thus, it becomes
quite important to test the reliability of the different density functionals on several systems.

3.1 Self interaction errors

One of the possible inaccuracies of DFT emerges when we map the many body problem into
a free electron system that is subject to an effective potential Veff . In this effective potential,
there is the Hartree potential VH that is analogous to the Coulomb potential as we can see on
Eq.(3.1)

VH(r⃗) = e2

4πϵ0

∫ ρ(r⃗′)
|r⃗ − r⃗′|

dr⃗′ (3.1)

It is straightforward to see that the expression diverges when r tends to r′. In principle, this
term has to be appropriately counterbalanced by the exchange-correlation potential Vxc, which
unfortunately has an unknown functional dependence on the electronic density. As a result, we
have a situation where an electron interacts with its potential, yielding undesired delocalization
effects. These types of errors are called Self Interaction Errors (SIE) and are especially important
in systems such as transition metal elements or rare earth, where the extremely localized d

and f orbitals are the main actors in the low energy physics. In that regard, it is important to
assess the capabilities of the different density functionals and be aware of their limits. In this
thesis, we have mainly used the newly developed density functional Strongly Constrained and
Appropriately Normed (SCAN) [137] which is parameter-free and is able to capture at least
qualitatively the metal-insulator transition of 3d perovskite oxides [151], cuprates [162, 163],
binary oxides [164], and doping effects in SmNiO3 [30] and bismuth oxide superconductors [165].
However, there are no reports regarding the performance of SCAN on rare earth compounds.
Since we are particularly interested in nickelates with rare earth, we study the strengths and
limitations of this functional with compounds including rare-earth elements.
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3.2 Rare earth perovskite oxides RBO3

The behavior of SCAN is studied on a set of perovskite compounds (ABO3) with the rare
earth on the A site cation position. We relax the structure of the different materials, keeping the
4f electrons as core states in the pseudopotential and also including them as valence electrons.
Then we assess the reliability of the electronic structure results with the hybrid functional
HSE06 [140] which is generally well suited for solids [166] and in particular has been tested on
rare-earth compounds giving a rather good agreement on the band gap and lattice parameters
with the experiments [167–170]. In that regard, we perform a single self-consistent calculation
using as an input the obtained wavefunction from the relaxed SCAN calculation.

The studied compounds are Eu2+TiO3, Gd3+TiO3, Pr3+CrO3 and Dy3+FeO3, which are well-
studied lanthanide perovskite oxides with a transition metal cation that present an insulating
behavior and complex long-range magnetic order at low temperatures. The choice of compounds
is guided by the fact that one can access (i) the role of the different formal oxidation states
(FOS) in half-filled compounds with EuTiO3 and GdTiO3, and (ii) the role of greater correlation
effects by studying compounds with partly filled degenerated orbitals with PrCrO3 (less than
half filled 4f shell) and DyFeO3 (more than half filled 4f shell).

3.2.1 Structural relaxation

The cut-off energy is set to Emax = 650 eV for the plane wave expansion and a 8 × 8 × 6
k-mesh for evaluating the electronic structure in the Brillouin zone. The structural relaxations
(atomic positions and lattice parameters) are performed until the forces acting on each atom are
lower than 1 meV/Å, with an energy convergence criteria of ∆E < 10−7 eV. The initial crystal
structures are taken from the literature results summarized in Table 3.1. In the single shot
HSE06 functional, we reduce the k-mesh to 6 × 6 × 4 while maintaining the same cut-off energy
due to computational reasons. Core electrons are treated with the projector augmented wave
method [145], with the following PBE PAW datasets: O, Ni, Fe, Ti, Cr, Eu, Eu_3, Gd, Gd_3, Dy,
Dy_3, Pr, Pr_3 and La.

The results of the structural relaxation with the SCAN functional are summarized in Table
3.1. We find that the SCAN functional yields an excellent agreement with the experimental
lattice parameters with an error of less than 1%, and keeps the structural distortions that
characterize the different space group geometry obtained experimentally. Regarding the values
of the magnetic moments, we obtain values either with SCAN or HSE06 that are compatible
with the electron count on each element, but also with experimental values in the cases where
they are available.
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3.2.2 Compounds with a half-filled 4f shell

Once we can trust the relaxed geometry, we proceed to analyze the electronic structure
of these materials one by one. We begin with the simplest compound EuTiO3 which has a
similar structure to SrTiO3 with a magnetic A site cation, presenting an I4/mcm structure [172]
characterized by a a0a0c− octahedral rotation in Glazer’s notation [12]. Unlike SrTiO3 which is
a band insulator with a band gap of 3.2 eV between filled O p and empty Ti d states, EuTiO3 is
a Mott insulator with a gap of 0.93 eV formed between Eu 4f states and empty Ti 3d states
[173]. If one neglects the 4f electrons of Eu, EuTiO3 is a band insulator akin to SrTiO3 (see
Table.3.1 and Figure.3.1.a). As one can see in Figure 3.1.b including the 4f electrons in the

Fig. 3.1 Projected density of states on Ti d (red line), O p (dashed blue line), and Eu 4f (orange
area) in EuTiO3 using the meta-GGA SCAN and hybrid HSE06 functionals and involving or
not the 4f states in the simulations.

calculation produces the following changes in the electronic structure: (i) although the gap
between O p and Ti d states remains similar, Eu 4f states lie at the Fermi level and (ii) it
produces a metallic compound, in contrast with the experiments. This also contradicts the
one-shot calculation using the HSE06 functional (see Figure 3.1.c) that yields a band gap of
0.73 eV between the occupied Eu 4f states and the empty Ti 3d states. Further inspecting
the projected density of states (DOS) of EuTiO3 on Figures 3.1.b and 3.1.c, we can see that
there is a weaker hybridization of Eu 4f with Ti 3d and O 2p states when the HSE06 functional
is used, suggesting that HSE06 produces better localization and a larger Hund’s splitting of
the 4f electrons than SCAN. This ultimately suggests that at least in the case of 4f electrons,
delocalization errors in the SCAN functional are still important.
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We can estimate the strength of the Hunds rule by calculating the energy difference between
the occupied and the unoccupied Eu 4f states, obtaining values of 5.4 eV and 8.4 eV with SCAN
and HSE06 functionals respectively. Thus we see that in the case of the HSE06 functional,
the occupied (unoccupied) 4f states are pushed down (up) with respect to the O p in energy,
producing an insulating character in contrast to the SCAN functional that locates the 4f states
at the bottom of the conduction band. In sight of these results, we can say that the SCAN
functional cannot reproduce the insulating character of EuTiO3. This is due to an underes-
timation of Hund’s splitting despite being a rather simple compound with no orbital degeneracies.

We further investigate the capabilities and the origin of the failure of SCAN by studying
the electronic structure of GdTiO3, which presents a 4f 7 shell for the A site cation similarly to
EuTiO3, but with a 3+ formal oxidation state (FOS) instead of the 2+ FOS of Eu. GdTiO3

is experimentally a Mott insulator with a band gap formed between occupied and unoccupied
Ti d states, and an estimated amplitude between 0.7-1.8 eV in the RTiO3 family (R=La-Lu,
Y) [176, 177]. From the crystallographic point of view, GdTiO3 adopts a Pbnm structure
characterized by the common a−a−c+ octahedral rotation pattern [174]. Inspecting the elec-
tronic structure of Figure 3.2.a and 3.2.b, we obtain that SCAN with or without the 4f states

Fig. 3.2 Projected density of states on Ti d (red line), O p (dashed blue line), and Gd 4f (orange
area) in GdTiO3 using the meta-GGA SCAN and hybrid HSE06 functionals and involving or
not the 4f states in the simulations.

produces a Mott insulator with the band gap between Ti d states. The value of the gap is
0.06 eV which is small as compared with the experiment, but compatible with previous studies
of SCAN in YTiO3 reporting a gap amplitude of 0.08 eV [151]. This underestimated band
gap value is well-known for semi-local exchange-correlation functionals in DFT (see Table.3.1).
We can notice that in this case, the occupied (unoccupied) 4f states, are well localized below
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(above) the Fermi level, correctly predicting its absence in the band edge orbital character
(BEOC). The success of SCAN to predict qualitatively well the insulating character of GdTiO3

is in contrast with the previous results in EuTiO3. These differences can be understood in
terms of weaker delocalization errors in Gd3+TiO3 than in Eu2+TiO3, since a cation with
a 3+ FOS would interact more with the O2− anions p states, producing a more delocalized
electronic structure due to stronger hybridization than in the case of a cation with a 2+ FOS.
This is further confirmed in the partial density of states (see Figure.3.2.b) as we can see a
higher hybridization between Gd 4f and O 2p states than with Eu 4f in EuTiO3. Performing
the one-shot calculation with HSE06 produces a larger band gap in agreement with previous
results from HSE06 and DFT+U reporting a gap around 2 eV [177], and also creates a larger
Hund’s splitting between occupied and unoccupied 4f states suggesting better cancellation of SIE.

3.2.3 Compounds with a degenerate 4f shell

Once the capabilities of SCAN to model half-filled 4f shell materials are established, we
proceed to study other rare-earth compounds but with partly filled degenerate 4f shells aiming
to study possible delocalization errors in these cases. We select two perovskite oxides PrCrO3

and DyFeO3 that adopt at low temperatures a Pbnm crystal structure with the usual a−a−c+

octahedral rotation pattern [178, 182], showing a 4f 2 (Pr3+) and 4f 9 (Dy3+) electronic configu-
ration respectively. Both compounds are insulators with the gap formed between Pr 4f and
Cr 3d in the case of PrCrO3 [178, 181], while in the case of DyFeO3, we are not able to find
experimental studies discussing the band gap character. We can however take the example of
YFeO3 and LaFeO3 whose gap is formed between Fe 3d and O 2p [184, 185].

Inspecting the projected DOS of Figures 3.3.a and 3.3.d, we can see that neglecting the
4f states in DyFeO3 produces a similar BEOC as found in YFeO3 and LaFeO3 (see Table 3.1)
but in PrCrO3 the valence band maximum (VBM) and conduction band minimum (CBM),
expressed as (VBM, CBM) is given by (Cr d, Cr d) is the predicted BEOC in contrast the
existing literature of (Pr f , Cr d) [184, 185]. By including the 4f states, we obtain the correct
Pr 4f character at the top of the valence band in PrCrO3 but also the 4f character is observed
at the bottom of the conduction band in contrast with experiments (see Figure 3.3.b). It is
also worth mentioning that as a consequence the band gap amplitude is significantly reduced as
compared to the calculations with the 4f states treated as core states (i.e included in the PAW
potential). Regarding DyFeO3, we can notice that including the 4f electrons in the calculations
produces a worse situation since the BEOC is wrongly predicted to be between the f states
(see Figure 3.3.e), while experimentally it is observed to be (O p, Fe d) for YFeO3 and LaFeO3

respectively [184, 185]. Running the HSE06 functional on top of the SCAN+4f calculation
yields the correct BEOC and gap amplitude for both compounds as depicted in Figures 3.3.c
and 3.3.f. Inspecting the DOS with HSE06 functional, we can see that as in previous cases, the
splitting between occupied and unoccupied 4f states is greatly increased, mainly caused by
an insufficient crystal field splitting ∆CF on the 4f produced by SCAN (∆CF = 0.74 eV and
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Fig. 3.3 Projected density of states on Cr and Fe d (red line), O p (dashed blue line), and Pr and
Dy 4f (orange area) in PrCrO3 (left panels) and DyFeO3 (right panels) using the meta-GGA
SCAN and hybdrid HSE06 functionals and involving or not the 4f states in the simulations.

∆CF = 1.12 eV in PrCrO3 and DyFeO3, respectively) with respect to HSE06 (∆CF = 3.4 eV and
∆CF = 4.8 eV in PrCrO3 and DyFeO3, respectively).

3.3 Related compounds: Infinitely layered Nickelates
RNiO2

We conclude this chapter by inspecting the ability of SCAN to model properties of other
compounds involving 4f states. In particular, we are interested in the infinitely layered nickelates
which are the main topic of this thesis. In that regard, we explore PrNiO2 and LaNiO2 which
present a completely layered structure of NiO2 planes with rare-earth planes in between (see
Figure 1.11 in chapter 1). The electronic structure of these compounds is not very well known
experimentally but some early theoretical works [65], as well as experiments [67, 68], suggest that
in both cases the system presents a completely undistorted tetragonal P4/mmm cell [186–188].
The detailed analysis regarding the structure, the magnetism, and the electronic properties is
the topic of the next chapter. We restrict ourselves to the electronic band structure with an
in-plane AFM order.

Using the band structure projected on the different atomic orbital contributions, it is easy
to notice a similar trend as in the case of the RBO3 compounds, obtaining an incorrect splitting
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of the 4f states with the SCAN functional yielding a strong contribution of the 4f electrons at
the Fermi level in the case of PrNiO2 while it is absent in LaNiO2 (see Figure.3.4). The band
dispersion is quite different when the HSE06 functional is used on top of SCAN, where the 4f
electrons are pushed down or up around 3 eV away from the Fermi level. The failure of SCAN
to correctly place the 4f electrons is further confirmed in LaNiO2 in which there are mostly
no occupied 4f states in the bands close to the Fermi level. Running the HSE06 functional
on top of SCAN produces that the small contributions of La 4f states identified 0.5 eV above
the Fermi level along the A-R-Z path are completely removed with the hybrid functional. One
may also notice that the HSE06 functional increases the bandwidth of the bands crossing the
Fermi level although the topology remains rather similar to the SCAN results in LaNiO2, where
the main actors in the conduction are Ni 3d and La 5d states. Thus, band structure proper-
ties of these nickelates may be highly sensitive to the choice of the exchange-correlation functional.

Fig. 3.4 Unfolded band structure to the high-symmetry primitive P4/mmm cell of PrNiO2 (top
panels) and LaNiO2 (lower panels) using the meta-GGA SCAN functional (left panels) and hybrid
HSE06 (right panels) functionals. Calculations are performed with in plane antiferromagnetic
interactions (AFMC) order. Coordinates of the high-symmetry points are Γ(0,0,0), X(1

2 ,0,0),
M(1

2 ,1
2 ,0), Z(0,0,1

2), A(1
2 ,1

2 ,1
2), and R(1

2 ,0,1
2).
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3.4 Conclusion

This collection of results on RBO3 perovskites and infinite-layer nickelates RNiO2, shows that
although the meta-GGA SCAN functional constitutes a good improvement in the description of
the exchange-correlation phenomena over standard GGA and LDA functionals, predicting better
geometries, energies, and formation enthalpies as discussed in the literature [137, 189–191], it
insufficiently amends self-interaction errors in systems involving the 4f electrons or in transition
metals with low FOS. This translates into a general underestimation of Hund’s exchange coupling
and produces a bad BEOC in insulators and places the 4f states at the Fermi level in metals.
We can propose two strategies to deal with these problems (i) benchmark the results with a
method or functional that accurately deals with the 4f states, and (ii) use a DFT+U approach
to increase the localization and amend the self-interaction errors on highly localized states.





Chapter 4

Properties of bulk RNiO2 compounds

In this chapter, we study several aspects of the RNiO2 compounds using DFT simulations,
since at the beginning of the thesis the lack of experimental evidence related to these compounds
blurred the understanding of the different properties of these nickelates. Thus we intend to shed
some light on this matter by exploring the RNiO2 phase diagram as a function of the R cation
from a theoretical point of view, focusing mainly on the low-temperature crystal structure,
magnetic interactions, and electronic dispersion.

4.1 Structural Properties

So far, all observed infinite layered nickelates RNiO2 (R = La, Pr and Nd) crystallize within
the highly symmetric undistorted, P4/mmm cell consisting of NiO2 layers with rare-earth planes
in between [33, 96, 123, 192] (see Figure.4.1.a). Nevertheless, experimental reports of the infinite-
layer nickelates with other R cations are lacking. This leaves the open question of whether the
P4/mmm structure is present across the whole family, or in contrast the A-to-B cation size
mismatch appearing in ABO3 perovskites, leading to octahedral rotations and potential gap
openings [193–196], may also appear in infinite-layered nickelates with small R cations as it has
been reported by some authors [186–188, 197]. In that regard, we study the evolution of the
crystal structure as a function of the A site cation.

We perform the structural relaxation using the Vienna Ab Initio Simulation Package (VASP)
[142–144] for several RNiO2 compound with R being, La, Pr, Nd, Gd and Y. We set an energy
cut-off in the plane wave expansion of 650 eV, a Γ point centered k-mesh of 8 × 8 × 6, with
an energy convergence criteria of ∆E < 10−7 eV and force acting on each atom is ∆F < 10−3

eV/Å. We use the PAW method [145] to treat the core electrons using the following PBE PAW
pseudopotentials Y_sv, La, Gd, Pr, Nd, Ni, and O. The 4f electrons are explicitly treated in all
calculations. As we evidenced in chapter 3, the SCAN functional is only problematic when
discussing the band position of the 4f electrons, while the crystal structure and the magnetism
of the studied compounds are well reproduced. Thus all our calculations in this chapter will
involve the SCAN functional.
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4.1.1 Relaxation results

We relax the crystal structure of YNiO2 and the output is analyzed with the software
FINDSYM [198, 199] obtaining an orthorhombic system with a Pbcn crystal symmetry and
with lattice parameters a = 5.29 Å, b = 5.70 Å, and c = 6.44 Å, (see Figure.4.1.b). The crystal
symmetry and the lattice parameters, agree well with recent theoretical studies on this com-
pound, showing that the Pbcn symmetry is dynamically stable [197]. Comparing Figures 4.1.a
and 4.1.b we notice that the orthorhombic Pbcn phase of YNiO2, is distorted with respect to the
tetragonal P4/mmm infinitely layered phase. In order to identify the different lattice distortions,

  

xy

z

a) b)P4/mmm PbcnY
Ni
O

x

y

z

c) Á+xy Á-z Ap

y

x

d) e)

y

x

Fig. 4.1 Crystal structure of YNiO2 for a) undistorted P4/mmm symmetry, b) ground state
geometry with Pbcn symmetry, c) out of plane in-phase rotations ϕ+

xy, d) in-plane anti-phase
rotations ϕ−

z , and e) antipolar motion of the A site cation Ap.

we perform the symmetry mode analysis, with the help of the software AMPLIMODES of the
Bilbao Crystalographic Server [154, 155]. This allows us to identify three main lattice distor-
tions: (i) out-of-plane in-phase rotations of the NiO4 squares ϕ+

xy depicted in Figure.4.1.c with a
mode amplitude of Qϕ+

xy
= 0.461 Å/f.u., (ii) in-plane anti-phase rotations of the NiO4 squares

depicted in Figure.4.1.d with a mode amplitude of Qϕ−
z

= 0.610 Å/f.u., and (iii) an antipolar
motion of the Y cations Ap depicted in Figure.4.1.e with a mode amplitude of QAp = 0.442 Å/f.u.

We try to understand the origin of these lattice distortions by calculating the potential
energy surface associated with each of the modes. Results are depicted in Figure.4.2, finding
that among the three of them, only the anti-phase rotations ϕ−

z is dynamically unstable in the
high symmetry undistorted cell, with a double well potential of the form

∆E[Qϕ−
z

] = αQ2
ϕ−

z
+ βQ4

ϕ−
z

(4.1)
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where α < 0 and β > 0 are constants, Qϕ−
z

is the amplitude of the distortion and ∆E is the
energy difference with respect to the undistorted P4/mmm cell. However, the two other lattice
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Fig. 4.2 Total energy difference starting from the undistorted P4/mmm cell in meV/f.u. as a
function of the normalized mode amplitude Q in Å, for the anti-phase rotations ϕ−

z (red circles),
the in-phase rotations ϕ+

xy (cyan squares) and the antipolar motion Ap (magenta diamonds) in
YNiO2.

distortions appearing in the ground state Pbcn structure ϕ+
xy and Ap are dynamically stable

presenting a single well potential, which means that they are not willing to spontaneously
appear in the material. Nonetheless, their presence in the ground state structure may originate
from couplings between two or more lattice distortions, as it is common in ABO3 perovskite
compounds [13].

In order to analyze and explore these couplings, we use the Landau Theory of phase transitions
and expand the free energy in terms of the amplitude of the three lattice distortions. The most
general expansion in terms of the mode amplitudes Qϕ−

z
, Qϕ+

xy
and QAp can be expressed as

F [Qϕ−
z
, Qϕ+

xy
, QAp ] = F0 + α1Q

2
ϕ−

z
+ β1Q

4
ϕ−

z
+ α2Q

2
ϕ+

xy
+ β2Q

4
ϕ+

xy
+ α3Q

2
Ap

+ β3Q
4
Ap

+

+ζQApQϕ+
xy
Qϕ−

z
+ δ1Q

2
ϕ−

z
Q2

ϕ+
xy

+ δ2Q
2
ϕ+

xy
Q2

Ap
+ δ3Q

2
Ap
Q2

ϕ−
z

+ · · ·
(4.2)

We notice that several terms in the expansion depend on two or more lattice distortions. Then,
the appearance of the ϕ+

xy and Ap modes in the relaxed ground state of YNiO2 could be a
consequence of lattice mode couplings between the ϕ−

z and these two modes, resulting in a
net energy gain when they develop a non-zero amplitude. The first term in the free energy
expansion that couples two of the given lattice distortions, is a biquadratic term that would
renormalize the potential energy surface of one of the modes as follows:

F [Qϕ−
z
, Qϕ+

xy
, QAp = 0] ≃ F ′

0 +
[
α2 + δ1Q

2
ϕ−

z

]
Q2

ϕ+
xy

+ β2Q
4
ϕ+

xy
= F ′

0 + α′
effQ

2
ϕ+

xy
+ β2Q

4
ϕ+

xy
(4.3)
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It follows that if α′
eff < 0 then the energy would be lowered for a non-zero amplitude of the

ϕ+
xy mode obtaining a double well as in the case of the anti-phase rotations. This mechanism is

also possible in the case of the antipolar motion Ap, where the free energy in such case can be
evaluated as

F [Qϕ−
z
, , Qϕ+

xy
= 0, QAp ] ≃ F ′′

0 +
[
α3 + δ3Q

2
ϕ−

z

]
Q2

Ap
+ β3Q

4
Ap

= F ′′
0 + α′′

effQ
2
Ap

+ β3Q
4
Ap

(4.4)

To verify this mechanism, we calculate the potential energy surface (PES) of each of the modes
but with a fixed amplitude of the anti-phase rotation Qϕ−

z
. The curves are plotted in Figures

4.3.a and 4.3.b. Upon increasing the amplitude of the anti-phase rotations, both potentials
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Fig. 4.3 Potential energy surface of (a) the ϕ+
xy mode in the presence of a fraction of the ground

state amplitude of the ϕ−
z mode, and (b) Ap mode in presence of a fraction of the ground state

amplitude of the ϕ−
z mode.

become softer until they develop a double well potential shape. This produces an energy gain of
∆F [Qϕ−

z
, Qϕ+

xy
, QAp = 0] = −4 meV/f.u. and ∆F [Qϕ−

z
, , Qϕ+

xy
= 0, QAp ] = −42 meV/f.u. at a

non-zero amplitude of the ϕ+
xy or Ap modes, respectively, signaling their possible appearance

in the material. However, we can notice that the energy gain is achieved at an amplitude of
Qϕ+

xy
= 0.231 Å/f.u. and QAp = 0.221 Å/f.u. which is around 50% of the ground state amplitude.

This means that there could be other couplings favoring the stabilization of these two modes.
Other possibilities could be that the ϕ+

xy mode and the Ap mode are also coupled and produce
an energy gain once both are present regardless of the ϕ−

z mode, where the free energy would be

F [QAp , Qϕ+
xy

] ≃ F ′′′
0 +

[
α2 + δ2Q

2
Ap

]
Q2

ϕ+
xy

+ β2Q
4
ϕ+

xy
= F ′′′

0 + α′′′
effQ

2
ϕ+

xy
+ β2Q

4
ϕ+

xy
(4.5)

However, as it is depicted in Figure 4.4.a, the PES becomes stiffer upon increasing the amplitude
of the Ap mode. This means that α′′′

eff > 0 and its value becomes larger when the amplitude
of the Ap mode increases, suggesting that both ϕ+

xy and Ap modes are competing since they
appear in the ground state structure. In addition, we notice that the biquadratic couplings with
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Fig. 4.4 Potential energy surface of the ϕ+
xy mode in the presence of (a) a fraction of the ground

state amplitude of the ϕ−
z mode, and (b) a fraction of the ground state amplitude of both Ap

and ϕ−
z modes.

the ϕ−
z mode produce at best a joint energy gain of ∆F = −46 meV/f.u. at mode amplitudes

close to 0.22 Å/f.u. as it is depicted in Figure 4.3. However, the biquadratic coupling between
the ϕ+

xy and the Ap modes, produces an energy penalty of at least ∆F = 100 meV/f.u. at mode
amplitudes of 0.22 Å/f.u. Thus the biquadratic couplings not only are unable to explain the
appearance of the ϕ+

xy/Ap modes at the same time but actually lead to a net energy penalty of
at least ∆F = 50 meV/f.u. In that regard, the other allowed term by symmetry in the Free
energy expansion, is a trilinear term that couples the three modes together at the same time

F [Qϕ−
z
, Qϕ+

xy
, QAp ] ≃ F0 + ζQApQϕ−

z
Qϕ+

xy
+
[
α2 + δ1Q

2
ϕ−

z
+ δ2Q

2
Ap

]
Q2

ϕ+
xy

+ β2Q
4
ϕ+

xy

= F0 + ζeffQϕ+
xy

+ αeffQ
2
ϕ+

xy
+ β2Q

4
ϕ+

xy

(4.6)

In this case, if ζeff ≠ 0, we would have a PES that is not symmetric under a sign change of the
Qϕ+

xy
mode and the sign of the coefficient would determine if the largest energy gain is with a

positive or negative amplitude. We then proceed to calculate the potential energy surface of the
ϕ+

xy mode but this time we fix some amplitude of the ϕ−
z and Ap modes at the same time. The

results are depicted in Figure 4.4.b. We clearly see that upon increasing the amplitude of the
ϕ−

z and Ap modes, there is a progressive softening of the ϕ+
xy potential well until it becomes a

double well potential when both modes are sufficiently large. However, we observe that the PES
is not symmetric meaning that the sign (direction) of the ϕ+

xy mode is pinned by that of the Ap

and ϕ−
z modes. We can note however, that the Qϕ+

xy
amplitude at the global minimum is slightly

bigger than the ground state amplitude of Qϕ+
xy

= 0.461Å. The origin of this discrepancy is the
fact that we have not taken into account the strain since we have kept a tetragonal symmetry,
while the ground state is orthorhombic. In any case, it becomes evident that the existence
of this triple coupling is crucial to the stabilization of the ϕ+

xy and Ap lattice distortions that
alone are not dynamically unstable like the ϕ−

z anti-phase rotations in YNiO2. Thus the lattice
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mode couplings are the main actors in producing a Pbcn structure with three different lattice
distortions.

4.1.2 Role of the size of the A-site cation

Once we have understood how the different lattice distortions appear in one of the earliest
members of the nickelate series (YNiO2), we repeat the analysis for other nickelate members
in the RNiO2 series. In that regard, we present in Table.4.1, the different crystal structure
information depending on the A site cation (with A = Y, Gd, Nd, Pr, and La).

Compound Crystallographic System Space group Rion/Å Qϕ−
z
/Å Qϕ+

xy
/Å QAp/Å

YNiO2 Orthorhombic Pbcn 1.015 0.610 0.461 0.442
GdNiO2 Tetragonal I4/mcm 1.060 0.200 0 0
NdNiO2 Tetragonal P4/mmm 1.140 0 0 0
PrNiO2 Tetragonal P4/mmm 1.120 0 0 0
LaNiO2 Tetragonal P4/mmm 1.180 0 0 0

Table 4.1 Summary of important quantities extracted from first-principles calculations and a
symmetry mode analysis on selected infinitely layered nickelates. Ionic radius is taken from Ref.
[200] for an eight-coordinated complex.

We observe that the members with the smaller cation like YNiO2 present three lattice
distortions (ϕ−

z , ϕ+
xy and Ap). Then intermediate members like GdNiO2, are characterized by

only the in-plane anti-phase rotations ϕ−
z with an amplitude of Qϕ−

z
= 0.2 Å/f.u. This amplitude

is around 33% of the amplitude in YNiO2, and as we can see in Figure 4.4.b, GdNiO2 would be
in between the red and orange curves, and although the trilinear coupling is present, is not able
to produce a net energy gain as in the case of YNiO2. This signals that since the A site cation is
bigger, the structure presents smaller in-plane anti-phase rotations leaving a structure with only
this type of lattice distortion and an I4/mcm symmetry instead. Finally, the end members like
LaNiO2 or NdNiO2 present a perfectly undistorted crystal structure with P4/mmm symmetry
with no sign of rotations or any other lattice distortions. This further confirms our claim that
the size of the A-site cation reduces the amplitude of the ϕ−

z mode until it disappears, resulting
in all the undoped phases of the SC compounds presenting a layered structure without any
rotations or lattice distortions.

Some authors however report that the NdNiO2 ground state should present an I4/mcm

symmetry with ϕ−
z rotations [186]. We double check using the SCAN functional finding that

indeed the ϕ−
z rotation pattern and the I4/mcm structure is more stable if (i) the pseudopotential

employed in the calculation places the 4f electrons as an effective core instead of the valence,
which (ii) de-facto neglects the spin degree of freedom on Nd sites. In that regard, if we follow the
experimental literature, NdNiO2, PrNiO2 and LaNiO2 are all found with P4/mmm symmetry
[33–37, 75, 96, 201], with no signature of a rotation pattern. Thus the overall behavior across
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the series correlates with the radius of the A-site cation, where a bigger radius produces a more
symmetric crystal structure, and smaller cations present a less symmetric and hence more dis-
torted crystal. This feature is reminiscent of the behavior with the perovskite parent compounds.

4.1.3 Role of the epitaxial strain

The nickelates that show SC have been obtained so far as thin films that are grown on a
substrate. Up to date, these thin films have been deposited successfully on SrTiO3 (STO) and
(LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT) [66, 79], which are cubic perovskite materials at ambient
conditions. The fact that these nickelates are grown on a substrate implies that the in-plane
lattice parameters will not be those obtained in the bulk material, but rather the substrate
in-plane lattice parameters. This would induce tensile or compressive strain on the structure
depending on the A site cation, which may affect the stability of the different lattice distortions
that are prone to appear. We can illustrate this by calculating the PES associated with the
in-plane anti-phase rotations ϕ−

z of YNiO2 in two situations: (i) under tensile strain and (ii)
under compressive strain. In order to model the strain, we change the lattice parameters
a = b = 3.886 Å, and c = 3.221 Å, of the pseudocubic P4/mmm ground state structure that
we use. We impose the in-plane lattice parameters to a = b = 3.905 Å, which are STO lattice
parameters to simulate a −0.49% of tensile strain, and we fix them to a = b = 3.868 Å, which
are LSAT lattice parameters to simulate a 0.46% of compressive strain. Results are reported on
Figure 4.5.
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Fig. 4.5 Potential energy surface for the ground state geometry of the ϕ−
z on YNiO2 with the

ground state geometry (GS), the in-plane lattice parameters of SrTiO3 (STO), and the in-plane
lattice parameters of (LSAT) .

The PES of the ϕ−
z mode is a double well in both situations with compressive and tensile

strain. Nonetheless, comparing the PES in the ground state with the situations under tensile
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and compressive strain, we observe that both the energy gain of the ϕ−
z and the distortion

amplitude Qϕ−
z

at the minimum are changed. In particular, we notice that under −0.49% of
tensile strain with the STO lattice parameters both the amplitude at the minimum and the
energy gain increase when compared to the ground state, while we obtain the opposite situation
when the structure is under 0.46% of compressive strain with the LSAT lattice parameters. This
is quite revealing since it indicates that the lattice distortions can be tuned by the strain and
that depending on the substrate, certain lattice distortions can be favored or disfavoured as it is
the case of the ϕ−

z with tensile or compressive strain, respectively. In particular, we notice that at
the amplitude of the ground state minimum, there is an energy gain (penalty) of ∆E = −14 (14)
meV/f.u. under -0.49% (0.46%) of tensile (compressive) strain. This would suggest that under
a compressive strain of 2% we would induce an energy penalty of ∆E = 60 meV/f.u. which
is comparable to the energy gain produced by the trilinear coupling of ∆E = −150 meV/f.u.
without strain at the minimum amplitude in YNiO2 (see Figure 4.4.b). Thus if the amplitude of
the ϕ−

z distortion would be smaller as in the case of RNiO2 compounds with bigger cations than
Y , applying a 2% of strain can disfavor the appearance of the Ap and ϕ+

xy distortions or even
the ϕ−

z distortion itself. Thus we can confirm the stability of the different phases and lattice
distortions can be substantialy sensitive to external stimuli such as strain in a similar fashion as
in the parent perovskite case [202, 27, 203–207].

4.1.4 Hydrogen intercalation

The synthesis process of these compounds requires growing the parent perovskite phase first
on the substrate and then reducing it with a topotactic reduction that in many cases uses CaH2

as a reducing agent. This would in principle remove the apical oxygen in the octahedron of the
perovskite parent phase, leaving a completely layered sample. Nonetheless, this reduction can
induce some H intercalation on the sample which may affect the properties of the material. We
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Fig. 4.6 Crystal structure of the two relaxed geometries for the H intercalation in RNiO2H
compounds, with (a) H at the apex of Ni cations, and (b) H in the NiO2 plane.
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investigate this situation by calculating the H binding energy EB defined in Eq.(4.7)

EB = E(RNiO2H) − E(RNiO2) − 1
2E(H2) (4.7)

where E(RNiO2H), E(RNiO2) and E(H2), are the total energies of RNiO2H (the hydrogen rich
limit), RNiO2 and H2 respectively. We take as a reference the perfectly symmetric phase with
P4/mmm symmetry for the pristine material. Concerning the location of the H in the material,
we compute the energy for two different cases of YNiO2H, one with H intercalated at the apical
site and in the other case the H sits on top of the rare earth in the NiO2 plane (see Figure 4.6).
We find that the most stable configuration is with the H at the apex with an energy difference
of ∆E = 2.3 eV/f.u. between the two configurations. This has been explored by several authors
arriving at the same conclusion [188, 208–210]. Now regarding the binding energy, the existing
literature suggests that H intercalation is energetically favorable, where some authors claim
that only LaNiO2 is willing to capture H cations in the structure [188], while others have shown
that NdNiO2 would also favor H intercalation [209, 208]. In that regard, we explore the phase
diagram and we report in Figure.4.7 the binding energy as a function of the rare earth.
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Fig. 4.7 Binding energy in (meV/f.u.) for hydrogen intercalation in different two-dimensional
(2D) nickelates. The reference energy is set to pristine materials with a P4/mmm space group.
The RNiO2H compound is taken to have P4/mmm symmetry (red circles), I4/mcm symmetry
(green triangles) and global ground state geometry (blue squares), corresponding to I4/mcm
for La, and Pr, Pbcn for GdNiO2, and Pbnm for YNiO2. Arrows correspond to the binding
energy for the hydrogenated ground state with respect to the pristine material ground state
structure (blue open squares) P4/mmm for LaNiO2 and PrNiO2, I4/mcm for GdNiO2 and Pbcn
for YNiO2.

We obtain that the only compound with a negative binding energy is with La, but only if the
H-rich compound possesses a P4/mmm symmetry (see red dots in Figure.4.7). However, if the
symmetry of the compound is allowed to be lowered during the relaxation of the H-rich material,
the binding energy is negative for all compounds. In fact the H-rich compounds, are prone to
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develop some lattice distortions like in-plane and out-of-plane rotations. This result remains
valid even if we use the real ground state of the different pristine materials ( Pbcn in the case of
YNiO2 or I4mcm in the case of GdNiO2), suggesting that H intercalation is in fact favorable
in all RNiO2 compounds. Nonetheless, this also suggests that it can be possible to avoid H
intercalation in the material when it is grown on a substrate, since as we saw in the previous
section, the strain from the substrate disfavors the appearance of any rotation pattern. This
would force the system to keep a P4/mmm symmetry where the H intercalation is disfavored
for almost all members of the RNiO2 compounds. This could be a possible explanation, for why
the SC samples, are only found on thin films instead of bulk when a reducing agent with H such
as CaH2 or NaH is used. In the bulk, the system would not be under strain, allowing rotations
and other lattice distortions to appear in the compound, and H intercalation would be favorable.
Thus future experiments on bulk may consider to use other reducting agents in order to obtain
bulk SC samples.

4.2 Magnetic properties

As we mentioned, these layered nickelates were proposed to be a possible analog to Cu-based
high Tc superconductors [16], where in the latter compounds, it is proposed that the magnetic
interactions play an important role in the pairing mechanism. In that regard, it becomes
mandatory to explore the magnetic properties of these compounds. This IL phase presents a
Ni+ cation which is an unusual formal oxidation state (FOS) for Ni since most of the chemical
compounds present a 2+, 3+, or 4+ FOS instead. This FOS produces a 3d9 open shell configu-
ration, resulting in a finite magnetic moment at Ni sites [100]. Some authors report a lack of
long-range magnetic order [101], although several experimental studies with different techniques
that probe the excitation spectra point to nontrivial antiferromagnetism [91, 92, 96, 97]. From
the theoretical point of view, several studies point as well to an antiferromagnetic phase at low
temperatures [93–95, 124, 186], and other authors suggest a 3d8L on Ni cations where L is a
ligand hole with a possible mixed S = 1 and S = 0 state [211, 212].

4.2.1 Intrinsic magnetism

As we have discuss, the intrinsic magnetism and the spin state of Ni cations is not completely
well established since some authors claim a possible ligand hole picture on Ni sites similarly
to the cuprate case. In that regard, we have probed the stability of the system to develop a
finite magnetic moment on YNiO2 and LaNiO2, by relaxing the structure structure with the
ground state geometry previously identified (this is Pbcn and P4/mmm for YNiO2 and LaNiO2,
respectively), with two types of calculations, (i) using the non-spin-polarized (NM) solution,
and (ii) the paramagnetic (PM) solution. In the literature, in many cases, the NM solution
is taken to be a representation of the paramagnetic state since the total magnetization M is
zero. However, strictly speaking, the NM approximation implies that µi = 0 ∀ i, where µi is
the magnetic moment of the ion i, whereas a paramagnetic compound has to fulfill only the
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following condition

M =
N∑
i

µi = 0 (4.8)

for N magnetic ions. In fact, in the case where all magnetic moments are zero, the compound
would be commonly known as diamagnets. As a result, we will not make use of such equivalence
and we will use a different representation of the paramagnetic state where we randomize the
spins in a supercell (we use 32 f.u.) using the special quasirandom structure method (SQS) for
alloys [150] as implemented in the ATAT package for a finite supercell size [149]. We however
enforce the condition that the total magnetization is zero. We report in Table 4.2 the results of
the calculations.

Compound ∆ENM−PM(meV/f.u.) µNi(µB)
YNiO2 495 0.962
LaNiO2 365 0.954

Table 4.2 Calculated total energy difference between the NM and the random PM solution
∆ENM−PM in meV/f.u., and average magnetic moment µNi on Ni cations extracted from the PM
phase in µB, for both YNiO2 and LaNiO2 compounds.

From our calculations, we obtain on the PM solution, an average magnetic moment on Ni
sites of µNi = 0.965 µB and µNi = 0.954 µB for YNiO2 and LaNiO2 respectively (see Table 4.2).
These values are consistent with a Ni+ cation with a 3d9 configuration in contrast with the 3d8L

configuration that is proposed by some authors [211, 212]. However the most remarkable feature
of our calculations is to obtain an important energy gain between the Non-spin-polarized solution
NM, and the paramagnetic PM solution of ∆ENM−PM = 495 meV/f.u. and ∆ENM−PM = 365
meV/f.u. for YNiO2 and LaNiO2, respectively. This establishes that the magnetism in these
compounds is intrinsic and should not be overlooked. These concerns are also raised in other
theoretical works [93], and evidenced experimentally in Ref. [100] where the intrinsic magnetism
of Ni is revealed.

4.2.2 Magnetic ground state

Focusing now on the spin-polarized solutions, we explore the magnetic ground state by
relaxing the structure of the two previous compounds, using several long-range magnetic orders at
the collinear level that include, ferromagnetic (FM), ferromagnetic planes antiferromagnetically
coupled (type-A AFM or AFMA), in-plane antiferromagnetism with AFM interactions on
nearest neighbors (type-C AFM or AFMC), full antiferromagnetism with AFM interactions on
the three axes (type-G AFM or AFMG). We report on Table.4.3 the total energy difference in
meV/f.u. taking as a reference the FM case.

As one can see, the PM solution is 30 meV/f.u. higher in energy than the C-type antiferro-
magnetic (AFMC) order which in the colinear approximation to magnetism is very likely to be
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YNiO2 LaNiO2
Mag. order ∆E (meV/f.u.)

FM 0 0
PM -27 -26

AFMA 5 -3
AFMC -47 -73
AFMG -45 -51

Table 4.3 Calculated total energy difference ∆E (meV/f.u) of the different magnetic ground
states with respect to the FM order in YNiO2 and LaNiO2.

the ground state configuration according to several theoretical and experimental studies [93, 94].
Thus in what concerns to the magnetic ground state of the undoped compounds, our results
point to in-plane antiferromagnetism which would be similar to the Cu-based superconductors.

We can further explore the magnetism in these nickelates by employing an effective model of
magnetism such as the Heisenberg model, where we consider two different exchange constants J
between nearest-neighbor interactions:

H = JNi
ab

∑
<i,j>

SiSj + JNi
c

∑
<i,j>

SiSj (4.9)

where JNi
ab (JNi

c ) are the in-plane (out of plane) exchange couplings between nickel sites (see
Figure.4.8) with J > 0 (J < 0) favoring antiferromagnetic (ferromagnetic) interactions between
the cation sites.

JNiab
JRc

y

x
x

z

JRab

JNi-R

Ni OR

JNiab

Fig. 4.8 Sketch of the exchange coupling constants considered in a generic RNiO2 compound.

We calculate the energy of the system for different spin configurations at a fixed crystal
structure to avoid magnetostriction effects. We then map the energy difference into our effective
model, allowing us to obtain the two exchange constants. We calculate the exchange constants
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for YNiO2, GdNiO2, and LaNiO2 and results are reported in Table 4.4.
We find nearly constant values for the exchange couplings across the series, predicting strong

Compound JNi
ab (meV) JNi

c (meV) JR
ab (meV) JR

c (meV) JNi−R (meV)
YNiO2 58 -20 - - -

GdNiO2 63 -25 0.04 -0.03 0.7
Theo. SmNiO2[186] 82 -6 - - -

exp. PrNiO2/SrTiO3[92] 67 - - - -
exp. PrNiO2/LSAT[92] 64 - - - -

Theo. NdNiO2[93] 118 -4 - - -
Theo. NdNiO2[124] 77 -3 - - -
Theo. NdNiO2[186] 87 -6 - - -

exp. NdNiO2/SrTiO3[91] 64 - - - -
LaNiO2 66 -19 - - -

Theo. LaNiO2[93] 52 -24 - - -
Theo. LaNiO2[94] 58 - - - -
Theo. LaNiO2[186] 86 - - - -

Table 4.4 Summary of the exchange constants obtained for different RNiO2 compounds expressed
in meV from our calculations and other theoretical works. Experimental values available for
different films are also reported. Positive values for the exchange constants J > 0 favor
antiferromagnetic interactions, while negative values J < 0 favor ferromagnetic interactions.

in-plane antiferromagnetic exchange with an average value for all compounds of JNi
ab = 62 meV.

This value is in good quantitative agreement with several experimental studies obtaining a
value of JNi

ab = 67 − 64 meV depending on the composition [92, 91] as well as other theoretical
studies [93, 94, 124, 186]. We also predict a weaker ferromagnetic exchange with an average
value of JNi

c = −21 meV agreeing with other theoretical values computed with the SCAN
functional on LaNiO2 [93], although they are quantitatively bigger than in Refs. [94, 124, 186].
This discrepancy may come from the exact choice of exchange and correlation functional, since
we employ a meta-GGA and in Refs. [94, 124, 186] a GGA+U method is chosen to describe
the exchange and correlation phenomena. Additionally, some reports have already shown an
overestimation of the magnetization in metallic Fe when using SCAN [213]. Thus experimental
studies are needed to assess which of the two methods is more reliable for this particular quantity.
Nonetheless, these discrepancies are not dramatic since the technique is able to give a good
qualitative picture of the magnetism of these compounds.

In addition to the magnetic interactions produced by nickel sites, we can consider a secondary
source of magnetism originating from rare earth cations R3+ 4fn open shells. We proceed in
a similar manner as with the nickel sites but including one extra interaction between nickel
sites and the rare-earth as it is shown in the Hamiltonian of Eq.(4.10), where JR

ab(JR
c ) are

the in-plane (out of plane) exchange couplings between the rare-earth sites and JNi−R is the
exchange coupling between the rare-earth cation and nickel.

H = JR
ab

∑
<i,j>

SiSj + JR
c

∑
<i,j>

SiSj + JNi−R ∑
<i,j>

SiSj (4.10)
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We consider the case of GdNiO2 which has a 4f 7 half-filled configuration from which we expect
to have a good estimate of the rare-earth contribution to magnetic interactions. However as we
can see in Table.4.4, the exchange constants on the rare earth cations are actually rather small,
where the biggest exchange is between rare-earth and nickel cations although is two orders of
magnitude less than the Ni-Ni exchange constants. Thus we can assume that the magnetic
ordering of the rare-earth will be imposed by the nickel local environment and very likely the 4f
states do not play any important role in the superconducting mechanism since (i) the 4f states
do not contribute to the conduction as we can see from the band structures in chapter 3 for
PrNiO2 and LaNiO2 (see Figure 3.4), (ii) experiments show highly localized 4f states that are
completely unaffected by the Sr doping [89], and (iii) the exchange couplings on the rare-earth
cation are in the best case scenario an order of magnitude smaller than in between Ni sites.

Finally, as a concluding remark, we have explored the magnetism on the H-rich compounds
finding a different magnetic ground state, in this case, the Ni cations present an antiferromagnetic
coupling along the three cartesian axes (type-G AFM) with a high spin configuration S = 1 on
the Ni cations, suggesting that the H acts as an anion H− and produces a Ni2+ cation.

4.3 Electronic Structure

We conclude this chapter by exploring the electronic structure of these nickelates, and how
it is coupled with the structural and magnetic degrees of freedom. We take mainly LaNiO2 as a
model system

4.3.1 Role of local spin formation

Before exploring how different long-range magnetic orders can affect the band dispersion, we
explore the importance of including the spin degree of freedom when calculating the electronic
structure of these nickelates. We have mentioned however that experimentally these nickelates
present no long-range magnetic order [33, 37]. In that regard, we calculate the band structure in
the paramagnetic case. Band structures are unfolded to the primitive high symmetry P4/mmm

cell, in order to facilitate the comparison of the results between different magnetic orders and
supercell sizes. We use the VaspBandUnfold software to unfold and plot the band structures [214].

As we mentioned in chapter 2 and earlier in this chapter, it is quite common to find in the
literature that the PM phase in DFT is modeled with the NM approximation instead of the
random spin arrangement that we use. In order to reveal the importance of treating spins, we
have calculated the band structure of the NM and the random spin PM solution. The band
dispersions are reported in Figure 4.9. As one can appreciate by comparing Figure 4.9.a with
Figure 4.9.b, the NM and PM solutions yield qualitatively different results. While in the PM
case, there are small electron pockets at Γ, a big electron pocket centered at the A point and
vanishingly small hole pockets at M point (see Figure 4.9.b), the NM solution in Figure 4.9.a,
presents in addition to these features another highly dispersive band centered at Γ with a clear
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Fig. 4.9 Electronic band structure of (a) DFT in the NM approximation for LaNiO2, (b) DFT
in the random spin PM magnetic solution for LaNiO2, and (c) DFT+DMFT self-consistent PM
solution adapted from [215] for NdNiO2. For panels (a) and (b) the bands include projections
on O 2p states (in blue), Ni 3d states (in red) and La 5d states (in green). For panel (c) the
bands present projections projections on Ni (red) Nd (blue) and O with an interstitial orbital
(green). High symmetry points of the first Brillouin Zone are Γ (0,0,0), X (0,0,0), M (1/2,1/2,0),
Z (0,0,1/2), R (1/2,0,1/2) and A (1/2,1/2,1/2).

2D nature corresponding to the dx2−y2 orbital as discussed by other authors [216–223]. This
would suggest that the dx2−y2 band would be highly relevant to the conduction as in the cuprate
case. Thus it is tempting to think that perhaps in terms of the electronic structure, the NM
approximation is a better approximation than the random PM since the dx2−y2 band is in the
best case centered at the M point as small hole pocket (see Figure 4.9.b). This is nonetheless a
bold assumption that can be easily discarded by comparing the random PM dispersion with
other methods that treat correlation effects better than DFT such as Density Functional Theory
plus Dynamic Mean Field Theory (DFT+DMFT) as depicted in Figure 4.9.c [224, 225, 215]. In
fact, it is remarkable that the random PM with DFT reproduces rather accurately the results
derived by DFT+DMFT showing a small electron pocket at Γ, an important electron pocket at
the A point, and a vanishingly small hole pocket at M point. We can notice that the random
PM yields a much blurred dispersion when compared to the DFT+DMFT approach, which is
caused by the overlap of the different periodic replica.

We must note however that in the DFT+DMFT approach, the bands from DFT are projected
on a localized manifold of typically MLWF that are introduced in the DMFT loop. Hence in
order to reproduce the band structure accurately, an interstitial orbital centered at the apex
position of a Ni cation is introduced. This is a consequence of using a localized basis to describe
a metallic system where a more delocalized electronic structure is expected. Nonetheless, we
should not forget that the physical observable is the spectra or the band dispersion, and not
the basis that is used to represent it. In that regard, besides the possible basis or orbital
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decomposition, which we will discuss later, the band topology should remain the same.

Thus our random PM approach is further validated over the NM, since it is able to produce a
band topology much closer to DMFT or DFT+DMFT methods, which are expected to produce
better results than DFT, due to better treatment of correlations. These results, in turn, highlight
the importance of including the spin degree of freedom even if a PM compound is modeled, since
the basic Hund’s rule would not be respected and all spin-spin correlations would be neglected.

4.3.2 Trends on the electronic structure with magnetism

The electronic band structure is now calculated for the FM, AFMA, AFMC, and AFMG
magnetic orders. Results are depicted in Figure 4.10 with spectral weight projections on the
bands for La 5d, Ni 3d, and O 2p states.

Ni   3d
La   5d

O   2p

AFMC AFMGAFMA

FM

X M Γ Z R A ZΓ X M Γ Z R A ZΓ

X M Γ Z R A ZΓ X M Γ Z R A ZΓ X M Γ Z R A ZΓ

3
2
1
0

-1
-2
-3

3
2
1
0

-1
-2
-3

E-
EF  

(e
V)

E-
EF  

(e
V)

Majority Minoritya)

b) c) d)

Fig. 4.10 Unfolded band structures for LaNiO2 in the ground state geometry for (a) FM, (b)
type-A AFM, (c) type-C AFM, and (d) type-G AFM. Projected spectral weights are presented
for La 5d (green), O 2p (blue) and Ni 3d (red) states. High symmetry points correspond are Γ
(0,0,0), X (0,0,0), M (1/2,1/2,0), Z (0,0,1/2), R (1/2,0,1/2) and A (1/2,1/2,1/2).

Comparing the bands of Figure 4.9.b and 4.10, all magnetic orders produce metallic solutions
with in general two electron pockets centered at the Γ and A points. This is rather surprising
since (i) in the cuprate case the undoped compounds are AFM insulators, and (ii) the magnetic
ground state of these nickelates would be an AFM metal which is rather uncommon. In addition,
LaNiO2 is mainly in the Mott regime with Ni d states dominating the low energy physics around
the Fermi level. Concerning the O p states, we compute the band center finding it at 4 eV
below the Fermi level. These results are in the same line as other theoretical studies on the
undoped nickelates [93, 226–230]. From the experimental point of view, several spectroscopic
experiments show that the O p states are at least 2 eV below the Fermi level, while only Ni
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d states are affected by the doping, suggesting a Mott-Hubbard scenario [87–90]. Thus the
electronic structure of these nickelates is significantly different when compared with the cuprates
since the undoped phase of the Cu-based superconductors is in the CT regime and they are
insulators.

We focus now on specific magnetic orders that we discuss one by one. The FM case presents
two different panels: (i) the majority spin on the left, and (ii) the minority spin on the right. The
PM and all AFM orders present only one panel since the bands are an average over all Ni cations
and both spin channels would present the same band dispersion. The band structure of the FM
order is characterized by two electron pockets centered at Γ and A points on both spin channels
consisting of Ni 3d with contributions from La 5d states. In addition to these electron pockets,
in the FM case, the majority spin channel presents two hole pockets centered at the M and A

points consisting of Ni 3d states highly hybridized with the O 2p states that would correspond
to the d2

x − y2 orbital as in the NM approximation although much less dispersive and with the
band center lower in energy. These features are also common to the type-A AFM (AFMA).
We however notice that along the Γ − Z path, there is a gap opening which can be explained
by the antiferromagnetic interactions along the z-axis that characterize the type-A AFM. The
band topology is slightly different in the case of the type-C AFM (AFMC) since there are some
vanishingly small electron pockets at Γ and the only relevant region in terms of conducting
properties is the Z − A−R − Z path. The latter presents an electron pocket at A and a flat
band mainly dominated by Ni 3d states with non-negligible contributions from La 5d states. We
also notice two gap openings along the Γ −M and Γ − Z paths, as a consequence of in-plane
nearest neighbors interactions, and possibly out-of-plane second nearest neighbors interactions,
respectively. The type-G AFM (AFMG) band dispersion does not present any electron pocket
along the Γ −X −M − Γ. The bands have been pushed upwards and only electron pockets are
found along the Γ − Z path and along the R − A − Z path as for other magnetic orders. In
addition, we also find a flat band along the R−A−Z as in the type-C AFM. Thus we can see that
except for the FM order that presents two different spin channels and the M point hole pockets
of the AFMA, the overall character of the bands on the PM and the AFM orders is rather similar.

4.3.3 Orbital character of the electronic structure

We further inspect the orbital character of the electronic dispersion in these nickelates by
projecting the spectral weight on specific orbitals of Ni 3d and La 5d cations. We consider
the AFMC magnetic order to illustrate the overall behavior since (i) all PM and AFM orders
present similar features (see Figures 4.9.b and 4.10), and (ii) it is the lowest energy state found
in our calculations (see Table 4.3). Results are presented on Figure 4.11.

By inspecting the decomposed band structure, we notice four important features, (1) the
dx2−y2 orbital presents one occupied band 1 eV below the Fermi level that does not contribute
to the conduction, and one unoccupied band 2 eV above the Fermi level, (2) the dz2 orbital
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Fig. 4.11 Orbital decomposed band structure on selected Ni d (in red) and La d (in green)
orbitals for type-C AFM order with the full band structure including O p states in (blue) on
the top left panel. High symmetry points correspond to the P4/mmm symmetry denoted as Γ
(0,0,0), X (0,0,0), M (1/2,1/2,0), Z (0,0,1/2), R (1/2,0,1/2) and A (1/2,1/2,1/2).

shows one occupied band 2 eV below the Fermi level that does not contribute to the conduction,
and several occupied bands at the Fermi level, the flat band across the Z − R − A − Z path
and the small electron pockets centered at Γ. Nonetheless, these bands are not completely filled,
(3) the La 5d states present an important contribution to the electron pockets centered at Γ
and the A points coming from the dz2 and dxy orbitals respectively. This behavior is consistent
with the existing literature, where the finite population of the La d states at the Fermi level has
been called a self-doping effect [86], and (4) the dxz/dyz doublet presents two occupied bands
1 and 2 eV below the Fermi level, although in addition, it presents a finite contribution to
the A centered electron pocket at the Fermi level. This is quite unexpected since the dxz/dyz

orbitals are expected to be at lower energies than the dz2 and dx2−y2 orbitals in a square planar
environment as it is reported by several authors [231–233].

We aim to understand this apparent contradiction with the expectations, by computing the
partial charge density on the AFMC in an energy window where we only have contributions
from the A centered parabola. This allows us to visualize the shape of the charge density, a
physical observable, disregarding the decomposition on localized atomic-like orbitals, since in
the case of a metallic system, such a picture might not be suitable as we discussed previously.
The energy window and the partial charge density are depicted in Figure 4.12.

It is remarkable to see that the charge density is mainly centered on the Ni cations presenting
a dz2-like shape with some minor contribution from a dx2−y2 . This suggests that the orbital
might be a mixture of several d electrons from Ni producing a dz2-like orbital and with a finite
hybridization with La dxy. Nonetheless, we can infer that the symmetry is not cylindrical and
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Fig. 4.12 Band structure of the AFMC order on the left panel. Partial charge density on a given
energy window (green region on the left panel) centered at the Ni sites as a 3D model isosurface
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there is a squared shape when inspected from the top which explains why we do not have a dz2

character when the orbital decomposition is performed.

Understanding the conduction on RNiO2 compounds

Gathering the results that we can infer from the orbital decomposed bands presented in
Figure 4.11 and summarized in points (1)-(4) in the previous section, we construct a scheme of
the energy levels on each Ni cation in Figure 4.13 that will help us to visualize the conduction on
these compounds. As one can realize from the sketch of Figure 4.13, the crystal field between the
Ni dx2−y2 and dz2 orbitals ∆CF, turns out to be smaller than JH the Hund’s coupling ∆CF < JH .
This situation produces that the last occupied orbital is in the minority spin channel on each
individual Ni cation with a dz2 orbital character. Although in the literature many theoretical
studies assumed that the conduction is given by the dx2−y2 orbitals with some finite hybridization
of the O p states [216–223, 234, 211, 235]. These results show that such an assumption is not well
justified by the electronic structure calculations performed in this thesis, and other theoretical
studies [93, 226–230], where the dx2−y2 orbital would at best present a weak hole like conduction
for the PM solution.

With this picture of the energy levels in mind, we recall the following experimental results:
(i) these nickelates present important AFM interactions [91, 92, 96, 97] and likely an AFM
ground state [93, 94, 124, 186], (ii) the undoped nickelates show a metallic character [66, 67, 123]
and (iii) there is a non-negligible hybridization between the La d and Ni d states [86]. Then
we see that our calculations are in good agreement with points (i) and (ii) since the lowest
energy state with collinear level magnetism is a metallic AFM order (type-C AFM). In order to
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Fig. 4.13 Energy levels of each Ni cation on the RNiO2 compounds with the different orbitals
on the majority (in blue) and minority (in red) spin channels. The crystal field ∆CF between
the dz2 and dx2−y2 orbitals is represented as well as the Hund’s coupling JH .

understand the point (iii) we look at the picture in Figure 4.11 and realize that the Γ centered
Ni dz2 bands clearly overlap with the La dz2 bands. We can say the same of the La dxy A

centered pocket in Figure 4.11 and the Ni dz2-like orbital that we depicted in Figure 4.12. Thus
it becomes evident that the observed hybridization between the La d and Ni d orbitals of point
(iii) originates from an overlap of the Ni dz2 with the La dxy and dz2 . This produces a certain
level of covalency or a more delocalized structure since the population of the Ni dz2 orbital
would not be completely filled and the population of the La d orbitals would not be completely
unoccupied as one could expect from a pure ionic picture. We must note that this overlap would
not be possible if a dx2−y2 orbital would be dominant at the Fermi level. In addition, looking at
the crystal field picture of Figure 4.13 the fact that the conduction is given by the minority
spin channel while the magnetism is given by the non-conduction majority spin channel is what
allows the coexistence of antiferromagnetic order and metallicity. The Ni dz2 orbitals would
contribute mainly to the conduction with some finite hybridization with the La d states while
the dx2−y2 would be dominant for the magnetism.

This last point is also suggested in Ref. [86] where the resistivity upturn of PrNiO2 [67],
LaNiO2[123] and NdNiO2 [66] is explained with a S = 1

2 Kondo scattering of the conducting Ni
d electrons with the magnetic environment produced by the singly occupied and non conducting
Ni dx2−y2 orbital. Thus, in sight of these results, we can say that the rare-earth nickelates are
Hund’s metals with a magnetic environment given by the non-conducting Ni dx2−y2 orbital, that
allows hosting metallicity and strong nearest neighbors antiferromagnetic interactions at the
same time.
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4.3.4 Electronic structure and lattice distortions

Depending on the cation size, several lattice distortions can appear in the material, and
lower the symmetry of the crystal. We then investigate the effects of these distortions on the
electronic structure by considering YNiO2 as model compound. We restrict this study to a
type-C AFM solution since it is the lowest energy state found in our DFT simulations.

We first compute the band structure of YNiO2 in the highly symmetric P4/mmm case (see
Figure 4.14.a). The band dispersion is quite similar to LaNiO2 where there is a small change in

3

2

1

0

-1

-2

-3

E-E
F (

eV
)

a) b)

Γ X M Z R A ZΓ Γ X M Z R A ZΓ

P4/mmm Pbcn

Ni 3d O 2pY 5d

Fig. 4.14 Unfolded band structure for YNiO2 in the high symmetry phase with P4/mmm
symmetry (a), and in the ground state geometry with Pbcn symmetry (b). High symmetry
points correspond to the P4/mmm symmetry denoted as Γ (0,0,0), X (0,0,0), M (1/2,1/2,0), Z
(0,0,1/2), R (1/2,0,1/2) and A (1/2,1/2,1/2).

the Fermi level position to upper energies, which produces greater electron pockets at Γ point.
Within the low symmetry Pbcn phase the electron pockets at the Γ points have disappeared
(see Figure 4.14.b). In addition, we see that the parabolic band centered at the A point is now
almost above the Fermi level, and the system is on the verge of becoming an insulator where the
only conducting band is the heavy band along the Z − A−R − Z path. These changes in the
electronic dispersion signals that the lattice distortions can affect significantly the conducting
properties almost bringing the system into an insulating state, which can be rationalized by a
reduced overlap between the La d and Ni d states.

This further shows that these nickelates are not purely 2D materials, since the only conduction
bands that are able to survive close to the Fermi level are along the Z − R − A − Z path,
which implies an out-of-plane conduction. Furthermore, this strongly shows that the structural
degrees of freedom should not be overlooked on these compounds since it can greatly affect the
electronic structure. The behavior we observe could further explain why only the nickelates
with a highly symmetric P4/mmm structure are prone to produce a superconducting transition
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at the right doping content. If this is true, then potentially all nickelates could host SC if the
distortions that may appear are suppressed by doping or epitaxial strain.

4.3.5 Effects of H intercalation

Finally, we check the role of H intercalation on the electronic properties of the nickelates
in the H-rich LaNiO2H. This compound presents a Ni cation with a 2+ FOS with a high spin
configuration and a H− anion. We compute the projected density of states on Ni 3d and O 2p
of LaNiO2 and compare it with LaNiO2H in the high symmetry P4/mmm and in the relaxed
LaNiO2H ground state with I4/mcm symmetry. Results are depicted in Figure 4.15. We obtain
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Fig. 4.15 On the left (a) projected density of states of LaNiO2 (top panel) with ground state
P4/mmm symmetry LaNiO2H with undistorted P4/mmm (middle panel) and LaNiO2H with
relaxed structure with rotations and I4mcm symmetry (bottom panel). Blue area are the O 2p
states, red area the Ni 3d states. Positive and negative values of the density of states correspond
to the spin-up and spin-down channels. On the right crystal structure of the two geometries of
LaNiO2H considered (b) with P4/mmm symmetry, and (c) with I4/mcm symmetry.

that the H rich nickelate LaNiO2H, is an insulator with a gap of Eg = 0.42 eV in the high
symmetry P4/mmm cell (see Figure 4.15.b), and the gap amplitude increases to Eg = 0.46 eV
in the ground state geometry with I4/mcm symmetry (see Figure 4.15.c). This behavior is in
contrast with the metallic or semi-metallic behavior of LaNiO2 depicted in Figure 4.15.a. These
results in addition to the 3D AFM ground state of LaNiO2H indicate that (i) the H− traps
conducting electrons as we can see by comparing the projected density of states on LaNiO2

depicted in Figure 4.15.a with the DOS LaNiO2H depicted in Figure 4.15.b and Figure 4.15.c,
(ii) the H intercalation restores the octahedral environment on Ni sites allowing an out-of-plane
superexchange interaction that favors antiferromagnetism, and (iii) the system becomes an
antiferromagnetic Mott insulator regardless of the geometry. Thus H intercalation does not favor
better conducting properties suggesting that it could be actually harmful to the appearance of
superconductivity in these compounds.
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4.4 Conclusion

We conclude here, that the RNiO2 compounds present a similar behavior as the RNiO3 parent
phase in terms of lattice distortions and how they correlate with the size of the A-site cation.
From the point of view of the magnetic properties, we have shown that these nickelates present
a strong nearest neighbor antiferromagnetic coupling between Ni sites in good agreement with
the experiments and other theoretical works. In addition, we find a weaker antiferromagnetic
coupling between the rare-earth R and the Ni cation when the 4fn states are occupied in
the rare-earth. This shows that the main magnetic interactions come from Ni sites and any
magnetic-related pairing mechanism is more likely to come from the Ni sites than the rare-earth
R. Regarding the electronic properties, we highlight the importance of including the spin degree
of freedom and that these compounds are in the Mott regime where the conduction is governed
by La d and Ni d electrons in good agreement with the experiments. Furthermore, we have
studied the orbital character of the conduction, showing that except in the FM case, the
conduction is not given by the Ni dx2−y2 contrary to what it is assumed. This is a consequence
of Hund’s coupling JH being bigger than the crystal field between Ni dz2 and dx2−y2 orbitals
JH > ∆CF . Which produces that the conduction is given by doubly occupied Ni dz2 and
dz2-like orbitals on the minority spin channel, with a finite contribution from La dxy and dz2 in
a background magnetic environment of singly occupied Ni dx2−y2 orbitals. Thus these nickelates
present themselves as Hund’s metals with a Mott character and non-negligible antiferromagnetic
interactions. Finally, we have also explored the role of H intercalation in the material in the
H-rich limit showing that it produces several lattice distortions, out-of-plane antiferromagnetic
interactions, and insulating behavior. Thus suggesting that H intercalation in the material is
harmful to the conducting properties of these compounds.





Chapter 5

Superconductivity in doped RNiO2
nickel oxides

Once the properties of the pristine materials are understood, we can study and rationalize
the doping content that is necessary to reach the superconducting phase in these compounds. As
we have evidence in chapter 3, one should be careful when dealing with rare-earth compounds
since the 4f states are not well localized with the SCAN functional. In that regard, we take the
case of La-based compounds since La cations do not present these 4f states. Additionally, the
SCAN functional also underestimates the band gap of transition metal compounds, which is a
well-known problem within practiced DFT, and in particular, the behavior of SCAN is worse
for compounds with a smaller formal oxidation state (FOS). Thus we benchmark our results
with the hybrid HSE06 functional when estimating band gaps.

5.1 Technical parameters of the calculations

The DFT calculations that we present in this chapter have a 650 eV energy cut-off for the
plane wave expansion and use the same PAW PBE pseudo potentials as mentioned in the
previous chapters for La, Ni, Sr, and O. The magnetic order is PM unless stated otherwise. This
choice is guided by the lack of experimentally reported long-range magnetism. In addition, it
avoids the inclusion of possible spin-phonon couplings in our simulations that may arise due to
an imposed long-range magnetic order. The PM order is modeled with the SQS method for
alloys as in chapter 4. We also use this method to model the Sr content x of the disordered
solid solution (DSS) of La1−xSrxNiO2 type compounds explicitly substituting the La ions by
Sr ions. This approach to model the Sr doping content is preferred over the virtual crystal
approximation (VCA) since the real potential of the different atoms is considered and a priori
we do not know whether the doping simply shifts the Fermi level (essentially with VCA) or
produces other effects. We use a 3 × 3 × 2 k-mesh to model the 32 f.u. supercell (with 128
ions per supercell) in the case of La1−xSrxNiO2 compounds, while we use a 3 × 3 × 1 k-mesh
to model the 16 f.u. supercell of La2NiO4 (with 112 ions per supercell) and of La3Ni2O6 (with
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176 ions per supercell). The energy convergence criteria is set to ∆E < 10−5 eV, and forces are
optimized on each atom until they are less than 5 · 10−2 eV/Å.

5.2 Understanding the phase diagram

As we mentioned in chapter 1, the RRP family (Rn+1NinO2n+2 compounds) hosts the infinite
layer (IL) case RNiO2 since it is the limiting member (n = ∞). Thus one may wonder if
analyzing the series from the n = 1 case instead of the n = ∞ can be helpful to understand
the phase diagram of these compounds and unveil the origin of the superconductivity. In that
regard, we perform electronic structure calculations of La2NiO4 (n = 1) using the ground state
geometry with Cmce crystal structure. From our calculations, we find that this compound is an
insulator with the conduction band minimum (CBM) mainly dominated by Ni d states, while
the valence band maximum (VBM) presents some O p and Ni d states (see Figure 5.1.a). The
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Fig. 5.1 The projected density of states of (a) La2NiO4, and (b) LaNiO2 with a PM magnetic
order. In solid grey the Ni 3d states, and the blue line represents the O 2p states. Positive values
of the density of states correspond to the spin-up channel while negative values correspond to
the spin-down channel.

amplitude of the gap is estimated to be Eg = 1.7 eV in fair agreement with previous DFT studies
with the SCAN functional [162]. The total magnetic moment on Ni sites is µNi = 1.48µB, which
is reminiscent of a Ni2+ cation (3d8) with a high spin configuration S = 1 in good agreement
with the experiments [236].

The electronic properties of La2NiO4 are in contrast with the behavior of LaNiO2 that
shows a clear metallic behavior as we already explored in chapter 4 in more detail (see Figure
5.1.b). The fact that La2NiO4 (n = 1) is an insulator with a 3d8 electron count on Ni sites,
suggests that approaching the SC region from this side of the phase diagram requires to electron
dope an insulator. This strategy is rather natural for improving the conducting properties of
any insulator. Moreover, doping a Mott or CT insulator is a common approach to obtain a
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superconductor, such is the case of cuprates, or bismuthates [237–239, 165, 240]. Thus, starting
to explore the doping phase diagram from the left side (n = 1) as depicted in Figure 1.14
rather than the right side (n = ∞) looks much more appealing. From this perspective, we
may ask if this approach allows us to identify an intrinsic electronic instability connected to
the superconducting mechanism. In that regard, we look for electronic instabilities contained
between the R2NiO4 (n = 1 of the RRP series) compounds, and the SC region in the doping
phase diagram.

5.3 Nickelates at half-doping

Following the RRP series, we explore the next member La3Ni2O6 (n = 2) which would
correspond to a half-doped situation where Ni cations present a 3d8.5 electron count. Nonetheless,
we can achieve this electron count by starting from the other side of the phase diagram with the
IL phase, with compounds like La0.5Sr0.5NiO2. In that regard, if both approaches are indeed
equivalent, we should expect to obtain similar electronic properties from both situations.

x
y

z

a) b) c)

La0.5Sr0.5NiO2
(DSS)

La0.5Sr0.5NiO2
(SL)

La3Ni2O6
(RRP)

La

Ni

O

Sr

Fig. 5.2 The three different geometries of half doped layered nickelates with 3d8.5 electron count
that are explored. (a) RRP La3Ni2O6, (b) DSS La0.5Sr0.5O2, and (c) SL La0.5Sr0.5O2.

To that aim, we relax the structure of (i) the IL as a super-lattice (SL) with perfect planes
of Sr and La stacked along the c axis, (ii) the IL as a completely disordered solid solution (DSS),
and (iii) the n = 2 RRP compound. The three geometries are depicted in Figure 5.2 and the
key quantities extracted from the relaxations are reported in Table 5.1.

After the relaxation, we perform a symmetry mode analysis with respect to the primitive
undistorted cell with space group I4/mmm for the RRP and P4/mmm in the IL case, from
which we obtain that in the three considered cases, that there is a bond disproportionation
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Compound ∆E (meV/f.u.) QBoc (Å/NiO2) µNiL/µNiS (µB)
La3Ni2O6 (RRP) -32 0.09 1.09/0.46

La0.5Sr0.5NiO2 (DSS) -53 0.06 1.03/0.23
La0.5Sr0.5NiO2 (SL) -87 0.07 0.95/0.10

Table 5.1 Extracted key quantities of the relaxed half-doped compounds. Total energy difference
∆E in meV/f.u. of the distorted cell with the Boc mode with respect to the high symmetry
phase, I4/mmm in the RRP and P4/mmm in the IL. Mode amplitude QBoc in Å/NiO2 motif,
and average magnetic moment on NiL and NiS sites.

mode (Boc) with sizable amplitudes of QBoc = 0.07, QBoc = 0.06, and QBoc = 0.09 Å/NiO2 motif
in the SL, DSS and RRP phases respectively (see Table 5.1). This mode produces a splitting
of the Ni sites into cations sitting in compressed (NiS) and extended (NiL) oxygen complexes
forming a layered checkerboard structure (see Figure 5.3).

NiS

NiL

La

Ni

O

Boc Mode

Fig. 5.3 Breathing of oxygen complexes distortion (Boc) producing a double local environment
on Ni sites, with NiS in the compressed NiO4 square and NiL in the extended NiO4 square.

The structural relaxations are associated with large energy gains with respect to the undis-
torted highly symmetric cell in the SL, DSS (with P4/mmm symmetry ), and RRP phase
(with I4/mmm symmetry) of −87, −53, and −32 meV/f.u. respectively. By inspecting the
magnetic moments on the Ni sites, we can notice the existence of a double local environment
since the NiL sites bear a magnetic moment of µNiL = 0.99 ± 0.05µB depending on the nature
of the half-doped nickelate (i.e. SL, DSS or RRP), and NiS sites have a magnetic moment of
µNiS = 0.26 ± 0.18µB. The clear magnetic moment asymmetry suggests that NiL cations are
in a Ni+(3d9) configuration while NiL cations are in a Ni2+(3d8) low spin state, producing a
charge ordering (CO). The slight deviation from the expected 0µB for NiS sites comes from
cation and/or spin disorders (inherent to the DSS and PM) yielding a different crystal field ∆CF

and exchange splitting ∆x experienced by each Ni cations.
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We further investigate the electronic structure of these compounds, by computing the partial
density of states on the IL DSS and projecting on O p, NiL d and NiS d. Results are shown in
Figure 5.4.a. We notice that the effect of the Boc mode is to produce a clear asymmetry of the
electronic structure associated with the two different Ni cations (Figure 5.4.c). Nonetheless, we
observe that the compound is weakly metallic which is quite unusual for a CO compound. We
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Fig. 5.4 Electronic structure of half-doped nickelates. Projected density of states on O p (in
red) Ni d (in blue) and Ni d (in grey) for (a) solid solution (DSS) IL nickelate with PM order
using the SCAN functional, and (b) superlattice (SL) IL nickelate with type-E AFM using the
HSE06 functional. (c) Partial charge density map of selected bands indicated by the orange
square on panel (b).

benchmark these results with the hybrid HSE06 functional on a smaller cell in the SL with a
type-E AFM order that is compatible with the charge ordered pattern as discussed in Ref. [26]
(see Figure 5.4.b). The latter calculation yields an insulator with a gap amplitude of Eg = 2 eV
in contrast to SCAN, although preserving the same qualitative picture on the asymmetry of
the Ni cations. This behavior from SCAN is nothing but self-interaction errors which become
more and more important with smaller formal oxidation states as we discussed in chapter 3.
Thus, in the case of the unusual Ni+ cation, the SCAN functional yields a slightly delocalized
structure producing a metallic system. However, underestimated band gaps are inherent to
local or semi-local DFT exchange-correlation functionals which also underestimate as well the
gap of uncorrelated semiconductors.

Focusing now on Figure 5.4.b, we notice that the VBM is dominated by NiL d states while
NiS d states are pushed above and below the VBM and dominate the CBM. Furthermore, the
O p orbitals do not bring a sizable contribution to the DOS in this energy range and the top
of these states are in fact located 1 eV below the CBM. We further investigate the electronic
structure by looking at the partial charge density map originating from bands just at the VBM
(see Figure 5.4.c). A charge ordering between NiL and NiS cations (Figure 5.3.b) is identified
with NiL likely holding more electrons than NiL cations. The partial charge density map also
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highlights the strong Mott character of these nickelates with negligible spread of the electronic
structure on O atoms. The Mott character is in agreement with previous results on undoped
materials [84, 241, 87, 93, 226–230].

Regarding the spin configuration on Ni sites, we must note that obtaining a low spin state is
quite surprising since La2NiO4 presents a Ni2+ in a high spin state. We can understand this
behavior as an interplay between the local crystal field ∆CF between the dz2 and dx2−y2 orbitals,
and the Hund’s coupling JH one each Ni cation (see Figure 5.5). When all Ni cations in these

Ni+ (3d9) + Ni2+ (3d8)
Insulating

a) b)

NiL(3d9)
S = 1/2

NiS(3d8)
S = 0

dz2

dx2-y2

ΔCF
JH

Ni(3d8.5)
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ΔCF
JH

Ni(3d8.5)

dx2-y2

2Ni1.5+ (3d8.5)
Metallic
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dx2-y2

ΔCF

JH
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ΔCF

JH

dx2-y2
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Fig. 5.5 Orbital filling of the energy levels on Ni cations in the square coordinated environment
of the RRP or IL phase. Two situations are considered (a) the system presents all Ni cations
equivalent and with a Ni1.5+(3d8.5) producing a metallic state, and (b) the system presents two
types of Ni cations, with a Ni+(3d9) configuration as in the case of NiL cations, and with a
Ni2+(3d8) configuration as in the case of NiS cations, producing an insulating state with gap
amplitude Eg.

compounds are equivalent, we have the situation depicted in Figure 5.5.a, where the crystal
field in all Ni cations is the same and is smaller than the Hund’s coupling ∆CF < JH . This
is the situation that we discussed in chapter 4 for the undoped compounds, and in this case,
since the dz2 minority spin channel can be either occupied or unoccupied on different Ni sites,
leads to a half-filled band and a metallic system. However, when the Boc disproportionation
mode condenses in the material, it produces two types of Ni cations (NiL and NiS), where the
crystal field ∆CF shrinks or enhances, respectively as depicted in Figure 5.5.b. The interesting
situation comes from the NiS cations since in their case, the crystal field dominates over the
Hund’s coupling ∆CF > JH . This produces that the dx2−y2 orbitals on NiS cations are less
energetically favored in general than the d2

z in both spin channels, producing all electrons on
NiS to be paired, a low spin configuration S = 0, and a completely unoccupied dx2−y2 orbital
(see Figure 5.5.b). In addition, when the energy levels on NiS cations are compared with the
NiL cations, this double local environment leads to a gap opening between the occupied NiL dz2
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orbitals sitting at the VBM, and the unoccupied NiS dx2−y2 orbital at the CBM as it is depicted
in Figure 5.5.b, and it can be verified as well from the DOS in Figure 5.4.

5.3.1 Origin of the disproportionation mode

In order to reveal the origin of the disproportionation effects, we examine the potential
energy surface (PES) associated with the disproportionation mode Boc in the SL, DSS, and
RRP. To that end, we compute the total energy by freezing some amplitude of the Boc mode
starting from a high symmetry undistorted P4/mmm and I4/mmm cells for the IL and RRP,
respectively (see Figure 5.6). In all three forms of half-doped nickelates, we identify a single well
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Fig. 5.6 Potential energy surfaces of the Boc mode with a PM magnetic order and several
geometries, (a) La0.5Sr0.5NiO2 with PM order, (b) La0.5Sr0.5NiO2 SL with PM order, and (c)
La3Ni2O6 with PM order. Total energy differences are taken with respect to the high symmetry
P4/mmm and I4/mmm cells for the IL and RRP, respectively.

potential whose minimum is shifted to a non-zero amplitude of the Boc mode. This indicates
the existence of a force associated with an electronic instability acting to remove the electronic
degeneracy of the equivalent Ni cations on a 3d8.5 electronic configuration depicted in Figure
5.5.a [26]. Furthermore, the instability is independent of the form of the structure (i.e. SL
vs. RRP) as well as of the order/disorder of A-site cations (i.e. SL vs. DSS). This suggests
that the formal occupancy of Ni 3d orbitals is the determining factor rather than the form
of the nickelate. We conclude here that the 1.5+ FOS of Ni cations is intrinsically unstable
and is willing to disproportionate to more stable 1+ and 2+ FOS in the ground state, thereby
producing a charge ordering and a bond disproportionation Boc mode.

These results and the existence of a disproportionated insulating state at half doping are
confirmed experimentally in Refs. [47, 49, 201] showing the existence of CO and insulating states
in La3Ni2O6 (RRP n = 2), also predicted theoretically in Ref. [242]. Nevertheless, the existence
of a half-doped infinite layered phase is yet to be realized experimentally, where other factors
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such as thermodynamic stability, miscibility of the precursors of the parent perovskite phase,
and the choice of the divalent cation to dope should be carefully studied. However, should such
a phase exist, it would be characterized by robust disproportionation effects of Ni1.5+cations.

5.4 Evolution of the charge ordering with the doping

So far, we have seen that the CO instability that produces a bond disproportionation and
an insulating state exist at half doping. Thus the question here is what happens when we keep
approaching the SC region starting from this CO phase. In that regard, we explore the IL phase
with different doping concentrations La1−xSrxNiO2 with a PM order. To that end, we decrease
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Fig. 5.7 Trends in disproportionation effects with a PM order signaling the charge ordered phase
with the 3d electron count for two key quantities (a) the amplitude of the Boc mode in Å/NiO2
motif, and (b) the absolute value of the difference in the magnetic moment of NiL and NiS
cations. Both quantities are represented for the fully relaxed structures of La0.5Sr0.5NiO2 solid
solution (red dots, DSS), superlattice (blue squares, SL), and La3Ni2O6 (green triangles, RRP).

the Sr concentration starting from x = 0.5 until x = 0, which translates to an increase of the 3d
electron count from a 3d8.5 (with a Ni1.5+ cation) electronic configuration to a 3d9 (with a Ni+

cation). We report in Figures 5.7.a and 5.7.b the evolution of the Boc mode amplitude and the
magnetic moment asymmetry ∆µ = µNiL − µNiS between the two Ni sites as a function of the 3d
electron count. We observe that the amplitude of the Boc mode decreases upon increasing the
electron count starting from 3d8.5. The critical point is achieved at a Sr concentration of x = 0.25
which corresponds to a 3d8.75 electron count (see Figure 5.7.a), where the Boc mode is no longer
stable. We can extract the same conclusions following the magnetic moments as it is depicted in
Figure 5.7.b. We can note that the extinction of the disproportionation mode at x = 0.25 is rem-
iniscent of the value at which superconductivity emerges experimentally in these compounds [68].

Concerning the electronic structure, we have already evidence that SCAN would produce a
false metal at half-doping. For that reason, we use the hybrid HSE06 and the type-E AFM with
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a SL as we did in the half-doped situation but in this case with a doping content of x = 0.375.
This is achieved with an 8 f.u. supercell which makes the calculations affordable. We present the
results in Figure 5.8, and we can appreciate an insulating compound with a sizable Boc mode am-
plitude QBoc = 0.079 Å/f.u. and a clear asymmetry on the Ni magnetic moments of ∆µ = 1 µB.
This suggests that the Boc mode and the CO insulating state will be present for all compounds
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Fig. 5.8 Projected density of states on O p (red line), NiS d (blue line) and NiL d (solid grey) of
La0.625Sr0.375NiO2 in a SL geometry with a type-E AFM. In the inset, the magnetic moment on
the 3 NiS and 5 NiL cations are given as well as the QBoc mode amplitude.

with x > 0.3125 which is when the amplitude of the distortion starts to vanish. From this point,
we expect to find a metallic compound. Nonetheless, the exact position might change depending
on both rare earth and divalent cations and might be dependent on the strain coming from the
substrate since the lattice distortions are affected by pressure effects as we discussed in chapter 4.

Thus we conclude here that increasing the electron count on the Ni site quenches the
insulating CO phase producing a metallic region. The existence of a propensity towards a bond
and charge ordering has been evidenced on some of the compounds in the RRP series with n = 3
[53, 57, 63], as well as some theoretical works on this compound [243, 242] and the IL phase [244].

5.4.1 Evidence of an electronic phase transition

We obtain further evidence on the extinction of the disproportionation mode, by computing
the potential energy surface of the Boc mode for different Sr contents x in the DSS. Starting
from the half-doped situation x = 0.5 depicted in Figure 5.6.a, we obtain a shifted single well for
all the doping concentrations until x = 0.25 as it is depicted in Figures 5.9.a 5.9.c, noticing that
the depth of the well and the minimum are progressively shrunk upon increasing the electron
count or decreasing the Sr content x. Further decreasing the content x, we notice that we
have a single well potential whose minimum is achieved at zero amplitude (see Figures 5.9.d to
5.9.e), indicating that the electronic instability associated with the Boc mode is suppressed. At
this stage, no more CO is expected leaving a metallic region. We explore in more detail this
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Fig. 5.9 Potential energy surface of the Boc mode for the DSS of La1−xSrxNiO2 with a PM
order for different values of x (a) x = 0.4375, (b) x = 0.3125, (c) x = 0.25, (d) x = 0.1875, (e)
x = 0.125, and (f) x = 0.

transition by computing the frequency of the mode as a function of the Sr doping content x. As
we discussed in the previous chapter, we can model the potential energy surface by expanding
the energy E in terms of the amplitude of the mode QBoc as follows

E[QBoc ] = E0 + αQ2
Boc + βQ4

Boc (5.1)

We can easily identify that the harmonic constant is α = 1
2MOω

2
Boc > 0, with MO the mass

of the oxygen, ωBoc is the frequency of the Boc mode and β > 0 is the anharmonic coupling
constant. However, under these restrictions α, β > 0, we are assuming that the minimum is
achieved at QBoc = 0, but if the minimum energy is achieved at a non-zero amplitude Q0, we
can express the energy as

E[QBoc −Q0] = E0 + α(QBoc −Q0)2 + β(QBoc −Q0)4 (5.2)

Expanding the expression we find

E[QBoc −Q0] = E0+αQ2
Boc +αQ2

0−2αQBocQ0+βQ4
Boc +βQ4

0−4βQ3
BocQ0−4βQBocQ

3
0+6βQ2

BocQ
2
0

(5.3)
and if we arrange the terms in powers of QBoc

E[QBoc −Q0] = (E0 +αQ2
0 +βQ4

0)− (2αQ0 +4βQ3
0)QBoc +(α+6βQ2

0)Q2
Boc −4βQ0Q

3
Boc +βQ4

Boc

(5.4)
With this expression, we can then fit the calculated PES with a 4th degree polynomial in QBoc

E[QBoc −Q0] = E ′
0 + aQBoc + bQ2

Boc + cQ3
Boc + dQ4

Boc (5.5)
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and map the coefficients into the previous expression allowing us to obtain the value of β, Q0

and the harmonic constant α as follows:

β = d

Q0 = − c
4d

α = b− 3c2

8d

(5.6)

Then it is easy to obtain the frequency as:

ωBoc =
√

2α
MO

(5.7)

which will allow us to obtain the harmonic term of the frequency for any doping concentration
x. We report in Figure 5.10 the evolution of ω2

Boc as a function of x. It is clear that there is
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Fig. 5.10 Square of the Boc mode frequency ω2
Boc as a function of the 3d electron count computed

in the highly symmetric P4/mmm cell (red dots) and in the relaxed ground state with P1
symmetry (blue squares).

a softening from x = 0.5 to x = 0.25 and then the mode hardens for x < 0.25. This behavior
is characteristic of a phase transition where the n-th derivative of the energy with respect to
a given order parameter is discontinuous. If we recall that the elastic energy is proportional
to the square of the frequency E ∝ ω2

Boc , and the doping concentration is proportional to the
number of electrons x ∝ N , it is then easy to see that the discontinuity would be in the chemical
potential µ̃ = ∂E

∂N
. Thus it clearly signals an electronic phase transition at xc ≈ 0.25, reminiscent

of the transition from CO insulator to metal that we observe in the phase diagram.

Focusing now on the metallic region close to the critical point xc, we can notice that the
frequency of the mode is rather soft, and although the mode is not able to localize the electrons,
it could still be coupled to the electronic structure opening the possibility of Cooper pair
formation. Finally, we also observe a small shift toward higher frequencies, when we compute
the frequency of the mode including all the small lattice distortions present in the relaxed
ground state. This signals the presence of small couplings between the Boc mode and other
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lattice distortions. Thus we conclude here that the SC phase of these layered nickelates is in the
vicinity of a CO phase.

5.5 Superconducting model

It is important to note that although in the DFT calculations, the Boc mode does not present
a sizable amplitude in the ground state structure, it does not prevent the mode from interacting
with the electronic structure. We will then try to build a simplified model taking as an ansatz
that the Boc mode is highly coupled to the electronic structure of these nickelates and that this
mode would be representative of the types of phonon modes that will contribute to the SC
mechanism. We can then use equation (2.92) from chapter 2 for the EPC, and consider the
Fermi surface average of only the Boc mode.

λBoc = 2N(εF )
∑

k

ℏ2

2ω2
Boc

∣∣∣∣∣∣
∑

j

1√
Mj

∆εk

|uBoc,j|

∣∣∣∣∣∣
2

(5.8)

where N(εF ) is the density of states per spin at the Fermi level, Mj is the mass of the moving
atoms, ωBoc is the frequency of the Boc mode and ∆εk is the change in energy of the Kohn-Sham
eigenvalues when the j-th component of the Boc mode distortion is frozen in the compound.
Now since the moving atoms are all O atoms, then Mj = MO and we can write

∣∣∣∣∣∣
∑

j

1√
Mj

∆εk

|uBoc,j|
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= 1
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〉∣∣∣2 (5.9)

with ϵBoc being polarization vector of the Boc mode. Then we can evaluate ∇V KS · ϵBoc as

∇V KS · ϵBoc = V KS(∆uBoc) − V KS(0)
|uBoc |

(5.10)

Then we combine equations (5.10) and (5.9) obtaining that
∣∣∣∣∣∣
∑

j

1√
Mj

∆εk

|uBoc,j|

∣∣∣∣∣∣
2

= 1
MO

∣∣∣∣∣ ∆ε̃k

|uBoc |

∣∣∣∣∣
2

(5.11)

with ∆ε̃k being change in the Kohn-Sham energy eigenvalues when the total Boc distortion is
introduced. We then introduce these results back into equation (5.8) and recalling that |uBoc | is
directly the amplitude of the mode QBoc we arrive to the following expression:

λBoc = 2N(εF )
∑

k

ℏ2

2MOω2
Boc

∣∣∣∣∣∆ε̃k

QBoc

∣∣∣∣∣
2

(5.12)

By calculating the electronic band structure for a Sr concentration x = 0.1875, which experi-
mentally is superconducting, we realize that the pockets at Γ are no longer relevant, and only
the electron pocket centered at the A point is important as it is depicted in Figure 5.11. Thus if
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Fig. 5.11 Unfolded band structure for DSS La0.8125Sr0.1875NiO2 with PM magnetic order. (a)
The full band structure, (b) a sketch of the Brillouin zone associated to the primitive cell of
P4/mmm symmetry with high symmetry points highlighted. High symmetry points correspond
are Γ (0,0,0), X (0,0,0), M (1/2,1/2,0), Z (0,0,1/2), R (1/2,0,1/2) and A (1/2,1/2,1/2).

we consider an average around the Fermi surface, we only consider changes in the Kohn-Sham
eigenvalues around the Z − A−R path and close to the Fermi level. In this way, we can then
compute the EPC as

λBoc = 2N(εF )
〈

ℏ2

2MOω2
Boc

∣∣∣∣∣∆εk

QBoc

∣∣∣∣∣
2〉

F.S.

(5.13)

We can then calculate the change in the eigenvalues as half of the band splitting ∆Eg once a
finite QBoc amplitude is introduced ∆εk = ∆Eg

2 . By introducing this expression back to equation
(5.13) we obtain

λBoc = 2N(εF ) ℏ2

2MOω2
Boc

(
∆Eg

2QBoc

)2

= N(εF ) ℏ2

2MOω2
Boc

D2
Boc (5.14)

where DBoc is the reduced electron-phonon matrix element (REPME), which is the response
function of the electronic structure to a perturbation induced by a phonon displacement. We
then proceed to calculate the EPC for each of the different doping concentrations. Since we
have already calculated the frequency of the mode (see Figure 5.9.b) we are only left with the
task of obtaining the density of states at the fermi level N(εF ) and the REPME DBoc . For the
latter quantity, we introduce an amplitude of QBoc = 0.1106 Å, at x = 0.1875, producing a band
splitting of ∆Eg = 0.64 eV along the Z − A path (see Figure 5.12).

This approach of evaluating the REPME has two main weaknesses that have to be carefully
evaluated. The first one is that by evaluating the REPME as DBoc = ∆E

2uBoc,O
, with uBoc,O the

displacement of a single O atom, we are implicitly assuming that we are within the harmonic
regime and the deformation potential is linear with the amplitude QBoc . Thus, we have to
ensure that the band splitting is linear with the mode amplitude. We compute then the band
splitting ∆Eg for different QBoc amplitudes in a SL geometry for La0.75Sr0.25NiO2 with the
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Fig. 5.12 Unfolded band structure of DSS La0.825Sr0.187NiO2 along the Z − A path with a finite
amplitude of the Boc mode (right) and without it (left). High symmetry points correspond to
Z = (0, 0, 1/2), and A = (1/2, 1/2, 1/2) of the high symmetry P4/mmm primitive cell.

SCAN functional and a type-E AFM order. A linear curve is obtained as it is depicted in Figure
5.13, where the slope is 2DBoc , which is twice the REPME. This ensures that the extracted
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Fig. 5.13 Band spliting ∆Eg as a function of the atomic displacement uBoc,O. The slope of the
linear fit is equivalent to 2DBoc , which is the REPME.

quantity is independent of the amplitude considered. The second problem is that since we are
measuring a band splitting close to the Fermi level, we would suffer from the same inaccuracies
as in the case of predicting accurate values for the band gap in the half-doped case. For that
reason, we compute the band splitting with the HSE06 functional, on La0.75Sr0.25NiO2 with a
SL geometry and a type-E AFM which produces a band splitting of ∆Eg = 0.72 eV (see Figure
5.14). Then we compute the band splitting with the SCAN functional yielding a value of ∆Eg

= 0.49 eV (see Figure 5.14.a). Comparing both gap amplitudes, we obtain an increase of 40% of
the band splitting of the HSE06 functional with respect to the SCAN functional. Thus we then
compute the REPME for the different Sr doping concentrations with the SCAN functional and
then apply this 40% increase correction of the HSE06 functional (see Figure 5.14.b). As we can
see, although the SCAN functional does not account quantitatively well for the amplitude of
the gap, we can already notice a dome-shaped REPME, reminiscent of the critical temperature
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Tc dome observed experimentally.

For evaluating the density of states at the Fermi level, we need a very precise value which
implies a very dense k-mesh. This is a big problem since we have a supercell with 128 atoms.
Thus in this case we use the Wannier Functions (WF) and the Wannier interpolation which
enables us to obtain the total density of states with a 32 × 32 × 32 k-mesh. This yields a
highly converged total density of states and we repeat the procedure for the different doping
concentrations (see Figure 5.15).

0.2

0.3

N(
E F)

 (s
ta

te
s/e

V/
f.u

/sp
in)

0.1

0.4

Ni 3d electron count
8.75 8.80 8.85 8.90 8.95 9

LaNiO2La0.75Sr0.25NiO2

Fig. 5.15 Computed density of states at the Fermi level N(εF ) as a function of the electron
count in the DSS of La1−xSrxNiO2.
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One can notice that the density of states is nearly constant until it reaches x = 0.25 where
it starts to drop signaling the region where the system would become insulating. With these
quantities, we can obtain the EPC as a function of the doping content as depicted in Figure
5.16, obtaining a maximum value of λ = 0.51. This value is in good agreement with the analysis
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8.75 8.80 8.85 8.90 8.95 9
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0.45

 

LaNiO2La0.75Sr0.25NiO2

Fig. 5.16 Electron phonon coupling as a function of the 3d electron count.

of the experimental raw data performed by Talantsev, using several superconducting compounds
and suggesting a possible electron-phonon SC mechanism with an EPC of λ = 0.58 − 0.60 [113].
The evolution of the EPC with the different doping concentrations yields a dome-like shape sig-
naling that the dome on Tc found experimentally is intrinsic and not a cause of bad sample quality.

We can finally obtain an estimate of the critical temperature Tc by means of the Mc. Millan-
Allens equation that presented in chapter 2 equation (2.93). Nonetheless, the equation presents
three parameters λ, ωc, and µ∗ but we only have one λ. In that regard, we first make the
approximation that the Boc mode is a representative mode of the interacting phonons with the
electronic structure. Now since the Boc mode is a representative mode of the system, we can
take it as the characteristic energy scale ωc = ωBoc for the calculation of the Tc. Secondly, we
take the same value for the screened Coulomb interaction as µ∗ = 0.13 which is the obtained
value in Ref. [113] from the analysis of the experimental raw data for a phonon-mediated
mechanism. This value is a reasonable approximation since ab initio calculations typically
show that µ∗ = 0.1 − 0.15 [159–161]. Under these approximations, our formula for the critical
temperature Tc becomes

Tc = ℏωBoc

1.2kB

exp
{

− 1.04(1 + λBoc)
λBoc − µ∗(1 + 0.62λBoc)

}
(5.15)

This enables to calculate the critical temperature as a function of the Ni 3d electron count
as depicted in Figure 5.17. Our model yields rather good agreement with the experimental
values on Ref. La1−xSrxNiO2 [68], being able to reproduce both SC region and metallic but
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Fig. 5.17 Critical temperature as a function of the 3d electron count on Ni cations for
La1−xSrxNiO2. Blue dots are the experimental points extracted from Ref. [68], green dia-
monds and yellow and red triangles are the computed values from DFT using equation (5.15) .

not SC region at the end of the phase diagram. However, one may wonder how much the
µ∗ parameter affects the computed critical temperature. In that regard, we can repeat the
calculation for µ∗ = 0.15 and µ∗ = 0.1 which are the typical upper and lower reasonable values
for this parameter. We report the results in Figure 5.17 and we see that the dome shape Tc is
still predicted well. Thus the model is able to reproduce qualitatively and quantitatively well,
the doping or Ni 3d electron count phase diagram predicting (i) an insulating region with some
CO due to an electronic instability, (ii) the SC region for a narrow range of 3d electron count,
and (iii) the simply metallic region without the signature of a SC transition. The behavior in
the latter region can be ascribed as a consequence of the hardening of the phonon modes that
contribute to the SC phase as it is depicted in Figure 5.6.b.

5.6 Discussion

Although explaining qualitatively and quantitatively the experimental phase diagram of
these nickelates, our results contradict the analysis performed by Nomura et al. [115] that
discarded the possibility of a phonon-mediated scheme. First we must note that the study uses
a standard GGA functional to deal with highly localized 3d and 4f states. This is nothing but
a good practice since at least a GGA+U approach would be required, to properly describe these
highly localized states, that are the main actors in the conduction. Secondly the study uses the
NM approximation neglecting completely all the spin-spin correlations, that are expected for
transition metal elements with open shells. Other authors have also proposed a phonon-mediated
scheme, successfully reproducing the values for the Tc employing the full Eliashberg equations
including all phonon modes and using Green’s function technique GW proposing a multi-gap
s-wave paring symmetry scenario [245]. The study, however, uses the NM approximation which
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produces the same Tc for all doping contents. This is a crucial point and we will show it in the
coming section.

5.6.1 Doping phase diagram and the spin degree of freedom

We divide this section by discussing two main points. First, we discuss how dramatic it is to
use the NM approximation in the predictions, and second, we show how the predictions can be
affected by long-range magnetic orders.

Role of the spin degree of freedom

We have already evidenced that the NM solution is not suitable for discussing the electronic
properties of the undoped IL compounds, since it yields a very different band picture when
compared with the random PM solution that we use (see chapter 4). Then we will evidence
that it is not suitable for the doped compounds either. To that aim, we relax the whole phase
diagram of the IL La1−xSrxNiO2 with the DSS geometry and compare the total energy of the
system with respect to the PM phase. We report in Figure 5.18 the energy difference between
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Fig. 5.18 Total energy difference between the non-spin polarized NM solution and the random
spin PM solution ∆ENM−PM in eV/f.u. as a function of the Ni 3d electron count. Positive
values indicate that the PM solution is more stable, while negative values indicate that the NM
solution is more stable.

the NM and PM solutions ∆ENM−PM as a function of the Ni 3d electron count. We must note
that ∆ENM−PM > 0 implies that the PM is more energetically favorable, while ∆ENM−PM < 0
implies that the NM is more energetically favorable. As it is evidenced in Figure 5.18, the total
energy difference between the two phases is always positive, which means that the PM solution
is more stable regardless of the doping content for 0.5 ≤ x ≤ 0. In addition, the PM solution
is at least 1800 K/f.u. (around 150 meV/f.u.) more stable than the NM phase. This quantity
should be compared with the SC Tc not exceeding 23 K in these compounds. Thus important
parts of the energy of the system are clearly neglected by not including the spin degree of freedom.
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Fig. 5.19 Potential energy surface of the Boc mode in the DSS of La0.5Sr0.5NiO2 with (a) a
non-spin polarized solution NM, and (b) a ferromagnetic order FM.

In spite of these important total energy differences, one may still hope that the phonon
spectra is still well accounted in the NM solution, and in particular the Boc mode could still be
well accounted. In that regard, we compute the PES of the Boc mode with the NM solution
and we compare it with a FM solution that is expected to produce less localization. In order to
have the highest amplitude of the mode we use the DSS of La0.5Sr0.5NiO2. Unfortunately as it
is verified by comparing the curves on Figures 5.19.a and 5.19.b, the NM solution is completely
unable to predict the electronic instability and the appearance of the Boc mode at half-doping
(see Figure 5.19), since it presents a single well potential with its minimum at zero amplitude.
This is at odds with the FM solution that it does present a shifted single well signaling the
electronic instability.

Although we have evidenced the lack of success of the NM solution to account for important
phonons of the system such as the Boc mode, we could still hope to have a good electronic
structure description in the doped materials. We then explore how good the NM approximation
is by comparing the electronic structure of the half-doped DSS in the PM case and in the NM
solution. Thus we calculate the band structure for both cases reporting them in Figure 5.20. It
becomes clear that the NM solution produces a qualitatively different band dispersion to the PM.
The band character in both cases is rather similar to the undoped IL phase discussed in chapter
4 (see Figure 4.9). However, the small Γ and A electron pockets have almost disappeared and
pushed up, with the Γ centered bands being pushed 1 eV above the Fermi level, and the A
centered electron pocket sitting just at the Fermi level in the PM case (see Figure 5.20.a), and
with a reduced bandwidth of 0.5 eV in the NM case. However, the biggest difference comes from
the highly dispersive band with a Γ centered electron pocket and a M -centered hole pocket of
the NM (see Figure 5.20.b). This band as we discussed previously on chapter 4, corresponds
to the dx2−y2 orbital [216–223], which remains dominant at the Fermi level also at this doping
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Fig. 5.20 Electronic band structure of La0.5Sr0.5NiO2 DSS with (a) no magnetism (NM), and (b)
with PM order. The band dispersion is unfolded to the primitive P4/mmm cell. High symmetry
points correspond are Γ (0,0,0), X (0,0,0), M (1/2,1/2,0), Z (0,0,1/2), R (1/2,0,1/2) and A
(1/2,1/2,1/2).

concentration for the NM solution.

Strictly speaking, both PM and NM solutions produce a metallic compound and we need to
use the HSE06 functional to produce an insulating state since the SCAN functional still presents
some delocalization errors. Thus one could hope that if the HSE06 functional would be used
instead, it would have correctly predicted an insulating compound since the exchange part of
the energy would be improved. In that regard, we use the SL to compute the electronic density
of states using the NM and HSE06 functional, since the supercell would be much smaller than
the DSS. The results are reported in Figure 5.21.

Interestingly the HSE06 functional yields a metallic compound despite of improving the
description of the exchange correlation phenomena. The reason is that in the NM approximation,
Hund’s rule is not satisfied producing a metallic compound with the dx2−y2 orbital at the Fermi
level. This however is completely wrong, since as it can be verified in Figure 5.5.a and 5.5.b,
the last occupied orbital is the dz2 on both NiL and NiS. Thus satisfying the basic Hund’s rule
for Ni cations is crucial for describing qualitatively well the features of these nickelates since a
non-spin polarized (NM) DFT calculation yields (i) a metallic system regardless of how well
the exchange-correlation phenomena is described, and (ii) a single well potential for the Boc

mode whose minimum is centered at zero amplitude (Figure 5.6.a). In contrast, all additional
calculations performed including the spin degree of freedom show the stabilization of the mode
(see Figure 5.6 for the PM case and Figure 5.19.b for the FM). This is in agreement with the
existence of the breathing mode Boc in the perovskite RNiO3 phase that requires Hund’s rule to
be respected [151] (i.e. formation of local spins). Nevertheless, disproportionation effects are
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Fig. 5.21 Total density of states of La0.5Sr0.5NiO2 in a SL with the NM solution. The gray area
are the results using the SCAN functional, and the red line are the results obtained with the
HSE06 functional.

unrelated to correlation effects as is extensively discussed in Refs [151, 165, 13, 246].

With these results, we can state that Ref. [115] fails at discussing the SC properties due to
both poor description of the exchange correlation phenomena and the absence of the spin degree
of freedom in the calculations. In the case of Ref. [116], the exchange correlation phenomena
is very well described but as we saw, neglecting the spin degree of freedom leads to predict a
different phonon spectra since it neglects the role of the Boc mode, and in addition, predict a
metallic character in the whole doping phase diagram. In fact, in Ref. [116] the Tc is evaluated
only for the already known SC region, very likely because the NM approximation predicts a
metallic system for all doping concentrations with 0 ≤ x ≤ 0.5 (see Figure 5.21). This would
possibly lead to predict SC for all doping ranges at odds with the experiments. This further
shows the importance of including the spin degree of freedom in the calculations. Thus our model
up to date is the only phonon-mediated approach that is able to qualitatively and quantitatively
describe the whole phase diagram of these compounds.

Magnetic order independence of the phase diagram

We can further validate our CO dome by repeating the calcualtions with a type-E AFM
and computing both the magnetic moment asymmetry ∆µ and the amplitude of the mode
QBoc . We obtain exactly the same trend as we can verify in Figure 5.22, suggesting that it is a
real physical effect and does not depend on the magnetic order. This highlights that by only
including the spin degree of freedom we can already predict the CO insulating region, and at
least the simply metallic region for doping contents x ≤ 0.25 as opposed to the NM solution.

We can then aim at calculating a critical temperature in the SC region using the procedure
employed previously. To that aim we take the doping content x = 0.1875 which is the doping
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content that produces the highest calculatd critical temperature (see Figure 5.17). We compute
the frequency from the PES obtaining ωBoc = 62 meV, which is similar to the obtained for the
PM phase. Then we evaluate the density of states at the Fermi level, obtaining N(εF ) = 0.46
states/eV/f.u./spin, which is similar to the values reported in Figure 5.15. Finally we evaluate
the REPME with SCAN obtaining a value of DBoc = 4.27 eV/Å, which is also close to the value
reported in Figure 5.14. Then we apply the 40% enhancement that we reported for the SL using
the HSE06 functional,yielding a final value of DBoc = 6.03 eV/Å. With these three quantities and
equation (5.14), we estiamte the EPC to be λ = 0.57. This is rather good when compared to the
PM value of λ = 0.51. Finally we evaluate the critical temperature with equation (5.15), taking
µ∗ = 0.1 − 0.15 we can estiamte the critical temperature to be Tc = 14 − 7 K, in fair agreement
with the reported values in Figure 5.17 from both PM DFT calculations and experiments.

Thus with this results we confirm that by allowing the spin degree of freedom, the DFT
calculations are able to reproduce at least qualitatively well the doping phase diagram since the
three regions, (i) CO insulating, (ii) metallic but not SC, and (iii) metallic with a SC transition,
can be predicted. However the exact magnetic order does not seem to be so important to predict
the low energy physics trends of these materials.

5.6.2 Pairing symmetry

Several authors suggest complex pairing symmetries beyond the simple s-wave case
[111, 74, 247–251]. Thus one may question the validity of the Mc. Millan-Allens equation for
evaluating the Tc. Nonetheless, we can recall the discussion in chapter 1 about the pairing
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symmetry, where we have shown that imposing a given symmetry on the gap function, yields
the same type of equation for the Tc as we stated in equation (1.67), where the important point
is to obtain the right energy scale ωl

c and the coupling parameter λl = V l
0N . As a consequence,

we can be confident about the validity of equation (5.15), that albeit does not give us any
information about the symmetry. It is true that the most common pairing symmetry within a
phonon-mediated mechanism is the s-wave which is also suggested in Refs [112, 113] since it is
the easiest explanation and it is not in conflict with several experiments on London penetration
depth [74, 111] as well as optical response on the SC state [114]. However, we can point out that
a phonon-mediated mechanism does not imply an isotropic pairing symmetry or even an s-wave
pairing symmetry. In fact, some studies show that the electron-phonon interactions are anisotopic
and in particular the breathing distortion. Thus the proposed model based on optical phonons
strongly coupled to the electronic structure is not in conflict with the available experimental data.

5.6.3 Similarities with other superconductors

In what concerns the Cu based superconductors, we do not see a clear equivalence between the
superconducting mechanism in these nickelates and in the cuprates. There are some similarities
such as an important in-plane exchange constant, as we saw in chapter 4, as well as the layered
structure, but the orbitals involved in the conduction, the Mott or CT character, and the doping
phase diagram seems rather different when the nickelates are compared with the cuprates.
Nonetheless, the existence of a CO phase in the vicinity of the SC phase of these nickelates,
makes these compounds rather close to the case of bismuth-like superconductors, where the
superconducting phase is also close to a charge-ordered phase [165, 240]. In particular, the
very same type of phonon that is responsible for the charge-ordered insulating phase in the
bismuthates plays also an important role in the superconducting mechanism, where the phonon
associated with the charge order, is still highly coupled to the electronic structure and can
produce a sizable electron-phonon coupling (EPC) [165]. In that regard, since both systems
seem to be rather similar, we can propose that the superconductivity in these nickelates can be
phonon mediated and the main actor will be the Boc mode.

5.7 Conclusion

We conclude here that the layered nickel oxides are better understood starting from the first
member of the RRP phase (n = 1) instead of the last one corresponding to the IL phase (n = ∞).
This approach allows us to reveal the existence of a CO instability in the phase diagram that
produces a bond and charge ordering on the NiO4 square complexes and an insulating phase.
Then we show that this CO insulating phase can be destabilized by increasing the effective
number of d electrons per Ni site which ultimately leads to a metallic regime at the right doping
content. We further show that the SC region is just in the vicinity of the stable CO phase
where the phonon modes responsible for the CO instability are also responsible for the pairing
in the SC phase. We also explain that the SC region within the metallic phase is not present
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everywhere and is a consequence of the hardening of the CO modes at higher 3d electron count.
In addition, we highlight that the model should be general for all the rare earth compounds
that present this layered structure and are doped with a divalent cation.



Chapter 6

Strengths and limitations of the
superconducting model

As we have seen, the superconducting mechanism of the IL phase compounds can be explained
as a consequence of an electron-phonon coupling (EPC) associated with a charge ordering (CO)
and a bond disproportionation phonon mode, where the key characteristics of the experiments
are well reproduced. Nonetheless, we have assumed that the IL phase belongs to the broader
family of compounds of the RRP series, being the limiting member n = ∞, and then we have
suggested that the properties of these layered materials are universal regardless of the geometry.

However, we have only shown that the universality is true for one member of the series
corresponding to a half-doped situation (n = 2). Thus one could object that formally we have
not demonstrated such equivalence. In that regard, we will explore in this chapter the phase
diagram of the La-based RRP compounds (Lan+1NinO2n+2) from n = 1 to n = 5 to reveal
whether our assumption holds true or not.

Furthermore, we highlighted in the previous chapter that an accurate description of the
exchange and correlation (xc) phenomena is needed for computing the reduced electron-phonon
matrix element (REPME). Thus instead of using both the SCAN and the HSE06 functionals, we
explore the phase diagram of Lan+1NinO2n+2 compounds using only HSE06. In that regard, we
use the CRYSTAL 17 code [252, 253] in which hybrid DFT calculations are well implemented
and are computationally less expensive since the code uses a gaussian basis set. Additionally, we
explore the limitations of our model and how other degrees of freedom apart from the Ni FOS
can change the physics of these nickelates with particular interest in designing SC compounds.
To that aim, we collaborated with an experimental team from the CRISMAT laboratory that
aimed to synthesize a superconducting nickelate guided solely by the FOS of Ni cations.

6.1 General phase diagram of layered nickel oxides

As we mentioned in the previous chapter, the reduced Ruddlesden-Popper compounds (RRP)
are a series of materials that originate mainly from the reduction of a parent perovskite-like
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Ruddlesden-Popper (RP) phase. This new family is similar to the RP series although it

R
Ni
O

x
y

z

R plane

Rn+1NinO2n+2 RRP series

NiO2 plane

RO2 fluorite slab

n RNiO2 layes

1 separating layer

Fig. 6.1 Crystal structure of the reduced Ruddlesden-Popper series (RRP) with chemical formula
Rn+1NinO2n+2.

presents some important differences. The most general chemical formula of the RRP series is
Rn+1NinO2n+2, which is characterized by a positive integer number n. The crystal structure of
these compounds is characterized by NiO2 planes stacked along the c axis with a rare earth
cation in between R, and after a period of n layers, a separating RO2 fluorite layer is found (see
Figure 6.1). It is remarkable to notice that the effective Ni formal oxidation state (FOS labeled
δ) changes in the series, and it can be computed for each member n with the following relation
δ = n+1

n
.

In the existing literature, few studies discuss the RRP series, where either they focus on
specific cases of the series [38–41, 47–64, 201, 243] or they study the whole series but neglect the
spin and/or the structural degrees of freedom, leading to either all compounds to be metallic
[254, 255] or insulating if a long-range antiferromagnetic (AFM) order is imposed [256]. This
behavior is at odds with the experiments where the n = 2 (δ = 1.5) compounds are insulating
[47–50], the n = 3 (δ = 1.33) case is found to be insulating at low temperatures [52–54, 59–61]
but a small pressure effect can turn it to a metal [55, 56] and the n = 5 (δ = 1.2) case is
found superconducting [73]. This collection of experimental results shows that there has to
be a transition between insulating to metallic character with increasing n in the RRP series
of compounds. This is rather similar to the IL case and in that regard, we should be able to
reproduce well these results from our calculations.

We perform electronic structure calculations with CRYSTAL 17 setting an energy conver-
gence criteria of 10−9 Hartree for all the calculations with this code. The structural optimizations
include lattice parameters and atomic positions, and they are performed until the root mean
square of the gradients and estimated displacements are lower than 3 · 10−4 Hartree/Bohr.
Regarding the basis set, we use Gaussian type orbitals (GTO) with core electrons treated in the
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pseudopotentials for La cations [257, 258], and all-electron basis set is used for Ni cations and
O ions [259, 260].

6.2 Importance of spin polarization

Before studying in detail the RRP series, we evidence once more the need to include the
spin degree of freedom by performing a study of the phase diagram (n = 1 − 5), using the
non-spin-polarized NM approximation.

Compound RRP n value Ni FOS Space group a(Å) c(Å) Eg(eV)
La2NiO4 1 2.00+ I4/mmm 3.70 13.45 1.36
La3Ni2O6 2 1.50+ I4/mmm 3.95 18.93 0
La4Ni3O8 3 1.33+ I4/mmm 3.96 25.36 0
La5Ni4O10 4 1.25+ I4/mmm 3.96 31.84 0
La6Ni5O12 5 1.20+ I4/mmm 3.96 38.33 0

Table 6.1 Summary of the key quantities of the RRP Lan+1NinO2n+2 compounds with (n = 1−5)
obtained from the DFT calculations with a NM solution. Including the ground state structure
space group, lattice parameters in the conventional cell a and c in Å, Ni formal oxidation state
(FOS), and gap amplitude Eg in eV.

By inspecting the key quantities extracted from the calculations in Table 6.1, we find that (i)
all compounds present conducting behavior except the first member (n = 1) that is insulating
and (ii) all ground states are achieved with a high symmetry I4/mmm crystal structure as in
previous studies [254, 255].

As we mentioned, the n = 1 case is identified to be a band insulator with a band gap of
1.36 eV. This is understood by realizing that within the NM approximation, a 3d8 low spin
(S = 0) electronic configuration is enforced (see Figure 6.2). This means that the Hund’s
coupling is neglected and the crystal field splitting of doubly occupied 3d shell for Ni2+ cation
is the responsible of opening a band gap. (see Figure 6.2.a). However, this is in contrast with
experiments that reveal the existence of a magnetic moment of 1.48µB per Ni cation in La2NiO4

[38, 236], and thus suggesting a high spin configuration as depicted in Figure 6.2.b. The high
symmetry cell identified with DFT is also at odds with the experimental structure exhibiting
a−a−c+ octahedral rotations with Cmce space group [38, 261, 262]. Even though we start from
this structure, it relaxes back to a I4/mmm cell with no distortion. Regarding higher members
of the series, the observation of a metallic character for n = 2 or n = 3 disagrees with the
experimental observation of an insulating state at low temperatures [47–50, 52–54, 59–61].

This general failure of the NM approximation is grounded on the fact that Hund’s rule is
broken and important terms in the energy are not well accounted. We evidence our claims by
performing spin-polarized FM calculations in the high symmetry I4/mmm cell and compute the
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Fig. 6.2 Diagram of the crystal field splitting in on Ni2+ cations with a 3d8 electronic configuration
in the case of La2NiO4 for two different situations, (a) when Hund’s coupling is neglected and a
NM solution is employed in the DFT calculations producing a S = 0 spin state, and (b) when
Hund’s coupling is included and the spin degree of freedom is allowed in the DFT calculations
producing a S = 1 spin state.

total energy difference between the two types of calculations. This allows us to reveal the sole
effect of the spin degree of freedom in the energy of the system without including any lattice
distortions that may appear in the global ground state. We report the results in a graph on
Figure 6.3. It becomes evident that there is a massive energy gain ∆ENM−FM of at least 375
meV/NiO2 motif for all n = 1 − 5 RRP compounds, signaling that by not including the spin
degree of freedom a huge part of the energy of the system is not well accounted for. We can
further deduce that the RRP compounds are characterized by a large Hund’s coupling, since
the n = 1 − 4 RRP compounds are now predicted to be insulators once the structure is allowed
to relax to lowest symmetry while the n = 5 is a metal, we discuss each member in detail in
the next section. These results are much more consistent with the experiments highlighting the
importance of the spin degree of freedom.

Thus we conclude here that (i) local Ni spin formation in these nickelates is a key factor
that should not be overlooked in the DFT simulations and (ii) even though we treat exchange
correlation phenomena at the highest level in DFT simulations, the NM solutions remain
irrelevant for modeling the electronic properties of oxide superconductors.

6.3 Properties of La based RRP compounds

We now allow the spin polarization at the lowest level by imposing a ferromagnetic (FM)
order in the DFT simulations. Although some compounds may exhibit antiferromagnetic (AFM)
interactions such as n = 2 and n = 3 members [51, 62], the choice to restrict the study to a
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Fig. 6.3 Energy difference ∆ENM−FM between a non-spin-polarized (NM) and ferromagnetic
(FM) order (in meV/NiO2 motif) as a function of the formal Ni 3d occupancy in the reduced
Ruddlesden-Popper compound. Red dashed lines indicate the position of each member n of the
series.

FM order is guided by the fact that we seek to extract the sole effect of doping within the
RRP nickelates without the effect of AFM correlations. We present in Table 6.2 the key results
from our calculations where in this case we allow the structure to lower the symmetry and
accommodate different lattice distortions. We notice that for almost all members of the series,

Compound La2NiO4 La3Ni2O6 La4Ni3O8 La5Ni4O10 La6Ni5O12
S. group Cmce Cmmm Fmmm Cmcm I4/mmm

a(Å) 5.45 5.61 5.63 11.28 4.01
b(Å) 5.58 5.61 16.88 11.28 4.01
c(Å) 12.51 18.88 25.31 31.71 38.07

Eg(eV) 2.80 1.24 1.00 1.49 0
∆E (meV/f.u.) -28 -263 -313 -398 0
µNiL/µNiS (µB) 1.73/1.73 0.93/0.09 0.93/0.15 0.93/0.17 0.77/0.77
QBoc/(Å/NiO2) 0 0.088 0.074 0.054 0

Table 6.2 Summary of the key quantities of the RRP Lan+1NinO2n+2 compounds with (n = 1−5)
obtained from the DFT calculations with a FM solution. Including the ground state structure
space group, lattice parameters in the conventional cell a, b and c in Å, gap amplitude Eg in eV,
energy difference with respect to the high symmetry I4/mmm cell ∆E in meV/f.u., magnetic
moment on the two types of Ni sites (NiL and NiS) that can be expected in µB, and amplitude
QBoc of the disproportionation mode in Å/NiO2 motif.

the symmetry is lower than the I4/mmm with important energy gains in some cases. This
indicates that the lattice distortions play an important role in these compounds and should
not be overlooked. This behavior is much expected as we saw in the previous chapter, the
n = 2 member presents a charge-ordered insulating (COI) phase that is characterized by a bond
disproportionation mode Boc and an asymmetry on the Ni magnetic moments. Thus we explore
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in detail these types of distortions in the whole series.

The n = 1 member exhibits Ni cations with a 2+ FOS and hence a Ni 3d8 electronic
configuration. The compound is an insulator thanks to the crystal field splitting and Hund’s rule
that fills completely the occupied orbitals in both majority and minority spin channels as it is
depicted in Figure 6.2.b. This is further verified by the projected density of states of Figure 6.4
where we find an insulating state with a gap of Eg = 2.70 eV. This value is slightly overestimated
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Fig. 6.4 Projected density of states of La2NiO4 with a FM order and Cmce crystal symmetry
on O p states (red line), NiL d states (solid grey) and NiS d states (blue line) . Positive and
negative values of the DOS indicate the majority and minority spin channels.

when compared with experiments measuring 1.5 eV [263]. Nonetheless we must note that (i)
the measurements are performed at finite temperature while DFT is a 0K calculation, (ii) the
compound is paramagnetic at room temperature while we impose a FM order in the calculation.
Thus the exact values for the band gap may differ slightly. The band edges are formed by Ni
d states and O p states at the valence band maximum (VBM) and dominantly Ni d states
at the conduction band minimum (CBM), indicating that this compound is a charge transfer
insulator. The absence of a CO is evident since the magnetic moment on all Ni cations is
1.73µB (see Table 6.2) and there is no signature of two types of Ni sites in the density of states
(see Figure 6.4). We notice however, that the energy difference between the high symmetry
I4/mmm phase and the low temperature Cmce is rather small ∆E = −28 meV as shown in
Table 6.2, and is in contrast with the huge energy gain obtained between the high symmetry
NM and the FM depicted in Figure 6.3. This is not surprising since (i) La2NiO4 does not
present any charge ordering and only at around T = 750 K it develops some lattice distortions
[38, 261, 262], and (ii) although the compound is characterized by in plane AFM interactions
experimentally, we are using a FM solution which favors a more delocalized structure than
the AFM orders [26]. Thus the amplitude of the distortions and the overall energy gain is reduced.

Regarding the next member of the series La3Ni2O6 (n = 2), one could expect a metallic
regime due to partly filled Ni d sates (Ni1.5+ with a 3d8.5 electronic configuration). However, the
material is insulating with a band gap of 1.24 eV (see Figure.6.5.a). This is a consequence of the



6.3 Properties of La based RRP compounds 119

E-EVBM (eV)
-4 -2 0 2

-10

0

10

O pNiS dNiL d

La3Ni2O6 n=2

D
O

S 
(s

ta
te

s/
e

V
/f

.u
.)

NiL

NiL

a) b)

Fig. 6.5 La3Ni2O6 (a) projected density of states with a FM order and Cmmm crystal symmetry
on O p states (red line), NiL d states (solid grey) and NiS d states (blue line) . Positive and
negative values of the DOS indicate the majority and minority spin channels. (b) Crystal
structure of the bond disproportionation mode Boc producing two types of Ni cations NiL in
grey and NiS in blue.

appearance of a bond disproportionation mode Boc producing a checkerboard pattern of different
Ni cations sitting in compressed (NiS) and extended (NiL) O4 complexes (see Figure 6.5.b).
It produces a change in the crystal symmetry to Cmmm, and an energy gain of ∆E = −263
meV/f.u. with respect to the high symmetry undistorted I4/mmm cell. Thus unlike in the
n = 1 case, here both spin and structural degrees of freedom prove to be crucial for describing
the low temperature phase of this compound. A consequence of the appearance of this mode is
that the electronic structure of Ni cations splits with NiL cations possessing a 3d9 electronic
configuration with a magnetic moment of µNiL = 0.933µB while NiS cations exhibit a low-spin 3d8

configurations with µNiS = 0.091µB (see Table 6.2). Therefore, a clear charge ordering with a 1/1
ratio of Ni+L /Ni2+

S with propagation vector q = (1/2, 1/2), emerges in the material and produces
an insulating phase. This is further accompanied by a strong Mott character of the electronic
structure with both VBM and CBM dominated by Ni d states as shown on the projected
DOS of Figure 6.5.b. These results are consistent with the results obtained in the previous
chapter with VASP, other theoretical studies on this compound [243, 242] and with the ex-
periments showing insulating behavior and two types of Ni cations with a 1+ and 2+ FOS [47–51].

We continue exploring the phase diagram with La4Ni3O8, where a metallic state is again a
priori expected for a Ni cation with a 1.33+ FOS (n = 3 member). The material is nevertheless
found insulating with a gap of Eg = 1 eV and a Mott character, where both the CBM and the
VBM are dominated by Ni d states (see Table 6.2 and Figure 6.6.a). The structure is character-
ized by a Fmmm symmetry due to the appearance of an alternative bond disproportionation
mode (sketched in Figure 6.6.b), producing stripes of 2 extended and 1 compressed O4 groups.
This is associated with a large energy gain of ∆E = −313 meV/f.u with respect to the high
symmetry undistorted cell, signaling again the importance of the structural degrees of freedom.
From the projected density of states of Figure 6.6.b, we identify that 2 Ni cations exhibits a 3d9
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Fig. 6.6 La4Ni3O8 (a) projected density of states with a FM order and Fmmm crystal symmetry
on O p states (red line), NiL d states (solid grey) and NiS d states (blue line) . Positive and
negative values of the DOS indicate the majority and minority spin channels. (b) Crystal
structure of the bond disproportionation mode Boc producing two types of Ni cations NiL in
grey and NiS in blue.

configuration with a computed magnetic moment µNiL = 0.925µB and 1 Ni cation possesses a
3d8 low spin configuration with µNiS = 0.152µB producing a charge ordering with a 2/1 ratio of
Ni+L /Ni2+

S and a propagation vector of q = (1/3, 1/3, 0). This is consistent with previous theo-
retical studies identifying a COI state [243], experiments showing a metal-insulator transition
at 105K [53–55], and the results that we obtained for the IL case with doping concentrations
between x = 0.375 − 0.3125 in the previous chapter.

For La5Ni4O10 (n = 4), Ni cations possess a 1.25+ FOS, and the compound is expected to
exhibit a metallic character. Similarly, as in the n = 2 and n = 3 cases, an alternative bond
disproportionation producing 3 large and 1 extended O4 complexes is found in the calculations.
This produces a crystal with Cmcm symmetry and an energy gain of ∆E = −398 meV/f.u
with respect to the undistorted I4/mmm cell (see Table 6.2 and Figure 6.7.b). We compute the
projected density of states (see Figure 6.7) and similarly to the other two previous compounds,
we find a 3/1 ratio of Ni+L /Ni2+

S with a computed magnetic moments µNiL = 0.929µB and
µNiL = 0.165µB. This produces a charge ordering with propagation vector q = (1/2, 0, 0) and
an insulating state with a band gap of Eg = 1.49 eV. In addition, the VBM and the CBM are
mainly dominated by Ni d states, more specifically by NiL and NiS d states respectively. This
further shows the strong Mott-insulating character of these compounds. Nonetheless, there
is a possibility of a different type of CO with a propagating vector q = (1/4, 1/4, 0) and a
Cmmm symmetry(see Figure 6.7.c). However, this type of structure is higher in energy by
∆E = 1.89 eV than the one with Cmcm suggesting that the latter is the preferred geometry.
Unfortunately, this compound has not been synthesized yet nor with any other rare-earth cation,
thus remaining as an open experimental study.
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Fig. 6.7 La5Ni4O10 (a) projected density of states with a FM order and Fmmm crystal symmetry
on O p (red line), NiL d (solid grey) and NiS d states (blue line). Positive and negative values of
the DOS indicate the majority and minority spin channels. The crystal structure of the bond
disproportionation modes Boc producing two types of Ni cations NiL in grey and NiS in blue is
given for (b) the ground state mode with in-plane propagation vector q = (1/2, 0, 0), and (c)
the alternative mode with in-plane propagation vector q = (1/4, 1/4, 0)

The last compound La6Ni5O12 (n = 5) is found metallic in our DFT simulations and
adopts a I4/mmm structure (see Table 6.2 and Figure 6.8). Even though we initially enforce a
disproportionation distortion producing a 4/1 ratio of Ni+L /Ni2+

S that would be expected for a
CO with a Ni1.2+ FOS, it vanishes during the relaxation and all Ni cations are found equivalent
with an average magnetic moment of µNi = 0.774µB. Therefore, at large electron doping content,
the RRP does not exhibit any type of charge ordering and related distortions and is metallic.
This is consistent with experiments on n = 5 RRP members [73], and shows that our practiced
DFT is able to reproduce the crossover in the phase diagram from insulating to metallic states
upon increasing n as we already pointed out in the previous chapter in with the IL phase.
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Fig. 6.8 Projected density of states of La6Ni5O12 with a FM order and I4/mmm crystal symmetry
on O p states (red line), Ni d states (solid grey) and total density (black line). Positive and
negative values of the DOS indicate the majority and minority spin channels.
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6.3.1 Band dispersion of La6Ni5O12

We can further study the electronic properties of the metallic n = 5 member by computing
the electronic band structure. Unfortunately, in this case we are not able to unfold it as in
previous chapters due to the absence of developed tools to process the output of CRYSTAL17.
We report in Figure 6.9 the band dispersion of La6Ni5O12 with a FM arrangement. It is easy to
see that the conduction is given by the majority spin channel that presents 5 bands crossing
the Fermi level. This is consistent with the fact that the compound presents 5 Ni cation per
formula unit, suggesting that each band corresponds to one of the Ni cations. This observation
is consistent with the results obtained in the IL phase with only one Ni cations per formula unit
and one band crossing the fermi level. This picture has been suggested as well by Talantsev in
Ref. [112] on his experimental data analysis of the IL compounds.
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Fig. 6.9 Band structure of La6Ni5O12 with FM order and I4/mmm cyrstal symmetry. Left and
right panelr present the majority and minority spin channels respectively. The high symmetry
points are Γ (0,0,0), X (1/2,0,0), M (1/2,1/2,0), Z (0,0,1/2), R (1/2,0,1/2) and A (1/2,1/2,1/2).

6.4 Origin of the charge orderings on nickelates

As we have seen in previous sections, several compounds in the RRP series present different
CO phases. In order to understand the origin of the charge orderings observed in the different
nickelate members, we compute the potential energy surface (PES) associated with each type of
disproportionation mode. The starting point is the symmetric undistorted I4/mmm cell with
identical O4 complexes for all Ni cations for each member of RRP n = 2 to n = 4. Results are
reported in Figure 6.10.

The n = 2 type of distortion presents a shifted single well potential with its minimum
achieved at non-zero values of the mode, producing an energy gain of ∆E = −117meV/NiO2

motif. This signals the presence of an electronic instability associated with the 1.5+ formal
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Fig. 6.10 Potential energy surface of the associated bond disproportionation mode present in
the n = 2 − 4 members of the RRP series.

oxidation state that prefers to transform to more stable 1+ and 2+ in the ground state, even
in the absence of lattice distortion. We further support our claim by performing two sets of
calculations in the high symmetry cell without any lattice distortion in which (i) we initially
force an equal occupancy of all neighboring Ni cations and (ii) a calculation where we initially
force neighboring Ni cations to have either a d8 or d9 configuration (see Figure 6.11). After the

Ni  (3d8.5)Ni  (3d8.5) Ni   (3d9)Ni   (3d8)

a) b)

Ni   (3d9)Ni   (3d8)Ni  (3d8.5)Ni  (3d8.5)

Equal occupation Mixed occupation

Fig. 6.11 The two situations considered on Ni sites for La3Ni2O6 with a FM order and a I4/mmm
crystal symmetry. (a) Equal occupation of electrons in all Ni cations producing a 3d8.5 electron
count, and (b) Mixed occcupation of electrons in Ni cations with half of them with a 3d8 electron
count (in blue) and the other half with a 3d9 electron count (in grey) wiht the same pattern as
the Boc mode.

variational self-consistency, we observe that (ii) produces an energy gain of ∆E = −35 meV/NiO2

motif confirming the existence of the electronic instability of Ni with a 3d8.5 configuration. As
a consequence, the material will then develop a lattice distortion to accommodate the charge
ordering and produce an insulating state. These results are consistent with those in the previous
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chapter with VASP, further showing that the disproportionation mode is highly coupled to the
electronic structure.

The potentials for n = 3 and n = 4 are slightly different with respect to the n = 2 mode
by showing a double well potential shape as well as smaller energy gains, reaching at most
∆E = −34 meV/NiO2 motif for the n = 4 mode. This, however, does not imply the absence
of electronic instability, but rather a screening of it caused by a different band compacity of
the Ni d states. This is confirmed by comparing the bandwidth W of occupied Ni d states
around the Fermi level in Figures 6.5, 6.6 and 6.7, and realizing that it increases from W = 1.5
eV (n = 2) to W = 2.2 eV for n = 3 and n = 4. In addition by using a FM order as we
mentioned before in the n = 1 compound, we would systematically obtain larger bandwidths
of Ni d states. In that regard, we can improve the band compacity of Ni d states by imposing
an AFM ordering in the n = 3 compounds and recomputing the PES of the mode [26]. In this
case, we indeed observe a shifted single well potential whose minimum is located at non-zero
amplitude and corresponds to a larger energy gain than the FM case (∆E = −102 meV/NiO2

motif, Figure 6.10). Thus it becomes clear that the Boc-like modes present in the different
members of the series, are strongly coupled to the electronic structure, producing electron
localization that leads to a charge-ordered insulating (COI) state. This shows that these
types of modes present an important electron-phonon coupling (EPC). In addition, electron
doping starting from the n = 2 situation alters the electronic instability associated with the
unstable FOS of Ni cations, thereby altering the propensity of the material to exhibit COI phases.

The weakening of the electronic instability upon doping can be tracked by quantifying the
amplitude of the relevant disproportionation modes in the ground state structures (Figure 6.12).
This is obtained by performing a symmetry mode analysis of these structures with respect to
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Fig. 6.12 Amplitude in (Å/NiO2 motif) of the different bond disproportionation modes (red
squares) Boc present in the RRP compounds as a function of the Ni 3d electron count. Dashed
lines indicate the effective electron count of each member of the RRP series from n = 2 to n = 5.
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the high symmetry I4/mmm undistorted cell. We can observe that upon increasing the number
of layers n, from n = 2 to n = 5, the mode amplitude shrinks until it vanishes at n = 5 (Figure
6.12). Therefore, all types of disproportionation effects are quenched by electron doping these
nickelates. Hence the metallic region and observed SC RRP compound (i.e. n = 5) appear to sit
in the vicinity of a CO phase. As we anticipated with the IL and thus validating until this point
the analogy between the RRP compounds and the IL phase where the important parameter is
the effective 3d electron count per Ni site.

6.5 Superconducting properties

Having established a transition between an insulating to a metallic phase as well as the
extinction of all types of disproportionation effects and charge orderings, we can wonder if
the phonon modes associated with the charge orderings in the insulating phases can still be
coupled to the electronic structure in the metallic compounds and mediate Cooper pair formation.

In that regard, we compute the SC properties of the RRP compounds since the n = 5 in
the Nd case presents a SC transition [73]. Thus, as we did with the IL case, we compute the
electron-phonon coupling constant including the relevant modes that we identify in the different
members of the series, which can be expressed as

λ = 2N(εF )
Nq

∑
q,ν

ℏ2

2ω2
q,νMO

D2
q,ν (6.1)

where N(EF ) is the density of states per spin channel at the Fermi level, ωq,ν is the frequency
of the ν-th mode at wave vector q, Dq,ν is the REPME of a given mode (q, ν) and MO is the
oxygen mass. Here, we consider an average coupling over the Fermi surface of the modes (q, ν)
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Fig. 6.13 Potential energy surfaces of La6Ni5O12 associated with the disproportionation modes
appearing in La3Ni2O6 (n = 2 blue circles) and in La4Ni3O8 (n = 3 green diamonds)

as we did in the IL case, and we consider the disproportionation modes present on the n = 2 and
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n = 3 – we could not include the n = 4 type of disproportionation modes in the n = 5 RRP for
computational cost reasons. In order to evaluate the frequency of each mode, we compute the
potential energy surface (PES) associated with the n = 2 and n = 3 modes within the relaxed
n = 5 ground state structure. The phonon frequency is obtained by fitting the PES depicted in
Figure. 6.13 to the following expression

∆E(Qq,ν) = 1
2MOω

2
q,νQ

2
q,ν + 1

4ξQ
4
q,ν (6.2)

where Qq,ν is the mode amplitude and ξ is the anharmonic constant. The computed phonon
frequencies are ω2 = 64 meV and ω3 = 48 meV, for the n = 2 and 3 modes, respectively. The
n = 2 mode is compatible with the frequency computed in the previous chapter for the IL phase
to ω2 = 65 meV.

The REPME is computed by freezing a given phonon amplitude Qq,ν in the ground state
structure, measuring the band splitting ∆Eg appearing in the band structure (see Figure
6.14.a and 6.14.b) and using the expression Dq,ν = ∆Eg

2Qq,ν
in the harmonic regime, where the

deformation potential is independent of the introduced displacement. As we mentioned in
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Fig. 6.14 Important quantities for obtaining the deformation potential (REPME). Electronic
band structure of La6Ni5O12 in the majority spin channel (a) with the highly symmetric I4/mmm
ground state and (b) with a finite amplitude of the Boc mode presenting a band splitting ∆Eg.
(c) Dependence of the band splitting ∆Eg with the mode amplitude for the n = 2 (blue circles)
and the n = 3 (green diamonds) members of the RRP series

the previous chapter it is necessary to make sure that the electronic response is linear with
the amplitude of the disproportionation distortions and we indeed observe a clear linear trend
for the ∆Eg versus Qq,ν curve (see Figure 6.14.c). With a linear fit of these curves, we are
able to obtain D2 = 3.42 eV/Å and D3 = 3.45 eV/Å, for the n = 2 and n = 3 modes respectively.
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Finally, we evaluate the density of states at the Fermi level with a coarse k-mesh of 32×32×32
points and extract N(EF ) = 0.607 states/eV/f.u/spin channel (see Figure 6.8). With these
values, we evaluate the electron-phonon coupling constant to λ = 0.63, in fair agreement with
the maximum value obtained for the IL phase in the previous chapter (λ = 0.51) and from
experimental data analysis (λ = 0.56 − 0.61, in Ref [113]) in the doped R1−xSrxNiO2 infinite
layered case.

We then proceed to evaluate the critical temperature using the Mc. Millan-Allens equation

Tc = ℏωc

1.2 exp
(

− 1.04λ
λ− µ∗(1 + 0.62λ)

)
(6.3)

where µ∗ is the screened Coulomb interaction and ωc is the characteristic energy scale of the
system. At this point, we will use a similar approximation as in the IL case in chapter 5, where
we consider that the Boc-like modes are representative of all the phonons that interact with the
electronic structure. Now in this case, since we are considering more than one mode, we evaluate
ωc by calculating the log-average frequency ωlog (this is ωc = ωlog) which can be estimated for a
finite number of frequencies with

ωlog =
(

n∏
i

ωi

) 1
n

(6.4)

Within this approximation, and taking typical values of the screening parameter µ∗ = 0.1 − 0.15,
we estimate the critical temperature Tc between 17 and 9 K, respectively. These values are
close to the experimental Tc of Nd6Ni5O12 (Tc = 13 K)[73] and in La0.8Sr0.2NiO2 (Tc = 9 − 14
K)[68, 264], where both systems present an effective 1.2+ Ni FOS. With these results, we thus
completely validate that the IL phase is indeed a part of the RRP phase, being the limiting
member of the series (n = ∞), and one of the main parameters governing the different physics
of these compounds is the effective 3d electron count or FOS on Ni cations.

6.6 Superconductivity and crystal structure

As we have evidence in the previous sections, the determining factor in the superconductivity
of these nickelates is the FOS on Ni cations. Thus one could assume that any superconducting
nickelate could be obtained as long as the Ni cations present the right 3d electron count.

In that regard, an experimental team from the CRISMAT laboratory in Caen aimed to
synthesize a nickelate with the optimal Ni1.2+ electron count as in the original study on
Nd0.8Sr0.2NiO2 in Ref. [66]. Our collaborators then proceeded to synthesize Nd0.8Sr1.2NiO4 on
bulk whose crystal structure is the one from the n = 1 RRP compound but with I4/mmm

symmetry at this Sr content. The choice of this compound is guided by the 3.2+ FOS on the
Ni cation, similar to the parent perovskite compound Nd0.8Sr0.2NiO3 of the SC Nd0.8Sr0.2NiO2

with an IL structure. Then following the procedure in Ref. [66] they perform a topotactic
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reduction with CaH2 on the synthesized Nd0.8Sr1.2NiO4 bulk samples, obtaining a new phase
with chemical formula Nd0.8Sr1.2NiO3 and a Ni1.2+ cation.

6.6.1 Structure and physical properties of Nd0.8Sr1.2NiO3

This compound is structurally characterized using both X-ray diffraction (XRD) and Scan-
ning Transmission Electron Microscope (STEM) techniques. From this process, the structure
of the material is resolved as one can see in Figure 6.15.b. The obtained compound is an
orthorhombic system with Immm symmetry, characterized by the following lattice parameters
in the conventional cell aexp = 3.97 Å, bexp = 3.74 Å, and cexp = 12.92 Å. The compound is

Nd/Sr
Ni
O

CaH2

 Topotactic 
Reduction

Nd0.8Sr1.2NiO4 Nd0.8Sr1.2NiO3

x
y

z

Fig. 6.15 Crystal structure of unreduced parent Ruddlesden Popper phase with I4/mmm
symmetry (left), and reduced phase with Immm symmetry (right)

highly stable experimentally since it can be kept in open-air conditions and the crystalline
structure does not degrade.

By comparing the structures of Nd0.8Sr1.2NiO4 and Nd0.8Sr1.2NiO3 depicted in Figure 6.15
on the left and right, respectively, we notice that the topotactic reduction removes the O from
the NiO2 plane instead of the apex of the octahedron, producing a system with NiO2 square
stripes. This feature is quite different from the synthesis of the superconducting Nd0.8Sr0.2NiO2

compound since the latter compound is characterized by a layered structure of perfect NiO2

planes with Nd planes in between. Nonetheless, the Ni cation on Nd0.8Sr1.2NiO3 presents a 1.2+
FOS, which makes it rather similar in terms of electron count to the superconducting compound.
Thus in spite of the structural differences between Nd0.8Sr1.2NiO3 and Nd0.8Sr0.2NiO2, one may
naively hope that there could still be a possibility to have a superconducting compound since
we are at the right Ni1.2+ effective valence. These expectations could not be further from reality
since the transport measurements performed by our collaborators show a highly insulating
compound already at room temperature instead of a superconductor.
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In addition to the resistivity measurements, our collaborators perform magnetic hysteresis
and magnetic susceptibility measurements on Nd0.8Sr1.2NiO3. The susceptibility is measured
with an applied field when cooled (FC) and without the applied field (ZFC). The results of the
magnetic measurements are presented in Figure 6.16. From these experiments, it is found that
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Fig. 6.16 Magnetic measurements of Nd0.8Sr1.2NiO3, (a) the susceptibility χ in (emu/mol·Oe)
as a function of temperature T in (K), for field cooled (FC in red) and zero field cooled (ZFC in
blue) cases in red and blue, respectively. (b) The hysteresis curve of the induced magnetization
M as a function of the applied field H at T = 5 K.

(i) Nd0.8Sr1.2NiO3 presents a nontrivial magnetic structure since the FC and ZFC measurements
of the susceptibility presented in Figure 6.16.a deviate from each other already at temperatures
of 250 K, (ii) from the inverse susceptibility plot (see inset of Figure 6.16.a) the system shows
a clear deviation from the Curie-Weiss behavior, which suggest an absence of a paramagnetic
phase already at 300 K, and (iii) the induced magnetization M as a function of the applied field
H depicted in Figure 6.16.b shows no hysteresis, which suggests an absence of ferromagnetism in
the compound. Additionally, ac-susceptibility measurements are performed by our collaborators
but show no signature of change in the peak position with the frequency ruling out a possible
spin-glass behavior.

Thus from this collection of experimental results, we can state that Nd0.8Sr1.2NiO3 presents
a NiO2 striped structure, it is highly insulating instead of superconducting, and with no PM nor
FM phase for the whole temperature range from 0 K to 300 K. This clearly signals that there is a
non-negligible degree of freedom that should not be overlooked when designing a superconductor.
In that regard, and in order to rationalize these results, we study this compound using DFT.

6.6.2 Electronic structure calculations

We perform electronic structure calculations with the SCAN functional and VASP since we
would not require a hybrid functional to describe qualitatively well an insulating compound. In



130 Strengths and limitations of the superconducting model

order to avoid possible self-interaction errors from the 4f states but at the same time including
all the open-shell electrons, we use La-based compounds instead of Nd.

Before starting to model the synthesized compounds, we prove the stability of the reduction
process since one may think that a stable compound with chemical formula Nd0.8Sr1.2NiO3 could
still host superconductivity, but with a different crystal structure or the reduction process is not
homogeneous enough in bulk. In that regard, we prove the stability of the reduction process by
testing different configurations of removing an O from the octahedron in La2NiO4. We consider
three possibilities, (i) a pyramidal structure of a half-removed O at the apex of the octahedron
depicted in Figure 6.17.a, (ii) a mixed structure with perfect octahedrons and in-plane NiO2

x
y

z

b) c)a)

Fig. 6.17 Possible reduced geometries. (a) pyramid, (b) octahedron and NiO2 square in-plane,
and (c) experimental structure

squares depicted in Figure 6.17.b, and (iii) the given phase synthesized by our collaborators
depicted in Figure 6.17.c. We relax the structure of these three geometries with a 4 f.u. supercell
of La2NiO3. We set the energy cut-off to 650 eV a Γ centered k-mesh of 8 × 8 × 4. The energy
convergence criterion is set to 10−7 eV and forces are optimized on each atom until they are less
than 10−3 eV/Å. The core electrons are treated with the same PAW PBE pseudopotentials of
previous chapters. The magnetic order is taken to be FM since it is the simplest magnetic order
that respects Hund’s rule. After the relaxation, we compute the total energy difference between
the synthesized phase in Figure 6.17.c, and the other two geometries. Results are reported in
Table 6.3.

Mixed Pyramidal Stripes
∆E (eV/f.u.) 1.52 1.28 0

Table 6.3 Total energy difference between the striped geometry (Stripe) and the geometries
considered for La2NiO3. The mixed octahedron and squares (Mixed), and the pyramidal
arrangement (Pyramidal).

By comparing the total energy of all three configurations, we find that the synthesized
configuration depicted in Figure 6.17.c, with O removed from the NiO2 plane is much more
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stable, with an energy gain of at least ∆E = 1.28 eV/f.u. with respect to the other two
considered reduced geometries (see Figure 6.17.a and 6.17.b). Thus it becomes clear to us that
indeed the reduction is highly homogeneous since the resolved structure from the XRD and
STEM is the most stable reduced compound.

Once we are sure that the reduced geometry is the more stable configuration, we proceed
to relax the structure of La0.8Sr1.2NiO4 and La0.8Sr1.2NiO3 and we use a 2 × 5 × 1 supercell
with respect to the conventional I4/mmm and Immm cell of 2 f.u. respectively (this is a 20
f.u. supercell). We model the doping content as in previous chapters directly substituting the
atoms with the SQS method. We set the energy cut-off to 650 eV and a 6 × 4 × 2 Γ centered
k-mesh . The energy convergence criterion is set to 10−5 eV, and the forces are optimized
on each atom until they are less than 5 · 10−2 eV/Å. The core electrons are treated with the
PAW PBE pseudopotentials. We use a AFM order analogous to the in-plane AFM order that
is found experimentally in La2NiO4 [236] since there are important experimental signatures
of AFM order in La0.8Sr1.2NiO3. The obtained lattice parameters are reported in Table 6.4
Comparing our SCAN DFT calculations with the experiments from our collaborators and the

Compound Space Group a (Å) b (Å) c (Å)
exp. Nd0.8Sr1.2NiO4 I4/mmm 3.80 3.80 12.26
exp. LaSrNiO4[265] I4/mmm 3.83 3.83 12.56
exp. NdSrNiO4[266] I4/mmm 3.80 3.80 12.32

exp. Nd0.8Sr1.2NiO4[266] I4/mmm 3.80 3.80 12.26
exp. Nd0.8Sr1.4NiO4[266] I4/mmm 3.81 3.81 12.25
exp. Nd0.8Sr1.6NiO4[266] I4/mmm 3.80 3.80 12.30

DFT La0.8Sr1.2NiO4 I4/mmm 3.82 3.82 12.31
exp. Nd0.8Sr1.2NiO3 Immm 3.97 3.74 12.92
DFT La0.8Sr1.2NiO3 Immm 3.98 3.73 12.98

Table 6.4 Summary of the structural parameters that characterize the R2−xSrxNiO4 and
R2−xSrxNiO3 compounds. The first row for each group of compounds is the synthesized
materials by our collaborators, and the last row is our DFT calculations. The rest of the rows
are the existing literature.

existing literature [265, 266] on R2−xSrxNiO4 compounds (R = La, Nd with x ≥ 1). We observe
that we are able to reproduce accurately the experimental structure with less than 1% of error
in the lattice parameters. We can obtain the same conclusion by comparing the DFT lattice
parameters of La0.8Sr1.2NiO3 with the synthesized Nd0.8Sr1.2NiO3. Thus validating our approach
of performing calculations with the La-based compounds instead of Nd.

Once we trust the relaxed structure we proceed to compute the projected DOS of La0.8Sr1.2NiO3

and La0.8Sr1.2NiO4 for comparison purposes (see Figure 6.18). Inspecting the DOS of La0.8Sr1.2NiO3

in Figure 6.18.a, the most obvious and prominent feature one may notice is that it is an insulator
with a gap amplitude of Eg = 1.1 eV, which compares well with previous theoretical calculations
on Sr2NiO3 reporting a gap of Eg = 1.38 eV [267]. The gap is formed between occupied and
unoccupied Ni 3d states at the VBM and CBM, respectively, revealing that La0.8Sr1.2NiO3 is
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Fig. 6.18 Projected density of states on Ni d (in red) and O p (in blue) for (a) La0.8Sr1.2NiO4 on
the left and (b) La0.8Sr1.2NiO3 on the right.

clearly a Mott insulating compound. This behavior is in contrast with the metallic, and CT
regime of the parent compound La0.8Sr1.2NiO4 (see Figure 6.18.b). The reason behind this
change from CT to Mott is a consequence of removing O2− anions from the material, producing
a decrease of the FOS on Ni cations from Ni3.2+ in La0.8Sr1.2NiO4 to Ni1.2+ in La0.8Sr1.2NiO3,
which is expected to produce a change from CT to Mott in transition metal compounds [26]. In
addition, by comparing the DOS of both systems, we can further understand that removing
O atoms from La0.8Sr1.2NiO4,(i) the number of charge carriers at the Fermi level is effectively
reduced, (ii) the conducting channels for the electrons are more limited since the O p states
are highly hybridized with the Ni d states in La0.8Sr1.2NiO4, acting as bridges between the Ni
sites, and (iii) La0.8Sr1.2NiO3 presents only a possible conducting channel through the O atoms
that are left in plane. This added to the more ionic structure of a Mott compound, ultimately
hinders the conductivity in La0.8Sr1.2NiO3.

6.6.3 Prediction of charge ordering

Inspecting the relaxed structure, we identify a bond disproportionation distortion in one of
the NiO4 squares on each stripe, producing a double local environment of 4 elongated NiO4 com-
plexes with a NiL cation and one compressed NiO4 complex with a NiS cation (see Figure 6.19).
If we now compute the magnetic moment on these two types of Ni sites, we find that the average
magnetic moment is µNiS = 0.06µB on the NiS cations, while the average magnetic moment on
the NiL sites is µNiL = 0.95µB. This strongly suggests a charge-ordered pattern, reminiscent of
the charge order that is present in the layered nickelates like the reduced Ruddlesden-Popper (
RRP with n = 2, 3 and 4) or the half-doped case of the infinitely layered nickelates presented in
chapters 5 and 6. We verify the existence of this CO phase by calculating the partial charge
density for all the electrons on the Ni d states band from the 2 eV below the VBM until the
VBM, and obtaining that the charge density is absent on the compressed NiO4 (see Figure 6.19).
This is a strong signature of a charge-ordered phase of Ni+(3d9) and Ni2+(3d8) low spin S = 0
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Fig. 6.19 Features of the charge ordering in La0.8Sr1.2NiO3 for one of the NiO2 stripes with an
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respectively. The Ni-O bond lengths of the NiO2 complexes d1 (along the z-axis) and d2 (along
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configuration.

We further inspect the direction of the CO and we find the CO pattern depicted in Figure
6.20.a where there are small stripes along the diagonal of the (xy) plane. Nonetheless, we
must note that we are limited by the size of our calculation, and is possible that a CO pattern
producing a stripe pattern as depicted in Figure 6.20.b is possible to occur, which is reminiscent of
the CO patterns found in the RRP compounds. Thus we find strong evidence that the insulating
behavior obtained in this compound is accompanied by charge ordering and is further enhanced
by the antiferromagnetic behavior of the interactions, further preventing the conduction and
explaining the strong insulating behavior found experimentally.

a) b)
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Ni2+Ni+

Fig. 6.20 The possible charge ordered patterns of La0.8Sr1.2NiO3 (a) the obtained pattern from
the 20 f.u. calculations. (b) the alternative pattern
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6.6.4 Understanding the magnetic properties of Nd0.8Sr1.2NiO3

As we saw from the experimental results of our collaborators, Nd0.8Sr1.2NiO3 does not present
any signature of PM or FM order already at room temperatures. In that regard, we perform
structural relaxations on La0.8Sr1.2NiO3 with a FM order. However, the self-consistent procedure
produces the magnetic moments to change the sign and produce an AFM order instead. Thus,
we are completely unable to stabilize an FM solution in La0.8Sr1.2NiO3. This is quite surprising
but it highlights that La0.8Sr1.2NiO3 has a strong tendency towards the antiferromagnetism.
The average magnetic moment on Ni cations is ⟨µNi⟩ = 0.77 µB, suggesting a S = 1

2 state on
Ni cations. The fact that we are completely unable to stabilize something different than an
AFM solution on La0.8Sr1.2NiO3, added to its stripped crystal structure, and the absence of a
spin-glass behavior from the ac-susceptibility on Nd0.8Sr1.2NiO3, suggest that we may have a
1D or quasi-1D AFM system which can be described by the Heisenberg Hamiltonian

HHeis = J
∑

<i,j>

SiSj (6.5)

where J > 0 is the AFM exchange constant. If we recall the Mermin-Wagner theorem [268], the
1D Heisenberg model, does not have a phase transition, where the ground state is either AFM
or FM depending on the exchange constant J . This could actually explain the absence of a
clear PM region in the susceptibility, showing that the dimensionality of the system plays a very
important role in the magnetic properties of Nd0.8Sr1.2NiO3. Another important feature of the
Heisenberg model in 1D is the fact that the Neel state, where all nearest neighbors interactions
are antiferromagnetic, is not the ground state of the given Hamiltonian [152]. In fact, a double
spinon state is lower in energy than the Neel state, where the lowest energy excitation will
present the following dispersion relation

E−(q) = ℏω−(q) = π

2J | sin (2πq)| (6.6)

with q the momentum of the excitation, and the upper two spinon excitation energy is given by

E+(q) = ℏω+(q) = πJ | sin (πq)| (6.7)

Thus, probing the real excitation spectra may show the curves depicted in Figure 6.21. The
spectra of the excitations can give a hint of the dimensionality of the magnetic interactions. If
the system is closer to a 1-D material, then the dominant contribution will be E−(q) obtaining a
curve close to Figure 6.21.a, while if the material is more of a 2-D material, then there will be a
continuum between E−(q) and E+(q) as depicted in Figure 6.21. Nonetheless, for this particular
Sr content, the charge ordering instability produces a global S = 0 state when the 5 Ni sites
are considered, with four S = 1

2 NiL cations and one S = 0 NiS cation. In that regard, we
propose to change the Sr content slightly and synthesize single crystals of NdSrNiO3, PrSrNiO3,
or LaSrNiO3 which would present only a S = 1

2 Ni+ cation. Then, resonant inelastic x-ray
scattering experiments (RIXS) can be performed to obtain the momentum-resolved excitation
spectra of these compounds. If these experiments show any of the curves in Figure 6.21, the
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Fig. 6.21 Excitation spectra of a spin chain system in (E(q)/J) units as a function of the
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and E+(q) (in red) energy curves.

physical properties of RSrNiO3 compounds would be very similar to the case of Sr2CuO3 since
(i) it presents the same crystal structure [269], (ii) the Cu2+(3d9) configuration is the same
as the Ni+(3d9) in RSrNiO3 compounds with a trivalent cation R3+, (iii) there is no trace
of superconductivity since Sr2CuO3 is also an insulating compound with a reported gap of
Eg = (1.5 ± 0.3) eV [270], and (iv) Sr2CuO3 presents characteristic spinon excitations of a 1-D
spin chain [271]. In addition, this could suggest that spin-charge and spin-orbital excitations can
be separated in RSrNiO3 compounds in the same way as they are in Sr2CuO3 [272, 273], which
are characteristic of 1D or quasi-1D systems. Thus, the R2−xSrxNiO3 family of compounds
could be full of interesting phenomena in spite of not showing superconductivity at ambient
conditions.

6.7 Conclusion

We conclude here that these nickel oxides present a strong propensity to form charge-ordered
phases with two different FOS on Ni cations. In addition, it is clear that the structure and the
dimensionality of the system play a very important role in determining the physical properties
of the synthesized compounds. In particular and strictly speaking, a superconducting transition
is not possible in a pure 1D system, and consequently, if the interactions of the system present
a strong 1D character, the SC transition would be prevented. Thus, in spite of the universality
of the superconducting mechanism that we proposed in chapter 5 and evidenced by studying
the Lan+1NinO2n+2 series of compounds, the crystal structure should not be overlooked since
it could lead to obtaining at ambient conditions, insulating phases instead of superconducting
ones. Nonetheless, finding a charge-ordered insulating phase could still be a good starting point
for finding a superconducting compound. Here, the strategy would be first to bring the 1D
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character of the interactions closer to a quasi-1D at least and, at the same time, suppress the
charge-order instability by changing the oxidation state with some dopant, different O content
or applying pressure in the appropriate manner.

Concerning other superconductors, the SC phase of these compounds seems closer to the
bismuth-like superconductors [165, 240] than the cuprates since the SC region appears just in
the vicinity of a CO phase and the phonons responsible for the CO in the insulating phase
remains strongly coupled to the electronic structure once the insulating phase is quenched
producing a SC transition.



Chapter 7

Extension of the model to other
systems: Ruthenates

In this chapter, we will try to extend the ideas behind the superconducting model to other
systems, showing that the mechanism is more general and can be applied to other compounds
in the oxide family.

7.1 Gap openings in perovskite-related compounds

As we have elaborated in the previous chapters, the superconducting mechanism in nickel-
based superconductors has its origin in an electronic instability that produces a tendency to
form a charge-ordered state. The charge ordering mechanism is in fact responsible for the metal
insulator transition (MIT) in many perovskite-like compounds, such as nickelates [24, 274],
bismuthates [165, 240, 15], antimonates [275], half doped titanates [276, 277] and half doped vana-
dates [278] etc. Interestingly enough is the fact that in the case of bismuth and antimony-based
superconductors, the charge ordering modes are also responsible for the superconducting state
[165, 240, 279] as it is the case of our layered nickelates and several non-oxide materials [280–283].

Nonetheless, the charge and bond order is not the only phonon mode that is able to produce
an insulating state in oxides. The other type of phonon is the one associated with the Jahn-Teller
effect (JTE) and the Jahn-Teller distortion (JTD) [13, 193]. According to the Jahn-Teller theo-
rem, any degenerate electronic configuration will be subject to develop a structural distortion
that lifts the degeneracy [284]. In particular, in the perovskite-like compounds, the Jahn-Teller
effect distorts the O6 octahedral complex by stretching and contracting four of the B-O bonds
producing a double local environment on the B site cation and different local crystal fields
(see Figure 7.1). This yields electron localization on specific orbitals and one could expect an
insulating state, characterized by an orbital ordering (OO) between nearest neighbors B cations.
We must however note that the presence of a degenerate electronic configuration is a prerequisite
but not a sufficient condition to produce a JTD. If the electronic structure is too hybridized,
the JTE would be screened, implying that the JTD phonon would not condensate and no OO
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Fig. 7.1 Jahn-teller distortion in an ABO3 perovskite where the cation B is a transition metal.
The distortion produces two different crystal fields and orderings of the energy levels producing
two types of B cations B1 and B2.

would be present in the material. Famous examples of Jahn-Teller active compounds are KCrF3,
or RVO3 with (R = La-Lu,Y) [193, 285, 286]. Now in analogy with the charge-ordered case, we
can ask if the JTE and JTD producing the OO could in fact drive a SC transition in a metallic
compound, and if this is the case, what compounds are in the vicinity of an orbital-ordered phase?

7.2 Ruthenate perovskite-based oxides

Good candidates for a JTE are the A2RuO4 compounds with (A = Sr, Ca). These com-
pounds are the first member (n = 1) of the RP series (see Figure 7.2.a) with Ru4+ in a d4

electronic configuration [287, 288]. In this situation, the octahedral crystal field (CF) lifts
the degeneracy of the d orbitals by a magnitude of ∆CF, producing two groups of degenerate
partners, 3t2g orbitals and 2eg orbitals (see Figure 7.2.b). In addition, since the Hund’s coupling
JH is smaller than ∆CF, the system is in a low-spin configuration, S = 1 with electronic
configuration (t2g↑)3(t2g↓)1, which nominally is Jahn-Teller active. Nonetheless, due to the
A-to-Ru cation size mismatch, both Ca2RuO4 and Sr2RuO4 present at low temperatures, a
distorted octahedron with the Ru-O bond length cO along the c axis greater or smaller than
the (ab)-plane bond length aO for the case of Sr2RuO4 or Ca2RuO4 respectively [287–289].
This local symmetry breaking induced by steric effects produces an additional splitting of
magnitude ∆′

CF lifting the degeneracy of the t2g levels into a doublet and a singlet, which will
have a direct consequence in the compound with respect to the JTE (see Figures 7.2.c and 7.2.d).

In Ca2RuO4, the ∆′
CF produces that the lowest orbital in energy is the singlet and as a

consequence is completely filled with two electrons (see Figure 7.2.c). This causes the doublet
to be half-filled resulting in an insulating state below 357 K [290, 291], with a band gap of
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cell. Ordering of Ru d states according to the O6 octahedral deformation for different cO/aO

ratios defined in panel (a). Three cases are considered (b) cO/aO = 1, (c) cO/aO < 1, and (d)
cO/aO > 1.

at least 0.4 eV [292]. In contrast, the ∆′
CF in Sr2RuO4 produces the opposite arrangement of

the energy levels and produces a degenerate configuration in the minority spin channel with
one electron for the doublet formed by the dxz and dyz orbitals (see Figure 7.1.d). With these
ingredients, Sr2RuO4 is in principle a good candidate for an OO produced by a JTE. However,
this compound is found to be metallic at all temperatures, and it presents a transition to
the superconducting state with a critical temperature Tc of roughly 1.5 K[293, 294], with no
signatures of a JTD to be present. Thus, we can see that Sr2RuO4 is likely a candidate for a
superconducting compound that could be in the vicinity of an OO phase with an electron-phonon
pairing mechanism dominated by the JTD.

7.3 Ground state properties of A2RuO4 compounds

We explore the ground state properties of Ca2RuO4 and Sr2RuO4 performing electronic
structure calculations with VASP. The energy cut-off is set to 650 eV for all the calculations
and an energy convergence criteria of 10−6 eV. The relaxations are performed with a starting
unit cell corresponding to the high symmetry undistorted I4/mmm and Pbca tetragonal unit
cells for Sr2RuO4 and Ca2RuO4, respectively. The k-mesh is set to 8 × 8 × 4 for a 4f.u. cell and
is scaled accordingly to keep a similar k-mesh density for the different unit cells.

7.3.1 Structural relaxation results

We start exploring the bulk of these compounds by performing the structural relaxation of
both Sr2RuO4 and Ca2RuO4 considering several magnetic solutions. This includes the non-spin
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polarized solution (NM), and long-range spin orderings such as ferromagnetic (FM), A-type
antiferromagnetic (AFMA) which presents in-plane ferromagnetic and out-of-plane antiferro-
magnetic coupling between consecutive layers along the c axis, C-type AFM (AFMC) with AFM
interaction between in-plane nearest neighbors, and random spin arrangement for modeling
paramagnetism (PM). The relevant structural parameters as well as the gap amplitude and the
Ru magnetic moments are reported in Table.7.1. The first and most evident observation is the
fact that the NM solution is metallic in both cases and at least 84 meV/f.u. (corresponding to
1000 K/f.u.) above in energy than any of the spin-polarized solutions. Again, it highlights the
fact that the NM approximation is not suitable to describe these ruthenates and including the
spin degree of freedom is crucial.

Focusing on the spin-polarized solutions, we find that Ca2RuO4 is an insulator regardless of
the magnetic arrangement. The lowest magnetic state is the AFMC with a gap of 0.574 eV,
in fair agreement with the experimental results showing an AFM transition at 110 K and a
band gap greater than 0.4 eV[289, 292]. In contrast, Sr2RuO4 is found to be metallic at 0 K
and with FM interactions between Ru cations. This is compatible with experimental reports
suggesting the presence of short-range FM order [295] and a metallic character [294]. In both
compounds, the computed magnetic moments, µRu = 1.41 µB/Ru and µRu = 1.36 µB/Ru in
Ca2RuO4 and Sr2RuO4 respectively, are compatible with a Ru4+ cation in a low spin state
((t2g↑)3(t2g↓)1, S = 1). We can note however that the total magnetic moment deviates from
the naively expected value of 2 µB/Ru. This discrepancy originates from the fact that the
electronic structure of the Ru-d and O-p states is hybridized, producing a finite spillage of the
magnetic moments on surrounding O anions as we will evidence later. The computed values
are however in agreement with the experimental value of 1.3 µB in Ca2RuO4[289] and those
previously computed with LDA+U of 1.38 µB in Sr2RuO4 [296].

7.3.2 Electronic and structural parameters

We now turn our attention to the two key quantities in these materials, the cO/aO ratio
characterizing the octahedral deformation and the amplitude QJT of the JTD. As inferred in
Table.7.1, the correct trend in cO/aO ratio is captured by our DFT simulations regardless of the
imposed magnetic order with the exception of the NM solution in Ca2RuO4. The difference
with the NM solution comes from imposing two up and down electrons in the octahedral t2g

level. This produces an electronic instability on the octahedral t2g degenerate partners and is
lifted with an elongation of the octahedron along the z axis splitting the t2g into an unoccupied
dxy singlet and a completely occupied dxz/dyz doublet, producing a metallic system at odds
with the experiments [290–292]. This again highlights the importance of respecting Hund’s rule
by allowing the spin degree of freedom in the calculations.

For the rest of magnetic orders, Ca2RuO4 presents a cO/aO ratio lower than one (see Table
7.1) yielding an insulating state for all spin-polarized solutions, with the gap formed between
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the occupied dxy singlet in the majority spin channel and the unoccupied dxz/dyz doublet in the
minority spin channel (see Table 7.1 and Figure 7.3). In contrast, Sr2RuO4 presents a cO/aO
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Fig. 7.3 Electronic density of states of Ca2RuO4 with a type-C AFM order. Two panels are
depicted (a) projected density of states on O p states (solid blue) and Ru d states (black line)
are depicted, and (b) the Ru d orbital character is depicted with dxy in red, dxz/dyz in grey and
dx2−y2/dz2 in orange.

greater than one, producing a metal for all spin orderings except for the AFMC which produces
a gap of 0.12 eV (see Table 7.1).

We explore this latter case by means of a symmetry mode analysis of the relaxed structure
with respect to the high symmetry undistorted I4/mmm cell for these ruthenates. We obtain
a finite Jahn-Teller distortion QJT = 0.04 Å, only for the type-C AFM order in Sr2RuO4 (see
Table 7.1). The same analysis on Ca2RuO4 leads to the observation of a finite QJT regardless
of the magnetic order (results presented in Table 7.1). This is quite surprising since Ca2RuO4

presents a cO/aO ratio lower than one and as a result, it should not be Jahn-Teller active. Along
with the appearance of the JTD, the compounds are also prone to exhibit a−a−c0 and a0a0c+

octahedral rotations, which we denote as ϕ−
xy and ϕ+

z , respectively (see Figure 7.4 and Table 7.1).
This is a consequence of a Goldschmid tolerance ratio lower than one which is characterized by
two octahedral rotations with amplitude Qϕ+

z
and Qϕ−

xy
(see Table 7.1). Then we can perform a

free energy expansion in terms of the amplitudes of the distortions modes QJT, Qϕ−
xy

, and Qϕ+
z

as we did in previous chapters obtaining

F [Qϕ+
z
, Qϕ−

xy
, QJT] ≃ F0 + α1Q

2
ϕ+

z
+ β1Q

4
ϕ+

z
+ α2Q

2
ϕ−

xy
+ β2Q

4
ϕ−

xy
+ α3Q

2
JT + β3Q

4
JT + ζ1Qϕ+

z
QJT+

ζ2Q
3
ϕ+

z
QJT + ζ3Qϕ+

z
Q2

ϕ−
xy
QJT + λ1Q

2
ϕ+

z
Q2

ϕ−
xy

+ λ2Q
2
ϕ−

xy
Q2

JT + δQϕ+
z
Q3

JT + · · ·
(7.1)

As one can see, there are several couplings between the octahedral rotations and the JTD which
in turn would force the appearance of this mode as it is observed in many other oxide perovskites
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Fig. 7.4 Rotation pattern present in A2RuO4 compounds, (a) out of plane anti-phase rotations
a−a−c0 (ϕ−

xy), and (b) in-plane in-phase rotations a0a0c+ (ϕ+
z ).

such as LaMnO3 or LaTiO3 [193, 276]. We can make this more evident by calculating the
potential energy surface of the JTD for several fractions of the a−a−c+ distortion on Ca2RuO4.
The PES depicted in Figure 7.5, it shows that effectively the minimum shifts to a non-zero
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) and JTD (QJT) distortions. A ferromagnetic order is used for the simulations.

value of the QJT mode once we allow a finite amplitude of the rotation pattern. The free energy
associated with the potential energy surface of the QJT mode, follows the general expression

F [QJT] = F ′
0 + ζeffQJT + αeffQ

2
JT + δeffQ

3
JT + βeffQ

4
JT (7.2)
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where F ′
0, αeff , βeff , ζeff and δeff are functions that depend on Qϕ+

z
and Qϕ−

xy
mode amplitudes

as follows
F ′

0 = F0 + α1Q
2
ϕ+

z
+ β1Q

4
ϕ+

z
+ α2Q

2
ϕ−

xy
+ β2Q

4
ϕ−

xy

ζeff = ζ1Qϕ+
z

+ ζ2Q
3
ϕ+

z
+ ζ3Qϕ+

z
Q2

ϕ−
xy

αeff = α3 + λ2Q
2
ϕ−

xy

δeff = δQϕ+
z

βeff = β3

(7.3)

It is interesting to see that almost all effective coupling constants of the free energy of the JTD,
show a dependence on the amplitudes Qϕ−

xy
, and Qϕ+

z
of the rotation pattern. Thus in general,

including a finite amplitude of the a−a−c+ rotation pattern, renormalizes the coupling constants
in front of the QJT and yields an energy gain associated with the appearance of a finite amplitude
of the JTD. In particular, we notice that the linear term ζeff becomes important only when there
is a non-zero amplitude of Qϕ+

z
or Qϕ−

xy
, and in the case of ζeff < 0 it would produce an energy

gain. Regarding the PES depicted in Figure 7.5, we see a clear shifted single well potential sig-
naling that ζeff < 0 is the dominant term responsible for the appearance of the JTD in Ca2RuO4.
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Fig. 7.6 Electronic density of states of Sr2RuO4 with a FM order. Two panels are depicted (a)
projected density of states on O p states (solid blue) and Ru d states (black line) are depicted,
and (b) the Ru d orbital character is depicted with dxy in red, dxz/dyz in grey and dx2−y2/dz2 in
orange.

Although this mechanism explains the appearance of the JTD in Ca2RuO4, it does not
explain why Sr2RuO4 only presents a JTD with the AFMC order, although being Jahn-Teller
active. In addition, Sr2RuO4 presents some finite in-plane rotation ϕ+

z which are coupled to
the JTD mode, yet there is no signature of a finite stabilization of the mode. We answer
this question by exploring the electronic structure of Sr2RuO4 calculating the partial den-
sity of states projected on O p and Ru d orbitals for the FM case. From Figure 7.6.a, we
clearly see that Sr2RuO4 is metallic, as we expect from a compound with a cO/aO greater
than one. The Fermi level is dominated by Ru d states with a non-negligible hybridization
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with O p states. By projecting on specific Ru d orbitals, we find that the Fermi level involves
mainly the Ru dxz/dyz doublet. This configuration means, that effectively, there is a degen-
eracy of these orbitals in the minority spin channel and as a result, the compound would be
Jahn-Teller active. Interestingly, we can see that the Jahn-Teller distortion is only present
in the AFMC order while the other magnetic orders remain metallic without JTD (see Table 7.1).

In order to understand this behavior, we calculate the potential energy surface associated
with the JTD for NM, FM, and AFMC solutions, starting from the high symmetry configuration
with I4/mmm space group.
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Fig. 7.7 Potential energy surface of the QJT mode (in Å/f.u) of the JTD for the NM (red
filled squares), FM (blue filled circles), AFMC (green filled diamonds) and FM with a negative
Pressure (FM-nP, orange filled circles)

From the results depicted in Figure 7.7, we notice that the NM, and FM solutions present a
single well potential while the AFMC presents a shifted single well with the minimum located at
finite QJT amplitude. This signals that the system presents an electronic instability caused by
the degeneracy of the electronic structure. Thus, if the system was characterized by dominant
in-plane AFM interaction, Sr2RuO4 would exhibit a JTD that produces an insulating phase. In
fact, the insulating AFMC solution presents an OO with the Ru d electrons in the minority
spin channel located either at the dxz or dyz orbital alternating on the first nearest neighbors.
We can evidence this by calculating the partial charge density of the states at the top of the
valence band of the AFMC solution as depicted in Figure 7.8.

The system, however, presents an FM ground state, and as a result, it does not show such
type of orbital ordering, in spite of being Jahn-Teller active. By comparing the total density of
states of Sr2RuO4 with FM and AFMC orders (see Figure 7.9), we notice that the bandwidth
is significantly different in both cases. As we can extract from Figure 7.9 the FM solution
presents the biggest bandwidth with WFM

t2g
= 2.04eV, while the AFMC state presents the smallest
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Fig. 7.8 Orbital-ordering exhibited by Sr2RuO4 AFMC ground state. a) Density of states (in
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on Ru t2g (black line) and O p (blue filled area) states. b) Partial charge density map associated
with states around the Fermi level indicated by the orange area in panel (a).

bandwidth of the studied cases with WAFMC
t2g

= 1.04eV. This could signal that in fact the absence
of a JTD for the rest of the magnetic orders is a matter of band compacities. We can then try
to explore the absence of the Jahn-Teller distortion by calculating the potential energy surface
of the FM solution but with an 8% of negative pressure (FM-nP). We do this by increasing the
size of the lattice parameters isotropically so that the volume is an 8% larger. From Figure 7.7
we notice that the JTD softens although still developing a single well potential (see Figure 7.7).
This is quite interesting because it signals that the JTE is screened by the hybridization since
by increasing the distance between the Ru sites, the overlap between Ru d and O p states would
be smaller, and the system would finally develop the JTD at some point. We can further see
that it is a matter of band compacities by calculating the partial density of states of the t2g

states in the FM-nP configuration and measuring a bandwidth Wt2g . The results in Figure 7.9
on the FM-nP show a metallic behavior but with a smaller band with of WFM−nP

t2g
= 1.48eV.

We can further support this by calculating the potential energy surface of the FM solution by
employing a DFT+U scheme with a U potential on Ru d states of U = 5 eV. This would enforce
a higher orbital localization, improve the band compacities, and in turn modify the couplings
between different lattice distortions. This is verified from the curve of Figure 7.10 where we
clearly find a shifted single well with the minimum obtained at a finite amplitude QJT of the JTD.

From the structural point of view, we mentioned that the system also presents a finite
stabilization of the a0a0c+ mode, and so the Free energy expansion for the QJT in the ground
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Fig. 7.9 Projected density of states of Sr2RuO4 on the t2g orbitals for the FM in solid blue,
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state would follow the expression in (7.2) but the coupling constants would be

F ′
0 = F0 + α1Q

2
ϕ+

z
+ β1Q

4
ϕ+

z

ζeff = ζ1Qϕ+
z

+ ζ2Q
3
ϕ+

z

αeff = α3

δeff = δQϕ+
z

βeff = β3

(7.4)

From this expression, we see that effectively, the JTD is allowed by symmetry and would couple
to the in-plane rotations. However, this is not a sufficient condition to stabilize a finite distortion,
since the amplitude of the JTD would depend on how strong are the coupling constants δ, ζ1,
and ζ2. These constants would depend on the structure of the material and as a consequence,
if they are too small, the JTD and the JTE would be screened as it is the case of Sr2RuO4.
From these findings, and recalling that AFM orders produce higher band compacities [26],
we can understand the presence or absence of the JTD in Sr2RuO4, since imposing different
magnetic orders would change the electronic density which in turn would have a direct effect on
the coupling constants of the different distortions. As a result, the AFMC order presents an
instability towards the JTE while it is screened with an FM order. Thus with all these results
and indicators, we can conclude that Sr2RuO4 is intrinsically in the vicinity of a JTE and an
OO phase.

7.4 Superconductivity in ruthenate compounds

As we have shown in the previous section, Sr2RuO4 is at the vicinity of an OO phase produced
by a JTD, so in analogy with the nickelate case and the CO, we build a model where the main
interacting phonon is the Jahn-Teller phonon.
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7.4.1 Band structure of Sr2RuO4 ground state

In that regard, we calculate the electronic band structure of the ground state FM order (see
Figure 7.11.a). We can notice that in the undistorted FM band structure, the majority spin
channel presents a gap between the occupied t2g and the unoccupied eg states, as expected for a
half-filled configuration. This automatically means that the conduction will be given by the
minority spin channel which presents three main bands crossing the Fermi level. The first one
is a parabolic band centered at the Γ point with a bandwidth of 3.52eV and a dominant dxy

orbital character. The other two bands come from the degenerate dxz and dyz, also centered at
Γ but dispersing only on 1.72eV. In addition, we can note that there are no bands splitting,
or gap openings suggesting that the electrons are almost free from any interaction with the lattice.

7.4.2 Evaluating the electron-phonon coupling

As we mentioned in chapters 5 and 6 on the nickelates, our goal is to evaluate the electron-
phonon coupling λ, in this case originating from the JTD and given by

λJT = N(εF )
∑

k

ℏ2

2ω2
JT

∣∣∣∣∣∣
∑

j

1√
Mj

∆εk

|uJT,j|

∣∣∣∣∣∣
2

(7.5)

where uJT,j is the displacement of the j-th atom and ∆εk is the band splitting produced by
freezing the JTD in the material. Now since in the JTD mode, there are only O atoms involved.
we can express the EPC in a similar way as in the case of the Boc mode in the nickelates,

λJT = 2N(εF )
∑

k

ℏ2

2MOω2
JT

(
∆εk

QJT

)2

(7.6)
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spin channel and (b) minority spin channel. The bands are unfolded with respect to the primitive
I4/mmm cell and projected on O p (blue), Ru dxy (red), Ru dxz/dyz (grey), and Ru dx2−y2/dz2

(orange). High symmetry points correspond to Γ = (0, 0, 0), X = (0, 0, 1/2), P = (1/4, 1/4, 1/4),
N = (0, 1/2, 0), M = (1/2, 1/2,−1/2), and S = (0.2727, 0.7272,−0.2727)

With this equation, our main task becomes to evaluate ∆εk from the band structure for different
k points, as well as computing the frequency of the JTD mode ωJT. If we introduce a finite
QJT amplitude in the FM ground state structure of Sr2RuO4, we can see that there is a band
splitting of the dxz/dyz bands completely isotropic for all k points at the Fermi surface (see
Figure 7.12.a). Thus we can recover equation (7.6) for the EPC and average over the Fermi
surface as we did with the Boc mode for the nickelates.

λJT = 2N(εF )
〈

ℏ2

2MOω2
JT

(
∆εk

QJT

)2〉
F.S.

(7.7)

Then we substitute the band splitting ∆Eg = ∆εk

2 into (7.7) and we obtain

λJT = 2N(εF ) ℏ2

2MOω2
JT

(
∆Eg

2QJT

)2

= N(εF ) ℏ2

2MOω2
JT
D2

JT (7.8)

where DJT = ∆Eg

2uJT,O
is the reduced electron-phonon matrix element (REPME) associated with

the JTD mode and uJT,O is the atomic displacement of one O atom. From our analysis of the
electronic band structure and equation (7.8), it becomes evident that the quantity that we
must calculate is the REPME. We compute the band splitting ∆Eg for several values of the
amplitude QJT of the JTD mode and, then with a linear fit of ∆Eg as a function of uJT,O (see
Figure 7.12.b), we obtain DJT = 7.76eV/Å.
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The next quantity to compute is the harmonic frequency of the JT ωJT which we evaluate
directly from the potential energy surface depicted in Figure 7.7 and by mapping the energy into

∆E(QJT) = 1
2Mω2

JTQ
2
JT + 1

4ξQ
4
JT (7.9)

in a similar manner as with the Boc mode in the nickelates, obtaining a frequency of ωJT = 81meV.

Finally and in this case the most critical quantity to evaluate precisely is the density of
states at the Fermi level. As we have noted, before, the experimental Tc is around 1.5 K, and
as a result, small inaccuracies in the λ can lead to predict that the material will not present a
superconducting transition at any temperature. In order to have accurate results, we have built
the Wannier Functions associated with the minority spin channel aiming to extract atomic-like
Wannier Functions with dxy, dxz and dyz character centered on Ru cations. This allows us to
converge the density of states in a very coarse k-mesh and extract the contributions given by
the dxz/dyz orbitals only since these are the two main orbitals affected by the JTD (see Figure
7.13).

With this procedure, we obtain a value of N(εF ) = 0.2908 states/eV/spin/f.u. for the dxz/dyz

with a converged k-mesh of 256 × 256 × 64 points for the Wannier Functions. With these values,
we can evaluate the electron-phonon coupling to be λJT = 0.35 yielding a calculated Tc that
oscillates between 1.65 K and 0.5 K for usual screened Coulomb interaction µ∗ of 0.1 and 0.15
respectively and using the Mc. Millans-Allens equation where the characteristic energy scale is
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Fig. 7.13 Density of states of the FM ground state of Sr2RuO4 in the minority spin channel. Top
panel the calculation is made with WFs, while the bottom panel is obtained with DFT. Solid
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given by the Jahn-Teller frequency in a similar fashion as with the nickelates ωc = ωJT

Tc = ℏωJT

1.2 exp
{

− 1.04(1 + λJT)
λJT − µ∗(1 + 0.62λJT)

}
(7.10)

The obtained upper and lower bounds of Tc are reminiscent of the experimental value of 1.5 K,
suggesting that Sr2RuO4 would be the first identified case of a JT superconductor in oxides.

7.5 Confirmation of the model in Ca2RuO4 nanofilm

Although we have been able to obtain a similar critical temperature between theory and
experiments, one could, of course, be rather skeptical about the results since the values might be
within the accuracy of DFT. Luckily, recent studies have shown superconductivity in Ca2RuO4

nanofilm single crystals under pressure with a critical temperature of 64 K coexisting with
ferromagnetism [297]. In contrast to the bulk, the nanofilm corresponds to a pressured mate-
rial with a cO/aO greater than one and is expected to exhibit a JTE and JTD as in bulk Sr2RuO4.

Thus in order to validate the model identified in Sr2RuO4, we perform DFT simulations
on Ca2RuO4 but fixing the lattice parameters to those given in Ref. [297] for the SC nanofilm
(namely a = 5.343 Å, b = 5.350 Å and c = 12.778 Å). We then only relax the atomic positions
so that they accommodate to the imposed lattice parameters keeping the same k-mesh and force
and energy criteria as in the previous simulations. From this calculation, we obtain a cO/aO

ratio of 1.05 and a metallic compound with an FM order.

We then perform a symmetry mode analysis in a similar way as we did with the bulk
of Ca2RuO4, obtaining a non-zero amplitude for the three lattice distortions QJT = 0.01 Å,
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Qϕ+
z

= 0.46 Å, and Qϕ−
xy

= 0.62 Å. By comparing these values, with those presented in Table 7.1
for the FM ground state of Ca2RuO4, we notice that the amplitudes of the modes are smaller
in the strained nanofilm configuration than in the bulk ground state, although retaining some
of the JTD amplitude QJT. This is in fact a consequence of the rotations that are coupled
to this mode and allow a finite stabilization of it. However, in spite of presenting a finite
JTD, the pressured compound remains metallic, signaling that the JTE is screened and is not
able to enforce electron localization. This is a similar situation to Sr2RuO4, where the JTE ef-
fect is screened and does not produce an insulating state despite the presence of the ϕ+

z rotations.

From the electronic structure point of view, we obtain a rather similar band dispersion as in
Sr2RuO4 (see Figure 7.14), where the conduction is given by the minority spin channel, with the
same orbital character of Γ centered bands dominated by Ru dxy and dxz/dyz states. Nonetheless,
we observe that there are some small band splittings of some of the bands, originating from the
non-zero amplitude QJT of the JTD.
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Fig. 7.14 Electronic band structure for FM Ca2RuO4 nanofilm under pressure, (a) in the majority
spin channel, and (b) in the minority spin channel. Projections are made on O p (blue), Ru
dxy (red), Ru dxz/dyz (grey), and Ru dx2−y2/dz2 (orange). High symmetry points correspond to
Γ = (0, 0, 0), X = (0, 0, 1/2), P = (1/4, 1/4, 1/4), N = (0, 1/2, 0), M = (1/2, 1/2,−1/2), and
S = (0.2727, 0.7272,−0.2727).

The next step is to evaluate the electron-phonon coupling constant, for which we need to
compute the REPME DJT, the frequency of the mode ωJT, and the density of states at the
Fermi level N(εF ) for the two orbitals involved. We repeat the same procedure as we presented
for Sr2RuO4 for the three quantities (see Figure 7.15).

We must note one technical difference for evaluating the frequency. When we use equation
(7.9) to extract the frequency, it is assumed that the amplitude QJT of the JTD mode is zero in
the ground state. This however is not true in the pressured Ca2RuO4 nanofilm. Nonetheless,
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the non-zero amplitude of the JTD is not caused by an electronic instability since it is screened,
but a coupling with the other lattice distortions. Thus since we seek to obtain the harmonic
term, we will compute the potential energy surface in the relaxed ground state structure and fit
to the following polynomial expansion

E[QJT] = E0 + ζeffQJT + αeffQ
2
JT + δeffQ

3
JT + βeffQ

4
JT (7.11)

and then compute the frequency as

ωJT =
√

2αeff

MO
(7.12)

For the REPME we extract it computing the band splitting ∆Eg for a given amplitude QJT

as it is depicted in Figure 7.15.a, and then with several amplitudes use a linear fit (see Figure
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the Γ −X path with and without a JTD, for the ground state and a completely undistorted
structure (a). The band splitting ∆Eg as a function of the amplitude of the mode QJT, with a
linear fit as an inset (b)

7.15.b) that allows us to obtain a value of DJT = 9.46 eV/Å. Finally, for the density of states we
make use again of the Wannier functions to extract only the contribution of the dxz/dyz orbitals.
This allows us to obtain a huge electron-phonon coupling λJT = 1.68, yielding a Tc between 73
and 63 K for µ∗ of 0.1 and 0.15, respectively in fair agreement with the experimental value of
64 K [297]. Thus our model based on a JTD responsible for the Cooper pair formation in the
ruthenates is validated since it is able to account for the superconducting transition of Sr2RuO4,
and Ca2RuO4 nanofilm under pressure.

One may have realized, that although both systems seem to be rather similar in terms of
electronic structure, cO/aO ratio, and presenting an isotropic coupling with the JTD mode
(see Figures 7.14 and 7.15), the electron-phonon coupling in Ca2RuO4 is much bigger than in
Sr2RuO4, and consequently the Tc in the first compound is more than forty times bigger than
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in the latter. At odds with Sr2RuO4, Ca2RuO4 as a nanofilm material retains its octahedral
rotations with amplitudes of Qϕ+

z
= 0.62 Å/f.u., and Qϕ−

xy
= 0.46 Å/f.u., for the ϕ+

z and ϕ−
xy

modes, respectively. We can then recall that the free energy expansion on (7.1), presents several
couplings between the rotations and the JT mode. As a result, the free energy in the ground
state will be given by (7.2). Now since we are extracting the harmonic constant, we would be
only interested in the term proportional to Q2

JT which would be

F ∝ (α3 + λ2Q
2
ϕ−

xy
)Q2

JT (7.13)

We can then see that a finite stabilization of the rotation can actually change the effective
frequency of the JTD mode. We can have two possibilities, if λ2 > 0 the effective frequency
would be higher and the JTD mode would be harder. In contrast if λ2 < 0 the effective frequency
would be smaller and the JTD mode would become softer. We can then calculate the potential
energy surface in both cases,(i) in the high symmetry case with only the JTD present and (ii)
in the ground state with the octahedral rotations (see Figure 7.16). From these curves and
equations (7.11) and (7.12), we are able to obtain the frequencies in both cases. The fits are
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Fig. 7.16 Potential energy surface of Ca2RuO4 for the QJT of the JTD alone (blue squares) and
with all the distortions appearing in the relaxed ground state (red circles)

provided as insets in Figure 7.16, yielding a frequency of ωHS
JT = 100meV and ωGS

JT = 46meV
in the high symmetry and the ground state respectively. We can notice that although we are
in the ground state, the fit of the curve yields a linear term signaling a minimum at non-zero
amplitude. Nonetheless, this is just numerical noise since the minimum would be located at
QJT = 0.001 Å, with a force at the origin of −13 meV/Å/f.u., which is within the accuracy of
the DFT calculations.
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Now recalling the expression for the electron-phonon coupling in (7.6), we can see that it is
inversely proportional to the square of the frequency of the JTD mode

λJT ∝ 1
ω2

JT
(7.14)

Hence it is natural that reducing the frequency by almost half of the value produces an EPC
four times bigger. One could also point out that the frequency of the mode is not the only
quantity that can change drastically with the pressure, since for instance the density of states
N(εF ) or the REPME D can be modified. However, this is not the case, since in Ca2RuO4

we obtain a REPME of D = 9.55 eV/Å in the high symmetry phase and D = 8.77 eV in the
low symmetry phase being rather close to the value of 7.76 eV/Å in Sr2RuO4. We obtain a
similar conclusion by analyzing the values of the density of states (see Figure 7.17), Ca2RuO4
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Fig. 7.17 Density of states of the FM ground state of pressured Ca2RuO4 nanofilm in the
minority spin channel. In the top panel, the calculation is made with WFs, bottom panel with
DFT Solid grey is the total density of states, and the red line is the projected DOS on Ru
dxz/dyz orbitals.

presents a density of states at the Fermi level of N(εF ) = 0.31 states/eV/f.u. for the dxz/dyz

orbitals, while in Sr2RuO4 we have 0.29 states/eV/f.u. Thus we can conclude here that the
strong softening of the JTD in Ca2RuO4 yields an EPC of λJT = 1.68 and ultimately results in
a huge increase of the critical temperature Tc with respect to Sr2RuO4.

7.6 Conclusion

From these results, we can already point out that the coupling between lattice distortions
such as rotations to the phonons that mediate the SC pairing, can promote the pairing by
softening the modes and as a result enhance the critical temperature. As a final remark, we
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can conclude here that the ruthenates are the first identified oxide material where the SC is
mediated by phonons in the proximity of orbital ordering instability.



Conclusion and perspectives

In this thesis, we have explored in detail the physics of the layered nickelates mainly from the
theoretical point of view using DFT, where we have employed a state-of-the-art parameter-free
functional SCAN, that we have previously tested intending to establish its limitations and
strengths. We reveal that although the meta-GGA SCAN functional is a big improvement over
the usual GGA functionals at a reasonable computational cost, it is still unable to deal with
highly localized 4f states. Being aware of these limitations allows us to understand how reliable
are the obtained results and decide easily in which situations a more advanced method is required.

Once we have established the reliability of the methods employed, we begin studying these
nickelates by relaxing the structure of several RNiO2 compounds. This allows us to study the
structural, magnetic, and electronic properties that characterized these materials, finding that
the crystal structure is prone to present several lattice distortions that correlate with the size of
the rare-earth cation R. From the point of view of the magnetism, we reveal that the magnetic
interactions are mainly given by Ni cations pointing to an antiferromagnetic ground state. We
have also investigated the electronic band structure for several magnetic orders revealing that
the RNiO2 compounds are a rare case of AFM metals with a Mott character, and the band
dispersion for the PM phase is not well modeled using non-spin-polarized calculations and
a random spin arrangement is closer to the results obtained with higher accuracy methods
like DMFT. Additionally, we find that the H can get trapped in the system and produce a
Mott-insulating compound.

We then proceed to study the doping phase diagram closely following the existing literature
and propose that the IL phase belongs to a broader family of layered nickelate compounds that
we denote as RRP, with the general chemical formula Rn+1NinO2n+2 and characterized by a
positive integer number n, and show that the IL phase is the last member of the series (n = ∞)
which allows us to start the analysis from the first member instead (n = 1). This approach proves
to be much more revealing since the undoped IL phase presents a weakly metallic character
while the RRP n = 1 compound is an insulator. We then show that increasing the number n in
the series means introducing more electrons into the system, finding that in the half-doped case,
the compounds are prone to develop a charge-ordered insulating phase that produces a bond
disproportionation distortion on the NiO4 complexes. This character proves to be universal and
depends only on the effective Ni 3d electron count, where both the RRP n = 2 compound and
the doped IL phase show the same behavior. Then further increasing the 3d electron count
either by doping the IL phase or increasing the number n on the RRP series, destabilizes the
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charge-ordered phase until is completely quenched and produces a metallic region. Within this
metallic region, the SC phase is hosted and we show that it is just in the vicinity of the CO
phase, where the same phonon modes responsible to the charge ordering, play also an important
role in the SC phase since they still present a non-negligible electron-phonon coupling. With
this model, we are able to reproduce correctly the trends of the superconducting Tc as a function
of the doping content on the IL phase and as a function of the number n in the RRP series
further showing that the mechanism is universal and mainly depends on the Ni 3d electron count.

Nonetheless, we show that the 3d electron count is not the only factor to keep in mind,
where the dimensionality of the system plays also an important role. In that regard, through a
collaboration with an experimental team in CRISMAT lab, we explore the low-energy physics
of a newly synthesized compound with chemical formula Nd0.8Sr1.2NiO3 that presents the same
3d electron count as the superconducting nickelates but shows insulating behavior. We further
reveal that the origin of the insulating character is a charge ordering reminiscent of the charge
ordering in the RRP series and that the system shows a strong antiferromagnetic character with
a possible two-spinon excitation spectrum.

Finally, we extend the superconducting model to other compounds, recalling that the other
existing electronic instability that produces an insulating character in the perovskite-like com-
pounds, is the Jahn-Teller distortion. We then explore the ruthenate case of Sr2RuO4 and
Ca2RuO4 revealing that at normal conditions, the first compound is at the vicinity of an
orbital-ordered phase denoted by OO, caused by a screened Jahn-Teller effect and Jahn-Teller
distortion. Nonetheless, the phonon mode presents a non-negligible electron-phonon coupling
that is sufficient to reproduce the experimental Tc of the SC transition. This is further supported
by being able to reproduce the insulating behavior of Ca2RuO4 at normal conditions and the
SC Tc under pressure. Thus showing that Sr2RuO4 is the first SC compound driven by an
orbital-ordered instability.

In summary, we explore the SC properties of nickelates and other perovskite-like compounds
and develop models based on phonons that are able to reproduce quantitatively the trends
on the SC Tc. The mentioned models are based on connecting electronic instabilities that
are able to produce an insulating state in transition metal oxides, with the superconducting
mechanism, suggesting that both the insulating state and the SC phase are connected and share
the same mechanism with different strengths of the coupling parameter. In this way, at strong
coupling, we may have Mott and Charge transfer insulators, while at moderate coupling we have
SC compounds. Thus future strategies to obtain superconducting compounds should consider
charge and orbital ordering instabilities in the phase diagram, and destabilize the insulating
phases with for instance doping or applying pressure.
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