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General Introduction__________________________________________________________________________________________

General Introduction

Knowledge of three-dimensional (3D) structures of molecular complexes, particularly those
involving proteins and RNA, is important for biological research. This knowledge not only aids in
elucidating life processes at the cellular level but also has far-reaching practical applications,
including the development of new and/or personalised treatments, genetic engineering, and protein
design, offering a path to a better future.

Protein-RNA 3D structures can be obtained either via ‘wet-lab’ experiments or computational
modelling. ‘Wet’ experiments generally are very reliable, but they come with a hefty price tag and
require a team of specialists, specialised equipment, biomaterials etc. In contrast, computational
modelling is often a more cost-effective and efficient approach. However, it's not without its
challenges, as the reliability of computational models is lower compared to their 'wet' experimental
counterparts. This thesis focuses on improving the reliability of computational modelling of 3D
structures of single-stranded (ss) RNA bound to proteins.

Context and Motivation

My PhD project is a part of the Marie Skłodowska-Curie Innovative Training Network “RNAct
project”. The research aim of the RNAct project is to design novel RNA recognition motif (RRM)
proteins for exploitation in synthetic biology and bio-analytics. Ten Early Stage Researchers (ESRs,
PhD students) combined efforts in both computational and experimental biology to achieve this goal
within the RNAct project (Fig. 1). My role (ESR4) in the frame of this project is to enhance the
method to dock RRMs to ssRNA, i.e. model 3D structure of RRM-ssRNA complex.

Figure 1 - Overview of the work packages (WP) and ESR involvement within the RNAct project.
Image by Wim Vranken taken from the RNAct proposal.

Docking protein/RRM-ssRNA complexes is notoriously challenging. This complexity emerges
from the inherent flexibility of ssRNA chains, leading to a very large conformational search space.
Due to the disordered state of ssRNA, modelling protein-ssRNA complexes cannot be done by
classical rigid or semi-flexible docking. A relatively small number of solved protein-ssRNA
complexes impairs the application of machine/deep learning.

This problem can only be addressed using fragment-based docking approaches, with
ssRNA’TTRACT being the current state-of-the-art method. It consists of docking and assembling
various 3D conformations of RNA fragments on the protein, using a combinatorial approach. It is
conducted under two fundamental assumptions: (i) the 3D structure of the protein is known, and (ii)
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General Introduction__________________________________________________________________________________________

the sequence and secondary structure of the RNA chain interacting with the protein is known, i.e. only
the single-stranded part of the chain is taken into consideration.

The current protein-RNA energy parameters of the ATTRACT scoring function (ASF) are not
specific to ssRNA and could be optimised. In addition, in the specific case of RRM-ssRNA domains,
consistent RRM topology allows for statistical analysis which can provide docking constraints for
data-driven docking. My PhD project has 2 corresponding main axes.

Axis 1: A New Approach to Develop Protein-ssRNA Scoring Functions
Fragment-based docking encounters scoring issues, partly due to variations in the binding

strength of different RNA fragments. Some fragments bind more strongly to proteins than others,
leading to issues with ranking near-native poses, especially ones with a weaker binding strength. We
have developed a novel approach that addresses this issue by producing several scoring potentials (𝓗),
capable of accounting for different binding modes. These scoring potentials are based on the
frequency of bead-bead distances in near-native versus non-native poses. To streamline the process
and to stay in the frame of the RNAct project, I focused on the RRM domain, deriving HIPPO
(HIstogram-based Pseudo-POtential), comprising four distinct parameter sets (𝓗) for scoring
RRM-ssRNA poses in ATTRACT coarse-grained representation. HIPPO enriches the number of
near-natives in the top-ranked 20% of poses by 3 to 4-fold, outperforming ASF. HIPPO also
outperforms ASF in the general case of protein-ssRNA docking, proving its generalisability. Lastly,
this protocol is in principle applicable to any ligand type in (pseudo)atom-based representation.

Axis 2: Incorporating Database Knowledge as Constraints in RRM-ssRNA Docking
With my colleague Hrishikesh Dhondge (ESR3), we have developed an anchor-driven

fragment-based docking pipeline for RRM-ssRNA docking, as an updated version of an already
existing strategy. RRMs have two amino acids in conserved positions, each performing an aromatic
stacking with a nucleotide of the bound ssRNA. Those amino acids can be used as anchor points in
the docking. We collected all RRM-ssRNA experimental structures with such stacking contacts,
extracted the local protein backbone and stacked nucleotide, and clustered them to obtain a set of
prototype positions of a stacked nucleotide toward the local backbone of a stacking amino acid. I then
set up an RRM-ssRNA docking pipeline using the ATTRACT docking engine, with the RRM
sequence, RNA sequence, and identification of the stacked nucleotides as input. The pipeline retrieves
the RRM structure from AlphaFoldDB, identifies possible 3D positions of the stacked nucleotides,
and runs ATTRACT docking of RNA fragments with maximal distance restraints toward each
possible position.

Outline of the Manuscript

Chapter 1 gives an introduction to the biological concepts that are prerequisites for the
computational modelling of protein-ssRNA complexes. It covers basic aspects of protein and RNA
molecules (sequence, structure, flexibility), delves into primary interactions between them, and
explores potential conformational changes that may take place before or during the binding process.
The chapter lists common RNA-binding protein domains, with a focus on RRMs and the specificities
of their binding with ssRNA. This chapter concludes with a brief overview of structural experimental
techniques for solving protein-ssRNA complexes.

Chapter 2 aims to cover parts of the field of computational structural modelling relevant to this
thesis. It begins with a concise overview of databases containing pertinent data for protein-ssRNA
modelling and outlines approaches useful for modelling single protein and RNA chains. The chapter
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General Introduction__________________________________________________________________________________________

then proceeds to explain fundamental principles and categories of docking, i.e. modelling of
complexes, with a particular emphasis on rigid-body docking. This includes a discussion on molecular
representation, sampling approaches, and commonly employed scoring functions. Additionally, the
chapter introduces several knowledge-based protein-RNA scoring functions, each constructed
following a distinct approach. The final section delves into protein-ssRNA docking techniques, with a
detailed description of the state-of-the-art method, ssRNA’TTRACT.

Chapter 3 begins the presentation of the original contribution of the thesis. The first part of this
chapter details the optimisation of the original ASF parameters through a stochastic Monte Carlo
Simulated Annealing approach. Although the resulting parameter sets did not surpass ASF in
performance, key insights were gained, ultimately leading to fruitful developments (Chapter 4). The
second part of Chapter 2 delves into the examination of the inadequate values of the ASF parameters
for Tryptophan-Cytosine interactions. While manual fine-tuning of these values proved unsuccessful,
this section allows for a discussion of the systematic evaluation of the parameter subsets and the
stacking problem in the context of scoring.

Chapter 4 presents the pivotal contributions of the thesis, made in the frame of Axis 1. It begins
with the concise presentation of a preliminary histogram-based approach and is followed by a detailed
description of the original protocol used to derive HIPPO, which is presented as a stand-alone
research paper. Thereafter, the performance of the scoring functions ASF, HIPPO and BP (usage of
the best-performing 𝓗 out of 4 for each fragment) on a new benchmark of experimentally solved
protein-ssRNA complexes is discussed. Lastly, an incremental fragment assembly is performed on
selected complexes using BP and ASF, accompanied by a performance evaluation.

Chapter 5 provides an overview of the contributions made in the frame of Axis 2. It begins with
a presentation of the previously developed anchor-docking strategy and principles of the creation of
anchoring patterns. Subsequently, the original RRM-ssRNA docking pipeline is introduced, followed
by the evaluation of its performance against ab initio docking. The final section introduces
experimental non-structural data extracted from literature as a potential source of docking restraints.

As a final point, Chapter 6 summarises the contributions of this thesis, and presents several
promising directions for further developments along with scientific prospects.
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1.1 Aims

In this chapter we provide a preliminary introduction to protein and ribonucleic acid (RNA)
macromolecules and their interactions, focusing on the 3-dimensional (3D) structures and the
significance of the knowledge of these structures in the context of modern biology. We begin with the
basic features of these macromolecules, then we investigate the foundation of the protein-RNA
interactions. Additionally, we provide a brief overview of the experimental techniques utilised to
acquire structural data on these protein-RNA complexes. This allows us to transition from the concept
of macromolecules to their computational representation and delve into the field of bioinformatics.
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1.2 Macromolecules

Life is widely recognised to depend on nucleic acids and proteins, two essential macromolecules
composed of long chains of covalently linked monomeric units. These long chains adopt intricate
shapes governed by the principles of atomic physics and chemical interactions. The specific 3D
structures of macromolecules dictate their functions, making the investigation of structure-function
relationships a crucial endeavour. A multitude of interconnected fields, including structural biology,
biochemistry, molecular biology, computational biology and bioinformatics collaboratively explore
the intricate world of macromolecules to elucidate their roles in enzymatic activity, signal
transduction, molecular recognition, and cellular regulation, and, in a more practical context, in
disease mechanisms investigation, drug design and development, and rational design.

1.2.1 Proteins

Among organic macromolecules, proteins are one of the most abundant and functionally versatile. A
protein molecule can be described in a hierarchical manner (Fig 1.1):

● The primary structure is simply a linear sequence of amino acids, that make up the long
protein chain;

● The secondary structure is a 3D folding of the continuous segment of the protein chain into
repetitive patterns (e.g. helix), occurring due to the interactions between the amino acids in
the chain;

● The tertiary structure is a 3D organisation of the whole protein chain, formed by packing
elements of the secondary structure into one or several compact units;

● The quaternary structure is a 3D organisation of proteins when they bind to each other or/and
to other (macro) molecules, forming complexes of 2 or more members.

Amino acids, the constituents of the protein chain, are small organic molecules composed of a
central carbon atom (alpha carbon), bonded to four different chemical groups: an amino group
(-NH2), a carboxyl group (-COOH), a hydrogen atom (-H), and a side chain or R-group, which varies
among the different amino acids (Fig 1.2 a). While chemically there are hundreds of possible amino
acids, human proteins predominantly incorporate a set of 20 standard amino acids. Amino acids are
linked in the chain by a highly stable peptide bond. This covalent bond is formed between the
carboxyl group of one amino acid and the amino group of the adjacent amino acid and is accompanied
by the release of a water molecule (Fig 1.2 b, c). The end of the chain, which contains an amino acid
with a free amino group, is called the N-terminus and is often referred to as the beginning of the
chain. The opposite end of the chain is called C-terminus. The chain itself consists of the repeating
units, which are classified as the backbone (main chain), the same for all amino acids; and side chains,
different for different types of amino acids [2].

Amino acids can be classified based on the chemical properties of their side chains into distinct
groups, including hydrophobic, aromatic, charged (positively or negatively) and polar amino acids.
This classification is of high importance as it aids in explaining the folding of protein chains and
general molecular interactions. For instance, the “hydrophobic effect” in proteins illustrates the role of
hydrophobic and hydrophilic amino acids in protein folding and assists the formation of the most
common elements of the secondary structure. In water-based environments where most proteins exist,
hydrophobic amino acids tend to be packed in the protein’s core, while hydrophilic ones form the
protein's surface. This arrangement allows for the establishment of a stable network between the
protein and its surroundings, with both side chains and the backbone of hydrophilic amino acids

6
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engaging in hydrogen bonding with water molecules at the surface. However, the interior regions of
the backbone lack this direct interaction with water. To compensate for this, the polar and so
hydrophilic backbone adopts secondary structures such as alpha-helices or beta-sheets, characterised
by local hydrogen bonding within the protein interior, stabilising the corresponding region of the
chain [3].

Figure 1.1 - Four levels of protein structure illustrated via the crystal structure of the HutP
antitermination complex bound to the HUT mRNA, pdb code 3BOY. (a) Primary structure
(sequence); (b) Secondary structure (alpha helix) of the given sequence; (c) Tertiary structure
containing alpha helices (cyan), antiparallel beta sheets (red) and loops (magenta); (d) Quaternary
structure containing 3 protein chains (magenta, green, cyan) and RNA (orange). Here and onward 3D
models were made with PyMol [1] unless specified otherwise.

In an alpha-helix, the backbone forms a tightly coiled structure held in place by a hydrogen bond
occurring between the peptide bond and the 4th amino acid of the consecutive chain. Such structure
creates charged regions on the helix, a positive charge at one end and a negative charge at the other.
This allows for the attraction of molecules with opposite charges, particularly those containing
phosphate groups, which tend to bind near the positive end of the helix. In a beta-sheet, contrary to the
alpha helix, the backbone forms a planar structure held in place by hydrogen bonds occurring between
amino acids located in the adjacent strands of the chain. This type of secondary structure is more
spacious, which increases accessibility for external molecules [4].

The elements of the secondary structure are interconnected by regions called loops. Unlike
structured secondary elements, loops generally do not possess a defined secondary structure. Instead,
they serve as flexible connectors between the secondary structure elements. Loops vary in length, but
typically stay on the shorter side (3-20 amino acids) and have a higher propensity to interact with the
surrounding environment compared to the amino acids within the protein chain.
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Figure 1.2 - Amino acid and chain of linked amino acids (a) Schematic diagram of amino acid its
amino group (red), a carboxyl group (green), and side chain or R-group (purple); (b) Schematic
diagram of a polypeptide chain made by two amino acids (highlighted by the dashed circles)
connected via a peptide bond (blue); (c) 3D structure of a polypeptide chain made by amino acids
phenylalanine and threonine. The latter one is highlighted by a dashed circle.

The tertiary structure - elements of the secondary structure connected via loops - is stabilised by
various interactions, namely hydrophobic interactions, hydrogen bonds, ionic interactions, van der
Waals interactions, disulphide bridges, stacking interactions and interactions with the surrounding
solvent (see §1.3.1, as the mechanisms behind inter- and intra-molecular interactions are governed by
the same physical principles). The resulting 3D structures tend to be energetically favourable. They
can exhibit a wide range of characteristics, e.g. be symmetric or asymmetric, and have varying surface
features such as smooth surfaces, deep cavities, or even open channels.

Some tertiary structures correspond to domains, which are compact (highly structured) and
independently folded regions within proteins. Domains exhibit well-defined three-dimensional
structures that align with known templates from a curated list of structured domains [5, 6]. Domains
are considered functional units in the protein world, as they can perform specific enzymatic activities,
interact with other molecules such as DNA or RNA (a concise list of the latter ones can be found in
§1.3.4.1), participate in signalling pathways, or bind to other proteins. It is common for a single
protein chain to contain multiple domains, which are interconnected by flexible regions known as
linkers. Such a structure is known to increase stability and boost functionality [7].

The protein world is not limited to the known structured domains. Numerous structured domains
are yet to be discovered and characterised, expanding the diversity of protein structures. Moreover,
some proteins are characterised by remarkable conformational flexibility and lack a well-defined
structure, yet still remain functional. They are known as intrinsically disordered proteins (IDPs).
Intrinsically disordered regions (IDR) can be present in proteins that are otherwise structured, making
“protein hybrids” [8]. The existence of structured domains, IDPs, and protein hybrids showcases the
remarkable diversity within proteins accompanied by a wide range of abilities and functions (see
section 1.3.4 RNA-Binding Proteins).

1.2.2 RNAs

RNA macromolecules, much like proteins, are fundamental components in cellular processes and
a standalone subject in the field of molecular biology. Previously, RNAs were predominantly seen as
minor characters in the flow of genetic information, primarily involved in facilitating protein synthesis
through transcription and translation. Nowadays, we know that it was a cameo appearance — the
versatility and diverse functionality of RNA are evident, despite the fact that the functions of many
RNAs are still undiscovered. They act as regulatory molecules, exhibit catalytic activities as
ribozymes, and play active roles in crucial cellular processes like RNA interference and gene
expression regulation.
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RNA consists of small organic molecules, called nucleotides, which are composed of ribose
sugars attached to nitrogenous bases and phosphate groups. This group varies for different
nucleotides. Among the many possible nucleotides, RNA is composed of 4 standard nucleotides:
adenine (A), cytosine (C), guanine (G), and uracil (U) (Fig 1.3). Nucleotides are linked in a chain by a
phosphodiester bond, a strong covalent bond between the 3'-carbon atom of one nucleotide's sugar and
the 5'-carbon atom of the adjacent nucleotide's phosphate (Fig 1.4 a, b). This linkage creates a free
5'-position at one end of the chain and a free 3'-position at the other end. The 5'-end is considered the
beginning of the chain [9].

Figure 1.3 - Nucleotide and chain of nucleotides (a) Schematic diagram of a nucleotide with a
phosphate group (yellow), ribose sugars (orange) and a nitrogenous base (pink); (b) 3D image of a
nucleotide with a phosphate group (yellow), ribose sugars (orange) and a nitrogenous base (pink); (c)
Nucleotide base types, schematically and in 3D

Nucleotides can be classified into 2 groups: purines (A, G) and pyrimidines (C, U), based on the
types of nitrogenous bases they contain. Purines are larger and consist of two aromatic rings, while
pyrimidines are smaller and consist of a single ring. This difference in size and structure leads to
distinct binding preferences. For instance, purine-rich sequences have the ability to form specific
secondary structures, such as G-quarters, which are formed by 4 G molecules interacting with each
other, and subsequently, G-quadruplexes, formed by stacking of G-tetrads on top of each other [10,
11].

Similarly to proteins, RNA structure can be described at 4 levels of complexity (Fig 1.4 c, d, e
and Fig 1.1 d). The primary structure of RNA is defined as a linear sequence of nucleotides, typically
written from 5’-end to 3’-end. The secondary structure is defined by the local folding of the chain,
occurring due to the interactions between nucleotides, primarily through base pairing - edge-to-edge
hydrogen bonding interaction between two bases.

The most common and stable base pairs are Watson-Crick pairs, or canonical pairs, which
involve geometric correspondence and the formation of 2 or 3 hydrogen bonds between bases A-U
and C-G, respectively. A common non-canonical base pair is the "wobble" U-G pairing [12]. Other
non-canonical base pairings do exist [13]. There are 12 classes (or families) of possible base pairs,
constructed based on the geometry of the bonding patterns observed in RNA structures (Fig 1.5).
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Figure 1.4 - RNA chain and 3 levels of its representation a) Schematic diagram of a chain of 3
nucleotides linked by phosphodiester bond (green). The backbone is displayed in blue, the side chain
is in pink; b) a 3D image of a chain of 3 nucleotides linked by phosphodiester bonds (green). The
backbone is displayed in blue and the side chain is in pink; c) primary structure of RNA; d) secondary
structure of RNA in 2D showcasing single-stranded region (blue) and double-stranded region (red); e)
tertiary structure of RNA in 3D showcasing single-stranded region (blue) and double-stranded region
(red) (pdb code 28SP).

Figure - 1.5 RNA base pairings variety a) Watson-Crick base pairs between bases (top) C and G in cis
orientation and (bottom) U and A in trans orientation. In the cis/trans orientation, the two bases
involved in the pairing are located on the same/opposite side(s) of the backbone. Orientations are
highlighted with blue arrows; b) Types of the interacting edges of the base, which differ for the
purines (top) and pyrimidines (bottom). 12 families of possible base pairs are defined by the
combination of the orientation of the bases (cis/trans) and the interacting edges
(Watson-Crick/Sugar/Hoogsteen/C-H).
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Base pairing, primarily canonical, leads to the formation of double-stranded (ds) structures called
helices. Helices tend to be relatively short and consist of around 12 paired nucleotides. It is thought
that longer consecutively paired regions are too stable and rigid for the majority of RNAs to function
properly. Typically, helices alternate with unpaired, single-stranded (ss) regions, which are highly
flexible. Together they form secondary structure elements such as stems, loops, bulges and hairpins.
(Fig 1.6 a).

The next level - tertiary structure - is a 3D arrangement of the RNA chain. The formation and
stabilisation of tertiary structures involve various interactions, including hydrogen bonds, stacking
interactions, van der Waals interactions, hydrophobic surface burial, and sometimes the involvement
of metal ions. Commonly observed motifs of the tertiary structures in RNA include junctions (Fig 1.6
b) pseudoknots (Fig 1.6 c, d), kink turns, triplexes, and quadruplexes.

Figure 1.6 - Common elements and motifs of the RNA structure. On the 2D diagrams, phosphodiester
bonds are represented as grey lines, base-pairings are represented as red lines, paired nucleotides are
represented as green circles and unpaired nucleotides are represented by not-green circles. Finally,
bonds that are defined for a particular motif are in purple. a) Basic elements of the secondary
structure; b) 2D diagram (left) and corresponding 3D models (right) of the 3-way junction (pdb code
2N3Q); c) Pseudoknot (pdb code 1KPZ); d) Kissing loops (pdb code 2FCY). 2D images have been
produced with the help of forna [20].

RNA structure, both at the level of base pairing and the overall 3D shape, can be characterised by
the principle of isostericity [14,15]. Isostericity refers to the concept that different nucleotide
sequences can lead to similar structural and functional properties. This principle enables different
RNA sequences to adopt similar structures, allowing RNA molecules with distinct sequences to
perform similar biological functions and interact with the same molecular partners, such as proteins.
The isostericity of RNA, along with its flexibility, are crucial for the versatility and adaptability of
RNA-based interactions in the cells.
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1.2.3 The Source of Flexibility

Both protein and RNA molecules in their unbound state (when isolated from the other molecules
except the solvent) possess a certain degree of flexibility, although the extent of flexibility varies
among different components of the secondary structure. The overall flexibility of the protein is
defined by the plasticity of the backbone within two amino acids. This plasticity is limited by two
angles between the planes defined by adjacent atoms along the polypeptide backbone, known as the
torsional angles. The flexibility of RNA also depends on the plasticity of the backbone, which is
noticeably more flexible and defined by 6 dihedral angles describing the rotation around the bonds
involving the sugar and phosphate moieties in the RNA backbone (Fig 1.7). RNA’s backbone is
capable of adapting around 50 distinct conformations [16, 17, 18]. For both molecules, their
respective angles are constrained by steric clashes, which prevent atoms from overlapping, and the
need to maintain favourable interactions within the molecular structure. For example, the flexibility of
the RNA loops in hairpins is often constrained by the interactions of the nucleotides with each other
or distal parts of the same RNA [19]. Both molecules can exhibit local flexibility, achieved by the
rotations of the side chain units.

Figure 1.7 - Torsional angles in protein/RNA. a) Torsion angles in the protein backbone (ψ,φ) and of
the peptine bond (ω) are shown in black, the angle of the side chain rotation (χ) is shown in orange;
Most amino acids adopt trans peptide bond, but proline is capable to form both cis and trans isomers
[273]; b) Torsional angles in the RNA backbone (α, β, γ, δ, ε, ζ) are shown in black, the angle of the
side chain rotation (χ) shown in orange. Notably, ribose can adopt different conformations (so called
sugar puckering) with the most common form called C3′-endo.

Unstructured protein regions possess greater flexibility compared to structured ones (Fig 1.8 a).
Protein linkers generally exhibit more flexibility than loops, which, in turn, tend to be more flexible
than elements of the secondary structure. For example, the linker between two domains is capable of
changing the relative position and/or orientation of the domains, allowing for an adaptation to
different binding partners (Fig 1.8 b) [21].
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Figure 1.8 - Examples of protein flexibility. a) Two conformations (cyan, blue) of 2YH0 illustrate the
high flexibility of the linker; b) Two orientations (yellow, green) of the RRM domain in raver1 (pdbs
3H2U, chain B and 3SMZ) showcasing spatial shift of the domain, located on the right.

Proteins and RNAs can undergo structural transitions between different conformations. Some are
known to be stable in a single structure, some can switch between several conformations. For
instance, hammerhead ribozymes are known to exist in active, with the binding site exposed and
correctly aligned, and relaxed states with several distinct intermediate conformations [22]. Another
example is an HIV-1 reverse transcriptase, which is a protein with 3 different structures [23]. Finally,
unstructured protein regions can become structured, which is illustrated by SR proteins that are known
to switch from a highly disordered state to a partially rigid, arch-like structure, under the influence of
phosphorylation [24].

1.3 Macromolecular Interactions

Molecular interactions involve direct physical contact between molecules, ranging from weak
and transient interactions to strong and very stable ones. These interactions impact the structure and
the functions of the molecules involved, and certain interactions, described below, lead to the
formation of macromolecular complexes. A macromolecular complex refers to the precisely arranged
assembly of multiple macromolecules into a functional unit, capable of performing complex tasks. Up
to 10% of the entire proteome may be bound to RNA [25]. Protein-RNA complexes are one of the
fairly common macromolecular complexes, which are central to a plethora of vital processes (several
examples are given in §1.3.4.2). Understanding the mechanisms behind such interactions provides
insights into the mechanisms underlying these processes and their disruption, as well as allowing for
rational design - the creation of the molecules with the desired functionality, tuned via their structural
characteristics.

1.3.1 Protein-RNA Interaction Types

Proteins can interact with RNAs through the backbone of any amino acid and the side chain of
most amino acids. The following noncovalent interactions are known to occur:

● Aromatic interactions or pi-interactions. Aromatic interactions involve the nitrogenous
base of the nucleotide. The aromatic ring of the base contains pi electron clouds, which can
interact with other pi systems or electron acceptors. Typically, interacting partners are located
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within 2.7-4.3Å. The interaction is relatively strong with the contribution of approximately
2-6 kcal/mol per interaction with multiple interactions that can be present in one complex.
These interactions are known to substantially contribute to the complex stability, with some
examples where they are crucial to binding function [26 and references within]. Purines are
considered to be better stacking partners compared to pyrimidines [27], but practically
stacking of all 4 bases was observed with approximately similar frequency [28]. Several
subtypes of aromatic interactions are recognised:

○ Pi-pi stacking interactions (Fig 1.9 a) occur between the RNA bases and the amino
acids containing aromatic rings, namely tryptophane, histidine, tyrosine and
phenylalanine. Typically, aromatic rings are laying parallel, on top of each other,
hence the term ‘stacking’. Although the perfect geometry is not mandatory as
interactions with both rings being angled towards each other, or even located
perpendicular (‘edge-to-face’ or ‘T-stack’) have been observed. In parallel
orientations, the pi-electrons from one ring interact with the pi-electrons of the other
ring through attractive forces, such as van der Waals interactions. In the perpendicular
orientation, the pi-electrons of one ring interact with protons of the other ring.
Interestingly, 3 rings can be involved in stacking interaction. This happens when one
ring is being “sandwiched” between another two. This interaction may involve two
nucleotides with one amino acid and vice versa [29];

○ Pi-cation interactions (Fig 1.9 b) occur between the RNA bases and the guanidinium
group of arginine amino acid due to the attraction of the positively charged group
toward the pi-electron cloud of the aromatic ring. All possible orientations between
the ring and guanidinium group could be found. Studies hint at the preference of
arginine to bind U, A, and C bases over G. Pi-cation interactions have been observed
between RNA bases and lysine or histidine. Notably, pi-cation interactions are
observed more often in protein-DNA complexes [30, 31];

○ Other pi-interactions include contact of the aromatic ring with the amino group of the
glutamine and asparagine, and interaction with the peptide bond, but they are
observed less commonly. Finally, proline can form CH/π interaction with the aromatic
ring, due to interaction between the pi aromatic, the polarised C-H bonds and the
hydrophobic effect, yet CH/π interaction is rarely mentioned in the literature [32].

● Hydrophobic interactions. Hydrophobic interactions involve hydrophobic and sometimes
nonpolar amino acids and RNA bases, all of which are nonpolar. This type of interaction does
not involve direct chemical interactions between hydrophobic molecules, but rather their
clustering in an attempt to minimise the surface, exposure to the water molecules and
minimise disturbance of the latter. Hydroponic interactions can occur at 3.8-5.0Å, and
contribute around 1-2 kcal/mol. In some cases, these interactions account for half of the
binding within the protein-RNA complex, and they are highly important for its stabilisation
[33].
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Figure 1.9 - Protein-RNA interaction examples, highlighted by purple dashed circles/lines. Protein
and RNA are shown in the cartoon representation, and their interacting residues are shown in a stick
representation. a) Pi-pi stacking between Phe_256 and U_5 (pdb code 1B7F); b) Pi-cation stacking
between Tyr_214 and G_4 (pdb code 1B7F); c) Hydrogen bonds between His_411 and C_540; and
Lys_410 and C_540 (pdb code 2ADC); d) Hydrogen bond bridged by the water molecule, shown as a
red cross, between Glu_78 & U_213 (pdb code 2ARN).

● Electrostatic or Coulombic interactions. Electrostatic interactions involve the attraction
between differently charged molecules, and the repulsion between the similarly charged ones.
Nucleic acids are negatively charged, and the vast majority of the interactions that lead to
protein-RNA binding are of an electrostatic nature. Several subtypes of electrostatic
interactions are recognised:

○ Ionic interactions or ionic bonds occur between positively charged protein side chains
and negatively charged phosphate groups of RNA. Ionic interactions are very strong
as they involve fully charged molecules. They may occur at a wide range of distances,
and close proximity of molecules does not necessarily lead to stronger binding and
vice versa. Interactions with metal ions, such as magnesium or zinc ions, often aid the
folding and stabilisation of RNA [34] or/and protein [35], as well as their complex
[36];

○ Hydrogen bonds (conventional) (Fig 1.9 c) occur between two electronegative atoms,
that share a proton, most commonly between nitrogen and oxygen via hydrogen that
is covalently bound to one of these atoms (X-H…Y (X = O or N; Y = O or N). The
hydrogen bond is formed through electrostatic attraction between the partially
positive hydrogen atom and the partially negative atom with the lone pair of
electrons. This bond can be bridged by the external water molecule (Fig 1.9 d).
Hydrogen bonds are often presented as a stand-alone type of interaction, as they are
stable interactions in protein-RNA bonding. All four bases and phosphodiester bonds
can form hydrogen bonds with both the side chain and the backbone of the protein,
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but interactions involving the RNA side chain are the most common. Typically,
hydrogen bonds occur at 2.4-3.0Å and contribute 0.5-4.5 kcal/mol [26] Similarly to
stacking interactions, the geometry of the interaction matters as research revealed that
the precise energy contribution depends on the exact relative orientation of the
interactors;

○ C-H…O hydrogen bonds occur between carbon and oxygen via hydrogen that is
covalently bound to a carbon. The importance of this interaction type was uncovered
for nearly half a century [37]. The strength of the unconventional hydrogen bond
depends on the acidity of the hydrogen and is at its strongest when the CH group is
adjacent to N;

○ Van der Waals (VdW) interactions can occur between any two or more molecules and
are dependent on slight fluctuations of the electron densities. They consist of
dipole-dipole forces, which occur between polar molecules, and (London) dispersion
forces. VdW are weaker, approximately 0.5-1 kcal/mol, and occur at a distance
exceeding 3Å. In protein-RNA complexes, VdW interactions are abundant,
surpassing other types of interactions in overall contribution despite the weakness of a
single VdW interaction [26].

1.3.2 Conformational Changes Induced by the Binding

Various rearrangements in RNA and/or protein structures may occur, before or during the
binding, changing the structures from an unbound state to a bound one (Fig 1.10). These
rearrangements are classified as conformational selection or induced fit respectively.

● Conformational selection, also known as conformational capture or tertiary structure capture,
refers to the ability of the proteins and/or RNA, which have multiple unbound conformations,
to select the most suitable one for binding. Incorrect conformations are not recognised by the
potential binding partner. An example can be seen in MS2-RNA recognition, where RNA
hairpin structure is required for the proper binding [38].

● Induced fit refers to the ability of the molecules, individually or together, to undergo
conformational changes upon binding to ensure the complementarity of their shapes, which
promotes stronger and more stable binding. Induced fit can involve both local changes such as
backbone shifts or base-flipping, and more substantial changes, e.g. change in domain
orientation, both of which can be observed in the ribosomes [39]. In protein-RNA binding,
unstructured loops often adopt a structure upon binding [ref green review and references
within]. An example of mutually induced fit can be seen in tRNA-MiaA recognition, where
the protein forms a deep rift, which accommodates and partially unfolds the RNA anticodon
loop [40].

These two mechanisms are interconnected: when the conformations of two molecules are
sufficiently close to being complementary, they start to bind and one or both molecules undergo
conformational changes to reinforce newly established interactions and bond, which in turn leads to a
more optimal fit and stabilises the complex.
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Figure 1.10 - Differences between the unbound (blue) and bound (yellow) conformations of the a)
Human U2AF65 tandem RRM 1 and RRM2 (pdb codes 2YH0 and 2YH1 respectively); b) Human
TDP-43, RRM1 (pdb codes 4SMZ and 4IUF respectively).

1.3.3 Binding Energy

The strength of molecular binding is often quantified by the binding free energy (ΔG), which
represents the change in energy upon complex formation compared to the unbound states of the
molecules involved. This binding free energy is influenced by several factors, including
intermolecular forces, conformational dynamics, and solvent rearrangement [41]. For a complex to
form, its energy must be lower than the sum of energies of the solvent-separated molecules. Stable
conformations of a complex correspond to energy minima, which can be either global or local,
although individual bound structures may not always correspond to the absolute energy minimum
[42].

1.3.4 RNA-Binding Proteins

Not all proteins have the ability to interact with and bind RNA molecules. Proteins that possess
this capability are referred to as RNA-binding proteins (RBPs) and often contain specific
RNA-binding domains (RBDs) or motifs. RBDs exhibit unique structural features that facilitate
binding with RNA molecules. While individual domains typically interact with RNA molecules with
relatively low affinity, as only a few amino acids are directly involved in the interaction, often single
RBP contains multiple copies of the same RBD, which enhances the strength of the binding and
stability of the RNA-protein complex [26].

1.3.4.1 RNA-Binding Domains

Some commonly observed RBDs include RNA recognition motif (RRM), zinc-binding domain
(ZBD), Pumilio homology domain (PUF), and K-homology domain (KH).
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Figure 1.11 - 3D models of protein-RNA complexes in the cartoon representation. a) Sex-lethal
protein demonstrates RRM tandem (pdb code 1B7F); b) NusA protein demonstrates 3 copies of KH
domains, type II (pdb code 2ASB); c) Human Pumilio1 protein demonstrates 9 copies of PUF domain
(pdb code 2YJY, chain A); d) Protein Tis11d demonstrates tandem zinc fingers (zinc ions are shown in
grey).

● RRM (Fig 1.11, a) are the most abundant domain out of all known, occurring in 1-2% of
human proteins and known to bind 2-8 nucleotide-long ssRNAs. This domain consists of
90-100 amino acids, which form 4 antiparallel beta sheets packed against 2 alpha helices. Up
to 6 copies of the domain can be found in one protein. The binding mode with ssRNA is
diverse: the primary binding interface is located on the beta sheets 1 and 3, where 3 conserved
aromatics are stacked with nucleotides; however, some RRMs lack these conserved aromatics
(sometimes they are called quasi-RRMs). Loops 1, 3 and 5 are known to be highly important
for binding. Linkers, if present, contribute to the binding and stability as well;

● KH domain (Fig 1.11, b) consists of ~70 amino acids with either
beta-alpha-alpha-beta-beta-alpha (type I) or alpha-beta-beta-alpha-alpha-beta (type II) and
conserved GXXG loop between alpha helices. This domain forms a hydrophobic binding
pocket for both ssRNA and ssDNA and typically binds 4 nucleotide-long sequences. Notably,
stacking interactions are rare within this domain [43];

● PUF domain (Fig 1.11, c) is 3 parallel alpha helices containing ~35 highly conserved amino
acids. PUF domains, typically around 8, are packed in half-doughnut-shaped proteins which
can bind 8-11 nucleotide-long ssRNA. RNA bases bind along proteins' inner surface via
stacking and hydrogen bonds, and phosphates are solvent-exposed [44]. Wild-type domains
do not recognize C, but due to the comprehensive understanding of the PUF-RNA binding,
the artificially engineered domains can bind specific sequences of RNA, including C [45];

● ZBD (Fig 1.11, d) is a type of domain that binds zinc ions via cysteine and histidine residues.
Different subtypes of ZBD are known, most of which bind DNA, but some can bind RNA.
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Several subtypes of Zinc Fingers can bind the backbone of dsRNA or bulging nucleotides
[46], while the other form bonds with G in ssRNAs [44];

● Other domains. It's important to note that there are additional RBDs beyond the described
domains, including ordered domains like double-stranded RNA binding domain and helicase
[26], as well as disordered domains like RG[G] repeats and low-complexity sequences [47].

1.3.4.2 RBPs’ Functionality

RBPs are involved in a myriad of vital cellular processes and their interactions with RNAs
influence RNA processing, such as splicing, alternative splicing, editing, decay and more [48, 49].
Disruption of RBP-RNA binding or aberrant protein-RNA interactions can lead to genetic diseases
[48], including cancer [50, 51, 52], neurodegenerative diseases [53] and other disorders [54, 55]. For
instance, mutations in the proline residue at position 95 of the RRM-containing protein SRSF2
resulting in an altered mRNA binding site, have been observed in cancer patients [56]. Another
example is the TDP-43 protein, which contains 2 RRM domains and is involved in splicing [57].
Mutations in the alanine residue at position 315 of TDP-43 are associated with neurodegenerative
diseases [58]. Moreover, viruses rely on cellular RBPs to replicate and spread [59].

When a certain protein is known to play a significant role in the development, progression or
treatment of a disease, such protein is referred to as a therapeutic target. Targeting such protein and
changing its behaviour or expression can be a promising strategy in the treatment or even prevention
of disease. The specificities of RBPs often make them the key therapeutic targets in many diseases
[60]. For instance, an elevated expression of the Musashi proteins has been observed in cancer
patients [61]: overexpression of Musashi-2 potentially causes an aggressive form of leukaemia [62].
This is why the introduction of the ligand, such that binds exclusively to Musashi, blocks its binding
site thus inhibiting its functions, could be a potential therapeutic strategy to treat cancer patients with
elevated Musashi expression. This is a highly challenging task, however, there are known cases of the
successful development of such a therapeutic. For example, Rbox proteins have been successfully
engineered to bind specific RNAs, leading to increased expression of tumour suppressors [63].

To sum up, a comprehensive understanding of the binding mechanisms between proteins and
RNAs is highly important. This understanding not only contributes to unravelling the functionality of
protein-RNA interactions but also enables the design of artificial protein-RNA complexes with
desired functionality.

1.3.5 Specificity of ssRNA Binding

The focal point of this work, single-stranded RNA binding, is characterised by the inherent high
flexibility of the single-stranded chain. Unbound ssRNAs are commonly considered to be
unstructured, as the information on their free form is scarce. Another possibility is that unbound RNA
adopts a secondary/tertiary structure, and becomes single-stranded as a result of the binding (e.g.
through interaction with helicase [64, 65]). The significant aspect of ssRNA binding is the
accessibility of unpaired bases, which often leads to the formation of stacking interactions. Unlike
double-stranded nucleic acids, ssRNA exhibits greater conformational flexibility and possesses
different binding modes [66]. Unlike small ligands, ssRNA chains are typically longer. Additionally,
research suggests that RNA is initially attracted to the protein via electrostatics, and then locked in a
bound form via stacking and hydrogen bonds [67].

Proteins can bind RNAs both in specific and nonspecific ways. Nonspecific recognition involves
more general interaction between the RNA and the protein, when a protein can bind multiple RNAs,
for example in the RNA degradation process [68]. On the other hand, specific recognition implies that
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a certain RNA sequence (or structure in the case of structured RNA) is required for the binding. For
instance, zinc finger CCCH binds sequence-specifically to the 5’-UAUU sequence [68] and the
RbFox binds RNAs with a GCAUG motif [70].

1.3.5.1 RRM-ssRNA Binding

Since RRMs account for nearly half of all RBPs [71], it is important to highlight the aspects of
RRM-ssRNA interactions in detail. RRMs have been extensively studied and are remarkably versatile
in their ability to recognize RNA. RRMs bind ssRNA with variable sequence specificity - from
preference towards sequences rich in particular bases to fully specific sequences, and different affinity
- from milli- to micromolar. Their recognition capability can be modulated allosterically [72].
Several RRM-ssRNA binding modes are known, including 1) canonical binding to the β-sheet
surface, 2) canonical binding with involvement of N- and C-termini; 3) binding to conserved loops,
and 4) binding to an α-helix. All 4 modes exhibit significant differences in the thermodynamics of the
binding process, meaning that there are differences in the dynamics upon binding [73].

Figure 1.12 - Details of the RRM domain and its binding with RNA on the example of Sxl (pdb code
1B7F, RRM2). a) A typical structure of the RRM domain with conserved residues in RNP1 (right) and
RNP2 (left); b) An example of binding between RRM and ssRNA showcasing stacking interactions
between conserved amino acids in RNPs (purple) and nucleotide bases (blue), Typ_214 with G_4 and
Phe_256 with U_5.

As mentioned before, the most characteristic feature of RRM-ssRNA binding is stacking
interactions occurring with conserved aromatics in the beta sheets. These aromatics are located on
conserved RNP1 and RNP2, with the sequences (R/K)-G-(F/Y)-(G/A)-(F/Y)-V-X-(F/Y) and
(L/I)-(F/Y)-(V/I)-X-(N/G)-L, respectively [74], where amino acids in bold are responsible for the
stacking interactions (Fig 1.12 a, b). The amino acid in the 2nd position in RNP2 is typically stacking
with nucleotides around 5’ (exact positions of the nucleotides can vary), and one in the 5th position,
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RNP1, is stacking with the nucleotide around 3’. The amino acid in the 3rd position, RNP1, is inserted
between two sugar rings of the adjacent nucleotides.

1.4 Experimental Structural Biology

The study of the protein-RNA complexes and their constituents begins with in vitro data (e.g.
binding preferences, kinetic constants, etc.) followed by insights into their structural and functional
features. Structural information can be obtained through complex experimental methods and
techniques, each offering unique data with certain specificities and limitations. The determination of
the detailed 3D structure of a complex, including precise information about the spatial arrangement
and molecular interactions, is referred to as ‘solving’ the structure of a complex. This section presents
a concise overview of the classical techniques associated with molecular complex solving.

1.4.1 X-Ray Crystallography

This technique produces a crystal structure of an object by analysing the series of diffraction
patterns of the X-ray beam directed onto the crystalised object. The diffraction pattern consists of a
series of spots, which correspond to the interference of X-rays scattered by the crystal. The intensity
and position of these spots provide information about the arrangement of atoms within the crystal.
Computational analysis of the diffraction patterns results in the creation of a 3D electron density map
of the crystal, which represents the distribution of electrons within the crystal, and can be further
interpreted to determine the positions of the atoms in the object. Some parts of the object before
crystallisation may exhibit flexibility and thus have different positions in different crystals. To
quantify the uncertainty of the atoms’ positions, the B-factor for each atom is calculated. Higher
values of the B-factor are indicative of the vibration of the atoms around their positions in the final 3D
structure.

X-ray crystallography is capable of producing high-resolution images (<3Å, often ~1Å) of
proteins and complexes with atomic-level detalization. It is suitable for both large and small objects.
The scourge of this technique is the requirement for crystallisation. This is a tedious and complex
process, which requires the optimisation of multiple parameters [75]. Prior to crystallisation,
molecules have to be expressed and purified, which may be challenging on its own. Moreover,
flexible molecules are not suitable for crystallisation. While it is possible to obtain their crystals, they
do not provide an accurate representation of such molecules, for instance, highly flexible regions
could be not visible on the electron density map if their positions in crystals are highly diverse. Thus,
X-ray crystallography is not a suitable technique to study the dynamics of the molecules/complexes. It
is especially difficult to apply X-ray crystallography to RNA molecules due to such issues as
misfolding, rapid decay of the crystals, etc [271].

Crystallisation may lead to false positives - crystal structures that are non-natives, yet have been
captured via X-ray crystallography. Such structures are known as crystal artifacts and typically occur
due to the distortions of the native conformation caused by crystal packing or twinning, the presence
of unknown lignans, radiation damage to the crystals, and human errors such as mislabeling of
samples. Many cases of crystal artifacts are known, for example, a case of purification and
crystallisation of YodA instead of GNAT [76]. Another issue is the possibility of obtaining a
conformational snapshot of a complex when the most stable conformation out of several possible ones
is obtained. In other words, the complex may have multiple stable conformations, but due to
experimental conditions or other factors, only one of these conformations is captured in the crystal.
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Crystal contacts often can present as an artefact as well - when 2 units of the crystal are in contact in
the crystal packing, but such interface does not occur in the cell.

1.4.2 Nuclear Magnetic Resonance Spectroscopy

This technique, NMR, produces multiple types of data for a labelled object in the solution.
Analysis of these data provides information on the structure, dynamics, and interactions of objects in
solution, capturing their close-to-natural behaviour. Individual atoms, molecules, or whole complexes
are labelled and placed in a strong magnetic field, then probed with radio waves. Under these
conditions, certain atomic nuclei, such as hydrogen and atoms used for labelling (isotopes), absorb
and emit energy at specific frequencies, which are captured during the experiment. These signals are
changing depending on the chemical environment, which allows tracking of the information about the
3D structure of the molecules. Recorded signals can be transformed into distance maps, which, in
turn, can be utilised to determine the spatial structures of the molecules using a combination of
distance geometry approach and molecular dynamics simulations [77]. The resolution of the 3D
structure is directly proportional to the duration of the captured signal. NMR is capable of capturing
information about large-scale conformation dynamics.

However, the complexity of the interpretation limits the utilisation of NMR to relatively small
molecules/complexes, with a maximum mass of ~100 kDa [78]. It is often challenging to determine
the 3D structure due to the overlapping of the signals, or their insufficient intensity. This method
requires a high concentration of the objects in the solution, which can be challenging for complexes
with low solubility or low stability.

1.4.3 Cryo-Electron Microscopy

This technique, Cryo-EM, produces multiple 2D projections of a frozen object, which are then
processed computationally into a 3D density map of the object. An object in the solution is placed on
a supportive grid and rapidly plunged into cryogen (e.g. liquid nitrogen), which results in the rapid
freezing of the object in its native state. The grid is then transferred to the electron microscope, where
2D images of the object are obtained at different orientations and angles. Processing of 2D images is
the most challenging part of the process, which requires selections of the individual images, their
alignment, 3D reconstruction, refinement, and final validation and interpretation.

Nowadays cryo-EM is suitable for large complexes (~200kDa) and is capable of capturing their
structures with exceptionally high resolution, up to 1.22Å [79] (some years ago only near-atomic
resolution, ~3Å, was achievable). It is possible to obtain multiple conformations for a single
molecule/complex. This technique is currently in the state of active development - new
image-processing algorithms and other innovations push the boundaries of the determination of
high-resolution molecular structures [80].

The main disadvantages of cryo-EM include a limited resolution for small complexes (<100
kDa), as they have fewer structural features and may provide a low signal-to-noise ratio in the 2D
images. The heterogeneity and flexibility of the complexes may lead to the blurring of the electron
density.

1.4.4. Low-Resolution Techniques

There are countless other experimental techniques capable of providing insights into the
shape, dynamics and behaviour (e.g. assembly and disassembly, ligand recognition, etc.) of the
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molecular complexes and information on specific contacts, but typically are insufficient for solving a
complex. A few examples are given below.

In small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), a beam
of X-ray/neutrons is directed at a complex in the solution and the intensity and distribution of the
scattered particles at different angles are recorded to derive information like compactness or the
overall size of the complex (radius of gyration).

In Fluorescence resonance energy transfer (FRET), two molecules are labelled with
fluorophores donor and acceptor. The energy transfer between fluorophores is observed when they are
located in close proximity, and the change in this energy can be converted into the distance. This
provides information about the binding kinetics, conformational changes, and dynamics of the
complex.

In cross-linking, molecules are artificially linked via covalent bonds, which immobilises the
complex in its spatial arrangement at the time of cross-linking, preserving the proximity and
interaction information between the fragments of molecules that are in the proximity of the linking
agents. Upon analysis, the binding site can be found along with approximate spatial constraints.

In order to apply these techniques effectively, it is important to have prior information about
the molecules involved in the protein-RNA complex. The information about the binding partners can
be obtained via such techniques as RNA electrophoretic mobility shift assay (EMSA) or cross-linking
immunoprecipitation (CLIP). Finally, the measuring of the binding kinetics (e.g. with Surface
Plasmon Resonance (SPR), Isothermal Titration Calorimetry (ITC) [81]) in combination with
mutagenesis approaches helps to determine key residues involved in the binding.

The main advantages of low-resolution techniques over high-resolution ones are relative
simplicity, a shorter length of the whole process, and a lower cost of a single experiment.

1.5 Conclusion

In this chapter, we have presented the biological foundation underlying our research, namely
protein-RNA complexes and their constituents. We have illustrated the complexity of individual
molecules, their 3D structures, and the diversity of intermolecular interactions within protein-RNA
complexes. We have highlighted the origins and significance of molecular flexibility, which plays a
crucial role in the binding by allowing a single molecule to adopt multiple conformations, and by
allowing the existence of such phenomena as selection and induced fit. We have delved into a diverse
universe of RNA-binding proteins, providing examples of their functions, emphasising the detrimental
consequences of disruptions in their activity, and the ways to address these disruptions. An overview
of common RNA-binding domains and their general binding preferences has been presented. Special
attention has been given to RRM, the most common RNA-binding domain, along with the
specificities associated with ssRNA binding. Finally, we have reviewed classical experimental
techniques suitable for acquiring high-resolution 3D structures of protein-RNA complexes. In the next
chapter, we will delve into the computational aspect of the research surrounding the structure of
protein-RNA complexes. We will review computational methods employed for structure prediction
and discuss associated challenges, including the simulation of molecular flexibility and
conformational changes occurring upon binding in protein-RNA complexes.
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2.1 Aims

In this chapter, we provide a brief introduction to the field of bioinformatics, particularly its
relevance to the 3D modelling of protein-RNA complexes. We offer a short description of the
approaches developed for modelling single chains, focusing on the similarities and differences
inherent in modelling protein chains compared to RNA chains. Following this, a concise overview of
the current state of the expansive field of molecular complex modelling is provided, delving deeper
into the domain of molecular docking. In this context, we focus on the aspects most suitable for
protein-ssRNA docking. Finally, we discuss ssRNA’TTRACT, a state-of-the-art method in
fragment-based protein-ssRNA docking, which serves as a cornerstone of the research conducted in
the frame of this PhD project. This sets the stage for the contributions of this PhD project.
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2.2 Structural Bioinformatics

Computer-aided computations have long been an integral and pivotal part of biological research,
revolutionising the pace of scientific progress. This transformation became possible through the
cumulative efforts of generations of researchers who designed and developed mathematical models,
suitable for the investigation of various biological processes. Structural bioinformatics is a specialised
field within the broader discipline of bioinformatics that focuses on the 3D structures of biological
macromolecules, primarily proteins and nucleic acids. This field combines principles of structural
biology, computer science and data analysis to decipher, model and analyse the structures of
biomolecules and their complexes.

One of the main branches of structural bioinformatics is molecular modelling [84]. It involves the
use of computational techniques to simulate and predict or refine the 3D shapes of molecules and their
complexes. The focus of this project is on the modelling of 3D structures. Such modelling is
important, because it helps to bridge the gap between the known sequences of molecules and their
unknown structures. For example, a minuscule fraction, less than 0.03% of all the known protein
sequences have experimentally resolved high-resolution structures [85]. Computational 3D models for
such proteins can provide critical insights into their spatial arrangements, which in turn is often
imperative for understanding functions and interactions of these molecules. Subsequently,
understanding of molecular functions and interactions allows for understanding of the disease
mechanisms, followed by the drug design, as discussed in §1.3.4.2.

Structural bioinformatics offers distinct advantages over experimental structural biology,
including speed, efficiency, theoretical justifiability and the ability to investigate multifaceted
biological interactions that may be highly challenging, time-consuming and expensive to study
experimentally. Still, structural bioinformatics integrates with experimental biology, using
experimentally obtained data to guide the modeling and create predictive models, which in turn
require experimental validation. However, the effectiveness and robustness of the predictions and
models heavily rely on data quality and availability, algorithm sophistication, and current biological
knowledge. Additionally, research in bioinformatic often requires large amounts of computational
resources (GPU or CPU, RAM, storage), which may be unavailable within academia. The synergy
between structural bioinformatics and experimental biology enhances our understanding of biological
systems and informs decision-making in various fields like biotechnology and (personalised)
medicine.

2.2.1 Databases

Computational structural studies heavily rely on access to experimental structural data of
biological molecules. The worldwide repository for such data is the Protein Data Bank (PDB) [86,
87], which holds an extensive collection of protein, DNA and RNA structures (Fig 2.1). This
repository includes various states of some molecules, such as their unbound forms and complexes
with different ligands. As of September 3, 2023, the PDB contains over 1 terabyte of structural data,
among which 12,076 protein-nucleic acid complexes. Ribosomes are known to account for
approximately 20% of all these assemblies, leaving around 9,660 non-ribosomal protein-nucleic acid
complexes in contact with a protein. However, this number is significantly lower than the number of
protein-only structures, which is equal to 181,324 entries.
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Figure 2.1 - Distribution of the data by polymer entity type in PDB as of September 2023. A single
PDB structure may contain multiple entities of different macromolecular types [88].

Databases containing interface annotations of the molecular complexes play a pivotal role is the
research. These databases hold information on individual contacts between protein and RNA residues
that are essential for the binding. Such data is often required for statistical analyses and machine
learning (ML) or deep learning (DL) applications.

Several of such databases are available online, but not all of them have been updated recently. To
name a few, the ‘Protein–RNA Interface Database’ (PRIDB [91]), last updated in 2011, contains
protein–RNA interfaces extracted from complexes in the PDB. The ‘RNA-Binding Protein DataBase’
(RBPDB [92]), last updated in 2012, contains experimental observations of RNA-binding sites. Other
databases have also been developed [93].

Recently the Protein Data Bank in Europe (PDBe) announced a release of a new version of the
‘Proteins, Interfaces, Structures and Assemblies’ (PISA), a tool for analysis of intermolecular
interactions within existing assemblies [94, 95]. This tool provides, among others, the interface details
for a given assembly in the PDB, including the atom-atom interaction details for each contact.

A specialised database titled ‘Interactions of RNA and RNA Recognition Motif Database’
(InteR3Mdb) was created in the frame of the RNAct project [96]. As the name suggests, it contains
data specifically on the RRM-RNA interactions, including the atom-atom distance, type of the
interaction, etc (Fig. 2.2). Along with the database, a tool ‘RRMScorer’ for the prediction of
RRM-ssRNA binding based on sequence [97]. Furthermore, relevant information may be published in
scientific articles detailing experimental studies (mutagenesis, cross-linking, etc.), on specific
complexes. Often, such information requires manual extraction and processing before it can be added
to the database. This process complicates the maintenance of up-to-date databases. While some
computational tools are available [89], they appear to not have gained widespread adoption. There is
hope that recent advancements in Large Language Models (LLMs), applicable to computational
biology [90], will be integrated into data management workflows in the near future to facilitate the
collection and management of experimental data from scientific articles.
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Figure 2.2 - An example of contact database InteR3M showing interface annotation between protein
and ligand of the complex 1B7F [96].

2.3 Single-Chain Structural Modelling

Single-chain structural modelling based on sequence, also known as the ‘structure prediction
problem’, has been researched for over 50 years [98, 99]. A multitude of tools has been developed to
tackle this challenge. In this section, we will primarily focus on the similarities and distinctions
between protein and RNA modelling. Subsequently, we will provide a brief overview of the common
techniques and describe several popular tools for modelling protein and RNA chains respectively.

2.3.1 Similarities and Differences in Protein and RNAModelling

The progress achieved in protein modelling compared to RNA modelling is drastic. The protein
structure prediction problem is generally considered to be solved, minus the spesificities associated
with the highly flexible/disordered regions. In contrast, the RNA folding problem, while experiencing
recent advancements, remains largely unsolved. Such striking differences sprout from the inherent
dissimilarities between the molecules characteristics, principles of their folding, evolution etc.

Nevertheless, despite the differences discussed thereafter, proteins and RNAs share several
fundamental characteristics. Both are polymers, consisting of long chains created out of a limited set
of basic building blocks. Both are subjected to so-called evolutionary conservation, wherein
evolutionary related molecules maintain similar 3D folds despite potential divergence of their
sequences. Furthermore, both types of molecules have 4 levels of structure, with traceable links
between structures and functions. Folding, often spontaneous, of proteins and RNAs is governed by a
number of somewhat common general principles [100].

Among the various differences, what stands out most is the striking distinction in the amount of
experimental structural data available. This is particularly frequently mentioned in recent reviews in
connection with the development of DL-based methods in the field of structure prediction [101]. At
present (September 03, 2023), the total number of protein-only entries in the PDB is 100 times greater
than the number of RNA-only entries. This is quite consistent with the structures deposited since the
beginning of the year, as the number of protein structures has already reached 7,766, whereas the
count for RNA structures is only 77.
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The principles of folding, while somewhat common, i.e. the folded structure corresponds to the
energy minimum, differ in details. First of all, the principles governing the formation of the secondary
structure are different: while protein’s secondary structure is stabilised by the hydrogen bonds
between particles of the backbone, RNA’s secondary structure is primarily defined via canonical base
pairing, i.e. hydrogen bonds between side chain residues. The tertiary structure of the RNA is often
stabilised by stacking interactions, which is not the case for the proteins [102].

The energy landscapes also differ. The energy landscape of proteins is based on the folding
funnel hypothesis, which assumes that proteins fold into secondary and tertiary structures with the
lowest possible free energy, typically displaying cooperative two-state thermodynamic transitions,
lacking standing-out intermediates [103]. However, RNA folding may involve very rugged
landscapes, frequently containing low-energy intermediate states [104].

Finally, RNA shows less dependence between sequence and structure, thus it is more challenging
to model the structure of a given sequence relying on the structure of the similar sequences. The level
of flexibility in RNA is typically higher than that in proteins.

Despite the differences, the general approaches to modelling protein and RNA structure are fairly
similar, partially because both branches were historically developed in a close proximity, so the ideas,
which were successful in one field, were applied to the other field.

2.3.2 Modelling Approaches

There are 3 groups of methods applicable to the structure prediction problem: template-based,
template free and hybrid [105]. While protein modelling typically entails modelling of tertiary
structures, for RNA this field lags behind and modelling of tertiary structures remains challenging. So
often RNA modelling entails secondary structure prediction, and not tertiary [101].

Template-based methods are known to be the most accurate, as they leverage sequence-structure
relationships, i.e. the idea that proteins/RNAs sharing similar sequences are likely to exhibit
analogous structures. They work by aligning the sequence of the target to one or multiple templates
with solved structures [106]. These methods are relatively efficient, thus suitable for modelling of
large molecules. However, obviously such methods are limited by the number of known structures and
are not capable of discovering novel folds. The other limitation is the selection of a correct template,
which can be computationally expensive (but not as expensive as template-free modelling) and not
accurate enough.

For the proteins, template-based methods encompass homology/comparative modelling and
threading. Homology modelling typically involves 4 stages: (i) identification of the template; (ii)
alignment of the target and template sequences; (iii) construction and refinement of the model, and
(iv) assessment of the model's quality. The threading/fold recognition techniques are used when no
closely related homolog with a known structure is available [107].

For RNAs, template-based modelling is represented by the comparative
modelling/covariation-based methods and fragment assembly modelling. The first ones generally
follow the same steps as protein comparative modelling. In fragment assembly, known RNA
structures are divided into fragments, which form a fragment library. To predict an RNA structure, it
searches for matching fragments in the library that closely align with the target sequence and
assembles them into the final predicted RNA structure [108].

Template-free approaches predict 3D structure from first principles, based on the assumption
that the folded states are likely to correspond to the energy minimum for the given sequences. These
methods are typically based on various force fields, and they are very demanding computationally, as
a large search space has to be covered to find the global minimum. The utilisation of restraints to
prevent the exploration of unrealistic conformations is very useful. These methods are useful when no
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suitable template can be found, as they are capable of discovering novel folds. However, the accuracy
of the predictions is low compared to the template-based modelling approaches. This type of
modelling may not be applicable to large molecules.

Hybrid approaches, which do not use templates directly, but still utilise some form of structural
knowledge, such as structural patterns or statistical parameters, are a rapidly growing category of
methods. Currently, ML and DL methods are known to perform very well for the protein structure
prediction. For RNA, the performance lags behind, mainly due to the scarcity of available structural
data.

This section would be incomplete without acknowledging AlphaFold2 [109] and its successors
[110]. The outstanding performance of this method single-handedly revolutionised the field of both
template-based and template-free protein modelling, garnering attention and headlines far beyond the
boundaries of the scientific community. AlphaFold2 initiates its process with a multiple sequence
alignment (MSA) as input, leveraging the co-evolution data within this MSA. From co-evolution data,
the algorithm approximates an inter-residue distance map, which serves as the foundation for structure
prediction. An enhancement in AlphaFold2 is the integration of an attention mechanism into its
convolutional neural network, significantly improving its outcomes. At the core of AlphaFold2's
methodology lies Evoformer, a pivotal component featuring two transformer blocks that
collaboratively extract structural insights from the MSA. This extracted information is subsequently
relayed to a structural module responsible for constructing a 3D representation of the protein's
structure. Furthermore, AlphaFold2 incorporates a Recycling stage, wherein it iteratively refines its
predictions using the generated 3D structural information. Shortly after, the AlphaFold DB emerged,
covering protein-sequence space with more than 200 millions accurate models [111, 112]

Another great application is ESMfold [113], which employs a masked transformer-based protein
language model. It outperforms AlphaFold2 if the prediction is done without MSA utilisation.
Simultaneously, this elimination of MSA construction accelerates prediction significantly. Leveraging
this methodology, the authors introduced the ESM Metagenomic Atlas, an open atlas of 617 million
predicted metagenomic protein structures. Among these, 225 million structures received
high-confidence predictions, encompassing novel ones [114].

However, a multitude of exciting challenges remains within the protein modelling domain,
including modelling of disordered regions, loops over 20 amino acids and multiple conformers [110].

2.4 Modelling of Complexes

The modelling of a complex involves predicting the 3D structure of each component and their
relative spatial orientation. This work is focused on the interaction between a single pair of molecules,
rather than on multicomponent complexes. The smaller molecule in the complex is named ligand, and
the larger one is the receptor. The main, but not the sole, challenge - molecular flexibility - is
amplified when dealing with complexes, as both ligand’s flexibility and receptor’s flexibility should
be considered. Different types of complexes possess different characteristics and present different
challenges upon modelling. The most studied complex types are protein-small ligand (aka
protein-ligand) and protein-protein [115].

Modelling protein-ligand complexes typically presents fewer challenges compared to the other
complexes types. Here the small molecule often undergoes conformational changes, while the protein
conformation remains relatively unchanged (often, but not always [274]). Additionally, information
about the binding pocket is typically available. Thus, a high-resolution unbound receptor structure is
sufficient for a successful modelling. As for the ligand, it is generally feasible to model all its possible
conformations, thanks to its small size and small number of rotatable bonds. The number of resulting
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conformations allows to dock each of those. Furthermore, the scoring (evaluation) functions are
highly accurate - to the point that they can even solve the interaction problem i.e. predict the binding
strength of a small molecule. Therefore protein-small ligand docking can be applied to the (drug)
design problem of finding the best binder for a given protein. There are quite some cases of proteins
interacting with small oligonucleotides, which bear similarities to the protein-small ligand modelling
problem. SsRNA can be cut into short fragments to be treated as small ligands (more detail on
fragment-based docking in §2.4.1 and §2.4.4.1).

Modelling protein-protein complexes is a more challenging task, especially in the case where
the unbound-to-bound conformational changes are significant. The enumeration of all possible
conformations is unfeasible, thus, the models are generated based on an unbound structure or, in some
cases, using the sequences only. Nowadays, the main challenge of the protein-protein modelling lies
in modelling of the highly flexible and disordered regions [116], and in exploring the dynamic of the
complexes.

Modelling protein-RNA complexes is impeded by a blend of challenges typical of both
protein-protein and protein-ligand modelling. RNAs are generally smaller and more flexible than
proteins, but much larger compared to small molecules, which results in a very high number of
possible conformations, typically too high to handle computationally. As mentioned before, there is
less conservation between the sequence and 3D structure of the RNA chain compared to the protein
chain, which makes template-based modelling less precise compared to protein-protein modelling.
The key difference between protein-protein and protein-RNA interfaces are as follows [117]:

● The atom packing of protein-RNA interfaces is less dense compared to the protein-protein
interfaces;

● The protein-RNA interfaces have smaller buried surface area;
● The protein-RNA interfaces typically have more positively charged amino acids which leads

to a stronger electrostatic interaction compared to the protein-protein interfaces. The most
preferred residues in the protein-RNA interfaces are Arg and Lys, and the least preferred ones
are Asp and Glu;

● Stacking interactions, both pi and pi-pi, are a very important part of the protein-RNA
interfaces.

Additionally, the number of available protein-RNA structures is much smaller compared to
protein-protein and protein-ligand, which makes DL techniques less reliable compared to the
protein-protein modelling.

Currently, numerous modelling approaches for each type of complex are available. Similarly to
single-chain modelling, methods are classified as template-based, template-free and hybrid. If a
suitable template is available, most types of complexes can be modelled via template-based modelling
[118, 119]. In the absence of a template, template-free techniques are employed. Nowadays, the
distinction between template-based and template-free modelling is gradually blurring as modern
modelling tools increasingly embrace hybrid approaches, incorporating both template-based and
template-free modelling methods [120, 121, 122, 123]. For example, the state-of-the-art in
protein-protein modelling, AlphaFold-Multimer, which is an end-to-end deep learning-based tool, is
known to produce more accurate results when combined with the MULTICOM3 package. This
package, among other features, contains a template identification feature [124, 125], which makes this
tool suitable for both template-based and template-free modelling.

In the following section, we introduce the most suitable approach for protein-RNA modeling,
which is equally applicable to other types of complexes, known as docking.
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2.4.1 Types of Docking

The terms ‘docking’ and ‘modelling of a 3D structure of a complex’ are often used
interchangeably. For greater clarity within the context of this work, the term ‘docking’ specifically
refers to ‘template-free modelling of a 3D structure of a macromolecular complex’. Macromolecular
docking focuses on predicting the 3D structure of a complex from the input of 3D structures of its
individual components. It aims to provide the most probable structures of the complex, assuming their
binding, rather than solving the interaction problem. Several common ways to classify docking
procedures based on the input and the procedure itself are detailed below.

Bound vs Unbound

Depending on the type of 3D structure used as input, the docking problem can be divided into
two categories: bound docking and unbound docking. Bound docking consists in re-docking the 3D
structures of the component extracted from a solved structure of their complex, and its just a test
exercise with no practical utility in real cases. Unbound docking uses structures of the components
either in an unbound state or bound to another molecule than in the complex to solve (the latter being
also referred to as pseudo-native structures).

Ab initio vs Data-Driven

When no a priori information about the binding site is available, the docking problem is referred
to as ab initio (or blind, free) docking. This contrasts with the data-driven or integrative docking
methods that use explicit information about the receptor/ligand binding site to guide the docking
process. This reduces the search space substantially, which in turn can accelerate and/or intensify the
sampling procedure.

Information regarding the binding site can be classified into two categories: interface data and
contact data. Interface data is the knowledge of receptor's/ligand’s residues that are directly engaged
in the binding. This type of data can be acquired e.g. through mutagenesis. Contact data is the
knowledge of pairs of residues in contact. The contact data can be acquired, e.g., through
high-resolution cross-linking.

Rigid-Body vs Flexible

Docking algorithms can explore either (i) the mutual orientation of the partners, or (ii) the mutual
orientation of the partners along with the flexibility (conformational changes) of one or both partners.
Based on this characteristic, docking is categorized into rigid-body docking and flexible docking,
respectively (Fig 2.3).

Rigid-body docking, the “lock-and-key” approach, treats both partners as rigid bodies. Typically,
the receptor remains fixed in place, while the ligand explores the 3D space around the receptor by
undergoing 3D rotations and translations. Rigid-body approaches played a pioneering role in the
development of docking methodologies. Due to the lack of explicit consideration of molecular
flexibility, the number of potential models is reduced substantially, which allows for an extremely fast
sampling [126]. The relative simplicity of rigid-body docking facilitates its implementation. However,
the rigidity of the partners significantly limits the accuracy of the docking models when one or both
partners undergo conformational changes during or prior to binding. Consequently, the application of
pure rigid-body docking is limited to the molecules whose conformational changes upon binding are
insignificant.
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Figure 2.3 - Schematic illustration of the diffenrece between rigid-body and flexible docking
approaches [127].

The necessity to account for molecular flexibility led to the development of a broad category of
flexible docking methods, which aim to model induced fit and/or conformational selection
phenomenons (discussed in §1.3.2). The degree of conformational change that occurs upon binding,
i.e. the amount of difference between the bound and unbound structure of each molecule, can vary.
Based on the magnitude of the changes, docking targets are classified as ‘easy’ (minor changes),
‘medium’ (moderate changes) and ‘difficult’ (large changes) [131]. Based on the approach to address
flexibility, docking methods are classified as soft docking, ensemble docking and docking with
explicit flexibility modelling [128].

Soft docking methods introduce a certain level of softness or ‘fuzziness’ into the molecular
surface, usually via various types of the molecular representation [129, 130, 131, 132] (more in the
next section). The soft surface allows otherwise rigid molecules to overlap, accounting implicitly for
small conformational changes or inaccuracies in the side chain orientation. An advantage of these
methods is that they are relatively inexpensive computationally and are typically based on rigid body
sampling. They are suitable for easy targets but not for modelling large structural rearrangements, and
their precision is limited according to the level of fuzziness [133].

The principle of ensemble docking methods is to obtain a set of discrete conformations, aka
conformational ensemble, of one or both partners prior to docking and perform multiple docking runs
with separate conformers [134] to model conformational selection [135]. To obtain the conformations,
ensembles of experimental structures or stand-alone modelling can be used. In theory, it is possible to
model large backbone movements (e.g. with Normal Mode Analysis [135]), which makes ensemble
docking suitable for difficult targets [136, 132]. However, the challenge lies in the sampling and
selection of the most representative structures as well as the increased difficulty of discrimination
between correct vs incorrect models due to the large number of models [137].

The explicit flexible docking methods allow sidechain and/or backbone movement during
docking or include post-docking refinement into the protocol [128, 138]. Since explicit modelling of
the entire complex is often (but not always [139]) prohibitively expensive computationally, it is
necessary to reduce the search space. This can be done by incorporating information about the binding
site (data-driven docking) and/or flexible regions. To make the procedure less expensive, many
docking procedures include a flexible refinement of only side chain position via energy minimisation,
i.e. finding optimal set of torsion angles [140, 141, 142, 143, 144, 145, 146, 147]. Modelling the
backbone, especially in difficult targets, presents a bigger challenge compared to side-chain modelling
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[148, 149]. Some known methods are replica exchange [150, 151, 131], and backbone displacement
followed by MD or Normal Mode Analysis [152, 153, 154, 143]. The primary drawback of explicit
flexibility methods is their exceedingly high computational cost.

Additionally, fragment-based docking approaches are successful in dealing with the flexibility of
ligands such as peptides [155], small molecules [156] and RNAs [157]. The principle is to subdivide
the ligand into small fragments, dock them separately (typically with a rigid-body algorithm) onto the
receptor, assemble them and refine the final model. This allows to bypass exhaustive sampling of all
possible conformations of the ligand. The main limitation of this approach is tied to the concept of
hot-spot-binding and cold-spot-binding [270]. The hot-spots (HS) are defined as amino acids within
the binding interface that contribute more to the binding energy compared to the other residues in the
interface [138]. In the context of the same binding interface, the poses located in the vicinity of the HS
are expected to have lower energy/score values compared to the poses in the vicinity of the cold-spots
(CS). Thus, within a list of protein-fragment docking poses, HS-bound poses would always be ranked
above the CS-bound poses. This is illustrated well by the protein-ssRNA docking with
ssRNA’TTRACT of the ‘XXX’ fragments that belong to poly-X chains. For such a complex, despite
the actual number of distinct fragments, a single round of sampling and scoring is performed, and the
generated pool of poses is used to represent all fragments. Typically, only one or two of these
fragments, presumably related to hot spots, will well-docked, leading to issues during the assembly
stage, as there are few or no "correct" poses for CS-bound fragments.

2.4.2 Molecular Representations

The experimentally solved structure of a complex is usually described as a set of points in the
Cartesian coordinate system of 3D space, where each point corresponds to the position of an atom.
Many docking tools and stand-alone sampling functions are designed to work with such all-atom
representation directly [160, 161, 162]. On one side, such high-resolution representation is very
straightforward and requires little to no preprocessing of the input 3D structure. The all-atom
representation allows for a very detailed search space, which in principle enables the sampling of
highly precise docking models and the selection of the most realistic models during the scoring. It also
allows for the explicit consideration of both backbone and side-chain flexibility. All-atom
representation of the molecules is frequently used in MD simulations, thus multiple generations of
researchers have been developing and improving all-atom force fields, e.g. OPLS-aa [163],
CHARMM36 [164], which can serve as a base for the docking [19]. However, the utilisation of
all-atom representations requires considerable computational resources and thus may be not feasible
for big systems. The all-atom energy landscapes tend to be rugged, with a multitude of local minima,
which leads to the sampling getting trapped in these minima, preventing the discovery of a global
minimum. There is no ‘fuzziness’ in this representation, so even small conformational changes are not
accounted for during rigid-body docking. Consequently, even small inaccuracies in the side-chain
position, which may occur, for example, due to the difference in bound vs unbound structure or
experimental bias, can prevent the discovery of an accurate binding mode [165].

Reduced representation, obtained by removing some atoms, helps to avoid certain imprecisions,
for example, the aforementioned inaccuracies in the side-chain position. This type of representation,
with only 3 backbone atoms per amino acid, was used to develop a 6D potential to model proteins and
their loops [165]. The same reduced protein representation was coupled with all-atom ligand
representation in the development of a scoring function for protein-ligand complexes [166].

Another type of molecular representation is coarse-grained, where a group of atoms is typically
represented as a single bead (also called pseudoatom or particle). For example, in ATTRACT
coarse-grained protein representation the backbone is represented as two beads, located at N and O,
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and the side chain is represented as one or two beads depending on its size, located at the geometric
mean of side chain heavy atoms [167, 168]. Another model, CABS, also represents amino acids as 4
beads, located at the center of mass of Cα, Cβ, side chain, and virtual Cα–Cα bond [169]. MARTINI
force field represents each amino acid by 1-5 beads (1 for the backbone, 0-4 for the side chain) [170].
The HiRe-RNA force field represents each nucleotide by 6-7 beads [171]. Coarse-grained
representation addresses some of the issues presented by all-atom representation [172, 173]. It allows
for a more robust sampling, as small inaccuracies in the side chain are accounted for. The energy
landscape is smoother compared to an all-atom landscape, which facilitates global minimum
discovery. The search space is smaller, so less computational resources are required, which makes
multiple docking runs, for example in ensemble docking, less expensive computationally. However, a
coarse-grained representation (in some cases a full coarse-grained force field) requires thorough
parameterization, e.g. definition of the bead sizes, which is non-trivial and time-consuming.

Many docking methods use a grid-based molecule representation, when a 3D grid overlays the
molecule, and each voxel receives a value, denoting if it's inside, outside, or on the surface of the
molecule, sometimes with additional features like charge [174, 175, 171, 172]. Other types of
representations involve tessellations, creating polyhedra around points (e.g., atom or residue centers)
[176], or graph-based approaches, where nodes represent atoms (sometimes with
physicochemical/empirical characteristics) and edges indicate connections between them [177].

2.4.3 Evaluation of Docking Models

In a docking test case, it is possible to evaluate the produced docking models by comparing their
location with the native position of the ligand. It is done by calculating the ligand root mean squared
deviation (LRMSD):
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where n is a number of ligand-composing beads, (x,y,z) are the coordinates of a given bead,
superscript indicates a native model (real ligand structure), superscript indicates a docking model.𝑎 𝑏

A model can be labelled as ‘near-native’, if its LRMSD value is under a chosen threshold. The
same evaluation approach is applicable for the individual docking poses (models of an isolated
fragment). For the fragment-based docking, a pose (model of the fragment) can be evluated using the
same metric.

Other existing methics, such as ‘Fraction of the Native Contacts’ (FNAT) [277], ‘Global Distance
Test Total Score’ (GDT_TS) [275] or ‘Global Distance Test High Accuracy’ (GDT_HA) [276] are not
used in the frame of this thesis.

2.4.4 Rigid-Body Docking

Traditionally, the core of the docking procedure consists of two subsequent stages: sampling and
scoring. During the sampling stage, 3D models of the complex are generated. They are referred to as
docking models. The goal of sampling is to explore the possible mutual orientation of the interacting
partners under the guidance of the energy function (or simple shape complementarity function), which
results in the generation of putative realistic models. Among these models, one or multiple are
expected to closely resemble the 'true' shape of the complex within a given precision threshold.
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The following stage, scoring, is the ranking (sometimes categorising) of the docking models
under the guidance of a scoring function. The difference between a sampling function and a scoring
function is detailed thereafter. The aim of the scoring is to distinguish models close to the ‘true’
complex arrangement (so-called near-natives) from the rest of the models. This process results in the
selection of the final model or a relatively small set of highly plausible models.

2.4.4.1 Sampling

Sampling consists of a search algorithm exploring the solution space under the guidance of a
sampling/energy function. A sampling/energy function typically aims to generate a wide range of
possible binding poses, while a scoring function aims to rank generated poses based on their accuracy.
Thus, while both functions are technically used to evaluate docking models, an energy function must
compromise between the speed and accuracy of the sampling process [177]. However, it is not
uncommon to use the same function for both sampling and scoring, as far as it complies with the
requirements of the sampling search algorithm. Unfortunately, the terminology in the docking field
has been somewhat jumbled in literature, and it is not uncommon to use ‘scoring function’ and
‘energy function’ terms interchangeably [178].

Energy Function Types

In the field of rigid-body docking, two principal approaches are applied to guide the sampling:
geometric complementarity and (pseudo)energy minimization (sometimes called simply heuristic)
[179, 180].

Geometric complementarity (or molecular shape complementarity-based) docking is founded on
the idea that the shapes of the receptor and ligand should match to create a stable complex [181]. Thus
shape complementarity can serve as a simple energy/filtering function [174] to guide the sampling of
feasible models. It works by aligning geometric patches, including concave, convex, and flat surface
components, on the molecular surfaces [182]. While pure shape-matching, which was widely used at
the dawn of docking [183, 184, 185], does not take into account physical interaction between partners
explicitly. But it is known to correlate with the energies of some interactions, such as van der Waals
interactions [186]. Nowadays, global or local shape matching is used [187], as well as combination of
the shape complementarity with other terms, such as physicochemical complementarity [188].
Geometric methods are typically very efficient compared to energy minimisation methods. They often
sacrifice accuracy to achieve efficiency, but the limits are being pushed [189, 190].

Energy minimization-based docking is built around the assumption that the “true” bound structure
of the complex corresponds to the energy minimum or at least a low-energy state. These docking
algorithms search the energy landscape for the mutual orientation(s) with the most favourable (low)
binding energy. This sampling relies on a force field, a mathematical model defining interatomic
interactions within a molecular complex. A force field consists of equations and parameters to
compute a molecule's potential energy primarily based on atomic coordinates [191]. Often, an
approximation of the energy is used to reduce the computational cost.

Search Approaches

The exploration of the search space during the sampling stage can be roughly categorised into
systematic search and stochastic search [192].

Systematic search involves the enumeration of all possible mutual orientations. While exhaustive
enumeration might seem computationally prohibitive and impractical, some clever approaches more
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efficient than brute-force exist to achieve this goal. One of the most common approaches is a
discretisation of the search space into a grid. This allows the search space to be reduced to a finite
number of mutual orientations, speeding up calculations and enabling sampling density to be
controlled by modifying the grid granularity. But it leads to a loss of resolution, i.e. the grid may not
be fine enough to capture the binding mode with the precision required for the scoring function to
identifiy near-native models [193, 194]. This can become an issue if grid refinement (making grid
more dense) is too costly. The most well-known grid-based method is the fast Fourier transform (FFT)
correlation [195], which enables the simultaneous sampling of the entire 3D translational space in one
step, for a single point in rotational space. FFT relies on the shape complementarity between ligand
and receptor and requires a grid-based representation of their structures. The limitation of FFT is the
requirement for the energy function to be represented as the sum of correlation functions [196].
Regardless, this search algorithm is highly popular and a great number of docking tools are based on
it, for example, PIPER [197], GRAMM [198], ZDOCK [199], HEX (spherical polar Fourier
correlations) [200], HDOCK [201], FMFT (Fourier transforms on 5D rotational manifolds) [202].
Systematic search is not limited to FFT. It can be achieved through geometric hashing [203, 204].

Another example of the systematic docking approach is ATTRACT [205, 168] which uses a
Quasi-Newton energy minimizer, a gradient descent-based minimisation approach which requires the
energy function to be differentiable [168]. ATTRACT reduces the search space by limiting the number
of the starting points.

Stochastic search, typically used in energy minimisation-based algorithms, involves random
movements within the energy landscape. Pure stochastic methods do not provide a guarantee to find a
global minimum, however utilisation of grids, smoothing of the energy landscape and/or the limitation
of the search to a specific region increases the chances to locate the global minimum within a given
precision threshold [188]. Several methods are widely used, for example, Monte Carlo minimisation
in Rosetta [206], Simulated Annealing and Steepest Descent in HADDOCK [142], Iterated Local
Search global optimizer in AutoDock Vina [140]. Other popular choices are Swarm Particle
Optimisation [208, 209], evolutionary algorithms (often genetic algorithms specifically) [210, 211],
and Tabu Search. These algorithms are capable of jumping over certain energy barriers, which
prevents them from being trapped in local energy minima, thus increasing chances of finding the
global energy minimum [212]. The drawbacks are the computational cost and the aforementioned
absence of a guarantee to locate the global minimum.

2.4.3.2 Scoring

Scoring Function Types

Scoring functions can be classified based on the principles of their work and construction.
Nowadays, there are 4 distinct categories, along with the hybrid type: physics-based,
knowledge-based, empirical and parametric [213].

Physics-based scoring functions, also known as force-field-based scoring functions, are founded
on our understanding of the fundamental principles governing the physics and chemistry of molecular
interactions [214, 215]. These scoring functions seek to approximate a system's potential energy by
directly modelling the physical effects of intermolecular forces. In protein-ligand docking, they aim
for an accurate calculation of the binding affinities.

Typically, physics-based scoring functions are formulated as a sum of various energy terms
primarily derived from the force field. These components encompass electrostatic forces, van der
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Waals interactions, contributions from hydrogen bonding, desolvation effects, occasionally torsional
combinations, etc. The typical functional form is:

∆𝐺
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+ ∆𝐸
𝑒𝑙𝑒𝑐𝑡𝑜𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

+ ∆𝐸
𝐻−𝑏𝑜𝑛𝑑
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Physics-based scoring functions are considered 'white-box' models, meaning their behavior is
intuitively clear, and the parameter values can be logically explained. However, these models often
come with a computational cost, as they frequently require all-atom representations and exhaustive
sampling. They have a tendency to provide unrealistic energy values, in part due to the cumulative
errors that arise from the aggregation of individual energy terms. Moreover, they may not be
well-suited for fragment-based docking since individual fragments may be subjected to different force
combinations compared to the entire ligand.

Knowledge-based scoring functions, or potentials, sometimes referred to as potential mean force
scoring functions, are based on statistical observations within the multiple solved structures [216, 217,
218, 219, 220, 221]. They are designed to identify local pairwise geometries that are statistically
characteristic of the experimentally solved structures, and they are thus expected to be able to
distinguish correct models from incorrect ones. Such functions usually map pairwise distances to
score (pseudo-energy) values.

Traditionally, knowledge-based functions are presented as a sum of pairwise terms:
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the same atom pair in a reference state where atoms are assumed to not interact with each other.
These functions typically are less expensive computationally compared to physics-based

functions [213]. They are known to account for entropy and solvation implicitly, however, there are
examples of explicit additional terms [223]. The main disadvantage associated with these functions is
the sparse data problem [234], meaning that the parameters associated with interactions (geometries,
contacts, etc.) underrepresented in the training set are often imprecise or uncertain, inaccurate or
undefined. Another challenge is the problem of defining the reference state [235]. An ideal reference
state is defined as infinite separation where the particle interaction is zero. To our knowledge, such
state is not achievable [226]. Instead, different approximations are used successfully. Several
examples are given in the following subsection. Knowledge-based functions are also less interpretable
compared to physics-based functions.

Empirical scoring functions, also called regression-based, are a linear combination of individual
terms aiming to capture the fitness of the model based on an affinity/energy approximation, regardless
of underlying physical/statistical properties [227, 228, 229]. These scoring functions differ from
physics-based, as each term has its own weight, optimised via supervised learning. Often, these
scoring functions are a sum of penalty and reward terms. A widely used example is ChemScore [230]:
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where S-terms are rewarding scores for hydrogen bonding, bonds with metal ions and lipophilic
contacts, and P-terms are penalty scores for frozen rotatable bonds, internal strain energy of the ligand
and steric clashes between ligand and receptor.

Empirical functions are less computationally-heavy compared to physics-based functions and
require less training data compared to knowledge-based functions (but the data must be labelled).
They are highly customisable, as terms can be easily added/removed [231]. Conversely, functions of
this type are unlikely to account explicitly for factors uninterpretable by humans. They are highly
sensitive to data inaccuracies and likely to not capture underrepresented data (e.g. pi-cation
interactions) [213].

Descriptor-based scoring functions, often referred to as ML/DL-based, draw inspiration from
quantitative structure-activity relationship (QSAR) based techniques. They are based on a set of
various descriptors, which can account for specific interactions, molecular geometry, etc. Compared to
the other types of scoring functions, descriptor-based ones contain a considerably higher number of
parameters. Popular choices for the creation of these scoring functions are convolutional neural
networks [232], graph neural networks [233], graph convolutional networks [234] etc. To date,
descriptor-based scoring functions have carved a prominent niche for themselves, as they are often
very efficient and accurate [235, 223, 236, 222]. However, many researchers are concerned by their
black-box nature [237]. Training of these functions requires large datasets and is very costly
computationally. In addition, these functions are very sensitive to the smallest data leaks.

Nowadays, many scoring functions can be classified as hybrid (e.g. [238]), as a combination of
multiple approaches can aid in capturing the most significant/relevant terms of each approach for the
input data. Multiple papers on enhanced scoring functions are being published, pushing the limits of
the accuracy and efficiency of the docking tools. According to the reviews, the application of multiple
independent scoring functions, and, if possible, multiple sampling approaches, can improve the
accuracy of the docking results [127, 239]

Knowledge-Based Scoring Functions: Construction and Performance

A wide variety of protein-RNA scoring functions have been developed [240, 241, 242, 158, 243,
161, 117, 244, 245]. In the context of this thesis, scoring functions ITScore-RP, DECK-RP and
3dRPC-Score are of particular interest, as they define the reference state differently.

ITScore-PR is an interatomic pairwise distance-dependent potential [162]. It is obtained by a
statistical mechanics-based method that circumvents the reference state problem [225]. The main idea

behind it is to use the comparison between the predicted atomic pair distribution functions of𝑔
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where stand for different atom pairs in protein and RNA molecules respectively, is a convergence𝑖𝑗 λ
parameter, and represents the number of the iteration.𝑛

The distribution function is calculated based on the as follows:𝑔
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The distribution function is calculated based on the crystal structures:𝑔
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certain threshold. It is sensitive to the initial potential , as the iterative procedure may be trapped𝑢
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in local optima.
Recently, this method was used to develop ITScore-NL, a scoring function for nucleic

acid-ligand interactions [246]. Interestingly, in this function the stacking and electrostatic interactions
are included explicitly, on top of the usual for knowledge-based function pairwise potential. Since
stacking interactions are of a high importance for the protein-ssRNA interactions, it could be
interesting to incorporate a stacking term into protein-RNA scoring function as well.

DECK-RP is a Distance- and Environment-dependent, Coarse-grained and Knowledge-based
function for protein-RNA complexes [117]. The reference state includes the mol-fraction corrected
component, which takes into consideration the interface concentration (preferences of amino-acid
residues and nucleotides to be in the interface), and the decoy-based component, which takes into
consideration all structures generated by docking, along with the propensities of different types of
amino acids and nucleotides. Then nucleotides and amino acids are clustered into several types of
residues resulting in 168 pairs of interacting residues. The energy of each -pair is defined similarly𝑖𝑗
to (6), replacing number of -contacts by the probability of -contact.𝑖𝑗 𝑖𝑗

The observer probability (numerator) is obtained as fraction of near-native -contacts in the bin d𝑖𝑗
over all near-native pairs in this bin. The expected probability (denominator) calculation involve mole
fraction component:
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where is the number of -pairs at a distance bin in all modelled structures, and is𝑁
𝑑
(𝑖, 𝑗, 𝑟) 𝑖𝑗 𝑟 𝑓

𝑖/𝑗
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the mol-fraction of the residue, is a convergence parameter.𝑖/𝑗 𝑎

3dRPC-Score is a pair-conformation-dependent scoring function [240], based on the concept of
conformational similarity (i.e. the nucleotide-residue pairs should have the same energy if their
conformations are similar [278]) rather than a more typical distance-dependance. All
nucleotide-residue pairs were extracted from crystal structures (of ribosomes) and classified using
k-means based on the relative RMSD between conformations into 10 classes per pair (800 classes in
total, for 20 types of amino acids and 4 types of nucleotides). The pairs in each class have similar
conformations, thus they are considered to have the same energy, expressed as follows:
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of the residue in the interface based on the solvent accessible area (determined from the statistics𝑖/𝑗
of the selected training structures), and is the probability of class in the whole conformational𝑃

𝑣
𝐶

space of nucleotide-residue pairs in the reference state.
In the reference state, each class has the same probability and the statistical potential (9) can be

written as:
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The best values for were determined by ranking the training set with different values and𝑃
𝑣

comparing the results.

Performance

The performances of ITScore-PR, 3dRPC-Score and DECK-RP were compared [240] on a full
Huang and Zou benchmark (72 structures) [247], and 64 structures from Pérez-Cano et al benchmark
[248]. Scoring functions were evaluated by their ability to select at least 1 near-native model
(LRMSD<10Å) in top 1 or top 10 solutions. The results suggest a superior performance of
ITScore-PR (Tab. 2.1). These papers do provide information regarding the performance spesifically
on protein-ssRNA complexes.
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Table 2.1 - Success rates (%) of scoring functions on different benchmark test sets.
HZR stands for the Huang and Zou benchmark with sampling performed using RPDOCK [117];
HZZ stands for the Huang and Zou benchmark with sampling performed using ZDOCK [199];
PCZ stands for the Pérez-Cano et al benchmark with sampling performed by using ZDOCK [199].

2.4.4 Selected Protein-ssRNA Docking Tools

Protein–ssRNA complexes are notoriously complicated to dock. Classical docking approaches
typically rely on having an unbound structure as a starting point. But when dealing with ssRNA, such
a structure is not available because of its disordered nature in its unbound state. The inherent
flexibility of ssRNA makes docking of systematically modelled conformations computationally
impractical. Applying DL to protein-RNA docking is challenging due to the relatively limited
number of solved structures available and also because, within each structure, the interactions
between RNA and protein constitute only a small fraction of all atomic contacts.

Last point is illustrated by RoseTTAFoldNA, a DL-based end-to-end predictor designed to
predict the structures of protein-nucleic acid complexes without the need for homologs [272]. This
model, somewhat similar to AlphaFold, takes as input one or more aligned protein and nucleic acid
sequences, and transforms this information in parallel 1D (sequence), 2D (residue-pair distances) and
3D (structure in cartesian coordinates) tracks, outputting 3D protein-nucleic acid structures. It is
based on all-atom representation, and takes into account both atom-atom distances, as well as
orientations of the nucleotide (a coordinate frame defined by atoms of the phosphate group, P, OP1
and OP2, is used).

Alas, all but one of them appear in the ‘Failure models’ category, with the fraction of native
contacts (fnat) under 0.05 and interface RMSD (iRMSD) under 6.7Å (Tab 2.2). A single successfully
modelled protein-ssRNA complex (PDB id: 4PWM with the fnat = 0.77 and iRMSD = 2.0Å) had a
close homologue in the training set. The paper notes that such small single-stranded nucleic acids or
slight deviations in monomer structures represent 20% of RoseTTAFoldNA failures, which leads to
the conclusion that a main RoseTTAFoldNA limitation is related to single-stranded nucleic acids.

Table 2.2 - Statistics of the proten-ssRNA modelling achieved with RoseTTAFoldNA [272].

PDB id fnat iRMSD, Å

4PMW 0.77 2.0

6YYM 0 12
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Top 1 Top 10

HZR HZZ PCZ HZR HZZ PCZ

ITScore-PR 46 41 12 64 58 28

3dRPC-Score 46 34 19 60 50 42

DECK-PR 36 28 21 54 45 44

Nb of complexes 72 72 64 72 72 64
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PDB id fnat iRMSD, Å

7A9W 0 12

7A9X 0.05 6.7

7M5O 0 50

7B0F 0.02 14

7OM3 0.04 10

Thus, fragment-based approaches are the only ones currently capable of handling docking of
small ssRNAs to the protein to some extent. There are 4 existing approaches:

● RNA-LIM represents each nucleotide by one non-oriented bead and could only predict their
position at 15Å resolution when tested on only one example [249];

● FBDRNA uses mononucleotide fragments in all-atom representation, docked with MCSS on a
pre-defined binding site. While showing discriminative power on nucleotides’ positions, it
could not provide accurate models for full oligonucleotides [250];

● RNP-denovo, a Rosetta method to simultaneously fold-and-dock RNA to a protein surface,
uses the exact position of a few nucleotides [251], which would be unavailable for real-life
docking cases;

● ssRNA’TTRACT, the state-of-the-art in the fragment-based protein-ssRNA docking, is the
most accurate approach that uses only a protein structure and the RNA sequence as input. It
uses trinucleotides as RNA fragments and an overlapping criterion based on LRMSD for
assembly [252].

ssRNA’TTRACT is what lies in the core of this research, thus this approach is presented in detail
in the following section.

2.4.4.1 ssRNA’TTRACT

The idea behind ssRNA’TTRACT is to handle ssRNA flexibility by subdividing its sequence into
fragments that are small enough for their conformations to be exhaustively (including close-to-bound
conformation) sampled within a given accuracy threshold. Each fragment is sampled and scored
individually, generating a pool of docking poses - certain positions and orientations of particular
conformations of the fragment with respect to the protein. The poses of the adjacent fragments are
then assembled into the docking models, i.e. models of the full ssRNA chain.

Fragment Library

Prior to the docking, it is mandatory to have a fragment library of the trinucleotide
conformations, which aims to represent all naturally possible conformations of a given trinucleotide
sequence under a certain threshold. Tri-nucleotides possess distinct advantages when compared to
di-nucleotides or mono-nucleotides, as they engage in a greater number of interactions with the
protein, resulting in binding to more specific positions. Tri-nucleotides also offer an advantage over
tetra-nucleotides, as they have a significantly smaller number of possible conformations, making them
more manageable.
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In this work, an in-house library is used [253, 254]. This library contains a set of fragment
conformations, extracted from existing 3D structures and clustered by pairwise RMSD with a 1Å
threshold. To increase the number of conformations for each motif (trinucleotide sequence), all
combinations of artificial mutations were applied to each fragment to transform purines and
pyrimidines (G⇔A and C⇔U). It was done under the assumption that removal/addition of a single
heavy atom has an insignificant effect on the overall conformation of a trinucleotide, and because we
aim at being as exhaustive as possible at the cost of allowing some potential inaccurate conformations.
This procedure was carried out using ProtNAff [255].

Docking Initiation, Sampling, Scoring

The input for the docking is a rigid protein structure (coarse-grained) and an RNA sequence (the
RNA chain is assumed to be single-stranded). The RNA sequence is split into trinucleotides
overlapping by 2 nucleotides, so if, for example, the RNA sequence is n nucleotides long, it is split
into n-2 fragments. Each unique sequence motif, present among all fragments, is docked on the
protein via a rigid body docking procedure.

Two options for the initiation of the sampling are available: ‘systsearch’ and ‘randsearch’. In
‘systsearch’, each available conformation of a motif is placed in 228 orientations at predefined
positions around the protein, at a certain distance from its surface. Each such conformation at
predefined position and orinetation serves as a starting point for a sampling. In ‘randsearch’, a random
position is chosen on a sphere centered around the protein's center of mass. A random conformation of
the motif is selected from the library, places in the chosen position in a random orientation and used as
a staring point for the sampling. In this work, ‘randsearch’ sampling strategy is used with 30 million
starting points used by default.

Next, the poses are driven from their staring points towards the protein surface via score
minimisation with gradient descent-based minimisation steps, until convergence. During the sampling
stage, to enhance computational efficiency, pre-calculated score values on a grid for each ligand bead
type are used. The resulting poses are clustered using an RMSD threshold of 0.2Å to remove
redundant poses. During the scoring stage, each pose is assessed based on the interactions between
pairs of beads that fall within a defined distance threshold. These poses are ranked from the lowest to
the highest score, and typically, the top 10 million best-scored docking poses are retained for each
motif. The goal is to maintain a minimal number of poses to prevent computational bottlenecks during
the assembly, while simultaneously ensuring that at least 1 near-native pose per fragment is preserved.
This is imperative to get at least 1 near-native chain.

Assembly Procedure

The final stage, assembly, involves the creation of a connectivity oriented graph. Each node in
this graph represents a docking pose, retained after the scoring. An edge between two nodes is added
if the two poses share compatible sequences and if the pairwise atomic distances between their
common 2 nucleotides are all below a certain threshold (overlap criterion). The overlap is defined
empirically using test cases. It should be as strict as possible to eliminate the maximum number of
incompatible poses, thus reducing the size of the graph; but not so strict as to eliminate the near-native
chains, i.e. chains containing only near-native poses. After this, to reduce the graph size, the poses that
are not a part of any full chain are eliminated. Remaining connected poses are assembled in the chains
by averaging the positions of the overlapping atoms.
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Performance and Limitations

ssRNA’TTRACT is capable of sampling and scoring near-native poses (nns) and assembing them
in near-native chains, as shown in [159] (Tab 2.3). However, ssRNA’TTRACT suffers from 2 main
main limitations - sampling problem and scoring problem.

Table 2.3 - Comparison to the bound form of the poses obtained by (I) bound docking and (II)
position-specific filtering of chain-forming poses [159].
Hits and near-hits correspond to poses with LRMSD<2Å and <5Å respectively. Chains are formed by 6
fragments. Position-specific filtering is a filtering based on the propensity of each pose to form chains.

In the frame of this thesis, ssRNA’TTRACT docking was conducted on a benchmark of 410
experimentally solved protein-ssRNA complexes, collected from PDB by February 2021, including
redundant cases, totaling 1998 fragments (Tab 2.4). It was observed that for 67% of these fragments,
no near-native poses (nns) with an LRMSD under 2Å could be found within the pool of 10 million
docking poses. This issue, known as a sampling problem, affected 88% of the complexes in total.

Table 2.4 - Statistics of the sampling and scoring of ATTRACT scoring function.

Sampling
LRMSD < 2Å LRMSD < 5Å

< 1 nns < 100 nns < 1 nns < 100 nns

% of failed fragments (< x nns sampled) 67 98 15 42

% of complexes with over 1 failed fragments 88 100 31 61

% of complexes with all fragments being failed 43 91 8 26

Avg. number of nns in 10 million sampled 10 4,223

44



Chapter 2: Structural Bioinformatics of the Protein-RNA Complexes__________________________________________________________________________________________

Scoring (sampling+scoring) < 1 nns in top20%

% of failed fragments 4 (71) 10 (25)

% of complexes with over 1 failed fragments 22 (100) 15 (46)

% of complexes with all fragments being failed 47 (90) 6 (14)

Avg. % of nns in top20% (out of all sampled nns) 0.1 33

Furthermore, out of the remaining 33% of fragments with at least 1 nn sampled, only 2% had
over 100 nns. Although having fewer than 100 nns is not typically classified as a sampling problem,
these fragments require a higher percentage of near-native poses to be top-ranked in to facilitate
successful assembly. In instances where the LRMSD threshold is relaxed to LRMSD under 5Å, a
sampling problem was encountered for 15% of the fragments and affected 31% of the complexes.

a) b)

Figure 2.4 - Boxplot of the percentage of top-ranked near-native poses out of all sampled near-naive
poses, calculated over 1998 fragments. a) LRMSD<2Å. Note that for this graph y-axis reaches a
maximum of 50%; b) LRMSD<5Å.

For nns with LRMSD under 2Å, a mere 0.1% of all sampled poses fell within the 20% of
top-ranked poses (top20%) (Fig 2.4 a). Given an average of 10 nns sampled per fragment, it is
unlikely to create near-native chains using a pure ab initio docking procedure with such threshold. For
the relaxed threshold (LRMSD < 5Å), on average, 33% of all near-native poses were within the
top20%, offering a greater chance of successful assembly (Fig 2.4 b). However, for 10% of the
fragments, no nns were present in the top 20%, which is known as a sampling problem. The sampling
problem impacted 15% of the complexes, such that were not impacted by a scoring problem. If both
sampling and scoring problems are considered, the total of 46% of the complexes are impacted.

Both sampling and scoring problems originate from the parameters of the ATTRACT scoring
function. These parameters were derived from a benchmark of double-stranded RNA-protein
structures back in 2010 [256], which offers potential for improvement in the context of
protein-ssRNA docking.
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2.5 Conclusion

In this chapter, we have introduced general approaches applicable to single-chain modelling and
molecular docking. Our discussion has encompassed different types of docking, various sampling
techniques, and distinct categories of scoring functions. Several noteworthy examples of
knowledge-based protein-RNA scoring functions have been presented. To transition from a general
concept of rigid-body docking to the specific problem of protein-ssRNA docking, we have highlighted
the inherent complexity of modelling these complexes. This includes the absence of the unbound
ssRNA structure, which inhibits the application of traditional rigid-body and semi-rigid docking
methodologies; the high flexibility of ssRNA, which inhibits exhaustive modelling of possible
conformations; and the low number of solved protein-ssRNA structures, which limits the application
of DL-based methods. We have concluded that the current approach to docking protein-ssRNA
complexes involves fragment-based methods, with the state-of-the-art being the ssRNA'TTRACT
method. While this method demonstrates good overall performance, it is affected by both sampling
and scoring problems, along with inherent limitations of fragment-based approaches in sampling and
scoring HS-bound and CS-bound fragments.

In the next chapter, we will present our attempts to enhance the performance of ssRNA’TTRACT
through the optimisation of docking parameters.
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3.1 Aims
In the previous chapter, we introduced the state-of-the-art in fragment-based protein-ssRNA

docking, ssRNA’TTRACT. As discussed, this method suffers from sampling and scoring problems,
partly caused by the original parameters of the ATTRACT scoring function (ASF), which were not
designed specifically for ssRNA. Therefore, these problems could be addressed by the optimisation of
the ASF parameters. Despite the sampling problem being more critical, it is also more challenging to
address since re-sampling is more computationally expensive than re-scoring. Thus, our focus here is
on addressing the scoring problem, with the expectation that improved scoring parameters are likely
to indirectly benefit the sampling aspect.

In this chapter, we delve into several unsuccessful attempts to optimise the parameter set for
protein-ssRNA docking and propose a hypothesis on why these attempts fell short. Additionally, we
introduce two potential avenues for further improvement – the use of all-atom force fields to estimate
initial parameter values and a brute-force approach to evaluate the change in the docking performance
caused by an update of a small subset of parameters. Lastly, we touch upon the idea of explicitly
incorporating stacking interactions into the scoring process.
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3.2 Introduction

3.2.1 Coarse-Grained Representation

ssRNA’TTRACT uses a coarse-grained representation and a knowledge-based scoring function
[168, 257, 256]. Each amino acid is represented by 3 to 4 beads (pseudoatoms): 2 beads correspond to
N and O in the backbone, and 1 or 2 beads, located at the geometric mean of side chain heavy atoms,
describe short and long side chains, respectively. In total, there are 31 protein bead types, including 11
modified amino acids. Each nucleotide is represented by 6 to 7 beads: 3 beads describe the backbone
(1 bead for the phosphate group, 2 for the sugar), and 3 to 4 beads describe the base, pyrimidines and
purines, respectively. This coarse-grained representation allows for efficient calculations and
maintains reasonable details of physicochemical features, e.g. retains information about the
orientation of nitrogen bases in space. In total, there are 17 RNA bead types, describing exclusively
standard nucleotides.

3.2.2 Scoring Function

The interactions between protein and RNA beads are described by a distance-dependent
potential in two forms - attractive and repulsive (Fig 3.1).

Figure 3.1 - Global shape of the scoring function for protein-ssRNA interactions, employed by the
ATTRACT docking engine.

The attractive potential is a Lennard-Jones-like function with a soft repulsive term:

(1)𝑈
𝑖𝑗
𝑎𝑡𝑡𝑟(𝑟) =  ε

𝑖𝑗

σ
𝑖𝑗
8

𝑟8 −
σ

𝑖𝑗
6

𝑟6( ),

where is the inter-bead distance, is a protein bead type, is an RNA bead type,𝑟 𝑖 = 1, 31 𝑗 = 1, 17 

the parameter indicates the range of the interaction (to be precise, it is equal to the value of atσ
𝑖𝑗

𝑖𝑗 𝑟
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the point, where the curve crosses the x-axis, i.e. where the score is equal to zero), and parameter ε
𝑖𝑗

indicates the strength of the interaction.𝑖𝑗

The repulsive potential is defined as follows:

(2)

where and corresponds to the minimum of .𝑈
𝑖𝑗
𝑚 𝑟

𝑖𝑗
𝑚 𝑈

𝑖𝑗
𝑎𝑡𝑡𝑟(𝑟)

The total score of a docking pose is defined as the sum of the individual bead-bead scores.

The optimisation process targeting the scoring function parameters and was performed viaσ
𝑖𝑗

ε
𝑖𝑗

two distinctive stages [257]. Firstly, an initial parameter set was obtained by fitting equations (1) and
(2) to a statistical potential derived from Boltzmann statistical distributions of distances in the PDB.

Next, were optimised through a Monte Carlo-like (MC) approach. A set of adjacent values - for aσ
𝑖𝑗

σ

single parameter at a time - was explored by performing potential energy minimizations for a set of

native complexes. The value resulting in the best score was kept. Secondly, were tuned using a setε
𝑖𝑗

of 200 decoys (LRMSD > 5Å) per complex. Similarly to the first stage, a set of adjacent values wasε
explored. The best values were selected based on the ability to provide the lowest score for native-like
complexes with respect to their corresponding decoys. The set of docking parameters obtained via the
described process is referred to as the original parameter set in the text below. It consists of 1054
parameters. The values of are ranging from 2 to 6.4, and the values of are ranging from 0.02 to 20.σ ε

Equations (1) and (2) with the original parameter set are used for both sampling and scoring, as
described in §2.4.4.1.

A perfect scoring function would be capable of establishing a linear dependency between the
score-rank and the LRMSD-rank of the near-native poses, regardless of the ranking of the decoys.
Given the current state of the protein-ssRNA docking field, it is acceptable for practical use to rank
near-native poses by their score on top of the ranking list.

3.3 Optimisation of the Protein-ssRNA Parameter Set
As described in §2.4.4., the current ASF often faces the scoring problem, i.e. fails to assign high

ranks to the near-native protein-ssRNA poses. Therefore, a large number of the docking poses, around
10 million, must be kept post-scoring to assemble near-native chains. Such a large number of poses
per fragment hurdles the assembly as its computational cost is very high and the number of chains
(mostly non-natives) is immense, which makes identification of the near-native chains out of the pool
a complicated task with unreliable results.

The scoring problem can be addressed by the optimisation of the original docking parameters or
by the development of a new scoring function. Since ASF is used for both sampling and scoring, both
options could improve the quality of the sampling as well (with the limitation that the function must
remain differentiable for the sampling stage, or that another minimisation process than
gradient-descent is used). Both options are highly challenging and time-consuming tasks. The
development of an optimisation protocol for the parameters of the current scoring function had been
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initiated by a former CAPSID student, Agnibha Chandra. Thus, it was decided to commit to the
parameters optimisation.

The original parameters and of the ASF were subjected to optimisation with the objectiveε
𝑖𝑗

σ
𝑖𝑗

of enhancing fragment-based protein-ssRNA scoring. Our aim was to increase the number of
near-native poses within the list of 10% of top-ranked poses, which can be achieved by minimising
the average score of the near-native poses. To avoid the simultaneous minimisation of average scores
for non-native poses, the focus is on the maximisation of the discrepancy between the average scores
of near-native poses and non-native poses. To avoid the scaling problem, the average score difference
is normalised by the average score of both types of poses.

Near-native poses are defined by LRMSD values below 3Å, while non-native poses have
LRMSD values exceeding 5Å. Intermediate poses, defined by LRMSD values between 3Å and 5Å,
were excluded to establish a distinct boundary between near-natives and non-natives. This separation
theoretically assists in increasing the score difference assigned to these pose types.

Based on the description above, the objective function was formulated as follows:𝑓(ε, σ)

, (3)𝑓(ε, σ) =  
𝑆

𝑛𝑒𝑎𝑟−𝑛𝑎𝑖𝑣𝑒
 − 𝑆

𝑛𝑜𝑛−𝑛𝑎𝑖𝑣𝑒

𝑆

where and are the average score of the near-natives and non-natives poses𝑆
𝑛𝑒𝑎𝑟−𝑛𝑎𝑖𝑣𝑒

𝑆
𝑛𝑜𝑛−𝑛𝑎𝑖𝑣𝑒

respectively and is the average score of both types of poses.𝑆
For the maximisation of (3), it was decided to use a metaheuristic approach to approximate

global optimisation, namely, the Monte Carlo Simulated Annealing (MCSA) algorithm [258, 259].

3.3.1 Monte Carlo Simulated Annealing

The MCSA algorithm combines the principles of both MC methods and Simulated Annealing
(SA), yielding a stochastic optimisation technique capable of exploring complex search spaces. This
approach combines random sampling, inspired by MC methodologies, and annealing-like temperature
control to find near-optimal solutions. A well-known advantage of using SA is its capability of
escaping local minima. This iterative algorithm starts with high randomness (random walk-like
behaviour) that allows for such escape(s) and gradually becomes more deterministic
(hill-climbing-like behaviour) to refine the solution.

Each iteration, known as an annealing step, requires the initialisation of the parameters
undergoing optimisation, the initial temperature value that is a starting point of the annealing process,
and the selection of a cooling schedule - a function describing the gradual reduction of temperature.
During the annealing step, a set of neighbouring parameters is generated by a small random
perturbation of the current parameter values. Two objective function values are calculated: one using
the current parameter set and another using the neighbouring parameters. As the aim is to maximise
the objective function, if the neighbouring set's value surpasses the current set's value, the new set is
accepted. Otherwise, acceptance depends on temperature. High temperatures allow the acceptance of
even worse solutions, while low temperatures only accept better or just slightly worse solutions.
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3.3.2 Experiments

3.3.2.1 Dataset

The benchmark I used for the optimisation consisted of 42 protein-ssRNA complexes. These
complexes were solved experimentally through NRM or X-RAY with a resolution higher than 4Å.
Each complex contains RNA with a single-stranded region (at least 3 nucleotides long) that is bound
to the protein, i.e. with at least one pair of heavy atoms located within 5Å per nucleotide. All
complexes had been deposited on PDB by July 2018.

This benchmark can be decomposed into a dataset of 309 distinct protein-bound trinucleotides
(fragments) referred to simply as data cases further in the text. This benchmark is heavily dominated
by the fragments with UUU and AAA motifs, 29% and 15% of the size of the dataset respectively.
Each data case was docked using ATTRACT and ASF with its original docking parameters (following
the procedure described in §2.4.4.1). Each pose is labelled as near-native or non-native. As mentioned
before, intermediate poses are removed. Note that if a given RNA chain contains several fragments
with identical motifs, such cases require a single docking run, followed by an individual LRMSD
computation for each case.

The number of sampled near-native poses (LRMSD<3Å) per case varies from 0 to 525. As
anticipated, the majority of near-native poses are of UUU and AAA motifs. Unexpectedly, their
percentages over all near-native poses for all cases are almost equal, 36% and 33% respectively,
despite the UUU fragments being twice as frequent as AAA. The final training set contains 36
complexes, and the validation set contains 6 complexes. Comprehensive details of the benchmark and
its docking statistics can be found in Appendix A.1.1.

3.3.2.2 Protocol

The protocol comprises the following stages: initiation, optimisation, testing and validation. The
flowchart for each stage is provided in Appendix A.1.2.

The initiation stage necessitates the selection of the following elements:
● The initial temperature ;𝑇

0

● The cooling schedule among the following options: logarithmic, exponential, linear, zigzag,
wall climber, and constant (implemented by Agnibha Chandra);

● The initial parameter set, which can be the original parameter set, one of the sub-optimal sets
obtained during previous optimisation rounds, or a set of random numbers adhering to the
domain of the function;

● The step size to sample neighbouring parameters, representing the maximum interval by
which each parameter can be changed;

● The strategy for sampling neighbouring parameters among the following options: 'normal'
(where parameters are changed with unscaled random values) or 'adaptive' (where the
magnitude of change is scaled at each step by a coefficient );𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑇

𝑇
0

● The stopping criterion defined as a number of consecutive steps where the change in the
objective function value remains below a specified threshold. If convergence of a scoring
function is not observed, a maximum number of iterations after which the optimisation
process should be terminated is specified.
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The optimisation process involves a grid-accelerated calculation [260] of the scores for the
docking poses of each fragment of each training complex. Scores are calculated for all sampled
near-natives and only the first 1 million non-natives. The average score difference is computed across
all training complexes. Once the stopping criterion is met, the new parameter set is preserved.
Additionally, the option exists to save multiple intermediate parameter sets, which can serve as
starting points for subsequent annealing steps.

The testing consists of rescoring the entire training set with a new parameter set. The overall
improvement is calculated as follows:𝐼

, (4)𝐼 =
𝑡𝐶𝑚𝑝

∑  
𝑓𝑟 
∑

𝑛
𝑇𝑅 

−𝑛
𝑇𝑆 

𝑛 · 100

where are the complexes of the training set; are the fragments of a given complex; is the𝑡𝐶𝑚𝑝 𝑓𝑟 𝑛
𝑇𝑅 

total number of near-native poses in the 10% top-rescored poses, i.e. scored and ranked by the new
parameter set; is the total number of near-native pose in the 20% top-scored poses, i.e. scored and𝑛

𝑇𝑆

ranked by the original parameter set; and is the total number of sampled near-natives.𝑛

If for a given new parameter set , then it is labelled as satisfactory and validation is𝐼 ≥  20
carried out. The validation process is the application of the new parameters to the validation set of
complexes for scoring.

3.3.3 Results and Discussion

I performed multiple rounds of optimisation and tested multiple combinations of
hyperparameters. Those tests suggest that an exponential cooling schedule along with an adaptive
approach are best suited for the used benchmark. The distinct setups that were used to create 4
parameter sets are presented in Tab. 3.1.

Table 3.1 - Hyperparameters for the training of the scoring parameters with MCSA.

Hpar1 Hpar2 Hpar3 Hpar4

𝑇
0

1000 1000 1000 1000

Cooling schedule Exponential Linear Linear Exponential

Initial par set ATTRACT Random Intermediate Intermediate

Step size 0.01 0.05 0.025 0.02

Sampling strategy Adaptive Adaptive Adaptive Adaptive

Max steps 5000 5000 50,000 50,000

Min score∆ 1e-13 1e-13 1e-13 1e-13

Stopping criterion 10 10 10 10

During the testing stage, each of the optimised parameter sets was deemed satisfactory and
validation was performed. The numbers of near-natives present in the top10% were compared. While
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some optimised parameters outperform the original ones for certain fragments, the overall
performance of all sets is very similar. The results of the validation are detailed below (Fig 3.2).
Because MCSA is a stochastic algorithm, the possibility exists that the optimal solution might not
have been reached. More detailed results for each distinct fragment can be found in Appendix A.1.3.

Figure 3.2 - Comparison of the performance of different parameter sets on the validation set. Each
cluster of adjacent bars shows the percentage of the near-natives located in the top10% of poses,
ranked by one of the 5 different parameter sets, listed in the legend.

The diversity of the binding modes (discussed in §1.3.5), and the results of MCSA optimisation
led to the formulation of the hypothesis that a singular parameter set might be insufficient for
accurate scoring of protein-ssRNA fragments. This statement is the main conclusion regarding the
MCSA optimisation project.

If this hypothesis is disproven, the further optimisation of the docking parameter set could be
carried out by replicating the stochastic optimisation protocol developed by Piotr Setny for the
creation of the original parameter set, but with a larger benchmark containing only protein-ssRNA
structures, to create a parameter set specific to protein-ssRNA. Working on the larger, exclusively
protein-ssRNA dataset could result in a set of more accurate parameters. However, there is no
guarantee of a solution to the challenge of parameter sensitivity to the order of pairwise potentials
adjustments, mentioned in the original paper. Thus, it could be more promising to explore the field of
non-stochastic optimisation techniques, suitable for global non-convex optimisation, such as fuzzy
logic [261] or Bayesian optimisation [262].

Creation of the Distinct Parameter Sets for the Most Common Motifs

Considering the distribution of generated near-native poses across different motifs, one might
argue that the abundance of near-native poses for 'AAA' and 'UUU' motifs should be taken into
account. Without such consideration, optimizing the parameters for the A-X pair of beads, where X
represents any protein bead type, may result in overfitting on the distances specific to 'AAA'
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fragments and underfitting on the distances typical of fragments where only one out of three
nucleotides is A.

Normalisation of the number of near-native poses per motif used in the optimisation process
could address this concern. An alternative could involve creating three separate parameter sets: one
for 'AAA', one for 'UUU', and one for other motifs. This approach would enable parameter calibration
for interactions between beads in fragments where only one out of three nucleotides is A, as well as
ensuring that the parameters for ‘AAA’ and ‘UUU’ motifs are optimal, which may not be the case if
normalisation is used.

However, it's essential to ensure that a sufficient volume of data is available for optimising
parameters not associated with 'AAA' and 'UUU'. For motifs with at least a few non-redundant solved
structures available, the sampling problem can be overcome either by increasing the LRMSD
threshold for near-natives or by employing data-driven sampling to obtain suitable near-natives for
optimisation.

Approximation of Initial Parameter Values Using an All-Atom Force Field

The outcome of the MCSA optimisation suggests the original parameter set could reside within a
deep suboptimal region, such that is very complicated to escape from. A fresh parameter set might
offer a more promising starting point for optimisation. Furthermore, the creation of a new set has the
potential to eliminate the inter-parameter dependencies within the original set, created as a
consequence of the ordered optimisation of the initial parameters.

An OPLS all-atom force field, specifically given by OPLS binding energies, can be leveraged to
derive a new set of coarse-grained docking parameters. The idea is to fit the ATTRACT parameters to
the OPLS binding energies. First, equation (1) is to be rewritten in a functional form suitable for the
grid-accelerated computation of ATTRACT scores [260] as follows:
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where and are the docking parameters.ε σ
Next, set equation (5) equal to the OPLS binding energy for the corresponding set of atoms:

, (7)
𝑖,𝑗
∑(α

𝑖𝑗
𝑅

𝑖𝑗
−8 − β

𝑖𝑗
𝑅

𝑖𝑗
−6) = 𝐸

𝑂𝑃𝐿𝑆

where is the all-atom binding energy of a complex.𝐸
𝑂𝑃𝐿𝑆
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A benchmark of n complexes, or protein-fragment cases, allows to build the next system of linear
equations:

(8)

where and are the set of unknown variables. The values of the new initial parameter set andα
𝑖𝑗

β
𝑖𝑗

ε
𝑖𝑗

can be easily calculated from the values of and .σ
𝑖𝑗

α
𝑖𝑗

β
𝑖𝑗

According to the Rouche-Fontene theorem (also known as Rouche-Capelli and
Kronecker-Capelli theorem), a linear system has a unique solution only if the rank of its coefficient A
is equal to the rank of its augmented matrix [A|b]. Thus, at least 1054 non-redundant complexes are
required for the system to have a unique solution. However, an approximate solution can be found
using numerical methods.

The usage of a whole complex to define each line in the system would likely lead to an
underdetermined system. However, splitting the complexes into separate protein-fragment cases may
provide a system with enough lines for it to have an analytical or numerical solution.

If the system (8) has a solution, it can be treated as the initial parameter set. Such a set will reflect
the physical properties of molecular interactions, and the parameters can be subjected to further
optimisation. Due to time constraints, this project was not carried on, and the focus was shifted toward
the creation of a novel knowledge-based scoring function (detailed in Chapter 4).

3.4 Fine-Tuning Tryptophan-Cytosine Parameters

3.4.1 Problem Statement

In ATTRACT docking, poses are ranked by increasing scores: negative scores are indicative of
favourable interactions and positive scores are indicative of unfavourable interactions, e.g. clashing.
Consequently, native structures are anticipated to be assigned negative scores. This expectation holds
true at the fragment level, as well as at the level of individual pairwise contacts. However, for certain
pairs of bead types, the distances observed in native structures result in positive scores. I have
identified 3 cases:

● Tryptophan (TRP) side chain - C base;
● TRP side chain - U base;
● Phenylalanine (PHE) side chain - G base.

PHE and TRP side chains contain an aromatic ring, so all listed pairs can form pi-pi stacking
interactions, which are crucial for protein-ssRNA binding. The contacts themselves could be
underrepresented or missing entirely from the benchmark that was used for the optimisation process,
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as this was composed of dsRNA. A coarse-grained representation of the side chains of TRP and C, as
well as their indexation within the ATTRACT parameters system, are presented in Fig. 3.3.

I focused on the exploration of the TRP-C pair to understand the issue more deeply, assess if it
affects the docking of the fragments containing the TRP-C pair, and, if it is the case, formulate
possible ways to address it. This exploration consisted of the identification of the structures containing
TRP-C pair at a close distance, assessment of the scores given to such native structures, examination
of the docking statistics for such structures and, finally, manual fine-tuning of the relevant docking
parameters to enhance docking results.

Figure 3.3 - Schematic representation of the beads of interest. The beads of the side chain of C are in
purple, and the beads of the side chain of TRP are in green.

3.4.2 Experiments

3.4.2.1 Preliminaries

An example of TRP-C interaction was taken from a native protein-ssRNA complex (PDB 5YTX,
protein 65 and RNA 5, YB1 cold-shock domain in complex with CAAC, Fig 3.4). The score for each
pair of beads was calculated using ASF with original parameters (Appendix A.2). The results, in a
form with r the inter-bead distance, are as follows:𝑆(𝑖, 𝑗, 𝑟)

𝑆(25,  12,  4. 5) =  + 0. 86
𝑆(25,  13,  4. 2) =  + 106. 62
𝑆(25,  14,  3. 5) =  + 3. 11
𝑆(26,  12,  3. 8) =  + 0. 84
𝑆(26,  13,  4. 1) =  − 1. 45
𝑆(26,  14,  4. 8) =  − 1. 39

Theses numbers indicate that the most unfit parameter pair is the one describing interactions
between beads 25 and 13, i.e. and .ε

25 13
σ

25 13

The docking results of both fragments of 5YTX are given in Tab 3.2. The RNA sequence is
CAAC. For fragment 1 the distance from TRP to C is ~12Å, and for fragment 2 it is ~4Å.
Additionally, fragment 1 has 13% fewer bead-bead contacts under 8Å compared to fragment 2, which
typically is a disadvantage in fragment-based docking.
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Figure 3.4 - An example of TRP-C interaction (blue), which is, in this case, a pi-pi stacking
interaction (pdb code 5YTX: YB1 cold-shock domain in complex with 3’-CAAC-5’, where the last
nucleotide (5’) is interacting with TRP).

Fragment 1 exhibits a higher number of sampled near-natives for LRMSD under 2Å and 3Å
compared to fragment 2, despite having 7% fewer contacts under 8Å in the native structure. The
percentages of top-ranked near-natives for both fragments show minimal differences. The observed
dissimilarity in sampling these relatively similar fragments suggests an influence of the distance
between TRP-C residues on this process, indicating that close TRP-C contact hinders the sampling.

Table 3.2 - Sampling and scoring results of two fragments of 5YTX complex. The native structure of
fragment 2 contains TRP-C interaction.

LRMSD<2Å LRMSD<3Å LRMSD<5Å Native
score

TRP-C
distance

TRP-C
scoreall top20% all top20% all top20%

Frag1 8 88% 306 78% 9505 53% -21 12Å 0

Frag2 0 0% 158 87% 16243 59% +76 4Å +97

3.4.2.2 Dataset and Initial Analysis

A benchmark of complexes where a bead pair (25,13) is present and the distance between these
beads is under 7Å (empirical threshold) was derived from our high-resolution experimentally solved
protein-ssRNA benchmark (see Chapter 4). This TRP-C containing benchmark comprises 15
complexes, released before February 2021. These complexes were manually examined to determine if
the (25,13) interaction resembles pi-pi stacking (Tab 3.4), to further assess if the presence of the
stacking influences the docking performance. Stacking interactions were found in 9 complexes.
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Initial analysis

The scores for the TRP-C pair were calculated for each structure, as well as the score of the
native fragment containing the target C (nucleotide C which is 7Å or closer to TRP residue) (Tab 3.3).
For all 15 structures, the target pair of residues has a positive score. For 4 structures, the fragment
containing target C has negative scores, despite the positive score of the TRP-C pair (in green). For 4
structures, the fragment score is abnormally high, but not due to the TRP-C pair (in grey). For the
remaining 6 structures, the fragment score is high due to the score of the target pair. Interestingly, for
all these 6 structures, and only for those, the target pair forms a stacking interaction.

Table 3.3 - Distances between beads (25, 13) in the benchmark, and corresponding docking results.
The scores of a TRP-C pair of residues are indicated as ‘TRP-C score’. the score of a native fragment
containing C (in the middle of the fragment, if possible, on the edge otherwise) is indicated as “Native fragment
score”.

Complex,
PDB_id

Distance,
Å Stacking TRP-C

score

Native
fragment
score

LRMSD<3Å LRMSD<5Å

all top20% all top20%

1F7U 4.68 yes 31.81 37.86 0 - 25 12%

3ADC 4.07 yes 137.33 132.53 0 - 138 17%

5YTS 4.45 yes 61.43 56.21 260 92% 25661 70%

5YTV 4.45 yes 61.21 41.23 - - - -

5YTX 4.23 yes 97.14 75.92 158 87% 16243 59%

6A6J 4.58 yes 45.23 36.02 52 75% 4181 74%

2CSX 6.63 yes 3.28 -14.19 2 0% 43 9%

2CT8 6.59 yes 3.17 -14.71 1 0% 29 3%

4Z0C 5.51 yes 4.25 56.47 0 - 77 1%

2HGH 5.46 no 5.15 49.89 7 0% 1506 12%

3TS2 6.91 no 0.95 72.43 0 - 25 76%

6KTC 5.93 no 0.32 198.49 51 88% 4697 80%

6KUG 5.79 no 1.14 274.16 58 91% 4582 86%

2FMT 6.25; 5.71 no 2.49 -6.77 176 17% 5036 16%

6SQN 5.89 no 0.57 -11.64 22 100% 428 81%

Over 100 near-natives with LRMSD<3A were sampled for 4/15 cases. If the threshold is relaxed
to 5A, the number of cases increases to 10/15. I found a positive correlation (Pearson correlation,

) between the TRP-C score and a number of sampled poses with LRMSD<5Å. For this𝑟 = 0. 39
thresholds, in approximately ½ of the cases, the percentage of near-natives in the top20% is low
(under 20%), while on a general benchmark (1640 fragments without target TRP-C pair and with at
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least 1 near-native sampled) this occurs only for ¼ of the cases, which indicates that there is some
room for improvement.

Interestingly, for 4 structures in the TRP-C benchmark, both sampling and scoring are very
successful, despite the unfavourable score of the native fragment. This could indicate some kind of
compensation, i.e., a very low score assigned to some adjacent pair of residues.

3.4.2.3 Protocol

In an attempt to improve the scoring of the target fragments, i.e. fragments containing a target
nucleotide, as well as to examine how the change of a small subset of the docking parameters affects
the scoring, TRP-C parameters were tuned manually. The following protocol was implemented:

● The TRP-C parameter values were adjusted empirically, as shown in Tab 3.4; the displayed

value was chosen to move the point, where , closer to the beginning of theε
25 13

𝑈
25 13

= 0

coordinates, i.e. shorten the clash distance, and was chosen to move the pointε
25 13

𝑈
25 13
𝑚

down the y-axis, i.e. assign lower energy to given pair of beads (Fig. 3.5);
● The native poses of the target fragments were scored using the updated parameter set, with an

expectation of obtaining lower scores compared to those given by the original ASF
parameters;

● The target fragments were subjected to re-docking using the updated parameter set;
● A comparison was conducted between the number of the near-native poses sampled using the

updated parameter set and the original set.

a) b)

Figure 3.5 - Influence of changes of the values on the ASF. The curve given by the values (14;(ε,  σ)

8) is shown in green. The curve given by updated parameter values is in blue. The point ( ) for𝑟𝑚;  𝑈𝑚

each curve is shown in red and its coordinates are displayed on the graph.
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Table 3.4 - The principle of updating target parameter values.

ε σ

Par1 , the other such thatε
25 13

= 3. 72

over parameters set excluding𝑈
𝑖𝑗
𝑚 = 𝑎𝑣𝑔(𝑈𝑚)

target parameters

, the other such thatσ
25 13

= 15. 00

over parameters set excluding𝑟
𝑖𝑗
𝑚 = 𝑎𝑣𝑔(𝑟𝑚)

target parameters

Par2 ; the other unchangedε
25 13

= 3. 72 , the other unchangedσ
25 13

= 15. 00

Par3 Same as PHE-C Same as PHE-C

Par4 Such that the curve is flat Such that the curve is flat

3.4.3 Results and Discussion

The application of the updated parameter set Par1 has shown a deterioration in the performance
compared to the original set - the number of sampled near-natives diminished. Par2 and Par3
performed similarly but did not surpass the performance of the ASF parameters. Finally, Par4, “the
flat parameters”, were tested to see the consequences of complete removal of the TRP-C interactions
from the docking process, and yet again, the results were not much different from the ASF (Appendix
A.2). Beyond this point, the experiments were terminated, as the re-docking procedure is
computationally expensive and it is clear that a simple manual tuning is not effective.

These observations, as well as the initial analysis of assigned scores vs sampling of the
benchmark of 15 structures with TRP-C, suggest that the original parameter set could compensate for
unfavourable TRP-C scores by assigning highly favourable scores to the other pairs of residues. Thus
there is a possibility that it is not feasible to update a part of the parameter set in isolation and that in
order to improve the scores for TRP-C, the whole set should be re-optimised. However, this
hypothesis needs to be tested. It is possible to perform such a test for a subset of the target parameters
using a systematic approach and a coarse grid, as described below.

Systematic change of a subset of the target parameters

Let us estimate the computational time required to evaluate the performance of parameter sets
that differ in a subset of the parameters , where , so 6 pairs(ε

𝑥𝑦
;  σ

𝑥𝑦
) 𝑥 ∈ {25, 26},  𝑦 ∈  {12, 13, 14}

of in total. Let us also assume that the values of these should remain discrete and lay(ε; σ) (ε
𝑥𝑦

;  σ
𝑥𝑦

)

within [min; max] boundaries of the original parameter set (including all 1054 parameters). However,
the value appears to be too high, as many of the native poses have contact with a𝑚𝑎𝑥(σ) =  6. 4
distance under 6.4Å, and the appears to be too small as the minimum distance of those𝑚𝑖𝑛(σ) =  2
contacts is 4.07Å (Tab 3.4). Thus, let’s consider the new range for sigmas and keep theσ ∈ [3;  5]
existing range for epsilons, . Finally, to obtain new values, let’s discretiseε ∈ [0. 02;  20] (ε

𝑥𝑦
;  σ

𝑥𝑦
)

-range with step size 1, and -range with step size 5. This gives 3 distinct values for and 4 σ ε σ
𝑥𝑦

distinct values for . In this case, the total number of possible tuples is equal to 12, andε
𝑥𝑦

(ε
𝑥𝑦

;  σ
𝑥𝑦

)

subsequently, the number of possible parameter sets is equal to distinct sets.126 = 2, 985, 984
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Straightforward scoring of a single pose using 1 CPU takes in the order of 1 second. CAPIDS’s
cluster consists of 300 CPUs. Assuming the test set consists of 10 fragments, scoring the native poses
will take an absolute maximum of:

𝑛𝑢𝑚_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑒𝑡𝑠 · 𝑛𝑢𝑚_𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 · 𝑡𝑖𝑚𝑒_𝑝𝑒𝑟_𝑡𝑎𝑐𝑘 
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝐶𝑃𝑈𝑠  = 2,985,984 · 10 ·1 

300 = 99532. 8 𝑠𝑒𝑐 ≈ 27. 7 ℎ𝑜𝑢𝑟𝑠 

It is likely that some sets will assign a positive score to the native poses. Such sets are to be
removed. Since the estimation of this number without additional computational experiments is not
possible, let’s carry on the calculations over all possible sets. Scoring a pool of 10 million poses (1
CPU) takes in the order of 1 hour. Thus, rescoring 10 pools of poses with all sets will take

, which is positively unfeasible. However, the2,985,984 · 10 · 60 
300 =  5, 971, 968 𝑚𝑖𝑛 ≈  11. 4 𝑦𝑒𝑎𝑟𝑠

bead-bead distances can be precomputed, as well as the scores for all other pairs of bead types, which
could accelerate computations significantly.

Alternatively, one could also keep only x sets that give the best average score for the native
poses. The value of x can be adjusted to the amount of time dedicated to this experiment. During 2
months of computations, one could test 43800 sets (~1.47% of all sets, possible under given
conditions); during 3 months - 65700 sets (2.2%).

Another alternative is to test only 4 bead pairs out of 6, keeping the pairs with indexes (26,  13)

and unchanged. Such choices lead to distinct sets, which can be tested(26,  14) 124 = 20, 736
(applied to score 10 pools of 10 million poses) in .20,736 · 10 · 60 

300 =  41, 472 𝑚𝑖𝑛 ≈  5. 5 𝑚𝑜𝑛𝑡ℎ𝑠

This is still a hefty chunk of time, thus, it is appealing to streamline the process and test 50% of sets
that give the best average score for the native poses or develop a faster way to score poses. There is a
risk of facing the memory issues, which may force one to limit the percentage of sets to undergo
testing even further.

After testing the sets via rescoring, one can select several of the most promising sets to test their
sampling performance via re-docking. Docking with 30 million starting points and 30 CPUs takes at
least 6 hours depending on the size of the protein, so only a handful of the sets can be tested via
re-docking. Generally speaking, it is possible to apply positional restraints to reduce the search space
and lower the number of starting positions. This will lower the time of each docking run significantly,
allowing to test more sets via sampling. For example, lowering the number of starting positions from
30 million to 100, which is acceptable for data-driven docking, decreases execution time from 6 hours
to 10+/-5 minutes (on 30 CPU).

Stacking Problem

We define a stacking problem as an inadequate representation of the stacking interactions within
the ATTRACT force field. Out of 6 non-redundant fragment TRP-C containing structures, only one
had a negative native score (Tab 3.5). Among these 6 cases, the TRP-C pair within ~4.5Å causes such
a high score in 4 cases (1F7U, 5YT*, 6A6J, 3ADC). For the last case (4Z0C) the main reason is the
proximity of the GLU-C pair (C bead GC1_12 is 3.88Å from GLU bead CB_10 giving a score of +30,
as ). Stacking interaction plays an important role in RNA-protein interactions, and moreσ

10 12
=  5. 1

particularly in the case of RRMs, thus addressing these high scores and possibly incorporating explicit
score rewards for stacking could benefit the docking.

Explicit score rewards for stacking require the identification of both stacking interactions in the
pose and an appropriate score value for the reward. Given that the ATTRACT coarse-grained model
has three to four per RNA base, determining the spatial orientation of the aromatic ring is feasible.
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However, amino acid rings only contain two beads, limiting the orientation determination. Regardless
of this limitation, one may add a score reward for the poses in which the distances between RNA
beads to protein beads are in a certain range and are similar under a certain threshold. As an
alternative approach for a more accurate stacking identification, one could either introduce a new
ghost bead for amino acids (such that would only affect the pose's score upon the detection of a
stacking interaction) or transform poses with potential stacking into an all-atom representation. The
value of the score reward could be determined empirically, or using binding energies as reference
values (see the following section).

Table - 3.5 Structures with stacking.
For the redundant structures (5YTX, 5YTS and 2CSX, 2CT8) the avg values are given.

Complex
PDB_id

Distance,
Å

TRP-C
score

Native
fragment
score

LRMSD<3Å LRMSD<5Å

all top20% all top20%

1F7U 4.68 31.81 37.86 0 - 25 12%

5YTX/S 4.37 73.26 57.78 209 89% 20779 65%

6A6J 4.58 45.23 36.02 52 75% 4181 74%

3ADC 4.07 137.33 132.53 0 - 138 17%

2CSX/T8 6.61 3.23 -14.45 1 0% 37 6%

4Z0C 5.51 4.25 56.47 0 - 77 1%

For testing each possible solution, a larger and more diverse benchmark of structures with and
without stacking is required (beyond TRP-C targets). Resources like InteR3M or PISA-lite offer a
means to identify stacking interactions without manual assessment.

Measuring binding energies associated with stacking interactions

One may use the measurement of binding energies to estimate a score reward assigned to the
residues in the stacking orientation. A project for the measurement of such energies was initiated
within the RNAct project. Collaborating with a group of both computational and experimental PhD
students (Joel Roca Martínez, Hrishikesh Dhondge, Niki Messini, Rosa Anahí Higuera) our objective
was to determine the energies of the interaction between the sex-lethal protein and a poly-U ssRNA,
for which the PDB X-ray structure 1B7F of the complex is available.

The concept was to first measure values for the wild type, then introduce amino acid mutations
that would change the stacking to another type of interaction, while preserving binding, followed by
measuring new affinity values. This approach in theory allows us to estimate the difference in the
affinities associated with stacking versus non-stacking interactions.

The candidates for mutations were identified (I128Y and D172R). The essential computational
checks were completed to ensure that the mutations would not change the 3D structure of the protein,
by Joel Roca Martínez. Regrettably, the experimental aspect encountered delays beyond our
expectations, ultimately leading to the premature termination of this project.
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3.6 Conclusion
In this chapter, we have delved into the specifics regarding the coarse-grained representation used

in ATTRACT and the original set of protein-ssRNA docking parameters of the ASF, which in turn is
used simultaneously for sampling and scoring. As ssRNA’TTRACT suffers from the scoring problem
due to the parameters of ASF, we have applied the MCSA optimisation protocol to address this
problem. Despite extensive testing involving multiple hyperparameter sets, none of the resulting
parameter sets has outperformed the original one. This has prompted us to explore potential directions
for further improvement of the ASF parameters. These directions have included the generation of a
new initial parameter set based on binding energies derived from the OPLS all-atom force field and
the development of three distinct parameter sets - two for the most common RNA motifs, 'AAA' and
'UUU', and one for all remaining motifs. More importantly, our findings have led us to a hypothesis
that a single parameter set may be insufficient for scoring protein-ssRNA fragment-based poses. This
idea will be explored in the following chapter.

In the second part of this chapter, we have focused on the analysis of a small subset of parameters
known to assign unfavourable scores to native poses, using TRP-C parameters as an example. We
have established a small benchmark of experimental structures with pertinent interactions. Notably,
we have discovered that all native TRP-C geometries receive unfavourable scores. Intriguingly,
despite this, both sampling and scoring are relatively successful in approximately half of the
protein-fragment cases. We have conducted several attempts to empirically refine the target parameter
values to enhance sampling and investigate the impact of these updates on the overall ASF
performance. The results, which have revealed performance highly similar to ASF despite the use of
different target parameter values, have raised questions about the feasibility of optimising the
parameter subset in isolation. This feasibility may be tested via a systematic approach, proposed in
this chapter.

In the next chapter, we will outline the development of a novel knowledge-based scoring function
designed to replace ASF in the ssRNA’TTRACT method, intending to address the scoring problem.
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4.1 Aims
In the previous chapter, we discussed several attempts to enhance ssRNA’TTRACT performance

and address the scoring problem by optimising parameters of ASF. The results have been unsuccessful
and have led us to the conclusion that more than one parameter set is required for more accurate
sampling, as protein-ssRNA binding modes are very diverse.

In this chapter, we introduce HIstogram-based Pseudo-Potentials (HIPPO), a novel scoring
potential designed for protein-ssRNA fragment-based docking poses. HIPPO is based on the analysis
of relative frequencies of bead-bead distances in near-native and non-native poses. While the
comprehensive protocol and the results of the application are provided in [263 or Appendix B.1], this
chapter offers a concise summary of the preliminary experiments that have led to HIPPO's
development and primarily focuses on the outcomes of applying HIPPO to new protein-ssRNA
complexes, which were neither part of the training nor testing of the scoring potential.
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4.2 Preliminaries to the Histogram-Based Approach

4.2.1 Method

To achieve our goal of enhancing the protein-ssRNA scoring, we developed a novel
histogram-based approach, which iteratively adjusts the parameters of the Lennard-Jones energy curve
to the frequency of occurrences of bead-bead pairs at certain distances in the near-native poses vs
non-native poses in ATTRACT coarse-grained representation.

For each -pair of interacting bead types ( is for the bead of the protein, is for the bead of the𝑖𝑗 𝑖 𝑗
RNA), we:

● convert the current energy function into a log-odds histogram𝐸
𝑖𝑗
𝑎𝑡𝑡𝑟(𝑟) =  ε

𝑖𝑗

σ
𝑖𝑗
8

𝑟8 −
σ

𝑖𝑗
6

𝑟6( )
(Fig 4.1, a) of the expected occurrences of bead-bead distances (discretized into bins ) in𝑟
native/non-native poses, using the Boltzmann equation , where is𝑙𝑜𝑔(𝑃(𝑟

𝑖𝑗
)) =  − 𝑘𝑇𝐸

𝑖𝑗
𝑘

the Boltzmann constant, is absolute temperature, is the distance between bead in the𝑇 𝑟
𝑖𝑗

-pair, is the energy approximation for the -pair given by the ASF;𝑖𝑗 𝐸
𝑖𝑗

(𝑟) 𝑖𝑗

● obtain the corresponding histogram on observed occurrences of bead-bead distances in
native/non-native poses by counting the number of the corresponding -pair within each𝑖𝑗
distance bin, over the training set of the docking poses. This histogram corresponds to the
residual error of the energy function and is titled residual histogram (Fig 4.1, b). In a
residual histogram, the bars in quadrant I signify the enrichment in near-natives, while the
bars in quadrant IV signify the depletion in near-natives.

● sum up the log-odds and residual histograms (Fig 4.1, c) and fit the energy parameters to the
resulting histograms (Fig 4.1, d). At the end of this process, a new pair of docking

parameters ( is obtained for the current -pair of bead types.ε'
𝑖𝑗

, σ'
𝑖𝑗

) 𝑖𝑗

When the procedure is finished for all pairs of bead types, the benchmark is re-docked with the
new parameter set, and a new iteration of the procedure begins. This procedure is repeated until
convergence - until the residual histogram is flat. After convergence, this procedure should generate
equal distributions of bead-bead distances in near-native poses and non-native poses, which are thus
indistinguishable by bead-bead distance criteria. The number of near-native poses will then be
completely optimized based on the bead-bead distances.
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a) b)

c) d)

Figure 4.1 - A graphical example of the a) Conversion of the energy curve, displayed in dark blue,
into a log-odds histogram, displayed in green. Each histogram bar is defined for the respective
distance bin; b) Residual histogram; c) Summation of the residual (blue) and log-odds (green)
histograms, which results in the so-called resulting histogram; d) Fitting of a curve onto the resulting
histogram. The old curve is displayed in dark blue (solid line), and the fitted curve is displayed in red
(dotted line). The shape of the curve is a limiting factor.

4.2.2 Results

We executed one iteration of the histogram-based approach on a toy example. The training set
consisted of 3 protein-ssRNA complexes (1M5K C_1_92 B_35_44; 1B7F A_1_167 P_3_12 and
1WMQ A_1_B_143 C_1_7), and the test set of 3 different complexes (1VBX A_1_95 B_49_58,
1DRZ A_1_91 B_48_57 and 2ANN A_1_148 B_8_16).

Docking poses for each training and test case were generated using the ATTRACT docking
engine following the process described in [263]. The threshold for near-natives was set at 3Å and for
non-natives at 5Å. Then, all sampled poses in the training set were pooled together and one iteration
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of the histogram-based approach was executed resulting in a set of histograms for each pair of bead
types. As a first test, this set of histograms was used to score the docking poses of the test cases.

The scoring of a docking pose with a histogram set is done by retrieving a histogram-based score
for each -pair of beads located at a distance , and summing up all these scores:ℎ(𝑖, 𝑗, 𝑟) 𝑖𝑗 𝑟

(1)𝑆𝑐𝑜𝑟𝑒
ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚−𝑏𝑎𝑠𝑒𝑑

=
𝑖,𝑗,𝑟
∑ ℎ(𝑖, 𝑗, 𝑟)

Ranking the docking poses by a histogram set appears to be promisingly more accurate compared
to the ranking by the ASF (Fig 4.2).

Figure 4.2 - An example of the rankings of the docking poses generated for the test case 1VBX_GCA.
LRMSD is shown on the x-axis, and rank on the y-axis is given by the ASF (orange) or by the
histogram (blue). The purple vertical line (x = 3) separates the near-native poses from the others
(non-natives and intermediate).

However, the process of fitting the energy curves to the corresponding histograms produced
notably poorer results compared to the ASF, which suggests that the Lennard-Jones curve is not the
most efficient shape for fragment-based scoring. Therefore, we shifted our focus to developing a
histogram-based scoring approach without the fitting step, eventually creating the HIPPO, as briefly
outlined in the following section and detaild in the original paper. In the realm of the
knowledge-based scoring functions, HIPPO is closest to the DECK-RP [117], as it is also based on the
docking poses.

4.3 HIPPO protocol
As mentioned before, HIPPO is based on the analysis of the relative frequencies of bead-bead

distances in near-native and non-native poses. HIPPO is a composite function, consisting of four
distinct scoring potentials. Here, we provide intuition behind the process of deriving a single scoring
potential 𝓗, followed by the protocol to derive HIPPO (four scoring potentials) (Fig 4.3).
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Figure 4.3 - Graphical pipeline for building HIPPO as a collection of four histogram sets (𝓗). a) Transition
from a protein-RNA complex to a protein-ssRNA complex with ssRNA that is at least 3 protein-bound
nucleotides long. This step was achieved using ProtNAff. b) Creation of a pool of labelled docking pose using
ATTRACT. Each protein-fragment case of protein-ssRNA complex is docked and each docking pose is labelled
as near-native or non-native. c) Construction of the distance arrays, refinement of the distance arrays and
derivation of the histogram set 𝓗 from refined distance arrays. The frequency of occurrences of individual
bead-bead distances within a single pool of docking poses are captured within distance arrays, one array per
each pair of bead types. c1) Close-up of contacts between RNA bead j=1 and protein bead =1 and .𝑖 = 1 𝑗 = 15
c2) An intuitive schema of the distance array for the pair of bead types is shown as an expanded(𝑖 = 1; 𝑗 = 1)
plot. The distance ranges are shown on the x-axis, and the numbers of occurrences of the distances are shown on
the y-axis. For each distance range, the number of occurrences for the near-native poses is displayed as a blue
bar, and for the non-natives as a red bar. The blue dashed line from c1 to c2 shows the contribution of the
contact to the near-native distance array, range2. The other distance arrays (for other pairs of bead types) are not
shown (collapsed). c3) An intuitive schema of the refined distance array for the pair of bead types

is shown as an expanded plot. Due to the relatively low number of near-native contacts in(𝑖 = 1; 𝑗 = 1)
range1, it is merged with , forming a new *. The following , which contains a sufficient𝑟𝑎𝑛𝑔𝑒2 𝑟𝑎𝑛𝑔𝑒1 𝑟𝑎𝑛𝑔𝑒3
number of near-native contacts, remains unchanged and is renamed as * to preserve the range order.𝑟𝑎𝑛𝑔𝑒2
Finally, , which also contains an insufficient number of near-native contacts, is merged with to𝑟𝑎𝑛𝑔𝑒4 𝑟𝑎𝑛𝑔𝑒5
form a new *. c4) An intuitive schema of the histogram set 𝓗, derived from the refined distances arrays,𝑟𝑎𝑛𝑔𝑒3
which are in turn built from the pool of the docking poses of the case1. A histogram for the pair of bead types

is shown as an expanded plot, other histograms are collapsed. d) Schematic pipeline of the(𝑖 = 1; 𝑗 = 1)
partitioning algorithm, employed to derive a collection of four histogram sets out of all sets.
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A single scoring potential 𝓗 is derived from a pool of docking poses of a single data case
(protein-bound ssRNA fragment and corresponding protein). First, the frequencies of occurrence of
each bead-bead distance, discretised into distance ranges, are counted separately for near-native and
non-native poses (Fig 4.3, c). This is done individually for each pair of bead types, leading to a set of
the distance arrays (i.e. contact frequency arrays), as many as pairs of beads in the pool of poses,
typically around 500 arrays. As a reminder, there are 17 RNA bead types and 31 protein bead types in
ATTRACT coarse grained representation.

Each distance array is converted into a histogram, capturing the propensity of each contact
distance to occur in the near-native vs non-native poses (Fig 4.3, c4). If a certain contact is
overrepresented in the near-native poses (and correspondingly underrepresented in the non-natives),
this contact is rewarded with a positive score. Otherwise, if a certain contact is overrepresented in the
non-native poses (and underrepresented in the near-natives), this contact is penalised with a negative
score. The absolute value of these scores is determined based on the fraction of the given distance
among all observed distances for this pair of bead types.

Upon converting all distance arrays into histograms, a single scoring potential 𝓗 is obtained, with
each histogram corresponding to each pair of bead types present in the pool of poses.

Applying 𝓗 to a data case involves scoring and ranking its docking poses. The process assigns a
histogram-based score to each pair of beads within a pose, aggregating these scores. The individual
score for a pair of beads is determined by the height of the bin corresponding to the distance between
the beads. This bin should be taken from the histogram with corresponding bead types.

HIPPO is derived using all data cases of the training set, with subsequent application to the data
cases of the test set to assess HIPPO’s performance. This protocol consists of the following steps (Fig
4.3, d):

1. Derive scoring potential 𝓗 from each training data case;
2. Apply each 𝓗 to all training data case, excluding the case from which 𝓗 was derived.

Calculate percentage of the near-native poses (out of all sampled near-natives) within top5%
(5% of top ranked poses);

3. Label each pair (data case, 𝓗) as successful if the percentage of the near-native poses in the
top5% is 60% or higher;

4. Select four scoring potentials 𝓗 that maximise the number of cases for which at least one pair
(data case, 𝓗) is labelled as successful.

Choosing four as the number of scoring potentials was determined through testing. Fewer
potentials resulted in fewer successful pairs, while more potentials did not increase success rate.

To apply HIPPO to a data case, its docking poses are scored with each 𝓗 separately.
Approximately the top 5% of poses from each ranking are merged to achieve a list corresponding to
the top20%. If redundant poses are detected, only the top-ranked is retained, and additional poses are
added until the top 20% is reached.

While working on the described protocol, we experimented with additional ideas, but
unfortunately, the results were unsatisfactory. These ideas are neither described in the paper nor this
chapter but can be found in Appendix B.2 Several potential approaches for tuning HIPPO are
described there as well (Appendix B.3).

4.4 Application to New Complexes
The final HIPPO consists of 4 distinct potentials, derived from the following protein-trinucleotide

cases: 1M5K-GCA (protein: C_1_92; trinucleotide: B_38_40), 5MPG-UAG (A_1_97; B_2_4),
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4N0T-AGA (A_1_363; B_20_22 ), 6DCL-UUA (A_1_B_171; C_7_9). For brevity, we refer to these
potentials as 𝓗I, 𝓗II, 𝓗III, and 𝓗IV, respectively, throughout the text. To assess the generalisability of
HIPPO, we applied it to a benchmark of protein-ssRNA complexes not used during the creation and
testing of HIPPO.

Furthermore, we investigate the applicability of the best-performing potentials (BP) for
incremental docking. In this scenario, a relatively low number of top-ranked poses is retained for one
fragment, and a higher number of top-ranked poses is kept for adjacent fragments. The retained poses
are assembled into models of the full ssRNA chain. The concept of BP involves using a single,
best-performing potential out of 𝓗I, 𝓗II, 𝓗III, and 𝓗IV for each protein-trinucleotide case. This
approach, although currently only possible in a test case, eliminates false positive poses, given by the
less suitable potentials, and typically results in a greater number of near-native poses among the
top-ranked ones.

To evaluate the suitability of the BP for incremental docking, we assembled the best-docked
fragment with the adjacent fragments on each side. The results of both experiments, scoring and
assembly, are compared with the performance of the ASF below.

4.4.1 Scoring

4.4.1.1 Data

The benchmark consists of the experimentally solved protein-ssRNA structures that (i) are solved
with NMR or X-RAY with resolution 3Å or higher, and (ii) contain a 5-nucleotide or longer ssRNA
sub-chain, bound to the protein (i.e. at least 5 pairs of protein-RNA heavy atoms were located within
6Å from each other). It can be separated into two subsets:

● Subset ‘newRRM’ consists of 6 RRM-ssRNA complexes that were deposited to PDB after the
date the benchmark for HIPPO was collected (after February 2021). This set consists of 29
distinct data cases (1 case is 1 protein-trinucleotide structure);

● Subset ‘nonRRM’ consists of 150 protein-ssRNA complexes (519 cases). All proteins in this
set do not contain an RRM domain, which was verified using InteR3Mdb. These complexes
were deposited to PDB before February 2021. All cases of this subset are non-redundant on
the bead-bead contact level (see description in the paper, §2.1.4) with each other and with
cases used for the training and testing of HIPPO.

In this section, we refer to a subset of all cases that share the same protein as a ‘complex’.

4.4.1.2 Protocol

All complexes were docked using ATTRACT, with the same setting used for HIPPO derivation.
For each protein-trinucleotide case, the 10 million docking poses, top-scored by the ASF, were
retained. Next, the poses were scored and ranked by each of the 4 potentials comprising HIPPO
separately, and then approximately the top5% of each ranking were pooled together, removing
redundant poses until the total number of 20% (2,000,000 poses) was reached.

4.4.1.3 Results and Discussion

The scoring is considered successful / very successful if the top20% contains at least 60% / 80%
of all sampled near-native poses (LRMSD<5Å). The evaluation revealed that (Tab 4.1):
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● On ‘newRRM’, HIPPO’s success rate (over all 29 cases) is 55%, while it is only 14% for the
ASF. HIPPO is very successful for 28% of cases, while the ASF is for none of the cases;

● On ‘nonRRM’, HIPPO’s success rate (over all 519 cases) is 40%, while it is 34% for the ASF.
HIPPO is very successful for 28% of cases, and the ASF is very successful for 12% of cases.

On ‘newRRM’, HIPPO ranks on average an additional 15% of the near-natives in the top20%
compared to the ASF. For ‘nonRRM’ this number is equal to additional 2% of the near-natives in the
top20% (Tab 4.2, columns ‘per case’).

Table 4.1 - Comparison of the ASF, HIPPO and BP success rates (%) over the cases and over the
complexes.
The scoring is considered successful / very successful if the top20% contains at least 60% / 80% of all sampled
near-native poses.

newRRM nonRRM

Per case Best case
per complex Per case Best case

per complex

Over
60%

Over
80%

Over
60%

Over
80%

Over
60%

Over
80%

Over
60%

Over
80%

ASF 14 0 50 0 34 12 47 20

HIPPO 55 28 100 66 40 28 53 41

BP 90 70 100 100 72 54 85 69

For incremental docking, at least one fragment per complex should be well-docked. In terms of
the scoring, this translates into the requirement for at least one fragment per complex to have a high
percentage of the near-natives in the top-ranked poses. Thus, we also measured the success rate per
complex, i.e. the number of complexes where, for at least one fragment, 60% / 80% of the
near-natives were in the top20%. The results are the next (Tab 4.1, columns “best case per complex”):

● On ‘newRRM’, HIPPO’s success rate per complex is 100%, while for the ASF it’s 50%.
HIPPO is very successful for 66% of complexes, while the ASF is very successful for none of
the complexes;

● On ‘nonRRM’, HIPPO’s success rate per complex is 53%, while for the ASF it’s 47%. HIPPO
is very successful for 41% of complexes, while the ASF is very successful for 20% of
complexes.

Table 4.2 - Comparison of the average percentages of the near-natives in the top20% ranked poses by
the ASF, HIPPO and BP.

newRRM nonRRM

Per case Best case per complex Per case Best case per complex

ASF 38 58 45 55

HIPPO 53 86 47 62

BP 83 99 73 85
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For each complex, we calculated the percentage of the near-natives ranked in the top20% for the
best-scored fragment (i.e. the maximum value among all fragments). Then we averaged these values
over all complexes. HIPPO ranks on average an additional 28% of the near-natives in the top20%
compared to the ASF on ‘newRRM’, and additional 7% on ‘nonRRM’ (Tab 4.2, columns ‘best case
per complex’).

To sum up, HIPPO outperforms the ASF both on ‘newRRM’ and on ‘nonRRM’. Even better
results are achieved if the BP is used. The BP achieved ~25% higher success rate both per case and
per complexes compared to HIPPO (Tab. 4.1). For ‘newRRM’, the best potential ranked on average
99% of the near-natives in top20% for the best-ranked fragment per complex. For ‘nonRRM’ this
number is 85%. Similarly to the results obtained during the initial cross-validation of HIPPO, each of
the 4 potentials takes the role of the best potential for approximately a quarter of the cases: 32%, 27%
23% and 18% on ‘nonRRM’; and 31%, 35%, 10% and 24% on ‘newRRM’ for 𝓗1, 𝓗2, 𝓗3, and 𝓗4
respectively.

Although HIPPO demonstrates improved performance compared to the ASF, there is still room
for enhancement. For instance, when considering only the top5% of poses, BP, HIPPO and the ASF
were successful in 15/519, 7/519, and 1/519 cases for 'nonRRM', respectively. There are two
promising directions for further HIPPO development. First, creating a model capable of identifying
the best potential for a given case could significantly improve its performance, as discussed in the
original paper and now confirmed by the new results. Second, an iterative optimisation of HIPPO,
possibly by the histogram-based method, is worth exploring. Preliminary results suggest that
converting a scoring potential into an energy curve leads to a significant loss of signal. However,
HIPPO could be employed as a sampling function without this conversion, using the MC-based
ATTRACT sampling procedure. If HIPPO's sampling performance matches or surpasses that of the
ASF, it would be an indication to continue exploring the histogram-based approach, including
updating a set of potentials based on docking poses obtained through HIPPO. As it is possible to
identify the best potential for each case during training, the histogram-based approach could be
applied separately for each potential, along with the corresponding dataset (set of cases for which the
given potential is best-performing).

HIPPO demonstrates improved performance on 'nonRRM' complexes, despite being exclusively
trained on RRM-ssRNA complexes, suggesting its potential for generalisation. These results further
reinforce the prospect of applying the protocol to derive scoring potentials for other types of
complexes.

4.4.2 Fragment Assembly

As previously mentioned, to compare the effectiveness of BP ranking against the ASF ranking in
incremental docking, we conducted fragment assembly of the best-docked fragment with the adjacent
fragments on each side for several complexes. The assembly procedure has been detailed in §2.4.4.1,
subsection "Assembly Procedure”. The results are detailed below.

4.4.2.1 Data

From the benchmark described in the previous section, we selected the most promising
candidates for the assembly procedure. These are the complexes with 3 adjacent fragments, such that
the middle fragment (hot-spot) has at least 460 near-native poses in the top5% and the remaining 2
fragments (side-fragment) have at least 65 near-native poses in the top5% each (all scored with BP).
In total, 14 complexes were selected, 2 from ‘newRRM’ and 12 from ‘nonRRM’ (Appendix B.4).
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4.4.2.2 Protocol

First, we defined the assembly hyperparameters, which include:
● The overlap in angstroms between the last 2 nucleotides of the -fragment and the first 2𝑖

nucleotides of the ( +1)-fragment;𝑖
● The number of poses of hot-spot used for assembly;
● The number of poses of side-fragments used for assembly (the same for both side-fragments).

We determined suitable hyperparameters for generating at least one near-native chain, i.e. a chain
composed of near-native poses exclusively, by conducting the assembly using solely the near-native
poses. For each overlap value leading to the generation of at least one near-native chain, we
determined the minimum rank of the pose required for each fragment, starting from the hot-spot, to
generate near-native chains. By aggregating these values across the entire dataset, we estimated the
number of poses needed for hot-spots and side-fragments during assembly, thus completing the entire
hyperparameter set. Afterwards, we handpicked several of those hyperparameter sets to perform the
assembly of all poses (not restricted to near-natives).

Each complex in the dataset was assembled using both the BP ranking and the ASF ranking, with
the same hyperparameter set. We compared the percentages of near-native chains produced among all
chains, as presented below.

4.4.2.3 Results and Discussion

The near-native assembly was carried out with the overlap values ranging from 0.5Å to 2.0Å
with 0.1Å increment, and 4 distinct hyperparameter sets were determined (Tab 4.3). All-poses
assembly was conducted using these hyperparameter sets.

Table 4.3 - Hyperparameters for the assembly.

Overlap Poses per hot-spot Poses per side-fragment

Hpar1 0.9Å 100k (top1%) 2mil (top20%)

Hpar2 0.9Å 100k (top1%) 500k (top5%)

Hpar3 1.4Å 20k (top0.2%) 500k (top5%)

Hpar4 1.4Å 10k (top0.1%) 1mil (top10%)

All-poses assembly is considered successful if at least 1 near-native chain has been produced. BP
consistently outperforms the ASF, giving on average 16% higher success rate over all hyperparameter
sets (Tab 4.4). The percentage of near-native chains for each complex for each hyperparameter set can
be found in Appendix B.5.

74



Chapter 4: HIPPO__________________________________________________________________________________________

Table 4.4 - Comparison of the all-poses assembly with AFS vs BP.

Percentage of complexes with at least 1 near-native chain

ASF BP

Hpar1 64% (9/14) 79% (11/14)

Hpar2 50% (7/14) 71% (10/14)

Hpar3 79% (11/14) 100% (14/14)

Hpar4 71% (10/14) 79% (11/14)

For all hyperparameters, I found a consistent positive correlation between the number of
near-native poses of hot-spot and the percentage of near-native chains (Tab 4.5, ‘num _poses_hs to
%_nn_chains’). There is also a consistent correlation between the difference in the number of
near-native poses of hot-spot used for assembly in the BP vs the ASF ranking and the difference in the
percentage of near-native chains (Tab 4.5, poses_hs to %_nn_chains).∆ ∆

Table 4.5 - Correlations across each hyperparameter set.

num _poses_hs to %_nn_chains
poses_hs to %_nn_chains∆ ∆

ASF BP

Hpar1 0.591 0.563 0.415

Hpar2 0.669 0.480 0.340

Hpar3 0.624 0.495 0.490

Hpar4 0.624 0.742 0.400

These preliminary results lead to the conclusion that BP is a suitable scoring function for
incremental fragment-based docking and highlight the need to build a model to identify the
best-performing potential for each fragment. Moreover, BP should be tested as a sampling function
for fragment-based docking through MC-based sampling.

It would be interesting to obtain a more detailed overview of the BP performance. For this, one
could conduct assembly on the extended benchmark, e.g. one that was used for the scoring and even
the RRM-ssRNA benchmark used to derive HIPPO. The selection of the hot-spots could be made
based on the number of near-native poses in the top1%, as this threshold produced the highest
percentage of near-native chains during the preliminary assembly (hpar1). Subsequently, different
hyperparameter sets should be tested to identify the most optimal set.

4.5 Conclusions
In this chapter, we have introduced a novel histogram-based optimisation approach and HIPPO, a

novel scoring potential designed for protein-ssRNA fragment-based docking poses in ATTRACT's
coarse-grained representation. The main specificity of HIPPO is that it is a composite function
comprising four distinct scoring potentials, each capable of covering specific protein-ssRNA binding
modes. The application of these potentials, followed by the aggregation of their results, has yielded a
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more precise ranking compared to the state-of-the-art ASF. HIPPO has notably enhanced the scoring
of the best-docked fragment within each complex, enabling the use of this fragment as an anchor for
incremental docking. We have also introduced the concept of BP, best-performing potential, which is
currently limited to the test case. In this approach, the best-performing potential out of the four is
identified and used in isolation for scoring.

Subsequently, we have presented the results of applying HIPPO and BP to a benchmark of
complexes that were not used during HIPPO's development. Notably, HIPPO has outperformed the
ASF in scoring these complexes, and BP has drastically outperformed both HIPPO and the ASF.

Moreover, we have employed the ASF ranking and BP ranking to assemble poses for a small
subset of 14 complexes (3 fragments per complex). The preliminary results are highly promising, as
BP has surpassed the ASF's performance across all four tested hyperparameter sets. This success
provides strong motivation for the development of a model to derive BP from HIPPO for a given case.

It's worth noting that the protocol used to develop HIPPO (and potentially the model to go from
HIPPO to BP) is a priori applicable to other types of complexes. Moreover, it could be used to address
an inherent limitation of the fragment-based docking approach, hot-spot- and cold-spot-binding. We
explore this topic further in Chapter 6.

The next chapter is dedicated to our work on data-driven RRM-ssRNA docking, with the primary
aim to enhance the sampling.
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5.1 Aims
In the previous chapter, we have introduced a novel scoring function that enhances the scoring

and might improve ab initio sampling for protein-ssRNA complexes. Here, we delve into an
alternative approach to tackle the sampling problem for a specific subset of RRM-ssRNA complexes.
This approach lies in data-driven docking guided by conserved stacking interactions. In this chapter,
we present 'RRM-RNA-dock', a docking pipeline tailored to address the intricacies of RRM-ssRNA
complexes. Additionally, we explore a potential source of experimental restraints that could serve as
guidance for the broader field of protein-ssRNA data-driven docking.
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5.2 Introduction
RRMs are known to have a conserved β1α1β2β3α2β4 structural topology and two consensus

sequences called RNP1 and RNP2, located on β3 and β1 respectively. RNP1 and RNP2 often play key
roles in RNA-binding, as the residue F from the RNP1 position 5 and the residue F/Y from the RNP2
position 2 often form pi-pi stacking interactions with ssRNA nucleotides (Fig. 5.1). This is known as a
canonical binding mode (Fig. 5.2). A more detailed introduction of RRMs and specificities of
RRM-ssRNA binding has been given in §1.3.4.1 and §1.3.5.1 respectively.

a)

b)

Figure 5.1 - Sequence motifs from the alignment of RRM domains for a) RNP1; b) RNP2. The
positions of stacking residues are indicated by the red rectangles. These images were produced with
the help ofWebLogo [264].

5.2.1 Anchored Docking Methodology

Conserved stacking interactions can be leveraged for data-driven docking. A method for iterative
data-driven fragment-based docking has been previously developed and validated on several
RRM-RNA complexes [252]. In the context of this work, the term ‘anchor’ refers to a nucleotide (or
bead) involved in a conserved stacking interaction, and the ‘anchoring amino acid’ refers to the amino
acid involved in the stacking. ‘Anchored fragment’ refers to a fragment which contains one or several
anchors (Fig. 5.2).
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Figure 5.2 - Visualisation of the RRM-ssRNA complex (PDB_ID 1B7F) in canonical binding mode.
Anchors (G_4 and U_5) are displayed in pink, and anchoring amino acids of RRM2 (Y_214 and
F_256 respectively) are in blue. For both are shown in a stick representation.

The previously developed anchored docking protocol involves (i) docking of one or several
anchored fragments with the help of the positional restraints between anchor(s) and its predicted
position(s), followed by (ii) docking of the fragments adjacent to the anchored fragment with the help
of positional restraints between the ends of the anchored fragment and the adjacent-to-it fragment
(Fig. 5.3).

Figure 5.3 - Schematic image of the anchored docking of the anchored fragment (in yellow) and one
adjacent fragment (in green). Predicted anchor position shown in red.

The position of each anchor has been predicted using the positions of the corresponding
nucleotide in known complexes as reference positions. Application of the positional restraints
essentially creates a spherical region around the chosen reference bead (or set of beads) position. If a
pose's corresponding bead(s) is outside this region, an attractive force is applied between the pose and
the selected reference bead(s). This force increases linearly with the distance between the bead and its
reference position. Positional restraints are defined by two parameters, specifically the radius of the
spherical region and the energy penalty.

In case the RNA chain is docked onto a tandem RRM, it is possible to dock anchored fragments
on RRM1 and RRM2, and then iteratively grow the RNA chain in both 5' and 3' directions from these
anchored fragments. In this case, along with short-range positional restraints, long-range distance
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restraints can be implemented to guide the fragment’s orientation towards the anchor located on the
opposite RRM (Fig. 5.4).

Figure 5.4 - Schematic image of the anchored docking of ssRNA on tandem RRM [271]

It is important to note that the accuracy of the docking results is directly influenced by the
predicted positions of the anchor beads used for the restraints. When these positions closely match the
actual positions of the beads in the bound nucleotide (within approximately 1Å), we can reasonably
expect the best docking poses to be located within 1-2Å of the actual nucleotide positions. As the
distances between the real bead positions and the positions used for restraints increase, the quality of
the docking results decreases.

5.2.2 Anchoring Patterns

To improve the accuracy of the anchored docking method, a new set of predicted RRM-ssRNA
anchor positions, called anchoring patterns, was created (Fig. 5.5). An anchoring pattern consists of a
fitting region and an anchor. The fitting region is a stretch of 3 amino acids with the anchoring amino
acid in the middle. When the fitting region of the anchoring pattern is aligned with the target RRM
structure, the position of the anchor in the pattern can be used to drive the docking of an anchored
fragment.

Figure 5.5 - Visualisation of the anchoring pattern. The fitting regions and anchor are in yellow, the
anchoring amino acid’s side chain is in green.
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To ensure the success of the docking process, it's crucial that the anchoring patterns closely
resemble the actual target position. The most straightforward way to achieve such close resemblance
is through the generation of a set of anchoring patterns by clustering the known positions of the
anchors, relative to the fitting region. In this context of clustering, each cluster representative
constitutes one anchoring pattern.

Currently, there is no method for the selection of the best pattern for a given docking case,
therefore the docking procedure must be conducted for each pattern. This results in a substantial pool
of docking poses if a large number of patterns are used. The substantial pool of docking poses leads to
a greater challenge in the identification of the near-natives. Additionally, multiple docking runs
become computationally expensive quickly. Thus, a trade-off must be found when determining the
clustering cutoff. It should be set at a level that yields a limited number of patterns (achieved with a
loose clustering cutoff) while ensuring that each pattern remains sufficiently proximate to its nearest
centre of a cluster (achieved with a tight clustering cutoff).

To obtain anchoring patterns, a novel hierarchical agglomerative clustering (HAC) was
employed. This method is designed to minimise the number of clusters while ensuring that each initial
element remains within a specified distance threshold from at least one of the final patterns [254].
Notably, the representatives of each cluster are not the same as one of the initial elements; instead,
they are centroids of their respective clusters. To assess the similarity between 3D structures and
positions of the same residue, the RMSD was used.

The novelty of this method lies in its combination of hierarchical agglomerative clustering and
the computation of minimum enclosing balls to derive ε-nets of finite sets in a reproducing kernel
Hilbert space. It produces ε-nets with smaller cardinalities compared to state-of-the-art methods.
Unlike classical hierarchical agglomerative clustering, this method stops the algorithm as soon as the
candidate merging produces a set with a minimum enclosing ball radius greater than or equal to ε.
Additionally, the prototypes generated by this method reside in a Reproducing Kernel Hilbert Space,
which can be infinite dimensional, posing no difficulties due to the kernel trick [254].

A set of anchoring patterns was created by Hrishikesh Dhondge by clustering 257 RRM-RNA
structures with conserved stacking. These structures were collected and aligned using InteR3M [96].
The structures with stacking occurring within RNP2 are referred to as the ‘Beta1’ group, and the
structures with stacking in RNP1 are referred to as the ‘Beta3’ group.

The fitting regions along with the stacking nucleotides were extracted from each structure and
superimposed onto the reference structure. The crystal structure of the sex-lethal protein, specifically
RRM1 (chain A) from 1B7F, was used as a reference. Next, all 4 residues (3 amino acids plus 1
nucleotide) were converted from all-atom to the ATTRACT coarse-grained representation. For the
clustering, the same number of points is required, however, the bases of purines are represented by 4
beads, while the ones of pyrimidines are only by 3. Thus, to cluster nucleotides of both types
simultaneously, the 4th bead (created from the N7 atom) was removed. Its position can be calculated
using the coordinates of the remaining 3 beads.

Application of HAC to the available data with the clustering thresholds 3.0Å and 3.5Å for
‘Beta1’ and ‘Beta3’ respectively resulted in a set of 4 patterns for ‘Beta1’ and 5 patterns for ‘Beta3’
(Fig 5.6).
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a) b)

Figure 5.6 - Prototype and members (only nucleotides are displayed) for a) ‘Beta1’, clustered at 3.5Å;
b) ‘Beta3’, clustered at 3.0Å. The prototype is displayed as mesh, all members are displayed as
spheres. Phosphate spheres/mesh are shown in orange, sugar spheres/mesh are shown in cyan and
base spheres/mesh are shown in green [Image by Hrishikesh Dhondge].

5.2.3 RRM Structure Modelling

The fragment-based docking protocol, including its anchored version, necessitates a 3D structure
of the receptor. This process often involves manual preparation of the structure, including domain
selection, unwanted cofactors and modifications removal, and potential protein region remodelling.
For RRMs, an added complexity arises from the necessity to identify anchoring amino acids for the
further utilisation of the anchoring patterns. Those amino acids are typically associated with specific
RRM sequence positions, so they can be identified either via sequence alignment or detailed manual
structure inspection. In essence, these requirements made baseline docking protocols more suited for
skilled structural bioinformaticians rather than researchers with limited 3D structure expertise.

However, these challenges can be addressed by the utilisation of AlphaFold DB [112] and
InteR3M DB [96]. The robustness, accessibility, and extensive coverage of computational models
available through AlphaFold DB allow to obtain an accurate model of the RRM structure. On the
other hand, accessibility and extensive coverage of RRMs provided by InteR3M allow for the
identification of the anchoring amino acids. Together, these databases allow us to streamline the
preparation necessary for the anchored docking.

5.3 RRM-RNA dock

5.3.1 Pipeline

Motivation

Execution of the anchored docking strategy with the integration of anchoring patterns requires
(Appendix C.1):

● Preparation of the receptor structure;
● Identification of the reference anchor position using anchoring patterns;
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● Creation of the positional restraints file;
● Running of the docking with restraints.

All these steps are necessary for the initial docking of the anchored fragment. Completion of
these steps requires skills both in structural biology and programming, and is generally
time-consuming, especially for novice users. This severely limits the accessibility of the anchored
docking. This issue can be solved by creating an automated pipeline capable of performing the
aforementioned steps based on AlphaFold DB, InteR3M DB and the ATTRACT docking engine. This
pipeline also simplifies the process of testing the anchoring patterns.

Please note that this pipeline was developed before the final version of HIPPO, thus within the
pipeline an original ATTRACT scoring function is used.

Overview

I designed and implemented 'RRM-RNA dock,' an accessible anchored docking pipeline tailored
for RRM-ssRNA complexes. This user-friendly tool aims to broaden the availability of anchored
docking. The current iteration of this pipeline focuses on docking a single anchored fragment
(trinucleotide) of ssRNA. Within this fragment, two nucleotides interact with distinct amino acids
from RRM, specifically 'Beta1' and 'Beta3.

This pipeline is implemented in Python (version 3.9.13) and Bash (version 5.1). It is compatible
with Linux and can be executed from the command line. For the proper functioning of the pipeline,
the ATTRACT docking engine should be installed on the machine.

The following user input is required to execute the pipeline (Fig. 5.7):
● Protein identifier (UniProtKB accession number);
● RRM domain index;
● RNA sequence;
● Position of the ‘Beta1’ anchor in the RNA sequence;
● Position of the ‘Beta3’ anchor in the RNA sequence.

Initially, the pipeline verifies the proper set-up of the environment and the user’s input (user
manual is available in Appendix C.2.) Then the structure of the given protein is downloaded from the
AlphaFold DB. Complementary information about the protein (indexes of the given domain and its
fitting regions) is taken from InteR3M DB and is used to extract the given RRM domain and to
identify the 2 fitting regions within. Next RRM structure is converted to ATTRACT coarse-grained
representation and the anchoring prototypes (their fitting regions) are superimposed onto the
corresponding RRM’s fitting regions. The restraint files are created based on the position of the
anchors in the patterns and types of user-given anchored nucleotides.

Since the current pipeline version handles fragments containing 2 anchors, all possible
combinations of 2 anchoring patterns are used, resulting in 20 distinct docking settings. The
corresponding folder structure is created with a folder dedicated to each combination of patterns (Fig.
5.8).
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Figure 5.7 - Help message of the main script of the pipeline.

Figure 5.8 - An example of the output folder structure.

The default parameter settings for the positional restraints are:
● For ‘Beta1’:

○ The radius of the spherical region is 4.5Å;
○ The energy penalty is 3.5 units.

● For ‘Beta3’:
○ The radius of the spherical region is 4.0Å;
○ The energy penalty is 3.5 units.

Such choice of the radiuses is dictated by the clustering thresholds, 3Å and 3.5Å respectively.
Smaller distances could introduce overfitting to the patterns, while larger distances could lead to
underfitting. The suitable values of energy penalty were determined empirically.
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This is followed by the 20 subsequential docking runs, each with a distinct pattern combination.
Each docking run utilises 8 CPUs by default. The default parameters (radius, penalty and CPU) are
declared in a configuration file and can be modified.

The output of the pipeline is a set of files containing docking poses generated for each pattern
combination. In a test case, when the native structures of the fragment are available, files containing
the LRMSDs are generated as well.

5.3.2 Results and Discussion

The performance of the anchored docking was tested by selecting a test protein which is known
to have 2 conserved stacking interactions in at least one of its complexes with RNA that are
experimentally solved. These complexes were excluded from the data set and the anchoring patterns
were re-generated with the same clustering settings. Then, the pipeline was executed for this test
protein using the knowledge of the sequence of the anchored fragment and the position of the anchors
in sequence. The docking results given by each pattern combination were pooled together, and
redundant poses were removed. Further in the text, this is referred to as ‘all-patterns’.

Table 5.1 - Test set and docking results for the protein

PDB.ID_chain ‘Beta1’ anchor
index_chain

‘Beta3’ anchor
index_chain

Total number of poses
with LRMSD<2Å

Rank of the first pose
with LRMSD<2Å

1AUD_A 43_B 44_B 603 7,174

1DRZ_A 152_B 153_B 974 30,706

1DZ5_A 43_D 44_D 1114 12,156

1DZ5_B 17_D 18_D 852 8,892

1M5K_C 40_B 41_B 1051 35,000

1M5K_F 40_E 41_E 1074 34,035

1M5O_C 40_B 41_B 986 37,681

1M5O_F 40_E 41_E 986 37,681

1SJ3_P 152_R 153_R 951 30,706

1U6B_A 1007_B 1008_B 825 56,079

1URN_A 10_P 11_P 931 30,706

1VBX_A 152_B 153_B 908 12,156

This protocol was run for the U1 small nuclear ribonucleoprotein A (UniProtKB accession
number P09012), RRM1, and a selected set of 12 structures showing stacking interactions with the
fragment 5’-CAC-3’, specifically C1 in ‘Beta1’ and A2 in ‘Beta3’ (Tab. 5.1). The pipeline was run
with the parameters [P09012; 1; CAC; 1; 2]. The all-patterns results were compared to each of the
selected structures. The average rank of the first docking pose similar to the experimental structure
(LRMSD < 2Å) was equal to ~28,000. Most importantly, more than 600 near-native poses among the
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1.075.454 docking poses were found for each reference structure, with at least one in the 40,000
top-ranked poses for 11/12 structures.

Using the best-fitted pattern combination would produce a much better ranking than using all
pattern combinations:

● for the experimental structure 1DZ5_B, the best docking pose (LRMSD = 0.7Å) was ranked
3,184/48,717 in the list of poses given by the combination of the second pattern for ‘Beta 1’
and the first pattern for ‘Beta 3’, versus 61,037/1,075,454 in the pool from all pattern
combinations;

● for experimental structure 1VBX_A, the best docking pose (LRMSD = 1.0Å) was ranked
10,156/59,498 in the list of poses given by the patterns combination of the second pattern for
‘Beta 1’ and the second pattern for ‘Beta 3’, versus 282,998/1,075,454 in the pool from all
pattern combinations.

We also compared the quality of anchor-driven sampling (both usage of 20 distinct pattern
combinations and 1 all-patterns) against ab initio sampling for the case 1DRZ-CAC (Tab 5.2).
Notably, 30 million starting points were used for the ab initio sampling, while the use of the patterns
allowed to reduce this number to only 100 starting points. This reduced the number of sampled poses
from 10 million to the range of [33,628; 69,929] respectively. Such a reduced number of poses is
much easier to process computationally. For example, on 30 CPUs it takes ~6h to sample one
fragment ab initio and only 10+/- 5 minutes with anchored sampling. In case if all pattern
combinations are used, the number of the starting points technically increases to 2 million in total
(100 starting points multiplied by 20 separate docking runs), which is still less than 30 million.

Only one anchor-driven sampling (1/21), precisely one with the pattern combination [4;5],
resulted in a lower percentage of near-natives (LRMSD<2Å) than ab initio sampling. For the distinct
pattern combinations, the min value is 0% (second lowest is 0.0022%), the max is 0.3319%, and the
average is 0.0726%, versus 0.0906% for all-patterns and 0.0004% for ab initio. If the LRMSD
threshold is relaxed to 3Å, then all anchor-driven sampling runs (21/21) produce a higher percentage
of near-natives than ab initio sampling. These results suggest that anchor-driven sampling
outperforms ab initio sampling (Appendix C.3).

Table 5.2 - Comparison of different types of samplings, namely (i) ab initio, (ii) anchored with each
pattern combination, and (iii) anchored all-patterns, for case 1DRZ-CAC.
The titles of the columns indicate the type of sampling or the used pattern combination (the first number indicates
the number of the pattern for ‘Beta1’, and the second number - the pattern for ‘Beta3’). The values in the cells
indicate the percentage of near-native poses under a given threshold among all sampled poses and the total
number of sampled poses.
Among the values given by distinct patterns, 4 per row with the highest percentages of near-natives are
underlined, and the values higher than average (among the 20 distinct patterns) are highlighted in yellow. A single
value lower than ab initio is highlighted in red.

LRMSD Ab initio All-
patterns 1 1 1 2 1 3 1 4 1 5 2 1 2 2 2 3 2 4

Under 2Å 0.0004 0.0906 0.0461 0.0290 0.0205 0.2900 0.0051 0.0807 0.0319 0.1128 0.0358

2Å to 3Å 0.0122 2.5095 5.9883 2.5540 2.7058 5.7699 1.7521 5.1094 1.6522 3.4892 5.6271

All poses 10 mil 1,075,454 58,614 48,717 59,785 68,834 55,254 63,958 59,498 62,926 69,929
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Table 5.2 - Continuation

LRMSD 2 5 3 1 3 2 3 3 3 4 3 5 4 1 4 2 4 3 4 4 4 5

Under 2Å 0.0218 0.0822 0.2644 0.0048 0.0451 0.0065 0.0264 0.0154 0.0022 0.3319 0

2Å to 3Å 1.3967 2.3555 4.0387 0.1774 0.8996 0.6159 1.6332 0.4440 0.4330 2.9235 0.6572

All poses 63,375 46,901 38,111 62,025 55,976 52,464 47,032 33,628 50,487 45,493 49,072

In terms of scoring, for this particular case, the poses sampled with the best-fitted pattern
combination generally scored better compared to the ab initio poses. Specifically, for poses with
LRMSD<2Å, both in the top5% and top20%, the scoring of the ab initio poses is inferior to that of the
poses obtained with the best-fitting pattern combination. For poses with LRMSD<3Å, the ab initio
poses scoring in the top5% is also less effective, whereas, in the top20%, it surpasses the scoring of
the poses obtained with the best-fitting pattern combination (Tab 5.3 and see Appendix C.3 for
details).

Table 5.3 - Comparison of the scoring of the ab initio poses and poses sampled with the use of the
best-fitted pattern combination, for case 1DRZ-CAC.
Here the best-fitted pattern combination is determined based on the scoring results.

LRMSD Ab initio 3 4 LRMSD Ab initio 3 3

<2Å in top5% 45 56 <3Å in top5% 44 28

<2Å in top20% 78 96 <3Å in top20% 73 75

Several additional features can be implemented to enhance the quality of the docking results for a
single fragment. One potential improvement is in customising the positional restraints based on
different bead types. For example, for the bead representing the Phosphate group (GP1), using the
maximum distance observed during clustering, which is 6Å, for the restraints could lead to more
accurate docking models by reducing overfitting to the pattern.

Furthermore, it would be immensely advantageous to predict the most appropriate patterns (or
discard the least appropriate ones) for each docking case beforehand. Since the positioning of the
stacking nucleotide relies on the side-chain position of the amino acid involved in stacking, a manual
examination of side-chain positions in the clustered structures has shown that most positions are
unique to a single cluster. Only a few positions are shared across multiple clusters. Consequently, it
would be feasible to predict the ideal pattern for docking on a specific target protein if one could
predict the bound position of the side chain of the amino acid (Fig 5.9). This prediction could be based
on either sequence information or an unbound structure of the protein.

As mentioned previously, the current pipeline is limited to the docking of a single fragment with
2 anchored nucleotides to a single RRM. From the technical viewpoint, its functionality can be easily
expanded to cover the anchored docking of a single fragment with a single anchored nucleotide. The
subsequent stage involves integrating a tandem RRM as a receptor and introducing long-range
distance restraints between the fragment and the anchoring amino acid(s) located on the opposite
RMM.

Ultimately, the goal would be to implement a comprehensive data-driven fragment-based
protocol based on the described anchoring methodology, capable of docking adjacent fragments
within the RNA sequence, starting with the fragment containing 1 or 2 anchored nucleotides. This
protocol would then select chains of compatible poses (one pose per fragment), thus discarding, for
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each fragment, most of the poses that cannot be connected to any pose of the adjacent fragment(s).
The resulting models of RRM-ssRNA chains could subsequently undergo testing through molecular
dynamics simulations to identify the most stable model.

Figure 5.9 - The prototypes from clusters 1, shown in green, and cluster 4, displayed in yellow, of the
‘Beta3’ along with the amino-acid residues used for fitting.

5.4 Additional Experimental Restraints
RRM-ssRNA docking can be guided by experimental data of a non-structural origin [265]. These

data can be integrated into the docking protocol as a set of interface or contact restraints. As part of
the RNAct project, I have led a short-term project intending to collect experimental data from the
scientific literature. The primary goal of this project is to curate a set of non-structural experimental
data for RRM-ssRNA complexes for which a 3D structure is also available. This data collection is
essential for the establishment of a data-driven docking protocol, which includes (i) the assessment of
the quality of the collected data itself and (ii) the assessment of the quality of the docking results
through docking test cases.

To assess the quality of the collected data, each entry should be validated by the experimental 3D
structure. From all those results together, we can infer a correspondence between the type of
experimental data and:

● the distance of the restraint to apply;
● the confidence in this restraint (to be translated into a probability of fulfilling the restraint).

Once these results are ready, inferred restraints should be tested via data-driven docking. To
evaluate the improvement of the docking performance, data-driven docking results are to be compared
with ab initio docking results.

Several types of data to be collected are:
● Positive interface data: the knowledge of a set of RRM’s residues that are directly involved in

the binding of RNA chain with a certain probability;
● Negative interface data: the knowledge of a set of RRM’s residues which are proven to not

influence the binding;
● Contact data: the knowledge of the direct binding between an RRM’s residue and an RNA’s

residue with a certain probability and at a certain distance interval.
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The sources of such data are results obtained by experimental techniques, including but not
limited to the following methods:

● NMR chemical shift (interface data);
● FRET (contact data with broad distance);
● Mutagenesis (interface data);
● High-resolution cross-linking (contact data);
● H/D-exchange on RRM with/without RNA (interface data);
● Sequence Variations in RNA (interface data).

To limit the scope of the task, 49 solved RRM-ssRNA complexes were targeted (Appendix C.4).
Around 100 articles, published by 27/04/2020, were collected. These articles contained data regarding
46 proteins. Experimental data was extracted and organised in a spreadsheet (Tab 5.4). Initially, 105
entities were collected, out of which 82 entries were validated by Isaure Chauvot de Beauchene and
added to the resulting spreadsheet. Two examples are presented in Tab 5.5 and a full spreadsheet is
available online [266].

Data-driven docking is to be performed for entries with ‘1’ in the ‘Does_it_bind’ field and ‘3’ in
the ‘Binding_probability’ field, gradually moving to the values ‘2’ and ‘1’. The quality of the docking
poses will allow us to assess the quality of the collected data. If the results outperform ab initio
docking consistently, similar data could be collected for the unsolved RRM-ssRNA and used for the
data-driven docking.

At present, a similar type of data can be found on UniProt (Fig 5.10), which could expand the
collected data.

Figure 5.10 - Experimental data for U1 small nuclear ribonucleoprotein A, available via UniProt
[267].
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Table 5.4 - Organisation of the spreadsheet for the experimental data.

Table 5.5 - Examples of collected data.
Limited number of columns is shown. The numbers in the title row corresponding to the numbers given in the Tab 5.4.
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5.5 Conclusion
In this chapter, a data-driven approach compatible with fragment-based docking has been

presented. It uses so-called anchoring patterns, which represent the average positions of the anchor
(stacking nucleotide), to drive the docking. These patterns have been derived through the clustering of
RRM-RNA structures that feature conserved stacking interactions. My contribution lies in the
development of the docking pipeline designed to facilitate the data-driven docking of fragments
containing two anchors onto RRM. This pipeline has a simple command-line interface. It uses
AlphaFold DB to obtain a model of the RRM, InteR3Mdb to identify anchoring amino acids,
anchoring patterns to identify an approximate location of the anchors relative to anchoring amino
acids, and the ATTRACT docking engine to perform the docking with restraints following a
previously established anchor-driven protocol. Despite the limited functionality, this pipeline
significantly streamlines the data-driven docking process by eliminating the necessity for manual
receptor structure preparation and the manual creation of restraint files. As a result, it enhances the
accessibility of data-driven docking, particularly for users with limited experience in structural
biology. As expected, the sampling performance of this docking is better than that of ab initio
docking.

The latter part of the chapter has presented a set of non-structural experimental data, collected
manually from the literature. This dataset could be used as a source of additional docking restraints to
ultimately expand 'RRM-RNA dock' to a general protein-ssRNA docking pipeline. We will explore
this, along with other potential prospects for further research in the next, and final, chapter.
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6.1 Aims
In this chapter, we conclude the thesis by summarising the proposed contributions and by

highlighting future work for both HIPPO (Histogram-based Pseudo Potential) and ‘RRM-RNA dock’
pipeline.
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6.2 Summary of Contributions
The primary objective of this thesis was to improve protein-ssRNA docking by addressing the

scoring problem. Our approach to this problem involved the development of a novel scoring function,
HIPPO, tailored specifically to protein-ssRNA interactions. Additionally, we developed a
user-friendly docking pipeline ‘RRM-RNA dock’, tailored to RRM-ssRNA complexes. In this section,
we will summarise both contributions and highlight the key outcomes, as well as briefly touch upon
some smaller projects undertaken in the frame of this doctoral research.

6.2.1 HIPPO

The foundation for HIPPO was an unsuccessful Monte Carlo Simulated Annealing optimisation
of the whole original docking parameters set of the ATTRACT scoring function (ASF) followed by
the design of the histogram-based optimisation approach. The first project led us to the hypothesis that
a singular parameter set is insufficient for the accurate scoring of protein-ssRNA fragments. The
second project was a prerequisite for the implementation of the protocol to derive HIPPO. Unlike
existing scoring functions, HIPPO is composed of 4 distinct scoring potentials, capable of accounting
for different binding modes.

Experimental evaluation of HIPPO was performed by scoring a set of protein-ssRNA complexes.
HIPPO outperformed ASF, state-of-the-art in protein-ssRNA fragment-based docking in
coarse-grained representation. Moreover, these results proved HIPPO’s generalisability, as it was
derived from RRM-ssRNA complexes exclusively. Furthermore, the use of the best-performing
potential (BP) for each scoring case yielded a better ranking compared to both ASF and HIPPO.
Preliminary results of the assembly of 3 fragments of several complexes suggest that BP would be a
suitable scoring function for incremental docking.

6.2.2. RRM-RNA dock

Stacking interactions between amino acids in conserved positions and unpaired nucleotides can
serve as anchors and drive protein-ssRNA docking. This pre-existing anchoring approach requires
information about the possible positions of the stacking nucleotide (anchor) with respect to the
stacking amino acid, i.e. anchored patterns. A set of anchoring patterns was generated by Hrishikesh
Dhonge via clustering of the experimentally determined 3D structures of RRM-RNA complexes. By
uniting these anchoring patterns with the anchoring-docking methodology, we created an
ATTRACT-based pipeline for RRM-ssRNA fragment docking. This pipeline sources a model of RRM
from AlphaFoldDB and runs ATTRACT docking for a fragment with two stacking nucleotides, with
maximal distance restraints toward each possible anchor position.

As anticipated, this pipeline provides a better sampling compared to ab initio docking. Its notable
advantage lies in its accessibility to non-experts in computational structural biology. Users are exempt
from the tasks of preparing the receptor's 3D structure or identifying amino acid positions, building
restraints, etc.

6.2.3 Other Contributions

Smaller in scale but still noteworthy were two projects involving the examination of TRP-C
docking parameters and the collection of experimental data for data-driven docking.

93



Chapter 6: Conclusions and Perspectives__________________________________________________________________________________________

The examination of TRP-C docking parameters was initiated due to the original ASF parameters
assigning unfavourable scores to native structures containing TRP-C residues. This was
counterintuitive as one would expect somewhat favourable scores for these structures, especially
when the residues were in a stacking-like orientation. To address this inconsistency, we attempted to
fine-tune the TRP-C parameters manually. While these adjustments did render negative scores for
native poses, subsequent sampling and scoring using this updated parameter set showed a decline in
performance. Further fine-tuning might be achieved through a systematic brute-force approach.
Alternatively, a parameter set optimisation could be carried out using an approximation of initial
parameter values using an all-atom force field, rather than the original scoring parameters.

A collection of experimental data from the literature was conducted during a short-term
collaboration with 9 other PhD students within the RNAct project, with the aim to ultimately enhance
data-driven docking. Non-structural data for solved protein-ssRNA complexes were gathered from the
literature. These data will be tested to assess its suitability for data-driven docking. If found suitable,
similar data for unsolved complexes (to be gathered) could be employed in actual docking cases.

6.3 Perspectives

6.3.1 An Incremental Approach vs. Dual Potentials for

Hot-Spot and Cold-Spot Binding

A challenge, associated with fragment-based docking, is related to the concept of hot-spot (HS)
binding and cold-spot (CS) binding. This issue could be handled by HIPPO in combination with an
incremental docking strategy, where a single HS-bound fragment is docked with high accuracy, and
the rest of the chain is modelled fragment-by-fragment from the poses of the first fragment. HIPPO
considerably increases the part of the near-native poses among the top-ranked poses for the
best-docked fragment of a complex, allowing for such incremental modelling. In this scenario, the
bottleneck lies in the identification of the HS-bound fragment prior to docking (at least prior to
assembly). When the identification is not possible, one could consider each fragment as HS-bound,
iterate over all fragments, and pool together the top-ranked results of each iteration (Fig. 6.1).

Figure 6.1 Simplified illustration of iterative docking using each fragment as an HS-bound.
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Alternatively, one could investigate the possibility of the development of dual scoring potentials,
capable of an accurate scoring of the docking poses of either HS-bound fragments or CS-bound
fragments separately, i.e. using a classical fragment-based approach. To obtain such dual potential,
training data cases (benchmark fragments to derive scoring potentials) should be labelled as
HS-bound and CS-bound prior to the training. There are two approaches to doing so:

- Approach 1. Let us define the HS-bound fragment as the one for which the current HIPPO/BP
is successful;

- Approach 2. Let us define the HS-bound fragment as in close proximity to the HS amino
acids. HS amino acids could be identified using a specialised approach [268, 269, 270] (initial
testing for protein-ssRNA may be required) .

Based on these two training sets, a double scoring potential, HIPPO-HS and HIPPO-CS can be
derived. It is possible that fewer than four scoring parameter sets will be required for each training set,
potentially simplifying the application of the resulting potentials. If, at this point, there is no model
capable of identifying the fragment type (HS- or CS-bound) prior to docking, each fragment would
undergo two rounds of scoring - once with HIPPO-HS and once with HIPPO-CS. Multiple assemblies
(k assemblies), where k represents the total number of fragments in the complex, would be performed.

The development of a dual scoring potential would yield eight distinct sets of parameters (four
for HIPPO-HS and four for HIPPO-CS). While it may be a distant possibility, there could be an
avenue to transition from HIPPO-HS and HIPPO-CS to the concept of the best-performing potential
(BP). This transition could be achieved by training a classifier to identify the appropriate BP
parameters for each fragment based on the docking input or directly from the pool of docking poses.

6.3.2 Characterisation of the Protein–ssRNA Binding Modes

using BP

HIPPO is capable of accounting for the different protein-ssRNA, and especially RRM-ssRNA
binding modes by using 4 distinct scoring potentials. The concept of BP consists in identifying, for a
given complex and fragment, the single 𝓗 that outperforms the other three 𝓗 in ranking near-native
poses in the top5%. This approach may enable the characterisation of different protein-fragment
binding modes - sets of distinct protein-ssRNA interactions with a biological meaning behind them -
essentially distinguishing one mode from the others, based on the BP.

The BP can be easily identified for each test case. Consequently, all cases (the entire benchmark)
can be categorised into five classes, with four classes corresponding to each 𝓗, and the remaining
class representing the outliers, where none of the 𝓗 is successful (success criterion is to be
determined). Ideally, there will be distinct sets of bead-bead distances for each class, or higher-level
features (e.g. distances and angles). Initial identification of those features could be achieved through
the manual examination, followed by e.g. application of the pattern mining approaches.

Additionally, if a clear distinction is observed between the class of outliers and the other classes,
it can serve as the foundation for a classifier to identify CS-bound fragments (i.e. HIPPO outliers)
This classifier can be applied when using the dual scoring potential, particularly if Approach 1 is
employed.
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6.3.3 Pipeline for Iterative Docking

The current version of 'RRM-RNA dock' is tailored for the user-friendly docking of a single
ssRNA fragment with two stacking nucleotides to a model of RRM. While this pipeline already
outperforms ab initio docking, there are opportunities for significant expansion. First, it should be
tested for fragments with a single stacking.

Another prospect involves leveraging further the knowledge that the anchored fragment forms a
stacking interaction. One could introduce a stacking reward for poses exhibiting stacking (see §3.4.3,
section Stacking Problem), thereby elevating their positions in the scoring list.

Subsequently, the pipeline should be expanded to an iterative docking of the full RNA. This
should include restraints between the anchored fragment and its adjacent fragments, building upon the
existing methodology.

A comparative analysis between scoring with ASF and HIPPO within the pipeline is essential. If
HIPPO outperforms ASF, as anticipated, it should be implemented as the default scoring function in
the pipeline. Additionally, leveraging RRMScorer to propose RNA sequences and identify potential
nucleotides for stacking would enhance the pipeline. While several attempts for the latter have been
made (see Appendix C.5), conclusive results are pending.

Expanding the pipeline to a more general data-driven protein-ssRNA tool, empowering users to
integrate custom restraints based on experimental data, is a logical progression. However, it is
imperative to keep the pipeline user-friendly, in this context through the assisted translation of the
experimental data into docking restraints. To achieve this, thorough testing of non-structural data (as
described in §5.4) has to be carried out.

Maintaining the pipeline's user-friendliness while allowing customisation for advanced users is
crucial. Following this paradigm throughout development could enable the pipeline to encompass
various aspects of ATTRACT functionality, making protein-ssRNA docking more accessible to the
scientific community.

6.3.4 Other Perspectives

Several additional ideas to explore in the future are introduced in this subsection.
Expanding the Protein-ssRNA Benchmark: The protein-ssRNA benchmark, curated in the course

of this work, encompassed only the first ssRNA sub-chain (comprising three or more consecutive
protein-bound nucleotides). However, one, two, or even three suitable sub-chains are present in 117
complexes. All these sub-chains could be included in the benchmark as stand-alone complexes, or at
least as data cases. The availability of such complexes, comprising several single-stranded and one or
several double-stranded sub-chains, will allow to test docking of all sub-chains in isolation and
perform simultaneous assembly of all poses, which may lead to more accurate docking results.

Additionally, around 100 protein-ssRNA complexes (the first ssRNA sub-chain only) within the
benchmark, out of a total of 527 complexes, remain undocked due to time constraints. In both
scenarios, the structures are prepared for docking, and the necessary pipeline is in place; thus, the only
limitation is computational time. While redundancy may exist among some of these structures, they
have the potential to significantly enrich the benchmark, with an anticipated increase of approximately
55% (the most optimistic estimate).

Stringent Cross-Validation for HIPPO: Initially, HIPPO underwent cross-validation using 29 test
sets. These test sets were defined based on the similarity of RRM sequences in the data cases, with a
threshold of over 40% sequence similarity. Nevertheless, RRMs are notorious for having highly
similar structures, even when their sequence similarity is as low as 20%. Consequently, a more
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stringent form of cross-validation, one that relies on the structural shape of the RRMs rather than their
sequence identity, could be introduced. It is also possible to apply a leave-one-out procedure,
however, in this case, a stricter criterion for the redundancy on the contact level should be introduced.

Extended HIPPO Application:
● The main work direction regarding HIPPO is training of a classifier to enable the use of BP

beyond the training set case. Such a model could be obtained based on the sequence of the
fragment and the sequence or/and structure of the protein, and/or on the docking poses.
Enabling BP would enhance sampling significantly, as shown in §4.4;

● As mentioned before, HIPPO could be used for sampling using the ATTRACT docking
engine and Monte-Carlo minimisation procedure. This is one of the most promising
perspectives, as it might mitigate the sampling problem;

● During the derivation of HIPPO, the LRMSD threshold for near-native poses was relaxed
from 3Å to 5Å to obtain more data cases with a higher count of near-natives. It is worth
exploring whether a lower number of near-natives is sufficient for the derivation of an
effective HIPPO;

● It would be interesting to test HIPPO’s accuracy on the full ssRNA chains;
● Lastly, the protocol can be applied to the other types of complexes, such as protein-ssRNA

beyond the RRM domain, protein-ssDNA and protein-peptides.

Flexibility Investigation: In the context of fragment-based docking, the flexibility of the ssRNA
is taken into account via the fragment library and the coarse-grained representation; and the flexibility
of the protein is taken into account only via the coarse-grained representation. It would be interesting
to investigate which degree of flexibility on the protein side our fragment-based docking approach can
handle. A possible approach would be to perform several independent rounds of docking using
different bound protein structures, for instance given by NMR, and to determine if the docking
performance is similar for the different structures. For such a comparison, one should use the metric
‘fnat’, i.e. fraction of the native contacts, rather than LRMSD.

This concludes the work presented in this thesis. The contributions and perspectives outlined
herein, hopefully, will contribute to advancing the field of protein-ssRNA docking.
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Appendix A

ATTRACT parameters optimisation

A.1 Monte Carlo Simulated Annealing Optimisation

A.1.1 Benchmark

42 complexes used for the MCSA optimisation:
1A9N 1B7F 1CVJ 2IX1 2L5D 2LI8 2XFM 2XZL 3BOY 3HSB 3PKM 3Q0M 3QJJ 3QJL 3R1H
3R2C 3SQW 3V6Y 3X1L 3ZLA 4B3G 4B8T 4BHH 4EI1 4F1N 4F3T 4H5P 4HT9 4IFD 4JNG
4JVH 4KRE 4KRF 4KXT 4M59 4MDX 4OE1 4OE1 4PJO 4PMW 5GAO 5JEA 5W1H

These 42 protein-ssRNA complexes constitute 308 fragments.
For this benchmark, a total of 7,435 near-native poses with LRMSD<3Å have been generated

using the ATTRACT docking engine (‘randsearch’ with 30 million starting points) (Tab A.1).

As noted in §3.3.2.1 Dataset, this benchmark is unbalanced, with motifs UUU and AAA being
over-represented (Fig. A.1). This pattern is also observed in the generated near-native poses (see Fig
A.2).

Table A.1 - Benchmark and sampling statistics.

Motif Number of fragments in the benchmark Number of near-native poses (LRMSD<3Å)

UUU
AAA
AUU
UAA
UUA
AUA
AAU
AGA
GUA
UAU
AGU
CUU
UUG
AAG
AGG
CAG
CAU
GAU
GUG
UAG
UGC
UGU
UUC

88
46
10
10
10
9
6
6
6
6
5
5
5
4
4
4
4
4
4
4
4
4
4

2985
529
141
113
48
195
192
65
106
486
168
26
108
30
16
6
285
45
45
365
188
218
7
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Motif Number of fragments in the benchmark Number of near-native poses (LRMSD<3Å)

AAC
ACA
ACU
GAG
GCA
GGU
GUU
UGA
ACC
CCA
CUC
CUG
GAA
GCU
UAC
UCA
UCU
AUC
CAA
CAC
CCG
CCU
CGA
CUA
GAC
GCC
GGA
GGC
GGG
UCC
UGG
AUG
ACG
AGC
UCG
CCC
CGU
CGC
CGG
GUC
GCG

3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0

3
27
25
9
21
46
15
0
0
118
6
4
3
17
1
10
3
121
0
42
0
11
1
10
0
447
2
4
16
106
-
-
-
-
-
-
-
-
-
-
-
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Figure A.1 - Visualisation of the number fragments of each distinct motif in the benchmark

Figure A.2 - Visualisation of the number of near-native poses for each distinct motif in the benchmark
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A.1.2 MCSA Flowcharts

Main algorithm
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Optimisation algorithm
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Validation algorithm
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A.1.3 MCSA Results

Each graph displays the number of near-natives within a complex. The first group of bars on each
graph displays the total number of sampled near-natives per fragment, and each subsequent group of
bars displays the number of near-natives in the 10% of top-ranked poses, i.e. in 1 million top-ranked.

PAR1, PAR2, PAR3 and PAR4 are the sets of the docking parameters obtained using MCSA with
the corresponding hyperparameters, presented in §3.3.3, Tab. A.3.
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A.2 TRP-C Fine-Tuning

This section holds the original ATTRACT parameter values for TRP-C side chain beads, as well
as 4 updated TRP-C subsets (Tab A.2). The set of 7 complexes was initially docked with original
ATTRACT parameters and subsequently re-docked with ‘par1’ and ‘par2’. The results are in Tab A.3.

Table A.2 - Values of the original and updated parameters for TRP-C side chain beads.

𝑖 𝑗 Param. name σ
𝑖 𝑗

ε
𝑖 𝑗

25 12

original 3.87 8.13

par1 3.87 13.46

par2 3.87 8.13

par3 4.63 3.25

par4 0.01 0.01

25 13

original 6.40 6.28

par1 3.72 15.00

par2 3.72 15.00

par3 3.80 4.70

par4 0.01 0.01

25 14

original 3.77 12.33

par1 3.08 18.8

par2 3.77 12.33

par3 4.64 3.07

par4 0.01 0.01

26 12

original 3.00 8.97

par1 3.07 13.16

par2 3.0 8.97

par3 3.70 2.03

par4 0.01 0.01

26 13

original 3.75 15.43

par1 3.32 15.43

par2 3.75 15.43

par3 4.83 1.68
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𝑖 𝑗 Param. name σ
𝑖 𝑗

ε
𝑖 𝑗

par4 0.01 0.01

26 14

original 3.80 15.27

par1 3.80 15.27

par2 3.80 15.27

par3 4.03 3.35

par4 0.01 0.01

Table A.3 Docking results for a small subset of fragments, obtained with original attract parameters,
‘par2’ and ‘par1’ (see Tab. A.2).
The target fragment (with TRP-C pair being closest to each other in the given complex) is marked
with *.

attract par2 par1 attract par2 par1 attract par2 par1

2CSX

fragment 1 fragment 2* fragment 3

<2Å 0 0 0 0 0 0 15 16 14

<3Å 0 0 0 2 2 1 77 69 77

<4Å 2 0 0 8 7 5 336 363 347

2CT8

fragment 1 fragment 2* fragment 3

<2Å 0 0 0 0 0 0 15 15 14

<3Å 0 0 0 1 0 0 71 70 76

<4Å 1 3 4 10 10 7 267 275 276

5YTS

fragment 1 fragment 2*

<2Å 74 74 73 7 5 10

<3Å 734 815 808 253 262 291

<4Å 4560 5401 5404 4082 4344 4654

6A6J

fragment 1 fragment 2 fragment 3*

<2Å 2 2 3 0 0 0 0 1 0
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attract par2 par1 attract par2 par1 attract par2 par1

<3Å 157 158 160 70 69 93 169 178 280

<4Å 1233 1248 1411 1746 1746 1941 1420 1535 1808

3ADC

fragment 1 fragment 2*

<2Å 0 0 0 0 0 0

<3Å 1 1 0 0 0 0

<4Å 3 2 0 6 5 0

2HGH

fragment 1*

<2Å 0 0 0

<3Å 8 8 6

<4Å 47 44 51

2FMT

fragment 1 fragment 2* fragment 3

<2Å 0 0 0 7 8 8 237 263 225

<3Å 19 24 23 143 180 157 2089 2245 2368

<4Å 143 157 180 981 1011 1169 9420 9038 11914

109



Appendix B

Histogram-based Pseudo Potential Related

B.1 Original HIPPO Paper

HIPPO: HIstogram-based Pseudo-POtential for scoring protein-ssRNA fragment-based
docking poses
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1Université de Lorraine, CNRS, Inria, LORIA F-54000 Nancy, France

Abstract

Motivation: The RNA-Recognition motif (RRM) is a protein domain that binds single-stranded RNA
(ssRNA) and is present in as much as 2% of the human genome. Despite this important role in biology,
RRM-ssRNA interactions are very challenging to study on the structural level because of the remarkable
flexibility of ssRNA. In the absence of atomic-level experimental data, the only method able to predict the 3D
structure of protein-ssRNA complexes with any degree of accuracy is ssRNA’TTRACT, an ssRNA
fragment-based docking approach using ATTRACT. However, this approach has limitations, such as the
production of only a handful of near-native poses amid many non-natives, and the frequent failure of the
ATTRACT scoring function (ASF) to recognize these near-natives. Nevertheless, since ASF parameters are not
ssRNA-specific and were determined in 2010, there is substantial opportunity for enhancement.

Results: Here we present HIPPO, a composite RRM-ssRNA scoring potential derived analytically from
contact frequencies in near-native versus non-native docking models. Validated on a fragment-based docking
benchmark of 57 experimentally solved RRM-ssRNA complexes, HIPPO achieved a 3-fold or higher
enrichment for half of the fragments, versus only a quarter with ASF. In particular, HIPPO drastically improved
the chance of very high enrichment (12-fold or higher), a scenario where the incremental modelling of entire
ssRNA chains from fragments becomes viable. However, for the latter result, more research is needed to make it
directly practically applicable. Regardless, our approach already improves upon the state of the art in
RRM-ssRNA modelling and is in principle extendable to other types of protein-nucleic acid interactions.

Keywords: scoring function, protein-ssRNA docking, RRM-ssRNA docking, fragment-based docking

1 Introduction

Protein-RNA complexes play an immensely important role in many cellular processes, including
translation, transcription, and post-transcriptional gene expression [1]. The disruption of the binding can lead to
tremendous cellular malfunctions [2]. A large part of these protein-RNA interactions involves one of the few
conserved RNA-binding domains. In particular, over 50% of all RNA-binding proteins in humans contain an
RNA recognition motif (RRM) [3]. This motif is critical for binding to RNA molecules, and to single-stranded
RNAs (ssRNA) specifically, making RRM-ssRNA interactions crucial for understanding the underlying
mechanisms of various cellular processes.

Although the 3D structure of these complexes provides valuable insights into their functions, the
experimental resolution of such structures is a non-trivial task. Computational modelling of the 3D structure of a
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protein-RNA complex, also known as protein-RNA docking, can facilitate experimental research, by proposing
probable 3D structures to be experimentally tested.

Unfortunately, protein-ssRNA docking is a challenging task by itself as well. The classical docking
approaches [4] require an unbound structure as a starting point, but no such structure is available for ssRNA due
to its disorder in the unbound state. On the one hand, one may try to model all possible ssRNA conformations
using its sequence, and then dock them. However, ssRNA’s flexibility (~8 DOF per nucleotide [5]) makes
systematic modelling of ssRNA conformations extremely demanding computationally and borderline impossible
for long chains. On the other hand, in recent years, various powerful deep learning techniques ([6,7,8]) brought
breakthroughs to protein-protein [9] and protein-ligand [10,11] docking. However, deep learning approaches are
more challenging to apply to protein-RNA docking, not only due to the relatively low number of solved

structures (about protein-RNA structures compared to about protein chains) but also1. 16 · 104 1. 776 · 105

because among all atomic contacts within each structure, the interaction between RNA and protein represents
only a tiny fraction. This is even more true for ssRNA, which is only a small subset of RNA, and whose binding
modes to proteins have some particularities compared to double-stranded (ds) RNA [12].

Fragment-based docking handles ssRNA flexibility by subdividing its sequence into fragments that are
small enough for their conformations to be exhaustively (including close-to-bound conformation) sampled
within a given accuracy threshold. The docking procedure consists of sampling and scoring. Sampling refers to
the generation of docking poses - certain positions and orientations of particular conformations of the fragment
with respect to the protein. A pool of docking poses is sampled for each fragment independently. Scoring is the
evaluation of the probability of each pose being a near-native, followed by ranking. Finally, the presumably best
poses of adjacent fragments are assembled into complete structures called docking models. In a test case, when
the native structure of a complex is experimentally determined, both docking poses and models can be assessed
based on their similarity to the corresponding parts of a native structure, and this similarity can be quantified by
their ligand root mean squared deviation (LRMSD). The distinction is made between near-native (correct),
non-native (incorrect), and intermediate poses/models based on LRMSD thresholds.

The main limitation of the fragment-based strategy stems from the concept of hot- [13] and coldspot
binding. A fragment by itself (taken in isolation) may have much stronger binding and hence lower real
interaction energy in a region of the protein that is different from the binding region of that fragment when it is
in the chain. This is a case of coldspot binding. The term “coldspot” refers to an area of the protein surface that
can bind fragments relatively weakly. The opposite term, “hotspot”, refers to the part of the protein surface that
binds fragments relatively strongly. Essentially, fragments that bind to the coldspots are only there because the
adjacent fragments are tightly bound to the hotspots. From an energy perspective, binding to the coldspot leads
to a shallow local energy minimum, whereas binding to the hotspot leads to a deeper (and possibly global)
energy minimum. A mononucleotide tandem repeat sequence, such as the poly-U chain, provides a very
intuitive example. For such an ssRNA, there are multiple overlapping native solutions for the same fragment
sequence UUU that “compete” to be sampled and scored during the docking of UUU. As a consequence, there
are usually one or two well-docked fragments, i.e. fragments with a lot of correctly ranked near-native poses,
while the docking results for the remaining fragments are much worse.

The described hot/coldspot limitation directly contributes to the so-called sampling problem. The sampling
problem lies in the fact that often not a single near-native pose is generated during the docking run. The
sampling problem is critical because it has a high impact on the whole docking procedure: for successful
docking of the whole RNA chain, at least one near-native pose must be sampled for each of the fragments.
Otherwise, the docking for a given complex will certainly fail at the assembly step.

Another limitation is the scoring problem, which arises when none of the sampled near-natives is selected
in the list of top-ranked poses. In this case, more poses per fragment must be retained to have a good chance to
keep a near-native, which quickly becomes very expensive computationally in the assembly step. In turn, as
there are more docking models, identification of the near-native model also becomes more challenging.

There are four existing fragment-based approaches for protein-ssRNA docking: RNA-LIM, FBDRNA,
RNP-denovo, and ssRNA’TTRACT. RNA-LIM represents each nucleotide by one non-oriented bead and could
only predict their position at 15Å resolution for one example [14]. FBDRNA uses mononucleotide fragments in
all-atom representation, docked with MCSS on a pre-defined binding site. While showing discriminative power
on nucleotides’ positions, it could not provide accurate models for full oligonucleotides [15]. RNP-denovo, a
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Rosetta method to simultaneously fold-and-dock RNA to a protein surface, uses the exact position of a few
nucleotides [16], which would be unavailable for real-life docking cases. On the other hand, ssRNA’TTRACT,
the state of the art, is the most accurate approach that uses only a protein structure and the RNA sequence as
input. It uses trinucleotides as RNA fragments and an overlapping criterion based on LRMSD for assembly.
Furthermore, when information about conserved protein-RNA contacts are available, ssRNA’TTRACT employs
an anchored docking strategy to build the RNA chain incrementally by docking one fragment with contact
restraints and using each of its top-ranked poses as an anchor to superimpose subsequent fragments [17]. This
strategy tackles the sampling problem for the fragments.

ssRNA’TTRACT uses the ATTRACT docking engine and a library of RNA trinucleotide conformations
developed in our research group [18,19]. A coarse-grained force field with Lennard-Jones type energy function
with soft potential [20] is used for both sampling and scoring. In the coarse-grained representation, the RNA
fragments and the protein are represented as sets of pseudo-atoms, called beads, each of which stands for a
small group of real atoms. Coarse-grained representation provides several advantages compared to all-atom
representations. First, it accounts for inaccuracies in atomic positions coming either from bound/unbound
conformational differences or experimental biases and resolution; second, it smoothes the energy landscape,
which prevents the poses from getting stuck in shallow local minima; and third, it reduces the computation time.

Despite its capabilities, ssRNA’TTRACT is still constrained by the aforementioned limitations. As the
current ATTRACT protein-RNA scoring function was not designed to tackle ssRNAs specifically and its
parameters were optimised back in 2010 on dsRNA alone, there is considerable potential for enhancement. Here
we present HIstogram-based Pseudo-POtential (HIPPO), which aims to distinguish between near-native and
non-native protein-ssRNA docking poses. HIPPO is based on the hypothesis that there exists a collection of
scoring parameter sets (as opposed to a single parameter set) that can be used to effectively rank near-native
protein-ssRNA docking solutions. HIPPO’s parameters are derived analytically from contact frequencies in
near-native versus non-native docking poses. These contact frequencies, derived from 4 different sets of docking
poses, are discretised by a particular set of cutoffs into histograms, leading to a collection of 4 histogram sets 𝓗
that together form the HIPPO scoring potential. Thus, HIPPO is a composite protein-ssRNA scoring potential:
typically, the top 5% of the poses according to each histogram set are combined, selecting 20% of all docking
poses in total. To streamline the process from dataset construction to the generation of final scoring parameters,
we decided to focus exclusively on the RRMs, as this domain of the protein is particularly important for
studying protein-ssRNA interactions and is present in many (approximately 65%) of the available
protein-ssRNA structures. This allows us to provide proof of principle that the scoring function can indeed be
improved using our method. However, the developed method and protocol can be applied to a wider benchmark,
and more importantly, to other types of protein-nucleic acid interactions in the future.

HIPPO was derived from a fragment-based docking benchmark of 57 experimentally solved RRM-ssRNA
complexes, corresponding to 217 overlapping ssRNA trinucleotide fragments in complexes with an RRM. Using
cross-validation, HIPPO achieved a 3-fold enrichment (60% of all near-native poses in the 20% top-ranked
poses) for 53% of the fragments, versus only 26% with the current state-of-the-art ATTRACT scoring function
(ASF). In addition, these near-native poses were often selected mostly by a single 𝓗 of the 4 histogram sets.
Consequently, using the hypothetical knowledge of the best HIPPO histogram yielded a 12-fold enrichment for
nearly 40% of the test fragments - something which is achieved with ASF in only 4% of the cases. Most
importantly, 61% of the complexes show such a 12-fold enrichment for at least one fragment. Under these
conditions, the incremental modelling of entire ssRNA chains from best-docked fragments becomes viable.
However, the problems of blindly identifying the best HIPPO histogram set and selecting the best-docked
fragments need to be solved first before this can become practical. Nevertheless, as it is, HIPPO already
improves upon the state of the art in RRM-ssRNA modelling.
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Fig 1. a) Graphical pipeline for building HIPPO as a collection of four histogram sets (𝓗). a1) Contacts between bead
GC1 (in Cytosine side-chain) and bead LYS_O and LYS_C (Lysine backbone). a2) An intuitive schema of 𝓗. The histogram
for beads (GC1; LYS_O) is shown as an expanded plot. The blue dashed lines from a1 to a2 show the contribution of the
contact to the histogram. The blue/red bars show the count of occurrences of distances in all near-native/non-native poses.
The other histograms in this set 𝓗, for other pairs of beads, are not shown (collapsed). b) Graphical pipeline for testing a
collection on a test case. c) Graphical pipeline for the complete workflow. The creation of pairs of training and test sets is
based on the protein’s sequence similarity: proteins with sequence similarity of 40% or higher are never present in both
training and test sets.
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2. System and methods

Here we first present the dataset that we built and used for the training and validation of HIPPO. Next, we
present step-by-step the process of constructing a set of scoring parameters in the form of a histogram set 𝓗 and
the process of building the final collection of several 𝓗 (Fig 1).

2.1 Data
2.1.1 RRM-ssRNA benchmark

The number of experimentally solved protein-ssRNA structures is considerably low compared to
protein-protein structures. We gathered all available data and built an up-to-date benchmark of experimental 3D
structures of RRM-ssRNA complexes from the Protein Data Bank (PDB) by (i) downloading all experimentally
solved (either NMR or X-RAY with resolution 3Å or higher) protein-RNA complexes and (ii) applying
ProtNAff in order to retrieve complexes with 3 or more consecutive protein-bound single-stranded nucleotides.

We considered a nucleotide to be protein-bound if at least 5 pairs of RRM-RNA heavy atoms were located
within 6Å from each other. Lastly, we filtered out complexes whose protein does not contain any RRM domain,
according to the InteR3M database [21]. The resulting benchmark consists of 81 RRM-ssRNA complexes,
released before February 2021.

2.1.2 Dataset of docking poses
From the benchmark, we created a dataset of labelled docking poses. We used the ATTRACT docking

engine and library of RNA trinucleotide conformations [22] to dock each entry (each RRM-ssRNA complex) of
the benchmark, by docking each overlapping trinucleotide fragment (e.g. chain AUCG => fragment AUC and
fragment UCG), following the procedure described in [23]. For each fragment, a randomly selected

conformation from ProtNAff was placed at each of predefined starting points located within 30Å from3 · 107

the center of mass of the bound and rigid protein, with a random 3D rotation. Then the position of each starting
pose was minimised using gradient descent. Redundant poses (RMSD<0.2Å) were filtered out of the resulting

pool before scoring. The remaining docking poses were scored, and the top-ranked poses were retained.107

Each pose was labelled as near-native if its LRMSD was under 5Å; as non-native if its LRMSD was over 7Å; as
intermediate otherwise.

We used such relatively soft thresholds to lower the number of cases for which the sampling problem (zero
near-native poses sampled) has arisen. For example, the more strict thresholds [3Å;5Å] resulted in 41% of cases
with the sampling problem, versus just 8% with [5Å; 7Å]. To minimise the noise in the dataset, 60 cases where
the number of sampled near-natives was less than 100 were excluded. This led to a set of 419
RRM-trinucleotide fragment docking cases. Note that in the case of multiple fragments with the same sequence
bound to the same RRM, only a single docking is necessary.

2.1.3. Coarse-grained representation
As mentioned before, in the coarse-grained representation, groups of atoms are represented by beads. In the

used representation, 31 bead types are used to represent proteins (2 for backbone and 0-2 for side chain) and 17
bead types are used to represent RNA (1 for phosphate group, 2 for sugar and 3-4 for base), leading to a
maximum of 527 pairs of bead types [20]. Protein beads are denoted by index and RNA beads are denoted by𝑖
index .𝑗

2.1.4 Redundancy
In order to eliminate possible dataset bias, we performed a redundancy check at the contact level, by

comparing -bead to -bead distances within 6Å in the native poses of the protein-fragment cases. If such𝑖 𝑗
distance sets were very similar for two cases, these cases were considered redundant, and one of them was

removed from the dataset. The final dataset consists of 217 RRM-fragment cases, with labelled docking107

poses per case. Its corresponding benchmark consists of 57 RRM-ssRNA complexes and can be found in
Additional file 1: Table S1.

2.1.5 Training and test sets
We separated the dataset into pairs of training and test sets based on protein sequence similarity, in a

leave-homology-out procedure. Our sequence similarity threshold was 40%. We selected a random
protein-ssRNA complex from the benchmark along with all other complexes whose protein sequence similarity
was greater than 40%. All data cases derived from these complexes (protein-fragment structures along with their
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docking poses) became the test set. The remaining data cases formed the corresponding training set. We
repeated this procedure iteratively until each of the benchmark complexes was in one of the test sets. To prohibit
repetitive and near-repetitive (training; test) pairs, we ensured that the first randomly selected case in each
iteration did not belong to any of the previous test sets. All statistics reported in this paper correspond to the
evaluation of HIPPO on the test sets, where for each test set the four histogram sets 𝓗 derived from the
corresponding training set were used. The final collection consists of 29 (training; test) pairs and can be found in
Additional file 1: Table S2.

2.2 Creation of histogram set 𝓗
The main steps - detailed thereafter - to obtain a scoring histogram set 𝓗 are as follows:
1) construction of the distance arrays containing the number of occurrences of each bead-bead distance, in

near-native vs in non-native poses (ignoring intermediate ones), for each pair of bead types independently;(𝑖; 𝑗)
2) refinement of the distance arrays to ensure that each of them provides sufficient signal;
3) derivation of 𝓗 from the distance arrays, one histogram per distance array.

2.2.1 Histogram definition
Let’s denote the bead types representing the protein by index , and the bead types𝑖 ϵ {1, 2,  ... 31}

representing the RNA by index Also let’s define initial distance ranges by applying discretisations𝑗 ϵ {1,  ...  17}.
of 0.25Å and 1.5Å to the intervals [2Å; 7Å] and [7Å; 14.5Å] respectively. Such design of distance ranges allows
to capture close-range interactions with high precision and to generalise long-range interactions. The resulting
set contains 27 ranges: {(0, 2], (2, 2.25], …,(14.5, 999)}.

A distance array with the dimension 27x2 is designed to capture the number of occurrences of all𝐷
𝑖𝑗

(𝑖; 𝑗)

distances within a pool of docking poses. The rows , of correspond to the distance ranges.𝑑
𝑘
, 𝑘 = 1... 27 𝐷

𝑖𝑗

Each element of contains the count of distances within the indicated range. Elements in the first column𝐷
𝑖𝑗

𝑑
𝑘1 

account for the distances in near-native poses only, while elements from the second column capture𝑑
𝑘2

distances in non-native poses.
To ensure that in each there are enough examples coming from near-native poses in each distance range𝐷

𝑖𝑗

to provide a sufficient signal, we set a threshold for a minimum number of occurrences in near-natives .𝑤 𝑑
𝑘1

The threshold value is empirical and is determined individually for each pair as 1/60 of all distances(𝑖; 𝑗)
counted in near-native poses:

𝑤
𝑖𝑗

 = 𝐴
𝑖𝑗

/60,  

,𝑤ℎ𝑒𝑟𝑒 𝐴
𝑖𝑗

=
𝑘
∑  𝑑

𝑘1
  ∀𝑑

𝑘1
∈ 𝐷

𝑖𝑗
.

For each , if , then the rows starting from and beneath are summed until their sum exceeds𝐷
𝑖𝑗

𝑑
𝑘1

<  𝑤
𝑖𝑗

𝑘𝑡ℎ

the threshold. The new row resulting from the summation replaces the original row. This process is repeated
until all values in the first column of the resulting array exceed the threshold. The resulting refined distance

array has dimension qx2, where , and may vary for different pairs. Note that for each we𝐷
𝑖𝑗
* 𝑞 ≤ 27 (𝑖; 𝑗) (𝑖; 𝑗)

must save the resulting set of refined distance ranges for further application of the histogram.
Finally, the following formula, inspired by the logarithm of the odds ratio, is used to obtain individual

histograms from the corresponding :𝐻
𝑖𝑗

𝐷
𝑖𝑗
*

,𝐻
𝑖𝑗

 =   𝑙𝑛 𝑑
𝑥1
* − 𝑙𝑛 𝑑

𝑥2
* −  (𝑙𝑛 𝐴

𝑖𝑗
−  𝑙𝑛 𝐵

𝑖𝑗
)⎡⎢⎣
⎤⎥⎦

where , . 𝑥 =  1... 𝑞,  ∀𝑥 [𝑑
𝑥1
* ,  𝑑

𝑥2
* ] ∈ 𝐷

𝑖𝑗
* 𝐵

𝑖𝑗
=

𝑘
∑  𝑑

𝑘2
, ∀𝑑

𝑘2
∈ 𝐷

𝑖𝑗

The dimension of is qx1. We define 𝓗 as the set of individual histograms for all pairs, which𝐻
𝑖𝑗

𝐻
𝑖𝑗

(𝑖; 𝑗)

are present in at least one pose out of the input pool of the docking poses.

Since poses is a rather large pool, poses with vastly different ranks could possess different features. To107

account for this possibility, we divided the initial pool of poses into 3 sub-pools according to the rank of the
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poses: [0, 99999], [ , 999999], [ , ]. Each and subsequently each consists of three parts, built on105 106 107 𝐷
𝑖𝑗

𝐻
𝑖𝑗

poses from the corresponding rank-based sub-pool.
2.2.2. Scoring with 𝓗 and scoring assessment

To score a pose using 𝓗, we count the occurrences of distances for each pair within each of the(𝑖; 𝑗)
refined ranges, within each rank-based sub-pool. This information is stored in a qx1 array . The𝑅

𝑖𝑗

histogram-based score of a pose is calculated using the following formula:

(1)𝑆
𝑝𝑜𝑠𝑒

 =  
𝑖

∑
𝑗

∑  𝑅
𝑖𝑗

· 𝐻
𝑖𝑗
𝑇

In simpler terms, for every bead-bead distance in a pose that falls in one of the refined ranges, a
corresponding sub-score is assigned. This process is repeated for each rank-based sub-pool separately. The sum
of all sub-scores is the final histogram-based score of a pose.

To evaluate the performance of 𝓗 for a data case, we score all docking poses from the pool of poses107

using formula (1) and rank the poses by their score in descending order. Then we select the 5% of top-ranked
poses and calculate the fraction of all near-native poses that are present in this selection. An 𝓗 is labelled as
successful for a given data case if this value exceeds 60%. Likewise, we can say that a given case is successfully
scored by current 𝓗.

2.3 Collection of 𝓗
Initial analysis revealed that a single 𝓗 was not sufficient to account for the diverse protein-ssRNA binding

modes (Fig 2). Therefore, we opted for the creation of a small collection of 𝓗, where each 𝓗 is successful on a
subset of the cases. When applied simultaneously, the collection should cover the majority of cases, except for a
few outliers. The collection is created by selecting several best-performing 𝓗, such that maximising the number
of successfully scored cases in the training set. The full procedure is detailed in the next section (2.3.1).

Because in a real-life docking case, there will be no indication of which 𝓗 from the collection is best
suited for scoring, the case must be scored by all 𝓗 and results must be pooled together (see 2.3.2). As the
collection size increases, so does the chance of overfitting. For this reason, we have empirically limited the
number of 𝓗 to 4 per collection. Increasing this number to 5 or 6 had only limited influence (result not shown).

Fig 2. Comparison of the percentage of near-natives selected by a single 𝓗 vs ASF. Each pair of adjacent
boxes shows the distribution of the results produced by a corresponding 𝓗 (purple) and ASF (pink) on the
relevant for a given 𝓗 test set(s) (sets used for the collection to which given 𝓗 belongs), for a range from 0% to
100% of the near-natives in the 20% top-ranked poses.

2.3.1 Partitioning algorithm
While deriving a collection of 4 𝓗 - 𝓗1, 𝓗2, 𝓗3 and 𝓗4 - we partition the training cases into four subsets,

plus a subset of outliers. This procedure is implemented as follows:
1) Derive 𝓗 for each case individually;
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2) Score each case with each 𝓗;
3) For each pair (case; 𝓗), calculate the percentage of the near-natives that end up in the 5% of top-ranked

poses. If the calculated value is over 60%, then label this case as successfully scored by the given 𝓗;
4) Select the four 𝓗 that maximise the total number of successfully scored cases. This is the resulting

collection.
Now, each training case either is associated with its best-performing 𝓗 in the resulting collection or ends

up in the set of outliers.
2.3.2. Scoring with collection and evaluation strategy

To score a case with a collection, we score its docking poses with 𝓗1, 𝓗2, 𝓗3 and 𝓗4 separately using (1).
Then, for each 𝓗, around 5% of its top-ranked poses are selected and pooled together in TopC (where “C”
stands for a collection). If the same pose is present in several scorings, only its highest rank is kept. The size of
the TopC should be equal to 20% of all sampled poses. The resulting set of poses TopC is expected to contain
the best ones (the poses outside of TopC are dismissed).

To evaluate the performance of the collection for a case, the fraction of all near-native poses that end up in
TopC is calculated. If this value exceeds 60%, then the collection is successful for a given data case.

3 Results

In this study, we developed a new protocol for deriving scoring parameters for molecular docking poses,
based on distances between RNA and protein beads, in the form of a collection of 4 histogram sets (𝓗). We
applied it to create HIPPO, a novel scoring function specifically for RRM-ssRNA fragment-based docking. To
achieve this goal, we split every available RRM-ssRNA structure into RRM-fragment cases (fragments of 3

consecutive bound nucleotides), for each of which docking poses were generated using the ATTRACT107 
docking engine. Our initial benchmark consisted of 479 fragments from 81 complexes. Out of these, 262
fragments were unusable for training because of a sampling problem (less than 100 near-native poses sampled)
or because of redundancy between fragments on the contact level (6Å), resulting in a dataset of 217
well-sampled non-redundant cases, coming from 57 RRM-ssRNA complexes. Within the resulting dataset, the
average number of sampled near-native poses is 9112 and the median is 3145. To assess how HIPPO
performance would generalise to new data cases, we used the leave-homology-out cross-validation strategy: 29
pairs of training and test sets were formed based on RRM sequence similarity. The size of the test set depended
on the number of cases derived from each RRM-ssRNA complex of a given RRM and varied from 1 to 33 cases
per set.

For a given pair of test and training sets, for each case in the training set, we derived an 𝓗 by analysing the
frequencies of bead-bead distances in the near-native (LRMSD<5Å) vs non-native (LRMSD>7Å) docking
poses, and we applied it to each of the other cases in the training set. We selected the collection of 4 𝓗 sets that
maximised the number of training cases for which at least one 𝓗 ranks 60% of all near-native poses in the 5%
top-ranked poses. Then, the collection was applied to the test cases, and the best of the 4 ranks for each pose
was retained to obtain the 20% top-ranked poses (TopC). The collection was considered to be successful on a
test case if at least 60% of all near-native poses were in TopC.

3.1 General performance
We applied the described protocol to each of the 29 training sets and derived 29 collections of 4 𝓗. We

then applied these collections to the cases in the corresponding test sets and compared the percentages of
near-natives selected in TopC with HIPPO and in the 20% top-ranked with ASF (Tab. 1, Fig 3). Further in the
text, we refer to the percentage of near-natives present in TopC or 20% top-ranked as ‘selected’. At least 60% of
all near-natives selected (a 3-fold enrichment compared to random scoring) for more than half of the
RRM-fragment test cases with HIPPO, versus a quarter with ASF (53% vs 26% of the test cases respectively).
In one-third of the test cases, we even observed a 4-fold enrichment (80% of near-natives selected) with HIPPO,
something which is rarely achieved by ASF (38% vs 7% of the test cases respectively). To ensure that our
results were not skewed by cases coming from one or a few largest test sets, we compared the average success
rates over the test sets and found 62% and 34% respectively (Fig. 4, a).
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Tab. 1 Comparison of the performance of HIPPO vs ASF on the 217 cases (29 test sets, 57 complexes)
ASF HIPPO

% of near-natives in TopC/Top20, averaged over all test cases 43 55
Success rate (%) over all cases 26 53

Average highest % of near-natives inTopC/Top20 among the cases of a complex, over all test cases 60 72
Nb of complexes with the > 80% of near-natives in TopC/Top20 for at least one fragment 9 33

Nb of cases with > 80% of near-natives in TopC/Top20 15 75

Fig 3. Comparison of the percentage of selected near-natives by collections vs ASF on the test sets. Each pair of
adjacent boxes shows the distribution of the results produced by a corresponding collection (blue) and ASF
(pink) on one of the 29 test sets, for a range from 0% to 100% of the near-natives in the corresponding Top
(TopC/Top20 respectively).

3.2.1 Best-scored fragment per complex
We found a positive correlation (Pearson correlation, , Fig. 4, b) between the number of𝑟 = 0. 43

protein-fragment contacts under 5Å and the percentage of near-natives in TopC, which complies with the
cold/hotspot theory. To perform anchored fragment-based docking, at least one fragment per complex must be
well-docked. We thus analysed the distribution of successes among the complexes, with HIPPO and ASF. The
number of complexes with at least one successfully scored fragment increased from 54% with ASF to 75% with
HIPPO. With the success criterion raised to 80% of the near-natives selected (a 4-fold enrichment), the
compared success rate percentages still increased from 16% with ASF to 58% with HIPPO. Moreover, the
enrichment for the best-scored fragment per complex was increased with HIPPO compared to ASF in 68% of
complexes. On average, for the best-scored fragment of each complex, HIPPO selects an additional 19% of all
near-natives compared to ASF.
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Fig 4. a) Distribution of the success rate per test set, achieved with ASF (pink) and HIPPO (blue). The black dotted
line indicates the threshold of a 3-fold enrichment compared to random sampling. b) Relation between the number of
contacts in a protein-fragment structure vs the percentage of near-natives in TopC achieved by HIPPO. c) Distribution per
test case of the percentage of near-natives selected by a collection of 4 𝓗 (blue) versus by a single best-performing 𝓗
(green).

3.3 Analysis of the collections
To assess the gains of using a collection (4 𝓗) instead of 1 𝓗, we evaluated if the 4 𝓗 bring complementary

information, either for each test case (by selecting different near-native poses) or for each test set (by performing
well on different test cases).

3.3.1. Complementarity of the 4 𝓗 in a collection
Out of 29 collections, the ones derived from the training sets 1, 2, 3, 4 and 8 are distinct (see Additional

file 1: Table S3). The remaining collections are identical to the collection from training set 4. On the test set
level, we can see that each single 𝓗 is the best-performing (selects the highest number of near-natives) of the
collection for 0% to 48% of the cases. In other words, there is never one 𝓗 that is the best suited for half or
more of the cases in a given test set. This complies with the hypothesis that several different 𝓗 are required to
account for different binding modes (Fig. 5, Additional file 1: Table S4), and that a few potentials better
represent the diversity of RRM-ssRNA binding modes than one 𝓗, by providing at least one well-suited 𝓗 per
case for most cases.

Fig 5. The percentage of cases within a test set, for which each of the 4 𝓗 in the collection is the
best-performing one. a) For collection 1 on test set 1. b) For collection 2 on test set 2. c) For collection 3 on test
set 3. d) For collection 4 on the united test set, suitable for validation of this collection’s performance. This set
consists of the test cases belonging to all test sets, excluding sets 1, 2, 3 and 8. e) For the collection 8 on test set
8.

3.3.2 Best-performing 𝓗 per case or per complex
For half of the cases, most of the near-natives in the TopC were selected by a single 𝓗 out of 4. If for each

test case, we could use its best-performing 𝓗 instead of the collection (and count near-natives in 20% top-ranked
instead of pooling in the TopC), such modified application of HIPPO would reach a 3-fold enrichment for 77%
cases (instead of 53% with the collection and 26% with ASF) and a 4-fold enrichment for 62% cases (instead of
38% with the collection and 7% with ASF) (Supplementary Section 4, Tab 4, Fig 2). Furthermore, selecting only
the 5% top-ranked poses would show a 12-fold enrichment for 39% cases (vs 4% cases with ASF). For the
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best-scored fragment per complex, a 12-fold enrichment was observed in 61% of complexes with HIPPO, while
this is almost never achieved with ASF (7% of complexes). These numbers point toward the advantage of
applying a single best-performing 𝓗 per case rather than a collection if one could predict which 𝓗 to apply to
which case (Fig 6).

Fig 6. Comparison of the percentage of selected near-natives by ASF vs the best-performing 𝓗. Each pair
of adjacent boxes shows the distribution of the results produced by each best-performing 𝓗 (purple) or ASF
(pink) on the relative test cases for a range from 0% to 100% of all near-natives ranked in the 20% top-ranked
poses.

4 Discussion

Despite the numerous biological roles of ssRNA-protein binding processes, there is still a lack of methods
capable of addressing the dual challenges of the very high flexibility of ssRNA and the scarcity of its
experimental structures. We previously developed a unique approach capable of modelling protein-bound
ssRNA, by coarse-grained docking of ssRNA fragments with the ATTRACT docking software, followed by
combinatorial assembly of geometrically compatible poses. This approach is successful in modelling the full
ssRNA chain at high accuracy when conserved stacking contacts are known: the docking search space is
reduced by constraints forcing the stacking of certain nucleotides on the conserved residues. In the absence of
conserved contacts, this approach is limited by the poor sampling and low discriminatory power of the
protein-RNA energy function of ATTRACT when applied to ssRNA fragments. With typically a few thousand

near-native poses sampled out of poses, the percentage of near-natives is less than 0.1%. In general, during107

assembly, low percentages of near-natives at the fragment level increase the probability of compatible
non-native poses, leading to a prohibitive number of full-chain RNA models with an infinitesimally low
percentage of quasi-native models. For direct applicability in the absence of conserved contacts, a very high
enrichment is needed, followed by clustering and possibly refinement/rescoring with molecular dynamics, to
arrive at an ensemble of perhaps a few hundred poses of which at least one is near-native.

In order to achieve such a high enrichment, we developed a new analytic approach for creating a scoring
function for docking poses of coarse-grained ssRNA fragments, based on the frequencies of contact distances in
near-native versus non-native poses. A specificity of our approach is to derive and combine a small set of
potentials to better cover the diversity of ssRNA binding modes. We applied it to create HIPPO, a novel scoring
function specifically for coarse-grained RRM-ssRNA fragment-based docking. On a benchmark of 57
RRM-ssRNA complexes.

HIPPO demonstrates a better discriminatory power for near-native poses than the state-of-the-art
ATTRACT scoring function (ASF), making it the best coarse-grained scoring function tested for protein-ssRNA
complexes to date.

The successfully and unsuccessfully scored cases are rather evenly distributed among the complexes (result
not shown). HIPPO's strengths and weaknesses are thus not likely to be attached to any specific type of
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complex, but rather to hot- and coldspots binding, meaning RNA fragments of a complex that are tightly and
loosely attached to the protein respectively. This variability of docking performance over fragments is a
difficulty inherent in a classical fragment-based docking approach, where each fragment must be docked
(sampled and scored) within an accuracy threshold before the assembly. A way to tackle this is to ensure that at
least one fragment per complex is very well docked and use each of its top-ranked poses as anchors to build a
full RNA model by direct poses superposition followed by scoring. In the absence of evidence to identify the
well-docked fragment from RNA sequence and protein structure, one would iteratively consider each fragment
as such. We had previously applied a similar anchored docking of ssRNA on RRMs by using conserved stacking
interactions between RRM aromatic residues and a nucleotide base as anchors [15]. Yet nearly half of RRM
structures lack those conserved aromatics [21], and such a new hotspot approach would overcome this
limitation. HIPPO will be better suited than ASF for this approach, since (i) more complexes have at least one
successfully docked fragment compared to ASF, and (ii) the best-scored fragment in each complex has a higher
enrichment for most complexes compared to ASF.

We have seen that for most cases (95%) the best-performing 𝓗 of the collection performed better than the
whole collection (Fig 4. c). A way to improve HIPPO’s performance would be to determine which 𝓗 from the
collection will perform the best on a given protein-fragment case. This would allow us to apply only this one 𝓗
and avoid retaining false positives returned by the other three 𝓗. This may be achieved with the help of the
supervised machine learning techniques based on the sequence of the fragment and the sequence or/and
structure of the protein, and/or on the docking poses. Such a pre-trained classifier not only would drastically
improve the performance of the scoring but could also give valuable insight into the most prevalent
protein-ssRNA binding modes. More importantly, since scoring with the best performing 𝓗 achieved 60% of
near-natives in 5% top-ranked for the best-scored fragment in a complex for 61% of complexes, there is a great
perspective in clustering these top-ranked poses and using the obtained prototypes as anchors.

We see several tuning possibilities that might yield improved HIPPO performance. In particular, we will
try to apply a stricter threshold for near-native poses, and see if, despite the increased sampling difficulties
encountered, there would still be enough signal for HIPPO to succeed for high-accuracy poses.

As mentioned earlier, we face not only scoring but also, primarily, a sampling problem in ssRNA docking.
HIPPO can be considered as a pseudo-energy function, and as such, it is suitable for a sampling procedure based
on energy minimisation that would not require derivability of the energy, such as a Monte Carlo approach [24].
We plan to test it against the current ATTRACT sampling procedure that uses ASF with gradient minimisation.
Another possible way to apply HIPPO for the sampling is to convert each histogram into a differentiable
function to be used directly in ATTRACT’s gradient minimisation protocol.

To further evaluate the generalisability of our approach for deriving scoring potentials, we plan to expand
our benchmark from only RRM-ssRNA structures to a more general protein-ssRNA benchmark, as well as to
our benchmark of protein-ssDNA structures [25].
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Additional file 1

Table S1. Benchmark of solved RRM-ssRNA structures
pdb_id: proteinChain1_firstAtom_lastAtom-proteinChain2_firstAtom_lastAtom -...
rnaChain_firstAtom_lastAtom (numbers of the fragments used)

1A9N: A_1_162-B_1_94 Q_6_18 (2 3 4 5 6 7 11)
1B7F: A_1_167 P_3_12 (1 2 3 4 5 6 7 8)
1CVJ: A_1_169 M_2_9 (1 2 3 4 5 6)
1DRZ: A_1_91 B_48_57 (1 2 3 4 5 6 7)
1FJE: B_1_175 A_7_16 (1 2 3 4 5 7 8)
1FXL: A_1_167 B_1_8 (1 2 3 4 5 6)
1G2E: A_1_167 B_1_9 (1 2)
1M5K: C_1_92 B_35_44 (3 4 5 6)
1RKJ: A_1_175 B_8_15 (1 2 3 5)
1URN: A_1_96 P_6_12 (3 4 5)
1ZH5: A_1_181 D_2_9 (4 5 6)
2CJK: A_1_167 B_2_8 (1 2 3 4 5)
2G4B: A_1_172 B_3_7 (1 2 3)
2HYI: C_1_392-D_1_56-B_1_91-A_1_144 F_2_6 (1 2 3)
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2J0S: A_1_391-C_1_143-D_1_89-T_1_44 E_1_6 (1)
2KG0: A_1_92 B_2_6 (1 2 3)
2KM8: B_1_84-C_1_167 A_1_13 (1 2 3 4 5 6 7 8 9 10)
2KXN: B_1_95 A_2_6 (1 2 3)
2M8D: B_1_91 A_2_8 (2 3 4 5)
2MGZ: A_1_94-B_1_105 C_2_12 (1 2 3 4 5 6 7 8 9)
2MKI: A_1_203 B_2_5 (1 2)
2MQO: A_1_105 B_2_6 (1 2 3)
2MQP: A_1_118 B_2_6 (1 2 3)
2MXY: A_1_105 B_2_7 (1 2 3 4)
2N3O: A_1_123 B_10_14 (1 2 3)
2RRA: A_1_99 B_2_6 (1 2 3)
2VOD: A_1_187 C_2_7 (4)
2VON: A_1_187 C_2_7 (3)
2XS7: A_1_86 B_2_4 (1)
3MOJ: B_1_75 A_46_49 (1 2)
3NNH: A_1_86-C_1_85 E_1_10 (2 3 4 5 6 7 8)
3RW6: A_1_245 H_11_15 (1 2 3)
4BS2: A_1_174 B_2_11 (1 2 3 4 5)
4CIO: A_1_97 B_2_7 (1 2 3 4)
4ED5: A_1_168 D_2_8 (1 2 3 4 5)
4F02: A_1_175-C_1_20 B_2_9 (6)
4N0T: A_1_363 B_11_29 (3 5 6 7 8 10 11 12 13 14 17)
4QQB: A_1_169-X_1_72 P_1_17 (1 2 3 4 5 6 7 8 10 11 12 13 14)
4YB1: P_1_92 R_8_11 (1)
5DET: A_1_91-B_1_94 Q_1_4 (1 2)
5HO4: A_1_179 B_2_5 (1 2)
5MPG: A_1_97 B_2_7 (1 2 3 4)
5MPL: A_1_102 B_2_6 (1 2 3)
5O1Y: A_1_163 B_2_4 (1)
5TF6: A_1_367 B_11_29 (11 12 13)
5WWE: A_1_174 B_2_5 (1 2)
5WWG: A_1_184 B_2_6 (1 2)
6ASO: A_1_369-B_1_95-C_1_79-D_1_59-E_1_79-F_1_75-G_1_67-H_1_83 I_8_26 (13 14)
6DCL: A_1_182-B_1_171 C_3_11 (1 2 3 4 5 6 7)
6F4G: A_1_175-B_1_95 C_9_19 (2 3 4 5 6)
6F4H: A_1_90 B_7_16 (5 6)
6G2K: A_1_80-B_1_80 R_1_6 (1 2 3 4)
6GBM: B_1_102 A_12_15 (1 2)
6GC5: A_1_79-B_1_76 E_1_5 (3)
6GD2: A_1_84-B_1_81 D_1_7 (2 3 4)
6GD3: B_1_83-C_1_84 P_1_6 (1 2 3 4)
6GX6: A_1_159 B_2_4 (1)

Table S2. Test sets
Test set 1 (28 cases) : 1A9N 1DRZ 1M5K 1URN 4YB1 6F4G 6F4H
Test set 2 (20 cases) : 5HO4 5MPG 5MPL 5WWE 5WWG 6DCL
Test set 3 (33 cases): 1B7F 1FXL 1G2E 4ED5 4QQB
Test set 4 (12 cases): 6G2K 6GC5 6GD2 6GD3
Test set 5 (7 cases): 3NNH
Test set 6 (4 cases): 1ZH5 2VOD 2VON
Test set 7 (4 cases): 2HYI 2J0S
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Test set 8 (16 cases): 4N0T 5TF6 6ASO
Test set 9 (6 cases): 2KXN 2RRA
Test set 10 (15 cases): 2CJK 2KM8
Test set 11 (13 cases): 2MGZ 4CIO
Test set 12 (7 cases): 1CVJ 4F02
Test set 13 (4 cases): 2MXY
Test set 14 (11 cases): 1FJE 1RKJ
Test set 15 (3 cases): 2N3O
Test set 16 (2 cases): 6GBM
Test set 17 (4 cases): 4BS2
Test set 18 (1 cases): 5O1Y
Test set 19 (2 cases): 2MKI
Test set 20 (1 cases): 6GX6
Test set 21 (3 cases): 2MQO
Test set 22 (3 cases): 2MQP
Test set 23 (4 cases): 2M8D
Test set 24 (1 cases): 2XS7
Test set 25 (3 cases): 2KG0
Test set 26 (2 cases): 5DET
Test set 27 (3 cases): 2G4B
Test set 28 (2 cases): 3MOJ
Test set 29 (3 cases): 3RW6

Table S3. Composition of the distinct HIPPO collections in terms of 𝓗

Collection id 1 2 3 4 8

Histogram sets
𝓗

2G4B-3-UUU
2KM8-1-UAU
4N0T-10-AGA
5MPG-1-UAG

1M5K-4-GCA
3NNH-3-GUU
4N0T-10-AGA
6GD3-3-UUU

1M5K-4-GCA
4N0T-10-AGA
6DCL-1-UAG
6DCL-5-UUA

1M5K-4-GCA
4N0T-10-AGA
5MPG-1-UAG
6DCL-5-UUA

1DRZ-3-UGC
2MQO-1-ACA
3NNH-3-GUU
5MPG-1-UAG

Table S4. Performance of ASF versus each unique 𝓗 on the test cases, where given 𝓗 is best-performing.
Numbers in bold indicates better performance between ASF vs best-performing 𝓗.

test case* where 𝓗 is
best-performing

count of successfully
scored cases

count of
best-scored cases

avg % of selected
near-natives per case

ASF H ASF H ASF H

2G4B-3-UUU 1 0 3 1 51 23

2KM8-1-UAU 0 7 1 9 32 67

4N0T-10-AGA 15 47 6 55 39 75

5MPG-1-UAG 18 47 5 50 50 82

1M5K-4-GCA 12 26 3 33 48 79

3NNH-3-GUU 0 5 3 7 27 54

6GD3-3-UUU 2 2 1 1 82 87

6DCL-1-UAG 4 6 1 6 63 82
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6DCL-5-UUA 3 23 0 25 31 92

1DRZ-3-UGC 0 0 4 0 44 22

2MQO-1-ACA 1 3 0 3 55 88

superior performance count 1 6 2 7 2 8
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B.2 Attempted Approaches

Fitting Parameters to the Histograms

Before developing a current version of HIPPO’s protocol, we implemented a histogram-based
approach (§4.2), which involves summing up the log-odds and residual histograms and fitting the
energy parameters to the resulting histograms. This part of the procedure was not included in the
HIPPO’s protocol, as the resulting parameters performed notably poorer than ASF (results not
shown).

The fitting was done as follows:
- The input is a set of original ATTRACT energy parameters and the set of scoring histograms

(one scoring potential);
- Obtain xSet, a set of distance values corresponding to the distance bins (distance ranges) of

the scoring potential;
- Obtain ySet, a set of energy values for each distance in xSet, and for each pair;(ε

𝑖𝑗
;  σ

𝑖𝑗
)

- Calculate an average over all rank_chunks (see HIPPO paper, the last paragraph of §2.2.1)
value for each distance bin of each histogram (finalBars);

- Obtain energy values of the resulting histogram yNewSet by ySet-coef finalBars. Different·
values of the coef, namely 1, 0.1 and 0.01, were tested separately;

- Each energy curve was fitted to the corresponding set of points (xSet, yNewSet);
- Updated parameter set was tested via re-scoring the training set and comparing results with

ASF.

For the fitting a scipy.optimize.curve_fit, a non-linear least squares method, was used
(documentation is available at
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html). The maximum of
interactions was set up to 100,000, and the boundaries for and were set up to .σ ε [0; 25]

As this is a least squares method, the nature of the energy curve (i.e. steep slope and high
absolute energy values of the points above the x-axis and very gentle slope and low absolute energy
values of the points below the x-axis) impacts the fitting process. Therefore, each curve was fitted 4
times (Fig. B.1):

- Starting with the second point above the x-axis;
- Starting with the first point above the x-axis;
- Starting with the first point below the x-axis;
- Starting with the second point below the x-axis.
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Figure B.1 - Fitting of the attract curve (blue) to the yNewSet (yellow points, the first displayed point
is the 3rd point below the x-axis). Resulting curves are obtained by fitting the attract curve to the
second point above the x-axis (black curve); the first point above the x-axis (orange); the first point
below the x-axis (pink) and the second point below the x-axis (cyan).

Merging Several Pools of Docking Poses to Derive One Scoring Potential

In the current HIPPO protocol, a scoring potential is derived for a single data case, from its pool
of the labelled docking poses. We have attempted to merge two or more pools of the docking poses (of
the different data cases) and derive a scoring potential from such a merged pool.

Practically, not the pools of the near-natives are merged, but their distance arrays (see HIPPO
paper, §2.2.1) are weighted and summed up. The weights are calculated based on the number of
near-native poses in each pool:

,𝑤𝑒𝑖𝑔ℎ𝑡
𝑖

=  1/ (0. 1 + 𝑁
𝑖
/

𝑘=0

𝑚

∑  𝑁
𝑘
)

where is a number of the near-natives in the pool of the docking poses, and is a𝑁
𝑖

𝑖
𝑡ℎ

𝑚

total number of the pools to merge.
The is applied to each value in the distance array obtained from the pool of𝑤𝑒𝑖𝑔ℎ𝑡

𝑖
𝑖

𝑡ℎ

the docking poses.
This procedure, while having some preliminary success [ref], is less effective compared to the current
version of HIPPO.
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Fill in Missing Histograms

As mentioned before, currently a scoring potential is derived for a single data case, which means
that histograms for some pairs of beads are missing within a single potential. For example, current 𝓗1
have been derived from data case 1M5K-GCA and it contains no histograms for the beads
representing U side chain (GU1, GU2, GU3). In an attempt to fill up these empty spaces, we tried
taking corresponding histograms from the first best-performing histogram containing missing beads.
However, this resulted in a slightly worse performance of the scoring potential.

B.3 Possible Future Tuning

Minimum Number of Near-Natives in Each Distance Range

Currently, the minimum number of near-natives in each distance range is determined individually
for each -pair as 1/60 of all near-native poses (see HIPPO paper, §2.2.1). This constant is tailored to𝑖𝑗
the typical number of sampled near-natives with LRMSD < 5Å (note that cases with less than 99
near-natives are rejected). To apply HIPPO’s protocol to other types of data (different LRMSD
thresholds and/or different types of complexes), this threshold is likely to require manual fitting.
Instead of such manual adjustments, it would be interesting to develop an automatic tuning protocol
capable of selecting a constant (or an adaptive value) based on, for example, the median number of
sampled near-natives.

Usage of the Rank Chunks

Each distance range consists of three rank chunks (i.e. rank-based sub-bins, see HIPPO paper, the
last paragraph of §2.2.1). The average across these three rank chunks is used for scoring. However,
initially, we intended to fit a set of coefficients for each rank chunk so that poses with a higher rank
have more impact and vice versa. This idea was not explored due to time constraints, but it is
interesting to explore.

Smoothing Individual Histograms

A subset of the histograms of 𝓗1 is shown below (Fig. B.2). While fitting the energy curves to
these histograms results in a loss of signal, it is possible that smoothing the histograms could yield
better performance. This is because the score difference between poses differing by a small distance
would be less pronounced.
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Figure B.2 - Subset of histograms for bead 9 (amino acid GLN, atoms CN1, CD OE1 NE2) and each
RNA bead (32 to 45, starting from 1 bead for phosphate, then 2 beads for sugar, followed by 4 or 3
beads per bases A, G, C, U). The x-axis shows distances (in Å) discretised into distance bins/ranges,
and the y-axis displays histogram-based scores (no units).
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B.4 Benchmark for Scoring

This section details the benchmark of solved protein-ssRNA structures. The data is displayed in
the following format:

PDB_ID proteinChain_firstAtom-proteinChain_lastAtom rnaChain_firstAtom-rnaChain_lastAtom

newRRM

6JVX
6YYM
7QDD
7VRL
7ZAP
7ZEW

A_29-A_115
A_580-A_726
B_114-B_201
B_107-B_208
A_141-B_237
A_1-A_114

B_1-B_7
B_1-B_12
A_108-A_113
A_1-A_7
B_101-B_107
B_1-B_6

nonRRM

1ASY
1B23
1BMV
1DDL
1EC6
1ETF
1F7V
1HJI
1I9F
1J1U
1JBT
1JID
1K8W
1KQ2
1L9A
1LNG
1M8V
1M8X
1M8Y
1N1H
1NYB
1Q2R
1QFQ
1R3E
1RGO
1SI3
1SJ3
1TTT
1WMQ
1WNE
1WPU
1ZBH

A_1-B_490
P_1-P_405
1_1-2_374
A_1-C_175
A_1-A_87
B_1-B_23
A_1-A_606
B_1-B_26
B_1-B_19
A_1-A_299
B_1-B_149
A_1-A_114
A_1-A_304
A_1-M_61
A_1-A_87
A_1-A_87
A_1-N_71
A_1-A_341
A_1-A_341
A_1-A1_264
A_1-A_22
A_1-A_376
B_1-B_35
A_1-A_305
A_1-A_70
A_1-A_117
P_1-P_95
A_1-A_405
A_1-B_143
A_1-A_476
A_1-B_147
A_1-D_289

S_72-S_75
R_71-R_74
M_1-M_5
D_1-D_7
D_5-D_16
A_23-A_27
B_13-B_22
A_6-A_9
A_23-A_27
B_35-B_38
D_14-D_17
B_13-B_16
B_10-B_14
R_2-R_7
B_36-B_39
B_24-B_27
S_1-S_6
C_2-C_8
C_1-C_10
B_1-B_4
B_10-B_14
E_11-E_14
A_6-A_10
C_7-C_11
D_2-D_9
B_2-B_9
R_49-R_58
D_73-D_76
C_1-C_7
B_2-B_6
C_2-C_7
E_7-E_10

3BOY
3BSB
3BSX
3BT7
3BX2
3BX3
3CUL
3DD2
3EX7
3FHT
3G9YA
3GIB
3HSB
3I5X
3IE1
3IEVA
3K49
3K5Q
3K5Y
3K5Z
3K61
3K62
3K64
3L26
3M7N
3M85
3MDG
3NVI
3O3I
3O8C
3OIJ
3PEW

A_1-C_147
B_1-B_341
A_1-A_341
A_1-A_369
A_1-A_328
A_1-A_325
A_1-A_88
L_1-H_258
A_1-D_57
A_1-A_392
A_1-A_29
A_1-C_62
A_1-F_67
A_1-A_509
A_1-A_431
A_1-A_302
A_1-A_353
A_1-A_400
A_1-A_400
A_1-A_394
A_1-A_393
A_1-A_400
A_1-A_400
A_1-B_123
A_1-I_258
A_1-I_259
A_1-B_210
A_1-D_121
X_1-X_108
A_1-B_645
A_1-B_218
A_1-A_391

D_2-D_21
C_2-C_9
C_2-C_10
C_6-C_14
C_2-C_9
C_2-C_8
C_29-C_38
B_13-B_16
F_2-F_6
C_1-C_6
C_2-C_6
H_1-H_9
X_2-X_7
B_3-B_10
E_1-E_4
D_1-D_9
B_2-B_10
B_1-B_9
B_2-B_9
B_2-B_9
B_2-B_9
B_2-B_9
B_2-B_9
C_4-C_8
Y_1-Y_5
X_1-X_4
C_2-C_5
E_9-E_24
A_11-A_14
C_1-C_6
C_5-C_10
B_1-B_5
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1ZBN
1ZE2
1ZL3
2ANN
2ASB
2AZX
2BH2
2BQ5
2BU1
2C06
2CSX
2DB3
2DLC
2DRB
2FMT
2HGH
2I91
2IX1
2JLW
2JLX
2JPP
2KFY
2LI8
2MS1
2N8L
2N8M
2PLY
2PY9
2Q66
2QUX
2R7T
2R7V
2R7W
2R8S
2RSK
2RU7
2VNU
2XGJ
2XZL
2YJY
2ZZM
3AEV
3AMT

B_1-B_17
A_1-A_300
A_1-A_302
A_1-A_148
A_1-A_226
A_1-A_377
A_1-A_418
A_1-C_129
A_1-C_129
A_1-B_110
A_1-A_464
A_1-A_420
X_1-X_339
A_1-A_437
A_1-A_314
A_1-A_87
A_1-A_520
A_1-A_643
A_1-A_450
A_1-A_451
A_1-B_53
A_1-A_102
A_1-A_63
A_1-A_55
A_1-A_191
A_1-A_191
A_1-B_198
A_1-B_66
A_1-A_519
A_1-B_121
A_1-A1_073
A_1-A1_073
A_1-A1_073
L_1-H_219
C_1-D_12
C_1-D_12
D_1-D_676
A_1-A_964
A_1-A_756
A_1-A_337
A_1-A_329
A_1-B_177
A_1-A_405

A_14-A_17
C_10-C_14
B_9-B_15
B_8-B_16
B_2-B_11
C_32-C_37
C_2-C_12
R_6-R_12
R_5-R_11
C_2-C_5
C_33-C_39
E_2-E_5
Y_32-Y_35
B_32-B_35
C_73-C_77
B_5-B_8
D_8-D_14
B_1-B_13
C_2-C_6
C_2-C_7
C_8-C_13
B_2-B_6
B_2-B_7
B_6-B_9
B_2-B_7
B_1-B_7
C_11-C_14
E_6-E_12
X_2-X_5
C_11-C_16
X_2-X_7
X_2-X_5
X_2-X_7
R_66-R_78
A_2-A_12
A_2-A_12
B_2-B_9
C_2-C_5
B_1-B_8
C_1-C_10
B_35-B_41
C_2-C_11
B_33-B_41

3PF4A
3Q0M
3Q0Q
3Q0S
3QGB
3QGC
3QJJ
3QJL
3R2C
3R9W
3RC8
3RER
3T3O
3T5Q
3V71
484D
4ATO
4B8T
4BA2
4D25
4H5P
4I67
4J1G
4J7L
4JK0
4JNG
4JNXA
4JVYA
4K4U
4K4W
4KRE
4KRF
4Z0C
5YTS
5YTX
6KTC
6KUG
6RA4
6SQN
6UV1
6UV2
6UV4
6X5M

B_1-B_66
A_1-A_337
A_1-A_343
A_1-A_343
A_1-A_400
A_1-A_400
A_1-A_243
A_1-B_240
A_1-J_79
A_1-A_302
A_1-A_610
A_1-F_61
A_1-A_553
A_1-A_306
A_1-A_364
A_1-A_17
A_1-A_168
A_1-A_106
A_1-I_213
A_1-A_427
A_1-B_244
A_1-A_76
A_1-B_227
A_1-A_358
D_1-D_120
A_1-D_223
A_1-D_124
A_1-B_190
A_1-A_462
A_1-A_462
A_1-A_799
A_1-A_817
A_1-D_709
A_1-A_74
A_1-A_74
A_1-A_74
A_1-A_73
A_1-B_130
A_1-C_95
A_1-A_438
A_1-A_431
A_1-A_426
H_1-L_215

R_2-R_5
C_2-C_8
B_2-B_8
B_2-B_8
B_2-B_9
B_2-B_9
Q_2-Q_12
X_2-X_12
R_2-R_8
B_24-B_34
E_1-E_5
K_2-K_8
B_1-B_5
C_1-C_8
B_1-B_7
B_8-B_18
G_2-G_5
B_1-B_5
R_1-R_4
D_1-D_6
E_2-E_14
B_1-B_4
E_2-E_44
B_1-B_5
B_1-B_5
L_1-L_42
B_8-B_15
D_1-D_6
B_1-B_5
B_1-B_6
R_1-R_9
R_1-R_12
C_1-C_13
B_1-B_4
B_1-B_4
V_1-V_4
B_1-B_4
M_2-M_9
Z_5-Z_12
C_2-C_7
C_2-C_7
C_1-C_7
R_15-R_19
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B.5 Chain Assembly

Benchmark

In the following table (Tab B.1) one can find a list of fragments which undergo assembly. This
table also shows the number of near-native poses in the top5%, obtained with ASF and BP (columns
‘num_nn top5_asf’ and ‘num_nn top5_bp’ respectively), as well as which percentage of all sampled
near-native this is (columns ‘%_nn top5_asf’ and ‘%_nn top5_bp’ respectively). The difference
between these numbers and percentages is shown in the columns ‘delta num’ and ‘delta %’
respectively. Finally, hor the host-spot (middle) fragment, the rank first near-native pose, which is
present in the near-native chain, is shown for two overlap values.

Table B.1 - Benchmark and assembly data.

fragment
number

num_nn
top5_bp

%_nn
top5_bp

num_nn
top5_asf

%_nn
top5_asf

delta
num

delta
(%)

min_rank
overlap 0.9A

min_rank
overlap 1.4A

2BH2

6 885 12% 12 0% +873 12% - -

7 4846 23% 1914 9% +2932 14% 1419 4

8 887 5% 2779 14% -1892 -9% - -

2JLX

1 5330 24% 158 1% +5172 23% - -

2 6243 8% 74 0% +6169 8% 4510 474

3 427 1% 249 1% +178 0% - -

2JPP

1 104 5% 11 0% +93 5% - -

2 1124 18% 86 1% +1038 17% 26439 6699

3 620 16% 35 1% +585 15% - -

3BT7

1 269 2% 422 4% -153 -2% - -

2 902 6% 978 7% -76 -1% 44015 16211

3 146 7% 113 5% +33 2% - -

3CUL

4 269 86% 727 8% +7242 78% - -

5 902 53% 282 2% +16803 51% 19 16

6 146 1% 18 0% +77 1% - -
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fragment
number

num_nn
top5_bp

%_nn
top5_bp

num_nn
top5_asf

%_nn
top5_asf

delta
num

delta
(%)

min_rank
overlap 0.9A

min_rank
overlap 1.4A

3K62

2 105 1% 684 7% -579 -6% - -

3 1365 3% 8 0% 1357 3% 20651 13069

4 99 0% 742 3% -643 -3% - -

3O8C

1 197 13% 1 0% 196 13% - -

2 550 31% 24 1% 526 30% no chains 18609

3 446 26% 31 2% 415 24% - -

4H5P

2 121 44% 11 4% 110 40% - -

3 1713 55% 135 4% 1578 51% no chains 49

4 1542 32% 120 3% 1422 29% - -

4H5P

5 1656 12% 319 2% 1337 10% - -

6 2060 16% 1423 7% 1537 9% no chains 642

7 650 70% 156 17% 494 53% - -

1SJ3

4 7375 95% 880 11% 6495 +84% - -

5 2716 8% 1472 5% 1244 +3% 188 188

6 1446 17% 161 2% 1285 +15% - -

6UV2

1 91 1% 203 3% -112 -2% - -

2 3089 20% 2137 14% 952 6% 75514 1975

3 2233 35% 1751 27% 482 8% - -

6UV4

2 1391 12% 2071 18% -680 -6% - -

3 1703 34% 1543 31% 160 3% 40850 6805

4 272 26% 370 36% -98 -10% - -

6JVX
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fragment
number

num_nn
top5_bp

%_nn
top5_bp

num_nn
top5_asf

%_nn
top5_asf

delta
num

delta
(%)

min_rank
overlap 0.9A

min_rank
overlap 1.4A

1 621 11% 49 1% 572 10% - -

2 3428 30% 724 6% 2704 24% 170 39

3 2608 46% 308 5% 2300 41% - -

7VRL

2 66 6% 25 2% 41 4% - -

3 466 6% 120 2% 346 4% 111704 7550

4 456 5% 342 4% 114 1% - -

Persentages of the Near-Native Chains

The following table (Tab. B.2) displays the percentages of the near-native chains out of all
assembled chains for each hyperparameter set.

Table B.2 - Percentages of the near-native chains out of all assembled chains for each
hyperparameter set, assembled using ASF or BP scoring.

Hpar1 Hpar2 Hpar3 Hpar4

ASF, % BP, % ASF, % BP, % ASF, % BP, % ASF, % BP, %

1SJ3
2BH2
2JLX
2JPP
3BT7
3CUL
3K62
3O8C
4H5P
4H5P
6JVX
6UV2
6UV4
7VRL

0.78
2.92
0.02
0

0.28
0.53
0
0
0
0

0.02
88.89
13.64
0

0.12
11.81
18.8
0.01
0.02
0.65
10.43
0
0
0

0.04
61.11
10.0
0.02

3.56
5.59
0.02
0

0.86
0.47
0
0
0
0

0.03
100.0
0.0
0

0.58
24.82
11.26
0.0
1.72
0.72
6.78
0
0
0

0.43
45.46
10.35
0.06

12.79
1.15
0.0
0.25
0.04
0
0
0
0

0.18
0.01
27.41
41.89
0

13.57
20.86
26.44
0.0
0.0
1.44
0
0

1.49
0.49
1.02
2.58
1.86
0

3.91
4.49
0
0

0.01
0.57
0
0
0

0.02
0.01
64.56
16.52
0

1.23
12.13
11.29
0.01
0

2.18
0
0

0.28
0.07
0.25
7.53
1.13
0
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Data-driven docking

C.1 ‘RRM-RNA dock’ Flowchart

C.2 ‘RRM-RNA dock’ User Manual

To get started, visit https://github.com/AnnaKravchenko/RRM-RNA-dock/tree/main.

User Input

To execute the pipeline, run the pip.py.
The requirements for the input data are the next:
- The given combination of UniProt protein ID (-id/--uniProtId) and RRM index

(-rrm/--rrm_domain_id) should belong to the InteR3M database;
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- The given ligand sequence (-seq/--ss_rna_sequence) should contain nucleotides from RNA
only. The nucleotides should be of a canonical type. The size of the sequence is unlimited,
however, the current version of the pipeline docks a single fragment out of the whole chain;

- Both anchor nucleotides should be specified by their indexes in the RNA sequence
(numbering starts from 1). These should be 2 distinct nucleotides within the given RNA
sequence. They should be located within a single fragment, i.e. they should be separated by 0
to 1 non-anchor nucleotide). One nucleotide (-ancNucB1/----anchoring_nucleotide_id_beta1)
should form a stacking interaction with the amino acid in position 5, in RNP1; and another
nucleotide (-ancNucB3/--anchoring_nucleotide_id_beta3) should form stacking interaction
with the amino acid in position 2, in RNP2.

Optionally, user can modify the next parameters of the configuration file (config.ini) (Fig. 1):

- dist_restraint_B1 and dist_restraint_B3 are the minimal distance for positional restraints in
Angstrom for the docking of anchored nucleotides;

- Score_penalty is a score penalty applied if a positional restraint is violated;
- docking_cpu is the number of CPUs used during the docking run;
- Docking_tmp is the path to the folder where intermediate docking files are stored. The default

value ‘0’ redirects these files directly to the docking directory (e.g. /../rrm1/b1_1/b3_1/).

Figure 1. Configuration file with the default setting.

In case the program fails to read or process the user’s input, a corresponding error message will
be displayed and the execution will be interrupted (Fig. 2).
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Figure 2. An example of the error message.

If the folder on the given combination of UniProt protein ID (parameter -id/--uniProtId) and
RRM (-rrm/--rrm_domain_id) already exists, it should be emptied before further execution on the
pipeline. To prevent data loss, in such a case the user will be asked to confirm the action (Fig. 3).

Figure 3. An example of the command line interface if the path to an already existing folder is
given.

To give the user more flexibility, after completion of the necessary docking preparations, the user
is asked to confirm the beginning of the docking run (Fig. 4).

Figure 4. An example of the command line interface after completion of the necessary docking
preparations and before the beginning of the docking.
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Output

Execution of the pipeline leads to the creation of the next file system (Fig. 5):

- For a given UniProt protein ID, a directory with the same name will be created in the working
directory (-wdir/--work_directory);

- For a given RRM id, a directory with the name ‘rrmx’, where x is a given id, will be created
in the protein directory. The related files created by the pipeline (before docking) are stored in
this directory;

- For each prototype of a nucleotide in contact with beta1, a directory ‘b1_i’, where i is the
index of the b1-prototype, will be made in ‘rrmx’ directory;

- For each prototype of a nucleotide in contact with beta3, a directory ‘b3_j’, where j is a
number of b3-prototype, will be made in each of ‘b1_i’ directories. In these directories, the
relevant docking output files are stored.

Figure 5. An example of the output folder structure.

C.3 Sampling and Scoring of the Poses Obtained with

Anchoring Patterns vs ab initio

Data in Tab. C.1 an Tab. C.2 is provided for the case 1DRZ-CAC.

Table C.1 - Percentage of the near-native poses out of all sampled near-natives, which is precent within
the list of top-ranked poses.

LRMSD Ab initio All-
patterns 1 1 1 2 1 3 1 4 1 5 2 1 2 2 2 3 2 4

<2Å in top5% 45 4 15 6 0 0 0 33 11 25 0

<2Å in top20% 78 38 41 53 50 51 100 71 63 81 57
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LRMSD Ab initio All-
patterns 1 1 1 2 1 3 1 4 1 5 2 1 2 2 2 3 2 4

<3Å in top5% 44 5 7 3 6 0 1 12 10 11 0

<3Å in top20% 73 27 28 28 30 19 27 42 50 46 26

LRMSD 2 5 3 1 3 2 3 3 3 4 3 5 4 1 4 2 4 3 4 4 4 5

<2Å in top5% 15 4 7 0 56 25 0 0 0 0 -

<2Å in top20% 85 71 51 0 96 50 33 14 0 15 -

<3Å in top5% 6 8 6 28 11 9 6 5 7 0 2

<3Å in top20% 45 45 32 75 69 64 35 36 33 16 30

Table C.2 - The percentage of the poses, which have to be retained to keep a pose with the lowest
LRMSD per list of all sampled poses.

1AUD 1DRZ 1DZ5 1DZ5 1M5K 1M5K 1M5O 1M5O 1SJ3 1U6B 1URN 1VBX

1 1
1 2
1 3
1 4
1 5
2 1
2 2
2 3
2 4
2 5
3 1
3 2
3 3
3 4
3 5
4 1
4 2
4 3
4 4
4 5

29.04
10.43
5.30
16.25
6.49
9.44
17.07
36.85
12.00
20.95
0.46
11.10
2.59
2.38
29.12
2.02
42.80
54.77
7.36
2.37

27.01
10.43
20.96
15.71
16.47
9.44
17.07
11.75
19.52
16.50
7.97
3.03
66.05
2.42
29.12
41.66
29.54
50.77
18.08
7.53

7.97
9.59
7.82
6.79
8.46
7.31
7.86
7.43
6.68
7.38
9.97
12.26
7.54
8.35
8.91
9.94
13.90
9.26
10.27
9.52

13.32
16.03
13.06
11.34
14.13
12.21
13.12
12.41
11.16
12.32
16.65
20.48
12.59
13.95
14.88
16.60
23.22
15.46
17.16
15.91

36.79
44.27
36.07
31.33
39.03
33.72
36.25
34.27
30.84
34.03
45.98
56.59
34.77
38.53
41.11
45.86
64.13
42.72
47.41
43.95

36.79
44.27
36.07
31.33
39.03
33.72
36.25
34.27
30.84
34.03
45.98
56.59
34.77
38.53
41.11
45.86
64.13
42.72
47.41
43.95

36.79
44.27
36.07
31.33
39.03
33.72
36.25
34.27
30.84
34.03
45.98
56.59
34.77
38.53
41.11
45.86
64.13
42.72
47.41
43.95

36.79
44.27
36.07
31.33
39.03
33.72
36.25
34.27
30.84
34.03
45.98
56.59
34.77
38.53
41.11
45.86
64.13
42.72
47.41
43.95

6.31
7.59
6.18
5.37
6.69
5.78
6.21
5.88
5.29
5.83
7.88
9.70
5.96
6.60
7.05
7.86
10.99
7.32
8.13
7.53

10.22
10.43
14.65
45.05
16.47
20.41
17.07
11.75
19.52
60.29
50.69
3.03
66.05
2.42
40.01
41.66
29.54
50.77
18.08
97.44

81.58
98.15
79.98
69.46
86.54
74.76
80.36
75.99
68.38
75.45
11.98
5.00
25.46
77.09
85.42
91.14
21.66
42.1
94.71
51.01

6.31
7.59
6.18
5.37
6.69
5.78
6.21
5.88
5.29
5.83
7.88
9.70
5.96
6.60
7.05
7.86
10.99
7.32
8.13
7.53

All-
patterns

32.61 26.31 5.80 5.68 22.77 24.98 22.77 24.98 26.31 50.66 26.31 26.31
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Table C.3 - Comparison of the sampling using original anchoring docking pipeine [ref] to the updated
pipeline (§5.3) for the fragment 2 (GUU, chain P, nucleotides 4-5-6, termed ‘AMF’ in NAR paper) of
the complex 1B7F.
Presented numbers are not directly comparable, as different numbers of the starting points have been used and
different numbers of top-ranked poses have been kept.

Original Pipeline Anchoring Patterns Pipeline (all-patterns)

bound unbound unbound unbound

min LRMSD, Å 1 1 1.3 1.1

LRMSD<2Å 20 14 14 81

LRMSD<3Å 94 74 428 1481

nb starting points 1 million 1 million 10x20 docking runs 50x20 docking runs

nb. top-ranked
poes kept 1000 1000 all sampled all sampled

C.4 Collection of the Non-Structural Data

Proteins of Interest

The data was collected for the following proteins:

F1LQ48 G5ECJ4 G5EEW7 H2L051 O00425 O45189 O95319 P05455 P07910 P08199 P08579
P09012 P09651 P11940 P19339 P22626 P25299 P26368 P26378 P26599 P31483 P35637 P38159
P38996 P49960 P52597 P53617 P62995 P84103 Q01130 Q07955 Q13148 Q14103 Q15717 Q16630
Q17RY0 Q22039 Q389P7 Q61474 Q64368 Q8I3T5 Q921F2 Q92879 Q93062Q99383 Q9BZB8
Q9NWB1 Q9UHX1 Q9Y5S9

C.5 RRMScorer for Identification of Anchors Positions

RRMScorer

RRMScorer, a tool developed within RNAct, predicts a given RNA sequence's probability of
binding a target RRM sequence in a canonical binding mode [ref]. It uses both the alignments of RRM
and RNA to generate a scoring system and estimate RNA binding affinity. The alignments of multiple
RRM-RNA structures, performed during the development of this tool, revealed 20 amino acids that
are important for binding. These amino acids and 5 consecutive nucleotides form 30 contacts,
frequently observed in the structures with the canonical binding mode (Fig. C.1).

RRMScorer scores these 30 contacts and outputs an overall binding probability. It also generates
a table with scores, one table for each contact (Fig C.2). In this table, each row corresponds to an
amino acid type seen in the specified alignment position. Each column corresponds to a nucleotide
type, plus a column for the case of contact absence. The values in the table give the probability of
each contact for each type of the residues. Positive values indicate that a specific amino
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acid-nucleotide contact is likely to be encountered, while negative scores have the opposite meaning.
Scores close to 0 indicate that there is no clear preference. Please note that RRMScorer scores are not
connected in any way with the scoring stage of the docking.

￼
Figure C.1 - Typical for canonical RRM-RNA binding mode contacts (shown as black dashed lines).
Amino acids are portrayed in green and nucleotides in pink. The indexes, both for RNA and RRM,
correspond to the Master alignment [Image by Joel Roca Martínez].

Figure C.2 - RRMScorer output table for the contact between amino acid in position 139 and
nucleotide in position 4.

142



Appendix C: Data-driven docking__________________________________________________________________________________________

Problem Statement

When using the RRM-RNA dock, the user has to identify the sequence of a fragment to be
docked, along with the positions of the anchors, which can present an unwanted challenge. It could be
possible to use RRMScorer’s output tables to predict the positions of anchors within a trinucleotide
for a given RRM. If this approach proves viable, it can be incorporated into the pipeline to facilitate
the RRM-RNA dock usage and to expand its usability.

The hypothesis is that certain scores are indicative of the stacking interactions exclusively and
that these scores can be used to identify the most probable indexes of anchors given amino acids types
and indexes. To test this hypothesis, first I need to obtain scores, given for the real stacking
interactions and estimate the threshold value(s) that can distinguish between the stacking interaction
and the other type of interactions for a given nucleotide index within alignment. Next, I will use these
thresholds to predict the combination of nucleotides’ indexes given the indexes and types of the
anchoring amino acids, and subsequently calculate the accuracy of these predictions.

Since the current version of the RRM-RNA dock operates on a single fragment containing 2
anchors, I focus on the identification of the pair of stacking nucleotides, either adjacent or separated
by a single nucleotide. All possible positions of the adjacent stacking nucleotides in terms of
RRMScorer alignment are [2,3], [3,4], [4,5], [5,6]. For non-adjacent pairs [2,4], [3,5], [4,6].

Protocol & Data

A total of 155 RRM-RNA structures containing the 301 labelled stacking interactions were taken
from InteR3M. This dataset comprised 36 proteins with distinct UniProt IDs. Out of these, 2 proteins
did not exhibit stacking interactions and were used as a negative control.

First, the scores associated with all real stacking interactions (from the table for given
amino_acid_index and nucleotide_index, row for given amino_acid_type, column ‘no_contact’) were
obtained from all available complexes. The column ‘no_contact’ was used instead of the one
corresponding to the given nucleotide_type, as the application of the protocol to the values given by
nucleotide_type did not produce accurate predictions.

Next, 2 empirical approaches were applied to obtain the representative scores for each
nucleotide_index:

● In ‘mod1’ an average score was taken (avg_score);
● In ‘mod2’ the scores with frequency over 25% were taken (freq_score1, freq_score2, etc.)

To predict anchor positions (stacking nucleotide indexes) for a particular RRM, the following
protocol was applied:

1. For a given RRM sequence, get the positions of the target amino acids (Fig C.1) via the
Master alignment;

2. Determine the type of each target amino acid;
3. Create a list of possible contacts (amino_acids_index; nucleotide_index) (following Fig C.1);
4. For each possible contact obtain a score given a corresponding RRMScorer table, row

amino_acid_type, column ‘no_contact’;
5. For each possible contact, check if the obtained score value:

● is equal or less than avg_score for a given nucleotide_index in ‘mod1’;
● is equal to one of the freq_score in ‘mod2’.

Create a list of probable contacts out of the contacts which meet the requirements;
6. Pair probable contacts into adjacent pairs and non-adjacent pairs.
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While the application of this protocol with ‘mod1’ did not provide very accurate predictions, the
‘mod2’ produced promising preliminary results with an accuracy of 83% (Tab C.4)

Table C.4 - Confusion matrix of the predicted pairs of contacts with ‘mod2’.

Real pairs of contacts

Predicted
pairs of
contacts

Positives Negatives

Positives 251 30

Negatives 20 NaN

Results and Discussion

To validate this approach, k-fold cross-validation was used and the dataset was divided into k=14
folds (sets), each fold containing from 1 to 6 proteins (Tab C.5).

Table C.5 - Set up for the cross-validation.

Name Proteins Stacking count

‘fold_1’ F1LQ48; P26378; P38159; P04147 8

‘fold_2’ Q61474; O95319; P07910 7

‘fold_3’ Q00916; P08621; P08579; Q93062 11

‘fold_4’ Q01130; Q64368; P19339 12

‘fold_5’ Q06AA4; P62995; P26368; P09651 13

‘fold_6’ Q9NWB1; P38996; O00425; P84103; Q7LL14; P26599 6

‘fold_7’ P0DJD3; O45189; P49960 11

‘fold_8’ P22626; G5EEW7 6

‘fold_9’ Q13148; Q99383; P43332 11

‘fold_10’ P11940 18

‘fold_11’ Q15717 31

‘fold_12’ P09012 108

‘fold_13’ Q92879 9

‘fold_14’ Q99181; G5ECJ4 0

As RRMScorer was trained on the same data, it has to be re-trained to avoid second-hand bias.
RRMScorer was re-trained on each training set (k−1 folds). Then, the freq_scores were obtained using
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re-trained RRMScorer tables and real stacking interactions from the training set (Tab. C.6). The
described protocol with obtained freq_scores was applied to the test set (a fold left out of the training
set).

The most accurate predictions with an average accuracy of 70% were obtained if the protocol
(using ‘mod2’) was limited with amino_acis_type = {Y, W, F} and nucleotide_index = {3,4,5} (Fig
C.3). The details per each test set, are given in Table C.7.

Table C.6 - The freq_score values for each training set.
In this table, each row corresponds to a training set obtained by excluding indicted in ‘out fold’ fold out of the
dataset.

Out fold Nucleotide in position 3 Nucleotide in position 4 Nucleotide in position 5

fold_1 0.25 -0.18, 0.47 0.05

fold_2 0.25 0, 0.31 0.05

fold_3 0.25 -0.14, 0.31 0.02

fold_4 0.25 -0.15, 0.31 0.06

fold_5 0.38 -0.11, 0.38 0.07

fold_6 0.38 -0.18, 0.47 0.06

fold_7 0.25 0.31, -0.13 0.01

fold_8 0.25 -0.19, 0.31 0

fold_9 0.38 -0.18, 0.38 0

fold_10 0.25 -0.18, 0.31 -0.01

fold_11 0.25 -0.15, 0.31 0.03

fold_12 0.37 -0.2 0

fold_13 0.25 -0.05, 0.31 0.02

fold_14 0.25 -0.2, 0.31 -0.02

Table C.7 - Evaluation of the prediction made using ‘mod2’ for each test set.

Test set Accuracy, % False positives count False negatives count True positives count

fold_1 88 0 1 7

fold_2 33 5 3 4

fold_3 92 1 0 11

fold_4 80 3 0 12

fold_5 65 4 3 13

fold_6 75 2 0 6
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Test set Accuracy, % False positives count False negatives count True positives count

fold_7 73 0 3 8

fold_8 21 8 3 3

fold_9 85 2 0 11

fold_10 71 3 3 15

fold_11 70 13 0 31

fold_12 50 0 54 54

fold_13 100 0 0 9

fold_14 100 0 0 0

Figure C.3 - Boxplot describing the accuracy of the predictions made across each test set (in ‘mod2’).
The minimal accuracy is 21%, the maximal accuracy is 100%. The average accuracy is ~70%.

While bringing optimistic results, ‘mod2’, i.e. using the most frequent RRMScore values as an
exact match is not ideal. So we tested ‘mod1’ using the same set-up (amino_acis_type = {Y, W, F}
and nucleotide_index = {3,4,5}) (Tab C.9). The average accuracy is 64%. The avg_score values for
each training set can be found in Tab C.8.

Table C.8 - The avg_score values for each training set.

Out fold Nucleotide in position 3 Nucleotide in position 4 Nucleotide in position 5

fold_1 0.3 0.22 0.06

fold_2 0.27 0.19 0.06

fold_3 0.29 0.15 0.03

fold_4 0.28 0,15 0.07

fold_5 0.4 0,2 0.08
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fold_6 0.41 0.22 0.07

fold_7 0.28 0.16 0.07

fold_8 0.29 0.12 0.01

fold_9 0.41 0.16 0.01

fold_10 0.28 0.15 -0.01

fold_11 0.29 0.17 0.04

fold_12 0.51 -0.03 0.02

fold_13 0.28 0.18 0.03

fold_14 0.28 0.12 -0.01

Table C.9 - Evaluation of the prediction made using ‘mod1’ for each test set.

Test set Accuracy, % False positives count False negatives count True positives count

fold_1 62 0 3 5

fold_2 33 5 3 4

fold_3 75 1 2 9

fold_4 59 5 2 10

fold_5 58 3 5 11

fold_6 83 0 1 5

fold_7 73 0 3 8

fold_8 20 9 3 3

fold_9 46 2 5 6

fold_10 79 1 3 15

fold_11 91 3 0 31

fold_12 50 0 54 54

fold_13 100 0 0 9

fold_14 100 0 0 0

While optimistic, these results leave room for improvement. The use of the exact matches
(‘mod2’ with freq_scores), while resulting in acceptable predictions for most test sets, is not an ideal
approach methodologically. Simultaneously, the use of the average scores (‘mod1’) as a threshold
lowers the accuracy. Thus, other approaches, empirical or otherwise, to obtain the threshold values
can be explored as well. It could be possible to incorporate the statistics of the occurring stacking
interactions to filter out false positives. Additionally, a version of RRMSorer trained on the interaction
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of the target amino acids and Phosphate exists. It could be used to identify corresponding contacts in a
given RRM-RNA complex.

Lastly, this protocol was created and evaluated for the prediction of the pair of stacking
interactions within a fragment to match the current functionality of the RRM-RNA dock. However, it
can be modified to predict a single most probable stacking interaction within a 5-nucleotide chain.
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Anna Kravchenko

Modélisation par fragment des complexes protéine-ARNsb pour
la conception de protéines

Résumé étendu de la thèse en Français

Cette thèse a été réalisée dans le cadre d’un projet Européen plus vaste (ITN RNAct) dans lequel des
approches informatiques et biologiques étaient combinées pour progresser vers la conception et la synthèse
de nouveaux domaines protéiques appelés RNA-recognition Motifs (RRM) capables de se fixer sur des
séquences spécifiques d’ARN (Acide RiboNucléique). Cet objectif global nécessitait le développement de
méthodes capables de modéliser la structure 3D d’un complexe entre un RRM et un ARN donnés. Les RRM
se lient principalement aux ARN simple-brin (ARNsb). Ces ARN n’ont pas de structuration 3D propre mais
une multitude de conformations 3D possibles, et adaptent leur conformation à la protéine à laquelle ils se
lient. La prise en compte de cette flexibilité nécessite des approches de modélisation spécifiques des
complexes protéine-ARNsb, telles que l’amarrage par fragments. La thèse vise donc à améliorer les outils
existants d’amarrage d’ARNsb par fragments et les adapter au problème spécifique des RRM.

La thèse comprend:
● une introduction générale donnant les clefs de lecture du manuscrit
● un chapitre présentant les connaissances en biologie nécessaires pour comprendre les enjeux et

évaluer les contributions de la thèse (chapitre 1)
● un chapitre qui présente d’une part les notions de base nécessaires pour comprendre les méthodes et

les ressources bioinformatiques employées dans la thèse, et d’autre part l'état de l’art dans lequel se
placent les contributions (chapitre 2)

● trois chapitres de résultats originaux (Chapitres 3 à 5)
● une conclusion ouverte sur les perspectives de ce travail (Chapitre 6).

I. Contexte et état de l’art

Présentation des protéines RRM, des ARN et de leurs interactions

Les protéines se composent d’une séquence linéaire d'acides aminés (aa) qui constituent la chaîne protéique,
parmi un vocabulaire de 20 aa différent. Ces aa interagissent entre eux pour former des éléments de structure
“2D” locale (brins linéaires, hélices) et une structure 3D globale.

Fig 1: (a) Acide aminé composé d'un groupe amine (rouge), d'un groupe carboxyle (vert) et d'une chaîne latérale
ou groupe R (violet) variable d’une type d’aa a l’autre; (b) chaîne polypeptidique composée de deux aa liés par
une liaison peptidique (bleu); (c) Structure 3D d'une chaîne polypeptidique composée des acides aminés
phénylalanine et thréonine. Ce dernier est mis en évidence par un cercle en pointillé.
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L'ARN est constitué d’une séquence linéaire de nucléotides de 4 types différents: l'adénine (A), la cytosine
(C), la guanine (G) et l'uracile (U). Chaque nucléotide comporte un groupement phosphate, un ribose, et une
base de 1 ou 2 cycles qui varie en fonction du type de base. Les bases peuvent s’apparier deux a deux (paires
A-U et C-G), formant la structure 2D de l’ARN. Les paires de bases s’empilent en hélices double-brin
jointes par des boucles simple-brin, formant la structure 3D de l’ARN.

Fig 2: Représentations d’un ARN: (a, b) Formule chimique et représentation 3D d’une chaîne de 3 nucléotides (base
en rose, sucre et phosphate en bleu); (c, d, e) séquence d’ARN, structure 2D (appariements) et structure 3D
(représentation simplifié), avec parties double-brin en bleu et simple-brin en rouge.

Fig. 3: Représentations simplifiées de structures 3D (c) d’une protéine (brins en rouge, hélices en cyan, boucles en
magenta) et (d) d’un complexe entre 3 protéines (cyan, vert et magenta) et un ARNsb (orange et bleu).

Les structures 3D des protéines, ARN et complexes protéine-ARN peuvent être résolues grâce à des
techniques de biophysique expérimentales. Mais la mise en place de ces techniques est très longue (mois ou
années), coûteuse, et au succès aléatoire. Des méthodes computationnelles ont donc été développées pour
modéliser ces molécules et complexes moléculaires à partir de leurs séquences, dont l'obtention est beaucoup
plus facile. Ces méthodes s’appuient sur l’analyse des structures 3D expérimentalement connues, regroupées
dans une base de données publique appelée PDB. Celle-ci contient quelques milliers de structures de
protéines, d’ARN, et de complexes protéine-ARN. Le problème de la modélisation de la structure 3D des
protéines - et des complexes de plusieurs protéines - a été en grande partie résolu ces quelques dernières
années par AlphaFold, la méthode par apprentissage profond créée par DeepMind. Si des recherches sont en
cours pour transférer ces résultats aux ARN (pour lesquels les méthodes classiques actuelles fonctionnent
déjà dans la plupart des cas), leur transfert aux complexes protéine-ARN n’est à ce jour pas possible: les
données d’apprentissage sont moins abondantes et plus hétérogènes. Cela est plus particulièrement vrai pour
les ARNsb, qui nous intéressent dans cette thèse.

La plupart des protéines comportent des domaines, qui sont des régions structurées et indépendamment
repliées. Chaque famille de domaine présente une structure tridimensionnelle majoritairement commune,
avec quelques variations possibles d’une protéine à une autre. Les domaines sont des unités fonctionnelles
des protéines, ils peuvent effectuer des activités enzymatiques spécifiques, interagir avec d'autres molécules
telles que l'ADN ou l'ARN, etc. Parmi les familles de domaines protéiques, cette thèse se concentre sur les
RRM. Ce sont les domaines les plus abondants, présents dans 1 à 2 % des protéines humaines, et connus
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pour lier des ARNsb de 2 à 8 nucléotides de long. Un RRM se compose de 90 à 100 aa, qui forment 4 brins
antiparallèles et 2 hélices. On peut trouver jusqu'à 6 RRM dans une protéine. L'interface de liaison principal
est située sur les brins 1 et 3, sur lesquels 2 ou 3 aa aromatiques (ayant un cycle à doubles liaison) - situés à
des positions conservées par l'évolution parmi les RRMs - peuvent lier chacun un nucléotide de l’ARN ;
cependant, certains RRMs ne possèdent pas ces aromatiques conservés (ils sont parfois appelés
quasi-RRMs). De plus, les boucles d’aa sans structure 2D propre - et par conséquent plus flexibles et de
conformation 3D moins conservée parmi les RRMs - interviennent souvent également dans la liaison. Les
liens entre RRMs d’une même protéine, s'ils sont présents, contribuent également à la liaison de l’ARN et à
la stabilité du complexe ARN-RRM. Les domaines RRM partagent donc un mode de liaison (i)
suffisamment commun pour que l’analyse des structures RRM-ARNsb puisse guider la modélisation d’autres
de ces complexes, et (ii) suffisamment variable pour que leur modélisation nécessite le développement
d’approches dédiées.

Modélisation des complexes protéine-ARNsb

La modélisation des complexes protéine-ARN repose sur l'hypothèse communément admise que la structure
3D portant la fonction biologique d'intérêt correspond à la structure 3D de plus basse énergie. L’approche
classique consiste à utiliser une structure ou un modèle 3D de la protéine et de l’ARN respectivement, à
échantillonner des milliers/millions de positionnements relatifs possibles, puis calculer un score
(approximation d'énergie) de chaque modèle obtenu (appelé une pose) pour identifier les modèles de
meilleurs scores, parmi lesquels doit se trouver la structure cible. La discrimination finale entre ces quelques
modeles peut se faire par expérimentation in vitro. Ces méthodes dites d’amarrage sont applicables aux cas
où la conformation 3D de la protéine et de l’ARN varie peu entre leur forme libre et leur forme dans le
complexe. Cela est souvent vrai pour les protéines et ARN très structurés (compactes), mais ne s’applique
pas aux ARN simple-brin. Ces derniers sont désordonnés, c'est-à- dire qu’ils n’ont pas de structuration 3D
propre mais une multitude de conformations 3D possibles dans leur état libre. Leur conformation dans le
complexe protéine-ARNsb dépend fortement de la protéine à laquelle ils se lient, ce qui empêche de la
modéliser avant de modéliser le complexe, comme dans l’approche classique. Certaines approches
échantillonnent les conformations les plus probables du ligand flexible pour ensuite les amarrer. Mais le
nombre d’angles variables - 12 par nucléotides - entraîne une explosion combinatoire lorsque l’on essaye de
modéliser toutes les conformations d’un ARN de plus de 4 ou 5 nucléotides. Les méthodes à base
d’apprentissage profond, qui ont révolutionné l’amarrage protéine-protéine, ne sont pas non plus applicables
aux complexes protéine-ARNsb en raison du nombre trop faible de structures connues pour l’apprentissage.

L’approche état-de-l’art pour les complexes protéine-ARNsb est ssRNA’TTRACT, approche d’amarrage
par fragments, basée sur la suite logicielle d’amarrage ATTRACT, Elle consiste à découper la séquence
d’ARN en triplets chevauchants, à échantillonner toutes les conformations possibles de chaque triplet, à les
amarrer sur la protéine, puis à identifier les positions de triplets chevauchants qui peuvent être connectées en
un ARN complet (Fig. 4).

Objectifs de la thèse

ssRNA’TTRACT a comme facteur limitant l'incapacité de ATTRACT a produire des poses quasi-natives
pour certains fragments, et a mal discriminer les poses quasi-natives des poses incorrectes pour les autres
fragments. Ceci est dû à deux problèmes cumulés. Le 1er problème, propre à ssRNA’TTRACT, est que les
paramètres de la fonction de notation de ATTRACT ont été obtenus par entraînement sur seulement environ
500 structures expérimentales de complexes ARN-protéine disponibles en 2010, qui ne contenaient pas
d'ARNsb. Le 2eme problème, intrinsèque à toute approche par fragment, est que certains fragments
“hot-spot” d’un ARN complet se lient à la protéine de façon plus spécifique ou avec une plus forte énergie
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d’interaction que les autres, et ces autres se placent à des positions sub-optimal autour du ou des fragments
“hot-spot”. Ceci est particulièrement vrai pour les cas où tous les fragments ont la même séquence. Un seul
fragment de la chaîne d’ARN peut alors être à sa position optimale dans la structure réelle. Les autres
fragments seront alors moins bien amarrés car biaisés vers la position “hot-spot”.

Fig.4 : Amarrage par fragments d’ARNsb.

L’objectif principal de la thèse était d’optimiser ou recalculer les paramètres de ATTRACT pour la notation
des poses protéine-ARNsb, afin de résoudre le 1er problème. Un objectif secondaire était de palier au 2eme
problème en restreignant l’espace de recherche des poses, par des contraintes d’amarrage correspondant à la
caractéristique des interactions RRM-ARNsb qu’est l'empilement de nucléotides par les cycles aromatiques
conservés du RRM.

II. Optimisation des paramètres de la fonction d'énergie de ATTRACT

Approche stochastique globale

ssRNA’TTRACT utilise une représentation gros-grain de l’ARN et de la protéine, dans laquelle plusieurs
atomes sont remplacés par un pseudo-atome appelé bille. La note de chaque pose est calculée comme la
somme des notes de chaque paire de bille ARN/protéine, qui elle-même dépend de la distance d entre ces 2
billes. Il existe 17 types de bille d’ARN et 31 de protéine. La fonction de notation entre deux billes de type i
et j comporte deux paramètres, sigma_ij et epsilon_ij. La fonction de notation de ATTRACT, appelée ici
ASF (“ATTRACT scoring function”), comporte donc 17*31*2 = 1054 paramètres d'interaction
ARN-protéine. Ces paramètre avaient d’abord été obtenus à partir des structures protéine-ARN
expérimentalement connues, en décrivant la probabilité de chaque distance pour chaque paire de type de bille
a partir de sa fréquence dans ces structures connues, selon l'équation de Boltzmann. Ce 1er set avait été
optimisé par une approche de Monte Carlo de façon à minimiser la note de la position native de l’ARN dans
chaque complexe (pour sigma) puis pour minimiser le rang de la native parmi des poses leurre (pour
epsilon).
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Fig 5: Forme et équations de ASF pour les paires de billes attractives ou répulsives. r est la distance interbilles, i
dans [1,31] est un type de bille de protéine, j dans [1,17] est un type de bille d'ARN, le paramètre sigma_ij règle la

distance de score minimal , et le paramètre epsilon_ij règle la valeur du score minimal . Plus le score est bas,𝑟
𝑖𝑗
𝑚 𝑈

𝑖𝑗
𝑚

mieux la paire de bille est notée.

Nous avons d’abord tenté d’optimiser ce set de 1054 paramètres par une approche de Monte-Carlo avec
recuit simulé (approche MSCA pour Monte Carlo Simulated Annealing), un travail initié par Agniba
Chandra, M2 dans l'équipe Capsid en 2019. Le but était d’augmenter la part de poses quasi-native dans les
poses les mieux notées, lors d'expériences d’amarrage de fragments sur un ensemble test.

L'algorithme MCSA est une technique d'optimisation stochastique pour explorer des espaces de recherche
complexes. Il commence par une marche aléatoire pour échapper aux minima locaux, puis devient
progressivement plus déterministe pour affiner la solution. Il prend en entrée un set initial des paramètres à
optimiser, la valeur initiale de la température et la sélection d'un programme de refroidissement pour
réduire progressivement la température. A chaque itération, un nouvel ensemble de paramètres est généré
en perturbant légèrement leurs valeurs actuelles. Si la valeur de de la fonction objectif obtenue avec le
nouvel ensemble est meilleure qu’avec l’actuel, le nouveau est accepté. Sinon, l'acceptation dépend de la
température. Les températures élevées permettent d'accepter aléatoirement des solutions moins bonnes,
tandis que les températures basses n'acceptent que des solutions meilleures.

Nous avons extrait 42 structures RRM-ARNsb connues (totalisant 309 trinucleotides) de la base de
données publique PDB, que nous avons divisé en un ensemble d'entraînement (36 complexes) et de
validation (6 complexes). Nous avons empiriquement sélectionné 4 ensembles d’hyper-paramètres de
MCsA (schéma de refroidissement, température initiale, etc), et créé 4 nouveaux ensembles de paramètres
d’ASF, avec comme fonction objectif le nombre de quasi-native rangées dans les 10% de poses de
meilleures notes.

Bien que certains des nouveaux ensembles soient plus performants que les paramètres originaux pour
certains fragments, la performance globale de tous les ensembles s’est avérée très similaire. MCSA étant
un algorithme stochastique, il est possible que la solution optimale n'ait pas été atteinte. Cependant, ces
résultats suggèrent également qu’un seul ensemble de paramètres n’est pas capable de représenter la
diversité des modes de liaison RRM-ARNsb, ce qui nous a amené à développer les paramètres HIPPO
(voire section IV).
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Analyse de quelques paramètres problématiques

Nous avons centré notre analyse sur un petit sous-ensemble de paramètres problématiques (reconnus pour
attribuer des scores défavorables aux poses natives) en prenant les paramètres TRP-C (pour la chaîne
latérale du tryptophane et la base C) comme exemple. Nous avons mis en place un petit ensemble de
référence de structures expérimentales avec des interactions pertinentes et avons examiné les distances
entre les billes, les scores des fragments natifs, le nombre de poses quasi-natives échantillonnées, etc. Nos
investigations ont révélé que toutes les géométries TRP-C natives obtiennent des scores défavorables,
malgré la formation de nombreuses interactions d'empilement pi-pi. De manière intrigante, malgré ces
résultats, l'échantillonnage et l'évaluation réussissent relativement bien dans environ la moitié des cas de
fragments de protéines. Nous avons entrepris plusieurs tentatives pour affiner empiriquement les valeurs
des paramètres cibles afin d'améliorer l'échantillonnage, tout en évaluant l'impact de ces ajustements sur
les performances globales de l'ASF. Les résultats, malgré l'utilisation de différentes valeurs de paramètres
cibles, ont révélé des performances très similaires à celles de l'ASF, soulevant des interrogations quant à la
faisabilité d'optimiser le sous-ensemble de paramètres de manière isolée. Cette faisabilité peut être
examinée grâce à une approche systématique, comme celle proposée dans ce chapitre.

III. HIPPO: nouveaux potentiel d'évaluation des modèles RRM-ARNsb

Nous avons présenté une nouvelle approche d'optimisation fondée sur l'histogramme et HIPPO
(“HIstogram-based Pseudo-POtential”), un potentiel de notation nouvellement conçu pour les poses
d'amarrage des complexes protéine-ARNsb dans la représentation à gros grains d'ATTRACT. L'originalité
principale de HIPPO réside dans sa nature composite, rassemblant quatre potentiels de notation distinctes,
chacun capable de capturer des modes de liaison protéine-ARNsb spécifiques, i.e. HIPPO repose sur
l'hypothèse qu'il existe une collection d'ensembles de paramètres de notation (comme par opposition à un
seul ensemble de paramètres) qui peut être utilisé pour classer efficacement les solutions d’accueil
protéine-ARNs quasi-natives. Les paramètres de HIPPO sont dérivés analytiquement des fréquences de
contact dans des poses d’amarrage quasi-natives et des poses incorrectes. Ces fréquences de contact, dérivées
de quatre ensembles différents de poses d'amarrage, sont discrétisées par un ensemble particulier de seuils en
histogrammes, conduisant à une collection de quatre ensembles d'histogrammes 𝓗 qui forment ensemble le
potentiel de notation HIPPO. Ainsi, HIPPO est un potentiel de notation composite protéine-ARNsb:
généralement, les 5% supérieurs des poses selon chaque ensemble d'histogrammes sont combinés,
sélectionnant 20% de toutes les poses d'amarrage au total. Pour rationaliser le processus depuis la
construction de l'ensemble de données jusqu'à la génération des paramètres de notation finaux, nous avons
décidé de nous concentrer exclusivement sur les RRM, car ce domaine de la protéine est particulièrement
important pour l'étude des interactions protéine-ARNsb et est présent dans de nombreux (environ 65 %) des
les structures protéine-ARNs disponibles.

L'application de ces potentiels, suivie de l'agrégation de leurs résultats, a abouti à un classement plus précis
par rapport à l'ASF de pointe. HIPPO a particulièrement amélioré la notation du fragment le mieux ajusté au
sein de chaque complexe, facilitant ainsi son utilisation comme point d'ancrage pour l'amarrage incrémentiel.
De plus, nous avons introduit le concept de BP (“best-performing potential”), pour l'instant limité au cas test.
Dans cette approche, le potentiel le plus performant parmi les quatre est identifié et utilisé individuellement
pour la notation.

Ensuite, nous avons exposé les résultats de l'application de HIPPO et de BP à une référence de complexes
qui n'ont pas été utilisés lors du développement de HIPPO. Dans cette comparaison, HIPPO a surpassé l'ASF
dans la notation de ces complexes, et BP a nettement dépassé HIPPO et l'ASF.
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De plus, nous avons utilisé le classement ASF et le classement BP pour assembler des poses pour un petit
sous-ensemble de 14 complexes (3 fragments par complexe). Les résultats préliminaires sont très
prometteurs, car BP a surpassé les performances de l'ASF pour les quatre ensembles d'hyperparamètres
testés. Ce succès motive fortement le développement d'un modèle permettant de dériver BP de HIPPO pour
un cas donné.

Il est à noter que le protocole utilisé pour développer HIPPO (et potentiellement le modèle permettant de
passer de HIPPO à BP) est a priori applicable à d'autres types de complexes. En outre, il pourrait être utilisé
pour pallier une limitation inhérente à l'approche d'amarrage basée sur les fragments “hot-spot” (voire
section ‘Conclusion et Perspectives’).

IV. Pipeline d’amarrage RRM-ARNsb

RRM-RNA dock

Nous avons présenté une approche basée sur les données compatible avec l'amarrage basé sur des fragments.
Il utilise ce que l'on appelle des modèles d'ancrage, qui représentent les positions moyennes de l'ancre
(nucléotide d'empilement), pour piloter l'amarrage. Ces modèles ont été dérivés du regroupement de
structures RRM-ARN présentant des interactions d'empilement conservées. Ma contribution réside dans le
développement du pipeline d'amarrage conçu pour faciliter l'amarrage basé sur les données de fragments
contenant deux ancres sur RRM. Ce pipeline possède une interface de ligne de commande simple. Il utilise
AlphaFold DB pour obtenir un modèle du RRM, InteR3Mdb pour identifier les acides aminés d'ancrage, les
modèles d'ancrage pour identifier un emplacement approximatif des ancres par rapport aux acides aminés
d'ancrage et le moteur d'amarrage ATTRACT pour effectuer l'amarrage avec des contraintes suite à un
processus préalablement établi protocole piloté par ancre (Fig 6).

Fig 6: Image schématique de l'amarrage ancré du fragment ancré (en jaune) et d'un fragment adjacent (en vert). La
position prévue de l'ancre est affichée en rouge.

Bien que présentant des fonctionnalités restreintes, ce pipeline simplifie significativement le processus
d'amarrage moléculaire basé sur les données en éliminant la nécessité d'une préparation manuelle de la
structure du récepteur et de la création manuelle de restraint fichiers. Par conséquent, elle rend l'amarrage
moléculaire basé sur les données plus accessible, particulièrement pour les chercheurs moins expérimentés
en biologie structurale. Comme anticipé, l'efficacité de ce système d'amarrage surpasse celle obtenue par des
méthodes d'amarrage ab initio.

Restrictions expérimentales supplémentaires

Nous avons présenté un ensemble de données expérimentales non structurelles, collectées manuellement à
partir de la littérature. Cet ensemble de données pourrait être utilisé comme source de contraintes d'amarrage
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supplémentaires pour, à terme, étendre le RRM-RNA dock à un pipeline général d'amarrage
protéine-ARNsb.

V. Conclusion et Perspectives

L’objectif principal de cette thèse était d’améliorer l’amarrage protéine-ARNsb en abordant le problème du
scoring. Notre approche de ce problème impliquait le développement d’une nouvelle fonction de notation,
HIPPO, spécifiquement adaptée aux interactions protéine-ARNs. De plus, nous avons développé un
pipeline d’accueil convivial « RRM-RNA dock », adapté aux complexes RRM-ARNsb. Dans cette section,
nous résumons les deux contributions et soulignons les principaux résultats, ainsi qu'abordons brièvement
certains petits projets entrepris dans le cadre de cette recherche doctorale.

HIPPO

La base de HIPPO était une optimisation infructueuse par recuit simulé de Monte Carlo de l'ensemble des
paramètres d'amarrage d'origine d’ASF, suivie de la conception de l'approche d'optimisation basée sur
l'histogramme. Le premier projet nous a conduit à l’hypothèse selon laquelle un ensemble de paramètres
singuliers est insuffisant pour évaluer avec précision les fragments protéine-ARNsb. Le deuxième projet
était un préalable à la mise en œuvre du protocole permettant de dériver HIPPO. Contrairement aux
fonctions de notation existantes, HIPPO est composé de 4 potentiels de notation distincts, capables de
prendre en compte différents modes de liaison.

L'évaluation expérimentale de HIPPO a été réalisée en notant un ensemble de complexes protéine-ARNsb.
HIPPO a surpassé l'ASF, l'état de l'art en matière d'amarrage basé sur des fragments de protéines et
d'ARNsb dans une représentation à gros grains. De plus, ces résultats ont prouvé la généralisabilité de
HIPPO, car il était dérivé exclusivement de complexes RRM-ARNsb. De plus, l’utilisation BP pour chaque
cas de notation a donné un meilleur classement par rapport à ASF et HIPPO. Les résultats préliminaires de
l'assemblage de 3 fragments de plusieurs complexes suggèrent que BP serait une fonction de notation
appropriée pour l'amarrage incrémentiel.

RRM-RNA dock

Les interactions d’empilement entre les acides aminés dans des positions conservées et les nucléotides non
appariés peuvent servir d’ancres et piloter l’amarrage protéine-ARNsb. Cette approche d'ancrage
préexistante nécessite des informations sur les positions possibles du nucléotide d'empilement (ancre) par
rapport à l'acide aminé d'empilement, c'est-à-dire des motifs ancrés. Un ensemble de modèles d'ancrage a
été généré par Hrishikesh Dhonge via le regroupement des structures 3D déterminées expérimentalement
de complexes RRM-ARN. En unissant ces modèles d'ancrage à la méthodologie d'ancrage-docking, nous
avons créé un pipeline basé sur ATTRACT pour l'amarrage de fragments RRM-ARNsb. Ce pipeline obtient
un modèle de RRM auprès d'AlphaFoldDB et exécute l'amarrage ATTRACT pour un fragment avec deux
nucléotides empilés, avec des restrictions de distance maximale vers chaque position d'ancrage possible.

Comme prévu, ce pipeline offre un meilleur échantillonnage par rapport à l'amarrage ab initio. Son
avantage notable réside dans son accessibilité aux non-experts en biologie structurale computationnelle.
Les utilisateurs sont dispensés des tâches de préparation de la structure 3D du récepteur ou d'identification
des positions des acides aminés, de construction de contraintes, etc.
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Perspectives

Une approche incrémentale vs. Les potentiels doubles pour la ‘hot-spot’ et ‘cold-spot’

Une difficulté majeure liée à l'amarrage basé sur des fragments concerne la distinction entre les liaisons aux
points chauds (“hot-spot”, HS) et aux points froid (”cold-spot”, CS). Ce problème peut être adressé en
utilisant HIPPO en conjonction avec une stratégie d'amarrage incrémentale, dans laquelle un unique
fragment lié à un HS est amarré avec une grande précision, et le reste de la chaîne est modélisé fragment
par fragment à partir des poses du premier fragment. HIPPO augmente considérablement la proportion de
poses quasi-natives parmi les poses les mieux classées pour le fragment le mieux amarré d'un complexe,
facilitant ainsi ce type de modélisation incrémentale. Dans ce contexte, le principal obstacle réside dans
l'identification du fragment lié au HS avant l'amarrage (au moins avant l'assemblage). Lorsque
l'identification s'avère impossible, une approche consiste à traiter chaque fragment comme étant lié à un
HS, à itérer sur tous les fragments et à regrouper les résultats les mieux classés de chaque itération (Fig. 7).

En alternative, il est possible d'explorer le développement de potentiels de score doubles, capables
d'évaluer précisément les poses d'amarrage des fragments liés aux HS ou aux CS de manière distincte,
c'est-à-dire en utilisant une approche basée sur des fragments classique. Pour obtenir de tels potentiels
doubles, les cas de données d'entraînement (fragments de référence pour dériver les potentiels de score)
doivent être étiquetés comme étant liés à des HS ou des CS avant l'entraînement. Il existe deux approches
pour cela :

● Approche 1. Définissons le fragment HS comme celui pour lequel le HIPPO/BP actuel est
couronné de succès;

● Approche 2. Définissons le fragment HS comme étant à proximité immédiate des acides
aminés HS. Les acides aminés HS pourraient être identifiés en utilisant une approche
spécialisée (des tests initiaux sur les protéines-ssRNA peuvent être nécessaires).

Fig 7: Illustration simplifiée de l'amarrage itératif utilisant chaque fragment comme un HS.

Sur la base de ces deux ensembles d'entraînement, un double potentiel de score, HIPPO-HS et HIPPO-CS,
peut être dérivé. Il est possible que moins de quatre ensembles de paramètres de score soient nécessaires
pour chaque ensemble d'entraînement, ce qui pourrait simplifier l'application des potentiels résultants. Si, à
ce stade, il n'existe aucun modèle capable d'identifier le type de fragment (lié à un HS ou à un CS) avant
l'amarrage, chaque fragment subirait deux tours de notation - une fois avec HIPPO-HS et une fois avec
HIPPO-CS. Plusieurs assemblages (k assemblages), où k représente le nombre total de fragments dans le
complexe, seraient effectués.
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Le développement d'un potentiel de score double aboutirait à huit ensembles de paramètres distincts
(quatre pour HIPPO-HS et quatre pour HIPPO-CS). Bien que cela puisse sembler lointain, il pourrait
exister une voie pour passer des concepts HIPPO-HS et HIPPO-CS au concept de BP (“best-performing
potential”). Cette transition pourrait être réalisée en formant un classificateur pour identifier les paramètres
BP appropriés pour chaque fragment, basé sur les données d'entrée d'amarrage ou directement à partir de
l'ensemble des poses d'amarrage.

Caractérisation des modes de liaison Protéine–ANRsb en utilisant BP

HIPPO est capable de prendre en compte les différents modes de liaison protéine-ARNsb, et en particulier
RRM-ARNsb, en utilisant 4 potentiels de score distincts. Le concept de BP consiste à identifier, pour un
complexe et un fragment donnés, le 𝓗 unique qui surpasse les trois autres 𝓗 dans le classement des poses
quasi-natives dans les 5% supérieurs. Cette approche peut permettre la caractérisation des différents modes
de liaison protéine-fragment - ensembles d'interactions protéine-ARNsb distinctes ayant une signification
biologique - en distinguant essentiellement un mode des autres, sur la base du BP.

Le BP peut être facilement identifié pour chaque cas de test. Par conséquent, tous les cas (l'ensemble du
benchmark) peuvent être catégorisés en cinq classes, avec quatre classes correspondant à chaque 𝓗, et la
classe restante représentant les cas atypiques, où aucun des 𝓗 n'est couronné de succès (le critère de succès
reste à déterminer). Idéalement, il y aura des ensembles distincts de distances entre perles pour chaque
classe, ou des caractéristiques de niveau supérieur (par exemple, distances et angles). L'identification
initiale de ces caractéristiques pourrait être réalisée par un examen manuel, suivi, par exemple, de
l'application des approches d'exploration de motifs.

Application étendue de HIPPO

● La principale orientation de travail concernant HIPPO est la formation d'un classificateur pour
permettre l'utilisation du BP au-delà du cas de l'ensemble d'entraînement. Un tel modèle
pourrait être obtenu en se basant sur la séquence du fragment et la séquence et/ou structure de
la protéine, et/ou sur les poses d'amarrage. Activer le BP améliorerait considérablement
l'échantillonnage, comme montré dans le §4.4;

● Comme mentionné précédemment, HIPPO pourrait être utilisé pour l'échantillonnage en
utilisant le moteur d'amarrage ATTRACT et la procédure de minimisation de Monte-Carlo.
C'est l'une des perspectives les plus prometteuses, car cela pourrait atténuer le problème
d'échantillonnage;

● Lors de la dérivation de HIPPO, le seuil de LRMSD pour les poses quasi-natives a été
assoupli de 3Å à 5Å afin d'obtenir plus de cas de données avec un nombre plus élevé de
quasi-natives. Il serait intéressant d'explorer si un nombre inférieur de quasi-natives est
suffisant pour la dérivation d'un HIPPO efficace;

● Il serait intéressant de tester la précision de HIPPO sur les chaînes complètes de ARNsb ;
● Enfin, le protocole peut être appliqué à d'autres types de complexes, tels que protéine-ARNsb

au-delà du domaine RRM, protéine-ADNsb et protéine-peptides.

Ce chapitre présente les autres perspectives, telles que: 1/ un pipeline pour l'amarrage itératif, 2/
l'expansion du benchmark protéine-ARNsb, 3/ une validation croisée rigoureuse pour HIPPO et 4/ une
enquête sur la flexibilité.
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Fragment-based modelling of protein-RNA complexes for protein design

Abstract

Protein-RNA complexes play crucial roles in cell regulation. Predicting their 3D structure has
applications in protein design and drug development. The ITN project RNAct aimed to combine
experimental and computational methods to design new "RNA recognition motifs" (RRM) - protein
domains interacting with single-stranded RNA (ssRNA) - for applications in synthetic biology and
bioanalysis.

Modelling protein-ssRNA complexes (docking) is an arduous task due to the flexibility of
ssRNA, which lacks a proper structure in its free form. Traditional docking methods sample the
relative positions (poses) of 2 molecular structures and score them to select the correct (near-native)
ones. It is not directly applicable here due to the absence of free ssRNA structures, nor is deep
learning due to the too low number of known structures for training. Fragment-based docking (FBD),
the state-of-the-art approach for ssRNA, docks all possible conformations of RNA fragments onto a
protein and assembles their best-scored poses combinatorially. ssRNA’TTRACT, our FBD method,
uses the well-known ATTRACT docking software, with its coarse-grained representation that replaces
atom groups by one bead. Yet the RNA-protein parameters of ATTRACT scoring function (ASF) are
not ssRNA-specific and require optimisation. Additionally, RRM-specific features can be learned and
used to guide the docking.

With my colleague H. Dhondge, we have developed a data-driven FBD pipeline for
RRM-ssRNA complexes, as an updated version of an existing strategy. RRMs have two aromatic
amino acids (aa) in conserved positions, each stacking with a nucleotide of the bound ssRNA. H.
Dhondge collected all known RRM-ssRNA structures with such stacking and clustered them to obtain
a set of prototypes for the 3D coordinates of such interactions in RRM. I then set up a docking
pipeline with as input the RRM and RNA sequences and the identification of the stacked nucleotides.
The pipeline retrieves the RRM structure from AlphaFoldDB, identifies possible 3D positions of the
stacked nucleotides and runs ssRNA’TTRACT with maximal distance restraints toward each position.

In parallel, we addressed the weakness of ASF for ssRNA by deriving HIPPO (HIstogram-based
Pseudo-POtential), a new scoring potential for ATTRACT poses of ssRNA on RRM, based on the
frequency of bead-bead distances in near-native versus wrong poses. It combines 4 distinct parameter
sets (four 𝓗) into a consensus scoring, to better account for the diverse RRM-ssRNA binding modes.
Tested in a leave-one-out approach, HIPPO reaches a 3-fold enrichment of near-natives in 20%
top-scored poses for ½ of the ssRNA fragments, versus ¼ with ASF. It even reaches a 4-fold
enrichment for ⅓ of the fragments, versus 7% of the fragments with ASF. Surprisingly, HIPPO
performed better than ASF also on a benchmark of non-RRM proteins, while trained only on RRMs.

Most FBD approaches encounter inherent scoring issues, probably due to some fragments
binding more specifically/strongly than others. To address this point, we examined the best-scored
fragment per complex and found that HIPPO consistently selects more near-natives than ASF for this
fragment. This inspired an incremental docking approach: the top-ranked poses of one fragment are
used as a starting point to build a full RNA chain incrementally. This strategy eliminates the need for
known conserved contacts, which have been required so far to obtain accurate models, making it
generalizable to non-RRM proteins.

Future research aims to identify the best-performing 𝓗 for each fragment, potentially using
(deep) machine learning. Our workflow to derive scoring parameters is in principle applicable to any
protein/ligand type and we plan to expand it to other RNA-binding protein domains, as well as ssDNA
and long peptides.
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Modélisation par fragments de complexes protéine-ARN pour le design de protéines

Résumé

Les complexes protéine-ARN jouent un rôle crucial dans la régulation cellulaire. La prédiction de
leur structure 3D a des applications dans la conception de protéines et de médicaments. Le projet ITN
RNAct visait à combiner des méthodes expérimentales et informatiques pour concevoir de nouveaux
"motifs de reconnaissance de l'ARN" (RRM) - domaines protéiques interagissant avec l'ARN simple
brin (ARNsb) - pour la biologie synthétique et la bioanalyse.

La modélisation des complexes protéine-ARNsb (amarrage) est ardue car l'ARNsb n'a pas de
structure propre dans sa forme libre. L'amarrage traditionnelle échantillonne les positions relatives
(poses) de 2 structures moléculaires et les note pour sélectionner les plus probables. Il n’est pas
directement applicable ici en raison de l'absence de structures libres d'ARNsb, pas plus que
l'apprentissage profond en raison du nombre trop faible de structures connues. L'amarrage par
fragments, état de l’art pour l'ARNsb, amarre toutes les conformations possibles de fragments d'ARN
sur une protéine et assemble les poses les mieux notées de manière combinatoire. Notre méthode
ssRNA'TTRACT utilise le logiciel d'amarrage ATTRACT et sa représentation gros grain qui remplace
des groupes d'atomes par une bille. Cependant, les paramètres ARN-protéine de sa fonction de
notation (ASF) ne sont pas spécifiques à l'ARNsb et peuvent être optimisés. De plus, des
caractéristiques spécifiques aux RRM peuvent être apprises et guider l'amarrage.

Nous avons développé un pipeline d’amarrage RRM-ssRNA basé sur les données, pour actualiser
une stratégie existante. Les RRM ont 2 acides aminés aromatiques de position conservée, chacun liant
par empilement un nucléotide de l'ARN. Mon collègue H. Dhondge a regroupées les structures
RRM-ARNsb connues sur critère géométrique et obtenu un ensemble de prototypes de coordonnées
3D de tels empilements dans les RRM. J'ai créé un pipeline qui prend en entrée une séquence de RRM
et d’ARN et l'identification des nucléotides empilés, récupère la structure du RRM dans
AlphaFoldDB, identifie les positions 3D possibles des nucléotides empilés et exécute
ssRNA'TTRACT avec des contraintes de distance maximales vers chaque position.

En parallèle, nous avons dérivé HIPPO (HIstogram-based Pseudo-POtential), un potentiel de
notation pour les poses gros-grain RRM-ARNsb basé sur la fréquence des distances bille-bille dans
les poses quasi-natives versus erronées. HIPPO combine 4 ensembles de paramètres (quatre 𝓗) en une
note consensus, afin de prendre en compte les divers modes de liaison RRM-ARNsb. Testé dans une
approche "leave-one-out", il atteint un enrichissement d'un facteur 3 en quasi-natives dans les 20% de
poses mieux notées pour ½ des cas contre ¼ avec ASF, et 'un facteur 4 pour ⅓ des cas contre 7% avec
ASF. Surprenamment, HIPPO obtient aussi de meilleurs résultats qu'ASF sur un ensemble test de
protéines sans RRM, bien que entraîné sur des RRM.

Les approches par fragment rencontrent un problème intrinsèque de notation car certains
fragments se lient plus spécifiquement/fortement que d'autres. Or nous avons constaté que, pour le
fragment le mieux noté par complexe, HIPPO sélectionne systématiquement plus de quasi-natifs
qu'ASF. Cela nous a inspiré une approche d'amarrage incrémentale: chacune des poses bien notées
d’un fragment sont utilisées comme graine pour construire une chaîne d'ARN complète de manière
incrémentale. Cette stratégie élimine le besoin de contacts conservés connus, jusqu'alors nécessaires
pour obtenir des modèles précis, ce qui la rend généralisable aux protéines sans RRM.

Nos recherches futures visent à identifier le 𝓗 le plus performant pour chaque fragment,
potentiellement par apprentissage automatique (profond). Notre approche pour dériver des paramètres
de notation est en principe applicable à tout type de protéine/ligand et nous prévoyons de l'étendre à
d'autres domaines de protéines liant l'ARN, ainsi qu'à l'ADNsb et aux peptides longs.


