N

N
N

HAL

open science

Reachability problems for general rotor walks in graphs

Loric Duhaze-Pradines

» To cite this version:

Loric Duhaze-Pradines. Reachability problems for general rotor walks in graphs. Computer Science
and Game Theory [cs.GT]. Université Paris-Saclay, 2023. English. NNT: 2023UPASGO051 .

04504876

HAL Id: tel-04504876
https://theses.hal.science/tel-04504876

Submitted on 14 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

tel-

https://theses.hal.science/tel-04504876
https://hal.archives-ouvertes.fr

—
<
o
@
—
@)
@)
)
Ll
)
LLl
W
Ll
T
—

0
o
O
!
<
o
D
™
N
o
N
l_
Z
Z

[]
universite
PARIS-SACLAY

Reachability problems for

general rotor walks in graphs
Problemes d’accessibilité des marches de rotors générales
dans les graphes

Theése de doctorat de I'université Paris-Saclay

Ecole doctorale n°580, Sciences et technologies de I'information et de la
communication (STIC)

Spécialité de doctorat: Informatique

Graduate School : Informatique et Sciences du Numérique.

Référent : Université de Versailles-Saint-Quentin-en-Yvelines

Thése préparée dans les unités de recherche DAVID (Université Paris-Saclay,
UVSQ) et LISN (Université Paris-Saclay, CNRS), sous la direction de Johanne
COHEN, Directrice de recherche, le co-encadrement de David AUGER, Maitre
de Conférences, et le co-encadrement de Pierre COUCHENEY, Maitre de
Conférences

Thése soutenue a Versailles, le 06 Décembre 2023, par

Loric DUHAZE

Composition du jury
Membres du jury avec voix délibérative

Jean-Michel FOURNEAU Président

Professeur des universités, DAVID, Université de
Versailles-Saint-Quentin-en-Yvelines

Laurent GOURVES Rapporteur & Examinateur
Directeur de recherche, LAMSADE Université Paris

Dauphine

Kévin PERROT Rapporteur & Examinateur
Maitre de conférences HDR, LIS, Aix Marseille Uni-

versité

Olivier HUDRY Examinateur

Professeur des universités, LTCI, Télecom Paris

Fanny PASCUAL Examinatrice

Maftresse de conférences, LIP6, Sorbonne Univer-

sité

ECOLE DOCTORALE

e
universite
PARIS-SACLAY

Sciences et technologies
de I'information et de
la communication (STIC)

Titre : Problémes d'accessibilité des marches de rotors générales dans les graphes
Mots clés : Marches de Rotors, Théorie algorithmique des jeux, Complexité, Algorithmique des graphes

Résumé : Nous nous intéressons dans cette thése
aux propriétés algorithmiques d'un automate cel-
lulaire, les marches de rotors. Ce modéle a été in-
troduit de deux maniéres différentes. Tout d'abord
comme une opération élémentaire d'un autre au-
tomate cellulaire : les Sandpiles qui modélisent
I'effondrement d'une pile de sable lorsque celle-
ci devient trop haute. Mais également, par sa
ressemblance avec des modéles stochastiques trés
étudiés que sont les marches aléatoires. En effet,
de nombreuses propriétés structurelles des marches
aléatoires (temps d'atteinte, temps de couverture,
etc...) sont similaires a celles de cet automate
complétement déterministe qu'est la marche de ro-
tor. Cette forme de "dérandomisation" de pro-
cessus aléatoire a été la motivation principale de
cette thése. Plus précisément, une marche de ro-
tor correspond au mouvement d'une particule sur
un graphe orienté en suivant la régle suivante : au
départ on fixe un ordre (une numérotation) sur les
arcs sortants de chacun des sommets du graphe
puis, une fois qu'on a définit la position de départ
de la particule, chaque fois que cette derniére est
sur un sommet, elle le quitte par I'arc de valeur
la plus faible qu'elle n'a pas déja utilisé. Bien en-
tendu, si tous les arcs ont été utilisés, on redémarre
avec |'arc de plus faible valeur. Il existe une multi-

tude de problémes d'accessibilité sur les rotors dont
nous nous appliquons a faire une liste dans cette
thése. Nous donnerons également des résultats de
complexité pour certains d'entre eux. Puis nous
nous intéresserons a un probléme d'accessibilité
particulier : ARRIVAL. Si I'on considére un graphe
avec des puits tel qu'il existe un chemin orienté
entre chaque sommet du graphe et au moins |'un
de ces puits, une marche de rotor se termine forcé-
ment. Hélas, le nombre d'étapes avant que ce pro-
cessus ne termine peut &tre exponentiel. En 2017,
Dorhau et al. ont présenté un probléme, nommé
ARRIVAL, qui est de savoir si la particule finit bien
sa course dans un puits donné. lls ont montré qu'il
appartenait aux classes de complexité NP et co-
NP. Etant donc un bon candidat & étre résolu par
un algorithme polynomial, nous nous intéressons
a ce probléme sur une sous-classe de graphe pour
laquelle le nombre d'étapes du processus peut étre
exponentiel : les Tree-like multigraphes. |l s'agit
de multigraphes donc le graphe non-orienté sous-
jacent est un arbre. Dans ce contexte, nous avons
pu montrer que ce probléme pouvait &tre résolu
en temps linéaire et méme étendre ces résultats a
des versions décisionnelles du probléme ARRIVAL
connues pour étre respectivement NP-compléte et
PSPACE-compléte.

ECOLE DOCTORALE

e
universite
PARIS-SACLAY

Sciences et technologies
de I'information et de
la communication (STIC)

Title: Reachability problems for general rotor walks in graphs
Keywords: Rotor Walks, Algorithmic game theory, Computational complexity, Graph algorithms

Abstract: In this thesis, we focus on the algorith-
mic properties of a cellular automaton known as
rotor walks. This model has been introduced in
two distinct ways. Firstly, as a fundamental op-
eration within another cellular automaton known
as Sandpiles, which models the collapse of a sand
pile when it becomes too high. Secondly, due to
its resemblance to well-studied stochastic models,
such as random walks. Indeed, numerous struc-
tural properties of random walks (hitting times,
cover times, etc.) are analogous to those of this
completely deterministic automaton called the ro-
tor walk. The main motivation for this thesis stems
from this "derandomization" of a random process.
More precisely, a rotor walk corresponds to the
movement of a particle on a directed graph follow-
ing the following rule: initially, an order (a num-
bering) is fixed on the outgoing arcs of each vertex
of the graph. Once the starting position of the par-
ticle is defined, each time it is on a vertex, it leaves
through the arc with the lowest value that it has
not already used. Of course, if all arcs have been
used, the process restarts with the lowest value
arc. There is a multitude of accessibility problems

on rotors, and we aim to compile a list of them in
this thesis. We also provide complexity results for
some of these problems.

Subsequently, we turn our attention to a spe-
cific accessibility problem: ARRIVAL. Considering
a graph with sinks such that there is a directed
path between each vertex of the graph and at least
one of these sinks, a rotor walk inevitably termi-
nates. Unfortunately, the number of steps before
this process concludes can be exponential. In 2017,
Dorhau et al. introduced a problem called AR-
RIVAL, which seeks to determine if the particle
successfully reaches a given sink. They demon-
strated that it belongs to the complexity classes
NP and co-NP. Being a strong candidate for poly-
nomial algorithm resolution, we investigate this
problem on a subclass of graphs where the step
count of the process can be exponential: Tree-like
multigraphs. These are multigraphs whose under-
lying undirected graph is a tree. In this context,
we show that this problem can be solved in linear
time, extending these results to decision versions
of the ARRIVAL problem, known to be respectively
NP-complete and PSPACE-complete.

Titre : Problémes d'accessibilité des marches de rotors générales dans les graphes

Synthése : Cette thése présentent les travaux
que nous avons effectués concernant les propriétés
algorithmiques des marches de rotors ainsi que
I'étude d'un probléme particulier sur les marches
de rotor : ARRIVAL. Le probléme ARRIVAL, défini
par Dohrau et al. dans [31], est un probléme de
décision sur un graphe orienté avec des puits ol
chaque sommet qui n'est pas un puits a exacte-
ment deux arcs sortants. L'objectif est de décider
si une particule se déplacant sur ce graphe selon
une marche de rotors atteint un certain sommet
puits (voir Figure pour un exemple). La régle
de déplacement est la suivante : chaque sommet a
un arc sortant initial "rouge" que la particule peut
emprunter, et une fois qu'une particule emprunte
un arc rouge, I'arc rouge du sommet qu'elle vient
de quitter est mis a jour vers l'autre arc sortant
de ce sommet. Cette régle déterministe garantit
que la particule traversera les deux arcs presque
le méme nombre de fois, comme cela serait ob-
servé en moyenne avec une marche aléatoire. Un
mouvement est dit /égal s'il y a une particule sur
le sommet ou |'opération de déplacement a été
effectuée. Inversement, un mouvement est illégal
s'il a lieu & un sommet sans particule. Le probléme
ARRIVAL, dans sa définition originale, ne permet
que des mouvements légaux. Dans les chaines
non-orientées & n sommets, le train atteint un
puits avec au plus O(n?) mouvements légaux, four-
nissant ainsi une solution au probléme ARRIVAL.
Cependant, dans des cas plus généraux, le nombre
d'étapes nécessaires pour que le train atteigne un
puits peut étre exponentiel, comme illustré dans la
Figure 3.2 du Chapitre [3] Néanmoins, il a été dé-
montré dans [31] que le probléme ARRIVAL appar-
tient a la classe de complexité NPNco-NP. Pour
étudier ce probléme, notre approche est la suiv-
ante.

Nous avons choisi de développer un nouveau
cadre unifié pour |'analyse des problémes liés
aux marches de rotors, en autorisant la présence
de plusieurs particules mais également de partic-
ules négatives (antiparticules, introduites dans le
chapitre Chapitre [2). Ce cadre unifié nous a
permis de généraliser divers résultats déja connus
dans d'autres contextes et de développer une com-
préhension plus approfondie des marches de ro-
tor dans les graphes. Nous avons notamment pu

montrer que la propriété d'unicité des configura-
tions de rotors et de particules obtenues aprés un
routage légal maximal pouvait étre étendue au cas
des routages non-légaux. Dans ce dernier cas, la
notion de maximalité du routage est vue comme le
fait de rassembler toutes les particules et antipar-
ticules sur les puits du graphe et |'unicité concerne
seulement la configuration de particules et pas la
configuration de rotors.

Ensuite, nous nous intéressons au probléme AR-
RIVAL comme un probléme d'accessibilité, a
savoir, si I'on appelle s le puits cible, et qu'on sup-
pose que la particule est initialement & la position
v avec la configuration p, existe-t-il une config-
uration de rotor p’ telle qu'il existe un routage
légal depuis la configuration de rotor-particule
(p,v) jusqu'a la configuration de rotor-particule
(p',s) 7 Ce faisant, nous examinons divers prob-
lémes d'accessibilité et leurs liens avec cette vision
d'ARRIVAL au sein de notre cadre unifie. Notre
objectif est d'obtenir une compréhension plus ap-
profondie du probléme ARRIVAL et des facteurs
qui le rendent complexe sur des graphes orientés
arbitraires (comme détaillé dans le Chapitre[3). En
particulier nous présentons plusieurs variantes du
probléme ARRIVAL et nous montrons qu'elles ap-
partiennent toutes a NPNco-NP. Nous montrons
notamment que la complexité du probléme AR-
RIVAL ne réside pas dans la légalité des opérations
de routage.

Enfin, nous avons examiné une sous-classe de
graphes, a savoir les treelike-multigraphes (graphes
orientés tels que le graphe non-orienté sous-jacent
est un arbre), pour lesquels nous présentons un
algorithme (présenté dans le Chapitre [4)) permet-
tant de résoudre le probléeme ARRIVAL en temps
polynomial. Cet algorithme repose sur le calcul
du nombre de fois que la particule peut voyager
d'un sommet v & un sommet v’ avant d'étre "as-
pirée" par un des puits du graphe. De maniére
similaire aux marches aléatoires avec un ou deux
joueurs (appelées processus de décision de Markov,
voir [74]) et aux jeux stochastiques (voir [79]),
nous avons exploré certaines variantes décision-
nelles d’ARRIVAL sur les treelike-multigraphes, dé-
montrant qu'elles peuvent également &tre résolues
en temps polynomial.

Contents

.. 7
(1__Introductionl 9
1.1 Thesis Overview| 9
12 RelatedWorks 10
[1.3 Document organization and contributions| 15
[2__General Framework of |
| Rotor Routing| 17
2.1 Basic Definitions] 18
[2.1.1 Rotor Routing Definitions| 21

2.2 Routing Vector]. e 30
[2.2.1 Reduced routing sequence and routing vector] 31

[2.3 Cycle Pushes and Equivalence Classes of Rotor Configurations| 34
[2.3.1 Rotor contiguration equivalence classes| 35

[2.3.2 Particle configuration class|o 39

[2.4 Positive Rotor Walk| 41
[2.4.1 Basic definitions and properties| 42

[2.4.2 Cycle pushing and Rotor Walks| 44
.. 45
[2.5.1 Detinitions and fundamental properties| L. 46

[2.5.2 Orbits of legal routing 47

[2.5.3 Characterization of Rotor Particle configurations reachable by legal routings| 53

[2.5.4 Specific results on Stopping Graph| 56

3 _ARRIVAL and |
| Reachability Problems| 59
3.1 ARRIVALL e 60

60

[3.1.2 MP-ARRIVAL and Linear ARRIVAL| 63

[3.2 Reachability Problems Chart| 65
[3.3 General Reachability Problems| 66
3.3.1 Problem (p,0) = (p,0’) by a firing sequence ||52M 66

3.3.2 Reachability problem of [81] (p,0) = (p/,0)| 67

[3.4 Properties for problems with a missing input on strongly connected graphs in the linear case] 69
[3.4.1 Problems where we can choose the rotor configuration(s)[. 69

[3.4.2 Problems where we can choose the particle configuration(s)|. 70

3.5 Problem (x,0) = (x,0")| 70
3.5.1 adget] L e 71

[3.5.2 Proof that (x,0) — (*,0") and (x,0) ~ (*,0’) are NP-Complete] 73

3.6 Problem (p,0) = (x,0)| 79
[3.6.1 Equivalence between (p,0) ~ (x,0’) and MP-ARRIVAL| 79

[3.6.2 Equivalence between (p,o) — (*,0’) and MP-ARRIVAL{|. 80

3.7 Problem (x,0) = (p/,0/)| 84
[3.7.1 Problem (x,0) ~ (p',0")| 84

[3.7.2 Problem (x,0) = (p',0)| 85

[3.8 Legal problems with non-fixed particle configuration(s)l 86
[4_SP-ARRIVAL on |
| Treelike-Multigraphs| 89
[4.1 SP-ARRIVAL and Complexity Issues| 90
[4.1.1 Cycle Pushing| 90

[4.2 Simple Path Graph| 92
[4.2.1 Routing One Particle on a Path Graph| 92

[4.2.2 Routing Several Particles| 93

[4.2.3 The Return Flow with the Path Graph| 95

[4.3 Tree-Like Multigraphs: Return Flow Definition| 95
[4.3.1 Tree-Like Multigraphs| 95

[4.3.2 Return Flows|. 97

[4.3.3 Revolving Routine| 100

[4.4 SP-ARRIVAL for Tree-like Multigraphs| 103
[4.5 One-player Rotor Game|o 106
[4.5.1 One-player Binary Rotor Game| 108

[4.5.2 One-player Integer Rotor Game| 13

[4.5.3 One-player Rotor Game: Other Set of Strategies|. 14

[4.6 Two-player Rotor Game| 14
|4.6.1 Two-player Binary Rotor Game| 116

[4.6.2 Two-player Integer Rotor Game| 17

[4.7 Simple Graphs| 17
[4.7.1 Zero-player Game| 18

[4.7.2 One-player Simple Tree-like Rotor Game| 19
5__Conclusion| 127
References| 129
|Appendix - Complexity Class Syllabus| 138

Remerciements

This thesis is a detailed summary of the different subjects and studies we have
made trough these four years of work. | am deeply grateful to Yannis Manoussakis
for his unwavering support and motivation as my supervisor throughout this jour-
ney. | would also like to express my gratitude to Johanne Cohen for stepping in
as the new supervisor and providing invaluable guidance and rigor to ensure the
progress of this thesis. Special thanks go to David Auger and Pierre Coucheney for
their valuable advice, countless brainstorming sessions, and their continuous sup-
port even during times when my motivation wavered. | would also like to express
my heartfelt gratitude to my parents for fostering my curiosity in various scientific
subjects, for their unwavering support, and for encouraging me to pursue my pas-
sion. And finally | would like to extend my thanks to my partner, who has been a
constant source of encouragement and assistance throughout my thesis journey.

1 - Introduction

Reachability problems are typically formulated as follows: Given a dynamic
system and an initial state of the system, is it possible for the system to transi-
tion to a desired target state? These types of problems gained prominence in the
1970s with the emergence of the Vector Addition System Reachability Problem
(e.g., references such as [66, |11} 58, [76]) and the Petri Net Reachability Problem
(e.g., references like [46, 64]). These two problems have given rise to various mod-
els encompassing complex reachability problems, spanning fields such as network
routing [84], software verification [26], manufacturing supply chains [42], trans-
portation planning [67], and aircraft collision avoidance [54]. As a result, finding
efficient solutions to these problems is a crucial concern in the realm of science
and technology. In this document, our measure of the efficiency of a solution (i.e.,
the difficulty of a problem) relies on the computational complexity class to which
the problem belongs. The definitions of the various complexity classes mentioned

in this document can be found in [Appendix

Like simple stochastic games (see [5]), in this thesis, we study a reachability
problem in finite graphs that falls into the complexity class NPNco-NP, and to
date, no polynomial algorithms have been discovered to solve them. However,
these problems are promising candidates for membership in the P class. This
motivated our choice to investigate the ARRIVAL problem, which also falls into
the NPNco-NP category and lacks a known polynomial-time solution algorithm.
Furthermore, the ARRIVAL problem is interesting as it is a deterministic analog of
random walks in graphs.

1.1 . Thesis Overview

The ARRIVAL problem, defined by Dohrau et al. in [31], is a decision problem
on a directed graph with sinks where every vertex that is not a sink has exactly
two outgoing arcs. It consists in deciding whether a particle moving on this graph
with specific rules (rotor walk) reaches a certain sink vertex (see Figure for
an example). The movement rule is as follows: each vertex has an initial "red"
outgoing arc that a particle can travel through, and once a particle travels through
a red arc, the red arc of the vertex it just left is updated to the other outgoing arc
of that vertex. This deterministic rule ensures that the particle will travel through
both arcs almost the same number of time, as would be observed in average with
a random walk. A move is said to be legal if there is a particle on the vertex
where the move operation was proceeded. Conversely, a move is non-legal if it
proceeds at a vertex having no particle. The ARRIVAL problem only permits legal
movements.

(a) The train represents the particle on this directed graph. Red arcs are the currently available paths for
the train. Here, it can only move up to us.

w

) When moving to us, the available paths for the train are modified. Note that at each step the train
only has one available path from its position.

(c) By proceeding enough movements, the train will eventually reach the sink so. Hence, since this is a
deterministic process, it will not reach s .

Figure 1.1: Instance of an ARRIVAL problem and the corresponding legal
move sequence where the train reaches sy.

In path graphs with n vertices (as in the example), the train reaches a sink
with at most O(n?) legal movements, thus providing a solution to the ARRIVAL
problem. However, in more general cases, the number of steps required for the
train to reach a sink may be exponential, as illustrated in Figure [3.2]in Chapter 3|
Nevertheless, it has been demonstrated in [31] that the ARRIVAL problem falls
within the complexity class NPNco-NP. To study this problem, our approach was
the following. We first had a look at a subclass of graphs, namely treelike multi-
graphs, for which we proved the existence of a polynomial time algorithm solving
the ARRIVAL problem (presented in Chapter . Similarly to random walks with
one or two players (so called Markov Decision Process (see [74]) and Stochastic
Games (see [79])), we explored certain decisional variants of ARRIVAL on tree-
like multigraphs, demonstrating that they also can be solved in polynomial time.
Next, we opted to develop a new unified framework for the analysis of rotor-routing
related problems, accommodating the presence of multiple particles as well as neg-
ative particles (antiparticles) (introduced in Chapter [2). This unified framework
has allowed us to generalize various results that were already known in different
contexts and to develop a deeper understanding of rotor walks in graphs. And
lastly, we returned to our initial objective, examining a range of reachability prob-
lems and their connections to ARRIVAL within this unified framework. Our aim
was to gain deeper insights into the ARRIVAL problem and the factors that make
it challenging on arbitrary directed graphs (as detailed in Chapter [3)).

1.2 . Related Works

While most results concern rotor-routing, this thesis will introduce some con-
cepts on particle configurations closely related to a more algebraic-focused model:
the Sandpiles model. Let us take a little time to present this model and its re-

10

© @

© @@@

© © @ W

(a) Graph with 5 sand grains on the central ver- | (b) Onesand grain has been moved on each exte-
tex. rior vertex after the central vertex collapsed.

Figure 1.2: Detail of the collapsing rule for sandpiles (see [16]). When
there are a number of sand grains superior or equal to the
outdegree of a vertex, this vertex collapses.

lations with the rotor-routing model. Both rotor-routing and sandpiles model are
automatons relying on a graph structure with some particles (e.g. chips, tokens,
..) moving on this graph. The difference comes from the rules of movement.

Sandpiles

The Sandpiles model corresponds to a phenomenon that occurs in nature: the piles
of sand collapsing when they are too high (rule is detailed in Figure [1.2)). This
collapse is an example from a vast family of phenomenons that have the property
of critically self-organize.

The Sandpiles model, presented initially under the name Bak—Tang—Wiesenfeld
(BTW) model in [10], tries to give some theoretical rules about whether a pile of
sand grains collapses depending on its height. Since this model is made to give a
better understanding of a real natural phenomenon, particles move on the graph
only if there is a lot of particles on the same vertex, in which case the vertex
collapses and particles are dispatched between its different neighbours (such a
collapse is called a firing in the literature and in this document). This model
has some strong algebraic properties studied first in physics since 1990 [27, 30]
from where it inherits its current name, the Abelian Sandpiles Model. Rapidly,
mathematicians presented an abelian group structure (e.g., the Sandpile Group) on
some particular elements of a theoretical sandpile: recurrent states. Following this
popularity, several authors presented papers on the structure of the sandpile group
on specific graph classes. In 1999, Cori and Rossin established in their work [24]
that for planar graphs, the Sandpiles group is isomorphic to that of its dual graph.
Subsequently, Toumpakari made significant progress by computing the structure of
the Sandpiles group for regular trees and proposing a conjecture suggesting that the
Sandpiles group for such graphs can be decomposed into a product of the Sandpiles
groups of its subtrees. This conjecture was later confirmed by Levine in [60].
Similar investigations were carried out by Chen and Schedler on thick trees with
loops in [21]. In 2011, Levine extended the analysis by computing the structure of
the Sandpiles group for De Bruijn graphs and Kautz graphs, as documented in [59)].
Furthermore, in 2008, Holroyd and colleagues provided a comprehensive survey [50]

"

of existing results on the Sandpiles model and highlighted the connections between
the Sandpiles model and the rotor-routing model. Shortly after, a new problematic
emerged: computing the identity element of the sandpile group (see an example
for a square grid on when describing the whole structure is too hard
(e.g. [53,[32]) In [57], it was demonstrated that on a rectangular grid, the identity
element can be decomposed into three parts, with the central area being uniform,
as illustrated in Figure This decomposition of the identity element has been
a subject of interest. Researchers have also explored the shape of the identity
element for other types of grids, such as triangular and hexagonal grids, as well
as various tilings, as discussed by Fersula et al. in . Additionally, Alfaro and
colleagues successfully computed the identity element of the cone of a regular
graph by solving an integer linear programming problem in their work [1].

Figure 1.3: The identity element of the sandpile group of the 128x128
square grid (image from [50]) with sinks on the edges of the
square. The color scheme is as follows: white=o chips, red=1
chip, green=2 chips, and blue=3 chips.

The mechanism described by the sandpiles model has been used for many
other purposes. We can cite the Engel Machine (illustrated in Figure |1.4]), whose
purpose is to make conversions for numbers written in different bases. This machine
is anterior to the use of the term "sandpiles", but it relies on the same principle.
Indeed, in both cases, when the number of elements on a particular vertex is
superior or equal to the number of exits, one element is sent through each exit.
We will define this process as firing shortly after in this document. An example of

utilization of an Engel Machine is shown in |Figure 1.4]

12

-DRR0E
OO0

Figure 1.4: Vertices of this Engel Machine can be separated in two sets,
the square vertices of degree 2 and the non-square vertices
which are sinks (all particles arriving on them will stay there
forever). We put a single particle on the rightmost vertex.

R
OO0 ®

Figure 1.5: By adding a particle on the rightmost square vertex, the
number of particles on it is now 2 making this vertex top-
ples/fires. This operation sends one chip to each neighbour
of this vertex. We see here that the number of particles on
the square cases are the binary writing of the total number
of particles put on the rightmost vertex.

Sandpiles have also been studied from a reachability point of view (which we
will present in Chapter [B). The main result of [43] is the undecidability of this
problem for infinite graphs. It has also been studied on general finite digraphs ever
since and proved to be in co-NP (e.g. [52]).

Dollar Game

A version of the Sandpiles model where vertices are allowed to borrow particles
from their neighbour quickly emerged: the Dollar Game [14]. In the dollar game,
each particle represents one unit of money, and each node represents a person who
can either have exceeding money (a positive number of particles on the vertex) or
have debt (a negative number of particles on the vertex). A negative number of
particles on a vertex can be seen as an amount of negative particles (or antipar-
ticles). Each person can either give one unit of money to each of their neighbors
or borrow one from them. The term "Dollar Game" gets its name from the ob-
jective of clearing each vertex's debt through lending and borrowing operations.
The primary result from [14] asserts that if a solution exists for a given instance
of the Dollar Game, there is a greedy algorithm that can solve it. This generalized
version of Sandpiles served as one of the main inspiration for developing a gener-
alized theory around rotor routing which constitutes a significant contribution of
this thesis. Certainly, the inclusion of negative particles, which we'll refer to as
antiparticles, significantly changes the rotor-routing model. This is because the
legitimate movement of a particle can be halted when it reaches a vertex with a
negative particle count. In Figure[L.1] if us has a negative particle count, the train
stops immediately after a single legal move.

13

Rotor-routing Model

In 1996, Priezzhev and al. [72, [71] presented the first version of what will later
be the rotor routing model under the name Eulerian Walker. In a directed graph,
we fix a total order on the outgoing neighbors (or outgoing arcs) of each non-sink
vertex. Then, a vertex with a particle on it topples (i.e., is routed) and the particle
moves towards one of this vertex's neighbors following the previously set order. This
can be seen as an elementary step of a firing operation of the Sandpiles model,
and it is why the links between these two models have brought so much interest
[50]. This process was rediscovered several times, in mathematics under the name
rotor-routing [75, [33] and under the name ant-patrolling network in distributed
algorithmics [85]. From its close relation to the Sandpiles model, this model also
has some interesting algebraic properties. One of the most studied ones is the
group action of the abelian group of sandpiles on the spanning in-arborescences
of a digraph through rotor-routing [56| 80, [19]. In this thesis, we will present and
construct the equivalence classes of rotor-routing model using a different approach.
While there is a connection between sandpiles and rotor-routing that explains the
existence of these equivalence classes, we will explore alternative methods to define
and understand them within the context of our research.

Another interesting question about the rotor-routing model is the derandomiza-
tion of random walks. Indeed, this process can be seen as a deterministic version of
a random walk, so it shares many properties with its stochastic variant, the Markov
chain. Notably, Holroyd and Propp proved in [49] that several natural statistics of
markov chains are approximated by rotor walks. One can mention that the cover
time of the vertices for trees coincides in average for random walks and rotor walks
[33].

The rotor-routing model has also been studied for its structural properties.
Namely, consider a graph with sink vertices. In order to compute the order in
which the sinks will be reached if we repeat the rotor-routing process starting from
the same vertex, Giacaglia et al. [41] introduced the rotor class equivalence that
we will study in detail in Chapter[2].

In parallel, a series of papers starting in 2017 (e.g., [31, 40, 39, 63]) were pub-
lished where authors seemed unaware of previous results concerning rotor walks.
Their work focuses on a new complexity question about reachability problems in so-
called switching graphs which are in fact a special kind of rotor graphs. They tried
to answer the following question: which sink is reached by the particle if we know
the starting configuration and the starting position of a particle? This problem is
originally known as the ARRIVAL problem and it has been demonstrated to be part
of both NP and co-NP in a study by Dohrau et al. in 2017 [31]. Moreover, there
have been advancements in improving the upper bounds for this problem. The
ARRIVAL problem is also in UP (Unique Polynomial Time) and co-UP, indicating
the existence of efficient verifiers that can accept unique proofs (e.g., proof in [40]).
A search version of the ARRIVAL problem has been introduced and proven to be

14

in PLS (Polynomial Local Search). Furthermore, this version has been demon-
strated to be in CLS (Combinatorial Local Search), which is the intersection of
PLS and PPA (Polynomial Parity Arguments on Directed graphs) and finally in
UniqueEOPL (Unique Equilibrium Oriented Polynomial Local Search), a complex-
ity class capturing total search problems with a unique solution. An algorithm with
subexponential complexity, specifically in time O(2V™1987) has been proposed for
the ARRIVAL problem on graphs with n vertices in [39]. On the other hand, a
lower bound has been established in [63], proving that the ARRIVAL problem is
CC-Hard (Counting Class Hard) and PL-Hard (Polynomial Local Search Hard).
The study of this problem in our new unified framework and for a particular class
of graphs will be another major part of the work developed in this thesis.

Please, note that the "sand grains" and "trains" described in the introduction
will be replaced by "particles" in the core document to make the definitions and
properties clearer.

1.3 . Document organization and contributions
We give here a brief summary and the main results of each chapter.

« Chapter [2| presents a new general framework unifying rotor-routing model,
sandpiles model and dollar game with and without the legality constraint.
This framework was initially developed at the beginning of our work on a
generalized version of the ARRIVAL problem with strong algebraic struc-
tural properties. Our expectation was that these structural properties could
be transferred to the ARRIVAL problem itself. Therefore, we presented ro-
tor equivalence classes, particle configuration equivalence classes, and rotor
particle equivalence classes. It also introduces novel and expanded proper-
ties for the unified rotor-routing model applied to strongly connected and
stopping graphs. In particular, we prove a general asymptotic result on the
finiteness of legal routing sequences with any initial particle configurations
(positive or negative).

This framework has been used in a publication at RP2023 [6].

* In Chapter 3} we present the ARRIVAL problem and its various versions,
including scenarios involving multiple particles and scenarios without the
legality constraint. One of the key problems we define is SP-ARRIVAL,
which is exactly the problem originally presented in [31], but adapted to
our framework. We prove that they all belong to NPNco-NP. Next, we
focus on various legal or non-legal other reachability problems in the con-
text of strongly connected graphs and stopping graphs. We present some
polynomial reductions between some of these problems and variants of the

15

ARRIVAL problem. In particular, we define a generalized version of the AR-
RIVAL problem where non-legal routing sequences are permitted. And we
show that this version is equivalent to a variant of the ARRIVAL problem
with several particles on strongly connected and stopping graphs. These
results are currently in the drafting phase and will be submitted to a journal
for publication.

+ Chapter [4] focuses on the SP-ARRIVAL problem. We introduce a class
of graphs, namely treelike multigraphs, where we demonstrate that solv-
ing SP-ARRIVAL can be accomplished in polynomial time. Furthermore,
we extend this result to decisional variations of SP-ARRIVAL, considering
scenarios with one or two players. We prove that on treelike multigraphs,
these problems can also be solved in polynomial time, even though they are
NP-Complete and PSPACE-Complete on general directed graphs. These
findings have been published at MFCS2022 [3].

Throughout this document, when we mention properties that are drawn from
existing literature, we provide references to the original papers where these proper-
ties were introduced. Additionally, it's important to note that a portion of our work
involves recombining and generalizing existing findings. In such cases, we include
annotations to reference the original works from which these ideas were derived.

16

2 - General Framework of
Rotor Routing

In this chapter, we will introduce the concept of the "rotor-routing" operation
and discuss its essential properties for studying various problems covered in Chap-
ters [3]and [4] The framework developed in this chapter has been used in a work
published at RP2023 [6].

In traditional rotor-routing frameworks, vertices can only be routed if they
have a positive number of particles on them (e.g., [81, 77, 41]). However, we
are interested in exploring reachability problems, (e.g., a generalized version of
the ARRIVAL problem) where vertices can be routed even if they have a negative
particle count and routing operations are not necessarily legal. This is why we
introduce in this chapter a unified framework for rotor-routing problems.

The organization of this chapter is as follows. In Section [2.1} we provide for-
mal definitions for rotor-routing mechanics and describe our routing rule, which
determines how particles move based on the current configuration. Next, in Sec-
tion 2.2} to capture the movement of particles in a routing sequence, we present
the concept of routing vector introduced in [81], and we show that it can be used
as a certificate of the ending configuration of a routing sequence. This vector
succinctly represent the displacement of particles during each routing operation,
making it easier to analyze and understand the system's behavior. In Section[2.3]
we introduce an operation called cycle-push, which is a well-known technique in
the field. The cycle-push operation represents a specific type of routing sequence
that captures the movement of a particle along a circuit in the graph. By using
the cycle-push operation, we can establish equivalence relations between different
rotor configurations. This means that certain rotor configurations can be trans-
formed into one another through the application of cycle-push. We also present
some properties on particle configurations equivalence classes. In addition to the
traditional rotor-routing framework, we introduce, in Section [2.4, a more intuitive
variant called the rotor walk, which is a routing sequence with a single particle
originally introduced in [72]. Rotor walks allow us to express general properties in
a simpler and more intuitive manner. Through the concept of rotor walks, we aim
to provide a clearer and more intuitive understanding of the dynamics and behavior
of rotor configurations and their interactions with the underlying graph structure.
Finally, in Section we introduce the notion of legality in rotor-routing. Le-
gality imposes constraints on the routing sequences, specifying which routings are
allowed or forbidden. We discuss the concept of legality and present a key result
that motivates our exploration of reachability problems in Chapter[3] Furthermore,
we examine characteristic properties of legal routing sequences, focusing on how
they depend on the graph's topology.

17

2.1 . Basic Definitions

Graph Statement

Unless otherwise stated, we consider a directed multigraph G = (V, A, h,t) where
V is a finite set of vertices, A is a finite set of arcs, and h (for head) and ¢ (for tail)
are two maps from A to V that define the incidence between arcs and vertices.
For a given arc a € A, vertex h(a) is called the head of a and ¢(a) is the tail of a.
For simplicity, we typically denote such an arc by (¢(a), h(a)).

(A
Figure 2.1: ais an arc with tail t(a) = A and head h(a) = B.

For the sake of clarity, we consider only graphs without arcs of the form h(a) =
t(a) (i.e., loops). However, our results would still hold if we were to allow such
arcs. Note that multigraphs can have multiple arcs with the same head and tail.
Let u € V' be a vertex, we denote by AT (u) (resp., A~ (u)) the multiset of arcs
a € A with tail u (resp., with head u). A vertex s such that A™(s) = 0 is called
a sink.

Let I'"(u) (resp., I'"(u)) be the subset of vertices v € V for which there is an
arc a € A with h(a) = v and t(a) = u (resp., h(a) = u and t(a) = v). A graph
is said to be simple if for all uw € V' we have | AT (u)| = [T (u)].

What we call a circuit in this document is a sequence of arcs ag, a1, ,ax_1
such that for 0 < i < k we have h(a;) = t(ai+1 mod k)-

Laplacian and Period Vector

Now, we define the Laplacian Matrix of a graph [13] which is a square matrix that
captures important properties of the graph's structure. The diagonal elements of
the matrix represent the degree of the vertices (the number of edges connected to
each of them), while the off-diagonal elements represent the connections between
vertices. Next, we introduce the notion of a "period vector" which will play a
key role in Section The period vector is a mathematical representation that
describes certain repetitive patterns within a graph.

Definition 2.1.1 (Laplacian Matrix). The Laplacian matrix of a graph G is de-
noted by L¢. It is defined by L (u,u) = —| A (u)|, and Lg(u,v) = |AT (u,v)| if
u # v, where AT (u,v) denotes the set of outgoing arcs of vertex u with head wv.

Note that, for any row of L¢, the sum of the elements of this row is 0.
We introduce a specific class of graphs, which will be one of the two cases
studied in this document.

18

@ 0 0 0
©) &) T

Figure 2.2: Graph G and its Laplacian Matrix.

Definition 2.1.2 (Stopping Graph[). Agraph G = (V, A, h,t) is said to be stop-
ping if for every vertex v € V, either v is a sink vertex or there exists a directed
path from v to some sink s.

Recall that in a graph G, a sink component refers to a strongly connected com-
ponent that does not have any outgoing arcs in A. We call transient components
the connected components obtained by removing sink components from the graph
as illustrated in[2.3] Remark that transient components are characterized by the
fact that they have at least one outgoing arc directed towards another transient
component or a sink component. And, from [68], we have that any directed multi-
graph can be decomposed in polynomial time into sink components and transient
components.

\sink
component

Figure 2.3: Decomposition into sink components and transient compo-
nents.

Hence, without loss of generality, we restrict our study to strongly connected
graphs (which are the sink components) and stopping graphs (which are the tran-
sient components).

First, we introduce the classical definition of a period vector for a graph. This
concept will be further interpreted in terms of routing in the subsequent sections
of this document.

Definition 2.1.3 (Period vector of a graph). A period vector p for a graph G
is a vector p € NIV1, that satisfies the equation p - L = 0|y, where L is the
Laplacian matrix associated with G and 0|y, is the vector of zero of length |V|.

'As any other graph we consider, stopping graphs are directed graphs.

19

T3
I
—~
O W
w
N
~—

(6 2 4)

IS
Il

Figure 2.4: Example of period vectors for two graphs, one that is stop-
ping and one that is strongly connected.

Definition 2.1.4 (Primitive period vector of a graph). A period vector p of a
graph G is said to be primitive if there is no non-trivial common divisor between
the entries.

Remark. We will present later in detail the firing operation (i.e., routing a vertex
a number of times equals to its outdegree). Given a period vector p, by proceeding
a firing operation on each vertex v a number of times equals to p(v), the particle
configuration remains the same, hence the name "period vector".

In Figure , the primitive period vector of the second graph is (3 1 2).
Proposition 2.1.5 (Proposition 4.1 of [15]).

1. The primitive period vector p of a strongly connected graph exists and is
unique. It is strictly positive and all period vectors t of strongly connected
graphs are of the formt =p - k with k € Z.

2. Period vectors of a general digraph with k sink components (strongly con-
nected components) are exactly vectors of the form ¥¥_, \;p; where \; > 0
and p; is the primitive period vector of size |V'| of the sink component C;
with 0 on any entry that does not belong to C;.

Following result is a direct implication of Proposition but it has not been
stated before.

Corollary 2.1.6 (Primitive Period vector of a stopping graph). The primitive
period vector of a stopping graph is unique and is 0|y

20

Proof. From the fact that sink vertices are the only sink components of a stop-
ping graph and their primitive period vector is 0, by Proposition [2.1.5|we have
that the primitive period vector of a stopping graph is unique and is 0fj. O

Furthermore, we have the following complexity result regarding the computa-
tion of a primitive period vector.

Proposition 2.1.7 (Proposition 1.2 of [81]). The primitive vector of a general di-
graph can be computed in polynomial time.

2.1.1 . Rotor Routing Definitions

This subsection introduces the concept of a routing sequence along with the
various operators required to define it. In our rotor-routing framework, in contrast
to the existing literature, we introduce the concept of antiparticles and the asso-
ciated operations required to move them. We treat a particle configuration as a
balance between particles and antiparticles on each vertex, essentially represented
by an integer value. We also examine the distinctions between the routing rule
typically employed in the literature and our version of this routing rule.

Let G = (V, A, h,t) be a multigraph.

2.1.1.1 Rotor Graph and configurations

Definition 2.1.8 (Rotor Order). Let v € V be a vertex. A rotor order at v is a
circular permutation on the outgoing arcs of v, namely an operator denoted by 6,
that satisfies the following properties:

© 0y : AT (v) = AT (v);
* Foralla € A*(v), the orbit {a,0,(a),02(a),. .. ,HLﬁ(”)'_l(a)} of arc a un-

der 6, is equal to A (v), where 6% (a) denotes the composition of 8, applied
to arc a exactly k times

. I _ _ AT ()]-1 n
Thus, 0., is a bijection and we have 0, (a) = 05 (a) forany a € AT (v).

Note that every arc in A" (v) appears exactly once in any orbit of ,,. We will
now incorporate the operator 6, into our graph structure in the following way.

Remark (Rotor order representation). Please note that in the rest of this thesis,
rotor order will be depicted in Figures by a red cyclic arrow similar to the one of

Figure
Definition 2.1.9 (Rotor Graph). Arotor graph G is a (multi)graph G = (V, A, h,t)
together with the following components:

* a vertex partition V = Vy U Sy, where Vy consists of the vertices that have
at least one outgoing arc and Sy is the possibly empty set of sink vertices,
which are the vertices with outdegree zero

21

C

Figure 2.5: Rotor order on a graph. In the examples presented in this
document, we will consider the same planar rotor order
(clockwise or anticlockwise) on the outgoing arcs of each ver-
tex for better understanding. But all results are constructed
with general rotor orders as defined in Definition [2.1.8]

* a mapping 0 from A to A such that for each v € Vy, 6,, is a rotor order at
u where 0, is the mapping 0 restricted to A" (u)

A rotor graph such that Sy = () is said to be sinkless.

We consider graphs that are rotor graphs with G = (Vj, So, A, h, t,8), where
So may be empty. Unless stated otherwise, all the graphs we refer to follow this
structure. As we only deal with rotor graphs in this document, we use the same
notation as for multigraphs.

Definition 2.1.10 (Rotor Configuration). Let G = (Vy, So, A, h,t,8) be a rotor
graph. A rotor configuration of G is a function p : Vo — A that assigns to each
vertex u € Vy an outgoing arc p(u) € A*(u).

The set of all rotor configurations on G is denoted by R(G).

Remark (Rotor configuration representation). Observe that, for the rest of this
document, rotor configurations will be depicted in Figures by arcs in red.

Definition 2.1.11 (Graph Induced by a Rotor Configuration).

Let G = (Vb, So, A, h,t,0) be a rotor multigraph and p € R(G) be a rotor config-
uration. The graph induced by p on G, denoted by G(p), is a multigraph with the
same set of vertices as G, but containing only the arcs in p(Vy) (i.e., the set of arcs
that are mapped to by p). We say that a circuit C'is in p if it belongs to G(p).

Remark. In the rotor graph G(p), where p is a configuration of the rotors, we
observe that all non-sink vertices have an outdegree of exactly one. This means
that each vertex can belong to at most one cycle in G(p).

Previous remark will be relevant when we will characterize cycle push opera-
tions.

Definition allows us to keep track of the position of the different particles
on the graph.

Definition 2.1.12 (Particle Configuration). A particle configuration of a rotor
graph G is a mapping o from V to Z. The set of all particle configurations on
rotor graph G is denoted by P(G).

We interpret o(v) as the number of particles on v for all v € V.

22

(a) Rotor configuration p depicted in red on a (b) Graph induced by p denoted by G(p)
graph G.

Figure 2.6: Exemple of a graph induced by a rotor configuration.

Observe that if some v € V exists, such that o(v) < 0, vertex v has a deficit
of particles. In a context closely related to the Dollar Game (see Chapter (1)),
particles may be interpreted as units of money and so vertices such that o(v) < 0
are vertices in debt.

We denote by 0]y the particle configuration such that 0|y (v) = 0 for all
vertices v € V.

Remark (Particle configurations representation). Note that for the remaining
of this document, particle configurations will be depicted on Figures by numbers
on the different vertices.

Definition 2.1.13 (Degree of Particle Configuration). Let G be a rotor graph and
o be a particle configuration on G. We define the degree of o denoted |o| as the
sum of the number of particles on all vertices of V: || = >_, oy o(v).

Figure 2.7: The particle configuration represented on this graph has de-
gree —2.

Definition 2.1.14 (Rotor-particle configuration). Let G be a rotor graph. Arotor-
particle configuration on G is a pair (p, o) where p is a rotor configuration on G
and o is a particle configuration on G. We denote by RP(G) the set of all rotor
particle configurations on G, which is equal to the Cartesian product R(G) x P(QG).

In other words, a rotor-particle configuration specifies the position on the graph
of both the rotors and the particles.

23

Figure 2.8: Rotor particle configuration on a graph with the rotor con-
figuration depicted by the arcs drawn in red, and the particle
configuration depicted by the numbers written on vertices.

2.1.1.2 Routing Operators

Let us define two mappings on R(G) with v € Vj:

Definition 2.1.15 (Turn operators). The mapping turn,’ : R(G) — R(G) is
defined by

turn; (p) = p

/

where o' is equal to p except for v where p'(v) = 6,(p(v)). We naturally denote
by turn,, the inverse operator:

turn, : R(G) — R(G)

defined by
turn; (p) =
where p' is equal to p except for v where p'(v) = 6, (p(v)).

As the turn operations commute, given W a subset of Vj, we define by
turnf; (p) the action of applying operation turn®(p) for all v € W with k €
{4, —}. Note that in order to simplify the notations we denote by p™ (resp., p~)
the rotor configuration turn‘t0 (p) (resp., turny, (p)).

To simplify notation, we introduce an operation that applies the turn operation
to a rotor-particle configuration. For a given rotor-particle configuration (p, o) and
a vertex v, we define:

turn} (p,0) = (turn (p), o)

turn; (p, o) = (turn; (p), o)

In other words, applying turn; (resp., turn;) to a rotor-particle configuration
amounts to applying turn, (resp., turn;,) to the rotor configuration while leaving
the particle configuration unchanged. Figure shows an example of a turn
operation.

Let us define two mappings on RP(G) where v is a vertex of Vj:

24

© ®)
©))

@) It_sé lr)ezeaggs. ?}EZrc;g?cﬂf:(:itéa:edsg);t:sdotéy_ (b) The req rotor configgration is+obtained by
tained from 6., is { (o, u1), (uo, u2)}. processing the operation: turny, (p).

Figure 2.9: Example of a turn operation.

Definition 2.1.146 (Move Operators). The mapping move, : RP(G) — RP(G)
is defined by

move, (p,0) = (p, o)

where o’ is defined as follows. We have o’ (v) = o(v) — 1 and o'(h(p(v))) =
a(h(p(v))+ 1. For all other vertices w € V' \ {v, h(p(v))}, we have o' (w) = o(w).

We naturally define the inverse operation move, : RP(G) — RP(G) by

move; (p,) = (p,)

This mapping is defined in the same way as move;", but with the roles of v and
h(p(v)) reversed. Specifically, o' (v) = o(v)+1and o’ (h(p(v))) = o(h(p(v))) —1.
For all other vertices w € V '\ {v, h(p(v))}, we have o' (w) = o(w).

Remark. In the previous definition, for any v € Vj, the operation move; leads to
an increase in the value of o(h(p(v))) and a decrease in the value of o(v). Hence,
we can interpret it as the movement of a particle departing from v, following the
arc p(v), and arriving at vertex h(p(v)). Similarly, the move; operation decreases
the value of o(h(p(v))) and increases the value of o (v), suggesting the movement
of a particle leaving vertex h(p(v)) and landing on vertex v, travelling backwards
through the arc p(v). By drawing an analogy with physics and the concepts of mat-
ter and antimatter, we can envision that an antiparticle is departing from vertex
v along the arc p(v) and arriving at vertex h(p(v)).

As the move operations commute, given X a subset of Vj, we define by
move’. (p, o) the action of applying operation turn®(p, o) for all v € X with
ke {+ -}

By combining these mappings, we can now define the process of particle rout-
ing, which represents a single step of a rotor routing sequence that we will define
later.

Definition 2.1.17 (Positive routing of a particle). Let (p,o) be a rotor particle
configuration on G. The positive routing of a particle on v € V; is a mapping:

routing) : RP(G) — RP(G)

25

defined by

J’_

routing, (p, o) = turn; (move, (p, 0))

where turn;” and move," are the turn and move operations defined previously.

This operation can be viewed as the movement of a particle first traveling
through arc p(v), and then p(v) is replaced by 6,(p(v)). We say that v is positively
routed if we process a positive routing operation on v. This operation is illustrated
in Figure [2.10}

Routing Rule

In this document, we use the convention of first moving particles and then turning
rotors when defining routing operations. In the move and then turn version, the
rotor configuration indicates the upcoming movements of the particles as they
move towards the current rotor configuration and it is updated after their travel.
For example, given a rotor particle configuration (p, o), if there is a directed path
in G(p) from a vertex u to a vertex v, then by processing one single positive
routing on each vertex of the path, we obtain a particle configuration ¢’ such that
d'(v) = o)+ 1, o'(u) = o(u) — 1, and for all vertices w € Vp \ {u,v}, we
have ¢/(w) = o(w). This can be seen as a single particle traveling from u to v.
Therefore, the initial rotor configuration p indicates the path the particle is going
to follow when vertices are routed up to the point where the path cycles.

The rule where we move first and then turn is commonly used in the study of
the ARRIVAL reachability problem, which we will introduce in the next chapter. It
has also been utilized in the literature, such as [31] and [40].

In contrast, for the routing rule where the turning operation is performed before
the movement operation, the rotor configuration reflects the previous movements of
the particles. Given a rotor particle configuration (p, o), suppose there are vertices
v and w with a directed path between them in G(p*). Then, by processing a
single routing with this rule on each of these vertices, we obtain the rotor particle
configuration (p’, ') where there is a directed path between v and w in G(p'),
and such that o/(w) = o(w) 4+ 1, 0/(v) = o(v) — 1, and ¢’ = o for the rest of the
vertices. This can once again be seen as a single particle traveling from v to w.
However, in this case, it is p’ that indicates the path the particle has gone through
to reach vertex w.

The rule where we turn first and then move is often used in the investigation of
the algebraic properties of rotor-routing and the connections between rotor-routing
and Markov chains. Several previous studies have employed this rule, including [81],
[80], [50], and [41].

One can say that the rule where we move first and then turn represents the
future of the particle and the rule where we turn first and then move represents
the past of the particle.

26

Nevertheless, each positive routing with the rule where we move first and then
turn can be simulated by a positive routing where turn is applied before move up
to applying a turny, (p) operation beforehand and then applying a turn‘J;0 (p)) at
the end of the routing. Symmetrically, we obtain the reverse implication which
proves that these two rules are equivalent.

Definition 2.1.18 (Negative routing of a particle). Let (p, o) be a rotor-particle
configuration on G. The negative routing of a particle on v € Vj is the reverse
mapping of a positive routing:

routing, : RP(G) — RP(G)

such that
routing, (p,0) = move, (turn, (p, o))

where turn, and move, are the turn and move operations defined previously.

Our definition of negative routing ensures that, starting from the rotor-particle
configuration (p, o), the following identity holds:

routing, (routing; (p, o)) = routing; (routing (p,0)) = (p, o).

This operation can be represented as replacing p(v) with 6,71 (p(v)), followed by
the particle moving backwards (and the antiparticle moving forward) from h(p/(v))
to v. We say that v is negatively routed if we process a negative routing operation
on v. This operation is illustrated in

Similarly to the positive routing case, a sequence of negative routings along
a directed path of G(p~) can be interpreted as the trajectory of an antiparticle
moving along this path, given a rotor configuration p.

T S9

52

(a) Rotor particle configuration (b) Rotor particle configuration (c) Rotor particle configuration
(p,0). (p’,o’) obtained from op- (p, o) obtained from opera-
eration routing;f, (p, o). tion routing,_ (o', o").

Figure 2.10: The sink-vertices are s; and s;. The red arcs rep-
resent the current rotor configuration. The rotor
orders on the different vertices are anticlockwise, i.e.,
the sequence obtained from 6,, is {(uou2)(uo,u1)}
from 6., is {(ui,uo)(u1,u2)(u,$1)r and from 6,, is
{(ug,u1),(u2,u0),(u2,52)}.

27

Definition 2.1.19 (Rotor Routing Sequence). A rotor routing sequence is a (fi-
nite or infinite) sequence of rotor particle configurations (p;,0;) € RP(G) such
that for any i > 0, there exists a sign s; (- or +) and a vertex v; € V satisfying
(pi+1,0i+1) = routingy (p;, 0;).

This definition allows the presence of both positive and negative routings in
the same routing sequence.

We say that r is a routing sequence from (p,0) to (p',0’) if r is a finite
sequence and its first and last elements are (p,o) and (p/,0’), respectively. We
also use the terms positive routing sequence and negative routing sequence to
describe a routing sequence that consists entirely of positive or negative routings,
respectively. Following lemma is a generalization of Lemma 3.9 in [50] to routing
sequences with both positive and negative routing operations.

Lemma 2.1.20 (Commutativity of routing operations). All positive and negative
routing operations commute.

Proof. When considering the operators routing,! and routing;?, we can see
that for vertices that are not in {v;, v2}, these operators act on different ver-
tices, so they clearly commute. However, for vertices thatarein {v;, v }, these
operators either have the same sign or are inverse operators, and thus they
also commute. O

Thus, by commutativity, given a subset of vertices X C 1} and a rotor par-
ticle configuration (p, o), we define operation routings (p,o) as the action of
proceeding routing’ (p, o) for all v € X and s being the sign of the routing.

Commutativity of routing operations is illustrated in Figure[2.11

In the case of strongly connected graphs, not only routing operations commute
but they can be simulated by one another.

Lemma 2.1.21 (Negative routings can be simulated by positive routings and
vice versa). Given a graph G such that Sy = 0 and G is strongly connected,
given two rotor particle configurations (p, o) and (o', ") on G such that there is a
routing sequence from (p, o) to (p', o’), there exists a positive routing sequence (a
routing sequence with only positive routings) from (p, o) to (o', o’) and a negative
routing sequence (a routing sequence with only negative routings) from (p, o) to

(p',a").

Proof. Assume that there exists a routing sequence r from (p, o) to (p/, o).
Then, it suffices to show that any negative routing in » can be achieved
by performing multiple positive routings, and any positive routing in r can be
achieved by performing multiple negative routings.
We can specify a negative routing at vertex v in r that transforms the rotor
particle configuration (p;, 0;) into rotor particle configuration (p;+1,0;+1) by
the following:

28

Vo U1 V2

O—()—)

(ﬂo,Uo)

routing, (P(V wingvl (o, o0)

O~
P1,01

routing;, (p1, 1) routing, (s}, o)

Figure 2.11: Commutativity of routing operations. Changing the order
of routingjﬂ and routing, in the routing sequence does
not change the resulting rotor particle configuration.

c oir1(v) =0i(v) + 1
* pir1(v) =0, (pi(v))
* oir1(pit1(v)) = 0i(pi+1(v)) — 1

We construct a positive routing sequence from (p;, ;) to (pi+1,0i+1) as
follows. First we proceed exactly p(w)-|A™ (w)]| positive routings on all vertices
w except v, with p being the reduced period vector of G. Then we proceed
p(v)-| AT (v)|—1 positive routings at v. After this sequence of positive routings,
we have p;(w) = pi+1(w) and o;41(w) = o(w) for all w # v, and p;+1(v) =
0, (pi(v)) and g;41(v) = 0;(v) + 1. Therefore, we have constructed a positive
routing sequence from (p;, 0;) to (pi+1,0i+1) which shows that any negative
routing at v can be achieved by performing multiple negative routings.

The case of a positive routing is similar, we construct the exact same se-
guence that for the negative case but where all routings are negative instead
of positive. O

Rotor Particle Equivalence

Definition 2.1.22 (Rotor Particle Equivalence). Two rotor particle configurations
(p,o)and (p',o’) are said to be equivalent if there exists a routing sequence from
(p,o) to (p/,0'). We note (p,o) ~ (p/,).

29

Definition [2.1.22]satisfies reflexivity, symmetry, and transitivity properties. There-
fore, the relation ~ is an equivalence relation on RP(G).

We denote the fact that r is a routing sequence from (p,o) to (p’,0’) by
(p,0) ~ (¢, 0").

In the next chapter, our primary focus will be the study of reachability problems.
However, it is important to mention that determining whether two rotor particle
configurations are equivalent is commonly referred to as linear equivalence, drawing
an analogy with this relation. The term linear equivalence was introduced in [80].

2.2 . Routing Vector

In this subsection, we present the concept of a routing vector, which serves
as an alternative representation of a routing sequence. The routing vector offers
an alternative to the flow, which is a commonly used concept in the literature
(e.g., [31, 40, 77]), particularly for defining the complexity class associated with
the ARRIVAL problem (which we will discuss in Section (3).

Definition 2.2.1 (Routing vector (introduced in [81]). Arouting vector R defined
on V' is a function from V to 7.

A routing sequence r from a rotor particle configuration (p, o) to (p/, ') nat-
urally gives rise to a routing vector R associated with r. The routing vector R is a
mapping from each vertex to the difference between the number of positive rout-
ings and the number of negative routings it undergoes in r. This routing vector is
also referred to as the induced routing vector of . As an example, given a routing
sequence r from (p,o) to some (p/,0’) and given that the sequence of vertices
of V routed in 7 is vg,vf,vg,vg,vf,vg, with "+" corresponding to a positive
routing and "—" to a negative routing. Since the routing vector associates to each
vertex the difference between the number of positive and negative routings, then
the induced routing vector R of r is such that R(vg) =2, R(v1) = 0, R(v2) = —2
and for any other vertex v; of V, R(v;) = 0.

According to Lemma [2.1.20] there can be multiple routing sequences that
correspond to a single routing vector. However, despite the different routing se-
quences, they all result in the same rotor particle configuration. This observation
is summarized in the following lemma.

Lemma 2.2.2. Given a particle configuration (p,o) and given two routing se-
quences (p,o) ~ (p1,01) and (p,o) = (p2,02) such that v and ro have the
same induced routing vector, then we have (p1,01) = (p2, 02).

We give an example of computation of the ending rotor particle configuration

given that the routing sequence applied has routing vector R to illustrate this
lemma.

30

Let R be the induced routing vector of 71 and r5. The rotor particle configu-
ration obtained by applying R to (p, o) is unique. Consider a vertex v € V. Let
S(R1)(v) be the sequence of vertices such that if R(v) > 0 (resp., R(v) < 0),
S(R1)(v) = h(p(v)), h(0u(p(v)), A(O2(p(v)), .., 05" " (p(v)) (vesp., S(R1)(v) =
h(p(v)), h(03(p(v)), R(072(p(v)), . .., 05 T (p(v))). This is the sequence of
vertices that appears at the head of p(v) while proceeding R(v) routings at wv.
Let |S(R1)(v)|w be the number of times vertex w appears in S(R1)(v). The ro-
tor configuration py,; obtained after proceeding R(v) positive (resp., negative if
R(v) < 0) routings at v is such that pg,(v) = Hf(v)_l(p(v)) and for any other
vertex the rotor configuration remains unchanged. The particle configuration oy,
obtained after proceedings those routings is such that o,y = o(v) — Ri(v), for all
w € I'"(v) if R(v) > 0, we have 0y,) (w) = o(w) +|S(R1)(v)]w and for any other
vertex, the particle configuration remains unchanged. Next, repeat the process for
all vertices such that R(v) # 0 to obtain the configuration (p1,01).

We say that R is a routing vector from (p, o) to (p1,01). We denote the fact
that R is a routing vector from (p, o) to (p1,01) by (p,0) iy (p1,01).

Given two rotor particle configurations (p, o), (p/,0’), the question of deter-
mining whether there exists a routing vector R such that (p, o) R (p', ") will be
adressed later in this document. This is what is called Linear Equivalence in [80].

2.2.1 . Reduced routing sequence and routing vector

Given two rotor particle configurations (p, o) and (p’,0’), we are aware that
there might exist an infinite number of routing sequences r such that (p,o) ~
(p',0’). However, for convenience, it is preferable to focus on routing sequences
of the following form.

Definition 2.2.3 (Reduced routing sequence). A reduced routing sequence,
associated with a routing vector R, is a routing sequence where each routed vertex
is either only positively routed or only negatively routed, and the induced routing
vector of the sequence is equal to R.

Remark. Given a reduced routing sequence r, the routing vector of r is exactly
the number of times each vertex is routed in r, signed negatively if the routings are
negative.

Routing vectors from (p, o) to (p, o) can be represented in the form k,, - | AT (v)|
for all v € V, where k, is an integer. It is worth noting that for any given pe-
riod vector of a graph G, denoted by p, we have p - Lg = 0. Consequently,
0 =0 +p- Lg, which implies that by routing each vertex v exactly p(v) - | AT (v)|
times, we obtain a routing vector from (p, o) to (p, o). This is illustrated in Fig-
ure [2.12] Therefore, a period vector induces a routing vector that does not alter
the rotor particle configuration, thus justifying the term period vector.

31

Figure 2.12: Example of a routing vector induced by a period vector. The
vector p = (3 1 2) is a period vector of this graph. Let
(p,o) be the rotor particle configuration depicted on the
left. Let R, = (A :3,B :2: C : 4) obtained by computing

p(v) - | AT (v)| for each vertex v € V. Then (p, o) i (p,0).

Let R be a routing vector where R(v) = | AT (v)| and for all other vertices w,
we have R(w) = 0. It is worth mentioning that given two particle configurations
o and ¢/, the two following propositions are equivalent:

* For all rotor configuration p, (p, o) R (p,o’)
co'=0+1,-Lg

where 1, is a vector of size |V| with a value of 1 for vertex v and a value of 0 for
any other vertex in V.

Proposition 2.2.4. Let G be a stopping rotor graph. Given two rotor particle
configurations (p, o) and (p', o’) on G, if two routing vectors Ry and Ry are such

that (p, o) < (p',0") and (p, o) B (p',0), then Ry = Ro.

Proof. Since the only possible period vector on a stopping graph is 0fy-|, then,
any routing vector from (p, o) to itself equals 0|y, thus, Ry — Ra = 0|/ which
implies that Ry = Ra. O

However, in the case where the graph is strongly connected, it is easy to see that
there may exist two rotor particle configurations (p, o) and (p/, o’) such that there
is an infinite number of routing vectors from (p, o) to (p/, 0’) (see Figure [2.13)).

Figure 2.13: Let (p, o) be any rotor particle configuration on this graph
with two vertices, any routing vector R of the form (A :
k,B : k) with k € Z is a routing vector from (p, o) to it-
self.

Now we define one particular routing vector that is representative of the routing
sequences between two rotor particle configurations.

Definition 2.2.5 (Reduced Routing Vector). Let R be a routing vector between
two rotor particle configurations on G. The routing vector R is considered reduced

32

if for any strongly connected component (sink component) C; of G with primitive
period vector pc,, R(C;) > 0 and for all vertices v € C; we have R(v) < pc;(v) -
[AF(v)].

Definition implies that on a stopping rotor graph, any positive routing
vector is reduced since sinks cannot be routed and the only period vector of a sink
component containing only a single sink is 0.

Remark. Since any graph can be decomposed in strongly connected components
(sink components) and stopping graphs (transient components), hence, it suffices
to show the existence and unicity of reduced routing vector of strongly connected
graphs and stopping graphs to prove the existence and unicity of the reduced rout-
ing vector of a general digraph.

Proposition 2.2.6 (Existence and Unicity of Reduced Routing Vector). Let (p, o)
and (p', o’) be two rotor particle configurations.

* On a strongly connected graph, if (p,o) ~ (p',c’), then there exists a re-

duced routing vector R such that (p, o) g (p',0)
* On a stopping graph if (p, o) £ (p',0") with R > 0, then R is reduced

* If Ry and Rs are two reduced routing vectors from (p, o) to (p',c’), then
R =Ry

Proof. Inthe case where G is a stopping graph, Proposition[2.2.4]states that if
(p,o) ~ (p', '), then there exists a unique routing vector from (p, o) to (p/, ')
which proves unicity when combined with our previous remark on stopping
graphs.

If G is strongly connected and (p, o) ~ (p',¢’), Lemmalf.1.21tells us that
there exists a positive routing vector R such that (p, o) g (p',0"). In this case,
two scenarios are possible.

First, if R is reduced, then we already have a reduced routing vector from
(p,o) to (p',0").

Second, if there exists a positive period vector p (there always exists one
since the primitive period vector of a strongly connected graph is strictly pos-
itive) such that for all v, R(v) > p(v) - AT (v)|, we can define a new routing
vector R with values R'(v) = R(v) —p(v) - | A* (v)]. This new routing vector R’
satisfies (p, o) B (p',0’), and we can repeat the process by considering R’ in-
stead of R. This process can be repeated iteratively until we obtain a reduced
routing vector from (p, o) to (o', o’).

Inthe general case, assume that R; and R, are two reduced routing vector
from (p, o) to (p’, o’). Since the vector (R (v) — R2(v)) is a routing vector from
(p, o) toitself, then (Ri(v) — Ra(v))/| At (v)| is a period vector ¢ of G.

33

From Proposition [2.1.5] we have that ¢ = k * p with k € Z and p being the
primitive period vector of G. Since p is positive, we have that ¢ is either all
positive or all negative, which means that either R;(v) > Ra(v) forallv € V
or Ri(v) < Ry(v) forallv e V.

Thus, either we have that for allv € V, Ry (v) > [t(v)]| * |AT(v)| + Ra(v) or
we have that for all v € V, Ra(v) > |t(v)| x | AT (v)]| + Ri1(v). This implies that
either Ry or Ry is not reduced which is a contradiction.

O

2.3 . Cycle Pushes and Equivalence Classes of Rotor Configu-
rations

In this section, we define an existing operation called cycle push on R(G),
which helps us create equivalence classes within R(G) and P(G). This operation
has been introduced to study the orientations of lattices in [73]. It is worth noting
that in this context, we refer to a "cycle" as a "circuit" in graph theory, but we will
stick with the term cycle push to maintain consistency with the existing literature
(see [50]).

Definition 2.3.1 (Positive Cycle Push). Given a circuit C in G(p) with p being a
rotor configuration, a positive cycle push on C'is the operation turng(p) which
transforms p into p’ such that p'(v;) = 6,,(p(v;)) for all vertices v; € C, and
p'(v) = p(v) for all vertices v ¢ C.

This operation is illustrated in Figure [2.14

Uy

Uz

(a) Rotor configuration p. (b) Rotor configuration p’ obtained from

a positive cycle push operation on
the circuit of G(p) formed by arcs
{(wo,u2)(u2,u1)(u1,uo0)}

Figure 2.14: Positive cycle push operation on the circuit ug, uy, us. There
is a single rotor order possible on this graph since each ver-
tex has outdegree 2.

The positive cycle push operation can also be understood as a specific routing
sequence where a single particle is routed along the vertices of circuit C' up to its

34

initial position. This operation "opens" the previously existing circuit in G(p), and
is essentially an accelerated version of the routing sequence where each vertex of
C' is routed once.

In the same manner, we also define the reverse operation.

Definition 2.3.2 (Negative Cycle Push). Let p be a rotor configuration. Consider
a circuit C in G(p~) (recall that p~ is the rotor configuration obtained by the
operation turny, (p)). We define the negative cycle push operation on C' as the
operation turng(p).

A negative cycle push transforms p into p’ such that p'(v;) = Hil(p(vi)) for
all v; € C, and p'(v) = p(v) for all v ¢ C.

The negative cycle push operation can also be understood as a specific routing
sequence where a single antiparticle is routed along the vertices of circuit C of
G(p~) up to its initial position. This operation "recloses" the previously opened
circuit in G(p).

We say that a vertex v is cycle pushed if v belongs to a circuit C' for which
we apply a cycle push operation (positive or negative).

Note that contrary to a routing operation, a cycle push operation needs some
prerequisites as the circuit on which we apply a cycle push operation must belong
to G(p) or G(p™).

2.3.1 . Rotor configuration equivalence classes
Rotor configuration equivalence classes are defined in [41] by using Sandpiles
equivalence classes but we characterize them in the following proposition using
only rotor configurations.

Proposition 2.3.3. Given a rotor configuration py € R(G) and a particle config-
uration o € P(G), the set R of rotor configurations py such that (py, o) ~ (p1,0)
is independent of o.

The set R is called the rotor class of pg.

Proof. Suppose that p’ belongs to the rotor class of p for a given particle con-
figuration o. This means that there exists a routing sequence r from (p, o) to
(', o). Now, we show that p’ belongs to the rotor class of p for a given parti-

cle configuration ¢’. Let, 0~ = o/ — 0. Then, (p,0’ —o7) ~ (p/,0' — 7). So
as adding o~ does not change the existence of such a routing sequence, we
have our result. O

To keep the formalism used for rotor particle configurations, if two rotor config-
urations p and p’ belong to the same rotor class, then for any particle configuration
o, (p,o) ~ (p',0). Thus, we say that p and p are equivalent and we note p ~ p'.

Proposition [2.3.3| satisfies the reflexivity, symmetry, and transitivity properties.
Therefore, the relation ~ is an equivalence relation on R(G). Furthermore, it
implies the following corollary.

35

Corollary 2.3.4. Let pg € R(G) and o,0’ € P(G). Assume there exist two rotor
configurations py and ps such that (pg, o) ~ (p1,0’) and (po, o) ~ (p2,0’). Then

p1 ~ P2.

Proof. Since (pg,o) ~ (p1,0'), (po,0) ~ (p2,0’) and "~" is an equivalence
relation, we have (p1,0’) ~ (p2,0’) which proves that p; ~ ps. O

Let us give a characterization of this equivalence relation.

Theorem 2.3.5. Given two rotor configurations p and o/, p ~ p" if and only if o/
can be obtained from p by a sequence of cycle pushes.

Proof. First, note that if there exists a cycle push sequence from p to p’ then
we have p ~ p'. Indeed, cycle push operations can be obtained by routing
particles or antiparticles up to their original positions which means that for
any o € P(G) there is a routing sequence from (p, o) to (o, o). However, the
converse needs to be proven. To do this, we assume that p and p’ belong to
the same rotor class, and we aim to show that a cycle push sequence exists
from ptop.

Given O]y € P(G), let R be a reduced routing vector from (p,0|y) to
(¢',0]y). By the fact that R is reduced, each vertex only does either positive
or negative routings. This means that each time a vertex is positively (resp.,
negatively) routed in R, it has to receive a (resp., give) particle from (resp., to)
one of its neighbours because the ending particle configuration is still 0]y;.
Thus, we define three sets of vertices as follows, Rt = {v € 1, R(v) > 0},
R~ = {v € Vb, R(v) < 0} and the set of vertices Ry = {v € Vj, R(v) = 0}.
Observe first that the total number of particles on R~ cannot decrease when
applying R. We also have that a particle cannot be routed from a vertex of
R* to a vertex of R~ when applying R because if it was, the total number of
particles on vertices of R~ would be more than zero at the end of the routing
which contradicts the fact that the ending configuration is (o, 0|y;). This gives
us that, if RT # (), the graph G = (R™, p(R™)) is well defined because for all
v € RT we have h(p(v)) € R*. Thus, as all vertices have outdegree exactly
one in G, there necessarily is a circuit C'in G*. And we can proceed a cycle
push on C. Now, we proceed by induction, remove one positive routing in R
for each vertex of C' and repeat the process with this new routing vector until
RT is empty.

Equivalently we can do the same for R~, and in that case we show that
there necessarily is a circuitin G- = (R~,p~(R™)), and we proceed induc-
tively afterwards. O

Characterization of rotor classes of a stopping graph

This subsection provides a detailed examination of the structure of rotor classes on
stopping rotor graphs. By maximal positive (resp., negative) cycle push sequence,

36

we mean a sequence long enough such that there are no more positive (resp.,
negative) cycle push doable when the sequence terminates.

Lemma 2.3.6. If G is stopping, any maximal positive (or negative) cycle push
sequence is finite.

Proof. Given a rotor configuration p on a stopping graph G, all sink neigh-
bours can only be positively cycle pushed a finite number of times before their
only outgoing arc in the graph induced by the rotor configuration is directed
towards the sink, rendering them unable to be cycle pushed any further. By
connectivity, we can conclude that all vertices can only be cycle pushed a finite
number of times. The argument is similar for a negative cycle push sequence
but we consider the graph G(p~) instead of G. O

We now define the concept of recurrent rotor configuration on a stopping rotor
graph. This idea has already been introduced in the literature (see [81]), and it
refers to rotor configurations p € R(G) that satisfy the condition G(p™) is acyclic
when G is stopping.

Proposition 2.3.7 (Acyclic Configuration). Given a stopping rotor graph G, each
rotor class contains exactly one acyclic configuration p and one configuration such
that G(p~) is acyclic.

Proof. Let G~ be the rotor graph with same vertices and arcs than G but with
rotor order 1. Given a rotor class, by Lemma there always exists an
acyclic rotor configuration within this class since any maximal positive cycle
push sequence isfinite. Let p be a rotor configuration on G. Any negative cycle
push on a set of vertices C' in G such that C'is a circuit in G(p~) can also be
seen as a positive cycle push on C'in G~ (p~). This is illustrated in Figure
And, since any maximal positive cycle push sequence is finite, the sequence
of positive cycle pushes on G~ necessarily ends, which proves the existence
of p.

Proof of unicity is presented in Section [2.4] since it is a more convenient
framework. O

Note that acyclic configurations are the directed spanning forests on G rooted
on the sink vertices. Now, we state the following Theorem to compute the number
of rotor classes on a graph G.

Theorem 2.3.8 (Theorem 4.1in [70]). The number of rotor classes on a stopping
rotor graph G is the determinant of the submatrix of the Laplacian matrix of G
obtained by removing all rows and columns corresponding to vertices of S.

The diagram of Figure [2.16] summarizes the construction of rotor classes on a
stopping graph G.

37

negative

@ cycle push O

with order 6

rotor configuration rotor configuration

ptonG ponG

turn=(p'") turn=(p)

positive
O cycle push O

with order 1

rotor configuration rotor configuration
ponG™ p-onG~

Figure 2.15: lllustration that a negative cycle push on G can be simu-
lated by a positive cycle push on G~.

cpt p— \
/ \ r\ptor order
| 6on G

[
[
‘ oo Pac
\

S

)\

turn | turn-

.

s — V\CN

, ﬁotor order

\ p:w °°* 0 /‘9—1 on G~
\ \ . ‘//

Figure 2.16: Each p; is a rotor configuration on G, each p} is a rotor
configuration on G~, each arc represents a positive cycle
push (denoted by "CP*"). By Lemma and Proposi-
tion Pac 1S the acyclic rotor configuration of the rotor
class depicted above. Then, by applying a turn™ on p,., we
obtain the unique configuration that cannot be negatively
cycle pushed in G~. Equivalently, py is the only configura-
tion that cannot be negatively cycle pushed in G since p/,..

is acyclic by Lemma and Proposition[2.3.7}

2.3.2 . Particle configuration class

38

Now that we have defined rotor classes, we present some properties on particle
configuration classes.

In this subsection, we introduce equivalence classes for particle configurations,
which are similar to the ones defined in [12]. In the literature, rotor classes are
typically defined in terms of particle configuration equivalence (see [41]), but we
approach it differently in this document.

Proposition 2.3.9 (Particle configuration equivalence). Let o € P(G). Given
p € R(G), the set Py of particle configuration ¢’ such that there is a routing
sequence from (p, o) to (p,d’) is independent of p.

The set P is called the particle class of o.

Proof. Suppose that ¢’ belongs to the particle class of o for a given config-
uration p. This means that there exists a routing sequence r from (p, o) to
(p,o’). We want to show that ¢’ also belongs to the particle class of o for an-
other configuration p'. Since (p,o) ~ (p,o’), we have that the routing vector
R of r is such that R(v) = k, - |[AT(v)| for all v € V, with k, > 0. In this
sequence, each vertex that is routed gives k particles to each of its outgoing
neighbours. This does not depend on the initial rotor configuration, which
means that (p/,0) ~ (p/,o").

O

Previous definition satisfies the properties of reflexivity, symmetry, and transi-
tivity. Therefore it is an equivalence relation on P(G).

Observe that this definition is analogous to the one of rotor classes, with the
difference that here we are changing the particle configuration o instead of the
rotor configuration p. Thus, we use the notation o ~ ¢’ to denote that o and o’
are in the same equivalence class, and we say that they are equivalent.

Remark. Particle configurations within a given equivalence class are exactly the
particle configurations that can be obtained from one another by a reduced rout-
ing sequence where each vertex appearing in the sequence is routed a number of
times equal to a multiple of its outdegree.

Hence, we naturally define two new operations on P(G) called positive (resp.,
negative) firing that works as follows:

The action of proceeding a positive (resp., negative) firing on a vertex v consists
in performing | AT (v)| positive (resp., negative) routings on v. We denote such
an operation by firing’ with s being the sign of the firing (- or +). Although
this notion already exists for positive routings (e.g. [14]), we extend it to negative
routings as well. It should be noted that firing operations do not alter the rotor
configuration, as shown in Figure 2.17]

39

© @@@

© © @ W

(a) Rotor particle configuration (p, o). (b) Rotor particle configuration (p’, o).

Figure 2.17: Rotor particle configuration (p’, o’) is obtained by proceed-
ing a firing operation on the central vertex from (p, o). One
can check that p = p'.

Definition 2.3.10. Afiring sequence is a sequence of rotor particle configuration
(pi, o) € RP(G) such that for any i > 0, there exists a sign s; (- or +) and a vertex

v; € Vg satisfying firing;' (pi, o) = (pi+1,0it1).

Naturally, we define a firing vector associated with a firing sequence f from
a rotor particle configuration (p,o) to (p,o’) by a function from Vj to Z that
associates with each vertex the number of times it is positively fired in f minus
the number of times it is negatively fired in f.

When we have two rotor particle configurations (p,o) and (p,c’), we may
wonder if there exists a firing sequence that can take us from (p,o) to (p,o’).
Proposition 8 of [52] provides an answer to this question, which we restate in our
context.

Lemma 2.3.11. Given a graph G, there exists a polynomial-time algorithm to
determine whether there exists a non-negative firing vector from a rotor particle
configuration (p, o) to another rotor particle configuration (p, o).

Note that the algorithm initially computes a firing vector, which may not be
non-negative. In the case where the graph is strongly connected, the primitive
period vector of G can be added multiple times until the firing vector becomes
non-negative. It is possible to compute a firing vector by checking whether g- Lo =
o’ —o has an integer solution, where L is the Laplacian matrix of G. A polynomial
time algorithm has been shown to exist for this task, as stated in [44], and it also
computes a solution if one exists.

Routing vector is a certificate

This section presents properties of routing vectors that will be utilized in Section
as a certification criterion for the complexity of various problems.

We will now prove that for a stopping graph, any routing sequence applied to a
rotor particle configuration (p, o) that leads to another rotor particle configuration
(p',0") with 0’|y, = oy, also satisfies o’'|g, = o]sg,-

40

A A

o «
(a) Particle configuration o (b) Particle configuration o’
-10 1 (91 g2 93) L= (1 0 1) - (0 2 O)

Figure 2.18: Computation of a non-negative firing vector between two
particle configurations o and ¢’ on a graph G. Matrix L is
the Laplacian matrix of G. By solving the equationing-L =
o’ — o in Z3, we obtain g = (0, 1,0).

Lemma 2.3.12. Given a rotor particle configuration (p,o) on a stopping graph
G, for any two rotor configurations p1 and ps such that (p,o) ~ (p1,0}) and
(p,0) ~ (p2,0%) with o' |y, = ob|v, we have of = o), and more specifically

o1lsy = 03lso-
More precisely, this means that o}|s, does not depend on the choice of p'.

Proof. Assume that the graph G only has one sink vertex. It is clear that if
o1lve = a3lv, then ols, = o3]s,-

If the graph has two or more sinks, this lemma can be restated as the fact
that it is impossible to transfer a particle from one sink sg to another sink s;
by a routing sequence that does not modify the particle configuration.

Consider the modified graph G’ obtained by merging the vertices sy and
s1 into a new sink vertex S. In this modified graph G’, any routing vector
that transfers a particle from sy to s; corresponds to a routing from a parti-
cle configuration ¢’ to itself. However, since G’ is a stopping graph, the only
period vector of G” is the zero vector 0}y,|. This implies that no particle can
be transferred between sy and s; in any routing sequence, which contradicts
the assumption that a particle has been transferred in the given routing se-
quence. O

2.4 . Positive Rotor Walk

41

A Positive Rotor walk is the routing sequence obtained by moving a single
particle (or antiparticle) along a path as in random walks. It was initially introduced
in the literature under this name (e.g., [75]) to draw an analogy with the concept
of a random walk. The notion of rotor walk simplifies our definitions and properties
in Chapter [3|and is the only type of routing sequence considered in Chapter [4]

2.4.1 . Basic definitions and properties
Definition 2.4.1 (Positive Rotor Walk). A positive routing sequence
r = (po,00), (p1,01),-- -, (pr, oK) iS a positive rotor walk if for any non negative
integeri < k—1, ifroutingji (pi,0i) = (pi+1,0i41) then routing;(pi(vi))(piﬂ, Oit1) =
(pit2,Tiy2).
We say that the rotor walk defined in the previous definition is a rotor walk at

vg since the first routing is at vertex vg. An example of such a routing sequence
is illustrated in Figure [2.19]

A B C D

Initial configuration @ @ @ @
A B C D

Configuration obtained by routing A @ @ @ @
A B C D

Configuration obtained by routing B @ @ @ @
A B C D

Configuration obtained by routing C' @ @ @ @

Figure 2.19: Example of a rotor walk at A where the vertices routed are
successively A, B, C.

This can be interpreted as the movement of a single particle. Equivalently we
define a negative rotor walk that is a negative routing sequence with the following

(Pi+1, 0i+1) =

property: if routing, (p;,0:) = (pit+1,0i+1) then routing;_+1(v_)
(pi+2,0it2).
Remark that a routing sequence can always be seen as a union of rotor walks.

Definition 2.4.2 (Path of a rotor walk). Let r = (po,00), (p1,01), .-, (pk, oK)

be a rotor walk at vy. The path of the rotor walk r is the sequence of vertices

Vg, V1, - - ., Uk_1 routed in r to which we add the vertex vy, such that vy, = pg_1(vk_1)
if v is positive and vy, = pi(vi—1) if 7 is negative.

A maximal rotor walk is a routing sequence obtained by moving a particle (or
antiparticle) until it reaches a sink if it is finite.

Definition 2.4.3 (Maximal Rotor Walk). A positive (resp., negative) rotor walk

r = (po,00), (p1,01), .., (pk, o) With path vy, v1, ..., vp_1 0N a stopping graph
is maximal if h(pg—1(vi—1)) (resp., h((pr)(vk—1))) is a sink. On a strongly con-
nected graph, a rotor walk is maximal if it is infinite in length.

42

Since rotor walk can be seen as the movement of a single particle (or antipar-
ticle), we have the following properties.

Proposition 2.4.4 (Rotor Walk covering). Given a strongly connected graph G,
any maximal rotor walk (positive or negative) is such that all vertices will be routed
an infinite number of times in such a rotor walk.

Proof. Since there are nosinks in the graph, itis possible to perform a positive
or negative routing at any vertex. Let I be the set of vertices that are routed
infinitely many times. Since the graph is strongly connected, there must exist
an arc in G with its tail in 7 and its head in V' \ 1. This arc will be visited an
infinite number of times in the rotor walk. This implies that there is at least
one vertexin V'\ I thatis visited an infinite number of times, which contradicts
the assumption that only vertices in I are visited infinitely often. Therefore,
all vertices are routed an infinite number of times in the rotor walk. O

This proposition implies the following corollary.
Corollary 2.4.5. If G is stopping, any positive (or negative) maximal rotor walk in
G is finite.
Proof. It is easy to see that the particle (or antiparticle) will necessarily reach

a sink vertex at some point which will end the rotor walk. O

From the fact that each vertex only has one outgoing arc in G(p), we have the
following proposition.

Proposition 2.4.6 (Unicity of Maximal rotor walk). Given two maximal rotor
walks r1 and ry at vy Starting from the same rotor particle configuration (p, o),
we have r1 = ro.

Now, we state a Lemma that we will use several times in Chapter 3]

Lemma 2.4.7 (Moving particles and Antiparticles). Given a rotor graph G, and
given a rotor particle configuration (p, o),

1. If G is strongly connected, for all vertex v € Vi and w € Vj, there exists
a positive (resp., negative) rotor walk at v from (p, o) to some (p',o’) such
that o' (w) = o(w) + 1 (resp., o’ (w) = o(w) — 1), ¢’ (v) = a(v) — 1 (resp.,
o'(v) = o(v) + 1) and for all vertex u € Vy \ {v, w} we have o’(u) = o(u)

2. If Glis stopping, for all vertices v € Vj, there exists a positive (resp., negative)
rotor walk at v from (p, o) to some (p', ') such that o’ (v) = o(v) —1 (resp.,
o'(v) = o(v) + 1) and for all vertices u € V; \ {v} we have o' (u) = o(u)

Second implications means that there exists a sink vertex that gains or loses a
particle in the process.

43

Proof. First we prove Implication (1). In the case of a sinkless strongly con-
nected graph, let u, w € Vp, we have by Lemma[z.4.4]that there exists a posi-
tive routing sequence from (p, o) to some (o', ¢’) such that o/ (w) = o(w) + 1,
o'(v) = o(v) — 1 and for all vertices u € ;) \ {v, w} we have ¢’(u) = o(u). But,
by Lemmal2.1.21} this also shows that there exists a negative routing sequence
from (p, o) to some (o, o’) such that ¢/(w) = o(w) — 1, ¢'(v) = o(v) + 1 and
for all vertices u € Vp \ {v, w} we have ¢/(u) = o(u).

Now we prove Implication (2). In the case of a stopping graph, by Proposi-
tion[2.4.4/we have that there exists a finite maximal positive rotor walk starting
from a routing at vertex v. Hence showing that there exists a positive routing
sequence from (p, o) to some (p’,¢’) such that ¢'(v) = o(v) — 1 and for all
vertices u € Vp \ {v} we have ¢'(u) = o(u). Equivalently, there exists a finite
maximal negative rotor walk starting from a routing at vertex v. Which proves
our last implication. O

This means that a particle or an antiparticle can be moved from any vertex of
Vo to any other vertex of V. In particular, any particle can be routed up to a sink
if the graph is stopping.

2.4.2 . Cycle pushing and Rotor Walks

Recall that, if there exists a positive (resp., negative) rotor walk r such that
(p,o) ~ (p',0") then for all vertex v routed in 7, p'~(v) (resp., p'(v)) is the last
outgoing arc a particle (resp., an antiparticle) has been routed through to leave v.

Inspired by [41], we define the loop-erased path of a rotor walk at vy.

Definition 2.4.8 (Loop-erased path of a rotor walk). The loop-erased path of
a maximal rotor walk r at vertex vy on a stopping graph is defined as follows. Let
p be the path of r. The loop-erased path is obtained by iteratively removing any
subsequence of vertices v;, vit1,...,v; in p where v; = vj, and replacing them
with a single occurrence of v;.

Proposition 2.4.9 (Cycle push loop-erased path conservation). Let p; and ps
be two rotor configurations on a stopping graph such that py ~ p2 and let o be
a particle configuration. For any two positive maximal rotor walks r1 and ro at
v € V respectively starting from rotor particle configurations (p1, o) and (p2, o),
the loop-erased path of r1 and ro are the same.

Proof. To prove the statement, let us consider the case where p, can be ob-
tained from p; by a single positive cycle push on a circuit C of G(p;). Studying
the case of positive cycle push is enough since if p, can be obtained from p;
by a single negative cycle push on a circuit C, then p; can be obtained from
p2 by a single positive cycle push on a circuit C and it suffices to exchange the
roles of p; and ps. Let p; and py be the paths of r; and r9, respectively. We
want to show that their loop-erased paths are equal. If p; does not contain

44

a vertex of C, then p; = py, which proves our statement. Now, let v, be the
first vertex of C' that appears in p;. Since C'is a circuit in G(p1), p1 contains
C, and when computing the loop-erased path of r1, the subsequence C of p;
will be replaced by v.. Note that the path of the rotor walk at v, that proceeds
a cycle push on C from (p1, 0) is exactly C. Hence, proceeding this cycle push
simply replaces C'in p; by v.. Since ps is the path of the maximal rotor walk
at vg where C has been positively cycle pushed, we have that the loop-erased
path of r; equals the loop-erased path of ry. This completes the proof. O

Proposition is illustrated in Figure [2.20]

C
C
A /B\> S
O—f——@ | 4 5
- D0
(a) Rotor particle configuration (p, o). N

(b) Let (p’, o) be the rotor particle configura-
tion obtained from (p, o) by applying a pos-

itive cycle push on the circuit { B, C}.

Figure 2.20: The path of the maximal rotor walk r; at A from (p, o) is
p1 = A, B,C, B, S and the path of the maximal rotor walk
ro at Afrom (p', o) is po = A, B, S. Since, the subsequence
B, C, B appears in py, the loop-erased path of r; is A, B, S
which is also the loop-erased path of r5.

Now, we prove the unicity of Proposition [2.3.7]

Proof. Note that for an acyclic rotor configuration p, the loop erased path of
any maximal rotor walk at a vertex v is exactly the directed path with source
vin G(p). Given a particle configuration ¢ on a stopping graph. Assume that
there are two distinct acyclic rotor configurations p; and p2 such that p; ~
p2, then, it should exist a vertex v € Vj such that the loop-erased path of a
maximal rotor walk at v from (p1, o) and (p2,) are different which contradicts
Proposition[2.4.9] By the fact that any negative cycle push on a set of vertices
C'in G such that C is a circuit in G(p~) can be simulated by a positive cycle
push on C'in G~ (p~), we have the same argument on the graph G~, hence
proving that there is an unique rotor configuration p in each rotor class such
that G(p~) is acyclic. O

2.5 . Legality

This section is dedicated to introducing the concept of legality within the con-
text of routing sequences. Legality imposes certain restrictions on the admissible

45

routing sequences that can be performed starting from a given rotor particle con-
figuration. By imposing these constraints, we aim to explore the properties and
behaviors of routing sequences that adhere to specific rules.

Furthermore, this section presents one of the main results derived from [81],
which serves as a key motivation for studying the complexity of various problems
in Chapter 3] This result establishes a significant connection between the rotor-
routing reachability problem and the concept of legality.

2.5.1 . Definitions and fundamental properties

We state first the definitions and properties associated with the legality con-
straint.

Definition 2.5.1 (Legal Routing Sequence). A finite or infinite routing sequence
7 is said to be legal if for any two successive rotor particle configurations (p;, o;)
and (piy1,0i+1) of r, there exists a vertex v; € Vj such that o;(v;) > 0 and such

that routing;) (pi,0i) = (piy1,0i41)-

In order to simplify our notations for the rest of this document, we denote the
fact that there exists a legal routing sequence from a rotor particle configuration
(p, o) to some (p',0’) by (p,o) — (p',0'). We also denote by (p,0) = (p,0")
the fact that r is a legal routing sequence from (p, o) to (p’,c’). So naturally we

denote by (p, o) RN (p',0’) the fact that R is a legal routing vector from (p, o) to
(0, 0").

A routing vector is said to be legal if there exists a legal routing sequence with
this routing vector.

Definition 2.5.2 (Maximal Legal Routing Sequence). A maximal legal routing
sequence is a legal routing sequence such that if it is finite, then there is no vertex
v € Vo with o’(v) > 0, where o’ is the particle configuration at the end of the
routing sequence.

Lemma 2.5.3 (Rotor Covering). Given an infinite legal routing sequence, if the
graph is strongly connected, all vertices will be routed an infinite number of times.

Proof. Let r be an infinite legal routing sequence, and let V, be the set of ver-
tices in 14 that are routed infinitely many times in r. We want to show that
V. = Vb. Suppose for contradiction that V,. # ;. Since the graph is strongly
connected, there exists a vertex v € V; \ V, that has an incoming arc from
a vertex u € V,. Since u is routed infinitely many times, u sends a particle
to v infinitely many times. However, the number of particles on vertices of
V. is finite. Thus, at some point, there will not be any more particle on ver-
tices of V. and then there are no more routings that are legal on any vertex of
V., which contradicts the assumption that vertices of V, are routed infinitely
many times. Therefore, we must have V. = ;. O

46

The introduction of the legality notion implies that it may not be possible to
have an infinite legal routing sequence starting from a given rotor particle config-
uration (p, o). And in that case, we state a few natural questions:

* Does there exist a finite maximal legal routing sequence starting from a rotor-
particle configuration (p,o) on a given graph G 7 This can be interpreted
as asking if all particles reaches a sink vertex or a vertex that has a negative
amount of particles on it.

* Given (p,o) and (p/, '), does there exist a legal routing from (p, o) to some
(p',0')?

It is worth noting that the same observation can be made for firing sequences.
In fact, it was shown in [16] that from any given starting rotor particle configuration,
either every maximal legal firing sequence can be continued indefinitely or every
maximal legal firing sequence terminates after finitely many steps. By imposing the
legality condition on firing sequences, we restrict the set of possible firing operations
to only those that can be performed on a vertex v from a particle configuration
o if and only if o(v) > |AT(v)]. This result naturally extends to legal routing
sequence. Thus, to answer our first question, it suffices to determine if there exists
a legal routing sequence from (p,) to some (o', o’) with ¢’|y, < 01Vl It appears
that this problem depends on the second question which will be our main focus in
this section.

The legal routing sequence is a more general concept than the well-known rotor
walk model mostly used in the literature (e.g., [19, |31, |41} 56]) since it allows for
negative values in ¢ on some vertices.

Now, let us turn our attention to the differences in commutativity properties
when considering legal routings. It is important to note that the general com-
mutativity property we discussed earlier may not hold when legality constraints
are imposed on the routings. This is visually illustrated in Figure 2.21] where the
commutativity of routings is altered under the legality constraint.

2.5.2 . Orbits of legal routing

In this section, we investigate the asymptotic behavior of legal routing in a
general graph. The main result, Theorem [2.5.11] establishes that if every vertex
with a positive number of particles is routed infinitely often, then, after an initial
transient phase, the particle configuration can be decomposed into a baseline con-
figuration (a static particle configuration on the vertices such that no vertex can
be legally routed) that is independent of the routing order, along with particles
that are freely routed on the sink components of the graph (see Figure for
an illustration). This implies well known results in the literature on the finitness
of routing sequences. More specifically, all maximal routing sequences are finite or
they are all infinite (Corollary [2.5.6). Furthermore, it also implies the commuta-
tivity property of routing sequences which is that in the case where they are finite,
the final particle configuration is unique (Corollary 2.5.7)).

47

routingj[) (po, 00)

U1 ()
O—()
p1:U1)

O

routingvt (p1,01)

Figure 2.21: Example of two routing sequences with the same routing
vector: both vy and v; are positively routed once. We see
that the routing sequence is legal if and only if we proceed
the routing at vy first.

In what follows, all routing sequences we consider are legal.
Let G be a general rotor graph, and (po,00) be an arbitrary rotor particle
configuration. We denote

S(,O(]aUO) = {(P, U) : (pOaUO) — (P, J)}

which contains (pg, 0p), and

SOO(p7 U) = ﬂ S(plva/)

(p's0")€S(p,0)
Lemma 2.5.4. Suppose that (po,c0) — (p,0); then S (po, 00) C Seo(p, o).

Proof. If (p,0) — (p’,0’), then by transitivity of the legal routing relation, we
have (pg, 00) — (p,0’). This shows that S(p, o) C S(po, o9).

Let (p/,0") € So(po,00). By definition of So(po,00), (0',0") € S(p”,0")
for all (p”,0") € S(po,00) and thus for all (p”,0”) € S(p,o). Consequently,
(r',0") € Sac(p,0).

O

Lemma 2.5.5. Suppose that (p,0) — (p',0’) and (p,a) — (p”, "), then there
exists (p*,o*) such that (p',0’) — (p*,0*) and (p", ") — (p*,0%).

Proof. Consider a legal routing sequence ' from (p, o) to (p’,0’) and a legal
routing sequence 7" from (p, o) to (p”,0”). Let R’ and R” be their associ-
ated routing vectors. Define R* = max(R’, R”), where the maximum is taken

48

component-wise. Now, consider the rotor-particle configuration (p*, o*) reached
by such a routing vector from (p, o). We claim that (p/,¢’) — (p*,c*), and by
symmetry, (p”,0") — (p*,0*). Refer to Figure .22 for an overview of the
notations.

Let 7 be the subsequence of r” obtained by removing the min(R'(v), R” (v))
routings of vertex v, and let R be the associated routing vector. By construc-
tion R’ + R = R*. It remains to show that 7 is a legal routing from (p’, o’) to
(p*,0*). We denote ¢ as the strictly increasing function that maps indices of
elements in 7 to those in 7, meaning that the i-th element of 7 is the ¢(i)-th
element of r.

If # is empty, then (p’,0’) = (p*,0*), and we are done. Otherwise, let v
be the first vertex routed in 7. At step ¢(1) of ”/, vertex v has been routed
the same number of times as in 7’. Additionally, the in-neighbor vertices of v
have been routed at least as many timesin r’ as at step ¢(1) of . In summary,
vertex v has lost R'(v) particles in " and at step ¢(1) of »”, but it has received
more particles from its in-neighborhood in the first case. Since vertex v is
legally routable in the latter case, it is also legally routable in the former case.

By replacing (o', o) with the rotor-particle configuration obtained by rout-
ing vertex v, we can repeat this reasoning inductively until 7 is empty. This
demonstrates that (p/,0’) — (p*,0*).

O

This lemma directly establishes the proofs of the following two well-known
results.

Corollary 2.5.6. Given a rotor-particle configuration (p, o), either every maximal
legal routing sequence starting from (p, o) is finite or every legal maximal routing
sequence is infinite.

Next result generalizes well-known commutativity results for stopping graph
without antiparticule to the legal rotor routing of finite maximal routing w.r.t. the
particle configuration that is reached.

Corollary 2.5.7. Consider a rotor-particle configuration (p, o) where all maximal
routings are finite. Assume (p,o) — (p',0’) and (p,0) — (p",0"), where both
routings are maximal. Then ¢’ = ¢"” and p' = p".

It is important to note that the assumptions of the corollary are satisfied by a
stopping graph regardless of the initial rotor-particle configuration.

Lemma 2.5.8. Suppose that (po, 0¢) — (p, o), then S (po, 00) = Sec(p, 0).

Proof. We have already established the inclusion S (po, 00) € Sec(p, o) in
Lemma Now, our task is to prove the converse inclusion.
This proof is summarized in Figure[2.23]

49

R R

p,o p*, o

Figure 2.22: Notations used in the proof of Lemmafz.5.5] The depicted
rotor-particle configurations represent those involved in
the proof. The arcs indicate the existence of a legal routing,
with the corresponding routing vector written above each
arc.

Let (p',0’) € Sx(p, o). To demonstrate that (o', 0’) € S (po, 00), we need
to show that (o', o) € S(p”, ") for every (p”, ") € S(po, 00).

Let (p”,0") € S(po, 00). Since (po, 00) — (p, o) and (po, o9) — (p”, "), we
can apply Lemmal[z.5.5} which guarantees the existence of (p”’, o’”') satisfying
the following conditions:

/11 //l)

* (po) = ("0

. (pl/ O.l/) N (p/// 0.///)

The first condition implies that (p”’, ") € S(p, o). Moreover, since (o, 0’) €
Seo(p,), we have (p”,0"”) — (p',0’). Combining this with the second con-

dition, we conclude that (pg,00) — (p',0’) by considering the sequence of
routlngs (p07 0.0) N (IOH,OJ/), (p//70_/l) — (p/l/’ O.l//)’ (p///’ 0.///) — (p/,o_/).

O

Lemma 2.5.9. for any rotor particle configuration (p, o), the set So(p, o) is not
empty.

Proof. Let (p, o) be a rotor-particle configuration. Suppose that
S(po,00) = {(pi,0oi),i € {0,...,n}} . Foreveryi € {0,...,n}, we define the
following sets:

SSi(ﬂOyao) = {(pjvaj) | Vj € {07 s 72}}

50

(22)
0,
/Y %

P0o, 00
Ny
p//’ 0_//

Figure 2.23: Scheme of the proof of Lemma The depicted
rotor-particle configurations represent those involved in
the proof. The arcs indicate the existence of a legal rout-
ing This demonstrates the existence of a legal routing from

(p",0") to (p',0’) for any (p”,0”) € S(pg,00). In details,

(2): assumptlon of Lemma, (i7): (p',0’) € S(p, o), (iii):

(p ’, ") e S(po,ao) (tv) and (v): use of Lemma2.5.5} (vi):

(¢, 0") € Ss(p.0) and (o, 0" € S(p,).

and

Sogoi(p(ho—o) = ﬂ S(IO/,O'/),

(plra/) eSSi (PO 700)

such that S<°(po, 00) = S(po, o0) and S<"(po, 00) = Seo(po, 00). We prove
by induction that S<¥(po, o) is non-empty for every i € {0,...,n}.

This is clearly true for S=0(pg, 0¢).

Suppose it holds for S<i(po, o) with 0 < i < n. Then,

S5 (po, 00) = SX(po, 30) N S(pit1, oig1)-

By the induction hypothesis, there exists (p, o) € S<!(po, o). According to
Lemmal2.5.5] there exist (p”, o) such that (p, o) — (p”,¢”)and (pi11,0i+1) —
(p”,0"). Hence, (p",0") € S (pg, 00).

O

Definition 2.5.10. Let (po,00) be a rotor particle configuration, we denote by
F(po,00) the non-empty set of particle configurations o1 < oy (component-wise)
such that all routing sequences from (po, o1) are finite. Subsequently, we denote
by F..(po, 00) the set of maximal elements in F(po, 0o).

Remark that F'(po, o) contains 0|y, which ensures that it is non-empty.

The following theorem states that, after a transient phase, and regardless
of the legal routing chosen, there exists a unique baseline particle configuration
above which the remaining particles can be indefinitely routed. Furthermore, these

51

routings necessarily occur on the sink components of the graph. An example
illustrating the computation of the baseline particle configuration is presented in

Figure 2.24

Theorem 2.5.11. There exists a particle configuration og such that for every o1 €
FE,.(po, 00), there exists p’ such that

Soo(p0701) = {(p,a US)}

and og can be obtained as

os(v) =inf{o(v) : 3p, (p,0) € Sxo(po,00)}-

In that case, the configuration o is denoted by os(po, 00).

Proof. Let oy € Fyn(po, 09). By Lemma.5.9) Seo(po, o1) is non-empty.

Now, let's assume there exist two distinct configurations, (p, o) and (p’, '),
in Soo(po,01). According to the definition of S (po, 1), we have (p,o) —
(p',0") and (p',0’) — (p, o). This implies the existence of an infinite routing
sequence starting from (pg, o1), where we route from (pg, 01) to (p, o), then
from (p,0) to (p’,0’), and back from (p’,¢’) to (p,o), and so on. However,
this contradicts the fact that o1 € F(po, 00). Hence, Sx(po, o1) contains only
a unique configuration (¢*, p*) and then o* = o5(pg, 01).

We now prove that o* = og(po, o’) for every o1 < o’ < g9, which, in partic-
ular, implies that o* = og(po, 00). If 01 = ¢, then the resultis true. Otherwise,
there exists a vertex v such that o1 + 1, < o, where 1, represents the con-
figuration that has a value of 1 at vertex v and o elsewhere. Let's demonstrate
that o* = os(po, 0w), where o, = 01 + 1,. The general case can be handled in
a similar manner.

As (po,o1) — (p*,0%), then (pg,01 + 1,) — (p*,0" + 1,). Since o1 €
F(po, 00), configuration o* is not legally routable. But o* is maximalin F'(pg, 00),
hence the only vertex of o* + 1, that is legally routable is v. Such routing leads
to a configuration o*+1,,, with w # v since the graph has no loop. By applying
this reasoning iteratively, we observe that all reachable particle configurations
take the form o* + 1, for some vertex z. Then, every particle configuration
legally reachable from (p*, o* + 1,,) is greater than o*. In particular, this is the
case for every particle configuration in S (p*, 0*+1,), hence for every vertex
w:

o*(w) < inf{o’(w) : Ip, (p,0') € Seo(p*, 0" + 1,)}

On the other hand, in S (p*,0* + 1,), there exist at least two distinct
particle configurations of the form o* + 1, for different vertices z. Hence, for
every vertex w:

52

o*(w) > inf{o’(w) : Ip, (p,0') € Seu(p*, 0" + 1,)}

Finally, for every vertex w we have:

o*(w) = inf{o’(w) : Ip, (p,0') € Seo(p*, 0" + 1,)}
= inf{o’(w) : Ip, (p, ") € Soc(po,0v)}
= 05(po, ow)(w)
where the second equality comes from Lemma2.5.8} and the last one is the
definition of os(po, oy).

It follows that S (po, 01) does not depend on the choice of oy in F},(po, 00)-
0

Note that under the conditions of Corollary [2.5.7, which state that all routing
sequences are finite, og(p, o) is the particle configuration reached by any maximal
routing sequence starting from (p, o

(a) Rotor- partlcle configuration (b) Rotor-particle configura- (c) Baseline particle config-
(po,00)- tion obtained after legal uration os(po,00): the
routing of the vertex with 7 sink component with,

particles. respectively, 2 and -1 values

is replaced by the infimum
of the values that can be
obtained by every legal
routing.

Figure 2.24: Based on Theorem[.5.11 computation of the baseline par-
ticle configuration o(pg, 00).

2.5.3 . Characterization of Rotor Particle configurations reachable
by legal routings
This section presents the main result from [81] which is of significant impor-
tance for the rest of this thesis. It was presented in [81] in 2021, and it provides
a characterization of the legality of a routing sequence. It will serve as a key tool
for providing complexity results in Chapter 3]

Theorem 2.5.12 (Legality Condition Theorem 3.3 from [81]). Let (p,o) and
(¢, ") be rotor-particle configurations on G. Then, (p,o) — (p',o’) if and only if
there exists a reduced routing vector R from (p, o) to (p', ') such that we have:

c {veV:d'(v)<0and R(v) >0} =0

53

* Forall circuits C in G(p'~) such that for all vertex v € C, we have R(v) > 0,
then there exists a vertex w € C such that o’ (w) > 0.

We present one possible usage of this Theorem in Figure [2.25

‘e —0 | T 0—0
(a) Rotor-particle configuration (p, o). (b) Rotor-particle configuration (p’, o)

Figure 2.25: Let R be the routing vector (A :1,B:1,C : 1,D : 0), since
the graph is stopping, the only period vector is (0, 0,0, 0),

thus R is reduced. It is clear that (p, o) & (p',0’). But, the
circuit { A, B} belongs to G(p~) and we have R(A4) > 0 and
R(B) > 0 which contradicts the second condition of the
previous theorem. Hence, there is no legal routing vector
between (p, o) and (o', o).

Corollary 2.5.13 ([81]). The existence of a legal routing sequence r such that
(p,o) = (o', 0") can be decided in polynomial time.

Proof. By Proposition 3.2 of [81], a nonnegative reduced routing vector can
be computed in polynomial time, then, it suffices to verify conditions of Theo-
rem[2.5.12} The second condition of Theorem[2.5.12|can be checked by finding
all circuits in the graph G(p'~) and verifying that they satisfy the conditions
of the theorem. The number of vertex disjoint circuits in a directed graph is
at most |V|/2, and for each cycle, we need to check that all vertices in the
cycle have positive routing weights and that there is at least one vertex with
positive final charge. This can also be done in polynomial time.

Therefore, checking the conditions of Theorem[z.5.12|can be done in poly-
nomial time, given a non-negative routing vector. O

Corollary 2.5.14. Given a positive rotor particle configuration (p, o) with a parti-
cle on each circuit of G(p~) (there is at least one vertex v of each circuit of G(p~)
such that o(v) > 0), if there exists a positive routing vector that transforms some
rotor particle configuration (po, 0o) into (p, o) then it is a legal routing vector.

Theorem [2.5.11] also characterizes one particular type of rotor particle config-
urations, recurrent configurations that are positive and have one particle on each

circuit as we will see in Corollary [2.5.16

Definition 2.5.15 (Rotor Particle Recurrent configuration). On a strongly con-
nected graph G, a rotor particle configuration (p, o) is recurrent if there exists a
non empty legal routing sequence from (p, o) to (p, o).

This definition implies not only that G is strongly connected but also that o
is positive by Lemma [2.5.3] Hence, from previous theorem, we can characterize

54

these configurations on a strongly connected graph. First part of the corollary is
in fact Theorem 2.4 of [80] restated in our framework. We give a new proof in our
context.

Corollary 2.5.16. On a strongly connected graph, rotor particle configurations
(p, o) with o(v) > 0 for all v € V,y and with a particle on each circuit of G(p~)
are exactly recurrent configurations. Moreover, if there is a routing vector R from
(p, o) to a recurrent rotor particle configuration (o', o’), then R is legal.

Proof. Let (p, o) be arecurrent rotor particle configuration. By definition, this
is equivalent to the fact that (p,o) — (p, o). According to Lemma this
sequence must route all vertices in Vj. Therefore, R(v) > 0 for every v € V}.
By the second condition of Theorem this implies that there must be
at least one particle on each circuit of G(p~). Now, we show the other impli-
cation. Let (p, o) be a positive rotor particle configuration with a particle on
each circuit of G(p~). From Corollary 2.5.14] we have that any routing vector
that transforms any rotor particle configuration (pg, 0g) into (p, o) is legal. In
particular, there is a legal routing vector from (p, o) to itself which proves that
(p, o) is recurrent. O

Now, on stopping graphs, Theorem[2.5.12|implies the two following results that
characterize maximal routing sequences for which the ending rotor configuration is
acyclic.

Lemma 2.5.17. Let G be a stopping rotor graph. For any maximal legal routing
vector R from (p, o) to some (p', ") with (o'|y, = 0|y,) such that R(v) > 0 for
any vertex v € Vo, G(p'™) is acyclic.

Proof. Suppose thatthereisaroutingvector R from (p, o) to some (o', ¢’) with
o'y, = 0|y, such that R is strictly positive. Since the ending configuration is
such that o'y, = 0]y, there cannot be a circuit in G(p'~) because it would
be a circuit in which all vertices have been routed at least once, which would

contradict Theorem[2.5.12] O

Lemma 2.5.18. Given a rotor configuration p on a stopping graph, G(p~) is
acyclic if and only if there exists two particle configurations 0,0’ € P(G) with
o(v) > 0 forall v € Vi and o'|y, = 0|y, such that (p,0) — (p,o’) with o'|y, =
0lvq-

We will prove first that if G(p™) is acyclic, then there exists a particle con-
figuration o satisfying previous conditions. This relies on some well known results
on the action of particle configurations on rotor configurations (see [41]). But,
as we focus on the algorithmic aspect of rotor routing in this thesis, we give an
alternative proof.

55

Proof. Let p be acyclic, first, consider the strongly connected graph G’ = (VjU

0, A’ h,t,0) suchthat Vi = Vo U Sy, Sy = 0 and A’ = AU Ag, with Ag, being
a set with exactly one arc from each sink in Sy to each vertex of V4. Let psr be
the rotor configuration such that for any vertex v € Vj; we have pgr(v) = p(v)
and for any other vertex s € Vj \ W, p(s) is any outgoing arc of s. Let p be
the primitive period vector of G'.

Consider the firing sequence from (p, Oly;) to some (p, o) with o € Py (G')
such that each vertex s € Sy is positively fired exactly p(s) times in » and none
of the other vertices are fired. Consider graph G once again. By construction,
for any v € 1}, we have ¢’(v) > 0 because p is positive.

Thus, as the graph is stopping, by Lemma we have that any legal
routing sequence from (p, o’|s,) to (', 0]y,) in G is such that G(p'~) is acyclic.
We constructed a legal routing sequence from (p, 0|y,) to (o', 0y,), thus p ~ p.
By hypothesis we have that G(p~) is acyclic thus, by Proposition2.3.7jwe have
that p/ = p.

To prove the other direction, assume that there exists a legal routing se-
quence r from (p, o) to (p, 0|y,) with o being such that o(v) > 0 for all v € V4.
Then, as all vertices have to be routed at least once in order to reach (p, 0y;),

by Lemmalz.5.17]we have that G(p~) is acyclic. O

We also provide an equivalent definition for recurrent rotor configurations on
a stopping graph that uses the notion of legality:

Definition 2.5.19 (Recurrent rotor configuration). A rotor configuration p on a
stopping rotor graph is recurrent if there exists a particle configuration o such
that || > 0, and there is a legal routing sequence from (p,o) to (p,o’) with
UI|V0 = 0vp-

2.5.4 . Specific results on Stopping Graph

This section examines the finiteness of rotor routing sequences specifically when
the graph is stopping. These properties play a crucial role in our investigation of
reachability problems in Chapter [3[as well as our analysis of SP-ARRIVAL in
Chapter [4]

The following lemma is a well-known result regarding legal rotor routing se-
quences and is also a particular case of Lemma[2.5.5]

Lemma 2.5.20 (Finite number of steps, Lemma 16 in [41]). If G is stopping then
any legal routing sequence in G is finite.

Proof. Suppose that there exists an infinite legal routing sequence on a stop-
ping rotor graph G. Let I be the set of vertices that are routed infinitely many
times. Since the graph is stopping, there must exist an arc in G with tail in 1
and head in V' \ I, which will be visited an infinite number of times. This im-
plies that there is at least one vertex in V'\ I that is visited an infinite number

56

of times, which contradicts the assumption that only vertices in I are visited
infinitely often. Therefore, there can be no infinite legal routing sequence on
a stopping rotor graph. O

57

58

3 - ARRIVAL and
Reachability Problems

In this document, we call ARRIVAL a family of reachability problems with two
conditions: the graph is stopping and the initial particle configuration is positive.
The question is to determine the particle configuration on sink vertices when all
particles of Vj; have been routed up to sinks. Considering results of the previous
chapter, this configuration is unique which shows that this problem is well-defined.
We distinguish two types of positive configurations, single particle configuration
where the particle configuration has degree one and multi particle configuration
where configuration has any positive degree. Using notations of Chapter 2] the
first part of this chapter (Section presents four problems of ARRIVAL. The
first one is the version with a single particle on a switching graph studied in [31]
that we call from here Sw-ARRIVAL (referring to the switching graph topology).
The second one is a version with a single particle but on a general digraph, that
we call SP-ARRIVAL (where SP stands for "Single Particle"). In the subsequent
sections of this document, we introduce a problem referred to as MP-ARRIVAL.
This problem is essentially an extension of the SP-ARRIVAL problem, allowing for
the presence of multiple particles (MP stands for "MultiParticles"). And finally, we
introduce the Linear ARRIVAL problem for which vertices might be routed even if
they do not have particles on them. These problems are detailed in Table[3.1] It is
known that Sw-ARRIVAL belongs to NP N co-NP and we show that this is also
the case for our three other problems. Then, we exhibit the connection between
Sw-ARRIVAL and the rotor-routing reachability problem presented in [81]. We
further explain the relationship between these two problems and provide insights
into their similarities and differences.

Legal routing sequence | General routing sequence
Sw-ARRIVAL
Single Particle (and
SP-ARRIVAL Linear ARRIVAL
Multiple Particle MP-ARRIVAL—

Table 3.1: Differences between problems of ARRIVAL. This family of
problems have the following conditions: the graph is stop-
ping and the initial particle configuration is positive. Ar-
rows depict direct reductions between problems (e.g., SP-
ARRIVAL is a restriction of MP-ARRIVAL to instances with a
single particle).

59

In the second and most consequent part of this chapter, we delve into a range
of reachability problems within the rotor-routing formalism. These problems are
presented in Table[3.2l We explore these problems under different graph topologies,
including stopping and strongly connected graphs, and consider the presence or
absence of the legality constraint on routings. We compare these various subcases
to the ARRIVAL problem and provide some complexity results. We begin by
presenting our findings on the general reachability problems introduced in [81].
We then focus on a subgroup of problems that are always solvable, meaning that
only positive instances exist in the considered subcases. Next, we present our
main results on problems related to ARRIVAL, including reduction techniques
and complexity results. Finally, we discuss subcases for which we have partial
results.

Despite most of the material of this chapter is new, findings of this chapter
have not yet been published.

3.1 . ARRIVAL

This section is dedicated to establishing the connection between Sw-ARRIVAL
which is investigated in [31] and the rotor-routing reachability problem introduced
in [81]. By establishing this link, we aim to facilitate a comparative analysis of
the complexity of the ARRIVAL problem and other general reachability problems
in the subsequent section. In [31], the ARRIVAL problem is defined for switching
graphs, which are stopping rotor graphs such that each non-sink vertex has exactly
two outgoing arcs. That is why we state a more general, yet equivalent version
of this problem called SP-ARRIVAL on general stopping rotor graphs (SP stands
for Single Particle). We will study more deeply this problem in Chapter [4]

3.1.1 . Sw-ARRIVAL and SP-ARRIVAL

In this section we present both problems that are defined with a single particle
on the graph. The difference between these two problems is the topology of the
underlying graph. Specifically, Sw-ARRIVALC SP-ARRIVAL. This means that
the ARRIVAL problem has the same complexity on switching graphs and general
digraphs.

Recall that a stopping rotor graph is a graph G for which there exists a directed
path in G from any vertex to at least one sink. Recall that if (p, o) is a rotor particle
configuration on G, by Lemma[2.3.12] we have that for any routing sequence from
(p,o) to some (p',0"), such that o'|y;, = 0|y, the particle configuration on the
sink vertices o’|g, is unique.

Definition 3.1.1 (SP-configuration (Positive Single Particle configuration)). Let
u € V, a particle configuration o is a SP-configuration on w if for any vertex
veV\{u} wehaveo(v)=0and o(u) = 1.

60

Naturally, if we also consider a rotor configuration, we obtain a rotor SP-
configuration.

Definition 3.1.2 (Rotor SP-configuration). A rotor SP-configuration is a rotor
particle configuration (p, o) such that p € R(G) and o is a SP-configuration.

Remark. We utilize rotor SP-configurations only in the context of legal routing
sequences. Thus, given a rotor SP-configuration on w, all vertices except u have
zero particles on them. This means that there is a single legal move possible on
any rotor SP-configuration, which is a legal routing at . Since there is no possible
confusion on the position of the unique particle on a Rotor SP-configuration with
a particle at vertex u, we use the notation (p,u) to refer to such a configuration.

Note that a legal routing sequence between two rotor SP-configurations is a
rotor walk.
Previous remark has motivated the introduction of the following problem in [31]:

Definition 3.1.3 (SW-ARRIVAL). Letu € V, let (p, u) be a rotor SP-configuration
on a stopping rotor switching graph G. Given a sink s € Sy, SW-ARRIVAL is the
problem of deciding if there exists a maximal legal rotor walk starting from (p, u)
such that the particle reaches sink s.

Obviously a stopping rotor switching graph (see definition in [31]) is also a rotor
stopping graph but with a unique rotor order possible. And any rotor stopping
graph with a rotor configuration p can be transformed in polynomial time into
a stopping rotor switching graph with a configuration p’ by adding O(].A™ (v)|)
vertices for each vertex with outdegree superior to 2 in the idea of Figure

This shows that Sw-ARRIVAL and the same problem on a general stopping
rotor graph (that we call SP-ARRIVAL) are equivalent since there is a polynomial
reduction from SP-ARRIVAL to Sw-ARRIVAL and Sw-ARRIVAL is a subcase
of SP-ARRIVAL. Thus we state SP-ARRIVAL that is defined on stopping rotor
graphs.

Definition 3.1.4 (SP-ARRIVAL). Letu € V, let (p,u) be a rotor SP-configuration
on a stopping rotor graph G. Given a sink s € Sy, SP-ARRIVAL is the problem of
deciding if there exists a maximal legal rotor walk starting from (p,u) such that
the particle reaches sink s.

SP-ARRIVAL belongs to NP N co-NP for simple graphs as shown in [31], but
there is still no polynomial algorithm known to solve it. The proof in [31] relies
on the notion of flow that we will only introduce in Chapter 4 thus we give an
alternative proof with routing vectors to preserve the consistency of this thesis.

First we prove that SP-ARRIVAL belongs to NP. Let R be a routing vector
from (p,u) to some rotor SP-configuration (p’,s) with s € Sy. We show that
R is a polynomial certificate for SP-ARRIVAL. By Corollary 2.5.7} the rotor

61

O

(<)
FEEHEOEE

l

b b

a
56

<
=

Figure 3.1: Transformation of a rotor graph with a rotor configuration p
into an equivalent rotor switching graph with a rotor config-
uration p’. One can check that any succession of routing op-
erations on v in the first graph can be simulated by a routing
sequence on the second rotor graph. In the general case,
any vertex with outdegree k on a general digraph can be
turned into a switching subgraph by adding O(k) vertex and
O(k) arcs.

configuration p’ obtained by applying any legal rotor walk with routing vector R
is unique, as well as the particle configuration on the sink vertices. Such a rotor
configuration can be computed in polynomial time for each v € Vj by computing
the rest of the division R(v)/|A*(v)|. If the rotor SP-configuration computed
from R (by counting the number of routings to the sinks in R) is (o, s), it remains
to check in polynomial time with Theorem if (p,u) = (p,s). Thus, Ris a
polynomial certificate for SP-ARRIVAL. To prove that SP-ARRIVAL belongs to
co-NP, it suffices to give a routing vector R such that there exists a legal rotor
walk from (p,u) to some rotor SP-configuration (p’,s’) with s’ € Sy and ' # s
as this certifies that the ending sink is s'.

The case of simple graphs that are eulerian when we remove the sinks can be
solved in time O(|V +.A|?), since a finite maximal legal rotor walk from (p,v) ends
in at most O(|V + A|3) routings on such a graph (see [85]).

However, no polynomial-time algorithm is currently known to solve SP-ARRIVAL.
We presented the complexity of this problem in Chapter 1 There we stated that
the best upper bound existing for this problem is UP N co-UP [40]. The best
known algorithm yet is the subexponential algorithm proposed in [39] which shows
that SP-ARRIVAL can be decided in time 20(V21087) for 3 graph with n vertices.
This result relies on a Tarski fixed point algorithm.

Despite that, even for a path multigraph, a maximal legal rotor walk can be

exponential, as shown on [Figure 3.2

62

oS e0T0s08C

Figure 3.2: Family of path-like multigraphs where a maximal routing se-
quence can take an exponential number of steps in the num-
ber of vertices, here equal to n + 2. The interior vertices (ug
to u,—1) have two arcs going left and one going right. The
idea behind this example is to construct a binary counter.
Routing a particle from wg to sink s with the initial config-
uration p drawn with red arcs takes a non-polynomial time
considering the anticlockwise rotor ordering on each vertex,
depicted by the curved arcin red.

In the example drawn in [Figure 3.2} let us consider the number of times the
particle will travel from w; to u;11 during a maximal legal rotor walk from (p, ug).
Before the particle reaches the sink s, it needs to visit ug exactly three times and so
it will travel from wug to u; exactly two times. Next, for w1, each time the particle
comes from wuy, it will travel two times from u; to uy before visiting ug again. So
the number of times the particle travels from wuy to uo is 4. One can check that
the number of times a particle starting from wug will travel from u; to u; 1 before
reaching s is 211,

Nevertheless, we now prove that the number of routings in a legal routing
sequence on a stopping rotor graph is bounded.

Lemma 3.1.5. Let r be a rotor walk from a rotor SP-configuration (p,u) on a
stopping graph, the particle can travel at most e!Al/¢ times through each arc a € A.

Proof. According to Lemma 1 in [39]], the number of routings on a vertex v
in a maximal rotor walk from some (p,u) is Hle | A (u;)| with k being the
length of the shortest path from v to a vertex of Sy. This formula has maximal
value if all vertices on the path have |.A|/n outgoing arcs with n the number
of vertices of the graph and this is maximal for n = |.A|/e in which case the
bound becomes elAl/¢, O

In practice, we will use the following Corollary:

Corollary 3.1.6. Let r be a legal routing sequence from a rotor particle con-
figuration (p,o) on a stopping graph, each vertex can be routed at most |o| -
MAX yey (a(v)) - eA/einr.

3.1.2 . MP-ARRIVAL and Linear ARRIVAL

In this subsection, we state the generalization of the SP-ARRIVAL problem
and its linear version. These differ by the fact that there can be multiple particles
on the graph at the same time.

63

Definition 3.1.7 (MP-ARRIVAL). Given a stopping rotor graph G, a rotor config-
uration p, a positive particle configuration o, and a particle configuration ¢’ such
that o'|y;, = Oly,, is there a legal routing sequence from (p, o) to some (p',c’)?

This problem can be interpreted as checking if a maximal legal routing sequence
from (p, o) leads to the particle configuration o’|g, on sink vertices.

MP-ARRIVAL belongs to NP N co-NP since we can check in polynomial
time if a routing vector is legal.

The problem that is solved in [81] is stated as the reachability problem from
a rotor particle configuration (p, o) to a rotor particle configuration (p/,0’) by a
legal routing sequence.

Clearly, MP-ARRIVAL can also be seen as a reachability problem between
two positive rotor particle configurations but where p’ is not given.

Thus, it seems like an interesting way of studying it by comparing its complexity
to the one of other rotor-routing reachability problems. The main purpose of this
chapter is to give some perspective on the different reachability problems that can
be studied on rotor graphs and how MP-ARRIVAL inserts in Table[3.2]

Linear ARRIVAL

We define here a new linear version of MP-ARRIVAL, without the legality con-
straint. Contrary to MP-ARRIVAL, in Linear ARRIVAL, vertices might be
routed even if they happen to be negative at some point in the routing sequence.

Definition 3.1.8 (Linear ARRIVAL). Given a stopping rotor graph G, a rotor
configuration p, a particle configuration o which is positive on Vy, and a particle
configuration o' such that 0’|y, = 0|y, is there a routing sequence from (p, o) to
some (p',0')?

Observe that, contrary to a positive instance of MP-ARRIVAL, in a positive
instance of Linear ARRIVAL, there might be several different ending rotor con-
figurations (see Corollary and Lemma 2.3.12). Nevertheless, we show that
MP-ARRIVAL and Linear ARRIVAL are equivalent, in the sense that given p, o
and o’ there is a solution to Linear ARRIVAL if and only if there is a solution to
MP-ARRIVAL.

Lemma 3.1.9. Given a stopping rotor graph G, a rotor configuration p, a positive
particle configuration o, and a particle configuration ¢’ such that o'|y, = 0|y,

3" € R(G), (p,0) ~ (¢, 0") & " € R(G), (p,0) = (0", 0")

Proof. It is direct that if (p,0) — (p”,0’), then (p,0) ~ (p”,0’). Conversely,
assume that (p, o) ~ (p,0’). Since, oly, is positive, there exists a legal rout-
ing sequence to a particle configuration o} such that o]y, = 0|y,. Hence, by
Lemma we have that ¢/ = o} which proves that there exists a rotor
configuration p” such that (p, o) — (p”,0’). O

64

From this lemma, we have the following theorem.

Theorem 3.1.10 (Linear ARRIVAL Equivalence). Given a stopping rotor graph,
a rotor configuration p, a positive particle configuration o, and a particle configu-
ration o', the decision problems MP-ARRIVAL and Linear ARRIVAL have the same
truth value.

3.2 . Reachability Problems Chart

In the previous chapter, we discussed various properties related to the legal-
ity and presence of sinks in rotor-routing graphs. This section presents a more
detailed exploration of reachability problems in rotor-routing, considering two dif-
ferent frameworks: a linear case and a case where only legal routing sequences
are considered. Our results in both frameworks depend mainly on the presence
of accessible sinks in the graph, and hence, we divide both frameworks into two
subcases: one where Sy = () and the graph is strongly connected, and another
where Sy # () and the graph is stopping. Recall that Sy is the set of vertices with
no outgoing arcs.

We summarize our complexity results in Table [3.2] where:

* The first column describes the problem we are interesting in. Each problem
is denoted with = since we study both the linear and the legal case.

* The second column called Linear Case describes the framework where we
consider general routing sequences (no legality). This column is split into
two semicolons, the first one where we consider strongly connected graphs,
and the second one where we consider stopping graphs (with Sy # 0).

* The third column describes the framework where we only consider legal
routing sequences. This column is also split into two semicolons, one for
strongly connected graphs and one for stopping graphs.

Each problem presented in Table is a decision problem that poses the
question of whether there exists a routing sequence for given rotor configurations
p and p, as well as particle configurations o and o’. We sometimes add some extra
conditions on the routing sequence. Possibly, some problems might have « * »
in their initial parameters, for example (p, *) = (p/,*). This means that we ask
if there exist two particles configurations o and o’ such that there is a routing
sequence from (p, o) to (p/,0’). For some problems, the complexity results have
been previously stated in the literature, and the paper where they were first stated
is listed next to them.

For example, with this formalism, given a rotor configuration p, SP-ARRIVAL
can be written as (p,u) — (,s) with w € V and s € Sp.

65

Legality Constraint Linear Case Legal Case

Graph Topology Strongly Connected Stopping Strongly Connected | Stopping
Firing Sequence Only: (p,) = (p, o) P see [52] co-NP' see [52]

(p,o) = (p, o) P see [80] P see [81]

(p.0) = (*,0") True iff same degree | Equivalent to MP-ARRIVAL | Equivalent to MP-ARRIVAL'
(x,0) = (p',0") True iff same degree | Equivalent to MP-ARRIVAL NPf

(x,0) = (*,0") True iff same degree NP-Complete NP-Completef

(p.o) = (o, %) True NPt

(p,%) = (¢, 0") True NPt

(P %) = (p,%) True

Table 3.2: Our complexity results of problems described in this chapter.
The word True indicates the cases where for any instance of
the problem, there always exists a routing sequence (i.e., the
answer to the reachability problem is True). The T indicates
the cases where we can give better complexity results with
some additional constraints.

Remark. The notion of equivalence between problems A and B, as presented in
Table 3.2l and throughout this chapter, signifies that there is a polynomial reduc-
tion from A to B, and there is a polynomial reduction from B to A.

3.3 . General Reachability Problems

3.3.1 . Problem (p,0) = (p,o’) by a firing sequence [52]

We start this section by quickly presenting the results of [52] in our framework
since there will be used to prove our results for general routing sequences.

Note that here, we are considering the problem of a firing sequence between
two rotor particle configurations with the same rotor configuration. Moreover, our
results for this problem do not rely on the presence of sinks or not.

3.3.1.1 (p,0) ~ (p,0’) by a firing sequence

For this first problem, we recall that a firing operation on a vertex v is the ac-
tion of proceeding successively | AT (v)| positive (resp., negative) routings on wv.
Lemma states that there is a polynomial algorithm that decides whether
there exists a firing vector from (p, o) to (p,o’) and if a firing vector exists then
the algorithm returns it. Thus, as we have no constraint of legality, we have the
following result:

Lemma 3.3.1. Problem (p, o) ~ (p,c’) is in P.

66

3.3.1.2 (p,0) — (p,0’) by a legal firing sequence

Recall that a legal firing sequence is a firing sequence in which each vertex can
only be fired if it has more particles on it than its outdegree.

Thus, if we add the legality constraint, computing a non-negative firing vec-
tor from (p,o) to (p,o’) in polynomial time (if one exists) does not guarantee
the existence of a legal firing sequence with that firing vector, as illustrated in

Figure 3.3

A B A B

(©) 2)
C

Figure 3.3: Let p be the rotor configuration depicted by the red arcs. Let
o be the particle configuration illustrated on the figure on
the left. Let ¢’ be the particle configuration illustrated on
the figure on the right. There exists a positive firing vector
R such that R(A) = 1, R(B) = 1, R(C) = 0 that transforms
(p,o) into (p,o’) but there is no legal sequence to do it as
there are no legal firing doable from (p, o).

C

Unfortunately, the conditions provided by Theorem are necessary but
not sufficient to certify the legality of the firing sequence. Nevertheless, it has
been shown in [52] that this problem belongs to co-NP. Finding a polynomial
algorithm to solve this problem seems complicated as it is proved in [81] that if
there existed a polynomial algorithm to solve this problem, then another problem
called the firing halting problem, which has been proven to be NP-Complete in
[34], would be in co-NP.

Nevertheless, note that there exists a strongly polynomial algorithm to solve
this problem on Eulerian digraphs as shown in [52].

3.3.2 . Reachability problem of [81] (p,0) = (p',0”)

Once again, results of this subsection do not depend on the presence of sinks
or not.

For simplicity of the following proofs, we define the operation of aligning two
rotor configurations.

Definition 3.3.2 (Aligning Vectors). Given two rotor configurations p and p’ on
a graph G. For any vertex v € Vj, let x;7 be the lowest positive exponent such
that Hﬁ(p(v)) = p'(v) and let x; be the lowest positive exponent such that
0,7 (p(v)) = p'(v). Let R*(p, p') be the routing vector with values R (p, p')(v) =

67

x} forv € Vo and let R~ (p, p') be the routing vector with values R~ (p, p')(v) =
x, forv € Vy. We call these routing vectors positive (resp., negative) aligning
vectors from p to p'.

Note that processing a routing sequence with routing vector R*(p, p’) from a
rotor particle configuration (p, o) leads to some rotor particle configuration (o', o’).

3.3.2.1 Problem (p,0) ~ (p/,0’)

First, we compute an aligning vector from p to p’ in polynomial time by performing
at most | AT (v)| operations for each vertex v € Vj, which adds up to a total of
|A| operations. Next, we obtain the problem (o', o) ~ (p/,0’) which is the firing
sequence problem presented above. Therefore we have the following lemma:

Lemma 3.3.3. Problem (p,o) ~ (p', ') isin P.

3.3.2.2 Problem (p,0) — (¢, 0')

To determine if there is a legal routing sequence from (p, o) to (o, o), we follow
the same procedure as in the linear case. Firstly, we solve problem (p, o) ~ (o, o”)
in the general case which can be done in polynomial time. If the problem has a
solution, we apply Theorem [2.5.12] to verify whether this routing sequence is legal,
which can also be done in polynomial time. Therefore, this proves the following
lemma:

Lemma 3.3.4. Problem (p,o) — (p', ') isin P.

There is a subcase of this problem that is worth mentioning: we want to
determine if there exists a cycle push sequence from (p, o) to (o', o).

3.3.2.3 Problem (p,0) = (p/,0)
Cycle push sequence (p, o) ~ (p/,0)

If o # o', there is no such sequence as it does not change the particle configuration.
If ¢ = o’ and if (p,0) ~ (p/,0), by Theorem [2.3.5] there also exists a cycle
push sequence from (p, o) to (p', o). Therefore, to determine the existence of a
cycle push sequence from (p,o) to (p,0’), it suffices to determine if there is a
routing sequence from (p, o) to (p’, o), which can be done in polynomial time by

Lemma 3.3.3]

Cycle push sequence (p,0) — (', 0)

The first step is to decide whether there exists a legal routing sequence from (p, o)
to (p/,0), which can be done in polynomial time by Lemma If there exists
a legal routing sequence, it is also positive, and we can apply Theorem to
decompose it into cycle pushes. This gives us the following proposition.

68

Proposition 3.3.5. The problem of finding a legal cycle push sequence from (p, o)
to (p', ') belongs to P.

3.4 . Properties for problems with a missing input on strongly
connected graphs in the linear case

This section presents simple results on problems with at least one missing input
on strongly connected graphs. First, note that all problems with a missing input
clearly belongs to NP. As an example, suppose that problem (x,0) — (p/,0’) has a
solution, it suffices to give a rotor configuration p and one can check in polynomial
time if there exists a legal routing sequence from (p, o) to (p’,c’). Thus, rotor
configuration p is a polynomial certificate for this problem. Indeed, the missing
input is a polynomial certificate for any problem as we can check if (p,) ~ (o', ")
in polynomial time by Lemma and if (p,o) — (p',0’) in polynomial time by
Lemma depending on the context.

3.4.1 . Problems where we can choose the rotor configuration(s)

In this section, we present results that are applicable to three different problems:
(p,o) ~ (x,0"), (x,0) ~ (p/,0), and (x,0) ~ (*,07).
First we show the following lemma:

Lemma 3.4.1. Problems (p, o) ~ (x,0’) and (x,0) ~ (p', ") are equivalent.

Proof. It suffices to change the sign of any routing sequence from (p,o) ~
(x,0”) to obtain a routing sequence from (x,0”) ~ (p, o) O

If |o| # |o’|, then since the routing operation does not change |o|, there does
not exist a routing sequence for any of the three problems. Next, suppose that
o] = o’

For the three problems, let ¥~ = {v € V | ¢/(v) — o(v) < 0} be the set of
vertices that should give particles (or receive antiparticles) if there exists a routing
sequence, and let ¥t = {v € V | 0/(v) — o(v) > 0} be the set of vertices that
should receive particles (or give antiparticles) in the routing sequence. Take any
v~ € ¥~ and vt € ¥T. Since there is no restriction on the routing sequence
and since the graph is strongly connected, by Lemma[2.4.7] there exists a positive
routing sequence that transfers a particle from v~ to v independently of the initial
rotor configuration.

By repeating this process enough time until there are no more vertices in T
and X7, we can construct a routing sequence (p, o) ~ (x,0’). Obviously, this also
shows that there always exists an initial rotor configuration p such that there is a
routing sequence (x,0) — (*,0"). And, since (p,c) ~ (*,0") and (x,0) ~ (p/, ")
are equivalent for the general case, there always exists a routing sequence for these
three problems.

69

3.4.2 . Problems where we can choose the particle configuration(s)

In this subsection, we present results that are applicable to three different prob-
lems: (p,x) ~ (p',0"), (p,o) ~ (p/,*) and (p,*) ~ (p',*). Note that problems
(p,x) ~ (p',0") and (p, o) ~ (p', *) are equivalent in the linear case. These prob-
lems share the common feature that at least one of the particle configurations o
or o’ is not fixed beforehand.

For problems (p,o) ~ (p/,*), and (p,*) ~ (p/,*) it suffices to align p and
p' using any sequence with a routing vector that is an aligning vector (positive
or negative). Since problems (p,*) ~ (p’,¢’) and (p,0) ~ (o, *) are equivalent,
there always exists a routing sequence for these three problems.

Note that the presence of sinks does not affect these results, hence we have
the following proposition.

Proposition 3.4.2. Problems (p,c) ~ (p',*), (p,*) ~ (p', %) and (p,*) ~ (o', c’)
always have a solution in the linear case both for strongly connected and stopping
graphs.

3.5 . Problem (x,0) = (x,0")

In this section, we will discuss the results for problem (x,0) ~ (x,0’) and we
will show various equivalences and complexity results summarized in Figure [3.4]

(*7 U) ~ (*7 OJ) (*7 U) - (*7 O',)
Lemmal[3.5.1]
Restricted Restricted SAT
version version NP-Complete
(x,0) ~ (*,0") Lemma[3:5.3] (x,0) = (%,0")* Lemma[3.5.2|
witho >0 with o >0
and o'ly, = Oly;, and o'[y, = Oly;,

Figure 3.4: Equivalence and Complexity Results for problem (x,0) —
(x,0"). Anarrow represents a polynomial reduction from the
problem at the tail to the problem at the head.

A pretty similar problem has already been studied in [77]. It is presented
as a one player version of SP-ARRIVAL (which we will study more deeply in
Chapter [4)) where the initial rotor configuration is partially fixed. It could be
restated with our formalism by (p(U, *),0) — (x,0’) with p(U, *) being a partial
rotor configuration on U C V, with o being a SP-configuration and ¢’ being such

70

that o’|y;, = Oly,. The corresponding reachability question is: does there exist a
partial rotor configuration ply;\¢s and a rotor configuration p’ such that (p(U, *) U
plvp\v>) = (p',0"). Despite being a problem with a single particle on a stopping
graph, this problem has been shown to be NP-Complete. But, this problem
is different from (x,0) = (*,0’) since we consider particle configurations with
several particles. While we have no direct reduction between these two problems,
we will nevertheless show in this section that (x,0) = (*,0’) is NP-Complete in
the stopping case.

3.5.1 . Gadget
For the following reduction of this chapter we need a polynomial length gadget
that simulates a vertex v with k arcs (v,a) and 2%V arcs (v,b) with N being a
fixed integer parameter. The first k& particles entering the gadget will be routed
towards vertex a and the 2%V particles entering after will be routed towards vertex

b. (Figure

71

k arcs l 2N arcs

e

Figure 3.5: First k particles entering v will be routed towards a and 2V
following particles will be routed towards b.

To achieve that, we replace v with a slightly modified version of the graph

presented in Figure [3.2 as in Figure [3.6]

O-CERECEED-O

Figure 3.6: Polynomial length gadget that routes the first particle arriv-
ing at v, towards a and the 2" following particles are routed
towards b. We denote such a gadget by G, ,(1,2").

Our previous example shows a gadget that routes only the first particle towards
a vertex a and then the following particles to a vertex b. In order to obtain a gadget
that simulates a vertex v with k arcs (v,a) and 2V arcs (v,b) we proceed as in
Figure 3.7]

Gap(1,2V)

N0

I Gas(1,2V)

O

Figure 3.7: Polynomial length gadget that routes the k first particles ar-
riving at v towards a and the following particles towards b
with k being the number of gadgets G, ;(1,2%). We denote
such a gadget by G, ,(k, k - 2V).

Gap(1,2V)

In this section, we will use this gadget to force the k first particles entering
a vertex v to be routed to a specific neighbour of v and then the 2V following
particles routed to follow the initial rotor order at v as illustrated in Figure [3.8]

72

o
O (u)~ Gk, 2V) @/ (b)

@ -
@ @

Figure 3.8: Construction that forces the k first particles initially routed
atv to reach d and the 2"V next particles to follow the original
relative rotor order at v without d.

3.5.2 . Proof that (x,0) — (x,0') and (x,0) ~ (x,0') are NP-
Complete
This subsection proves that both (x,0) — (x,0’) and (x,0) ~ (%,0') are
NP-Complete. First we prove this result in the stopping case and then in the
strongly connected case. Consider the problem SAT whose complexity was shown
to be NP-Complete by Cook’s Theorem in [22].

3.5.2.1 Case where the graph is stopping

We recall that the CNF version of the SAT problem is a satifiability problem of
a boolean formula of the form: F' = Cy A Cy A --- A Cp, with each clause C}
being like Cj = (lj1 V lj2 V.-V ljk) with literals ljp € {xi,x}-,i < TL} and with
each z; being a boolean variable. For such an instance the question is whether
there exists an assignment of (z1,2,...,2,) such that F is satisfied. Let I'"(z;)
(resp., I'"(x;)) be the application that associates to each variable the number of
times variable x; appears positively (resp., negatively) in the boolean formula F'.
And let T'(z;) = max(T'" (z;), T~ (z;)).
This subsection presents the proof of the following Lemma:

Lemma 3.5.1. Problem (x,0) — (x,0") is NP-Complete on stopping graphs.

We propose the following reduction to show that any instance of the CNF SAT
problem can be solved by solving an instance of (x,0) — (%,0’). We detail the
reduction for problem (x,0) — (*,0”) when the graph has sinks but the case where
the graph is sinkless and strongly connected is very similar as we will explain later.

We construct a directed rotor graph G as follows. Each boolean variable x;
of the instance of the SAT problem we are considering is represented in G by a
vertex X;. Consider a global sink S. Each clause Cj is represented in G by a
vertex Cj. For each clause C}, for each variable z; € C; we add an arc from X;
to C;. Let us add one arc from each clause C; to S. Then, let us add I'(z;) arcs
from X; to S. Now, for each variable z;, let us add two sink vertices true; and
false;. Add one arc from X; to true; and one arc from X; to false;. The rotor

73

Figure 3.9: Construction of the graph G for the boolean formula F' =
(x1Va3) A (1 Vi) AN(x1 Vas) Azs. Note that this construction
is for a 2-SAT problem for better understanding, but the idea
is the same for the general SAT problem.

order at each C; only has one arc so there is no choice. A rotor order at X is a
rotor order compatible with the following partial order:

1. All arcs from X; to a clause Cj where x; appears positively
2. max(I'~(x;) — I'"(x;),0) arcs from X; towards S

3. The arc from X; to false;

4. All arcs from X; to a clause C; where z; appears negatively
5. max(I'"(x;) — ' (x;),0) arcs from X; towards S

6. The arc from X; to true;

Note that there are exactly I'(z;) arcs while summing (1) and (2) as well as when
summing (4) and (5).

We give an example of this construction in Example [3.9]

Let o be the particle configuration of G such that for all i < n and for all j < m,
o0(Cj) = -1, o(X;) =I'(x;) + 2 and o(true;) = o(false;) = o(S) = 0.
Figure shows an example of o on the graph G of the previous example.

Let o’ be the particle configuration on G for which ¢'(X;) = o/(C;) = 0,
o' (true;) = o'(false;) =1 for all i <n and j < m and ¢/(S) = E;<,I'(2;) — m.
This is a particle configuration where all particles are on the sink vertices.

We show first that if there exist p and p’ two rotor configurations on Gz such
that there is a legal routing sequence r from (p, o) to (p/,o’) then there exists an
assignment of (x1,x9,...,x,) such that F is satisfied.

Note that as there are only I'(x;) + 2 particles on X;, and as there are I'(z;)
arcs in the rotor order at X; between the arc directed towards false; and the arc

74

Figure 3.10: Particle configuration o on the graph G for the boolean
formula F = (z1 V @3) A (@1 V 2@2) A (21 V 23) A 235.

directed towards true;, since the graph is acyclic, in order to reach configuration
o’ such that ¢’(true;) = o’(false;) = 1 from a rotor particle configuration (p, o),
we should have p(X;) equals to one of these two arcs. Thus, the choice between
those arcs represents the valuation of variable z;, either true or false. Obviously, if
there exists a routing sequence 7, then all vertices C} receive at least one particle
in the sequence. Given what we have already said on p, this only happens if there
exists an assignment of (z1,x2,...,2,) such that each clause is true. Hence,
we showed that if there is a solution to problem (x,0) — (*,0’), then F is
satisfiable. Figure presents a rotor configuration on Figure that proves
that (x,0) — (*,0”) has a solution and so that the formula F is satisfiable.

Now, it remains to show that if there is a solution to the SAT problem, then
there is a solution to problem (x,0) — (x,0’) on the graph Gr with o and ¢’
defined as before.

Assume that there is a solution to the SAT problem, then, there exists a
valuation ¢ of (1, z2,...,x,) that satisfies F.

Let p be a rotor configuration such that p(X;) = true; if ¢(z;) = T'rue and
p(X;) = false; if ¢(z;) = False. By construction, we have (p,o) — (x,0”) on
G’ which proves that (x,0) — (*,0") has a solution.

This shows that (x,0) — (x,0”) is NP-hard and as we stated at the beginning
of this chapter, this problem also belongs to NP. Thus, we have that (x,0) —
(x,0") is NP-Complete.

Note that the graph constructed by this reduction is simple and acyclic, hence
even for really simple class of graphs this problem remains NP-Complete.

Next, we show that a restricted version of (x,0) — (x,0) is also NP-
Complete as it will be an important result for the proof that (x,0) ~ (x,0")
is NP-Complete.

75

Figure 3.11: The rotor configuration depicted in red solves problem
(x,0) — (*,0’) obtained by our construction from the
boolean formula F = (1 V @3) A (21 V @2) A (21 V 23) A 23.
This shows that F' is satisfiable.

Proof that (x,0) — (x,0’) is NP-Complete on stopping graphs when
o >0and d'|y, = 0|y,

The purpose of this paragraph is to show that the previous reduction holds for
problem (x,0) — (x,0’) where o > 0 and o’|y;, = 0|y,. We will further use this
result to show that (x,0) ~ (x,0’) is NP-Complete.

NS

Gisyes(1,2Y) @
v

Figure 3.12: Insertion of gadget Gs., e (1,2") to remove vertices v with
o(v) < 0 of our previous construction but keeping track of
the fact that a particle has visited C; or not.

Consider the previous reduction where we add a sink s¢; to each clause vertex
C; and we add the gadget of paragraph before C; with a = s, and b = Cj
as illustrated in Figure [3.12]

In that case, let o be the particle configuration on G g such that for all vertices
X;, 0(X;) = T'(z;) +2 and for all other vertices v, o(v) = 0 (see Figure[3.13). Let
o’ be the particle configuration on G such that o'|y, = 0, 0/(S) = i<, ['(z;)—m
and o/(s) = 1 for all other sink vertex s.

Since the graph is acyclic, by replacing any vertex C; with gadget chj o, (1, 2M)
with 2V > n-Yo<i<nl'(x;), we can ensure that the only particle that will be routed
to vertex Sg; in a maximal routing from o is the first one arriving at C;.

76

X3 X1 X2

0 e 4 0 e 4 0 e+ 3
0 0e 0
GSC4,C4(1’ 2N) GSCI ,C1 (17 2N)

l ? G, 0n(1,2%)
Ch l
Sc, Z
Ca |0

Figure 3.13: Reduction from (x,0) — (%,0’) when o > 0 and ¢'|y, =
0|y, to MP-ARRIVAL.

Then, the reduction follows from the same arguments than in the previous
paragraph. This proves the following Lemma:

Lemma 3.5.2. Problem (x,0) — (*,0’) is NP-Complete on stopping graphs
when o > 0 and o'|y, = 0|y,.

Problem (x,0) ~ (*,0’) on stopping graphs

Now, we show that problem (x,0) ~ (x,0’) is also NP-Complete. By the same
argument than for MP-ARRIVAL and Linear-ARRIVAL, we have the following
lemma:

Lemma 3.5.3. Problem (x,0) ~ (x,0’) is NP-Complete on stopping graphs
when o > 0 and o'|y, = O|y,.

Proof. If (x,0) — (x,0’), then clearly(x, o) ~ (x,0’). Conversely, since ¢ > 0,
forallp € R(G), thereis alegal routing sequence from (p, o) to a configuration
(p', ") with ¢”|y;, = 0]y, which implies by Lemma[2.3.12that ¢’ = ¢”. This
shows the equivalence of problems (x,0) ~ (x,0’) and (x,0) — (x,0’) when
o > 0and ¢'|y, = 0]y, on stopping graphs. And, by Lemma|3.5.2{we have that
(x,0) ~ (*,0") is NP-Complete when ¢ > 0 and o'y, = 0]y;. O

Finally, since problem (x,0) ~ (,0") with o > 0 and ¢’|y;, = Oy, is a subcase
of problem (x,0) ~ (x,0”), we have the following theorem:

Lemma 3.5.4. Problem (x,0) ~ (x,0’) is NP-Complete on stopping graphs.

77

Figure 3.14: Construction of the strongly connected version of the
graph G for the boolean formula F' = (1 Va@s) A(271 Va@2) A
(z1 V z3) A z3. Numbers depict the corresponding particle
configuration o.

3.5.2.2 Case where the graph is strongly connected

Now that we have proved that (x,0) — (x,0") and (x,0) ~ (x,0’) are both NP-
Complete on stopping graphs, this subsection presents the proof of the following
lemma:

Lemma 3.5.5. Problem (x,0) — (x,0’) is NP-Complete on strongly connected
graphs.

Consider an instance of problem (x,0) — (x,0’) on a strongly connected graph
G. We use a construction similar to the stopping case but for each X; we add one
arc from S to X; in Gp. And we change o such that o(S) = =<, (T'(z;) + 2)
and o(true;) = o(false;) = —1 for each i < n. This guarantees that when
particles reach vertex S, vertex false; or vertex true;, they cannot be routed
anymore since there are ¥;<,(I'(x;) + 2) particles total in the system. We also
change ¢’ such that ¢/(S) = —%;<,(T'(z;) + 2) + Zi<n[(2;) —m = —2%xn—m
and o' (true;) = o/ (false;) = 0.

Figure[3.14]is an example of construction of G and o for the sinkless strongly
connected case.

Since S also has to receive exactly ¥;<,I'(x;) — m particles, this case is thus
equivalent to the stopping case. Hence, we have our result.

Theorem 3.5.6. Problem (x,0) ~ (x,0") is NP-Complete in the following classes
of graphs:

78

* G is stopping (Lemma3.5.4)

* Gis stopping, o > 0 and ¢’|y, = 0|y, (Lemma[3.5.3)
Problem (x,0) — (x,0") is NP-Complete in the following cases:

* G is stopping (Lemma3.5.1)

* G is stopping, simple and acyclic (Lemma[3.5.1)

* Gis stopping, o > 0 and ¢’|y, = 0|y, (Lemma[3.5.2)

* G is strongly connected (Lemma3.5.5)

Restricted case of (x,0) — (x,0’) on strongly connected graphs

Note that when ¢’ is positive and |o| = |0/|, by Lemma [2.4.7} it is clear that
(x,0) — (*,0") always has a solution on strongly connected graphs.

3.6 . Problem (p,0) = (x,0")

This section is dedicated to studying problems (p, o) ~ (*,0’) and (p,0) —
(%,0"). We demonstrate that these problems are not only equivalent to each other
but also equivalent to MP-ARRIVAL.

In the first part of this section, we establish the equivalence between the linear
version of the problem (p, o) ~ (x,0’) and MP-ARRIVAL. We demonstrate that
these two problems are equivalent, meaning that a solution to one problem can be
directly translated into a solution for the other problem.

In the second part of this section, we focus on establishing the equivalence
between (p,0) — (x,0’) and MP-ARRIVAL.

To prove these equivalences, we examine several subcases of these problems as
outlined in Figure |3.15]

3.6.1 . Equivalence between (p,0) ~ (x,0’) and MP-ARRIVAL

Lemma 3.6.1. Problems (p,o) ~ (x,0’) and Linear ARRIVAL are equivalent on
stopping rotor graphs.

Proof. Since there is no restriction on the routing sequence, we have (p, o) ~
(x,0") & (p,o0 —0') ~ (x,0v).

Now, consider a configuration o+ ~ Oy such that o* (v) +o(v) — o’ (v) > 0
forallv € Vj,.

We show that such a configuration always exists by using the same con-
struction than in the proof of Lemma Namely, consider the strongly
connected graph G’ = (Vj U Sy, A, h, t,8) such that Vj = VU Sp, S = 0 and
A’ = AU Ag, with Ag, being a set with exactly one arc from each sink in S to
each vertex of V. Let pgr be the rotor configuration such that for any vertex

79

(p,0) ~ (x,0") (p,0) = (¥,0")

Restricted Restricted
version Lemmal3.6.1 version Lemma[3.6.7]
Linear ARRI\IAL: MP-AIiRIVAL:
(p.0) ~ (+,0) Theorem[3.110] (5) — (x,0)
with o > 0 witho > 0
and O',|V0 :0|V0 and O'/|V0 :0|V0

Figure 3.15: Equivalence and Complexity Results for problem (p, o) =
(x,0’). An arrow represents a polynomial reduction from
the problem at the tail to the problem at the head.

v € Vp we have per(v) = p(v) and for any other vertex s € Vj \ Vo, pz(s) is
any outgoing arc of s. Let p be a positive period vector of G’.

Consider the firing sequence from (p,0[y;) to some (p, ot) with o €
Py+(G') such that each vertex s € Sy is positively fired exactly p(s) times in
r and none of the other vertices are fired. Consider graph G once again. By
construction, for any v € Vp, we have ot (v) > 0 because p is positive. Hence,
by choosing p big enough, we can ensure that 0" (v) + o(v) — o’ (v) > 0 for all
v € V.

Thus, we have (p,0 — o) ~ (x,0y) < (p,0 — o’ + o) ~ (*,0y), but
problem (p,0 — o’ +07) ~ (x,07) ~ (*,0y) is an instance of (p, o) ~ (o', 0’)
with o]y, > 0 and o’|y, = Oy, which is exactly Linear-ARRIVAL. O

Corollary 3.6.2. Problems (p,c) ~ (*,0’) and MP-ARRIVAL are equivalent.

Proof. By Lemma[3.6.1 we have (p,0) ~ (*,0’) < Linear-ARRIVAL. And by
Theorem [3.1.10} we have that Linear ARRIVAL and MP-ARRIVAL are equiva-
lent, hence we have our result. O

3.6.2 . Equivalence between (p,0) — (%,0’) and MP-ARRIVAL
At first glance, MP-ARRIVAL and (p,0) — (x,0’) may seem very similar.
However, there is a key difference between them: in MP-ARRIVAL we proceed all

legal routings whereas in (p,0) — (*,0") we may have to avoid proceeding some
legal routings in order to reach ¢’. This is illustrated in Example [3.16]

80

(a) In this example there is only one rotor configuration p, and we choose o such that o(A) = 1,0(B) =
0,0(C) =—2and o(D) =1.

@@C@{@

(b) We depict the rotor particle configuration (p’, o’) with p’ = p and o’ =0,0'(B) = 1,0'(C) =
—lando’(D)=0.

Figure 3.16: Even if proceeding successive routings on vertices A, B
then D is alegal routing sequence, configuration (p’, o) will
never be reached by such a sequence. However, it suffices
to route successively A and D in any order to reach config-
uration (o', o’).

But, we can restrict ourselves to some routing sequences that avoid proceeding
too many routings to reach ¢’: ¢’-routing sequences.

Definition 3.6.3 (¢/-routing sequence). Let py € R(G) and let ¢’ be a particle
configuration on a graph G, a o’-routing sequence is a legal sequence of ro-
tor particle configurations (po,c0), (p1,01)," , (pn,on) Such that for any i <
n there exists a vertex v € V such that min(o;(v) — o'(v),04(v)) > 1 and
(pit1,0i+1) = routing} (p;, ;). We denote the fact that (pn, oy,) is obtained from

(po,o0) by a o’-routing sequence with (py, 00) <= (pn, on).

Proposition 3.6.4 (Existence of ¢’-routing sequence). Given a rotor particle
configuration (p, o) and a particle configuration o',

3 € R(G). (p.0) = (0, 0') & Fp € RG), (p,0) D> (o, ")

and all vertices v € V are routed less times in (p, o) <+ (x,0') than in (p, o) —
(+,0").

Proof. It is pretty clear that if (p, o) LN (x,0') then (p,0) — (*,0’). Now,
we prove the other implication. Assume that (p,0) = (*,0’), with r being
a routing sequence with routing vector R. Now, consider r,» a maximal r-
bounded ¢’-routing sequence starting from (p, o) with routing vector R,. This
is @ maximal legal routing sequence such that for all v € V we have R, (v) <
R(v). Let (p1,01) be the rotor particle configuration obtained by applying r,
to (p, o). Since r,/ is maximal, there is no more o’-routing doable at (p1, 01).
Assume that o1 # ¢/, then, since |o1| = |o’| there exists a vertex v such that
o1(v) > o'(v).

Suppose that v € S, since sink vertices cannot be routed, this means that
there exists some ingoing neighbour of v that has been routed more times in
ro» than in r which is a contradiction with the fact that r, is r-bounded.

81

Consider now that v € Vj. Since o1(v) > ¢’(v) and there is no ¢’-routing
doable at v, we have either R,(v) = R(v) or o1(v) < 0.

In the first case, remark that v can only gain particles when other ver-
tices are routed. Hence, since o1(v) > ¢’(v), completing R, up to R can only
increase the number of particles on v and it will not be equal to ¢/(v) after
proceeding R which is a contradiction.

In the second case, since o1(v) < 0 and o1(v) > o’(v), then, as long as
o1(v) < 0, completing R, up to R can only increase the number of particles
onv and if atsome pointo;(v) > 0, the number of particles on v may decrease
but never below zero. Hence it will not be equal to ¢/(v) after proceeding R
which is a contradiction. This also proves that R, < R. O

An example of o’-routing sequence is depicted on Figure [3.17|

(a) Let ¢’ be the particle configuration o(A) = 0,0(B) = 1,0(C) = —1 and (D) = 0. In the configura-
tion depicted in this example, there are two Iegal o’ routlngs doables, one at A and one at D.

AC@D

(b) Rotor particle configuration obtained after proceeding a o’-routing at A. In this configuration, there is
an unique legal o’-routing doable which is at D.

A B C D

Oa0=0520

(c) Rotor particle configuration obtained by proceeding a ¢’-routing at D. From here there is no more
legal o’-routing.

Figure 3.17: Presentation of a ¢’-routing sequence on the example of

Figure

Corollary 3.6.5 (Maximal ¢’-routing is unique). Let R, be the routing vector of
a maximal o’-routing sequence (p, o) ELN (p1,01) and R, be the routing vector

. . R
of a maximal o'-routing sequence (p,0) —= (p2,02). Then (p1,01) = (p2,02)
and R, = RY.

Now we have all necessary results to show the following theorem:

Theorem 3.6.6. Problem (p, o) — (*,0") is equivalent to MP-ARRIVAL.

3.6.2.1 Reduction of (p,0) — (x,0’) to MP-ARRIVAL

Consider an instance of the reachability problem : (p,0) — (%,0’). Let t(v) =
o'(v) — o(v). We first construct a new graph G’ from G by adding a sink s, for

82

each vertex v € Vj such that o(v) < 0 and for each vertex v with ¢(v) > 0 and
o(v) > 0. Then, for each vertex v :

« if o(v) <0, add a gadget G5, ,(|o(v)],2"V) before v as illustrated in Fig-
ure 3.12

« if t(v) > 0 and o(v) >0, add a gadget G5, ,(t(v),2") before v.

Let oo be a particle configuration such that for all v € Vj with o(v) < 0,
oo(v) = 0, for all other vertices w € V' we have o¢(w) = o(w), and for all gadgets
00(Gs,v) = 0. Let og be the particle configuration on G’ such that for all s, € S,
we have og(s,) = o’(v) — o(v) and for all v € V we have og(v) = 0.

This construction is illustrated on Figure [3.18]for the example of Figure [3.16

A

@—» GSB,BIL 2M) H@—» GSC,C((DQ, 2M)
o @ o) ’

SB SC’

Figure 3.18: Reduction from the instance of problem (p,o) — (*,0")
presented on Figure[3.16]to an instance of MP-ARRIVAL on
agraph G'.

The main idea is that each sink vertex s, captures the right amount of particles
that should be on v at the end of the routing. This transformation works well
unless a gadget G, , is routed too many times and the vertex s, receives more
than og(s,) particles. By Corollary [3.1.6] the number of routings at v (hence at
Gy,) cannot be higher than b = |o| - MAX ey (|AT(v)]) - Ve, Hence, by
choosing N > log(b) for our gadgets, we ensure that there cannot be more than
os(sy) particles routed up to sink s,.

Lemma 3.6.7. There is a polynomial reduction from problem (p, o) — (x,0’) to
MP-ARRIVAL on stopping graphs.
3.6.2.2 Problem (p,0) — (x,0’) on strongly connected graphs

Lemma 3.6.8. Problem (p,o) — (x,0’) on strongly connected graph is equiva-
lent to problem (p, o) — (x,c") on stopping graphs.

Proof. First, consider an instance of problem (p,o) — (x,0’) on a stopping
graph G. Let o, be the particle configuration such that os.|y, = oly, and
such that for all sink vertex s € Sy we have o,.(s) = o(s) — k with k = |V}] -

83

MAX ey |o(v)|. Let ol be the particle configuration such that o’,.|v, = 0’|y,
and such that for all sink vertex s € Sy we have o¢/.(s) = o'(s) — k. Then
let G’ = (Vy U S, A’) be the strongly connected graph where we add one
outgoing arc to each sink vertex towards any other vertex. Since there are not
enough particles in the system to make sinks positive, they are never routed
in both G'and G. So, (p,0) — (x,0') on G if and only if (p, 05c) — (x,0%,).

Now, consider an instance of problem (p,o) — (*,0’) on a strongly con-
nected graph G. Then, we can use the same construction than in paragraph[3.6.2.1
to construct a stopping graph G’ such that there is a solution on G’ if and only
if there is a solution on G.

0

Then by Lemma we have the following Lemma.

Lemma 3.6.9. Problem (p,o) — (x,0’) on strongly connected graph is equiva-
lent to MP-ARRIVAL.

Our results of this section can be summarized by the following theorem.

Theorem 3.6.10. Problem (p,o) ~ (x,0') is equivalent to MP-ARRIVAL in the
following classes of graphs:

* G is stopping (Corollary3.6.2);

« G is stopping, o > 0 and o'|y, = 0|y, which is exactly problem Linear

ARRIVAL (Theorem3.1.10).
Problem (p, o) — (*,0") is equivalent to MP-ARRIVAL in the following cases:
* G is stopping (Lemma 3.6.6);
« G is stopping, o > 0 and ¢'|y, = 0|y, which is exactly MP-ARRIVAL;
* G is strongly connected (Lemma[3.6.9).

3.7 . Problem (x,0) = (', o)

This section provides a summary of our results on specific subcases of the
problem (x,0) = (p’,0’). Although we have already established some reductions
for general cases, further properties are needed to determine the complexity of the
problems (x,0) — (p’,0’) on stopping graphs and strongly connected graphs. We
are actively working on this and plan to publish detailed results in the near future.

3.7.1 . Problem (x,0) ~ (p,0")
Lemma 3.7.1. Problem (x,0) ~ (o', d’) is equivalent to MP-ARRIVAL.

Proof. Since (x,0) ~ (p/,0’)and (p, o) ~ (x,0’) are equivalent by Lemma|3.4.1
and since (p, o) ~ (*,0’) and MP-ARRIVAL are equivalent by Corollary[3.6.2}
we have that (x,0) ~ (p’, ') is equivalent to MP-ARRIVAL. O

84

3.7.2 . Problem (x,0) — (p/,0')
Restricted case of (x,0) — (¢, ') on strongly connected graph

Sadly, the restricted case of (x,0) — (p',0’) when ¢’ is positive, |o| = |o|
and the graph is strongly connected cannot be solved as easily as for problems
(p,o) = (*,0'). Figure shows an example for which there is no solution for
problem (p, o) — (*,0") on a strongly connected graph.

(a) Particle configuration o

0500

(b) Rotor particle configuration (p’, o’

Figure 3.19: Instance of problem (x,0) — (p’,0’) with ¢’ > 0 and |o| =
|c’| for which there is no rotor configuration p such that
(p,0) = (p',0'). Indeed, since the last movement of the
particle before reaching C necessarily is a positive routing
at B, the ending rotor configuration at B has to be (B, A).

But, in the case where the graph is sinkless and the rotor particle configuration
(p',0’) is recurrent, we have the following property.

Lemma 3.7.2. Given a particle configuration o and recurrent rotor particle con-
figuration (p', o) such that |o| = (x,0) — (p/, ") always has a
solution.

Proof. By the general case for the same problem, we have that there always
exists a rotor configuration p such that there is a routing vector (non-necessarily
legal) that transforms (p, o) in (p/, 0’). We have (p,o) ~ (p',0"). Since (p', ")
is recurrent, we also have |¢’| > 0 and |o| > 0. Thus, by proceeding a long
enough legal routing sequence from (p, o), we reach some rotor particle con-
figuration (p*, 0*) that is recurrent. And since there exists a legal routing se-
quence between all recurrent rotor particle configurations within the same
equivalence class (Corollary .5.16). Then, there is a legal routing sequence
from (p, o) to (o', o’).

O

3.7.2.0.1 Problem (x,0) — (p/, o’) with SP-configurations on stop-
ping graphs

Recall that problem (p,0) — (*,0’) on a stopping graph with o being a SP-
configuration and ¢’ being such that o’|y;, = 0|y, is exactly SP-ARRIVAL, hence,

85

it belongs to NP N co-NP. Here, we prove that the "reverse" problem is easy.

Proposition 3.7.3. Given a SP-configuration o and a particle configuration o’
such that 0’|y, = Oy, there exists a solution to problem (x,0) — (p/,0’) if and
only if there is a directed path in G(p'~) from w to any vertex in S.

Proof. First assume there exists a directed path from w to a vertex s € Sy in
G(p/~). We can then construct a legal routing sequence as follows: let p be
the configuration where p(v) = 0, (p’'(v)) for all vertices v in the path from w
to s, and p(v') = p/(v') for all other vertices v’. Then, we can route positively
the vertices in the path from w to s one after another, which may lead the
particle to the sink.

Conversely, suppose thereis a legal routing sequence from (x, o) to (p/, o’).
This means that the particle may reach a sink s, so the last vertex the particle
visits before reaching s must be in ;. Moreover, the particle can only visit
vertices v such that there is a directed path from v to s in G(p'~). Therefore,
there is a directed path from w to this last vertex in G(p'~), and by transitivity
of the directed edges, there is a directed path from w to a vertex in Sp.

O

3.8 . Legal problems with non-fixed particle configuration(s)

In this section, we will discuss the common results for three problems: (p, %) —
(o', 0", (p,o) = (p/,*) and (p,*) — (p/,*). These problems share the property
that at least one of the particle configurations o or ¢’ is not known in advance.

Always solvable cases

It is worth noting that the problem (p,*) — (o', %) always has a solution, both
for stopping and strongly connected graphs. This is because we can use the same
argument as in the general case. Namely, we can choose a particle configuration
o such that o(v) > | AT (v)| — 1 for all v € Vj, which guarantees the existence of
a legal routing sequence. Then, we can align the initial and final configurations p
and o’ using the positive aligning routing vector R™ (p, p/).

Furthermore, this also implies that for problem (p,c0) — (', %), if o is such
that o(v) > | AT (v)| — 1 for all v € Vj, then there always exists a legal routing
sequence from (p, o) to (p/, *).

Note that there is no similar result for problem (p,x) — (p’,0’). However,
we have some results for this problem in the particular case where (p’,c’) is a
recurrent rotor particle configuration.

Case of a recurrent rotor particle configuration

86

Proposition 3.8.1. Given (p', ') a recurrent rotor-particle configuration (Defini-
tion on a strongly connected graph with a particle configuration o', then
there is a particle configuration o such that (p, o) — (p',0’) is legal.

Proof. Consider the aligning vector R that transforms p into p/. Then, we
choose a particle configuration o(such that og(v) = R(v) for all v € V4.
Next, observe that there exists a legal routing sequence from (p, og) to some

(p', 0() using the routing vector R. As a result, we have (p, 00 — oy)) R (0,0).

Therefore, we also have (p, o9 — of, + o’) £ (p',0"). Since (p', ') is recurrent,
then, by Corollary[2.5.16] we have constructed a legal routing sequence from
(p,00 — oy + ') to (p, o). O

While we have obtained some initial results in studying these problems, there
is still much more to explore and investigate.

Future Work

This chapter established the complexity of several reachability problems within
our rotor-routing framework (see Table[3.2). In particular, we were able to demon-
strate that MP-ARRIVAL is equivalent to the reachability problem (p,0) —
(x,0”). And this result allowed us to prove that (p,o) — (*,0’) and (p,0) ~
(x,0") are equivalent. This finding is encouraging because it indicates that the
complexity of MP-ARRIVAL does not come from the legality constraint but is
inherent to the rotor-routing mechanism and the graph topology. This reinforces
our approach of studying MP-ARRIVAL on specific graph topologies to enhance
our understanding of the problem. Recently, we solved MP-ARRIVAL for Path
Multigraphs, which has been published in [6]. This idea can be pursued for other
problems in this chapter. Exhibiting reductions to restricted versions of them can
provide insights into their complexity and identify key factors that make them
challenging. We have an element of answer for problem (x,0) — (*,¢”) which is
NP-Complete even for simple acyclic stopping graphs.

Since the goal of this chapter was also to gain a better understanding of
ARRIVAL, we summarized all results of this chapter concerning ARRIVAL in
Table B3l

While we have obtained complexity results for some problems of Table [3.2] or
at least for some subcases, there are still general problems for which we cannot give
a complexity result yet, notably the "dual" version of MP-ARRIVAL (x,0) —
(p',0"). We conjecture here that (x,0) — (p/,0’) is also equivalent to MP-
ARRIVAL.

We also demonstrated that certain problems listed in Table [3.2] always have a
solution. However, we did not delve into the fact that finding this solution can be
complex and may even require exponential time to compute.

87

Legal routing | General routing | Reachability Problem

~Sw-ARRIVAL
Single Particle and
\-SP-ARRIVAL | Linear ARRIVAL+~+—(p,0) — (x,0")

Multiple Particle | MP-ARRIVAL

Table 3.3: Relations between problems of ARRIVAL and the reachabil-
ity problem (p, o) — (*,0’). Arrows depict direct reductions
between problems (e.g., SP-ARRIVAL is a restriction of MP-
ARRIVAL to instances with a single particle). These reduc-
tions also proved that all problems in this table belong to NP
N co-NP since Linear ARRIVAL belongs to NP N co-NP.

Finally, as an open problem, it is possible to study the equivalence class versions
of these problems. As an example, consider the following problem: given [p1] a
rotor class, [01] and [o2], two particle classes, does there exist p € [p1], o € [01]
and ¢’ € [o9] such that for some p' € R(G) we have (p, o) — (0, 0’).

88

4 - SP-ARRIVAL on
Treelike-Multigraphs

All results presented in this chapter have been published in [3]. We only con-
sider legal routing sequences, stopping graphs with Sy # () and SP-configurations,
namely configurations such that for all vertices v € V, we have o(v) = 0 except
for one vertex w € V for which o(w) = 1. Note that in this context of legality,
we simplify the writing of operation routing™ by routing as there is no risk of
confusion. In the same way, a positive cycle push will be denoted by a cycle push
as there is no risk of confusion either.

We recall the following definition of a rotor SP-configuration. Let uw € V.. We
denote by (p,u) the rotor SP-configuration such that the rotor configuration on
the graph is p and the particle configuration is such that the single vertex with a
particle on it is w.

In this context we give an alternative definition of the rotor walk defined in
Chapter 2 This definition is commonly used in the literature when dealing with
SP-configurations.

Definition 4.0.1 (Rotor Walk). A rotor walk is a (finite or infinite) sequence of
rotor SP-configurations (p;, u;)i>o, which is recursively defined by

(pi+1, ui+1) = routing(p;, u;) with u; € V being the only vertex with a particle
on it at step i.

The properties and definitions presented below are restatements from Chap-
ter 2 which have been adapted to the context of this chapter.

The following lemma is a classical result on rotor walks (cf Lemma 16 in [41])
and is a reformulation of Lemma adapted to the context of this chapter.

Lemma 4.0.2 (Finite number of steps (Lemma 16 in [41])). If G is stopping then
any maximal rotor walk in G is finite.

The main objective of this chapter is to study the sink that will be reached by
a maximal rotor walk from a SP-configuration, if the rotor walk is finite.

Definition 4.0.3 (Exit Sink). Let w € V, let p be a rotor configuration, if the
maximal rotor walk starting from (p,w) is finite in G, then the sink reached by
such a rotor walk is denoted by S (p,u) and called exit sink of u for the rotor
configuration p in G.

Definition 4.0.4 (Exit Pattern). For a rotor configuration p on a stopping rotor
graph G, the exit pattern is the mapping that associates with each vertex w € V,
its exit sink Sc(p, w).

89

4.1 . SP-ARRIVAL and Complexity Issues

With our notations, SP-ARRIVAL (see [31]) can be expressed as the following
decision problem:

In a stopping rotor graph G, given a vertex
u€V,and s € .5,
does S (p,u) =s 7

Problem SP-ARRIVAL belongs to the complexity class NP N co-NP, as
demonstrated in Section 3

4.1.1 . Cycle Pushing

In order to speed-up the rotor walk process, we use the positive cycle push
operation to avoid computing every step of the walk.
We recall the following lemma that we have already stated in Chapter 2]

Lemma 4.1.1 (Finite Number of Cycle Pushes). Given a stopping rotor graph,
any sequence of cycle pushes is finite.

The previous result is well known in rotor walk studies ([50]). It implies that,
by processing a long enough sequence of successive positive cycle pushes, the re-
sulting configuration contains no directed cycles, i.e., we reach the only acyclic
configuration within the same rotor class as the initial rotor configuration (Propo-
sition [2.3.7)). Such a sequence of cycle pushes is called maximal.

The following result can be found in [41] but it is also a direct consequence of
Proposition [2.4.9]

Lemma 4.1.2 (Exit Pattern conservation for Cycle Push ([41])). If G is a stopping
rotor graph, for any rotor configuration p and configuration p’ obtained from p
by a cycle push, the exit pattern for p and p' is the same.

Recall that by Proposition [2.3.7} the rotor configuration obtained by a maximal
cycle push sequence is unique.

Definition 4.1.3 (Destination Forest). We call the rotor configuration obtained
by a maximal cycle push sequence on p the Destination Forest of p, denoted by
D(p) as it does not depend on the starting particle configuration.

The destination forest has a simple interpretation in terms of rotor walks: start
a rotor walk by putting a particle on any vertex of a stopping graph G; consider a
vertex u € Vj; if the particle ever reaches u, it will leave u by arc D(p)(u) on the
last time it enters u.

In an acyclic configuration like D(p), finding the exit pattern is very simple.
We use the same kind of argument as for the subcase of problem (x,0) — (p/, 0”)
where o is a SP-configuration, precisely:

90

Lemma 4.1.4 (Path to a sink). If there is a directed path between u € V and
s € Soin G(p) then S (p,u) = s. It follows that from D(p) one can compute the
exit pattern of p in time complexity O(|V|).

This gives us a new approach since computing the exit pattern of a config-
uration p can be done by computing its Destination Forest D(p). Observe that
by computing the destination Forest, we are solving a problem harder than SP-
ARRIVAL because we compute the exit sink of all vertices simultaneously.

(a) Red Rotor Configuration p (b) The red configuration in (c) Destination Forest (de-

in red lines with rotor order dashes is obtained from a picted by red arcs in

on each vertex described by Cycle Push on the cycle dashes) computed by two

increasing numbers. {(uo,u2),(u2,u1),(u1,up)} successive cycle pushes on
p.

Figure 4.1: Computation of the Destination Forest by successive cycle
push operations.

Remark. Pushing a cycle of length k is a "shortcut" in a rotor walk as it allows
only one operation to simulate k steps of the rotor walk. However, the strategy
consisting of pushing cycles until the Destination Forest is reached (which is always
the case if the graph is stopping) can still take an exponential time. Indeed, let us
consider the instance depicted on Figure[3.2|again. As each cycle in G(p) is at most
of size two, we are at most dividing by two the number of steps used in the maximal
rotor walk.

So, processing successive cycle pushes is not a suitable strategy to solve SP-
ARRIVAL efficiently in general. However, the notion of equivalence classes that
we stated in Chapter [2] is based on cycle pushing. So we state a characterization
of a rotor configuration equivalence class in this chapter’s context.

Lemma 4.1.5 (Equivalence Class [41]). Two rotor configurations py and ps are
in the same equivalence class if they have the same Destination Forest.

This is a direct consequence of Proposition [2.3.7]
The following lemma was stated in [41], under the name Corollary 14. It shows
that equivalence of configurations is preserved by the routing of a particle to a sink.

Lemma 4.1.6 (Corollary 14 in [41]). Let p1, p2 be two equivalent configurations.
Let p! and pl, be the rotor configurations obtained respectively from (p1,u) and
(p2,u) by maximal rotor walk with u being a vertex of V. Then p} and pl, are
equivalent.

91

Proof. Since p; ~ po, there exists a cycle push sequence from p; to p2 and
by Proposition[2.4.9] we then have that the loop-erased paths of the maximal
rotor walk from (p1,u) and (p2,u) are the same. Hence, p} and pl, are the
same on this path and the only difference may be circuits that were already
existing in p; and ps, but since p; ~ ps, p2 those cycles can be obtained from
one another by a cycle push sequence, thus we have that p} ~ pf,. 0O

4.2 . Simple Path Graph

In this section we give some results on a particular class of graphs in order to
give intuition behind our following work on trees. The simple path graph on n + 2
vertices is defined by V' = {sg, u1,us,...,un,s1} and each u; for i € {1,..,n}
has an arc going to the vertex on the left and another one going to the vertex on
the right. Define then Vj = {uy,uo, ..., u,} together with Sy = {so, s1}.

See for the simple path graph with n = 4.

In this section we will not only show that SP-ARRIVAL can be solved in linear
time on simple path graphs but that we can solve MP-ARRIVAL by calculating
the exit pattern for p in linear time, i.e., solving SP-ARRIVAL simultaneously for
multiple particles.

However, note that the maximum number of steps of a rotor walk (or a cycle
push sequence) in a simple path graph (as the one presented at the beginning
of Chapter |1)) is not exponential but quadratic in n. Indeed, one can check that
the starting configuration that maximizes this number of steps is the configuration
where all arcs are directed towards the central vertex uf, o1 (which is also the
starting vertex in the case of the rotor walk).

4.2.1 . Routing One Particle on a Path Graph

It is an easy observation that the only elementary cycles in this graph are of
length 2, and that pushing such a cycle in a given configuration does not change the
global numbers of arcs respectively directed towards s and s7 in the configuration.
Hence the following definition:

Definition 4.2.1. Wesay that a vertexu; € Vjis directed towards sg if h(p(u;)) €
{u;—1,s0}. Otherwise, u; is directed towards si (see Figurel4.2d). We denote by
n1(p) the number of vertices of V,, that are directed towards s;.

From the observation above, it will follow that we can compute the exit pat-
tern of p without having to process the sequence of cycle pushes, relying only
on the computation of n;(p). To do so, we characterise the equivalence of rotor
configurations that applies only in the case of a path graph.

Lemma 4.2.2 (Exit Sink Characterization). Two configurations are equivalent if
and only if they have the same number n;. In particular, for any configuration p,
if1 <i<n—mni(p), then Sc(p,u;) = so, otherwise S (p, u;) = s1.

92

) w1 and ug are directed towards s1, and uz and uy4 are directed towards sg. Let p be the initial config-
uration deplcted here.

xr

b) Configuration obtained from p after a single cycle push on the cycle {(u2,u3); (u3, u2)}. This config-
uration and p are equivalent since one is obtained from the other by cycle pushing so they have the
same Destmatlon Forest. And as stated in Lemmal4.2.2] uthey have the same value ny = 2.

(c) Naturally, the Destination Forest (i.e. rotor configuration after maximal cycle push sequence) of p is
equivalent to both previous configurations and the value n1 remains the same.

Figure 4.2: lllustration of Lemma [4.2.2] and its proof. The red arcs in
dashes represent the current rotor configuration.

Proof. A maximal cycle push sequence leads to an acyclic configuration, and
we know that n; is preserved by cycle push. Since there is a unique forest
with ny arcs directed towards s;, namely the configuration where exactly

Up—(ny—1)» Un—(n,—2), - - - » U Are directed towards s, this is the Destination
Forest (see[Figure 4.20). O

The previous lemma enables us to compute in linear time the exit pattern
of any configuration in a simple path graph — which easily solves SP-ARRIVAL
simultaneously for all starting vertices.

4.2.2 . Routing Several Particles

Here we present how the previous results can be used to solve MP-ARRIVAL
on a simple path graph. We only study the case of routing multiple particles in
the case of the path graph, the general case remaining an open problem even for
tree-like multigraphs.

It is well known that when we route any number of particles in a rotor graph
up to the sinks, the final configuration does not depend on the order in which
the particles move (which can alternate between particles) as long as we route the
particles to the sinks (see [50]). This is also a consequence of Corollary 2.5.7]

Definition 4.2.3 (Equivalence Class for simple path graphs). For 0 < k < n,
let Cy. be the rotor class of configurations p with nq(p) = k i.e., the set of configu-
rations with exactly k vertices directed towards s;.

Note that the equivalence classes defined just above are exactly the equivalence
classes of Lemma[4.1.5] We now explain the action of the movement of a particle
on these classes. There are some results known in the general case for the action

93

of particle configurations on rotor configurations but we will present those in the
last chapter of this document.

Theorem 4.2.4 (Group Action on simple path). Consider a configuration p € Cy,
with 0 < k < n and vertices u;, 1 < i < n. Processing a maximal rotor walk from
(p, u;) leads to a configuration p' € C; where j = (k+ i) mod n + 1.

Proof. By[Theorem 4.1.6|we can as well suppose that p is acyclic, hence the k

vertices directed towards s; are exactly u,—g41, Up—k+2, - - -, Unp.

« If i <n — k, then during the rotor walk, exactly i vertices change direc-
tions, hence j = k + 4.

* Ifi > n —k, thenn — i + 1 vertices change directions, hence j = k —
m—i+1)=k+i—(n+1).

O

When combining the action of multiple particles on classes, we obtain the
following theorem.

Theorem 4.2.5. Let p € Cy, be a rotor configuration. Consider the process where
m particles are routed to the sinks from initial positions iy, s, ..., i, in any (al-
ternating or not) order. Then:

* The final configuration belongs to the class C; with
j=k+i1+i2+---+1i, modn+1,

k4 Qo i)

) . .
« exactlyp; = {J:ftJ of these particles reach sink s, whereas m —
n

p1 reach sg.

Proof. By commutativity of routing operations, we can suppose that we fully
route every particle to a sink before proceeding to the next one. Consider

{0,1,...,n} as a cycle of positions corresponding to the equivalence classes.
We start from position k on the cycle, and every time a particle is routed from
its initial position i; to a sink, the final configuration belongs to C; where j
is obtained by moving from k on the cycle i; times in cyclic ordering. It is
contained in the proof of[Theorem 4.2.4that the particle ends in s if and only
if we move from position n to 0 during this process. Hence, we have to count
the number of times this will happen, which is simply the integer quotient of
the final position k + i1 + - - - + i,,, by the number of positions n + 1. O

This theorem enables us to solve MP-ARRIVAL on the path graph in linear
time (even with an exponential number of particles, if arithmetic computations are
made in constant time).

94

4.2.3 . The Return Flow with the Path Graph

The previous technique to compute the Destination Forest is based on an
invariance property of cycle pushes, which is specific to the simple path graph.
It does not generalize directly to other graphs, so we now give an equivalent
formulation of the previous results. Instead of counting the number of vertices
directed toward sinks, we now consider the number of vertices directed towards a
given vertex u on each side of the path. To do this, we denote by Ju, u/[the set of
vertices between u and u’ in the order of vertices in the path, excluding v and v’.

Definition 4.2.6. Let (;(u) and (y(u) be the number of vertices that are respec-
tively directed towards w in |u, s1[and |sg, u|.

We now rewrite [Theorem 4.2.2| with (7 ans (j into Lemma [4.2.7]

Lemma 4.2.7. For all non-sink vertices w;, Sc(p, u;)= s1 if and only if
* either (i (u;) < Co(u;);

« or (1 (u;) = Co(u;) and u; is directed towards s.

Proof. We can decompose n; as follow:

ny = Co(ui) + Il(ui) +n—1—((u;)
N—— N—— N———
vertices of |sp,u;[Orientation of u; vertices of Ju;,s1

where I (u;) is 1if u; is directed towards s; and 0 otherwise.

Now, from|Theorem 4.2.2lwe know that S¢(p, uwi) = s1 < i >n—nj + 1,

which translates to
Co(us) + In(ug) > Cului) + 1,

hence the result. 0

Remark. Consider the following process: on the simple path graph, we remove
the arc (u;,u;—1) So that the particle cannot go from w; to [so, u;[anymore (in the
case where p(u;) = (u;, ui—1), we change it to p(u;) = (u;, ui+1)). Now, we put a
particle on u; and proceed to a maximal rotor walk. The number of times that the
particle travels through arc (u;,u; 1) is exactly (1 (u;) + 1. This quantity is called
the return flow, which will be defined in the general case in

4.3 . Tree-Like Multigraphs: Return Flow Definition

4.3.1 . Tree-Like Multigraphs
With a directed multigraph G = (V, A, h,t) we associate:

95

+ A simple directed graph G = (V, /l) such that, for u,v € V there is an
arc from u to v in A if there is at least one arc a € A with t(a) = u and
h(a) = v. Please note that even if there are multiple arcs a that satisfy this
property, there is only one arc with tail u and head v in A. As it is unique,
an arc from u to v in A will simply be denoted by (u,v).

* A simple undirected graph G = (V, E) such that, for u,v € V there is an
edge between u and v in G if and only if there is at least one arc a € A
such that t(a) = u and h(a) = v or h(a) = w and t(a) = v.

A vertex u for which [T (u) UT ™ (u)| = 1 is called a leaf.

Definition 4.3.1 (Tree-Like Multigraph). We say that a multigraph G is tree-like
if G is a tree.

In this case, we define the leaves of G as the leaves of G.

Definition 4.3.2 (Tree-Like Rotor Multigraph). A rotor multigraph
G = (Vb,So, A, h,t,0) is tree-like if (V, A, h,t) is tree-like, and its set of leaves
contains Sy.

To avoid some complexity in the notation and proofs, we will only study stop-
ping tree-like rotor multigraphs. We first show that the general case can be handled
by reducing a non stopping instance to a stopping one.

We recall that a sink component is a strongly connected component in GG such
that there is no arc leaving the component. Recall that by [68], all sink components
can be computed in linear time .

Lemma 4.3.3. Consider a configuration p on a (not necessarily stopping) tree-
like rotor multigraph G = (Vy, So, A, h,t,8). Consider a configuration p' on the
stopping tree-like rotor multigraph G’ = (Vj, Sy, A’, h, t,0) where G' is obtained
from G by replacing each sink component by a unique sink, and where p'(u) =
p(u) for each uw € V. For any u € V, finding the exit sink of w (if any) or the sink
component reached by u in G for the configuration p can be directly determined
by solving SP-ARRIVAL for the configuration p’ in G'.

Proof. Let p be a configuration in R(G) and u € V be a vertex.

+ If the particle enters a sink component C' while processing a rotor walk
from (p,u) on G, then u has no exit sink for p. The same rotor walk in
the graph G’ ends in the sink that replaces C.

* If the particle reaches a sink s of G while processing a maximal rotor
walk from (p,u) on G, then it does not enter a sink component of G
hence the walk in G’ is the same as in G.

96

Thanks to Lemma[4.3.3] we can work on graphs without sink components while
keeping the generality of our results. Note that, after replacing sink components by
sinks, the multigraph G’ may no longer be a tree-like multigraph but a forest-like
multigraph. However we can split the study of SP-ARRIVAL in each tree-like
component of this forest since a particle cannot travel between those trees in a
rotor walk.

4.3.2 . Return Flows

Let us consider the simple example depicted on[4.3]to motivate the introduction
of (u,v)-subtrees and return flows, which is our main tool.

T

DIk
)

T N

Figure 4.3: We sketch a stopping tree-like rotor multigraph as follows:
a vertex wu, its neighbours vy, v, vs (that might be sinks),
respectively belonging to T3, T,, T3, the three connected
components of G\ {u}. In particular, we have At(u) =
{(u,v1); (u,v2); (u,v3)}. We consider the rotor configuration
in red on u and 6, is the anticlockwise order on the arcs of
At (u).

b0

In Figure [4.3] consider the routing of a particle starting at u:

1. the particle moves from u to v, and stays for a while in the subtree T} —
where it either reaches a sink or comes back to u. Suppose it comes back
to u. Then:

2. the particle moves from u to v3, and either reaches a sink in T3 or comes
back to u. Suppose it comes back to u once again;

3. the rotor walk goes on, in T3, then in Ty, 71,71, T3, ...
4. until finally the particle ends in a sink in one of the subtrees, say T5.

Now consider only the relative movement that the particle had in T5: it went from
u into T and back to u many times before it ended in a sink. If we were to replace
T, and T3 by a single arc leading back automatically to u, the relative movement
in Ty would have been exactly the same. The return flow will be a quantity that
counts precisely the ability of each subtree to bounce back the particle to u. During

97

the process described above, every time the particle enters a subtree and returns
to u, we can think of it as consuming a single unit of return flow in this subtree.
The first time a particle enters a subtree with exactly one unit of return flow left,
the particle must end in a sink of that subtree.

Definition 4.3.4 ((u, v)-subtree). Let (u,v) € A. The (u,v)-subtree Tl is a
sub(multi)graph of G:

« whose vertices are all the vertices of the connected component of G \ {u}
that contains v, together with w;

« whose arcs are all the arcs of G that link the vertices above, excepted in u
where we remove all arcs of A" (u) but a single arc a with head v. Such an
arc a always exists because (u,v) € A;

* whose rotor orders are unchanged except at u where 0,,(a) = a.

Such a subtree is a (not necessarily stopping) tree-like rotor multigraph. A
rotor configuration p in G' can be thought of as a rotor configuration p’ in T, .
by defining that p’(u) = a and p'(w) = p(w) for all w € T(,).

We define a notion of flow for a particular starting vertex.

Definition 4.3.5 (Flow of (u,v)). We define the flow on arc (u,v) € A for con-
figuration p, denoted by F,(u,v), the number of times (possibly infinite) that an
arc with tail w and head v is visited during the maximal rotor walk of a particle
starting from the rotor-particle configuration (p,u). We denote by F,(u) the flow
vector of (u,v) for every v € T'"(u).

Definition 4.3.6 (Return flow). The return flow of arc (u,v) € A for configura-
tion p, denoted by (,(u,v), is the flow on (u,v) in the (u,v)-subtree T(,,).

Note that the return flow (,(u,v) also corresponds to the number of times
the particle visits u while processing a maximal rotor walk from (p,u) in T(,)
(see . By definition of return flow, if u € Sy, then (,(u,v) =0, and if
v € Sy, or if (v,u) ¢ A then (,(u,v) = 1.

Remark also that, even if the tree-like multigraph is stopping, it is not neces-
sarily the case of any (u,v)-subtree: this is for instance the case of a leaf v which
is not a sink such that (u,v) € A. Finiteness of the return flow characterizes the
subtrees that are stopping as stated in Lemma [4.3.7]

Lemma 4.3.7. Given a stopping tree-like multigraph G and (u,v) € A, the (u,v)-
subtree Ty,) Is stopping if and only if for any rotor configuration on G, the return
flow of (u,v) is finite.

Proof. If the (u,v)-subtree is stopping, then by Lemmal4.0.2]any rotor walk is
finite, and the return flow is finite.

98

If the (u, v)-subtree is not stopping, there is a sink component C'in T,).
If C does not contain w, it is also a sink component of GG since we do not add
or remove any arc in C while going from T, ,,) to G. But G is assumed stop-
ping hence such sink component does not exist. The only possibility is that
C contains u. In C, there is a vertex that will be visited infinitely often while
processing a maximal rotor walk. But this will be the case for its neighbours in
C as well, and, transitively, for every vertex in C. In particular u will be visited
infinitely often, hence for any rotor configuration p, {,(u, v) is infinite. O

We give a bound on the maximal value of the return flow in a multigraph
as it will be used to express our complexity results later. This bound is a direct
consequence of Lemma [3.1.5]

Lemma 4.3.8 (Return flow bound). Let (u,u1) € A and p be a configuration.
Then if there is a directed path [u,u,,...,u,s| from u to a sink s € Sy then
Cp(u, uy) satisfies

Cplu,up) < elAl/e

otherwise (,(u,u1) is infinite. In particular this shows that return flows can be
written in at most O(|.A|) bits.

Return flows and flows are linked by the following result:

Lemma 4.3.9. Given a stopping tree-like rotor multigraph G, consider u € Vj
and suppose that h(D(p)(u)) = v. Then:

* FP(“?”) = CP(“?”) ;
 forallw e T'*(u)\ {v}, Fy(u,w) < (p(u,w);
« forallw e T (u) NT™ (u) \ {v}, {(w,u) = Fy(u,w) + 1.

Proof. Let p’ be the configuration obtained after routing a particle from (p, u)
until the particle is on u for the last time, in which case h(p'(u)) = v and
(y(u,v) = 1. By definition of o/, we have F,(u,v) = 1 and F,/ (u, w) = 0 for all
w € ' (u) \ {v}. If, moreover, w € I'"(u) then {,(w,u) =1 =1+ Fy(u,w).
Hence ((u,v) = 1 = F,y(u,v) and by definition of the return flow, ((u, w) >
1 so that {,(u,w) > F,y(u,w). Hence the property is satisfied for /.

On the other hand it should be clear that F,(u,w) — Fy (u, w) = (,(u,w) —
¢y (u, w) for every w € T (u). If, moreover, w € I'" (u) and w # v the previous
quantity is also equal to (,(w, u) — (,(w,u). Hence the property is true for p
as well. O

99

Figure 4.4: Examples of return flows in a simple graph. The ro-
tor configuration is depicted by red arcs in dashes, with
So = {so,s1}, and 8,, is the anticlockwise order on ev-
ery vertex. We write the return flow of all arcs of A next
to their corresponding arc in A. As a tutorial example,
we detail the computation of ¢,(u1,uo) and (,(up,u1). In
the (u1,up)-subtree, the particle will visit the following se-
qguence of vertices uy, ug, uz, Ug, U1, Ug, Ug, Uy, Uz, S1, Where it
crosses (uy,ug) twice, thus ¢,(u1,u0) = 2. For the (ug,u1)-
subtree, the sequence of vertices visited by the particle is
Ug, U1, Up, U, U3, U, Up, Ut , U3, So hence (,(uo, ur) = 3.

T

@) C

T3@ 2 &@Tz

Figure 4.5: Consider the same stopping tree-like rotor multigraph as in

Figure 4.3 where p(u) is the red arc in dashes. The return

flow of all arcs of .A* (u) are given next to their correspond-
ing arcs in A.

4.3.3 . Revolving Routine

Based on the foregoing, using Lemma|4.3.9} in order to calculate D(p)(v), we
need to compute the flow of all arcs (u,w) with w € T'"(u) and compare it to

(p(u, w). This idea is introduced in the example drawn in |Figure 4.5|

In let us put a particle on u and route it until it comes back to u.
The first time, the particle will travel through the red arc in dashes and land on

vs. Then, the red arc in dashes (i.e., p(u)) is updated to 6,(p(u)) which is the
other arc with tail v and head vs. As (,(u, v3) > 1, the particle does not reach a

100

sink in T3, and the particle will come back to u after travelling in T3. After this
process (the particle's walk in T3), the return flow of (u, v3) has decreased by one
as (u,v3) has been crossed exactly once.
During the next step of this rotor walk, the particle will travel to v3 again, make
several moves in T3 without reaching a sink and comes back to u. The return flow
of (u,v3) is now 2. Next, the particle will travel to v2 and so on. At some point,
the particle will travel through an arc with tail u and head v; while the return flow
of (u,v;) is one. In this case, the particle will reach a sink in T} and then will not
come back to u. Here this condition is first met for i = 3 when the return flows
of (u,v1), (u,v2), (u,vs) respectively are 2, +00, 1 the last time the particle is on
vertex u.

Inspired by this process, we state the following Theorem using notation ¢(a, b)
to denote the time complexity of dividing the number a by the number b.

Theorem 4.3.10. For any vertex u € Vy, given the return flows of all arcs (u,v) €
A with v € Tt (u), one can compute D(p)(u) and the flow on each arc (u,v) in
time

O(T" (u)] - e(Cmax, AT (w)]))

with {max being the maximum (finite) value of ¢,(u,v) for all v € T (w).

Proof. Algorithm 1|is a local routine that abstracts the process described in
the caption of [Figure 4.3} It computes D(p)(u) as a and the flow of all arcs
(u,v) as F. Notice that, in the routine and its improved version, we consider
that +oo —1 and +o00/a with 0 < a < 400 are equal to +o00. Remark also that,
since the input multigraph G of the routine is stopping, there is at least one
return flow which is finite. However, since the return flow can be exponential
as in the example drawn in Algorithm [might run in exponential
time.

We can speed up the computation by noting that every time the rotor at «
makes one full turn, we know exactly how many times each value of the flow F’
has increased. This remark leads to the improved Algorithm[2denoted by IRR
in the rest of the document. The IRR consists in two steps. First, we compute
how many full turns the rotor on u does before the routine ends. Then, we
use Algorithm{i

Atline10fIRR, computing Q(v) is doneintime O (|T'F ()| - ¢(¢max, [AT (w)])).
Then, the loop at line 3 stops in at most |A™ (u)| steps, which is small com-
pared to the first term. The same applies for the loop at line 6. In the end, IRR
runs in time O(|T" (u)| - ¢(Cmax, AT (w)])).

O

As the routines are crucial for the rest of the article, we now state an important
monotony property. Here, we fix a vertex v in G and consider on the outgoing arcs
of v the respective return flows {; and (2 of two rotor configurations p; and ps.

101

Algorithme 1 : Revolving Routine

input :uisavertexof V; ¢ : ' (u) — Z U {400} contains the
return flows of arcs (u,v) of Awith v € T'"(u).
output « an arc of A*(u); F such that F'(v) is the number of

times an arc of A*(u) with head v has been visited

1 F(v) « 0forallv e Tt (u)
2 a < p(u)

3 While ((h(a)) > 1 do

a | ((h(a)) « ((h(a)) -

s | F(h(a)) < F(h (a))

6 a < 6,(a)

7 return g, I

Algorithme 2 : Improved Revolving Routine (IRR)

input :uisavertex of V; (: I'"(u) — Z U {+oc} contains the
return flows of arcs (u,v) of Awith v € I'" (u).
output « an arc of A*(u); F such that F'(v) is the number of

times an arc of A" (u) with head v has been visited

For v € I'" (u), let Q(v) be the quotient of the euclidean division
of ¢(v) by |[h~1(v)]; let gmin be the minimum value of Q(v) for
all v; let R(v) be ¢(v) — (qmin * |h"*(v)|) and let F(v) = 0.

/* This step corresponds to the return flow
diminutions that occurs during the @ui, * |AT(u)
first steps, and it also ensures that there exists
at least one v such that in less than |A™(u)]
steps, R(v) < 1. */

a < p(u)
while R(h(a)) > 1 do

(
R(h(a)) —=1
A
(

-

a < 6,(a)
forv e I'(u

) do
| F(v) < ((v) = R(v)

return o,F

00 N O Ut A W N

Lemma 4.3.11 (Monotony of the flow). Let u € V,, and p1, p2 be two rotor
configurations such that pi(u) = pa(u). Let v; = h(D(p;)(w)) for i € {1,2} and
T be the set of vertices v € 't (u) such that (,, (u,v) > (,,(u,v). If vy € T, then

102

* F, (u) > F,,(u) component-wise,

* V2 eT.

Proof. Let p¥ for i € {1,2} be the rotor configuration after the particle has
visited u exactly k times during a maximal rotor walk starting from (p;, «). In
particular, p} = p;. We denote by R (u, v) and F*(u, v) the quantities ¢ (u, v)
and F (u,v) respectively. Let K; be the last time the particle is on u in this
walk, which is characterized by RiKi(u,vi) = 1 and h(pfi (u)) = v; fori €
{1,2}.

For all £ < min(K7, K»), let T” be the set of vertices v € ['*(u) such that
RF(u,v) > Rk(u,v). It turns out that in fact, for all such k we have T" = T
since values of both R; and R, are decremented simultaneously.

We first show that Ky < K;. By contradiction, assume that K > Kj.
Sincev; € T, then, atstep Ky, Ri! (u,v1) = 1 > RY" (u,v1) and h(pl (u)) = v,
for i € {1,2}. This implies that K is the last time that the walk starting at
(p2,u) is at u, i.e, K9 = K7, hence a contradiction.

Foreveryv € T'F (u), we have F, (u,v) = AFF(u,v)+EFF(u, v) with AFF (u,v) =
F,. (u,v) — FF(u,v). AEF(u,v) is the number of times each arc (u, v) has been
used until step k. Since p1(u) = p2(u), and as long as k < Ks, AFF(u,v) does
not depend on . It follows that F,, (u, v) — F,, (u,v) = F{* (u,v) — F}2(u,v). If
v # vy then FI2 (u, v) — F2 (u,v) = F&*(u,v)—0 > 0. Otherwise F/* (u, vq) —
FI2(u,v9) = FI2(u,v5) — 1. Since K7 > Ky and h(p¥2(u)) = vy, arc (u,vs)
will be used at least once more during the walk, i.e., FlK2 (u,v9) > 1. Hence
the difference is positive which shows the first part of the lemma.

Let v be such that v ¢ T. Then RY2(u,v) > RX2(u,v) > 1. Hence
RE?(u,v) > 2 which implies vy # v and then v, € T. O

4.4 . SP-ARRIVAL for Tree-like Multigraphs

In this section we show that, for a given rotor configuration p on a multi-
graph G, we can compute the Destination Forest D(p) in time complexity O(].A| -
¢(Cmax, [A4])), hence solve SP-ARRIVAL for every vertex at the same time. To
achieve this, we recursively compute return flows for all arcs in A and then use
these flows to compute the destination forest.

In this section, let G = (Vy, So, A, h,t,0) be a stopping tree-like rotor multi-
graph and p be a rotor configuration on G.

The next two lemmas show how to compute the return flows by using
[rem 4.3.101

Lemma 4.4.1. For any two vertices u and v such that (u,v) € A, and given
(y(v,w) for every w € T (v) \ {u}, the return flow ¢,(u,v) can be computed

in time O(|TF (v)| - ¢(Cmax, AT (v)])). We illustrate this operation in

103

Proof. If (v,u) € A, then (,(u,v) = 1.

Otherwise, if (,(v,w) = +oo for all w € I'"(v) such that w # wu, then
Cp(u,v) = +o0.

In all other cases, apply the IRR to the vertex v, with input values ¢, (v, w)
forallw € 't (v) such that w # u, and with {,(v, u) = p, where pis intended to
be aninteger large enough so that the output a of the IRR is such that A(a) # w.
Then by Lemma[4.3.9} ¢,(u, v) = Fy(v,u) + 1, where Fj,(v) is obtained by the
IRR. Parameter p in this proof should be chosen large enough so that variable
R(u) in the routine remains strictly positive; for instance p can be initialized
With (gmin + 1) - [h ™1 (u)| with gmin defined in Algorithm 2|(IRR). O

|
“\\C\C
//// \\ \\(
=0

Figure 4.6: Inthis figure, we illustrate which value is computed with[The
If the return flows (,, (s, (. are known, we can

compute the return flow (.

Lemma 4.4.2. For any vertex u € Vy, and given ¢,(u, v) for every v € T'"(u), one
can compute the return flow of all arcs (w, w) with w € T~ (u) in time O(|T (u)] -

¢(Cmax, AT (w)])). We illustrate this operation in

Proof. Forallw € T~ (u) \ I'"(u), we have (,(w,u) = 1.

We use[Theorem 4.3.10/once on u to compute D(p)(u) and the vector flow
Fp)- Letv = h(D(p)(u)). Then, by Lemmalg.3.9] forallw € T~ (u) NT"* (u) \ v,
we have (,(w,u) = F,(u,w) + 1. It remains to apply Lemmal4.4.10nce more
to compute (,(v,u). Allin all, we have used Lemma[4.3.10| twice, hence the
complexity. O

One can check by applying Lemma that, on the example of [Figure 4.5|

we have (,(v1,u) =3, (,(v2,u) =2 and (,(v3,u) = 4.

We are now ready to state our main theorem. Complexity bounds are given in
two different contexts:

* a context where the time needed for arithmetic computation matters, as in
a Turing machine, using notation c(a, b);

104

Figure 4.7: In this figure, we illustrate which values is computed with

If the return flows (,, (p, (., (4 are known, we

can compute the return flows (3, (s, (3, (4.

* another context where arithmetic operations can be done in constant time,
where we achieve linear complexity in the size of the graph.

Theorem 4.4.3 (Complete Destination Algorithm). The configuration D(p) can
be computed in time O(|.A|) for a stopping tree-like multigraph in a model where
arithmetic operations can be made in constant time, or alternatively in O(|A| -
¢(Cmax, |A|)) on a bounded RAM machine.

Proof. Consider an arbitrary vertex . We proceed to a Breadth-First Search
(BFS) starting from x in G, the simple undirected graph associated with G.
Let e1, e9,..., ey (resp., ug, u1, .. ., ur With ug = z) be the prefix order on the
edges (resp., on the vertices) of G obtained during the BFS, i.e., the order in
which the edges (resp., the vertices) are visited.

The algorithm is split into two phases:

1. Computation of return flows for all arcs directed from = towards the
leaves: fort = m,m — 1,...,2,1, if the edge e; corresponds to an ex-
isting arc (u;,u;) of A, such that (ui, uj) is directed from « towards a
leaf of G, consider two cases. Firstly, if u; is a leaf, then store that either
Co(us,uj) = 1 or (y(us,uj) = +oo depending on whether u; € Sy or
not. Secondly, if u; is not a leaf, then by definition of a BFS and a pre-
fix order, if an arc (uj,v) with v # u; corresponds to an edge ey, then
t < t'. Hence, we already know the value of {,(u;,v) for every v # u;
with v € T'"(u;). This means that we can compute recursively (,(u;, u;)
by Lemmal4.4.1

2. Computation of return flows of all arcs directed from the leaves towards
x: when this phase begins, for any vertex u except z, all return flows
Cp(u,v) for all v € T't(v) are known, excepted the return flow of the

105

arc directed from u to z. We use Lemma applied to vertices u;
in increasing order on i as it guarantees that the conditions to apply
Lemma [4.4.2] are met. Furthermore, we also compute D(p)(u;) at the
same time.

The time needed for the BFS partis O(|A| + |V).

In the first phase, we use[Theorem 4.3.10/at most once for every vertex v,
for the arc (u, v) coming from z towards the leaves. During the second phase,
we we use [Theorem 4.3.10| at most twice for each vertex. All in all, we use
[Theorem 4.3.10|three times for each vertex. Hence the time complexity is
O ey (JAT (v)] - ¢(Cmaxs |A]))) which amounts to O(JA| - ¢(Cmax, |A]). O

Remark. From [cook1972], the execution time on a Turing machine simulating
the bounded RAM machine is bounded by O(]A| - ¢(Cmax, |A]))3.

We showed in [Theorem 4.3.8 that return flows could be written in at most
O(|.A|) bits which gives an upper bound for ¢(rmax, |A|) of k|.A|log(].A|) for some
constant k > 0. It is proved in [48] that the multiplication of two n bits integers can
be done in time O(nlog(n)) and as the complexity of the division is equivalent to
the complexity of multiplication (see [17]), the bound follows. Thus the complexity
of our algorithm is O(|.A|*log(|.A])) in this context.

4.5 . One-player Rotor Game

Problem SP-ARRIVAL can be seen as a zero-player game where the winning
condition is that the particle reaches a particular sink (or set of sinks). The one
and two player variants of SP-ARRIVAL (i.e., deterministic analogs of Markov
decision processes and Stochastic games) we address in the next sections are
inspired from [77], but differ by the choice of the set of strategies (see the discussion
hereafter).

In this section, we specifically consider a game with a single player that controls
a subset of vertices Viyax of Vp. Given a rotor configuration on the rest of the
vertices of V), a starting vertex and an integer value for each sink, his goal is to
wisely choose the initial rotor configuration of the vertices he controls (his strategy)
such that the particle reaches one of the sinks with maximal value.

A remark is in order here: in the seminal paper [77|, a strategy is defined in
a more general way since it consists in choosing an outgoing-arc each time the
particle is on a vertex controlled by the player. In particular, for a given vertex,
the sequence of arcs may not follow a rotor rule, and the number of strategies is
even unbounded. It has been shown in that paper that solving such game is NP-
complete. On the one hand, the given reduction of 3-SAT can easily be adapted
to fit to our framework showing that our definition of the game, although simpler
since the set of strategies is finite, still leads to an NP-complete problem. On the
other hand, our results extend naturally to general strategies, but at the cost of

106

more technicalities. For instance, the use of general strategies may lead to non-
stopping rotor graphs even if every vertex is connected to a sink. This case also
seems to us a very natural extension of the zero player case.

To formally define the game, we introduce the following definition.

Definition 4.5.1 (Partial Configuration). Let V' be a subset of Vj, a partial rotor
configuration on V' is a mapping p' from V' to A such that p'(u) € A™(u) for all
ue V.

A one-player rotor game (resp., one-player tree-like rotor game) is given by
(Vs Vimax, So, A, h, t, 0,val, p) where V., Viygax and Sy are disjoint sets of ver-
tices, such that

* (Vo, So, A, h,t,0) is a rotor graph (resp., tree-like rotor graph) with V;, =
Vi UVamax:

« val is a map from Sy to N corresponding to a utility of the player who wants
the particle to reach a sink s with the highest possible value val(s);

« p is a partial configuration on V., the initial configuration on the vertices
not controlled by the player.

The tree-like rotor game is stopping if and only if the induced rotor graph
(Vo, So, A, h,t,0,) is stopping.

The player is called MAX, and a strategy for MAX is a partial rotor con-
figuration on Vi ax. We denote by ® g4 the finite set of strategies for this
player.

Consider a partial rotor configuration p on V,. together with strategy ¢ and
denote by (p, @) the rotor configuration where we apply the partial configuration
p or ¢ depending on whether the vertex is in V. or Vyax.

The value of the game for strategy ¢ and starting vertex ug is denoted by
valg(up) and is equal to val(s) where s is the sink reached by a maximal rotor walk
from the rotor particle configuration ((p, ¢),ug) if any, and 0 otherwise. As in
the zero-player framework, up to computing strongly connected components that
do not contain sinks and replacing each of them with a sink of value 0, we can
suppose that the tree-like rotor game is stopping. In the following, all rotor games
we consider are tree-like and stopping unless stated otherwise.

When w is fixed, the maximal value of val,(ug) over all strategies ¢ € ® pqax
is called the optimal value of the game with starting vertex uy and is denoted
by val*(ug). Any strategy ¢ € ®aqax such that valy(ug) = val®(ug) is called
an optimal strategy for the game starting in uy. Observe that optimal strategies
may depend on the choice of ug as illustrated in [Figure 4.8l The one-player SP-
ARRIVAL problem consists in computing the optimal value of a given starting
vertex in a one-player rotor game.

107

Figure 4.8: Simple graph where the optimal strategy depends on the
starting vertex ug, with Vayqax = {g}, with uv,v € V, and
with all other vertices being sinks. As in previous examples,
the starting configuration is depicted by red arcs in dashes,
and the rotor order on all vertices is an anticlockwise order
on their outgoing arcs. In the case ug = v, the only optimal
strategy is o(g) = (g,v) and the game has value 1. The case
up = v and uyg = v are symmetrical.

First, we study the case where the values of the sinks are binary, then we adapt
those results to the case of nonnegative integer values, and finally, we present our
results for some different set of strategies.

4.5.1 . One-player Binary Rotor Game

In this subsection, we restrict the game to the case where values of sinks are
binary numbers i.e., val(s) € {0,1} for all s € Sy. Recall that in the tree-like rotor
graph, T{,) denotes the (u,v)-subtree. We extend this notation to denote the
one-player, not necessarily stopping, game played on the (u,v)-subtree where we
restrict Vaqax and V,. to the subtree. For this game, we only consider the case
where the starting vertex is w.

Definition 4.5.2 (Value under strategy). Let (u,v) be an arc ofA. Given a strat-
egy ¢ for the (u,v)-subtree, we denote by valy(u,v) (resp., val*(u,v)) the value
of the game under strategy ¢ (resp., under an optimal strategy) in T(,, .. This is
called the value (resp., the optimal value) of the arc (u, v) for strategy ¢.

Definition 4.5.3 (Optimal return flow ¢*). Let (u,v) be an arcof A. Ifval*(u,v) =
0, then (*(u,v) is defined as the maximum of (4(u,v) over all strategies ¢ on
T(u,v), Otherwise it is the minimum of (4~ (u,v) among optimal strategies ¢* on
T

(u,v)*

The next lemma connects the value valg(u) with the value of the last outgo-
ing arc of vertex u while processing a maximal rotor walk from the rotor-particle
configuration ((p, ¢), u).

108

Lemma 4.5.4. Let a be an arc of A™ (u) such that D(p, ¢)(u) = a with h(a) = v.
We have valy(u) = valy(u,v).

To recursively compute an optimal strategy, we need a stronger notion of
optimality, namely a subtree optimal strategy.

Definition 4.5.5 (Subtree optimal strategy). A strategy ¢* is subtree optimal
at uy if it is optimal at ug and, moreover, valy- (u, v) = val*(u,v) and (4 (u, v) =
(*(u,v) for every (u,v)-subtree such that (u,v) is directed from uy towards the
leaves.

Instead of recursively computing only the return flow as in the zero-player
game, we now propagate both the optimal value and the optimal return flow to
construct a subtree optimal strategy. Here, we give an equivalent to Lemma [4.4.1
for the one-player game that details how to recursively compute val® and (*.

Lemma 4.5.6. Let (u,v) € A. For every (v, w)-subtree with w € TF(v) \ {u},
assume that there is a strategy ¢;, that is subtree optimal. Let ¢, be a strategy on
the (u,v)-subtree T, . such that ¢,(z) = ¢;,(2) when z € T, .,y N Vamax and
z # v. Furthermore, if v € Vapax, let @, be the set of strategies defined on T(, .
that agree with ¢, on every vertex but v. We consider two cases:

* ifvalf,) = 0, ¢u(v) is a strategy in @, that maximizes the return flow on

(u,v);

. if valz‘w) =1, ¢,(v) is a strategy in @, that is optimal and minimizes the
return flow on (u,v).

Then ¢, is subtree optimal on T\,).

Proof. We suppose thatv € Vaax. The case v ¢ Vyax can be treated simi-
larly and is omitted.

By assumption, the restriction of ¢, to every subtree T, .), where (w,) is
an arc of Ty, ,,) different from (u, v), and directed from u towards the leaves, is
subtree optimal. Itremains to show thatvaly, (u,v) = val*(u,v) and (s, (u,v) =

¢*(u, v).

* Assumethatval®(u,v) = 0. Inthis case, we have valy, (u,v) = val*(u,v) =
0 as for any strategy.

For the return flow, we consider different cases.

If (v,u) ¢ A, then Cp(u,v) = 1foreverystrategy ¢ on T, ., SO (g, (u,v) =
1 = ¢*(u,v) is maximal. If (v,u) € A and ¢*(v,w) = 400 for every
w € T*(v) \ {u}, then (4(u,v) = +oo for every strategy ¢ on T(,), in
particular (g, (u,v) = 400 = (*(u, v).

Finally, if (v,u) € A and there is w such that ¢*(v, w) < +oo, let wy =
h(D(p, ¢v)(v)) (defined in the stopping rotor graph T, ,)) and consider

109

a strategy ¢ defined on T(,) with ¢(v) = ¢,(v). By Lemma we
have valy, (v) = valg, (v, wp) hence valy, (v, wp) = 0. Since ¢, is subtree
optimal on the (v, wp)-subtree, it follows that val* (v, wy) = 0 and then
valy (v, wp) = 0 and finally we have (y(v, wo) < (g, (v, wo).

We have ¢(v) = ¢, (v) and wy is such that {4 (v, wo) < (g, (v, wp). Follow-
ing Lemmaapplied to v, wo € T, and then Fy(v,u) < Fy, (v, u). By
Lemmal4.3.9) we have (4 (u,v) = Fg(v,u)+1and ¢y, (u,v) = Fy, (v, u)+
1. This implies that (s (u,v) < (g, (u, v). Since ¢, (v) is chosen so that to
maximize the return flow on the set of strategies &, the result follows.

+ Assume that val*(u,v) = 1. We first show that there is an optimal strat-
egy in ®,.

For this, consider an optimal strategy ¢* on 7|, ,y and letwy = h(D(p, ¢*)(v)).

By Lemmals.5.4} it follows that valy« (v, wg) = 1 and thenval* (v, wg) = 1.
Let ¢ be the strategy in @, such that ¢(v) = ¢*(v). Since ¢ is subtree
optimal on T, ,,,) we have (4 (v,wo) > (4(v,wp). On the other hand,
let W be the set of vertices w € Tt (v) \ {u} such that val*(v, w) = 0.
On this set (4 (v,w) < (y(v,w), i.e, w ¢ T following the notation of
Lemma Hence D(p, ¢)(v) ¢ W which implies valy(u,v) = 1.

Now, showing that (4, (u,v) = (*(u,v) is done exactly the same way as
the case val*(u,v) = 0.

O

Note that if v € Sp, then there is no decision to make in T, ., and the empty
strategy is subtree optimal. Otherwise, Lemma shows inductively that such
subtree optimal strategy exists for any T{, ;) where (u,v) € A.

As a second remark, Lemma4.5.6|can straightforwardly be adapted to the case
where the player seeks to minimize the value, by swapping the role of subtrees of
value 0 and 1. This will be used in next section when we consider a two-player
game.

However, this process requires to determine ¢, (v) which minimizes or maxi-
mizes (depending of the optimal value of arc (u,v)) the return flow. To avoid an
additional |A™(v)| factor in the time complexity by trying all possible choices for
¢u(v), we propose Algorithm 3| which runs in time O(|T'" (v)| - ¢((imax, [A]))- In
this algorithm, a is an arc that will try all possible starting configurations on v in
the IRR ; whereas a. is the corresponding output arc, i.e., the destination arc if
we start in a;. The important fact here is that, when a, in incremented by 6,, a.
possibly moves in the cyclic ordering but can never make a full turn and go beyond
as; this is because the loop part of the IRR never makes a full turn. During this
process, we just keep track of the maximum and minimum return flows depending
on the value of the subtree in the direction a..

110

Now, in the same spirit as for the zero-player game, we can use Lemma [4.5.6
as the basis of a recursive algorithm for computing val*(u, v) and ¢*(u,v) for all
(u,v) € A directed from v towards the leaves. This leads to our main theorem.

Theorem 4.5.7 (Computation of val*(ug)). The optimal value val*(ug) can be
computed in the same time complexity as the computation of D(p) in the zero-

player game (see{Theorem 4.4.3).

Proof. By using Lemma we recursively compute val*(u, v) and ¢*(u,v)
for all arcs (u,v) € A such that (u,v) is directed from ug towards the leaves.
Several cases are considered:

« ifv € Sy then val*(u,v) = val(v) and (*(u,v) = 1;
+ otherwise we run Algorithm

This process is done at most once for each vertex v which results in the time
complexity given in the statement of the theorem.

It remains to compute val*(ug) knowing val*(ug, w) and ¢*(vg, w) for ev-
ery w € I'(ug). For this, we run Algorithm (3| on arc (z,ug) with z being
a fictive vertex such that the only arc incident to z is (z,ug), » and val are
C*(up, w) and val*(ug, w) respectively for every w € I'"(ug). Then the binary
value returned by the algorithm is val*(z, ug). But in the (z, up)-subtree, the
first step leads the particle to vertex ug and then never goes back to z: the
run is then similar to the run starting at ug in the tree-like rotor game. Hence
val*(z,ug) = val*(ug).

O

Some remarks are in order here. (i) Optimal Strategy Computation Algorithm
used to compute val*(ug) provides the optimal value of uy as well as a subtree
optimal strategy at wug for every decisional vertex. A tutorial example is given
in [Figure 4.9 (ii) In the case of a simple graph, one can compute val*(ug) for

every vertex ug with the same time complexity as in [Theorem 4.5.7| as detailed in
Section [£.71

1M

g@
@ Tm T—(

(a) Consider the one-player tree-like rotor game above with uo being the starting vertex, Vapqax =
{u2,us} (depicted by squares), Vi = {uo,u1,us,us,us}, p being the partial configuration on ver-
tices of V;. (depicted by the red arcs in dashes) and 6 being the anticlockwise order on the outgoing
arcs of each vertex (depicted by the cycling arrow on the right). The set Sy contains all other vertices.

Each of these sinks is represented by two circles with its value written inside.

0
(0,1) (1,1)
1 !
(0,1)

(b) We run the first 8 steps that does not involve a positional vertex of our algorithm recursively from the
leaves and write the couple (val*(u, v), ¢*(u, v)) next to each arc (u, v) directed from ug towards the

leaves.
0
T <
0,1)

(c) We proceed three more steps of our algorithm and compute o* (u2) and o* (ug) while doing so. The
strategy o* is depicted by blue arcs. From here, we deduce that val* (ug) = 1 thanks to[Theorem 4.5.7

Figure 4.9: Computation of val* and ¢* using|Theorem 4.5.7

12

4.5.2 . One-player Integer Rotor Game

We now turn to the case where val(s) is no longer restricted to be a binary
value. The main difference with the binary case is that there may not exist a
subtree optimal strategy as illustrated in [Figure 4.10] In this example the value 1
is an intermediate sink value (neither maximal not minimal), hence it cannot be
decided with the only knowledge of the subtree optimal strategy on the (ug,u)-
subtree whether the return flow should be minimized in order to try reaching this
sink or maximized if a sink with higher value can be reached in the rest of the
graph. The knowing of val*(u, v) and (*(u, v) that was enough in the binary case,
is not sufficient anymore for computing the optimal value recursively. In the case
of simple graphs, we show in Section that we can add information on the
subtrees in order to compute the optimal value in linear time complexity, but this
technique does not extend to multigraphs.

Indeed, in the binary case we had two types of sinks those with value 0 and
with value 1 which are respectively indistinguishable. Hence, reaching a sink of
value 1 ensures that there is no sink of greater value in the graph. But, for the
integer case, reaching a sink with value x does not guarantee that there is no sink
with greater value ' elsewhere in the graph. Therefore, the algorithm that worked

C

Figure 4.10: Example of a tree-like rotor game that does not admit a
subtree optimal strategy. Here, u € Vyax and ug € V.
All other vertices belong to Sy and their value is written in-
side them. The initial configuration of wg is the red arc. In
the (uo,u)-subtree, the only optimal strategy is to direct u
towards the sink of value 1 which gives value 1 with return
flow 1. In the entire game with starting vertex ug, the value
of this strategy is 1. But the optimal value is 2 which is ob-
tained by directing u towards the sink of value 2.

for binary values does not apply here.

Despite that, [Theorem 4.5.7| can be used as a basis of a binary search (di-

chotomy) method for computing the optimal value. For this, consider the decision
problem of determining whether a sink of value at least x can be reached. We
can solve it by introducing a binary game obtained by replacing all values that
are greater or equal to = by one and the others by zero. It should be clear that
the value of the binary game is one if and only if a sink of value at least = can

13

be reached in the initial game. All in all, the non-binary game can be solved in
O(log(]So|)) such iterations. Knowing the optimal value, say v*, an optimal strat-
egy can be computed by solving the binary associated game where threshold z is
chosen equal to v*.

4.5.3 . One-player Rotor Game: Other Set of Strategies

Here we briefly discuss some variants of this game, where the player can choose
from a different set of strategies than just the initial configurations on the vertices

Of VMAX-

1. Let us consider the set of strategies where the player can freely decide
the rotor order on vertices he controls and the starting configuration on
it. Consider an arc (u,v) € A and assume that ¢*(v,w) and val* (v, w) are
known for every w € I'*(v)\u. One can compute a subtree optimal strategy
on the (u,v)-subtree in the same way as for the previous binary case but
where the return flows are either (4(u, v) = Gmin * [A(y0)| if val*(u,v) = 1
(all occurrences of an arc with head w are placed at the end of the rotor
order) or (4(u, v) = (gmin + 1) * [A(u,0)| if val*(u,v) = 0 (all occurrences
of an arc with head w are placed at the beginning of the rotor order). This
also simplifies the integer case consequently.

2. Let us consider the infinite set of strategies where the player can choose at
each step of the rotor walk the orientation of the vertices he controls (as in
[77]). For a vertex v € Vyqax, the player can choose to put the return flow
on any outgoing arc of v to either 1 or +00. Consider an arc (u,v) € A and
assume that (*(v,w) and val*(v,w) are known for every w € I'(v) \ u.
A subtree optimal strategy is easily computed by choosing the strategy to
always go towards a vertex w if val*(v,w) = 1 and if not to choose the
strategy that maximizes the value of (4(u,v). In particular, if there exists
an arc (v,u) € A the strategy on v would be to always go towards (v,).
Once again, the integer case is simplified consequently.

4.6 . Two-player Rotor Game

We now consider a two-player, zero-sum version of the zero-player game, where
players control distinct subsets of vertices of Vj, one trying to maximize the value
of the sink that has been reached whereas the other one tries to minimize it. A
similar game (but where players freely decide the orientation of their vertices at
each time step) has been studied in [77] and shown to be P-SPACE hard.

More formally, a two-player rotor game is given by

G = Vi, Vmax, Viza, So, A, by t, 0, val, p)

where V.., Vaiax, Vamza and Sy are disjoint sets of vertices, such that:

114

« for all partial configurations 7 on Va7,
G('? T) == (‘/7‘ U VMIN7 VM.AX7 SO') Av h? tv 97 Va|7 <p7 T))
is a one-player rotor game;

« for all partial configurations ¢ on Vi ax,

G(¢,-) = (Vi UVmax, Vimzn, So, A, h,t,0,val, (p, ¢))
is a one-player rotor game.

If all the one-player games are tree-like (in other words, if the underlying graph
is tree-like) then the two-player game is also said to be tree-like.

A strategy for player MAX (respectively player MZN) is a partial rotor con-
figuration on Vi ax (respectively on Vyizpr). We denote by ®pqax and @ aizn
the sets of strategies for these players. When 7 is fixed, MAX tries to maximize
the value of the final sink in G(-,7); whereas when ¢ is fixed, MZN tries to
minimize it in G(¢,-).

The value of the game for strategies ¢, 7 and starting vertex ug is denoted by
valy - (up) and is the value val(s) where s is the sink reached by a maximal rotor
walk from the rotor particle configuration ((p, ¢, 7),uo) if any, or 0 otherwise. As
we did for one-player, we assume in the following that all rotor games are tree-like
and stopping.

When wug and p are fixed, this defines a zero-sum game where MAX and
MUIN try respectively to maximize and minimize the value of the game by choosing
an appropriate strategy, respectively in ® xq4x and ®rzar. Usually, such a zero-
sum game does not always have an equilibrium in pure strategies and so-called
mixed (i.e., stochastic) strategies are required; this is the case in the example of
[Figure 4.1T where the given graph is not tree-like. However, in the case of tree-like
multigraphs we prove the following theorem.

Theorem 4.6.1 (Existence of pure strategy Equilibrium). Let G be a tree-like
two-player rotor game together with a starting vertex uy. Then there are an integer
value val* and two strategies ¢*, 7* such that

1. V7 € ®pqzn, Valg- - (ug) > val®, i.e., 7 is optimal in the one-player game
G(¢,-)

2. Vo € Ppgax, valy~(up) < val’, i.e., ¢* is optimal in the one-player game
G(-, 7).

We call val* the value of the game and the pair (¢*, 7*) is a pure strategy equilib-

rium.
Furthermore val* can be computed in the same time complexity as the com-

putation of D(p) in the zero-player game (see(Theorem 4.4.3).

This theorem is proved by following the same scheme as for the one player
game: first, we consider the binary case, and then the general case follows by
dichotomy. A constructive proof is given in both cases.

15

Max

Figure 4.11: This example is a simple undirected graph where each
edge is replaced by two arcs. We have Viyax = {Maz},
Vmzn = {Min} and V,. = {¢,d,e, f} and Sy is the rest
of the vertices with their value written inside them. The
particle starts on the vertex Max. In this game, the only
optimal strategy for MAX when the strategy for MZN is
the arc (Min, z) with z € {c,d} is (Max,z). On the other
hand the only optimal strategy for MZN when the strategy
for MAX is the arc (Maz,c) (resp. (Max,d)) is (Min,d)
(resp. (Min, c)). The situation is like the classical matching
pennies game (see [69] for precise definition) where one
player tries to match the strategy of the opponent whereas
the other player has the opposite objective. It is known
that such game does not admit a Nash equilibrium in pure
strategies.

4.6.1 . Two-player Binary Rotor Game

In this subsection, we restrict the game to the case where values of sinks are
binary numbers i.e., val(s) € {0, 1} for all s € S.

Definition 4.6.2 (Subtree equilibrium). A pair of strategies ¢*, " is a subtree
equilibrium at ug if ¢* (resp., 7*) is subtree optimal at ug in the one-player game
G(-, 1) (resp., G(¢*,-)).

Lemma 4.6.3. For any (u,v) € A and ug € V, there is a subtree equilibrium at
ug for the two-player game on T(,, ,,).

Proof. This is showed by induction.

116

This is clearly true if v € S.

Otherwise, let (u,v) € A. Assume that there is a subtree equilibrium
(¢, 1) for every (v,w)-subtree with w € T'*(v)\{u}. Consider the pairs
of strategies ¢,, 7, defined on T{, ,) such that ¢,(z) = ¢;,(z) if 2 # v and
2 € Tiywy and 7y (2) = 75(2) if 2 # v and z € T,).

Using Lemmal4.5.6}

« if v € V, then ¢, (resp., 7,) is subtree optimal in T{, (-, 7,) (resp.,
T(u,v) (¢U7))'

+ if v € Vapax then we choose ¢, (v) as in Lemmal4.5.6]so that ¢, is sub-
tree optimal in T, , (-, 7,); on the other side 7, remains subtree optimal

in EL,U((bU’ ');
+ we proceed similarly if v € Vyzn.
O

This proves the existence of pure strategy Equilibrium as stated in
Using a minimax-like algorithm, we get the time complexity claimed in
the theorem.

4.6.2 . Two-player Integer Rotor Game

By analogy with the one-player case, we can search the value of the game
val® in a dichotomic way. Recall that it is defined as the maximal value that
player MAX can guarantee against any strategy of MZN. To know if MAX
can guarantee at least value z, it suffices to solve the binary game obtained by
replacing all values of sinks greater or equal than x by 1 and the other by 0. Then,
the value of the binary game is 1 if and only if the value of the initial game is at
least z. By iterating this, val® can be determined by solving O(log(|So|)) binary
games.

Once val* is known, we found no simple process to deduce an equilibrium from
the value of the game: this remains an open problem.

4.7 . Simple Graphs

In this section we consider simple graphs i.e., graphs such that for each vertex
u € V there is at most one arc with head v when v € A*(u). We show specific
results for this kind of graphs: firstly we give a formula allowing to propagate the
return flow without using the routine and then we show that this helps to efficiently
solve the decisional framework when values are not restricted to be binary.

We introduce some notations that will be useful in the rest of this section.
Consider two arcs b, ¢ of A™(u), in order to measure which one is reached first by
successive rotor order operations starting on a particular arc a € /Aﬁ(u) we define
the distance in a rotor orbit.

17

Definition 4.7.1 (Distance in a rotor orbit). Given a vertex u and a,b € fﬁ(u),
we denote by d,(a,b) the smallest i > 0 such that 6% (a) = b.

The following operator basically checks which arc between b and ¢ is encoun-
tered first while listing the orbit of 6, starting from a.

Definition 4.7.2. Let a,b, ¢ be arcs of At (u). We define the operator B, such
that B, (a,b,c) = 1ifd,(a,b) < dy(a,c) and B,(a,b,c) = 0 if not.

4.7.1 . Zero-player Game
In a simple graph, by definition [T+ (u)| is equal to | AT (u)]. So each time that
the rotor makes one full turn at vertex u, the particle travels exactly once between
u and v for each v € I'"(u). Consequently, we have the following result.

Lemma 4.7.3. I[f D(p)(u) = (u,v) then all arcs (u, w) of At (u) are visited exactly

Fp(u’ w) = Cp(u’ U) - Bu(p(u)a (ua U)v (uv w))
times during a maximal rotor walk starting from (p, w).

This allows to compute D(p)(u) from the return flows of the outgoing arcs of
u, as stated in next lemma.

Lemma 4.7.4. Among all arcs of At (u) which have a minimal return flow, the
arc D(p)(u) is the first one with respect to order 0, starting at p(u). The flow on
all arcs (u,v) € A can be computed in time O (| (u))).

Proof. Assume that D(p)(u) = (u,v). From Lemma all arcs (u,w) are
visited exactly Fj,(u,w) = (,(u,v) — Bu(p(u), (u,v), (u, w)) times during the
maximal rotor walk starting from (p, u). Note that, for all w € T'* (u),
Bu(p(u), (u,v), (u,w)) can be computed in time O(|T'" (u)|) by applying ,, suc-
cessively starting from p(u).

Then, for all w € T (u) \ v, we have:

Cp(ua w) > Fp(u’w) = <p(u’v) - Bu(p(u), (u’ U)> (u’w» > Cp(ua U) -1

where the first inequality comes from Lemma This gives (,(u,v) < 1+
Cp(u, w), or, equivalently, {,(u,v) < (,(u, w). Hence (,(u,v) is minimal.

On the other side, if (,(u, w) = (,(u,v) then By(p(u), (u,v), (u,w)) = 1,
which means that (u, v) is the first arc with respect to order 6,,, starting at p(u),
among all arcs of A™ () with minimal return flow.

In that process, we also show the second part of the result i.e., the flow
on arc (u,w) can be computed in time O(|T"" (u)]). O

118

Let (u,v) € A with u € Vj. Consider the (u, v)-subtree and let (v, w) be the
orientation of v in the Destination Forest in that subtree. From Lemma [4.7.3] we
have (,(u,v) = (,(v, w)+By(p(v), (v,u), (v,w)). Combining this with Lemma|4.7.4]
we obtain the following recursive computation of (,(u,v).

Cp(u,v) = wergn(g)l\ {u} Cp(v,w) + By(p(v), (v,u), (v, w)) (4.1)

We then have a result similar to that of Lemma [4.4.2]

Lemma 4.7.5 (Simple Retropropagation for the Zero-player Game). Given v €
V, assuming the return flows of all arcs (v, w) for w € T'"(v) are known, one can
compute the return flow of all arcs (z,v) with z € T~ (v) by applying Equation
at most twice in time O (min(|T'* (v)], [T~ (v)])).

Proof. For everyvertex z € I'"(v) \I'" (v) we set {,(z,v) = 1 (or {,(z,v) = 0if
S S())

As the graph is stopping, there is at least one vertex w € I'" (v) such that
the return flow of (v, w) is finite. Let (v,wg) = D,(v) be the first arc with re-
spect to order 6, starting from p(v) such that ¢, (v, wo) = min,,cp+ () Cp(v, w).
Then, for any (w, v)-subtree with w € I'"(v) and w # wy, the last outgoing
arc of v when routing a particle from (p, v) is (v, wg), hence by Equation (4.1),
we have (,(w,v) = (,(v,wy) + By(p(v), (v,w), (v,wp)). Note that all values
By (p(v), (v,w), (v,wp)) can be computed in time O(|T""(v)|) by iterating 6,
from p(v). It remains to compute ¢,(wo,v) which can be done by applying
Equation once more. Potentially, the return flows of all arcs (v, w) with
w € I't(v) \ {wo} might be infinite. In that case, we have (,(wo,v) = +oo. O

From here, we have all the tools to construct our recursive algorithm.

Theorem 4.7.6 (Complete Destination Algorithm for simple graphs). The con-
figuration D(p) can be computed in time complexity O(|V)).

Proof. We use the same algorithm as for the multigraph case (see[Theorem 4.4.3),

except that we replace routine IRR used for propagating the return flow by
Equation (4.1), which is more efficient since it does not need a division. And

is replaced by [Theorem 4.7.5] Since the graph is simple, we
have |A| = | A| = O(]V]) hence the result. O

4.7.2 . One-player Simple Tree-like Rotor Game

We now consider one-player rotor games when the graph is simple. For a
simple tree-like rotor game, with binary values, we show that we can compute the
optimal value of every starting vertex in the same time as in Then,
contrary to the case presented in Section [4.5.2] for a simple game with integer
values, we can achieve linear complexity to compute the value of the game.

First, Lemma is a direct consequence of Lemma [4.7.4] It characterizes a
subset of arcs likely to be the last outgoing arc of v.

19

Lemma 4.7.7. Consider a one-player simple tree-like rotor game G, a vertex u €
Vo and a strategy ¢. Then, we have h(D(p, $)(u)) € argmin,cp+ (,)Co(u, v).

This is true in particular for an optimal strategy of the one-player simple tree-
like rotor game. Thus, we can propagate the values and return flows more easily
than for the one-player tree-like rotor game.

4.7.2.1 Binary Values

Consider a one-player simple tree-like rotor game with binary values and a strategy
¢ for the player.

Lemma 4.7.8 (Optimal Values and Return Flows). Let (u,v) € A. Then:

1. If v € V,, suppose that we know all optimal values val* (v, w) and optimal
return flows ¢*(v,w) of all arcs (v, w) with w # u. From this we can com-
pute val* (u,v) and ¢*(u,v) by:

val* (u,v) = val* (v, wy) and ¢*(u,v) = C*(v,wp) + By (p(v), (v,), (v, wy))
where wy = h(D(p, $)(v)), i.e., (v, wy) is the last outgoing arc of v.
2. If v € Vyqax and if there is at least one arc (v, wy) with wy € TF(v) \ {u}

such that val*(v,w1) = 1 and ¢* (v, w1) = minep+)\ o} ¢ (v, w) then,

C*(v,wr) if (v,u) € A;

1 otherwise.

val*(u,v) = 1 and ¢*(u,v) =

3. If v € Vapax and if there is no arc (v, wq) as in case 2, we have

val*(u,v) = 0 and ¢*(u,v) = 1+ mingep+ o)\ fu} ¢ (v, w) if (v,u) € A;

1 otherwise.

Note that (*(u,v) can be infinite.

Proof. 1. If v € V,,, we use Equation (4.1).

2. Let (v,w;) be anarcwith w; € T (v) \ {u} such thatval*(v, w;) = 1 and
(v, w1) = mingept) o} ¢ (v, w). Lemma implies that there is
a strategy ¢ with D(p, ¢) = (v,w1), hence val*(u,v) = 1. Furthermore,
given any strategy ¢ such that val,(u,v) = 1, and for all w such that
val*(v,w) = 1 we have (4(v,w) > (*(v,w) > (*(v, w1), hence {*(u,v) =

C*(v,wr).

120

3. Otherwise, all arcs with minimal return flows have optimal value 0. Ob-
viously, this implies val*(u,v) = 0. Given any strategy ¢, for all w such
thatval® (v, w) = 0, we have ¢* (v, w) > (4(v, w) hence min,ep+)\ fu} ¢ (v, w) >
MiNyer+ () {u} o (v, w). Furthermore, if (v,u) € A, there is a strat-
egy (namely choosing (v, u) as the starting configuration of v) such that
(v,u) is visited min,,cr+ () (u} ¢* (v, w) + 1 times. Hence, we have
¢ (u,v) = 14 minger+ @) fuy ¢ (0, W)

O

By analogy with Lemma [4.5.6] we can construct a recursive linear algorithm
to compute the optimal value of ug. But, contrary to the one-player tree-like rotor
game on multigraphs, as the graph is simple, we can also compute in linear time
the return flows and values of all arcs of A that are not directed from wug towards
the leaves. The reason we should do this is that, if we know all return flows of
all arcs, in the end we can compute optimal values and strategies for all starting
vertices simultaneously. Indeed, by using conjointly Lemma[4.7.5and Lemmal[4.7.§|
this can be done in at most 2| A™ (u)| steps for a given vertex u. This result is
properly stated in the following Lemma.

Lemma 4.7.9 (Optimal Retropropagation). Given a vertex v € V and assuming
the return flows and values of all arcs (v,w) for w € T'(v) are known, one can
compute all optimal return flows and all optimal values of arcs (u,v) with u €
'~ (v) by applying at most twice Equation (4.1).

Proof. If v € V,, this is exactly Lemmal4.7.5| concerning the zero-player case.
So we focus on the case where v € Vi ax.

LetT'F. (v) C I'M(v) be the set of w in argmin,, e+ ()¢ (v, w). From
Lemma we have that, no matter the strategy ¢ chosenonwv, h(D(p, ¢)(v)) €
I (v). From here we distinct two cases.

» Either there is a vertex wy € T'F. (v) such that val*(v,w;) = 1 (there
might be several such vertices). In this case, Lemmal4.7.8(case 2) states
that for all arcs (u, v) with u # w; we have val*(u,v) = 1 and (*(u,v) =
¢*(v, wy) if thereis an arc (v,u) and ¢*(u, v) = 1if not. If (w1, v) € A, it
remains to consider the case of (wy,v), which can be done by applying
a second time Lemma4.7.8|(case 2) with v = w;.

+ Ifthereis no such vertex wy € T, (v) such thatval*(v,w;) = 1, choose
any vertex wy € I'}. (v). By using Lemmals.7.8](case 3) for all arcs (u, v)
with u # wp we have that val*(u,v) = 0 and (*(u,v) = (*(v,wg) + 1 if
there is an arc (v, u), and (*(u,v) = 1 if not. As for the previous case,
if (wo,v) € A, it remains to consider the case of (wp, v), which can be

done by applying a second time Lemma[4.7.8|(case 3) with u = wy.

121

This allows us to compute the optimal values of all vertices in linear time.

Theorem 4.7.10. Given a one-player binary tree-like rotor game on a simple
graph, we can compute the optimal values of all vertices in time complexity O(|V]).

Proof. We consider the arcs in the same order than in For all

arcs directed from ug towards the leaves, we use Lemmal4.7.8| Thisis done in
O(]A|) comparisons. Then, for all arcs directed from the leaves towards uy we

use[Theorem 4.7.9|which is done in O(|.A]) comparisons. Then, we just need

to compute the optimal value of each vertex as in the proof of[Theorem 4.5.7
Which is done in O(|.A|) comparisons as well. O

Remark. This procedure gives us the optimal value of the game simultaneously
for every starting vertex, in overall linear time. However, as noted before (see
lure 4.8), the optimal strategy depends on the starting vertex.

This extension is also valid for the two-player binary variant on a simple graph as
the subtree optimal equilibrium is preserved for the same reason as in Section[4.6.1]

4.7.2.2 One-player Simple Integer Rotor Game

This last subsection introduces a notion of access flow that measures the potential
access to an arc for a rotor walk starting at ug. It allows us to compute the optimal
value of the game in linear time for the integer case on a simple graph, in contrast
to the general case where we had to use a bisection algorithm (Section [4.5.2).

Lemma 4.7.11 (Strategy émaz). Given a vertex ug, there is a strategy ¢mar €
O v ax Such that, for all arc (ug,v) € A,

Up, V) = max U, V),
Chmaa (105 V) ¢e«1>MAX<¢(0,v)

namely any strategy that chooses to direct arcs towards uy when possible.

Proof. We prove recursively that the strategy ¢.,., described above is max-
imal, starting from leaves and going back to ug. Let (u,v) € A such that
(u,v) is directed towards the leaves, suppose that all return flows of arcs
(v,w) € Awithw € TH(v) \ {u} are maximal. If v € V., {s(u,v) is maximal if
the return flow of D(p, ¢)(v) is maximal among all strategies ¢. By choosing
Gmaz(v) = (v,u), we have By, (¢(v), (v,u), (v,w)) = 1forany w € I'"(v) \ {u}.
At the same time, ¢(v) is directed towards wy. From Equation (4.1), we then
have that, no matter the value of the return flow of the arcs (v, w), as long as
it is maximal, the return flow of (u, v) is maximal. If there is no arc (v, u), the
choice does not matter as (,(u, v) = 1 for any strategy ¢ € ®rqax. O

122

Definition 4.7.12 (Access flow acc(u, v)). For every arc (u,v) € A, we denote
by acc(u,v) the value such that, if we remove all outgoing arcs of v and we add
an arc (v, u), acc(u,v) is the maximal number of times arc (u,v) is visited in the
maximal rotor walk starting from ((p, ¢), uo) for all strategies ¢ € ®pqax. Note
that acc(u, v) might be infinite in the case where all sinks are in T, ..

In particular, acc(u,v) is positive if and only if there exists a strategy ¢ such
that v is visited at least once in the maximal rotor walk starting from ((p, ¢), up).

A sink s is said to be reachable if, for (u,s) € A, acc(u, s) is positive. Hence,
to solve our problem we just need to find the sink sy, of maximal value among
the reachable sinks.

From here we present the linear process that allows to compute the access flow
of all arcs with head in Sj.

Lemma 4.7.13 (Access flow around ug). Let ¢max be the strategy detailed above.
For any v; € T" (ug) we have:

acc(ug, v;) = My, 45 Chmax (U0, V) — Bug (p(u0), (w0, v5), (uo, vi)) if ug € V

Ty, ot Chmar (V05 V) ifuo € Vmax

Proof. To maximize the number of times (ug, v;) is visited in the definition of
acc(uo, v;), we need to maximize the return flows of all arcs (ug, v;). All these
arcs are directed from ug towards leaves, so the return flow of these arcs
under strategy ¢mq. is maximum among all strategies. Both cases derive from
Equation (4.1), but in the second one, uy is initially directed towards v;. O

Similarly to the return flow, we give a recursive equation that computes the
access flow on all arcs directed from ug towards the leaves.

Lemma 4.7.14 (Access flow Propagation). Let (u,v) € A, let wo, .., wy, be the
vertices of 't (v) \ w. If we know acc(u,v), then, for any couple (v, w;) we have:

GCC(U w‘) — min minij?éi C¢mam (v, wj) — By(p(v), (v, wj)? (v, wi));

acc(u,v) — By(p(v), (v, u), (v, w;))

If v € Vapgax, we have:

aCC(U wl) = min minwj J# C‘z)maz (Uv w]),
)

acc(u,v)
as the player can always choose ¢(v) = (v, w;).

123

Once again, using this formula to compute all access flows might take more
than a linear time, so we give a property similar to Lemma [4.7.5] allowing to
compute all access flows in linear time.

Lemma 4.7.15 (Access flow Computation). Let (u,v) € A and wy, .., wy, be the
vertices of 't (v) \ u, and assume that acc(u, v) is known. Then acc(v,w;) can be
determined for all i € {0. ..k} by computing acc(v,w;) for only two values of .

Proof. Same proof than for Lemma if vertex v belongs to V,.. If v €

Vmax, We also use Lemma but with B, (¢(v), (v,u), (v,w;)) = 0 for all
w; € TT(v) \ {u}. O

Theorem 4.7.16. One can compute the value of a one-player tree-like rotor game
with arbitrary integer values in linear time O(|V'|) for a given starting vertex uy.

Proof. Consider the arcs in the same order than in[Theorem 4.4.31 For all
arcs directed from wug towards the leaves, we compute the maximal return
flows recursively from the leaves (i.e., constructing strategy ¢,,q.). Then, for
all arcs with tail uy we use Lemma4.7.13]and finally we use Lemma/4.7.15|to
compute the access flow on all arcs directed towards the leaves. Each arc is
considered at most twice so the complexity of these steps sums up to O(|.A|).
After that, the value of the game is the reachable sink with maximal value
which is computed in O(|V]). As the graph is tree-like and simple we have
| A| < 2|V| hence our complexity result. O

As a concluding example, let us apply this Theorem to the example of Fig-
ure to compute the correct value of the game.

®

Figure 4.12: Example of a simple integer tree-like rotor game. Here, v €
Vamax and ug € V.. All other vertices belong to Sy and their
value is written inside them. The initial configuration of ug
is the red arc in dashes.

First, compute the return flows of arcs (ug, 2) and (ug, v) under strategy dmax-
We have (g, (10,2) = 1 and (4, (ug,v) = 2. From [Theorem 4.7.13| we have
acc(ug,2) = 1 as By, (p(uo), (uo,v), (1o, 2)) = 1. From the same formula we have
acc(ug,v) = 1. And by [Theorem 4.7.15| we have acc(v, 1) = acc(v,0) = 1. All
sinks are reachable, and 2 is the maximal value among them, hence val*(vy) = 2.

124

Conclusion and Future Works

This chapter presented polynomial algorithms to solve SP-ARRIVAL on treelike-
multigraphs but also its decisional variants with one and two players. These algo-
rithms rely on the notion of return flow that can only be used in the underlying
graph is a tree.

Concerning SP-ARRIVAL, one remaining fundamental question is to deter-
mine whether a polynomial algorithm exists to solve the zero-player game. Similarly,
problems such as simple stochastic games, parity games and mean-payoff games
are also in NP N co-NP, and no polynomial algorithm is known to solve them (see
[47]). For those different problems, considering sub-classes of graphs where we can
find polynomial algorithms is a fruitful approach (see [4] and [5]).

Thus, we would like to study more general classes of graphs. To begin with,
even graphs that are well-studied in terms of the sandpile group such that ladders
or grids remain an open problem for SP-ARRIVAL. The problem of finding the
destination of multiple particles (e.g., MP-ARRIVAL) at the same time is also a
significant open problem in nearly all cases except the path graph.

Finally, another natural extension of our algorithm would be to define and
study an adequate notion of graphs with bounded width to generalize the Tree-like
multigraph case.

125

Algorithme 3 : Optimal Strategy Computation

input :(u,v)isanarcof A; ¢ : Tt (v) \ {u} = Z U +oco contains the
optimal return flows of arcs (v, w) € A; val : T+ (v) \ {u} — {0,1}
contains the optimal values of these arcs.

output :an element of AT (v) (optimal strategy o*(v)); a positive integer
(¢*(u,v)) and a binary integer (val* (u, v)))

1 Forw € T (v), let Q(w) be the quotient of the euclidean division of {(w) by
|h=(w)]; let gmin be the minimum value of Q(w) for all w; let R(w) be
C(w) = (gmin * R~ (w)|); let as = a. = ag with ag being any arc of A (v), let
fo, f1, fu, value be integers initialized to 0. Let by, b; be two arcs initialized
to ag. Let last be a boolean with initial value False.

2 if r(w) = 400, Vw € I'" (v)\{u} then

3 | returnbg, +00,0

4 repeat

5 if h(a.) = u then

6 fu += 1

7 Qe < ev(ae)

8 else

9 R(h(a.)) —=1

10 if R(h(ae)) =0 then

1 if val(a.) = 0 then

/* Keep track of the maximal return with value 0

*/

12 if fo < f. then

13 Jo < fu

14 bo < Qg

15 else

16 if f1 > f, then

/* Keep track of the minimal with value 1 and
recall the fact that there exist a strategy

with value 1 */
17 fl — fu
18 b1 < Qg
19 value <+ 1
20 if h(as) = u then
21 ‘ fu—=1
22 else
23 ‘ R(h(as)) +=1
24 as < 0y (as)
25 if 0,(as) = ag then
26 | last < True
27 else
28 | e < 0,(ac)

20 until a;, = ag and last=True

30 if value = 1 then

31 | returnby, fi + qmin* [h71 (W) + 1,1
32 else

33 ‘ return b(), f() + Qmin * |h’1(u)| + 1,0

126

5 - Conclusion

This work represents an in-depth exploration of the rotor-routing model ([15])
within the context of reachability problems. We extensively investigate various
variants of the ARRIVAL problem, as introduced in [31], as well as a diverse range
of problems that involve a combination of rotor-routing, sandpiles, and the dollar
game. Additionally, we delve into the study of the ARRIVAL problem on a specific
class of graphs, which we refer to as treelike-multigraphs.

In Chapter [2 our objective was to consolidate the existing literature on the
ARRIVAL problem and reachability problems within the rotor-routing model frame-
work. This approach resulted in the creation of a unified framework for rotor-
routing models. This framework encompasses not only rotor walks and rotor rout-
ing sequences but also negative routing operations (i.e., antiparticles) and legal
and non-legal routing operations. We successfully extended most of the known
results on rotor-routing models to this unified framework, which also forms the
basis of our work in Chapter 3|

Additionally, in Chapter [3) we formulated various reachability problems within
this unified framework, considering two key parameters: legal or non-legal routing
sequences and stopping or strongly connected graphs. We compared the complexity
of various reachability problems to that of the ARRIVAL problem. One significant
contribution of this document has been to demonstrate that the ARRIVAL prob-
lem with multiple particles is equivalent to the problem with non-legal routing
operations. This finding indicates that the complexity of the ARRIVAL problem
is primarily influenced by the rotor-routing mechanism and graph topology, rather
than the legality constraint.

This final result strengthens our approach to studying the ARRIVAL problem
on specific graph topologies in Chapter [4] for a more in-depth understanding. In
particular, we provided a polynomial algorithm to solve the ARRIVAL problem
on treelike-multigraphs. Additionally, we utilized these results to solve determin-
istic analogues of Markov Decision Processes and Stochastic Games on treelike-
multigraphs, thereby enhancing the connections between random and rotor walks.

Following the example of (x,0) ~ (p/,0’), we conjectured in Chapter (3| that
the problem (x,0) — (p’,0’) is equivalent to the ARRIVAL problem with multiple
particles. If this property were to hold true, it would imply complete symmetry
in the ARRIVAL problem. Essentially, determining the exit sink based on the
initial rotor particle configuration would be equivalent to finding the initial rotor
configuration based on the final rotor particle configuration, and vice versa. We also
noted that the reachability problems presented in Table could be approached
from another perspective by considering equivalence classes instead of individual
configurations. For example, consider the problem (p,0) ~ (%,0¢) in the linear
(i.e., non-legal) case. Given a rotor particle configuration (p, o), for any rotor

127

particle configuration (p’,0’) such that p ~ p’ and o ~ o/, we have (p,0) ~
(p',0’). This holds true for oy and any particle configuration o, such that oy ~ oy,.
It implies that the problem of determining whether there exists p” with p ~ p”, o”
with o ~ ¢”, and o with o¢ ~ of] such that (p”,0") ~ (x,0{) is equivalent to
the problem (p, o) ~ (%, 00). However, in the legal case, there is not always a legal
routing sequence between elements of the same rotor class or the same particle
configuration class, which makes this problem more challenging. Investigating such
problems appears to be a promising avenue for gaining a better understanding of
rotor classes and particle configuration classes (e.g., Sandpiles group).

In Chapter [4] we posed several open questions. We were unable to provide a
polynomial algorithm for any variant of the ARRIVAL problem on general digraphs.
Specifically, as long as the graph contains a vertex-disjoint circuit of length more
than three, the tool we introduced for solving the ARRIVAL problem on treelike-
multigraphs, namely the return flow, is no longer sufficient. Nevertheless, it appears
that this approach can potentially be generalized to graphs of the form illustrated

in Figure 5.1]

/)

O Gy C) s ()

Figure 5.1: Graphwith atriangle ABC and where the rest of the vertices
can be partitioned in two disjoints sets, one containing L and
one containing R.

Considering that the set A, B, C does not contain a sink vertex, we treat it
as a unique vertex ABC' with a 'complex’ rotor order. To determine the rotor
order of vertex ABC' based on the particle’s initial position, one can compute it by
observing successive routing operations. For instance, let us assume the particle
first enters A, B, C via C. It then exits A, B, C through C. This implies that if it
returns to A, B, C' again, it will necessarily enter through C. In that case, it will
exit A, B,C via A. If the particle returns once more, it will enter A, B,C via A
and exit via C'. A check reveals that the rotor configuration of A, B, C' aligns with
that shown in Figure [5.1

Therefore, the 'complex’ rotor order 845c of ABC with the particle ini-
tially entering via C' and having rotor configuration p is such that h(p(ABC)) =
R, h(0apc(p(ABC))) = L, h(6%5-(p(ABC))) = R. Consequently, the problem
becomes equivalent to SP-ARRIVAL. This underscores the promising nature of
investigating the computation of such rotor orders as a field of study.

As mentioned in this document, we successfully solved MP-ARRIVAL (i.e.,
the ARRIVAL problem with multiple particles) comprehensively on path graphs,

128

leveraging our knowledge of the Sandpiles group associated with these graphs.
The understanding of the Sandpiles group of a graph is a crucial prerequisite for
solving MP-ARRIVAL for that specific graph. Consequently, a promising avenue
for research involves the computation of the Sandpiles group for various graphs.

We are aware that this field is currently under active investigation, and we
anticipate that future results in this area will contribute significantly to extending
our comprehension of the ARRIVAL problem.

129

130

Bibliography

[1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]

Carlos A Alfaro, Carlos E Valencia, and Marcos CVargas. “Comput-
ing sandpile configurations using integer linear programming”.
In: Chaos, Solitons & Fractals 170 (2023), p. 113356.

Joshua Ani et al. “Trains, games, and complexity: 0/1/2-player mo-
tion planning through input/output gadgets”. In: Theoretical Com-
puter Science (2023), p. 113945.

David Auger, Pierre Coucheney, and Loric Duhazé. “Polynomial
Time Algorithm for ARRIVAL on Tree-Like Multigraphs”. In: 47th
International Symposium on Mathematical Foundations of Computer
Science. 2022, p. 1.

David Auger, Pierre Coucheney, and Yann Strozecki. “Finding op-
timal strategies of almost acyclic simple stochastic games”. In:
International Conference on Theory and Applications of Models of
Computation. Springer. 2014, pp. 67-85.

David Auger, Pierre Coucheney, and Yann Strozecki. “Solving Sim-
ple Stochastic Games with Few Random Nodes Faster Using Bland's
Rule”. In: 36th International Symposium on Theoretical Aspects of
Computer Science. 2019.

David Auger et al. “Generalized ARRIVAL Problem for Rotor Walks
in Path Multigraphs”. In: (2023). arXiv: 2307.01897 [cs.DM].

Laszl6 Babai and Everlin Toumpakari. “A structure theory of the
sandpile monoid for directed graphs”. In: Journal of Combinatorics,
to appear (2010).

Spencer Backman and Sam Hopkins. “Fourientations and the Tutte
polynomial”. In: Research in the Mathematical Sciences 4.1 (2017),
p. 18.

Spencer Christopher Foster Backman. “Combinatorial divisor the-
ory for graphs”. PhD thesis. Georgia Institute of Technology, 2014.

Per Bak, Chao Tang, and Kurt Wiesenfeld. “Self-organized critical-
ity: An explanation of the 1/f noise”. In: Physical review letters 59.4
(1987), p. 381.

Henry G Baker. Rabin’s proof of the undecidability of the reachabil-

ity set inclusion problem of vector addition systems. Massachusetts
Institute of Technology, Project MAC, 1973.

131

https://arxiv.org/abs/2307.01897

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Matthew Baker and Farbod Shokrieh. “Chip-firing games, poten-
tial theory on graphs, and spanning trees”. In: Journal of Combi-
natorial Theory, Series A 120.1 (2013), pp. 164-182.

Ravindra B Bapat. “The Laplacian matrix of a graph”. In: Mathe-
matics Student-India 65.1 (1996), pp. 214-223.

Norman L Biggs. “Chip-firing and the critical group of a graph”.
In: Journal of Algebraic Combinatorics 9.1 (1999), pp. 25-45.

Anders Bjorner and Laszl6 Lovasz. “Chip-firing games on directed
graphs”. In: Journal of algebraic combinatorics 1.4 (1992), pp. 305-
328.

Anders Bjorner, Laszl6 Lovasz, and Peter W Shor. “Chip-firing games
ongraphs”. In: European Journal of Combinatorics 12.4(1991), pp. 283-
291.

Richard P Brent and Paul Zimmermann. Modern computer arith-
metic. Vol. 18. Cambridge University Press, 2010.

Alberto Caprara. “Sorting permutations by reversals and Eulerian
cycle decompositions”. In: SIAM journal on discrete mathematics

12.1(1999), pp. 91-110.

Melody Chan, Thomas Church, and Joshua A Grochow. “Rotor-
routing and spanning trees on planar graphs”. In: International
Mathematics Research Notices 2015.11 (2015), pp. 3225-3244.

Denis Chebikin and Pavlo Pylyavskyy. “A family of bijections be-
tween G-parking functions and spanning trees”. In: Journal of Com-
binatorial Theory, Series A 110.1 (2005), pp. 31-41.

William Chen and Travis Schedler. “Concrete and abstract struc-
ture of the sandpile group for thick trees with loops”. In: arXiv
preprint math/0701381 (2007).

Stephen A Cook. “The complexity of theorem-proving procedures”.
In: Proceedings of the third annual ACM symposium on Theory of
computing. 1971, pp. 151-158.

Stephen A Cook and Robert A Reckhow. “Time-bounded random

access machines”. In: Proceedings of the fourth annual ACM sym-
posium on Theory of computing. 1972, pp. 73-80.

Robert Cori and Dominique Rossin. “On the sandpile group of
dual graphs”. In: European Journal of Combinatorics 21.4 (2000),
PP. 447-459.

Scott Corry and David Perkinson. Divisors and Sandpiles: An Intro-
duction to Chip-Firing. Vol. 114. American Mathematical Soc., 2018.

132

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Vijay D’silva, Daniel Kroening, and Georg Weissenbacher. “A sur-
vey of automated techniques for formal software verification”.
In: IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 27.7 (2008), pp. 1165-1178.

Deepak Dhar. “Self-organized critical state of sandpile automa-
ton models”. In: Physical Review Letters 64.14 (1990), p. 1613.

Deepak Dhar.“The abelian sandpile and related models”. In: Phys-
ica A: Statistical Mechanics and its applications 263.1-4 (1999), pp. 4-
25,

Deepak Dhar. “Theoretical studies of self-organized criticality”.
In: Physica A: Statistical Mechanics and its Applications 369.1(2006),
pp. 29-70.

Deepak Dhar et al. “Algebraic aspects of abelian sandpile mod-
els”. In: Journal of physics A: mathematical and general 28.4 (1995),
p. 805.

Jérdme Dohrau et al. “ARRIVAL: A zero-player graph game in NP N
coNP". In: A journey through discrete mathematics. Springer, 2017,
Pp. 367-374.

Noah Doman. “The Identity of the Abelian Sandpile Group”. PhD
thesis. 2020.

loana Dumitriu, Prasad Tetali, and Peter Winkler. “On playing golf
with two balls”. In: SIAM Journal on Discrete Mathematics 16.4 (2003),

pp. 604-615.
Matthew Farrell and Lionel Levine. “CoEulerian graphs”. In: Pro-

ceedings of the American Mathematical Society 144.7 (2016), pp. 2847-
2860.

John Fearnley et al. “Unique end of potential line”. In: Journal of
Computer and System Sciences 114 (2020), pp. 1-35.

Jérémy Fersula, Camille NoUs, and Kévin Perrot. “Sandpile top-
pling on Penrose tilings: identity and isotropic dynamics”. In: Au-
tomata and Complexity. Springer, 2022, pp. 117-143.

Tobias Friedrich and Thomas Sauerwald. “The cover time of de-
terministic random walks”. In: International Computing and Com-
binatorics Conference. Springer. 2010, pp. 130-139.

Andrei Gabrielov. “Abelian avalanches and Tutte polynomials”.
In: Physica A: Statistical Mechanics and its Applications 195.1-2 (1993),

pp. 253-274.

133

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Bernd Gartner, Sebastian Haslebacher, and Hung P. Hoang. “A
Subexponential Algorithm for ARRIVAL". In: 48th International Col-
loquium on Automata, Languages, and Programming (ICALP 2021).
Vol. 198. Schloss Dagstuhl - Leibniz-Zentrum fur Informatik, 2021,
69:1-69:14.

Bernd Gartner et al. “ARRIVAL: Next Stop in CLS". In: 45th Inter-
national Colloquium on Automata, Languages, and Programming
(ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
2018.

Giuliano Pezzolo Giacaglia et al. “Local-to-global principles for the
hitting sequence of a rotor walk”. In: the electronic journal of com-
binatorics (2012), P5-Ps.

Samir Gokarn and Thyagaraj S Kuthambalayan. “Analysis of chal-
lenges inhibiting the reduction of waste in food supply chain”. In:
Journal of cleaner production 168 (2017), pp. 595-604.

Eric Goles and Maurice Margenstern. “Universality of the chip-
firing game”. In: Theoretical Computer Science 172.1-2(1997), pp. 121-
134.

Martin Grotschel, Laszl6 Lovasz, and Alexander Schrijver. “Geo-
metric Algorithms and Combinatorial Optimization”. In: ().

Sara K. Grumbacher et al. “Self-organized criticality: An experi-
ment with sandpiles”. In: American Journal of Physics 61.4 (1993),
Pp. 329-335.

Michael Hack. “Decision problems for Petri nets and vector addi-
tion systems”. In: (1975).

Nir Halman. “Simple stochastic games, parity games, mean pay-
off games and discounted payoff games are all LP-type prob-
lems”. In: Algorithmica 49.1 (2007), pp. 37-50.

David Harvey and Joris Van Der Hoeven. “Integer multiplication
in time O(n log n)". In: Annals of Mathematics 193.2 (2021), pp. 563-
617.

Alexander E Holroyd and James Propp. “Rotor walks and Markov
chains”. In: Algorithmic probability and combinatorics 520 (2010),
pp. 105-126.

Alexander E Holroyd et al. “Chip-firing and rotor-routing on di-

rected graphs”. In: In and out of equilibrium 2. Springer, 2008, pp. 331-

364.

134

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Sam Hopkins, Thomas McConville, and James Propp. “Sorting via
Chip-Firing". In: The Electronic Journal of Combinatorics 24.3 (2017),
P3-13.

Balint Hujter, Viktor Kiss, and Lilla Téthmérész. “On the complex-

ity of the chip-firing reachability problem”. In: Proceedings of the
American Mathematical Society 145.8 (2017), pp. 3343-3356.

Eli Timothy Johnson. “The Sandpile Group on a Hexagonal Grid".
PhD thesis. 2019.

Kyle D Julian and Mykel] Kochenderfer. “Reachability analysis for
neural network aircraft collision avoidance systems”. In: Journal
of Guidance, Control, and Dynamics 44.6 (2021), pp. 1132-1142.

CS Karthik. “Did the train reach its destination: The complexity
of finding a witness”. In: Information Processing Letters 121 (2017),
pp. 17-21.

Itamar Landau and Lionel Levine. “The rotor-router model on
regular trees”. In: Journal of Combinatorial Theory, Series A 116.2

(2009), pp. 421-433.

Yvan Le Borgne and Dominique Rossin. “On the identity of the
sandpile group”. In: Discrete mathematics 256.3 (2002), pp. 775-
790.

Janvan Leeuwen. “A Partial Solution to the Reachability-Problem

for Vector-Addition Systems”. In: Proceedings of the Sixth Annual
ACM Symposium on Theory of Computing. 1974, pp. 303-309.
Lionel Levine. “Sandpile groups and spanning trees of directed
line graphs”. In: Journal of Combinatorial Theory, Series A118.2 (2011),
Pp. 350-364.

Lionel Levine. “The sandpile group of a tree”. In: European Journal
of Combinatorics 30.4 (2009), pp. 1026-1035.

Rupert Li and James Propp. “A greedy chip-firing game”. In: Ran-
dom Structures & Algorithms 62.3 (2023), pp. 645-666.

Criel Merino Lopez. “Chip firing and the Tutte polynomial”. In: An-
nals of Combinatorics 1.1 (1997), pp. 253-259.

Graham Manuell. “A simple lower bound for ARRIVAL". In: arXiv
preprint arXiv:2108.06273 (2021).

Ernst W Mayr. “An algorithm for the general Petri net reachability
problem”. In: Proceedings of the thirteenth annual ACM symposium
on Theory of computing. 1981, pp. 238-246.

135

[65] Hagar Mosaad. “ARRIVAL: A zero-player graph game”. PhD thesis.
2017.

[66] BO Nash.“Reachability problems in vector addition systems”. In:
The American Mathematical Monthly 80.3 (1973), pp. 292-295.

[67] JiaNingetal.“Journal of Rail Transport Planning & Management”.
In: Journal of Rail Transport Planning & Management 23 (2022), p. 100333.

[68] Esko Nuutila and Eljas Soisalon-Soininen. “On finding the strongly
connected components in a directed graph”. In: Information pro-

cessing letters 49.1 (1994), pp. 9-14.

[60] Martin] Osborne et al. An introduction to game theory. Vol. 3. 3.
Oxford university press New York, 2004.

[70] Jim Pitman and Wenpin Tang. “Tree formulas, mean first passage
times and Kemeny's constant of a Markov chain”. In: Bernoulli
24.3 (Aug. 2018). doi: 110 . 3150/16 - bej916. url: https://doi.
org/10.3150%2F16-bej916.

[711 AM Povolotsky, VB Priezzhev, and RR Shcherbakov. “Dynamics of
Eulerian walkers”. In: Physical review E 58.5 (1998), p. 5449.

[72] Vyatcheslav B Priezzhev et al. “Eulerian walkers as a model of
self-organized criticality”. In: Physical Review Letters 77.25 (1996),
p. 5079.

[73] James Propp. “Lattice structure for orientations of graphs”. In:
arXiv preprint math/0209005 (2002).

[74] Martin L Puterman. “Markov decision processes”. In: Handbooks
in operations research and management science 2 (1990), pp. 331-

434.

[75] Yuval Rabani, Alistair Sinclair, and Rolf Wanka. “Local divergence
of Markov chains and the analysis of iterative load-balancing schemes”.
In: Proceedings 39th Annual Symposium on Foundations of Com-
puter Science (Cat. No. 98CB36280). |IEEE. 1998, pp. 694-703.

[76] George S Sacerdote and Richard L Tenney. “The decidability of
the reachability problem for vector addition systems (prelimi-
nary version)”. In: Proceedings of the ninth annual ACM symposium
on Theory of computing. 1977, pp. 61-76.

[771 RahulSavanietal.“Reachability Switching Games". In: Logical Meth-
ods in Computer Science 17 (2021).

[78] Paul D.Seymour. “Packing directed circuits fractionally”. In: Com-
binatorica 15.2 (1995), pp. 281-288.

136

https://doi.org/10.3150/16-bej916
https://doi.org/10.3150%2F16-bej916
https://doi.org/10.3150%2F16-bej916

[79] Lloyd S Shapley. “Stochastic games”. In: Proceedings of the na-
tional academy of sciences 39.10 (1953), pp. 1095-1100.

[80] Lilla T6thmérész. “Algorithmic aspects of rotor-routing and the
notion of linear equivalence”. In: Discrete Applied Mathematics 236
(2018), pp. 428-437.

[81] Lilla T6thmérész. “Rotor-routing reachability is easy, chip-firing
reachability is hard”. In: European Journal of Combinatorics 101(2022),
p. 103466.

[82] Evelin Toumpakari. “On the sandpile group of regular trees”. In:
European Journal of Combinatorics 28.3 (2007), pp. 822-842.

[83] Evelin Christiana Toumpakari. “On the Abelian sandpile model.”
In: (2005).

[84] Geoffrey G Xie et al. “On static reachability analysis of IP net-
works". In: Proceedings IEEE 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Vol. 3. 2005, pp. 2170-
2183.

[85] Vladimir Yanovski, Israel A Wagner, and Alfred M Bruckstein. “A
distributed ant algorithm for protect efficiently patrolling a net-
work”. In: Algorithmica 37.3 (2003), pp. 165-186.

137

Appendix - Complexity Class Syllabus

This section provides definitions and insights into the various complexity classes
discussed in this document. In computational complexity, problems are categorized
into complexity classes, and in this context, the computational complexity depends
on graph parameters, such as the number of vertices or arcs in the graph.

* The P complexity class includes all decision problems solvable by a deter-
ministic Turing machine in polynomial time. When we state that a problem
is "solvable in polynomial time," it exists a deterministic Turing machine
to solve this problem and whose computational time can be bounded by a
polynomial function of the number of arcs.

* The NP complexity class, encompassing P, is widely conjectured to have
a distinct status from P (P#£NP). In this document, we adhere to the
definition that NP includes decision problems whose solution is certifiable in
polynomial time by a deterministic Turing machine, referred to as a certifier.
This implies that, for any instance I with a "yes" answer, there exists a
certifier that checks in polynomial time whether a certificate C' (which is
polynomial in the size of the entries) proves the answer to be "yes". Hence,
the problem of deciding whether C' demonstrates that the answer is "yes" or
not falls within the P complexity class. It is important to note that, given a
certifier, there may be multiple certificates proving that the answer is indeed
"ves"; in other words, there might be several accepting paths in the certifier.

- The UP complexity class, a subclass of NP, specifies that any deter-
ministic Turing machine used to certify whether an instance I has the
answer "yes" admits a single certificate C' proving that the answer is
"ves"—in other words, a single accepting path.

- A problem is designated as NP-Complete if it belongs to NP, and
any other problem in NP can be reduced to it in polynomial time (via
a Cook reduction).

* Similarly, the co-NP complexity class includes problems for which any "no"
instance can be certified by a deterministic Turing machine in polynomial
time.

- The co-UP class mirrors the UP property but for "no" instances.

+ The PSPACE complexity class encompasses problems solvable by a de-

terministic Turing machine using a polynomial amount of space. Notably,

NPCPSPACE. However, the conjecture remains that NP£APSPACE.

138

- A problem is deemed PSPACE-Complete if every other problem in
PSPACE can be reduced to it through a Karp reduction (a more strin-

gent version of a Cook reduction where the output of both problems
must be the same).

139

	Remerciements
	Introduction
	Thesis Overview
	Related Works
	Document organization and contributions

	General Framework of Rotor Routing
	Basic Definitions
	Rotor Routing Definitions

	Routing Vector
	Reduced routing sequence and routing vector

	Cycle Pushes and Equivalence Classes blackof Rotor Configurations
	Rotor configuration blackequivalence classes
	Particle configuration class

	Positive Rotor Walk
	Basic definitions and properties
	Cycle pushing and Rotor Walks

	Legality
	Definitions and fundamental properties
	Orbits of legal routing
	Characterization of Rotor Particle configurations reachable by legal routings
	Specific results on Stopping Graph

	ARRIVAL and Reachability Problems
	ARRIVAL
	Sw-ARRIVAL and SP-ARRIVAL
	MP-ARRIVAL and Linear ARRIVAL

	Reachability Problems Chart
	General Reachability Problems
	Problem (,) (,') by a firing sequence blackhujter2017complexity
	Reachability problem of tothmeresz2021rotor (,) (',')

	Properties for problems with a missing input on strongly connected graphs in the linear case
	Problems where we can choose the rotor configuration(s)
	Problems where we can choose the particle configuration(s)

	Problem (*,) (*,')
	Gadget
	Proof that (*,) (*,') and (*,) (*,') are NP-Complete

	Problem (,) (*,')
	blackEquivalence between (,) (*,') and MP-ARRIVAL
	blackEquivalence between (,) (*,') and MP-ARRIVAL

	Problem (*,) (',')
	Problem (*,) (',')
	Problem (*,) (',')

	Legal problems with non-fixed particle configuration(s)

	SP-ARRIVAL on Treelike-Multigraphs
	SP-ARRIVAL and Complexity Issues
	Cycle Pushing

	Simple Path Graph
	Routing One Particle on a Path Graph
	Routing Several Particles
	The Return Flow with the Path Graph

	Tree-Like Multigraphs: Return Flow Definition
	Tree-Like Multigraphs
	Return Flows
	Revolving Routine

	SP-ARRIVAL for Tree-like Multigraphs
	One-player Rotor Game
	One-player Binary Rotor Game
	One-player Integer Rotor Game
	One-player Rotor Game: Other Set of Strategies

	Two-player Rotor Game
	Two-player Binary Rotor Game
	Two-player Integer Rotor Game

	Simple Graphs
	Zero-player Game
	One-player Simple Tree-like Rotor Game

	Conclusion
	References
	Appendix - Complexity Class Syllabus

