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Abstract

Curiosity-driven AI for Science: Automated Discovery of Self-Organized Structures

Abstract: Complex systems are very hard to predict and control due to their chaotic dynamics and open-ended outcomes.
However, understanding and harnessing the underlying mechanisms of these systems hold great promise for revolu-
tionizing many areas of science. While considerable progress has been made in manipulating and measuring system
activity down to the lowest level, there remains a fundamental gap between our knowledge at the micro-level and our
ability to control resulting properties on a global scale. Modern machine learning tools offer promising avenues for
assisting scientists in navigating the vast space of possible outcomes, especially when aiming for novel or challenging
morphological or functional objectives. Nevertheless, current methods tend to constrain and bias the range of events that
AI can measure and attempt to influence. This thesis aims to transpose and advance recent computational models of
intrinsically motivated learning and exploration with the goal of designing more open-ended forms of AI “discovery
assistants” for assisting scientists in mapping the outcome space of self-organizing systems. To that end, several key
ingredients are introduced to efficiently shape the discovery process. These include the use of unsupervised learning for
representations, meta-diversity search, curriculum learning, and external human guidance, whether environment-based
or preference-based. We discuss how these components, when implemented in practice, can help address challenging
problems in science. These challenges encompass the search for interesting patterns in continuous models of cellular
automata, the investigation of the origins of sensorimotor agency, the exploration of gene regulatory networks behavioral
capabilities, and the design of innovative forms of cellular collectives for applications in AI and biology.

Keywords: AI for Science, Machine Learning, Artificial Curiosity, Scientific Discovery, Complex Systems, Collective
Intelligence

IA Curieuse au service de la Science: Découverte Automatisée de Structures Auto-Organisées

Résumé : Les systèmes complexes sont très difficiles à prédire et à contrôler en raison de leur dynamique chaotique et de
leurs vastes espaces de sortie. Cependant, comprendre et exploiter les mécanismes sous-jacents de ces systèmes offre de
grandes promesses pour révolutionner de nombreux domaines scientifiques. Bien que des progrès considérables aient été
réalisés dans la manipulation et la mesure de l’activité des systèmes jusqu’au niveau microscopique voire nanoscopique,
un fossé fondamental persiste entre nos connaissances à l’échelle microscopique et notre capacité à contrôler les propriétés
résultantes à l’échelle globale. Les outils modernes d’apprentissage automatique offrent des perspectives prometteuses
pour aider les scientifiques à naviguer dans l’espace complexe des sorties du système, en particulier lorsqu’il s’agit
d’atteindre de nouveaux buts morphologiques ou fonctionnels difficiles. Néanmoins, les méthodes actuelles ont tendance
à restreindre et à biaiser l’étendue des événements que l’IA peut mesurer et tenter d’influencer. Cette thèse vise à appliquer
et à développer les modèles computationnels récents d’apprentissage et d’exploration intrinsèquement motivés dans le
but de concevoir des “assistants de découverte” IA pour aider les scientifiques à cartographier les résultats potentiels des
systèmes auto-organisés. Pour atteindre cet objectif, plusieurs éléments clés sont introduits pour façonner efficacement le
processus de découverte. Cela comprend l’utilisation de l’apprentissage non supervisé de représentations, la recherche de
méta-diversité, l’apprentissage par curriculum, et l’intégration de guidage humain dans la boucle (par l’introduction de
contraintes environnementales ou de préférences). Nous discutons de la manière dont ces composants, lorsqu’ils sont mis
en pratique, peuvent contribuer à résoudre des problèmes scientifiques complexes. Cela comprend la recherche de motifs
intéressants dans des modèles continus d’automates cellulaires, l’investigation des origines de l’agence sensorimotrice,
l’exploration des capacités comportementales des réseaux de régulation génétique et la conception de formes innovantes
de collectifs cellulaires pour des applications en IA et en biologie.

Mots-clés : IA pour la Science, Apprentissage Automatique, Curiosité Artificielle, Découverte Scientifique, Intelligence
Collective

FLOWERS team, INRIA
Université de Bordeaux, 33000 Bordeaux, France.



Introduction 1.
1.1. Self-Organization and its Role in the

Evolution of Forms

The natural world, in all its diversity, showcases various complex pat-
terns and structures that arise from the interactions among its many
components. In the living, cells work together to create highly organized
biological tissues, organs, and even even full organisms endowed with
complex brains (Figure 1.1a). In the inorganic world, water molecules
crystalize in fascinating hexagonal snowflakes observable under the
microscope, and stars arrange themselves into gigantic flat spiral galaxies
with bulging centers visible with a telescope (Figure 1.1b). This inherent
propensity of particles, molecules, or cells to self-organize into structured
patterns is a phenomenon known as “self-organization”.

One key characteristic of self-organizing systems is that one cannot predict
the bigger, organized structures simply by looking at the individual
parts. For example, the exact shape of a snowflake cannot be predicted
by the physico-chemical properties of the water molecules it’s made
of, nor can the development of an organism be predicted simply by
analyzing its genetic code. Remarkably these structures are not the result
of some central plan or control; they emerge on their own through
self-organization and yet, they rival many human artefacts both in
organizational and functional complexity.

Scientists are particularly interested by these organizational properties,
but they are often challenging to comprehend or predict intuitively.
Even in artificial self-organizing systems, where engineers deliberately
program the behavior of individual components and simulate them on
computers (Figure 1.1c), scientists still lack an effective understanding of
the range of possible behaviors and structures that can emerge, nor how
to categorize them or how to predict their evolution. To better understand
these phenomena, empirical experimentation with complex dynamical
systems have become pervasive across various domains of science.

(a) Self-Organization in the Living World (b) Self-Organization in the Inorganic World (c) Self-Organization in the Artificial World

Figure 1.1.: Example of complex dynamical systems with self-organizing dynamics in the natural and artificial world.
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1.2. Experimenting with Complex Dynamical
Systems for the Discovery of Novel
Outcomes

Many of today’s scientific grand challenges, that we would like to solve as a
society, involve the manipulation, exploration and control of complex self-
organizing systems. On the one hand, these challenges span fundamental
scientific questions such as unraveling the conditions that led to the
emergence of life from a complex milieu of primordial elements [9, 10]
or the remarkable regenerative capabilities observed in specific animal
species [11]. On the other hand, they span central applicative quests
such as the discovery of novel drug compounds [12] or bio-engineered
constructs [13, 14] for clinical applications, as well as the design of clean-
energy materials [15] or even “living machines” [16] that could potentially
offer solutions to the current pressing environmental concerns.

Whereas the space of self-organized shapes, forms and functions has
historically been shaped by the interplay of self-organization and natural
selection (as well as historical environmental factors), scientific experi-
mentation is now playing a key role in orienting innovation within that
space. Not only it can foster the emergence of novel self-organized struc-
tures within that space, but it can progressively redefine the boundaries
within which self-organization (hence scientific discovery) proceeds.

Technological Advances at the Laboratory In the recent years, sig-
nificant advancements in technology have empowered scientists with
the capacity to manipulate and measure self-organizing phenomena at
microscopic and nanoscale levels within controlled laboratory environ-
ments, fostering empirical experimentation in various scientific domains.
For instance, in developmental biology, the mechanisms underlying
cellular morphogenesis, the process by which cells undergo structural
and organizational changes to form complex tissues and organs, are
now extensively studied at the bench. Similarly, in chemistry and materi-
als science, the process of molecular self-assembly, wherein individual
molecules autonomously arrange themselves into organized structures,
is explored with unprecedented levels precision. Furthermore, the inte-
gration of these advanced technological devices into automated robotic
platforms has given rise to what are commonly referred to as “self-driving
laboratories” (SDL). SDLs deliver many advantages such as precision, re-
producibility, parallelization, observability, and data production [17–19].

For instance the Poietis company,
with which I was working during my
PhD, has developed a laser-assisted
bioprinting technology that allows
to position cells in three dimensions
with micrometric resolution [20].

Computational Modeling Advances Simultaneously, significant progress
has been made in the field of numerical self-organization, where re-
searchers have developed abstract models for simulating and exploring
organizational aspects within computer-based environments. These mod-
els can be categorized into two main types: artificial life systems, which
aim to generate and study various life-like behaviors such as agency,
cognition, and open-ended evolution; and modeling systems, which use
experimental data and scientific knowledge to simulate various physical,
chemical, and biological self-organizing phenomena. Historically, the

https://poietis.com/
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simulation of artificial worlds with life-like characteristics can be traced
back to von Neumann’s work on self-reproducing cellular automata in
the 1940s [21, 22], while the concept of replicating patterns observed in
nature from simple rules and non-organized matter can be traced back
to Alan Turing’s seminal paper on “The Chemical Basis of Morphogenesis”

in 1952 [23]. Since these foundational works, a broad range of numerical
self-organizing systems have been proposed, such as cellular automata,
reaction-diffusion systems, agent-based models and particle systems.
These models have been explored across various disciplines, including
biology [24–27], physics [28, 29], chemistry [30] as well as artificial
life [31–34]. Recently, we observe a renewal of interest around these
traditional models with the introduction of novel data structures [35, 36],
differentiable programming tools [37], and large-scale simulations [38],
bringing new expressivity levels to the simulated patterns and dynamics.

For instance the Lenia system, a
continuous extension of the game
of life which we will explore exten-
sively in this manuscript, draws
inspiration from classical CA and
RD systems [39, 40].

Scientific Exploration: Limits of Conventional Search Methods De-
spite the automatization of the experimental process, the sequence of
input parameters which organizes the scientific exploration of these
systems remains often generated manually by a few individual or team
of experts. Even when experimental budget allows to deploy massive
randomized trials with the hope to achieve interesting discoveries, e.g.

especially used in high-throughput screening for drug discovery, this is
often very inefficient due to the complexity and numerous interactions
involved. In fact, a significant “knowledge gap” persists between our
ability to manipulate the low-level inputs of these systems and our ability
to efficiently discover novel and controllable properties at the system level.
This gap persists in various domains, such as drug discovery and genetic
engineering, where random exploration strategies are inefficient in reach-
ing unexplored regions of chemical space [41, 42] or predicting the effects
of genomic changes on transcriptional, physiological, morphological, and
behavioral levels [43–45]. As illustrated in Figure 1.2, the manipulation,
exploration, prediction and control of complex systems requires working
“at the edge of chaos” [46, 47], i. e. dealing with excessively large search
spaces (if not infinite) and unstable chaotic dynamics. Notably, their
exploration and understanding poses many challenges with respect to
simpler physical or engineered systems. To navigate the complex data
landscape of these systems more effectively, the development of novel
computer tools, especially those harnessing the potential of artificial
intelligence (AI), holds great promise.

Attractor Effect

Butterfly Effect

Vast Outcome spaces...

Figure 1.2.: The “knowledge gap”. Ex-
ploring the outcome space of dynamical
complex systems poses many challenges
due to their nonlinearity, presence of dy-
namical systems “attractors”, sensitivity
to initial conditions (the “butterfly” ef-
fect), and very large exploration spaces.
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1.3. Machine Learning for Guiding
Experimentation: Opportunities and
Challenges

Whereas “AI for Science” is traditionally employed in contexts where
there is already an experimental database and AI tools are used for
analyzing that data (e.g. for extracting regularities or making predictions),
here, we are rather interested in developing AI tools to collect new

data in a dynamical system. We specifically target discovery within
systems with many interacting entities capable of self-organization,
referred to as self-organizing or complex dynamical systems. The primary
goal is to use AI for assisting scientists in their exploration and search
for novel discoveries within these systems, which is what we call the
automated discovery problem1. Despite the recent advancements in high- 1: The automated discovery problem is

formalized in Chapter 2throughput experimental platforms, a common property in many of
these systems is that it is expensive in time and energy to conduct
experiments. An important requirement of the automated discovery
problem, in addition to addressing the many exploration challenges
due to the nonlinearity and chaoticity of the dynamics involved, is that
exploration must be done under a limited experimental budget. This budget
is often orders of magnitude smaller than what’s typically available in
traditional machine learning testbeds, calling for advanced and sample-
efficient AI exploration methods.

There is already a large body of work that proposes to exploit the use of
optimization and prediction machine learning methods to better navigate
the high-dimensional parameter space of complex systems, and for accel-
erating the discovery of self-organized structures in these systems. For
instance, as we will see in the next chapter, optimization methods have suc-
cessfully been employed in various applications within physico-chemical
wet systems, such as catalyst design [48], carbon nanotube growth [49]
and in the discovery of alloy materials with shape memory [50], among
others. Likewise, prediction methods that use and learn surrogate models
have been proposed to guide scientific experimentation, for instance to
predict the crystallization of supra-molecular compounds [51] or which
genes are involved in yeast metabolism [52]. Approaches combining
predictive models and optimization were also successfully applied, for
instance in biology for maximizing cell-level metabolic yields [53].

However, applying these methods in practice is not straightforward as
they often require the prior knowledge of an expert both for the task

characterization (oracle or reward function that maps the raw observations
to a low-dimensional space) and for the task achievement strategy (either
under the form of a good forward/inverse surrogate or of a good
initialization) to successfully navigate the chaotic optimization landscape.
A major limitation is that scientists might not even know what to look
for in the first place nor how to characterize it from raw observations.
More importantly, current methods largely restrict and bias the boundary
of events that the AI can measure and try to affect: they are powerful
problem solvers but for a narrow span of problems that are imposed in
advance by the machine learning engineer or the expert.
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1.4. Towards AI-driven Curious Discovery
Assistants for Science

A long-standing aspiration for automated discovery is to construct
autonomous AI agents that could learn to represent, generate, select, and
solve their own problems in order to efficiently explore the vast outcome
space of artificial and natural complex systems. For scientists, such AI
“discovery assistants” could enhance the likelihood of making novel and
interesting discoveries, while using a low budget of experiments [54].

Humans are an incredible source of inspiration for achieving that purpose:
despite energy and time limitations, humans develop a diverse skill set
from a myriad of possibilities throughout their lives. This inherent
ability to autonomously pursue goals in an open-ended manner is a
crucial aspect of exploration and learning: humans are autotelic

2 learners. 2: “autotelic” comes from the Greek auto

(self) and telos (goal). Autotelic agents are
ones that can generate and pursue their
own goals [55]

Autotelic learning, yet, is often absent from standard AI paradigms.
Instead of self-generating and pursuing their own goals, AI agents
generally pursue externally defined goals (and their corresponding
learning signals), relying on engineers to pre-define the set of tasks and
associated rewards.

Drawing inspiration from human open-ended learning abilities, the field
of developmental robotics has brought together a diverse community of
researchers from both AI and developmental sciences to try and repro-
duce similar learning mechanisms in artificial agents, including physical
robots. This interdisciplinary endeavor is centered on the development
of computational models rooted in goal-directed and intrinsically-motivated

learning processes, which is also called autotelic curiosity search. In contrast
to conventional AI algorithms focused on predefined optimization or pre-
diction tasks, developmental robotics is rooted in creating autonomous
machines capable of learning to represent, generate, and pursue a di-
versity of self-generated goals [56]. Several studies in developmental
robotics have shown how the integration of these models into robotic
agents can foster the development of efficient exploration trajectories
while working with limited resources [57, 58].

In the recent years, the developmental robotics field has merged into
the broader field of developmental artificial intelligence (developmental
AI). Developmental AI proposes to combine the autotelic computational
models with modern deep learning methods and increased compute
power (see Colas et al. [59] for a review). This approach is aimed at
fostering adaptive exploration and learning in complex environments
with high-dimensional state spaces, providing AI agents with control
over their learning experiences and developmental trajectories.

1.4.1. Objective, Approach and Contributions

The general objective of the present research is to make progress toward
constructing artificial agents that form efficient AI-driven “discovery as-
sistant” and help addressing various challenging problems in Science.

To this end, we propose to transpose the recent approaches from the
field of developmental AI to the targeted application of automated discovery

in self-organizing systems, as they revolve around the same fundamental
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objective: exploring and mapping, in a sample efficient manner, the space
of possible behaviors of unfamiliar dynamical systems.

In Chapter 2, we provide an overview of important concepts and research
directions in AI-driven scientific experimentation on one hand, and
developmental AI on the other. As our initial contribution, we introduce a
formalization of the automated discovery problem and survey the standard
AI paradigms employed to address this issue. We then propose a novel
perspective on the problem within the context of developmental AI.

Next, the main contributions of the present research are two fold. In the
first part of this manuscript (Part I), we present several contributions that
target algorithmic developments of foundational curiosity-driven explo-
ration algorithms, initially developed to enable open-ended autonomous
learning in AI, for their reuse and extensions as digital assistant helping
scientists to explore and map new self-organized complex systems.

In the second part of this manuscript (Part II), we shift our focus towards
the practical applications of these curiosity-driven exploration algorithms,
even in their simplest form. We demonstrate their effectiveness in tackling
challenging scientific problems around two example applications.

In the third part of this manuscript (Part III), we present preliminary

experiments and software contributions aimed at expanding the practical
applications to a broader range of scientific problems, and disseminating
the developed algorithms to a broader interdisciplinary audience.

Finally, in the DISCUSSION, we provide several perspectives for future
applications in several scientific domains.

Part I: The “Curious Discovery Assistant” Framework

In Chapter 3, we propose to transpose intrinsically-motivated goal explo-
ration processes (IMGEP), a family of algorithms originally developed for
learning inverse models in the context of developmental robotics, to guide
scientific experiments in complex dynamical systems. In particular, we
introduce the Lenia environment, a class of continuous cellular automata
(CA) models with rich possibilities for emergence, and discuss the several
challenges that their exploration pose in practice.

To address those challenges, we propose to integrate three key algorithmic
ingredients within the IMGEP computational framework.

The first proposed ingredient, presented in Chapter 4, is to combine
intrinsically-motivated goal exploration with unsupervised and online

learning of goal space representations that are incrementally refined
using the data collected by the AI agent during its exploration. We
show how this approach forms a promising framework to address the
problem of automated discovery of diverse self-organized patterns. On
the one hand, it removes the need for human expertise to define such
representations, and on the other it proves more effective than several
baselines in discovering diverse spatially localized patterns in Lenia.

The second proposed ingredient, presented in Chapter 5, encompasses
both a conceptual and algorithmic aspect. First, we introduce the novel
concept of meta-diversity search, which extends the standard notion of
diversity, and where an agent incrementally learns diverse behavioral
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characterization spaces and aims to discover diverse patterns within
each of them. As one possible implementation of the meta-diversity
search concept, we then propose to combine a dynamic and modular
model architecture, called HOLMES, for unsupervised learning of diverse

representation spaces with intrinsically motivated exploration processes
operating within the learned spaces. We demonstrate the effectiveness of
the proposed approach in learning to characterize and explore diverse
pattern niches in the Lenia system, which notably leads to the discovery
of novel glider-emitting structures from unexpected pattern niches.

The third proposed ingredient, presented in Chapter 6, is to incorporate
human guidance into the discovery process, transitioning from a fully
automated process to a more assisted discovery approach. To that end, we
introduce a simple variant of the previous meta-diversity search approach
that, leveraging the modularity of HOLMES architecture, biases the AI
exploration toward preferred representation spaces. Considering two end-
user models, respectively interested in two types of diversities (diverse
spatially localized and diverse Turing-like patterns), we show that the
approach can effectively adapt the search toward these two types of
“interesting” diversities with minimal simulated user feedback.

Part II: Use Cases of the Curious Discovery Assistant

In Chapter 7, we show how curiosity-driven exploration algorithms can
be used to explore and discover the self-organization of forms of agency

with robust sensorimotor behaviors in continuous cellular automata, which
is our first applicative use case. Moreover, we propose an extensive
battery of quantitative and qualitative tests to characterize the robustness
of the discovered self-organized agents. To our knowledge, this is the
first time that “robust sensorimotor agents” have been automatically
discovered and systematically characterized (evaluated across a set
of robustness tests) in cellular automata. The discoveries themselves
constitute one of the major contributions of this chapter, although several
novel methodological components are also introduced. Those include the
use of gradient descent for local optimization and the use of stochastic
perturbations and curriculum learning for the goal sampling strategy.

Additionally, still within Chapter 7, we present Flow Lenia, an extension
of the original Lenia system which introduces mass conservation in the
CA dynamics (Section 7.5). Although this is not a “use case” application
but rather a parallel contribution, we discuss its connections with the
previous use-case as well as the several benefits it provides for the study
of artificial life forms, together with the perspectives it opens towards
achieving open-ended evolution in such an artificial substrata.

As our second use case, in Chapter 8, we show how the curiosity-driven
algorithms can also be very useful to assist biologists mapping the space
of behaviors of gene regulatory networks (GRNs), even in their simplest
version. We demonstrate how the discovered “behavioral catalogs” can in
turn be very useful to study forms of non-genetic developmental robustness

in these biological networks, as well as for the development of intervention

strategies both in biomedical and bioengineering contexts.

Please note that all the content presented in these applicative chapters
originates from publications we recently authored in interdisciplinary
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scientific journals (Hamon et al. [•5], Plantec et al. [•6], and Etcheverry et
al. [•8]), and which we replicated here with minor revisions for clarity.

Part III: Targeted Reuses of the Curious Discovery Assistant

In Chapter 9, we present a series of preliminary numerical experiments as
well as envisaged real-world experiments, that have been devised within
the context of exploring behaviors of cellular collectives at the tissue
within biological morphogenetic systems. In particular, in the context of
the collaboration with the Poietis company, which specializes in the
development of a bioprinting technology, we present few experimental
campaigns that could be envisaged as proof of concept of automated
AI-driven exploration in a bioprinter-controlled morphogenetic system.

In Chapter 10, we present the two major software contributions of this
research. The fist one, ADTOOL, is aimed at making the developed
algorithms accessible to a broader community of scientists. The second
one, SBMLtoODEjax, proposes a lightweight JAX-based library harness-
ing advancements in high-performance computing and differentiable
programming to bridge the gap between ML research and biological
network analysis.

1.4.2. Collaborations

This thesis reflects the outcomes of several interdisciplinary collabora-
tions. My two thesis supervisors from the Flowers Lab, Clément Moulin-
Frier and Pierre-Yves Oudeyer, were involved in all collaborations.

First, several collaborations were made within the Flowers Lab. Chris
Reinke, a postdoc who mentored me upon my arrival, co-authored
the work presented in Chapter 4. I also had the privilege to supervise
multiple interns, who all contributed positively to my research. This
included mentoring three undergraduate students, Lucie Galland, Marion
Schaeffer, and Théo Goix, during their 2-3 month internships, and
supervising the work of two outstanding master’s students, Gautier
Hamon and Erwan Plantec, whose exceptional contributions to the Lenia
project resulted in the notable publications presented in Chapter 7. Finally,
I collaborated with several engineers from the Flowers Lab, Clément
Romac, Mathieu Perie, and Jesse Lin, who worked on developing the
open-source and interactive software presented in Chapter 10.

This research also involved several collaborations with Bert Chan, creator
of the Lenia system, now working in the Google Brain team in Tokyo.
Bert Chan participated to the development of research directions within
the Lenia project and co-supervised the works presented in Chapter 7.

In the final year of my Ph.D., I also had the privilege of spending five
months at Tufts University in Boston, USA, collaborating with Dr Michael
Levin and his team. Dr Levin was a great source of inspiration for several
applicative works of this research. Our collaboration led to the results
presented in Chapter 8, as well as some preliminary results presented
in Chapter 9 and a software contribution presented in Chapter 10.

Finally, this thesis was conducted in collaboration with Poietis, a biotech-
nology company which specializes in bioprinting and with whom I’ve
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spent part of my time under CIFRE contract. This gave me the opportu-
nity to engage with several biologists and engineers from the company,
notably with my supervisor Marc Nicodeme with whom I’ve devised
the envisaged experimental campaigns presented in Chapter 9.

1.4.3. Publications, Code and Other Materials

The work presented in this thesis is based on the following publications3, 3: our publications are referenced with
the • symbol throughout this manuscriptas well as accompanying codebases4 and other materials:
4: all code repositories are released un-
der open-source MIT license[•1] Chris Reinke, Mayalen Etcheverry, and Pierre-Yves Oudeyer.

“Intrinsically Motivated Discovery of Diverse Patterns in Self-
Organizing Systems”. In: Eighth International Conference on Learn-

ing Representations. 2020. ICLR 2020, Oral presentation
[Blogpost] [Website] [Oral] [Code]
Cited on pages 11, 28, 30, 57, 60, 71, 72, 79, 103, 108, 128, 132, 146, 208,
209, 213, 214, 233, 249

[•2] Mayalen Etcheverry, Pierre-Yves Oudeyer, and Chris Reinke.
“Progressive Growing of Self-Organized Hierarchical Represen-
tations for Exploration”. In: Beyond ’tabula Rasa’ in Reinforcement

Learning: Agents That Remember, Adapt, and Generalize. 2020. ICLR
2020 Workshop
[Oral]
Cited on page 81

[•3] Mayalen Etcheverry, Clément Moulin-Frier, and Pierre-Yves
Oudeyer. “Hierarchically Organized Latent Modules for Ex-
ploratory Search in Morphogenetic Systems”. In: Advances in

Neural Information Processing Systems (NeurIPS). Vol. 33. 2020.
NeurIPS 2020, Oral presentation
[Website] [Oral] [Poster] [Code]
Cited on pages 11, 13, 28, 30, 34, 75, 76, 87, 103, 104, 128, 132, 146, 211,
249

[•4] Mayalen Etcheverry, Bert Wang-Chak Chan, Clément Moulin-
Frier, and Pierre-Yves Oudeyer. Meta-Diversity Search in Complex

Systems, a Recipe for Artificial Open-Endedness? 2021. GECCO
2021 Competition, Runner-up Prize
[Video] [Blogpost]
Cited on pages 46, 87

[•5] Gautier Hamon, Mayalen Etcheverry, Bert Wang-Chak Chan,
Clément Moulin-Frier, and Pierre-Yves Oudeyer. Learning Senso-

rimotor Agency in Cellular Automata. 2022. In Submission
[Blogpost] [Website] [Notebook] [Code]
Cited on pages 8, 28, 30, 46, 47, 119, 128, 238, 244

[•6] Erwan Plantec, Gautier Hamon, Mayalen Etcheverry, Pierre-Yves
Oudeyer, Clément Moulin-Frier, and Bert Wang-Chak Chan.
“Flow-Lenia: Towards Open-Ended Evolution in Cellular Au-
tomata through Mass Conservation and Parameter Localization”.
In: Proceedings of the Artificial Life Conference. MIT Press, 2023.
ALIFE 2023, Best Paper Award
[Website] [Notebook]
Cited on pages 8, 33, 47

https://developmentalsystems.org/intrinsically_motivated_discovery_of_diverse_patterns
https://automated-discovery.github.io/
https://iclr.cc/virtual_2020/poster_rkg6sJHYDr.html
https://github.com/flowersteam/automated_discovery_of_lenia_patterns
https://iclr.cc/virtual_2020/workshops_12.html
https://mayalene.github.io/holmes/
https://slideslive.com/38938556/hierarchicallyorganized-latent-modules-for-exploratory-search-in-morphogenetic-systems
https://mayalenetcheverry.com/assets/publications/etcheverry2020hierarchically/poster.pdf
https://github.com/flowersteam/holmes
https://www.youtube.com/watch?v=H9M6MHMc5gs&t=1s
https://mayalene.github.io/evocraftsearch/
https://developmentalsystems.org/sensorimotor-lenia/
https://developmentalsystems.org/sensorimotor-lenia-companion/
https://colab.research.google.com/drive/11mYwphZ8I4aur8KuHRR1HEg6ST5TI0RW#scrollTo=l6D-g1Q38yyC
https://github.com/flowersteam/sensorimotor-lenia-search
https://sites.google.com/view/flowlenia/videos
https://colab.research.google.com/drive/1l-Og8xRlc5ew0489swuud0Me7Sc5bCss?usp=sharing
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[•7] Mayalen Etcheverry, Michael Levin, Clément Moulin-Frier, and
Pierre-Yves Oudeyer. SBMLtoODEjax: Efficient Simulation and

Optimization of ODE SBML Models in JAX. 2023. Software
[Paper] [Code] [Documentation] [Tutorials]
Cited on pages 23, 246, 247

[•8] Mayalen Etcheverry, Clément Moulin-Frier, Pierre-Yves Oudeyer,
and Michael Levin. AI-driven Automated Discovery Tools Reveal

Diverse Behavioral Competencies of Biological Networks. 2023. In
Submission
[Executable Paper] [Tutorials]
Cited on pages 8, 28, 30, 78, 93

https://arxiv.org/abs/2307.08452
https://github.com/flowersteam/sbmltoodejax
https://developmentalsystems.org/sbmltoodejax/
https://developmentalsystems.org/sbmltoodejax/tutorials/biomodels_curation.html
https://developmentalsystems.org/curious-exploration-of-grn-competencies/paper.html
https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto1.html
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What is the aim of this chapter? This chapter aims to provide an
overview of the current approaches in machine learning assisted scientific
discovery and to propose a novel developmental AI perspective.

How is this chapter organized? In Section 2.1, we formalize the auto-

mated discovery (AD) problem, propose possible evaluation criteria, and
highlight the primary challenges encountered in the targeted applica-
tions. In Section 2.2, we discuss typical use-cases of machine learning
agents for guiding scientific experimentation which we call the “stan-
dard” AI-driven exploration strategies, and for which we survey a set of
recent papers. Then, in Section 2.3, we argue in favor of more open-ended
forms of discovery assistants integrated within a broader developmental

AI perspective, and discuss the fundamental challenges it entails.
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(a) Auxotrophic growth experiments:
testing functional genomic hypoheses

(b) Computer-designed organisms:
constructing novel functional morphologies

(c) Oil-in-water droplets experiments:
discovery of novel protocell behaviors

(d) Continuous cellular automata (CA):
studying life and cognition as-it-could-be

Figure 2.1.: Examples of real-world and
numerical complex systems explored us-
ing AI-driven strategies. These include
(a) the use of the Adam robot scientist to
predict genes encoding enzyme catalysts
for yeast growth [52, 60]; (b) optimization
of Xenobots to perform specific functions
in their environments [61–63]; (c) explo-
ration of oil-in-water droplet dynamics
with a curious robot [64]; and (d) the
study of Lenia [39, 40] using AI algo-
rithms to uncover diverse self-organized
behaviors [•1, •3]. Here, the AI-driven
discoveries are useful both for fundamen-
tal research, e. g. for better understanding
genetic pathways, protocell formation
and the emergence of life and cognition,
as well as for practical applications like
the development of functional biological
machines. A more detailed discussion of
these examples can be found in Section
2.2.
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2.1. The Automated Discovery Problem

When exploring a complex system, conducting an experiment consists in
1) choosing the experimental parameters, 2) launching an experiment
in the system with the input parameters, 3) measuring the outcomes
into some numerical vectors describing some of the observed properties,
and 4) collecting the results in a database. The automated discovery (AD)
process consists in having a machine iteratively performing experiments
in the complex system, where an AI-driven algorithm is in charge of
deciding the experimental parameters while being given a limited budget
of 𝑁 experiments.The final outcome is the database of discoveries which
has been collected throughout experimentation, with eventually (but
not necessary) a set of learned representations (e.g. forward or inverse
models of the environment dynamics). In this section, we first formalize
the AD procedure as the exploration process of an AI-driven1 1: note that, as we discuss later in the

chapter, the “AI-driven” strategy could
potentially be influenced by external
guidance, typically from a human end-
user

agent within
a complex environment (the targeted system). We then discuss, from
the perspective of the scientist end-user, possible ways to evaluate the
agent’s discoveries and learned representations. Finally, we explain the
fundamental challenges that arise in the targeted dynamical systems
with respect to simpler physical or engineered systems.

2.1.1. Formalism

AGENT ENVIRONMENT

Self -organisation

i=2
Internal
Models

Actuators

Sensors

History

i=1

i=N

EXPLORATION PROCESS

Figure 2.2.: The automated scientific
discovery procedure is defined as
the sequential interaction between a
agent and an environment. The “agent-
environment” perspective is a terminol-
ogy which we use to emphasize that 1)
everything related to the engineering of
robotic platforms and to the experimen-
tal orchestration software is assumed
given as part of the environment (and
out of the scope of this thesis), and 2) we
are interested here on the engineering
on the AI agent and on its capacity to
actively shape the discovery process in
open-ended and innovative ways.

In this chapter, as illustrated in Figure 2.2, we follow a terminology com-
monly employed in machine learning (and in particular in reinforcement
learning) where we call environment the complex system that one wishes
to explore and agent the AI-driven algorithm in charge of generating the
sequence of experimental parameters. Here, the automated discovery
process is guided by the agent’s exploration process which actively decides
how to interact with the environment. Finally we discuss the role of the
human in guiding the agent’s exploration process, in which we distinguish
the human engineer and human end-user.

The Environment The environment is typically a chemical, biological
or numerical system that can be interfaced via some actuators and
sensors. An experimental rollout in the environment consists in sending
some input parameters 𝜃 to the actuators, letting the system evolve
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through time via its inherent self-organizing dynamics, and observing
the output observation 𝑜 returned by the sensors. In addition to the
input parameters, a rollout in the environment is conditioned by the
experimental context 𝑐 ∼ 𝐶, which refers to all the source of incoming
variations that are not controlled or known by the experimenter (such as
noise, provenance of materials or temperature of the room). The context
can be decomposed into the observable context 𝑐𝑜 , i. e. the one that that
is measurable (such as room temperature), and the unknown context 𝑐𝑢
(which can be empty in the case of deterministic numerical system or
very large in the case of biological systems). Overall, the environment is

considered as a black-box2

2: The term “black box” is employed to
highlight the fact that certain internal
states and processes of the environment
are often hidden from both the agent and
the scientist. However, it is not intended
as a strict limitation, as certain explo-
ration strategies may leverage knowledge
of the underlying dynamics

mapping 𝑓 : Θ
(𝑐𝑜 ,𝑐𝑢 )∼𝐶→ 𝑂 with complex and

self-organizing dynamics. In Table 2.1, we illustrate example actuators,
self-organizing phenomena, sensors, context (𝑐𝑜 , 𝑐𝑢), parameters 𝜃 and
observation 𝑜 for the environments from Figure 2.1.

Table 2.1.: Examples environments from Figure 2.1.
The parameters 𝜃 can represent physically interpretable quantities (e. g. chemical composition of the media in (a) or droplets in (c)) or
more abstract quantities (e. g. parameters of the CA rules in (d)).
The observation 𝑜 are usually raw measurements of the systems dynamics (e. g. timelapses in (a-c-d)) but they can also be more
human-interpretable (e. g. growth curves in (a)) or the result of some post-processing (e. g. droplet tracking in (d)).
The observable context 𝑐𝑜 can represent physical quantities that influence the resulting dynamics (e. g. temperature in (c) was shown to
have big impact on the discoveries [64]) but it can also contain prior “knowledge” about the system when available (e. g. in (d) the CA
rules 𝑓 could be provided to the agent, especially if 𝑓 is differentiable, to be exploited during the exploration process).

AUXOTROPHIC GROWTH EXPERIMENT

w
ild

 t
yp

e
m
ut

an
t

base media (BM)

base media (BM)

BM + metabolite 1

BM + metabolite 1 BM + metabolite 2

BM + metabolite 2

liquid handlers,
robot arms, . . .
yeast growth
plate reader,
growth curve processing

𝑐𝑜 strains provenance, . . .
𝑐𝑢 patterning noise, . . .

𝜃
gene knockout,
media, . . .

𝑜
optical density,
extracted features, . . .

(a) Auxotrophic growth experi-
ments [52, 60]

∅,
pattern-generator, . . .
voxel interactions
screen capture, image
post-processing, . . .

𝑐𝑜 ∅
𝑐𝑢 Stochasticity, . . .

𝜃
voxel configurations,
tissue options

𝑜
center of mass distance,
voxel’s trajectories, . . .

(b) Computer-designed organ-
isms [61–63]

robotic platforms
(oil filling, stirring, . . . )
self-propelling
camera timelapse,
post-processing, . . .

𝑐𝑜 temperature, . . .
𝑐𝑢 Actuator noise, . . .

𝜃
concentrations,
droplets position, . . .

𝑜
raw video [𝐴0 , ..., 𝐴𝑇 ],
droplet trajectories, . . .

(c) Oil-in-water droplets experi-
ments [64]

∅,
image-generator, . . .
CA evolution
screen captures,
post-processing, . . .

𝑐𝑜 ∅ or 𝑓
𝑐𝑢 Noise in the CA, . . .

𝜃
initial grid 𝐴0,
CA rules’ parameters

𝑜
raw video [𝐴0 , ..., 𝐴𝑇 ],
extracted features, . . .

(d) Continuous cellular au-
tomata [•3]

The Exploration Process Given an environment and an experimental
budget of N rollouts, the exploration process is defined as the sequential
process that iterates 𝑁 times3 3: or 𝑁

𝑛 for environments allowing par-
allel execution of 𝑛 experimental rolloutsthrough the following steps: 1) Observe

the experimental context 𝑐𝑜 ; 2) Generate the experimental parameters

𝜃; 3) Execute a system rollout 𝑓 : 𝜃
(𝑐𝑜 ,𝑐𝑢 )∼𝐶→ 𝑜; 4) Observe the outcome

𝑜; 5) Store the discoveries (𝑐𝑜 , 𝜃, 𝑜) in history H. The history H , which
contains all the information that has been generated by the exploration
process, is returned at the end.

The Agent The agent is the entity in charge of generating the sequence
of experimental parameters 𝜃1 , 𝜃2 , . . . , 𝜃𝑁 that will drive the exploration
process. We then refer now to the exploration process as the agent’s
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exploration process, through which it can actively interact with the
environment. In the automated discovery context, the agent is typically
an AI with internal models M that it uses to generate the parameters
𝜃 ∼M𝑊 (·|𝑐𝑜 ,H), given the observed experimental context 𝑐𝑜 , the history
of previous discoveries Hand the models’ current state 𝑊 4 4: the state of a model is everything that

is needed to save/load the model, e. g.

the parameters of a neural network

. Note that
the agent’s exploration process often depends on other internal processes.
In particular, the agent typically uses some learning process in parallel of
the exploration process to exploit the discovered data in Hand update
its internal states 𝑊 ← M𝑊 (H). Other processes, such as prediction
processes via the use of surrogate models or representation processes via
the use of encoder models, could be envisaged and are generally included
as part of the agent’s internal models M in our formalism. Within that
agent-centered formalism, the overall automated discovery procedure is
summarized in Algorithm. 1.

Algorithm 1: The automated discovery procedure
Require :Observable Context Space 𝐶𝑂 , Parameter Space Θ,

Observation space 𝑂, black-box mapping 𝑓 : Θ, 𝐶 → 𝑂,
experimental budget 𝑁 , agent’s internal models M

Initialization: history table Hand agent’s internal state𝑊 (0);

Agent’s exploration process;
for i=1 to N do

Observe context 𝑐𝑜 ;
Generate experimental parameters 𝜃 ∼M𝑊 (·|𝑐𝑜 ,H);
Execute experiment 𝑓 (𝜃, 𝑐𝑜) ;
Observe outcome 𝑜 ;
Write (𝑊, 𝑐𝑜 , 𝜃, 𝑜) to history H;

end

Agent’s learning processes;
Update internal models𝑊 ←M𝑊 (H);
return H;

At the end of exploration, the AI-driven agent has learned a map of
possible behaviors in the system {(𝜃1 , 𝑜1), . . . , (𝜃𝑁 , 𝑜𝑁 )} and some (op-
tional) internal representations (𝑊 (𝑁)) in H, which is what scientists are
ultimately interested in evaluating (Subsection 2.1.2).

The Human Finally, while not shown in Figure 2.2, the human plays
a crucial role in shaping the agent’s exploration. We distinguish two
types of human influence. Firstly, there is the influence from the human

engineer which intervenes before exploration by defining both the agent’s
exploration spaces (Θ, 𝑂) and internal models (M). Such decisions
significantly determine the range of events that the AI agent can observe
and impact, thus influencing the exploration process. In Section 2.2,
when examining the current landscape of algorithm design practices, we
will delve into how the human engineer commonly shapes the agent’s
discovery process, often concerning prediction and optimization tasks.
Secondly, the human end-user (e.g. scientists) can influence exploration
before it occurs by furnishing the agent with an initial database H, during

exploration by providing guidance or feedback, and after exploration by
assessing final discoveries that might be valuable for other experiments
and users. Note that the manner in which the human end-user interacts
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with the AI agent is determined by the human engineer. As discussed in
Section 2.2, the human end-user is frequently either completely removed
from the exploration process or merely functions as an “expert” who
provides preliminary data to the agent before exploration. Although it
is often advocated that an “automated” discovery process should be
separated from the human end-user, both in execution and experiment
planning, we emphasize that the evolutionary pressures on AI agents
are contingent on their utilization and acceptance by human end-users.
In the upcoming section, we address how assessing the significance of
discoveries must align with a human-centric value system, which might
in turn lead to the development of human-in-the-loop AI systems. In
Section 2.3, we redefine the roles of the AI agent, human engineer, and
human end-user within a broader developmental AI perspective. Here, the
AI agent mirrors a “developmental learner”, and the human engineer
and end-user correspondingly embody “evolutionary” and “cultural”
processes in AI development, collectively shaping the AI discovery
process.

2.1.2. Evaluation

Let’s denote 𝑅∗ an eventual metric that would evaluate the “interesting-
ness” of the discoveries and acquired representations collected by the AI
agent in H. Scientists might care about different things when they look at
the discoveries and information the AI agent collected, so there could be
many ways to measure 𝑅∗. Here, we present a selection of such criteria,
including those pertinent to this thesis (as indicated by the sidenotes).

Measuring Performance

Figure 2.3.: What defines a snowflake?
Wilson Bentley’s initial detailed pho-
tographs of snow crystals beautifully ex-
emplify the common knowledge that “no
two snowflakes are identical”.

Figure 2.4.: What defines an agent? Does
a quadrupled robot capable of complex
motions [65] or a slime mold capable of
using mechanosensation to decide where
to grow [66] qualify more as an agent?

The first, and maybe more trivial way to evaluate the agent is when
scientists have a clear objective and can assess the agent’s progress using
a quantifiable score. This evaluation method is commonly employed
in the AD literature, particularly when examining knowledge-driven and
optimization-driven strategies (see Subsection 2.2.4). In the first scenario,
𝑅∗ assesses the quality of the agent’s learned representations: 𝑅∗(H) =∑
𝑥∈D𝑡𝑒𝑠𝑡

𝑎𝑐𝑐( 𝑓𝑊 (𝑥), 𝑓 (𝑥)). Here, 𝑓𝑊 represents what the agent has learned (a

prediction model with learned parameters𝑊 ), 𝑓 represents the expensive-
to-evaluate function the agent aims to approximate (e.g. the environment
forward dynamics), 𝑎𝑐𝑐 is some accuracy score function (e.g. classification
accuracy), and D𝑡𝑒𝑠𝑡 = {(𝑥, 𝑓 (𝑥))} represents a set of hold-out test
samples. In the second scenario, 𝑅∗ typically evaluates the quality of the
discoveries made by the agent: 𝑅∗(H) = max (𝑟(𝑜1), · · · , 𝑟(𝑜𝑁 )). In this
case, 𝑟 is a reward function that gauges how closely an outcome 𝑜 aligns
with a predefined target (based on specific measurable attributes).

In both cases, designing a predefined accuracy or reward function as a
scalar value can be demanding, especially when scientists are aiming for
complex objectives. To illustrate this, consider the example of growing
a target “snowflake” pattern. There are numerous ways to grow (and
thus evaluate) such a pattern (Figure 2.3), and defining a proxy metric to
evaluate performance is non trivial. Other scientific problems are even
harder to characterize, for instance the concept of agency while intuitive
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and central in artificial intelligence and life sciences, presents significant
challenges in both definition and quantitative evaluation 5 (Figure 2.4). 5: We investigate this question in Chap-

ter 7 and Chapter 8

Measuring Exploration

Figure 2.5.: A possible space of exploration for AI Scientists. Image is taken from [54].

In the context of scientific discovery the space of possible behaviors is
huge and complex as opposed to very big but finite, well-defined, and
often monolithic state-space in games [54]. While the ability of AI agents
to uncover entirely novel and unexpected behaviors (depicted as the
green area in Figure 2.5) is highly desirable, assessing their “exploration”
in practice is far from straightforward. Unlike conventional task-based
evaluation, the focus here is on gauging the “extent” of the discoveries
collected by the agent in H. Though rarely employed in the AD litera-
ture, several task-agnostic exploration proxies 𝑅∗ could be envisaged. For
instance, metrics revolving around quantifying entropy (drawn from infor-
mation theory and commonly employed in thermodynamics) or diversity

(prominent in ecological and genetic research) could be used to evaluate
the reach of agent discoveries 𝑜1 , · · · , 𝑜𝑁 . Detailed insights into these
concepts and a comprehensive review of entropy and diversity metrics
can be found in Leinster [67]. These concepts and metrics have also been
adapted in AI and robotics, applied to assess task-agnostic exploration in
artificial agents. For example, they have been employed to measure the
entropy or coverage of the distribution within state space [68–70], as well
as the diversity of the distribution within higher-level behavior space [71,
72]. In this thesis, we focus on adapting metrics that quantify diversity

to evaluate the AD agent discovery process. The agent’s discoveries
𝑜1 , · · · , 𝑜𝑁 are projected into a higher-level behavioral characterization (BC)
space, creating a set of discovered effects (𝑧1 , · · · , 𝑧𝑁 ) ∈ 𝐵𝐶. Diversity
measures the level of distinctiveness or novelty within this set.
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Figure 2.6.: Diversity metrics

Three main classes of diversity metrics are explored:

▶ Distance-based metrics define diversity based on the magnitudes of
dispersion and variability among pairwise dissimilarities 𝑑𝑖𝑠𝑡(𝑧𝑖 , 𝑧 𝑗)
between the discovered {𝑧} points [73]. Many functional forms
and parametrization can be envisaged, making their application
and interpretation difficult in practice6.

6: For instance distance-based metrics
do not respect the intuitive constraint
that adding more points to a set should
not decrease its diversity. We only use
such metrics when measuring diversity
of a small set of points.

▶ Binning-based methods quantify diversity by discretizing the entire
BC space into𝑃 bins and counting the filled bins during exploration:

𝑅∗(H) =
𝑃∑
𝑖=1

𝛿𝑖 where 𝛿𝑖 = 1 if the 𝑖𝑡ℎ bin is filled (i. e. at least one

discovered effect 𝑧𝑖 falls in that bin) and 𝛿𝑖 = 0 otherwise. Although
less common in biology, they are prevalent in diversity-driven
machine learning approaches [72, 74]7. However these methods

7: In this thesis we mainly use binning-
based metrics to evaluate diversity

depend on the chosen binning strategy, which can be mitigated by
analyzing its impact on results.

▶ Threshold-based metrics measure diversity through the volume
of the union of hyperballs (or other geometric objects) centered
on the discovered effects: 𝑅∗(H) = 𝑣𝑜𝑙𝑢𝑚𝑒( ⋃

𝑧𝑖∈𝐵𝐶
𝐵𝑎𝑙𝑙(𝑧𝑖 , 𝜖)) [75].

These metrics were recently proposed to address the limitations of
distance-based and binning-based metrics [71] but are complicated
to implement in high dimensions8.

8: We only use this metric when possible,
e. g. in 2d BC spaces

A major (but rarely discussed) limitation of these metrics is that they all
rely on the prior definition of an analytical BC feature space which should
formalize the “interesting” degrees of behavioral variation in the system.
While this may be straightforward in simpler engineered or robotic
systems (such as a 2D maze’s 𝑥− 𝑦 space), it becomes notably challenging
for self-organizing systems. Let’s take again the example of snowflakes:
while it’s conceivable to devise descriptors like the number, length, and
angle of a snowflake’s branches, discovering diverse patterns within this
space might not truly reflect what we intuitively consider as diverse
(which might instead include subjective interpretations of snowflake
variability or aesthetics). Furthermore, systems manipulated by scientists
to generate snow crystals could produce many other structures that
wouldn’t contribute to diversity within a “snowflake” BC space but that
might still be interesting in expanding our scientific knowledge. In the
context of automated discovery, we propose that diversity metrics should
involve human end-users to identify BC spaces that align more closely
with the human intuitive notion of diversity 9. 9: We investigate these extensions Chap-

ter 6

Measuring Robustness

The automated discovery process (Algorithm. 1) generated a parameter
database (𝜃 ∈ H), which, for some of them, might have resulted in the
emergence of interesting patterns or behaviors observed under specific
experimental conditions (𝑜 ∈ H). Often, in the context of scientific
discovery, one is interested in characterizing the degree of robustness

of the discovered parameters/patterns to a variety of perturbations.
These perturbations can be uncontrolled (e.g. system noise) or externally
imposed (e.g. specific cues or constraints from human end-users), and
already induced during the exploration phase or completely novel (in
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which case on rather talks about generalization). Robustness is generally
characterized as the degree of variation (sensitivity) in functionality
(e.g. performance drop) or phenotypic trait (e.g. distance in BC space
after perturbation) under a distribution of tested environmental changes:
𝑅∗(𝜃) = − ∑

𝜉∈X
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦( 𝑓 (𝜃, 𝜉)) with X the distribution of tested

perturbations.

Defining suitable tests for evaluating robustness can once again be
challenging, especially within complex systems. It requires devising
sensitivity metrics and a battery of tests, which is not straightforward10. 10: In Chapter 7 and Chapter 8, we pro-

pose a battery of empirical tests formu-
lated within a continuous cellular au-
tomata and gene regulatory network sys-
tem to assess the robustness and gener-
alization of discovered behaviors

Furthermore, these empirical tests can be resource-intensive as each tested
perturbation 𝜉 necessitates an experimental rollout 𝑓 (𝜃, 𝜉), adding to
the experimental budget 𝑁 . The human end-user can again play a
pivotal role by interacting with the discovered patterns, dynamically
introducing perturbations based on observations to evaluate robustness
or generalization11. 11: In Chapter 7, an interactive web demo

is used to enable end-users to replay and
interact with the discovered structures,
testing them against a range of freely-
drawn perturbations

Measuring Interestingness

The evaluation of open-ended agents is an ongoing and dynamic topic in
the field of AI [76, 77]. Within this debate, Soros et al. [76] accentuate
the substantial influence of subjectivity on the evaluation of open-ended
systems. The concept of interestingness is tightly coupled with that of
open-endedness. Similarly in the context of automated discovery, what
we expect from our discovery agents is to generate more and more
behaviors that we deem interesting. There are at least three types of
evaluation protocols that could be envisaged in the context of automated
discovery:

▶ The “human committee” metric: a possible evaluation protocol
involves having a panel of humans (such as expert scientists) rating

the AI agent’s discoveries. This concept aligns with the “Nobel
Turing Challenge” recently proposed by Kitano [54], which suggests
that AI-driven discoveries should rival with “top” human scientists
discoveries and therefore be evaluated in the same way, aiming for
major advancements in fields like biomedicine and environmental
sciences, while assessing the potential risks and ethical issues of
these discoveries.

▶ The “impact factor” metric: another possible evaluation protocol
would be to measure the reuses of the discoveries by the scien-
tific community. Consider the case of AlphaFold, the recent AI
breakthrough that addressed a long-standing biological challenge
known as the “protein folding problem” [78]. While the primary
purpose of this AI tool is data analysis rather than data collection,
it’s interesting to see how the model predictions were shared with
the public and made easily accessible to anyone via an online
platform (AlphaFold DB)12. Via the platform, the AlphaFold team 12: In Chapter 8, we propose that simi-

lar platforms could be used to share the
dataset of discoveries made by the AD
agents to the scientific community. We
discuss how this could lead to several
kinds of reuses in the context of biologi-
cal network understanding and control.

was able to track the number of researchers who accessed and
downloaded the protein structures (more than 500,000 by July
2022), serving as a good proxy of its impact.

▶ The “model of interest” metric: alternatively, the use of prediction

models to infer human interest could be pursued. For instance, in
the context of measuring performance, diversity or robustness,
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one could ask a human to score performance or design specific
tests, and learn a model to automatically test future discoveries.
Implicit models of human interest could also be envisaged. Zhang
et al. [79], for instance, recently introduced the use of language
models (LM) to simulate human notions of interest. While not
explicitly trained to predict human preferences, it is likely that LMs
have internalized some sort of human-interest understanding as
they have been exposed to extensive human-generated data. Nev-
ertheless, the application of these models to automated discovery
remains uncertain, largely because human language has not yet
been shown to empower exploration in domains like molecular or
bio-engineering.

In conclusion, evaluating the “interestingness” of the agent discoveries is
a very hard problem. In the context of scientific discovery, some desirable
properties could be that the discovered outcomes are 1) performant to
solve some “interesting” tasks, 2) diverse to expand our knowledge of
the system, 3) robust to withstand perturbations in the environment, 4)
useful to assist solving other problems in the scientific community. In the
context of open-ended discovery, evaluation is likely to become subjective

and adaptive to the agent/environment evolution, i. e. involving human
end-users interacting with the discoveries and providing feedback that
is not limited to a predefined set of tasks but constantly evolving and
aligned with their current value system. This, in turn, is likely to lead to
the development of human-in-the-loop AI system where humans work in
tandem with the AI to shape the discovery process and expand scientific
knowledge.

2.1.3. Exploration Challenges

Attractor Effect

Butterfly Effect

Open-Ended Outcomes...

Figure 2.7.: Typical properties of the
𝑓 : Θ ↦→ 𝑂 mapping in the targeted
complex systems.

The manipulation, exploration and control of complex systems requires
dealing with excessively large and open-ended search spaces, which
poses many challenges with respect to simpler physical or engineered
systems. We discuss some of these challenges in this section.

Non-linearity, redundancy and variability of the 𝑓 : Θ ↦→ 𝑂 mapping
As shown in figure Figure 2.7, exploring certain regions in the outcome
space can be extremely difficult, if not impossible, due to the non-
linear, redundant, and stochastic nature of the mapping 𝑓 : Θ ↦→
𝑂. Non-linearity implies that changes in the parameter space Θ have
disproportionate effects in the observation space 𝑂, which can lead
to the well-known “butterfly effect” of complex systems. Redundancy



2. Automated Scientific Discovery in Complex Systems 20

means that some regions in 𝑂 can be reached from multiple points in
Θ, causing an “attractor effect”, while others are only reachable through
specific paths. Because redundancy is often heterogeneously distributed
in 𝑂, exploration strategies that uniformly cover the input space Θ will
preferentially reach points in areas of high redundancy in 𝑂 (purple area
in the figure) and miss out on areas of low redundancy (pink area in the
figure). Finally, stochasticity refers to the fact that the same input 𝜃 can
lead to multiple outputs 𝑜 in 𝑂, and several experimental rollouts may
be required to account for this variability.

Exploration “at the edge of chaos”

Non-linearity and redundancy of
the mapping between action and ef-
fects are phenomena that are already
observed in simpler physical or en-
gineered dynamical systems, such
as robotic environments where they
have been extensively studied [71].
However, these phenomena are of-
ten drastically exacerbated in the
considered complex systems where
one usually talks of exploration “at
the edge of chaos” [46, 47]. Can
we transpose the autonomous explo-
ration strategies deployed in robotics
context to systems with chaotic dy-
namics, emergent outcomes and
complex state spaces?

Vast Exploration Spaces The state space of targeted systems is often
vast and potentially infinite, unlike the finite spaces found in most games
and engineered systems (as shown in Figure 2.5). While access to the
system is limited through sensors and actuators, which impose finite
input and output spaces Θ and𝑂, these spaces can still be extremely vast.
Observations can span different spatial and temporal scales and there
is no compact representation or description of the state space, unlike
simpler engineered systems. Hence, whereas advances in technology are
likely to provide finer control and observability, the challenge remains
for AI agents to extract meaningful information and to construct tractable
internal representations of the high-dimensional system outcomes.

Limited Exploration (and Evaluation) Budget Despite advancements
in high-throughput experimental platforms, the experimental budget in
complex system science remains significantly lower than that in typical
machine learning testbeds. Each experimental rollout can be very costly
and time-consuming. In the example systems from Figure 2.1, few minutes
might be enough to observe oil-droplets dynamics (c) but several hours
might be needed to observe the formation of cellular structures (b).

Failure of passive exploration strategies Passive exploration strategies,
such as grid search and random search, are widely used for automated
discovery in complex systems and science domains. These strategies aim
to uniformly cover the known input spaceΘ without making assumptions
about the mapping 𝑓 or outcome space 𝑂. Random search is commonly
applied in numerical systems like cellular automata [80], agent-based
models [81], and hyper-parameter search for deep neural network13 13: While rarely formulated as such, neu-

ral network training can be reinterpreted
as an example of self-organizing system
“rollout” where nodes operations are
low-level elements whose states are up-
dated by the weight update rule during
the backwards pass [82], such that 𝜃 here
is the optimization hyper-parameters
(learning rate, activation function, etc.)

training dynamics [83]. It is also used in high-throughput screening for
material design [84, 85] and drug discovery [86, 87] in chemical wet
systems. Grid search is the primary methodology in biological tissue
engineering but is mostly used to assess the impact of a small range
of parameters [88, 89] rather than for discovering novel forms of life.
However, despite their extensive use, brute-force exploration strategies
are sample-inefficient for covering the range of possible outcomes 𝑂 due
to the aforementioned challenges.

2.2. Standard AI paradigms

Different AI-driven approaches have been proposed in the recent years for
actively guiding the agent exploration, and can generally be categorized
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into knowledge-driven, optimization-driven or diversity-driven exploration
strategies.

2.2.1. Knowledge-Driven Strategies

Figure 2.8.: Adam the Robot Scientist.
Adam’s hardware included fully auto-
mated a) freezer, b) liquid handlers, c)
incubators, d) plate readers, e) robot
arms, f) plate slides, g) plate centrifuge,
h) plate washer, i) air filters, and j) plas-
tic enclosure. Adam measures growth
curves (phenotypes) of selected micro-
bial strains (genotypes) growing in de-
fined media (environments) and was
used to identify genes encoding orphan
enzymes in Saccharomyces cerevisiae.
Adapted from [60].

The first (and perhaps most famous) “robot scientist”, which pioneered
the use of fully automated experimentation processes combining artificial
intelligence and robotic platforms, was called Adam and developed
by King et al. [52] (Figure 2.8). Adam was capable of autonomously (i)
generating functional genomic hypotheses about the yeast Saccharomyces
cerevisiae (of the form ’gene X encodes the orphan 14 enzyme Y’) and (ii)

14: orphan enzymes catalize reactions
that are thought to be essential for yeast
growth but their encoding gene(s) are
not (yet) known

testing the hypotheses experimentally to compare the outcome phenotype
(growth or no growth) with and without knockout of the hypothetic gene.
Given a limited experimental budget Adam was capable of identifying
several accurate hypotheses, more than a random strategy and a “cheapest
trial” strategy (always choosing the cheapest experiment in terms of
monetary cost); and even performed comparably to human graduate
students. Here, Adam’s experimental strategy was a form of active learning:
it selected experiments in a manner that minimized the total expected
cost of identifying the genes that code for all the orphan enzymes in the
pathway. To do so, Adam had an internal surrogate model 𝑓 (in which a
big part was hard-coded with prior knowledge) that was used to infer
the outcome 𝑧 (binary “growth” or no “growth”) given input parameters
𝜃 (categorical vector with the gene to knockdown and the growth media
to use).

Experimental
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Extracted
Information R

Surrogate Model 

Figure 2.9.: Knowledge-driven explo-
ration strategies

More generally, in active learning 𝜃 is often called a query and 𝑧 = 𝑅(𝑜) a
response, and the objective of the agent is to select queries 𝜃1 , . . . , 𝜃𝑁 that
would be the most informative for improving the surrogate 𝑓 . We call
these strategies knowledge-driven because here the specific discoveries col-
lected by the agent ({𝜃𝑖 , 𝑜𝑖} ∈ H) is not really what interest scientists here.
Instead they are generally interested in reusing the acquired knowledge
(final state of the learned surrogate𝑊 (𝑁)) for prediction purposes.

The main design choice in knowledge-driven strategies concerns the
choice of the criteria for selecting the next query 𝜃 based on current
knowledge in 𝑓 . Typical strategies select candidate queries that maximize
the uncertainty of the model (such as entropy, margin score, or least

confidence) or uncertainty of a committee of models (so-called query-
by-committee methods such as vote entropy, consensus entropy and KL

divergence), or that maximize some expected model change (such as
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expected gradient length or information gain). We refer to [90, 91] for a
blogpost and thorough review on active learning query strategies.

Other design choices typically concern: (i) the details of the surrogate
model used ( 𝑓 can take many forms and be used for classification,
prediction or clustering), (ii) the degree of reliance on prior knowledge,
(iii) the type of queries 𝜃 that specify each experiments, and (iv) the
type of data 𝑧 that experiments yield. Finally, at the end of exploration
knowledge-driven strategies are generally evaluated by assessing the
task-specific performance (classification or regression accuracy) of the
learned surrogate model on a test database which is typically taken from
previously performed experiments (see Subsection 2.1.2).

Whereas Adam was the first application of a knowledge-driven strategy
in a fully-automated setup, active learning (AL) has been used across
many domains of science for maximizing predictive performance of
a model subject to a fixed annotation budget. Those include applica-
tions for molecular crystallization prediction [51], biological network
construction [92], materials science [93] and drug discovery [94].

Limitations In practice, when the experimental budget is limited and
when one does not have the opportunity to explore and compare alterna-
tive AL strategies, the success of these approaches often rely on some
prior expert knowledge [95]. Expertise is typically applied either when
designing the base surrogate model and query selection strategy or by
providing a prior database of large and representative examples. Without
this, learning of the surrogate model is likely to suffer from the cold

start problem, where poor selection of data in the early phases of active
learning can propagate their harm throughout the whole learning, or
from failure to learned from skewed data distribution [96]. In the targeted
systems, skewed distributions are very likely to emerge as instances
present in areas of high redundancy in 𝑂 are likely to be often sampled
whereas instances present in areas of low redundancy are unlikely to be
well represented in the discoveries. However, when such expertise is not
available, one could couple these methods with some prior task-agnostic
exploration phase in order to reveal a distribution of representative in-
stances in the outcome space 𝑂 and to facilitate learning of the surrogate
𝑓 .

2.2.2. Optimization-Driven Strategies

Figure 2.10.: Xenobots.
Adapted from [61].

Another typical use-case of AI for guiding scientific experimentation is
when scientists have a clear target in mind that they want to achieve,
typically a certain morphology or functionality. A reward function 𝑅 is
defined, and some optimization method is used to find the parameters 𝜃
maximizing the reward, which is assumed to drive the system as close
as possible to the target. A recent famous example was the computer-
assisted design of so-called xenobots, described by the press as the first
ever “living robots” (Figure 2.10). Xenobots are a new form of “organisms”
created from frog cells that have been specifically designed by scientists
from university of Vermont and Tufts university to accomplish specific
functions in their environment. Those include moving autonomously [61],
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collecting micro-particles [62] or even self-reproducing [63], where or-
ganisms shown a life span of approximately 10 days. Here the exploration
happened in computer-based environment, and the optimal designs
were then manufactured by the hands of biologists. Interestingly it is an
evolutionary algorithm (EA) that was used to find the right parameters
𝜃 leading to these functional xenobots. In this case, the evolutionary
algorithm is an exemple of AI-driven exploration process that we include
in the family of optimization-driven strategies.

Experimental
Rollout

Reward R

Figure 2.11.: Optimization-driven explo-
ration strategies

More generally, assuming a known reward function 𝑅 used to score
the discoveries in 𝑂, the objective of the agent is to select parameters
𝜃1 , . . . , 𝜃𝑁 leading to the highest reward𝑚𝑎𝑥(𝑅(𝑜1), . . . , 𝑅(𝑜𝑁 )). We call
these strategies optimization-driven because the agent’s focus here is on
acquiring a specific competence, the one of finding the parameters 𝜃 that
will self-organize a structure with target properties in the environment.
They are four main families of optimization-driven strategies.

Evolutionary algorithms (EA) or population-based strategies, used in the
xenobot example, is a family of black-box optimization which evolves a
population of candidates through iterative generations, and select the
fittest offsprings based on the reward function. It has been widely used
across many domains, for instance to perform computation in cellular au-
tomata [97], to synchronize motion toward target functionalities in robotic
swarms [98–100] or target shapes in biomolecular robot swarms [101], and
for the design of new catalysts [102] or nanoparticles [103] in chemistry.

Stochastic gradient descent (SGD) is another family of powerful optimiza-
tion methods, commonly used in machine learning to optimize deep
neural networks, but rarely used in self-organizing systems as it requires
the environment dynamics 𝑓 and reward function 𝑅 to be differentiable.
However, with the recent progress in differentiable programming we
observe a rise of differentiable self-organizing systems [37], such as the
recent neural cellular automata (NCA) which have been used to train
cells to grow and regenerate a desired shape [104, 105], self-organize in a
texture [106], classify handwritten digit in a decentralized way [107] and
perform complex image segmentation tasks [108]. Since then, differen-
tiable self-organizing systems have gained traction across several science
domains including molecular dynamics, [109], fluid dynamics [110] and
biological network analysis [•7].

Reinforcement learning (RL), another family of optimization method com-
monly used in machine learning and robotics, has also been transposed
for scientific discovery applications such as microbial strain design [111],
control of nuclear fusion plasma [112], optimization of chemical reac-
tion yield [113] or self-assembly of “limbs” for the design of artificial
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agents [36]. Here, the environment’s dynamics integrate a policy Π𝜃

which actions directly influence the system dynamics, and the exploration
process seeks to optimize parameters 𝜃 of the RL policy Π𝜃.

Finally, model-based optimization methods rely on the use of surrogate
models 𝑓 allowing them to select promising parameters 𝜃 by evaluating
the surrogate model instead of the expensive real system. In most cases,
the surrogate is directly used as an approximation of the objective
function 𝑓 ≈ 𝑅 ◦ 𝑓 . This is the case in bayesian optimization (overviewed
in [114]), which alternates between exploitation (selecting experiments 𝜃
in areas where 𝑓 expects maximum reward) and exploration (sampling
𝜃 in areas where 𝑓 is the most uncertain about). Bayesian optimization
has been used to optimize behavior of a reaction-diffusion numerical
system [115], yield of chemical reaction [116, 117], and production of
Bose-Einstein condensates [118] or alloys [50] with target properties.
There are also several papers which suggested augmenting EA, SGD
and RL approaches with reward prediction models. For instance, EA
coupled with surrogate model was used to optimize catalytic activity of
materials [48] and growth of carbon nanotubes [49]15 and model-based 15: In [49], the target growth rate is

updated through experimentation (as
the maximum experimentally observed)
which is a form of curriculum learning

RL was used for biological sequence design [119]. In other cases, the
surrogate is not used as a direct task-prediction model but rather as an
intrinsic-reward model 𝑅𝑖 = 𝑅𝑎𝑢𝑥 ◦ 𝑓 which, in addition to the extrinsic
reward 𝑅, rewards the agent for experiencing dissonance (or resonance)
on an auxiliary prediction task with respect to its current knowledge
and expectations (as in knowledge-driven strategies). These approaches
are often coined as “curiosity-driven” [120], but as we will discuss in
the next section, curiosity-driven exploration encompasses a broader
set of approaches and this is more precisely a form of knowledge-based

intrinsic motivation (KB-IM) [121]. In the AD literature, Thiede et al. [122]
proposed combining RL optimization with KB-IM surrogates rewarding
for either prediction errors, novelty or surprise to encourage exploration
of the solution space in molecular design tasks16

16: In [122], the RL agent manipulates
SELFIES, a string-based representations
of molecules [123]. There is a huge por-
tion of works in ML for science that ex-
plores the space of molecular represen-
tations, but we do not include them in
this chapter as these spaces are generally
not the outcomes of self-organizing en-
vironment with local “physics” (and dif-
fer from other molecular dynamics envi-
ronments [109] or artificial combinatory
chemistries [124, 125]). SELFIES strings
lie somewhere in between, as they are the
result of a minimal but formal grammar
(automaton), whose derivation rules can
be seen as a form of basic “physics”.

.

In addition to the choice of optimization method, important design
choices typically concern the degree of reliance on prior knowledge for
the choice of the reward function and initialization (starting parameter
𝜃(0) or population of parameters in the case of EA). At the end of
exploration, optimization-driven strategies are generally evaluated by
assessing the task-specific performance which typically scores of the best
discovered parameter and is eventually coupled with a measure of
robustness to a distribution of test perturbations (see Subsection 2.1.2).

Limitations In practice, the successful application of these methods
also relies on some prior expert knowledge in providing either a “good-
enough” initialization or base surrogate for model-based approaches.
Due to the chaotic nature of the Θ→ 𝑂 mapping, many initializations
are likely to get trapped in local minima (or diverge) in 𝑂 while other
locations might by luck make the optimization a success. These “good-
enough” initializations are unknown and vary depending on the target
endpoint in𝑂. Reversely, given an ensemble of previously-reached points
in 𝑂, some new targets might be easy to reach but others might be very
hard (deceptive or sparse reward) or even impossible. Without prior
knowledge of such feasible targets, one might consider coupling the
optimization with some curriculum learning in order to progressively
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adapt the target or with some intrinsically-motivated (also called curiosity-

driven) exploration process. However, the few works that propose to do
so in the AD literature either rely on simple linear curriculum [49] which
might not scale to more complex problems, or leverage knowledge-based
IMs [122] where training of the surrogate might also not scale to other
problems. Indeed the KB-IM surrogate provides a (unique) source of
intrinsic reward on which the agent has no control and that is likely to
slowly evolve throughout exploration (and highly depend on the initial
dataset due to the same cold start and skewed-data problems discussed
in Subsection 2.2.1). In general, objective-driven agents do not explicitly
control which reward function they maximize, which greatly limit their
capacity to explore the state space and to discover open-ended repertoire
of self-organized structures.

2.2.3. Diversity-Driven Strategies

Figure 2.12.: A “curious robot” capable of
discovering a diversity of self-propelled
behaviors in an oil-in-water droplet sys-
tem, a promising model to study proto-
cell formation. Adapted from [64].

The last big family of experimentation strategies, while not so common
in the AD literature, is what we refer to as diversity-driven strategies.
Here, at the difference of optimization-driven strategies, scientists do
not have a clear objective in mind. In fact, they might not even know
what they are looking for in the first place, or might have some intuitions
about it but do not know how to express it into a computable score
function. This was for instance the case of the so-called “curious robot”
by Grizou et al. [64] which was used to explore the dynamics of an
oil-droplet system (Figure 2.12). By investigating the dynamics of these
lipid droplets, scientists hope to gain insights on the conditions that led
to the emergence of the first protocell on Earth, a central question for
understanding the origins of life. Typically here, scientists do not know
how the possibly-emerging structures should behave or look like, and
they would rather be interested in constructing a map of the diverse kinds
of behaviors that can self-organize in these systems, in otder to expand
their knowledge of the system. To do so, Grizou et al. [64] proposed to
equip the robot with an intrinsically-motivated discovery goal exploration

process (IMGEP), which is a recent-family of diversity-driven approaches
that aim to discover a diversity of behaviors in a dynamical system by
targeting a diversity of self-generated goals [57]. Controlling the initial
oil-mixture of the droplets and using only a low budget of experiments,
the IMGEP was shown to enable the discovery of a variety of “life-like”
self-propelled droplet behaviors including movement, grouping, division,
fusion, chemotaxis, and many others (Figure 2.12).
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Figure 2.13.: Diversity-driven explo-
ration strategies

More generally, assuming a representation function𝑅 : 𝑂 → 𝑍2 mapping
high-dimensional outcomes to a behavioral space 𝑍, and a distance
metric D(𝑧1 , 𝑧2) characterizing how behaviorally-similar two embeddings
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(𝑧1, 𝑧2) ∈ 𝑍 are, diversity-driven strategies aim to select parameters
𝜃1 , . . . , 𝜃𝑁 leading to the highest diversity in behavior space 𝑍, given a
certain diversity metric (see Subsection 2.1.2). There are two main families
of diversity-driven algorithms, both share similarities but have emerged
from distinct contexts.

The first set of approaches, which was formulated within the context
of evolutionary computation (EC), is known as Novelty Search (NS). In
contrast to fitness-oriented EA approaches, NS proposes to focus on
maximizing the novelty of the discovered behaviors instead of their
fitness [126, 127]. NS evolves a candidate parameter archive iteratively,
selecting candidates from the previous generation that exhibited the
most novel behaviors, updating their parameters through mutation
and crossover operations, and evaluating the outcomes of the resulting
solutions. Here novelty of a point 𝑧 ∈ 𝑍 is measured as the average
behavioral distance D to its 𝑘 nearest neighbors in 𝑍. Throughout
exploration, the concept of “novel” evolves leading previously novel
behaviors to become less novel over time, which results in the progressive
coverage of the behavioral space. Although not objective-driven, NS was
shown to beat fitness-oriented methods for the resolution of pre-defined
tasks characterized by sparse or deceptive reward, notably in robotics
contexts such as maze solzing [127]. Building on these results, recent
works have proposed to apply NS to guide experimentation in self-
organized systems, though they were evaluating the discoveries on
task-specific performance metrics. Gomes et al. [128] used NS to control
swarm robotics systems in collective aggregation and energy-sharing
tasks. Cazenille et al. [129] used the MAP-Elites algorithm [130] to
optimize biomolecular robot swarms towards a target shape (as in [101]).
MAP-Elites belongs to the family of Quality Diversity (QD) approaches,
another well-known family of approaches from the EC literature which
proposes to optimize both for novelty and local quality to discover a
population of both behaviorally diverse and locally high-performing
parameters [131, 132].

“Diversity-driven” approaches

Novelty Search (NS): coming from
the evolutionary computation field,
NS approaches suggest to “aban-
don” the objective and instead focus
on maximizing novelty of the discov-
ered behaviors [126, 127].
Intrinsically Motivated Goal Ex-
ploration Process (IMGEP): com-
ing from developmental robotics,
IMGEPs are centered around the no-
tion of goals (intrinsic objectives) and
aims to achieve a diversity of self-
generated goals [57, 58].
Several parallels can be drawn be-
tween NS and GEP algorithms [133].
Notably, random goal exploration
variants of IMGEP were shown to
behave equivalently than NS [134].
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Figure 2.14.: Intrinsically-motivated goal exploration processes (IMGEP): family of autotelic machine learning approaches that generates
a sequence of experiments to explore the parameters of a dynamical system by targeting a diversity of self-generated goals.
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“Curiosity-driven” approaches

Several approaches in the AD liter-
ature employ the term “curious”,
both in optimization-driven [122]
and diversity-driven [64] contexts.
Curious generally means that the
agent is endowed with some
computational model of intrinsic

motivation, but they are many ways
to build these IM models. Oudeyer
and Kaplan [121] organize IM
approaches in two prominent
families:
Knowledge-based IMs (KB-IMs)
use prediction-based models [120]
or count-based models [70] of IMs
to reward for prediction errors, nov-
elty, surprise, progress in forward
predictions or information gains.
Competence-based IMs (CB-IMs)
introduce an explicit goal-selection
mechanism and reward agents
for achieving self-generated goals,
biasing goal selection towards
intrinsic proxies such a novelty or
progress in goal reaching [57].

The second set of approaches, which was originally formulated within the
context of developmental robotics, is known as Intrinsically-Motivated Goal

Exploration Process (IMGEP) [57, 58]. Similarly than NS, IMGEP agents
directly explore a space of abstract representations 𝑍 that compactly
characterize outcomes of the system, often called a goal space. At the
difference of NS, the notion of goal is central in IMGEPs: a goal 𝑔 =

(𝑧𝑔 ,L𝑔) is defined by a compact goal-embedding 𝑧𝑔 ∈ 𝑍 and a goal-
achievement loss function L𝑔 = D(·|𝑧𝑔)measuring distance toward the
goal. Therefore, instead of fully “abandoning” the concept of objective,
an IMGEP is autotelic meaning that it targets a diversity of self-generated
objectives (goals and their corresponding learning signal), generally
allocating a small budget of experiments per target goal to try and
achieve it (Figure 2.14). Moreover, the concept of intrinsic motivations

(IMs) (or curiosity) is also central in IMGEPs: goals are self-generated
according to intrinsic goal-selection mechanisms. At the difference of
knowledge-based intrinsic motivations (KB-IMs) which use a single
intrinsic reward function but do not represent goals, IMGEPs belong
to the fa mily of competence-based intrinsic motivations (CB-IMs) where
the notion of competence naturally corresponds to goal achievement.
CB-IMs can be understood as a form of autotelic curiosity, i. e. curiosity
explicitly based on the pursuit of goals as. KB-IMs, on the other hand,
are generally used for optimization purposes: in-fine they do not seek to
learn an accurate surrogate model (like knowledge-driven exploration
strategies) nor to find diverse solutions to diverse problems (as in CB-
IMs), but rather aim to find a solution maximizing the external reward.
While CB-IMs approaches were also shown to aid optimizing tasks with
sparse or deceptive rewards [135], their primary purpose is to learn a
repertoire of diverse skills (where a skill is defined as the association
of a goal 𝑔 and a policy 𝜃 achieving that goal) using a limited budget
of experiments [58]. In the AD literature, IMGEP were shown useful
to guide scientific experimentation in various domains. Grizou et al.
[64] used a simple random goal exploration variant of IMGEP to reveal
diverse behaviors in the oil-droplet system, and Terayama et al. [136]
usedan IMGEP-like approach (with learned surrogate model and Stein
novelty metric for goal sampling) to discover diverse light-absorbing
molecules. Both shown that the IMGEP found a much higher diversity
than a random search baseline, while being given the same experimental
budget.

Limitations At the end, only a few works proposed to use diversity-
driven approaches in the AD literature [64, 128, 129, 136], and even less
were really interested in revealing a diversity of behaviors and relied
on very simple IMGEP variants [64, 136]. A main limitation of these
approaches is that they all assume that the notion of “diversity” can
be captured and measured within a single predefined representation
space 𝑍. Therefore, the exploration space is constrained a priori to a small
and bounded set of reachable goals such that the autonomy and open-
endedness of the exploring agent is restricted. This limits the scope of
the final discoveries, in particular in the targeted self-organizing systems
where the degrees of behavioral variations are emergent (unknown
a priori) and potentially open-ended. A second limitation of existing
approaches is that they rarely evaluate the robustness. Whereas they
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might be able to identify conditions leading to the self-organization
of novel structures with interesting properties, such as droplets with
novel self-propelled behaviors [64] or molecules with novel optical
properties [136], they might have trouble generalizing to novel situations
in the environment such as stochasticity or external perturbations.

Works related this thesis All the works presented in this thesis falls
within the framework of Intrinsic Motivation Goal Exploration Processes
(IMGEPs), detailed in Chapter 3, and aim to address the aforementioned
challenges in the context of automated discovery in complex systems.
In Chapter 3, we propose to integrate IMGEPs with unsupervised learning

of the goal space representation 𝑅, using a variational auto-encoder
(VAE) [137] to embed the high-dimensional observation space into a
compact goal space, and removing the need for expert knowledge to
define such representations. In Chapter 5 we further introduce the
concept of meta-diversity where an IMGEP continuously learns diverse
representation spaces while searching to discover diverse patterns within
each of them, with the aim to design more open-ended forms of AI
“discovery assistants”. In Chapter 6 we propose to integrate human-

guidance to shape the IMGEP discovery process toward the initially
unknown preferences of an external end-user. In Chapter 7, we show
how the IMGEP can integrate curriculum learning to progressively sample
goals of increasing difficulty as well as stochastic environmental design

and gradient descent to efficiently achieve these goals under various
perturbations. Finally in Chapter 8, while using a very simple IMGEP
variant, we formalize a procedure to empirically evaluate the robustness
of the discovered behaviors integrating key insights from the emerging
field of basal cognition17. These works were applied in continuous 17: Basal cognition studies the funda-

mental mechanisms that enable organ-
isms across all domains of life (from
prokaryote cells to plants and animals)
to sense and act in their environment to
meet existential goals [45, 138]

cellular automata models where they were shown to assist the search
for interesting patterns [•1, •3] and forms of self-organized agency with
robust sensorimotor behaviors [•5], as well as in continuous models of
gene regulatory networks where they were shown to uncover a wide
spectrum of possible phenotypes [•8].

Other related works Falk et al. [139] applied the IMGEP-VAE approach
proposed in [•1] to discover diverse behaviors (including previously
unknown ones) in physical non-equilibrium models of coupled oscilla-
tors. Sudhakaran et al. [140] proposed a goal-conditioned exploration
strategy where the target goal 𝑔 is sent to a neural cellular automata
system within the input parameters 𝜃 = (𝑔, 𝜙) (where 𝜙 are the NCA
rules), and searched for a single rule 𝜙 capable of achieving various goals
𝑧𝑔 ∈ 𝑍 (target patterns) depending on the provided context 𝑔 (one-hot
vector written into the NCA cell states). Whereas all approaches in this
thesis are population-based IMGEPs (POP-IMGEPs), i. e. mapping one
parameter set 𝜃 per reached goal 𝑔, this draws similarity with recent
RL-IMGEP approaches where the outcome of exploration is a single goal-
conditioned policy [55]. However, Sudhakaran et al. [140] used a small
and predefined set of target goals (emoji patterns), therefore qualifying
more as “multi-objective” than “diversity” driven approaches.
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2.2.4. Survey

All the works presented in this section are presented in Table 2.2*. The
table provide the main design choices of these works according to the:

1. Outcome Characterization: type of representation used to characterize
the system outcomes𝑅 : 𝑂 → 𝑍; i. e. choice of the type of encoder𝑅
and latent dimensionality 𝑍 (black) and whether the representation
is fixed or learned throughout exploration (gray).

2. Task Selection: type of task formulation strategy, i. e. whether these
works follow a knowledge, optimization, hybrid or diversity-driven
paradigm (black) and what specific task sampling strategy they
use (gray)

3. Parameter Generation: type of strategy used to infer (or optimize)
parameters𝜃 ∈ Θ according to the task, i. e. whether it is population-
based18, model-based19 or surrogate-based20 (black) and what 18: population-based strategies are non-

parametric inverse models that directly
use the current points in H to infer
the most promising candidate 𝜃 (e. g. K-
Nearest Neighbors Algorithm)
19: model-based strategies are paramet-
ric inverse models that are learned on H

and used to generate the most promis-
ing candidate 𝜃. Note that this “model-
based” RL which means using a for-
ward predictive model (what we call here
surrogate-based)
20: surrogate-based strategies are para-
metric forward models that are learned
on Hand used to “cheaply” try several
candidates {𝜃} and select the predicted
best one

specific optimization method is used (gray).
4. Human Guidance: whether they use human guidance or not along

one of these three dimensions (black), and the specific way the
human influences exploration (gray).

5. Evaluation of Discoveries: type of evaluation criteria (from Subsection
2.1.2) that is used to evaluate the final discoveries (black) and more
specifically what scientists were interested in achieving (gray).

Note that this survey is far from exhaustive, and instead aims to review
a selection of recent papers that are representative of the field. From
this analysis, two noteworthy patterns emerge. First, a vast majority of
works are structured around a precise and formal problem on which
they evaluate the discoveries (task-specific performance). Here the use of
AI is intended to benefit complex problem-solving tasks, but the scope of
tasks remain relatively narrow and predetermined by machine learning
experts or engineers. Secondly, while these methods rely a lot on expert
inputs both for the task definition and for task-specific prior knowledge,
almost none rely on human guidance during exploration. In the next
section, we propose to redefine the roles of the AI agent, human engineer,
and human end-user within a broader developmental AI perspective. In
this perspective, AI agents aren’t just designed for solving narrow tasks;
they must learn to represent, generate and pursue their own goals. The
AI self-generated goals should both foster the bold exploration of unseen
outcomes at the system-level, while also remaining aligned with what
humans consider interesting. Achieving this requires the AI agent to
continually adapt its internal models (governing the overall exploration
process and decision-making) and to incorporate feedback from external
human end-user.

* Abbreviations used in the table: Genetic Algorithm (GA), Cellular Automata (CA),
Stochastic Gradient Descent (SGD), Deep Reinforcement Learning (DRL), k-Nearest
Neighbors (kNN), Behavioral Characterization Space (BC), Evolutionary Algorithm (EA),
Explore-Exploit (EE), Bayesian Neural Network (BNN), Kernel Density Estimation (KDE),
Reaction Diffusion (RD), Knowledge-Based Intrinsic Motivation (KB-IM), penalized logP
(plogP), quantitative estimate of druglikeness (QED), NeuroEvolution of Augmenting
Topologies (NEAT), Support Vector Machine (SVM), Co-variance Matrix Adaptation
Evolutionary Strategy (CMA-ES), Expected Improvement (EI), Gaussian Process (GP),
Expected Cost (EC), Bose-Einstein Condensate (BEC), Knowledge Gradient (KG), Support
Vector Regression (SVR), Neural Network (NN), Multi-dimensional Archive of Phenotypic
Elites (MAP-Elites), Random Forest (RF), Carbon NanoTubes (CNT), SN (Stein Novelty),
SD (Stein Discrepency), max (maximum), sampl (sampling), optim (optimization), knowl
(knowledge), var (variance)
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Table 2.2.: Survey of papers from Section 2.2, organized by the type of explored complex system (numerical ALife, numerical modeling,
swarm robotics, physico-chemical or biological), summarizing the main algorithm ingredients.

Paper Outcome
Characterization

Task(s)
Selection

Parameter
Generation

Human
Guidance

Evaluation
of Discoveries

Numerical ALife CS

Mitchell et al. [97] 1d-fitness
(fixed)

optimization
(fixed)

pop-based
(GA)

task-specific performance
(CA compute tasks)

Mordvintsev et al. [104] 1d-loss
(fixed)

optimization
(fixed)

model-based
(SGD)

task-specific performance
(CA target shape)

Pathak et al. [36] 1d-reward
(fixed)

optimization
(fixed)

model-based
(DRL)

task-specific performance
(agent locomotion)

Reinke et al. [•1] 8d-encoder
(learned)

diversity
(hypercube sampl)

pop-based
(kNN+mutation)

diversity
(CA BC coverage)

Etcheverry et al. [•3] Nd-encoder
(learned+grown)

meta-diversity
(preference-based+
hypercube sampl)

pop-based
(kNN+mutation)

task generation
(preference feedback)

diversity
(CA BC coverage)
interestingness
(preferred diversity type)

Hamon et al. [•5] 2d-encoder
(fixed)

diversity
(curriculum sampl)

model-based
(SGD)

robustness
(sensorimotor generalization)

Sudhakaran et al. [140] 1d-loss
(fixed)

multi-objective
(fixed)

model-based
(SGD)

task generation
(goal selection)

multi-task performance
(goal-guided CA target shape)

Numerical modeling CS

Kriegman et al. [61] 1d-fitness
(fixed)

optimization
(fixed)

pop-based
(EA)

task-specific performance
(xenobot locomotion)

Treloar et al. [111] 1d-reward
(fixed)

optimization
(fixed)

model-based
(DRL)

task-specific performance
(target microbial levels)

Degrave et al. [112] 1d-reward
(fixed)

optimization
(fixed)

model-based
(DRL)

task-specific performance
(tokamak magnetic control)

Hase et al. [115] 1d-regressor
(learned)

optim-knowl
(EE sampl)

model-based
(BNN+KDE)

task-specific performance
(RD target behavior)

Thiede et al. [122] 1d-regressor
(learned)

optim-knowl
(EE sampl)

model-based
(KB-IM DRL)

task-specific performance
(pLogP, QED)

Etcheverry et al. [•8] 2d-encoder
(fixed)

diversity
(hypercube sampl)

pop-based
(kNN+mutation)

diversity + robustness
(navigation competency tests)

Falk et al. [139] 4d-encoder
(learned)

diversity
(hypercube sampl)

pop-based
(kNN+mutation)

diversity
(Kuramoto BC coverage)

Swarm robotics CS

Baldassarre et al. [98]
Trianni and Nolfi [99]

1d-fitness
(fixed)

optimization
(fixed)

pop-based
(EA)

task-specific performance
(swarm movement)

Duarte et al. [100] 1d-fitness
(fixed)

optimization
(fixed)

pop-based
(NEAT)

task-specific performance
(homing, . . . )

Gomes et al. [128] 100d-encoder
(fixed)

diversity
(novelty sampl)

pop-based
(kNN+NEAT)

task-specific performance
(aggregation, energy sharing)

Physico-chemical CS

Duros et al. [51] 1d-classifier
(learned)

knowledge
(max entropy)

surrogate-based
(SVM)

outcome characterizat°
(human-data pretrain)

diversity
(crystal space coverage)
task-specific performance
(classification accuracy)
comparison with expert

Aubert-Kato et al. [101] 1d-fitness
(fixed)

optimization
(fixed)

pop-based
(CMA-ES+NEAT)

task-specific performance
(bio-robots target shape)
comparison with expert

Kreutz et al. [102] 1d-fitness
(fixed)

optimization
(fixed)

pop-based
(GA)

task-specific performance
(catalyst activity)

Salley et al. [103] 1d-fitness
(fixed)

optimization
(fixed)

pop-based
(GA)

task-specific performance
(target nanoparticle shape)

Zhou et al. [113] 1d-reward
(fixed)

optimization
(fixed)

model-based
(DRL)

task-specific performance
(max reaction yield)

Christensen et al. [116] 1d-regressor
(learned)

optim-knowl
(EE sampl)

model-based
(BNN+KDE)

task-specific performance
(max E-product yield)

Shields et al. [117] 1d-regressor
(learned)

optim-knowl
(max EI)

model-based
(GP)

outcome characterizat°
(human-data pretrain)

task-specific performance
(max reaction yield)
comparison with expert

Wigley et al. [118] 1d-regressor
(learned)

optim-knowl
(min EC, max var)

model-based
(GP)

task-specific performance
(BEC production)

Xue et al. [50] 1d-regressor
(learned)

optim-knowl
(KG)

model-based
(SVR)

task-specific performance
(alloy thermal hysteresis)

Corma et al. [48] 1d-regressor
(learned)

optimization
(fixed)

pop-based
(NN-surrogate GA)

task-specific performance
(epoxide yield)

Nikolaev et al. [49] 1d-regressor
(fixed)

optimization
(moving target)

pop-based
(RF-surrogate GA)

task-specific performance
(max CNT growth)

Cazenille et al. [129] 1d-fitness, 1d-BC
(fixed)

quality-diversity
(MAP-Elites)

pop-based
(CMA-ES+NEAT)

task-specific performance
(bio-robots target shape)

Grizou et al. [64] 2d-encoder
(fixed)

diversity
(uniform sampl)

pop-based
(kNN+mutation)

diversity
(oil-droplet BC coverage)

Terayama et al. [136] 2d-encoder
(fixed)

diversity
(SN sampl)

surrogate-based
(RF)

diversity
(discovered molecules SD)

Biological CS

King et al. [52] 1d-classifier
(learned)

knowledge
(min EC)

surrogate-based
(logical model)

outcome characterizat°
(expert knowledge)

task-specific performance
(classification accuracy)

HamediRad et al. [141] 1d-regressor
(learned)

optim-knowl
(max EI)

model-based
(GP)

task-specific performance
(lycopene production)

Radivojević et al. [53]
Zhang et al. [142]

8×1d-regressor
(learned)

Optim-knowl
(EE sampl)

surrogate-based
(ensemble)

task-specific performance
(synthesis rate)
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2.3. Problem Reformulation: the Developmental
AI Paradigm

Developmental AI aims to model children learning and, thus, takes
inspiration from the mechanisms underlying autonomous behaviors in
humans. After discussing essential mechanisms enabling open-ended
learning in humans (Subsection 2.3.1), we discuss how baking similar
mechanisms into artifical agents seems to be a key step for the develop-
ment of autonomous learning agents and how it enabled sample efficient
learning of high-dimensional motor skills in robotic contexts (Subsection
2.3.2). Finally, we discuss perspectives and challenges for transposing
developmental AI approaches to the target automated discovery problem
(Subsection 2.3.3).

2.3.1. Motivation: Humans are Open-Ended Learners

Humans are an incredible source of inspiration for AI: despite their
limitations in energy and time, humans develop an extensive repertoire
of diverse skills from an almost infinite array of potential possibilities
throughout their lives. As babies, they learn simple things like recognizing
objects, and as they grow, they learn more complex things like talking
and interacting with others. Most of the time, humans are not motivated
by external rewards but spontaneously explore their environment to
discover and learn about what is around them. While we are far from
fully understanding what makes humans efficient open-ended learners
in such a short period of time, several mechanisms have been extensively
investigated by psychologists and cognitive scientists, and appear pivotal
in enabling effective learning in humans, particularly in children.

Firstly, humans exhibit a propensity for goal-directed behaviors such
that the concept of goal holds central importance in theories of human
motivation [143, 144]. Several psychological studies have delved into the
use of this concept, leading Elliot and Fryer [143] to propose a general
definition: “A goal is a cognitive representation of a future object that the

organism is committed to approach or avoid”. Pursuit of goals, also called
teleonomy in biology, is likely to be play a crucial role in enabling humans
and living organisms in general to structure their behavior into organized
developmental trajectories [145].

A second (and related) notion at the core of human development is the one
of intrinsic motivations, known in everyday language as curiosity. Humans
are goal-directed learners but what’s really impressive is that they can
come up with their own problems (goals) to solve. Notably, Chu and
Schulz [146] argue that “children’s exploratory play may be characterized
by nothing so much as their tendency to invent novel goals and problems
for themselves”. This behavior seems to be driven by intrinsic motivations,
a set of brain processes that motivate humans (and other animals)
to explore for the mere purpose of experiencing novelty, surprise or
learning progress [147–152]. Therefore humans can be qualified as autotelic

i. e. agents that are both intrinsically motivated and goal-conditioned,
generating their own goals and learning signals [55].
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Finally, human are inherently social learners: not only they are capable
of generating their own goals but they are constantly adapting thier
goals and responses based on the environment around them. Since birth,
humans enter a culture that strongly shapes their development [153].
Then, throughout their lives, they benefit greatly from social interactions
and are in fact intrinsically motivated to communicate and cooperate
with their peers [154–156].

2.3.2. From Theory to Practice: Developmental AI (a) The curious child

(b) The robot as child

Figure 2.15.: The “playground experi-
ment”: (a) drawing inspiration from chil-
dren exploratory play, (b) pioneer works
in developmental AI illustrate how mech-
anisms of curiosity-driven exploration
enable a robotic agent to successively
develop object affordances and vocal in-
teraction with its peers [157, 158].

At the crossroads of the 20𝑡ℎ and the 21𝑠𝑡 centuries, the field of develop-

mental robotics emerged, bringing together a diverse group of researchers
from AI and developmental sciences. Inspired by the aforementioned
theories from developmental psychology and cognitive sciences, their
aim was to create computational models based on these theories and to
integrate them into artificial systems, including physical robots. Within
developmental robotics, innovative frameworks were proposed to model
development including the previously-mentionned IMGEP ones com-
bining intrinsically motivated and goal-directed learning processes [57,
58]. More recently, the developmental robotics field has merged into
the broader field of developmental artificial intelligence (developmental
AI). This integration incorporates modern deep learning methods and
processing capabilities into the developmental artificial systems. De-
velopmental AI essentially strives to “build machines that learn like
children”, or at least replicate aspects of how children learn and explore.
Unlike traditional machine learning models that focus on solving specific
tasks, developmental AI focuses on proposing computational models
that enable efficient exploration of the environment without relying on
external rewards and working with limited resources. Interestingly, the
integration of these models into artificial agents was shown to be useful
for both theoretical investigations, such as constructing cognitive models
of child development, and practical achievements, such as building robots
and AI systems that can efficiently learn in open-ended environments.

Figure 2.16.: Emergence of developmen-
tal stages in an IM agent exploring a
realistic model of the human vocal tract:
transition from no phonation (red), to
exploring unarticulated sound (yellow)
and articulated sounds like cannonical
babbling (blue), akin to the developmen-
tal stages observed in children [159]

On the theoretical front, computational models of intrinsic motivation
(IMs) using artificial exploring agents are increasingly being used to
explain various aspect of human cognitive development, such as the
emergence of developmental transitions between object manipulation,
tool use and speech [160]. For instance, Moulin-Frier et al. [159] explained
the progression of human vocal behavior through distinct develop-
mental stages as an intrinsically motivated, competence-progress based
goal-exploration process (Figure 2.16). Such computational accounts of
curiosity-driven learning have led to novel hypotheses on the role of
curiosity in the evolution of language [151]. Similarly, a recent study
comparing various computational models of utilities functions in mo-
tivational systems has shown that models that take into accound the
learning progress explain the best observed behaviors of human adults
in free exploration games [161].

Figure 2.17.: An intrinsically motivated
agent learns what effects can be pro-
ducted by its action and uses it to explore
its environment leading to nested tool
use discovery [58]

On the empirical front, these computational models have demonstrated
their capability to enable efficient exploration mechanisms when embed-
ded in artificial agents, including physical robots, operating in complex
environments and using only a limited budget of interactions [56]. For
instance, Forestier et al. [58] shown how a humanoid robot, which initially
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knows nothing about its environment, can explore its body movements
and progressively discover how to interact with the various objects and
tools in the scene (Figure 2.17). Similarly, autotelic curious mechanisms
where shown to enable the autonomous and efficient aquisition of other
sensorimotor skills including locomotion [57, 162], soft object manipula-
tion [163, 164], visual skills [165], vocal interactions [157, 158] and nested
tool use [166].

Figure 2.18.: XLand procedurally-
generated environments. Image taken
from [167].

More recently, leveraging the recent advancements in AI algorithms,
computing power, and processing capabilities, developmental AI has
shown to scale the proposed approaches to high-dimensional complex
environments. These advancements have been integrated within the
AI agents in diverse ways. Those include the integration of unsuper-
vised representation learning techniques like variational auto-encoders
(VAEs) [137] for the autonomous learning of compact representations
from high-dimensional image-based states [74, 168–170] and for the de-
tection of controllable areas in the image-based state space [171]. Deep
reinforcement learning (RL) optimization techniques have also been
incorporated to better handle higher dimensional inputs and perturba-
tions [135, 172] (see Colas et al. [55] for an extensive review). Language
has been integrated as a powerful cognitive tool to support the imag-
ination of goals [173] and (large) language models have recently been
used to enhance the goal representation and generation of autotelic
agents [59]. More broadly, developmental AI concepts are gaining inter-
est in the AI community, and modern ML tools are shown to enhance
the computational models of developmental AI. For instance, the use of
learning progress based curriculum was shown to foster the emergence of
generally capable agents in rich open-ended environments [167] (Figure
2.18), and the use of LLM was shown very promising to automatically
generate a learning curriculum for enhancing exploration progress [174]
and human interest [79] in Minecraft-like environments. However, these
approaches often focus on the problem of sequential decisions in deep
RL settings, incurring a big cost on sample efficiency.

(a) ALIEN: particle-based artificial life environment (https://alien-project.org/)

(b) Flow Lenia: CA-based artificial life environment [•6]

Figure 2.19.: Large-scale simulation of artificial life environments made of millions of particles (or cells). While the particle (or cell)
dynamics are the result of simple physical laws, they can give rise to a very rich and hardly predictable diversity of collective behaviors.

https://alien-project.org/
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One natural path forward for developmental AI approaches is to move
from toy robotic or simulated environments to exploration spaces where
creative open-ended search could have practical applications for humans.
They are notably two applications that seem particularly promising:
educational technologies to foster curiosity and creativity in young
children [175] and automated discovery tools to foster the likelihood of
making “interesting” discoveries [•3]. In the former, there are already
several works that reuse developmental AI models into intelligent tutoring
system and were shown to improve skills acquisition in students [176, 177],
with recent works even integrating modern AI tools such as large language
models [178]. This thesis aims to introduce, formalize and contribute
to the second type of application - specifically the potential of using
developmental AI to organize scientific experimentation. The question we
aim to answer is: Can we construct artificial agents, combining autotelic
curious exploration mechanisms with the processing capacities of
recent AI algorithms, to form efficient AI-driven “discovery assistant”
and help addressing various challenging problems in Science?

2.3.3. Developmental AI: Practical Applications for
Assisting Humans and Scientific Discovery

Developing AI algorithms that will work in tandem with human scientist
to help them explore complex and unfamiliar problem spaces and
maximize the likelihood of making “interesting” discoveries in these
spaces could be extremely powerful [54, 179]. In the history of Science,
most of what humans consider to have been “interesting” discoveries
were in fact serendipitious discoveries: the result of a creative process more
than a objective-driven process [180]. Expanding on the “child-scientist”
theory, we argue that automated discovery would benefit from being
formulated as a developmental AI process rather than an optimization
process (as standardly done) and discuss its fundamental challenges.

Curiosity: the fuel for discovery In history, there are numerous exam-
ple of groundbreaking discoveries which were driven by fundamental
curiosity-driven questions or simple “accidents”, that then led to practical
applications. For instance, Alexander Fleming’s discovery of penicillin in
1928, the first antibiotic, arose from observing accidental mold growth on
his culture plates and realizing that it prevented bacterial growth. More
recently, biochemists Jennifer Doudna and Emmanuelle Charpentier’s
breakthrough in CRISPR-cas9 technology, the “genetic scissors”, origi-
nated from fundamental biology research exploring bacterial defenses
without a clear drug-related external objective. In a recent study, Spec-
tor et al. [181] found that 80% of the “most transformative” medicines
approved in the United States between 1985 and 2009 stemmed from
fundamental discoveries about biological processes or diseases, without
a predetermined drug path.

The “child-scientist”: conceptual analogy Jean Piaget, a swiss psy-
chologist and father of theories of children cognitive development, is
particularly known for his “child as little scientist” theory: the child is
actively exploring its body movements in the same way that the scientist
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is actively choosing the next experiment to perform in order to augment
its understanding of the natural world [182]. This theory, which was the
first to describe child development as a succession of developmental
stages marked by intrinsically motivated experiences, notably influenced
the many works in developmental psychology and artificial intelligence
previously mentionned [183]. Reciprocally, american psychologist and
philosopher Alison Gopnik (and many others) also defended the “sci-

entist as child” theory [184]. This theory, emphasizing the creative and
exploratory nature of scientific thinking and the connections it shares
with the natural curiosity and exploration of children, forge a strong
conceptual link between the two types of exploration [149].

(a) The child as little scientist

(b) The AI scientist as child

Figure 2.20.: Automated discovery as a
curiosity-driven developmental process.

The “child-scientist”: proposed algorithmic analogy Building on the
“scientist as child” perspective, and as a natural extension of the “robot
as child” perspective proposed by developmental robotics (Figure 2.15),
the “AI scientist as child” naturally comes as alternative formulation to
the automated discovery process (Figure 2.20). Following the analogy
in the context of automated discovery, we suggest to view the AI agent
as a developmental learner, the human engineers as the equivalent of
evolutionary processes and the human end-user as the equivalent of cultural

processes. The engineer must find ways to design (or evolve) AI agents with
efficient exploration mechanisms and ways to interact with the human
end-user. The human end-user shapes the AI developmental trajectories
with guidance and instructions, and affect evolutionary pressures on
the AI at a higher-level by influencing the human engineer practices
(Figure 2.21). This dynamic is expected to foster a significant degree
of interaction between the AI agent and human scientists, forging new
frontiers in collaborative scientific exploration [54]. In Chapter 3, we will
discuss how we can reuse the IMGEP algorithmic framework originally
developed for the learning of inverse models in developmental robotics,
to implement the “AI scientist as child” in practice. As we will see,
both applications share the same underlying fundamental challenges:
discovering maximally-diverse outcomes in highly-redundant dynamical
systems within a limited budget of experiments.

Instantiation of AI models
shape exploration

AI exploration mechanisms determine
human interaction dynamics

Emergent interactions affect
evolutionary pressures on AI

END-USER
(Culture)

ENGINEER
(Evolution)

AI AGENT
(developmental learner)

Figure 2.21.: Roles of the human engineer
and human end-user in shaping the AI-
driven scientific discovery

Key challenges for autotelic exploration in self-orgazing systems
However, fundamental challenges remain for transposing existing al-
gorithms to the highly complex and emergent exploration spaces of
self -organized systems. Despite the testbed environments used to eval-
uate artificial autotelic agents becoming more and more complex in
machine learning, as examplified by the XLand 3D environment that
can generate many different tasks (Figure 2.18), environments remain
mostly engineered: they are designed by engineers with specific factors
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of variation in mind like the position of objects, terrain topology and so
on. But, when we look at the self-organized structures found in nature
that scientists want to study, there’s no pre-set plan: it’s rather about
large collective of low-level elements (particles or cells) coming together
on their own to make something bigger (Figure 2.19). This distinction
between microstates (smaller, fine-grained description) and macrostates
(where emergent behavior occurs on a larger scale), while central in
theories of complex systems and emergence, is challenging to apprehend
in practice. In fact, any system can be described in many state spaces (in
particular biological systems) and what defines a macrostate depends
on what aspects of a system an observer decides to observe. Creative ex-
ploration is all about finding new ways to interact with the environment.
Here it is about finding new state spaces in which to imagine goals, and
about finding efficient space traversal strategies to achieve those goals.
Human civilization is a great example of creative process which found
completely new state spaces to explore, such as the language space or
the internet space, which turned out to be particularly useful spaces for
humans to imagine, pursue and achieve new goals in the physical world.
Recent approaches in developmental AI haves considered state spaces
that were either fixed and monolithic (e.g. descriptors of the state-space
in games) or human familiar spaces assumed to help exploration (e.g.

language space for exploration of the 3D world). But what is a good state
space for exploring molecular self-assembly or cellular morphogenesis?
Scientists are only starting to explore those systems and do not know
really what are interesting state spaces to explore. On top of that, even for
systems where scientists want to explore specific state spaces, devising
efficient traversal strategies in those spaces can be very challenging. In-
deed, making progress toward a (macro) goal in a certain space requires
finding ways to drive the (chaotic) dynamics of the environment toward
self-organizing structures whose emergent properties align with the
target goal, which shifts the goal-achievement process to something that
we might call “engineering emergence” and which is much less intuitive
than standard problem-solving capacities of current AI agents.

2.4. Summary

In this section, we presented the automated discovery problem along
with the associated challenges for evaluation and exploration (Section 2.1).
We then provided an overview of conventional AI paradigms designed to
address this problem, summarizing the existing approaches in Table 2.2.
We notably introduced the IMGEP computational framework, a recent
family of diversity search algorithms for autotelic learning in artificial
agents (Figure 2.14). Then, we presented the developmental AI paradigm
which, at the intersection of developmental robotics and modern AI
techniques, builds on the IMGEP computational framework to design
intrinsically-motivated agents that can generate and pursue their own
goals, i. e. autotelic agens (Section 2.3). Unlike standard optimization-driven
or knowledge-driven strategies that rely on externally provided goals,
autotelic agents discover and learn to represent their own goals from
their experience of the physical world. This adaptability to the physical
world reflects the concept of Piaget’s “child as scientist” developmental
psychology theory, which emphasizes children’s capacity to shape their
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learning journeys akin to how scientists adjust their experimental paths
to deepen their understanding of the natural world [182].

In the following part of this manuscript, we will delve into the details
of the IMGEP computational framework and explore its application
in creating autotelic learning agents within the context of automated
discovery. We will also discuss the challenges surrounding the definition
of IMGEP’s internal models in practical scenarios, for which we propose
a range of algorithmic contributions. These contributions have led us
to formulate the framework of what we call the “curious discovery
assistant”, which we propose as an alternative framework for addressing
the automated discovery problem in Science.



The “curious discovery assistant”
framework
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What is the aim of this chapter? In many complex dynamical systems,
artificial or natural, one can observe self-organization of patterns emerg-
ing from local rules. Cellular automata, like the Game of Life (GOL),
have been widely used as abstract models enabling the study of various
aspects of self-organization and morphogenesis, such as the emergence of
spatially localized patterns. However, findings of self-organized patterns
in such models have so far relied on manual tuning of parameters and
initial states, and on the human eye to identify “interesting” patterns.
In this chapter, we formulate the problem of automated discovery of
diverse self-organized patterns in high-dimensional complex dynamical
systems using a continuous extension of the Game of Life called Lenia as
testbed environment. We propose to transpose intrinsically-motivated
machine learning algorithms (IMGEPs), initially developed for learning
of inverse models in developmental robotics (as illustrated in Figure 3.1),
as computational framework for experimentation.

How is this chapter organized? In Section 3.1, we present the IMGEP
computational framework and its core principles in a robotic context.
In Section 3.2, we present the Lenia environment, a class of continuous
cellular automata models that will serve as experimental testbed for
the first part of this manuscript. Finally in Section 3.3, we propose to
transpose the IMGEP framework for the automated discovery of a diverse

set of self-organized patterns in such system, and identify the main
challenges for implementing the IMGEP internal models in practice.

Figure 3.1.: IMGEPs were designed to enable robots to explore, learn and control what effects can be produced by their actions. See the
corresponding video of Forestier and Oudeyer [166] where a robot is intrinsically motivated to learn how to interact with objects.

https://www.youtube.com/watch?v=NOLAwD4ZTW0
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3.1. The IMGEP Computational Framework

IMGEPs are a recent family of diversity search algorithms, inspired from
the way children self-develop open repertoires of skills and learn world
models, which were initially designed to enable autonomous robots to
explore and learn what effects can be produced by their actions, and
how to control these effects [57, 186]. As indicated by their names,
IMGEPs are goal-directed and intrinsically-motivated, with the aim to create
autotelic learners capable of representing, generating and pursuing their
own goals [58]. Before diving into their application to the discovery of
self-organized structures, let’s first explain the core principles of IMGEP
illustrating them in a robotic experiment. As we will see, the two domains
share many properties.

IMGEP agents are goal-directed As illustrated in Figure 3.1, IMGEPs
self-define goals in a goal space T that represents important features of
the outcomes of actions, such as the position of the different objects
in the scene. Goal-directed agents are conditioned on this compact
representation of the goal and update their behavior to make progress
towards the goal, e.g. moving an object toward the goal-position. This
leads to the following formalization of goals [55]:

A goal 𝑔 = (𝑧𝑔 ,L𝑔) ∈ T is defined by a compact goal-embedding
𝑧𝑔 ∈ 𝑍 and a goal-achievement loss function L𝑔 measuring progress
toward the goal.

This definition of goals is quite general and encompasses a wide diversity
of goal representations. We refer to [55] for a review of possible goal
representations, but in this thesis we define goals as target features of states.
In this scenario, a state representation function 𝑅 maps the observation
space𝑂 to an embedding space 𝑍 = 𝑅(0). Goal embeddings 𝑧𝑔 are target
points in 𝑍 that the agent should reach. In the example of robotic object
manipulation from Figure 3.1, 𝑧𝑔 represents target object coordinates,
but it could be other things like target agent position, etc. Note that
the representation is often predefined, but it could also be learned.
This is the case for visual goals, where the representation function 𝑅

is usually implemented by a generative model trained on a database
of visual states from the environment [74, 168–170]. For this type of
goals, the goal-achievement function L𝑔 is based on a distance metric
Dwhich is most of the cases shared across goals. This results in a goal-

conditioned loss function such that L𝑔 = D(·|𝑧𝑔). For instance, one can
directly define D as the distance between features of the current state
and the target goal embedding: D(·|𝑧𝑔) = 𝑑𝑖𝑠𝑡(𝑅(𝑜)|𝑧𝑔) or define some
binary achievement when distance falls below a pre-defined threshold:
D(·|𝑧𝑔) = 1 if 𝑑𝑖𝑠𝑡(𝑅(𝑜)|𝑧𝑔) < 𝜖, 0 otherwise.

IMGEP agents are intrinsically-motivated To sample goals from T,
IMGEP use a goal-generator module G. Sampling new goals is not trivial:
some goals might be straightforward to attain (hence not very interesting)
but others might be very hard (and reachable only after the agent mastered
a sequence of easier goals), or even impossible (and hence not desirable
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to target). In developmental robotics, CB-IMs were used to automatically
organize the sampling of goals- i. e. of learning signals - and enable the
sample-efficient mastery of complex goals. Common ways to sample
goals in the IMGEP literature is to estimate the learning progress (LP) or
novelty of the agent in different regions of the goal space, and to bias
sampling towards areas of high absolute learning progress [57, 166, 187]
or high novelty [170], or hybrid LP-novelty based selection [171]. In the
example of robotic object manipulation from Figure 3.1, LP estimate could
measure whether the agent is making progress to move the chosen goal
object toward the target goal position e.g. whether the distance between
goal and actual reached position decrease over time on average. Novelty
estimate on the other hand could learn a density model on the history of
reached object positions, and skew sampling toward unexplored areas
of the goal space. Many other selection mechanisms could be envisaged
to organize the agent exploration automatically, which is in fact part
of a broader and active area of research known as automatic curriculum

learning (ACL).

Automatic curriculum learning (ACL) is defined as “the family of

mechanisms that automatically adapt the distribution of training data by

adjusting the selection of learning situations to the capabilities of learning

agents” [188]. Within ACL, automated goal selection is often formalized
as a competence-based intrinsic motivation (CB-IM).

Interested readers can refer to Portelas et al. [188] and Romac et al. [189]
for a review and a benchmark of ACL methods in deep reinforcement
learning contexts.

IMGEP agents reuse knowledge The data collected by the IMGEP
agent thoughout exploration is used to improve the goal-sampling and
goal-reaching strategies in two ways. First, the information collected
while aiming at a particular goal is systematically reused to achieve
other goals faster. This cross-goal learning is something that has recently
been called hindsight learning [190]. Learning by hindsight, agents can
reuse a initially-failed trajectory as an informative trajectory to learn
about another goal, thus making the most out of every trajectory. More
generally, the information collected is stored in history Hand is reused
by to update its internal models throughout exploration.

IMGEPs implement two parallel processes: a goal-directed exploration
(exploration process) and an offline data exploitation (learning process)
which uses the collected data to improve goal-reaching behaviors.

POP-IMGEPs versus RL-IMGEPs There are two main versions of
IMGEPs, known as population-based (POP-IMGEPs [58]) and reinforcement

learning-based (RL-IMGEPs [55]), which mainly differ in the way the goal-
achievement strategy Π(𝑔,H) and agent memory are defined. In POP-
IMGEPs, an explicit memory of the history H= {𝜃, 𝑜} of experiments
and observations is collected. The history is directly-used to infer the
most promising candidate 𝜃 given a target goal 𝑔, using a non-parametric
inverse model Π such as k-Nearest Neighbors algorithm. In RL-IMGEPs,
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Π is a goal-conditioned parametric model which is trained using deep
reinforcement learning techniques, and used to infer the most promising
canditate 𝜃 given a target goal 𝑔. RL-IMGEPs approach generally focus
on the problem of sequential decisions in MDPs, and therefore consider
experimental budgets𝑁 that are much bigger than the ones in automated
discovery. Therefore, the history H= {𝜃, 𝑜} is often regularly emptied,
keeping only a memory buffer with a subset of selected discoveries on
which the policy Π is regularly trained.

POP-IMGEPs return the all history of discoveries Hassociating one set
of experiment parameters 𝜃 per reached goal 𝑔 whereas RL-IMGEPs
return a goal-conditioned policy Π (called to generate parameters 𝜃)
which has internalized the capacity to achieve various goals.

IMGEP pseudocode Algorithm. 2 presents the general pseudo-code of
the IMGEP, where the exploration and learning process happen in parallel.
The IMGEP exploration operates in two phases: 𝑁𝑖𝑛𝑖𝑡 interventions are
first sampled randomly from Θ to initially populate history H, and then
the remaining interventions are generated through the goal-directed
process. The sampling and pursuit of goals (highlighted in bold) is
the main novelty with respect to the standard automated discovery
procedure (Algorithm. 1). It relies on several key internal models: the
goal representation (𝑅) which encodes observations (𝑜) into the IMGEP
goal space (T), the goal generator module (G) which samples goals from
the goal space, and the goal-conditioned optimization policy (Π) that
generates candidate parameters to achieve the current goal. In parallel, the
IMGEP learning process regularly updates the IMGEP internal models
with the information collected throughout exploration.

Algorithm 2: Intrinsically Motivated Goal Exploration Process
Require :Parameter Space Θ, Observation space 𝑂, Representation 𝑅
Require :Experimental budget 𝑁

Initialize empty history table H

Initialize goal space Tand goal generator module G

Initialize goal-conditioned optimization policy Π

imgep exploration
for i=1 to 𝑁 do

if 𝑖 < 𝑁𝑖𝑛𝑖𝑡 then // Initial random iterations

Sample random parameter 𝜃 ∼ U(Θ)
else // Goal-directed IM iterations

Sample target goal 𝑔 ∼ G(H)
Infer experiment parameters to achieve goal 𝜃 ∼ Π(𝑔,H)

Execute experiment with 𝜃 and observe system outcome 𝑜
Characterize behavior 𝑧 = 𝑅(𝑜)
Write (𝜃, 𝑜, 𝑧) to history H

imgep learning
Update goal space Twith H

Update goal generator module Gwith H

Update goal-conditioned optimization policy Π with H

return H
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3.2. Testbed Environment: the Lenia system

In this section, we dive back into the world of self-organization. After
providing some background on cellular automata, we present the Lenia
system [39, 40], a recently-proposed generalization of the game of life
which was shown to generate a wide range of complex behaviors and
life-like structures. We then discuss what makes Lenia a particularly
interesting “toy” experimental testbed for automated discovery tools.

3.2.1. Backgound: CA and GoL

Cellular automata (CA) are mathematical models that have been widely
used to simulate complex systems or processes. They are particularly
interesting as they are rich abstract computational models - some are
even Turing-complete i. e. capable of universal computation - and yet
their dynamics can be described with only a simple and compact set of
rules. Their formalization goes back to Von Neumann’s and Stanislaw
Ulam seminal ideas in the 1940s, which introduced the concept of cellular
automata in order to create a theoretical model for a self-reproducing
machine [21]. Von Neumann’s work was notably motivated by his attempt
to understand biological evolution and self-reproduction. Whereas Von
Neumann was never able to actually build his self-reproducing machine,
his concept of cellular automata became widely influential. Notably, the
ability of CA to exhibit complex behavior based on only a few rules made
them a primary choice for modeling complex phenomena in various
scientific fields, including biology, physics and chemistry. They also have
become an especially fundamental concept in the field of artificial life.

In its classic form, a CA is is a theoretical machine that consists of elements
called “cells”. Each cell has a value, or state, and is connected to certain
neighboring cells so that they form a one- or multidimensional lattice:
𝐴 = {𝑎𝑥}, where 𝑥 ∈ X is the position of the cell on the grid and 𝑎𝑥 is
the state of the cell. The states of the cells change at discrete time-steps
𝐴𝑡=1 −→ · · · −→ 𝐴𝑡=𝑇 . The new state of a cell is computed based on the
states of its neighbors: 𝑎𝑡+1

𝑥 = 𝑓 (N(𝑎𝑡𝑥)), where N(𝑎𝑡𝑥) is the neighborhood
of the cell (including itself) and 𝑓 is a local update rule which is shared at
the different locations. The dynamic of the CA is thus entirely defined by
the initialization 𝐴𝑡=1 (initial state of the cells in the grid) and the update
rule 𝑓 (how a cell updates based on its neighbors).

(a) Glider gun shooting gliders

(b) Sir Robin

Figure 3.2.: (a) The glider gun, a rela-
tively complex structure that periodically
emits gliders. (b) Sir Robin, the first ele-
mentary knightship, discovered in 2018
as a result of partial manual discovery
and heavy computer search (see blog-
post)

.

The Game of Life (GoL), introduced in the seventies by the mathematician
John Conway, is probably the most famous example of cellular automaton.
GoL is composed of a 2D lattice of infinite size, where cells are either
“dead” (𝑎𝑥 = 0) or “alive” (𝑎𝑥 = 1). At each time step, every cell interacts
with its 8 neighbors and can survive, die or give birth according to very
simple rules 𝑓 . At the beginning of a simulation, one chooses how many
and which cells are alive and then observes the patterns formed by the
cells as they “divide”. Despite its extreme simplicity, it was shown that
various complex structures can emerge in it. One of the best-known of
these patterns is the glider: a small spatially-localized pattern capable
of moving diagonally across the space. Gliders are important pattern
that can be used to transmit information over long distances and that
can be combined (or rather “collided”) together to create more complex

https://cp4space.hatsya.com/2018/03/11/a-rather-satisfying-winter/
https://cp4space.hatsya.com/2018/03/11/a-rather-satisfying-winter/
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structures such as the well-known glider gun, an infinite growth pattern
and important indicator that GoL could function as a Turing machine
(Figure 3.2a). Gliders have been extensively studied and even proposed
as a computational model of an autopoietic system [191, 192]. While the
glider is quite easy to find, the possibilities for emergence in GoL are
very wide and players are still discovering novel patterns (Figure 3.2b).

3.2.2. Lenia: a continuous extension of the Game of Life

(a) GoL discrete rules

(b) Lenia continuous rules

Figure 3.3.: Rules of GoL and Lenia,
taken from Chan [40]

Figure 3.4.: Gliders in GoL and Lenia

Lenia is a recent generalization of Conway’s Game of Life rules proposed
by Bert Chan in 2018 [39]. Lenia generalizes GoL to the continuous
domain by:

▶ allow cells to take any value between 0 and 1 (continuous states)
▶ extend the neighborhood to a circular neighborhood of variable

radius 𝑅 (continuous space)
▶ weighting the neighbors influence by a radially symmetrical kernel
𝐾 and smooth mapping function 𝐺 (smooth updates)

▶ add the value back to the site 𝑥 with incremental update factor 𝑑𝑡
(continuous time)

More precisely, Lenia’s update rule (𝐴𝑡 → 𝐴𝑡+1) is defined as

𝐴𝑡+1 =
[
𝐴𝑡 + 𝑑𝑡 𝐺(𝐾 ∗ 𝐴𝑡)

]1
0

It can be decomposed in four steps:

1. First cells sense their neighborhood through a convolution filter 𝐾
which defines a parametrized kernel formed by 𝑏 concentric rings:

𝐾𝐶(𝑟) = exp
(
𝛼 − 𝛼

4𝑟(1 − 𝑟)

)
, with 𝛼 = 4 (Kernel core)

𝐾𝑆(𝑟; 𝛽) = 𝛽⌊𝐵𝑟⌋𝐾𝐶(𝐵𝑟 𝑚𝑜𝑑 1), with 𝛽 = (𝛽1 , . . . , 𝛽𝑏) (Kernel shell)

𝐾 =
𝐾𝑆

|𝐾𝑆 |

Note that Lenia grid 𝐴 is a torus where neighborhood is circular,
such that pixels on the top border are neighbors of the pixels on
the bottom border, and same applies for left and right borders.

2. Second, cells convert this sensing into a growth update (which can
be positive, negative or no growth) through a mapping 𝐺 which
defines a parametrized function:

𝐺(𝑢;𝜇, 𝜎) = 2 exp
(
−(𝑢 − 𝜇)

2

2𝜎2

)
− 1

3. Then, cells modify their state by adding a small portion 𝑑𝑡 of the
scalars obtained to their current states.

4. Finally, the state is clipped between 0 and 1 (to prevent negative
matter or concentrating too much matter in very small regions)

Note that other kernel cores and growth fields have been proposed in [39],
but we did not use them in our works hence do not detail them here.



3. Intrinsically-Motivated Discovery of Diverse Self-Organized Structures 45

Lenia parameter space When performing experimentation in Lenia,
we generally fix the lattice resolution (e.g. 256 × 256), the total number of
steps 𝑇 (e.g. 𝑇 = 250) and number of concentric rings 𝑏 (e.g. b=3). Lenia
controllable parameters 𝜃 include the initial grid pattern (𝐴𝑡=1) and a
(4+b)-dimensional set of parameters 𝜙 controlling Lenia’s update rule
(Figure 3.5). Note that Lenia is not a single CA per se but rather defines
a class of continuous cellular automata (CA) where each CA instance is
defined by a set of parameters 𝜙 that conditions the CA rule 𝑓𝜙 . Once the
parameters 𝜙 conditioning the update rule has been chosen, the system
is a classical CA where the initial grid pattern 𝐴𝑡=1 will be updated. In
fact, GoL can be implemented as one specific instantiation of Lenia.

Figure 3.5.: Lenia parameters 𝜃

Lenia: a highly-redundant mapping The parameter space Θ is high-
dimensional but a vast area of the parameters will tend to produce “dead”
patterns (with all cells being zeros or ones), which is the main attractor of
Lenia. Naively exploring the parameters with random or systematic grid
will tend to fall into this area and miss out more interesting structures.
Similarly finding patterns that spread over the whole (infinite patterns
connected by borders) is very easy to find, but finding of spatially-
localized patterns (SLPs) is much harder. Finding of moving SLPs, such
as the Lenia “gliders” depicted in Figure 3.4, is even more challenging.

3.2.3. Lenia extensions

Figure 3.6.: Publications citing Lenia
(Chan [39, 40]) between 2019 and now.
Numbers in parentheses denote ours.

The works presented in the first part of this manuscript (Part I) were all
conducted with the original version of Lenia [39] as above presented.
Yet, since these works, Lenia has gained popularity notably in the Arti-
ficial Life community where many works are now using it for research
(Figure 3.6). Among those, several extensions of the original Lenia “uni-
verse” have been proposed (including ours). We discuss those extensions
below.

Figure 3.7.: Multi-kernels Lenia, where
multiple 𝐾𝑘 and 𝐺𝑘 are feed into ∑ by
factors ℎ𝑘 . Taken from [40].

Multi-Kernels Lenia [40] Inspired from Multiple Neighborhoods CA
(MNCA, see blogpost), this extension proposes to have multiple neigh-
borhoods instead of a single one, each one with their own sense and
udpate functions, which allows to introduce more complex interactions
between the cells of the grids and produce interesting in dynamics. In
Lenia, this was implemented by having 𝐾 rules i. e. multiple kernels 𝐾𝑘
each parametrized with relative radius 𝑟𝑘𝑅 and corresponding growth
mapping 𝐺𝑘 . The resulting “sense” (𝐾𝑘) and “update” (𝐺𝑘) functions are
executed in parallel, and then a fraction 𝑑𝑡 of the weighted average of the
results by factors ℎ𝑘∑

𝑘
ℎ𝑘

added back to the state (Figure 3.7). In this variant

the number of parameters is 𝜙 = (4 + 𝑏)𝐾 + 2, with 2 global parameters
(𝑅, 𝑇) and 4+b per rule where (𝑟𝑘 , ℎ𝑘) replaces the original (𝑅, 𝑇).

https://slackermanz.com/understanding-multiple-neighborhood-cellular-automata/
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Figure 3.8.: Multi-channels Lenia, where
separated channels 𝐴𝑖 pass through 𝐾𝑘
and 𝐺𝑘 , feed into multiple ∑ updating
channel 𝐴𝑗 . Taken from [40].

Multi-Channels Lenia [40] Inspired from Neural CA (NCA [104]),
this extension proposes to have several communicating grids 𝐴 = {𝐴𝑐}
instead of one, which are called “channels”. Intuitively, we can see
channels as the domain of existence of a certain type of cell. Each type of
cell has its own physics : it has its own way to interact with other cells of its
type (intra-channel influence) and also its own way to interact with cells
of other types (cross-channel influence). In practice, this mean associating
each rule (𝐾𝑘 , 𝐺𝑘) with a source channel 𝑐𝑠 (the one that is “sensed”)
and a target channel 𝑐𝑡 (the one that is “updated”). The resulting update
rule is shown in Figure 3.8. Denoting the number of channels 𝐶, the
number of intra- and cross-channel kernels 𝐾𝑖 and 𝐾𝑐 , the total number
of parameters is 𝜙 = (4 + 𝑏)𝐾 + 2 with 𝐾 = 𝐾𝑖𝐶 + 𝐾𝑐𝐶(𝐶 − 1) rules.

Figure 3.9.: In LeniaChem, Lenia’s 3D
grid represents the “petri-dish” where
chemical “species” evolve in time [•4]

LeniaChem [•4] LeniaChem1 is an extension of multi-channels Lenia 1: LeniaChem variant is used in Section
5.5that we proposed in the context of the Minecraft Open-Endedness

Challenge [193] in order to “grow” 3D artifacts in Minecraft. This variant
used 3-dimensional grids 𝐴𝑐 with 𝐶 continuous hidden channels (one
per “block” in Minecraft) and one categorical visible channel (with
decided what type of block was grown in the world). Intuitively, we
can interpret this variant as a form of “artificial chemistry” where each
block in minecraft represented a “chemical specie” and the continuous
channels represent the “chemical potential” of the associated specie,
such that “matter” is created in zones of higher chemical potential with
𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑗∈𝐶𝐴𝑡𝑗 (Figure 3.9). To prevent the participation of “air”
blocks (empty cells) in the update, we also applied an alive-masking step
as in NCA [104]. Finally, we replaced the concentric-ring kernels with
hyperrectangle kernels generated with Compositional Pattern Producing
Networks (CPPN [194]), the idea being to allow for more expressivity
in the rules (although resulting in anisotropic updates). This variant was
implemented in Pytorch, enabling computational speed-ups on GPUs.
Here the total number of parameters 𝜙 = (6 + 𝑔)𝐾 + 1 + 𝐶(𝐶 − 1)
where the 6 + 𝑔 rule parameters are (𝜇𝑘 , 𝜎𝑘 , ℎ𝑘 , 𝑅𝑥𝑘 , 𝑅𝑦𝑘 , 𝑅𝑧𝑘) and the
𝑔 parameters of the kernel CPPN genome (variable), and a 𝐶(𝐶 − 1)-
dimensional one-hot vector determines which species interact together
such that 𝐾 = 𝐶(𝑖𝑛𝑡𝑟𝑎) + 𝑁𝑖(𝑐𝑟𝑜𝑠𝑠) with 𝑁𝑖 the sum of this one-hot
vector.

Figure 3.10.: In differentiable Lenia, the CA parameters can be optimized via backpropagation of the gradient [•5].



3. Intrinsically-Motivated Discovery of Diverse Self-Organized Structures 47

(a) Original Lenia Kernels

(b) Differentiable Lenia Kernels

Figure 3.11.: (a) Original Lenia kernels
are parametrized by heights of concentric
rings. (b) Differentiable Lenia kernels are
defined by a sum of gaussian rings [•5].

Differentiable Lenia [•5] Differentiable Lenia2 is an extension which 2: Differentiable Lenia variant is used
in Chapter 7 and detailed in Ap-
pendix Subsection D.2.1

we proposed in order to make the Lenia system differentiable. Due to the
locality and recurrence of the update rule, there is a close relationship
between CA and recurrent convolutional networks [35]. In fact, we can see
a rollout in Lenia as applying a recurrent neural network to an initial state.
If (some of) the network parameters are differentiable, backpropagation
can be done by “unfolding” the Lenia rollout and applying a loss at
certain time step(s) like in NCA [104] (Figure 3.10). Whereas the original
Lenia was close to differentiable (notably in its pytorch implementation),
the shape of the kernels is not totally differentiable and not very flexible,
as the number of rings 𝑏 is given by the length of a list which cannot
be differentiated. While we can fix 𝑏 (as in the works presented in the
first part of this manuscript where 𝑏 = 3), this limits the shape of kernels
and hence limits possibly emergent patterns. To address these issues,
we proposed to define kernels as a sum of 𝑏 overlapping gaussian rings
parametrized by heigh 𝑏𝑖 , width 𝑤𝑖 and center 𝑎𝑖 (Figure 3.11). These
symmetric “free kernels” allow more flexibility while being very similar
to the original ones, allowing to maintain isotropic updates and to recover
quasi-original kernels (hence to simulate some of the original Lenia
gliders). Here the total number of parameters is 𝜙 = (4 + 3𝑏)𝐾 + 2.

Figure 3.12.: Calculation of incoming
matter to cell 𝑝 ∈ X in Flow Lenia [•6].
Mass contained in cell at location 𝑝′ ∈ X
is moved to 𝑝′′ = 𝑝′ + 𝑑𝑡 · 𝐹𝑡 (𝑝′) and
diffused to a square distribution D (em-
ulating brownian motion to avoid con-
centrating too much matter in 𝑝). The
proportion of mass from 𝑝′ arriving in 𝑝
is given by the integral of D on the cell
domain of 𝑝, Ω(𝑝), denoted as 𝐼(𝑝′, 𝑝).

Flow Lenia [•6] Flow Lenia3 is a recent extension that we proposed 3: Flow Lenia is discussed in Section 7.5
for adding mass conservation to the Lenia system. The main idea of Flow
Lenia is to reinterpret the output of the growth update 𝑈 𝑡 = 𝐺(𝐾 ∗ 𝐴𝑡),
which is originally used to create new mass (or remove existing one), as
an affinity field 𝐹𝑡 ≈ ∇𝑈 𝑡 which is instead used to move the distribution of
“matter” toward high affinity regions in space. In practice, Flow Lenia
uses the reintegration tracking method [195] depicted in Figure 3.12.
Flow Lenia can be seen as a grid-based approximation of a particle
system (with infinite number of particles) and which has the property of
conserving the total mass. Whereas conservation of mass can be seen as
a strong constraint on emergence, it is hypothesized to be a key driver
for diversity and open-ended evolution (OEE) [196, 197]. In Section 7.5,
we will see that Flow Lenia opens many interesting perspectives toward
OEE both for defining physical constraints in the environment (hence
opportunities for emergence) and for having diversity and evolutionary
activity emerge within the CA (which is not the case in original lenia
where different “genomes” 𝜙 cannot coexist in the same grid 𝐴). Flow
Lenia is implemented in JAX [198] and has 𝜙 = 7𝐾 + 4 parameters.

Figure 3.13.: Example pattern in Particle
Lenia. Image is taken from [199].

Others Other extensions include Asymptotic Lenia which replaces the
growth update𝑈 𝑡 = 𝐺(𝐾 ∗𝐴𝑡) by a target update𝑈 𝑡 = 𝑇(𝐾 ∗𝐴𝑡)−𝐴𝑡 , rein-
terpreting the result of “sensing” as a “target” rather than a increase [200].
RD Lenia reformulates asymptotic Lenia as a reaction-diffusion system
composed solely of diffusion and spatially local diffusion terms [201].
Glaberish is another extension that proposes to split Lenia’s growth func-
tion 𝐺 into two “genesis” and “persistence” functions analogous to GoL’s
birth and survival rules [202]. Finally, Particle Lenia is a recently-proposed
reformulation of Flow Lenia, where moving matter is represented as a
population of particles rather than a scalar field [199] (Figure 3.13).
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3.2.4. Lenia: an interesting testbed for automated
discovery

Whereas many interesting patterns have been found in Lenia, its variants
and in CA in general, finding of these structures has so far relied
heavily on manual tuning of parameters and initial states, and on the
human eye to identify “interesting” patterns, limiting their discovery
and analysis. In this thesis, we suggest to use Lenia as an experimental
testbed for automated discovery because we believe it has many interesting
properties.

(a) Turing-like Patterns (TLP)

(b) Spatially-Localized Patterns (SLP)

Figure 3.14.: Example of diverse patterns
that can emerge in Lenia. Those patterns
were discovered by the approach pre-
sented in Chapter 5.

Unbounded possibilities for emergence CA are known to enable the
emergence of considerable complexity from set of simple rules, and Lenia
is no exception. The space of structures and dynamics that can possibly
emerge in Lenia is extremely vast, complex and high-dimensional. We
illustrate some of these patterns in Figure 3.14. As we can see, patterns
range from Turing-like patterns (TLP) characterized by an unlimited
spatial growth and resembling reaction-diffusion pattern-formation of
fronts, spirals, and stripes reminiscent of biological tissues to spatially-

localized patterns (SLP), autonomous stable patterns that show interesting
behaviors such as locomotion and metamorphosis. Complex systems
like Lenia are great candidates for open-endedness in the sense that
they offer unbounded possibilities for emergence. At the same time, they
are very hard to explore and navigate for us human as the space of
possibly-emergent patterns is unknown and challenging to apprehend in
practice. Automating the long-term discovery of novel and increasingly
complex structures in these systems is an exciting research field: it may
even be one way to achieve “open-endedness” in artificial “worlds” [76],
and we argue it should be a central quest for automated discovery.

Open scientific question #1: the quest for open-endedness

Can we devise an open-ended form of AI discovery assistant whose
search is able to reveal this unbounded possibility for emergence?

(a) Life-like appearances in Lenia

(b) Life-like behaviors in Lenia

Figure 3.15.: Intriguing similarities be-
tween Earth and Lenia Life. Images are
taken from [39, 40].

Interesting life-like structures Not only Lenia can generate a high
diversity of complex self-organized patterns from local update rules but
it seems that some of them share intriguing resemblances with biological
forms of micro-organisms, both in appearance and dynamical behavior
(Figure 3.15). Structures include spatially localized organization and
symmetries like bilateral, radial and rotational symmetries. Behaviors
include regular modes of locomotion like stationary, directional, rotating,
gyrating; irregular behaviors like chaotic movements and metamorphosis
(shape-shifting); and even advanced behaviors like individuality (e.g.

robustness to collision), self-replication, or pattern emission (akin to
GoL’s “guns”). Those patterns are particularly interesting for scientists,
not only because they “look like” biological organisms but because they
provide an artificial substratum to test theories about the origins of “life”
and “agency”. However, these patterns are very hard to characterize and
find in Lenia, limiting their discovery and analysis. Beyond Lenia, there is
a growing consensus that explicitly searching for agency in self-organized
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systems could allow to “connect the dots” for understanding cognition
across “diverse intelligences” (i. e. collectives spanning disparate sector of
life such as unicellular organisms, organs, plants and animals), which is
known as the field of basal cognition [138, 203]. Whereas talking of “agents”
is unconventional when referring to e.g. molecular, bacterial or cellular
collectives; several empirical evidences seem to suggest that treating
these entities as such could open pioneering opportunities for top-down
control in many natural and artificial complex systems [45]. However,
these ideas remain quite conceptual at the moment and automating the
long-term discovery and characterization of agents in unconventional
self-organizing substrates is another very exciting research field. We
believe that it could be another central quest for automated discovery,
perhaps even leading on the path toward “open-endedness”.

Open scientific question #2: the quest for agency

Can we efficiently find the parameters leading to the emergence of
agential structures?

A “toy” yet rich testbed for automated discovery In conclusion, we
believe Lenia is a great testbed which is rich enough to support emergent
open-ended and agential behaviors while simple enough to study these
scientific questions explicitly, and in a computer-based environment.
Lenia features the richness of Turing-complete models and is therefore
well suited to test the performance of pattern exploration algorithms for
unknown and complex systems. The fact that CA models have been used
to study self-organization in various disciplines, ranging from physics
to biology and artificial life, also supports their generality, suggesting
that successful automated discovery approaches in those systems might
transpose to other computational or wet high-dimensional systems.

Figure 3.16.: Transposing IMGEPs to assist the scientific discovery of diverse self-organized patterns in complex dynamical systems.
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3.3. Problem Definition: IMGEPs for the
Discovery of Diverse Self-Organized
Structures

The problem we formulate in the first part of this manuscript is: How to
automatically find a diversity of interesting self-organized patterns in
the Lenia system using a limited budget of experiments?

This objective shares the same fundamental challenges that the ones
addressed in the developmental robotics: achieve sample efficiency in
high-dimensional continuous action and outcome spaces. Here, sample
efficiency is important to enable the later use of such discovery algorithms
for physical systems [64], where experimental time and costs are strongly
bounded. We propose to leverage the successful ingredient of recent
intrinsically motivated learning algorithms, i. e. goal-directed exploration
and diversity search, by transposing them to the target application.
Transposing IMGEPs to this new application is quite straightforward, as
depicted in Figure 3.16. This enable us to more formally pose the problem
we target within the context of automated discovery as follows:

Problem Definition: IMGEP diversity-driven search

How can we use IMGEPs to reach a maximally diverse set of
interesting points in the goal space T using a limited budget of
experiments?

IMGEPs are a general family of algorithms, such that many variants
could be envisaged in practice for the choice of for the goal space
representation (𝑅), goal sampling (G) and goal-achievement strategies (Π).
We detail these challenges below and introduce the several algorithmic
contributions we will present in the next chapters to try and address these
challenges. Those contributions are all formulated within the IMGEP
computational framework, proposing various algorithmic extensions.

3.3.1. How to characterize “relevant” features of the
outcomes?

Figure 3.17.: How to process the multi-scale high-dimensional system outcomes into compact representations?

A first challenge consists in determining a representation of patterns,
possibly through learning, enabling to incentivize the discovery of
diverse interesting patterns. Such a representation guides exploration by
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providing a measure of (di-)similarity between patterns. This problem is
particularly challenging in domains where patterns are high-dimensional
as in Lenia. In such cases, scientists have a limited intuition about what
useful features are and how to represent them.

A first possibility is to define such representation 𝑅manually, by selecting
pre-defined features, e.g. using computer vision algorithms to detect the
positions of a pattern and its form.

Another possibility is to use representation learning methods to learn
autonomously goal spaces for IMGEPs. Representation learning, and
more specifically unsupervised feature learning, aims at finding low-
dimensional explanatory factors representing high-dimensional input
data [204]. It is a key problem in many areas in order to understand the
underlying structure of complex observations.

In Chapter 4, we discuss the limitations of using predefined representa-
tions, notably their reliance on prior expert knowledge. We suggest that
online and unsupervised representation learning offers an alternative way
to automatically encode high-dimensional observations into compact
latent code, removing the need for human expert knowledge to define
such representations.

In Chapter 5, we suggest that monolithic representations 𝑅 are limited to
capture the diverse factors of variations that could emerge in complex
systems, whether they are carefully crafted or unsupervisedly learned.
To adress this limitation, we suggest to use a dynamic and modular

model architecture for online and unsupervised learning of diverse

representations {𝑅𝑘}.

3.3.2. How to generate “interesting” goals?

Figure 3.18.: How to select novel, interest-

ing and feasible goals?

Goal Definition As we saw in Section 3.1, a goal 𝑔 ∈ T is defined by a
compact goal embedding 𝑧𝑔 ∈ 𝑍 and a loss function L𝑔 . In this thesis we
define goals as target features of states, such that we use the latent space
of the representation 𝑅 as embedding space 𝑍 = 𝑅(𝑂). That way goal
embeddings 𝑧𝑔 are target points in 𝑍 that the agent should reach. For
the loss L𝑔 , we simply use the euclidean distance in embedding space 𝑍,
although other (more informative) losses could be envisaged. For instance,
in Chapter 7 we will see how the loss function can incentivize not only
closeness to the goal position, but other aspects of goal “achievement”
such as robustness to a distribution of perturbations.
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Given this definition of goals, a second challenge consists in automating
the goal generation process to efficiently discover interesting patterns
within the goal space Twith a limited budget of experiments. We argue
that in the context of automated discovery (and in general intrinisically-
motivated goal setting systems), a “good” goal is one that is both creative

- i. e. novel and interesting - and learnable, i. e. achievable given the agent
current knowledge. In this thesis, we use very simple goal-generation
mechanisms (G) yet that pursue those dimensions.

In Chapter 5 and Chapter 8, we generate goals uniformly in the goal
space, but where sampling bounds adapt to the agent discoveries instead
of being predefined. Adaptive bounds incentivize sampling outside of
the envelope of currently reached goals, which can be seen as a simple
form of novelty-based IM incentive [133]. In Chapter 6, we propose to
bias the goal sampling toward interesting regions of a modular goal space
as defined by an external end-user, using simple (and sparse) preference
feedback requests. In the first part of this manuscript, as our main aim is
to generate a diversity, and not to achieve specific goals precisely, we found
these simple goal selection mechanisms to be quite efficient. As discussed
in Chapter 5, a more critical part however is to define the compact goal
representation, as it tends to strongly bias the final discoveries.

However in Chapter 7, in the second part of this manuscript, we have a
more precise idea of what we are searching for: patterns with higher-level
functionality that we can characterize with some predefined proxies but
that are very hard to find. In this case we show that the goal generation
Gplays a crucial role, and we propose to generate goals 𝑔 = (𝑧𝑔 ,L𝑔)
following a curriculum. The curriculum is defined both in the sampling of
goal embeddings 𝑧𝑔 (such that we do not sample goals to close nor to far
from the set of already reached goals) and in the definition of the goal-
achievement loss L𝑔 (introducing progressively harder environmental
conditions to achieve the goal).

3.3.3. How to effectively achieve goals?

Figure 3.19.: How to make progress to-
ward a goal while using a very small
budget of experiments?

Given a goal 𝑔 = (𝑧𝑔 ,Lg), a third challenge consists in defining the
goal-achievement strategy (Π) . Π should help making progress toward
the goal while using only few experiments. As we saw in Section 3.1, they
are two main ways to implement the goal-achievement strategy Π. The
first one, used in RL-IMGEPs, is model-based: akin to goal-conditioned RL,
it uses a goal-conditioned parametric model Π that is trained on the pre-
vious interactions with the environment. In this thesis, we intentionally
use low experimental budgets (102 ≲ 𝑁 ≲ 104) to be compatible with
applications in physical experimental setups similar to [64]. Therefore,
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we only use population-based goal achievement strategies (POP-IMGEPs)
which leverage independent experiments allowing the use of memory-
based sample efficient methods. In POP-IMGEPs, which maintain an
archive of previous samples, Π can be decomposed into two steps4: 4: The “selection-expansion” terminol-

ogy is taken from Chenu et al. [133], anal-
ogous to the terminology used in evolu-
tionary population-based algorithms

Selection Expansion

Population-based goal achievement Π

1. the selection operator which chooses one or several sample (𝜃, 𝑧)
from the archive Hon which to expand to make progress toward
𝑔. Selection operates in goal space T.

2. the expansion operator that adds 𝑀 new samples to H, built from the
selected samples, again with the aim to make progress toward 𝑔

(𝑀 ≪ 𝑁 being the budget allocated per goal for local optimization).
As it is not possible to sample directly in T, expansion operates in .

In this thesis, for the selection operator, we simply use a k-Nearest Neighbor
(kNN) algorithm to select the most promising samples from history H,
i. e. the ones whose reached goal 𝑧 was the closest to the target goal 𝑧𝑔
according to the target loss Lg.

For a selected (𝜃, 𝑧), a common approach for expansion is to simply
apply a small random mutation to the corresponding 𝜃 with the hope
that it will reach a new goal 𝑧′ close to the original point 𝑧 and, by
chance, closest to the target point 𝑧𝑔 . This simple strategy is the one
we used throughout all the works presented in the first part of this
manuscript. In fact, as in Grizou et al. [64], we allocate a minimal budget
of 𝑀 = 1 experiment per sampled goal to avoid spending too much time
on specific individual goals. However, at the difference of Grizou et al.
[64] which uses low-dimensional parameter space Θ, in Lenia directly
randomizing and mutating the initial state 𝐴𝑡=1 is not very efficient to
produce structured effects. In Chapter 4, we propose to use Compositional
Pattern Producing Networks (CPPNs) [194] to randomly generate and
mutate Lenia initial states. Given this novel parametrization, we use the
simple kNN selection and random expansion variant, which is equivalent
to performing Novelty search in the goal space 𝑍. Again, here, our aim is
not to achieve specific goals but to rather to find a maximally diverse set
of discoveries in 𝑍.

However, in Chapter 7, we use more-advanced gradient descent optimiza-
tion for the expansion, and a local budget of 𝑀 = 100 experiments per
goal. In this chapter we aim to find specific patterns which are in fragile
equilibrium in Lenia, such that random mutations of the experiment
parameters 𝜃 (Lenia update rules) can easily break this equilibrium
and make the optimization harder. Gradient descent, on the other hand,
can be efficient to optimize sensitive parameters in complex chaotic
and has already been successfully applied with cellular automata [37].
However, it requires the environment dynamics 𝑓 and loss function
Lg to be differentiable. Other evolutionary algorithms (EAs) strategies,
which do not require differentiable environment dynamics, could also
be envisaged for local optimization (Figure 3.19). EAs were shown to
enable the optimization of high-dimensional neural networks reaching
equivalent performances than gradient descent [205, 206], but they often
require much more samples 𝑀 to recover the precision of the gradient.
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3.3.4. How to update internal models?

We have discussed possible implementations for the IMGEP internal
models governing the IMGEP exploration process, namely the goal space
representation (𝑅), goal-sampling strategy (G) and goal-achievement
strategy (Π). Another open question when it comes to deploy these models
in practice concerns the IMGEP learning process, i. e. the choice of a strategy
to update the internal models based on the new discoveries. These updates
should lead to changing dynamics in the IMGEP discovery process, which
in turn should lead to changing dynamics in the environment hence
in the discoveries. In this thesis, we consider three types of possible
strategies for updating the models.

exploration runs

n=0 n=100 n=200 n=N

... Figure 3.20.: Non-parametric learning

The first one, and most common strategy in population-based IMGEPs is
what we refer to as non-parametric learning. This is the case, for instance,
in novelty-based goal sampling strategies G that use non-parametric
models to estimate density probabilities from the history of reached
goals, and then use this estimate to sample new goals in low-density
(unexplored) areas. Another common example is the use of k-Nearest
Neighbors (kNN)algorithm for the selection operator in Π. As shown
in Figure 3.20, kNN model learning is directly based on the expansion
of the history H: as exploration progress and more points are added
to H, kNN gets better and better at selecting promising candidates
(here candidates that minimize 𝐿𝑔 in 𝑍). Note that non-parametric does
not means no-parameters at all, for instance the number of neighbors
𝑘 in kNN is a parameter (that could potentially be updated during
exploration). Rather, it means that the effective complexity of the model
linearly grows with the lenght of the database.

exploration runs

n=0 n=100 n=200 n=N

... Figure 3.21.: Sequential weight updates

The second, and most common strategy when internal models of the
IMGEP are implemented as parametric model (e.g. neural networks or
gaussian processes) is what we refer to as sequential weight updates. Here,
parameters of the models (weights) are updated periodically based on
the observation collected in the history H. This is for instance what we
used in Chapter 4 to update the weights of a neural representation 𝑅
by periodically training it on the IMGEP self-collected data. Here, the
weights of the network are updated in time but not is neural capacity
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(number of parameters) such that the model effective complexity is
constant O(parameters).

exploration
runs

n=0 event 1 event 2

Figure 3.22.: Self-adaptive updates
(weights and/or topology)

Finally, there is a third strategy that we refer to as self-adaptive updates.
Here internal models are updated progressively by the agent without
relying on a fixed external strategy but rather on internal events/signals
(e.g., catastrophic forgetting, learning progress plateau, etc.). Moreover,
not only do these updates modify the model parameters (weight updates)
but they can also allocate new parameters (topology updates) e.g., by
adding more layers to a neural network or more components to a mixture
of Gaussians. While this strategy is more flexible, it is also more complex
than standard weight updates, as the engineer must decide when the
current capacity is insufficient, where to expand the capacity, and what

initialization to give to the new parameters; in addition to the standard
question of how to update existing parameters (e.g., choice of a training
loss and optimizer for NN). While this update strategy is not common
in RL-IMGEPs and POP-IMGEPs, nor in standard machine learning, it
is increasingly proposed, notably in continual learning scenarios where
expanding capacity over time is often crucial. In this thesis, we propose
in Chapter 5 a self-adaptive strategy for deciding when, where, and what
to expand in the IMGEP internal representation 𝑅.

3.3.5. How to integrate human guidance?

At last, but not least, a central question for the human engineer concerns
the integration of the human end-user in the IMGEP exploration (or
learning) loop. In the case of human-in-the loop exploration systems,
not only the engineer must find ways to design (and update) the agent
internal models but it must find ways for these models to efficiently
interact with the human end-user in order to efficiently align the discovery
process with the end-user preferences. Human-AI collaborations is a
broad and active area of research in many scientific domains, and they
are obviously many ways in which human feedback can be integrated in
the AI decision-making process [207].

In Chapter 6, we propose several ways in which the human could
influence one (or several) of the main IMGEP components: the goal space
representation (𝑅), the goal sampling strategy (G), goal-achievement
strategy (Π) or learning strategy (model updates), resulting in four
possible roles for the human (see Figure 6.2 in Chapter 6).

The experiments presented in Chapter 6 focus on one possible role that we
call preference-based guidance. Here, the AI is seen as a discovery assistant:
it cannot predict what a future (unknown) end-user will find interesting
in the complex system, but it aims to find diverse discoveries enabling
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to quickly adapt the search as soon as the human end-user expresses
preferences, through simple and sparse feedback.

In the second part of this manuscript, we explore a second type of
human-guidance that we call environment-based. Here, the human directly
intervenes in the environment to provide cues (or constraints) in order
to assist (or obstruct) self-organization toward the goal in the system.
For instance, in Chapter 7 we propose to integrate various elements
in the Lenia environment such as obstacles, food or attractor objects
while remaining within the CA paradigm. In Chapter 8, where we
investigate the behavioral abilities of another type of complex system
(gene regulatory networks), we propose that classical experiments from
behavioral sciences, originally testing various navigation competencies
that living agents often exhibit, can also serve as a source of inspiration
to define these environmental constraints or cues.

Finally, in Chapter 10, we present the adtool software package that was
developed, among other things, to facilitate human interaction with the
exploration process via the implementation of custom jupyter interfaces
both for vizualisation and feedback.

3.4. Summary

In summary, we presented in this chapter the IMGEP computational
framework and its core components (goal-directed exploration, self-
generation of goals and reuse of knowledge) in a robotic context (Section
3.1). We then presented the Lenia system, and explained why it is a
particularly interesting testbed for automated discovery (Section 3.2).
Then, we proposed to apply IMGEP diversity-driven search for the
automated discovery of diverse self-organized structures in complex
systems like Lenia (Section 3.3). Finally, we identified the main challenges
for implementing the IMGEP internal models in practice, as well as for
integrating human end-users in the exploration process. IMGEP is a
general family of algorithmic processes and all the “challenges” listed
above can be positioned within the broader challenges of representation
learning (Subsection 3.3.1), automated curriculum learning (Subsection
3.3.2), (black-box) optimization (Subsection 3.3.3), continual learning
(Subsection 3.3.4) and human-AI collaboration (Subsection 3.3.5); which
are all active and exciting directions of research that go beyond the scope
of this thesis.

In this first part of the manuscript (Part I), while only addressing a narrow
aspect of these vast challenges, we will propose several key ingredients
within the IMGEP computational framework with the aim to design
more open-ended forms of AI “discovery assistant” in the Lenia system. In
the next chapter we focus on the first ingredient that we propose in that
direction: the online learning of unsupervised representations to target
a diversity of self-generated goals. In the following chapters, we will
go more in depth into the concept of meta-diversity search and human

guidance, which we propose as other key ingredients toward the design
of open-ended discovery assistants in self-organizing systems.
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What is the aim of this chapter? In this chapter, we propose to combine
intrinsically-motivated goal exploration, as presented in the previous
chapter, with unsupervised and online learning of goal space representa-
tions. Goal space representations describe the features of patterns for
which diverse variations should be discovered, and are hard to define by
hand before exploration. Here, we introduce an extension of the IMGEP
algorithm which incrementally learns a goal representation on the data
collected throughout exploration, removing the need for human expert
knowledge to define such representations.

How is this chapter organized? In Section 4.1, we discuss the limita-
tions of standard IMGEP approaches relying on predefined (engineered
or pretrained) representations. In Section 4.2, we propose an online

goal space learning IMGEP variant which we refer to as IMGEP-OGL.
In Section 4.3, we present one possible implementation of IMGEP-OGL
that leverages two key ingredients that were shown useful in recent
developmental robotics works: (i) the use of deep neuronal encoders for
unsupervised learning of goal representations from raw pixel percep-
tion, and (ii) the use of structured primitives to generate initial states in
continuous cellular automata models. Finally, in Section 4.4 and Section
4.5, we discuss and compare various approaches to define and learn
goal space representations from the perspective of discovering diverse
patterns, and in particular diverse spatially localized patterns. We show
that IMGEP-OGL is more efficient than several baselines and equally
efficient as a system pre-trained on a hand-made database of patterns.

Figure 4.1.: Overview of the proposed approach in Reinke et al. [•1]. The main novelties with respect to the standard IMGEP
implementation (Figure 3.16) are shown in light green. They include the use of an online-learned VAE encoder (𝑅) for encoding the
outcomes and for defining the goal space (T), as well as the use of CPPN primitives to parametrize the initial state 𝐴𝑡=1.
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4.1. Motivation: Limits of Predefined Goal
Spaces

IMGEPs agents self-define goals in a goal space T that represents im-
portant features of the outcomes of their actions, here features of the
experimental outcomes. This approach enables the discovery of diverse
and novel effects within these goal representations. The goal space T is
often defined as the embedding space 𝑍 of a predefined representation
(𝑍 = 𝑅(0)). Although these methods have demonstrated their efficacy
in enabling high-dimensional robots to efficiently acquire various skills
(as discussed in Subsection 2.3.2), a limitation arises from the reliance
on predefined engineered representations of goal spaces. This approach
assumes that engineers possess a clear understanding of the key descrip-
tors characterizing high-level behavior, often introducing bias towards
a specific type of diversity. For instance, navigation skills might benefit
from seeking diversity in 𝑥 − 𝑦 space of body position [57, 208] whereas
manipulation skills might benefit seeking diversity in the 𝑥 − 𝑦 space of
object positions or trajectories within the scene [166, 190].

A significant challenge emerges when attempting to learn goal spaces
in scenarios where only low-level perceptual measurements are avail-
able to the learner (e.g., pixel data from visual states). Recent IMGEP
works proposed to address this challenge by using deep variational au-

toencoders (VAEs) [137] to automatically learn goal space representations
from raw visual states of the environment. For instance, Péré et al. [74]
demonstrated that an IMGEP exploring within a goal space made of
VAE-learned features led to comparable efficiency than manually crafted
goal features for revealing a diversity of controllable effects. Another
study by Laversanne-Finot et al. [168] proposed to use 𝛽-VAEs representa-
tions [209] in environments that included “distractor” objects, i. e. objects
that cannot be controlled by the robot. 𝛽-VAEs is a simple VAE extension
which was shown to enhance interpretability and disentanglement of the
latent variables in simple generative contexts [210]. Laversanne-Finot et al.
[168] shown that the disentangled latent variables improved the efficiency
of exploration when compared to traditional VAE representations that
lacked sufficient structure for effective exploration. However, both works
were demonstrated in simple simulated visual environments, with one
robotic arm and few objects as unique source of variation.

However, a main limitations of these works, is that training was done
passively and in an early stage on a pre-collected set of available obser-
vations [74, 168]. Consequently, while the resulting representation 𝑅 is
not engineered, it remains “predefined” from the agent’s perspective,
as the agent has no control on it throughout exploration. This greatly
restricts the autonomy and flexbility of the learning agent. To illustrate,
consider a simple robotic scenario where a new object is introduced mid-
way through exploration. If this object was absent from the precollected
dataset used for training representation 𝑅, it is likely that the learned
features in 𝑍 are completely insensitive to this new source of incoming
variation, or that they are sensitive to it but in a very unstructured way.

In the unfamiliar self-organizing substrates that we are targeting in this
thesis, relying on engineered or pretrained representations is even more
limiting. Engineered representations relies on human prior expertise
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of what constitute important high-level descriptors of patterns that
could emerge in the system, and how to effectively characterize them.
Pretrained representations on the other hand requires access to an existing
database of representative experiments, e.g. experiments pre-collected
by a human scientist. Due to the complexity of the targeted systems,
the set of precollected observations can hardly be representative of
the actual diversity of patterns that the system can produce, limiting
the possibilities to discover novel patterns beyond the distribution of
pretraining examples. In Lenia for instance, widespread infinite-growth
patterns (TLPs) are readily found and likely to be prevalent in pre-
collected data. However, spatially-localized patterns (SLPs), which are
of particular interest to scientists but much harder to find, might not be
optimally represented (and discovered) using descriptors that are learned
on TLPs. Instead, we would like the IMGEP agent to be able to adapt

its representation of the discovered patterns throughout exploration,
enabling to adapt goals to novel possibilities in the environment.

4.2. Problem reformulation: IMGEP with
Online Goal Space Learning

To remove the reliance on human expertise or human pre-collected data,
and to enable more flexibility in the learning agent’s discovery process,
we propose an online goal space learning IMGEP (which we refer to as
IMGEP-OGL). Novelties in comparison to the standard IMGEP procedure
(Algorithm. 2) are highlighted in bold in Algorithm. 3.

Algorithm 3: IMGEP-OGL
Require :Parameter Space Θ, Observation space 𝑂, Budget 𝑁
Initialize empty history table H

Initialize goal space representation 𝑅
Initialize goal space Tand goal generator module G

Initialize goal-conditioned optimization policy Π

imgep exploration
for i=1 to 𝑁 do

if 𝑖 < 𝑁𝑖𝑛𝑖𝑡 then // Initial random iterations
Sample random parameter 𝜃 ∼ U(Θ)

else // Goal-directed IM iterations
Sample target goal 𝑔 ∼ G(H)
Infer experiment parameters to achieve goal 𝜃 ∼ Π(𝑔,H)

Execute experiment with 𝜃 and observe system outcome 𝑜
Characterize behavior 𝑧 = 𝑅(𝑜)
Write (𝜃, 𝑜, 𝑧) to history H

imgep learning
if 𝑖 mod 𝐾 == 0 then // Periodically train network

for 𝐸 epochs do
Train 𝑅 on observations in H

for (𝜃, 𝑜, 𝑧) ∈ Hdo // Hindsight learning
Relabel previous discoveries 𝐻[𝑧] ← 𝑅(𝑜)

return H
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Exploration starts with a randomly initialized representation 𝑅 which is
then updated incrementally during the exploration process. We propose a
relatively straightforward training strategy which consists in periodically
training the representation 𝑅 for 𝐸 epochs on the observation collected in
the history H. After each training phase, the set of previous discoveries
is re-encoded with the updated representation 𝑅, which can be seen
as a form of hindsight learning [190]. We also suggest that a form of
importance sampling should be employed to assign greater weight to
recently discovered patterns. The idea is that focusing training on the
recently discovered patterns should help the representation to adapt
to changing dynamics in the IMGEP discovery process. This should in
turn increase the likelihood of the IMGEP agent to discover novel and
potentially-interesting structures, akin to how human scientists tend to
adapt their focus to uncover new insights.

What makes a good representation R? Representation learning, and
more specifically unsupervised feature learning, is a broad and active
area of research [211]. What makes a “good” representation is an open
question, and generally depends on the target application. In image gen-
eration contexts, deep generative models like VAEs [137] or GANs [212]
are generally evaluated by their ability to produce high-quality visual
samples that closely resemble actual data distributions [213]. For con-
trol tasks or exploration, one is not so much interested by the high-
dimensional generated samples but rather by the structure of the learned
latent space. Notably, properties like disentanglement [214], linearity of
prediction [215], independent controllability [216] or hierarchical orga-
nization [217] of features are posited to facilitate effective exploration
and control. Similarly, Laversanne-Finot et al. [168] argue that a good
IMGEP representation should be factorized: latent variables within the
goal space should respond to “ground truth” factors of variation in the
environment.

In the context of open-ended discovery, where recovering all factors
of emergent behavioral variations is not possible, we argue that a
good representation 𝑅 should capture degrees of behavioral varia-
tions that facilitate the discovery of novel and potentially-interesting
patterns. In this chapter, we propose that representations trained in
an unsupervised and online manner on the discovered data could
learn to extract the “relevant” emergent degrees behavioral variation,
while adapting the representation throughout exploration. Here, fol-
lowing recent works in developmental robotics and reinforcement
learning, we propose to apply standard VAE-based unsupervised
feature learning approaches. As we will see in the next chapter, the
choice of the training architecture and loss can strongly influence the
final discoveries, and more flexible strategies might be needed.

4.3. Proposed implementation: IMGEP-VAE
with CPPN primitives

Figure 4.1 provides an overview of the proposed approach in [•1], with
the novel algorithmic ingredients depicted in light green.
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4.3.1. VAE for online goal space learning

First, following previous works, we proposed to use the 𝛽-VAE training
loss [209] to learn latent representations of Lenia patterns.

Figure 4.2.: Illustration of the VAE model
architecture and training loss [137]

As illustrated in Figure 4.2, VAEs have two components: a neural en-

coder and decoder. The VAE is trained to reconstruct input images after
compressing them into a compact latent representation. Note that, at
the difference of classical auto-encoders (AEs), VAEs do not map images
to a fixed vector but to a latent distribution. The training criterion is a
combination of the pixel-wise reconstruction error between the input im-
age and the reconstructed output, and a regularization loss encouraging
the latent distribution to be close to a prior gaussian distribution with a
diagonal covariance structure N(0, 𝐼). 𝛽-VAE is a simple augmentation
of the VAE loss which gives more weight (𝛽>1) to the regularization loss,
with the aim to enhance disentanglement of the latent variables.

During exploration, the decoder network 𝐷 is used for training of the
VAE but only the encoder 𝑅 is used to map Lenia observations 𝑜 to a
compact embedding 𝑧 = 𝑅(𝑜). We use a 8-dimensional latent space 𝑍
and the VAE is trained periodically every 𝐾 = 100 experiment rollouts.
For the importance sampling we simply use a weighted random sampler
which, for each training batch, selects 50% of patterns that come from
the last 𝐾 iterations and 50% that come from all previous iterations. At
the difference of classical AEs, VAEs latent space is continuous which is
particularly useful for the IMGEP as it allows easy random sampling and
mutation of goals in 𝑍. For goal sampling, we use a uniform sampling
strategy within a hyperrectangle defined in 𝑍, where the hyperrectangle
is chosen large enough to allow sampling of a large goal diversity.

Related Work Nair et al. [169] and Pong et al. [170] also employed
online training of VAEs to learn significant goal space features, similar
to this paper. However, their focus was on sequential decision problems
in robotics, impacting sample efficiency. These approaches, termed RL-
IMGEPs, are distinct from the POP-IMGEPs methods presented here,
which leverage independent experiments allowing the use of memory-
based sample efficient methods. In evolutionary robotics, parallel work
by Cully [218] and Grillotti and Cully [219] combined Quality-Diversity
(QD) algorithms with a periodically trained deep auto-encoder (AE)
to serve as a behavioral descriptor for QD. However it was applied in
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simple simulated visual environments with robotic arm and few objects,
as in Péré et al. [74] and Laversanne-Finot et al. [168].

4.3.2. CPPNs for effective parametrization of the initial
state

The second key ingredient that we proposed to integrate into the IMGEP
pipeline was the use of Compositional Pattern Producing Networks
(CPPNs) [194] to parametrize Lenia initial state 𝐴𝑡=1.
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(a) CPPNs for the generation of the initial state (b) Mutations of CPPN-generated patterns

Figure 4.3.: CPPNs [194] are used for the random generation and mutation of Lenia’s initial state.

Figure 4.4.: Random sampling of the
256 × 256 initial state tend to develop
into global patterns in Lenia.

For the exploration of systems with high-dimensional parameter spaces,
the ability to effectively encode, initialize and update the initial state is
critical to produce structured effects. In Lenia, directly randomizing the
initial state 𝐴𝑡=1 (256 × 256 grid cells) leads to patterns resembling white
noise, which tend to evolve into dead or global patterns, complicating
the search of other types of patterns (Figure 4.4).

CPPNs are small recurrent neural networks, proposed in [194], that
were shown to generate patterns with interesting higher-level properties
such as symmetry and repetition (Figure 4.3a), and can be “evolved”
using random mutations of the network weights and structure (number
of neurons, connections between neurons), enabling preservation and
elaboration of existing regularities throughout exploration (Figure 4.3b).
We integrate CPPNs as part of the experiment parameters 𝜃 such that,
instead of having the IMGEP directly controlling the initial state 𝐴𝑡=1,
it controls parameters 𝜃 of the CPPN used to generate the initial state.
Therefore, instead of sampling and mutating directly an initial state, the
weights and structure of the CPPN are randomly generated and mutated.
In summary, CPPNs provide an efficient way to produce structured
patterns and to smoothly evolve already explored configurations, which
would be very hard to obtain with random sampling/mutation at the
pixel level. Note that, whereas the number of parameters in 𝜃 is much
smaller than when controlling the low-level 256 × 256 initial state, it is
not fixed as the structure and the number of weights of the randomly
sampled and mutated CPPNs can grow throughout exploration.

Related Work The need to effectively encode and initialize the initial
state is analogous to a similar problem in the exploration of robot
controllers. Direct sampling of robot actions at the lowest actuator level
of actuators (and microscopic time scales) is a usually very inefficient. A
key ingredient in developmental robotics for sample efficient exploration
has been the use of structured primitives (dynamic motion primitives -
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DMPs) to encode the space of possible body motions, which enabled to
efficiently explore the high-dimensionality of many-dofs body [220]. In
the Lenia system, the use of CPPNs to produce structured initial patterns
is analogous to the use of DMPs in robotic systems.

4.4. Experimental Methods

Algorithms We compare the results of several IMGEP variants1 (equipped 1: implementation details of the IMGEP
variants are given in Section D.3with different types of goal spaces) and a random exploration baseline:

▶ Random exploration: The random exploration baseline samples
parameters uniformly in Θ, for each of the 𝑁 exploration iterations.

▶ IMGEP-HGS: The first IMGEP variant uses a hand-defined goal
space that is composed of 5 features proposed in the original Lenia’s
paper [40], measuring properties of the final pattern 𝐴𝑡=200: 1) the
sum over the activity of all cells, 2) the number of activated cells, 3)
the density of the activity center, 4) an asymmetry measure of the
pattern and 5) a distribution measure of the pattern2. 2: See Section B.2.3 for details on these

statistical measurements▶ IMGEP-PGL: The second IMGEP variant uses a goal space that was
pretrained on a database of patterns collected before the exploration
process started. The training set consisted of 558 Lenia patterns:
half were SLPs that have been manually identified by [40]; the other
half were randomly generated with CPPNs. It uses the same 𝛽-VAE
architecture and training loss than the IMGEP-OGL variant.

▶ IMGEP-OGL: The third IMGEP variant is the proposed goal
exploration with online learning of the goal space (Algorithm. 3).

▶ IMGEP-RGS: an ablated IMGEP variant that uses, as goal space
representation, a randomly-initialized neural embedding network
(with the same architecture than IMGEP-OGL’s encoder network).

Testbed environment We use the original Lenia system as testbed
environment (see Subsection 3.2.2). Lenia’s lattice resolution is fixed to
256 × 256, pattern evolution is stopped after 𝑇 = 200 time steps, and the
shape of Lenia’s kernel is fixed to 𝑏 = 3 concentric rings. All exploration
algorithms, including the random exploration, interact with the Lenia
system via the same parameter space (Θ) which includes a 7-dimensional
set of parameters controlling Lenia’s update rule (𝑅, 𝑇, 𝜇, 𝜎, 𝛽1 , 𝛽2 , 𝛽3)
and a set of CPPN parameters governing the generation of the initial
state 𝐴𝑡=1. For the observation space (𝑂), only the system final state is
observed (𝑜 = 𝐴𝑡=200) and fed into the different representation variants.

Experimental procedure Each algorithm underwent 10 independent
repetitions of the exploration experiment. Each experiment encompassed
𝑁 = 5000 exploration iterations3. For IMGEP variants, the initial 𝑁init = 3: we used a experimental budget com-

patible with the application of the algo-
rithms in physical experimental setups
similar to [64]

1000 iterations used random parameter sampling4 to initialize their

4: identical initial random explorations
were adopted for all exploration algo-
rithms for fair comparison

histories H. Subsequently, during the following 4000 iterations, each
IMGEP approach sampled a goal 𝑔 from a uniform distribution across
their respective goal spaces. Sampling ranges for the hand-defined goal
space (HGS) are specified in Table B.4, and 𝛽-VAE-based goal spaces
(PGL, OGL) had latent variable ranges set at [−3, 3]. The algorithm then
selected the parameter 𝜃𝑘 from prior exploration in Hwhose reached
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goal 𝑔̂𝑘 had the minimum Euclidean distance to the current goal 𝑔 in the
goal space. This selected parameter 𝜃𝑘 was then mutated to generate the
explored parameter 𝜃. For CPPN parameters, the random initialization
and mutation followed the process used by CPPN-NEAT in [194] to
define the CPPN structure and connection weights. Lenia parameters
were initialized randomly through uniform distribution and mutated
using a Gaussian distribution around the original values5. 5: hyper-parameters used for parameter

initialization and mutation are detailed
in Section B.2.4

Evaluation procedure Our main motivation is to find a high diversity

of patterns. To evaluate the diversity of discovered patterns, we propose
to measure diversity by the spread of the exploration in an analytic

behavior space. This space is externally defined by the experimenter and
the covered area is measured by a binning-based metric (see Subsection
2.1.2). For the analytic behavior space, as we do not have access to an easily
interpretable low-dimensional space, we constructed it by concatenating
(i) 8 features learned by a VAE trained on a very large dataset of 42500
Lenia patterns identified during the many experiments over all evaluated
algorithms (allowing to cover order of magnitude more patterns that
what could be found in any single algorithm experiment); and (ii) the 5
hand-defined features from the original Lenia’s paper (same than ones
used in IMGEP-RGS). We used 7 bins per dimension of the analytic
behavior space, resulting in a total of 713 bins.

We also measured the diversity in the space of parameters Θ by con-
structing an analytic parameter space. This space is 15-dimensional and
the concatenation of Lenia’s 7 dynamical parameters (𝑅, 𝑇, 𝜇, 𝜎, 𝛽1, 𝛽2,
𝛽3) with the 8-dimensional latent representation of a 𝛽-VAE, but where
the 𝛽-VAE was this time trained on the initial states of the 42500 Lenia
rollouts. This diversity measure also used 7 bins per dimension.

Additionally, we categorized the patterns into 3 families: dead patterns
(the activity of all grid cells being either 0 or 1), SLP patterns (finite and
connected pattern of activity) and TLP patterns (remaining - usually
spread over the whole state space)6. This categorization follows the 6: See Section B.2.2 for details on the

implementation of the classifiers.identification of spatially localized patterns (SLPs) in Lenia as shown
in Figure 4.5 (also called solitons in Conway’s Game of Life), versus other
global Turing-like patterns (TLPs). These categories allow us to analyze
the exploration behaviors of the different IMGEP variants. In particular,
as SLPs are a key reason scientists have used GOL models to study
theories of the origins of life [221, 222], we are particularly interested in
studying the performance of IMGEPs, and the impact of the goal space
representation, on finding a diversity of spatially-localized patterns.
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(a) Evolution in Lenia
from CPPN to SLP

(b) Lenia SLPs
discovered by IMGEP-OGL

(c) Lenia SLPs
discovered by [40]

t=1 t=50

t=100 t=200

Figure 4.5.: Example patterns produced in the Lenia system. Illustration of the dynamical morphing from an initial CPPN image to a
SLP (a). The automated discovery (b) is able to find SLPs as a human-expert manual search (c) by [40].

4.5. Results

In this section, we address several questions evaluating the ability of
IMGEP algorithms to identify a diverse set of patterns.

Does goal exploration outperform random parameter exploration? In
robotics contexts where scenes are populated with rigid objects, various
forms of goal exploration algorithms outperform random parameter
exploration [168]. We checked whether this still holds in the Lenia
system which have very different properties. Measures of the diversity

(a) Random Exploration (b) IMGEP-OGL

Figure 4.6.: Example Lenia patterns discovered by random exploration (a) and IMGEP-OGL algorithm (b). Random exploration finds a
majority of global patterns that spread over the whole grid (57%), a lot of dead patterns which is a strong attractor of the system (34%),
and only a small proportion of spatially-localized patterns (8%). IMGEP-OGL finds less often in the “dead” attractor (still 20%, but the
IMGEP also starts with a random exploration exploration phase) and much more SLPs than random exploration (32.5%).
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(a) Diversity in Parameter Space
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(b) Diversity in Behavior Space
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(c) Behavior Space Diversity for SLPs
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(d) Behavior Space Diversity for TLPs

Figure 4.7.: Discovered diversity: (a)
While random explorations exhibit the
highest diversity in the analytic param-
eter space, (b) IMGEPs achieve greater
diversity in the analytic behavior space
(except with random representations). (c)
IMGEPs with a learned goal space un-
cover a larger diversity of SLPs compared
to a hand-defined space. (d) Learned
goal spaces are as effective as hand-
defined ones in discovering diverse TLPs.
IMGEPs with unsupervised goal feature
learning efficiently discover both SLP
and TLP pattern diversities. Shown is the
average diversity (𝑛 = 10) with shaded
areas indicating standard deviation (for
some not visible because too small). Final
diversity significantly differs (Welch’s t-
test, 𝑝 < 0.01) among algorithms within
the braces on the right.

in the analytic behavior space confirmed the advantage of IMGEPs
with hand-designed (HGS) or learned goal spaces (PGL/OGL) over
random explorations (Figure B.12b). The organization resulting from
goal exploration is also visible through the diversity in the space of
parameters. IMGEPs focus their exploration on subspaces that are useful
for targeting new goals. In contrast, random parameter exploration
is unguided, resulting in a higher diversity in the parameter space
(Figure B.12a). Figure 4.6 provides a qualitative visual illustration of these
results7. 7: See Figure B.2 to Figure B.6 for similar

visualizations for other IMGEP variants

What is the impact of learning a goal space vs. using random or
hand-defined features? We compared also the performance of random
VAE goal spaces (RGS) to learned goal spaces (PGL/OGL). For rein-
forcement learning problems, using intrinsic reward functions based
on random features of the observations can result in a high or boosted
performance [223, 224]. In our context however, using random features
(RGS) collapsed the performance of goal exploration, and did not even
outperform random parameter exploration for all kinds of behavioral
diversity (Figure B.12b). Results also show that hand-defined features
(HGS) produced significantly less global diversity and less SLP diversity
than using learned features (PGL/OGL). However, HGS found an equal
diversity of TLPs. These results show that in this domain, the goal-space
has a critical influence on the type and diversity of patterns discovered.
Unsupervised learning seems efficient to discover both a diversity of
SLPs and TLPs.

Is pretraining on a database of expert patterns necessary for efficient
discovery of diverse SLPs? A possibility to bias exploration towards
patterns of interest, such as SLPs, is to pretrain a goal space with a
pattern dataset hand-made by an expert. Here PGL is pretrained with a
dataset containing 50% of SLPs and is able to discover a high diversity of
SLPs. Although being trained on many SLPs might help the discovery of
diverse SLPs, the direct causation is not clear and might also be due to
biases of the VAE training loss. Indeed, the new online approach (OGL)
is as efficient as PGL to discover diverse patterns (Figure B.12b, Figure
B.12c, Figure B.12d). Taken together, these results uncover an interesting
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bias of using learned features with a VAE architecture, which strongly
incentivizes efficient discovery of diverse spatially localized patterns.

(a) IMGEP-HGS Goal Space

dead

TLP
SLP

(b) IMGEP-OGL Goal Space

Figure 4.8.: (a) Hand-defined and (b)
learned goal spaces have major differ-
ences shown here by a t-SNE visualiza-
tion. The different number and size of
clusters of SLPs or TLPs can explain the
differences in their resulting diversity
between the algorithms (Figure 4.7).

How do goal space representations differ? We analyzed the goal
spaces of the different IMGEP variants to understand their behavior by
visualizing their reached goals in a two-dimensional space. T-SNE [225]
was used to reduce the high-dimensional goal spaces8. The hand-defined 8: t-SNE is a dimensionality reduction

technique where nearby points in the
high-dimensional space stay close to each
other in the 2-dimensional visualization.
See Figure B.7 for t-SNE and PCA visu-
alizations of other goal spaces variants.

(HGS) and learned (OGL) goal spaces show strong differences between
each other (Figure 4.8). We believe this explains their different abilities to
find either a high diversity of TLPs (Figure B.12d) ot SLPs (Figure B.12c).
The goal space of the HGS shows large areas and several clusters for TLP
patterns (Figure 4.8a). SLPs form only few and nearby clusters. Thus,
the hand-defined features seem poor to discriminate and describe SLP
patterns in Lenia. As a consequence, when goals are uniformly sampled
within this goal space during the exploration process, then more goals
are generated in regions that describe TLPs. This can explain why HGS
explored a higher diversity of TLP patterns but only a low diversity
of SLP patterns. In contrast, features learned by OGL capture factors
that better differentiate SLP patterns. This is indicated by the several
clusters of SLPs that span a wide area in its goal space (Figure 4.8b). We
attribute this effect to the difficulty of VAEs to capture sharp details [226].
They therefore represent mainly the general form of the patterns but not
their fine-grained structures (as can be seen in Figure 4.9). SLPs differ
often in their form whereas TLPs occupy often the whole cell grid and
differ in their fine-grained details. The goal spaces learned by VAEs seem
therefore better suited for exploring diverse sets of SLP patterns.

Figure 4.9.: Examples of patterns (left)
and their reconstruction (right) by the 𝛽-
VAE network used for the IMGEP-OGL.
The dataset it is composed of SLP pat-
terns (row 1) and TLP patterns (row 2)
discovered throughout exploration.
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4.6. Discussion and Future Work

In this chapter, we formulated the problem of automated discovery of
diverse self-organized patterns in complex dynamical systems with high-
dimensions both in the parameter space and in the observation space.
We proposed that this problem calls for advanced methods requiring the
dynamic interaction between sample efficient autonomous exploration
and unsupervised representation learning. We showed that population-
based IMGEPs are a promising algorithmic framework to address this
challenge, by showing how it can discover diverse self-organized patterns
in a continuous model of cellular automata called Lenia.

(a) Project Website

(b) Blog Post

(c) Interactive visualizations.

Figure 4.10.: Click (or scan) the above
QR codes to access the project website,
blogpost or for interactive visualizations
of the IMGEP goal spaces and discoveries

In particular, we introduced a new approach for learning a goal space
representation online via data collected during the exploration process. It
enables sample efficient discovery of diverse spatially-localized patterns
without relying on prior human expert knowledge. We also analyzed
the impact of goal space representations on the diversity and types of
discovered patterns, and these analyses hinted that the choice of the
representation can strongly bias the final discoveries.

As the Lenia system, while an abstract experimental testbed, shares
properties with other artificial or natural complex systems, this work
opens interesting perspectives for applying the IMGEP-OGL approach
for efficiently mapping the space of behaviors of systems for which no
appropriate model exists, e.g. systems often encountered in physics or
chemistry. Once such a map has been discovered, it could yields transfer-
able insights to scientists for solving various problems by leveraging the
diversity of patterns found through the unsupervised discovery process.
In fact, Falk et al. [139] recently transposed the proposed IMGEP-VAE
approach for the exploration of another class of dynamical systems,
known as the Kuramoto model [227, 228], which models synchronization
of a set of coupled oscillators. These models are often used in physics
and chemistry to describe synchronization phenomena observed in non-
equilibrium many-body systems. Interestingly, they demonstrated the
utility of the IMGEP-VAE approach for efficiently revealing diverse be-
haviors in these systems, including previously un-characterized behavior
and corresponding new order parameters which can be re-used to reveal
behaviors for other related models (Figure 4.11).

Figure 4.11.: An IMGEP-VAE approach applied to a 3-population Kuramoto model was shown to reveal a previously unknown phase and
order parameters in the model, as well as to yield transferable insights for other models (Falk et al. [139]). (A) 3-population Kuramoto
model. (B) VAE latent space at the start and end of IMGEP exploration. (C) Phase coherence examples from each of the states identified
through latent space clustering. (D) One of the behaviors found in the IMGEP-VAE search shows complete synchronization within
populations, but with one population desynchronized from the other two: a “chiral breather” state. This discovered behavior yields
transferable insights for solving a simpler two-population Kuramoto model (E), notably to compute the steady-state behavior of the
oscillators as a function of the model parameters (F). Figure is adapted from [139].

https://automated-discovery.github.io/
https://developmentalsystems.org/intrinsically_motivated_discovery_of_diverse_patterns
https://projector.tensorflow.org/?config=https://raw.githubusercontent.com/intrinsically-motivated-discovery/intrinsically-motivated-discovery.github.io/master/assets/media/tensorboard/projector_config.json
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A major limitation of that work, however, is that we assume that using a
single (monolithic) architecture and unsupervised training loss (VAE)
for the learning of the goal space representation is sufficient to uncover
the “relevant” factors of variations of the emergent patterns. As we will
see in the next chapter, there is not such thing as a unique or “relevant”
set of factors of variations, but it rather depends on what ones decides
(and wishes) to observe.
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What is the aim of this chapter? Within this chapter, we delve into
the concept of Meta-diversity search, driven by the understanding that
a unique, definitive notion of interesting diversity doesn’t exist. Instead,
diverse possibilities emerge depending on the macrostates than one
decides to observe. The core objective of Meta-diversity search is to
enable continuous seeking of novel source of diversities while being able
to quickly adapt the search toward a new unknown type of diversity, i. e.

search a diversity of diversity (hence the term “meta-diversity”).

How is this chapter organized? In Section 5.1, we explore the limitations
of conventional diversity-driven methodologies that rely on monolithic
behavioral descriptions, whether pre-designed or learned. In Section 5.2,
we propose a shift from standard diversity search to meta-diversity search,
where an agent incrementally learns diverse behavioral characterization
spaces and discovers diverse patterns within each of them. In Section 5.3,
we introduce one possible approach for unsupervised learning of diverse

representations, leveraging a novel dynamic and modular model architec-
ture called HOLMES. To effectively navigate the meta-diversity landscape,
we suggest combining this approach with intrinsically motivated goal
exploration processes, referred to as IMGEP-HOLMES. Moving to Sec-
tion 5.4, we compare the use of monolithic and modular architectures
for unsupervised learning of goal space representations and discuss
their impact on characterizing and exploring diverse patterns in the
environment. Finally, in Section 5.5, we present our contribution to the
Minecraft Open-Endedness Challenge, where we leverage the concept of
meta-diversity search and the proposed IMGEP-HOLMES architecture
for innovative creations in Minecraft.

BC 1

(a) Standard Diversity Search

BC 2

...

BC 1

BC 3

(b) Meta Diversity Search

Figure 5.1.: Meta-diversity extends the standard notion of diversity to what we call meta-diversity, where an agent incrementally learns
diverse behavioral characterization spaces and discovers diverse patterns within each of them. The objective of this process is to enable
continuous seeking of novel source of diversities while being able to quickly adapt the search toward a new unknown type of diversity.
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5.1. Motivation: Limits of Monolithic Goal
Spaces

As discussed in Chapter 2, diversity-driven approaches can be powerful
discovery tools in Science [•1, 64, 136], and can potentially be coupled
with objective-driven searches to optimize complex tasks with deceptive
reward [129]. These works leveraged recent families of machine learning
algorithms that were shown to be effective at creating behavioral diversity,
namely Novelty Search (NS) [126, 127] and Quality-Diversity (QD) [131,
132] coming from the field of evolutionary robotics; and intrinsically-
motivated goal-directed exploration processes (IMGEP) [57, 58] coming
from developmental robotics. A known critical part of these algorithms, is
that they require the definition of a behavioral characterization (BC)1 feature 1: Throughout this chapter, we use the

term BC space(s) to denote the space(s) in
which diversity search operates as in [72].
It is equivalent to the behavior space of NS
and QD and goal space of IMGEPs.

space which formalizes high-level degrees of behavioral variation in the
environment [72]. Similarly, the automated discovery problem defined
in the previous chapters assumed that the intuitive notion of diversity
can be captured within a single BC space (what we call a monolithic

representation). So far, this representation has either been hand-defined
by the scientist, as in Grizou et al. [64] or unsupervisedly learned with
deep auto-encoders directly from raw observations as proposed in Reinke
et al. [•1]. While deep auto-encoders have shown to recover the “ground
truth” factor of variations in simple generative datasets [210] or in simple
visual robotic experiments [168, 218], it is impossible (and not desirable)
to recover all the degrees of variations in the targeted self-organizing
systems. Rather, such monolithic architectures are more likely to recover
only a subset of the possibly-emergent behavioral variation, thus revealing
a diversity that might match these particular dimensions but potentially
overlook other interesting emergent aspects of diversity.

In evolutionary robotics, Pugh et al. [72] investigated the consequences
for different approaches to diversity search (NS and QD) of varying the
degree of alignment between the notion of novelty (choice of BC space) and
the notion of quality. Here, they used a relatively simple Maze domain
such that “quality” was simply measured as the robot performance to
solve the maze task. In that case, quality-alignment of the BC space is
intuitive: a BC encoding the final 𝑥 − 𝑦 position of the robot strongly
aligns with the robot ability to reach the maze target position, whereas a
BC encoding the robot’s successive facing directions would poorly align,
as the robot could spin forever without progressing through the maze.
In this domain, as expected, they showed that if the BC was sufficiently
aligned with the notion of quality, then searching for novelty alone was
sufficient to find not only diverse but also high-quality solutions. In the
context of self-organizing systems, where the notions of “quality” (or
interestingness) and “novelty” (or diversity) are much more challenging to
apprehend, we wondered whether similar empirical investigations could
be made to evaluate the impact of the BC space on the final discoveries.

To that end, we constructed 5 BC spaces with 8 dimensions each2, and the 2: a full description of the BC spaces
construction and diversity metric can be
found in Subsection C.1.1

exploration discoveries of an IMGEP equipped with the different BCs as
(fixed) goal space are evaluated and compared in figure Figure 5.2. Here,
instead on evaluating the impact of the BC space on a predefined external
task, we evaluate the impact of the BC space in the IMGEP’s ability to
achieve high diversity in other (possibly-interesting) BC spaces. In line
with automated discovery problem formulated in Chapter 3, the idea
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Figure 5.2.: Although IMGEPs succeed to reach a high-diversity in their respective BC space, they are poorly-diverse in all the others.
(a) Diversity for all IMGEP variants measured in each analytic BC space. For better visualization the resulting diversities are divided by
the maximum along each axis. Mean and std-deviation shaded area curves are depicted. (b) Examples of patterns discovered by the
IMGEPs that are consider diverse, i. e. spread apart, in their respective BC space. See Appendix Subsection C.1.2 for details.

is that producing discoveries of quality should mean generating diverse
interesting patterns in the eyes of a future (yet unknown) end-user: its
evaluation can hardly be predefined and should rather be adaptive to the
user and acquired knowledge. The 5 BC spaces shown in Figure 5.2, were
constructed to characterize different types of diversity based either on:

▶ Fourier-based image descriptors commonly used in the literature
to characterize the frequencies of textures (Spectrum-Fourier) or
shape of closed contours (Elliptical-Fourier [229]), notably in
cellular-automata [230] and biology [231, 232].

▶ statistical features that were proposed in the original Lenia pa-
per [39] to describe the activation of patterns (Lenia-Statistics).

▶ representations unsupervisedly learned on a large database of
Lenia patterns, as proposed in [•1] (BetaVAE). Because 𝛽-VAE was
found to poorly represent high-frequency patterns [•1], another
variant trained on cropped patches is proposed (Patch-BetaVAE).

As can be seen in Figure 5.2a, although IMGEPs succeed to reach a high-
diversity in their respective BC space, their discoveries are poorly-diverse
in all the other BC spaces. These empirical results suggest that, if we could
have a theoretical BC model under the form of a goal space that aligns
with what a user considers as “diverse”, i. e. diverse in an interesting or
meaningful way, the IMGEP should be efficient in finding a diversity
of patterns in that space. In practice however, constructing such a BC is
very challenging, if not infeasible. Here, each BC was carefully crafted or
unsupervisedly learned to represent what could be “relevant” factors
of variations and yet, the IMGEP seems to exploit degrees of variations
that might not be aligned with what we had in mind when constructing
such BCs. Spectrum-Fourier is a clear example that was constructed to
describe textures (in a general sense) but where the discoveries exhibit
only vertical-stripe patterns with all kind of frequencies. More generally,
when we look at representatives patterns of the discovered diversity per
BC space in Figure 5.2b, those do not really align with what a human
might consider “diverse” in Lenia.
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In conclusion, relying on monolithic (engineered or learned) BC spaces
draws several limitations when it comes to applying diversity search as a
tool for assisting discovery in self-organizing systems, as the suggested
discoveries are unlikely to align with the interests of a end-user.

5.2. Problem reformulation: Meta-Diversity
Search

Humans have the remarkable ability to continually conceive, visualize
and pursue goals of many types. Since childhood, humans develop
the ability to mentally manipulate words, grammatical structures, and
narratives, alongside the skill of envisioning visual elements, shapes, and
structures for potential artistic creations or objects. As people transition
into adulthood, their cognitive capabilities expand, allowing them to
envision goals within increasingly complex and abstract domains. In
the fields of science, mathematics, and music, for example, humans
actively pursue complex goals across various state spaces, ranging from
mathematical proofs and theorems to musical harmonies, melodies, and
rhythms. This multidimensional creative process empowers humans to
transcend the boundaries of established expressive domains, and plays a
central role in driving innovation and scientific discovery.

In contrast, almost of all today’s “creative” computers, including AI-
driven generative programs, are concerned with exploring predefined
conceptual spaces [233]. As discussed in the previous section, this is the
case of standard novelty search (NS) and intrinsically motivated goal
exploration processes (IMGEP) algorithms which generally target the
exploration of a predefined BC space. Even in the approach presented in
the previous chapter, where goal space representations are incrementally
learned as discoveries are made, the BC space is slowly evolving and
tend to strongly bias the final discoveries. While these approaches can
effectively expand the horizons of discovered behaviors within a given BC
space, they fall short in enabling the continuous invention of entirely new
BC spaces where previously unimaginable discoveries could occur.

To address these limitations, we propose a natural extension of the
standard notion of diversity search to we call the meta-diversity search
(Figure 5.1): in an outer loop, one aims to learn a diverse set of behavioral
characterizations (called the meta-diversity); then in an inner loop, one
aims to discover a set of maximally diverse patterns in each of the BC
spaces (corresponding to the standard notion of diversity in previous
work). The objective of this process is to enable continuous seeking of
novel source of diversities while being able to quickly adapt the search
toward a new unknown type of diversity.

Meta-diversity

Meta-diversity extends the standard
notion of diversity, where an agent
discovers diverse patterns in a mono-
lithic BC space, to what we call meta-

diversity, where an agent incremen-
tally learns diverse behavioral char-
acterization spaces and discovers di-
verse patterns within each of them.

5.2.1. Related concepts

Various related concepts of “meta”-level changes have been explored in
the literature, describing phenomena observed within naturally occurring
open-ended processes.
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For instance, when describing human creativity, Boden [233] distin-
guishes exploratory creativity, involving the generation of novel ideas
within structured conceptual spaces, and transformational creativity, in-
volving the transformation of some (one or more) dimension of the space,
so that new structures can be generated which could not have arisen
before. Examples of exploratory creativity encompass scenarios such
as professional jazz-musician inheriting an accepted style of musical
conventions and jazz-specific motifs, and vary them in a number of ways
to originate novel jazz performances; or a chemist working with a rudi-
mentary periodic table (prior to its modern completion) encouraged to
uncover the potential existence of previously unknown elements. On the
other hand, examples of transformational creativity encompass scenarios
such as the creation of entirely new musical genres or scientific theories,
such as Albert Einstein’s theory of relativity or Charles Darwin’s theory
of evolution, that have revolutionized our conceptual frameworks and
transformed our understanding of the world in ways that were previously
inconceivable.

The concept of “meta”-level changes also finds resonance with the con-
cepts of variation and major transitions in biology [234]. Variation typically
refers to observed differences within well-defined genetic or phenotypic
traits, such as variations in vertebral count or differences in limb size. On
the other hand, major transitions refer to qualitatively important changes
that opened entirely new state spaces for biological evolution. Examples
of major transitions include the emergence of eukaryotic cells, sexual
reproduction, multicellular organisms, cooperation in animal societies,
and the development of language abilities in humans.

A related distinction in the context of emergent phenomena is that of weak

emergence and strong emergence, as proposed by Bedau [235] and Chalmers
[236]. Weak emergence pertains to phenomena that could theoretically
be predicted from the known behaviors of all individual components.
In contrast, strong emergence relates to a specific form of innovation in
open-ended systems: the creation of entirely new state spaces upon which
the system performs computations [237]. Transformational creativity
shares similarities with strong emergence, as it leads to the emergence of
entirely new structures and frameworks that cannot be trivially derived
from the existing ones.

Over the last decades, a number of studies in artificial intelligence (AI)
and artificial life (ALife) have aimed to better measure and model the
concept of open-endedness. Their ultimate goal is to recreate open-
ended processes within artificial systems from scratch. Interestingly, the
notion of “meta” levels of open-endedness plays a central role in these
endeavors [238–240]. For instance, Banzhaf et al. [238] define novelty with
respect to both a model (the concepts used to describe the entities in a
particular system of instances) and meta-model (the concepts used to
build the model). They define three types of novelty: type-0 novelty, as
novelty within the model (such as new instances of a given type); type-1
novelty, as novelty that changes the model (new types of instances or
behaviors); and type-2 novelty, as novelty that changes the meta-model
(new concepts needed to define the model). To draw parallels with the
works presented in the first part of this manuscript, one could say that 1)
diversity search within predefined BC spaces is likely to result in type-0
novelty, 2) diversity search within online learned BC spaces is likely to
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result in type-1 novelty and 3) successful meta-diversity search should
result in at least type-2 novelty, if not higher-order novelty (if one extends
their definition toward 𝑛 − 𝑡ℎ order novelty). While there is still a lack
of consensus on what makes a system open-ended or not, Soros et al.
[76] postulates that the strongest form of open-endedness is one that not
only solves problems, but creates new problems for it to solve. In the
words of Adams [237], “the strongest form of open-endedness would not
only be able to compute solutions in a given state space, but invent new
state spaces for it to perform computations in”, which is what we aim to
achieve with meta-diversity search.

5.3. Proposed implementation:
IMGEP-HOLMES

The objective of meta-diversity search is to continuously learn novel and
divergent characterizations of the system outcomes while searching to
discover diverse patterns within each of them. While they are various
mechanisms that could address this objective, several key challenges need
to be addressed. A first challenge is to unsupervisedly learn a diverse
set of representations to characterize behaviors. A second challenge is to
find a diverse set of patterns in each of those BC spaces. In this section,
we propose a possible modular and dynamic representation learning
approach, called HOLMES, to solve the first challenge (Subsection 5.3.1).
Then we propose to use HOLMES representation to progressively grow
the goal-space capacity of the IMGEP agent into an organized hierarchical
representation, which we refer to as the IMGEP-HOLMES approach
(Subsection 5.3.2), enabling to address the second challenge.

5.3.1. HOLMES

HOLMES is a dynamic architecture that “starts small” both on the task
data distribution and on the network memory capacity, following the
intuition of Elman (1993) [241]. A hierarchy of embedding networks 𝑅 =

{R𝑖} is then actively expanded to accommodate to the different niches
of patterns discovered in the environment, resulting in a progressively
deeper hierarchy of specialized BC spaces.

The HOLMES architecture has 4 main components:

1. a base module embedding neural network
2. a saturation signal that triggers the instantiating of new nodes in

the hierarchy
3. a boundary redirection criteria that unsupervisedly clusters the

incoming patterns into the different modules
4. a connection scheme that allows to instantiate new children modules

in the hierarchy with feature-wise transfer from their parent module

Figure 5.3 summarizes the overall HOLMES architecture as used in the
work presented in Etcheverry et al. [•3]3. For each module we use a 3: Additional intuitions and implemen-

tation details are provide in Section C.2variational auto-encoder (VAE) [137] as base architecture, where only the
encoder R𝑖 is used for exploration (and decoder is used for training).
The hierarchy starts with a single VAE R0 that is incrementally trained
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Figure 5.3.: Overview of HOLMES architecture used in the work presented in Etcheverry et al. [•3]. (Left) Each module uses a VAE [137]
as the base architecture, where the embedding R𝑖 is coupled to a decoder D𝑖 (D𝑖 is not shown on the left panel for readability). All
non-leaf node VAEs are frozen as well as their incoming lateral connections (light grey). The leaf nodes are incrementally trained on
their own niches of patterns (represented as colored squares above the embeddings) defined by the boundaries fitted at each node split
(curved dotted lines in each BC space, represented as clouds). (Right) R011 is trained to encode new information in a latent representation
𝑧011 (plain vertical arrow) by learning to reuse its parent knowledge via the lateral connections (dotted arrows).

on the incoming data, encoding it into its latent characterization space
𝑍0. A split is triggered when a node of the hierarchy saturates i.e. here
when the reconstruction loss of its VAE reaches a plateau, with additional
conditions to prevent premature splitting (minimal node population and
a minimal number of training steps). Each time a node gets saturated, the
split procedure is executed as follows. First, the parameters of the parent
R𝑝 are frozen and two child networks R𝑝0 and R𝑝1 are instantiated
with their own neural capacity. Besides, additional learnable layers
called lateral connections are instantiated between the parent and child
VAE feature-maps, drawing inspiration from Progressive Neural Networks

(PNN) [242]. Here, these layers allow the child VAE to reuse its parent
knowledge while learning to characterize novel dissimilar features in
its BC space (see Section 5.4). Finally, a boundary is fitted in the parent
frozen embedding space 𝑍𝑝 and kept fixed for the rest of the exploration.
In this paper, the boundary is unsupervisedly fitted with K-means by
assigning two clusters from the points that are currently in the node’s
BC space. The boundary serves to redirect future incoming observations
forwarding through R𝑝 either to the left child R𝑝0 or to the right child
R𝑝1. After the split, training continues: leaf node VAEs as well as their
incoming lateral connections are incrementally trained on their own
niches of patterns while non-leaf nodes are frozen and serve to redirect
the incoming patterns.

In HOLMES, the clustering of the different patterns is central to learn
diverse BC spaces: it helps divide and relate observations of the world.
Here, the clustering is influenced by the choice of the module and
connections training strategy, that determines the latent distribution
of patterns in the latent space, and by the clustering algorithm itself.
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Related Work HOLMES represents one approach we have proposed
for learning diverse behavioral characterization spaces in a continual
manner, yet various alternative architectures could be considered to
facilitate the meta-diversity search. Notably, recent studies have also
introduced the idea of dynamically expanding the network capacity of a
VAE for continual unsupervised representation learning [243–245]. How-
ever, these approaches were geared towards passive data characterization
rather than active data collection, focusing on tasks such as unsupervised
clustering of sequentially-arriving MNIST image classes [243, 244] or
disentangling factors of variation in generative datasets [245]. In Ap-
pendix Section C.6, we delve deeper into the similarities and distinctions
between these models and the HOLMES architecture. Another relevant
architecture is the divergent discriminative feature accumulation (DDFA)
proposed by Szerlip et al. [246]. DDFA is, to our knowledge, the only
architecture that explicitly seeks to characterize divergent features i. e.

features that can maximally discriminate among the training examples
in novel ways. However, DDFA was also evaluated using passive image
datasets (MNIST) and auxiliary classification tasks [246]. In HOLMES, the
divergent characterizations from one BC space to another is primordial
but not explicitly trained for (yet implicitly encouraged via the lateral
connections, see Appendix Section C.5). HOLMES stands somewhere in
between the classical unsupervised representation learning objective of
auto-encoders, with the intuition that learning to reconstruct the inputs
should yield features capturing meaningful dimensions of variations;
and the purely divergent objective of DDFA. Although DDFA lacks the
modularity of HOLMES, which we believe is pivotal for efficient diversity
search in low-dimensional, stable state spaces, the central concept of
DDFA, explicitly learning diverse distinctions in incoming data, could
be a promising alternative for driving the meta-diversity search in a
continuous, open-ended fashion.

5.3.2. IMGEP-HOLMES

The goal space of an IMGEP is usually defined as the BC space of interest,
with a representation based on a monolithic architecture 𝑅. In this
paper, we propose a variant where the IMGEP operates in a hierarchy
of goal spaces {𝑍𝑖}, where observations and hence goals are encoded
at different levels or granularity, as defined by HOLMES embedding
hierarchy 𝑅 = {R𝑖}. The exploration process iterates N times through
steps 1-to-5, as illustrated in Figure 5.4. Novelties in comparison to the
IMGEP-VAE procedure proposed in previous chapter are depicted in
light green. In this section we detail the implementation choices for each
IMGEP step, and refer to Section C.4 for full implementation details.

1) The goal-sampling strategy of the IMGEP is divided in two sub-steps.
(a) Sample a target BC space 𝑍𝑘 with a goal space sampling distribution
G𝑠 . This is the first novelty of the IMGEP-HOLMES approach, where
the agent is given an additional degree of control allowing to prioritize
exploration in certain nodes of the hierarchy (and therefore on a subset
population of patterns). We consider a simple variant where the target
BC space is sampled uniformly over all the leaf nodes4. (b) Sample a 4: While not leveraged at the moment,

as we will see in the next chapter modu-
larity of the goal space enables intuitive
guidance during the exploration process

target goal 𝑔 in the selected BC space with a goal sampling distribution G.
In this paper, we use an adaptive uniform sampling strategy: the goal is
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Figure 5.4.: Overview of the IMGEP-HOLMES approach proposed in Etcheverry et al. [•8]. The main novelties with respect to the
IMGEP-VAE approach presented in the previous chapter (Figure 4.1) are shown in light green. They include the use of a modular
architecture where a hierarchy of behavioral characterization spaces is progressively constructed (HOLMES), and the division of the
IMGEP goal sampling strategy into two substeps: (a) sampling of a goal space and (b) sampling of a goal in the selected space.

uniformly sampled in the hyperrectangle envelope of currently-reached
goals. Because the volume of the hyperrectangle is larger than the cloud
of currently-reached goals, uniform sampling in the hyperrectangle
incentivizes to search in unexplored area outside this cloud5. 5: Again, this can be seen as a form of

novelty search in the selected BC space
2) As in previous chapter, the parameter-sampling strategy Π generates
the CPPN-generated initial state and Lenia’s update rule in 2 steps: (a)
given the goal 𝑔 ∈ 𝑍𝑘 , select parameters 𝜃̂ in Hwhose corresponding
outcome 𝑅𝑘(𝑜) is closest to 𝑔 in 𝑍𝑘 ; (b) mutate the selected parameters
by a random process 𝜃 = mutation(𝜃̂).

3) Rollout experiment with parameters 𝜃 and observe outcome 𝑜.

4) Forward 𝑜 top-down through the hierarchy and retrieve respective
embeddings {𝑅𝑘(𝑜)} along the path.

5) Append respective triplets {(𝜃, 𝑜, 𝑅𝑘(𝑜))} to the history H.

HOLMES online training The data distribution collected by the IMGEP
agent directly influences HOLMES splitting procedure and training
procedure by determining which nodes get populated and when. In this
paper, we incrementally train the goal space hierarchy every 𝐾 = 100
exploration step for 𝐸 = 100 epochs on the observations collected in the
history H. During training, leaf node VAEs as well as their incoming
lateral connections are incrementally trained on their own niches of
patterns. As in the previous chapter, importance sampling is used at each
training stage, giving more weight to recently discovered patterns.

Related Work The study by Pugh et al. [247] explored how the align-
ment between the behavioral characterization (BC) space and an external
notion of quality in the environment (as discussed in Section 5.1) im-
pacts novelty search approaches. In this context, they introduced a basic
modular novelty search approach as a proof of concept for the potential
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benefits of searching diversity across different BC spaces. Their investi-
gation focused on a robotic maze environment equipped with two sets
of predefined BCs (one for agent position and one for agent direction).
The results demonstrated that driving the exploration using both sets
of BCs simultaneously led to a higher likelihood of discovering quality

behavior, indicative of task-solving abilities. However, at the difference
of HOLMES, BCs were predefined and fixed, limiting the generaliza-
tion to complex environments. In parallel, numerous techniques have
emerged for state representation learning in reinforcement learning
scenarios (for an overview, see Lesort et al. [248]). Those typically rely
on auto-encoder models such as VAEs [169, 170], tuning the loss for
targeted properties at the feature level such as disentanglement [214]
or linear predictability [215], or coupling the encoder with predictive
forward and inverse models [120, 214, 249–252] or priors of independent
controllability [168, 216]. However, these studies all relied on a single
embedding space, where all the observed instances are mapped to the
same set of features and differs from HOLMES, which progressively
grows the capacity of the agent’s visual world model into an organized
hierarchical representation.

5.4. Results

In this section we compare two exploration variants:

▶ IMGEP-VAE, an IMGEP equipped with a monolithic VAE as
goal space representation which is learned online throughout
exploration akin to Reinke et al. [•1]

▶ IMGEP-HOLMES which is defined in Section 5.3. HOLMES is
also updated incrementally throughout exploration. HOLMES
expansion is stopped after 11 splits (resulting in a hierarchy of 23
VAEs) and uses small-capacity modules and connections, such that
its final capacity is still smaller than the monolithic VAE6. 6: VAE and HOLMES architectures are

detailed in Appendix Subsection C.4.2
Both IMGEP-VAE and IMGEP-HOLMES were given a budget of𝑁 = 5000
exploration runs, starting with 𝑁𝑖𝑛𝑖𝑡 = 1000 initial random runs followed
by 4000 goal-directed runs. For all algorithms, we conduct 10 repetitions
of the exploration experiment with different random seeds. Please refer
to Appendix Section C.4 for the full experimental settings.

5.4.1. Learning to characterize different niches

First, we are interested to investigate (1) whether and how much does
the VAE learned representations evolve throughout exploration, and (2)
whether and how much does the different VAE representations learned by
IMGEP-HOLMES differ from one another. To quantify the (dis-)similarity
of the learned representations, we propose to use representational similar-
ity analysis (RSA), a technique coming from systems neuroscience [253].
We use RSA metric to quantify how much the representations embeddings
(encoded behaviors) evolve throughout exploration for the IMGEP-VAE
learned representation (Figure 5.5a) and for the IMGEP-HOLMES learned
modules (Figure 5.6). We also use it to compare, at the end of exploration,
the representations learned by the different HOLMES modules (Figure
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Figure 5.5.: RSA similarity index be-
tween 0 (dark blue, not similar at all) and
1 (yellow, identical). (a) Representations
learned by IMGEP-VAE are compared
in time between the different training
stages. On the top, RSA matrix is shown
for one IMGEP-VAE seed. On the bottom,
mean-std curves (for the 10 seeds) are
provided showing the RSA index similar-
ity of the learned representation between
consecutive training stages. (b) Represen-
tations learned by IMGEP-HOLMES are
compared here at the end of exploration
between the different HOLMES modules.
On the top, RSA matrix is shown for one
IMGEP-HOLMES seed. Leaf BC nodes
are depicted in bold and BC spaces are or-
dered by their creation time (left-to-right
in x-axis). On the bottom, the histogram
of RSA index similarity, between all pairs
of modules and aggregated over the 10
seeds, is shown for IMGEP-HOLMES.
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Figure 5.6.: Example of a hierarchy of be-
havioral characterization spaces learned
by HOLMES. In each node, we display
the RSA similarity index between 0 (dark
blue, not similar at all) and 1 (yellow, iden-
tical), where representations are com-
pared in time between the different train-
ing stages. HOLMES starts with a root
node (BC 0, top) and iteratively splits the
learned latent spaces, resulting in a tree
structure (with leaf nodes at the bottom).
When a node is split, the parent node
is frozen and learning only continues in
leaf nodes. For instance the root node BC
0 is split at training stage 21, which is
why RSA indexes of BC 0 are always 1
(yellow) after stage 21 and reversely RSA
indexes of the children BC 00 and BC 01
only start at stage 21.

5.5b). Different metrics have been proposed to compute the representa-
tional similarity, here we use the linear centered kernel alignment (CKA)
index [254]7. As can be seen in Figure 5.5a, after only 2 training stages the 7: We refer to Appendix Section C.3 for

CKA computation detailsRSA similarity index between consecutive training stages is already very
high (RSA>0.95) and after 15 training stages the VAE representation is
completely saturated (RSA≈1). This means that, after only 200 explored
patterns8, the learned features of the monolithic VAE stop to evolve (or at 8: VAE representations are trained for

50 epochs every 100 exploration runsleast evolve very slowly). Therefore, even though the VAE is incrementally

trained during exploration, the monolithic representation fails to adapt to



5. Meta-Diversity Search: Learning and Exploration of Diverse Representation Spaces 81

the newly discovered niches of patterns, which in turn limits the scope
of the IMGEP discoveries (similarly that for the pretrained goal spaces
presented in Section 5.1).

On the other hand, as can be seen in Figure 5.5b, HOLMES succeeds
to learn representations that are highly dissimilar from one module
to another (RSA indexes closer to 0 than 1), which allows to target the
discovery of diverse “types” of diversity. Note that here, RSA analysis is
not shown for one VAE module throughout exploration but at the end of
exploration and between the different VAE modules. An ablation study
(see Section C.5 of appendix) highlighted the importance of HOLMES
lateral connections to learn divergent features from one module to another,
which is essential to enable the meta-diversity search. Without these
connections, all VAE modules tend to learn similar features despite being
trained on different niches of patterns (Figure C.5).

The full temporal analysis of HOLMES VAE modules is given in Figure
5.6. Here, we can see that node splits occurred at training stages where
the RSA similarity index is high (yellow). For example, we see on the
figure that the root node BC 0 saturates after approximately 15-20 training
stages, which results in the instantiation of two child nodes BC 00 and BC
019. Interestingly we can observe that some nodes (like BC 000) saturate 9: indicated by the fact that RSA plots

for these nodes starts at training stage 21much more quickly than others (like its sibling BC 001), which can be
seen as a form of learning progress: some nodes represent state spaces
where progress (finding more representative examples) is still to be made,
whereas other nodes are already well covered and further splitting is
needed to reveal new (potentially-interesting) state spaces to explore.

Finally, as can be seen in Figure 5.7, the learning of divergent features in
HOLMES can sometimes help the VAE modules to progressively capture
more and more fine-grained details of the input patterns. This coarse-
to-fine reconstruction ability, which is usually absent and a well-known
limitation of VAEs [226] (though not necessary to learn divergent features),
was however found to vary from one seed to another and depend on the
results of HOLMES clustering. For instance, if the clustering results in
one node having a majority of “stripes” patterns in its training set, its
VAE is likely to successfully learn to reconstruct them (and vice versa).

Original image HOLMES reconstructions
depth 0 depth 1 depth 2 depth 3 depth 4

Figure 5.7.: Examples of patterns and
their reconstructions along HOLMES
tree. Figure adapted from [•2].
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BC 0: 100.0%

BC 00: 52.0% BC 01: 48.0%

BC 000: 46.3% BC 001: 5.7% BC 010: 11.2% BC 011: 36.8%

BC 0000: 34.9% BC 0001: 11.5% BC 0110: 11.2% BC 0111: 25.5%

BC 00000: 28.5% BC 00001: 6.4% BC 00010: 5.7%BC 00011: 5.8% BC 01100: 3.8%BC 01101: 7.4%BC 01110: 5.1% BC 01111: 20.5%

BC 011110: 12.3% BC 011111: 8.1%

BC 0111100: 10.8% BC 0111101: 1.6%

Figure 5.8.: Examples of patterns discovered by IMGEP-HOLMES within the learned tree hierarchy. The hierarchy is the same as
in Figure 5.6. In each node we display the percentage of discovered patterns within that node, as well as a set of representative patterns
from that node (i. e. representatives of the diversity, see procedure Subsection C.1.2). Size of the rectangles (and number of patterns
per node) reflects the indicated percentage. For instance, patterns shown in the root node are representative of the diversity of all the
discovered patterns in that particular run (100% of the patterns). The boundaries fitted when splitting each non-leaf node makes each
pattern follow a particular path in the hierarchy, from the root node to a leaf node. The full database of discovered patterns and an
interactive visualization of HOLMES BC spaces (and associated niche) can be found on the project website.

https://mayalene.github.io/holmes/
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5.4.2. Learning to explore different niches

Secondly, we were interested to investigate the effectiveness of using the
divergent learned BC spaces by IMGEP-HOLMES to uncover various
types of diversity. However, as highlighted in Section 5.1, the quantitative
evaluation of diversity in a complex system like Lenia poses important
challenges. Opting for one or multiple arbitrary analytic BC spaces may
not yield valuable insights, as being diverse based on such BC spaces may
not align with our conception of diversity10

10: In Chapter 6, we will explore how
integrating human perspectives in the
evaluation process can aid in selecting
BC spaces that better align with human-
intuitive notions of diversity

. Therefore, in this section,
our focus remains on qualitative assessment of the identified patterns11. 11: On the project website, visualization

tools and interactive web-interfaces are
proposed to facilitate such evaluationExamples of patterns discovered by the IMGEP-HOLMES exploration

within the established hierarchy of goal spaces (as depicted in Figure
5.6) are presented in Figure 5.8. These patterns exemplify the kind of
diversity uncovered in their respective nodes. One can qualitatively
observe that the splitting procedure tends to separate the discovered
patterns into what seems to be visually distinct niches, enabling the
meta-diversity search. Notably, BC 01 (right branch of the tree) exhibits a
significantly higher proportion of Turing-like patterns (TLPs) compared
to BC 00 (left branch), while the reverse is observed for Spatially-Localized
Patterns (SLPs). Note how, despite IMGEP sampling goals uniformly
across existing leaf BC spaces, the percentage indicated in each node does
not reflect this uniformity (for example, only 5.7% of the patterns fall in
the leaf BC 001). The interpretation is that leafs with low percentages
correspond to unstable niches: when a goal is sampled in such a leaf, the
small mutation applied in the parameter-sampling policy is sufficient to
produce a pattern which is different enough to fall in another leaf.

As we used a small budget of experiments (𝑁 = 5000), only a small
number of patterns resided in the leaf nodes at the end of exploration. To
further investigate the diverse “types” of patterns that could emerge in
the discovered niche, the tree structure was fixed (preventing additional
splits) and exploration was prolonged for 10000 additional runs. Sur-
prisingly, the most interesting discoveries happened in the bottom-right
niche of the hierarchy (BC 0111101). Whereas the patterns first discov-
ered in that niche (N<5000) were fluid-like TLP patterns spreading over
the whole grid (Figure 5.9a), pushing diversity-search within that state
space revealed many interesting behaviors (Figure 5.9). Those not only
included the discovery of stable and/or moving solitons similar to the
“lifeform” patterns that were manually-identified in Chan [39] but also
the discovery of behaviors whose existence remained unknown in the
original Lenia variant. Those included forms of pattern-emission, where
highly dynamical fluid-like structures where observed to emit SLPs12, 12: While Lenia is an abstract model, this

shares intriguing resemblances with the
hypothesized emergence of protocells on
Earth from a primordial “soup”

including gliders (Figure 5.9d). We could also witness the co-existence
of several behavior “modes” within the same grid (e.g. oscillating, sta-
ble and shape-shifting behaviors in Figure 5.9h), which is quite rare in
Lenia. These results confirm the interest of divergent search for finding
interesting behaviors in unexpected niches of patterns. Here, the solitons
didn’t emerge as anticipated within the left hierarchy branch, abundant
with SLP, but instead arose from evolving seemingly unrelated patterns.
However, there is still a big part of “luck” given that these discoveries
were facilitated by HOLMES effectively clustering these fluid-like pat-
terns together and learned visual features13

13: HOLMES only encodes the final
states (𝐴𝑡=200), such the intriguing dy-
namics seen in Figure 5.9 are a “side ef-
fect” of IMGEP-HOLMES searching for
diverse morphological traitswhich, when varied, led to

such discoveries.

https://mayalene.github.io/holmes/
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(a) Patterns originally discovered in the bottom-right node of the hierarchy (BC 0111101)

(b) Here, solitons are emitted from the highly-dynamical fluid-like patterns but quickly absorbed back into the moving matter

(c) Here, solitons that were emitted from the fluid-like patterns succeed remain stable (as the fluid-like dynamics disappear)

(d) Here, patterns emitted are gliders showing individuality and directional movement, although not robust to collision (merge)

(e) Here, patterns emitted seem at first stable (radially-symmetrical) but slowly start to move one after the other (as symmetry breaks)

(f) Here, the self-organized solitons show rotational movement

(g) Here, solitons seem to co-exist into two different shape modes, with collision leading to merge and regrow in the second mode

(h) Here, solitons seem to co-exist into different behavioral modes (oscillation, shape-shifting, and stable)

Figure 5.9.: Examples patterns and behaviors taken from the niche of discoveries made by IMGEP-HOLMES in BC space 0111101.
(a) Example of patterns that are initially discovered in that niche by IMGEP-HOLMES (N<5000). (b-h) Individual examples (one per row)
that are then discovered in that niche when prolonging search (5000<N<15000), with the BC space being selecting by the IMGEP ≈ 8% of
the time (as there are 12 leaf nodes in the hierarchy). The displayed examples were manually identified by us (human evaluator) as
“interesting” among the niche of discoveries. Corresponding videos can be found on the project website.

https://mayalene.github.io/holmes/
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5.5. Minecraft Open-Endedness Challenge

The Minecraft Open-Endedness Challenge14 is an annual competition 14: https://evocraft.life/
that prompts participants to consider how to achieve “open-endedness”
in the Minecraft environment. This challenge essentially asks whether
it’s possible to create an artificial system that can generate endless
novel surprises within Minecraft. Our submission, which participated
in the first edition of this competition in 202115, proposed a strategy 15: the competition was part of the Gecco

2021 conference competition trackcombining the use of a self-organizing system and a meta-diversity search as
a potential approach for achieving that purpose. In our implementation,
we simulated an artificial “chemistry” system which is based on the Lenia
model of continuous cellular automata but adapted to the Minecraft
environment (LeniaChem, see Section 3.2.3). This system functions as a
mechanism for “growing” artifacts16 within Minecraft. We then proposed 16: In this section the word “artifact” is

equivalent to “pattern”that integrating a “discovery assistant” that employs the concept of meta-

diversity search within the LeniaChem system could lead to an open-ended
system capable of continuously generating diverse types of Minecraft
creations. To that end, we again propose to leverage the IMGEP-HOLMES
strategy for driving the artifact generation process.

Figure 5.10.: The video of our submission
as well the full database of discoveries
can be visualized on this link.

Altogether, the operation of our “discovery assistant” in Minecraft can be
summarized intuitively as follows: Starting with a set of basic chemical
blocks (e.g., water, wood, air, etc.), the discovery assistant assembles an
initial “mixture” within a specific area of the Minecraft world (resem-
bling a “petri-dish”). This assistant can also control certain “physics”
parameters that influence the development of the final artifact (similar to
factors like temperature or pH). Initially uncertain about the spectrum
of artifacts that can self-assemble from these “mixtures”, the assistant
begins with random exploration, which proves inefficient as many mix-
tures tend to vanish out (dead patterns in LeniaChem). After this initial
random exploration phase, the assistant transitions to learning how to
characterize discovered artifacts in a latent behavior characterization
(BC) space. This knowledge aids the assistant in targeting novel goals
and selecting parameters that are more likely to achieve those goals.
Over time, as the assistant successfully uncovers diverse artifacts within
its current BC space, its representational capacity becomes saturated,
limiting its ability to identify new sources of diversity in the environment.
To address this, the assistant can generate new representations with
additional capacity to capture novel features of the emergent artifacts. It
can also decide how to cluster its findings into distinct niches, enabling
specialization and exploration of divergent search spaces, all the while
using accumulated knowledge from its various BC spaces. Each time a
node reaches its capacity, it can expand by splitting in two novel child
nodes, leading to increasingly complex representations that drive the
discovery of novel artifacts in Minecraft.

Our experiments encompassed both 2D (642 and 322) and 3D (163)
scenarios, enabling the assistant to create diverse buildings in Minecraft.
Figure 5.11 shows the resulting hierarchy and representative artifacts that
have been actively constructed by the artificial discovery assistant during
exploration in the 3D LeniaChem system. Once again, we can qualitatively
observe that the splitting procedure tends to separate the discovered
artifacts into what seems to be visually distinct niches, enabling the
generation of diverse types of diverse artifacts in Minecraft.

https://evocraft.life/
https://gecco-2021.sigevo.org/Competitions
https://gecco-2021.sigevo.org/Competitions
https://mayalene.github.io/evocraftsearch/
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(a) Visualization of IMGEP-HOLMES learned tree hierarchy

(b) Example artifacts “grown” in GS 000 (c) Example artifacts “grown” in GS 010

Figure 5.11.: Examples of 3D structures “grown” in Minecraft by IMGEP-HOLMES. (a) Visualization of the learned HOLMES tree
hierarchy as well as a set of representative artifacts from each node (same than in Figure 5.8). As the artifacts are in 3D (163), we only
show the central slice (z=8) but (b-c) gives an overview of how the structures look like in Minecraft. “GS” stands for goal space and is
equivalent to “BC”. (b-c) Example of Minecraft artifacts “grown” when sampling goals in GS 000 (b) and GS 010 (c).
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5.6. Discussion and Future Work

(a) Website accompanying [•3]

(b) Blog post accompanying [•4]

Figure 5.12.: Click (or scan) the above
QR codes to access the project websites
accompanying our (a) NeurIPS 2020 pa-
per and (b) submission to the Minecraft
open-endedness challenge.

In this chapter, we have defined the concept of meta-diversity search, in
which an artificial “discovery assistant” progressively acquires a diverse
range of representations to define behaviors and then explores these
representations to uncover varied patterns within each of them. We
proposed that this problem calls for advanced methods requiring the
dynamic interaction between unsupervised learning of diverse represen-
tations and autonomous sample efficient discovery of diverse behaviors in
the learned representation spaces.

To that end, we have introduced HOLMES, a dynamic and modular model
architecture that systematically expands the agent’s world model into
a well-structured hierarchical representation. Through the fusion of
this architecture with intrinsically motivated goal exploration processes,
referred to as IMGEP-HOLMES, we have demonstrated its effectiveness
as a discovery assistant. This assistant learns to characterize and explore
a multitude of pattern niches within the continuous model of cellular
automata, known as Lenia. In some cases, this even led to the discov-
ery of gliders from unexpected niches of patterns, including unseen
pattern-emitting lifeforms when their existence in the original Lenia
variant remained an open question [40]. Furthermore, we suggested
that combining meta-diversity search and self-organizing systems open
up promising possibilities in the pursuit of “open-endedness” in arti-
ficial systems, which we leveraged in our submission to the Minecraft
Open-Endedness Challenge.

Figure 5.13.: MC-AURORA. Figure is
taken from [255].

While IMGEP-HOLMES is one possible implementation of the proposed
concept of meta-diversity search, many other implementations could be
envisaged. For instance, since publication of our work, an approach
called MC-AURORA has been proposed by Cazenille [255] to combine a
quality-diversity search approach with modular unsupervisedly-learned
auto-encoders (AEs) in complex reinforcement learning scenarios (Figure
5.13). At the difference of IMGEP-HOLMES, MC-AURORA uses a flat
ensemble with a predefined number of AEs which are all trained on the
same dataset (all collected discoveries). In the context of meta-diversity
search in self-organizing systems, we believe that adaptive capacity
and organization of the discoveries into distinct niches as proposed in
IMGEP-HOLMES might play an important role to enable the continuous
discovery of new sources of incoming variations. An interesting feature
of MC-AURORA is that it introduces a diversity component into the AE
training loss, explicitly encouraging the learning of diverse BC spaces.

Several avenues for future research aim to enhance the IMGEP-HOLMES
approach. First, the HOLMES architecture currently maintains a degree
of rigidity in the way it isolates different pattern niches, employing a
binary tree with unsupervisedly determined boundaries that remain fixed
throughout exploration. More flexible approaches, e.g. leveraging human
guidance, could be envisaged. Second, it employs the same architecture
for all modules, with all VAEs being trained to encode features of the
final Lenia patterns at t=200. It would be interesting to explore the
simultaneous use of different architectures and training losses, especially
those encoding dynamic characteristics of the discovered behaviors, to
further increase diversity of the representations.

https://mayalene.github.io/holmes/
https://mayalene.github.io/evocraftsearch/
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Lastly, a central limitation of the work presented in this chapter, which
we deem central to open-endedness and meta-diversity search, is that the
successful achievement of new types of diversity can only be subjectively
evaluated. The definition of novelties and novel types of novelty depends
on the interests and motivations of the final observer. In the next chapter,
we propose to augment the objective of meta-diversity search as seeking to
leverage the diverse BC spaces to efficiently adapt to a new interesting type
of diversity, which corresponds to the initially unknown preferences of an
external end-user, and expressed through simple and sparse feedback.
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What is the aim of this chapter? In the first part of this manuscript,
we presented the problem of automated diversity-driven discovery in
self-organizing systems (Chapter 3) and suggested that online learning
(Chapter 4) of diverse reprepresentation spaces (Chapter 5) were key
ingredients to enable the discovery of diverse types of diversity. In this
chapter, we go a natural step further and argue that what constitutes an
“interesting” type of diversity strongly depends on the final end-user and
its motives. We therefore propose to transition from an entirely automated
discovery process to a more assisted approach, where external guidance
is used to steer the search toward directions aligning with the end-user
preferences. To that end, we propose to combine the divergent meta-
diversity search approach, focusing on continuous exploration of new
diversity sources, with external source of human guidance, representing
a dynamic blend of automated and human-driven exploration.

How is this chapter organized? In Section 6.1, we discuss the limitations
of purely divergent diversity search for achieving discovery of both
novel and valuable outcomes in self-organizing systems. In Section 6.2,
we propose to introduce human guidance in the IMGEP exploration
process. After discussing various forms that such guidance could take, we
introduce one specific framework where a curious AI “discovery assistant”
seeks to adapt the meta-diversity search process to the preferences of
an external end-user. To that end, Section 6.3 introduces a variant of
IMGEP-HOLMES leveraging its modular architecture to integrate human
preferences through sparse feedback. Finally, in Section 6.4 we consider
two end-user models respectively interested in different diversities,
demonstrating how standard IMGEP biases discoveries, while IMGEP-
HOLMES can adapt to these user preferences with minimal feedback.

BC 1

(a) Standard Diversity Search

BC 2

...

BC 1

BC 3

(b) The AI Discovery Assistant

Figure 6.1.: The AI “discovery assistant” can leverage its diverse BC spaces to specialize efficiently towards a particular type of diversity,
corresponding to the initially unknown preferences of an end-user, and expressed through simple and sparse feedback.
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6.1. Motivation: Limits of Purely Divergent
Diversity Search

In the preceding chapter, we introduced the concept of meta-diversity,
which represents an extension of the conventional notion of diversity

in AI-guided exploration. We discussed its connection with human
concepts of exploratory and transformational creativity [233]. Yet creativity,
a central feature of human intelligence and engine for innovation and
scientific discovery, involves more than just generating new goals or
acquiring fresh skills. True creativity hinges on formulating objectives
that are simultaneously novel (surprising) and valuable (intriguing, useful,
aesthetically pleasing, etc.). The subjective assessment of the value of these
goals is closely linked to the cultural context as what we find interesting, or
not, is significantly shaped by the norms and structures accepted within
our culture [233]. Similarly, the process of scientific discovery involves
not only formulating new experimental designs but also evaluating their
significance and relevance within the scientific community. What is
perceived as groundbreaking discovery in science will depend of various
political factors and societal needs, all of which contribute to the dynamic
cultural context of science. Therefore, just as creativity encompasses
the evaluation of novelty and value within a cultural context, scientific
discovery relies on the assessment of new ideas and findings within
the context of existing scientific knowledge and the broader societal
landscape.

The majority of contemporary “creative” computers or AI programs
tend to be exploratory. They navigate predefined conceptual search
spaces crafted by engineers or experts, with the assumption that novel
discoveries within these spaces will be of interest or value to end-users
(the conventional approach to diversity search). However, when it comes
to aiding the discovery of self-organizing systems, we have seen how
furnishing a program with a representation of an “interesting” conceptual
space requires substantial domain expertise from the engineer. Even then,
it is improbable that this space will fully align with the interests of end-
users (see Section 5.1). To overcome this limitation, we have proposed a
shift towards what we have termed meta-diversity search. This approach can
be likened to a form of “transformational” creativity, as the dimensions
of the conceptual space (referred to as BC space) are progressively
updated and dynamically expanded throughout exploration. However,
a fundamental limitation of purely divergent meta-diversity search,
and likely a significant reason why most current AI-driven “creative”
search primarily emphasize exploration rather than transformation of
the search space, is that as the space is arbitrarily transformed, the
resulting structures may lack interest or value. Although we believe that
the divergent aspect of meta-diversity search is pivotal for uncovering
unanticipated pathways of innovation (Figure 5.8) and for generating
diverse potentially valuable representations (Figure 5.6), one would
naturally except the search strategy to be able to quickly adapt to the
preferences of an external end-user. Adapting the search is particularly
crucial in the context of automated discovery where experiments often
demand significant investments in terms of time and resources, and
where one does not want to waste resources on uninteresting or irrelevant
outcomes.
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6.2. Problem reformulation: The “AI Discovery
Assistant” framework

To address these limitations, a natural extension is to integrate human

guidance into the discovery process, shifting from fully “automated”
discovery to what we might instead call “assisted” scientific discovery.
As proposed in Chapter 2, in that view one could consider the AI agent
as a developmental learner aiming to make novel discoveries in order to
augment its understanding of the natural world; and the human end-
user as the equivalent of cultural processes in the sense of shaping the
AI developmental trajectories with guidance and instructions that are
subjective and adaptive to the current value system (Figure 2.21). Within
that view, the discoveries that will be considered as “valuable” could
vary from end-user to end-user, and from time to time.

Figure 6.2.: Four roles that the human could play in the IMGEP exploration loop: the expert for outcome characterization (𝑅), the guide

for goal selection (G), the problem-solver for goal achievement (Π) and the teacher for learning (update).

Human-AI collaborations is a broad and active area of research in many
scientific domains, and they are obviously many ways in which human
feedback could be integrated into the AI decision-making process [207].
In the IMGEP computational framework, a natural extension would be
to have the human influencing or even replacing one of the IMGEP
main components: the goal space representation (𝑅), the goal sampling
strategy(G), goal-achievement strategy (Π) or learning strategy (model
updates). As illustrated in Figure 6.2, this leads to four possible “roles”
for the human. The first role is the expert role: part of the outcome
characterization (𝑅), the human could participate in describing the
system observations. For instance, one could imagine asking the human to
provide labels or to score (predefined or novel) aspects of the experimental
outcomes. A second role would be the one of the guide: part of the goal
generation process, the human could influence the IMGEP goal selection
mechanism by expressing preferences in certain regions of the goal
space T. One could for instance imagine the human browsing some
representative discoveries in the goal space and select the preferred
regions, such that the IMGEP could prioritize goal sampling in those
areas. A third role for the human would be the one of the problem-solver:
here the human would directly be in charge of proposing experiment
parameters 𝜃 in order to achieve (or not) a target goal 𝑔. Obviously, if
the human is to take that role, it should remain sparse, without which
the “automated” aspect of discovery would completely disappear. Here,
one could imagine a human scientist performing some experiments
on its own (prior or parallel to the AI exploration) and providing the
collected observations to assist the AI goal-conditioned decision making.
Finally the human could play the role of the teacher as part of the
internal model updates. For instance, the human could provide a set of
(labeled) demonstrations to help the AI’s internal models learning, as
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was proposed by Nguyen and Oudeyer [164] to demonstrate motor skills
to an intrinsically-motivated robot learner.

In this thesis, we focus on the human as guide scenario which is believe
the less demanding to the human, as it does not require some sort of
expertise to characterize the system outcomes nor to collect experimental
data, and still provides valuable information to shape the AI discovery
process. In fact, they are two levels of guidance with which we believe the
human can play an important role. The first one, that we focus on in this
chapter, is what we call preference-based guidance. Here, the AI is seen as
a discovery assistant: it cannot predict what a future (unknown) end-user
will find interesting in Lenia (as there is so much to be done with it),
but it aims to find diverse discoveries enabling, on the one hand, the
human end-user to better express its preferences, and on the other hand,
the agent to quickly adapt its discoveries as soon as such preferences
are expressed. In the context of meta-diversity search for instance, a
successful discovery assistant agent is one which can leverage its diverse
BCs to specialize efficiently towards a new interesting type of diversity,
corresponding to the initially unknown preferences of an end-user, and
expressed through simple and very sparse feedback (Figure 6.1).

The second type of human guidance, which we begin to explore in
the applicative Chapter 7 and Chapter 8 (in the second part of this
manuscript), is what we call environment-based guidance. Here, the human
directly intervenes in the environment to provide cues (or constraints)
in order to assist (or obstruct) self-organization toward the goal in the
system1. While we believe the generation of environmental elements 1: For instance, in Chapter 7 we will see

how humans can integrate various ele-
ments in the environment such as obsta-
cles, food or attractor objects - all defined
within the CA paradigm

could play a crucial role in assisting self-organization in the system,
choosing how to generate these elements - automatically or interactively
- remains an open question2.

2: In Chapter 8, we propose that clas-
sical experiments from behavioral sci-
ences, originally testing various naviga-
tion competencies that living agents ex-
hibit, can serve as a source of inspiration
for generating these cues/constraints

Whether the human is integrated as an expert, guide, problem-solver or
teacher within the exploration process they are two important interface
components for human-in-the-loop systems: the choice of a visualization to
show the human end-user the important (and interpretable) AI-collected
information that it needs to provide feedback; and the choice of a feedback

form to collect the human-provided feedback in an exploitable format for
the AI. In this chapter, we present initial experiments that were made with
simulated end-users, sidestepping the technical challenges of integrating
actual human users directly into the loop, though hopefully experiments
will real humans could be done in future work. 3. 3: In Chapter 10, we will present the

adtool software package which aims,
among other things, to facilitate human
interaction with the exploration process

6.3. Proposed implementation:
preference-guided IMGEP-HOLMES

In the previous chapter, we introduced an algorithm wherein an in-
trinsically motivated goal exploration process (IMGEP) was augmented
with a modular architecture, HOLMES, which dynamically expands to
accommodate novel environmental variations. This chapter delves into
the notion that an effective “discovery assistant” should not merely strive
to represent these new variations continually; it should also efficiently
specialize in a form of diversity that aligns with an end-user’s initially
unknown preferences, expressed through simple, sparse feedback. To this
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Figure 6.3.: Overview of the preference-guided IMGEP-HOLMES approach proposed in Etcheverry et al. [•8]. The main novelties with
respect to the non-guided IMGEP-HOLMES approach presented in the previous chapter (Figure 5.4) are shown in light green. They
include the request for human end-user (sparse) feedback throughout exploration to assign preference scores to the different BC spaces
(leaf nodes) of the hierarchy, as well as the integration of these scores in the goal space sampling strategy G𝑠 .

end, we propose an extension of the IMGEP-HOLMES algorithm, termed
preference-guided IMGEP-HOLMES, outlined in Figure 1. Novelties with
respect to the non-guided IMGEP-HOLMES approach are highlighted in
light green. They include two novel, simple ingredients.

The first ingredient is on the human end-user’s side and enables to
provide feedback throughout exploration. Various decisions surround
this aspect, including when to give feedback, where within the discoveries
(with respect to the HOLMES hierarchy), and what type of feedback
to request. For this work, we simply propose to “pause” exploration
each time a split occurs in the hierarchy. As a reminder, a split occurs
when a node in the hierarchy saturates, resulting in the instantiation
of two child representations. Each child inherits its niche of patterns
from the parent, learns to characterize specialized features, and strives
to discover more representative patterns along those features. It seems
natural, therefore, to ask for human feedback each time new children are
created. The human, by visually examining a few representative images
per module, can select the leaf nodes with their preferred discoveries
and assign preference scores (here scores between 0 and 1).

The second ingredient is on the AI agent’s side and enables to integrate
feedback into the exploration decision-making process. Here, we focus
on a straightforward approach within the IMGEP goal-sampling strategy.
As a reminder, this strategy consists of two steps in IMGEP-HOLMES: (a)
selecting a target BC space from all current leaf nodes and (b) selecting a
target goal within that BC space. Since the human is asked to provide
preference scores for all current leaf BC spaces each time a new BC space
is created, we integrate these scores as follows: (a) we employ softmax
sampling based on the assigned score probabilities to select the target BC
space, and (b) we use uniform sampling within the selected BC space,
as was done previously within the hyperrectangle envelope of currently
reached goals. Intuitively, this corresponds to prioritizing goal sampling
in the BC spaces of interest, allocating them more experimental budget.
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Related work The field of Interactive Evolutionary Computation (IEC)
integrates human feedback with evolutionary algorithms to explore
complex pattern spaces, especially in aesthetic domains like art and
design [256]. Early examples include Sims’ work on evolving cellular
automata rules using genetic algorithms and human judgment, which
enabled the discovery of interesting emergent behaviors [257]. Another
interesting work is the one proposed by Langdon [258] which used
interactive evolutionary algorithm to evolve snowflake patterns via L-
system grammars. The approach leveraged an internet-based platform
that engaged a multitude of end-users, resulting in its designation as an
“open-ended” evolution system [258]. Another well-known application
of IEC include the PicBreeder web platform [259, 260], where users can
evolve CPPN-generated images by selecting ones that appeal to them
to produce a new generation. What sets PicBreeder apart is its creation
of an online community that not only facilitates users’ generation of
their own images but also permits the ongoing evolution of images
initiated by others. This collaborative and ongoing process continually
increases image complexity, which hence qualifies even more as a form of
open-ended system [261]. It’s worth noting that in the context of IMGEP-
HOLMES, our feedback mechanism differs from traditional IEC works.
We require feedback only at each split of the hierarchy, in contrast to
systems where users provide feedback at every generation, individually
selecting interesting patterns for the subsequent generation. In our work,
each experiment is independent but it will be interesting for future work
to enable the reuse of discoveries via collaborative platforms. While
Picbreeder was applied to static image generators, one could imagine
similar interfaces being deployed to guide exploration in developmental
self-organizing systems like Lenia4. 4: This is actually a typical use-case that

we aim to facilitate with the developed
adtool software presented in Chapter 10

6.4. Experiments

In Lenia and cellular automata in general, they are two categories of
patterns have been extensively studied, and that we refer to as Spatially-
Localized Patterns (SLP) and Turing-Like Patterns (TLP) (Figure 3.14). For
our experiments, we assume the presence of two end-user models, each
with an interest in discovering a diversity of either SLP or TLP patterns. To
guide this process, we employ the classifiers5 for SLP and TLP proposed 5: Please refer to Appendix Section B.2.2

for a full description of the classifiersin Chapter 4 to simulate human end-users. Whenever a split occurs in
the HOLMES hierarchy, we use these classifiers to score the various
leaf nodes based on the number of SLP (or TLP) patterns within each
node at the time of the split. The resulting scores then influence the goal
sampling strategy of the preference-guided IMGEP-HOLMES algorithm,
as described in Section 6.3. Please note that this approach provides a
practical mean for simulating an external user, but has limitations as a
higher number of instances of a pattern category does not necessarily
equate to “more interesting” instances. The algorithms guided using
this procedure are respectively denoted as IMGEP-HOLMES (SLP) and
IMGEP-HOLMES (TLP).

We are primarily interested to test whether our discovery assistant search
can efficiently produce a diversity of “interesting” patterns, but once
again this is far from trivial to evaluate. To that end, in Subsection 6.4.1,
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we initially present a qualitative assessment of the identified patterns,
similar to the approach in Chapter 5. Subsequently, in Subsection 6.4.2, we
introduce a proxy evaluation of the discovered diversity. This proxy metric
is designed to closely align with the evaluator’s judgment regarding
what constitutes a diverse set of SLP and TLP patterns.

6.4.1. Qualitative Evaluation

Figure 6.4a and Figure 6.4b show discovered patterns when IMGEP-
HOLMES is guided towards SLPs or TLPs, respectively. We observe
that the (simulated) user guidance is able to significantly affect both the
structure of the hierarchy and the types of discovered patterns. When
guided towards SLPs, as shown in Figure 6.4a, most of the discovered
patterns are SLPs (TLPs are concentrated in the leafs BC 01110 and
BC 01111 with approximately 15% of the discovered patterns). On the
contrary, when guided towards TLPs, as shown in Figure 6.4b, most of
the discovered patterns are TLPs (SLPs are concentrated in the leafs BC
000 and BC 001 with approximately 34% of the discovered patterns).
As a consequence of this bias toward either SLPs or TLPs, we observe
that HOLMES has created more branches in the direction of the desired
patterns - either SLPs on the left part of the tree, or TLPs on the right - in
order to enrich their corresponding representations.

BC 0: 100.0%

BC 00: 72.2% BC 01: 27.8%

BC 000: 10.7% BC 001: 61.5% BC 010: 8.3% BC 011: 19.5%

BC 0000: 4.3% BC 0001: 6.4% BC 0010: 53.4% BC 0011: 8.1%BC 0110: 4.3%BC 0111: 15.2%

BC 00100: 49.7% BC 00101: 3.7% BC 01110: 3.4% BC 01111: 11.8%

BC 001000: 49.1% BC 001001: 0.6%

BC 0010000: 38.3% BC 0010001: 10.8%

BC 00100010: 8.6% BC 00100011: 2.2%

(a) IMGEP-HOLMES (SLP)

BC 0: 100.0%

BC 00: 34.2% BC 01: 65.8%

BC 000: 4.1% BC 001: 30.1% BC 010: 10.8% BC 011: 55.1%

BC 0110: 20.2% BC 0111: 34.9%

BC 01100: 1.0% BC 01101: 19.2% BC 01110: 7.1% BC 01111: 27.8%

BC 011110: 7.4% BC 011111: 20.4%

BC 0111110: 0.5%BC 0111111: 20.0%

BC 01111110: 1.2% BC 01111111: 18.8%

BC 011111110: 7.8%BC 011111111: 10.9%

BC 0111111110: 4.8% BC 0111111111: 6.2%

(b) IMGEP-HOLMES (TLP)

Figure 6.4.: Examples of patterns discovered by IMGEP-HOLMES within the learned tree hierarchy, when guided towards SLPs (a) or
TLPs (b) through simulated user feedback as described in Section 6.3. The figures are generated with the same procedure than Figure 5.8.
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6.4.2. Quantitative Evaluation

Figure 6.5.: Interface used for selecting of
the best proxy-BC analytic space that cor-
relates with human judgement of what
represents a diversity of SLP and a diver-

sity of TLP.

Selection of a proxy-BC for evaluation of SLP and TLP diversity For
evaluation, an experiment with a human evaluator has been conducted
for selecting the BC space, among the 5 proposed in Section 5.1, that
correlates the most with the evaluator judgement of what represents
a diversity of SLP and a diversity of TLP. The experiment consisted in
repeatedly showing the human with two sets of patterns (as shown in
Figure 6.5) and asking the human to click on the set that he considers is
the more diverse, according to its intuitive notion of diversity. If the human
cannot choose between the two sets, he can click on the “pass” button. In
background, the procedure to generate the sets is the following:

1. Randomly select a (BC, category) pair, where BC ∈ {Spectrum-
Fourier, Elliptical-Fourier, Lenia-Statistics, BetaVAE, Patch-
BetaVAE} and category ∈ {SLP,TLP}.

2. Randomly draw 750 candidate sets of 6 images among a database
of 7500 patterns of the current category6. 6: As explained in Appendix, a database

of 7500 SLP patterns and 7500 TLP pat-
terns was gathered from various explo-
ration variants conducted in Lenia

3. Select the most similar and the most dissimilar (i. e. diverse) sets
among those 750 sets. The (dis-)similarity of a set is measured as a
function of the distances between pairs of images in the current BC
space7. 7: Distance function is provided in Ap-

pendix Subsection C.1.24. The sets are displayed to the human in random presentation order.

One human evaluator participated in this experiment and performed a
total of 500 clicks, i.e., 50 evaluations for each (BC, category) pair. The
agreement score was 1 if the human selected the set considered diverse
by the BC, 0 if it selected the other set and 0.5 if the human chose the
“pass” option. Table 6.1 reports the mean and standard deviation of
the agreement scores for each (BC, category) pair. Notably, the human
evaluator identified bcElliptical-Fourier as the most suitable proxy space
for evaluating the diversity of SLP patterns, achieving a 98% agreement
score. For assessing the diversity of TLP patterns, bcLenia-Statistics emerged
as the top choice, with a 92% agreement score.

Spectrum-Fourier Elliptical-Fourier Lenia-Statistics BetaVAE Patch-BetaVAE

SLP 0.5 ± 0.18 0.98 ± 0.04 0.59 ± 0.12 0.1 ± 0.06 0.89 ± 0.08
TLP 0.2 ± 0.13 0.47 ± 0.1 0.92 ± 0.07 0.75 ± 0.08 0.38 ± 0.08

Table 6.1.: Human-evaluator agreement
scores (mean ± std). Best scores are
shown in bold. The agreement score is
significant at level 𝛼 = 5% if it is above

0.64 = 0.5 + 1.96 ×
√

0.25
50 .

Results Non-guided IMGEP-VAE and IMGEP-HOLMES variants used
in the previous chapter (see Section 5.4) are compared with the guided
IMGEP-HOLMES variants. The results are also compared to Random
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Figure 6.6.: Diversity discovered by the algorithms during exploration. The discovered patterns classified as SLP in (a) (resp TLP in
(b)) are projected in bcElliptical-Fourier space in (a) (resp bcLenia-Statistics in (b)), where the binning-based measure is used. Mean and
std-deviation shaded area curves are depicted.

Exploration baseline (where parameters 𝜃 are randomly sampled for the
5000 explorations runs) which serves as reference for the default diversity
found in Lenia (and by all algorithms during the first 1000 explorations).
The diversity discovered by the different algorithms, measured within
the selected analytic BC spaces, is shown in Figure 6.6. In line with the
results of Chapter 4, we see that the reconstruction bias of the monolithic
VAE leads IMGEP-VAE to find a high diversity of SLPs but leads to
poor diversity of TLPs (lower than random exploration). On the other
hand, when non-guided, IMGEP-HOLMES finds a higher diversity than
Random Exploration both for SLPs and TLPs. Interestingly, when guided,
IMGEP-HOLMES can even further increase the diversity in the category
of interest which confirms the qualitative insights from Figure 6.4.

Additional baselines In Appendix Section C.7, we consider addi-
tional IMGEP baselines with unsupervised learned (monolithic) BC
spaces. Baselines differ in the encoder architecture and training strat-
egy, including several variants of variational auto-encoders as well as
contrastive approaches8. The findings indicate that all goal space repre- 8: Contrastive approaches, detailed

in Section C.7, basically encourage the
representation 𝑅 to maximize similarity
in encodings between differently aug-
mented versions of the same observation

sentations learned through monolithic architectures tend to suffer from
the “plasticity-stability” dilemma. This dilemma, well known in continual
learning [262], also hampers the potential for effectively guiding the dis-
covery process (see Figure C.6). Indeed, a lack of plasticity was observed
for all VAE variants, indicating that not only do the learned features fail
to adapt to new sources of environmental variation, but they also pose
challenges for introducing human guidance into the process, as these
learned features are unlikely to adaptively align with human preferences.
On the other hand, a complete lack of stability was observed in contrastive
approaches. In this case, the representation is highly sensitive to the
patterns discovered during training, leading to drastic shifts in learned
features from one training stage to another. This is also something that it
is not desirable as a human end-user may be more interested, at least for
a time, in exploring a given space rather than in transforming it in unpre-
dictable ways. Furthermore, the absence of stability makes it challenging
to control the types of features learned, preventing effective alignment
with human preferences. In contrast, the HOLMES architecture seems to
provide an appropriate “plasticity-stability” tradeoff enabling flexible
representations and efficient guidance.
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6.5. Discussion and Future Work

In this chapter, we explored ways to incorporate human guidance into
the standard IMGEP framework. We introduced a straightforward adap-
tation of the IMGEP-HOLMES algorithm, utilizing HOLMES modular
representations to incorporate human preferences and guide exploration
with minimal feedback. Considering two end-user models respectively
interested in two types of diversities (diverse spatially localized and
diverse turing-like patterns), we showed that a monolithic IMGEP will
make discoveries that are strongly uneven in relation to these user pref-
erences, while IMGEP-HOLMES is better suited to escape this bias by
learning divergent feature representations. We also show how the guided
IMGEP-HOLMES variant can efficiently shape the search toward those
two types of interesting diversities with little amount of user feedback.

Once again, we believe that similar approaches could be deployed in
other types of systems, e.g. systems encountered in physics or chemistry
for which it is difficult to computationally express a priori what a human
end-user might find interesting or not. Falk et al. [139], which recently
transposed the IMGEP-VAE approach presented in Chapter 4 to explore
behaviors of so-called Kuramoto models9, also proposed what they 9: Kuramoto models [227, 228] are

widely-used models to describe syn-
chronization phenomena in physics and
chemistry

called a “human-aligned curiosity search” which was directly inspired
from the IMGEP-HOLMES algorithm (Figure 6.7-A). Interestingly this
approach enabled the discovery of several behaviors with non-trivial
multi-population dynamics, in accordance with the human intuition
curiosity search was aligned with (Figure 6.7-D).

A major limitation of the experimental results presented in this chapter is
that we rely on simulated end-user feedback. In Chapter 10, we present the
adtool software package developed in collaboration with engineers at
the FLOWERS team which, among other things, aims to facilitate flexible
interaction with real end-users throughout the exploration process.

Figure 6.7.: Human-aligned curiosity search applies to a 100-dimensional Kuramoto model discovers various chaotic multi-population
behaviors (Falk et al. [139]). (A) The proposed approach, called human-aligned curiosity search, proceeds as follows: 1) an initial VAE
latent space is constructed and explored, 2) at some point the latent space is frozen and subsequent behaviors are redirected through
the initial, frozen latent space, where samples are accepted or rejected based on probabilities assigned to different parts of latent
space by a human observer, 3) Following screening through this human-evaluated latent space, sampling proceeds with a separate
newly-instantiated VAE for the new, human-aligned latent space. (B) A 10-population Kuramoto model with a total of N = 100 oscillators.
(C) (left) VAE latent space following initial curiosity search without human alignment. Latent space clusters identified in initial search
are human-evaluated for interest and assigned acceptance probabilities. (right) Final latent space at the end of human-aligned curiosity
search. (D) Phase coherence examples from each of the states identified through latent space clustering. Discovered behaviors include
breathing chimeras (7, 14), nearly synchronized (13, 15), and chiral phases (11). Figure is adapted from [139].
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What is the aim of this chapter? As a first applicative use case, this
chapter investigates the following scientific question: can we find environ-
mental rules in the Lenia system that can lead to the self-organization of
robust forms of sensorimotor agency? We propose a set of methodological
tools as well as an extensive analysis of the discoveries, and discuss their
various implications for research in AI and biology.

How is this chapter organized? In Section 7.1, we provide some back-
ground on the mechanistic and enactivist views on cognition, and motivate
the search for “robust sensorimotor agents” in continuous CA models.
Then, in Section 7.2, we present our methodological approach to tackle
the automated discovery and systematic characterization of these “robust
sensorimotor agents” in Lenia. This combines the use of tailored curiosity-
driven exploration approaches together with a battery of quantitative
and qualitative tests to assess the generalization capabilities of the discov-
ered agents. In Section 7.3, we show how the proposed search method
progressively leads to the emergence of individuality, locomotion, and
sensorimotor abilities, while these behaviors are very hard to obtain
with random or handmade search methods. Moving to Section 7.4, we
demonstrate that the discovered sensorimotor agents not only exhibit
individuality and locomotion, but are also capable of strong adaptivity
and generalization to out-of-distribution perturbations, reminiscent of
properties observed in biological organisms. Finally, in Section 7.5, we
present a more recent contribution called Flow Lenia, which is extension
of the original Lenia system. We discuss its several benefits for studying
artificial lifeforms, defining physical constraints in the environment, and
promoting the emergence of diversity and evolutionary activity within

the CA dynamics, which are all central challenges in artificial life.

Figure 7.1.: Overview of the scientific question. (A) The enactivist framework: (𝑡𝑖0 ) In the beginning there is only an environment made of
low-level elements (cells) and physical laws (local rules). There is no prior notion of agency, no body, no sensor. (𝑡𝑖1 ) Agents can come to
existence through the coordination of the low-level elements (self-constitution of individuality). (𝑡𝑖2 ) To maintain their integrity, agents
must sense and react to perturbations using only local update rules (self-maintenance of individuality). (B) In cellular automata models
like the Game of Life and a more complex continuous extension called Lenia, it was shown that it is possible to self-organize so-called
gliders i. e. spatially-localized patterns with directional movement (timesteps and arrows for direction are displayed). (Question) In this
work, following the enactivist modeling framework, we try to answer the following scientific question: is it possible to find environments
in which a subpart could self-organize and be called a “sensorimotor agent”? This would require the existence and emergence of
gliders-like structures that not only self-constitute and show motility, but are robust to external perturbations necessitating to develop
some form of sensorimotor apparatus enabling them to make “decision” and “sense” at the macro scale through local interactions only.
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7.1. Introduction

Understanding what has led to the emergence of life, cognition and
natural agency as we observe in living organisms has been a central
debate across many sectors of life sciences. Biological organisms are
made of collections of cells that follow low-level distributed rules and yet
they constitute a coherent unitary whole, displaying strong individuality

1 1: ability of a self-organizing structure
(subpart of the environment) to pre-
serve and propagate some spatiotempo-
ral unity [263], making it a distinguish-
able coherent entity in the domain in
which it exists

and self-maintenance
2 in their environment, what was described to be

2: ability of a self-organizing structure
to modify its interactions with the rest
of the environment for maintaining its
integrity

an autopoietic system
3. While a central concept in theoretical biology,

3: Introduced by Maturana and
Varela [264], the concept of autopoiesis
refers to a system capable of producing
and maintaining itself by creating its
own parts

the characterization of an autopoietic system and the understanding
of the processes underlying its self-organization remain a live issue.
Further demystifying how those processes do not just give rise to organic
individuation4 but also to sensorimotor5 and even intersubjective6 agency,

4: regulation at the metabolic, transcrip-
tional and morphological level to main-
tain organic integrity [265]
5: active engagement in loops of actions
and perceptions in the external environ-
ment [265]
6: active engagement in communicative
interactions and structural coupling with
other agents [265]

is at the center of the debate [265]. In fact, recent advances in biology and
basal cognition suggest that many autopoietic systems that we find in
nature, including plants and brainless animals, are robust sensorimotor
agents capable of using a body for sensing opportunities, computing
decisions and acting in their environment [138]. The pragmatic and
complementary question to the debate, central in ALife and AI research,
is: can we engineer the necessary ingredients leading to the emergence of
functional forms of life and sensorimotor agency in an artificial substrata
in which initially there is literally no body (and thus no sensing, no acting,
no agent)? Although there is already a large body of work that proposes
to study the emergence of life and cognition in agents-as-they-could-be,
it is generally done either by jumping over the biological processes that
enable organisms to survive (the mechanistic view, as e.g. in reinforcement
learning which considers pre-existing agents with predefined sensors
and actuators) or inconclusive so-far in showcasing higher-level forms
of sensorimotor agency (the enactivist view, as in e.g. artificial chemistry
which studies how forms of agency can emerge from low-level chemical
reactions). Herein, after giving some background on the mechanistic and
enactivist views on cognition and on their current limitations, we suggest
that modern tools from machine learning (ML) can help us bridge the gap
between those two views. Whereas ML tools have mainly been deployed
within the mechanistic framework, we show that they can efficiently assist
the discovery of environments that self-organize relatively-advanced
forms of sensorimotor agency whose existence and understanding is
fundamental within the enactivist framework for supporting theories
about the origins of life and cognition.

(a) Demo and Videos (b) Paper Codebase (c) Notebook (d) Blogpost

Figure 7.2.: (a) Sensorimotor Lenia companion website with interactive web-demo and several videos, referred as movie SX in the
chapter. (b) Notebook with Sensorimotor Lenia experiments and demo implementation. (c) Seensorimotor Lenia blogpost.

https://github.com/flowersteam/sensorimotor-lenia-companion
https://github.com/flowersteam/sensorimotor-lenia-search
https://colab.research.google.com/drive/11mYwphZ8I4aur8KuHRR1HEg6ST5TI0RW#scrollTo=l6D-g1Q38yyC
https://developmentalsystems.org/sensorimotor-lenia
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Figure 7.3.: Mechanistic view. One as-
sumes the pre-existence of a body with
sensors and actuators, though which an
agent can interact with its environment.

In the mechanistic view, one assumes the existence of agents that have
well defined physical body and information processing brain allowing
them to interact with the rest of the environment through predefined
sensors and actuators (Figure 7.3). Robots for instance are referred as
embodied agents: their individuality is clear, as they can easily be dis-
tinguished from the rest of the environment, and their self-maintenance
is often not a problem, as their body does not change over time except
for rare cases of real world or artificially-induced degradation. Hence it
is not questioned what makes an agent an agent or even what makes a
body a body [265]. Rather, a more central question is to understand how
higher-level cognitive processes and sensorimotor adaptivity can arise
in the agent through its interactions with the environment. A common
methodology is the generation of a distribution of environments (tasks
and rewards) and the use of learning approaches, such as deep reinforce-
ment learning, to train the agent’s brain to master and generalize those
tasks. Within that framework, it was shown that it is possible to engineer
agents capable of repertoires of advanced sensorimotor skills such as
precise locomotion [266], object manipulation [267], tool use [268] and
even capable of adapting the learned behaviors to unseen environmental
conditions [167]. Interestingly, they show that the use of curriculum learn-
ing7 is crucial to generate generally capable agents. However, the clear 7: family of mechanisms that adapt the

distribution of training environments to
the learner capabilities

body/brain/environment distinction of the mechanistic framework bears
little resemblance with the way information seems to be processed by
biological systems. Notably it goes against the concept of morphological
computation [269], which argues that all physical processes of the body,
not only electrical circuitry in the brain but also morphological growth
and body reconfiguration, are integral parts of cognition and can achieve
advanced forms of computation.

The enactive view on embodiment however is rooted in the bottom-up
organizational principles of living organisms in the biological world. The
modeling framework typically uses tools from dynamical and complex
systems theory where an artificial system (the environment) is made
of low-level elements of matter (called atoms, molecules or cells) de-
scribed by their inner states (e.g. energy level) and locally interacting via
physics-like rules (flow of matter and energy within the elements) (Figure
7.1A-𝑡𝑖0 ). There is no predefined notion of agent embodiment, instead it is
considered that the body of the agent must come to existence through the
coordination of the low-level elements (Figure 7.1A-𝑡𝑖1 ) and must operate
under environmental perturbations and precarious conditions8 (Figure 8: the idea that bodies are constantly

subjected to disruptions and break-
downs [265]

7.1A-𝑡𝑖2 ). Hence, the self-constitution and self-maintenance of individ-
uality are prior conditions for any agency to emerge as it determines
the agent’s own existence and survival [265]. This shifts the problem of
“building agents as-they-could-be”to a problem of engineering second-
order emergence [270]: how to design environments that can give rise
to self-constituting agents that, coupled with the rest of environment,
give rise to sensorimotor behaviors? Previous work has shown that the
realisation of autopoietic entities in computational media is possible [222,
271–273]. For instance, fully emergent structures showing spatial localiza-
tion and movement have been discovered, such as the well-known gliders
in the game of life up to richer life-like patterns in continuous models
of cellular automata (Figure 7.1B). So far however, two major challenges
remain poorly addressed in the enactivist literature. First, autopoietic
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structures have so far mainly been discovered by human eye and as
the result of time-consuming manual search, limiting their discovery
and analysis. While some recent works, based on information theory
tools, have proposed quantitative measures of individuality in order to
facilitate their identification [263, 274], their algorithmic implementation
remains difficult in practice. Second, among the very few works that pro-
posed a deeper analysis of the robustness capabilities of the discovered
patterns (based on the enumeration of all possible perturbations that a
structure can receive from its immediate environment) [191, 192, 273, 275],
findings suggest that glider-like structures typically remain quite fragile
to external perturbations such as collision with other patterns [191].

In this work, following the enactivist framework and considering a class
of continuous cellular automata called Lenia [39, 40] as our artificial
“world”, we show that modern tools from machine learning can help
addressing the problem of engineering second-order emergence. We
propose a method based on curriculum learning, diversity search and
gradient descent, enabling to efficiently shape the search process and
to successfully navigate the chaotic outcome landscape of the Lenia
system. In particular, we use a family of algorithmic processes called
intrinsically-motivated goal exploration processes (IMGEP), an efficient
form of diversity search algorithm [57]. While mainly deployed in the
fields of developmental robotics [58] and developmental AI [172, 173],
recent works have shown how IMGEP can also form useful scientific
discovery assistants for revealing the range of possible behaviors in
unfamiliar systems such as chemical oil-droplet systems [64], physical
non-equilibrium systems [139] and models of continuous cellular au-
tomata systems as the one considered here [•1, •3]. At the difference of
previous papers, we introduce two novel elements: the use of gradient de-
scent for local optimization and the use of stochastic perturbations within
the curriculum. With this method, we are able to find environmental rules
leading to the emergence of patterns that self-constitute, self-maintain
and move forward under various obstacle configurations, i. e. autopoietic
entities displaying robust forms of sensorimotor agency. We then propose
a battery of quantitative and qualitative tests, all formulated within the
continuous CA paradigm, to further assess the robustness and generaliza-
tion capabilities of the discovered self-organized patterns. Interestingly,
the agents also show strong robustness to several out-of-distribution
perturbations ranging from perturbing the agent structure in various
ways not seen during training (including by a collision with another
agent) to changing the scale of the agent. Furthermore, when tested in a
multi-entity initialization and despite having been trained alone, not only
the agents are able to preserve their individuality but they show forms of
coordinated interactions (attractiveness and reproduction), which could
be interpreted as a form of intersubjective communication [191]. Those
results illustrate the achievable generalization capabilities of artificial self-
organizing agents, with respect to their mechanistic counterpart, opening
interesting avenues for AI. At the same time, they provide interesting
models about the way information might be processed by (brainless)
biological agents to ensure robust maintenance of sensorimotor functions
despite environmental and body perturbations [276].
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Figure 7.4.: (A) Illustration of one experimental rollout with automated (i) generation of target goal (green), (ii) generation of environmental
obstacles (blue) and (iii) optimization of learnable parameters toward goal (backpropagation shown in orange). The initial state is
iteratively updated by the parametrized rule, we then compute the goal conditioned loss from the last state of the rollout and propagate
gradient across the steps to the learnable parameters and initialization. (B) Detailed view of a step in Lenia with obstacles. A convolution
followed by a non-linear growth function is applied on both channels, resulting in a growth update which is added to the current state of
the learnable channel. Both the convolution and growth functions are parametrized (see Appendix Subsection D.2.1).

7.2. Study of Sensorimotor Agency in
continuous CA models

Cellular automata (CA) are, in their classic form, a grid of “cells”𝐴 = {𝑎𝑥}
that evolve through time 𝐴𝑡=1 −→ ... −→ 𝐴𝑡=𝑇 via the same local
“physics-like” laws. More precisely, the cells sequentially update their
state based on the states of their neighbors: 𝑎𝑡+1

𝑥 = 𝑓 (N(𝑎𝑡𝑥)), where 𝑥 ∈ X
is the position of the cell on the grid, 𝑎𝑥 is the state of the cell, and N(𝑎𝑡𝑥)
is the neighborhood of the cell (including itself). The dynamic of the
CA is thus entirely defined by the initialization 𝐴𝑡=1 (initial state of the
cells in the grid) and the update rule 𝑓 (how a cell updates based on its
neighbors).

In this work we use Lenia, a class of continuous CA which is a recently-
proposed generalization of Conway’s Game of Life [39, 40], as our self-
organizing system9. Previous works in Lenia have shown that there exist 9: The Lenia system is detail in Section

D.2local update rules 𝑓 , that can lead to the self-organization of long-term
stable complex patterns that display interesting life-like behaviors [•3,
39, 40]. Those include forms of individuality (spatially-localized organi-
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sation), locomotion (directional movement) and even basic sensorimotor
capabilities (change of direction in response to interaction with other
patterns in the grid). However, in previous work, self-maintenance of
those behaviors in discovered spatially-localised patterns were typically
quite fragile to external perturbations (for example collision with other
agents Movie S1), and properties of robustness and generalization were
not specifically studied and tested. Furthermore, these findings have so
far relied on handmade exploration, which can be very hard and time-
consuming as random rules rarely result in the emergence of localized
patterns and even less moving ones (Movie S2).

In this work, we propose to use automated experimentation to organize
the exploration of Lenia without any human intervention. More particu-
larly, the automated experimentation aims to find local update rules 𝑓
leading to the self-organization of stable (and if possible diverse) agents
with sensorimotor capabilities. We also provide tests in order to assess
the sensorimotor capabilities of the obtained patterns.

7.2.1. The Lenia environment

Lenia is a class of continuous cellular automata where each CA instance is
defined by a set of parameters 𝜃 that conditions the CA rule 𝑓𝜃 . Once the
parameters 𝜃 conditioning the update rule have been chosen, the system
is a classical CA where the initial grid pattern 𝐴𝑡=1 is iteratively updated.
In the multi channel version of Lenia [40], the system is composed of
several communicating grids which we call channels. Intuitively, we can
see channels as the domain of existence of a certain type of cell. Each
type of cell has its own physics : it has its own way to interact with other
cells of its type (intra-channel influence) and also its own way to interact
with cells of other types (cross-channel influence).

In this work, we are interested in finding parameters (𝜃,𝐴𝑡=1) leading to
the self organization of moving agents robust to external perturbations
from the environment. For this aim, we need to introduce perturbations in
the system in a controlled systematic way, both for testing the robustness
and as criteria during the search. However, due to the dynamical nature
of the system, controlled perturbations over several steps in the CA
system are often hard to introduce. To help solve this issue, we propose
to take advantage of the multi channel version of Lenia and separate the
low level elements of the system in two types: the first “fixed”channel,
which is hand-engineered, introduce elements that act as our stable
controlled obstacles (blue in Figure 7.4); the second “learnable”channel,
where parameters of the physics are learned, is where the agent has to
emerge (yellow in Figure 7.4). In practice, the environment parameters
(𝜃, 𝐴𝑡=1) are separated in two. The first part, denoted (𝜃 𝑓 , 𝐴𝑡=1

𝑓
) in a hand

engineered part where 𝜃 𝑓 gives the rule on how obstacles block matter
from going in while 𝐴𝑡=1

𝑓
gives the obstacle placement and shape. 10. The 10: Details on how we implement obsta-

cles as part of the CA rule can be found
in Appendix Subsection D.2.2second part however, denoted (𝜃𝑙 , 𝐴𝑡=1

𝑙
), is free and is learned in order

to self-organize an agent with sensorimotor capabilities.

What we are searching for is thus learnable parameters (𝜃𝑙 , 𝐴𝑡=1
𝑙

) that
will induce a physic leading to the self-organization of agents that
are able to move and survive in a grid where obstacles perturb their
structure and therefore may break their integrity. Note that finding
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pattern with such capabilities is not trivial, for example moving patterns
found by hand in [39, 40] (as the Lenia glider), which are stable without
perturbations, often die from the collision with our engineered obstacles
(Movie S3). Note that in our system, if an agent is to emerge, the only way
it can “sense”previously-introduced obstacles is from the perturbations
obstacles induce on its structure, it cannot “see”the obstacle.

7.2.2. Intrinsically Motivated Goal Exploration Process
(IMGEP)

Formally, a set of parameters (𝐴 𝑓 , 𝜃 𝑓 , 𝐴𝑙 , 𝜃𝑙) in Lenia maps to a certain
sequence of states (trajectory 𝑜). This trajectory can then be mapped to a
vector 𝑅(𝑜), through a defined characterization function 𝑅. This vector
provides a behavioral description of the trajectory, and the image of 𝑅
represents the space of possible behaviors that can emerge in the system.
A curious automated discovery assistant can then be applied to explore
this behavioral space to discover a diversity of behavior. In this work, we
use Intrisically Motivated Goal Exploration Process (IMGEP) to organize
the exploration of the behavior space. IMGEP relies on goal-directed and
diversity-driven search, which we leverage to drive the system toward the
emergence of desired (sensorimotor) behaviors. More precisely, given
a goal-sampling strategy 𝐺, IMGEP automatically samples target goals

𝑔 ∼ 𝐺 which are points in the behavioral space. For each goal 𝑔, the
objective is then to optimize toward parameters (𝜃𝑙 , 𝐴𝑙) leading to a
sequence of state which is mapped as closely as possible to this goal. To
score the trajectory according to a goal, a loss function L(𝑔, 𝑜) taking as
input the trajectory and the goal is used.

The behavioral descriptor 𝑅 we choose in this work is the position of the
center of mass at the last timestep of a simulation. The behavioral space
then consists of all possible (x,y) coordinates in the grid. The objective for
a given goal 𝑔 = (𝑥, 𝑦) is thus to find parameters (𝐴 𝑓 , 𝜃 𝑓 ) leading to the
emergence of a spatially localized pattern attaining the goal position at
the last timestep under several perturbation by obstacles. In this work, we
choose to define the (goal-conditionned) loss as the mean squared error
(MSE) between the state at the last timestep of the trajectory and a disk
centered at the goal position. In addition to closeness to the goal position,
the loss function we use incentivizes localization of the mass to prevent
pattern explosion and collapse, which is a very common outcome of
Lenia parameters. We then use gradient descent to optimize the learnable
parameters (𝜃𝑙 , 𝐴𝑡=1

𝑙
) by backpropagating the loss through the steps and

make progress toward the the goal (Figure 7.4).

Gradient descent optimization has already been successfully applied
with cellular automata [37] on learning CA parameters leading to the
growth of a target pattern [104] or texture [106], or enabling (static) cellular
collectives capable to perceive their large scale structure [107], proving
the effectiveness of such method (with some additional component
for training for long term stability) in complex chaotic self-organizing
dynamic. However, in this work, we consider moving agents which are
a fragile type of pattern in Lenia as moving forward in such system
means to grow new cells at the front while the ones at the back die. This
equilibrium between growth and death is also challenged by the random
perturbations we introduce in the system. This means that changes
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of parameters, because of the chaotic nature of the system, can easily
break the equilibrium between growth and death of cells making the
optimization harder.

To help with this difficult optimization landscape we propose to introduce
a curriculum for making small improvements iteratively. Curriculum
learning has already been applied for optimizing cellular automata rule
with gradient descent, as a solution for getting out of a trivial local optima
in Variengien et al. [277]11. 11: In our case the curriculum also solves

technical gradient flowing problem, de-
tailed in Appendix Subsection D.3.6Here, the intuitive idea behind our curriculum is to first learn rules

leading to moving (spatially localized) agents which we train to go
further and further (in the same amount of timesteps, hence faster) and at
some point train them to go further while dealing with obstacles. To do so,
the fixed environment 𝐴𝑡=1

𝑓
we sample for training has a certain structure:

the left half of the grid is free from obstacles while the right part contains
obstacles that will be randomly placed at every rollout (blue in Figure
7.5.a). The sampling strategy 𝐺 we chose in the IMGEP also participate
to the curriculum as it is biased to randomly sample goals that are a little
bit further than previously attained positions12. Putting target goals in 12: More information on the sampling

strategy can be found in Appendix Sub-
section D.3.4

the obstacle area means that during training, the potentially emerging
agents will have to go to a specific location while its structure is perturbed
by obstacles randomly placed. The gradient descent optimization will
incentivize recovery from perturbation and to keep moving despite being
damaged. In addition, the fact that the obstacles are randomly placed
should incentivize generalization to different perturbations.

To sum up, the IMGEP iteratively (and automatically) generates increas-
ingly difficult goals for which we will try to find, and optimize using
gradient descent, learnable parameters (𝜃𝑙 , 𝐴𝑡=1

𝑙
) that will lead to the self

organization of agents achieving these goals. For each goal (position), the
optimization steps are done under several obstacle configurations {𝐴 𝑓 } in
order to learn to resist to different perturbations. After each optimization,
we then test the optimized parameters under various environmental
configurations {𝐴 𝑓 } to assess the reached position (and distance to target
goal). We store this (parameters, reached position) couple in history H

in order to be able to use it as a starting point for subsequent goals.

7.2.3. Evaluation of the discovered patterns

Whereas the notion of agency is closely tied to the ability of an organism to
maintain its own organization despite encountering novel circumstances,
the robustness of current artificial autopoietic systems is lagging far
behind the robustness of their biological counterparts. We believe that
this limitation, together with the difficulty of engineering such autopoietic
systems, is a major reason why we have not assisted yet to a wider adoption
of the enactivist framework by the AI community. The IMGEP search,
precisely intended to facilitate the search of such autopoietic systems,
should provide us with a database of parameters {(𝐴 𝑓 , 𝜃 𝑓 )} ∈ H that
(when successful) lead to the self-organization of patterns that are robust
(at least) to the different obstacle configurations seen during training.

To go further and characterize agency and the degree of robustness of the
discovered parameters/patterns, we propose an empirical evaluation
procedure in two stages. First an “agency filter”is used on the database of
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discoveries to discard parameters that do not lead to the self-organization
of what we call “agents”in Lenia. More precisely, our filter implements
several classifiers, inspired from ones proposed by Reinke et al. [•1], to
detect whether the emergent matter does not disintegrate (vanishes or
explodes), forms a coherent entity (single soliton), and does so during
a long-enough time window (longer than training). In addition to the
agency filter, we also introduce a “moving filter” which tells if an agent
is moving (travels a minimum distance) or not (examples of discovered
“agents” that are considered not moving are shown in Movie S4).

Then, to assess the capabilities of selected agents to withstand pertur-
bation by obstacles we perform a “basic obstacle test”: testing them on
obstacle configurations similar to the ones seen during training; and vari-
ous “generalization tests”: running them through a battery of tests with
several out-of-distribution perturbations that were not seen during train-
ing. In particular, we test the discovered sensorimotor agents to harder
obstacle configurations, stochastic cell updates, changes of initialisation
and changes of scale that were not experienced during training. Given
a distribution of perturbations, we measure robustness as the average
performance over sampled perturbations, where performance is a binary
success metric that determines whether the agent “survived” the pertur-
bation or not. As “survival”metric, we simply apply our agency filter to
detect whether the (perturbed) emergent entity is able to self-maintain
despite the introduced variations (ie is still an agent at the end of the test).
Note that this metric closely follows the definition of cognitive domain of an
autopoietic system, which was introduced by Maturana and Varela [264]
and later defined by R. Beer as the percentage of non-destructive

13 pertur- 13: a perturbation is said to be destructive

if it fundamentally disrupts the entity’s
organization leading to its disintegra-
tion [192]

bations, out of all possible perturbations, that the autopoietic system can
tolerate [192]. Because measuring the cognitive domain “as such”would
require an exhaustive enumeration of all possible perturbations and all
possible “valid”states that the entity can take, which is not tractable in
the Lenia environment, we instead rely on a proxy metric and on a set of
chosen empirical tests. We refer the reader to Appendix Subsection D.4.1
for more details on our evaluation procedure.

In addition, we provide an interactive web-demo14 where one can replay 14: the demo can be found at
https://developmentalsystems.org/

sensorimotor-lenia-companion/
the discovered agents and test them to all sorts of freely-drawn perturba-
tions including custom obstacle shapes, addition and/or removal of mass,
interactions with other agents in the grid and control of environmental
cues (attractive elements) in the Lenia grid.

Altogether, we hope that those (quantitative and qualitative) tests, which
were all implemented within the continuous CA paradigm, can serve as
a good baseline to evaluate the generalization capabilities (and hence the
degree of agency) of autopoietic systems in enactivist research, akin to
commonly deployed benchmarks in AI for evaluating mechanistic forms
of agency [167].

https://developmentalsystems.org/sensorimotor-lenia-companion/
https://developmentalsystems.org/sensorimotor-lenia-companion/
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Figure 7.5.: Overview of the proposed approach and results. (a) Illustration of the training curriculum. The curriculum iteratively sample
goal position (yellow disk), further in the grid, starting from very close to the initialization (A) to further away without obstacles (B) to
further away in the obstacle area (C, then D). Arrow between reached positions (red square) represent that the parameters leading to a
pattern attaining the tip of the arrow position was initialized before training by the parameters reaching the back of the arrow position.
(b) Examples of patterns obtained along the curriculum as well as their associated goal. We observe patterns going further and further in
the same amount of steps (50 steps) and for the latter dealing with obstacles in their way. To display the trajectory of the agent in the
learnable channel (yellow) we superposed the frames over all timesteps putting more transparency in earlier timesteps. (c) Performances
in term of robustness to the basic obstacle test and speed with obstacle perturbations of the moving agent produced by: IMGEP (red),
random search (blue) and handmade search (green). (d-e) Distribution of the speed without obstacles perturbation (d), and of the
robustness to moving obstacles (e), of the moving agents discovered by the IMGEP along the curriculum. Details on the speed measure
can be found in Appendix Subsection D.4.3. We observe that the curriculum translates in an improvement in the 2 presented quantities.

7.3. Curiosity-driven Search Reveals
Environmental Rules leading to the
Systematic Emergence of Sensorimotor
Entities

In this section, we analyze the discoveries made by the proposed approach
(IMGEP) and compare it with two other exploration baselines: a random

search, where parameters are sampled uniformly in the parameter space
(same ranges than for the IMGEP, given in Appendix Subsection D.2.3);
and a handmade search, where we collected the discoveries made by semi-
automatic search and expert selection as presented in the original Lenia
papers [39, 40]. Each IMGEP experiment has 160 goal-sampling steps,
hence output 160 parameter sets (𝐴𝑙 , 𝜃𝑙), but performs in average 11700
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Lenia rollouts, due to stochasticity in the method (see Appendix Section
D.3). For IMGEP and random search, 10 independent repetitions are
performed (where random search is given the same experimental budget
of 11700 rollouts per seed). Note that the comparison with handmade
search, while interesting, is challenging in practice as it is the result of
tedious search for which the total experimental budget is unknown, and
which was conducted over some Lenia hyper-parameters that are not all
included in the automated search (e.g. various number of channels or
kernels). Moreover we use a slightly different parametrization of the rule
to allow for differentiability (details in Appendix Subsection D.2.1).

For the three baselines (IMGEP, random search and handmade search), we
filter the obtained parameters to select only the moving agents (passing
the agency and moving test) and measure their speed and robustness
under the basic obstacle tests as described in Subsection 7.2.3.

Individuality, locomotion and sensorimotor capabilities

As illustrated in Figure 7.5, the IMGEP search enabled to evolve agents
along a curriculum which progressively led to the emergence of individ-
uality, locomotion and sensorimotor capabilities.

At first, the IMGEP samples goals that are not too far from initializa-
tion (zone A in Figure 7.5.a) enabling to find rules leading to the self
organization of spatially localized area which starts to move a little bit
from initialization (as shown in Figure 7.5.b.1). Then, from these newly
learned rules the IMGEP samples further goals (zone B in Figure 7.5.a)
which lead to spatially localized patterns that are able to move further
in the grid in the same amount of time (Figure 7.5.b.2). At this point,
some obtained parameters already lead to the self-organization of moving

agents, i. e. passing our empirical agency and moving tests (long-term
stable solitons capable of moving while self-maintaining). Moving agents
patterns are in fact already not trivial to find through random search in
the parameter space as only 30 moving agents were found through the
10 seeds of random search out of a total of 117 000 trials of parameters.

The IMGEP pursues the curriculum, taking advantage on the previous
learned parameters that are already able to emerge moving agents, and
puts further target goals within the obstacle area (zone C in Figure 7.5.a),
leading to moving agents entering the obstacle area (Figure 7.5.b.3). As
expected, the parameters resulting from those goals sampled in the
obstacle area have a higher robustness to obstacles (Figure 7.5.e) and
agents trained with further goals move in average at faster speeds in
environment without obstacles (Figure 7.5.d).

At the end of the curriculum loop, the obtained rules often lead to the self
organization of moving agents that are able to navigate fast in an area with
obstacles while still maintaining their integrity (Figure 7.5.b.4, Movie S5).
The emerging agents are capable of changing direction and recover in
response to perturbations induced by the obstacles, i. e. have sensorimotor
capabilities, and this only through the global coordination of the identical
low level parts (without having any central unit computing decision).

In total, 9 out of the 10 seeds led to at least one sensorimotor agent, i. e.

moving agent with a measured robustness >0.95 in our basic obstacle
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test. Note however that the performance in term of speed with obstacles
varies from one seed to another (see Appendix Table D.1), which depends
on the initialization on the method. Over the 10 seeds a great part of the
obtained emerging moving agents are sensorimotor agents. In fact, over
10 seeds, 486 of the 1600 parameters (10 seeds x160 parameters) led to
moving agent according to our agency and moving filter, from which 261
have a robustness to obstacles>0.95.

As a comparison, out of the 117 000 parameters generated by the 10 seeds
of random search, only 30 led to moving agents from which 20 have a
robustness to obstacles >0.95. Our method surpasses random search in
term of speed with obstacles and robustness of the obtained agents, as
well as the total number of long term stable moving agents obtained as
can be seen in Figure 7.5.c (486 for IMGEP and 30 for random search in
total over 10 seeds and with the same Lenia rollout budget). We also get
emerging agents with better robustness and speed than the ones found
in the original Lenia papers [39, 40] (Figure 7.5.c).

7.4. The Discovered Entities showcase strong
Generalization Abilities

Biological organisms are able to maintain phenotypic stability in the face
of diverse environmental perturbations arising from external stresses,
intracellular noise, and even quite drastic changes during morphogenesis
such as perturbations to the embryo structure [278] or to the substrate
cellular size [279]. It has long been recognized that robustness is an
inherent property of all biological systems that has been strongly favored
by evolution [280]. In this section, we are interested to see if similar
robustness capabilities can be achieved by the artificial self-organizing
agents that have been discovered by our artificial evolution workflow
(Figure 7.6). To do so we evaluate the generalization capabilities, over
the proposed battery of tests, of the 10 best agents discovered by the
IMGEP, random and handmade search variants, as well as on the agents
that have a speed within obstacles greater than one (91, all discovered
by IMGEP). “Best” here is computed according to the speed-robustness
criteria presented in Figure 7.5-c, i. e. the fastest with obstacle that also
have a robustness in the basic obstacle test>0.95. The performances
are fully reported and compared in Appendix Table D.2. As we will
see, the discovered agents showcased quite impressive generalization
capabilities at the organic, sensorimotor and inter-subjective levels [265].
We group the observed generalization capabilities into six categories:
harder obstacle configurations (external stresses), stochastic cell updates
(per-cell noise), changes of initialisation (“embryo” variation), changes
of scale (compute capacity variation), interactions with other agents
in the grid (inter-agents regulation) as well as with human-controlled
environmental cues (observer-agent regulation).

Harder obstacles We first tested the agents generalization capabilities
to a larger and more challenging set of obstacle configurations. The test set
includes controlled configuration with varying number, size and speed
of obstacles (Figure 7.6-A-a), as well as human-drawn obstacles such as
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Figure 7.6.: Generalization of the discovered sensorimotor agents. (A) We conduct a battery of quantitative tests which we organize in 9
families of parameterized perturbations that test for various (a) obstacle number, size and speed, (b) rate of cell updates, as well as rate
and magnitude of noise added to the updates, but also (c) rate and magnitude of noise added to the initial state and (d) scaling factors.
For each family, we test for 5 different parameter values, i. e. perturbation strength, resulting in a total of 9× 5 = 45 tests. For each test, the
performance of an agent is computed as the average score of survival over 10 random seeds. A score of 1 (dark blue) means that the
agent survived all 10 tests whereas a score of 0 (light yellow) means that the agent survived none of the tests. The table reports the
mean and standard-deviation performances, over the 10 best agents discovered by our goal-directed curriculum, for all of the 45 tests
(one table cell per test), where “best”is determined by the speed/robustness criteria introduced in Figure 7.5-c. Below each column,
we show snapshots of system rollout at test time given the newly introduced perturbations. The shown snapshots are all taken from
rollouts of the “best”agents, and from the first seed (out of the 10 tested random seeds). Timesteps are specified under the images, for
instance snapshots of the perturbations applied on the initial state are shown at t=1. (B) We also conduct a battery of qualitative tests,
where we tested the (best) discovered agents to all sorts of difficult perturbations including (a) freely-drawn obstacles such as walls,
mazes or dead-ends (b) freely-drawn initial states such as very big disks (resulting in the emergence of multiple entities) or small disks
with gradient asymmetry, (c-d-e) introduction of other agents in the grid (resulting in the emergence of inter-agent interactions such as
individuality maintenance, attraction and reproduction), (f) the introduction of novel low-level elements that have an “attractive”effect
on the agents (allowing external user to guide the agent trajectory in the grid); and (g) custom mass removal (pixel erasing).
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vertical walls and dead ends (Figure 7.6-B-a). Interestingly, whereas some
well-placed perturbations can lead to death or explosion, the discovered
agents show strong robustness and generalization to most of the test
set configurations. They showed quasi-perfect survival to grids with
up to 48 obstacles, to grids with smalls (but dense) or big (but sparser)
obstacles, and to obstacles with moderate speed. High-speed obstacles
however (speed greater than two), seem to challenge agent’s survival
(Figure 7.6-A-a), even though the IMGEP-discovered agents are still much
more robust to moving obstacles than the ones discovered by random
and handmade search (appendix Table D.2). Those results suggest that,
by training for fast-moving and obstacle-resisting behaviors, our goal-
directed curriculum favored the self-organization of agents that are able
to quickly recover from perturbations induced by the environment, even
ones not seen during training. For instance, qualitative tests also showed
that the discovered agents are able to successfully navigate forward while
coming across tightly-packed obstacles, walls of various inclinations,
corners, dead ends and even bullet-like types of obstacles (Movie S6).

Stochastic updates We then tested the agents generalization capabilities
to asynchronous and noisy cell updates (Figure 7.6-A-b). As proposed
in Mordvintsev et al. [104], relaxing the traditional assumption of syn-
chronous update in cellular automata (which assumes a global clock) is
closer to what you would expect from a self-organized system, and can be
done by applying a random update mask on each cell (parametrized by
the update mask rate). Despite the update mask enforcing asynchronous
and less (or more) frequent cell updates at test time, the discovered pa-
rameters still give rise to self-organized agents that perfectly self-maintain
(survival scores of one) and that showcase very similar morphology and
behavior than the agents with synchronous updates (Movie S7). The
agents are slowed (or fasten) a little bit but this is what we can expect
as each cell is updated in average only a fraction of the time (or several
times per timestep). We also relax the assumption of exact update by
adding random noise (parametrized by noise rate and magnitude), to the
cell states during the system rollout. Here, we observe that the agents
can resist quite consequent quantities of noise but passed a certain level,
as expected, the collective looses its integrity and desintegrates.

Changes of initialization While the initialization pattern has been
learned with a lot of degree of freedom (pattern in [0, 1]40×40), we can
look if similar patterns (phenotypes) can self-organize from other (maybe
simpler) initialization patterns (Figure 7.6-A-c). This capacity to converge
to the desired anatomy in spite of a different initialization (“embryo”),
is something that can be found in biological organisms [278], and that
we can expect in our system as well. Interestingly we indeed observed
a quasi-perfect robustness to noise-altered initial states (survival scores
close to one), and this even for quite high amounts of noise (except for
few configurations that led to death). These results suggest that the
final phenotype forms a strong attractor towards which the different
initial mass pattern tend to converge under the learned CA rule. The
learned rule is hence prone to encode, grow and maintain a specific target
morphology (and its associated functionality), which is consistent with
the agent ability to recover from obstacle-induced perturbed morphology.
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As shown in Figure 7.6-B-b, we also tested for handmade initial patterns
such as bigger disks and same-size asymmetrical disks. Interestingly, the
large disk initialization led to multiple entities forming and separating
from each other. The same-size disk, which is much simpler than the
trained initial states but preserves some form of asymmetry (gradient
activation), also converged toward the same morphology. However the
robustness to initialization is not perfect as many initializations, such as
smaller size and/or symmetrical disk, easily lead to death (Movie S8).

Changes of scale Similarly, while the initialization and update param-
eters have been learned at a certain spatial resolution during training
resulting in agents of a certain size (in term of number of cells), we
can artificially change the scale at test time by approximate resizing
of parameters (see Appendix Subsection D.4.5). As shown in Figure
7.6-A-d, we tested for different down-scaling (and up-scaling) factors
that surprisingly resulted for most of them in fully functional agents
with the overall same structure but smaller (or larger) size in terms of
number of cells. For agents which are down-scaled, and hence have
much less cells to do the computation, it is particularly surprising that
they are still able to sense and react to their environment and still show
relatively-advanced levels of robustness (Movie S9). This scale reduction
has a limit (a scaling of 0.15 already leads to some death) but we can
go quite far down and still obtain functional phenotypes. For the bigger
agents, which therefore have more space to compute (but also more cells
to organize), we observe similar results where agents still self-organize to
functional phenotype. Once again, this resonates with findings in biology
suggesting that organisms are able to accommodate cell-size differences
by adjusting cell number in order to maintain roughly constant body size
and structure [279].

Interactions We were then interested to test how the discovered agents
would react when interacting with other agents in the grid. Given the
set of parameters (𝐴𝑙 , 𝜃𝑙), we can trigger the forming of several macro-
entities at test time by replicating the initialization square pattern (𝐴𝑙 ∈
[0, 1]40×40) at different locations within a larger grid (𝐴𝑡=1 ∈ [0, 1]512×256)
and letting the system unroll. Doing so leads to the development of
several entities of the same “specie” (governed by the same update
rule/physic 𝜃𝑙). As illustrated in Figure 7.6-B, we did that for several of
the discovered sensorimotor agents, and qualitatively observed several
interesting emergent interactions.

The first thing that we observed is that, several of the discovered agents
show strong individuality preservation (Movie S10). The fact that the
individual agents do not merge nor enter in destructive interactions
despite being all made from identical cells is an intriguing example
of how the boundary of a “self” [281] can emerge and maintain in
self-organizing systems. In particular results suggest that, in the Lenia
system, individuality can be obtained as a byproduct of training an agent
alone. Our intuition is that by trying to prevent too much growth during
training, it learned to prevent any living cell that would make it “too
big”, including living cells from other entities here.
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A second type of interaction that can be observed with certain parame-
ters/environments is attraction. As illustrated in Movie S11, two agents
placed in the same grid can show attraction when coming close enough
from one another, leading them to stay together and move in the same
direction. Interestingly, when they encounter an obstacle, they are able
to separate briefly and then to reassemble together. Similarly, even when
they stay together, we can still qualitatively observe two distinct entities
that are interacting with one another while maintaining their overall
shape and integrity. This type of behavior has been studied in the game
of life under the concept of consensual domain [191].

A third type interaction that has been observed in some of the discovered
agents is a form of reproduction where collision between two agents give
rise to the birth of a third entity (Movie S12). This kind of interaction
seems to happen when one of the two colliding entities is in a certain
“mode”, like when it just hit a wall. Our intuition is that when it hits a wall,
the self-organizing agent produces a growth response in order to recover.
During this growth response if there is extra additional mass coming
from another entity then the self-organizing agent might split off from the
created mass while the separated mass, from robust self-organization (see
“Changes of initialization” above), grows into a complete individual.

External control A central challenge in synthetic biology, when faced
with unconventional forms of agency such as collective of cells, is to find
new ways to communicate with the cells to induce desired behaviors at
the collective level without having to physically “rewire”the structure of
the agent (e.g. via genome editing) but rather by introducing externally-
controlled cues in the environment [45]. Here, we are interested to
see whether we can induce (novel) target behaviors in the discovered
agents without having to modify the learned parameters 𝜃𝑙 . In particular,
we investigate whether the agents can show attraction to some novel
elements in their environment (like in nature organisms being attracted
to certain chemicals, lights or temperatures) and if we could use those
elements to guide the macro-entity. To do so, we introduce a new type
of “attractive”low-level elements within the Lenia CA paradigm. More
precisely, given the set of learned parameters 𝜃𝑙 , we introduce a novel
local rule with parameters 𝜃𝑎 that determine the physical influence of the
attractive elements onto the agent cells. To find parameters 𝜃𝑎 triggering
the desired attraction effect at the agent behavioral level, a simple random
search with final human assessment was performed15. Movie S13 is an 15: see Appendix Subsection D.4.5 for

details on the procedureexample of obtained behavior where we can observe the sensorimotor
agent getting attracted to the newly-introduced environmental element
(disk of cyan particles) which allows the external user to “control”the
agent trajectory by moving the disk in the grid. Interestingly, in spite
of this novel behavior, agents are capable to maintain their normal
sensorimotor capabilities showing robustness to collision with obstacles
and other agents in the grid. Besides, once the attractive element is
removed the agents return to their normal behavior. However adding
extra rules also fragilize equilibrium that existed in the agent rules as it
creates perturbations that the agent has not been trained to withstand,
leading sometimes to death or explosion (or to other behaviors such as
reproduction due to extra boost of growth). Once again parallels can be
drawn with findings in biological organisms, for instance [282] show that
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controlled UV light beam can be used to externally guide the trajectory of
micro-swimmers to perform on-demand drug discovery. While we only
tested for attraction-type of generalization behaviors, we believe that
more sophisticated types of environmental guidance could be induced.

Morphological computation This section has provided several empiri-
cal evidences of how adaptive high-level functionality can emerge from a
collective of low-level, decentralized elements. In order to withstand the
tested perturbations, the cellular collective first needed to “sense” the
induced perturbations through a deformation of the macro structure. Af-
ter this deformation it had to “communicate” the information and make
a collective “decision” on where to grow next. Then it had to move and
regrow its shape, altogether giving rise to the observed robustness of the
macro structure. In order to better visualize the physical manifestation of
decision-making within the cellular collective, we manually suppressed
a part of the agent (Figure 7.6-B-g). We observe that perturbation of the
macro-structure is what leads to the direct change of direction, support-
ing the fact that computation of the decision is made at the morphological
level. Whereas the idea that morphology, decision-making and motricity
are highly entangled phenomena is a long standing idea in biology
in biology [269], providing a human-interpretable account of how the
decision is made remains a difficult problem.

7.5. Flow Lenia: Towards Open-Ended
Evolution in CA through Mass
Conservation and Parameter Localization

(a) Website

(b) Notebook

Figure 7.7.: (a) Flow Lenia website with
several videos. (b) Notebook with Flow
Lenia implementation and demo.

The discoveries presented in this chapter have shown the existence of
environmental rules in Lenia leading to the emergence of autopoietic (i. e.
self-produced) spatially localized patterns (SLPs), not only resembling
microscopic life-forms but displaying various life-like behaviors like indi-
viduality motility, and self-replication. These observations confirm that
Lenia is a particularly interesting testbed system for studying the emer-
gence of life-like phenomena and even sensorimotor capabilities, which is
central in enactive theories of cognition and artificial intelligence [270].

However, as was shown in this chapter, SLPs and moving SLPs are
quite difficult to find in Lenia, necessitating advanced search algorithms.
Another important challenge in ALife and AI, and in the current Lenia
system, is about the design of systems displaying open-ended intrinsic
evolution (i. e. unbounded growth of complexity through intrinsic evolu-
tionary processes) [77]. Such a process is called intrinsic since no final
objective (i. e. fixed fitness function) is set by the experimenter, the fitness
landscape is intrinsic to the system and depends only on its current
state, as in natural evolution where there is no final goal [127]. In Lenia,
different “genomes” (update rule parameters) cannot coexist in the same
grid. This means that, even though we were able to discover a great
diversity of “creatures”16 in Lenia, they cannot exist in the same world 16: In this section we use the term “crea-

ture” as a general term to refer to “life-
like” moving SLP patterns in Lenia

(i. e. the same simulation) and thus cannot interact17. Obtaining such an

17: The interactions shown in Figure 7.6
happened between creatures of the same
type (same “genome”)

evolutionary process in the Lenia system, and in a CA in general, could be
achieved by embedding information in the system locally modifying the

https://sites.google.com/view/flowlenia/
https://colab.research.google.com/drive/1l-Og8xRlc5ew0489swuud0Me7Sc5bCss?usp=sharing
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(a) Original Lenia

(b) Flow Lenia

Figure 7.8.: (a) Lenia update rule. The
growth𝑈 𝑡 is computed with kernels 𝐾
and growth functions𝐺 defined by a spe-
cific parameter configuration sampled in
Lenia’s parameter space. A small portion
of the growth is then added to activa-
tions 𝐴𝑡 to give the next state 𝐴𝑡+𝑑𝑡 . (b)
Flow Lenia update rule. Affinity map
𝑈 𝑡 is computed as in Lenia. The flow 𝐹𝑡

is given by combining the affinity map
and concentration (i. e. activations) gradi-
ents. Finally, the next state is obtained by
“moving” matter in the CA space accord-
ing to the flow 𝐹𝑡 using the reintegration
tracking method [195].

update rule and so the properties of emerging creatures, which should
in turns enable multi-species simulations. Such simulations might set
the stage for evolution to occur in populations of patterns each with
their own update rule. However, achieving it in CA like Lenia is still an
open-problem.

In this section, we present Flow Lenia, a variant of the original Lenia
system which we briefly introduced in Section 3.2.3 of this manuscript.
Flow Lenia stems from the idea that adding mass conservation to the Lenia
system, could solve many of the aforementioned challenges. Indeed,
such a constraint could (i) constrain emerging creatures to spatially
localized ones, (ii) allow for the design of multi-species simulations and
(iii) provide an important evolutionary pressure. After briefly explaining
how Flow Lenia integrates mass conservation within the Lenia dynamics,
we will see why we believe it opens promising perspectives toward
achieving open-ended evolution (OEE) in such artificial substrata.

Flow Lenia Model As illustrated in Figure 7.8, the main idea of Flow
Lenia is to reinterpret the output of the growth update 𝑈 𝑡 = 𝐺(𝐾 ∗ 𝐴𝑡),
which is originally used to create new mass (or remove existing one), as
an affinity field 𝐹𝑡 ≈ ∇𝑈 𝑡 which is instead used to move the distribution of
“matter” toward high affinity regions in space. In practice, Flow Lenia
uses the reintegration tracking method [195], which is fully described
in Appendix Subsection E.1.2. Intuitively, one can see Flow Lenia as a
grid-based approximation of a particle system (with infinite number of
particles) and which has the property of conserving the total mass. Thus,
Flow lenia can be seen as a new kind of model at the frontier between
continuous CA and particle systems18. Flow Lenia is implemented in 18: A particle model directly inspired

by the Flow Lenia formulation has been
recently proposed in Mordvintsev et al.
[199]

JAX, and we refer to the notebook for playing with the system.

The role of mass conservation in the emergence and exploration of
artificial creatures The first interesting result in Flow Lenia is that it
is much easier to discovery SLPs that exhibit interesting and complex
behaviors than in the original system. In fact, by performing a simple
random exploration of the system19, we can observe that most of the 19: Explored parameter ranges and

hyper-parameters are given in Table E.1patterns generated in Flow Lenia are SLPs (see Figure 7.9). This suggest
that mass conservation constrain (almost all) emerging patterns to spa-
tially localized ones, though some configurations still lead to scattered
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matter. While some of the emerging SLPs tend to be static ones, dynamic
patterns are also quite common in Flow Lenia and several interesting
dynamics can be found, as illustrated in Figure 7.10-a. We also found
that multi-channel creatures often show more complex dynamics and
patterns with very modular shapes where each channel seems to occupy
a different role (Figure 7.10-a bottom). We also found that Flow Lenia
update rule parameters can be easily optimized to generate SLPs with
desired behaviors. This is a difficult task in the original Lenia as SLPs are
in fragile equilibrium (can easily vanish or explode), requiring advanced
optimization methods like curriculum learning and gradient descent (as
proposed in Section 7.2). In Flow Lenia, the spatial localization constraint
is intrinsic to the system making the emergent behaviors more stable and
much easier to optimize. Using simple evolutionary strategies [283] to op-
timize the update rule parameters20 and the initial configuration (𝐴𝑡=1), 20: we optimized the Flow Lenia update

rule with different number of kernels
and either 1 or 2 channel

we have been able to successfully find good solutions for 4 different
tasks21: directed motion, angular motion, navigation through obstacles

21: Implementation details can be found
in Appendix Subsection E.2.2and chemotaxis. Obtained creatures are shown in Figure 7.10-b.

Parameter localization: unlocking possibilities for multi-species sim-
ulation One very interesting feature of Flow Lenia is that it enables
the integration of the parameters of the CA update rules within the
CA dynamics, making them dynamic and localized. Intuitively, this
because we can now “attach” a vector of parameters to the matter lo-
cally modifying how it behaves and let it flow with it22. This allows 22: Additional details on how this is im-

plemented in practice are given in Ap-
pendix Subsection E.1.3

for multi-species simulations, with locally coherent update rules that
define properties of the emerging creatures as shown in Figure 7.11-a
(where all creatures patches are initialized with different parameters).
We can see that the creatures, although in the same CA, display different
morphologies even though they have been initialized with the same
pattern. We also ran larger scale simulations (e.g. 1024 × 1024 worlds)

(a) Original Lenia (b) Flow Lenia

Figure 7.9.: Patterns generated from randomly sampled parameters sets (no cherry picking) in Lenia (a) and Flow Lenia (b). Parameters
used for both systems are the same (i. e. each 10 × 10 cell corresponds to one parameters set). Initial patterns 𝐴𝑡=1 are set with a 40 × 40
patch with matter drawn from uniform distribution in the center of the grid and no matter everywhere else. Parameters of the update
rule are sampled uniformly within the ranges detailed in Appendix Table E.1.
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(a) Creatures found by Random Search (b) Creatures found through Optimization

gyrating SLP snake-like pattern RD pattern Directed Motion Angular Motion

Timelapse Motion with Obstacles Chemotaxis

Figure 7.10.: Example patterns produced in Flow Lenia with simple search strategies. (a) Examples of dynamical behaviors discovered
with random search. (a-top) Gyrating SLPs, snake like patterns with complex motion emerging from attraction/repulsion dynamics, and
dividing and merging dots resembling reaction-diffusion patterns are frequently observed. (a-bottom) Timelapse shows a 2-channels
creature displaying complex division patterns and interesting modular creatures whose characteristics change depending on their
total mass while being of the same “kind”. (b) Best performing creatures discovered found by the 4 optimization tasks detailed
in Appendix Subsection E.2.2. The first creature, found in 2-channel Flow Lenia, shows directional movement which results from
attraction/repulsion dynamics between the 2 channels. The second creature exhibit internal dynamics leading it to periodically make
180° turns while moving in straight line the rest of the time. The third creature, was found to display directional movement despite
encountering obstacles in its way, akin to what was done in [•5] but where obstacles are implemented here as adding a strong repelling
flow. Finally, the last creatures was successfully trained for sensing a “chemical” gradient and climbing it towards its maximum.

using parameter embedding as shown in Figure 7.11-b. Such a simulation
display very interesting dynamics on the large scale where some “species”
can take over large parts of the world by contaminating other species
before reaching more stable states. Also, we can see the emergence of
coherent creatures composed of different parameters where one of those
will compose a sort of membrane around a nuclei composed by different
parameters (see green and pink creature on bottom left at the end of
simulation). Such a pattern can be seen as a form of symbiosis.

Physical constraints in the environment: towards open-ended evolu-
tion? Finally, while parameter embedding could already lead to the
emergence of intrinsic evolutionary processes where parameters would
compete for available matter, we can believe that adding intrinsic selective
pressures in the form of environmental constraints (or opportunities)
in the environment could bootstrap evolution. Whereas environment
design is poorly addressed and quite challenging in cellular automata
systems, we believe that it is crucial to study the emergence of agency
and cognition in those systems as argued in Godfrey-Smith [284]. To that
end, we explored two types of environmental constraints23: changing 23: Implementations details are pro-

vided in Appendix Subsection E.1.4“temperature” (Figure 7.12a) or introduction of “food” resources that
creatures need to collect in order to replenish their own constantly decay-
ing pool of resources (Figure 7.12b). In Figure 7.12a, we show an example
(single specie) simulation in Flow Lenia where temperature is linearly
increasing from left to right, showing very different phases of the systems.
More interestingly, patterns at the frontier between the Turing-like phase
(center) and the equilibrium phase (right) are much more dynamic and
display unpredictable dynamics suggesting a critical regime. In Figure
7.12b, we show an example multi-species simulation with random set of
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(a) Example multi-species simulation

(b) Larger-scale multi-species simulation

Figure 7.11.: Multi-species simulations. (a) Sample of a multi-species simulation with random set of parameters and initialization
patterns, where color code for parameters. (b) Timelapse of larger scale multi-species simulation. World is a 1024 × 1024 grid initialized
with 144 creatures with distinct parameters represented by colors. We simulate 200k timesteps and use softmax sampling as the mixing
rule and random mutations every 500 steps (see website for videos).

parameters, parameter embedding and food, leading to the emergence of
several interesting patterns. First, we observe that some creatures, while
not having trained for it, are able to go towards nearby food sources and
consume it. We can hypothesize that creatures with such a capability will
survive (and grow) while other will not leading to intrinsic evolution.
Quite interestingly, complex patterns can emerge from the change of
mass induced by decay or food consumption. For instance, when growing
after eating, some creatures will divide in two identical creatures, which
is crucial for evolution to occur. On the other hand, mass decay also
leads to interesting dynamics where creatures undergo phase transitions,
changing their shape and behavior, when their mass falls below a certain
threshold which can lead them to adopt foraging behavior while being
initially static.
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(a) Varying temperature from “cold” (left) to “hot” (right)

(b) Adding “food” resources (blue) in the environment

Figure 7.12.: Environmental constraints
in the Flow Lenia system. (a) Effect of
changing temperature in Flow Lenia,
where temperature is linearly increasing
from left to right. (b) Timelapse of sim-
ulation with parameter embedding and
food (in blue) showing division events
(highlighted with boxes).

7.6. Discussion and Future Work

In this chapter, we proposed a method combining IMGEP diversity
search with gradient descent and curriculum-driven exploration (Sec-
tion 7.2) and demonstrated its efficiency for learning the update rule
and initialization state, from scratch in high dimensional parameters
space, leading to the systematic emergence of different robust agents
with sensorimotor capabilities (Section 7.3). More broadly, we believe
that the set of tools presented here can be useful in general to discover
parameters that lead to complex self-organized behaviors. Moreover,
we have extensively analyzed the discovered self-organized agents by
proposing a battery of quantitative and qualitative tests to characterize
the robustness of the discovered agents. These tests demonstrated that
the discovered sensorimotor agents not only exhibit individuality and
locomotion, but they are also capable of strong adaptivity and gener-
alization to out-of-distribution perturbations (Section 7.4). Finally, we
have introduced Flow Lenia, an extension of the original Lenia system
which opens many interesting perspectives toward open-ended evolution
(OEE) both for defining physical constraints in the environment (hence
opportunities for emergence) and for having diversity and evolutionary
activity emerge within the CA (Section 7.5).

Something noteworthy to reiterate in closing this chapter, is that for
all the discovered sensorimotor behaviors presented in the Lenia
system the computation of decision is done at the macro (group) level,
showing how a group of simple identical entities can make “decision”
and “sense” at the macro scale through local interactions only, and
without a clear pre-existing notion of body/sensor/actuator. Seeing
the discovered agents, it can even be hard to believe that they are in
fact made of tiny parts all behaving under the same rules.

Lot of exciting roads remain to be taken in order to fully capture the
value of complex self-organized systems such as (Flow) Lenia, and for the
development of automated (AI-based) tools to assist us on that road.

A major path to explore is about the detection of agency and cognition in
such systems where everything is emergent with no predefined notion of
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individuals. Several of the analyses we make in this work are empirical
estimations or subjective. Information theoretical measures of concepts
like individuality, autonomy and agency [263, 274, 285] might offer
useful tools to that end, although they remain difficultly applicable in
practice.

Another interesting path to explore is about the engineering of subparts
of the environmental dynamics with functional constraints. Environment
design is poorly addressed and quite challenging in cellular automata
systems, and more advanced environment design strategies might be
crucial to study the emergence of agency and cognition in those systems
[268, 284]. For instance, introducing the need to develop some kind of
memory to anticipate future perturbations might enable the search for
more advanced agent behaviors such as basic forms of learning. Beyond
individual capabilities, we could even wonder under what conditions one
could observe the emergence of an open-ended evolutionary process [76]
directly in the environment, without any outer algorithm, resulting in the
emergence of agents with increasingly complex behaviors. This would
be like building the physical rules of an “Universe” and letting agency
and evolution emerge from the interactions between parts. With the Flow
Lenia formulation, we have shown how the integration of the update rule
parameters within the CA dynamics enable the coexistence of multiple
species within the same simulation. Such a feature represent an important
step towards the design of emergent microcosms [286] in which could
emerge intrinsic, maybe open-ended, evolutionary processes through
inter-species interactions. However, demonstrating (and evaluating) the
emergence of intrinsic evolutionary processes within such system appears
as a difficult task. To achieve this, we might need to use an optimization
process to evolve all the environmental rules instead of pre-specifying
some of them by hand. More broadly, having more systematic ways to
generate environmental rules could take us closer to the fundamental
scientific quest of designing open-ended artificial systems with forms of
functional life and agency “as it could be”.

Despite those fundamental scientific questions, future work might also
consider broader applications of this work for biology and AI.

In biology, inferring low-level rules to control complex system-level
behaviors is a key problem in regenerative medicine and synthetic bio-
engineering24 [13, 14]. In this regard, cellular automata offer an interesting 24: In the next chapter, we investigate

these questions in biological models of
gene regulatory networks

framework to model, understand and control the emergence of growth,
form and function in self-organizing systems. However, they remain
abstract models: entities in the CA exist on a predefined grid topology
whereas physical entities have continuous position and speed ; states
in the CA are well-defined whereas it is not clear where and how infor-
mation is processed in living organisms; rules in the CA operate at a
predetermined scale whereas real-world processes operate at nested and
interconnected scales.

In AI, with the recent rise of web-deployed machine-learning models
including large language models [287, 288], we are also faced with an
increasing blurring of boundaries between the AI and the rest of the
“environment” (human end-users and the web itself). It is hence central
to understand how agency and cognition might arise in those systems,
how we can detect it and how we can interact with them despite the
extremely large input and behavioral spaces involved. In this regard we
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believe that abstract environments like the one considered in this work
be useful to better inform the debate in much bigger models, as they
are rich enough to support emergent agential behaviors while simple
enough to study those questions explicitely. Far from trivial, transferring
insights from the considered artificial systems to real biological systems
or to very large AI systems is an exciting area of research with a potential
broad range of medical and societal applications [16, 61].
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What is the aim of this chapter? As a second applicative use case, this
chapter demonstrates how the curiosity-driven exploration algorithms,
even in their simplest version, can also be used to assist biologists mapping
the space of possible behaviors of gene regulatory networks (GRNs). We
discuss the several implications that the discovered “behavioral catalogs”
can in turn have for fundamental research questions in basal cognition,
and for practical applications in biomedicine and bioengineering.

How is this chapter organized? In Section 8.1, we motivate and provide
some background on the problem. In Section 8.2 we formalize a theoretical
perspective on GRNs as agents navigating a problem space. In Section 8.3, we
introduce and showcase the effectiveness of the proposed curiosity-driven
exploration algorithms at revealing the spectrum of reachable states that
GRNs can exhibit via minimal and non-genetic interventions. Then, in
Section 8.4, we further characterize the robustness of the discovered
behaviors via a battery of empirical tests. Finally, in Section 8.5, we
present preliminary experiments regarding potential applications and
reuses of these discoveries for biological research.

Figure 8.1.: Overview of the proposed framework. (a) MOTIVATION: To better understand navigation competencies in unconventional
organisms solving problems in unconventional spaces, it is essential to construct comprehensive “behavioral catalogs” for these novel
entities, which in turn requires sophisticated exploration methods to discover the extent of possible behaviors. Images are taken from [66,
289–293]. (b) EXPERIMENTAL DESIGNS: We formalize GRN behavior as a navigation task and propose to investigate it by defining
abstract and observer-dependent “problem spaces” that we use to organize the observed biological behaviors and their exploration. (c)
AUTOMATED EXPERIMENTATION: Pseudo-code of the curiosity-driven goal exploration process that we use to automate the discovery
of behavioral abilities that GRNs can exhibit in behavior space. (d) EMPIRICAL TESTS: We use a battery of empirical tests to identify the
robust goal states of the systems, i.e. the one that can be attained under a wide variety of perturbations. (e) PERSPECTIVES: We explore
several potential reuses of the discovered “behavioral catalogs” across evolutionary biology, biomedicine and bioengineering contexts.
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8.1. Introduction

Developing methods to recognize, map, predict, and control the com-
plex, context-sensitive behavior of chemical and genetic networks is an
essential frontier of research in science and engineering. These systems,
such as gene regulatory networks and protein pathways, are known
to be instructive drivers of embryogenesis, cell behavior, and complex
physiology [294–296]. Understanding the control properties of these
systems is critical not only for the study of evolutionary developmental
biology [297–301], but also for comprehending and intervening in various
disease states, including cancer [302–304], and for the construction of
novel synthetic biologicals in bioengineering contexts [305–309].

Thus, much work has gone into mathematical modeling and computa-
tional inference of both protein pathways and gene regulatory network
models [310–313], resulting in the development of large collections of
publicly-available models such as the Biomodels database [314, 315]. Yet,
despite the wealth of available models, scientists still largely lack an effec-
tive understanding of the range of possible behaviors that these models
can exhibit under different initial conditions and environmental stimuli,
and are in search of systematic methods to reveal and optimize those
behaviors via external interventions. The full extent of the computational
and control properties of such networks are not yet well-understood;
while dynamical systems theory has been extensively used to characterize
their behavior [316, 317], it is not known what other sets of tools might
reveal and exploit interesting properties of this ubiquitous biological
substrate. The field of diverse intelligence1 has suggested that strong 1: also known as basal cognition

functional symmetries between pathway networks and neural networks
could imply the existence of learning and other kinds of behavior in this
unconventional substrate [318–322]. Specifically, it has been hypothesized
that gene regulatory networks (GRNs) and other molecular networks
could be endowed with surprising navigation competencies allowing
them to robustly reach diverse homeostatic or allostatic states despite a
wide range of perturbations [323–326]. Exploiting these innate competen-
cies could provide a promising roadmap for the design of interventions
in regenerative medicine and bioengineering contexts [327, 328].

However, significant challenges remain in practice for the exploration and
behavior-shaping of these innate competencies, which presents a barrier
to the use of these ideas in regenerative medicine and bioengineering.
Because of the non-linearity and redundancy in pathway dynamics,
passive exploration strategies such as random screening are likely to
either fail in uncovering the full range of potential behaviors or require
time and energy beyond the available resources. Here, we formalize and
investigate a view of gene regulatory networks as agents navigating a
problem space. We propose a framework and automated tools, leveraging
(1) curiosity-driven goal-directed exploration algorithms coming from
recent advances in machine learning and (2) a battery of empirical tests
inspired from behaviorist approaches, for mapping the repertoire of
robust goal states that GRNs can reach within this problem space despite
various perturbations. A key novelty of this work is the use of AI-based
exploration tools to map the space of possible behaviors in biological
networks, which opens interesting avenues for efficient mapping of
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unfamiliar system behaviors, yielding transferable insights for diverse
problem-solving once such a map is discovered.

The challenge of exploring and mapping spaces of complex and self-
organized behaviors appears in many fields such as diverse intelligence
in biological systems, minimal active matter, and robotics: many systems
in these areas provide a rich space of evolved, engineered, and hybrid
systems that offer many of the same fundamental problems of behavior
and control regardless of specific composition or provenance [145]. These
span many orders of spatio-temporal scale, from molecular assemblies to
swarms of complex organisms [321, 329–331]. One set of approaches seeks
to develop tools to identify the optimal level of control, ranging from
physical rewiring to various methods from cybernetics and behavioral
sciences, to reveal and exploit the native competencies and computational
capacities of these systems [305]. Specifically, it is increasingly realized
that the level of competency (and thus the appropriate level of control)
often cannot be guessed by inspection of a system’s components, and
that its position on a spectrum ranging from passive matter to complex
metacognition must be determined empirically [45, 145, 332, 333]. This
is critical not only for fundamental understanding of evolution of bodies
and minds [319, 334–338], but also for the design of interventions in
biomedicine and synthetic morphology contexts [13, 14]. Yet, a common
property in many of these systems is that it is expensive in time and
energy to conduct experiments: empirical exploration needs to be made
under limited resources. Thus, methods for automating efficient explo-
ration and discovery of a diversity of behaviors in these spaces may be
widely useful. As explained below, we will here leverage methods from
developmental artificial intelligence initially designed for the specific
purpose of exploring a diversity of behaviors using a limited budget of
experiments.

One especially fascinating set of systems concerns cellular molecular
pathways, or gene regulatory networks (GRNs). In the lab or clinic, these
pathways are usually treated as simple machines, with intervention
strategies focusing on rewiring their structure to achieve a desired out-
come: adding or removing nodes (gene therapy), or changing connection
weights (by targeting promoter sequences or protein structures) [339–
342]. However, the emergent, generative nature of development and phys-
iology ensure that it is often very hard to know which genes/proteins
to modify, and how, in order to reach a complex desired system-level
outcome [343]. Moreover, the responses of cells and tissues to drugs
changes over time, making it even more difficult to infer specific inter-
ventions that will induce a stable improvement in pathway state in vivo.
Indeed, with the exception of antibiotics and surgery, most available
treatment modalities do not solve the underlying problem – they seek
to mitigate symptoms, which recur (or expand) once the drug is with-
drawn. Next-generation solutions, which would offer true healing (stable
correction), require an understanding of the homeostatic and allostatic
properties of networks with respect to how they traverse the space of
transcriptional, physiological and anatomical states. An understanding
of the behavior policies of networks as they dynamically navigate these
problem spaces is essential for predicting what stimuli can be used
to re-set their setpoints and guide them to autonomously maintain a
healthy state. In the language of behavioral neuroscience, this strategy
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corresponds to exploiting their native robustness, decision-making, and
navigational competencies to induce predictable, long-lasting changes in
functionality.

Significant challenges remain in revealing and controlling the range of
behaviors that can self-organize in these cellular and molecular pathways.
To characterize steady-state concentrations and responses to small pertur-
bations, conventional methods rely on piecewise-linear approximation
of the system behavior [344–348], but struggle with higher-dimensional
systems or wider parameter ranges which limits their applicability [349].
Other works have proposed the porting of tools from network control
theory to identify sets of control nodes that can drive the network behav-
ior toward target steady states [350]. These methods typically exploit the
network topology [350–354] or regulatory structure [355–357] to identify
control strategies based on permanent knockout/activation of genes or
temporary perturbations, the latter being preferable in clinical context.

However, these approaches often require prior knowledge of target at-
tractor states or are limited to Boolean network models. Other works have
explored the use of machine learning tools, such as evolutionary search
[358–360] and gradient-descent optimization [361, 362], for controlling
continuous ODE biomolecular networks with high-dimensional parame-
ter spaces, mainly in the context of synthetic circuit engineering [363, 364].
While providing powerful optimization tools, these approaches tend
to focus on rewiring network structure and connectivity. Moreover, the
choice of a predefined fitness function and parameter range initialization
is not only critical to the success of optimization [359] but largely restricts
exploration of the behavior space [362].

In contrast, an alternative line of research proposes exploring and lever-
aging the inherent molecular mechanisms of adaptivity and robustness
in cellular pathways as a promising approach for drug interventions
that do not rely on genomic editing or gene therapy [323, 365]. Recently,
a broad, substrate-independent behavior science perspective suggests
novel properties of gene regulatory networks (GRNs) and other biolog-
ical networks [203, 318]. This perspective views GRNs as agents that
convert activation levels of specific genes (inputs) to those of effector
genes (outputs), with intermediate nodes in between, leading to strategies
for controlling network behavior based on a specific history of inputs
(experience) rather than through network rewiring. Notably, the concept
of training a chemical pathway using pulsed input stimuli (node activa-
tion or suppression drugs) has been formalized, and several networks
have been analyzed to establish a taxonomy of memory types found in
biological GRNs and pathways [366, 367].

Here, building upon recent research [325, 366, 367], we take the next step
and investigate a view of gene regulatory networks as agents navigating
a problem space toward target goal states with varying degrees of
competency (Figure 8.1-a). We seek to implement a definition of goal
that abstracts it from conventional associations with human or other
advanced brains and facilitates the use of tools from cybernetics, behavior
science, and control theory to understand broader aspects of biological
regulation. Here we use the term “goal” state to refer to a system’s steady
state, which it expends effort to reach despite interventions or barriers - a
definition appropriate to the study of basal (or minimal) proto-cognitive
regulatory systems.. Our definition of goal does not imply “purpose”
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(high-level goals where an agent has the meta-cognition to think about
having goals and what they might be), and we do not attribute high-level
competencies (such as re-setting one’s own goals) to GRNs.

Our particular focus lies in investigating two types of navigation compe-
tencies: versatility, which refers to the capacity to reach diverse goal states
under different interventions, and robustness, which refers to the ability
to reach a goal state despite various perturbations. The primary scientific
question of this work is: What is the repertoire of robust goal states that
a GRN can actively reach through minimal and non-genetic interventions
within a navigation task context, and can we develop systematic methods
and automated tools to aid scientists in discovering this repertoire?

To address this question in practice, our experimental framework revolves
around the definition of “problem spaces”, which we use as tractable
components of the GRN’s overall state space (Figure 8.1-b), and on a
set of methodological contributions which we organize around three
sub-questions:

1. Automated discovery of diverse behavioral abilities with autotelic curiosity

search (Figure 8.1-c): What is the range of possible goal states that
GRNs can exhibit and how can we devise efficient exploration
strategies to automatically identify these goal states? Defining goal
states as attractor states of the underlying gene regulatory network,
we show that traditional screening methods can be very inefficient
in discovering the range of possible goal states. To address this, we
propose to use intrinsically-motivated goal exploration processes
(IMGEP) [57, 368], a recent family of diversity-driven machine
learning approaches also known as autotelic curiosity search which
was recently shown to form a useful discovery assistant for revealing
the behavioral diversity of unfamiliar systems such as chemical
oil-droplet systems[64], physical non-equilibrium systems [139]
and models of continuous cellular automata [•1, •3, •5].

2. Evaluation of the navigation competencies (Figure 8.1-d): How compe-
tent is the GRN, in terms of robustness to perturbations, in attaining
the diverse previously-identified goal states? Prior studies have of-
fered definitions of robustness in biological networks, characterized
as the degree of variation in functionality [369] or phenotypic trait
[370] under specific environmental or genetic changes. However,
these studies often consider a predefined functionality and random
perturbations in network parameters [360, 371, 372] or specific
gene knockouts [373]. Environmental perturbations on the other
hand are often limited to random variations in initial conditions
within a predefined range [349, 374]. Here, inspired from behav-
iorist approaches, we test hypotheses about non-genetic resistance
with respect to various navigation competencies that living agents
often exhibit, and that do not require structural changes of network
properties or connectivity. Those tests assess the system’s ability
to maintain robustness despite various perturbations encountered
during traversal, including developmental noise in gene expres-
sion levels, sudden “pushes” within transcriptional space, and the
energy barriers or “walls” acting as force fields in the environment.

3. Potential reuses of the discovered “behavioral catalog” and framework

(Figure 8.1-e): Can the constructed behavioral catalogs be useful
for fundamental research and practical therapeutic applications,
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and can the framework be easily applied to other systems and
problem spaces? We propose that the discovered competencies
may provide valuable insights for understanding evolvability and
developmental robustness, and provide a fertile source for the
design of interventions in biomedicine and synthetic morphology
contexts. We also suggest that the framework and automated tools,
which are observer-focused and substrate-independent, could be
transposed to other systems and problem spaces.

The overall framework is summarized in Figure 8.1. Applying it on a
database of 30 continuous (ODE) models from the Biomodels website,
consisting of a total of 432 systems defined as GRN model-behavior space
tuples, revealed several interesting insights. First, results suggested that
most of the surveyed systems are capable of reaching a surprisingly wide
spectrum of steady states depending on their initial state. Interestingly,
random screening strategies were not able to reveal this diversity of
reachable states (or at least not in a sample efficient way), confirming
the need for more advanced exploration strategies like curiosity search.
Secondly, among the discovered steady states, we were able to identify
several robust goal states i.e. ones that the system consistently reaches
despite various perturbations during traversal of transcriptional space.
Altogether, these findings seem to suggest that cell phenotype and
functionality could be the result of a multi-step program [351] that
could be flexibly and robustly reprogrammed by appropriate stimuli
[45]. Finally, we demonstrate possible reuses of this “behavioral catalog”
for comparing the network’s competencies across different classes of
organisms, as well as for the design of non-genetic drug interventions.
We also explore an alternative reuse of the framework to reveal new kinds
of reachable “goals” in synthetic gene networks, suggesting alternative
strategies for the design of gene networks in a bioengineering context.

(a) Interactive Paper and Tutorials

(b) Codebase

Figure 8.2.: Scan (or click on) the above
QR codes for accessing the paper’s com-
panion website and github repository

An interactive executable version of the paper, as well as step-by-step
tutorials and notebooks can be found on the project website. The full
codebase of the proposed automated experimentation pipeline is written
end-to-end in JAX, a high-performance numerical computing library that
we leverage for parallel experimentation and computational speedups of
the ODE models time-course simulations.

8.2. Generalizing GRN Behavior as a
Navigation Task

The GRNs analyzed in this study are biological pathway networks taken
from the BioModels repository [314, 315]. The term “GRN” is used broadly
to include protein interaction, gene regulatory, and metabolic networks.
In these mathematical models, the dynamic interactions between nodes
of the network (molecular species) are modeled with a system of ordinary
differential equations, enabling to quantitatively simulate time-course
behavior (model rollouts) and observe the dynamics of node activities
over time (Figure 8.3-a). Here, following a terminology which aims to
integrate concepts from dynamical complex systems with concepts from
behavioral sciences, we propose to conceptualize GRN behavior as a
navigation task (Table 8.1). Model rollouts are viewed as “trajectories”

https://developmentalsystems.org/curious-exploration-of-grn-competencies
https://github.com/flowersteam/curious-exploration-of-grn-competencies
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Table 8.1.: Glossary of terms used in this paper, with the proposed isomorphism which generalizes concepts from dynamical complex
systems and behavioral sciences under a common navigation task perspective.

Dynamical Systems
Terminology

Behavioral Science
Terminology Proposed Isomorphism

Navigation Task
Terminology

system: a set of interconnected
elements that interact to produce
emergent behavior

organism: a living being that re-
sponds to stimuli and adapts to
its environment

Both are collections of lower-level
elements that interact to produce
emergent behavior and can adapt
at the system level

agent or GRN

phase-space trajectory: set of
states taken by the system when
starting from one particular ini-
tial condition

behavioral trajectory: the se-
quence of states that an organism
exhibits in response to stimuli

Both represent the sequence of
states or behaviors that a system
or individual experiences over
time

trajectory

initial condition: initial state of
a system’s variables and parame-
ters that condition its dynamics

stimuli: events that might (or
might not) trigger a response in
an organism

Both represent incoming varia-
tions that set a system or organ-
ism in motion

intervention or pertur-
bation

critical parameter: a parameter
or condition that, if changed, can
cause a system to undergo a qual-
itative change or phase transition

salient stimuli: stimuli that are
particularly relevant or meaning-
ful to an organism, either because
they are associated with reward
or punishment or because they
are novel or unexpected

Both represent the incoming vari-
ations that have a significant im-
pact on a system’s steady-state or
organism’s response

effective intervention

steady-state (or attractor): a sta-
ble state (or set of states), towards
which the system tends to evolve
over time

observed response: outcome or
endpoint of a behavioral trajec-
tory towards which an organism
converges

Both represent the endpoint that
a system or organism is moving
towards

reached endpoint or
goal

robust attractor: stable attractor
toward which the system tends to
evolve under various initial con-
ditions and perturbations

target goal: it is assumed that
an organism engages in a goal-
directed manner when it exhibits
new ways or actions to achieve a
similar outcome when faced with
novel circumstances

Both represent a stable endpoint
or goal that the system success-
fully attains under various per-
turbations

robust goal

controllability: degree to which
the system’s dynamics (and re-
sulting steady states) can be con-
trolled or manipulated

trainability: degree to which an
organism’s behavior can be mod-
ified or shaped by experience or
conditioning

Both represent the capacity of a
system or individual to be influ-
enced or changed by controlled
interventions

versatility

in transcriptional space where network steady states are “goal states”
(endpoints) that the “agent” (GRN) can reach with varying levels of
competencies. As for living agents, these competencies may range from
unstable locomotion patterns to more advanced forms of goal-directed
behavior like path following, obstacle avoidance, or even forms of spatial
memory and foresight. In this paper, we are particularly interested in
investigating two forms of navigation competencies that we refer to
as versatility, the capacity to reach diverse goal states under various
interventions, and robustness, the capacity to reach a goal state despite
various perturbations. Note that versatility and robustness are studied
with respect to different sources of incoming environmental variation,
respectively interventions and perturbations.

To investigate these competencies in practice, our experimental frame-
work is based on the definition of “problem spaces”, which include the
observation space (O), behavior space (Z), intervention space (I) and
perturbation space (U) as defined in Table 8.2. To be consistent with
our navigation task terminology introduced in Table 8.1, we refer to a
behavior 𝑧 as the reached “goal state” of a GRN trajectory. However
these “goals” may lie on a continuum between complete robustness
and high sensitivity, and our primary interest lies in identifying robust

goals of the system. Whereas several choices could be made for the
intervention space I and perturbation space U, we intentionally consider
minimal and non-genetic interventions to investigate the “native” goal
states of the GRN, and environmental obstacles to investigate for navigation
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Table 8.2.: Problem spaces used in this study

Problem Space Generic definition Specific definition in this study

Observation Space (O) Space of raw observations made during
the GRN model rollout to measure its
state or behavior

Records node activities over time as 𝑜 =

(𝑦(0), . . . , 𝑦(𝑇)), where y(t) is an n-dimensional vector
(n = number of nodes) and T is the measured reaction
time

Behavior Space (Z) A projection of the observation space
used by the experimenter to encode the
“goal states” of a model rollout into a
tractable (lower-dimensional) space

Encodes the trajectory endpoint of a model rollout.
Represents a cell phenotype defined by the state values
of some nodes (relevant biological markers), such that
𝑧 = (𝑦𝑖1(𝑇), · · · 𝑦𝑖𝑚(𝑇)) (we use m=2 in this study for
simplicity and visualization)

Intervention Space (I)a A space where interventions represent
controlled sources of incoming variation
that the experimenter can exert on the
GRN model rollout to drive it toward
novel or targeted states

Sets the initial state 𝑖 = (𝑦1(0), . . . , 𝑦𝑛(0)) of a model
rollout. Defined as a hyper-rectangle 𝐼 ⊆ ℝ𝑛 where the
boundaries are 20 times larger than the min and max
values taken by the respective nodes from default initial
conditions

Perturbation Space (U) A space where perturbations represent
external sources of incoming variation,
used by the experimenter to characterize
the robustness of a given goal state

Includes three classes of (stochastic) perturbations in-
cluding noise perturbation𝑈𝑛 , push perturbation𝑈𝑝 ,
and wall perturbation𝑈𝑤

a The intervention space 𝐼 is equivalent to what we referred to as the parameter space Θ in the previous chapters

competencies classically observed in other living agents. Examples of
simulations, interventions, and perturbations are shown in Figure 8.3.

Then, a typical analysis using our framework relies on a 2-step procedure,
detailed in the subsequent sections. First, to assess the versatility of the
GRN, we define an exploration strategy which is in charge of organizing
the sequence of interventions 𝑖1 , . . . , 𝑖𝑁 to drive the system toward a
maximally diverse set of reachable endpoints {𝑧𝑘 ∈ 𝑍}𝑘=1,𝑁 , while using
a limited budget of experiments 𝑁 . Secondly, to assess the robustness of
the discovered goal states {𝑧𝑘 ∈ 𝑍}, we conduct a battery of empirical
tests to characterize their degree of sensitivity to novel perturbations,
with a fixed experimental budget of P perturbations per selected behavior
z. At the end of this 2-step procedure, we obtain the “behavioral catalog”
(H) of the studied GRN, which includes the history of experiments
𝐻 = {

(
𝑖𝑘 , 𝑜𝑘 , 𝑧𝑘 , {

(
𝑢𝑝 , 𝑜𝑝 , 𝑧𝑝

)
, 𝑝 = 1...𝑃}

)
, 𝑘 = 1 . . . 𝑁}.

Following this framework, the behavioral catalog is constructed for a
database of 30 biological networks consisting of a total of 432 systems,
where a system is defined as a (GRN model, intervention space (𝐼),
behavior space (𝑍) tuple, as described in Appendix Section F.2 and Table
F.1. These catalogs provide valuable empirical observations and insights
into the navigation competencies of the studied GRNs, particularly in
their ability to consistently achieve diverse goal states under various
tested perturbations. Statistical analyses of the results are presented
in Figure 8.6, Figure 8.8, and Figure 8.4, and specific results for the
RKIP-ERK signaling pathway [375] are shown in Figure 8.3, Figure 8.5,
Figure 8.7, and Figure 8.9.
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 endpoint B

 (t=1000)

new init state 

 A'(t=0)

same endpoint B

 (t=1000)

init state 

 A (t=0)

noise

same endpoint 

 B'(t=1000)
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Figure 8.3.: Illustration of the experimental setup and chosen problem spaces on an example GRN model which has 10 nodes and models
the influence of RKIP on the ERK Signaling Pathway [375]. (a) Time-course evolution of the different nodes 𝑦1 , . . . , 𝑦10 (one color per
node) when starting from the default initial conditions (as provided in [375]). The observation captures the states taken through time
𝑜 = [𝑦(𝑡 = 0), . . . , 𝑦(𝑡 = 𝑇)] where 𝑦 = [𝑦1 , . . . , 𝑦10]. (b) Corresponding trajectory in transcriptional space (phase space), for two target
nodes (ERK, RKIPP_RP), from 𝑡 = 0 (A, in red) to 𝑇 = 1000 seconds (B, in cyan). We can see that the trajectory converges to endpoint B
in less than 100 seconds, and then stay there. The behavior (or reached goal state) is the endpoint 𝐵 = [𝑦𝐸𝑅𝐾(𝑇), 𝑦𝑅𝐾𝐼𝑃𝑅𝑃(𝑇)], where
T is chosen big enough to ensure convergence. (c) The intervention is setting the initial state of the system trajectory (for all nodes):
𝑖 = [𝑦1(𝑡 = 0), ..., 𝑦10(𝑡 = 0)]. (d-e) Example of perturbations used in this paper. (d) Noise perturbation, here applied to all 10 nodes every
5 secs until t=80 secs. (e) Push perturbation, here applied to the two target nodes (ERK, RKIPP_RP) at t=3 seconds. (f) Wall perturbation,
also applied to the two target nodes (ERK, RKIPP_RP), here at 10% and 90% of the total distance traveled. Supplementary Figure F.2
shows examples of other possible “drug” or “genome” interventions that can be implemented in the accompanying software, as well as
the possibility to perform interventions (or perturbations) in parallel using batched computations.

8.3. Curiosity Search Uncovers a Diversity of
Reachable Goal States

One advantage of modeling GRN behavior within a tractable behavior
space 𝑍 is that we can then deploy strategies to efficiently discover
and map that space. Notably, recent diversity-driven machine learning
techniques such as Novelty Search [126, 127], Quality Diversity [131, 132]
and Intrinsically-Motivated Goal Exploration Processes (IMGEP) [57,
368] are explicitly designed to efficiently explore a so-called “behavior
space” or “goal space” which is basically a (predefined or learned) model
of the overall state space. In particular IMGEPs, which were originally
developed for the learning of inverse models of highly-redundant map-
ping in robotics context [57], were recently shown to successfully assist
discovery in complex self-organizing systems [•1, •3, 64, 139].

Here, we propose to use an IMGEP to control GRN initial states and
maximize the diversity of discovered endpoints {𝑧 ∈ 𝑍} within a limited
budget of 𝑁 experiments. The IMGEP operates in two phases: initially,
𝑁𝑖𝑛𝑡 interventions are sampled randomly from 𝐼 to populate history
𝐻, then remaining interventions are generated through a goal-directed
process which relies on several key internal models. Those including
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(a) Diversity discovered by random and curiosity search

  

  

(b) Examples where curiosity search is useful 

 

 Model 69, Nodes (0,4) Model 455, Nodes (4,5) Model 647, Nodes (0,6)

(c) Examples where random search is sufficient 

 

 Model 272, Nodes (2,3) Model 240, Nodes (1,4) Model 641, Nodes (1,2)

n=450 n=900n=450 n=900

***

***

Behavior Space Z Behavior Space Z Behavior Space Z

Behavior Space Z Behavior Space Z Behavior Space Z

Figure 8.4.: Curiosity search uncovers a wide spectrum of reachable states in behavior space Z. (a) Diversity of endpoints discovered by
random search (pink) and curiosity search (blue) for the 432 systems. Diversity is measured as the volume of the union of the set of
hyperballs of radius 𝜖 that have for centers the discovered endpoints {z∈ 𝑍} as depicted by the shaded area in (b-c) with 𝜖 = 0.05. (a-left)
Mean and standard deviation curves of the diversity of behaviors discovered throughout exploration (with random search having twice
more experiments n=900). Dots indicate significance (p<0.05) when testing curiosity search (n) against random search (n) in brown, and
against random search (n=900) in black, with a Welch’s t-test. Standard deviation is divided by 4 for visibility. (a-right) Detail of the
diversity obtained in the left plot for all 432 systems at n=450 and n=900, where *** indicate significance (p<0.001). (b-c) Discovered
endpoints at the end of exploration (n=450) by random search (pink) and curiosity search (blue) for 6 example systems of our database.
(b) Examples of systems for which curiosity search is much more sample-efficient than random search in finding a diversity of reachable
states in behavior space Z. (c) Examples of systems with low-redundancy mapping 𝐼 → 𝑍 such that random search in 𝐼 is already quite
efficient in covering behavior space Z, and curiosity search performs equivalently.

a goal-embedding module (𝑅) that encodes observations (𝑜) into the
IMGEP goal space (T), a goal generator module (𝐺) that samples goals
from the goal space based on intrinsic motivation incentives (e.g. to pro-
mote novelty or learning progress), and a goal-conditioned optimization
policy (Π) that generates candidate intervention parameters to achieve
the current goal. Given those internal models, the goal-directed phase
iterates through 1) sample a target goal 𝑔 ∼ 𝐺(𝐻), 2) infer intervention
parameters to achieve that goal 𝑖 ∼ Π(𝑔, 𝐻), 3) conduct an experiment
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with the intervention i, observe the outcome o, and compute the reached
goal 𝑧 = 𝑅(𝑜), and 4) store the tuple (𝑖 , 𝑜, 𝑧) in history 𝐻. Here, we use
the GRN behavior space 𝑍 as the IMGEP goal space T= 𝑍. Hence “target
goal” refers to a goal sampled by IMGEP while “reached goal” refers to
an actual endpoint of the GRN trajectory, discovered by IMGEP while
targeting a potentially different point in 𝑍. Throughout exploration,
the IMGEP dynamically refines its 𝑍-traversal strategy based on the
knowledge acquired by its discoveries. Here we opt for a simple IMGEP
variant such that the exploration process can be seen as performing
novelty search in behavior space 𝑍 [134]. The pseudocode of our IMGEP
pipeline is shown in Figure 8.1-c and details about the internal models
are provided in Appendix Section F.2. The final outcome is a “behavioral
catalog” of the GRN, containing the diverse goal states discovered by
IMGEP: 𝐻 = {(𝑖𝑘 , 𝑜𝑘 , 𝑧𝑘) , 𝑘 = 1 . . . 𝑁}.

We deploy the IMGEP, also known as “curiosity search,” on all 432
systems in the biological network database. Our evaluation focuses on
two related competencies: the IMGEP agent’s ability to empirically reveal
a diversity of reachable goal states in the (GRN, 𝐼, 𝑍) system, referred to
as “discovered diversity,” and the GRN agent’s competency to naturally
reach diverse goal states, referred to as “versatility.” The true versatility
of the GRN is unknown and can only be inferred through empirical
exploration and proxy metrics.

For evaluating diversity, we measure the area covered in 𝑍 by the IMGEP
discoveries using the threshold-coverage metric [71] and compare it
with the area covered by the diversity of a naive random screening
strategy (which uniformly samples interventions in 𝐼). In Figure 8.4,
the diversity discovered by the two exploration variants is shown for
the 432 (𝐺𝑅𝑁,I,Z) systems, where random search is given a budget of
experiments (𝑁) which is twice bigger (N=900) as the one given to the
curiosity-search algorithm (N=450). Interestingly we see that, on average,
at n=290 the curiosity search already significantly outperforms the final
diversity achieved by random search, while only utilizing one-third of its
experimental budget (N=900). Whereas we are dealing with numerical
systems and our codebase allow for efficient and parallel execution,
each experiment still consists of 𝑇

Δ𝑇 = 25000 model steps, where each
step integrates the ODE system. Repeating that 𝑁 times for each of
the 432 systems starts to be very costly, which is why having efficient
exploration strategies is very valuable (and would be even more valuable
when scaling the framework to larger databases). Even more critical, as
illustrated in Figure 8.4-b, it seems that, for some systems, random search
is not able to discover the “latent” regions revealed by the IMGEP in 𝑍,
or it would need an extremely large budget of experiments. On the other
hand, as illustrated in Figure 8.4-c, there are some systems for which
random search is already quite efficient in revealing diverse behaviors in
𝑍, and for which IMGEP performs equivalently.

In fact, the goal-directed strategy of the IMGEP is particularly beneficial
for (GRN,𝐼,𝑍) systems with high nonlinearity or redundancy in their
(𝐼 → 𝑍) mapping, as seen in Figure 8.5 and studied in robotics contexts
[71]. Redundancy implies that many interventions in 𝐼 lead to similar
effects in 𝑍, as illustrated in Figure 8.3 where various interventions and
perturbations converge to the same endpoint. In these systems, random
search will preferentially discover points in areas of high redundancy in𝑍
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whereas the IMGEP, whose exploration is directed uniformly in goal space,
should cover different levels of redundancy equally. In general, when
dealing with large intervention spaces and limited experimental budgets,
curiosity search can be particularly useful for efficiently navigating
𝑍-space.

cluster 1

cluster 2

cluster 3

cluster 4

N/A

cluster 1

cluster 2

N/A

(a) Curiosity Search

 

(b) Random Search

 

Behavior Space ZIntervention Space I

Behavior Space ZIntervention Space I

Figure 8.5.: Illustration of the non linearity and redundancy of the 𝐼 → 𝑍 mapping, and of the interest of using goal-directed exploration
strategies. Plot shows the reachable points discovered by curiosity search (a) and by random search (b) in the behavior space 𝑍 and their
corresponding starting points in the intervention space I, for the RKIP-ERK signaling pathway system [375]. The intervention space is
10-dimensional, and here we show the TSNE reduction in 2D. We apply HDBSCAN clustering [376] on the points discovered in Z, which
produced the 4 clusters for curiosity search (displayed in gray, green, purple and orange; non-assigned points are displayed in light
blue) and 2 clusters for random search (displayed in light and dark orange). We then visualize where those regions in behavior space
mapped back in the intervention space, by applying the same coloring. (a) Looking at the curiosity search discoveries, we can see the
non-linearity of the 𝐼 → 𝑍 mapping, where small regions of intervention space can map to large regions of the behavior space (like the
orange area) and reversely (gray area). We can also see the redundancy of the behavior space which is clearly concentrated in the left
border of the space (ERK close to zero) which can seemingly be reached from very large portions of the intervention space (gray area). (b)
Looking at random search discoveries, we can understand that it is very inefficient as it spends most of its exploration budget in the
region of intervention space that converges to the left border in Z, and fails to explore the orange, purple and green regions discovered
by curiosity search which seemingly lead to the more novelty in 𝑍.

Finally, as the IMGEP efficiently drives the GRN into diverse goal states
with minimal interventions, we propose that the diversity achieved by
the IMGEP can serve as a good proxy metric of the GRN versatility.
Notably, analysis of example systems in Figure 8.4 reveals that many
GRNs can reach a broad spectrum of steady states. Whereas our database
is limited to certain systems (see Appendix Section F.2) and might not be
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representative of all biological pathways, this observation underlines the
existence of various phenotypes that can be realized. It also highlights the
critical importance of identifying salient interventions that can effectively
control cellular states within this spectrum of possibilities, notably as
many cancer types are due to epigenetically non-identical cells [377].

8.4. Empirical Tests Reveal Robust Navigation
Competencies

We are then interested in characterizing the degree of robustness of
the previously-discovered “goal states” in order to identify the ones
that the GRN can consistently be reached by the GRN despite encoun-
tering various perturbations. Whereas many studies have proposed
rigorous analysis of the “robustness” of biological networks [369, 370],
the generated perturbations often target variations in the regulatory rules
(i.e. variations at the hardware level) and variations are often sampled
independently (and prior) to observations of the GRN dynamical behav-
iors [349, 360, 371, 372, 374, 378]. Here instead, we propose to conduct a
battery of empirical tests that draw inspiration from classical “displace-
ment experiments” [379, 380] and “barrier experiments” [381] commonly
used in behavioral sciences to assess the navigation competencies of
various animals. As illustrated in Figure 8.3, we consider environmental

perturbations that perturb the GRN trajectory with 1) various degrees
of noise in the gene expression levels, 2) sudden “pushes” during the
GRN traversal of transcriptional space, and 3) energy barriers or “walls”
acting as force fields that constrain the GRN traversal. Importantly, those
perturbations are conditioned on the observed behavior of the GRN. The
magnitude of the noise and of the pushes is scaled proportionally to
the extent of the observed trajectories, and the walls are generated in
locations that the GRN would “naturally” visit without the induced
perturbation. While intuitive from a behaviorist point of view, where one
would adapt experimentation when testing animals in different contexts
(e.g. to study homing behavior of an ant and of a sea turtle, or of an ant
in food deprivation and in reproduction phase) [382], robustness studies
in systems biology often neglect those aspects. We propose that a behav-
iorist lens on robustness can help understanding forms of non-genetic
resistance in transcriptional space, which is crucial for the development
of therapeutic strategies [377].

To assess the degree of robustness of the discovered goal states, our
evaluation procedure is the following. For each (GRN, 𝐼,𝑍) system of
the database, we retrieve a representative set of trajectories previously
discovered using the curiosity-search algorithm and subject these trajec-
tories to 𝑃 = 𝑠 × 𝑟 perturbations conditioned on the GRN goal-reaching
trajectory 𝑖 → 𝑧 prior perturbation. Here, s represents the different per-
turbation distributions which correspond to various “tests” and “levels
of difficulty” (e.g. noise magnitude and frequency, number of walls, etc.)
and 𝑟 is the number of (stochastic) perturbations sampled per family. The
pseudocode is illustrated in Figure 8.1-c and details about the different
family of perturbations are provided in Appendix Section F.2. At the end
of this process, the behavioral catalog is augmented with the perturbed
trajectories 𝐻 = {

(
𝑖𝑘 , 𝑜𝑘 , 𝑧𝑘 , {(𝑢𝑝 , 𝑜𝑝 , 𝑧𝑝), 𝑝 = 1 . . . 𝑃}

)
, 𝑘 = 1 . . . 𝐾}.
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Figure 8.6.: Identification of robust traversal strategies in transcriptional space. (a) Violin plots show, for each of the 432 systems (one
point per system), the median sensitivity (over the K representative goal states) to the noise (green), push (gray) and wall (yellow)
perturbation families. Violin plots on the right detail the median sensitivity for the 18 sub-families. (b-g) Each row provides examples of
perturbed trajectories of either extremely-robust or extremely-sensitive example (GRN, Z) system (on average over the K goal states) for
the three families of perturbations, as shown by annotations in (a). For instance, the first row (b) shows perturbed trajectories of the
(model #10, nodes (3,7)) system which has the highest sensitivity to noise whereas the last row (g) shows trajectories of the (model #272,
nodes (2,3)) system which has a nearly perfect robustness to walls. Each image contains an example trajectory for a given (𝑖 , 𝑢), and one
𝑢 per sub-family is shown per column. For instance in the first row (b), the trajectories are perturbed with the different sub-families
of noise (𝜎𝑛 ∈ [0.001, 0.005, 0.1], 𝑝𝑛 ∈ [10, 5, 1]) which can be seen as various levels of difficulty. For each trajectory we annotate the
starting position (A), endpoint prior perturbation (B), and endpoint after perturbation (B’), and show the original trajectory in black. The
perturbed trajectory is shown in colorscale (from red at t=0 to cyan at t=3000 secs).
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Figure 8.6a: (b) Except for few cases (trajectory #43), the system (model #10, nodes (3,7)) system is not robust to noise as its trajectories
are easily deviated from the original endpoint. (c) The (model #52, nodes (4,7)) system however, except for rare cases (trajectory #35),
consistently reaches its original target despite encountering various amounts of noise. Interestingly, trajectories #36 and #40 consistently
follows a complex up->right-down->left path, despite the induced noise. (d) The (model #647, nodes (2,10)) system, except for few cases
(trajectory #0), is typically deviated from its original trajectory when being pushed away. Interestingly though, it seems to follow similar
(parallel) trajectories. (e) The (model #284, nodes (4,6)) system, is an example of an extremely robust system which, despite many push
configurations (in magnitude and number), consistently returns to its original trajectory. Interestingly, the trajectories of this system are
relatively complex with several loops and detours. (f) The (model #84, nodes (4,6)) system is not very robust to walls, and typically
deviates or blocked when it encounters a wall. (g) The (model #272, nodes (2,3)) system is another example of an extremely robust system
which, despite many wall configurations (in length and number), consistently returns to its original path. Once again interestingly, the
trajectories of this system are relatively complex with several loops and detours.

As the use of “spaces” comes with the notion of similarity and distance,
we can then easily evaluate the sensitivity of a goal state 𝑧 with respect to
a set of perturbation {𝑢𝑝 , 𝑝 = 1 . . . 𝑃} as the average distance in behavior
space 𝑍 between the original trajectory endpoint 𝑧 and the perturbed
trajectories endpoints {𝑧𝑝}. Here our distance is simply the Euclidean
distance, normalized by the extent of the trajectory prior perturbation in
𝑍. We can then identify the so-called “robust goals” of the systems as the
ones that have the lower sensitivity to perturbations. These sensitivity
analyses can be useful in two important ways. On the one hand, they
allow us to quickly identify the “extreme” examples of robustness, both at
the system-level and at the goal-level, providing several insights into the
degree of “competencies” that some biological networks might exhibit
in their relative space (Figure 8.6). On the other hand, these analyses
also allow us to map the heterogeneity of cellular responses and to better
understand how non-genetic perturbations might modulate the landscape

of reachable cell phenotypes (Figure 8.7).

Figure 8.6 shows the median sensitivity, over the representative goal
states, for the 432 systems of our database and for the noise, push
and wall perturbations families (as well as for the s=18 sub-families
which correspond to varying degrees of perturbations). Overall, even
though we observe varying degrees of sensitivity between systems (and
between magnitudes of perturbations, which is expected), one first and
interesting observation is that the median sensitivity remains relatively
low, suggesting that GRNs could not only exhibit versatility (with respect
to the considered interventions) but also robustness (with respect to the
considered perturbations). In fact, looking at the “extreme” examples, we
can identify quite impressive examples of complex and yet highly-robust
space traversal strategies, with non-linear trajectories exhibiting many
“detours” and “loops” but yet consistently reaching the same endpoint
despite several pushes (Figure 8.6-e) or walls (Figure 8.6-g) on the way.

Figure 8.7 shows how the constructed catalog 𝐻 can be used to gener-
ate the energy landscape of the studied system. In biology, landscape
formalisms have been used to comprehend the underlying dynamics of
several systems, such as cell cycles and cell differentiation [384, 385]. It
is believed that such system-level visualizations could be particularly
useful to apprehend non-genetic heterogeneity in the context of cancer
treatment and stem cell differentiation [377, 383]. A recent landscape-
generation method only proposes to approximate the pseudopotential
energy through simulation trajectories obtained throughout exploration
of the system [383], making it a widely applicable method which we can
directly apply here. However, the paper relied on Monte Carlo simulation
to generate the trajectories. Due to the previously mentioned non-linearity
and redundancy of the 𝐼 → 𝑍 mapping, this can lead to poor estimation
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(a) Energy landscape constructed

from random search experiments

 

(b) Energy landscape constructed

from curiosity search experiments

 

Energy landscape constructed

from robustness tests experiments
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Figure 8.7.: Energy landscape visualization based on the trajectory-based landscape generation method [383], and constructed from
different set of GRN trajectories, respectively trajectories generated (a) by the random search exploration, (b) by the curiosity-driven
exploration, and (c) by the robustness tests experiments.

of the overall energy landscape (Figure 8.7-a). Instead, when generating
the landscape from the trajectories discovered by our curiosity search
exploration, we are able to reveal a new and wide “valley” of reachable
states (Figure 8.7-b). Interestingly, the landscape-generation method can
also be used to better comprehend the effect of external cues on the gene
regulatory network, by visualizing how much they deform the energy
landscape for instance leading to new shaped valleys (Figure 8.7-c). For
the example system RKIP-ERK pathway [375], results highlighted a
specific region of behavior space (with low RKIP and high ERK activation
levels) that seems to be particularly robust, i.e. consistently reached by
the GRN from certain initial conditions, and that might be associated
with tumor development [386].

8.5. Possible Reuses of the Discoveries in
Biology

Our framework generated a catalog of stimuli, responses, and navigation
test situations for the different GRN models contained in our database.
Creating and sharing such a “behavioral catalog” with the scientific
community is possibly one of the more exciting aspects of the work
with new organisms. Furnished with such an empirically based data-
set and detailed observations, one can 1) conduct statistical analysis
across the population of studied organisms to inform fundamental
research questions and 2) reuse the acquired knowledge to design
specific behavior-shaping experiments in organisms of interest. As our
framework focuses on observable behavior and is agnostic about the
internal construction of the organism, another exciting perspective is
to deploy it to different problem spaces and other classes of natural,
chimeric or synthetic organisms. This section illustrates preliminary
experiments along those three types of reuse.
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(a) Versatility (b) Versatility - Wall Robustness

Figure 8.8.: Analysis and comparison of the degree of sophistication, in terms of versatility and robustness, between different classes of
GRN. We categorize the GRNs by class of organism they belong to: plant, bacteria, slime mold, amphibian, rodent, homo sapiens, or
generic. “n/a” refers to networks for which this information is not available. (a) Violin plots show the versatility of the 432 systems (one
point per system) for each class. Versatility of one system is measured as the area covered by all the goal states discovered by curiosity
search (equivalent to what we call diversity in Figure 8.4). (b) Trade-off (aka Pareto) mean and standard deviation curves that represent
the trade-off among versatility and wall robustness performances as taken by the different classes of GRNs (standard deviation is divided
by 4 for visibility). For each system, versatility (y-value) is measured as the area covered by the set of robustly achieved goal states, where
the criterion of goal-achievement is a binary which tests whether the goal-reaching sensitivity (on average overall wall perturbations) is
below a certain threshold (x-values). Violin plots in (a) are ordered in ascending order according to the class mean y-value at x=0.4 in (b).

8.5.1. For the study of developmental robustness

A first use-case we explore is to conduct statistical analysis to categorize
versatility and robustness in the surveyed networks on the basis of
species in evolutionary strata. We consider seven categories, namely,
plant, bacteria, slime mold, amphibian, rodent, homo sapiens, or generic.
Here, generic corresponds to the networks not associated with any
species but related to generalized biological processes. Please note that
the surveyed database is relatively small with respect to the wealth
of available models and biological pathways, so we can hardly claim
that these results represent the true distribution of competencies across
these organism categories. Still, as shown in Figure 8.8, results suggested
interesting patterns.

First, on average, generic and Homo sapiens GRNs exhibit higher ver-
satility (mean 0.228 and 0.238) compared to rodent and amphibian
GRNs (mean 0.163 and 0.169), which in turn show higher versatility
than bacteria and plant GRNs (mean 0.136 and 0.117). These findings
are particularly intriguing in the context of the recently-formulated hy-
pothesis of multi-scale competency architecture [45]: could the observed
variation in versatility among different classes of GRNs contribute to
the degree of versatility observed at higher-level scales? Collecting such
experimental data for broader classes of organisms and GRNs will be
crucial to understand how competencies at the molecular scale can impact
the overall functionality and adaptability of organisms at higher scales,
and to understand how evolution might have exploited this modular
architecture for shaping the observed adaptivity and reprogrammability
of biological systems.

Secondly, when comparing with the versatility of random networks
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(in black), generated to follow the same distributions of network size
and connectivity as biological networks (as proposed in [367], see Ap-
pendix Section F.2), we observe that random network versatility is much
lower (<0.026) than the versatility observed in biological networks. Once
again, it is difficult to draw strong conclusions as the gene circuit model
used for the random networks is relatively limited, whilst generic and
studied across a range of biological contexts [387–390], and it will be
interesting to scale the comparison to a broader and more complex range
of ODE-based random models. Still, these findings hint that versatility
prevalence might be a strong invariant of biological intelligence shaped
by evolutionary processes.

Finally, we categorize the versatility-robustness tradeoff in the different
categories of organisms. The idea is to compare the GRN competencies to
robustly achieve diverse goal states, for different robustness thresholds.
In Figure 8.8b, we plot the mean and standard deviation pareto curves
for the different categories of organisms and observe that, in average, the
pareto-optimal solutions are mostly achieved by generic cell GRNs, even
though bacteria GRNs can robustly reach more goal states for exigent
robustness criteria (high x-values). The slime mold GRN can reach highly
diverse goal states but the tradeoff quickly drops with wall perturbations,
and there is only one system in our database belonging to this category
so results might be not representative. Once again, those results are very
interesting as generic cells GRNs are a building block that has been
extensively reused by evolution across several organisms and contexts,
bacteria have evolved to be very resistant (e.g. to antibiotics), and slime
molds are a unicellular organism well known for its diverse capabilities,
especially navigational ones [391–394].
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Figure 8.9.: Identification of stimuli-based stepwise intervention triggering robust re-set of disease states into healthy physiological
states. (a) The 10 most robust identified goal states (average sensitivity <0.05) and the corresponding reaching trajectories are displayed
for the example RKIP-ERK signaling pathway [375]. We can see that most of them converge toward attractors in the “disease” region
(orange). (b) Discovered stepwise stimuli intervention on MEKPP which we apply on states stuck in the “disease” region for 100 seconds.
(c) The discovered intervention successfully brings back all points from the “disease” region closer to the target endpoint in the “healthy”
region, and this under various tested perturbations (as shown in Supplementary Figure F.4). The optimization procedure that led to the
discovery of this intervention is described in the main text.

8.5.2. For the development of therapeutic interventions

Understanding forms of non-genetic resistance and non-genetic hetero-
geneity is crucial across a wide range of cancer and treatment contexts
[377]. Here, we illustrate how the constructed behavioral catalog can
provide a fertile source for the design of therapeutic strategies, notably in
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the context of network control, using again the example of the RKIP-ERK
signaling pathway [375]. In Figure 8.5, we saw that curiosity search
revealed four clusters of reachable steady states for this system. From
a clinical perspective, one might denote the green cluster as “healthy”
region of behavior space and the orange cluster as “disease” region of
the behavior space, as high levels of ERK and low-levels of RKIP are
often linked to tumor development [386]. In Figure 8.9-a, we plot those
two clusters as well as the 10 more robust goal-reaching behaviors from
the behavioral catalog of this system, i.e. the goal states with the lower
average sensitivity to the induced perturbations. We see that 6 out of the
10 more robust trajectories end up in the “disease” region, suggesting
that certain configurations of initial state are very likely to reach that
region despite chemical blockers (here pushes, walls, and noise), which
was also visible on the system’s energy landscape in Figure 8.7-c. Look-
ing at the six trajectories, it seems that they all follow similar patterns
where RKIP activation level increases past a certain threshold, and only
then converge toward the disease region. This might already provide an
interesting biomarker for prediction of tumor development, but what
we are really interested here is to build upon that knowledge to develop
stimuli-based interventions allowing to re-set the GRN setpoints from the
identified “disease” steady states back to steady states within the identi-
fied “healthy” region . To do so, we define a parameterized stimuli-based
intervention and a performance function, and search for parameters
that optimize this performance. For the intervention function, we use a
piecewise constant function that determines which nodes to intervene on
(here MEKPP), when to apply the intervention (here every 10 seconds for
100 seconds), and with what amplitude (which are the parameters that we
are seeking to optimize). The choice of the intervention function, which
is arbitrary in this example, would typically depend on the experimental
constraints, e.g. which nodes can be targeted with drugs and at which
precision. For the performance function, we define the centroid of the
“healthy” region as the target setpoint and compute performance of
the stepwise intervention as the average distance of the novel setpoints
(after intervention when starting from the 6 disease setpoints) to the
target setpoint, and under a distribution of stochastic walls, pushes and
noise perturbations. Hence a successful intervention should re-set the
disease setpoints to healthy setpoints for all discovered disease states
and robustly across the various tested perturbations. For optimization,
we simply perform random search as this was sufficient here to discover
one intervention (as shown in Figure 8.9-b) that successfully reset the
setpoints (as shown in Figure 8.9-c) under various tested perturbations
(as shown in Supplementary Figure F.4). Here random search was suffi-
cient to find a successful intervention, but more advanced optimization
strategies like evolutionary algorithms or stochastic gradient descent
could be envisaged for harder problems. Overall, mapping the “latent”
behavioral abilities of GRNs in healthy physiology and disease states may
have important implications for the identification of robust stimuli-based
interventions that focus on behavior shaping instead of micromanaging
all molecular states, and that can be exploited in therapeutic contexts.
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Figure 8.10.: Comparison of three alternative strategies for the design of oscillator circuits: curiosity search (blue), random search (pink),
and gradient descent (orange). (a-c) Given a budget of 5000 experiments, curiosity search is able to find 1167 oscillator circuits (ones
showing sustained oscillations), whereas random search only finds 42 oscillators and gradient descent does not discover any (starting
from a single random initialization). (a) 3D scatter plot of the 42 random search discoveries (pink) and 1167 curiosity search ones (blue)
in the (amplitude, main frequency, offset) analytic behavior space. (b) Box plots projecting points from the 3D scatter plot into the
respective (amplitude, main frequency, offset) axes. (c) Diversity discovered throughout exploration, where diversity is measured with a
binning-based space coverage metric (20 bins per dimension). (d) Evolution of the training loss 𝐿 for the three exploration strategies.
(e-f-g) Corresponding best discoveries (for which 𝐿 is minimal) for the three exploration strategies. (h-i) Local training loss and resulting
finetuning of the best discoveries with gradient descent.

8.5.3. As alternative strategy to gene circuit engineering

The final type of reuse we explore is not a direct reuse of the constructed
behavioral catalogs, but rather a reuse of the proposed automated tools
to reveal different kinds of behaviors in a bioengineering context. A
common problem in synthetic biology is to optimize the configuration
and parameters of a gene model network to optimally perform a desired
functionality, also known as gene circuit engineering [364]. Recent ap-
proaches rely on optimization-driven machine learning strategies, such
as evolutionary algorithms and stochastic gradient descent. However,
choosing the right loss function and parameter initialization for these
optimization methods is a well-known problem in machine learning.
These issues can lead to optimization algorithms getting trapped in local
minima within the complex landscape of possibilities. In response to
these challenges, we propose to investigate whether the curiosity-driven
exploration strategy can be employed as an alternative (diversity-driven)
strategy. Whereas traditionally-employed for exploratory purposes, these
exploration strategies were also shown to facilitate the resolution of
external, pre-defined tasks characterized by sparse or deceptive rewards
[135], by effectively exploring solution space.
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Here, we consider the target application of oscillator circuit engineering
followed in [361], where parameters of a gene circuit model are optimized
to produce oscillation patterns with target amplitude 𝐴, frequency 𝑤
and offset 𝑏. This time, the intervention space includes both genetic
interventions (setting kinematic parameters of regulatory rules) and
environmental interventions (setting the initial state 𝑦0). We then compare
three alternative exploration strategies: curiosity search, random search
and a global optimization strategy using gradient descent as proposed in
[361], all given the same experimental budget (𝑁 = 5000). For curiosity
search, the behavior space 𝑍 is defined as the image space of the discrete
Fourier transform of the observation. We then use the exact same IMGEP
algorithm as before, but operating within the novel problem spaces (𝐼 , 𝑍).
For gradient descent, we follow the procedure proposed in [361]. We
define a loss function which measures the mean square error between the
observed node activation levels 𝑦 and the target oscillation (represented
as a cosine wave). We then randomly initialize the parameters 𝑖 ∼ 𝑈(𝐼)
and use Adam optimizer for N=5000 optimization steps. In addition,
we also use gradient descent for local refinement of the best discoveries
made by the other exploration strategies (curiosity search and random
search), this time with a limited budget of 𝑁 = 100 optimization steps.

In Figure 8.10, we show that curiosity search is again significantly more
efficient than random search in revealing a diversity of possible oscillator
behaviors. Out of 5000 trials, random search was able to find only 42
configurations leading to sustained oscillations whereas curiosity search
was able to find 1167 (and gradient descent did not find any). Without
focusing on the target objective, curiosity search is able to efficiently
cover the analytic (𝐴, 𝜔, 𝑏 space (Figure 8.10, a-c), thus discovering
oscillators close to the target one (Figure 8.10-e). Instead, when starting
from a random initial condition, gradient descent is very likely to get
trapped in a local minimum where it converges to the target offset b but
fails to produce oscillations (Figure 8.10-d and Figure 8.10-g). However,
whereas the global optimization is unsuccessful in this example, gradient
descent seems to be useful to locally refine close-enough solutions, as
can be seen here when refining the best discoveries made by curiosity
search and random search (Figure 8.10-h, 9-i). These results suggest
that a diversity-driven exploration strategy, eventually combined with
a more advanced local optimization strategy, can offer promising and
cost-effective alternatives for the design of synthetic gene networks. More
generally, as our framework only relies on empirical investigation for
inferring the mapping between interventions and behaviors (treating
them as abstract variables in observable problem spaces), we believe it
offers an exciting perspective to be deployed across various problem
spaces and classes of organisms.

8.6. Discussion

This paper presents a novel framework aimed at uncovering the naviga-
tion competencies of gene regulatory networks (GRNs). The framework
conceptualizes GRNs as agents actively navigating the transcriptional
space and provides a set of tools, leveraging computational models of
curiosity-driven learning and exploration, with a battery of empirical
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tests inspired from behaviorist tradition, for automated experimentation
and behavioral characterization. The proposed framework is novel in
two central ways. First, it introduces a novel AI-based toolbox to the field
of biological network analysis. We show how this toolbox, leveraging
the successful ingredients of recent intrinsically motivated learning algo-
rithms - originally developed to enable robotic AI agents to explore and
learn diverse skills in novel and unstructured environments [57, 368]
- can be transposed to assist efficient discovery of behavioral abilities
within biological pathway models like GRNs. Secondly, rather than
merely mapping the attractor states [316, 317, 348] or analyzing their
sensitivity to model parameter changes [345, 346] as extensively proposed
in conventional GRN analysis methods, our framework investigates the
dynamic adaptability of these networks’ navigation competencies in
response to various changing environmental conditions. With this ap-
proach, our aim is to uncover whether diverse competencies, analogous
to the ones exhibited by living agents, can be found within physiological
network dynamics. Notably, these competencies are discovered without
necessitating structural alterations to network properties or connectivity.
Importantly, our framework and its associated tools do not make any
assumptions about the structure or origin of the biological network,
making it in theory adaptable to the study of diverse unconventional
intelligences across various domains.

By applying this framework to a curated database of GRN models, we
discovered a diverse range of behavioral responses that GRN can exhibit
under different initial conditions, and characterized their robustness to
various perturbations. Our analysis revealed a number of interesting
aspects of GRN navigation of the state space, which can be leveraged in
several contexts. These automated tools form the first step towards cost-
effective in silico simulation and interrogation platforms: the “behavioral
catalogs” produced by this process can be a first stepping stone for
better understanding the GRN functionalities as well as for designing
drug-driven interventions in a biomedical or bioengineering context.

There are several limitations and avenues for future work to this study.
First, these networks are studied as a model in isolation and it is possible
that some of the ODE models (or solvers) provide spurious behaviors
within certain parameter ranges which might not map to observable
phenotypes in vitro. Interestingly, this limitation also suggests an inter-
esting further direction to this work: using the automated discovery
toolbox to assist model inference, allowing to efficiently identify the rare
or unexpected behaviors of the ODE model and suggest whether further
refinement is needed or not. Another interesting direction for future work,
as our framework considers the GRN model as a black-box and works
with limited experimental budget, would be to directly apply it to in vitro

GRN models at the bench. One could for instance integrate experimental
constraints to the search by defining families of empirically-testable
interventions and perturbations, as well as specify clinically-relevant goal
spaces and perturbations. Even if in a biological setting versatility and
robustness phenomena may be harder to detect, or harder to alter, these
results can be used to (1) design synthetic biology circuits with advanced
capabilities [395], and (2) conduct studies of subcellular proto-cognitive
phylogenetics, to help understand the evolutionary pressures for and
against reprogrammability in cell regulatory machinery. Another limita-
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tion of our work is that we consider predefined problem spaces, here the
space of GRN steady states (or Fourier descriptors of the dynamics in
the bioengineering example). The dynamics of gene regulatory networks
are relatively simple (usually converge to stable points or periodic orbits)
allowing such hand-defined descriptors. To scale the framework to higher-
dimensional and more complex problem spaces, recent works from the
IMGEP literature suggest using unsupervised learning of goal space
representations [•1, •3]. Whereas these works were applied to abstract
models of multicellular patterning, similar works could be envisaged
in more realistic systems, such as sophisticated model of multicellular
morphogen and/or bioelectrical patterning which were used to suggest
in-vitro experimental manipulations [396, 397].

The tools presented here, and the behavioral repertoire we identified, are
just the beginning, and much work remains. Future efforts must test addi-
tional competencies across the spectrum of cognition (memory, creative
problem-solving, valence, etc.) and extend the tools we presented here to
explore them . The predictions made by our computational tools can now
be tested in real cells, using emerging tools for physiological profiling
in the living state and a diverse set of biochemical, biomechanical, and
bioelectrical perturbations. We anticipate a tight and productive feedback
loop between computational theory that suggests new experiments, and
results in living cells that greatly extend our computational perspective
on what they can do [398–402]. Such interdisciplinary work, pulling
together concepts and techniques across fields, is likely to have major
implications for fundamental understanding of evolution, intelligence,
and dynamical control, as well as drive novel kinds of therapeutics that
leverage the innate behavioral competencies of living matter [338, 403].
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What is the aim of this chapter? This chapter can be read as a perspective

chapter where we elaborate on a series of experiments, some of which
are preliminary, while others are simply envisaged for future work. The
objective of these experiments is to probe the potential applications of
curiosity-driven algorithms in actual biological morphogenetic systems.

How is this chapter organized? In Section 9.1, we motivate the long-
standing challenge in tissue engineering research, of particular impor-
tance for the Poietis biotechnology company, to understand and even-
tually govern the mechanisms underlying the morphogenesis of cellular
collectives into functional structures at the tissue level. In Section 9.2, we
present preliminary experiments conducted in numerical systems tailored
to simulate biological behaviors at the tissue level within morphogenetic
systems. Those include experiments within a sophisticated model devel-
oped and used by biologists at the Levin Lab to simulate and predict
bioelectrical patterning at the tissue level (Subsection 9.2.1), as well as
experiments conducted in a model specifically designed to simulate
the behaviors of fibroblast-populated collagen matrices manipulated
experimentally at Poietis (Subsection 9.2.2). Finally, in Section 9.3, we
present few experimental campaigns that could be envisaged as proof of
concept of automated AI-driven exploration in a bioprinter-controlled
morphogenetic system, via the leveraging of a laser-assisted bioprinting

technology that is developed at the Poietis company. We discuss how
these experiments could benefit the exploration and shaping of cellular
self-organization toward desired morphological or functional outcomes
at the tissue-level, as well as the challenges associated with conducting
such real-world experiments.

(a) Numerical Models of Biological Morphogenetic Systems (b) Bioprinter-Controlled Biological Morphogenetic Systems

Figure 9.1.: Targeted reuses of the curiosity-driven exploration algorithms for applications in biological morphogenetic systems. (a)
Examples of sophisticated numerical models of tissue-level cellular behaviors targeted in this research. Those include the BETSE
simulator presented in Subsection 9.2.1 (bottom) as well as the SimCells simulator presented in Subsection 9.2.2 (top). (b) Overview of the
bioprinting technology developed at Poietis, as well as its use for investigating the complex mechanisms of skin morphogenesis in vitro.
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9.1. Motivation

Whereas all the applications presented so far were conducted in abstract
or relatively simple numerical systems, something that we have been
really interested to pursue, within the context of my PhD and beyond, is to
transpose the developed algorithms to real-world wet physico-chemical
or biological systems, particularly those manipulated at the bench.

Figure 9.2.: Poietis NGB device. NGB
integrates (i) computer-assited design
(CAD software), (ii) automated robotic
bioprinting with laser-assisted technol-
ogy, (iii) multimodal extrusion and
micro-valve heads to print the bioma-
terial, and (iv) motinoring of the tissue
maturation via cell microscopy and im-
age processing tools. More details in Sec-
tion 9.3.

In particular, my PhD is supported by the French Poietis company, with
whom I have maintained a collaborative partnership during the entirety
of my three-year doctoral program. Poietis is developing a laser-assisted
bio-printing device that enables the precise positioning of cells and
bio-materials in space, and that can be employed in pair with a computer-
aided design software to fabricate biological tissue architectures with
a micro-scale resolution (Figure 9.2). With such device, the company
targets both various research applications [404] as well clinical appli-
cations [20, 405], such as the design of functional personalized tissues
for patients requiring skin grafts where cells would be taken from the
patient itself [406].

However, in addition to the numerous technological challenges associated
with achieving accuracy and reproducibility in the printing process (i. e.
at t=0), it remains very challenging for the company (and for biologists
in general) to fully understand and control the maturation of the tissue
through time (t>0). Indeed, the process of morphogenesis by which cellular
collectives self-organize into functional structures at the tissue level is a
highly-complex phenomena that involves living entities (cells) as well
as sophisticated cellular communication protocols and feedback loops.
Understanding, predicting and controlling the mechanisms underlying
collective behavior at the tissue level is a major challenge for the company
and more broadly for tissue engineering and research in biology.

Within the company, while the experimental procedures is now nearly
fully automated thanks to the development of the NGB device (Figure
9.2), the planning of experiments remains primarily a manual task
undertaken by biologists. These biologists rely on trial and error as well
as personal intuition to process the complex data and explore the high-
dimensional parameter space. This is a typical use case where scientists
could greatly benefit from a “curious AI discovery assistant” for mapping
and navigating the space of possible outcomes.

Although, for various reasons, we have not been able to conduct ex-
periments with actual morphogenetic systems utilizing the bioprinting
device throughout the duration of my doctoral program, we are highly
enthusiastic about the prospects of developing “curious” artificial intel-
ligence systems that can aid biologists in the exploration and control
of morphogenetic processes within these systems. In this chapter, we
present preliminary experiments in that direction that were conducted in
more-sophisticated and realistic numerical models of tissue-level cellular
behaviors (Section 9.2), or that are envisaged for future work using Poietis
bioprinting device (Section 9.3).

https://poietis.com/
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9.2. Numerical Morphogenetic Systems for
Biological Tissue Simulation

In this section, we present preliminary experiments that were made in
more complex and “realistic” numerical systems that have been devised
for, and in collaboration with, biologists within the context of simulating
cellular behaviors at the tissue level during morphogenesis.

In Subsection 9.2.1, we first present the BioElectric Tissue Simulation
Engine (BETSE): a python numerical system which was developed in the
team of Michael Levin to simulate cellular tissue bioelectrics [397, 407].
Then, in Subsection 9.2.2, we present preliminary experiments conducted
within a numerical model of fibroblast-collagen tissue formation [408]
implemented within the SimCells software [409], which was developed
by a previous doctoral student at Poietis and focuses on mimicking the
behavior of fibroblast-populated collagen matrices1

1: Fibroblast-populated collagen matri-
ces are a commonly utilized model in
tissue engineering for investigating skin
tissues, an area of extensive exploration
by the Poietis company (see Section 9.3)

.

9.2.1. BETSE: BioElectric Tissue Simulation Engine

Overview of BETSE2 BETSE is a computational model designed to sim- 2: BETSE source code can be found at
https://github.com/betsee/betseulate electrodiffusion processes, which govern the movement and diffusion

of ions (charged particles) in biological systems at the tissue level [397,
407]. Electrodiffusion is a combined phenomenon encompassing elec-

trophoresis, which characterizes the motion of charged particles under the
influence of an electric field (dictated by voltage gradients), and regular
diffusion, which accounts for particle motion driven by concentration
gradients.

BETSE offers the capability to incorporate multiple types of ions and to
model various phenomena governing electrodiffusion (Figure 9.3):

▶ Passive electrodiffusion: physical movement of ions occurring in the
extracellular matrix (ECM) which is mathematically modeled with
Nernst-Planck equations in BETSE.

▶ Ion pumps: enzymes located on cell membranes responsible for ac-
tively transporting ions, often against concentration gradients, and
that are mathematically described by Michaelis-Menten enzyme
kinetic relations in BETSE.

▶ Ion channels: specialized proteins situated within cell membranes,
actively governing the passage of ions by functioning as selective
gateways that permit specific ions to traverse the membrane under
particular circumstances. In BETSE, a variety of ion channels are
modeled, primarily utilizing the Hodgkin-Huxley formalism, with
parameterization informed by scientific literature. These channels
can be categorized as leak channels (constantly open), voltage-gated

channels (open or close based on membrane voltage), or ligand-gated

channels (open or close based on ligand concentration, e.g. calcium).
▶ Gap junctions: direct connections between cells facilitating the direct

passage of ions and molecules, bypassing the extracellular space.
Gap junctions in an open state are analogous to passive diffusion
in the environment and are modeled using the Nernst-Planck
equation. Some gap junctions in BETSE are voltage-gated, meaning
their opening or closing is dependent on membrane voltage.

https://github.com/betsee/betse
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(a) BETSE’s “electrical circuit” (b) Electrodiffusion in tissue

(c) Close-up view of cell membranes in (d) (d) Sample bioelectric patterns

Figure 9.3.: Overview of developmental bioelectricity modeling in BETSE. (a) The fundamental “bioelectric circuit” implemented in
BETSE, shown on a simplified geometry of two triangular cells (1 and 2) surrounded by their respective extracellular spaces (3-7). Note
that in BETSE, and in contrast to the simplified image shown, cells are defined from a Voronoi diagram and are polygonal with four or
more membranes, and that a larger network of 10-1000 cells is considered in simulations. We refer to Pietak and Levin [397] for additional
details. (b) Electro Diffusive mass transport in a gap-junction networked cell cluster is assumed to follow three pathways, detailed
in (c): (1) transmembrane - between intra and extracellular spaces across the plasma membrane; (2) inter-cellular- between cellular
spaces via GJ; and (3) environmental- between extracellular spaces and in the global environment. (d) Sample bioelectric patterns, as
revealed by voltage reporter dye technique [410] of the cleavage-stage frog embryo, the planarian flatworm, and the developing frog face
(left-to-right).

Why exploring BETSE? Michael Levin, as other biologists, thinks that
bioelectricity plays a fundamental role in orchestrating cellular behav-
iors and tissue development, and that exploiting biolectring signals
holds great promise for applications in tissue engineering, regenerative
medicine and cancer reprogramming [412], offering a higher-level layer
of developmental control than genetic engineering [45]. Among the very
few frameworks modeling non-neural bioelectric activity involved in
tissue patterning, BETSE stands out as a sophisticated and biorealistic
framework [413]. On of the main advantages of BETSE is that the set of
input parameters is not far from being a “recipe” for biologists: most
variables are “writable” in real systems manipulated at the bench (e.g.

via specific ion channel-targeting drugs, injecting mRNA in the cells
to produce channel misexpression [414], or optogenetics) and some are
“readable” as well (e.g. via voltage reporter dyes [410]). This alignment
allows BETSE to serve as a practical guide for laboratory experimentation,
and in fact several studies have already utilized BETSE’s predictions to
inform biological experiments. For instance, Pai et al. [414] used BETSE
to predict interventions to restore the correct default membrane resting
potential pattern after it has been altered by a nicotine teratogen (nicotine
molecules are introduced in the simulation and experimentally), interven-
tion which is needed for the embryo to develop correctly. Similarly, Pietak
et al. [415] used BETSE to model anterior-posterior axis control in planaria
regeneration, and shown it enabled accurate prediction of development
from various altered body plans tested in the lab.
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9.2.1.1. Scientific discovery in BETSE

Developing automated (AI-driven) tools to reveal diverse behaviors in
BETSE could be very useful to assist scientists identifying novel bioelectric
states with potentially desirable properties that could then be exploited at
the bench. However, exploring the space of biolectric patterns is complex
due to voltage-gating effects in channels and gap junctions, leading
to feedback loops and dynamic interactions within tissues. Even in
tissues made of identical cells (i. e. here cells with the same geometry and
same channels), their dynamic opening and closing processes generate
diverse and rich behaviors, contributing to symmetry breaking and
spatial fluctuations. Moreover, the space of configurable parameters is
extremely large in BETSE, due to all the physical phenomena involved and
modeled (see an example configuration file). In addition to all the physical
phenomena governing electrodiffusion, recent versions of BETSE also
integrates genetic networks and models their interaction with bioelectric
networks [407], adding an extra layer of complexity to the explorable
parameter space. The recent work of Hazan and Levin [416], which was
taking place approximately at the same time than my visit to the Levin
Lab, proposes to use genetic algorithms to automatically explore the
input parameters of BETSE and try to solve the (complex) inverse problem
of predicting which kinds of ion channel properties in a field of cells can
give rise to a desired transmembrane resting potential pattern (𝑉𝑚𝑒𝑚).
Whereas this work serves as a first step toward the design of machine
learning tools for improved bioelectric control of growth and form, two
main limitations were identified by the authors. First, they acknowledge
that defining a desired 𝑉𝑚𝑒𝑚 pattern can be a non-trivial task, as it’s
difficult to formalize a function that captures all the features that a human
observer intuitively recognizes as correct. Secondly, genetic algorithms
assume that the fitness function can guide the search to the target by
following the highest fitness score, which is likely to be unsuccessful in
practice due to the complexity of the dynamics involved [416]. As argued
in Chapter 2, this is a major limitation of objective-driven approaches
in general. Diversity-driven approaches like the ones presented in this
thesis could provide an alternative strategy for mapping the space of
possible behaviors, and eventually be coupled with local optimization.

Random Exploration Campaign In order to get a better idea of the the
kinds of patterns that BETSE can produce, and to gather a first database,
we performed a random exploration campaign of 2000 experiments in
BETSE. A major limitation of BETSE is that it is very slow to compute: a
single simulation of 250 seconds in BETSE with ≈ 2000 cells takes ≈ 50
minutes to run on a strong computer, resulting in a very time-consuming
task overall3. We explored the same parameters than in Hazan and Levin 3: For this campaign we leveraged the

JeanZay supercomputer to run experi-
ments in parallel using 26 threads per
job (found to be the more efficient after
small benchmark)

[416], comprising of 17 parameters influencing BETSE “physics” and
parameters influencing the initial state. Whereas in Hazan and Levin
[416] the initial state is always composed of 5 disks parametrized by
position, radius and intensity, which is a possible (but not very flexible)
way to initially break the symmetry of the pattern, we instead used
Compositional Pattern Producing Networks (CPPNs) [194] to produce
structured initial states (as in Chapter 4). An overview of the kinds of
discovered patterns is provided in Figure 9.4, as welll as a visual intuition
about what seems to be easy versus hard-to-find patterns in BETSE.

https://github.com/betsee/betse/blob/a6d3a702abc25f600e149129ec023aba4ce2b7ed/betse/data/yaml/sim_config.yaml
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(a) Bullseye patterns (b) High frequency patterns

(c) Slowly diffusing patterns (d) White low-constrast patterns

(e) Turing-like dots patterns (f) Turing-like spider patterns

(g) Spatially-localized dots patterns (h) Spatially-localized spider patterns

(i) PCA projection views

Figure 9.4.: Discoveries made with a sim-
ple random search in BETSE. We were
able to identify (a) “bullseye” patterns
made of concentric bands, which was op-
timized for in Hazan and Levin [416]; (b)
high frequency pattern resembling game-
of-life discrete structures; (c) slowly dif-
fusing patterns; (d) “white” patterns i. e.

with low 𝑉𝑚𝑒𝑚 and low variance; (e-f)
turing-like patterns (TLPs); and (g-h)
spatially-localized patterns (SLPs, non-
moving). (i) Using tensorflow projector
tool we projected all the discoveries in
a low-dimensional space using PCA di-
mensionality reduction. Screenshots of
the resulting visualization in 3D space
are shown. Full visualization can be ac-
cessed by clicking (or scanning) the be-
low QR code. We can observe that slowly
diffusing patterns are largely prevalent
in BETSE (or at least in the explored pa-
rameter range), yet not very interesting.
On the other hand, spatially localized
patterns exists but are harder to find,
and we did not find moving SLPs.

Figure 9.5.: Examples of identified𝑉𝑚𝑒𝑚
profiles in BETSE. Note that these ex-
amples are in the case of cellular cluster
with spatially-stable 𝑉𝑚𝑒𝑚 , such that the
observable can be reduced to a 1D signal,
but it is often not the case. Image repro-
duced from [397].

Future Directions While we decided to not pursue experimentation,
mainly due to the short time of my visit at the Levin Lab (and decision
to focus instead on the GRN project), there are several avenues for
future work and automated discovery that could be interesting to pursue
in BETSE. First, finding a diversity of 𝑉𝑚𝑒𝑚 spatio-temporal profiles
in BETSE could be very interesting to biologists. For instance, Figure
9.5 identifies three temporal regimes in BETSE explaining observed
behaviors in biology [397]: (top) cells can robustly go back to default𝑉𝑚𝑒𝑚
after perturbations, (middle) cells can showcase periodic self-excitability
akin to cardiac cells, and (bottom) cells can permanently alter their
resting𝑉𝑚𝑒𝑚 potential, which could explain the sustained depolarization
observed in cancer cells. It would be interesting to deploy the approaches
presented in the first part of this manuscript to try and find a diversity of
such behaviors, although the definition of (spatio-)temporal descriptors
might not be trivial. Secondly, searching for persistent dynamical patterns
i. e. moving SLPs capable of preserving some individuality (akin to the
patterns discovered in Lenia in Chapter 7) and eventually of robustly
reaching various positions in physiological space (akin to the navigation

competencies observed in GRNs in Chapter 8 but this time at the tissue
level) would be particularly interesting as well. However, the existence
of these patterns remains unknown as experiments made so far did not
reveal any moving SLPs.

https://projector.tensorflow.org/?config=https://raw.githubusercontent.com/mayalenE/betse_projector_rs/main/projector_config.json


9. Towards Applications in Biological Morphogenetic Systems 154

9.2.2. SimCells: Exploring Multicellular Behaviors with
Agent-Based Models

Overview of SimCells4 SimCells is a freely available software based 4: SimCells can be downloaded at
https://virtulab.univ-brest.fron a multi-agent system that simulates deformable and interacting cells

(agents) within matrices [409]. These matrices, akin to channels in Lenia,
store various data types (e.g. cell orientation, age, and type) which are
employed and updated by the simulation’s update rules during each step.
The update rule - aka “physics” - is defined by a sequence of conditions

and actions associated to the different entities (cells, molecules or fields)
present in the environment. Similar to BETSE, SimCells is a versatile
tool designed for modeling various multicellular systems, enabling the
implementation of different agent types, each with distinct characteristics
such as size and adhesion force, as well as modeling various agent
behaviors like migration, chemotaxis, division, differentiation, apoptosis,
membrane deformation and adhesion5. The underlying physics engine 5: BETSE was originally intended to be

used by biologists without prior pro-
gramming expertise such that most steps
of modeling (definition of agent types,
behaviors and initial state) can be done
graphically in a Java-based graphical
user interface [409]

is implemented in OpenCL and optimized for multicore devices with
GPUs, accommodating simulations with a substantial number of cells
and large environments, depending on the GPU’s computational power
(scaling up to environments sized at 2048x2028).

A Fibroblast-Collagen Model in SimCells As detailed in Section 9.3,
the Poietis company has been particularly interested in developing and
studying in vitro models of fibroblast populated collagen matrices, which
are commonly used in tissue engineering to develop dermo-epidermal
models closely resembling physiological skin. Across various experimen-
tal studies conducted by biologists of the company, several critical factors
affecting the self-organization of dermal fibroblasts have been identified.
These factors are largely associated with the mechanical attributes of the
collagen gel and the conditions of cell culture, as documented in Douillet
et al. [417]. While bioprinting provides new powerful tools for precise
control during the fabrication of in vitro tissue models, investigating the
dynamic mechanisms of matrix remodeling by distinct fibroblastic popu-
lations or organizations in a laboratory setting can be resource-intensive
in terms of time and materials. Leveraging computational modeling to
predict and explore these interactions would be highly advantageous. To
address this need, Arthur Douillet, a former doctoral student at Poietis,
developed a specialized model of Fibroblast-Collagen interactions within
the SimCells numerical environment [408]. Based on experimental find-
ings, this model specifically focuses on modeling mechanical interactions

between the fibroblast cells and their extra-cellular matrix environment
(ECM). To that end, the model introduces a representation of the colla-
gen gel using a spring-mass system. In this system, masses (referred to
as “grains” in SimCells) act as adhesive points where cells can adhere,
analogous to collagen fibers. These masses are connected by springs,
and the orientation and alignment of these springs are parameterized
according to the position and arrangement of the masses. Additionally,
the mechanical properties of the springs, including spring length and
stiffness, are also parameterized. This framework enables the modeling of
localized mechanical properties within the ECM, allowing examination
of deformations at the tissue level induced by traction and contraction
forces exerted by cells, as illustrated in Figure 9.6.

https://virtulab.univ-brest.fr/simcells.html
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(a) Cell trajectories (b) Simulation of fibroblasts on collagen gel

Figure 9.6.: Overview of the Fibroblast-Collagen model implemented in SimCells [408]. (a) Example trajectories (green) of cells (yellow)
positioned on a spring mass system with low (top, k=0.05) or strong (bottom, k=0.4) stiffness, where masses are displayed in white. Cells
are motile and contractile, provoking remodeling of the ECM. (b) In vitro (top) and in silico (bottom) simulation of fibroblasts on collagen
gel. Snapshots were captured at two time points: t=0 (left) and after 48 hours for real cells (top right), and after 1000 simulation steps in
SimCells (bottom right). The initial arrangement of cells (top left) resulted from the deposition of droplets using Poietis’ laser-assisted
bioprinter, and the same initial configuration was employed in the simulation (bottom left). In the top right image, acquired through
confocal microscopy with SHG (Second Harmonic Generation) technique, the positioning of cells (in red) and collagen fibers (in white) is
visible. Simulation outcomes (bottom right) depict the final positioning of cells (in blue) and the tension in the springs (indicated by a
gradient from yellow, signifying low tension, to red, signifying high tension). Images are reproduced from [418].

9.2.2.1. Scientific discovery in SimCells

Similar to BETSE, SimCells has the advantage of aiming for biorealistic
simulations, establishing a quasi direct correspondence between simula-
tion parameters and experimental variables such as initial cell positioning
and collagen concentration. Obviously modeling cellular morphogenesis
is a very complex task and a big gap remains between simulation and lab-
oratory experiments. In this section, we present preliminary experiments
that were made for applying the IMGEP approach proposed in Chapter
4 and see whether it could be useful to reveal novel types of possible
collagen-fibroblast interactions than the ones illustrated in Figure 9.66. 6: All experiments were implemented

with the adtool software that will be
presented in Chapter 10

Software modifications Several updates of the SimCells software were
required to facilitate automated discovery, and we would like to thank
Pascal Ballet for dedicating time and providing valuable assistance in
implementing these modifications. These encompassed: (1) creating a
standalone application with all dependencies, enabling command-line
execution; (2) optimizing the mass-spring model from Douillet et al. [408],
resulting in a significant acceleration of simulations (approximately 10-
fold) and reduced memory usage (approximately 50%); (3) introducing a
headless mode option for running simulations on supercomputers; (4)
abstracting input parameters (𝜃) in a configuration file; and (5) exporting
output matrices (𝑜) generated during simulations, thereby facilitating
further data analysis (previously limited to graphical interfaces).
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(a) Model Update Rule (b) Simulations with low (left) and high (right) collagen concentration

(c) Global histogram descriptor (d) Histogram of local point-level descriptor (e) Discovered Diversity

(f) Online-learned VAE encoder (g) Example VAE reconstruction (512 × 512) (h) Example VAE reconstruction (1024×1024)

bioprinting
substrate1 x y d

density?
in [0,1]

presence?
true/false

minimum drop
spacing (70um)

(-1,-1)

(1,1)

if presence: drop at (x,y)  of density d

(i) CPPN parametrization of the printing pattern (j) Example CPPN-generated patterns

Figure 9.7.: Overview of the experimental campaign made in SimCells. (a) Implemented behaviors for the fibroblast and myofibroblast
cells, as well as collagen grains in the proposed model. (b) Example simulations in the resulting model. (c-d) Hand-defined representations
used to characterize outcomes in SimCells: global histogram descriptor (c) and histogram of local point-level descriptor (d). (e) Discovered
diversity by four exploration variants in SimCells. (f) VAE representation used to characterize outcomes in Simcells, incrementally trained
during exploration. (g-h) Example reconstructions (from a held validation set) on a 512 × 512 (g) and a 1024 × 1024 (h) environment in
SimCells. (i) Generation of the initial pattern with predefined shapes (top-left), random initialization (top-right) or CPPN (bottom). (h)
Example CPPN-generated patterns with various droplet sizes and concentrations constraints per row.
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Model implementation In light of recent experimental findings at
Poietis, it was observed that cultured fibroblast cells exist in two distinct
phenotypes: fibroblast and myofibroblast, with each playing distinct roles
in matrix remodeling. These findings, detailed in Douillet et al. [417],
also identified specific culture conditions for high and low myofibroblast
differentiation rates in vitro. Consequently, we chose to incorporate these
two distinct phenotypes into our simulation, assuming we could control
their ratio experimentally. Three components were introduced into the
SimCells environment: fibroblasts, myofibroblasts, and collagen grains,
with distinct behaviors outlined in Figure 9.7a. In essence, in the proposed
model7, cells undergo apoptosis if they aged excessively or experienced 7: Note that the proposed model is based

on my (non-expert) findings from the
scientific literature but more precise and
complex behaviors could be considered

excessive pressure, while they reproduce through oriented division
under other circumstances and certain probability. Fibroblasts were pro-
grammed to exhibit high motility along rigidity gradients (durotaxis) but
lacked contractile properties, though they were programmed to differ-
entiate into myofibroblasts in regions with high collagen concentration.
Conversely, myofibroblasts were not much mobile but highly contractile
(which plays a crucial role in wound healing and lesion closure). Collagen
grains were also programmed to be contractile and gradually degraded
in the presence of cells. In Figure 9.7b, we illustrate example simulations
featuring different populations of fibroblasts (light green), myofibroblasts
(dark green), and collagen concentrations (yellow).

Basic IMGEP Search Given this model, we then performed basic
exploration strategies to implement a fully automated discovery loop.
The controlled parameters (𝜃) included the ECM durotaxis force for
fibroblasts, the myofibroblast contractile force, and the initial printing
pattern𝐴𝑡=1 (randomly initialized with a specified probability of presence
and phenotype). The observation (𝑜) returned the matrix of cell positions.
For the behavioral characterization 𝑧 = 𝑅(𝑜), we implemented two simple
8-dimensional descriptors: a global histogram descriptor (referred to
as GH, Figure 9.7c) that counts the number of cells falling within 8
concentric zones at the end of maturation (after 𝑇 = 1000 steps), and a
histogram of local point-level descriptors (referred to as HLPLD, Figure
9.7d) where local point features express pointness (𝜆0) and curveness (𝜆1)
based on the distribution of neighboring points, and are then aggregated
into a global histogram. We then compare four algorithm variants:
an IMGEP using GH as goal space (IMGEP GH), an IMGEP using
HLPLH as goal space (IMGEP HLPLH), a random exploration (Random
Explorer), and an exploration strategy that randomly selects a prior
discovery from the buffer and applies random parameter mutations
(Random Goal from buffer). Each variant had a budget of 𝑁 = 2000
rollouts in SimCells. The IMGEPs employed uniform sampling within
the hyperrectangle envelope of currently-reached goals in 𝑍 as the goal
sampling strategy, along with nearest neighbor selection operator and
random mutation expansion operator for the goal achievement strategy.
The achieved diversity is displayed in Figure 9.7e, evaluated in the
GH analytic space (top) and HLPLD analytic space (bottom) using a
binning-based metric. As anticipated, IMGEP operating in the GH space
exhibited the highest diversity in that space, while the variant operating
in the HLPLD space achieved the highest diversity within that space. We
observe that achieving diversity in HLPLD did not correspond to diversity
in GH, whereas diversity in GH also led to diversity in HLPLD.
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Online Learned Goal Spaces Representations We proceeded to in-
corporate the algorithm ingredients proposed in Chapter 4 into the
IMGEP pipeline: online learning of goal space representation using a
deep Variational Autoencoder (VAE) [137] and the generation of struc-
tured initial patterns utilizing Compositional Pattern Producing Net-
works (CPPNs) [194]. The VAE representation was initialized with an
8-dimensional latent space (as depicted in Figure 9.7f) and was fed the
rendered image (at T=1000 steps) as input. Figure 9.7g illustrates that
the VAE successfully learned to reconstruct “sharp” images for a grid
size of 512× 512 (Figure 9.7g), as compared to the blurry reconstructions
learned for the 1024 × 1024 environment (Figure 9.7g)8, although upon 8: blurry reconstructions is also what we

obtained in Lenia (see Figure 4.9)closer examination, we observed that this was due to overfitting of the
model (generating images similar to those in the training set but not the
actual images from the validation set displayed here).

Structured Initial Pattern with Bioprinting Constraints Generating
the initial cell-printing pattern poses a non-trivial, high-dimensional
challenge. Biologists within the company often resort to using simple
parametric shapes (e.g., circles or lines, as depicted in top-left of Figure
9.7i), which are easy to define but lack flexibility. Conversely, employing
completely random patterns is inefficient for producing optimized struc-
tured effects in the environment. Once again, we proposed to employ
CPPNs but this time exploiting their flexibility of accommodating diverse
output types to incorporate the bioprinting experimental constraints into
the initial state generation process. Indeed, as detailed in the next section,
the bioprinting device cannot precisely control individual cell positions,
but it can generate droplets with controlled droplet sizes and cell densi-
ties, while maintaining minimum spacing requirements between droplets.
While CPPN outputs were originally continuous and one-dimensional
(e.g. image intensity for image generation [194] or connection weight for
neural network generation [419]), they can be modularized and subdi-
vided into binary or continuous outputs, which we take advantage of
here to integrate the experimental constraints9, as depicted in Figure 9.7i. 9: Using modular and binary outputs is

also what we used in LeniaChem (Section
5.5) and was also proposed by Cheney
et al. [420] to evolve soft-robot morpholo-
gies

Exemplary generated patterns are illustrated in Figure 9.7h, with various
droplet sizes and concentrations across different rows.

Limitations and Future Work While these experiments represented an
initial step towards designing machine learning tools for the automated
discovery of diverse cell-ECM interactions within an agent-based sim-
ulator like SimCells, several limitations remain to be addressed. First,
the model itself turned out to be not really interesting either leading
to predictable behaviors such as cells converging on the positions of
collagen grains (in cases of strong durotaxis), differentiating into my-
ofibroblasts, and eventually dying, or exhibiting random movements
(in cases of low durotaxis) without much evolution, which is not very
realistic. Although outside the scope of this thesis, it would be interesting
to push the modeling aspect and integrate more complex and realistic
cellular behaviors in the model. Secondly, for cellular-based systems like
SimCells, it might be beneficial to directly learn representations from
the unstructured point cloud of cell positions and attributes, instead
images10

10: Which would also be useful for real
systems, as tracking cell positions can
easily be done and learning representa-
tions directly from the raw microscopy
images might be more complicated

, for instance employing approaches as presented in Achlioptas
et al. [421].
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9.3. Bioprinter-controlled Morphogenetic
Systems for Biological Tissue Engineering

In this section, we present possible experiments that could be envisaged
for future work with real morphogenetic systems at the laboratory,
leveraging Poietis bioprinting technology and the proposed curious
automated discovery algorithms. The presented experimental directions
were devised in collaboration with biologists from the Poietis company.

Laser-assisted Bioprinting Before diving into the proposed experimen-
tal campaign, we briefly explain the core of Poietis experimental pipeline
and bioprinting technology. Bio-printing is an additive manufacturing
process similar to 3D printing, but transposed to the production of biolog-
ical tissues. The process involves depositing living cells onto a biological
substrate, assembling them in space, and stacking them layer by layer, in
an automated and computer-assisted manner. Various bio-printing tech-
niques exist, including inkjet-based, pressure-assisted (extrusion), and
laser-assisted (LAB) bioprinting [423]. Poietis specializes in laser-assisted
bioprinting (LAB) and has developed the NGB platform, combining LAB
with other biofabrication methods for precise tissue engineering, as de-
tailed in Figure 9.8. NGB is a platform enabling (nearly) fully automated
bioprinting process, with enhanced 1) precision (ability to position cells
very accurately in a 3D environment), 2) resolution (capability to print at
the single-cell resolution), and 3) cell viability [404].

(a) Poietis Experimental Pipeline (b) Poieskin®

(c) Bio-material printing (d) Laser-assited cellular bioprinting (e) Tissue maturation

Figure 9.8.: Overview of Poietis bioprinting experimental pipeline. (a) Main experimental steps and estimated time for bioprinting
of a simple fibroblast-collagen model (2D printing of fibroblast on 1𝑐𝑚2 layer of collagen). (b) Picture (top) and histology (bottom) of
Poieskin®, a full bioprinted human skin model (derm+epiderm) produced with the NGB platform. (c) Bio-extrusion and micro-valve
heads that can be used to print biomaterials. (d) LAB technology: laser pulses are focalized on a cartridge composed of an ink film
spread on a glass plate (donor) which results in the formation of an ink jet towards a substrate on which cell microdroplets are collected
(receiver). By controlling the physical conditions of the ejection (energy, viscosity, etc.), the volume, size and cell density of the droplets
can be controlled. (e) Example of tissue maturation observed with microscopy timelapse for two culture conditions, adapted from [422].
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Existing approaches for the exploration of cell-ECM interactions Re-
cent advancements in tissue engineering and synthetic biology, including
technologies like Poietis LAB and advanced microscopy imaging, have
significantly enhanced our capabilities in manipulating, observing, and
comprehending the complex processes involved in cellular morphogene-
sis. As illustrated in Figure 9.9, various factors exert influence over cellular
interactions with both neighboring cells and the extracellular matrix.
These factors encompass complex cellular communication mechanisms,
environmental elements, and feedback loops. Below, we provide a (suc-
cint) review of recent studies in biology that have explored the effects of
different factors on cellular behaviors and matrix remodeling. Our focus
lies on the interactions between fibroblasts and collagen in the dermal
layer, a subject of particular significance for our experimental campaigns
and simulations within the SimCells framework. We categorize these
research papers based on the factors they investigate:

▶ Cellular phenotype (culture conditions)

• culture medium [424]
• culture seeding density [417]

▶ Physical and mechanical environment of the cells

• Stiffness of the substrata
* biomaterial stiffness, degradability and ligand density [425]
* collagen concentration [426]

• Mechanical loading
* floating vs restrained support [417, 427]
* externally applied forces [428]

• Initial cell patterning (disposition and density) [429]
• 2D vs 3D environment and geometry of adhesion sites [425]
• ECM micro-patterning

* micro-contact printing [430]
* microfabricated post-array-detectors (mPADs) [431]

▶ Chemical environment of the cells

• UV light to control the formation/degradation of chemical
crosslink in hydrogels [432]

• growth factor to reverse the myofibroblast differentiation [433]
• growth factor and pro-contractile elements [434]
• inhibitor of actin polymerization11

11: Actin is a protein found in the cy-
toskeleton of fibroblast cells which is
needed for the cell to exert contractile
forces on the collagen fibers, central for
motility and ECM remodeling

[429]

Figure 9.9.: Factors influencing cell-ECM
interactions include (i) chemical inter-
actions with soluble factors in the envi-
ronment, (ii) mechanical and chemical
interactions with the extracellular matrix
(e. g. collagen gel), (iii) external forces ap-
plied at the tissue or organ level, and
(iv) cell-cell communications. These fac-
tors in turn influence various cellular
behavior such as phenotype expression,
differentiation, division, apoptosis, mi-
gration and contraction of the local ECM.
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While parameters like initial cell arrangement, culture conditions, and
extracellular matrix composition are extensively investigated in labo-
ratory experiments, these studies are typically conducted manually
by biologists who isolate and analyze a limited number of param-
eters individually, relying on visual inspection for characterization.
Although machine learning tools have not been widely applied for
automated parameter exploration in this context12

12: Shi et al. [435] and Ruberu et al.
[436] introduced a Bayesian optimization
method for the automatic optimization
of bioprinting parameters, focusing on
enhancing printing accuracy and stabil-
ity at printing time (𝑡 = 0). However, as
far as we are aware, there have been no
prior studies using ML approaches and
bioprinting for automatically exploring
tissue-level self-organized dynamics.

, there is growing
belief among researchers, including ourselves, that such tools have
significant potential to enhance our understanding of the diverse
outcomes in morphogenetic systems [437].

Proposed experimental campaign(s): automated discovery
of diverse cell-ECM interactions

A major interest of the bio-printing technology, is that it provides the
opportunity to study the complex mechanisms of skin morphogenesis in
vitro. However, the high-complexity of the processes at stake makes the
study of the emerging structures and their exploration very difficult to
apprehend with traditional approaches.

In this section, we present few experimental campaigns that could be
envisaged as a proof of concept of automated AI-driven exploration in
a bioprinter-controlled morphogenetic system, and using the IMGEP
algorithms developed in this thesis. While various kind of morphogenetic
processes could be envisaged, we decided to focus on fibroblast-collagen
skin models which have been extensively studied by Poietis13. 13: In 2018, Poietis produced the first

human dermo-epidermal model, Poie-
skin® (Figure 9.8b). They are now work-
ing on clinical development for a bio-
printed skin substitute using LAB tech-
nology [406].

Experimental parameters Based on insights from the literature, and
discussions with bioligists that manipulated fibroblast-collagen models
at Poietis, we suggest to explore the experimental parameters presented
in Table 9.1, which are believed to have an effect on dermal fibroblasts
behaviors and functionalities [422]. Those include parameters relative to
cell culture, ECM composition and organization, and cell patterning.

Table 9.1.: Envisaged experimental parameters, for each step of the experimental pipeline (Figure 9.8a). Parameters shown in gray may
be held constant rather than varied. For each parameter, we propose an experimental procedure to confirm precise parameter control (or
assess margin of error), along with corresponding controllable variables in the SimCells simulator.

Pipeline Experimental Parameters Experimental Validation SimCells Parameters
Preparation of
the cellular ink

FibroCC or MyoCC seeding concen-
tration (𝑀/𝑚𝑙) which were found to
produce high (50% in MyoCC) and low
(5% in FibroCC) myofibroblast differ-
entiation rates respectively (see [417])

Fluorescent microscopy to character-
ize the percentage fibro/myofibro and
cell count

Vary cell phenotype (fi-
broblast versus myofi-
broblast)

Collagen print-
ing and gelling

Gel height (mm), collagen concentra-
tion (mg/ml), glass or plastic support,
gel patterning (CAD), gelling temper-
ature and C02

Dynamic mechanical analyzer (DMA)
to characterize matrix stiffness and
porosity. Atomic force microscopy
(AFM) with sillicium beads to char-
acterize collagen fiber orientations

Vary ECM properties
(springs stiffness and rest
length, masses weights
and arrangement)

Cells printing Droplets patterning and density
(themselves controlled by physical con-
ditions of the laser-assisted cell ejec-
tion like energy, viscosity, etc.)

Bright field microscopy to characterize
droplets size, position and cell count

Vary initial patterning
(droplets size, position
and cell count )
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Figure 9.10.: Can we find parameters
leading to diverse cell layer orienta-
tions? Example of fibroblast-collagen tis-
sue maturation obtained experimentally
at Poietis where we can observe that fi-
broblast cells align vertically at J4 i. e.

perpendiculary to the printed lines at J0.

(a) Native (left) versus bioprinted (right) skin constructs

(b) Results by [429]

Figure 9.11.: Can we find parameters
leading to diverse derm surface topogra-
phies? (a, left) Cross-section of in-situ
skin with an invaginated junction be-
tween the dermis (light blue extracellular
matrix and purple cells) and the epider-
mis (stratified layers of purple cells). (a,
right) Cross-section of skin reconstructed
through bioprinting. One can observe the
flatness of the dermoepidermal junction
(DEJ) with respect to the native skin. (b)
Cross-section of a bi-layered skin model
obtained with inkjet bioprinting in Park
et al. [429]. We can see a small “bump”
where fibroblasts aggregate within a con-
densed surrounding collagen matrix.

Figure 9.12.: Can we find parameters
leading to diverse tube-like epithelial
structures? Self-organized endothelial
cell networks obtained by Baltazar et
al. [438] through bioprinting in skin
medium. (left) 3D self-assembled en-
dothelial networks obtained at day 10, re-
constructed from Z-stack confocal imag-
ing of dermal constructs. (right) Confocal
imaging of dermal constructs obtained
at day 50.

Objective #1: exploration of diverse cell layer orientations Something
that would be particularly interesting for biologists would be to control
the orientations of cells and collagen fibers within the gel matrix, or at
least to find diverse possible orientations (and ways to robustly achieve
those orientations experimentally). Indeed, inducing collagen structure
and mechanical properties to control lines of tension is something highly
desirable in tissue engineering14. At the moment, achieving and con- 14: For instance Langer’s lines on human

skin, which play a central role for wound
healing and scar formation, are paral-
lel to the natural orientation of collagen
fibers in the dermis and generally perpen-
dicular to the underlying muscle fibers

sistently reproducing a diversity of such orientations experimentally is
very hard. As an example, the Poietis team observed some years ago
that under specific conditions, they could generate a cell layer oriented
perpendicular to the printed lines, as depicted in Figure 9.10. This is
an interesting result, because it is known that once cells in an upper
layer establish a specific orientation, subsequent layers tend to adopt the
same orientation [439]. This implies that controlling the macroscopic
orientation of a single layer could potentially extend to influence the
orientation of an entire tissue. However, those results were found “by
luck” and in fact the company has not been able to reproduce those
results in vitro since then. Rather, cell layers typically exhibit one of two
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configurations: cellular “tapestry” where cells homogeneously cover the
layer but with random orientations, or cellular “clusters” where cells
heterogeneously cover the layer and gather in contractile clusters, as
illustrated in Figure 9.8e under the FibroCC and MyoCC condtions. This
is a first use-case where the proposed diversity search AI algorithms
could be very useful for exploring the space of possible behaviors.

Objective #2: discovery of diverse derm surface topographies An-
other interesting use case would be to aim for diverse possible surface
topographies of the self-organized dermis layer. Indeed, the dermis is
a key element in the mechanical properties of the skin and the proper
differentiation of the epidermis: human dermoepidermal junction (DEJ)
possesses papillary microstructures and inducing self-organization of
similar 3D microstructures in the laboratory is also highly desirable15 15: For instance, the papillary mi-

crostructures on human DEJ play a cru-
cial role in anchoring the epidermis to
the dermis while facilitating nutrient and
waste exchange between the two layers

yet challenging. Currently, bioprinted skin equivalents tend to exhibit
relatively flat DEJs compared to native human skin (Figure 9.11a) as
replicating 3D elevated microstructures through layer-by-layer stacking
of bioprinted cells and biomaterials is non trivial. Park et al. [429] recently
demonstrated that it is possible to self-organize 3D elevated microstruc-
tures from initially printed flat surfaces. The achieved “bumps” were even
shown to self-maintain in full skin tissue models when combined with the
epidermis layer (Figure 9.11b). However, these preliminary findings were
constrained to a few predefined printing patterns, limiting the extent of
3D remodeling achieved. We believe that using the developed diversity
search AI algorithms for a bolder exploration of input parameter space
could facilitate the discovery of a wider array of surface topographies.

Objective #3: discovery of diverse epithelial tube-like structures Fi-
nally, something that is quite challenging to achieve in bioprinted skin
equivalents but that would be highly desirable from a tissue engineering
perspective would be to introduce a dermal vasculature16. However, the 16: For instance, human vascular cells

play a central role to promote healing and
tissue maturation [440] and dermal vas-
culature might be necessary to achieve
long-term stable engraftment of bio-
printed tissues in human patients [438]

printing of 3D endothelial networks is relatively recent and there are still
major limitations in the generation of functional endothelial networks
of physiologically relevant dimensions in vitro [438]. Notably, achiev-
ing to construct vessels of the same diameter as the capillaries found
in the skin microvasculature (< 50𝜇𝑚) is very hard. Past attempts at
creating capillary-like networks with 3D bioprinting technology typically
involved pre-patterning channels in a hydrogel matrix and subsequently
lining them with endothelial cells. Baltazar et al. [438] recently shown
that it is possible to achieve functional endothelial networks solely
through self-assembly of endothelial cells, enabling the generation of
pre-vascularized dermal compartments before engraftment (Figure 9.12).
We believe that leveraging the precision of the laser-assisted bioprinting
technology developed at Poietis, together with the developed diversity
search AI algorithms could assist biologists constructing diverse possible
self-assembled tubular structures, notably of various diameters. Here,
instead of printing fibroblast cells and controlling their phenotype via
culture conditions as proposed in Table 9.1, our approach would involve
culturing endothelial stem cells under specific conditions designed to
achieve an 80% differentiation into epithelial cells while maintaining a
20% population of pericyte cells17. 17: Epithelial cells self-organize in tubu-

lar structures forming protective vessel
barriers, while pericyte cells contract cap-
illaries for regulating blood flow
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Table 9.2.: Experimental observations and low-dimensional characterizations envisaged for the different experimental campaign
objectives. We also list the corresponding observable variables that, when implemented, could be investigated in the SimCells simulator.

Objective Experimental Observations Outcome Characterization SimCells Observations

Objective #1

1) Timelapse measurements (×4 or ×10 every 16 minutes
for 6-7 hours) with cell nucleus and/or cell membrane
and/or microbeads tracking with fluorescence; 2) Confocal
microscopy at the end of maturation (T=5 days) to char-
acterize cell nucleus and orientation; 3) Second harmonic
generator (SHG) at the end of maturation (T=5 days) to
characterize collagen fiber orientations

Statistics of cell and/or collagen
fiber orientations per regions

1) Cell nucleus and/or cell
membrane and/or masses
tracking; 2) Cell nucleus and
orientation at the end of simu-
lation; 3) Spring orientations
at the end of simulation

Objective #2 Atomic force microscopy or Surface metrology at the end of
maturation (T=5 days) to characterize ECM height profile Surface height descriptors ECM height profile (for 3D

environment)

Objective #3 1) Confocal microscopy with immunostraining and 3D re-
construction; 2) Permeability test in ionic solution

1) Tubular structure (diameter, di-
rection); 2) impermeability score not implemented

Outcome characterizations Depending on the targeted biological ob-
jective, outcomes of tissue maturation might be characterized with the
measurements proposed in Table 9.2.

IMGEP design choices Even though the experimental campaign would
target small deliverables (e.g. <1𝑐𝑚3 tissue), each experiment would
require significant budget in terms of time, money and resources. The
idea would therefore be to use an approach similar to the one presented
in Chapter 8 for exploring the space of GRN behaviors with a very simple
IMGEP operating in a predefined low-dimensional goal space (e.g. ones
proposed in Table 9.2) and targeting a diversity of outcomes in that
space using a low experimental budget 100 < 𝑁 < 1000. Depending on
the choice of the goal space, it might be very useful to introduce some
curriculum in the goal sampling as proposed in Chapter 7. For instance,
progressively sampling goals toward increasingly elevated or rugged
surfaces for the campaign #2 or toward progressively thiner or more
permeable tubular structures in #3 might significantly increase sample
efficiency in finding a diversity of such behaviors.

9.4. Summary

Overall, introducing a novel methodology utilizing the proposed diversity
search AI algorithms to the biologist community, for exploring the
spectrum of possible morphogenetic system behaviors, was a main
objective of this thesis. With the work on gene regulatory networks and
accompanying notebook tutorials (Chapter 8), targeted at a biological
audience, we made a first step in that direction. Deploying the developed
algorithms to guide experimentation in the bioprinting platform on
real morphogenetic systems, would be a major step forward toward
in that direction. Given the results obtained throughout this thesis
highlighting the sample efficiency of IMGEP approaches in discovering
diverse behaviors compared to less sophisticated strategies (e.g. grid
search methods commonly used in tissue engineering and synthetic
biology), one can expect similar results to be found in the systems
presented in this chapter.

Whether we could discovery truly novel and surprinsing tissue-engineered
dermal structures for biologists, remains an open question. Obviously,



9. Towards Applications in Biological Morphogenetic Systems 165

real-world experimentation is distinct from digital simulation and they
are many additional challenges that we should face as such as stochasticity,
variability, and limited control over parameters due to noisy sensors and
unknown variables, in addition to the expected challenge of operating
under limited experimentatal budget.
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What is the aim of this chapter? This final chapter gathers the software

contributions that were made in this research, all of which are based on
open-source code released under the MIT license. In particular we discuss
two principal open-source projects: the ADTOOL and SBMLtoODEjax
software packages, for which additional efforts were taken to encourage
their broader reuse and development by the community.

How is this chapter organized? In Section 10.1, we present the AD-
TOOL software, which is still under active development at the FLOWERS
lab, and whose principal objective is to facilitate automated and inter-
active exploration of complex systems based on the artificial curiosity
algorithms presented in this research. In Section 10.2, we then present the
SBMLtoODEjax software, a lightweight library written end-to-end in JAX
which is designed to facilitate the efficient simulation and optimization
of ODE SBML models, models that are extensively used for the analysis
of biological networks (see Chapter 8). Finally, in Section 10.3 we gather
useful links towards the various resources presented in this research,
including github repositories to replicate the experiments presented in
this manuscript, as well as additional interactive blog posts and tutorials
that were made for dissemination purposes.

(a) ADTOOL

(b) SBMLtoODEjax

Figure 10.1.: Main software contributions on this research. (a) Examples of experiments and discoveries conducted in the ADTOOL
software with the original Lenia system (left), pytorch-based differentiable Lenia system (middle) and SimCells system (right). (b) Logo
(left) and example usage (middle-right) of the JAX-based SBMLtoODEjax software for biological network analysis.
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10.1. ADTOOL: Assisted and Automated
Discovery for Complex Systems

(a) Github Repository

(b) Documentation and Tutorials

Figure 10.2.: Scan (or click on) the above
QR codes for accessing ADTOOL (a)
github repository, and (b) online doc-
umentation with user tutorials. The code
is open-source and under MIT license.

10.1.1. Context

ADTOOL is a software aimed at facilitating automated and interactive
exploration of complex systems based on the artificial curiosity algorithms
developed at the FLOWERS team, and with a particular focus on those
developed during my doctoral thesis. The development of the ADTOOL
software is an ambitious engineering project that has been led by three
software development engineers at the FLOWERS lab: Clément Romac,
Mathieu Perie, and Jesse Lin, and that is still under active development.

My specific role in this project primarily revolved around engaging in
proactive discussions and providing supervision throughout the project’s
development. Additionally, I could contribute to testing the software
as an “expert” beta user. This notably encompassed the integration of
more advanced algorithmic variants such as IMGEP-VAE (Chapter 4) and
IMGEP-HOLMES (Chapter 5), the integration of several complex systems
(e.g. variants of the Lenia system and Simcells simulator as illustrated in
Figure 10.1), and the launching of experiments.

10.1.2. Motivation

The conventional approach to experimentation in complex system often
involves manual manipulation of numerous experimental parameters,
resulting in slow and inefficient exploration. The primary objective of the
ADTOOL software was to democratize the application of curiosity-driven
exploration algorithms developed within the FLOWERS team, and in par-
ticular the ones developed during the present research, as efficient tools
for assisting scientific discovery and for automating experimentation.

Indeed, as we had the opportunity to present our research work to various
scientists from diverse fields, we observed a certain interest in integrating
our algorithms into the systems that these scientists explore. These inter-
actions, however, highlighted the need to enhance the accessibility of our
exploration algorithms, especially for users lacking expertise in program-
ming or machine learning. Consequently, a central motivation driving
this project was to enable non-specialist users to independently conduct
experiments using our algorithms, while providing them with a good
degree of autonomy to tailor the exploration algorithms, visualization
tools, and analyses to their specific requirements.

Finally, a key factor that motivated the development of this project,
highlighted in Chapter 6, was the the aspiration to seamlessly incorporate,
within the exploration algorithms, interactive exploration between the
AI agent and actual human end-users. Enabling flexible interactions on
one hand, and a user-friendly experience on the other, introduced quite
a few engineering challenges which also motivated this project.

https://github.com/flowersteam/adtool
https://developmentalsystems.org/adtool
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(a) ADTOOL Functional Architecture (b) ADTOOL Technical Architecture

Figure 10.3.: Overview of ADTOOL software (a) functional and (b) technical architecture.

10.1.3. Software Overview

The software’s functional architecture, as illustrated in Figure 10.3a, is
structured into several functional blocks, each serving specific functions
and interacting with other blocks. First, there is a modular python API

(Auto Disc, depicted in green) which allows to define and study various
combinations of exploration and visualization algorithms, and to easily
plug them with several target systems (depicted in gray). Secondly, there
is a user-friendly web application (depicted in red) which enables scientists
to perform, guide and visualize experiments by sending commands to
the Python library. Between these components, two databases (depicted
in blue) are responsible for storing structured data related to experiments
and their configurations (App DB) and housing all data generated by the
experiments (Expe DB1). 1: Expe DB is the equivalent to what we

refered to as the “history” H
Without delving into exhaustive technical details, the overarching techni-
cal architecture chosen for the implementation of these functional blocks,
as depicted in Figure 10.3b, relies on two fundamental elements. First, it
employs a partitioned architecture that breaks the software into various
microservices utilizing REST APIs, and which interact through HTTP
requests. Secondly, it employs a client-server architecture, wherein the
client side is used for visualization and interaction with the experiments
(within a Web Window, in JavaScript) and the server side is used for
computation and running the experiments (in Python). Moreover, de-
pending on the experimental needs, experiments can either be executed
locally or on remote servers, which can be particularly useful for running
computations on supercomputers when available.

Finally, the front-end web application, designed to enable users to create,
interact with, store, and analyze experiments, integrates sevaral compo-
nents depicted and elaborated upon in Figure 10.4. It notably includes
various visualization tabs and jupyter notebooks for flexible interactions
with the discovery process.

Overall, the functional and technical architecture of ADTOOL accommo-
dates two main modes of utilization. The first mode is intended for more
“expert”2 end-users who wish to implement novel systems, wrappers or 2: Note that the modular python API

shoul make it relatively easy for the “ex-
pert” user to incorporate new systems or
modules (e. g. new representations) with-
out the need for extensive modifications

explorer modules within the Python library. The second mode is rather
intended for “mainstream” end-users who whish to explore the existing
systems, e.g. by trying different explorer variants and comparing the
resulting discoveries, and that simply need to engage though the web
interface as depicted in Figure 10.4.
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(a) Creating an Experiment

(b) Running and Monitoring Experiment

(c) Visualizing the Discoveries

(d) Analyzing and Interacting with the Discovery Process via Jupyter Notebooks

Figure 10.4.: Overview of the end-user
experience in ADTOOL.

(a) The user can create new ex-
periments by selecting the system,
explorer, input wrappers and output
representations, alongside their respec-
tive hyperparameters. It can also select
whether it wants the experiment to
be executed on its local machine or a
remote server, as well as what should be
saved in ExpeDB after each discovery
(e. g. visual rendering of discovery,
parameters𝜃, goal representation 𝑧, etc.).

(b) Monitoring page on which
the user is redirected once the ex-
periment is created and launched.
Here, user can see details of the
experiment, track its progress and see
the different checkpoints generated
during experiment.

(b-c-d) Below checkpoints, three
tabs are accessible to monitor the
experiment.

(b) The LOGS tab enables to re-
view the experiment logs.

(c) The Discoveries tab provides a
simple interface where the user can see
the discoveries (updated throughout
exploration as new discoveries are
received), here retrieved from an
exploration of the Lenia system.

(d) The Jupyter Notebook tab pro-
vides the end-user with a direct means
of engaging with the discoveries
archived in the Expe DB. This feature
serves a dual purpose: firstly, it facilitates
analytical endeavors, enabling user
to access the discoveries and analyze
them with their own pipeline, and
secondly it facilitates human-in-the-loop
interactions, although this feature is
still under development. To elaborate
on the second purpose, specific Jupyter
notebooks can be associated with the
Python modules of the Auto Disc library
to request and collect feedback from
end-users during exploration, which is
then sent back to as input to the python
modules which they can used to guide
experimentation.
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10.1.4. Why use ADTOOL?

While ADTOOL is still under active development, it has reached an
advanced stage of development, offering several notable advantages.

To begin with, the Python library within ADTOOL incorporates modular
implementations of curiosity-driven exploration algorithms. This modu-
lar design simplifies the integration of new systems or additional modules
into the exploration pipeline. As a result, ADTOOL could serve as a
solid foundation for external users who seek to access these algorithmic
variants and potentially advance them into more sophisticated variants3, 3: As an example of the software’s capa-

bilities, I was myself able to integrate the
IMGEP-VAE and IMGEP-HOLMES algo-
rithms presented in Part I. These integra-
tions represent already quite advanced
applications, as they involve the real-time
learning of deep learning models in Py-
Torch and the execution of experiments
on remote servers.

or simply reuse them “as such” to explore their own systems4.

4: As an example of basic usage, I could
myself performed various exploration
experiments on several complex systems
as illustrated in Figure 10.1.

Specifically, while existing variants of curiosity-driven algorithms (and
autotelic learning approaches in a broader sense) primarily operated in an
autonomous manner, this tool introduces several promising possibilities
to orchestrate their activities in tandem with human end-users. In the
context of assisted scientific discovery, notably, this tool holds promise for
conducting experiments with real-time human feedback, while alleviating
the technical complexities associated with AI-user collaboration.

Finally, the proposed software architecture, summarized in Figure 10.3,
is designed to offer a high degree of flexibility to the end user. The use of
a REST API enables seamless interaction with the provided algorithms,
whether they are executed locally on the user’s machine or on a remote
server. The client libraries, on the other hand, provide generic functions
for interacting with the server in several ways. The utilization of web
technologies for the graphical interface should also facilitate the creation
and customization of new interfaces to meet the specific needs of users.

10.1.5. Future work

The software is currently in an alpha stage of development: it is functional
and has been used internally at Inria FLOWERS, but may not have features
which are convenient for different workflows.

While the engineers of the team have already implemented the technical
ingredients for enabling interactions with end-users during the explo-
ration process, via the jupyter notebook interfaces, these implementations
have so far been limited to proof-of-concept demonstrations. A major
direction for future work involves conducting more advanced experi-
mental campaigns involving active human participation. For instance,
replicating the IMGEP-HOLMES experiments presented in Chapter 6
with preference-based guidance of (simulated) end-users, but this time
involving actual human participants, could be a promising direction.

Finally, providing demonstrations to potential new users through this
integrated software, enabling them to control the algorithms and visualize
exploration results in real-time, via several example tutorials, could be
very useful. This should hopefully enable broader dissemination of the
software, which has only be used internally at the moment.
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10.2. SBMLtoODEjax: Efficient Simulation and
Optimization of ODE SBML models in
JAX

(a) Github Repository

(b) Documentation and Tutorials

Figure 10.5.: Scan (or click on) the above
QR codes for accessing SBMLtoODEjax
(a) github repository, and (b) online doc-
umentation with various tutorials. The
code is open-source and under MIT li-
cense.

10.2.1. Context

SBMLtoODEjax is a software that was developed during my stay at the
Levin Lab in Tufts University (Boston, USA), within the context of the
research project centered on mapping the space of possible behaviors
of gene regulatory networks, as detailed in Chapter 8. The motivation
for developing this software stemmed from the observation that existing
tools designed for simulation of biological network models were not very
tailored to explore the space of possible interventions on those systems,
nor to facilitate automated discovery.

While SBMLtoODEjax was first developed as a tool for the work presented
in Chapter 8, we decided to package it in a standalone, lightweight and
adaptable library, as we believe it has the potential to be reused in
several contexts at the interesection of machine learning and biology.
To encourage its broader reuse and development by the community,
additional efforts were made to make it easily accessible, to provide a
comprehensive documentation with various hands-on tutorials, and to
propely package and share it with an open-source license.

10.2.2. Motivation

As discussed in Chapter 8, developing methods to explore, predict
and control the dynamic behavior of biological systems, from protein
pathways to complex cellular processes, is an essential frontier of research
for bioengineering and biomedicine [441]. Significant effort has gone
in computational inference and mathematical modeling of biological
systems, which has resulted in the development of large collections of
publicly-available models, typically stored and exchanged on online
platforms (such as the BioModels Database [314, 315]) using the Systems
Biology Markup Language (SBML), a standard format for representing
mathematical models of biological systems [442, 443].

Despite the wealth of available SBML models, scientists still lack an
in-depth understanding of the range of possible behaviors that these
models can exhibit under different initial data and environmental stimuli,
and lack effective ways to search and optimize. Except for a subset of
simple networks where system behavior and response to stimuli can be
well understood analytically (or with exhaustive enumeration methods),
onerous sampling of the parameter space and time-consuming numerical
simulations are needed. This remains a major roadblock for progress in
biological network analysis.

On the other hand, recent progress in machine learning (ML) has led
to the development of novel computational tools that leverage high-
performance computation, parallel execution and differentiable program-
ming and that promise to accelerate research across multiple areas of
science, including biological network analysis [444] and applications
in drug discovery and molecular medicine [363, 445]. However, to our

https://github.com/flowersteam/sbmltoodejax
https://developmentalsystems.org/sbmltoodejax
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knowledge, there is no software tool that allows seamless integration
of existing mathematical models of cellular molecular pathways (SBML
files constructed by biologists) with ML-supported pipelines and pro-
gramming frameworks. Whereas there exists many software tools for
manipulation and numerical simulation of SBML models, they typically
rely either on specialized simulation platforms limiting the flexibility
for customization and scripting (such as COPASI [446, 447], Virtual Cell
[448, 449] and Cell Designer [450, 451]) or provide scripting interfaces
in Python or Matlab but rely on backend engines that do not support
hardware acceleration or automatic differentiation (like Tellurium [452,
453] and SBMLtoODEpy [454] python packages, or the Systems Biology
Format Converter (SBFC) which generates MATLAB and OCTAVE code
[455]).

SBMLtoODEjax seeks to bridge that gap by bringing SBML simulation
to the JAX ecosystem, a thriving community of JAX libraries that aim
to accelerate research in machine learning and beyond, with diverse
applications spanning molecular dynamics [109], protein engineering
[456], quantum physics [457], cosmology [458], ocean modeling [459],
photovoltaic research [460], acoustic simulations [461] and fluid dynamics
[462]. SBMLtoODEjax aims to integrate this ecosystem and provide tools
to accelerate research in biological network analysis.

10.2.3. Software Overview

SBMLtoODEjax is a lightweight library that allows to automatically parse
and convert SBML models into python models written end-to-end in
JAX, a high-performance numerical computing library with automatic
differentiation capabilities [198]. SBMLtoODEjax is targeted at researchers
that aim to incorporate SBML-specified ordinary differential equation
(ODE) models into their python projects and machine learning pipelines,
in order to perform efficient numerical simulation and optimization with
only a few lines of code. Taking advantage of JAX’s core transformation
features, one can easily boost the speed of ODE models time-course
simulations and perform efficient search and optimization by running
simulations in parallel and/or using automatic differentiation to find
derivatives. SBMLtoODEjax extends SBMLtoODEpy, a python library
developed in 2019 for converting SBML files into python files written in
Numpy/Scipy [454]. The chosen conventions for the generated variables
and modules are slightly different from the standard SBML conventions
with the aim to accommodate for more flexible manipulations while
preserving JAX-like functional programming style.

Documentation We refer to the documentation for additional details
on SBMLtoODEjax’s design principles and chosen conventions, main
advantages and limitations, and full API docs. Various hands-on tutorial
notebooks for loading and simulating biomodels, running parallel execu-
tions and performing gradient descent optimization are also provided.

https://github.com/n2cholas/awesome-jax
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10.2.4. Why use SBMLtoODEjax?

Simplicity and extensibility SBMLtoODEjax retains the simplicity of
the SBMLtoODEPy library to facilitate incorporation of the ODE models
into one’s own python projects. As shown in Figure 10.6, with only a
few lines of python code, one can load and simulate existing SBML files.
Moreover, one can easily refactor the models to its need.

Figure 10.6.: Example code (left) and out-
put snapshot (right) reproducing orig-
inal simulation results of Kholodenko
2000’s paper [463] hosted on BioModels.

JAX-friendly The generated python models are tailored to take advan-
tage of JAX main features. Model rollouts use jit transformation and
scan primitive to reduce compilation and execution time of the recursive
ODE integration steps, which is particularly useful when running large
numbers of steps (long reaction times). Models also inherit from the
Equinox module abstraction [464] and are registered as PyTree contain-
ers, which facilitates the application of JAX core transformations to any
SBMLtoODEjax object.

Efficiency simulation and optimization The application of JAX core
transformations, such as just-in-time compilation (jit), automatic vec-
torization (vmap) and automatic differentiation (grad), to the generated
models make it very easy (and seamless) to efficiently run simulations in
parallel. For instance, as shown in Figure 10.7, with only a few lines of
python code one can vectorize calls to model rollout and perform batched
computations, which is especially efficient for large batch sizes.

Figure 10.7.: (left) Example code to vectorize calls to model rollout (right) Results of a (rudimentary) benchmark comparing the average
simulation time of models implemented with SBMLtoODEpy versus SBMLtoODEjax (for different number of rollouts i.e. batch size). For
additional details on the comparison, please refer to our Benchmarking notebook.

As shown in Figure 10.8, SBMLtoODEjax models can also be integrated
within Optax pipelines, a gradient processing and optimization library
for JAX [465], allowing to optimize model parameters and/or external
interventions with stochastic gradient descent.

https://www.ebi.ac.uk/biomodels/BIOMD0000000010#Curation
https://www.ebi.ac.uk/biomodels/BIOMD0000000010#Curation
https://developmentalsystems.org/sbmltoodejax/tutorials/benchmark.html
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Figure 10.8.: (left) Default simulation results of biomodel #145 which models ATP-induced intracellular calcium oscillations, and
(arbitrary) target sine-wave pattern for Ca_Cyt concentration. (middle) Training loss obtained when running the Optax optimization
loop, with Adam optimizer, over the model kinematic parameters 𝑐. (right) Simulation results obtained after optimization. The full
example is available at our Gradient Descent tutorial.

Altogether, the parallel execution capabilities and the differentiability
of the generated models opens interesting possibilities to design and
optimize intervention strategies.

10.2.5. Future Work

SBMLtoODEjax is still in its early phase and does not yet handle all
possible cases of SBML files. We aim to handle more cases in future
releases, and welcome contributions to that end.

Similarly, SBMLtoODEjax only integrates one ODE solver for now
(jax.experimental.odeint), but could benefit from more [344].

Finally, whereas SBMLtoODEjax is to our knowledge the first software
tool enabling gradient backpropagation through the SBML model rollout,
applying it in practice can be hard5

5: GRN models are recurrent networks
that are generally ran for many steps,
with each step calling the ODE solver.
This can lead to long backpropagation
compute times and gradient issues.

. Further optimizing the models to be
efficiently differentiable, e.g. using simpler Euler methods as ODE solver,
might benefit their broader usage.

10.3. Other Resources

For the other materials presented throughout this research, including
github repositories, notebook tutorials, interactive web-demos, blogpost
and presentations, we refer the interested reader to Section 1.4.2.

https://www.ebi.ac.uk/biomodels/BIOMD0000000145
https://developmentalsystems.org/sbmltoodejax/tutorials/gradient_descent.html
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As explained in our introductory chapter, the present research aims
to contribute to the development of digital discovery assistants that can
assist discovery in self-organizing systems, and in turn help to address
various challenging problems in Science. Towards this, after formalizing
the automated discovery problem and surveying standard AI paradigms
in Chapter 2, we presented a series of works approaching this challenge
through a novel developmental AI perspective. This paradigm shift pro-
poses to equip AI agents with autotelic learning processes, which means
enabling agents to autonomously generate and pursue their own goals
driven by intrinsic motivations signals, which should in turn promote the
autonomous discovery of diverse kinds of self-organized behaviors.

Our research’s primary focus in Part I was directed towards the reuse and
enhancement of intrinsically-motivated goal exploration processes (IMGEPs),
a foundational family of curiosity-driven exploration algorithms, originally
coming from developmental robotics, to guide scientific experiments in
complex dynamical systems. In Chapter 3, after providing some back-
ground on the IMGEP goal-directed search formalism, we introduced the
numerous challenges that arise for transposing IMGEPs to automatically
find a diversity of interesting self-organized patterns in complex systems.

We then proposed a series of algorithmic ingredients aimed at creating
more effective “curious discovery assistants” capable of automating the
long-term discovery of novel and interesting structures in Lenia, a class
of continuous cellular automata (CA) models, which was shown to be a
particularly useful testbed with rich possibilities for emergence.

In Chapter 4, we proposed to integrate the unsupervised and online

learning of goal space representations, via the use of deep variational
auto-encoders (VAEs) directly trained on the collected raw observations.
We showed how, not only this removed the need for human expertise in
engineering these representations or relying on pre-collected datasets,
but also proved quite effective at discovering a diverse range of spatially-
localized patterns (SLPs). Although, the discovered SLPs’ remained
relatively “basic” compared to the various gliders known to exist in
Lenia, this work formed the first step toward sample-efficient and fully
automated discovery of diverse self-organizing patterns in continuous
cellular automata models, outperforming random exploration baselines
and other IMGEP baselines that employed hand-defined goal spaces.

Then, in Chapter 5, we motivated the need for what we called Meta-

diversity search, arguing that there is not a unique ground truth interesting

diversity but rather many types of possible diversity depending on the
macrostates than one decides to observe. Meta-diversity search aims to
enable continuous seeking of novel source of diversities while being able
to quickly adapt the search toward a new unknown type of diversity. In
particular, we proposed to integrate a dynamic and modular model archi-
tecture, HOLMES, for the unsupervised learning of diverse representation

spaces within the IMGEP exploration process, an approach referred to as
IMGEP-HOLMES. We showed that an IMGEP equipped with a mono-
lithic representation, despite being pre-designed or learned incrementally
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during exploration, fails to continuously adapt its representation to the
different niches of discovered patterns, limiting their discovery. On the
other hand, we showed that the IMGEP-HOLMES is better suited to
escape this bias by learning divergent feature representations, leading to
the effective exploration of diverse sources of diversities within the Lenia
system, among which some led to the particularly interesting discovery
of previously unseen glider-emitting lifeforms.

As final ingredient of the “curious discovery assistant”, proposed in Chap-
ter 6, we further argued that among the many potential sources of emer-
gent diversities, an “interesting” source of diversity is one that aligns with
the preferences and motives of the final end-user. We therefore proposed
to transition from an entirely automated approach to an assisted approach
integrating human guidance into the IMGEP exploration process. In par-
ticular, we proposed a preference-guided variant of IMGEP-HOLMES
where the goal selection mechanism requested and leveraged human
feedback to prioritize the search in the preferred niches of discovered
patterns. Considering two end-user models respectively interested in two
types of diversities (diverse spatially localized and diverse turing-like
patterns), we showed that a monolithic IMGEP will make discoveries that
are strongly uneven in relation to these user preferences. The proposed
approach, on the other hand, was shown to escape this bias and effecitvely
adapt the search to align with the end-user preferences, while requiring
minimal feedback. However, these experiments were conducted with
simulated user feedback, lacking the complexity and adaptivity that might
arise from interactions with actual human users.

Whereas the first part of this manuscript centered on modular devel-
opments of the curiosity-driven exploration algorithms, Part II was the
occasion to delve into our second primary research focus: the practical

applications of these algorithms for assisting scientific discovery, which
we investigated around two concrete use cases.

The first use case, presented in Chapter 7, targeted the automated discovery

and systematic characterization of “robust sensorimotor agents” in Lenia.
Studying forms of self-organized agency and investigating whether these
structures can further give rise to forms of sensorimotricity, i. e. whether
they can develop some form of sensorimotor apparatus enabling them
to make “decision” and “sense” at the macro scale through local inter-
actions only, is of particular interest to scientists. Yet, their study and
characterization has so far relied on manual search and qualitative evalu-
ations, limiting their analysis. We demonstrated how the curiosity-driven
exploration algorithms can be particularly useful in that case, successfully
finding environmental rules leading to the progressive emergence of
individuality, locomotion, and sensorimotor abilities in the Lenia system.
Additionally, testing the robustness of the discovered agents via a bat-
tery of quantitative and qualitative tests, we further demonstrated the
impressive generalization capabilities that these self-organizing agents
can achieve, opening various perspectives for future research in AI.

The second use case, presented in Chapter 8, targeted the automated

discovery and systematic characterization of diverse “robust goal states”
that gene regulatory networks (GRNs) could exhibit in transcriptional
space. Again, the exploration, understanding and characterization of
these behaviors is of particular interest for scientists, yet there is a lack of
systematic methods to reveal and optimize those behaviors via external
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interventions. We demonstrated how the curiosity-driven algorithms,
even in their most basic version, can also be very useful in this endeavor,
efficiently uncovering a wide spectrum of possible GRN behaviors while
using a low budget of experiments. We further characterized the ro-

bustness of the discovered GRN behaviors via a battery of empirical
tests, suggesting that GRNs might possess relatively advanced forms of
non-genetic robustness, and that do not require structural changes of
network properties or connectivity. We also explored the implications
that the discovered competencies could have for biomedicine (control of
gene expression via stimuli, not genetic rewiring) and bioengineering
(design of synthetic morphology with desired system-level behaviors),
opening several perspectives for future research in biology.

Finally, in the third part of this manuscript (Part III), we presented
preliminary experiments and software contributions aimed at expanding
the practical applications to a broader range of scientific problems.

In Chapter 9, around preliminary and prospective experiments, we
presented several scientific challenges in biological morphogenetic systems

for which AI-driven curious discovery assistants could be very useful to
assist the exploration and shaping of cellular self-organization toward
desired morphological or functional outcomes at the tissue-level.

In Chapter 10, we presented the different software contributions of
this research, centered around three objectives. The first one, via the
development of the ADOOL software, is to encourage and facilitate the
reuse of the developed algorithms to a broader audience of scientists.
The second one, via the development of SBMLtoODEjax, is to facilitate
research in biological networks leveraging recent advances in high-
performance computing and differentiable programming. The final one,
via the release of several materials accompanying the algorithmic and
scientific contributions presented in Part I and Part II of this manuscript,
is to disseminate the present research to the general public.
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12.1. Algorithmic Perspectives Towards
Open-Ended Discovery Assistants

IMGEP-HOLMES was a first step in implementing the concepts of meta-

diversity search (Chapter 5) and human guidance (Chapter 6), both of which
are tied to what we consider as two pivotal dimensions in defining,
simulating, and evaluating open-endedness. The first dimension, as
discussed in Banzhaf et al. [238], is the one of meta-level changes where
there is a notion of abstraction of different “types” of novelty: an open-
ended system is one that continually generates novel types of novelties.
The second dimension, as outlined in Stanley and Soros [466], is the one
of subjectivity: open-endedness is, at least to some extent, a subjective
concept in the eyes of the evaluator. As the goals of the curious AI
discovery assistant become more and more diverse, abstract and creative
(i. e. novel and interesting), its autotelic learning process - the pursuit of
self-generated goals - will progressively adopt a more open-ended nature.
These dimensions are particularly beneficial for autotelic algorithms in
general, extending beyond the role of a scientific discovery assistant.

In this section we discuss how future discovery assistants can make
progress on those two dimension, i. e. how they could learn to represent
and target a richer “meta” diversity of goals (Subsection 12.1.1), and how
they could leverage richer interactions with end-users to better align
their exploratory strategy with human interests (Subsection 12.1.2).

12.1.1. Towards a Richer “Meta” Diversity of Goals

In the first part of this manuscript (Part I), we proposed various goal-
directed search variants that led to increasingly “meta” levels of novelties:
novelty in fixed representation space (type-0 novelty), novelty in online-
learned representation space (type-1 novelty), and novelty in diverse
online-learned representation spaces (type-2 novelty). However, even
though the last-variant was operating in diverse representation spaces,
i. e. the learned features encoded diverse aspects of the input patterns,
the representation spaces where all of the same “type”: the latent space
of a VAE that is trained on (static) input images. They are several ways in
which we could aim for a richer diversity of goal space representations,
which could in turn lead to higher-level types of novelty.

First, all the goal spaces used in this manuscript were focusing the search
on visual aspects of experimental outcome final state (Lenia pattern or
GRN node activations at 𝑡 = 𝑇). Although this led, as a side effect, to the
discovery of interesting dynamics in some cases, targeting the learning
of features encoding dynamical aspects of the full video sequences should
lead to a richer diversity of achievable goals (e.g. diverse glider trajectories
in Lenia). Notably, the use of neural network architectures tailored for han-
dling long-range interactions, such as Long Short-Term Memory (LSTM)
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recurrent models [467] or Transformer attention-based models [468],
could be very useful for learning spatiotemporal representations [469,
470].

Secondly, it would be interesting to target multimodal goal space repre-
sentations, e.g. using multimodal Transformer [471] or contrastive [472]
architectures. For instance, it might be useful to combine image-based
representations with ones learned from the sparse data structures (point
clouds) of agent-based systems like the ones presented in Chapter 9, or
of particle-based and graph-based systems in general.

Notably, one particularly interesting modality to investigate in future
work is the one of language. Here, language could be useful as a com-

municative tool, notably to facilitate interactions with human end-users
(see next section), as well as a cognitive tool to imagine new goals1 as 1: Autotelic agents could, as humans,

leverage language to form categories,
make abstract analogies, and combine
old ideas to imagine novel goals [173]

proposed by Colas et al. [173]. In a recent publication, Colas et al. [59]
introduced the use of pretrained language model (LM) to support three
key components of the autotelic architecture: a captioner for the outcome
characterization (𝑅), a goal-generator the the generation of new goals (G)
and a reward function for measuring progress toward each of these goals
(Lg). They suggest that, as language models have internalized aspects of
humans’ common-sense, intuitive physics and overall interests, they are
particularly useful to support the representation, generation and learning
of diverse, abstract, human-relevant goals [59]. It would be interesting to
study whether the use of such language-based models could also shape
the exploration of the targeted self-organizing systems in interesting
ways. However, whereas language has emerged has a particular useful
tool to explore the 3D environments that humans are familiar with, its use
would also strongly bias the learned representations. Whether this bias
would be beneficial for exploring the targeted self-organizing systems
which are full of unfamiliar and yet poorly-described behaviors, remains
an open question.

Thirdly, in addition to using spatiotemporal and multimodal data struc-
tures to learn diverse representation spaces of the experimental out-
comes, one could explicitly train those representation spaces to be diverse.
In Chapter 5 we used Representation Similarity Analysis (RSA) metric,
a technique coming from systems neuroscience [253], to measure the
dissimilarity of HOLMES modular learned representations by compar-
ing their patterns of response to various stimuli (various input Lenia
patterns). One could imagine integrating such metric as training loss or
regularizer for the learned representations. One relevant architecture in
that direction is the divergent discriminative feature accumulation (DDFA)
proposed by Szerlip et al. [246]. DDFA combines a mechanism to gen-
erate neural networks (Hyper-NEAT [419]) with some novelty search
algorithm where novelty measures, akin to RSA, the dissimilarity of the
newly generated features with respect to an archive of already-acquired
representations. The intuitive idea of DDFA is to accumulate an archive of
representations that discriminate the training dataset in maximally novel
ways. Combining DDFA with some human guidance, e.g. by filtering
non-interesting instances from the training set, and some hierarchical
clustering, e.g. to reorganize the incoming dataset in various niches of
patterns, could be a promising way to perform meta-diversity search in
the targeted self-organizing systems.
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Finally, with “meta” comes the essential notion of abstraction. But what’s
an appropriate level of abstraction? Self-organizing systems, and bio-
logical ones in particular, are notorious for their ability to coarse-grain
information which is believed to lead to top-down causation mechanisms,
where individual components adapt their actions based on estimates
of coarse-grained, aggregated characteristics [473]. This coarse-grained
estimates are also called goal states of the system by some biologists, in
the sense that low-level elements spend energy toward achieving these
specific, higher-level states, and this despite perturbations or changes in
the local conditions [45]2. From the perspective of the AI discovery assis- 2: This is for instance the position of

Dr. Michael Levin, which we investigate
more in depth in Chapter 8

tant, knowing how to detect and characterize these specific goal states
requires learning the appropriate scales of observation that are the most
useful for predicting and exploring the system dynamics. Aligning the
AI’s target goal states with the system’s endogenous goal states might be
crucial for effectively understanding and exploring these systems [145].

12.1.2. Towards Richer Interactions with Humans

In Chapter 6, we have argued in favor of a shift from fully automated
discovery to a concept of “assisted discovery” where human end-users,
e.g. scientists, provide interactive guidance and instructions to the AI
agent throughout exploration. Recently, Sigaud et al. [474] also advocated
for what they called teachable autotelic agents: agents that could pursue
their own goals but that would also be endowed with an additional
capability to be taught so that they choose their goals in accordance
with the expectation of their users. In Chapter 6, we proposed IMGEP-
HOLMES with preference-based guidance as a potential implementation
of this concept. However, there are several avenues to expand upon this
work to foster a richer diversity of interactions, which may also be central
in developing agents with more open-ended learning capabilities.

A first limitation of this work is that experiments were made with
simulated end-users. A natural next step for future research would
involve conducting experiments with actual human end-users, possibly
utilizing the adtool software discussed in Chapter 10.

A second limitation of the HOLMES architecture is that it remains quite
rigid in the way it is isolating the different niches of patterns, as it employs
a binary tree structure with fixed boundaries. This rigidity hinders flexible
interactions, preventing humans from influencing the generation of these
niches. Future work could incorporate human feedback to influence the
organization of system discoveries, thereby enhancing the ability to guide
exploration along desired trajectories.

Finally, offering humans greater control over when and how they provide
feedback to the AI could facilitate more diverse and meaningful forms of
communication. As discussed in the previous section, as the AI’s goals
become increasingly varied, multimodal, and abstract, the interactions
with human users should evolve accordingly. Modular autotelic architec-
tures, like HOLMES, may be used to that end by handling multiple goal
spaces and channels of interactions in parallel.

A potential avenue for future investigation involves the utilization of
language as a means of communication. As argued by Sigaud et al. [474],
for autotelic agents to be considered teachable, it may be essential to



12. Perspectives 182

integrate enhanced natural language learning capabilities. As an initial
step, humans could provide labels or textual descriptions to characterize
the properties of AI-generated discoveries and to communicate the prop-
erties they want the AI agent to search for within the system. However,
as we discussed earlier, it remains again uncertain whether natural hu-
man concepts would effectively characterize properties of the targeted
self-organizing systems or help conceive new goals, particularly when
dealing with systems that challenge even the understanding of scientists
regarding the potential range of outcomes and their characterization.

Another promising avenue for future research, which we initiated in
Chapter 7 and Chapter 8, involves environment-based guidance. In this
approach, human input takes a different form: instead of communicating
with the AI directly, humans introduce environmental cues or constraints
within the explored environment. For example, in the sensorimotor Lenia
web demo (available at this link), users can interactively influence the
behaviors of discovered creatures by adding obstacles, manipulating
matter to affect creature birth or death, or introducing attractive elements
to control the creature trajectories. Similarly, in the work with gene
regulatory networks (GRNs), we applied specific tests conditioned on the
GRN’s behavior that align with how humans typically study the behavior
of more conventional animals. While these interactions occurred during
evaluation, leveraging controllable human cues or constraints within
the AI exploration process could offer a practical means of conveying
functional goals to the AI system. Indeed, describing verbally desired
morphological or dynamical attributes of a cellular collective can be
quite challenging. A more practical approach for the human end-user to
communicate with the AI agent could be to place specific elements in the
environment and define target goals as desired interactions with those
elements, e.g. aiming for the cellular collective consume certain chemicals
and avoid others. Importantly, this could in turn help the human to find
appropriate ways to communicate with the cellular collective, e.g. placing
elements that can attract or repel the collective to steer its trajectory.

12.2. Applicative Perspectives in Sciences

In the second part of this manuscript (Part II), we have shown how even
simple variants of goal-directed diversity search can be very helpful to
address several challenging questions in Science, such as the search for
robust forms of sensorimotor agency in cellular automata (Chapter 7) and
the search for diverse “native” behaviors in gene regulatory networks
(Chapter 8). They are many other applicative perspectives in which such
digital discovery assistants may prove to be very useful. In this section we
identify few specific directions that we believe are particularly promising
or interesting, which we organize by applicative domain.

12.2.1. For Biology

One challenging but particularly interesting domain of application that
we would like to target in future work, and that we have started to explore
during the collaboration with the Poietis biotechnology company, is the
one of tissue engineering. We refer the interested reader to Section 9.3

https://developmentalsystems.org/sensorimotor-lenia-companion
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in Chapter 9 of this manuscript, where we detail three possible experi-
mental campaigns that could be envisaged with actual morphogenetic
systems (in particular fibroblast-collagen models) utilizing Poietis bio-
printing device. We believe the proposed experimental directions could
be useful for biologists both for fundamental research purposes but
also for clinical applications, as discoveries might help shaping tissue
maturation toward desired morphological and functional properties.

Following our work on gene regulatory networks (GRNs) discussed
in Chapter 8, another potential direction is to apply the same framework
to investigate the dynamics of gene expression in single cells in vitro.
Additionally, within the scope of bio-engineered systems, the Levin lab
has been working on xenobots, also called “living robots” (see Figure
2.10). The team has already employed evolutionary algorithms to opti-
mize parameters (printing patterns) for creating xenobots with specific
functionalities [61–63]. Utilizing the proposed diversity search algorithm
could facilitate the discovery of a broader range of potentially interesting
behaviors and functionalities within these systems.

12.2.2. For Enactive Artificial Intelligence

Researchers in AI increasingly recognize the potential of drawing inspi-
ration from biology and self-organization to enhance the development of
artificial agents and artificial neural networks [475, 476]. Unlike classical
AI, which often separates control from the agent’s physical characteris-
tics, biological systems integrate functionality within their morphology,
which has been coined “morphological computation” [269]. Although
numerous challenges lie ahead, we are convinced that insights from
biology and morphological computation will enable progress toward
enactivist AI [270] where artificial agents could exhibit qualities found in
biological organisms, such as adaptability, resilience, and versatility.

Discoveries in Chapter 7 were a first promising step in that direction: the
discovered self-organized entities, a.k.a. sensorimotor agents, showcased
strong robustness and generalization with respect to their mechanistic
counterpart in classical AI. However, the discovered sensorimotor behav-
iors remained quite limited as we searched for sensorimotor creatures
maximizing a specific reward (distance traveled in the grid) under a
specific type of constraint (obstacles). We believe that searching for more
advanced behavioral and environmental complexity in enactivist models
like the Lenia environment has several promising avenues for future work.
In particular, the following scientific questions could be investigated:

▶ Can forms of goal-directedness emerge?
▶ Can forms of learning and memory mechanisms emerge?
▶ Can forms of cooperation emerge between several individuals?
▶ Can forms of intrinsic evolution emerge within the environment?

To study the conditions that can lead to the emergence of such complex
behaviors from low-level elements and local rules, more advanced search
methods like the ones presented in the first part of this manuscript,
notably meta-diversity search and human guidance, might be needed.

In addition to studying forms of agency, life and cognition in cellular
automata models, transposing those insights for the growth and learning
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of differentiable neural networks and graph-based systems is another
promising avenue of research. We refer to Ha and Tang [476] for a survey
of recent developments in collective intelligence for deep learning.

12.2.3. For Physics and Chemistry

Grizou et al. [64] served as the first proof of concept that curiosity-driven
exploration algorithms, even in their simplest form, could be very useful
to explore the dynamics of physico-chemical systems, in their case to
explore the diverse behaviors of an oil-droplet system (see Figure 2.12).

Recently, Falk et al. [139] shown how the more advanced variants of
these algorithms proposed in the first part of this manuscript, notably
ones combining autotelic exploration with unsupervised learning of
representations (Chapter 4) and human guidance (Chapter 6), could
also be very useful to explore the space of behaviors of models used in
physics and chemistry to describe synchronization of a set of coupled
oscillators3. There are ongoing discussions with their team to apply 3: we discuss the results of Falk et al.

[139] in Section 4.6 and Section 6.5similar algorithms to explore the phases of chiral matter in a real physics
experimental setup, akin to the ones explored in Bililign et al. [477].

12.2.4. For Arts and Creativity

Finally, although our primary emphasis has been on the scientific utility
of curiosity-driven algorithms, it’s worth noting that many of the concepts
and techniques developed in this research could be harnessed for purely
artistic endeavors. Notably it would be very interesting to see whether
algorithms combining meta-diversity search and human guidance could
help foster human creativity and exploratory design in “artistic” self-
organizing systems. Potentially interesting systems to explore span
digital art systems such as cellular forms by Artist Andy Lomas [478, 479],
mechanical drawing machines like the one explored by Roussel et al. [480],
as well as “musical encounters” between human and artificial agents
in self-organizing systems as explored by Armitage and Magnusson
[481].
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B.1. Additional Results and Figures

B.1.1. Discovered Patterns

Figure B.2 to Figure B.6 illustrate examples of discovered patterns per
class (SLP, TLP, dead) for each algorithm. The shown examples patterns
have been randomly sampled from the results of a single exploration
repetition, a link with all patterns can be found on the paper website.

B.1.2. Visualization of Goal Spaces

The goal spaces of all IMGEP algorithms are visualized (Figure B.7)
via two-dimensional reductions: PCA [482] and t-Distributed Stochastic
Neighbor Embedding (t-SNE) [225]. The visualizations were constructed
by using for each algorithm its goal space representations of all its
discovered patterns from a single repetition experiment. All goal repre-
sentations were normalized so that the overall minimum value became
0 and the maximum value 1 for each dimension. PCA was performed
to detect the two principle components. T-SNE was executed using the
default standard Euclidean distance metric and perplexity set to 50.
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https://projector.tensorflow.org/?config=https://raw.githubusercontent.com/intrinsically-motivated-discovery/intrinsically-motivated-discovery.github.io/master/assets/media/tensorboard/projector_config.json
https://github.com/flowersteam/automated_discovery_of_lenia_patterns
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Random Exploration

Figure B.2.: Randomly selected examples of patterns discovered by the random exploration algorithm during a single exploration with
5000 iterations.
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IMGEP-RGS

Figure B.3.: Randomly selected examples of patterns discovered by the IMGEP-RGS algorithm during a single exploration with 5000
iterations. The full database and an interactive visualization of the IMGEP-RGS goal space can be found at this link:

IMGEP-RGS discoveries

https://projector.tensorflow.org/?config=https://raw.githubusercontent.com/intrinsically-motivated-discovery/intrinsically-motivated-discovery.github.io/master/assets/media/tensorboard/projector_rgs_config.json
https://projector.tensorflow.org/?config=https://raw.githubusercontent.com/intrinsically-motivated-discovery/intrinsically-motivated-discovery.github.io/master/assets/media/tensorboard/projector_rgs_config.json


B. Appendix of IMGEP-VAE 191

IMGEP-HGS

Figure B.4.: Randomly selected examples of patterns discovered by the IMGEP-HGS algorithm during a single exploration with 5000
iterations. The full database and an interactive visualization of the IMGEP-RGS goal space can be found at this link:

IMGEP-HGS discoveries

https://projector.tensorflow.org/?config=https://raw.githubusercontent.com/intrinsically-motivated-discovery/intrinsically-motivated-discovery.github.io/master/assets/media/tensorboard/projector_hgs_config.json
https://projector.tensorflow.org/?config=https://raw.githubusercontent.com/intrinsically-motivated-discovery/intrinsically-motivated-discovery.github.io/master/assets/media/tensorboard/projector_hgs_config.json
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IMGEP-PGL

Figure B.5.: Randomly selected examples of patterns discovered by the IMGEP-PGL algorithm during a single exploration with 5000
iterations.
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IMGEP-OGL

Figure B.6.: Randomly selected examples of patterns discovered by the IMGEP-OGL algorithm during a single exploration with 5000
iterations. The full database and an interactive visualization of the IMGEP-RGS goal space can be found at this link:

IMGEP-OGL discoveries

https://projector.tensorflow.org/?config=https://raw.githubusercontent.com/intrinsically-motivated-discovery/intrinsically-motivated-discovery.github.io/master/assets/media/tensorboard/projector_ogl_config.json
https://projector.tensorflow.org/?config=https://raw.githubusercontent.com/intrinsically-motivated-discovery/intrinsically-motivated-discovery.github.io/master/assets/media/tensorboard/projector_ogl_config.json
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PCA T-SNE

rgs

hgs

pgl

ogl

dead

TLP

SLP

Figure B.7.: PCA and t-SNE visualization of the goal spaces for the IMGEP variants show that HGS has more area (PCA) and clusters
(t-SNE) for TLPs compared to learned goal spaces (PGL/OGL) and vice versa for SLPs. t-SNE shows that the hand-defined goal space
(HGS) and learned goal spaces (PGL/OGL) structure and cluster more the discovered patterns compared to random goal space (RGS).
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dead

TLP

SLP

Figure B.8.: Proportion of patterns for each class and algorithm. Each dot besides the boxplot shows the proportion of found patterns for
each repetition (𝑛 = 10). The box ranges from the upper to the lower quartile. The whiskers represent the upper and lower fence. The
mean is indicated by the dashed line and the median by the solid line.

B.1.3. Proportion of Discovered Patterns of Different
Classes

We used the measure of diversity of the found patterns to compare the
performance of algorithms (Figure 4.7). Another measure to compare
the algorithms is the average proportion of dead, SLPs, TLPs patterns
discovered by each algorithm (Figure B.8). For SLP patterns the results
follow the diversity results from Figure 4.7, i. e. OGL and PGL find the
highest proportion of SLP patterns, followed by HGS, then RGS and
Random. A corollary is that RGS, random and HGS find in proportion a
higher percentage of TLP patterns than OGL and PGL. As the number
of diverse TLP patterns is as high for OGL and PGL (Figure B.12d), this
shows the higher sample efficiency of OGL and PGL to find diverse
patterns. In contrast, Random, RGS and HGS approaches tend to find
TLP patterns that are more similar to each other on average.

B.2. Implementation Details and
Hyperparameter Settings

B.2.1. Lenia Settings

A full description of Lenia can be found in Subsection 3.2.2. For all
experiments the following configurations of Lenia were used:

▶ Grid size: 256 × 256 (𝐴 ∈ [0, 1]256×256)
▶ Number of steps: 𝑇 = 200
▶ Exponential growth mapping: 𝐺(𝑢;𝜇, 𝜎) = 2 exp

(
− (𝑢−𝜇)

2

2𝜎2

)
− 1

▶ Exponential kernel function: 𝐾𝐶(𝑟) = exp
(
𝛼 − 𝛼

4𝑟(1−𝑟)

)
, with 𝛼 = 4

▶ Kernel shell: 𝐾𝑆(𝑟; 𝛽) = 𝛽⌊𝐵𝑟⌋𝐾𝐶(𝐵𝑟 𝑚𝑜𝑑 1), with 𝛽 = (𝛽1 , 𝛽2 , 𝛽3)

The controllable parameters of Lenia are the kernel size 𝑅 ∈ ℕ, time
step 𝑇 ∈ ℕ, 𝜇 ∈ ℝ and 𝜎 ∈ ℝ that control the growth mapping, and
𝛽1, 𝛽2, 𝛽3 ∈ ℝ that control the kernel shell. Additionally the initial state
𝐴𝑡=1 ∈ [0, 1]256×256 controls the system dynamics.



B. Appendix of IMGEP-VAE 196

(a) Infinite Pattern (a) Finite Pattern

pattern infinite
segmentation

finite
segmentation pattern infinite

segmentation
finite

segmentation

Figure B.9.: Classification of finite and infinite patterns. Infinite patterns form loops between image borders which are identified if a
segment is connected between two borders in the infinite and finite segmentation. Finite patterns form no loops. They have connected
segments between borders in the infinite but not finite segmentation. Segments are colorized in yellow, green and blue.

B.2.2. Classification of Lenia Patterns

We classified 3 types of Lenia patterns: dead, SLPs and TLPs. The
classifiers only categorize the final pattern into which the Lenia system
morphs after 𝑇 = 200 time steps.

Dead Classifier: A pattern is classified as dead if the activity of all cells
is either 0 or 1.

SLP Classifier: A pattern is classified as an SLP if it is a finite and connected

pattern of activity. Cells 𝑥, 𝑦 are connected as a pattern if both are active
(𝐴(𝑥) ≥ 0.1 and 𝐴(𝑦) ≥ 0.1) and if they influence each other. Cells
influence each other when they are within their radius of the kernel 𝐾 as
defined by the parameter 𝑅.

Furthermore, the connected pattern must be finite. In Lenia finite and
infinite patterns can be differentiated because the opposite borders of
Lenia’s cell grid are connected, so that the space is similar to a ball
surface. Thus, a pattern can loop around this surface making it infinite.
We identify infinite patterns as follows. First, all connected patterns are
identified for the case of assuming an infinite grid cell, i. e. opposite grid
cell borders are connected. Second, all connected patterns for the case
of a finite grid cell, i. e. opposite grid cell borders are not connected, are
identified. Third, for each border pair (north-south and east-west) it is
tested if cells within a distance of 𝑅 from both borders exists, that are
part of a connected pattern for the infinite and finite grid cell case. If
such a pattern exists than it is assumed to be infinite, because it loops
around the grid cell surface of Lenia (Figure B.9, a). All other patterns
are considered to be finite (Figure B.9, b). Please note that this method
can not identify certain infinite patterns that loop over several borders,
for example, if a pattern connects the north to east and then the west to
south border (see the third SLP in Figure B.2 for an example).

Moreover, there are two additional constraints that an SLP pattern must
fulfill. First, the cells of the connected pattern 𝑃 = {𝑥1 , . . . , 𝑥𝑛}must have
at least 80% of all activation, i. e.

∑
𝑥∈𝑃 𝐴(𝑥) ≥ 0.8∑

∀𝑦 𝐴(𝑦). Second, a
pattern must exists for the last two time steps (𝑡 = 𝑇 and 𝑡 = 𝑇 − 1). Both
constraint are used to avoid that too small patterns or chaotic entities
which change drastically between time steps are classified as SLPs.

TLP Classifier: We also classified TLP patterns which are all entities that
were not dead and not an SLP. These patterns spread usually over the
whole state space and are connected via borders.
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B.2.3. Statistical Measures for Lenia Patterns

We defined five statistical measurements for the final patterns 𝐴𝑡=𝑇 that
emerge in Lenia. The measures were used as features for hand-defined
goal spaces of IMGEPs and to define partly the analytic behavior space
in which the results of the exploration experiments were compared.

Activation mass 𝑀𝐴: Measures the sum over the total activation of the
final pattern and normalizes it according to the size of the Lenia grid:

𝑀𝐴 =
1
𝐿2

∑
𝑥

𝐴𝑡=𝑇(𝑥) ,

where 𝐿2 = 256 · 256 is the number of cells of the Lenia system.

Activation volume 𝑉𝐴: Measures the number of active cells and normal-
izes it according to the size of the Lenia grid:

𝑉𝐴 =
1
𝐿2

��{∀𝑥 : 𝐴𝑡=𝑇(𝑥) > 𝜖
}�� with 𝜖 = 10−4.

Activation density 𝐷𝐴: Measures how dense activation is distributed on
average over active cells:

𝐷𝐴 =
𝑀𝐴

𝑉𝐴
.

Activation asymmetry 𝐴𝐴: Measures how symmetrical the activation is
distributed according to an axis that starts in the center of the patterns
activation mass and goes along the last movement direction of this center.
This measure was introduced to especially characterize SLP patterns.
The center of the activity mass is usually also the center of the SLPs
and analyzing the activity along their movement axis measures how
symmetrical they are.

As a first step, the center of the activation mass is computed for every
time step of the Lenia simulation and the Lenia pattern recentered to this
location. This ensures that the center is all the time correctly computed in
the case the SLP moves and reaches one border to appear on the opposite
border in the uncentered pattern. The center (𝑥̄ , 𝑦̄)𝑡 for time step 𝑡 is
calculated by:

(𝑥̄ , 𝑦̄)𝑡 =
(
𝑀10
𝑀00

,
𝑀01
𝑀00

)
with 𝑀𝑝𝑞 =

∑
𝑥

∑
𝑦

𝑥𝑝𝑦𝑞𝐴𝑡(𝑥, 𝑦) ,

where𝑀𝑝𝑞 measures the image moment (or raw moment) of order (𝑝+ 𝑞)
for 𝑝, 𝑞 ∈ ℕ.

Based on the center (𝑥̄ , 𝑦̄)𝑡 the pattern 𝐴𝑡 is recentered to 𝐴𝑡
𝐶

by shifting
the 𝑥 and 𝑦 indexes according to the center:

𝐴𝑡𝐶(𝑥, 𝑦) = 𝐴𝑡((𝑥 − 𝑥̄)mod 𝐿, (𝑦 − 𝑦̄)mod 𝐿) , (B.1)

where 𝐿 is width and length of the Lenia grid and the indexing is
𝑥, 𝑦 = 0, . . . , 𝐿 − 1. After each time step the center is recomputed and
the pattern recentered:

𝐴𝑡=1 −→
recenter

𝐴𝑡=1
𝐶 −→

Lenia step
𝐴𝑡=2 −→

recenter
𝐴𝑡=2
𝐶 −→

Lenia step
. . . .
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Please note, the simulations and all figures of patterns in the paper are
done with the uncentered pattern. The centered version is only computed
for the purpose of statistical measurements.

The recenter step by (𝑥̄ , 𝑦̄)𝑡 defines also the movement direction of the
activity center:

(𝑚𝑥 , 𝑚𝑦)𝑡 = (𝑥̄ , 𝑦̄)𝑡 −
(
𝑥mid , 𝑦mid

)
=

(
𝑥̄ − 𝑥mid , 𝑦̄ − 𝑦mid

)
,

where 𝑥mid , 𝑦mid = 𝐿−1
2 are the coordinates for the grid’s middle point.

A line can be defined that starts in the midpoint
(
𝑥mid , 𝑦mid) of the

final centered pattern 𝐴𝑡=𝑇
𝐶

and goes in and opposite to the movement
direction of the activity mass center (𝑚𝑥 , 𝑚𝑦)𝑡=𝑇 . This line separates the
grid in two equal areas. The asymmetry is computed by comparing the
activity amount in the grid right 𝑀𝑟𝑖𝑔ℎ𝑡

𝐴
and left 𝑀 𝑙𝑒 𝑓 𝑡

𝐴
of the line. The

normalized difference between both sides is the final measure:

𝐴𝐴 =
1
𝑀𝐴
(𝑀𝑟𝑖𝑔ℎ𝑡

𝐴
−𝑀 𝑙𝑒 𝑓 𝑡

𝐴
).

Activation centeredness 𝐶𝐴: Measures how strong the activation is
distributed around the activity mass center:

𝐶𝐴 =
1
𝑀𝐴

∑
𝑥

∑
𝑦

𝑤𝑥𝑦 ·𝐴𝑡=𝑇𝐶 (𝑥, 𝑦) with 𝑤𝑥𝑦 =

(
1 − 𝑑(𝑥, 𝑦)

max𝑦,𝑥 𝑑(𝑥, 𝑦)

)2

,

where 𝑑(𝑥, 𝑦) =
√
(𝑥 − 𝑥mid)2 + (𝑦 − 𝑦mid)2 is the distance from the point

(𝑥, 𝑦) to the center point
(
𝑥mid , 𝑦mid) .𝐴𝑡=𝑇

𝐶
(𝑥, 𝑦) is the centered activation

that is updated every time step as for the asymmetry measure (Eq. B.1).
The weights 𝑤𝑥𝑦 decrease the farer a point is from the center. Thus,
patterns that are concentrated around the center have a high value for 𝐶𝐴
close to 1. Whereas, patterns whos activity is distributed throughout the
whole grid have a smaller value. For patterns that are equally distributed
(∀𝑥,𝑥′ : 𝐴(𝑥) = 𝐴(𝑥′)) is 𝐶𝐴 = 0 defined as centeredness measure.

B.2.4. Sampling of Parameters for Lenia

There are two operations to sample parameters: 1) random initialization
and 2) mutating an existing parameter 𝜃. CPPNs are used for the
random initialization and mutation of the initial pattern 𝐴𝑡=1. The
details of this process are described in the next section. Afterwards, the
initialization and mutation of Lenia’s parameter that control its dynamics
are described.

B.2.4.1. Sampling of Start Patterns for Lenia via CPPNs

The CPPNs generate Lenia activity patterns cell by cell by taking as input
a bias value, the 𝑥 and 𝑦 coordinate of the cell (mapped to 𝑥 = [−2, 2]
and 𝑦 = [−2, 2]) and its distance 𝑑 to the grid center (Figure 4.3a). Their
output 𝑝 defines the activity of the cell (𝐴(𝑥, 𝑦) = 1 − |𝑝 |) between 0 and
1 for the given (𝑥, 𝑦) coordinate.
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Table B.1.: Settings for the sampling of CPPNs to generate Lenia’s initial states.

Parameter Value

Initial number of hidden neurons 4
Initial activation functions gauss, sigm
Initial connections random connections with probability 0.6
Initial synapse weight Gaussian distribution with 𝜇 = 0, 𝜎 = 0.4
Synapse weight range [−3, 3]
Mutation neuron add probability 0.02
Mutation neuron delete probability 0.02
Mutation connection add probability 0.05
Mutation connection delete probability 0.01
Mutation rate of activation functions 0.1
Mutation rate of synapse weights 0.05
Mutation replace rate of synapse weights 0.06
Mutation power of synapse weights 𝜎𝑀 1
Mutation enable/disable rate of synapse weights 0.02

CPPNs consist of several hidden neurons (typically 4 to 6 in our experi-
ments) that can have recurrent and self connections. Each CPPN has one
output neuron. Two activation functions, gaussian and sigmoidal, were
used for the hidden neurons and the output neuron:

gauss(𝑥) = 2 exp
(
−(2.5𝑥)2

)
−1 , sigm(𝑥) = 2

(
1

1 + exp(−5𝑥)

)
−1 . (B.2)

To randomly initialize a Lenia initial pattern 𝐴𝑡=1 a CPPN is randomly
sampled by sampling the number of hidden neurons, the connections
between inputs and neurons and neurons to neurons, their connection
weights and the activation functions for neurons. Afterwards the initial
pattern is generated by it. In the history H of the IMGEPs is then the
CPPN as part of the parameter 𝜃 added. If the parameter is mutated,
then the weights, connections and activation functions of the CPPN are
mutated and the new initial pattern 𝐴𝑡=1 generated by it. A CPPN is
defined over its network structure (number of nodes, connections of
nodes) and its connection weights.

We used the neat-python1 package for the random generation and 1: https://github.com/

CodeReclaimers/neat-pythonmutation of CPPNs. It is based on the NeuroEvolution of Augmenting
Topologies (NEAT) algorithm for the evolution of neural networks [483].
The meta-parameters for the initialization and mutation of CPPNs are
listed in Table B.1. The random sampling and mutation of CPPNs allows
to generate complex patterns as illustrated in Figure 4.3a and Figure
4.3b. Please note, the neat-python package allows also the setting and
mutation of response and bias weights for each neuron. Those settings
were not used for the experiments. Moreover, we adjusted the sigmoid
and Gaussian function in the neat-python package to the ones defined in
Eq. B.2 to be able to replicate similar images as in [194].

B.2.4.2. Sampling of Lenia’s Dynamic Parameters

The parameters that control the dynamics of Lenia (𝑅, 𝑇, 𝜇, 𝜎, 𝛽1 , 𝛽2 , 𝛽3)
are initialized and mutated via uniform and Gaussian distributions. Table

https://github.com/CodeReclaimers/neat-python
https://github.com/CodeReclaimers/neat-python
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B.2 lists for each parameter the meta-parameters for their initialization
and mutation. Each parameter is initialized by an uniform sampling
𝜃𝑖 ∼ U(𝑎, 𝑏) with 𝑎 and 𝑏 as upper and lower border. An existing
parameter 𝜃𝑖 is mutated by the following equation:

𝜃𝑖 ← [𝜃𝑖 +N(0, 𝜎𝑀)]𝑎𝑏 ,

where 𝜎𝑀 is the mutation power and [𝑛]𝑎
𝑏
= min(max(𝑛, 𝑎), 𝑏) is the clip

function. For natural numbers 𝜃𝑖 ∈ ℕ the resulting value is rounded.

Parameter Type Value Range Mutation 𝜎𝑀

𝑅 ℕ [2, 20] 0.5
𝑇 ℕ [1, 20] 0.5
𝜇 ℝ [0, 1] 0.05
𝜎 ℝ [0.001, 0.3] 0.01

𝛽1 , 𝛽2 , 𝛽3 ℝ [0, 1] 0.05

Table B.2.: Settings for the initialization
and mutation of Lenia system parame-
ters 𝜃.

B.2.5. IMGEP Details

B.2.5.1. VAE Framework and Implementation Details

We applied deep variational autoencoders (VAEs) to learn latent rep-
resentations of Lenia patterns. VAEs have two components: a neural
encoder and decoder. The encoder 𝑞(z|x, 𝜒) represents a given data point
𝑥 in a latent representation z. In variational approaches the encoder
describes a data point by a representative distribution in the latent space
of reduced dimension 𝑑. A standard Gaussian prior 𝑝(z) = N(0, 𝐼) and
a diagonal Gaussian posterior 𝑞(z|x, 𝜒) = N(𝜇, 𝜎) are used. Given a
data point 𝑥, the encoder outputs the mean 𝜇 and variance 𝜎 of the
representative distribution in the latent space. The decoder 𝑝(x|z,𝜓) tries
to reconstruct the original data 𝑥 from a sampled latent representation
z for the distribution given by the encoder. Under these assumptions,
training is done by maximizing the computationally tractable evidence
lower bound (with 𝛽 = 1):

L(𝜒,𝜓) = 𝔼z∼𝑞𝜒(z|x)[log 𝑝𝜓(x|z)]︸                     ︷︷                     ︸
𝑎

−𝛽 ×𝔻𝐾𝐿[𝑞𝜒(z|x)∥𝑝(z)]︸                 ︷︷                 ︸
𝑏

. (B.3)

The first term represents the expected reconstruction accuracy (𝑎), the
second the KL divergence of the approximate posterior to the prior (𝑏).

𝑏 = 𝔻𝐾𝐿[N(𝜇(x),Σ(x))∥N(0, 𝐼)] =
𝑑∑
𝑖=1

𝔻𝐾𝐿[N(𝜇(x)𝑖 , 𝜎(x)𝑖)∥N(0, 1)]︸                               ︷︷                               ︸
𝑏𝑖

.

(B.4)

In particular, we used the 𝛽-VAE framework [209] which re-weights the
𝑏 term by a factor 𝛽 > 1, aiming to enhance the disentangling properties
of the learned latent factors. The weight factor was set to 𝛽 = 5 for all
experiments. All 𝛽-VAEs used for this paper use the same architecture
(Table B.3). The encoder network has as input the Lenia pattern and as
outputs for each latent variable z𝑖 the mean 𝜇𝑖 and log-variance log(𝜎2

𝑖
).
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Encoder Decoder

Input pattern A: 256 × 256 × 1 Input latent vector z: 8 × 1
Conv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU FC layers : 256 + ReLU, 16 × 16 × 32 + ReLU
Conv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU TransposeConv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU
Conv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU TransposeConv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU
Conv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU TransposeConv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU
FC layers : 256 + ReLU, 256 + ReLU, FC: 2 × 8 TransposeConv layer: 32 kernels 4 × 4, stride 2, 1-padding

Table B.3.: 𝛽-VAE architecture for the
pretrained and online experiments.

The decoder takes as input during the training for each latent variable a
sampled value 𝑧𝑖 ∼N(𝜇𝑖 , 𝜎2

𝑖
). For validation runs and the generation of

all reconstructed patterns shown in figures the decoder takes the mean
𝑧𝑖 = 𝜇𝑖 as input. Its output is the reconstructed pattern.

The training objective (Eq. B.3) results in the following loss function:

Loss(𝑥, 𝑥̂, 𝜇, 𝜎) = −𝑎 + 𝛽
𝑑∑
𝑖=1

𝑏𝑖 , (B.5)

where 𝑥 are the input patterns, 𝑥̂ are the reconstructed patterns, 𝜇, 𝜎
are the outputs of the decoder network and 𝑑 is the number of latent
dimensions. The reconstruction accurray part 𝑎 of the loss is given by a
binary cross entropy with logits:

𝑎 =
1
𝑁

𝑁∑
𝑛=1

𝐿2∑
𝑗=1

(
𝑥 𝑗 ,𝑛 · log 𝜎(𝑥̂ 𝑗 ,𝑛) + (1 − 𝑥 𝑗 ,𝑛) · log(1 − 𝜎(𝑥̂ 𝑗 ,𝑛))

)
,

where the index 𝑗 is for the single cells (pixel) of the pattern and 𝑛 for
the datapoint in the current batch, 𝑁 is the batch size and 𝜎(𝑥) = 1

1+𝑒−𝑥 .
The KL divergence terms 𝑏𝑖 are given by:

𝑏𝑖 =
1

2 · 𝑁
𝑁∑
𝑛=1

(
𝜎2
𝑖 ,𝑛 + 𝜇

2
𝑖 ,𝑛 − log(𝜎2

𝑖 ,𝑛) − 1
)
.

All 𝛽-VAEs were trained for 2000 epochs and initialized with pytorch
default initialization. We used the Adam optimizer [484] (𝑙𝑟 = 1e−3,
𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 1e−8, weight decay=1e−5) and batch size=64.

The patterns from the datasets were augmented by random x and y
translations (up to half the pattern size and with probability 0.3), rotation
(up to 40 degrees and with probability 0.3), horizontal and vertical
flipping (with probability 0.2). The translations and rotations were
preceded by spherical padding to preserve Lenia spherical continuity.

B.2.5.2. IMGEP Variants

IMGEP-HGS (hand-defined goal space): The 5 statistical features that
are given in Section B.2.3 were used to define the goal space of the
IMGEP-HGS approach (Algorithm. 4). Goals in this space were sampled
from a uniform distribution within the ranges defined in Table B.4.

Feature min max Feature min max

mass 𝑀𝐴 0 1 asymmetry 𝐴𝐴 −1 1
volume 𝑉𝐴 0 1 centeredness 𝐶𝐴 0 1
density 𝐷𝐴 0 1

Table B.4.: HGS Goal Space Ranges
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IMGEP-RGS (random goal space): IMGEP with a goal space defined by
an encoder network with random weights (Algorithm. 4). The encoder has
the same architecture than the VAE encoder used for IMGEP with learned
goal spaces, and weights are initialized with the Xavier method [485].
In the other IMGEP algorithms, goals are sampled uniformly within
fixed-range boundaries. In the case of random goal spaces, we do not
know in advance in which region of the space goals will be encoded. We
therefore set the sampling range to the minimum and maximum value
of the latent representations of all so far explored patterns.

IMGEP-PGL (prelearned goal space): IMGEP with a goal space defined
by a 𝛽-VAE that was trained before the exploration starts (Algorithm. 4).
The 𝛽-VAE was trained on a dataset of 558 pre-collected Lenia patterns
(train: 75%, validation: 10%, test: 15%), half being manually identified SLP
patterns by [40], the other half random CPPN patterns. The best 𝛽-VAE
model from training, achieving the highest validation accuracy, was used
as goal space for the exploration. Exploration involved uniform sampling
within a [−3, 3]8 hyperrectangle, chosen to align with the 𝛽-VAE’s prior
standard normal distribution.

IMGEP-OGL (online learned goal space): The 𝛽-VAE model is trained
every 𝐾 = 100 explorations for 40 epochs, totaling 2000 epochs (less if
insufficient data is available after the initial 𝑇 runs to start training). The
dataset comprises non-dead patterns collected during exploration, with
every tenth pattern designated for validation (10%). At the initial period
of training, the training dataset has approximately 50 patterns and at
the last period approximately 3425 patterns. The validation dataset only
serves for checking purposes and has no influence on the learned goal
space. Importance sampling is employed, favoring newly discovered
patterns with higher weights in training. A weighted random sampler
is utilized, drawing half of the patterns from recent discoveries and the
rest from the dataset. Newer patterns have a probability of 0.5

𝑁 , while
older ones have 0.5

|𝐷T|−𝑁 , enhancing the influence of newer patterns on
training. Goal sampling follows a uniform distribution within the [−3, 3]8
hyperrectangle, similar to PGL.

Algorithm 4: IMGEP-HGS, IMGEP-RGS and IMGEP-PGL
Initialize goal space encoder 𝑅 with handdefined features (HGS),
random weights (RGS), or pretrained weights (PGL)

for i=1 to 𝑁 do
if 𝑖 < 𝑁𝑖𝑛𝑖𝑡 then // Initial random iterations

Sample random parameter 𝜃 ∼ U(Θ)
else // Goal-directed IM iterations

Sample target goal 𝑔 ∼ G(H)
Infer experiment parameters to achieve goal 𝜃 ∼ Π(𝑔,H)

Execute experiment with 𝜃 and observe system outcome 𝑜
Characterize behavior 𝑧 = 𝑅(𝑜)
Write (𝜃, 𝑜, 𝑧) to history H
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B.2.5.3. VAE Training Results

IMGEP-PGL - 𝛽-VAE IMGEP-OGL - 𝛽-VAE

0 500 1000 1500
0

10k

20k

30k

40k

epoch

lo
ss

0 500 1000 1500
0

20k

40k

60k

80k

epoch

lo
ss

Figure B.10.: Averaged learning curves
(𝑛 = 10) of the 𝛽-VAEs for the IMGEP-
PGL and OGL experiments.

The 𝛽-VAE learning saturates for both the precollected dataset and
the online collected dataset (Figure B.10). Their ability to reconstruct
patterns based on the encoded latent representation is also qualitatively
similar. For both datasets the 𝛽-VAEs are able to learn the general form
of the activity pattern. However, the compression of the images to a
8-dimensional vector results in a general blurriness in the reconstructed
patterns. 𝛽-VAEs are not able to encode finer details and textures of
patterns.

B.2.6. Measurement of Diversity in the Analytic
Parameter and Behavior Space

Analytic Parameter and Behavior Space The analytic parameter space
was constructed by the features defined in Table B.5. The 𝛽-VAE was
trained on initial patterns𝐴𝑡=1 used during the experiments. The analytic
behavior space was constructed by the features defined in Table B.5.
This 𝛽-VAE was trained on final patterns 𝐴𝑡=200 observed during the
experiments. The datasets for both 𝛽-VAEs were constructed by randomly
selecting 42500 patterns (37500 as training set, 5000 as validation set)
from the experiments of all algorithms and each of their 10 repetitions.
The 𝛽-VAEs used the same structure, hyper-parameters, loss function
and learning algorithm as described in Section D.3. They were trained
for more than 1400 epochs. The encoder which resulted in the minimal
validation set error during the training was used. According to their
reconstructed patterns they can represent the general form of patterns
but often not individual details such as their texture (Figure B.11).

Table B.5.: Features of the analytic parameter and behavior space with their min and max values.

Analytic Parameter Space Definition Analytic Behavior Space Definition
Parameter min max

R 1 20
T 2 10
𝜇 0 1
𝜎 0 0.3
𝛽1 , 𝛽2 , 𝛽3 0 1
𝛽-VAE latent 1 to 8 (trained -5 5on intial states 𝐴𝑡=1)

Parameter min max

mass 𝑀𝐴 0 1
volume 𝑉𝐴 0 1
density 𝐷𝐴 0 1
asymmetry 𝐴𝐴 -1 1
centeredness 𝐶𝐴 0 1
𝛽-VAE latent 1 to 8 (trained -5 5on final patterns 𝐴𝑡=𝑇)



B. Appendix of IMGEP-VAE 204

a) Reconstruction Examples of the Analytic Parameter Space 𝛽-VAE

b) Reconstruction Examples of the Analytic Behavior Space 𝛽-VAE

Figure B.11.: Examples of patterns (left) and their reconstruction (right) by the 𝛽-VAE used for the analytic parameter (a) and behavior
space (b). The patterns are sampled from the validation dataset.

Diversity Metric We use a binning-based diversity metric which mea-
sures how much area the algorithms explored in the analytic behavior
and parameter spaces (see Subsection 2.1.2). Here we use a regular
binning where the spaces are discretized with a spatial grid between
a minimum and maximum border defined for each space dimension
(Table B.5). The areas with values falling below the minimum or above
the maximum border are counted as two additional bins. In the main
paper, we used 7 bins per dimensions to measure diversity (Figure 4.7).
We analyzed the impact of the number of bins per dimension on the
final diversity measure in Figure B.12. Although the diversity difference
between algorithms depends on the number of bins per dimension for
each space, the order of the algorithms is generally invariant to it. Only
if the number of bins per dimension grows large (>10) the order of the
algorithms changes in some cases. The order starts to follow the same
order as seen for the proportion of identified patterns (Figure B.8). In
this case the discretization of the space becomes too fine. Each pattern
falls into its own discretized area. We chose therefore a smaller number
of bins per dimension of 7 to compare the algorithms in a meaningful
way.
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(a) Diversity in Parameter Space
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(b) Diversity in Behavior Space
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(c) Behavior Space Diversity for SLPs
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(d) Behavior Space Diversity for TLPs

Figure B.12.: Influence of the number
of bins per dimensions on the diversity
measure. Depicted is the average diver-
sity (𝑛 = 10) with the standard deviation
as shaded area.
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C.1. Evaluation of the diversity for the
monolithic BC spaces variants

C.1.1. Construction of 5 analytic BC spaces

Each set of BC features relies either on engineered representation based
on existing image descriptors from the literature or on pretrained repre-
sentations unsupervisedly learned on Lenia patterns. Those BCs were
constructed to characterize different types of diversities in the scope of
evaluating meta-diversity, but obviously many others could be envisaged.
The 5 BC models are provided with the source code of this paper.

Each set of BC features is defined by a mapping function 𝐵𝐶𝑋 : 𝑜 ∈
[0, 1]256×256 ↦→ 𝑧̂ ∈ [0, 1]8 where 𝑋 is the corresponding BC space, 𝑜 is a
Lenia pattern and 𝑧̂ represents its 8-dimensional behavioral descriptor
in the corresponding BC space.

We denote D𝑟𝑒 𝑓 an external dataset of 15000 Lenia patterns. The patterns
in D𝑟𝑒 𝑓 were randomly collected from prior exploration experiments in
Lenia, experiments that include different random seeds and different
exploration variants and comport 50% SLPs and 50% TLPs. D𝑟𝑒 𝑓 is a
large database that is intended to cover a diversity of patterns orders of
magnitude larger than what could be found in any single algorithm ex-
periment, and that we use as reference dataset to construct and normalize
the different evaluation BC spaces.

https://mayalene.github.io/holmes/
https://github.com/flowersteam/holmes/


C. Appendix of IMGEP-HOLMES 206

Spectrum-Fourier The 2-dimensional discrete Fourier transform is a
mathematical method that projects an image (2D spatial signal) into
the frequency domain, from which frequency characteristics can be
extracted and used as texture descriptors [486]. Applications range from
material description [487], leaf texture description in biology [488] and
rule classification in cellular automata [230].

The construction of BCSpectrum-Fourier is summarized in Figure C.2 and
follows the below procedure:

1. The 2D Fast Fourier Transform transforms the image 𝑜 = 𝑓 (𝑥, 𝑦)
into the 𝑢, 𝑣 frequency domain function 𝐹, the zero-frequency
component is shifted to the center of the array and the power
specrum 𝑃𝑆 (or power spectral density) is computed:

𝐹(𝑢, 𝑣) = 1
256 × 256

255∑
𝑥=0

255∑
𝑦=0

𝑓 (𝑥, 𝑦) exp−𝑗2𝜋
𝑢𝑥
256

𝑣𝑥
256

𝐹(𝑢, 𝑣) ← 𝑅𝑜𝑙𝑙(𝐹(𝑢, 𝑣), (256
2
,

256
2
))

𝑃𝑆(𝑢, 𝑣) = 𝑅𝑒𝑎𝑙(𝐹(𝑢, 𝑣))2 + 𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦(𝐹(𝑢, 𝑣))2

2. The power spectrum is filtered to keep only the lower half (symme-
try property of the FFT) and the significant values:

𝑃𝑆(𝑢, 𝑣) = {𝑃𝑆(𝑢, 𝑣), 0 ≤ 𝑢 ≤ 256
2
,−256

2
≤ 𝑣 ≤ 256

2
− 1}

𝑃𝑆(𝑢, 𝑣) = 0 𝑖 𝑓 𝑃𝑆(𝑢, 𝑣) < 𝑚𝑒𝑎𝑛(𝑃𝑆(𝑢, 𝑣))

3. The power spectrum is partitioned into 20 ring-shaped sectors:[
𝑅𝑖 = {𝑃𝑆(𝑢, 𝑣)|𝑟2

1 ≤ 𝑢2 + 𝑣2 ≤ 𝑟2
2} 𝑤𝑖𝑡ℎ (𝑟1 , 𝑟2) = (

𝑖

20
× 256

2
,
𝑖 + 1
20
× 256

2
); 𝑓 𝑜𝑟 𝑖 ∈ [0..19]

]
4. A 40-dimensional feature vector (FV) representing radially-aggregating

measures (mean 𝜇𝑖 and standard deviation 𝜎𝑖 of each sector) is
extracted:

𝐹𝑉(𝑜) = [𝜇1 , 𝜎1 , . . . , 𝜇20 , 𝜎20],
where 𝜇𝑖 = 𝑚𝑒𝑎𝑛(𝑃𝑆[𝑅𝑖]), 𝜎𝑖 = 𝑠𝑡𝑑(𝑃𝑆[𝑅𝑖])

5. The 40-dimensional feature vector 𝐹𝑉 is projected into a normalized
8-dimensional behavioral descriptor 𝑧̂ using a transformation 𝑇̂ :
𝐹𝑉 ↦→ 𝑧̂. 𝑇̂ is constructed with Principal Component Analysis
(PCA) [489] dimensionality reduction on D𝑟𝑒 𝑓 :

𝑋𝑟𝑒 𝑓 = {𝐹𝑉(𝑜), 𝑜 ∈ D𝑟𝑒 𝑓 }
Fit a PCA with 8 components on 𝑋𝑟𝑒 𝑓 , 𝑃𝐶𝐴 : 𝐹𝑉 ∈ ℝ40 ↦→ 𝑧 ∈ ℝ8

𝑧𝑟𝑒 𝑓 = 𝑃𝐶𝐴(𝑋𝑟𝑒 𝑓 ), 𝑧𝑚𝑖𝑛 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑧𝑟𝑒 𝑓 , 0.01), 𝑧𝑚𝑎𝑥 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑧𝑟𝑒 𝑓 , 99.9)

𝑇̂ : 𝐹𝑉 ↦→ 𝑧̂ =
𝑃𝐶𝐴(𝐹𝑉) − 𝑧𝑚𝑖𝑛
𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛

6. BCSpectrum-Fourier(𝑜) = 𝑇̂ ◦ 𝐹𝑉(𝑜)
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Figure C.2.: Construction of Spectrum-Fourier analytic space. See text for details. Please note that for visualization purposes: (left) the
original image is colorized but is originally a 256 × 256 grayscale image; (step 1-2-3) the power spectrum is depicted in logarithmic scale.

Elliptical-Fourier Elliptical Fourier analysis (EFA) [229] is a mathe-
matical method for contour description which has been widely-used
for shape description in image processing [490]. These descriptors have
been applied to morphometrical analysis in biology [491], for instance
to characterize the phenotype of plants leaf and petal contours [492] or
anatomical shape changes [493, 494].

A closed contour {𝑥𝑝 , 𝑦𝑝}𝐾𝑝=1 (K points polygon) can be seen as a con-
tinuous periodic function of the length parameter 𝑇 =

∑𝐾
𝑝=1 Δ𝑡𝑝 where

𝑡𝑝 is the distance from the 𝑝 − 1𝑡ℎ to the 𝑝𝑡ℎ point. Therefore it can be
represented as a sum of cosine and sine functions of growing frequencies
(harmonics) under Fourier approximation. Each harmonic is an ellipse
which is defined by 4 coefficients 𝑎, 𝑏, 𝑐, 𝑑.

The construction of BCElliptical-Fourier is summarized in Figure C.3 and
follows the below procedure:

1. Binarize the image obinary = o > 0.2 and extract the external con-
tour as the a list of the (x,y) positions of the pixels that make up the
boundary using OpenCV functioncontour = cv2.findContours(obinary,

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

2. Extract the set of {𝑎𝑛 , 𝑏𝑛 , 𝑐𝑛 , 𝑑𝑛}𝑁𝑛=1 coefficients for a series of N
ellipses (N=25) from the x- and y-deltas (Δ𝑥𝑝 and Δ𝑦𝑝) between
each consecutive point p in the K points polygon:

𝑎𝑛 =
𝑇

2𝑛2𝜋2

𝐾∑
𝑝=1

Δ𝑥𝑝

Δ𝑡𝑝

[
cos

2𝑛𝜋𝑡𝑝
𝑇
− cos

2𝑛𝜋𝑡𝑝−1

𝑇

]
𝑏𝑛 =

𝑇

2𝑛2𝜋2

𝐾∑
𝑝=1

Δ𝑥𝑝

Δ𝑡𝑝

[
sin

2𝑛𝜋𝑡𝑝
𝑇
− sin

2𝑛𝜋𝑡𝑝−1

𝑇

]
𝑐𝑛 =

𝑇

2𝑛2𝜋2

𝐾∑
𝑝=1

Δ𝑦𝑝

Δ𝑡𝑝

[
cos

2𝑛𝜋𝑡𝑝
𝑇
− cos

2𝑛𝜋𝑡𝑝−1

𝑇

]
𝑑𝑛 =

𝑇

2𝑛2𝜋2

𝐾∑
𝑝=1

Δ𝑦𝑝

Δ𝑡𝑝

[
sin

2𝑛𝜋𝑡𝑝
𝑇
− sin

2𝑛𝜋𝑡𝑝−1

𝑇

]
3. The coefficients are standardized (i.e. made invariant to size, rota-

tion and shift):[
𝑎∗𝑛 𝑏∗𝑛
𝑐∗𝑛 𝑑∗𝑛

]
= 1

𝐿

[
cos 𝜙 sin 𝜙
− sin 𝜙 cos 𝜙

] [
𝑎𝑛 𝑏𝑛
𝑐𝑛 𝑑𝑛

] [
cos𝑁𝜃 sin𝑁𝜃
− sin𝑁𝜃 cos𝑁𝜃

]
, where

𝐿 =
√
[(𝐴0 − 𝑥𝑚)2 + (𝐶0 − 𝑥𝑚)2], (𝐴0 , 𝐶0) is the center of the 1𝑠𝑡 har-

monic ellipse, (𝑥𝑚 , 𝑦𝑚) is the location of the modified starting point
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(on the major axis of the ellipse), 𝜃 =
2𝜋𝑡𝑚
𝑇 and 𝜙 = tan−1 𝑦𝑚−𝐶0

𝑥𝑚−𝐴0
(angle between the major axis of the ellipse and xaxis).

4. The 100-dimensional feature vector 𝐹𝑉 = {𝑎∗𝑛 , 𝑏∗𝑛 , 𝑐∗𝑛 , 𝑑∗𝑛}25
𝑛=1 is

projected into a normalized 8-dimensional behavioral descriptor
using a transformation 𝑇̂ : 𝐹𝑉 ↦→ 𝑧̂. 𝑇̂ is constructed with Principal
Component Analysis (PCA) dimensionality reduction on D𝑟𝑒 𝑓

(similar procedure as in point 5 of BCSpectrum-Fourier).
5. BCElliptical-Fourier(𝑜) = 𝑇̂ ◦ 𝐹𝑉(𝑜)

Figure C.3.: Construction of Elliptical-Fourier analytic space. See text for details. (step 1) The contour depicted in green is extracted
with OpenCV findContours() function (step 2) The contours depicted in red are reconstructed from the EFA coefficients (like in other
Fourier series transforms the shape signal can be approximated by summing the harmonics [229]).

Lenia-Statistics The original Lenia paper proposes several measures
for statistical analysis of the Lenia patterns (section 2.4.2 in [39]).

BCLenia-Statistics is constructed on top of these measures as follows:

1. Among all the statistical measures proposed in [39] we selected the
17 measures that are time-independent, i.e. that can be computed
from the final Lenia pattern 𝑜 = 𝐼(𝑥, 𝑦), namely:

▶ the activation mass 𝑚 = 1
256×256

∑
(𝑥,𝑦)∈𝐼

𝐼(𝑥, 𝑦)

▶ the activation volume 𝑉𝑚 = 1
256×256

∑
(𝑥,𝑦)∈𝐼

𝛿𝐼(𝑥,𝑦)>𝜖 (𝜖 = 10−4)

▶ the activation density 𝜌𝑚 = 𝑚
𝑉𝑚

▶ the centeredness of the activation mass distribution
𝐶𝑚 = 1

𝑚

∑
(𝑥,𝑦)∈𝐼

𝑤𝑥𝑦 · 𝐼(𝑥 − 𝑥̄𝑚 , 𝑦 − 𝑦̄𝑚) where (𝑥̄𝑚 , 𝑦̄𝑚) is the

activation centroid

and𝑤𝑥,𝑦 =
(
1 − 𝑑(𝑥,𝑦)

max
𝑥,𝑦

𝑑(𝑥,𝑦)

)2

with 𝑑(𝑥, 𝑦) =
√
(𝑥 − 𝑥̄𝑚)2 + (𝑦 − 𝑦̄𝑚)2

▶ the 8 invariant image moments by Hu [495]
▶ the 5 extra invariant image moments by Flusser [496]

2. The 17-dimensional feature vector𝐹𝑉 =
[
𝑚,𝑉𝑚 , 𝜌𝑚 , 𝐶𝑚 , ℎ𝑢1 , . . . , ℎ𝑢7 , 𝑓 𝑙𝑢𝑠𝑠𝑒𝑟8 , . . . , 𝑓 𝑙𝑢𝑠𝑠𝑒𝑟13

]
is projected into a normalized 8-dimensional behavioral descriptor
using a transformation 𝑇̂ : 𝐹𝑉 ↦→ 𝑧̂. 𝑇̂ is constructed with Principal
Component Analysis (PCA) dimensionality reduction on D𝑟𝑒 𝑓

(similarly than for BCSpectrum-Fourier).
3. BCLenia-Statistics(𝑜) = 𝑇̂ ◦ 𝐹𝑉(𝑜)

BetaVAE Reinke et al. [•1] propose to train a 𝛽-VAE [210] on a large
database of Lenia pattterns and to reuse the learned features as behavioral
descriptors for the analytic BC space.

BCBetaVAE is constructed according to the below procedure :



C. Appendix of IMGEP-HOLMES 209

1. A 𝛽-VAE with 8-dimensional latent space is instantiated with the
architecture detailed in table Table C.1.

2. The construction of the training dataset, training procedure and
hyperparameters follow [•1]:

▶ The 𝛽-VAE is trained on an external database D
(𝑏𝑖𝑔)
𝑟𝑒 𝑓

of 42500
Lenia patterns (with 50% SLP and 50% TLP, 37500 as training
set, 5000 as validation set) which were randomly collected
from independent previous experiments (with the same pro-
cedure than D𝑟𝑒 𝑓 ).

▶ The 𝛽-VAE is trained for more than 1250 epochs with hy-
perparameters 𝛽 = 5, Adam optimizer (𝑙𝑟 = 1e−3, 𝛽1 = 0.9,
𝛽2 = 0.999, 𝜖 = 1e−8, weight decay=1e−5) and a batch size of
64.

▶ The network weights which resulted in the minimal validation
set error during the training are kept.

3. The resulting pretrained encoder serves as mapping function
from a Lenia pattern 𝑜 to a 8-dimensional feature vector 𝐹𝑉(𝑜) =[
𝑧1 , 𝑧2 , 𝑧3 , 𝑧4 , 𝑧5 , 𝑧6 , 𝑧7 , 𝑧8

]
4. Similarly to the other analytic BC spaces in this paper, we use the

reference dataset D𝑟𝑒 𝑓 to normalize the 8-dimensional behavioral
descriptors between [0, 1]:

𝑧𝑟𝑒 𝑓 = {𝐹𝑉(𝑜), 𝑜 ∈ D𝑟𝑒 𝑓 }, 𝑧𝑚𝑖𝑛 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑧𝑟𝑒 𝑓 , 0.01), 𝑧𝑚𝑎𝑥 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑧𝑟𝑒 𝑓 , 99.9)

𝑇̂ : 𝐹𝑉 ↦→ 𝑧̂ =
𝐹𝑉 − 𝑧𝑚𝑖𝑛
𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛

5. BCBetaVAE(𝑜) = 𝑇̂ ◦ 𝐹𝑉(𝑜)

Table C.1.: 𝛽-VAE architecture used for BCBetaVAE.

Encoder Decoder

Input pattern A: 256 × 256 × 1 Input latent vector z: 8 × 1
Conv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU FC layers : 256 + ReLU, 256 + ReLU, 4 × 4 × 32 + ReLU
Conv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU TransposeConv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU
Conv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU TransposeConv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU
Conv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU TransposeConv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU
Conv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU TransposeConv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU
Conv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU TransposeConv layer: 32 kernels 4 × 4, stride 2, 1-padding + ReLU
FC layers : 256 + ReLU, 256 + ReLU, FC: 2 × 8 TransposeConv layer: 32 kernels 4 × 4, stride 2, 1-padding

Patch-BetaVAE Rhe 𝛽-VAE is not able to encode finer details and texture
of patterns as the compression of the images to a 8-dimensional vector
results in a general blurriness in the reconstructed patterns (see Figure
4.9). Therefore, we also implemented an additional variant denoted as
Patch-BetaVAE where the 𝛽-VAE is trained on “zoomed” 32× 32 patches.
A preprocessing step extracts the cropped patch around the image
activation centroid 𝑃 : 𝑜 ↦→ 𝑜[𝑥̄𝑚 − 16 : 𝑥̄𝑚 + 16, 𝑦̄𝑚 − 16 : 𝑦̄𝑚 + 16]. Then,
the construction of BCPatch-BetaVAE follows exactly the construction of
BCBetaVAE, except that the network architecture has only 3 convolutional
layers instead of 6. Following the notations of the previous paragraph,
BCPatch-BetaVAE(𝑜) = 𝑇̂ ◦ 𝐹𝑉 ◦ 𝑃(𝑜) with 𝐹𝑉 the pretrained model on
image patches and 𝑇̂ a normalizing function computed on D𝑟𝑒 𝑓 .
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C.1.2. Diversity Metric

In Figure 5.2 we (a) measure diversity of the IMGEP variants within
each of the 5 BC spaces using a binning-based metric and (b) select a
representative sets of discoveries within each BC space using a distance-
based diversity metric.

For the binning-based metric ( Figure 5.2a), each BC space is discretized
into a collection of t bins 𝑁1 , . . . , 𝑁𝑡 and the diversity is quantified as the

number of bins filled over the course of exploration: 𝐷|𝐵𝐶 =
𝑡∑
𝑖=1

𝛿𝑖 where

𝛿𝑖 = 1 if the 𝑁 𝑡ℎ
𝑖

bin is filled, 𝛿𝑖 = 0 otherwise. We opt for a regular
binning where each dimension of the BC space is discretized into equally
sized bins. Here, 20 bins per dimension are used for the discretization of
the BC spaces. For recall, all the analytic BC spaces used in this paper
are 8-dimensional and bounded in [0, 1]8 (see previous section). Note
however that for a given BC space, the maximum number of bins that
can be filled by all possible Lenia patterns is unknown.

For selecting the representative sets in each BC space ( Figure 5.2b), we
use the following procedure:

▶ Randomly draw 750 candidate sets of 5 images among the 5000
discoveries of the IMGEP that was operating that BC space (i. e.
using it as a goal space)

▶ Select the most dissimilar (i.e. diverse) set among those 750 sets.
The dissimilarity of a set of 5 images is measured as a function
of all the distances between each pair of images in the set, with
distances being computed in the current BC space. This distance-
based measure of diversity 𝐷, proposed in [497], measures the
magnitude 𝑀 (dispersion) and variability 𝐸 (equability) of the set
of S=6 points in the BC:

𝑀 =
𝑆

𝑆 − 1

𝑆∑
𝑖=1

𝑆∑
𝑗=1

𝑑𝑖 𝑗

𝑆2 , where 𝑑𝑖 𝑗 is the pairwise euclidean distance

𝐸 =
1 +
√

1 + 4𝐻
2𝑆

, where 𝐻 =


𝑆∑
𝑖=1

𝑆∑
𝑗=1

(
𝑑𝑖 𝑗∑𝑆

𝑖=1
∑𝑆
𝑗=1 𝑑𝑖 𝑗

)2
1

1−2

𝐷 = 1 + (𝑆 − 1) × 𝐸 ×𝑀,𝑀 ∈ [0, 1]𝑎𝑛𝑑𝐸 ∈ [0, 1]

This measure replaces the binning-based measure which can hardly
be used here (as they are only 5 images most candidate sets are
likely to fall in the same number of bins and be equally diverse).

▶ display the corresponding set of images
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C.2. Focus on HOLMES design choices

Algorithm 5: HOLMES continual learning of modular BC spaces
Require :saturation signal saturate, node redirection criteria

redirect, connection scheme connection
Initialize root representation 𝑅 = {R0}
for incoming data 𝑜 ∈ {𝑜(1) , . . . , 𝑜(𝑛) , . . . } do

Observe incoming data 𝑜

// Encode observation in HOLMES hierarchy

Start with root node 𝑖 ← 0, 𝑝𝑎𝑟𝑒𝑛𝑡(𝑖) ← ∅
while 𝑖 exists in the hierarchy (until leaf) do

𝑧𝑖 = R𝑖(𝑜,R𝑝𝑎𝑟𝑒𝑛𝑡(𝑖)(𝑜))
Append (𝜃, 𝑜, 𝑧𝑖) to the history H

𝑖 ← 𝑖.𝑐, 𝑐 = redirect𝑖(𝑧𝑖) // go to left or right child

// Augment HOLMES representational capacity if needed

for i in HOLMES leaf nodes do
if saturate(𝑍𝑖) then

Freeze R𝑖 weights
Fit node-specific boundary
redirect𝑖 : 𝑍𝑖 → {𝑙𝑒 𝑓 𝑡 , 𝑟𝑖𝑔ℎ𝑡}

Instantiate child modules R𝑖0 ,R𝑖1 = connection(R𝑖)
// Project past observations to children BCs

for (𝜃, 𝑜, 𝑧) ∈ H[𝑍𝑖] do
R𝑗 ← R𝑖.𝑐 , 𝑐 = redirect𝑖(𝑧)
Append (𝜃, 𝑜,R𝑗(𝑜)) to H[𝑗]

// Train HOLMES modules

Train the hierarchy 𝑅 on observations in H

// Relabel the previous observations

for i in HOLMES nodes do
for (𝜃, 𝑜, 𝑧) ∈ H[𝑖] do

H[𝑖][𝑧] ← R𝑖(𝑜,R𝑝𝑎𝑟𝑒𝑛𝑡(𝑖)(𝑜))

The HOLMES architecture has 4 main components:

1. a base module embedding neural network (R)
2. a saturation signal that triggers the instantiating of new nodes in

the hierarchy (saturate)
3. a boundary redirection criteria that unsupervisedly clusters the

incoming patterns into the different modules (redirect)
4. a connection scheme that allows to instantiate new children modules

in the hierarchy with feature-wise transfer from their parent module
(connection)

Given those base components, Algorithm. 5 details how, assuming a
continual source of incoming data {𝑜(1) , . . . , 𝑜(𝑛) , . . . }, HOLMES pro-
gressively learns and expands its hierarchy of BC spaces.

While several design choices could be made for the modules, connection

scheme, and splitting criteria, we summarize the choices made in [•3]
below.
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Choice for the base module Each module has an embedding network
𝑅𝑖 that maps an observation 𝑜 to a low-dimensional vector 𝑟 = 𝑅(𝑜). To
learn such embedding, we rely on a variational autoencoder network [137]
for the base module. The encoder network 𝑅𝑖 : 𝑞𝜙(𝑟 |𝑥) is coupled with
a decoder network 𝐷𝑖 : 𝑝𝜃(𝑥 |𝑟) that enables a generative process from
the latent space, and the networks are jointly trained to maximize the
marginal log-likelihood of the training data with a regularizer on the
latent structure. The training loss is

Lvae(𝜃, 𝜙; x, r) = 𝔼𝑝̂(x)
(
𝔼𝑞𝜙(r|x) (− log 𝑝𝜃(x|r))

)
︸                               ︷︷                               ︸

𝑎

+𝔼𝑝̂(x)
(
𝐷KL

(
𝑞𝜙(r|x)| |𝑝(r)

) )︸                           ︷︷                           ︸
𝑏

where (a) represents the expected reconstruction error (computed with
binary cross entropy) and (b) is the regularizer KL divergence loss of
the approximate diagonal Gaussian posterior 𝑞𝜙(𝑟 |𝑥) from the standard
Gaussian prior 𝑝(𝑧) = N(0, 𝐼). Please note that input observations are
partitioned between the different nodes in HOLMES, therefore each
module VAE is trained only on its niche of patterns. Only the encoder
network 𝑅𝑖 is kept in IMGEP-HOLMES, therefore other choices for the
base module and training strategy could be envisaged in future work, for
instance with contrastive approaches instead of generative approaches.
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Figure C.4.: Lateral connections in
HOLMES

Choice for the connection scheme The connection scheme takes in-
spiration from Progressive Neural Networks (PNN) [242]), where transfer
is enabled by connecting the different modules via learned lateral con-

nections. To mitigate the growing number of parameters, we opted for
a sparser connection scheme that in [242]. The connection scheme is
summarized in Figure C.4. Connections are only instantiated between a
child and its parent (hierarchical passing of information). Connections
are only instantiated between a reduced number of layers (denoted as
l_f, gfi_c, lfi_c, recon_c in the figure). We hypothesize that transfer is
beneficial in the decoder network so a child module can reconstruct “as
well as” its parent, however connections are removed between encoders
as new complementary type of features should be learned. We preserve
the connections only at the local feature level, as the CNN first layers
tend to learn similar features [498]. Connections between linear layers
are defined as linear layers and connections between convolutional layers
are defined as convolutions with 1 × 1 kernel. At each connection level,
the output of the connection is summed to the current feature map in
the VAE. Other connection schemes could be envisaged in future work,
for instance with FiLM layers [499] (feature-wise affine transformation
instead of sum) which have recently been proposed for vision models.

Choice for the splitting criteria There are two main choices: when to
split a node and how to redirect the patterns toward either the left or
right children. For both, we opted for simple design choices that allow
the split to be unsupervisedly and autonomously handled during the
exploration loop. We trigger a split in a node when the reconstruction
loss of its VAE reaches a plateau, with additional conditions to prevent
premature splitting (minimal node population and minimal number of
training steps) or to limit the total number of splits. When splitting a
node, we use K-means algorithm in the embedding space to fit 2 clusters
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on the points that are currently in the node. This generates a boundary
in the latent space of the node, that we keep fixed for the rest of the
exploration loop. Again, many other choices could be envisaged in future
work, for instance by including human feedback to fit the boundary or
with more advanced clustering algorithms.

C.3. Representational Similarity Analysis

We denote D
(𝑠𝑚𝑎𝑙𝑙)
𝑟𝑒 𝑓

an external dataset of 3000 Lenia patterns (50% SLPs,
50% TLPs) which were collected with the same procedure than D𝑟𝑒 𝑓 .

Given two representations embedding networks 𝑅𝑖 and 𝑅 𝑗 with 8-
dimensional latent space, the RSA similarity index 𝑅𝑆𝐴𝑖 𝑗 is computed
with the linear Centered Kernel Alignment index (CKA) proposed
in [254]:

1. Compute the matrix of behavioral descriptors responses from each
representation
𝑍𝑖 = [𝑅𝑖(𝑜), 𝑜 ∈ D

(𝑠𝑚𝑎𝑙𝑙)
𝑟𝑒 𝑓

] ∈ [0, 1]3000×8 and 𝑍 𝑗 = [𝑅 𝑗(𝑜), 𝑜 ∈
D
(𝑠𝑚𝑎𝑙𝑙)
𝑟𝑒 𝑓

] ∈ [0, 1]3000×8

2. Center the matrices responses:
𝑍𝑖 ← 𝑍𝑖 −𝑚𝑒𝑎𝑛(𝑍𝑖 , 𝑎𝑥𝑖𝑠 = 0) and 𝑍 𝑗 ← 𝑍 𝑗 −𝑚𝑒𝑎𝑛(𝑍 𝑗 , 𝑎𝑥𝑖𝑠 = 0)

3. 𝑅𝑆𝐴𝑖 𝑗 = 𝐶𝐾𝐴(𝑍𝑖𝑍𝑇𝑖 , 𝑍 𝑗𝑍
𝑇
𝑗
) =

| |𝑍𝑖 ·𝑍𝑇𝑗 | |
2
𝐹

| |𝑍𝑖 ·𝑍𝑇𝑖 | |𝐹 | |𝑍 𝑗 ·𝑍
𝑇
𝑗
| |𝐹

where | | · | |𝐹 represents the Frobenius norm

Representation Similarity Analysis (RSA) is used in Figure 5.5 of the
main paper in two ways:

▶ To compare representations in time, i.e. where the the embedding
networks 𝑅𝑖 and 𝑅 𝑗 come from the same network but from different
training stages

▶ To compare representations from different modules in HOLMES
where the the embedding networks 𝑅𝑖 and 𝑅 𝑗 are taken from the
same time step (end of exploration) but from different networks.

C.4. Experimental Settings

C.4.1. Sampling of parameters 𝜃

All experiments are done in the Lenia environment, and we use the exact
same Lenia settings as in Reinke et al. [•1], described in Section B.2.1. The
set of controllable parameters 𝜃 of the artificial agent include:

▶ The update rules parameters [𝑅,T, 𝜇, 𝜎, 𝛽1 , 𝛽2 , 𝛽3]
▶ CPPN-parameters that control the generation of the initial state
𝐴𝑡=1

For each exploration run, the IMGEP agent samples a set of parameters
𝜃 ∈ Θ that generates a rollout 𝐴𝑡=1 → · · · → 𝐴𝑡=200.

There are two ways parameters 𝜃 ∈ Θ are sampled:
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1. During the 𝑁𝑖𝑛𝑖𝑡 initial runs, parameters are randomly sampled
𝜃 ∼ U(Θ)

2. During the goal-directed exploration runs, parameters are sampled
from a policy 𝜃 ∼ Π( ˆ𝐵𝐶𝑖 , 𝑔̂ ,H). The Π policy operates in two
steps:

a) given a goal 𝑔 ∈ ˆ𝐵𝐶𝑖 , select parameters 𝜃̂ ∈ Hwhose corre-
sponding outcome is closest to 𝑔 in ˆ𝐵𝐶𝑖

b) mutate the parameters by a random process 𝜃 = mutation(𝜃̂)

We therefore need to define 1) the random process Uused to randomly
initialize the parameters 𝜃 and 2) the random mutation process used to
mutate an existing set of parameters 𝜃̂.

For both we follow exactly the implementation proposed in the IMGEP-
VAE approach. We refer to Section B.2.4 for a complete description of
the implementation of the random initialization process and random
mutation process. This includes the procedure used for parameters that
control the generation of the initial pattern 𝐴𝑡=1 and for parameters that
control Lenia’s update rule. In this paper, we use the exact same hyperpa-
rameters as in Reinke et al. [•1] for initialization U and mutation of the
CPPN-parameters that control the generation of the initial state 𝐴𝑡=1. We
use slightly different hyper-parameters for the mutation of the parame-
ters that control the generation of the update rule [𝑅,T, 𝜇, 𝜎, 𝛽1 , 𝛽2 , 𝛽3],
as detailed in table Table C.2.

𝑅 T 𝜇 𝜎 (𝛽1 , 𝛽2 , 𝛽3)
[𝑎, 𝑏] [2, 20] [1, 20] [0, 1] [0.001, 0.3] [0, 1]
𝜎𝑀 0.5 0.5 0.1 0.05 0.1

Table C.2.: Sampling of parameters for
the update rule. The random initializa-
tion process Uuses uniform sampling in
an interval [𝑎, 𝑏]. The random mutation
is a Gaussian process 𝜃 = [𝜃̂ +N(𝜎𝑀 )]𝑏𝑎 .

C.4.2. Incremental Training of the BC Spaces

Training Procedure The networks are trained 100 epochs every 100 runs
of exploration (resulting in 50 training stages and 5000 training epochs
in total). The networks are initialized with kaiming uniform initialization.
We used the Adam optimizer (𝑙𝑟 = 1e−3, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 1e−8,
weight decay=1e−5) with a batch size of 128.

Training Dataset The datasets are incrementally constructed during
exploration by gathering the discovered patterns. One pattern every ten
is added to the validation set (10%) and the rest is used in the training
set (the validation dataset only serves for checking purposes and has
no influence on the learned BC spaces). Importance sampling is used to
give the newly-discovered patterns more weights. A weighted random
sampler is used as follow: at each training stage t, there are 𝑋 patterns
discovered so far among which 𝑋𝑛𝑒𝑤 have been discovered during the
last 100 steps, we create a dataset 𝐷𝑡 of 𝑋 images that we construct by
sampling 30% among the 𝑋𝑛𝑒𝑤 lastly discovered images and 70% among
the 𝑋 − 𝑋𝑛𝑒𝑤 old patterns. We also use data-augmentation, i.e at each
training stage t, the images in 𝐷𝑡 are augmented online by random x
and y translations (up to half the pattern size and with probability 0.6),
rotation (up to 20 degrees and with probability 0.6), horizontal and
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vertical flipping (with probability 0.2), zooming (up to factor 3 with
probability 0.6). The augmentations are preceded by spherical padding
to preserve Lenia spherical continuity.

IMGEP-VAE The monolithic VAE architecture used in the IMGEP-VAE
baseline is detailed in table Table C.3. It has a total neural capacity of
2258657 parameters.

Table C.3.: VAE architecture used for IMGEP-VAE.

Encoder Decoder

Input pattern A: 256 × 256 × 1 Input latent vector z: 16 × 1
Conv layer: 64 kernels 4 × 4, stride 2, 1-padding + ReLU FC layers : 512+ ReLU, 512+ ReLU, 4 × 4 × 64 + ReLU
Conv layer: 64 kernels 4 × 4, stride 2, 1-padding + ReLU TransposeConv layer: 64 kernels 4 × 4, stride 2, 1-padding + ReLU
Conv layer: 64 kernels 4 × 4, stride 2, 1-padding + ReLU TransposeConv layer: 64 kernels 4 × 4, stride 2, 1-padding + ReLU
Conv layer: 64 kernels 4 × 4, stride 2, 1-padding + ReLU TransposeConv layer: 64 kernels 4 × 4, stride 2, 1-padding + ReLU
Conv layer: 64 kernels 4 × 4, stride 2, 1-padding + ReLU TransposeConv layer: 64 kernels 4 × 4, stride 2, 1-padding + ReLU
Conv layer: 64 kernels 4 × 4, stride 2, 1-padding + ReLU TransposeConv layer: 64 kernels 4 × 4, stride 2, 1-padding + ReLU
FC layers : 512+ ReLU, 512+ ReLU, FC: 2 × 16 TransposeConv layer: 1 kernels 4 × 4, stride 2, 1-padding

IMGEP-HOLMES For the IMGEP-HOLMES variant, the hierarchical
representation starts with a single root module 𝑅0 at the beginning of
exploration. During each training stage, one node is split if it meets the
following conditions:

▶ the reconstruction loss for that node reaches a plateau (running
average over the last 50 training epochs is below 𝜖 = 20)

▶ at least 500 patterns populate the node
▶ the node has not just been created (must has been trained for at

least 200 epochs)
▶ it is not too early in the exploration loop (there must be at least

2000 patterns are explored)
▶ the total number of nodes in the hierarchy is below the maximum

number allowed (here expansion is stopped at 11 splits i.e. 23
modules)

Each time a split is triggered in a BC space node of the hierarchy 𝐵𝐶𝑖 , the
boundary B𝑖 is fitted in the latent space as follows: K-Means algorithm
with 2 clusters is ran on the patterns that currently populate the node. The
resulting clusters are kept fixed for the rest of the exploration, therefore
when a pattern is projected in the split node, it is sent to the left children
if it belongs to the first cluster on the latent space and to the right children
otherwise. Here, the final hierarchy has a total of 23 VAE modules. The
architecture is identical for each module and is detailed in table Table C.4.
At the end of exploration, HOLMES has a total neural capacity of 2085981
parameters. Each base module VAE has a capacity of 86225 parameters
and connections of 4673 parameters (2085981 = 23×86225+22×4673).
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Table C.4.: Module architecture used for IMGEP-HOLMES. All the modules 𝑅𝑖 have this architecture for the base VAE network as well
as the connections (except 𝑅0 which does not have the connections).

Encoder

Input pattern A: 256 × 256 × 1
Conv layer: 16 kernels 4 × 4, stride 2, 1-padding + ReLU
Conv layer: 16 kernels 4 × 4, stride 2, 1-padding + ReLU
Conv layer: 16 kernels 4 × 4, stride 2, 1-padding + ReLU lf_c: 16 kernels 1 × 1, stride 1, 1-padding
Conv layer: 16 kernels 4 × 4, stride 2, 1-padding + ReLU
Conv layer: 16 kernels 4 × 4, stride 2, 1-padding + ReLU
Conv layer: 16 kernels 4 × 4, stride 2, 1-padding + ReLU
FC layers : 64+ ReLU, 64+ ReLU, FC: 2 × 16

Decoder

Input latent vector z: 16 × 1
FC layers : 64+ ReLU, gfi_c: 64+ReLU
FC layers: 64+ ReLU, 4 × 4 × 16 + ReLU
TransposeConv layer: 16 kernels 4 × 4, stride 2, 1-padding + ReLU
TransposeConv layer: 16 kernels 4 × 4, stride 2, 1-padding + ReLU
TransposeConv layer: 16 kernels 4 × 4, stride 2, 1-padding + ReLU lfi_c: 16 kernels 1 × 1, stride 1, 1-padding
TransposeConv layer: 16 kernels 4 × 4, stride 2, 1-padding + ReLU
TransposeConv layer: 16 kernels 4 × 4, stride 2, 1-padding + ReLU
TransposeConv layer: 1 kernel 4 × 4, stride 2, 1-padding recon_c: 1 kernel 1 × 1, stride 1, 1-padding

C.5. Ablation Study: Impact of the Lateral
Connections

We conducted 5 ablation experiments of the IMGEP-HOLMES variant
presented in the main paper, each has 3 repetitions with different seeds.
Each ablation experiment considered a different connection scheme
with either zero or only one connection among lf_c, gfi_c, lfi_c and
recon_c (proposed connections in HOLMES, see Figure C.4 and Table
C.4). As shown in Figure C.5, the lateral connections are essential to
learn diverse behavioral characterizations among the different modules
of the hierarchy. Indeed we can see that IMGEP-HOLMES without any
connection (first row in the figure) learns BCs that are highly similar
from one module to another (histogram concentrated around [0.8, 1] RSA
indexes, i.e. very similar). We can also see that connections toward the
last layers of the decoder are seemingly the more important (lfi_c and
recon_c) as IMGEP-HOLMES with only one of such connection succeeds
to learn dissimilar BCs per module (the histogram is shifted toward
lower RSA indexes). However, the connection at the encoder level (lf_c)
and close to the embedding level (gfi_c) seem less necessary, or at least
alone are not sufficient to allow HOLMES modules escaping the bias
inherent to the VAE learning (show a similar histogram of RSA indexes
than the no-connection variant). The connection scheme used in the
main paper (last row in the figure) seems to be the best suited to learn
diverse BCs (histogram concentrated around [0.8, 1] RSA indexes, i.e.
very dissimilar).
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Figure C.5.: RSA Analysis of the effect of the lateral connections on the ability for HOLMES to learn diverse module BCs. Each row is an
ablation experiment with the corresponding connection scheme. (Left) RSA matrix for one experiment repetition (seed 0), with similarity
index between 0 (dark blue, not similar at all) and 1 (yellow, identical). Representations are compared at the end of exploration between
the different modules (ordered by their creation time on the left-to-right x-axis). (Right) Histogram of RSA index similarity between all
pair of modules (aggregated over the 10 repetitions).

C.6. Comparison of HOLMES with Related
Methods

In this section we provide a comparison of HOLMES with recent work in
the literature: CURL [243], CN-FPM [244] and pro-VLAE [245]. Those
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approaches also propose to dynamically expand the network capacity of
a VAE in the context of continual representation learning, and therefore
share similarities with HOLMES. In Table C.5, we provide a high-level
comparison of the proposed approaches which compare the different
architectures according to their structural bias, handling of catastrophic

forgetting, architecture for dynamic expansion, handling of transfer between
the different group of features, criteria for the expansion trigger, and if
they are performing data partitioning (i.e. learn different set of features
for different niches of observations).

CURL CN-DPM pro-VLAE HOLMES

Structural
Bias

Mixture of Gaussians
(in a single VAE latent space)

Dirichlet Process Mixture
(flat set of VAE modules)

Hierarchical Levels
(in a single VAE)

Hierarchical Mixture
(binary tree of VAE modules)

Catastrophic
Forgetting Generative Replay Freeze “fade-in” coefficient

(same network) Freeze

Dynamic
Expansion

New component
in the MoG

New module
VAE

New feature layer
in the VAE

New module
VAE

Transfer Single Shared Network
with several “heads”

Lateral connections
(exhaustive as in PNN [242]))

Single Shared Network
with several “levels”

Lateral connections
(parent-to-children only)

Expansion
Trigger

Short-Term
Memory Size

Short-Term
Memory Size Predetermined Node

Saturation

Data
Partitioning Soft partitioning Soft partitioning

(coupling of each VAE with discriminator)
None

(same network)
Hard Partitionning
(boundary in 𝐵𝐶𝑖)

Table C.5.: High-level comparison of the
general choices of HOLMES with those
of previous methods: CURL [243], CN-
FPM [244] and pro-VLAE [245]. Please
refer to the original papers for more de-
tails.

As we can see, while HOLMES shares conceptual ideas with those ap-
proaches, our approach has key differences:

1. It uses a hierarchy of different latent spaces whereas CURL uses
a single latent space, CN-DPM uses a flat set of different latent
spaces and pro-VLAE uses a fixed-set of latent spaces (different
levels in one network)

2. CURL and CN-DPM show results in the context of continual
multi-task classification and demonstrate that their modular archi-
tecture can separate well the latents allowing to unsupervisedly
discriminate between the different input observations / tasks (eg:
discriminate digits in MNIST at test time when they have been
sequentially observed at train time). However, CURL does not use
different features for the different niches of observations and it
is not clear if the flat approach of CN-DPM does learn different
features between the different modules. However HOLMES tar-
gets to learn dissimilar set of features per BC in order to achieve
meta-diversity.

3. Pro-VLAE is not applied in the context of continual learning but
rather proposes to progressively learn features at different levels
in the VAE layers, showing that it can successfully disentangle the
features. Even though disentanglement is a key property to avoid
redundant features, we believe that it is also key to have diverse
set of features for the different niches of observed instances.

C.7. Additional IMGEP baselines with a
monolithic BC space

In this section, we consider different baselines for the training strategy of
an online-learned monolithic architecture used by the IMGEP as goal
space representation: BetaVAE [210], BetaTCVAE [500], TripletCLR [501,
502], SimCLR [503] and BigVAE. All the baselines have the same encoder
architecture and training procedure than the main baseline IMGEP-VAE
(as detailed in Subsection C.4.2). The baselines differ in their approach
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to train the encoder network, including several variants of variational-
autoencoders and contrastive approaches.

The first two variants BetaVAE [210] and BetaTCVAE [500] build on the
VAE framework and augment the VAE objective with the aim to enhance
interpretability and disentanglement of the latent variables. Therefore
only the training loss of the VAE (see Section C.2) differs:

▶ The BetaVAE objective re-weights the 𝑏 term by a factor 𝛽 > 1:
LBetaVAE(𝜃, 𝜙; x, r) = 𝔼𝑝̂(x)

(
𝔼𝑞𝜙(r|x) (− log 𝑝𝜃(x|r))

)
︸                               ︷︷                               ︸

𝑎

+𝛽×𝔼𝑝̂(x)
(
𝐷KL

(
𝑞𝜙(r|x)| |𝑝(r)

) )︸                           ︷︷                           ︸
𝑏

Our baseline uses 𝛽 = 10.
▶ The BetaTCVAE objective augments the VAE objective with an

additional regularizer that penalizes the total correlation (dependen-
cies between the dimensions of the representation):

LBetaTCVAE(𝜃, 𝜙; x, r) = 𝔼𝑝̂(x)
(
𝔼𝑞𝜙(r|x) (− log 𝑝𝜃(x|r))

)
+

𝛼 × 𝐼𝑞𝜙 (x|r)︸  ︷︷  ︸
𝑚𝑢𝑡𝑢𝑎𝑙 𝑖𝑛 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

+ 𝛽 × 𝑇𝐶(𝑞𝜙(r))︸      ︷︷      ︸
𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

+𝛾 ×
∑
𝑗

𝐷𝐾𝐿(𝑞𝜙(𝑧 𝑗)| |𝑝(𝑧 𝑗))︸                      ︷︷                      ︸
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑤𝑖𝑠𝑒 𝐾𝐿

Because TC is not tractable, they [500] propose two methods based
on importance sampling to estimate it: minibatch weighted sampling

(mws) and minibatch stratified sampling (mss). Our baselines uses
𝛼 = 1, 𝛽 = 10, 𝛾 = 1 and 𝑚𝑠𝑠 importance sampling.

The second two variants TripletCLR [501, 502] and SimCLR [503] use
contrastive approaches as training strategy for the encoder. Contrary
to the VAE variants, these approaches drop the decoder networks and
pixel-wise reconstruction as their training objective operates directly
in the latent space. The encoders are trained to maximize agreement
between differently augmented versions of the same observation 𝑜. We
used to 2 variants for the contrastive loss:

▶ Triplet Loss:LTripletCLR(𝐴, 𝑃, 𝑁) = max (𝑑(𝑅(𝐴), 𝑅(𝑃)) − 𝑑(𝑅(𝐴), 𝑅(𝑁)) + 𝛼, 0)
where 𝑅 is the embedding network, 𝐴 is an anchor input (pattern 𝑜
in the training dataset), 𝑃 is the positive input (augmented version
of 𝑜), 𝑁 is the negative input (other pattern 𝑜′ randomly sampled
in the training dataset), 𝑑(·, ·) is the distance in the latent space
(we use cosine similarity) and 𝛼 is a margin between positive and
negative pairs (we use 𝛼 = 1)

▶ SimCLR Loss: LSimCLR(𝐴, 𝑃) = − log exp 𝑠𝑖𝑚(𝑧𝐴 ,𝑧𝑃 )/𝜏∑
𝑁 𝟙[𝑁≠𝐴] exp 𝑠𝑖𝑚(𝑧𝐴 ,𝑧𝑁 )/𝜏 where

𝜏 denotes the temperature parameter (we use 𝜏 = 0.1); 𝑠𝑖𝑚 the
similarity distance (we use cosine similarity); and 𝑧 represent the
latent features onto which operates the contrastive loss. Please
note that for this variant the encoder is coupled to a projection head

network 𝑔(·) such that 𝑜
𝑅→ 𝑟

𝑔
→ 𝑧 (We use g: FC 16→16 + RelU, FC

16→16). Here the positive pair (𝐴, 𝑃) is contrasted with all negative
pairs (𝐴, 𝑁) in the current batch. The final loss is computed across
all positive pairs in a mini-batch.

Finally the BigVAE baseline uses the same architecture and training
strategy than the main VAE baseline, but with a much larger embedding
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capacity (368 dims instead of 16) corresponding to the total embedding
capacity of HOLMES if we would concatenate its 23 BC latent spaces.

The results, illustrated in Figure C.6, show that monolithic architecture
lack either of stability, enabling efficient diversity search, or plasticity,
enabling adaption to novel discoveries throughout exploration:

▶ Lack of plasticity for the all VAE variants, i. e. inability to adapt the
learned features to novel niches of patterns. Even when changing
the training objective or the encoding capacity, the VAE tendency
to saturate early during exploration observed in Figure 5.5 seems
to hold for all variants, although to a lesser extent for BigVAE.
Interestingly, IMGEP-BetaVAE and IMGEP-BetaTCVAE show the
same profile of discovered diversities than VAE (good at finding a
diversity of SLPs but bad for TLPs) whereas the IMGEP-BigVAE
seems to have a reversed bias (good at finding a diversity of TLPs
but bad for SLPs). We attribute this effect to the difficulty of VAEs
with low embedding capacity to capture textures with fine-grained
structures (i. e. TLPs) whereas when given a higher encoding-
capacity they can more accurately represent TLPs. Therefore the
variants with small capacity representations seem better suited for
exploring diverse SLPs (to the detriment of TLPs) whereas BigVAE
seem better suited for exploring diverse TLPs (to the detriment of
SLPs).

▶ Lack of stability for all the contrastive variants, where features are
drastically different from one training stage to the other. Contrary
to the VAE variants, those approaches do not exhibit a strong bias in
their BC and therefore do not seem to differ much from the default

diversity found in Lenia (represented with the black curve), at least
for the two types of diversity measured in Figure C.6.
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Figure C.6.: This figure complements the results presented in Subsection 6.4.2, where we replace the IMGEP-VAE baseline with different
architectures and training strategies for the monolithic architecture. Each row is a baseline denoted as IMGEP-X (where X represents the
training strategy used for training the monolithic representation). For each row, we display: (left) RSA matrix where representations are
compared in time between the different training stages, as shown in Figure 5.5; (middle-right) exact same plots than Figure 6.6 where we
replace the monolithic IMGEP-VAE baseline (pink curve) by the other baseline (of the current row). Therefore only the pink curve vary
between the different graphs of one column.
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D.1. Additional Results

D.1.1. Curriculum phylogeny

50 75 100 125 150 175 200 225 250
x axis

60

80

100

120

140

160

180

200

y 
ax

is

Figure D.2.: “phylogeny tree” of one run
of IMGEP. The red dot are reached po-
sitions (by a step of IMGEP). The blue
zone correspond to the zone where obsta-
cles can be placed. Black arrows indicate
optimization progress (i. e. the point at
the end of the arrow was obtained after
optimizing the one at the start of the ar-
row). The path leading to the best agent
(point reaching the furthest position on
the x axis) is highlighted in green. Inter-
estingly we can see that the best path is
not necessarily a straight path. For visibil-
ity reasons, we put transparency on the
optimization steps that led to reached
goals far from the reached goal of the
parameters that was used to initialize the
optimization (often due to failing).

In Figure D.2, we visualize the curriculum path that emerged from the
IMGEP by plotting the achieved position (reached goal) a each step of the
IMGEP. Arrows show, for each step, what was the previous step result
used as initialization. In addition, we highlight in green the sequence
of reached position leading to the furthest position attained in the grid.
We observe that the path to this furthest position is not necessarily a
straight path with might indicate the usefulness of trying goals that are
not necessarily totally in the direction you want to improve. This figure
also shows the diversity of position reached by the IMGEP with some
steps leading to parameters reaching different part of the grid.

D.1.2. Variability per IMGEP seed

We report in Table D.1 the variability of the results of the method across
the 10 seeds. The variability in result might indicate that some parameter
area are easier to navigate or more prone to certain behavior. Overall we
still observe that every seed finds a good amount of moving agents and
most of them find at least 1 robust agent(ie an agent with a score >0.95 to
the “basic obstacle test”).

Seed Number Number Number max max
Number of agents of moving of robust speed speed obs

(agents) (agents) (agents) (agents)
Seed 0 107 93 91 2.8 1.4
Seed 1 64 54 26 2.7 1.5
Seed 2 33 32 1 2.0 1.1
Seed 3 18 7 0 0.5 0.3
Seed 4 35 26 6 1.9 0.4
Seed 5 66 52 38 2.9 1.8
Seed 6 54 54 2 2.5 0.3
Seed 7 30 30 1 3.0 0.9
Seed 8 44 44 4 2.3 0.3
Seed 9 104 94 92 3.2 2.3

Table D.1.: Seed variability
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D.1.3. Generalization results

We refer to Table D.2 for the full results of the generalization tests (detailed
in Subsection D.4.5) among all three algorithm variants: IMGEP search,
Random Seach and Handmade Search (detailed in Section D.5).

Tests IMGEP Random Handmade
speed>1 10 best 10 best 10 best

speed 1.33 ± 0.28 1.94 ± 0.15 0.53 ± 0.25 0.34 ± 0.10
obstacle
number

24 0.98 ± 0.07 0.99 ± 0.03 0.99 ± 0.03 0.99 ± 0.03
30 0.98 ± 0.07 1.00 ± 0.00 0.99 ± 0.03 0.99 ± 0.03
36 0.99 ± 0.06 1.00 ± 0.00 0.99 ± 0.03 0.97 ± 0.09
42 0.99 ± 0.03 1.00 ± 0.00 0.99 ± 0.03 0.97 ± 0.09
48 0.99 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.06

radius
4 0.92 ± 0.18 0.90 ± 0.13 0.92 ± 0.12 0.95 ± 0.09
7 0.98 ± 0.08 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.09

10 0.98 ± 0.07 0.99 ± 0.03 0.99 ± 0.03 0.99 ± 0.03
13 0.98 ± 0.08 0.99 ± 0.03 1.00 ± 0.00 0.99 ± 0.03
16 0.98 ± 0.08 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

speed
1/3 0.99 ± 0.04 1.00 ± 0.00 0.77 ± 0.27 0.74 ± 0.28
1/2 0.97 ± 0.07 1.00 ± 0.00 0.61 ± 0.38 0.51 ± 0.38

1 0.81 ± 0.23 0.97 ± 0.05 0.42 ± 0.41 0.02 ± 0.04
2 0.34 ± 0.32 0.71 ± 0.25 0.13 ± 0.29 0.00 ± 0.00
3 0.12 ± 0.15 0.32 ± 0.17 0.07 ± 0.12 0.00 ± 0.00

update
mask rate

0.2 0.99 ± 0.08 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
0.6 0.99 ± 0.08 1.00 ± 0.00 0.89 ± 0.30 1.00 ± 0.00
1.0 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
1.4 0.99 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
1.8 0.99 ± 0.10 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

noise rate
0.2 0.91 ± 0.28 0.90 ± 0.30 0.77 ± 0.37 0.99 ± 0.03
0.4 0.75 ± 0.42 0.91 ± 0.27 0.74 ± 0.38 0.92 ± 0.18
0.6 0.67 ± 0.45 0.90 ± 0.27 0.58 ± 0.46 0.77 ± 0.38
0.8 0.60 ± 0.47 0.63 ± 0.44 0.50 ± 0.44 0.71 ± 0.44
1.0 0.51 ± 0.47 0.32 ± 0.41 0.44 ± 0.45 0.70 ± 0.46

noise std
0.2 0.99 ± 0.11 1.00 ± 0.00 0.96 ± 0.12 1.00 ± 0.00
0.6 0.79 ± 0.39 0.90 ± 0.30 0.76 ± 0.39 0.98 ± 0.06
1.0 0.51 ± 0.47 0.32 ± 0.41 0.44 ± 0.45 0.70 ± 0.46
1.4 0.08 ± 0.21 0.03 ± 0.09 0.18 ± 0.32 0.56 ± 0.45
1.8 0.06 ± 0.14 0.06 ± 0.10 0.17 ± 0.30 0.45 ± 0.47

init
noise rate

0.2 1.00 ± 0.01 1.00 ± 0.00 0.89 ± 0.16 1.00 ± 0.00
0.4 0.99 ± 0.09 1.00 ± 0.00 0.91 ± 0.24 0.99 ± 0.03
0.6 0.98 ± 0.13 1.00 ± 0.00 0.88 ± 0.30 0.95 ± 0.15
0.8 0.97 ± 0.14 1.00 ± 0.00 0.88 ± 0.30 0.89 ± 0.24
1.0 0.95 ± 0.21 1.00 ± 0.00 0.88 ± 0.30 0.76 ± 0.29

noise std
0.5 0.97 ± 0.16 1.00 ± 0.00 0.87 ± 0.30 0.97 ± 0.09
1.5 0.94 ± 0.20 0.98 ± 0.06 0.85 ± 0.30 0.52 ± 0.42
2.5 0.89 ± 0.27 0.92 ± 0.17 0.80 ± 0.36 0.37 ± 0.44
3.5 0.86 ± 0.32 0.91 ± 0.27 0.81 ± 0.34 0.35 ± 0.45
4.5 0.85 ± 0.32 0.94 ± 0.18 0.79 ± 0.38 0.32 ± 0.43

scaling
0.15 0.91 ± 0.28 0.90 ± 0.30 0.30 ± 0.46 0.00 ± 0.00
0.65 0.99 ± 0.10 1.00 ± 0.00 0.50 ± 0.50 1.00 ± 0.00
1.15 1.00 ± 0.00 1.00 ± 0.00 0.70 ± 0.46 1.00 ± 0.00
1.65 1.00 ± 0.00 1.00 ± 0.00 0.70 ± 0.46 1.00 ± 0.00
2.15 1.00 ± 0.00 1.00 ± 0.00 0.60 ± 0.49 1.00 ± 0.00

Table D.2.: Generalization results
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D.2. Lenia system

In Lenia , the system is composed of several communicating grids
𝐴 = {𝐴𝑐} which we call channels. In each of these grids, every cell/pixel
can take any value between 0 and 1. Cells at 0 are considered dead while
others are alive. The channels are updated in parallel according to their
own physics rule.

The update of a cell 𝑎𝑥,𝑐 at position 𝑥 in channel 𝑐 can be decomposed
in three steps. First the cell senses its neighborhood in some other
channels (its neighborhood in its channel, with cells of the same type
but also in other channels with other types of cells) through convolution
kernels which are filters 𝐾𝑘 of different shapes and sizes. Second, the
cell converts this sensing into an update (whether positive or negative
growth or neutral) through growth functions 𝐺𝑘 associated with the
kernels. Finally, the cell modifies its state by summing the scalars obtained
after the growth functions and adding it to its current state. After the
update of every rule has been applied, the state is clipped between 0
and 1. Each (kernel,growth function) couple is associated to the source
channel 𝑐𝑠 it senses, and to the target channel 𝑐𝑡 it updates. A couple
(kernel,growth function) characterizes a rule on how a type of cell 𝑐𝑡
reacts to its neighborhood of cells of type 𝑐𝑠 . Note that 𝑐𝑠 and 𝑐𝑡 could
be the same, which correspond to interaction of cells of the same type
(intra-channel). Note also that several rules, i. e. several (kernel,growth
function) couples, can govern the interaction between 𝑐𝑠 and 𝑐𝑡 .

A local update in the grid is summarized with the following formula
(where 𝐺𝑘 , 𝐾𝑘 , 𝑐𝑘𝑠 , 𝑐

𝑘
𝑡 are respectively the growth function,convolution

filter, source channel,target channel associated with the k’th rule):

𝑎𝑡+1
𝑥 = 𝑓 (𝑎𝑡𝑥 ,N(𝑎𝑡𝑥)) =

𝑎𝑡𝑥,𝑐0 +
∑
𝑘 st 𝑐𝑘𝑡 =0 𝐺

𝑘(𝐾𝑘(𝑎𝑡
𝑥,𝑐𝑘𝑠

,N𝑐𝑘𝑠 (𝑎
𝑡
𝑥)))

.

.

.

𝑎𝑡𝑥,𝑐𝐶 +
∑
𝑘 st 𝑐𝑘𝑡 =𝐶

𝐺𝑘(𝐾𝑘(𝑎𝑡
𝑥,𝑐𝑘𝑠

,N𝑐𝑘𝑠 (𝑎
𝑡
𝑥)))


For each rule, the shape of the (kernel, growth function) is parametrized.
We are thus able to “tune” the physics of the cells and of their interactions
by changing the kernels shape (how the cells perceive their neighborhood)
as well as the growth function shape (how the cells react to this perception).
For example, 𝑅 ∈ ℕ controls the maximum size of a kernel for all rules
(which is the maximum sensing distance) and each rules has a parameter
𝑟 ∈ [0, 1] giving the relative size of the kernel compared to 𝑅.

D.2.1. Differentiating through Lenia steps

Due to the locality and recurrence of the update rule, there is a close
relationship between cellular automata and recurrent convolutional
networks [35]. In fact, we can see a rollout in Lenia as applying a recurrent
neural network to an initial state. If (some of) the network parameters are
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Figure D.3.: Visualization of (left) the
convolution kernels used in the original
lenia papers [39, 40], (right) the kernel
we propose in this paper for more dif-
ferentiation capabilities. The kernel we
propose consists of a sum of free shifted
gaussian bumps, which differ from the
original fixed concentrated rings.

differentiable, backpropagation can be done by “unfolding” the Lenia
rollout and applying a loss at certain time step(s) like in [104].

However, in the classic version of Lenia, the shape of the kernels are not
totally differentiable and not very flexible. To allow easier optimization of
the Lenia system, we introduce some changes to the kernel parametriza-
tion. In fact in [39], the number of bumps in the kernel (see Figure D.3) is
given by the length of a list which can not be differentiated. One option
is to let the number of bumps fixed to an arbitrary value (3 for example).
However, with a 3 bumps kernels parametrization as in the original
paper, you can’t recover 2 bumps kernels by putting the height of a bump
to 0 (unless you allow to change the maximum sensing radius R which
seems unnatural). And thus fixing the number of bumps in the base
version restricts a lot the shape of the kernels compared to the original
paper where various number of bumps are used.

We therefore introduced a new class of CA with differentiable parameters.
To do so, the main shift is to use kernels in the form of a sum of k
overlapping gaussian bumps:

𝑥 →
𝑘∑
𝑖

𝑏𝑖𝑒𝑥𝑝(−
( 𝑥𝑟𝑅 − 𝑎𝑖)2

2𝑤2
𝑖

)

The parameters controlling the shape are 3𝑘-dimensional vectors: 𝑘
bumps of height 𝑏, size 𝑤 and center 𝑎.

These symmetric “free kernels”, while very inspired from Lenia’s original
“vanilla bumps”, allow differentiation and more flexibility and expressiv-
ity but at the cost of more parameters. In fact, for example an interesting
feature of those “free kernels” is that for a fixed k you can easily have the
free kernels with ≤ 𝑘 bumps by putting some heights of bumps close to
0 (And you can even have this happening through gradient descent).

In Lenia, a growth function 𝐺 : [0, 1] → [−1, 1] is any unimodal non-
monotonic function that satisfies 𝐺(𝜇) = 1. In this work, we use the
continuous exponential growth function 𝐺(𝑥) = 2 exp

(
− (𝑥−𝜇)

2

2𝜎2

)
− 1

which is differentiable with respect to 𝜇 and 𝜎.

To summarize, the parameters of the update rule are thus those controlling
the kernel shape (𝑅, 𝑟, 𝑎, 𝑤, 𝑏), those controlling the growth function
(𝜇, 𝜎, ℎ) and a time controlling parameter (𝑇). For a total of 𝑛 rules (all
channels included) with 𝑘 bumps kernels, the number of parameters is
(3𝑘 + 4)𝑛 + 2. In our experiments, R and T are chosen randomly and fixed
while all the other parameters are optimized, and we use a total of 𝑛 = 10
rules with 𝑘 = 3 bumps kernels . So in total we have 132 parameters for the
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rules from which 130 are optimized. In addition to the rule, parameters
we also optimize the initialization square 𝐼𝑠𝑞𝑢𝑎𝑟𝑒 ∈ [0, 1](40,40).

D.2.2. Obstacles

The multi-channel aspect of Lenia allows the implementation of different
types of cells/particles. To implement obstacles in Lenia we added a
separate “obstacle” channel with a kernel going from this channel to
the learnable “creature” channel. This kernel triggers a severe negative
growth in the pixels of the learnable channel where there are obstacles
but has no impact on other pixels where there are no obstacles (very
localized kernel). This way we prevent any growth in the pixels of the
learnable channel where there are obstacles. The formula of the growth
function is : 𝐺(𝑥) = −𝑐𝑙𝑖𝑝((𝑥− 1𝑒 − 8), 0, 1) ∗ 10. Hyperparameters of this
handmade rule can be found in Subsection D.2.3.

The learnable channel cells can only sense the obstacles through the
changes/deformations it implies on it or its neighbors. In fact, as the only
kernel that goes from the obstacle channel to the learnable channel is
the one we hand-designed, if a macro agent emerges it has to “touch”
the obstacle to sense it. More precisely the agent can only sense an
obstacle because its interaction with the obstacle will perturb its own
configuration and dynamics (i.e. its shape and the interaction between
the cells constituting it). This is similar to experiments with swarming
bacteria [504], where the swarm must learn to collectively avoid antibiotic
zones (externally-added obstacles) where the bacteria can’t live.

In our implementation, obstacles stay still meaning that there is no update
of the obstacle channel. To test the agents under moving obstacles, we
simply shift the channel of obstacles of a certain amount of pixel at every
timestep. This shift of the grid, for an integer value of speed, can be
written as a rule of the system from the obstacle channel to the obstacle
channel. The rule would be the same on all the grid and is localized as
it’s a function of the fixed neighborhood. Moving obstacles with a speed
with a rational value (for example 0.5 pixels/timesteps) is done in our
case by doing the shift every few timesteps.

D.2.3. Lenia rules parameters

Here is the list of the parameters associated to the rules of a Lenia system
with C channels, 𝑛𝑏𝑘 rules wiht kernels with k bumps. We also provide
the range used in this work for the learnable channel. In this work we used
C=2 channels (one learnable channel and the fixed channel), 𝑛𝑏𝑘 = 10
learnable rules and 1 fixed rule (for the obstacles).

▶ Common to all rules

• T ∈ [1, 10]
▶ Learnable rules

• Kernel (convolution filter) parameters:
* R ∈ [15, 40] Radius of the kernels (common to all kernels)
* r ∈ [0, 1]𝑛𝑏𝑘 relative radius of each kernel.
* b ∈ [0, 1]𝑛𝑏𝑘 ,𝑘 height of the k bumps.
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* w ∈ [0.01, 0.5]𝑛𝑏𝑘 ,𝑘 width of the k bumps.
* a ∈ [0, 1]𝑛𝑏𝑘 ,𝑘 position of the bumps on the radius.

• Growth function 𝐺(𝑥) = 2 exp
(
− (𝑥−𝜇)

2

2𝜎2

)
− 1 parameters

* 𝜇 ∈ [0.05, 0.5]𝑛𝑏𝑘 mean of the gaussian growth function.
* 𝜎 ∈ [0.001, 0.18]𝑛𝑏𝑘 variance of the gaussian growth func-

tion.
* h ∈ [0, 1]𝑛𝑏𝑘

• 𝑐0 = [0] × 𝑛𝑏𝑘 source channel (0 is learnable channel)
• 𝑐1 = [0] × 𝑛𝑏𝑘 destination channel

▶ Fixed rule

• Kernel parameters:
* R = 4 small radius for very localized action
* r = [1,1,1]
* b = [1,0,0]
* w = [0.5,1,1]
* a = [0,0,0]

• Growth function 𝐺(𝑥) = −𝑐𝑙𝑖𝑝((𝑥 − 1𝑒 − 8), 0, 1) ∗ 10
• 𝑐0 = 1 source channel (1 is fixed channel)
• 𝑐1 = 0 destination channel

D.2.4. Lenia rule parameters mutations

▶ Common to all rules

• T : N(0, 0.1) ×B(0.01) (mutation then integer)

▶ Learnable rules

• Kernel (convolution filter) parameters:
* R N(0, 0.1) ×B(0.01) (mutation then integer)
* r :N(0𝑛𝑏𝑘 , 0.2 ×I𝑛𝑏𝑘 )
* b : N(03𝑛𝑏𝑘 , 0.2 ×I3𝑛𝑏𝑘 )
* w :N(03𝑛𝑏𝑘 , 0.2 ×I3𝑛𝑏𝑘 )
* a : N(03𝑛𝑏𝑘 , 0.2 ×I3𝑛𝑏𝑘 )

• Growth function 𝐺(𝑥) = 2 exp
(
− (𝑥−𝜇)

2

2𝜎2

)
− 1 parameters

* 𝜇 : N(0𝑛𝑏𝑘 , 0.2 ×I𝑛𝑏𝑘 ) ×B(0.1)
* 𝜎: N(0𝑛𝑏𝑘 , 0.01 ×I𝑛𝑏𝑘 ) ×B(0.1)
* h N(0𝑛𝑏𝑘 , 0.2 ×I𝑛𝑏𝑘 ) ×B(0.1)

D.3. IMGEP details

In this section, we first recall the basics of the IMGEP procedure and then
go into the details of each element of the method.

Our method described in the Algorithm. 6 starts by initializing a pool of
(parameters, reached position) couples by random search, this constitutes
the initial state of the history H(details in Subsection D.3.1). Then, at each
iteration, the method iterates through the following steps (illustrated
in Figure D.4). 1) Sample a new goal using a goal sampling strategy
which takes into account the previously reached positions (details in



D. Appendix of Sensorimotor Lenia 229

History 

 

Observation Space 

Goal space 

System RolloutInitialization: 

Square    

 
Update rule Parameters :

R,r                                            
m,s                                            Gradient Descent

toward goal 

1) Sample a goal 

2) Select parameter

3) Iterate :
Perform experiment
Gradient descent

Perform experiment

...

h
(b,w,rk)

Parameter Space 

4) Look the
attained goal

And add to history

Figure D.4.: IMGEP loop

Algorithm 6: IMGEP pseudo code
Initialization :history Hand models T,Π,Optim, 𝑅
for i=1 to N do

Generate a target goal 𝜏𝑖 ∼ T(H) ; // use of curriculum
learning and diversity search

Train parameters on target goal 𝜃∗
𝑖
= Optim(𝜃𝑖 |𝜏𝑖), where

𝜃𝑖 ∼ Π(H|𝜏𝑖) ; // use of gradient descent and
stochasticity handling

Evaluate parameters 𝑥𝑖 ∼ 𝑅(𝜃∗𝑖 ) ; // behavioral

characterization
Store in history H← H∪ (𝜃∗

𝑖
, 𝑥𝑖) ; // reuse knowledge for

task sampling and training

return H

Subsection D.3.4). An example of the sampling distribution can be found
in green in Figure 7.5.a. 2) Infer starting parameters for that goal
by selecting parameters {(𝜃𝑙 , 𝐴𝑡=1

𝑙
)𝑖}𝑖=1...𝑡−1 associated to a previously

reached position in history H that is close to the sampled goal (details
in Subsection D.3.8). 3) Optimize parameters toward the sampled goal
by iteratively performing rollouts of the Lenia system under different
environmental conditions 𝐴 𝑓 and applying stochastic gradient descent
on the MSE loss between the disk at goal position and the mass of the
learnable channel at the last timestep (details in Subsection D.3.6). 4)
Update history Hwith the newly obtained parameter point and test it
in various environmental conditions 𝐴 𝑓 to estimate its reached position
(details in Subsection D.3.7), such that it can be later reused as a starting
point for achieving other sampled goals.

As described in the main text, the behavioral space is the position (x,y)
of the center of mass at the last timestep of the rollout. The loss we use
is the Mean square error loss between the learnable channel at the last
timesteps of the rollout and the same grid with a superposition of 2 disk
centered at the goal position in the first channel. The target disk has this
formula: 0.9𝑥(0.15𝑥(𝑅𝑔 < 10)+0.85𝑥(𝑅𝑔 < 5))where 𝑅𝑔 is the euclidian
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distance to the goal position.

To introduce more diversity in the search (and potentially getting out of
difficult optimization landscape), some steps of IMGEP add mutation
to the promising parameters before applying the optimization through
gradient descent. More details can be found in Subsection D.3.5.

Note that we also introduce an automatic way for the method to restart
again from scratch in case of not good enough first steps (not present in
Algorithm. 6). We refer to Subsection D.3.3 for a detailed description of
this restarting mechanism.

The following sections provide additional details about different parts of
the method.

D.3.1. Intialization of history

The IMGEP method first applies an initialization of history H through
random search to bootstrap the whole IMGEP procedure.

In this work, the initialization of history consist of 40 trials of random
parameters. The range used for this random search are the one presented
in Subsection D.2.3 except that we divide the strength of the kernels
parameters h by 3. This change is done in order to have weaker/slower up-
dates increasing the chance to have a pattern not exploding or vanishing
in 50 timesteps, in order to facilitate further optimization.

This dividing of h by 3 is only to make things go faster (requiring less
trials for the initialization of history) but should not be mandatory as
random search without this should also get interesting parameters for
initialization (although might take more trials).

D.3.2. Warming up goal sampling

To accelerate the curriculum, we start the first 8 steps of the IMGEP with
a deterministic goal sampling which tries to go as far as possible on the x
axis. The goal position starts at position (-0.19,0) and is shifted of +0.06
along the x axis for every of those deterministic steps. The rest of the goal
sampling is stochastic as described in Subsection D.3.4.

D.3.3. Initialization selection

History initialization and the first IMGEP steps have a huge impact on the
performance of the method, as it will provide the basis for all subsequent
optimization. History initialization and the warm up of goal sampling
have a huge impact on the performance of the method, as it will provide
the basis for all subsequent optimization.

To mitigate this problem, we also apply initialization selection with
the objective of facilitating further optimization. We run the first steps
of the method (random initialization and few steps of optimization),
and observe the loss for the 3 first deterministic targets (described in
Subsection D.3.2). If this loss is above a certain threshold for one of the
3 step, we start over again getting rid of the initialization history and



D. Appendix of Sensorimotor Lenia 231

initializing it again with random search. We perform this until we find a
“good” initialization that is below the threshold for the 3 steps.

D.3.4. Goal sampling

The goal sampling we chose in this work intends to sample goals ((x,y)
positions) that should be most of the time further in the grid (for harder
goals), not too far from previously reached positions (for feasibility
of the goal) and also not too close from previously achieved goals (to
make progress) . From those heuristic we introduce our engineered goal
sampling strategy in pseudo code Algorithm. 7. The objective of this
engineered sampling is to accelerate the search but much simpler ones
could work if given enough computational budget.

Algorithm 7: Goal Sampling Strategy
Input :history H

while nb_close < 1 or nb_veryclose > 2 do
if 𝑟𝑎𝑛𝑑 ∼ U(0, 1) < 0.2 then

goal = bestgoal(H) +
(U(0, 1) × 0.04 + 0.02, (U(0, 1) × 0.45 − 0.22)/4) ; // Try a

location slightly further than the previous best

else
if rand ∼ U(0, 1) < 0.7 then

goal = (−U(0, 1) × 0.2 + 0.35,−U(0, 1) × 0.45 − 0.22)
else

goal = (−U(0, 1) × 0.35 + 0.35,−U(0, 1) × 0.45 − 0.22)
nb_close, nb_veryclose = calc_distances(goal, H)

return goal

D.3.5. Mutation

We apply mutations on candidates parameters in order to increase
diversity. Some mutations can facilitate optimization while others can
lead to undesirable configurations impairing it. For this reason, we apply
less gradient steps on those mutated parameters. See Subsection D.3.9
for the hyperparameters in this work.

In addition, we generate mutations of a parameter configuration until it
results in a pattern not collapsing after 50 timesteps. For this (approxi-
mate) collapsing measure, we use a simple soft filter checking if the total
mass in the learnable channel at the last timestep is >10 ( to test for death
of matter) and if the mean square error between the learnable channel
at the last timestep and the disk defined in Section D.3 centered on the
center of mass of the learnable channel is < 25 (as a proxy for explosion
of the mass, more details in Subsection D.3.7). This loop of mutations is
counted in the total number of rollout performed by the IMGEP.

We refer to Subsection D.2.4 for the mutation (distribution, mean, vari-
ance) applied to each parameters in the method.
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D.3.6. Gradient descent

Differentiating through Lenia can be difficult because the gradient must
backpropagate through several steps (which moreover have their result
clipped between 0 and 1) without vanishing. We should thus limit
ourselves to a few iterations when training: in our experiments the loss
is applied after 50 steps in Lenia.

Obtaining gradients that are informative for optimization requires an
overlapping between the mass in the learnable channel and the disk
centered at the goal position. The curriculum we introduce in the goal
sampling procedure facilitates this overlap by generating goals that
neither too far nor too close from the initial pattern at t=0 and from
previously reached goal.

D.3.7. Parameter evaluation

We perform an evaluation of the parameters after each IMGEP step
(sampling of goal and optimization of parameters). This evaluation
consists of running 20 rollouts of 50 timesteps (the same rollout length as
in the optimization rollout) with different random obstacle configurations
and measures the average reached position over those rollouts.

For each rollout, we also compute the mean square error between the
learnable channel at the last timestep and the disk shape centered on the
center of mass of the learnable channel at last timestep. We then take
the average value over the rollouts. This is used as a proxy “collapsing
measure” (explosion or death of the pattern) to apply a soft filter when
selecting promising initialization parameter for a new goal as explained
in Subsection D.3.8.

The parameters (𝐴𝑙 , 𝜃𝑙), the measured reached position (𝑟𝑥 , 𝑟𝑦) and
collapsing proxy measure 𝑐 are then stored in the history H.

D.3.8. Reusing history H for a new goal

Once a goal is selected, we compute the L2 distance between all vectors
(𝑐, 𝑟𝑥 , 𝑟𝑦) of the history and (𝑐𝑔𝑜𝑎𝑙 , 𝑔𝑥 , 𝑔𝑦), where 𝑔𝑥 and 𝑔𝑦 are the (x,y)
coordinate of the goal and 𝑐𝑔𝑜𝑎𝑙 is a constant equal to 0.065 in this work.
These L2 distances are used to select a point in the history reaching a
position close to the goal while mitigating the risk of collapsing.

In addition to these L2 distances for the selection of potential candidates
for a new goal, we also filter out the points in the history having 𝑐 > 0.11
allowing to remove the potential collapsing ones even though they might
be close to the goal, as collapsing parameters are hard to recover from
through gradient descent.

The candidate parameter for a goal is therefore the point in the history
which has 𝑐 <= 0.11 and which minimize the L2 distance to the goal.
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D.3.9. IMGEP search hyperparameters

▶ Number of IMGEP steps : 120
▶ History initialization : 40 trials of random parameters.
▶ In 4 out of 5 IMGEP step, we mutate the candidate parameter

before gradient descent.
▶ Number of gradient steps : 125 when no mutation beforehand (1

out of 5 IMGEP steps) , 15 when mutation beforehand.
▶ Rollout length : 50 timesteps
▶ Grid size : 256x256
▶ Number of obstacle during the search: 8
▶ Initialization position on the 256x256 grid: [36:76,105:145]

D.4. Battery of Empirical Tests

Note that the tests we provide are proxy measure of agency/stability, and
so what we present here are what we consider in this paper as agency. It
is for example impossible to test for infinite time stability in finite time
budget. Our stability tests are based on previous work on Lenia [•1].

D.4.1. Empirical agency test

For the agency test, we first apply a prefilter to the obtained parameters
by running a rollout of 500 steps with the obtained parameters. From
this rollout, we measure if the mass at the last timestep was strictly above
0 (not dead) and below 6400 (explosion). The number are arbitrary and
relatively “loose” so that we reject nearly no “false positive”. This prefilter
allows to throw out obvious non interesting parameters to reduce the
computational cost of testing all obtained parameters – especially for the
random search method where many of them are not interesting.

We then do rollout of 2000 timesteps for the empirical agency and moving
test. The rollout is long (especially relative to the 50 timesteps of the
search) in order to probe for long term stability. We compute some stats,
from the rollout observations, which are used for the empirical agency
test (and moving test) of the parameters inspired by [•1].

The empirical agency test consist of :

▶ Measuring if the mass of the learnable channel is > 0 and <6400
(∼10% of the map) at the last timestep of the rollout as those
correspond to collapse and explosion.

▶ Measuring if the average mass is augmenting or decreasing too
much between 2 windows of the rollout. This is a proxy measure
for long term instability meaning that a big loss or increase of mass
between the 2 windows is most of the time an indicator for long
term instability. In this work, we measure the ratio between the
average mass during the 0 to 500 window and 1500 to 2000 window.
If this ratio is greater than 2, the parameters do not pass the test.
The windows are relatively large to still allow for variation of mass
during a rollout and the formation of a pattern in the first window.
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▶ We also want the emerging pattern to be a spatially localized Soliton
(ie pattern forming a single entity not expanding indefinitely, with
a bounded radius). To measure this, we perform a connectivity
analysis of the pattern depending on the kernel radius, rejecting
patterns where two distinct blobs of mass cannot influence each
other (distance between blobs ≥ 𝑅 ∗ 𝑚𝑎𝑥(𝑟)).

D.4.2. Moving test

To test if a pattern passing the empirical agency test is moving, we
measure if the center of masse of the learnable channel moved further
than 100 pixels from the initialization position at any point during the
1000 first steps of the rollout.

D.4.3. Speed measure

To measure speed of agents, we use the 2000 timesteps rollout computed
in the filter phase and track the average distance travelled by the center of
mass of the agent on sliding overlapping windows of size 25 starting from
timestep 150 to timestep 2000. The result is divided by 25 (the size of the
sliding window) in order to have a per timestep average distance travelled.
We use a sliding window to filter slight back and forth movement of the
center of mass (which can even be due to self organization without clear
“movement” of the whole). Note that we compute the speed only for
agents passing the filters above.

The same is done to measure speed with obstacles but we average on the
50 rollouts with random obstacles computed in the robustness test. The
only small modification is that if an agent does not pass the survival tests
above on the rollout (for example its mass reaches 0 ), we set the speed
for this rollout to 0.

D.4.4. Basic obstacles tests

We then test the parameters leading to moving agents by performing 50
rollouts of 2000 timesteps where obstacles are the same as in training i.e.
obstacles of radius 10. We place 24 obstacles in the whole grid (compared
to only the right part of the grid in training), from which 23 are randomly
placed and one being in the trajectory of the moving agent to be sure
that it will encounter at least one obstacle in the rollout. To do this we
look at the achieved position of the moving agent without obstacle at
timestep 1000 and put an obstacle here in the test for every rollout. We
also remove any obstacle pixel in the initialization area (pixel of the
learnable channel >0 at the initialization) as well as in a radius of 10
pixels (euclidian distance) of the initialization (to let some space for the
initialization to develop).

To get the robustness measure we then measure the fraction of rollout
where the pattern pass the empirical agency test.
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D.4.5. Generalization tests

Here is a full description of each of the generalization test conducted
in the Generalization section in the main text. For all the quantitative
generalization tests, we used the same robustness test as above except
that we do it on 10 random trials instead of 50: we run rollout of 2000
timesteps, then measure if it fulfills the empirical agency test. The measure
of robustness is again measured by the proportion of trials where the
agent pass the empirical agency test (between 0 and 1).

The resulting robustness obtained for the agents discovered by the IMGEP,
random and handmade search variants is given in Table D.2.

▶ Initialization noise. In this experiment, we add a centered gaussian
noise to the pixel of the initialization square 𝐴1. In the first test
“init noise rate” we vary the proportion of pixels affected by this
gaussian noise, testing proportions [0.2,0.4,0.6,0.8,1.], and keep the
variance fixed to 1. In the “init noise std” test, we apply the noise to
all pixels of the initialization but vary the variance of the gaussian
in [0.5,1.5,2.5,3.5,4.5].

▶ Obstacles In all of these test we also remove obstacles pixel from
the initialization square and in a radius of 10 pixels (euclidian
distance) around it.

• Obstacle radius In this test, we vary the radius of the obstacles
in [4,7,10,13,16]. The number of obstacles varies according to
the radius of obstacles to keep the same ratio of obstacle pixels
with the default one which is 24 obstacles of radius 10. The
formula is Number obstacles = 24 × (10/𝑣𝑎𝑟)2.

• Obstacles number In this test, we vary the obstacle number
keeping the radius fixed to the default one (radius=10). We
try obstacle number= [24, 30,36,42 ,48] .

• Obstacle speed. In this test, we change the dynamic of the
obstacle channel so that obstacle move at a certain speed as
detailed in Subsection D.2.2. For a speed of 1, the obstacle
channel is shifted of 1 on the left at every timestep, for a speed
of 0.5, the obstacle channel is shifted of 1 every 2 timesteps.
We tested obstacle speed of [1/3,1/2,1,2,3]. In this test we put
24 obstacles of radius 10.

▶ Scale In this test, we vary the scale of agents by changing their
kernel size multiplying the parameter 𝑅 of the simulation by
the factor. A smaller (resp bigger) size of kernel means that the
convolution will cover a smaller (resp bigger) neighborhood. We
also change the initialization size by a factor 𝛼 to match the scale.
To do this, we use a downscaling (or upscaling) of the initialization
40 × 40 square with bilinear interpolation. We test both smaller
sizes : 0.15,0.65 , as well as bigger sizes: 1.15,1.65,2.15.

▶ Update. In this tests, we perturb the update (what is added to the
current state) from step 0 until step 1900. We let the step from 1900
to 2000 free of update perturbation to allow the rule to recover
until step 2000 for the statistics computation.

• Update mask In this test, for a value of update mask p<1, every
pixel has a probability p of being updated while the rest of
the pixels will keep the same value. This does not apply to the
update applied by the obstacles. For a value 1<p<2, each pixel
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is updated one time using the update rule normally (sensing
and add of growth) giving a new state and then each pixel is
updated again from this new state with a 𝑝 − 1 probability
(the sensing on the potential second random update is done
by sensing the new state). We test the update mask rate in
[0.2,0.6,1.,1.4,1.8].

• update noise std In this test, we add noise to the update of
the learnable channel before the clipping as such :

𝐴𝑡+1
𝑙

= 𝐴𝑡
𝑙
+ 1
𝑇

(
𝐺(𝐾 ∗ 𝐴𝑡) +N(0256×256 , 𝜎𝕀256×256)

)
where N(𝜇,Σ) is a gaussian vector of mean 𝜇 and variance Σ.
We vary 𝜎 in [0.5, 1.5, 2.5, 3.5, 4.5]

• Update noise rate. We add noise to the update of the learnable
channel before clipping. Every pixel has a probability 𝑝 ∈
[0.2, 0.4, 0.6, 0.8, 1.] to have a gaussian noise of mean 0 and
variance 1.

▶ Morphological computation (Hand damage). In this test, we allow
an exterior experimenter to pause the simulation and put pixels
of the learnable channel to 0. After the damage, we then let the
simulation unroll as usual starting from the damaged state.

▶ Interactions (Multi agents setting). We allow to put several initial-
ization square in the learnable channel. As the update rule apply to
all the grid the same way, if a couple (initialization square, update
rule) already led to a an agent in the case of a single initialization
square then several of them that are not interfering ( further enough
so that the convolution of a pixel of one does not contains pixels of
the other) will lead to several agents.

▶ Custom obstacles. We allow an experimenter to freely draw obsta-
cle in the grid. This allows to have obstacles with shapes not seen
during training.

▶ Custom init states In this test, we replace the initialization of
the pattern (that was optimized) by simple arbitrary shape such
as disk with a gradient (the gradient being to have an asym-
metry for movement), disk of large size etc. The web demo at
http://developmentalsystems.org/sensorimotor-lenia-companion
also allows to load any image as initialization of the system.

▶ External control This experiment consists in adding a new channel
(a new type of cell) to the system which we want to act as an
attractive element. We conducted a semi handmade search in order
to search for a rule, sensing in the attractive channel and updating
the learnable channel, leading to this attractive behavior.
Note that this attractive element should attract but not disturb too
much the matter as we don’t want the attractive matter to be able
to destroy the agent dynamics.
In fact, we first searched for a rule tuned for one agent found
with the IMGEP search (ie one parameter point (𝐴𝑙 , 𝜃𝑙)). By doing
so, the rule is adapted to the dynamic of this specific agent (for
example different agents might have different range for pixel value
or growth etc).
The search for a rule (tuned for a specific agent) is semi handmade.
We first preselect some rule parameters from a set of random rules.
The preselection is done by moving a circle of attractive mass along

http://developmentalsystems.org/sensorimotor-lenia-companion
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a predefined straight trajectory in an environment with a moving
agent. We then look if the attractive mass and the agent overlaps
at the last timestep which should mean that the agent followed
this attractive mass. An experimenter then select by hand the rules
that lead to attraction of mass without too much perturbation by
controlling the mass of attractive matter in a real time simulation
with the moving agent.
After searching for a rule for a specific agent, we then tested it
on some other moving agents obtained with IMGEP. Some agents
(some parameters (𝐴 𝑓 , 𝜃 𝑓 )) are more prone to work with it (meaning
attraction while not affecting the stability too much) while it destroy
the stability of others. The reported qualitative results on this test
are performed on agents where the rule leads to stable attraction.

D.5. Comparison baselines

D.5.1. Random search details

We use uniform sampling of parameters with the ranges given in Sub-
section D.2.3. The initialization 40x40 square is randomly sampled with
each of the pixel constituting it being independently sampled following
a uniform distribution between 0 and 1.

D.5.2. “Handmade” agents (from original Lenia paper)

The parameters from this dataset are the one from the original Lenia
paper [39, 40], which are accessible on this and this links. Contrary to the
rest of the paper we use the classic parametrization of Lenia for the agent
channel. We filter out the discoveries that have more than one channel
or an initialization that has a side bigger than 256. We then apply the
pre-filter and filter as explained in Subsection D.4.1.

https://github.com/Chakazul/Lenia/tree/master/Python/found
https://github.com/Chakazul/Lenia/blob/master/Python/old/animals.json
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E.1. Model

Let L be the support of a CA, which is the two-dimensional grid ℤ2

in the rest of this work. Let 𝐴𝑡 : L→ 𝑆𝐶 be CA’s activations at time 𝑡,
with 𝐴𝑡

𝑖
(𝑥) the activation in location 𝑥 ∈ L, channel 𝑖 and time 𝑡. 𝐶 is

the number of channels of the system ans 𝑆 is the state space (the set of
states a cell can take in each channel).

E.1.1. Lenia

The state space 𝑆 in Lenia is the unit range [0, 1]. An instance of Lenia is
defined by a tuple < 𝐾, 𝐺, 𝐴0 > where 𝐾 is a set of convolution kernels
where 𝐾𝑖 : L → [0, 1] satisfies

∫
L
𝐾𝑖 = 1 and 𝐺 is a set of growth

functions with 𝐺𝑖 : [0, 1] → [−1, 1]. Each pair (𝐾𝑖 , 𝐺𝑖) is associated
to a source channel 𝑐 𝑖0 it senses and a target channel 𝑐 𝑖1 it updates.
Connectivity can be represented through a square adjacency matrix

𝑀𝐶,𝐶 =


𝑚11 · · · 𝑚1𝐶
...

. . .
...

𝑚𝐶1 · · · 𝑚𝐶𝐶

 where 𝑚𝑖 𝑗 ∈ ℕ is the number of kernels

sensing channel 𝑖 and updating channel 𝑗. 𝐴0 is the initial state of the
system. As in Hamon et al. [•5], kernels are radially symmetrical and
defined as a sum of concentric Gaussian bumps :

𝐾𝑖(𝑥) =
𝑘∑
𝑗=1

𝑏𝑖 , 𝑗 𝑒𝑥𝑝

(
−
( 𝑥𝑟𝑖𝑅 − 𝑎𝑖 , 𝑗)

2

2𝑤2
𝑖 , 𝑗

)
(E.1)

Where 𝑎𝑖 , 𝑏𝑖 , 𝑤𝑖 and 𝑟𝑖 are parameters defining kernel 𝑖. 𝑘 is a parameter
defining the number of rings per kernel (set to 3 here) and𝑅 is a parameter
common to all kernels defining the maximum neighborhood radius. Each

https://sites.google.com/view/flowlenia/
https://colab.research.google.com/drive/1l-Og8xRlc5ew0489swuud0Me7Sc5bCss?usp=sharing
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kernel is then defined by 3 × 𝑘 + 1 parameters. Growth functions are
defined as Gaussian function scaled in the range [−1, 1]:

𝐺𝑖(𝑥) = 2 𝑒𝑥𝑝

(
−
(𝜇𝑖 − 𝑥)2

2𝜎2
𝑖

)
− 1 (E.2)

Where 𝜇𝑖 and 𝜎𝑖 are parameters of growth function 𝑖 so each growth
function is defined by 2 parameters. A step in Lenia is defined by the
following steps:

1. Compute the growth at time 𝑡 given the actual state 𝐴𝑡 :

𝑈 𝑡
𝑗 =

|𝐾 |∑
𝑖=1

ℎ𝑖 · 𝐺𝑖(𝐾𝑖 ∗ 𝐴𝑡𝑐 𝑖0
) · [𝑐 𝑖1 = 𝑗] (E.3)

Where ℎ ∈ ℝ|𝐾 | is a vector weighting the importance of each pair
(𝐾𝑖 , 𝐺𝑖) and [𝑐 𝑖1 = 𝑗] is the Iverson bracket which equals 1 if 𝑐 𝑖1 = 𝑗

and 0 otherwise (i. e. equals 1 if the ith pair updates channel 𝑗).
2. Add a small portion of the growth𝑈 𝑡 to the actual state 𝐴𝑡 to get

the state at the next time step and clip results back to the unit range:

𝐴𝑡+𝑑𝑡𝑖 = [𝐴𝑡𝑖 + 𝑑𝑡 𝑈
𝑡
𝑖 ]

1
0 (E.4)

E.1.2. Flow Lenia

Flow Lenia is a mass-conservative extension to Lenia. By mass-conservative,
we mean that the sum of activations across all cells and for each channel
is constant over time :∑

𝑥∈L
𝐴𝑡𝑐 =

∑
𝑥∈L

𝐴𝑡+𝑑𝑡𝑐 ,∀𝑡 ,∀𝑐 ∈ {1, ..., 𝐶}

We propose for this system to interpret activations as concentrations of
“matter” in all cells and to refer to the term 𝑈 𝑡 , previously called the
growth in Lenia, as an affinity map. The idea is that the matter will move
towards higher affinity regions by following the local gradient of the
affinity map𝑈 , ∇𝑈 : L→ ℝ2. To do so, we define a flow 𝐹 : L→ (ℝ2)𝐶 ,
which can be interpreted as the instantaneous speed of matter, as:{

𝐹𝑡
𝑖
= (1 − 𝛼𝑡)∇𝑈 𝑡

𝑖
− 𝛼𝑡∇𝐴𝑡

Σ

𝛼𝑡(𝑝) = [(𝐴𝑡
Σ
(𝑝)/𝜃𝐴)𝑛]10

(E.5)

With𝐴𝑡
Σ
(𝑝) = ∑𝐶

𝑖=1 𝐴
𝑡
𝑖
(𝑝) the total mass in each location 𝑝. Here∇𝑈 𝑡

𝑖
is the

affinity gradient for channel 𝑖. The negative concentration gradient−∇𝐴𝑡
Σ

is a diffusion term to avoid concentrating all the matter in very small
regions akin to the clipping in Lenia which upper bounds concentrations.
In practice, gradients are estimated through Sobel filtering. Map 𝛼 : L→
[0, 1] is used to weight the importance of each term such that −∇𝐴𝑡

Σ

dominates when the total mass at a given location is close to a critical
mass 𝜃𝐴 ∈ ℝ>0. Intuitively, the result is that matter is mainly driven
by concentration gradients in high concentrations regions and is more
free to move along the affinity gradient in less concentrated areas. We
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typically use 𝑛 > 1 such that the affinity gradient dominates on a larger
range of masses.

Figure E.2.: Calculation of incoming mat-
ter to cell 𝑝 ∈ L through reintegra-
tion tracking [195]. Mass contained in
cell at location 𝑝′ ∈ L is moved to
a square distribution D centered on
𝑝′′ = 𝑝′ + 𝑑𝑡 · 𝐹𝑡 (𝑝′). The proportion
of mass from 𝑝′ arriving in 𝑝 is given by
the integral of D on the cell domain of
𝑝, Ω(𝑝), denoted as 𝐼(𝑝′, 𝑝).

Then, we can move matter in space according to flow 𝐹 giving us the state
at the next time step. To do so we use the reintegration tracking method
proposed in Moroz [195]. Reintegration tracking is a semi-Lagrangian
grid based algorithm thought as a reformulation of particle tracking
in screen space (i. e. grid space) aimed at not losing information (i. e.
particles) which happens when two particles end up in the same cell.
Figure E.2 illustrates how reintegration tracking is used in our case. The
resulting update rule is the following :

𝐴𝑡+𝑑𝑡𝑖 (𝑝) =
∑
𝑝′∈L

𝐴𝑡𝑖 (𝑝
′)𝐼𝑖(𝑝′, 𝑝) (E.6)

Where 𝐼𝑖(𝑝′, 𝑝) is the proportion of incoming matter in channel 𝑖 going
from cell 𝑝′ ∈ L to cell 𝑝 ∈ L:

𝐼𝑖(𝑝′, 𝑝) =
∫
Ω(𝑝)

D(𝑝′′𝑖 , 𝑠) (E.7)

With 𝑝′′
𝑖
= 𝑝′ + 𝑑𝑡 · 𝐹𝑡

𝑖
(𝑝′) the target location of the flow from 𝑝′. Ω(𝑝)

is the domain of cell at location 𝑝, which is a square of side 1. D(𝑚, 𝑠)
is a distribution defined on Lwith mean 𝑚 and variance 𝑠 satisfying∫
L
D(𝑚, 𝑠) = 1, which is in practice a uniform square distribution with

side length 2𝑠 centered at𝑚. This distribution emulates a flow of particles
from source area Ω(𝑝′) to target area D(𝑝′′, 𝑠), where the distribution D

emulates Brownian motion at the low level. 𝑠 is an hyperparameter of
the system which can be seen as form of temperature. The reintegration
tracking method is depicted in Fig. E.2. Since the distribution D integrates
to 1, a cell cannot send out more mass than it contains nor less and so
the system conserves its total mass. Mass conservation also implies that
cells’ states are no longer bound to the unit range but can be any positive
real valued number (𝑆 ≡ ℝ𝐶

≥0). This model has been implemented in JAX
[198] allowing fast simulation on GPU (255𝜇𝑠 ± 3.11𝜇𝑠 per step on Tesla
T4 GPU with 1 channel, 10 kernels and 128 × 128 world size).

E.1.3. Parameters Localization

Flow Lenia allows to embed the update rule parameters inside the CA.
Intuitively, we can “attach” a vector of parameters to the matter locally
modifying how it behaves (i. e. locally modifying how the affinity map
is computed), and let it flow with it. Formally, this comes to defining
a parameter map 𝑃 : L→ Θ where Θ is a given parameter set. This
map can be used to locally modify the update rule. For instance, we can
embed the ℎ ∈ ℝ|𝐾 |·|𝐾 | matrix weighting the importance of each kernel
in the affinity map computation (see equation E.3), giving :

𝑈 𝑡
𝑗 (𝑝) =

∑
𝑖 ,𝑘

𝑃𝑡
𝑘
(𝑝) · 𝐺𝑘(𝐾𝑘 ∗ 𝐴𝑡𝑖 )(𝑝) (E.8)

Then parameters can be moved along with matter. A question is how to
mix parameters arriving in the same cell. Here we propose two different
methods which are respectively average and softmax sampling. The former
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makes a weighted average of incoming parameters with respect to the
quantities of incoming matter and is formally defined as :

𝑃𝑡+𝑑𝑡(𝑝) =
∑
𝑝′∈L𝐴

𝑡(𝑝′)𝐼(𝑝′, 𝑝)𝑃𝑡(𝑝′)∑
𝑝′∈L𝐴𝑡(𝑝′)𝐼(𝑝′, 𝑝)

(E.9)

Softmax sampling on the other hand samples a parameter in the set of
incoming ones following the softmax distribution given by incoming
quantities of matter :

ℙ[𝑃𝑡+𝑑𝑡(𝑝) = 𝑃𝑡(𝑥)] = exp(𝐴𝑡(𝑥)𝐼(𝑥, 𝑝))∑
𝑝′∈L exp(𝐴𝑡(𝑝′)𝐼(𝑝′, 𝑝)) (E.10)

Intuitively, the more represented set of parameters has a greater probabil-
ity of being selected in the cell, like simulating in one step a competition
between different parameters in the cell. Note that we could also sample
each element of the vector of parameters independently giving some
crossover mechanism. We can also add mutations in the simulation.
For instance, we can, at a given rate, modify parameters in a randomly
sampled zone by adding Gaussian noise to the parameter map.

E.1.4. Physical resources in the Environment

While parameter embedding could lead to the emergence of intrinsic
evolutionary processes where parameters would compete for available
matter, we can also add intrinsic selective pressures in the form of
environmental constraints in the environment.

temperature What we call “temperature” in Figure 7.12a is the size of
the reintegration tracking distribution 𝑠 (see equation E.7). We can vary
it locally to obtain varying effects of temperature in the same grid.

Food The idea is to add food resources that creatures would need
to collect in order to replenish their own constantly decaying pool of
resources. To do so, we let matter decay at a fixed rate 𝜌𝑑𝑒𝑐𝑎𝑦 , and create
a food map Ψ : L→ ℝ≥0. When matter is in a cell where there is also
food, then food is transformed into matter at a given rate 𝜌𝑑𝑖𝑔𝑒𝑠𝑡 giving
the following update.{

𝐴𝑡+𝑑𝑡(𝑥) = · · · + [𝐴𝑡(𝑥)𝜌𝑑𝑖𝑔𝑒𝑠𝑡]Ψ
𝑡 (𝑥)

0 − 𝐴𝑡(𝑥)𝜌𝑑𝑒𝑐𝑎𝑦
Ψ𝑡+𝑑𝑡(𝑥) = Ψ𝑡(𝑥) − [𝐴𝑡(𝑥)𝜌𝑑𝑖𝑔𝑒𝑠𝑡]Ψ

𝑡 (𝑥)
0

(E.11)

Where · · · refers to the update equation E.6 and [·]𝑏𝑎 is the clip function
between 𝑎 and 𝑏. We enable creatures to sense food by adding kernels
and growth function from the food map Ψ to creatures’ channels 𝐴.
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E.2. Results

E.2.1. Random search

Random search is performed in the Flow Lenia parameter and hyperpa-
rameter space described in Table E.1. Initial patterns 𝐴0 are set with a
40 × 40 patch with matter drawn from uniform distribution in the center
of the grid and no matter everywhere else.

Neighborhood Growth functions
𝑅 ∈ [2, 25] 𝜇 ∈ [0.05, 0.5] *
𝑟 ∈ [0.2, 1] * 𝜎 ∈ [0.001, 0.2] *

Kernels Flow
ℎ ∈ [0, 1] * 𝑠 0.65
𝑎 ∈ [0, 1]3 * 𝑛 2
𝑏 ∈ [0, 1]3 * 𝑑𝑡 0.2
𝑤 ∈ [0.01, 0.5]3 *

Table E.1.: Flow Lenia explored param-
eter space. Parameters marked with a *
must be sampled for each kernel-growth
function pair.

E.2.2. Optimizing Flow Lenia creatures

Figure E.3.: Results of evolutionary op-
timization. C is the number of channels
of the system and 𝑘 is the number of
kernels and growth functions. When per-
forming the exact same optimization for
directed motion in the original Lenia sys-
tem (yellow curve), not only optimization
is unstable but it only discovers explod-
ing patterns.

Using evolutionary strategies [283] to optimize the update rule parame-
ters and the initial configuration (𝐴0) with respect to user-defined fitness
functions, we have been able to successfully find good solutions for 4
different tasks : directed motion, angular motion, navigation through
obstacles and chemotaxis.

We used evosax [505] implementation of the OpenES strategy with
population size of 16 and adam optimizer [484] with 0.01 as learning rate.
We optimized the Flow Lenia update rule with different number of kernels
and either 1 or 2 channels. For comparison, we also trained original Lenia
on the directed motion task following the same optimization procedure.
The initial pattern is composed, as in random search, of a square patch
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with non-zero activations placed at the center of the world and zeros
everywhere else.

E.2.2.1. Directed motion

In order to train creatures displaying directed motion, i. e. straight line
motion, we used the distance traveled by the creature as the fitness
function. The distance is calculated by computing the center of mass of
the pattern at step 0 and final step 400. Formally, the fitness function is
defined as :

𝑓 (𝜃) = 𝑑𝑖𝑠𝑡(𝜙(𝐴0), 𝜙(𝐴400))

Where 𝐴 ≡ {𝐴0 , ..., 𝐴𝑇} is the pattern obtained by making a rollout
with parameters 𝜃 for 𝑇 timesteps (here 500). 𝜙(𝐴𝑡) ∈ [−0.5, 0.5]2 is the
center of mass of state 𝐴𝑡 and 𝑑𝑖𝑠𝑡 is the euclidean distance function. We
optimized the system with either 1 or 2 channels and 10 or 20 kernels.

We used 𝑀 =

[
5 5
5 5

]
as the adjacency matrix with 2 channels and 20

kernels and 𝑀 =

[
3 2
2 3

]
with 10 kernels.

Results (see Figure E.3) show that good solutions can be found in the 2
channels condition but not in the single channel case. However, when
running the algorithm for longer (e.g 5000 generations), we have been
able to found single channel creatures with similar fitness than their
2 channels counterpart. Increasing the number of kernels led to faster
discovery of good solutions. The best performing creature is shown in
Figure 7.10. On the other hand, the optimization of the original Lenia
model is much less stable and discovered patterns are less successful than
their mass-conservative counterparts. Moreover, every Lenia optimized
patterns are exploding ones.

E.2.2.2. Angular motion

In this task, we want emerging creatures to display more complex forms
of motion. More precisely, we want creatures to be able to move and
make turns. As with directed motion, we use the center of mass of the
creature through time to compute its trajectory. The fitness function is
the following :

𝑓 (𝜃) = 𝑑𝑖𝑠𝑡(𝜙(𝐴0), 𝜙(𝐴200))
+ 𝑑𝑖𝑠𝑡(𝜙(𝐴200), 𝜙(𝐴400))
+ ∠[𝜙(𝐴200) − 𝜙(𝐴0)], [𝜙(𝐴400) − 𝜙(𝐴200)]

Where ∠𝑎𝑏 is the angle between vectors 𝑎 and 𝑏. The first two terms are
the distance traveled from step 0 to step 200 and from step 200 to step
400. The last term is the angle between these two trajectories which is
maximal when they are opposite. In order to avoid large angles to come
from very small movements, the angle is set to 0 when distance traveled
either before or after step 200 is below a given threshold. The optimal
behavior for this fitness function is then to move fast in one direction,
make a 180° turn, and then move fast in the opposite direction. We used
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2 channels, 20 kernels and the same connectivity matrix as for directed
motion. Result are shown in Figure E.3. The best performing creature is
shown in Figure 7.10.

E.2.2.3. Navigation through obstacles

In this task, we want to see if creatures can navigate through obstacles
as done in Hamon et al. [•5]. To do so, we added walls which are
implemented by adding a strong flow going from the center of walls
outwards, thus strongly repelling the creature and acting as a solid
obstacle. At each evaluation of the optimization process, we randomly
sample points on a circle surrounding the creatures’ initial positions to
be walls positions thus making a “forest” of walls around the creature.
We then optimize the creature with the same fitness function as in the
directed motion task so creatures have to go as far as possible and so
through the forest. We made the experiment with 2 channels creatures,
walls are defined in a separate third channel. We used 25 kernels and

𝑀 =


5 5 0
5 5 0
5 0 0

 as the connectivity matrix so creatures are able to

sense the walls channel (3rd channel). We have been able to successfully
train creatures able to move and stay robust when making contact with
walls such as the one shown in Figure 7.10.

E.2.2.4. Chemotaxis

Another important feature of natural life-forms is the ability to sense their
environment in order to find food or avoid dangers through chemotaxis.
In this task, we want creatures to be able to sense a “chemical” gradient
and climb it towards its maximum. To do so, we added a separate channel
Γ : L → ℝ≥0 whose activations are defined following a Gaussian
function around a point randomly sampled on a circle surrounding the
center of the CA for each evaluation of the optimization process ensuring
creatures learn to follow gradient and not a fixed direction while keeping
the distance to cover constant. We also added 5 kernels and growth
functions from Γ to 𝐴, which are also optimized, so the creature is able
to sense the chemical. The fitness of an individual is then computed with
the following function :

𝑓 (𝜃) =
∑
𝑥∈L𝐴

500
Σ
(𝑥) × Γ(𝑥)∑

𝑥∈L𝐴
500
Σ
(𝑥)

Since mass is conserved, the optimal behavior for a creature is to con-
centrate as much of its mass in the cells where Γ is maximal. We have
been able to find good solutions to this task as shown in Figure E.3. Best
solutions such as the one shown in Figure 7.10 are perfectly able to climb
the gradient towards its maximum.
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F.1. Data Availability

Source code is available on GitHub (click on QR codes). It contains
experimental data and an executable notebook version of the paper to
reproduce all paper figures, as well as additional step-by-step tutorials to
reproduce results from scratch for Figure 8.5, Figure 8.7 and Figure 8.9
(tutorial 1) and Figure 8.10 (tutorial 2), as well as the codebase to reproduce
the whole experimental campaign. All our codebase is open-source under
MIT License.

F.2. Materials and Methods

F.2.1. GRN models and numerical simulation

This study employs ordinary differential equation (ODE) models to
represent molecular pathways, with nodes representing pathway compo-
nents and edges capturing their interactions. The continuous node states,
encompassing variables like gene expression levels and protein concen-
trations, are interconnected through a system of ODEs, enabling the
modeling of complex regulatory dynamics. ODE models are often avail-
able in the Systems Biology Markup Language (SBML), a standardized
format that contains essential information about variables, parameters,
equations, and model metadata in XML files.

https://developmentalsystems.org/curious-exploration-of-grn-competencies
https://github.com/flowersteam/curious-exploration-of-grn-competencies
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To perform numerical simulations of ODE SBML models, we rely on the
SBMLtoODEjax python library, a recent development that automates the
parsing and conversion of SBML models into python models written
entirely in JAX [•7]. Taking advantage of JAX computing capabilities,
SBMLtoODEjax enables efficient and parallel numerical solutions for
gene expression levels and other node states by recursively invoking
the generated python models to integrate the ODE equations with
current gene expression levels. Additionally, we have developed a python
library (https://github.com/flowersteam/autodiscjax) comprising
additional modules and pipelines that facilitate interventions on the
GRN models such as genome or drug interventions, as well as other
perturbations such as noise, pushes, and walls that can be applied to the
states and kinematic parameters of gene regulatory networks.

Given the model species initial state 𝑦(𝑡 = 0), the desired rollout length
𝑇(𝑠𝑒𝑐𝑠) and step size Δ𝑇, as well as the chosen intervention 𝑖 and/or
perturbation 𝑢, the model rollout iteratively 1) integrates the system of
ODE-governed equations that specifies the rate of species changes 𝑑𝑦

𝑑𝑡

using JAX odeint solver to update model species 𝑦(𝑡) → 𝑦(𝑡+Δ𝑇), 2) calls
the model assignment rules to update kinematic parameters if needed,
and 3) apply the intervention and/or perturbation function to update
(𝑦(𝑡 + Δ𝑇), 𝑤(𝑡 + Δ𝑇), 𝑐) accordingly. In this paper we use 𝑇 = 2500𝑠𝑒𝑐𝑠
and Δ𝑇 = 0.1 (25 001 time points per rollout including 𝑡0). The ODE
solver uses an absolute tolerance of 1𝑒−6 and relative tolerance of 1𝑒−12,
with maximum number of solver steps of 1000. For a step-by-step guide
on utilizing these libraries within the proposed framework, we refer in-
terested readers to our tutorial (https://developmentalsystems.org/
curious-exploration-of-grn-competencies/tuto1.html), which of-
fers practical examples and detailed instructions.

F.2.2. Experimental setup

In our computational models, we are able to record the activities of all

nodes during a model rollout. The observation space 𝑂 ⊂ ℝ
𝑛× 𝑇

Δ𝑇
+ is such

that 𝑜 = (𝑦(0), . . . , 𝑦(𝑇)) where 𝑦(𝑡) represents the n-dimensional vector
of node states at each time step, with T being the total reaction time. The
boundaries of the observation space are not known.

Regarding the exploration of problem spaces, namely the intervention
space I and behavior space Z, we specify them as follows.

For the main experiments on biological networks, the intervention space
𝐼 ⊂ ℝ𝑛

+consists of initial node states sampled from the hyper-rectangle
[𝑦0,min , 𝑦0,max] where 𝑦0,min = 1

𝑟 × 𝑦𝑑,min and 𝑦0,max = 𝑟 × 𝑦𝑑,max with
𝑟 = 20 and (𝑦𝑑,min , 𝑦𝑑,max) the minimum and maximum of each node of
the model over the default time course simulation (with initial conditions
provided in the SBML file and T=25000). On the other hand, the behavior
space 𝑍 ⊂ ℝ2

+ endpoint states 𝑧 =
(
𝑦𝑖(𝑇), 𝑦𝑗(𝑇)

)
where (𝑖 , 𝑗) corresponds

to the target phenotype nodes. We ensure that most trajectories have
reached stable states at T = 2500 (as elaborated in the next section)
such that 𝑍 can be viewed as the space of reachable endpoints, whose
boundaries are not known.

https://github.com/flowersteam/autodiscjax
https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto1.html
https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto1.html
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F.2.3. Database creation

F.2.3.1. Biological networks database

All the ODE models we use in this work are downloaded from the
BioModels database [314, 315] in SBML format. From all models refer-
enced on the website, we only consider the ones that are curated, that
have at least 3 nodes, and that are handled by the SBMLtoODEjax simu-
lator (as SBMLtoODEjax does not handle models with discrete events,
custom functions or other specific cases as detailed in [•7]. To ensure the
inclusion of models suitable for our analyses, we applied specific filters
to the collected models.

First, we simulated the default model rollout for each model to obtain the
concentration profiles of the pathway components over a short time span
(T=10 secs and Δ𝑇 = 0.1). We discarded simulation results containing
invalid values (NaN or negative concentrations) or those that took an
excessive amount of time (>1sec). While it is acceptable that a rollout
sometimes returns NaN values (when there are no solutions given ODE
tolerance options for specific initial conditions), we consider the model
invalid if this occurs for the default initial conditions provided in the
SBML file.

For the remaining models, we conducted further simulations with an
extended time span (T=2500) and 50 random initial conditions uniformly
sampled within the model’s intervention space 𝐼 (as defined before).
Once again we discarded models whose batch simulations took an ex-
cessive amount of time (> 15 secs). From the remaining models, we
derived the resulting 50 trajectories for each node pair (i, j) and sub-
jected them to additional filters to refine the database. We removed node
pairs where either 1) [filter F1] a substantial proportion of trajectories
(≥ 20%) exhibited invalid concentrations (NaN or negative) or unset-
tled behaviors (∃𝑡 ≥ 2400 such that |𝑦(𝑡) − 𝑦(𝑇)| ≥ 0.02 × |𝑦(𝑇) − 𝑦(0)|)
or periodic patterns

(
∃ 𝑓 > 0 such that |𝑆( 𝑓 )| ≥ 40 where

𝑆 = 𝐷𝐹𝑇([𝑦(𝑇2 ), . . . , 𝑦(𝑇)]
)
; or [filter F2] the reached space in 𝑍 was

too small
(
(max𝑘=1···50 𝑦

𝑘(𝑇) −min𝑘=1···5 𝑦𝑘(𝑇)) < 0.1
)

to discard cases
where “diversity” could result from floating point rounding errors; or
[filter F3] the number of attractors was less than four(
{ 𝑦𝑘(𝑇)}𝑘=1...50 cover ≤ 4 bins over a 20 × 20 binning of 𝑍

)
. Upon com-

pletion of the filtering process, our final database comprised 30 models,
consisting of a total of 432 systems, as detailed in Supplementary Table
F.1. These curated models and systems served as the foundation for our
subsequent analyses and investigations into the navigation competencies
of the molecular pathways.

F.2.3.2. Random networks database

Following the methodology proposed in [367], we aimed to create
a database of synthetic networks with topologies similar to those of
the biological networks, but with random regulatory rules instead of
evolved ones. The objective was to compare the versatility and robust-
ness competencies between biological and random networks, akin to
the approach used for memory competencies in [367]. To achieve this,
we initially generated 30 networks based on the transcriptional gene
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circuit model [387], ensuring that they had the same distribution of
network size (number of nodes) and connectivity (nodes in-degree) as
the biological network database (using fitted gaussian distributions).
The kinematic parameters𝑊, 𝑏, 𝜏 of these networks were randomized
(𝑊 ∼ [−30, 30]𝑛×𝑛 , 𝐵 ∼ [−10, 10]𝑛 , 𝜏 ∼ [1, 15]) where model step is
defined as 𝑦(𝑡 + 1) = Δ𝑇

𝜏 × 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑦 + 𝐵) +
(
1 − Δ𝑇

𝜏

)
× 𝑦 and in-

degree connectivity is enforced by setting some weights of 𝑊 to zero.
However, during the creation process, we observed that none of the
generated networks met the criterion for exhibiting a sufficient number
of steady states (criterion F3). This limitation arose from the inherent
constraints imposed by the gene circuit model’s shape of ODE equations,
limiting the diversity of possible dynamical behaviors. As our focus
was on networks with a possible spectrum of steady states, akin to the
biological network database, we decided not to pursue further analyses
on these networks.

Instead, we selected the systems (models and pairs of nodes) that demon-
strated the highest versatility (metric detailed below) from among all
the generated systems that passed the filters F1 and F2. The selected
networks’ versatility is presented in Figure 8.8, but for future research,
it would be interesting to explore broader and more complex classes
of equations to assess their potential for achieving higher behavioral
diversity.

F.2.4. Curiosity-driven exploration

This section provides additional information about the internal models
and hyperparameters of the intrinsically-motivated goal exploration
process. The overall IMGEP pipeline is illustrated in Figure 8.1-c. To
sample a goal, the IMGEP uses a uniform sampling strategy within
the bounding hyper-rectangle of currently reached goals (scaled by a
factor 1.3). Hence sampling bounds adapt to the discoveries and do
not need to be predefined via expert knowledge. The volume of the
hyper-rectangle is larger compared to the cloud of currently-reached
goals, which incentivizes targeting unexplored areas outside of the cloud
and promotes diversity in the exploration process. Then, to generate
an intervention for achieving the sampled goal, the IMGEP selects the
nearest previously reached goal in𝑍, identifies its associated intervention,
and performs a local random step from that point (𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 ∼N(0, 0.1 ·
[𝑦0,max − 𝑦0,min]) in the intervention space.

While our implementation choices for the IMGEP goal representation,
goal generation, and goal-conditioned optimization are relatively straight-
forward, it is worth noting that alternative strategies could be considered
for each of these components for more complex problems. The python
library AutoDiscJax (https://github.com/flowersteam/autodiscjax)
that accompanies this paper can be used to implement this and other
IMGEP variants in JAX.

F.2.5. Robustness tests

We define 3 family of perturbations: 1) the noise perturbation𝑈𝑛 (𝜎𝑛 , 𝑝𝑛 |𝑦)
which is parametrized by its standard-deviation (scaled proportionally

https://github.com/flowersteam/autodiscjax
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to the extent of the observed trajectory 𝑦 prior perturbation) and period
(secs); 2) the push perturbation𝑈𝑝

(
𝑚𝑝 , 𝑛𝑝 |𝑦

)
parametrized by its magni-

tude (proportional to the extent of 𝑦) and number of occurrences; 3) the
wall perturbation𝑈𝑤 (𝑙𝑤 , 𝑛𝑤 |𝑦) parametrized by its length (proportional
to the extent of 𝑦) and number, and where walls are generated in locations
of the space that the GRN would “naturally” visit without the induced
perturbation. Details about the implementation of walls are provided in
Supplementary Figure F.3.

To assess the robustness of the GRN systems in our database, we employ
an evaluation procedure, as depicted in Figure 8.1-d. For each system
(𝐼 , 𝑍) in the database with its corresponding behavioral catalog𝐻 discov-
ered using the curiosity-search algorithm, we perform the following steps.
We first retrieve 𝐾 representative trajectories out of the 𝑁 discoveries,
i.e. ones that cover well the reachable space. To do so, we randomly
sample tuples of K discoveries (among N) 500 times, and select the
one with the maximum diversity. One could test all trajectories with
K=N but here we use 𝐾 = 𝑁/10 mainly for compute reasons, as we run
the experimental campaign on all 432 systems. Next, we subject each
of these K trajectories {𝑦𝑘 , 𝑘 = 1 . . . 𝐾} to s=18 different perturbation
distributions, each representing various levels of difficulty:

(𝜎𝑛 , 𝑝𝑛) ∈ {(0.001, 5), (0.005, 5), (0.1, 5), (0.005, 10), (0.005, 5), (0.005, 1)},(
𝑚𝑝 , 𝑛𝑝

)
∈ {(0.05, 1), (0.1, 1), (0.15, 1), (1, 0.1), (2, 0.1), (3, 0.1)},

(𝑙𝑤 , 𝑛𝑤) ∈ {(0.05, 1), (0.1, 1), (0.15, 1), (1, 0.1), (2, 0.1), (3, 0.1)}.

In each perturbation distribution, we sample 𝑟 = 3 random perturbations,
resulting in 𝑃 = 𝑠 × 𝑟 perturbations. For each perturbation in the set
{𝑢𝑝 , 𝑝 = 1 . . . 𝑃}, we re-run the trajectory starting from the same initial
state 𝑖 but with the sampled perturbation applied

(
𝑖 , 𝑢𝑝

)
, and observe

the resulting outcome
(
𝑜𝑝

)
and reached endpoint

(
𝑧𝑝

)
.

At the end of this process, the behavioral catalog is augmented with the
perturbed trajectories𝐻 = {

(
𝑖𝑘 , 𝑜𝑘 , 𝑧𝑘 , {(𝑢𝑝 , 𝑜𝑝 , 𝑧𝑝), 𝑝 = 1 . . . 𝑃}

)
, 𝑘 =

1 . . . 𝐾}.

F.2.6. Evaluation Metrics

F.2.6.1. Diversity measure

Diversity is measured by the area that explored observations cover in
behavior space Z. Each single exploration results in a new point in
this space, such that diversity measures how much area the algorithms
explored in those spaces.

In general, existing approaches in the NS, QD and IMGEP literature
use binning-based metrics [•1, •3, 72] or distance-based metric from
ecology [73] to quantify the diversity of a set of explored instances.
However, those metrics are sensitive to the binning strategy, or fail to
discriminate between qualitatively significantly different explorations
[71]. Another approach, called the threshold coverage, measures diversity
as the volume of the union of the set of hyperballs of radius 𝜖 that
have for centers the observed effects {𝑧 ∈ 𝑍}. This diversity measure,
while difficult to compute in high-dimensional spaces, avoids the pitfalls
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of bin-based and distance-based metrics and is easily computable in
2-dimensional spaces [71].

Threshold coverage quantifies the area of the space that has been reached
at a given precision 𝜖 (the threshold), and is what we used in Figure 8.4
to compare random search and curiosity-driven exploration strategies.

F.2.6.2. Sensitivity measure

In general, existing approaches in systems biology and evolutionary
genetics measure sensitivity (opposite of robustness) in a relative manner
with respect to 1) a functionality [369] or phenotypic trait [370] of interest,
2) specific perturbations (environmental or genetic changes), and 3) a
measure of the degree of variation. Here, we adopt a similar metric
where 1) the phenotypic trait of interest is defined as a goal state 𝑧 ∈ 𝑍
discovered by curiosity search, 2) the set of perturbation {𝑢_{𝑝}} is
defined in previous section and conditioned on the GRN goal-reaching
trajectory 𝑖 → 𝑧, and 3) variation is measured as the Euclidean distance
in behavior space, normalized by the extent of the trajectory prior
perturbation in 𝑍.

This distance-based sensitivity measure proves straightforward as we
explicitly use “spaces” to observe and analyze behaviors. The results of
this sensitivity analysis are presented in Figure 8.5.

F.2.6.3. Versatility-Robustness measure

In this study, we introduce the terms “diversity” and “versatility” to
characterize the competencies of the exploration agent (IMGEP) and the
gene regulatory network agent (GRN), respectively. Diversity refers to
the ability of the IMGEP agent to reveal a wide range of behaviors in
the GRN, while versatility refers to the capability of the GRN agent to
reach diverse goal states. The GRN versatility is unknown, and can only
be approximated via proxy metric. Here, we consider that the diversity
of the IMGEP (measured with the threshold coverage metric) is a good
approximation of the versatility of a given GRN, as the IMGEP was
shown to efficiently drive the GRN into diverse possible goal states. In
Figure 8.8a, we employ this diversity metric to categorize the versatility
of surveyed networks based on the class of organism they belong to. For
the random networks, as they all have less or equal than 4 attractors, the
versatility remains below 0.026 = 4 × 𝜋𝜖2

(1+2𝜖)2 .

Figure 8.8b, we introduce the versatility-robustness metric, which condi-
tions the diversity metric on a sensitivity threshold. Only goal states with
sensitivity to perturbations below this threshold are considered when
computing the reached area of the space. A high versatility-robustness
score indicates that diverse goal states are achieved with a high level of
precision.
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F.2.7. Experiments on the RKIP-ERK signaling pathway

This section details the additional experiments conducted on the RKIP-
ERK signaling pathway [375]. We refer to the accompanying notebook tu-
torial for reproducing these experiments:https://developmentalsystems.
org/curious-exploration-of-grn-competencies/tuto1.html.

For Figure 8.5, clustering in behavior space was performed using the
HDBSCAN algorithm [376] with hyperparameters set as min_cluster_-
size=10 and cluster_selection_epsilon=0.1. Points in the 10-dimensional
intervention space are visualized by applying a TSNE 2-dimensional
reduction. To visualize the clusters in behavior space (and corresponding
clusters in intervention space), we fitted polygons on the cluster points
using shapely library unary_union, dilatation, and erosion operations
[506].

In Figure 8.7, we generated trajectory-based energy landscapes following
the method proposed in [383]. Energy landscapes provide an intuitive
way to understand how a system with multiple steady states behave, by
picturing it as a ball rolling downhill towards low-energy valleys (steady
states). Given a set of trajectories in behavior space 𝑍, we constructed
a probability distribution (𝑃) of system states and converted it into a
pseudopotential energy surface (𝑈 = − ln(𝑃)). This energy surface was
smoothed using cubic spline interpolation and visualized using Plotly
3D surface plots. Figure 8.7a, 6b, and 6c differed by the input set of
trajectories used for generating the landscape: a) employed the set of
trajectories discovered by random search, b) used the set of trajectories
discovered by curiosity search, and c) utilized the set of trajectories
generated by robustness tests.

In Figure 8.9, the “healthy” and “disease” clusters were the same as
in Figure 8.5 and visualized similarly. We displayed trajectories with
the lowest sensitivity (averaged over all 𝑃 = 3 × 18 perturbations). The
stimuli-based intervention shown in Figure 8.9b was found using a
simple random search procedure. First, we defined an arbitrary target
node and a stepwise node-activation function, clamping MKEPP values
to desired values 𝑥 =

[
𝑦
(1)
𝑀𝐸𝐾𝑃𝑃

, · · · , 𝑦(10)
𝑀𝐸𝐾𝑃𝑃

]
every 10 seconds for 100

seconds. Then, we randomly sampled 𝑥 within a range of values near the
MKEPP current steady states (endpoints from the 6 “disease” trajectories,
assuming that the drug intervention cannot drastically remodel those
values). For each candidate 𝑥, we ran new trajectories starting from the
disease states and applying the intervention 𝑥 under a distribution of
noise, push, and wall perturbations. Finally, we selected the intervention
𝑥 that most successfully brought ERK-RKIP levels back to the target
setpoint (centroid of the healthy region). The resulting intervention
(shown in Figure 8.9b) succeeds to robustly reset all 6 disease state points
despite perturbations, as shown in Figure 8.9c. We refer to the notebook
for reproducing the experiments.

F.2.8. Experiments on synthetic gene networks

This section details the additional experiments conducted on the synthetic
gene networks (Figure 8.10). We refer to the second accompanying

https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto1.html
https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto1.html
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tutorial for the full codebase: https://developmentalsystems.org/
curious-exploration-of-grn-competencies/tuto1.html.

In these experiments, we consider the target application of gene circuit
engineering followed in [361], where parameters of a gene circuit model
are optimized to produce target oscillator patterns. The gene circuit
model employed in [361] is the same than the one used for the random
networks database (Eq 1), with 𝜏 = 1. Hence the intervention space

is a 𝑛2 + 2𝑛 dimensional space defined as 𝐼 = [𝑦𝑡=0,min , 𝑦𝑡=0,max] ⊕
[𝑊min ,𝑊max] ⊕ [𝐵min , 𝐵max], with 𝑦0,min = 0, 𝑦0,max = 1, 𝑊min = −30,
𝑊max = 30, 𝐵min = −10, 𝐵max = 10. Here we consider networks of n=3
nodes, with the first node being the target phenotype node. Thus, what
we seek here is kinematic parameters (𝑊, 𝐵) and initial concentrations 𝑦0
that would produce a periodic pattern 𝑦 = [𝑦𝑛=0(0), · · · 𝑦𝑛=0(𝑇)] with
target amplitude 𝐴, frequency 𝑤 and offset 𝑏. Here, the target (𝐴, 𝜔, 𝑏)
are sample randomly with 𝐴 ∼ 𝑈 ([0.1, 0.5]) , 𝑏 ∼ 𝑈 ([𝐴, 1 − 𝐴]) , 𝜔 ∼
𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 8).

We then compare three alternative exploration strategies: 1) curiosity
search, 2) random search and 3) gradient descent, i.e. pure optimization-
driven search as proposed in [361], all given the same experimental
budget 𝑁 = 5000.

For curiosity search, the behavior space 𝑍 is defined as the image space
of the discrete Fourier transform of the 1d-signal 𝑦, where distance in
the space measures average difference in spectral amplitude. The IMGEP
algorithm is then the same that the one previously used, as detailed in
Figure 8.1-c, but operating within the novel problem spaces (𝐼 , 𝑍).

For random search, interventions are sample uniformly (𝑖1 , · · · , 𝑖𝑁 ) ∼
𝑈(𝐼).

For gradient descent, we follow the procedure proposed in [361]. We
define a loss function which, for a set of parameters 𝑖 = (𝑊, 𝐵, 𝑦0),
measures the mean square error between the phenotype node activation
levels 𝑦 and the target oscillation represented as a cosine wave with the
desired (𝐴, 𝜔, 𝑏) : 𝐿 =

∑
𝑡(𝑦(𝑡) − (𝐴 cos(2𝜋𝜔 × 𝑡) + 𝑏))2. We then sample

a random parameter 𝑖 ∼ 𝑈(𝐼) and use Adam optimizer with 𝑙𝑟 = 10−3 ,

𝑏1 = 0.02, 𝑏3 = 0.001, 𝜖 = 10−8 for 𝑁 = 5000 optimization steps (same
number of model rollouts allowed than for curiosity search and random
search).

In addition, we use gradient descent for local refinement of the best
discoveries made by the other exploration strategies (curiosity search and
random search), this time with a limited budget of 𝑁 = 100 optimization
steps.

Visualizations in Figure 8.10 show: (a-b) the oscillators discovered by
random search and curiosity search (gradient descent did not find any
oscillator in this example) in the (𝐴, 𝜔, 𝑏) space, (c) the corresponding
diversity (using this time a binning-based space coverage measure with
203bins as the space is 3-dimensional), (d) the evolution of the training
loss 𝐿 throughout the N=5000 trials for the three exploration strategies,
(e-f-g) the corresponding best discoveries (for which 𝐿 is minimal) for the
three exploration strategies, and (h-i) the local training loss and resulting
finetuning of the best discoveries with gradient descent.

https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto1.html
https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto1.html
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F.3. Supplementary Material
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Figure F.2.: Examples of interventions that can be implemented within the accompanying AutodiscJax software. All those examples can
be reproduced in the accompanying tutorial 1. (a) Numerical simulations with interventions can be performed in parallel by vectorizing
simulations over different intervention parameters, simply using the jax vmap operator. This offers a convenient (and fast) way to test
several interventions in the biological network, as shown here for testing the network under various initial conditions in batch mode.
Examples of other possible “drug” or “genome” interventions that can be implemented in the accompanying software, as well as the
possibility to perform interventions (or perturbations) in parallel using batched computations. In this example, despite the numerous
interventions, the GRN trajectories still converge to the same endpoint B. (b) Example intervention where species amounts are clamped
to specific values. In this example the node MEKPP is clamped to 2.5𝜇𝑀 for 10 seconds at t=0 and then to 1𝜇𝑀 for 10 additional seconds
at t=400. We observe that, after the first clamping the GRN trajectory still follows a similar S-shape curve and arrives close to the original
endpoint B but after the second clamping, ERK expression levels are shifted to a higher steady state B’. (c) Example intervention where
the numerical value of one kinematic parameter of the model (k5) is changed from 0.0315 to 0.1. In this example we can see that changing
the parameter k5 shifts the trajectory end point quite significantly, but qualitatively the trajectory seems to preserve a similar S-shape.

BioModel ID
reference

number
of nodes

organism
class systems (observed nodes pairs)

BIOMD0000000524 16 Homo
sapiens

(PrER, mGFP), (DISC, tBid), (p18inactive, PrER), (p18inactive, tBid), (p18inactive,
mGFP), (p18inactive, PrNES), (DISC, mCherry), (PrNES, PrER), (Bid, mCherry),
(tBid, PrNES), (p18inactive, PrER_mGFP), (PrNES, mGFP), (mCherry, PrER_mGFP),
(PrER_mGFP, PrER), (FADD, PrNES), (tBid, mGFP), (DISC, PrER), (FADD, mGFP),
(mCherry, mGFP), (FADD, mCherry), (Bid, PrER), (FADD, tBid), (DISC, p18inactive),
(Bid, PrNES), (p18inactive, Bid), (tBid, PrER_mGFP), (FADD, PrER), (tBid, mCherry),
(PrNES, PrER_mGFP), (FADD, p18inactive), (FADD, Bid), (Bid, mGFP), (mCherry,
PrER), (PrNES, mCherry), (DISC, Bid), (DISC, PrNES), (Bid, tBid), (DISC, PrER_-
mGFP), (FADD, DISC), (DISC, mGFP), (p18inactive, mCherry), (PrER_mGFP, mGFP),
(FADD, PrER_mGFP), (tBid, PrER)

BIOMD0000000050 14 n/a (Gly, Fru), (FA, Mel), (FA, MG), (FA, Fru), (Mel, Fru), (Gly, Mel), (FA, Glu), (Gly, AA),
(AA, Fru), (Glu, Mel), (MG, Fru), (AA, Glu), (FA, AA), (Glu, Fru), (Gly, MG), (Glu,
MG), (AA, MG), (AA, Mel), (Mel, MG), (Gly, FA)

BIOMD0000000647 11 n/a (RKIPP, MEKPP_ERK), (RKIPP, RKIPP_RP), (Raf1_RKIP, ERK), (ERK, RP), (ERK,
MEKPP), (Raf1, MEKPP), (MEKPP, RKIPP_RP), (MEKPP, RP), (RKIP, RP), (ERKPP,
RKIPP), (Raf1, RKIPP), (ERKPP, RP), (Raf1_RKIP_ERKPP, ERK), (Raf1_RKIP, MEKPP),
(Raf1, ERKPP), (ERKPP, MEKPP_ERK), (ERK, MEKPP_ERK), (RKIP, RKIPP_RP), (Raf1,
ERK), (ERKPP, Raf1_RKIP_ERKPP), (RKIP, ERKPP), (Raf1_RKIP_ERKPP, RKIPP_RP),
(Raf1_RKIP_ERKPP, MEKPP), (Raf1_RKIP, ERKPP), (RP, RKIPP_RP), (MEKPP_ERK,
RKIPP_RP), (ERK, RKIPP_RP), (ERKPP, ERK), (Raf1_RKIP_ERKPP, RP), (Raf1, Raf1_-
RKIP_ERKPP), (Raf1, Raf1_RKIP), (MEKPP, MEKPP_ERK), (Raf1_RKIP, RKIPP),
(Raf1_RKIP_ERKPP, RKIPP), (Raf1_RKIP_ERKPP, MEKPP_ERK), (MEKPP_ERK, RP),
(RKIP, MEKPP), (Raf1, RKIP), (RKIPP, RP), (RKIP, MEKPP_ERK), (Raf1_RKIP, Raf1_-
RKIP_ERKPP), (Raf1, RP), (Raf1_RKIP, RKIPP_RP), (Raf1, RKIPP_RP), (Raf1_RKIP,
MEKPP_ERK), (ERKPP, MEKPP), (RKIP, RKIPP), (Raf1, MEKPP_ERK), (RKIP, ERK),
(RKIPP, MEKPP), (ERKPP, RKIPP_RP), (RKIP, Raf1_RKIP), (ERK, RKIPP), (Raf1_RKIP,
RP), (RKIP, Raf1_RKIP_ERKPP)

BIOMD0000000520 3 Rodents (N0, N1), (N1, N2), (N0, N2)

https://www.ebi.ac.uk/biomodels/BIOMD0000000524
https://www.ebi.ac.uk/biomodels/BIOMD0000000050
https://www.ebi.ac.uk/biomodels/BIOMD0000000647
https://www.ebi.ac.uk/biomodels/BIOMD0000000520
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BioModel ID
reference

number
of nodes

organism
class systems (observed nodes pairs)

BIOMD0000000523 16 Homo
sapiens

(tBid, mCherry), (PrER, mGFP), (PrNES, mGFP), (DISC, PrNES), (DISC, tBid),
(FADD, tBid), (p18inactive, tBid), (FADD, mCherry), (mCherry, mGFP), (p18inactive,
mCherry), (tBid, PrNES), (tBid, mGFP), (FADD, DISC), (p18inactive, mGFP), (mCherry,
PrER), (p18inactive, PrER), (FADD, p18inactive), (DISC, p18inactive), (DISC, PrER),
(FADD, PrER), (DISC, mGFP), (PrNES, mCherry), (p18inactive, PrNES), (FADD,
PrNES), (tBid, PrER), (FADD, mGFP), (DISC, mCherry), (PrNES, PrER)

BIOMD0000000454 8 Generic (x3, y3), (y4, y2), (y1, y5), (x3, y2), (y4, y5), (x2, y4), (x1, y3), (x1, y5), (y2, y3), (y1, y3),
(x1, y4), (x1, x3), (y4, y3), (y1, y2), (y1, y4), (y1, x3), (y5, y2), (y1, x1), (x2, x1), (x1, y2),
(x2, x3), (x3, y4), (x3, y5), (y1, x2), (x2, y2), (x2, y5), (x2, y3), (y5, y3)

BIOMD0000000069 10 Homo
sapiens

(srco, srca), (srci, srca), (srco, srcc), (srca, Cbp_P), (srcc, Cbp_P_CSK), (srci, Cbp_P),
(srci, PTP), (Cbp_P, PTP_pY789), (srcc, PTP_pY789), (CSK_cytoplasm, PTP), (srci,
PTP_pY789), (srca, PTP_pY789), (srcc, CSK_cytoplasm), (CSK_cytoplasm, Cbp_-
P_CSK), (srca, CSK_cytoplasm), (srca, PTP), (srcc, Cbp_P), (srco, Cbp_P_CSK),
(CSK_cytoplasm, PTP_pY789), (srcc, PTP), (srca, Cbp_P_CSK), (srci, CSK_cytoplasm),
(Cbp_P, Cbp_P_CSK), (Cbp_P, PTP), (srci, srco), (srco, PTP), (CSK_cytoplasm, Cbp_P),
(srca, srcc), (srci, Cbp_P_CSK), (Cbp_P_CSK, PTP_pY789), (PTP, PTP_pY789), (Cbp_-
P_CSK, PTP), (srci, srcc), (srco, Cbp_P), (srco, PTP_pY789), (srco, CSK_cytoplasm)

BIOMD0000000455 9 Generic (x2, y5), (y5, y2), (x2, y2), (y1, y3), (x3, y3), (y1, x2), (x2, x1), (x2, y4), (x3, y2), (x2, y3),
(y1, y4), (y5, y3), (y1, y5), (x1, x3), (x1, y4), (y4, y5), (x1, y3), (y1, x3), (y4, y3), (x3, y4),
(x3, y5), (x1, y5), (y1, x1), (y1, y2), (y2, y3), (y4, y2), (x2, x3), (x1, y2)

BIOMD0000000526 16 Homo
sapiens

(FADD, PrER_mGFP), (PrNES, mCherry), (p18inactive, PrER_mGFP), (DISC,
p18inactive), (FADD, p18inactive), (p18inactive, mCherry), (DISC, mGFP), (FADD,
mGFP), (p18inactive, tBid), (p18inactive, mGFP), (FADD, DISC), (tBid, PrER), (DISC,
tBid), (p18inactive, PrER), (p18inactive, PrNES), (PrNES, PrER_mGFP), (PrNES,
PrER), (FADD, PrNES), (DISC, PrER), (DISC, mCherry), (FADD, tBid), (PrER_mGFP,
PrER), (PrNES, mGFP), (FADD, PrER), (mCherry, mGFP), (DISC, PrNES), (tBid,
PrNES), (mCherry, PrER), (PrER_mGFP, mGFP), (tBid, mCherry), (FADD, mCherry),
(tBid, mGFP), (mCherry, PrER_mGFP), (DISC, PrER_mGFP), (PrER, mGFP), (tBid,
PrER_mGFP)

BIOMD0000000284 9 Bacteria (D, E), (A, D), (X, C), (B, E), (C, Z), (X, E), (A, Z), (X, Y), (C, D), (Y, Z), (E, F), (F, Z), (D,
F), (B, F), (C, F), (X, Z), (A, Y), (X, D), (A, F), (B, Z), (X, F), (A, B), (A, C), (B, D), (Y, E),
(B, C), (B, Y), (C, Y), (Y, F), (E, Z), (X, B), (D, Z), (D, Y), (A, E), (C, E), (X, A)

BIOMD0000000084 8 n/a (Rin, x2), (x1, x3), (x2, x3), (x1, x2), (Rin, x3), (Rin, x1)
BIOMD0000000052 11 n/a (Triose, lys_R), (Cn, lys_R), (Acetic_acid, lys_R), (lys_R, Melanoidin), (Triose,

Melanoidin), (Cn, Melanoidin), (Formic_acid, lys_R), (C5, lys_R), (C5, Formic_-
acid), (Triose, Acetic_acid), (C5, Acetic_acid), (Acetic_acid, Melanoidin), (C5, Cn),
(C5, Melanoidin), (Cn, Acetic_acid), (C5, Triose), (Formic_acid, Triose), (Formic_acid,
Cn), (Triose, Cn), (Formic_acid, Melanoidin), (Formic_acid, Acetic_acid)

BIOMD0000000271 6 Rodents (EpoR, dEpoe), (Epo_EpoRi, dEpoe), (Epo_EpoR, dEpoe), (Epo_EpoRi, dEpoi), (EpoR,
dEpoi), (Epo, dEpoe), (Epo, dEpoi), (Epo_EpoR, dEpoi), (dEpoi, dEpoe)

BIOMD0000000461 4 Bacteria (lacz, x), (IPTG, sigb), (sigb, x), (sigb, lacz), (IPTG, x), (IPTG, lacz)
BIOMD0000000525 16 Homo

sapiens
(p18inactive, PrNES), (p18inactive, PrER), (tBid, PrNES), (DISC, PrER), (mCherry,
PrER), (PrNES, mCherry), (DISC, tBid), (FADD, mCherry), (p18inactive, tBid),
(FADD, PrER), (FADD, p18inactive), (tBid, mGFP), (DISC, p18inactive), (mCherry,
mGFP), (DISC, PrNES), (PrER, mGFP), (DISC, mGFP), (FADD, DISC), (tBid, PrER),
(p18inactive, mCherry), (tBid, mCherry), (PrNES, mGFP), (PrNES, PrER), (FADD,
PrNES), (DISC, mCherry), (p18inactive, mGFP), (FADD, tBid), (FADD, mGFP)

BIOMD0000000521 4 Homo
sapiens

(P, Q)

BIOMD0000000010 8 Amphibians(MKK_P, MAPK), (MKK, MAPK_PP), (MKK, MKK_PP), (MKK_P, MKK_PP), (MKK,
MAPK), (MKK_PP, MAPK_P), (MAPK, MAPK_PP), (MKK_PP, MAPK), (MKK,
MAPK_P), (MKK_PP, MAPK_PP), (MAPK_P, MAPK_PP), (MKK_P, MAPK_PP),
(MKK, MKK_P), (MKK_P, MAPK_P)

BIOMD0000000029 4 Amphibians(M, MpT), (M, MpY), (MpY, MpT)
BIOMD0000000197 5 n/a (x1, x2), (x1, x4), (x1, x3), (x1, x5), (x5, x4), (x3, x5), (x5, x2)
BIOMD0000000272 6 Rodents (SAv_EpoR, SAv_EpoRi), (EpoR, SAv_EpoR), (EpoR, SAv_EpoRi)
BIOMD0000000167 7 Generic (Pstat_nuc, stat_nuc), (stat_nuc, species_test), (Pstat_nuc, species_test)
BIOMD0000000262 11 Rodents (Akt, S6)
BIOMD0000000240 6 Bacteria (DegU, mDegU), (Dim, mDegU), (DegUP, mDegU)
BIOMD0000000037 12 Slime

Mold
(Xi, Ya), (Xi, Pi), (Ya, Pi)

BIOMD0000000263 11 Rodents (Akt, pro_TrkA), (S6, pro_TrkA), (Akt, S6)
BIOMD0000000641 5 Homo

sapiens
(CellCact, Effectoract)

https://www.ebi.ac.uk/biomodels/BIOMD0000000523
https://www.ebi.ac.uk/biomodels/BIOMD0000000454
https://www.ebi.ac.uk/biomodels/BIOMD0000000069
https://www.ebi.ac.uk/biomodels/BIOMD0000000455
https://www.ebi.ac.uk/biomodels/BIOMD0000000526
https://www.ebi.ac.uk/biomodels/BIOMD0000000284
https://www.ebi.ac.uk/biomodels/BIOMD0000000084
https://www.ebi.ac.uk/biomodels/BIOMD0000000052
https://www.ebi.ac.uk/biomodels/BIOMD0000000271
https://www.ebi.ac.uk/biomodels/BIOMD0000000461
https://www.ebi.ac.uk/biomodels/BIOMD0000000525
https://www.ebi.ac.uk/biomodels/BIOMD0000000521
https://www.ebi.ac.uk/biomodels/BIOMD0000000010
https://www.ebi.ac.uk/biomodels/BIOMD0000000029
https://www.ebi.ac.uk/biomodels/BIOMD0000000197
https://www.ebi.ac.uk/biomodels/BIOMD0000000272
https://www.ebi.ac.uk/biomodels/BIOMD0000000167
https://www.ebi.ac.uk/biomodels/BIOMD0000000262
https://www.ebi.ac.uk/biomodels/BIOMD0000000240
https://www.ebi.ac.uk/biomodels/BIOMD0000000037
https://www.ebi.ac.uk/biomodels/BIOMD0000000263
https://www.ebi.ac.uk/biomodels/BIOMD0000000641
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BioModel ID
reference

number
of nodes

organism
class systems (observed nodes pairs)

BIOMD0000000413 5 Plants (TIR1, auxinTIR1), (auxinTIR1, VENUS), (TIR1, VENUS)
BIOMD0000000624 7 Homo

sapiens
(APAP, APAPconj_Glu)

BIOMD0000000945 5 Homo
sapiens

(L_m, H_m)

BIOMD0000000459 4 Bacteria (IPTG, sigb)

Table F.1.: List of biological networks from Biomodels used in this study. The resulting
database includes 30 biological networks (one row per network) and a total of 432 systems,
which is defined as a (GRN model, behavior space (Z)) tuple and where the pairs of
observed nodes (used as behavior spaces) per network are given in the last column.

Figure F.3.: Wall implementation. Walls are implemented within the 2D space spanned by the 2 observed nodes. Within that space, we
can interpret the node activation levels 𝑦(0), · · · , 𝑦(𝑡) as the trajectory of a particle moving. In order to simulate the interaction with
“walls” in that space, several implementations could be envisaged. Within the accompanying software AutoDiscJax we propose two
possible variants: perfectly elastic collision (equivalent to a discontinuous force field) and some continuous force field variant. The
second variant (continuous force field) is employed for the main results of this paper. (a) For the first variant, we consider a perfectly
elastic collision without loss of kinetic energy. In that case, when the trajectory is touching the wall at position 𝑝 with speed 𝑣 = 𝑣⊥ + 𝑣∥
we deviate the trajectory in such a way that is “bouncing” against the wall such that 𝑣∥ is unchanged and 𝑣⊥ ← −𝑣⊥. To implement it,
we simply check whether the segment [𝑦(𝑡), 𝑦(𝑡 + Δ𝑡)] intersect the wall at each time step. It it does, we compute the intersection point
𝑝 and time 𝑡1, and set the activation level 𝑦(𝑡 + Δ𝑡) to 𝑝 + (Δ𝑡 − 𝑡1) ·

[
−𝑣⊥ + 𝑣∥

]
. (b) For the second variant, we implement walls as

energy barriers acting as a new force field in the environment, constraining the GRN traversal of the space. This time, instead of having a
discontinuous effect on the perpendicular speed 𝑣⊥ we define a wall force 𝑓⊥ = ±𝛼𝑣⊥ (+ if 𝑣⊥ is going toward wall, - otherwise ) and use
it to update the perpendicular component of the trajectory speed as 𝑣⊥ ← 𝑣⊥ + 𝑓⊥ ·Δ𝑇. Here 𝛼 ∈ [0,−2] is calculated as a function of the
distance between the point and the wall. As illustrated in the figure, this basically results in a stadium-shaped force field around the wall.

https://www.ebi.ac.uk/biomodels/BIOMD0000000413
https://www.ebi.ac.uk/biomodels/BIOMD0000000624
https://www.ebi.ac.uk/biomodels/BIOMD0000000945
https://www.ebi.ac.uk/biomodels/BIOMD0000000459
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Figure F.4.: Additional results complementing Figure 8.9 of the main paper. This figure shows the resulting trajectories after applying the
discovered stimuli-based intervention (shown in Figure 8.9-b) to the example RKIP-ERK signaling pathway [375] for the 6 “disease”
trajectories originally discovered in the behavioral catalog (shown in Figure 8.9-a). (a) For each trajectory (one per row), we see that the
intervention successfully re-sets the disease setpoint (startpoint of the trajectory shown in red in the orange region) to a healthy set-point
(endpoint of the trajectory shown in cyan in the green region). (b-c) Similar results are achieved despite adding push perturbations (b) or
wall perturbations (c) in addition to the stimuli-based intervention.



Bibliography

Here are the references in citation order.

[9] Sara Imari Walker and Paul C. W. Davies. “The Algorithmic Origins of Life”. In: Journal of The Royal

Society Interface 10.79 (2013), p. 20120869. doi: 10.1098/rsif.2012.0869
Cited on page 2

[10] Silvana S. S. Cardoso et al. “Chemobrionics: From Self-Assembled Material Architectures to the
Origin of Life”. In: Artificial Life 26.3 (2020), pp. 315–326. doi: 10.1162/artl_a_00323
Cited on page 2

[11] Jeremy P. Brockes and Anoop Kumar. “Comparative Aspects of Animal Regeneration”. In: Annual

Review of Cell and Developmental Biology 24.1 (2008), pp. 525–549. doi: 10.1146/annurev.cellbio.
24.110707.175336

Cited on page 2

[12] Richard C. Mohs and Nigel H. Greig. “Drug Discovery and Development: Role of Basic Biological
Research”. In: Alzheimer’s & Dementia: Translational Research & Clinical Interventions 3.4 (2017), pp. 651–
657. doi: 10.1016/j.trci.2017.10.005
Cited on page 2

[13] G. Pezzulo and M. Levin. “Re-Membering the Body: Applications of Computational Neuroscience to
the Top-down Control of Regeneration of Limbs and Other Complex Organs”. In: Integrative Biology:

Quantitative Biosciences from Nano to Macro 7.12 (2015), pp. 1487–1517. doi: 10.1039/c5ib00221d
Cited on pages 2, 122, 126

[14] Giovanni Pezzulo and Michael Levin. “Top-down Models in Biology: Explanation and Control of
Complex Living Systems above the Molecular Level”. In: Journal of The Royal Society Interface 13.124
(2016), p. 20160555. doi: 10.1098/rsif.2016.0555
Cited on pages 2, 122, 126

[15] Daniel P. Tabor et al. “Accelerating the Discovery of Materials for Clean Energy in the Era of Smart
Automation”. In: Nature Reviews Materials 3.5 (2018), pp. 5–20. doi: 10.1038/s41578-018-0005-z
Cited on page 2

[16] Mo R. Ebrahimkhani and Michael Levin. “Synthetic Living Machines: A New Window on Life”. In:
iScience 24.5 (2021), p. 102505. doi: 10.1016/j.isci.2021.102505
Cited on pages 2, 123

[17] Florian Häse, Loïc Roch, and Alán Aspuru-Guzik. “Next-Generation Experimentation with Self-
Driving Laboratories”. In: Trends in Chemistry 1 (2019). doi: 10.1016/j.trechm.2019.02.007
Cited on page 2

[18] Milad Abolhasani and Eugenia Kumacheva. “The Rise of Self-Driving Labs in Chemical and Materials
Sciences”. In: Nature Synthesis 2.6 (2023), pp. 483–492. doi: 10.1038/s44160-022-00231-0
Cited on page 2

[19] Hector G Martin et al. “Perspectives for Self-Driving Labs in Synthetic Biology”. In: Current Opinion

in Biotechnology 79 (2023), p. 102881. doi: 10.1016/j.copbio.2022.102881
Cited on page 2

[20] Bertrand Guillotin and Fabien Guillemot. “Cell Patterning Technologies for Organotypic Tissue
Fabrication”. In: Trends in Biotechnology 29.4 (2011), pp. 183–190. doi: 10.1016/j.tibtech.2010.12.
008

Cited on pages 2, 149

https://doi.org/10.1098/rsif.2012.0869
https://doi.org/10.1162/artl_a_00323
https://doi.org/10.1146/annurev.cellbio.24.110707.175336
https://doi.org/10.1146/annurev.cellbio.24.110707.175336
https://doi.org/10.1016/j.trci.2017.10.005
https://doi.org/10.1039/c5ib00221d
https://doi.org/10.1098/rsif.2016.0555
https://doi.org/10.1038/s41578-018-0005-z
https://doi.org/10.1016/j.isci.2021.102505
https://doi.org/10.1016/j.trechm.2019.02.007
https://doi.org/10.1038/s44160-022-00231-0
https://doi.org/10.1016/j.copbio.2022.102881
https://doi.org/10.1016/j.tibtech.2010.12.008
https://doi.org/10.1016/j.tibtech.2010.12.008


[21] J von Neumann. “Theory of Self-Reproducing Automata”. In: Mathematics of Computation 21 (1966),
p. 745
Cited on pages 3, 43

[22] Christopher G Langton. “Self-Reproduction in Cellular Automata”. In: Physica D: Nonlinear Phenomena

10.1-2 (1984), pp. 135–144
Cited on page 3

[23] Alan Mathison Turing. “The Chemical Basis of Morphogenesis”. In: Bulletin of mathematical biology

52.1-2 (1990), pp. 153–197
Cited on page 3

[24] G. Bard Ermentrout and Leah Edelstein-Keshet. “Cellular Automata Approaches to Biological
Modeling”. In: Journal of Theoretical Biology 160.1 (1993), pp. 97–133. doi: 10.1006/jtbi.1993.1007
Cited on page 3

[25] Philip Ball. The Self-Made Tapestry: Pattern Formation in Nature. Oxford University Press Oxford, 1999
Cited on page 3

[26] Shigeru Kondo and Takashi Miura. “Reaction-Diffusion Model as a Framework for Understanding
Biological Pattern Formation”. In: Science 329.5999 (2010), pp. 1616–1620. doi: 10.1126/science.
1179047

Cited on page 3

[27] Chad M Glen, Melissa L Kemp, and Eberhard O Voit. “Agent-Based Modeling of Morphogenetic
Systems: Advantages and Challenges”. In: PLoS computational biology 15.3 (2019)
Cited on page 3

[28] Stephen Wolfram. “Statistical Mechanics of Cellular Automata”. In: Reviews of Modern Physics 55.3
(1983), pp. 601–644. doi: 10.1103/RevModPhys.55.601
Cited on page 3

[29] Gérard Y. Vichniac. “Simulating Physics with Cellular Automata”. In: Physica D: Nonlinear Phenomena

10.1 (1984), pp. 96–116. doi: 10.1016/0167-2789(84)90253-7
Cited on page 3

[30] Lemont B. Kier, Paul G. Seybold, and Chao-Kun Cheng. Modeling Chemical Systems Using Cellular

Automata. Springer Science & Business Media, 2005
Cited on page 3

[31] Christopher G Langton. “Studying Artificial Life with Cellular Automata”. In: Physica D: Nonlinear

Phenomena. Proceedings of the Fifth Annual International Conference 22.1 (1986), pp. 120–149. doi:
10.1016/0167-2789(86)90237-X

Cited on page 3

[32] Craig W. Reynolds. “Flocks, Herds and Schools: A Distributed Behavioral Model”. In: Proceedings of

the 14th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’87. New York,
NY, USA: Association for Computing Machinery, 1987, pp. 25–34. doi: 10.1145/37401.37406
Cited on page 3

[33] Mark A. Bedau. “Artificial Life: Organization, Adaptation and Complexity from the Bottom Up”. In:
Trends in Cognitive Sciences 7.11 (2003), pp. 505–512. doi: 10.1016/j.tics.2003.09.012
Cited on page 3

[34] Kenneth O. Stanley and Risto Miikkulainen. “A Taxonomy for Artificial Embryogeny”. In: Artificial

Life 9.2 (2003), pp. 93–130. doi: 10.1162/106454603322221487
Cited on page 3

[35] William Gilpin. “Cellular Automata as Convolutional Neural Networks”. In: Physical Review E 100.3
(2019), p. 032402
Cited on pages 3, 47, 225

https://doi.org/10.1006/jtbi.1993.1007
https://doi.org/10.1126/science.1179047
https://doi.org/10.1126/science.1179047
https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.1016/0167-2789(84)90253-7
https://doi.org/10.1016/0167-2789(86)90237-X
https://doi.org/10.1145/37401.37406
https://doi.org/10.1016/j.tics.2003.09.012
https://doi.org/10.1162/106454603322221487


[36] Deepak Pathak, Christopher Lu, Trevor Darrell, Phillip Isola, and Alexei A Efros. “Learning to
Control Self-Assembling Morphologies: A Study of Generalization via Modularity”. In: Advances in

Neural Information Processing Systems. 2019, pp. 2292–2302
Cited on pages 3, 24, 30

[37] Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, Michael Levin, and Sam Greydanus.
“Thread: Differentiable Self-Organizing Systems”. In: Distill (2020). doi: 10.23915/distill.00027.
https://distill.pub/2020/selforg
Cited on pages 3, 23, 53, 106

[38] Bert Wang-Chak Chan. “Towards Large-Scale Simulations of Open-Ended Evolution in Continuous
Cellular Automata”. In: arXiv preprint arXiv:2304.05639 (2023)
Cited on page 3

[39] Bert Wang-Chak Chan. “Lenia-Biology of Artificial Life”. In: Complex Systems 28.3 (2019), pp. 251–286
Cited on pages 3, 11, 43–45, 48, 72, 83, 103, 104, 106, 109, 111, 208, 226, 237

[40] Bert Wang-Chak Chan. “Lenia and Expanded Universe”. In: The 2020 Conference on Artificial Life.
Online: MIT Press, 2020, pp. 221–229. doi: 10.1162/isal_a_00297
Cited on pages 3, 11, 43–46, 48, 63, 65, 87, 103–106, 109, 111, 202, 226, 237

[41] Christopher Lipinski and Andrew Hopkins. “Navigating Chemical Space for Biology and Medicine”.
In: Nature 432.7019 (2004), pp. 855–861
Cited on page 3

[42] Jack W Scannell, Alex Blanckley, Helen Boldon, and Brian Warrington. “Diagnosing the Decline in
Pharmaceutical R&D Efficiency”. In: Nature reviews Drug discovery 11.3 (2012), pp. 191–200
Cited on page 3

[43] Timothy S. Gardner. “Synthetic Biology: From Hype to Impact”. In: Trends in Biotechnology 31.3
(2013), pp. 123–125. doi: 10.1016/j.tibtech.2013.01.018
Cited on page 3

[44] Pablo Carbonell, Tĳana Radivojevic, and Héctor García Martín. “Opportunities at the Intersection
of Synthetic Biology, Machine Learning, and Automation”. In: ACS Synthetic Biology 8.7 (2019),
pp. 1474–1477. doi: 10.1021/acssynbio.8b00540
Cited on page 3

[45] Michael Levin. “Technological Approach to Mind Everywhere: An Experimentally-Grounded
Framework for Understanding Diverse Bodies and Minds”. In: Frontiers in Systems Neuroscience 16
(2022)
Cited on pages 3, 28, 49, 115, 126, 129, 140, 151, 181

[46] Chris G. Langton. “Computation at the Edge of Chaos: Phase Transitions and Emergent Computation”.
In: Physica D: Nonlinear Phenomena 42.1 (1990), pp. 12–37. doi: 10.1016/0167-2789(90)90064-V
Cited on pages 3, 20

[47] Petra Schneider and Gisbert Schneider. “De Novo Design at the Edge of Chaos”. In: Journal of

Medicinal Chemistry 59.9 (2016), pp. 4077–4086. doi: 10.1021/acs.jmedchem.5b01849
Cited on pages 3, 20

[48] A Corma, JM Serra, P Serna, S Valero, E Argente, and V Botti. “Optimisation of Olefin Epoxidation
Catalysts with the Application of High-Throughput and Genetic Algorithms Assisted by Artificial
Neural Networks (Softcomputing Techniques)”. In: Journal of Catalysis 229.2 (2005), pp. 513–524
Cited on pages 4, 24, 30

[49] Pavel Nikolaev, Daylond Hooper, Frederick Webber, Rahul Rao, Kevin Decker, Michael Krein,
Jason Poleski, Rick Barto, and Benji Maruyama. “Autonomy in Materials Research: A Case Study in
Carbon Nanotube Growth”. In: npj Computational Materials 2.1 (2016), pp. 1–6
Cited on pages 4, 24, 25, 30

https://doi.org/10.23915/distill.00027
https://doi.org/10.1162/isal_a_00297
https://doi.org/10.1016/j.tibtech.2013.01.018
https://doi.org/10.1021/acssynbio.8b00540
https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1021/acs.jmedchem.5b01849


[50] Dezhen Xue, Prasanna V Balachandran, John Hogden, James Theiler, Deqing Xue, and Turab
Lookman. “Accelerated Search for Materials with Targeted Properties by Adaptive Design”. In:
Nature communications 7.1 (2016), pp. 1–9
Cited on pages 4, 24, 30

[51] Vasilios Duros, Jonathan Grizou, Weimin Xuan, Zied Hosni, De-Liang Long, Haralampos N
Miras, and Leroy Cronin. “Human versus Robots in the Discovery and Crystallization of Gigantic
Polyoxometalates”. In: Angewandte Chemie 129.36 (2017), pp. 10955–10960
Cited on pages 4, 22, 30

[52] Ross D King, Kenneth E Whelan, Ffion M Jones, Philip GK Reiser, Christopher H Bryant, Stephen H
Muggleton, Douglas B Kell, and Stephen G Oliver. “Functional Genomic Hypothesis Generation
and Experimentation by a Robot Scientist”. In: Nature 427.6971 (2004), pp. 247–252
Cited on pages 4, 11, 13, 21, 30

[53] Tĳana Radivojević, Zak Costello, Kenneth Workman, and Hector Garcia Martin. “A Machine
Learning Automated Recommendation Tool for Synthetic Biology”. In: Nature communications 11.1
(2020), pp. 1–14
Cited on pages 4, 30

[54] Hiroaki Kitano. “Nobel Turing Challenge: Creating the Engine for Scientific Discovery”. In: npj

Systems Biology and Applications 7.1 (2021), p. 29. doi: 10.1038/s41540-021-00189-3
Cited on pages 5, 16, 18, 34, 35

[55] Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer. “Autotelic Agents with
Intrinsically Motivated Goal-Conditioned Reinforcement Learning: A Short Survey”. In: Journal of

Artificial Intelligence Research 74 (2022), pp. 1159–1199. doi: 10.1613/jair.1.13554
Cited on pages 5, 28, 31, 33, 40, 41

[56] Vieri Giuliano Santucci, Pierre-Yves Oudeyer, Andrew Barto, and Gianluca Baldassarre. “Editorial:
Intrinsically Motivated Open-Ended Learning in Autonomous Robots”. In: Frontiers in Neurorobotics

13 (2020)
Cited on pages 5, 32

[57] Adrien Baranes and Pierre-Yves Oudeyer. “Active Learning of Inverse Models with Intrinsically
Motivated Goal Exploration in Robots”. In: Robotics and Autonomous Systems 61.1 (2013), pp. 49–73.
doi: 10.1016/j.robot.2012.05.008
Cited on pages 5, 25–27, 32, 33, 40, 41, 58, 71, 103, 128, 132, 145

[58] Sébastien Forestier, Rémy Portelas, Yoan Mollard, and Pierre-Yves Oudeyer. “Intrinsically Motivated
Goal Exploration Processes with Automatic Curriculum Learning”. In: arXiv preprint arXiv:1708.02190

(2017)
Cited on pages 5, 26, 27, 32, 40, 41, 71, 103

[59] Cédric Colas, Laetitia Teodorescu, Pierre-Yves Oudeyer, Xingdi Yuan, and Marc-Alexandre Côté.
Augmenting Autotelic Agents with Large Language Models. 2023. doi: 10.48550/arXiv.2305.12487
Cited on pages 5, 33, 180

[60] Ross D King, Jem Rowland, Stephen G Oliver, Michael Young, Wayne Aubrey, Emma Byrne, Maria
Liakata, Magdalena Markham, Pinar Pir, Larisa N Soldatova, et al. “The Automation of Science”. In:
Science (New York, N.Y.) 324.5923 (2009), pp. 85–89
Cited on pages 11, 13, 21

[61] Sam Kriegman, Douglas Blackiston, Michael Levin, and Josh Bongard. “A Scalable Pipeline for
Designing Reconfigurable Organisms”. In: Proceedings of the National Academy of Sciences 117.4 (2020),
pp. 1853–1859. doi: 10.1073/pnas.1910837117
Cited on pages 11, 13, 22, 30, 123, 183

[62] Douglas Blackiston, Emma Lederer, Sam Kriegman, Simon Garnier, Joshua Bongard, and Michael
Levin. “A Cellular Platform for the Development of Synthetic Living Machines”. In: Science Robotics

6.52 (2021), eabf1571. doi: 10.1126/scirobotics.abf1571
Cited on pages 11, 13, 23, 183

https://doi.org/10.1038/s41540-021-00189-3
https://doi.org/10.1613/jair.1.13554
https://doi.org/10.1016/j.robot.2012.05.008
https://doi.org/10.48550/arXiv.2305.12487
https://doi.org/10.1073/pnas.1910837117
https://doi.org/10.1126/scirobotics.abf1571


[63] Sam Kriegman, Douglas Blackiston, Michael Levin, and Josh Bongard. “Kinematic Self-Replication
in Reconfigurable Organisms”. In: Proceedings of the National Academy of Sciences 118.49 (2021),
e2112672118. doi: 10.1073/pnas.2112672118
Cited on pages 11, 13, 23, 183

[64] Jonathan Grizou, Laurie J. Points, Abhishek Sharma, and Leroy Cronin. “A Curious Formulation
Robot Enables the Discovery of a Novel Protocell Behavior”. In: Science Advances 6.5 (2020), eaay4237.
doi: 10.1126/sciadv.aay4237
Cited on pages 11, 13, 25, 27, 28, 30, 50, 52, 53, 63, 71, 103, 128, 132, 184

[65] Francesco Ruscelli, Arturo Laurenzi, Nikos G. Tsagarakis, and Enrico Mingo Hoffman. “Horizon: A
Trajectory Optimization Framework for Robotic Systems”. In: Frontiers in Robotics and AI 9 (2022)
Cited on page 15

[66] Nirosha J. Murugan, Daniel H. Kaltman, Paul H. Jin, Melanie Chien, Ramses Martinez, Cuong Q.
Nguyen, Anna Kane, Richard Novak, Donald E. Ingber, and Michael Levin. “Mechanosensation
Mediates Long-Range Spatial Decision-Making in an Aneural Organism”. In: Advanced Materials

(Deerfield Beach, Fla.) 33.34 (2021), e2008161. doi: 10.1002/adma.202008161
Cited on pages 15, 124

[67] Tom Leinster. Entropy and Diversity: The Axiomatic Approach. 2022. doi: 10.48550/arXiv.2012.02113.
Comment: Book, viii + 442 pages. Version 3: small number of minor corrections
Cited on page 16

[68] Pierre Delarboulas, Marc Schoenauer, and Michèle Sebag. Open-Ended Evolutionary Robotics: An

Information Theoretic Approach. 2010
Cited on page 16

[69] Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. “Provably Efficient Maximum Entropy
Exploration”. In: Proceedings of the 36th International Conference on Machine Learning. PMLR, 2019,
pp. 2681–2691
Cited on page 16

[70] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
“Unifying Count-Based Exploration and Intrinsic Motivation”. In: Advances in Neural Information

Processing Systems. 2016, pp. 1471–1479
Cited on pages 16, 27

[71] Fabien Benureau. Self Exploration of Sensorimotor Spaces in Robots. Doctoral Dissertation, Université
de Bordeaux
Cited on pages 16, 17, 20, 134, 249, 250

[72] Justin K Pugh, Lisa B Soros, Paul A Szerlip, and Kenneth O Stanley. “Confronting the Challenge
of Quality Diversity”. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary

Computation. 2015, pp. 967–974
Cited on pages 16, 17, 71, 249

[73] Samuel M Scheiner. “A Compilation of and Typology for Abundance-, Phylogenetic-and Functional-
Based Diversity Metrics”. In: bioRxiv : the preprint server for biology (2019), p. 530782
Cited on pages 17, 249

[74] Alexandre Péré, Sébastien Forestier, Olivier Sigaud, and Pierre-Yves Oudeyer. “Unsupervised
Learning of Goal Spaces for Intrinsically Motivated Goal Exploration”. In: ICLR2018 - 6th International

Conference on Learning Representations. Vancouver, Canada, 2018
Cited on pages 17, 33, 40, 58, 62

[75] Fabien C. Y. Benureau and Pierre-Yves Oudeyer. “Behavioral Diversity Generation in Autonomous
Exploration through Reuse of Past Experience”. In: Frontiers in Robotics and AI 3 (2016)
Cited on page 17

https://doi.org/10.1073/pnas.2112672118
https://doi.org/10.1126/sciadv.aay4237
https://doi.org/10.1002/adma.202008161
https://doi.org/10.48550/arXiv.2012.02113


[76] Lisa B Soros, Joel Lehman, and Kenneth O. Stanley. Open-Endedness: The Last Grand Challenge You’ve

Never Heard Of. https://www.oreilly.com/radar/open-endedness-the-last-grand-challenge-youve-
never-heard-of/. 2017
Cited on pages 18, 48, 75, 122

[77] Kenneth O. Stanley. “Why Open-Endedness Matters”. In: Artificial Life 25.3 (2019), pp. 232–235. doi:
10.1162/artl_a_00294

Cited on pages 18, 116

[78] John Jumper et al. “Highly Accurate Protein Structure Prediction with AlphaFold”. In: Nature

596.7873 (2021), pp. 583–589. doi: 10.1038/s41586-021-03819-2
Cited on page 18

[79] Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. OMNI: Open-endedness via Models of

Human Notions of Interestingness. 2023. doi: 10.48550/arXiv.2306.01711. Comment: 33 pages, 22
figures
Cited on pages 19, 33

[80] Stephen Wolfram. “Universality and Complexity in Cellular Automata”. In: Physica D: Nonlinear

Phenomena (1984), p. 37
Cited on page 20

[81] Charles M Macal and Michael J North. “Agent-Based Modeling and Simulation”. In: Proceedings of

the 2009 Winter Simulation Conference (WSC). IEEE, 2009, pp. 86–98
Cited on page 20

[82] Ettore Randazzo, Eyvind Niklasson, and Alexander Mordvintsev. “MPLP: Learning a Message Pass-
ing Learning Protocol”. In: arXiv:2007.00970 [cs, stat] (2020). Comment: Code at https://github.com/google-
research/self-organising-systems/tree/master/mplp; code base link fixed
Cited on page 20

[83] James Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter Optimization”. In: Journal

of Machine Learning Research 13.10 (2012), pp. 281–305
Cited on page 20

[84] Selim M Senkan. “High-Throughput Screening of Solid-State Catalyst Libraries”. In: Nature 394.6691
(1998), pp. 350–353
Cited on page 20

[85] Stefano Curtarolo, Gus LW Hart, Marco Buongiorno Nardelli, Natalio Mingo, Stefano Sanvito,
and Ohad Levy. “The High-Throughput Highway to Computational Materials Design”. In: Nature

materials 12.3 (2013), pp. 191–201
Cited on page 20

[86] Jürgen Bajorath. “Integration of Virtual and High-Throughput Screening”. In: Nature Reviews Drug

Discovery 1.11 (2002), pp. 882–894
Cited on page 20

[87] Ricardo Macarron, Martyn N Banks, Dejan Bojanic, David J Burns, Dragan A Cirovic, Tina Garyantes,
Darren VS Green, Robert P Hertzberg, William P Janzen, Jeff W Paslay, et al. “Impact of High-
Throughput Screening in Biomedical Research”. In: Nature reviews Drug discovery 10.3 (2011), pp. 188–
195
Cited on page 20

[88] Allen P. Liu, Ovĳit Chaudhuri, and Sapun H. Parekh. “New Advances in Probing Cell–Extracellular
Matrix Interactions”. In: Integrative Biology 9.5 (2017), pp. 383–405
Cited on page 20

[89] Ovĳit Chaudhuri, Justin Cooper-White, Paul A. Janmey, David J. Mooney, and Vivek B. Shenoy.
“Effects of Extracellular Matrix Viscoelasticity on Cellular Behaviour”. In: Nature 584.7822 (2020),
pp. 535–546. doi: 10.1038/s41586-020-2612-2
Cited on page 20

https://doi.org/10.1162/artl_a_00294
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.48550/arXiv.2306.01711
https://doi.org/10.1038/s41586-020-2612-2


[90] Lilian Weng. “Learning with Not Enough Data Part 2: Active Learning”. In: lilianweng.github.io

(2022)
Cited on page 22

[91] Burr Settles. “Active Learning Literature Survey”. In: Computer Sciences Technical Report 1648,

University of Wisconsin-Madison ()
Cited on page 22

[92] Yuriy Sverchkov and Mark Craven. “A Review of Active Learning Approaches to Experimental
Design for Uncovering Biological Networks”. In: PLOS Computational Biology 13.6 (2017). Ed. by
Haiyan Huang, e1005466. doi: 10.1371/journal.pcbi.1005466
Cited on page 22

[93] Turab Lookman, Prasanna V. Balachandran, Dezhen Xue, and Ruihao Yuan. “Active Learning in
Materials Science with Emphasis on Adaptive Sampling Using Uncertainties for Targeted Design”.
In: npj Computational Materials 5.1 (2019), pp. 1–17. doi: 10.1038/s41524-019-0153-8
Cited on page 22

[94] Jie Yu, Xutong Li, and Mingyue Zheng. “Current Status of Active Learning for Drug Discovery”. In:
Artificial Intelligence in the Life Sciences 1 (2021), p. 100023. doi: 10.1016/j.ailsci.2021.100023
Cited on page 22

[95] David Lowell, Zachary C. Lipton, and Byron C. Wallace. Practical Obstacles to Deploying Active

Learning. 2019. doi: 10.48550/arXiv.1807.04801
Cited on page 22

[96] Josh Attenberg and Foster Provost. “Inactive Learning? Difficulties Employing Active Learning in
Practice”. In: ACM SIGKDD Explorations Newsletter 12.2 (2011), pp. 36–41. doi: 10.1145/1964897.
1964906

Cited on page 22

[97] Melanie Mitchell, James P Crutchfield, Rajarshi Das, et al. “Evolving Cellular Automata with
Genetic Algorithms: A Review of Recent Work”. In: Proceedings of the First International Conference on

Evolutionary Computation and Its Applications (EvCA’96). Vol. 8. Moscow, 1996
Cited on pages 23, 30

[98] Gianluca Baldassarre, Vito Trianni, Michael Bonani, Francesco Mondada, Marco Dorigo, and Stefano
Nolfi. “Self-Organized Coordinated Motion in Groups of Physically Connected Robots”. In: IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 37.1 (2007), pp. 224–239
Cited on pages 23, 30

[99] Vito Trianni and Stefano Nolfi. “Self-Organizing Sync in a Robotic Swarm: A Dynamical System
View”. In: IEEE Transactions on Evolutionary Computation 13.4 (2009), pp. 722–741
Cited on pages 23, 30

[100] Miguel Duarte, Vasco Costa, Jorge Gomes, Tiago Rodrigues, Fernando Silva, Sancho Moura Oliveira,
and Anders Lyhne Christensen. “Evolution of Collective Behaviors for a Real Swarm of Aquatic
Surface Robots”. In: PloS one 11.3 (2016), e0151834
Cited on pages 23, 30

[101] Nathanael Aubert-Kato, Charles Fosseprez, Guillaume Gines, Ibuki Kawamata, Huy Dinh, Leo Caze-
nille, Andre Estevez-Tores, Masami Hagiya, Yannick Rondelez, and Nicolas Bredeche. “Evolutionary
Optimization of Self-Assembly in a Swarm of Bio-Micro-Robots”. In: Proceedings of the Genetic and

Evolutionary Computation Conference. 2017, pp. 59–66
Cited on pages 23, 26, 30

[102] Jason E Kreutz, Anton Shukhaev, Wenbin Du, Sasha Druskin, Olafs Daugulis, and Rustem F
Ismagilov. “Evolution of Catalysts Directed by Genetic Algorithms in a Plug-Based Microfluidic
Device Tested with Oxidation of Methane by Oxygen”. In: Journal of the American Chemical Society

132.9 (2010), pp. 3128–3132
Cited on pages 23, 30

https://doi.org/10.1371/journal.pcbi.1005466
https://doi.org/10.1038/s41524-019-0153-8
https://doi.org/10.1016/j.ailsci.2021.100023
https://doi.org/10.48550/arXiv.1807.04801
https://doi.org/10.1145/1964897.1964906
https://doi.org/10.1145/1964897.1964906


[103] Daniel Salley, Graham Keenan, Jonathan Grizou, Abhishek Sharma, Sergio Martín, and Leroy Cronin.
“A Nanomaterials Discovery Robot for the Darwinian Evolution of Shape Programmable Gold
Nanoparticles”. In: Nature Communications 11.1 (2020), p. 2771. doi: 10.1038/s41467-020-16501-4
Cited on pages 23, 30

[104] Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and Michael Levin. “Growing Neural
Cellular Automata”. In: Distill (2020). doi:10.23915/distill.00023. https://distill.pub/2020/growing-
ca
https://distill.pub/2020/growing-ca
Cited on pages 23, 30, 46, 47, 106, 113, 226

[105] Shyam Sudhakaran, Djordje Grbic, Siyan Li, Adam Katona, Elias Najarro, Claire Glanois, and
Sebastian Risi. “Growing 3D Artefacts and Functional Machines with Neural Cellular Automata”.
In: ALIFE 2021: The 2021 Conference on Artificial Life. MIT Press, 2021. doi: 10.1162/isal_a_00451
Cited on page 23

[106] Eyvind Niklasson, Alexander Mordvintsev, Ettore Randazzo, and Michael Levin. “Self-Organising
Textures”. In: Distill 6.2 (2021), e00027.003. doi: 10.23915/distill.00027.003
Cited on pages 23, 106

[107] Ettore Randazzo, Alexander Mordvintsev, Eyvind Niklasson, Michael Levin, and Sam Greydanus.
“Self-Classifying MNIST Digits”. In: Distill 5.8 (2020), e00027.002. doi: 10.23915/distill.00027.
002

Cited on pages 23, 106

[108] Mark Sandler, Andrey Zhmoginov, Liangcheng Luo, Alexander Mordvintsev, Ettore Randazzo, and
Blaise Agúera y Arcas. Image Segmentation via Cellular Automata. 2020. doi: 10.48550/arXiv.2008.
04965

Cited on page 23

[109] Samuel Schoenholz and Ekin Dogus Cubuk. “JAX MD: A Framework for Differentiable Physics”. In:
Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 11428–
11441
Cited on pages 23, 24, 172

[110] Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan Hoyer.
“Machine Learning–Accelerated Computational Fluid Dynamics”. In: Proceedings of the National

Academy of Sciences 118.21 (2021), e2101784118. doi: 10.1073/pnas.2101784118
Cited on page 23

[111] Neythen J. Treloar, Alex J. H. Fedorec, Brian Ingalls, and Chris P. Barnes. “Deep Reinforcement
Learning for the Control of Microbial Co-Cultures in Bioreactors”. In: PLOS Computational Biology

16.4 (2020), e1007783. doi: 10.1371/journal.pcbi.1007783
Cited on pages 23, 30

[112] Jonas Degrave et al. “Magnetic Control of Tokamak Plasmas through Deep Reinforcement Learning”.
In: Nature 602.7897 (2022), pp. 414–419. doi: 10.1038/s41586-021-04301-9
Cited on pages 23, 30

[113] Zhenpeng Zhou, Xiaocheng Li, and Richard N. Zare. “Optimizing Chemical Reactions with
Deep Reinforcement Learning”. In: ACS Central Science 3.12 (2017), pp. 1337–1344. doi: 10.1021/
acscentsci.7b00492

Cited on pages 23, 30

[114] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. “Taking the
Human Out of the Loop: A Review of Bayesian Optimization”. In: Proceedings of the IEEE 104.1 (2016),
pp. 148–175. doi: 10.1109/JPROC.2015.2494218
Cited on page 24

[115] Florian Hase, Loïc M Roch, Christoph Kreisbeck, and Alán Aspuru-Guzik. “Phoenics: A Bayesian
Optimizer for Chemistry”. In: ACS central science 4.9 (2018), pp. 1134–1145
Cited on pages 24, 30

https://doi.org/10.1038/s41467-020-16501-4
https://doi.org/10.23915/distill.00023
https://doi.org/10.1162/isal_a_00451
https://doi.org/10.23915/distill.00027.003
https://doi.org/10.23915/distill.00027.002
https://doi.org/10.23915/distill.00027.002
https://doi.org/10.48550/arXiv.2008.04965
https://doi.org/10.48550/arXiv.2008.04965
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.1371/journal.pcbi.1007783
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1021/acscentsci.7b00492
https://doi.org/10.1021/acscentsci.7b00492
https://doi.org/10.1109/JPROC.2015.2494218


[116] Melodie Christensen et al. “Data-Science Driven Autonomous Process Optimization”. In: Communi-

cations Chemistry 4.1 (2021), pp. 1–12. doi: 10.1038/s42004-021-00550-x
Cited on pages 24, 30

[117] Benjamin J Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus I Martinez
Alvarado, Jacob M Janey, Ryan P Adams, and Abigail G Doyle. “Bayesian Reaction Optimization as
a Tool for Chemical Synthesis”. In: Nature 590.7844 (2021), pp. 89–96
Cited on pages 24, 30

[118] Paul B Wigley, Patrick J Everitt, Anton van den Hengel, John W Bastian, Mahasen A Sooriyabandara,
Gordon D McDonald, Kyle S Hardman, Ciaron D Quinlivan, P Manju, Carlos CN Kuhn, et al. “Fast
Machine-Learning Online Optimization of Ultra-Cold-Atom Experiments”. In: Scientific reports 6.1
(2016), pp. 1–6
Cited on pages 24, 30

[119] Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy
Colwell. “Model-Based Reinforcement Learning for Biological Sequence Design”. In: International

Conference on Learning Representations. 2019
Cited on page 24

[120] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. “Curiosity-Driven Exploration
by Self-Supervised Prediction”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops. 2017, pp. 16–17
Cited on pages 24, 27, 79

[121] Pierre-Yves Oudeyer and Frederic Kaplan. “What Is Intrinsic Motivation? A Typology of Computa-
tional Approaches”. In: Frontiers in Neurorobotics 1 (2007)
Cited on pages 24, 27

[122] Luca A. Thiede, Mario Krenn, AkshatKumar Nigam, and Alán Aspuru-Guzik. “Curiosity in Exploring
Chemical Spaces: Intrinsic Rewards for Molecular Reinforcement Learning”. In: Machine Learning:

Science and Technology 3.3 (2022), p. 035008. doi: 10.1088/2632-2153/ac7ddc
Cited on pages 24, 25, 27, 30

[123] Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik.
“Self-Referencing Embedded Strings (SELFIES): A 100% Robust Molecular String Representation”.
In: Machine Learning: Science and Technology 1.4 (2020), p. 045024. doi: 10.1088/2632-2153/aba947
Cited on page 24

[124] Germán Kruszewski and Tomas Mikolov. “Combinatory Chemistry: Towards a Simple Model
of Emergent Evolution”. In: ALIFE 2020: The 2020 Conference on Artificial Life. MIT Press, 2020,
pp. 411–419. doi: 10.1162/isal_a_00258
Cited on page 24

[125] P. Dittrich, J. Ziegler, and W. Banzhaf. “Artificial Chemistries–a Review”. In: Artificial Life 7.3 (2001),
pp. 225–275. doi: 10.1162/106454601753238636
Cited on page 24

[126] J. Lehman and Kenneth O. Stanley. “Exploiting Open-Endedness to Solve Problems Through the
Search for Novelty”. In: IEEE Symposium on Artificial Life. 2008. [TLDR] Decoupling the idea of
open-ended search from only artificial life worlds, the raw search for novelty can be applied to
real world problems and significantly outperforms objective-based search in the deceptive maze
navigation task.
Cited on pages 26, 71, 132

[127] Joel Lehman and Kenneth O. Stanley. “Abandoning Objectives: Evolution Through the Search for
Novelty Alone”. In: Evolutionary Computation 19.2 (2011), pp. 189–223. doi: 10.1162/EVCO_a_00025
Cited on pages 26, 71, 116, 132

[128] Jorge Gomes, Paulo Urbano, and Anders Lyhne Christensen. “Evolution of Swarm Robotics Systems
with Novelty Search”. In: Swarm Intelligence 7.2 (2013), pp. 115–144
Cited on pages 26, 27, 30

https://doi.org/10.1038/s42004-021-00550-x
https://doi.org/10.1088/2632-2153/ac7ddc
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1162/isal_a_00258
https://doi.org/10.1162/106454601753238636
https://doi.org/10.1162/EVCO_a_00025


[129] Leo Cazenille, Nicolas Bredeche, and Nathanael Aubert-Kato. “Exploring Self-Assembling Behaviors
in a Swarm of Bio-micro-robots Using Surrogate-Assisted MAP-Elites”. In: 2019 IEEE Symposium Series

on Computational Intelligence (SSCI). 2019, pp. 238–246. doi: 10.1109/SSCI44817.2019.9003047
Cited on pages 26, 27, 30, 71

[130] Jean-Baptiste Mouret and Jeff Clune. Illuminating Search Spaces by Mapping Elites. 2015. doi: 10.48550/
arXiv.1504.04909. Comment: Early draft
Cited on page 26

[131] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. “Robots That Can Adapt like
Animals”. In: Nature 521.7553 (2015), pp. 503–507. doi: 10.1038/nature14422
Cited on pages 26, 71, 132

[132] Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. “Quality Diversity: A New Frontier for
Evolutionary Computation”. In: Frontiers in Robotics and AI 3 (2016)
Cited on pages 26, 71, 132

[133] Alexandre Chenu, Nicolas Perrin-Gilbert, Stéphane Doncieux, and Olivier Sigaud. “Selection-
Expansion: A Unifying Framework for Motion-Planning and Diversity Search Algorithms”. In:
arXiv:2104.04768 [cs] (2021)
Cited on pages 26, 52, 53

[134] Stephane Doncieux, Alban Laflaquière, and Alexandre Coninx. “Novelty Search: A Theoretical
Perspective”. In: Proceedings of the Genetic and Evolutionary Computation Conference. Prague Czech
Republic: ACM, 2019, pp. 99–106. doi: 10.1145/3321707.3321752
Cited on pages 26, 134

[135] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. “GEP-PG: Decoupling Exploration and
Exploitation in Deep Reinforcement Learning Algorithms”. In: Proceedings of the 35th International

Conference on Machine Learning. PMLR, 2018, pp. 1039–1048
Cited on pages 27, 33, 143

[136] Kei Terayama, Masato Sumita, Ryo Tamura, Daniel T. Payne, Mandeep K. Chahal, Shinsuke Ishihara,
and Koji Tsuda. “Pushing Property Limits in Materials Discovery via Boundless Objective-Free
Exploration”. In: Chemical Science 11.23 (2020), pp. 5959–5968. doi: 10.1039/D0SC00982B
Cited on pages 27, 28, 30, 71

[137] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: arXiv:1312.6114 (2013)
Cited on pages 28, 33, 58, 60, 61, 75, 76, 158, 212

[138] Pamela Lyon, Fred Keĳzer, Detlev Arendt, and Michael Levin. Reframing Cognition: Getting down to

Biological Basics. 2021
Cited on pages 28, 49, 101

[139] Martin J. Falk, Finnegan D. Roach, William Gilpin, and Arvind Murugan. Curiosity-Driven Search for

Novel Non-Equilibrium Behaviors. 2023
Cited on pages 28, 30, 68, 98, 103, 128, 132, 184

[140] Shyam Sudhakaran, Elias Najarro, and Sebastian Risi. Goal-Guided Neural Cellular Automata: Learning

to Control Self-Organising Systems. 2022. doi: 10.48550/arXiv.2205.06806
Cited on pages 28, 30

[141] Mohammad HamediRad, Ran Chao, Scott Weisberg, Jiazhang Lian, Saurabh Sinha, and Huimin
Zhao. “Towards a Fully Automated Algorithm Driven Platform for Biosystems Design”. In: Nature

communications 10.1 (2019), pp. 1–10
Cited on page 30

[142] Jie Zhang, Søren D Petersen, Tĳana Radivojevic, Andrés Ramirez, Andrés Pérez-Manríquez, Eduardo
Abeliuk, Benjamín J Sánchez, Zak Costello, Yu Chen, Michael J Fero, et al. “Combining Mecha-
nistic and Machine Learning Models for Predictive Engineering and Optimization of Tryptophan
Metabolism”. In: Nature communications 11.1 (2020), pp. 1–13
Cited on page 30

https://doi.org/10.1109/SSCI44817.2019.9003047
https://doi.org/10.48550/arXiv.1504.04909
https://doi.org/10.48550/arXiv.1504.04909
https://doi.org/10.1038/nature14422
https://doi.org/10.1145/3321707.3321752
https://doi.org/10.1039/D0SC00982B
https://doi.org/10.48550/arXiv.2205.06806


[143] Andrew J Elliot and James W Fryer. “The Goal Construct in Psychology”. In: Handbook of motivation

science 18 (2008), pp. 235–250
Cited on page 31

[144] James Y Shah and Wendi L Gardner. Handbook of Motivation Science. Guilford Press, 2008
Cited on page 31

[145] Wesley P Clawson and Michael Levin. “Endless Forms Most Beautiful 2.0: Teleonomy and the
Bioengineering of Chimaeric and Synthetic Organisms”. In: Biological Journal of the Linnean Society

(2022), blac073. doi: 10.1093/biolinnean/blac073
Cited on pages 31, 126, 181

[146] Junyi Chu and Laura Schulz. “Exploratory Play, Rational Action, and Efficient Search.” In: CogSci.
2020
Cited on page 31

[147] D. E. Berlyne. “Curiosity and Exploration”. In: Science (New York, N.Y.) 153.3731 (1966), pp. 25–33.
doi: 10.1126/science.153.3731.25
Cited on page 31

[148] Mihaly Csikszentmihalhi. Finding Flow: The Psychology of Engagement with Everyday Life. Hachette
UK, 2020
Cited on page 31

[149] Alison Gopnik, Andrew N Meltzoff, and Patricia K Kuhl. The Scientist in the Crib: Minds, Brains, and

How Children Learn. William Morrow & Co, 1999
Cited on pages 31, 35

[150] Celeste Kidd and Benjamin Y Hayden. “The Psychology and Neuroscience of Curiosity”. In: Neuron

88.3 (2015), pp. 449–460
Cited on page 31

[151] Pierre-Yves Oudeyer and Linda B. Smith. “How Evolution May Work Through Curiosity-Driven
Developmental Process”. In: Topics in Cognitive Science 8.2 (2016), pp. 492–502. doi: 10.1111/tops.
12196

Cited on pages 31, 32

[152] Jacqueline Gottlieb and Pierre-Yves Oudeyer. “Towards a Neuroscience of Active Sampling and
Curiosity”. In: Nature Reviews Neuroscience 19.12 (2018), pp. 758–770
Cited on page 31

[153] Michael Tomasello. The Cultural Origins of Human Cognition. Harvard university press, 2009
Cited on page 32

[154] Michael Tomasello, Malinda Carpenter, Josep Call, Tanya Behne, and Henrike Moll. “Understanding
and Sharing Intentions: The Origins of Cultural Cognition”. In: Behavioral and brain sciences 28.5
(2005), pp. 675–691
Cited on page 32

[155] Michael Tomasello. Becoming Human: A Theory of Ontogeny. Harvard University Press, 2019
Cited on page 32

[156] Kelly Brewer, Nancy Pollock, and F Virginia Wright. “Addressing the Challenges of Collaborative
Goal Setting with Children and Their Families”. In: Physical & Occupational Therapy in Pediatrics 34.2
(2014), pp. 138–152
Cited on page 32

[157] Pierre-Yves Oudeyer and Frédéric Kaplan. “Discovering Communication”. In: Connection Science

18.2 (2006), pp. 189–206. doi: 10.1080/09540090600768567
Cited on pages 32, 33

[158] Pierre-Yves Oudeyer, Frederic Kaplan, Verena Hafner, and Andrew Whyte. “The Playground
Experiment: Task-independent Development of a Curious Robot”. In: Proceedings of the AAAI Spring

Symposium on Developmental Robotics (2005)
Cited on pages 32, 33

https://doi.org/10.1093/biolinnean/blac073
https://doi.org/10.1126/science.153.3731.25
https://doi.org/10.1111/tops.12196
https://doi.org/10.1111/tops.12196
https://doi.org/10.1080/09540090600768567


[159] Clément Moulin-Frier, Sao Mai Nguyen, and Pierre-Yves Oudeyer. “Self-Organization of Early Vocal
Development in Infants and Machines: The Role of Intrinsic Motivation”. In: Frontiers in Psychology 4
(2014)
Cited on page 32

[160] Alexandr Ten, Pierre-Yves Oudeyer, and Clément Moulin-Frier. “Curiosity-Driven Exploration”. In:
The Drive for Knowledge: The Science of Human Information Seeking (2022), p. 53
Cited on page 32

[161] Alexandr Ten, Pramod Kaushik, Pierre-Yves Oudeyer, and Jacqueline Gottlieb. “Humans Monitor
Learning Progress in Curiosity-Driven Exploration”. In: Nature Communications 12.1 (2021), p. 5972.
doi: 10.1038/s41467-021-26196-w
Cited on page 32

[162] Georg Martius, Ralf Der, and Nihat Ay. “Information Driven Self-Organization of Complex Robotic
Behaviors”. In: PLOS ONE 8.5 (2013), e63400. doi: 10.1371/journal.pone.0063400
Cited on page 33

[163] Matthias Rolf and Jochen J. Steil. “Efficient Exploratory Learning of Inverse Kinematics on a Bionic
Elephant Trunk”. In: IEEE Transactions on Neural Networks and Learning Systems 25.6 (2014), pp. 1147–
1160. doi: 10.1109/TNNLS.2013.2287890
Cited on page 33

[164] Sao Mai Nguyen and Pierre-Yves Oudeyer. “Socially Guided Intrinsic Motivation for Robot Learning
of Motor Skills”. In: Autonomous Robots 36.3 (2014), p. 273. doi: 10.1007/s10514-013-9339-y
Cited on pages 33, 92

[165] Luca Lonini, Sébastien Forestier, Céline Teulière, Yu Zhao, Bertram Shi, and Jochen Triesch. “Robust
Active Binocular Vision through Intrinsically Motivated Learning”. In: Frontiers in Neurorobotics 7
(2013)
Cited on page 33

[166] Sébastien Forestier and Pierre-Yves Oudeyer. “Modular Active Curiosity-Driven Discovery of Tool
Use”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016,
pp. 3965–3972
Cited on pages 33, 39, 41, 58

[167] Open Ended Learning Team et al. Open-Ended Learning Leads to Generally Capable Agents. 2021
Cited on pages 33, 102, 108

[168] Adrien Laversanne-Finot, Alexandre Pere, and Pierre-Yves Oudeyer. “Curiosity Driven Exploration
of Learned Disentangled Goal Spaces”. In: ed. by Aude Billard, Anca Dragan, Jan Peters, and Jun
Morimoto. Vol. 87. Proceedings of Machine Learning Research. PMLR, 2018, pp. 487–504
Cited on pages 33, 40, 58, 60, 62, 65, 71, 79

[169] Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. “Visual
Reinforcement Learning with Imagined Goals”. In: Advances in Neural Information Processing Systems.
2018, pp. 9191–9200
Cited on pages 33, 40, 61, 79

[170] Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. “Skew-Fit:
State-covering Self-Supervised Reinforcement Learning”. In: arXiv preprint arXiv:1903.03698 (2019)
Cited on pages 33, 40, 41, 61, 79

[171] Grgur Kovač, Adrien Laversanne-Finot, and Pierre-Yves Oudeyer. “GRIMGEP: Learning Progress for
Robust Goal Sampling in Visual Deep Reinforcement Learning”. In: IEEE Transactions on Cognitive

and Developmental Systems (2022), pp. 1–1. doi: 10.1109/TCDS.2022.3216911
Cited on pages 33, 41

[172] Cédric Colas, Pierre Fournier, Olivier Sigaud, Mohamed Chetouani, and Pierre-Yves Oudeyer.
“CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning”. In: arXiv preprint

arXiv:1810.06284 (2018)
Cited on pages 33, 103

https://doi.org/10.1038/s41467-021-26196-w
https://doi.org/10.1371/journal.pone.0063400
https://doi.org/10.1109/TNNLS.2013.2287890
https://doi.org/10.1007/s10514-013-9339-y
https://doi.org/10.1109/TCDS.2022.3216911


[173] Cédric Colas, Tristan Karch, Nicolas Lair, Jean-Michel Dussoux, Clément Moulin-Frier, Peter
Dominey, and Pierre-Yves Oudeyer. “Language as a Cognitive Tool to Imagine Goals in Curiosity
Driven Exploration”. In: Advances in Neural Information Processing Systems. Vol. 33. Curran Associates,
Inc., 2020, pp. 3761–3774
Cited on pages 33, 103, 180

[174] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An Open-Ended Embodied Agent with Large Language Models. 2023.
Comment: Project website and open-source codebase: https://voyager.minedojo.org/
Cited on page 33

[175] P. -Y. Oudeyer, J. Gottlieb, and M. Lopes. “Chapter 11 - Intrinsic Motivation, Curiosity, and Learning:
Theory and Applications in Educational Technologies”. In: Progress in Brain Research. Ed. by Bettina
Studer and Stefan Knecht. Vol. 229. Motivation. Elsevier, 2016, pp. 257–284. doi: 10.1016/bs.pbr.
2016.05.005

Cited on page 34

[176] Benjamin Clement, Didier Roy, Pierre-Yves Oudeyer, Manuel Lopes, et al. “Multi-Armed Bandits for
Intelligent Tutoring Systems”. In: Journal of Educational Data Mining 7.2 (2015), pp. 20–48
Cited on page 34

[177] Rania Abdelghani, Edith Law, Chloé Desvaux, Pierre-Yves Oudeyer, and Hélène Sauzéon. “Interactive
Environments for Training Children’s Curiosity through the Practice of Metacognitive Skills : A
Pilot Study”. In: Proceedings of the 22nd Annual ACM Interaction Design and Children Conference.
IDC ’23. New York, NY, USA: Association for Computing Machinery, 2023, pp. 495–501. doi:
10.1145/3585088.3593880

Cited on page 34

[178] Rania Abdelghani, Yen-Hsiang Wang, Xingdi Yuan, Tong Wang, Pauline Lucas, Hélène Sauzéon,
and Pierre-Yves Oudeyer. “GPT-3-Driven Pedagogical Agents to Train Children’s Curious Question-
Asking Skills”. In: International Journal of Artificial Intelligence in Education (2023). doi:10.1007/s40593-
023-00340-7

Cited on page 34

[179] Yolanda Gil. “Thoughtful Artificial Intelligence: Forging a New Partnership for Data Science and
Scientific Discovery”. In: Data Science 1.1-2 (2017), pp. 119–129
Cited on page 34

[180] Kenneth O Stanley and Joel Lehman. Why Greatness Cannot Be Planned: The Myth of the Objective.
Springer, 2015
Cited on page 34

[181] Jonathan M. Spector, Rosemary S. Harrison, and Mark C. Fishman. “Fundamental Science behind
Today’s Important Medicines”. In: Science Translational Medicine 10.438 (2018), eaaq1787. doi: 10.
1126/scitranslmed.aaq1787

Cited on page 34

[182] Jean Piaget, Margaret Cook, et al. The Origins of Intelligence in Children. Vol. 8. International Universities
Press New York, 1952
Cited on pages 35, 37

[183] Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. “Intrinsic Motivation Systems for
Autonomous Mental Development”. In: IEEE transactions on evolutionary computation 11.2 (2007),
pp. 265–286
Cited on page 35

[184] Alison Gopnik. “The Scientist as Child”. In: Philosophy of Science 63.4 (1996), pp. 485–514. doi:
10.1086/289970

Cited on page 35

[185] Simon Kirby, Mike Dowman, and Thomas L. Griffiths. “Innateness and Culture in the Evolution
of Language”. In: Proceedings of the National Academy of Sciences 104.12 (2007), pp. 5241–5245. doi:
10.1073/pnas.0608222104

https://doi.org/10.1016/bs.pbr.2016.05.005
https://doi.org/10.1016/bs.pbr.2016.05.005
https://doi.org/10.1145/3585088.3593880
https://doi.org/10.1007/s40593-023-00340-7
https://doi.org/10.1007/s40593-023-00340-7
https://doi.org/10.1126/scitranslmed.aaq1787
https://doi.org/10.1126/scitranslmed.aaq1787
https://doi.org/10.1086/289970
https://doi.org/10.1073/pnas.0608222104


[186] Gianluca Baldassarre and Marco Mirolli. Intrinsically Motivated Learning in Natural and Artificial

Systems. Springer, 2013
Cited on page 40

[187] Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. “Teacher Algorithms for
Curriculum Learning of Deep RL in Continuously Parameterized Environments”. In: Proceedings of

the Conference on Robot Learning. PMLR, 2020, pp. 835–853
Cited on page 41

[188] Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer. “Automatic
Curriculum Learning for Deep RL: A Short Survey”. In: Proceedings of the Twenty-Ninth International

Joint Conference on Artificial Intelligence. ĲCAI’20. Yokohama, Yokohama, Japan, 2021, pp. 4819–4825
Cited on page 41

[189] Clément Romac, Rémy Portelas, Katja Hofmann, and Pierre-Yves Oudeyer. “TeachMyAgent: A
Benchmark for Automatic Curriculum Learning in Deep RL”. In: Proceedings of the 38th International

Conference on Machine Learning. PMLR, 2021, pp. 9052–9063
Cited on page 41

[190] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. “Hindsight Experience Replay”.
In: Advances in Neural Information Processing Systems. 2017, pp. 5048–5058
Cited on pages 41, 58, 60

[191] Randall D. Beer. “The Cognitive Domain of a Glider in the Game of Life”. In: Artificial Life 20.2
(2014), pp. 183–206. doi: 10.1162/ARTL_a_00125
Cited on pages 44, 103, 115

[192] Randall D Beer. “Bittorio Revisited: Structural Coupling in the Game of Life”. In: Adaptive Behavior

28.4 (2020), pp. 197–212. doi: 10.1177/1059712319859907
Cited on pages 44, 103, 108

[193] Djordje Grbic, Rasmus Berg Palm, Elias Najarro, Claire Glanois, and Sebastian Risi. “EvoCraft: A New
Challenge for Open-Endedness”. In: Applications of Evolutionary Computation. Ed. by Pedro A. Castillo
and Juan Luis Jiménez Laredo. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2021, pp. 325–340. doi: 10.1007/978-3-030-72699-7_21
Cited on page 46

[194] Kenneth O Stanley. “Exploiting Regularity without Development.” In: AAAI Fall Symposium:

Developmental Systems. 2006, p. 49
Cited on pages 46, 53, 62, 64, 152, 158, 199

[195] Mykhailo Moroz. Reintegration Tracking. https://michaelmoroz.github.io/Reintegration-Tracking/
Cited on pages 47, 117, 240

[196] Tim Hoverd and Susan Stepney. “Energy as a Driver of Diversity in Open-Ended Evolution
(Full Article)”. In: ECAL 2011: The 11th European Conference on Artificial Life. MIT Press, 2011. doi:
10.7551/978-0-262-29714-1-ch055

Cited on page 47

[197] Simon Hickinbotham and Susan Stepney. “Conservation of Matter Increases Evolutionary Activity”.
In: ECAL 2015: The 13th European Conference on Artificial Life. MIT Press, 2015, pp. 98–105. doi:
10.1162/978-0-262-33027-5-ch024

Cited on page 47

[198] James Bradbury et al. JAX: Composable Transformations of Python+NumPy Programs. 2018
Cited on pages 47, 172, 240

[199] Alexander Mordvintsev, Eyvind Niklasson, and Ettore Randazzo. Particle Lenia and the Energy-Based

Formulation. 2022
Cited on pages 47, 117

https://doi.org/10.1162/ARTL_a_00125
https://doi.org/10.1177/1059712319859907
https://doi.org/10.1007/978-3-030-72699-7_21
https://doi.org/10.7551/978-0-262-29714-1-ch055
https://doi.org/10.1162/978-0-262-33027-5-ch024


[200] Takako Kawaguchi, Reĳi Suzuki, Takaya Arita, and Bert Chan. “Introducing Asymptotics to the
State-Updating Rule in Lenia”. In: ALIFE 2022: The 2022 Conference on Artificial Life. MIT Press, 2021
Cited on page 47

[201] Hiroki Kojima and Takashi Ikegami. “Implementation of Lenia as a Reaction-Diffusion System”. In:
ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference. MIT Press, 2023. doi:
10.1162/isal_a_00638

Cited on page 47

[202] Q Tyrell Davis and Josh Bongard. “Glaberish: Generalizing the Continuously-Valued Lenia Framework
to Arbitrary Life-like Cellular Automata”. In: Artificial Life Conference Proceedings 34. Vol. 2022. MIT
Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . ., 2022, p. 47
Cited on page 47

[203] Santosh Manicka and Michael Levin. “The Cognitive Lens: A Primer on Conceptual Tools for
Analysing Information Processing in Developmental and Regenerative Morphogenesis”. In: Philo-

sophical Transactions of the Royal Society B: Biological Sciences 374.1774 (2019), p. 20180369. doi:
10.1098/rstb.2018.0369

Cited on pages 49, 127

[204] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation Learning: A Review and New
Perspectives”. In: IEEE transactions on pattern analysis and machine intelligence 35.8 (2013), pp. 1798–1828.
doi: 10.1109/tpami.2013.50
Cited on page 51

[205] Sebastian Risi and Kenneth O. Stanley. “Deep Neuroevolution of Recurrent and Discrete World
Models”. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO ’19. New York,
NY, USA: Association for Computing Machinery, 2019, pp. 456–462. doi: 10.1145/3321707.3321817
Cited on page 53

[206] Yujin Tang, Yingtao Tian, and David Ha. “EvoJAX: Hardware-Accelerated Neuroevolution”. In:
Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2022, pp. 308–311. doi: 10.
1145/3520304.3528770. Comment: GECCO 2022. Project website at https://github.com/google/evojax

Cited on page 53

[207] Dominik Dellermann, Adrian Calma, Nikolaus Lipusch, Thorsten Weber, Sascha Weigel, and Philipp
Ebel. “The Future of Human-AI Collaboration: A Taxonomy of Design Knowledge for Hybrid
Intelligence Systems”. In: arXiv:2105.03354 [cs] (2021)
Cited on pages 55, 91

[208] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. “Automatic Goal Generation for
Reinforcement Learning Agents”. In: Proceedings of the 35th International Conference on Machine

Learning. PMLR, 2018, pp. 1515–1528
Cited on page 58

[209] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. “Beta-VAE: Learning Basic Visual Concepts with a
Constrained Variational Framework”. In: International Conference on Learning Representations. 2016
Cited on pages 58, 61, 200

[210] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins,
and Alexander Lerchner. “Understanding Disentangling in 𝛽-VAE”. In: arXiv preprint arXiv:1804.03599

(2018)
Cited on pages 58, 71, 208, 218, 219

[211] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation Learning: A Review and New
Perspectives”. In: IEEE transactions on pattern analysis and machine intelligence 35.8 (2013), pp. 1798–1828
Cited on page 60

https://doi.org/10.1162/isal_a_00638
https://doi.org/10.1098/rstb.2018.0369
https://doi.org/10.1109/tpami.2013.50
https://doi.org/10.1145/3321707.3321817
https://doi.org/10.1145/3520304.3528770
https://doi.org/10.1145/3520304.3528770


[212] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. “Generative Adversarial Nets”. In: Advances in Neural Information

Processing Systems. Vol. 27. Curran Associates, Inc., 2014
Cited on page 60

[213] L. Theis, A. van den Oord, and M. Bethge. “A Note on the Evaluation of Generative Models”. In:
International Conference on Learning Representations. 2016
Cited on page 60

[214] Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel, Matthew
Botvinick, Charles Blundell, and Alexander Lerchner. “Darla: Improving Zero-Shot Transfer in
Reinforcement Learning”. In: Proceedings of the 34th International Conference on Machine Learning-Volume

70. JMLR. org, 2017, pp. 1480–1490
Cited on pages 60, 79

[215] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. “Embed to Control:
A Locally Linear Latent Dynamics Model for Control from Raw Images”. In: Advances in Neural

Information Processing Systems. 2015, pp. 2746–2754
Cited on pages 60, 79

[216] Valentin Thomas, Jules Pondard, Emmanuel Bengio, Marc Sarfati, Philippe Beaudoin, Marie-Jean
Meurs, Joelle Pineau, Doina Precup, and Yoshua Bengio. “Independently Controllable Features”. In:
arXiv preprint arXiv:1708.01289 (2017)
Cited on pages 60, 79

[217] Arash Vahdat and Jan Kautz. “NVAE: A Deep Hierarchical Variational Autoencoder”. In: Advances

in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 19667–19679
Cited on page 60

[218] Antoine Cully. “Autonomous Skill Discovery with Quality-Diversity and Unsupervised Descriptors”.
In: Proceedings of the Genetic and Evolutionary Computation Conference. 2019, pp. 81–89
Cited on pages 61, 71

[219] Luca Grillotti and Antoine Cully. “Unsupervised Behavior Discovery With Quality-Diversity
Optimization”. In: IEEE Transactions on Evolutionary Computation 26.6 (2022), pp. 1539–1552. doi:
10.1109/TEVC.2022.3159855

Cited on page 61

[220] Peter Pastor, Mrinal Kalakrishnan, Franziska Meier, Freek Stulp, Jonas Buchli, Evangelos Theodorou,
and Stefan Schaal. “From Dynamic Movement Primitives to Associative Skill Memories”. In: Robotics

and Autonomous Systems. Models and Technologies for Multi-modal Skill Training 61.4 (2013), pp. 351–
361. doi: 10.1016/j.robot.2012.09.017
Cited on page 63

[221] Martin Gardener. “MATHEMATICAL GAMES: The Fantastic Combinations of John Conway’s New
Solitaire Game" Life,"” in: Scientific American 223 (1970), pp. 120–123
Cited on page 64

[222] Randall D Beer. “Autopoiesis and Cognition in the Game of Life”. In: Artificial Life 10.3 (2004),
pp. 309–326
Cited on pages 64, 102

[223] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros.
“Large-Scale Study of Curiosity-Driven Learning”. In: ICLR (2019)
Cited on page 66

[224] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. “Exploration by Random Network
Distillation”. In: International Conference on Learning Representations. 2019
Cited on page 66

[225] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data Using T-SNE”. In: Journal of machine

learning research 9.Nov (2008), pp. 2579–2605
Cited on pages 67, 188

https://doi.org/10.1109/TEVC.2022.3159855
https://doi.org/10.1016/j.robot.2012.09.017


[226] Shengjia Zhao, Jiaming Song, and Stefano Ermon. “Towards Deeper Understanding of Variational
Autoencoding Models”. In: preprint arXiv:1702.08658 (2017)
Cited on pages 67, 81

[227] Yoshiki Kuramoto. “Self-Entrainment of a Population of Coupled Non-Linear Oscillators”. In:
International Symposium on Mathematical Problems in Theoretical Physics. Ed. by Huzihiro Araki. Lecture
Notes in Physics. Berlin, Heidelberg: Springer, 1975, pp. 420–422. doi: 10.1007/BFb0013365
Cited on pages 68, 98

[228] Juan A. Acebrón, L. L. Bonilla, Conrad J. Pérez Vicente, Félix Ritort, and Renato Spigler. “The
Kuramoto Model: A Simple Paradigm for Synchronization Phenomena”. In: Reviews of Modern

Physics 77.1 (2005), pp. 137–185. doi: 10.1103/RevModPhys.77.137
Cited on pages 68, 98

[229] Frank P Kuhl and Charles R Giardina. “Elliptic Fourier Features of a Closed Contour”. In: Computer

graphics and image processing 18.3 (1982), pp. 236–258
Cited on pages 72, 207, 208

[230] Jeaneth Machicao, Lucas C Ribas, Leonardo FS Scabini, and Odermir M Bruno. “Cellular Automata
Rule Characterization and Classification Using Texture Descriptors”. In: Physica A: Statistical Mechanics

and its Applications 497 (2018), pp. 109–117
Cited on pages 72, 206

[231] James S Cope, David Corney, Jonathan Y Clark, Paolo Remagnino, and Paul Wilkin. “Plant Species
Identification Using Digital Morphometrics: A Review”. In: Expert Systems with Applications 39.8
(2012), pp. 7562–7573
Cited on page 72

[232] Ying Zhang, Chunjiang Zhao, Jianjun Du, Xinyu Guo, Wenliang Wen, Shenghao Gu, Jinglu Wang,
and Jiangchuan Fan. “Crop Phenomics: Current Status and Perspectives”. In: Frontiers in Plant Science

10 (2019), p. 714
Cited on page 72

[233] Margaret A. Boden. “Creativity and Artificial Intelligence”. In: Artificial Intelligence. Artificial
Intelligence 40 Years Later 103.1 (1998), pp. 347–356. doi: 10.1016/S0004-3702(98)00055-1
Cited on pages 73, 74, 90

[234] John Maynard Smith and Eors Szathmary. The Major Transitions in Evolution. OUP Oxford, 1997
Cited on page 74

[235] Mark A. Bedau. “Weak Emergence”. In: Philosophical Perspectives 11 (1997), pp. 375–399
Cited on page 74

[236] David J Chalmers. “Strong and Weak Emergence”. In: The re-emergence of emergence 675 (2006),
pp. 244–256
Cited on page 74

[237] Alyssa M. Adams. “A Graph-Theoretic Approach to Understanding Emergent Behavior in Physical
Systems”. In: ALIFE 2021: The 2021 Conference on Artificial Life. MIT Press, 2021. doi: 10.1162/isal_
a_00382

Cited on pages 74, 75

[238] Wolfgang Banzhaf, Bert Baumgaertner, Guillaume Beslon, René Doursat, James A Foster, Barry
McMullin, Vinicius Veloso De Melo, Thomas Miconi, Lee Spector, Susan Stepney, et al. “Defining
and Simulating Open-Ended Novelty: Requirements, Guidelines, and Challenges”. In: Theory in

Biosciences 135 (2016), pp. 131–161
Cited on pages 74, 179

[239] Tim Taylor. “Evolutionary Innovations and Where to Find Them: Routes to Open-Ended Evolution
in Natural and Artificial Systems”. In: Artificial life 25.2 (2019), pp. 207–224
Cited on page 74

[240] Susan Stepney. “Modelling and Measuring Open-Endedness”. In: Artificial Life 25.1 (2021), p. 9
Cited on page 74

https://doi.org/10.1007/BFb0013365
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1016/S0004-3702(98)00055-1
https://doi.org/10.1162/isal_a_00382
https://doi.org/10.1162/isal_a_00382


[241] Jeffrey L Elman. “Learning and Development in Neural Networks: The Importance of Starting Small”.
In: Cognition 48.1 (1993), pp. 71–99
Cited on page 75

[242] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. “Progressive Neural Networks”. In: arXiv preprint

arXiv:1606.04671 (2016)
Cited on pages 76, 212, 218

[243] Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell.
“Continual Unsupervised Representation Learning”. In: Advances in Neural Information Processing

Systems. 2019, pp. 7645–7655
Cited on pages 77, 217, 218

[244] Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. “A Neural Dirichlet Process Mixture
Model for Task-Free Continual Learning”. In: arXiv preprint arXiv:2001.00689 (2020)
Cited on pages 77, 217, 218

[245] Zhiyuan Li, Jaideep Vitthal Murkute, Prashnna Kumar Gyawali, and Linwei Wang. “Progressive
Learning and Disentanglement of Hierarchical Representations”. In: arXiv preprint arXiv:2002.10549

(2020)
Cited on pages 77, 217, 218

[246] Paul A Szerlip, Gregory Morse, Justin K Pugh, and Kenneth O Stanley. “Unsupervised Feature
Learning through Divergent Discriminative Feature Accumulation”. In: Twenty-Ninth AAAI Conference

on Artificial Intelligence. 2015
Cited on pages 77, 180

[247] Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. “Searching for Quality Diversity When Diversity
Is Unaligned with Quality”. In: International Conference on Parallel Problem Solving from Nature.
Springer, 2016, pp. 880–889
Cited on page 78

[248] Timothée Lesort, Natalia Díaz-Rodríguez, Jean-François Goudou, and David Filliat. “State Repre-
sentation Learning for Control: An Overview”. In: Neural Networks 108 (2018), pp. 379–392. doi:
10.1016/j.neunet.2018.07.006

Cited on page 79

[249] Herke Van Hoof, Nutan Chen, Maximilian Karl, Patrick van der Smagt, and Jan Peters. “Stable Rein-
forcement Learning with Autoencoders for Tactile and Visual Data”. In: 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 3928–3934
Cited on page 79

[250] Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick Van der Smagt. “Deep Variational
Bayes Filters: Unsupervised Learning of State Space Models from Raw Data”. In: arXiv preprint

arXiv:1605.06432 (2016)
Cited on page 79

[251] Danĳar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. “Learning Latent Dynamics for Planning from Pixels”. In: arXiv preprint arXiv:1811.04551

(2018)
Cited on page 79

[252] Amy Zhang, Harsh Satĳa, and Joelle Pineau. “Decoupling Dynamics and Reward for Transfer
Learning”. In: arXiv preprint arXiv:1804.10689 (2018)
Cited on page 79

[253] Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. “Representational Similarity Analysis-
Connecting the Branches of Systems Neuroscience”. In: Frontiers in systems neuroscience 2 (2008),
p. 4
Cited on pages 79, 180

https://doi.org/10.1016/j.neunet.2018.07.006


[254] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. “Similarity of Neural
Network Representations Revisited”. In: arXiv preprint arXiv:1905.00414 (2019)
Cited on pages 80, 213

[255] Leo Cazenille. “Ensemble Feature Extraction for Multi-Container Quality-Diversity Algorithms”. In:
Proceedings of the Genetic and Evolutionary Computation Conference (2021), pp. 75–83. doi: 10.1145/
3449639.3459392. Comment: Draft version. 10 pages, 4 figures, 4 tables, Accepted at the GECCO2021
Conference
Cited on page 87

[256] H. Takagi. “Interactive Evolutionary Computation: Fusion of the Capabilities of EC Optimization and
Human Evaluation”. In: Proceedings of the IEEE 89.9 (2001), pp. 1275–1296. doi: 10.1109/5.949485
Cited on page 94

[257] Karl Sims. “Interactive Evolution of Dynamical Systems”. In: Toward a Practice of Autonomous Systems:

Proceedings of the First European Conference on Artificial Life. 1992, pp. 171–178
Cited on page 94

[258] WB Langdon. “Pfeiffer–A Distributed Open-Ended Evolutionary System”. In: Citeseer, 2005
Cited on page 94

[259] Jimmy Secretan, Nicholas Beato, David B. D Ambrosio, Adelein Rodriguez, Adam Campbell, and
Kenneth O. Stanley. “Picbreeder: Evolving Pictures Collaboratively Online”. In: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. CHI ’08. New York, NY, USA: Association
for Computing Machinery, 2008, pp. 1759–1768. doi: 10.1145/1357054.1357328
Cited on page 94

[260] Jimmy Secretan, Nicholas Beato, David B D’Ambrosio, Adelein Rodriguez, Adam Campbell, Jeremiah
T Folsom-Kovarik, and Kenneth O Stanley. “Picbreeder: A Case Study in Collaborative Evolutionary
Exploration of Design Space”. In: Evolutionary computation 19.3 (2011), pp. 373–403
Cited on page 94

[261] Joost Huizinga, Kenneth O. Stanley, and Jeff Clune. “The Emergence of Canalization and Evolvability
in an Open-Ended, Interactive Evolutionary System”. In: Artificial Life 24.3 (2018), pp. 157–181. doi:
10.1162/artl_a_00263

Cited on page 94

[262] Martial Mermillod, Aurélia Bugaiska, and Patrick BONIN. “The Stability-Plasticity Dilemma:
Investigating the Continuum from Catastrophic Forgetting to Age-Limited Learning Effects”. In:
Frontiers in Psychology 4 (2013)
Cited on page 97

[263] David Krakauer, Nils Bertschinger, Eckehard Olbrich, Jessica C. Flack, and Nihat Ay. “The Informa-
tion Theory of Individuality”. In: Theory in Biosciences 139.2 (2020), pp. 209–223. doi: 10.1007/s12064-
020-00313-7

Cited on pages 101, 103, 122

[264] Humberto R Maturana and Francisco J Varela. Autopoiesis and Cognition: The Realization of the Living.
1980
Cited on pages 101, 108

[265] Ezequiel A Di Paolo. “Process and Individuation: The Development of Sensorimotor Agency”. In:
Human Development 63.3-4 (2019), pp. 202–226
Cited on pages 101, 102, 111

[266] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. “Paired Open-Ended Trailblazer
(Poet): Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their
Solutions”. In: arXiv preprint arXiv:1901.01753 (2019)
Cited on page 102

https://doi.org/10.1145/3449639.3459392
https://doi.org/10.1145/3449639.3459392
https://doi.org/10.1109/5.949485
https://doi.org/10.1145/1357054.1357328
https://doi.org/10.1162/artl_a_00263
https://doi.org/10.1007/s12064-020-00313-7
https://doi.org/10.1007/s12064-020-00313-7


[267] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. “Solving Rubik’s Cube with a
Robot Hand”. In: arXiv preprint arXiv:1910.07113 (2019)
Cited on page 102

[268] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. “Emergent Tool Use from Multi-Agent Autocurricula”. In: arXiv preprint arXiv:1909.07528

(2019)
Cited on pages 102, 122

[269] Rolf Pfeifer and Josh Bongard. How the Body Shapes the Way We Think: A New View of Intelligence. MIT
press, 2006
Cited on pages 102, 116, 183

[270] Tom Froese and Tom Ziemke. “Enactive Artificial Intelligence: Investigating the Systemic Organiza-
tion of Life and Mind”. In: Artificial intelligence 173.3-4 (2009), pp. 466–500
Cited on pages 102, 116, 183

[271] F.G. Varela, H.R. Maturana, and R. Uribe. “Autopoiesis: The Organization of Living Systems,
Its Characterization and a Model”. In: Bio Systems 5.4 (1974), pp. 187–196. doi: 10.1016/0303-
2647(74)90031-8

Cited on page 102

[272] Barry McMullin. “Thirty Years of Computational Autopoiesis: A Review”. In: Artificial life 10.3 (2004),
pp. 277–295
Cited on page 102

[273] Eran Agmon, Alexander J Gates, and Randall D Beer. “Ontogeny and Adaptivity in a Model
Protocell”. In: Artificial Life Conference Proceedings 13. MIT Press, 2015, pp. 216–223
Cited on pages 102, 103

[274] Martin Biehl, Takashi Ikegami, and Daniel Polani. “Towards Information Based Spatiotemporal
Patterns as a Foundation for Agent Representation in Dynamical Systems”. In: Proceedings of the

Artificial Life Conference 2016. Cancun, Mexico: MIT Press, 2016, pp. 722–729. doi: 10.7551/978-0-
262-33936-0-ch115

Cited on pages 103, 122

[275] Arta Cika, Elissa Cohen, Germán Kruszewski, Luther Seet, Patrick Steinmann, and Wenqian Yin.
Resilient Life: An Exploration of Perturbed Autopoietic Patterns in Conway’s Game of Life. Vol. ALIFE 2020:
The 2020 Conference on Artificial Life. ALIFE 2021: The 2021 Conference on Artificial Life. 2020,
pp. 656–664
Cited on page 103

[276] Hiroaki Kitano. “Biological Robustness”. In: Nature Reviews Genetics 5.11 (2004), pp. 826–837
Cited on page 103

[277] Alexandre Variengien, Sidney Pontes-Filho, Tom Eivind Glover, and Stefano Nichele. “Towards
Self-organized Control: Using Neural Cellular Automata to Robustly Control a Cart-pole Agent”. In:
Innovations in Machine Intelligence (2021). doi: 10.54854/imi2021.01
Cited on page 107

[278] Laura N Vandenberg, Dany S Adams, and Michael Levin. “Normalized Shape and Location of
Perturbed Craniofacial Structures in the Xenopus Tadpole Reveal an Innate Ability to Achieve
Correct Morphology”. In: Developmental Dynamics 241.5 (2012), pp. 863–878
Cited on pages 111, 113

[279] Gerhard Fankhauser. “Maintenance of Normal Structure in Heteroploid Salamander Larvae, through
Compensation of Changes in Cell Size by Adjustment of Cell Number and Cell Shape”. In: Journal of

Experimental Zoology 100.3 (1945), pp. 445–455
Cited on pages 111, 114

https://doi.org/10.1016/0303-2647(74)90031-8
https://doi.org/10.1016/0303-2647(74)90031-8
https://doi.org/10.7551/978-0-262-33936-0-ch115
https://doi.org/10.7551/978-0-262-33936-0-ch115
https://doi.org/10.54854/imi2021.01


[280] Jörg Stelling, Uwe Sauer, Zoltan Szallasi, Francis J Doyle III, and John Doyle. “Robustness of Cellular
Functions”. In: Cell 118.6 (2004), pp. 675–685
Cited on page 111

[281] Michael Levin. “The Computational Boundary of a “Self”: Developmental Bioelectricity Drives
Multicellularity and Scale-Free Cognition”. In: Frontiers in Psychology 10 (2019), p. 2688
Cited on page 114

[282] Wei Li, Xiaoran Wu, Hong Qin, Zhongqiang Zhao, and Hewen Liu. “Light-Driven and Light-Guided
Microswimmers”. In: Advanced Functional Materials 26.18 (2016), pp. 3164–3171
Cited on page 115

[283] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. “Evolution Strategies as a
Scalable Alternative to Reinforcement Learning”. In: arXiv preprint arXiv:1703.03864 (2017)
Cited on pages 118, 242

[284] Peter Godfrey-Smith. “Environmental Complexity and the Evolution of Cognition”. In: The Evolution

of Intelligence. Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers, 2002, pp. 223–249
Cited on pages 119, 122

[285] Nils Bertschinger, Eckehard Olbrich, Nihat Ay, and Jürgen Jost. “Autonomy: An Information Theoretic
Perspective”. In: Bio Systems 91.2 (2008), pp. 331–345. doi: 10.1016/j.biosystems.2007.05.018
Cited on page 122

[286] Samuel Arbesman. Emergent Microcosms. Substack Newsletter. 2022
Cited on page 122

[287] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. “Webgpt: Browser-assisted Question-
Answering with Human Feedback”. In: arXiv preprint arXiv:2112.09332 (2021)
Cited on page 122

[288] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. “Toolformer: Language Models Can Teach Themselves to
Use Tools”. In: arXiv preprint arXiv:2302.04761 (2023)
Cited on page 122

[289] Victor G. Laties. “Society for the Experimental Analysis of Behavior: The First Thirty Years
(1957–1987)”. In: Journal of the Experimental Analysis of Behavior 48.3 (1987), pp. 495–512. doi:
10.1901/jeab.1987.48-495

Cited on page 124

[290] Gro Amdam and Anne Hovland. “Measuring Animal Preferences and Choice Behavior”. In: Nature

Education Knowledge 3 (2012), p. 74
Cited on page 124

[291] Saul McLeold. Behavioral Perspective in Psychology [Behaviorism Theory]. 2022
Cited on page 124

[292] Anatoly Mikhaltsov. Paramecium Bursaria. 16 September 2013, 19:32:09
Cited on page 124

[293] Joshua Bongard and Michael Levin. “There’s Plenty of Room Right Here: Biological Systems as
Evolved, Overloaded, Multi-Scale Machines”. In: Biomimetics 8.1 (2023), p. 110. doi: 10.3390/
biomimetics8010110

Cited on page 124

[294] Juan J. Sanz-Ezquerro, Andrea E. Münsterberg, and Sigmar Stricker. “Editorial: Signaling Pathways
in Embryonic Development”. In: Frontiers in Cell and Developmental Biology 5 (2017)
Cited on page 125

[295] Elena R. Alvarez-Buylla, Enrique Balleza, Mariana Benítez, Carlos Espinosa-Soto, and Pablo Padilla-
Longoria. “Gene Regulatory Network Models: A Dynamic and Integrative Approach to Develop-
ment”. In: SEB experimental biology series 61 (2008), pp. 113–139
Cited on page 125

https://doi.org/10.1016/j.biosystems.2007.05.018
https://doi.org/10.1901/jeab.1987.48-495
https://doi.org/10.3390/biomimetics8010110
https://doi.org/10.3390/biomimetics8010110


[296] Sui Huang, Gabriel Eichler, Yaneer Bar-Yam, and Donald E. Ingber. “Cell Fates as High-Dimensional
Attractor States of a Complex Gene Regulatory Network”. In: Physical Review Letters 94.12 (2005),
p. 128701. doi: 10.1103/PhysRevLett.94.128701
Cited on page 125

[297] Eric H. Davidson. “Emerging Properties of Animal Gene Regulatory Networks”. In: Nature 468.7326
(2010), pp. 911–920. doi: 10.1038/nature09645
Cited on page 125

[298] Isabelle S. Peter and Eric H. Davidson. “Evolution of Gene Regulatory Networks Controlling Body
Plan Development”. In: Cell 144.6 (2011), pp. 970–985. doi: 10.1016/j.cell.2011.02.017
Cited on page 125

[299] Kirsten H. ten Tusscher and Paulien Hogeweg. “Evolution of Networks for Body Plan Patterning;
Interplay of Modularity, Robustness and Evolvability”. In: PLOS Computational Biology 7.10 (2011),
e1002208. doi: 10.1371/journal.pcbi.1002208
Cited on page 125

[300] Hyobin Kim and Hiroki Sayama. “How Criticality of Gene Regulatory Networks Affects the
Resulting Morphogenesis under Genetic Perturbations”. In: Artificial Life 24.02 (2018), pp. 85–105.
doi: 10.1162/ARTL_a_00262
Cited on page 125

[301] Mansi Srivastava. “Beyond Casual Resemblance: Rigorous Frameworks for Comparing Regeneration
Across Species”. In: Annual Review of Cell and Developmental Biology 37.1 (2021), pp. 415–440. doi:
10.1146/annurev-cellbio-120319-114716

Cited on page 125

[302] Arun J. Singh, Stephen A. Ramsey, Theresa M. Filtz, and Chrissa Kioussi. “Differential Gene
Regulatory Networks in Development and Disease”. In: Cellular and Molecular Life Sciences 75.6
(2018), pp. 1013–1025. doi: 10.1007/s00018-017-2679-6
Cited on page 125

[303] Guimin Qin, Luqiong Yang, Yuying Ma, Jiayan Liu, and Qiuyan Huo. “The Exploration of Disease-
Specific Gene Regulatory Networks in Esophageal Carcinoma and Stomach Adenocarcinoma”. In:
BMC Bioinformatics 20.22 (2019), p. 717. doi: 10.1186/s12859-019-3230-6
Cited on page 125

[304] Hassan Fazilaty, Luciano Rago, Khalil Kass Youssef, Oscar H. Ocaña, Francisco Garcia-Asencio, Aida
Arcas, Juan Galceran, and M. Angela Nieto. “A Gene Regulatory Network to Control EMT Programs
in Development and Disease”. In: Nature Communications 10.1 (2019), p. 5115. doi: 10.1038/s41467-
019-13091-8

Cited on page 125

[305] Jamie Davies and Michael Levin. Synthetic Morphology via Active and Agential Matter. 2022. doi:
10.31219/osf.io/xrv8h

Cited on pages 125, 126

[306] Satoshi Toda, Lucas R. Blauch, Sindy K. Y. Tang, Leonardo Morsut, and Wendell A. Lim. “Pro-
gramming Self-Organizing Multicellular Structures with Synthetic Cell-Cell Signaling”. In: Science

361.6398 (2018), pp. 156–162. doi: 10.1126/science.aat0271
Cited on page 125

[307] Satoshi Toda, Wesley L. McKeithan, Teemu J. Hakkinen, Pilar Lopez, Ophir D. Klein, and Wendell A.
Lim. “Engineering Synthetic Morphogen Systems That Can Program Multicellular Patterning”. In:
Science 370.6514 (2020), pp. 327–331. doi: 10.1126/science.abc0033
Cited on page 125

[308] Christine Ho and Leonardo Morsut. “Novel Synthetic Biology Approaches for Developmental
Systems”. In: Stem Cell Reports 16.5 (2021), pp. 1051–1064. doi: 10.1016/j.stemcr.2021.04.007
Cited on page 125

https://doi.org/10.1103/PhysRevLett.94.128701
https://doi.org/10.1038/nature09645
https://doi.org/10.1016/j.cell.2011.02.017
https://doi.org/10.1371/journal.pcbi.1002208
https://doi.org/10.1162/ARTL_a_00262
https://doi.org/10.1146/annurev-cellbio-120319-114716
https://doi.org/10.1007/s00018-017-2679-6
https://doi.org/10.1186/s12859-019-3230-6
https://doi.org/10.1038/s41467-019-13091-8
https://doi.org/10.1038/s41467-019-13091-8
https://doi.org/10.31219/osf.io/xrv8h
https://doi.org/10.1126/science.aat0271
https://doi.org/10.1126/science.abc0033
https://doi.org/10.1016/j.stemcr.2021.04.007


[309] Marco Santorelli, Calvin Lam, and Leonardo Morsut. “Synthetic Development: Building Mammalian
Multicellular Structures with Artificial Genetic Programs”. In: Current Opinion in Biotechnology.
Tissue, Cell and Pathway Engineering 59 (2019), pp. 130–140. doi: 10.1016/j.copbio.2019.03.016
Cited on page 125

[310] Hidde de Jong. “Modeling and Simulation of Genetic Regulatory Systems: A Literature Review”. In:
Journal of Computational Biology 9.1 (2002), pp. 67–103. doi: 10.1089/10665270252833208
Cited on page 125

[311] Thomas Schlitt and Alvis Brazma. “Current Approaches to Gene Regulatory Network Modelling”.
In: BMC Bioinformatics 8.6 (2007), S9. doi: 10.1186/1471-2105-8-S6-S9
Cited on page 125

[312] Jacquelyn S. Fetrow and Patricia C. Babbitt. “New Computational Approaches to Understanding
Molecular Protein Function”. In: PLOS Computational Biology 14.4 (2018), e1005756. doi: 10.1371/
journal.pcbi.1005756

Cited on page 125

[313] Fernando M. Delgado and Francisco Gómez-Vela. “Computational Methods for Gene Regulatory
Networks Reconstruction and Analysis: A Review”. In: Artificial Intelligence in Medicine 95 (2019),
pp. 133–145. doi: 10.1016/j.artmed.2018.10.006
Cited on page 125

[314] Mihai Glont et al. “BioModels: Expanding Horizons to Include More Modelling Approaches and
Formats”. In: Nucleic Acids Research 46.D1 (2018), pp. D1248–D1253. doi: 10.1093/nar/gkx1023
Cited on pages 125, 129, 171, 247

[315] Rahuman S Malik-Sheriff et al. “BioModels—15 Years of Sharing Computational Models in Life
Science”. In: Nucleic Acids Research 48.D1 (2020), pp. D407–D415. doi: 10.1093/nar/gkz1055
Cited on pages 125, 129, 171, 247

[316] Stuart A Kauffman. The Origins of Order: Self-organization and Selection in Evolution. Oxford University
Press, USA, 1993
Cited on pages 125, 145

[317] Stuart A Kauffman. At Home in the Universe: The Search for Laws of Self-Organization and Complexity.
Oxford University Press, USA, 1995
Cited on pages 125, 145

[318] Charles I. Abramson and Michael Levin. “Behaviorist Approaches to Investigating Memory and
Learning: A Primer for Synthetic Biology and Bioengineering”. In: Communicative & Integrative

Biology 14.1 (2021), pp. 230–247. doi: 10.1080/19420889.2021.2005863
Cited on pages 125, 127

[319] František Baluška and Michael Levin. “On Having No Head: Cognition throughout Biological
Systems”. In: Frontiers in Psychology 7 (2016)
Cited on pages 125, 126

[320] Gordana Dodig-Crnkovic. “Cognition as Morphological/Morphogenetic Embodied Computation
In Vivo”. In: Entropy (Basel, Switzerland) 24.11 (2022), p. 1576. doi: 10.3390/e24111576
Cited on page 125

[321] Youri Timsit and Sergeant-Perthuis Grégoire. “Towards the Idea of Molecular Brains”. In: International

Journal of Molecular Sciences 22.21 (2021), p. 11868. doi: 10.3390/ijms222111868
Cited on pages 125, 126

[322] Yarden Katz, Michael Springer, and Walter Fontana. Embodying Probabilistic Inference in Biochemical

Circuits. 2018. doi: 10.48550/arXiv.1806.10161. Comment: 11 figures
Cited on page 125

[323] Péter Csermely, Nina Kunsic, Péter Mendik, Márk Kerestély, Teodóra Faragó, Dániel V. Veres, and
Péter Tompa. “Learning of Signaling Networks: Molecular Mechanisms”. In: Trends in Biochemical

Sciences 45.4 (2020), pp. 284–294. doi: 10.1016/j.tibs.2019.12.005
Cited on pages 125, 127

https://doi.org/10.1016/j.copbio.2019.03.016
https://doi.org/10.1089/10665270252833208
https://doi.org/10.1186/1471-2105-8-S6-S9
https://doi.org/10.1371/journal.pcbi.1005756
https://doi.org/10.1371/journal.pcbi.1005756
https://doi.org/10.1016/j.artmed.2018.10.006
https://doi.org/10.1093/nar/gkx1023
https://doi.org/10.1093/nar/gkz1055
https://doi.org/10.1080/19420889.2021.2005863
https://doi.org/10.3390/e24111576
https://doi.org/10.3390/ijms222111868
https://doi.org/10.48550/arXiv.1806.10161
https://doi.org/10.1016/j.tibs.2019.12.005


[324] Dávid M. Gyurkó, Dániel V. Veres, Dezső Módos, Katalin Lenti, Tamás Korcsmáros, and Peter
Csermely. “Adaptation and Learning of Molecular Networks as a Description of Cancer Development
at the Systems-Level: Potential Use in Anti-Cancer Therapies”. In: Seminars in Cancer Biology. Cancer-
Related Networks: A Help to Understand, Predict and Change Malignant Transformation 23.4 (2013),
pp. 262–269. doi: 10.1016/j.semcancer.2013.06.005
Cited on page 125

[325] Chris Fields and Michael Levin. “Competency in Navigating Arbitrary Spaces as an Invariant
for Analyzing Cognition in Diverse Embodiments”. In: Entropy 24.6 (2022), p. 819. doi: 10.3390/
e24060819

Cited on pages 125, 127

[326] Richard Watson, C. L. Buckley, Rob Mills, and Adam Davies. “Associative Memory in Gene
Regulation Networks”. In: ed. by Harold Fellerman, Mark Dörr, Martin M. Hanczyc, Lone Ladegaard
Laursen, Sarah Maurer, Daniel Merkle, Pierre-Alain Monnard, Kasper Stoy, and Steen Rasmussen.
MIT Press, 2010, pp. 659–666
Cited on page 125

[327] Juanita Mathews, Alan (Jaelyn) Chang, Liam Devlin, and Michael Levin. “Cellular Signaling
Pathways as Plastic, Proto-Cognitive Systems: Implications for Biomedicine”. In: Patterns 4.5 (2023),
p. 100737. doi: 10.1016/j.patter.2023.100737
Cited on page 125

[328] Eric Lagasse and Michael Levin. “Future Medicine: From Molecular Pathways to the Collective
Intelligence of the Body”. In: Trends in Molecular Medicine 29.9 (2023), pp. 687–710. doi: 10.1016/j.
molmed.2023.06.007

Cited on page 125

[329] Kathleen T. Krist, Ayusman Sen, and W. G. Noid. “A Simple Theory for Molecular Chemotaxis
Driven by Specific Binding Interactions”. In: The Journal of Chemical Physics 155.16 (2021), p. 164902.
doi: 10.1063/5.0061376
Cited on page 126

[330] Jitka Čejková, Taisuke Banno, Martin M. Hanczyc, and František Štěpánek. “Droplets As Liquid
Robots”. In: Artificial Life 23.4 (2017), pp. 528–549. doi: 10.1162/ARTL_a_00243
Cited on page 126

[331] Martin M. Hanczyc, Filippo Caschera, and Steen Rasmussen. “Models of Minimal Physical In-
telligence”. In: Procedia Computer Science. Proceedings of the 2nd European Future Technologies
Conference and Exhibition 2011 (FET 11) 7 (2011), pp. 275–277. doi: 10.1016/j.procs.2011.09.058
Cited on page 126

[332] Arturo Rosenblueth, Norbert Wiener, and Julian Bigelow. “Behavior, Purpose and Teleology”. In:
Philosophy of Science 10.1 (1943), pp. 18–24. doi: 10.1086/286788
Cited on page 126

[333] Joshua Bongard and Michael Levin. “Living Things Are Not (20th Century) Machines: Updating
Mechanism Metaphors in Light of the Modern Science of Machine Behavior”. In: Frontiers in Ecology

and Evolution 9 (2021)
Cited on page 126

[334] Pamela Lyon. “The Biogenic Approach to Cognition”. In: Cognitive Processing 7.1 (2006), pp. 11–29.
doi: 10.1007/s10339-005-0016-8
Cited on page 126

[335] Xabier Barandiaran and Alvaro Moreno. “On What Makes Certain Dynamical Systems Cognitive:
A Minimally Cognitive Organization Program”. In: Adaptive Behavior 14.2 (2006), pp. 171–185. doi:
10.1177/105971230601400208

Cited on page 126

[336] Franco di Primio, Bernd S Müller, and Joseph W Lengeler. “Minimal Cognition in Unicellular
Organisms”. In: From Animals to Animats (2000), pp. 3–12
Cited on page 126

https://doi.org/10.1016/j.semcancer.2013.06.005
https://doi.org/10.3390/e24060819
https://doi.org/10.3390/e24060819
https://doi.org/10.1016/j.patter.2023.100737
https://doi.org/10.1016/j.molmed.2023.06.007
https://doi.org/10.1016/j.molmed.2023.06.007
https://doi.org/10.1063/5.0061376
https://doi.org/10.1162/ARTL_a_00243
https://doi.org/10.1016/j.procs.2011.09.058
https://doi.org/10.1086/286788
https://doi.org/10.1007/s10339-005-0016-8
https://doi.org/10.1177/105971230601400208


[337] Patrick McGivern. “Active Materials: Minimal Models of Cognition?” In: Adaptive Behavior 28.6
(2020), pp. 441–451. doi: 10.1177/1059712319891742
Cited on page 126

[338] Michael Levin. “Darwin’s Agential Materials: Evolutionary Implications of Multiscale Competency
in Developmental Biology”. In: Cellular and Molecular Life Sciences 80.6 (2023), p. 142. doi: 10.1007/
s00018-023-04790-z

Cited on pages 126, 146

[339] David J. Wong, Dimitry S.A. Nuyten, Aviv Regev, Meihong Lin, Adam S. Adler, Eran Segal, Marc J.
van de Vĳver, and Howard Y. Chang. “Revealing Targeted Therapy for Human Cancer by Gene
Module Maps”. In: Cancer Research 68.2 (2008), pp. 369–378. doi: 10.1158/0008-5472.CAN-07-0382
Cited on page 126

[340] T. Jake Samuel, Ryan P. Rosenberry, Seungyong Lee, and Zui Pan. “Correcting Calcium Dysregulation
in Chronic Heart Failure Using SERCA2a Gene Therapy”. In: International Journal of Molecular Sciences

19.4 (2018), p. 1086. doi: 10.3390/ijms19041086
Cited on page 126

[341] Rafał Krzysztoń, Yiming Wan, Julia Petreczky, and Gábor Balázsi. “Gene-Circuit Therapy on the
Horizon: Synthetic Biology Tools for Engineered Therapeutics”. In: Acta biochimica Polonica 68.3
(2021), pp. 377–383. doi: 10.18388/abp.2020_5744
Cited on page 126

[342] Christopher Baum. “Insertional Mutagenesis in Gene Therapy and Stem Cell Biology”. In: Current

Opinion in Hematology 14.4 (2007), p. 337. doi: 10.1097/MOH.0b013e3281900f01
Cited on page 126

[343] Daniel Lobo, Mauricio Solano, George A. Bubenik, and Michael Levin. “A Linear-Encoding Model
Explains the Variability of the Target Morphology in Regeneration”. In: Journal of The Royal Society

Interface 11.92 (2014), p. 20130918. doi: 10.1098/rsif.2013.0918
Cited on page 126

[344] Philipp Städter, Yannik Schälte, Leonard Schmiester, Jan Hasenauer, and Paul L. Stapor. “Bench-
marking of Numerical Integration Methods for ODE Models of Biological Systems”. In: Scientific

Reports 11.1 (2021), p. 2696. doi: 10.1038/s41598-021-82196-2
Cited on pages 127, 174

[345] Brian P. Ingalls. “A Frequency Domain Approach to Sensitivity Analysis of Biochemical Networks”.
In: The Journal of Physical Chemistry B 108.3 (2004), pp. 1143–1152. doi: 10.1021/jp036567u
Cited on pages 127, 145

[346] Brian Ingalls. “Sensitivity Analysis: From Model Parameters to System Behaviour”. In: Essays in

Biochemistry 45 (2008). Ed. by Olaf Wolkenhauer, Peter Wellstead, and Kwang-Hyun Cho, pp. 177–194.
doi: 10.1042/bse0450177
Cited on pages 127, 145

[347] Alexandre Donzé, Gilles Clermont, and Christopher J. Langmead. “Parameter Synthesis in Nonlinear
Dynamical Systems: Application to Systems Biology”. In: Journal of Computational Biology: A Journal

of Computational Molecular Cell Biology 17.3 (2010), pp. 325–336. doi: 10.1089/cmb.2009.0172
Cited on page 127

[348] Thao Dang, Colas Le Guernic, and Oded Maler. “Computing Reachable States for Nonlinear
Biological Models”. In: Theoretical Computer Science 412.21 (2011), pp. 2095–2107. doi: 10.1016/j.tcs.
2011.01.014

Cited on pages 127, 145

[349] Alexandre Donzé, Eric Fanchon, Lucie Martine Gattepaille, Oded Maler, and Philippe Tracqui.
“Robustness Analysis and Behavior Discrimination in Enzymatic Reaction Networks”. In: PLOS

ONE 6.9 (2011), e24246. doi: 10.1371/journal.pone.0024246
Cited on pages 127, 128, 136

https://doi.org/10.1177/1059712319891742
https://doi.org/10.1007/s00018-023-04790-z
https://doi.org/10.1007/s00018-023-04790-z
https://doi.org/10.1158/0008-5472.CAN-07-0382
https://doi.org/10.3390/ijms19041086
https://doi.org/10.18388/abp.2020_5744
https://doi.org/10.1097/MOH.0b013e3281900f01
https://doi.org/10.1098/rsif.2013.0918
https://doi.org/10.1038/s41598-021-82196-2
https://doi.org/10.1021/jp036567u
https://doi.org/10.1042/bse0450177
https://doi.org/10.1089/cmb.2009.0172
https://doi.org/10.1016/j.tcs.2011.01.014
https://doi.org/10.1016/j.tcs.2011.01.014
https://doi.org/10.1371/journal.pone.0024246


[350] Jordan Rozum and Réka Albert. “Leveraging Network Structure in Nonlinear Control”. In: npj

Systems Biology and Applications 8.1 (2022), pp. 1–8. doi: 10.1038/s41540-022-00249-2
Cited on page 127

[351] Steven Nathaniel Steinway, Jorge Gomez Tejeda Zañudo, Paul J Michel, David J Feith, Thomas
P Loughran, and Reka Albert. “Combinatorial Interventions Inhibit TGF𝛽-driven epithelial-to-
mesenchymal transition and support hybrid cellular phenotypes”. In: NPJ systems biology and

applications 1.1 (2015), pp. 1–12
Cited on pages 127, 129

[352] Jorge G. T. Zañudo and Réka Albert. “Cell Fate Reprogramming by Control of Intracellular Network
Dynamics”. In: PLOS Computational Biology 11.4 (2015), e1004193. doi: 10.1371/journal.pcbi.
1004193

Cited on page 127

[353] Jorge Gomez Tejeda Zañudo, Gang Yang, and Réka Albert. “Structure-Based Control of Complex
Networks with Nonlinear Dynamics”. In: Proceedings of the National Academy of Sciences 114.28 (2017),
pp. 7234–7239. doi: 10.1073/pnas.1617387114
Cited on page 127

[354] Laura Cifuentes Fontanals, Elisa Tonello, and Heike Siebert. “Control Strategy Identification via Trap
Spaces in Boolean Networks”. In: Computational Methods in Systems Biology. Ed. by Alessandro Abate,
Tatjana Petrov, and Verena Wolf. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2020, pp. 159–175. doi: 10.1007/978-3-030-60327-4_9
Cited on page 127

[355] David Murrugarra, Alan Veliz-Cuba, Boris Aguilar, and Reinhard Laubenbacher. “Identification
of Control Targets in Boolean Molecular Network Models via Computational Algebra”. In: BMC

Systems Biology 10.1 (2016), p. 94. doi: 10.1186/s12918-016-0332-x
Cited on page 127

[356] Sang-Mok Choo, Byunghyun Ban, Jae Il Joo, and Kwang-Hyun Cho. “The Phenotype Control
Kernel of a Biomolecular Regulatory Network”. In: BMC Systems Biology 12.1 (2018), p. 49. doi:
10.1186/s12918-018-0576-8

Cited on page 127

[357] Sang-Mok Choo, Sang-Min Park, and Kwang-Hyun Cho. “Minimal Intervening Control of Biomolec-
ular Networks Leading to a Desired Cellular State”. In: Scientific Reports 9.1 (2019), p. 13124. doi:
10.1038/s41598-019-49571-6

Cited on page 127

[358] S. R. Paladugu, V. Chickarmane, A. Deckard, J. P. Frumkin, M. McCormack, and H. M. Sauro. “In
Silico Evolution of Functional Modules in Biochemical Networks”. In: IEE Proceedings - Systems

Biology 153.4 (2006), pp. 223–235. doi: 10.1049/ip-syb:20050096
Cited on page 127

[359] Paul François. “Evolving Phenotypic Networks in Silico”. In: Seminars in Cell & Developmental Biology.
Regulated Necrosis & Modeling Developmental Signaling Pathways & Development of Connective
Maps in the Brain 35 (2014), pp. 90–97. doi: 10.1016/j.semcdb.2014.06.012
Cited on page 127

[360] Nasimul Noman, Taku Monjo, Pablo Moscato, and Hitoshi Iba. “Evolving Robust Gene Regulatory
Networks”. In: PLOS ONE 10.1 (2015), e0116258. doi: 10.1371/journal.pone.0116258
Cited on pages 127, 128, 136

[361] Tom W. Hiscock. “Adapting Machine-Learning Algorithms to Design Gene Circuits”. In: BMC

bioinformatics 20.1 (2019), p. 214. doi: 10.1186/s12859-019-2788-3
Cited on pages 127, 144, 252

[362] Jingxiang Shen, Feng Liu, Yuhai Tu, and Chao Tang. “Finding Gene Network Topologies for given
Biological Function with Recurrent Neural Network”. In: Nature Communications 12.1 (2021), p. 3125.
doi: 10.1038/s41467-021-23420-5
Cited on page 127

https://doi.org/10.1038/s41540-022-00249-2
https://doi.org/10.1371/journal.pcbi.1004193
https://doi.org/10.1371/journal.pcbi.1004193
https://doi.org/10.1073/pnas.1617387114
https://doi.org/10.1007/978-3-030-60327-4_9
https://doi.org/10.1186/s12918-016-0332-x
https://doi.org/10.1186/s12918-018-0576-8
https://doi.org/10.1038/s41598-019-49571-6
https://doi.org/10.1049/ip-syb:20050096
https://doi.org/10.1016/j.semcdb.2014.06.012
https://doi.org/10.1371/journal.pone.0116258
https://doi.org/10.1186/s12859-019-2788-3
https://doi.org/10.1038/s41467-021-23420-5


[363] Diogo M. Camacho, Katherine M. Collins, Rani K. Powers, James C. Costello, and James J. Collins.
“Next-Generation Machine Learning for Biological Networks”. In: Cell 173.7 (2018), pp. 1581–1592.
doi: 10.1016/j.cell.2018.05.015
Cited on pages 127, 171

[364] Michael Jeffrey Volk, Ismini Lourentzou, Shekhar Mishra, Lam Tung Vo, Chengxiang Zhai, and
Huimin Zhao. “Biosystems Design by Machine Learning”. In: ACS Synthetic Biology 9.7 (2020),
pp. 1514–1533. doi: 10.1021/acssynbio.0c00129
Cited on pages 127, 143

[365] Hiroaki Kitano. “A Robustness-Based Approach to Systems-Oriented Drug Design”. In: Nature

Reviews Drug Discovery 6.3 (2007), pp. 202–210. doi: 10.1038/nrd2195
Cited on page 127

[366] Surama Biswas, Santosh Manicka, Erik Hoel, and Michael Levin. “Gene Regulatory Networks Exhibit
Several Kinds of Memory: Quantification of Memory in Biological and Random Transcriptional
Networks”. In: iScience 24.3 (2021), p. 102131. doi: 10.1016/j.isci.2021.102131
Cited on page 127

[367] Surama Biswas, Wesley Clawson, and Michael Levin. “Learning in Transcriptional Network Models:
Computational Discovery of Pathway-Level Memory and Effective Interventions”. In: International

Journal of Molecular Sciences 24.1 (2023), p. 285. doi: 10.3390/ijms24010285
Cited on pages 127, 141, 247

[368] Sébastien Forestier, Rémy Portelas, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically Motivated

Goal Exploration Processes with Automatic Curriculum Learning. 2022. Comment: Accepted at JMLR
2022
Cited on pages 128, 132, 145

[369] Hiroaki Kitano. “Towards a Theory of Biological Robustness”. In: Molecular Systems Biology 3.1 (2007),
p. 137. doi: 10.1038/msb4100179
Cited on pages 128, 136, 250

[370] Marie-Anne Félix and Michalis Barkoulas. “Pervasive Robustness in Biological Systems”. In: Nature

Reviews Genetics 16.8 (2015), pp. 483–496. doi: 10.1038/nrg3949
Cited on pages 128, 136, 250

[371] Nicholas T. Ingolia. “Topology and Robustness in the Drosophila Segment Polarity Network”. In:
PLOS Biology 2.6 (2004), e123. doi: 10.1371/journal.pbio.0020123
Cited on pages 128, 136

[372] Wenzhe Ma, Luhua Lai, Qi Ouyang, and Chao Tang. “Robustness and Modular Design of the
Drosophila Segment Polarity Network”. In: Molecular Systems Biology 2.1 (2006), p. 70. doi: 10.1038/
msb4100111

Cited on pages 128, 136

[373] David Deutscher, Isaac Meilĳson, Martin Kupiec, and Eytan Ruppin. “Multiple Knockout Analysis
of Genetic Robustness in the Yeast Metabolic Network”. In: Nature Genetics 38.9 (2006), pp. 993–998.
doi: 10.1038/ng1856
Cited on page 128

[374] George von Dassow, Eli Meir, Edwin M. Munro, and Garrett M. Odell. “The Segment Polarity Network
Is a Robust Developmental Module”. In: Nature 406.6792 (2000), pp. 188–192. doi: 10.1038/35018085
Cited on pages 128, 136

[375] Cho Kwang-Hyun, Shin Sung-Young, Kim Hyun-Woo, Olaf Wolkenhauer, Brian McFerran, and
Walter Kolch. “Mathematical Modeling of the Influence of RKIP on the ERK Signaling Pathway”. In:
Computational Methods in Systems Biology. Ed. by Gerhard Goos, Juris Hartmanis, Jan Van Leeuwen,
and Corrado Priami. Vol. 2602. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 127–141.
doi: 10.1007/3-540-36481-1_11
Cited on pages 131, 132, 135, 139, 141, 142, 251, 256

https://doi.org/10.1016/j.cell.2018.05.015
https://doi.org/10.1021/acssynbio.0c00129
https://doi.org/10.1038/nrd2195
https://doi.org/10.1016/j.isci.2021.102131
https://doi.org/10.3390/ijms24010285
https://doi.org/10.1038/msb4100179
https://doi.org/10.1038/nrg3949
https://doi.org/10.1371/journal.pbio.0020123
https://doi.org/10.1038/msb4100111
https://doi.org/10.1038/msb4100111
https://doi.org/10.1038/ng1856
https://doi.org/10.1038/35018085
https://doi.org/10.1007/3-540-36481-1_11


[376] Leland McInnes, John Healy, and Steve Astels. “Hdbscan: Hierarchical Density Based Clustering”.
In: The Journal of Open Source Software 2.11 (2017), p. 205
Cited on pages 135, 251

[377] Charles C. Bell and Omer Gilan. “Principles and Mechanisms of Non-Genetic Resistance in Cancer”.
In: British Journal of Cancer 122.4 (2020), pp. 465–472. doi: 10.1038/s41416-019-0648-6
Cited on pages 136, 138, 141

[378] Aurélien Rizk, Gregory Batt, François Fages, and Sylvain Soliman. “A General Computational
Method for Robustness Analysis with Applications to Synthetic Gene Networks”. In: Bioinformatics

25.12 (2009), pp. i169–i178. doi: 10.1093/bioinformatics/btp200
Cited on page 136

[379] Charles Walcott. “Pigeon Homing: Observations, Experiments and Confusions”. In: Journal of

Experimental Biology 199.1 (1996), pp. 21–27. doi: 10.1242/jeb.199.1.21
Cited on page 136

[380] Paolo Luschi, Susanne Åkesson, Annette C. Broderick, Fiona Glen, Brendan J. Godley, Floriano
Papi, and Graeme C. Hays. “Testing the Navigational Abilities of Ocean Migrants: Displacement
Experiments on Green Sea Turtles (Chelonia Mydas)”. In: Behavioral Ecology and Sociobiology 50.6
(2001), pp. 528–534
Cited on page 136

[381] Sonja Bisch-Knaden and Rüdiger Wehner. “Egocentric Information Helps Desert Ants to Navigate
around Familiar Obstacles”. In: Journal of Experimental Biology 204.24 (2001), pp. 4177–4184. doi:
10.1242/jeb.204.24.4177

Cited on page 136

[382] Charles I Abramson et al. A Primer of Invertebrate Learning: The Behavioral Perspective. American
Psychological Association, 1994
Cited on page 136

[383] Harish Venkatachalapathy, Samira M. Azarin, and Casim A. Sarkar. “Trajectory-Based Energy
Landscapes of Gene Regulatory Networks”. In: Biophysical Journal 120.4 (2021), pp. 687–698. doi:
10.1016/j.bpj.2020.11.2279

Cited on pages 138, 139, 251

[384] Chunhe Li and Jin Wang. “Landscape and Flux Reveal a New Global View and Physical Quantification
of Mammalian Cell Cycle”. In: Proceedings of the National Academy of Sciences 111.39 (2014), pp. 14130–
14135. doi: 10.1073/pnas.1408628111
Cited on page 138

[385] Chunhe Li and Jin Wang. “Quantifying Cell Fate Decisions for Differentiation and Reprogramming
of a Human Stem Cell Network: Landscape and Biological Paths”. In: PLOS Computational Biology

9.8 (2013), e1003165. doi: 10.1371/journal.pcbi.1003165
Cited on page 138

[386] Han Chu Lee, Bo Tian, John M. Sedivy, Jack R. Wands, and Miran Kim. “Loss of Raf Kinase Inhibitor
Protein Promotes Cell Proliferation and Migration of Human Hepatoma Cells”. In: Gastroenterology

131.4 (2006), pp. 1208–1217. doi: 10.1053/j.gastro.2006.07.012
Cited on pages 139, 142

[387] John Reinitz and David H. Sharp. “Mechanism of Eve Stripe Formation”. In: Mechanisms of Development

49.1 (1995), pp. 133–158. doi: 10.1016/0925-4773(94)00310-J
Cited on pages 141, 248

[388] Johannes Jaeger et al. “Dynamical Analysis of Regulatory Interactions in the Gap Gene System of
Drosophila Melanogaster”. In: Genetics 167.4 (2004), pp. 1721–1737. doi: 10.1534/genetics.104.
027334

Cited on page 141

https://doi.org/10.1038/s41416-019-0648-6
https://doi.org/10.1093/bioinformatics/btp200
https://doi.org/10.1242/jeb.199.1.21
https://doi.org/10.1242/jeb.204.24.4177
https://doi.org/10.1016/j.bpj.2020.11.2279
https://doi.org/10.1073/pnas.1408628111
https://doi.org/10.1371/journal.pcbi.1003165
https://doi.org/10.1053/j.gastro.2006.07.012
https://doi.org/10.1016/0925-4773(94)00310-J
https://doi.org/10.1534/genetics.104.027334
https://doi.org/10.1534/genetics.104.027334


[389] James Cotterell and James Sharpe. “An Atlas of Gene Regulatory Networks Reveals Multiple
Three-Gene Mechanisms for Interpreting Morphogen Gradients”. In: Molecular Systems Biology 6.1
(2010), p. 425. doi: 10.1038/msb.2010.74
Cited on page 141

[390] Evan J. Molinelli et al. “Perturbation Biology: Inferring Signaling Networks in Cellular Systems”. In:
PLOS Computational Biology 9.12 (2013), e1003290. doi: 10.1371/journal.pcbi.1003290
Cited on page 141

[391] Jordi Vallverdú, Oscar Castro, Richard Mayne, Max Talanov, Michael Levin, Frantisek Baluška,
Yukio Gunji, Audrey Dussutour, Hector Zenil, and Andrew Adamatzky. “Slime Mould: The
Fundamental Mechanisms of Biological Cognition”. In: Biosystems 165 (2018), pp. 57–70. doi:
10.1016/j.biosystems.2017.12.011

Cited on page 141

[392] Madeleine Beekman and Tanya Latty. “Brainless but Multi-Headed: Decision Making by the Acellular
Slime Mould Physarum Polycephalum”. In: Journal of Molecular Biology. Cooperative Behaviour in
Microbial Communities 427.23 (2015), pp. 3734–3743. doi: 10.1016/j.jmb.2015.07.007
Cited on page 141

[393] Tetsu Saigusa, Atsushi Tero, Toshiyuki Nakagaki, and Yoshiki Kuramoto. “Amoebae Anticipate
Periodic Events”. In: Physical Review Letters 100.1 (2008), p. 018101. doi: 10.1103/PhysRevLett.100.
018101

Cited on page 141

[394] Toshiyuki Nakagaki and Robert D. Guy. “Intelligent Behaviors of Amoeboid Movement Based on
Complex Dynamics of Soft Matter”. In: Soft Matter 4.1 (2008), pp. 57–67. doi: 10.1039/B706317M
Cited on page 141

[395] Amir Pandi et al. “A Versatile Active Learning Workflow for Optimization of Genetic and Metabolic
Networks”. In: Nature Communications 13.1 (2022), p. 3876. doi: 10.1038/s41467-022-31245-z
Cited on page 145

[396] Ashley R. G. Libby, Demarcus Briers, Iman Haghighi, David A. Joy, Bruce R. Conklin, Calin Belta,
and Todd C. McDevitt. “Automated Design of Pluripotent Stem Cell Self-Organization”. In: Cell

Systems 9.5 (2019), 483–495.e10. doi: 10.1016/j.cels.2019.10.008
Cited on page 146

[397] Alexis Pietak and Michael Levin. “Exploring Instructive Physiological Signaling with the Bioelectric
Tissue Simulation Engine”. In: Frontiers in Bioengineering and Biotechnology 4 (2016)
Cited on pages 146, 150, 151, 153

[398] Aneta Koseska and Philippe IH Bastiaens. “Cell Signaling as a Cognitive Process”. In: The EMBO

Journal 36.5 (2017), pp. 568–582. doi: 10.15252/embj.201695383
Cited on page 146

[399] František Baluška, Arthur S. Reber, and William B. Miller. “Cellular Sentience as the Primary Source
of Biological Order and Evolution”. In: Biosystems 218 (2022), p. 104694. doi: 10.1016/j.biosystems.
2022.104694

Cited on page 146

[400] František Baluška, William B Miller, and Arthur S Reber. “Cellular and Evolutionary Perspectives
on Organismal Cognition: From Unicellular to Multicellular Organisms”. In: Biological Journal of the

Linnean Society 139.4 (2023), pp. 503–513. doi: 10.1093/biolinnean/blac005
Cited on page 146

[401] Arthur S. Reber and František Baluška. “Cognition in Some Surprising Places”. In: Biochemical and

Biophysical Research Communications. Rethinking Cognition: From Animal to Minimal 564 (2021),
pp. 150–157. doi: 10.1016/j.bbrc.2020.08.115
Cited on page 146

https://doi.org/10.1038/msb.2010.74
https://doi.org/10.1371/journal.pcbi.1003290
https://doi.org/10.1016/j.biosystems.2017.12.011
https://doi.org/10.1016/j.jmb.2015.07.007
https://doi.org/10.1103/PhysRevLett.100.018101
https://doi.org/10.1103/PhysRevLett.100.018101
https://doi.org/10.1039/B706317M
https://doi.org/10.1038/s41467-022-31245-z
https://doi.org/10.1016/j.cels.2019.10.008
https://doi.org/10.15252/embj.201695383
https://doi.org/10.1016/j.biosystems.2022.104694
https://doi.org/10.1016/j.biosystems.2022.104694
https://doi.org/10.1093/biolinnean/blac005
https://doi.org/10.1016/j.bbrc.2020.08.115


[402] František Baluška and Arthur S. Reber. “Cellular and Organismal Agency - Not Based on Genes: A
Comment on Baverstock”. In: Progress in Biophysics and Molecular Biology 167 (2021), pp. 161–162. doi:
10.1016/j.pbiomolbio.2021.11.001

Cited on page 146

[403] Anne Bernheim-Groswasser, Nir S. Gov, Samuel A. Safran, and Shelly Tzlil. “Living Matter:
Mesoscopic Active Materials”. In: Advanced Materials 30.41 (2018), p. 1707028. doi: 10.1002/adma.
201707028

Cited on page 146

[404] Bertrand Guillotin et al. “Laser Assisted Bioprinting of Engineered Tissue with High Cell Density and
Microscale Organization”. In: Biomaterials 31.28 (2010), pp. 7250–7256. doi:10.1016/j.biomaterials.
2010.05.055

Cited on pages 149, 159

[405] Virginie Keriquel et al. “In Situ Printing of Mesenchymal Stromal Cells, by Laser-Assisted Bioprinting,
for in Vivo Bone Regeneration Applications”. In: Scientific Reports 7.1 (2017), p. 1778. doi: 10.1038/
s41598-017-01914-x

Cited on page 149

[406] Maxime Abellan Lopez et al. “In Vivo Efficacy Proof of Concept of a Large-Size Bioprinted Dermo-
Epidermal Substitute for Permanent Wound Coverage”. In: Frontiers in Bioengineering and Biotechnology

11 (2023)
Cited on pages 149, 161

[407] Alexis Pietak and Michael Levin. “Bioelectric Gene and Reaction Networks: Computational Modelling
of Genetic, Biochemical and Bioelectrical Dynamics in Pattern Regulation”. In: Journal of The Royal

Society Interface 14.134 (2017), p. 20170425. doi: 10.1098/rsif.2017.0425
Cited on pages 150, 152

[408] A. Douillet, C. Douillet, M. Garcia, M. Nicodem, F. Guillemot, and P. Ballet. “A Computational
Framework to Simulate Bio-Printed Cells and Extracellular Matrix Mechanobiochemical Interactions”.
In: Computer Methods in Biomechanics and Biomedical Engineering 22.sup1 (2019), S338–S339. doi:
10.1080/10255842.2020.1714935

Cited on pages 150, 154, 155

[409] Pascal Ballet. “SimCells, an Advanced Software for Multicellular Modeling Application to Tumoral
and Blood Vessel Co-Development”. 2018. working paper or preprint
Cited on pages 150, 154

[410] Dany S. Adams and Michael Levin. “General Principles for Measuring Resting Membrane Potential
and Ion Concentration Using Fluorescent Bioelectricity Reporters”. In: Cold Spring Harbor Protocols

2012.4 (2012), pp. 385–397. doi: 10.1101/pdb.top067710
Cited on page 151

[411] Michael Levin and Christopher J. Martyniuk. “The Bioelectric Code: An Ancient Computational
Medium for Dynamic Control of Growth and Form”. In: Biosystems. Code Biology 164 (2018),
pp. 76–93. doi: 10.1016/j.biosystems.2017.08.009

[412] Michael Levin. “Bioelectric Signaling: Reprogrammable Circuits Underlying Embryogenesis, Regen-
eration, and Cancer”. In: Cell 184.8 (2021), pp. 1971–1989. doi: 10.1016/j.cell.2021.02.034
Cited on page 151

[413] Javier Cervera, Alexis Pietak, Michael Levin, and Salvador Mafe. “Bioelectrical Coupling in Mul-
ticellular Domains Regulated by Gap Junctions: A Conceptual Approach”. In: Bioelectrochemistry

(Amsterdam, Netherlands) 123 (2018), pp. 45–61. doi: 10.1016/j.bioelechem.2018.04.013
Cited on page 151

[414] Vaibhav P. Pai, Alexis Pietak, Valerie Willocq, Bin Ye, Nian-Qing Shi, and Michael Levin. “HCN2
Rescues Brain Defects by Enforcing Endogenous Voltage Pre-Patterns”. In: Nature Communications

9.1 (2018), p. 998. doi: 10.1038/s41467-018-03334-5
Cited on page 151

https://doi.org/10.1016/j.pbiomolbio.2021.11.001
https://doi.org/10.1002/adma.201707028
https://doi.org/10.1002/adma.201707028
https://doi.org/10.1016/j.biomaterials.2010.05.055
https://doi.org/10.1016/j.biomaterials.2010.05.055
https://doi.org/10.1038/s41598-017-01914-x
https://doi.org/10.1038/s41598-017-01914-x
https://doi.org/10.1098/rsif.2017.0425
https://doi.org/10.1080/10255842.2020.1714935
https://doi.org/10.1101/pdb.top067710
https://doi.org/10.1016/j.biosystems.2017.08.009
https://doi.org/10.1016/j.cell.2021.02.034
https://doi.org/10.1016/j.bioelechem.2018.04.013
https://doi.org/10.1038/s41467-018-03334-5


[415] Alexis Pietak, Johanna Bischof, Joshua LaPalme, Junji Morokuma, and Michael Levin. “Neural
Control of Body-Plan Axis in Regenerating Planaria”. In: PLOS Computational Biology 15.4 (2019),
e1006904. doi: 10.1371/journal.pcbi.1006904
Cited on page 151

[416] Hananel Hazan and Michael Levin. “Exploring The Behavior of Bioelectric Circuits Using Evolution
Heuristic Search”. In: Bioelectricity 4.4 (2022), pp. 207–227
Cited on pages 152, 153

[417] Camille Douillet, Marc Nicodeme, Loïc Hermant, Vanessa Bergeron, Fabien Guillemot, Jean-
Christophe Fricain, Hugo Oliveira, and Mikael Garcia. “From Local to Global Matrix Organization
by Fibroblasts: A 4D Laser-Assisted Bioprinting Approach”. In: Biofabrication 14.2 (2022). doi:
10.1088/1758-5090/ac40ed

Cited on pages 154, 157, 160, 161

[418] Arthur Douillet. “Simulation de La Morphogenèse de Tissus Bio-Imprimés”. These de Doctorat.
Brest, 2020. Sous la direction de Pascal Ballet et de Fabien Guillemot. Soutenue le 17-09-2020,à
Brest , dans le cadre de École doctorale Biologie-Santé (Nantes) , en partenariat avec Laboratoire de
traitement de l’information médicale (Brest, Finistère) (laboratoire) .
Cited on page 155

[419] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. “A Hypercube-Based Encoding for
Evolving Large-Scale Neural Networks”. In: Artificial life 15.2 (2009), pp. 185–212
Cited on pages 158, 180

[420] Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. “Unshackling Evolution: Evolving
Soft Robots with Multiple Materials and a Powerful Generative Encoding”. In: ACM SIGEVOlution

7.1 (2014), pp. 11–23
Cited on page 158

[421] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. “Learning Representa-
tions and Generative Models for 3d Point Clouds”. In: International Conference on Machine Learning.
PMLR, 2018, pp. 40–49
Cited on page 158

[422] Camille Douillet. “La Bio-Impression Assistée Par Laser de Fibroblastes : Contrôler l’organisation
Du Collagène Pour l’ingénierie Tissulaire de La Peau”. These de Doctorat. Bordeaux, 2021. Sous la
direction de Jean-Christophe Fricain. Soutenue le 11-06-2021,à Bordeaux , dans le cadre de École
doctorale Sciences de la vie et de la santé (Bordeaux) , en partenariat avec Bioingénierie tissulaire
(laboratoire) .
Cited on pages 159, 161

[423] Jipeng Li, Mingjiao Chen, Xianqun Fan, and Huifang Zhou. “Recent Advances in Bioprinting
Techniques: Approaches, Applications and Future Prospects”. In: Journal of Translational Medicine

14.1 (2016), p. 271. doi: 10.1186/s12967-016-1028-0
Cited on page 159

[424] Ulrike Baranyi, Birgitta Winter, Alfred Gugerell, Balazs Hegedus, Christine Brostjan, Günther Laufer,
and Barbara Messner. “Primary Human Fibroblasts in Culture Switch to a Myofibroblast-like
Phenotype Independently of TGF Beta”. In: Cells 8.7 (2019), p. 721
Cited on page 160

[425] Allen P Liu, Ovĳit Chaudhuri, and Sapun H Parekh. “New Advances in Probing Cell–Extracellular
Matrix Interactions”. In: Integrative Biology 9.5 (2017), pp. 383–405
Cited on page 160

[426] Altug Ozcelikkale, J Craig Dutton, Frederick Grinnell, and Bumsoo Han. “Effects of Dynamic Matrix
Remodelling on En Masse Migration of Fibroblasts on Collagen Matrices”. In: Journal of The Royal

Society Interface 14.135 (2017), p. 20170287
Cited on page 160

https://doi.org/10.1371/journal.pcbi.1006904
https://doi.org/10.1088/1758-5090/ac40ed
https://doi.org/10.1186/s12967-016-1028-0


[427] Frederick Grinnell. “Fibroblast Biology in Three-Dimensional Collagen Matrices”. In: Trends in cell

biology 13.5 (2003), pp. 264–269
Cited on page 160

[428] Allen P Liu. “Biophysical Tools for Cellular and Subcellular Mechanical Actuation of Cell Signaling”.
In: Biophysical Journal 111.6 (2016), pp. 1112–1118
Cited on page 160

[429] Ju An Park, Hwa-Rim Lee, Seung-Yeol Park, and Sungjune Jung. “Self-Organization of Fibroblast-
Laden 3D Collagen Microstructures from Inkjet-Printed Cell Patterns”. In: Advanced biosystems 4.5
(2020), p. 1900280
Cited on pages 160, 162, 163

[430] Yee Han Tee, Tom Shemesh, Visalatchi Thiagarajan, Rizal Fajar Hariadi, Karen L Anderson, Christo-
pher Page, Niels Volkmann, Dorit Hanein, Sivaraj Sivaramakrishnan, Michael M Kozlov, et al.
“Cellular Chirality Arising from the Self-Organization of the Actin Cytoskeleton”. In: Nature cell

biology 17.4 (2015), pp. 445–457
Cited on page 160

[431] John L Tan, Joe Tien, Dana M Pirone, Darren S Gray, Kiran Bhadriraju, and Christopher S Chen.
“Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force”. In: Proceedings of

the National Academy of Sciences 100.4 (2003), pp. 1484–1489
Cited on page 160

[432] Carlos Matellan and Armando E del Río Hernández. “Engineering the Cellular Mechanical Mi-
croenvironment–from Bulk Mechanics to the Nanoscale”. In: Journal of cell science 132.9 (2019),
jcs229013
Cited on page 160

[433] Huizhi Chen, Yuan Siang Lui, Zhen Wei Tan, Justin Yin Hao Lee, Nguan Soon Tan, and Lay Poh Tan.
“Migration and Phenotype Control of Human Dermal Fibroblasts by Electrospun Fibrous Substrates”.
In: Advanced healthcare materials 8.9 (2019), p. 1801378
Cited on page 160

[434] Megan E Smithmyer, Samantha E Cassel, and April M Kloxin. “Bridging 2D and 3D Culture: Probing
Impact of Extracellular Environment on Fibroblast Activation in Layered Hydrogels”. In: AIChE

Journal 65.12 (2019), e16837
Cited on page 160

[435] Jia Shi, Jinchun Song, Bin Song, and Wen F Lu. “Multi-Objective Optimization Design through
Machine Learning for Drop-on-Demand Bioprinting”. In: Engineering 5.3 (2019), pp. 586–593
Cited on page 161

[436] Kalani Ruberu, Manisha Senadeera, Santu Rana, Sunil Gupta, Johnson Chung, Zhilian Yue, Svetha
Venkatesh, and Gordon Wallace. “Coupling Machine Learning with 3D Bioprinting to Fast Track
Optimisation of Extrusion Printing”. In: Applied Materials Today 22 (2021), p. 100914
Cited on page 161

[437] Chunling Yu and Jingchao Jiang. “A Perspective on Using Machine Learning in 3D Bioprinting”. In:
International Journal of Bioprinting 6.1 (2020)
Cited on page 161

[438] Tânia Baltazar et al. “Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft
Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells”. In: Tissue Engineering.

Part A 26.5-6 (2020), pp. 227–238. doi: 10.1089/ten.tea.2019.0201
Cited on pages 162, 163

[439] Hironobu Takahashi, Tatsuya Shimizu, Masamichi Nakayama, Masayuki Yamato, and Teruo Okano.
“The Use of Anisotropic Cell Sheets to Control Orientation during the Self-Organization of 3D Muscle
Tissue”. In: Biomaterials 34.30 (2013), pp. 7372–7380. doi: 10.1016/j.biomaterials.2013.06.033
Cited on page 162

https://doi.org/10.1089/ten.tea.2019.0201
https://doi.org/10.1016/j.biomaterials.2013.06.033


[440] M. G. Tonnesen, X. Feng, and R. A. Clark. “Angiogenesis in Wound Healing”. In: The Journal

of Investigative Dermatology. Symposium Proceedings 5.1 (2000), pp. 40–46. doi: 10.1046/j.1087-
0024.2000.00014.x

Cited on page 163

[441] Hiroaki Kitano. “Systems Biology: A Brief Overview”. In: Science 295.5560 (2002), pp. 1662–1664.
doi: 10.1126/science.1069492
Cited on page 171

[442] M. Hucka et al. “The Systems Biology Markup Language (SBML): A Medium for Representation
and Exchange of Biochemical Network Models”. In: Bioinformatics 19.4 (2003), pp. 524–531. doi:
10.1093/bioinformatics/btg015

Cited on page 171

[443] Michael Hucka et al. “The Systems Biology Markup Language (SBML): Language Specification for
Level 3 Version 2 Core Release 2”. In: Journal of Integrative Bioinformatics 16.2 (2019), p. 20190021. doi:
10.1515/jib-2019-0021

Cited on page 171

[444] Giulia Muzio, Leslie O’Bray, and Karsten Borgwardt. “Biological Network Analysis with Deep
Learning”. In: Briefings in Bioinformatics 22.2 (2021), pp. 1515–1530. doi: 10.1093/bib/bbaa257
Cited on page 171

[445] Mohammed AlQuraishi and Peter K. Sorger. “Differentiable Biology: Using Deep Learning for
Biophysics-Based and Data-Driven Modeling of Molecular Mechanisms”. In: Nature Methods 18.10
(2021), pp. 1169–1180. doi: 10.1038/s41592-021-01283-4
Cited on page 171

[446] Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Jürgen Pahle, Natalia Simus, Mudita Singhal,
Liang Xu, Pedro Mendes, and Ursula Kummer. “COPASI—a COmplex PAthway SImulator”. In:
Bioinformatics 22.24 (2006), pp. 3067–3074. doi: 10.1093/bioinformatics/btl485
Cited on page 172

[447] Frank T. Bergmann. Copasi/Basico: Release 0.48. 2023
Cited on page 172

[448] Leslie M. Loew and James C. Schaff. “The Virtual Cell: A Software Environment for Computational
Cell Biology”. In: Trends in Biotechnology 19.10 (2001), pp. 401–406. doi: 10.1016/S0167-7799(01)
01740-1

Cited on page 172

[449] Boris M. Slepchenko, James C. Schaff, Ian Macara, and Leslie M. Loew. “Quantitative Cell Biology with
the Virtual Cell”. In: Trends in Cell Biology 13.11 (2003), pp. 570–576. doi: 10.1016/j.tcb.2003.09.002
Cited on page 172

[450] Akira Funahashi, Mineo Morohashi, Hiroaki Kitano, and Naoki Tanimura. “CellDesigner: A Process
Diagram Editor for Gene-Regulatory and Biochemical Networks”. In: BIOSILICO 1.5 (2003), pp. 159–
162. doi: 10.1016/S1478-5382(03)02370-9
Cited on page 172

[451] Akira Funahashi, Yukiko Matsuoka, Akiya Jouraku, Mineo Morohashi, Norihiro Kikuchi, and Hiroaki
Kitano. “CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks”. In: Proceedings of

the IEEE 96.8 (2008), pp. 1254–1265. doi: 10.1109/JPROC.2008.925458
Cited on page 172

[452] Kiri Choi, J. Kyle Medley, Matthias König, Kaylene Stocking, Lucian Smith, Stanley Gu, and Herbert
M. Sauro. “Tellurium: An Extensible Python-Based Modeling Environment for Systems and Synthetic
Biology”. In: Biosystems 171 (2018), pp. 74–79. doi: 10.1016/j.biosystems.2018.07.006
Cited on page 172

https://doi.org/10.1046/j.1087-0024.2000.00014.x
https://doi.org/10.1046/j.1087-0024.2000.00014.x
https://doi.org/10.1126/science.1069492
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1515/jib-2019-0021
https://doi.org/10.1093/bib/bbaa257
https://doi.org/10.1038/s41592-021-01283-4
https://doi.org/10.1093/bioinformatics/btl485
https://doi.org/10.1016/S0167-7799(01)01740-1
https://doi.org/10.1016/S0167-7799(01)01740-1
https://doi.org/10.1016/j.tcb.2003.09.002
https://doi.org/10.1016/S1478-5382(03)02370-9
https://doi.org/10.1109/JPROC.2008.925458
https://doi.org/10.1016/j.biosystems.2018.07.006


[453] J. Kyle Medley, Kiri Choi, Matthias König, Lucian Smith, Stanley Gu, Joseph Hellerstein, Stuart
C. Sealfon, and Herbert M. Sauro. “Tellurium Notebooks—An Environment for Reproducible
Dynamical Modeling in Systems Biology”. In: PLOS Computational Biology 14.6 (2018), e1006220. doi:
10.1371/journal.pcbi.1006220

Cited on page 172

[454] Steve M. Ruggiero and Ashlee N. Ford Versypt. “SBMLtoODEpy: A Software Program for Converting
SBML Models into ODE Models in Python”. In: Journal of Open Source Software 5.53 (2019), p. 1643.
doi: 10.21105/joss.01643
Cited on page 172

[455] Nicolas Rodriguez et al. “The Systems Biology Format Converter”. In: BMC Bioinformatics 17.1 (2016),
p. 154. doi: 10.1186/s12859-016-1000-2
Cited on page 172

[456] Eric J. Ma and Arkadĳ Kummer. Reimplementing Unirep in JAX. 2020. doi: 10.1101/2020.05.11.
088344

Cited on page 172

[457] Giuseppe Carleo et al. “NetKet: A Machine Learning Toolkit for Many-Body Quantum Systems”. In:
SoftwareX 10 (2019), p. 100311. doi: 10.1016/j.softx.2019.100311
Cited on page 172

[458] Jean-Eric Campagne, François Lanusse, Joe Zuntz, Alexandre Boucaud, Santiago Casas, Minas
Karamanis, David Kirkby, Denise Lanzieri, Yin Li, and Austin Peel. “JAX-COSMO: An End-to-End
Differentiable and GPU Accelerated Cosmology Library”. In: The Open Journal of Astrophysics 6
(2023), 10.21105/astro.2302.05163. doi: 10.21105/astro.2302.05163
Cited on page 172

[459] Dion Häfner, Roman Nuterman, and Markus Jochum. “Fast, Cheap, and Turbulent—Global Ocean
Modeling With GPU Acceleration in Python”. In: Journal of Advances in Modeling Earth Systems 13.12
(2021), e2021MS002717. doi: 10.1029/2021MS002717. e2021MS002717 2021MS002717
Cited on page 172

[460] Sean Mann, Eric Fadel, Samuel S. Schoenholz, Ekin D. Cubuk, Steven G. Johnson, and Giuseppe
Romano. “𝜕PV: An End-to-End Differentiable Solar-Cell Simulator”. In: Computer Physics Communi-

cations 272 (2022), p. 108232. doi: 10.1016/j.cpc.2021.108232
Cited on page 172

[461] Antonio Stanziola, Simon R. Arridge, Ben T. Cox, and Bradley E. Treeby. “J-Wave: An Open-Source
Differentiable Wave Simulator”. In: SoftwareX 22 (2023), p. 101338. doi: 10.1016/j.softx.2023.
101338

Cited on page 172

[462] Deniz A. Bezgin, Aaron B. Buhendwa, and Nikolaus A. Adams. “JAX-Fluids: A Fully-Differentiable
High-Order Computational Fluid Dynamics Solver for Compressible Two-Phase Flows”. In: Computer

Physics Communications 282 (2023), p. 108527. doi: 10.1016/j.cpc.2022.108527
Cited on page 172

[463] B. N. Kholodenko. “Negative Feedback and Ultrasensitivity Can Bring about Oscillations in the
Mitogen-Activated Protein Kinase Cascades”. In: European Journal of Biochemistry 267.6 (2000),
pp. 1583–1588. doi: 10.1046/j.1432-1327.2000.01197.x
Cited on page 173

[464] Patrick Kidger and Cristian Garcia. “Equinox: Neural Networks in JAX via Callable PyTrees and
Filtered Transformations”. In: Differentiable Programming workshop at Neural Information Processing

Systems 2021 (2021)
Cited on page 173

[465] Igor Babuschkin et al. The DeepMind JAX Ecosystem. 2020
Cited on page 173

https://doi.org/10.1371/journal.pcbi.1006220
https://doi.org/10.21105/joss.01643
https://doi.org/10.1186/s12859-016-1000-2
https://doi.org/10.1101/2020.05.11.088344
https://doi.org/10.1101/2020.05.11.088344
https://doi.org/10.1016/j.softx.2019.100311
https://doi.org/10.21105/astro.2302.05163
https://doi.org/10.1029/2021MS002717
https://doi.org/10.1016/j.cpc.2021.108232
https://doi.org/10.1016/j.softx.2023.101338
https://doi.org/10.1016/j.softx.2023.101338
https://doi.org/10.1016/j.cpc.2022.108527
https://doi.org/10.1046/j.1432-1327.2000.01197.x


[466] Kenneth O Stanley and L B Soros. “The Role of Subjectivity in the Evaluation of Open-Endedness”.
In: The Second Workshop on Open-Ended Evolution (OEE2), at ALIFE 2016 (2016)
Cited on page 179

[467] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural computation 9.8
(1997), pp. 1735–1780
Cited on page 180

[468] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. “Attention Is All You Need”. In: Advances in Neural Information Processing

Systems. Vol. 30. Curran Associates, Inc., 2017
Cited on page 180

[469] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. “Unsupervised Learning of Video
Representations Using LSTMs”. In: Proceedings of the 32nd International Conference on International

Conference on Machine Learning - Volume 37. ICML’15. Lille, France: JMLR.org, 2015, pp. 843–852
Cited on page 180

[470] Javier Selva, Anders S. Johansen, Sergio Escalera, Kamal Nasrollahi, Thomas B. Moeslund, and
Albert Clapés. “Video Transformers: A Survey”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 01 (2023), pp. 1–20. doi: 10.1109/TPAMI.2023.3243465
Cited on page 180

[471] Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and Boqing
Gong. “VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and
Text”. In: Advances in Neural Information Processing Systems. Vol. 34. Curran Associates, Inc., 2021,
pp. 24206–24221
Cited on page 180

[472] Tristan Karch, Yoann Lemesle, Romain Laroche, Clément Moulin-Frier, and Pierre-Yves Oudeyer.
Contrastive Multimodal Learning for Emergence of Graphical Sensory-Motor Communication. 2023
Cited on page 180

[473] Jessica C. Flack. “Coarse-Graining as a Downward Causation Mechanism”. In: Philosophical Transac-

tions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375.2109 (2017), p. 20160338.
doi: 10.1098/rsta.2016.0338
Cited on page 181

[474] Olivier Sigaud, Ahmed Akakzia, Hugo Caselles-Dupré, Cédric Colas, Pierre-Yves Oudeyer, and
Mohamed Chetouani. “Towards Teachable Autotelic Agents”. In: IEEE Transactions on Cognitive and

Developmental Systems 15.3 (2023), pp. 1070–1084. doi: 10.1109/TCDS.2022.3231731.
Cited on page 181

[475] Sebastian Risi. “The Future of Artificial Intelligence Is Self-Organizing and Self-Assembling”. In:
sebastianrisi.com (2021)
Cited on page 183

[476] David Ha and Yujin Tang. “Collective Intelligence for Deep Learning: A Survey of Recent Develop-
ments”. In: Collective Intelligence 1.1 (2022), p. 26339137221114874. doi: 10.1177/26339137221114874
Cited on pages 183, 184

[477] Ephraim S. Bililign, Florencio Balboa Usabiaga, Yehuda A. Ganan, Alexis Poncet, Vishal Soni, Sofia
Magkiriadou, Michael J. Shelley, Denis Bartolo, and William T. M. Irvine. “Motile Dislocations
Knead Odd Crystals into Whorls”. In: Nature Physics 18.2 (2022), pp. 212–218. doi: 10.1038/s41567-
021-01429-3

Cited on page 184

[478] Andy Lomas. “Cellular Forms: An Artistic Exploration of Morphogenesis”. In: ACM SIGGRAPH

2014 Studio. Vancouver Canada: ACM, 2014, pp. 1–1. doi: 10.1145/2619195.2656282. [TLDR] The
aim is to create structures emergently: exploring generic similarities between many different forms
in nature rather than recreating any particular organism, revealing universal archetypal forms that
can come from growth-like processes rather than top-down externally engineered design.
Cited on page 184

https://doi.org/10.1109/TPAMI.2023.3243465
https://doi.org/10.1098/rsta.2016.0338
https://doi.org/10.1109/TCDS.2022.3231731.
https://doi.org/10.1177/26339137221114874
https://doi.org/10.1038/s41567-021-01429-3
https://doi.org/10.1038/s41567-021-01429-3
https://doi.org/10.1145/2619195.2656282


[479] Andy Lomas. “Species Explorer: An Interface for Artistic Exploration of Multi-Dimensional Parameter
Spaces”. In: Electronic Visualisation and the Arts. BCS Learning & Development, 2016. doi: 10.14236/
ewic/EVA2016.23

Cited on page 184

[480] Robin Roussel, Marie-Paule Cani, Jean-Claude Léon, and Niloy J. Mitra. “Exploratory Design of
Mechanical Devices with Motion Constraints”. In: Computers & Graphics 74 (2018), pp. 244–256. doi:
10.1016/j.cag.2018.05.023

Cited on page 184

[481] Jack Armitage and Thor Magnusson. “Agential Scores: Exploring Emergent, Self-Organising and
Entangled Music Notation”. In: Proceedings of the 8th International Conference on Technologies for Music

Notation and Representation (Northeastern University, Boston, Massachusetts, USA, 2023). 2023
Cited on page 184

[482] I. T. Jolliffe. “Principal Component Analysis and Factor Analysis”. In: Principal Component Analysis.
New York, NY: Springer New York, 1986, pp. 115–128. doi: 10.1007/978-1-4757-1904-8_7
Cited on page 188

[483] Kenneth O Stanley and Risto Miikkulainen. “Efficient Evolution of Neural Network Topologies”. In:
Proceedings of the 2002 Congress on Evolutionary Computation. Vol. 2. IEEE, 2002
Cited on page 199

[484] Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: preprint

arXiv:1412.6980 (2014)
Cited on pages 201, 242

[485] Xavier Glorot and Yoshua Bengio. “Understanding the Difficulty of Training Deep Feedforward
Neural Networks”. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and

Statistics. 2010, pp. 249–256
Cited on page 202

[486] Fethi Smach, Cedric Lemaître, Jean-Paul Gauthier, Johel Miteran, and Mohamed Atri. “Generalized
Fourier Descriptors with Applications to Objects Recognition in SVM Context”. In: Journal of

mathematical imaging and Vision 30.1 (2008), pp. 43–71
Cited on page 206

[487] WH Müller. “Fourier Transforms and Their Application to the Formation of Textures and Changes
of Morphology in Solids”. In: IUTAM Symposium on Transformation Problems in Composite and Active

Materials. Springer, 1998, pp. 61–72
Cited on page 206

[488] James S Cope, Paolo Remagnino, Sarah Barman, and Paul Wilkin. “Plant Texture Classification Using
Gabor Co-Occurrences”. In: International Symposium on Visual Computing. Springer, 2010, pp. 669–677
Cited on page 206

[489] Svante Wold, Kim Esbensen, and Paul Geladi. “Principal Component Analysis”. In: Chemometrics

and intelligent laboratory systems 2.1-3 (1987), pp. 37–52
Cited on page 206

[490] John C Russ. “Image Processing”. In: Computer-Assisted Microscopy. Springer, 1990, pp. 33–69
Cited on page 207

[491] Pete E Lestrel. Fourier Descriptors and Their Applications in Biology. Cambridge University Press, 1997
Cited on page 207

[492] João Camargo Neto, George E Meyer, David D Jones, and Ashok K Samal. “Plant Species Identification
Using Elliptic Fourier Leaf Shape Analysis”. In: Computers and electronics in agriculture 50.2 (2006),
pp. 121–134
Cited on page 207

https://doi.org/10.14236/ewic/EVA2016.23
https://doi.org/10.14236/ewic/EVA2016.23
https://doi.org/10.1016/j.cag.2018.05.023
https://doi.org/10.1007/978-1-4757-1904-8_7


[493] Simon YY Chen, Pete E Lestrel, W John S Kerr, and John H McColl. “Describing Shape Changes in
the Human Mandible Using Elliptical Fourier Functions”. In: The European Journal of Orthodontics

22.3 (2000), pp. 205–216
Cited on page 207

[494] Martin Friess and Michel Baylac. “Exploring Artificial Cranial Deformation Using Elliptic Fourier
Analysis of Procrustes Aligned Outlines”. In: American Journal of Physical Anthropology: The Official

Publication of the American Association of Physical Anthropologists 122.1 (2003), pp. 11–22
Cited on page 207

[495] Ming-Kuei Hu. “Visual Pattern Recognition by Moment Invariants”. In: IRE transactions on information

theory 8.2 (1962), pp. 179–187
Cited on page 208

[496] Jan Flusser. “Moment Invariants in Image Analysis”. In: Proceedings of World Academy of Science,

Engineering and Technology. Vol. 11. Citeseer, 2006, pp. 196–201
Cited on page 208

[497] Samuel M Scheiner, Evsey Kosman, Steven J Presley, and Michael R Willig. “Decomposing Functional
Diversity”. In: Methods in Ecology and Evolution 8.7 (2017), pp. 809–820
Cited on page 210

[498] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. “How Transferable Are Features in
Deep Neural Networks?” In: Advances in Neural Information Processing Systems. 2014, pp. 3320–3328
Cited on page 212

[499] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. “Film: Visual
Reasoning with a General Conditioning Layer”. In: Thirty-Second AAAI Conference on Artificial

Intelligence. 2018
Cited on page 212

[500] Ricky T. Q. Chen, Xuechen Li, Roger Grosse, and David Duvenaud. “Isolating Sources of Disen-
tanglement in Variational Autoencoders”. In: Advances in Neural Information Processing Systems.
2018
Cited on pages 218, 219

[501] Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. “Large Scale Online Learning of Image
Similarity through Ranking”. In: Journal of Machine Learning Research 11.Mar (2010), pp. 1109–1135
Cited on pages 218, 219

[502] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet: A Unified Embedding for Face
Recognition and Clustering”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2015, pp. 815–823
Cited on pages 218, 219

[503] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. “A Simple Framework for
Contrastive Learning of Visual Representations”. In: arXiv preprint arXiv:2002.05709 (2020)
Cited on pages 218, 219

[504] Harshitha S. Kotian, Amith Z. Abdulla, K. N. Hithysini, Shalini Harkar, Shubham Joge, Ayushi Mishra,
Varsha Singh, and Manoj M. Varma. “Active Modulation of Surfactant-Driven Flow Instabilities by
Swarming Bacteria”. In: Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary

Topics 101.1 (2020), p. 012407. doi: 10.1103/PhysRevE.101.012407
Cited on page 227

[505] Robert Tjarko Lange. “Evosax: JAX-based Evolution Strategies”. In: arXiv preprint arXiv:2212.04180

(2022)
Cited on page 242

[506] Sean Gillies, Casper van der Wel, Joris Van den Bossche, Mike W. Taves, Joshua Arnott, Brendan C.
Ward, et al. Shapely. Zenodo. 2022. doi: 10.5281/zenodo.7428463. Please cite this software using
these metadata.
Cited on page 251

https://doi.org/10.1103/PhysRevE.101.012407
https://doi.org/10.5281/zenodo.7428463

	Contents
	Acknowledgements
	Abstract
	Introduction
	Self-Organization and its Role in the Evolution of Forms
	Experimenting with Complex Dynamical Systems for the Discovery of Novel Outcomes
	Machine Learning for Guiding Experimentation: Opportunities and Challenges
	Towards AI-driven Curious Discovery Assistants for Science

	Automated Scientific Discovery in Complex Systems
	The Automated Discovery Problem
	Standard AI paradigms
	Problem Reformulation: the Developmental AI Paradigm
	Summary

	The "curious discovery assistant" framework
	Intrinsically-Motivated Discovery of Diverse Self-Organized Structures
	The IMGEP Computational Framework
	Testbed Environment: the Lenia system
	Problem Definition: IMGEPs for the Discovery of Diverse Self-Organized Structures
	Summary

	Learning of representations to sample goals
	Motivation: Limits of Predefined Goal Spaces
	Problem reformulation: IMGEP with Online Goal Space Learning
	Proposed implementation: IMGEP-VAE with CPPN primitives
	Experimental Methods
	Results
	Discussion and Future Work

	Meta-Diversity Search: Learning and Exploration of Diverse Representation Spaces
	Motivation: Limits of Monolithic Goal Spaces
	Problem reformulation: Meta-Diversity Search
	Proposed implementation: IMGEP-HOLMES
	Results
	Minecraft Open-Endedness Challenge
	Discussion and Future Work

	Human in the Loop to Guide Exploration
	Motivation: Limits of Purely Divergent Diversity Search
	Problem reformulation: The "AI Discovery Assistant" framework
	Proposed implementation: preference-guided IMGEP-HOLMES
	Experiments
	Discussion and Future Work


	Use cases of the curious discovery assistant
	Exploring the Self-organization of Robust forms of Agency in continuous CA models
	Introduction
	Study of Sensorimotor Agency in continuous CA models
	Curiosity-driven Search Reveals Environmental Rules leading to the Systematic Emergence of Sensorimotor Entities
	The Discovered Entities showcase strong Generalization Abilities
	Flow Lenia: Towards Open-Ended Evolution in CA through Mass Conservation and Parameter Localization
	Discussion and Future Work

	Revealing Diverse Behavioral Competencies of Gene Regulatory Networks
	Introduction
	Generalizing GRN Behavior as a Navigation Task
	Curiosity Search Uncovers a Diversity of Reachable Goal States
	Empirical Tests Reveal Robust Navigation Competencies
	Possible Reuses of the Discoveries in Biology
	Discussion


	Targeted Reuses of the curious discovery assistant
	Towards Applications in Biological Morphogenetic Systems
	Motivation
	Numerical Morphogenetic Systems for Biological Tissue Simulation
	Bioprinter-controlled Morphogenetic Systems for Biological Tissue Engineering
	Summary

	Software Ecosystem
	ADTOOL: Assisted and Automated Discovery for Complex Systems
	SBMLtoODEjax: Efficient Simulation and Optimization of ODE SBML models in JAX
	Other Resources


	Discussion
	Summary
	Perspectives
	Algorithmic Perspectives Towards Open-Ended Discovery Assistants
	Applicative Perspectives in Sciences


	Appendices
	Figure credits
	Appendix of IMGEP-VAE
	Additional Results and Figures
	Implementation Details and Hyperparameter Settings

	Appendix of IMGEP-HOLMES
	Evaluation of the diversity for the monolithic BC spaces variants
	Focus on HOLMES design choices
	Representational Similarity Analysis
	Experimental Settings
	Ablation Study: Impact of the Lateral Connections
	Comparison of HOLMES with Related Methods
	Additional IMGEP baselines with a monolithic BC space

	Appendix of Sensorimotor Lenia
	Additional Results
	Lenia system
	IMGEP details
	Battery of Empirical Tests
	Comparison baselines

	Appendix of Flow Lenia
	Model
	Results

	Appendix of GRN
	Data Availability
	Materials and Methods
	Supplementary Material


	Bibliography

