
HAL Id: tel-04505645
https://theses.hal.science/tel-04505645

Submitted on 15 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Cubicle Fuzzy Loop : A Testing Framework for
Cubicle

Alexandrina Korneva

To cite this version:
Alexandrina Korneva. The Cubicle Fuzzy Loop : A Testing Framework for Cubicle. Logic in Computer
Science [cs.LO]. Université Paris-Saclay, 2023. English. �NNT : 2023UPASG095�. �tel-04505645�

https://theses.hal.science/tel-04505645
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T :2

023
UPA

SG0
95

The Cubicle Fuzzy Loop: A TestingFramework for Cubicle
La boucle de fuzzing CFL: un cadre de test pour Cubicle

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580, Sciences et technologies de l’information et de la communication (STIC)Spécialité de doctorat: Informatique
Graduate School : Informatique et sciences du numérique. Référent : Faculté des sciences d’Orsay

Thèse préparée dans l’unité de recherche Laboratoire Méthodes Formelles (Université
Paris-Saclay, CNRS, ENS Paris-Saclay), sous la direction de Sylvain CONCHON,Professeur des universités, le co-encadrement de Fatiha ZAIDI, Professeure desuniversités

Thèse soutenue à Paris-Saclay, le 8 décembre 2023, par

Alexandrina KORNEVA

Composition du jury
Membres du jury avec voix délibérative
Dominique QUADRI PrésidenteProfesseure des universités, Université Paris-Saclay
Régine LALEAU Rapporteure & ExaminatriceProfesseure des universités, Université Paris-Est Créteil
Stephan MERZ Rapporteur & ExaminateurDirecteur de recherche, INRIA Nancy
Sylvain HALLÉ ExaminateurProfesseur des universités, Université du Québec àChicoutimi
Pascal POIZAT ExaminateurProfesseur des universités, Université Paris Nanterre

Titre: La boucle de fuzzing CFL: un cadre de test pour Cubicle
Mots clés: Systèmes paramétrés, Test à données aléatoires, Vérification de modèles
Résumé: L’objectif de cette thèse est d’intégrerune technique de test dans le model checkerCubicle. Pour cela, nous avons étendu Cubi-cle avec une boucle de Fuzzing (appelée Cubicle
Fuzzy Loop – CFL). Cette nouvelle fonctionnalitéremplit deux fonctions principales.Tout d’abord, elle sert d’oracle pourl’algorithme de génération d’invariants de Cu-bicle. Ce dernier, basé sur une explorationen avant de l’ensemble des états atteignables,était fortement limité par ses heuristiqueslorsqu’elles sont appliquées à des modèlesfortement concurrents. CFL apporte une nou-velle manière plus efficace d’explorer ces mod-èles, en particulier il permet de visiter beau-coup plus d’états pertinents. Son deuxième

objectif est de détecter rapidement et efficace-ment les problèmes et les vulnérabilités dansles modèles de toutes tailles, ainsi que de cap-turer les deadlocks.L’intégration de CFL nous a égalementpermis d’augmenter l’expressivité du langaged’entrée de Cubicle, avec l’inclusion de nou-velles primitives pour manipuler des threads(verrous, sémaphores, etc.).Enfin, nous avons construit un cadre de testautour de Cubicle et de CFL avec un interpré-teur interactif, utile pour le débogage, le pro-totypage et l’exécution pas à pas des modèles.Ce nouveau système a été appliqué avec succèssur une étude de cas d’un algorithme de con-sensus distribué pour blockchains.

Title: The Cubicle Fuzzy Loop: A Testing Framework for Cubicle
Keywords: Parameterized systems, Fuzzing, Model Checking
Abstract: The goal of this thesis is to integratea testing technique into the Cubicle modelchecker. To do this, we extended Cubicle witha Fuzzing loop (called the Cubicle Fuzzy Loop -CFL). This new feature serves two primary pur-poses.Firstly, it acts as an oracle for Cubicle’s in-variant generation algorithm. The existing algo-rithm, which is based on a forward explorationof reachable states, was significantly limited byits heuristics when applied to highly concurrentmodels. CFL introduces a more efficient way toexplore these models, visiting a larger numberof relevant states.

Its second objective is to quickly and effi-ciently detect issues and vulnerabilities in mod-els of all sizes, as well as detect deadlocks.The integration of CFL has also enabled usto enhance the expressiveness of Cubicle’s in-put language, including new primitives for ma-nipulating threads (locks, semaphores, etc.).Lastly, we built a testing framework aroundCubicle and CFL with an interactive interpreter,which is useful for debugging, prototyping, andstep-by-step execution of models. This newsystem has been successfully applied in a casestudy of a distributed consensus algorithm forblockchains

Contents

1 Introduction 11

2 Background 17
2.1 Model Checking Modulo Theories . 17
2.2 Cubicle: An Efficient Implementation of MCMT . 24

2.2.1 Cubicle’s Input Language . 24
2.2.2 Cubicle’s Optimizations and Benchmarks . 29

2.3 Fuzzing . 34
2.3.1 A Motivating Example . 34
2.3.2 Fuzzing: A Quick Background . 35
2.3.3 Fuzzing and Cubicle . 36

3 Invariant Generation in Cubicle 39
3.1 BRAB . 39

3.1.1 BRAB Algorithm . 40
3.1.2 BRAB Benchmarks . 44

3.2 Potential Limitations . 44
3.2.1 A Motivating Example . 45
3.2.2 Bad Approximations . 48
3.2.3 Buggy and unsafe models . 50

4 The Cubicle Fuzzy Loop (CFL) 53
4.1 Fuzzing Cubicle . 53
4.2 General CFL Structure . 55
4.3 Fuzzing the Scheduler . 61
4.4 BRAB & CFL: Experimental Results . 64
4.5 Testing Models . 67
4.6 Parameterized Fuzzing . 69
4.7 Discussion: Heuristics, Decisions, Fuzzing . 72
4.8 Discussion: Stability . 73

3

5 CFL-Based Threads 77
5.1 Primitives . 79
5.2 Cubicle vs. Primitives . 80
5.3 Language Extensions & Semantics . 82

5.3.1 Distinguishing Threads and Processes . 82
5.3.2 Initial States and Unsafe States . 83
5.3.3 Locks and Reentrant Locks . 84
5.3.4 Conditions . 87
5.3.5 Semaphores . 88
5.3.6 Restrictions . 89

5.4 Examples . 89
5.4.1 Producer-Consumer . 89
5.4.2 Dining Philosophers . 91
5.4.3 Other Examples . 97

6 Interactivity, Execution, and Debugging 99
6.1 Interpreter Commands . 99
6.2 Usage Example . 102

7 Test Case: Tenderbake 107
7.1 Blockchains & Consensus . 107
7.2 Tenderbake . 113
7.3 Modeling & Testing a Simple Tenderbake . 114

8 Related Work 125

9 Conclusion & Perspectives 127

4

List of Figures

2.1 Modified Mutual Exclusion Algorithm . 18
2.3 Cubicle code type syntax . 25
2.2 Cubicle code of a mutual exclusion algorithm . 26
2.4 Cubicle code global declaration syntax . 27
2.5 Cubicle code transition syntax . 27
2.6 Cubicle code transition syntax . 28
2.7 Cubicle Case Syntax . 28
2.8 Simple Generated Cubicle Proof . 30
2.9 Detailed Generated Cubicle Proof . 31
2.10 Cubicle Benchmarks . 33
2.11 Simple C Example . 35
3.1 BRAB on a Simple Example . 42
3.2 BRAB Benchmarks . 45
3.3 Concurrent Systems Pattern . 46
3.4 Pattern as a Concrete Example . 47
3.5 BRAB with DFS and BFS on Modified Examples . 48
4.1 Comparing CFL with Different Forward Strategies. 65
4.2 Number of Generated Proof Nodes for Each Strategy . 66
4.3 Comparison with CMurphi . 66
4.4 Unsafe: Backward and CMurphi . 67
4.5 Unsafe: Backward vs. CFL . 68
4.6 Deadlock Detection . 69
4.7 Same Behaviors with Multiple Processes . 70
4.8 Cubicle Code to Test Fuzzer Parameterization . 71
5.1 Encoding a Semaphore in Cubicle . 81
5.2 Cubicle Transition Actor Syntax . 82
5.3 Cubicle Proc Subtype Syntax . 83
5.4 Cubicle Lock Declarations . 84
5.5 Cubicle Acquiring and Releasing Locks . 84
5.6 Cubicle Acquiring and Releasing Locks . 85

5

5.7 Cubicle Equivalent of Python Wait . 88
5.8 Cubicle Semaphores . 89
5.9 Producer-Consumer in Cubicle . 92
5.10 Dining Philosophers in Python (no semaphore) . 94
5.11 Dining Philosophers in Cubicle (no semaphores) . 95
5.12 Dining Philosophers in Cubicle (with semaphores) . 96
6.1 Interpreter Welcome Screen . 100
6.2 Interpreter Producer-Consumer Initial Status Screen . 102
6.3 Interpreter Helper Functions . 103
6.4 Interpreter Results for Buggy Producer-Consumer . 103
6.5 Interpreter Trace . 104
6.6 Alternative Trace . 104
6.7 Interpreter Replay . 105
6.8 Reaching an Unsafe State . 105
6.9 Alternative Trace . 106
7.1 General Structure . 108
7.2 P2P Network . 109
7.3 A normal execution of PBFT with one faulty node . 113
7.4 Baker automaton . 115
7.5 Basic Version of Tenderbake . 117
7.6 New Version of Tenderbake . 119
7.7 Declarations for Third Version of Tenderbake . 121
7.8 Transition for Third Version of Tenderbake . 122

6

Remerciements / Acknowledgments

First of all, I would like to thank Régine Laleau and Stephan Merz for agree-
ing to review my thesis and for their feedback on my work. Thank you to
Dominique Quadri for presiding over my thesis jury and thank you to Sylvain
Hallé and Pascal Poizat for agreeing to be a part of my jury. I am glad that I
was able to present my work in front of you.

I would also very much like to thank my thesis advisors - Sylvain Conchon
and Fatiha Zaïdi. You guys were always great. Thank you, Fatiha, for always
being easy to talk to about anything. And Sylvain - I don’t think that I could
write anything here that would truly express how grateful I am. You were a
great advisor, and you helped me through a lot. You still do. I’m really glad
that I get to keep working with you. Thank you :)

My PhD years wouldn’t have been as great as they were without the ex-
VALS team, especially Jean-Christophe, Kim, Fred, Safouan, Sylvie, Chantal,
Thibaut, Guillaume. Thank you for being so welcoming and so patient with
the endless decorating every holiday. A separate thank you to Andrei - I’m
gonna miss the ducks and the random post-its.

And speaking of post-its, I want to say a huge thank you to my friends
and fellow PhD students (not students anymore). Covering things in post-its,
gluing things around the lab, wrapping furniture in gift wrap, moving furniture
between floors, going to Costco... the list goes on and on.

And thank you tomy family and friends. I’m going to have to translate this
for some of you, but I just wanna say that your love and support were, and
are, essential.

Overall, my PhD was a fantastic experience that changed my life for the
better, and I will truly miss it.

7

Résumé

Les systèmes informatiques sont devenus non seulement plus présents
dans la vie quotidienne, mais aussi plus grands et plus complexes. Les ordi-
nateurs sont également de plus en plus présents dans les systèmes critiques,
tels que les avions, les centrales nucléaires, la médecine, etc.

Malheureusement, les systèmes informatiques contiennent des bugs qui
peuvent conduire à des conséquences désastreuses, en particulier lorsqu’ils
affectent des systèmes critiques. Et quand on regarde la taille et la complexité
des systèmes d’aujourd’hui, trouver n’importe quel type de bug ou garantir
l’absence de bug semble être impossible.

Heureusement, la plupart des grands systèmes sont construits sur une
fondation constituée de petits éléments, et garantir l’absence de bugs dans
ces éléments est déjà crucial, car une fondation défectueuse conduit à un sys-
tème défectueux. Parmi les exemples d’éléments de fondation, on trouve les
protocoles de cohérence de cache, les barrières de synchronisation et les al-
gorithmes de consensus utilisés dans les blockchains. Tous les exemples que
nous avons donnés d’éléments de fondation font référence à des systèmes
concurrents.

Un aspect important des systèmes concurrents ou distribués est qu’ils
sont généralement conçus pour un nombre arbitraire de composants. Par
exemple, les algorithmes de consensus dans les blockchains sont censés fonc-
tionner avec n’importe quel nombre de participants. Demême, les protocoles
de cohérence de cache devraient être opérationnels quel que soit le nombre
de processeurs, tout comme les barrières de synchronisation doivent gérer
n’importe quel nombre de threads. Ces types de systèmes, qui contiennent
un nombre arbitraire et potentiellement inconnu de composants répliqués,
sont appelés des systèmes paramétrés. Dans le contexte de cette thèse, nous
nous concentrons sur la vérification de systèmes paramétrés, qu’ils soient
concurrents ou distribués.

Lorsqu’on parle de vérifier des systèmes, il y a deux types de propriétés
dont nous pouvons parler : safety et liveness. Dans le contexte de cette thèse,
nous nous concentrons sur les propriétés de safety. Plus précisément, des
propriétés de safety aussi simples que "un état donné est-il atteignable ou
non ?".

Les systèmes qui ont un espace d’état fini peuvent être vérifiés automa-
tiquement. Cependant, ce n’est pas le cas pour les systèmes paramétrés, pour
lesquels le problèmegénéral est indécidable. Il peut cependant être décidable
pour certains types restreints de systèmes, tels que les array-based systems,
pour lesquels la safety est décidable sous certaines conditions. Les états dans
les array-based systems sont représentés comme des tableaux indexés par un
nombre arbitraire de composants. Une technique pour résoudre le problème

8

d’atteignabilité de ces systèmes estMCMT (Model CheckingModulo Theories),
inventée par Ghilardi et Ranise. Dans MCMT, les états et les transitions sont
représentés comme des formules dans un fragment particulier de la logique
du premier ordre, et la technique pour résoudre le problème d’atteignabilité
prend la forme d’une analyse de l’atteignabilité arrière, qui fait appel à un
solveur SMT pour raisonner sur les formules.

Une implémentation efficace de MCMT qui utilise des invariants est Cubi-
cle, un outil de vérification open-source pour les systèmes paramétrés, conçu
par Conchon et al. à l’Université Paris-Saclay en partenariat avec Intel. Tout
comme dans MCMT, Cubicle exécute une boucle d’atteignabilité arrière et ex-
ploite un solveur SMT. Cubicle renforce la boucle en exécutant une explo-
ration en avant finie et limitée du système. Les états visités lors de cette
exploration sont utilisés pour inférer des invariants. Cette technique est ex-
trêmement efficace et a permis à Cubicle de prouver complètement automa-
tiquement un protocole de cohérence de cache de taille industrielle appelé
FLASH.

Bien qu’efficace, il est important de noter que cetteméthode repose forte-
ment sur la visite d’un nombre suffisant d’états représentatifs du système.
Dans sa version actuelle, Cubicle utilise des stratégies d’explorationBFS etDFS
optimisées. Malheureusement, pour certains types de systèmes, ces straté-
gies d’exploration en avant ne parviennent pas à visiter suffisamment d’états
représentatifs, notamment ceux qui contiennent du non-déterminisme, du
pipeline, des barrières de synchronisation complexes. Il y a deux conséquences
à cela, toutes deux partageant la même cause racine de ne pas avoir assez
d’informations. La première conséquence est que Cubicle est incapable de
générer des invariants, ce qui signifie qu’il n’y a rien à utiliser pour élaguer
l’espace d’état et accélérer la preuve, risquant ainsi de ne pas terminer. La
deuxième conséquence est que Cubicle génère des invariants incorrects. S’il
n’a pas visité suffisamment d’états, il commence à supposer que certains états
ne sont pas atteignables et infère donc de mauvais invariants. Heureuse-
ment, lorsque cela se produit, Cubicle dispose de mécanismes lui permet-
tant de détecter qu’il a fait une erreur et de revenir en arrière. Il est impor-
tant de souligner que la complétude de Cubicle n’est jamais menacée par
l’inférence incorrecte d’invariants, cependant, le retour en arrière le ralentit
considérablement.

Une manière de résoudre ce problème est d’introduire un algorithme en
avant capable de (i) explorer rapidement les états, et (ii) explorer suffisam-
ment d’états critiques. Nous avons également besoin que les états visités
soient diversifiés car, si l’algorithme en avant explore rapidement de nom-
breux états mais qu’ils sont principalement de même type, cela n’apporte au-
cune nouvelle information et donc aucun nouvel invariant.

Pour aborder ce problème, dans cette thèse, nous nous tournons vers
9

le monde du test pour inspiration. Le test ne cherche pas à prouver qu’une
chose est jamais atteignable. Au contraire, le test essaie de montrer qu’une
chose est atteignable.

Parmi les nombreuses techniques de test existantes, une technique sou-
vent utilisée est le fuzzing. Le fuzzing est très utilisé dans le monde indus-
triel parce qu’il n’est pas intrusif et nécessite seulement de pouvoir exécuter
un système, de modifier (ou générer) ses entrées, et d’observer le comporte-
ment résultant. Le fuzzing essaie de provoquer autant de comportements
différents que possible, ce qui nous convient bien, puisque notre objectif est
de visiter autant d’états différents que possible. Nous implémentons une ex-
tension de Cubicle basée sur le fuzzing appelée Cubicle Fuzzy Loop (CFL).

La conséquence quelque peu inattendue de se tourner vers le fuzzing est
que nous obtenons maintenant le meilleur des deux mondes. Notre algo-
rithme en avant basé sur le fuzzing s’est avéré si efficace pour trouver des
états subtils que nous avons décidé de le transformer en un outil autonome
pour Cubicle, appelé CFL (Cubicle Fuzzy Loop). Évidemment, CFL n’est pas
paramétré, mais il est suffisamment puissant pour couvrir suffisamment les
espaces d’état et découvrir des bugs. Il est également beaucoup plus facile à
étendre que le système de preuve de Cubicle, puisqu’il n’est pas restreint par
le fait de devoir s’adapter aux array-based systems.

10

Chapter 1

Introduction

Throughout the years, computer systems have becomemore prevalent in ev-
eryday life. But not only have they become more common, they have also
become larger and more complex. Microsoft, for example, went from 4000
lines of code with MS-DOS [1] in the 1980’s to 45 million lines of code for Win-
dows XP [2] in the 2000’s. Smartphones today are more powerful than the
guidance systems used by NASA in the 1960’s [3]. By certain estimations, back
in 2015, all of Google’s internet services combinedmade up two billion lines of
code [4]. Computers are also increasingly present in critical systems [5]. These
are systems where any failure results in significant damage, be it economi-
cal, environmental, or the loss of human life. Critical systems include aircraft,
nuclear power plants, the medical field, etc.

The widespread use and dependence on computer systems comes with
the potential presence of bugs. Some bugs lead to disastrous consequences,
especially when they hit critical systems. For example, this was the case with
Therac-25 [6], a radiation therapy machine. Race conditions in the code led to
the machine giving patients doses of radiation hundreds of times bigger than
it was supposed to. Everyone today is aware that computer systems contain
bugs, and they can be dangerous. But when you look at the size of modern
computer systems, tackling the problem of bugs seems incredibly daunting-
how can you find one tiny subtle bug inmillions of lines of code? How can you
guarantee the safety and security of systems that keep growing and getting
more and more complex?

Fortunately, most giant systems are built on a foundation of smaller parts,
and guaranteeing the absence of bugs in these parts is already important,
because a faulty foundation leads to a faulty system. Some examples include:

• cache coherence protocols in multiprocessor systems, which allow pro-
cessors to keep their local caches coherent with the memory

• synchronization barriers, which allow threads to reach a common point
before continuing

11

• consensus algorithms in blockchains, which allow all members to de-
cide on which blocks are added to the blockchain.

So far, the term system itself has been doing a lot of heavy lifting, because it
encompasses a wide range of definitions. It can be used to described sequen-
tial computer programs, concurrent systems- wheremultiple components ex-
ecute tasks simultaneously, and distributed systems- where multiple devices
not only work together, but can also fail (partial, permanent, or Byzantine fail-
ures). The notion of system itself can also be used to represent smaller parts
of larger systems such as algorithms and protocols, i.e the foundations we
were talking about.

In this thesis, we use the word "system" interchangeably to talk about algo-
rithms and protocols that constitute what we consider to be the foundations of
huge computer systems. Furthermore, examples we gave for foundation elements
(consensus, cache coherence, synchronization barriers) all talk about concurrent
systems.

An important aspect of concurrent or distributed systems is that they are
usually conceived for an arbitrary number of components. For example, block-
chain consensus algorithms are supposed to work for any number of partici-
pants. Cache coherence protocols shouldwork for any number of processors,
as should synchronization barriers for threads. Such types of systems con-
taining an arbitrary, potentially unknown, number of replicated components
lead to what is known as parameterized systems. In the context of this thesis,
we focus on verifying concurrent and distributed parameterized systems.

When talking about verifying systems, there are two types of properties
we can talk about: safety and liveness. Safety properties state that something
bad will never happen, while liveness properties state that something good
will eventually happen. The terms "safety" and "liveness" and their definitions
originate from Leslie Lamport [7]. In the context of this thesis, we focus on safety
properties. More precisely safety properties as simple as "is a given state reachable
or not?".

While the algorithms and protocols we are interested in are all the foun-
dation elements of larger systems, they can range from easier-to-handle aca-
demic examples to huge, complex industrial versions. The main complexity
is due to the inherent nondeterminism, which comes from processor speeds,
message passing times, etc. The consequence of this complexity is that the
state space of these systems is enormous, so tomake sure that a certain state
is never reachable, you need to visit a large number of the states, which is im-
possible to do manually. Adding on to that complexity are failures, such as
message loss, which can happen at any time. Plus the arbitrary number of
components. The only solution to proving on such large systems is to auto-
mate the verification process and make use of computer-aided techniques.

12

Computer-aided verification has been around for decades [8, 9]. Systems
that have a finite state space can be automatically checked [10]. However,
this is not the case for parameterized systems. As soon as a tool is expres-
sive enough to simulate a Turing machine (like with something as simple as
a Minsky machine with two counters) the general state reachability problem
becomes undecidable [11]. While the general problem is undecidable, it can
be decidable for certain restricted types of systems. In this thesis we focus on a
specific class of systems called array-based transition systems [12] for which safety
is decidable under certain conditions. States in array-based systems are repre-
sented as arrays indexed by an arbitrary number of components. A technique to
solve the reachability problemof array-based systems isMCMT (Model Check-
ing Modulo Theories) [13], invented by Ghilardi and Ranise. In MCMT states
and transitions are both represented as formulas in a particular fragment of
first-order logic and the technique to solve the reachability problem takes the
form of a backward reachability analysis, which makes use of SMT solver to
reason about the formulas.

Even thoughMCMT falls in a decidable fragment under certain conditions,
there are no guarantees that is is capable of verifying a system efficiently. The
main difficulty remains the state explosion problem. In MCMT, this problem
results in logic formulas that can keep growing larger, resulting in SMT solvers
struggling to treat them. To overcome this issue, one of the most powerful
techniques is to prune the search space by finding logic formulas that charac-
terize the largest set of state that can or cannot be reached. These formulas
are called invariants.

An efficient implementation of MCMT that makes use of invariants is Cu-
bicle [14, 15], an open-source verification tool for parameterized systems de-
signed by Conchon et al. at Université Paris-Saclay in partnership with Intel.
Just as in MCMT, Cubicle runs a backward reachability loop and exploits an
SMT solver. The SMT solver in Cubicle is called Alt-Ergo Zero, a lighter, more
optimized version of Alt-Ergo [16]. Cubicle reinforces the loop by running a fi-
nite, limited forward exploration of the system. The states visited during this
exploration are used to infer invariants, and even though the exploration is
limited, it provides Cubicle with enough information. This technique is ex-
tremely efficient and allowed Cubicle to completely automatically prove an
industrial-sized cache coherence protocol called FLASH [17].

While being effective, it is important to note that this method strongly re-
lies on visiting enough representative system states. In its current version,
Cubicle makes use of optimized BFS and DFS exploration strategies. Unfor-
tunately, for certain types of systems, these forward exploration strategies
struggle to visit enough representative states. Both BFS and DFS are quickly
overwhelmed as soon as systems begin exhibiting high levels of features like
branching, nondeterminism, pipelining, complex conditions. There are two

13

consequences to this, both sharing the same root cause of not having enough
information. The first consequence is Cubicle is unable to generate any invari-
ants, meaning there is nothing to use to prune the state space and accelerate
the proof. This means that Cubicle risks not terminating. The second conse-
quence is that Cubicle generates incorrect invariants. Recall that Cubicle uses
a set of visited states to infer invariants. If it has not visited enough states,
it starts assuming states are not reachable and thus infers wrong invariants.
Fortunately, when this happens, Cubicle has built-in mechanisms allowing it
to detect that it has made a mistake. These mechanisms force it to backtrack.
It is important to highlight that Cubicle’s completeness is never threatened
by incorrectly inferring invariants, however backtracking slows it down con-
siderably.

A way of resolving this problem is introducing a forward algorithm that is
capable of (i) rapidly exploring states, and (ii) exploring enough critical states.
We also need visited states to be diverse because, if the forward algorithm
explores a lot of states rapidly, but they are mostly the same types of states,
this brings in no new information and therefore no new invariants.

To tackle this problem, in this thesis we turn to the world of testing for
inspiration on how to modify the forward exploration. Testing does not look
to prove that something is never reachable. On the contrary, testing tries to
show that something is reachable. It looks for paths to get somewhere, be-
cause when testing a system, you need to find those intricate places where
bugs could be hiding. The same applies to our forward exploration - we do not
want our forward exploration to exhaustively prove that a state is unreach-
able. We do not even want it to exhaustively visit all possible states. We only
want it to find a diverse enough set of reachable states so that Cubicle in turn
can infer invariants.

Among the numerous existing testing techniques, an often-turned to tech-
nique is fuzzing [18, 19, 20]. Fuzzing is popular in the industrial world because
it is not intrusive and only requires being able to execute a system, modify
(or generate) its inputs, and observe the resulting behavior. Fuzzing tries to
provoke as many different behaviors as it can, which works out well for us,
since our goal is to visit as many different states as possible. We implement
an extension of Cubicle based on fuzzing called the Cubicle Fuzzy Loop (CFL).

The somewhat unintended consequence of turning to fuzzing is that we
now get the best of both worlds. Our fuzzing-based forward algorithm turned
out to be so efficient at finding subtle states, that we decided to turn it into a
standalone tool for Cubicle, called CFL (Cubicle Fuzzy Loop). Obviously CFL is
not parameterized, but it is powerful enough to sufficiently cover state spaces
and discover bugs. It is also much easier to extend than Cubicle’s proof sys-
tem, since it is not restricted by having to fit into array-based systems.

14

Contributions and Outline
Our contributions are as follows:

• A fuzzing approach for Cubicle called CFL (Cubicle Fuzzy Loop), forwhich
we present and discuss different heuristics. This approach is imple-
mented in a new extension of Cubicle.

• CFL-based extensions to Cubicle’s language, which have allowed us to
model and run algorithms that we were unable to before, as well as test
models in a standalone fashion. CFL also introduces deadlock detection
to Cubicle.

• An integration of CFL as an Oracle into Cubicle’s existing invariant gen-
eration algorithm

• A new, executable version of Cubicle, along with a built-in interactive
layer for step-by-step execution and debugging.

The rest of this document is organized as follows: in Chapter 2, we give an
overview the existing techniques that the work in this thesis relies on, namely
Model Checking Modulo Theories, the model checker Cubicle, and fuzzing. In
Chapter 3 we describe how Cubicle synthesizes invariants and uses them to
prove complex models. We discuss current limitations. Chapter 4 introduces
CFL. It shows how we adapted fuzzing to Cubicle, and describes the various
implemented heuristics. Chapter 4 also presents various benchmarks and
discussions relating to CFL and its performance. Chapter 5 presents our CFL-
based thread extension for Cubicle and applies it to various classic concur-
rent programs. Chapter 6 shows the interactive layer that has been added to
Cubicle. Chapter 7 applies CFL to Tenderbake [21], a blockchain consensus
protocol. Finally Chapter 9 concludes and discusses various perspectives.

15

16

Chapter 2

Background

Contents
2.1 Model Checking Modulo Theories 17

2.2 Cubicle: An Efficient Implementation of MCMT 24

2.2.1 Cubicle’s Input Language 24

2.2.2 Cubicle’s Optimizations and Benchmarks . . 29

2.3 Fuzzing . 34

2.3.1 A Motivating Example 34

2.3.2 Fuzzing: A Quick Background 35

2.3.3 Fuzzing and Cubicle 36

Parameterized model checking [22, 23, 24, 25] addresses the problem of
verifying that properties hold for a system with an arbitrary number of (repli-
cated, indistinguishable) components. Among the techniques for treating pa-
rameterized systems, and theoneCubicle is basedon, isMCMT -Model Check-
ing Modulo Theories. To counter the undecidability result [11], MCMT restricts
the types of systems you can verify to array-based systems.

2.1 Model Checking Modulo Theories
TheModel CheckingModulo Theories (MCMT) framework [13, 26] proposed by
Ghilardi and Ranise is a declarative framework for parameterized systems in
which (sets of) states, transitions and properties are expressed in a particular
fragment of first order logic with enumerative data types.

Systems in MCMT are called array-based transition systems, because their
states can be seen as a set of unbounded arrays (denoted by capital letters
X,Y, . . .) whose indexes range over elements of a parameterized domain,
called proc, of process identifiers (denoted by i, j, ...).

17

If we have an arrayX and a process variable i, we writeX[i] for an array access
ofX at index i. Systems can also contain simple variables. Note that, although
from a theoretical point of view a variable is seen as an array with the same
value in all its cells, we use the terms array and variable for easier legibility.

Throughout this section, we will be explaining every concept through the
example given in Figure 2.1, which gives an array-based system implementing
a simple mutual exclusion algorithm.

Mutual Exclusion

User-declared types:
type state = Idle | Crit | Want

Globals:
Turn : proc

State : (proc,state) array

Init:
∀k. State[k] = Idle

Unsafe:
∃ k ̸= ℓ. State[k] = Crit ∧ State[ℓ] = Crit

req:
∃k. State[k] = Idle ∧ Turn = k ∧

State′ = State[k ← Want] ∧ Turn′ = Turn

enter:
∃k. State[k] = Want ∧ Turn = k ∧

State′ = State[k ← Crit] ∧ Turn′ = Turn
exit:
∃ k ̸= ℓ. State[k] = Crit ∧

State′ = State[k ← Idle] ∧ Turn′ = ℓ

Figure 2.1: Modified Mutual Exclusion Algorithm

User-defined Types In our example, we define an enumerative type state
with three constructors: Idle, Crit, Want. These symbolize the three possible

18

states of a process in our mutual exclusion:
• Idle: the process is not doing anything in particular
• Want: the process has requested access to the critical section
• Crit: the process has been granted access to the critical section

An array-based system is defined by three things: a set of global arrays and
variables, an initial state, a set of transitions expressing how you get from one
state to another.
Global Declarations In our example, we declare one variable and one
array.

Turn : proc

State : (proc,state) array

The variable Turn has the proc type and will indicate whose turn it is to access
the critical section in our mutual exclusion. The array Statemaps processes
to a value of type state, i.e. indicates what state each process is in.
Init An array-based system has to contain an initial state. The initial state,
noted I , is a universally quantified formula that defines the initial values for
arrays and variables in the system. If an array or variable does not appear,
then that means that its value can be anything in its domain. In our example,
the initial formula is given as

∀k. State[k] = Idle

In the initial state, the value of State for each process is Idle, and the value
of Turn is not fixed, since it does not appear. Its initial value can be anything
from the proc type domain, i.e. any process identifier.
Unsafe Safety properties to be verified on array-based systems are ex-
pressed in their negated form as formulas that represent unsafe states, i.e
states you want to avoid. In our example, the unsafe formula is:

∃ k ̸= ℓ. State[k] = Crit ∧ State[ℓ] = Crit

This states that the system is unsafe if it reaches a state where any distinct
two processes are in the critical section simultaneously. For that, we use the
notation k ̸= ℓ. It is also possible to declare multiple unsafe states.

19

Transitions A transition t is represented by an existentially quantified for-
mula. The formula expresses the values of variables and arrays before and
after the transition. The values before a transition are noted as V and the
values after are noted V’. For example, the transition Exit in our example:

∃k ̸= ℓ. State[k] = Crit ∧ State′ = State[k ← Idle] ∧ Turn′ = ℓ

states that there are two distinct processes, k and ℓ such that process k is
in the critical section. If there is such a process, then it leaves the critical
section, going back to being idle (State[k ← Idle]) and Turn has changed to
ℓ. The State′ = State[k ← Idle] notation denotes an array equal to State,
except for cell k, which is now equal to Idle. The other two transitions in our
example, Req and Enter, are written in the same fashion.
Safety and Backward Reachability To check that the unsafe state are
unreachable, MCMT uses a backward reachability loop. Starting from the un-
safe state, it iteratively computes the pre-image closure (to be understood as
unreachable states). MCMTmake use of an SMTback-end for termination and
safety tests. A pre-image pre of a state s is a state fromwhich s can be reached
by taking one transition. The backward reachability algorithm, Bwd, is given
in Algorithm 1. The function Bwd takes as input a triplet S consisting of the
initial state I , the set of variables and arrays X , and the set of all transitions
τ . The function also takes the unsafe state(s), U .

Algorithm 1: Backward Reachability Algo-rithm
1 function Bwd(S, U) : begin
2 V := ∅;
3 push(Q,U);
4 while not_empty(Q) do
5 φ := pop(Q);
6 if φ ∧ I satisfiable then
7 return unsafe
8 else if φ ⊭ V then
9 V := V ∪ {φ};
10 push(Q,Preτ (φ));
11 return safe

Bwd(S, U) computes the pre-image closure of U by maintaining two col-
lections of states:

20

• Q contains the (unsafe) states to visit (it is initialized with U)
• V is filled with the visited states (initially empty)

Each iteration of the loop performs the following operations:
1. (pop) retrieve and remove a formula φ from Q

2. (safety test) check the satisfiability of φ ∧ I , i.e. determine if the states
described by φ intersect with the initial states I . If so, the system is
declared unsafe

3. (fixpoint test) check if φ |= V is valid, i.e. determine if the states de-
scribed by φ have already been visited. If so, discard φ and go back to
1

4. (pre-image) compute the pre-imagePreτ (φ)ofφ andadd thenew state(s)
to Q. The notation Preτ (φ) stands for the disjunction of all Pret(φ), i.e.the pre-image calculations of each transition t is τ .

If Q is empty at step 1, then all of the state space has been explored and
the system is declared safe. Note that the (non-trivial) fixpoint and safety tests
are discharged to an embedded SMT solver.

We illustrate how this works on our mutual exclusion example from Fig-
ure 2.1, following Algorithm 1 to see if our system is safe.
We recall the unsafe state U , which is passed to the algorithm along with the
triplet containing the initial state, the variables and arrays, and the transitions:

∃ i ̸= j. State[i] = Crit ∧ State[j] = Crit

After lines 2 and 3, V is empty and Q contains our unsafe state U :
V = ∅
Q = {U}

Since Q is not empty (line 4), it will be popped and φ will be equal to U .
The states described by φ do not describe the states described by the initial
state, I , so the check on line 6 (φ∧I satisfiable) does not pass. We can therefore
move on to line 8. We add φ to V on line 9, and we calculate and push all of
the pre-images of φ to Q on line 10. The pre-images are the states that can
lead to φ in one transition.
Our formula φ is

∃ i ̸= j. State[i] = Crit ∧ State[j] = Crit

21

and we want to figure out which transition(s) could have set either of the val-
ues to Crit. If we look at our system in Figure 2.2, the only transition that
changes a state to Crit is enter:

∃k. State[k] = Want ∧ Turn = k ∧
State′ = State[k ← Crit] ∧ Turn′ = Turn

This means that there was a process k that satisfied the requirements for the
transition and activated it. We use the notation t(i) to signify that the tran-
sition t was applied to process i. We therefore want to calculate Preenter(φ)which means calculating the pre-image of φ by the transition enter in the
cases where k equals i, j, or a new process m. We note these pre-images as
Preenter(i)(φ), Preenter(j)(φ), and Preenter(m)(φ).

Case 1: k = i, where the pre-image becomes:
Preenter(i)(φ) =

∃i ̸= j. State[i] = Want ∧ State[j] = Crit ∧ Turn = i

Case 2: k = j, where the pre-image becomes:
Preenter(j)(φ) =

∃i ̸= j. State[i] = Crit ∧ State[j] = Want ∧ Turn = j

Case 3: k ̸= i ∧ k ̸= j, in which case the pre-image is calculated for some
processm:

Preenter(m)(φ) =
∃i ̸= j ̸= m. State[i] = Crit∧State[j] = Crit∧State[m] = Crit∧Turn = m

We refer to these pre-images as p1, p2, and p3, respectively. All of them are
pushed to Q, which now contains p1, p2, p3 while V contains U :

V = U

Q = {p1, p2, p3}

The algorithm will pop p1, check that it is not subsumed by V , and then
calculate its pre-image(s). The forumula p1 is

∃i ̸= j. State[i] = Want ∧ State[j] = Crit ∧ Turn = i

so we can look for a transition that changes a state to Want, a state to Crit, or
modifies Turn.

Transition reqmodifies the state to Want. In this case, we only care about
req(i) and req(m), since the process j is in Crit. If we calculate the pre-
image for req(m), we get an incoherent result, where the variable Turn has
two values. So we ignore it. We keep the calculated pre-image for req(i):

22

(p4) Prereq(i)(p1) =
Turn = i ∧ State[i] = Idle ∧ State[j] = Crit

The transition enter modifies a state to Crit. We can calculate enter with j
or m. However, in both cases, we end up with contradictory values for Turn,
so we can throw away the results.
The variable Turn is modified by exit. In our case we can calculate exit(j,i)
and exit(m, i). The pre-image calculation for exit(j, i)will also be thrown
away, because the formula becomes inconsistent. Our state contains State[j]
= Crit, whereas had the transition been applied, the valuewould be State[j]
= Idle. The pre-image for exit(m, i) is, however, valid.
(p5) Preexit(m,i)(p1) =

Turn = i ∧ State[i] = Want ∧ State[j] = Crit
∧ State[m] = Crit

These are added to Q:
V = U, p1

Q = {p2, p3, p4, p5}

The formula p2 is popped:
∃i ̸= j. State[i] = Crit ∧ State[j] = Want ∧ Turn = j

This formula is subsumed by p1, which is now in V , so Cubicle will not
calculate its pre-image. We now have

V = U, p1

Q = {p3, p4, p5}

Next, we pop p3:
∃i ̸= j ̸= m. State[i] = Crit∧State[j] = Crit∧State[m] = Crit∧Turn = m

This formula is subsumed by U , so no pre-images are calculated. We now
have:

V = U, p1

Q = {p4, p5}

We pop p4:
Turn = i ∧ State[i] = Idle ∧ State[j] = Crit

This leads to one new pre-image:
23

(p6) Preexit(m,i)(p4) =
Turn = i ∧ State[i] = Idle ∧ State[j] = Crit ∧ State[m] =
Crit

We now have:
V = U, p1, p4

Q = {p5, p6}

Next we pop p5:
Turn = i ∧ State[i] = Want ∧ State[j] = Crit ∧ State[m] = Crit

which is subsumed by U , so we do not calculate its pre-image. Similarly, p6 is
also subsumed bu U . We now have:

V = U, p1, p4

Q = ∅

Since all values have been popped fromQ, the algorithm has terminated and
can return safe.

2.2 Cubicle: An Efficient Implementation of
MCMT

The problem with the Bwd algorithm in Algorithm 1 described earlier is that
if you simply implement it without any second thought, it does not handle
anything but the most trivial examples well. For example, if we look at line 6
(φ ∧ I satisfiable) this check is done by an SMT solver. However, if the solver
is called on every single formula, even the most trivially incorrect one, it can
quickly get overwhelmed.

Cubicle implements the MCMT framework described earlier, but it opti-
mizes the base-version of the algorithm tomake it efficient. In this section we
describe these optimizations and show how they affect the system.

2.2.1 Cubicle’s Input Language
We first present Cubicle’s input language. The examples used further in the
thesis are written in Cubicle syntax, so here we give an explanation on how to
read them.

Cubicle’s language is built to model (i) a set of type, global variable, and
global array declarations, (ii) a formula describing the initial state, (iii) one
(or multiple) formula(s) describing potential unsafe states, and (iv) a set of

24

guarded transitions. It was inspired by the language of the Murφ [27] model
checker. Arrays and variables in Cubicle may contain integers,real numbers,
booleans, constructors from an enumerative user-defined datatype, or
process identifiers. Figure 2.2 shows the Cubicle code equivalent of our ex-
ample from Figure 2.1 with a few slight modifications native to Cubicle.
Type andGlobal Declarations All type declarations in Cubicle follow the
same form, as shown in Figure 2.3. A user can declare as many types as they
want, provided that the type and constructor names are all unique.

type name = Constructor1 | Constructor2 | ...

Figure 2.3: Cubicle code type syntax
Variable and array declarations follow the same general structure, given

in Figure 2.4.
The types, i.e. type_of_Var/Array, can be any of Cubicle’s builtin types

(i.e. proc, int, real, bool), or a user-defined type.
Technically speaking, an array declaration is of the form:

array Array [parameter_type] : type_of_Array

Since Cubicle is only parameterized by processes (proc), parameter_type is
always proc. One can, however, declare 2D arrays, i.e. matrices, by writing:

array Array [proc,proc] : type_of_Array

Init, Unsafe The syntax for initial formulas and unsafe formulas is fairly
straightforward when compared to our example in Figure 2.1. As we can see
in Figure 2.2, the initial state is written as

init (i) {...}

and is a mandatory part of any Cubicle model. Contrary to Figure 2.1, when
declaring unsafe states in Cubicle that touch multiple processes (as in our
example where we define an unsafe state in regards to two processes), you
do not need to specify that the processes are different. When declaring an
unsafe state, every process in the parentheses is unique. So in our case in
Figure 2.2, when we write

unsafe (i j) {...}

processes i and j are different.
25

mutual_ex.cub

(*user type declaration *)
type state = Idle | Want | Crit

(* variable declaration *)
var Turn : proc
(*array declaration *)
array State[proc] : state

(* initial state*)
init (i) { State[i] = Idle }

(* unsafe state*)
unsafe (k l) { State[k] = Crit &&

State[l] = Crit }

(* transitions *)
transition req (k)
requires { State[k] = Idle && Turn = k}
{ State[i] := Want }

transition enter (k)
requires { State[k] = Want && Turn = k}
{ State[i] := Crit; }

transition exit (k l)
requires { State[k] = Crit }
{

Turn := l ;
State[k] := Idle;

}

Figure 2.2: Cubicle code of a mutual exclusion algorithm

26

var Variable : type_of_Var

array Array[proc] : type_of_Var

Figure 2.4: Cubicle code global declaration syntax

Transitions Transitions in Cubicle follow the syntax given in Figure 2.5,
where guard is the conditions that need to be met for the transition to be
triggered and actions are the updates to the global variables and arrays. The

transition transition_name (parameters)
requires { guard }
{ actions }

Figure 2.5: Cubicle code transition syntax
parameters in a transition are all processes, since Cubicle is only parame-
terized by the process type. As with unsafe states, all the process listed in
parameters are unique.
Guards Guards in Cubicle transitions are either comparisons (=, ̸=, <, ≤)
between two terms or universal guards, i.e. ∀ appearing in the guard. The
theoretical framework Cubicle is based on does not include universal guards.
However Cubicle is less restrictive than MCMT, which makes it more power-
ful in what it can do. Our mutual exclusion example does not include any
universal guards, but we could easily rewrite a transition to include one. For
example if we take transition enter, we could add the condition that all other
processes be in a state different from Want. This would be overkill in real life,
because we are protected by the Turn variable, but it is not technically incor-
rect. This transition is given in Figure 2.6.

27

transition enter (i)
requires { State[i] = Want && Turn = i &&

forall_other j. State[j] <> Want }
{ State[i] := Crit; }

Figure 2.6: Cubicle code transition syntax

Actions Actions in Cubicle are updates to variables and arrays and are of
the form:

Variable_name := Value;
Array_name[process identifier]:= Value

Cubicle also accepts pattern matching in the form given in Figure 2.7.

{ Array[k] := case | condition1 : value1;
| condition2 : value2;
| _ : value_by_default }

{ Variable := case | condition1 : value1;
| _ : value2 }

Figure 2.7: Cubicle Case Syntax
When applying pattern matching to arrays, the process identifier has to

be different from the process identifiers in the parameters of the transition.
This is because the pattern is basically a forall statement on the indexes of the
array. If you want to change the value for a process i that was a parameter,
then you would just write

Array[k] := case : | k = i : ...

In fact, the syntax we see in our example in Figure 2.9 in transition enter for
example:

State[i] := Crit

is just syntactic sugar for:
State[k] := case : | k = i : Crit

| _ : State[k]

28

which is read as "for all process indexes kof array State, if k is i, then State[i]
becomes equal to Crit, else it remains unchanged."

In the Cubicle code version of our example, transition exit has only one
parameter and Turn is updated by the action

Turn := .

which differs from Figure 2.1, where the transition has two parameters and
Turn is updated to the second one. The effect we wanted to convey was that
Turn changes to a random process. In Cubicle’s syntax, the operator . means
"a random value of this variable’s type".
Atomicity An important aspect of Cubicle’s transitions is that the actions
are all atomic. The semicolon in the transitions is not a sequential operator.
So for example, if we have:

Variable_A := True;
Variable_B := Variable_A

The value of Variable_Bwill be the value of Variable_A before the transition,
and not the new value it was given.
2.2.2 Cubicle’s Optimizations and Benchmarks
Cubicle introduces numerous optimizations to make the theoretical frame-
work viable in real life. We introduce some of them in this section. For a more
thorough and detailed explanation, we refer the reader to [28].

When it comes to the SMT solver, Cubicle tries to optimize its calls asmuch
as possible to avoid overwhelming the solver. Solver calls are incremental-
when checking if a node is subsumed by another node, the context grows
and is checked at each step to find incoherences as fast as possible. The for-
mulas are instantiated in a way to minimize them and only give the solver
the necessary parts that it will need. Subtyping is used to simplify how many
cases the solver will need to verify when something has an enumerative data
type. Cubicle also tries to first subsume formulas syntactically before sending
them to the solver.

The way nodes are popped from Q is never specified in Algorithm 1. Cu-
bicle implements various exploration strategies and heuristics (BFS, DFS, etc)
when deciding how to explore the state space efficiently.

Visited states (V) can also be pruned of nodes that are subsumed by newly
discovered nodes.

While not an optimization, Cubicle also implements an option called -dot
that allows us to visualize the generated safety proof in various levels of detail.

29

For example, for our mutual exclusion example, Cubicle can generate several
versions of the proof. The version in Figure 2.8 shows only the unsafe state
and the two visited states(i.e. pre-images), as well as the transitions used to
calculate the pre-images. Amore detailed graph generated by Cubicle is given

Figure 2.8: Simple Generated Cubicle Proof
in Figure 2.9. Nodes that were removed on line 8 in Algorithm 1 are in a light
gray and the dotted arrows leading from them point to the nodes that they
were subsumed by.
Benchmarks
We present several examples from Cubicle’s library originally used to bench-
mark Cubicle. The full Cubicle code for each example can be found in Cubicle’s
Github repository [29]. Throughout this thesis, we will constantly refer to and
use these benchmarks, building off of them to test CFL.
The examples can be separated into two categories: mutual exclusion and
cache coherence.
Mutual Exclusion

Mutual exclusion is a problem in concurrent programming where processes
have critical and noncritical sections in their code. The goal is to synchronize
the processes so that no two end up in the critical section at the same time.
It was first described and solved by Edsger W. Dijkstra [30, 31].

30

Figure 2.9: Detailed Generated Cubicle Proof

Dekker’s Algorithm Historically, Dekker’s algorithm is considered to be
the first solution to the mutual exclusion problem for two processes. Dijk-
stra attributes the solution to the mathematician Th. J. Dekker [30], although
notes that adapting Dekker’s solution to more processes is initially "unclear".
Dijkstra later presented and proved Dekker’s solution for two processes cor-
rect and gave a generalization for an arbitrary number of processes [31, 32].
The version used for our benchmarks is a simplified version of Alain J. Mar-
tin’s generalization of Dekker for n processes [33], which is based on Dijkstra’s
solution.
Lamport’s Bakery The Bakery algorithm is a solution to the mutual ex-
clusion problem proposed by Leslie Lamport [34]. The algorithm uses the
analogy of a bakery, where customers (i.e. processes) take a number upon
entering the bakery. Buying bread from the baker is equivalent to entering
the critical section. By treating customers individually by number, the baker
(i.e. the critical section) guarantees that only one customer is served at a time.
The version we use for our benchmarks in Cubicle is a simplified version of
Lamport’s Bakery based on [35].
Szymanski’s Algorithm Szymanski’s algorithm is a mutal exclusion algo-
rithm presented by Boleslaw K. Szymanski [36]. Szymanski’s algorithm views

31

a system as three parts: the prologue- the part before the critical section, the
critical section, and the epilogue- the part after the critical section. The anal-
ogy in this algorithm is that of a waiting room. The prologue is seen as two
sections: the entrance and the waiting room. There is a door between the
entrance and the waiting room, and a door between the waiting room and
the critical section. Initially, the first door is opened and all processes that
want to enter the critical section go through to the waiting room. When the
last process enters, the door to the waiting room is closed and the door to
the critical section is opened. At this point processes enter the critical section
one by one in order of process identifier. The door to the waiting room is re-
opened only when the last process to initially enter the waiting room leaves
the epilogue. We use two versions of the algorithm for our benchmarks- an
atomic and nonatomic version.

Cache Coherence

In multiprocess architectures with shared memory, each component has its
own cache. This is done to reduce the latency associated with constantly ac-
cessing the main memory. This use of caches leads to a problem known as
cache coherence. Component caches need to be consistent and compatible
with each other - if a component modifies something in its local cache, every-
one needs to be made aware. Many techniques and protocols exist to deal
with cache coherence [37, 38, 39, 40]. To run our benchmarks, we focus on
two specific examples.

German German is a cache coherence protocol presented by Steve Ger-
man [41]. In this protocol, there areN processes which may all request either
Shared or Exclusive access to a shared cache line. We use several versions of
the algorithm for our benchmarks. Some are simplified versions of the algo-
rithm (called Germanish), while others are adaptations of other implementa-
tions of German ([42, 43]).

FLASH FLASH [44] is amultiprocess architecture designed towork for thou-
sands of processor cores, where each core maintains its own local cache. We
use a version of FLASH called Flash_nodata, which simplifies the protocol by
removing all data-related aspects.

We take the examples that we described and model them in Cubicle. We
give a list of how many elements each model contains:

• Dekker: three transitions, two arrays, one variable
• Germanish: a simplified German with six transitions, three variables,
two arrays, and two enumerative data types

32

• Germanish2: a slightly more complex version than Germanish. This
one has eight transitions, three variables, three arrays, two enumer-
ative data types

• Germanish4: an even more complex version, with 10 transitions, four
arrays, three variables, and two enumerative data types

• German: the actual German algorithm, with 13 transitions, six arrays, 3
variables, two enumerative data types

• German_Baukus: 13 trransitions, six arrays, 3 variables, two enumera-
tive data tyoes

• German_CTC: 12 transitions, 10 arrays, six variables, 3 data types
• German_pfs: 15 transitions, seven arrays, three variables, four data types
• Szymanksi_at: nine transitions, four arrays, one data type
• Szymanksi_na: 16 transitions, fours arrays, one matrix, one data type
• Bakery_lamport: five transitions, three arrays, one variable, one data
type

• Flash_no_data: 69 transitions, nine arrays, 22 variables, eight data types.
The results of running Cubicle are given in Figure 2.10. Timeout was set to 60

Model Cubicle

Dekker 0.01s
Germanish 0.02s
Germanish2 0.04s
Germanish4 0.56s
German 3.36s

German_Baukus 3.19s
German_CTC 19.48s
German_pfs 2min
Szymanski_at 3.6min
Szymanski_na T.O.
Bakery_lamport 0.03s
Flash_no_data T.O.

Figure 2.10: Cubicle Benchmarks
minutes. We see that even with all of the optimizations in Cubicle, it cannot
handle every example, and themore complicated the examples get, themore
time it takes (as seen with the German variants). The issue is that our biggest
example here, Flash_no_data, is not even close to industry-sized. We will see
in Chapter 3 how Cubicle tackles the more complex systems.

33

2.3 Fuzzing

Fuzzing [18, 19, 20] is a technique designed to (quickly) explore a program and
its execution paths. This is done by feeding said program large quantities of
random inputs and seeing what effect that has on the output (i.e. detecting
program crashes, memory leaks, etc).

In this section we will see what kind of problems we face with the systems
that we are interested in, and how we are inspired by fuzzing.

2.3.1 A Motivating Example

In this section, we present a concurrent program in C that is very representa-
tive of the types of systems and problems we want to tackle in this thesis. In
this program, several threads will run in parallel. One of the threads will ob-
serve the others, counting how many times they synchronize, i.e. reach the
same program point. The goal is to run this program for a certain amount of
time and see how often the threads reach a synchronization point. The code
is given in Figure 2.11.

We run this program for four threads. Three of these threads will execute
the function action (line 3) and one thread will execute the function observe
(line 16). We declare a three-element array PC a program counter to show
where each action-thread is in the program. The function action(i) on line
3 takes a thread identifier i (the thread identifier which executes the func-
tion) and runs a sequence of conditional instructions. We use the expression
rand() % 2 == 0 to simulate nondeterminism. In each case, a action-thread
modifies its PC. At the same time, the observe-thread instantiates a counter
(cpt, line 17) and observes what is going on with the action-threads, waiting
for a specific condition to become true (line 19). This condition states that
all action-threads have their PC equal to 2. When the condition is true, the
observe-thread increments cpt and prints it.

We want to observe how often the observe-thread sees a synchroniza-
tion point. We let this program run for five seconds. At the end of the five
seconds, the value of cpt is five. Considering that the observe-thread tried
the condition approximately 1379840 times in those five seconds, we can see
that the condition is barely ever valid. This shows that a purely randomexecu-
tion, where we have no control of the scheduler, will rarely lead us to certain
areas of the program. This could be very problematic if a large chunk of the
code is hidden behind these synchronization points. So if we want to test
this program, we risk never visiting specific areas which might contain crucial
information. A technique that tries to counter this problem is fuzzing, which
tries to visit every part of the codemore evenly, including hard to reach areas.

34

1 volatile int PC[3];23 void * action (int i) {4 while (True) {5 PC[i] = 0;6 if (rand() % 2 == 0) {7 PC[i] = 1;8 if (rand() % 2 == 0)9 PC[i] = 2;10 }11 else12 PC[i] = 3;13 };14 return NULL;15 }16 void * observe (){17 int cpt;18 while (True) {19 if (PC[0] == 2 && PC[1] == 2 && PC[2] == 2) {20 cpt ++;21 printf("cpt = %d\n", cpt);22 }23 };24 return NULL;25 }26

Figure 2.11: Simple C Example

2.3.2 Fuzzing: A Quick Background

When fuzzing was originally introduced [45, 46], it had no underlying focus
on security, and simply meant giving random inputs to a program [47]. To-
day, fuzzing is primarily associated with the detection of security vulnerabil-
ities [47], to the point where it has become very popular and is a key part
of software development [47]. For example, Microsoft has included fuzzing
in its Microsoft Security Development Lifecycle [48, 49]. Google uses fuzzing
on all of its products [50, 51, 52] and is also responsible for launching OSS-
Fuzz [53, 54, 55], a (free) framework for fuzzing open source projects, credited
to have "helped identify and fix over 10,000 vulnerabilities and 36,000 bugs
across 1,000 projects." [55]. Large companies are not the only ones employing
fuzzing, with entities like the United States Department of Defense releasing
reference guides to software development which include fuzzing [56], as well
as applying fuzzing to their systems [57].

35

Generation vs. Mutation

We stated earlier that fuzzers originally took randomly generated input. How-
ever, the problem with purely random input is that due to its random nature,
inputs can be syntactically invalid, and therefore rejected by the program un-
der test.

Techniques exist in place of purely random inputs, these are mutation-
based fuzzing and generation-based fuzzing [58, 20].

Mutation-based fuzzers take existing input and introduce small changes,
hoping that the result will remain valid. Mutation-based fuzzers usually start
from an initial set of inputs, known as seeds. Seeds can be generated by the
fuzzer or, ideally, provided to the fuzzer by the user. These seeds aremutated
to create new input, which is later again mutated, and so on.

Generation-based fuzzers use information about the format of the pro-
gram input to generate valid inputs that follow a certain specification/struc-
ture.

Note that the literature surrounding fuzzers also talks about grammar-
based fuzzers [59, 60] , where input generation follows a certain set grammar
to produce valid data.
Black Box, Gray Box, and White Box

Fuzzers can be separated into three categories: (i) black box fuzzers, (ii) white
box fuzzers, and (iii) gray box fuzzers. Black box fuzzers are the simplest of
the three. They are completely unaware of the actual program code being
tested, and are only able to observe the output behavior.

White box fuzzers have full knowledge of the program they are being run
on, i.e. they have full access to the code. This allows them to reason about
the code and explore system paths more systematically, but in return makes
them slower than their black box counterpart.

Gray box fuzzers are everything that lies in between - the fuzzers are not
completely blind to the code, but at the same time they do not reason about
it to the extent of white box fuzzers. For example, gray box fuzzers could
dynamically gather data about the program while they run, such as code cov-
erage.

2.3.3 Fuzzing and Cubicle
Themain takeaway fromour quick backgroundon fuzzing is that pure random
does not work. Fuzzers that employ completely random input generation are
today considered to be naive fuzzers. We saw the same effect with our C ex-
ample from Figure 2.11- when we simply let the program scheduler do what it
wanted, we did not get the results that we needed.

36

What the fuzzer does can be simplified to three steps:
1. Execute the program
2. Observe the program and its results
3. Modify your behavior according to what you observed.
We stated in Section 2.3.1 that the issue with our example lies with the

scheduler. We have no control over which thread does what and when. Con-
trary towhatwe described about fuzzing, our example has no input tomodify-
the threads simply execute actions. So while we can still execute and observe
what happens, we cannot modify any input. The only remaining solution is
fuzzing the scheduler. Instead of telling the programwhat input to run on, we
tell the program how to run.

Aswewill see in Chapter 4, this is the approachwe usewith CFL in Cubicle.

37

38

Chapter 3

Invariant Generation in Cubicle

Contents
3.1 BRAB . 39

3.1.1 BRAB Algorithm 40

3.1.2 BRAB Benchmarks 44

3.2 Potential Limitations 44

3.2.1 A Motivating Example 45

3.2.2 Bad Approximations 48

3.2.3 Buggy and unsafe models 50

The backward reachability algorithm that Cubicle runs presented in Chap-
ter 2 struggles withmore complexmodels, such as our non-atomic Szymanski
or the dataless FLASH from Figure 2.10. The reason is that those types of mod-
els have too many variables and too many possible states.

A solution to this problem is to give Cubicle more information about the
system, i.e. give it system invariants. These could be given by the user, or
better yet, they can be generated by Cubicle itself. This is the idea behind
the BRAB (Backward Reachability with Approximations and Backtracking) algo-
rithm [17]. The goal is to use a set of forward-reachable states and then ex-
ploit those states to generate invariants strong enough to help prove large
models.

3.1 BRAB
As we saw earlier, the pre-image closure that is calculated is a set of unreach-
able states, meaning that every pre-image itself is an unreachable state. Our
mutual exclusion example is fairly small, with only a couple of variables, so

39

the pre-images are few and simple. But if we have an algorithm with multi-
ple variables/arrays and many more transitions, suddenly (1) the pre-images
become bigger in size and (2) there are many more of them to calculate and
check.

We also saw that previously-calculated pre-images are added to a set V
of visited states, used for fixpoint checks. Unfortunately, when there are a
lot of variables/arrays and they all start appearing in pre-images, making the
states too detailed and precise and V less useful. A good idea would be to
simplify the calculated pre-images, i.e. make them a little less detailed but a
lot more useful for fixpoint checks. The less detail there is in a pre-image, the
more states can be subsumed by it later on. The only problem is simplifying
intelligently, because a badly simplified pre-image might lead to an intersec-
tion with the initial state. This means that you need some kind of Oracle to
tell you what a good vs. a bad simplification is.

3.1.1 BRAB Algorithm
BRAB’s solution to the Oracle problem is to use a limited-depth forward ex-
ploration of the system. It first computes a setM of reachable states us-
ing a forward exploration for a finite instance of the system (with a fixed num-
ber of processes). Then, Cubicle performs the backward reachability analy-
sis of the parameterized system (as described previously by Algorithm 1). At
each loop iteration, Cubicle simplifies the pre-image, i.e. it computes over-
approximations and checks that they represent states that are not inM. All of
these approximations can be seen as candidate invariants, as they are states
that can be classified as "never happening in the system". The approxima-
tions are model checked together with the original safety property. BRAB can
be seen as an enhanced version of Algorithm 1, and its algorithm is given in
Algorithm 2.

In the algorithm, the Bwd function takes as input a parameterized system
S and a cube U , as before. However, now, it also takes two integers dmax and
k. It starts by initializing a variableM with the set FWD(dmax, k) of reachablestates constructed by a forward exploration of the reachability graph for k
processes starting in a state defined by the formula I(#1) ∧ · · · ∧ I(#k) and
limited to depth dmax. When we run a forward exploration, the processes are
instantiated, andweuse the notation #k, where k ∈ N. FWD is not fixed and can
be any user-chosen forward exploration strategy. The two choices in Cubicle
are BFS and DFS.

Comparing BRAB with the original algorithm in Algorithm 1, the only strik-
ing difference is the addition of lines 11-13. This corresponds to what we men-
tioned earlier about approximating pre-images. The Approx function takes
the node that was popped, and calculates its potential approximation ψ. If

40

Algorithm 2: Enhanced Backward Reacha-bility Algorithm
1 function Bwd(S, U, dmax, k) : begin
2 M := FWD(dmax,k);
3 V := ∅;
4 push(Q,U);
5 while not_empty(Q) do
6 φ := pop(Q);
7 if φ ∧ I satisfiable then
8 return unsafe
9 else if φ ⊭ V then
10 V := V ∪ {φ};
11 ψ := Approx(φ);
12 ifM ̸|= ψ then
13 push(Q,Preτ (ψ))

14 else
15 push(Q,Preτ (φ))

16 return safe

the calculated ψ represents states that are not inM (checks the validity of
M ̸|= ψ), then Cubicle will replace φ with ψ and calculate Preτ (ψ) Otherwise,Cubicle will keep φ and calculate Preτ (φ).We can look at how this works with our small mutual exclusion example.
Granted, the model is small enough that it does not require the use of BRAB,
but that does not mean that BRAB does not work on it. Figure 3.1 gives a
graphical representation of how BRAB works. Some states and arrows have
been omitted for the sake of readability. The candidate nodes in blue rectan-
gles and have labels startingwith the letter A (for approximation), whereas the
classic pre-image nodes are in ovals and have labels starting with the letter S
(for state).

We start with our unsafe state S1:
State[i] = Crit ∧ State[j] = Crit

which Cubicle will try to approximate. The way Cubicle approximates formu-
las is by removing literals. So if our formula has three literals for example,
Cubicle will try the versions with two literals removed, and then one literal
removed. So the only way to approximate the state is by State[i] = Crit
(or j, but since the processes are existentially quantified, it means the same

41

Figure3.1:BRABonaSimpleExample

42

thing). However, during its forward exploration, Cubicle encountered a state
that contained a State[#1] = Crit, meaning that saying "there is a process
whose state is never in Crit" is a bad candidate. It is therefore rejected, and,
since there are no other approximations, Cubicle computes the pre-image of
S1. Similarly, it does the same thing with the next popped node, S2:

Turn = i ∧ State[i] = Want ∧ State[j] = Crit

In this case, there are six possible approximations:
1. Turn = i

2. State[i] = Want

3. State[j] = Crit

4. Turn = i ∧ State[i] = Want

5. Turn = i ∧ State[j] = Crit

6. State[i] = Want ∧ State[j] = Crit

Cubicle privileges the least amount of literals, so it will try the first three ap-
proximations first. Unfortunately, all of these can be found in the limited for-
ward exploration. Next, Cubicle tries to privilege the approximations with the
least amount of distinct processes. So it will try the fourth approximation
from the list. It is also unfortunately part of the visited forward states. The
last two approximations are never seen in the forward exploration, so Cubi-
cle will choose one. In this case it chose the sixth approximation.

We note this approximation A3 in our Figure 3.1. Cubicle will calculate its
pre-image instead of S2’s. The pre-images calculated are:
S3 Turn = i ∧ State[i] = Want ∧ State[j] = Want

S4 Turn = i ∧ State[i] = Idle ∧ State[j] = Crit

The same approximation process will be applied to S3 and S4. As men-
tioned, we have omit many of the pre-images and nodes in Figure 3.1. In the
case of S4, there are no possible approximations- all possible combinations
of literals can be seen in the forward exploration and all of the pre-images are
subsumed by already-visited states. S3 is approximated by A4:

State[i] = Want ∧ State[j] = Want

Cubicle then calculates S4’s pre-image and gets S5:
State[i] = Want ∧ State[j] = Idle

43

All of the pre-images for S5 are subsumed by already visited nodes (not pic-
tured in Figure 3.1). Cubicle therefore stops, declares the model safe, and
returns the two generated invariants, which are the two valid approximations
A3 and A4:
A3 State[i] = Want ∧ State[j] = Crit

A4 State[i] = Want ∧ State[j] = Want

These invariants are to be read as:
A3 It is impossible to have two processes where one is in Want and the

other is in Crit

A4 It is impossible to have two processes with their states equal to Want.
The danger with approximating is that sometimes these approximations

can be too coarse (as we will discuss in further detail in Section 3.2), which
leads to false positives. Cubicle protects itself from these cases by backtrack-
ing. If a calculated pre-image intersects with the initial state, Cubicle checks
whether or not the path that led to this intersection contains an approxima-
tion. If it does, then Cubicle will backtrack, throwing away the bad approx-
imation. This ensures completeness- a bad approximation will never affect
the final safe/unsafe result.

3.1.2 BRAB Benchmarks
We go back to our examples from Chapter 2 and rerun them, this time using
BRAB. We use the default forward exploration - BFS. Figure 3.2 brings back
our results from Figure 2.10 and adds a column BRAB, which shows how long
it took for Cubicle to prove safety while using BRAB. The Invariants Found
column gives the number of invariants that BRAB was able to infer for each
model. Using BRAB, Cubicle is able to prove both our non-atomic Szymanski
and the dataless FLASH. We can see in Figure 3.2 that using BRAB drastically
improves the time it takes for Cubicle to prove safety. For example German
goes from three seconds to 30milliseconds, in the case of our dataless FLASH,
Cubicle goes from not being able to prove it at all (without timing out) to prov-
ing it in less than a second.

3.2 Potential Limitations
Before discussing what the main limitations Cubicle faces are, we first look at
what kind of systems wewant to tackle, and see how our problems stem from
there.

44

Model Cubicle BRAB Invariants
Found

Dekker 0.01s 0.02s 0
Germanish 0.02s 0.02s 3
Germanish2 0.04s 0.02s 3
Germanish4 0.56s 0.03s 11
German 3.36s 0.10s 33

German_Baukus 3.19s 0.11s 33
German_CTC 19.48s 0.16s 33
German_pfs 2min 0.32s 43
Szymanski_at 3.6min 0.03s 14
Szymanski_na T.O. 0.06s 15
Bakery_lamport 0.03s 0.05s 4
Flash_no_data T.O. 0.08s 32

Figure 3.2: BRAB Benchmarks

3.2.1 A Motivating Example
If we consider real-life concurrent systems and how they are built, there are
three prevailing features: (i) pipeline parallelism, (ii) synchronization barriers,
and (iii) branching.
Pipelineparallelism breaks up a task into a sequence of sub-tasks, where
each one can be treated concurrently by the system. This is done to improve
performance by leveraging parallel processing. It complicates systemmodels,
because it not only adds depth, since each sub-task becomes an independent
transition, it also introduces more interleavings to check.
Synchronization barriers are necessary to coordinate the multiple pro-
cesses in a concurrent system. For example processes may be required to be
in a certain configuration before gaining access to specific parts of the sys-
tem. These conditions can be very precise, which can lead to them appearing
rarely.
Branching is inherent to concurrent systems- processes can behave inde-
pendently or run tasks in parallel, and the order inwhich they do this can differ
from execution to execution. Not only does this lead to more branchings in

45

the system, it also adds nondeterminism.
We condense these features into a specific pattern that we want to ap-

ply to Cubicle. The pattern is shown in Fig. 3.3. In this figure we can see an

...

....
.
.

.
.
.
..
.
.

...

SynchronizationBarrier

Continue
or

go back

Branching

Pipeline

Depth

Figure 3.3: Concurrent Systems Pattern
initial node (at the top) with multiple arrows leading from it. This is to simu-
late branching and nondeterminism, since a process at that stage would be
able to choose any of the arrows. After branching, we insert the pipeline -
multiple transitions to represent a task. This adds depth to our models. Note
that at any point, when a process gets finished with a sub-task, it can decide
to either continue forward to the next task, or go back. Also note that at any
point in time, any processes that have not yet moved from the initial state can
execute the branching transitions. All of this culminates with a synchroniza-
tion barrier that demands processes behave a certain way to be activated.
It is important to note that while we constructed our pattern in this order, in
real life the elements can appear wherever and however often they want. For
example, we could have multiple synchronization barriers, or branchings can
appear inmultiple places throughout the system. This pattern can also repeat
itself, leading to hierarchical systems.

The problem is that this specific pattern and its repetition, so prevalent
in concurrent systems, is exactly at the root of Cubicle’s limitations. Using
our pattern, we build one example template for Cubicle, shown in Figure 3.4.
Obviously, this is just an example, and many different templates can be built
off of our described pattern and features.

46

User-declared types:
type branch = None | A1 | ... | Ak where k,n,m ∈N

type task = T11 | ... | T1n | T21 | ... | Tm1 | ... | Tmn

Globals:
Cmd : (proc,branch) array

PC : (proc,task) array

C : branch

Init:
∀i. Cmd[i] = None ∧ PC[i] = T11 ∧ C = None

branchx:
∃i. Cmd[i] = None ∧

Cmd′ = [i← Ax] where x ∈[1,k]

cmdx:
∃i. Cmd[i] = Ax ∧ C = None

Cmd′ = [i← None] ∧ C′ = Ax where x ∈[1,k]

pipelinexy:
∃i. Cmd[i] = Ax ∧ PC[i] = Txy ∧

PC′ = [i← Tx(y+1)] where x ∈[1,m] and y ∈[1,n−1]

taskxy:
∃i. PC[i] = Txy ∧

PC′ = [i← T(x+1)y] where x ∈[1,m−1] and y ∈[1,n]

sync:
∃ijk. PC[i] = T53 ∧ PC[j] = T42 ∧ PC[k] = T33 ∧ ∀p ̸=i,j,kPC[p] = T53

Figure 3.4: Pattern as a Concrete Example

The branch transitions in Figure 3.4 are to give a process initial choices.
The following cmd transitions add even more branching by resetting the Cmd

47

Model Forward Time
BFS DFS

States Safe Total
Time States Safe Total

Time

Dekker 10s 466K T.O. - 605K Yes 12.72s
Germanish 10s 424K T.O. - 593K Yes 12.91s
Germanish2 10s 315K T.O. - 515K Yes 12.26s s
Germanish4 10s 287K T.O. - 547K Yes 14.54s
German 10s 312K T.O. - 547K Yes 16.25s

German_Baukus 10s 359K T.O. - 591L Yes 14.82s
German_CTC 50s 1 429K T.O. - 2 010K Yes 62.81s
German_pfs 10s 416K T.O. - 431K Yes 17.37s
Szymanski_at 10s 372K T.O. - 534K T.O. -
Szymanski_na 10s 270K T.O. - 483K T.O. -
Bakery_lamport 40s 1 565K T.O. - 2038K T.O. -
Flash_no_data 40s 862K T.O. - 1 048K T.O. -

Figure 3.5: BRAB with DFS and BFS on Modified Examples
array. The transitions pipeline and task simulate breaking up one task into
multiple sub-tasks. Note that these transitions can be repeatedmany times to
complicate the system. We give an example synchronization barrier transition
sync. This transition’s guard can easily range from simple to more complex,
and, as stated earlier, there can bemultiple synchronization points, optionally
with more branch and task transitions between them.

We now go back to our set of benchmarks. Wemodify each one to add the
above pattern. Each model now contains multiple branch transitions, pipelin-
ing, and a synchronization barrier. The part of themodel which represents the
protocols/algorithms from our benchmarks is now hidden behind a synchro-
nization barrier. We now rerun Cubicle with BRAB, trying both BFS and DFS.
The results are given in Table 3.5. We let each forward exploration run, not-
ing the time it ran (Forward Time) and how many states were visited (States).
The columns Safe and Total Time indicate whether amodel is deemed safe by
Cubicle, and if yes, how much time did it take to prove safety. The Total Time
includes the Forward Time. We can observe that BFS is incapable of visiting
enough states to allow Cubicle to prove safety. DFS fares a bit better, but is
still limited.
3.2.2 Bad Approximations
Wementioned earlier that themain issue facing BRAB is bad approximations,
which force Cubicle to backtrack. Technically, there is nothing inherently bad

48

about backtracking in the sense that it does not affect the final result - safe
systems will be declared safe, unsafe systems will be declared unsafe. Back-
tracking however slows Cubicle down, and renders BRAB inefficient. Back-
tracks are caused by Cubicle not visiting enough states during its forward ex-
ploration and being unable to generate crucial invariants.

Lets go back to our mutual exclusion example, and this time artificially
stop the forward exploration after a depth of one level. Notice that in Fig-
ure 3.1, the very first candidate (A1) was rejected because of something seen
in the forward exploration at a depth of two. As a consequence, now that we
have forced Cubicle to stop its forward exploration earlier, this approxima-
tion, that we know is bad, will not be rejected. Cubicle will accept State[#1]
= Crit, and calculate the pre-image from there. Calculating the pre-image via
transition enter[#3] will lead to state State[#1] = Want and Turn = #1. In
turn, when Cubicle calculates the pre-image for that, it will get State[#1] =
Idle and Turn = #1, which intersects with the initial state. Cubicle will there-
fore be forced to backtrack and throw away our bad approximation. Once
that approximation is gone, Cubicle will proceed as described before and end
up with the same Safe result.

While Cubicle does reply Safe in both instances, there are two big differ-
ences between the runs. The first difference is the time- Cubicle goes from
0.01s to 0.02s. The second, more costly difference, is that no invariants are
generated. In this small example, this is not very dangerous- the system is
small enough to not need invariants to be proved safe. But if we take this
problem, and we apply it to the model we described in Section 3.2.1, the con-
sequences are much more noticeable. Not generating invariants in a model
that size could lead to Cubicle not being able to prove safety. The issue with
the concurrency pattern we described is that both DFS and BFS, Cubicle’s cur-
rent forward exploration techniques, struggle to get to the synchronization
barrier often enough.

Lets look at a concrete example that implements the patternwe described
in Figures 3.3 and 3.4. We create a model that we will run with three pro-
cesses. We give a process four initial branch and cmd transitions (i.e. k = 4 in
Figure 3.4), as well as four tasks decomposed into three sub-tasks each (i.e.
m = 3 and n = 4 in Fig. 3.4) and set a synchronization barrier that forces
each of the three process to be doing different tasks in order to be activated.
We let BFS and DFS explore 500 000 states to see how often they visit the syn-
chronization barrier. This is important because activating the barrier means
having access to the potentially interesting transitions behind it. For 500 000
states, BFS visits the barrier 1512 times and DFS visits it 60 times. It is also im-
portant to note that backtracks can happen at any point in time- there are no
guarantees that Cubicle will not backtrack, even if the proof has been running
for a long time.

49

This is the reason why our examples in Section 3.2.1 fail. The models are
too large for DFS and BFS to visit efficiently enough to help BRAB. One might
suggest just letting the forward exploration run longer and letting it visit more
states. Unfortunately, this leads to too many forward states. The irony is that
too few states slow down BRAB, but so do too many states. The reason for
too many states slowing down BRAB is twofold: (i) exploring too many states
takes time, you do not want your forward exploration to go for hours in hopes
of giving the Oracle enough information, and (ii) Cubicle has to compare ev-
ery approximation with the set of forward states, so the bigger the set, the
longer that takes, the slower BRAB becomes. Going back to our examples in
Section 3.2.1 and Figure 3.5, there are certain models where BFS, for example,
visits over a million states, and this has no impact on the result. It is also im-
portant to point out that BFS and DFS in Cubicle are optimized to account for
symmetrical states. This means that for example if we have two states X[#1]
= True and X[#2] = True, they are considered to be the same.
3.2.3 Buggy and unsafe models
Another problem is that, when it comes to Cubicle, models that are long and
complex, like our example from Section 3.2, are sort of a no-win situation.
When they are safe, a proof will take a long time, and when they are unsafe,
a counter-example might also take a long time. Cubicle is designed to prove
safety, and while it will give a counter-example should the system be unsafe,
this can take an arbitrarily long time in huge systems. Cubicle is not specifically
looking for a counter-example, it is trying to prove a system safe, meaning it
is calculating everything we have mentioned earlier. This implies that, just as
with backtracks, you could get hit with a trivial unsafe at any point in time.

The same goes for buggy systems, for example deadlocking ones. Cubicle
is very strict in what it does- it tells you if amodel is safe or unsafe according to
the safety property (or properties) you asked it to check. Beyond that, Cubicle
does not really care. If a model deadlocks, for example, well that is just too
bad. And although a deadlock does not impact the safety proof result directly,
it does impact the usefulness of a model.

Overall, we can summarize two issues facing Cubicle in its current form,
and therefore two areas of interest:

• How do you visit enough states during a forward exploration to make
sure that the Oracle has enough information to help BRAB

• How do you avoid running time-and-calculation-heavy proofs on sys-
tems that are potentially trivially buggy

There is also always the problem of expressiveness and language exten-
sions - what can we model using Cubicle. This problem is never simple, be-

50

cause with Cubicle and its safety proving mechanism, any new language fea-
ture would need to be accompanied by a pre-image calculation, which can be
arbitrarily difficult. Not to mention the underlying SMT solver.

In Chapter 4, we propose one common solution to both of these prob-
lems, called the Cubicle Fuzzy Loop (CFL). We will also see in Chapter 4 and
subsequently in Chapters 5 and 7 that the inclusion of CFL not only allows us
to address the above two issues, it also allows us to expand Cubicle’s capabil-
ities without worrying about pre-images and the SMT solver.

51

52

Chapter 4

The Cubicle Fuzzy Loop (CFL)

Contents
4.1 Fuzzing Cubicle 53

4.2 General CFL Structure 55

4.3 Fuzzing the Scheduler 61

4.4 BRAB & CFL: Experimental Results 64

4.5 Testing Models 67

4.6 Parameterized Fuzzing 69

4.7 Discussion: Heuristics, Decisions, Fuzzing . . 72

4.8 Discussion: Stability 73

The previous chapter showed that, while efficient at what it does, Cubi-
cle does face certain limitations. This chapter describes how our integration
of testing into Cubicle also provides a solution to these problems. We intro-
duce the Cubicle Fuzzy Loop (CFL), a fuzzing-based extension for Cubicle. We
show how CFL can serve as a forward-exploration technique for BRAB, as well
as how it can be used to test models. We provide and discuss experimental
results.

4.1 Fuzzing Cubicle
This chapter is an extended and more detailed version of our work on CFL
presented in [61]. We delve into more detail about how we adapted fuzzing to
Cubicle, the heuristics, as well as discussions relating to CFL.

CFL is inspired by AFL [62, 63]. AFL is a coverage-based mutational gray
box fuzzer. This means that AFL takes inputs, mutates them, and checks how
that affects coverage. If the mutated test led to more coverage, it is retained
to be re-mutated later, else it is discarded. We retain several notions from

53

this that we want to incorporate into Cubicle: (i) inputs, (ii) mutation, and (iii)
coverage. However, doing this is not straightforward, because Cubicle directly
contradicts the possibility of new, and mutated, inputs.
Input AFL generates an input for the program it is testing. Transposing
this to Cubicle means generating a state that will be considered as the initial
state for the system. Cubiclemodels provide an initial state declaration, so we
could simply generate states that correspond to the declaration. The initial
formula of a model usually either fixes all variable values in a system or, if
it does not, it only leaves a few variables undeclared. Therefore generating
states that correspond to the initial formula is not interesting as, at most, it
will only generate a handful of states, and they will all have the same form.
Since our goal is to cover as diverse a state space as possible, having the same
starting point for each explorationmeans that we become dependent only on
the scheduler, which, as we saw in our example in Chapter 2 does not lead to
the best outcomes. The alternative is to randomly generate states and start
explorations from them. The problem with this is that we cannot guarantee
that these states are reachable in the model. To be more precise, we could
easily generate a consistent state, but without any guarantees that this states
can be reached by executing the model starting from the model’s declared
initial state. Starting an execution from an unreachable state will likely add
other unreachable states to the set of visited states. Thiswill negatively impact
Cubicle’s invariant generation algorithm, preventing it fromgenerating certain
invariants.
Mutation Similarly to the input issue described above, we cannot mutate
states for the same exact reachability reasons as before. This brings us even
further away from how AFL functions.
Coverage As with AFL, if an execution ends up in a new interesting point in
the model, we want to be able to get back to that point during another execu-
tion in order to explore further. Since programs are deterministic in AFL, the
same inputs will bring you to the same points. However, our models are con-
current and nondeterministic: if we use the same input, we cannot guarantee
that the scheduler brings us back to the same place. As a consequence, if we
have no control over the scheduler, we have no control over how the model
is explored.

Our solution to solve these problems is twofold. First, when we run a
model exploration, we consider that any of the already visited states can serve
as the initial state from which further explorations are run. This solves the
problem of having reachable initial states. While this does diversify the state

54

space visited, it does not, however, solve the coverage problem. Our explo-
rations still depend on the randomness of the scheduler, which, as already
mentioned, is not sufficient. The only way we can affect how states are visited
is by affecting the scheduler. The second part of our solution is, therefore,
fuzzing the scheduler: from time to time, we influence how explorations are
run in order to help the scheduler visit unexplored areas of the state space.

4.2 General CFL Structure
Before going into detail about howwe fuzz the scheduler, wewill first describe
the general structure of CFL, from its environment to how it treats states.

In CFL, the states of a model are represented as dictionaries which map
variables and arrays to their corresponding values. Assuming that a state of
the model is noted as s, we say that the pair consisting of a transition t and
its instantiated arguments a1, . . . an is an exit transition from s if the guard of
t(a1, . . . an) evaluates to true in s.CFL associates a record, called a node, to each visited state. Given a state
s, the node associated to s contains the following fields:

• state: the dictionary s
• count: the number of times s has been visited
• exit_num: the number of exit transitions from s

• exit_transitions: an explicit representation of the exit transitions from
s

• exits_taken: which exit transitions have already been taken from s

• exit_count: how many times each exit transition has been taken.
CFL uses all of this information to guide how it fuzzes the scheduler (Sec-
tion 4.3).

The CFL algorithm is a specific implementation of the FWD function from
Algorithm 2, used by theBwd(S, U, dmax, k) algorithm. Remember that S is the
triplet (X , I, τ) where X is the set of array symbols, I is a formula describing
the initial states, and τ is the set of transitions, U is the unsafe state, dmax isthe depth limit, and k is the number of processes to use. Currently, CFL does
not make use of dmax.CFL keeps track of two sets of information: a set P of potential initial CFL
nodes and a map V of visited model states to their corresponding nodes. Ab-
stractly, CFL can be broken up into two stages: the initialization stage and the
execution stage. The initialization stage can be summarized by the following
steps:

55

Algorithm 3: Basic CFL Algorithm
1 function CFL(dmax, k) : begin
2 V := ∅;
3 P := init_system(dmax, k) ;
4 while not_empty(P) do
5 n := choose_node(P) ;
6 strat := choose_strategy() ;
7 V ,P := explore_system(strat, n, k,V ,P);
8 return V

• Compute the initial state s0 of the model with k processes
• Compute the unsafe states with k processes
• Initialize the CFL node init for the initial state s0
• Add init to P and add the mapping from s0 to init to V
Initializing the initial state can be done in one of the three ways we de-

scribed in Section 4.1. This would lead to P either containing one node, or
multiple nodes (same as V containing one mapping or multiple mappings).
Note that P and V are global variables and can be modified by any function.

The second stage, i.e. the execution stage, is a loop that repeats the fol-
lowing steps:

• Pick a node n from P
• Pick a strategy strat to explore the system (described further down)
• Apply strat to n, gathering new visited states and their corresponding
nodes and adding them to V and P

This is repeated until CFL is stopped.
Now that we have presented how CFL works abstractly, we can go into

more detail. Assuming that X , I , τ , and U are global variables, the main pro-
cedure of the algorithm CFL(dmax, k) is given in Algorithm 3. We explain the
procedure by detailing the auxiliary functions used.
Function init_system(k)

This function creates the original set P and map V . It is given in Algorithm 4.
The function takes the number of processes k as a parameter. It creates an

56

empty mapping s0 (line 2), and then for each process i in the interval [1, k] in-stantiates the quantified variables in the initial formula I with process i using
lits_to_map(I, i).This instantiation creates amapping, which is added to s0. We
do not give an explicit implementation for lits_to_map. Once s0 has been cre-ated, a function check is called (line 5), which verifies that s0 has a value for allmodel variables. If it does not, then an error is raised. After the check, a corre-
sponding CFL node n to s0 is computed using the function node(s0, k), whichwe detail further down. The function init_system returns a set containing only
s0 and a map containing s0 7→ n.

Algorithm 4: Initialize CFL System
1 function init_system(k) : begin
2 s0 := {};
3 foreach i in [1, k] do
4 s0 := s0 + lits_to_map (I ,i)
5 check (s0);
6 n := node (s0, k) ;
7 return {s0 7→ n}, {s0}

Function node(s, k)

This function, given in Algorithm 5, takes a model state s and the number of
processes k and returns a CFL node initialized from s. It first calls a function
exit_transitions (described further down) to compute a list of all possible exit
transitions in state s (variable tr) on line 2. Then, node creates a CFL node, i.e.
a record with the fields we described earlier. [61] [64] It uses a function map

(not detailed) to iterate over the list tr, mapping each element, i.e. each exit
transition, to 0.

Algorithm 5: Compute a CFL Node
1 function node(s, k) : begin
2 tr := exit_transitions(s, k);
3 return {
4 state = s;
5 count = 1;;
6 exit_num = length(tr);
7 exit_transitions = tr ;
8 exits_taken = ∅ ;
9 exit_count =map(tr, 0) }

57

Function exit_transitions(s, k)

The function exit_transitions is given in Algorithm 6. This function calculates
the exit transitions in a state s for k processes. It takes amodel state s and the
number of processes k. It starts by initializing an empty list tr (lines 2). Then,
for each pair of a transition t and its arguments args (line 3), it computes all
possible combinations of processes for the number of arguments of t (line 4).
We do not detail the function all_combinations. Once that is done, it checks if
t, with each combination, satisfies the state s, i.e. is possible in s. If it is, then
the transition and specific argument combination are added to tr.

Algorithm 6: Calculate Exit Transitions
1 function exit_transitions(s, k) : begin
2 tr := []
3 foreach t(args) in τ do
4 combs := all_combinations (args, k);
5 foreach c in combs do
6 if t(c) satisfies s then
7 tr := t(c) :: tr;
8 return tr

Function choose_node()

This function selects a CFL node fromP . When a node is chosen, it is removed
from P . We do not detail this function, as in our current implementation, it
simply picks a random element from P .
Function choose_strategy()

This function picks an exploration strategy to apply, i.e. this function decides
how the schedule will be modified. We do not detail this function either, as in
CFL’s current implementation, the choice of strategy is purely random.
Function explore(strat, n, k)

The function explore is the core function of CFL. It takes an exploration strat-
egy strat, a node n, and the number of processes k. We give the function in
Algorithm 7 and detail it step by step.

The function first chooses a number of steps steps on line 2, and sets the
current step curr_step to zero. An exploration in CFL runs for a certain num-
ber of steps, randomly chosen each time. The constant bound is a limit on

58

Algorithm 7: Basic exploration technique
1 function explore(strat, n, k) : begin
2 steps := random_int(bound); curr_step := 0 ;
3 env := n ;
4 poss := env.exit_transitions ;
5 while curr_step < steps do
6 curr_step := curr_step+ 1 ;
7 tr := pick_transition(poss, strat) ;
8 new_state := apply_transition(env, tr) ;
9 clean_exits(new_state, env, tr) ;
10 check_unsafe(new_state);
11 if new_state exists V then
12 env := modify_node(new_state) ;
13 poss := env.exit_transitions ;
14 else
15 n1 := node(new_state, k) env := n ;
16 poss := n.exit_transitions ;
17 V(new_state) := n ;
18 P := P ∪ {new_state 7→ n1}

how high CFL can gowhen choosing steps. In the current implementation, the
bound is set to 100. The function initializes a variable env (line 3), which rep-
resents the environment of the current exploration. Initially, env is set to the
node n. We declare a variable poss, which corresponds to the list of all possi-
ble exit transitions in the current environment (line 4). Then, while the current
number of steps is less then the maximum, the function chooses a transition
according to the chosen strategy (line 6), applies the chosen transition (line 7),
does somebookkeeping (clean_exits, line 8, detailed further down), and checks
that the resulting state is not unsafe (line 9). If the new state new_state has
already been visited (i.e. there is a mapping in V , line 10), then the environ-
ment is set to the already-existing node using a functionmodify_node (detailed
further). Else, a new node n1 and a mapping new_state 7→ n1 is added to V
and n1 is added to P . We now detail the functions used in explore further.
Function pick_transition(poss, strat)

This function picks a transition from all possible exit transitions poss to ap-
ply according to the current strategy strat. The function returns a transition
and its arguments. We do not detail this function, as we will discuss fuzzing
strategies in detail in Section 4.3.

59

Function apply_transition(n, tr)

This function takes a chosen transition tr and applies it to the model state
stored in n. Recall that n is a CFL node, so the transition will be applied to
n.state. This function is not detailed, as it simply creates a new mapping for
the variables/arrays in n.state according to the transition tr and returns them.

Procedure clean_exits(s, n, tr)

This procedure, given in Algorithm 8, takes a model state s, a corresponding
CFL noden and a transition tr (implicitly a transition and its arguments). When
CFL encounters a state s that it has already visited, it does not need to recreate
a new node, it only needs to modify the existing one.

Algorithm 8: Clean Exit Transitions
1 procedure clean_exits(s, n, tr) : begin
2 temp := {env with

exits_taken = env.exits_taken ∪ tr;
exit_count(tr) = env.exit_count(tr) + 1};

3 V (env) := temp;
4 if temp.exits_taken ̸= temp.exits then
5 P := P ∪ {temp}

When modifying an existing node, CFL needs to:
• Add the transitions tr to the field exits_taken (if it was not already added)
• Increment how many times tr has been taken.

Then it needs to modify the mapping in V for s. Recall that when a node is
chosen from P , it is removed from the set. This procedure checks if there are
still exit transitions that have not been explored (line 4) for this node. If so,
then the node is added back to P .

Function check_unsafe(s)

This function checkswhether the state s contains an unsafe state. If it contains
an unsafe state, then CFL does one of two things:

• If CFL is running for BRAB, it stops completely and informs the user that
an unsafe state was reached. It also generates a trace.

• If CFL is running as a standalone tool, it raises a warning that an unsafe
state was reached, but does not stop its execution.

60

Function modify_node(s)

This function, given in Algorithm9, is only calledwhenCFL encounters amodel
state that it has already seen. Recall that nodes keep track of how often a
model state has been visited. This means that when a model state is re-
visited, CFL has to modify its node to increment the counter. The function
modify_node takes a model state s, finds its associated record (node) in V , and
creates a new, temporary node node with all of the same values, except with
an incremented count (line 2). Then it modifies the mapping of s in V to set it
to node (line 3). It then returns node.

Algorithm 9:Modify Node
1 function modify_node(s) : begin
2 node := {V(s) with count = node.count+ 1} ;
3 V(s) := node;
4 return node

4.3 Fuzzing the Scheduler
Having described CFL’s general structure, we can now describe how we treat
the scheduler. We established in Section 4.1 that we have no choice other than
to fuzz the scheduler, since we cannot touch the states. However, fuzzing the
scheduler canmeanmany things, all ofwhichwe tested experimentally before
settling on our solution.
Suggestion 1: Randomly generate schedules Randomly generating
schedules means randomly generating sequences of transitions for Cubicle
to execute. This, unfortunately, does not work mainly due to Cubicle transi-
tions having requirements. Similarly to how fuzzing with randomly-generated
inputs does not work very well becausemany end up syntactically invalid, ran-
domly generated transition sequences also end up invalid. There are no guar-
antees that the transitions can be taken, meaning that there are too many
useless sequences.
Suggestion 2: Take existing (correct) sequences, and change ran-
dom steps This would work similarly to mutation-based fuzzers. You have
a correct input and you mutate it to create a new input. There are two ways
this can be done:

• change a randomstep step, leaving the rest of the sequenceunchanged,
and re-execute the sequence from the beginning

61

• pick a step step, change it, and re-execute the sequence from the be-
ginning, calculating new valid steps when you get to step

There aremultiple reasons as towhy this either does notwork, or is inefficient.
The first way does not work simply because you are replacing a transition ran-
domly, so you are once again faced with the problem of invalid requirements.
The second way will either not work or work inefficiently. If step is chosen ran-
domly, then you run the risk of facing the same invalid requirement problem.
However, if step is picked from valid, possible transitions, then this method
works, but uselessly reruns (i.e. recalculates) the same parts of the sequence
multiple times, bringing in no new information. The biggest problemwith sug-
gestion 2 however, in both cases, is having to rerun the sequence to get to the
chosen step, which directly contradicts Section 4.1, where we said that we will
retain visited states to use as inputs. So suggestion 2 does not work however
you spin it. The only remaining solution, and the one we implement in CFL, is
to fuzz the scheduler by altering how it makes decisions when exploring the
system.

Having settled on "decision-altering" as our chosen technique to fuzz the
scheduler, the only missing piece is the heuristics behind the technique, i.e.
what possible ways could the scheduler explore the system. Currently, CFL
implements six exploration techniques.
Technique 1: RandomExploration This is the simplest exploration tech-
nique and is basically randomly choosing and applying transitions. Note that
CFL randomly chooses transitions only from thepossible transitions in a state,
not from all transitions in the system. When this technique is picked, CFL ran-
domly chooses a number of steps to execute and then applies random tran-
sitions to the starting node for that many steps. CFL can stop prematurely
if it encounters a deadlock. The reason for this technique is that through-
out our experiments, we noted that random execution, on its own, is often
fairly efficient in exploring the system. It is also rather fast, since it does not
spend time calculating anything. Overall, while it provides no guarantees on
how diversely it will explore a model, it does provide a good basis for further
exploration.
Technique 2: Process Sequences Interesting behaviors in models can
sometimes be linked to the fact that it is the same process acting multiple
steps in a row. While we can assume that with random exploration sequences
of the same process would eventually appear, this becomes less likely the big-
ger the system and the more processes there are. We therefore include this
technique, where CFL applies transitions to only one process consecutively.
CFL selects a random process, picks a number of steps,and moves only that

62

process forward for that amount of steps. This stops prematurely if the cho-
sen process has no more moves (note that this is not equivalent to a system
deadlock, since CFL is only looking at one process).
Technique 3: Weighted Decision The goal of CFL is to explore the sys-
tem as diversely as possible, while potentially forgoing exhaustivity. This im-
plies that it needs to privilege coverage, i.e. visiting states it has never seen
before. With this technique, CFL grades potential steps using the following
criteria:

1. This step will lead me to a never visited state
2. This stepmeans taking a transition that has never been takenby anyone

globally
3. This step means taking a transition never taken from this node

These criteria are in order of importance - being able to visit a state that has
never been visited will outweigh the rest.
Technique 4: Maximizing Randomness This technique aims at visiting
the states that lead to greater uncertainty in how the system will behave. It
privileges states that have the most potential outcomes, i.e. states that have
the most exits. Since the goal is to cover as diverse a space as possible, the
logic is that if you target states that have more exits, you will cover vaster
state spaces. Assume that CFL is in a state s. It chooses a random transition
from all possible transitions in s. It applies that transition and calculates how
much randomness the resulting state will bring. If the result is greater than
the randomness provided by s, then CFLwill agree to that transition andmove
to the new state. Otherwise, the transition might be rejected. CFL will always
accept transitions that lead to greater randomness. However, always rejecting
states with equal or lower randomness means running the risk of ignoring
parts of the system. This is why a certain percentage of the time (set by the
user), CFL will accept transitions that lead it to states with equal to or lower
randomness than s.
Technique 5: Limited BFS This technique is fairly straightforward: CFL
picks a very small random depth and runs BFS. This acts as an occasional
countermeasure to CFL’s more depth-oriented explorations.
Technique 6: Unused Exit This technique serves a more cleanup pur-
pose by simply picking one exit that has never been taken and covering it.

63

4.4 BRAB & CFL: Experimental Results

As described in Section 3, BRAB utilizes a forward exploration to construct
a set of seen states to use as an Oracle. This method hinges on the set of
forward visited states,M, being diverse enough and including crucial states
which would allow the Oracle to correctly decide if an approximation is good
or not. The whole idea of CFL is that it sacrifices exhaustivity in order to ex-
plore a larger variety of states. We decided to plug CFL into Cubicle not only
as a standalone testing tool, but as the Oracle for BRAB.

We runour benchmarks on the examples discussed in Chapter 3. All of our
examples have 25 transitions to represent depth, branching, and pipelining,
as well as one synchronization transition which requires that processes be in
different configurations throughout the model.

We compare several forward exploration strategies with CFL: (i) Cubicle’s
existing BFS andDFS strategies, both optimized for speed, (ii) a randomexplo-
ration strategy, i.e. one that starts at the initial state and randomly chooses
transitions, and (iii) CMurphi, an enumerative model checker [65] developed
on top of Murφ, only used here to efficiently visit the state space. The results
of this comparison, excluding CMurphi, can be seen in Figure 4.1. We discuss
CMurphi separately further down.

Each strategy is run for three processes and has the same amount of time
allocated for its forward exploration, noted in the Forward Time column. We
then compare howmany states were visited (States column) and whether Cu-
bicle was able to prove safety before hitting the timeout criteria (Safe column).
The total time (forward + proof) is noted in the Total Time column for each
strategy. Each example was timed out after 5 minutes. This was chosen due
to the time taken using CFL, as well as the number of proof nodes generated
by Cubicle within those 5 minutes, compared in Figure 4.2. The values under-
lined and in bold are where Cubicle was successful in proving safety. We can
see that the number of nodes for the timed out examples is much higher than
is necessary for Cubicle in the cases where it quickly proves safety.

The reason CMurphi is excluded from Table 4.1 is due to the fact that we
were unable to find an option that would force CMurphi to run for the allo-
cated time. For each of our models, CMurphi raised the following error: “In-
ternal Error: Too many active states.” For the sake of fairness, we rerun CFL,
manually setting the limit for each model to how many states were visited by
CMurphi. The results for this are seen in Figure 4.3. The results for CFL all have
the form X/Y. This is due to CFL’s innate randomness. Two executions will not
necessarily have the same results, especially if the allocated time/number of
states to visit is low and the model is large. For example, in Table 4.3, Dekker
was run 10 times, and all 10 times CFL managed to visit enough states to help
Cubicle quickly prove safety. However, on a model like Germanish4, which is

64

M
od

el
Fo
rw

ar
d
Ti
m
e

BF
S

D
FS

Ra
nd

om
CF
L

St
at
es

Sa
fe

To
ta
l

Ti
m
e

St
at
es

Sa
fe

To
ta
l

Ti
m
e

St
at
es

Sa
fe

To
ta
l

Ti
m
e

St
at
es

Sa
fe

To
ta
l

Ti
m
e

Dek
ker

10s
466

K
T.O

.
-

605
K

Yes
12.7

2s
266

K
Yes

11.7
4s

120
K

Yes
10.6

1s
Ger

ma
nish

10s
424

K
T.O

.
-

593
K

Yes
12.9

1s
261

K
Yes

11.9
4s

120
K

Yes
10.7

8s
Ger

ma
nish

2
10s

315
K

T.O
.

-
515

K
Yes

12.2
6s

244
K

Yes
11.9

2s
115K

Yes
10.7

5s
Ger

ma
nish

4
10s

287
K

T.O
.

-
547

K
Yes

14.5
4s

186
K

T.O
.

-
110K

Yes
11s

Ger
ma

n
10s

312
K

T.O
.

-
547

K
Yes

16.2
5s

207
K

Yes
13.5

5
107

K
Yes

12.2
3s

Ger
ma

n_B
auk

us
10s

359
K

T.O
.

-
591

L
Yes

14.8
2s

207
K

Yes
12.9

3s
105

K
Yes

12s
Ger

ma
n_C

TC
50s

142
9K

T.O
.

-
201

0K
Yes

62.8
1s

505
K

T.O
.

-
265

K
Yes

55.
17s

Ger
ma

n_p
fs

10s
416

K
T.O

.
-

431
K

Yes
17.3

7s
174

K
Yes

12.6
9s

100
K

Yes
13.1

1s
Szy

ma
nsk

i_at
10s

372
K

T.O
.

-
534

K
T.O

.
-

155
K

Yes
11.9

2s
105

K
Yes

11.6
0s

Szy
ma

nsk
i_na

10s
270

K
T.O

.
-

483
K

T.O
.

-
270

K
T.O

.
-

100
K

Yes
12.5

0s
Bak

ery
_lam

por
t

40s
156

5K
T.O

.
-

203
8K

T.O
.

-
650

K
T.O

.
-

230
K

Yes
42.5

9s
Flas

h_n
o_d

ata
40s

862
K

T.O
.

-
104

8K
T.O

.
-

273
K

T.O
.

-
140

K
Yes

43.
32s

Figu
re4

.1:C
om

par
ing

CFL
wit

hD
iffe

ren
tFo

rwa
rdS

trat
egi

es.

65

Model BFS DFS Random CFL

Dekker 6904 4 4 4

Germanish 889 4 4 4

Germanish2 1770 4 4 4

Germanish4 2415 20 3255 20

German 2862 41 41 41

German_Baukus 2170 41 41 41

German_CTC 1500 61 1231 60

German_pfs 1121 44 44 44

Szymanski_at 2861 174 33 33

Szymanski_na 2061 210 510 43

Bakery_lamport 779 2189 230 16

Flash_no_data 1329 61 1227 37

Figure 4.2: Number of Generated Proof Nodes for Each Strategy

Model
CMurphi CFL

States Safe States Safe

Dekker 48K T.O. 48K 10/10
Germanish 48K T.O. 48K 10/10
Germanish2 39K T.O. 39K 10/10
Germanish4 39K T.O. 39K 7/10
German 33K T.O. 33K 6/10

German_Baukus 33K T.O. 33K 7/10
German_CTC 24K T.O. 24K 0
German_pfs 33K T.O. 33K 6/10
Szymanski_at 32K T.O. 32K 3/10
Szymanski_na 26K T.O. 26K 2/10
Bakery_lamport 32K T.O. 32K 1/10
Flash_no_data 21K T.O. 21K 3/10

Figure 4.3: Comparison with CMurphi

66

longer and more complex, running CFL 10 times only led to seven quick suc-
cesses. We will discuss this further in Section 4.8.

4.5 Testing Models
As we mentioned earlier, large and unsafe models are just as problematic
as large and safe models. To demonstrate this fact, we take our previous
models fromSection 4.4, andwe introduce trivial unsafe states. Wemake sure
that these unsafe states appear in the part of the model that comes after the
synchronization barrier. We then run Cubicle (without BRAB) and CMurphi on
these examples in order to compare the results. We set the timeout to five
minutes. The results are given in Figure 4.4. Both Cubicle and CMurphi fail at
finding the unsafe state. The reason why CMurphi fails is the same as before,
where it raised an internal error: “Internal Error: Too many active states.”.
The timeout results for Cubicle are not surprising, as the MCMT framework
that Cubicle implements is made to prove safety. There is nothing in MCMT
that makes it efficient at quickly finding that a model is unsafe. Showing that
a model is unsafe implies finding a path from the unsafe state to the initial
state. In large models, this path can be arbitrarily long and complex. This is
where CFL comes in.

Model Backward CMurphi

Dekker T.O. O.M.
Germanish T.O. O.M.
Germanish2 T.O. O.M.
Germanish4 T.O. O.M.
German T.O. O.M.

German_Baukus T.O. O.M.
German_CTC T.O. O.M.
German_pfs T.O. O.M.
Szymanski_at T.O. O.M.
Szymanski_na T.O. O.M.
Bakery_lamport T.O. O.M.
Flash_no_data T.O. O.M.

Figure 4.4: Unsafe: Backward and CMurphi
CFL can be used for more than just running the forward exploration for

BRAB. We can use it as a standalone tool to test models. Not only that, it also
allows us to improve Cubicle’s error-detection. For example, it is very easy to

67

extend CFL to deadlock detection, something that MCMT also does not do. We
discuss deadlocks further down. We run CFL in a standalone fashion on the
same models. The results can be seen in Figure 4.5. Once again timeout was
set to five minutes.

Model CFL
(standalone)

Dekker 0.3s
Germanish 0.7s
Germanish2 0.2s
Germanish4 0.7s
German 0.4s

German_Baukus 0.4s
German_CTC 0.5s
German_pfs 0.3s
Szymanski_at 2s
Szymanski_na 2s
Bakery_lamport 1.5s
Flash_no_data 3s
Figure 4.5: Unsafe: Backward vs. CFL

We can see that CFL is quickly able to find the unsafe states that we in-
jected, with even the largest model - the dataless Flash - taking only three
seconds.

We use CFL to introduce deadlock detection into Cubicle. Within MCMT,
the only viableway to detect a deadlockwould be to know in advancewhat the
deadlocking state is, and check whether it is reachable or not. This method is
less than ideal in real life. A deadlock in CFL is defined as a state where there
are no more exit transitions possible. Every time CFL calculates poss from Al-
gorithm 7, if that number is equal to zero, then CFL raises a warning that it
has encountered a state that is impossible to leave. This means that CFL can
detect multiple deadlocks, or it can detect the same deadlock multiple times,
if it revisits the deadlocking state more than once. In its current implementa-
tion, CFL does not take into account whether it has already signaled a state as
deadlocking, it simply notes every state (and path) that contains a deadlock.

We artificially deadlocked our examples from Section 4.4. We run CFL with
68

Model CFL

Dekker 0.1ms
Germanish 0.5s
Germanish2 0.2s
Germanish4 0.5s
German 0.4s

German_Baukus 0.4s
German_CTC 0.4s
German_pfs 1s
Szymanski_at 2s
Szymanski_na 0.6s
Bakery_lamport 2s
Flash_no_data 4s

Figure 4.6: Deadlock Detection

three processes to see if it can detect the deadlocks, and, if so, how long it
takes. The results are given in Figure 4.6. As we can see, even on hugemodels,
finding deadlocks does not take CFL too long.

4.6 Parameterized Fuzzing
Asmentionednumerous times before, Cubicle is a parameterizedmodel checker
and proves safety for n processes. However, CFL uses a fixed number of pro-
cesses, provided by the user. One of our main goals is to instrument CFL so
that it is capable of independently deciding how many processes it needs
to explore a model without missing any behaviors. When discussing system
behaviors in [66], Leslie Lamport states "Formally, we define a behavior to be
a sequence of states, where a state is an assignment of values to variables. We
specify a system by specifying a set of possible behaviors—the ones representing
a correct execution of the system." Unfortunately, according to this definition of
"behavior", any time CFL decides to add a process, new behaviors are gener-
ated. Thismakes it difficult to decide when to stop, as new array values do not
necessarily imply actually new behavior. If we take the example in Figure 4.7,
adding processes does nothing to change the overall behavior of the system.
Since we cannot easily focus on variables and values, we try the only other
alternative: transitions.

69

type t = A | B

array X[proc] : t

init(i) { X[i] = A }

transition t1(i)
{ X[i] := B }

Figure 4.7: Same Behaviors with Multiple Processes

The easiest way to define a new behavior with regards to transitions is a
transition being possible with n+ 1 processes, while being impossible with n
processes. This is too simple, however, because a process’s behavior is not
only defined by the transitions it takes, but also the order in which it does.
Sometimes we want to focus more on the path instead of the destination.
Analyzing all combinations of all paths would be too expensive, so instead
we focus on pairs of transitions, i.e. "is it possible to go from transition t1 to
transition t2 directly".

Lets look at the example in Figure 4.8. In this example, all transitions are
eventually possible with three processes. However, three processes never
allow for the sequence t3 -> t4. If we have three processes #1, #2, and #3
and we took transition t3, given the requirements and the actions, we get the
state:

P2[#1] = False && P1[#2] = A && P2[#2] = True && P1[#1] = B

for #1 and #2 and values we do not know for #3. If we now want to take tran-
sition t4. In our resulting state from t3, P1[#1] = B, so we will say that #1 cor-
responds to i in t4’s parameters. We needs a P2[j] = False and since #2’s
is equal to True, we can only assume that P2[#3] = False. That still leaves
the last condition: P2[k] = False, and with three processes, we are out of
options. However, if we had four processes, the transition would be possible.

This is the current logic behind how CFL decides the number of processes
it needs. It first preprocesses the model to set the minimum number m of
processes needed depending on howmany parameters the unsafe states and
transitions have. For Figure 4.8, theminimumnumber is three. Then CFL runs
Technique 5 from Section 4.3. The reason is that this technique is supposed
to cover transitions better since it targets states according to howmany tran-
sitions leave them. It starts with theminimumnumber of processes, and runs

70

heuristic.cub

type t = A | B | C

array P1[proc] : t
array P2[proc] : bool

init(i) { P1[i] = A && P2[i] = True }

transition t1 (i)
requires { P1[i] = A }
{ P2[i] := False }

transition t2 (i j)
requires { P2[i] = False && P1[j] = A}
{ P2[j] := True;

P1[i] := C }

transition t3 (i j)
requires { P2[i] = False && P1[j] = A }
{ P2[j] := True;

P1[i] := B; }

transition t4 (i j k)
requires { P1[i] = B && P2[j] = False

&& P2[k] = False }
{ P1[i] := A ;}

Figure 4.8: Cubicle Code to Test Fuzzer Parameterization

71

the exploration for a fixed number of steps. While it runs, it counts howmany
passages therewere between eachpair of transitions. When it is done, it saves
the result, and does the same exact thing but with m + 1 processes. Then, it
compares the results for m and m + 1. If a pair of transitions goes from 0 to
anything greater than zero, CFL stores the results form+ 1, and reruns with
m+ 2, repeating the same processes. If nothing new appeared between two
values ofm, then CFL keeps the smaller of the two. If ask CFL to evaluate the
example in Figure 4.8, it returns fours processes.

This is the preliminary work to render CFL parameterized. This current
implementation works well for small andmedium-sizedmodels. This method
suffers on larger models, because the forward exploration used to evaluate
behaviors is very limited.

4.7 Discussion: Heuristics, Decisions, Fuzzing
The six exploration strategies given in Section 4.3 are heuristics used to ex-
plore the state space using CFL. And while they are the only ones currently
implemented in CFL, because they are heuristics, there is no limit on what
could be added as an exploration technique. For example, heuristics that fo-
cusmore on the processes themselves could be useful to diversify state space
exploration as well as testing model behaviors. For example processes could
be introduced, or "killed". We discuss this further in Chapter 5 with the imple-
mentation of threads in CFL.

Another way to influence CFL is to directly act on how it picks both nodes
from P and strategies to apply. Currently, both of these things are done
purely randomly. If we take our inspiration, AFL, when it picks inputs to mu-
tate, it privileges those which have not yet been touched. A potential opti-
mization to CFL is setting priorities to the nodes in P . Several direct ways to
prioritize nodes are:

• Pick nodes according to how often they have been used
• Have the user set interesting states and pick nodes that contain those
states

• Have the user tag important transitions and then prioritize nodes either
according to which nodes would allow these transitions to be executed
or which nodes are the results of these transitions

Influencing how strategies are picked ismore complicated andwould gen-
erally require more computation, slowing down CFL. A basic way to influence
strategy selection would be either privileging certain strategies (user-defined)
or making sure that every strategy is chosen equally. A less basic way would

72

be analyzing which strategies are more effective under which circumstances,
and choosing accordingly.

In its current form, CFL sits between white box and gray box fuzzing. This
is due to it having initial knowledge of all transitions in the system, i.e. the pro-
gram structure. What brings it closer to gray box fuzzing is that it does not use
a systematic exploration of the system. If we take AFL for example, it knows
when it has covered something new, but it does not know what remains to be
covered. Whereas with CFL, if we look at it from a transition perspective, it is
aware of the model structure. That being said, if we look at CFL from a state
perspective, it is closer to AFL and therefore gray box fuzzers, since it knows
the states that it has visited, but has no knowledge of which states remain
unseen. Getting closer to white box fuzzing is costly, as the more computa-
tionally intensive CFL becomes, the slower it gets. As is, CFL is slower than BFS
and DFS in how many states it visits in the same amount of time. CFL makes
up for that by visiting more interesting states.

4.8 Discussion: Stability
In Section 4.4, we saw that we had to rerun CFL multiple times when compar-
ing it withMurphi. This is due to CFL’s inherent randomness. Nodes are picked
randomly, strategies are picked randomly, transitions are sometimes picked
and applied randomly. Overall, CFL is significantly dependent on random.

Lets extract a couple of examples from our previous tables and run some
experiments to illustrate the issuewith this. We focus onfive examples: Dekker,
Germanish, German, Szymanski_at, and Flash_no_data. The reason we have
picked these five is because they differ in size and complexity, ranging from
simple (Dekker) to very complex (Flash_no_data). Note that these are the ex-
amples from our benchmarks, meaning they are all prefixed with our concur-
rency pattern from Chapter 3.

In our BRAB benchmarks, we let BFS, DFS, and CFL run for a set number
of seconds. If we lower that number, our results change. For the purposes
of this section, we will only be focusing on DFS and CFL, since BFS could not
handle any of the examples.

For these experiments, we classify a "success" as Cubicle being able to
prove safety.

We run DFS and CFL for one second on Dekker and they both succeed.
We rerun them and they succeed again. DFS, being deterministic, will always
succeed if it visits the same amount of states in the allocated time period.
We ignore potential hardware discrepancies and assume that the same time
rerun multiple times will always result in the same result for DFS. But what
about CFL? We rerun Dekker again. DFS succeeds, but suddenly CFL fails. If
we run CFL 100 times on Dekker, it will succeed 99 times. But it will fail once.

73

If we run CFL on Dekker for two seconds, CFL succeeds 100 out of 100 times.
Moving on to Germanish. We redo the same experiment, giving CFL and

DFS one second. This time, DFS fails and CFL succeeds. We rerun CFL 100
times. Out of those 100, it fails 11 times. We run CFL for two seconds on
Germanish- it succeeds 96 out of 100 times.

Skipping directly to Flash_no_data, running CFL for one second only re-
sults in one success out of 40 tries. CFL succeeds in two seconds, but only
two out of 10 times.

We stated earlier that CFL was slower than BFS and DFS in visiting states,
so maybe time is a bad comparison, maybe we should instead focus on the
number of states, ignoring how long it takes to visit them.

We restart our experiments. We tell CFL to visit 5000 states with Dekker,
which allows it to succeed only one out of 10 times. If we tell it to visit 50000
states, it succeeds 100 out of 100 times. DFS fails even with 52000 states, and
since we know that DFS is deterministic, there is no point in rerunning it to
see if it will succeed with 52000 states during a different run.

For Germanish, if we give CFL 5000 states, it succeeds four out of 10 times.
However, if we give it 60000 states, it succeeds 100 out of 100 times. For Ger-
man, 5000 states results in two successes out of 10, whereas 100000 states
results in 100 out of 100 successes.

Szymanski_at and Flash_no_data are another story. Both models are very
large. Running CFL for 5000 states with Szymanski_at gives one success out
of 10 runs, whereas Flash_no_data only succeeds once out of 45 runs. And
contrary to the previous three, these models are so big that even getting suc-
ceeding 100 out of 100 times does not guarantee anything, since running them
for another 100 times occasionally leads to failures. All of this is to illustrate
CFL’s biggest hurdle and its most promising future work (parameterization
aside): stability.

Fuzzers, like any testing technique, offer no guarantees. Rerunning the
same tests will not necessarily lead to the same results. Running many tests,
or running fuzzers for a long time, is optimal. This can, unfortunately, also be
applied to CFL. The same amount of time, the same number of visited states,
and the same model do not guarantee the same results. The easiest way to
mitigate this problem is to let CFL run for a longer time. In the context of BRAB,
this is not ideal, since it directly influences the invariant generation. However,
if CFL is running purely to test a model, it is less troublesome.

The interesting thing about this problem is that, reproducibility of results
aside, CFL is capable of succeeding with very little visited states. Managing
to prove Flash_no_data with 5000 states is impressive, considering that the
model has 95 transitions.

The only way to tackle CFL’s stability is to tackle how strategies are cho-
sen. If we analyze what led to CFL succeeding with so few states in these

74

particular cases, perhaps we could extract a pattern or a rule/heuristic to ap-
ply. Wementioned in Section 4.7 that influencing how exploration techniques
are chosen would slow CFL down. However, in CFL’s current state, we do not
see another way of tackling stability.

75

76

Chapter 5

CFL-Based Threads

Contents
5.1 Primitives . 79

5.2 Cubicle vs. Primitives 80

5.3 Language Extensions & Semantics 82

5.3.1 Distinguishing Threads and Processes 82

5.3.2 Initial States and Unsafe States 83

5.3.3 Locks and Reentrant Locks 84

5.3.4 Conditions 87

5.3.5 Semaphores 88

5.3.6 Restrictions 89

5.4 Examples . 89

5.4.1 Producer-Consumer 89

5.4.2 Dining Philosophers 91

5.4.3 Other Examples 97

Now that we have introduced CFL and shown how it allows us to test Cu-
bicle models and explore state space more efficiently for BRAB, we can focus
on its other big advantage: CFL makes extending Cubicle easier. Extending
Cubicle (without CFL) is never straightforward. Adding new features can only
be done if these features can be handled by the underlying SMT solver and
if we know how to calculate their pre-images. Both of these tasks are, sadly,
nontrivial. CFL, on the other hand, has no such limitations as it simply exe-
cutes forward. This is not to say that adding things to CFL is completely trivial-
we still need to account for Cubicle’s underlying semantics. But it is more
straightforward than the classic Cubicle approach. It is with this in mind that
we decided to add a significant new language feature into Cubicle- threads.

77

One of the most widely used techniques for concurrent programming is
based on execution threads (or simply threads) [67, 68]. Within a program, a
thread is the smallest sequence of instructions that can be scheduled and
run concurrently with other threads. Program threads share memory and
resources, which enables fast communication between them, improving ap-
plication performance.

Multithreaded programming is difficult and error-prone. There are two
main reasons for this: shared data between threads and nondeterminism in-
troduced by the scheduler. This subtle combination can lead to issues such
as:

• Race conditions: multiple threads access a share resource simultane-
ously

• Synchronization problems: the order the threads execute in needs to
be controlled for consistent results

• Deadlocks: a group of threads is blocked because each one is waiting
for another to release a resource it needs

To avoid these problems, developers implement specific design patterns for
concurrent programs (rendezvous, barriers, read-write locks, etc.) which re-
quire mastering appropriate synchronization primitives like mutexes, condi-
tions, and semaphores [67].

Unfortunately, nomatter how careful people are when writing concurrent
programs, there are always bugs. Many bugs are often due to subtle interleav-
ings between threads. This means that testing concurrent programs means
executing these very precise interleavings, which implies having control over
the scheduler. It is generally not possible to control the scheduler, so people
often settle for re-executing the same code with the same input data, hoping
that something different will happen, or they introduce primitives like sleep
or yield into their code. But evenwith all of that, testing concurrent programs
remains difficult.

We think that a way to check these types of programs is to abstract away
many implementation details (present in programming languages) and focus
solely on the essential aspects of a concurrent algorithm, namely the logic
and the complex interleavings. In other words, what we want to be able to do
is write a concurrent program in Cubicle, test it using CFL until no weird be-
haviors remain, and then proceed to actually coding it. This should eliminate
any bugs that are introduced during the conception phase of the algorithm.

78

5.1 Primitives
As mentioned, concurrent programs often have the same reoccurring syn-
chronizationmechanisms: simple locks (mutex), conditions, and semaphores.
Locks are a basic synchronization primitive where only one thread can have
access to a resource at a time. The operations associated to locks are acquire
and release. In our case, we consider blocking locks: if a thread tries to ac-
quire a lock held by someone else, it is blocked and suspended until the lock
is released. The lock follows two rules:
Acquire Rule: For a thread t attempting to acquire a lock:

• If the lock is free, t acquires the lock and proceeds.
• Otherwise, t is blocked (i.e. suspended until it can gain access to the
lock)

Release Rule: For a thread t releasing a lock:
• If there are suspended threads waiting, pick one to give the lock to
• Otherwise, the lock is free

Conditions are mechanisms that allow threads to wait for a specific condition
to be true before continuing. A condition consists of a lock and an associated
wait-queue. When a thread acquires the lock, it checks if the necessary condi-
tion to continue is satisfied. If it is not, the thread releases the lock and joins
the wait-queue (going dormant). When a thread is eventually in a state that
meets the condition’s requirements, it can signal one of (or all of) the other
threads to wake them (it) up. Conditions follow the following rules:
Acquire and Wait Rule: For a thread t attempting to acquire a condition:

• Acquire a condition lock
• If the condition is true, proceed to the next rule
• Otherwise, release the lock and join the wait-queue (t is blocked)

Signal Rule: For a thread t that has acquired a condition which is true
• Notify one or all waiting threads and proceed

Semaphoresmaintain a counter to symbolize howmany accesses to a resource
are possible. This allows multiple threads to gain access to the same re-
source. The semaphore’s counter is a non-negative number symbolizing how
many possible accesses/resources there are. Each time a thread acquires the
semaphore, the counter is checked- if it is greater than zero than the thread
gains access to the resource, else, if it is equal to zero, the thread is sus-
pended. When a thread releases a semaphore, the counter is incremented,
and a random suspended thread (if there is any) is woken up. Summing up,
semaphores following the following rules:
Acquire Rule: For a thread t attempting to acquire a condition:

• If the semaphore counter is greater than zero, decrement the counter
79

by one and continue
• Otherwise, thread t is blocked until the counter becomes positive

Release Rule: For a thread t releasing a semaphore
• Increment the counter by one
• Wake up one of the suspended threads (if there are any)
We will now explain that, while it is possible to encode most of these con-

structs in Cubicle’s current language, it is necessary to introduce built-in prim-
itives.

5.2 Cubicle vs. Primitives
Most of the features mentioned in Section 5.1 can be encoded in Cubicle’s
current language. For instance, encoding a semaphore would mean having
an integer variable S and an array WaitS that maps processes to a boolean,
indicating whether or not that process is waiting for S. But it would also mean
adding a user-defined type status and an array Status to indicate whether a
process is alive or suspended. Overall, encoding a semaphore, and its corre-
sponding rules, as described in Section 5.1, would look like Fig. 5.1.

Each semaphore would require four transitions:
• One transition to acquire a semaphore when there are still free re-
sources.

• One transition to try to acquire a semaphore when there are no avail-
able resources. This transition has to suspend the process and register
that that process is now waiting for the semaphore.

• One transition to release a semaphore that no one is waiting on.
• One transition to release a semaphore that someone is waiting on. This
transition picks a random waiting process.

Ignoring the obvious problem of modeling complexity, i.e. that this encoding
unnecessarily clutters up a model adding unnecessary interleavings to check,
this method of treating the desired concurrency primitives has two main is-
sues.

The first is that Cubicle has no notion of “specific process executing a spe-
cific task” - a transitionmodifying an array indexedby a process does notmean
that that specific process called the transition, it just means that something
happened in the system that applied that transition to that process. This is di-
rectly contradicting to what wewant with the concurrency primitives, because
we need to know precisely who acquired and released what.

80

semaphore.cub

type status = Awake | Suspend

var S : int
array WaitS[proc] : bool
array Status[proc] : status

init(i) { WaitS[i] = False && Status[i] = Awake
&& S = (* available resources *)}

transition acquire (i)
requires { Status[i] = Awake && S > 0 }
{ S := S - 1 }

transition suspend (i)
requires { Status[i] = Awake && S = 0 }
{ Status[i] = Suspended;

WaitS[i] := True }

transition release (i)
requires { Status[i] = Awake &&

forall_other j. WaitS[j] = False }
{ S := S + 1}

transition awaken (i j)
requires { Status[i] = Awake && WaitS[j] = True }
{ Status[j] := Awake;

WaitS[j] := False }

Figure 5.1: Encoding a Semaphore in Cubicle

The second problem is the lack of actual waiting queues in Cubicle. Ear-
lier we simulated a process waiting for a semaphore by adding a WaitS array.
However, waiting means being blocked, except Cubicle has no notion of block-
ing processes. In the same vein as not knowing which process does what,
processes are either active in the system, or they do not exist. There is no
intermediate status of temporarily incapable of doing anything, also because
"doing something" means nothing for processes in Cubicle. The two issues
come hand in hand- in order to block processes we need to be able to distin-

81

guish them and their actions. And by definition, Cubicle processes are indis-
tinguishable, replicated components.

We therefore introduce threads to Cubicle to solve this problem without
breaking the existing processmechanism. Threads in Cubicle bring with them
the notion of who does what, and along with that a corresponding active and
suspended status. This allows us to add the built-in concurrency primitives
discussed in Section 5.1.

5.3 Language Extensions & Semantics
The built-in primitives that we include are (blocking) locks, reentrant locks,
conditions, and semaphores. Along with these, we introduce threads into Cu-
bicle. Threads come with an internal state that indicates their status (whether
they are alive or suspended) and their subtype. Subtypes are an easy way
to tell threads that they can only do certain actions. For example, in a typ-
ical Producer-Consumer example, some threads execute the producer pro-
cedures, and some execute the consumer procedures. If all threads do one
of the two, that leads to a system deadlock, since there are either no values
being produced or no values being consumed.
5.3.1 Distinguishing Threads and Processes
We stated earlier that processes in Cubicle are indistinguishable, and that Cu-
bicle has no notion of "process i executed action A". Even in CFL, Cubicle’s
core semantics apply, meaning that when CFL applies a transition to a pro-
cess, that does not entail that the action was completed by the process. This
concept does not really work with threads, as there needs to be a specific
way to distinguish threads and the actions they take. To solve this problem
we modify Cubicle’s semantics for threads and introduce an actor for each
transition. Syntactically, our transitions now look like Figure 5.2 below.

transition transition_name ([i])
requires { guard }
{ actions }

transition transition_name ([i] j ...)
requires { guard }
{ actions }

Figure 5.2: Cubicle Transition Actor Syntax
82

The thread that executes the transition ismarked in square brackets. Each
transition can only have one actor, but the transition itself can affect multiple
processes, as seen in the second transition declaration.

Another element needed to distinguish threads is thread types. Imagine a
simple Producer-Consumer algorithm. Some threads will produce, and some
threads will consume. Except in CFL, since all threads are indistinguishable,
they could all decide to become producers (similarly, consumers). We intro-
duce process subtypes into Cubicle, as seen in Figure 5.3 Currently a process

type subtype1 < proc
type subtype2 < proc

array X[proc] : bool

init (i) { X[i] = False }

transition t1 (i : subtype1)
{ X[i] := True }

transition t2([i : subtype2] j)
{ X[i] := True }

Figure 5.3: Cubicle Proc Subtype Syntax
can only be declared as a subtype of the global type proc: subtypes cannot
be subtypes of other subtypes. When CFL initializes a system with declared
subtypes, it forces the system to have a minimum of processes that corre-
sponds to the number of declared subtypes. This is to make sure that there
is at least one process of each subtype. For example, if CFL was manually ini-
tialized with three processes on the example in Figure 5.3, the first process
would have subtype subtype1, the second process would be subtype2 and
the third process would have a subtype chosen at random. It is important to
note that when subtypes are declared, CFL by default will start assigning them
to processes. All subtyped processes are still type proc, so if a transition does
not force a subtype in its parameters, then that transition can be applied to
any process.
5.3.2 Initial States and Unsafe States
Thread primitives do not have any impact on the initial state or the unsafe
state. By default, all locking mechanisms (locks, reentrant locks, semaphores,

83

conditions) start offunlockedwith noowner. Currently, this cannot be changed
in the initial state. The only thing that can be declared in the initial state is the
amount of resources associated with a semaphore. Unsafe states also re-
main untouched by our primitives. We plan on letting unsafe states describe
the states of locking mechanisms in the future.
5.3.3 Locks and Reentrant Locks
The first primitives we introduce into Cubicle are (blocking) locks and reen-
trant locks, which are declared with the types lock and rlock, respectively.
We allow variables and arrays to have lock types. An example is given in Fig-
ure 5.4.

var A : lock
var B : rlock
array C[proc] : lock
array D[proc] : rlock

Figure 5.4: Cubicle Lock Declarations
Here we have two locks, A and C, and two reentrant locks B and D. These

now built-in types come with two actions: acquire and release. We give an
example in Figure 5.5.

transition t1 ([i])
{ acquire(A, i) }

transition t3 ([i] j)
{ acquire(B[j], i) }

transition t4 ([i])
{ release(A,i) }

transition t5 ([i] j)
{ release(B[j],i) }

Figure 5.5: Cubicle Acquiring and Releasing Locks
84

Internally, the only difference between a lock and a rlock is that rlock
keeps a counter to howmany times it has been locked by a thread. CFL keeps
a waiting queue of suspended processes per lock (rlock). The only restriction
is that a process cannot try to release a lock that does not belong to it. Doing
so will provoke an error.

We show how Cubicle (CFL) treats locks with a simpler example than the
ones used to show the syntax. This example is given in Figure 5.6

var X : lock
var Y : rlock

(*init omitted *)

transition t1([i])
{ acquire(X,i) }

transition t2([i])
{ acquire(Y,i) }

transition t3([i])
{ release(X,i) }

transition t4([i])
{ release(Y,i) }

Figure 5.6: Cubicle Acquiring and Releasing Locks
If we have three threads #1 , #2, and #3, then CFLwill initialize the following

environment:
#1 : active
#2 : active
#3 : active
X : unlocked
Y : unlocked
X queue: {}
Y queue: {}

We can now have the following sequence of actions:
(Step 1) #1 takes transition t1

85

#1 : active
#2 : active
#3 : active
X : locked by #1
Y : unlocked
X queue: {}
Y queue: {}

(Step 2) #2 takes transition t2

#1 : active
#2 : active
#3 : active
X : locked by #1
Y : locked 1 time(s) by #2
X queue: {}
Y queue: {}

(Step 3) #2 takes transition t2 again
#1 : active
#2 : active
#3 : active
X : locked by #1
Y : locked 2 time(s) by #2
X queue: {}
Y queue: {}

(Step 4) #3 takes transition t1

#1 : active
#2 : active
#3 : suspended
X : locked by #1
Y : locked 2 time(s) by #2
X queue: {}
Y queue: { #3 }

(Step 5) #1 takes transition t3. This automatically passes the lock to the sus-
pended, waiting #3
#1 : active
#2 : active

86

#3 : active
X : locked by #3
Y : locked 2 time(s) by #2
X queue: {}
Y queue: {}

(Step 6) #2 takes transition t4 twice. This fully liberates Y, whichwas locked twice
by #2
#1 : active
#2 : active
#3 : active
X : locked by #3
Y : unlocked
X queue: {}
Y queue: { }

5.3.4 Conditions
Declaring a condition is the same as declaring a lock, except the type is called
condition

var C : condition

Conditions are like locks that threads can release and acquire. This process
has the same syntax as before:

acquire(C,i)
release(C,i)

However, conditions also contain a wait operation as well as notify and
notify_all .
Wait When a thread acquires a condition, it can either continue its execu-
tion if the condition is true, or wait for the condition to become true. In Cubi-
cle, the conditions to be satisfied are included in a transition’s requirements
and not in the acquire primitive. For example, in Python, we could have a
condition c and the associated wait_for

with c:
c.wait_for(lambda : x > 0)
x -= 1

which states that if a certain variable x is greater than zero, then the thread
can continue and decrement x, else it has to wait for that condition to be true.

87

In Cubicle with conditions this translates into two transitions: one where the
condition is valid and one where it is not. The equivalent to the Python code
in Cubicle is given in Figure 5.7.

transition wait_ok([i])
requires { X > 0 }
{ X := X - 1 }

transition wait_not_ok([i])
requires { X <= 0 }
{ wait(C,i) }

Figure 5.7: Cubicle Equivalent of Python Wait
Notify and Notify_all When threads attempt to acquire conditions that
are locked by another thread or they reach a wait that they cannot pass, they
are suspended and added to the corresponding condition’s wait queue. The
operations notify and notify_all exist so that threads that hold the condi-
tion lock can wake up suspended threads. The operation notify wakes up
a random process from the waiting queue, and the operation notify_all
wakes up all processes in the queue. The syntax is as straightforward as the
other operations:

notify(C,i)
notify_all(C,i)

Note that process i has to be the owner of the condition lock C to be able to
notify others.
5.3.5 Semaphores
Semaphores are counters with an implicit wait-queue. A semaphore is ini-
tialized to an integer greater than or equal to zero and every time a thread
acquires the semaphore, the counter is decremented, whereas every time a
semaphore is released the counter is incremented. If a thread tries to acquire
a semaphore whose counter is equal to zero, then that thread is suspended.
When a semaphore is released, if there are any suspended waiting threads,
they are awakened. Figure 5.8 gives an example of semaphores in Cubicle.
The acquire and release syntax is the same as the for locks and conditions.
In fact both semaphores and conditions are built on top of the basic lock struc-
ture.

88

var S : semaphore

init() { S = 1 }

transition t1 ([i])
{ acquire(S,i) }

transition t1 ([i])
{ release(S,i) }

Figure 5.8: Cubicle Semaphores
5.3.6 Restrictions
The biggest restriction in implementing threads in Cubicle comes from us
wanting to respect Cubicle’s semantics. In Chapter 2, we mentioned that the
actions in Cubicle’s transitions are atomic and there are no sequences. This
does not translate well to locking mechanisms, since if we write

release(L,i)
acquire(L,j)

we want i to release lock L before j tries to acquire it. However in Cubicle,
there is no order to actions, so we have no guarantees here. This is why we
impose that there only be one thread-based primitive per transition. While
this does complicatemodels a bit, it respects Cubicle’s semantics. In that vein,
transitions that contain thread-based primitives must contain an actor pro-
cess. Otherwise Cubicle (CFL) rejects the transition.

5.4 Examples
In order to test our extension and CFL, we model several examples of concur-
rent algorithms.
5.4.1 Producer-Consumer
We take the example of a Producer-Consumer from the book Principles of Con-
currency Programming by M. Ben-Ari [69]. This example is what originally led
us to adding subtyping to processes for CFL, because the algorithm kept dead-
locking when it should not. The algorithm can be found in Fig. 4.8 on page 59
in the book. We give it in Algorithm 10.

89

Algorithm 10: Producer-Consumer Algorithm
Var: n: semaphore;
Var: s: binary semaphore;

1 Procedure producer
2 repeat
3 produce;
4 wait(s);
5 append;
6 signal(s);
7 signal(n);
8 until forever;
9 Procedure consumer
10 repeat
11 wait(n);
12 wait(s);
13 take;
14 signal(s);
15 consume;
16 until forever;
17 Begin (main program);
18 n := 0;
19 s := 1;
20 cobegin;
21 producer, consumer;
22 coend;

This Producer-Consumer example is linked to a buffer (operations append,
take lines 5, 13). The wait operations stand for acquiring the semaphore and
signal for releasing it. In this algorithm there are two semaphores, n and s.
The semaphore n stands for the data produced and available for consump-
tion by the consumer. The semaphore s guarantees mutual exclusion - the
producer and consumer will not be accessing the buffer at the same time.
When the producer produces something (line 3), it acquires the mutual exclu-
sion semaphore s. It adds what it produced to the buffer (line 5) and releases
s. Then it releases n, signaling that it is possible to consume something. The
consumer waits for n to be greater than zero. If so, it acquires n (line 11), and
then acquires s (line 12), i.e. access to the buffer. It takes the data from the
buffer (line 13) and releases s. This process repeats indefinitely.

For simplicity, we omit the buffer element as well as the produce and con-
sume actions (lines 3 and 15) in our Cubicle model described further, focusing

90

only on the sequence of waits and signals. We give the Cubicle model in Fig-
ure 5.9.

Our Cubiclemodel contains eight transitions, one for each wait and signal
appearing in Algorithm 10. The transitions wait_produce, wait_put_loop, and
enter_put correspond to lines 4, 6, and 7 in Algorithm 10, respectively. The
transitions wait_consume, wait_get_loop, and enter_get correspond to lines
11, 12, and 14 in Algorithm 10, respectively. The transitions run_produce and
run_consume start each thread off depending on its subtype (producer or
consumer). Without these two transitions (and the subtype) the algorithm
deadlocks incorrectly for trivial reasons. The array PC is a program counter
keeping track of threads’ actions.

If we run CFL with two threads on our example, it runs smoothly with-
out any issues. The book states that if you inverse the two waits on lines 11
and 12 n Algorithm 10, the whole system deadlocks. We want to test CFL to
see if it detects the deadlock when we switch the two around. We modify the
wait_consume and wait_get_loop transitions in Fig. 5.9 by switching the val-
ues in the acquire construct. We now run CFL again for two threads. This
time it signals that it has reached a deadlock. If we look at CFL’s log file, we
see the generated deadlock trace:

Init → run_consume(#1) → wait_consume(#1) →
run_produce(#2)→ wait_produce(#2) → wait_get_loop(#1)

This trace is short enough tomanually understandwhat happened. Thread
#1, the consumer, grabbed s before the producer (#1), so when the producer
started its run, it was blocked. Then, #2 grabbed n, a semaphore that was set
to 0, meaning it blocked itself and consequently the whole system. But some-
times, as we will see with our next example, error traces are not that easy to
interpret.
5.4.2 Dining Philosophers
The Dining Philosophers [70] is a classic synchronization problem in concur-
rent programming. Five philosophers are sitting around a table with an eating
utensil between each pair of philosophers. In order to eat, a philosopher has
to be in possession of the utensil to his right and to his left. The problem is
managing access to utensils without blocking every philosopher. In the spirit
of Cubicle’s parameterized nature, we slightly modify the example, and in-
stead of five philosophers and five utensils, we have N philosophers and N
utensils. We also forgo the distinction between left and right and consider
that utensils are all in one pile. We encode this with one semaphore originally
set toN-1, a counter Utensil set toN, and a condition that allows philosophers
to move if Utensil is greater than zero (otherwise they have to wait).

91

type get < proc
type put < proc

type t = None
| Produce_Wait | Append_1 | Append_2
| Consume_Wait | Consume_Wait_S | Take

var S : semaphore (* binary semaphore *)
var N : semaphore
array PC[proc] : t

init(i) {PC[i] = None && S = 1 && N = 0}

(* ---- Run ----*)

transition run_produce(i:put)
requires { PC[i] = None }
{ PC[i] := Produce_Wait }

transition run_consume(i:get)
requires { PC[i] = None }
{ PC[i] := Consume_Wait }

(* ---- Put ----*)

transition wait_produce([i])
requires { PC[i] = Produce_Wait }
{ PC[i] := Append_1; acquire(S,i) }

transition wait_put_loop([i])
requires { PC[i] = Append_1}
{ PC[i] := Append_2; release(S,i); }

transition enter_put([i])
requires { PC[i] = Append_2 }
{ PC[i] := None; release(N,i); }

(* ---- Get ----*)

transition wait_consume([i])
requires { PC[i] = Consume_Wait }
{ PC[i] := Consume_Wait_S ;

acquire(N,i); }

transition wait_get_loop([i])
requires { PC[i] = Consume_Wait_S }
{ PC[i] := Take;

acquire(S,i);}

transition enter_get([i])
requires { PC[i] = Take }
{ PC[i] := None;

release(S,i) }

Figure 5.9: Producer-Consumer in Cubicle

92

The interesting aspect of modeling the Dining Philosophers is that we can
model two different versions, one with semaphores and one without. The
difference is that the version without semaphores should deadlock. It is a
good way to check that CFL is capable of finding thread-based deadlocks.
No Semaphores We give the Python code for our version of the Dining
Philosophers in Figure 5.10. This version has no semaphores. It has one con-
dition, and 5 philosophers. Each philosopher tries to acquire an eating utensil
(the Get comments on lines 11, 19) and then when the philosopher has ac-
quired two eating utensils, he can release them and notify everyone else of
that fact. The Python code omits several technical details to make the code
easier to read.

We give the Cubicle equivalent in Figure 5.11
The only new feature in the Cubicle code that we have not seen yet is

SYS_PROCS. This is a new built-in constant in CFL that automatically sets the
number of processes for the system as the number which was passed to the
command line. This avoids having to hard-code values in Cubicle models.
Looking at the Cubicle code, or the Python code for that matter, it is not ob-
vious that this can lead to a deadlock. If we run CFL on it, it quickly spits out
a deadlocking trace (in 0.067 seconds). CFL will note all of the deadlocking
paths that it encountered in a separately generated file. There is a possibil-
ity of paths repeating, since CFL might cover the same areas multiple times.
Currently we do not filter our repeat paths and CFL simply writes everything
to the file. One of the paths generated by CFL in our example is the following:

Init → start(#5)→ get1_lock(#5) → get1_continue(#5) →
get1_release(#5)→ start(#4) → get1_lock(#4) → start(#2) →

get1_lock(#2) → start(#1)→ get1_lock(#1)→ start(#3) →
get1_lock(#3)→ get1_continue(#4) → get2_lock(#5) →

get1_release(#4) → get1_continue(#2) → get2_lock(#4)→
get1_release(#2) → get1_continue(#1) → get2_lock(#2) →
get1_release(#1) → get2_lock(#1) → get1_continue(#3) →

get1_release(#3)→ get2_wait(#2) → get2_lock(#3) →
get2_wait(#4) → get2_wait(#5) → get2_wait(#4) → get2_wait(#1)

Unlike the trace in Section 5.4.1, this path is hard to interpret. There are 31
steps in total and 5 implicated processes, so trying to re-execute this manu-
ally would most likely lead to errors. We discuss in Chapter 6 our solution to
interpreting CFL’s long error traces.
For the sake of comparison, we can now try the versionwith semaphores. This
version is given in Figure 5.12. The only difference with the previous version is
the addition of

var S : semaphore

93

1 n = 52 x = n3 c = threading.Condition ()45 def run(i):6 for k in range (3):7 #s.acquire ()89 # Get1_lock10 with c:11 # Get1:12 c.wait_for(lambda : x > 0)13 x -= 114 # ReleaseGet115 print(i,’:get1’)1617 # Get2_lock18 with c:19 # Get220 c.wait_for(lambda : x > 0)21 x -= 122 # Release_Get223 print(i,’:get2’)24 with c:25 x += 226 c.notify_all ()27 print(i,’:release ’)2829 P = [threading.Thread(target=run , args=(i,)) for
i in range(n)]30 for i in range(n):31 P[i]. start()3233 for i in range(n):34 P[i].join()35

Figure 5.10: Dining Philosophers in Python (no semaphore)

which is set in the initial state to SYS_PROCS - 1, i.e. N -1 as mentioned earlier.
We add the extra step of acquiring the semaphore in the start transition. The
semaphore is released in the newly added transition release_sem. Remem-
ber that we cannot add our release for the semaphore S to transition done,
because transition done already contains a release for condition C. Now, no
matter how long we run CFL for, it does not show any deadlocking traces.

94

type s = Idle | Done
| Get1 | Get1_lock | ReleaseGet1
| Get2 | Get2_lock | ReleaseGet2

array P[proc] : s

var X : int
var C : condition

init(i) { P[i] = Idle && X = SYS_PROCS }

transition start([i])
requires { P[i] = Idle }
{ P[i] := Get1_lock }

transition get1_lock([i])
requires {P[i] = Get1_lock }
{ acquire(C,i);

P[i] := Get1 }

transition get1_continue([i])
requires { P[i] = Get1 && X > 0 }
{ P[i] := ReleaseGet1;

X := X - 1 }

transition get1_wait([i])
requires { P[i] = Get1 && X = 0 }
{ wait(C, i) }

transition get1_release([i])
requires { P[i] = ReleaseGet1 }
{ release(C,i);

P[i] := Get2_lock }

transition get2_lock([i])
requires {P[i] = Get2_lock }
{ acquire(C,i);

P[i] := Get2 }

transition get2_continue([i])
requires { P[i] = Get2 && X > 0 }
{ P[i] := ReleaseGet2;

X := X - 1 }

transition get2_wait([i])
requires { P[i] = Get2 && X = 0 }
{ wait(C, i) }

transition get2_release([i])
requires { P[i] = ReleaseGet2 }
{ notify_all(C,i);

X := X + 2;
P[i] := Done }

transition done([i])
requires { P[i] = Done }
{ release(C,i);

P[i] := Idle }

Figure 5.11: Dining Philosophers in Cubicle (no semaphores)
95

type s = Idle | Done | ReleaseSem | Get1 | Get1_lock | ReleaseGet1
| Get2 | Get2_lock | ReleaseGet2

array P[proc] : s
var X : int
var C : condition
var S : semaphore

init(i) { P[i] = Idle && X = SYS_PROCS && S = SYS_PROCS - 1 }

transition start([i])
requires { P[i] = Idle }
{ P[i] := Get1_lock;

acquire(S,i);}

transition get1_lock([i])
requires {P[i] = Get1_lock }
{ acquire(C,i);

P[i] := Get1 }

transition get1_continue([i])
requires { P[i] = Get1 && X > 0 }
{ P[i] := ReleaseGet1;

X := X - 1 }

transition get1_wait([i])
requires { P[i] = Get1 && X = 0 }
{ wait(C, i) }

transition get1_release([i])
requires { P[i] = ReleaseGet1 }
{ release(C,i);

P[i] := Get2_lock }

transition get2_lock([i])
requires {P[i] = Get2_lock }
{ acquire(C,i); P[i] := Get2 }

transition get2_continue([i])
requires { P[i] = Get2 && X > 0 }
{ P[i] := ReleaseGet2; X := X - 1 }

transition get2_wait([i])
requires { P[i] = Get2 && X = 0 }
{ wait(C, i) }

transition get2_release([i])
requires { P[i] = ReleaseGet2 }
{ notify_all(C,i);

X := X + 2; P[i] := Done }

transition done([i])
requires { P[i] = Done }
{ release(C,i); P[i] := ReleaseSem }

transition release_sem([i])
requires {P[i] = ReleaseSem }
{ release(S,i); P[i] := Idle }

Figure 5.12: Dining Philosophers in Cubicle (with semaphores)
96

5.4.3 Other Examples
We have coded other classic examples in our extended CFL-powered Cubicle.

• The Sleeping Barber [31]: the Sleeping Barber is a synchronization prob-
lem described by Dijkstra. In this problem there is a barbershop with
a barber. If there are no customers, then the barber stays asleep. If
a customer walks in and the barber is sleeping, they wake up the bar-
ber. If a customer walks in and the barber is working on someone, then
the customer tries to sit in the waiting room. If no seats are available,
the customer leaves. As soon as the barber has no more customers
left to treat, he falls back asleep. We encode the problem with three
semaphores (one of which is a binary semaphore).

• The Cigarette Smokers Problem [71]: the Cigarette Smokers problem
consists of four threads: three threads are classified as smokers and
one is the non-smoker. Each of the smokers has an infinite supply of
either matches, tobacco, or paper, and they need all three to form a
cigarette to smoke. The non-smoking agent has access to all three sup-
plies. When a smoker wants to smoke, he signals to the non-smoker
that he would like to smoke and the supplies needed. The non-smoker
than produces those ingredients, allowing the smoker to create his ciga-
rette. We encode the problem as given in [72] with four semaphores
and a lock(mutex).

• Sense-reversing Barrier: in the sense-reversing barrier, there are two
global variables- Sense and Count. The Count variable is initialized with
the number of threads, and the Sense barrier is used to indicate which
barrier threads are facing. Each timea thread reaches a barrier, it decre-
ments Count. When Count is at zero, the barrier opens, Count is reset,
and the Sense variable switches.

97

98

Chapter 6

Interactivity, Execution, and
Debugging

Contents
6.1 Interpreter Commands 99

6.2 Usage Example 102

While having the ability to model various types of systems is interesting
and undoubtedly good for Cubicle, as we saw in Chapter 5, the error traces
generated can be arbitrarily complex and hard to interpret. Being able to re-
execute the traces step-by-step is crucial in understanding what caused them.
It is also always fun to be able to play around with a system and just see what
happens It is with this in mind that we introduced the topic of this chapter- an
interpreter and a debugging layer for Cubicle.

6.1 Interpreter Commands
The interpreter in Cubicle can be used on any Cubicle model with the com-
mand

cubicle -interpreter model.cub

where model.cub is the Cubicle file. By default, the interpreter starts with
three processes (or threads). It is possible to change this by using the com-
mand line option

-interpret-proc n,
where n is greater than zero. The interpreter does not currently preprocess
models to force a minimum number of processes.

99

The interpreter is launched in the terminal and resembles Figure 6.1.

Figure 6.1: Interpreter Welcome Screen
The interpreter’s welcome screen lists a few basic commands, as well as

usage instructions. The interpreter has a global environment that corresponds
to a state in the system. A user can interact with the system in several ways:

> transition <name> (parameters)
lets a user execute a transition. The transitions requirements have to
be valid in the current environment

> transition <name> (parameters); <name> (parameters); ...
lets a user execute a sequence of transitions. When executing a se-
quence of transitions, if one of the transitions fails to execute, all of the
transitions are rolled back, and there is no effect on the environment

> all
lists all possible transitions in current environment

> random
picks a random, valid transition and apply it

> execute
starting from the current environment, runs a randomexecution, choos-
ing transitions at random. The execution will stop when it encounters
a deadlock or an unsafe state

100

> execute_<strat>
starting from the current environment, executes the system using one
of the following CF exploration techniques:

– proc: process sequences
– weight: weighted decision
– max: maximizing randomness
– bfs: limited BFS

CFL’s last technique (Unused Exit), is not implemented, since it has no
meaning in the context of the interpreter.

> status
shows the current environment
reset
resets the interpreter’s environment to the initial state

• unsafe
checks whether the current environment is unsafe

When the interpreter executes a model, it annotates each visited state as a
Step. The initial state is Step 0. It also makes note of how many transitions
were possible before a Step, and how many are possible after. This informa-
tion is used in the debugging layer of the interpreter. This layer consists of
the following commands:

> trace
shows the execution trace

> why <transition_name (parameters)>
explains why a certain transition is not possible in the current state

> flag <int>
tells the interpreter to remember states every <int> steps By default
flag is set to one, so every state is remembered

> replay
replays the entire trace of memorized steps, highlighting the changes
in the environment between each step

> rerun <int_start> <int_stop>
rerun (i.e. potentially recalculate) the trace between steps <int_start>
and <int_stop>. The step <int_start> needs to be a memorized state.
This step is useful if you want to replay details of steps whose states
were not originally memorized

101

> backtrack <int>
sets the interpreter environment to the state corresponding to step
<int>

6.2 Usage Example
We will be use the deadlocking version of our producer-consumer algorithm
from Chapter 5 to illustrate the features we described in the previous section.

We start the interpreter with two processes:
cubicle -interpreter -interpret-proc 2 ben-ari.cub

We then immediately type status to see what the environment looks like,
shown in Figure 6.2.

Figure 6.2: Interpreter Producer-Consumer Initial Status Screen
The status screen first lists the processes (or threads) in the system, aswell

as their subtype, and their status. The subtype and status are direct conse-
quences of the thread implementation from Chapter 5. If the model contains
no subtype declarations, then the type will always be proc. Then the screen
shows us S and N, which were the two semaphores, as well as an array PC
to indicate where in the model each thread is. Next it shows three queues:
Lock, Condition, and Semaphore. Even if the model contains none of these,
the status screen will still show them, they will just have nothing in them.

Now that we have started the interpreter and visualized the initial state,
we can start playing with the system.

Figure 6.3 shows the effect of various commands:
102

• all listed the initially possible transitions run_consume(#2), run_produce(#1)
• We try to execute a sequence of transitions run_consume(#2) and run_consume(#1).
The interpreter rejects this sequence because #1 is not a consumer.

• We ask the interpreter to explain why run_produce(#1) is impossible.
It replies the transition is not blocked and is possible.

• Weaskwhy wait_consume(#2) is blocked, towhich the interpreter replies
that this is due to PC[#2] having the wrong value.

Figure 6.3: Interpreter Helper Functions
We then let the interpreter run on our buggy model and get the result

shown in Figure 6.4

Figure 6.4: Interpreter Results for Buggy Producer-Consumer
The interpreter warns us about the deadlock and lists:
• Total entries: how many unique states were visited
• Total visited: how many states were visited in total, including repeats
• State seen most often: states in the interpreter, and in CFL in general,
are hashed for easier comparison. This field shows the hash of the state
and how many times it was seen.

103

In the case of our buggy example, the interpreter visited only six states, and
they were all unique. If multiple states have the same visit count, and this visit
count is greater than every other visit count, the interpreter chooses one at
random. We ask the interpreter for the trace, which in our case corresponds
to Figure 6.5.

Figure 6.5: Interpreter Trace

As we can see in Figure 6.5, every step is highlighted in green. This is be-
cause we never set flag, so it kept the default value of one. Had we changed
flag, and set it to two for example, we would have gotten a result like Fig-
ure 6.6

Figure 6.6: Alternative Trace

We can now replay the trace. It is easy in our case because the interpreter
kept track of every step. The interpreter will print each transition taken and
the resulting environment, highlighting what changed between each step, like
in Figure 6.7.

104

Figure 6.7: Interpreter Replay

We introduce a (reachable) unsafe state to our model:
unsafe (i) { PC[i] = Consume_Wait_S }

We reset the interpreter and ask it to execute again. This time it reaches an
unsafe state before reaching the deadlock, as shown in Figure 6.8

Figure 6.8: Reaching an Unsafe State

When the interpreter reaches an unsafe state during execution, it asks
the user whether they want to continue executing or stop. Unsafe states are

105

not checked automatically when transitions are executed manually, as in Fig-
ure 6.9. We specifically need to ask the interpreter if the current environment
is unsafe. This could be changed in future versions of the interpreter.

Figure 6.9: Alternative Trace

106

Chapter 7

Test Case: Tenderbake

Contents
7.1 Blockchains & Consensus 107

7.2 Tenderbake . 113

7.3 Modeling & Testing a Simple Tenderbake . . 114

The work in this chapter is based on our work published in [73], where we
formalize Tenderbake using TLA+.

Tenderbake [21] is a consensus algorithm designed by Nomadic Labs for
the Tezos blockchain [74]. Tenderbake is inspired by Tendermint [75], which
in turn is an adaptation of PBFT [76] (described later in section 7.1). We first
give brief overviews of blockchains and consensus algorithms, necessary to
understand Tenderbake. We do not delve into all aspects of consensus and
blockchains, but focus only on those necessary to understand Tenderbake.
We then introduce the Tenderbake algorithm itself.We show how our new
extensions allow us to model and test Tenderbake incrementally and how this
is crucial for Cubicle.

7.1 Blockchains & Consensus
A blockchain is, simply put, a book of records. In this analogy, each page in
the book contains a list of transactions, financial or otherwise, and the pages
are numbered, so you know if a page has been ripped out or added. Page
numbers cannot be modified, and neither can the contents of a page. In the
context of blockchains, this is called a ledger. At the same time, there isn’t
one single instance of this ledger. The ledger is distributed among the people
appearing in it - anyone who interacts with it has their own personal copy.
This means that when something is added to one ledger, it has to be added to

107

every single copy. Because of these two aspects, blockchains are sometimes
referred to by their more direct name – Distributed Ledger Technology.
Ledger In lieu of pages, a blockchain has blocks. Every block contains a
pointer to its predecessor, resulting in the chain aspect. And similarly to how
it is not possible to rip a page out of a paper ledger (or add a page) due to
page numbers being a dead giveaway that something has been changed, the
link between blocks and their predecessors ensures that a block cannot be
added or removed without significant computational power (i.e. the whole
blockchain needing to be rebuilt). This results in one of the biggest features of
blockchains in general - any existing information stored within is immutable.
It also results in traceability - anything stored in a blockchain can be traced
back in time to when it was added.

Typically a page in a book of records would contain the page number
and the date the page was added, along with a list of its transactions. A
block in a blockchain contains the same information, but organized differ-
ently.

HEADER
Previous block hashTimestamp. . .
TRANSACTIONS

List of transactions

Figure 7.1: General Structure

Internally, a block has a header and a
body of contents. The body of contents
is a list of the transactions that are stored
within the block. Headers, however, may
vary from blockchain to blockchain, e.g.
Ethereum [77] block headers differ from Bit-
coin’s [78], although the general contents
can be boiled down to what is shown in Fig-
ure 7.1.

Block headers contain thehashof their parent block, serving as the pointer
mentioned earlier. Storing the hash of the block is whatmakes it impossible to
alter previous blocks: any change would modify the hash, breaking the link.
The header also stores a timestamp to indicate when a block was created,
similarly to how a page in a record book would have a date.
Distributed As opposed to a centralized system, where there is only one
central controlling party, the blockchain is a distributed system, meaning that
the blockchain is replicated and each party has their own copy, and there is
no controlling entity. This makes blockchains a Peer-to-Peer (P2P) network,
as seen in Fig. 7.2. Here, each peer in the network has their own local copy of
the blockchain.

In a centralized system, such as a bank, any operations are verified/exe-
cuted by the bank itself. In the distributed version, where the peers each have
a local copy of the bank and the information stored within, any operations
have to be verified by the members of the network, and they have to agree

108

C

D E

A

B

Figure 7.2: P2P Network

on the validity of said operations. Applied to the blockchain, all of this pro-
vides fault-tolerance. Since the blockchain is replicated, a peer failing doesn’t
lead to the loss of any information. At the same time, the P2P network makes
the blockchain more resistant to network issues, such as server downtime.

Assuming that there is a bookkeeper, adding a page to a book of records
when there is one centralized book, is easy. Even if multiple people have their
own local copies, in a centralized system it would still be straightforward - the
main book is modified, and everyone else updates their local copy based off
of that. Multiple people having their own versions of the book with no con-
trolling party is much harder - nowwhen something is added to one book, the
information needs to be passed on and added to every other book. Assuming
that there are no problems passing on information, the only remaining issue
is: what happens if person A doesn’t agree with person B on which page to
add?
The blockchain is replicated and distributed among multiple peers. The issue
lies in that, while everyone maintains their own version, the versions need
to match. The blockchain would be useless if everyone paraded around with
their own vision of the world. Matching versions is harder when you include
the P2P network. This is because not everyone on the network sees the same
transactions, so when person A proposes a block with transaction X , it’s en-
tirely plausible that person B didn’t even know transaction X existed. This
means that the blockchain needs to have a mechanism that allows peers to
agree on what they’re adding to the chain. This is called consensus.

Blockchains need a consensus mechanism to allow peers to decide which
blocks to add. If peers cannot agree, the network runs the risk of havingmulti-
ple versions of the blockchain. This can lead to several problems, for example

109

double-spending, where a peer spends the same money twice, because differ-
ent versions of the blockchain indicate that themoney has not yet been spent.

Consensus existed before blockchains and is a key part of distributed sys-
tems, allowing processes to reachmutual decisions, for example when choos-
ing a value. In general, consensus is reached when the following conditions
are satisfied:

• Agreement All correct processes agree on the same value
• Validity The agreed upon value was proposed by a correct process
• Termination Each correct process eventually decides on a value

The first two conditions are safety properties, while the third is a liveness prop-
erty.
Ideal systemsvs. Blockchains In theory, consensus seems simple enough
- every process needs to vote, and the majority wins. Issues with consensus
start to arise when the system is no longer ideal, for various reasons:

• Network Issues: A network can have any number of issues. All of
these lead to problems that will impact a blockchain consensus deci-
sion, namely message loss and message delay.

• Process Failures - stopping failures: A process can stop responding
at any moment. There are no guarantees that the process will restart
later on.

• Process Failures - Byzantine: Processes can exhibit arbitrary behav-
iors [79]

Blockchain-related articles often shove all process failures under the term
"Byzantine", and then distinguish between it being a stopping failure or a pro-
cess not following the protocol.
Asynchronous Networks vs. Synchronous Networks There are two
main systemmodels: synchronous and asynchronous. The following assump-
tions can be made in a synchronous system:

• Messages are bound: the maximum time a message can take to arrive
is known, and this bound is global across the entire system

• Process speed is bound: the time it takes a process to do something
has a lower and an upper bound

110

Synchronous systems, where processes move in synchronized rounds,
aren’t our main focus, since the blockchain exists on an asynchronous net-
work.

The above assumptions do not apply to asynchronous networks. These
networks have no bounds on anything: processes can take however long they
want to complete a task, and messages can take a very long time to arrive.
Consensus in its general form, as mentioned earlier, is impossible to solve in
an asynchronous network [80]. The possibility of a process crashing means
that the system always starts out undecided, and the arbitrarymessage delay,
that cannot be distinguished from a process crash in an asynchronous net-
work, means that the system can remain undecided indefinitely. This equals
to the Termination property never being satisfied.

The widespread usage of asynchronous systems requires adapting to the
impossibility result in [80], with solutions being safe and probabilistic (since
Termination cannot be guaranteed).

Partially Asynchronous Systems A class that exists between the
twomainmodels is partially asynchronous systems, also referred to as timing-
based systems [79]. In this type of system, the notion of time and bounds ex-
ists, and processes have access to information concerning time, although it
might not be 100% exact.
Probabilistic vs. Immediate Finality The impossibility result in [80]
means that in a fully asynchronous system, Termination cannot be guaran-
teed. This implies that in the case of an asynchronous blockchain network,
the guarantee that a block has been added to the blockchain is only proba-
bilistic. Probabilistic finality, such as in Bitcoin, means that the chances that a
block is permanently in the blockchain growwith each new block added to the
chain. In such a blockchain, if a block b is added, then every block b+1 adds to
the probability that block b will remain in the blockchain, and the blockchain
won’t change to a version where b is no longer part of the overall chain. In
Bitcoin, this translates to having to wait for six new blocks to be added on top
of block b to be sure that nothing will be reverted. This is however a general
assumption, and technically nothing stops the blockchain from reverting even
after 6 blocks.

Immediate finality tries to guarantee that once a block has been added to
a blockchain, you’re sure the block will remain in the blockchain. Immediate
finality is usually in n blocks, meaning that if you add a block b to the chain,
after n blocks on top of it, you can be sure that no matter what, b will remain
in the blockchain.

The algorithm that we’re interested in, Tenderbake, is from this family of
immediate finality consensus algorithms, and is based off of PBFT - Practical

111

Byzantine Fault Tolerance [76].
PBFT Byzantine fault tolerance (BFT) is what allows consensus algorithms
to account for nodes that don’t follow the protocol and is derived from the
Byzantine Generals’ Problem [81]. PBFT [76] is an optimization of BFT. In PBFT,
there is one leader node to propose an action, and the rest are secondary
nodes and will vote on the proposed action. If the leader node fails, any of
the secondary nodes can be promoted to replace it. The idea is that all of the
honest, protocol-following nodes will achieve consensus together by voting
on a result. PBFT holds up as long as the number of Byzantine nodes (in the
sense of not following the protocol for whatever reason) is less than 1

3 of thetotal number of nodes. PBFT implements two voting rounds: nodes will not
cast any final votes in the second round of voting before seeing the majority
(called a quorum) decision from the first round of voting. Two voting rounds
also protects the network from issues following the leader node changing (i.e.
secondary nodes seeing different proposals). A correct execution of PBFT can
be summarized as:

• Phase Request: a client sends a request to the leader node
• Phase Pre-prepare: the leader broadcasts the request to the secondary
nodes

• Phase Prepare: when the secondary nodes receive the request, they
verify its validity. If it is valid, they broadcast Prepare messages to all
other secondary nodes. If it is not valid, they do nothing. This is the first
round of voting.

• Phase Commit: upon receiving Prepare messages from 2
3 of the sec-

ondary nodes, secondary nodes broadcast Commit messages. This is
the second round of voting.

• Phase Result: the client sees the result
A correct execution of PBFT can be seen in Fig. 7.3 below. The leader, Node 1,
receives a request from a Client. The leader then passes on this request to ev-
ery other node (pre-prepare). Upon receiving that message, the other nodes
check the message, and if it’s valid, they vote for the first time (prepare). This
vote is sent to everyone, including the leader. Note that Node 3 is faulty and
does not send anything. After the nodes receive enough prepare messages,
they send a second vote (commit) to everyone else. Again, Node 3 does not
do anything. Finally, once every node has received enough commitmessages,
it sends a reply to the client. Node 3 does not send a reply, but since more
than 2

3 of all nodes sent a reply, the client accepts the result.
112

Request Pre-prepare Prepare Commit ReplyClient

Node 1

Node 2

Node 3

Node 4
Figure 7.3: A normal execution of PBFT with one faulty node

PBFT offers immediate finality as opposed to probabilistic. As stated in
[76], PBFT provides both safety and liveness (assuming a certain number of
faulty nodes). However, in order to circumvent [80], PBFT sacrifices asyn-
chronous assumptions when if comes to liveness. Time bounds on message
delays are introduced: it is assumed that a message will eventually not take
longer than a certain time t to arrive if the sender keeps re-transmitting it until
it is received, and, if the message loss is due to network issues, the network is
eventually repaired. The authors state that this is a rather weak synchrony as-
sumption, but is likely to be true in a real-life setting. Thismakes the algorithm
partially asynchronous.

7.2 Tenderbake
When discussing Tenderbake, we refer to participants in the algorithm as bak-
ers, following Tezos’s terminology.

Being a PBFT-style algorithm, Tenderbake resembles what was described
in Section 7.1. Contrary to the described PBFT however, in Tenderbake, there
is no client sending a request to a leader node. The leader node, or the propos-
ing baker in this context, decides on the proposal (in this case a block) to
broadcast. Tenderbake, therefore, consists of the following three phases:

• Phase 1: A (unique) baker proposes a new block (Proposal) to be added
113

to the blockchain
• Phase 2: The bakers vote for the proposal and wait for a quorum of
preendorsement) votes

• Phase 3: If/when a quorum is obtained, bakers vote a 2nd time for the
proposal and wait for a quorum of (endorsement) votes.

These three phases together form a round. Tenderbake is based on the
concept of rounds and levels. Each block in the blockchain corresponds to a
level. Tenderbake has to go through a full round in order to add a block and
go up a level. The proposing baker is chosen depending on the round/level.

PBFT offers absolute finality. In Tenderbake, this feature shows up as well,
as immediate finality in two blocks. A block is considered to be final after there
have been two blocks added on top of it. So if a block is level l, the moment
there is a block level l + 2, block l is considered final.
Failures and asynchrony In theory, the algorithm runs smoothly and
rounds never fail: one baker proposes, the others vote, the blockchain goes
up a level, a new proposer is chosen, and the cycle continues. A round in Ten-
derbake only lasts a certain amount of time. Bakers use their internal clocks
along with block timestamps to calculate what round they’re in and how long
they have before a timeout. On the one hand, this circumvents the algorithm
never converging- if there is nothing to stop a round, then hypothetically, it
could go on forever, for example if messages are lost. Time forces bakers to
move on. On the other hand, time also means that the algorithm might not
run as smoothly, because any phase can now fail:

• No proposal was received (message lost, the proposing baker crashed,
...)

• No preendorsement quorum was reached (network issues)
• No endorsement quorum was reached (network issues)

If one of the three phases fails for a baker, then the whole round fails. And if
a round fails, the baker has to start a new round, because the goal is to, ulti-
mately, choose a block to add. However, one baker failing doesn’t mean that
another baker failed, leading to bakers all potentially having different versions
of the consensus. The addition of internal clocks also leads to potential clock
drift, since bakers might have slight variations of the current time.

7.3 Modeling & Testing a Simple Tenderbake
Contrary to our work in [73], we only want to focus on the actual bakers and
the algorithm they follow. We do not take into account how Tenderbake is im-

114

pacted by Tezos’s architecture, nor the notion of time. This is because our goal
is to highlight how CFL changes our modeling process and renders it more in-
cremental.

Each baker in Tenderbake runs the same automaton, given in Figure 7.4.
This automaton represents the evolution of a baker’s state and the actions
performed by the baker in the three possible consensus phases. Bakers exist
in three possible states: (i) no proposal (NP), (ii) collecting preendorsements
(CP), and (iii) collecting endorsements (CE).

NP

CP CE

Proposal

Proposal

EndorsementQuorumEndorsementQuorum

Timeout

TimeoutTimeout

PreendorsementQuorum
Figure 7.4: Baker automaton

The default state is NP - the baker has no proposals to consider/treat.
When a baker receives a proposal, they automaticallymove to stateCP, mean-
ing the second phase of the algorithm - collecting preendorsements for the
proposal. If the baker observes a preendorsement quorum, the baker moves
on to state CE. Note however that a baker can always go (back) to state CP
from any state, or remain in state CP. This is because bakers get proposals
from the network all the time. An endorsement quorum transition can be
triggered in any of the collection phases. However an endorsement quorum
doesn’t cause a baker to change states, it onlymodifies a baker’s internal state
to record which block received all necessary votes.
It is important to reiterate that this is a simplified version of Tenderbake. The real
version, formalized in [73] contains how bakers interact with the network and how
quorums are observed. For the purposes of this chapter, we omit all of those de-
tails.

The issue with Cubicle is that when you only have the proof mechanism
available, it is very hard to incrementally growmodels. A safety proof can take

115

an arbitrarily long amount of time, and restarting every time youmake a small
change is tedious and time-consuming. CFL, on the other hand, does not face
these problems. Wewant to show how using CFL allows us to grow ourmodel
incrementally, all while verifying it at each step.

We startwith an extremely bare-bones version of Tenderbake, where there
is only one system-wide proposal that everyone votes on, and when the pro-
posal is accepted, the blockchain grows. To summarize:

• We have a type to describe a baker’s internal state
• We have a type to describe a vote
• We have an array mapping a baker to their state and an array mapping
a baker to their vote

• Each baker can receive a proposal, we do not care what it is, just that
it exists. In the basic version we assume that everyone got the same
proposal

• Each baker has a local copy of their blockchain, which we only want to
know the length of (i.e. the level)

Now the only subtlety that we want to keep, even in the bare bones version
of Tenderbake, is the quorum. For this we introduce a new built-in primitive
into CFL, count. The primitive count takes the following form:

count(an_Array, a_Value)

This will return the number of times a_Value appears in the array an_Array.
We can also write

count(an_Array, _)

which will simply return how many elements there are in total in the array.
We use count to simulate quorums. In our basic version of Tenderbake, we
insist on a full quorum - i.e. everyone has voted in favor. We will use our
previously introduced built-in constant SYS_PROCS to avoid hard-coding how
many processes are in the system. We give themodel in Figure 7.5. Ourmodel
has two user-defined types, state and vote. It has four arrays:

• BakerState for each baker’s internal state
• BakerVote for each baker’s vote
• LocalLevel for the length of each baker’s blockchain copy
• ProposalExists to note which bakers have received a proposal

116

tenderbakeV0.cub

type state = NP | CP | CE

type vote = None | PreEndorse | Endorse

array BakerState[proc] : state
array BakerVote[proc] : vote
array LocalLevel[proc] : int

array ProposalExists[proc] : bool

init(i) { BakerState[i] = NP &&
BakerVote[i] = None &&
ProposalExists[i] = False &&
LocalLevel[i] = 0 }

unsafe(i j) { LocalLevel[i] > LocalLevel[j] + 2 }

transition receive_proposal(i)
requires { ProposalExists[i] = False }
{ ProposalExists[i] := True }

transition preendorse(i)
requires { BakerVote[i] = None &&

ProposalExists[i] = True }
{ BakerVote[i] := PreEndorse;

BakerState[i] := CP }

transition preendorse_quorum(i)
requires { count(BakerVote , PreEndorse) = SYS_PROCS }
{ BakerVote[i] := Endorse;

BakerState[i] := CE }

transition endorsement_quorum(i)
requires { count(BakerVote , Endorse) = SYS_PROCS }
{ LocalLevel[i] := LocalLevel[i] + 1;

BakerState[i] := NP;
BakerVote[i] := None;
ProposalExists[i] := False }

Figure 7.5: Basic Version of Tenderbake
117

Initially all bakers are in state NP, have not voted anything, have no pro-
posals, and their blockchain is at length 0. We declare an unsafe state as two
bakers that have two blockchain lengths that have a difference of at least two
blocks, since Tenderbake offers finality in two blocks.

We then have four transitions:
• receive_proposal: simulates a baker receiving a proposal from the
network

• preendorse: a baker preendorses the proposal. This can only be done
if the baker has not voted on anything yet

• preendorse_quorum: if everyone has voted on the proposal, a baker can
now endorse it

• endorsement_quorum: once everyone has endorsed a proposal, a baker
can add a new block to their chain, incrementing the length and reset-
ting their internal variables

We run CFL with three processes to keep our traces easier to read. CFL
tells us that the model has a deadlock in eight steps:
receive_proposal(#2) → receive_proposal(#3) → preendorse(#2) →

preendorse(#3) → receive_proposal(#1) → preendorse(#1) →
preendorse_quorum(#3)

Looking at the trace, we can come to the conclusion that the issue is in the
baker changing its vote in preendorse_quorum, effectively blocking everyone
else from seeing a quorum. So we need quorums to be separate from votes
in order to allow bakers to move independently. We can use Cubicle’s matrix
notation to simulate a baker communicating to everyone that they had voted.
Note that count can also be used on matrices, in the following form:

count(A[i], a_Value)

We give a new version of our model in Figure 7.6.
Our modified version replaces BakerVote with Endorse and PreEndorse.

These are two matrices that simulate a baker "sending a message" to other
bakers to indicate that they have (pre)endorsed the proposal.
In the transition preendorse, a baker sets their vote to true for everyone. So
for example if we have three bakers #1, #2, and #3, and preendorse is being
taken by #1, then the following PreEndorse indexes would be modified, being
set to True:

PreEndorse[#1, #1]
PreEndorse[#2, #1]
PreEndorse[#3, #1]

118

tenderbakeV1.cub

type state = NP | CP | CE

array BakerState[proc] : state
array LocalLevel[proc] : int
array PreEndorse[proc ,proc] : bool
array Endorse[proc ,proc] : bool
array ProposalExists[proc] : bool

init(i j) { BakerState[i] = NP &&
ProposalExists[i] = False &&
LocalLevel[i] = 0 &&
PreEndorse[i,j] = False &&
Endorse[i,j] = False }

unsafe(i j) { LocalLevel[i] > LocalLevel[j] + 2 }

transition receive_proposal(i)
requires { ProposalExists[i] = False }
{ ProposalExists[i] := True }

transition preendorse(i)
requires { BakerState[i] = NP &&

ProposalExists[i] = True }
{ PreEndorse[l,m] := case | m = i : True

| _ : PreEndorse[l,m];
BakerState[i] := CP }

transition preendorse_quorum(i)
requires { BakerState[i] = CP &&

count(PreEndorse[i], True) = SYS_PROCS }
{ Endorse[l,m] := case | m = i : True

| _ : Endorse[l,m];
PreEndorse[l,m] := case | l = i : False

| _ : PreEndorse[l,m];
BakerState[i] := CE }

transition endorsement_quorum(i)
requires { BakerState[i] = CE &&

count(Endorse[i], True) = SYS_PROCS }
{ LocalLevel[i] := LocalLevel[i] + 1;

BakerState[i] := NP;
Endorse[l,m] := case | l = i : False

| _ : Endorse[l,m];
ProposalExists[i] := False }

Figure 7.6: New Version of Tenderbake

119

The same thing happens for Endorse in preendorse_quorum]. Inversely, when
abaker sees a quorum, they reset the values. So again, if we have three bakers
and endorsement_quorum is being taken by #1, then the following Endorse
indexes would be modified, being set to False:

Endorse[#1, #1]
Endorse[#1, #2]
Endorse[#1, #3]

This time, if we let CFL run, it does not find any bugs or unsafe states.
We can now complicate our model a bit. We replace our full quorum with

2/3. If we run CFL with three bakers on this new, barely modified version, it
finds a couple of deadlocks:

receive_proposal(#2) → receive_proposal(#1) →
receive_proposal(#3) → preendorse(#2) → preendorse(#1) →

preendorse_quorum(#3) → preendorse(#3)

and
receive_proposal(#2) → receive_proposal(#1) →

receive_proposal(#3) → preendorse(#2) → preendorse(#1) →
preendorse(#3)

The common element is the three preendorse transitions. Themistake comes
from setting the quorum equal to 2/3, and not greater than. Once we fix that,
we can rerun CFL. This time we get something more interesting - an unsafe
state. Except the trace ranges from 50 to 90 steps, depending on the execu-
tion. But we know that there is an unsafe trace possible, so we can try to get
to it manually by using the interpreter.

If we play around with the interpreter, we can quickly come to a conclu-
sion. The reason our model reaches an unsafe state fairly quickly is because
we never force all bakers to move. The whole execution could be two bak-
ers voting and growing their blockchains, while the third never moves. What
happens in the actual Tenderbake is that proposals are accepted depending
on things like the level of the blockchain bakers have or the contents of the
proposal. The proposer also changes with every level of the blockchain and
round of the consensus algorithm. It is also not that dangerous for bakers to
have differences in their blockchain levels - someone could have disconnected
and fallen behind, but they can easily catch up by requesting the blockchain
from someone. What is dangerous in Tenderbake is when two bakers are at
the same level, but the contents of their blocks two levels back is different.
Since Tenderbake offers finality in two blocks, that means once there are two
blocks in front of a block b, everyone should have the same block b.

120

type state = NP | CP | CE

array BakerState[proc] : state
array LocalLevel[proc] : int

array PreEndorse[proc ,proc] : bool
array Endorse[proc ,proc] : bool
array ProposalExists[proc] : bool
array Proposal[proc] : proc
array ProposalEndorse[proc ,proc] : bool
array ProposalPreEndorse[proc ,proc] : bool

Figure 7.7: Declarations for Third Version of Tenderbake

We complicate our model further by adding new arrays, as shown in Fig-
ure 7.7. We add Proposal, ProposalEndorse, and ProposalPreEndorse. We
now let proposals vary. Do to Cubicle’s being parameterized by processes,
and that still being the case in CFL, we keep Proposals as proc types, so we
can use them in transition arguments. That being said, we could add a sub-
type declaration as with threads in Chapter 5 to clearly distinguish between
"proposal" procs and "baker" procs. We modify the transitions as shown in
Figure 7.8. We add count for ProposalEndorse and ProposalPreEndorse, as
well as a verification for Proposal. This way bakers vote, but they only vote on
their specific proposal and check that the others voted on the same proposal
before accepting quorums.

If we let CFL run, it seems to run without issues. Note that we removed
the the unsafe property. If we stop CFL and look at the environment, it is not
ideal. Notable, we get:

BakerState[#1] : NP
BakerState[#2] : CE
BakerState[#3] : CP

LocalLevel[#1] : 5033
LocalLevel[#2] : 5011
LocalLevel[#3] : 5036

This circles back to our very first problem: bakers never reset their proposal
votes, so they can be reused for later cases, leading to large gaps between
levels. We can, once again, try to fix this by changing our model. The take-
away from this process is that pure Cubicle at this point would be struggling
- we are in a system with eight arrays, which is a lot if we recall the original
benchmarks from Chapter 2. The problem is that with complex algorithms

121

transition set_proposal(i j)
requires { ProposalExists[i] = False }
{ Proposal[i] := j;

ProposalExists[i] := True}

transition preendorse(i j)
requires { BakerState[i] = NP &&

ProposalExists[i] = True &&
Proposal[i] = j }

{ PreEndorse[l,m] := case | m = i : True
| _ : PreEndorse[l,m];

ProposalPreEndorse[j,i] := True;
BakerState[i] := CP }

transition preendorse_quorum(i j)
requires { BakerState[i] = CP &&

Proposal[i] = j &&
count(PreEndorse[i], True) >= 2/3 &&
count(ProposalPreEndorse[j], True) >= 2/3

}
{ Endorse[l,m] := case | m = i : True

| _ : Endorse[l,m];
PreEndorse[l,m] := case | l = i : False

| _ : PreEndorse[l,m];
ProposalEndorse[j,i] := True;
BakerState[i] := CE }

transition endorsement_quorum(i j)
requires { BakerState[i] = CE &&

Proposal[i] = j &&
count(Endorse[i], True) >= 2/3 &&
count(ProposalEndorse[j], True) >= 2/3
}

{ LocalLevel[i] := LocalLevel[i] + 1;
BakerState[i] := NP;
Endorse[l,m] := case | l = i : False

| _ : Endorse[l,m];
ProposalExists[i] := False }

Figure 7.8: Transition for Third Version of Tenderbake

122

like Tenderbake, a natural approach is to build it up piece by piece, modify-
ing it as you encounter bugs or issues in the behavior. Even in our examples
where we stayed in a fairly simple subset of Tenderbake, we still encountered
multiple issues that forced us to modify our model. This process with only
Cubicle is hard, because the only way to "check" behavior is to run a safety
proof. At early stages of modeling, we might not have enough components
modeled to express the actual safety property that we want, and finding an
intermediate one might not be easy. And proofs are arbitrarily complicated
- what might appear to be an easy intermediate safety property may end up
forcing Cubicle to run for a long time. Overall, we view CFL as a tool in the
development process. Being able to quickly test, modify, and adapt a model
is crucial.

123

124

Chapter 8

Related Work

Fuzzing has often intersected with formal methods in various forms. It has
been applied to check SAT solvers: in [82] the authors introduce a fuzzer to
"attack" their SAT solver by giving the solver random inputs and observing its
behavior. In a similar fashion, fuzzers have also been applied to SMT solvers,
with grammar-based black box fuzzers being used to generate syntactically
valid formulas [83, 84, 85]. Similarly, mutation-based fuzzing has also been
explored for SMT solvers [86]. Fuzzing has also been used to check model
checkers: in [87] the authors propose a fuzzer to automatically generate ver-
ification tasks for model checkers.

Fuzzing has been mixed with model checking in various ways. Bounded
model checking (BMC) has been used to generate initial seeds for fuzzers [88,
89, 90], under the assumption that BMCwould be able to give the fuzzermore
interesting and effective seeds than manually created seeds. Similarly, BMC
has also been used to generate seeds for paths a fuzzer is not capable of
finding on its own [91]: if there is a branch in the code not covered by the
fuzzer, BMC is used to create a model, i.e. a set of assignments to variables,
for that branch. BMC has also been combined with gray box fuzzing to find
vulnerabilities in concurrent programs [92]. Model checking has also served
as the inspiration to test Linear-time Temporal Logic (LTL) properties for C++
programs using fuzzing [93]. Parameterized programs are a bit more compli-
cated. To our knowledge, no previous works combine fuzzing with parame-
terized model checking. In [94], the authors use existing unit tests to gener-
ate parameterized tests, which are then passed to a fuzzer. Since the tests
are parameterized, the fuzzer simply sets the parameters each time it runs a
test. In [95], the authors create a fuzzer that parameterizes the actual fuzzing
stages - it adapts to the program it is being run on to optimally select values
and strategies.

Fuzzers havebeen applied to concurrency problems, although less. In [96],
the authors propose a fuzzer to detect concurrency bugs in memory. They
take into account program input and thread scheduling. In [97], the authors

125

introduce a fuzzer to deal with kernel concurrency issues by decomposing
thread interleavings and mutating the individual parts. The authors in [98]
propose a fuzzer that controls thread interleavings and introduces buggy in-
put to see how the program will reacts.

When it comes to blockchains, fuzzing has mainly been used to test smart
contracts. Smart contracts are programs that live on theblockchainwithwhich
users (human or computer) can interact. Due to being on the blockchain, un-
doing the actions of a smart contract or modifying a contract after its been
deployed is nearly impossible. Fuzzing has been applied to Ethereum smart
contracts [99, 100] but it has also been used to find consensus-related bugs in
Ethereum [101].

126

Chapter 9

Conclusion & Perspectives

In this thesis we presented an extension of Cubicle called the Cubicle Fuzzy
Loop (CFL). This extension has allowed us to integrate testing into Cubicle.
Thismethod has reinforced Cubicle’s existing capabilities and introduced new
ones. We showed how CFL acts as an extremely efficient forward exploration
algorithm for BRAB, allowing us to tackle larger systems that Cubicle strug-
gled with previously. At the same time, being a testing technique, CFL enables
quick debugging and execution of models. It has let us adopt an incremental
approach tomodeling larger examples, and given Cubicle an interactive inter-
preter, making it more user-friendly. It has also introduced deadlock detec-
tion to Cubicle, as well as a more expressive and easier-to-extend language.

The most obvious line of work is taking what we introduced in pure CFL,
namely threads, and developing the proof part, so that Cubicle can generate
safety proofs and invariants for those features. This requires adding a pre-
image calculation and adapting the SMT solver, as well as figuring out how to
correctly approximate states that contain thread information. We also want
to focus on bettering CFL by improving its stability. As discussed in Chapter 4,
CFL is capable of visiting all necessary parts of the system in very few states,
but it is not stable. And while this is normal because of its random nature,
ideally we want to develop heuristics to make CFL’s performance more con-
sistent. In the same vein is developing the parameterized aspect of CFL to
keep it as close to Cubicle as possible. Overall, the possibilities to extend CFL
are endless, even from an input language point of view. CFL is a good basis
for more interactivity and user-friendliness when it comes to Cubicle, and we
could build off of that. We could use the feedback aspect of CFL as inspiration
to make Cubicle’s safety proofs more interactive or "open", in the sense that
Cubicle could provide feedback to the user about the proof its running.

127

128

Bibliography

[1] Code by the Numbers: How Many Lines of Code in Popular Pro-
grams, Apps, andVideoGames? https://en.softonic.com/articles/
programs-lines-code?

[2] Lines of Code: Microsoft XP. https://www.facebook.com/windows/
posts/155741344475532.

[3] Fast-forward — comparing a 1980s supercomputer to the mod-
ern smartphone. https://blog.adobe.com/en/publish/2022/11/08/
fast-forward-comparing-1980s-supercomputer-to-modern-smartphone.

[4] Google Is 2 Billion Lines of Code—And It’s All in One Place. https://www.
wired.com/2015/09/google-2-billion-lines-codeand-one-place/.

[5] John C Knight. Safety critical systems: challenges and directions. In
Proceedings of the 24th international conference on software engineering,
pages 547–550, 2002.

[6] Nancy G Leveson and Clark S Turner. An investigation of the therac-25
accidents. Computer, 26(7):18–41, 1993.

[7] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
transactions on software engineering, (2):125–143, 1977.

[8] Edmund M Clarke and E Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching time temporal logic. In Work-
shop on logic of programs, pages 52–71. Springer, 1981.

[9] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and
Lain-Jinn Hwang. Symbolic model checking: 1020 states and beyond.
Information and computation, 98(2):142–170, 1992.

[10] Automatic verification of finite-state concurrent systemsusing temporal
logic specifications. ACM Transactions on Programming Languages and
Systems (TOPLAS), 8(2):244–263, 1986.

[11] Krzysztof R. Apt and Dexter Kozen. Limits for automatic verification of
finite-state concurrent systems. Inf. Process. Lett., 22(6):307–309, 1986.

129

https://en.softonic.com/articles/programs-lines-code?
https://en.softonic.com/articles/programs-lines-code?
https://www.facebook.com/windows/posts/155741344475532
https://www.facebook.com/windows/posts/155741344475532
https://blog.adobe.com/en/publish/2022/11/08/fast-forward-comparing-1980s-supercomputer-to-modern-smartphone
https://blog.adobe.com/en/publish/2022/11/08/fast-forward-comparing-1980s-supercomputer-to-modern-smartphone
https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

[12] Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, and Daniele Zucchelli. To-
wards SMT model checking of array-based systems. In Alessandro Ar-
mando, Peter Baumgartner, and Gilles Dowek, editors, Automated Rea-
soning, volume 5195 of Lecture Notes in Computer Science, pages 67–82.
Springer Berlin Heidelberg, 2008.

[13] Silvio Ghilardi and Silvio Ranise. MCMT: A model checker modulo theo-
ries. In IJCAR, pages 22–29, 2010.

[14] Sylvain Conchon, Alain Mebsout, and Fatiha Zaïdi. Vérification de sys-
tèmes paramétrés avec Cubicle. In JFLA, Aussois, France, February 2013.

[15] Sylvain Conchon, Amit Goel, Sava Krstić, Alain Mebsout, and Fatiha Za-
ïdi. Cubicle: A parallel smt-based model checker for parameterized sys-
tems: Tool paper. In CAV, CAV’12, pages 718–724, Berlin, Heidelberg, 2012.
Springer-Verlag.

[16] Sylvain Conchon, EvelyneContejean, Johannes Kanig, and Stéphane Les-
cuyer. Cc (x): Semantic combination of congruence closurewith solvable
theories. Electronic Notes in Theoretical Computer Science, 198(2):51–69,
2008.

[17] Sylvain Conchon, Amit Goel, Sava Krstić, AlainMebsout, and Fatiha Zaïdi.
Invariants for finite instances and beyond. In 2013 Formal Methods in
Computer-Aided Design, pages 61–68. IEEE, 2013.

[18] Barton P Miller, Lars Fredriksen, and Bryan So. An empirical study of
the reliability of unix utilities. Communications of the ACM, 33(12):32–44,
1990.

[19] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. The art, science,
and engineering of fuzzing: A survey. IEEE Transactions on Software En-
gineering, 47(11):2312–2331, 2019.

[20] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecurity,
1(1):1–13, 2018.

[21] Lăcrămioara Astefănoaei, Pierre Chambart, Antonella Del Pozzo,
Thibault Rieutord, Sara Tucci Piergiovanni, and Eugen Zalinescu. Ten-
derbake - a solution to dynamic repeated consensus for blockchains.
In Fourth International Symposium on Foundations and Applications of
Blockchain, 2021.

[22] Parosh Aziz Abdulla, Giorgio Delzanno, and Ahmed Rezine. Param-
eterized verification of infinite-state processes with global conditions.

130

In Computer Aided Verification: 19th International Conference, CAV 2007,
Berlin, Germany, July 3-7, 2007. Proceedings 19, pages 145–157. Springer,
2007.

[23] Parosh Aziz Abdulla, A Prasad Sistla, and Muralidhar Talupur. Model
checking parameterized systems. Handbook of model checking, pages
685–725, 2018.

[24] Parosh Aziz Abdulla, Giorgio Delzanno, Noomene Ben Henda, and
Ahmed Rezine. Regular model checking without transducers (on effi-
cient verification of parameterized systems). In Tools and Algorithms for
the Construction and Analysis of Systems: 13th International Conference,
TACAS 2007, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2007 Braga, Portugal, March 24-April 1, 2007.
Proceedings 13, pages 721–736. Springer, 2007.

[25] Steven M German and A Prasad Sistla. Reasoning about systems with
many processes. Journal of the ACM (JACM), 39(3):675–735, 1992.

[26] Silvio Ghilardi and Silvio Ranise. MCMT: A Model Checker Modulo Theories,
pages 22–29. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[27] David L Dill, Andreas J Drexler, Alan J Hu, and C Han Yang. Protocol
verification as a hardware design aid. In ICCD, volume 92, pages 522–
525. Citeseer, 1992.

[28] Alain Mebsout. Inférence d’invariants pour le model checking de systèmes
paramétrés. PhD thesis, Paris 11, 2014.

[29] Cubicle Model Examples. https://github.com/
cubicle-model-checker/cubicle/tree/master/examples.

[30] Edsger W. Dijkstra. Over de sequetialiteit van procesbeschrijvingen [on
the sequentiality of process descriptions]. https://www.cs.utexas.
edu/users/EWD/translations/EWD35-English.html.

[31] Edsger W. Dijkstra. Cooperating sequential processes, technical report
ewd-123. 1965.

[32] Edsger W Dijkstra. Solution of a problem in concurrent programming
control. In Pioneers and Their Contributions to Software Engineering: sd&m
Conference on Software Pioneers, Bonn, June 28/29, 2001, Original Historic
Contributions, pages 289–294. Springer, 2001.

[33] Alain J Martin. A new generalization of dekker’s algorithm for mutual
exclusion. 1985.

131

https://github.com/cubicle-model-checker/cubicle/tree/master/examples
https://github.com/cubicle-model-checker/cubicle/tree/master/examples
https://www.cs.utexas.edu/users/EWD/translations/EWD35-English.html
https://www.cs.utexas.edu/users/EWD/translations/EWD35-English.html

[34] Leslie Lamport. A new solution of dijkstra’s concurrent programming
problem. Commun. ACM, 17(8):453–455, aug 1974.

[35] Parosh Aziz Abdulla, Giorgio Delzanno, and Ahmed Rezine. Parame-
terized verification of infinite-state processes with global conditions. In
CAV. Springer, 2007.

[36] Boleslaw K Szymanski. A simple solution to lamport’s concurrent pro-
gramming problem with linear wait. In Proceedings of the 2nd Interna-
tional Conference on Supercomputing, pages 621–626, 1988.

[37] James Archibald and Jean-Loup Baer. Cache coherence protocols: Eval-
uation using a multiprocessor simulation model. ACM Transactions on
Computer Systems (TOCS), 4(4):273–298, 1986.

[38] Per Stenstrom. A survey of cache coherence schemes for multiproces-
sors. Computer, 23(6):12–24, 1990.

[39] Fong Pong and Michel Dubois. Verification techniques for cache coher-
ence protocols. ACM Computing Surveys (CSUR), 29(1):82–126, 1997.

[40] Hanan Shukur, Subhi Zeebaree, Rizgar Zebari, Omar Ahmed, Lailan Haji,
and Dildar Abdulqader. Cache coherence protocols in distributed sys-
tems. Journal of Applied Science and Technology Trends, 1(3):92–97, 2020.

[41] Amir Pnueli, Sitvanit Ruah, and Lenore Zuck. Automatic deductive ver-
ification with invisible invariants. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 82–97.
Springer, 2001.

[42] Kai Baukus, Yassine Lakhnech, and Karsten Stahl. Parameterized verifi-
cation of a cache coherence protocol: Safety and liveness. In Verification,
Model Checking, and Abstract Interpretation: Third International Workshop,
VMCAI 2002 Venice, Italy, January 21–22, 2002 Revised Papers 3, pages 317–
330. Springer, 2002.

[43] Ching-Tsun Chou, Phanindra K Mannava, and Seungjoon Park. A sim-
ple method for parameterized verification of cache coherence proto-
cols. In Formal Methods in Computer-Aided Design: 5th International Con-
ference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004. Proceedings
5, pages 382–398. Springer, 2004.

[44] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Si-
moni, Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter,
Mark Horowitz, et al. The stanford flash multiprocessor. In Proceed-
ings of the 21ST annual international symposium on Computer architecture,
pages 302–313, 1994.

132

[45] Fuzz Testing of Application Reliability. https://pages.cs.wisc.edu/
~bart/fuzz/.

[46] Justin Forrester and Barton Miller. An empirical study of the robust-
ness of windows NT applications using random testing. In 4th USENIX
Windows Systems Symposium (4th USENIX Windows Systems Symposium),
Seattle, WA, August 2000. USENIX Association.

[47] Patrice Godefroid. Fuzzing: Hack, art, and science. Communications of
the ACM, 63(2):70–76, 2020.

[48] Michael Howard and Steve Lipner. The security development lifecycle, vol-
ume 8. Microsoft Press Redmond, 2006.

[49] Microsoft SDL Practices. https://www.microsoft.com/en-us/
securityengineering/sdl/practices.

[50] ClusterFuzz. https://google.github.io/clusterfuzz/.
[51] Android Goes All-in on Fuzzing. https://security.googleblog.com/

2023/08/android-goes-all-in-on-fuzzing.html.
[52] Guided in-process fuzzing of Chrome components. https://security.

googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.
html.

[53] Kostya Serebryany. {OSS-Fuzz}-google’s continuous fuzzing service for
open source software. 2017.

[54] Zhen Yu Ding and Claire Le Goues. An empirical study of oss-fuzz bugs.
In 2021 IEEE/ACM 18th International Conference on Mining Software Reposi-
tories (MSR), pages 131–142. IEEE, 2021.

[55] OSS-Fuzz. https://google.github.io/oss-fuzz/.
[56] DevSecOps Fundamentals Guidebook. https://

dodcio.defense.gov/Portals/0/Documents/Library/
DevSecOpsActivitesToolsGuidebookTables.pdf.

[57] Mayhem. https://info.forallsecure.com/rs/112-FGI-163/
images/br-mayhem-for-code.pdf.

[58] Charlie Miller, Zachary NJ Peterson, et al. Analysis of mutation and
generation-based fuzzing. Independent Security Evaluators, Tech. Rep, 4,
2007.

[59] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. Grammar-based
whitebox fuzzing. In Proceedings of the 29th ACM SIGPLAN conference on
programming language design and implementation, pages 206–215, 2008.

133

https://pages.cs.wisc.edu/~bart/fuzz/
https://pages.cs.wisc.edu/~bart/fuzz/
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://google.github.io/clusterfuzz/
https://security.googleblog.com/2023/08/android-goes-all-in-on-fuzzing.html
https://security.googleblog.com/2023/08/android-goes-all-in-on-fuzzing.html
https://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html
https://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html
https://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html
https://google.github.io/oss-fuzz/
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOpsActivitesToolsGuidebookTables.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOpsActivitesToolsGuidebookTables.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOpsActivitesToolsGuidebookTables.pdf
https://info.forallsecure.com/rs/112-FGI-163/images/br-mayhem-for-code.pdf
https://info.forallsecure.com/rs/112-FGI-163/images/br-mayhem-for-code.pdf

[60] Hamad Al Salem and Jia Song. A review on grammar-based fuzzing
techniques. International Journal of Computer Science & Security (IJCSS),
13(3):114–123, 2019.

[61] Sylvain Conchon and Alexandrina Korneva. The cubicle fuzzy loop : A
fuzzing-based extension for the cubicle model checker). to appear in
21st edition of the International Conference on Software Engineering and
Formal Methods (SEFM 2023).

[62] Michał Zalewski. American fuzzy lop-whitepaper, 2016.
[63] American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/.
[64] Sylvain Conchon, Alexandrina Korneva, and Fatiha Zaïdi. Verifying smart

contracts with cubicle. In Formal Methods. FM 2019 International Work-
shops: Porto, Portugal, October 7–11, 2019, Revised Selected Papers, Part I 3,
pages 312–324. Springer, 2020.

[65] Giuseppe Della Penna, Benedetto Intrigila, Igor Melatti, Enrico Tronci,
and Marisa Venturini Zilli. Exploiting transition locality in automatic ver-
ification of finite-state concurrent systems. STTT, 6(4):320–341, 2004.

[66] Leslie Lamport. Specifying concurrent systems with tla+. Calculational
System Design, pages 183–247, April 1999.

[67] David R Butenhof. Programming with POSIX threads. Addison-Wesley
Professional, 1997.

[68] Douglas Lea. Concurrent programming in Java: design principles and pat-
terns. Addison-Wesley Professional, 2000.

[69] Mordechai Ben-Ari. Principles of concurrent programming. Prentice Hall
Professional Technical Reference, 1982.

[70] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta
Informatica, 1:115–138, 1971.

[71] David Parnas. On a solution to the cigarette smoker’s problem (without
conditional statements). Communications of the ACM, 18:181–183, 03 1975.

[72] Cigarette Smoker’s Problem. https://www.cs.umd.edu/~hollings/
cs412/s96/synch/smokers.html.

[73] Sylvain Conchon, Alexandrina Korneva, Çagdas Bozman, Mohamed
Iguernlala, and Alain Mebsout. Formally documenting tenderbake
(short paper). In 3rd International Workshop on Formal Methods for
Blockchains (FMBC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2021.

134

https://lcamtuf.coredump.cx/afl/
https://www.cs.umd.edu/~hollings/cs412/s96/synch/smokers.html
https://www.cs.umd.edu/~hollings/cs412/s96/synch/smokers.html

[74] LM Goodman. Tezos—a self-amending crypto-ledger white paper. URL:
https://www. tezos. com/static/papers/white paper. pdf, 2014.

[75] Jae Kwon and Ethan Buchman. Cosmos whitepaper, 2019.
[76] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance.

In OSDI, volume 99, pages 173–186, 1999.
[77] Vitalik Buterin. Ethereumwhite paper: A next generation smart contract

& decentralized application platform. 2013.
[78] Satoshi Nakamoto. Bitcoin : A peer-to-peer electronic cash system.

2009.
[79] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1996.
[80] Michael J. Fischer, Nancy A. Lynch, andMichael S. Paterson. Impossibility

of distributed consensus with one faulty process. J. ACM, 32(2):374–382,
April 1985.

[81] Leslie Lamport, Robert E. Shostak, andMarshall C. Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4:382–401, 1982.

[82] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated test-
ing and debugging of sat and qbf solvers. In Theory and Applications of
Satisfiability Testing–SAT 2010: 13th International Conference, SAT 2010, Ed-
inburgh, UK, July 11-14, 2010. Proceedings 13, pages 44–57. Springer, 2010.

[83] Robert Brummayer and Armin Biere. Fuzzing and delta-debugging smt
solvers. In Proceedings of the 7th International Workshop on Satisfiability
Modulo Theories, pages 1–5, 2009.

[84] Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz
Kabir, and Vijay Ganesh. Stringfuzz: A fuzzer for string solvers. In Com-
puter Aided Verification: 30th International Conference, CAV 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part II 30, pages 45–51. Springer, 2018.

[85] Dominik Winterer, Chengyu Zhang, and Zhendong Su. On the un-
usual effectiveness of type-aware operator mutations for testing smt
solvers. Proceedings of the ACMonProgramming Languages, 4(OOPSLA):1–
25, 2020.

[86] Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and
Fuyuan Zhang. Detecting critical bugs in smt solvers using blackbox

135

mutational fuzzing. In Proceedings of the 28th ACM Joint meeting on euro-
pean software engineering conference and symposium on the foundations
of software engineering, pages 701–712, 2020.

[87] Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and
Zhendong Su. Finding and understanding bugs in software model
checkers. In Proceedings of the 2019 27th ACM joint meeting on European
software engineering conference and symposium on the foundations of soft-
ware engineering, pages 763–773, 2019.

[88] Yixiao Yang. Improve model testing by integrating bounded model
checking and coverage guided fuzzing. Electronics, 12(7):1573, 2023.

[89] Ravindra Metta, Raveendra Kumar Medicherla, and Samarjit
Chakraborty. Bmc+ fuzz: Efficient and effective test generation.
In 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1419–1424. IEEE, 2022.

[90] Animesh Basak Chowdhury and Raveendra Kumar Medicherla. Veri-
fuzz: Program aware fuzzing: (competition contribution). In Tools and
Algorithms for the Construction and Analysis of Systems: 25 Years of TACAS:
TOOLympics, Held as Part of ETAPS 2019, Prague, Czech Republic, April 6–11,
2019, Proceedings, Part III 25, pages 244–249. Springer, 2019.

[91] KaledM Alshmrany, Mohannad Aldughaim, Ahmed Bhayat, and Lucas C
Cordeiro. Fusebmc v4: Smart seed generation for hybrid fuzzing: (com-
petition contribution). In Fundamental Approaches to Software Engineer-
ing: 25th International Conference, FASE 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2–7, 2022, Proceedings, pages 336–340. Springer Interna-
tional Publishing Cham, 2022.

[92] Fatimah K Aljaafari, Rafael Menezes, Edoardo Manino, Fedor Shmarov,
Mustafa A Mustafa, and Lucas C Cordeiro. Combining bmc and fuzzing
techniques for finding software vulnerabilities in concurrent programs.
IEEE Access, 10:121365–121384, 2022.

[93] Ruijie Meng, Zhen Dong, Jialin Li, Ivan Beschastnikh, and Abhik Roy-
choudhury. Linear-time temporal logic guided greybox fuzzing. In
Proceedings of the 44th International Conference on Software Engineering,
pages 1343–1355, 2022.

[94] Alexander Kampmann and Andreas Zeller. Carving parameterized unit
tests. In 2019 IEEE/ACM 41st International Conference on Software Engi-
neering: Companion Proceedings (ICSE-Companion), pages 248–249. IEEE,
2019.

136

[95] Ivica Nikolić, RaduMantu, Shiqi Shen, and Prateek Saxena. Refined grey-
box fuzzingwith sivo. InDetection of Intrusions andMalware, and Vulnera-
bility Assessment: 18th International Conference, DIMVA 2021, Virtual Event,
July 14–16, 2021, Proceedings 18, pages 106–129. Springer, 2021.

[96] Nischai Vinesh andM Sethumadhavan. Confuzz—a concurrency fuzzer.
In First International Conference on Sustainable Technologies for Computa-
tional Intelligence: Proceedings of ICTSCI 2019, pages 667–691. Springer,
2020.

[97] Dae R Jeong, Byoungyoung Lee, Insik Shin, and Youngjin Kwon. Seg-
fuzz: Segmentizing thread interleaving to discover kernel concurrency
bugs through fuzzing. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 2104–2121. IEEE Computer Society, 2023.

[98] Youngjoo Ko, Bin Zhu, and Jong Kim. Fuzzing with automatically con-
trolled interleavings to detect concurrency bugs. Journal of Systems and
Software, 191:111379, 2022.

[99] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce.
Echidna: effective, usable, and fast fuzzing for smart contracts. In Pro-
ceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 557–560, 2020.

[100] Bo Jiang, Ye Liu, and Wing Kwong Chan. Contractfuzzer: Fuzzing smart
contracts for vulnerability detection. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pages 259–
269, 2018.

[101] Youngseok Yang, Taesoo Kim, and Byung-Gon Chun. Finding consen-
sus bugs in ethereum via multi-transaction differential fuzzing. In 15th
USENIX SymposiumonOperating SystemsDesign and Implementation (OSDI
21), pages 349–365, 2021.

137

	114054_KORNEVA_2023_archivage_modif
	thesis

