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données, en combinant le concept de coloration

propre et d’élément représentatif de certains

sous-ensembles de sommets. D’autre part, en

fonction du sujet à colorer, une grande quantité

de recherches et de problèmes de graphes à

arêtes colorées ont émergé, avec des applications

importantes en biologie et en technologies web.

Nous fournissons quelques résultats analogues

pour certaines questions de connectivité, afin de
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Résumé

La coloration de graphes est l’un des sujets les plus connus, populaires et

largement étudiés dans le domaine de la théorie des graphes, avec une vaste

littérature comprenant des approches provenant de nombreux domaines ainsi que de

nombreux problèmes qui sont encore ouverts et étudiés par divers mathématiciens

et informaticiens à travers le monde. Le Problème des Quatre Couleurs, à l’origine

de l’étude de la coloration des graphes, a été l’un des problèmes centraux en théorie

des graphes au siècle dernier. Il demande s’il est possible de colorer proprement

chaque graphe planaire avec quatre couleurs. Malgré son origine théorique, la

coloration des graphes a trouvé de nombreuses applications pratiques telles que la

planification, les problèmes d’assignation de fréquences, la segmentation, etc.

Le Problème des Quatre Couleurs est l’un des problèmes importants parmi de

nombreux problèmes de la théorie des graphes chromatiques, à partir duquel de

nombreuses variantes et généralisations ont été proposées. Tout d’abord, dans

cette thèse, nous visons à optimiser la stratégie de coloration des sommets de

graphes et d’hypergraphes avec certaines contraintes données, en combinant le

concept de coloration propre et d’élément représentatif de certains sous-ensembles

de sommets. D’autre part, en fonction du sujet à colorer, une grande quantité

de recherches et de problèmes de graphes à arêtes colorées ont émergé, avec des

applications importantes en biologie et en technologies web. Nous fournissons

quelques résultats analogues pour certaines questions de connectivité, afin de

décrire des graphes dont les arêtes sont attribuées suffisamment de couleurs,

garantissant ainsi des arbres couvrants ou des cycles ayant une structure

chromatique spécifique.

Le deuxième chapitre est dédié à la coloration des sommets impairs. étant

donné un graphe G, une coloration des sommets σ de G et un sous-ensemble

X ⊆ V (G), une couleur x ∈ σ(X) est dite impair pour X dans σ si elle apparaît

un nombre impair de fois dans X. Nous disons que σ est une coloration impaire de

G si elle est propre et que chaque voisinage (ouvert) a une couleur impaire dans σ.

Le nombre chromatique impair d’un graphe G, noté χo(G), est le plus petit k ∈ N

1



tel qu’il existe une coloration impaire σ : V (G) → [k]. Dans cette thèse, nous

utilisons la méthode probabiliste pour démontrer que pour tout graphe G avec un

degré maximal ∆, χo(G) ≤ χ(G)+O(∆ ln ∆/δ) lorsque ∆→∞. Nous prouvons

également que χo(G) ≤ ⌊3∆/2⌋ + 2 pour tout ∆, avec une preuve inductive et

constructive simple. Si de plus le degré minimal δ de G est suffisamment grand,

alors χo(G) ≤ χ(G)+O(∆ ln ∆/δ) et χo(G) = O(χ(G) ln ∆). Enfin, étant donné

un entier h ≥ 1, nous étudions la généralisation de ces résultats aux colorations

h-impaires, où pour chaque sommet v, il doit y avoir au moins min{deg(v), h}

couleurs impaires dans N(v). Beaucoup de nos résultats sont optimaux jusqu’à

une constante multiplicatrice près.

Dans le troisième chapitre, nous nous intéressons à un nombre de Ramsey

généralisé lié aux cycles colorés de longueurs données dans un graphe complet

à arêtes colorées. Soit pr(Kn, G) le nombre maximum de couleurs dans

une coloration des arêtes de Kn sans copie proprement colorée d’un graphe

donné G. Dans cet article, nous déterminons le seuil exact pour les cycles

de longueur ℓ, pr(Kn, Cℓ), ce qui confirme une conjecture proposée par

Fang, Győri et Xiao, selon laquelle le nombre maximum de couleurs dans

une coloration des arêtes de Kn sans copie proprement colorée de Cℓ est

max
{(ℓ−1

2
)

+ n− l + 1,
⌊

ℓ−1
3

⌋
n−

(⌊ ℓ−1
3 ⌋+1

2
)

+ 1 + rℓ−1

}
, où ℓ − 1 ≡ rℓ−1

mod 3, et 0 ≤ rℓ−1 ≤ 2. Il s’agit d’une légère modification d’une conjecture

précédemment émise par Manoussakis, Spyratos, Tuza et Voigt. De plus, nous

analysons la structure des colorations de Kn qui sont extrémales en ce qui concerne

l’extensibilité des cycles, c’est-à-dire que chaque court cycle proprement coloré peut

être étendu en ajoutant exactement un sommet pour former un cycle proprement

coloré plus long.

Dans le quatrième chapitre, nous examinons les arbres couvrants faiblement

propres dans les graphes à arêtes colorées. Un graphe à arêtes colorées G est un

graphe avec une coloration des arêtes. Nous disons que G est proprement coloré

si toutes les arêtes adjacentes de G ont des couleurs distinctes. Un arbre à arêtes

colorées T avec une racine fixe r est faiblement propre s’il est proprement coloré

pour tout chemin dans T , de la racine r à n’importe quelle feuille. Borozan et al.

ont montré que pour un sommet donné r dans un graphe à arêtes colorées G, le

problème de déterminer si G a un arbre couvrant faiblement propre avec la racine

2



r est NP-complet. Dans cette thèse, nous donnons une condition de type Dirac

pour un graphe à arêtes colorées G telle qu’il existe un arbre couvrant faiblement

propre avec la racine r pour un certain sommet r ∈ V (G), ainsi que certaines

conditions suffisantes pour qu’un graphe à arêtes colorées G ait un arbre couvrant

faiblement propre avec la racine r pour n’importe quel sommet r ∈ V (G).

Mots clés: Coloration propre; Coloration impaire; Hypergraphe; Graphe à arêtes

colorées; Extensibilité des cycles; Nombre anti-Ramsey; Sous-graphe proprement

coloré; Arbre couvrant faiblement propre.
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Abstract

Graph colouring is one of the best known, popular and extensively researched

subject in the field of graph theory, having a wide literature with approaches

from many domains and a lot of problems, which are still open and studied

by various mathematicians and computer scientists along the world. The Four

Colour Problem, originating the study of graph colouring, was one of the central

problem in graph theory in the last century, which asks if it is possible to colour

every planar graph properly by four colours. Despite the theoretical origin, the

graph colouring has found many applications in practice like scheduling, frequency

assignment problems, segmentation, etc.

The Four Colour Problem is a significant one among many problems in

chromatic graph theory, from which many variants and generalizations have been

proposed. Firstly, in this thesis, we aim to optimize the strategy to colour the

vertex of graphs and hypergraphs with some given constraints, which combines the

concept of proper colouring and representative element of some vertex subsets. On

the other hand, according to the subject to be coloured, a large amount of research

and problems of edge-coloured graphs have emerged, which have important

applications to biology and web technologies. We provide some analogous results

for some connectivity issues—to describe graphs whose edges are assigned enough

colours, that guarantee spanning trees or cycles of a specific chromatic structure.

The second chapter is dedicated to odd vertex colouring. Given a graph G, a

vertex-colouring σ of G, and a subset X ⊆ V (G), a colour x ∈ σ(X) is said to

be odd for X in σ if it has an odd number of occurrences in X. We say that σ

is an odd colouring of G if it is proper and every (open) neighbourhood has an

odd colour in σ. The odd chromatic number of a graph G, denoted by χo(G),
is the minimum k ∈ N such that there exists an odd colouring σ : V (G) → [k].
In this thesis, we use the probabilistic method to prove that for every graph G

with maximum degree ∆, χo(G) ≤ ∆ + O(ln ∆) as ∆ → ∞. We also prove

that χo(G) ≤ ⌊3∆/2⌋ + 2 for every ∆, with a simple inductive and constructive

proof. If moreover the minimum degree δ of G is sufficiently large, we have
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χo(G) ≤ χ(G) + O(∆ ln ∆/δ) and χo(G) = O(χ(G) ln ∆). Finally, given an

integer h ≥ 1, we study the generalisation of these results to h-odd colourings,

where for every vertex v there must be at least min{deg(v), h} odd colours in

N(v). Many of our results are tight up to some multiplicative constant.

In the third chapter, we are interested in a generalised Ramsey number

related to coloured cycles of given length in an edge-coloured complete graph.

Let pr(Kn, G) be the maximum number of colours in an edge-coloring of

Kn with no properly coloured copy of a given graph G. In this paper, we

determine the exact threshold for cycles of length ℓ, pr(Kn, Cℓ), which proves

a conjecture proposed by Fang, Győri, and Xiao, that the maximum number

of colours in an edge-coloring of Kn with no properly coloured copy of Cℓ is

max
{(ℓ−1

2
)

+ n− l + 1,
⌊

ℓ−1
3

⌋
n−

(⌊ ℓ−1
3 ⌋+1

2
)

+ 1 + rℓ−1

}
, where ℓ − 1 ≡ rℓ−1

mod 3, and 0 ≤ rℓ−1 ≤ 2. It is a slight modification of a previous conjecture

posed by Manoussakis, Spyratos, Tuza and Voigt. Also, we analyse the structure

of colourings of Kn that are extremal with regard to cycle extendability, namely,

each short properly coloured cycle can be extended to a longer properly coloured

one by exact one more vertex.

In the fourth chapter, we consider weakly proper spanning trees in

edge-coloured graphs. An edge-coloured graph G is a graph with an edge colouring.

We say G is properly coloured if any two adjacent edges of G have distinct colours.

An edge-coloured tree T with fixed root r is weakly proper if every path in T , from

the root r to any leaf, is properly coloured. Borozan et al. showed that for a given

vertex r in an edge-coloured graph G, the problem of determining whether G has

a weakly proper spanning tree with root r is NP-complete. In this thesis, we give a

Dirac type condition for an edge-coloured graph G such that there exists a weakly

proper spanning tree with root r for some vertex r ∈ V (G), and some sufficient

conditions for an edge-coloured graph G to have a weakly proper spanning tree

with root r for any vertex r ∈ V (G).

Keywords: Proper colouring; Odd colouring; Hypergraph; Edge-coloured graph;

Cycle extendable; Anti-Ramsey number; Properly coloured subgraph; Weakly

proper spanning tree.
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1 - Introduction

In mathematics, graph theory is the study of graphs, which are mathematical

structures used to model pairwise relations within some sets of elements. The

paper written by Leonhard Euler on the Seven Bridges of Königsberg and published

in 1736 is regarded as the first paper in the history of graph theory. In particular,

the term “graph” was introduced by Sylvester in a paper published in 1878 in

Nature, where he draws an analogy between “quantic invariants” and “co-variants”

of algebra and molecular diagrams.

As it continues to develop, many research topics appeal in graph theory,

including graph colouring, connectivity, decomposition and so on. While some

of these problems are highly relevant to other fields of mathematical study such as

algebra, topology, and probability.

Graphs are often represented using a visual diagram consisting of a set of

points together with lines joining certain pairs of these points. On the other hand,

these concepts can be used to conveniently describe many real-world situations.

In a non-exhaustive list of domains in which we deal with networks, we can quote:

anatomy (neural circuit), biology (protein interaction network), chemistry (crystal

structures), computer sciences (web, peer-to-peer networks), artificial intelligence

(artificial neural network), statistics (Bayesian network), electricity (electrical grid),

telecom (telecommunication network), transportation (road network, rail network),

urbanism (gas network, water distribution network).

In this thesis, we mainly study some colouring problems in graphs. Throughout

this chapter, for the convenience of the description of our researching topic,

let us first introduce the basics of graph theory in a more formal mathematical

representation. Then we will mention the background in detail and related research

of our work. In the last section, we will show the contributions and outline of this

thesis.
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1.1 . Basic notations

We first define the main objects of this work, which are graphs. Especially for

graph theory, we follow the terminology of Bollobás [6].

1.1.1 . Graphs and digraphs

A graph G is a mathematical structure (V, E) consisting of a nonempty set

V (G) of vertices, and some binary relation E(G) ⊆
(V

2
)

between them, which is

described by a set of unordered pairs of vertices; these pairs are called the edges

of the graph. The subscript might be omitted when there is no ambiguity on the

relevant graph. In a drawing of G, the points represent the set V , and the lines

represent the set E. An edge joining a vertex with itself is called loop. Several

edges joining the same pair of vertices are called multiple edges. A graph is finite,

if both its vertex set and edge set are finite. If a graph has no loops or multiple

edges, then we say it is simple. This thesis focuses only on finite simple graphs.

A digraph or directed graph D is an ordered pair (V (D), A(D)) consisting of

a nonempty set V (D) of vertices and a set A(D) of arcs, where A(D) is made up

of some ordered pairs of (not necessarily distinct) vertices. With each digraph D

we can associate a graph G on the same vertex set; corresponding to each arc of

D there is an edge of G with the same ends. This graph is the underlying graph of

D. Conversely, given any graph G, we can obtain a digraph from D by specifying,

for each edge, an order on its ends. Such a digraph is called an orientation of G.

The definition of graphs is quite simple and clear, yet it is sufficient to have a

high expressivity. In order to understand how different types of graphs behave, we

now introduce many basic tools which can help us analyse them.

Neighbourhood. Most of the definitions and concepts in graph theory are from

the graphical representation intuitively. When a given edge e contains a vertex v,

we say that v and e are incident. Two vertices incident with the same edge are

adjacent, as are two edges which are incident with a common vertex.

Definition 1. Let G be a graph.
1. When there is an edge in G between two vertices u and v, we say that

u is a neighbour of v, and vise versa. For any vertex v ∈ V (G), we use
7



NG(v) to denote the set of all neighbours of v and call NG(v) the (open)
neighbourhood of v. The degree degG(v) of a vertex v is the number of
edges of G incident with v, i.e. the size of NG(v) when G is a simple
graph;

NG(v) := {u ∈ V (G) | uv ∈ E(G)},

degG(v) := |NG(v)| = |{e ∈ E(G) | v ∈ e}|,

2. We denote by δ(G) and ∆(G) the minimum and maximum degrees,
respectively, of vertices of G;

δ(G) := min
v∈V (G)

degG(v),

∆(G) := max
v∈V (G)

degG(v).

3. The closed neighbourhood of a vertex v in G, denoted NG[v], is obtained
by adding v to its open neighbourhood in G;

NG[v] := NG(v) ∪ {v}.

4. The notion of neighbourhood can be naturally extended to subset of
vertices. For a vertex subset S ⊂ V (G), namely we have

NG(S) :=
⋃

v∈S

NG(v) \ S,

NG[S] := NG(S) ∪ S.

5. A d-regular graph is a graph where every vertex has degree exactly d.
6. The average degree ofG, denoted ad(G), is the average of all the degrees

of the vertices in V (G). The maximum average degree of G, denoted
mad(G), is the maximum of ad(H) over all non-empty subgraphs H of
G;

ad(G) := 1
|V (G)|

∑
v∈V (G)

degG(v) = 2|E(G)|
|V (G)| .

mad(G) := max
H⊆G

ad(H).
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δ(G) = 1
∆(G) = 3

ad(G) = 2.4

Figure 1.1: Each vertex is labelled with its degree

Subgraphs. Let G, H be two graphs. We say H is a subgraph of G if, up to

some relabelling of vertices, we have E(H) ⊆ E(G). Moreover, if H is a subgraph

of G and H contains all the edges uv ∈ E(G) with u, v ∈ V (H), then H is

an induced subgraph of G. We denote G[S] the subgraph of G induced by a

vertex subset S ⊆ V (G). If H is a subgraph of G and V (H) = V (G), then H

is a spanning subgraph of G. We say G is F -free if G does not contain F as a

subgraph, i.e. no subgraph of G is isomorphic to F . Let H1, H2 be two subgraphs

of G. If V (H1) ∩ V (H2) = ∅, then we say H1 and H2 are vertex-disjoint. If

E(H1) ∩ E(H2) = ∅, then we say H1 and H2 are edge-disjoint.

Subgraph is one of the most essential notions of graphs. A constitutive method

to analyse the structure of a graph or its class is to consider whether a specific

subgraph exists, appears frequently, or never at all. We list some of them which

are the research object of this thesis.

• Cliques and independent sets.

Definition 2. Let G be a graph.
1. An independent set of G is a vertex subset I ⊂ V (G) inducing no

edge;
E(G[I]) = ∅.

It is maximal if there exists no independent set I ′ of G such that
I ⊊ I ′. An independent set I is said to be maximum if there
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exists no independent set I ′ of G such that |I| < |I ′|. The
number of vertices in a maximum independent set of G is called
the independence number and is denoted α(G).

2. A clique of G is a vertex subset S ⊂ V (G) inducing all possible
edges;

E(G[S]) =
(

S

2

)
.

It ismaximal if there exists no clique S′ of G such that S ⊊ S′, and
maximum if there exists no clique with a larger cardinality. The
number of vertices in a maximum clique of G is called the clique
number and is denoted ω(G).

• Paths and cycles.

Definition 3. Let G be a graph.
1. A path in G is a finite non-null sequence of vertices Pk = v1 . . . vk,

where two successively vertices are adjacent and all vertices are
pairwise distinct. The vertices v1 and vk are called the origin and
terminus of Pk, respectively (extremity for both), and v2, . . . , vk−1

its internal vertices. The number of edges k − 1 is the length of Pk.
We say Pk is a v1 − vk path.

2. A cycle in G is a closed path, that is, a finite non-null sequence of
vertices Ck = v0(= vk)v1 . . . vk, where two successively vertices
are adjacent and all vertices are pairwise distinct. The length of
Ck is the number of its edges k.

The following concepts can be naturally derived by paths.

Definition 4. Let G be a graph.
1. G is said to be connected if for every pair {u, v} of distinct vertices

there is a path from u to v.
2. Given vertices u and v, the distance dG(u, v) is the minimal length

of a u−v path. If there are no u−v path, thenwe define dG(u, v) =
∞.
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3. A vertex cut of G is a subset V ′ of V (G) such that G − V ′ is
disconnected. A k-vertex cut is a vertex cut of k elements.

4. If G has at least one pair of distinct nonadjacent vertices, the
connectivity κ(G) ofG is theminimum k for whichG has a k-vertex
cut; otherwise, we define κ(G) to be |V (G)| − 1. G is said to be
k-connected if κ(G) ≥ k.

Figure 1.2: Paths and cycles of 3 to 6 vertices

• Spanning trees. Given a connected graph G, it is meaningful to determine

a minimal connected spanning subgraph of G, which leads to the study of

spanning trees.

Definition 5. Let G be a graph.
1. A graph without any cycles is a forest, or an acyclic graph.
2. A tree is a connected forest.
3. A spanning tree of G is a tree subgraph of G spanning all its

vertices.
We are often looking for a minimum spanning tree (MST) in a given weighted

graph G, that is a spanning tree which minimises the sum of the weights

of its edges. There are numerous efficient algorithms to find a MST of G,

which works in O(e(G) log v(G)) time, for instance.
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In the main content of this thesis, we will use another kind of spanning

trees, the rooted tree, that is a tree in which one vertex has been designated

the root. The edges of a rooted tree can be assigned a natural orientation,

either away from or towards the root, in which case the structure becomes

a directed rooted tree. Given a connected graph G and a root r ∈ V (G),
many different kinds of spanning trees rooted at r have been defined. One

of the most important, the Breadth First Search Tree, is a spanning tree of

G rooted in some vertex r, with the property y that the distance from the

root r to any vertex v in it is equal to dG(r, v). These trees are powerful

tools in the context of structural analysis, especially when one is interested

in the traversals of G.

Constructions. We are now going to see some convenient operations which let

us construct a graph from another.

1. Complement graph. Given a graph G on n vertices, the complement of

G, denoted G, is obtained by removing all the edges of G from Kn;

V (G) = V (G), and E(G) = E(G) =
(

V (G)
2

)
\ E(G).

2. Graph powers. Given a graph G, the t-th power Gt of G is obtained from

G by adding edges between all pairs of vertices at distance at most tin G;

V (Gt) = v(G), and uv ∈ E(G)⇐⇒ dG(u, v) ≤ t.

3. Edge subdivision. Given a graph G and an edge e = uv ∈ E(G), an

edge subdivision of e is the insertion of a new vertex w in the middle of

e accompanied by the joining of the original edge endpoints with the new

vertex to form new edges e′ = uw and e′′ = wv. Particularly, a 1-subdivision

of G is a graph obtained by subdividing every edge of G exactly once.
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Figure 1.3: The distance-3 graph of C8

Remark 1. Given a graph G on n vertices, the complement of G, denoted G,
is obtained by removing all the edges of G from Kn;

V (G) = V (G), and E(G) = E(G) =
(

V (G)
2

)
\ E(G).

Clearly, given a graph G, S is a clique of G if and only if S is an independent
set of G, and so the two concepts are complementary.

1.1.2 . Hypergraphs

For normal graphs, the edge set represents a (symmetric) binary relation on

the vertex set. Sometimes we need to display information about relationships that

feature more than one object. Here goes the concept of hypergraphs.

Many basic definitions are easy to illustrate by analogy with graphs. A

hypergraph H is an ordered pair (V (H), E(H)) consisting of a nonempty set

V (H) of vertices and a set E(H) of hyperedges, where each hyperedge e ∈ E(H)
is a subset of the vertex set e ⊆ V (H). Given a hypergraph H, the degree of

a vertex v, denoted by degH(v), is the number of edges of H containing v. We

denote by δ(H) and ∆(H) the minimum and maximum degrees of H, respectively.

We denote ϵ(H) the minimum size of a hyperedge in H. Particularly, we say H is

k-uniform if every hyperedge of H has size exactly k.
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v5
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e1
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e4

Figure 1.4: A hypergraph of order 7 and size 4.

Given a graph G, one can immediately construct a 2-uniform hypergraph H

with the same vertex set and edge set isomorphic to G. In fact, there are many

optional ways to associate a graph with a hypergraph, which provides possible

approaches to solving or deriving many classic problems from Graph theory.

1. Triangular graphs. A graph G is said to be triangular if any edge of G

is contained in a triangle of G. Triangular graphs (sometimes known as

ternary graphs) offer an opportunity to display data based on three variables

simultaneously. Let H be the 3-uniform hypergraph with V (H) = V (G)
and E(H) be the set of all 3-sets of V (G) that induces a triangle. Hence

for each triangular graph there lies an associating 3-uniform hypergraph, but

the converse is not true.

2. Neighbourhood hypergraphs. In graph colouring theory, there are various

problems asking a constraint of occurrence in the neighbourhood of each

vertex or edge. Given a graph G, we can establish a hypergraph H with

V (H) ⊆ V (G)∪E(G) where each hyperedge consists of the neighbourhood

of an element in G.

1.1.3 . Graph colourings

In graph theory, graph colouring is a special case of graph labeling; it is an

assignment of labels traditionally called “colours” to elements of a graph subject
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to certain constraints. There are many different types of colouring, in terms of the

research object, where vertex colouring and edge colouring are the most concerned

categories.

Definition 6. Let G be a graph.
1. A k-colouring of G is a function c : V (G) → [k]. This can be seen as a

function which associates to every vertex v ∈ V (G) a colour among a
palette of k possible ones. A partial colouring of G is a colouring of an
induced subgraph of G.

2. A colouring c of G is said to be proper whenever it follows the rule that
no edge in G has two extremities of the same colour;

∀uv ∈ E(G), c(u) ̸= c(v).

When there exists a proper k-colouring of G, we say that G is
k-colourable.

3. The chromatic number of G, denoted by χ(G), is the minimum k for
which G has a proper k-colouring.

4. For every colour i ∈ [k] used in some k-colouring c of G, the subset
of vertices c−1({i}) coloured with colour i is called a colour class, or
monochromatic class of c. The colour classes of c yield a partition of
V (G), and if c is proper, every colour class is an independent set of G.

Figure 1.5: A proper 3-colouring of C5

Remark 2. There are several equivalent definitions for a proper k-colouring of
a given graph G on n vertices. A proper k-colouring of G equals to
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1. a partition of V (G) into k independent sets,
2. a graphhomomorphism fromG to the complete graphKk on k vertices.
One can think of many variants of the colouring problem, depending on the

context needed for its application. Let us present the most essential one here. In

a k-colouring, every vertex receives a colour from a common set of colours [k].
In order to be more expressive, we consider a generalization of k-colourings where

every vertex receives its colour from a private list of allowed ones. These are list

colourings.

Definition 7. Let G be a graph.
1. A list assignment L with a graph G such that each v ∈ V (G) is assigned

a list of colours L(v). A list assignment L is called a t-list assignment if
|L(u)| = t for every u ∈ V (G). A list assignment L is called a degree-list
assignment if |L(v)| = degG(v) for every v ∈ V (G).

2. A graph G is L-colourable if there exists a proper colouring c of G such
that

∀v ∈ V (G), c(v) ∈ L(v).

3. A graph G is k-choosable if G is L-colourable for every k-list assignment
L satisfying

∀v ∈ V (G), |L(v)| ≥ k.

4. The choice number, or list chromatic number, is theminimum k such that
G is k-choosable. It is denoted χℓ(G).

5. A graph G is said to be degree-choosable if G admits an L-colouring for
every degree-list assignment L.

As we mentioned, there are many equivalent definitions of the proper colouring

of graphs, and hence there are many different ways to extend the notion of proper

colouring to hypergraphs. As some edges may contain more than 2 vertices, to

ask such an edge not to be monochromatic (all vertices of this edge have the

same colour) or to be rainbow (all vertices of this edge have the distinct colour),
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can lead to a radically different kind of behaviour, while either seems reasonable

to be defined as “proper”. The following conflict-free colouring with a moderate

constraint attracts some attention to hypergraph study.

Definition 8. LetH be a hypergraph.
1. A colouring c of the vertices of a hypergraph H is called conflict-free if

each hyperedge e of H contains a vertex whose colour is not repeated
in e.

∀e ∈ E(H), ∃v ∈ e, ∀ u ∈ e \ {v}, c(v) ̸= c(u).

2. The smallest number of colours required for such a colouring is called
the conflict-free chromatic number ofH, and is denoted by χcf(H).

Remark 3. One can observe that a conflict-free colouring of a hypergraph H
is in particular a proper colouring of the graph formed by the hyperedges of
size 2 inH.

A weakening of that notion, the odd colouring, is as follows.

Definition 9. Let H be a hypergraph. A colouring c of the vertices of a
hypergraph H is called odd if in every hyperedge e of H, there is a colour
x with an odd number of occurrences in c; we say that x is an odd colour of e

in c.
∀e ∈ E(H), ∃x ∈ c(e), |c−1(x) ∩ e| is odd.

Then we introduce edge colouring and some relative definitions.

Definition 10. Let G be a graph.
1. A k-edge colouring of a graphG is an assignment of k colours c : E(G)→

[k]. A partial edge colouring of G is a colouring of an induced subgraph
of G.

2. An edge colouring c of G is said to be proper if it satisfies that no 2
adjacent edges in G share the same colour;

∀e1, e2 ∈ E(G) and e1 ∩ e2 ̸= ∅, c(e1) ̸= c(e2).

Whenever there exists a proper k-edge colouring of G, we say that G is
k-edge colourable.
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3. The edge chromatic number of G, denoted χ′(G) is the minimum k for
which G has a proper k-edge colouring.

4. For every colour i ∈ [k] used in some k-edge colouring c of G, the
subset of edges c−1({i}) coloured with colour i is called a colour class,
or monochromatic class of c. The colour classes of c yield a partition of
E(G), and if c is proper, every colour class is a matching of G.

Definition 11. Let G be an edge-coloured graph with colouring c.
1. G is said to be properly coloured if c is proper;
2. G is said to be rainbow if all edges have distinct colours;

∀e1, e2 ∈ E(G), c(e1) ̸= c(e2).

3. G is said to bemonochromatic if all edges share the same colour;
∀e1, e2 ∈ E(G), c(e1) = c(e2).

With a more precise consideration, we introduce the concept of degree in terms

of colours, which describes how the colour of edges behaves in the neighbourhood

of any vertex. Let G be an edge-coloured graph with colouring c and v ∈ V (G)
a vertex in G. The colour degree dc

G(v) of a vertex v is the number of distinct

colours appearing on the incident edges of v. We denote by δc(G) and ∆c(G) the

minimum and maximum colour degrees, respectively, of vertices of G;

dc
G(v) = |c(NG(v))| = |{c(e) | e ∈ E(G), v ∈ e}|,

δc(G) = min
v∈V (G)

dc
G(v),

∆c(G) = max
v∈V (G)

dc
G(v).

18



1.2 . Motivation and relative works

1.2.1 . Classical chromatic number

The first and almost the most famous result about graph colouring, the Four

Colour Problem, deals almost exclusively with planar graphs in the form of the

colouring of maps. While trying to colour a map of the counties of England,

Francis Guthrie postulated the Four Colour Conjecture, noting that four colours

were sufficient to colour the map so that no regions sharing a common border

received the same colour. It took more than a century before a valid proof

was established by Kenneth Appel and Wolfgang Haken in 1976. They used the

discharging method, which had been developed in the previous decade. However,

this proof still relied on a computer program to check thousands of small statements

and is too complex to be completed by hand. Although the proof has undergone

several simplifications, a human-checkable proof has yet to be discovered.

Graph colouring theory has a central position in Discrete Mathematics. It

appears in many places with seemingly no or little connection to colouring. A

good example is the Erdős-Stone-Simonovits theorem in Extremal Graph Theory,

showing that for a fixed graph G the behaviour of the maximum number ex(n, G)
of edges in a graph on n vertices not containing G as a subgraph depends on the

chromatic number χ(G) of G:

ex(n, G) = 1
2

(
1− 1

χ(G)− 1 + o(1)
)

n2.

Even if many deep and interesting results have been obtained during the 100 years

of graph colouring, there are very many easily formulated, interesting problems

left.

To begin with, we introduce a naive upper bound of χ(G) by a greedy

algorithm. Let G be a graph with maximum degree ∆(G). For the first vertex to

be coloured, it could be assigned with any colour. Any time we colour a vertex

v ∈ V (G), let H ⊆ G be the subgraph of G induced by all coloured vertices.

Since v has at most ∆(G) neighbours in V (H), there are at most ∆(G) colours

that are forbidden for v. Hence we can greedily colour G with ∆(G) + 1 colours,

and so χ(G) ≤ ∆(G) + 1.

A well-known objective in graph colouring is to establish adequate conditions
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that can yield much-improved upper bounds on the chromatic number compared

to the straightforward ones. Over the past few decades, considerable research has

been conducted in this field, and presented below are some of the key findings in

this domain.

Theorem 1.2.1 (4-colour theorem [72]) For every planar graph G,

χ(G) ≤ 4.

Theorem 1.2.2 (Grötzsch, 1959 [39]) For every planar triangle-free graph
G,

χ(G) ≤ 3.

Theorem 1.2.3 (Brooks, 1941 [9]) For every connected graph G, either G

is a complete graph or an odd cycle, or

χ(G) ≤ ∆(G).

Theorem 1.2.4 (Johansson-Molloy theorem [46, 61]) For every
triangle-free graph G,

χ(G) ≤ (1 + o(1)) ∆(G)
ln ∆(G) .

All these theorems are sharp, since for each of them there exist infinite families

of graphs satisfying their constraints.

To handle more graph colouring problems, Vizing [79], and independently

Erdős, Rubin, and Taylor [28] introduced list colourings. A graph G has a proper

k-colouring if and only if G has an L-colouring with L(v) = [k]. Therefore, for

any graph G we have χℓ(G) ≥ χ(G). Some well-known upper bounds on χ(G)
in terms of vertex degrees hold for χℓ(G) as well. By the same greedy algorithm,

one can get that χℓ(G) ≤ ∆(G) + 1. Thomassen proved the following results of

the choosability of planar graphs.

Theorem 1.2.5 (Thomassen, 1994 [76]) For every planar graph G,

χℓ(G) ≤ 5.

Theorem 1.2.6 (Thomassen, 1995 [77]) For every planar graph G of girth
at least 5,

χℓ(G) ≤ 3.
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Clearly, every k-choosable graph is k-colourable, but the converse is known not

to be true. For instance, every planar graph is 4-colourable, but not all of them

are 4-choosable [80].

Theorem 1.2.7 (Voigt, 1993 [80]) There exist planar graphs which are not
4-choosable.

In fact, the gap between them χℓ(G) − χ(G) can be arbitrarily large. Even

worse, one can have χℓ(G) unbounded even when χ(G) = 2. Consider the

complete bipartite graph Kq,qq . On the small side of the partition, let the q

vertices be given sets of colours that are pairwise disjoint, where there are qq

possible q-tuples if we draw exactly one colour from each vertex. Then we assign

each tuple to a vertex on the large side. Then, Kq,qq does not have a list colouring

for L: no matter what set of colours is chosen for the vertices on the small side

of the bipartition, this choice will conflict with all of the colours for one of the

vertices on the other side of the bipartition.

Even though χℓ(G) can be arbitrarily larger than χ(G), the difference is

bounded by some graph parameters.

Theorem 1.2.8 Let G be a graph with n vertices. It holds that

χℓ(G) ≤ χ(G)(ln n + 1).

Especially for bipartite graphs, in [28], Erdős et al. presented the following:

What is the minimum number N(2, k) of vertices in a graph G which is 2-colourable

but not k-choosable? It was shown [28] that

2k−1 ≤ N(2, k) ≤ k22k+2.

For small values, they showed N(2, 2) = 6 and conjectured that N(2, 3) = 14,

which was confirmed by Hanson, MacGillivray and Toft [42].

1.2.2 . Conflict-free colourings

The concept of conflict-free colourings was first introduced by Even, Lotker,

Ron, and Smorodinsky [30] in a geometric setting, in connection with frequency

assignment problems for cellular networks. Pach and Tardos [67] studied this notion

and proved that every hypergraph with fewer than
(s

2
)

edges (for some integer s)

has a conflict-free colouring with fewer than s colours.
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Theorem1.2.9 (Pach and Tardos, 2009 [67]) LetH be a hypergraph with
|E(H)| <

(
s
2

)
edges for some integer s, and let ∆ be the maximum degree

of a vertex in H. Then the conflict-free chromatic number of H satisfies:

(a) χcf(H) < s;

(b) χcf(H) ≤ ∆ + 1.

Both bounds are optimal and the corresponding colourings can be found in
linear deterministic time.

Theorem 1.2.10 (Pach and Tardos, 2009 [67]) For any positive integers t

and Γ, the conflict-free chromatic number of any hypergraph in which each
edge is of size at least 2t− 1 and each edge intersects at most Γ others, is
O(tΓ1/t log Γ).

Kostochka, Kumbhat, and Łuczak [47] further studied conflict-free colouring

for uniform hypergraphs.

Theorem 1.2.11 (Kostochka, Kumbhat, and Łuczak, 2012 [47]) Let H
be a r-uniform hypergraph with m edges and maximum degree ∆.

(i) If ∆ ≤ 2r/2, and ∆ (and thus r) is large enough, then

χcf(H) ≤ 120 ln ∆ ≤ 120 ln m.

(ii) If m ≥ 2r/2, then

χcf(H) ≤ 4r(16m)2/(r+2).

In particular, let us consider two graphs or hypergraphs, given distinct

constraints, sharing a common vertex set, as follows.

Definition 12. Let G be a graph, andH be a hypergraph.
1. We say that (G,H) is a graph-hypergraph pair if they have the same

vertex set V (G) = V (H) = V .
2. A proper conflict-free k-colouring of (G,H) (pcf k-colouring for short) is

a mapping c : V → [k] that is both a proper colouring of G and a
conflict-free colouring ofH.
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By the previous observation, this can be seen as a conflict-free colouring of the

hypergraph (V, E(H) ∪ E(G)). There are many classical constraints for a proper

colouring of a given graph G that are in particular satisfied by a pcf-colouring of

(G,H), for some hypergraph H carefully chosen. For instance, if E(H) contains a

maximum independent set of every even cycle in G, then a pcf-colouring of (G,H)
is in particular an acyclic colouring of G. As another example, if E(H) contains

all (β + 1)-subsets of every neighbourhood in G, then a pcf-colouring of (G,H) is

in particular a β-frugal colouring of G.

There has been a specific focus on the special case of pcf-colourings σ of (G,H)
when H is the neighbourhood-hypergraph of G. That is, E(H) = {N(v) : v ∈

V (G), deg(v) > 0}. In that case, we say that σ is a pcf-colouring of G (so when

we omit H, it is implicitly the neighbourhood-hypergraph of G). In other words,

a pcf-colouring of G is a proper colouring of G such that for every non-isolated

vertex v, there is a colour appearing exactly once among the neighbours of v. We

let χpcf(G) be the smallest integer k such that there exists a pcf k-colouring of G.

This notion is the combination of proper colouring and the pointed conflict-free

chromatic parameter introduced by Cheilaris [15].

The notion of pcf-colourings of graphs was formally introduced by Fabrici,

Lužar, Rindošová, and Soták [31], where they investigated the pcf-colourings of

planar and outerplanar graphs, among many other related variants of a proper

conflict-free colouring. They proved that χpcf(G) ≤ 8 for all planar graphs and

χpcf(G) ≤ 5 for all outerplanar graphs. Plenty of further studies in pcf-colourings

of sparse graphs can be found in [12, 18, 31, 44, 54].

Theorem1.2.12 (Caro, Petruševski, Škrekovski [12]) Let G be a graph of
girth g ≥ 6, and let K(G) = {v ∈ V (G) | degG(v) ≥ 3}. If the distance
dG(u, v) ≥ 6 for every two vertices u, v ∈ K(G), then χpcf(G) ≤ 4.

Theorem 1.2.13 (Cho, Choi, Kwon, Park [18]) If G is a planar graph with
girth at least 5, then χpcf(G) ≤ 7.

Theorem 1.2.14 (Caro, Petruševski, Škrekovski [12]) Let G be a graph.

(i) If mad(G) ≤ 8
3 , then χpcf(G) ≤ 6.

(ii) If mad(G) ≤ 5
2 , then χpcf(G) ≤ 5.
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(iii) If mad(G) ≤ 24
11 , then χpcf(G) ≤ 4, unless every maximal

2-connected subgraph of G is a 5-cycle.

Theorem 1.2.15 (Cho, Choi, Kwon, Park [18]) For c ≥ 5, if G is a graph
with mad(G) ≤ mad(K∗

c+1) = 4c
c+2 , then χpcf(G) ≤ c, unless G contains

K∗
c+1 as a subgraph. Here K∗

c+1 is the 1-subdivision of Kc+1.

Theorem 1.2.16 (Cho, Choi, Kwon, Park [18]) If G is a graph with
mad(G) ≤ 12

5 and no induced 5-cycle, then χpcf(G) ≤ 4.

Theorem 1.2.17 (Fabrici, Lužar, Rindošová, Soták [31]) For the class of
planar graphs P , it holds that

6 ≤ χpcf(P) ≤ 8.

For the class of outerplanar graphs O, it holds that

χpcf(O) = 5.

Theorem 1.2.18 (Hickingbotham [44]) For every Kt-minor free graph G,
χpcf(G) ≤ 5(t− 1)(t− 2)− 1.

Theorem 1.2.19 (Liu [54]) For every graph H , there exists a real number
cH such that every graph that does not contain a subdivision of H (as a
subgraph) is conflict-free cH -choosable.

Theorem 1.2.20 (Liu [54]) Let d be a nonnegative integer. If F is a
d-degenerate minor-closed family, then every graph G in F is conflict-free
(2d + 1)-choosable.

Given a graph G, we let δ∗(G) denote the degeneracy of G, that is δ∗(G) =
maxH⊆G δ(H). Caro, Petruševski, and Škrekovski [12] proposed the following

conjecture about pcf-colourings.

Conjecture 1.2.1 (Caro, Petruševski, Škrekovski [12, Conjecture 6.4]) If
G is a connected graph of maximum degree ∆ ≥ 3, then χpcf(G) ≤ ∆+1.

As a first step toward their conjecture, Caro, Petruševski, and Škrekovski [12]

proved that for such a graph G, χpcf(G) ≤ ⌊2.5∆⌋. Recently, it has been observed
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by Cranston and Liu [22] that χpcf(G) ≤ ∆(G) + δ∗(G) + 1 (they actually more

generally proved that there always exists a pcf (∆(H)+δ∗(G)+1)-colouring of any

given pair (G,H)). They further reduced the gap to Conjecture 1.2.1 by proving

that χpcf(G) ≤
⌈
1.6550826∆ +

√
∆
⌉
, given that ∆ is large enough.

Theorem 1.2.21 (Cranston, Liu [22]) Let G be a graph and H be a
hypergraph with V (G) = V (H). If G is d-degenerate, then (G,H) has a
proper conflict-free colouring with at most d + ∆(H) + 1 colours.

Theorem1.2.22 (Cranston, Liu [22]) Fix a positive integer ∆ ≥ 1.24811·
108, fix a real number β with ∆ ≥ β ≥ 0.6550826∆, and let a :=⌈
∆ + β +

√
∆
⌉
. If G is a graph with maximum degree at most ∆ and L

is an a-assignment for G, then there are at least β|V (G)| proper conflict-free
L-colourings of G.

1.2.3 . Odd colourings

In [16], Cheilaris, Keszegh, and Pálvölgyi introduced odd colourings, a

weakening of conflict-free colourings. It is straightforward that a conflict-free

colouring of H is in particular an odd colouring of H. Petruševski and Škrekovski

[69] later considered that notion applied to the neighbourhood-hypergraph of a

graph G. They defined an odd colouring of graph G as a proper colouring of G

with the additional constraint that each non-isolated vertex has a colour appearing

an odd number of times in its neighbourhood. The odd chromatic number of

G, denoted by χo(G), is the minimum integer k such that there exists an odd

k-colouring of G. Since odd colourings are a weakening of pcf-colourings, it always

holds that χo(G) ≤ χpcf(G). In the last couple of years, there has been some

interest in determining the extremal value of χo in various classes of graphs.

Even though all results about pcf-colouring can be directly used to bound

χo(G), they could behave differetly on many classes of graphs. For the case of

sparse graphs, Petruševski and Škrekovski [69] showed that χo(G) ≤ 9 for every

planar graph G with a proof that relies on the discharging method. Furthermore,

they conjectured that this bound may be reduced to 5. If true, this would be

tight, since χo(C5) = 5. Recently there has been considerable attention in odd

colourings of planar graphs [11, 19, 20, 68].
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Conjecture 1.2.2 (Petruševski, Škrekovski [69]) For every planar graph
G it holds that χo(G) ≤ 5.

Theorem 1.2.23 (Cho, Choi, Kwon, Park [19]) Every planar graph with
girth at least 5 is odd 6-colourable.

A graph G is said to be 1-planar if it can be drawn in the plane so that each

edge is crossed by at most one other edge. Cranston, Lafferty, and Song [21]

proved that every 1-planar graph admits an odd 23-colouring. Later Liu, Wang,

and Yu [55] improved this bound to 13.

Theorem 1.2.24 (Liu, Wang, Yu [55]) Every 1-planar graph admits an odd
13-colouring.

For graphs with a small maximum average degree, Cho, Choi, Kwon, and Park

[19] proved the following result, which is a little bit stronger than the version of

pcf.

Theorem 1.2.25 (Cho, Choi, Kwon, Park [19]) If G is a graph with
mad(G) ≤ 22

9 and no induced 5-cycle, then χo(G) ≤ 4.

Caro, Petruševski, and Škrekovski [11] also studied various properties of the odd

chromatic number of general graphs; in particular, they proved the following facts:

every graph of maximum degree three has an odd 4-colouring; every graph, except

for C5, of maximum degree ∆ has an odd 2∆-colouring. Moreover, they proposed

a conjecture for general graphs, which is a weaker form of Conjecture 1.2.1.

Conjecture 1.2.3 (Caro, Petruševski, Škrekovski [11, Conjecture 5.5]) If
G is a connected graph of maximum degree ∆ ≥ 3, then χo(G) ≤ ∆ + 1.

1.2.4 . Edge-coloured subgraphs

While approaching the chromatic number χ(G) of a graph G can be highly

complicated, the edge chromatic number χ′(G) is much more clear. In any proper

edge colouring of G, the edges incident with any one vertex must be assigned

different colours. It follows that

χ′(G) ≥ ∆(G).
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In fact, there are infinitely many cases when the equality χ′(G) = ∆(G) holds for

a graph G. An important theorem proved by Vizing (1964) and, independently,

Gupta (1966), asserts that

Theorem 1.2.26 (Vizing’s theorem) For any graph G, either χ′(G) =
∆(G) or χ′(G) = ∆(G) + 1.

Since for any graph G, the edge chromatic number is either ∆(G) or ∆(G)+1,

it is meaningful to determine the exact value of χ′(G). When χ′(G) = ∆(G), G

is said to be of class 1; otherwise, it is said to be of class 2. For instance, every

bipartite graph is of class 1, and almost all random graphs are of class 1. However,

it is NP-complete to determine whether an arbitrary graph is of class 1.

Meanwhile, there are many efficient algorithms to assign proper edge-colouring

of graphs, where most of them run in polynomial time. As an example, Gabow et

al. [36] showed that every simple graph of maximum degree ∆ can be properly

edge-coloured by ∆ + 1 colours in O(m
√

n log n) run-time.

Hence the majority of the study of edge colourings becomes analysing the

colouring structure of them, in which an edge-coloured graph can be regarded as a

special weighted graph. To begin with, we would like to mention the Hamiltonian

problem, one of the most famous problems in Graph Theory and Algorithms, dealing

with the connectivity of uncoloured graphs. A Hamiltonian cycle of a graph G is

a cycle that spans the whole graph. If G has a Hamiltonian cycle, then G is

Hamiltonian.

Figure 1.6: A Hamiltonian cycle of the dodecahedron

It is well-known that the Hamiltonian problem is NP-complete. Finding a

Hamiltonian path or cycle in a general graph is computationally tricky and may
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require significant computational resources. There was no elegant characterization

of Hamiltonian graphs for a long time. A well-constructed necessary and sufficient

condition for a graph to be Hamiltonian turns out to be impossible under the

hypnothesis that P ! = NP . Naturally, there has been much literature on graph

theory studying sufficient conditions for Hamiltonicity, where the edge density is

the most involved one. The earliest known result based on a degree condition was

given by Dirac [25] in 1952.

Theorem 1.2.27 (Dirac, 1952 [25]) Let G be a graph on n vertices. If
δ(G) ≥ n

2 , then G is Hamiltonian.

Over time, numerous researchers have established many results about finding

a specific structure in various kinds of graphs, which include but never be limited

to, normal graphs, directed graphs, coloured graphs and hypergraphs.

The study on the existence of properly coloured cycles in edge-coloured graphs

has a long history. Grossman and Häggkvist [38] provided a sufficient condition for

the existence of properly coloured cycles in edge-coloured graphs with two colours.

Yeo [2] extended this result to any number of colours.

Theorem 1.2.28 (Grossman and Häggkvist, 1983 [38]) Let G be a graph
whose edges are coloured red and blue so that every vertex is incident with
at least one edge of each colour. Then either G has a cut vertex separating
colours, or G has an alternating cycle.

Theorem 1.2.29 (Yeo, 1996 [2]) If G is an edge-coloured graph with no
alternating cycle, then there is a vertex z ∈ V (G) such that every connected
component of G− z is joined to z of edges with monochromatic edges.

During the past decades, establishing sufficient conditions forcing rainbow or

properly coloured cycles of certain lengths has received considerable attention [3,

7, 24, 33, 49, 50, 52, 56]. For short properly coloured cycles, the case of triangles

is the most studied one and obtains many significant results. The well-known

Gallai colouring theory gives a structural characterisation of edge-coloured complete

graphs containing no rainbow triangles [37, 40]. Gyárfás and Simonyi [40] proved

that each edge-coloured complete graph Kn with ∆mon(Kn) < 2n/5 contains a

properly coloured triangle and this bound is tight. Conditions for the existence of
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rainbow triangles in edge-coloured graphs (not necessarily complete) are given in

[49, 50].

Theorem 1.2.30 (Li, 2013 [50]) Let G be an edge-coloured graph of order
n ≥ 3. If δc(G) ≥ n/2, then G has a rainbow triangle.

Theorem 1.2.31 (Li, Ning, Xu and Zhang, 2014 [49]) Let G be an
edge-coloured graph on n vertices.

1. If e(G) + c(G) ≥ n(n + 1)/2, then G contains a rainbow triangle.

2. If
∑

v∈V (G) dc
G(v) ≥ n(n+1)/2, then G contains a rainbow triangle.

Later, Fujita et al. [33] gave the colour degree condition for properly coloured

triangles in edge-coloured complete graphs.

Theorem 1.2.32 If δc(Kn) > log2 n with n ≥ 3, then Kn contains a
properly coloured C3.

In the case of properly coloured Hamiltonian cycles, Bollobás and Erdős [7]

conjectured that every edge-coloured Kn with ∆mon(Kn) ≤ ⌊n/2⌋ − 1 contains a

properly coloured Hamiltonian cycle and this conjecture was asymptotically resolved

by Lo [58].

Theorem 1.2.33 (Lo, 2016 [58]) For any ε > 0, there exists an integer
N0 = N0(ε) such that every Kn with N ≥ N0 and ∆mon(Kn) ≤ (1/2−
ε)n contains a properly coloured Hamiltonian cycle.

Lo [57] also considered the existence of properly coloured Hamiltonian cycles under

colour degree conditions.

Theorem 1.2.34 (Lo, 2014 [57]) For every edge-coloured G with δc(G) ≥
2|G|/3 contains a properly coloured 2-factor.

Theorem 1.2.35 (Lo, 2014 [57]) For every ε > 0, there exists an integer
n0 such that every edge-coloured graph G with δc(G) ≥ (2/3 + ε)|G| and
|G| ≥ n0 contains a properly coloured cycle of length ℓ for all 3 ≤ ℓ ≤ |G|.

Using the absorbing technique and stability method, Lo [59] improved above result

by the ε term.
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Theorem 1.2.36 (Lo, 2019 [59]) For ε > 0, there exists n0 ∈ N such that
every edge-coloured graph G on n ≥ n0 vertices with δc(G) ≥ (1/2 + ε)n
contains a properly coloured cycle of length at least min{⌊3δc(G)/2⌋ , n}.

This result actually partially answered another conjecture raised by Lo [56], which

asks for sufficient conditions for an edge-coloured graph to contain properly

coloured cycles or paths of any given length.

Conjecture 1.2.4 (Lo, 2013 [56]) Every edge-coloured connected graph G

with δ(G) ≥ d contains a properly coloured Hamiltonian cycle or a properly
coloured path of length ⌊2d/3⌋.

Li and Wang [51] showed that every edge-coloured graph G with δc(G) ≥ d

contains a properly coloured path of length 2d or a properly coloured cycle of

length at least 2d/3. In [56], Lo improved 2d/3 to d + 1, which is best possible.

Note that Theorem 1.2.36 implies Conjecture 1.2.4 when d ≥ (1/2 + ε)n and n

large. It would be interesting to know whether Conjecture 1.2.4 holds for d < 1/2.

1.2.5 . Generalised Ramsey number

If G has no large cliques, then one might ask whether G has a large independent

set. That this is indeed the case was first proved by Ramsey.

Theorem 1.2.37 (Ramsey, 1930) For every two integers r and s, there
exists an integer R(r, s) such that any graph on at least R(r, s) vertices
either contains a clique of size r or an independent set of size s.

The number R(r, s) are known as Ramsey number with parameters r and

s. Computing the exact value or R(r, s) for various values of r and s is a hard

theoretical problem. The first exponential lower bound was obtained by Erdős

using the probabilistic method. However, there is a vast gap between the tightest

lower bounds and the tightest upper bounds. There are also very few numbers r

and s for which we know the exact value of R(r, s).
The Ramsey theory can be equivalently defined on edge-coloured graphs, which

is isomorphic to that any edge-coloured graph on at least R(r, s) with 2 colours

(namely red and blue) either contains a red monochromatic clique of size r or

a blue monochromatic clique of size s. More generally, we may allow arbitrarily
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many colours to be used, and ask what types of subgraphs are forced if we replace

monochromatic by some other condition on the subgraph’s colouring. Erdős and

Rado [27] were among the first to study problems of this type. In 1950 they proved

a counterpart of Ramsey’s theorem on colourings of finite sets using arbitrarily

many colours. Their theorem is often known as the Canonical Ramsey Theorem.

We paraphrase that theorem, in terms of the following notation. When the end

vertices u and v of an edge e are integers, we call max(u, v) the higher endpoint

and call min(u, v) the lower endpoint.

Theorem 1.2.38 (Erdős-Rado [27]) Let p be a positive integer. Then
there exists a least positive integer N = er(p) such that if the edges of
the complete graph KN with vertex set {1, . . . , N} are coloured using an
arbitrary number of colours, then there exists a complete subgraph with p
vertices on which the colouring is of one of four canonical types:

1. monochromatic—all edges have the same colour;

2. rainbow—no two edges have the same colour;

3. upper lexical—two edges have the same colour if and only if they have
the same higher endpoint;

4. lower lexical—two edges have the same colour if and only if they have
the same lower endpoint.

Both Ramsey theorem and the Canonical version focus on minimizing the order

of graphs such that there exists an edge-coloured subgraph of any given type.

Conversely, for a fixed complete graph Kn on n vertices, the number of colours used

on the edges will determine its colouring structure—more multicoloured subgraphs

may appear with the increment of the number of colours, for instance. Let us

formalise this problem, which is called the anti-Ramsey problem.

Given a positive integer n and a graph G, the anti-Ramsey number ar(Kn, G)
is the maximum number of colours in an edge-colouring of Kn that has no rainbow

copy of G. This notion was introduced by Erdős, Simonovits and Sós [29]. They

showed that ar(Kn, G) − ex(n,G) = o(n2), where G = {G − e : e ∈ E(G)}.
Here ex(n,F) is the Turán number of F , which is the maximum number of
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edges of a simple graph of order n having no member of F as a subgraph. This

determined ar(Kn, G) asymptotically when χ(H) ≥ 3 for any H ∈ G. The

remaining case is more complex. For paths, Simonovits and Sós [75] proved that

ar(Kn, P2t+3+ϵ) = tn −
(t+1

2
)

+ 1 + ϵ for large n, where ϵ = 0 or 1. Here

Pℓ denotes the path of ℓ vertices. For cycles, Erdős, Simonovits, and Sós [29]

conjectured that for every fixed ℓ ≥ 3, ar(Kn, Cℓ) = ( ℓ−2
2 + 1

ℓ−1)n + O(1), and

proved that ar(Kn, C3) = n − 1 for ℓ = 3. Alon [1] proved this conjecture for

ℓ = 4 and gave some upper bounds for k ≥ 5. Jiang, Schiermeyer, and West [45]

proved this for ℓ ≤ 7. Finally, in 2005, Montellano-Ballesteros and Neumann-Lara

[65] completely proved this conjecture. For cliques, Erdös, Simonovits, and Sós

[29] showed that ar(Kn, Kp+1) = ex(n, Kp)+1 for p ≥ 3 and sufficiently large n.

Montellano-Ballesteros [64] and Neumann-Lara showed that this holds for every

3 ≤ p ≤ n. We would mention a survey by Fujita, Magnant and Ozeki [35] for

more conclusions towards these problems.

On the analogy of ar(Kn, G), we denote by pr(Kn, G) the maximum number

of colours in an edge-colouring of Kn that has no properly coloured copy of G.

The problem on the minimum number of colours, sufficient for the existence

of given types of properly edge-coloured subgraphs in an edge-colouring of Kn,

was first studied by Manoussakis, Spyratos, Tuza, and Voigt [60]. For cliques,

they [60] obtained the approximate value of pr(Kn, Kt). Fang, Győri, and Xiao

[32] generalized this result to an arbitrary graph G.

Theorem 1.2.39 (Fang, Győri, and Xiao, 2021 [32]) Let G be a graph and
G ′ = {G−M : M is a matching of G}, then pr(Kn, G) ≥ ex(n,G ′)+1
and pr(Kn, G) = (d−1

2d + o(1))n2, where d = min{χ(F ) : F ∈ G ′} − 1.

For paths, Manoussakis, Spyratos, Tuza, and Voigt [60] proved that

pr(Kn, Pn) =
(n−3

2
)

+ 1 for large n. Fang, Győri, and Xiao [32] proved that

pr(Kn, P3) = 1, pr(Kn, P4) = 2, and pr(Kn, P5) = 3. They [32] more generally

proved the following.

Theorem 1.2.40 (Fang, Győri, and Xiao, 2021 [32]) Let Pℓ be a path with
ℓ ≥ 27 and ℓ ≡ rℓ mod 3, where 0 ≤ rℓ ≤ 2. For n ≥ 2ℓ3, we have

pr(Kn, Pℓ) = (⌊ ℓ3⌋ − 1)n−
⌊ ℓ

3⌋
2

 + 1 + rℓ.
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For cycles, we can observe that pr(Kn, C3) = ar(Kn, C3) = n − 1. Li,

Broersma, and Zhang [53] and Xu, Magnant, and Zhang [83] showed that

pr(Kn, C4) = n for n ≥ 4. Fang, Győri, and Xiao [32] showed that pr(Kn, C5) =
n + 2 for n ≥ 5 and pr(Kn, C6) = n + 5 for n ≥ 6. For classes of cycles,

Han, Zhang, Bai, and Li [41] completely characterized edge-coloured complete

graphs containing no properly coloured odd cycles. Manoussakis, Spyratos, Tuza,

and Voigt [60] proved that pr(Kn, Cn) =
(n−1

2
)

+ 1, and proposed an interesting

conjecture for cycles as follows.

Conjecture 1.2.5 (Manoussakis et al. 1996 [60]) Let n > ℓ ≥ 4. Assume
that Kn is coloured with at least k colours, where

k =


1
2ℓ(ℓ + 1) + n− ℓ + 1, if n <

10ℓ2 − 6ℓ− 18
6(ℓ− 3) ;

1
3 ln− 1

18 l(ℓ + 3) + 2, if n ≥ 10ℓ2 − 6ℓ− 18
6(ℓ− 3) ,

then Kn admits a properly coloured cycle of length ℓ + 1.

In the same paper they [60] proved that if Kn is edge-coloured with at least ℓn
2

colours, then it contains a properly coloured cycle of length at least ℓ + 1. Fang,

Győri, and Xiao [32] slightly improved the lower bound of Conjecture 1.2.5 and

modified it as follows.

Conjecture 1.2.6 (Fang, Győri, and Xiao, 2021 [32, Conjecture 2]) Let
Cℓ be a cycle on ℓ vertices and ℓ−1 ≡ rℓ−1 mod 3, where 0 ≤ rℓ−1 ≤ 2.
For n ≥ ℓ, pr(Kn, Cℓ) equals to

max

ℓ− 1

2

 + n− ℓ + 1,

⌊
ℓ− 1

3

⌋
n−

⌊ ℓ−1
3 ⌋+ 1

2

 + 1 + rℓ−1


.

1.2.6 . Weakly proper spanning trees

The connectivity of graphs play an important role in the study of Structural and

Algorithmic Graph Theory. Similarly, some researchers have considered rainbow or

properly coloured subgraphs. Aside from the its applications, properly colored
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paths and cycles appear in a variety of other fields including Genetics and Social

Sciences. Chartrand, Johns, Mckeon, and Zhang [14] first introduced the rainbow

connection in graphs.

Definition 13. Let G be an edge-coloured graph. G is rainbow connected if G

contains a rainbow u− v path for every two vertices u and v of G.
This notion have been further studied in [10, 13, 23, 48, 74]. In this thesis,

we mainly focus a weakening properly coloured version. In [81], Wang and Li

considered what they called “alternating cycles” in edge-coloured graphs, cycles in

which no two adjacent edges share a colour. Since this terminology can be a bit

misleading when the number of colours is greater than 2, Fujita and Magnant [34]

introduced the following.

Definition 14. Let G be an edge-coloured graph. G is properly connected if G

contains a properly coloured u− v path for every two vertices u and v of G.
In the same paper, they proved a Dirac type condition for an edge-coloured

graph to be properly connected.

Theorem 1.2.41 ([34]) Let G be an edge-coloured graph of order n. If
n ≥ 3 and δc(G) ≥ n/2, then G is properly connected.

The lower bound in Theorem 1.2.41 is sharp, which means that there exists an

edge-coloured graph G with δc(G) = (n − 1)/2 having two vertices u, v ∈ V (G)
such that there is no properly coloured u− v path.

Another significant issue of connectivity is spanning trees. The problem of

searching for properly coloured trees in edge-coloured graphs is a generalization of

the well-known bounded degree spanning tree problem for uncolored graphs, as the

number of colours bounds the degree here. In [17], Cheng, Kano, and Wang gave

a minimum colour degree condition forcing properly coloured spanning trees, and

the lower bound is sharp.

Theorem 1.2.42 ([17]) Let G be an edge-coloured graph of order n. If
δc(G) ≥ n/2, then G has a properly coloured spanning tree.

In 2019, Borozan, Fernandez de La Vega, Manoussakis, Martinhon, Muthu,

Pham, and Saad [8] introduced the concept of weakly proper tree and proved the

following theorem.
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Definition 15. An edge-coloured tree T with fixed root r is weakly proper if
every path in T , from the root r to any leaf, is properly coloured.
Theorem 1.2.43 ([8]) For a given vertex r in an edge-coloured graph G,
the problem of determining whether G has a weakly proper spanning tree
with root r is NP-complete.

1.3 . Contribution and outline of the thesis

In this section, we summarize the main works and the organization of this

thesis.

(1) We study the general upper bound for the odd chromatic number of graphs

and graph-hypergraph pairs in terms of maximum degree conditions. The

concept of odd colouring was first introduced by Cheilaris, Keszegh, and

Pálvölgyi. They conjectured that χo(G) ≤ ∆(G)+1 for any G with ∆(G) ≥
3. We asymptotically solve this conjecture. On the other hand, it is showed

that the gap between χ(G) and χo(G) can be arbitrarily large for infinitely

many graphs. We give many optimal bounds up to a multiplicative constant.

Moreover, we generalise the above two kinds of results to that guarantee

multiple odd colours. This work is illustrated precisely in Chapter 2.

[Corresponding paper: New bounds for odd colourings of graphs, Submited

to Electron. J. Combin. in Jun. 2023, with Tianjiao Dai and François

Pirot.]

(2) Given a graph G, let pr(n, G) be the maximum number of colours in an

edge-colouring of Kn with no properly coloured copy of G. We focus on

the case when G is a cycle of length ℓ.

This problem was raised by Manoussakis, Spyratos, Tuza, and Voigt. Later

Fang, Győri, and Xiao gave a precise conjecture and showed the extremal

edge-coloured graphs Kn with exact pr(n, G) colours without properly

coloured Cℓ. We prove this conjecture by an accurate characterization.

Moreover, we prove a sufficient condition for extending a properly coloured
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cycle by exactly one more vertex in an edge-colouring of Kn. This work is

shown in Chapter 3.

[Corresponding paper: Properly colored cycles in edge-colored complete

graphs, Submitted to Discrete Math. in Feb. 2023, with Tianjiao Dai,

Hao Li, and Yannis Manoussakis.]

(3) An edge-coloured tree T with fixed root r is weakly proper if every path in T ,

from the root r to any leaf, is properly coloured. Fujita and Magnant proved

the sharp bound of degree condition for a graph to be properly connected,

while the case of properly coloured spanning trees was showed by Cheng,

Kano, and Wang, both of them equals to |V (G)|/2.

We gives some sufficient conditions for an edge-coloured graph G to have a

weakly proper spanning tree with root r for any vertex r ∈ V (G). We also

analyse the difference of our results from a graph to be properly connected,

or to have a properly coloured spanning tree. This work is discussed in

Chapter 4.

[Corresponding paper: On sufficient conditions for weakly proper spanning

trees in edge-colored graphs, in preprint, with Jie Hu, Shun-ichi Maezawa,

and Yannis Manoussakis.]
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2 - New bounds for odd colourings of graphs

2.1 . Introduction

In this chapter we study the odd chromatic number of graphs and graph-hypergraph

pairs. Caro, Petruševski, and Škrekovski [11] conjectured that any connected graph

G of maximum degree ∆ ≥ 3 has odd chromatic number at most ∆ + 1 (see

Conjecture 1.2.3).

Our main result states that Conjecture 1.2.3 holds asymptotically as ∆→∞.

Theorem 2.1.1 For every graph G of maximum degree ∆,

χo(G) ≤ ∆ + ⌈4(ln ∆ + ln ln ∆ + 3)⌉ .

For small values of ∆, we provide another bound on χo(G) that is derived from

a relatively simple (deterministic) colouring procedure.

Theorem 2.1.2 For every graph G of maximum degree ∆,

χo(G) ≤
⌊

3∆
2

⌋
+ 2.

The proofs of our results stated in Theorem 2.1.1 and Theorem 2.1.2 rely

highly on the structure of neighbourhood hypergraphs. In a more general setting,

we could wonder how the odd colouring problem behaves on any graph-hypergraph

pair (G,H). We were able to extend Theorem 2.1.1 to that more general setting,

at the cost of requiring a lower bound on the minimum hyper-edge size ϵ(H) in H.

Theorem 2.1.3 There exists a universal constant C such that, for every
graph-hypergraph pair (G,H), if ϵ(H) ≥ C log ∆(H) then there is an odd
k-colouring of (G,H), where

k ≤ ∆(G) + C log ∆(H).

With that extra condition on ϵ(H), we can actually derive an upper bound on

χo(G,H) that mainly depends on χ(G) rather than ∆(G). Moreover, we show

with a construction that this bound is tight up to the precise value of the constant

C.
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Theorem 2.1.4 There exists a universal constant C such that, for every
graph-hypergraph pair (G,H), if ϵ(H) ≥ C log ∆(H) then there is an odd
k-colouring of (G,H), where

k ≤ χ(G) · C log ∆(H).

When ϵ(H) gets closer to ∆(G), we show that the difference χo(G,H) − χ(G)
gets relatively small.

Theorem 2.1.5 There exists a universal constant C such that, for every
graph-hypergraph pair (G,H), there is an odd k-colouring of (G,H), where

k ≤ χ(G) + C
∆(G) log ∆(H)

ϵ(H) .

A direct consequence of Theorem 2.1.5 is that for quasi-regular graphs G

(that is, the ratio ∆(G)/δ(G) is bounded by a uniform constant), the difference

χo(G)−χ(G) is small, namely O(log ∆(G)). This contrasts with the general case

where that difference can be much larger: if G is the 1-subdivision of the complete

graph on ∆ + 1 ≥ 5 vertices, then χ(G) = 2 while χo(G) = ∆ + 1.

2.2 . Probabilistic tools.

The first probabilistic result that we need is the following lopsided version of the

Symmetric Lovász Local Lemma (LLL for short) (see e.g. [4]).

Lemma 2.2.1 (Lopsided Lovász Local Lemma) Let B = {B1, . . . , Bn}
be a finite set of random (bad) events, and let d be a fixed integer. Suppose
that, for every i ∈ [n], there is a set Γ(i) ⊆ [n] of size at most d such that,
for every Z ⊆ [n] \ Γ(i),

P
Bi

∣∣∣∣∣∣
⋂

j∈Z

Bj

 ≤ p.

If epd ≤ 1, then P
 ⋂

i∈[n]
Bi

 > 0.

Many random variables we analyse in this paper are highly concentrated around

their mean. This is a consequence of Chernoff’s bounds as stated hereafter.
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Lemma2.2.2 (Chernoff’s bounds) Let X1, . . . , Xn be i.i.d. (0, 1)-valued
random variables, and let Sn := ∑n

i=1 Xn. Let us write µ := E [Sn]. Then

(i) for every 0 ≤ η < µ,

P [Sn ≤ µ− η] ≤ e− η2
2µ , and

(ii) for every η > 0,

P [Sn ≥ µ + η] ≤ e− η2
2(µ+η) .

Finally, we will need to analyse a specific Markovian process as described in

the following lemma. First we observe that, using the well-known Stirling bounds
√

2πn

(
n

e

)n

e
1

12n+1 ≤ n! ≤
√

2πn

(
n

e

)n

e
1

12n

for every integer n ≥ 1, it is straightforward to derive that

n!(
n
2
)
! ≤
√

2
(2n

e

)n/2 (2.1)
for every even integer n ≥ 2. We will also use the classical upper bound

(n
k

)
≤(

ne
k

)k.

Lemma 2.2.3 Let X1, X2, . . . be a sequence of binary random variables
with values in {−1, 1}, let S0 ∈ N be a non-negative integer, and let Si :=
S0 +∑i

j=1 Xj for every integer i ≥ 0. If there exists a real number τ > 0
such that, for every i ≥ 0, it holds that P [Xi = −1 | Si−1 = s] ≤ s/τ ,
then

P [Sn ≤ k] ≤
√

2
n

k

(2n− 2k

eτ

)n−k
2

,

for every integers 0 ≤ k ≤ n.

Proof of Lemma 2.2.3. Given a possible outcome (X1, . . . Xn) of
(X1, . . . , Xn) that yields that Sn ≤ k, let I := {i : Xi = −1}. Noting that
Sn = S0 + n− 2|I| conditioned on X1 = X1, . . . , Xn = Xn, we infer that
|I| ≥ S0+n−k

2 ≥ n−k
2 . Moreover, if ij is the j-th last element in I , then it

deterministically holds that Sij−1 ≤ k + j, and hence
P
[
Xij

= −1
∣∣∣ X1 = X1, . . . , Xij−1 = Xij−1

]
≤P

[
Xij

= −1
∣∣∣ Sij−1 ≤ k + j

]
≤ k + j

τ
.
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We therefore have the following (crude) upper-bound:
P [X1 = X1, . . . , Xn = Xn] ≤

∏
i∈I

P [Xi = −1 | X1 = X1, . . . , Xi−1 = Xi−1]

≤
n−k

2∏
j=1

k + j

τ
=

(
n+k

2

)
!

k! τ
n−k

2
.

Since there are at most ( n
n−k

2

) possibles choices for the n−k
2 last

elements of I , we have
P [Sn ≤ k] ≤

(
n

n−k
2

)
·

(
n+k

2

)
!

k! τ
n−k

2

= n!
k!
(

n−k
2

)
! τ

n−k
2

=
(

n

k

)
(n− k)!(

n−k
2

)
! τ

n−k
2

≤
√

2
(

n

k

)(
2n− 2k

eτ

)n−k
2 by (2.1)

≤
√

2
(

ne

k

)k
(

2n− 2k

eτ

)n−k
2

.

Let G be a graph, and C (G) ⊆ [k]V (G) a prescribed set of k-colourings of G.

Given a colouring σ ∈ C (G) and a vertex v ∈ V (G), we let Lσ(v) be the set of

colours x such that, if we redefine σ(v)← x, we still have σ ∈ C (G). For instance,

if C (G) is the set of proper k-colourings of G, then Lσ(v) = [k] \ σ(N(v)).

Lemma 2.2.4 Let G be a graph, and C (G) a set of colourings of G. Let
σ be drawn uniformly at random from C (G). For a given subset of vertices
X ⊆ V (G), let Bσ be the bad event that X has no colour in σ, and let
M ⊆ X be a subset of size m ≤ |X|. If there exists an integer τ such
that we deterministically have |Lσ(v)| ≥ τ for every vertex v ∈ M , then
for every possible realisation σ0 of σ|V (G)\M , we have

P
[
Bσ

∣∣∣ σ|V (G)\M = σ0
]
≤
√

2
(

2m

eτ

)m/2
.

Proof. LetM = {u1, . . . , um} be a fixed subset ofX . Let σ0 be a possible
realisation of σ|V (G)\M . Let σ0 be drawn uniformly at random from the
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extensions of σ0 to C (G). For every 1 ≤ i ≤ m, we let σi ∈ C (G) be
obtained fromσi−1 by resampling the colour of ui uniformly at random
from Lσi−1(ui). For every i ≤ m, let Si be the number of odd colours
of X in σi. For every i ≥ 1, we have Si = Si−1 − 1 if σi(ui) is one of
the Si−1 odd colours of X in σi−1; since there are at least τ choices for
σi(ui) this happens with probability at most k/τ if Si−1 = k. Otherwise,
we haveSi = Si−1+1. So the sequence (Si)i≤m satisfies the hypotheses
of Lemma 2.2.3, hence by setting k := 0 we have

P [Bσm ] = P [Sm = 0] ≤
√

2
(2m

eτ

)m/2
.

Since we resample the colours uniformly at random, the random
colourings (σi)i≤m are identically distributed. Therefore, if σ is drawn
uniformly at random from C (G), we have

P
[
Bσ

∣∣∣ σ|V (G)\M = σ0
]

= P [Bσ0 ] = P [Bσm ] ,

and the conclusion follows.
2.3 . A greedy bound

Given a proper k-colourings σ : V (G) → [k], and a vertex u ∈ V (G), we

denote Uσ(u) the set of odd colours of NG(u) in σ. So σ is an odd k-colouring

if |Uσ(u)| ≥ 1 for every vertex u ∈ V (G). If Uσ(u) = {x}, we say that u is

σ-critical, and that x is its witness colour ; we denote it wσ(u) := x.

Proof of Theorem 2.1.2. Let v1, . . . , vn be an arbitrary ordering of the
vertices of G. We let Hi := G[{v1, . . . , vi}] for every i ∈ [n]. Let
k :=

⌊
3∆
2

⌋
+ 2, and let C (H) denote the set of odd k-colourings of

each induced subgraph H ⊆ G. We construct an odd k-colouring of G

greedily by constructing a sequence of partial colourings (σi)i∈[n] that
satisfies the following induction hypothesis.

σi ∈ C (Hi) and |Uσi
(u)| ≥ 1 for every vertex u ∈ NG(V (Hi)). (IH)

For the base case, we may begin with the empty colouring σ0.
Let us now assume that we have constructed σi that satisfies
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(IH). In order to maintain (IH), we forbid that σi+1(vi+1) is one of
{σi(u) : u ∈ NHi

(vi+1)} ∪ {wσi
(u) : u ∈ NG(vi+1) and u is σi-critical}. If

at most k−1 colours are forbidden for vi+1, then there remains at least
one possible choice for σi+1(vi+1), and letting σi+1(u) = σi(u) for every
u ∈ V (Hi) we have that σi+1 satisfies (IH).

We may now assume that all k colours are forbidden for vi+1. Let
X ⊆ NG(vi+1) be the set of neighbours of vi+1 that forbid exactly one
colour for vi+1, and Y ⊆ NG(vi+1) \X be the set of neighbours of vi+1

that forbid exactly two colours for vi+1 (so Y ⊆ V (Hi) and every vertex
y ∈ Y is σi-critical). We claim that there is a vertex y ∈ Y such that
σi(y) is forbidden only by y for vi+1. Indeed, otherwise the number
of forbidden colours for vi+1 would be at most |X| + 3

2 |Y | ≤
3
2∆ <

k, a contradiction. We also claim that σi(y) is not a witness colour of
vi+1 in σi. Indeed, otherwise every colour of N(vi+1) \ y appears at
least twice, hence vi+1 has at most ⌊∆−1

2

⌋
+ 1 adjacent colours in σi.

Since there are atmost∆witness colours inNG(vi+1), there are atmost⌊
3∆+1

2

⌋
≤ k − 1 forbidden colours for vi+1, a contradiction. Let us set

σi+1(vi+1) := σi(y), and σi+1(u) := σi(u) for every vertex u ∈ V (Hi) \ y.
This colouring satisfies the conditions of (IH) on the graph Hi+1 \ y.

There remains to define σi+1(y). Since |Uσi
(y)| = 1, it means that

every colour in NG(y) ∩ V (Hi+1) appears at least twice in σi+1 except
wσi

(y) and σi+1(vi+1) = σi(y). So y has at most ⌊∆−2
2 ⌋ + 2 = ⌊∆

2 ⌋ + 1
adjacent colours in σi+1. Since there are at most ∆ witness colours in
NG(y), there are atmost ⌊3∆

2 ⌋+1 = k−1 forbidden colours for y in σi+1,
and so there remains at least one possible choice for σi+1(y). We claim
that there is no vertex in NHi

(y) such that σi(y) is its witness colour in
σi. Otherwise, we assume that the vertex x ∈ NHi

(y) and σi(y) is the
witness colour of x in σi, then the degree of x must be even. It means
that |Uσi

(x)| ≤ 2. This ends the proof of the induction.
We conclude that σn is an odd k-colouring of G, which proves that

χo(G) ≤ k, as desired.
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2.4 . Proof of Theorem 2.1.1

2.4.1 . Set-up

Given a vertex colouring σ : V (H) → [k] of some induced subgraph H of G,

for each v ∈ V (H) a colour x is said to be an odd colour of v if x is an odd

colour of NH(v) in σ. Let wσ(v) denote the unique odd colour of v in σ if such

a colour exists; otherwise wσ(v) is undefined. When it exists, we say that wσ(v)
is the witness colour of v in σ.

Let G be a graph of maximum degree ∆, and let k > ∆ be some integer.

Let V − be the subset of V (G) consisting of all vertices of degree less than k/2,

and V + := V (G) \ V + be the set of vertices of degree at least k/2. We denote

G+ := G[V +]. For every X ⊆ V +, we say that a proper partial k-colouring

σ : X → [k] of G+ is admissible if every vertex v ∈ V − having NG(v) ⊆ X has

an odd colour in σ. Finally, we let V ++ be the set of vertices v ∈ V + having

NG(v) ⊆ V +.

Since the bound on χo(G) that we want to prove is weaker than that of

Corollary 2.1.2 if ∆ ≤ 65, we may assume that ∆ ≥ 66.

2.4.2 . Colouring vertices of large degree.

Let σ : V + → [k] be a uniformly random admissible colouring of G+. For

every v ∈ V ++, we let Bσ(v) be the random event that NG(v) has no odd colour

in σ. The goal of this section will be to show that, with non-zero probability, no

event Bσ(v) occurs.

Lemma 2.4.1 If ∆ ≥ 49 and k ≥ ∆ + 4(ln ∆ + ln ln ∆ + 3), then there
exists an admissible colouring σ : V + → [k] of G+ such that every vertex
v ∈ V ++ has an odd colour in σ.

Proof of Lemma 2.4.1. Fix k := ∆ + η, for some integer η ≥ 1 whose
precise value will be determined later in the proof, and let σ be a
uniformly random admissible k-colouring of G+. Such a colouring
exists, since each vertex v has at most ∆ constraints (at most degV +(v)
constraints because of the adjacent colours, and at most degV −(v)
constraints because of the adjacent witness colours). In particular, we
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have |Lσ(v)| ≥ η for every v ∈ V +. Wewant to show that, with non-zero
probability, no bad event Bσ(v) occurs for v ∈ V ++.

Let m ≤ k/2 be some integer whose explicit value will be
determined later in the proof. For every v ∈ V ++, we pick an arbitrary
subset M(v) ⊆ N(v) of size m. Then we let Γ(v) := N [M(v)]. For a
vertex u ∈ V ++, the outcome of Bσ(u) is entirely determined by the
colours assigned to vertices in N(u). So if we fix the realisation of σ
outside of M(v), we in particular fix the outcomes of all events Bσ(u)
such that M(v) ∩ N [u] = ∅. This holds for every u /∈ Γ(v). We wish
to apply Lemma 2.2.1 to those bad events, with that definition of Γ(v).
To that end, let Σ0 be the set of possible realisations of σ|V +\M(v) such
that no event Bσ(u) occurs for u /∈ Γ(v). For every Z ⊆ V ++ \ Γ(v), we
have

P
[
Bσ(v)

∣∣∣∣∣ ⋂
u∈Z

Bσ(u)
]
≤ sup

σ0∈Σ0

P
[
Bσ(v)

∣∣∣ σ|V +\M(v) = σ0
]

≤
√

2
(

2m

eη

)m/2

,

by Lemma 2.2.4 applied to the graph G+ with C (G) being the set of
admissible k-colourings of G+.

Let us fix η := 2m, so that this is at most √2e−m/2. Since v ∈ V ++,
we know that degG+(v) ≥ k/2 ≥ η/2 ≥ m, so this lets us pick any
value for m. To apply Lemma 2.2.1, we need an upper bound of 1

em∆for that probability, which holds precisely whenm ≥ −2W−1
(
− 1

2
√

2e∆

).
We may therefore pick m :=

⌈
−2W−1

(
− 1

2
√

2e∆

)⌉; a careful analysis of
that value yields that 2m ≤ ⌈4(ln ∆ + ln ln ∆ + 3)⌉ when ∆ ≥ 49.

2.4.3 . Colouring vertices of small degree.

By Lemma 2.4.1, G+ has an admissible k-colouring σ : V + → [k] with k =
∆+⌈4(ln ∆ + ln ln ∆ + 3)⌉, such that every v ∈ V ++ has an odd colour. Then we

colour the vertices of V − greedily. Each time we colour v ∈ V −, each neighbour

u of v yields at most 2 forbidden colours (its colour σ(u), and its witness colour

if it exists), so there are less than k forbidden colours for v. This ensures that the

greedy colouring terminates, and ends the proof of Theorem 2.1.1.
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2.5 . Odd colourings of hypergraphs with constrained edge sizes

We recall that, given a graph-hypergraph pair (G,H), an odd k-colouring of (G,H)
is a mapping σ : V → [k] that is both a proper colouring of G and an odd colouring

of H. Given a set S ⊆ V (H), we let H[S] = (V (H), {e ∩ S : e ∈ E(H)}) be the

sub-hypergraph of H induced by S.

2.5.1 . A bound in terms of the chromatic number for quasi-regular

graphs

The proof of Theorem 2.1.1 relies on the probabilistic method by analysing the

behaviour of a uniformly random admissible colouring of a given graph G. It turns

out that we have exploited the randomness of only a subset of the vertices of G:

a subset of m neighbours of each vertex v ∈ V ++, where m = Θ(ln ∆(G)). If G

has a large minimum degree, we may restrict the random choices to a small subset

of vertices that should suffice to have an odd colour in every neighbourhood, and

colour the other vertices with an optimal proper colouring.

Theorem 2.5.1 Let (G,H) be a graph-hypergraph pair. Fix η :=
⌈4(ln ∆(H) + ln ln ∆(H) + 3)⌉, and assume that ∆(H) ≥ 49. For every
subset of vertices S ⊆ V (H), if ϵ(H[S]) ≥ η/2, then (G,H) has an odd
k-colouring, where

k ≤ χ(G \ S) + ∆(G[S]) + η.

Proof. Let k0 := χ(G \ S) and let σ0 be a proper k0-colouring of G \ S.
Let k := k0 + ∆(G[S]) + η, and let σ be a uniformly random proper
k-colouring of G that satisfies σ|G\S = σ0. For every e ∈ E(H), we
let Bσ(e) be the random event that e has no colour appearing at odd
times in σ. Let us show that, with non-zero probability, no event Bσ(e)
occurs. Let m ≤ η/2 be an integer, and for every edge e ∈ E(H) let
M(e) = {u1, u2, . . . , um} ⊆ e ∩ S be a subset of m vertices in e. Let us
recolour the vertices inM(e) in turn with a uniformly random available
colour. Each time we recolour ui, the neighbours of ui in S forbid at
most degS(ui) ≤ ∆(G[S]) colours, and the neighbours of ui not in S

forbid at most k0 = χ(G \ S) colours (these colours are fixed by σ0).
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So there are at least η available colours for ui. In particular, we have
|Lσ(v)| ≥ η for each v ∈ V (G).

We apply Lemma 2.2.1 with Γ(e) := {e′ ∈ E(H) : e′ ∩M(e) ̸= ∅} for
every edge e ∈ E(H), and obtain that, with non-zero probability, none
of the eventsBσ(e) occurs. The size of Γ(e) is atmostm∆(H). LetΣ1 be
the set of possible realisations of σ|V (G)\M(e) such that no event Bσ(e′)
occurs for e′ /∈ Γ(e). For every Z ⊆ E(H) \ Γ(e), we have

P

Bσ(e)

∣∣∣∣∣∣
⋂

e′∈Z

Bσ(e′)
 ≤ sup

σ1∈Σ1

P
[
Bσ(e)

∣∣∣ σ|V (G)\M(e) = σ1
]

≤
√

2
(

2m

eη

)m/2

=
√

2 e−m/2,

by Lemma 2.2.4 applied to the graph G with C (G) being the set of
proper k-colourings of G. As in the proof of Lemma 2.4.1, by fixing
m :=

⌈
−2W−1

(
− 1

2
√

2e∆

)⌉
≤ η/2, the above probability is at most

1
e·m∆(H) . This proves the existence of a proper k-colouring σ of G such
that every vertex has an odd colour in σ, as desired.

By taking S = V (G), Theorem 2.5.1 has the following result as a corollary.

Corollary 2.5.1 Let (G,H) be a graph-hypergraph pair, and fix η :=
⌈4(ln ∆(H) + ln ln ∆(H) + 3)⌉. If ∆(H) ≥ 49 and ϵ(H) ≥ η/2, then
there exists an odd (∆(G) + η)-colouring of (G,H).

We next show how to find a set S satisfying the hypothesis of Theorem 2.5.1

such that ∆(G[S]) is as small as possible.

Lemma 2.5.1 Let (G,H) be a graph-hypergraph pair. Let ∆ :=
∆(G) + ∆(H), and let us assume that the minimum edge size in H
is ϵ(H) ≥ 12 ln ∆. Let r := min{ϵ(H), ∆(G)}. Then for every m

satisfying 4 ln ∆ ≤ m ≤ r/3, if ∆ is large enough, there is a subset
S ⊆ V (G) such that for every edge e ∈ E(H), |e ∩ S| ≥ m, and
∆(G[S]) ≤ ∆(G)

r (m +
√

60 m ln ∆).

Proof. Let us for short denote D := (m +
√

60 m ln ∆) ∆(G)
r
. Let S be a

random subset of V (G) obtained by taking each vertex independently
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uniformly at random with probability p = m+
√

11 m ln ∆
r

. We note that,
since 4 ln ∆ ≤ m ≤ r/3 by assumption, we have p < 1 and so this
probability iswell-defined. The result follows if there exists a realization
S such that every e ∈ E(H) has |e∩S| ≥ m and every v ∈ V (G) satisfies
degS(v) ≤ D. Let V (G) be ordered arbitrarily. For every edge e ∈ E(H),
we let ẽ consist of the first r vertices (with respect to that order) of e.
For every edge e ∈ E(H), let Xe := |ẽ ∩ S| be the random variable that
counts the number of vertices of ẽ inS, andwewrite µe := E [Xe] = m+
√

11m ln ∆. For every vertex v ∈ V (G), we let Xv := |NG(v) ∩ S| be the
random variable that counts the number of neighbours of v in S, and
we write µv := E [Xv] = m+

√
11m ln ∆
r

· degG(v) ≤ ∆(G)
r

(m +
√

11m ln ∆).
For every edge e ∈ E(H), let Bσ(e) be the random event that Xe < m,
and for every vertex x ∈ V (G), letBv be the randomevent thatXv > D.

Observe that, for every pair of vertices (u, v) such thatN(u)∩N(v) =
∅, the random events Bu and Bv are independent. So the bad event
Bv is dependent with at most ∆(G)2 bad events Bu, and at most
∆(G)∆(H) bad events Bσ(e). So the dependency-degree of Bv is at
most ∆(G)∆ ≤ ∆2. Moreover, for every pair of edges (e, e′), such that
ẽ∩ ẽ′ = ∅, the random eventsBσ(e) andBσ(e′) are independent. So the
bad event Bσ(e) is dependent with at most r∆(H) bad events Bσ(e′),
and at most r∆(G) bad eventsBv. So the dependency-degree ofBσ(e)
is at most r∆ ≤ ∆2. Hence we may apply the LLL in order to show
that, with non-zero probability, no eventBv orBσ(e) occurs. Regarding
that the maximum degree of the dependency-graph of those random
events is at most ∆2, it suffices to prove that

P [Xe < m] ≤ 1
e∆2 and P [Xv > D] ≤ 1

e∆2 .

We do so by applying Chernoff bounds on the random variable Xe of

47



expectancy µe:
P [Xe < m] ≤ exp

(
−(µe −m)2

2µe

)

= exp
(
− 11m ln ∆

2m + 2
√

11m ln ∆

)
= exp

− 11 ln ∆
2 + 2

√
11 ln ∆

m


≤ ∆− 11

2+
√

11 ≤ 1
e∆2 if ∆ is large enough.

We do the same with the random variable Xv of expectancy µv:
P [Xv > D] = exp

(
−(D − µv)2

2D

)

≤ exp
(
−(
√

60−
√

11)2m ln ∆
2m + 2

√
60m ln ∆

· ∆(G)
r

)

= exp
−(
√

60−
√

11)2 ln ∆
2 + 2

√
60 ln ∆

m

· ∆(G)
r


≤ ∆− (

√
60−

√
11)2

2+2
√

15 ≤ 1
e∆2 if ∆ is large enough.

By Lemma 2.2.1, with non-zero probability, S satisfies the conclusion
of Lemma 2.5.1.

We note that it is possible to drop the condition that ∆ is large enough in

the statement of Lemma 2.5.1 if we set D := ∆(G)
r (m +

√
30m(1 + 2 ln ∆)) and

p := 1
r (m +

√
5.5m(1 + 2 ln ∆)) instead, and assume that m ≥ 2 + 4 ln ∆ and

ϵ(H) ≥ 6 + 12 ln ∆.

We may combine Theorem 2.5.1 and Lemma 2.5.1 in order to obtain that, for a

quasi-regular graph G (that is, a graph G where the ratio ∆(G)/δ(G) is bounded),

the odd chromatic number of G is not too far from its chromatic number.

Corollary 2.5.2 Let G be a graph of maximum degree ∆ large enough,
and minimum degree δ ≥ 12 ln(2∆). Then

χo(G) ≤ χ(G) + ⌈4(ln ∆ + ln ln ∆ + 3)⌉+ 20∆ ln(2∆)
δ

= χ(G) + O

(
∆ ln ∆

δ

)
as ∆→∞.
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Note that the minimum degree condition in Corollary 2.5.2 can be dropped,

since if it is not fulfilled, then the upper bound on χo(G) is larger than that given

by Theorem 2.1.2.

2.5.2 . Graphs of small chromatic number

Given a graph-hypergraph pair (G,H), if we can find a set S that satisfies the

hypothesis of Theorem 2.5.1 such that χ(G[S]) is much smaller than ∆(G[S]), we

can use another approach to obtain a better bound.

Theorem 2.5.2 Let (G,H) be a graph-hypergraph pair. Fix η :=
⌈4(ln ∆(H) + ln ln ∆(H) + 3)⌉, and assume that ∆(H) ≥ 49. For every
subset of vertices S ⊆ V (H), if ϵ(H[S]) ≥ η/2, then (G,H) has an odd
k-colouring, where

k ≤ χ(G \ S) + η χ(G[S]).

Proof. Let G0 := G \ S and G1 := G[S]. For each i ∈ {0, 1}, we write
ki := χ(Gi), and we let σi be a proper ki-colouring of Gi.

We define a random proper k-colouring σ of G as follows, where
k = k0 + ηk1. For every v ∈ S, draw some random value xv uniformly
at random from [η], and let σ(v) := (σ1(v), xv). For every v /∈ S, let
σ(v) := σ0(v). Let us order the vertices in V (G) arbitrarily. For every
e ∈ E(H), we let Bσ(e) be the random (bad) event that e has no odd
colour. We let M(e) contain the smallest m vertices of e ∩ S. Let σ be
a possible realisation of σ|V (G)\M(e) . By construction, for every v ∈ S,
there are η choices in Lσ(v). Hence we may apply Lemma 2.2.4 and
obtain that

P
[
Bσ(e)

∣∣∣ σ|V (G)\M(e) = σ
]
≤
√

2
(

2m

eη

)m/2

=
√

2 e−m/2.

As explained in the proof of Theorem 2.1.1, this is at most 1
em∆(H) .For an edge e′ ∈ E(H), the outcome ofBσ(e′) is entirely determined by

the realisation of σ|e′ . So if we fix the realisation of σ outside of M(e),
we in particular fix the outcomes of all events Bσ(e′) such that M(e) ∩
e′ = ∅. So we set Γ(e) := {e′ : e′ ∩M(e) ̸= ∅}, and observe that these
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sets have size at most m∆(H). We may now apply Lemma 2.2.1 to the
bad events (Bσ(e)), with that definition of Γ(e), and conclude that with
positive probability, no event Bσ(e) occurs. So there is a realisation of
σ that is an odd k-colouring of (G,H). This concludes the proof.
Corollary 2.5.3 Let G be a graph of maximum degree ∆ ≥ 49, and fix
η := ⌈4(ln ∆ + ln ln ∆ + 3)⌉. If the minimum degree of G is at least η/2,
then

χo(G) ≤ η χ(G),

and this is tight up to a multiplicative constant for a family of graphs of
increasing chromatic numbers.

Proof. The upper bound on k is a direct consequence of Theorem 2.5.2
where H is the neighbourhood-hypergraph of G, and S = V (G). Let
us prove the tightness of the bound.

Fix an integer k0 ≥ 2, and let n0 ≥ k0 be an even integer. Let
G0 be a complete k0-partite graph, with parts X1, . . . , Xk0 all of size
2n0. For every i ∈ [k0], and for every S ∈

(
Xi

n0

), we add a vertex with
neighbourhood S in G0. Let G be the obtained graph; let us show that
χo(G) ≥ k0(n0+1). Wewrite k := χo(G), and let σ be an odd k-colouring
ofG. First observe that wemust have σ(Xi)∩σ(Xj) = ∅ for every i ̸= j,
otherwise we would find a monochromatic edge in σ. So it suffices to
show that |σ(Xi)| ≥ n0 + 1 for every i ∈ [k0]. Let us assume for the
sake of contradiction that |σ(Xi)| ≤ n0. For every odd colour of Xi, we
remove one vertex with that colour from Xi. We are left with at least
n0 vertices. We now remove monochromatic pairs of vertices from Xi

until exactly n0 vertices remain. We obtain a set S with no odd colour,
and by construction there is a vertex in V (G) such that N(v) = S. So v

has no odd colour in σ, a contradiction.
The maximum degree of G is 1

2

(
2n0
n0

)
+ (k0 − 1) · 2n0 < 4n0 when n0

is large enough, and χ(G) = χ(G0) = k0. So we have
χo(G) > χ(G) log4 ∆(G),

while the minimum degree of G is n0 ≥ log4 ∆(G).
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Note that theminimumdegree ofG is smaller thanwhat is required
by a factor 4 ln 2. If we want to meet the required lower bound for the
minimum degree of G, we may let the size of each Xi be 7

6n0 instead
of 2n0. We can now prove that more than n0

6 colours must appear on
each part Xi. We still have χ(G) = k0 and δ(G) = n0, while

∆(G) = (k0 − 1) · 76n0 +
(

7n0/6
n0

)

= (k0 − 1) · 76n0 +
(

7n0/6
n0/6

)

≤ (k0 − 1) · 76n0 + (7e)n0/6.

Since 6/ ln(7e) > 2.03, when n0 is large enough we have δ(G) = n0 ≥
2(ln ∆(G) + ln ln ∆(G) + 3), as required. On the other hand, we have
χo(G) > 1

6k0n0, so we are only a factor 12 away from the upper bound
guaranteed in that regime1.

2.6 . The effect of multiplying the constraints

We may now wonder what happens when we seek for an odd colouring of a given

graph-hypergraph pair (G,H), such that every edge e ∈ E(H) has many odd

colours. For a positive integer h, an h-odd colouring of a hypergraphH satisfies the

constraint that there are at least min {h, |e|} odd colours in every edge e ∈ E(H).
For a graph-hypergraph pair (G,H), an h-odd k-colouring of (G,H) is a mapping

σ : V → [k] that is both a proper colouring of G and an h-odd colouring of

H. The least k for which G is h-odd k-colourable is in turn called the h-odd

chromatic number of (G,H) and we denote it by χh
o (G,H). We say that σ is

an h-odd k-colouring of G if σ is an h-odd k-colouring of (G,H) when H is the

neighbourhood-hypergraph of G. We denote χh
o (G) the h-odd chromatic number

of G. By a greedy algorithm, we can immediately get χh
o (G) ≤ (h+1)∆(G)+1 for

any graph G and integer h, or more generally that χh
o (G,H) ≤ h∆(H)+∆(G)+1

given a graph-hypergraph pair (G,H). We will show that we can ensure much

better upper bounds with an additional reasonable minimum edge size condition
1With amore refined estimate of the binomial coefficient, one can replace 7/6with

53/45, and conclude that we are only a factor 45/4 away from best possible.
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in H.

We will rely on an extension of Lemma 2.2.4 to h-odd colourings, that we

present hereafter.

Lemma 2.6.1 Let (G,H) be a graph-hypergraph pair, and C (G) a set
of colourings of G. Let σ be drawn uniformly at random from C (G), and
assume that there exists an integer τ such that we deterministically have
|Lσ(v)| ≥ τ for every integer v ∈ V (G). Let h ≥ 1 and t ≥ 0 be integers
that satisfy m := h − 1 + t ≤ ϵ(H), and Bσ(e) be the bad event that e

has less than h odd colours in σ. Then, for every subset M(e) ⊆ e of size
m, and for every possible realisation σ0 of σ|V (G)\M(e) , we have

P
[
Bσ(e)

∣∣∣ σ|V (G)\M(e) = σ0
]
≤
√

2
m

t

( 2t

eτ

)t/2
,

for every m ≤ ϵ(H).

Proof. Let e ∈ E(H), and let M(e) = {u1, . . . , um} be a fixed subset of
m vertices in e. Let σ0 be a possible realisation of σ|V (G)\M(e) . Let σ0

be drawn uniformly at random from the extensions of σ0 to C (G). For
every 1 ≤ i ≤ m, we letσi ∈ C (G) be obtained fromσi−1 by resampling
the colour of ui uniformly at random from Lσi−1(ui). For every i ≤ m,
let Si be the number of odd colours of e in σi. For every i ≥ 1, we have
Si = Si−1 − 1 if σi(ui) is one of the Si−1 odd colours of e in σi−1; since
there are at least τ choices for σi(ui) this happens with probability at
most h−1

τ
if Si−1 = h − 1. Otherwise, we have Si = Si−1 + 1. So the

sequence (Si)i≤m satisfies the hypotheses of Lemma2.2.3, which yields
P [Bσm(e)] = P [Sm ≤ h− 1]

≤
√

2
(

m

h− 1

)(
2(m− h + 1)

eτ

)m−h+1
2

=
√

2
(

m

t

)( 2t

eτ

)t/2
.

Since we resample the colours uniformly at random, the random
colourings (σi)i≤m are identically distributed. Therefore, if σ is drawn
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uniformly at random from C (G), we have
P
[
Bσ(e)

∣∣∣ σ|V (G)\M(e) = σ0
]

= P [Bσ0(e)] = P [Bσm(e)] ,

and the conclusion follows.
Theorem 2.6.1 Let (G,H) be a graph-hypergraph pair with ∆(H) ≥ 49,
and let h be a given integer. If there exists a subset of vertices S ⊆ V (H)
such that min{h−1, ϵ(H[S])−h+1} ≥ 2(ln ∆(H)+ ln ln ∆(H)+3),
then (G,H) has an h-odd k-colouring, where

k ≤

χ(G \ S) + ∆(G[S]) + 32(h− 1) if ϵ(H[S]) ≥ 2(h− 1);
χ(G \ S) + ∆(G[S]) + 2e2 ϵ(H[S])2+1/ ln ∆(H)

ϵ(H[S])−h+1 otherwise.

Proof. Let k0 := χ(G \ S) and let σ0 be a proper k0-colouring of G \ S.
Fix k := k0 + ∆(G[S]) + η, for some integer η ≥ 1 whose precise value
will be determined later in the proof, and let σ be a uniformly random
proper k-colouring of G that satisfies σ|G\S = σ0. For every edge e ∈
E(H), we let Bσ(e) be the (bad) random event that e contains less than
h odd colours in σ. Let us show that, with non-zero probability, no
event Bσ(e) occurs.

Let us write t := min{ϵ(H[S])−h+1, h−1} andm := h−1+t. Let e ∈
E(H) and M(e) = {v1, v2, . . . , vm} ⊆ e ∩ S be a subset of m vertices in
e. Let us recolour the vertices in M(e) in turn with a uniformly random
available colour. Each time we recolour vi, the neighbours of vi in S

forbid at most degS(vi) ≤ ∆(G[S]) colours, and the neighbours of vi

not in S forbid at most k0 = χ(G \ S) colours (these colours are fixed
by σ0). So there are at least η available colours for vi. In particular, we
have |Lσ(v)| ≥ η for each v ∈M(e).

We apply Lemma 2.2.1 with Γ(e) := {e′ ∈ E(H) : e′ ∩M(e) ̸= ∅} for
every edge e ∈ E(H), and obtain that, with non-zero probability, none
of the eventsBσ(e) occurs. The size of Γ(e) is atmostm∆(H). LetΣ0 be
the set of possible realisations of σ|V (G)\M(e) such that no event Bσ(e′)
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occurs for e′ /∈ Γ(e). For every Z ⊆ E(H) \ Γ(e), we have
P

Bσ(e)

∣∣∣∣∣∣
⋂

e′∈Z

Bσ(e′)
 ≤ sup

σ0∈Σ0

P
[
Bσ(e)

∣∣∣ σ|V (G)\M(e) = σ0
]

≤
√

2
(

m

t

)(
2t

eη

) t
2

,

by Lemma 2.6.1 applied to the graph G with C (G) being the set of
proper k-colourings of G.

Let us fix η := 2t (m
t
×
(

m
t

)
)2/t, so that the above probability is atmost

√
2 t

m
e−t/2. We can apply Lemma 2.2.1 if this is at most 1

em∆(H) , which isequivalent to
√

2e−t/2 ≤ 1
et∆(H) .

As in the proof of Lemma 2.4.1, this holds by fixing t :=⌈
−2W−1

(
− 1

2
√

2e∆(H)

)⌉
≤ ⌈2(ln ∆(H) + ln ln ∆(H) + 3⌉ when ∆(H) ≥

49.
If t = h− 1 then
η = 2(h− 1)

(
2
(

2h− 2
h− 1

)) 2
h−1

≤ 2(h− 1)
(
22h−2

) 2
h−1 = 32(h− 1),

Otherwise, we have m = ϵ(H[S]) > 2t, and
η = 2t

(
m

t

(
m

t

)) 2
t

≤ 2t
(

m

t

) 2
t
(

me

t

)2
≤ 2e2 m2+ 1

ln ∆(H)

m− h + 1 .

This proves the existence of a proper k-colouring σ of (G,H) such
that every edge has at least h odd colours in σ, as desired.

Remark 4. The second bound of Theorem 2.6.1 is atmost χ(G\S)+∆(G[S])+
2e3 δ(G[S])2

δ(G[S])−h+1 whenH is the neighbourhood-hypergraph of G.
The following corollary could be derived from Theorem 2.6.1 by setting

S := V (G).
Corollary 2.6.1 Let (G,H) be a graph-hypergraph pair with ∆(H) ≥ 49,
and let h be a given integer. Let us assume that min{h − 1, ϵ(H[S]) −
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h + 1} ≥ 2(ln ∆(H) + ln ln ∆(H) + 3). If ϵ(H) ≥ 2(h − 1), then
there exists an h-odd (∆(G)+32(h−1))-colouring of (G,H); Otherwise,
(G,H) admits an h-odd (∆(G) + 2e2 ϵ(H)2+1/ ln ∆(H)

ϵ(H)−h+1 )-colouring.

We also extend Theorem 2.5.2 to h-odd colourings.
Theorem 2.6.2 Let (G,H) be a graph-hypergraph pair with ∆(H) ≥ 49,
and let h be a given integer. If there exists a subset of vertices S ⊆ V (H)
such that min{h−1, ϵ(H[S])−h+1} ≥ 2(ln ∆(H)+ ln ln ∆(H)+3),
then (G,H) has an h-odd k-colouring, where

k ≤

χ(G \ S) + 32(h− 1) χ(G[S]) if ϵ(H[S]) ≥ 2(h− 1);
χ(G \ S) + 2e2 ϵ(H[S])2+1/ ln ∆(H)

ϵ(H[S])−h+1 χ(G[S]) otherwise.

Proof. Let G0 := G \ S and G1 := G[S]. For each i ∈ {0, 1}, we write
ki := χ(Gi), and we let σi be a proper ki-colouring of Gi.

We define a random proper k-colouring σ of G as follows, where
k = k0 + ηk1 and η is some positive integer whose precise value will be
determined later in the proof. For every v ∈ S, draw some random
value xv uniformly at random from [η], and let σ(v) := (σ1(v), xv).
For every v /∈ S, let σ(v) := σ0(v). Let us order the vertices in
V (G) arbitrarily. For every e ∈ E(H), we let Bσ(e) be the random
(bad) event that e contains less than h odd colours in σ. Let us write
t := min{ϵ(H[S])−h+1, h−1}, and let us fixm := h−1+t. We letM(e)
contain the smallest m vertices of e ∩ S. Let σ be a possible realisation
of σ|V (G)\M(e) . By construction, for every v ∈ S, there are η choices in
Lσ(v).

For an edge e′ ∈ E(H), the outcome ofBσ(e′) is entirely determined
by the realisation of σ|e′ . So if we fix the realisation of σ outside of
M(e), we in particular fix the outcomes of all events Bσ(e′) such that
M(e) ∩ e′ = ∅. So we set Γ(e) := {e′ : e′ ∩ M(e) ̸= ∅}, and observe
that these sets have size at most m∆(H). Let Σ0 be the set of possible
realisations ofσ|V (G)\M(e) such that no eventBσ(e′) occurs for e′ /∈ Γ(e).
Hencewemay apply Lemma2.6.1 and obtain that for everyZ ⊆ E(H)\
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Γ(e), we have
P

Bσ(e)

∣∣∣∣∣∣
⋂

e′∈Z

Bσ(e′)
 ≤ sup

σ0∈Σ0

P
[
Bσ(e)

∣∣∣ σ|V (G)\M(e) = σ0
]

≤
√

2
(

m

t

)(
2t

eη

) t
2

.

As explained in the proof of Theorem 2.6.1, this is at most 1
em∆(H)by fixing η := 2t (m

t
×
(

m
t

)
)2/t when ∆(H) ≥ 49. We also pick that

η = 32(h − 1) if ϵ(H[S]) ≥ 2(h − 1); otherwise, η = 2e2 ϵ(H[S])2+1/ ln ∆(H)

ϵ(H[S])−h+1 .
We may now apply Lemma 2.2.1 to the bad events (Bσ(e)), with that
definition of Γ(e), and conclude that with positive probability, no event
Bσ(e) occurs. So there is a realisation of σ that is an h-odd k-colouring
of (G,H). This concludes the proof.

2.6.1 . Constructions

In the current section, we have derived upper bound for χh
o (G,H) given

an integer h and a graph-hypergraph pair (G,H) that satisfies that ϵ(H) − h

is sufficiently large. We now show that, if no such restriction holds, then the
bound obtained by a greedy colouring may be close to best possible.

We propose a construction that relies on the existence of Steiner
2-designs, which was proven in [82]. Given an integer q, a Steiner 2-design
on [q] is a collection of sets of uniform size k (that we call blocks), such that
every pair of vertices from [q] is contained in exactly one set. We denote it
S(2, k; q). Among its many properties, it must contain exactly (q2)/(k2) sets,
and each vertex is contained in exactly q−1

k−1 sets.
Proposition 1 For every integer h ≥ 1, there exists a family of graphs G

of increasing maximum degree ∆ and of minimum degree h + 1, such that

χh
o(G) ≥ h(∆ + 1).

Proof. By [82, Theorem 2.1], we may find an arbitrarily large integer q

such that a Steiner 2-design S(2, h+1; q) exists. We letH = (X, Y, E) be
its (bipartite) incidence graph. We have |X| = q, |Y | = (

q
2

)
/
(

h+1
2

), every
vertex y ∈ Y has degree h + 1, every vertex x ∈ X has degree q−1

h
, and
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every pair of vertices x, x′ ∈ X is contained in the neighbourhood of
some vertex y ∈ Y . In particular, δ(H) = h + 1 and ∆(H) = q−1

h
.

Let σ be an h-odd k-colouring of H , where k = χh
o(H). So every

neighbourhood of size h must be rainbow in σ (i.e. contains no pair of
vertices with the same colour). Since every pair of vertices from X is
contained in a neighbourhood of size h, we infer thatX is rainbow, and
so k ≥ |X| = q = h(∆(H) + 1).

One interesting special case of Theorem 2.6.1 is the following.
Corollary 2.6.2 Let G be a ∆-regular graph, let 2(ln ∆ + ln ln ∆ + 4) ≤
t ≤ ∆ be a given integer, and let h := ∆ + 1− t. Then

χh
o(G) = O

(
∆2

t

)
.

We now show that Corollary 2.6.2 is tight up to a multiplicative constant.
Proposition 2 For every even integer ∆ ≥ 2 and 1 ≤ t ≤ ∆, there is a
∆-regular graph G such that, letting h := ∆ + 1− t, one has

χh
o(G) >

1
2

∆2

t + 1 .

Proof. Let n := ∆
2 + 1, and let G := L(Kn,n) be the line-graph of

a complete bipartite graph. Let k := χh
o(G), and let σ be a h-odd

k-colouring of G.
Let v ∈ V (G). The neighbourhood of v can be covered with two

cliques, so each colour in N(v) has at most 2 occurrences. Let sσ(v)
denote the number of colours with 2 occurrences in N(v); we must
have sσ(v) ≤ (t− 1)/2. So

S :=
∑

v∈V (G)
sσ(v) ≤ t− 1

2 n2. (2.2)
Let (M1, . . . , Mk) be the colour classes of σ. IfMi has sizemi, then it has
a contribution of mi(mi − 1) to S. Indeed, Mi is a matching of size mi

in Kn,n, and there are mi(mi − 1) edges incident to 2 edges from Mi in
57



Kn,n; each of them corresponds to a vertex inGwith amonochromatic
pair of colour i in its neighbourhood. So by convexity we have

S =
k∑

i=1
mi(mi − 1) ≥ k · n

2

k

(
n2

k
− 1

)
= n2

(
n2

k
− 1

)
.

Combining this with (2.2), we obtain
k ≥ 2n2

t + 1 >
1
2

∆2

t + 1 .

We finish this section with the following consequence of Theorem 2.6.2.
Corollary 2.6.3 Let G be a graph of maximum degree ∆, and let h ≥
2(ln ∆(H) + ln ln ∆(H) + 3) be a given integer. If the minimum degree
of G is at least 2h, then

χh
o(G) ≤ 32(h− 1) χ(G),

and this is tight up to a multiplicative constant for a family of graphs of
increasing chromatic numbers.

Proof. The upper bound can be derived from Theorem 2.6.2 by letting
H be the neighbourhood-hypergraph of G, and setting S := V (G).

To prove the tightness of the bound, we show that given any ε > 0,
there is a graph G such that

χh
o(G) ≥ (2− ε)h χ(G).

Fix an integer k0 ≥ 2, and let n0 ≥ k0 be an even integer. Let G0 be a
complete k0-partite graph, with parts X1, . . . , Xk0 . For every i ∈ [k0], Xi

contains n0 h-sets and the size of Xi is hn0. For every i ∈ [k0] and for
every pair of h-sets S in Xi, we add a vertex with neighbourhood S in
G0. Note that for each Xi, we add (n0

2

) vertices and put these vertices
in a vertex set Yi. LetG be the obtained graph (see Fig. 2.1); let us show
that

χh
o(G) ≥

(
2− 2

n0

)
hk0.
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Figure 2.1: The construction in Corollary 2.6.3 when k0 = n0 = 4. A line
between two sets stands for a complete bipartite graph.

We write k := χh
o(G), and let σ be an h-odd k-colouring of G. First

observe that wemust have σ(Xi)∩σ(Xj) = ∅ for every i ̸= j, otherwise
we would find a monochromatic edge in σ. So it suffices to show that
|σ(Xi)| ≥

(
2− 2

n0

)
h for every i ∈ [k0]. On the one hand, each vertex

v ∈ Yi has at least h odd colours. On the other hand, for each Xi and
each colour c in σ, let 0 ≤ p ≤ n0 be the number of h-sets in Xi where
c is an odd colour. Clearly, c is an odd colour of p(n0 − p) ≤ n2

0
4 vertices

in Yi. So we need at least 4(n0
2 )

n2
0

h =
(
2− 2

n0

)
h colours to make every

vertex have h odd colours in σ(Xi). We also have χ(G) = χ(G0) = k0,
so this concludes the proof.

2.7 . A slight improvement of Theorem 2.1.1

In Section 2.4 we compute the probability of the bad event of a vertex v whose
degree is at least ∆(G)/2 by observing only m neighbours of v. Clearly some
factors was lost during the calculation. Then we will show that even if we take
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all neighbours of v into consideration, the logarithmic term of Theorem 2.1.1
can be only improved up to a small multiplicative constant.

We first introduce a convergence theorem for finite Markov chains.
Definition 16. A finite Markov chain with finite state space Ω and |Ω| × |Ω|
transition matrix P is a sequence of random variables X0, X1, . . . where

P [Xt+1 = y | Xt = x] = P (x, y).

Then P (x, ·), the x-th row of P , gives the distribution of Xt+1 given Xt =
x. Thus, given X0 = x ∈ Ω, we have P [Xt = y | X0 = x] = P t(x, y), as
multiplying a distribution by the transitionmatrix P advances the distribution
one step along the Markov chain, so multiplying by P t advances it by t steps
from X0 = x.

x y

z

1

0.3

0.4

0.6 0.10.6

Figure 2.2: An example Markov chain with three states x, y, and z.

We can illustrate a Markov chain with a state diagram, in which an arrow
from one state to another indicates the probability of going to the second
state given we were just in the first. For instance, in this diagram, given that
the Markov chain is currently in x, we have probability 0.4 of staying in x,
probability 0.6 of going to z, and probability 0 of going to y in the next time
step (Figure 2.2). This Markov chain would be represented by the transition
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matrix
P =


0.6 0 0.4
0.6 0.1 0.3
0 1 0

 .

Definition 17. A distribution π is called a stationary distribution of a Markov
chain P if

πP = π,

or equivalently,
π(y) =

∑
x∈Ω

π(x)P (x, y) for any y ∈ Ω.

For the graph in Figure 2.2, we have
π =

(15
34 ,

5
17 ,

9
34

)
.

We now make note of two simple properties possessed by the most
interesting chains. Both will turn out to be necessary for the Convergence
Theorem to be true.
Definition 18. AMarkov chain is irreducible if for all states x, y ∈ Ω, there exists
a t ≥ 0 such that P t(x, y) > 0.

This means that it is possible to get from any state to any other state using
only transitions of positive probability.
Definition 19. A Markov chain is aperiodic if gcd{t : P t(x, x) > 0} = 1 for all
states x ∈ Ω. Otherwise we call it periodic.

In order to test convergence, we would like to bound the following
measurement of the distance between distributions.
Definition 20. The total variation between two distributions µ and ν is defined
as

∥µ− ν∥TV = max
A⊂Ω
|µ(A)− ν(A)|,

where µ(A) =
∑

x∈A µ(x).
This definition is explicitly probabilistic: the distance between µ and ν is

the maximum difference between the probabilities assigned to a single event
by the two measures.
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Proposition 3 Let µ and ν be two probability distributions on Ω. Then

∥µ− ν∥TV = 1
2
∑
x∈Ω
|µ(x)− ν(x)|.

Now we are ready to illustrate the convergence theorem, which tells us
that an irreducible, aperiodic Markov chain will converge at an exponential
rate to a stationary distribution over time.
Theorem 2.7.1 (Convergence Theorem) Suppose that P is irreducible
and aperiodic, with stationary distribution π. Then there exist constants
α ∈ (0, 1) and C > 0 such that

max
x∈Ω
∥P t(x, ·)− π∥TV ≤ Cαt.

Lemma 2.7.1 Let Y1, Y2, . . . be a sequence of binary random variables
with values in {−1, 1}, let T0 ∈ N be a non-negative integer, and let
Ti := T0 + ∑i

j=1 Yj for every integer i ≥ 0. If there exists a even integer
τ > 0 such that, for any integers i ≥ 0 and 0 ≤ t ≤ τ , it holds that
P [Yi = −1 | Ti−1 = t] = t/τ , then there exist constants α ∈ (0, 1) and
C > 0 such that

P [Tn = 0] ≤ 21−τ + Cαn.

Proof. LetY′
1, Y′

2, . . . be a sequence of random variables satisfying that
Y′

i = Y2i−1+Y2i for any positive integer i, let T ′
0 = T0, and letT′

i := T ′
0+∑i

j=1 Y′
j for every integer i ≥ 0. Clearly {T′

i}∞
i=0 is aMarkov processwith

finite state space Ω = {0, 2, 4, . . . , τ} and transition matrix P where

P (x, y) =



x(x−1)
τ2 , if y = x− 2;

(τ−x)(τ−x−1)
τ2 , if y = x + 2;

1
τ
, if x = y = 0 or x = y = τ ;

x(τ−x+1)+(τ−x)(x+1)
τ2 , if x = y /∈ {0, τ};

0, otherwise.

Here we assume that x, y are all even integers by the property of P . Let
π = (p0, p2, . . . , pτ ) be the stationary distribution of P . We claim that π

satisfies the following recurrence.
px+2

px

= (τ − x)(τ − x− 1)
(x + 1)(x + 2) for any x ∈ {0, 2, . . . , τ − 2}. (2.3)
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For the first step, since π = π · P , we have
p0 = p0 · P (0, 0) + p2 · P (2, 0) = 1

τ
p0 + 2

τ 2 p2.

and hence Equation (2.3) follows. The case of pτ /pτ−2 is the same. Now
assume that Equation (2.3) holds for x− 2 where 2 ≤ x ≤ τ/2, then we
have

px = x(τ − x + 1) + (τ − x)(x + 1)
τ 2 px

+ (τ − x + 2)(τ − x + 1)
τ 2 px−2

+ (x + 2)(x + 1)
2 px+2.

By the induction hypothesis we have
(τ − x + 2)(τ − x + 1)

τ 2 px−2 = x(x− 1)
τ 2 px.

Hence we have
(τ − x)(τ − x− 1)

τ 2 px = (x + 2)(x + 1)
τ 2 px+2,

the equality holds. By symmetry this proves Equation (2.3).
By Equation (2.3) and symmetry that p0 = pτ , it holds that

1 =
∑

0≤x≤τ, x even
px =

(
1 +

(
τ

2

)
+
(

τ

4

)
+ . . . + 1

)
p0 = 2τ−1p0.

Therefore we have p0 = 21−τ .
Clearly there exists i ≥ 0 such that P i(x, y) > 0 for any states x

and y, and we have P (x, x) > 0 for any state x. Hence P is irreducible
and aperiodic, with stationary distribution π. Applying Theorem 2.7.1,
there exists constants α ∈ (0, 1) and C > 0 such that

max
x∈Ω
∥P n(x, ·)− π∥TV ≤ Cαn/2.

Since we have P [T2i = 0] = P [T′
i = 0] and P [T2i+1 = 0] = 0 for any

i ∈ N, the result follows.
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Lemma 2.7.2 Let X1, X2, . . . be a sequence of binary random variables
with values in {−1, 1}, let S0 ∈ N be a non-negative integer, and let
Si := S0 + ∑i

j=1 Xj for every integer i ≥ 0. If there exists a even integer
τ > 0 such that, for every i ≥ 0, it holds that P [Xi = −1 | Si−1 = s] =
pi,s ≤ s/τ , then

P [Sn = 0] ≤ 22−τ ,

for any large enough n.

Proof. Consider the following coupling of two sequences of random
variables. LetY1, Y2, . . . be random variables with values in {−1, 1}, let
T0 := S0, and letTi := T0+∑i

j=1 Yj for every integer i ≥ 0. Furthermore
for every i ≥ 0, it holds that P [Yi = −1 | Ti−1 = t] = t/τ . We claim that

P [Si = 0] ≤ P [Ti = 0] for any i ≥ 0. (2.4)
In order to prove Equation (2.4) we now construct a random process
that has the same distribution as Si and never goes behind Ti at any
time step i. Let X′

1, X′
2 be random variables with values in {−1, 1}, let

S ′
0 := S0, and let S′

i := S ′
0 +∑i

j=1 X′
j for every integer i ≥ 0. We describe

each coupling (X′
i, Yi) as follows.

• When S′
i−1 > Ti−1, we let X′

i and Y be mutually independent,
where

P
[
X′

i = −1 | S′
i−1 = s

]
= P [X = −1 | Si−1 = s] .

• When S′
i−1 = Ti−1 = s, if Yi takes value −1, then we let X′

i take
value −1 with probability pi,s/(s/τ) conditioning on that;

P
[
X′

i = −1 | S′
i−1 = Ti−1 = s, Yi = −1

]
= pi,s/(s/τ).

Otherwise X′
i takes value 1. By the dependency of them, it holds

that X′
i ≥ Yi with probability 1.

Clearly S′
i − Ti is an even number at any time step i, and so S′

i ≥ Ti

always holds, which implies that Equation (2.4) is true.
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Now we can apply Lemma 2.7.1 for random variables {Yi} and
{Ti}, there exist constants α ∈ (0, 1) and C > 0 such that

P [Sn = 0] ≤ P [Tn = 0] ≤ 21−τ + Cαn ≤ 22−τ

for large n.
Remark 5. In the proof of Theorem 2.1.1 we prove the probability of any bad
event has an upper bound √2e−m/2, which can be replaced by 41−m/2 for
sufficiently large ∆. Hence in order to apply LLL, we need an upper bound of

1
e∆2 for that probability, which holds precisely whenm ≥ 4 log4 ∆+2 log4(4e).
The inequality holdswhen thennumber of colours k ≥ ∆+4 log4 ∆+2 log4(4e)
since we take m := k−∆

2 .
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3 - Properly coloured cycles in edge-coloured

complete graphs

3.1 . Introduction

In this chapter we prove that Conjecture 1.2.6 is true, which gives the maximum

number of colours in an edge-colouring of Kn with no properly coloured Cℓ as a

subgraph.

Theorem 3.1.1 Let Cℓ be a cycle on ℓ vertices and ℓ−1 ≡ rℓ−1 mod 3,
where 0 ≤ rℓ−1 ≤ 2. For n ≥ ℓ, pr(Kn, Cℓ) equals to

max

ℓ− 1

2

 + n− ℓ + 1, ⌊ℓ− 1
3 ⌋n−

⌊ ℓ−1
3 ⌋+ 1

2

 + 1 + rℓ−1

 .

3.2 . Preliminaries

Let us for short denote f(n, ℓ) to be

max
{(

ℓ− 1
2

)
+ n− ℓ + 1, ⌊ℓ− 1

3 ⌋n−
(
⌊ ℓ−1

3 ⌋+ 1
2

)
+ 1 + rℓ−1

}
.

We write a cycle of length ℓ as Cℓ = v0v1...vℓ−1(vℓ = v0), with V (Cℓ) =
{v0, v1, ..., vℓ−1} and E(Cℓ) = {v0v1, v1v2, ..., vℓ−1v0}. The lower bound of

pr(Kn, Cℓ) was given roughly by Manoussakis, Spyratos, Tuza, and Voigt in [60].

Fang, Győri, and Xiao [32] gave the precise following one.

Lemma 3.2.1 [32] Let Cℓ be a cycle on ℓ vertices and ℓ − 1 ≡ rℓ−1

mod 3, where 0 ≤ rℓ−1 ≤ 2. For n ≥ ℓ,

pr(Kn, Cℓ) ≥ f(n, ℓ).

The extremal graph when pr(Kn, Cℓ) reaches its lower bound will be helpful

to our constructive proof in the next section. For the first lower bound, consider

a complete graph Kn with V (Kn) = {v1, v2, . . . , vn}. For any edge vivj where

i < j and i ≤ n − ℓ + 1, we colour this edge by colour i. All the other edges
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form a complete graph of order ℓ− 1, and we colour it rainbow distinct from the

previous n− ℓ + 1 colours.

For the second lower bound, we partition V (Kn) into two parts A and B with

|A| = ⌊ ℓ−1
3 ⌋ and |B| = n − ⌊ ℓ−1

3 ⌋. Let G1 be the complete graph induced by B

and G2 = Kn −G1. Clearly G2 consists of the complete graph induced by A and

the complete bipartite graph of A and B. First we colour G2 rainbow. Then we

colour G1 by 1 + rℓ−1 new colours without producing a properly coloured path of

3 + rℓ−1 vertices (see [32, Proposition 1]).

A cycle C in a graph G is extendable if there exists a cycle C ′ in G such that

V (C) ⊆ V (C ′) and |V (C ′)| = |V (C)|+ 1. If such a cycle C ′ exists, then C can

be extended to C ′ or C ′ is an extension of C. This problem was first introduced by

Hendry [43] as an extension of hamiltonian problems. Similarly, in edge-coloured

graphs, a properly coloured (rainbow) cycle C in an edge-coloured graph G

is properly coloured (rainbow) extendable, if there exists a properly coloured

(rainbow) cycle C ′ in G such that V (C) ⊆ V (C ′) and |V (C ′)| = |V (C)| + 1,

respectively.

For a vertex u /∈ V (C), let E(u, C) = {uv : v ∈ V (C)} be the set of

edges between u and V (C). Let φ : E(Kn) → Φ be the assignment of that

edge-colouring of Kn, where Φ is the set of all colours of E(Kn). Let φ(E) be

the set of colours of edges in E, where E is a subset of E(G). For any properly

coloured cycle C of Kn, we partition Φ into 4 parts as follows:

Φ0(C) :={c ∈ Φ : c = φ(e), e ∈ E(C)};

Φ1(C) :={c ∈ Φ : c /∈ Φ0, c = φ(e), e is a chord of C};

Φ2(C) :={c ∈ Φ : c /∈ (Φ0 ∪ Φ1), c = φ(e),

e has exact 1 endpoint on V (C)};

Φ3(C) :=Φ \ (Φ0 ∪ Φ1 ∪ Φ2).
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Then we partition V (Kn) into 3 parts as follows:

V0(C) :=V (C);

V1(C) :={v ∈ V (Kn) : v /∈ V0(C),

φ(e) /∈ Φ3(C) for any e incident to v};

V2(C) :={v ∈ V (Kn) : v /∈ V0(C),

φ(e) ∈ Φ3(C) for some e incident to v}.

Obviously we have that Φ0(C), Φ1(C), Φ2(C), Φ3(C) are pairwise disjoint, and

V0(C), V1(C), V2(C) are pairwise disjoint by the definition.

3.3 . Proof of Theorem 3.1.1

We prove the upper bound of pr(Kn, Cℓ) by induction on both the order of

Kn and the length of Cℓ. Note that pr(Kn, Cℓ) = f(n, ℓ) for 3 ≤ ℓ ≤ 6. Assume

that pr(Kn′ , Cℓ′) satisfies the theorem for any n′ ≤ n and ℓ′ ≤ ℓ with at most one

equality holds. Let Kn be edge-coloured by f(n, ℓ) + 1 colours where ℓ ≥ 7. Let

us assume for the sake of contradiction that there is no properly coloured cycle of

length ℓ in Kn. Our aim is to find a contradiction on the number of colours.

Clearly f(n, ℓ−1) < f(n, ℓ). Then Kn must contain a properly coloured cycle

of any length ℓ′ < ℓ by the induction hypothesis. For the convenience of the proof,

the labeling of vertices on a cycle is taken as module its length. The following two

lemmas give some properties of the properly coloured cycle of length less than ℓ,

which would be used to prove the main theorem directly.

Lemma 3.3.1 Let Kn be an edge-coloured graph with at least f(n, ℓ) + 1
colours, where 3 ≤ ℓ ≤ n. If either

• ℓ is even and there is a properly coloured cycle C of length ℓ− 1 with
Φ3(C) ̸= ∅, or

• ℓ is odd and there is a properly coloured cycle C of length ℓ− 2 with
Φ3(C) ̸= ∅,

then Kn contains a properly coloured cycle of length ℓ.

The second lemma gives a general result about properly coloured extendability.
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Lemma 3.3.2 Let Kn be an edge-coloured graph with at least f(n, ℓ) + 1
colours, where 3 ≤ ℓ ≤ n. If Kn has a properly coloured cycle C of length
at most ℓ− 1 with Φ3(C) = ∅, then C is properly coloured extendable.

Proof of Theorem 3.1.1 (assuming Lemma 3.3.1 and Lemma 3.3.2).
Assume for the sake of contradiction that Kn does not contain a
properly coloured cycle of length ℓ. By the hypothesis induction there
exist properly coloured cycles of length ℓ− 1 and ℓ− 2. When ℓ is even,
the properly coloured cycle C of length ℓ − 1 satisfies that Φ3(C) = ∅
by Lemma 3.3.1, and is therefore properly coloured extendable by
Lemma 3.3.2. When ℓ is odd, the properly coloured cycle C of length
ℓ− 2 is properly coloured extendable, and the resulting cycle of length
ℓ − 1 is still properly coloured extendable. In both cases we can
find a properly coloured cycle of length ℓ, which contradicts to our
assumption that there is no properly coloured cycle of length ℓ in
Kn.

3.3.1 . Proof of Lemma 3.3.1

First we prove the case when ℓ is even. Assume for the sake of contradiction

there is no properly coloured cycle of length ℓ. Since Φ3(C) is not empty, there

exists an edge u1u2 such that φ(u1u2) ∈ Φ3(C). We first consider the colours

of E(u1, C) and E(u2, C). Since C is properly coloured, we have φ(v0v1) ̸=
φ(v0vℓ−2). Without loss of generality we assume that φ(u1v0) ̸= φ(v0vℓ−2). We

characterise the colours of E(u1, C) and E(u2, C) in the following claim:

Claim 3.3.1 φ(uivj) = φ(vjvj+1) for any 1 ≤ i ≤ 2 and 0 ≤ j ≤ ℓ− 2.

Proof of claim. Let us begin with the edge u2v2. Since φ(u1v0) ̸=
φ(v0vℓ−2), we must have φ(u2v2) = φ(v2v3), otherwise

u1u2, v2v3v4 . . . vℓ−2v0, u1

is a properly coloured cycle of length ℓ, which contradicts to our
assumption. Here we use that φ(u1u2) /∈ φ(E(v, C)) by the definition
of Φ3(C).

Now we have φ(u2v2) ̸= φ(v2v1). By the same argument it holds
that φ(u1v4) = φ(v4v5). And we can get the following property:
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• For any 1 ≤ i ≤ 2 and 0 ≤ j ≤ ℓ − 2, if φ(uivj) = φ(vjvj+1), then
we have φ(uivj+4) = φ(vj+4vj+5).

Combined with the conditions that φ(u2v2) = φ(v2v3) and φ(u1v4) =
φ(v4v5), and noting that 4 and ℓ − 1 are relatively prime, the claim
follows.

Let vjvk be a chord of C with 2 ≤ k − j ≤ ℓ−1
2 . We must have φ(vjvk) =

φ(vjvj+1) or φ(vjvk) = φ(vkvk+1), otherwise there exists a properly coloured

cycle

u1u2, vk−1vk−2 . . . vj , vkvk+1 . . . vj−2, u1

of length ℓ, a contradiction.

Let u ∈ V1(C). The colour of E(u, C) are from Φ0(C) ∪ Φ1(C) ∪ Φ3(C)
by definition. Assume uvj is an edge with φ(uvj) ∈ Φ2(C). We must have

φ(uu1) = φ(uvj), otherwise there is a properly coloured cycle

uu1u2, vj−3vj−4 . . . vj+1vj , u

of length ℓ. Here we use that φ(uu1) ̸= φ(u1u2). Hence all edges of E(u, V (C))
can receive at most 1 colour from Φ2(C).

Now we have that |Φ0(C)| ≤ ℓ − 1, |Φ1(C)| = 0, |Φ2(C)| ≤ |V1(C)|, and

|Φ3(C)| ≤ f(|V2(C)|, ℓ). Therefore, the number of colours of E(Kn) is

|Φ| =
3∑

i=0
|Φi(C)| ≤ ℓ− 1 + |V1(C)|+ f(|V2(C)|, ℓ) ≤ f(n, ℓ),

which is a contradiction.

When ℓ is odd. Suppose that C is a properly coloured cycle of length ℓ − 2
such that Φ3(C) ̸= ∅. And without loss of generality we assume that φ(u1v0) ̸=
φ(v0vℓ−3). Then we have the following claim:

Claim 3.3.2 φ(uivj) = φ(vjvj+1) for any 1 ≤ i ≤ 2 and 0 ≤ j ≤ ℓ− 3.

Proof of claim. Let us begin with the edge u2v1. Since φ(u1v0) ̸=
φ(v0vℓ−3), we must have φ(u2v1) = φ(v1v2), otherwise

u1u2, v1v2v3 . . . vℓ−3v0, u1
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is a properly coloured cycle of length ℓ, a contradiction.
Now we have φ(u2v1) ̸= φ(v1v0). By the same argument it holds

that φ(u1v2) = φ(v2v3). And we can get the following property:
• For any 1 ≤ i ≤ 2 and 0 ≤ j ≤ ℓ − 3, if φ(uivj) = φ(vjvj+1), then
we have φ(uivj+2) = φ(vj+2vj+3).

Combined with the conditions that φ(u2v1) = φ(v1v2) and φ(u2v1) ̸=
φ(v1v0), and noting that 2 and ℓ − 2 are relatively prime, the claim
follows.

Let vjvk be a chord of C with 2 ≤ k − j ≤ ℓ−2
2 . We must have φ(vjvk) =

φ(vjvj+1) or φ(vjvk) = φ(vkvk+1), otherwise there exists a properly coloured

cycle

u1u2, vk−1vk−2 . . . vj , vkvk+1 . . . vj−1, u1

of length ℓ, a contradiction.

Let u ∈ V1(C). The colour of E(u, C) are from Φ0(C) ∪ Φ1(C) ∪ Φ3(C)
by definition. Assume uvj is an edge with φ(uvj) ∈ Φ2(C). We must have

φ(uu1) = φ(uvj), otherwise there is a properly coloured cycle

uu1u2, vj−2vj−3 . . . vj+1vj , u

of length ℓ. Hence all edges of E(u, V (C)) can receive at most 1 colour from

Φ2(C).
By a same argument as above we can get a contradiction on the number of

colours of E(Kn). We finish the proof.

3.3.2 . Proof of Lemma 3.3.2

The proof of Lemma 3.3.2 splits into several steps as follows. First, there is

a cycle C of small length by induction. Consider a vertex where the number of

“new” colours between this vertex and C reaches the maximum. Then we give the

exact depiction of maximal colouring of Kn when the number of “new” colours is

very large or small. In the last step, we show that Kn can not have more colours

in other cases.

We prove the case when the length of the properly coloured cycle is ℓ − 1.

Suppose for the sake of contradiction that a properly coloured cycle C =
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v0v2 . . . vℓ−2 with Φ3(C) = ∅ is not properly coloured extendable. Since we are

considering the extendability of C, it is meaningful to choose one special vertex

w /∈ V (C) and analyse the colour structure of Kn[V (C) ∪ {w}]. We first show

that which vertex w /∈ V (C) could be an appropriate object.

Choosing a special vertex outside the cycle

Clearly we have Φ2(C) ̸= ∅, otherwise we have

|Φ| ≤
(

ℓ− 1
2

)
< f(n, ℓ).

Let t := maxu/∈V (C) |φ(E(u, C))∩Φ2(C)| be the maximum number of new colours

(in terms of C and its chords) between V (C) and a vertex outside. Write

g(t) := max{|Φ0(C)|+ |Φ1(C)| : t}.

Our aim is to prove that g(t) + t(n− ℓ + 1) ≤ f(n, ℓ) for any possible value of t.

When t = 1, for any u /∈ V (C), if uvj has the same colour for all j, then

C can not be properly coloured extended by u. This implies that g(1) ≤
(ℓ−1

2
)
,

trivially. When t ≥ 2, choose a vertex w /∈ V (C) reaching the number, that is,

|φ(E(w, C)) ∩ Φ2(C)| = t. Then pick

Vw = {va1 , va2 , . . . , vat}

such that φ(wvaj ) ∈ Φ2(C) for 0 ≤ a1 < a2 < . . . < at ≤ ℓ − 2, and these

colours are pairwise distinct. For every two consecutive vai and vai+1 , we say the

set of vertices {w, vai+1, . . . , vai+1−1} is a segment of w. Moreover, we can label

the segment between vai and vai+1 the i-th segment.

Let us characterise some typical structures of Kn[V (C) ∪ {w}] under the

assumption that C is not properly coloured extendable.

Some typical structures

Rule 3.3.1 If φ(wvj) ̸= φ(vj∓1vj), then we must have φ(wvj±1) =
φ(wvj) or φ(wvj±1) = φ(vj±1vj±2), respectively.

Clearly any two vertices in Vw can not be consecutive on C, otherwise C can

be properly coloured extended via some vjwvj+1. For any vertex vaj ∈ Vw, if
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we look at the vertices clockwise for each, we could find a labeling r′ such that

φ(wvi) = φ(wvaj ) for any aj ≤ i ≤ r′ and φ(wvr′+1) = φ(vr′+1vr′+2). Then

we have φ(wvr′+2) = φ(wvr′+1) or φ(wvr′+2) = φ(vr′+2vr′+3) by Rule 3.3.1. If

the latter case holds we can repeat this observation until we find a monochromatic

triangle wvrvr+1. For the counterclockwise direction of vaj+1 we do the same

observation. Then we can get the following rule.

Rule 3.3.2 For two vertices vaj , vaj+1 ∈ Vw, there exist r′, r, s, s′ with
aj ≤ r′ < r < s < s′ ≤ aj+1 satisfying the following properties:

1. φ(wvi) = φ(wvaj ) for any aj ≤ i ≤ r′, φ(wvi) = φ(wvaj+1) for
any s′ ≤ i ≤ aj+1;

2. φ(wvi) = φ(vivi+1) for any r′ < i ≤ r, φ(wvi) = φ(vivi−1) for
any s ≤ i < s′;

3. wvrvr+1 and wvsvs−1 are monochromatic triangles (identity if r+1 =
s).

We call those triangles noted in Rule 3.3.2 typical. In fact we can write r

and s as functions of aj with 1 ≤ j ≤ t. For any segment of w, if two triangles

wvr(aj)vr(aj)+1 and wvs(aj+1)vs(aj+1)−1 are distinct, we say wvr(aj)vr(aj)+1 is a

clockwise typical (CT) triangle, wvs(aj+1)vs(aj+1)−1 is a counterclockwise typical

(CCT) triangle. Otherwise we say the unique monochromatic triangle is a doubly

typical (DT) triangle.

We use ∆(w) to denote the number of typical triangles. Note that there may

be many other monochromatic triangles, but we focus on the typical triangles.

Hence we have t ≤ ∆(w) ≤ 2t. It immediately follows from Rule 3.3.2 that

t ≤ ℓ−1
3 .
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va1 va2 va3

Figure 3.1: Three kinds of typical triangles

Let us denote VT to be the set of vertices vj ∈ V (C) such that wvjvj+1

is a typical triangle. Let VCT , VCCT , VDT be that of CT, CCT, DT triangle,

respectively. Next we observe the colours of chords of C.

Rule 3.3.3 Let vjvk be a chord of C. If φ(wvj+1) ̸= φ(vj+1vj+2),
φ(wvk+1) ̸= φ(vk+1vk+2) and φ(wvj+1) ̸= φ(wvk+1), then we must
have φ(vjvk) = φ(vjvj−1) or φ(vjvk) = φ(vkvk−1). If φ(wvj−1) ̸=
φ(vj−1vj−2), φ(wvk−1) ̸= φ(vk−1vk−2) and φ(wvj−1) ̸= φ(wvk−1),
then we must have φ(vjvk) = φ(vjvj+1) or φ(vjvk) = φ(vkvk+1).

Proof. Suppose on the contrary we have that φ(vjvk) ̸= φ(vj−1vj)
and φ(wvk) ̸= φ(vk−1vk),while φ(wvj+1) ̸= φ(vj+1vj+2), φ(wvk+1) ̸=
φ(vk+1vk+2) and φ(wvj+1) ̸= φ(wvk+1) hold, then there exists a properly
coloured cycle C ′ = wvj+1vj+2 . . . vkvjvj−1 . . . vk+1 of length l, which is a
contradiction.

We say a pair of vertices {vj±1, vk±1} restrict a chord vjvk if it satisfies the

condition of Rule 3.3.3, respectively. Naturally, we need to consider whether a chord

vjvk would be restricted by two pairs of vertices {vj+1, vk+1} and {vj−1, vk−1}.

We say such a chord doubly restricted.
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wvj+1

vj

vk+1

vk

Figure 3.2: The way to extend C if a chord vjvk is not restricted

Rule 3.3.4 Let vjvk be a doubly restricted chord restricted by {vj+1, vk+1}
and {vj−1, vk−1}. Then we must have φ(vjvk) = φ(vjvj−1) = φ(vkvk+1)
or φ(vjvk) = φ(vjvj+1) = φ(vkvk−1).

Rule 3.3.4 shows that each doubly restricted chord makes two edges on C share

a common colour. We call such two edges a restricted pair. For instance, let vjvk

be a doubly restricted chord and furthermore we have φ(vjvk) = φ(vjvj−1) =
φ(vkvk+1). Then {vjvj−1, vkvk+1} is a restricted pair.

We aim to count the number of edges whose colouring are restricted. For the

purpose of proof, we partition V (C) in terms of the vertex w as follows:

U0(w) := {vi ∈ V (C) : φ(wvi) ∈ Φ2(C)};

U1(w) := {vi ∈ V (C) : vi belongs to some typical triangle};

U2(w) := {vi ∈ V (C) \ U0(w) : aj < i < r(aj) for some vaj ∈ Vw};

U3(w) := {vi ∈ V (C) \ U0(w) : s(aj) < i < aj for some vaj ∈ Vw};

U4(w) := V (C) \ (U0(w) ∪ U1(w) ∪ U2(w) ∪ U3(w)).

For instance, in the following figure we have

va1 , va2 , va3 ∈ U0, v2, v3, v5, v6, v8, v9 ∈ U1, v1 ∈ U2, v4 ∈ U4.
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va1 v1 v2 v3 v5 v6 va2 v8 v9 va3

Figure 3.3: Partition of V (C) with respect to typical triangles

We say a vertex vj ∈ V (C) to be potentially restricted if φ(wvj+1) ̸=
φ(vj+1vj+2) and φ(wvj−1) ̸= φ(vj−1vj−2). Moreover, if a chord whose

end-vertices are two potentially restricted vertices vj , vk satisfies that φ(wvj+1) ̸=
φ(wvk+1), φ(wvj−1) ̸= φ(wvk−1), then this chord is restricted by two pairs of

vertices. For any j with 1 ≤ j ≤ t, vr(aj) and vs(aj) are both potentially restricted

by Rule 3.3.2. For any vj ∈ U0(w), if vj−1, vj+1 ∈ U0(w), then vj is potentially

restricted; otherwise it is not potentially restrcited. Any vertex of U2(w) or U3(w)
is not potentially restricted.

Colours restricted in the cycle

Let us denote

R′(w) := {{e, u, v} | e is restricted by {u, v}},

DR′(w) := {e | e is doubly restricted, e belongs to 2 elements of R′(w)}.

Note that when we define R′(w), the pair of vertices corresponding to a

restricted chord should also be considered. Hence a doubly restricted chord and its

corresponding pairs of vertices are counted twice in R′(w). Furthermore, let re(w)
be the repetitive number of colours on E(C), which means that, for instance, if

m edges of E(C) share a common colour, then they contribute m − 1 to re(w).
It immediately follows that

g(t) ≤
(

ℓ− 1
2

)
− |R′(w)|+ |DR′(w)| − re(w).
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Every pair of non-adjacent vertices on C can correspond to elements of R′(w).
Let us consider some special subsets of R′(w) for the purpose of counting. Let

R(w) be the set of {e, u, v} ∈ R′(w) with

1. u, v ∈ Vw;

2. u ∈ Vw, v ∈ U1(w) ∪ U2(w) ∪ U3(w);

3. u, v ∈ U1(w);

4. u ∈ U2(w) ∪ U3(w), v ∈ U1(w) ∪ U2(w) ∪ U3(w);

5. u ∈ Vw, v ∈ U0(w) \ Vw;

6. u ∈ Vw, v ∈ U4(w).

We denote them Ri(w) of size ri(w), where 1 ≤ i ≤ 6, respectively.

Let DR(w) be the set of doubly restricted chords that occur twice in R(w).
Then any chord vjvk ∈ DR(w) satisfies one of the following:

1. vj , vk ∈ U1(w);

2. vj ∈ U0(w), vk ∈ U0(w) ∪ U1(w), either vj+1, vk−1 ∈ Vw or vj−1, vk+1 ∈

Vw.

We denote them DRi(w) of size dri(w), where 1 ≤ i ≤ 2, respectively. We claim

that DR(w) does not contain any chord of other types. In fact, every potentially

restricted vertex vj satisfies one of the following:

1. vj ∈ U1(w);

2. vj−1, vj , vj+1 ∈ U0(w);

3. vj−1, vj , vj+1 ∈ U4(w).

Let vjvk be a doubly restricted chord in DR′(w), we prove that the following can

not belong to DR(w) and omit some symmetric cases.

• If vj ∈ U1(w), vk ∈ U4(w), and assuming that vj+1 ∈ U1(w), then

{vjvk, vj+1, vk+1} /∈ R(w);
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• If vj ∈ U0(w), vk ∈ U0(w) ∪U1(w), and assuming that vj+1 /∈ Vw, vk+1 /∈

Vw, then {vjvk, vj+1, vk+1} /∈ R(w);

• If vj ∈ U0(w), vk ∈ U4(w), and assuming that vj+1 /∈ Vw, then

{vjvk, vj+1, vk+1} /∈ R(w);

• If vj , vk ∈ U4(w), then {vjvk, vj+1, vk+1} /∈ R(w).

Let us first consider R1(w) and R2(w). For any two vertices vaj , vak
∈ Vw,

there exist two chords vaj+1vak+1 and vaj−1vak−1 restricted by them. Hence we

have

r1(w) = 2
(

t

2

)
.

For any two vertices vaj , vk with vaj ∈ Vw and vk ∈ U1(w) ∪ U2(w) ∪ U3(w),
there exists one chord restricted by them, unless vaj vk ∈ E(C). Hence we have

r2(w) ≥ t(2∆(w) + |U2(w)|+ |U3(w)| − 2).

For the case of typical triangles, we need to compute the constraints of R3(w),
DR1(w) and the restricted pairs corresponding to DR1(w) together. We define

the following.

Definition 21. For two typical triangles wvjvj+1 and wvkvk+1, we let
x(j, k) := (x1, x2, x3, x4)

be the constraint of these triangles where
• they contribute x1 to r3(w);
• they contribute x2 to dr1(w);
• there exist x3 edges among vj−1vj , vjvj+1, vj+1vj+2 that have the same
colour as some edge among vk−1vk, vkvk+1, vk+1vk+2;

• there exist x4 edges among vk−1vk, vkvk+1, vk+1vk+2 that have the same
colour as some edge among vj−1vj , vjvj+1, vj+1vj+2;

Clearly we have x1(j, k) = 0 if wvjvj+1 and wvkvk+1 have the same colour,

otherwise x1(j, k) = 2. For other coefficients we simply have x2 ≤ 4 and x3, x4 ≤

x2. We prove the following few claims to characterise the colours with respect to

x2.
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Claim 3.3.3 Let wvjvj+1 and wvkvk+1 be two DT triangles. If they have
the same colour then we have x2(j, k) ≤ 2. Otherwise we have x2(j, k) ≤
3.

Proof. Whenwvjvj+1 andwvkvk+1 have the same colour, let us consider
the chord vjvk. Clearly we have {vjvk, vj+1, vk+1} /∈ R3(w) since
φ(wvj+1) = φ(wvk+1). And so vjvk ∈ DR(w). For the same reason
vj+1vk+1 is not doubly restricted. So we have x2(j, k) ≤ 2 for this case.

When wvjvj+1 and wvkvk+1 have distinct colours and there are at
least 2 doubly restricted chords, let us assume that 2 of them share
a common end vertex. Without loss of generality let them be vjvk

and vjvk+1. By the properness of C the restricted pairs corresponding
to vjvk and vjvk+1 must be {vjvj+1, vkvk−1} and {vjvj−1, vk+1vk+2},
respectively. We claim that vj+1vk can not be doubly restricted,
since otherwise it corresponds to a restricted pair {vj+1vj, vkvk+1}
or {vj+1vj+2, vkvk−1}, each of which would lead to a contradiction
to the properness of C. Hence another doubly restricted chord
must be vj+1vk+1 and the corresponding restricted pair must be
{vj+1vj+2, vk+1vk}. Therefore, we have x2(j, k) ≤ 3.

When one of wvjvj+1 and wvkvk+1 is CT or CCT triangle, we have the

following claim with some additional constraints.

Claim 3.3.4 Assume that wvjvj+1 is a CT triangle. If wvkvk+1 is also a
CT triangle, then there is at most one chord vjvk belonging to DR(w). If
wvkvk+1 is a CCT or DT triangle, then the chord vj+1vk can not belong to
DR(w).

Proof. A chord belongs to DR(w) if and only if it is contained in
2 distinct elements of R(w). By definition, we know that vj+2 ∈
U4(w) or vj+2 ∈ VCCT . If wvkvk+1 is a CT triangle, then we have
{vj+1vk, vj+2, vk+1} /∈ R(w) by our definition of R(w). Hence vj+1vk /∈
DR(w). Similarly we have vjvk+1, vj+1vk+1 /∈ DR(w). And we have
vj+1vk /∈ DR(w) if wvkvk+1 is a CCT or DT triangle.
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Now we can give the following two claims which show the relationship among

the coordinates of x.

Claim 3.3.5 Let wvjvj+1 and wvkvk+1 be 2 typical triangles of the same
colour.

• If they are both CT or CCT triangles, then x2(j, k) = 0;

• if they are both DT triangles, then x2(j, k) ≤ 2, while the restricted
pair of these two chords can be {vjvj+1, vkvk+1} in the meantime;

• otherwise, x2(j, k) ≤ 1.

Claim 3.3.6 Let wvjvj+1 and wvkvk+1 be 2 typical triangles of distinct
colours.

• If wvjvj+1 and wvkvk+1 are both CT or CCT triangles, then
x2(j, k) ≤ 1; otherwise,

• if x4(j, k) = 0, then x2(j, k) = 0;

• if x4(j, k) = 1, then x2(j, k) ≤ 2, and we have φ(vj−1vj) =
φ(vj+1vj+2) if the equality holds;

• if x4(j, k) = 2, then x2(j, k) = 2;

• if x4(j, k) = 3, then x2(j, k) = 3.

There are many possible colouring structures for the cases above, where the

number of restrictions are different from each other. Here we give a list of figures

to show some “best” cases with respect to minimizing the number of restrictions.

x = (0, 0, 1, 1) x = (0, 1, 1, 1) x = (0, 2, 1, 1)

Figure 3.4: 2 triangles with the same colour
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x = (2, 1, 1, 1) x = (2, 2, 2, 1) x = (2, 3, 3, 3)

Figure 3.5: 2 triangles with distinct colours

Since the colours of typical triangles highly correspond to R3(w) and DR1(w),
and noting that re(w) is mainly due to DR(w), we give a bound of r3(w) −
dr1(w) + re(w) as follows.

Claim 3.3.7 If all typical triangles have the same colour, then we have

r3(w)− dr1(w) + re(w) ≥ −2
t

2

 + t− 1.

If all typical triangles have distinct colours and ∆(w) = t, then we have

r3(w)− dr1(w) + re(w) ≥ −2
t

2

 + (3t− 2).

Otherwise, we have

r3(w)− dr1(w) + re(w) ≥ −2
t

2

 + (∆(w) + t− 1).

Proof. When all typical triangles are assigned the same colour, there
are (∆(w) − t) CT triangles, (∆(w) − t) CCT triangles and (2t − ∆(w))
DT triangles. Hence we have

r3(w) = 0,

dr1(w) ≤ 2
(

t

2

)
+ ∆(w)− t,

re(w) ≥ ∆(w)− 1.

The bound follows and the equality holds by taking x as following:
• If vj, vk are both in VCT or VCCT , then x(j, k) = (0, 0, 1, 1);
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• if vj, vk ∈ VDT , then x(j, k) = (0, 2, 1, 1);
• otherwise, x(j, k) = (0, 1, 1, 1).
When all typical triangles are assigned the same colour, in order to

compute the value of r3(w)−dr1(w)+re(w) in this situation, let us first
consider a single pair of typical triangles. Specifically, we consider the
difference between the case when two typical triangles have distinct
colours and that of the same colour.

1. wvjvj+1 and wvkvk+1 are both CT or CCT triangles. We take x =
(2, 1, 1, 1) here while x = (0, 0, 1, 1) for the former case. The
difference of x1 − x2 is 1.

2. wvjvj+1 andwvkvk+1 are both DT triangles. We take x = (2, 2, 2, 1)
or x = (2, 3, 3, 3) here while x = (0, 2, 1, 1) for the former case.
The difference of x1 − x2 is 2 or 1, respectively.

3. wvjvj+1 and wvkvk+1 are other types of typical triangles. We take
x = (2, 2, 2, 1) or x = (2, 3, 3, 3) here while x = (0, 1, 1, 1) for the
former case. The difference of x1 − x2 is 1 or 0, respectively.

It holds that for each pair of typical triangles, the case of the same
colour always leads to less constraints (with respect to the value of x1−
x2, x3 and x4). Hence, r3(w) − dr1(w) + re(w) reaches the minimum
value only if all triangles share a common colour. Let wvivi+1 be the
unique triangle with distinct colour. If vi ∈ VDT , then there exist at
most 2

(
t
2

)
+ ∆(w)− t− 2(t− 1) doubly restricted chords among other

typical triangles. Hence we have
r3(w) = 2(∆(w)− 1),

dr1(w) ≤ 2
(

t

2

)
+ ∆(w)− (3t− 2) +

∑
k ̸=i

x2(i, k),

re(w) ≥
∑
k ̸=i

x4(i, k) + τ,
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where τ = 1 if there exist vk such that x(i, k) = (2, 2, 2, 1), otherwise
τ = 0. So we have

r3(w)− dr1(w) + re(w) ≥− 2
(

t

2

)
+ (3t− 2)

+ ∆(w) +
∑
k ̸=i

(x4(i, k)− x2(i, k))− 2 + τ

≥− 2
(

t

2

)
+ (3t− 2),

where the equality holds only if x(i, k) = (2, 2, 2, 1) for every k ̸= i.
If vi ∈ VCT , then there exist at most 2

(
t
2

)
+ ∆(w) − t − t doubly

restricted chords among other typical triangles. Hence we have
r3(w) = 2(∆(w)− 1),

dr1(w) ≤ 2
(

t

2

)
+ ∆(w)− 2t +

∑
k ̸=i

x2(i, k),

re(w) ≥
∑
k ̸=i

x4(i, k) + τ,

where τ = 1 if there exist vk such that x(i, k) = (2, 2, 2, 1), otherwise
τ = 0. So we have

r3(w)− dr1(w) + re(w) ≥− 2
(

t

2

)
+ 2t

+ ∆(w) +
∑
k ̸=i

(x4(i, k)− x2(i, k))− 2 + τ

≥− 2
(

t

2

)
+ (∆(w) + t− 1),

where the equality holds only if x(i, k) = (2, 2, 2, 1) for every k ∈ VCCT ∪
VDT .

We could give a rough bound of g(t) so far. Specially when ∆(w) = t and all
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typical triangles have the same colour, we have

g(t) ≤
(

ℓ− 1
2

)
− r1(w)− r2(w)− (r3(w)− dr1(w) + re(w))

≤
(

ℓ− 1
2

)
− 2

(
t

2

)
− t(2t + |U2(w)|+ |U3(w)| − 2)

− (r3(w)− dr1(w) + re(w))

≤
(

ℓ− 1
2

)
− (2t2 − t− 1).

In the leftover part of counting, we mainly focus on those chords restricted by

a vertex in Vw ∪ U1(w) and a vertex out of them. We give a specific bound when

t = ⌊ ℓ−1
3 ⌋.

Claim 3.3.8 If t = ⌊ ℓ−1
3 ⌋, then we have |Φ| ≤ ⌊ ℓ−1

3 ⌋n−
(⌊ ℓ−1

3 ⌋+1
2

)
+ 1 +

rℓ−1.

Proof. Since almost all vertices of C are in U0(w) ∪ U1(w), we first
state that all typical triangles must be the same colour except for
some special cases. If there exists a typical triangle wvjvj+1 such that
vj−1, vj+2 ∈ U0(w), then for any typical triangle wvkvk+1 of different
colour, one of the following statements holds.

1. One of vk or vk+1 is not potentially restricted.
2. Both vk and vk+1 are potentially restricted. At least one of wvk−1

or wvk+2 has the same colour as wvjvj+1.
If neither hold, then there are 4 doubly restricted chords, which is a
contradiction.
Case 1. ℓ− 1 = 3t.
In this case, we have that V (C) = U0(w)∪U1(w), and all typical triangles
have the same colour. Hence we have
|Φ| ≤

(
ℓ− 1

2

)
− (2t2 − t− 1) + t(n− ℓ + 1) = ℓ− 1

3 n−
(

ℓ−1
3 + 1

2

)
+ 1.

Case 2. ℓ− 1 = 3t + 1.
The size of U0(w) could be two cases.
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2.1. |U0(w)| = |Vw|+ 1.
We have that V (C) = U0(w) ∪ U1(w), and all typical triangles have
the same colour. There exist two edges wvj and wvj+1 coloured by
the same colour of Φ2(C). Assume that vj+1 /∈ Vw, without loss of
generality. Then we have r2(w) + r5(w) = t(2t− 2) + 2t and dr2(w) = 0.
And so

|Φ| ≤
(

ℓ− 1
2

)
− (2t2 − t− 1) + t(n− ℓ + 1)− 2t.

2.2. U0(w) = Vw.
There exists a vertex vj such thatV (C)\(U0(w)∪U1(w)) = {vj}. Without
loss of generality, let vj ∈ U2(w), and wvj+1vj+2 is a DT triangle. The
colouring of all typical triangles could be separated into two cases.
2.2.1 All typical triangles have the same colour.
We have r3(w)− dr1(w) + re(w) ≥ −2

(
t
2

)
+ t− 1, r2(w) = t(2t− 1) and

r4(w) = t− 1. And so
|Φ| ≤

(
ℓ− 1

2

)
− (2t2 − t− 1) + t(n− ℓ + 1)− (2t− 1).

2.2.2 All typical triangles have the same colour except wvj+1vj+2.
We have r3(w)− dr1(w) + re(w) ≥ −2

(
t
2

)
+ 3t− 2 and r2(w) = t(2t− 1).

And so
|Φ| ≤

(
ℓ− 1

2

)
− (2t2 − t− 1) + t(n− ℓ + 1)− (3t− 1).

Therefore, we have
|Φ| ≤

(
ℓ− 1

2

)
−(2t2−t−1)+t(n−ℓ+1)−(2t−1) = ℓ− 2

3 n−
(

ℓ−2
3 + 1

2

)
+2.

Case 3. l − 1 = 3t + 2.
The size of U0(w) could be 3 cases.
3.1. |U0(w)| = |Vw|+ 2.
We have that V (C) = U0(w) ∪ U1(w), and all typical triangles have
the same colour. Now, we need to see the positions of the vertices
of U0(w)\Vw.
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3.1.1. There exist three vertices vj, vj+1, vj+2 ∈ U0(w).
Let us assume that vj+1 ∈ Vw, which is reasonable since we have that
r(w)−dr(w) ≤ |R′(w)|− |DR′(w)| for anyR(w) ⊂ R′(w). Then we have
r2(w) + r5(w) = t(2t− 2) + 4t and dr2(w) = 0. And so

|Φ| ≤
(

ℓ− 1
2

)
− (2t2 − t− 1) + t(n− ℓ + 1)− 4t.

3.1.2. There exist two pairs of vertices vj, vj+1 ∈ U0(w) and vk, vk+1 ∈
U0(w) with |j − k| ≥ 2.
We have r2(w) + r5(w) = t(2t− 2) + 4t and dr2(w) = 0. And so

|Φ| ≤
(

ℓ− 1
2

)
− (2t2 − t− 1) + t(n− ℓ + 1)− 4t.

3.2. |U0(w)| = |Vw|+ 1
There exist 2 vertices vj, vk such that vj ∈ U0(w) \ Vw and vk ∈ U2(w) ∪
U3(w). Then we have r2(w) + r5(w) = t(2t− 2) + 4t. And so
|Φ| ≤

(
ℓ− 1

2

)
− (2t2 − t− 1) + t(n− ℓ + 1)− (2t− 1)− (4t− 1).

3.3. U0(w) = Vw

Now we have |V (C)\U0(w)| = 2t + 2, which means that the number
of typical triangles ∆(w) = t or ∆(w) = t + 1. We first consider when
∆(w) = t and all typical triangles have the same colour. Then there
exist two vertices vj and vk such that {vj, vk} = V (C)\(U0(w) ∪ U1(w)).
The type of vj and vk could be varied into several subcases.
3.3.1. vj ∈ U2(w), vk ∈ U3(w).
We have r2(w) = t · 2t and r4(w) = 2t − 2. If k = j + 3, then
consider chords vj−1vj+2 and vjvk+2, which are not restricted. If they
are assigned distinct colours from Φ0(C), then we have that

vj−1, vj+2vj+1vj, vk+2vk+1vk, w, vk+3vk+4 . . . vj−1

is properly coloured, which shows that C can be properly coloured
extended by w, a contradiction. If k ̸= j + 3, then consider chords
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vj−1vj+2, vjvk, and vk−1vk+1. These 3 chords are not restricted. If they
are assigned distinct colours from Φ0(C), then we have that

vj−1, vj+2vj+1vj, vk, w, vj+3vj+4 . . . vk−2vk−1, vk+1vk+2 . . . vj−1

is properly coloured, which shows that C can be properly coloured
extended by w, a contradiction. Hence we have
|Φ| ≤

(
ℓ− 1

2

)
− (2t2 − t− 1) + t(n− ℓ + 1)− (2t + (2t− 2) + 1).

vj vkvj vk

Figure 3.6: Case 3.3.1

3.3.2. vj, vk ∈ U2(w) or vj, vk ∈ U3(w), both wvj and wvk have different
colours from those typical triangles.
We have r2(w) = t · 2t. If φ(wvj) ̸= φ(wvk), then we have r4(w) = 2t− 1
and re(w) ≥ t− 1. If φ(wvj) = φ(wvk), then we have r4(w) = 2t− 2 and
re(w) ≥ t. Hence we have

|Φ| ≤
(

ℓ− 1
2

)
− (2t2 − t− 1) + t(n− ℓ + 1)− (4t− 1).

3.3.3. vj, vk ∈ U2(w) or vj, vk ∈ U3(w), wvj is assigned the same colour
as those typical triangles.
Consider vj, vk ∈ U2(w). By Rule 3.3.1, it holds that j = k − 1 and
wvj+2vj+3 is a typical triangle. So we have r2(w) = t · 2t, r4(w) = t − 1
and re(w) ≥ t. For any typical trianglewvivi+1 with i ̸= j+2 and i ̸= j−3,
consider chords vkvi+1, vjvi+2 and vj−1vi. These three chords are not in
R(w). If they are assigned distinct colours from Φ0(C), then we have
that

vj−1, vivi+1, vkvk+1 . . . vi−1, w, vj, vi+2vi+3 . . . vj−1
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is properly coloured, which shows that C can be properly extended by
w, a contradiction. Specially when i = j−3, consider two chords vkvi+1

and vj−1vi. If they are assigned distinct colours from Φ0(C), then we
have that

vi−1, w, vjvj−1, vivi+1, vkvk+1 . . . vi−1

is properly coloured, which shows that C can be properly extended by
w, a contradiction. Moreover, these t− 1 tuples of chords are pairwise
disjoint for all i ̸= j + 2. Hence we have
|Φ| ≤

(
ℓ− 1

2

)
− (2t2− t− 1) + t(n− ℓ + 1)− (2t + (t− 1) + 1 + (t− 1)).

vkvj vi vi vj vk

Figure 3.7: Case 3.3.3

3.3.4. ∆(w) = t and not all typical triangles have the same colour.
We have that r3(w)− dr1(w) + re(w) ≥ −2

(
t
2

)
+ (3t− 2) by Claim 3.3.7.

Also, there exist two vertices vj and vk belong to U2(w) ∪ U3(w). We
have r2(w) = t · 2t. And so

|Φ| ≤
(

ℓ− 1
2

)
− (2t2 − t− 1) + t(n− ℓ + 1)− ((2t− 1) + 2t).

3.3.5. ∆(w) = t + 1 and all typical triangles have the same colour.
There exists vj such that wvjvj+1 and wvj+2vj+3 are typical triangles,
where vj+1 and vj+2 are not potentially restricted. Wehave r2(w) = t·2t,
r3(w) = 0, dr1(w) = 2

(
t
2

)
+ 1, and re(w) ≥ t. For those non-restricted

chords, there are 2(t − 1) triples of chords that can not be coloured
without restriction, by a similar argument to case 3.3.3, where these
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triples are pairwise disjoint. Moreover, consider two non-restricted
chords vjvj+2 and vj+1vj+3. If these two chords have distinct colours
from C , then C can be properly extended to

vj−1vj, vj+2vj+1, vj+3, w, vj+4vj+5 . . . vj−1.

Hence we have
|Φ| ≤

(
ℓ− 1

2

)
− (2t2 − t− 1) + t(n− ℓ + 1)− (2t− 1 + 1 + 2(t− 2) + 1).

3.3.6. ∆(w) = t + 1 and not all typical triangles have the same colour.
There exists vj such that wvjvj+1 and wvj+2vj+3 are typical triangles,
where vj+1 and vj+2 are not potentially restricted. Note that all DT
triangles must have the same colour. Let us denote the colour of these
DT triangles by major colour, even though there may exist only one DT
triangle.

Suppose that wvjvj+1 has a distinct colour from the major colour.
Then for any typical triangle wvkvk+1 with k ̸= j and k ̸= j + 2, we have
that vjvk and vjvk+1 are doubly restricted, and so we have φ(vjvk) =
φ(vjvj+1) = φ(vk−1vk) and φ(vjvk+1) = φ(vj−1vj) = φ(vk+1vk+2). Now
the colour of wvj+2vj+3 can not be same as wvjvj+1, otherwise we
have that φ(vj+2vj+3) = φ(vk+1vk+2) = φ(vj−1vj), which contradicts to
that C is properly coloured. Since vjvj+3 is doubly restricted, we have
φ(vjvj+3) = φ(vj−1vj) = φ(vj+3vj+4).

Ifwvj+2vj+3 has themajor colour, thenwe have r3(w) = 2t, dr1(w) =
2
(

t−1
2

)
+ 2(t− 1) + (t− 1) + 1, and re(w) ≥ 2(t− 1) + 1. Hence we have

g(t) ≤
(

ℓ− 1
2

)
− 2

(
t

2

)
− 2t((t + 1)− 1)− (−2

(
t− 1

2

)
+ t + 1).

If wvj+2vj+3 has the distinct colour from the major colour and wvjvj+1,
then we have r3(w) = 4t−2, dr1(w) = 2

(
t−1

2

)
+4(t−1)+1, and re(w) ≥

2(t− 1) + 2. Hence we have
g(t) ≤

(
ℓ− 1

2

)
− 2

(
t

2

)
− 2t((t + 1)− 1)− (−2

(
t− 1

2

)
+ 2t + 1).
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And so
|Φ| ≤

(
ℓ− 1

2

)
− (2t2 − t− 1) + t(n− ℓ + 1)− 4t.

Summarizing all the cases of l − 1 = 3t + 2 above, we have
|Φ| ≤

(
ℓ− 1

2

)
−(2t2−t−1)+t(n−ℓ+1)−(4t−1) = ℓ− 3

3 n−
(

ℓ−3
3 + 1

2

)
+3.

We give an upper bound when 2 ≤ t ≤ ⌊ ℓ−1
3 ⌋ − 1.

Claim 3.3.9 If 2 ≤ t ≤ ⌊ ℓ−1
3 ⌋ − 1 and ℓ ≥ 10, then we have g(t) ≤(

ℓ−1
2

)
− (2t2 − t− 1)− t(ℓ− 3t) + 1.

Proof. By the previous argument we have
r1(w) + r2(w) + r3(w)− dr1(w) + re(w)

≥(2t∆(w)− t− 1) + t(|U2(w)|+ |U3(w)|)

=(2t2 − t− 1) + t(2(∆(w)− t) + |U2(w)|+ |U3(w)|)

if all typical triangles are monochromatic. Otherwise we can find at
least ∆(w) more restrictions. It is expected that every vertex of U0(w)\
Vw and U4(w) restricts t more chords with Vw. Hence it suffices to find
(t− 1) more restrictions.

We first consider r5(w) − dr2(w). In fact, for any chord vjvk ∈
DR2(w), it satisfies that vj±1 ∈ Vw, vj∓1 ∈ U0(w) \ Vw and vk∓1 ∈ Vw,
respectively. Hence for any potentially restricted vertex v ∈ U0(w),
there are at most t doubly restricted chords in DR(w) incident to v.
So we have

r5(w)− dr2(w) ≥ (t + 1)(|U0(w)| − |Vw|) + (t− 1).

Clearly we have r6(w) = t · |U4(w)|. Hence, if the typical triangles
have distinct colours or U0(w) ̸= Vw, we have

r(w)− dr(w) + re(w) ≥ (2t2 − t− 1) + t(ℓ− 1− 3t) + t.
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Let us assume that all typical triangles have the same colour and
U0(w) = Vw. If U2(w) or U3(w) is not empty, then we have r4(w) ≥ t,
which is sufficient to prove the bound. So let us further assume that
U2(w) ∪ U3(w) = ∅.

Now we have U4(w) ̸= ∅. There exists a segment that contains
CT and CCT triangles vj ∈ VCT and vk ∈ VCCT . Consider the vertices
of U4(w) in this segment. If there is a vertex vi such that φ(wvm) ̸=
φ(vmvm+1) and φ(wvm) ̸= φ(vmvm−1), then vm and Vw contribute 2t

to R6(w), which is enough to prove the bound. Hence let us assume
that such a vertex does not exist. In this case there exists a vertex vm

satisfying that:
• j < m < k,
• φ(wvm) = φ(vmvm−1) and
• φ(wvm+1) = φ(vm+1vm+2).

For any other segment with typical triangles wvivi+1 and wvi′vi′+1 (can
be the same DT one), where i ≤ i′ and i ̸= j. Consider two chords
vmvi′+1 and vm+1vi. They are not in R(w). If they are assigned distinct
colours from Φ0(C), then we have that

vm, vi′+1vi′ . . . vi, vm+1vm+2 . . . vi−1, w, vi′+2vi′+3 . . . vm

is a properly colored cycle of length ℓ, a contradiction. Hence we can
find t − 1 pairs of chords that are pairwise disjoint, in which there are
t− 1 more restrictions.

vj

vm

vk vi vi′

Figure 3.8: the case when m = j + 2 = k − 1
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The bound follows.
Now we can give the upper bound of |Φ| by Claim 3.3.8 and Claim 3.3.9.

Define

h(t) =



(n− ℓ + 1) +
(ℓ−1

2
)

t = 1;

t(n− ℓ + 1) +
(ℓ−1

2
)
− (2t2 − t− 1)− t(ℓ− 3t) + 1 2 ≤ t ≤ ⌊ ℓ−1

3 ⌋ − 1, ℓ ≥ 10;

t(n− ℓ + 1) +
(ℓ−1

2
)
− (2t2 − t− 1) 3t = ℓ− 1;

t(n− ℓ + 1) +
(ℓ−1

2
)
− (2t2 − t− 1)− (2t− 1) 3t = ℓ− 2;

t(n− ℓ + 1) +
(ℓ−1

2
)
− (2t2 − t− 1)− (4t− 1) 3t = ℓ− 3.

If 2 ≤ t ≤ ⌊ ℓ−1
3 ⌋ − 1, then h(t) reaches the maximum value when t = 2 or

t = ⌊ ℓ−1
3 ⌋−1. When ℓ ≤ 3n

5 , we always have h(⌊ ℓ−1
3 ⌋−1) ≥ h(2) by the property

of quadratic function. In this case, we have

h

(⌊
ℓ− 1

3

⌋)
− h

(⌊
ℓ− 1

3

⌋
− 1

)
≥ h

(
ℓ− 3

3

)
− h

(
ℓ− 3

3 − 1
)

= n− 5ℓ

3 ≥ 0.

When ℓ > 3n
5 , 2 ≤ t ≤ ⌊ ℓ−1

3 ⌋ − 1, we have

h(1)− h(t) = −t2 − (n− 2ℓ + 2)t + (n− ℓ− 1) > 0

since ℓ ≥ 10. Therefore, we have

|Φ| ≤ max
{

h(1), h

(⌊
ℓ− 1

3

⌋)}
= f(n, ℓ),

which is a contradiction. We finish the proof of Lemma 3.3.2.

Remark 6. We did not get the exact upper bound in Claim 3.3.9. However, it
is enough to get a less number of colours to compare to the cases when t

get largest or smallest. We conjecture that it reaches the maximum when the
assignment of colours is one of the extremal structure Lemma 3.2.1.
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4 - On sufficient conditions for weakly proper

spanning trees in edge-coloured graphs

4.1 . Introduction

In 2019, Borozan et al. [8] first studied the notion of weakly proper tree.

Inspired by it, we are interested in sufficient conditions for edge-coloured graphs

to have weakly proper spanning trees. There are two types of problems:

(I) For an edge-coloured graph G, find sufficient conditions forcing a weakly proper

spanning tree with root r for any vertex r ∈ V (G).

(II) For an edge-coloured graph G, find sufficient conditions forcing a weakly proper

spanning tree with root r for some vertex r ∈ V (G).

In general, Dirac-type problems in edge-coloured graphs ask for the minimum

colour degree threshold, namely, the smallest possible minimum colour degree

condition that ensures certain properly coloured (spanning) subgraphs in an

edge-coloured graph. To begin with, we study the Dirac-type problem for

weakly proper spanning tree, i.e., find a minimum colour degree condition for

an edge-coloured graph G to have a weakly proper spanning tree with root r for

any vertex r ∈ V (G). Our first main result is a sufficient condition for type (II).

Theorem 4.1.1 For ε > 0, there exist an integer n0 such that every
connected edge-coloured graph G on n ≥ n0 vertices with δc(G) ≥
(1/3 + ε)n, there is a vertex r ∈ V (G), and G contains a weakly proper
spanning tree rooted at r.

For the problem of type (I), by Theorem 1.2.41 and Theorem 1.2.42, there

is no difference between the minimum colour degree condition forcing a properly

coloured spanning tree and the one forcing a weakly proper spanning tree with root

r for any r ∈ V (G).
Note that if an edge-coloured graph G has a weakly proper spanning tree with

root r for any r ∈ V (G), then G is properly connected. But the converse is
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not true, i.e., there is a properly connected graph G which has no weakly proper

spanning tree with root r for some r ∈ V (G). In fact, the edge-coloured graph H

in Figure 4.1 is properly connected but has no weakly proper spanning tree with

root r.

r

Figure 4.1: The edge-coloured graph H.

We further study some other sufficient conditions forcing weakly proper

spanning trees, and obtain Theorems 4.1.2, 4.1.3 and 4.1.4, where the conditions

in Theorems 4.1.2 and 4.1.4 cannot guarantee properly coloured spanning trees.

Theorem 4.1.2 Let k ≥ 3 be an integer and G be an edge-coloured
connected graph containing a properly coloured cycle Ck. If every properly
coloured Pk is contained in a properly coloured Ck, then G has a weakly
proper spanning tree with root r for any r ∈ V (G).

If k = 2, then the condition in Theorem 4.1.2 is that every edge is contained

in a properly coloured C2, which means G is a multigraph, and it is easy to find a

weakly proper spanning tree with root r for any vertex r ∈ V (G). As mentioned

above, we only consider simple graphs. For k = 2, we try to modify the condition

as follows: Every edge is contained in a properly coloured C3. However, we obtain

the following result showing that this condition cannot guarantee a weakly proper

spanning tree with root r for any r ∈ V (G).

Theorem4.1.3 There are infinitely many edge-coloured graphs G such that
δc(G) ≥ 2 and every edge is contained in a properly coloured C3, but G

has no weakly proper spanning tree with root r for some r ∈ V (G).
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Inspired by the condition “every edge is contained in a properly coloured C3”,

we further consider “every properly coloured P3 is contained in a properly coloured

C4”, and obtain the following theorem.

Theorem 4.1.4 Let G be an edge-coloured connected graph with δc(G) ≥
2. Suppose that G satisfies the following two conditions:

1. Every properly coloured P3 is contained in a properly coloured C4.

2. For every K1,4 with four edges e1, e2, e3, e4 and c(e1) = c(e2) ̸=
c(e3) = c(e4), either c(x1x2) = c(e1) or c(x3x4) = c(e3), where
xi is the vertex incident with ei and not the center of K1,4 for any
1 ≤ i ≤ 4.

Then G has a weakly proper spanning tree with root r for any vertex r ∈
V (G).

There exist many edge-coloured graphs which satisfy conditions of Theorem

4.1.2 or 4.1.4 but do not have properly coloured spanning trees. We give two

examples here.

Example 4.1.1 Let k ≥ 4 be an integer and C = v1v2 . . . vkv1 be
a properly coloured cycle. Let l > 6 be an integer and Kl be a
monochromatic complete graph with V (Kl) = {u1, u2, . . . , ul} so that
the colour appearing in Kl is c(v1v2). Let G be an edge-coloured graph
obtained from C and Kl by adding new edges v1ui, v2ui, v3ui and vkui with
c(v1ui) = c(v2ui) = c(v1v2), c(v3ui) = c(v2v3) and c(vkui) = c(v1vk)
for any 1 ≤ i ≤ l. Then G satisfies the conditions in Theorem 4.1.2 but
has no properly coloured spanning tree. This is because there are at most 6
vertices in V (Kl) which can be contained in a properly coloured tree of G.

Example 4.1.2 Let l ≥ 3 and k be positive integers, Kl be a
properly coloured complete graph and V (Kl) = {u1, u2, . . . , ul}. Let
v1, v2, . . . , vl+k be distinct vertices not belonging to V (Kl). Let
c1, c2, . . . , cl be distinct colours such that for each 1 ≤ i ≤ l, ci does
not appear on edges incident with ui in Kl. Basing on the properly coloured
Kl and {v1, v2, . . . , vl+k}, we construct an edge-coloured graph G by
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adding a new edge uivj and colouring it with ci for every 1 ≤ i ≤ l and
1 ≤ j ≤ l +k. Then G satisfies the conditions in Theorem 4.1.4. However,
for any properly coloured tree T in G, the number of edges between Kl and
{v1, v2, . . . , vl+k} contained in T is at most l. Hence, |T | ≤ 2l and G

does not have properly coloured spanning trees.

4.2 . Finding WPST for some root

Here we present the proof of Theorem 4.1.1, which naturally splits into two

lemmas. First, we consider the case when G has a low connectivity and have the

following lemma.

Lemma 4.2.1 For ε > 0 and a graph G on n vertices with δc(G) ≥
(1/3 + ε)n, if G is not εn/2-connected, then G has a properly coloured
spanning tree.

Proof. Since κ(G) < εn/2, there exists a vertex cut W ⊂ V (G) of order
k = κ(G). Let W = {v1, . . . , vκ}. Noting that δc(G) ≥ (1/3 + ε)n, G−W

has exactly two connected components of vertex set W1 and W2, each
of which has at least (1/3+ε/2)n vertices. By the minimality of W each
vertex v ∈ W has neighbours both in W1 and W2. Hence there exists a
vertex subset U = {w, u1, u2, . . . , uκ} of size κ + 1 in G−W satisfies:

(i) w and u1 are in the distinct connected components in G−W ,
(ii) v1w ∈ E(G),
(iii) viui ∈ E(G) for 1 ≤ i ≤ κ.

Let Σ be the set of colours of edges v1w and viui for 1 ≤ i ≤ κ. Σ has
size at most κ + 1. Then we remove all edges in G −W whose colour
is in Σ, and let the G′ be the graph. Now each component of G′ has
at most (2/3 − ε)n vertices and minimum colour degree at least n/3.
By Theorem 1.2.42 each component has a properly coloured spanning
tree. Combined with edges v1w and viui for 1 ≤ i ≤ κ, we can get a
properly coloured spanning tree of G.
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Hence Lemma 4.2.1 implies that Theorem 4.1.1 holds if κ(G) < εn. If G has

a larger connectivity, then we proceed using the absorption technique introduced

by Rödl, Ruciński and Szemerédi [73]. First we find a small “absorbing tree” T in

G using the following lemma.

Lemma 4.2.2 Let 0 < 1/n ≪ ε < 1/2. Suppose that G is a
εn/2-connected edge-coloured graph on n vertices with δc(G) ≥ (1/3 +
ε)n. Then there exists a weakly proper tree T rooted at some vertex r ∈
V (G) of order at most εn/2 such that for any vertex subset U ⊂ V (G),
there exists a weakly proper tree rooted at r with vertex set V (T ) ∪ U .

Theorem 4.1.1 follows from these two lemmas immediately.

Proof. Let G be the graph on n vertices with δc(G) ≥ (1/3 + ε)n such
that 1/n≪ ε < 1/2. IfG is not εn/2-connected, then by Lemma 4.2.1G

has a properly coloured spanning tree, and hence has a weakly proper
spanning tree for any root r ∈ V (G). Otherwise, such a root r and the
weakly proper spanning tree rooted at r can be found by Lemma 4.2.2.

4.2.1 . Absorbing trees

In this section, we prove Lemma 4.2.2. We need the following definition.

Given a vertex x, we say that a path P is an absorbing path for x if the following

conditions hold:

(i) P = z1z2z3 is a properly coloured path of length 2;

(ii) x /∈ V (P );

(iii) the colour of xz2 is distinct from z1z2 and z2z3.

Given a vertex x, let L(x) be the set of absorbing paths for x. Since δc(G) ≥
(1/3 + ε)n, clearly we have |L(x)| ≥ n3/27 for every x. Lemma 4.2.4 is proved

by a simple probabilistic argument since each of L(x) is large. We will need the

following Chernoff’s bound for the binomial distribution.

Lemma 4.2.3 (Chernoff’s bound) Suppose that X has the binomial
distribution and 0 < a < 3/2. Then

P [|X− E [X] | ≥ aE [X]] ≤ 2e−a2E[X]/3.
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Lemma 4.2.4 Let 0 < γ < 1. Then there exists an integer n0 such that
whenever n ≥ n0 the following holds. Let G be an edge-coloured graph on
n vertices. Suppose that |L(x)| ≥ γn3 for every x ∈ V (G). Then there
exists a family F of vertex-disjoint properly coloured paths each of length 2,
which satisfies the following properties:

|F| ≤ 2−5γn, |L(x) ∩ F| ≥ 2−8γ2n

for all x ∈ V (G).

Proof. Choose n0 ∈ N large so that
exp(−γn0/(3× 26)) + n0 exp(−γ2n0/(3× 28)) ≤ 1/6. (4.1)

Recall that each path is assumed to be connected. So a path z1z2z3

will be considered as a triple (z1, z2, z3). Choose a family F ′ of triples in
V (G) by selecting each of the n!/(n−3)! possible triples independently
at random with probability

p = 2−6γ
(n− 3)!
(n− 1)! ≥ 2−6γn−2.

Notice that
E [|F ′|] = p

n!
(n− 3)! = 2−6γn,

E [|L(x) ∩ F ′|] = p|L(x)| ≥ 2−6γ2n

for every x ∈ V (G). Then by Lemma 4.2.3, the union bound and
Equation (4.1) with probability 2/3, the family F ′ satisfies the following
properties:

|F ′| ≤ 2E [|F ′|] = 2−5γn, (4.2)
|L(x) ∩ F ′| ≥ 2−1E [|L(x) ∩ F ′|] ≥ 2−7γ2n (4.3)

for every x ∈ V (G).
We say two triples (z1, z2, z3) and (w1, w2, w3) are intersecting if zi =

wj for some 1 ≤ i, j ≤ 3. We can bound the expected number of pairs
of triples in F ′ that are intersecting from above by

n!
(n− 3)! × 32 × (n− 1)!

(n− 3)! × p2 = 9× 2−12γ2n.
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Thus, using Markov’s inequality, it holds that with probability at least
7/16,

F ′ contains at most 2−8γ2n intersecting pairs of triples. (4.4)
Hence, with positive probability the family F ′ satisfies properties
(4.1)-(4.4). Remove one triple in each intersecting pair in F ′. Further
remove those triples that are not absorbing paths. We get a family F
consisting of pairwise disjoint triples, which satisfies

|L(x) ∩ F| ≥ 2−7γ2n− 2−8γ2n = 2−8γ2n

for every x ∈ V (G). Since each triple in F is an absorbing path, this
lemma follows.

By Lemma 4.2.4 we get a family F of absorbing paths satisfying the properties

in the lemma. Then we are going to package all these paths into a weakly

proper tree. For an edge-coloured graph G and a vertex v ∈ V (G), let

CG(v) := {c(uv) : u ∈ NG(v)}. We need the following lemma from Lemma

4.4 of [59].

Lemma 4.2.5 (Lo, 2019 [59]) Let 0 < 1/n ≪ ε < 1/2. Suppose that
G is an edge-coloured graph on n vertices with δc(G) ≥ (1/2 + ε)n + 1.
Let x, y ∈ V (G) be distinct and let cy be any colour. Then there exists
a properly coloured path P from x to y of length at most ε−2 such that
CP (y) ̸= {cy}.

We prove the following by Lemma 4.2.5.

Lemma 4.2.6 Let 0 < 1/n≪ ε < 1/2. Suppose that G is a 2-connected
edge-coloured graph on n vertices with δc(G) ≥ (1/3 + ε)n + 2. Let
x ∈ V (G) and let cx, c′

x be any two colours. Then there exists a vertex
subset S ⊂ V (G) satisfying:

(i) |S| ≥ (1/2 + ε)n,

(ii) for every v ∈ S there exists a properly coloured path P from x to v

of length at most ε−2 + 2 such that CP (x) ̸⊂ {cx, c′
x}.
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Proof. Let ℓ := ⌊ε−2⌋. Remove all edges at x with colour cx or c′
x and let

H be the resulting graph. ClearlyH is connected and we haveNH(x) ⊂
S. Let S0 = NH(x) and T0 = NH [x]. If |S0| ≥ (1/2 + ε)n then S is found.
Hence we assume that |S0| < (1/2+ε)n. If there exists v ∈ S0 such that

dc
H−T0(v) ≥ (1/2 + ε)n− |T0|+ 1,

then we can find at least dc
H−T0(v) − 1 vertices that can be reached by

x by a properly coloured path of length 2. S is found.
We further assume that for every v ∈ S0, dc

H−T0(v) ≤ (1/2+ε)n−|T0|.
So

dc
T0(v) ≥ (1/3 + ε)n− [(1/2 + ε)n− |T0|]

= |T0| − n/6

≥ (1/2 + ε)|T0|+ 1.

Hence for any vu ∈ E(H) with v ∈ S0 and u ∈ V (H) \ T0, by
Lemma 4.2.5, there exists a properly coloured path P from x to v of
length at most ε−2 such that CP (v) ̸= {c(vu)}. And so Pu is a properly
coloured path from x to u of length at most ε−2 + 1, which implies that
NH2(x) ⊂ S.

Let S1 = NH2(x) and T1 = NH2 [x]. Repeat the above argument until
we get Si and Ti such that

(i) either |Si| ≥ (1/2 + ε)n,
(ii) or there exists v ∈ Si such that dc

H−Ti
(v) ≥ (1/2 + ε)n− |Ti|+ 1.

In both case we can find a set S satisfying the properties in the lemma.

We now proof Lemma 4.2.2.

Proof of Lemma 4.2.2. Let ε0 be such that 1/n≪ ε0 ≪ ε. Since δc(G) ≥
(1/3 + ε)n, apply Lemma 4.2.4 and obtain a family F of vertex-disjoint
properly coloured paths each of length 2 such that for all x ∈ V (G),

|F| ≤ 2−5γn, |L(x) ∩ F| ≥ 2−8γ2n.
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Let P1, . . . , P|F| be paths in F . Let xi be one of the end vertex of Pi for
all 1 ≤ i ≤ |F|. Then Pi can be regarded as a weakly proper tree rooted
at xi. To join all the paths in F we have the following claim.
Claim 4.2.1 Let T1 and T2 be two disjoint weakly proper tree of G rooted
at r1 and r2 respectively, where dTi(ri) ≤ 2 for 1 ≤ i ≤ 2. Each has order
at most εn/6. Then there exists a vertex r ∈ V (G) \ (V (T1) ∪ V (T2))
and two internally disjoint paths P1 and P2 such that for 1 ≤ i ≤ 2,

(i) Pi is a properly coloured ri − r path of length at most ε−2
0 + 2,

(ii) CPi(ri) ̸⊂ CTi(ri).

Proof. Let G′ be the graph of order n′ obtained from G by deleting
all vertices of T1 and T2 except their roots. Let cri

, c′
ri
be the colours

incident to ri in Ti for 1 ≤ i ≤ 2. Then G′ is a 2-connected graph of
minimum colour degree δc(G′) ≥ (1/3 + ε/2)n ≥ (1/3 + ε0)n′ + 2. By
Lemma 4.2.6 there exist two vertex subset S1, S2 ⊂ V (G′) such that for
1 ≤ i ≤ 2,

(i) |Si| ≥ (1/2 + ε0)n′,
(ii) for every v ∈ S there exists a properly coloured path P from ri to

v of length at most ε−2
0 + 2 such that CP (ri) ̸⊂ {cri

, c′
ri
}.

SinceS1∩S2 ̸= ∅, we can finda vertex r ∈ S1∩S2 satisfying the claim.
The family F contains at most 2−5γn paths. By Claim 4.2.1 we can

join P1, . . . , P|F| into a weakly proper tree T of order at most 2−5γn(3 +
2ε−2

0 + 4) ≤ εn/2. For each Pi = zi1zi2zi3 , the middle vertex zi2 still
has degree 2 in T , where 1 ≤ i ≤ |F|. Hence for any vertex subset
U ⊂ V (G)\V (T ),U can be absorbed in T into aweakly proper tree.

4.3 . Proof of Theorem 4.1.2

Let C = v0v1 . . . vk−1v1 be an arbitrary properly coloured cycle with order k

in G. Note that the following indices of vertices are taken modulo k. We have the

following claim.
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Claim 4.3.1 For any vertex u ∈ V (G) \ V (C), u is adjacent to some
vertex in V (C).

Proof. Suppose that there is a vertex u ∈ V (G) \ V (C) not adjacent
to any vertices in V (C). Since G is connected, there exists a vertex
v ∈ V (G) \V (C) adjacent to some vertex in V (C). Let vi (0 ≤ i ≤ k− 1)
be a vertex in V (C) adjacent to v. SinceC is properly coloured, we have
c(vvi) ̸= c(vi−1vi) or c(vvi) ̸= c(vivi+1). Without loss of generality, we
assume c(vvi) ̸= c(vivi+1). Then the path uvvivi+1 . . . vi−3 is a properly
coloured Pk. By the assumption of Theorem 4.1.2, uvvivi+1 . . . vi−3u is a
properly coloured Ck. Hence, u is adjacent to vi−3, a contradiction.

By Claim 4.3.1 and the assumption of Theorem 4.1.2, every vertex in V (G)
is contained in a properly coloured Ck. Let C(r) be the properly coloured Ck

containing the vertex r ∈ V (G). We use vr
0 to denote the vertex r and let C(r) =

vr
0vr

1 . . . vr
k−1vr

0. For any vertex v ∈ V (G) \ V (Cr), there are two vertices vr
i , vr

i+2

adjacent to v for some 0 ≤ i ≤ k−1, and vr
i vvr

i+2 . . . vr
i−1vr

i is a properly coloured

Ck. If one of the two vertices vr
i , vr

i+2 is vr
0, then let f(v) = vr

0. Otherwise, let

f(v) = vr
i . Let P (r) = vr

0vr
1 . . . vr

k−1. Then P (r) +
∑

v∈V (G)\V (Cr) vf(v) is a

weakly proper spanning tree with root r.

4.4 . Proof of Theorem 4.1.3

Let T be an edge-coloured triangle with u, v, w ∈ V (T ) and c(vw) =
c1, c(uv) = c2, c(uw) = c3. Let m and ℓ be positive integers. Let Ti be an

edge-coloured triangle with xi, yi, zi ∈ V (Ti) for 1 ≤ i ≤ 3m + 2 and

c(xiyi) =


c2 if i ≡ 1

c3 if i ≡ 2

c1 if i ≡ 0

c(yizi) =


c1 if i ≡ 1

c2 if i ≡ 2

c3 if i ≡ 0

c(xizi) =


c3 if i ≡ 1

c1 if i ≡ 2

c2 if i ≡ 0,

where “≡” means that i is taken modulo three. Let Si be an edge-coloured triangle

with x′
i, y′

i, z′
i ∈ V (Si) for 1 ≤ i ≤ 3ℓ + 2 and
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c(x′
iy

′
i) =


c3 if i ≡ 1

c2 if i ≡ 2

c1 if i ≡ 0

c(y′
iz

′
i) =


c1 if i ≡ 1

c3 if i ≡ 2

c2 if i ≡ 0

c(x′
iz

′
i) =


c2 if i ≡ 1

c1 if i ≡ 2

c3 if i ≡ 0.

Let G be a graph obtained from T, T1, . . . , T3m+2, S1, . . . , S3ℓ+2 by identifying

{zi, xi+1} for 1 ≤ i ≤ 3m + 1, {z′
j , x′

j+1} for 1 ≤ j ≤ 3ℓ + 1, {x1, z3m+2, v} and

{x′
1, z′

3ℓ+2, w} (see Figure 4.2 as an example).
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Figure 4.2: The graph G with m = ℓ = 1.

We will show that G has no weakly proper spanning tree with root u. Suppose

that there is a weakly proper spanning tree H with root u. It is easy to see that

one of uv and uw must be contained in H. Without loss of generality, we assume

that uv ∈ E(H). Let a1 be the vertex identified by {x1, z3m+2, v} and ai+1 be

the vertex identified by {zi, xi+1} for each 1 ≤ i ≤ 3m + 1. Let C be the cycle

consisting of a1, a2, . . . , a3m+2. Since H is a spanning tree with root u, for every

ai (2 ≤ i ≤ 3m + 2), there is a unique path in H connecting a1 and ai, and we

denote it by Pi. We say Pi is maximal if there is no Pj (2 ≤ j ≤ 3m + 2 and

j ̸= i) taking Pi as a subpath. Obviously, there are at most two maximal paths

in {P2, P3, . . . , P3m+2}. Let P be a maximal path in {P2, P3, . . . , P3m+2}. For

convenience, write P = b1b2 . . . bi, where b1 = a1 and bi ∈ {a2, . . . , a3m+2}.

Claim 4.4.1 For each 1 ≤ j ≤ i− 1, bjbj+1 ∈ E(C).

Proof. We prove this claim by induction on j. Since uv ∈ E(H) and
c(uv) = c(a1y1) = c(a1y3m+2), we have b1b2 ∈ E(C). Suppose that
bjbj+1 /∈ E(C), where j ≥ 2. Since bj−1bj ∈ E(C), bj is in V (C) and
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so bj+1 is not in V (C). Since bi ∈ {a2, . . . , a3m+2}, bj+1 ̸= bi and bj+1

is not contained in a triangle containing bj−1bj . By the colouring of G,
c(bj−1bj) = c(bjbj+1), which contradicts that H is a weakly proper tree.

If there are two maximal paths in {P2, P3, . . . , P3m+2}, then let Q = b′
1b′

2 . . . b′
k

be the maximal path different from P , where b′
1 = a1 and b′

k ∈ {a2, . . . , a3m+2}.

Otherwise, let Q = b′
1 = b′

k = a1. Since H is a spanning tree, bi and b′
k are

contained in a same triangle, and let b be the vertex in this triangle different from

bi, b′
k. By Claim 4.4.1 and the colouring of G, c(bi−1bi) = c(bib) and c(b′

k−1b′
k) =

c(b′
kb), where b′

0 = u. Since H is a weakly proper tree, b is not contained in

H, which contradicts that H is a spanning tree. Hence G has no weakly proper

coloured spanning tree with root u.

4.5 . Proof of Theorem 4.1.4

Suppose that G has no weakly proper spanning tree with root r for some

r ∈ V (G). Let T be a maximum weakly proper tree with root r. For a vertex

v ∈ V (T ), let e(v) be the edge incident with v such that e(v) is on the path from

r to v in T . We use L(T ) to denote the leaves of T .

Claim 4.5.1 For each vertex v ∈ V (T ) and u ∈ V (G) \ V (T ) adjacent
to v, we have c(uv) = c(e(v)).

Proof. Suppose that there exists a vertex v ∈ V (T ) such that v is
adjacent to a vertex u ∈ V (G) \ V (T ) and c(uv) ̸= c(e(v)). Then T + uv

is a weakly proper tree with order |T | + 1, which contradicts to the
maximality of T .
Claim 4.5.2 Let ℓ ∈ L(T ) adjacent to a vertex u ∈ V (G) \ V (T ).
If ℓ is adjacent to a vertex v ∈ V (T ) such that c(ℓu) ̸= c(ℓv), then
c(ℓv) = c(e(v)).

Proof. Suppose that c(ℓv) ̸= c(e(v)). Then T + ℓu + ℓv− e(ℓ) is a weakly
proper tree with order |T |+ 1, a contradiction.
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Since G is connected, there exists a vertex u ∈ V (G) \ V (T ) adjacent to a

vertex in V (T ).

Claim 4.5.3 The edges between u and L(T ) have the same colour.

Proof. Suppose that there exist leaves ℓ1 and ℓ2 of T with c(uℓ1) ̸=
c(uℓ2). Since ℓ1uℓ2 is a properly coloured P3, it follows from the
assumption (i) of Theorem 4.1.4 that there exists a vertex v such that
vℓ1uℓ2v is a properly coloured C4. Since c(vℓi) ̸= c(uℓi) for i ∈ {1, 2},
we have v ∈ V (T ) by Claim 4.5.1. This contradicts to Claim 4.5.2 since
c(vℓ1) ̸= c(vℓ2). Hence the edges between u and L(T ) have the same
colour.
Claim 4.5.4 There exists a vertex in V (T ) \ L(T ) adjacent to u.

Proof. Assume it is false. Then there exists a leaf ℓ of T adjacent to
u. Since δc(G) ≥ 2, there exists a vertex v adjacent to u with c(uv) ̸=
c(uℓ). By Claim 4.5.3, v is not in V (T ). Since ℓuv is a properly coloured
P3, there exists a vertex w such that wℓuvw is a properly coloured C4.
Since c(uℓ) ̸= c(wℓ), it follows from Claim 4.5.1 that w is in V (T ). This
contradicts to Claim 4.5.1 or Claim 4.5.2 since c(wℓ) ̸= c(vw).

For two vertices a and b in V (T ), we use PT (a, b) to denote the unique path

in T connecting a and b. Let w be a vertex in V (T ) \ L(T ) adjacent to u such

that

|PT (r, w)| = min{|PT (r, v)| : v ∈ NG(u) ∩ V (T )}.

Let x be a child of w in T . Let T be a set of maximum weakly proper trees S

with root r in G such that

(i) V (S) = V (T ),

(ii) |PS(r, w)| = min{|PS(r, v)| : v ∈ NG(u) ∩ V (S)}, and

(iii) x is a child of w in S.

Note that Claims 4.5.3 and 4.5.4 hold for any tree in T . Choose a maximum

weakly proper tree T ′ ∈ T such that
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(P1) degT ′(x) is as large as possible.

Since T ′ is a weakly proper tree, it follows from Claim 4.5.1 that uwx is a

properly coloured P3. Hence there exists a vertex y such that yuwxy is a properly

coloured C4. Moreover, by Claims 4.5.1 and 4.5.2, we have y ∈ V (T ′) \ L(T ′)
and e(y) ̸= xy.

By the choice of w, the unique cycle of T ′ +xy contains e(y). By Claim 4.5.1,

c(uy) = c(e(y)). We show that there exists a child z of y such that c(xy) = c(yz).
Suppose that c(xy) ̸= c(yz) for each child z of y. Then T ′′ = T ′ +xy +uy−e(y)
is order |T ′| + 1, a contradiction. Hence there exists a child z of y such that

c(xy) = c(yz).
We define a 2-edge-coloured K1,4 as an edge-coloured star K1,4 with c(e1) =

c(e2) ̸= c(e3) = c(e4), where e1, e2, e3, e4 are four edges of K1,4. Let e(y) = yy′.

Then the subgraph induced by yy′, yz, xy and uy is a 2-edge-coloured K1,4. By

the assumption (ii) in Theorem 4.1.4, one of the following cases happens:

• uy′ ∈ E(G) and c(uy′) = c(e(y));

• xz ∈ E(G) and c(xz) = c(yz).

If the first case happen, then T ′ + uy′ is a weakly proper tree with order |T |+ 1, a

contradiction. Hence the latter case must happen. Let T ′′ = T ′ + xz − yz. Then

T ′′ is in T and degT ′′(x) > degT ′(x), which contradicts (P1). Thus Theorem

4.1.4 holds.

In fact, if we replace the assumption (i) of Theorem 4.1.4 with “every edge

is contained in a properly coloured C3”, then we can get the same conclusion as

Theorem 4.1.4. Since the proof is similar, we omit it.

4.6 . Concluding remarks

We give some sufficient conditions for graphs G to have a weakly proper

spanning tree with root r for any r ∈ V (G). By Theorem 4.1.3, “every edge is

contained in a properly coloured C3” is not a sufficient condition for the existence

of such weakly proper spanning trees. But we do not know whether “every properly

coloured P3 is contained in a properly coloured C4” is a sufficient condition or not.
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More generally, we can consider whether “every properly coloured Pk is contained

in a properly coloured Ck+1” is a sufficient condition or not, where k ≥ 3. Hence

we propose the following conjecture.

Conjecture 4.6.1 Let G be an edge-coloured connected graph with
δc(G) ≥ 2. If every properly coloured P3 is contained in a properly coloured
C4, then G has a weakly proper spanning tree with root r for any r ∈ V (G).

By Example 4.1.2, the condition in Conjecture 4.6.1 cannot guarantee properly

coloured spanning trees, which makes this conjecture more interesting. Theorem

4.1.4 provides some evidence for this conjecture. In the following proposition,

we give two other properties of an edge-coloured graph G which satisfies the

assumption of Conjecture 4.6.1. The second property is that G is properly

connected, which is a necessary condition for weakly proper spanning trees.

Proposition 4 Let G be an edge-coloured graph with δc(G) ≥ 2. If every
properly coloured P3 is contained in a properly coloured C4, then

1. G is 2-connected,

2. G is properly connected.

Proof. (i) Suppose thatG is not 2-connected. Then there is a vertex v such that
G− v has at least two components. Since δc(G) ≥ 2, there exist two different
components C1 and C2 of G− v such that there are two vertices w1 ∈ V (C1)
and w2 ∈ V (C2) with c(vw1) ̸= c(vw2). By the assumption of this proposition,
there is a properly coloured C4 containing v, w1, w2 in G. But C1 and C2 are
different components of G− v, a contradicition.

(ii) For an edge-coloured path P having distinct monochromatic paths
Q1, Q2, . . . , Qt with order at least three, let mon(P ) =

∑
1≤i≤t |E(Qi)|.

Suppose that there are two vertices u and v such that there is no properly
coloured path connecting u and v. LetP be a path inG connecting u and v. We
assign an orientation in P from u to v. For x ∈ V (P ), we denote the successor
and the predecessor of x on P by x+ and x−, respectively. Since there is no
properly coloured path connecting u and v, there are monochromatic paths
with order at least three in P . Let Q1 = w1w2 . . . wm be a monochromatic
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path in P with order at least three such that uPw1 has no monochromatic
path, where uPw1 is a subpath of P connecting u and w1. We choose P so
that
(P1) mon(P ) is as small as possible,
(P2) |P | is as small as possible, and
(P3) |uPw1| is as large as possible.

Suppose that wm = v. Since δc(G) ≥ 2, v is adjacent to a vertex x

such that c(vx) ̸= c(vwm−1). Note that x ̸= u. Suppose that x ∈ V (P ).
Then P ′ = uPx + vx is a path in G connecting u and v with mon(P ′) ≤
mon(P ) − |{wm−2wm−1, wm−1v}| + |{x−x, xv}| = mon(P ) and |P ′| < |P |.
This contradicts the choice of (P1) or (P2). Hence x /∈ V (P ). Since wm−1vx is a
properly coloured P3 in G, it follows from the assumption of the proposition
that there is a vertex y such that wm−1vxywm−1 is a properly coloured C4

in G. Suppose that y ∈ V (P ). Note that y ̸= u and y ̸= wm−2. Then
P ′ = uPy + xy + xv is a path in G connecting u and v with mon(P ′) ≤
mon(P ) − |{wm−2wm−1, wm−1v}| + |{y−y, xy}| = mon(P ) and |P ′| < |P |.
This contradicts the choice of (P1) or (P2). Hence y /∈ V (P ). Then P ′ = P +
wm−1y+xy+vx−vwm−1 is a path connectingu and vwithmon(P ′) < mon(P ),
which contradicts (P1).

Hence we may assume that wm ̸= v. Then wm−1wmw+
m is a properly

coloured P3 and so by the assumption of the proposition, there is a vertex
z such that wm−1wmw+

mzwm−1 is a properly coloured C4. Suppose that z ∈

V (wmPv). Suppose further that either |Q1| = 3 or c(wm−1z) ̸= c(zz+). Let
P ′ = uPwm−1 + wm−1z + zPv. Then

mon(P ′) ≤



mon(P )− |E(Q1)|+ |{wm−1z, zz+}|

= mon(P ) if |Q1| = 3

mon(P )− |{wm−1wm}|

< mon(P ) if c(wm−1z) ̸= c(zz+),

and |P ′| < |P |. This contradicts (P1) or (P2). Hence |Q1| ≥ 4 and
c(wm−1z) = c(zz+). Since wm−2wm−1z is a properly coloured P3, it follows
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from the assumption of the proposition that there is a vertex z′ such that
wm−2wm−1zz′wm−2 is a properly coloured C4. If z′ /∈ V (P ), then P ′ =
uPwm−2 + wm−2z′ + zz′ + z′Pv is a path connecting u and v with mon(P ′) <

mon(P ) since |Q1| ≥ 4 and c(wm−1z) = c(zz+). This contradicts the choice
of (P1). Hence z′ ∈ V (P ). Suppose that z′ ∈ V (wm−1Pv). Then P ′ =
uPwm−2 + wm−2z′ + z′Pv is a path connecting u and v with mon(P ′) ≤
mon(P )− |{wm−2wm−1, wm−1wm}|+ |{wm−2z′, z′z′+}| = mon(P ) and |P ′| <

|P |. This contradicts the choice of (P1) or (P2). Hence z′ ∈ V (uPwm−3). Note
that z′ ̸= wm−3 Then P ′ = uPz′ + z′z + zPv is a path connecting u and v with
mon(P ′) ≤ mon(P )− |{wm−3wm−2, wm−2wm−1, wm−1wm}|+ |{z′−z′, z′z}| <

mon(P ), which contradicts the choice of (P1). Hence z /∈ V (wmPv).
Suppose that z ∈ V (uPwm−1). Note that z ̸= wm−2. Suppose further

that c(wm−1z) ̸= c(zz−). Then P ′ = uPz + wm−1z + wm−1Pv is a path
connecting u and v with mon(P ′) < mon(P ), which contradicts the choice
of (P1). Hence c(wm−1z) = c(zz−) and so c(w+

mz) ̸= c(zz−). Then P ′ =
uPz + zw+

m + w+
mPv is a path connecting u and v with mon(P ′) ≤ mon(P )−

|{wm−2wm−1, wm−1wm}|+ |{zw+
m, w+

m(w+
m)+}| ≤ mon(P ) and |P ′| < |P |. This

contradicts the choice of (P1) or (P2).
Hence we may assume that z /∈ V (P ). Let P ′ = P + wm−1z + w+

mz −

wm−1wm − wmw+
m. Note that |P ′| = |P |. If |Q1| = 3, then mon(P ′) ≤ mon(P )

and |uPz| > |uPw1|, which contradicts the choice of (P1) or (P3). Hence |Q1| ≥

4. Sincewm−2wm−1z is a properly coloured P3, it follows from the assumption
of the proposition that there is a vertex z′ such that wm−2wm−1zz′wm−2 is
a properly coloured C4. If z′ /∈ V (P ), then P ′ = P + wm−2z′ + zz′ +
wm−1z − wm−2wm−1 is a path connecting u and v with mon(P ′) < mon(P ),
which contradicts the choice of (P1). Hence z′ ∈ V (P ). Suppose that z′ ∈

V (wm−1Pv). Then P ′ = uPwm−2 + wm−2z′ + z′Pv is a path connecting u and
v with mon(P ′) ≤ mon(P ) − |{wm−2wm−1, wm−1wm}| + |{wm−2z′, z′z′+}| ≤

mon(P ) and |P ′| < |P |. This contradicts the choice of (P1) or (P2). Hence
z′ ∈ V (uPwm−3). If c(wm−2z′) ̸= c(z′z′−), then P ′ = uPz′ +wm−2z′ +wm−2Pv

is a path connecting u and v with mon(P ′) < mon(P ), which contradicts the
choice of (P1). Hence we obtain c(wm−2z′) = c(z′z′−) and so c(zz′) ̸= c(z′z′−).
Then P ′ = uPz′ + zz′ + wm−1z + wm−1Pv is a path connecting u and v

109



with mon(P ′) < mon(P ), which contradicts the choice of (P1). Therefore the
proposition holds.
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5 - Conclusion and Perspectives

There are still many open problems related to our results in the thesis.

1. Odd colouring and pcf colouring. In Chapter 2, we prove some

asymptotic bounds for odd colouring. There remains a gap of log ∆ to

the Conjecture 1.2.3. It is meaningful to mention a graceful result of Molloy

and Reed [63], which proved that every graph with large maximum degree

∆ can be properly (∆ + 1)-coloured so that no colour appears more than

O(log ∆/ log log ∆) times in the neighbourhood of any vertex. We are

quite convinced that Conjecture 1.2.3 can be reached for graphs with large

maximum degree. Also, we are working to give an asymptotic result on

Conjecture 1.2.1 of the pcf colouring.

2. Proper version of anti-Ramsey numbers. There are 2 possible way to

generalise. The first one is to consider this kind of structural problem in

dense graphs, such as a graph G with minimum degree δ(G) ≥ 3n/4, rather

than in complete graphs. One can find many results about the minimum

(colour) degree conditions forcing some given subgraphs. We hope to apply

these useful and strong tools combined with anti-Ramsey problems. On

the other hand, we are working to extend our results on pr(n, Cl) to other

cycle-based graphs, like theta graphs and cell graphs.

Then I would like to mention the prospects of my research in other topics.

1. Fractional colouring. The fractional chromatic number χf (G) of a

graph G is a refinement of the chromatic number. It is the fractional solution

to a linear program, the integer solution of which is the chromatic number.

If G is a graph, then we define I (G) to be the set of all independent sets

of G, and the fractional chromatic number χf (G) of G is the solution of

111



the following linear program.

min
∑

I∈I (G)
wI

such that


wI ∈ [0, 1] for each I ∈ I (G)∑
I∈I (G)

v∈I

wI ≥ 1 for each v ∈ V (G).

A fractional colouring of weight w of G is any instance within the domain

of the above linear program such that
∑

wI = w.

Given a graph H, we let χf (d, H) be the supremum of the fractional

chromatic numbers over all H-free graphs of maximum degree at most d.

When H is a complete graph, the study of χf (d, H) falls in the domain

of Ramsey theory, a domain which emerged in the 1930s following seminal

results by van der Waerden [78] and by Ramsey [71], and has attracted a lot

of attention ever since. An important result in this case is due to Molloy and

Reed [62, Theorem 21.7, p. 244]: known as “the fractional Reed bound”, it

states that χf (d, Kn) ≤ d+n
2 for all integers d, n ≥ 2.

we focus on the case H = K3, which is closely related to off-diagonal

Ramsey numbers. It has been established [26] that χf (3, K3) = 14/5. The

same question for larger values of the maximum degree is still open. At

one end of the spectrum, we know that χf (4, K3) lies between 3.25 (see

Figure 5.1) and 3.5 (by the fractional Reed bound). At the other end of

the spectrum, one has χf (d, K3) ≤ (1 + o(1)) d/ ln d as d → ∞, which is

a consequence of a result by Molloy [61], and one can infer from a study of

random d-regular graphs by Bollobás [5] that χf (d, K3) ≥ d
2 ln d .

Figure 5.1: A graph certifying that χf (4, K3) ≥ 3.25.
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A first study of χf (d, K3) has been made by the last two authors [70], with

the help of a so-called greedy fractional colouring algorithm (GFCA). This

algorithm takes as input a graph G and a probability distribution π on the

independent sets of any induced subgraph of G, and returns a fractional

colouring of G whose weight is bounded by a function of π and G. They

proved the following.

Theorem 5.0.1 (Pirot & Sereni, 2021) For every integer d,

χf (d, K3) ≤ 1 + min
k∈N

inf
λ>0

(1 + λ)k + λ(1 + λ)
λ(1 + kλ) .

2. Caccetta-Häggvist conjecture on bipartite graphs. In 1978, Caccetta

and Häggvist proposed a famous conjecture about the girth of oriented

graphs.

Conjecture 5.0.1 For every integer k ≥ 1, and all n ≥ 0, every
n-vertex digraph in which every vertex has out-degree at least n/k

has girth at most k.

One of its generalisation is to consider a similar condition on (balanced)

bipartite graphs.

Conjecture 5.0.2 For every integer k ≥ 1, if G is a bipartite digraph,
with n > 0 vertices in each part, and every vertex has out-degree more
than n/(k + 1), then G has girth at most 2k.

In 2020, Seymour and Spirkl proved that Conjecture 5.0.1 implies

Conjecture 5.0.2 if it is true. They also proved the following theorem.

Theorem 5.0.2 For k = 1, 2, 3, 4, 6, and all k ≥ 224, 539, if G is
a bipartite digraph, with n > 0 vertices in each part, and every vertex
has out-degree more than n/(k + 1), then G has girth at most 2k.
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Appendix

Some of my works are not included in this thesis, which have been (or will be)

contained in theses of my collaborators. I introduce these works briefly here.

(1) A graph G is called (k1, k2)-Hamilton-connected, if for any two disjoint

vertex subsets X = {x1, x2, . . . , xk1} and U = {u1, u2, . . . , uk2}, there

are k1k2 internally disjoint paths connecting xi to uj for 1 ≤ i ≤ k1 and

1 ≤ j ≤ k2, which span the whole graph. Let σ2(G) be the minimum value

of deg(u) + deg(v) over all pairs {u, v} of non-adjacent vertices in G. In

this paper, we prove that an n-vertex graph G is (2, k)-Hamilton-connected

if G is (5k − 4)-connected with σ2(G) ≥ n + k − 2 where k ≥ 2. We

also prove that if σ2(G) ≥ n + k1k2 − 2 with k1, k2 ≥ 2, then G is

(k1, k2)-Hamilton-connected. Moreover, these bounds of the two results

are sharp.

(2) Given a graph H, we let χf (d, H) be the supremum of the fractional chromatic

numbers over all H-free graphs of maximum degree at most d. We focus

on the case H = K3.

It has been settled in a work including the fourth author that χf (3, K3) =
14/5. Moreover, in a more recent work, the third and fourth authors

have used hard-core distributions on the independent sets of triangle-free

graphs in order to derive the best known upper bounds for χf (d, K3) when

d ≥ 17, while for d ∈ {4, . . . , 16} the best known upper bound remained

χf (d, K3) ≤ d+3
2 , which follows from the fractional Reed bound, established

by Molloy and Reed.

Here, we use mixed probability distributions in order to further improve

these bounds — which, in particular, yields that the fractional Reed bound

is never tight for triangle-free graphs of maximum degree at least 3. We

prove that χf (4, K3) < 3.4663, and that χf (d, K3) < min{2d+10
5 , d+8

3 } for

every d ≥ 4.

(3) We present a hypergraph approach for logic-based abduction in [66].
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Abduction reasoning, which finds possible hypotheses from existing

observations, has been studied in many different areas. We consider an

abduction problem that takes into account a user’s interest. We propose a

new approach to solving such an abduction problem based on a hypergraph

representation of an ontology and obtain a linear algorithm for a description

logic.
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