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Abstract

Because logged data has become ubiquitous in wide-range applications and since online
exploration may be sensitive, counterfactual methods have gained significant attention in the
recent decade (Bottou et al., 2013). Such data come in the form of an observational dataset
where partial feedback information is associated to context covariates and actions taken by a
logging decision policy. The aim of counterfactual policy methods is then to learn a policy
that improves upon that logging policy based on the observational data solely. While many
applications require a discrete action setting, less attention has been given to continuous
action spaces that are however widespread in online auction problems (Nedelec et al., 2022).
In that sense, developing algorithms with guarantees that work well in these practical settings,
as well as enlarging benchmark datasets represents an important research direction that
has been a focus of this thesis. We introduce subsequently a method for continuous action
policies along with a new CoCoA benchmark dataset. Moreover, we investigate the use of
optimization approaches related to the counterfactual risk minimization learning objective
function and propose a novel estimator that is more amenable to gradient based optimization.

Likewise, counterfactual learning methods typically use inverse propensity scoring
estimators (Horvitz and Thompson, 1952) that are prone to variance issues (Owen, 2013). The
latter is even more seen in cases where the past decisions (in the collected data) underexplored
the action space. As such, an offline analysis may not suffice to undertake statistically
plausible decisions; collecting additional data to increase the sample size may be necessary.
In that sense, sequential designs of adaptively collected data should allow to improve the
performance of counterfactual policy learning in terms of convergence guarantees and in
practical settings. We investigate this direction in this thesis by proposing a novel estimator
with improved variance-dependent convergence guarantees which in turn allow to obtain fast
rates under an assumption that is similar to Holderian error bounds used in restart strategies
for accelerated optimization (d’Aspremont et al., 2021).

Conversely, when online exploration is possible, a rich literature has been built (Latti-
more and Szepesvari, 2020) to design effective online policies in contextual bandits. In that
case, the Optimistim in the Face of Uncertainty Learning (OFUL) principle (Abbasi-yadkori
et al.,, 2011) has been instrumental in obtaining algorithms with sublinear regret rates and
especially practical performances. While seminal methods use linear assumptions on the
form of the reward (Li et al., 2010; Chu et al., 2011), nonlinear embeddings of kernel methods
(Shawe-Taylor and Cristianini, 2004) provide richer representations of the data that allow for
controlled regret guarantees and improved performances in applications. However, such
kernel methods suffer from scalability issues as they become computationally intensive
when the number of decision steps increases. As such, we investigate in this thesis the
use of kernel approximation methods (Smola and Schélkopf, 2000; Williams and Seeger,
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2001) in the contextual bandit task to derive an efficient implementation of the Kernel UCB
method (Valko et al., 2013). We analyze the regret and explicit in which kernel approximation
regimes we manage to restore the original regret rate while obtaining faster computations.

Eventually, in sequential learning (Bubeck, 2011), an agent can be called to choose between
arms in a set of alternatives and thereof develop a randomized strategy in adversarial settings
(Cesa-Bianchi and Lugosi, 2006). However, in some applications the learner has to choose
between a large number of alternatives of which many possess inherent similarities which
may be implied by closely correlated losses. In that case, a naive learning agent may suffer
unnecessary regret and conversely, an agent that would benefit from side information on a
similarity structure may obtain improved performances. This thesis brings contributions
with regards to a class of adversarial multi-armed bandit problems with novel algorithms on
learning with expert advice and a nested exponential weights algorithms that performs a
layered exploration of the learner nested set of alternatives.



Résumé

Etant donné que les données "loggées" sont devenues omniprésentes dans de nombreuses
applications et que l'exploration en ligne peut étre sensible, les méthodes contrefactuelles ont
suscité un intérét significatif au cours des dernieres années (Bottou et al., 2013). Ces données
se trouvent sous la forme d"un jeu de données observationnelles ot1 des informations partielles
de renforcement sont associées a des covariables contextuelles et aux actions prises par une
politique de décision de "logging". Le but de ces méthodes d’apprentissage contrefactuel
de politique est dés lors d’apprendre une politique qui améliore la politique initiale en
utilisant seulement ces données observationnelles. Bien que de nombreuses applications
nécessitent un espace d’action discret, un intérét moindre a été accordé aux méthodes avec
espaces d’action continus qui sont cependant présents dans des problemes d’encheres en ligne
(Nedelec et al., 2022). Aussi, le développement d’algorithmes avec des garanties théoriques
qui fonctionnent dans des problémes pratiques, ainsi que 1’élargissement des données de
référence en source ouverte représente une direction de recherche importante qui a été un
objet de cette these. Nous présentons par la suite une méthode pour les politiques d’action
continues ainsi qu'un nouvel ensemble de données de référence, le jeu de données CoCoA. De
plus, nous étudions l"utilisation de méthodes d’optimisation liées a la nature de la fonction
objective d’apprentissage en minimisation de risque contrefactuel et proposons un nouvel
estimateur qui est plus adapté a I'optimisation basée sur des gradients.

Par ailleurs, les méthodes d’apprentissage contrefactuel utilisent généralement des
estimateurs de pondération de propension inverse (Horvitz and Thompson, 1952) qui sont
sujets a des problémes de variance (Owen, 2013). Ce dernier est encore plus prononcé dans les
cas ol les décisions passées (dans les données collectées) ont sous-exploré 1’espace d’action.
Par conséquent, une analyse hors ligne peut ne pas suffire pour prendre des décisions
statistiquement plausibles ; il peut étre nécessaire de collecter des données supplémentaires
pour augmenter la taille de I’échantillon. Ainsi, les conceptions séquentielles de collection
de données de maniére adaptative devraient permettre d’améliorer les performances de
I'apprentissage contrefactuel de politique en termes de garanties de convergence mais
également en pratique. Nous explorons cette direction dans cette these en proposant un
nouvel estimateur avec des garanties de convergence améliorées qui permettent a leur tour
d’obtenir des taux rapides sous une hypothese similaire a celle des bornes d’erreur de Holder
dans les stratégies de redémarrage dans les méthodes d’optimisation accélérée (d’Aspremont
et al., 2021).

Inversement, lorsque 1’exploration en ligne est possible, une littérature abondante a été
élaborée (Lattimore and Szepesvari, 2020) pour concevoir des politiques en ligne efficaces
dans les problémes de bandits contextuels. Dans ce cas, le principe d’Optimisme Face a
I'Incertitude de ’Apprentissage (Abbasi-yadkori et al., 2011) a été déterminant pour obtenir
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des algorithmes avec des taux de regret sous-linéaires et des performances particulierement
satisfaisantes dans des probléemes pratiques. Alors que des premieres méthodes pour ce
probleme requiérent des hypothéses de linéarité sur la forme de la fonction de renforcement
(Li et al., 2010; Chu et al., 2011), les representations non linéaires des méthodes a noyau
(Shawe-Taylor and Cristianini, 2004) permettent d’obtenir des représentations de données
plus riches qui a leur tour fournissent des garanties de regret et des performances améliorées
dans un grand nombre d’applications. Cependant, de telles méthodes a noyau souffrent de
problémes de scalabilité car elles deviennent couteuses en termes de ressources de calcul
lorsque le nombre d’étapes de décision augmente. Nous étudions donc dans cette these
l"utilisation de méthodes d’approximation a noyau (Smola and Schoélkopf, 2000; Williams
and Seeger, 2001) dans ce probléme de bandit contextuel pour proposer une implémentation
efficace de la méthode UCB a noyau (Valko et al., 2013). Nous analysons le regret et explicitons
les régimes dans lesquels I’approximation des méthodes a noyau permet de restaurer le taux
de regret original tout en obtenant des calculs plus rapides.

Enfin, en apprentissage séquentiel (Bubeck, 2011), un agent peut étre appelé a choisir
entre des actions dans un ensemble d’alternatives et développer une stratégie aléatoire
dans des environnements adversariaux (Cesa-Bianchi and Lugosi, 2006). Cependant, dans
certaines applications, ’apprenant doit choisir entre un grand nombre d’alternatives dont
beaucoup présentent des similarités inhérentes qui peuvent étre induites par des cofits
étroitement corrélées. Dans ce cas, un agent d’apprentissage naif peut souffrir d'un regret
inutile et inversement, un agent qui bénéficierait d'informations annexes sur une structure
de similarité devrait obtenir des performances améliorées. Cette thése apporte des contri-
butions sur des classes de problémes de bandits multi-bras adversariaux avec un nouvel
algorithme d’apprentissage avec conseils d’experts et un algorithme de poids exponentiel
emboité qui effectue une exploration en couches de ’ensemble emboité d’alternatives de
I'apprenant.
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Abbreviations

Nomenclature

We provide below a table of some of the most useful abbreviations in this manuscript.

Abbreviation ~ Definition
CRM Counterfactual Risk Minimization
SCRM Sequential Counterfactual Risk Minimization
IPS Inverse Propensity Scoring
SNIPS Self-Normalized Inverse Propensity Scoring
DM Direct Method
DR Doubly Robust
ucCB Upper Confidence Bound Algorithm
FTRL Follow the Regularized Leader
OMD Online Mirror Descent
DA Dual Averaging
Notations

We define here the most crucial notations that are used throughout the manuscript. Other
chapter-specific notations are defined along the text and recalled in the appendices when

needed in analysis sections.

Below are some notations related to the learning setting:

— L is an expected risk measure

n is a sample size

L is an estimator of that quantity
A is a regularization parameter

0 is a parameter and the parameter space is ©
0* is an unknown optimal parameter
— ¢ is a confidence level

- Qis aregularization function
— L is an objective function to be optimized
- d is the dimension of an input space

Below are some notations related to the bandit setting:

— A s the action set (set of alternatives)
— k = | Al is the size of the action set when it is finite
- a; € Aisan action played at a step ¢

xi



Contents xii

— X is the context space

- z; € X is a context sampled at a step ¢

— y; € Yisaloss (or a target) induced at time ¢

— r¢ is a reward at time ¢

— Ilis a policy set

— m € Il is a policy that can be stochastic or deterministic

Below are some generic notations:
= [n]:={1,...,n}
— < denotes an approximate inequality up to logarithmic multiplicative or additive terms
— For random variables x ~ Py, a ~ my(:|z) and y ~ Py (:|z, a), we write the expectation
Exoyll = Eonprammy(-|z)y~Py(|z,a)[] and do the same for the variance Var, g .

Below are generic notations related to RKHS:
— §is the input space
- K : 8 xS — Ris abounded positive definite Kernel
- k > 0 is an upper-bound on the kernel x? > sup g K(s, s).
— H is the reproducing kernel Hilbert space associated to K
- ¢ : S — H is the feature map such that K (s,s") = (¢(s), ¢(s'))y forany s,s' € S x S
— {p, ¢V = ¢ ¢ denotes the inner product for any ¢, ¢’ € H
|| - |l2 denotes the norm associated to . It is the one induced by the inner product, i.e.,
lell = (¢, )
|| - |[\ denotes for any symmetric positive semi-definite operator V' : H — H the norm
such that ||¢||y = ||[V/2p||y forall o € H
— L < L' means that L — L' is positive semi-definite for two operators L, L' on H
o ® ¢ : H — H is the tensor product of p and ¢’ € H
Z C {s1,..., sy} is a dictionary of elements of the observation set S,, = {s1,...,s,}
m = | Z| is the size of this dictionary

Below are notations related to the sequential setting. Here, t € [T'] denotes the index of
the round:

— T is the horizon or number of rounds

— 5= (x¢,a;) € X x Ais a state at round ¢

- & :={s1,..., 5¢} denotes the history

- €1,...,e7 are independent centered sub-Gaussian noise

- Fi:=o0(e1,...,¢e¢) is the natural filtration with respect to (g;)i>1
- @1 =¢(x,a) EHforp: X x A—H

Below are notations related to the online optimization setting.

u € A(A) mixed strategy on the alternative set

Pis a choice function that maps score vectors y € R“ to mixed strategies via the relation
u = P(y)

~ is the learning rate for the choice map

h is an entropy function

H is the depth of the entropy function



Introduction

By combining statistical methods with machine learning techniques, researchers have
unlocked in the recent decades dramatical insights and innovative solutions in fields such as
marketing, healthcare, social sciences and finance. Such methods have been instrumental in
driving many recent technological advances in statistical decision making where the goal is to
understand dependencies on random variables and make decisions based on observational
data. To do so, given past outcomes of experiments, the core complexity of such statistical
learning methods lies in inferring an underlying probabilistic structure from finite samples of
arbitrary sizes.

Yet, even if the full probabilistic model were known, an additional difficulty raise
because the knowledge of observational distributions does not determine an underlying causal
structure, in the sense that correlation does not imply causation. While in the recent decade,
tremendous and remarkable empirical successes have been achieved on difficult tasks with
complex data, a growing interest has been shifting to understanding causal dependencies and
properties for tasks in precision medicine, drug dosage, online advertising and personalized
recommendations. As a matter of fact, in decision problems where treatments or actions are
taken through a policy, an increased attention has been given to counterfactual reasoning. The
latter aims at providing a probabilistic answer to a “what would have happened if” question that
occurs in many problems with partial feedback or missing information and for which an a
posteriori analysis of past decisions is desirable. In that case, a decision making system can
be improved without being deployed in a real-world experiment.

Subsequently, leveraging large amounts of data, counterfactual learning methods have
been developed for learning problems. Notably, log data is an extremely widespread type
of data that can be easily collected from a variety of systems (such as search engines, ad
placement, and recommendation systems) at a low cost. Typically, the logs of such decision
systems contain information on user input (such as user features), system predictions (such
as a recommended list of news articles), and feedback (such as the number of articles the user
read). However, this feedback only provides partial information, known as "bandit feedback,"
which is limited to the specific prediction made by the system. The feedback for all the other
possible predictions is typically unknown. This fundamental difference in feedback makes
learning from log data distinct from supervised learning, where full-information feedback is
available through "correct" predictions and a loss function.



The latter methods are actually offline variants for a sequential learning setting, where
data sets are not immediately available to learn a model, but rather observed sequentially as a
data flow. In that so called bandit setting, a decision maker is required to take actions one after
another based on past observations. Once the decision is made, the decision maker suffers a
loss (or gains a reward, depending on the problem) with partial feedback. Every decision
carries the potential for a different loss, which is unknown to the participant beforehand. To
analyse such settings, under specific assumptions on the distribution of contexts and losses, it
is possible to derive guarantees using statistical learning theory. However, in such a setting,
it is worth noting that the environment may be so complex that it is not feasible to select a
comprehensive model and apply classical statistical theory and optimization. Specifically, an
adversary may arbitrarily choose the losses at each round which necessitates more elaborate
decision making.

This thesis follows these main directions and focuses on exploring theoretical and practical
questions related to statistical methods for counterfactual policy learning and sequential
learning for problems motivated in Section 1.1. These contributions are further described in
Section 1.2. The rest of this introduction aims at providing an overview of essential concepts
and settings that arise in the contributions of this thesis. Specifically, Section 1.3 introduces
the fundamental concepts in the offline counterfactual risk minimization setting that are
covered in Chapter 2 and 3. Next, Section 1.4 provides brief explanations on the intuition
of acceleration strategies that are used in the Chapter 3 to obtain faster convergence rates.
Section 1.5 presents some of the kernel scalability issues that arise in the algorithms presented
in Chapter 4 and that are also used in Chapter 2. Then, Section 1.6 provides the essential
background to define the stochastic bandit setting that are instrumental to Chapter 3, 4, 5.
Eventually, Section 1.7 introduces the basic notions on online optimization that are used in the
analysis of the adversarial bandit setting considered in Chapter 5. We provide a summary of
the introduction sections and the associated contributions of this thesis in Figure 1.1.

Offlmg p0||_cy RS rates L On the scalability of Online policy .NO regret

learning with acceleration L . algorithms in online
; kernel methods learning in bandits o

logged data strategies optimization

N

Chapter 2 Chapter 3 Chapter 4 Chapter 5

Offline/Counterfactual Learning
|

Sequential Learning

Figure 1.1: Summary of the introduction to the contributions of the thesis.
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1.1. Motivations and practical problems

We start by introducing a few practical problems that arise in advertising companies
such as Criteo, which motivated this PhD thesis at the Criteo AI Lab in collaboration with
INRIA. The introduction of this thesis will then aim at providing foundations to understand
existing solutions and algorithms that can be applied for those challenges that may arise in
Criteo.

Beyond A/B Testing In traditional A/B testing, the objective of the designer is to decide
which option (A or B) is better. For example, company designers could consider whether
to place a new feature in a product being deployed. However, such methods have practical
limitations. First, if we view the two versions of the site as policies 74 or mp being deployed,
running policies that are "suboptimal" may induce large development and experimentation
costs or even be dramatic in sensitive applications. Second, in typical online platforms a large
majority of A/B tests yield neutral or negative decisions Kohavi et al. (2009). Thus, offline
estimation of policy performance allows experimenters to design plausible option policies for
the A/B testing as discussed in Chapter 2. Moreover, traditional A/B testing may require
multiple deployments to collect sufficient sample size and enhance variance control. In that
case, considering sequential deployments of offline and online A /B options as presented in
Chapter 3 could be particularly meaningful especially if the original option policies where
under-performing.

Online bidding Today most free-to-use services and content applications are funded by
advertising. Different forms of advertising exist yet the most widespread type involves
running real-time auctions to sell advertising space in an economic efficient manner. In
such industries, billions of auctions come out daily between the same group of buyers and
sellers. In such bidding problems, a real valued bid is predicted in response to contextual
information from user inputs. Using log data, it is possible to design policies that improve
upon a previous system when using continuous action modellings, as discussed in Chapter 2.
Leveraging the data accumulated from these interactions, various methods are employed to
acquire a thorough understanding of the intricate mechanisms that maximize seller revenue
and bidder value. Conversely, when considering online policies, the most straightforward
framework is to assume a sequential, stochastic game to design efficient strategies for large
scale applications as presented in Chapter 4. More realistic assumptions would model this
problem with adversarial settings as we did in Chapter 5, but we note that this problem in
itself is a broader concept that we did not aim at solving completely in the latter.

Advert Placement In the context of advertising placement, each user visiting a website can
be seen as a round, and the available ads can be considered as the set of actions. A standard
multi-armed bandit problem can be used, where a policy chooses an ad at each round, and the
reward is 1 if the user clicks on the ad and 0 otherwise. However, for a company like Criteo,
targeted advertising is essential, and user context should be taken into account. This can be
achieved by using the user context, such as in contextual bandits. The methods used in this
PhD thesis tackle complex issues of real-world systems, with the set of available ads changing
from round to round, with action set structures of various nature, exploration constraints,
and other metrics such as scalability and efficiency being important as well. We highlight
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the scalability issues of such contextual bandits methods in online settings in Chapter 4. For
sensitive applications where logged data is used instead to learn a policy offline we provide
methods in Chapter 3 to learn policies with sequential deployments.

Personalized treatments Another extremely related application is personalized treatment.
Example applications entail precision (or personalized) medicine. While sequential learning
can be used to continually treat and accurately diagnose patients based on their individual
characteristics and medical history as new information about their health becomes available,
online deployments can be sensitive and unethical. Therefore, in personalized medicine,
offline policy learning is often more suitable than online or sequential learning approaches.
To do so, randomized control trials are run on patients to assess the effectiveness of a new
treatment or intervention. After the participants are randomly assigned to either a treatment
group or a control group, an offline analysis is a posteriori possible to perform counterfactual
reasoning and learning as described in Chapter 2 or even Chapter 3.

Resource allocation Maintaining a low infrastructure cost is a key problematic in many tech
companies including Criteo. While a significant effort in operations research has involved
developing methods for distributing limited resources effectively, the problem can resemble
a bandit problem in situations where the fluctuations of demand or supply are not certain.
As a matter of fact, with a combinatorial structure that resembles the nested structure we
present in Chapter 5, one could design a strategy to allocate resources that have similarities
in outcome. Distributing marginally different resources can only provide limited insight into
the actual demand, while providing excessive resources can lead to wastage. However, it
should be noted that resource allocation is a broad concept and many issues have unique
structures that do not fit into the typical framework of bandit problems.

1.2. Contributions of the thesis

This thesis brings various contributions with regard to the study of counterfactual policy
learning in the offline logged bandit feedback and in sequential learning problems. We review
the contributions hereafter.

* Chapter 2 presents methods in modelling, learning and model selection for counterfac-
tual learning of stochastic policies with continuous actions. Continuous action policies
have received little attention in the CRM setting while being ubiquitous in many prob-
lems (drug dosage, online bidding), our work introduces an effective modelling in that
setting which improves the state of the art. Moreover, closely related to learning, we show
how appropriate tools can bring signifcant benefits in the optimization perspectives of
non-convex and non-differentiable CRM objective functions that have been overlooked.
Eventually, we bring contributions in the problem of reliably evaluating learned policies
based on logged data only which is crucial in pratice. We propose an offline model se-
lection protocol and release a new large-scale dataset obtained from a real-world system
for evaluation benchmark. All of those are also validated by numerical experiments.
This work has led to a workshop paper and a working journal paper that are given below.
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H. Zenati, A. Bietti, M. Martin, E. Diemert, and J. Mairal. Optimization ap-
proaches for counterfactual risk minimization with continuous actions. Interna-
tional Conference on Learning Representation (ICLR), Causal Learning for Decision
Making Workshop, 2020b

H. Zenati, A. Bietti, M. Martin, E. Diemert, P. Gaillard, and J. Mairal. Counter-
factual learning of stochastic policies with continuous actions: from models to
offline evaluation. arXiv preprint arXiv:2004.11722, 2020a

¢ Chapter 3 formalizes an extension of the CRM learning principle that is essential in
real-world problems. In the logged bandit feedback, when the logging policy underex-
plores the action space, importance sampling methods in counterfactual learning are
proned to large variance issues which often leads to the failure of CRM. In that case,
collecting additional data to increase the sample size is desirable and is more efficient
with sequential data collection designs. To that effect, when sequential deployments
are possible, we introduce sequential counterfactual risk minimization (SCRM). Our
method uses a novel counterfactual estimator with controlled variance, extends the
analysis of CRM and provides fast rates under an assumption as in restart strategies
in optimization. Moreover, numerical results show the efficiency of our method. This
chapter has been published as a conference paper.

H. Zenati, E. Diemert, M. Martin, J. Mairal, and P. Gaillard. Sequential counter-
factual risk minimization. International Conference on Machine Learning (ICML),
2023

¢ Chapter 4 completely shifts to an online setting and introduces an efficient algorithm
for Kernel UCB (K-UCB) in stochastic contextual bandits. While the standard K-UCB
algorithm requires a O(T®) complexity where T is the horizon, we propose an efficient
contextual algorithm for large-scale problems using kernel approximations. More
specifically, with incremental Nystrom approximations of the joint kernel embedding
of contexts and actions we achieve a complexity of O(CT'm?) where m is the number
of Nystrom points. Typically, m is of order of the effective dimension of the problem,
which is at most O(v/T') and nearly constant in some cases. We numerically validate
this approach and obtain as well empirical improvements upon existing methods in the
Bayesian experimental design litterature. This work has led to the following conference

paper.

H. Zenati, A. Bietti, E. Diemert, J. Mairal, M. Martin, and P. Gaillard. Efficient
kernelized ucb for contextual bandits. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2022



1.3. Offline policy learning with logged data 6

¢ Chapter 5 presents contributions in online decision-making. When choosing between a
large number of similar alternatives that have similar losses, it can be particularly diffi-
cult to find an optimal strategy. Standard algorithms may explore irrelevant alternatives,
leading to high regret. We introduce a setting that we call nested bandit problems, where
there are many distinct alternatives with embedded similarities. To solve this problem,
we propose the Nested Exploration Weighting algorithm that explores alternatives
layer by layer and the Exponential Weights with Experts and Nesting algorithm when
learning with expert advice, resulting in improved regret guarantees. This chapter has
been published as a conference paper and is also based on a manuscript in preparation.

M. Martin, P. Mertikopoulos, T. Rahier, and H. Zenati. Nested bandits. Interna-
tional Conference on Machine Learning (ICML), 2022

Manuscript in preparation:

H. Zenati, T. Rahier, M. Martin, and P. Mertikopoulos. Sequential Decision
Processes with Outcome Similarities

Moreover, we highlight that this thesis led to open-source softwares related to the
contributions above, which are given in Appendices 2.9, 3.8, 4.7, 5.9 and that we restate
below:

— Chapter 2: https://github.com/criteo-research/optimization-continuou
s-action-crm

— Chapter 3: https://github.com/criteo-research/sequential-conterfactu
al-risk-minimization

— Chapter 4: https://github.com/criteo-research/Efficient-Kernel-UCB

— Chapter 5: https://github.com/criteo-research/Nested-Exponential-Wei
ghts

Other contributions of this thesis, which are not included in this manuscript are
collaborations on Criteo internal technical reports in combinatorial bandits.

1.3. Offline policy learning with logged data

In this section we provide the theoretical foundations of the counterfactual risk mini-
mization (CRM) framework to learn an offline policy in the logged bandit feedback problem.
To understand the counterfactual learning methods in (CRM), we introduce an overview of
the empirical risk minimization framework in statistical learning.

1.3.1. Empirical Risk Minimization

In order to present the empirical risk minimization framework, we start by introducing
the supervised learning setting which is a category of statistical learning. For a more in-depth
discussion on the topic, we address the reader to (Bach, 2023).


https://github.com/criteo-research/optimization-continuous-action-crm
https://github.com/criteo-research/optimization-continuous-action-crm
https://github.com/criteo-research/sequential-conterfactual-risk-minimization
https://github.com/criteo-research/sequential-conterfactual-risk-minimization
https://github.com/criteo-research/Efficient-Kernel-UCB
https://github.com/criteo-research/Nested-Exponential-Weights
https://github.com/criteo-research/Nested-Exponential-Weights
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The supervised learning setting

Given some observations (z;, ¥;)i=1,... n € X x Y, of pairs of inputs (features or covariates
such as images, text, sequences of DNA, times series) and targets (labels that can be binary,
categorical or continuous responses), the objective in supervised learning is to predict a new
y € Y given a new previously unseen x € X'. Note that in supervised learning, a probabilistic
formulation is used to see pairs (z;, ¥;)i=1,.. n as realizations of random variables, that are
assumed to be independent and identically distributed (i.i.d.). To quantify the prediction
objective we define a loss function [ : Y x ) — R where [(y, §) is the loss of predicting § while
the true target is y.

Then, the criterion is to maximize the expectation of some “performance” measure with
respect to the distribution of the data. Given a prediction function f : X — ), we can define
the expected risk (also referred to as generalization error) of a function as the expectation of
the loss function between the output y and the prediction f(z):

R(f) = Evy 1y, /()] = /X o ) dota), (L1)

where p is the probability distribution on X' x ). As a matter of fact, the risk is taken as
the expectation over the randomness of the targets as well since we also consider random
predictions. The optimal predictor (also referred to as Bayes optimal predictor) f* is then the
minimizer of R over the measurable elements of )*¥:

f* € argmin R(f). (1.2)
feyx

A learning algorithm aims at finding a prediction function f from the observational data

such that R(f) is small, ideally close to the optimal (Bayes) risk R(f*). Therefore, we usually
use the following excess risk definition:

Ay = R(f) = R(f7). (1.3)

It is now natural to ask when it is possible to obtains guarantees on a learning algorithm
with n observations, which is usually obtained in two manners. First, we can consider
upper bounding the excess risk by a term that vanishes to zero when n tends to infinity: the
algorithm is consistent in expectation. Another way is to guarantee that for any ¢ > 0,

R(f)—R(f*)<e

holds for a given level of confidence, which is called “Probably approximately correct”
(PAC) learning. Interestingly, without searching f in a particular subset of functions F C Y%,
it is not possible in general to obtain such guarantees, for instance if A" is infinite in a
classification task as stated in a form of the no free lunch theorem (Shalev-Shwartz and
Ben-David, 2014).

Therefore, to learn a predictor with small risk, ideally close to the Bayes risk R(f*), we
need restrictions on the function class, which creates an inductive bias to learning. Intuitively,
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a large function class is more likely to contain f*, but a small class makes learning easier. This
leads to an estimation-approximation tradeoff:

R(f) = R(f*) = R(f) = min R(f) +min R(f) = R(f"). (14)
estimation error approximation error

The first term, the estimation error, deals with the ability to learn the best function in
the class F from a finite number of samples n and increases as the hypothesis class becomes
larger, since this makes learning harder. The second term, approximation error, decreases
when F gets larger and reaches zero once F is large enough to contain f*. In the analysis of
the methods used in this thesis, we will focus on controlling the estimation error.

Learning from data

In practice, to learn from observational data, since we do not have the full knowledge of
the data distribution p, we need to estimate a prediction function from the observational data.
To do so we start by defining an empirical risk by averaging the loss on the observational
data:

n

R() = =3 Ui f(22). (15)

i=1

The empirical risk minimization for a function class F then consists in solving the
following optimization problem:

f € argmin R(f). (1.6)
feF

Often, we consider a parametrized family of prediction functions fp : X — Y for fin a
parameter (model) space ©. To not overload the notations on the expect risk, we write:

L(6) = R(fo) (1.7)

the expected risk of the model  in the model space © and L () = R(fy).

Example 1.3.1. The most classic example is linear least-squares regression where we minimize:
" Z —076()

over € © C R? and a fixed and known feature map ¢ : X — R4,

In the decomposition of Eq. (1.4), the estimation error is related with the learning
algorithm and the use of a finite sample. One basic approach to control it is through uniform
convergence, which control maximal deviations between empirical and expected risk, for
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all functions in a function class F. Let #* € argming.g L(6) and § € argming g L(6) the
empirical risk minimizer, then:

L(0) — L(6*) = L(0) — L(0) + L(0) — L(6*) + L(6*) — L(6*)

< L(0) — L(6*) + 2sup | L(0) — L(0)].
0cO

Note that from the definition of empirical risk minimizer, the left term L(f) — L(6*)
is negative in theory but in practice it may not when using optimization algorithms. The
uniform deviation supycg |L(0) — L(6)| grows with the size of © and usually decays with
n.

Convergence rates To provide convergence rates and assess the performance of the empirical
risk minimization, it is then useful to bound the uniform deviation term that we considered.
In particular, when the loss is uniformly bounded by a constant C, using concentration and a
technique called symmetrization, it is possible (Boucheron et al., 2005; Shalev-Shwartz and
Ben-David, 2014) to obtain an upper bound with probability 1 — ¢:

2
sup |[R(f) — B(f) < 2B, (1o F) 1+ 2185 1.8)
feF n

where R, (I o F) is the empirical Rademacher complexity of the set of empirical ob-
servations {I(f(z1),y1), ... I(f(zn),yn) : f € F}. This quantity typically grows with the
number of parameters and is often unbounded for rich, non-parametric classes (like ker-
nel methods). However, if we consider that (- - - ,y) is Cj-Lipschitz for any y, then using
the contraction lemma (Bartlett and Mendelson, 2002; Boucheron et al., 2005) we obtain
that R, (Io F) < CiR,(F) where R,(F) is the empirical Rademacher complexity of the
set {f(x1),... f(zn) : f € F}. Eventually, for certain classes such as kernel methods with
a bounded norm, we can bound the latter complexity. For example, if we consider an
RKHS ball Fg = {f € H : ||fllu < B} of a kernel K, and assume K (z,z) < R? for all

x € X, we can bound (Bartlett and Mendelson, 2002; Boucheron et al., 2005) Rn(]-" ) < %.

Moreover for parametric decision rules, if we consider for example the linear decision rule
F = {fs, such that fy(x) = 0"z : ||0||2B, if we further assume that ||z|| < W, Kakade et al.

(2008) shows that R,,(F) < %. It is then possible to bound the empirical risk minimizer

excess risk as:

L(6) — L(6*) < 2 ((BWC; +1) bgg) : (1.9)

n

The latter bound is of order O(1/y/n). However, one limitation of those upper bounds is
that they are dependent on properties that apply consistently across the entire set of possible
hypotheses F (as a result of uniform convergence bounds). As a result, they cannot take
advantage of beneficial statistical features that may only be present in functions that perform
well on the given data sample. It is possible to obtain better rates (known as fast rates) for
instance of order O(1/n).
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Capacity control In order to prevent overfitting, it is necessary to limit the complexity of
the model by reducing the number of parameters or constraining the norm of predictors.
This is commonly achieved through constrained optimization, which restricts the set of
allowed functions and reduces the size of the parameter space ©. By doing so, it becomes
possible to decompose the risk as in Eq. (1.4). Even so, capacity control can be done through
regularization, that is by adding a penalty term in the minimization:

0 € arg min L(0) + Q(0), (1.10)
0cO

where (6) controls the capacity of the hypothesis fj associated to § € ©. This 2 term can
be a classical L2 penalization term in the simple ridge regression setting or a more convoluted
empirical variance term as used in sample variance penalization (Maurer and Pontil, 2009)
and discussed in the next subsection.

1.3.2. Counterfactual Risk Minimization

Next, we present the logged bandit feedback problem and follow with a presentation of
the counterfactual risk minimization (CRM) framework, which is at the core of Chapters 2
and 3.

The logged bandit feedback problem

In the logged bandit problem, we are given n logged observations (x;, a;, ¥i)i=1,..n
where contexts x; € X’ are sampled from a stochastic environment distribution z; ~ Py,
actions a; ~ mp,(-|z;) are drawn from a logging policy mp,. Unlike the supervised learning
setting, aside from the contextual information given in the (z;);—1,.., we also consider actions
(ai)i=1,..n from a logging policy my. We write s = (x;, ai, ¥i)i=1,...n the logging dataset for
which actions are sampled under the logging policy. We consider in this setting parametric
policies and write 6y the logging model in the parameter space ©. The losses are drawn from
a conditional distribution y; ~ Py(-|zi, a;). We define the propensities 7 ; = 7y, (ai|z;) and
assume them to be known. We will assume that the policies in 7y, § € © admit densities so
that the propensities will denote the density function of the logging policy on the actions
given the contexts. The expected risk of a model § is defined as:

L(0) = Bz, [y]- (111)

For the logged bandit, the task is to determine a model 6 with small risk. A model
§ is associated to a policy 7y in a set of stochastic policies Ilg. Thus, this definition may
also include deterministic policies by allowing Dirac measures, unless II includes a specific
constraint e.g., minimum variance, which may be desirable in order to gather data for future
offline experiments as we will see in Chapter 3.

To minimize L we typically have access to an empirical estimator L and solve the following
regularized problem:

0 € arg min L(0) + Q(0), (1.12)
0cO
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where () is a regularizer. When using counterfactual estimators for L, the solution of (1.12)
has been called counterfactual risk minimization (Swaminathan and Joachims, 2015a).

Counterfactual Learning

The counterfactual approach tackles the distribution mismatch between the logging
policy 7y, (-|x) and a policy 7y in Ilg via importance sampling. The (IPS) method (Horvitz
and Thompson, 1952) relies on correcting the distribution mismatch using the well-known
relation

L(0) = E, g, [y;i((cjé ))] : (1.13)

under the common support assumption (the support of my support is included in the
support of mg,), which allows to derive an unbiased empirical estimate where we recall
70,4 = W@O(ai|1‘i)i

£75(g) = Ly, Tl (PS)

0
i—1 0,2

Clipped estimator. Since the empirical estimator L*3(9) may suffer from large variance and
is subject to various overfitting phenomena, regularization strategies have been proposed.
In particular, this estimator may overfit negative feedback values y; for samples that are
unlikely under 7y, (see motivation for clipped estimators in Appendix 2.9), resulting in higher
variances. Clipping the importance sampling weights in Eq. (cIPS) as Bottou et al. (2013)
mitigates this problem, leading to a clipped (cIPS) estimator

iCH’S(e) — l Z Yi min {71'9(04'|xi) , Oé} , (CIPS)
n
i=1

0,i

where « is a clipping parameter. Smaller values of a reduce the variance of L(6) but
induce a larger bias. Swaminathan and Joachims (2015a) also use the sample variance
penalization principle (Maurer and Pontil, 2009) and propose adding an empirical variance
penalty term controlled by a factor A > 0 to the empirical risk L(#). Specifically, they write

v;(0) = y; min (%, a) and consider the empirical variance for regularization:
K3

ﬁ > (wi0) —p(0))?,  with () = % > 5i(0), (1.14)
=1 i=1

VCIPS ( 9) —

which is subsequently used to obtain a regularized objective £ with hyperparameters o for

clipping and \ for variance penalization, respectively, so that QTS(9) = A w and:
. /cIPS
L(0) = LTS (9) + A 4 - ) (1.15)
The (CRM) learning problem then is formulated as:
6°RM ¢ arg min L(0). (CRM)

0c®
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A natural question now is to wonder whether we can provide statistical guarantees on
L(ORMY _ 1,(6*) as we did in the supervised learning in the case of Eq. (1.9). Luckily, we
provide in Chapter 2 guarantees of a modified clipping estimator as well as an extensive
discussion on this matter with regards to the related work. In particular, Chapter 2 provides
a proposition that we simpplify below.

Proposition 2.5.1. Let 6™ be the solution of (CRM). Then, with well chosen parameters \
and M and other reqularity assumptions detailed in the full proposition in Chapter 2, denoting
the variance v2 = Vary, [mg+ (a|z) /g, (a|z)], with probability at least 1 — &, the excess risk is
upper bounded as:

L(éCRM) _ L(g*) 5 (1 + V%) log(n) 7

n

where S hides universal multiplicative constants.

The latter thus provides us a convergence rate of the (CRM) procedure. We further
illustrate in Chapter 3 how to improve those guarantees when sequential redeployments are
possible as presented in Section 1.4.

The self-normalized estimator. Swaminathan and Joachims (2015b) also introduce a reg-
ularization mechanism for tackling the so-called propensity overfitting issue, occuring with
rich policy classes, where the method would focus only on maximizing (resp. minimizing)
the sum of ratios my(as|z;) /70, for negative (resp. positive) costs. This effect is corrected
through the following self-normalized importance sampling (SNIPS) estimator (Owen, 2013, see
also):

n anf e
fNIPS () _ i1 YitL YT with wf = molailzi) (SNIPS)
2im1 Wi 0.
The (SNIPS) estimator is also associated to Qgsnips(0) = A W which uses an

empirical variance estimator that writes as:

i (uf (= 22970)) )

(1.16)
(Z?:l w?)z

VSNIPS (9) _

Note that another motivation of using (SNIPS) is that the (IPS) is not equivariant, that is
to say for a constant c:

n n

1 0 1 0
c+gé1(gn;yzwi #gglgniz:(yz+0)wi-

When the solution of the optimisation problem is affected by a translation y < y + ¢
for any real valued ¢, the estimator is not equivariant. However, the (SNIPS) estimator does
verify:

S yiw! 3 (i +
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In that case, the estimator is more robust to propensity overfitting (Swaminathan and
Joachims, 2015b) which is a phenomenon where the learned policies either overfit or avoid
the training data depending on the sign of the losses y. Eventually with the (SNIPS) estimator,
the learning objective becomes:

L(0) = LNTS(9) + A VITRE) (1.17)

n

and the (2.10) learning principle can be applied as well with the latter.

Direct Methods

It is possible to perform supervised learning in the logged bandit feedback and to
infer policies thereof. As a matter of fact, an important quantity is the expected cost given
actions and context, denoted by n*(z,a) = E[y|z, a]. If this expected cost was known, an
optimal (deterministic) greedy policy 7* would indeed simply select actions that minimize
the expected cost

7" (x) = argminn*(z,a). (DM)
acA

Therefore, it is then tempting to use the available data to learn an estimator 7(z, a) of
the expected cost, for instance by using ridge regression to fit y; ~ 7(x;, a;) on the training
data. Then, we may use the deterministic greedy policy #PM(x) = argmin, 7(z,a). This
approach, termed direct method (DM), has the benefit of avoiding the high-variance problems
of IPS-based methods, but may suffer from large bias since it ignores the potential mismatch
between 7PM and . Specifically, the bias is problematic when the logging policy provides
unbalanced data samples (e.g., only samples actions in a specific part of the action space)
leading to overfitting (Bottou et al., 2013; Dudik et al., 2011; Swaminathan and Joachims,
2015b). Conversely, counterfactual methods re-balance these generated data samples with
importance weights and mitigate the distribution mismatch to better estimate reward function
on less explored actions (see explanations in Appendix 2.9). Nevertheless, such cost estimators
can be sometimes effective in practice and may be used to improve IPS estimators in the
so-called doubly robust (DR) estimator (Dudik et al., 2011) by applying (IPS) to the residuals
yi — 1(zi, a;) as follows:

n

ﬁDR(H) = %Z (yi — (x4, ;) ————= o al‘ml Z Z Nz, a)mp(alx;), (DR)

i=1 i=1 acA

which holds when the summation over A is possible (discrete action sets for e.g). As a
matter of fact, the (DR) estimator uses 7} as a control variate to decrease the variance of (IPS).
We investigate in Chapter 3 the use of an additional control variate as well to control for the
variance of (IPS).

While such greedy deterministic policies may be sufficient for exploitation, stochastic
policies may be needed in some situations, for instance when one wants to still encourage
some exploration in a future round of data logs. Using a stochastic policy also allows us
to obtain more accurate off-policy estimates when performing cross-validation on logged
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data. Then, it may be possible to define a stochastic version of the direct method by adding
Gaussian noise with variance o?:

#SPM(Jz) = N (7PM(2), 0%), (1.18)

In the context of offline evaluation on bandit data, such a smoothing procedure may also be
seen as a form of kernel smoothing for better estimation (Kallus and Zhou, 2018).

1.4. Obtaining faster rates with restart acceleration strategies

In this section we provide a very short introduction to restart strategies used in opti-
mization. This will allow to understand key contributions of Chapter 3 that uses similar
assumption and analysis techniques for a batched bandit policy learning setting.

1.4.1. Restart strategies

In this section, we present elements of restart strategies that exist in acceleration methods
in optimization. Rather than focusing on the sample efficiency of a statistical estimator, the
aim of this section will be to provide an intuition on how an objective function satisfying
generic Holderian error bounds (HEB) can be optimized with a faster convergence rate,
that is to say fewer optimisation iterations. While the two are not the same, understanding
some of the elementary notions in this introduction will dramatically help grasp some of the
contributions in Chapter 3. For a thorough presentation of the restart strategies, we point the
reader to (d’Aspremont et al., 2021; Iouditski and Nesterov, 2014; Ghadimi and Lan, 2013;
Kulunchakov and Mairal, 2019).

An illustrative example: strongly convex objective functions

Typically, first-order methods in optimization (methods that use gradient information
of an objective function) have a sublinear convergence rate that depends on the smoothness
of the gradient (Beck, 2017). The upper complexity bounds of these methods are usually
convex functions of the number of iterations, which means that they converge quickly at first,
but their convergence slows down as more iterations are performed. The intuition of restart
methods is that it should be possible to speed up convergence by periodically restarting
the first-order methods, that is to say running more "early" iterations. Moreover, first order
methods implicitly approximate the function around the optimum at each iteration, and
restarting should refresh this approximation periodically to discard outdated information as
the algorithm approaches the optimal solution.

In restart strategies, the task is similar to what we do in Section 1.3.1 in the sense that we
perform a minimization (as in Eq. (1.2)) on a given function L (that can be an expected risk as
defined in Eq. (1.7)):

in L 1.1
min (), (1.19)

where © C R? is the compact parameter space that we consider in Section 1.3.1.

The acceleration method in restart strategies is possible through a chaining argument that
we will illustrate with a particular case of strongly convex objective functions L. Supposing
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Algorithm 1: Restart scheme

Input: Objective function L, initial point 6y, inner optimization algorithm A(6, k), M
number of iterations and planning k1, ...,k
form = 1to M do

Obtain 6,,, by running k,, iterations of A, starting at 0,,_1, i.e:

Hm - A(Hmflv km)

end

that the gradient of L is Lipschitz continuous with constant C' with respect to the Euclidean
norm:

IVL(0') — VL(0)||2 < C||0 — ¢'||2 for all 6,6 € ©. (1.20)

If we use a straightforward fixed gradient method to solve that problem, we have the
iterates for k € N:

mmn:m@_%vumm (1.21)
The smoothness assumption that stems for the gradient-Lipschitzness in Eq. (1.20) gives

off the upper bound:
201|600 — 67||2

(k)y _ *) <
p(o®) — g7y < 20

(1.22)

after k iterations. If we now assume that L is strongly convex with parameter v we
have: .
o~ el < (6) — L"), (1.23)

where 0" is a solution of (1.19). For any m and k,, the number of inner iterations in the
optimization algorithm A defined through k,, iterations of gradient descent updates with
(1.21), we write 0,, = A(0m—1, km) With 6y an initial point. This means that we can rewrite Eq.
(1.22) as:
20|10 — 0% |2

L(0pm—1) — L(6") <
(Buae) = L") <

(1.24)

Then, combining the latter upper bound and the strong convexity in (1.23), after an
iteration of the restart scheme in Algorithm 1, we obtain the chained inequality:

QCH@R—Hﬂ@(< 4C

L+ = L) < =570 < Sy

(L(6m) — L(07)) - (1.25)

If wesetk,, =k= [%1 then:

1

M
L) - 20) < (5) (L6 - 20",
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after M iterations of the restart scheme in Algorithm 1. Therefore, if we run a total of
n = Mk gradient steps, we can write the previous upper bound as:

1

~
28C

L) - 20) < (L&) (20 - 20%), (1.26)

which proves a linear convergence in the strongly convex case.

1.4.2. Hélderian Error Bounds
We now state the following assumption on Holderian error bounds:

Assumption 1.4.1. There exist some v, 5 > 0 such that
(6, S8) < (L(0) — L(6%))" (1.27)

where d(0, S§) is some distance to the optimal set (S§ = arg mingcg L(0)).

This bound is akin to a local version of strong convexity (3 = 1) or a bounded parameter
space (8 = 0) if d is the Euclidean distance. When 3 € [0, 1], this has also been referred to as
the Lojasiewicz assumption introduced in (Lojasiewicz, 1963, 1993).

It is important to note that a large class of functions L verify this bound. Specifically,
we address the reader to the details on subanalytic functions in (Bolte et al., 2007) and the
Lojasiewicz factorization lemma as stated in (d’Aspremont et al., 2021) to understand that
this bound holds for mild conditions (O the parameter space is globally subanalytic and L is
continuous and subanalytic).

Now, if it is possible to obtain a bound similar to that of Eq. (1.24), it will be possible to
use the same chaining argument as done in Eq. 1.25 to demonstrate faster convergence rates.
For example, for a C-smooth convex function Nesterov’s method (Nesterov, 1983) with an
optimal method (d’Aspremont et al., 2021) gives the upper bound:

o < AC '
L(Bm+1) = L(O7) < 7= 10m — 6712 (1.28)

after k,, iterations to obtain 6,,,; with an initial point 6,,. It is then possible to show
improved convergence rates for a smooth convex function satisfying the previous inequality
as well as the Hoderian error bound (d’Aspremont et al., 2021). In this thesis in Chapter 3, we
provide a similar formulation as a Holderian Error Bound for the (CRM) risk that we try to
minimize and that can be previewed below.

Assumption 3.5.1 (Holderian Error Bound). We assume that there exist v > 0 and 3 > 0 such
that for any € ©, there exists §* € arg ming.g L(0) such that

—) < (L(6) - L(6)° .
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This variance term is not a distance but provides a similar intuition of how parameters
can be distant to the optimal parameter #*. For example, for Gaussian policies with fixed
variance, it is the exponential of the euclidean distance. Given that assumption, we show in
Chapter 3 how to derive improved variance dependent convergence guarantees (w.r.t Chapter
2) and we use a similar analysis as the restart strategy presented above to derive the following
result, which is a fast rate for (CRM).

Proposition 3.5.1 (Excess risk upper-bound). Let n > 2 and 0* € argming L(6). Let
M = |logy(n)|. Then, under Assumption 3.5.1 and other regularity assumptions detailed in the
full proposition in Chapter 3, the SCRM procedure (Alg. 6) satisfies the excess risk upper-bound
for the round M:

L(0ar) — L(6¥) < o(n‘ﬁ 1ogn) :

1.5.  On the scalability of kernel methods

In this part we introduce background notions on kernel methods and reproducing
kernel Hilbert spaces (RKHS) that are used in Chapter 2 but more specifically in Chapter 4.
We also provide generalizations properties and notions of kernel approximations. For an
in-depth presentation of kernel methods, we address the reader to (Scholkopf and Smola,
2002; Shawe-Taylor and Cristianini, 2004; Berlinet and Thomas-Agnan, 2004) and to the lecture
notes (Vert and Mairal, 2020).

1.5.1. Kernels and Reproducing Kernel Hilbert Spaces

Kernel methods are a class of algorithms in machine learning that allow learning in
rich functional spaces. In particular, they use kernel functions to map the input data into
a different high dimensional (or infinite dimensional) space. With this embedding, simple
models can be trained on new non linear spaces, and has shown to drastically improve
performances of the models.

Definition 1.5.1. A positive definite kernel is a symmetric function K : S x S — R such that for any
collection of points s1,...sy, € S and scalars o, . . . oy, € R, we have:

Z OéiOéjK(Si, Sj) 2 0.
1<i,j<n

Conversely, kernel functions allow to define a gram matrix K,:

Ky = [K(si,85)l1<ij<n

Equivalently, K is a positive definite kernel if for any n € N and input data s1,...,s, € §",
the previously defined gram matrix K, is positive semidefinite. Kernel methods take such
matrices as input and have several advantages aside from their embedding properties that
we will mention in Section 1.5.2. First, kernel methods always use such n x n matrices for
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Figure 1.2: Representation of a kernel embedding

any input data (vectors, strings, etc.): the same algorithm can therefore work for multiple
problems and applications. Second, the choice of the kernel function K is independent of
the algorithm which therefore introduces a great modularity. However, note that they might
suffer poor scalability with respect to the dataset size due to the size of K,, as we will see in
Section 1.5.3. One contribution of this thesis in Chapter 4 subsequently aims at leveraging
methods for this issue.

More importantly, kernel functions introduce a notion of comparison between data points
between two objects s, s’ in the set S which may have any arbitrary structure and thus create
a similarity measure. Interestingly, it is in fact possible to show that such kernel functions are
associated to an inner product on some features that can be non-linear.

Theorem 1.5.1. (Aronszajn, 1950) A kernel K : S x S — R is positive definite if and only if there
exists a Hilbert space H and a feature map ¢ : S — H such that for any s, s’ € S:

K(s,5') = (d(s), (s))n. (1.29)

Such a feature map ¢ may define a space H in high dimensions on which linear models
are effective and can be applied. As a matter of fact, ¢ can be infinite dimensional which
makes the embedding of kernel methods very powerful. We now define Reproducing Kernel
Hilbert Spaces (RKHS).

Definition 1.5.2. Let S be a set and H C RS be a class of functions forming a real Hilbert space with
inner product (-, -)3. The function K : S* — R is a called a reproducing kernel of H if:

e Foranys € S, let K :t— K(s,t), then K5 € H
o Forany s € Sand f € H, the reproducing property holds:

f(s) = {f, Ks)n

If such a reproducing kernel K exists, then H is called a reproducing kernel Hilbert space (RKHS).

RKHS are of great interest due to the simplicity they bring in machine learning. As a
matter of fact, after mapping a data point s € S to the RKHS # through a kernel mapping
¢ : S — H with ¢(s) = K, simple linear models f are considered in # with f(s) = (f, ¢(s)).
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Note also that it is possible to show that the reproducing kernel is unique given a RKHS, and
conversely that a positive definite kernel defines a unique RKHS. This space characterizes
the functions that are learned in kernel methods and hence allow the modelling of smooth
functions.

Smoothness functional The reproducing property and the Cauchy-Schwarz inequality
imply that for s, s’ € S, the variations of a function f € H can be controlled as:

1 (s) = f($) = [{f, Ks = Ko )nl
< [l x s = Kol

The norm of a function in the RKHS controls the variation of a function over S with
respect to the geometry induced by the kernel, as small norm induces small variations.
Therefore, the norm in the RKHS is related to its smoothness with regard to the metric defined
by the kernel.

1.5.2. The Kernel Trick

Theoretical results on representing positive definite kernels as inner products and the
representer theorem allow to use a family of powerful kernel methods algorithms. In this
section we will introduce them.

Kernel Trick Recalling that the kernel is exactly the inner product in the feature space,
we can state a simple yet extremely powerful statement. Any algorithm to process finite
dimensional vectors and that is expressed only with pairwise inner products can be applied
to infinite or high dimensional vectors in the feature space of positive definite kernels by
replacing inner product evaluation by a kernel evaluation. Thus, vectors in the feature space
can be manipulated implicitly through pairwise inner products.

We can provide a more formal statement of this intuition through the following theo-
rem.

Theorem 1.5.2 (Representer theorem). Let S be a set endowed with a positive definite kernel K and
H be the corresponding RKHS. Let s° = {s1,- - ,s,} C S a finite set of points. Let ¢ : R""! — R
be a function n + 1 variables, strictly increasing with respect to the last variable. Then any solution of
the following optimization problem:

min o (F(s1), -, £(s0): 11,

feH

admits a representation of the following form, where there exists real numbers oy, - - - , o, such
that for any s € S:

f(s) = ZaiK(si, s) = ZaiKsi(s).
i=1 i=1
The solution lives in a finite dimensional subspace:

f € Span(K,,, -, Ks,) (1.30)
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Note that the function ¢ has the following form, where ¢(-) measures the "fit" of f to a
given problem (regression, classification, ---) and (2 is a strictly increasing regularization
function:

P (f(s1)s 5 fsn)s 1 fllae) = e(f(s1), - flsn) + Q1 ll30)

First, from a theoretical perspective, this minimization enforces a small norm || f||%, so as
to ensure a smoothness for the solution f. Second, we practically search for a solution in a
subspace of dimension n which can lead to tractable algorithms even though the RKHS is
infinite dimensional.

In the context of supervised learning models, this theorem allows to solve a regularized
empirical risk minimization problem in a simpler space than the hypothesis space H.

Example 1.5.1. Given a set of data (s; € S,y; € R)i=1,..n, to estimate a regression function
f & — Rwe can solve the classical minimization problem:

n

min = > Uy, £(50)) + ALl

n
fen i=1

for a loss function l. Solving this problem at first sight in the hypothesis space H that can be
infinite-dimensional is possible with the representer theorem, by stating that any solution writes as

fls) = Z%‘K(Si, s)
i=1

for some avy, - - - o, € R. Denoting oo = (o, - - - , o) the problem simplifies into:

1 n
min — Z L(Ka)i,y;) + A Ka
i=1

aER™ N 4

which can be solved using standard convex optimization tools when the loss is convex. For the
kernel ridge regression, the squared loss 1(3),y) = (§ — y)? induces the solution o = (K + n\I,,) "y,

withy = (y1,- - Yn)

1.5.3. Kernel Approximations to scale and speed up kernel methods

One major problem that arise in kernel methods is the scalability issue. While the previous
kernel trick and Representer theorem make kernel algorithms tractable, they can hardly scale
up to large sample sizes. Such methods require the computation or inversion of the n x n
Gram matrix which is infeasible when n grows both in terms of memory and computation.
In that situation, the use of low-rank approximations of the kernel embedding make such
approaches scalable while ensuring controllable properties as the original methods.
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Nystrom approximations Often the kernel matrix has a low rank, so that approximating the
kernel matrix by sampling columns (Smola and Scholkopf, 2000; Williams and Seeger, 2001;
Fine and Scheinberg, 2002) allows for efficient computations. The Nystrom method consists
in replacing any point K, = ¢(s) of the RKHS H for s € S by its orthogonal projection onto a
finite dimensional subspace:

‘FZ = Span(¢(21)7 T 7¢(zp)>

where Z = {2, , 2p} are anchor points with typically p < n. An illustration of the
Nystrom approximation is provided in Figure 1.3.

Hilbert space H

Figure 1.3: Representation of the Nystrom approximation

To do so, an orthogonal projection P, is defined onto the subspace Fz so that the points
¢(s) can be approximated by v(s) = Pr, ¢(s), with an inner product approximation as:

(0(3), (")) m = (Prod(s), Prad(s")n = ((5), (s ))re = Kz(s) ' KzzKz(s)

where we use the notation K z(s) = [K(z1,5),. .., K(2p,5)]" and K zz is the kernel matrix
vector [K(z,2')], »ez. In particular, ¢(s) = K;J/QKZ(S) € RP can be written as the finite
dimensional approximated feature map. The corresponding kernel matrix then is defined

as:
K,=KlsKzzKzs

where Kz is the kernel matrix vector [K (2, 5)] ez ses0- K, is thus the low-rank approxi-
mation of the original Gram matrix K.

As a matter of fact, in Chapter 2, we illustrate how we can provide an embedding over a
joint context-action space S = X’ x A where using a kernel K and its Nystrom approximated
feature map 1), we manage to build an embedding to derive a cost predictor as in Figure 2.1
that we tease below.

To find the anchor points of the Nystrom approximation, several strategies have been
studied. One can use a naive random sampling, perform a kernel PCA to find largest principal
directions in the Gram matrix, a simple K-means algorithm or eventually a greedy approach
to find columns with largest residuals. Note that the latter is equivalent to computing an
imcomplete Cholesky factorization (Bach and Jordan, 2005; Fine and Scheinberg, 2002). The
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contexts z € X Joint kernel embedding Nystrom approximation Cost predictor

K((@,a), () b(a,a) € RP {nﬁma) _ w,w(x,a»}

actionsa € A

L

Figure 2.1: Illustration of the joint kernel embedding for the counterfactual loss predictor (CLP).

Nystrom sampling has the advantage to admit geometric interpretation and to provide
points in the RKHS, so that many operations such as translations, linear combinations on the
mapping are valid.

A natural problem is to study the influence of m on the prediction performance of a
learning system. In the ridge regression problem Bach (2013); Alaoui and Mahoney (2015)
show that it is possible to preserve good convergence rates with an m much smaller than n,
which allows large scale learning. In Chapter 4, we also provide an analysis of the number
m to preserve the original regret rate of the algorithm we studied in contextual stochastic
bandits. We present here one the results that are presented in Chapter 4 as a contribution
of this thesis and where we seen the influence of the parameter m on the notion of regret
(presented in Section 1.6). Typically this result can be coupled with a capacity condition
assumption on the kernel to explicit regimes where it is possible to recover the original regret
rate while improving the computational complexity. We present a discussion on this matter
in Chapter 4.

Theorem 4.4.1. Let T' > 1 and 6* € H. Under some boundedness assumptions detailed in the
full statement in Chapter 4, the EK-UCB rule in Eq. (4.4.1) with a reqularization parameter \ and
with m = | 2| dictionary updates, satisfies the pseudo-regret bound

Rr < VT (ﬁ + /deg O\ T)) (\/X + dea (N, T)) .

where deg (A, T), the effective dimension (Hastie et al., 2001) of the kernel matrix Kp
replaces the dimension d in the (LinUCB) regret bound and is given formally as:

deg(\, T) 1= Tr(K7 (K7 + M7)™h).

Random features We also note that another approach exists to perform kernel approxima-
tions that is based on sampling techniques. In particular, some kernels K can be written in
the form:

K(Sv S/) = Ewwp [¢(S’ w)¢(8,7w)] ’

where ¢(s, w) is termed as a random feature and p is some probability measure. Example
of kernels that verify this condition are translation invariant kernels that can be written
K (s,s") = k(s — ') where the probability measure p can be obtained with  using the Bochner
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theorem (Vert and Mairal, 2020). Then, the random features ¢(s, w) can be constructed using
random Fourier features (Rahimi and Recht, 2007) and samples wy, ..., w,, can be drawn
from p to define a finite dimensional mapping ¥ (s) = ﬁ(gb(s, wy), ..., P(s,wm)) " so that
when m is large, we have:

K(s,8') = (¢(s),1(5))-

It is then possible to study the influence of m to obtain generalization bounds (Rudi and
Rosasco, 2017; Bach, 2017) in learning problems.

1.6.  Online policy learning in bandits

In this section, we formalize the bandit problem and present foundations to understand
some of the contributions of this thesis. While the previous section introduced notions on
statistical learning and in particular on counterfactual learning methods for the offline logged
bandit problem, the present section actually introduces methods on sequential learning for
"online" bandits. The interested reader may find more details in (Bubeck and Cesa-Bianchi,
2012; Lattimore and Szepesvari, 2020) as well as the tutorial (Foster and Rakhlin, 2022) and
the lecture notes (Gaillard, 2022).

A bandit problem is a sequential game between an agent and an environment. The agent
plays for T' rounds where T is called horizon. At each round t € [T'], the learner (agent) first
chooses an action (arm) a; from a given set A, and the environment then reveals a reward
rt € R where r; = r(at,t) where r is a reward function that can be arbitrary or stochastic.
In the bandit literature (Lattimore and Szepesvéri, 2020) the multi-armed bandit setting
(Thompson, 1933; Robbins, 1952; Lai and Robbins, 1985), or k-armed bandit setting refers
to the setting where there are at least two arms. The learner only takes action based on the
previous history (a1,71,- -+ ,at—1,7:—1). A policy 7w uses all previous information from the
history to take actions and the goal for an agent is often to find a policy that chooses actions
that lead to the largest possible cumulative reward over all T rounds, which is 7, 7;.

First, the main difficulty in bandits lies in that the environment is unknown to the agent.
When an agent learns, it only supposes that the environment lies in an environment class. A
large environment class corresponds to less knowledge by the agent. Second, to evaluate an
agent, the notion of regret is used, which is the difference between the total expected reward
using a policy 7 for T' rounds and the total expected reward collected by the agent over T’
rounds. The regret relative to a policy class II is the maximum regret relative to any policy
7 € IL. Therefore, if the policy class Il is large enough, it may include the optimal policy for
all environments in the environment class. Thus, a large policy class means that the regret is
a more demanding criteria. In bandit algorithms (Lattimore and Szepesvaéri, 2020), the aim is
to define algorithms with assumptions that make the regret meaningful and so that there
exist policies with small regret.

Stochastic Bandits A simple problem that we focus on in this thesis is that of stochastic
bandits. A bandit is stochastic when the sequence of rewards associated to any action is
independent and identically distributed according to some distribution. This stochasticity
thus corresponds to an assumption on the environment class, when r(a, t) ~ v, where v, is a
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Ateachtimestept=1,---T
— the agent chooses an action a; € A from the policy 7
— given a;, the environment draws the reward r(a, t) ~ vg,
— the agent observes the feedback r; = r(a¢, t) and updates its policy =

Stochastic Bandit setting

stochastic distribution. This assumption will be relaxed in Section 1.7. For some applications
indeed, the assumption that the rewards are stochastic may be too restrictive. The objective in
stochastic bandits is to minimize the cumulative regret:

T

T
Rr = &%;T(a,t) — ;T’t.

In stochastic bandits, we generally assume that the sequences to be i.i.d. Each arm a is
associated to an unknown probability distribution v, over [0, 1] and r(a,t) ~ v,. The player
aims at finding the arm with the highest reward. We also denote:

ta = E[r(a,t)], and p* € argmaxp,
acA

As a matter of fact, it is sometimes hard to design algorithms for the true expected regret.
In Bernoulli bandits, for example when v, ~ B(1/2), for a = 1, ..., k when | A| = k, we have
that for any arm a € A E[r(a,t)] = 1/2 and for any chosen action a; by the learner at round ¢,
E[r(at, t)] = 1/2. The maximum cumulated sum of rewards is then a random walk which
expected magnitude is of order:

E |max r(a,t)| =~ +/Tlogk
e yien) =7

Therefore, in that case even though all arms are optimal, the expected regret is of order
v/ T'log k and cannot be less. In the stochastic setting, we thus consider a quantity called the
pseudo-regret which corresponds to competing with the best action in expectation, rather
than the optimal action on the sequence of realized rewards. The pseudo regret is defined
as:

T
Rp=Tp" —E [E uat] (1.31)
t=1

Note that the pseudo-regret is upper-bounded by the expected regret Ry < E[Rr]. This
explains why it is harder to design algorithms that minimize the true expected regret. We
will then use the pseudo-regret in the following.

In the next parts, we will write /i,(¢) the empirical mean of rewards obtained when
pulling arm «a after ¢t rounds. Let us also denote for all arms a = 1, ..., k the suboptimal gap
by:

Ay = 1" — pla, (1.32)
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and the following quantity:
t
T.(t) =Y 1{as =a}, (1.33)
s=1

be the number of times action a was chosen by the agent after the end of round ¢. In
general, the latter quantity 75 (¢) is random, even if the leaner uses a deterministic policy: this
stems from the stochasticity of the rewards.

Lemma 1.6.1 (Regret decomposition lemma). For any policy m and stochastic bandit environment
v with A finite with A = k and horizon T' € N, the pseudo-regret Ry of policy m in v satisfies:

k k k
Rp = (Z E[Tam]) - E (Z Ta<T>ua) =3 ALETL(T)) (1.34)
a=1 a=1 a=1

The latter lemma separates the regret in terms of losses due to each arm is conceptually
important. Indeed, an agent should aim at using an arm with a larger suboptimality gap
fewer times to minimize the regret.

1.6.1. Optimism in the Face of Uncertainty Learning principle

In this part, we introduce some "optimistic" bandit algorithms, namely the upper
confidence bound methods. The Optimism in the Face of Uncertainty Learning (OFUL)
principle is at the core of methods developed in Chapter 4.

Upper Confidence Bound Algorithm

The Upper Confidence Bound (UCB) algorithm (Auer et al., 2002) uses the Optimism in
the Face of Uncertainty Learning (OFUL) principle (Abbasi-yadkori et al., 2011) which leads to
taking actions as if the outcome would be as great as possible, given a level of confidence. This
algorithm has the advantage to not rely on an initial exploration phase but rather explores on
the fly as observations come. Moreover, the algorithm does not require knowledge of gaps
and explores and exploits sequentially throughout the game.

Formally, at any round ¢, for each arm q, the agent builds a confidence interval I, () on
its expected reward based on past observation (ai,ri, -, ar—1,7¢—1):

I,(t) = [LCB,(t), UCB,(t)],

where LCB is a lower confidence bound of the expected reward of the arms and UCB is
an upper confidence bound. The agent then acts optimistically in the sense that it chooses the
arm with the best "plausible” reward, that is with the highest upper confidence bound:

a; € argmax UCB,(?).
acA

The intuition is that by pulling arms through all rounds up until the horizon, the
agent can optimistically explore and exploit through adjusting the confidence intervals to
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discard unconvincing arms. The natural question then is to ask how to design the upper-
confidence-bounds. First, we define an empirical estimate of the means of all arms a as
follows:

fla(s) = % i 1{a = ay}r(a, Sl)? (1.35)
s'=1

which has an expectation mean .. Therefore, to design a confidence interval, we can
use the Hoeffding’s inequality to have that for all arms a € {1,...,k}, forall s > 1 and all

J €0, 1]:
1
P (ua > fials) + \/102?) <6 (136)

At round ¢, the learner has observed T;(t — 1) samples from arm « and received rewards
from that arm with an empirical mean of /i,(¢ — 1). Then a reasonable candidate for an upper
confidence bound of the unknown mean of arm « is:

00 ifT,(t—1)=0
21og(1/6)
Ta(t_ 1)

UCB,(t — 1) = (UCB)

fo(To(t — 1)) + otherwise.

Algorithm 2: Upper Confidence Bound Algorithm (UCB)

Input: Action set A and level of confidence ¢
fort =1tondo
Choose action a; = arg max,c 4 UCB,(t — 1)
Observe reward r;, = X, ; and update UCB,(¢) with updates of Eq. (1.33) and Eq.
(1.35)and 9 ;

end

It is then possible to bound the pseudo-regret of (UCB) and provide the following theorem
as in (Lattimore and Szepesvdri, 2020).

Theorem 1.6.1. If the distributions v, have supports included in [0, 1] then for all a such that A,

e [1,(7)] < 28T

+2. (1.37)

In particular, this implies that the pseudo-regret of (UCB) is upper bounded as

i} log(T
Rr<2k+ Y 8log(T) (1.38)
a,Aqg>0 a
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(UCB) has a regret bound of order
B < 8k(log(T) + 1)

TSN (1.39)
where A = min, A, >0 Aq. Then, by reformulating Eq. (1.37) into:
2logT
< _— .
B =2\ Emm 2 (40

and using Eq. (1.34) we can obtain by using a Jensen inequality:
Ry < \/Tklog(T). (1.41)

The bound is close to the lower bound that is of order O(v/kT'). As a matter of fact, it is
possible to match that lower bound and remove the logarithmic term. The MOSS (Minimax
Optimal Strategy in the Stochastic case) algorithm (Audibert and Bubeck, 2009) in particular
depends on the smallest gap A but achieves the upper bound:

£ g TA° } (1.42)

Ry < min{ka:, Zlog k:

Note eventually that there exists other algorithms in the literature for this problem. Two
of the most used algorithms in practice are e-greedy algorithm and Thompson sampling
(Thompson, 1933). e-greedy algorithm samples the arm with the best empirical mean
with probability ¢ € [0,1] and explores by playing a random arm with probability 1 — «.
When A is known, such an algorithm can be calibrated to obtain an upper bound of order
Rr < klog(T)/A?%. Thompson sampling assumes a prior over the expected rewards s,
then at each round ¢ > 1, for each arm, it computes 7, ; the posterior distribution of the
rewards of an arm a given the rewards observed in history. Then, it samples a parameter
04t ~ Vgt independently and selects an arm subsequently a; € arg max,¢ 4 64+ Thompson
sampling has a similar bound as UCB of order Ry < klog(T)/A but has the advantage to
easily incorporate prior knowledge on arms.

1.6.2. Stochastic Linear Bandits

Stochastic linear bandits (Li et al., 2010; Abbasi-yadkori et al., 2011) use another model:
at round t, the agent is given the time-dependent decision set .A; C R? from which it selects
an action a; € A; and receives the reward:

Tt = <0*, Clt> + Et, (143)

where ¢; are i.i.d. centered subGaussian noise given Ay, a1,r1,..., A1, a1—1, 71, At,
and §* € H is an unknown parameter. The pseudo regret then writes as:

T

Rr=E 0*,a) — 1.44
T Hg&% a) ;n (1.44)
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Note here that the time-dependency of A, is crucial as it allows to consider a contextual
linear bandit problem A; = {¢(x¢,a) : a € A} where x; is a context in a space X'. This allows
for the contextual bandit extension that is studied in Chapter 4. Note also that it is clearly
possible to recover the multi-arm bandit setting with A; = {e1,...,eq} where (¢;);=1 . 4 are
the unit vectors of R%.

The generalization of the previous UCB algorithm is based on the intuition to maintain
for each possible action an estimate of the mean reward as well as a confidence interval
around that mean. Then, at each time the agent chooses the highest upper confidence bound.
Formally, if we have a confidence set C; C R? based on samples (z;, a;, y;), for t € {1,...,T}
that contains the unknown parameter vector §* with high probability, we may define:

LinUCB;(a) = max(0, a) (1.45)
0eCy

as an upper bound on the mean pay-off (6%, a) of a. To choose the highest upper confidence
bound from the confidence set at time ¢, the algorithm then selects:

a; € argmax LinUCB,(a). (1.46)
ac At

The next step is to construct a confidence set C;. To do so, we look for two essential
properties: (i) C; should contain #* with high probability and (ii), C; should be as small as
possible to control the actions selected. Therefore, following the idea of UCB, instead of
empirically estimating the arms” unknown means, we will estimate 6*. To do so, we build an
empirical estimate of 8* using regression. More precisely, we use the regularized least square

estimator:
t—1

0, € argmin Y _ ({0, as) —75)* + A|10]3 (1.47)
6

s=1

where ) is a regularization parameter. A > 0 ensures the minimization problem is
well posed when previously sampled actions a1, . . ., a; do not span R%. When defining the
following quantities:

t
Vi=> a.al + A\ and Vj = Al (1.48)

s=1

the solution to Eq. (1.47) is analytically obtained as:

t
0=V, aer (1.49)
s=1

Since 6; is an estimate of #*, we can design an ellipsoidal confidence set C; centered
around ;. We then define

Ci={0 €O : |6 —bi|v, < B(6)} (1.50)
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where ||0|ly = 67V, and B is a bound on § that is to be defined. When the rounds ¢
pass, the matrix V; has increasing eigenvalues, therefore the volume of the ellipse is also
shrinking so long as the latter quantity B does not grow too fast. Eventually, with C; in
the form of an ellipsoid with center § and radius 3 = B(§), we can write analytically the
solution of Eq. (1.45). Indeed, note that by defining By = {z € R?: ||lz||2 < 1} the unit ball
with the Euclidean norm, it is easy to see that C; = 6; + 3'/2V ~1/2B,. Therefore, for § € B,
maximising the quantity (4, a) = a”0; + 8/2aTV~1/29, immediately gives that:

LinUCB;(a) = (0¢,a) + 8'/*|ally, (LinUCB)

The (LinUCB) policy is summarized in Algorithm 3.

Algorithm 3: Linear Upper Confidence Bound Algorithm (LinUCB)

Input: Action set A and tuning parameter /3
fort =1tondo

Choose action a; = arg max,c 4(0;_1,a) + 61/2Ha||v—11
t—

Observe reward 7, and update V; in (1.48) and estimate 0, with (1.49);
end

We now introduce some results for discussing the regret guarantees of the (LinUCB)
algorithm. We start by the following lemma (Lattimore and Szepesvari, 2020).

Lemma 1.6.2. Let § € [0, 1]. Then, with probability at least 1 — §, if max,e 4, |all2 < 1, forall t > 1:

- 1 T
16: — 6% < ﬁ|]9*||+\/2log5+dlog <1+A> (1.51)
It is then natural to define B(9) as follows:
. 1 T
B(6) = VM||0*] + \/2 logg + dlog (1 + /\) (1.52)

Remark 1.6.1. Note that here, the definition of B(0) depends on the quantity ||6* || which is unknown.
When running the algorithm, to define 8 = B(0), we need to use an upper bound of the value ||6*||.

Eventually, we can show the following upper bound on the pseudo-regret.

Theorem 1.6.2. Let T' > 1 and 6* € R%. Assume that for all a € Ay, |(6%,a)| < 1, with ||6*| < 1
and ||at|| < 1, then LinUCB satistifies the pseudo regret bound:

Ry < CydVTlogT, (1.53)

where C) is a universal constant that depends on \.

Note that under further assumptions, it is possible to improve the latter bound. When
the set of available actions at time ¢ is fixed and finite, with cardinal |A| = k, elimination
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algorithms (Chu et al., 2011; Lattimore and Szepesvari, 2020) allow to achieve the upper
bound:

RT < Ch\y/Tdlog(Tk)

which improves the previous (LinUCB) bound by a factor v/d/ log k and thus achieves
the optimal rate of order O(v/dT) (Foster and Rakhlin, 2022). However such methods are
not practical (Valko et al., 2013) for real-world applications in the sense that the elimination
phases too often take suboptimal actions.

Contextual Stochastic Bandits

Contextual stochastic bandits are a class of problem where at each round ¢, the agent
receives a context x; € X that is drawn from a stochastic distribution. The agent then chooses
an action conditionally on that context. This setting generalise the previous multi-armed
setting by allowing the learner to make use of side information, which is more realistic for
many applications.

As stated before, a contextual bandit extension is possible (Chu et al., 2011) with the
previous LinUCB algorithm by considering a time-dependent set of action A; as A; =
{p(xt,a) : a € A} where z; is a context in a space X’ and ¢ is a feature map associated to
a kernel. An extension of the (LinUCB) setting to a contextual bandit setting with kernel
methods is presented in Chapter 4 as a (K-UCB) rule. In particular, we extend in this
thesis the standard analysis of the OFUL algorithm for linear bandits (Abbasi-yadkori et al.,
2011; Chowdhury and Gopalan, 2017) to the kernel setting using martingale argument and
non-trivial extensions of concentration bounds to infinite-dimensional objects. We present
below a result that is given in Chapter 4.

Theorem 4.3.1. Let T' > 2 and §* € H. Under some boundedness assumptions detailed in the
full statement in Chapter 4, the K-UCB rule defined in Eq. (1.46) satisfies the pseudo-regret bound

Ry S VT (10712 det 0 T) + dest (A T) ).

We will present in the next subsection the details on kernel methods that are key to
understand the other contributions made in Chapter 4. Eventually, note that other methods
relying on regression oracles (Agarwal et al., 2014; Foster and Rakhlin, 2020; Simchi-Levi and
Xu, 2022) have been proposed for the contextual bandit task but are out of the scope of the
(OFUL) principle.

1.6.3. Batch sequential policy learning

For the practical problems presented in Section 1.1, a realistic setting is to assume that the
data collected is used to design a policy that is redeployed and used to collect additional data
and reiterate the learning process, as in Chapter 3. As a matter of fact, many experiments
such as clinical trials are typically conducted in batches, where groups of patients are treated
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concurrently, and the data collected from each batch is indeed utilized to inform the design
of subsequent batches.

This setting has been clarified by important theoretical works under different settings. In
the reinforcement learning (RL) literature (Sutton and Barto, 1998), such methods have been
referred to as off-policy learning algorithms. However, RL methods assume transitions in states
that are thus more complicated than the basic assumptions of the basic bandit settings, where
an action does not influence the sampled contexts. Using the multi-armed bandit framework
instead as in (Perchet et al., 2015), it is possible to answer important questions related to
conducting such experiments, for example what can be accomplished with a limited number
of batches, how large these batches should be, and how outcomes in one batch should inform
the structure of subsequent batches. This framework presents an exploration-exploitation
dilemma that needs to be carefully considered. We will present a basic algorithm in the
contextual batch bandit setting to understand methods that are closely related to the one we
study in Chapter 3.

Let T be the time horizon of the problem. At the beginning of each time ¢t € [T, the
decision maker observes contexts z; € X where X € R%. When the decision maker selects an
action a € A, areward r; as in Eq. (1.43):

Tt = <9*,¢(mt,at)> + &¢, (154)

where ¢; is a sequence of zero-mean independent sub-Gaussian random variables that we can
assume to be 1-sub-Gaussian. Unlike the standard online setting where the decision maker
immediately observes the reward r; after taking an action a;, the reward can only be seen
at the end of batch m € [1,... M] where the horizon T is partitionned into M units. More
specifically, given a total batch size M, a sequential batch bandit algorithm has:

1. Agrid T = {t1,t2,...,tm} with to = 0 and tp; = T Intuitively, this grid partitions the
T units into M batches: the m-batch contains units of samples ¢,,,_ to ¢,,. The decision
maker can choose in its strategy a grid 7 or that grid can be imposed in the problem.

2. A sequential batch policy m = (7, w2, - - - , mas) such that each 7, can only use informa-
tion from all the prior batches (contexts, actions and rewards (z, at, 7¢)i=1,-.- t,,)

To assess the performance of a sequential batch bandit algorithm, we also use a pseudo
regret metric as in Eq. (1.44):

T
Rr =E | max(0*, ¢(zr,a)) — > 1y (1.55)
=1 “&A t=1

Even though the pseudo regret defined in this context aligns with that of standard online
learning in Eq. (1.44), it encompasses a more ambitious objective due to the presence of
delays induced by batches in obtaining reward feedback. This results in a situation where the
decision maker cannot promptly incorporate feedback into their subsequent decision-making
process. Moreover, this allows to compare the performance to that of an oracle utilized in the

standard online learning scenario.
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A sequential Batch UCB algorithm

Following the (OFUL) principle, the most straightforward approach in batch contextual
bandits is to extend (Han et al., 2020) the (LinUCB) algorithm to a batch setting as follows. It
is also possible to define the following quantities, as in Eq. (1.48) and Eq. (1.57):

tm
Vi =Vimo14 Y (w5, 00)(zs,a5) " and Vo = Al (1.56)

§=tm—1

the solution to Eq. (1.47) is analytically obtained as:

tm

Om =V, Y reg(as, as) (1.57)
s=1

Using the latter quantities, it is then possible to define a confidence interval C,, as in
Eq. (1.50) and an update rule as in (LinUCB). The Sequential Batch UCB algorithm is then
summarized in Algorithm 4.

Algorithm 4: Sequential Batch UCB (SBUCB) (Han et al., 2020)

Input: Action set A, grid 7 = {ny, - - - njr }, tuning parameter 3
form =1to M do
forn =1ton,, do
Choose action a; = arg maxaeA(ém_l, b(xt,a)) + BY2||¢(x, a)HV;1

end
Observe rewards of the m=th batch (7;);=¢,, , ...+,, and update V,, in (1.56) and
estimate 6,, with (1.57);

end

Han et al. (2020) shows the following theorem in the finite action case and under the
assumption that the action set is finite and that is the dimension d is relatively low compared
toT.

Theorem 1.6.3. (Han et al., 2020) Let T > 1 and 60* € R%. Assume that for all a € Ay, |(0*,a)| < 1,
with ||0*|| < 1and ||a:|| < 1, then SBUCB satistifies the pseudo regret bound:

_ T T
Rr < O/ 17 (d\ |37+ \/Md> log T'log Tk, (1.58)

where C) is a universal constant that depends on .

This theorem is important as it shows that taking a number of batches in the order of v/dT
should allow to recover the same optimal rate of O(\/ﬁ) as in (Chu et al., 2011). Nevertheless,
O(V/dT) can be a large number and conversely, if only a constant number of batches are
available, then the regret is linear.
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In Chapter 3, we instead require less assumptions on the action set A, nor on the dimension
d of the context space X'. Moreover, instead of deriving adaptive strategies from the (OFUL)
principle, companies might be interested in sequential designs of policies that are learned
with the conservative CRM offline learning principle.

1.7.  Going further: no-regret algorithms in online optimization

We now end this introduction with this section which objective is to provide background
and an introduction to the dual averaging technique (Nesterov, 2009) that is at the core of
the analysis of the algorithms discussed in Chapter 5. In particular, we present no-regret
algorithm in online optimization which is the sequential learning setting that is considered in
that chapter.

Notations Throughout what follows, V will denote a finite-dimensional real space with
norm | - || and A C V will be a closed convex subset thereof. We will also write V* for
the (algebraic) dual of V, (y,a) for the canonical pairing between y € V* and = € V, and
lyll« = sup{(y, a) : ||a|| < 1} for the dual norm of y € V*.

Online optimization is concerned with solving a series of decision problems over time
and is more general than the bandit problems presented before. The goal is to minimize
the overall loss experienced over a sequence of unknown loss functions that are arbitrary
unlike the stochastic assumptions considered in Section 1.6. In essence, the standard online
optimization scenario can be described as a sequence of steps where at each stage, the agent
(learner) chooses an action a; € A that incurs a loss /¢(a;) based on a loss function /; : A — R
which is received by the learner. The learner then updates their actions and the process
repeats.

Ateach timestept =1,---T
— the agent chooses an action a; € A
— given a4, an arbitrary loss l;(a;) is incurred
— the agent observes a feedback and updates its action a;41

Online optimization setting

Conceptually, it is extremely important to note here that an action a here can refer to a
distribution on a set of arms 1, ..., k, that is to say A = A(k) is the simplex on R¥. This stems
from the idea that a learner does not define a strategy by choosing a deterministic arm as
in stochastic bandits, but rather defines a distribution on possible arms to sample arms and
prevent adversaries to manipulate the losses ;.

Based on some properties of l;, we can consider the following basic problems: the online
convex (respectively strongly convex) optimization where [; is assumed convex (respectively
strongly convex) or online linear optimization where each [; is assumed linear, i.e of the form
lt(a) = —(vt, a) for some payoff vector v; € V. Note that linear and strongly convex problems
are both convex problems but otherwise different. For the rest of this introduction, we will
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consider linear problems and require that each [; is differentiable and attains its minimum in

A.

To measure the performance of learner, the notion of regret, similarly to Section 1.6, is
defined as:

S

Rr = glgff; [l¢(ar) — le(a)] .- (1.59)

which is also a difference of the cumulated loss incurred by the agent after 7" stages and that
of the best action in hindsight. Contrary to the definition given in 1.6, the loss [, is arbitrary
and is not drawn from a fixed distribution as before. This makes a drastic difference and
will enable us to consider adversarial bandits (Lattimore and Szepesvari, 2020). For both
cases, the agent’s regret contrasts the performance of the agent’s policy a; to that of an action
a* € argmin, ¢ 4 Zle l¢(a) which minimizes the cumulated incurred loss over all rollouts.
Instead, we also consider a pseudo metric regret that is defined as in Eq. (1.31)

T
Rp = E l —1 . 1.60
T = max LZ; [le(ar) t(a)]] (1.60)
The goal in online optimization is to define algorithms that achieve no regret, that is:
Ry
2 1.
T T—4o0o ( 61)

As in stochastic bandits in Section 1.6, the effectiveness of a policy is then assessed based on
the rate of the regret that is actually achieved, which is determined by examining the specific

. o .. Rt .
expression within which T vanishes to zero.

Feedback assumptions In online optimization, it is possible to assume different level of
information available to the learner. The access to the entire loss I; can be given to the
optimizer after an action a; is chosen, which is termed as the full information feedback setting.
This opposes to the bandit feedback as presented before (in the logged bandit feedback problem
in Section 1.3 and in bandit problems in Section 1.6, 1.4) where only /;(a;) is revealed to the
learner.

Moreover, many online learning algorithm require gradient information. In the analysis
that is used in works of the literature (Shalev-Shwartz, 2007; Zinkevich, 2003; Mertikopoulos,
2019) an assumption on imperfect gradient feedback is made so that when a gradient "oracle"
is called at a point a;, the learner has access to a gradient vector of the form:

Vi = Vii(ar) + Zs, (1.62)

where 7, is defined as the "observational error” in the oracle gradient. Typically, we
decompose Z; in the form of:
Zt = Ut + bt (163)
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where v, is zero mean and b, captures the mean of Z;. We then define the following
statistics to classify the problems that return imperfect gradient feedback.

By =E[[[be]]]  (bias)
of =E[|Jw]/?] (variance) (1.64)
M? =E[||V¢]|*] (second moment).

No-regret algorithms

We now present no-regret algorithms and specifically make the link between Follow-
the-Regularized-Leader and Mirror Descent strategies that are used in the literature (Lattimore
and Szepesvadri, 2020, see Chapter 28) to analyze adversarial bandit algorithms as we do in
Chapter 5 of this thesis. Specifically, we introduce such strategies to eventually present the
dual averaging method.

Leader-following policies Starting from the intuition that the optimizer can play the action
that is optimal in hindsight up to stage ¢, it is possible to derive a no-regret strategy. This
strategy is known as follow-the-leader (FTL) and can be expressed as:

t
a1 € argmin » _ Iy(a). (FTL)

a€A T

However, it is known that this strategy induces a positive regret in simple examples
where the loss [; can oscillate from one round to another and be manipulated by an adversary.
To circumvent this, it is possible to regularize the update rule with penalty term which that
leads to the so-called follow the regularized leaser (FTRL) that can be given as:

t

1
ai+1 € arg minz ls(a) + —h(a). (FTRL)
acA Y

s=1

Here, h : A — R is a regularization function and « > 0 is a parameter that can be chosen
by the learner to optimize its learning guarantees. It is then standard to require additional
assumptions on h to provide such guarantees.

Assumption 1.7.1. h is continuous and it is strongly convex, that is, there exists C' > 0 such that:
[Ar(a) + (1 = Nh(a)] — h(Ad' + (1 — N)a) > %)\(1 —A)|ja —d|? (1.65)
forall a,a’ € Aand X € [0, 1].

Moreover, the regret analysis of (FTRL) is typically performed under the following
assumption on the loss ;.

Assumption 1.7.2. Each l; is convex and it is Lipschitz continuous, i.e:

lli(a’) = li(a)| < Lefla” — all (1.66)

for some Ly > 0 and all a,d’ € A.
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Then, in this setting, the following result applies:

Theorem 1.7.1. (Shalev-Shwartz, 2007) Assuming Assumptions 1.7.1 and 1.7.2 and supposing that
(FTRL) is run against a sequence of loss functions l;, t = 1,...T, then (FIRL) achieves no-regret
with the regret bound:

H fy T
— 02 (1.67)

where H = max h — min h is the "depth” of h over A. In particular, if sup, Ly < oo and writing

L = sup, Ly and if we set v = +1/ 1€ the incurred regret is bounded as:

H
Rp <21y =T (1.68)

This theorem illustrates how it is possible to achieve no-regret under a simple strategy and
the dependencies of the regret on the regularization function h. Although the dependency on
the horizon T is of order /T, the dependencies on the alternative set as discussed in Chapter
5 typically stem for the quantity H presented above.

Online gradient descent Another simple way to minimize the online loss is to use its
gradient to take a step against it and repeat the process, as it is done in gradient descent in
optimization. When faced with a different loss function at each stage, the policy derived from
such a process is known as online gradient descent (OGD). Using the projection operator

P(a) = argmin ||a’ — al|?, (1.69)
a’eA

we define the update rules:
at+1 = Plar + V) (OGD)

where ¢ > 0 is the algorithm step size and V; defined as
Vi = =[Vi(as) + Z4 (1.70)

with Z; being defined as the "observational error" in the oracle gradient in Eq. (1.63). We
illustrate the online gradient descent procedure in Figure 1.5.

We can now establish the following regret bound:

Theorem 1.7.2. (Zinkevich, 2003) Assuming Assumption 1.7.2 and supposing that (OGD) is run
against a sequence of loss functions I, t = 1, ... T with step size y; = ~y, then (OGD) achieves satisfies
the pseudo-regret bound:

: 2
B < diam(.A)

T T
N TR % S M2+ diam(A) Y B, (1.71)
t=1 t=1

where diam(A) = max{|ja—d'| : a,a’ € A} denotes the diameter of A. In particular, if sup, M; < oo
and writing M = sup, My and if we set v = (1/M) diam(A)/v/T, with unbiased feedback B; = 0
the incurred regret is bounded as:

Ry < diam(A)MVT. (1.72)
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Figure 1.5: Representation of online gradient descent

Up to multiplicative constants, the bound in (1.72) is essentially the same as the corre-
sponding bound in (1.68) for (FTRL) and are in order of O(VT); as long as the oracle does
not suffer from systematic errors in (OGD). In other words, (OGD) achieves the same regret
minimization rate as (FTRL), even though the latter requires a full information oracle.

Online Mirror Descent There are cases where taking into account the problem’s geometry
may allow for improved regret guarantees. A natural question that arises is whether running
(OGD) with a non-Euclidean norm can lead to better regret bounds. For this, Online Mirror
Descent (OMD) is a generalization of (OGD) to better exploit the geometry of the decision
space A. This algorithm is the online counterpart of the Mirror Descent algorithm from
convex optimization.

To define it, let us first rewrite the projection defined in (1.69) as:
P(a+y) = argmin{|la +y — a'[|*}
a’eA
= argmin{||a — d/||” + [|y||* + 2(y,a — ')}
a’'ceA

= argmin{(y,a — a') + D(d’,a)}
a’ceA

where . ) )
D(d,a) = Slla’ —all* = |]* = Sllal* — {a,0 — ) (173)

is the squared Euclidean distance between a and «’. The generality of (OMD) comes
from the updates being performed into a dual space which is defined by a C-strongly convex
"distance generating function" h : A — R. More particularly, by replacing the latter Euclidean
distance with what we call the Bregman divergence induced by h:

Dy(d’,a) = h(a’) — h(a) — (Vh(a),a — a’) (1.74)

by then defining the prox-mapping for any a € A, Prox,(y) : V* — Aas:

Prox(y) = argmin{({y,a — ') + Dy(d’,a)} for all y € V*. (1.75)
a a’'€eA
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Online Mirror Descent (OMD) is then defined as follows:

at1 = Prox(y V) (OMD)

where +; is a variable step-size sequence, and the signals V; as in (1.70).
Example 1.7.1. Consider the quadratic distance generating function h(a) = | a||? that gives the
Euclidean prox-mapping:
1
Prox(y) = arg min{(y,a — a’) + §||a’ —al|?} = Pla+y). (1.76)
a a’€eA
We therefore recover the Euclidean gradient descemt with (OMD).

Example 1.7.2. As an example, consider A = A(k) the standard unit simplex of R¥, and consider the
entropic reqularizer:

k
a) = Z a;logay. (1.77)

=1
A standard calculation shows that h is strongly convex and that the induced prox-mapping is

given as:
Prox(y) ( ; a;j exp(y;) ) (EGD)
a 2 =15 exp(ys) ) oy

which provides the entropic gradient descent update of :

ajrexp(v Vi)
- :
> =1 a5 exp(eVjr )

Q1 = (1.78)

In the bandit literature, this algorithm update is known as exponential weights or Exponentiated
Gradient forecaster.

We now provide the basic regret guarantees of (OMD).

Theorem 1.7.3. (Shalev-Shwartz, 2007) Assuming Assumption 1.7.2 and supposing that (OMD) is
run against a sequence of loss functions ly, t = 1,...T with step size v, = vy, then (OMD) achieves
satisfies the regret bound:

H ~ T T
; Yl z:: 7+ diam(.A) Z_: By, (1.79)

where diam(A) = max{|la — d'| : a,a’ € A} denotes the diameter of A and H = maxh —minh
denotes the "depth” of h over A. In particular, if sup, M; < oo and writing M = sup, M, and if we
set v = (1/M)+/2CH/T, with unbiased feedback B, = 0 the incurred regret is bounded as:

Ry < M/ (2H/O)T. (1.80)
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The main difference between the bounds of (OGD) and that of (OMD) is the factor 2H/C.
As a matter of fact, instead of the quantity diam(.A), the geometry of the problem is taken
into account in the terms H and C, as explained in the following example.

Example 1.7.3. Going back to Example 1.7.2, the entropic regularizer in (1.77) has a strong convexity
modulus C' = 1 and its depth H over A is:

E

H =maxh —minh=0-Y (1/k)log(1/k) = logk. (1.81)
j=1

Hence if (EGD) is run against a multi-armed bandit with bounded payoffs ||l;||- < 1, we obtain
a regret bound of the form:

R < /2T logk. (1.82)

By comparison, the corresponding bound for (OGD) is Ry < 2VkT so (EGD) improves upon it
by a factor \/2k/ log k.

Therefore, even both algorithms enjoy the same O(+/T) regret bound, the difference in
multiplicative constants can result in a substantial enhancement compared to the problem’s
dimension. This can be extremely beneficial for real-world machine learning, and is something
that we specifically work on in Chapter 5.

The link between FTRL and OMD, the Dual Averaging We will now establish the relation
between (FTRL) and (OMD) and introduce the dual averaging method. We first start by
providing a simple example where (FTRL) and (OGD) strategies coincide.

Example 1.7.4. Consider an unconstrained linear problem with action set A = R?, with reqularization
function h(a) = L||a||%, and linear losses of the form ly(a) = —(v;, a), for some sequence v; € R%. In
that case, the (FTRL) update is expressed as:

RN 1 . :
ap+1 = arc%erim { ;ls(a) + ;h(a)} = arageg;m{Ha] — 2y 521@5, a>} (1.83)

= arg min
aeR?

t t
o= (s a)|| =73 v = ar 7w (1.84)
s=1 s=1

which is the unprojected gradient update of (OGD).

Actually, it is possible to modify the (FTRL) strategy with a gradient trick to require the
same assumptions as (OMD) and establish relations between the two strategies. Specifically,
it possible to define a variant of (FTRL) which only requires first-order oracle information
that is, the same type of feedback as (OMD). The idea is to replace the loss I;(a) with the
linear surrogate:

lt(a) = lt(at) + <Vlt(at), ag — OL>, (185)

which yields the update:

t t

at+1 = argmin { Z Is(a) + Plyh(a)} = arg max {fy Z(Vls(as), ay — h(a)}. (1.86)

acA a—1 acA a—1
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Figure 1.6: Representation of dual averaging

Contrary to (FTRL), this policy only requires first-order information on /; (and coincides
with it in case of linear losses). When the feedback available to the optimizer is a gradient
signal V; of the form (1.70), we can define the follow-the-linearized-leader (FTLL) policy:

t
ary1 = argeriax {'y SZ:; Vs — h(a) } (FTLL)

Thus if we introduce the notion of the "mirror map" of i being defined for all y € V*
as:

Q(y) = argmax {(y,a) — h(a)}. (1.87)

acA

We can write the (FTLL) in a recursive form with to yield the dual averaging method, with
7 > 0 a variable step size parameter:

Yer1 = Yt + Vi
DA
{ atr1 = Q(Yt+1)- (DA)

Here, y; € V* is an auxiliary dual variable that aggregates gradient steps. The name
“dual averaging” is due to Nesterov (2009) and illustrates how gradients are “averaged”
directly where they are in the dual space V* before being “mirrorred” back through @ to the
problem’s original space A. We provide in Figure 1.6 a schematic representation of the dual
averaging procedure.

Example 1.7.5. Going back to the quadratic reqularizer h(a) = §||a||* that yielded an Euclidean
projection for (OMD), we now obtain the mirror map:
1
Qy) = argmax {(y, a) - 5lal*} = P(y), (1.88)
ac

where P is the projection defined in (1.69). We thus obtain the so-called lazy gradient descent
update:

Y41 = Yt + Vi
LGD
{ at+1 = P(Yi+1)- ( )
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Figure 1.7: Representation of "lazy" and "eager" gradient descent

As a matter of fact, in the online learning literature, (DA) is often referred to as the “lazy”
variant of (OGD) and (OMD) (Zinkevich, 2003; Shalev-Shwartz, 2012). This statement refers
to the idea that the algorithm performs a "lazy" aggregation of gradient steps, in the sens that
it doesn’t transport the gradient steps to their original state. Instead, it only projects them to
A in order to create a new gradient signal.

Actually, the selection of the distance-generating function h has a significant impact on
establishing the relationship between (DA) and (OMD), which performs "eager" updates
unlike (DA). A schematic difference between "lazy" and "eager" updates is provided in Figure
1.7.

As a matter of fact, Mertikopoulos (2019) studies under which conditions on h induces
the same updates for the lazy and eager variants. In particular, i needs to intuitively be
"steep" at the boundary of A, but the discussions on this matter are out of the scope of this
thesis. More importantly, we detail again the entropic regularization example with the (DA)
update.

Example 1.7.6. Going back to example 1.7.2, it is easy to show that the mirror map associated to the

entropic regularizer h(a) = 2?:1 a;log a; is the logit choice rule:

o exp(yﬂ) | (1.89)
(v) (Z?lexp(yj') J=1,.k

which gives the "Hedge"” policy:

Y1 = Yt + Vi
Hedge
{ at+1 = '(ye+1) (Hedge)

when unfolding a1 o< aj ¢ exp(Vj) and given that Z;‘;l a;1 = 1 in the simplex, the sequence of
iterates of (Hedge) is the same as (EGD).

The latter example demonstrates that for entropic regularization, the "lazy" and "eager"
versions of (OMD) are the same. Therefore, we will not make much differentiation between the
two variants of (OMD) due to the aforementioned reasons and will use the regret guarantees
of Theorem 1.7.3 in the methods we will develop.
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In Chapter 5, we provide results on the pseudo-regret of algorithms for adversarial
multi-armed bandit problems. Specifically, when a similarity structure is known we can
define a effective number of arm kg that is typically much smaller that k. Then, it is possible
to improve the regret bound given by EXP4 (Auer et al., 2003) and prove the following with a
(DA) analysis:

Theorem 5.5.1 (EWEN Regret). Suppose that Algorithm 15 is run with a non-increasing
learning rate v, > 0 against a sequence of cost vectors l; € [0,1],¢ = 1,2, ..., as per (5.4). Then,
the learner enjoys the regret bound

He  keg —
ER7] < =5 + L3 (1.90)
VYT+1 2 =

with keg given by (5.13) and Hg is defined as the depth over A(E) of the entropic reqularizer hg
in (5.12.1), i.e.,
H¢ = max hg — min hg = log M (1.91)

In particular, if Algorithm 15 is run with v, = \/log M /(2t - kegt), we have

E[Rr] < 2y/kegr log M - T. (1.92)

Moreover, we propose in Chapter 5 a nested entropy on the similarity structure to propose
the following regret bound that in turn improves the regret of EXP3 (Vovk, 1990; Littlestone
and Warmuth, 1994; Auer et al., 1995) with a (DA) analysis.
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Counterfactual Learning of Stochastic
Policies with Continuous Actions

Counterfactual reasoning from logged data has become increasingly important for many
applications such as web advertising or healthcare. In this chapter, we address the problem of
learning stochastic policies with continuous actions from the viewpoint of counterfactual risk
minimization (CRM). While the CRM framework is appealing and well studied for discrete
actions, the continuous action case raises new challenges about modelization, optimization,
and offline model selection with real data which turns out to be particularly challenging. Our
work contributes to these three aspects of the CRM estimation pipeline. First, we introduce
a modelling strategy based on a joint kernel embedding of contexts and actions, which
overcomes the shortcomings of previous discretization approaches. Second, we empirically
show that the optimization aspect of counterfactual learning is important, and we demonstrate
the benefits of proximal point algorithms and differentiable estimators. Finally, we propose
an evaluation protocol for offline policies in real-world logged systems, which is challenging
since policies cannot be replayed on test data, and we release a new large-scale dataset along
with multiple synthetic, yet realistic, evaluation setups.

This chapter is based on the following material:

H. Zenati, A. Bietti, M. Martin, E. Diemert, and J. Mairal. Optimization approaches
for counterfactual risk minimization with continuous actions. International Conference
on Learning Representation (ICLR), Causal Learning for Decision Making Workshop, 2020b

H. Zenati, A. Bietti, M. Martin, E. Diemert, P. Gaillard, and J. Mairal. Counterfactual
learning of stochastic policies with continuous actions: from models to offline
evaluation. arXiv preprint arXiv:2004.11722, 2020a

44
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2.1. Introduction

Logged interaction data is widely available in many applications such as drug dosage
prescription (Kallus and Zhou, 2018), recommender systems (Li et al., 2012), or online
auctions (Bottou et al., 2013). An important task is to leverage past data in order to find a
good policy for selecting actions (e.g., drug doses) from available features (or contexts), rather
than relying on randomized trials or sequential exploration, which may be costly to obtain or
subject to ethical concerns.

More precisely, we consider offline logged bandit feedback data, consisting of contexts
and actions selected by a given logging policy, associated to observed rewards. This is known
as bandit feedback, since the reward is only observed for the action chosen by the logging
policy. The problem of finding a good policy thus requires a form of counterfactual reasoning
to estimate what the rewards would have been, had we used a different policy. When the
logging policy is stochastic, one may obtain unbiased reward estimates under a new policy
through importance sampling with inverse propensity scoring (IPS, Horvitz and Thompson,
1952). One may then use this estimator or its variants for optimizing new policies without the
need for costly experiments (Bottou et al., 2013; Dudik et al., 2011; Swaminathan and Joachimes,
2015a,b), an approach also known as counterfactual risk minimization (CRM). While this
setting is not sequential, we assume that learning a stochastic policy is required so that one
may gather new exploration data after deployment.

In this chapter, we focus on stochastic policies with continuous actions, which, unlike
the discrete setting, have received little attention in the context of counterfactual policy
optimization (Demirer et al., 2019; Kallus and Zhou, 2018; Chen et al., 2016). As noted
by Kallus and Zhou (2018) and as our experiments confirm, addressing the continuous case
with naive discretization strategies performs poorly. Our first contribution is about data
modeling: we introduce a joint embedding of actions and contexts relying on kernel methods,
which takes into account the continuous nature of actions, leading to rich classes of estimators
that prove to be effective in practice.

In the context of CRM, the problem of estimation is intrinsically related to the problem of
optimization of a non-convex objective function. In our second contribution, we underline
the role of optimization algorithms (Bottou et al., 2013; Swaminathan and Joachims, 2015b).
We believe that this aspect was overlooked, as previous work has mostly studied the
effectiveness of estimation methods regardless of the optimization procedure. In this chapter,
we show that appropriate tools can bring significant benefits. To that effect, we introduce
differentiable estimators based on soft-clipping the importance weights, which are more
amenable to gradient-based optimization than previous hard clipping procedures (Bottou
et al., 2013; Wang et al., 2017). We provide a statistical analysis of our estimator and discuss
its theoretical performance with regards to the literature. We also find that proximal point
algorithms (Rockafellar, 1976) tend to dominate simpler off-the-shelf optimization approaches,
while keeping a reasonable computation cost.

Finally, an open problem in counterfactual reasoning is the difficult question of reliable
evaluation of new policies based on logged data only. Despite significant progress thanks to
various IPS estimators, we believe that this issue is still acute, since we need to be able to
estimate the quality of policies and possibly select among different candidate ones before being
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able to deploy them in practice. Our last contribution is a small step towards solving this
challenge, and consists of a new offline evaluation benchmark along with a new large-scale
dataset, which we call CoCoA, obtained from a real-world system. The key idea is to
introduce importance sampling diagnostics (Owen, 2013) to discard unreliable solutions
along with significance tests to assess improvements to a reference policy. We believe that
this contribution will be useful for the research community; in particular, we are not aware of
similar publicly available large-scale datasets for continuous actions.

2.2. Related Work

A large effort has been devoted to designing CRM estimators that have less variance
than the IPS method, through clipping importance weights (Bottou et al., 2013; Wang et al.,
2017), variance regularization (Swaminathan and Joachims, 2015a), or by leveraging reward
estimators through doubly robust methods (Dudik et al., 2011; Robins and Rotnitzky, 1995).
In order to tackle an overfitting phenomenon termed “propensity overfitting”, Swaminathan
and Joachims (2015b) also consider self-normalized estimators (Owen, 2013). Such estimation
techniques also appear in the context of sequential learning in contextual bandits (Agarwal
et al., 2014; Langford and Zhang, 2008), as well as for off-policy evaluation in reinforcement
learning (Jiang and Li, 2016). In contrast, the setting we consider is not sequential. Moreover,
unlike direct approaches (Dudik et al., 2011) which learn a cost predictor to derive a
deterministic greedy policy, our approach learns a model indirectly by rather minimizing the
policy risk.

While most approaches for counterfactual policy optimization tend to focus on discrete
actions, few works have tackled the continuous action case, again with a focus on estimation
rather than optimization. In particular, propensity scores for continuous actions were
considered by Hirano and Imbens (2004). More recently, evaluation and optimization of
continuous action policies were studied in a non-parametric context by Kallus and Zhou
(2018), and by Demirer et al. (2019) in a semi-parametric setting.

In contrast to these previous methods, (i) we focus on stochastic policies while they
consider deterministic ones, even though the kernel smoothing approach of Kallus and
Zhou (2018) may be interpreted as learning a deterministic policy perturbed by Gaussian
noise. (ii) The terminology of kernels used by Kallus and Zhou (2018) refers to a different
mathematical tool than the kernel embedding used in our work. We use positive definite
kernels to define a nonlinear representation of actions and contexts in order to model the
reward function, whereas Kallus and Zhou (2018) use kernel density estimation to obtain good
importance sampling estimates and not model the reward. Chen et al. (2016) also use a kernel
embedding of contexts in their policy parametrization, while our method jointly models
contexts and actions. Moreover, their method requires computing an n x n Gram matrix,
which does not scale with large datasets; in principle, it should be however possible to modify
their method to handle kernel approximations such as the Nystrom method (Williams and
Seeger, 2001). Besides, their learning formulation with a quadratic problem is not compatible
with CRM regularizers introduced by (Swaminathan and Joachims, 2015a,b) which would
change their optimization procedure. Eventually, we note that Krause and Ong (2011) use
similar kernels to ours for jointly modeling contexts and actions, but in the different setting of
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sequential decision making with upper confidence bound strategies. (iii) While Kallus and
Zhou (2018) and Demirer et al. (2019) focus on policy estimation, our work introduces a new
continuous-action data representation and encompasses optimization: in particular, we propose
a new contextual policy parameterization, which leads to significant gains compared to
baselines parametrized policies on the problems we consider, as well as further improvements
related to the optimization strategy. We also note that, apart from Demirer et al. (2019) that
uses an internal offline cross-validation for model selection, previous works did not perform
offline model selection nor evaluation protocols, which are crucial for deploying methods on
real data. We provide a brief summary in Table 2.1 to summarize the key differences with our
work.

Method Stochastic POhC.y . Kernels CRM Offline evaluation Large-scale
Parametrization Regularizers protocol
Chen et al. (2016) X Linear Embedding of contexts X X X\v
Kallus and Zhou (2018) X\v Linear Kernel Density Estimation v X v
Demirer et al. (2019) X Any Not used X v v
Ours v CLP Joint embeddlpg of v v v
contexts/actions

Table 2.1: Comparison to Chen et al. (2016); Kallus and Zhou (2018); Demirer et al. (2019), CLP refers
to our continuous action model, see section 2.3.1. For discussions on stochastic interpretation of
Kallus and Zhou (2018) and the application of Chen et al. (2016) to large-scale data, see main text.

Optimization methods for learning stochastic policies have been mainly studied in the
context of reinforcement learning through the policy gradient theorem (Ahmed et al., 2019;
Sutton et al., 2000; Williams, 1992). Such methods typically need to observe samples from the
new policy at each optimization step, which is not possible in our setting. Other methods
leverage a form of off-policy estimates during optimization (Kakade and Langford, 2002;
Schulman et al., 2017), but these approaches still require to deploy learned policies at each
step, while we consider objective functions involving only a fixed dataset of collected data.
In the context of CRM, Su et al. (2019) introduce an estimator with a continuous clipping
objective that achieves an improved bias-variance trade-off over the doubly-robust strategy.
Nevertheless, this estimator is non-smooth, unlike our soft-clipping estimator.

2.3. Modeling of Continous Action Policies

We now review the CRM framework, and then present our modelling approach for
policies with continuous actions.

2.3.1. The Counterfactual Loss Predictor (CLP) for Continuous Actions Poli-
cies

We recall that our estimator 7 is designed by optimizing (1.12) over a class of policies II.
In this subsection, we discuss how to choose II when dealing with continuous actions. We
emphasize that when considering continuous action spaces, the choice of policies is more
involved than in the discrete case. One may indeed naively discretize the action space into
buckets and leverage discrete action strategies, but then local information within each bucket
gets lost and it is non-trivial to choose an appropriate bucketization of the action space based
on logged data, which contains non-discrete actions.
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We focus on stochastic policies belonging to certain classes of continuous distributions,
such as Normal or log-Normal. Specifically, we consider a set of context-dependent policies
of the form

Mo = {m st foranyz € X, m(|z) = D(us(x),0?) with 0= (8,0)€ @} 2.1)

where D(a, b) is a probability distribution with mean @ and variance b, such as the Normal
distribution, and © is a parameter space.

Here, the parameter space © can be written as © = ©3 x ©,. The space O, is either
a singleton (if o is considered as a fixed parameter specified by the user) or R (if o is a
parameter to be optimized). The space O3 is the parameter space which models the contextual
mean x — pg(z).

Counterfactual baselines for ©5 only consider contexts Before introducing our flexible
model for © 3, we consider the following simple baselines that will be compared to our model
in the experimental Section 2.7. Given a context z in X C R%:

o constant: pg(z) =B  (context-independent);
o linear: pg(x) = (x, f1) + Bo with 8 = (8o, B1) € R&=TY;
o poly: pg(z) = (zz, 1) + Bo with 5 = (o, 1) € REH.

These baselines require learning the parameters S by using the CRM approach (1.12).
Intuitively, the goal is to find a stochastic policy that is close to the optimal deterministic one
from Eq. (DM). Yet, these approach consider function spaces ©,, of the mean functions p that
only use the context. While these approaches, adopted by Chen et al. (2016), Kallus and Zhou
(2018) can be effective in simple problems, they may be limited in more difficult scenarios
where the expected cost n*(z, a) has a complex behavior as a function of a. This motivates
the need for classes of policies which can better capture such variability by considering a joint
model 7(x, a) of the cost.

The counterfactual loss predictor (CLP) model for ©5. Assuming that we are given such
a parametric model 7g(z, a), which we call loss predictor and will be detailed thereafter, we
parametrize the mean of a stochastic policy by using a soft-argmin operator with temperature
v > 0:

exp( 'wm(w ai))
CLP:  u$™( , (2.2)
Z Yo exp(—ymp(, aj))
where a1, ..., a,, € A are anchor points (e.g.,, a regular grid or quantiles of the action space),

and p3 may be viewed here as a smooth approximation of a greedy policy figreedy(7) =
arg min, n(x, a). This allows CLP policies to capture complex behavior of the expected loss
as a function of a. The motivation for introducing a soft-argmin operator is to avoid the
optimization over actions and to make the resulting CRM problem differentiable.

Modeling of the loss predictor ng(x,a). The above CLP model is parameterized by 7z(z, a)
that may be interpreted as a loss predictor. We choose it of the form

np(x;a) = (B,¢(z,a))
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contexts z € X Joint kernel embedding Nystrém approximation Cost predictor

K((z,a),(2',d")) Y(x,a) € RP ﬂ[nﬁ(x,a) = (B,z,b(:v,a))}

actionsa € A

ik

Figure 2.1: Illustration of the joint kernel embedding for the counterfactual loss predictor (CLP).

for some parameter 5 € R?, which norm controls the smoothness of 7, and a feature map
Y (z,a) € RP that we detail in two parts: a joint kernel embedding between the actions and the
contexts and a Nystrom approximation. The complete modeling of nz(x, a) is summarized in
Figure 2.1.

1. Joint kernel embedding. In a continuous action problem, a reasonable assumption is that
losses y vary smoothly as a function of actions. Thus, a good choice is to take 7 in a space
of smooth functions such as the reproducing kernel Hilbert space H (RKHS) defined by a
positive definite kernel (Schélkopf and Smola, 2002), so that one may control the smoothness
of n through regularization with the RKHS norm. More precisely, we consider kernels of the
form

/HQ
)

K((xv a), (xlv a/)) = <wé‘(($)7 pr(w/»e—%ua—a

where, for simplicity, {x(z) is either a linear embedding ¢ x(x) = = or a quadratic one

Yx(z) = (z2T,x), while actions are compared via a Gaussian kernel, allowing to model

complex interactions between contexts and actions.

(2.3)

2. Nystrom method and explicit embedding. Since traditional kernel methods lack scalability,
we rely on the classical Nystrom approximation (Williams and Seeger, 2001) of the Gaussian
kernel, which provides us a finite-dimensional approximate embedding 1 4(a) in R™ such that
e~ 210='I” ~ (4 4(a), .4(a’)) for all actions a, a’. This allows us to build a finite-dimensional
embedding

w(% a) =x (‘T) ® wA(a)v (2.4)

where ® denotes the tensorial product, such that

K((z,a), (', a")) = ($x(2), Ya(2){$ala), Ya(d)) = (b(z, a), ¢ (2',d)).

More precisely, Nystrom’s approximation consists of projecting each point from the
RKHS to a m-dimensional subspace defined as the span of m anchor points, representing here
the mapping to the RKHS of m actions a1, as, . . ., @, of the Nystrom dictionary Z. In practice,
we may choose a; to be equal to the a; in (2.2), since in both cases the goal is to choose a set of
“representative” actions. For one-dimensional actions (A C R), it is reasonable to consider
a uniform grid, or a non-uniform ones based on quantiles of the empirical distribution of
actions in the dataset. In higher dimensions, one may simply use a K-means algorithms and
assign anchor points to centroids.
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From an implementation point of view, Nystrom’s approximation considers the embed-
ding Y 4(a) = K / Kz(a), where Kzz = [K(a;,a;)];j and Kz(a) = [Ka(a,a;)]; and K 4 is
the Gaussian kernel

The anchor points that we use can be seen as the parameters of an interpolation strategy
defining a smooth function, similar to knots in spline interpolation. Naive discretization
strategies would prevent us from exploiting such a smoothness assumption on the cost with
respect to actions and from exploiting the structure of the action space. Note that Section 2.7
provides a comparison with naive discretization strategies, showing important benefits of the
kernel approach. Our goal was to design a stochastic, computationally tractable, differentiable
approximation of the optimal (but unknown) greedy policy (DM).

Summary of the CLP policy class definition We provide below a shortened description of
the CLP parametrization. In particular the policy class construction requires input parameters
and yields a parametric policy class:

Input: Temperature v > 0, kernel K, Nystrom dictionary Z C A, parametric
distribution D (such as Normal or log-Normal).

1. Define the d-dimensional feature map v as in Eq. (2.4) by using K and Z.

2. Forany 3 € R?and (z,a) € X x A, define

exp( 777,8(33 a))
wez exp(—ymg(z, a’))

ng(z,a) = (B,¢(x,a)) and CLP Z =

a€Z

3. Define the policy set

5" = {rst. Vo e X, n(-|z) = D(ug* (x z),0°), with (8,0) € ©}.

2.4. On Optimization Perspectives for CRM

Because our models yield non-convex CRM problems, we believe that it is crucial to study
optimization aspects. Here, we introduce a differentiable clipping strategy for importance
weights and discuss optimization algorithms.

2.4.1. Soft Clipping IPS

The classical hard clipping estimator

R 1 & )
LS (0) = - > i min {mp(as|2;) /w0, M} (2.5)
=1

makes the objective function non-differentiable, and yields terms in the objective with clipped
weights to have zero gradient. In other words, a trivial stationary point of the objective
function is that of a stochastic policy that differs enough from the logging policy such that
all importance weights are clipped. To alleviate this issue, we propose a differentiable
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logarithmic soft-clipping strategy. Given a threshold parameter M > 0 and an importance
weight w; = mg(a;|x;) /70, we consider the soft-clipped weights:

i, M) = . 2.6
(wi, M) {a(M) log (w; + a(M) — M) otherwise, 26)
where a(M) is such that a(M) log(a(M)) = M, which yields a differentiable operator. We
illustrate the soft clipping expression in Figure 2.2 and give further explanations about the
benefits of clipping strategies in Appendix 2.9.

...... c(w) = min(W: M)
-—= c(w)=q(w, M)
8 —— cw)=w

— V]

c(w)

Figure 2.2: Different clipping strategies ¢ on the importance weights w. Weights are clipped for
M = 3, the hard clipping ¢(w) = min(w, M) provides no gradient for w > M, while the soft clipping
c(w) = ¢(w, M) and the unclipped estimators c(w) = w do.

Then, the IPS estimator with soft clipping becomes

iscIPS(e) — :‘LG:yzg (W,M> . (2.7)

i=1 v

We now provide a similar generalization bound to that of Swaminathan and Joachims
(2015a) (for the hard-clipped version) for the variance-regularized objective of this soft-clipped
estimator, justifying its use as a good optimization objective for minimizing the expected risk.

Writing x;(0) = vi¢ ( molailei)  pp ) , we recall the empirical variance with scIPS that is used

moq (ailzs)’
for regularization:

n n

S(a@) - xO)2,  with x0)=-3 @), @8

i=1 =1

1

CrscIPS _
v (6) = n—1

We assume that costs y; € [—1, 0] almost surely, as in (Swaminathan and Joachims, 2015a),
and make the additional assumption that the importance weights my(a;|x;)/mg,(a;|z;) are
upper bounded by a constant W almost surely for all = € II. This is satisfied, for instance, if
all policies have a given compact support (e.g., actions are constrained to belong to a given
interval) and 7y, puts mass everywhere in this support.

Proposition 2.4.1 (Generalization bound for L5<'*S(6)). Let © be a parameter space for the policy
class g and mp, be a logging policy. Let so = (xi, @i, Yi)i=1,...n the logging dataset for which
actions are sampled under mg,. Assume that the losses y € [—1,0] to be bounded a.s. and that the
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importance weights are bounded by W. Then, with probability at least 1 — 0, the IPS estimator with
soft clipping (2.7) on n samples from s satisfies

. Vaerrs (0) (Cn (6, M) +1og L) §(C,,(6, M) +1log
Vrel,  L(0)<Lsps(d) + O \/sc1ps( )(Cn(©, M) + 0g5)+ (Ch(©, M) +log %) |

n n

where S = (W, M)=0(log W), V5P (9) denotes the empirical variance of the cost estimates (1.16),
and Cy,(©, M) is a complexity measure of the policy class defined in (2.14).

We prove the Proposition 2.4.1 in Appendix 2.9. This generalization error bound motivates
the use of the empirical variance penalization as in Swaminathan and Joachims (2015a) and
shows that minimizing both the empirical risk and penalization of the soft clipped estimator
minimize the true risk of the policy.

Note that while the bound requires importance weights bounded by a constant W, the
bound only scales logarithmically with W when W >> M, compared to a linear dependence
for IPS. However we gain significant benefits in terms of optimization by having a smooth
objective.

Remark 2.4.1. If costs are in the range [—c, 0], the constant S can be replaced by ¢S, making the
bound homogeneous in the scale (indeed, the variance term is also scaled by c).

Remark 2.4.2. For a fixed parameter M, the scIPS estimator is less biased than the cIPS. Indeed, we can

bound the importance weights as min{ =2 o) My < ¢ (:9 alv)  pr ) < 70l pnd subsequently

00 (alz)” (alz) = o, (alz)
derive the bound on the different biases: ’

. molalz mo(al|z
Ez,a~7r90(-|:p) |:ym1n{ 0( ‘ ) 7M} _y:| ‘ > ‘Ex,awweo(-\x) [3/(( 9( | ) ’M) _y:| ‘ >0

7o, (alz) 7, (alz)

We emphasize however that the M parameter may have different optimal values for both methods, and
that the main motivation for such a clipping strategy is to provide a differentiable estimator which is
not the case for cIPS in areas where all point are clipped.

2.4.2. Proximal Point Algorithms

Non-convex CRM objectives have been optimized with classical gradient-based meth-
ods (Swaminathan and Joachims, 2015a,b) such as L-BFGS (Liu and Nocedal, 1989), or the
stochastic gradient descent approach (Joachims et al., 2018). Proximal point methods are
classical approaches originally designed for convex optimization (Rockafellar, 1976), which
were then found to be useful for nonconvex functions (Fukushima and Mine, 1981; Paquette
et al., 2018). In order to minimize a function £, the main idea is to approximately solve a
sequence of subproblems that are better conditioned than £, such that the sequence of iterates
converges towards a better stationary point of £. More precisely, for our class of parametric
policies, the proximal point method consists of computing a sequence

0" ~ axgmin (£(0) + 20— 0%V |3). 29)
9 2

where £(0) = L(#) + Q(f) and £ > 0 is a constant parameter. The regularization term Q2 often
penalizes the variance (Swaminathan and Joachims, 2015b), see Appendix 2.9. The role of the
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quadratic function in (2.9) is to make subproblems “less nonconvex” and for many machine
learning formulations, it is even possible to obtain convex sub-problems with large enough x
(see Paquette et al., 2018). In this chapter, we consider such a strategy (2.9) with a parameter «,
which we set to zero only for the last iteration.

Note that the effect of the proximal point algorithm differs from the proximal policy
optimization (PPO) strategy used in reinforcement learning (Schulman et al., 2017), even
though both approaches are related. PPO encourages a new stochastic policy to be close to
a previous one in Kullback-Leibler distance. Whereas the term used in PPO modifies the
objective function (and changes the set of stationary points), the proximal point algorithm
optimizes and finds a stationary point of the original objective £, even with fixed «.

The proximal point algorithm (PPA) introduces an additional computational cost as it
leads to solving multiple sub-problems instead of a single learning problem. In practice for
10 PPA iterations and with the L-BFGS solver, the computational overhead was about 3x in
comparison to L-BFGS without PPA. This overhead seems to be the price to pay to improve
the test reward and obtain better local optima, as we show in the experimental section 2.7.2.
Nevertheless, we would like to emphasize that computational time is often not critical for the
applications we consider, since optimization is performed offline.

2.5. Analysis of the Excess Risk

In the previous section, we have introduced a new counterfactual estimator LscIPS (2.7) of
the risk, which satisfies good optimization properties. Motivated by the generalization bound
in Proposition 2.4.1, for any policy class ITg, we associate 'S with the data-dependent
regularizer and define the following CRM estimator

GCRM .| 2scips VsPs(g)
o = argmin { L°°(6) + A — [ (2.10)
IS

where V/5IPS () is the empirical variance defined in (2.8). In this section, we provide theoretical
guarantees on the excess risk of 07, first for any general policy class ITg, then for our newly
introduced policy class TIS'T (Section 2.3.1). We now define what is the expected risk of a
model 6 € ©.

Definition 2.5.1 (Excess Risk). Given an optimal model 0* € argmingcg L(6), we write the
excess risk:
A(9) = L(0) — L(6%), (2.11)

We now provide the following high-probability upper-bound on the excess-risk.

Proposition 2.5.1 (Excess risk upper bound). Consider the notations and assumptions of Propo-
sition 2.4.1. Let §°BM be the solution of the CRM problem in Eq. (2.10). Then, with well chosen
parameters X and M, denoting the variance v? = Varz, [79+(alz) /7, (a|z)], with probability at
least 1 — 6, the excess risk is upper bounded as:

)
n n

A(GCRM) < \/(1 +v2) log(W + €)(Cr(©, M) 4 log 5) . log(W +¢)(Cu(©, M) + log 5)
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where < hides universal multiplicative constants. In particular, assuming also that mg, (x|a) ! are
uniformly bounded, the complexity of the class TI°*Y described in Section 2.3.1, applied with a bounded
kernel and © = {8 € R™, s.t ||B]| < C} x {c}, is of order

C (0% M) < O(mlogn),

where m is the size of the Nystrom dictionary and O(-) hides multiplicative constants independent of
n and m (see (2.28)).

The proof and the exact definition of C, (0, M) are provided in Appendix 2.9. Our
analysis relies on Theorem 15 of Maurer and Pontil (2009).

Comparison with related work The closest works are the ones of Chen et al. (2016) and
Kallus and Zhou (2018). Chen et al. (2016) analyze their method for Besov policy classes
B .(RY). When a — oo, they obtain a rate of order O(n~'/4). In this case, their setting is
parametric and their rate can be compared to our O(n~'/?) when m is finite. Kallus and
Zhou (2018) provide bounds with respect to general deterministic classes of functions, whose
complexity is measured by their Rademacher complexity. For parametric classes, their excess
risk for an estimated 6 is bounded (up to logs) by A(8) < h=2n~1/2 4 h='n=1/2 4 h2, where h
is a smoothing parameter. By optimizing the bandwidth h = O(n~'/8), their method also
yields a rate of order O(n~1/4).

Yet, a key difference between their setting and ours explains the gap between their rate
O(n~*) and O(n~1/2) of Proposition 2.5.1. Both consider deterministic policy classes, while
we only consider stochastic policies. Indeed, W and v* would be unbounded for deterministic
policies in Proposition 2.5.1. Therefore, to leverage deterministic policies, they both need to
smooth their predictions and suffer an additional bias that we do not incur. This is why there
is a difference between their rate and ours. For instance, for stochastic classes with variance
o2, Kallus and Zhou (2018) would satisfy Rz < o~ 2n~'/2 + ¢~ 'n~1/2 for h ~ o, which would
also entail a rate of order O(n~'/2). Interestingly, on the other hand, our approach would
satisfy a rate O(n~'/?) for deterministic policies, i.e., o> — 0 (see Appendix 2.9). This may be
explained by the fact that, contrary to Kallus and Zhou (2018); Chen et al. (2016) who only
use it in practice, we consider variance regularization and clipping in our analysis.

Another related work is (Demirer et al., 2019). They obtain an excess risk rate of O(n~1/?)
when learning deterministic continuous action policies with a policy space of finite and
small VC-dimension. Under a margin condition, as in bandit problems, their rate may be
improved to O(log(n)/n). However, their method significantly differs from ours and Chen
et al. (2016), Kallus and Zhou (2018) because it relies on a two steps plug-in procedure: first
estimate a nuisance function, then learn a policy using with a value function using this
estimate. Eventually, we note that Majzoubi et al. (2020) also enjoys a regret of O(n~'/2)
(up to logarithmic factors) but learns tree policies that are hardly comparable to ours. Both
approaches turn out to perform worse in all our benchmarks, as seen in Section. 2.7.2.

2.6. On Evaluation and Model Selection for Real World Data

The CRM framework helps finding solutions when online experiments are costly, dan-
gerous or raising ethical concerns. As such it needs a reliable validation and evaluation



2.6. On Evaluation and Model Selection for Real World Data 55

procedure before rolling-out any solution in the real world. In the continuous action domain,
previous work have mainly considered semi-simulated scenarios (Bertsimas and McCord,
2018; Kallus and Zhou, 2018), where contexts are taken from supervised datasets but rewards
are synthetically generated. To foster research on practical continuous policy optimization,
we release a new large-scale dataset called CoCoA, which to our knowledge is the first to
provide logged exploration data from a real-world system with continuous actions. Addi-
tionally, we introduce a benchmark protocol for reliably evaluating policies using off-policy
evaluation.

2.6.1. The CoCoADataset

The CoCoAdataset comes from the Criteo online advertising platform which ran an
experiment involving a randomized, continuous policy for real-time bidding. Data has
been properly anonymized so as to not disclose any private information. Each sample
represents a bidding opportunity for which a multi-dimensional context x in R? is observed
and a continuous action a in R* has been chosen according to a stochastic policy 7y, that
is logged along with the reward —y (meaning cost y) in R. The reward represents an
advertising objective such as sales or visits and is jointly caused by the action and context
(a,z). Particular care has been taken to guarantee that each sample (z;, a;, g, (ai|x;), y;)
is independent. The goal is to learn a contextual, continuous, stochastic policy my(a|x)
that generates more reward in expectation than 7, evaluated offline, while keeping some
exploration (stochastic part). As seen in Table 2.2, a typical feature of this dataset is the
high variance of the cost (V[Y]), motivating the scale of the dataset N to obtain precise
counterfactual estimates. The link to download the dataset is available in the code repository:
https://github.com/criteo-research/optimization-continuous-action-crm.

Table 2.2: CoCoAdataset summary statistics.
N d E[-Y] V[Y] V[4] P #0)
120.10° 3 1137 9455 .01 .07

2.6.2. Evaluation Protocol for Logged Data

In order to estimate the test performance of a policy on real-world systems, off-policy
evaluation is needed, as we only have access to logged exploration data. Yet, this involves in
practice a number of choices and difficulties, the most documented being i) potentially infinite
variance of IPS estimators (Bottou et al., 2013) and ii) propensity over-fitting (Swaminathan
and Joachims, 2015a,b). The former implies that it can be difficult to accurately assess the
performance of new policies due to large confidence intervals, while the latter may lead to
estimates that reflect large importance weights rather than rewards.

A proper evaluation protocol should therefore guard against such outcomes.

A first, structuring choice is the IPS estimator. While variants of IPS exist to reduce
variance, such as clipped IPS, we found Self-Normalized IPS (SNIPS, Swaminathan and
Joachims, 2015b; Lefortier et al., 2016; Owen, 2013; Nedelec et al., 2017) to be more effective in
practice. Indeed, it avoids the choice of a clipping threshold, generally reduces variance and
is equivariant with respect to translation of the reward.
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Algorithm 5: Evaluation Protocol

Input: 1 — 6: confidence of statistical test (def: 0.95); v: a max deviance ratio for
effective sample size (def: 0.01);
Output: counterfactual estimation of L(6) and decision to reject the null hypothesis
{Ho: L(0) = L(6o)}
1. Split observation dataset sq + s'in, gvalid gtest
2. Train 6 on s'™" and tune policy class and optimization hyper-parameters on s
(for e.g by internal cross-validation)
3. Estimate effective sample size neg on s
if % > v then
Estimate LSNPS (9) on st and test LSNS(9) < L(6)) on st with confidence 1 — 4.
If the test is valid, reject Hy, otherwise keep it.

else
| Keep Hy, consider the estimate to be invalid.

end

valid

valid

A second component is the use of importance sampling diagnostics to prevent propensity
over-fitting. Lefortier et al. (2016) propose to check if the empirical average of importance
weights deviates from 1. However, there is no precise guideline based on this quantity
to reject estimates. Instead, we recommend to use a diagnostic on the effective sample size
negg = (Yo w;)? /> 1, w?, which measures how many samples are actually usable to perform
estimation of the counterfactual estimate; we follow Owen (2013), who recommends to reject
the estimate when the relative effective sample size ne/n is less than 1%.

A third choice is a statistical decision procedure to check if L() < L(fp). In theory, any
statistical test against a null hypothesis Hy: L(§) > L(6y) with confidence level 1 — ¢ can be
used.

Finally, we present our protocol in Algorithm 5. Since we cannot evaluate such a protocol
on purely offline data, we performed an empirical evaluation on synthetic setups where
we could analytically design true positive (L(#) < L(fy)) and true negative policies. We
discuss in Section 2.7 the concrete parameters of Algorithm 5 and their influence on false
(non-)discovery rates in practice.

Model selection with the offline protocol In order to make realistic evaluations, hyper-
parameter selection is always conducted by estimating the loss of a new policy 7 in a
counterfactual manner. This requires using a validation set (or cross-validation) with propen-
sities obtained from the logging policy 7y, of the training set. Such estimates are less accurate
than online ones, which would require to gather new data obtained from 7, which we assume
is not feasible in real-world scenarios.

To solve this issue, we have chosen to discard unreliable estimates that do not pass
the effective sample size test from Algorithm 5. When doing cross-validation, it implies
discarding folds that do not pass the test, and averaging estimates computed on the remaining
folds. Although this induces a bias in the cross-validation procedure, we have found it to
significantly reduce the variance and dramatically improve the quality of model selection
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when the number of samples is small, especially for the Warfarin dataset in Section 2.7.

2.7. Experimental Setup and Evaluation

We now provide an empirical evaluation of the various aspects of CRM addressed in
this chapter such as policy class modelling (CLP), estimation with soft-clipping, optimization
with PPA, offline model selection and evaluation. We conduct such a study on synthetic and
semi-synthetic datasets and on the real-world CoCoAdataset.

2.7.1. Experimental Validation of the Protocol

In this section, we study the ability of Algorithm 5 to accurately decide if a candidate
policy  is better than a reference logging policy 7y, (condition L(#) < L(6y)) on synthetic
data. Here we simulate logging policy 7y, being a lognormal distribution of known mean
and variance, and an optimal policy mg- being a Gaussian distribution. We generate a logged
dataset by sampling actions a ~ 7y, and trying to evaluate policies 7y with costs observed
under the logging policy. We compare the costs predicted using IPS and SNIPS offline metrics
to the online metric as the setup is synthetic, it is then easy to check that indeed they are
better or worse than my,. We compare the IPS and SNIPS estimates along with their level of
confidences and the influence of the effective sample size diagnostic. Offline evaluations of
policies 7y illustrated in Figure 2.3 are estimated from logged data (z;, a;, yi, 74, )i=1..» Where
a; ~ mg,(+-|x;) and where the policy risk would be optimal under the oracle policy 7y-.

08 Logging policy g
0.7 Optimal policy r*

Evaluated policy 1
0.6

0.5

PDF

04
0.3
0.2
0.1

0.0 - T -

Actions sampled

Figure 2.3: Illustration of policies: logging policy mg,, optimal 7y~ and example policy 7g.

While the goal of counterfactual learning is to find a policy 7y which is as close a possible
to the optimal policy my+, based on samples drawn from a logging policy 7y, it is in practice
hard to assess the statistical significance of a policy that is too "far" from the logging policy.
Offline importance sampling estimates are indeed limited when the distribution mismatch
between the evaluated policy and the logging policy (in terms of KL divergence D, (g, ||7¢))
is large. Therefore we create a setup where we evaluate the quality of offline estimates for
policies (i) "close" to the logging policy (meaning the KL divergence D (g, ||7g) is low)
and (ii) "close" to the oracle optimal policy (meaning the KL divergence D, (mg-||7p) is low).
In this experiment, we focus on evaluating the ability of the offline protocol to correctly
assess whether L(#) < L(6p) or not by comparing to online truth estimates. Specifically, for
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both setups (i) and (ii), we compare the number of False Positives (FP) and False Negatives
(FN) of the two offline protocols for N' = 2000 initializations, by adding Gaussian noise to
the parameters of the closed form policies. False negatives are generated when the offline
protocol keeps Hy : L(0) > L(6y) while the online evaluation reveals that L(0) < L(6p), while
false positives are generated in the opposite case when the protocol rejects Hy while it is true.
We also show histograms of the differences between online and offline boundary decisions
for (L(6) < L(fy)), using bootstrapped distribution of SNIPS estimates to build confidence
intervals.

Validation of the use of SNIPS estimates for the offline protocol. To assess the performance
of our evaluation protocol, we first compare the use of IPS and SNIPS estimates for the offline
evaluation protocol and discard solutions with low importance sampling diagnostics =< < v
with the recommended value v = 0.01 from Owen (2013). In Table 2.3, we provide an analysis
of false positives and false negatives in both setups. We first observe that for setup (i) the
SNIPS estimates has both fewer false positives and false negatives. Note that is setup is
probably more realistic for real-world applications where we want to ensure incremental
gains over the logging policy. In setup (ii) where importance sampling is more likely to fail
when the evaluated policy is too "far" from the logging policy, we observe that the SNIPS
estimate has a drastically lower number of false negatives than the IPS estimate, though it
slightly has more false positives, thus illustrating how conservative this estimator is.

Table 2.3: Comparison of false positives and false negatives: Perturbation to the logging policy g,
(setup (i)) and perturbation to the optimal policy (setup (ii)). The SNIPS estimator yields less FN and
FP on setup (i), while being more effective on setup (ii) as well by inducing a drastically lower FP rate

than IPS and a low FN rate. The effective sample size threshold is fixed at v = 0.01

Setup (i) Setup (ii)
Offline Protocol 1PS SNIPS IPS SNIPS
7o = mp, | Keep Hy | 71g = my, | Keep Hy | 71g = g, | Keep Hy | ™ = mp, | Keep Hy
Trath” o >= o, 1282 24 1296 10 1565 67 1631 1
Keep Hj 19 675 0 694 0 368 6 362

We then provide in Fig. 2.4 histograms of the differences of the upper boundary decisions
between online estimates and bootstrapped offline estimates over all samples for both setups
(i, left) and (ii, right). Both histograms illustrate how the IPS estimate underestimates the
value of the reward with regard to the online estimate, unlike the SNIPS estimates. In the
setup (ii) in particular, the IPS estimate underestimates severely the reward, which may
explain why IPS has lower number of false positives when the evaluated policy is far from the
logging policy. However in both setups, IPS has a higher number of false negatives. We also
observed that our SNIPS estimates were highly correlated to the true (online) reward (average
correlation £ = .968, 30% higher than IPS, see plots in Appendix 2.9) for the synthetic setups
presented in section 2.7.2, which therefore confirms our findings.

Influence of the effective sample size criteria in the evaluation protocol In this setup we
vary the effective sample size (ESS) threshold and show in Fig. 2.5 how it influences the
performance of the offline evaluation protocol for the two previously discussed setups where
we consider evaluations of (i) perturbations of the logging policy (left) and (ii) perturbations
of the optimal policy (right) in our synthetic setup. We compute precision, recall and F1 scores
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Figure 2.4: Histogram of differences between online reward and offline lower confidence bound.
Perturbation to the logging policy 7y, (left), perturbation to the optimal policy 7* (right). Effective
sample size threshold v = 0.01

for each threshold values between 0 and 1. One can see that for low threshold values where
no policies are filtered, precision, recall and F1 scores remain unchanged. Once the ESS raises
above a certain threshold, undesirable policies start being filtered but more false negatives are
created when the ESS is too high. Overall, ESS criterion is relevant for both setups. However,
we observe that on simple synthetic setups the effective sample size criterion v = neg/n is
seldom necessary for policies close to the logging policy (7 = my,). Conversely, for policies
which are not close to the logging policy the standard statistical significance testing at 1 — §
level was by itself not enough to guarantee a low false discovery rate (FDR) which justified
the use of v. Adjusting the effective sample size can therefore influence the performance of
the protocol (see Appendix 2.9 for further illustrations of importance sampling diagnostics in
what-if simulations).
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Figure 2.5: Precision, recall and F1 score varying with the ESS threshold on synthetic setups (i) and
(ii). Setup (i) perturbation of the logging policy (left) and setup (ii) perturbation to the optimal policy
(right). The ESS threshold can maximize the F1 score.

2.7.2. Experimental Evaluation of the Continuous Modelling and the Optimization
Perspectives

In this section we introduce our empirical settings for evaluation and present our
proposed CLP policy parametrization, and the influence of optimization in counterfactural
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risk minimization problems.

Experimental Setup
We present the synthetic potential prediction setup, a semi-synthetic setup as well as our
real-world setup.

Synthetic potential prediction. We introduce simple synthetic environments with the
following generative process: an unobserved random group index g in G is drawn, which
influences the drawing of a context x and of an unobserved “potential” p in R, according to a
joint conditional distribution Py p|g. Intuitively, the potential p may be compared to users
a priori responsiveness to a treatment. The observed reward —y is then a function of the
context z, action a, and potential p. The causal graph corresponding to this process is given
in Figure 2.6.
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Figure 2.6: Causal Graph of the synthetic setting. A denotes action, X context, G unobserved group
label, Y outcome and P unobserved potentials. Unobserved elements are dotted.

Then, we generate three datasets (“noisymoons, noisycircles, and anisotropic”, abbre-
viated respect. “moons, circles, and GMM” in Table 2.4 and illustrated in Figure 2.7, with
two-dimensional contexts on 2 or 3 groups and different choices of Py p|g-
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Figure 2.7: Contexts (points in R?), and potentials represented by a color map for the synthetic
datasets. Learned policies should vary with the context to adapt to the underlying potentials.

The goal is then to find a model ¢ associated to a policy 7y (a|z) that maximizes reward by
adapting to an unobserved potential. For our experiments, potentials are normally distributed
conditionally on the group index, p|g ~ N (ug, 0%). As many real-world applications feature
a reward function that increases first with the action up to a peak and finally drops, we have
chosen a piecewise linear function peaked at a = p (see Appendix 2.9, Figure 2.18), that
mimics reward over the CoCoAdataset presented in Section 2.6. In bidding applications, a
potential may represent an unknown true value for an advertisement, and the reward is then
maximized when the bid (action) matches this value. In medicine, increasing drug dosage
may increase treatment effectiveness but if dosage exceeds a threshold, secondary effects may
appear and eclipse benefits (Barnes and Eltherington, 1966).

VS.
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Semi-synthetic setting with medical data. We follow the setup of Kallus and Zhou (2018)
using a dataset on dosage of the Warfarin blood thinner drug (War, 2009). The dataset consists
of covariates about patients along with a dosage treatment prescription by a medical expert,
which is a scalar value and thus makes the setting useful for continuous action modelling.
While the dataset is supervised, we simulate a contextual bandit environment by using a
hand-crafted reward function that is maximal for actions a that are within 10% of the expert’s
therapeutic drug dosage, following Kallus and Zhou (2018).

Specifically, the semi-synthetic cost inputs prescriptions from medical experts to ob-
tain y(a,z) = max(|a — t*| — 0.1¢*,0), so as to mimic the expert prediction. The logging
policy 7y, samples actions a ~ 7y, contextually to a patient’s body mass index (BMI) score

ZeMI = Wand can be analytically written with i.i.d noise e ~ N (0, 1), moments of the

therapeutic dose distribution p, o such that a = 1 + oV Zgyr + oi/T— 02 (6 = 0.5
in the setup of Kallus and Zhou (2018)). The logging probability density function thus is a
a—pi+oiV0Zpn

continuous density of a standard normal distribution over the quantity — =
V1

Evaluation methodology For synthetic datasets, we generate training, validation, and
test sets of size 10000 each. For the CoCoA dataset, we consider a 50%-25%-25% training-
validation-test sets. We then run each method with 5 different random intializations such that
the initial policy is close to the logging policy. Hyperparameters are selected on a validation
set with logged bandit feedback as explained in Algorithm 5. We use an offline SNIPS estimate
of the obtained policies, while discarding solutions deemed unsafe with the importance
sampling diagnostic. On the semi-synthetic Warfarin dataset we used a cross-validation
procedure to improve model selection due to the low dataset size. For estimating the final test
performance and confidence intervals on synthetic and on semi-synthetic datasets, we use an
online estimate by leveraging the known reward function and taking a Monte Carlo average
with 100 action samples per context: this accounts for the randomness of the policy itself over
given fixed samples. For offline estimates we leverage the randomness across samples to build
confidence intervals: we use a 100-fold bootstrap and take percentiles of the distribution of
rewards. For the CoCoA dataset, we report SNIPS estimates for the test metrics.

Empirical Evaluation
We now evaluate our proposed CLP policy parametrization and the influence of opti-
mization in counterfactural risk minimization problems.

Continuous action space requires more than naive discretization. InFigure 2.8, we compare
our continuous parametrization to discretization strategies that bucketize the action space
and consider stochastic discrete-action policies on the resulting buckets, using IPS and SDM.
We add a minimal amount of noise to the deterministic DM in order to pass the neg/n > v
validation criterion, and experimented different hyperparameters and models which were
selected with the offline evaluation procedure. On all synthetic datasets, the CLP continuous
modeling associated to the IPS perform significantly better than discrete approaches (see also
Appendix 2.9), across all choices considered for the number of anchor points/buckets. To
achieve a reasonable performance, naive discretization strategies require a much finer grid,
and are thus also more computationally costly. The plots also show that our (stochastic) direct
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method strategy, where we use the same parametrization is overall outperformed by the CLP
parametrization combined to IPS, highlighting a benefit of using counterfactual methods
compared to a direct fit to observed rewards.

Test reward - dataset noisymoons
0.8
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Figure 2.8: Continuous vs discretization strategies. Test rewards on NoisyMoons dataset with varying
numbers of anchor points for our continuous parametrization for IPS and SDM, versus naive
discretization with softmax policies. Note that few anchor points are sufficient to achieve good results
on this dataset; this is not the case for more complicated ones (e.g.,, Warfarin requires at least 15
anchor points).

Counterfactual cost predictor (CLP) provides a competitive parameterization for continu-
ous-action policy learning. We compare our CLP modelling approach to other parameter-
ized modelings (constant, linear and non-linear described in Section 2.3.1) on our synthetic
and semi-synthetic setups described in Section 2.7.2 as well as the CoCoAdataset presented
in Section 2.6.1.

In Table 2.4, we show a comparison of test rewards for different contextual modellings
(associated to different parametric policy classes). We show the performance and the associated
variance of the best policy obtained with the offline model selection procedure (Section 2.6.2).
Specifically, we consider a grid of hyperparameters and optimized the associated CRM
problem with the PPA algorithm (Section 2.4.2). We report here the performances of scIPS
and SNIPS estimators. For the Warfarin dataset, following Kallus and Zhou (2018), we only
consider the linear context parametrization baseline, since the dataset has categorical features
and higher-dimensional contexts. Overall, we find our CLP parameterization to improve over
all other contextual modellings, which highlights the effectiveness of the cost predictor at
exploiting the continuous action structure. As all the methods here have the same sample
efficiency, the superior performance of our method can be imputed to the richer policy class
we use and which better models the dependency of contexts and actions that may reduce
the approximation error. We can also draw another conclusion: unlike synthetic setups, it is
harder to obtain policies that beat the logging policy with large statistical significance on the
CoCoAdataset where the logging policy already makes a satisfactory baseline for real-world
deployment. Only CLP passes the significance test on this dataset. This corroborates the
need for offline evaluation procedures, which were absent from previous works.
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Table 2.4: Test rewards (higher the better) for several contextual modellings (see main text for details).

Noisycircles NoisyMoons Anisotropic Warfarin CoCoA

Logging policy g, 0.5301 0.5301 0.4533 -13.377 11.34
Constant | 0.6115 £ 0.0000 | 0.6116 4 0.0000 | 0.6026 4+ 0.0000 | —8.964 +0.001 | 11.36 +0.13
scIPS Linear | 0.611340.0001 | 0.7326 +0.0001 | 0.7638 £ 0.0005 | —12.857 +0.002 | 11.35 4 0.02
Poly 0.6959 + 0.0001 | 0.7281 4+ 0.0001 | 0.7448 £ 0.0008 - 10.36 £0.11
CLP 0.7674 + 0.0008 | 0.7805 + 0.0004 | 0.7703 +0.0002 | -8.7204+0.001 | 11.44" £0.10
Constant | 0.6115+0.0001 | 0.6115+0.0001 | 0.5930 £0.0001 | —9.511+£0.001 | 11.32£0.13
SNIPS Linear | 0.611540.0001 | 0.7360 % 0.0001 | 0.7103 £ 0.0003 | —10.583 4 0.005 | 10.34 +0.12
Poly 0.6969 + 0.0001 | 0.7370 4 0.0001 | 0.5801 = 0.0002 - 11.13 £0.08
CLP 0.6972 + 0.0001 | 0.74091 + 0.0004 | 0.7899 &+ 0.0002 | -9.161+0.001 | 11.48"* +0.14

Soft-clipping improves performance of the counterfactual policy learning. Figure 2.9
shows the improvements in test reward of our optimization-driven strategies for the soft-
clipping estimator for the synthetic datasets (see also Appendix 2.9). The points correspond
to different choices of the clipping parameter M/, models and initialization, with the rest of
the hyper-parameters optimized on the validation set using the offline evaluation protocol.
This plot also shows that soft clipping provides benefits over hard clipping, perhaps thanks to
a more favorable optimization landscape. Overall, these figures confirm that the optimization
perspective is important when considering CRM problems.

Anisotropic Dataset

NoisyMoons Dataset NoisyCircles Dataset

Soft clipping

04 08

650 0.675 0700 0725 0.750 0 064 066 05 06
Classic clipping Classic clipping Classic clipping

Figure 2.9: Influence of soft-clipping. Relative improvements in the test performance for soft- vs
hard-clipping on synthetic datasets. The points correspond to different choices of the clipping
parameter, models and initialization.

Soft-clipping improves or competes with other importance weighting transformation
strategies. We also experiment on the synthetic datasets comparing our soft clipping
approach with other methods which focus is to improve upon the classic clipping strategy for
the same optimization purposes. Notably, we consider the (Metelli et al., 2021) method which
we adapt to our continuous modeling strategy to enable fair comparison. Moreover, we also
added the SWITCH (Wang et al., 2017) as well as the CAB (Su et al., 2019) methods. However,
both methods use a direct method term in their estimation, which is difficult to adapt for
stochastic policies with continuous actions, as explained in our discussions on doubly robust
estimators (see Appendix 2.9). Therefore, we considered discretized strategies and compared
them with soft clipped estimator applied to discretized policies. For the discretized strategies,
we have used the same anchoring strategies as described before, namely using empirical
quantiles of the logged actions (for 1D actions), and have optimized the number of anchor
points along with the other hyperparameters using the offline evaluation protocol. We
see overall in Table 2.5 that our soft-clipping strategy provides satisfactory performance or
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improves upon all weight transforming strategies on the synthetic datasets.

Noisymoons

Noisycircles

Anisotropic

Logging policy 7y,

0.5301

0.5301

0.4533

(Wang et al., 2017) (discrete)

0.5786 = 0.0025

0.5520 £ 0.0026

0.5741 £ 0.0024

(Su et al., 2019) (discrete)

0.5761 4+ 0.0024

0.5534 £+ 0.0025

0.5705 £ 0.0021

scIPS (discrete)

0.5888 + 0.0022

0.5637 £ 0.0024

0.5941 + 0.0019

Metelli et al. (2021) (CLP)

0.7244 £ 0.0005

0.7189 £ 0.0004

0.7739 + 0.0008

scIPS (CLP)

0.7674 = 0.0008

0.7805 £ 0.0004

0.7703 £ 0.0002

Table 2.5: Comparison of importance weight transformations on the synthetic datasets, for discretized
strategies and for continuous action policies.

Proximal point algorithm (PPA) influences optimization of non-convex CRM objective
functions and policy learning performance. We illustrate in Figure 2.10 the improvements
in test reward and in training objective of our optimization-driven strategies with the use
of the proximal point algorithm (see also Appendix 2.9). Here, each point compares the
test metric for fixed models as well as initialization seeds, while optimizing the remaining
hyperparameters on the validation set with the offline evaluation protocol. Figure 2.10 (left)
illustrates the benefits of the proximal point method when optimizing the (non-convex) CRM
objective in a wide range of hyperparameter configurations, while Figure 2.10 (center) shows
that in many cases this improves the test reward as well. In our experiments, we have chosen
L-BFGS because it was performing best among the solvers we tried (nonlinear conjugate
gradient (CG) and Newton) and used 10 PPA iterations. For further information, Figure 2.10
(right) presents a comparison between CG and L-BFGS for different parameters x and number
of iterations. As for computational time, for 10 PPA iterations, the computational overhead
was about 3x in comparison to L-BFGS without PPA. This overhead seems to be the price
to pay to improve the test reward and obtain better local optima. Overall, these figures
confirm that the proximal point algorithm improves performance in CRM optimization
problems.

The scIPS estimator along with CLP parametrization and PPA optimization improves upon
previous state of the art methods. We also provide a baseline comparison to stochastic
direct methods, to Chen et al. (2016) using their surrogate loss formulation for continous
actions, to Kallus and Zhou (2018) who propose a counterfactual method using kernel density
estimation. Their approach is based on an automatic kernel bandwidth selection procedure
which did not perform well on our datasets except Warfarin; instead, we select the best
bandwidth on a grid through cross-validation and selecting it through our offline protocol.
We also investigate their self-normalized (SN) variant, which is presented in their paper but
not used in their experiments; it turned out to have lower performances in practice. Moreover,
we experimented using the generic doubly robust method from Demirer et al. (2019) but
could not reach satisfactory results using the parameters and feature maps that were used
in their empirical section and with the specific closed form estimators for their applications.
Nevertheless, by adapting their method with more elaborated models and feature maps, we
managed to obtain performances beating the logging policy; these modifications would make
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Figure 2.10: Influence of proximal point optimization. Relative improvements in the training objective
w and w/o using the proximal point method (left), relative improvements in the test performance w
and w/o using the proximal point method (right).

promising directions for future research venues. We eventually also compare to Majzoubi et al.
(2020) who propose an offline variant of their contextual bandits algorithm for continuous
actions. We used the code of the authors and obtained poor performances with their offline
variant but achieved satisfactory performances with their online algorithm, that we provide
as a comparison but which does not compare to all previous offline methods. We do not
provide results on their method for the CoCoAdataset as we could not access the logged
propensities to use the offline evaluation protocol. For the SDM on CoCoA, we did not manage
to simultaneously pass the ESS diagnostic and achieve statistical significance, probably due
to the noise and variance of the dataset.

Noisycircles NoisyMoons Anisotropic Warfarin CoCoA

Stochastic Direct Method | 0.6205 + 0.0004 | 0.7225 £ 0.0006 | 0.6383 £ 0.0003 | —9.714 £ 0.013 -
Chen et al. (2016) 0.608 £0.0002 [ 0.645+0.0003 [ 0.754 +0.0002 | —9.407 +0.004 | 11.03+0.15
Kallus and Zhou (2018) | 0.612+0.0001 | 0.734+0.0001 | 0.785 = 0.0002 —10.19* 11.38 +0.07

SN-Kallus and Zhou (2018) | 0.609 4 0.0001 | 0.595£0.0001 | 0.652+0.0001 | —12.569 +0.001 | 9.14 £0.94

Majzoubi et al. (2020) offline | 0.589 £ 0.0011 [ 0.592 +0.0011 | 0.569 4 0.0012 | —12.236 & 0.2548 -
Ours 0.767 £ 0.0008 | 0.781+0.0004 | 0.770 +-0.0002 | -8.720 +-0.001 | 11.44" +0.10

Majzoubi et al. (2020) online | 0.713+0.0041 | 0.710+£0.0026 | 0.771+0.011 | —11.672+0.221 | -

Table 2.6: Test rewards (higher the better) for previous methods for the logged bandit problem with
continuous actions

2.8. Discussions

In this chapter, we addressed the problem of counterfactual learning of stochastic policies
on real data with continuous actions. This raises several challenges about different steps of
the CRM pipeline such as (i) modelization, (ii) optimization, and (iii) evaluation. First, we
propose a new parametrization based on a joint kernel embedding of contexts and actions,
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showing competitive performance. Second, we underline the importance of optimization in
CRM formulations with soft-clipping and proximal point methods. We provide statistical
guarantees of our estimator and the policy class we introduced. Third, we propose an offline
evaluation protocol and a new large-scale dataset, which, to the best of our knowledge, is
the first with real-world logged propensities and continuous actions. For future research
directions, we would like to discuss the doubly robust estimator (which achieves the best
results in the discrete action case) with the CLP parametrization of stochastic policies with
continuous actions, as well as further optimization perspectives and the offline model
selection.

Doubly-robust estimators for continuous action policies While Demirer et al. (2019)
provide a doubly robust (DR) estimator on continuous action using a semi-parametric model
of the policy value function, we did not propose a doubly-robust estimator along with our
CLP modelling. Indeed, their policy learning is performed in two stages (i) estimate a
doubly robust parameter 67 (z, a,r) in the semi-parametric model of the value function
Elyla,z] = V(a,z) = (0«(z),¢(a,x)) and (ii) learn a policy in the empirical Monte Carlo
estimate of the policy value by solving

min {VDR(W) = l Z(éDR(xi, a;,ri), o(m(x;), a:z)>} .

ell n
T i—1

The doubly robust estimation is performed with respect to the first parameter learned in (i)
for the value function, while we follow the CRM setting Swaminathan and Joachims (2015a)
and directly derive estimators of the policy value (risk) itself, which would correspond to the
phase (ii). To derive an estimate a DR estimator of such policy values, we tried extending the
standard DR approach for discrete actions from Dudik et al. (2011) to continuous actions by
using our anchors points, but these worked poorly in practice, as detailed in Appendix 2.9.
Actually, a proper DR method for estimating the expectation of a policy risk likely requires
new techniques for dealing with integration over the training policy in the direct method
term, which is non-trivial and goes beyond the scope of this work. We hope to be able to do
this in the future.

On further optimization perspectives and offline model selection As mentioned in Section
2.4, our use of the proximal point algorithm differs from approaches that enhance policies to
stay close to the logging policies which modify the objective function as in (Schulman et al.,
2017) in reinforcement learning. Another avenue for future work would be to investigate
distributionnally robust methods that do such modifications of the objective function or add
constraints on the distribution being optimized. The policy thereof obtained would thus be
closer to the logging policy in the CRM context. Moreover, as we showed in Section 2.6.2 with
importance sampling estimates and diagnostics, the offline decision becomes less statistically
significant as the evaluated policy is far from the logging policy. Investigating how the
distributionally robust optimization would yield better CRM solutions with regards to the
offline evaluation protocol would make an interesting future direction of research.
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2.9. Appendices

This appendix is organized as follows. Appendix 2.9 provides motivation for counter-
factual methods as opposed to direct approaches. Appendix 2.9 motivates the need for
clipping strategies on real datasets. Appendix 2.9 motivates the offline evaluation protocol
with experiments justifying the need for appropriate diagnostics and statistical testing for
importance sampling. Appendix 2.9 provides the omitted proofs and details of Section2.4
and 2.5. Then, Appendix 2.9 is devoted to experimental details that were omitted from
the main chapter for space limitation reasons, and which are important for reproducing
our results (see also the code provided with the submission). In Appendix 2.9, we present
additional experimental results to those in the main chapter.

2.10. Motivation for Counterfactual Methods

Direct methods (DM) learns a reward /cost predictor over the joint context-action space
X x Abut ignore the potential mismatch between the evaluated policy and the logging policy
and my,. When the logged data does not cover the joint context-action space X' x A sufficiently,
direct methods rather fit the region where the data has been sampled and may therefore
lead to overfitting (Bottou et al., 2013; Dudik et al., 2011; Swaminathan and Joachims, 2015b).
Counterfactual methods instead learn probability distributions directly with a re-weighting
procedure which allow them to fit the context-action space even with fewer samples.

In this toy setting we aim to illustrate this phenomenon for the DM and the counterfactual
method. We create a synthetic "Chess’ environment of uni-dimensional contexts and actions
where the logging policy purposely covers only a small area of the action space, as illustrated
in Fig. 2.11. The reward function is either 0, 0.5 or 1 in some areas which follow a chess
pattern. We use a lognormal logging policy which is peaked in low action values but still has
a common support with the policies we optimize using the CRM or the DM.

Chessboard

1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0 0.0
0.0 0.2 0.4 0.6 0.8

Context Actions

Action
Logging PDF

Figure 2.11: 'Chess’ toy synthetic setting (left) and lognormal logging policy (right).

Having set that environment and the logging policy, we illustrate in Fig. 2.12 the logging
dataset, the actions sampled by the policy learned by a Direct Method and eventually the
actions sampled by a counterfactual IPS estimator. To assess a fair comparison between the
two methods, we use the same continuous action modelling with the same parameters (CLP
parametrization with m = 5 anchor points).

This toy example illustrate the mentioned phenomenon in how the counterfactual
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Figure 2.12: Logged data (left), action sampled by direct method (middle) and action sampled by
counterfactual policy.

estimator learns a re-balanced distribution that maps the contexts to the actions generating
higher rewards than the DM. The latter only learns a mapping that is close to the actions
sampled by the logging and only covers a smaller set of actions.

2.11. Motivation for Clipped Estimators

In this section we provide a motivation example for clipping strategies in counterfactual
systems in a toy example.

In Figure 2.13 we provide an example of large variance and loss overfitting problem.

We recall the data generation: a hidden group label g in G is drawn, and influences the
associated context distribution = and of an unobserved potential p in R, according to a joint
conditional distribution Py p| The observed reward r is then a function of the context z,
action a, and potential p. Here, we design one outlier (big red dark dot on Figure 2.13 left).
This point has a noisy reward r, higher than neighbors, and a potential p high as its neighbors
have a low potential. We artificially added a noise in the reward function f that can be written
as:

r= f(a,z,p)+e, e~N(0,1)

As explained in Section 2.7.2, the reward function is a linear function, with its maximum
localized at the point z = p(x), i.e. at the potential sampled. The observability of the potential
p is only through this reward function f. Hereafter, we compare the optimal policy computed,
using different types of estimators.

The task is to predict the high potentials (red circles) and low potentials (blue circles) in
the ground truth data (left). Unfortunately, a rare event sample with high potential is put in
the low potential cluster (big dark red dot). The action taken by the logging policy is low
while the reward is high: this sample is an outlier because it has a high reward while being a
high potential that has been predicted with a low action. The resulting unclipped estimator
is biased and overfits this high reward /low propensity sample. The rewards of the points
around this outlier are low as the diameter of the points in the middle figure show. Inversely,
clipped estimator with soft-clipping succeeds to learn the potential distributions, does not
overfit the outlier, and has larger rewards than the clipping policies as the diameter of the
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Figure 2.13: High variance and loss overfitting. Unlikely (7 ; ~ 0) sample (z1,z2) = (0.6,0.) with
high reward r (left) results in larger variance and loss overfitting for the unclipped estimator (middle)
unlike clipped estimator (right).

points show.
2.12. Motivation for Offline Evaluation Protocol

In this part we demonstrate the offline/online correlation of the estimator we use for real-
world systems and for validation of our methods even in synthetic and semi-synthetic setups.
We provide further explanations of the necessity of importance sampling diagnostics and we
perform experiments to empirically assess the rate of false discoveries of our protocol.

2.12.1. Correlation of Self-Normalized Importance Sampling with Online Re-
wards

We show in Figures 2.14,2.16,2.15 comparisons of IPS and SNIPS against an on-policy
estimate of the reward for policies obtained from our experiments for linear and non-linear
contextual modellings on the synthetic datasets, where policies can be directly evaluated
online. Each point represents an experiment for a model and a hyperparameter combination.
We measure the R? score to assess the quality of the estimation, and find that the SNIPS
estimator is indeed more robust and gives a better fit to the on-policy estimate. Note also that
overall the IPS estimates illustrate severe variance compared to the SNIPS estimate. While
SNIPS indeed reduces the variance of the estimate, the bias it introduces does not deteriorate
too much its (positive) correlation with the online evaluation.

These figures further justify the choice of the self-normalized estimator SNIPS (Swami-
nathan and Joachims, 2015b) for offline evaluation and validation to estimate the reward on
held-out logged bandit data. While the figures show here that the SNIPS estimator achieves a
better bias-variance tradeoff, we note also that the SNIPS estimator has low variance for both
low and high reward policies. It is indeed more robust to the reward distribution thanks to
its equivariance property (Swaminathan and Joachims, 2015b) to additive shifts and does not
require hyperparameter tuning.

2.12.2. Importance Sampling Diagnostics in What-If simulations

Importance sampling estimators rely on weighted observations to address the distribution
mismatch for offline evaluation, which may cause large variance of the estimator. Notably,
when the evaluated policy differs too much from the logging policy, many importance weights
are large and the estimator is inaccurate. We provide here a motivating example to illustrate
the effect of importance sampling diagnostics in a simple scenario.
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Figure 2.14: Correlation between offline and online estimates on Anisotropic synthetic data. Linear
(left) and non-linear (right) contextual modellings. Ideal fit would be y = =.
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Figure 2.15: Correlation between offline and online estimates on NoisyCircles synthetic data. Linear
(left) and non-linear (right) contextual modellings. Ideal fit would be y = z.

When evaluating with SNIPS, we consider an “effective sample size” quantity given in
terms of the importance weights w; = mg(a;|z;) /T, (ailz;) by ne = (3rq wi)?/ >0, w?.
When this quantity is much smaller than the sample size n, this indicates that only few of
the examples contribute to the estimate, so that the obtained value is likely a poor estimate.
Apart from that, we note also that IPS weights have an expectation of 1 when summed
over the logging policy distribution (that is E (@,0)~mg, [1o(alz)/m, (a|z)] = 1.). Therefore,
another sanity check, which is valid for any estimator, is to look for the empirical mean
1/n " mo(ailxi)/mo,; and compare its deviation to 1. In the example below, we illustrate
three diagnostics: (i) the one based on effective sample size described in Section 2.6; (ii)
confidence intervals, and (iii) empirical mean of IPS weights. The three of them coincide and
allow us to remove test estimates when the diagnostics fail.

Example 2.12.1. What-if simulation: For x in R?, let max(xr) = maxi<;<q;;, we wish to
estimate E(max(X)) for X i.id ~ m, = N (u, o) where samples are drawn from a logging policy

= log N' (Mo, 00) (d =3, (No,00) = (1,1/2)) and analyze parameters p around the mode of the
logging policy po with fixed variance o = 1/2. In this parametrized policy example, we see in Fig.

2.17 that n./n < 1, confidence interval range increases and y ;- %

1 of the policy being evaluated is far away from the logging policy mode p.

# 1 when the parameter

Note that in this example, the parameterized distribution that is learned (multivariate
Gaussian) is not the same as the parameterized distribution of the logging policy (multivariate
Lognormal). The skewness of the logging policy may explain the asymmetry of the plots.
This points out another practical problem: even though different parametrization of policies
is theoretically possible, the probability density masses overlap is in practice what is most
important to ensure successful importance sampling. This observation is of utmost interest
for real-life applications where the initialization of a policy to be learned needs to be "close"
to the logging policy; otherwise importance sampling may fail from the very first iteration of
an optimization in learning problems.
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Figure 2.16: Correlation between offline and online estimates on NoisyMoons synthetic data. Linear
(left) and non-linear (right) contextual modellings. Ideal fit would be y = =.
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Figure 2.17: Importance sampling diagnostics. Ideal importance sampling: i) effective sample n./n
close to 1, ii) low confidence intervals (C.Ls) for 7, iii) empirical mean % >_; w; close to 1. Note that
when g differs too much from 1, importance sampling fails.

2.13. Analysis of the Excess Risk

In this appendix, we provide details and proofs on the excess risk guarantees that are
given in Section 2.4 and 2.5.

We start by recalling the definitions of an ¢ covering and the one of our soft-clipping
operator ¢ provided in Eq. (2.6).

Definition 2.13.1 (Epsilon Covering and Metric Entropy). An e-covering is the smallest cardinality
|Ag| of a subset Ay C A such that A is contained in the union of balls of radius e centered in points in
Ay, in the metric induced by a norm || - ||. The cardinality of the smallest e-covering is denoted by
H(e, A, || - ||) and its logarithm is called the metric entropy.

For any threshold parameter M > 0 and importance weight w > 0, the soft-clip operator
¢ is defined by
w fw<M
(w, M) = .
a(M)log (w+ a(M) — M) otherwise
where a(M) is such that a(M) log(a(M)) = M.

2.13.1. Omitted Proofs

We start by defining our complexity measure C,,(©, M), which will be upper-bounded
by the metric entropy in sup-norm at level € = 1/n of the following function set,

mo(alz)

T, (alz)

Fo.m = {fg:(w,a,y)»—>1+g§< ,M> forsome&e@)} ) (2.12)
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where S=((W, M). The function set corresponds to clipped prediction errors of policies =
normalized into [0, 1]. More precisely, to define rigorously C,,(©, M), we denote for any n > 1
and € > 0, the complexity of a class F by

7-[00(87‘/_-‘7 n) - Sllp H(Eaf({xiaai7yi})7 H ' HOO)7 (213)
(xi,ai,yi)E(XXAX,y)"
where J’-'({aci,ai,yz ) = {( x1,01,Y1), ..,f(xn,an,yn)),f IS .7:} C R™. Then, C, (0, M) is
defined by
Crn(©,M) =logHo(1/n, Fo r,2n) . (2.14)

We are now ready to prove Proposition 2.4.1 that we restate below.

Proposition 2.4.1 (Generalization bound for L5<*S(6)). Let © be a parameter space for the policy
class llg and my, be a logging policy. Let so = (x;, ai, Yi)i=1,..n the logging dataset for which
actions are sampled under mg,. Assume that the losses y € [—1,0] to be bounded a.s. and that the
importance weights are bounded by W. Then, with probability at least 1 — §, the IPS estimator with
soft clipping (2.7) on n samples from s satisfies

n n

vV e 11, L(#) Si;sclps(Q) 10 (\/Vsalps(e)(cn(@, M) + log %) _’_S(Cn(@7 M) + log (%)) |

where S =C(W, M)=0(log W), V*I5(9) denotes the empirical variance of the cost estimates (1.16),
and Cy,(©, M) is a complexity measure (2.14) of the policy class.

Proof. Let © be a parameter space and Ilg be a policy class, 7y, be a logging policy, and
6 > 0. Let M > 0 be a threshold parameter, W > sup,, ,{my(a|r)/mg,(alx)} > 0 a bound on
the importance weights, and S = (W, M).

Let first consider the finite setting, in which case C,(©, M) < log|©|. Since all functions
in Fg yr defined in Eq. (2.12) take values in [0, 1], we can apply the concentration bound
of Maurer and Pontil (2009, Corollary 5) to Fg ar, which yields that with probability at least
1—4,forany § € ©

Eroalfol o)l = 3 folaian ) < \/ 2O o BOD) , TECRIOUD) (215
=1

where Vsdps(é) is the sample variance defined in (2.8). Furthermore, note that by construction
of the fy, forany 0 € ©,

LM(H) LscIPS(@)
Ez,e,y[fb(l',a,y)] =1+ S and Zf@ J;”Lva’layl) =1+ S )

where LM (0) = E, 4, [yg (mo(alz)/mg,(alz), M)] denotes the clipped expected risk of the
policy 6 and L5™P S( ) is defined in (2.7). Thus, multiplying (2.15) by S and using that
L(0) < LM(9) (since y < 0 and ((w, M) < w for all w), we get that with probability 1 — 4,

L(Q) < IA/SCIPS(H) + \/QVSCIPS(G);Og(Q‘@‘/d) 5712%7(?‘_@1‘)/5)’ Vo € O.
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The finite setting may finally be extended to infinite policy classes by leveraging Maurer and
Pontil (2009, Theorem 6) as in (Swaminathan and Joachims, 2015a). This essentially consists in
replacing |©| above with an empirical /o, covering number of Fg ys of size Hoo(1/n, Fo,ur, 2n).
Note that the number of empirical samples 2n is due to the double-sample method used by
Maurer and Pontil (2009).

O]

We now state the excess risk upper-bound Proposition 2.13.1 and provide the proof.
The following proposition is an intermediate result that will allow us to derive the Proposi-
tion 2.5.1.

Proposition 2.13.1. Consider the notations and assumptions of Proposition 2.4.1. Let M pe

the solution of the CRM problem in Eq. (2.10). Let 8* € argming.g L(6). Then, the choice
A =3V3(Cn(0, M) +10g(30/6)) 12 implies with probability at least 1 —§ the following upper-bound
on the excess risk

+ hM(H*) ,

n n—1

AGER) < \/32VM(9*)(Cn(@,M) +log%)  225(C(6,M) +log %)

where V. (0*) and hpr(0*) are the variance and bias of the is the clipped estimator of 6* and respectively
defined in (2.16) and (2.19).

Proof. We consider the notations of the proof of Proposition 2.4.1. Fix 6* € argmingcg L(0).
Applying, Theorem 15 of Maurer and Pontil (2009)! to the function set Fg js defined in (2.12),
wegetwp.1—9§

Exﬁo,y [féCRM (x, a, y)] - Ea:ﬂo,y [f@* (:Ea a, y)]
< \/32Va1”:c,00,y [for (z,a,9)] (Cn(©, M) +log 32) N 22(Cp (0, M) + log 22)

n n—1

Using the definition of fy(z,a,y) (2.12), we have

M 2
Exﬂo,y [f@(l‘, a, y)} =1+ LS@ and Varx,@o,y [fg(l’, a, y)} = V]gge) )
where (al2)
2 o 71-9 a|\x
Vir(0) = Varg g, 4 (y( (Weo(a\l’)’M>> : (2.16)

Substituting into the previous bound, this entails

. (2.17)

n n—1

* 30 30
LM (GORMY LM (%) < \/32VM(9 )(Cn(©, M) +log 5)+225(Cn(@,M)+log 2)

!Note that in their notation, log M, (Ilg) equals Cr (6, M) +1og(10), X is the dataset { (xs, as, yi) }1<i<n Where
(x4, ai, yi) is the observational dataset s, and P(-, ;1) is the expectation with respect to one test sample E, ., [ - ].
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To conclude the proof, it only remains to replace the clipped risk L™ with the true risk L. On
the one hand, since the costs y take values into [—1, 0], we have y( (7~ (a|z)/7p, (a|z), M) >
ymg(alx)/mg, (a|z), which yields

L(GCEMy < [ M (gORM) (2.18)

On the other-hand, by defining the bias

hat(0%) = Eq gy y {yc (M o <a|x)> - y”*(“|x)] (2.19)

’ 7T90(a|x) 7'('90((1‘1')

we also have —L(0*) — hyy < —LM (6*), which together with (2.17) and (2.18) finally concludes
the proof

+ har(67).

. 32V (60%) (CH(©, M) + log 39 225(C, (0, M) + log 30
L(HORM)—L(G*)S\/ @O tlog'y) | 2256, M)+ los )

O]

We can now use the latter to prove Proposition 2.5.1 that is restated below.

Proposition 2.5.1. Consider the notations and assumptions of Proposition 2.4.1. Let 9°M be the
solution of the CRM problem in Eq. (2.10). Then, with well chosen parameters X and M, denoting
the variance v; = Varx, [mg+(alz)/m,(alx)], with probability at least 1 — &, the excess risk is upper
bounded as:

)

N V (1442 0gW + 0)(Ca(©,M) +og3)  lo(I +)(Cul®, M)+l

where < hides universal multiplicative constants. In particular, assuming also that o, (z|a) ! are
uniformly bounded, the complexity of the class TILY described in Section 2.3.1, applied with a bounded
kernel and © = {8 € R™, s.t ||8]| < C} x {a}, is of order

C’n(@CLP, M) < O(mlogn),

where m is the size of the Nystrom dictionary and O(-) hides multiplicative constants independent of
n and m (see (2.28)).

Proof. We first consider a general policy class II and some 7* € II. In this proof, to ease
the notation, we write Ex, [-], Varr, [-], and Pr, (-) to respectively refer to E, 4 )~p,, [ ],
0

Var(x,a,y)wpﬂeo [ : ], and P(xﬂ’y)wprgo ( . )

We consider the notation of the proof of Proposition 2.13.1 and start from its risk
upper-bound

32V (0*) (Cr(©, M) + log 22) N 225(Cn(©, M) +log %)
n n—1

L) — L(g") < \/ +ha(07),

(2.20)
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where we recall, for any threshold M, the definitions of the bias and the variance of the
clipped estimator of 6%,

mr(6) = Enany [u(C(T00120) =T | and V 0°) = Varsa [ (22215 ) |.

9o (a l’) o (a :B) oo (a|x) ’

Step 1: For any threshold M, upper-bound of the variance Vi (0*) and the bias hs(6*).
By assumption, the (unclipped) variance of my- /74, is bounded and we write

2
)y m-(al2)] _ mo-(alx) 7|
I/* ara},@o,y 7'('60 (a|x) (m,a,y)NPweo 7_(_60 ((I|l’)

First, we bound the clipped variance as

VE(07) = Var, gy, [yc (”9* (alz) M)]

9o CL‘:L’)

o[ (S0 ) | - o (2l )

- M[(Zﬁai?)] LM =0 e 1= LM <1 (22D

Then, by writing X = my«(a|z)/mg,(a|z), the bias may be upper-bounded as

hM(e*) < Exﬁo,y [X - C(X, M)]
< B 9oy [(X = M)I{X > M}]

< /OOO Po g0y (X = MYL{X > M} > t)dt

[e.9]
g/ ]Pz7907y(X—M>t)dt:/
0 0

3 /oo Erany (X =12 Euay [(X-1?] 02
=Jo  (t+M—1)2 M—1 M—-1

[e.9]

Pz,907y((X 12> (M — 1)2>dt

(2.22)

Furthermore, if W < M then S = ((W, M) =W < M, else, using o(M) = M /log(a(M)) <
max{M,e} < M +e,

S =((W,M)=a(M)log (W +a(M)— M) < (M +e)log(W +e). (2.23)

Therefore, substituting (2.21), (2.22), and (2.23) into (2.20), yields the following upper-
bound on the excess risk

L(éCRM) o L(Q*)

3 f,m +12)(Co(O, M) +105 %) 22(M +¢)log(W +¢)(Ca(O, M) +10g %) 12
- n n—1 M—-1
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We now choose M such that

22(M — 1) log(W + ¢)(Cp(8, M) +log %) v
_ (2.24)
n—1 M —1

which is possible since the left term grows from 0 to infinity and the right term decreases
from infinity to 0 for M > 1. Therefore, from the last two terms we eventually have

i

LECRMY_L(9%) < \/(1 + v2) log(W +€)(Cn (6, M) + log ) +log(I/V +€)(Cn(©, M) +1log 3)
n n
(2.25)
where < hides universal multiplicative constants. This concludes the first part of the proof.

Step 2: Evaluating the policy class complexity C, (©LF, M).

In this part, we provide a bound on the metric entropy C,, (O, M) = log Hoo(1/n, Fligerp» 20)-
We recall that Fiy_,, is defined in (2.12) and IHgerr is described in Section 2.3.1. More pre-
cisely, let Z C A be a Nystrom dictionary of size m > 1 and v > 0. Since we use Gaussian
distributions, we have

Hgcr = {mgs.t. forany z € X, ms(-|z) = N (ug"(z),0%), with 8 € O3},

where
05 ={BeR™ st|p] <C}

where

CLP exp(—yns(,a))
and 77 x? a) = 57 w x? a )
a;za ez exp(—ys(e, ) pl,0) = (6, 9(w, )
for some embedding 1) described in Section 2.3.1 which satisfies ||¢(z, a)|| < v forany (z, a). Fix
z € X. Let us show that 3 — p5”(2) is Lipschitz. Denote by Zs(z) = 3_ ¢ z exp(—yng(, a))
the normalization factor. We consider the gradient of 13" (z) with regards to 8

opg” _ P(z,a)exp ((B, ¥(z,a)))
55 (=2 a( Zp(x)

exp ({8, ¥(x, ) Y ez ¥(x;a) exp ({8, ¥ (=, a)>)>
Zg(x)? '

Taking the norm, and upper-bounding ||¢)(z,a)|| < v and |ja|| < az, this yields

5" o < s

CLP

Therefore, 5 — p 3 (x) is 2vaz-Lipschitz, which implies that

CLP (. 2
B mofalr) = o (; <W> )
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2
J=EE (2.26)
em o
We recall that the metric entropy C,(OY) = log Hoo (1/n, Fgerr, 2n) is applied to the
function class

are also Lipschitz with parameter

y . (ms(alz) CLP
= : 14+ = M f .
]:H@CLP {fﬂ (x,a,y) — 14 SC (7_‘_90(@|x)7 > or some 3 € © }

By assumption, the inverse of the logging policy weights are bounded 7y, (a|z)~ < M, for

any (z,a) € X x A (as in Kallus and Zhou (2018)). Therefore, together with (2.26), for any
(x,a,y) € X x A x Y, the function § — f3(z, a,y) is Lipschitz with parameter

2 UOézMO

er So?

(2.27)

Let ¢ > 0. Because there exists an e-covering of the ball {3 € R? : ||3|| < C} of size (C/¢)?,
together with (2.27), the latter provides a covering of Fgcir in sup-norm with parameter

2 UCMZM()

er So?

Equalizing this with n~! and taking the log of the size of the covering entails

C’n(GCLP,M) < dlog | 1 /3% ]
er  So?

Now, we recall that d is the dimension of the embedding v/, which we model as

Y(z,a) =Yx(x) @ hala)

where ¢ 4(a) € R™ is the embedding obtained by using the Nystrom dictionary of size m on
the action space and 1y () € R%* is the embedding of the context space X C R, Typically
dy =d?>+d, +1ordy = d, respectively with the polynomial and linear maps considered in
practice. Thus, d = mdy. Substituting the latter into the complexity upper-bound and using
1 < Sand M, we finally get

2 CM
Cp(6°P M) < mdy log (,/WCOZO‘Z”) , (2.28)

g

where we recall that dy is the dimension of the contextual feature map, C' a bound on the
parameter norm f3, My a bound on 4, (a|z) ™!, v? a bound on the kernel, o2 the variance of
the policies, and az a bound on the action norms ||a/|. O
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2.13.2. Discussion: on the Rate Obtained for Deterministic Classes

Consider the deterministic CLP class that assigns any input « to the action 3" (x) defined
in (2.2). Although the chapter focuses on stochastic policies, this appendix provides an
excess-risk upper-bound with respect to this deterministic class.

The latter corresponds to the choice ¢ = 0 in the CLP policy set defined in Section 2.3.1
and therefore, Proposition 2.5.1 cannot be applied directly. Fix some o > 0 to be optimized
later. For any 3 € R™, we denote by L(5") the risk associated with the deterministic policy

a = piz"(z). We also define w5 (-[z) ~ /\/’ (,ugLP( r),0?) and note R(r 5 ") the expected risk of

the policy 73" as in Introduction 1.4. Then, let ™ be the counterfactual estimator obtained

by Prop051t10n 2.5.1 on the class O¢rp = {WCLP (+|z)}, with probability 1 — 0

i(éORM) - L(M%LP) < ﬁ(éCRM) - R( ELP) +R( CLP) L(M%LP)

A A 2
L(AORM) R(75") + Looy/2log 5

where we assumed that the risk is Lo-Lipschtitz and used that P(|X| < 01/2log(2/§)) <6
for X ~ N (0, 0?). From Proposition 2.5.1, this yields, with probability 1 — 2§

S 1 log(W C,,(OLP M) + log L
AL(@CRM)—L@%")SW Ho obW £ NCE D LO88) | pog 21052,

n

IN

Now, note that C,,(II, M) and log(W) only yield logarithmic dependence on ¢ and n and
will thus not impact the rate of convergence. The variance ¢* has a stronger dependence on
o2 but can be upper-bounded as follows

P (a|x 7 (alz) — 7. (alz) \ 2
o7 = Varg, [B e )] :/< 5 (alr) — may )> g, (al|z)da

m, (a|2) o (a|z)

%Lp(a]m 1
S / < / CLP CL‘:L’ a _—
Wgo(a\:v M 20 Mo\/m

CLP ( 2

where the last equality is because 75" (-|z) is a Gaussian distribution with variance o
Therefore, keeping only the dependence on ¢ and n and neglecting log-factors, we get the
high-probability upper-bound

A A ~ 1
L(ORM) — L(uS™) < 0(— + 0) .
The choice o = n~!/? entails a rate of order O(n~/3).

2.14. Details on the Experiment Setup and Reproducibility

In this section we give additional details on synthetic and semi-synthetic datasets, we
provide details on the evaluation methodology and information for experiment reproducibil-

ity.
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2.14.1. Synthetic and Semi-Synthetic setups

Synthetic setups As many real-world applications feature a reward function that increases
tirst with the action, then plateaus and finally drops, we have chosen a piecewise linear
function as shown in Fig. 2.18 that mimics reward buckets over the CoCoA dataset presented
in Section 2.6.

Synthetic reward Mean reward over buckets

Reward

o -
Reward

o -

00 05 10 15 20 25 3.0 35 4.0 0.6 0.8 1.0 1.2 1.4
Action taken Action taken

Figure 2.18: Synthetic reward engineering. The synthetic reward (left) is inspired from real-dataset
reward buckets (right).

2.14.2. Reproducibility

We provide code for reproducibility and all experiments were run on a CPU cluster,
each node consisting on 24 CPU cores (2 x Intel(R) Xeon(R) Gold 6146 CPU@ 3.20GHz), with
500GB of RAM.

Policy parametrization. In our experiments, we consider two forms of parametrizations: (i) a
lognormal distribution with 6 = (6,,,0), 7, ») = log N (m, 5) with s = \/log (02 /u? 4+ 1);m =
log(p) — s*/2, so that Egr, , [a] = p and Varg.r, ,[a] = o7 (ii) a normal distribution
T(uo) = N(p,0). In both cases, the mean ;1 may depend on the context (see Section 2.4),
while the standard deviation o is a learned constant. We add a positivity constraint for o and
add an entropy regularization term to the objective in order to encourage exploratory policies
and avoid degenerate solutions.

Models. For parametrized distributions, we experimented both with normal and lognormal
distributions on all datasets, and different baseline parameterizations including constant, linear
and quadratic feature maps. We also performed some of our experiments on low-dimensional
datasets with a stratified piece-wise contextual parameterization, which partitions the space
by bucketizing each feature by taking K (for e.g K = 4) quantiles, and taking the cross
product of these partitions for each feature. However this baseline is not scalable for higher
dimensional datasets such as the Warfarin dataset.

Hyperparameters. In Table 2.7 we show the hyperparameters considered to run the ex-
periments to reproduce all the results. Note that the grid of hyperparameters is larger for
synthetic data. For our experiments involving anchor points, we validated the number of
anchor points and kernel bandwidths similarly to other hyperparameters.

2.15. Additional Results and Additional Evaluation Metrics

In this section we provided additional results on both contextual modeling and optimiza-
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Table 2.7: Table of hyperparameters for the Synthetic and CoCoA datasets

Synthetic Warfarin CoCoA
Variance reg. A {0.,0.001,0.01,0.1, 1, 10, 100} {0.00010.0010.010.1} {0.,0.001,0.1}
Clipping M {1,1.7,2.8,4.6,7.7,12.9,21.5,35.9, 59.9, 100.0} {1,2.1,4.5,9.5,20} {1,2.1,4.5,9.5, 10, 20, 100}
Prox. x {0.001,0.01,0.1, 1} {0.001,0.01,0.1} {0.001,0.01,0.1}
Reg. param. ' {0.00001,0.0001,0.001,0.01,0.1} {0.00001,0.0001, 0.001, 0.01,0.1} | {0.00001,0.0001,0.001,0.01,0.1}
Number of anchor points {2,3,5,7,10} {5,7,10,12,15,20} {2,3,5}
Softmax {1, 10, 100} {1,5,10} {0.1,05,1,5}

tion driven approaches of CRM.
2.15.1. Continuous vs Discrete strategies in Continuous-Action Space

We provide in Figure 2.19 additional plots for the continuous vs discrete strategies for
the synthetic setups described in Section 2.7.2.

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Nb anchor points. Nb anchor points Nb anchor points

Figure 2.19: Continuous vs discrete. Test rewards for CLP and (stochastic) direct method (DM) with
Nystrom parameterization, versus a discrete approach, with varying numbers of anchor points. We
add a minimal amount of noise to the deterministic DM in order to pass the n.s validation criterion.

2.15.2. Optimization Driven Approaches of CRM

In this part we provide additional results on optimization driven approaches of CRM for
the Noisycircles, Anisotropic, Warfarin and CoCoAdatasets.

Both Noisycircles and Anisotropic datasets in Figure 2.20 show the improvements in
test reward and in training objective of our optimization-driven strategies, namely the soft-
clipping estimator and the use of the proximal point algorithm. Overall we see that for
most configurations, the proximal point method better optimizes the objective function and
provides better test performances, while the soft-clipping estimator performs better than its
hard-clipping variant, which may be attributed to the better optimization properties. For
semi-synthetic Warfarin and real-world CoCoA datasets in Figure 2.20 we also show the
improvements in test reward and in training objective of our optimization-driven strategies.
More particularly we demonstrate the effectiveness of proximal point methods on the Warfarin
dataset where most proximal configurations perform better than the base algorithm. Moreover,
soft-clipping strategies perform better than its hard-clipping variant on real-world dataset
with outliers and noises, which demonstrate the effectiveness of this smooth estimator for
real-world setups.

2.15.3. Doubly Robust Estimators

In this section we detail the discussion on doubly robust estimators and the difficulties
that exist to obtain a suitable estimator. In policy based methods for discrete actions, the DR
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estimator takes the form

n

EPR(0) = L3 (s — i, ag) T 32 > i, a)mg(alzs),

n T n
i=1 0, acA

Usually, the DR estimator should only improve on the vanilla IPS estimator thanks to the
lower variance induced by the outcome model 7). However, in a continuous-action setting
with stochastic policies, the second term becomes E,.p,, o~r(.|z) [1(2,a)], which is intractable
to optimize in closed form since it involves integrating over actions according to 7(-|x). Thus,
handling this term requires approximations (as described hereafter), which may overall lead
to poorer performance compared to an IPW estimator that sidesteps the need for such a term.

The difficulty for stochastic policies with continuous actions is to derive an estimator of
the term E, p, on(|2) [7(2, a)]. Unlike stochastic policies with discrete actions which allow
to use a discrete summation over the action set, we would need here to compute here an
estimator of the form 1 Y% | wea T(alzi)ii(xi,a). We note that in the case of deterministic
policy 7 learning this dlrect method term would easily boil down to £ >°% | 7)(z;, 7(;)), and
the DR estimator would be built with smoothing strategies for the IPW term as in (Kallus and
Zhou, 2018).

In our experiments for stochastic policies with one dimensional actions A C R, we tried
to approximate the direct method term 1 ZZ 1 Jaea m(alzi)(2i, a) with a finite sum of CDFs
differences over the m anchor points a1, . .. a,, by computing :

We present a table below of some of the experiments we ran on the synthetic datasets we
proposed, along with an evaluation of the baselines that exist in the litterature for discrete
actions. We see overall that our model improves indeed upon the logging policy, but does not
compare to the performances of the scIPS and SNIPS estimators.

Noisymoons Noisycircles Anisotropic
Logging policy 7, 0.5301 0.5301 0.4533
Doubly Robust (discrete) 0.5756 4 0.0022 | 0.5500 &= 0.0024 | 0.5593 % 0.0026

SWITCH (Wang et al., 2017) (discrete) | 0.5786 & 0.0025 | 0.5520 £ 0.0026 | 0.5741 4 0.0024
CAB-DR (Su et al., 2019) (discrete) 0.5683 £ 0.0023 | 0.5326 £+ 0.0025 | 0.5361 4 0.0028

Doubly Robust (ours) | 0.6115 £ 0.0001 | 0.6113 £ 0.0002 | 0.5977 + 0.0001

Table 2.8: Comparison of doubly robust estimators, discretized strategies and our model which
approximates the direct method term.
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Figure 2.20: Optimization-driven approaches (NoisyCircles, Anisotropic, Warfarin and CoCoA

datasets). Relative improvements in the training objective from using the proximal point method (left),
comparison of test rewards for proximal point vs the simpler gradient-based method (center), and for
soft- vs hard-clipping (right).



Sequential Counterfactual Risk
Minimization

Counterfactual Risk Minimization (CRM) is a framework for dealing with the logged
bandit feedback problem, where the goal is to improve a logging policy using offline data.
In this chapter, we explore the case where it is possible to deploy learned policies multiple
times and acquire new data. We extend the CRM principle and its theory to this scenario,
which we call "Sequential Counterfactual Risk Minimization (SCRM)." We introduce a novel
counterfactual estimator and identify conditions that can improve the performance of CRM
in terms of excess risk and regret rates, by using an analysis similar to restart strategies in
accelerated optimization methods. We also provide an empirical evaluation of our method
in both discrete and continuous action settings, and demonstrate the benefits of multiple
deployments of CRM.

This chapter is based on the following material:

H. Zenati, E. Diemert, M. Martin, J. Mairal, and P. Gaillard. Sequential counterfactual
risk minimization. International Conference on Machine Learning (ICML), 2023
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3.1. Introduction

Counterfactual reasoning in the logged bandit problem has become a common task for
practitioners in a wide range of applications such as recommender systems (Swaminathan
and Joachims, 2015a), ad placements (Bottou et al., 2013) or precision medicine (Kallus and
Zhou, 2018). Such a task typically consists in learning an optimal decision policy from logged
contextual features and partial feedbacks induced by predictions from a logging policy. To
do so, the logged data is originally obtained from a randomized data collection experiment.
However, the success of counterfactual risk minimization is highly dependent on the quality
of the logging policy and its ability to sample meaningful actions.

Counterfactual reasoning can be challenging due to large variance issues associated with
counterfactual estimators (Swaminathan and Joachims, 2015b). Additionally, as pointed out
by Bottou et al. (2013), confidence intervals obtained from counterfactual estimates may not be
sufficiently accurate to select a final policy from offline data (Dai et al., 2020). This can occur
when the logging policy does not sufficiently explore the action space. To address this, one
option is to simply collect additional data from the same logging system to increase the sample
size. However, it may be more efficient to use already collected data to design a better data
collection experiment through a sequential design approach (Bottou et al., 2013, see Section
6.4). It is thus appealing to consider successive policy deployments when possible.

We tackle this sequential design problem and are interested in multiple deployments of
the CRM setup of Swaminathan and Joachims (2015a), which we call sequential counterfactual
risk minimization (SCRM). SCRM performs a sequence of data collection experiments by
determining at each round a policy using data samples collected during previous experiments.
The obtained policy is then deployed for the next round to collect additional samples. Such a
sequential decision making system thus entails designing an adaptive learning strategy that
minimizes the excess risk and expected regret of the learner. In contrast to the conservative
learning strategy in CRM, the exploration induced by sequential deployments of enhanced
logging policies should allow for improved excess risk and regret guarantees. Yet, obtaining
such guarantees is nontrivial and we address it in this work.

In order to accomplish this, we first propose a new counterfactual estimator that controls
the variance and analyze its convergence guarantees. Specifically, we obtain an improved
dependence on the variance of importance weights between the optimal and logging policy.
Second, leveraging this estimator and a weak assumption on the concentration of this variance
term, we show how the error bound sequentially concentrates through CRM rollouts. This
allows us to improve the excess risk bounds convergence rate as well as the regret rate. Our
analysis employs methods similar to restart strategies in acceleration methods (Nesterov,
2012) and optimization for strongly convex functions (Boyd and Vandenberghe, 2004). We
also conduct numerical experiments to demonstrate the effectiveness of our method in both
discrete and continuous action settings, and how it improves upon CRM and other existing
methods in the literature.
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3.2. Related Work

Counterfactual learning from logged feedback (Bottou et al., 2013) uses only past
interactions to learn a policy without interacting with the environment. Counterfactual risk
minimization methods (Swaminathan and Joachims, 2015a,b) propose learning formulations
using a variance penalization as in (Maurer and Pontil, 2009) to find policies with minimal
variance. Even so, counterfactual methods remain prone to large variance issues (Dudik
et al., 2014). These problems may arise when the logging policy under-explores the action
space, making it difficult to use importance sampling techniques (Owen, 2013) that are key to
counterfactual reasoning. While one could collect additional data to counter this problem,
our method focuses on sequential deployments (Bottou et al., 2013, see Section 6.4) to collect
data obtained from adaptive policies to explore the action space. Note also that the original
motivation is related but different from the support deficiency problem (Sachdeva et al.,
2020) where the support of the logging policy does not cover the support of the optimal
policy.

Another related literature to our framework is batch bandit methods. Originally intro-
duced by Perchet et al. (2015) and then extended by Gao et al. (2019) in the multi-arm setting,
batch bandit agent take decisions and only observe feedback in batches. This therefore differs
from the classic bandit setting (Auer et al., 2002; Audibert et al., 2007) where rewards are
observed after each action taken by an agent. Extensions to the contextual case have been
proposed by Han et al. (2020) and could easily be kernelized (Valko et al., 2013). The sequential
counterfactual risk minimization problem is thus closely related to this setting. However,
major differences can be noted. First, SCRM does not leverage any problem structure as in
stochastic contextual bandits (Li et al., 2010) by assuming a linear reward function (Chu et al.,
2011; Goldenshluger and Zeevi, 2013; Han et al., 2020) nor uses regression oracles as (Foster
and Rakhlin, 2020; Simchi-Levi and Xu, 2022). Second, deterministic decision rules taken
by bandit agents (Lattimore and Szepesvari, 2020) do not allow for counterfactual reasoning
or causal inference (Peters et al., 2017), unlike our framework which performs sequential
randomized data collection. Third, unlike gradient based methods used in counterfactual
methods with parametric policies, batch bandit methods use zero-order methods to learn

from data and necessitate approximations to be scalable (Calandriello et al., 2020; Zenati et al.,
2022).

The sequential designs that we use are adaptive data collection experiments, which have
been studied by Bakshy et al. (2018); Kasy and Sautmann (2021). Closely related to our
method is policy learning from adaptive data that has been studied by Zhan et al. (2021)
and Bibaut et al. (2021b) in the online setting. In contrast, we consider a batch setting and
our analysis achieve fast rates in more general conditions. Zhan et al. (2021) use a doubly
robust estimator and provide regret guarantees but assume a deterministic lower bound on
the propensity score to control the variance. Instead, our novel counterfactual estimator does
not require such an assumption. Bibaut et al. (2021b) propose a novel maximal inequality
and derive thereof fast rate regret guarantees under an additional margin condition that can
only hold for finite action sets. Our work instead uses a different assumption on the expected
risk, which is similar to Holderian error bounds in acceleration methods (d’Aspremont et al.,
2021) that are known to be satisfied for a broad class of subanalytic functions (Bolte et al.,
2007).
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In the reinforcement learning literature (Sutton and Barto, 1998), off-policy methods
(Harutyunyan et al., 2016; Munos et al., 2016) evaluate and learn a policy using actions
sampled from a behavior (logging) policy, which is therefore closely related to our setting.
Among methods that have shown to be empirically successful are the PPO (Schulman et al.,
2017) and TRPO (Schulman et al., 2015) algorithms which learn policies using a Kullback-
Leibler distributional constraint to ensure robust learning, which can be compared to our
learning strategy that improves the logging policy at each round. However reinforcement
learning models transitions in the states (contexts) induced by the agent’s actions while bandit
problems like ours assume that actions do not influence the context distribution. This enables
to design algorithms that exploit the problem structure, have theoretical guarantees and can
achieve better performance in practice.

Finally, our method is related to acceleration methods (d’Aspremont et al., 2021) where
current iterates are used as new initial points in the optimization of strongly convex functions
(Boyd and Vandenberghe, 2004). While different schemes use fixed (Powell, 1977) or adaptive
(Nocedal and Wright, 2006; Becker et al., 2011; Nesterov, 2012; Bolte et al., 2007; Gaillard
and Wintenberger, 2018) strategies, our method differs in that it does not consider the same
original setting, does not require the same assumptions nor provides the same guarantees.
Eventually, while current models are also used as new starting points, additional data is
effectively collected in our setting unlike those previous works that do not assume partial
teedbacks as in our case.

3.3. Sequential Designs

In this section, we introduce the (CRM) framework and motivate the use of sequential
designs for (SCRM).

In this section we present a design of data collections that sequentially learn a policy
from logged data in order to deploy it and learn from the newly collected data. Specifically,
we assume that at a round m € {1,... M}, a model #,, € © is deployed and a set s,, of
Ny, Observations sy, = (Tm.i, Gmis Ym.is Tm.i)i=1,...n., i collected thereof, with propensities
Tm,i = T0,,(@m,i|Tm,i) to learn a new model 6,1 and reiterate. In this work, we assume
that the loss y is bounded in [—1, 0] as in (Swaminathan and Joachims, 2015a) (note however
that this assumption could be relaxed to bounded losses) and follows a fixed distribution Py,.
Next, we will introduce useful definitions.

Definition 3.3.1 (Excess Risk and Expected Regret). Given an optimal model * € arg mingcq L(6),
we write for each rollout m the excess risk:

Ay, = L(0,,) — L(67), (3.1)
and define the expected regret as:
M
Ry=> Apnmir. (3.2)
m=0

The objective is now to find a sequence of models {6, } ,=1...ps that have an excess risk and
an expected regret R,, that improve upon CRM guarantees. To do so, we define a sequence of
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minimization problems for m € {1,... M}:

Om+1 € arg min L,,(0), (SCRM)
0O

where L,, is an objective function that we define in Section 3.4.2. Note that in the setting we
consider, samples are i.i.d inside a rollout m but dependencies exist between different sets of
observations. From a causal inference perspective (Peters et al., 2017), this does not incur
an additional bias because of the successive conditioning on past observations. We provide
detailed explanations in Appendix 3.8 on this matter. Note also that the main intuition and
motivation of our work is to shed light on how learning intermediate models ¢,,, to adaptively
collect data can improve upon sampling from the same logging system by using the same
total sample size n = > " ; np,. To illustrate the learning benefits of SCRM we now provide a
simple example.

Example 3.3.1 (Gaussian policies with quadratic loss). Let us consider Gaussian parametrized
policies w9 = N'(0,0?%) and a loss ly(a) = (a — y;)* — 1 where y, ~ N'(6*,02). We illustrate in
Figure 3.1 the evolution of the losses of learned models 0,,, through 15 rollouts with either i) Batch
CRM learning on aggregation of data, being generated by the unique initial logging policy 0q or ii)
Sequential CRM learning with models g, . . . , 0,,—1 deployed adaptively, with data being generated by
the last learned model 0,1 for the batch m. We see that the models learned with SCRM take larger
optimization steps than the ones with CRM.

cRM Sequential CRM
o

SCRM

7
L
%
1
7
7

Figure 3.1: Comparison of CRM and SCRM on a simple setting described in Example 3.3.1. The
models learned through CRM using re-deployments of 6, (left) reach 6* slower than SCRM (center)
that uses intermediate deployments 61, . . ., 85, indicated with "x” markers and rollout numbers. The

comparison of the evolution of averaged losses (right) over 10 random runs also shows SCRM
converges faster. Here 8* = 1, 0 = 0.3 and we take M = 15 total rollouts with batches m of size
nm = 100 x 2™. The parameter A is set to its theoretical value.

We summarize our (SCRM) framework in Algorithm 6 with the different blocks exposed
previously. We provide an additional graphical illustration of SCRM compared to CRM
in Appendix 3.8. In the next section we will define counterfactual estimators from the
observations s,, at each round and define a learning strategy £,,.

3.4. Variance-Dependent Convergence Guarantees

In this part we aim at providing convergence guarantees of counterfactual learning. We
show how we can obtain a dependency of the excess risk on the variance of importance
weights between the logging model and the optimal model.
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Algorithm 6: Sequential Counterfactual Risk Minimization

Input: Logged observations (x¢.i, @0,i, Y0,i, T0,i )i=1,...,no, Parameter A > 0
form =1to M do
Build £, from observations s,, using Eq. (3.5)
Learn 6,1 using Eq. (SCRM)
Deploy the model 6,1 and collect observations
Smt1l = (Tma1,is Gm1,is b 1is Tm1,0)i=1,....nm i1
end

3.4.1. Implicit exploration and controlled variance

We first introduce a new counterfactual estimator. For this, we will require a common
support assumption as in importance sampling methods (Owen, 2013). We will assume that
the policies 7y for § € © have all the same support. We then consider the following estimator
of the risk of a model 6:

1 o T 0,i

LX) = —» ———ymi, (3.3)

Nm i1 Tm,i + QT ;

where 7 ; = Tg(am,i|Tm,:) and « is like a clipping parameter which ensures that the modified

propensities T, ; + amp(am,i|Tm,i) are lower bounded. Noting ¢;(0) = (Wmf% = 1)Ymi,
CO) = i Y™ Gi(6) we can write the empirical variance estimator as:
. 1 _
IPS-IX gy _ (o) _ 2
Vi w“mNJZ@@ {(6))>. (3.4)

=1

Here, the empirical variance uses a control variate since it uses the expression of (;(6)
above instead of ymlﬁgﬂm This allows to improve the depency on the variance in the
excess risk provided in Proposition 3.4.2. Note also that our estimator resembles the implicit
exploration estimator in the EXP3-IX algorithm (Lattimore and Szepesvéri, 2020), as our

motivation is to improve the control of the variance.

3.4.2. Learning strategy

Next, we aim in this part to provide a learning objective strategy L,,, as refered to in Eq.
(SCRM). Our approach, like the (CRM) framework, uses the sample variance penalization
principle (Maurer and Pontil, 2009) to learn models that have low expected risk with high
probability. To do so, we first provide an assumption to be used in our generalization error
bound.

Assumption 3.4.1 (Bounded importance weights). For any models 6,0" € © and any (z,a) €
X x A, we assume mg(a|x)/mg (a|lz) < W, for some W > 0.

This assumption has been made in previous works (Kallus and Zhou, 2018; Zenati et al.,
2020a) and is reasonable when we consider a bounded parameter space ©. Next, we state an
error bound for our estimator.
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Proposition 3.4.1 (Generalization Error Bound). Let LIPSTX and VIPSX be the empirical estimators
defined respectively in Eq. (3.3) and Eq. (3.4). Let § € ©, 6 € (0,1), and ny, > 2. Then, under
Ass. 3.4.1, for Ay, = \/18(C1,(©) + log(2/6)), with probability at least 1 — §:

VIPS-IX(9) N 202, W

Nim Nm

L(0) < LIPSTX(9) 4+ A, + O,

where Cy,(©) is a metric entropy complexity measure defined in App. 3.8 and 8., = /10g(2/5)/(2n.n).

This Proposition is proved in Appendix 3.8 and essentially uses empirical bounds (Maurer
and Pontil, 2009). By minimizing the latter high-probability upper bound, we can find models
¢ with guarantees of minimizing the expected risk. Therefore, at each round, we minimize
the following loss:

. 7IPS-IX (g
Ln(8) = EI(0) 4 gV 0 (3.5)
where )\, > 0is a positive parameter. Unlike deterministic decision rules used for example
in UCB-based algorithms (Lattimore and Szepesvéri, 2020), the exploration is naturally
guaranteed by the stochasticity of the policies we use.

3.4.3. Excess risk upper bound

Eventually, we establish an upper bound on the excess risk of the IPS-IX estimator for
counterfactual risk minimization using the learning strategy that we just defined. For this,
we require an assumption on the complexity measure.

Assumption 3.4.2. We assume that the set © is compact and that there exists d > 0 such that
Crn(0) < dlog(np,).

This assumption states that the complexity grows logarithmically with the sample size. It
holds for parametric policies so long as the propensities are lower bounded, which is verified
using our estimator. We now state our variance-dependent excess risk bound.

Proposition 3.4.2 (Conservative Excess Risk). Let n,,, > 1 and 60,, € ©. Let s, be a set of np,
samples collected with policy m,,. Then, under Assumptions 3.4.1 and 3.4.2, a minimizer 6,1 of
Eq. (3.5) on the samples s,, satisfies the excess risk upper-bound: w.p. 1 —§
At = L(Om+1) — L(07)
2
< \/V%Idlog Ny —log § n W<+ W(dlogn,,—logd)

<

)
Nm Nm

mo-(alx)
where v2, = Va ——= ).
b= (TG0
The proof is postponed to Appendix 3.8. The modified propensities in IPS-IX as well as
the control variate used in the variance estimator allow us to improve the dependency in v/,
compared to v2, + 1 obtained in previous work (Zenati et al., 2020a). This turns out to be a
crucial point to use these error bounds sequentially as in acceleration methods since v;,, — 0

if 6, — 6%, as explained in the next section.
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3.5. SCRM Analysis

In this section we provide the main theoretical result of this work on the excess risk and
regret analysis of SCRM. We start by stating an assumption that is common in acceleration
methods (d’Aspremont et al., 2021) with restart strategies (Becker et al., 2011; Nesterov, 2012)
that we will require to achieve the benefits of sequential designs.

Assumption 3.5.1 (Holderian Error Bound). We assume that there exist v > 0 and 3 > 0 such
that for any 6 € ©, there exists 0* € argmingcg L(0) such that

o+ (x|a)
mo(x|a)

WVarg ( ) < (L(6) - L") .

Typically, in acceleration methods, Holderian error bounds (Bolte et al., 2007) are of the
form:
vd(8,55) < (L(9) — L(#7))°

forsome, 8 > 0and where d(, S ) is some distance to the optimal set (Sg, = arg mingcg L(6)).
This bound is akin to a local version of strong convexity (5 = 1) or a bounded parameter
space (8 = 0) if d is the Euclidean distance. When 3 € [0, 1], this has also been referred to as
the Lojasiewicz assumption introduced in (Lojasiewicz, 1963, 1993). Notably, it has been used
in online learning (Gaillard and Wintenberger, 2018) to obtain fast rates with restart strategies.
This assumption holds for instance for Example 3.3.1 with § = 1 (see App 3.8). We also
discuss this assumption for distributions in the exponential family in Appendix 3.8 notably
for distributions that have been used practice (Swaminathan and Joachims, 2015b; Kallus and
Zhou, 2018; Zenati et al., 2020a). Next we state our main result that is the acceleration of the
excess risk convergence rate and the regret upper bound of SCRM.

Proposition 3.5.1. Let ng,n > 2 and 6* € argming L(6). Let n,, = no2™ form =0,...,M =
Llog2(1 + %)J Then, under Assumptions 3.4.1, 3.4.2 and 3.5.1 with 3 > 0, the SCRM procedure
(Alg. 6) satisfies the excess risk upper-bound

Ay = L(0y) — L(6%) < O(niﬁ log n)

Moreover, the expected regret is bounded as follows:

M
R, = Z Apnmyr < O(n% IOg(n)2>'

m=0

The proof of our result is detailed in Appendix 3.8.

Discussion This result illustrates that an excess risk of order O(%) may be obtained
when 8 = 1 (which is implied by a local version of strong convexity assumption in acceleration
methods). When 8 = 0, which merely accounts that the variance of importance weights are
bounded, we simply recover the original rate of CRM of order O(log(n)/+/n). The SCRM
procedures thus improves the excess risk rate whenever 3 > 0. It is worth to emphasize that

the knowledge of 3 is not needed by Alg. 6.
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3.6. Empirical Evaluation

In this section we perform numerical experiments to validate our method in practical
settings. We present the experimental setup as well as experiments comparing SCRM to
related approaches and internal details of the method.

3.6.1. Experimental setup

As our method is able to handle both discrete and continuous actions we experiment
in both settings. We now provide a brief description of the setups, with extensive details
available in Appendix 3.8. !

Continuous actions We perform evaluation on synthetic problems pertaining to person-
alized pricing problems from (Demirer et al., 2019) (Pricing) and advertising from (Zenati
et al., 2020a) (Advertising). We consider Gaussian policies 7y (-|z) = N (ug(z), 0?) with lin-
ear contextual parametrization iy(x) = 6"z and fixed variance o2 that corresponds to the
exploration budget allowed in the original randomized experiment. The features are up to
10 dimensions and the actions are one-dimensional. We keep the original logging baselines
from the settings and compare results to a skyline supervised model trained on the whole
training data with full information.

Discrete actions We adapt the setup of (Swaminathan and Joachims, 2015a) that transforms
a multilabel classification task into a contextual bandit problem with discrete, combinatorial
action space. We keep the original modeling (akin to CRF) with categorical policies 7y (a|z) o
exp(07 (r @ a)). The baseline (resp. skyline) is a supervised, full information model with
identical parameter space than CRM methods trained on 5% (resp. 100%) of the training data.
We consider the class of probabilistic policies that satisfy Assumption 3.5.1 by predicting
actions in an Epsilon Greedy fashion (Sutton and Barto, 1998)): 7 (a, x) = (1—¢)mg(a, x)+¢c/| Al
where ¢ = .1. Real-world datasets include Scene, Yeast and TMC2007 with feature space up to
30,438 dimensions and action space up to 222. To account for this combinatorial action space
we allow a model 6,, to be learned using data from all past rollouts {s; };<, for better sample
efficiency and therefore adjust variance estimation in Appendix 3.8 to take into account
sequential dependencies.

3.6.2. SCRM compared to CRM and related methods
We first compare SCRM to CRM and existing methods in the literature.

Comparison between SCRM and CRM First, we provide insights on the performance
that SCRM can achieve compared to classical CRM with increasing sample sizes. The key
difference between CRM/SCRM is that for each sample size n,, CRM learns from samples
generated by the logging model s§* « 0, (see Alg. 7) whilst SCRM learns from samples
generated by a series of optimized models s5¢ M « 6, (see Alg. 6). For each sample size

we select a posteriori the best A for both methods based on test set loss value. We report in

A1l the code to reproduce the empirical results is available at: https://github.com/criteo-research/sequ
ential-conterfactual-risk-minimization


https://github.com/criteo-research/sequential-conterfactual-risk-minimization
https://github.com/criteo-research/sequential-conterfactual-risk-minimization

3.6. Empirical Evaluation 92

scene yeast tmc2007 Advertising

050 —e- CRM —e— CRM 05714 —e- CRM 045

045 SCRM - SCRM SCRM 050 SCRM
045 04
040 -0.55
8 % 0.40 2 4
g oss 3 %05 % o0 /—‘\’\.—0-\,__.__.\'
030 035

—-0.65
0.2
0.25 ~— 030 -0.70

020 025 01 -0.75
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 2 4 6 8 10
Rollouts m Rollouts m Rollouts m Rollouts m

Figure 3.2: Test loss as a function of sample size on Scene, Yeast, TMC2007, Advertising, (from left to
right). SCRM (in orange) converges faster and with less variance than CRM (in blue).

Percentagep | 0.7 0.8 0.9
CRM 100 x 219 1 100 x 216 | > 100 x 222
SCRM (ours) | 100 x 28 | 100 x 27 | 100 x 2'*

Table 3.1: Needed sample size to achieve test loss L(f) < p * L(6*) on the setting in Example 3.3.1
over the average of 10 random runs. SCRM needs way less data to converge to near optimal solution.
A is set to its theoretical value.

Figure 3.2 over M = 10 rollouts the mean test loss depending on sample size up to 2!, with
standard deviation estimated over 10 random runs. We observe that SCRM converges very
fast, often within the first rollouts. Conversely, CRM needs more samples and the variance
is higher. We conclude that there is a striking benefit to use a sequential design in order to
achieve near optimal loss with much fewer samples and better confidence compared to CRM.
Complementary results on other datasets are available in Appendix 3.8.

Moreover, to further illustrate this benefit of efficient learning we also report in Table 3.1
the sample size needed to attain near optimal performance when 6* is known as in Example
3.3.1, where we also observe that SCRM reaches optimal performances faster than CRM. This
corroborates the benefits of improved excess risk rates for SCRM.

Hyper-parameter selection for SCRM In our experiments, hyperparameter selection
consists in choosing a value for \. We describe a simple heuristic and evaluate its performance
on different datasets. We propose to select \,, by estimating the non-penalized CRM loss
(Eq. (1.12)) using offline cross-validation on past data s;<,,. We report in Table 3.2 the test
loss obtained when choosing a fixed A a posteriori (\') or with this heuristic (\). We observe
that loss confidence intervals for both methods intersect for all discrete datasets, except
on TMC2007 where the degradation shows only at the 3rd digit. On continuous datasets,
the heuristic actually improves upon the fixed a posteriori selection. We conclude that this
heuristic is usable in practice.

Comparison with other methods In this paragraph we compare our SCRM to related
methods to explore practical implications of existing methods in our setting. We first consider
batch bandits methods and implement the stochastic sequential batch pure exploitation
(SBPE) algorithm in (Han et al., 2020) and a batch version of kernel UCB (Valko et al., 2013)
algorithm (BKUCB) with an optimized library (see implementations details in Appendix
3.8). We also experiment with off-policy RL methods PPO (Schulman et al., 2017) and TRPO
(Schulman et al., 2015) from the StableBaselines library (Raffin et al., 2021) (see Appendix 3.8).
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Pricing |  Advertising Yeast | TMC2007
N | —5.353+.178 | —.716 £.020 | .294 4+ .026 | .146 £ .012
A | —5.5754.036 | —.726 +.001 | .299 +.039 | .164 + .021

Table 3.2: Test loss after 10 rollouts when choosing A by a posteriori selection (\') or with proposed
heuristic (A). Our heuristic is competitive with the a posteriori selection of a fixed \".

Pricing |  Advertising Scene Yeast TMC2007
n/|Al/dim(X)| 105 /00/10 10°5/00/2 | 2.10%/26/295 | 2.10%/2'4/104 | 3.10%/2%2/3.10*
Baseline | —3.414+.162 | —431+£.120 [ .3534£.009 | 478 4.014 | 511 4.003
SBPE DNF DNF | .179+.001 [  .302+.003 DNF
BKUCB DNF DNF | .236+.014 | .303+.004 DNF
TRPO -5.750 +.020 [ —.670+.030 | .376+.001 | 434 +.001 396 +.001
PPO —5.274£.200 | —.6374.015 | 206 +.001 | 463 +.001 263 +.001
CRM —5.325+.068 | —.5944+.100 | .233+.031 [ 362+ .044 158 +.034
SCRM (ours) | —5.5754.036 | -726+.020 | 219+.009 [ .294+.026 146 + 012
Skyline | -5.830£.020 | —.739£.002 [ .1794.002 | .3124.003 | 142 £ .001

Table 3.3: Test loss + stddev of different methods after 10 rollouts. SCRM achieves optimal or near
optimal performance in all datasets. Batch bandit methods did not finish (DNF) on large scale settings,
and RL methods perform overall poorly on discrete settings with large action space.

Indeed, such methods model more general state transitions based on past actions, but they
could be used in our setting. To fairly compare all methods (in particular those for which no
heuristic existing for hyper-parameter selection) we report the mean and standard deviation
over 10 random runs of the best test loss a posteriori over hyperparameter grids of the same
size. First, we observe that SCRM beats CRM on all datasets, illustrating the benefit of the
sequential design. Second, on discrete tasks (where we the combinatorial action space is
large) we observe that SCRM achieves nearly the best test loss in all tasks, while RL methods
have difficulties maintaining good performances. Third, batch bandits algorithms can achieve
good performances in practice because of their deterministic decision rules. However, they
involve an O(n?) matrix inversion and therefore did not finish (DNF) in 24h (per single run)
on a 46 CPU / 500G RAM machine in most of our settings with large sample size n, which
make them unpractical for large scale experiments. We conclude that SCRM is an effective
learning paradigm and that it scales successfully on a variety of settings.

3.6.3. Details on SCRM

Next, we provide additional empirical evaluations of details of our method.

Evaluation of IPS-IX To understand the bias-variance trade-off that IPS-IX can achieve
in practice compared to other counterfactual estimators we consider a policy evaluation
experiment. The task we consider uses sinusoidal losses y(a) = cos(a) and evaluated policies
are shifted Gaussians {m; = N (i * 7/4,1) };=0.4, with o being the logging policy. Evaluated
policies with large shifts with 7y therefore simulate the setting where the logging policy
underexplores the action space. The estimators we consider include IPS, SNIPS Swaminathan



3.7. Discussions 94

and Joachims (2015b), clipped IPS (eq. IPS) with heuristic from Bottou et al. (2013) and
IPS-IX (eq. 3.3) with o = 1/n. All methods therefore use their respective heuristics to set
hyperparameters. We report in Figure 3.3 the bias and variance of estimators for each shift
po —p=1ixm/4fori=0,...,4. We observe that IPS-IX shows an empirical bias comparable
to IPS, lower than SNIPS and clipped IPS while mainting a lower variance. Moreover its
variance is only slightly higher than clipped IPS which introduced a large bias. We conclude
that besides being a key component of our analysis IPS-IX also controls the variance with a
better tradeoff in practice. More details are available in Appendix 3.8.

== ipS ==fe=_ipS
0.05 ips_clipped 0.0150 ips_clipped
o= SNips ==fe=_sNips
0.04) =@+ ips_ix 0.0125{ =@ ips_ix
[0.0100
_~% 0.03 s
[ &[0.0075
>
0.02
0.0050
0.01 0.0025
0.00 0—0—044 0.0000
0 1 2 3 0 1 2 3

Shift yo — Shift po —

Figure 3.3: Comparison of counterfactual estimators on policy evaluation. Bias (left), Variance (right).
IPS-IX shows a low bias and compares favorably to IPS and SNIPS in terms of variance.

When is SCRM useful is a natural question of interest when choosing the method to be
used on a given logged bandit feedback problem. Intuitively one can imagine that SCRM
will be most useful when the logging policy underexplores the action space, for example
when the distance (in parameter space) between the logging and optimal parameters is large.
To study this question we proceed to the following experiment on the setup of Example
3.3.1 with Gaussian distributions N (6, o) and fixed loss variance o* = Var,(y). We vary the
distance dyp = ||#* — 6p|| between the optimal model §* and the logging model . Since the
ideal exploration level may be task dependent we choose a posteriori the best o on a grid, for
both CRM and SCRM. We report in Figure 3.4 the best final loss for both CRM and SCRM for
a range of values of Jy. We observe in particular that SCRM achieves better final losses for
larger distances dy than CRM. With the same number of rollouts A/, SCRM can extend the
exploration to further areas while CRM fails for any exploration level in those cases, which
advocates for using sequential deployments.

3.7. Discussions

In this work, we have proposed a method to extend the CRM perspective for designing
sequential data collection experiments. We have introduced a novel counterfactual estimator
to improve variance control in excess risk bounds. Under a weak error bound assumption,
we have sequentially applied these excess risk guarantees to achieve faster rates similarly to
acceleration methods. Our method also improves upon CRM in practice and is particularly
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Figure 3.4: Best final loss when varying dp = ||6* — 6y||. SCRM achieves better losses especially for
larger dg.

well-suited for this setting compared to existing methods in the literature. It is worth noting
that, in order to avoid introducing dependencies in the excess risk bounds we analyzed,
the theoretical algorithm we have studied uses geometric sample sizes to discard previous
samples. However, using all past samples has been found to be also effective in practice
and developing guarantees for this case would be an interesting area for future research.
Additionally, similar to online settings that involve an exploration-exploitation tradeoff,
investigating the use of optimism in the face of uncertainty (OFUL) principle in SCRM would
also be a promising avenue for future work.
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3.8. Appendices

This appendix is organized as follows: in Appendix 3.8, we provide additional expla-
nations on counterfactual methods related to our approach. In Appendix 3.8, we detail our
analysis of our counterfactual estimator as well as the general SCRM procedure, as given
in Alg. 6. Next, in Appendix 3.8 we present all the details of the empirical evaluation and
eventually in Appendix 3.8 we provide all additional empirical results that were omitted
from the main paper due to space limitation.

3.9. Additional details on counterfactual estimators

3.9.1. Unconfoundedness in sequential designs

In these explanations, we recall that the distributions of contexts as well as the distribution
of losses are fixed. In other words, the latter do not vary from one batch to another. In the
counterfactual risk minimization framework (CRM) (Swaminathan and Joachims, 2015a), the
causal graph (using the conventions in (Peters et al., 2017)) can be represented as shown in
Figure 3.5.

010’ "0 0

context model treatment outcome

Figure 3.5: Causal Graph in a randomized data collection experiment. A denotes action (or treatment),
X context, Y is the loss (or outcome). The causal influence of the contexts on actions is done through
the model 6.

In the sequential counterfactual risk minimization (SCRM) framework, if we unfold the
causal graph, the following representation can be given in Figure 3.6.

context treatment outcome

Figure 3.6: Causal Graph in a sequential randomized data collection experiment. A denotes action (or
treatment), X context, Y is the loss (or outcome). The contextual treatments are taken through the
models 6.

Therefore, it is clear that in general, §; )L 6;11. However, from d-separation and
faithfullness (Peters et al., 2017), we have for ¢’ < ¢:

0, 1L 0y16,_1.

Therefore, given that all the dependencies are observed and that we can condition on the
direct parents of a given model ¢, sequential randomized data collection are possible.
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Figure 3.7: Graphical illustration of SCRM setup (left) and CRM (right), learned with same amount of
data after each batch m. The training data are displayed with color block and the policy used to
sample actions in these block are either adaptive (SCRM) or using the loggind model 6, (CRM).

More importantly, in the analysis, to ensure that no additional bias is introduced, we
condition on the set of observed realizations sg, . . ., s;—1 that were collected to learn ; and
apply a tower rule in the expectation as shown in the next section with the multiple importance
sampling estimator.

We eventually provide in Figure 3.7 an illustration of SCRM and CRM.

3.9.2. Multiple Importance Sampling Estimators

Note that in order to avoid introducing dependencies in the excess risk bounds we
analyzed, the theoretical algorithm we have studied uses geometric sample sizes to discard
previous samples. However, using all past samples is effective in practice and developing
guarantees for this case would be an interesting area for future research. We present in this
section a estimators using aggregation of all previous information. In particular, we can
use Multiple Importance Sampling (MIS) (Owen, 2013) over all previous samples. Consider
in particular a partition of unity with m > 1 weight functions w;(a) > 0 which satisfies
Yoitowem(a) =1forall a and m € {0, ... M}. The MIS estimator writes:

m nt

Ll\n/@ﬂs(e) = Z ;t Zwt,m(at,i)yt,iwgi, wfﬂ- = W. (3.6)
t=0 i=1 )

In multiple importance sampling we usually assume that the behavior distributions are
independent. In our case, when we optimize §; based on the models 6;_1, ..., 6y, we break
this assumption. However, as we will see, we can still have the unbiasedness property and
derive an estimator for the variance of the estimator.

Proposition 3.9.1 (Unbiasedness). The MIS estimator (3.6) is unbiased when the loss y is fixed (its
distribution Py (-|z, a) does not depend on time rollout m).

Proof. Letm € {1,... M}. We recall that at all rounds ¢ < m, models 6; € © were deployed
and sets s; of n; observations s; = (z, a4, i, Tti)i=1,....n, Were collected thereof, with
propensities m;; = 7y, (a¢;|7+;) to learn the next model 6, ;. To prove the unbiasedness we
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use the tower rule on the expectation and condition on previous observations si, ... s;_1:

E[[“J%IS(Q)] =E [i ;t i Ez6y [wt(a)wa}]
t=0 =1
E li B 01 {wxa)wa}]
t=0

= Z Es1...st_1 |:E;r76m7y [Wt(a)yw? ‘ S1... St_]_jH

= Z Esy.s01 [EZ,G,y [wi(a)y | s1...5¢-1]]

= 1(0),

where the second last line is true only when the distribution of y does not change over time
roll-outs m. O

Among the proposals for functions w¢(a), the most ‘naive” and natural heuristic is to

choose
U3

wrla) = ~m 3.7
a) = s (37)
which gives the naive concatenation of all IPS estimators
[ n-MIS (g i mo(arileei)
Ly, 3.8
m Zzyt 7_‘_9t atz‘xtz) ( )

t 0 i=1
where n = "\" ( n;.

With the previous definition of the empirical mean estimator, we can now derive an
empirical variance estimator, starting with the naive multi importance sampling estimator. We
write the random variable ™ = (my /7y, )y. We note that for inside a batch m each realization
of " = (mp(am,i|Tm,i)/Tm,i)Ym,; and i are independent. But the realizations of the random

variables 7™ and 7™ are dependent. Writing n = >/ n;
1 m  Nm m 1 N, 1 Np 1 Ngq
— P q
HZZTT]—ZVM R H2 D Cov Ty )
t=0 =1 i=1 j=1

t=0 i=1 1<p<g<m
1 m Nm
= ) Z Var
n
t=0

Var

np MNg

+2% Z ZZCOV[TP,Tq]

1<p<qg<m i=1 j=1

S

=1

Nm
§ rm
=1

1 m
= ﬁ Z Var
t=0

Z npngCov [rf, 1]

1<p<q<m
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where the second last equality is obtained with the bilinearity of the covariance. Given
the latter expression of the variance, we propose the following estimator and with a linear
sampling where all n, = n, forp,q € {1,..., M }:

. 1 | 1 & ~ _
Vﬂr}b MIPS(G) _ ﬁ Z V(?“t) +92 Z NpNg (nl) Z (TZ — rp) (TZ — Tq))] ) (3.9)
t=0 1<p<g<m k=1
where V (r™) = m o (i — fm)Q and 7" = % 2y

Note also that for other functions w;(a), the most studied one is the balance heuristic with
wy o ngmy, (a), that is:

WPl (a) = omtmo@) (3.10)
lel T, (a)

The latter heuristic has been studied for its low variance (Owen, 2013) but these properties
have been studied under an i.i.d assumption that is broken in our adaptive data collection
strategy. Eventually, note that controlling the variance of this estimator with an implicit
exploration estimator as we do in the ii.d case would make a an interesting research
direction.

3.10. Analysis details

In this section, we provide the details of our analysis by starting with essential definitions,
then our proofs of variance dependent excess risk bounds and finally our regret analysis.

3.10.1. Definitions

Cn(©) is a complexity measure that will be upper-bounded by the metric entropy in
sup-norm at level € = 1/n,, of the following function set,

B P .1 mo(alz) B
Fme = {f@ (x,a,y) EXXAXY — W + WY (Wem(a|33) T amg(alD) 1) for 6 € 9}
(3.11)

The latter corresponds to clipped prediction errors of policies my normalized into [0, 1]. More
precisely, to define rigorously C,,(©), we denote for any n,,, > 1 and £ > 0, the complexity of
a class F by

Hoo(sa]:v n) = Sup H(&,]:({$i,ai,yi}), ” ’ ||OO)7 (312)
(wi,ai,y:) (XX AXY)™

where F({z;,a;,vi}) = {(f(z1,a1,11), ., f(Tn,an,yn)), f € F} C R™ and the number
H(e, A, || - ||o) is the smallest cardinality |Ag| of a set Ag C A such that A is contained in the
finite union of e-balls centered at points in Ay in the metric induced by || - ||«). Then, C,,(O)
is defined by

Cm(©) = log Hoo(1/Mm, Fm.0: 210m) - (3.13)
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3.10.2. Variance-dependent excess risk bounds

We will denote by E,, [] = E[|s0,...sm] the conditional expectation given the set of
observation samples s, = (Tm.i; Gmi, Ym,is Tm,i)i=1,...n., Up to the rollout m. Here, we
recall that z,; ~ Px, am;i ~ o, (|1Tm.i), Ym,i ~ Py([Tm,ir ams), and mp; = 7, (am,ilTm,q)-
Furthermore, throughout the document, E, g, ,, H (resp. Varg g, 