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Abstract

In diverse application domains, the unsupervised exploration of temporal-based anomalies in multivariate time series

presents an ongoing challenge. This exploration, when applied to sensor systems such as surface, spacecraft, or

satellite, can assess hazardous situations or discover unexplored phenomena. The objective of this thesis is to

develop a data-driven Deep Learning model capable of sending alerts concerning the timing, location, and hazard

severity of environmental crises at hydrothermal systems. Indeed, the understanding of the modeling characteristics

to facilitate the detection and interpretation of these phenomena remains limited.

To address these characteristics, this thesis examines literature limitations and subsequently proposes a new

solution, namely DITAN. DITAN is an unsupervised and domain-agnostic framework developed specifically to tackle

the challenge of detecting and interpreting temporal-based anomalies. It employs an encoder-decoder architecture

with attention mechanisms and a dynamic structure with hyper-parameter optimization to learn normal behavior as

regular context-horizon patterns. The model predicts normality and identifies critical regions associated with high

prediction offsets for detecting anomalies. The detected anomalies are interpreted both numerically, by examin-

ing their root causes and similarities, and physically using temporal IF-THEN rules and the reasoning power of a

knowledge system.

The effectiveness of DITAN is assessed on seven real-world datasets contaminated by different type of temporal-

based anomalies with varying durations. DITAN’s detection capabilities are evaluated against the ground truth and

compared to eleven deep model-based approaches from the addressed literature. Additionally, DITAN’s numerical

interpretation of detected anomalies is empirically verified. The results show that DITAN outperforms the existing

literature in terms of precision, at the cost of a lower recall rate mainly due to sub-capturing the actual anomalies.

To ensure optimal results, it is crucial to carefully define the context and horizon sizes.

DITAN is then applied to assess risk scenarios at volcanic hydrothermal systems, detecting anomalies caused by

external factors on the surface of a stable hydrothermal system. The results showcase a timeline of fourteen physical

event occurrences, each of them assessed by a risk level and verified across actual sensor values. Specifically, ten

occurrences involve two meteorological events, while four occurrences are attributed to three surface external driver

events that indicate temperature decrease in different zones. Then such externally-driven anomalies can be cleaned

and removed from periods when the internal drivers become variable and, hence, the hydrothermal system becomes
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unstable.

Since DITAN is domain-agnostic framework due to its hyper-parameter optimization capabilities, its structure can

be adapted to be applied on various problems involving predictable multivariate time series.

This PhD was funded by the Agence National de la Recherche (ANR, Program CES 04 Innovations scientifiques

et technologiques pour accompagner la transition écologique) through project DIRE (Data-Integration, Risk and

the Environment; Project No: ANR-19-CE04-0014-01). ANR-DIRE is led by three CNRS laboratories of Clermont-

Ferrand (LMV, LIMOS, LPC) and aims at defining time varying thermal trends at hydrothermal systems in unrest,

with a focus on Vulcano (Aeolian Islands, Italy).

Keywords— Anomaly Detection, Volcanic Hydrothermal Systems, Multivariate Time Series, Artificial Intelli-

gence, Deep Learning, Knowledge Systems
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Résumé

Dans de nombreux domaines d’application, l’exploration non supervisée d’anomalies temporelles dans des séries

chronologiques multivariées constitue un défi à de nombreux titres. Cette exploration, lorsqu’elle est appliquée à des

systèmes de capteurs tels que des capteurs de surface, les engins spatiaux ou les satellites, peut évaluer des situa-

tions dangereuses ou découvrir des phénomènes inexplorés. L’objectif de cette thèse est de développer un modèle

de Deep Learning piloté par les données, capable d’émettre des alertes concernant l’instant, l’emplacement et la

gravité des crises environnementales dans les systèmes hydrothermaux. La compréhension des caractéristiques

de modélisation pour faciliter la détection et l’interprétation de ces phénomènes reste en effet à ce jour limitée.

Pour répondre à ces problématiques, cette thèse examine les limites de la littérature et propose ensuite une

nouvelle solution, appelée DITAN. DITAN est un cadre non supervisé et agnostique développé spécifiquement pour

relever le défi de la détection et de l’interprétation d’anomalies temporelles. Il utilise une architecture encodeur-

décodeur avec des mécanismes d’attention et une structure dynamique avec optimisation des hyperparamètres

pour apprendre le comportement normal comme des motifs réguliers de contexte-horizon. Le modèle prédit la

normalité et identifie les régions critiques associées à des défauts de prédiction élevés pour détecter les anomalies.

Ces dernières sont interprétées à la fois numériquement, en examinant leurs causes profondes et leurs similitudes,

et physiquement, en utilisant des règles SI-ALORS temporelles et la capacité de raisonnement d’un système de

connaissances.

L’efficacité de DITAN est évaluée sur sept ensembles de données réelles contaminées par différents types

d’anomalies temporelles de durées variables. Les capacités de détection de DITAN sont évaluées par rapport à

la vérité terrain et comparées à onze approches basées sur des modèles profonds issues de la littérature. En

outre, l’interprétation numérique des anomalies détectées par DITAN est vérifiée empiriquement. Les résultats

montrent que DITAN surpasse la littérature existante en termes de précision, au prix d’un taux de rappel plus faible,

principalement dû à la sous-capture des anomalies réelles. Pour obtenir des résultats optimaux, il est essentiel de

définir avec soin le contexte et la taille de l’horizon.

DITAN est ensuite appliqué pour évaluer les scénarios de risque dans les systèmes hydrothermaux volcaniques,

détectant les anomalies causées par des facteurs externes à la surface d’un système hydrothermal stable. Les

résultats présentent une chronologie de quatorze événements physiques, chacun d’entre eux étant évalué par
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un niveau de risque et vérifié par rapport aux valeurs réelles des capteurs. Plus précisément, dix occurrences

impliquent deux événements météorologiques, tandis que quatre occurrences sont attribuées à trois événements

externes de surface qui indiquent une baisse de température dans différentes zones. Ces anomalies d’origine

externe peuvent alors être nettoyées et supprimées des périodes où les facteurs internes deviennent variables et

où, par conséquent, le système hydrothermal devient instable.

DITAN étant un cadre agnostique en raison de ses capacités d’optimisation des hyperparamètres, sa structure

peut être adaptée pour être appliquée à divers problèmes impliquant des séries temporelles multivariées.

Cette thèse a été financée par l’Agence Nationale de la Recherche (ANR, Programme CES 04 Innovations sci-

entifiques et technologiques pour accompagner la transition écologique) à travers le projet DIRE (Data-Integration,

Risk and the Environment ; Project No : ANR-19-CE04-0014-01). ANR-DIRE est dirigé par trois laboratoires CNRS

de Clermont-Ferrand (LMV, LIMOS, LPC) et vise à définir les tendances thermiques variables dans le temps des

systèmes hydrothermaux en agitation, avec un focus sur Vulcano (Iles Eoliennes, Italie).

Keywords— Détection d’Anomalies, Système Volcanique Hydrothermal, Série Temporelle Multivariée, Intelli-

gence Arificielle, Deep Learning, Système Expert
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Chapter 1

Introduction

Surfaces at active hydrothermal systems are heated by an enhanced heat flux due to the condensation of water at

depth of a few hundred meters below the surface, as depicted in Figure 1.1. Changes in internal factors, especially

the heat flux component supplied by the magma body, changes the degree of heating, and hence the thermal

anomaly recorded at the surface. For example, an injection of new magma can result in increased heat fluxes

(e.g. [88], [89] and [90]) and, thus, an increase in the magnitude of the thermal anomaly. Alternatively, changes in

the permeability can alter the efficiency of heat transfer. For example, fracturing of self-sealed zones will increase

permeability, and hence heat flow and heating of the surface [86]. However, such low magnitude, “geothermal”

anomalies [81] can also been modulated by at-surface external to the magmatic and hydrothermal systems, such

as rain, wind, and solar heating. These multi-probe data are recorded in an orderly fashion and correlated in time

constituting a multivariate time series1, in which each time step represents a vector of sensor values referred to as

a record. The aim here is to identify anomalies created by external factors using deep learning.

1Note that the techniques discussed in this thesis only consider regularly sampled time series with the same temporal granularity in all
dimensions
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Figure 1.1: The Problem description of an active hydrothermal system

1.1 Temporal-based Anomaly

A temporal-based anomaly or simply anomaly, is one or more consecutive records (e.g. 3 time-steps) in which

sensor values (e.g. pressure and wind speed) deviate from their expected or "normal" behavior. To examine the

possible states of an anomaly with respect to its number of records and sensors, this thesis introduces the concept of

the anomaly exploratory space (AES). The AES is a three-dimensional space where the depth and width represent

the feature and temporal resolution respectively, while height corresponds to the severity (anomaly) score. In the

AES, an anomaly is depicted as a three-dimensional object at four possible states, demonstrated in Figure 1.2.
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Figure 1.2: Temporal-based anomalies on the anomalous exploration space (AES). Normal values are color-coded
in white, and anomalies in red

1.1.1 Feature Resolution

The feature resolution of an anomaly, refers to the number of sensor values within it. An anomaly can either be

contaminated by a subset or by the full-set of its sensor values. The former case is called a subspace anomaly

with respect to those sensors, while the latter is called fullspace anomaly. In Figure 1.2, the fullspace anomaly is

depicted in the top-right and bottom-right panels, while the subspace anomaly is represented in the top-left and

bottom-left panels.

1.1.2 Temporal Resolution

The temporal resolution of an anomaly, refers to the number of records within it. A point anomaly is a sub/full space

anomaly occurring in an individual record. It is referred to as an individual, because the previous record and the

next record is not contaminated. Instead a subsequence anomaly comprises two or more consecutive sub/full space

anomalous records, not necessarily contaminated by joint sensors. In Figure 1.2, the point anomaly is illustrated in

the top-left and top-right panels, and the subsequence anomaly is represented in the bottom-left and bottom-right

panels.
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1.1.3 Severity Score

The severity score of an anomaly, refers to the intensity of its contamination. To assess the severity of an anomaly,

each sensor value is given a score as a result of the difference between the actual sensor value and the predicted

(or estimated) value. To identify the turning point from normal to abnormal, it is necessarily to establish a threshold

that uses both the temporal and feature resolutions. In Figure 1.2, anomalous (red) sensor values exhibit varying

severity, however their minimum magnitude is always higher than the maximum of normal (white) values. The

severity score is also an indicator of whether it is a local or global anomaly. Local anomalies typically receive lower

scores due to their limited impact on the time series as a whole, being primarily confined to a specific region in data.

Global anomalies, conversely, tend to receive higher scores, indicating their widespread impact on the time series

and significance across multiple data regions.

1.2 Exploring Anomalies on Hydrothermal Systems: Requirements

Anomalies due to external drivers can be detected and classified as it is given in Figure 1.3. If carried during a period

when external drivers are variable, but internal drivers are stable, all anomalies will be characteristic of a “stable”

hydrothermal system whose surface temperature anomalies are only driven by atmospheric effects and meteorolog-

ical events (the atmospheric system). Once this is defined, then such externally-driven anomalies can be identified,

cleaned and removed from periods when the internal drivers become variable and, hence, the hydrothermal system

becomes unstable.

Figure 1.3: Data organization and guidance to detect surface-related anomalies
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1.2.1 Data Characteristics

To provide time series data capable of addressing the problem, a sensor network was installed at the active hy-

drothermal system of the Fossa Crater located in Vulcano, Aeolian Islands, Italy. This network provided a multivari-

ate time series comprising 85000 records, each record characterized by 7 sensors; two sensors from the surface

system and five sensors from the atmospheric system (Figure 1.3). A record is sampled every 5 minutes over a

one-year period in 2020, during which the internal system remained stable (Figure 1.1). Therefore to detect anoma-

lies created by external factors on the surface of Vulcano, it is crucial to use a deep learning detection technique

that supports the system’s characteristics; (a) anomaly within correlated multivariate factors (i.e., surface and atmo-

spheric systems), (b) anomaly of varying temporal resolution (e.g., 1 hour or 3 days), and (c) learn the expected

(regular) behavior of the system in an unsupervised environment without relying on prior knowledge.

1.2.2 Deep Model-based Anomaly Definition

In an unsupervised environment where labels are not available, determining a threshold becomes crucial in convert-

ing the severity score into binary classification (normal or anomalous). Consequently, the definition of an anomaly

is closely tied to the underlying assumptions of the detection technique employed. In a recent survey [8], seven

anomaly detection techniques were reviewed. These detection techniques are summarized in Table 1.1 and linked

to the feature and temporal resolutions defined in Sections 1.1.1 and 1.1.2.

Detection Techniques Feature Resolution Temporal Resolution

Model-based (Prediction and Estimation) Multi/Univariate Point / Sub sequence
Density-based Multi/Univariate Point

Histogram-based Multi/Univariate Point
Dissimilarity-based Multi/univariate Point / Sub sequence

Discord-based Univariate Sub sequence
Frequency-based Univariate Sub sequence

Information-Theory Univariate Sub sequence

Table 1.1: The detection techniques for temporal-based anomalies

Of the detection techniques collated in Table 1.1, model-based and dissimilarity-based techniques are able to

support all the mentioned anomalous states. However, model-based techniques force the model to learn, instead

of only comparing with the underlying characteristics of normality. This leads to more interpretable anomalies with

flexible definitions which can be achieved by adjusting the model parameters. There are two types of model-based

techniques. The deep model-based techniques that learn representations using neural networks, and the traditional

model-based techniques which rely on explicit mathematical models and often require manual feature engineering.

The benefits of model-based techniques are also stressed in [1], who concluded that both deep and traditional

model-based techniques are a similarly good choice, with no significant difference in anomaly detection across the
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datasets used to assess the models. However, [1] found that deep model-based techniques were shown a better

choice when local anomalies.

1.2.3 Generic Learning Feature Representations of Normality

In their survey on deep model-based techniques, [40] categorized methods into three main frameworks, as given

in Table 1.2. Each of these frameworks exhibit a different relation of feature learning and anomaly scoring. In

the first framework, a fully disjoint relation is implemented, where an independent anomaly scoring method is ap-

plied on the features extracted by a deep model-based method. However, this approach often yields sub-optimal

anomaly scores. In contrast, the second framework utilizes deep modeling to jointly learn feature representa-

tions and anomaly scores, establishing a fully joint relation. However, this approach requires prior knowledge of

anomalies, which is not be feasible since data are not labeled. The third framework addresses these limitations by

introducing a coupled relation that incorporates some form of dependency between modeling and anomaly scoring.

Particularly, the Learning Feature Representations of Normality is the only framework aiming to learn meaningful

feature representations of normality. It accomplishes this in two ways: through a measure-dependent approach lim-

ited to a shallow anomaly measurement (e.g. distance-based), or through a generic approach that captures various

forms of normality as regularities. This, third, framework results into more interpretable anomaly scores, since less

frequent patterns in data are expected to result in less frequent feature representations and thus higher anomaly

scores. However, the learned feature representations can be biased by infrequent regularities and the presence of

extreme values (outliers) in the training data.

Framework Categories Learning / Scoring Relation

Deep Learning for Feature Extraction - Fully Disjoint
End-to-end Anomaly Score Learning - Fully Joint
Learning Feature Representations of Normality Generic/Measure-

dependent
Coupled

Table 1.2: Model-based deep anomaly detection frameworks

1.2.4 Predictability Modeling

Hence, the choice of modeling is crucial for both detection and interpretation tasks. The four deep model perspec-

tives by [40], that comprise the generic learning feature representations of normality framework, are summarized

in Table 1.3, corresponding to four different definitions of anomaly. For the data set and problem considered here,

I use the perspective of Predictability Modeling (PM) to learn (system’s) normal behavior and subsequently define

(externally-driven) anomalies. This is because PM encompasses the integral temporal properties of a time series

to form the basis of my approach: DITAN.
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Model Perspective Anomaly Definition

Auto-encoders (AE) Irregular records cannot be reconstructed from compressed space
Generative Adversarial Networks (GAN) Irregular records cannot be generated from latent feature space

Predictability Modeling (PM) Irregular records are not temporally predictable
Self-supervised Classification (SSC) Irregular records are inconsistent within classifiers

Table 1.3: The model perspectives of the generic learning feature representation of normality framework

1.3 The DITAN Framework

In this thesis, I develop DITAN2, a framework, to detect and interpret temporal-based anomalies, built upon three

assumptions: (1) time series data are predictable, (2) normality is identical to regularity, and (3) irregular records

are temporally less predictable than regular records. DITAN is developed on Python programming language, with

the overview of its modules illustrated in Figure 1.4. The pros and cons of the techniques used to implement the

modules of DITAN are summarized in Table 1.4, and detailed across Chapters 3 and 4.

Figure 1.4: The overview of the DITAN framework

2https://github.com/migiannoul/DITAN

15



Section Technique Advantage Disadvantage

3.2.1 Implicit and Explicit Attention support temporal information extra hyper/model parameters
3.2.2 Regularization mitigate overfitting extra Epochs
3.4 Hyper-parameters Optimization domain-agnostic modeling extra executions
3.3.1 Critical Peaks anomalies of scalable severity prone to miss-alignment
3.3.2 Critical Regions anomalies of scalable duration prone to miss-alignment
3.3.3 Built-in Pruning reduce miss-alignment bandwidth selection
4.1.1 Root Cause the contributors to an anomaly -
4.1.2 Internal Similarity group detected anomalies clusters selection
4.2.2 Knowledge System infer physical anomalies knowledge maintenance

Table 1.4: Pros and cons of the core technical choices of DITAN

In the training phase, I use both implicit and explicit attention to better memorize temporal signatures across the

time series, at the cost of additional hyper/model parameters. I regularize these parameters to control overfitting

during training, which leads to the need for more parses over the training sequence (epochs). The model parameters

and number of epochs are then optimized, at the cost of time-prone iterations. Moreover, in the detection phase, I

explore varying length temporal-based anomalies using critical peaks/regions, in exchange of possible misalignment

across the vertical (frequency) and horizontal (temporal) axes. I force a correction on misalignments via a pruning

methodology, which is sensitive to their spread (bandwidth). However, a moderate magnitude peak may still be

overshadowed (in the frequency space) by a tail from larger peaks.

In the interpretation phase, detected anomalies are interpreted both numerically and physically. Numerical

interpretation involves utilizing a low-cost root cause formula to assess the contribution of sensors to the detected

anomalies within the data space, while their similarities are estimated within the model space using a clustering

methodology that is sensitive to the defined number of total clusters. On the other hand, the detected anomalies

are interpreted into physical events with risk implications, by developing a knowledge system. In this regard, and

within the domain of artificial intelligence, risk is defined automatically using the severity scores. However, the

maintenance of its knowledge is the task of domain experts who need to assess, interpret and classify the output.

1.4 Contributions

Having identified the approach most suitable to the data set and objective in hand (section 1.2), the remainder of

this thesis is organized as follows: First, in Chapter 2, I discuss related work and knowledge gaps in the domain of

generic learning feature representations of normality. My work attempts to address these limitations by describing

the formal foundations for anomaly detection (Chapter 3), and carrying out an interpretation of temporal-based

anomalies (Chapter 4). Next, I evaluate the effectiveness of the DITAN approach (Chapter 5), and in Chapter 6 I

apply the approach to the real-world scenario (see Section 1.2) where anomalies created by external factors are
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present in a time series data set for a stable hydrothermal system, but unlabeled. Finally, I assess directions for

future research (Chapter 7). Across these chapters, The major contributions are:

• I identify gaps in current literature on detecting and interpreting temporal-based anomalies (Section 2.5);

• I propose a pre-processing approach tailored to predictable multivariate time series (Section 3.1);

• I introduce a domain-agnostic neural network architecture to predict normality (Section 3.2);

• I explore dynamic thresholding on error sequences as an anomaly detection method (Section 3.3);

• I investigate anomaly interpretation in both feature and model space (Section 4.1);

• I investigate classifying anomalies into different physical event groupings using domain-specific knowledge

(Section 4.2);

The DITAN approach shows leading predictability power across different multivariate channels (Section 5.4), and

demonstrates improved precision in anomaly detection (Section 5.5). In addition, the numerical interpretations of

the DITAN approach are validated (Section 5.6). As a result, the application to the problem of anomaly detection in

time series data for a volcanic hydrothermal system, and the physical interpretation of these anomalies, provides

useful insights to the impact of chronologically ordered meteorological events on the surface temperature recorded

for a hydrothermal system over a period of one year (Section 6.7).

The Chapters 2, 3, 5 and Section 4.1, have been published in [80] with title "DITAN: A deep-learning domain

agnostic framework for detection and interpretation of temporally-based multivariate ANomalies", on the Elsevier

journal of "Pattern Recognition", with DOI: "https://doi.org/10.1016/j.patcog.2023.109814" by the authors: Michail

Giannoulis (myself), Andrew Harris (co-supervisor) and Vincent Barra (supervisor), which sets up and validates the

DITAN framework using data sets well-known to artificial intelligence community. The rest of this thesis, Chapter 6

and Section 4.2 will be used for a paper that achieves the objective of this work at a hydrothermal system, that is to

detect and define the cause of anomalies in the data sets collected for Vulcano in the year 2020.
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Chapter 2

Gap Analysis: A Review of the Problem

In this chapter, I assess literature gaps by conducting a comprehensive analysis of recent work on Generic Learning

Feature Representation of Normality. I specifically focus on the four model perspectives outlined in Table 1.3, also

referred to as meta-networks equipped with one or more basic neural networks, such as feed-forward, convolutional,

or recurrent networks.

For all model perspectives, the objective is to learn the feature representations in the form of general regularities,

within a bulk of mostly normal records. Since a model is composed of artificial neural networks, regularities are

expressed through weights Θ,W . During the learning process, these weights are learnt by minimizing a loss function

of the form

Θ∗,W ∗ = arg min
Θ,W

∑
c∈C

l(ψW (ϕΘ(c)), h)

Here, a context c is a sequence of one or more consecutive multivariate records, representing the input data.

A function ϕΘ, parametrized by weight Θ, maps a context c ∈ C from original space onto a latent representation,

z ∈ Z. A surrogate learning task ψW , parametrized by weights W, operates on latent space and is dedicated to

enforce the learning of underlying regularities, mapping latent representation z to a horizon ĥ ∈ H back into original

space. A horizon ĥ is a sequence of one or more consecutive multivariate records, representing the generated

output data. Next, a loss function l relative to the underlying modeling approach compares ĥ to the corresponding

actual data h. Where, higher weights are expected for regular (normal) patterns.

The purpose of modeling is to forecast normality, by utilizing the trained weights W ∗,Θ∗ along with mapping

functions to construct any horizon ĥ given a context c, i.e ĥ = ψW∗(ϕΘ∗(c)). The relation of the records between

ĥ and c is controlled by the forecasting protocol. In an estimation-based protocol (AE, GAN and SSC, Table

1.3), records in ĥ correspond one by one to c, indicating their estimated normal behavior. In the prediction-based

protocol (PM), records in ĥ correspond to subsequent records of c, indicating the predicted normal behavior of a
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future sequence. The goodness of a horizon ĥ is assessed using a scoring function f, i.e. score(h) = f(c, ϕΘ∗ , ψW∗).

2.1 Autoencoders

The Auto Encoder (AE) approach aims to learn some low-dimensional feature representation space from which

the given records can be well reconstructed, assuming that normal records can be better reconstructed from com-

pressed space than anomalous records. In the literature there is a large family of reconstruction meta-networks with

plenty of recent applications (Table 2.1).

Meta Network Type Basic Network References

AE

Multilayer MLP [2]
Convolutional CNN [9]

Recurrent
LSTM [18, 32, 33, 43]
BiLSTM [55]

Conv & Recurrent
CNN, ConvLSTM [53]
CNN, LSTM [51]

Ensemble AE Recurrent LSTM [24]

Denoising AE
Recurrent MLP & RNN [30]

BiLSTM [35]

Variational AE

Multilayer MLP [28]
Convolutional CNN [36]

Recurrent
GRU [27, 44]
BiLSTM [42, 41, 52]
CNN-GRU [54]

Table 2.1: Recent literature instantiations on AE

An AE is composed of two identical and symmetrical networks: an encoder E and a decoder D, trained with a

collaborative objective (Figure 2.1).

Figure 2.1: Architecture of an AE

E learns to map the input data c onto a low-dimensional feature representation z, while D attempts to find

ĥ ≈ h = c from z. Hence, the objective of E and D is to identically reconstruct the input data with D(E(c)), by min-

imizing the reconstruction error (RE) loss function. Both networks are composed by one or more basic networks.
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A standard AE architecture was implemented in [2, 9, 33, 18, 43, 32, 55, 53, 51, 24] to reconstruct the records

of a multivariate time series. From these, [2, 9] used only feed forward (MLP, CNN, Table 2.1) layers. However,

conventional (feed-forward) neural networks make the assumption that data is independent in time, which does

not hold for sequential data [41] , such as time series. Therefore, recurrent networks are often used. Specifically,

[18, 24, 32, 33, 43, 55] authors used only recurrent (LSTM, BiLSTM, GRU, Table 2.1) layers to capture the temporal

aspect of the data. Because in some cases features are all-to-all correlated, as in a spatial domain (e.g. image

pixels), [51, 53] used both feed forward (CNN) and recurrent (LSTM) layers to capture both spatial and temporal

patterns. In particular, [53] both encoder and decoder consisting of CNN layers connected through an additive [3]

attention based ConvLSTM layer, to adaptively select relevant hidden states across different time steps. On the

other hand, [51] used two networks connected in sequence through a window feature sequence layer. CNN layers

are first employed to extract spatial feature maps from data. Then, these features are reconstructed using LSTM

layers in both the encoder and decoder, capturing potential temporal relevance.

An ensemble of standard AE architectures is proposed in [24], where each AE is trained independently and en-

courages sparsity in the LSTM layers by randomly removing some connections. An interesting modification in the

learning process is proposed by [2, 9], who replaced the standard learning process with an adversarial approach to

increase robustness in detecting small anomalies.

Denoising AE (DAE) learn representations that are sensitive to small variations, by forcing the hidden layers to

retrieve more robust features and preventing the model from simply learning the identity. [35] used a denoising AE

with bidirectional LSTM (BiLSTM) layers to learn robust temporal patterns in both positive and negative directions

of the time axis. In addition, [30] proposed a DAE using simple feed forward (MLP) layers to capture feature

representations, and then passed these representations to a simple RNN layer to address short-term temporal

relations. Due to the difficulty of having a single global objective function for the whole structure, [30] proposed a

layer-wise training procedure in which they first trained the MLP layers, then the RNN layers before finally performing

a fine tuning to update the parameters of the entire model.

In [27, 28, 36, 42, 41, 44, 52, 54] a Variational AE (VAE) based approach was suggested, introducing a regu-

larization into the representation space by encoding records using a prior parametrized distribution over the latent

space. Basically, [27, 42, 41, 44, 52] used only recurrent (GRU and BiLSTM) layers, from which [41] employed

a self-attention mechanism to improve the encoding-decoding process, with [27, 52] presenting some interesting

customizations. In [27], the learning process was modified in a way that encouraged both smooth mean and vari-

ance transitions over time, to result a variational smoothness regularizer. [52] extended the VAE architecture to

improve modeling capabilities of normal data, accompanied by a loss function which takes into account normal data

characteristics. BiLSTM layers were used to construct a re-encoder layer after a creation of VAE network, enabling

the extraction of more data features including both original and latent space. A constraint network was then stacked

to limit the model ability to reconstruct abnormal data. A VAE network with only feed forward (CNN) units was also
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used by [36].

Although feed forward layers are not ideal for capturing temporal information, the VAE network of [36] captured

multiple local temporal dependencies by applying a series of convolutions (encoder) and deconvolutions (decoder)

with different filter sizes over a windowed time series. Another interesting approach is found in [54], which used

convolutional GRU layers to explicitly and jointly capture temporal and spatial dependencies. Finally, [28] trained

an encoder and a decoder using dense (MLP) layers in a self-adversarial manner. In the training process, the

reconstructed records from decoder are handed back to the encoder to produce the fake latent space. The en-

coder is also used to judge the "realness" of the reconstruction. The objective of the encoder is to minimize the

divergence between the latent space and prior, and to maximize the divergence between the "fake" latent space

and prior space. The difference in these models is that VAE instantiations are stochastic generative models that

can give calibrated probabilities, while AE instantiations are deterministic discriminative models that do not have a

probabilistic foundation.

2.1.1 Anomaly Score

The simplicity of reconstruction forces the vast majority of models [9, 18, 28, 30, 32, 35, 36, 43, 44, 51, 54] to as-

sess an anomaly score using its reconstruction error over the original feature space, i.e score(h) = ||h− ĥ||. In [53],

the anomaly score was defined as the number of poorly reconstructed pairwise correlations, using a predefined

threshold. Instead, in [24] the score was defined as the median of its N reconstruction errors over an ensemble

architecture. In [33], Maximum Likelihood Estimation (MLE) was applied to estimate parameters mean µ and stan-

dard deviation Σ of a Normal distribution. Likewise [55] proposed a division relation, considering both forward ĥ and

backward ĉ reconstruction terms, due to their bi-directional architecture:

score(h) =
((||h− ĥ||2 + ||c− ĉ||2)/2− µ)2

2σ2
(2.1)

In [33], parameters were combined in a multiplicative way,

score(h) = (||h− ĥ|| − µ)⊤Σ−1(||h− ĥ|| − µ) (2.2)

Other studies [27, 41] make use of the advantages of their variational architecture to assess an anomaly score

based on the reconstruction probability using the Sequential Monte Carlo of L iterations:

score(h) = − 1

L

L∑
l=1

log(p(h|µ(l)
h , σ

(l)
h )) (2.3)

In [42], an anomaly score is assessed using only its (variational) latent representation using a binary (K-means,
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Spectral and Hierarchical) clustering on µz, as well as the computation of the median Wasserstein distance in both

µz and Σz. In [52], an anomaly score was computed as the normalized addition between the original and latent

reconstruction terms, constrained by complementary weights b:

score(h) = norm(b||h− ĥ||1 + (1− b)||z − ẑ||1) (2.4)

2.1.2 Anomaly Detection

Detecting anomalies by thresholding anomaly scores is a very different issue. Several AE models use a trivial

approach to determine a threshold; classifying records into normal or anomalous. A static threshold was deployed by

[30, 52] using a fixed reconstruction error value, and in [28, 43] using a fixed quantile over the reconstruction errors.

In [43] the quantile was updated over time during the testing phase of the anomaly score, maximizing accuracy. A

hyperparameter β can also be introduced into the threshold computation, shifting the median of reconstruction errors

[35], or the maximum of the poorly reconstructed errors, in validation data sets [53]. [36] defined a threshold value as

the addition between the mean and two standard deviations of the reconstruction errors in a training sequence. The

Extreme Value Theory (EVT) was used in [44] to determine a threshold over reconstruction errors. The advantage

of EVT is that it makes no assumption on data distribution when finding extreme values. Similarly, [32] was based

on the central limit theorem over reconstruction losses to construct a threshold. Basically, the notion of the quantile

can be extrapolated using EVT, when there is only normal data.

Thresholds can also be computed using performance measures. [33] selected the threshold maximizing the

precision (P) - recall (R) relation over the likelihood values, and [18, 27, 54] chose to maximize the F1-score from

a range of thresholds determined using the Area Under the Curve (AUC) of the PR curve. Some methods do not

search for a specific threshold at all. In particular, [9] kept raw scores, sorting them in descending order. In [42, 41]

a set of thresholds was proposed according to the AUC of the ROC curve. Similarly, [24] used both AUC-PR and

AUC-ROC to include all possible thresholds. As an alternate to thresholding, anomalies in [55] (and also [51]) were

detected using a Gaussian Segmentation Model (called a softmax classifier ).

2.1.3 Anomaly Interpretation

Apart from scoring and detecting anomalies, only three of the aforementioned instantiations [9, 44, 53] investigated

the anomaly characteristics. [9, 53] reported the root cause of each anomalous record using the top-k sub scores

of its features. Instead, [44] used feature reconstruction probabilities in ascending order, under assumption that the

most anomalous features can provide sufficient clues to understand and troubleshoot the detected anomaly. Note

that [53] additionally reported the severity level as a function of the duration (length) of subsequence anomalies.
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2.2 GANs

Generative Adversarial Networks (GAN) aim to learn a generative model capturing the normality of the given

records, assuming that normal records can be better generated from the latent space than anomalous records.

Table 2.2 gives an overview of some models that have used GANs. A standard GAN is composed of two networks

trained simultaneously using adversarial objectives (Figure 2.2). A generator G network takes, as input, a noise vec-

tor z randomly selected from a latent space Z to generate a fixed size subsequence of synthetic records ĥ ≈ h = c.

These records are supposed to be realistic, capturing the actual c data distributions. Instead, a discriminator D

network takes as input either actual c or synthetic h records to estimate a prediction score. The objective of G is to

fool D that its synthetic records are real, while the objective of D is to correctly distinguish between synthetic and

actual data.

Meta Network Type Basic Network References

GAN
Multilayer and Convolutional MLP& CNN [45]
Recurrent LSTM [26, 4]

AE-GAN
Convolutional CNN [56]
Convolutional and Recurrent BiLSTM, CNN [14]
Multilayer MLP [49]

VAE-GAN Recurrent LSTM [39]

AE-E-GAN
Convolutional and Recurrent CNN, ConvLSTM [23]
Convolutional CNN [21]

Table 2.2: Recent literature instantiations on GAN

Standard GAN architectures are proposed in [4, 26, 45] to identically generate the records of a multivariate

time series. Univariate models are instantiated in [45], one per sensor, using feed-forward layers in both generator

(MLP) and discriminator (CNN). A recent study by [25] suggests that recurrent (LSTM) layers are more suitable for

the learning procedure of generative networks over complex time series data, due to their memory blocks. As a

result, [4, 26] used a multivariate model using only LSTM layers for both generator and discriminator, and proposed

a shallow discriminator and a medium depth generator, to capture anomalies when there is a small number of

available records [4]. If standard GANs architectures learn to generate data from a latent space using the generator,

they do not learn the inverse mapping G−1 back to the latent space.
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Figure 2.2: Architecture of a GAN

Several studies [14, 39, 49, 56] have introduced an encoder E that learns G−1. Hence, the generator takes on

the role of a decoder, formulating a new network G composed of an encoder GE and decoder GD, interacting to

minimize a reconstruction (apparent) loss, i.e., a distance measure between actual records h and reconstructed

(generated) records ĥ in the original space. GE and GD are trained simultaneously or in a post-hoc manner to

maintain the training complexity. In [14, 49, 56] the generator is a standard AE network, used to simultaneously

map from the latent space to data space GD(z) and vice versa GE(c). In [39], the generator is a variational AE,

applied to additionally learn a distribution in the latent space Z. A more advanced architecture is proposed in [21, 23],

who introduced an additional encoder E’ after a standard AE generator, to enforce similar inputs to lie close to each

other in both original space and latent space. This variation introduces a new loss term for G, the latent loss,

representing the distance between z and ẑ, where ẑ is the encoded bottleneck representation of ĥ. Finally, in

[21], a binary cross entropy term over the prediction scores of the discriminator on h in the loss function of G was

introduced.

The one and only task of the discriminator is to distinguish between actual h and generated ĥ records. If [21, 49,

56] used MLP, [14, 23, 39] retained temporal information. In [39] LSTM layers are used to implicitly learn temporality,

while in [14] BiLSTM (respectively CNN) layers are defined for G (resp. D), with the aim of capturing local temporal

features. In [23], an explicit attention layer is introduced through the use of a smoothed attention mechanism over

an additional ConvLSTM layer along CNN layers, to jointly capture the spatial patterns and temporality.

A fundamental problem of GAN architectures, namely mode collapse, is that the generator tends to learn only

a small fraction of data variability, such that it cannot perfectly converge to the actual distribution. This is mainly

because the generator is reluctant to produce records that capture other modes in data beyond the ones which fool

the discriminator. To overcome this limitation, [14, 23] applied Wasserstein loss as the adversarial loss. In this way,

the generator is forced to not only focus on a subset of distribution and thus to theoretically converge to the actual
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distribution.

The purpose of GAN is to reconstruct the input time series. However, an adversarial loss alone cannot guar-

antee mapping an individual record to a desired latent space, from which the record reconstruction can then be

mapped. To reduce the search space of the mapping function, [14] adapted a cycle consistency loss to time series

reconstruction, introducing two critics Ch and Cz to the discriminator, where, Ch is an indicator of how real the actual

or generated records are, and Cz measures the "goodness" of the mapping into a latent space. Interestingly, they

concluded that adding backward consistency loss did not notably improve the performance.

2.2.1 Anomaly Score

The architecture preferences also affect the anomaly scoring methodology. In standard GAN architectures, G is fed

with a random vector z to generate a horizon ĥ. The horizon is acquired through a series of λ back propagation

steps to update the parameters of G until ĥ is close to the input context. Thus an anomaly score can only be

determined after λ iterations.

In [45], an anomaly score was assessed for each sensor s as the prediction score of discriminator for its gener-

ated horizon:

scores(h) = Ds(Gs(zλ)) (2.5)

In [4, 26], both generator and discrimination losses were considered. The former term measures the reconstruc-

tion error in the original space, while the latter measures the error in a rich feature space of the last intermediate

layer f in the discriminator:

score(h) = (1− α)||h−G(zλ)||1 + α||f(h)− f(G(zλ))||1 (2.6)

The addition of an encoder GE in the generator of a GAN architecture is useful also in the anomaly scoring

process. Such an architecture does not require λ back propagation steps. Instead, GE is handed directly to the

context c to estimate a latent representation GE(c), which is then fed to GD to generate a horizon ĥ = GD(GE(c)).

For example, [49] used both terms proposed in Eq. 2.6 and introduced scalars nh, nf , κ, where, nh is the number

of sensor values of the input record h, nf is the number of neurons of the f layer, and κ is a coefficient to adjust the

weights of the reconstruction and feature losses:

score(h) =
κ

nh
||h−GD(GE(c))||2 +

1

nf
||f(h)− f(GD(GE(c)))||2 (2.7)

[56] only retained the first error term of Eq. 2.7 to define their loss function.

A relatively low prediction score is expected for input records which do not conform to the distribution of normal

data. For this direction, reconstruction error along with the prediction score of discriminator for the actual data were
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used in [39]:

score(h) = (1− α)||h−GD(GE(c))|| − αD(h) (2.8)

In [14], a reconstruction error was used along with critic Ch of their discriminator as an indicator of how real

the actual input record is. Due to the contractive definition of the anomaly score, they standardized the scores into

z-scores Z. Two scoring functions were used, where for h this is:

score(h) = αZ(||h−GD(GE(h))||)⊙ Z(Ch(h)) (2.9)

The addition of an encoder E’ after the generator of a GAN architecture is useful also in the anomaly scoring

process. Such an architecture introduces the error between the latent representation z of h and the reconstructed ẑ

of ĥ. For example [21] defined a score taking into account the reconstruction errors in both original (h, ĥ) and latent

(z, ẑ) spaces:

score(h) = α||h−GD(GE(h))||+ (1− α)||GE(h)− E′(GD(GE(h)))||2 (2.10)

In [23], the anomaly score was defined as the number of poorly reconstructed pairwise correlations, using a

predefined threshold, considering the reconstruction in both original and latent space, to be less sensitive to severe

anomalies.

2.2.2 Anomaly Detection

Detecting anomalous records is usually related to thresholding of anomaly scores. A dynamic thresholding method-

ology was proposed by [45], where a sensor value was considered anomalous if its anomaly score was higher than

the prediction score of the discriminator for its actual sensor value. Static thresholds have also been proposed,

either as predefined [4] values extracted using a fixed quantile over the reconstruction errors in training sequences

[26], or using a locally adaptive [14], or even optimized [23, 39], approach. In [14] noticed that the sliding windows

may produce false positives and, based on [20], applied a pruning methodology to mitigate them. In this approach

each window is first assessed by its maximum anomaly score, and then a decreasing percent for all descending

scores is computed, re-classifying as normal each window that does not exceed a certain threshold.

Alternatively, some methods used no threshold at all. Anomaly scores in [49, 56] were reported as heat maps,

where sensor values with hot colors, attracted expert attention to the anomalous portions. In [21], the raw anomaly

scores were simply reported, in which the closer to zero the anomaly score was, then the more "normal" the record

was considered.
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2.2.3 Anomaly Interpretation

Root causes of anomalies were examined in [23], to automatically extract the number of root causes using an elbow

method on the anomaly scores distribution, as opposed to [53] which fixed the number of root causes as three. With

this approach, [23], aim to find the point where the amount of errors become very small and close to each other.

2.3 Self-Supervised Classification

A few estimation-based models have been proposed using Self Supervised Classification (SSC). This approach

learns representations of normality by building classification models in a self-supervised manner, and identifies

records that are inconsistent with these models as anomalies. Traditionally, shallow methods have been introduced

based on cross-feature analysis [19] and feature models [47], in which each model evaluates a sensor value of a

record with respect to the rest of its sensor values. Hence, the consistency of a record is measured either as the

average prediction results [19] or as the majority voting of binary decisions [47]. Recently, deep methods [16, 48]

have focused on capturing spatial information in images and on using transformation-based feature augmentation

to build different models. Formally, a context c is augmented by T different transformations, parsed through a

function ϕ to result in a latent representation for each transformation {z(1), .., z(T )}. The latent representations are

then fed to a multi-class classifier ψ to result the corresponding horizons {ĥ(1), .., ĥ(T )}. A standard cross entropy

loss is then applied over (ĥ(j), h(j)) pairs, where h(j) encodes the synthetic class for records augmented using the

transformation operation T(j). In [16], the classification scores resulting from ψ were aggregated using a simple

average associated with different T(j) to compute the anomaly score. In [48], three strategies were proposed to

define the anomaly scores: average prediction probability, maximum prediction probability and negative entropy

across all prediction probabilities.

Although the both traditional and deep models have focused on image data, there are some slight variations

applicable to audio signals [15] or to broad types of data [6, 22]. Different types of audio-inspired augmentations

were applied in [15], together with application of convolutional layers and resulting softmax classification scores, to

define anomaly scores. Instead of using geometric or audio-inspired transformations, [6] used feature-level trans-

formations to map data into a finite number of subspaces, before learning a feature mapping that maximizes the

difference between inter-class and intra-class separations. Fully connected layers and resulting softmax classifica-

tion scores over subspace transformations were then used to assess anomaly scores. In [22], authors proposed

the autoML pipeline was proposed, consisting of three key parts: auto representation learning, auto anomaly score

calculation, and auto negative sample generation. Here, auto stands for simultaneously Bayesian optimization of

hyper-parameters along with anomaly detection in the latent space using Gaussian Mixture Model to characterize

the level of abnormality.
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2.4 Predictability Modeling

There are many natural phenomena that require application of a prediction algorithm to answer important ques-

tions, such as what will be future population variations, what are the likely orbits of astronomical objects, or what

is the probable the occurrence of seismic waves? The Predictability Modeling (PM) approach aims at learning fea-

ture representations by predicting output data, assuming that normal records are temporally more predictable than

anomalous ones. To my knowledge, only a few such methods have been introduced [20, 37, 46].

Formally, a context c is given to an encoder E to result in a latent representation z, which is fed to a decoder D

to result a constructed horizon ĥ, where ĥ ≈ h ̸= c. As a result, PM uses an Encoder-Decoder (ED) architecture

to predict a single record, or a sequence of records, using a sequence-to-point (S2P) or a sequence-to-sequence

(S2S) learning process, respectively. PM is a complementary approach to AE, since AE only captures the case

of input data reconstruction in which h = c. An ED architecture was proposed by [37, 46] using convolutional

layers with automatically derived hyper-parameters obtained via a grid-search run for data collected over a series

of experiments [37] or over a dataset augmented with synthetic anomalies [46]. In [37], employed an S2P learning

process to allow the model to learnt how to predict a current record using a sequence of previous (prior) records, by

minimizing the regression loss. In [46], a S2S learning process was employed to learn to predict both current and

previous records using only the previous records. In [46], a reconstruction task was introduced to decoder. This

mapping choice enabled minimization of a composite loss function, which took into account the relative importance

of reconstruction and regression errors. Essentially, only the first part of ĥ was used in the reconstruction error,

while the entire ĥ was used in the regression error.

Compared with the superior performance of LSTM in capturing temporal information, I notice a literature gap in

predictability modeling through employing ED using recurrent (e.g. LSTM, BiLSTM, GRU) layers. An exception is the

stand-alone LSTM implementation with fixed hyper-parameters that have been recently proposed by [20], where the

regression loss is minimized using an S2P approach. Beyond anomaly detection, there is recent literature focusing

on PM which has used an ED architecture with recurrent layers and an explicit attention mechanism. In [11], a S2S

learning process was developed for multi-step prediction, using BiLSTM layers to encode sequential input data in

both directions, a temporal attention layer based on [3], and LSTM layers to decode the hidden representation.

These methods have been used to tackle real-world problems, such as in a pandemic crises [7]. A common

conclusion of these studies is that an attention mechanism can effectively improve model performance, since the

prediction ability gradually degrades as the length of input data increases.

2.4.1 Anomaly Score

Once a prediction is made, it is necessary to assess the anomaly score. The actual horizon h is scored as the

L2-norm [37] (or L1-norm [20]) discrepancy from its predicted horizon ĥ, by formulating the regression error. Since
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h represents a single record, the scores of K consecutive records are aggregated to assess an anomaly score to a

fixed-length subsequence. A statistical approach was then proposed by [20] to score a dynamic-length subsequence

of records:

score(e(i)seq) =
max(e

(i)
seq)− ϵ

µ(es) + σ(es)
(2.11)

where es is a one-dimensional vector of regression errors, smoothed using an Exponentially Weight Moving Av-

erage (EWMA). In addition, ϵ = argmax(µ(es) + kσ(es)) in which k is an ordered set of positive values representing

the number of standard deviations over es. Also, eseq is an arbitrary-length subsequence of consecutive smoothed

scores from es which exceed the ϵ value. Finally, i refers to the sensor (feature) dimension in a multivariate environ-

ment.

A composite approach (Eq.2.12) was proposed by [46]. Where a reconstruction rec and regression reg error are

defined as metrics for evaluating the degree of anomaly of an actual horizon h. Both metrics use Frobenius norm

to measure the deviation between h and its predicted horizon ĥ. Here, reconstruction refers to the first p records,

while regression addresses all the p+q records of h. Since h represents a sequence of records, the average of its

Krec and Kreg scores were respectively used to assess a reconstruction and regression score per record, where K

indicates the number of horizons that the record of interest appears in:

scorerec(h) =
∑

0≤i<p

||hik − ĥik||F and scorereg(h) =
∑

0≤i<p+q

||hik − ĥik||F (2.12)

2.4.2 Anomaly Detection

The detection of an anomalous point or sequence of points over the derived scores is usually a result of a threshold

value. A fixed-value is determined in [37, 46], either empirically [37] or from the maximum regression error in the

training sequence [46]. A dynamic threshold is determined in [20], to result in a set of anomalous sequences Eseq

as obtained from the smoothed scores es. In addition, [20] noticed that the precision of detection heavily depends

on the amount of data used to set a threshold. They thus proposed a pruning mechanism to mitigate False Positives

(FP), by re-examining the abnormality of sequences in Eseq. To aid this, a vector emax is constructed from the sorted

Eseq and the maximum score in es, where Eseq is sorted in descending order based on the maximum error of each

eseq ∈ Eseq. Finally, a vector d is computed by applying a percent decrease on emax. The anomalous sequences

whose score in d exceeds a minimum decrease percentage p remain anomalous, and are reclassified as normal

otherwise.
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2.5 The Literature Gaps

From my literature review of Generic Learning Feature Representations of Normality, I can identify 23 works that

support analysis some form of temporality. Based on the characteristics of each framework, I can place the litera-

ture into two groups, those that provide temporal analysis support (Section 2.5.1) and those that provide anomaly

detection support (Section 2.5.2).

2.5.1 Temporal Support

The fundamental characteristics to support extraction of temporal information, are illustrated in Table 2.3 along with

the corresponding references.

References PredP ImpAtt ExpAtt DynS
[4, 14, 18, 24, 26, 27, 32, 33, 35] ✗ ✓ ✗ ✗

[39, 42, 43, 44, 51, 52, 54, 55]
[41] ✗ ✓ ✓ ✗

[23, 53] ✗ ✗ ✓ ✗

[37, 46] ✓ ✗ ✗ ✓

[20] ✓ ✓ ✗ ✗

DITAN ✓ ✓ ✓ ✓

Table 2.3: The fundamental temporal-based characteristics: Prediction-based Protocol (PredP), Implicit Attention
(ImpAtt), Explicit Attention (ExpAtt), and Dynamic Structure (DynS)

Prediction-based Protocol (PredP)

Three (13%) studies support prediction-based protocol to cross-map current and future records, thus allowing defini-

tion of an advanced temporal relation in time. Since, the vast majority use the estimation-based protocol to self-map

current records.

Implicit and Explicit Attention (ImpAtt, ExpAtt)

Nineteen (83%) studies utilize implicit attention in the form of GRU or LSTM layers. In this approach, LSTM or

GRU recurrent layers are used to learn an inference relation type from context to horizon (i.e. If → Then), or an

equivalence relation type (i.e. If ⇔ Then). However, only three (13%) studies support explicit attention to subjectively

weight the cells of each layer.

Dynamic Structure (DynS)

The hyper-parameter values are controlling the generalization of a model over unseen data and thus the forecast-

ing precision. To achieve optimal results, the hyper-parameter values have to be tailored to the domain features,
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resulting a model with a dynamic structure. However, only two (9%) studies optimized the hyper-parameter values

automatically, since majority optimized them manually. However, is is worth noting that the studies which automated

the process of hyper-parameters optimization, they have used a stochastic instead of a more sophisticated heuristic

approach.

Sum-up

So, in terms of temporal support, the literature gaps are:

1. memorize the relations of past records to future records

2. explicitly attend to the memorization components

3. adapt memorization capabilities to the domain features

2.5.2 Anomaly Support

The fundamental characteristics of models designed to support anomaly detection and interpretation are given in

Table 2.4, along with the relevant studies.

References RecE RegE DynT AnoP AnoNI AnoPI

[18, 24, 27, 32, 33, 39, 41, 51, 54,
55]

OFS ✗ ✗ ✗ ✗ ✗

[44] OFS ✗ ✗ ✗ ✓ ✗

[14] OFS ✗ ✗ ✓ ✗ ✗

[35, 43] OFS ✗ ✓ ✗ ✗ ✗

[53] OFS ✗ ✓ ✗ ✓ ✗

[4, 26, 52] OFS/LFS ✗ ✗ ✗ ✗ ✗

[23] OFS/LFS ✗ ✗ ✗ ✓ ✗

[42] LFS ✗ ✗ ✗ ✗ ✗

[37] ✗ OFS ✗ ✗ ✗ ✗

[20] ✗ OFS ✓ ✓ ✗ ✗

[46] OFS OFS ✗ ✗ ✗ ✗

DITAN OFS OFS ✓ ✓ ✓ ✓

Table 2.4: The fundamental detection and interpretation characteristics: Reconstruction Error (RecE), Regression
Error (RegE), Dynamic Threshold (DynT), Anomaly Pruning (AnoP), Anomaly Numerical Interpretation (AnoNI),
Anomaly Physical Interpretation (AnoPI)
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Reconstruction and Regression Errors (RecE, RegE)

Errors measure irregularity as function of distance between actual and predicted/estimated values in original (OFS)

or latent (LFS) feature spaces. The errors associated with predicted values are referred to as regression errors

whereas the errors related to estimated values are known as reconstruction errors. Three (13%) studies used

regression errors to learn regularities, while twenty (90%) studies rely on reconstruction errors for this purpose. In

addition, one (4%) study incorporates both construction and reconstruction errors to learn regularities.

Dynamic Threshold and Anomaly Pruning (DynT, AnoP)

Four (17%) studies collated in Table 2.4 derive a dynamic threshold using robust statistics. These studies provide a

reliable analysis of the errors sequence, even if the error values are not drawn from a normal probability distribution.

While, the need of a pruning methodology to re-align the derived thresholds is only addressed in two (9%) studies.

Anomaly Numerical and Physical Interpretation (AnoNI, ANoPI)

Three (13%) studies utilized numerical interpretation in the form of root-cause or similarity. However, none of these

approaches provide a physical interpretation of the anomaly, so as to relate the meaning of the anomaly to a real-

world situation.

Sum-up

So, in terms of Anomaly support, that literature gaps are:

1. learn regularities using both the regression and reconstruction errors

2. define the threshold using robust statistics

3. Interpret the detected anomalies both numerically and physically

2.6 Perspectives from the Gap Analysis

The gap analysis in the Table 2.3 and Table 2.4 reveals a gap in existing research, where different studies support

different characteristics leaving a fragmented understanding (see ✗) of the overall picture. These studies primarily

emphasize anomaly detection, while partially addressing numerical interpretation and totally lacking a level that

allows interpretation of the underlying physical phenomena that derives the anomalies (Figure 1.3). Thus, the

approach that I develop here, DITAN, aims at integrating and developing all of the model characteristics reviewed
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here, while offering meaningful insights into the physical interpretation by applying a knowledge system and expert-

based classification options. The aim, now, is to develop and test an appropriate model, with the aim of delivering a

detection and classification of anomalies found by DITAN in the Vulcano data set (Section 1.2).
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Chapter 3

Towards Anomaly Detection

The firs task in my work flow is the task; a task which is followed by interpretation (Chapter 4). Following the gap

analysis of Chapter 2, I apply a forecasting scenario where both temporal and feature information are used to predict

normality, and then to detect abnormality using a dynamic thresholding methodology.

3.1 Pre-processing Strategy

A given time series (TS) needs to undergo appropriate pre-processing before it can be analyzed by a deep model.

That is, because data are in a raw format, several factors may disrupt the learning capabilities. The pre-processing

strategy proposed here as part of DITAN is illustrated in Figure 3.1.

Figure 3.1: A graphical illustration of the pre-processing steps
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3.1.1 Fix Missing Values

It is common to encounter missing sensor values across records in a time series. Managing missing values is

an essential initial step in the pre-processing phase. For each sensor the consecutive missing values are linearly

interpolated in a forward manner. However, this is done only if the gap size does not exceed the size of context

(input) window. Alternatively, the record corresponding to the missing sensor values is removed. Although more

advanced interpolation methods (e.g. polynomial interpolations) have been introduced, their degree and shape

parameters are not easy to configure, and may induce a false sense of a real waveform that does not, in reality,

exist.

3.1.2 Data Partitioning

In the training phase, the time series is referred to as train-val sequence. Forward chaining is then applied on the

train-val sequence, to create four partitions P of train and val sequences. The size of train progressively increases

to ensure similar statistical properties between the last train and train-val sequences. Also, the number of partitions

must be sufficient to be a compromise between effectiveness of validation and computational time. In the testing

phase, the time series referred to as test sequence, and is treated as a single partition denoted as P. The partitions

are graphically illustrated in Figure 3.2.

Figure 3.2: A graphical illustration of the data partitioning, where each horizontal line represent a different partition,
6 in total

3.1.3 Feature Decomposition

Within a partition P, each sensor is determined by three statistical properties: trend, seasonality and residuals.

Short-term (high frequency) anomalies are typically present as residuals, while long-term (low frequency) anomalies
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are commonly observed in the trend component. However, if decomposition is applied (see Table 3.1), estimations

are required for the composition type and period of each sensor. The period of a sensor is estimated in three

steps: (i) remove the mean signal (a.k.a DC component), (ii) calculate its auto-correlation, and (iii) select the largest

valid peak from its second-order difference, where a peak value is valid when it enables at least two cycles. The

composition type of a sensor is estimated in two steps: (i) compute the Simple Moving Average (SMA) using a

window size equal to 5% of the total sensor values, and (ii) calculate the variances resulting from the subtraction

and division between smoothed (SMA) and actual values. The composition type is assumed multiplicative, when a

sensor exhibits only positive values and its variability of division is higher than that of the subtraction. Otherwise,

the composition type is assumed to have an additive composition.

3.1.4 Features Scaling

Within a partition P, I apply Min-Max normalization in the range (-3, 3) to ensure that all sensors contribute equally

using scaled values, while maintaining their correlations and preserving their original distributions. The chosen

range is sufficient to increase tolerance against distribution shrinking, which may occur due to the presence of

extreme values. For each sensor, a scaler is fitted and transformed in the training partitions (train, training-val), but

are only transformed in the testing partitions (val, test). In the fitting process, the model learns the limit (min, max)

values of a sensor, and then uses them in the transformation process. Note that, the fitted scalers of the train-val

partition are stored for future use on a test partition.

3.1.5 Forecasting Protocol

Within each partition P, the prediction-based forecasting protocol (see Section 2.4) is used to introduce a temporal

inference between preceding and succeeding records. This formulates a self-supervised environment of context

and horizon mapping. Choosing the appropriate size of a context window is a challenging task. A large context size

may overlook short-term patterns and lead to increased computation cost. On the other hand, a small context size

may fail to capture long-term patterns adequately. Although the size of a horizon window is recommended to be

smaller than the size of the context window, striking the right balance is domain-specific and thus configurable (see

Table 3.1). Note that the sensors involved in the context window can differ, if needed by the application domain, from

the sensors involved in the horizon window. The union of all the involved sensors is referred to as active sensors.

3.2 Modeling Normality

In Figure 3.3 I illustrate the model’s Encoder-Decoder architecture. It is composed of Long Short-Term Memory

(LSTM) layers along with a composite decoder and soft attention mechanisms (see Section 3.2.1), to capture short-
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term and long-term normal (regular) patterns. The number of LSTM cells in the encoder (left) is equal to the context

size, while the decoder (right) has a context sized number of LSTM cells to reconstruct, as well as a horizon sized

number of LSTM cells to construct. Such a composite decoder forces the network to stay attentive to all time steps

in the encoder, instead of only the last few steps [46]. Intuitively, this forces the model to understand the question,

while finding the answer to be predicted. The LSTM cells of the encoder are regularized on both the vertical and

the horizontal axes (see Section 3.2.2), to introduce generalization on the memorization process.

Figure 3.3: A graphical illustration of the composite Encoder-Decoder with attention using context of size 3 and
horizon 1. Solid lines represent information flow while dotted lines regularization on the features (horizontal) and
temporal (vertical) axes

3.2.1 Memorization Components

Short-term Memory

To memorize patterns with respect to time, the model uses long short-term memory LSTM cells [17]. An LSTM

cell uses a gating mechanism that controls the memorizing process at each time step (Figure 3.4). Here, let f t

(respectively it; gt, ot) be the forget (resp. input, input modulation, output) gate, Ct the cell state and ht the output

state at time t. Given these definitions, a LSTM cell performs the following operations:
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gt = σ
(
WC

⊤ [xt, ht−1] + bC

)
it = σ

(
Wi

⊤ [xt, ht−1] + bi

)
f t = σ

(
Wf

⊤ [xt, ht−1] + bf

)
ot = σ

(
Wo

⊤ [xt, ht−1] + bo

)
Ct = gt.it + Ct−1.f t

ht = ottanh(Ct)

Figure 3.4: A LSTM cell illustrating the gating mechanism

The gates store information in an analog format, implementing an element-wise multiplication by a sigmoid,

ranging between 0 and 1. The forget gate determines which information from prior steps is considered relevant and

should be retained. The input gate decides what relevant information can be added from the current step, and the

output gate finalizes the next hidden state. The hidden state is a u length vector, representing a prediction output,

where u is a configurable (see Table 3.1) unit space into which a d dimension record is transformed. The cell state,

also known as short-term memory, is thus a vector of length u + d.

Long-term Memory

LSTM cells can then be connected, creating a LSTM layer. The number of LSTM cells in a layer is equal to the

number of input time steps. These LSTM cells are connected to each other, sequentially, within their hidden and

cell states. The interconnected cell states represent the long-term memory, also known as implicit attention, while

hidden states are connected to progressively construct predictions. A LSTM layer is inherently deep in time, because

each time step can be seen as a change over time. LSTM layers can also be connected upwards, to construct a

stack of configurable number of layers (see Table 3.1), also known as a LSTM network. Since LSTM layers operate
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on sequential data, the additional layers recombine the learned representation from prior layers with respect to

time. The goal is to create a more abstract feature representation using the same or different (units) dimensionality.

LSTM layers are stacked in a way that each layer takes as input all the hidden states of its previous layer. However,

stacking layers is not always an advantage over a single LSTM layer. It depends on the specificity of the problem

and the relationships being modeled.

Explicit Attention

A large number of time steps may lead to fading memory [5]. To protect the architecture, I employ two Luong-based

[31] attention layers, to explicitly control the weights of the units across time steps.

The first attention layer, in Figure 3.3, is a cross attention between encoder and decoder, which maps the

important and relevant hidden states from the encoder to the hidden states in the decoder, and assigns higher

weights to them. In this configuration, all the hidden states of the encoder’s last layer are considered while calculating

attention weights for each hidden state in the decoder.

The second attention layer, in Figure 3.3, is a masked-self attention over the hidden states in the decoder’s first

layer, and is used to examine their causal relation with respect to their temporal order. In this configuration, all the

prior hidden states of the decoder are considered while calculating attention weights for each following time step.

Both attention layers use global attention with a general alignment scoring function. Attention weights define

a probability distribution over the encoder (cross) or decoder (self-masked) states, to compose a context vector

defined by:

ct =
∑
s

atshs [Context vector]

∀s ats =
exp (score(ht, hs))∑
s′ exp (score(ht, hs′))

[Attention weights]

score(ht, hs) = hTt Whs [Luong’s (general) multiplicative style]

hat = tanh (Wc[ct;ht]) [attentional hidden state]

where hs (and ht) are the source (and target) hidden states of the encoder’s last layer (cross) or decoder’s first layer

(self-masked), and Wc,W are trainable weights. An attentional hidden state hat is then computed to concatenate

the information of ht and ct. Note that the use of the exponential function in the computation of ats ensures positive

attentions weights, while the softmax allows these weights to sum up to 1.
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3.2.2 Generalization Components

The ability of a model to generalize is central to its success. In order to avoid overfitting, I propose an immune

system to the architecture, by applying two regularization techniques over the feature and time dimensions, as well

as a learning strategy.

Output Dropout

An ensemble of sub-networks is built, by applying dropout vertically on the output (hidden state) units of the LSTM

cells. During the training process, output units are randomly and uniformly excluded from weight updating (set to

zero) with a configurable (see Table 3.1) probability. The number of sub-networks corresponds to the number of

(epochs) iterations over training data, since dropout refreshes on every epoch. However, dropping too many units

may over regularize sub-networks. For this reason, dropout is applied only on the LSTM layer(s) in the encoder,

regulating the generalization of the latent representation. For each epoch, the concept is to construct decoder

LSTM cells using a different subset of the memorized units in encoder cells. Although there are horizontal dropout

variations (e.g. recurrent dropout), I do not recommend dropping memory units arbitrary, because there is already

a gating mechanism to maintain memory, and memory may be damaged through random temporal disconnections.

Elastic Regularization

The model imposes L1 and L2 norm constraints [57], horizontally on recurrent units within each LSTM layer in the

encoder. This is known to have the effect of reducing overfitting and improving performance [29], without necessarily

drooping units. During the training process, a regularization term is used in the form λ(∥.∥1 + ∥.∥2), where strength

λ is configurable (see Table 3.1) and common to both L1 and L2 which are linearly combined. L1 forces the network

to drop recurrent weights that do not significantly contribute to the predictive power. On the other hand, L2 forces

the model to apply relatively small weights, while maintaining weights with strong pairwise correlation coefficients.

Learning Scheduler

The learning rate (lr ) controls how quickly the model adapts to the problem, and therefore highly affects model

stability. A model trained using small lr requires more epochs than a model with a high lr, since smaller changes

in the weights require more epochs for convergence. However, when learning rate is too large, the model may

converge too quickly to a sub-optimal solution and is prone to oscillations. The lr value, as well as the rate of

change known as scheduler, are configurable (see Table 3.1). Here, the scheduler is responsible for either keeping

the lr value constant or for decreasing lr linearly by 25% at every fourth epoch or to decrease lr exponentially by

10% at every epoch.
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Learning Patience

A major challenge in training neural networks is setting the number of epochs. The objective is to train the neural

network sufficiently that it learns the mapping, but not so much that the network overfits and not so little as to

underfit. Here, I use the early stopping strategy to find an optimal epoch at which to stop the learning process and

finalize the model weights. It uses a criterion, which gives a penalty as long as the difference δ of current c from

previous p loss is less than 0.0003. A penalty is formally given when the condition lossc > lossp− δ is satisfied. The

number of consecutive penalties that has to be given to end the training process, is configurable (see Table 3.1) and

is referred to as patience. The performance of the model is monitored on the last 20% overlapping partition of the

train sequence. This partition is called internal validation and the loss used for monitoring is called internal loss.

The final model weights correspond to the last epoch, because updates are completed in a sequential manner.

Learning Period

The model weights in LSTM layers are updated using batch learning with backpropagation through time. The size

of a batch is the amount of (information) context-horizon mappings used in a single update, as illustrated in Figure

3.5. The batch size affects the reset period of memory, since in our stateless LSTM layers, the cell state is cleared

for every batch. Therefore, batch size impacts the stability as well as the duration of the learning process. The

majority of studies in Chapter 2 have used 32 as a standard size, however an arbitrary value may produce an erratic

definition of normality. It is known that small batch size slows down the learning process while increasing it produces

a lack of change in data over epochs and higher memory cost. Here, the batch size is thus configurable (see Table

3.1), and batches maintain their position across epochs, not shuffled, to additionally learn dependencies between

consecutive batches.

Figure 3.5: Different batch size configurations per epoch, over a partition of four context-horizon mappings

41



3.3 Dynamic Threshold with built-in Pruning

A model uses its latent representation of normality to predict the value x on each sensor d of a record i. The error

eid is then computed as the difference of what is predicted from what is actually observed. To compute the difference

DITAN uses a configurable (see Table 3.1) loss function. Therefore eid can either be defined as the squared or

absolute error:

eid = ||xid − xi
′

d ||2 or eid = |xid − xi
′

d |, ∀d ∈ D (3.1)

The squared, as opposed to absolute, errors are non-linear weighted with respect to the error magnitude, and thus

higher errors are magnified. The higher the error on a sensor value, the more abnormal the value is considered.

Yet, a threshold is required to determine the turning point from normal to abnormal, where one threshold is required

for each sensor.

In this approach, I start by identifying critical peaks within the testing error sequence E for each sensor d.

Critical peaks are error values corresponding to infrequent local (or global) maxima values. Each critical peak is

expanded into critical region using non-parametric statistical tests, considering the local error morphology. Finally,

their boundaries are refined using non-parametric clustering. The error values belonging to critical regions are

classified as anomalous, while the remaining error values are classified as normal. The entire process, is graphically

illustrated in Figure 3.6.

Figure 3.6: The dynamic thresholding process
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3.3.1 Critical Peaks

I apply simple moving average (SMA) to the raw errors of an Ed, using Parzen windows of configurable locality size

(see Table 3.1) to assess temporal weights of a desired locality, formulating Gaussian-like bumps. The peaks are

defined as error values that exhibit a higher magnitude than both the preceding and succeeding errors. However,

critical are only the peak values that reach a significantly high value. To identify critical peaks, I assume that higher

error magnitudes tend to be more isolated (rarer) in the frequency space. Therefore, I use Doane’s rule [68] to

discretize all errors into an optimal number of bins bopt: if ne is the number of errors, then

bopt = 1 + log2(ne) + log2

(
1 +
|m3|
σm3

)

where m3 is the estimated skewness of the error distribution and σm3 =
√

6(ne−2)
(ne+1)(ne+3) . Then, starting from the bin

with mode frequency, a pointer moves downwards across bins as long as the frequency of bin at position k+1 or k+2

is lower than in k and their frequency is at least 4
√
|Ed|. The terminal bin is then used as the minimum peak height,

above which peaks are considered critical peaks.

3.3.2 Critical Regions

Each critical peak is symmetrically expanded by using two consecutive values on each side of the peak, left and

right, as long as the average error within the defined area is significantly greater than the overall average mean(Ed).

The significance is evaluated using a Mann and Whitney [34] test with a significance level 0.05. This approach

highlights critical regions (cr) of dynamic duration. Note that the overlapping cr are merged by combining their

respective error values using the union operation.

3.3.3 Robust Pruning

Following [14, 20], I further explore critical regions to refine their boundaries, by employing non-parametric cluster-

ing. Specifically, the mean-shift [66] algorithm is applied to each critical region, to identify rare error values in the

form of orphans. These are indicative of gaps in the provided bandwidth, as they are located far from constructed

clusters. The maximum among these orphans, is used to remove lower errors from both the left and right boundaries

of any critical region. The removed error values are re-classified as normal.

Bandwidth Selection

Mean-shift is sensitive to the bandwidth of the underlying Gaussian kernel, and thus using a random value for

bandwidth is not recommended. Thus, the Bandwidth Selection module is implemented using the dual-annealing

methodology as illustrated in Figure 3.7. In this approach a bandwidth value is searched for in both local and global
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space, where the use of local search and the number of global jumps are fixed hyper-parameters (see Section 3.4).

Bandwidth can be seen as the kernel radius and thus candidate values are bounded by distances in the range

[min,max](nearest-dist(lossescr)). The objective is to select a bandwidth which results in compact (low standard

deviation) and heavy (large size) clusters. This is formally achieved by minimizing the maximum standard error (SE)

across clusters (C):

bandwidthcr(C) = Argmin{max(SE(c),∀ c ∈ C)}cr (3.2)

Figure 3.7: The bandwidth selection module implemented using dual-annealing

3.3.4 Severity Score

Anomaly refers to error values that belong to a critical region. These error values are used as severity scores for their

corresponding sensor values, while the severity scores for the remaining sensor values are set to zero. A record is

classified as anomalous if it contains at least one sensor with a positive severity score. On the other hand, records

without a positive severity scores are considered normal. Hence, an arbitrary length of consecutive anomalous

records is considered as a subsequence anomaly, while the individual anomalous records are point anomalies.

3.4 Hyper-parameter Configurations

The hyper-parameters (HP) of the DITAN are defined in Table 3.1. Five hyper-parameters are manually tuned as

they are directly related to the application itself. On the other hand, nine hyper-parameters are automatically tuned

due to their complex technical correlations. There are also five additional hyper-parameters, the values of which are

fixed, not subjected to tuning.
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Hyper-parameter Value Range Type Tuned

Layers [1, 3] Compile Automatically
Units [32, 128] Compile Automatically

Units Decay [0.5, 1.0] Compile Automatically
Dropout [0.0, 0.3] Compile Automatically

Regularization Strength {0.0; 0.0001; 0.001} Compile Automatically
Learning Rate {0.001; 0.01} Fit Automatically

Learning Scheduler {constant; step; exponential} Fit Automatically
Learning Patience [2, 10] Fit Automatically

Batch Size {32; 64; 128; 256} Fit Automatically
Loss Function {MSE, MAE} Compile/Evaluation Manually

Stationarity {residual; trend; no} Pre-processing Manually
Context Size N General Manually
Horizon Size N General Manually

Locality {short; medium; long} Thresholding Manually

Table 3.1: A summary of the DITAN hyper-parameters

Automatically Optimized Hyper-parameters

To optimize the hyper-parameters automatically, a methodology based on Bayesian Optimization (BO) [65] is used,

as illustrated in Figure 3.8. As opposed to a random (or grid) search, the Bayesian approach keeps track of the

past evaluation results to form a surrogate function that maps hyper-parameters to probability values. In each run,

it proposes a new configuration of hyper-parameters, that maximizes the expected improvement of the surrogate

function. Then, the new configuration is handed to the objective function to retrieve an evaluation score. The

surrogate function is updated using Bayes theorem, incorporating feedback from the objective function.

Figure 3.8: Hyper-parameters optimization using the value range in which bounded. The type refers to its use in the
DITAN, and the tuned refers to the method responsible to select a value from the value range.
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In each run, a new configuration C is compiled and executed partition times, fitted to the train sequence and

evaluated by the val sequence of each partition P. In the evaluation it is considered only the error value of construct-

ing the first record in the regression part of the horizon. Error values are computed using the same loss function

(see Table 3.1) in both the evaluation and compile processes. Since the train sequence expands over partitions, the

later the train partition the more available data there is to fit and thus the more reliable the evaluation. To this end,

the configuration error CE is computed as the weighted average of the average evaluation error Eval per partition P,

weighted by the cardinal (size) of their corresponding train sequences:

CE = AV GP (Eval ∗ |train|)

The optimal configuration, denoted as Copt, is the configuration that exhibits the minimum configuration error:

Copt = ArgminC(CE)

The optimal configuration is finally used to compile the model and fit on the entire train-val sequence. The trained

model is saved for the testing phase.

Manually Selected Hyper-parameters

There are five application-based hyper-parameters that require manual selection. The loss function used to compute

errors is the squared (MSE) or absolute (MAE) difference of the predicted from observed records (with MSE being

the default). The selected option is used in both the compile and evaluation steps to keep consistency across

different stages of the anomaly detection process. MSE is recommended when there is no significant number of

extreme values in the training sequence, otherwise MAE is preferred to mitigate the influence of extreme values.

Additionally, The size of the context is crucial and closely tied to domain knowledge since it controls the temporal

resolution of the analysis. To determine the context size is important to consider factors such as measurement

frequency, cycles, and temporal resolution of events. Similarly, the size of horizon is important, although value of

1 (default) typically works for most scenarios. Furthermore, locality pertains to the size of the Parzen windows

employed in SMA to smooth the sequence of testing errors. There are three options: short, medium and long (with

long being the default). The short option focuses on short-term variations in errors, while the medium and long

options emphasize medium and long-term variations respectively. When horizon size is 1, the medium option aligns

with the context size; otherwise, it aligns with the horizon size. The long option is twice the size, and short option

half the size, of the medium option. Finally, stationarity determines whether the time series need to be transformed

into a stationary form (default is no). This can be useful when looking for high frequency abnormalities.
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Fixed-value Hyper-parameters

There are five hyper-parameters with fixed values. The first three hyper-parameters refer to the training phase, and

the last two hyper-parameters to the dynamic threshold methodology. These are:

1. Optimization runs refer to the number of different configurations the Bayes optimizer examines. By default,

this value is set to 20. However, it can be set to zero if an explicit hyper-parameters configuration is preferred

2. Nadam is used as the model optimizer to optimize the model’s parameters

3. tanh is used as the activation function to introduce non-linearity across LSTM layers

4. Global runs (default is 40) indicates the number of jumps to different global points needed to search for an

optimal solution

5. Local search (default is True) indicates the need for a deeper consideration of local space or not.

3.5 DITAN Detection System: improvements to the Beta version

Two minor updates were made to the initial thresholding methodology. The first primarily emphasizes enhancement

of the precision of expanding the boundaries of critical peaks, and the second aims to improve the efficiency of the

refinement process while ensuring its effectiveness.

3.5.1 Critical Regions: using non-centralized peak

Instead of symmetric expansion for each critical peak (see Section 3.3.2), it is better to expand the left and right sides

independently. In this approach critical regions in which one side is heavier than the other may occur, introducing

scenarios where the most intense moments are closer to the start or end of an event, rather than closer to its center.

To achieve this, for each critical peak the left or right side is expanded by 2 error values towards the left or right,

as long as the average of its last (up to 64) consecutive errors remains significantly greater than the average of all

errors in sequence. Note that the significance is evaluated in the same way using Mann and Whitney test with a

significance level of 0.05.

3.5.2 Bandwidth Selection: using Silverman’s rule

Instead of using the dual annealing methodology to implement the bandwidth selection module (see Section 3.3.3),

I propose, instead, to use Silverman’s rule (equation 3.3). This rule is applied directly to the vector of absolute

distances between subsequent error values within a critical region, denoted as distcr, offering a more efficient
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approach: it indeed only requires one execution instead of time-consuming iterations, and removes the hyper-

parameters Global Runs and Local Search which are unnecessary if this approach is applied:

bandwidthcr = 1.06 ∗Min(Std(distcr),
IQR(distcr)

1.34
) ∗ |distcr|−

1
5 (3.3)
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Chapter 4

Towards Anomaly Interpretation

The DITAN framework deals with the interpretation of detected anomalies in two ways: numerically and physi-

cally. While DITAN’s numerical-based interpretation based on [9, 23, 44, 53, 69], supporting physical interpretation

involves using experts-knowledge as based on [62, 77] which consider the domain of knowledge systems.

4.1 Numerical Interpretation

The magnitude of scores across sensors within anomalous records can be used to provide sufficient information

to allow an understanding and troubleshooting of anomalies. This involves both the analysis of anomalies in both

feature (data) space and units (model) space.

4.1.1 Root cause in Feature space

Following [9, 23, 44, 53], the root-cause of an anomalous record i for any sensor d is computed by applying softmax

to its score s values.

RootCaused(s
i) = exp(sid)/sum(exp(si)) (4.1)

Note that, the root-cause values within a normal record are set to zero.

4.1.2 Similarities in Unit space

DITAN also characterizes similarities across anomalous records. Our analysis focuses on the unit space, where

each anomaly is transformed into an internal representation. The internal representation r of an anomalous record

i is estimated with
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ri = fD(E(ci))

where f is the last intermediate (LSTM) layer in decoder D, and E is the encoded representation of the context

window c.

Anomalous records are then clustered using a Gaussian Mixture Model (GMM) across their internal represen-

tations r ∈ R. The probability p of an anomalous record i being generated by each component (cluster) Cj , is

assessed using mixture weights ϕj , the cluster center µj and a tied covariance matrix ΣR:

p(ri) =

C∑
j=1

ϕjN (ri|µj ,ΣR)

The covariance matrix ΣR is nevertheless not always invertible, e.g. when the number of units is higher than the

number of anomalous records. Hence, DITAN uses a sparse inverse covariance estimation technique based on the

Graphical Lasso [13] estimator.

The optimal number of components C is determined as a value in the range [2,min(10, |R|)], that exhibits

the maximum percentage difference across their Davies-Bouldin Index DBI [10] scores. The DBI evaluates the

average distances between each cluster and the clusters most similar to it. These distances are computed using a

Mahalanobis approach instead of a Euclidean approach, so as to consider possible correlations in R and allowing

any cluster shape to be handled, for example elliptical rather than circular only. This is because in the Mahalanobis

approach the assessment of distance between ri and µj takes into account the inverse covariance Σ−1
R . Hence,

Mahalanobis approach is considered an efficient metric for a large number of records because distances in this

approach do not require pairwise operations over records, only over centroids.

4.2 Physical Interpretation

Detected anomalies typically require further investigation to understand their underlying physical meaning (e.g.

environmental factors, Figure 1.3). This examination calls for specialized knowledge to accurately identify the nature

of these anomalies. Experts are recognized for their aptitude on providing domain-specific knowledge, but asking

them to manually characterize all detected anomalies can be a time-consuming and intensive process. However, to

automate this process knowledge system functionalities can be leveraged.

Figure 4.1 provides an overview of DITAN’s knowledge system. Following [62, 77], all functionalities are accessi-

ble via a web-based GUI, enabling real-time interaction with experts to allow knowledge management and coupling

with inference engine modules. To assist in meta-analysis of anomalies, the two numerical interpretations are used.

The root-causes (Section 4.1.1) are used to assist experts in knowledge formation by graphically visualizing the

critical regions that overlap on both the time and feature axes. Similarities (Section 4.1.2) is then used to graphically
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preview the anomalies, by assigning the same color to all anomalies falling within the same cluster.

Figure 4.1: Overview of proposed knowledge system to characterize physical anomalies

4.2.1 Knowledge Management

The knowledge management module provides experts with functionalities to create, read, update and delete (CRUD)

knowledge held in the knowledge base KB (see Appendix A). Experts have complete control over knowledge in

the form of IF-THEN rules that incorporate temporal constraints, also known as temporal rules. The graphical

environment to create (or update) a new (or existing) rule is illustrated in Figure 4.2. The left side corresponds to the

preconditions of a rule and the right side to its post-condition. Additional information is provided, namely description,

license and version, while the status (radio button) indicates when rules are executable or draft, with only executable

rules being used. The scope of a rule in our system is to characterize:

"The physical event responsible for the occurrence of a series of conditions".

Figure 4.2: Create / Update a Rule, Web Graphical Environment
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Conditions

Condition C specifies the name of a sensor S or physical event E that is experiencing an abnormal state. I provide

a list of five abnormal states increasing, decreasing, positive, tare or missing values. Although an S condition can

indicate any of these abnormal states, an E condition can only have a positive abnormal state, meaning that the

event has occurred. Therefore, post-condition is always an E condition, while the preconditions consist of one or

more S/E conditions.

Constraints

Following [62, 77], the preconditions of a rule are constrained using both logical and temporal operators. In particu-

lar, the conjunction (AND) logical operator is used to combine conditions, while the negation (NOT) logical operator

is an option that can be used to the abnormal state of a condition. The conditions are temporally constrained such

that the start time of the first condition and the start time of the last condition are at most 60 minutes, 24 hours or

7 days apart, introducing lag resolutions of minutes, hours or days across rules. These constraints ensure that all

preconditions occur within a defined time interval. The post-condition of a rule exists from the start time of the first

condition to the end time of the last condition.

4.2.2 Inference Engine

Following [62], the preconditions of rules guide the inference process by incorporating an event-driven protocol. In

particular, experts are provided by an inference engine to automatically identify which of their executable rules apply

to the critical regions of the DITAN model. DITAN’s inference engine is given in Algorithm 1.

Inference Process

Algorithm 1 is handed the executable rules from the knowledge base (KB) and the anomalous sensor values from

critical regions (CR). The objective is to report all post-conditions in the events base (EB), by identifying valid pre-

conditions. This requires support by rule-chains in which the post-condition of a rule lies in the preconditions of

another. Thus, in an outer-loop, N executable rules with e events in preconditions are selected from the knowledge

base KB, with e being increased iteratively until N becomes zero. At each iteration, a function namely FetchRules,

is responsible for selecting and ordering rules with respect to its references in rule-chains. Rules referenced the

most frequently are executed first. Given a rule R, RuleExecute is responsible for validating the occurrences of its

conditions across CR (sensor type) or EB (event type). The preconditions of a rule are valid when both temporal and

logical constraints are satisfied. The occurrences of a post-condition can also overlap. In such a case, overlapping

occurrences are merged into their union. It is important to note that merging is applied at the end of the algorithm,

to preserve different event start times, which is useful in the chaining process. The final occurrences of R are stored
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in EB.

Algorithm 1 Inference Engine

Require: KB,CR ▷ Knowledge Base (KB), Critical Regions (CR)
Ensure: EB ▷ Events Base (EB)
e← 0 ▷ number of events allowed in rule’s precondition
while True do

rules← FetchRules(KB, e) ▷ Fetch rules ordered by the number of events
if len(rules) == 0 then ▷ Halt if there are no more rules

break
end if
for R ∈ rules do

occurences← RuleExecute(CR,EB,R) ▷ find all occurrences in which the rule is validated
if occurences ̸= [] then

EB.update([R : occurences]) ▷ Keep only the executed rules
end if

end for
e+ = 1 ▷ increase number of events for the next iteration

end while

Condition Validation

A condition occurs when its abnormal state is found to be valid for a certain duration. A condition can be validated

multiple times across CR (for sensor type conditions) or EB (for event type conditions). Particularly, in a given

sequence the validation of abnormal states is assessed as it follows,

• increasing: a subsequence of at least three consecutive values exhibiting only an increasing trajectory.

• decreasing: a subsequence of at least three consecutive values exhibiting only a decreasing trajectory.

• positive: a subsequence of consecutive values exhibiting only positive values.

• tare: the first order difference, at different steps, in the entire sequence result in the same maximum value.

• missing value: there is at least one missing time-step in the entire sequence.

Note that, when the negation operator is defined the corresponding abnormal state is valid for complementary

sub-sequences.

Rule Validation

A rule is valid when its preconditions are satisfied. That means logical and temporal constraints are valid. Validation

of the logical constraints (negation, conjunction) is straight-forward, because each of constraint is a well-defined

operator. Instead, further analysis is required for handling temporal relations. Once all valid occurrences of the

conditions have been examined, the next step is to efficiently analyze their temporal differences. To accomplish
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this, DITAN constructs an upper triangular matrix containing all possible pairs of occurrences for all conditions. For

instance, if there are four conditions (C1, C2, C3, C4) it will be six pair categories (C1-C2, C1-C3, C1-C4, C2-

C3, C2-C4, C3-C4), and the upper triangular matrix allows consideration of each unique pair of conditions without

redundancy. Next, DITAN constructs chains between the occurrences of different pairs so as to derive the ultimate

temporal relations. A chain is deemed valid if it incorporates all the different pair categories. A pair is added to the

chain if it does not violate the temporal constraint. Therefore, a rule linked to the occurrences of its valid chains (if

multiple conditions apply) or its valid condition (if there is only a single condition).

Risk Factor

In the domain of Artificial Intelligence (AI), the risk of a (valid) rule is related to the intensity of its preconditions.

This is usually quantified by experts using fuzzy logic [78] or certainty factors [79], such as in [62]. However, DITAN

quantifies risk by using the severity scores (Section 3.3.4). The risk associated with an S condition is equal to the

average of the severity scores within the partition (duration) j of a critical region:

RFS = average(CRj
scores)

and the risk of an event E condition is equal to the average risk of its preconditions:

RFE = average(RFS1, ..., RFEk)

As a result, the risk factor RF provides a general overview of the predictability offset across conditions within their

validated durations. The maximum risk is selected when an E condition occurs multiple times within overlapping

durations. Finally, to preserve a relative risk across valid rules, within a probabilistic-like range, max-normalization

is applied.

4.2.3 The DITAN knowledge System

The proposed knowledge system of DITAN, exhibit some similarities with [62, 77]. These are (a) the use of web-

based CRUD functionalities in knowledge formation, (b) temporality in rules is related to the duration over which

conditions occur, (c) there is an event-driven protocol. However, there are also some crucial differences with previ-

ous approaches, these being (a) inference operates on explicit regions of the data that are considered critical by the

model, referred to as critical regions, instead of operating everywhere and (b) risk factors are driven by the model

instead of the experts belief.
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Chapter 5

Experimental Evaluation

In this Chapter, I assess the effectiveness of DITAN in predicting normality, detecting and interpreting anomalies

numerically. To do this, I use a total of seven datasets with varying anomaly types. Six datasets are chosen from

the experiments held in [20], and one dataset is selected from [58]. This exercise allows a comparable environment

to evaluate the DITAN’s performance through comparison with other models, run on the same data. All runs are

executed on the Python libraries given in Appendix B, using two Nvidia TESLA v100 graphics card of 32 GB each.

The entire evaluation took approximately 8 hours to execute

5.1 Dataset Profiling

The datasets used to test DITAN are already pre-processed by [20] and [58]. As a result, these datasets do not have

missing values and are already partitioned into train-val, test sequences. The time series are not decomposed into

a stationarity data set, and have already been scaled using the min-max transformation. All of these steps could be

part of DITAN’s automatic pre-processing (Section 3.1) strategy. However, to be able to apply the hyper-parameter

optimization, the train-val is additionally partitioned using forward chaining.

5.1.1 NASA Spacecraft Telemetry Channels

From the datasets1 used in [20], I selected three time series from Soil Moisture Active Passive Satellite (SMAP) and

three from Curiosity Rover on Mars (MSL). These datasets (time series) are given in Table 5.1. Both SMAP and

MSL have been used due to the difference in the amount of telemetry (records) and feature (sensors) values they

provide. The datasets are contaminated by real-world spacecraft anomalies of varying length, and annotated by

experts as point or contextual anomalies. The point P anomalies are described as values that fall within low-density
1https://s3-us-west-2.amazonaws.com/telemanom/data.zip
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regions of values, while contextual C anomalies do not, yet are anomalous with regard to local values.

Channel ID Spacecraft Features Train-val Test Test Anomalies

P-4 SMAP 25 2609 7783 3x point
E-13 SMAP 25 2880 8640 3x contextual
T-1 SMAP 25 2875 8612 1x point, 1x contextual

D-14 MSL 55 3675 2625 2x point
T-13 MSL 55 1145 2430 2x contextual
C-1 MSL 55 2158 2264 1x point, 1x contextual

Table 5.1: Synopsis of the chosen six (channels) multivariate time series

Channels are selected based on their anomaly properties over the test sequence. Particularly, channels P-4,

D-14, E-13 and T-13 exhibit the maximum number of point (P) anomalies or contextual (C) anomalies available in

SMAP and MSL. While channels T-1 of SMAP and C-1 of MSL cover the joint contamination of both anomalous

types. The number of records within the given anomalies per channel is as follows: channel P-4 has 130 records

for P1, 200 records for P2, and 110 records for P3; channel E-13 has 101 records for C1, 40 records for C2, and 120

records for C3; channel T-1 has 1499 records for P1 and 35 records for C2; channel D-14 has 20 records for P1 and

200 records for P2; channel T-13 has 100 records for C1 and 150 records for C2; channel C-1 has 200 records for

P1 and 110 records for C2.

5.1.2 MIT-BIH Supraventricular Arrhythmia

The MIT-BIH Supraventricular Arrhythmia Database (MBA) is a large-scale dataset of 2 features, popular for testing

model performance in the [63, 64, 58] management community. In particular, the dataset2 used by [58] is partitioned

into train-val, test sequences of common sizes, each containing 7680 records. The test sequence contains 24

anomalies of two types: 18 Ventricular ectopic beats (V) and 6 fusion beats (F). These are subsequence anomalies

of common length 40, where each anomaly is characterized by a peak value surrounded by an equal number of

records on both the left and right sides of the peak.

5.2 Baseline Model

[20], also provide results of a model3 implementation which instantiates the predictability modeling perspective. Its

architecture is fixed and consists of a LSTM network using a stack of 2 LSTM layers and 2 input dropouts. The

model uses horizon windows to predict normality, given context windows. The model was also used in the data

explored by [58] . Here, I use the model of [20] as the baseline model, due to its straightforward design and so as to

maintain relevant performance comparisons across all experiments.
2https://github.com/imperial-qore/TranAD/tree/main/data/MBA
3https://github.com/khundman/telemanom/tree/master/telemanom
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5.3 Hyper-parameters and Model size

For the manual hyper-parameters, only context size was varied all others were set to default. In particular, for the six

data channels of Table 5.1 context size was set to 25 instead of 250 [20], forcing DITAN to make predictions using a

window of 10 times less records than that used by [20]. This is challenging because the average duration of labeled

anomalies is in range of hundreds instead of dozens records. On the other hand, for the MIT-BIH Supraventricular

Arrhythmia data set, context size was set to the same value 10 as used by [58], and 5 epochs were maintained,

thereby maintaining the same difficulty.

P-4 E-13 T-1 D-14 T-13 C-1 MIT-BIH

Layers 2 2 2 2 1 2 1
Units 94 94 128 60 34 32 35

Units Decay 0.528 0.528 0.5 0.9998 0.615 0.5 0.404
Dropout 0.185 0.185 0.0 0.0165 0.052 0.0 0.1049

Reg. Strength 0.0001 0.0001 0.0 0.001 0.0001 0.0001 0
Le. Rate 0.01 0.01 0.01 0.01 0.01 0.01 0.001

Le. Scheduler step step step exponential step step constant
Le. Patience 5 5 10 7 8 9 5
Batch Size 32 32 32 32 64 64 32

Trainable Param/s 161,393 161,393 284,801 133,991 28,595 24,353 22,682
Run Found 3rd 3rd 12th 16th 6th 12th 13th

Table 5.2: The optimized hyper-parameter values over datasets

The optimized hyper-parameter values are given in Table 5.2. These are the result of 20 Bayes optimization

runs, where each run evaluates the same configuration on 4 partitions, formulated by the forward chaining process.

Hence, the total number of models trained (and validated) across the 7 series are 7×20×4=560. The initial configu-

ration for all series is that used in the baseline model of [20]. That is, layers = 1 (per network), units = 80, units decay

= 1.0, dropout = 0.3, reg. strength = 0.0, le. rate = 0.001, le. scheduler = constant, le. patience = 10, batch size =

64. This guarantees that the extracted topology per series is at least as good as the initial one.

The size of each model (see trainable parameters in Table 5.2) is mainly affected by the total number of units

across layers, and the context size hyper-parameters. The effect of lower context size is observed on MIT-BIH

dataset, since it uses similar number of units as T-13, but has less parameters. The channels in Table 5.1 share the

same context size, but their model parameters are correlated to the total number of units across layers. The model

applied to channel T-1 has the greatest size, followed by those applied to channels P-4, E-13, D-14, T-13 and C-1.
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5.4 Predictability Modeling

Predictability power refers to the ability of a model to predict the actual values when the actual values are labeled

as normal, and to deviate from the actual values when labeled as abnormal. Since ground truth (labels) is provided

by experts, I can separately evaluate the mean absolute error (MAE) over normal and anomalous records. Models

are trained to predict normality, thus a good quality of predictions corresponds to low MAE over normal records in

conjunction with high MAE over anomalous records. The objective of my ground-truthing exercise is to evaluate

how well normality is learned by DITAN, compared with the models applied in [20]. I use the Mann and Whitney [34]

non-parametric test to allow a statistical assessment of the agreement.

Normal records Abnormal records

Figure 5.1: MAE and standard deviations for the 6 channels

The resulted mean absolute errors (MAE) are given in Figure 5.1 for both the normal and abnormal records

across the channels. The standard deviation of MAE on both normal and abnormal records is low, indicating a

consistent mean, and similar between DITAN and [20]. The lowest standard deviation on MAE, is found for normal

records in channel P-4, being 0.0001 for DITAN and 0.0017 for [20]. The maximum standard deviation on MAE, is

found for anomalous records in channel D-14, being 0.609 for DITAN and 0.474 for [20]. DITAN generally produces

lower mean absolute errors (MAE) on normal records, with a p-value of 0.85. On the other hand, [20] show higher

MAE for abnormal records, but with a lower p-value of 0.62.

P-4 E-13 T-1 D-14 T-13 C-1 AVG

DITAN +200% +68% -140% +199% +60% +93% 80%
[20] +128% +37% -71% +185% -32% +85% 55%

Table 5.3: The percentage difference of MAE between normal and abnormal records per model

The percentage difference of MAE between normal and abnormal records, given in Table 5.3, vary as a function
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of overfitting for each model. The higher the percentage difference the better the distinction between normal and

abnormal records. While zero suggests no distinction, and negative sign (-) implies a misconception of normality

(i.e. normal MAE > abnormal MAE). DITAN maintains the highest level distinction across all channels, supported

statistically by a p-value of 0.78. These results are an indicator that DITAN is more tolerant to overfitting when

compared with the models used by [20]. In addition, for channels T-1 and T-13 models applied by [20] exhibit a

negative result. This is a sign of normality misconception for these channels, while DITAN provides no misconception

on T-13. On average, the percentage difference of MAE between normal and abnormal records on DITAN is 80%,

compared with 55% for the models considered by [20].

P-4 E-13 T-1 D-14 T-13 C-1

Normal ↓100% ↓36% ↑154% ↓83% ↓73% ↓8%
Abnormal ↓42% ↓11% ↓8% ↑216% ↓32% ↑1%

Total Change +16% +21% -150% +478% +18% +9%

Table 5.4: The percentage change of MAE from [20] to DITAN over normal and abnormal records per model

The percentage change of MAE over normal and abnormal records obtained by switching to DITAN modeling,

given in Table 5.4, is to quantify the improvement in predictability power achieved by using DITAN. A large improve-

ment on predicting normal records (i.e., decrease in MAE) is accompanied by a small cost on predicting abnormal

records (i.e., decrease in MAE). For channels P-4, E-13 and T-13 the improvement on normal records is more than

two times greater than the cost on abnormal records, indicating improvement of DITAN when compared with models

applied by [20]. Similarly, for channels D-14 and C-1, results indicate a higher quality of predicting normal records,

with also benefit (i.e., increase MAE) on predicting abnormal records. The only exception is channel T-1, because

this channel contains an anomaly of length 1499 records, which is impossible to be captured by observing a context

window with duration of 25 records. Finally, Total Change is computed for each channel as an indicator of the total

benefit (+) and cost (-), in percentage terms using A+B + (A ∗B), where A determines the percentage change of

MAE over normal records and B over abnormal records. Note that A is positive only when a decrease is observed,

while B is positive only when an increase is found. Therefore, by changing from [20] to DITAN modeling, improves

the predictability power across all channels by 65%.

5.5 Detecting Anomalies

Next, I evaluate the detection performance of DITAN against the ground truth for NASA Spacecraft Telemetry Chan-

nels, and compare DITAN with other methods on the MIT-BIH Supraventricular Arrhythmia. Finally, I examine the

effect of thresholding on recall.
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5.5.1 Effectiveness of DITAN across channels

For each channel considered, I compute a confusion matrix, and assess precision, recall and provide F0.5 score

(Table 5.5). I use False Positive Ratio (FPR) to examine the normal records mistakenly identified anomalous, while

the correctly identified anomalous records are examined using both precision and recall. An overall performance,

mainly affected by precision, is also obtained using the F0.5 score.

Channel ID TP FP TN FN FPR Precision Recall F0.5 Score

P-4 242 0 7340 201 0.0% 100% 54.6% 0.86
E-13 113 121 8255 151 1.4% 48.3% 42.8% 0.47
D-14 222 69 2334 0 2.9% 76.3% 100% 0.80
T-13 136 33 2145 116 1.5% 80% 54% 0.73
C-1 201 142 1810 111 7.3% 58.6% 64.4% 0.60

Table 5.5: Confusion Matrix of the records across channels; True Positive (TP), False Positive (FP), True Negative
(TN) and False Negative (FN), as well as the False Positive Ratio (FPR), Precision, Recall and F0.5-score

False Positive Rate (FPR)

The probability of a false alarm or False Positive Rate (FPR), is examined using FPR = FP/(FP + TN) in which

False Positive (FP) is the portion of normal records incorrectly identified as anomalous, and True Negative (TN) is

the portion of correctly identified normal records. There is a low FPR probability across all channels, indicating an

accurate prediction of normal records. In channel P-4, all critical regions are aligned to the actual anomalies (Figure

5.2), resulting to no FP. FP in channels D-14, E-13, T-13 and C-1, are the result of differences in alignment between

critical regions and actual anomalies. While in channel E-13 an additional critical region is introduced. Among all

the reported critical regions, only one critical region is considered false positive, all others are aligned with the 12

actual anomalies.

Precision

The portion of a true alarm when an anomalous record is reported is assessed using the Precision P = TP/(TP +

FP ), with True Positive (TP) being the portion of correctly identified anomalous records. It is the fraction of records

correctly detected as anomalous among all detected anomalies, whether false or true. I observe that the precision

across channels (P-4 and D-14) contaminated by only point anomalies is slightly higher than in channels (E-13,

T-13 and C-1) contaminated by at least one contextual anomaly. This is because contextual anomalies require more

normal patterns to be memorized, and thus introduce noisier errors. These errors can be overshadowed by the

larger errors associated with point anomalies. On average, the probability of reporting a true alarm (TP) instead of

false alarm (FP) is greater than 70%.
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Recall

The proportion of actual anomalies that are correctly identified is assessed using the Recall R = TP/(TP + FN),

with False Negative (FN) being the portion of missed anomalous records. Recall is the fraction of records correctly

identified as anomalous among all discovered and missed anomalies. Performance is gain better for channels

contaminated by point anomalies than those with contextual anomalies. In D-14, actual anomalies are all detected.

While a subset of actual anomalies are considered FN in channels P-4 (Figure 5.2), E-13, T-13 and C-1 due to the

pruning methodology. Also, in channels C-1 and E-13 an entire anomaly is masked due to noisy errors. From the

12 actual anomalies, only two are masked completely and thus failed to be discovered by DITAN.

Figure 5.2: The discovered and missed actual point anomalies in channel P-4

F0.5 score

The F-scores family is very useful for evaluating results in unbalanced data. Here I used the F0.5 score, defined as

F0.5 = 1.25P.R/(0.25P + R). Unlike the F1 score, which is the harmonic mean of precision (P) and recall (R), the

F0.5 score gives more weight to false positives (FP) than to false negatives (FN). A lower F0.5 score is for channel

C-1 due to a masked anomaly (FN) and for channel E-13 due to an additional critical region (FP) and a masked

anomaly (FN). While a similar F0.5 score is for channels P-4 and D-14 (containing only point anomalies) and T-13

(containing only contextual anomalies). On average, channels (P-4 and D-14) contaminated by point anomalies give

a F0.5 score 0.8, while the F0.5 score of channels (E-13, T-13 and C-1) contaminated by contextual anomalies yield

0.6.

Intersection over Union (IoU)

I assess how well critical regions defined by DITAN are aligned to the 12 actual anomalies, using the intersection

over union IoU = Area of Overlap / Area of Union. The IoU scores range from 0 to 1, where 0 indicates no overlap

between the critical regions and actual anomalies, and 1 indicates perfect alignment where the critical regions

completely overlap with the actual anomalies. The results are given in Table 5.6. On average, the IoU score (0.54)

of point P anomalies is similarly well to the IoU score (0.55) of contextual C anomalies. This means that DITAN is
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able to align critical regions with actual anomalies, independent of anomaly type. Also the majority of IoU scores

are above 0.5, which is generally accepted as good result, while the scores below are mainly due to the presence

of false negatives (FN), such as in channel P-4 (Figure 5.2).

Anomaly Type Channel ID Actual Range Critical Regions IoU

Point

P-4: P1 950-1080 1008-1054 0.35
(P) P-4: P2 2150-2350 2161-2207, 2244-2343 0.72

P-4: P3 4770-4880 4791-4838 0.43
D-14: P1 1630-1650 1614-1674 0.33
D-14: P2 1800-2000 1794-2023 0.87

Contextual

E-13: C1 5309-5410 masked -
(C) E-13: C2 5600-5640 5600-5658 0.69

E-13: C3 6449-6569 6442-6520 0.56
T-13: C1 690-790 657-767 0.58
T-13: C2 1900-2050 1942-1999 0.38

Joint
C-1: P1 550-750 415-757 0.58
C-1: C1 2100-2210 masked -

Table 5.6: The intersection over union (IoU) per anomaly, given critical regions of DITAN

5.5.2 Effectiveness of DITAN versus other methods

I compare the output of DITAN with that of 11 other deep models, using the baseline data of MIT-BIH Supraventricular

Arrhythmia (MBA). This allows a contribution to the ongoing experiment4 initiated by [58]. The results of all methods

are given in Table 5.7, using the same evaluation metrics as in their ongoing experiment. DITAN’s critical regions

align with the 24 actual anomalies of the MBA dataset. These critical regions are almost free of false positives (FP),

since almost all (0.9910) the detected anomalies are actual anomalies. As a result, DITAN leads in terms of precision

(P). However, the dynamic-length of critical regions produces false negatives (FN) in the form of misalignment with

the fixed-length actual anomalies. As a result, DITAN exhibit to a relatively low recall (R) value (0.7785) and,

consequently, relatively low AUC and F1 scores. The recall value suggests that more than 70% of the duration in

each actual anomaly is overlapping with the corresponding critical region of DITAN.

4https://github.com/imperial-qore/TranAD/tree/main
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P R AUC F1

MERLIN [38] 0.9846 0.4913 0.7828 0.6555
LSTM-NDT [20] 0.9207 0.9718 0.9780 0.9456

DAGMM [59] 0.9475 0.9900 0.9858 0.9683
OmniAnomaly [44] 0.8561 1.0000 0.9570 0.9225

MSCRED [53] 0.9272 1.0000 0.9799 0.9623
MAD-GAN [26] 0.9396 1.0000 0.9836 0.9689

USAD [2] 0.8953 0.9989 0.9701 0.9443
MTAD-GAT [60] 0.9018 1.0000 0.9721 0.9484

CAE-M [61] 0.8442 0.9997 0.9661 0.9154
GDN [12] 0.8832 0.9892 0.9528 0.9332

TranAD [58] 0.9569 1.0000 0.9885 0.9780
DITAN 0.9910 0.7785 0.8878 0.8719

Table 5.7: DITAN with 11 state-of-the-art methods on the MBA dataset, using the evaluation metrics Precision (P),
Recall (R), Area under the ROC curve (AUC) and F1 score

5.5.3 Effect of Thresholding on Recall

I compared DITAN with six other methods (MERLIN, TranAD, GDN, MAD-GAN, USAD, OmniAnomaly) using the

data channels (P-4, E-13, D-14, T-13, C-1) provided in Table 5.1. The objective was to analyze the occurrence of

false negatives (FN) and false positives (FP) for each model based on the threshold position in the error space. A

conservative approach, which sets a threshold value closer to larger errors, is less likely to detect anomalies and

more prone to false negatives (FN). Conversely, a loose approach, with a threshold value closer to lower errors, is

more likely to detect anomalies and thus more prone to false positives (FP). The ideal threshold position seeks to

minimize both FN and FP values. The results are given in Figure 5.3.

False Negatives (FN) False Positives (FP)

Figure 5.3: The FN and FP across channels per method

I find that methods MAD-GAN and MERLIN are unable to detect actual anomalies in channels P-4 and E-13

respectively, since the number of false negatives (FN) matches the number of actual anomalies. Similarly, the
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methods TranAD, GDN, MAD-GAN, USAD and OmniAnomaly fail in channel T-13 and, except for MAD-GAN, in

channel C-1. Moreover, in channel P-4, the methods DITAN, TranAD, and MAD-GAN exhibit to the lowest number

of false positives (FP), but MAD-GAN maximizes the number of FN. In channel E-13, the method DITAN exhibits

the lowest number of FP. The methods TranAD and GDN exhibit to no FP but also maximize the number of FN in

channel T-13. The same case occur in channel C-1 for the methods TranAD, GDN, USAD and OmniAnomaly. This

analysis shows that all methods exhibit a more conservative thresholding methodology, while in certain channels,

the threshold value is set to an excessively high error value.

5.6 Numerical Interpretation

Finally, I empirically evaluate the similarity approach (Section 4.1.2) for interpreting the detected anomalous records

of DITAN in the data channels provided in Table 5.1. The results of clustering the anomalous records in the unit

space, are given in Table 5.8. In each channel, I compute the Davies-Bouldin index (DBI) score to assess the

compactness and separation of the clusters. On average, the DBI score (0.23) for contextual anomalies (channels

E-13, T-13, and C-1) is relatively higher than the DBI score (0.13) for point anomalies, because contextual anomalies

only differ in certain conditions. However, the low DBI score across anomalous records, indicates that the clusters

are well chosen.

Channel ID No. of Anomalous Records Unit Space No. of Clusters DBI

P-4 242 94 4 0.15
E-13 234 94 3 0.23
D-14 291 60 2 0.11
T-13 169 34 2 0.23
C-1 343 32 4 0.22

Table 5.8: The details and quality assessment of unit space clustering the anomalous records per channel

Given the clustering details provided in Table 5.8, I repeat the clustering of the anomalous records but now in

the original feature space. The objective is to show how many of the anomalous records that are similar in the

unit space also remain similar in the feature space. The results are given in Table 5.9. Overall, more than 85% of

anomalous records maintain similarity also in their feature representation, indicating that the choice of clustering

in the unit space is also intuitive in the feature space. For instance, the verified similarities of channel T-13 are

presented in Figure 5.4. On the top panel, the two contextual anomalies are annotated by different colors (orange

and green). These colors represent the two separate clusters (C0 and C1) that appear on the bottom panel.
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Channel ID Cluster 1 Cluster 2 Cluster 3 Cluster 4 Overall

P-4 16/16 133/147 73/73 5/6 227/242 (94%)
E-13 32/52 128/144 32/38 - 192/234 (82%)
D-14 154/159 100/132 - - 254/291 (87%)
T-13 111/111 58/58 - - 169/169 (100%)
C-1 182/215 24/51 21/30 23/47 250/343 (73%)

Table 5.9: The unit space similarities verified in data space per cluster across channels

Figure 5.4: The clustered contextual anomalies of channel T-13

5.7 Exploring Methodological Improvements

In Section 3.5, I proposed two minor updates to improve the efficiency of the thresholding methodology of DITAN.

I also want to see if there is a significant difference in the effectiveness. To this reason, I executed the updated

version of DITAN on the same channels as in Table 5.6, to get the new intersection over union (IoU) scores. The

comparison between the previous and new IoU scores are given in Table 5.10. On average, the new IoU score

is increased (0.59) compared to the previous IoU score (0.55). That is because the boundaries of the new critical

regions are aligned better to the actual range of the anomalies. However, there is insufficient evidence to conclude

a significant difference.
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Anomaly Type Channel ID IoU IoU (new)

Point

P-4: P1 0.35 0.55
(P) P-4: P2 0.72 0.58

P-4: P3 0.43 0.57
D-14: P1 0.33 0.53
D-14: P2 0.87 0.90

Contextual

E-13: C1 - -
(C) E-13: C2 0.69 0.61

E-13: C3 0.56 0.55
T-13: C1 0.58 0.52
T-13: C2 0.38 0.30

Joint
C-1: P1 0.58 0.83
C-1: C1 - -

Table 5.10: The Intersection Over Union (IoU) from Table 5.6 and the new IoU scores
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Chapter 6

Application to a Hydro-thermal system

Having built and validated DITAN, I am now going to apply the approach to the real-world data for the scientific

question in hand. That is, to examine the intensity, duration and type of anomalies caused on surface temperature

by meteorological/atmospheric effects at a hydrothermal system, thereby defining the role of such external (to the

volcanic system) drivers in modifying surface temperature at such systems. This will be done by focusing on Vulcano

(Aeolian Islands, Italy) where a sensor network is capable of providing time series data to track surface temperature

above an active hydrothermal system, co-located with a weather station.

6.1 Problem Description

A geothermally heated zone involves a heat exchange between the hydrothermal system and the surface, which

buffers surface temperature [81], modulating diurnal and annual cycles. In Figure 6.1, the presence of the enhanced

geothermal flux creates a thermal anomaly (∆T) between heated (Th) and non-heated zones (T0): ∆T = Th − T0.

It will also create a positive temperature difference between the ground and air. However, interaction with the

atmospheric system will also modulate the surface temperatures by, for example, solar heating, shading, and/or rain

forced convection wind, (e.g., [83]). The atmospheric effect is an especially strong influence in situations where T0

is particularly low (close to ambient) and thus where ∆T is very small, as is the case over hydrothermal systems. At

near-ambient temperatures forced convection becomes the dominant heat loss, so that wind (through its influence

on the convective heat transfer coefficient) can, for example, have a strong influence on surface warming and cooling

patterns [83].
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Figure 6.1: The Figure 0.1 from [81]. Sketch of the main sources of thermal emission that can be detected by a
satellite or airborne sensor, modified Figure 1 in [82] reproduced by permission of American Geophysical Union.
In normal conditions ground (Tground) and air temperature (Tair) are approximately equal, so that ∆T = Tground −
Tair ≈ 0. Over a subsurface heat supply, such as a magmatic intrusion above which natural convection in a porous,
or fractured, medium carries heat to the surface, ∆T becomes positive. Over a high temperature surface heat
source, such as an active lava, ∆T becomes strongly positive. Given data collected at the correct wavelengths and
spatial resolution, both anomalies can be detected by a satellite infrared sensor. The schematic also shows the
main sources of heat loss from an active lava body, as are typically calculated using infrared data. These being
radiation (Mrad), convection (Mconv) and conduction (Mcond).

6.1.1 Vulcano and its Thermal History since 2000

At Vulcano, heat ascends by permeable convection above a hydrothermal system that has its depth at around 1

kilometer below the fumarole field (280 meters asl), demonstrated in Figure 6.2. This causes a "heat chimney" at

the top of which is a broad heated zone containing areas of fumarolic activity shown in Figure 6.3. While the heated

zone is characterized by grey surfaces, non-heated zones are red, and the heated zone is typically marked by a very

low (typically 1 to 10 degrees Celsius) thermal anomaly; with nighttime surface temperatures being higher in the

grey (hot) zone than in the red (cold) zone. Fumarole temperatures, ∆T and, thus, also heat flux generally declined

between 2000 and 2010, with one or two reversals in the trend due to increases in permeability associated with

seismic activity and fracturing of the rock above the hydrothermal system [86]. Heat fluxes during the period 2010 to

2020 were particularly low and stable at around 4 to 12 megawatts [85], as opposed to up to 120 megawatts during

times of unrest [87] (Figure 6.4). The period 2010–2020 has thus been defined as a baseline or background level

for heat flux, against which change in the thermal state of the hydrothermal system can be assessed [87].
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Figure 6.2: Figure 1 from [84]: (a) Upper, middle and lower zones of the Vulcano Fossa Fumarole field viewed from
the south. (b) Thermal image mosaic of the same area, with the fumarole field limit as defined by the zones of
discoloration and anomalous surface temperatures marked with black and white lines, respectively. Distance from
rim to crater floor is ≈ 120 meters transects across the border of the heat chimney, that measure temperature below
the surface, show clearly the limit of the thermal anomaly.

Figure 6.3: Figure 1 from [85]: (a) Orthophotomosaic of Vulcano Fossa showing the zone of active fumaroles
(delimited by a black dash line). White dashed line is the boundary of the diffuse heated zone; yellow line represents
thermal transect (A–B) where measurements to define ∆T are made; black dots represent individual fumaroles. (b)
Location of Vulcano Island within the Aeolian archipelago, north of Sicily (background of Google Earth image ©2018
Digital Globe
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Figure 6.4: Figure 3 from [87]: Temperature at 15 centimeters depth on Profile A–B for 2019 to 2022. The large
black arrow marks the hot zone offset into the cold zone after September 2021

6.1.2 The Research Question to be addressed by DITAN

The problem, in terms of system components and sensor values to collect to track the influence of these components

is given in Figure 6.5. Vertically there are two elements to the system: subsurface where internal drivers modulate

the surface temperature and the the atmosphere where external drivers modulate the surface temperature. The two

elements are separated by the surface and its thermal boundary layers across which heat exchange between the

two elements occurs. Horizontally, are two zones: one of which is heated hot and linked to enhanced heat flow from

the subsurface hydrothermal system, and one of which is not heated and cold. The thermal state of the hot and cold

zones are tracked by two sensors that monitor surface and air temperature, respectively. Parameters associated

with the external weather conditions (rain, pressure and wind) are measured by a third sensor system.

Figure 6.5: A descriptive illustration of the thermal system at Vulcano and its parameters
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The focus here is on isolating, and defining external drivers to change in the thermal state. The measurements

in the year 2020 were selected, when there were low levels of heat flux from the hydrothermal system and the

internal element of the system is considered low and stable, and at a background/baseline state. External drivers,

though remain highly variable and will be the main influences on the surface thermal state, although their influence

my be buffered in the hot zone by the presence of the internal heat source. Therefore the objective is to detect

anomalies across the seven sensors and then interpret them into physical events, by examining links using the

domain knowledge capability of DITAN. Two or more anomalies are considered to be linked to each other when their

start difference is within a defined time interval. A research question is then defined as:

what external factors drive changes in surface temperature for a surface above an active hydrothermal

system ?

The surface temperatures will exhibit recurring patterns as part of the diurnal cycle. I am asked to examine

abnormal events, at which anomalies on surface temperature (hot, cold) sensors are linked to anomalies on the

external weather (pressure, wind speed, rain) sensors. The type of these events is called surface external driver,

since surface conditions are driven by external factors.

6.1.3 The Sensor Network used by DITAN

The sensor network used here was installed on the Fossa crater in January 2020, demonstrated in Figure 6.6. This

network consists of two temperature stations separated by 50 meters, one inside the hot (grey) zone and one in cold

(red) zone, and one weather station (ws) co-located with the cold (red) station, given in Table 6.1. The temperature

stations are two thermocouples (Onset HOBO TMC1-HD) measuring surface temperature (Ts) and air temperature

(Ta) at height 15 centimeters above the surface. These thermocouples are linked to an Onset HOBO U12-008

data logger with a sampling rate of one record (measurement) every five minutes. The weather station is an Onset

HOBO H21-USB measuring the atmospheric pressure (S-BPB-CM50), air temperature (S-THC-M002), wind speed

(S-WSB-M003), and rain fall using a tipping bucket rain gauge (S-RGF-M002). These sensors are installed at

ground level, and the sampling rate is one record per minute. The chosen period of collecting measurements in the

sensor network is from January 31, 2020, 12:00:00, to December 31, 2020, 23:00:00, with data gaps existing due

to the logger capacity being reached before download, especially due to mobility restrictions during the pandemic

period, as shown in Table 6.2.
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Figure 6.6: The Hot (Grey), Cold (Red) and Weather (WS) stations installed on Vulcano’s La Fossa Crater and used
by DITAN

Station GPS (WGS-84) Sensors Name Sensors Unit

red (cold) 38.405367, 14.960742 Ts: surface temperature degrees Celsius (◦C)
grey (hot) 38.405222, 14.960564 Ts: surface temperature degrees Celsius (◦C)

Ta: air temperature degrees Celsius (◦C)
weather 38.405367, 14.960742 P: air pressure millibar (mbar)

Ta: air temperature degrees Celsius (◦C)
U: wind speed meters per second (m/s)
Rain: rainfall millimeters (mm)

Table 6.1: The sensor network used by DITAN

Station Data Gaps (mm/dd/yyyy)

red (cold) 05/31/2020 – 06/09/2020
09/04/2020 – 10/01/2020
10/20/2020 – 10/24/2020

grey (hot) 05/31/2020 – 06/09/2020
09/04/2020 – 10/01/2020
10/20/2020 – 10/24/2020

weather 05/28/2020 – 06/09/2020
09/01/2020 – 10/01/2020

Table 6.2: The data gaps in the measurements within the chosen period
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6.2 Domain Knowledge

The graphical interface of DITAN (see Figure 4.2) was used to create and store knowledge within the knowledge

base. Knowledge is expressed in the form of seven temporal rules R presented in Table 6.3. Rules were aligned

to describe severe meteorological events (storm systems) and how such events may be expected to introduce a

negative perturbation (decrease) on surface temperatures; which would then be followed by a recovery during, or

after, the end of the event.

R1: if decrease on pressure sensor and increase on wind speed sensor started within hours, then low pressure
system (meteorological) event.
R2: if positive on rain sensor and low pressure system event started within hours, then rainstorm (meteorological)
event.
R3: if low pressure system event and decrease on red surface temperature and decrease on grey surface temper-
ature started within hours, then decrease on surface temperatures (surface external driver) event.
R4: if rainstorm event and decrease on red surface temperature and decrease on grey surface temperature started
within hours, then decrease on surface temperatures (surface external driver) event.
R5: if low pressure system event and decrease on red surface temperature started within hours, then decrease on
red surface temperature (surface external driver) event.
R6: if low pressure system event and decrease on grey surface temperature started within hours, then decrease on
grey surface temperature (surface external driver) event.
R7: if tare on air temperature, then rapid change on air temperature (instrumental) event.

Table 6.3: The knowledge defined by Experts in the form of temporal rules

This defines three event types: 1. Rules R3 to R6 characterize events considered external drivers on surface

temperature change (Figure 6.5). 2. Rules R1 and R2 define a meteorological event, since only external conditions

are linked to each other. 3. Rule R7 considers sensor failure, demonstrating an instrumental event.

The preview of rule R3 in DITAN is illustrated in Figure 6.7. The post-condition and part of the additional in-

formation (status, version) are located at the top of the card. The preconditions and other additional information

(description, license, last update) are located below this as dynamic tabs. At the bottom of the card, two buttons

allow update (left) or deletion (right) of the rule. The remaining rules (R1, R2, R4, R5, R6 and R7) are then visually

depicted in the lower half of the screen.
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Figure 6.7: Preview of rule management module of DITAN

6.3 Vulcano in Year 2020

In total there are seven sensors in the network, for which the frequency of measurements varies. In particular, cold

(red) and hot (grey) stations registers one record every five minutes while the weather station saves record per

minute. Thus, all measurements from 31-01-2020 12:00:00 up to 31-12-2020 23:00:00, were sub-sampled to every

five minutes, and then down-sampled (averaged) to a common frequency of one record (time-step) per hour, where

the down-sampled time series is given in Figure 6.8. This results in 6799 records (for around 283 days), where each

record is a vector of seven sensor values. Thus, the temporal resolution of anomalies is expected to be of at least

one hour. An overview of range of values recorded for data set is given in Table 6.4. In overall, three main data set

characteristics. (1) sensors exhibit diurnal/annual cycles, (2) sensors do not have similar value ranges, (3) there are
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three significant data gaps in June, September and October.

Figure 6.8: Down-sampled sensor time series for Vulcano in the year 2020

Station Sensor Unit Min Max Mean Standard Deviation

weather pressure mbar 967 1002 986 5.8
weather air-temp ◦C 4.6 48.3 19.8 8.6
weather wind-speed m/s 0 4.4 0.3 0.49
weather rain mm 0 0.5 0.002 0.019

grey (hot) tsurf-grey ◦C 6.7 45.2 23 7.7
grey (hot) tair-grey ◦C 6.9 45.2 22.5 7.6
red (cold) tsurf-red ◦C 5.9 45.3 20.7 8.4

Table 6.4: Sensors description of Vulcano in the year 2020

6.3.1 Forecasting Scenario

The selection of the appropriate size for observation context and forecast horizon relies on knowledge of the time

scale of expected variations. Surface temperatures (see Figure 6.8) will exhibit diurnal cycles of 24 hours, while

also following an annual cycle. In addition, following [74] major storm systems will develop over hours, so that

parameters such as wind speed and pressure will evolve at a timescale of 6-24 hours during high intensity events,

such as Medicanes. Thus, and following [75] the context window is set to 24 hours to allow forecast a horizon of 6

hours. This provides an appropriate temporal resolution to operate on.
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6.3.2 Pre-processing

Results of pre-processing are given in Table 6.5. Of the 1253 missing time-steps (hours), only 73 are linearly inter-

polated. The remaining 1180 have been removed, because the formed gaps were too large to allow interpolation.

Although decomposition is an option, I chose to decompose measurements solely into the residuals component.

This decision was based on the understanding that external phenomena manifest themselves as short-term inter-

ruptions to normality causing perturbations to the diurnal cycle. In contrast, the internal driver primarily affects the

long-term trend. Therefore, the values of each sensor are transformed into residuals, by explicitly estimating its

decomposition type and period. Min-max normalization is then applied across all sensors to introduce a common

scale, without biasing any correlations or underlying distributions. The resulting value range [-3, 3], allows to be

spread as much as possible in range that is not too broad. This ensures that the presence of outlier (extreme)

values are not excessively compressed and maintain their relative positions and magnitudes. The effectiveness of

the pre-processing strategy is closely tied to its ability to preserve the actual correlations between sensors. The

objective is to convert the data into a format suitable for analysis and input into DITAN, while still preserving the

inherent relationships within the data.

sensor decomposition period min max mean std

pressure additive 143 -3 3 -0.04 0.6
air-temp additive 24 -3 3 -0.4 1.07

wind-speed additive 22 -3 3 -0.9 0.44
rain additive 78 -3 3 -2.6 0.2

tsurf-grey additive 24 -3 3 -0.04 0.83
tair-grey additive 24 -3 3 0.004 0.82
tsurf-red additive 24 -3 3 -0.3 0.97

Table 6.5: Pre-processed sensors description of Vulcano in the year 2020

The key statistics of the pre-processed sensors are given in Figure 6.9. Despite the fact that decomposing

to only residuals results in more values outside of the interquartile ranges, the sensors are able to preserve their

correlations. Firstly, it can be visually validated that the four sensors (pressure, air-temp, wind-speed and rain) of

the meteorological station, referred to as external parameters, exhibit the expected negative correlation. That is, as

pressure falls so too does air temperature, but wind speed and rainfall will increase. Secondly, the surface and air

temperatures for the hot zone exhibit a higher median than the surface temperature of the cold zone. That is because

the cold zone is strongly influenced by decreasing trends in the external parameters, but the hot zone temperatures

are buffered by the influence of the hydrothermal system, i.e., internal drivers. Thirdly, the slight difference between

surface and air temperature in hot zone is because air temperature is a little less buffered by the internal drivers,

and a little more modulated by the external drivers.

76



Figure 6.9: Box-plot of the pre-processed sensors in Vulcano 2020

6.4 Modeling Normality

The training phase of DITAN is conducted on data with 24 hour context size and 6 hour horizon size. The aim

of learning is to reduce the differences between forecasted and actual values by identifying the suitable model

parameters. To ensure equal importance in minimizing all differences, I employ mean absolute error MAE as the

loss function. By using absolute differences to compute gradients of the loss function, DITAN can mitigate the

influence of extreme events such as rainstorms, which would otherwise dominate as the main indicator of normality.

Instead, it prioritizes the average understanding of underlying patterns, with patterns appearing more frequently

having a greater influence on determining normality.

Figure 6.10: The convergence plot of DITAN across configurations using Bayes Optimizer
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During the Bayes optimization process, a total of 20 different hyper-parameter configurations are examined, with

their convergence history given in Figure 6.10. Each configuration is assessed using four expanding windows over

the pre-processed data set, resulting into an examination of 4×20=80 models in total. The first (initial) configuration

is the same as that used in Section 5.3. I observe that no improvement occurs until the 5th configuration, with a

significant improvement being observed on 6th configuration with relatively small variations that occurring up to the

16th. A gradual decrease is then observed between the 16th and 20th configurations, at which the objective function

converges. By changing from the initial to the optimal configuration, the optimization error is decreased from 0.268

to 0.195, resulting in a 27% improvement on the objective function.

Hyper-parameters Values

Layers 1
Units 32

Units Decay 0.9103629453531021
Dropout 0

Regularization Strength 0
Learning Rate 0.01

Learning Scheduler step decay
Learning Patience 10

Batch Size 32

Table 6.6: The hyper-parameters of the optimal DITAN model

The hyper-parameters of the optimal (20th) configuration are reported in Table 6.6. The resulting model consists

of 19.815 parameters. These parameters are updated in batches of 32 consecutive patterns, where each record

within these patterns is encoded using 32 units. In addition, use of a larger learning rate of 0.01 means that the

convergence process becomes capable at exploring global maxima more effectively throughout all epochs. To

maintain stability during training, a step decay factor is used, which gradually reduces the learning rate every 4

epochs. This approach helps to strike a balance between exploration and stability in the optimization process. The

final parameters are selected at epoch 78, at which the patience of early stopping is exhausted, with the internal

validation loss not improving by at least 0.0003 for 10 consecutive epochs after epoch 68.

6.5 Detecting Anomalies

In detection phase the trained model is used to predict normality across 6843 (records) hours, resulting in a cor-

responding number of errors per sensor, as illustrated in Figure 6.11. Each error is computed as the absolute

difference between the predicted and observed value, according to the selected loss function. Each sequence is

then smoothed using simple moving average SMA of 6-hours (medium-locality) Parzen windows.
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Figure 6.11: The prediction errors of DITAN across the 7 sensors

An important consideration when reducing temporal resolution is to maintain a balanced trade-off between

smoothness and introduced lag. The "goodness" of the proposed window size is demonstrated in Figure 6.12,

using a subset of errors from a randomly selected (pressure) sensor. I observe that the smoothed versions of the

errors maintain a responsiveness to the raw errors. Also, the objective function of SMA is observed in action. In

the given frame, the most intense raw error value is at position 47, while in the smoothed errors the most intense

value is at position 81. This is because the magnitude of the raw error at position 47 itself was not high enough, in

a relative sense, to overcome the highly varying raw errors in the locality of position 81. As a result, rarity refers to

either high magnitude errors or errors occurring within high magnitude locality.

Figure 6.12: A sub-part of the raw and smoothed error sequences on pressure sensor
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From the 6843 predicted records, 1737 are detected as anomalous and can be grouped into three similarity

groups. This means around 72 days (or 25% of total records) are comprise detected, anomalous events. The

number of anomalies and critical regions per sensor are given in Table 6.7. The most critical regions occur at the

temperature sensors, since they are sensitive to short-term variations. In addition, the number of critical regions

in the cold zone is slightly higher than in hot zone for air and surface temperatures. This is because hot zone is

buffered by the internal (hydrothermal system) driver. Furthermore, the external parameters (wind-speed, rain and

pressure) exhibit a high number of anomalies, indicating that the main source of anomalies on temperature sensors

are due to external conditions.

Sensor Name Critical Regions Anomalous Values

pressure 11 462
air-temp 11 99

wind-speed 11 678
rain 6 537

tsurf-grey 13 298
tair-grey 10 363
tsurf-red 16 562

Table 6.7: DITAN’s detection results per sensor

All 78 critical regions across all sensors are in the assessed root-cause diagram of Figure 6.13. Each color

represents critical regions in a different sensor. The overlapping critical regions are assessed by root cause values

of less than one, which is due to joint severity on the corresponding records. Only a few of critical regions are

isolated, with the vast majority of critical regions being overlapping or closely spaced in time.

Figure 6.13: The root causes diagram from our platform, showing critical regions across sensors

80



6.6 Physical Anomalies

After detecting critical regions, the expert knowledge module (see Table 6.3) is used in the inference engine to

identify physical events. From the inference perspective, rule chains play a crucial role in the analysis. The post-

condition of R1 is in the precondition of R2, R3, R4 and R5, and the post-condition of R2 is in precondition of R4.

Instead, R1 and R7 have no events in their preconditions. Therefore, all the possible inferences are: (a) R1, (b)

R1−→R2, (c) R1−→R3, (d) R1−→R2−→R4, (e) R1−→R5, (f) R1−→R6, (g) R7. According to Algorithm 1 (Section 4.2.2)

executions are divided into three iterations. In the first iteration, (a, g) are executed. In the second iteration, (b, c, e,

f) are executed. Finally, in the third iteration, (d) is executed.

Rule ID Event Type Valid Executions

R1 meteorological 7
R2 meteorological 3
R3 surface external driver 1
R4 surface external driver 0
R5 surface external driver 2
R6 surface external driver 1
R7 Instrumental 9

Table 6.8: Rules executed using the Inference Engine

The number of valid executions per rule are given in Table 6.8. The two meteorological events (rules R1 and R2)

are executed 7 and 3 times, respectively. This indicates large amount of external drivers influencing the system.

Instead R4 does not occur and R3 is executed only once, indicating that external conditions were sufficiently strong

to decrease the surface temperatures in both cold and hot zones. Given that R3 is equivalent to the conjunction of

R5 and R6, both are executed once as well. However, R5 occurs twice, indicating that at another time, the impact

of external conditions to the cold zone was significantly higher than for the hot zone. Finally, R7 is executed nine

times indicating sudden changes in the air temperature due to a systematic failure on the sensor, such as automatic

reset.

Meteorological Events at Vulcano 2020

The main meteorological events occurring at Vulcano in the year 2020 are characterized as low pressure system

and rainstorm by rules R1 and R2 respectively. To gain a comprehensive understanding of the occurrences of these

meteorological events, it is crucial to analyze the critical regions of DITAN within the pressure, rain and wind speed

sensors.

The root-causes of the critical regions for pressure, rain and wind speed are given in Figure 6.14. I observe

that the most critical regions for wind speed and pressure are closely correlated in terms of time, contributing to the
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occurrence of R1. Also, the critical regions for rain are concentrated later in the year, in close proximity to critical

regions for wind speed and pressure, suggesting a significant impact on the occurrence of R2 at this time.

Figure 6.14: The root-causes diagram for pressure, rain and wind speed sensors

Critical regions for pressure, rain and wind speed are correlated with respect to the actual values, as depicted

in Figure 6.15. Notably, the critical regions for the pressure sensor demonstrate a negative correlation with those of

the wind speed sensor. This implies that when pressure exhibits an anomalous decrease, the anomalous values of

the corresponding critical region for wind speed tends to increase. Conversely, the critical regions of the rain sensor

coincide with periods of intense rain activity, indicating the identification of the most intense rain fall events.

Figure 6.15: The classified anomalous groups and critical regions on the actual values for pressure, rain and wind
speed sensors
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From all the critical regions, 9 are for pressure, 7 are for wind speed, and 2 are for rain. The timeline of their

occurrence is given in Figure 6.16. The low pressure system (R1) physical event occurred during the winter and

spring months of 2020, while summer and autumn were at relatively low (normal) levels. R1 was detected once

in early-February and lasted 2 days, once in late-March (lasting 2 days), once in mid-April (lasting 1 day), once in

early-May (lasting 5 days), and three times throughout December (lasting 4 days). The rain activity remained at

relatively low (normal) levels in the spring, summer and autumn months of 2020, while in the winter the rainstorm

(R2) physical event occurred three times in December (lasting 5 days) and coinciding with the three occurrences of

the low pressure system as part of its preconditions.

Figure 6.16: The timeline of the detected meteorological events (R1, R2)

Figure 6.11 presents the prediction errors across sensors, and based on these errors, the risk (Section 4.2.2)

associated with the occurrences of meteorological events is also depicted in Figure 6.16. The risk of a low-pressure

system varies from 0.33 to 0.43, whereas the risk of a rainstorm varies from 0.62 to the maximum risk of 1.0. That

is because, especially during the early days of December, the prediction offset in rain activity was relatively higher

than the prediction offset of wind speed and pressure activities.

Surface External Driver Events on Vulcano 2020

In 2020, the occurrence of the low pressure system meteorological event introduced anomalies involving decreases

in surface temperature.
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The critical regions of cold (red) and hot (grey) surface temperatures, as well as wind speed and pressure, are

given as the root-causes diagram in Figure 6.17. Critical regions for surface temperature, wind speed and pressure

are closely associated with each other, or overlap.

Figure 6.17: The root-causes diagram for pressure, wind speed and (red, grey) surface temperature sensors

The values of the surface temperatures on both cold and hot zones are positively correlated, as it is depicted

in Figure 6.18. However, a partial correlation is observed between their anomalous values within critical regions,

since the surface temperature of the hot zone is buffered to the external conditions by the internal driver, that its

cooling is modulated by the effect of the hydrothermal system heat source. Thus critical regions are more likely to

be associated with passage of a low pressure system for the cold zone than the hot zone.

Figure 6.18: The classified anomalous groups and critical regions on the actual values for surface temperature
sensors

Two critical regions were identified for surface temperature in both the hot zone and cold zone (Figure 6.19).

Anomalies are confined to the winter and spring months, while summer and autumn are free of critical regions.

An anomalous decrease in surface temperature in the cold zone (R5) is detected in early-February and lasted two

days, although this did not effect the hot zone. An anomalous decrease in surface temperature was recorded for
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both zones in mid-May, and lasted six days. During this period, the surface temperature at the hot zone began to

decrease a few hours before the cold zone. This has implications for the effect of external drivers on the apparent

thermal anomaly (∆T).

Figure 6.19: The timeline of the detected surface external driver events (R3, R5, R6)

Based on prediction errors presented in Figure 6.11, the risks associated with the occurrences of surface external

driver events are also given in Figure 6.19. The risk on decrease of cold surface temperature (R5) is 0.31, while

the risk on decrease of hot surface temperature (R6) is higher at 0.43. This observation suggests that the surface

temperature changes in the hot zone pose a higher level of risk compared to the cold zone. In addition, the risk

of decrease on both cold and hot zone surface temperatures (R3) is 0.27, which is lower because it considers all

conditions from R5 and R6. This observation suggests that the temperature changes across the entire surface carry

slightly less risk compared to isolated changes in either the cold zone or hot zone.
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6.7 Timeline of External-Drivers

Aligned with the research question, the decrease in pressure and increase in wind speed, within a low-pressure

system, drive to a decrease on surface temperature for both hot (grey) and cold (red) zones of the active hydrother-

mal system of Vulcano in the year 2020. The detected physical events have been checked as true positives, given

in Table 6.9.

Rule ID Physical Event Average Risk Verified

R1 low pressure system 0.38 ✓

R2 rainstorm 0.75 ✓

R3 decrease on surface temperatures 0.27 ✓

R5 decrease on cold zone surface temperature 0.31 ✓

R6 decrease on hot zone surface temperature 0.43 ✓

Table 6.9: The detected meteorological and surface external driver events

In early-February, a low pressure system passed over Vulcano, persisting for two days. During this period, the

cold zone experienced a notable decrease on surface temperature, indicating a response to the external driver in

this zone, but not the hot zone. This drives the thermal anomaly upwards, but is a result of an external rather than an

internal driver. A second low pressure system passed over Vulcano in late-March and lasted two days, was followed

a one day-long period of low pressure system conditions in mid-April. In both of these cases, there was no impact

on the surface temperatures in either cold or hot zones, meaning that thermal anomaly was unaffected. However, in

early May, a low-pressure system persisted for approximately five days. It decreased the surface temperature in the

hot zone and the cold zone, disrupting normality across the entire surface. Rainstorms were detected throughout

December, and were associated heavy rainfall, strong winds and low pressure. However, surface temperatures

retained their normality in both the cold and hot zones. This means that, even when at low, baseline levels, external

drivers have a minimal role on influencing surface temperature in the hot and cold zones, and hence also the

apparent thermal anomaly.

Sensor Name Unused Critical Regions

pressure 2
wind speed 4

rain 4
tsurf-grey 11
tsurf-red 14

Table 6.10: The number of critical regions not associated with the executed physical events

Table 6.10 provides the number of the remaining critical regions, which are not associated with anomalous

meteorological events. The presence of unused critical regions suggests that there might be additional events to
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explore, prompting the creation of new rules. For instance, in Figure 6.20 one can discern that the critical regions

on both air and surface temperatures are coupled over periods ranging from a few hours to several days. However,

this may also imply the existence of false positives. To mitigate this, the model can be retrained on more sensor

values or to minimize potential inaccuracies by estimating the significant missing gaps such the one started in

early-September up to early-October.

Figure 6.20: The root-causes diagram of all temperature sensors
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Chapter 7

Conclusions and Future Work

In this thesis I proposed the DITAN, a domain agnostic framework for the detection and interpretation of temporal-

based anomalies. First, I lightened the requirements of contamination in multivariate time series, demonstrating an

anomalous exploratory space and addressing the limitations of the current literature on their anomalous and tempo-

ral support. I have provided qualitative evidence that no related work can support all the requirements, in contrast

to DITAN, which successfully address all of them. Furthermore, I conducted a quantitative evaluation of DITAN in

a comparative environment to assess its detection capabilities. Additionally, in a real-world application, I demon-

strated the physical interpretation of the detected anomalies using expert domain knowledge. In unsupervised envi-

ronment, where no labels are required, the method instantiates a neural network model based on Encoder-Decoder

architecture with implicit/explicit attention and adjustable layers/units to capture normality as regular patterns over

records. Anomalous records are then detected by introducing a dynamic thresholding methodology that reveals

critical regions to their errors sequence. Using detected anomalies, root cause is examined on their data space

and similarities are seen in their units space using a clustering method. In addition, by leveraging domain-specific

knowledge using a knowledge (expert) system, we were able to characterize the detected anomalies into physical

events.

7.1 Insights

DITAN is assessed on the well-known MSL and SMAP real-world datasets. From these, 6 multivariate channels are

selected to cover different (point, contextual and joint) contamination types at a varying duration. To highlight the

generic nature of the proposed framework, an optimizer is used to automatically configure the hyper-parameters of

a model per channel. The proposed models are capable of predicting normality with high tolerance to overfitting,

dominating against to the original ones [20] . Critical regions are well aligned to all anomalous events (IoU > 0.5),

from which point anomalous records (F0.5 ≈ 0.8) are captured slightly better than contextual anomalies (F0.5 ≈ 0.6).
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In total, from the 12 anomalous events only 2 are masked, while the rest are detected with more than 70% precision.

Moreover, a good clustering (DBI < 0.19) is applied to the units space of the detected anomalous records, with more

than 85% of them to be verified similar also in their actual data space. This provides support for the numerical

interpretation choices we made. Thereafter, a comparative evaluation on MBA dataset against 11 other deep model

models demonstrated that our approach achieved the highest precision (99.1%) on discovering anomalies. While a

lower recall (77.9%) suggests that more than the 70% of the duration in each actual anomaly is captured. Finally,

in a practical real-world application on Vulcano in the year 2020, during which the internal hydrothermal system

was stable, DITAN physically interpreted 10 occurrences of two meteorological events and 4 occurrences of three

surface external driver events. The occurrences of the physically interpreted events were verified with respect to the

actual sensor values. Specifically, external factors were observed to drive a decrease on surface temperature in the

following zones: hot zone at risk 0.43, cold zone at risk 0.31, and joint (both hot and cold) zones at risk 0.27.

7.2 Limitations

Although Table 1.4 outlines the advantages and disadvantages of DITAN’s technical specifications, this section aims

to highlight the limitations specifically related to the assumptions of DITAN. A major limitations of the unsupervised

approach, is that a poor data quality can lead to misconception of the modeled normality. This requires a good

understanding of how normality is present in the training sequence, so that abnormal patterns are not regular

enough to be considered normal. Moreover, normality is sensitive to the context size which controls the temporal

scalability. Particularly, anomalous events that last longer than context size, may be partially detected or in extreme

case (saw in experiments) considered normal. In summary, DITAN is sensitive to data quality issues and the context

size. Having a well-defined notion of normality in the training data and an optimal context size, are important to

maximize DITAN’s ability to model and detect/interpret anomalies. Besides that, DITAN’s domain independence is

associated with the capability of choosing a suitable hyperparameter configuration, which can be challenging given

the significant number of hyper-parameters involved.

7.3 Future Research

I investigate to reduce the number of hyper-parameters in the existing configurations of DITAN to enhance the effi-

ciency of the optimization process, while still ensuring effectiveness. For instance, the units-decay hyperparameter

may be redundant since the units already exists. In addition, I plan to extend the DITAN by incorporating a module

that predicts future anomalies. This involves training an additional model in supervised manner, using a series of

records labeled as normal or abnormal by the existing detection module. However, methodological concerns are

raised regarding the reliability of the labeling process and the sufficient number of anomalies to establish meaning-
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ful anomalous patterns for predicting future occurrences. The overall project was to develop a tool for assessing

internal and external drivers to the thermal surface state at a hydrothermal system, into the following objectives:

• consider period when internal and external drivers play a role

• consider two measurements that characterize the internal drivers (soil temperature and seismicity)

• define all categories of internal and external drivers

• characterize time scales and intensities of anomalies associated with each driver

• provide thresholds above and below which any given driver does and does not have an effect on ∆T

• Assess the ability to provide a forecasting tool to allow to understand whether a developing thermal anomaly

is associated with an external or internal driver.

DITAN identified anomalies on the surface temperature of the hot and cold zones driven by external factors in

the baseline year 2020 of Vulcano. To address the other objectives, I will apply DITAN in the unrest year 2021 of

Vulcano, as illustrated in Figure 6.4. DITAN needs to be retrained using the measurements from 2020, including

trend and seasonality, in addition to residuals. The retraining process will use similar context (24 records) and

horizon (6 records) windows. The testing phase will exclusively use data from 2021. The aim of this analysis is to

identify the difference in trend between the surface temperatures of 2020 and 2021 and, thus, to detect anomalies

on the surface temperature of Vulcano in the year 2021 with respect to internal factors.
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Appendix A

The knowledge base (KB) of DITAN, consists of relational tables built using the structured query language (SQL).

The proposed KB schema, is coded as follows:

DROP DATABASE IF EXISTS di tankb ;

CREATE DATABASE di tankb ;

USE di tankb ;

DROP TABLE IF EXISTS kb_cond i t ions ;

DROP TABLE IF EXISTS kb_ru les ;

DROP TABLE IF EXISTS kb_sensors ;

−− RULE TABLE −−

CREATE TABLE kb_ru les (

r _ i d i n t NOT NULL,

r _ d e s c r i p t i o n tex t ,

r_executab le ENUM( ’ on ’ , ’ o f f ’ ) NOT NULL,

r _ l i c en s e varchar (255) NOT NULL,

r_ve rs ion f l o a t NOT NULL,

r_ type ENUM( ’ meteoro log ica l ’ ,

’ su r face_ex te rna l_d r i ve r ’ ,

’ s u r f a c e _ i n t e r n a l _ d r i v e r ’ ,

’ i ns t rumenta l ’ ) NOT NULL,

r_ tempora l_ reso lu t i on ENUM( ’ ’ ,

’ minutes ’ ,

’ hours ’ ,

’ days ’ ,

’ weeks ’ ) NOT NULL,

r_user_update varchar (255) ,
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r_update_t ime varchar (255) ,

PRIMARY KEY ( r _ i d )

) ;

−− CONDITIONS TABLE −−

CREATE TABLE kb_cond i t ions (

r _ i d i n t NOT NULL,

c_ id i n t NOT NULL,

c_type ENUM( ’ sensor ’ , ’ event ’ ) NOT NULL,

c_name varchar (255) NOT NULL,

c_s ta te_opera to r ENUM( ’ is ’ , ’ not ’ ) NOT NULL,

c_s ta te ENUM( ’ increase ’ ,

’ decrease ’ ,

’ p o s i t i v e ’ ,

’ tare ’ ,

’ missing_values ’ ) NOT NULL,

c_output ENUM( ’ no ’ , ’ yes ’ ) NOT NULL,

FOREIGN KEY ( r _ i d ) REFERENCES kb_ru les ( r _ i d ) ,

PRIMARY KEY ( r_ id , c_ id )

) ;

−− AVAILABLE SENSORS −−

CREATE TABLE kb_sensors (

s_name varchar (255) NOT NULL,

s_un i t varchar (255) ,

s_ in fo varchar (255) ,

PRIMARY KEY ( s_name)

) ;

INSERT INTO kb_sensors ( s_name , s_un i t , s_ in fo )

VALUES

( ’ pressure ’ , ’ Pascal (Pa ) ’ , ’ ’ ) ,

( ’ gust_speed ’ , ’ Mi les per Hour (mph) ’ , ’ ’ ) ,

( ’ air_temp ’ , ’ Ce ls ius (C) ’ , ’ ’ ) ,

( ’ humidi ty ’ , ’ Re la t i ve Humidi ty (RH) ’ , ’ ’ ) ,
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( ’ wind_speed ’ , ’ Mi les per Hour (mph) ’ , ’ ’ ) ,

( ’ ra in ’ , ’ Cent imeters (cm) ’ , ’ ’ ) ,

( ’ Tsurf_grey ’ , ’ Ce ls ius (C) ’ , ’ ’ ) ,

( ’ Tai r_grey ’ , ’ Ce ls ius (C) ’ , ’ ’ ) ,

( ’ Tsurf_red ’ , ’ Ce ls ius (C) ’ , ’ ’ ) ,

( ’ Ta i r_red ’ , ’ Ce ls ius (C) ’ , ’ ’ ) ;
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Appendix B

The DITAN framework, is written in Python. It is compiled using Python version 3.8.0, while the libraries (packages)

utilized are the following:

Package Version

Flask 2.0.3
google-auth 1.35.0

google-auth-oauthlib 0.4.6
joblib 1.3.1

keras-nightly 2.5.0.dev2021032900
Keras-Preprocessing 1.1.2

kneed 0.6.0
matplotlib 3.2.1

mysql-connector-python 8.0.20
numpy 1.19.5
oauthlib 3.2.2
pandas 1.1.0

pip 19.2.3
plotly 4.12.0

protobuf 3.12.4
PyYAML 5.3.1
requests 2.31.0

requests-oauthlib 1.3.1
scikit-learn 0.23.2

scikit-optimize 0.8.0
scipy 1.5.1

statsmodels 0.12.1
tensorboard 2.5.0

tensorboard-data-server 0.6.1
tensorboard-plugin-wit 1.8.1

tensorflow 2.5.0
tensorflow-estimator 2.5.0
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